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ABSTRACT 

In this thesis the theoretical and experimental concentration 

and temperature dependent band gap narrowing in uncompensated n-type 

srlicon is studied. Electron-electron and electron-impurity interaction 

energies are used to calculate the theoretical band gap narrowing in the 

plasmon-pole approximation. These reveal an increase of 14 mev in the band 

. 19 -3 
gap narrowing at 300 K for a donor concentration of 3.10 em above the 

zero temperature value of 95 mev. For higher concentrations the degeneracy 

deepens and the zero and finite temperature band gap narrowing curves 

converge. Localized states in the band gap resulting from local 

fluctuations in the electron-impuri.ty interaction. a result of the random 

position of the impurities. are also considered. When the analysis 

includes the effect on the host band of the electron-impurity interactions 

calculated above the resulting density of states in the band tail of 

uncompensated silicon is found to be ten .times smaller than is usually 

imagined. 

Using published values for the minority carrier mobility both 

the band. gap narrowing and the minority carrier lifetime are experimentally 

determined in the burled n-type layer of an Integrated Injection Logic 

transistor. The transport factor in the base of a parasitic pnp transistor 

formed by the p-type substrate. buried layer and p-type Integrated 

Injection Logic transistors base region is calculated by monitoring the 

substrate current density and minority carrier injection into the buried 

layer. A range of temperatures from 200 K to 400 K are used to determine 

the temperature depe_ndence of the minority carrier mobility in the buried 

. 0 
layer <T L A band gap narrowing of <1 00 ± 1 5) meV> and minority carrier 

1'9 -3 
lifetime of <30 ± l 0> ns are measured for the burieq layer C2.4.l 0 em L 
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CHAPTER 1 

1.0 INTRODUCTION. 

Semiconductor bipolar devices depend for thew operation on the 

minority carriers. The emitter efficiency of bipolar transistors is 

defined for example by the ratio of emitted majority current to the total 

emitter current that is formed by the sum of majority and minority currents 

at the emitter base junction <Sze 1981>. This ratio is large when the 

minority current Is small. To Increase this ratio and hence also the 

common emitter current gain the device designer decreases the equilibrium 

minority carrier concentration in the emitter by increasing the emitter 

concentration whilst decreasing the base concentration and width. This 

thesis concentrates · on the theoretical calculation and experimental 

measurement of the reduction In silicon's band gap caused by the presence 

of a large number of shallow level impurities. Minority carrier 

concentrations are significantly increased by such band gap narrowing. 

giving corresponding decreases in the emitter efficiency. 

The band gap Is by no means the only important parameter of 

interest to the device physicist. However by limiting· the scope of the 

thesis it is possible to make a valuable contribution to one area of 

current interest <for recent reviews see Abram et al 1979 and Mertens 

1981 >. The scope of the thesis is further limited to un-compensated n-type 

silicon which is easier to model conceptually since the impurities in the 

simplest model are all hydrogen like with a :positive centre surrounded by 

an easily ionlsable impurity electron. The theories. developed here may be 

extended to cover a wider range of materials however this is beyond the 

scope of the present work. Most theoretical workers to date have 

~1 



concentrated on the zero temperature limit tor their calculations. In the 

present . work however the principQl results are extended to finite 

temperature so that a more informed value for the band gap narrowing of use 

to experimentalists is presented. 

The following brief description of the c~anges of state that 

occur as increasing numbers of donor impurities are added to a 

semiconductor serves to introduce the most basic parameters used in this 

thesis. Appendix A contains numerical values for these and other 

17 -3 
parameters for silicon. At low concentrations <Nd < 1 o em > the shallow 

Impurities are well separated in the bulk of the host semiconductor. The 

positive cores of the simple impurities considered form potential wells 

that allow the impurity electrons to occupy states in the band gap. These 

donor impurities have hydrogen like orbits modified by the semiconductor 

dielectric constant <e =11.8> characterised by an effective Bohr radius 
r 

-7 
<aeff=1.91.10 em> and effective Rydberg energy <Reft32 meV>. At finite 

temperatures Boltzmann statistics are usually valid and the impurities are 

easily ionised. However as the donor concentration increases the Bohr 

orbitals begin to overlap. This results in the impurity levels splitting 

and eventually the formation of a band. As the concentration is increased 

this impurity band becomes more extensive and eventually merges with the 

host conduction band. The detailed structure of this impurity band is of 

interest in the concentration region close to this transition. One model 

for this impurity band of particular use in compensated semiconductors is 

named after Hubbard <1963~ 1964>. In the lower -Hubbard band the localized 

impurity states are hydrogen like <H>. In the upper Hubbard band the 

impurities would have two electrons <H >. When the semiconductor is 

slightly compensated those impurity sites that 1,ose electrons to the 

acceptors are available for impurity band conduction or hopping. 

- 1.2-



The presence ·of the impurity band changes the statistics 

required to analyse carrier concentrations. In the first place the Fermi 

level approaches the impurity energy. in the second place the semiconductor 

becomes degenerate and Fermi Dirac statistics have to be used. Heasell 

<1979> and Popovic <1979> have developed statistics where a partially 

ionised impurity band Is considered. Indeed by choosing an appropriate 

degeneracy factor their model may effectively model . the effective band 

gap reduction in doped silicon up to 1019 em - 3. However the calculations 

of this thesis show that there is a physical band gap reduction in heavily 

doped semiconductors. 

At a sufficiently high concentration the impurity band becomes 

metal like and the impurity electrons are free to move throughout the 

semiconductor. A transition has then occurred from an insulating state 

18 -3 
<Nd<10 em. >. at zero temperature. to a conducting or metal like state. 

The transition from metal to insulator is characterised by the Mott 

critical density <Nc>. There are transitions in Other parameters at the 

Mott critical density including the magnetic susceptibility. the zero 

temperature resistivity. the Hall coefficient and the specific · heat 

capacity <Mott 1978. Mott 1974>. 

The Mott transition provides a lower bound to the validity of 

calculations in the chapters to follow. The · Mott metal insulator 

transition may be investigated simply by considering first the metallic 

side of the transition. On this side of the transition the impurity 

electron wavefunctions are extended throughout space. This electron gas 

acts to screen any coulombic interactions .in: the semiconductor. A simple 

model for this electron screening used in metals is the Thomas Fermi 

screened potential characterised by the Thomas Fermi screening length 

- 1.3-



0.=1/K, Fistul 1969> 

2 
e -Kr 

v (r) ~7te err e (100.01) 

This may be used to give a qualitative description of the band structure in 

heavily doped silicon. The inverse Thomas Fermi screening length is then 

defined by <see Appendix A> 

1/3 
1/6 M 

( 3) c 1/ .§ 
K = 2 - N -

TT vaeff d 

3 1/6 -1 
8.2549.10 Nd em (100.02) 

As the concentration of impurity centres is decreased so the screening 

length o.> increases <see Fig 2.4. 7.2>. At some point the screening 

becomes so small that orbitals bound to the positively charged impurity 

centres are possible characterised by the effective Bohr radius <aeft 

Thus the ratio <aeflk> provides a convenient measure of the extent of this 

localization. For example with aeflk = 2 the exponential in Eq. 100.01 at 

r=aeff is 0.13 thus the potential <Eq. 100.0 l> Is reduced to a tenth of the 

unscreened coulombic potential. If the ratio were any greater than this 

screening would be greater and bound states even less likely. Using Eq. 

100.02 for the inverse screening length 0. = 1/ K) the impurity 

concentration associated with this ratio is 4.1 o 18 
em -

3
. The results of 

the more detailed calculations of Berggren et al <1979> for this Matt 

critical concentration Nc are presented In Fig 2.4. 

H,e. 
The conduction and valence bands are also affected by }.presence 

of the extra screening due to the impurity electrons. At a sufficiently 

high concentration the impurity band merges with the conduction band. It 

is this very high density regime that is of interest In this thesis. · The 

study of the concentration region about the metal insulator transition <N > . . c 

Is left to other- workers. Chapters 2 to 6 are concerned with the 

theoretical estimation of the change in the band gap due to the presence of 

- 1.4 -



the impurities at zero temperature. In Chapter 7 these theories are 

extended to describe the change in the band gap at finite temperature. 

Chapter 8 deals with an experimental measurements of the transport 

parameters in heavily doped n-type silicon. Finally chapter 9 summarizes 

the most important results. 

The change in the band structure of intrinsic silicon 

(Introduced in chapter 2> due to the introduction of the impurities may be 

divided into two parts. That due to the extra electron-electron <ee> and 

that due to electron-impurity <ei> interactions. If the change in the 

conduction <valence> band bottom <top> is given by t1Ec (l1Ev> 

change in the band gap is given by 

ee 
l1E (Nd) = l1E - l1E = l1Ec g c v 

ei 
+ l1Ec 

ee 
- l1E v 

ei 
- l1E v 

then the 

(100.03) 

The electron-electron contributions to the band gap reduction are dealt 

with in chapters 2 and 3. In chapters 4. 5 and 6 the electron-impurity 

interactions are considered. 

The change in the band edges is determined from the change in 

the exchange or self energies <E>. In chapter 2 the electron-electron self 

energy is derived. In this thesis the electron screening used to evaluate 

the self energy is derived In the plasmon pole approximation <derived in 

chapter 2>. This is more accurate than the Thomas Fermi screened potential 

mentioned above :evhich is only strictly valid ·at very high impurity 

concentrations where the electron wavefunctions are close to being plane. 

waves. 

The self energy describes the exchange energy of an electron in 

a particular band. For example in the conduction. band it· is made up of 

exchange energies between electrons in the same band u:ee > and exchange 
cc 

between the electrons in different bands <Eee > 
cv 

- 1.5-



(100. 04) 

However as lnkson <1976> points out it is the change in the band energies 

that is of interest. This is derived from the difference between this self 

energy and that present in the intrinsic semiconductor <tint > .. . c Thus the 

change in the conduction band energy is defined by 

ee ee 
tee = .t.Ec (100.05) 

In this thesis <chapter 3> as in work by other authors <Berggren and 

Sernellus 1981. Abram et al 1979> it Is assumed that the exchange between 

electrons in the conduction and valence band is unchanged by the presence 

of the extra electrons in the conduction band. The intrinsic exchange of 

the conduction band electrons with themselves <rlntcc> is clearly zero. 

since the intrinsic conduction band is calculated on a one electron model. 

A similar expression may be derived for the valence band 

~int= A.Eee 
L. ~ (100.06) 

vv v 

However In this case the Intrinsic valence band has a self energy since it 

Is full of electrons in contrast to the intrinsic conduction band. This 

Hartree Fock energy must be subtracted .from the valence band contribution. 

Chapter 4 is concerned with the ensemble averaged electron-impurity self 

energy 

ei 
<.t.E > g 

ei 
<.t.E > g 

(100.07) 

This shift In the band energies is due to the average impurity 

concentration. Local fluctuations in the impurity concentration are taken 

into account in ·'' chapter 5. These locai fluctuations in the impurity 

concentration are' responsible for a band tail forming on the has~ bands 
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density of states. Several approaches have been made to this problem In 

the past <Parameter <1955>. Kane <1963>. Halperin and Lax <1966>. Lloyd and 

Best <1979>. Samathiyakanit <1979». In this thesis the most useful 

theories of Halperin and Lax and Lloyd Best are considered and improved. 

Both use the Thomas Fermi approximation to· the electron screening. 

The above chapters define the three major areas of interest in 

this thesis describing the electron-electron. the electron-impurity shifts 

in the band edges and finally the formation of localized states within the 

band gap resulting in a tail on the density of states. In chapter 6 an 

alternative approach to the electron-impurity problem is presented. Where 

the former chapters <4. 5> treat a random array of impurity centres 

superimposed on the host lattice. chapter 6 deals with a regular 

arrangement of impurities. However where in the former chapters an 

approximation to the electron screening Is used. in chapter 6 the electron 

screening Is determined self consistently using the calculated electron 

wavefunctions. 

The final theory section. chapter 7. extends the most useful 

theories of chapter 2 to chapter 4 to finite temperature so that a 

comparison between the experimental results of chapter 8 and the theory is 

pQssible in chapter 9. In chapter 8 a · novel use of the pnp parisltic 

transistor in an Integrated Injection Logic transistor provides the means 

of studying the transport parameters in the heavily n-type doped buried 

layer <the emitter of the Integrated Injection Logic device>. 
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CHAPTER 2 

GENERALIZED ELECTRON SELF ENERGY FOR SILICON. 

2.0 INTRODUCTION. 

Introduced in this chapter are expressions that will be used 

throughout the thesis. A brief outline of the salient properties of 

silicon's conduction and valence bands is presented in section 2.1. 

Section 2.2 contains a derivation of the electron-electron self energy. 

taking the detailed nature of silicon's. band structure into account. In 

section 2.3 the Lindhard and plasmon pole approximations to the electron 

dielectric function are derived for silicon and the justification for the 

use of the plasmon pole approximation in this thesis Is presented. Finally 

In section 2.4 a brief summary of the results of this chapter are 

presented. 

2.1 BAND STRUCTURE OF SILICON. 

Crystalline silicon has a face 7entre cubic spatial lattice 

with a body centred cubic reciprocal lattice. The well known <see for 

example Kittel 1976> shape of the first Brillouin zone is shown In Fig 2.1 

with all the important symmetry labels. Where in a free electron gas the 

electron. wavefunctions would be given by plane waves. in silicon these 

wavefunctions may be expressed in terms of Bloch functions. ·The 

relationship between energy and wavevector becomes more complicated than 

that of a free electron gas. The re·sultlng band diagrams for silicon In 

reduced zone. calculated by Herman et al 1967. ar~ also drawn in Fig.2.1 . 
. ,/'' 
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From Fig · 2.1 it is possible to see that the bottom· of the 

conduction band forms about 75% of the way from the zone centre to the, 

point X. There will then be six of these valleys. two each along the three 

axes k . k and k . Constant energy surfaces for these six valleys. shown 
X y Z 

in Fig 2.2. may be approximated for energies close to the band edge by 

ellipsoids characterized by a longitudinal mass m
1 

<m
1 

= 0.9Bm
0

> and two 

equal transverse masses mt <mt = 0.19m
0

. see Appendix A>. Considering just 

one of these ellipsoids at ki' a new set of axes Ck') centred on that 

ellipsoid with the k' axis orientated longitudinally can · be defined. The 
X 

energy of that valley may be written 

0 
Eck = (k ' 2/ . k' 2 kz' 2) /mt) x ml + ( y + 

k. 
2 

= (k - k. ) 
2 + (k - k. ) 

2 + (k - k. ) 
2 

X ~X y ~y Z ~z 

(210.01) 

where E is the conduction band energy. Frequently. for example when c 

calculating the density of states. this approximation to silicon's 

conduction band is used. accounting for the six valleys· by multiplying the 

answer for one valley by the number of valleys <Mc> at the end of the 

calculation. 

Silicon's valence band has been found to be more complex than 

the conduction band <for a good summary see Blakemore 1962>. It consists 

of three bands centred at the origin of the Brillouin zone. a schematic 

diagram of these three may be found in Fig 2.3 <a>. The upper two bands 

<J=312> are known as the heavy and light hole bands and are degenerate at 

WOO> whilst the lower CJ=1/2) is separated from these by the spin-orbit 

Interaction <see for example Kane 1982> and Is known as the spin-split-off 

band. The situation Is further complicated by the lack of isotropy of 

light and heavy hole bands <see Fig 2.3 <b». Dresselhaus et al 1955 have 

developed an expression for the wavevector dependence of the. holes in the 
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upper bands in terms of constants A. B and C 

E 
v 

(210.02) 

where E is the valence band edge and the plus sign refers to the light 
v 

hole band and the minus sign to the heavy holes. Whilst the energy of the 

spin split off band may be expressed as 

E - A -v 
(210. 03) 

where A for silicon is only 44 meV. Kane 1956 has shown that this small 

separation between upper and lower bands results in the light hole band 

becoming non-parabolic over a small region of k <see Fig 2.3 <c» that for 

large k results in the two bands being characterized by the same mass 

<O.S.m
0

>. However for simplicity the light and heavy hole bands may be 

approximated by parabolic Isotropic bands with effective masses mH and ml 

<mH=O.Sm
0

. ml =0.16m
0

. Appendix A). Indeed for the calculations in chapter 

5 ·and 6 . the situation is still further simplified by taking but one 

parabolic band with density of states effective mass given by 

m 
v 

( 3/2 + m3/2)2/3 = mL H mo = 0.5~ m 
0 

(210.04) 

The presence of the spin split off band is ignored in all 

of the following calculations to simplify an already complex situation. 

This is consistent with the above parabolic assumption since this also 

fails at about ·50 mev below the bands edge. In p-type silicon the 

presence of impurity states close to t~e. valence band· <only 45 meV for 

boron in silicon) might be expected to be oJfected ~ignificantly by the 

spin split off band :as Is the light hole band. A full description of p-

type heavily doped·· silicon would require the spin split off band to be 

included. 
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2.2 GENERALIZED ELECTRON SELF ENERGY IN HEAVILY DOPED 
SILICON. 

The development of the self energy for semiconductor electrons 

has a strong similarity with those for a free electron gas <Hedin and 

Lundqvist 1969>. For this reason the theory in this section is based on 

that for the free electron gas <see for example Fetter and Walecka 1971> 

whilst pointing out the major differences between this and our problem. In 

section 2.2.1 Dyson's equation is derived analytically for heavily doped 

silicon and a justification for the Importance of the self energy is given. 

In section 2.2.2 this derivation Is complemented by the use of Feynman 

diagrams. Finally in section 2.2.3 an expression for the self energy in 

terms of the Green's function and screened interaction is derived that will 

be used in later chapters of this thesis. 

2.2.1 Dyson's Equation. 

Motion of electrons between two positions <x and y> and times 

et1 and t
2

> and may conveniently be described by there Green's functions 

G<xt
1 

,yt
2

>. where the spin indices are omitted for simplicity. As might be 

expected thi~ Green's function may be expanded as a series in terms of the 

. 0 . 
unscattered or free particle propagator G <xt

1
.yt

2
>. The equation that 

generates this expansion is called Dyson's equation after F.J. Dyson 

<l949a. b). 

G(x,y) = G
0

(x,y) + JJ G
0

(x,x1 ) E(x1 ,x2 ) G(x2 ,y) d
4

x 1d
4

x 2 

(221.01) 

·Where an abbreviation for xt
1 

and yt
2 

has been made. E<xt
1
.x

2
t
2

> is the 

Irreducible or .proper self energy of the particle. its approximate 

evaluation In subsequent sections will enable us to calculate the change in 
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energy of the bands due to the presence of many electrons In the conduction 

band. 

When the electrons In the conduction band are considered to be 

smoothly spread throughout the whole of the heavily doped silicon Dyson's 

equation simplifies because the Interaction Is invariant under translations 

and the system is spatially uniform. As a first step in showing this more 

' exactly the Fourier time transform of the Green's function Is taken 

{221.02) 

,. 
Then In analog]' '. with the free electron derivation the wavevector <k> 

dependent. Green's function for the unperturbed electron in the band n is 

defined 

0 
G (n;k,W) = 1 

(221.03) 
0 0 

(w- wnk + iOsgn(wnk-wf)) 

where wf is the Fermi angular frequency and the electrons are considered to 

fill the band up to this Fermi energy Cfiwf>. calculated as if there were no 

exchange energy 

.fiwf = 
.fl2k2 

f 
2m 

With Fermi wavevector in one valley given by <see Fig 2.4> 

2N 1/3 
311 d . 

( M ) . 
c 

{221. 04a) 

{221.04b) 

Writing the spatial Green's function as and expansion of this in terms of 
·' 

the complete set of orthogonal functions ~nk<x> that describe - the 

unperturbed electrons of the band n <Hedin and Lundqvist 1969> 

* 
0 

G (x,y,w) = [ 
nk 

~nk(x)~ nk(y) 
(221.05) 

0 0 
(w- wnk + iOsgn(wnk-wf))· 

where the wavevector k Is confined to the first Brillouin· zone of silicon . 
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and the index n represents the band. As a small digression if the 

wavefunctlons {>nk<x> are replaced by the normalised plane waves 

. 3/2 i.k, X 
{>k(x) = 1/(2rr) e . 

then the spacial Green's function reduces to the Fourier expansion of the 

wavevector Green's function used when dealing with a free electron gas. 

When dealing with Interactions between bands matrix elements 

like 

0 11 * o d3xd3y G (n;k 1 m;q 1 W) = {>nk(x)G (X 1 Y1 W){>mq(y) (221.06) 

have to be solved where the Green's function <self energy> is expanded in 

terms of the wavefunctions of two different bands. When Eq. 221.05 is 

substituted for the Green's function G
0

cxJw> two similar overlap 

Integrals. one In x the other in y. are found. These are evaluated over 

all space by Invoking the orthogonality of the functions 

(221.07) 

so that 

0 - . 0 
G (n;k 1 m;.q 1 W) = L On n,O(q'-k)On,.mO(q-q')G (n';q' 1 W) 

n tqt I I . , . 

(221.08) 

0 
~ G (n;k,m;q,w} = 

0 0 (k-q) 
n~m. 

A similar process can be performed for the self energy with 

. the result that Dyson's equation CEq. 221.01> reduces to an algebraic 

equation In momentum space as In the free electron gas 

. 0 0 . . 
G(n;k,W) = G (n;k 1 W) + G (n;k 1 W)t(n:;k 1 W)G(n;k~w) (22L09) 
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Whilst for the electron-electron calculations the above 

uniformity of the electron distribution Is to a large extent a reality. for 

electron-impurity interactions the Impurities certainly do not merge into a 

uniform positive continuum. However .. as will be shown in the electron-

Impurity self energy chapter <chapter 4> an equivalent Dyson like equation 

for an ensemble averaged Green's function is obtained in that case also. 

Having now derived an expression for the unperturbed Green's 

function in wavevector sp~ce <Eq. 221.08) Dyson's equation <Eq. 221.09> may 

be rewritten resulting in a straight forward expression for the total 

Green's function 

1 
G(n;k,W) = (221.10) 

as with the free propagator the poles in this Green's function give us the 

energy of the particles represented by that function 

(221.11) 

The real part of the self energy t then gives the energy of the quasi 

particles represented by the total Green'.s function. It Is this ene~gy 

that is to be calculated in this thesis. The remainder of this chapter is 

devoted to finding an expression for the wavevector dependent self energy 

in Eq. 221.11. 

The total Green's function has then the same form as the free 

particle propagator but represents a particle. called the quasi particle. 

with different energy and lifetime <Mattuck 1976. Fetter and Walecka 1971>. 

Since the effective mass is give by the second derivative of the energy 

with respect to wavevector this change in the €-k relationship res·ults In 

an effective mass different from the intrinsic effective mass. Abram et al 
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Cl978> calculate this mass explicitly and find that it is only the 

conduction band effective mass that is a.tfected and then by only a few 

percent. This difference In the effective mass is ignored in what follows. 

It Is clear that the total Green's function represents a new particle that 

has different mass and energy from the unperturbed electrons. This new 

particle is the result of groups of the electrons moving through the 

semiconductor in clusters. These clusters or quasi-particles. as they are 

often called. are continually gaining and losing members so that a 

lifetime may be ascribed to them. When k=O the resulting expressions 

describe the particles at the band edge. The self energy then gives the 

shift of this band edge relative to its unperturbed position <Eq. 221.11> 

which then justifies our interest In calculations of. the self energy. The 

remainder of this section will be devoted to finding an approximation for 

the self energy that is used In lat·er chapters. 
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2.2.2 Feynman Diagram representation of Dyson's Equation. 

An equivalent more lucid method of representing Dyson's 

equations is presented in this section. Working in k space and omitting 

the band indices for simplicity. an expression for the self energy is 

derived in terms of Feynman Diagrams. 

expression for silicon is developed. 

In section 2.2.3 the resulting 

Dyson's equation for the total Green's function may be written 

<Mattuck 1976> 

* k,W = 

+ 
(222.01) 

k,w 

represents the total Green's function iG<k.w> 

represents the free particle Green's function iG
0

<k.w> 

represents the irreducible self energy -it<k.W) 

Dyson's Equation may be expanded to several orders of approximation to give 

the total Green's function as series in the self energy 

J = t + 

! = + + ~1 (222.02) 

4 = t + ? + + + + 
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The irreducible self energy is now defined as 

= + (222.03) 

represents the screened interaction that contains all 

k.w irreducible polarization parts -iW eff<k.w? 

represents the dressed or irreducible vertices 

In common with other work <Hedin and Lundqvist ·1969> the so 

called vertex corrections are omitted. Taking only the most divergent 

irreducible polarization parts. that corresponds to working in the Random 

Phase Approximation. and approximating the total Green's function by the 

free particle propagator the approximate self energy <here after just 

called the self energy> becomes 

® = ~+ 
RPA 

0 (222.04) 

where the approximate effective interaction <here after just called the 

screened potential> is given by the series 

+ .. (222. 05) 

RPA 

represents the unscreened interaction -iW
0

<q>. 

The first term In the self energy <Eq. 222.04> is just the 

average electron-electron interaction that cancels with the average 
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. ,· 

electron-Impurity interaction as will be discussed In more detail in 

chapter 4 

0 = "(222. 06) 

The second term on the right hand side of Eq. 222.04 may be reduced to 

functional form using the appropriate rules <see for example Mattuck 1967. 

Mahan 1981. Fetter and Walecka 1971> 

4 0 . 3 
il:(k,W) = 1/ (271) fiG (k-q,W-V) (-iWeff(q,V))d qdV (222.07) 

where the summation over spin states <m =± 1 /2) has been Included. s 

2.2.3 Derivation of the self energy In heavily doped silicon. 

The self energy for heavily doped silicon may be derived by 

returning to the implicit spacial form of Eq. 222.07 

t(x,y,w) 
0 = - i/277 f G (x,y,w-v) weff(x,y,v) dv (223.01) 

This reduces to the former expression when the Fourier transforms of both 

sides are taken. To achieve and expression for the self energy to 

substitute into Eq. 221.11 for the quasi particle .energy in heavily doped 

silicon the Green's function and self energy must be expanded in terms of 

the complete set of orthogonal functions ¢>nk<x> that describe the 

unperturbed electrons in the nth band with k the wavevector restricted to 

the first Brillouin zone. The wavevector self energy is then written 

r ff . * r ( ) d 3xd 3y 
L. ( n ; k , w) = 1¢' nk ( x) L. ( x , y , w) ¢> nk Y . (223. 02) 

whilst the unperturbed Green's function <from Eq. 221.03 and Eq. 221.05> 
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may be written as 

0 0 * 
G (x,y,w-v) = [ ~mq(x)G (m;q,w~v)~mq(y) 

mq 
(223.03) 

0 . 
On substituting for E<x.y.w> from Eq. 223.01 and G <x.y.w-v> from Eq. 

223.03 the wavevector dependent self energy Eq. 223.02 becomes 

0 3 
E(n;k,w) = 1/2" [ JJ W(nk,mq,v)G (m;q,w-v) dvd q (223.04) 

m 

where the interaction matrix Is given by 

* * 3 3 
W(n;k,m;q,v)=JJ ~nk(x)~mq(y)Weff(x,y,v)~mq<x>~nk(y)d xd y 

(223.05) 

The above integral may be solved by taking the Fourier transform for the 

potential 

3 eil. (x-y) d3l 
weff(x,y,v) = 1/(2") J weff(l,v) (223.06) 

on substitution into Eq. 223.05 this gives 

3 * 3 
W(n;k,m;q,V) = 1/(2") f I I Weff(l,V} d 1 (223.07a) 

where the overlap integrals. one In x the other in y. are given by 

I = J ~*k(x)eil.x~ (x) d 3x {223.07b) 
n mq 

where n and m are the band indices. These overlap integrals are now 

calculated explicitly for the valence and conduction bands: 
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a> The conduction band overlap integral. 

To evaluate the overlap Integral for the conduction band <n=c> 

the unperturbed wavefunctions are expanded in terms of thelt' associated 

Bloch function unk<x> 

~nk(x) = unk(x) 
ikx e (223.08) 

where the unk only vary slowly with k. Expanding the periodic u's in a 

Fourier series in the reciprocal lattice vector g 

* u k(x)u (x} n mq 

where 

= L c eigx 
g g 

so that the overlap integral <Eq. 233.07b> becomes 

(223.09a) 

(223.09b) 

(223.10a) 

Since the wavevectors q. k and I are only defined within the first 

Brillouin zone and only extend over a small volume in reciprocal space only 

the first zone need be considered 

I = B(q-k+l) J u*k(x)u (x) d
3
x n mq 

(223.10b} 

The Bloch integral may then be written 

* I I = B(q-k+l) Bnm (223.10C) 

where the coupling between conduction and valence bal')ds has been ignored. 

This coupling is dealt with in more detail in section 3.1. 
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b> The valence band overlap Integral. 

When considering the valence band the coupling between the 

heavy <n=H> and light <n=U hole bands <J=3/2) is included. However the 

spin split off band <J=112> Is ignored <see section 2.1 for justification>. 

Rather than choosing the simple Bloch functions of the previous. section 

Combescot and Nozieres <1972> expand the wavefunctions ¢J in terms of the 

complete set of orthonormal functions used by Luttinger and Kohn <1955> 

¢Jkv(x) = [ c (k) u (x) va oa a 

ik.x 
e (223.1.1.) 

where the C!s are constants and the spin index a is only allowed to scan 

through the heavy and light hole bands <le m J = ±3/2. ± 1/2}. The 

wavefunction are then constructed from the k=O unperturbed Bloch function 

u . The overlap integral <Eq·. 223.07> may now be rewritten in terms of oa 

these basis functions 

{223.l.2a) 

where the bands have been specified by their total orbital angular momentum 

quantum numbers <m} denoted by v and v ·. rather than the band indices used 

previously <Eq. 223.7 n and m>. Invoking the orthogonality of the k=O 

Bloch functions the valence band overlap integral becomes 

(223.l.2b) 

and performing the integration over all space 

* I = 6(k-q-l) L cva(k) cv•a(q) (223.12C) 
a 

In this special case where the summation over m is restricted 

to just the heavy and light hole bands Combescot and Nozieres showed that 
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the constants. C <k>. were J'ust the elements of the rotation matrix that va · 

rotates the function In the J=3/2 representation bringing k in line with 

the z axis <see also Bir and Pikus 1974. pp 255>. Thus if the function 1Jm 

<J = 3/2 m = m = ±3/2. or ±1/2) describes an eigenstate in the . Jz 

coordinate system x.y.z and the function 1Jm' the same eigenstate but In 

the different coordinate system x' .y' .z' obtained by rotating about the 

origin. with m'=mJ . then the rotation matrix dJ , 
z m m 

·relates these two 

functions 

.,. = ~ eim'~ dJ ( 0 ima 
Jm L m•m P) e 

m' 
(223.13a) 

where the Euler angles a. P and ~ define the rotation between the two 

coordinate systems <see for example Arfken 1970 pp 220>. The rotation 

matrix in the J=3/2 representation is given by <see for example Edmonds 

1957) 

d3/ 2 (D) : 
m'm P 

m' ' 
m 

d1 

-d 
2 

d4 

d2 -d 
3 

-d 
4 

d d6 -d 
5 3 

-d 
3 

-d 
2 

with the six constant given by 

d1 = 1/4 (cos3/3/2 + 3cos/J/ 2) 

d2 = "3/4 (sin3/J/ 2 + sin/J/ 2) 

d3 = "3/4 (cos3/3/2 - COS/3/2) 

d4 = 1/4 (sin3/3/ 2 - 3sin/3/2) 

d5 = 1/4 (3cos3/J/2 + cos/3/ 2) 

d6 = 1/4 ( 3sin3/J/ 2 - sin/J/ 2) 
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In particular choosing k parallel to the z axis so that 

c (k) = d
312

(o) = 0 va va va {223.14) 

the constants C v, v <q> are defined by the angle <8> between the z axis. <or 

k> and q 

c . {q) = d 3/2 ( 8) 
VV' VV' 

(223.15) 

The overlap integral <Eq. 223.12c> may then be rewritten 

I = d~~~{8) O(k-q-1) {223.16) 

But in Eq. 223.04 the summation is over just two bands. either the light 

hole band <m=U of the heavy hole band <m=H>. Thus to be consistent with 

Eq. 223.04 a partial summation over the various spin angular momenta v' 

associated with the band m must be performed. Since the square of the 

overlap integral is required <as shown in Eq. 223.07a> it is convenient to 

define the function h used by Combescot and Nozieres <1972>. Rice <1977>. 

Berggren and Sernelius <1981> 

hHH = hLL = d3/2, 3/ 2 ( 8 ) d3/ 2, 3/ 2 ( 8 ) 

+ d- 3/ 2, 3/ 2 ( 8 ) d- 3/ 2, 3/ 2 { 8 ) {223.17a) 

that Is Interpreted using Eq. 223.13 

* * 2 d 1 d
1 

+ d 4 d 4 = d 5 d 5 + d 6 d 6 = 1/4 {1 + 3cos 8) (223.17b) 

and 

hHL = hLH = d3/2,1/2( 8 )d3/2,1/2( 8 ) 

+ d- 3/ 2, 1/ 2 (f)) d- 3/ 2, 1/ 2 (f)) (223.17c) 

given by 

* * 2 d d d I 
. 

2 2 
+ d

3 3 
= 3 4 s~n 8 (223.17d) 
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Notice also that if there were· no coupling potential 0 = 0> the overlap 

integral <Eq. 223.12c> becomes 

* 3 J ~nk{x)~mq(x) d x = O(q-k) ~ d (O)d (O) = O(q-k)O 
~ va v•a nm 
a 

a trivial result used in deriving the wavevector Dyson's equation Eq. 

221.09. that shows that the ~ are indeed orthogonal. 

Returning now to the evaluation of the self energy <Eq. 223.04> 

the overlap integrals for the conduction <Eq. 223.1 0> and valence bands 

<Eq. 223.17> have just been calculated. These have to be substituted into 

Eq. 223.07a and Eq. 223.04. For completeness the definition of 1\. Is 

extended to include the conduction band overlap integral 

* I I= O(q-k+1) 1\.nm (223.18) 

n and m belonging to conduction band . 

n belonging to conduction band. m belonging to 
valence band or visa versa <see section 3.1 > 

2 
1/4 ( 1 + 3cos a> n and m belonging to the same valence band 

n and m belonging to different valence bands 

With the aid of this function the· self energy <Eq. 223.04> is written using 

the Interaction <Eq. 223.07> as 

t(n;k,w) 
4 0 3 = i/ (277) [ JJ 1\.nm Weff(q;v) G (m·;k-q,w-v) dVd q 

m 

I:(n;k,w) = i 
--4 [ JJ 
( 277) m 

3 
1\.nmWeff(q,w) d qdv (223.19) 

Where the unperturbed Green's function contains an exponential convergence 

factor with infinitesimal TJ. The essential difference. between this and the 

equivalent free electron-gas expression is ·the inclusion of the vertex 

function (/\. > to describe the coupling between the bands <n.m> .. In a more 
nm · • 
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exact calculation these overlap integrals would have to be calculated 

numerically between all the semiconductor bands. For the present 

calculations the above expression is used. In the next section an 

expression for the screened interaction W ett<q.w> is. derived to complete 

the expressions needed to calculate the self energy used to predict the 

change in the band energy CEq. 221.11>. 

2.3 COULOMBIC POTENTIAL SCREENED BY CONDUCTION BAND 
ELECTRONS. 

To complete the derivation . of a useful expression for the self 

energy ·cEq. 223.19> in heavily doped silicon. the effective interaction 

<W eff<q.w» has to be evaluated. This represents the screening of the 

Impurity potential due ·to the presence of a'll the extra carriers in the 

conduction band of the heavily doped silicon as outlined in section 2.2.2. 

Only the conduction band electrons need be considered since the valence 

band will have no extra carriers. Whilst deriving the . expre~sions for the 

conduction band the inter-valley scattering that has been found to play· an 

important part at high concentrations In an ordered lattice of impurities 

<Selloni and Pantelides 1982> Is Ignored. The six conduction band 

ellipsoidal energy surfaces are then considered to be independent. When 

considering a p-type semiconductor the corresponding expressions would 

contain the extra complications of the valence band. The calculation of 

this screened potential is performed In section 2.3.1 in the Random Phase 

approximation as outlined In section 2.2.2. ·In section 2.3.2 the resulting 

Undhard Dielectric function is approximated in · the plasmon pole 

approximation used throughout this thesis. In section 2.3.3 a brief 

comparison of the Inverse Llndhard and plasmon pole approximations is made 

that Indicates the power of the plasmon pole approximation. 
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2.3.1 Derivation of the Llndhard dielectric function in silicon. 

As can be seen from the diagrams in Eq. 222.05 the screened 

potential is just a geometric progression and may. be summed to infinite 

order. 

~ 
~ = 

RPA l. - vvy--0 
-iW

0 
(q) 

(231.01) 

= = -iWRPA(q,w) 0 0 
1 + w (q)71 (q,w) 

where the ring diagram 

q+k,W+V 0 k,V 

Is represented by -iTT 
0 

<q.w> where the 0 superscript Indicates that the 

polarization insert has been taken to zeroth order. The effective electron 

dielectric function E<k.w> is defined by the expression 

0 0 0 0 
WRPA (q,w) = w (q) I (1 + w (q) 11 (q,w)) = w (q) 1 € (q,w) 

(231.02) 

All that remains is to evaluate the polarization insertion 11°<q.w>. for 

this the ring diagram is expanded in its functional form <Mahan 1981. 

·Fetter and Walecka <1971>. Mattuck <1976». The sum over spiris <m =±1/2) . s 

Is also performed giving 

0 -1 -4 0 
-i71 (q,W) = (28+1) {-1) fi · (271) 11 iG (k/V) 

. 0 3 
1G (k+q,W+v) d kdv (231.03) 

On substituting for the two Green's functions from Eq. 221.03 this gives 

0 
-

2
4 11 0 i -i71 (q,W) = -----------------------

(271) 1i (v- wk + iOsgn(k-kf)) 

i 3 
O d kdV 

(w + v- wk+~ iOsgn(lk+ql-kf))· 
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The Integrals are perform in two parts. first the frequency integral. then 

the wavevector Integral. 

a> Frequency integral. 

The Integral over the angular frequency v may be carried out by 

complex integration taking the integral over a semicircular contour In the 

upper half plane. <see Fig 2.5). The integrand is divided into four parts 

defined by the relative sizes of k. k+q. and kf using the step function 

EHx>. Only two of these have poles above the real axis. they occur when 

angular frequency v is given by 

0 
v = wk + i6 and 

0 
v = wk+q -. w + i6 

when k>kf and lk+ql>kf the poles are both below the real axis at 

0 0 
v = wk - i 6 and v = wk+q - w - i 6. 

they do not contribute to the Integral. The integrand of Eq. 231.04 has 

then a residue of 

B(kf-k)B(Ik+ql-kf) B(k-kf)B(kf-lk+ql) 

0 0 
+ 

0 0 
(W + (Wk + i6) - wk+q + i6) ( (Wk+q - w + i6) - wk + i6) 

which may be re-written. by changing the variable from k to -<k+q> in the 

second term so that 

. (231.05) 
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+ + + 

0 poles in the Green's function G (k+q,w+v) 

~ poles in the Green's function G0 (k,v) 

Fig 2.5 Poles in the Green's function defining the electron dielectric 
function in the complex angular frequency (v) plane. 



b> Conduction band wavevector integral for silicon. 

To perform the wavevector integral In silicon's non-spherical 

conduction band the usual substitution for k and q have to be made <section 

2.1>. Having calculated the polarization for one valley the result is 

multiplied by the number of valleys <M > to find the polarization due to 
c 

electrons in all the valleys. 

The substitution for k and q is 

k ,2 
X 

k ,2 
y 

k ,2 = 
z 

(231.06a) 

where the density of states effective mass for one valley is given by 

m = de 
(231.06b) 

It Is justified to make a similar substitution for q since the polarisation 

0 
11 <q.w> is to be integrated over the conduction band states with respect to 

q In the self energy expressions <Eq. 223.19>. The integrals now have the 

same form as those for a semiconductor with a spherical constant energy 

surface with mass equal to the density of states effective mass. Dropping 

the primes and letting 

and 

0 2 2 
wk = -Yl/2mde. ( lk+ql - k ) 

2 = ~/2mde (2kqcos6 + q ) 

a = q(€q - ~W)/€q and b = q(€ + ~W)/€ q q 
2 2 

where €q = ~ q /2mde 

' 

(23l.06c) 

(23l.-06d) 

and e ,11 the angle between the vectors k and q. The polarization of the 
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conduction band e·lectron gas becomes 

0 
" (q,w) = 

-2qMC 0071 
1 

( ) 
3 lf~ (kf-k) 8 (I k+q l-kf) (-(---a---2-k_c_o_s_B_+_i_O_) 

211 €q 

. 1 2 
(b + 2 kcose _ i0))271k sin8d8dk (231.07) 

where to get the total polarization of conduction band electrons the result 

for one valley has been multiplied the number of equivalent conduction band 

valleys <Me>. The real part of this integral ·gives <Fetter and Walecka 

1971) 

0 
Re(71 (q,W)) = 

2md.ekfMc 

2 2 
(271) ~ 

k£ k£ ( €q - ..tlw) 
{ 1 + - [ £( ) 

2q E q 
£ 

kf ( € + -t\W) 
+ £( q ) ]} 

efq 

2 I (X + 2) I where f(x) = (1 - x /4)ln (x 2 ) 

Whilst the imaginary part is given by . I 2 2 
(Mcq/877) (2mde/~ ) (k£/q) (1 

0 2 
Im{77 (q,w)) = (Mcq/877) (2mde/~ ) (~W/€q) 

0 . 

2 
- a /4) 

(23L 08a) 

I 

II 

III IV 

(231.08b) 

with the four regions. shown in Fig 2.6. bounded by the fOllowing lines 

I ..riw = 2efq/k£ - eq and the q axis 

II .ri.W = €q-2€fq/kf' -t'i.W = €q+2€fq/kf and ~W = 2Efq/kf-€q 

III 

IV 

..rtw = q + 2efq/k£ and the w axis 

..f'i.w = eq - 2efq/k£ and the q axis 
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Fig 2.6 Plasmon dispersion curve (w1 (q)) and the model used in this thes] s (111
1 

( q)) for :111 el cctron 

concentration of 10
20 

em -
3

.. Also shmvn is the intersection of the I i l.'.ht· I1:Jnd ( ).I. q 2 ) with the 

plasmon dispersion curve (w1 (q)) above the cr1tica1 frequency (we). 



The real and Imaginary parts of this polarization may be combined to give 

2mdek£Mc kf kf ( e - .fi (W+iO)) 
--2--2 { 1 +- [ f( q ) 
(277) -n. 2q efq 

0 
11 (q,w) = 

k f ( € + ~ ( W+ i 5) ) 
+ f( q ) ]} (231.09) 

efq 

The dielectric function may then be derived from Eq. 231.02 using this 

expression for the polarization. However In· the above derivation a 

substitution <Eq. 231.06a> was made for q so that the energy difference 

<Eq. 231.06c> could be defined in the conduction band. The substitution 

for the wavevector q <Eq. 231.06a> was justified at the time by noticing 

0 
that W<q.w> and hence 11 <q.w> Is to be integrated over the conduction band 

states in the self energy expression <Eq. 223.19>. When this substitution 

is made in w0
<q> 

0 w (q) = (231. 10) 
2 2 2 

eer(m1~ + mt~ +mtq~ ) 

Dropping the primes and making a crude adjustment for· the complicated 

denominator this gives 

0 2 2 
w (q) = (md /m ) e ;eerq e op 

where the optical effective mass is given by 

The electron dielectric function Is then given by 

0 0 
e(q,w) = 1 + w (q} 11 (q,w} 

(231. 11a} 

(231.11b) 

(231.11c) 

Identifying the prefactor from the second term on the right hand side of 

Eq. 231.11 c with the inverse Thomas Fermi screening length K <see Fig· 2.4 
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for values of this function> 

2 
2mdekfMce 2 

2 2 
( (271) :.ri .EEr) 

K = (231. 12) 

the electron dielectric function <Eq. 231.11 and Eq. 231.09> may be written 

E(q,w) = 1 + 2 
2m q 

op 

kf kf(€ --ri(w+iO)) 
{ 1 + [ f( ' q ) 

2q €fq 

kf(€ +-H(W+iO)) 
+ f( q ) ]} 

€fq 

where f<x> Is defined in Eq. 231.08a. On setting m
0

p equal 

(231.13) 

to the 

conduction band density of states mass this reduces to the Llndhard 

dielectric function used by Berggren and Sernelius <1981>. The inclusion 

of m in the prefactor of Eq. 231.13 justifies the use of m 
op op 

in the 

plasma frequency <wp Eq. 232.05> used In the next section. 

2.3.2 The plasmon pole approximation. 

In this thesis the plasmon pole approximation to the above 

Lindhard function is used. This has been found to be quite adequate for 

the present calculations and because of Its. simplicity has the advantage of 

being easily extended to finite temperature. In this section the plasmon 

pole approximation is derived from a series expansion of the Lindhard 

function derived above. 
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The Lindhard dielectric function <Eq. 231.13> may be written 

in Its real and Imaginary parts 

e
1

(q,w) = 
2 

mdeK 
1 + 2 { 

m 2q 
op 

a = q(Eq - ~W)/€q 

1 + 
k (€ - .flw)·· 

[ f( f q ) 

efq 

kf ( € + ~W) 
+ f( q ) ]} 

efq 

{i'iW/ €q) I 

2 2 
(kf/q) (1 - a /4) II 

III 

(232. 01a) 

(232.01b) 

IV 

where the four regions and the function Hx> are those defined in Eq.231.08 

and shown In Fig 2.6. The Imaginary part of the dielectric function Is 

then only non-zero in regions I and II. where it has the values defined 

above. Whilst the real part of the dielectric function is given by one 

expression throughout q-w space. In the self energy calculation <Eq. 

223.19> it is not simply the dielectric function that is required but 

rather the inverse dielectric function. Clearly this also has real and 

imaginary parts given by 

= 
e1 (q,W) - ie 2 (q,W) 

2 2 
e1 (q,W) + e 2 (q,W) 

(232.02) 
1 

e(q,w) 

The inverse dielectric function will have poles at values of q and w when 

the denominator of this expression· is zero. However i!" region Ill of Fig 

2.6 this amounts to zeros in the real part of the dielectric function since 

the imaginary part is zero throughout Ill. Whil~t In region II wh·ere q Is 

large e
2

<q.w> is proportional to the Inverse cube of q. so again the 

imaginary part may be quite small. Taking· first large w and q whilst 

ignoring e
2

<q.w> the poles in the inverse dielectric. function may be 
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calculated by finding the zeros in the real . part of the dielectric 

function. 

a) For large w the arguments of the logarithmic functions become large 

so the real part of the dielectric function (Eq. 232.0 1> may be re-written 

2 
4mdeK €f€ 

( q 2 ) £
1 

(q,w) = 1 + 

2 3 3 2 
16mdeK €f ( €q + 3€q (-t\W) ) 

+ 2 2 2 2 3 + .. . .. (232. 03) 
15m

0
pq kf (€q - (~W) ) 

To a first approximation the zeros In this function are given by 

2 
4mdeK €f€ 

2( 2 q 2 ) = 0 

3m
0
pq (€q - (iiw) ) 

E 1 (q,w) = 1 + 

or 

where the plasma frequency wp 

= 

2 2 2 
4mdeK €f Nde 

3m kf op 
2 = 

(232. 04). 

(232.05) 

has been identified and w1 <q> is known as the dispersion frequency. The 

real part of the dielectric function may be re-written 

E1 (q,W) = 1 + = 1 + 2 . 2 
( €q - (-rlw) ) 

. 2 
(W1 (q)) -

2 2 
wp - w 

(232.06) 

· The Cauchy principle part of the inverse dielectric function· is just 

2 2 2 
(W

1 
(q)) - (W) - (Wp) 

1 

2 2 
(W

1 
(q)) - (W) 

(232.07a) = 

Whilst the imaginary part of the inverse dielectric function is given by 

.. "· 
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the delta function 

-1 
Im(E (q,w)) = O(w- w

1
(q)) 

2 w
1 

(q) 
(232.07b) 

A second approximation to the dispersion relationship may be obtained from 

Eq. 232.03 by substituting for w from Eq. 232.04 

ie (232.08) 

2 2 2 2 
(.flw) = (l'iw1 (q)) = (-hwp) + (12/5) €q€£ + €q 

The above derivation of the dispersion relationship Illustrates the 

importance of the q 
4 

term as pointed out by Lundqvist <1967>. Higher 

approximations to the dispersion relation may be found in Ferrell 1957. · 

b) In the static <w=O> limit as q tends towards zero the Thomas Fermi 

limit 

2 
q 

2 
q 

2 = 1 -
+ K 

(232.09) 

Is obtained from Eq. 232.01. Thus In order that the correct Thomas Fermi 

limit is obtained for small q the following dispersion relationship Is used 

in this thesis <see Fig 2.6> 

(232.10) 

where the factor in front of the q2 term has been adjusted from that in Eq. 

232.08 to give the correct Thomas Fermi limit. Other workers have used a 

variety of forms for the second term in Eq. 232.10. Mahan <1980> uses 
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whilst Berggren and Sernellus <1981> use 

in their calculations in the plasmon pole approximation. The additional 

term In the ratio of the conduction band effective mass <m > 
de 

to the 

optical mass <m > makes only a small correction to the final result 
op 

<r=l.26). 

The inverse dielectric function in the plasmon pole 

approximation may now be written 

2' 
-1 

E (q,W) = 1 + 
wp 1 
~~-(--~---------

2W1(q) W- w1 (q) + i6 

1 ------) 
W + Wi(q) - i6 

(232.11) 

The peak in the imaginary part of this function indicates a frequency at 

which with no external electric field an oscillation of the electron gas 

may exist. These longitudinal oscillations of the electron gas are called 

plasmons. Although the above definition of the inverse dielectric function 

is only strictly valid within region Ill up to the critical wavenumber <qc> 

and frequency <we see Fig 2.6>. where the plasmons are undamped. provided 

the modified dispersion relationship <Eq. 232.1 O> is used it gives a good 

approximation to the full Lindhard function. 

2.3.3 Detailed comparison of plasmon pole and Llndhard functions. 

In order to compare the plasmon pole approximation derived 

above with the full Lindhard function we introduce the form of the energy 

variable w used later in the thesis 

-hw 
0 = -flw nq 

2 2 
= ).n 1'i q I 2m de 
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. 0 
where ..fiw nq defines the € - k relationship for tlie band n. In the valence 

band ~H and ~L define the heavy and light hole _bands. Fig 2.6 shows the 

two valence band curves defined by 233.01. In Fig 2. 7 and Fig 2.8 the 

magnitude. of the inverse Lindhard <Eq. 231.13> and plasmon pole <Eq. 

232.11> dielectric functions are plotted for the light hole band <Fig 2.7> 

and heavy hole band <Fig 2.8). In Fig 2.8 it can be seen that for the 

heavy hole band o.H> the Lindhard and plasmon pole dielectric functions 

agree very well. However In the light hole band ·<Fig 2. 7) although the 

plasmon frequency is predicted well the precise nature of_ the plasmon peak 

is not identical. The light hole dispersion r~lationship bisects w1 <q> 

<shown in Fig 2.6) above the critical frequency. Thus the true or Lindhard 

peak in Fig 2. 7 is damped whilst the plasmon pole approximation predicts a 

pole at 

(233.02) 

This is a clear Indication that use of the plasmon pole approximation for 

any s.imilar w-q curve where the dispersion curve is_ intersected will give 

erroneous results. However as will be shown In subsequent sections· this 

problem is overcome In the present calculations. 

A more fundamental problem arises from the exact nature· of the 

valence band <Fig 2.3c>. From the € - k curve for the light hole band <Fig · 

2.3c> the effective mass mL can be seen to change ·from a low value for 

small energies to a value little different from mH at about 30 meV below 

the band top. From Fig 2.6 the plasmon peak <Fig 2. 7> occurs at some 

hundreds of meV below the valence band top. . Thus the· light hole mass 

should have Increased long before this point and the plasmon peak <Fig 2.7> 

woul<1 novor occur. A more detailed description of the valence band· self 

onfnglo::; would roqulro the Inclusion of these effects. 
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2.4 SUMMARY. 

In summary the electrons and holes in the band <n> of heavily 

doped silicon can no longer b~ described by the unperturbed Green's 

function 

0 
G (n;k,W) = 

1 
(240.01) 

0 0 
(w- wnk + iOsgn(wnk-wf)) 

with unperturbed energy (for details see Eq. 210.01 and Eq. 210.02> 

(240. 02) 

but rather the total Green's functions that describes the properties of the 

quasi-particles is used <with wf the zero temperature Fermi frequency> 

G(n;k,W) = o ee . o 
l 1 (W- wnk- 1: (n;k,w) + iOsgn(wnk-wf)) 

(240. 03) 

where the poles in the Green's function give us an iterative solution for 

the wavevector dependent energy <enk> of these quasi particles 

(240.04) 

To a first approximation this gives 

o · · ee o. o ee 
enk = .flwnk <::~ .Ownk+hRe(l: (n;k,wnk)) = -IS.wnk + ..flRe(tn ·(k)) 

(240.05) 

The self energy <L> gives the change in band position compared to its 

unperturbed position it is represented by ~Eee <k> where n represents the . n 

band index and the super-script indicates -that . this is the electron-

electron contribution to the movement of the band. 

ee ee o ee 
~En (k) ... .fl. Re(l: (n;k,wnk)) = l'l Re(l:n (k)) (240.06) 

The form ot the self energy is given by the following set of equations. 
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.(. 

First the self energy <Eq. 223.19) 

ee 
-KI: (n;k,w) = i 9

i7} (W-V) 

4 
(27T) 

[,JJ 0 0 
m (w-v- wm(k~q)+ i6sgn(wm(k-q)-wf)) 

3 
hnmWeff(q,v) d qdv (240.07a) 

where the screened interaction Weff<q.w> used is defined in Eq. 231.02 

(240.07b) 

In this thesis the plasmon pole approximation to the . electron dielectric 

function is used <e<q.w>>. This is given by <Eq. 232.11> 

2 
w 

-1 p 1 
E (q,W) = 1 + 2w

1
(q) (-W-----w-

1
_(_q_) __ + __ i_6 

or after a small amount of rearranging 

-1 
E (q,W) = 1 - ( 

2 
wp 

--------~.---2-----2 ) 
(W1 (q) - ~6) - W 

with dispersion relationship <Eq. 232.10>. where a term i·n q
4 

1 

{240.07c) 

is included 

to give better large q agreement with the Lindhard function 

2 2 2 2 2 2/~2 w1 (q) = wp + wp q I K + €q 

4 
2 

2 3m q 
L op 

= wp ( 1 + + ) 2 k 2 2 
K 4mde f K 

(240.07d) 

The plasma frequency is given by Eq. 232.05 

= = (240.07e) 

and the Thomas Fermi screening length by <see· Fig 2.4> 

2 
K = (240.07£) 
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whilst the Fermi wavevector is given by <see Fig 2.4> 

2N 1/3 
371 d 

kf = ( M ) 
c 

(240.07g) 

Finally the Lamda function Anm· where n and m represent the different bands 

<c conduction. v valence> was defined by <Eq. 223.18> 

A = A nm mn 

A em = 6cm (240.07h) 

"vc 0 ALH 3/4 
. 2 

1/4 
2 = = s~n 9 l\HH = (1+3cos 9) 

Where H represents the heavy hole band and L represents the light hole band 

and 9 is the angle between wavevectors k and q In Eq. 240.07a. 

In summary a first approximation to the self energy has been 

derived that: ignores the vertex corrections; uses the free particle 

propagator; contains the screened Interaction potential which itself has 

been approximated by only considering the plasmon pole; ignores inter-

valley scattering. To improve the approximations made it would be possible 

to extend the calculation of the electron self energy to· include the vertex 

functions or use the Lind hard function In the.· interaction. It would also 

be possible to combine the electron-electron calculations with the electron 

Impurity calculations as Ghazall and Serre <1982> have done <see chapter 4> 

but using the plasmon pole approximation. rather than the Thomas Fermi 

approximation that Ghazall and Serre use. 

By comparison with Berggren and Sernelius·s work <1981> the 

chapters to follow show that the plasmon pole approximation to the Lindhard 

dielectric function has acceptable accuracy. Indeed It has been found that 

with the aid of this simpler plasmon pole approximation to the above 

dielectric function an approximation to the self energy at finite 

temperature may easily be derived <chapter 7L The self energy defined in 

Eq.- 240.07 is then used in this thesis to describe the cha.nge in energy of 

the conduction and valence bands. 
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CHAPTER 3 

ELECTRON-ELECTRON EXCHANGE ENERGIES. 

3.0 INTRODUCTION. 

In the previous chapter an expression for the exchange or self 

energy of electrons <holes> in the conduction <valence> band has been 

defined CEq. 240.07a> using the plasmon pole approximation to the electron 

dielectric function. In this chapter this expression will be used to 

evaluate the change in the conduction and valence band states as a result 

of the extra electrons present in the conduction band. This extra 

concentration <Nd> of conduction band electrons may be present because of a 

population Inversion. as present in a laser. or may ·result from impurities 

in the silicon each providing an easily ionised donor electron to the 

conduction band. In the latter example the assumption is made that the 

conduction and Impurity bands have merged which is true at concentrations 

greater that the Mott metal Insulator transition discussed in the chapter 1 

and shown in Fig 2.4 to occur in silicon at about 3.10
18 

em -
3 

depending 

upon the type of impurity. 

The real part of the self energy expression CEq. 240.07a> 

describes the exchange energy of an electron in the band n. This Is made 

up of several parts characterised by the summation over band index m. Thus 

the self energy contribution to the conduction band is made up of exchange 

energies between electrons in the same band <tee cc> . and exchange between 

· ee 
the electrons in the conduction band and the valence band <t cv> 

(300.01) 

However as lnkson Cl976~ points out It is the change In the band energies 
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that is of interest. This is derived from the difference between this self 

energy and that present in the intrinsic semiconductor <rint >. 
n 

change In the conduction band energy is defined by 

ee = AEC 

Thus the 

(300.02) 

In this thesis as in work by other authors <Berggren and Sernellus 1981. 

Abram et al 1978> it is assumed that the exchange between electrons in the 

conduction and valence band is unchanged by the presence of the extra 

electrons in the conduction band <see section 3.1>. The intrinsic exchange 

of the conduction band electrons with themselves <rintcc> is clearly zero. 

since the intrinsic conduction band is calculated on a one electron model. 

A similar expression may be derived for the valence band 

r ee - rint __ AEee = u (300.03) vv vv v 

However in this case the intrinsic valence band has a self energy since it 

is full of electrons in contrast to the intrinsic conduction band. . This 

Hartree Fock energy must be subtracted from the valence band contribution. 

Hedin <1965> and Hedin and Lundqvist <1969> have shown that the 

self energy <Eq. 240.07a> may be split up into two distinct parts: 

a> screened dynamic exchange terms denoted by the superscript sx 

that are derived from singularities in the Green's function: 

b> coulomb hole terms denoted by the superscript ch and derived 

from singularities in the Interaction. 

In Section 3.1 these two contributions to the self energy are explained and 

derived. Numerical calculations of these two · contributions for the 

conduction band states <tJ..E
5
x k and b.Ech k> are presented in Section 3.2. c . c . 

SX 
Whilst In section' 3.3 the numerical results for the valence band <tJ..E vk 

Ch 
and 6E vk> are presented. The main results of this chapter. the band gap 
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reduction due to electron-electron interactions. are given in section 3.4 

<Fig 3.6>. These are about 4 meV lower .that the results published by 

Berggren and Sernelius <1981>. This agreement between these two sets of 

results shows that the plasmon pole approximation provides a valid means of 

approximating the Lindhard Dielectric function in silicon at zero 

temperature. 

3.1 DERIVATION OF THE COULOMB HOLE AND SCREENED DYNAMIC EXCHANGE 
TERMS. 

Most of the ground work for the calculation of the exchange 

energy has been covered in the previous chapter. To a first approximation 

the change in the band edges due to electron-electron Interactions giving 

rise to the band gap reduction is given by an iterative solution of the 

real part of Eq. 240.06 

(310.01) 

where a condensed form of the self energy expression teen <k> has been used. 

The expression for the electron-electron self energy <Eq. 240.07> 

· ee -n.r. (n;k,w) = 
i 0 

--4 L: I I G {m;k-q,w-v) 
(277) m 

i71 (W- V) e 

(310.02) 

may now be solved to give numerical. values for this contribution to the 

band gap reduction. The frequency integral over v in the self energy may 

be evaluated analytically and yields two sets of energy contributions to 
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which names are assigned <after the work of Hedin <1965»: 

a> 'Screened Exchange' terms derived from poles in the Green's 

function <Eq. 240.01) at <see Fig 3.1>, 

0 0 0 
11 = wnk- wm(k-q) + iOsgn(wm(k-q)-wf)) (310.03a) 

b) 'Coulomb Hole' terms derived from poles ·in the screened 

Interaction <Eq. 240.07b and 240.07c) at <see Fig 3.1>. 

11 = w (q) - iO 1 and 11 =- w1 (q) + iO (310.03b) 

These two contributions collectively are referred to as the exchange energy 

of electrons in the heavily doped silicon. 

The frequency Integral In Eq 310.02 Is performed over the 

contour marked In Fig 3.1 which Is traversed in a clockwise direction so 

the integral is given by 

I = - 2"i Res(enclosed poles) (310.04) 

Jordan's lemma <Arfken 1970> dictates that the integral be performed in the 

lower halt plane so that the Integration over r 
1 

vanishes. 

at 

0 0 
11 = wnk - wm(k-q) - iO ; 

where wf is the Fermi angular frequency and 

Only the poles 

(310.05a) 

11 = w1 (q) - iO (310.05b) 

remain within the contour. Thus those poles with angular frequency greater 

than wf <the unoccupied states> do not contribute to . the screened dynamic 

exchange energy. After elementary evaluation of the residues at these two 

sets of poles the self energy <Eq .. 310.02) become 
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1 0 0 3 
~ J w ( )/\. d q (310.06a) 3 ~ eff q,wnk-wm(k-q) nm 

( 2 7T) o~cupied 
states 

2 2 
ch e 

f. J 
1 wp 

-IU::n (k) = + (310.06b) 3 2 
(2TT) EE m q 2W1 (q) r 

1\.nm d3q 

where the additional superscript ee has been omitted for clarity. In Eq. 

31 0.06a the q integration Is taken over only. the occupied states as 

dictated by Eq. 310.05a. Whilst in the second expression <Eq. 310.06b> the 

q integral is to be performed over all positive q. 

As mentioned in the Introduction to this chapter lnkson <1976> 

showed that it is the difference between this extrinsic self energy and the 

intrinsic self energy that . Is of interest. In this paragraph it Is shown 

that the exchange between conduction and valence band is identical for both 

the Intrinsic and extrinsic silicon. Thus when the change in the band 

energy <Eq. 300.02 and Eq. 300.03> is calculated these terms cancel leaving 

the exchange between electrons of the same band as the only contribution. 

The inter-band exchange is defined by taking the part of Eq. 310.06 with 

n=c and m=v <or vice versa>. In section 2.2.3 the overlap integral (1\.nm> 

was taken arbitrarily to be zero with n=c and m=v <or vice. versa> this Is 

true tor small wavevector where the Bloch functions are orthogonal. At 

large wavevectors the electron dielectric function tends towards unity <see 

Fig 2. 7 or 2.8> so . that the effective potential is just the Intrinsic 

value. Thus the extrinsic and intrinsic screened dynamic exchange terms 

<Eq. 310.06a> with n=c and m=v cancel. For n=v m=c the extrinsie 

integral is negligible because of the small volume of·q 
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space occtlpied by the new electrons at large q. The deno

-minator of the coulomb hole terms (Eq. 310.06) is large 

when ~n so these give a relatively small contribution. 

Th . . . h ~int e mtnns1c exc ange ~ . cc between electrons In the 

conduction band with themselves is zero since the conduction band is 

calculated in a one . electron model <no· states filled in E.q. 31 0.06a. · no 

poles in the electron dielectric function to derive Eq. 31 0.06b>. Thus the 

change in the energy of conduction band electrons ([).Eee > is given by the c 

Cauchy principle part of Eq. 31 0.06> 

{3l0.07a) 

There are however many electrons in the intrinsic valence band so that the 

. change in energy of this band is given by 

. {310.07b) 

int 
where t is the Hartree Fock exchange energy calculated in detail in 

vv 

section 3.3. 

3.2 CHANGE IN EXCHANGE ENERGY OF CONDUCTION BAND 
ELECTRONS. 

In this section the two numerical calculations performed to 

evaluate the change In conduction band energy due to the electron-electron 

exchange energy are introduced. In section 3.2.1 the details of the [).Esx 

component is presented. whilst section 3.2.2 the [).Ech component Is 

considered. The magnitudes of these two electron-electron contributions to 

the energy of the conduction band states <Fig 3.2> are found to be additive 
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In contrast to the equivalent valence band components and reduce the energy 

of those states <see section 3.2.3 and Fig 3.2>. reducing the band gap. 

The shift in conduction band states due to electron - electron 

interactions is given by <Eq. 31 0.07) 

sx ·A ch(k) = ~Ec (k) + uEC . 
(320.01a) 

sx ch = Re (-IS.Ecc (k) ) + Re (..ri.Ecc (k) ) 

From the self energy expressions <Eq. 310.06>. substituting for the inverse 

dielectric function from Eq. 240:07c. these contributions to the change in 

the band edge due to the extra electrons In the conduction band become 

sx 
b.Ec (k) = 

and 

ch 
b.Ec (k) = + 

2 e 

occupied 
states 

3 
{277) EEr 

2 
e 

J 

1 
J 2 

q 

1 

1 

·2 
wp 

3 2 
(271) EEr q 2W

1
(q) 

1 

(320.01b) 

) Ace d3q 

0 
(wck 

0 
we (k-q) - w1 (q)) 

(320.01C) 

A d3q 
11

cc 

The summation over the band index m in 310.06 has been. performed and the 

Intrinsic self energy has been subtracted as prescribed by Eq. 300.02. The 

· wavevector Integral is eva!uated within the spherical band approximation 

justified in ·section 2.3. 1 for the dielectric function. 

of the wavevector integral is then given by 

271 71 
J J sinB dB d~ = 477 
0 0 

The angular part 

(320.02) 

so that the change In the screened dynamic exchange and coulomb hole terms 
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become 

sx 
AEC (k) = 

ch 
AEC (k) = + 

co 
2 e -2--J 

(1 -

( 320. 0 3) 

l. 
dq 

211 E Er O 2Wl. (q) 
0 

(wck 
0 

we (k-q)- wl. (q)) 

For these expressions to be evaluated the difference between 

the two eigenvalues e 
0 
ck and e 

0 
c<k-q> has to be defined. In this thesis 

the main concern is with the change in position of the extremities of the 

bands. For ·the . conduction band where only one of ·the six equivalent 

conduction band valleys need be considered the origin in k space is moved 

to the centre of one ellipsoidal for simplicity <see. the discussion in 

section 2.1.0> so that the energy difference at the conduction band bottom 

<k=k.> becomes <using Eq. 210.01 and 231.06c> 
I 

0 
eck · 

i 

0 
ec(k.-q) = 

l. 

2 4 1/2 
3m w q 

( op p 2 2 ) .. 

4mdekf K 

0 
= - Aiwcc (q) 

(320.04) 

This is a negative quantity since the band energy at wavevector q is 

greater than the band bottom. However the equivalent valence band energy 

difference is positive since in that band the energy at q is lower than the 

band edge. The sign of the energy difference is only important in the 

coulomb hole term. 

As mentioned in the previous paragraph the main concern is with 

the bottom of the conduction band and the top of the valence band in this 

thesis. However Eq. 320.03. with the appropriate choice of energy 

difference. will give the electron-el~ctron contribution to the self energy 

of electrons at any wavevector <k>. In pa.rticular to calculate the shift 

In tho Forrnl onorgy wu require k=k{ The · calculations of Berggren and 

Sl~rnollu:; < 19U I) and Abram et al <1978> show this k dependence to be ,.small. 
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so the calculation of the shift at the Fermi energy is assumed to be 

identical to the shift at the band edge. 

In the following two sections the two contributions to the 

change in the self energy of the conduction band are calculated separately. 

6.E
5
x c in section 3.2.1 and 6.Ech c in section 3.2.2. 

3.2.1 Calculation of the conduction band screened dynamic exchange 
term. 

The calculation of this contribution to the exchange energy may 

be derived analytically. provided the plasmon pole approximation has been 

made. Numerical results for different concentrations may then be obtained 

from a simple calculation varying the Thomas Fermi screening length (K) and 

Fermi wavevector <kf' see Eq. 240.07f. Eq. 240.07g and Fig 2.4>. So from 

Eq. 320.03 

sx 
6.Ec (k) = 

2 e 
2 

211 eer 0 

(1 - 2 
w1(q) -

2 
wp 

0 0 . 2) dq 
(w -w ) 

ck c (k-q) ( 321. 01) 

Substituting for the difference in eigenvalues <Eq. 320.04> at the bottom 

of the· conduction band <with the origin of k space at the centre of one of 

the six ellipsoidal valleys> this becomes 

SX 
6.E (k.) = c ~ 

2 kf 

~ 1 
211 EEr O 

( 1 -

- 3.9-
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.wp 

2 2 ) dq 
- (.Oq /2mde) 

(321.02) 



Substituting for the dispersion relationship w
1 

<q> from Eq. 240. 7d 

2 2 
1 

AE 
8
1k.) 

e K 

J ( 
1 

= -c ~ 2 2 
211 eerkf 0 ( K/kf) 

1 
2) 

(qjkf) 2 
d(qjkf) 

+ (K/kf) 

2 
kf sx . e kf 

K -1 
AE (k.) = ( 1 - tan ( ) ) (321.03) c ~ 2 kf K 

211 EEr 

where the first part of the right hand side represents the Hartree Fock 

exchange energy of the conduction band electrons. Substituting for the 

various parameters and the electron <donor> concentrations <Nd> expressed 

0 -3 m em 

3 
4.849.10 

N1/6 
d 

N1/6 
-1 d 

tan ( 3 )) 
4.849.10 

(eV) (321.04) 

a contribution that lowers the energy of the conduction band states and . 

reduces the band gap. Values for this term are plotted in Fig 3.2 for a 

range of concentrations. This contribution to the exchange energy was 

found to be the same as that obtained In the static or Thomas i=erml limit 

of the dielectric function <Berggren and Sernelius 1981>. When coupled 

with the results of the next section we find that these are in close 

agreement with electron-electron exchange calculations made by Berggren and 

Sernelius using the full Lindhard function also plotted In this figure. 
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3.2.2 Calculation of the conduction band coulomb hole term. 

In contrast to the elementary calculation of the screened 

exchange term above the evaluation of the coulomb hole term <Eq. 320.03> 

may not be carried out analytically with the .Plasmon pole approximation to 

the inverse electron dielectric function. Instead a numerical integration 

routine was used from the NAG library of Fortran· subroutines, The 

principle of the calculation however was the same as above: Varying the 

concentration by choosing suitable values for K. then computing the change 

in energy of the edge of the band. From Eq. 320.03 . 

co 2 
ch 

2 wp 1 e 
f (k) = + dq AEC 2 0 0 

271 EEr 0 2W1 (q) (W - wc(k-q)- w1(q)) ck 

(322.01) 

Substituting for the energy difference from Eq. 320.04 

ch 
AE (k.) = c l.. 

dq 

(322.02) 

As in the valence band calculation <last paragraph of section 3.3.2> the 

AEch contribution lowers the energy of the conduction band states. With 
c 

the substitutions 

3m 

p = __££ = 
4mde 

0.5951 

Eq 322.02 becomes 

ch 
AE (k.) = c l.. 

2 2 
e K 

K = 

1 

dt 

3 -1/6 
= 4.849.10 Nd 

(322:03) 

2 2 2 2 2 . 
(K +/3-1)t +(1-2/3)t+P +~(((K +/3-1)t +l1-2/3)t+/3){3(t -2t+1)) 
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On substitution of the various parameters 

2 2 
e K 

= 77.73 (meV) 

This Integration was performed by the NAG routine D01APF for a series of 

values of K and kf depending on the electron <donor> concentration Nd <see 

Fig 2.4>. The results of this calculation are presented in Fig 3.2. They 

may be compared with those calculated by Mahan <1980> as part of his 

valence band shift <J<s ». Mahan considers an energy difference with the 
0 

wrong sign <compare his un-labeled expression pp 2642 with Eq. 322.02> for 

his coulomb hole term thus the comparison is possible only between his 

valence band term and the conduction band expression calculated here. He 

finds results of the form 

("b) 

1/2 
Nd 

1/4 

\~ 
33 

= = - 13.1 ('18) (meV) (322.04) L..,h,c 3/4 md r 10 
s 

20 -3 
32 meV whilst the equivalent At 1 o em · this gives th = results 

.c 

presented In Fig 3.2 show a reduction of 40 meV. Mahan's values are then 

25% too small. 

3.2.3 Total conduction band electron-electron exchange. 

Finally adding the results from sections 3.2.1 and 3.2.2 the 

total change in the electron-electron contribution to the self energy of 

the conduction band <Eq. 320.01 a> Is calculated <Fig 3.2>. These are 

compared with those derived from the full Lindhard function presented by 

Berggren and Sernelius <1981> and It can be seen <Fig 3.2> that these two 

calculations agree within a few mev over the concentration range 

considered. The plasmon pole approximation thus compares well with the 

Lindhard function. at least for zero temperature. The plasmon pole 

approximation then provides a means of extending the calculations to finite 
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temperature <chapter 7>. 

3.3 CHANGE IN EXCHANGE ENERGY OF VALENCE BAND ELECTRONS. 

In this section the numerical calculations performed to 

evaluate the change in valence band energy due to the electron-electron 

exchange energy are introduced. These calculations are however more 

difficult than the preceding conduction band calculations. because of the 

inaccuracies of the plasmon pole approximation discussed in section 2.3.3. 

. sx ch 
These problems are overcome by summmg the ~E and ~E terms directly. 

ch+sx · 
In section 3.3. 1 this ~E component Is calculated. whilst In section 

SX 
3.3.2 the calculation of the ~E component Is performed. The coulomb hole 

term may then be derived by simple subtraction of these two contributions 

<see section 3.3.2>. Although the total electron-electron contribution to 

the energy of valence band states tends to raise that energy. reducing the 

band gap <see Fig 3.3>. the individual contributions work against each 

other in contrast to the equivalent conduction band contributions <see Fig 

3.4 and 3.5>. The coulomb hole contributions to both conduction and 

valence bands then tend to lower each band by a similar energy <within 20 

meV. see Fig 3.5>. 

As mentioned In section 3.1 electrons In the valence band have 

a self energy contribution in the intrinsic semiconductor. This Is due to 

the interaction of the valence band electrons present in the intrinsic 

material. It may be obtained merely by evaluating the self energy. for the 

intrinsic semiconductors valence band without the influence of any electron 

screening from the conduction band. The intrinsic self energy for the 

heavy hole band will be shown to be the same. as for the light hole band at 

the band top <k=O>. This self energy is given by solving Eq. 310.02 for 
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the self energy with the effective interaction given by its intrif')sic value 

int 
.rit - (H;k,.W) = 

i 0 
--4 [ J J G (m;k-q,w-v) 
(27T) m 

{330.0la) 

i 7] (W- V) 
e 

(330.0lb) 

This self energy must be subtracted from the total valence band self energy 

to give the change in self energy due to the additional conduction band 

electrons as prescribed by Eq. 300.03. The change in self energy of the 

heavy hole va1enc13 band is then given by 

ee ee int 
~61: (H;k,W) = 11.1: (H;k,W) - .f>.E (H;k,w) 

(330.02a) 

ee i. r: J J 
0 i7] {W- V) 

~61: (H; k, W) = G (m; k-q, w- v) e 4 
(27T) m 

3 
~ wva1(q,v) d qdv 

This subtraction amounts to choosing a new effective potential given by 

subtracting Eq. 330.01a from Eq. 240.07b 

(330.02b) 

wva1(q,w) = 

where Eq. 240.07c for the Inverse plasmon pole dielectric function has been 

used. The change In the valence band self energy due to electron-electron 

interactions <Eq. 31 0.07> Is given by the Cauchy principle part of Eq. 

330.02a. 

ee sx ch ee o 
6EH (k) = 6EH (k) + 6EH (k) = .fiRe(61: (H;k,wnk)) (330.03a) 

In the intrinsic valence band the effective interaction <Eq. 330.01a> does 

not provide any poles. The Intrinsic coulomb hole term. that derives from 

poles In the interaction. is then zero. However the intrinsic screened 

dynamic exchange term Is finite and Is just the Hartree Fock energy for the 
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intrinsic valence band thus only the form of the screened .dynamic exchange 

term is different from the conduction band expression CEq. 320.01>. 

Substituting tor the effective potential from <Eq. 330.02b> the change in 

the self energy calculated from Eq. 310.06 becomes 

SX 
~EH {k) = + 

and 

ch 
~EH (k) = + 

occupied 
states 

2 

--~--EJ 1
2 

{271) eer m q 

( 330. 03b) 

2 

~ E J 
(271) eer m 

1 d3q 
0 0 '\im 

(WHk- Wm(k-q)- W1(q)) 

The only difference In form between these and · the conduction band 

expressions is in the screened dynamic exchange term <ct. Eq. 320.01 b> 

because of the subtraction of the Hartree Fock energy from the valence band 

expression. The summation over the band index m. which may take on the 

values L. H for the light and heavy valence bands is more complex than in 

the conduction band calculation since the valence band wavetunctions of the 

two degenerate hole bands are . not orthogonal. Algebraically this 

interaction manifests itself in values for 1\HH and 1\HL that depend upon the 

angle e between wavevectors k and q <Eq. 240.07h discussed in detail in 

section 2.2.3> 

and 

2 
1\ "· 1\ = J/4 (1+3coa 8) 

J,J.. 1111 

Sinco wo aro <1oallng with tho top ol tho valence barH1· where k==-0 the moaning 
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. of the angle between k and q becomes ambiguous. A k of infinitesimal size 

but well defined direction Is taken. The angular part of the wavevector 

integrals In the four components of Eq. 330.03 give identical results 

211 11 
2 

I I 1/4 (1+3cos B) sinB dB d~ = 271 
0 0 

and 

271 71 
2 

I I 3/4 (sin B)sinB dB d~ = 277 
0 0 

so that the changes in the valence band self energy become · 

00 2 
2 wp sx e 

[I ( AEH . (k) = + ) dq 2 2 0 0 2 
477 eer wl (q) - (WHk -wm (k-q)) . m 0 

00 2 
(330.04) 

ch 
2 wp e 

[I 
1 

LlEH (k) = + dq 
2 0 0 

477 eer m o 2W
1 

(q) (WHk - w . -
m(k-q) Wl(q)) 

To evaluate these scalar wavevector 

two terms In the summation. thus 

SX 
LlEH (k) 

and 

ch. 
LlEH (k) 

integrals it is convenient to label the 

(330.05a) 

For these expressions to be eva.luated the difference between 

the two eigenvalues _€ 
0 

Hk and € 
0 

H<k-q> <or € 
0 

L<k-q>> has to be defined. In 

this thesis the main concern Is with the change in position of the 

extremities of the bands. For example for the top of the heavy ·hole 

valence band Ck=O> this energy difference becomes 

0 
€n (O-q) 

= + ~=q2 = 
n 

4. 1/2 
q 

) 
0 

= .flwHn (q) 

(330.05b) 

Where m is either the heavy hole mass or the light hole mass depending on 
n 
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the band index n <L or H>. 

Now substituting In Eq. 330.04 for the difference between the 

I 
0 0 . 

two elgenva ues € Hk and € n<k-q>· At the top of the valence band where 

k=O. the change In energy of the top of the valence band becomes 

00 2 
2 wp. sx e 

J ( ~EHn(O) = + 
(fiq2/2m ) 2 . 

) dq 2 2 
477 €€r 0 

wl(q) -
n 

00 2 
(330.05c) 

ch 
2 wp e 

J 
1 

~EHn (0) = + dq 
2 2 

477 €€r 0 
2Wl (q) (.flq /2m - Wl(q)) 

n 

Identical expressions may be derived when considering the light 

hole band <~EL with w0 
Ln<q». Thus provided· the point k=O is considered 

the equivalent expression for the light hole band is Identical and the top 

of the light and heavy bands have the same change in energy. If a point 

other than the top of the band Is considered the change in energy of the 

heavy and light bands need not be the same <see Eq. 330.0Sb>. As mentioned 

in the previous paragraph the main concern is with the bottom of the 

conduction band and the top of the valence band in· this thesis. However 

Eq. 330.04. with the appropriate choice of energy difference. will give the 

electron-electron contribution to the change in the self energy of 

electrons at any wavevector. The calculations of Berggren and Sernelius 

<1981> and Abram et al <1978> show this k dependence to be small. so the 

effective masses are assumed to have their intrinsic values. 

It remains to evaluate numerically the scalar wavevector 

integral. This proved to be slightly more complicated than might be 

anticipated for the integrals with the light hole mass since as shown in 

Fig 2.6. Fig 2. 7 and the discussion in section 2.3.3 the plasmon pole curve 

is bisected resulting· in a poorly represented singularity occurring in the 
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integrand at 

lhe numerical problem was avoided by summing the coulomb hole and dynamic 

screened exchange contributions to the band gap reduct.ion. 

ch+sx ch sx 
6EHL (0) = 6EHL(O) + 6EHL(O) 

ao 2 
( 330. 06a) 

ch+sx 2 wp 1 e 
J 6EHL (O) = + dq 2 2 

471 EEr 0 2W
1 

(q) (.fiq /2mL + Wl(q)) 

which can be seen to give a more manageable integral since the singularity 

no longer occurs in the . Integrand. The individual contributions may 

then be determined by subtracting the more easily computed 6Esx HL <k> term. 

For the sake of completeness we also write the exchange contribution with 

the heavy mass band in the same way 

ch+sx 
6EHH (0) = + 

2· e 1 
dq 

(330.06b) 

Numerical values for these Integrals <Eq. 330.06 and Eq. 330.05c> for the 

change In the electron-electron self energy of the top of the. valence band 

may be found In the next sections. Section 3.3.1 deals with the· former. 

whilst section 3.3.2. by computation of the 6Esx term and subtraction. 

deals with the two component parts. 

sx+ch 
Calculation of the 6E <k> ·term: . . v 3.3.1 

Evaluation of the contribution to the electron-electron 

e~change resulting from exchange between the ·valence bands <Eq. 330.06> 

require the numerical solution of integrals. The appropriate integration 

routine is the same as was used In the calculation of the coulomb hole term 
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for the conduction band <c.f. Eq. 322.02>. Making the substitutions 

11 = 
3m op 

4mde 
= 0.5951 K = 

Eq. 330.06 become 

ch+sx 
~EHL (0) = + 

"/ -L.-

2 2 1 
e K 

2 
1677 EE kf . r o 

f 

dt 

3 -1/6 
= 4.849.10 Nd 

2.488 "/· . H 

1/2 

(331.01) 

.2548 

(331.02a) 

2 2 2 2 2 
(K +/1-1)t +(1-2B)t+B+~(((K +/1-1)t +(1-2S)t+B)"/L(t -2t+1)) 

and 

2 2 
1 1/2 

ch+sx e K 
t 

~EHH (0) = + f (1 t> 2 
1677 EErkf 0 

(331.02b) 

dt 
2 2 2 2 2 

(K +/1-1)t +(1-2S)t+B+~(((K +B-1)t +(1-2S)t+B)"/H(t -2t+1)) 

These Integrals were performed using the NAG routine D01APF for a series of 

values of K depending on the conduction band electron <donor> concentration 

Nd <see Fig 2.4>. The numerical results of these calculations based on the 

plasmon pole approximation are presented In Fig 3.3 along with the results 

of Berggren and Sernellus's calculations based on the Lindhard dielectric 

function. The agreement as can be seen from this graph is within a few meV 

over the concentration range 10
18 

- 1 o20 
em -

3
. Also· plotted In this figure 

ch+sx 
are the results for ~E calculated assuming a simple un-cou.pled . v 

valence band with average density of states effective mass 

m 
v 

( 3/2 + m3/2)2/3 
= mH L 

These show that results assuming an uncoupled valence band Ue ignoring the 

Lamda function Eq. 240.07h> overestimate the band gap reduction by 6 mev. 
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· . SX Ch 
Calculation of the 6E <k> and 6E <k> terms. 

v· v 
3.3.2 

In contrast to th~ difficult calculation · required for the 

sx 
coulomb hole exchange term the screened exchange terms ~E vL and 

~Esx vH may be obtained analytically. Numerical results for different 

concentrations may then be obtained from a simple calculation varying the 

Thomas Fermi screening length (K) ·and Fermi wavevector <kf' 

240.07f. Eq. 240.07g and Fig 2.4>. So from Eq. 330.05c. 

sx 
6EHn(k) = + 

Making the substitutions 

3m m 2 

aL = ~ ( ( de) -
4mde mL 

3m m 

aH 
op 

( 1 ( de) = -
4mde mH 

1 ) 

2· 

) 

= 

= 

1.893 

(-llq2 I 2m ) 2 
n 

0.3403 

)· dq 

and substituting for the plasmon dispersion relationship w1 <q> 

components of Eq. 332.01 may be written 

SX 
6EHL{O) = + 

and 

sx 
6EHH{O) = + 

2 2 
e K 

2 2 
e K 

00 

I 

00 

I 

see Eq. 

(332.01) 

(332.02) 

(332.03) 

the two 

(332.04) 

(332.05) 

Tho IH1111yllutl :WhJIIOrw for ltHwo two lnlo{)rttls mo dllloront duo to tho 

dllloronce In a . 
. n 

We treat these two separately so that Eq. 332.04 has 
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solution <Gradshteyn and Ryzhik 1963 Eq. 3.223/2) 

sx 
AEHL(O) = + 

2 2 
eK 

or on substituting for the various parameters 

SX -5 N1/6 
AEHL(O) = + 5.036.10 d 

7 -1/3 

(332.07) 

1/2 
8.900.10 Nd 

(eV) 
((1+1.7801.10

8 N~1/ 3 ) ((1+1.7801.10
8 N~1/ 3 ) 1/ 2 - 1)) 

-3 
where Nd is expressed in em . Whilst Eq. 332.05 has solution <Gradshteyn 

and Ryzhik 1963 Eq. 3.252112> 

2 
SX e K 

AEHH (0) = + (2_K{(( + kf 
H. 

1/2 

) 

which on substitution for the various parameters yields 

N1/6 .1/2 

(332.08) 

· SX -5 1/6 d 
AEHH(O) = + 5.036.10 Nd ( ) (eV). (332.09) 

· 5.657.10 3+N~/ 6 

where Nd is again expressed in em -
3

. These two solutions <Eq. 332.06 and 

Eq. 332.08> may be found to tend towards the same limit as a tends towards 

unity. As a second check on these results and those of chapter 7 the 

integrals <Eq. 332.04 and Eq. 332.05> were ·performed numerically using NAG 

quadrature routines D01ALF and D01APF respectively. Although the latter 

· integration was successful in that it gave the same results as those of Eq. 

332.09. the former more complex integral gave the wrong result. The 

numerical problems with the solution of Eq. 332.04 are associated with the 

presence of the extra pole In the integrand due to the intersection of the 

plasmon dispersion curve shown in Fig 2.6 - 2.7. These problems have a 

small effect upon the finite temperature calculations of 11 HL 

7.3.2. 

in section 

Values of the screened dynamic exchange terms from Eq. 332.07 
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and 332.09 are presented In Fig 3.4 and show that the exchange with 

electrons in the heavy hole band liEHH Cor when considering AEL the AELH 

term> give the greater contribution to the band gap narrowing. Also 

. plotted in this figure is . the magnitude of the change in the conduction 

band exchange term AEsxc which is much smaller than the- valence band shift 

due to the presence of the Hartree Fock contribution in the conduction band 

<Eq. 321.03) and explicitly extracted from the valence band shift <Eq. 

330.03b). 

By simple subtraction <Eq. 330.03a> of the change in the 

valence band screened dynamic exchange term in Fig 3.4 from the total 

electron-electron exchange term in Fig. 3.3 the contribution that the 

coulomb hole term makes may be obtained. These are presented in Fig 3.5 

with those of the magnitude of the coulomb hole term In the conduction band 

calculation. It can be seen that both the conduction and valence band 

coulomb hole contributions reduce the energies of those bands and therefore 

only contribute a small increase <+ 10 mev at 1 o20 
em -

3
> to the change in 

the band gap as pointed out by lnkson <1976> in connection with his 

·correlation energy·. 
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3.4 SUMMARY AND CONCLUSIONS. 

In this chapter the shifts in the conduction and valence bands 

due to the change in screened electron-electron exchange energies <Eq. 

300.02 and 300.03) have been calculated. It has been found that in the 

plasmon pole approximation these can be split up into coulomb hole and 

screened dynamic exchange contributions <named by Hedin 1965 in connection 

with electrons gases in metals see section 3.1> 

ee sx AEch(k) l:J.Ec(k) = l:J.Ec (k) + ~ c 

The coulomb hole contributions <see Eq. 320.03 and 330.04> 

CIO 2 
ch 

2 wp e 
I 

1 
l:J.Ec (k) = + dq 2 0 0 

271 EEr 2W1 {q) (W - w - W1(q)) 
0 ck c (k-q) 

CIO 2 
ch 2 wp 1 e r, I l:J.E (k) = + dq v 2 0 0 

471 EEr m o 2W1 {q) (W - wm(k-q)- W1(q)) vk 

reduce the energies of both conduction and valence bands contributing a 

. 20 -3 
small increase <+ 10 mev at 1 o em > to the change in the band gap as 

predicted by lnkson 1976 <see Fig 3.5>. The screened dynamic exchange 

contributions -of each band <Eq. 320.03 and 330.04> however act in opposite 

directions. both to reduce the gap <Fig 3.4> 

sx 
l:J.Ec (k) = 

SX 
liE (k) = + v 

2 e 
2 

(i -

r, I ( 
471 EEr m 0 

.. 2 
w1 (q) 

2 
wp. 
0 0 2) dq 

- <wck -we (k-q)) 
2 

wp 
0 0 2 ) dq 

(w -w ) vk m(k-q) 

With appropriate choice of the energy difference . in these expressions the 
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change in the band energy at any value of k may be determined 

0 0 0 
wck - wc(k-q) = - wcc(k,q) 

0 0 
0 

wvk - wv(k-q) = wvv(k, q) 

In conclusion the sum of contributions from the valence band 

CFig 3.3> and the conduction band CFig 3.2> to obtain the electron-electron 

contribution to the band gap narrowing Is shown In Fig 3.6. It can be seen 

that these results differ by only a few meV from the results of Berggren 

and Sernelius calculated with the Lindhard dielectric function <Fig 3.2 and 

3.3>. It would seem then that the use of the plasmon pole approximation in 

estimating the electron-electron exchange energy Is justified at least at 

zero temperature. In chapter 7 this method is extended to. finite 

temperature to estimate the finite temperature band gap narrowing. 
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CHAPTER 4 

CHANGES IN THE BAND GAP DUE TO ELECTRON-IMPURITY SELF ENERGIES. 

4.0 INTRODUCTION. 

Electrons in an lmpur~ semiconductor not only Interact with 

other electrons from the semiconductor bands as was .shown In the last 

chapter. but also Interact with Ionised donor or acceptor Impurity centres. 

lattice Imperfections. clusters of Impurities and phonons. This chapter Is 

confined to those scattering events that may. be ilkened to the simple 

electron scattering off a positively charged Impurity with coulombic 

p·otential. ~he use of the word Impurity then Includes for example 

scattering from a simple positively charged lattic·e Imperfection. Here as 

In the last chapters the problem Is treated by perturbation theory. The 

electrons In the model are not allowed to bind themselves to any Impurity 

but are thought of as Interacting with all ·the impurities. In the real 

semiconductor of course some electrons may be bound to Individual 

Impurities. or Indeed to collections of impurities that form an abnormally 

deep potential well. Two electron-Impurity Interactions. are Identified: 

a> those . due to the binding of electrons by collections of 

• impurities forming localized states iri the band gap that are 

. the subject of the c~lculatlons In the next chapter. 

b> those effects due to the electrons scattering from the many 

Impurity sites that are dealt with In this chapter. 

The extent to which 'this separation Is justified is discussed 

In chapter 5. ·when It Is considered whether or not the electron-Impurity 

self energy has been Included Implicitly ln. for example. calculations by 

Halperin and Lax Cl966. 1967>. 
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Returning to the self ene.rgy calculations these are subject to 

two limits of conc~ntration beyond' which they break down. The lowest being 

the Mott metal Insulator transition below wh!ch the electrons would have to 

be considered bou.nd to the imp~rlty centres. And at high concentrations 

the ·point .when there are sufficient Impurities to violate the perturbation 

.approximations. Within these .limits the change in energy of the holes or 

electrons as a function of the Impurity concentration m·ay be approximated 

by two methods. Firstly by a Green's function formulation of the electron-

Impurity Interaction an example of which Is presented In section 4.4.1. 

Secondly by straight forward perturbation theory that Is presented In 

section· 4.4.2. 

The former approach Is perform_ed In a similar way to the 

electron-electron Interactions of . .chapter 2 and forms the more lmpQrtant 

part of this. chapter:. The major results of the derivation are similar to 

. . . 
those of the electron-electron chapter. A series expansion of the Green's 

function In terms of the unperturbed Green's .functions <section 4.1> that 

Edwards <1958. 1961., 1962> and Klaud~r <1961> dev~loped in the form . of a 

Dyson's equation <se~tlon 4.2>~ ·And ·a ··self energy' $erles that may be 

approx!mated and numerically evaluated ·to give a shift ·In the band. edges .. 
· r \l ' "i-2 c·J,.,. 

The major difference ·between t.hls ~nd the electron~electron .Interaction is 
"(!;!:. .~_:· 1C;·r ~~; 1.t;r~'r::~~ · · _ .: ~. ~ ._ 

that the Impurities are assumed ~o be located at random but well defined 
t~l ::;· '·-...:·: j ~: ":,.-~ . . ~ . . .. • ·~ .. 

sites throughout the host semiconductor lattice. The· Impurity potential 

may not then be taken as uniform throughout the structure. This 

interesting situation is dealt with· by taking the ·spacial average over all 

. possible i~purlty sites suggested by K_ohn and. Luttlnger· <19~~>. thereby , .· .· .. 

q~rlving ·an a~erage · self energy 
\)'!." .· :'~; ·:/1 ._ :· :~-) ' : i • •• ' 

<section 4.2>. 

· · · !'f:!P0n~m ~a~~~~~~J!9n pr th~ first . order 
' ! 

terms · ·In th~ ·self; en~rgy 

~xpans!ons of !~Is chapter and the · last. The change in the ... -r~s-t.iltlng 
...... : 

··. 
:•_! .. 

:--, .. '· . ;·: <. 
. ~ ":. 

... ' ...... 
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average self energy may not represent the local change in the band energy 

due to the impurities very well. but is· taken as a good representation of 

the average change in band position. These expressions are derived in 

section 4.4.1. 

The perturbation derivation of the self energy in section 4.4.2 

that is taken to second order is a more traditional approach and gives the 

same result as that derived in 4.4.1. To. improve these approximations the 

more powerful Green's function derivation is more useful <Ghazali and Serre 

1982. 1983>. Indeed the. quantitative discussion of the accuracy of the 

approximations given in sections· 4.5 and '4.6 uses terms derived from the 

Green's function. In this thesis the simplest. formulae derived are used 

<section 4.5> to obtain numerical results· <Fig 4.1> and their range of 

validity· for this electron impurity contribution to the band gap reduction 

in silicon . 

., 
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4.1 FEYNMAN DIAGRAM·. REPRESENTATION OF THE PROBLEM. 

It is ·convenient to outline the problem that confronts us in 

the electron-Impurity calculations with the aid of Feynman diagrams. The 

use of Feynman diagrams for the impurity problem is not new. Edwards 

<1958>. Langer arid Vosko <1960> and Klauder <1961> were the first to 

publish diagrammatic representations of the problem. Mattuck <1976> gives 

a simple description of the problem and Mahan <1981 > goes into some detail 

in his book. In the present work the coulombic interaction of the nth 

impurity with an electron is represented by the diagram 

yt• l 
xl tl .. · .. 'In 

xt 

(410.01) 

where 

yt• 1 
xt T 

represent the unperturbed retarded· Green's functions 

0 
G+ (xt,yt') 

represents the nth ion 

represents the coulombic interaction V<r> = V<r-R
1
> 

The electron-impurity interaction is considered to be a static one where no · 

energy is transferred to or by the impurity in the absence of phonons. 

This of c()urse ·makes the electron-Impurity problem simpler to cope with 

than its electron-electron counterpart due to the lack of summations over 

inter'me~iate · frequencies. In what follows the time and spacial co-

ordinates are omitted for simplicity so that the Green's function expansion 

- 4,4-



for N impurities becomes 

+ . 

(410. 02) 

Since the electron gas surrounding the impurities may relax about the 

Impurities. forming a screening cloud. each of the above coulomblc 

Interactions may . be replaced by a screened interaction of the form 

calculated In chapter 2. . Thl!s the coulomblc Interaction of the nth 

impurity with an electron in the Random Phase Approximation becomes 

RPA 

t t 
A: .. ·1 

= ... ·I + I •• v + 

~···I 

... 0 ... + (410.03) 

Where diagrams that do not conserve momentum are Included. Wolff <1962> 

· · .·.. ··has pointed out that subsequent averaging of the Green's function results 

;; t •. 

In momentum being conserved at the averaged Impurity scattering event. The 
. · .... 

proof of this will be left to the section 4.2. 

As I~ evident from the large number of diagrams In the Green's 

1unctron expansion . it is a significant problem to approximate the series 

~9curately. Not least since the Impurities may be located In clusters or 

In pseudo-random locations In the host lattice. Edwards <1961. 1962>. has 

considered. ensemble ranging from complete spacial order to complete 

disorder. Intermediate states of order. for example clusters. are however 
. .: ~ ... ; : . 

more (~ornplex. In this chapter only the simpler calcultlllon of an 11rr11y of 

',:,,. ,- raniJomly h.H;otoll lrnp!.ultlea lo considered. With these provl:;ors we proceod 

~8 calc~!ate the Dyson's equations for electron-Impurity Interactions. 
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4.2 KOHN AND LUTTINGER AVERAGING LEADING TO DYSON'S EQUATION. 

To develop Dyson's equation the wavevector expansion of th~ 

Green's function is first developed <as was done in chapter 2>. For this 

the Fourier transform of the impurity potential 

N 

V{r) = [ v(r - Rj) 
j 

v(x) = 
2 e 

(420.0la) 

where AI are the N impurity locations. Is required. For this the Impurity 

density p q Is defined 

l N iq.Rj 
p = - L e (420.0lb) 

q n j 

where n Is the crystal volume. The Fourier transform is then given by 

* V(r) = f Pq W(q) 
iq.rd3 e q (420.0lc) 

The wavevector expansion of the total Green's function Involves Interaction 

matrix elements of the form 

where the ~n 1 <r> are Bloch functions belong to the nth band. The overlap 

Integral has· been calculated In section 2.2.3 so the Green's function 

expansion <Eq. 41 0.02> in functional form becomes 

G(nk,mq) 
0 0 . 0 = G (nk)Okqonm + G (nk)W(nk,mq)G (mq) + 

1 0 . 0 0 
+ - L L G (nk)W(nk,n'l)G (n'l)W(n'l,mq)G (mq) 

.fi n'l 
(420. 03a) 

+ .... 
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A self energy may ·be Identified In this expression 

. 0 0 1 0 
G(nk,mq) = G (nk)Okqonm + G (nk)t (nk,mq)G (mq) + 

1 . 0 . 2 . 0 
+ ~ G (nk)I: {nk,mq)G {mq) {420. 03b) 

1 2 
where I: Is the first order self energy and t contains second order 

Interactions. This <Eq. 420.03> is simply the wavevector equivalent 

expression to the Feynman diagrams In Eq. 410.02. Since momentum Is not 

conserved the Green's function is expressed as a Kernel with the wavevector 

and band before scattering nk and those after mq. The ensemble averaged 

Green's function is ttien formed 

<G(nk,mq)> = JJJ .. G(nk,mq) ll 
i n (420. 04) 

where there are N independent integrals. This form of ensemble average . 

used initially by <Kohn and Luttinger 1957> has been shown to be the best 

approximation to all but a negligible number of arrangements of a 

completely random array of Impurities <Landau & Lifshitz 1977>. If the 

Green's function from Eq. 420.03 is substituted in Eq. 420.04. using Eq . 

420.02 for the potential the ensemble averaged Green's function may be 

derived. For example the third term in Eq. 420.03. that corresponds to two 

electron scatterings from the impurities becomes 

. 0 0 0 . <[G (nk)W{nk,n'1)G {n'1)W{n'1,mq)G (mq) > = 
1· 

{420.05) 

0 0 0 [G {nk)<W(nk,n'1)W(n'1,mq)>G {n'1)G (mq) 
1 

wher.e the averaging has been taken Inside the wavevector summations and the 

unperturbed Green's functions are lnvarlo.nt under the averaging procedure. 
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The averaged potential Is now developed using Eq. 420.02 

(420.06) 

The overlap Integrals of chapter 2 are used <Eq. 223.18> 

* iq.r 3 
I(nl,mk;q) = f ~nl(r)e ~~(r) d r 

* I I = 6(q-k+l) hnm (420.07) 

It remains to derive the ensemble averaged impurity density In 

· Eq. 420.06. Taking the Impurity density defined In Eq. 420.01 b and the 

averaging technique from Eq. 420.04 we find for example 

(420. 08) 

N N(N-1) 
6 <k+q+l+j > + · 4 [ r: 6 <k> 6 <q+l+j > 

o4 o comb 

N (N-1) (N-2) 
+ L 6(k+q)6(l+j)) + L 6(k+q)6(1)6(j) 

comb o4 
comb 

+ N(N-1) (:-2) (N-3) (6(k)6(q)6(1)6(j)) 

o 

where the summation Is over all combinations <comb> of the wavevectors. 

The generalization of this series was first developed by Kohn and Luttl_nger 

Cl957> and later extended by Edwards <1961. 1962> to situations that 

possess some order. But for large N In a random ensemble 

. . . . ) = 
N 1 N 

(~ 6(~ki)6~=~+1kj)} + .. 

·(420.09) 

Using this .expression for the ensemble averaged Impurity density there are 
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two·p'arts to 1ne :solution of Eq·.' 420.06.:-:The first derives fr.om. 
• •• ~-- .: • : • • .... • • : • '·, • : ···:: • ... J. - • • < : ~ • • 

.. -~-> ··. .. . ... ~:.: ·, . •". ·. . . .-.. . . ~: .... 
1·--: 

.. 
. . -~ ; 

(420 :1oa) 

Yihl.ct( corresponds to two electron scatterings form the same Impurity or the 
. . 

' . -~ . --~. ' .. 
~;- ·;: .:.- . . ' . 

..... 'f .' . ~· • . . ~- · ..... -

• c 

se~otid set of diagrams In Eq. 410.02. Whilst the second derives from 

... , .. 

(420.10b) 

l ~ ·-

·:·.- .• ..:' ·. .which. -cbr~esponds to two scatterings from different impurities. This 
. :"'·· 

· .... ' :· . 
. s~cond·, expression can be reproduced by a simple product of one electron 

. . ~. ·-·· 

·.,'\ .. · . : .·:.· :. scattenn~ eve.nts of the form represented by the second term In Eq. 420.03 
... -... ~ ~ : 

·. ·.' 

· .• _. ___ . "·: .: · · ~.· ::< .:and_. ~d:6.e_s ·not. th'en contribute to the Irreducible self energy. 
, .. . f.', .~ . '.,. ' ., ~- .•. · . 

. ·~- .;>_<.:::· :·._::.-... ·· :).:. the flrs,~~·f.!hese is inve~tlgated the integrals over k1 and k2 give: 
-~.;~· ·::_:~ ~. ·:' ~. ' .. ·. . ,...:·-.. · _·-;-~ ... \ ·:· . .- ~ 

' '.. .. . . ·· .. . ;·:. An, n (k, 1) OnmO (k-q) W (k-1) W (1-k) N 
.-. " <W.(nk,n iJ..) w (n '1 ,mq) > = 

However If 

·"'' '•.· : .. ·. 
~- . (420.11) 

·. ·' . 
. . · Now.~.r~ela¢111g ·the summation over 1 by an Integral 

.. . ~. -. 

. 3- .· 
d 1 

··, .·• .. _ .. , 

. . .:· ~·. :· . ,··. 
. .:. 1. ·. i. '6: . . . 0 0 
.. ~·<.fl·L G_.(n_k).·W(nk,n'1)G (n'1·)W(n'1,mq) G (mq)> = 

-:.'. n'1 ·. ·. .' .·.' . 
. ,,r, 

.. 
.' , .. , (420.12) 

.. · .· . Nd_ .. ·· .. .. 
· ·: ·._-,,'. · · 3 EJAn,.n(k,1) Onm.O(k-q) w(k-1) W(1-k) 
... ·-:···:··· ~ · (2")··.n•.:. .. 

· .. 
J. • -· ...... - .. _ "-·~ .. -~·-.. . . ... 

w~~re Nd Is the Impurity density. Interpreting this diagrammatically the 

Impurity Ions are replaced by crosses. Only 1/Nth of the diagrams <Eq. 

41 0.02> have to be drawn since the d!fferent Impurities are no longer 

distinguished. Repre::;entlng the potentials In Eq. 420.12 by the screened 

..... 
-_:. 
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coulombic Interactions shown In Eq. 410.03. Eq. 420.12 may be drawn 

• : T ·, 
':.. . . 

• • •• X 
: : . (420.13) 

·. 

Notice that the averaging procedure has resulted in the joining of the 

loose ends of the coulomb Interactions In the un-averaged series and 

scaling each cross by the donor concentration Nd. This averaged Impurity 

scattering conserves momentum <as In the equivalent electron-electron 

Interaction>. The electrons are not now seen as scattering off individual 

impurities. but rather from the whole ensemble of Impurities. All the 

remaining terms In the average Green's function may be. treated in a similar 

way. It is considerably easier to derive this series by joining the like 

ends of coulomb Interactions of the un-averaged series <Eq. 41 0.02> 

directly and then Interpreting the resulting cllagrams. All the possible 

terms In the averaging of the Impurity density are obtained for example the 

term representing Eq. 420.1 Ob Is the third diagram on the right hand side 

of the following expansion of Eq. 420.04 

~ f j ! .. -·x 
< >= +;;::X+ •••• 

... ; ; ; X 
+ 

: ; : :X 

I . .-: : : : . 
• • • · X • : 'X 

.: :' ;.: ; = •. ·. ;.~ 
: : : ; X 

(420.14) 

.' L ,' 

. Iii·, : . ...,. --:" 
·+.:~· + 
. ; :::X 

.. . . 

; :; :X 

t::. + : ~ ;· ,-:x + 
·:::·:~. ::~·· 

! : • . 

. This· set of diagrams Is already much condensed from the diagrams shown In 

· the last sec.tion however this may be condensed further into the abbreviated 
... -.. 

. . .. ~ . 

.. . ~ :: 
'·,i. 

•i' .• 
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·form 

(420.15) 

wl')ich is equivalent to Dyson's equation. The Irreducible self energy 

diagram Is defined by the series 

I;;;; X + 

+ + I I : I (420.16) 

It is clear from the above diagrams that there are several 

important differences between the electron-electron and electron-Impurity 

self energy expressions. The electron may for example Interact with the 

same Impurity many times without apparent change to the physic~! situation 

<see 3rd and 5th diagrams In Eq. 420.1 6>. In the electron-electron example 

an electron would Interact with the another electron only once. forming an 

electron. hole pair or exciting a plasmon that at some later time could 

recombine <decay>. Secondly an explicit averaging of the electron impurity 
j • ~. 

interaction has been performed. In chapter 5 the fluctuations about this 

mean interaction are considered. The calculations in ihis chapter thus 

incorporate a rather crude but effective approximation to the real situation. 
'.I·, .. 

. . :'·.·· 
.. - • ' . J . ~ ; 
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4.3 CANCELLATION OF THE FIRST. ORDER TERMS. 

At this point the Implications of the first order term in Eq. 

420. 16 are considered 

(430.01) 

This is just the average of the electron-Impurity interaction. It must 

have the same magnitude as the average electron-electron interaction Eq. 
I, 

222.06 

1····0 .... (430. 02) 

but because of the opposite sign on the charge of the ionised donor 

Impurities the interaction energy has the opposite sign: The two· first 

order terms above then cancel. a result that was used previously In chapter 

2 and chapter 3. This cancellation only occurs for the first order terms 

since. as Wolff <1962> points out only in this term are both the electron-

electron and electron-Impurity interactions static. The following 

simplified expression for the self e·nergy remains. 
' .<. 

- :.~ ' - . @ 
I ~ ...... I ~- ~ :... ....... 

= I I '~x + I I ; : ~ ~;x + . . . (430. 03). 
I 1-::-- ~ --I le.:: .,.. 

This cancellation is of course only prevalent in the macroscopic 

.·.' 
'. . system. When looking at the microscopic system there would be some regions 

where the jmpurity concentration was above the average. In these areas for 

an n-type semiconductor there would be a ·net positive. electron attracting 

I 

field. There would also be areas where the impurities were few. with the 

associated effective negative charge. These fluctatlons in the average 

impurity potential _are dealt with in detail in chapter 5. 

- 4, 1~ -
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4.4 APPROXIMATIONS TO THE SELF ENERGY. 

In this section two self energy expressions ·are derived. The 

first. derived from the Green's function of the last sections. is detailed 

in section 4.4. 1. The second from the more conventional perturbation 

series is presented in section 4.4.2. This latter derivation Is Included 

to outline the essential differences between the two approaches. although 

both produce the same result to the order of approximation chosen. The 

Green's function formulation Is by far the most amenable to improving the 

accuracy of the calculation. 

. 4.4.1 Green's function formulation. 

As in the electron-electron calculations to sum the whole series 

of diagrams would. even If such a sum were possible. be a waste of time 

considering the approximations already made· In deriving the model. It Is 

quite adequate to sum only the most important diagrams. Wolff <1962> 

considers the second order term 

0 t
-_, 

.... ~ . 
:::: . 1:t -..v .. ....,. 

-: ";. ..... _-=---
(441.01) 

and, suggests the use of the partial sum 

= -~x = I r
.-..... -=- .. 

~-=- ... _-;.'"" ..... 
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Mahan <1981> in his book considers at length the series 

.. 
= •·······x + , .•..•. x + .• :~_··x + 

•• f ,·,. ·.~ ' : : ~x + . . ( 4 41 . o 3) 

. .. 

corresponding to multiple scattering from the same impurity. Which he uses 

In the limit of low impurity concentration. More recently Ghazali and 

Serre <1982. 1983> use an iterative calculation to obtain the self energy 

· based on Klauders's <1961> theory using the series 

... ~, 
. '' 

eo-:.,. .... '~ 

~ -... .,., ..... -.... . ............ X + , • • ., .... , , I', ... .... 
,;tr ,.,. ,,.. 

o; . 
,;• 

vertex corrections 

(441.04) 

They also include a· simple form for the electron-electron self energy In 

their calculation. However they only use the simplest Thomas Fermi 

approximation <232.09> to the electron screening. 

simplest approximation to the self energy is used 

In this thesis the 

(441.05-) 

... · ... · whilst ir1dlcatlng In section 4.6 · the likely range of accuracy of this 

approximation. The diagram may be translated as 

.flt(~;k,W) = 
Nd 0 2 3 

---3 E J G (n;l,w) IW(l-k,W) 1. 1\~(k, l)d 1 
.fi (277) m 

(441. 06) 

This expression. as will be shown in the next section. may be derived .from 

second order perturbation theory and has been used by several authors 

<Sernellus and Berggren 1981. Berggren and Sernellus 1981. Wolff 1962>. 

- 4.14 -



To conclude this section one of the more Important higher order 

terms in the self energy expansion is derived for later use. The fourth 

order term that Wolff believes to give the most Important correction to the 

above approximation is chosen 

''.:: ::x 

t
;:.' 

,, 
,~ ... ;, 
, , ~' , .... , 

. ,_:::-'X 
~-

(441.07) 

This diagram comes from the fourth term in the ensemble averaged self 

energy Eq. 420.16 and corresponds as shown above to two Impurity scattering 

events. Translated for the simpler case ignoring the Inter-band coupling. 

by dropping the summation over m. gives a contribution to the self energy 

of 

~At.(k' I W) = 
Nd . 0 0 0 

3 S ff G (q,W)G (k'-q-k,W)G (k,W) 
.fl ( 277) 

2 2 d~.q d3k W(k'-q,W) W(k'-k,W) 
(441.08) 

Where It should be noted that even in this simple model omitting the band 

Indices the Integral 

JJJJ (-1-) 
2 2 

q +K 

sin')' sina 

2 1 2 
(--) 

k
2 2 

+K 

2 2 . . 
q +k -2qk(cosacos')' + s~nas~n')'cos(0-,8)) 

(441.09) 

d0d,8dad')'dkdq 

·where· the spherical polar angles defining k and . q are Ca.,B> and (')' .O> is 

not straight forward. Wqlff uses a simple r:nethod of approximating such 

complex diagrams so that for each of the four coulomb interactions a factor 

2 2 
of e IE E K is introduced. each of the three energy denominators introduce 

r 
2 . 

a factor of K lm. whilst the cut off in the coulomb matrix element give a 

factor ot K
3 

trom the mtegrauons. lhus the above term ia proportional to 

1 .. , 
~~ 4 .. , 

:.t ., 
N; ... ,, 

e '" ( K ::.1) ::J e N"; ( ·---··'""2) (-2) = m ( f r,--) d 8 
f:€ I( I( ·r I( 

I' 

Th!§ lflqlcates that the perturbation expansion breaks down for a high 

i • 

- 4.15 ~ 



concentration at whjch this term becomes the same size as ~he second order 

term <Eq. 44 1.05> 

2 
r 4 2 e 2 Nd 

·2 2 = m (E€) 5 
(L ) r K 

since the Thomas Fermi wavevector K is proportional to Nd 
116 

A more 

serious limitation will be encountered at finite temperature <chapter 7> 

when the concentration dependence of the Thomas Fermi wavevector changes 

to Nd -
112 

for non-degenerate silicon. When this happens the perturbation 

series fails at low concentrations. 

4.4.2 The conventional second order perturbation series. 

The principle objective of this section Is to point out the 

essential differences between the conventional perturbation expansion and 

the Green's function formulation that was considered in the last section. 

The latter gives a far more precise definition of the electron-impurity 

self energy. however the former. being grounded In elementary quantum 

mechanics. gives perhaps a better introduction to the physical processes. 

In essence one Impurity in the ensemble is considered in isolation from the 

others that are supposed to form a uniform background positive charge. 

Using its potential as a perturbation. on the hamiltonian of the host 

lattice Its effect upon the energy of the surrounding electrons and holes 

is estimated. Having obtained the magnitude of this effect it is 

multiplied by the numb~r of impurities in the solid to obtain the effect of 

all the. impurities. Inherent in the derivation is the assumption that the 

1rnpuritiOf\ are ranclornly located In the solid since weHI they placed on a 

lnlllnJ Uto w(tv'·''""'·:ll<.mn woulcj tlo rn .. onlorcod coherently by neighbouring 

scat~e~!ng ~e~tres so. that one Impurity could not be treated In isolation . 

.,. 4.19 ,.., 
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Provided that the impurity potential V<r> is a small perturbation on the 

host semiconductors hamiltonian H0 the total hamiltonian is written 

H = H
0 + V(r) (442.01) 

The unperturbed wavefunctions are taken as plane waves throughout this 

section in orde.r to reduce the complexity of the expressions though Bloch 

functions could equally well be used. The perturbed wavefunctions fk<r> 

and eigenvalues Ek are given by solving 

(442.02) 

From conventional perturbation theory <see for example Landau and Lifshitz 

1977 or Schiff 1968> the perturbed energy may be expressed as a series 

= 0 1 2 E3 Ek + Ek + Ek + k + ' ' . . (442. 03) 

Where the superscript denotes the order of smallness of the terms. The 

first order term. that Is just the average potential. must cancel with the. 

average electron-electron energy <see section 4.3). The change In the 

eigenvalues. and hence the band edges. Is then given by the sum of second 

and higher order terms. The second order term is given by 

. 2 
I~ ql = L: , 

(Eo - Eo) 
q k q 

(442.04) 

The matrix elements Mk.q will be defined later and the eigenvalues Ek are 

for the moment supposed to form a discrete set. The prime on the summation 

means that the term when k equals q Is omitted. For the third order term 

3 
E 
,k 

The matrix elements are of the form 
• I,.Ji.• • ' 

(442.05) 
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(442.06) 

where l"k<r> are taken as plane waves. Were they Bloch waves the overlap 

Integral would be dealt with as In chapter 2. Writing the potential as a 

fourier expansion in W<q> 

I e iq.r d3q 
V(r) = W(q) 

so that 

~.q 
1 

J 
-ik.r f W(1) = - e 

n2 
i1.r 

e 

1 f W(1) I 
i (1+q-k). r 

= - e 
n2 
1 

I 
3 1 

= - w (1) o1 ,k-q d 1 = -n n 

d 31 e 
iq.r 

d 3r 

d
3

r d 31 

W(k-q) (442.07) 

where n is the volume. Replacing the summation by an integral in the 

second order term <Eq. 442.04> we get 

2 
1 3 I 0 IW(k-q~l 

0(2") € (k) - € (k-q) 

3 
d q (442.08) 

where W<q> must be small for q equal to zero since the k equal q term Is 

effectively included In the integral whilst omitted explicitly from the 

summation in Eq. 442.04. This must be multiplied by the number of 

· Impurities to obtain the effect of all the Impurities on the eigenstates. 

3 
d q (442.09) 

Where Nd Is the impurity concentration. This has the same form as the 

second order term of the Green's function expansion derived In the last 

section Eq. 441.06. 

At this point It becomes clear that to represent the situation 

cqrrectly me screening effect that the many electrons in the conduction 

,.. 4.18 -
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band have upon the impurity potential has to be included. In the Thomas 

Fermi approximation the unscreened coulombic potential 

V(r) (442.10) 

Is replaced by the Thomas Fermi screened potential that Is often use In the 

electron-impurity problem <see for example Chapter 5, Ghazati and Serre 

<1982. 1983>. Mahan <1981». The screened potential is 

V(r) (442.11) 

Where the. damping factor K is the Inverse Thomas Fermi screening length 

N 1/3 

2 ( 3) 1/ 3 ( d ) 3/2 K = 4 - M 
17 aeff c 

(442. 12) 

where the symbols have their usual meaning <see Appendix A>. The Fourier 

Transform of this potential 

W(q) = 1 (442.13) 

is the static. small q version of the screened potential derived in chapter 

2 in the plasmon pole approximation. Substitution of this in Eq. 442.09 

results in an integral that may be solved analytically to give 

2 
e Nd ei· 

AE (k.) = c l.. 
(442. 14a) 

This Is the second order perturbation shift in the energy of conduction 

band states at the bottom of one of the six valleys due to the electron-

Impurity interaction in the Thomas Fermi approximation. A similar shift. 

but of opposite sign. exists for valence band states so that the total 

chango In the band gap due to electron-Impurity Interactions In th!3 Thomas 



4.5 CALCULATION OF THE ELECTRON-IMPURITY SELF ENERGIES IN SIUCON. 

As with the calculations of the preceding chapter the shift In 

the bana edges is given by the real part of the electron-impurity self 

energy (C.t. Eq. 240.06> 

ei ei 0 
6En (k) = ~Re(E (n;k,wnk)) (450.0la) 

ei where E Is the ensemble averaged self energy. as outlined above. In the 

above w0 nk is the unperturbed energy or In the spherical band approximation 

0 = .tl.q2 
wnk 2m 

n 

(450.0lb) 

with m the effective mass for the band n. The change In the band gap due 
n 

to the electron-impurity self energy Is given by 

ei ei ei 
AE = 6E (k.) - ~E (0) eg c 1 v 

(450.02) 

where the self energy is defined by <see Eq. 441.06> 

N 
'ILor-ei d 

3 
t" J o 2 (k l) d3l ~~ (n;k,w) = L G (n;l,w) IW(l-k,w) I Anm , 

.fl (271) m (450.03a) 

with unperturbed Green's function 

0 
G (t:l; k I W). = 

1 
(450. 03b) 

0 . 0 
(w- wnk + iOsgn(wnk-wf)) 

the approximation to the screened Interaction W<q.w> Is given by 

2 2 
W(q,w) = e ;eerq e(q,w) (450, 03C) 

with e<q.w> given ·by the plasmon . pole approximation to the electron 

. dielectric function <Eq. 240.07c> 

2 

~r~re tpe plasmon dispersion relationship w1 <q>. the plasma frequency wp 
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· and the Lamda function 1\. are also defined in Eq. 240.07. nm · . 

There Is a considerable saving in the computation of the 

electron-impurity band edges over the electron-electron calculations in 

previous chapters. In the first place the intrinsic electron-impurity 

Interaction is non-existent by definition. Thus no subtraction of 

Intrinsic self energies Is required. In the second placed there is no 

frequency integral. the ensemble averaged electron-impurity interaction 

being static. Finally the denominator of both conduction and valence 

expressions are the only band dependent variables .. Thus from Eq. 450.01. 

450.03 and the energy differences <Eq. 320.04 and Eq. 330.05b> 

~E (k) = -v 
(450.04) 

as was shown by Berggren and Sernellus 1981. we can reduce Eq 450.02 to 

one integration. 

ei 
~E eg 

mH + mL Nd 
= ( 1 · + 2m ) 3 f 

de ll (277) 

dq ·(450. OS) 

~ubstltutlng for the screened potential and for . the energies In the 

denominator this becomes 

mH + mL 
= - (1 .+ 2m ) 

de 

00 . 

a = -
4 mde 

m 
3 op = 0.5951 

2 
1 + a(qfkf) 

2 
(qjkf) + 

The Integration was carried out on the IBM 370 computer using the NAG 

library routine DQlAJF. Graphs of the results are presented In Fig 4.1. 
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·Fig 4.1. Zero temperature change in the electron-impurity self energy of the conduction 

band (6Eei); valence band <T6Eeilland band gap in the plasmon pole approximation c . v . 
and the Thomas Fermi approximation. (il.L:e~) from Berggren et al 1981. 
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4.6 SUMMARY AND DISCUSSION OF RESULTS. 

In this chapter the ensemble averaged electron-impurity self 

energy has been calculated using the ensemble averaged Green's function 

<Eq. 420.04) 

3 
N d R. 

<L(nk,mq) > = Iff .. E(nk,mq) rr 
J. 

i n 

where n and m Indicate the band and k and q are wavevectors. This has been 

found to provide a convenient means of averaging the effect of N randomly 

sited impurities in the semiconductor. volume n. This ensemble averaged 

total Green's function may conveniently be expressed in terms of an 

ensemble averaged self energy -<E> in the form of Dyson's equation CEq. 

420.15) 

< > = + 
(420.15) 

< ) 

The ensemble averaged electron-Impurity self energy has. been found to be 

described to second order by the expression <Eq. 441.06> 

N 

...rit(n;k,w) = d 
3 

[ J G
0

(n;l,w) IW(l-k,w) 1
2 

J\nm(k,l)d
3

1 
Al (277) · m 

0 
where G Is . the unperturbed Green's. function. W<q.w> represents the 

screened electron-Impurity Interaction Cln this thesis. the plasmon pole 

approximation section 2.3.2> and 1\nm represents the coupling between bands 

n and m. The Intrinsic semiconductor has no electron-impurity interaGtion 

so that the change, tn electron-Impurity self energy due to the presence of 

the positively charged Ionised impurities Is given by the real part of this 

- 4.2~'"' 



self energy <Eq. 450.01a> 

ei . ei . o 
6En (k) = ~e(E (ri;k,wnk)) 

This represents the change in the energy of the band n due to the electron-

Impurity Interaction. The change in the band gap due to these interactions 

Is given by the difference between the change in energy of the bottom of 

. ei 
one of the six conduction band valleys (6E <0)) and the change in energy 

c 
ei 

of the top of the valence band <AE v<O>. Eq. 450.02> 

ei ei . ei . 
AE = AE' (k.)- AE (0) 

eg c 1 v . 

this is given by <Eq. 450.05> 

mH + mL Nd. 

= (l + 2m ) 3 f 
de .6 ( 277) 

dq 

From the results drawn in Fig 4.1 It can be seen that the 

electron-Impurity Interactions result In a band gap . narrowing which is 

numerically smaller than the corresponding reduction due to electron-

electron Interactions <Fig 3.6>. These results are compared to the results 

obtained by Berggren and Sernelius <1981> who use the Lindhard dielectric 

function and are also plotted in Fig 4.1. It can be seen that the present 

results based on the plasmon pole approximation agree within a few mev with 

these results based on the full Lindhard function. The Lindhard formula 

may then be approximated by the plasmon pole approximation tor the 

electron-impurity interactions as well as the electron-electron 

interactions of the previous chapter. This justifies the extension of the 

plasmon pole calculations to finite temperature in the calculation~ of 

chapter ~· 
'.·. 

. Also plotted In Fig 4.1 are the band gap narrowing . results 

based on the Thomas Fermi screened potential <Eq. 442.14> and used. in 
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ei 
chapter 5 C6E gTF). Calculated using the self energy expression Eq. 

442.09 where the coupling between the valence bands is ignored. using the 

average valence band effective mass <Eq. 21 0.04> 

m 
v 

= (m 3/2 + m 3/2) 2/ 3 m = o. 55 m 
L . H o o 

el 
These results C6E gTF> plotted iti Fig 4.1 show the Thomas Fermi 

approximation to underestimate the band gap reduction. particularly at low 

concentrations where plane waves do not represent the electron 

wavefunctions adequately. 

To compare . these results. with · the recent calculatiol")s of 

Ghazali and Serre mentioned in section 4.4.1 a contribution due to the 

eiectron-eiectron · interaction needs to be added. In their analysis they 

solve tor the total Green's function <equivalent to Eq. 420.15> using a sum 

ot the electron-impurity CEq. 441.04> and electron-electron <t c 
• X 

in Ghazali 

and Serre 1983> self energies. Whilst their calculation is simplified by 

using the simple Thomas Fermi screened interaction and a very ·simple 

expression. for the electron-electron Interaction they improve· the 

estimation of the total Green's function by _ taking the series to Infinite 

· ·order. Thus comparison between the two calculations . are difficult since 

·· '· the t . term ·can not just be subtracted. However the plasmon pole 
· .. , ;_XC ... · 

change in the conduction band electron-Impurity self energy from Fig 4.1 at 
. :' 

-3 
t;Jd = 2, <aeff > is about 1.5 <R> which is the energy of the band bottom 

shown in Fig · of Ghazali and Serre <1983>. It is clear from the 

comparison between Thomas Fermi and plasmon pole results that there is a 

large discrepancy bet~een results from these Interaction. An improvement 

to the calculations . of Ghazali and Serre would be to use the plasmon pole 

approximation to the electron dielectric function whenever appropriat~ in 

preference to the Thomas Fermi results that they use. 



The plasmon pole self energies plotted In Fig 4.1 are then 

valid until· the perturbation approximation breaks down at concentrations 

h th .. 't ti <N-113> h il'. ' · · w ere e 1mpun y separa .on d . approac es s 1con s atom1c spacmg. 
. . . . . . 21 -3· 

This occurs above donor concentrations of 10 em <see Fig 2.4>. where 

-1/3 -8 -3 
Nd · approaches d <5.4.10 em > the lattice constant. At low 

concentrations the limiting concentration Is the Matt metal insulator 

. . 18 -3 
transition that occurs at about 6.10 em at zero .temperature. In the 

region of this tdinsltlon a modification. of Ghazall and Serre's <1982. 

1983> using the plasmon pole approximation could be. used to describe the 

merging of the impurity band . 
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CHAPTER 5 
.': 

_BAND TAIL DUE TO RANDOM IMPURITY LOCATION. 

The effects so far considered concerning electron-Impurity 

Interactions have relied on a complete cancellation of the first order 

electron-electron self energies with the first order electron-impurity 

interactions. From e·lementary considerations this cancellation may be seen 

to be . maintained In the bulk semiconductor where the net number of 

electrons equals the net number of Ionised centres. However In microscopic 

regions in· the semiconductor this cancellation may be Imperfect. In 

. r.egions of very high donor concentration a net _ positive charge. or 

attractive potential exists . Whilst in correspondingly low concentration 

. regions the r~verse will be true. so that the macroscopic balance is 

maintained. . Fig 5.1 summarizes these two fundamentally different electron-

Impurity _effect~.·· The upper diagram indicates . the lowering of the 

conduction band· and the raising of the valence band· due to the change In 

self. energy calculated in the previo1,1s chapter. In the lower diagrams the 

semiconductor is d!vlded into a number of different cells. Although the 

average Impurity concentration in all the cells is fixed the sample 
""- . ·. 

concentr~tlon in each cell may fluctuate about this mean. In cells with 

high d_onor concentr!itlons extra electrons are attracted Into states with 
.. . ' ' ' . . 

below average energy formed by these potemlal wells: Conversely cells 

with low donor concentrations Introduce states above the average vale.nce 

band energy. Close to the average band edge these ·states· will be more 

numerous since morE! cells with the appropriate concentration exist. whilst 

states de~per in the band gap will be less numerous. The net effect Is to 

Introduce a ·tail on the density of states .;of each band. Furthermore states 
(, •• • • (, ;,. I 

·.c1t:1op In lll·o band tall will be highly localized since the cells with the 

approprla!e concentration of Impurities will be few and far between. The 
'•' I o • • .o.l 
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·Change in the band edges due to the average electron 
-impurity interaction. 
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. F:i,g .5 .1· b).· . ·Local: fluctuations in the· impurity concentration (Nd (x)) 

.form p_otential wells in which electron states exist, 

... forming, ·a· tail on the density of states of both the 

conduction and valence bands. 
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previous calculations have then to be supplemented in order to further 

Improve the description of heavily doped silicon. 

Although electrons In the localized states may contribute to 

conduction by Hopping. their neighbouring extended states higher in the 

bands have a higher mobility. A distinction is made between three physical 

band gaps to do justice In accounting for experimental o.bservations: 

a> First the gap associated with the exttation of electrons 

from the top of the valence band to the lowest unoccupied state 

in the conduction band. 

b) Secondly the so called mobility gap or that between the 

. top of the valence band <where the hole states are extended and 

allow free movement of holes through the crystal> and the 

lowest extended state In the conduction band. 

Finally the minimum energy gap between localized states 

· In valence and those in the conduction band tails. 

The studl~s of this chapter span the localized states deep in 

the band tail to the extended states In the parabolic band itself. The aim 

Is to find . a unified theory from which to calculate the density of states 

of the banq for all energies through localized to extended states. To this 

end in s~ction 5.1 the localized states deep In the tail are considered 

using a method frequently used to describe these states In semiconductor 

lasers <see for example Hwang 1970. Casey and Panlsh 1979> due to Halperin 

and Lax· 0966; i967. 1973>. The Interpretation of Halperin and Lax's 

results relating to the precise correspondence between band tall and host 

band Is different from the Interpretation hither to given. The present 

Interpretation Is supported by a study of a quantum mechanical technique 

due to Lloyd ·and Best <1975> in section 5.2. that provides similar results. 
,• . , I ' ' ' • o o ~ • f l .~ l , • • 
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Numerical . results of the .calculations for silicon in the spirit of these 

two techniques are present in sections 5.1.4· and 5.2.6. 

5.1. HALPERIN AND LAX APPROACH 

· Halperin and La.x <1966. 1967. 1973> have produced a formulation 

where the electron wavefunctions c.,
1
cx» of a given eigenvalue CEi> · deep in 

the band tail are assumed to have the. same shape Clt
1
Cx> "" fCx-x

0
» and 

hence ·the. same kinetic energy ce>. Their argument for the existence of 

these typical wavefunctions is based on the following simple thought 

experiment: 

Suppose the wavefunction for a state deep in the band tall were 

spread out over a large volume. it would then have a small kinetic 

energy of . localization. The probability of finding the excess 

concentration of impurities over the large volume required to support 

suc;=h a large wavefunction would be very small. Conversely supposing 

the wavef1.mction to be excessively localized and hence having a very 

high kinetic energy of localization. ·The probability of finding . the 

very large excess concentration of impurities. whose po~ential energy 

is required to balance this high kineti<:: energy. will be small. 

An ()ptimum shape of wavefunction is then expected that is not too large and 
'-! 

not· too small. with a corresponding optimum .kinetic energy of localization. 
: : ~-- .. ' ·. -~ ..- ... , ~- .. ~ -

To find the . density of states deep in the tail. Halperin and Lax then 

compute. the probability of finding the necessary magnitude of Impurity 

fluctuation capable of supporting these optimum wavefunctlons. 
. ' . ~ . . 
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Halperin and Lax modelled the impurity centres of charge Z e by . . a 

a Thomas Fermi screened potential 

2 
v (x-x. ) = - z · e ( 1 I) 

1 a 4TT€E jx-x. 1 exp -K x-xi 
r 1.: 

(510.01) 

where x. are the Impurity locations. 
I 

It is the position dependent 

potential. fluctuation . about the mean value that is required <V<x». If the 

distribution of impurities within the semiconductor <n<z» is taken to be 

described by n<z> 

n(z) = [ 6(z - xi) 
i 

(510. 02) 

Then the position dependent fluctuation of the total impurity potential 

<V<x» about Its mean value for the crystal <<V>> is given by · 

V(x) = [ v(x-xi) - c [ ~(x-xi) > = J v(x-z) (n(z) - N) dz 
i i 

(510.03) 

with ·N the average concentration of Impurities. They proceed by estimating 

the size of the typical wavefunctlon <f<x-x >> 
. . . . 0 

trapped' in 

d~ep potential well at x
0 

and Its energy <E<x
0

>.> · 

·calculation .. The energy of this state may be written 

by 

E(x ) = f £ {x-x
0

) H f (x-x ) dx = 9 + Vs(x
0

) .. o. 0 

a 

a 

J f (x-x
0

) f (x-x ) 
2 

= T dx+ f f(x-x ) V(x) 
0 0 . 

particularly 

variational 

dx 

(510.04) 

this has been split Into kinetic <9> and potential <Vs> parts. Since the 

eigenfunction <f<x-x
0
». is assumed to be short range the potential Vs<x

0
> 

acts as ·a local average for the potential V(x) that varies with X • 
. . 0 

At 

, ·. · · various places ·within the crystal Vs will have an unusually large ·negative 

~alue •. corresponding to high accumulations of impurity centres. t-ialperln 

and· Lax. then compute the number of these minima in the potential energy 
I 
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<Vs> which would .support the 'typical' wavefunctions and hence also the 

density of states <pf<E». 

Given the premise that the density of states in the tail falls 
the. 

rapidly as ).low energy tail is traversed. Halperin and Lax claim that 

optimization of f<x> corresponds to maximizing the density of states. They 

justified this by the following simple argument: 

The variational estimate of the energy <Eq 51 0.04> is bound by 

definition to over estimate the true ground state energy unless the 

correct wavefunctlon were chosen . Thus the density of states 

. ascribed to • this estimate of the energy must at worst be an under 

estimate. The best procedure for the calculation of the actual 

density is then to maximize the density of states. 

In fact Halperin and Lax do not maximize the whole density of states 

expression. as will be detailed In the next section. but take some care 

over a .. thorough evaluation of the errors Involved In arriving at their 

optimum density of states deriving the limits for the validity of their 

arguments, which are dealt with in section 5.2.4. 

s.:1.1 .. calculation· of the density of states. 

To calculate the density of- states deep within the tail. 

Halperin and Lax postulate a close one-to-one correspondence between local 
·.··r. 

· minima In the potential Vs<y> and the energies of elgenstates ~ in the 

vicinity of . E. Thus the density of states must depend upon the probability 

densiti~s that the potential energy Vs<y> takes the value <E-B>. whilst at 

the ·same time ~avlng · zero gradient slmuhaneously with the double . 
dlfferenHa beirg · positive <conditions that specify a minima In Vs<y». 

Halperin · and Lax's minimum counting method <a three dimensional 
'l . 
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generalization of that used by Rice < 1954 pp 209-213> in random noise 

problems> reduces the expression for the density of states to 

Pf(E) = exp ( - ( e . - ~) 2 ) . 

2(00 

(511.01) 

where the variances of the distribution of the potential <Vs<y» at· a 

random poirit y about a mean value of E-9 is 

2 2 2 
(a · = <Vs(y) >- <VS(y)> 

0 

2 2 = J f(x-y) f(x'-y) <V(x)V(x')> dxdx' - 0 

and the variance that the gradient <Vls<x» 

simultaneously zero Is given by 

of the 

2 
~:a . 
.. 1' 

1 = 3 <(V Vs(y) ](V Vs(y)]> y y . 

(511. 02) 

potential is 

(511. 03) 

Halperl~ and Lax maximize this density of states <Eq 5ll.Ol> 

· nume~lcally for a function of the form 

f(x) = (4 n )-
1

/
2
S(Ixl)/lxl (511~04) 

They orly .cqnsider ~ta_tes deep In the tall. where the exponent of Eq 511.01 

dominates. S.o the· optimization of t<x> is. performed by maximizing only the 

. exponent of · Eq. 511.01. Having found Hx> they substitute back Into the 

. /"., . ~ .. 

·expressions for . the variances to obtain the first order approximation of 
_,· ~ ·~ ' ,. . 

the density of states · 
.; ',·. ·: . 

.pl (E) = 

'3 3 
E K 

K. 

·E 
2 a (v) exp ( -:-

E 2 
K 

b (V) ) (511.05) 

They tabulate values for the dimensionless parameters a<v> and b<v> for 

. differe~t ~alu~s of the . energy <v> that they normalize with respect to the 
.. . ... "I . ! .. 

Thomas Fe~m.' ~cr~~ning length <K>. For example in the conduction band tail 

- 5,§"' 



they take 

where E 
K 

2 2" 
= 11 K I 2m 

and with average electron-Impurity potential <E > given by: 
. 0 

E = <VB> = -
() 

2 e . 
2 L zaNa 

EE K a r 

(511.06) 

(511.07) 

Recently Samathiyakanit et al <1979. 1982> have published results for an 

analytical derivation, of the functions a<v> and b<v> that agree well with 

Halperin and Lax's numerical values <see Table 5.1>. 

5.1 .2 Asymptotic form for the density of states. 

Halperin and Lax's density of states may be evaluated for 

clarity with a particular. form of the function f<x> equivalent to the 

asymptotic form of Halperin and Lax's function <Eq 511.04> namely 

f(r) = f). (r) 
3 

= ( ~ 
1/2 

) e-ar (512.01) 

2 . . 
The variance ~a <Eq. 511.02> with this function becomes <y=O> 
. . . 0 

3 2 

f.q
0

2 = ( .: ) J J e- 4 a(x+x') <V(x)V(x')> dxdx' (512.~2a) 

The autocorrelation function of the Thomas Fermi potential. given by 

(512.02b) 

may be approximated for a short range potential by 

<V(x)V(x')> 
877~ 

-==- ~ 6 (x - x•) (512.02C) 
I( 

giving 
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_·.: '' 

3 

= ~ 
3 

K 

(512.03) 

. 2 2 .· 2 . 
Whilst the vanances e a 1 . e a2 and ~ o

3
· CEq. 5 11.03) are given by 

= 
5 

4a 
3 

3K 

Substituting In Eq 511.01 for the variances 

. 3 
(ICE ) 

K 

. ·a 
T. = ( K ) 

2 

3 
2 K 3 

3/2 2(~) (T + ~) exp( 
3 11 

(512.04) 

2 E 
2 

(T + 0 K 

3 2( 
(a/ K) 

(512.05) 

Optimization . of the wavefunctlon by maximizing the . argument of the 

exponential of Eq 512.05 with respect to the range parameter a of the 

wavefunction results In the expression 

. . 3 
128 (KEK) 

= . . 2 2 
2711 e 

p(E) 
3/2 e exp( ~1/2 ) (512. 06) 

This expres$10n. calculated from the asymptotic form. of Halperin and Lax's 

function. may be compared with the asymptotic form of their density of 

statal?. This comparison Is presented In Table 5.1 along with a comparison 

of data from later papers by other workers · <Samathlyakanit et al 1979. 

1982~ taking a density of states expression of the form 

.p1 (E)· = 

. 3 3 
E K 

K 
a(v) exp ( -

E 2 
K 

b(v) ) (512.07) 



Table 5.1 

Comparison of a<v> and b<v> from Eq 512.07. 
Halperin and Lax 1966 and Samathiyakanit 1979 

a(v) b (V) 

Eq 512.07 
1.5 0.5 

0.48 v 3.08 v 

Halperin and 
1.5 0.5 

Lax 1966 0.4 v 3.0 v 

samathiyakanit 1979 
1.5 0.5 

0.23 v 3. 54 v 

. 5.1.3 The precise relationship between host band and the tall . 

In Halperin and Lax's original paper <1966> and elsewhere 

<Samathiyakanit 1979>. the position of the band tail relative to the host 

. band · h?IS been calculated from the normalized energy parameter v <Eq. 

511.06>. · However from a careful study of the physics behind these 

expressions this expression <Eq; 511.06> is found to be incorrect. 

Following the arguments in Wolff's <1962> paper. outlined In 

section 4.3. the average first order electron-impurity energy E Is 
. .· . 0 

cancelled out by the first order electron-electron energy. The position of 

the band tail relative to the unperturbed band edge will then be given as 

·V .= (E - E)/E c #( 
(513.01) 

Also having used the screened Impurity potentials CEq 510.01) In the 

variational calculation of the energy of the localized wavefunctions of the 

band tall CEq 51 0.04> the effect of these on the conduction band states 
'•, ,... 

must. be consiqered as is done in chapter 4. To obtain the correct rel~tlve 

positions of· tail states and unperturbed band the corrected conduction band 

~dge <Ec ·~ must be used 

- 5.~-
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'/' 

E ' 
.c 

ei 
= Ec + l1.ECTF (513.02) 

. el · 
Where Ec is _the. unperturbed band edge. ~EcTF the change in electron-

Impurity self energy in the Thomas Fermi approximation at the bottom of the 

conduction band edge <Eq. 442.14a. Fig 4.1>. 

Finally the effect of electron-electron self energies on both 

. the tajl and extended states have to be included . Halperin and Lax 

. explicitly ignore this correction in their paper for simplicity. However 

In chapters 2 and 3 the effect of electron-electron self energies on the 

extended states has been calculated. The localized states of the band tall 

however. approach delta functions with a spread of wavevectors In Fourier 

space. One. of the results from the exchange calculations. reported here 

<chapters 2 and 3) and elsewhere <Berggren and Sernellus 1981. Abram et al 

1979> is that ~·Eee be essentially wavevector independent. From this .we 

might logically suppose that the electron-electron shift . be the same for 

both extended . and tail states. At worst It might produce a marginal 

correction to the tail state energies. Combining Eq 513.01 and 513.02 an 

expression for the energy of the tail states relative to the perturbed band 

edge .i~ .obt(lined 

ei 
v :" (E!= + ~EcTF - E)/E 

I( 

A similar expression exists for the valence band 

V = - (E + ~ei - E)/E 
v vTF. K 

(513.03) 

(513. 04) 

These expr.esslons can be seen to differ from Eq. 511.06. The net effect of 

· correctly .Including the electron-Impurity self energy In the calculation of 

· the extended states In the band proper. Is to decrease the amount by which 

tne qtlrq lail ~xtends into the band gap. In Hwang <1970> and Casey ·and 

.= ~. lQ : 



Panish <1979> the band tail is linked to the host band by an arbitrary 

smooth curve however the Interpretation above agrees w~ll with the quantum 

mechanical methOd . of Lloyd and Best detailed In . section 5.2 that Is 

expected to · be more accurate for the states close to and including · the 

extended states of the host band. 

5.1.4 Calculations for silicon's conduction band. 

In this section results for the band tail from the Halperin 

and Lax model for the conduction <Fig 5.2> band of ~ncompensated n-type 

silicon Is presented. The valence band will have a similar tail <not shown 

• here>. The. effect of compensation on these calculations would be two fold. 

in the first case the scaling parameter . e would be . Increased since it 

depends upon the total Impurity concentration <Eq. 512.02b>. Whilst at the 

same tim~ the Thomas Fermi screening length would be effected since it 

depends upon the difference between Impurity types. 

Silicon's cond~ction band has six ellipsoidal energy surfaces 

<see section 2.1>. The density. of states expression is then modified to 

_include these by multiplying by the number of valleys <M >. . . . c whilst using 

the ·density of states effective mass for one valley In the expressions for 

length. 
; ~ . 

The effective mass used for the valence band 

calculations Is the density of states effective mass. Finally the 

occupancy of the elgenstates is accounted for by multiplying by a factor of 

2 to account for the two possible spin states. of each occupying electron. 

. ,. ·. < ..... 
In this fashion the ~etailed structure of the bands is approximated so that 

a simple expression resulted for Halperin and Lax's density of electron 
;} . :. '. ·. . 

= !?. 11 
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r> tates 

3 3 
E K 

K 
--- a(v) exp( -

e2 

E 2 
K 

2e. 
b (V) ) (514.01) 

Values of· the screening length K calculated for a donor concentration of 

1 o20 
em -

3 
were used to evaluate this expression. using values of a<v> and 

b<v> from their paper and Eq. 513.03. and 513.04 for the remaining 

parameters. The results. are plotted in Fig 5.2 for the conduction band. 

The Thomas Fermi expression used to calculate the electron-impurity self 

energy is given In Eq. 442.14a. Had this not been included In the 

normalized energy parameter then <Eq. 513.03 and Eq. 513.04> the host band 

position shown In the figures would have been attained .. The band tall can 

be seen to be very small in comparison to the host band. It will have 

little effect on the Integrated density of states in . d~vice applications. 

However it may still have an effect on optical transitions. 

5.1.5 Validity of Halperin and Lax approach. 

In their paper Halperin and Lax <1966,' section 7> perform a 

det~iled analysis of the limits to which their density of states expression 

Is valid. · In Fig 5.3 these are summarized for silicon. .In th~ first place 

their condition for linear screening requires that the potential V<x> Is 

.sm~ll In comparison to th.e Fermi energy. or <equation 6.9> 
•' f ~ • I ' , • · 

(515.01) 

. 20 -3 
this Is only true above a concentration of 10 em <Fig 5.3>. For the 

Gaussian .statistics used in the derivation of Eq. 51 LOl to be valid the 

average numb·er of. scattering centres within the range of the function ·must 
. ~-. ; ·. ·. 

· be large. • Th~ range .of the wavefunctlon Is given by the inverse root of 
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(515. 02) 

Finally the method assumes that there are . no excited states or <equation 

7.6) 

b(V) > 6~ (515.03) 

These three conditions define a region of validity for the above band tail 

that spans an order of magnitude in the energy of the tail <see Fig 5.3>. 

At a donor concentration of 1 o20 
em -

3 
this results In the calculated values 

for the density of states in the . tall being valid from 2 meV to 33 mev. 

However this is very sensitive to the validity of G~ussian statistics <Eq. 

515.02>: If for example the requirement for 10 centres within the 

20 
Influence of the wavefunction is considered this range at 1 o Is reduced 

to 2 meV to about 3 meV <see Fig 5.3>. ·At higher· concentrations these 

conditions become less stringent as the tall extends.. It should also be· 

noted that in gallium arsenide for example due to the . different effective 

masses the range of validity will be much greater. 

5.2 LLOYD AND BEST APPROACH. 

!-loyd and Be~t . <197 5> have developed. a v~riational theory and 

con.clude that rather than maximizing the density of states as Halperin and 

Lax have done. it is the pressure function <P<E». or the double Integral 

of the density of states <N <E» . 

. E € 

f(E) = I IN(£) .de di (520.01) 
-00 -00 

. ~hat must be maximized- to obtain. the closest. appr~~imat~on to· t~~ ~ru~ 

density of . states. However deep In the band tall this principle Is .· 



equivalent to Halperin and Lax's .maximization of the· density of states. In 

their theory Lloyd and Best divide the semiconductor up into a number of 

equal volume cells. They estimate the ·average impurity potential within 

each ceil and choose trial wavefunctlons assumed to be orthonormal with 

those in adjacent cells. They then estimate the density of states within 

each cell optimizing the cell sizes by maximizing the double integral of 

the density of states. hence obtaining an optimum density of states. 

In section 5.2.1 Lloyd and Best's variational principle Is 

outlined. In section 5.2.2 an Improvement to their procedure ·tor 

calculating the optimum density of states is developed. In section 5.2.3 

the normalized forms for the density of states. integrated density of 

states and pressure functions. that allow us to consider a number of 

different trial wavefunctlons are calculated. Section 5.2.4 compares the 

asymptotic forms of the density of states due to three trial wavefunctions 

with the asymptotic form of Halperin and Lax. In section 5.2.5 the 

normalized numerical results for. the density of states· from the localized 

tail states to the extended states In the host band are given. discussing 

some interesting features of Lloyd and· Best's approach. Finally in section 

5.2.6 results for the best calculations of the tail on the density of 

states in silicon's conduction and valence ba~ds are presented. 

5.2.1 The variational principle. 

In this section the variational principle developed by Lloyd 

and Best Cl97 5) is presented. Lloyd and Best consider a hypothetical many- · 

. . . 
fermion problem in which. the single_;particle eigenstates of interest are 

filled <one, fermion to each state ignoring for the moment spin) up to some 

Fermi energy /.J... They like Halperin a_,nd Lax ignore electron-electron 

,. ~. 14 ., 



exchange energies that heive to be Included at the end on the calculation. 

The many electron screening of the impurity centres is included by suitable 

choices of trial wavefunctlon and Impurity potential. The energy of this 

many-particle system of volume V is given in terms of the single-particle 

density-of-states function by 

J.L 
E

0
(J.L) = V f E N(E) dE (521. 01) 

-00 

But this Is the ground state of the many-fermion problem and as such it may 

be estimated variational\~. Letting the trial basis state of the many

fermion wavefunction be represented by tJ <r.~>. where ~ represents the a 

variational pai'ameter<s> and a being convenient quantum number<s>. They 

then write an approximate density-of-states assuming the single-particle 

states to be orthonormal 

1 
N (E, ~) = -· ~ 6 (E - <a 1 HI a>) v £.. 

a 
(521. 02) 

where H Is the single electron random Hamiltonian of the problem. 

· Substitution of this approximate density of states Into. Eq 521.01 gives 

E
0 

(J.L, ~> an approximation to the true ground states energy. The total 

number of particles <N<J.L. ~> may also be expressed in terms of this 

approximate density of states 

J.L 
· N(J.L, ~) = f N(E, ~) dE (521. 03) 

-00 

These expressions form · the basis of the variational approach 

developed by Lloyd and Best. In what follows three methods of obtaining 

the variational principle are described. 



a> From the Canonical Ensemble 

Given . that the total number of panicles has to be kept 

constant. from t:hermodynamics provided the system is in thermal 

equilibrium <at T=O> and has fixed volume V the parttcles will fill up the 

states in the band so as to minimize the Helmholtz free energy <Fr. But 

this Is just the ground state energy 

J.L 
F = u- TS = u =vIE N(E,A) dE 

.-Co 

(521.04) 

Thus whilst minimizing the ground state energy by varying k the Fermi 

energy J.L must simultaneously be varied to keep the total number of 

particles <Eq 521.03> constant.· If ttie integration of Eq 521.04 is 

performed by parts 

J.L 
E

0
(J.L,k) = y ( J.L I N(E,k) dE- I 

-oo · -oo 
i 

E 
I N(€,A) d€ dE) .(521.05) 

-00 

Thus the minimization of E corresponds. to maximizing the double integ.ral 
. . 0 

of the density of states provided the first term of Eq 521.05. that is 

formed by the product of Fermi energy and total number of particles. Is 

kept constant. Notice that by substituting for E0 the double integral may 

be re-written 

J.L E . J.L 
P(J.L,k) = I I N(€,A) d€ dE= I (J.L -.E) N(E,A) dE (521.06) 

-00 

This variational principle may be obtained more rigorously by 

seeking the minimum in the following. equivalent fashion. 

For a minimum 

au 
= 6 = ak 

J.L(k) 
I . 

-co 

aN(E,k) E.J!:. 
E ak dE+ a~ J.L N(J.L,A) 

= ~,H! =. 



But from the constraint 

dN 

a~ 
= 0 = 

/J.(~) dN(E,~) a/J. 
J a~ dE+ a~ JL N(JL,~> 

-oo 

Combining these 

au 
a~ 

= 0 = 
/J.(~) 

J (E _ /J.) aN(E,q dE 
a~ 

-00 

Which is equivalent to maximizing the function P<JL.~) provided JL is taken 

as a constant 

E /J. JL 
P(Jl.,~) = J J N(€,~) d€ dE= J (/J.- E) N(E,~) dE .(521.07) 

-oo -oo -co 

b> From Grand Canonical Ensemble 

Above. by varying JL to maintain the total number of particles 

constant at constant temperature <T=O> and volume. the Helmholtz free 

energy is minimized. Lloyd and Best claim that an. equivalent way to fill 

up the states In the tall Is to keep the fermi energy constant whilst 

varying the total number of particles. It Is then the thermodynamic 

potential n that Is a minimum with respect to changes in state at constant 

chemical potential. temperature <T=O> and volume <see· for example Lifshitz 

and Pitaevskii 1980>. The pressure <n = - PV> of the many fermion gas must 

then be maximized. The following outlines the calculation of this pressure 

function. 

To calculate the probability w N that a system of fixed volume .n 

with a variable number <N> of none interacting particles is in the state n 

with energy EnN the Grand Canonical Ensemble or Gibbs distribution for 

variable number of particles (Lifshitz and Pltaevskli 1980> is used 

(521.08} 

Where the thermodynamic potential n is given by norrnt!li~inQ t~~ 



distribution 

1 = [ [ wnN = exp(O/kT) L [ exp((~N- EnN)/kT) 
n N n N 

rearranging 

0 = - kT loge(L [ exp((~N- EnN)/kT)) 
n N 

In the present calculation particles that may be classified into groups of 

nK particles each with energy €K and different quantum state K are 

considered. The total number of particles N. the total energy EnN of a 

particular collection of quantum states K. represented by n. are given by 

N = L: nK 
K 

(521. 09) 

EnN = [ nK 
K 

€K 

So from standard statistical mechanics the probabiiiW of finding· the 

system In this state is given by 

w · - n w nN - n 
K · K 

(521.10a) 

Where the probability of the group of nK particles occupying the quantum 

state K with energy €K is given by 

(521.10b) 

Where nK. the potential of the· set of states quantized by K. is given by 

normalizing 

= exp (OK/kT) · [ exp ( (~nK ·- €KnK)/kT) 
nK 



': 

., .. ··. 

· rearranging 

OK=- kT loge(L exp(nK(~- €K)/kT)) 
nK 

(521.10C) 

By Pauli's principle the occupational number nK may only be one or zero for 

fermlons. Eq 521.1 Oc may then be simplified 

The total thermodynamic potential o Is then given by 

0 = - kT [ loge(l + exp((~- €K)/kT)) 
K 

(521.11) 

When kT becomes smaller than the difference between chemical potential and 

eigenvalue then the potential becomes 

0 = - \' (~ - € ) L . K 
K 

(521. 1~) 

Assuming that the wavevector K Is a good quantum number In every cell the 

summation over K is replaced with an Integral 

.n 3 
- V J (~ - €K) N(K) d K 

where N CK> is the density of states with wavevector . between K and K + dK. 

Since i.n the bulk of the semiconductor K Is no longer a ·good quantum number 

the K Integral Is replaced by one over the energy to get . . . . 

·~ 

0 =' - V J ( ~ - E ) . N (E) dE = - V P ( ~.) (521.13) 
-oo 

The system will seek to minimize n that corresponds to maximizing the 

pressure function 

IL 
P (p.) - f (J.L - E) N (E) dE ,(521.14) 

'-00 
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c> From Matrix theory 

Substituting Eq 521.02 for the density of states into the 

expression for the ground state energy Eq 521.01 

E 
0 

(E) = [ < a 1 H. I a > 

a 
(521.15) 

The ground state energy. may then be represented by a sum of ordered 

eigenvalues. Also on substitution of the density of states into Eq 520.01 

the pressure function becomes 

P(E) = [ (/J.- <aiHia>) 
a 

Now Fan <1949) has produced a theorem merely from matrix analysis that 

states the following inequality 

N 

[ Ei ( [· <aiHia> 
i a 

(521.17) 

Where E1 are th.e true eigenvalues and th~ Ia> ·form any set of orthonormal 

vectors. Thus to obtain the best approximation to th~ true ground state 

the pressure function must be maximized. 

5.2.2 Calculations of the best density of states. 

Having · outlined the bas19 variational principle this section 

deals with the method of obtaining the best density of states. Because It 

Is a hypothetical many fermion problem that Is being considered the Fermi 

energy used in the above derivation of the variational principle does not 

necessarily relate to the real Fermi energy. Choosing an arbitrary energy 

within the band tall CE> the above . principle Is used to optimize the 

variational parameter tor that energy ~ CE>. .. This was ·used by Lloyd and 



'..: 

'-·· .. 

• ;<'. 

' 
Best to give an estimate for the density of states at that energy 

N(E) = N(E,~(E)) (522.01) 

In doing so they ignore the problem of exchange energy _between states above 

the arbitrarily chosen energy that may or may not be filled. 

An lmprqvement to Lloyd anq Best's method is to choose the 

optimum values of -~ <E> as above. but rather than using these values in the 

·original · density of states expression. to use the .. optimized pressure 

function 

maximum 
P(E,~m(E)) = P(E,~) w.r.t ~ 

which is eq·ulvalent to solving 

ap (p., X) = 
a~ 

IL 

J (IL- E) aN(E,~) dE= 0 
a~ 

-co 

(522. 02a) 

(522. 02b) 

The pressure function as can be seen from Eq. 521.06 <or Lloyd and Best 

1979 Eq. 2.3 - 2.4> Is just the double Integral of the density of states. 

By double differentiating the optimum pressure function. with respect to 

energy. the best estimate of the density of. states Is· obtained. This is 

presented formally as · 

N(E) (522. 03) 

This rather formidable task. that of numerically double differentiating a 

maximized function may be simplified. The maximized pressure function is 

given by <Eq. 522.02a and Eq. 521.06> 

JL 
= J (IL- E).N(E,~[n(P.)) .dE 

-ao 



Differentiating once 

IJ. 
=I N(E,~m(IJ.)) dE 

-oo (522.04) 

+ 
a~ (IJ.) 1J. aN(E,~m(IJ.)) 

m . I (IJ. - E) 
a~~. -oo a~ <IL> m 

dE 

where the second term on the right hand side Is just the condition for 

maximizing P<IL. ~> .<Eq. 522.02b>. multiplied by a finite constant 

a~m(IJ.) 

a~~. 

and is equal to zero unless this gradient becomes· infinite. Writing the 

integral of the density of states as L<IJ..~) 

IJ. 
L(IJ.,~) =I N(€,~) d€ (522.05) 

-oo. 

the optimum density of states is then given by differentiating l<IJ.. ~m <11.» 

with respect to the energy IJ.. This single numerical differentiation is 

easier than the Initial double differentiation· proposed above. Numerical 

results for the normalized best del')sity of states are presented in section 

5.2.5. 

5.2.3. Expressions for the density of states and Pressure 
functions. 

Having detailed the calculation of the optimum density of 

states from the variational principle in the previous sections. in this 

section the calculation of the trial density of states using Lloyd and 

Best's trial wavefunctlon is presented. Normalizing parameters are also 

presented that make the numerical calculations of later sections 

independent of semiconductor and trial wavefunctlon. 



To calculate- their density of states Lloyd and Best chose the 

following set of trial functions. normalized with respect to the cell 

<denoted by c> size ). 
3 

-3/2 
). exp(ik.r) where cell c contains r 

0 where .r Is outside cell c 

(523.01) 

). is the variational parameter. The random Hamiltonian of their model is 

given by 

H = 
,n2 

v2 + V(r) 
2m 

(523.02) 

Where V<r> is the random fluctuation in the· Impurity potential given In Eq. 

510.03 where the average Impurity potential of the crystal as a whole has 

been subtracted. The density of states <Eq 521.02) Is then rewritten In 

terms of this trial function using the expectation value 

i\2k2 * 3 

2m + f ~c,k(r) V(r) ~~,k(r) d r = <C,kiHIC,k> = 

(523·. 03) 

so that the density of states becomes 

N (E I ). ) 

1 1 
= N t ( ).3 ~ 6(E 2m 

- <VC>) ] . (523. 04) 

. Where <Vc> Is the expectation value Of the potential _for tt"!e cell <c> and N 

Is the total number of cells. 

The surnmations In Eq. 523.04 are now evaluated. First the 

summation over the cells <c>. Just as 111 the Halperin and Lax calculations 

It is assumed that there are a large number of impurities within each cell 

so that the centrai limit theorem may be Implemented. ·taking the potential . ·. . . 
. . . . 

to vary with a Gaussian distribution about a mean value. taken to be zero 

p ( < Vc >) = ( ) 
27TW 

1 
1/2 

exp -
2 

<VC> 

2W 
(523 .-osa) 

......... 



The variance <w> is inversely proportional to the cell size <see section 

5.2.4>. and is expressed in the form 

2 2 2 3 
w = <V > - <V> = a/~ (523. 05b) 

Performing the summation over cells thus. reduces to an integral over the 

expectation value of the potential in each cell <Vc>. From Eq. 523.04 

N (E I ~) 

. 1/2 
1 1 

= (277W) ). 3 

0D .fl·2k2 
J E O(E- 2m - <VC>) exp(

-oo k 

(523.06) 

2 
<VC> 

2W )d<VC> 

Considering now the summation over k states. the discrete 

. nature of the low k states has to be included. whilst summing over an 

infinite number of states closely packed further Into the host band. The 

summation over k states Is replaced by an Integral over k states however to 

partially to account for the discrete nature of the low energy elgens~ates 

of the cell. Lloyd and Best shift the energy origin by a zero-point energy 

2 2 . . . 
. <<11 12m>xl). >. calculated from the ground state energy of a square well 

2 
potential <x = 377 >. A· better approximation might be found by Including 

more than just the first :term in this series <private communications Rees>. 

however this is thought to be too involved for the present calculations. 

N (E,).) 
1 1/2 1 

= (277w) ~ 
. 271 . 

2 
< vc > ) k exp (-

(523. 07) 

2 
<VC> 

2W )d<VC>dk 

The integral over 1. the potential fluctuation Is elementary. 

however the wavevector Integral may· be most readily expressed in ,terms of 

Pmaholic Cy!lndor functions <U<a.z». Tho:;o ~ro dollned by <Abramor'ltz 



and Stegun 1970> 

00 

U(a,z) = 
2 - 2 

1. -z /4 a-1/2 -zs-s /2 
e J s e ds (523. 08) 

f(1/2+a) 
0 

so that the density of states expression becomes 

3/2 2 

N (E I~) = 1 

2 
471 

(~) b1/2 -z /4 ( ) e u 1, z 
-ll2 

with energy -and variational parameter b given 

b = 

and 

z = 
E .fi2 . b 1/3 

b + X2m (4) 
a . 

(523. 09a) 

(523. 09b) 

(523. 09c) 

. Eq 523.09 gives the total density of elgenstates in the band. However by 

normalizing the above expressions a more useful exp~ession for the density 

of states. that is material and trial wavefunction Independent may be 

obt~lned. Introducing the norma!ized parameters for energy €, 

2m 
3 

4 2771
6 

E=(-)a € . .n2 x3 

. and length p 

the density of states N<E> becomes 

3 6 
2m 2 2771 

N(E) = ( - ) a -- n(€) 
·..fi2 . x3 

and the normalized density of states <n<£»is then given by 

n(€,p) 

z = 

3/2 
X = (2) 

371 

1 ---.. , 
s v~J, ... 

€ .2 Q1/2 
. 3/2 + 371 p 

f-1· 

(523.10) 

(523.11) 

(523. 12a) 

. 3/2 

-·(x2)n'(€,p) 
371 

. (523 .l2b) 



where /3 = 1/ p 

Using these normalized parameters the density of states <N<E» 

for a variety of semiconductors with differing effective mass <m> may be 

calculated. The trial wavefunctlon may also be adjusted to a limited 

extent <see section 5.2.4>. Varying not only the potential fluctuation 

parameter a but also the zero point energy parameter. x. Thus a variety of 

different results may be obtained from just one set of numerically 

calculated normalized curves Cn'<e» that are independent of a. m and x. 

The integral of the _density of states L<E. ~) <Eq. 522.05). and 

its double integral. or the pressure function P<E. ~) <Eq. 521.06) may also 

be calculated from this normalized density of states. · From Eq 523.12b for 

the normalized density of states and the recurrence relationships for the 

Parabolic Cylinder functions <Abramowitz and Stegun 1970) the normalized 

integral of the density of states <l<e.p» be.comes 

31 2 
1 9/4 -z2

/4 
l(e,p) = ( x

2
) 

2 
13 e U(2,z) 

311 a v211 

(523.13) 

And its double integral. or the normalized pressure function <p<e;p» 

3/2 2 
p(e,p) = ( x

2
) 1 

2 1315/4 e-z /4 U( 3 ,z) 
371 ev211 

(523.14) 

5.2.4 Comparison of the asymptotic form ·with Halperin and. 
,1, 

.Lax. 

In the previous section useful .expressions . for the normalized 

density of states <n<e.p». integrated density . of states <l<e.p». and 

pressure functions <p<e.p» have been derived. These e~pressions are 

normalized with respect to the zero point energy parameter ·x <Eq. 523.07> 

= 5.26 = 



.. 
,;· .. 

.. . 

... ·· 

. ·:.' 

were derived In the last. section· with . the trial wavefunction CEq. 523.0 1) 

used by Lloyd and Best Cl975L In this section the asymptotic form of the 

density of states. that is only reached deep in the tail <: €1 > 4.0.10
2

>. 

is considered. The maximization of the pressure function and the 

calculation of the optimum density of states <section 5.2.2> may be 

performed analytically. By comparison with the Halperin and Lax's 

asymptotic function <Eq. 512.07> the trial function CEq. 523.01> used by 

Lloyd and Best is Improved. 

From· the previous analysis it is clear that the density of 

states algorithm must consist of two parts. First maximizing the 

normalized functions and secondly providing suitable values for the 

variance a2 
zero point energy x. and effective mass m. In this section the 

maximization of the normalized function is performed in part al. The 

principle part of the section <part b)) is devoted to a comparison of the 

asymptotic . forms of Halp~rin and Lax with Lloyd and Best's functions for 

three trial wavefunctions <In parts D. ID and liD>. A table comparing 

all these functions is presented <Table 5.2>. 

a> Maximization in the low energy limit 

· Maximizing the pressure function <Eq 520.01> in the low energy 

limit corresponds precisely to maximizing the density of states expression 

<Eq 523.12> as can. be verified by writing the asymptotic forms of these 

functions. For consistency only the pressure function is maximized here. 

By differer'lt!a~ing p<€.p) from Eq. 523.14 with respect to P <P = 11p> apart 
, I • ' ' ~ , . 

from 
:· _;(t; 

the 
; i~ 

trivial 
f :' 

solution <P=O see section 5.2.5) this maximization 



' . ;. 

corresponds to solving 

z = 

2 
-z /4 = o = e (U(1,z) 

(524.01) 

Solutions of this equation for different /3 and € correspond to finding 

those values of A that maximize the pressure function. The asymptotic form 

for the Parabolic Cylinder functions may be reached in one of two ways: By 

inserting a large negative value of .€: Or by inserting a small value for 

{1. whilst ensuring a negative value for €. Both . these methods <which 

correspond to those for obtaining the asymptotic form of Halperin and Lax's 

density of states function section 5.1> result In a large. positive value 

for the dimensionless parameter z in Eq 524.01. The appropriate asymptotic 

form for U <a.z) is <Abramowitz and Stegun 1970) 

U(a,x) 
2 -x /4 -a-. 5 

= e x (1 
(a+1/ 2) (a+3/ 2) 

2x
2 

So the asymptotic form for this maximization condition becomes 

2 
- z I 2 - 3/ 2 2 1/ 2 -1 

= o = e z ( 1 - 471 fJ z ) 

(524.02) 

(524. 03) 

Substituting for z from Eq 524.01 the maximization. of p corresponds to 

setting 

1/2 
,8 = ~ 

1T 
(524. 04) 

Having obtained this optimum vai!Je of fJ in the low energy tail .. 

it can be substituted into the density of states expression Eq 523.12 <both 

of ·the methods for obtaining the density of states mentioned in section 

5.2.2 may be shown to be equlva.lent deep .in the taiD and take the 

asymptotic form for the Parabolic Cylinder function. This gives normalized 

~~p,r~§S!91'1 f9r !h~ 9Ptimized density of ~tates 



. ''. 

n ( €) 

3/2 

= ( X 2) 
371 

1 
5 

64v271 

3 1/2 
-871 l€1 . 

e 

This Is only reached deep In the band tall c: £1 > 4.0.10
2
> 

( 5 24. 05) 

due to the 

comparatively large second factor In the parentheses of the parabolic 

cylinder function asymptotic form Eq. 524.02. 

b) Calculation of the zero point energy and variance 

Results for three trial wavefunctions of the asymptotic form to 

the optimized density of states are presented in parts D. ii) and iii). 

Table 5.2 summarizes the results for all three. 

j) With the orthonormal set of trial wavefunctlons used by 

Lloyd and Best CEq 523.01> the ground state energy is simply that 

corresponding to the minimum wavevectors supported by a box 

E 
0 

2 
2 

X = 371 (524.06) 

Whilst the variance may be calculated as in Eq 523.01 from the 

autocorrelation function. This is approximated for the short range 

potential by Eq. 512.03. The variance Is then given by 

2 
a 871 e 

3 
K 

(524.07) 

The variance and zero point energy allow us to calculate the normalizing 

. parameters· of Eq 523.10-523.12 for this first trial wavefunction at a donor 

concentration of 1 o20 
em - 3 

E· = 0. 35 € (eV) 
-8 

~ = 5 ~ 8 . 1 o p (em) .. (524. 08) 

Tne de~sity of states may also be written In ttie form of the Halperin and Lax 

., . 



asymptotic function <Eq 512.07>. Using Eq. 524.05 and 523.12 

M 
c 3 KE 

3 
E 

2 

N (E) = (
_( -) _K_ ( 2 K .,1/2) 

4 exp - 2rr ~ 

av2rr E 
6 ~ 2 2 ~ 

(524.09) 

K 

. . 3 6 
Comparison of this with Eq 512.07 shows that an extra factor <e IE ) 

K 
has 

been introduced into the prefactor of the above expression due to the lack 

of any energy dependence. This factor may easily be shown to be equal to 

5 _C_= 
E 6 

K 

11 

576 
(524. 10) 

where aeff is the effective Bohr radius NT Is _ the total Impurity 

concentration and Nd Is the excess donor concentration. In an 

uncompensated semiconductor this expression reduces further since the 

latter two impurity concentrations are the same. At a concentration of 

18 -3 -6 ·21 -3 
10 em this factor is calculated as 5.83.1 0 . whilst at 10 em it is 

found to be 1.84.1 0-
4

. varying as the square root of the uncompensated 

Impurity concentration. 

A more Important difference between the Halperin and Lax and 

Lloyd and Best asymptotic forms Is the difference In argument of the 

exponential. Two further trial wavefunctlons were used ·In an attempt to 

Improve the agreement between the two asymptotic forms deep in the band 

tail. 

II) Orthonormal sinusoidal wavefunctions for a box volume >. 
3 

centred at the origin 

~~2) (r) 
n rry n rrz y z 

cos-- cos--
). ). 

(524. 11) 

where x.y and z are the components of r In those directions and the n are 
. 11 

Integers defining the discrete wavevectors. This wavefunction gives a 
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., . 
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variance of 

2 
a = 2771 e 

3 
K 

and a density of states 

N(E) 
27 = M c 4 

64v271 

3 

(-e-) 
E 6 

K 

KE 
I( 

2 e 

3 E 2 

exp(- 16 71 2 __ K.-v1/2) 
27 2e 

(524' 12) 

(524' 13) 

IIi> Finally the spherical. almost orthonormal wavefunction 

3 1/2 
(3) a · e~k.r e-ar 

t/J (r) = (-) 
71 

(524.14) 

The ground state <k=O> energy of this wavefunctlon is given by 

<V> = (524.15) 

so that x. = 1 and A = 1/ a 

The variance of this third wavefunction is given by <c. f Eq 512.04> 

2 
a =.L 

3 
K 

(524' 16) 

20 -3 
frorn which the n'?rmallzed parameters for a concentration of 10 em may 

be calculated from Eq. 523.10-523.12. 

-9 
E = 14.2 e (eV) . ; A = 1.67.10 p (em) (524. 17) 

ar~ m~ density of elgenstates becomes 
·. . ',·. ; l ' . 

N (E) = M 
c 

KEK 

e2 

3 

(524. 18) 

A comparison of the asymptotic forms for the density of states 

· for these three wavefunctlons Is made in Table 5.2 with the previous 

results <Table 5.1> from section 5.1. 
'I ,•) 

Ta~ing a density of states 



expression of the form 

N(E) = M c 

E 3K3 
K. 

a(v) exp( -

E 2 
K 

Table 5.2 

b ( v) ) 

Comparison of a<v> and b<v> from Eq 512.07. 

Halperin and Lax 1966. Samathiyakanit 1979. 

. 20 3 
and Lloyd and Best <NQ=Nr=1 0 em > 

a(v) b (11) 

Eq 512.07 
1.5 

0.48 II 3.08 v 

1.5 
Halperin and Lax 1966 0.4 v 3.0 v 

samathiYakanit 1979 
1.5 

3.54 0.23 v v 

Lloyd and Best 1979 
-8 

¢> ( 1) 5.29.10 19.7 v 

-7 
¢> (2) 1.79.10 5.85 v 

-5 
¢> ( 3) 5.46.10 3.08 v 

(5 24. 19) 

0.5 

o.s 

0.5 

0.5 

0.5 

0.5 

· It can be seen from this table that the trial function that 

best fits the asymptotic form of Halperin and Lax's · function is ¢><3>. 

However as the energy normalization In Eq. 524.17 shows. this asymptotic 

. . . 2 3 
form is only reached at an energy of <I €1 > 4.0.10 > .5.6.1 o eV below the 

ho~t band. !t is clear that although the two asymptotic functions do have 
• ! ~ 

the same exponential form. this alone is not a sufficient indication of 
tr·e ~ .. :-a···'-· 

th~r·t:' compatabllity . 

. 1 
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5:2.5 Numerical calculations. 

For energies other than deep in the tall or within the host 

band. where the usual € 
112 

limit to the density of states is observed. the 

best density of states must be optimized numerically. The numerical 

algorithm used is straight forward. it is only l)riefly mentioned here. The 

numerical- results for the normalized density of states derived as detailed 

in section 5.2.5 are presented In Fig 5.5. For energies close to the host 

band. in the region where the optimum box size becomes infinite 

corresponding to extended states. the detail of the pressure maximization 

produces a discontinuity in the box size as shown in Fig 5.4. An analogy 

may be drawn between this and the mobil_ity edge. although no condtJctivity 

calculations are presented that prove this relationship. The main ·results 

·of this section. those of the normalized density of states may be used for 

any semiconductor. or trial wavefunction depending ·of the choice of 

normalization parameters given in Eq. 523.10-523.12. 

The algorihm used to determine the optimum density of states 

has effectively been. outlined In section 5.2.5. Fig 5.4 shows a series of 

curves for the pressure . function p<€ .p> for different reciprocal cell size 

p <13=1 lp> and energy € close to the. host band. For energies below the 

Intrinsic band edge (€=0> the maximization Is simple. and corresponds to 
' . 

~plving Eq. 524.01 for P=Pmax· These points of maximum pressure are also 

plotted in Fig 5.4. However as this figure shows as the energy € 

approaches positive values a sudden change In P occurs at an energy of . . m~ 

€=7.91.10-
5 

beyond which the value ot pat the origin <ie fJ =0> becomes . . . m~ 

' gre$ter. The change In Pmax from 3.25 10-
3 

to zero corresponds. to a sudden 
. ! 

change from a finite cell size. to an infinite cell size. This change 

suggests the presence of a sudden change from localized states In the band 
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p (€, 8) 10
13 

3 

1.5 

Maximizing.the pressure function p(€,8) with respect 

to inverse cell size a for energies close to the host 

band ( € = + ve) . 
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tall to · extended states In the host band that might represent a mobility 

edge. Above this edge the . extended states would contribute to the 

conductivity In the normal way. whilst the localized states below the edge 

would ·contribute by hopping. The present observations do not however 

present any .definitive description of this edge that could only come from 

conductivity calculations . 

Having calculated the optimum pressure <or· double integral of 

the density of states> from Pmax these can be double differentiated to 

obtain the optimum density of states. This Is achieved by differentiating 

the Integral of the density of states 1<€ .Pmax> as prescribed by the method 

of section. 5.2.2. Clearly at the point at which Pmax suddenly moves to 

Pmax = 0 the differentiation routine will produce a singularity that occurs 

close to the parent band and Is not shown In . Fig 5.5. Beyond this change 

with p . =0 the parent b.and Is. generated with density of_ elgen states given 
max 

by 

n (€) 
1 1/2 

= -=--'2 E 
471 

Finally the curve obtalned
1 

by allowing Pmax to 

satu,ration value <Psat> Is also: given In Fig 5.5. 

this density of states for large positive € Is given by 

n (€) = 
• I i, ~? . . 

. 2 . 
1 (_€ - _2!_.) 1/2 
· ·2 Pmax. 471::-

(525. 01) 

tending towards its 

The asymptotic form of 

(525. 02) 

that also tends towards the host band shape given. In Eq. 525.01 as € 

increases. 

·The problems of obtaining .the- optimum d~nsity of states· for 

. . those ~~~rgl~~ close to the ho~t ·band does not alter tt'le pririclp!e result 

of !h~se calculat!?~~ which is ·.that the density of sta!e~ within . the tall 
. . 

Is low In comparison with that in the ba·nd. as can be seen from Fig 5.5. 
'i , ' ; '.) i/ J : i 1 I, •, t , ' : , • ._j J , ... , I 

1 
• • • • ~ I : 0 • • 
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5.2.6 Numerical results for the conduction band. 

Using the normalized curves in Fig 5.5 and the trial function 

tJ<l> and tJ<3> detailed in section 5.2.4 the density of states for the 

conduction band of silicon may be generated. This is shown in Fig 5.6 with 

the results from Halperin and Lax's calculations. In these calculations 

the detailed nature of silicon's conduction bands is accounted for by 

calculating the density of states in one of the six ellipsoidal valleys 

<section 2.1> and multiply the result by the number of valleys <M = 6 for. c 

silicon>. 

N(E,~) = 
M 3/2 2 

c 2 (~) bl/2 e-z /4 U(l,z) 

4.71 1'i 
2 

(526. 01) 

The density of states effective mass <mde = 0.32m
0

> Is used in all the 

normalizing expressions <Eq. 523.1 0-523.12). 

5.3 CONCLUDING REMARKS. 

Halperin ·and Lax produced a formulation for the density of 

states deep In th~ band tail where they perform four operations: 

a> qhoose the form of a typical wavefunction deep In the tail. 
(,. 

b) Using this · wavefunction and modelling the· Impurities as a 

superposition of Thomas Fermi screened potentials calculate the 

ground state by a variational calculation. 

C) Calculate. the density of states by counting the . number of 

potential wells. formed by small regions .in space accumulating 

mar~ Ionised· Impurities than the· average concentration 

throughol!t the semiconductor. 
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d> Optimizing the chosen wavefunctlon by maximizing this density 

of states. 

This minimum counting method breaks down for energies close to the host 

band because at these energies the one-to-one relationship between 

potential wells and their associated eigenstates no longer holds. The 

localized· wavefunctions then begin to extend. over more than one minima 

Interfering with neighbouring wavefunctions: 

Lloyd. and Best in their work <1975> approach the calculation of 

tail states from the other end. starting with these extended states and 

moving deeper into the tail. Their method has the following steps: 

a> Divide the whole of space up disjoint cells of the same volume 

~ 2_ 

b> Fit trial wavefunctlons <t><l» into these boxes. 

c> Calculate the density of states assuming each box contains a 

sample of impurities. the number of that varies from box to 

box about a mean value. It Is assumed that the impurities are 

distributed uniformly within each box. 

d> Optimize the cell size by maxirrilz11~ the double integral of this 

density of states 

Because the cells fill all space. when they optimize the cell size in 

the band tall they under estimate the density of states because they do not 

pick out the very short range states counted In Halperi_n and Lax's method. 
~. . ·. r • ; ~ r r , ' . . 

However closer to the host band where the wavefunctions become extended and 

begin to fill all space the disjoint cell approximation improves. For 

energies within the host band the cell size becomes infinite and the host 

density of states Is reproduced exactly. 

Thus the calculation based on Lloyd and Best's variational : '· 

<?9!C~~atlon of the density of states within the band tail must give a 



reasonable approximation to the density of states close to the band edge. 

However although their variational principle may be valid over all energies 

to 
in the tail it is difficult A use. At best a trial function. like ~<3> might 

be fitted to Halperin and Lax's tail to provide a link between the deep 

tall and the host band. Deep In the tail Halperin and Lax's calculation 

Is expected to give a better estimate to .. the density of states. Although 

the precise means of linking these two calculations remains a problem it is 

clear from the Lloyd and Best calculations <see Fig 5.5> that the band tail 

is much smaller than has previously been. supposed. C.onvlncing arguments 

have also been given In section 5.1.3 for relative positions of the host 

band and the tall calculated from Halperin and Lax's results <Fig 5.2). 

Recent calculations on high-stress optical birefringence <Sernelius 1983> 

are also In agte·ement with the hypothesis presented here that there Is not 

a substantial band tail. 



CHAPTER 6 

AN ALTERNATIVE APPROACH TO THE ELECTRON-IMPURITY PROBLEM. 

6.0 INTRODUCTION. 

In previous chapters the electron-electron and electron-

impurity interactions have been considered separately hoping in the final 

analysis to sum these contributions to the band gap . narrowing. These 

interactions have been studied in a perturbation expansion to second order 

of smallness. In this chapter a self consistent approach to the electron-

Impurity Interactions is introduced to which the electron-electron self 

energy must be added later. Although It Is obviously more useful to 

consider a random lattice of donors. as Ghazall and Serre <1982. 1983> do. 

a regular lattice of Impurity centres is investigated here to study the 

salient features of similar calculations by Mahan <1980> that Berggren and 

Sernellus <1981> and Sellon! et al <1982> have discussed. This method 

might be extended at a later stage for a random system of donors. However 

at first the regular lattice of donors Is considered. 

As a starting point to the calculation of the electron-impurity 

Interaction energies the band edges have been calculated In a simple Wigner 

- Seltz type calculation. The calculation Is based on those made by 
Slmtlot" 

B~~~~~sp~~f1e:r <1953> and is A to those recently made by Engstrom <1983>. 

This method has been extended using the currently available numerical 

routines <from the Numerical Algorithms Group> to improve and extend the 

calculation~ for silicon. In section 6.1 the details of the Wigner-Seltz 

method used are given. 
- -' :;~ ~1~] :~.' 

~t !ow, concentrations the impurities are far apart in the host 
I\. 

§!.!lc~n lattice. To a first approximation the donor Impurity centres are 
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hydrogen like so that the electrons fall Into states that have an energy 

equal to the effective Rydberg constant <Reff = 31.9 meV In silicon> below 

the continuum or conduction band energy. As the donor concentration 

Increases the donor potentials begin to interact causing a splitting of the 

Impurity level.. The broadening of the impurity level Into a band with 

Increasing concentrations finally results in its merging wtth the host 

band. At this point In the concentration range the bottom of the impurity 

band Is considered to be the same as the parent band edge. The energy of 

the wavefunctlon occupying the lowest state In the periodic impurity 

potential gives a measure of the energy of the ·band bottom relative to Its 

unperturbed position. In the low density limit this energy might be 

expected to approach the effective Rydberg value. However the presence of 

the large number of Impurity electrons In the conduction band results In a 

screening of all the various coulomblc Interactions In the crystal 

characterized by K the Thomas Fermi screening length <see section 4.4.2>. 

Since the screening length Cl/K) Is less than the ·average Impurity 

separation over all of the concentration range of Interest In silicon <see 

Fig 2.4> the Impurity potential Is short range. In the Wigner-Seltz method 

the wavefuncti<;>n and energy of the states are calculated. It then becomes 

possible to make ~ self consistent calculation of the screened potential In 

this approximation. The choice of screened potential Is made In section 

6.~. Having thus determined the energy of the conduction band. the 

wavefunctlon for the lowest state In this band and the screened Impurity 

potential It is then possible to calculate the energy and wavefunctlon of a 

hole from the valence band In the same potential. The shift in energy of . 

the v.alence band · Is 'hus also obtained in section 6.3. Section 6.4 

po~t~ln~ ~ Si~~Y~~~e~ of these results for a regular Impurity lattice and a 

cornparisqn ~itll the results from previous sections. 
· · . 1 .. d. ~. ·U• ... ~- •J 1 

. i 



6.1 WIGNER SEITZ METHOD. 

·A periodic array of positively charged impurity ions 

superimposed on the host semiconductor lattice Is taken. Each ion may be 

surrounded by an s- or Voronoi <see Brostow et al 1978> polyhedra that fill 

all space. The Wigner Seitz assumption that these polyhedra may be 

replaced by spheres of equal volume is made. These spheres are assumed to 

be of such a size that they contain many of the host semiconductor lattice 

sites. Thus to Include t~e screening effect of the host semiconductor the 

macroscopic value of the relative dielectric constant e <11.8 for silicon> 
r 

is used with the effective mass for the electrons and holes. Clearly close 

to .the centre of the polyhedra where the coulombic potential due to the 

positive charge varies rapidly the effective mass approximation will fall 

along with linear screening approximations. Close to the impurity centre 

an improved model for the impurity potential is required to account for the 

different impurity types such as is included in Selloni and Pantelides 

<1982). No attempt has been made to calculate these central cell 

corrections that will modify the energies in the present regular impurity 

lattice approximation but may not effect the more realistic random lattice 

· . approximation <Berggren and Sernelius <1983)). Implicit in ~he use of the 

intrinsic effective masses for the bands is the assumption that the band 

shapes do not change for high concentrations. If one considers that the 

tota.l number of states must . remain constant. at least for substitutional 

impurities. then it is clear that the states for the impurity band must 

come from the parent band which in turn must alter its shape. It is 

expec~~d .that this correction to the effective ·mass is small <Abram et al 
• ·.: 1.·.:.:\: t· id~ . 
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ln. common with other. Wigner - Seitz calCulations the spherical 

approximation to the polyhedra .Is made choosi11g cells of the same volume as 

the original polyhedra with radius r s <= · <3147TNd> 
113 

where Nd is the 

impurity concentration>. This can be justified <Mott & Jones 1958> by 

noticing that the potential is weak and the electron wavefunction flat far 

from the impurity centre <see Fig 6.2> thtls the actual shape of the 

boundary is not too critical. This might be of use were the present 

calculations to· be extended to cope with a random ·arrangement of donors. 

where different impurity centres have ditfering · surroundings and a 

distributions of sphere radii might be considered. The potential energy of 

the impurity lattice may now be divided up into two parts: That which is 

d.ue to the interaction between the charges in one cell and that part which 

is due to the interaction. of polyhedra with each other. . The second of 

which will be small since the cells are electrically neutral and close to 

spherical and is neglected. The radial part of the Schrodinger equation is 

now solved in the spherically symmetric cell for the electrons in the .lowest 

eigenstate. <k=O>. 

2 2mde 
v 1 . ( r) + --( E - v ( r)) 1'

0 
(r) = o 

0 ..f}2 0 
(610 .. 01) 

Where md is the density of state~ effective mass and V<r> is the screened . e 

Impurity potential and Ek the eigenvalue to be calculated. To fulfil the 

requlrem~nt for. the periodic wavefunction to extend smoothly throughout 

spac~ the gradient must be zero at the Wigner-Seitz boundary 
• ;';t, I • ' 

~ .. , .. = 
dr 0 1'(0) = finite (610.02) 

r=r·s 

<Cohen · 1972~ Anderson 1963>. A condition that might still hold in a .high 

· ·~~nsitY,. ranqom impurity calculation. Also that the wavefunction be finite 
. I ,~ t .,. f , 1 (.J ' I • I l I 

ql the 
·ll . tl!-1·' 

cell . centre· <r=O>. 
1,..1'· \ ,•f;l •.· 

· This boundary condition 
~ , ' , , 1 t ' f 

~~ equivalerl to 

-· p.4 -
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· choosing a hydrogen like wavefunctlon at the origin. · 

The problem can be re-:-expressed in terms of the dimensionless 

variable p = r/aeff where aeff is the effective Bohr radius and with the 

effective Rydberg constant <R > as the unit of energy: 
. . 00 

R = 
00 

4 
mdee 

= 31.97 mev 

1 a 2 aw (p) ' 
- ( P · ~ ) + ( € - X (p)) 1' (p) = 0 

P2 ap ap 

. . 2 2 
Where X(P) = (2"h_e/..f\) aeff V(r) 

(610. 03) 

A NAG Library routine D02KEF was used to solve the above 

equation. It finds a specific eigenvalue >- of a regular singular second 

order Sturm - Liouville system 

(p(x)y')' + Q(x;>.)y = 0 (610.04) 

· on a finite or infinite range. using a Prueter Transformation and a 

shooting method. It reports . values of th~ eigenfunction and Its 

derivatives subject to boundary conditions of the form 

C(x,>.)p(~)y' + D(x,~)y = o (610.05) 

provided that. p<x> is not zero and of one sign and that ao;a >- is not zero · 

as x varies for any >- and is of one sign throughout. the interval. 

· Clearly in this problem p<x> = p 
2 

so the first condition is 

violated at the origin. However this is just where the wavefunction is 

expected to be close to the hydrogen like form < e -p therefore make the 

bounclary close . but .not equal to p = o. . ·1t is only the ratio of the 

functions C<x. >-> and D<x. >-> that matter so the. actual bounclary conditions 

l. 
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are expressed as: 

p = Ps c = 1 : D = 0 

2 
(610.06) 

p = 0 c = 1 : D = p 

All that remains Is to specify the form of the screened potential to be 

used in the calculation. · 

6.2 CHOICE OF IMPURITY POTENTIAL. 

A simple Coulomblc potential was .used In the numerical routine 

the results of which were checked against the analytical solution expressed 

In terms of Confluent Hypergeometric Functions M<a.c:x> <Baltensperger 

1953>. The wavefunction In this approximation is given by 

-P/2 1 r
1

l(p) .= e p M(l+l-l,21+2;p) (620.01)' 

and the eigenvalues given by 

(620.02) 

The eigenvalues calculated by the numerical routine were· found to agree 

5 
with those calculated from above to an accuracy of 1 part In 1 o . 

This first potential corresponds to the condition that must 

. exist at low impurity densities in the semiconductor. Only one electron is 

·allowed to enter ~ach sphere where the cent~al positively charged impurity 

potential binds the electron In . a hydrogen like _orbital. The lowest 

eigenvalue in the impurity band saturates at the effective Rydberg energy 

of 3;3 meV in silicon. Indeed if the calculation of the highest state In 

. the band were performed as Baltensperger does. this would also saturates at 

this energy. For above an Impurity concentration of about 5 10
18 

em -a the 
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rnodel predicts a rapid lowering of the bott<;>m of the impurity band and a 

raising . of the top of the band <see Baltensperger Fig 1> that eventually 

merges with the conduction band. This model then predicts the broadening 

of the impurity level into an impurity band with the onset of heavy doping. 

An improvement to this potential which begins to take into 

account the screening of the Impurity charge by the electron gas in the 

conduction band is to include a uniform distribution of charge in the cell 

due to all the other electrons In the crystal <Mott & Jones 1958>. In this · 

model the screening electrons are assumed to have plane wave form and the 

wavefunctions are flat. that is expected to be true in the high density 

limit. There are then N-1 electrons contributing to the screening where N 

is the total number of impurities. This amounts to a concentration of one 

electron distributed uniformly over the cell. The screened potential may 

then be calculated from Gauss Law to. be: 

.v (.J;') . ..,. 

2 
e 

which in terms of the reduced variables. becomes 

X (p) = 
2 

2 

- ..... - e._ 
+ p 3 

Ps 

(620.03) 

(620.04) 

Where·. the first term is the unperturbed potential. the second is that due 

to .an ever increasing sphere of uniform charge density. and the final term 

ensures that the potential is zero at the Wigner Seitz boundary. 
·-~:r:sui' n~: :1 r ;. . • 

A first classical calculation may be made for the electron in 

its ground state using the screened potential above. The eigenvalue may be 

.calculated !n a first order p~rturbation .calculation assuming plan.e 

. .-. 

= §.7 ,..,·· 



'·:. 

: ,• I 

. ' 

:.J,· •• 

' ' .· ~ 

'. '.j ~-

' .. _-· 

·. !· 

wavefunctions to give: 

{jJ.L = (V> = 3 
--~3 J V(r) 
47Tr 9 

2 
47Tr dr 

2 = -0.3 (e /471€€ r) = r s 

= -S. 901 (Nd/ 10
18

) 
1

/
3 mev 

whe.re the values have · been calculated for silicon. 

(620.05) 

This compares 

favourably with th~ values obtained by Sholl Cl967> for body-centred cubic. 

face-centred cubic and hexagonal close-packed l~ttices. Mahan Cl980> 

quotes these values as 

(620.06) 

This approximation to the energy of the conduction band is presented in Fig 

6.1. It can be seen to reduce to zero as the concentration Is decreased. 

However these calculations suffer from the disadvantage th(it a . 

plane wave is taken in the calculation to represent ·the true· wavefunction. 

that Is in fact more complex. A second more sophisticated calculation is 

to put this screened potential into the numerical routine outlined above. 

In this calculation the actual wavefunction and . eigenvalue that would . 

result· from an electron occupying a potential well of this form is 

calculated. The results of this numerical calculation are also presented 

.in . Fig 6.1 . 
. I': .. 

·. At low concentrations ··this energy saturates at the 

effective RydQerg value .(33meV In silicon> since the screening electrons 

are so thinly ·spread as to to be ineffectual. Whilst at high 

concentrations. where the wavefunctions do indeed become flatter. the 

numerical ·method. and the classical expression <Eq, 620.05> approach each. 

. other. 

-~- .. 
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An important failing of this numerical solution is that on one 

hand a plane wave Is assumed for the screening cloud whilst on the other 

hand a periodic non-uniform charge distribution results from the true 

ground state wavefunctlon calculated. A more physically acceptable model 

is one where the screening cloud is bunched up about the positively charged 

donor. To make this a· more realistic approximation to the screening cloud 

the screened potential needs to be improved. 

The actual form of the wavefunction as well as the lowest 

eigenvalue are calculated in the numerical . calculation as defined by Eq. 

610.01- 610.02. A self consistent screening charge may then be calculated 

from this wavefunction. This self consistent approach screens the impurity 

potential by exactly the right amount solving the present model exactly. 

To do this a parabolic band is assumed above the conduction band edge <see 

for example Matt and Jones 1958> 

ik.r 
~k(r) = e 1(r) (620;07) 

Given wavefunctlons of this form the charge· within a sphere radius r and 

hence from Gauss's Law the potential seer) by the electron may be calculated 
. , 

,.. 2 ... 2 2 
e 2 

1 
I ( 1/ r • ) I r • • 1 1 k ( r ' ' ) 1 dr • • dr • 

V(r) = - 4"EE (r + r 
r s 

2 2 I r 111 dr 

- v .· 
... bound 

0 

(620. 08) . 

. Vb · · d is chosen so that V<r > = 0 as in Eq; 620.03. The calculation is .· oun · · . s 

initiated by: choosing a form for ihe potential V<r> then this potential is 

used to calculate an approximate wavefunction and eigenvalue. This 

wavetunction is then used to calcul~te the wavefunctions of the higher k 

s~m!3~ ff8· 6~0.07) and hence the screening of the coulombic potential. 

This iterative pr~e~ss is carried on until the eigenvalue saturates at 
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which point both th'is 'and the wavefunctron ar~:selkcons!stent.·. 

6.3 .SELF CONSISTENT CALCULATION OF· ELECTRON AND HOLE ENERGY. 

'followrng the procedure ·In the previous sections the Impurity· 

. potential ·· is found self consistently by solving . _Eq. 610.01 with the self 

consistent potential Eq. 620.08 by an iterative calculation. The resulting 

self. consistent Impurity potential. Is plotted In Fig 6.2a. Also plotted In 

.this figure Is the Thomas Fermi potential often used In similar problems. 

. This Is different from the self consistent potential because It Is 

. calculated . on the assumption of an infinite cell size it has a non zero 

value . · at the celi boundary. whilst the self consistent potential Is 

calculated on the assumption that the potential Is zero at the boundary. 

J1owever as the concentration decreases the two potentials would be expect~d 

· ... · • :·to. g·lve. better agreement. The probability densities of the electron 
'' ~- . •· . 

- ' .·· 

f• • ' • ; ~ .: 

: ~ . 

',,·· . 'I .. ·, ... :; . 

. wavefun.~tion Is also plotted In Fig 6.2 for two value.s of _r s' . .. It shows the 

-expected rise close to the centre . of the cell <see Mahan <1980> Fig 5>. As 

r · · d.ecrease.' at higher impurity concentrations. the wavefunctlon can be .· s . . . . .. 

seen· to get flatter. so that In the liigh density limit the plane waves used 

. ... ·'in the classical calculation· <Eq. 620.()5>. become more realistic. Finally 

• "-' t' 

... ' . 

. · ; :. ~-~-· '. 

> .. ·. ; .. 

. In· previOUl? sections tn· this . ch(ipter th~ change In electron 

. energies du.e to ·· the presence of· various Impurity potentials has been 
' . . 

. · .considered. A ·.positively charged hole. In the valence band however ~ould 
·.· .. 

. . . 

. ' ' :. . . . ~ . . . '. ': . ~- . ' ~· . also b~ affected-. by ·. the presence of the_se · impurities . Postulating the 
. \' . ..... ,:'. .~_ . . '. ', . 

. ,, .·. . _:_pre.s.e·~c.e of: a test hple·. in the .~alence band the -il')fluence th~t this hole 

.·. ....· "' 

... · 

,, 
;,r 

has upon the ~cr~ening cloud about the Impurity centre may be neglected 
I :J ..... : ~ ~ ~-. t, · I: 

sir,ce there !~ pnl~ pn~ hole supposed to b~ at ~he tpp of the valence band . 

. -:: Q, 10'-:-
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.the appropriate Schrodinger equation to be solved is 

(630.01)' 

where· the sign of the potential term <compare with Eq. 610.01> is 

consistent with. the opposite charge that the hole. · V<r> the screened 

potential has· already been discussed in th.e self consistent electron energy 

calculation. The boundary conditions for the problem are different from . 

the electron calculation. In this case the hole musr be repelled from the 

positively charged ionised impurity at the centre of the sphere. The 

wavefunction is chosen to have zero gradient at both the centre and the 

edge of the sphere in order to satisfy the required smoothness of the 

wavefunction throughout space. These conditions are expressed in .terms of 

. · the boundary conditions Eq. 610.04-610.05 as 

c = 1 D =' 0 . ) .,·_· 
' p - p . . 
. . . '· ._( :-:. ' s .. 

(~30. 02) 

p.= 0 c ~ 1 D. = 0 

With these · modified boundary conditions and. the self consistent potentia~ 

shown In Fig 6.2a the hole energy plotted In Fig 6.3 is calculated. This 

shows ~he · expected rise In probability density of th~ hole towards the 
::.· .... . . 

· .. · · ... · .... boundaries qf the sphere where the wavefunctions flatten off. with zero .... - . 
.' ... , 

,. ·. 
.... ·.:, :- ··. . ~· : gr~dient .·at'. the boundary. This calculation rest,Jits in a pqsitive value of 

h ••• .•. : ! ~:· . . :·. ·. 
· .. _·. m~.~iger~a~~~, ~k for the hole shown In Fig 6.3 .. 
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6.4. · DISCUSSION OF RESULTS. 

The. increase In the holes energy results in a downward shift of 

. the valence band edge and hence anBddi t:i.ve contribution to the band gap 

. <see. Fig 6.3> in contrast to the previous electron-impurity calculations on 

a random impurity lattice <chapter 4>. It should be stressed at this point 

that the downward shift In the valence band for this. model with ·periodic 

· impurity lattice has been found by Mahan (1980> as well as Berggren and 

.Sernelius · <1981> though the magnitudes of the shift vary. In order to 

understand the downward shifts of conduction and valence bands more fully' 

. the average or first order terms must be considered as In previous 

calculations <chapter 4> . 

. Because the solution of Eq. 610.01 CEq. 630.01> gives the total 

.change . in the energy of electrons <holes> at the bottom <top> of the . 

con.duction <valence> · band It includes the first order term excluded from 

our previous calculations <see section 4.3>. However the impurity 

potential has. arbitrarily been chosen to be equal to zero .at the cell 

boundary.. It might equally well be chosen so that the integral of the 

. potential over:. the. cell is. zero as would be expected by the cancellation of 

th~ · elec~ron-electron and electron Impurity interactions <section 4.3>. To 
. . 

compare with calculations In previous chapter~ the volume average of the· 
... ··.· :. . . ::: :_· . . . 

· ",screened potential has to be removed from the. two bands solving. instead of 
: :--;~~:;.;':C!r~r::t1 1 ·,~·~... • 

:! • 

: -., 
' . ·. '": . -~ . 

. -~ . . . ·.-: . . · .. :\_ 

.. ·.· 

.·· .. , 
·, .. 

'-§.1?-

·I 
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Eq. 610.01 the· equation 

-2m 2 . de 
V ~0 (r) + ----(E 1 

- v~ (r))• (r) = o 

·where 

vI (r) = 

and 

. ~2 0 0 

v (r) + v av 

V 1 J ' 3 . . av = - -v· v (Z:) d r 

(640.01) 

(640.02) 

(640. 03) 

where v. is the volume of the sphere. Clearly since v av is a constant 

·E I = E + v o o av (640.0~) 

So that th~ shift in the con~uctlon band edge shown in Fig 6.3 is reduced 

·by Va ·. At the same time. as can be verified from Eq. 630.01. the valence . v 

ban.d shift is ~I so reduced by V av as would be expected since the average 

term effects. both . bands equally These reduced shifts could then be 

compared with the ·previously calculated electron-impurity self energies. 

However they do not effect the much smaller electron-Impurity band gap 

narrowing results <only 5 meV over the entire concentration range>. 

calculated in the present model with a regular impurity lattice. Berggren 

and · Serr:1elius . have eJ<plained this . large discrepancy in the electron-

imp.urlty band gap narrowing in terms of the coherent .reinforcing of the .. 

Impurity· potential· in the regular lattice as compared to the random 

lattice. They calculated .the second order perturbation energy of a regular 

.lattice and fin~ conclusively that the resulting band gap narrowing is 

small as has been found above. 

:: §.1~ = 
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_CHAPTER 7 

CALCULATION OF THE SELF ENERGY INTEGRALS AT FINITE TEMPERATURE. 

7.0 iNTRODUCTION: . 

. In this chapter the calculations. of previous chapt~rs using . the 

·plasmon pole approximation are extended . to finite temperature. As 

comparisons · between results calculated using the lindhard · dielectriC · 

function .. <Berggren and Sernelius 1981> and those. of the previou~ chapters 

has shown. the plasmon pole approximation provides a relaUveiy simple 

means of modelling the electron screening · of donors In heavily doped 
. . 

' . 
silicon. This then justifies the extension of the present approach to 

finite temperature. .The flnit~ tempera~ure plasmon pole approximation has 

been used before in other problems (Zimmermann and Rosier <1976). _Young. 

van Qriel <1982) for and electron-:hole liQ!Jid>. however this is the first 
' · ..... ··. . . . . 4 
tim~ that the present method including the q . term has been . used for 

heavily d_oped silicon. 

For a summary qf. the contributi.ons to the band gap narrowing 

dealt-. with ·. in . chapt~rs 2 to . 4 see. fig -7_. 1: The finite ·temperature 

. ~QR!f-l~~f!~fl~ . ~~ W~ ~~~d gap _narrqwing are defined· by .substituting the 
' • ~< • 

3B8~$BJ:I~t~ fi~~~~ f~~8~rature- quantit!~s !mP the sen energy e~pression_s 

---->· .· .... _.- w~ro--:~~:>~40-P~ ~o9 4~1.06-. 
· .. -.~.- ~; .:··.:.:_· ..... ·,;•:;:\':~'', .. =-. -~1·".:~-.~ :·:~~-.. ~ • ~~- . :' ...... ! • • • • 

Sectlqns 7.1 and 7.2 deai with ·the derivation · . 

"· ;·,q( ibe':;·fin!-te · t~rhper~tur~ ·--variables for substltutlo~ ·into. the two .self 
.. ·.~ -: : :~~-:-:_:':• :~:.~.-:-1:_ ... ~~~:: ... ?·' ··:'_.::·· .. ': ,(;:'_;: ·::.:~:::.~ · .. ~ -~.. ~ ~ '. . . : . . .· .. .-

·:·_. ·-::· . · . •. energy . ex~r~sslons Eq_. 240.07 and·· 441 .. 06. . Fl9 · 7.2 summarizes th_e 

· ·_: co11centration · dependerlt finite. temper~ture quantiti-es. ~alculated in · section 

':• .. 
. ,. _,\ 

. _-;_. }:2 c~: ·€~). co~parih_g them ~lth t~ose c~lcul~ted at_ iero temperature <see 

Fig 2.4>.- ·.A~ has been· seen from the calcul~ti_ons at finite temperature ttle··-
. . . 

'Mott metal npn-:-metai transition <Nc>_ · . determines .. the lower _bound· in 

.~ . . . . . ,.: . ... ·' 

'' . 
: . : ·. . .: ~ . 

• 't•' ' • • J '. t :, ' .... ~ . . 



Fig 7.1. _ In heavily dope~- silicon <T:::O. donor concentration of _1 o20
-em - 3

> 

the_ band gap narrowing <meV> calculated in the plasmon pole 

approximation <2.3:2> may be divided into shifts in the 

conduction <~E > and valence <~E > band edges. _ • These are - . c . . v -

divided into ele9tron-electron <ee. ch'apter 3).- a_nd _electron-

impurity- <ei. chapter-~> contriputions. The electron...:electron· 
.:,.t1 t lj, • -·'. '. 

.. ' .- : . 

contributions- are subdivided <3.1.0> into coulomb hol.e <ch> and 
!.•' f\ I .' : ' • . . 

pynamic screened exchange <sx> terms. 'rn the valen_ce band the 
: . . . . 

ee exchange energy is. again subdivided <3.3.0> -into exchange 

betweeri-.tor example electrons in the heavy hole band <HH> and 

e·xchang~ betw~en _ heavy and - lig~t hole bands <HL>. To 
·,· 

· . ... ··:. 
.. , . -

·'·· • •',. ,c. 
supplement tl')e electron-:impunty ~elf energy calculations- the 

. . . . 

.band tailing . _effect of fluctuations -in the average potential 

are considered in chapter 5, 

.. ·· ~~ =-:~~-.. ~-~-~ . ,. . . ' 

~l ··:_ 
. :: ' .... ; ~:·. ;h:. 

., 
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concentration to which th.e caiQulatlons are valid. Before describing the 

finite temperature calculations the change in this concentration at high 

temperature is considered. 

Below the Matt critical density <Nc> the impurity electrons are 

well localized. about the impurity centres and form a separate impurity 

band. The low concentration semiconductor has then for example a Curie-. 

Weiss type susceptibility typical for interaction localized magnetic 

moments. For higher densities however the electron screening length <1/K) 

Is reduc~d <see . Fig 7.2> so that eventually the screening due to free 

electrons in the conduction band reduces the binding energy of the donors · 

to such an extent that the impurity electrons are no longer bound to the 

impurities and the impurity band is considered to have merged with the host 

banci. The susceptibility Is then Pauli-like. consistent with the 

assumption that a free-electron gas 1occupies the host band. Similar 

transitions occur in the extrinsic specific heat capacity <Matt 1974. 

1978>. The Matt critical density is then dependent upon the ratio between 

the screening radius o, = 1/K) and the effective Bohr rad.ius <aeff> for the 

bound impurity electrons <Kittel 1976~ pp 300>. When ). Is greater than 

.. a
911 

the impurity electrons are essentially un~ffected. by the screening . and 

~r~ bound to ~he impurities. When aeff is greater than ). the impurity 

~!ectrons ar~ ~ffectively screened from the impurities and bellave as in a 
!_...... . . . 

m~f~!; ~f. f!~i}~ temperatures and Ia~ ~o~centrations the screening length 

~~ !P8f.~~s~p fr!Jm the zero temperature values as can be seen from Fig 7.2. 

The finite temperature Matt. transition migh.t then be expected to occur at 

higher concentrations. By maintaining the. ratio of aefl). . the 300 K Matt 

:_,. transition may be estimated from the more rigorous zero temperature 
. . . . . . . 19 . 

· calculations. · In this way the Matt transitions of betwe~n 2 and 3.1 o 
. . -3 . 

em at 300 K are estimated from zero temperature data due to Sern~lius and. 

- rg-
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Berggren <198.1> plotted in Fig 7:2. 

The ~lectron.:...electron calculations of section 7.3 correspond to 

those · in .chapter 3. whilst in 7.4 the electron-impurity calculations 

co-rresponding to." those in chapter 4 are presented. The band tailing 

calculations of chapter 5 have not bee·n extended to finite temperature. 

because of the relatively small modification that these make . in 

uncompensated heavily doped n-type silicon at zero temperature. Likewise 

the c~lculations of chapter 6 are not extended to· finite temperature 

because they do not constitute a particular!~ · useful approach to the 

· calculation of the band gap narrowing. although they do serve in providing 

a slightly different approach. The main results of this chapter may be 

found in Fig 7.12 for the finite temperature band gap narrowing. 

7.1 DERIVATION OF THE SELF ENERGY EXPRESSIONS AT FINITE 
TEMPERATURE. 

In this . section the finite temperature Gr.een's function 

. "" 

· ·. <~ectlon · 

. '·,' 

..... 

7.1 ;1) and the finite temperature plasmon pole inverse dielectric · 

function <section ·7.1.2> are derived . 

7.1.1. Finite temperature Green's function. 

An equivalent w~y of wi'itlng the zero temperature unperturbed 

· Green's ·function for the band n <Eq 221.03> is in terms of the step 

. . functions EHr> . 

0 . 
G (n;k,4J} = 

._ ... :. . 

0 
_B(€f- €nk) 

. 0 
(w - w - i6). · . nk. 

. . ' 0 0 . 
where· w' = € .;ifl 
r.···. e:.· ~>~~ .. nk 

·+ 0 
w + ·nk 

(711. 0·1a) 

i6) 

The first lerm describes the propagator· for· an Q.XC..Ito.bon beneath the Fermi 



. ·.: 

surface. whilst the. second describes the propagation above that surface. 

Where at low temperatures the Fermi surface may be described by the above 

step functions. at higher temperatures the Fermi-Dirac distribution must be 

used. The correct finite temperature Green's function is then given by 

<Mahan 1981. Hedin and Lundqvist 1969> 

0 
G (n;k,W) = 

fnk 

0 
(w - wnk .,.. i6) 

+ 

1 ._ f 
nk 

0 
(W - wnk + i6) · 

where fnk i~ the Fermi-Dirac distribution function 

To distinguish it from the zero temperature Fermi level €f' 

(711, Olb) 

(711 :. Ole) 

the finite 

temperature Fermi energy is denoted by €F. This expression <Eq. 711.01 b> 

reduces to the former <Eq. 711.01a> on letting T the temperature tend 

towards zero. In calculations in n-type semiconductors for the valence 

band the Fermi energy will again be many kT from the appropriate energy 

0 
€ nk so that the Fermi distribution reduces to a step function in this band 

at any temperature. 

7.1.2. Finite temperature inverse dielectric function. 

· In section 2.3 the plasmon pole approximation <including the q 
4 

term In the plasmon dispersion> was shown to be a good approximation to the 

zero temperature electron dielectric function . The plasmon · pole 

approximation as discussed above and elsewhere CDu Bois 1959. Pines 1961. 

Lundqvist 1967> amounts to describing the response of the electron gas to 

exter,nal electric fields by excitation of longitudinal oscillations in the 

~leqtron ga,s known as plasmons <Kittel 1976>. This description is found 

only to be str!clly valid up to a critical frequency we <see Fig 2.6>. For 

- 7-4-
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higher wavevectors the Imaginary part of the Llndhard dielectric function 

becomes ·non-zero and the pole in the .Inverse dielectric function complex. 

Physically this corresponds to damping of the · plasmon oscillations. 

However by comparison with the results of Berggren and Sernellus it has 

been· shown <see chapters 2. 3. 4) that the plasmon pole approximation is 

good at zero temperature. It therefore seems appropriate to extend the. 

plasmon pole approximation to finite temperature directly rather than going 

through a detailed derivation of the more involved· finite temperature 

Llndhard . dielectric function. This is performed by making the ·rather 

·arbitrary division of the plasmon term in the Inverse dielectric function 

Into Bose propagator and coupling constant <Du Bol~ 1959. Pines 1961. 

Lundqvist 1967>. 

If one looks at the zero temperatyre Feynman representation of 

an electron-phonon Interaction diagrams like 

·k-q >--k . 

occur where 

~ - - -
q 

. ·n~presents the phonon and may be interpreted as 

(712.01) 

(712. 02a) 

1 

:,, .'D<q;'.w~ ~ ~~1 (q) Cf2 ~ (w1 (q).- iO) 2 
. {712. 02b) 

·. !=~ch of t~~ vertjces introduce the coupling constant 
. ., . . . . 

M 
_g; 
...Jv. 

{712.02C) 

where M is the matrix element for the electro~-phon~n Interaction· and v Is . q .: . 

the volume. . This is ·of the same form as the plasmon pole contribution tQ 
\.'. f :-". !.~!. ! t! l .'l . . . 

~~~ ~~~R l~ffip,f3r~!Hf-~ !rverse dielectric function <tor example Eq. 240.q7,c>. 

Use· qf th~ · plasmon propagator · In the effective potential amounts to 

-: 7,5 ~ 



·replacing the screened interactions shown in prevloi.!s Feynman diagram 

expansions of the self energy <like Eq 222.04 or 420.16> by these <Eq 

712.01> Bose propagators <see for example Bergersen et al 1973>. The 

expression 

1 = 1 + 

E (q, W) 

2 
wp 

-~--(Bose propagator) (712' 03) 

is then used to define the finite temperature plasmon pole approximation to 

the inverse dielectric function. 

At finite temperature the Bose propagator takes the form 

<Mahan <1981>. Fetter and Walecka <1971>. Hedin and Lundqvist <1969)) 

D (q, W) .- 2W
1 

(q) 

1 + N 
q 

( 2 . 2 
W - (W 1 (q) - ~6) 

N 
q 

2 . 2) 
W - (w

1
(q) + i6) 

(712. 04a) 

where Nq Is the Bose Einstein dlstrl.butlon for the plasmons with energy 

hw
1 

<q> defined by 

N = q 
1 

exp ft'lw1 (q) /kT) - · 1 
(712.04b) 

· ...... -" 

. \' 
. '·: 

::.: >:·.: .. s,.o .tnat .the Inverse dielectric function becomes <using Eq: 712.03> 
··.• _ .... •1: '· 

.· .. : ··.•'' . ,. 1 + N 
•. 1· 2 q' 

N 
. q . 

... , .... ,· .. :;::,1. + w. (--2----~----. 
. . '_ · ·' · £.,(~,W) p W - {W

1 
{q) i6) 2 

,: .:· 
2 

w 
. . . . . 2) 
(W

1 
(q) ·+ i6). 

(712. 05a) 

'" . ,_·. 
t •• '·1- 1 

. • • . . l . . 

. . .c-~ · .. .- .. ' .. · 
.. · '·,, , ~The same dispersion relationship as in the finite temperature calculations 

·; . . ' . 

.. · .. •: 

. ·::. 

<Eq. 232.10> 

(712.05b) 

!~e gnl¥, ~itf~r~~~-e being· the use of the· finite .temperature. Fermi energy EF 

ttiat ·is calculated In the next section. 
tii-·h ,.~ 1. •• p .. ,l, .;\J ~~i . . 



7.2 EVALUATION OF THE FERMI ENERGY AND THOMAS FERMI SCREENING 
LENGTH. 

The calculation of the Fermi energy is ·central to the 

evaluation of the plasmon dispersion relationship <Eq. 712.06> so this is 

studied in detail below <section 7.2.1>. No detailed derivation of the 

finite temperature Thomas Fermi screening length is presented here since 

this is a well known quantity <Dingle 1955. Fistul 1969. Pan ish et al 1967. 

Abram et al . 1978>. However its calculation includes the same 

approximations needed for the calculation of the Fermi energy. It is then 

quoted in section 7.2.2. Finally in section 7.2.3 a useful expression for 

the plasmon dispersion relationship at finite temperature. that has the same 

form as its zero temperature counterpart <Eq. 240.07d> is derived. 

7.2.1 Calculation of the Fermi energy. 

First let us dispel the notion that it Is Fermi energy modified 

bV the exchange energies that should be included in the expressions . 

. . Lo~king first at the contribution of the self energy· to the band energy 

<for ~xample Eq. 240.04 and 240.05>. the band energy is given . by an 

iterative solution ·of Eq. 240.04. This has been taken to first order <Eq. 

240.05>. The quantities used to evaluate this first order expression are 

then the unperturbed values. To Improve this approximation both better 

approximations to th~ self energy and further iteration of Eq .. 240.04 would 

be required. 

For the present calculations each of the. Impurities is assumed 

l~ allow . qn~ ~!~c~ron into the conduction band Fermi sea. The Impurity 

band !s assumed to have merged with the host band and the hole struct1..1r~ to 
: ;, ''" ;. .· .. '. . .... 

hav~ the same shape as the Intrinsic conduct.lon band <density of states 



· ..... ' . 
•' < .::·: ... : ·: :. 

' '.';' ·•.' . 

';·. 
..... 

't I' 

· .. :; 

. ~ .. 

: .. 

proportionai t~ <energy>112). Indeed- this apprmclm~tlon. is made Implicitly 

at zero temper~ture when using equations like Eq. 221.04 for the Fermi 

· . wc3vevector .. _The number of electron$ In one conduction band valley <ne> is 

then <see Blakemore 1962> 

2m kT 3 / 2 co 

= 471 ( de ) 
~2 

1/~' 
E n 

~ I 
0 1 + exp(E 

1 . 1/2 
2 11 . F 1/2 ( 11) 

dE 
71) 

(721. 01a) 

wher~ mde • is -the .density of states effective mass of the conduction band 

valley and ~ is the normalized Fermi energy given by 

11 = 
E ·- E F e 

'kT· 

and F 112 <~) is a Fermi Dirac integral. The effective mass mde 

(721. 02b) 

does not 

··vary very significantly with the increase In doping <Abram et al 1978>. nor 

is . the k .dependence of the self energy significant <Berggren and ~ernelius 

1981>. so· this parabolic approxlm.ation may well be justified. The impurity 

<;bncentration is given by multiplying the above electron concentration per 

valley by the number of valleys <M = 6 for silicon see section 2.1> · . . . . ' . . ' c 

2m kT 
312 

de 1 1/2 · 
··N.~ -~ Me. ne· = Me 471 ( ~2 ) 2 11 F 1/2 (71). (721.02) 

. . 

To · solve . the above equation the electron <impuritv> 

conc~ntration_ · <Eq. 721 .. 02) is cai9UI!3ted for a series ot trial Fermi 

~n~rgies. · measured .with r~spect to the conduction band edQe. The Fermi 

Dlra~ integral was calculated using the NAG quadrature routine D01AJF. · In 

. Fig. 7.3 the results of this calculation both for zero <Eq._ 221.04> and 300 

;K are ·.presented. This shows that the. Fermi energy_ drops below the 

. 19 .. -3 
~onduction band edge at a conc,entratlon of about 2 .5.1 o - em with this 
't! '. ft ··.el 

simple model for th~ ~.a,~d. At higher concentration~ in. strongly degener~te 

~~'l~itiq!l§ !h.§ ~erm! energy tends towards the zero temperature value. -In 
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Fig 7.2 a comparison is made between 

2m E l/ 2 

( de F) 
112 

and the normalizing parameter kF used in later sections of this chapter 

<see Eq. 723.02>. Although both tend towards the zero temperature 

expression <Eq. 221.04b> in the strongly degenerate semiconductor kF is 

only an expression used to make easy the comparison between finite and zero 

temperature expressions. 

7.2.2 Calculation of the Thomas Fermi screening length. 

In the calculation of the Thomas Fermi screening length the 

parabolic approximation for the conduction band is again made. arriving at 

the expression <Fistul 1969. Panish et al 1967. Abram et al 1978. Appendix A> 

2 
K = M c 

3/2 m 
2 ( de2) 

2171'i 

(722.01) 

which reduces to the zero temperature expression <Eq. 231. 12> on letting T 

tend towards zero. 

7.2.3 The finite temperature plasmon dispersion relationship. 

The finite temperature plasmon dispersion relationship may be 

expressed in a way to ease comparisons between the finite temperature 

expressions and thew~ zero temperature counterparts. Thus Eq. 712.05b may 

be simplified by normalizing the wavevectors and Thomas Fermi inverse 

screening length with respect to the quantity 

M c 
= ( 2 ) 

377 Nd 

1/2 
(kT77) 

2 F -1/ 2 (11) (723. 01) 

which . reduces · to the expression for the inverse square of the Fermi 
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wav'eve~~or ~t zero temperature CEq'·."· 221.04). Eq .. 712.05b then becomes 

2 

2 = wp 
Wl(C{) . 2 

K 
{723. 02) 

2 4mde 4 
( K + q2 +.. ---- q ) 

· 3m· · 
.·op 

with Jhe normalized lf1verse Thomas Fermi screening length given by 

(723. 03) 

2m 

(~) kT ( 2 
x 2 -a- F- 1/ 2 ( 11) ) 
"J.l e££ · · 

whi<::h on letting T tend towards zero reduces to t~e normalized parameter 

used previously <for example Jn 322.03>. Using this normalized parameter 

highlights . the · similarity between the zero temperature and finite 

temperature expressions below. 

' . . 

7·.3 . CALCUI.ATION OF THE ELECTRON-ELECTRON 'EXCHANGE ENERGIES. 

in chapter 2 and 3 the zero temp.era!ure self energy was defined 

. <J:q. _240.07> 

. . . . . 
· : . . ee · .. · ." i o · : . i 71 ( w- v ) 

'(l~ .. · (.n-;k,w) = 4 E JJ G. (m·;k-q,W-¥) e· 1\nm 

t ·. 

·f· .. 

:··. 

.. ,_ .. 

. . 

.. ·:r: . 
: .... 

"·:' ... ; . 

. ,' ~ " 

.. .;' 
;:· ·.".: 

','). 

·' .·. 
., ..... 

·l 

· (277) m 
3 

w~££(q,v) d qdv· (730. Ola) 

:_ . wherf3 tl')e screened interaction w eff<q.w> used is defined. by 
. ' . . . 

2 2 
We~f(q,w) = e /EErq E{q,w) {730.0lb) 

. ~- '• 

.... ·wltr_ 

. ·.A· - A. 
. .. ~\.~. -. i'~ 

·.A 
.vc 

= 6 _.'··em 
.~.,~.. . 

(730. Ole) 

/
. . 2 . /. . 2 

· .1\L·H·- = · 3 4 Sl.t:l.9 · : A . =· 1 4 {1.+3cos 9) 
. HH 

In the present . calculations the finite . temperature Green's function <from 

· ·E~·: 7i 1:02) ~nd th.e. inverse :dielectric function (from· Eq~ 712.05> are 
. ·. ;·::. . ~ ·, . . ' 

,·. 

. • .·. '····-... : · . .-
.. ' 

. substituted into these expressions. Qn performing the frequency integral . 
.' 1 ' ' ; • .• : • ! j ~ • .'! i J f ~: < I f ' I ~! ; 

.. in the self enwgy <E~. 730.01 a> -pol~s in· the Green's function <leading to 
• . ( . ~ , ;'·' • ~-· Is. • ._ .. I ";.) J- \.; , . . • • . , 1 I .. • , , o 

the ~er~~fled ~yna111!~ exc~ange tE)rms> and pole~ !r th~ int.eraction <leading 

"' 7, lQ = 



·. ;·. 

.' ~.: .. 

., . 

to the cou.lomb hole terms> cue ·found <Eq. 310.03>. The same contour <Fig 

3.U Is used · as dictated by the exponential convergence factor introduced 

Into Eq. 730.01 a. The resulting expressions ·tor the coulomb hole and 

screened exchange terms are as follows 

SX · 
i'it:n . (k) = 

(7 30. 02a) 

Notice that where previously this wavevector integral "Yas from zero to the 

Fermi wavevector. now the integral will be over all q and the explicit 

inclusion of the Fermi Dirac function tm.k-q will provide the cut-off. 
. . 2 . 

ch -. e 2 1 wp 
'i'itn (k) = + 3 L J 2 . ( (N + 1) 

(2rr) eerm q 2w1 (q) q 
(730,02b) 

which ·can be seen to reduce to the zero temperature expressions <Eq. 

31 0.06> on letting the temperature tend towards zero. 

· It is the change In the self energy due to the inclusion of the 

many electrons in the .conduction band that Is of interest. As in chapter 3 

the· Intrinsic se.lf energy must be subtrabted from the perturbed self energy 

. · so ~hat the_ ch~nge In energy of the conduction band is given by <Eq. 
''• '".1 ;.-

~1.0.07a> · 
· .. ·. 

.· sx ch 
- -~J::c (k) + ~E;c (k) 

sx . · ch 
R~ (-flEe~ (k) ) + Re (1\I:cc (k) ) 

(730.03a) 

. ' . 
. where only. the exchange between electrons in the conouction band with each 

other need be considered. Whilst for the valence . band the intrinsic 
. . , · ·. · .· · lnt · 

silicon already h~s an unscreened exchange energy <t > which must be 

- 7.11 
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· .. •·. subtracted <Eq:_310.07b> 

ee sx ch 
~ . (k) = -6E (k) + 6E (k) v . v . v 

(730.03b) 

sx int · · · ch 
(Re(~~vv(k))-Re(~tvv (k))) + Re(~tvv(k)) 

··~ 

· . T~e SI,.I!TI of the two parts to the exchange energy may also be 

derived 'as was done 111 section 3.3.3. Taking the Cauchy principle parts 

2 2 
·w -ch+sx ) 

E I 
e ( .,. .· p 

( 6.E (k) . ::: 
3 2 f + 2W1 (q) .. ~ m,k-q 

( 27T) m Eerq 

N .. +·1- f 
q . ~.k-q 

+ 
w~~ k · ~. w~, k-q -:-· ~1 (q) 

0 
w n,k 

N + f 
q m,~~q ))A 
. o nm 

- W k + W1(q) . . m, -q 

(730.04) 

. ~hich may: b~ compared with the related example of the ~lectron-phonon self 

energy c:a19ulated by Hedin and Lundqvi'st <1969>. As mentioned in section 

·. 3.2 and: 3.3. the main concern Is with the bottom of the conduction band and 

the top of the valence . band in this thesis. However Eq. 730.02 and Eq. 

· 730·.04 · with the appropriate choice of en~rgy difference will give the 

electron-electron · contribution to the self energy of electrons at any 

wavevector at finite temperature. In the following two sections <7.3.1 for 

·condlJctlon band calculations and 7.3.2 for valence ·band calculations> we 
. . 

··con fin~ · ourseive~ to th~ calculation of the change in energy of the band 
,·· .. 

. ::. ;_ . ·· · gap· using Eq: 73.0.Q~ ~nd Eq. 73Q.04 . 
1:,: 1):.: ~·~ ~: .. • . . .. - . • 

.. ·· .. 

.,; ' 

·., ...... ·. ,··: :··.: 
. . '. ' 

. . 
. . . . :. ~ . • .. 

. ., 
: . .,· .... : 

·. •.,·: ·. . · .. 
.t ·.:. ~ . ·, 

, .. 
. ·· .. ' ~ ... 

. ·· .... 

...· ._ 

... 
. ·:-.. 

. . ,. . ··. 
'; .· 

·.::·;_ .. _·. •.::: ... · 
·. ·-.:·. ·. 

.•:: ,. 
~. , .. .:' ,. . .. ·.~ . 

. ·.· .· .. 
'·,·' 

·, 
··.1 

.. : ~- . · .... 



7.3.1 Numerical results for the conduction band terms at finite 
temperature. 

. . 

When. the Cauchy principle part of the self energy Integrals 

<Eq. 730.03> is . taken the resulting expressions for the condl,Jction band may 

be evaluated numerically. Full use of the NAG library of Fortr~n 

subroutines was made to furnish the necessary quadrature routines. The 

procedure followed having first chosen a temperature ·is to select a Fermi 

energy. calculate tt)e appropriate concentration as described in section 

7 .2.1 and fin~lly calculate the various contributions to the change in self 

energy at the band edge Csee Fig 7.6> . 

. From Eq. 730.02 and the energy difference CEq. 320.04> the 

·electron-electron contributions to the conduction band self energy at the 

bottom of on~ of the six conduction band valleys is 

OD 2 
·2 wp sx e 

J ( AE· = - fe,q 1 - ) dq 
e 2 2 wo c ) 2 271 €Er w1 (q) -

0 ee q . 

(7 31. 01a) 

this -reduces to the zero t~mper~ture expression CEq. 322.0~>. The coulomb 

· hole conirit?ution is 

ch 
AE · ··= e 

OD 
2 

~ J ( 
211. EEr o 

2 0 2 
w1.(q) - wee (q) 

2 
·W :p 1 

2W
1

(q) 0 
(wee(q) + 

) 
Wi(q)) 

dq (731.01b) 

. which also red_uces to the zero temperature expression CEq. 322.02>. These 

Integral~ (ire calculated separately. 



, .. 

',; 

.·.· 

~ ·• . .. 

•; ·. ,: . 

...... :.·: ..... :· 

.... • 

' . ; ... 

a>· .: SX 
for the ~E · terms . . . . c . 

This screened exchange term reduces to the difference between 

two i~tegr~ls derived from the two terms in the · inverse dielectric 

func;tion: • The Hartree Fock contribution <1
1

>: 

contributi_on <1
2

>. 

sx· 
~E·· (k.) = - I

1 
+ I

2 c. ~ 

co 

and 

2 e 
J fc,q ( i - 2 
o wl (q) 

the screening 

(731.02) 

·. where 1
1

. the finite temperature Hartree Fock con.tiibution. is given by 

Il. = 
2 e 

.2 
21T EEr 

(731. 03) 

the. Fermi Dirac integral is calculated as described Jn· section 7.2.1. The 
. . . 

numerically calculated values for this integral may be corn pared with . those 

of the zero temperature Hartree Fock contri.bution. or .the first parts of 

Eq. 321.03 

': 

'HF 
~E ::: -... c 

. ;.;.9 Nl/ 3 
1.323.10 d (eV) (731.04) 

Both th~ numeric;al results of Eq. 731.03 and Eq. 731.04 are plotted in Fig 

7.4. 
. ,, · .. 

As can be $een from this plot the finite temperature Hartree Fock 
-·-.· '· 

!erm . ~~. ·2q . ~?\1; ~rna.ller. than ttie OK counterpart. meq;iing with the former 

. . . 20 -3 
or-~ly a boy~ a donor conc~ntration of 10 em when n-type silicon becomes 
. . . . 

· · stn?n:gly dege~erate. · The ·second integral 12. or the screening · contribution 

to t!'le ~xchange energy. ·is given on normalizing the wavevecto.rs with 

·,. 

l ' 
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Change in energy of.the conduction band due to screened dynamic exchange at 300K and constituent parts. 



respect to the· parameter kF. <see Eq, 723.01 and Fig 7:·2> · 

. 2 
2m 112 · 1/2 

x2 = q2 = (q :c ) 
k

2 
371 N 

(~) (kT77) 
i'i2 2 F -1/2 (7]) (731. 05a) 

F d 

by 

2 2 
7]) + 1)(K +X) 

(731.05b) 

This integral apart from the Fermi Dirac distribution function is simil~r 

. to the second part. of Eq. 321.03. The numerical integration was performed 

using the NAG routine DOlAJF. The results of this numerical" calculation 

are plotted in Fig 7.4. 

The results of these two integrals and there difference ·are 

plotted in Fig 7.4 over a range of concentrations. for a temperature of 

300K. The contribution AEsx c at zero temperature . differ from the finite 

temperature contribution only by a fraction of a meV over the entire energy 

range. The calculation of AEsx c involves the difference . between two large 

The large difference between the zero . and 

. finite .temperature Hartree Fock contributions <1 1> is matched by a similar 
. . . 

. !arg~ change in screening contribution. so that tne ·nel change in AEsx is 
.. -.. ~ . ;<. _ _. ... '• ·.•. .... . . . . . c 
. . . . . 20 
small· <less· than 2 meV at most>. For high concentrations (> 1 o >. at 300K 

. :; .. :: ~:!:' '· i- -~ ~ ~ . • :. • . . . • . • 

the Fermi Dirac qistribution function is little · different from the step 
~ ;., ~) j ; 1 ' • .• ·~. • 

·. function used in the zero temperature calculations so ttie two contributions 
.; · · _., i.; :·~.-~ .... ~_/·.· . ·· L; .. ~. ·. ; n .. · : :"'·: · . · · · · . .. . · · . . 

11 and'l2 .·.reduce .. i9. the .zero temperature- result. for these high 

. concentrations. 

.· .·' 

• 'j. 
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. ch 

for the ll..E · terms 

The coulomQ hole contribution to the conduction· band exchange 

energy at the bottom of one of the. six valleys may aiso ·be performed in two 

parts and is formed by the. difference between these contributions· 

· · ch 
ll..E (k _) = I - I 

. c 1 1 '2 

co 0 
ch 

2 wee ~q) e 
f ( . ll..E .· = Nq .·. c. 2 w1 (q) 

277 €€r 0 w1 (q) 

where 1
1 

·is given by 

co 
' 2 . e. 

k_K2 f 1 

(731.06) 

2 
wp 

2 0 . .2 
wee (q) 

-7 ~ 2 2 . 4 1/2 k 
0 

exp (·uwp (K +q +aq ) I (K T)) - 1 

( 2 
K 

4 
aq 

·2 + q +.aq 
(731.07) 

1 

K
2 2 dq 

+ g 

wnere the wavevectQrs have beery normalized with respect to the parameter kF 

as recommended. in sectiQn 7.2.3. ·This integral was evaluated numerically· 

, using the NAG routin~ DOlAJF. the results are plotted in Fig 7.5. This is 
.. ,·: 

. . . 

•. an ·entirely new contribution to the shift of the conduction band. not found. 
· .. :•';.(i 'e-·: '.J'< ' I> t' • ' ' • .;.. . ·.. •' ' ' ' 

i~. ~b~. ?era tE!rrP~rat~r~ ex~rressions it is t"Jowe.ver les.s tha.n 2 mev for all 
_t1.). ,.,,,; ~·. rf.J 1 ., .. _i.'.'·': ,,, .. . . .. .· . . .. 

f9Pf.~qtr~ftRrs:~ . ·~~ on: me other hand is equivale.nt to the zero temperature 
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·coulomb ho.le term <Eq . .322.0 1>. It is given after making the substitutions 

/] = 

by 

3m . op. 
4 m = 0. 5951 

· .. ·de 

K 
K = k 

F 

2 e· 
.1 

~K2. J (l~t) 1/2 

0 

dt 

) 2 ·= .1 ~ t 

(731.0~) 

2 . 2 2 2 . . 2 . 
(K +/3-l)t +(1-2/J)t+/J+v(((K +/J-1)t +(1-2/J)t+/J)/J(t -2t+1)) 

. Hie integra11
2 

was performed by the NAG routine DOlAPF. The calculated 

· values of 1
2 

are compared with the zero temperature values in Fig 7.5. The 

difference bet~een them. large at low concentrations and small at high 

· concentrations. is due. to smaller electron screening at finite temperature. 

This increases the negative charge surrounding a test charge. hence 

decreasing the energy of the coulomb hole. Numerical results. tor both 
. . . : .· . . . . 

these contributions ~o the conduction band self energy and ·there difference 

are plotted in Fig 7.5. · 

·7.3.2. 

.-

-Numerical results· for the valence band terms at finite 
··temperatUre. 

When considering the valence ·band .. In sympathy with the 

palc~·lgtions .·at ~ero '·temperature. it .is convenient to deal with the total 

el~ctrori-elec:tron exc.hange . contribution <Eq .. · 730.04> . and .the screened 
f ' . :. ~ ; (_: . ~ ,. ~-(,.• . f t ... -~ I ! . \ . : , ' ' : • ·. 

exchan.ge · cbntribuiion . <Eq. 730.02a> separately. The· coulomb hole term Is 
:'· ·,. r• ·.' .·· • . . 

again more difficult -to ·evaluate due to the pole c9t the. intersection of' t~e .· 

plasmon di~persion curve with the electron energy. The summed contribution 

. t:lowever. ~voids this proble~TL .. When the Cauchxprinciple: part of the val~nce 

band self. . energy integrals <Eq. 730.03) .. are taken they result in . - :-0 '; ;::1 .·! J 

.... 

~~w~ssiqns that f!l~Y be evaluated numerically. FuiJ·use. of the NAG library 
. ,;, .. · :··· ~ • • • 1 

0 



; .. 

> .. ·.,· 

··.·. 

... -: _, .... 
. ·~ 

'.:·.:·' . ·.-, .. 

.: ·.r . ~ 

. ~. '• 

I .·• 

of Fortran subroutines was . made . to furnish the necessary quadrature 

routines. some of which are the same as have been used previously. The 

procedure followed having first chosen a temperature was to select a Fermi 

energy. ~alculate the appropriate concentration as described in section 

7.2.1 and finally calculate the various contributions to the self energy at 

the band edge Csee Fig 7.7>. 

From Eq. 730.04 and the energy difference <Eq. 330.0Sb> the 

electron-electron contributions to the valence band self energy may be 

·derived. . However . only the change in self energy. of the valence band 

electrons due to the additional conduction band electrons is of interest. 

The Ha.rtree Fock term must then be subtracted from the total valence band 

self energy as it was in the zero temperature calculations <see section 

3.3>. This amqunts to adding one to the bracketed part of the integrand of 

Eq .. 730.04. . The change. In self energy_ of for example the heavy hole 

valence band elect~ons ar~ then given by 

ch+sx : 
~EH: · · (k) 

N 
q 

1 
E J = 3 

{277) m 

+ 1 -.f 
.·. · m,k-q 

2 
e 

€erq 

+ 

2 
wp 

2( ( 1 f k . + m, -q 2W
1 

{q) 

N + f . 
q m,k-q 3 

~-0~~---o--~.~~---))Anmd q. 
w - w + w

1 
{q)__ · H, k. m, k .... q 

(73_2·. 01) 

. Performing · the ang~lar part. o'f the wavev~ctor inlegral ·for k::;:(), using Eq . 
. ·,·,...:.·:· .. ··· .. ·, 

'330;0~b . 'tor .. the energy. difference in. the . valence· band . the following 
. : ..J ;t_' ~. -. . ·-r :· . . . ... ·. ·. :. . . . . 

· .. ~!ri'!P'!!if~tio~ <with fm.k-q=l> may be made 
. . . . . . . . . 

00 0 2 

1 
2 WHm(q)_. W 

2 E f ~ ( Nq -o'----2-·--=P'-----_ -2 
477 f!l 0 eer w

1 
(q) wHm (q) - w

1 
(q) 

.·.·. ·- ch+sx 
. h.EH ... (k) -

dq (732.02) 
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the first part . of which ~ay. be compared with the zero temperature 

expression;. Eq. 332.01. Whilst the second part can be compared to Eq. 

330.06. The screened dynamic exchange part is given by 

2 
00 2 

SX e 
L I ( 0 . 2 

wp 
2) . .6.EH = dq (732. 03) 

2 
471 €€r m WHm(q) - W1(q) 0 

where the Hartree Fock contribution has again been subtracted as in Eq. 

330.03 .. The coulomb hole contribution has to be evaluated. by subtraction. 

a> 
· . sx+ch 

for the .6.E terms. · . v .. 

Treating the two parts of the valence band ~ummation 

separately. Contributions due to exchange between for example electrons in 

the heavy hqle band with those from the same b.and <HH) and those between 

heavy and light hole bands <HU are identified. The shift in the heavy 

hole band is obtained by summing these contributions. This sum Is found to 

be the same for the light hole band since the energy differences <Eq. 

;330.0Sb> are ttie sarrje for both bands at k=O. The four contributions to the 

electron--~lectron shitt of the valence band are 

sx+ch .6.E . 
. H 

00 0 
·.·. ·. ··.· , · 2 WHm(q:) 

sx+ch · .. . 1·: ~ I !:_( Nq 
. ,~EH . ( k) = . 2 i.J 0 2 . 2 

WHm (q) - W1·(q) . 

· where 

I 
.lHm = 

·471 m.o €€r w1 (ct) 

2 ·w· + .· p ____ 1 ____ ) 

2w1· (q) (w~ (q) + w1 (q)) 

.2 
w. p 

2 0 2 
wl (q) - wHm (q) 

(732.04) 

dq 

dq (732.05) 

a cofr\pletely new integral similar to that in the zero temperature screened 
.• ... · 
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exchange Integral Eq. 330.05c. and an ,integral equivalent to the zero 

temperature integral Eq." 330.06 

00 2 
2 wp. e 

f 1
2Hrri - 2 2tl]1 (q) 471 EEr 0 

1 
dq (732.06) 

0 
(W1 (q) + WHm (q)) . 

llHH is given by th.e expression 

00 

·+1HH = 
2 e 2 1 

2 kFK f 2 2 4 · ·: 
471 EEr. O exp(~Wpv(K +x +Px )/kTK) - l 

4 1/2 
')IH X 1 

( 2 2 4) -4...,..-2-. -2-
K +x +Px ax +x +K 

dx 

(732.07) 

·3m 2 
m 

p op 
0. 5951 p ( de) 0.2548 -' - 'YH = = 4m · mH de 

a - jJ - , -. 0.340 K = 
I( 

kF 

which. was evaluated using the NAG . routine DOlAJF. Results for this 

lnteQral are shown in Fig 7. 7 and show that It· contributes less than 1 meV 

to th.e total . ·valence ·band exchange over the entire density range. However 

· ·tt1e. comparable inteQral for the exchange b~tween the heavy and light hole 

... · electrons 
···. 
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4mde 
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o .. 5 95.1 

- 1.893 

4 
')I X . L 

( 2 2 .· 4) 
K +x+Px 

1/2 

2 
m 

= P ( de) = 2 • 4 8 8 
. 'l'L mL 

K = K. 

k 
F 

l 

(73~.08) 

i§ mgr~ ~ift!eH!t !CI. ev~!~ate numerically due to the poor modelling ot the 
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pl~sm~n · pea.k .. :by _th,e ·present i_{ivers~ di~lectric function. The ~a me problems 

were encount~red when attempting' to evaluate the zero temperature screened . . . . . . . 

exchange contribution in section 3.3.2. and has been commented on in 

section 2.3.3. · Th~ problem arises . because the plasmon peak is not damped 

as it should pe <see Fig 2.7 _for zero temperature>. The -plasmon peak 

occurs when the plasmon dispersion curve intersects the light electron 
. . ' . . 0 . 

energy <w1 <q> = e Lc{. · This point changes in energy since the dispersion 

relationship depends. upon the Thomas Fermi screening length, In Table 7.1 

a list of the energy values of this intersection are presented for 

different concentrations. 

:Ncl 
. -3 ·. 

(em . .) 

1.1.017 ' 

1 io1 E3 
.. 1 :.1ol, 9 
.. 20 

. 1.10 . 
1 .102 '1 . 

Table 7.1 

· ·Plasmon energy . .and the exchange cpntribution 
between heavy and light hole bands 11 a~d 12. 

· -t'lw . energy 
p. 

pea}< 
(m~y) (meV) 

6.71 43. 3 
21.22. 53.5 
67 ,:Q9 104.0 

212;15 a92 
670.89 974 

of €/k':r 
T= 300i<. 

1.68 
2 .. 07 
.4.02 

.11. 31 
37.68 

I 1HL. 

(meV) 

..;. 2.32 

- 2.97 
-·0.76 

- .0. 003 

1
2HL 

(meV) 

1.79 
4.36 

9.19 
17.15 
29.84 

. .· '~·:· 

.·':<> :;. '-: : · ·:.::~·: Alsg ~~?~r in.· TapiE(7.J .i~. the. value. of this intersection energy normaliz~d 

.·· .. 

... · 
•'• .:· . 

:··· ' ... 

This shows that the· multiplying 
... -

:factor N. acts· ~s . ~ 'strong. damping. factor·· above a concentration of about ... q . 

10
18 

vtlhere €/kT > 3. Th~ values of ll calculated from Eq .. 732.07 using the 

NAG routine DOlAQF reduc~ to zero beyond this concentration. Thus the 

proplerns oL numerically calculating · this integral are . unimportant for the 

coricentratlo~ ·.region of. il'lteres,t. to. ··~s -abov~ the . ~ott transition. The 

v~lues of 11 HL' .which .. _\ . . 
latge . negative · because are of. the negative 

contribution, from the im~~r~~d of Eq. 732.08 below ·the intersection point. 



are· not reliable. The comp~rable . numerical routine to calculate the zero 

temperature screened exchange terms does not given the correct results 

either. as indicated after Eq. 332.09. However these values for IHL are 

incluaed in the following analysis and there magnitude is shown in Fig 7.7. 

· The contribution 1
2

Hn is just the zero temperature contribution 

with the finite temperature w
1 

<q> <Eq. 331.02>. And gives 

13 = 

1'L = 

1 2HL 

3m op 

4mde 
= 0.5951 

m 2 
iJ (. de) = 2.·488 

mL 

2 2 1 
e K 

J = + 2 
1671 EErkF 0 

K K = kF 
q )2 = 1 - t 

kF t 

m 2 
1'H = 13 (mde) = 0.2548 

H 

1/2 

dt 

(732.09a) 

2 2 2 2 2 
(K +/3-1)t +(1-2/])t+/]+~(((K +/3-1)t +(1-2/3)t+/3)1'L(t -2t+l)) 

and 

2 2 1 1/2 
e K 

J 
t 

t) 1 2HH. = + (1 2 
1671 EErkf 0 

(732. 09b) 

dt 
2 .2 2 2 - -2 

(K +/3-1)t +(1-2/])t+/]+~(((K +/3-1)t +(1-2/3)t+/3)~H(t -2t+l)) 

which w~re calculated using the NAG routine D01APF: The numerical results 

for the sum of the 1
1 

and 1
2 

contributions are given in Fig 7.7. The 1
2 

contribu~ions form the greater part of the sum. ·The zero temperature 

·- · · · sx+ch· 
contribution of the f).Ev terms ·is also plotted and it shows that this 

is tess than 2 mev greater than the 300K values. Thus· the change in the 

band gap reduction due to temperature below an electron concentration of 

20 ;_3 
10 em comes mainly from the conduction band contribution shown in Fig 

7.6. 

- 7.22 --
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for the E· terms . . . v 

. The screened exchange part of the finite temperature electron-

electron self- 'energy· CEq. 73~.03> reduces . to the same form as the zero 
_, 

. temperature Ejxpressions with the appropriate choice of !< and kF 
. . .. . ·, . 

<see 

section 3.3.2>. The resulting expressions at finite temperature are Csee 
. .· 

Eq. 332.06 and 332.08> 

aL -
3m 
~ 
4mde 

3m·-
op 

4mde 

m· 

( 
de 

(in : ) L . 

2 
- 1 ) = 1.893 

= 0.3403 

e2K2 2aLkF 1/2 

. ( 2 2 2 . 2 1/ 2 ) + 
87TEEr · (kF + 4aLK ) ( (kF · + 4aLK ) - kF) 

(732.10a) 

1/2 
) (732 .. 10b) 

These, expression · ~re . evaluated with the finite temperature parameters 

replacing K and lc:F 

Th_e . results .tor these two expressions are presented in Fig 7 ~8 

~nd the diH~rei"!ce betw~en the total CFig 7.7>. and screened exchange CFig 

7 .8>. or ~he coulomb hole terms are presented in Fig 7 .9. These· graphs 

.. show that although the screened exchange contributions do decrease in size 
{,_ • f"; :'-' • ·. '::. . ~ • _.; ·, :' • · .. 

with ·increasing temperature. ~o do the coy lomb hole terms. ·Since these 
·-: ~·: . <: ·~ !''; ::. :· . ·: , I; •·:· ~ . •' 

__ ·- ~ontributions are. subtractive. this . results in only a small decrease in the 

valence band energy. · · The conduction band contributions are however 

_additive. resulting in a large change _in energy. of the conduction band edge 

du13 to temperc:Hure <see Fig _7.6> . 
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7 .3 .. :3 Summary. 

In this section the shifts in the conduction and valence bands 

due to tne· chang·e in screened electron-electron e~change energies <Eq. · 

300.(}2 ;;ind ~00.03> have been calculated at finite temperature. It has been 

. found that. in the plasmon pole approximation these can be split up into 

coulomb_ hole and screened dynamic exchange _contributions <named by Hedin 

1965 in. connection with electrons gases in metals see section 3.1 > 

ee SX AEeh(k) AEe(k) = AE (k) + .. e .c 

ee 
(k) AE 

sx AEeh(k) AE = (k) + v .. v v 

The coulomb hole contribution~ <see Eq. 731.01 b and 732:02. 732.03) 

,, ._,_ . ' . . . . 

ch 
AEV (k) 

., .. 
. - . . 

-. 

2 
e 
2 ' 

211 €€ r 

2 e· 
2 ". ;· 

471' EEr 

.· ,· --- ... 

..-.... 

2 
wp 

2w
1

·(q) 

CD 

L: J ( N 
q 

m 
0 

1 
) 0 

dq 

(wee (k,:q) + wl (q)). 

0 2 
(Jvm(k,q) w 

.P 

wl (q) 
0 . 2 

wvm(k,q) wl (q) 

1 .. 
0 '). dq 

(wym(k,q) - w
1
(q)) 

2 

reduce . the. energies: :of 'both conduction and valence b.ands contributing a 
. i .,~~-,:_,~ u c ~-;. . !1'. ·'? . ._; . . 

. · ·· .. sm~ll inc~~ase <+ 1 o rilev ~t .1020 em - 3
> to the change in the band gap as in 

··the zero temperature results of· chapter 3 <see Fig 7.5 and Fig 7.9>. The 

screened · dynamic exchange contributions of each band <Eq. 731.01 a and 

e 



:-·. 

-·:.: 

. .. . .. . ~ ·. 

·'· • 0 

,· ·::; '· .. 

732.03> however act ih. opposite directions. both to reduce the. gap <Fig 7.4 

and 7.8> 

2 e 
co 

2 f fc,q ( 
211 EE 

1 - . 2 
Wl(q) 

2 
wp 

0 2 ) dq 
- w (k, q) . . r o. cc 

co 2 
SX 2 w e 

[ J 
p 

6E (k) = + ( ·o ·2 ) dq v •2 . 2 
471 EEr wl (q) - w (k,q). 

m 0 vm 

.. With appropriate choice of the energy difference in th~se expressions 

change in the band energy at any value of k may be de~ermined 

0 
w . -

v]< 
0 

CJV (k-q) = 
0 

W.vn {k,q) 

the 

The major difference between the zero temperature calculations 

of ch~pter: 3 and the values for the change in the conduction <valence> band 

.. bottom <top> at a temperatur~ of 300K shown in this chapter is a sm~ll 

Increase in the finite temperature band gap at low concentrations. This 

incre.ase is ~aused mainly by the reduction (7 mev at 1.0
17 

em -
3
) in the 

conduction band shift <Fig 7.6>. The valence band shift <Fig 7.7> remains· 

within a 2 meV of its. zero temperature value. ·The large change in ttie 

conductJon . band shift is due to the decreased scr~ening _·.<small 1 I K> at ·low 
. . ...... . 

·concentrations (Fig . 7.2>. This ·has a disproportionate effect on the 
. ~ -

· conduction· band wtiere the magnitudes of the screened dynam.ic exchange and 
. . : . . ' . . . . 

. . . 

· · coulomb hole. terms are additive. The sum of this electron-electron band . 

·gap reduction:_. and t_he electron-'-impuhty band ·gap reduction calculated in 

· ·the J'1ext section results in a ·net increase in the band gap reduction due to 

. the large increase in the latter contribution. 



7.4 . CALCULATION ·OF THE ELECTRON-IMPURITY·. SE.L..F ENERGIES. 

In this section tt)e extension of the electron-impurity se.lf 

energies calculated in chapter 4 to finite temperature Is considered. The 

electron-impurity. energies are by far the most simple to evaluate since the 

interaction is essentially static. 

7 .4.1 . Numerical results for silicon. 

. The .ensemble averaged self energy expression used was derived 

in detail in . chapter 4 and is unchanged at finite temperature apart from 

the use of the appropriate finite temperature parameters. The electron.:.. 

impurity self energy of the band n is then given ·by CEq. 450.03a> 

ei . Nd o · 2 3 
"fit (njk,W) = 

3 
[ J G (n;l,w) IW(l-k,w) 1 J\un(k,l) .d 1 

11(277) · ·m 
(740.01) 

whilst the appropriate shift In the ·band edge is given ·by the real part of 

this self energy 

(740.02) 

The .. change in the band gap du~ to the electron-impurity self energy is 

give~ py 

. · -~ -~ · . (740.03) 

.. · .. 
' .. "• ,.... ·. · .. 

... ,·· ~. • ,: . . . j 



This is reduced to one integral in Eq. 450.06 

mH + m 4Nde 
2 

ei 
(1 

L 1 
6E = - + 2m ) -eg 

de a effeer k3 
F 

a (qj~) 2 
2 

00 1 + 
·s ( 2 2 4) d (qjkF) 

0 . ( K/kF) + (qjkF) + a(qj~) 
(740.04) 

m 
3 op 

a = = 0. 5951 \ 4 mde 

where in place of the zero temperature quantities kf .. and K the finite 

temperature variables kF <Eq. .722.02> and the finite temperature Thomas 

Fermi screening length K <Eq. 723.01> are substituted. 

This integ·ral was solved numerically using the NAG library 

routine D01AJF for a number of differ~nt impurity concentrations. A number 

of different Fermi energies were selected that were then used to calculate 

the impurity concentration they represented as indicated in section 7.2.0. 

These impurity concentrations and Fermi energies were th~n used to evaluate 

the Thomas Fermi screening length and hence the band gap reduction detailed 

in Eq. 740.01: Res.ults for this calculation for a temperature of 300K are 

presented in Fig 7.10 which also shows the zero temperature results from 

Fig 4.1. These show that for low concentra~ions << 3 10
19 

cm-
3

> the 300K 

. : . . . 20 -3 
results diverge. However at high concentrations <abo¥e 10 em > in the 

strongly degenerate semiconductor the results tend towards the zerq 

temperature results. 

- 7.27 -
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7.4.2 Conclusions and validity of results. 

To clarify the above results calculated from the plasmon pole 

approximation Fig 7:11 shows the zero and 300K Thomas Fermi results 

<.6E TF >. . These are calculated by substituting the appropriate finite . _g 

temperature values into· Eq. 442.14. The average first order interaction 

given by 

E 
0 

i co . 3 
= 

0 
J V(r) d r = 
0 

= (eV) · (742.01) 

· . is also pres~nted In_ this figure. As has been discussed <section 4.3 and 

Wolff 1962> this first order term is cancelled by the first order electron-

electron self _ energy. However as shown in Fig 7.11 at 300 K this first 

order term t>ecome_~ smaller than the second order self energy below a 
.· .. · .. 19 -3 

concentration of about 2 ,1 0- · em . Clearly this Indicates a break down of 

the perturbation seri~s at low concentrations. As has been discussed in 

. _ section 4.6 the perturbation series breaks down even in th~ degenerate 

material if· terms of high enough order are considered. However as Ghazali 

and Serre ·<1982. 1983> have sho\Yn if the self energy diagram·s are summed to 

. . . 
infinl!e · order a _ meaningful result is still obtained: For the present 

. . . 

calculations where· the ·only interest Is with concentrations abov~ the Mott .... 
. . .··. . ' 19 -3 
tr~~~~~ion at about 3 .1 o . em the second order self energy calculated is 

The upper. . concentration limit to the etect~on-impurlty 

calculations Is stili.- the same being defined by the point at which the 

impurity, potential m~y _no longer be considered as a small perturbation. to 

the crystal potential. This point has been estimated In chapter 4 to be 

. . ·. . 21 -3 
a hove a <1onor concentration of 10 em silicon where the ·donor separation 

• . • l 

~~ 8! ~h§ or~er 8f me. l~!t~c~ parameter .d <see Fig 7 .2). 

~ 7-?fl -. 
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7.5 CONCLUSIONS. 

In Fig 7.12 the sum of the electron-electron and electron-

impurity self ener~ies is presented for both zero and 300 K. As detailed 

in the introduction· these results are only valid above the Mott critical . 

concentration which is higher than zero temperature value due to the 

increased low concentration electron screening length Cl!K see Fig 7.2>. 

Below this concentration. although the electron-electron self energies 

shown in Fig 7.6 andFig 7.7 are still valid when there are Nd electrons in 

the conduction band .. the electron-impurity self energy is no longer val_id 

<section 7.4.2 and 4.5>. The Mott transition then defines the lower 

concentration limit to the results. At concentrations below 1 o 19 
em -

3 
the 

experimental band· gap narrowing results might well be best described by the 

statistical approaches of Heasell <1979> and Popovic <1979) where a 

degenerate semi-populated impurity band separate from the host band is 

considered. However above the Mott critical density the true many body 

· effects calculated in the previous sections should . be used. assuming a 

merged conduction and impurity pand. 

· Perhaps the most promising recent work in the intermediate 

·concentration range close to the Mott transition has been carried out by 

Ghazali and Serre <1982. 1983) where the self energy is summed to infinite 

order and the density of states is derived directly from the imaginary part 

of the · total Green's function. With the use of the plasmon pole 

approximation and the electron-electron exchange energi_es from section 7.3 
. . ' . 

·this could also be extended to finite temperature. 

. - 7-?!3 -
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CHAPTER 8 

A METHOD FOR THE EXPERIMENTAL MEASUREMENT OF BAND GAP 
NARROWING. 

8.0 INTRODUCTION. 

A· recent review of experimental technique~ has been made by 

Mertens EH al Cl981 >. In the past the measurement of band gap narrowing in 

semiconductors has been performed by the measurement of the absorption 

· coefficient for band to band photoexcitation <Volf'son and Subashiev 

<1967>> and ·by the measurement of the pn product <Siotboom and de Graff 

· 197-6. Mertens et al. 1980>. . The present method to measure band gap 
. . . 

narrowing in heavily doped n-type silicon may be classed· amongst the latter 

conductivity type measurements. It involves the novel use of. a wide base 

parasitic transistor formed by the p-type substrate on which Integrated 

lnjeC!ion Logic structures are fabricated Call the devices were fabricated 

with ··ion implantation of impurities by Plessey <Caswell> Ltd). Based upon 

the rr1easurement ·of 'the ~ubstrat(3. s~turation current density <Jpso> . over 
. ·. . . ' . ... - ~ . ' . . 

a 

· r.a.n.qe of t~m_perature~ (200 ~o 400 ~~ th~ measurements require the knowledge. 

· qt . the · . transport fact9r. . minority carrier diffusion coefficient <or 

•, · · mqbilityJ .. in ·the heavily ars~nic doped buried layer. the intrinsic band gap 

. <section 8.2.4> an.d c:arrier · concentration <section 8.2.5>. · · The temperature 
. . . 

·· .... -·. < g~~~~9:~~r~ . er ~~~se ya~jous parameters including junction areas <section 

8.2.6> t~roug~ which . the currents flow are also· considered. 
. 'I ' ' 

For the 

-. ·. pr~sent .work values for the ·mobility at. 300K are taken from the literature 
: r.t ·. . . ·. . . . . . . . 

<section· 8.2.3>. The transport factor is ·c.alculated <section 8.2.1> from a 

measurement of the: hole current injected _into th~ heavily doped buried 
··._!'• ._· ' • 

. !§lY§r !rOm t~e '!nteQr.ated Injection Logic. cells (J' section. 8.2.2). . . ..... . . . .· .. .. .:•·. pv The 

·results obtained include not only the band gap 
; • .... .:: ~ : . ':' ~ . ~ . : \ ,.: \ . . 

narrowin·~ <l oo ± 25 meV> in 

' 19 -3 
'th~ h~~~ily, qppeq PU.r'E!~ !~yer ~2.4.10 ~m ~· but also temperatur(3 

., 



dependences . of the carrier mobilities in the various regions of ·the device 

and the minority carrier lifetime in the buried layer <30 ± 10 ns>. 

The . use of lntegrat~d Injection Logic transistors to measure· 

band gap narrowing is not new <Mertens 1980>. however the previous method 

used a heavily doped n-type substrate making minority diffusion length 

measurements on the back of the slice using optical techniques that rely 

upon the optical bandgap shrinkage occurring at much higher doping levels 

than those used in the device. 

The experimental method requires the Introduction of many 

different symbols. not used in any other chapter of. this thesis~ For this 

reason we summarize in section 8.1 all the important symbols used. Section 

8.2 . treats the .salient features of the theory required to analyse 

Integrated Injection Logic structures. Section 8.2.1 and 8.2.2 give the 

main expressions required to measure the band gap narrowing. In section 

8.3 the methoo of analysing the various terminal currents for the range of 

temperatures is discussed. In section 8.4 the details of the experimental 

results are presented outlining the general agreement between these results 

for . the temperature dependence of carrier mobility in lightly p-type and 

heavily n-type doped regions of the Integrated Injection Logic struc.tures 

with thos~ published. in the literature. Finally in section 8.4.5 the band 

gap narrowing results are presented. 

~ 8.2 ., 
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8.1 . LIST-OF THE SYMBOLS USE.D·AND WHAT THEY DENOTE. 

· area of buried layer junction Ab. 
area ot Ill base contact. . 

. area of Ill collector junction. 
general junction.area. ·. 
junction area of the lateral pnp transistor. 

<A > . area of Ill collector oxide covered p+ <p-> base . . o-
. . area of IlL super /3 b(ise junction . 

. average minority carri~r diffusion coefficient. 
minority <hole> carrier diffusion coefficient in buried 

layer. 
minority <hole> carrier diffusion coefficient in lateral pnp 

base. 
D = D Tn minority carrier diffusion coefficient. 
.on · fif. >. minority carrier diffusion coefficients. 
D
. p n .. 

. minority <hole> carrier diffusion coefficient in substrate. 
D~ . minority <electron> carrier diffusion coefficient in super /J 

base. 
E · · <E > · energies of conduction and valence bands. 

c v· 
. EF - · ·Fermi energy . 

. 
~g . intrinsic energy gap. . 

E = 1.1209 eV <T=300K> see section 8.2.4. 
E <Nd> concenqration dependent energy gap. . . 

9 E <Net> = E . ,.. ll.E CNd> see section 8.2.4. 
ll.Eg <N d> · concenqrat1on de~enderil band gap narrowing. 
F. Fermi Dirac integral jth order. 
d Gummel number for the buried layer. 
G~ Gummel number for the base of the lateral pnp transistor. · 
G /J . Gum mel number for the super /3 base. 
lb I 1 11 . IlL terminal currents. 

co · nJ ·. 'ff t (J - I - I . Jd · dl erence curren d - b . .>. 
"I b substrat~ current. · . '"J 

· JU
01 

.v~rt~cal collector curr.ent. dens.ity. . . 
. . . .. Jc vert1ca1 inj~ctlon of electrons mto contact covered base. 

··· · · . Jn~ .vertical injection of electrons into n+ coliector. · 

'·''; 

. Jn' ... ·· (J. > vertical injection of electrons into oxide covered p+ <p-> 
.no+· ·no- . · ·. · 
· · · ·· . base. . . 

. · .. J 
. ns 

.... :: ~pl'_ 
,.· Jps 

. pv 
; . k . 

,, ; . ·.' ~ . : 
.. ' 

Jnv • ·vertical injection of electrons in substrate transistor . 
· lateral injection of holes Into p+ injector .. ·. · 

.. (J .·.) vertical injection of holes to substrate <saturation value> .. 
· cJP:~> ·v_ertiCal i.njection of holes to n+ buried layer from IlL base 

P · · · · . <saturation value of J >._
23 

_
1 

-Boltzmann constant = 1.38 f.~ o JK . 
~ .. . : :' ~ .. . 

_·\'/~-_: .... >;' ... 

. ·.: 

.. - ·, ,. 

i .• ·' .· 

\ .. I . , ~ . 

· L · · minori~y oiole) ca~rier diffu.sion length. in buried layer. 
L b · L · minority carrier diffusion lengths. · · 

: ·M' .. -.: P Number of valleys in conduction band <M = 6 in silicon>: 
·c c 

m ... <mYJ conduction <valence> density. of states effective masses . 
N c<x> Nd~x~, . impurity concentration as a function of distance x. · 

· Na effective conduction band density of states tor one valley. 
o

1
c. intrinsic carrier3concentration. 

· .· n?. = n~ T exp<-E /kT> see section 8.2.5. 
· effectiv

1
e intWnsic carrie~ concentration. · · 

· " · n. · = n. exp<E - E (Nd» see section:.8.2.5. .. . 
electr~he contentratlbn ln~he collector of the 'substrate . 
i.. . ;_; , .. , '1. . . 



transistor. 
effective valence ·band density of states .. 
hole concentration in. the buried layer. _

19 
numerically equal to the electronic charge = 1.6.1 0 C. 
temperature CK). 
base emitter voltage. 
collector base voltage. 
collector supply voltage. 
mean value of v h 's measured for a particular temperature . 

. substrate buried -~~yer junction voltage. 
width of lateral pnp base. 
width of buried layer. 
width of super· /3 base. 
distance. 
minority carrier mobility. 
minority carrier lifetime. 

Some subscripts: 

E.B.C.inj.sub 

b 

/3 
I 
s <sub) 
n.p 
n- n+ 

1 ,2.3.4 
v. 

denote emitter base collector injector substrate of the 
IlL gate .. 
n+ buried layer. 
super /3 base. 
lateral transistor. 
substrate. 
denote electron and hole density respectively. 
denote light and heavy impurity concentrations 
respectively. 
used to distinguish cells 1.2.3.4. 
general subscript. 

- 8-4-
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8.2 THEORETICAL BACKGROUND. 

· The complexity of the Integrated Injection ·logic devices is 

such that a· deta.iled transport analysis of the structures is not feasible· 

tor a short study. However the results obtained Indicated that. the simple 
. . . 

expressions used were· adequate to describe the ·terminal currents. In this 

section the detailed expressions used to describe the terminal currents are 

presented. 

: A . typical Integrated lnj~ctlcm Logic cell .of the type used in 

the present experiments is shown in Fig 8.1. The equivalent circuit and . . 

biasing arrangements for the cell are shown in Fig 8.2. As can be seen 

from Fig 8.1 the cells are of. a composite base structure. with heavily p-

type· doped implants surrounding the active low doped p-type base to lower 

the ·base resistance <Plunkett et al 1978>. The whole structure Is 

. surrounded by a heavily n-type doped guard ring . that extends into the 

heavily n-:-type doped buried l?y~r and to which the emitter contact <not 

; shown .. In Fig 8.1 > is made. It is this buried layer. detailed in Fig 8.3. 

that · Is of primary interest since it forms the ba~e of the pnp parasitic 

transistor <marked as T3 in Fig 8.2>. The Integrated Injection Logic 

transistor is used ·to measure the electron <J .> and hole currents <J > · n1 pv 

that pass through the upper pn junction. whilst the substrate current <J > 
.· . . ·_ . . . . ps 

gives · a mea~ure of the hole current that succeeds in traversing this 

layer. By comparing J and J t!le transport parameters for the heavily 
. . . . pv . · ps 

doped buried layer may ·tie determil')ed. 

·In · section 8.2.1 · the details of the transport through the 

buried layer are presented. In 8.2.2 the principle behind the measurement 

of ~pv i~ · pr~se~~e:~- . In· the remaining sections <8.2.3 to 8.2.6> the most 

im~on~nt p,ar~meters <mobility. · Intrinsic band gap. intrinsic carrier 
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.Equivalent circuit and biasing arrangements for cell 2, Tl and T2 form the standard 

IIL cell, T3 is the parasitic substrate transistor. 
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1.· 

concentration.· depletion layer widths> required for the above expressions 

are discussed. 

8.2 .. 1 Transport through the burled layer . 

. Using simple theory. with recombination in the base and zero 

hole density at T 
3

·s base collector depletion layer edge. the current 

densities shown in Fig 8.3 for the wide base parasitic pnp transistor may 

be described by the following expressions <Sze 1981 pp 137> 

J pv 

J ps 

J. 
ns 

= 

= 

qDbpb . wb 

Lb 
coth(L) exp(qVbe/kT) - 1 

·b 

qDb!>b 1 . ( 
sinh(Wb/Lb) exp (qVbe/kT) L· 

b 

qD n 
Ls 

9 
( ·exp(qv

9
b/kT) :... 1 ) 

s 

) 

- 1 ) 

\IVhere Jpv is the ·hole. current entering the buried.layer and Jps 

(821.01) 

(821.02) 

(821. 03) 

is the 

current which succeeds in tra~ersing the layer. Jns the electron current 

from the substrate is held at zero <V b =0>. J . 
· . s n1 

is not detailed here 

since It depends upon the precise nature of the region above the buried 

layer. in t~is· ca:se an Integrated. Injection Logic transistor. Often the 

. . .· . 

influencE} of the non-uniform heavily doped n+ base region are taken into 

(821.04) 

Where Gb is the Gumrpel number <Gummel 1961. and Eq. 821.11> and nieisthe 

effective intrinsic C~Hrier concentration (see section 8.2.5) given by 

·2 
n.· ,.J.e 

2 ~E /kT 
-n· .. e·g = 

1 

2 
n. 

10 

= §,§ = 

(821.05) 
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Fig 8.3 Impurity profile of the arsenic buried layer used 
.·. to f!!easure band gap narrowing.. Also shown are the . 

principle hole and electron curren-t: densities involved. 
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With· temperature :and concentration dependent band gap <see section 8.2.4> 

given by the' expression 

(821 .. 06) 

aEg ~Nd> th~ effective band gap narrowing is supposed to be temperature • 

independent in what follows. Substituting these expressions into the 

expressions for J and J <Eq. 821.01 and 821.02> gives 
pv ps 

·J ·pv = 

J = ps. 

. . . 2 
qDbnie 

Gb. 
(821.07) 

(821.08) 

The Gummel calculation Is usually performed within a. narrow base transistor 

and assumes no recombination in the base region. However t.he current 

. ; density expression~ above <Eq. 821.01 and Eq. 821.02> are calculated on the 

.:·, 

,,_: 

specific assumption that recombination does occur in the base. This 

apparent contradiction . 9f using the Gummel number whilst allowing for 

reco_m.binatlon is not reconcilable using simple theory.· However it has been 

· ~hown at, l.~ast for :low . Impurity -concentrations that a fair amount of 

recornbinatiol') does not slgnificanJiy change the Gummel number <~ummel 1961. . . . . .. , . ' . ·. . . .. . 
:-·· _.. 

· 1970>. If one required a more exact analysis of the· current densities the 

c'ontinuity · and ·current den·sity ~quations would • have to· be solved 
. . 

n~merically :within the n+ buried layer. A more important .approximation 
'I ,I • ' ' ··, 

. m.ade above is · that the concentration dependent band gap narrqwlng is 

constant throughout the buried. layer shown in Fig 8.3. Band gap narrowing 

results derived in the following sections correspond thel') to some sort of· 

The variation of intrinsic_ 

concentration 
.. ~ ' . : ! ' l ' j ~- •• ! 

and mobility in the n+ 
,If:,_, ·I . / . , 

buried layer could be 



accol!nted tor with use of th_e generalized Gummel number <Hart 1981. pp 11 0> 

w 
D n. 2 

Gh f 
av. l. 

) (821.09) = N (x) dx o·· n. 
·o p l.e 

Dp and n
1
e b0th concentration oependen!·with average (jiffusion coefficient 

w 
1 . 

D = - f D (X) dx ( 8 21 . 1 0 ) av w · p 
0 

and the Inherent knowledge · of the concentration . dependent _band gap 

narrowing .and mobility.. In what follows the simpler definition of the 

Gummel number is used 

w 

Gb =. J N(x) dx 

o. 

(821.11) 

being merely a convenient way of averaging the impurity profile N<x>. 

As to the method of calc·ulation of the band gap narrowing 

provided V sb <the substrate to buried layer voltage> is kept equal to zero. 

· the substrate current is unaffected by J and gives a measure of J 
· . . . . ns ps 

directly. The transport factor is given by 

J 
1 . ps_ 

wb tr = J = 
pv .cosh ( 

Lb 
) 

(821. 12) 

.. hence by rearranging 

1/2 

) (821.13) 

<the negative sign gives an un-physical solution> which on substitution 

into the expression. for the substrate .·current <Eq. 821.08> gives the 

effective b.and gap narrowing 

) (821.14) 



The saturation hole current J . m_ig· ht_ equally ._be .used to provide a less · · · · · pvo 

accurate <because · of · extrapolation errors> value for the band gap 

narrowing. however. the hole current chosen gives a more direct result. 

Using the relationship 

(821.15) 

and the burled layer width <Wb> the minority carrier diffusion length <Lp> 

and life time (T > of the carriers may also be calculated. By varying both . p . . 

. voltage V be and the temperature it was hoped to test the validity of the 

above expressions and thus to estimate the band gap narrowing. 

8.2.2 Measurement of J : 
- . . ·pv 

Measurement of the tr~nsport factor <Eq:· 821.12> requires the 

. measurement of Jpv· Berger et al <1972 also see Berger 1979> introduced 

the basic method of separating out· the various injection currents in the 

ln~egrated Injection Logic transistor. . The structure used is different 

from the original . Integrated Injection Logic transistors in that it 

. incorporatE;ls a composite base region. with . p+ implants surrounding· the 

·active _low doped· super p ba~e to reduce base recombination <Plunkett et al 
'· • • - • • 1 • ' 

'. . ~ 

1978>.. Fig 8.4 shows a cross section of a typical c~ll. Berger's method 

has. beeri extended to include · other current densities tor ·example 

·. re~ombination in ·base region and sideways leakage to the n+ guard ring 
! • . • 

<Yang et al 1978>. However . choosing cell.s with large aspect ratio and 

narrow base <see Fig . 8.1> it is expected that the major current densities . 

are thqse sllown in Fig 8.4. 

Th~ prlnc!ple of- the method may be summarized with the help of 

five components are 

::: §.~ = 
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iden.tiH~c:i ;cnaracteri_zed bX J.pf' Jno+' Jno-·. Jnc· Jpv and the associated 

junction ar~as. 

(822.01) 

Since the injector current <A1 Jp
1
> is measured directly and · may be 

subtracted from the base current there are only four unknown current 

densities <J . J . J . J >. So that the difference current ld · for 
. no+ no- nc pv 

four similar integrated Injection Logic cells <denoted by 1. 2. 3. 4) may 

be given by. the matrix equation 

Idl A 1 A 1 A 1 ~1 J 
o- o+ ·c no-

Id2 A 2 A 2 A 2 ~2 Jno+ o- o+ c 
= (822.02) 

_Id3 A 3 A 3 A 3 Ab3, J 
o- o+ c nc 

Id4 A 4 A 4 A c4.~4. J ·o- o+ pv 

The substrate <collector> currents are given by the substrate <collector> 

current density J b <J 1> and junction area Ab <Ac
01

>_. . ·. . su co 

Provide(j the .~rea · matrix in sq. 822.02 has a non - zero 

det~_rminant <hence the need for the· collector. implcmt to avo_id the sum of 

··two columns equaling a third> the matri~ equation can be solved for the various 

cur.rent den~ities. Thus . the two . merged transistors .are not essential to 

·the measurem~nt of Jpv . since the inje.ctor c.urrent · does not effect the 

difference current. In . the present measurements the injector is however 

use~ to provl~e the fourth cell as can be seen in Fig 8.5 of the four 

cells. The first has no collector implant <Ac
01

1 = O>. the second is a 

complete Integrated Injection Logic cell. the third has only the heavily 

dop~d. P-:-lYP~ 9ase ·implant and· .the fourth is created ·by reversing the role 
.' ~· . ~· . - ' -':.... . .. 

Pf eas~ ~nR !11~~5tPf ~p f~at the three previous contacts used to coll~ct 1b 
. . 

to ~ wer~ th~n ~arthed to provide the measurement of 1. . 4. 
. .. , ., . ·-·'· ... ~v • . .. · · 1n1 Fig 8.6 

= IUQ ::-
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>. The p-typ~ surface top up Implant that peaks at 0.1 !J.m from the 

surface is to ensure a p-:-type oxide covered p- base region. · 

The basic method can and has been extended to measure more 

current densities <Yang et al 1978> merely by choosing the appropriate 

geometries for a larger number of Integrated Injection Logic like cells. 

The only app~rent criterion to be satisfied is the non-zero determinant of 

. the area matrix ~quivalent to that in Eq. 822.02. However apart from this 

care. is required In tne design of such cells since the resulting· current 

densities are essent_ially calculated from differences between currents. If 

tnese . subtractions involve large component parts and derive small results 

the errors so produced in the calculated current densities may be large. 

For example ·given the results of the following sections for the present set 

· of 'devices· <Fig 8.5) . and areas CTable · 8.8> the error resulting from a 1% 

increase in eacn . ?f the junction areas is presented In Table 8.1. Thus a 

·· 1% increase in the measured area for the oxide covered p+ implant in cell 2 

results. in a 22% decrease in the calculated value of Jpv. but only a 2% 

. ·. ln.crease in Jno-· A similar· error analysis .of the effects of inaccuracies . 

. .·. 
· in the · measurement of the four difference currents on the values of the 

current densities calculated from Eq. 822.02 is presented in Table 8.2. 

I~ is clear from these results that surprisingly large errors in 

.Jpv m~y be generated particularly i~ ld2 · or the oxid~ covered p+ area on 

cells 2 and 3 were inaccurately measured. These errors are hard to predict 

since ·.they. de pen~. )n detail . upon the relative sizes of terminal currents 

and junction areas. liideed even the small change in· areas due to papletion 
. . . . . ·. ! t l .... .i. :' ~~·: ,: •.• ' . 

widt~s w~r~ irnportqnt. . 
. ~ • ' . , . ' I ! . • • ' - . • ' 



Table 8.1 
I 

% change in current densities produced by increasing junction areas by 1% 

Vbe=5~8.5 mV. T=297.4 K. td 1=28.8 nA. td2=21.2 nA. td3=21.8 nA. 

-3 -4 -3 . -4 
ld4=11.7 nA. J =2.39.10 . J =8.82.10 . J =2.12.10 .. J =1.84.10 

no- no+ nc pv 

J no-

~no+ 
Jnc 
pv 

J no-
~no+ 

. Jnc 
pv 

A 1 A 1 A 1 A 1 A 2 A0 +2 A 2 Ab2 o- o+ c b o- c 

0.0 -1.6 -0.3 .:...o.5 0.5 1.7 0.3 0.4 
0.0 -1.4 -0.2 .-0.4 1.3 4.6 0.7 1.2 
0.0 -0.6 -0.1 -0.2 0.5 1.9 0.3 0.5 
0.0 6.6 1.0 2.0 -6.1 -21.9 -3.3 -5.8 

A 3 A0+3 Ac3 Ab3 A 4 A 4 A 4 . Ab4 o- o- o+. c 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 -3.8 -0.5 -0.9 0.0 0.0 0.0 0.0 
0.0 -0.3 -0.1 -0.1 0.0 -0.9 -1.1 -0.3 
0.0 13.2 1.6 3.1 0.0 0.5 0.6 0.2 

Table 8.2 

% change In current densities ·produced by 
increasing Qlfferent currents by 1% 

ld 1 ld2 ld3 ld4 

J 3.8 -2.8 0.0 0.0 
no-

3.3 -7.6 5.3 . 0.0 
. Jno+ 
:J 1.4 -3.2. 0.4 . 2.4 .·· 

Jnc -15.7 36.4 .-18.4 -1.3 
v 

In a thorough follow up experiment the· current densities 

calculated ·below could be used to assist in the design of a second set of 

device structures to· Improve the pres!3nt error prone cells. However 

reasonablE'} results are Obtained from the present . cells justifying the 

method of a\Jeragir,~g used below to improve the current measurements. 
' ·. ! ~· .~.>:::~~ 1 '.:-' . 

- ~·1? = 
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8.2.3 Carrier mobilities .and diffusion coefficients ... 

In section 6.3 we show how the temperature dependence of the 

minority carrier ·mobility may be calculated from the experimental results·. 

Although · a . direct measurement .of the temperature and concentration 

dependent mobility #.{N)· ·would ~e desirable in a more thorough analysis of 

Eq. 821.07 and Eq. 821.08 the present values are adequate. The values used 

are derived from the expression <Caughey et at 1967> · 

#.(N). = 
#.max -·#.min 

· + #.min 
1 + (N/Nref)a 

(823.01) 

The values of the constants #.m,ax and #.~In in Table 8.3 are taken from Hart 

(1981 pp 101). 

Table 8.3 

Mobility oata 

JLmax #.min 

T = 300K <cm
2

1Vs> <cm21Vs> 

. Electrons. 1360 
Holes 495 

. . . 

92· 
47.7 .. ·. 

(I 

0.91 
·0.76 

. . 17 
1.3.1 017 
1.9.10 

Th~ minority carriers are not Sl}bject to ·fermi Dirac statistics 

so that .. the Jhermal. ·equilibrium relc:Uiorish!p betwe·e·n diffusion coefficient 

. · . <D> an·d mobUity <#.> red1,1ces to the Einstein relationship. <Sze 1981 pp 29> 

(823.02) 
.::. 

· .. , ... 
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8.2.4 lntilnslc band gap. 

The temperature dependent intrinsic band ·g·ap · is ·clearly a very 

important ·parameter and is obtained from . a best fit of the data of 

Macfarlane et al <195En. Their data obtained from optical absorption 

measurements were obtained using very high resolution <- 0.0015 eV> 

equipmer)t and falls near the average of other measurements <Barber 1967>. 

In what follows the expression 

E (T) = . g 
10-4 T·2 4.879 -4 

1.165 -. + 1.58.10 .. T 
T + 180. 

(eV) (824. 01) 

was used: The concentration depenqent change in the band gap <~E <Nd» is 
g . 

assumed to have no temperature dependence. Thus· the concentration 

. E .( Nd , T ) = E ( T) - ~E ( ~d· ) g, .. g . g (824. 02) 

8.2.5 Intrinsic carrier concentration. 

· . The ~quare of the t~mperature dependent intrinsic carrier_ 

con·ce,ntration used in Eq. 821.14 ma~ ~e written 

2 
n. 
-~ 

~71 (m in ·) 112
kT 

3 
· .C V . 

-4( '2' ) 
h . 

(825.01) 

·This . slightly under estim~tes . the temperature dependence since the 

effective masses of th~ conduction . and valence . bands are temperature 

dependent <Barber 1967 Ja~ger et al .19~0). In what follows the 300K value 

of 1.45.1 o 
10 em-s . <Sze 1981 > tor the · intrinsic carrier concentration is 

. used extrapolating other values from this. 



. · .-U~ing ·.the . ~and (lap. quoted in Eq. 823.01 the square of the 
. ·.· 

intrinsic carrier concentration becomes . 

2 . 3 
= 'nio T exp(-E~kT)·_.·· 

-6 
(em ) (825. 02) 

When extending this ·:expression to d~al with the heavily doped . degenerate 

silicon Fermi Dirac statistics should be used <Blakemore· 1962> writing 

n ~ Nc kc F1/2(~~F - Ed)/~~) 

exp ( (EF -· Ec)/kT) 

""· Nc Me, .1 + .o .·27 exp ( (E - E )/kT) . . ·· F c 

p = N exp ( (E ..;. E ) 1 kT) ·. v ... ·· . ·v. F 

(92.6".03) 

where an _approximation for the Fermi Dirac integral -developed by Blakemore 

has been used. Eq. 825.02 becomes 

n· .. 2 = 
l.e 

np_- ~v N ·M 
.C C 

exP ( (E v - E ) /kT) . c ·: .. 

1 + 0.27 exp((EF- Ec)/kT) 
(825.04) 

· · using·· the simple fqrmula 

(825.05) 

· ··. . to evaluate th·e . conc~ntr:ation dependent carrier concentration thus under 

~ . . .: .. . · .. · 
",· ··.·· 

• . ·.,'.I 

. . 

estimate~. the physical_ band gap narrowing <~Eg ') by the ~mount . 

: Nurneric~lly .this· amounts to a small .correction of' about 6 mev 
. . . 

to the ban!1 gap depending on the separation between conquction band and· 

Fermi level <Fig 7.3>. These expressions also ignore the small 

concentration dependence of the effective mass due ~o electron-electron 
• ''• • • I •. • • 



exchange tti~t has been noted In chapter 2. , 

. 8.2.6 · Depletio·n layer calculations . 

Sideways depletion widths of . the n+ c·ollect()r and of the p+ 

base are . the only widths to effect ·.the junction areas ·used in calculating 

J . The vertical collector depletion width is required when comparing 
pv 

calculated ··~nd measureq Gum mel numbers and is also calculated. Since the · 

experimental estimation of J and to a lesser extent J 
. . pv ps 

rely critically 

upon the · junction ar~as which · in turn depend upon.· the depletion layer 

calculation it would seem that an . improvement would be to measure the 

. depletion widths. with perhaps an AC measurement of depletion capacitance. 

This was thought to be beyond the scope of the present work where we rely 

upon depletion widths calculated under the depletion appr9ximation. More 

detailed study of the performance would require both the inclusion of band 

.gap narrowing <and the corresponding use of heterostructure analysis> as 

wei I· as . space charge in the depleted region. The results of the present 

depletion width calculations are presented in Fig 8.6. superimposed on the 

v~rious Impurity implant profiles. 

. / 
Ignoring space char~e the solution of Poisson's equation CSze 

.. 1981> redGces to 

V. 
J 

?C2 9 
1' 

J .f e:e · 
x1 xi r· 

(eV) (826.01) 

where the .junction voltage CV.l is expressed in electron volts. The 
I 

junction. .voltage Is . reduced by any forward . biased voltage applied 

externally to the junction . 

v 
e 

(826. 02) 
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.. . . 
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. .· ' 

Where 'V e ist~~ external voltag~ appUed to ttJe junction and: v bi is the 

built in voltage. In terms of the band. diagram shown In Fig 8. 7 tne 

junction voltage may be expressed as 

v_ = E .., v -- v 
. J g . n p (826.03) 

With separation between Fermi energy ~nd conduction band <V 
0
> on the n side 

give!"! oy 

Nd(X) ··:.s n = 2 

· . 217m kT 
31 2 

. . c 
( . ) 

h2 

- v 
n 

.. Me Fl/2(-)(T) (.826. 04) 

where kT is expres~ed in eV. The se.paration of valence band edge and Fermi 

energy on the p side of the junction given by 

217m kT 
312 

v 
) 0326.05) 

Where F 1!:{11> is a Fermi Dirac integral <Blakemore 1962>. ·with the 

approximation to the -Fermi Dirac integral used above <Eq. 825.03> Eq. 

826.o2 ~an b~ rewritten· 

V = kT Log (N M /Nd (X) ;.. ,'2.1) n e c c _ 

v 
p 

·V = E ~ V - V 
·.bi , g n . p 

.27) (826.06) 

All of t~e junctions In . the. device may .be. represented by the · 

· '. ·superposition qf some . combination of step or Gaussian like distributions of 
. . 

·. impu~ities ~~ can be. seen. from Fig 8.6. The super 13 base - collector 

· junction Is • an . example of · a Gaussian like distribution meeting an 
. . . . 

eft~ctively sq~are. GOIIector pro1iie. Thu~ . to solve for the depletion 

widths of . these junctions the double integral of a Gaussian is requlreq 

=!ll?= 
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<E!l· 82(5.0.1>.: for whicl:l thl:) expr~~~ions <Abrai11()Witz and SteQun "1970> 

by. 2 
X , 

JJ exp(- 2>·dxd}:"= b (Q(a)·-Q(b)) + (Z(b)_.,.z(a)) (B26.07a) 
a a 

b 2 

J ~xp(-
X 

Q(X) = -) dx. 
2 

(826.07b) 
a 

2 
X 

Z(x)_ = e>ep(- ~) (826.07c) 

. are used. · . The depletion w.idths of all the junctions were calculated and 

are summarized · in Fig 8.6. · In the .· p+ epitaxial interface the temperature . . . 

and voltage dependl:)nce of this depletion width are . presented with the 

theoretical Gummel number <Eq. 821.11> for the lateral base in Tables 8.4 

and 8.5 .. 

·,. ·. 

' .. 

'.· .. ··· .. 

'· 

.. : .. . .. 
.. .. . 

': '•' 

. .. ( .···. 

Table 8.4 

Voltag~ variation of lateral base length T=300K 

v appiied 

(meV> 

Q. 
200. 
4.()0 

'6~0 
800 

. 15 -3· 19 . "'-3 
. ~d :: 5.10 em · ~ Na = 3.10 em 

.depletion 
width 
<.u.m> 

0,484 
0.427 .. .. 

0.~60' 

0.279 
' ·.0.159 

base length 

. w,. 
<.u.m> 

4.298 
4.356 
4.4~2 

4.504 
.. 4.623' 

·Gummel number 

Gl 
-2 

<em > 
. • 12 
2:149.1 0·12 

~ 2.178.1012 .. 
. 2.211.1012 . 

_2.252.1012· . 
2.3.12.10 

.: The G!)rri~:~,·,nymbl:)·r for th·e lat~rat b~s~ varl~s by ~bout 3% o~er a· . ., .• . . ~ . . . . .. 
·.· J . • 

!¥Pip~1 ~?o"·~y :ch~nge·. in Vbe ·th~ applied voltag~. The· small change in· 

· ~eple~ion .·widths · will however ·not effect the area · of this junction 

.. significantly. Table 8.5 ·shows that the various sampling voltages .cv · > 
· .... ··:. · . mean 

chosen for. each t~rT)perclture result il1 thE;) Gun:u:nel number and depletion 

widths being .. held constant despit~ the change in temperature. A depletio~ 
. . 

. wilh o.t .32 f.Lm i~ taken for ti,e area A
1 

measurements in ~e-ction 8 .. 4.1. 



Table 8.5 · 
·.. . . '• 

~(iteral Gum mel numb~r and depletion width ·at V mean 

· 15 · ~3 19 · -s 
Nd = 5.10 em . Na = 3.10 em 

tempe- applied d~pletion Gummel number 
rature voltage width G,· -2 

<K> <mV> <J.Lm> <em . > 

365.96 364.5 0.3401 
12 

2.234.1 o
12 

355.88 389.0 0.3360 2.234.1012 
339.85 427.5 0.3398 2.234.1012. 
322:81 468.5 0.3225 . 2.234.1012 
313.04 491.0 0.~187 2.234.1 o·

12 . 312.75 492.0 0.3185 2.2:34.1012 
. 297.40 528.5 0.3119 2.235."1012 
283.51 559.0 0.3068 2.235.1012 
264.59 603.5 0.2984 2.246.1012 

. 236.67 734.0 0.2539 2.253.1012 
207.32 665.0 0.3040 2.223.10 

considering the lateral depletion width of-. the collector base· 

junction the. booster compensating p- implant at the surface <Fig 8.6> 

· results in a grading in the concentration and hence the depletion width 

will not be uniform. Rather it. will vary from as little as 0.11 J,Lm at the 
·. . . . . . . . .· ·. .. . . ·.·· 17 -3 · .. 
·surface· <Table 8.6 net acc.eptor concentration ... 1.1 o . em > to perhaps as 

' ... . .' . . . . . . ·. . . . . 16 
· .. much a~ .16 J,Lm deeper in the device <net acceptor concentration ... 5.1 o >. . . . . . . 

. ~ . Table 8.6 
. . . 

,._:,· 
: .... · ... ·. S.id~w~y~ ~~pletion· layer <J.Lm> _on colle_ctor <Nd = 1.25.1 o20

> for various 

t~mperatures a~d acceptor_·concentrations <Na=5.l0
16

. 1.10
11

> 

T <K>. 366.'0 355.9 339.9 322.8 313.0. 312.8 297.4 283.5 264.6 236.7 207.3 
1E17 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11. 0.12 0.12 
5E16 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 

The diffusion length of the electrons In this region <N .;.. . S.l o 16
> ·. . . .· . . . a .·. is of 

the grder ~f fells · Rl p119r~ns ·<wolf.· 1969>. as such much of this ron-



·-.". 

uniformity must be transp.arent to the electrons. A value . of .16 p.m · is 

taken as the .sideways depletion width in the measurement of A 
1 . . . co <section 

8.4.1>. 

·The vertical depl~tion width below the collector Is calculated . 

assiJming the n+ collector to have a step profile whilst fitting the super p 

base profile <Fig 8.6) to a G~ussian. . With the collector held at the base 

voltage <v = 0> the junction. voltage <Eq. 826.02> is the built in voltage e 

<Eq. 827 .06) for the junction. Results for these calculations are shown in 

Table 8.7. 

Table 8.7 

:rem perature variation of the collector depletion .width 

. 20 -3. . 
· · and Gummel number G p· Nd = ·1.25.10 em . Na see F1g 8.6. 

tempe- depletion base length Gummel number 
·r~ture width w Gfj2 

(K) (JL~ll) . (P.g) (em ) 

365.96 0.159 . 0. 481 
12 

1.180.1012 
355.88 0.160 0.480 1.176.1012 
339.85 0.161 0.479 1.171.101 

0 .. 162 0.478 
. 2 

322.81 1.165.1012 
313.04 0.163 0.477 l. 162.1012 
312.75 • 0.163 0.477 1.162.1012 
297;40 0.164 . 0.476. 1.157.10 

. 12 
283 .. 51 0.165 0.475 1.152.10 
264.59 0.166 0.474 1.i46.1o

12 
. . 12 

236.67 0 .16.8 q,472 1.137.1012 
. 207. 3.2 ·. 0.170 0.470 1.129.10 

. . 

. . ' . 

: The · depl~tion . width =· ot . the lower junction of the super p base with the 

epitaxial.layer and heavily doped buried layer. however has .the full v be 

·applied reducing the built in voltage. Goupled · with this the small 

. impurity concentrations <FiSJ 8.6> result in a very small depletion width at 

··· .. · this junction ~less th~n · .O~l ~P.m)·. T.~king this as zero· and the junction at 

1. ~rp . bel?w ~t1e swt~ce .·.the·· theoretical Gummel ~umber for the active base 

js calculated <Eq. 821.11) and Is also tabulated in T~ble 8.7. 



. The depletion widths are summarized in fig 8.6. where the edge 

of the depletion layer is indicated by a vertical line. This clearly shows 

that the base emitter junction <see Fig 8.1> for the p+ epitaxial junction 

occurs at about 0.55 JJ.m. whilst the super 13 epitaxial junction occurs at 

about 1 JJ.m. This difference results in a small difference in buried layer 

width as shown in Fig 8.1. This is· not important since as shown in Fig 8.3 

the bulk of the arsenic impurity concentration lies deeper in the device so 

that the fluctuation of Gb beneath the. cells is small. 

8.3 EXPERIMENTALTECHNIQUE. 

In section 8.2.1 the basic method of calculating the band gap 

narrowing was presented <Eq. 821.14>. It requires the measurement of the 

transport parameter <Eq. 821.12> for the heavily doped buried layer shown 

in Fig 8.3. This in turri requires the measurement of both the substrate 

current .and buried layer junction area Ab <hence Jps> and the hole current 

density J 
pv 

This latter current density is measured by· Berger et al 

<1972> injection method outlined· in section 8.2.2. Thus the measurement of 

. . . . 
the band gap narrowing Is r~duced to the measurement of areas. and currents 

with the. additional ·data presented . in section . 8.2 of diffusion coefficients 

intrinsic b~nd gap and.· intrinsic carrier . concentration. The temperature of 

the . cells is determined iteratively . <section 8.4.2> from the collector 

. current using both the intercept current <Vbe = 0> ard the current .at a 

mean value of the voltage <V > to reduce errors in the temperature · · mean 

sensitive intercept currents. 

In sectiofl 8.3.1 the oasic experimental technique and equipment 

used is outlined. The method of averaging the currents and obtaining the 

temperature · dependence of the diffusion coefficients <mobilities> is 



outlined · in.·· section· 8.3.2. The experi":~ental results are left until section 

8.4. 

8.3.1 Basic experimental technique. 

·Measurement of the current voltage characteristics of the 

cells. th~t were fabricated by Plessey <Caswell> Ltd. was pe~formed by 

selecting . a range of base currents using a Keighley current source whilst 

biasing the device as shown in Fig 8.2. All external wiring was ·screened 

and the devices were mounted in a screened metal box In order to reduce 

interference when making the low current measurements. The. collector 

current cicol> was provided through a. T~ktronix 576 CI.Hve tracer the supply 

voltage vee being varied in order that the collector base voltage was zero. 

All· other currents. and voltage~ were monli9red using Keighley 

electrometers. The temperature of the ·devices was controlled by an 

overhead cooling head placed in contact with the packages using a silicon 

compound to improve thermal contact between the package and the head. 

Typical current vol~age measurements em the devices are shown in 

Fig . 8:8 t() . Fig a: 11. The results that follow· ·are based on measurements 

made. at elev~n dlf~er~nt temperature~ in the· range 200K to 400K on one set 

pf c:ells: . Th~. base currents crosen <l 0 nA to 0.3. iJ.A> r~strlct the current 
. . . 

volta9e ·characteristics to their linear region with Ideality factor 

approximately_ equal to unity. em --: H. As ca·n be .seer:"~ from the· current 
• • f ' .. • 

voltage plots . all the currents fall on good straight lines thus only four 

base currents of 1 OnA · ~OnA 1 OOnA and 300nA were. used the difference 

current~ <Eq. 822,02> being measured at each base current. Despite the 

small number of base currents the eieven temperatures and four cells with 

thirteen currents and tour voltages to measure represent over 500 different 
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current · measurements that make up the calculation of the band gap 

narrowing. For this reason only one set· of cells was ·measured in detail 

although all· the available sets were tested to ensure that the set chosen 

was representative of the whole. Measurement of a larger sample of devices 

would be very tedious without automation. 

8.3.2 Averaging currents. 

From section 8.2.2 it is clear that the measurement of the 

currents is critical to the estimation of J and thus by Eq. 821.14 to the 
.·· . . ~ . 

band gap narrowing, · In order to improve this measurement. averaging of the 

various currents is performed for all temperatures used. In this way the 

change in the band gap is calculated from an average over .the eleven 

different temperatures. This however poses several problems since as 

defined by for example Eq. 821.08 the current densities depend . upon 

temperature mb. n1e. Gb. Wb and Lb> and applied . voltage <from voltage 

dependence of depletion widths Gb. Wb> dependent parameters. Hence in 

future measurements it would be advisable to make independent measurements 

of at · least the · diffusion coefficient <mobility> over the whole r~nge of 

temperature .. In the present work however the temperature measurements are 

used to obt~in a best fit for the currents at a temperature of 300 K. The 

temperature dependence of the mobility <or. diffusion coefficients> is then 

an indirect result of the measurements and is compared with published 

values to support the accuracy of the pri.nciple measurement. that of the 

band gap narrowing. 

Averaging . the· currents is performed by considering a simple 

expressions for the terminal ·currents· <see tor example Eq. 821.08) with 

ideality factor m of the form given In Eq. 832.Ql. 
• , • •A ;' •,. , , ' ~ I I , I >.J • ' f: • . .• •J 



' I·. 

J •• 

• .. · 

I = 

= I exp(qVbe/mkT} + I. o sat (832.01} 

Where Aj Is th~ appropriate junction . area. 0 the m(nority carrier diffusfon 

coefficient and_ G the Gum mel number for the base region and 'sat is small 

(< 0.1 nA for __ the substrate current>. ·From section 8.2.6 it is clear that 

G. and to a lesser extent Ai depend upon the applied voltage v be <Table 

8.4>. AJ' D. ni and G all have temper~ture d~pendences. Thus we might 

expect Eq. 832.01 to reduce to an expression of the form 

v (3+n) . -
I = A V · T __ . - exp (-E~kT) exp (qV/mkT). (832.02} 

where· A. v, n .and m are constants. In the following sections it is hoped 

to measure these constants for each of the terminal currents using least 

squares fits to average the Input data. Unfortunately In the absence of 

any direct measurement of the voltage dependence of G <and A> and with 
. . . . . . I 

only· tw9 variables W and T) this appears to be an insurmountable problem. 

· We consider in what follows a functional form of 

'1' ( 3+J1 >_. I = A ~xp (-:-EglkT} exp (qV /mkT} (832, 03) 

_ .' _ Whe~e-the. V?lt~~e, depe~dence of G an~ _A
1 

will ~oqify_ the value of m 
. . . . . •, . 

. slightly .<ri:l ·.;:, ·1._(>03. rattier th~n · m = 1>. Two .plots were- considered that 

togeth_er· obtain tn~ best 'yalu~s for A. n. and rn .. · First ·a plot of 

(832.04) 

against log 
10 

(T) is used to obtain values for A and n. . This plot <see tor 

example Fig 8.1.3. 8:15, 8. 16> however suffers from the ·disadvantage of 

having only 'a small ·_range of temperatures from which to extrapolate 



•t•. 

'"• ',. 

·. ,· 

<log 10<T> varies from .2.32 to 2.57>the constants. The ~econd plot is of 

log10 (I(V=V ))-(3+n)log
10

(T)+E /kTlog
10

(e) mean.· . g . (832.05a:) 

where v is the mean value of vb 's from the measurements for that 
mean .· · • 

temperature (used in section 8.2.6> against 

qV . /kT log
10

(e) 
mean - .. 

(832.05b) 

This plot csee for example Fig 8.14. 8;17) gives. a much more accurate 

extrapolation ot A since the latter. varies over a · larger range than the 

previous log<T> plot <typically 5 to 16>. This improved value of A is then 

used with a convenient average value from the first. plot <at log<n = 2.5> 

to 9ive an improved value for n. 

(av ordinate at log(T) = 2.5) A 
n = (832.06) 

2.5 2.5 

This alters the plot def.ined. by Eq. ~32~.05 which is then .repeated. Thus by 

itera~ion best fit values· for the constants A. n. and m in Eq~ 832.03 are 

obtained. 

.... . ,· 
. . By choo~ing a ·different value tor the potential <V > at each . ·. ' . . . . mean 

:ternperatur~ the. p~ epitaxial depletion. width is held. ·const~nt <Table 8.5 in 
. . . . . ' .. 

'section 8:2.6> sq th.at tile lateral and vertical base areas remain the same 

throughout· t~e tempe'ratu.re. range.. Any te.mperature dependence· ·detected. 

. n ~ . . . . . . . . 
. <T > will then be a result of the temperature dependence of the ditf.usion 

coefficient D and to a lesser extent the effective masses used in the 

calculation . of the Intrinsic carrier concentration. This latter 

. . .. . .. . «· 
temperature dependen¢e whi~h may be as much a~ T' · ·<from the data of 

Jaeger et al 1980> is ignored ~ssigning n to the temperature dependence of 

the diffusion cqefficient 



D .. D
. ·n. 

~ . 
o· 

(832.07) 

Having evaluated the temp_erature dependence of the aiffusion 

coefficient <and by virtue of ·the Einstein relationship the mobility> the 

Gummel number CG> may be eval~ated from Eq. 832.01 af'ld Eq. 832.03 

q A. D 
. J . 0 

n . 
~0 

2 

(832.08) 

where the intrinsic carrier concentration is given by (section 8.2.5) 
1 • . 

. 2 3 k 31 3 
ni - nio. T exp (-Es( T) = 4; 9161. 10 T · exp (-EifkT) 

8.4 EXPERIMENTAL RESULTS. 

The theoretical expressions used to analyse t~e experif!lental 

da.ta . have been outlined· In section 8.2. in section 8.3 the basic · 

· ~xperimental technique has been detailed. In this section the measurements 

Of junction area (8.4.1). and temperature (8.4 .. 2) complete the information 

requir~d to analyse the 11 sets of current voltage measurements mace on the 

tour: Integrated Injection Logic cells detailed in Fig 8.5. To test the 

validity· . of ·the depletion . layer calculations in section·. 8.2.6 the Gum mel 
. . . . . - : . 

• • •• •• •• ,

00 

•• • •• • • 12 -2 . 
nur:nbers tor the super_.B base <Gp = 1.204.10 em . section 8.4.2> ana 
' . . '.. . . . . . . : 12 -2· 
late.ral pnptran~iS.t~r <G1 = 2.2 ~ 0.4._10 em ·. section 8.4.3> are 

measured. These compare within a few percent with th·e theoretical values 

. . 12 . . . 12 
Of 1.16.10 <Table 8. 7> and 2.23.1 0' <Table 7.5) calculated in section 

8_.2.6. The temperature 9ependence of mobility is also measured for the two 

b.ase ,regions. 

In sectiC?!" 8.4.4 the substrate current is averaged by a method 



similar to that detailed in section 8.3 thus. using the junction area Ab. 

the substrate current density J is measured. 
ps However due to the 

recombination in ·the buried layer the expression used for the substrate 

current <Eq. 821.08> involves a term In Wb/Lb that introduces an 

additional temperature dependence. The difference currents Od> are 

analysed to provide values for the current density J at each 
. pv 

of the 

temperatures following the procedure set out in section 8.2.2. These 

current densities are used to evaluate the temperature dependence of the 

transport factor <Eq. 821.12>. Thus the temperature· dependence of the 

factor in Wb/Lb is measured <Fig 8.18> and the minority carrier mobility 

19 0 2 
· <Nd = 2.4.10 . JLP = 58 T em IVs> In the heavily doped buried layer may be 

extracted from the least squares fit substrate current data. The minority 

carrier lifetime in the heavily doped region may also · be calculated <Eq. 

821.15>. and is. found to be 30 ± 10 ns. Finally in section 8.4.5 the 

preceeding data is used in the expression for the band gap narrowing <Eq. 

821.14> to obtain a value for the band gap reduction in the buried layer of 

1oo·± 15 mev . 

. 8.4.1 Area measurements. 

Measurements of the junction areas were made through a shearing ·. . . . . .. ·· . 

microscope on the fabricated devices .. These were . supplemented by 

measurements made from ~he mask set and from photographs of the devices 

with and without the ineialization removed. The above areas were then 

adju~ted for sideways solid state · diffusion by adding on 2/3 of the 

junction depth. <Fig 8,6> to the horizontal dimensions. · Corrections for the 

depletion layer widths ·calculated in section 8.2.6 were made resulting in 
. . 

the following junction areas: 
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Table 8.8 

Junction areas. 

· Ce11 ~rea In ~rn 
2 

A Ao+ A .A 
Acol AI o- c IJ 

1 464.87 1384.29 .. 89.71 1938.87 0.0 20.47 
2 148.05 1384.29 89.71 1938.87 288.9 20.47 
3 0.0 1849.16 89.71 1938.87 0.0 20.47 
4 0.0 526.88 264.69 791.56 0.0 61.40 

8.4.2 Temperature measurement. 

The collector current is determined mainly from parameters in · 

the .lightly doped super P base. As such it is taken to be .independent of 

heavy doping effects. · Using simple · theory <Sze 1980. Hart 1981> the 

collector current may be described by an expression of the form 

2 q A. D ... n. · 
· C::ol n · .::L · 

Icol ·=. exp (qVbe/kT) + I ... : colsat 
GIJ 

. With Gummel. number G IJ =. f Na (x) d~ 

(842.01} 

Using the .. first averaging plot detailed in Eq. 832.04 an 

.·. estima~e. m,ay be ma(je of the temper(lture dependence of the mobility in the · 

super /3 base using the temperature calculated from the Slope Of the current . . . . . . ' ' . . . 

. . voltage.·. plots .<for example Fig 8.9. assuming an ideality factor m=l in the 

usual way>~ ·This graph Is presented in Fig 8.12. . When these first 

estimates to . the temperatur.e are used they produce a systematic scatter on 

the later. results. This can be avoided by using the line of regression <x 

on y> shown <A=:0.9? .. n= · - 1.32> to predict the best fit value of the 



0 
0 D 

D 

D 

.. 

'. 

0 
() rl N ("') '<;j' . . . 

.("') ("') ("') ("') ("') 

I I I I I 

[] 

.·o 

D 

U"l 

("') 

I 

U"l 
U"l 

N 

U"l 

N 

U"l 
'<;j' 

N 

'<;J'. 

N 

U"l 
("') 

N 

'<;j' 

0 
N 
("') 

00 

tr' 
[l.1 

.j..) 

0 
rl 
0. 
.j..) 

c 
Q) 

H 

8. H 
::l 
u 

0 
rl c 

Ol 0 s ·.-i 
.j..) 
Ill 
H 
::l 
.j..) 
Ill 
Ul 

H 
0 
.j..) 
U· 
Q) 

rl 
rl 
0 
u 

N 
rl 

00 

Ol 
·.-i 
li. 



... , 

.J: 

:' . :- ~ 

intercept ·parameter I for a given t_emperature . . . . . . . ' . . co . . 

I 
co 

. n 
=AT exp(- E /kT). 

g 

. . 

(842.02) 

Hence u.sing values for .the collec~or current at the vo!tage V mean the 

optimum slope of the current voltage· plots may be calculated and a more 

accurate value for the ·temperature may be determinec:t. These results for 

the temperature before pptimization and after are presented in Table 8.9. 

The temperature· depenclence of the diffusion coefficient is now 

. found· from the values of A and n above using Eq. 832.07 and values from 

. section 8.2.4 

D 
n 

= D .· Tn = 51565.4 T-
1

. 
3156 

= kT/q JJ.n 
no 

(842. 03) 

This results in a temperature dependence for the mobjlity Of T-2·
32 

that 

compares favourably with those quoted in Sze <1981> -2.:42 and Wolf <1969> 

TaQie 8.9 

Temperature· from the collector current <K> . 

frol')'l IV curves Improved E 
temperature <e~. 

363.0 365.96 1 '1 031 
.:359.5 355.88 1.1059. 

.... . 343":5 339.85 1.1103 . 
321.0 322.81 1.1149 

.312.8 313.04 1.11_7.5 
:~ : .. 311.3 "312:75 1 '1176 ... ·,• 

296.2 297.40 1.1216. 
283.6 283.5·1 1.1252 
264.1 264.59 1.1300 
242.6 236.67 1 '1368 

. 208.2 207.32 1 '1436 

. . ~ . . . 2 
. . . Th~ con~?tor .Cir.ea <A601> ·given _in Table 8.8 .. i~ 288.9 JLm . which 

substitutecfinto Eq. B32.08·gives Gp = 1.204.10
1
·
2

. This is very close to 

th~ the value calculat~q in section !3.2.6 from the integral of tne super /3 
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. . . :. . . . 12 . -:2 ' 
bas~ of 1.16 ±_.0.04.10 em ·· . · This indicates . that . the temperature 

measurements quoted in Table 8.9 have been succesfull. 

8.4.3 _ G1 and temperature dependence of p. In the lateral trans_lstor. 

-Another measure Of the success of ~he experimental measurements 

is found ·in · a comparison of the injector current with its theoretical . 

·value. The injector current Is also essentially a collector current and 

from simple ttieory provided the injector is held at the same potential as 
.. 

the . epitaxial iayer it may be described by an expression similar to Eq. 

842.01 

I .. . : = ·.l.nJ 

2 q A D n. · ··1 n l. 

Gl 

· \Aiith Gurnmel number G1 = _ J Nd (x) dx 

(84 3. 01) 

However wher~ In the case of the previous collector current ·the base 

epitaxial . depletion • width Is very small due to the similarity ·of impurity 

. conce'ntratio~s: . in that junction <section 8.?.6). in ttie injector the p+ 

epitaxial junctions· hpve much larger· depletion widttis: due _to the contrast 

IQ impurity c<;>ncentration. Consequent · the ·voltage dependence of the . 

. . ' . . . 
·late,ral Gumrnel numqer is e~pecte~ to be more pronounced <see Table 8.4>. 

. ~- ., ' ' 

' ' I·. 

· ·; · This· is_ · :ref!~ct~d . in an appprently non - unity ideal.lty factor In ttie 
. '. . . 

· inje.ctor current. <s.ee. discus~ion after Eq. 83~.03>. .. From ttle change in 
... 

· Gumme.l numbe·r shown in Tab)e 8.4 the apparent ideality factor would be 

about· 0.3% · greater than unity <ie · m "" 1.003>. · The effect o·f the 

temperature and voltage dependence of the depletion widths shown in Table 

8.4 are reouced by using the injector current at the voltages v mean· The 

caiculated Gum mel. ·numbe'r with: these voltages ·varies by only a few percent 

with increa~e in temperature <Table 8.5>. 
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The method outlineq · In· section 8.3.2 for averaging the values 

tor the constants A. n and rn In Eg 832.03 applied . io 843.01 is adopted. 

The first plots defined by Eq. · 832.04 is shown in Fig ~· i 3. As expected 

from the increased voltage dependence· of the lateral Gummel number. and 

hence inaccurate values for the ideality factor. the intercept plot has a 

greater scatter than in the Fig 8:12 for the collector current. Indeed the 

tour lowest temperature intercepts for cell 4 consistently over estimate 

the intercept. These values were ignored when taking the average of the 

cell. 4 ·.data since they appear to represent a · systematic error in the 
.' . . . . . . . 

measurements. Intercepts from the· remafning cells li_e close to qne another 

and result in three lines of regression <x.on y> that almost coincide. 

The second plot defined by Eq. 832.05 is· presented in ·Fig 8.14. 

It Is·. ·clear that this second figure gives ·more accurate values for the 

intercept than- the .first. . because of the increased ·range of the abscissa. 

·In Table 8.10 the value~ of A. n and m from the two plots are presented . 

. Tab I.e ~. 1 o 

B~st fit paramet~rs ·for th~ injector ~urrent 
, __ ; 

.. -2 
cell: A· n m Gj <em ·> 

Fig 13 Fig 14 Fig 13 Fig 14 Fig 14 Fig 14 . 
·' 

. ' ·' . .. . . 12 
1 · . 7.35 Q.9697. -,2.3762 -2.0242 1.0118 2.08_. 1012 
2 . 23.68 0.2468 -2.5425 -:-1.7497 1..0065 1.71.1012 .. 
3 :·.· :68.67-. 0. 7157 -2.7241 -1..9313· L0074 1.66.1012 
4 5.81 2:2202 -2.1162 -:1.9490 1.0087. ·1.78.10 

From Eq. 832.07 the· temperature dependence of ~he 'diffusion coefficient may 

be measured and . hence by· the Einste.in relationship <Eq. 823.01> the 
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(843.02) 

·This tempe;ature dependence otr-2·9 for the mobility · Is rather steeper 

than those quoted in the literature <eg Sze T-2·2>. Whilst the Gummel 

number calculate_d from Eq. 832.08 is given in Table 8.10. The theoretical 

Gummel number from Table 8.5 derived from the integral o( the base 

. t' ·. 2210 12 - 2 h II 'h.h h I Tbl concentra 1on IS . . em t at agrees we w1t t ose s own n a e 

8.10: 

8.4.4 .. . Tempe·rature dependent niobllity In the he.aviiY doped burled 
layer. · 

. In order to calculate the band gap narro~ing the substrate and 

difference data· also n~ed averaging. The same technique introduced in 

section 8.:3:2 is used with the exception that the intrinsic · carrier-

·concentration n. Is . . .. 1- replaceo by the . effective · intrinsic carrier 

concentration introduced In · Eq. 825.05. This requires a first 

approximation to the band gap narroWing. that will -later be Improved. For 

the substrate current the tempera~ure dependence of the Wb/Lb factor in Eq. 

~21.08 has also to be' considered .. 

. . . . . . . 

·. Given an· estimate .for the b~nd gap narrowing (AEg> the substrate 

curr~nt <Eq: _~25.~5> at the voltages vmean is best fitted to an expression 

of the form 

The first plot · <Eq. B32,04>: is · ad~pted · by including the estimated band gap 
. . . . - . 

narrowing of 1 og ~~~ ~~~ ~r~ ~!yen in F~g 8.15 for the· four cell~. E~pept 

Cit low temper~ty~§§:; ~N~r~ !h§ §U~~tr~~~ c~rr§nt is p~rticularly ~mall ard 
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difficult -to· measure. ·the· interce·pts' lie on good straight lines. The least 

squares tits tor these points reveal the data tor A and n <Eq. 844.01> 

given in Tabl~ a.ll for a value of ¢.~g ()f 100 meV. However the Wb/Lb . 
. . . . ' . . ' . 

parameter in Eq. 821.08 !s still needed before these parameters CA. n> may 

be analysed for this the difference current has to be analysed. . ., . ·. 

Table 8.11 

~ubstrate current best f~t parameters AEg ·= 1 OOmev 

• cell A n 

1 3.~2.1 0 =~-0 0.6237 .. 
2 1.58.10_9 . 0.3508 
3 3.36.10_10 0.2160 
4 2.53.10 0.5450 

The difference currents ld were calculated at each value of lb 

. chosen. <the alternative approach is to use the least squares data from the . 
. . . . ' . . . . . . . . ·. ~ . . 

. . . 

base and _injector c~rrents>. Thus a ·graph similar to those _in Fig · 8.8 -

Fig 8·.12 ·equid have t)een· drawri up showing each measured dl.fferen·ce current. 

In this ,way error~ introduced by averaging the injector and ba!)e current 

data. a~e avoided. · The .difference current data is then averaged following 

· the . proc.ed~re· ·outlined In· section • 8.3.2. Fitting the data to expressions 

of the form 

(~44. 02) 

.' ..... 

. : . ·.··The \ncl~sion_. ~9r :~x~_l_.us_lgn> _,ofthe ae
9

_. in ·this expression is · not strictly 

. valid s.ince ,d .. is ·made · up · the .:sum · ot four different current density 

contributions . <see section 8.2.2>. · Its presence <or absence> merely 

.. ~djusts the val~e · of.:· n obtained _in the temperature range considered. Fig . ~ . . . . . . 

8.16 shows the saturati~n plot for this curr~n·t CEq. 832.04. with AEg_ = 100 

meV> and. the best fit·: parameters obtained from the second plot. CE_q. 832.05> 
.. ' , , , . , ~- I , ,. , ' I . . . . 

· shown in Fig 8.17 are presented in Table 8.12. 
• • •• , ! 
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.· Best fit parameters for difference currents ld 

A n 
. 9 
8.077.10 4 -6.1380. 
1.058.10-1 . ' -3.9885'. 
1.242.10-3 -2.1535 
5.352.10 -1.7292 

m 

1.17396 
1.11124 
1.05990 . 

. 1.05995 

The best fit 9ifference data presented in Table 8.12 are then 

processed <see section 8.2.2> using the areas given in Table ·8.8 . to 

calculate. the values· of Jpv that are presented in Table 8.13 under . the 

heading J <a> .. · The unaveraged difference data was also processed· to give 
. . . pv . . 

. values presented as Jpv<b>. 

Table .8.13 

. · · J calculated from ·best fit <a> and raw <b> difference data . pv . . 

teiTlp . applied . J <a> J ·<b> 
voltage 

. pv. pv 
-2 . -2 

<K> <mV> <Acm > . <Acm > 

. 365.96 . 364.5 
. .. -4 . -4 

2.644.10_4 2.103.10_4 
355.88 389.0 2 .. 723.10_4 3.224.10_4 

'339.85 427·.5 2.773.10-4 4.844.10_4 
. 322.81 468.5 2.922.10_4 3.291 .. 10_4 

313.04 491.0 2.892.10_4 4.272;10_4 
312.75 . 492.0 2.921.10_4 1.777.10_4 

-297.40 528.5 2.969.10_4 1.841.10-4 
283.51 559.0 2.743.10_4 -1.338.10_4 

.. .. 264.59 603.5 2.651.10-4 3.883.10_4 
236.67 734.0 -8.859.10-6 -1,68S.10 _

4 
·2P.7A2 665.0 6.499.10 1.293.10 

., . 

Con~i.dering .. the first set Of values. th~ . negative value at 

T=237K . corresponds exactly to the on~ . collector current. intercept that did . . . . . 
. . 

not fall qlose to. th~. averaQe In Fig 8.12 <- 3.44. log<T> = 2.385> and for 
'··.· .. 

which a. lar~e correction 'to T is made <242K to 237K>. The last three 

· measurements suffer from poor choice of V as shown hy Table 8.5 where 
. ... ·. ···• · ·-· · ,. ··· mean , .. .---· ··· · 
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the· .calculated . Gummel number· is significantly different from the previous 

values. These values may then be ignored due . to· f3rrors arising from 

. inaccuracy in the temperature and poor averaging. The second set of J 
. . . • . pv 

data illustrates the sensitivity Of J to the difference data input and 
. . pv 

gives an order of magnitude Illustration of the errors in the measurement 

that range from a factor of 2 larger than the aver~ged value at T=340K to 

1.6 smaller at T=312.7.5.· This large error in Jpv .. does not however effect 

the calculation of AE · significantly. because of the relative sizes of the 
. . . g . .· 

components that make up Eq. 821.11 . 

. Values for the transport factor and hence values for W/L and the 

lifetime may be calculated <Eq. 821.12 to>821.p> from e.ither of the values 

of J given in Table 8.13. and the values of I b.. <Table 8.11 and Eq. 
. pv · . . su 

844.01>. These are given In Table 8.14 and show consistent values for 

minority carrier lifetime of <30 ± 1 O> ns in agreement with those published 

in Hart <1981 pp 97> for a concentration of 2.4.1 0
19

. 

Table 8.J4a 

W/L and lifetime <r> data calculated with 
· data from .the fo.ur substrate currents 

temp· applied W/L from best fit 1' 

voltage ·data <nsec> 
<K> <mV> 1 2 3 4 1 ~ 3 4 

365.96 364.5 2.3. 2.3 2.3 2.1 17 17 17 21 
355.8'8 389.0 2.3 2.3 2.3 2.1 18 18 18 22 
339.85 427.5 2.3 2.3 2.3 2.~ 19 20 19 23 
322.81 468.5 2.2 2.2 2.2 2.0 21 22 21 26 
313.04 491.0 2.2 2.2 2.2 2.0 23 23 23 28 
312.75 492.0 2.2 2.2 2.2 2.0 23 23 23 28 
297.40 528.5 2.1 2.1 2.1 1.9. 26 27 26 32 
283.51 559.0 2.1 2.0 2.0 1.9 29 '31 30 36 
264.59 603.5 1.9 1.8 1.8 1.7 38 40 40 48 
236.67 .· 734.0 
207.32. '665.0 1.5 . i .4 1.3 1.3 ·80 94 97 113 

.·.-: ' 

-;.:' .... 
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· Table 8.14b 

W/L and lifetime <r> data calculated with 
data from. the four substrate currents 

temp applied W/L from raw data T 

voltage <nsec> 
<K> <mV> 2 3 .4 1 2 3 4 

365.96 364.5 2.0 2.1 2.1 1.8 24 24 23 29 
355.88 . 389.0 2.4 2.5 2.5 2.3 17 17 17 20 
339.85 427.5 2.8 2.8 2.9 2.6 13 13 13 15 
322.81 468.5 2.3 2.3 2.4 . 2.1 20 20 20 24 
313.04 491.0 2.6 2.6 2.6. 2.4 17 l7 17 20 
312.75 492.0 1.7 1.7 1.7 1.5 40 41 40 53 
297.40 528.5 1.6 1.6 1.6 1.4 44 46 45. 59 
283.51 559.0 
264.59 603.5 2.3 2.2 2.2 2.1 "24 26 25 30 
236.67 734.0 
207.32 66s.o· 2.3 2.1 2.1 J 2.0 30 33 33 37 

Finally the logarithm of the parameter in Eq. 821.08 for the 

S!Jbstr:ate c,urrent 

"(844.03) 

is plotted against log <T> rn Fig 8.18. Least squares fits were performed 

on these data. from which the temperature dependences of the parameter tor 

. ' -0 1 -0 3 -0 4 -0 2 . . 
the four cells <T · · .• T · . T · and T · > . are calculated. Using these . 

values and the n and A values from Table 8.11 the temperature dependent 

diffusion coefficient may .be calculated and is presented in Table 8.15. 

·The r~w data ~I so Is ·used to de.termine a similar plot tQ ttiat in Fig 8.18 

deriving a second set of -data <b> also presented in this table. 

Clearly the error introduced by the sensitivity of J_pv to. . the 

difference currents results in inaccuracies in the temperature dependence 

of the mobility. However trom · the data In Table 8.15 we might reasonably 

~~P~~t ~~rp f~rpp~ratt.Jf~ depen.dence for the mobility, · Slotboom et al <1976> 
. . . . . 

. in th~!r wor-~ on ttle b~f1~ gap narrowing also found .. that the mobility of . 
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2.35 2.4 2.45 2.5 ' 2. 55 

loglo. (T) 

Ficr 8.18 Plot of log
10 

(W/Lsinh(W/L)) against locr
10 

(T). 



holes in heavily doped silicon was constant with terripe·rature. 

8.4.5. 

Table 8.15 

Mobility data <#.P = #.po Tn cm
2

tvs> for t.he n+ 

buried layer from best fit <a> and raw <b> data 

cell #. 0 <a> n #.po<b> n. p 
1 8.6 0.336 202 -0.217 
2 19 0.198 388 -0.331 
3 27 0.137 530 -0.386 
4 14 0.256 254 -0.257 

Measurement of band gap narrowing. 

· .. Having riow determined the values and temperature dependence of 

au the components making up Eq 821.14 a .new value for the band gap 

. narrowing may be calculated. This will of course adjust the temperature 

dependences calculated in the previous section so to be thorough the 

calculation must be· i.terative. · However with the data presented in the 

. previou$ sections the band gap narrowi11g for 300K may be calculated. 

·.· . The substrate .current density at 300 K. may. be evaluated from. 

Fig 8.15 so that the natural logarithm of J is given by . · pso · 

loge(Jpso) = Y loge(lO) - loge(~) 

(E - 0.1) 

.+ 3 loge(T) ---~g~k-T----

where Y _is th~ ordinate taken Fig 8.15 at X = log 10 <300>. 

(845.01) 

This varies from 

- 29.77 tor cells 1.2 and 3. to - 29.57 for cell 4. The remaining measured 

paramet~r. the~~ qt t~~ function in W/l. may be calculated from Fig 8.18 
•···· ........ I l. • .• 1 .•. ' . . 

w. 
'b 

loge ( .. ~:=- --· ~b ) = 
· :· ·· L sinh (-"} ' 

'·b···ll"t· L-. ' ... ' '':b; 
'I 

(T='300K) (845.02) 
.. 

It is clear that this latter parameter has a small influence upon the 
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eventiJ~I · ban(j gap narrowing • resu.lt. ·.The. Gummel . !i!Jmber for the heavily 

doped buried layer is taken directly from the fabrication details for the 

buried layer. This ion implantation was an Arsenic implant of 1016 atoms 

-2 . 
em at· 25KeV. Supposing all. the Ions implanted to be electrically active 

this gives a Gum mel number of 1016 em - 2
, Using the mobility data from 

Table . 8.3 the hole diffusion coefficient for an average concentration for 

' 19 -3 2 -1 
the buried layer <Gb/Wb = 2.4 ± 1.0.10 em >Is 1.53 em sec . Finally 

the electronic charge <q = 1.6.1 o - 19 C> and intrinsic carrier concentration 

. 10 -3 
<n. = <1 :45 ± 0.05> 10 em > complete the necessary data. Using these 

I . 

values in Eq. 821.14 the band gap ·narrowing becomes 

6Eg ::= 25.89 (32._9-29.67+0.58) = (99 .• 6 ± 15-) mev (845.03) 

The major error in the. above figure for the band gap narrowing for heavily 

. .· 1~ -3 . 
doped <2.4.1 o em > n-type silicon arises from the uncertainty in the 

concentration to which this band gap narrowing should be ascribed. The 

buried layer <Fig 13.3> is seen to have a peak concentration of 7.1 o 19 
em -

3
. 

Considering the theoretical calculations of the banq gap narrowing <Fig 

7 .. 12>. the band gap narrowing at this donor concentration is of the order 

19 -3 
of so mev greater tha_n at 2.10 em . 

The error due to ttte Lise of Maxwell Boltzmann rather than Fer!Tii 

Dirac statistics throughout the analysis expressed in the form of Eq 825.06 

amounts to an error of 

(845.04) 

which sinc.e ~he Fermi level· is almost at the same enerQy as the conquction 
' . . . 

. . . . 19 -3 . . . 
band <Fig 7.3> at 300K and 2.10. · em is only 6 mev. 



.. . ··.··: _:· ... 

8. 5 .. · CONCLUSION 

.To summarize the measurements made in this chapter the 

theoretical <Tables 8.5. 8. 7> . and experimentally measured <Table 8.1 0 . 

. section 8.4.2) Gummel numbers for the sensitive lateral base region are 

within 18%. whilst the more stable super 1i base measurements are within 3% 

of the theoretical value. The more accurate result is due to maintaining 

the collector depletion width by holding the collector base voltage at 

zero. whilst the inaccuracy of the lateral Gummel number is due to the 
. + 

voltage dependent <T~ble 8.4> variation of the depletion width on p base 

implant. shown in Fig 8.4. 

The temperature dependences of the minority carrier mobility in 

. . 16 -3. 9 -2 9 2 
lateral <Nd = 4.7.10 em . J.LP = 6.88.10 T · em tvs>.. super p <Na = 2.5 

16 . -3 . 8 -2.32 2 . 
. 10 ern . J.Ln = 6.30.1 0 T em tvs> and heav11y doped burled layer <Nd 

. . 19 -3 . 0 2 . = 2.4.1 o em . /J.p = 58 .. 7 T em tvs> compare well with values quoted else 

. ' -2 5 -2 7 . 0 
where of T · . T. · <Sze 1980> and T <Mertens 1980> respectively. 

Measurement of the transport ·factor through the buried layer 

with the devices chosen was difficult because of . the large error in 

calculated values of J <Table 8.1. 8.2> caused by poor choice of cell . pv 

. shapes. .However these· measurements resulted in a minority carrier lifetime 

. . 19 -3 . . 
in t~e buried layer <Nd = 2.4.10 em > of <30 :t: 10> ns in agreement with 

published values <Hart. 1981 pp 97>. The band gap narrowing measured in 

this buried layer· is n oo ± 15> mev~ This measurement is mainly affected 

by the non-uniformity of the buried layer through . which the band gap 

narrowing varies from 0 to perhaps as much as 140 · meV at the peak donor 

' . 19 -3 
, concentration of 7.1 o · em . This error could be overcome ·.in future 

measurements by using a more detailed Gummet calculat.ion which included 

consic1eration!> 
'l ' ' j t • I \ ~ ~ J-

<Eq. error jn 
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measureriientof Jpv could . also easily bEt improved .by a .different choice of 

geometries for the cells ·<section 8.2.2> and would . then provide further 

check on the. band gap narrowing <Eq. 821.14> that could equally be written 

in terms of J . ·rather than J 
. · pvo pso 

,_ .· 

,.·. 
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. CHAPTER 9 

SUMMARY AND CONCLUSIONS. 

9.0 ~1J-~MARY AND CONCLUSIONS 

both experimental and theoretical results have been presented 

tt1a1 support the claim that· a · physical band gap narrowing exists in the 

neavy doping region. ·The concentration at which this. band gap narrowing 

starts dep~nds upori t!'le metal insulator transition characterised by the 

Mott critical density <N. >. . •. : c At concentrations below this density the 

impurity· band is well separated from the host band edge. However above 

. this concentration the Impurity band has merged· with ·the host band. The 

concentration at which . this blending· of host and if!lpurity band occurs 

. ·. . .· . 18 19 
varies with temperature <4. 10 at 0 K. 2.2. 10 · at 300 K> and type of · 

. . . . 18 : 18 . 
impunty <3.1 0 (Sb>. 7.10 <As> Sernellus et al 1981>. The electron-

electron and electron-Impurity calculations presented in this thesis assume 
. . 

that the pands have merged so the above concentration acts as a lower bound 

to the validity of these results. 

· In summary the change in the self energi~s u~t<k» of electron 

due to. electron-electron <ee> and electron-impurity <ei> interactions have 

.been calculated. Thi~ change in the self energy· due to the presence of the 

, eXtra carriers and impurities Is interpreted as a shift in the dispersion . 

:-· 
·curves for ;he conduction <6Ec <k>> and valence <6Ev <kl> bands. The 

concentration <Nd> dependent change in b~nd edges due ·to these in.teractions 

has been calculated 

(900.01) 
· .. ·. 

/ 

eo .. · 
- f.\ I!: ( k .) : c ·.· l .. '; 

· ei 
+ 6.1::~ (k ) 

·. C, l. 

ee 
~E (O) 

v . 
ei 

~E: ( u) 
v 



whilst. the shift at k=O ·describes' the change in the valence band top . 

. Expressions tor the self energy in silicon· are derived in 

chapter 2. · From this chapter the self energy of electron in the band n is 

given by <Eq. 223.19> 

ee 
.-fi.E (n;~,W) = 

i 0 
___,.-

4 
[ J J G (m;k-q,w-v) 

(277) m 

i7}(W-V) e 

(900.02) 

with G
0 <n:k.w> the unperturbed Green's function in the band <Eq. 240.01> 

and the screened interaction W ff<q.w> <Eq. 231.02> with the overlap . e 

integrals 1\nm defined in Eq. 223.18. This first approximation to the self 

energy ignores the vertex corrections and uses the free particle propagator 

rather than the total Green's function. 

The effective potential 

(900. 03) .. 

is in . this thesis modelled by the ·plasmon pole approximation . to the 

electron dielectric function <E<q.w». This is given by <Eq. 240.07c>. 

2 
wp 

------~~--2-----2 ) . 
- i6) - w 

-1 . . 
E (q,w) = 1 - ( 

·. with dispersion n~lationship <Eq. 232.10>. where a term jn .q4 
is 

~9 giye bette~ large q agreement with the Lindhard functio.n 
.. ) .. ;:. ' . ..... .. . •._. (,.• :.. . 

...,. 2 2 2 2 € 2 /fi2 ~~(£!~~ = w .c: t w .·q /K + ·p ''P q· 

2 3m 
4 

q 
2 

( 
q op 

= wp 1 + + 2 2 2 
K 4mde kf K 

(900.04) 

included 

(900.05) 

The real part ·of the. self energy expression <Eq. · 240.07a> ·: 
: . . . . . 

describes ·u1e. exch.ange energy of an electron in the band n. This is made .. 



·· ... 

.. ' ..... 
'. · ... 

.. ·. ~.. . 

the self energy contribution to the conduction band is made up of exchange 

energies between electrons in the same band <ree > and exchange between ' cc ' 

the electrons in the conduction band and the valence band <ree > ' ' ' ' ' ' cv 

(900.06) 

However as lnkson <1976> points out. it is the chang.e· in the band energies 

that is of interest. This is derived from the difference between this self 

energy and that present In the intrinsic semiconductor <rintn>. 

change in the conduction band energy is defined by <chapter 3> 

tint_ tint = 
cc cv 

ee · 
ft.E . 

c 

A similar expression may be derived for the valence band 

Thus the 

(900.07) 

tint_ tint = 
vc vv 

ee. 
tvv 

~int __ AEee 
I. u ( 900 . 08) ' vv v 

However in this case the Intrinsic valence band has a self energy· since it 

is full of· electrons in contrast to the intrinsic conduction band. This · 

Hartree Fock energy must be subtracted from the valence band contribution. 

' ' 

In chapter 3 the shifts in the conduction and valence bands due· 

to the change iri screened electron-electron exchange energies <Eq. 300.02 

'. 
and 300.03> are calculated. It is ·found that in the plasmon pole 

~pproxiJ!lation these can b.e split up into coulomb hole and screened dynamic 
: • j :;v. :.L .. ' . ~I 

~xch~f'g~ ~Qntributio~~ <n.~med by Hedin 1965 iri connection with electrons 
. .)w, .;- ,_,l_..l :. : •• t .. Alt . ~ \,,, . 

ga~es in rr~tals see section 3.1> 

ee SX ch 
6E c(k) = 6Ec (k) + 6E (k) c 

(900.09) 

ee 'sx " 

tt.Ech(k)" tt.E (k) = tt.Ev (k) + v ,· v 
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·The coulomb hole co-ntributions <see Eq. 320.03 and. 330.04> 

00 2 
ch 

2 wp e 
I 

1 
(k) = + 2 dq AEC 0 0 

211 E.Er 0 2W1 (q) (W - w - .w1(q)) ck c (k-q) 
00 2 (900.10) 

ch 2 wp 1 e 
E I A.Ev (k) = + dq .2 0 0 

471 EEr 2W1 (q) (W - wm(k-q) - W1(q)) m 0 vk 

reduce the energies of both conduction and valence bands contributing a 

20 -3 
small increase <+ 10 mev at 1 o em > to the change in the band gap as 

predicted by .tnkson 1976 <see Fig 3.5>. The screened dynamic exchange 

contributions of each band <Eq. 320.03 and 330.04> however act in opposite 

directions. 

sx 
AEC . (k) 

SX 
AE v (k) 

both to reduce the gap <Fig 3.4> 

2 kf 
e 

I (1 = -2 2 
271 EEr 0 w1 (q) 

00 
2 e 

E I ( = + 2 2 
471 EEr m 0 W1(q) -

0 0 . 2 
(w -w ) · vk m(k-q) 

(900.11) 

) dq 

With appropriate choice of the energy difference in . these expressions the 

change in the band energy at any value of k may be determined 

0 0 w~c(k,q) wck - wc(k-q) = -
(900 .12) 

0 0 0 
wvk -· wv(k-q) = wvn (k, q) 

The sum of electron-electron contributions from the valence 

ba~d . <Fig 3.3> and the conduction band <Fig 3.2> is made in Fig 3.6 were 

the total . electron-electron contribution to the band gap narrowing is 

shown. It c~n be seen that these results differ by only a ·few mev from the 

resuits of Berggren and Sernelius calculated with the Lindhard dielectric 

function <Fig 3.2 ~na 3;3). This agreement justified the use of the 

plasmon pole approximation in ch~pter 7 at finite temperatu~e. 

..... ·.·· 
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Chapter 4 Is . concerned with the ensembie averaged electron-

impurity self energy. This is calculated using the ensemble averaged 

Green·$ tunction <Eq. 420.04> 

N d
3

R·. 

<I: (nkl mq) > = ff f . .. I: (nklmq) ~. --n-= (900.13) 

where n and m indicate the band and k and q are wavevectors. This has been 

found · to provide a convenient means of averaging the effect of N randomly 

sited .impurities in the · semiconductqr. volume n. The ensemble averaged:. 

electron-impurity self energy has been found to be described to second 

order ~y the expression <Eq. 441.06> 

Nd t" J . 0 .. 2 1 d31 
---3 L G ( n; 1 1 w) I W ( 1-k 1 w) 1 Anm ( k 1 ) 

~(277)·.m 

(900.14) 

. 0 
. where G . is · the unperturbed Green's function; W<q.w> represents the 

screened electron-impurity· interaction <In this thesis. the plasmon pole 

approximation section 2.3.2> and A · represents . ~he couplin. g between bands . · · nm 

n and rri. The Intrinsic semiconductor has no. electron-impurity interaction 

s9. that ·the change in electron-impurity self energy due to the presence of . 

the positively <;:harged ionised impurities is given by the real. part of this 

self energy <Eq. 4SO.Ola> 

. (900. 15) 

~ ·.- . 

. ' . . . 

Tm~ . f9Pr~~~m~ m~ cp~n9,e in the energy Of the band n due to the electron-

. impurity ·interaction. The change In the band gap due to these interactions 

is given by the difference between the· change in energy of the bottom of 

· · · . · · ei · 
on.e of the six cond!J<;:ti.on band valleys C6E ·c <k11> and tl')e change in energy 

· · ·. ·' ·· · · · : · · · : · ·ei · · · . · 
qt the top of the. valenGe bal'ld <6E vW>. Eq. 0450.02> 

·ei 
6E · -

~9. 

. : .· 

(900.16~ 
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this is given by <Eq. 450.05> 

e.i 
6E eg 

. From the results drawn in Fig 4.1 it can be seen that the 

electron-Impurity . interactions result in a band gap · narrowing which is 

numerically smaller than the corresponding reduction·. due to electron

electron Interactions <Fig 3.6>.' These results are compared to the results 

obtained by Berggren and Sernelius <1981> who use the Lindhard dielectric 

function and are also plotted In Fig 4.1. it can be seen that the present 

results based on the plasmon pole approximation agree within a few mev with 

these results· based on the full Lindhard function. The Llndhard formula 

may a.lso be approximated by the plasmon pole ap·proximation for the · 

electron-impurity interactions. 

The plasmon. pole self energies plotted in Fig 4.1 are valid 

until ·the perturbation approximation . breaks Clown at concentrations where 

the impurity separation <Nd -
113

> approaches silicon's ~tomlc spacing. This 

. . . . . . 21 _.3 . - 1/3 
occurs above donor concentrations of 10 em <see Fig 2.4>. where Nd 

-8 -3 . 
approaches d <5.4 .. 1 o em > the lattice constant. · At low concentrations 

the limiting concentration Is the Mott · metal insulator transition that 

· 15· ~3 · 
occurs at about 6 .. 10 . em at zero temperature. 

· T~~ effect of the random impurity potential and the associated 

random average potential is studied in chapter 5 by two methods. Halperin 

. and Lax produced a formulation tor the density of states deep in the band 

. tail. This has until now been interpreted as producing a finite band tail 

that extends some 30 meV into the band gap. In this thesis the average 
. . . 

electron-irrlpurity. interaction. is ~hown to lower· the unperturbed band edge 

so as· to dill'!!n!~r !~~ · §<?al~ of this tail. This is q':'alif~~d ~Y the ~~~ond 
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set of· calculcltions .. based . on Lloyd and. Best's variational calculation of 

. the density· of states within the band tail that gives a good approximation 

to the density of states close to· .the. band edge. whilst deeper in the. tail 

Halperin and Lax's calculation is expected to give a better estimate to the 

density of states. Although the precise means of linking these two 

calculations remains a proplem it is clear. especially from the Lloyd ana 

Best calculations <see Fig 5.3> that the band tail Is much smaller than has 

previously been supposed. Indeed both the rnodlfieel Halperin and Lax tail 

in shown in Fig 5.2 <and Fig 5.6> ana the Lloyd Best tail shown in Fig 5.6 

. . . 18 -1 -3 
both intercepts with the host density of states at <2 ± 1>.10 ev em . 

This is in agreement with the recent work of .sernelius 1983 on the high-

stress birefringence and piezoresistance in heavily eloped germanium. 

In chapter 6 the electron-Impurity interaction in an ordered 

array of impurity centres is calculated. In common with other workers 

<Berggren and Serneiius <1981. 1983> Mahan <1980)) the electron-impurity 

interaction · in· this model is found to be small because the inter-valley 

scattering inclueleel by Selloni ana Pantelieles <1983> has not been included. 

However this model is not. physicaly . acceptable since in the real 

semiconductor the impurities are more likely to be sited randomly tnan in 

or(jered arrays. · 

The. most promising calculations of chapter 3 and chapter 4 for 

. the etectron:-etectron and electron:-impurity · interactions are extended to 

finite temperature in chapter 7. This is made possible. by the. simple 

structure . ot. tt1e plasmon pole dielectric function used in these chapters. 

The coulomb hole and screened dynamic exchange contributions to the change 

in· . the e.lectron-electron self energy <n·amed. by Hedin 1965 in· connection 

..... ,·.:•··· ,, ·.- ;.: .. 

·._ ... <::·_ ·_:. 



with electrons ~ases !n metals. see section 3.1> 

(900.17) 

at finite. temperature become <see Eq. 731.01 b and 732.02. 732.03> 

eh 
6Ee (k) = 

eh 
6Ev (k) = 

CIO 0 k 2 
2 wee ( , q) . w. 
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271 €€r o. 
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(900.18) 

GO 0 2 
wvm(k,q) wp 

E J ( Nq 0 2 2 
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+ 2W
1 
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reducing the energies of both conduction and valence ·bands contributing a 

• . 20 -3 . 
small increase <+ 1 o meV at 10 em > to the change in the band gap as. In 

the zero temperature results of chapter 3 <see Fig 7.5. and Fig 7.9>. The 

screened dynamic exchange contributions of each band <Eq. 731.01a and 

· 732.03> how~ver act in opposite directions .. both to reduce the gap <Fig 7.4 

·. and 7.8) 

sx 
AE (k) v + 

CIO 
2 

e I f 
2 . e,q 

271 €€z. 0 

CIO 
2 e EJ( 
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ee 
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0 2 dq 
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(900.19) 

With appropriate choice of the energy cUtference in these expressions the 
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change in the band energy at any value of k may be de,ermined 

0 0 0 - = -wck wc(k-q) wcc(k,q) 
(900.20) 

0 0 0 (k 
wvk - wv (k-q) = wvv ,q) 

The major difference between the zero temperature calculations 

of chapter 3 and the values for the ·change in the conduction <valence> band 

bottom <top> at a ·temperature of · 300K shown in chapter 7 is a small 

increase in the finite temperature· band gap at tow concentrations. This 

increase· is caused mainly by the reduction <7 mev at 1 o 17 em - 3
, in the 

conduction band shift <fig 7 .6>. The valence band· shift <fig 7. 7> remains 

within a 2 meV ot its zero temperature vatue. The large change in the 

conduction band shift. is due to the decreased screening. <small liK) at low 

concentrations (fig 7.2>. Thts has a disproportionate effect on the 

conduction band where the magnitudes of the screene.d dynamic exchange and 

coulomb hole terms are additive. The sum of this electron-electron band 

gap reduction and the electron-impurity band gap reduction calculated in 

ttie section 7.4 results in a net Increase in the band gap reduction due to 

the large increase in the latter contribution. 

·~·In Fig 7.12 the sum of the electron-electron and electron-

impurity setr energies is presented for both zero and 300 K. As deta.lled 

in the introduction to chapter 7 these results are only valid above the 

Mott cri.tical concentration which Is higher than zero temperature value due 

to the increased. low concentration electron screening length <l/K see Fig 

7.2>. Below this concentration. although the electron-electron self 

energies shown in Fig 7.6 and Fig 7. 7 are still valid when there are Nd 

electrons in the conduction band. the etectron-impurity self energy is no 

long~r ~~lid <sectiQI"! 7 .1.2 and 4.5>. The Matt transition then de.fines the 

. 19 . 
tower concentration iimit to the results: At low concentrations below 10 . 
. . ' '• • : ' ,. ' ~ ' ·• ; ' ; ' ' I 1 • ! . . . . . . ! ' . . 
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em - 3 ttle ·experimental band gap narrowing results migtlt well be best 

described by the statistical approaches • of Heasell <1979> and Popovic 

<1979> where. a degenerate semi-populated impurity ·band separate from the 

host band is considered. However above the Matt critical density the true 

many body effects calculated in the previous sections should be used. 

assuming a merged conduction and impurity band. 

Finally in chapter e the experimental measurements of the band 

gap narrowing and minority carrier lifetime in a heavily n-type doped 

silicon· buried layer are detailed. These measurements are made in and 

Integrated ·Injection Logic transistor and many other par(:!meters are 

measured. . Measurement of · the. transport factor through the buried layer 

with the devices chosen was difficult because of the large error in 

calculated values of the minority current entering the buried layer <Jpv 

Table . 8.1. 8.2> caused by poor choice of cell shapes. However these 

measurements resulted in . a minority carrier lifetime in the buried layer 

. 19 -3 
<N d = 2.4:10 em > of <30 :t:. 1 O> ns In agreement with published values 

<Hart 1981 pp 97>. The band gap narrowing measured In this burled layer is 

<1 00 :t: 15> meV. This measurement is mainly affected by the non-uniformity 

of t.he buried layer through whlqh the band gap narrowing varies fr~;>m 0 to 

• . ' 19 -3 
perhaps as much as 140 mev at the peak donor concentration of 7.10 em . 

. This error could be· overcome in future measurements by using a more 

detailed· Gum mel calculation which included band gap narrowing 

considerations CEq. 621.09>.. The error in the measurement of Jpv could 

also easily be improved by a different choice of geom~tries for the cells . 

<section 8.2.2> and .would then provide f(Jrther check on the band gap 

narrowing <Eq. 821.14>. 

Tq . p!-!l m~~e experi.~~nt~l resyn§ into perspective Fig 9.1 

.l..· • 

... =9.10:: 
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shows the band gap narrowing calCulated in chapter 7 ·at zero and 300 K. 

Also plotted are results by Balkanskii et al <1969> for 35K and 300K 

derived from optical measurements. Although these experimental results are 

much lower than the present theoretical results the trend of increasing 

band gap narrowing for higher temperatures at low concentrations is clearly 

indicatea. Also plotted is the ·empirical formula derived from collector 

current measurements by Slotboom et al <1976> 

aEg(Nd) = 9 (R + 

.. Nd 
'R = 1og · (--r:7) 

e 10 

~ 

2 1/2. 
(R) + 0. 5) ) (meV) 

(900.21) 

!This can be seen to give band. gap narrowing results within 10 mev of the 

I . 
zero temperature theoretical values. Finally the present result of <1 oo :t 
[I 

;~ 5> mev at a concentration of 2.4. 1 019 em - 3 is plotted. Recently the 
I 
difference .between optical and transport measurements of the band gap 

narrowing has been reduced by the interpretation of luminescence results by 

'I 
Dumke <1983>. 

-~ 
I! 
II 

~.1 FUTURE WORK 

Improvements to the present theoretical calculations for 

heavily doped. 'silicon could be made at two .levels. In the first place the 

present calculations can easily be extended to cope with other materials. 

For this reason in Appendix A values quoted are for silicon and gallium 

arsenide. · In the second place the accuracy of the present calculations 

could be improved by numerically evaluating the overlap integrals <J\nm <k.q>>' 

or by increasing the number of terms in the self energy as outlined below. 

A major . improvement to the theoretical calculations presented 

here it is to consi~~r Klauder·s <1961 > best approximation to the ~tatit:; 
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<energy· E or w ·· Independent> electron-impurity Green's function used 

recently by Ghazall and Serre <1983. and Eq. 441.04>. In functional form 

Eq. 441.04 reduces to tGhazali and Serre Eq. 2> 

Nd 
K(q,p) = 3 I W(~-q)G(p-k) (W(-k) + K(k,p)) d

3
k 

.( 271) 
(910.01) 

k. q and p are wavevectors. K<q.p> is the vertex function that when solved 

by Iteration gives a series like Eq. 441.04. On setting q=O in K<q.p> the 

electron-impurity self energy shown in Eq. 441.04 Is derived. G<k> is the 

total Green's function 

G(k) = 1 
(910.02) 

(G0 (k))- 1 + t(k) 

<3° <k> Is the unperturbed Green's function. and the total self energy is 

given . by· the sum of electron-electron and electron-impurity self energies 

<Ghazali and Serre <1983> Eq. 2c> 

ei ee 
t(k) = t. (k) + t ~k) (910.03) 

The spectral density <A<k.E» and hence the density ·of electron states 

<p<E>> is given by the imaginary part of the total Green's . function . 

<Ghazali and· Serre <1983> Eq. 3 and 4> 

A(k,E) = ± (1/71) Im G(k,E) 
(910.04) 

p(E) = (1/0) Tr A(k,E) 

n Is the volume and Tr means sum over the k's and spin states. 

On solving the equations Eq. 910.01 to 910.04 Ghazali and Serre 

calculate the density · of states due to electron-impurity ana electron-

electron interactions in a simple semiconductor <non aegenerate pa·rabolic 

bands). H9wever ~qr H'l~ ~!~etrpn-impuri!Y inter.;t~~ion they use the T~Om§ls, 

,.· ,·,,. 
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Fermi potential. In future work· .the plasmon pole approximation to the 

electron dielectric function derived in. chapter 2 could be used. For the 

constant contribution from the electron-electron interactions they include 

only the Hartree Fock exchange energy at the Fermi energy. An improvement 

would be to use the electron-electron shifts calculated in chapters 3 or 7 

shown in Fig 7.6 and Fig 7. 7. Still further improvement would come from 

including the degeneracy of the valence band although this would result in 

significant extra complexity. 



APPENDIX A 

Containing selected variables and constants for silicon· doped .n-type with 

-3 
Nd <em . > donor impurities. Values [ 13.11 are for n-type GaAs as a 

comparison. 

II'JTRINSiC BAND GAP <see section 8.2.4) 

-4 T2 4.879.10 -4 
E

9
(T) = 1.165 - T + 180 + 1.58.10 T (eV) 

INTRINSIC EFFECTIVE MASSES AT 4 K. 

Conduction band 

= o. 19 m 
0 

= 0.97 m 
0 

Number of equivalent conduction band valleys Me = 6 

mde = ( 2) 1/ 3 = 0.3272 m . mlmt 0 

[= 0.067. m J 
0 

-1 
2 1 0.2596 m = 3(- + -) = op mt ml 

[.= 0.067 

Valence band . 

= 0.16 m 
0 

[= 0.082 m ] 
. 0: 

= 0.5 m [= 0.45. m ] 
0 0 

l= 11 

m 
0 

m J 
0 

m· 
v 

= (m
3

/
2 + m

3
/

2
) 2/

3 = 0.559 m [= 0.47 m] ·L ·· H o . o 

RELATIVE DIELECTRIC CONSTANT t = 11.8 [= 13.1] 

LATTICE ·PARAMETER 5.43 $.. [5.65 .8.1 

ATOMIC DENSITY 5.0.10
22 

em -
3 

[4.42.lo
22 

em -:-
3
1 

- A.l -
/~:: · .. ·.: ' 
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EFFECTIVE BOHR RADIUS 

2 
477E E i'l· 

r -7 -~ 
= 1.9086.10 em[= 1.035.10 un] 

EFFECTIVE RYDBERG 

= 31.965 meV [= 5.311 mev] 

THOMAS FERMI SCREENING LENGTH 

2 e 2 
K = f p(E) 

Parabolic band 

3/2 m 
2 

K =.M e ( 
de 

2 --2) 
277-t'l. 

Boltzmann statistics 

2 
e Nd 2 

K = 
EE kT 

r 
= 1.775.10 

Degenerate statistics 

-3 Nd 
T 

-2 
em 

1/6 M
1

/ 
3 

K -- 2 (-773)· e 1/6 = 3 1/6 -1 Nd 8.2549.10 Nd em 
...jaeff . 

3 1/6 -1 
[= 1.951.10 Nd em ] 

THOMAS FERMI ENERGY 

E 
K 

= 
-8 1/3 -8 1/3 = 7.9352.10 Nd eV (= 2.165.10 Nd eV] 

FERMI WAVEVECTOR <T=O> 

- A.:!. --



FERMI ENERGY <T=O> 

.1') 2k2 
f 

-fl.Wf = 2mde 

PLASMA ENERGY 

-15 2/3 = 3.375.10 Nd eV 

. -14 N2/3 
[= 1.1145.10 d eV] 

' 

= -11 N1/2 2.1215.10 d ev 

[= 3.963.10-
11 N1

/
2 

eV] 
d 

IMPURITY STRENGTH PARAMETER <CHAPTER 5> 

~ = 
4 e 2" = -19 5/6 2 N 1.1304.10 Nd (eV ) 

(4"EEr) 
2 K T 

Nd + N · .a 
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