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ABSTRACT

In this thesis the theoretical and experimental concentration
and temperature dependent band gap narrowing in uncompensated n-type
silicon is studied. Electron-electron and electron-impurity interaction
energies are used to calculate the theoretical band gap narrowing in the
p!ésmon—pole approximation. These reveal an increase of 14 meV in the band
gép narrowing at 300 K for a donor concentration of 3.10]9 cm_3 above the
zero temperature value of 95 meVv. For higher concentraﬁons the degeneracy
deepens and the zero and finite temperature band gap narrowing curves
converge. Localized states in the band gap resulting from local
fluctuations in the electron—-impurity interaction. a result of the random
position of the impurities. are aiso considered. When the analysis
- includes the effect on the host band of the electron-impurity interactions
calculated above the resuiting density of states in the band tail of

uncompensated silicon is found to be ten times smaller than is usually

imagined.

Using published values for the minority carrier mobility both
the band gap narrowing and the minority carrier lifetime are experimentally
determined in the buried n-type layer of an Integrated Injection Logic
transistor. 'The transport factor in the base‘of a parasitic pnp transistor
formed by the p-type substrate, buried layer and p-type Integrated
Injection Logic transistors base region is calculated by monitoring the
substr;te current density and minority carrier injection into the buried
layer. A range of temperatures from 200 K to 400 K are used to determine
the temperature dependence of the minority carrier mobility in the buried
layer (TO). A band gap\narrowing of ('IOd + 15 meV) and minority carrier

19 -3
lifetime of (30 + 10) ns are measured for the buried layer (2.4.10 ~ cm ).
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CHAPTER 1

1.0 INTRODUCTION.

Semiconductor bipolar devices depend for thelr operation on the
minority  carriers. The emitter efficiency of Dbipolar transistors is
defined for exampie by the ratio of emitted majority current to the total
. emitter current that is formed by the sum of majority and minority currents
at the emitter base junction (Sze 1981). This ratio is large when the
minority current is small To increase this ratio and hence also the
common emitter current gain the device designer decreases the equilibrium
minority carrier concentration in the emitter by increasing the emitter
concentration whiist decreasing the base concentration and width.  This
thesis concentrates - on the theoretical calculation and experimental
measurement of the reduction in silicon’s band gap caused by the pfesence
of a large ‘number of shallow level impurities. Minority carrier
concentrations are significantly increased by such ba-nd gap narrowing.

giving corresponding decreases in the emitter efficiency.

The band gap Is by no means the only important parameter of
interest to the device physicist.  However by limiting ' the scope of the
thesis it ié possiblé to make a valuable contribution to one area of
current interest (for recent reviews see Abram et al 1978 and Mertens
1981). The scope of the thesis is further limited to un-compensated n-type
silicon which is easier to mode! cdnceptually since the impurities in the
slmples§ model are all hydrogen like with a;positive centre surrounded by
an easily ionisable impurity electron. The th'eories,developed here may be
extended to cover a wider range of materials however this is beyond the

scope of the present work. Most theoretical workers 10 date have




concentrated on the zero temperature limit for their caiculations. In the
present. work however the principal results are extended to finite
temperature so that a more informed value for the band gap narrowing of use

to experimentalists is presented.

The following brief description of the changes of state that
occur as increasing numbers of donor impurities are added to a
semiconductor serves to introduce the most basic parameters used in this
thesis. Appendix A contains numerical values for these and other
parameters for silicon. At low concentrations (N < 10" ecm™®) the shallow
impurities are well separated in the bulk of the host semiconductor. The
positive cores of the simple impurities considered fbrm potential welis
that allow the impurity electrons to occupy states in the band gap. These
donor impurities have hydrogen like orbits modified by the semiconductor
dielectric constant (er=11.8) characterised by an effective Bohr radius
(aeff=1.91.10_7 cm) and effective Rydberg energy (R =32 meV). At finite
temperatures Boltzmann statistics are usually valid and the impurities are
easily ionised. However as the donor concentration increases the Bohr
orbitals begin to overlap. This results in the impurity levels splitting
and eventually the formation of a band. As the cdncentration is increased
this impurity band becomes more extensive and eventually merges with the
h.ost condﬁ-ction band. The detailed structure of this impurity band is of
interest in the concentration region close to this transition. One model
for this impurity band of particular use in compensated semiconductors is
named after Hubbard (1963, 1964). In the lower Hubbard band the localized
impurity states are hydrogen like (H). In the upper Hubbard band the
impurities would have two electrons HH. When the semiconductor is

slightly compensated those impurity sites that lose electrons to the

acceptors are available for impurity band conduction or hopping.



The presence 'of the impurity band changes the statistics
required to analyse carrier concentrations. In the first place the Fermi
level approaches the impurity energy. in the second place the semiconductor
becomes degenerate and Fermi Dirac statistics have to be used. Heasell
(1979) and Popovic (1979) have developed statistics where a partially
ionised impurity band is considered. Indeed by choosing an appropriate
degeneracy factor their model may effectively model . the effective band
gap reduction in doped silicon up to 10]9 cm-s. However the calculations

of this thesis show that there is a physical band gap reduction in heavily

doped semiconductors.

At a sufficiently high concentration the impurity band becomes
-.metal like and the impurity electrons are free to move throughout the
semiconductor. A transition has then occurred from an insulating state
(Ndﬂo]8 cm.—s). at zero temperature. to a conducting or metal like state.
The transition from metal to insulator is characterised by the Mott
critical density (Nc). There are transitions in other parameters at the
Mott crmcai density inclu-ding the magnetic susceptibility, the zero

temperature resistivity, the Hall coefficient and the specific © heat

capacity (Mott 1978, Mott 1974).

The Mott transition provideé a lower bound to the validity of
_ calculations” in the chapters to follow. The : Mott metal insulator
transition may be investigated simply by considering first the metallic
side of the transition. On this side of .the transition the impurity
electron wavefunctions are extended throughout space. This electron gas
acts to screen any coulombic imeractions .in: the semiconductor. A simple
modelA for this electron‘ screening used in metals is the Thomas Fermi

screened potential characterised by the Thomas Fermi screening length

- 13-



(A=1/k, Fistul 1969

2
e - KT :
V(r) Wiee_x e . (100.01)

This may be used to give a qualitative description of the band structure in
heavily doped silicon. The inverse Thomas Fermi screening length is then

defined by (see Appendix A)

1/3
1/6 M
3 C 1/6 3 1/6 -1
K=2 (2) =—-——N /% g.2549.10° NY/® cm (100.02)
m Vagee @ a

As the concentration of impurity centres is decreased so the screening
length (\) increases (see Fig 2.4. 7.2. At some point the screening
becomes so0 small that orbitals bound to the positively charged impurity
centres are possible characterised by the effective Bohr radius (ae").

Thus the ratio (ae f/)\) provides a convenient measure of the extent of this

f
localization. For exampie with éeﬁ/x = 2 the exponential in Eq. 100.01 at
r=ae" is 0.13 thus the potential (Eq. 100.01) is reduced to a tenth of the
unscreened coulombic potential. If the ratio were any greater than this
screening would be greater and bound states even less likely. Using Eq.
100.02 for the inverse screening length (A = 1/k) the impurity
concentration associated with this ratio is 4.10'S cm ™. The results of
the more detailed calculations of Berggren et al (1979 for this Mott
critical concentration N, are presented in Fig 2.4.

the
The conduction and valence bands are also affected byxpresence

of the extra screening due to the impurity electrons. At a sufficiently
high concentration the impurity band merges with the conduction band. It
is this very high density regime that is of interest. in this thesis..' The
study of the concentration region about the metal insulator translt_ion (NC)

is left to otherfworkers. Chapters 2 to 6 are concerned with the

theoretical estimation of the change in the band gap due to the presence of

-14-



Athe impurities at zero temperature. In Chapter 7 'these} theories are
extended to describe the change in the band gap at finite temperature.
Chapter 8 deals with an experimental measurements of the transport
parameters in heavily doped n-type silicon. Finally chapter 9 summarizes

the most important results.

The change lin the band structure of intrinsic silicon
(introduced in chapter 2) due to the introduction of tAhe impurities may be
divided into two parts. That due to the extra electron—-electron (ee) and
that due to electron—-impurity (ei) interactions. if the change in the
conduction (valence) band bottom (top) is given by AEC (AEV) then the

change in the band gap is given by

AE (N = AE AA ‘Aee AEei Aee Aei (100.03)
gha) = c T 8By = BEL + LE, - LE, - - OE, '

The electron-electron contributions to the band gap reduction are dealt
with in chapters 2 and 3. |In chapters 4, 5§ and 6 the electron-impurity

interactions are considered.

The change in the band edges is determinevd from the change in
the exchange or self energies (X). In chapter 2 the electrbn—electron self
energy is derived. In this thesis the electron screening used to evaluate
the self energy is derived in the plasmon pole approximation (derived in
chapter 2). This is more accurate than the Thomas Fermi screened .potemial
mentioned above which is only strictly valid ‘at very high impurity
concentrations where the electron wavefunctions are close to being plane.

waves.

. The self energy describes the exchange energy of an electron in
a particular band. For example in the conduction. band it-is made up of

y . ee
‘@xchange energies between electrons in the same band (L cc) and exchange

petween the electrons in different bands (Zeecv)

-1.5-



ee ee = _ee
Zc = ZCC + Ecv (100.04)

However as Inkson (1976) points out it is the change in the band energies
that is of interest. This is derived from the difference between this self
energy and that present in the intrinsic semiconductor (Z'mc). Thus the

change in the conduction band energy is defined by

ee ee ee int int ee ee
A = - - = = .
Z"c ch + ch ch ch ch AE (100.05)

In this thesis (chapter 3) as in work by other authors (Berggren and
Sernelius 1581. Abram et al 1978) it is' assumed thaf the exchange between
electrons in the conduction and valence band is unchanged by the presence
of the' extra electrons iﬁ the conduction band. The intrinsic exchange of
thev conduction band electrons with themseives (Zimcc) is clearly  zero,

since the intrinsic conduction band is calculated on a one electron modei.

A similar expression may be derived for the valence band

ee ee ee int int ee int ee
- B - -— = - = 0 .
AAZV Zvc + z'vv 'zvc Zvv zvv zvv AEV (10 06)

However in this case the intrinsic valence band has a self energy since it
s full of electrons in contrast to the intrinsic conduction band. This
”H'ar‘t.ree Fogk energy must be subtracted from the valence band contribution.
Chapter 4 is concerned with the ensemble averaged electron—impurity self

energy

ei - ei ei . ei
<A£g > = <AZC > - (sz > . = (AEg > A (100.07)

This shift in the band energies is due to the average impurity
concentration.  Local fluctuations in the impurity concentration are taken
into account in-chapter 5  These local fluctuations in the impurity

concentration are ' responsible for a band tail forming on the host bands

- ].6_



density of states. Several approaches have been made to this problem in
the past (Parameter (1955), Kane (1963). Halperin and Lax (1966). Lloyd and
Best (1979), Samathiyakanit (1979)). in this thesis the most useful
theories of Halperin and Lax and Lloyd Best are considered and improved.

Both use the Thomas Fermi approximation to the electron screening.

The above chapters define the three major areas of interest in
this thesi\s describing the electron-etectron, the electron-impurity shifts
in the band edges and finally the formation of localized states within the
band gap resulting in a tail on the density of states. In chapter 6 an
alternative approach to the electron-impurity problem is presented. Where
the former chapters (4, 5) treat a random array of impurity centres
superimposed on the host lattice. chapter 6 deals ‘with a regular
arrangement of impurities. However where in the former chapters an
approximation to the electron screening is used. in ‘chapter 6 the electron
screening is determined self consistently using the calculated electron -

wavefunctions.

The final theory section. chapter 7. extends the most useful
theorie.s of chapter 2 to chapter 4 to finite temperature so that a
comparison between the experiméntal results of chapter 8 and the theory is
possible in chapter 9. In chapter 8 a novel use of the pnp parisitic
transistor in an Integrated Injection Logic transistor pfovides theq means

of studying the transport parameters in the heavily n-type doped buried

layer (the emitter of the Integrated Injection Logic device).

- 1.7 -



CHAPTER 2

GENERALIZED ELECTRON SELF ENERGY FOR SILICON.

2.0 INTRODUCTION.

Introduced in this chapter are expressions that will be used
throughout the thesis. A Dbrief outline of the salient properties of
silicon’s conduction and valence bands is presented in section 2.1.
Section 2.2 contains a derivation of the electron—-electron seif energy.
taking the detailed nature of silicon’s band structure into account. In
section 2.3 the Lindhard and plasmon pole approximations to the eiectron
dielectric fuﬁction are derived for silicon and the justification for the
use of the plasmon pole approximation in this thesis is presented. Finally
in section 2.4 a brief summary of the results of this chapter are

presented.

2.1 BAND STRUCTURE OF SILICON.

Crystalline sllicon has a face.lcentre cubic spatial lattice
with a body centred cubic reciprocal lattice. The well known (see for
example Kittel 1976) shape of the first Brillouin zone is shown in Fig 2.1
with all the important symmetry labels. Where in a free electron gas the
electroh, wavefunctions would bé given by plahe wa\.(es. in silicon these
wavefunctions may be expressed in terms- of Bloch functions. ‘The
relationship betwe'en‘ energy and wavevector becomes more complicated than
that of a free electron gas. The resulting band diagréms for siHicon in

reduced zone, calculated by Herman et al 1967, are also drawn in Fig 2.1.
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From Fig 2.1 it is possible to see that the bottom of the
conduction band forms about 75% of the way from the zone centre 10 the:
point X. There v;rill then be six of these valleys. two each along the three
axes kx, ky and kz' Constant energy surfaces for these six valleys. shown
in Fig 2.2, may be approximated for energies close to the band edge by
ellipsoids characterized by a iongitudinal mass m, (ml = 0.98m0) and two
equal transverse masses m, (mt = 0.19m0. see Appendix A). Considering just
one of these ellipsoids at k‘. a new set of axes (k) centred on that
ellipsoid with the k'x axis orientated longitudinally can be defined. The

energy of that valley may be written

(o}
ck

2 ,2 N 12 12
€ E, + (A%/2) (k “/m + (ky + k. )/mt) (210.01)

2 2 2 2
(ke = Ry )7+ (k= k)7 + (k- k)

k 1]
b4 ix iy iz

where EC is the conduction band energy. Frequen'tly.. for example when
calculating the density of states, this approximation to silicon's
conduction band is used. accounting for the six valleys' by multiplying the
answer for one valley by the number of valleys (Mc) at the end of the

calculation.

| Silicon’s valence band has been found to be more complex than
the conduction band (for a good summary see Blakemore 1962). It consists
of three bands centred at the origin of the Brillouin zone, a schematic
diagram of these three may be found in Fig 2.3 (a). The upper two bands
(J=3/é) are known as the heavy and light hole bands and are degenerate at
(000) whiist the lower (U=1/2) is seplarated from these by the spini-orbit
interaction (see for example Kane 1982) and is known as the spin-—sblit-oﬂ
band. The s’i'tuation is further complicated by the lack of isotropy of
light and heavy hole bands (see Fig 2.3 (b)). Dresselhaus et al 1955 have

.developed an expression for the wavevector dependence of the holes in the
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Fig 2.3
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upper bands in terms of constants A, B and C

2 ' 2 2 2 2
= E_ - 5—(Ak" % (B k? + 2k 4+ k3% +k2k2))1/2)
Xy X 2z y z
(210.02)
where Ev is the valence band edge and the plus sign refers to the light
hole band and the minus sign to the heavy holes. Whiist the energy of the

spin split off band may be expressed as

°© _ g _, ARk
evk v 2m°

(210.03)

where A for silicon is only 44 meV. Kane 1956 has shown that this small
separation between upper and lower bands results in the light hole band
becoming non-parabolic over a small region of k (see F-ig 2.3 () that for
large k results in the two bands being characterized by the same mass
(0.5.m0). However for simplicity the light and heavy hole bands may be
approximated by parabolic isotropic bands with effective masses m, and m

(mH=0.5mo. mL=0.16mo’, Appendix A). Indeed for the caiculations in chapter

5 -and 6 . the situation is still further simplified by taking but one

parabolic band with density of states effective mass given by

n = (ma/z + m¥2,2/3

v L H )

m = 0.55m (210.04)
o o

The presence of the spin split off band is ignored in all
of the fbolllowing calcﬁlations to simplify an already complex situation.
‘This is consistent with the above parabolic assumption since this also
fails at about 50 meV below the bands edge. In p-type silicon the
presence of ihpurity states close to the. valence band (only 45 meV for
boron in silicon) might be expected to be offected s,ignificantly.by the
spin split oft band -as Is the light hole band. A full description of p-
type heavily dbped“silicon would require the spin split off band to Dbe

included.
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2.2 GENERALIZED ELECTRON SELF ENERGY IN HEAVILY DOPED
SILICON. .

The development of the self energy for semiconductor electrons
has a strong similarity with those for a free electron gas (Hedin and
Lundqgvist 1969). For this reason the theory in this section is based on
that for the free electron gas (see for example Fetter and Walecka 1971)
whilst pointing out the major differences between this and our problem. In
section 2.2.1 Dyson’s equation is derived analytically for heavily doped
silicon and a justification for the importance of the self energy is given.
In section 2.2.2 this derivation is complemented by the use of Feynman
diagrams.  Finally in section 2.2.3 an expression for the self energy in
terms of the Green’'s function and screened interaction is derived that will

be used in later chapters of this thesis.

2.2.1 " Dyson’s Equation.

Motion of electrons between two positions (x and y) and times

(t] and t,)) and may conveniently be described by there Green’s functions

2

G(xt],th),A where the spin indices are omitted for simplicity. As might be
expected this. Green’s function may be expanded as a series in terms of the
unscattered.br free particle propagator Go(xt].,th). The  equation that
generates this expansion is called Dyson’s equation after F.J. Dyson

(19492, b).

o ’ 4
G(x,¥y) = G (x,y) + [f Go(x,xl) Z(xl,xz) G(x,,Y) d x1d4x2

(221.01)

'Where an abbreviation for xt_ and yt, has been made. L(xt,x,t)) is  the

]
irreducible. or .prdper self energy of the particle, its approximate

evaluation in subsequent sections will enable us to calculate the change in
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energy of the bands due to the presence of many electrons in the conduction

band.

When the electrons in the conduction baﬁd are considered to be
smoothly spread throughout the whole of the heavily doped silicon Dyson’s
equation simptifies because the interaction Is invariant under transiations
and the system is spatially uniform. As a first step in showing this more

exactly the Fourier time transform of the Green‘s function is taken

% (xt .yt)= (/2m f e (x,y,w) o172 aw  (221.02)

Then in analog/j\s. with the free electron derivation the wavevector (k)
dependent Green’s function for the unperturbed electron in the band n is

defined

0 1
G (n;k,w) = (221.03)

°© + i6 0 —w.))
(w - wnk + i sgn(wnk—w:E

where Wy is the Fermi angular frequency and the electrons are considered to
fill the band up to this Fermi energy (ﬁwf). calculated as if there were no

exchange energy

12k

£
‘ﬁwf = om (221.04a)

with Fermi wavevector in one valley given by (see Fig 2.4)

i, M3 | .
(—M—') (221.04Db)
Cv

kfz

Writing the spatial Green's function as and expansion of this in terms of
the complete set of orthogonal functions ¢ ., (0 that ~ describe - the

unperturbed electrons of the band n (Hedin and Lundgvist 1969)

' *
by ()8 1 ()

O .
G (x,y,w) =}

: (221.05)
nk (w - wo + ibs wo —w.))- ‘
nk gn (W ~We

where the wavevector k is confined to the first Brillouin  zone of silicon .
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and the index n represents the band. As a small digression if the

wavefunctions ¢nk(x) are replaced by the normalised plane waves

' 32 ik,
o, (x) = 1/ (2m) 72 MK

then the spacial Green’s function reduces to the Fourier expansion of the

wavevector Green’s function used when dealing with a free electron gas.

When dealing with interactions between bands matrix elements

like
0] * (o) 3 .3
G (nik,m;q,w) = [f 6., (XG (x,y,w) ¢mq(Y) d xd 'y (221.06)

have to be solved where the Green’s function (self energy) is expanded in
terms of the wavefunctions .of two different bands. When Eq. 221.05 is
substituted for the Green’s function Go(x,y(r,(d) two similar overlap
integrals. one in x the other in y, are found. These are evaluated over

all space by invoking the orthogonality of the functions

* 3
I = f 0 ¢mq(x) d x = 6n'm6(k-q) (221.07)
s0 that
0 . E 0
G (n;k,miq,w) = } 6 ..6(q'-k)b_, 6(3-9')G (n';q',w)
n,q. ’ » A1 . v 3 . ‘
(221.08)
an,m '6(k—q)

o
© 6 (n;k,m;q,w) 5 5
(W - @, + ibsgn(w_, -we))

A simila:} process can be performed for the self energy with
. the result that Dyson’s equation (Eq. 221.01) reduces to an algebraic

equation in momentum space as in the free electron gas

- .0 o T :
G(n;k,w) = G (n;k,w) + G (n;k,W)L(n;k,w)G(n;k,w) (221..09)
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Whilst for the electron-electron calculations the above
uniformity of the electron distribution is to a large extent a reality, for
electron-impurity interactions the Iimpurities certainly do not merge into a
uniform positive continuum. However, as will be shown in the electron-
impurity self energy chapter (chapter 4) an equivalent Dyson like equation

for an ensemble averaged Green’s function is obtained in that case also.

Having now derived an expression for the unperturbed Green's
function in wavevector space (Eq. 221.08) Dyson’s equation (Eq. 221.09) may
be rewritten resulting in a straight forward expression for the total

Green’s function

1
G(n;k,w) = (221.10)

0] . (0]
(w - Wk "~ L(n;k,w) + 1bsgn(wnk—wf))

as with the free propagator the poles in this Green’s function give us the

energy of the particles represented by that function

(0]
W = W

kT Re(L(n;k,w)) = enk(fﬁ (221.11)

The real part of the self energy 'Z then gives the energy of the quasi
particles represented by the total Green's function. It Is this energy
that is to be calculated in this thesis. The remainder of this chapter is
devoted to finding an expression for the wavevector dependent self energy

in EQ. 221.11.

The total Green’s function has then the same form as the free
particle propagator but represents a particle, called the quasi particle,
with different energy and lifetime (Mattuck 1976, Fetter and Walecka 1971).
Since th'eveffet:tive mass is give by the sécond derivative of the energy
with respect to wai'/eyector this change in the. €-k relationship results in

an effective mass different from the intrinsic effective mass. Abram et al
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(1978) calculate this mass explicitly and find that it is only the
conduction band effectis)e mass that is affected and then by only a féw
percent. This difference in the effective mass Is ignored in what follows.
It is clear that the total Green’s function represents a new particle that
has different mass and energy from the unperturbed electrons. This new
particle is the result of groups of the electrons moving through the
semiconductor in clusters. These clusters or quasi-particles, as they are
often called, aré continually gaining and losing mémbers so that a
lifetime may be éscribed to them. When k=0 the resuiting expressions
describe the particles at the band edge. The self energy then gives the
shift of this band edge relative to its unperturbed position (Eq. 221.11)
which then justifies our interest in calculations of. the self energy. fhe

remainder of this section will be devoted to finding an approximation for

the self energy that is used in later chapters.
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2.2.2 Feynman Diagram representation of Dyson’s Equation.

An equivalent more lucid method of representing Dyson’s
equations is presented in this section. Working in k space and omitting
the band indices for simplicity, an expression for the self energy is
derived in terms of Feynman Diagrams. In section 2.2.3 the resulling

expression for silicon is developed.

Dyson’s equation for the total Green’s function may be written

(Mattuck 1976) +

k,w + (222.01)

represents the total Green’s function iG(k.w)

represents the irreducible self energy —-iZtk.w)

/H\ k,w =
% k'w
/}\ kK,w represents the free particle Green’s function iGO(k,w)

Dyson’s Equation may be expanded to several orders of approximation to give
the total Green’s function as series in the self energy

1

NoR
A ,= A+ @1 A (222.02)
+ % +
o -~ 2'g -
. : 4\ )

= + + +



The irreducible self energy is now defined as

K, w :
@ = W + (222.03)
k,w ' _

represents the screened interaction that contains all

k.w irreducible polarization parts —iwe"(k,wg
’ represents the dressed or irreducible vertices

In common with other work (Hedin and Lundqvist 1969) the so
called vertex corrections are omltfed. Taking only the most divergent
irreducible polarization parts., that corresponds to working in the Random
Phase Approximation,'and approximating the total Green’s function by the
free particle propagator the approximate self energy (here after just

called the self energy) becomes

RPA
@ - Q#’Q( > + : (222.04)
. RPA

where the approximate effective interaction (here after just called the

screened potential) is given by the series
SACA = ©+® +B>+ + T +,.,(222.05)
RPA

nol

. . 0
represents the unscreened interaction -iW (q).

AN
The first term in the self energy (Eq. 222.04) is just the

average electron-electron interaction that cancels with the average
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electron-impurity interaction as will be discussed in more detail in

chapter 4

) = b'v‘(/w:@\ +  reeanX (222.06)

The second term on the right hand side of Eq. 222.04 may be reduced to
functional form using the appropriate rules (see for exampie Mattuck 1967,

Mahan 1981, Fetter and Walecka 1971)
. 4. 0 . ' 3
il(k,w) = 1/(2m) fiG (k-q,w-V) (-iWg e (q,v))d qdv (222.07)

where the summation over spin states (ms=;t1/2) has been included.

2.2.3 Derivation of the self energy in heavily doped silicon.

The self energy for heavily doped silicon may be derived by

returning to the implicit spacial form of Eq. 222.07
0
Z(x,y,w) = - 1/27 [ G (X,Y,w-V) W ee(x,y,v) dv  (223.01)

This reduces to the former expression when the Fourier transforms of both
sides are taken. To achieve and expression for the self energy 1o
substitute into EQ. 221.11 for the quasi particle .energy in heavily doped
silicon the Green’s function and self energy must be expanded in terms of
the complete set of orthogonal functions ¢nk(x) that . describe the
unperturbed electrons in the nth band with‘ k the wavevector restricted to

the first Brillouin zone. The wavevector self energy is then written
¥ ' 3.3 ~
Lmik,w) = [0, (X)) L(x,y,w) ¢, (y) dxdy . (223.02)

whilst the unperturbed Green’s function (from Eq. 221.03 and Eq. 221.0%)
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may be written as

0 0 L

€ (x,y,w-v) = F O (KNG (miq,w-v)e (V) (223.03)
mg ' d

On substituting for Lix,y.w) from Eq. 223.01 and Go(x.y.w-v) from Eq.

223.03 the wavevector dependent self energy Eq. 223.02 becomes
o] 3
L(n;k,w) = 1/2m )} ff W(nk,mq,v)G (m;q,w-v) dvd q (223.04)
m
where the interaction matrix is given by

x * 3
Wl mi g, V)= ST 8 (0 0 (D e Gy, v) 0 (0 8y () a xay

(223.05)

The above integral may be solved by taking the Fourier transform for the

potential
' 3 il, (x-y) .3
Woge Xy, V) = 1/7(2m) [ W ee(1,V) d”1l (223.06)
on substitution into Eq. 223.05 this gives
3 * 3
W(n;k,m;q,v) = 1/(2m) [ I I W_,.(1,v) 41 (223.07a)

where the overlap integrals. one in x the other in y. are given by

X

* il 3 .
I =7 ¢nk(x)e ¢mq(x) a'x : (223.07b)

where n and m are the band indices. These overlap integrals are now

calculated explicitly for the valence and conduction bands:
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a) The conduction band overiap integral.

To evaluate the overlap integral for the conduction band (n=c)
the unperturbed wavefunctions are expanded in terms of their associated

Bloch function unk(x)

_ ikx
¢nk(x) = unk(x) e (223.08)

where the u, only vary slowly with k. Expanding the periodic u’'s in a

k
Fourier series in the reciprocal lattice vector g

* _ igx )
Uk B Vg (x) = ) Cg e | (223.09a)
g
where
B 3 * -igx .3
Cg = 1/(2m) [ unk(x)umq(x) e a™x (223.09b)

so that the overiap integral (Eq. 233.07b) becomes
- * -igx .3
I = g 6 (q-k+l+g) [ unk(x)umq(x) e a x (223.10a)

Since the wavevectors q k and | are only defined within the first

Brillouin zone and only extend over a small volume in reciprocal space only

the first zone need be considered

- 3 10b
I = 6(g-k+l) _]‘ unk(x)umq(x) ax - (223. )
The Bloch integral may then be written
I I = 6(g-k+1) bnm (223.10C)

where the coupling between conduction and valence bands has been ignored.

This coupling is dealt with in more detail in section 3.1.
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b) The valence band overlap integral.

When considering the valence band the coupling between the
h’eavy (n=H) and light (n=L hole bands (J=3/2) is included. However the
spin split off band (J=1/2) is ignored (see section 2.1 for justification).
Rather than choosing the simple Bloch functions of the previoué_ section
Combescot and Nozieres (1972) expand the wavefunctions ¢ in terms of the

complete set of orthonormal functions used by Luttinger and Kohn (1955)

$, (X = ) Cva(k) uoa(X) etk (223.11)
a

where the C's are constants and the spin index a is only allowed to scan
through the heavy and light hole bands (e mJ = 13/2, £1/2). The
wavefunction are then constructed from the k=0 unperturbed Bloch function
Yoo The overlap integral (Eq. 223.07) may now be rewritten in terms of
these basis functions

ig.x d3x
v'a'

* * -ik.x il,. -
I=f % C KV u_ (X)e e x%? (@u_,, (e

(223.12a)
where the bands have been specified by their total orbital angular momentum
guantum numbers (mJ) denoted by v and v’. rather than the band indices uséd
previously (EQ. 223.7 n and m). Invoking the orthogonality of the k=0
Bloch functions the valence band overlap integral becomes

I = 2 c:a(k) CoLial@® [ o tlkmaTl).x 43, | (223.12b)

and performing the integration over all space

I=6(k-q-1) L C, (k) C (@ . (223.120)
¢4 . :

In this special case where the summation over m is restricted -

to just the heavy and light hole bands Combescot and Nozieres showed that
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the constants, Cva(k)" were just the elerﬁents of the' rotation matrix that
rotates the function in the J=3/2 representation bringing k in line with
the z axis (see also Bir and Pikus 1974, pp 255). Thus if the function ’Jm

(J=3/2,m=mJZ = *3/2, or :t-1/2) describes an eigenstate in the
coordinate system x.y.z and the function me, the same eigenstate but in
the different coordinate system x'.y’'.z’ obtained by> rotating about the

origin, with m’=m __, then the rotation matrix dJm'm ‘relates these two

Jz

functions

ima (223.13a)

L, J
va = Z elm 4 dm’m(B) e va'
ml

where the Euler angles a, 8 and v define the rotation between the two
coordinate systems (see for example Arfken 1970 pp 220). The rotation
matrix in the J=3/2 representation is given by (see for example Edmonds

1957)

3/2 ' 2 5 6 3 o
dnmB) = (223.13b)

with the six constant given by

dl = 1/4 (cos3B8/2 + 3cosfB/2)
d2 = VY3/4 (sin3B/2 + sinf/2)
d3 = V3/4 (cos38/2 - cosB/2)
' (223.13c)
d4 = 1/4 (sin3B/2 - 3s8inf/2)
d5 = 1/4 (3cos38/2 + cosB/2)
d'5 = 1/4 (38in3B/2 - sinB/2)
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In particular choosing k parallel to the z axis so that

o gq¥2 - ‘
Cra® = d,, (0) =6 ~ (223.14)

the constants Cv'v(q) are defined by the angle (8) between the z axis. (or

-

K) and q

_ a3/2 _
C,,. (@ = a7 - . (223.15)

The overlap integral (Eq. 223.12c) may then be rewritten

3/

I =4a/ (8) 6(k-g-1) : (223.16)

But in Eq. 223.04 the summation is over just two bands. either the- light
hole band (m=D of the heavy hole band (m=H). Thus to be consistent with
Eq. 223.04 a partial summation over the various spin angular momenta v’
assoclated with the band m must be perfbrmed. Since the square of the
overlap integral is required (as shown in Eq. 223.07a) it is convenient to
define the function A used by Combescot and Nozieres (1972), Rice (1977).

Berggren and Sernelius (1981)

Ayy = Ay, = 93,5,3,2(8)d5,5 3,5(0)

t A 3,0,3/2(0d 5,5 53,500 (223.17a)
that is interpreted using Eq. 223.13
¥ *a = : = 52 23.17b
ajd, +d.d, = dad_+4ad. = 1/4 (1 + 3cos"0) (223.17b)
and
Dyp, = B = 93/2,1/2(80d5,5,1,5(9)
17
* A 55,1204 3,5 1,,(8) (223.17c)
given by '
a’a a*a = 3/4 sin? | 223,174)
o9y * 4343 = 3/4 sin 6 (223.
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Notice also that if there were no coupling potential « 0) the overtap

integral (Eq. 223.12¢) becomes

* 3
S Pnp(¥) 0, () d7x = 8(q-k) gdua(o)dv,a(O) 6(q-k) b

a trivial result used in deriving the wavevector Dyson’s equation Eq.

221.09. that shows that the ¢ are indeed orthogonal.

Returning now to the eva!uation of the self energy (Eq. 223.04)
the overlap integrals for the conduction (Eq. 223.10) and valence bands
(EQ. 223.17) have just beén calculated. These have to be substituted into
Eq. 223.07a and Eq. 223.04. For compileteness the definition of A is‘

extended to include the conduction band overlap integral

*

I 1= 6(q-k+t1) A ‘ (223.18)
A = 0 n and m belonging to conduction band
nm nm : ' :
anm n belonging to conduction band. m belonging to

valence band or visa versa (see section 3.1)
1/4 (1 + 3cos29) n and m belonging to the same valence band
3/4 sinze n and m belonging to di’fférent valence bands

With the aid of this function the' self energy (Eq. 223.04) is wriiten using

the interaction (Eq. 223.07) as

L(n;k,w) = i/(zﬂ)4 Y ff Anm Weff(q,'v) Go(m';k—q,w—vi dvdaq
m ) . R
. ei’i)(m—v)
L(n;k,w) = — Ny = ‘
(2(1)- m (w-v - wm(k—q)+ ibsgn(wm(k_q)ewf))
3 o
Anmweff(q’w) d qgdv o (223.19)

t

Where the unperturbed Green’s function contains an exponentia] convergence
factor with infinitesimal 7. The essential difference between this and the
equivalent free electron-gas expression is the inclusion of the vertex

function (A_ ) to describe the coupling between the bands (n.m). In a more
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exact calculation these overlap Aintegral'sv would have to be calculated
numerically between all the semiconductor bands. For the present
calculations the above expression is used. In. thé next section an
expression for the screened interaction We"(q.w) is. derived to complete
the expressions needed to calculate the self energy used to predict the

change in the band energy (Eq. 221.11).

2.3 COULOMBIC POTENTIAL SCREENED BY CONDUCTION BAND
ELECTRONS. .

To complete the derivation of a useful éx'pression for the self
energy (Eq. 223.19) in heavily doped silicon, the effective interaction
(Weff(q"")) has to be evaluated. This represents the screening of the
impurity potential due to the presence of all the exfra carriers in the
conduction band of the heavily doped silicon as outlined in section 2.2.2.
Only the conduction band electrons need be considered since the valence
band will have no extra carriers. Whilst deriving the expressions for the
conduction band the inter—va.lley scattering that has been found to play an
important part at high concentrations in an ordered lattice of impurities.
(Selloni and Pantendeé 1982) is ignored. The six conduction band
ellipsoidal energy surfaces are then qonsldered to be independent. When
considerirng ’.a p-type semiconductor‘ tﬁe corresponding expressions would
contain the extra complications of the valence band. The calbulation of
this screened 'potential is performed in section 2.3.1 inihe_ Random Phase
approximation as outlined in section é.2.2. In secthn 2.3.2 the resulting
Lindhard Dielectric function is approximated in» - the 'plasmon pole
approximation used throughout .this thesls.‘ In seétion 2.3.3 a Drief

comparison of the inverse Lindhard and plasmon pole approximations is made

that indicates the power of the plasmon pole 'approximation.
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2.3.1 Derivation of the Lindhard dielectric functio_n in silicon.

As can be seen from the diagrams in EqQ. 222.05 the screened

potential is just a geometric progression and may be summed to infinite

order.
VADANA .
W : = 0
RPA 1 -
: o (231.01)
~iw (q)

= 0 0 = ~iWgpa (4, W)
1+ W (@7 (q.w) .

where the ring diagram

g+k, w+v O k,v

Is represented by —ino(q,w) where the O superscript indicates that the

polarization insert has been taken to zeroth order. The effective electron
dielectric function e(k.w) is defined by the expression

o 0 o ' 0
Wopa(T,w) = W (@) / (1 + W (q) 7 (q,w)) = W (q) / €(q,w)
(231.02)

All that remains is to evaluate the polarization insertion no(q.w), for
this the ring diagram is expanded in its functional form (Mahan 1981,
" Fetter and Walecka (1971), Mattuck (1976)). The sum over spins (ms=:tl/2)

is also performed giving

—in%(q,w) = (28+1) (-1) B = (2m) * I ic® (x,v)
.0 3
1G (k+g,w+v) d kdv (231.03)

On substituting for the two Green’s functions from Eq. 221.03 this gives

-2 i

0
-i7m (q,w) =
‘ (211)4'1'1 (v - W’

K *iésgn(k-kf))

(231.04)

i

3
) d kdv
(W + v - “’k+& 1ﬁsgn(|k+q|—kf))-
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The integrals are perform in two parts, first the frequency integral. then

the wavevector integral.

“a) Frequency integral.

The integral over the angular frequency v may be carried out by
complex integration taking the integral over a semicircular contour in the
upper half plane (see Fig 2.5). The integrand is divided into four parts
defined by the relative sizes of k, k+q. and kf using tﬁe step  function
ex. Only two of these have poles above the real axis. they occur when

angular frequency v is given by

0 . 0 .
v=wk+15 and v-wk+q-.w+16
when kok, and ik+qi>k, the poles are both below the real axis at

o) ) ) - _
v=wk-—16 and v-wk+q—w—1d

they do not contribute to the integral. The integrand of Eq. 231.04 has

then a residue of

9(kf—k)9(|k+q|-kf) 4 . e(k—kf)e(kf—|k+ql)
0 . 0 . 0 . o) .
(W + (wk + ib) - wk+q + 1id) ((("k+q - w + ib6) - w, + ib6)

which may be re-written. by changing the variable from k to -(k+q) in the

second term so that

.0 2i 1
-im (q,Ww) = —3 fe(kf—k)6(|k+q|—kf)( — Do 0
(2m) A (w+wk—wk+q+16)
- 5 ;‘ ) d3k - (231.05)
(w-wk+wk+q-'15)
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b) Conduction band wavevector integral for silicon.

To perform the wavevector integral in silicon's non-spherical
conductioﬁ band t.,he usual substitution for k and @ have to be made (section.
2.1). Having calculated the polarization for one \)alley the result is
muitiplied by the number of valleys (Mc) to find the pblarization due to

electrons in all the valleys.

The substitution for k and q is

2 2 2 2 2 2 .
k ] = H ' = H ' =
x kx mde/ ml ky ky mde/ mt kz kz de/ mt
' (231.06a)
where the density of states effective mass for one valley is given by
_ . 2.1/3 _
mde = (mlmt ) : (231.06Db)

It is justified to make a similar substitution for q. slhce the polarisation
rro(q,w) is to be integrated over the conduction band states with respect to
q in the self energy expressions (Eq. 223.19). The i}ntegra'ls now have the
same form as those for a semiconductor with a spherical constant energy
surface with rﬁass equal to the density of states effeétive mass. Dropping

the primes and letting

0o o _ _ L2 .2
“’k+q - W = /ﬁ/Zmde (1 k+aqi k)
= ﬁ/zmde (2kqcos6 + qz) ~ (231.06cC)
and
= - h = + 231.064
a q(c—:q w)/ecI and b q(eCI ‘l’w)/ecI ' | ( )

2 .2
where eq =hq /2mde

and O the angle between the vectors k and q. The polarization of the
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conduction band electron gas becomes

-2gM coff

o |
mo(qw) = ———5— [[0(ke-k)O(Ik+q]-
(2m) "€, 00

1
ke) ((—_a - 2kcosé + ib)

. 5 .
" (b + 2kcos@ - ib))znk sinfdédk (231.07)

where to get the total polarization of conduction band electrons the result
for one valley has been multiplied the number of equivalent conduction band

valleys (Mc). The real part of this integral -gives (Fetter and Walecka

1971)
0 Mk eMe ke kf(eq - Aw)
Re(T (q,w)) = —35 5 { 1+ — [ £( )
(2m)y 1 2q €:d
k, (€. + 1iw)
+ £ f q ) 1) (231- 08a)
€¢d
where f(x) = (1 - x2/4)1n E:f—zg
Whilst the imaginary part is given by
2 2 2
M_q/8m) (2my /M) (ke/q) (1 - a /4) I
Im(no(q,w)) =) (M_q/87) (2mde/4$2) (anw/eq) II
0 : III IV
(231.08Db)

with the four regions, shown in Fig 2.6, bounded by the following lines
I Nw = 2(-:fq/kf - eq énd the q axis

II Hw = eq-zefq/k fw = € +2ef<-'(/kf and fiw = 2efq/kf—e

£’ q
III 4w = & + 2€f4:1/kf and the w axis

q

v Aw = eq - :aefq/kf and the q axns‘
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The real and imaginary parts of this polarization may be combined to give

2m. kK.M_ - K k(€. - A(w+ib))
o] de f ¢ £ £
T (qQ,w) = —s 3 { 1 + — [ £( 1 )
(2m) A 2q €9
kf(eq + A (w+ib))
+ £ ) 1} (231.09)
€4 :

The dielectric function may then be derived from Eq. 231.02 usi'ng this
expression for the polarization. However in' the above derivation a
substitution (Eq. 231.06a) was made for q so that theA energy difference
(Eq. 231.06¢) could be defined in the conduction band. The substitution
for the wavevector q (Eq. 231.06a) was justified at the time by noticing
that W(gq.w) and hence Tro(q,w) is to be integrated over the conduction band
states in the self energy expression (Eq. 223.19). When this substitution

is made in Wo(q)

2
| e

Wi = 3 de ' (231.10)

12 l2
Eer (ml + mt +mtqz )

Dropping the primes and making a crude adjustment for the complicated
denominator this gives

0 2 2 '

W (q) = (mde/mop) e /ee q | (231.11a)

where the optical effective mass is given by

-1
Mop 1/3 (1/my + 2/m.) \ ) (231.11b)

The electron dielectric function is then given by

€E(q,w) = 1 + wo(q) ﬂo(q,w) (231:11c)

Identifying the prefactor from the second term on the right hand side of

EQ. 231.11c with the inverse Thomas Fermi screening length x (see Fig 2.4
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for values of this function)

2 3/2
K2 ) 2mdekace - (3) MC y 1/3 (231.12)
= 2_2 = 7 a '

((2m) e ) L NT

the electron dielectric function (Eqg. 231.11 and Eq. 231.09) may be written

2 "
m3ek kf. kf(eq - H(w+ib))
E(q,w)=1+—2-[1+—[f(A )
2m 4 2q €.q
kf(ecI + H(w+ib))
+ £ ) 1] (231.13)
€9 :
where f(x) is defined in Eq. 231.08a. On setting Moo equal to the

conduction band dénsity of states mass this reduces to the Lindhard
dielectric function used by Berggrén and Sernelius (1981). The inclusion
of mép in the prefactor of EqQ. 231.13 justifies the use of mop in the
plasma frequency (wp Eq. 232.05) used in the next section.

2.3.2 The plasmon pole approximation.

Vln this thesis the plasmon pole approximation to the above
Lindharg function is used. This has been found to be quite adequate for_
the present calculations and because of Its. simplicity has the advantage of
being easily extended to finite temperature. In this section the plasmon
pole approximation is derived from a series -expansion of the Lindhard

function derived above.
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The Lindhard dielectric function (Eq. 231.13) may be written

in its real and imaginary parts

€(q,w) = €;(q,W) + 1i€,(q,w)
2 .
mdex kf }.(f(eq - Hhw) -
€,(q,w) = 1 + of 1+ — [ £( )
mopzcl 2q €:9

kf(eq + Aiw)

+ £ ) 1) (232.01a)
€4
(Mc/aeffq) (ﬁw/eq) . ¢
2 2 , ~ =
€E,(q, W) =JM /3D (kK/q) (1 - a/4)  II (232.01b)
0 III IV

a = q(eg - Hw)/ ey

wheré the four regions and the function f(x) are those defined in Eq.231.08
and shown in Fig 2.6. The imaginary part of the d;electric function is
then only non-zero in regions | and . where it has the values defined
above. Whilst the real part of the dielectric function is given by one
expression throughout qgq-w space. in the self energy cailculation (EQ.
223.19) it is not simply the dielectric function that is required but
rather the inverse dielectric function. CAlearly this also has real and
imaginary parts given by -

1 el(q,w) - isz(q,w)

e - S = ' ' (232.02)
‘q’ €,(@,0)° + £5(q,w)

The inverse dielectric function will have poles at values of q and w when
the denominator of this expression -is zero. However in region Il .of Fig
2.6 this amounts to zeros in the real part of the dielectric function since
the imaginary part is zero throughout Ilil. Whil_st in region |l wh'ere q is
large s2(q,w) is proportional to the inverse cube of q. so again the.
imaginary part may be quite smail. Taking fi}si large w and q whilst

ignoring EQ(q,w) the poles in the inverse dielectric' function may Dbe
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calculated by finding the =zeros in the real, part of the dielectric

function.

a) For large w the arguments of the logarithmic functions become large

so the real part of the dielectric function (Eq. 232.01) may be re-written

2
_ 4mdeK €f€q
€,(qw) = 1 + - qz( g o 2))
op ( q )
2 3 3 2
‘lemde" €¢ (eCI + '3eq(‘ﬁw) )_ .
+ > 2 > D) 3 i (232.03)
15mopq kf (eq - (hw) )
To a first approximation the zeros in this function are given by
2
) 4mdex efeq )
€,(q,w) = 1 + - q»2( - 2 o 2)) =0
opd (€g - W)
or (232.04) .
2 2 ’ 2 2
W) T = (hw, (@) = (‘n“’p? + €
where the ptasma frequency wp
2 2 2
am__K € N_.e .
2 de £ 4a
(«ﬁwp) = 2 % Tem (232.05)
3mopkf 0 op

has been identified and w]‘(q) is known as the dispersion frequency. The

real part of the dielectric function may be re-written

(-ﬁmp)2 : ' w§
€. (q,w) = 1 + , = 1 + -
1 2 o2 o 2 2 2
(€g - (W) ) (w, (@) - Wy - W
4 o (232.06)
" The Cauchy principle part of the inverse dielectric functidn'is just
2 2 '
L @ @ ® - @* - @)?
= — > 5 (232.07a)
€1 (1) @ (@2 - (@

Whiist the imaginary part of the inverse dielectric function is given by
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the delta function

-1 m wp2 » .
Im(e (q,w)) = - ——— 6w - w,(q)) (232.07b)

2w (@
A second approximation to the dispersion relationship may be obtained from
Eq. 232.03 by substituting for w from Eq. 232.04
' 2. 3 2
4 :
ef(fxwp) (eq fseq(hw) )
2 2
S
q (eCI

ie (232.08)

2 2 2
0 = (eq - (—nwl(CI)) )y + (ﬁwp) +

- (ﬁw)z)2

2 2 2 2

Hw = (BAw = ¢h + 2
(Hw) ( l(CI)) ¢ wp) (1 /5)eqef + eq
The above derivation of the dispersion relationship illustrates the
importance of the q4 term as pointed out by Lundqvist (1967). Higher

approximations to t'he dispersion relation may be found in Ferrell 1957.

b)  In the static (w=0) limit as q tends towards zero the Thomas Fermi
limit
2
2 W
1 - q =1 ' ___B_.
-2 2~ - 2
©0D g4 ? w, (@
o @) = @ )? (232.09)
(fhw, (q = ¢ Wy + (4/3)eqef | | .

is obtained from Eq. 232.01. Thus in order that the correct Thomas Fermi
limit is obtained for small q the following dispersion rélationship is used

in this thesis (see Fig 2.6)
hw ';(q) )-2 = (Aw )2 + (4/3 + 2 (232.10)
( 1 l' ¢ P - ( / ) eqef eq ] .

where the factor in front of the q2 term has been adjusted from that in Eq.
232.08 to give the correct Thomas Fermi limit. Other workers have used a

variety of forms for the second term in Eq. 232.10. Mahan (1980) uses
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whilst Berggren and Sernelius (1981) use

in their calculations in the plasmon pole approximation. The additional

term in the ratio of the conduction band effective mass mye) to the .

optical mass (mop) makes only a small correction to the final result

(r=1.26).

The inverse dielectric function in the plasmon pole

approximation may now be written
w 2 |
1 P ) 1 ) .1
€ (q,w) = 1 + ( ) = - )
2w1(q) w - wl(q) + ib w + wl‘(q) ~ ib

(232.11)
The peak in the imaginary part of this' function indicates a frequency at
which with no external elect'ric field an oscillation of the electron gas
may exist. These longitudinal oscillations of the electron gas are called
plasmons. Although the above definition of the inverse -dielectric function
is only strictly valid within regién Il up to the critical wavenumber (qc)
and frequency (wc see Fig 2.6). where the plasmons are undamped. provided
the modified dispersion relationship (Eq. 232.-1"0‘) is used it' gives a good

approximation to the full Lindhard function.

2.3.3 Detailed comparison of plasmon pole and Llndhard functions.

In order to compare the plasmon pole approximation derived

above with the full Lindhard function we introduce the form of the energy

variable w used later in the thesis

0 0 2 2 : : )
hw = (‘wnq = xneq = A, Nq /2m, ~ (233.01)
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) 0 o '
where fiw nq defines the € - k relationship for the band n. In the valence

band xH and A, define the heavy and Iight hole bands. Fig 2.6 shows the

L
two valence band curves defined by 233.01. In Fig 2.7 and Fig 2.8 the

magnitude. of the inverse Lindhard (Eq. 231.13) and plasmon pole (Eq.
232.11) dielectric- functions are plotted for the light hole band (Fig 2.7)
and heavy hole band (Fig 2.8). In Fig 2.8 it can be seen that for the
heavy hole band ()‘H) the Lindhard and plasmon pole dielectric functions
agree very well. However in the light hole band (Fig 2.7) although the
plasmon frequency is predicted well the precise nature 61» the plésmon peak
is not identical. The light hole dispersion rglationship bisects w](q)

(shown in Fig 2.6) above the critical freqpéncy. Thus the true or Lindhard
peak in Fig 2.7 i§ damped whilst thé plasmon pole approximation predicts a

pole at

o
Wng = ¥ () (233.02)

This is a clear indication that use of the plasmon pole approximation for
any similar w—q curve where the dispersion curve is intersected wiil give
erroneous results. However as will be shown in subsequent sections this

probiem is overcome in the present calculations.

A more fundamental probiem arises from the e);act nature of the
valence band (Fig 2.3¢c). From the € - k curve for the light hole band (Fig :
2.30) the effective mass m, can be seen to change from a low value for
small energies to a value little different from my at about 30 meV below
the band top. From Fig 2.6 the plasmon peak (Fig 2.7) occurs at some
hundreds of meV below the valence band top. - Thus the’ light hole mass
should have Increased long before this point and the plasmon peak (Fig 2.7

would never occur. A more detalled description of the valence band selt

onerglas would require the inclusion of these eftects.
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2.4 -SUMMARY.

In summary the electrons and holes in the band (n) of heavily
doped silicon can no longer be described by the unperturbed Green's

function

) 1
G (n;k,w) = — (240.01)

3) 5 0
(W - w, +1i sgn(wnk—wf))

with unperturbed energy (for details see Eq. 210.01 and Eq. 210.02)

o) 0]

€ = 'hwnk (240.02)

but rather the total Green’s functions that describes the properties of the

quasi-particies is used (with wy the zero temperature Fermi frequency)

0 ee . . 0
G(n;k,w) = 1/ (W - W - L (n:;k,w) + ibsgn(w

nk—wf))

(240.03)
where the poles in the Green’s function give us an iterative solution for

the wavevector dependent enérgy (enk) of these quasi particles

0
Ww_, = W (240.04)

+ Z,'ee .
nk nk Re ( (n; ’wn

)

To a first approximation this gives

o o _ee o. - 0 ee
€ = 'ﬁ“'nk ~ oﬁwnk+hRe(}.‘. (nik,w ,)) = 6wnk + hRe(Zn (k))

nk

(240.05)
The self energy (L) gives the change in band position cofnpared to its
unperturbed position it is represented by AE?en(k) where n represents the

band index and the super-script indicates -that .this is the electron-
electron contribution to the movement of the band.

ee ee 0 ' ee ]
AE_ (k) = A Re (L (n;k,w ,)) = B Re():n (k):) (240.06)

The form of the self energy is given by the following set of equations.
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First the self energy (Eq. 223.19)

L™ (nik,w) = —— TS — =
(27r) m (w-v - wm(k_,q)+ ibsg-n(wm(k_q)—wf))
Anmweff(q,v) d3qdv (240.07a)

where the screened interaction We“(q,w) used is defined in Eq. 231.02

2 2 :
Wore(d, W) = e /e€ d €(q,w) (240.07b)

In this thesis the plasmon pole approximation to the. electron dielectric

function is used (e(g.w)). This is given by (Eq. 232.11)
2 .
liqw) =1+ “p L - L
€ (q.0) = 2wl(q) w - wl(q) + 1ib w + wl(q) - 15)

or after a small amount of rearranging

2
W
-1
€ (qw) = 1 - ( E 5 ) (240.07c)
(w, (@) = i%) - w
with dispersion relationship (Eq. 232.10), where a term in q4 is included

to give better large q agreement with the Lindhard function

2 2 2.2 2 2.2
w, (@ = w + w9 /K +eq/4ﬁ

P P
2  3m q*
=w2(1+q—+—‘£———) (240.074d)
P 2 am K 2K2
K de £
The plasma frequency is given by Eq. 232.05
2 2 2
am_ K € N _e _
(h(‘) )2 = de £ = d (240.07e)
P 3m _k 2 EErmop
. op £ 4
and the Thomas Fermi screening length by (see Fig 2.4)
2 3/2
2m. k M e M :
2 de f c 3.1/3 "¢ - 1/3
= = —_ .07
K 4 (3) 3 N4 (240.07f)

((2ﬂ)%ﬁ2eer> eff -
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whilst the Fermi wavevector is given by (see Fig 2.4)
2 1/3
3m N,

ke = ( —Mc_) (240.07g)

Finally the Lamda function Anm’ where n and m represent the different bands

(c conduction, v valence) was defined by (Eq. 223.18)

A = A

nm mn

Acm = 6cm (240.07h)
_ _ 2 _ 2

Avc = 0 ALH = 3/4 sin @ AHH = 1/4 (1+3cos 8)

Where H represents the heavy hole band and L repreéents the light hole band
and 0 is the angle between wavevectors k and q in Eq. 240.07a.

in summary a first approximation to the self energy has been
derived that: ignores the vertex corrections: uses the freeA particle
propagator: contains the séreened interaction potential which itself has
been approximated by only considering the plasmon pole: ignores inter—
valley scattering. To improve the approximations made it would be possible
to extend the calculation of the 'electron self energy to include the vertex
functions or use the Lindhard function in the .interaction. It would aiso
be possible to combine the electron—electron calculations with the electron
impurity calculations as Ghazali and Serre (1982) has)e done (see chapter 4)
but using the plasmon pole approximation, rather than the Thomas Fermi
approximation that Ghazali and Serre use. |

By comparison with Berggren and Sernelius's work (1981) the
chapters to follow show that the piasmon pole apbroxirhatlon to the Lindhard
dielectric function has acceptable accuracy. Indeed it has been found that
with the aid of this simpler plasmon pole approximation to the above
dielectric function an approximation to the self energy at finite
temperature may easily be derived (chapter 7). ‘The self energy defined in
Eq. 240.07 is then used in this thesis to.deséribe the change in energy of

the conduction and valence bands.
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CHAPTER 3

ELECTRON-ELECTRON EXCHANGE ENERGIES.

3.0 INTRODUCTION.

In the previous chapter an expression for the exchange or self
energy of electrons (holes) in -the conduction (valence) band has been
defined (Eq. 240.07a) using the plasmon pole approximation to the electron
dielectric function.  In this chapter this expression will be used to
evaluate the change in the conduction and valence band states as a resuit
of the extra electrons present in the conduction band. | This extra

concentration (N ) of conduction band electrons may be present because of a

d
population inversion, as present in a laser., or may result from impurities
in the silicon each providing an easily ionised dpnor electron to the
conduction band. In the latter example the assumption is made that the
cbnductlon and impurity bands have merged which is- true at concentrations
greater that the Mott metal insulator transition discussed in the chapter 1
and shown in Fig 2.4 t0 occur in silicon at about 3.10]8 cm":‘3 depending

: updn the type of impurity.

The real part of the self energy expression (Eq. 240.07a
describes the exchange energy of an electron in the band n. This is made
up of several parts characterised by the sum-mation over band index m. Thus
the self energy contribution to the conduction band is made ub of exchange
energies between electrons in the same band ():eecc) _and exchange between

‘ , e
the electrons in the conduction band and the vaience band (}:e cv)

ee ee ee
= ; 300.01
2:c ch + z:cv 9 )

However as inkson ('I9763 points out it is the change in the band energies
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that is of interest. This is derived from the difference between this self
energy and that present in the intrinsic semiconductor (Z'mn). Thus the

change in the conduction band energy is defined by

ee ee -_ee int int . _ee ee
Azc = ch +.}:cv - ch - ch = ch = AE_ (300.02)

In this thesis as in work by other authors (Berggren and Sernelius 1981,
Abram et al 1978) it is assumed that the exchange between electrons in the
conduction and vale'nce band is unchanged by the presence of the extra
electrons in the conduction band (see section 3.1). The intrinsic exchange
of the conduction band electrons with themselves (}.‘.imcc) s clearly zero.

since the intrinsic conduction band is calculated on a one electron model.

A similar expression may be derived for the valence band

ee ee ee int int - ee int - _ee
AL, = Lo+ Ly, - Lo T Ly, = Ly, - Ly, = BE, (300.03)

However in this case the intrinsic valence band has a self energy since it
is full of electrons in contrast to the .intrinsic conduction band. -This

Hartree Fock energy must be subtracted from the valence band contribution.

Hedin (1965) and Hedin and Lundqvist (1969) have shown that the
self energy (Eq. 240.075) may be split up into two distinct parts: |
a) screened dynamic exchange terms denoted -by t.he superscript sx
that are derived from singularitiesAin the Green’s function:
) coulomb hole terms denoted by the superscript ch and derived
from singularities in the interaction.
In Section 3.1 these two contributions t6 the self energy are explalqed and
derived. = Numerical calculations of these two contributions for the

conduction band states (AESXck and AEChc ) are presented in Section 3.2.

k

SX
Whilst in section' 3.3 the numerical results for the valence band (AE vk

and AEChvk) are presented. The main results of this chapter, the band gap

r
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reduction due to electron-electron interactions, are given in section 3.4
‘(F_ig 3.6). These are about 4 meV Iowér that the resQIts published by
Berggren and Sernelius (1981). ‘This agreement between these two sets of
results shows that the plasmon pole approxirhation provid_es a valid means of
approximating th.e Lindhard Dielectric function in silicon at zero

temperature.

3.1 DERIVATION OF THE COULOMB HOLE AND SCREENED DYNAMIC EXCHANGE
TERMS.

Most of the ground work for the calculation of the exchange
energy has been covered in the previous chapter. To a first approximation
the change in the band edges due to electron-electron interactions giving
rise to the band gap reduction is given by an iterative solution of the

real part of Eq. 240.06

s ﬁwok + ARe (255 (n:k, w2 )

€ = ﬁwnk n nk

nk

0 - ee
= hw .+ ﬁRe(}:n (k)) - (310.01)
where a condensed form of the self energy expression Zeen(k) has been used.

The expression for the electron—-electron self energy (Eq. 240.07)"

in (w-v)

L ee i o

AL (n;k,w) = 2 LS J 6 (mik-q,w-v) e
(2m) m 3

' A Yegg(Q, V) d qdv (310.02)

may now be solved to give numerical. values for this contribution to the

band gap reduction. The frequency integral over v in the self energy may

be evaluated analytically and yields two sets of energy contributions to
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which names are assigned (after the work of Hedin (1965)):
a) "Screened Exchange’ terms derived from poles in the Green's

function (Eq. 240.01) at (see Fig 3.1),

0 0]

nk ~ “mc-q) )) (310.03a)

) o]
+ ibsgn (W, (k-q)~'wf

b) ‘Coulomb Hole’ terms derived from poles -in the screened

interaction (Eq. 240.07b and 240.07¢) at (see Fig 3.1),
Vv = wl(q) - ib and v = - wl(q) + i6 (310.03b)

These two contributions collectively are referred to as the exchange energy

of electrons in the heavily doped silicon.

The frequency integral in Eq 310.02 is performed over the
contour marked in Fig 3.1 which is traversed in a clockwise direction so

the integral is given by
I = - 271 Res(enclosed poles) : (310.04)

Jordan‘s lemma (Arfken 1970) dictates that the integral be performed in the

lower half plane so that the integration over I‘l vanishes. Only the poles

at

= W ° i6 ° (310.05a)
V= %k T Ymx-q) T % 7 Ynk-q) ¢ Yt "
where Wy is the Fermi angular frequency and
v = w (q) - i8 | B (310.05b)

remain within the contour. Thus those poles: with angular frequency greater
than W, (the unoccupied states) do not contribute to .the screened dynamic
exchange energy. After elementary evaluation of the residues at these two

sets of poles the self energy (Eq..310.02) become
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Fig 3.1

complex v-plane.

poles in the Green's function.

poles in the interaction.

Poles in the Green's function (Eq. 310.03a)
~and the interaction (Eq. 310.03b) in the

complex v-plane.



sx ~ 1 o 0 3
m:n (k) = - 3 s weff(q’wnk-wm(k—q))A d g (310.06a)
(2m) ; -
/ occupied
states
2
2 W .
ch e 1 P .
KL (k) = + Y [ — (310.06Db)

3
(2m) €€ _m q 2wl(q)

3

0 o e 0
(wnk-—wm (k-q) -w, (qQ) +ibagn (W, (k-q) —wf) )

where the additldnal superscript ee has been omitted for clarity. In Eq.
310.06a the q integration is taken over only the occupied states as
dictated by Eq. 310.05a. Whilst in the second expression (Eq. 310.06b) the

g integral is to be performed over all positive q.

. As mentioned in the introduction to this chapter inkson (1976)
showed that it is the difference between th.is extrinsic self energy and the
intrinsic self energy that is of interest. In this paragraph it is shown
that the exchange between conduction and valence band is identical for both
the intrinsic and extrinsic silicon. Thus when thé change in the band
energy (Eq. 300.02 and Eg. 300.03) is calculated these terms cancel leaving
the exchange between electrons of the same band as -the énly contribution.
The inter-band exchénge is defined by taking the part of Eq. 310.06 with
n=c and m=v (Or vi;g versa). In section 2.2.3 thé overlab integral (Anm)
was taken arbitrarily to be zero with n=c and rﬁ=v (or vice .versa) this Is
true for small wavevector where the Bloch fdnctions are orthogonal. At
large wavevectors the electron dielectric function tends towards unity (see
Fig 27 or 28) so.that the effective potential is just the Intrinsic
value. Thus the exfrlnsic and intrinsic scréenéd dynamic exchange terms
(Eq. 310.06a) with n=c and m=vecancel. For n=v m=c fhe extrinsie

' integ-rawl ris negligivle because of the small volume of q
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: épac; oi:éupiéd by the new electrons at large q. The deno-
-minator of the coulomb hole terms (Eg. 310.06) is large

when mgn so these gi‘ve a relatively small contribution.

The intrinsic exchange Zimcc between eiectrons in the
conduction band with themselves is zero since the conduction band is
calculated in a one electron model (no" states filled in Eq. 310.06a." no
poles in the electron dielectric function to derive Eq. 310.06b). Thus the

change in the energy of conduction band electrons (AEeec) is given by the

Cauchy principle part of Eq. 310.06)

sx ch
AE (k) + AEC (k)

AeSS
Eq (k) c

(310.07a)

8x ch
Re (hi.‘cc (k)) + Re (ﬁicc (k))
There are however many electrons in the intrinsic valence band so that the

_change in energy of this band is given by

sx ch
AE (k) + AEv (k)

ee
8E_ (k) v

- (310.07b)

int h ’
Re(h):‘s,t(k)-d‘xz‘lrt (X)) + Re(ﬁzsv(k)) -

where z'mw is the Hartree Fock exchange energy calculated in detail in

section 3.8,

3.2 CHANGE IN EXCHANGE ENERGY O? CONDUCTION BAND
ELECTRONS.

In.this section the two numerical calcylations performed to
evaluate the change in co'nduction band energy due to the elec‘tron—ele‘ctron
exchange energy are introduced. In section 3.2.1 the details of the N3
compdnent is presented, whilst section 3.2.(2 tﬁe A" component~ s
considered. - The magnitudes of these two elegtron—eleCtrén contfibbtions to

the energy of the conduction band states (Fig 3.2) are found to be additive
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in contrast to the equivalent valence band components and reduce the energy

of those states (see section 3.2.3 and Fig 3.2), reducing the band gap.

The shift in conduction band states due to electron - electron

interactions is given by (Eq. 310.07)

SxX " ¢ch
AE_" (k) + AE_ (k)

aES (k
C() C

(320.01a)

sx ch
Re(ﬁzcc(k)) + Re(hzcc(k))
From the self energy expressions (Eq. 310.06), substituting for the inverse
dielectric function from EQq. 240.07c. these contributions to the change in

the band edge due to the extra electrons in the conduction band become

occupied
states
SX e 1
BE_ (k) = - —5— [ —5 (1
(2m) “ee q ‘
5 (320.01Db)
v w
. P _ 3
- )2 0 0 )2 ) Acc d-q
W) (@D = (W ~9 (k-q)
and
-2
2 W
h
AEc (k) = + e - 1 P
o] 3 2
(2m) “ee_ q zwl(Q)
(320.01¢)
1 ' 3
o - 0 - (@) Acc a9
(Wex ~ Yo(k-q) ~ ¥4

The summation over the band index m in 310.06 has beer.'c,p'erformed and the
intrinsic self energy has been subtracted és prescribed by Eq. 300.02. The
" wavevector integral is evaluated within the spherical 6and appréximation
justified in section 2.3.1 for the dielectrié function. The angular part

of the wavevector integral is then given by

2m n
S [ sin6 a6 ap = am ' (320.02)
0 o : : :

so that the change in the screened dynamic exchange and coulomb hole terms
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become

2 kf ' ' w 2
AEES (k) = - ———— 1 - P
c ) 2772€€ I (.)2 ° ° 2) o
r o w, g (wck'wc(k-q))
- 5 (320.03)
ch e2 wp 1
AE_ (k) = + S 5 o aq
2m €€, o 2w, (Q) (wck - wc(k‘-'c'[)- wl(CI))

For these expressions t0 be evaluated the difference between

0

and € (k- has to be defined. In vthis thesns

the two eigenvalues eock
the main concern is with 'the change in position of the exfremit’ies of the
bands. For‘the‘.conduction band where only one of the six equivalent
conduction band valleys need be considered the origin in k space is moved
to the centre' of one ellipsoidal for simplicity (see. the discussion in

section 2.1.0) so that the energy difference at the conduction band bottom

(k=ki) becomes (using Eq. 210.01 and 231.06¢)

: 2 4 1/2
o o ] 5242 R 3m, W, PRI
€ck. ~ €c(k.-q) -7 2m = - 2 2 ) - Wecd
i i de 4mdekf K
(320.04)

This Is a negative quantity since the band energy. at wavevector q is
greater than the band bottom. However. the équivalent valence band énergy
difference is positive since in that band the energy at q. is lower than the
band edge. The sign of the energy difference is oﬁly irﬁportant in the

coulomb hole term.

As mentioned in the previous paragraph the main c>oncerr‘1 is with
the bottom of the conduction band and the top of the valence band in this
thesis. However Eq. 320.03, with the abpropriate choice of .energy
difference, will give the electron-eleqtron domribution to the self energy
of electrons at any wavevector (K. In particular to calculate the shift
in tho Fermi onergy we require k:k-', The - calculations of Berggren and

Sernelius (1981) and Abram et al (1978) show this k dependence to be .small,
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so the calculation of the shift at the Fermi energy is -assumed to be

identical to the shift at the band edge.

In the following two sections the two contributions to the
change in the self energy of the conduction band are calculated separately,

AESXC in section 3.2.1 and AEChc in section 3.2.2.

3.2.1 Cailculation of the conduction band screened dynamic exchange
term. '

'i'he calculation of this contribution to the exchange energy may
be derived analytically, provided the plasmon pole approxihation ‘has been
made. Numerical: résblts for d.ifferent concentrations may then be obtaiﬁed
from a simple calculation varying the Thomas Fermi screening length (k) and

Fermi wavevector (kf. see Eq. 240.07f, Eq. 240.07g and Fig 2.4). So from

(321.01)

Eq. 320.03
Sx a2 kf. ' wp2 :
BEg (k) = - —— [ (2 - @2 - (0° - )2)dq
2m ee . g w, (q (W9 (k—-q)

Subsﬂtutihg for the difference in eigenvalues (Eq. 320.04) at the bottom
of the conduction band (with the origin of k space at the centre of one of

the six ellipsoidal valleys)-this becomes

sx : e? e ‘wpz
SE, (Ky) = - 2 i) (1- 2 2 s ) 4a
2m"ee . g w, (@D - hq /Zmde)
' (321.02)
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Substituting for the dispersion relationship w, (@ from Eq. 240.7d

s e2x2 : 1
AEc )(ki) =T T2 I 2
2n esrkf 0 (x/kf)
' 1
- 2 2) (ke
(q/kf) + (x/kf)
2
e k k
s : f -1 f
AEcx(ki) = - T (1 - }:— tan P )) (321.03)
2m EEr f ;

where the first part of the right hand side represents the Hartree Fock
exchange energy of the conduction band electrons. Substituting for the

various parameters and the electron (donor) concentrations (Nd) expressed

in cm™3
sx _; -8 .1/3
aE] (k) = - 1.323.10 " NJS° (1
1/6
4.849.103 -1 Nd
- =——=— tan (——=3)) (eV) (321.04)
1/6 3
Nd 4,.849.10

a contribution that lowers the energy of the conduction band states and -
reduces the band gap. Values for this term are plotted in Fig 3.2 for a
range of concentrations. This comributioh to the exchange energy was
found to be the same as that obtained in the static or Thomas Fermi limit
of the dielectric function (Bergg?en and Sernelius 1981).  When coupled
with the results of the next section we find that these are in close
agreement with electron-electron exchange calculations made by Berggren and

Sernelius using the full Lindhard function also plotted in this figure.
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3.2.2 Calcuiation of the conduction band coulomb hole term.

In contrast to the elementary calculation of the screened
exchange term above the evaluation of tﬁe coulomb hole term (Eq. 320.03)
may not be c;rried out analytically with the plasmon -pole approximation to
the inverse electron dielectric function. Instead a numericlal intégration
routine was used from the NAG library of Fortran subroutines, The
principle of the calculation howeyer was the same as above: Varying the
concentration by choosing suitable values for k., then combuting the change

in energy of the edge of the band. From Eq. 320.03

2 2 :
ch e wp 1 .
AE, (k) = + 3 S 5 o dq
2MTEEL o 2wy (D) (W - Yo (k-q)~ w, (@)
(322.01)
Substituting for the energy difference from Eq. 320.04
[ 2 ’
2 w
ch 1
AEC (K)) = - —% ;£ = dq
2m €€, o 2wl(q) (wl(q) + Ag /2mdé)
(322.02)

As in the valence band calculation (last paragraph of section 3.3.2) the

AEChc contribution lowers the energy of the conduction band states. With

the substitutions

3mo ) X » ’ -1/6
B = P . o0.5951 ; K= 33— = 4.849.10 N
4m k d
de f
q 2 1 - t
(%2 ) =
kf t

Eq 322.02 becomes

2 2 1/2
ch e K 1 t ' 4
AEc (ki) = - 5 N :[J' (1 — t) . (322.03)
em ee K. :
dt

(K2+B— 1) t2+ (1-28)t+8 +V(( (Kz-m—l) t2+,gl-2ﬂ) t+8) 8 (t2—2t+1') )
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On substitution of the various parameters
22
e K .
= 77.73 (meV)
h
This integration was performed by the NAG routine DOVAPF for a series of

2
k
sn EEr

values of k and k’ depending on the electron (donor) concentration Nd (see
Fig 2.4). The results of this calculation are presenied in Fig 3.2. They
may be compared with those calculated by Mahan (1980) as part of his
valence band shift (J(so)). Mahan considers an energy difference with the
wrong sign (compare his un-labeled expression pp 2642 with Eq. 322.02) for
his coulomb hole term thus_the comparison is possiAble only between his

valence band term and the conduction band expression calculated here. He

finds results of the form

1/2 1/4
£ = 33 "h = - "a mev) (322.04
fh,e 7 373 &) = - 13.1 (—3) (mev) +04)
r 0
-]
20 -3 . -
At 107" cm = this gives L, . = 32 meV whilst the equivalent results

presented in Fig 3.2 show a reduction of 40 meV. Mahan’s values are then

25% too small.

3.2.3 Total conduction band electron-electron exchange.

Finally adding the results from sections 3.2.1 and 3.22 the
total change in the electron—electron contribution--to the self energy of
the conduction band (Eq. 320.01a) is calc-ulated (Fig 3.2). Thesé are
compared with those derived from the full Lindhard function presented by
Berggren and Sernelius (1981) and it can be seen (Fig 3.2) that these two
calculations agree within a few meV over the concentration range
considered. The plashon pole approximation Athus compares well with the
Linghard function, at least for zero temperature. The plasmon pole -

approximation then provides a means of extending the calculations to finite =
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temperature (chapter 7).

3.3 CHANGE IN EXCHANGE ENERGY OF VALENCE BAND ELECTRONS.

In this section the numerical calculations performed to
evaluate the change in valence band energy due to the electron-electron
exchange energy are introduced. These calculations are however more
gifficult than the preceding conduction band calculations, because of the
inaccuracies of the plasmon poie approximation discussed in section 2.3.3.

; SX ch ;
These problems are overcome by summing the AE™ and AE terms directly.
. . Ch+sx ‘

In section 3.3.1 this AE component is calculated.. whilst in section
3.3.2 the calculation of the AEs component is performed. The coulomb hole
term may then be derived by simple subtraction of these two contributions .
(see section 3.3.2). Although the total ‘electron-electron contribution 1o
the energy of valence band states tends to raise that energy. reducing the
band gap (see Fig 3.3), the individual contributions work against each
other in contrast to the equivalent conduction band contributions (see Fig
3.4 and 3.5. The coulomb hole contributions to both conduction and

valence bands then tend to lower each band by a similar energy (within 20

meV, see Fig 3.5).

As mentioned in section 3.1 electrons in thg valence band have
a self energy contribution in the intrinsic semiconductor. This .Is due to
the interaction of the valence band‘ elect}ons present in the intrinsic
material. It may be obtained merely by evaluating the self energy for the
intrinsic semiéonductors valence band without the influence of any electron
screening from the conduction band. The intrinsic self energy for the
heavy hole band will be shown 10 be the savme‘as for the light hole band at

the band top (k=0).. This self energy is given by solving Eq. 310.02 for
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the self energy with the effective interaction given by its intrinsic value

' 2 2
Verg(L,0) = Wy (Q) = e/ee @ : (330.01a)
int . 1 0 in(w-v)
AL (H;k,w) = 2L J S G (mk-qu-v) e
(2m) m

3
AHm Wint(q,v) d gqdv (330.01b)
This self energy must be subtracted from the total valence band self energy
to give the change in self energy due to the additional conduction band
electrons as prescribed by Eq. 300.03. The change in self energy of the

heavy hole valence band is then given by

KaE°® (Hik,0) = BECS (Hik,w) - BETT (H;k, 0)

(330.02a)

i in(w-v)

hAZee(H;k,w) aLJS S Go(m;k-q,w—v) e
(2m) m _ 3
Al-lm anl(q,v) d qav

This subtraction amounts to choosing a new effective potential given by

subtracting Eq. 330.01a from Eq. 240.07b

Voa1 (Tw) = Woee(q,w) - W, (Q)

2
2
e Yp 1 1

2[2wl(q) w-w,(q) + 10 - wHw, (q) - 16) |

(330.02b)

Woal (9w
€€ q

where Eq. 240.07c for the inverse plasmon .pole dielectric function has .been
used. The change in the valence band self eﬁergy due to electron-electron
interactions (Eq. 310.07) is given by the Cauchy principle part of Eq.
330.02a.

' h o
AEL (k) = BEL (k) + AE (k) =«ﬁRe(AZee(H;k,wnk))(330-033)

In the intrinsic valence band the effective interaction (Eq. 330.01a) does
not provide any poles. The intrinsic coulomb hole term. that derives from
poles In the interaction. is then zero. However the intrinsic screened

dynamic exchange term is finite and is just the Hartree Fock energy for the
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intrinsic valence band thus only the form of the screened .dynamic exchange
term is different from the conduction band expression (Eq. 320.01).
Substituting for the effective poientla| from (Eq. 330.02b) the change in

the self energy calculated from Eq. 310,06 becomes

occupied
states
8X e 1
AEH (k) = + —s LS - (
(27) €€_ m q
r
w 2
P 3
w. ( )2 _ o o} 2 ) AHm a4q
W, q (Yhk~%m (x-q)
and ‘ (330.03b)
2
2 w
ch e 1 o)
BE, (k) = +———?—E_f——2————
(27) €€_ m q 2w, (q)
r -1
1 d3q

o

0
(Wyx - wm(k-q)- w, (D))

The only difference in form betWeen-these and -the conduction band
éxpresslons is in the screened dynamic exchange term (cf. Eq. 320.010)
because of the subtraction of the Hartree Fock energy from thve valence band
expr‘eésion. The summation over the band index m, which may take on the
values L. H for the light and heavy valence bands is more complex than in
the conduction band calculation sincé the valence band yvavefunctions of the
two degenerate hole bands are .not or'thogonal.i Algebraically this
interactién manifests itself in values for AHH and -AHL that depend upon the
angle 6 between wavevectors k and q (Eq. 240.07h discussed in detail in

section 2.2.3)

) 2
‘AHL = AL.H = 3/4 sin @
and

2
A w= N = 1/4 (1l+3cos @)

Ll HH

Sinco we are dealing with the top of tho vatence band where k=0 the meaning
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'

.of the angle between k and q becomes ambiguous. A k of infinitesimal size
but well defined direction is taken. The angular part of the wavevector
integrais in the four components of £q. 330.03 give identical results

2mm _— ‘
J J 1/4 (1+3cos 6)sin@ 46 d¢ = 27
0O O »
and

n

27 2
f [ 3/4 (sin”6)sin® 46 dp = 27
o © .

so that the changes in the valence band self energy become

oo 2

sx e2 ' wp ‘

AEH.(k)=+42 rJ( 2 0 o 2 ) da
, mEEL . o w, (q - (“’Hk""m(k—q))
, - o (330.04)

ch e P 1

AEH (k)-+——42 ):f 5 ) ())dq
TUEEL o 2w, (@) (W - wm(k-q)- w, (q

To evaluate these scalar wavevector integrals it is -convenient to label the

two terms in the summation, thus

Asxk _Asxk Asx(k)
EH.( ) = AEy; (K) + AE,,

and (330.05a)

ACh'k —AChk +ACh(k)
Ey (k) = 8By, (k) Eun

For these expressions to be evaluated the difference between

. - 0 0 0 ' ,
the two eigenvalues € |, and € H(k-q)l(or € L(k—q)) hgs to be defined. In

this thesis the main concern is with the change in position of the
extremities of the bands. For example for the top of the heavy hole

vaience band (k=0) this energy difference becomes

2.2 m 3m w.z 4.1/2
0 o] : A q de op p . 0
€90 ~ “n(o-q) - Y am " m | 22 ) = fwy, (D
. : n n 4mdekf K _
_ (330.05b)

Where m, is either the heavy hole mass or the light hole mass depending on
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the band index n (L or H).

Now substituting in Eq. 330.04 for the difference between the

0 0 :
two eigenvalues € Hk and € n(k-q)° At the top of the valence band where
k=0, the change in energy of the top of the valence band becomes
A oo 2
AESX(O) + e2 S wp, d
= - : q
Hn 2 2 2 2
amee, o W (DT - (Ag7/2m )
. - 5 (330.05¢C)
ch e “p 1
AEHn(O) = + > > aq
47 €€, o 2w, (@) (g /2m - w, (D))

Identical expressions may be derived when bonsidering the light
hole band (AE, with wOL ,@).  Thus provided the point k=0 is considered
the equivalent expression for the light hole band is identical and the top
of the light and heavy bands have the same change in energy. |If a point
other than the top of the band is considered the change in energy of the
heavy and light bands need not be the same (see Eq. 330.05b). As mentioned
in the previous paragraph the main concern is with the bottom of the
conduction band and the top of the valence band in this thesis. However
Eq. 330.04, with the appropriate choice of energy difference. will give the
electron-electron contfibution to ‘the change in t»he- self energy of
electrons at ény wavevector. The calculations of Berggren and Sernelius
(1981 and Abram et al (1978) show this k dependence to be small, so the

effective masses are assumed to have their intrinsic values.

it remains to evaluate numeriqally the scalar wavevector
integral.  This proved to be slightly more. complicated than might be
amicipated for the ivntegrals with the light hole mass since as shown in
Fig 2.6. Fig 2.7 and the discussion in section 2'.3.3 the plasmon pole curve

is bisected resulting in a poorly represented singularity occurring in the
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integrand at
. Aha”

The numerical problem was avoided by summing the couiomb hole and dynamic

screened exchange contributions to the band gap reduction.

,ESILHSX(O) = AE:;E(O) + AE::(O)
- 5 (330.06a)
E§E+sx(o) = 4+ :2 wp ' 2 1 daq
am ee o 2w,(q) (hqa'/2m + W, (D))

‘which can be seen to give a more manageable integral since the singularity
no longer occurs in the . integrand. The Individual contributions may
then be determined by subtracting the more ea;ily combufed AESXHL(k) term.
For the sake of completeness we also write the exchange contribution with
the heavy mass band in the same way |

2

(dp 1

2
2w, (D) .(‘flq /2m, + w (Q))

2 ®
ch+sx _ e
AE (0) = + > )
an ssr o

dq

(330.06Db)
Numerical- values fo} these integrals (Eq. 330.06 and Eq. 330.05c) for the
’ éhange in the electron-electron self energy of the top of the.valence band
may be found in the next sections. Section 3.3.1 deals with the former,
whilst section 3.3.2. by computation of the N term and subtraction.
deals with the two component parts. |

. +
3.3.1 Calculation of the AE™*°" o term:

Evaluation of the contribution = to the electron-electron
exchange resulting from exchange between the ‘valence bands (Eq. 330.06)
require the numerical solution of integrals. The appropriate integration

routine is the same as was used in the calculation of the coulomb hole term
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for the conduction band (c.f. Eq. 322.02). Making the substitutions

am_ ' -1/6
o]
B = am P = 0.5951 : K = k_ = 4,349.103 Nd
de - S 3
' - (331.01)
. m. 2 . m 2
q 2 _ 1 - t _ de _ . de
(]—(_) = ; 7L = B(m——) -.2.488 ;"yH = B(m——) = ,2548
t H
Eq. 330.06 become
. 02,2 1 ‘ 1/2
ApCh*sx _ Kk : + 231 02
By, (O =+ ten?ce X I =) (331.02a)
mee ko o
dat

(K24 8- 1) £+ (1-28) t+8+( ( (K2+B—1) 2+ (1-28)t+8) 7 (t2-2t+1))

and
- 2 2 ’ 172
e K 1 . .
ch+sx t
AEHH (0) = + ;G__T{; (m) _ (331.02b)
m eer £ :
dat

(K2+B—l)t2+(1—23)t+B+V(((K2+B-1)t2+(1—28)t+ﬁ)7H(t2-2t+1))

Thése Integrals were performed using the NAG routine DOTAPF for a series of
values of « depending on the conduction band electron (donor) concentration
Nd (see Fig 2.4). The numerical results of these calcula}ions based on the
plasmon pole approximation are presented in Fig 3.3 aldng with the results
of Berggren and Sernelius’s calculations based on the Lindhard dielectric
tunction. The agreement as can be seen from this graph is within a few meV

over the concentration range 10]8 - 1020' cm—s. Also plotted in this figure

h+sx - . '
are the resuits for AEc sv calculated assuming a simple un-coupled

valence band with averége density of states effective mass

m = (m3/2+ m3‘/2 2/ 3

v H L )

These show that results assuming an uncoupled valence band (ie ignoring the

Lamda function EqQ. 240.07h) overestimate the band gap reduction by 6 meV.
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3.3.2  Calculation of the AE™ (0 and aE®" o terms.

Iin contrast to the difficult calculatiori “required for the

coulomb hole exchange term the screened exchange terms AEsva and

AEsva may be obtained analytically. =~ Numerical results for ditferent

concentrations may then be obtained from a simple calculation varying the
Thomas Fermi screening length (k) and Fermi wavevector (k'. see Eq.

240.07f. Eq. 240.07g and Fig 2.4). So from Eq. 330.05c.

c 2
2 . w
P

AEsx(k) = + - S
Hn = 2 , 2 2
am €€ w (D" - Kaq /2m )

S ) da ' (332.01)

0
Making the substitutions
3mOp' Mae 2 ‘
@ =zm ( () - 1) =1.893 _ (332.02)
, de L
3m°p mde 2. ‘
@ = am (1 - () ) = 0.3403 (332.03)
de H
and substituting for the plasmon dispersion relationship w](Q) the two

components of Eq. 332.01 may be written
Qo
' 2 2
sx 4 e g . .
AE, (0) = + —0—— : (332.04)
an’ee_k ‘ ’ ‘
rf£fo

1

_ d(a/kg)
] 2 2) £
- a (k) T+ (W)™ + (k/ky)
and
. @
SX esz
AEHH(O) = + ——é—'—-k— ‘ ' 4 (332.05)
4T EEr £ 0

1
4 2
aH(q/kf) + (q/kf) + (K/kf)

5) d(Wky)

The analytical solutions for thoso wo intograls aro diftorent due 10 tho

ditterence in a, . We treat these two separately so that Eq. 332.04 has
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solution (Gradshteyn and Ryzhik 1963 Eq. 3.223/2)

2 2 ' 2a_k : 172
88X : R
AEy, (0) = + —= 2 2 'sz 2 1/2 )
Brmee,. (kg +aa K )((kf<+4aLx ) - k)

. (332.06)
or on substituting for the various parameters :
22X (0) = + 5.036.10 > NY/®

HL da
(332.07)
8.900.10 " N;l/3 172
- = ) (ev)
(1+1.7801.1o8 Ndl/a) ((1+1.7801.1o_8 Nd1/3)1/2 - 1)
where Nd is expressed in cm_s. Whilst Eq. 332.05 has solution (Gradshteyn
and Ryzhik 1963 Eq. 3.252/12)
2 k /2
sx e K b3
AE, . (0) = + ( —— ) (332.08)
HH® "7 + k
Bmee T, + kg

which on substitution for the various parameters yields

_ N1/6 1/2
- 8X _ -5 1/6 d '
AEHH(O) = + 5,036.10 .Nd ( 3 176 (eV)  (332.09)

. 7. +
5 §5 10 Nd

where Nd is again expressed in cm—s. These two solutions (EqQ. 332.06 and
‘EqQ. 332.08) may be found to tend towards the same limit as a tends towards
unity. 'As a second check on these results and those of chapter 7 the
integrals (Eq. 332.04 and Eq. 332.05) were?p_er'formed numerically using NAG
quadrature routines DO]ALF> and DO1APF respectively. Although the latter
-integratibn was successful in that it gave the éame results as those 61 Eq.
332.09. the former more compiex integral gave the wrong resulit. AThe
numerical problems with the solution of Eq. 332.04 are associated with the
presence of the extra pole in the integrand due to the intersection of the
plasmon dispersion curve shown in Fig 2.6 - 2.7. These problems have a

small effect upon the finite temperature calculations of l]HL in section

- 7.3.2.

values of the screened dynamic exchange terms from Eq. 332.07
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'and 332.09 are presented in ng 3.4 and show that .the exchange with
electrons in the heavy hole band AEHH (or when considering AE| the AE

term) give the greater contribution to the band gap narrowing. Also
,pldtted in this figure is .the magnitude of the change in the conduction
band exchange term AESXC which isvmuch smaller than the valence band shift
due to the presence of the Hartree Fock qontribution in the conduction band

(Eq. 321.03) and explicitly extracted from the valence band shift (EqQ.

330.030).

By si.rhple subtractidn (Eq. 330.03a) of the change in the
valence band screened dynamic exchange term in Fig 3.4 from the total
electron-electron exchange term Iin Fig. 3.3 the contribution that the
coulomb hole term makes may be_a{ obtained. These are presented in Fig 3.5
" with thosev of the magnitude of the coulomb hole'term in the conduction band
calculation. It cah be seen that both the conduction and valence bandv
‘coulomb holé contributions reduce the energies of those bands and therefore

’ 20

only contribute' a small increase (+10 meV at 10 cm_s) to the change in

the band gap as pointed out by Inkson (1976) in connection with his

‘“correlation energy”.
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3.4 SUMMARY AND CONCLUSIONS.

In this chapter the shifts in the conduction and valence bands
due to the change in screened electron-electron exchange energies (EQ.
300.02 and 300.03) have been calculated. It has been found that in the
plasmon polé approximation thesel can be split up into coulomb hole and
screened dynamic exchange. contributions (Hamed by Hedin 1965 in connection

with electrons gases in metals see section 3.1)

Ay = aE%X () + AESP ()
Ec(k) = AE_ (k) + AE_ (

A ee = A sSx A Ch(k)
E, (k) = 8E_ (k) + EV-

The coulomb hole contributions (see Eq. 320.03 and 330.04)

2 K 2
ch e “s 1
AEg (k) =+ —— ) ) aq
21 €€, o 20, (@) (W - wc(k—q)- wl(Q))
2 *® w2
ch e P 1 .
AE_ (k) = + —— L [ 5 5 dq

an ger m o 29 (@) (W, - “’m(k—q)' wl(CI))
reduce the energies of both conduction and valence bands contributing a
20 c -3

small increase (+10 meV at 10 m ) to the change in the band gap as

predicted by Inkson 1976 (see Fig 3.5). The screened dynamic exchange

contributions of each band '(Eq. 320.03 and 330.04) however act in opposite

directions, both to reduce the gap (Fig 3.4)

_ 2 -kf w 2
sx - e : P
AE; (k) = - —3 S @-— 0 o 2) 94
: 2nee, W (D - (W~ ko))
sx e? - wpz
4E, (K) = + —3 LS 2 o o 2 ) aq
4m €€ o wl.(q - (ka-wm(k_q))

With appropri'ate choice of the energy difference .in these expressions the
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change in the band energy at any value of k may be determined

0 0o

. (o)
Wex T Yo (k-q) = " Wo (k@)
0] 0 0
Yk T Yy eq) T YD

In conclusion the sum of contributions from the valence band
(Fig 3.3) band the conduction band (Fig 3.2) to obtain the electron-electron
contribution to the band gap narrowing Is shown in Fig 3.6. It can be seen .
that these results differ by only a few meV from the results of Berggren
and Sernelius calculated with thev Lindhard dieleétric funbtion (Fig 3.2 and
3.3). It would seem then that the use of the plasmon po.le approximation in
estimating the electron-electron exchange energy is justified at least at
zero temperature. lﬁ chapt‘er 7 this method is extended fo. finite

temperature to estimate the finite temperature band gap nérrowi_ng.
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CHAPTER 4

VCHANGES IN :THE BAND GAP DUE TO ELECTRON-IMPURITY SELF ENERGIES.

4.0 INTRODUCTION.

Elecir.ohns'in an lmpur_e semiconductor not only interact with
other electroﬁs from the semiconductor bands as wéé shown in the last
chapter. but also Interact with Ionl#ed donor or acceptor impurity centres.
lattice imperfections, clusters of Jmpurltles énd phonb_ns. This chapter is
confined to ‘those scattering events that may. be lillkened to the simple
‘eléctron scattering‘. off a‘ positively charged 'lm'pqr‘ity with  coulombic
p'ofentlal. -'I;hej,usé of the word impurity then Includes for example
écattgring Afrom a simple positively charged lattice 'imp'erfection. Here as
In the last chapters the problefn Is treated by perturbation theory. The
electrons in the model aré not allowed to bind themselves to any lmburlty
but are thought of as interacting with -all the impurities. In the real
semiconductor of dourse some electrons may be bound to lndlvldual.
impuritieé._or indeed to coilections of impurities that _form an abnormally
deep botential well. Two electron-impurity interactions_are identified:

a) those . dueﬁ to tﬁe blnd!ng of‘ electrons by collections of
i‘i-mpurmes formlng localized 'st,a'teé in the band gap that are

‘the subject of the calculations in the next chapter,

)] those effects due 1o the electrons scattering from the many

Impurity slteé that are dealt with in this chapte}.

The extent to which ‘this separation Is [ustified is discussed
in chapter 5. ‘when it Is considered whether or not the electron-impurity
self energy has béen included_ implicitly in, for example, calculations by

Halperin and Lax (1966, 1967).

:_4]‘:



Returmng to the self energy calculatvons these are subject to
two limits ot concentratlon beyond which they break down. The lowest being
the Mott metal lnsulator transltton below vvh!ch the electrons would have to
be considered bound to the. imp:urlty' centres. And at high concentrations
the “point when there are sufficiert impurities to violate the perturbation
.approximations‘.. Withm these Ilmtts the change in energy of the holes or
4 electrons as a tunctlon of the Impurlty concentration may be approximated
by two methods. Firstly by a Green's function formulation of the electron-
im'purlty Interactlon an example of which is presented in section 4.4.1.
Secondly by stratght forward perturbation theory that Is presented in

section 4.4.2,

The tormer approach is performed iIn a stmllar-way to the
electron-electron 4Interactlons of chapter 2 and forms the more important
“part of this chapter. Th:e ma]or results ot-the derlvatlon are similar to
those of the ”electron.—electron chapter. A series expanslon of the Green ]
tunctton in terms of the' unperturbed Greens functions (sectlon 4.1) that
Edwards (1958 1-96_1,,; ]962) an_d Klauder a9émn developed in the fo_rmgof a
Dyson ] equatlon (section 4.2). -And a “self energy‘ series t.ha't may be
approximated and numerlcally evaluated 10 glve a shm in the band. edges

I...‘ .

- The ma]or dltference between this and ‘the electron-electron Interactlon is_

as o lnran:

'that the lmpuritles are assumed to be located at random but well defmed

u-vut

"sttes throughout the ‘host semlconductor lattice. The- tmpurlty potential
B . may .not then be taken as uniform throughout .the structure. ,_Thls
'."int'erest'lng situation is dealt with by taking :'t_he spatial average over all
HDOSSiNe impurity sltes suggested by Kohn. and_ Luttlnger ~(t9'5~_7_)_ ,"the‘reby
derlvmg an average self energy (section 42) Sectio‘n 43 d'ea|s~A»vvlth-'.'the_-

~

of the first _order terms in the self: energy

expansions of this chapter and the_'ta:st.. The change in the ‘r‘es'UI_tlng



average self energy may not représent the local change in the band energy
due to the impurigles very well, but is taken as a Qood representation of
the éverag_e change in band position. These expressions are derived in

section 4.4.1.

The perturbation der@vatlon of the self energy in section 4.4.2
that is taken to sééond o'irdér' is a rhore traditional approach and gives the
| same result as th’?a(it derlvedlin'4.g4.1. To_imbrové thése approximations the
more powertulh Green's functl}ovn d_ériyation is more useful (Ghazali and Serre
1982, 1983). Indeed the quantitative discussion of the accuracy of the
approximations glyén in 'g'ecflons:"kl.s.and ‘4.6 uses terms derived from the
Green's functioﬁ. Cin thfs'thesls the si'r_r.lplest.formulae derived are used
(sectioh 4.5 to obtain ﬁumqrical results: (Fig 4.1) and the'ir range of
valvidlty' toé this electron.A‘impurlty contribution to 'the band gap reduction

in silicon.

- =‘4t§ = '



4.1 FEYNMAN DIAGRAM. REPRESENTATION OF THE PROBLEM.

It is convenient to outline the problem that confronts us in
the electron—lmpuiity calcuiationé with the aid of Feynman diagrams. The
use of Feynman diagrams for the impurity problem is not new. Edwards
(1958), Langer and Vosko (1960) and Klauder (1961) were the first to
pgbllsh_ diagrammatic representations of the problem. Mattuck (1976) gives
a simple descrlptldn of the problem and Mahan (1981) goes into some detail
In.his book. . In the preseni work the coulombic interaction of the nth

impurity with an electron is represented by the diagram

yt'

xltl-» S In . (410.01)
xt

where

- yt! + . represent the unperturbed retarded Green’s functions
. . O -
xt ' G+(xt,Yt')

In » - represents the nth ion

RN represents the coulombic interaction V(r) = V(r—Rj)

- The eleétro_n'—impurlty interaction is considered to be a static one where no’
.- énergy is tlr‘an_sferred to or by the impurity in the absence of phonons. -
V_Thls of 60_u_rse ‘makes the electron-impurity problem simpler to cope with
'ipan' its'elecﬁron-electron counterpart due to the lack of summations over
; Vi‘_ntefm;e.clji;té -’frecjuencles. In what follows the time "and Aspacial co-

ordinates are omitted for simplicity so that the Green’s function expansion
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for N impurities becomes

. i ‘ .‘ ...‘I
H=+f 111 +i....12f ce. + 1...,IN+ Ii‘+

L 1 L
+ A N + ... + R i ....Ij + .. (410.02)
ERRES R PPN o
| oo T

Since .the electron gas surrounding the impurities may relax about the
impurities, forming a SCreenlng' cloud. each of the above coulombic
interactiohs may -be replaced by a screened interaction of the form
Ac'alcu_late‘d in chapter 2.  Thus the coulombic interaction of the nth

impurity with an electron in the Random Phase Approximation becomes

ARPAV o | 1 o]
RS (TN IS 0 + G * (410.03)

DI DY

s a0

~Where diagrams that do not conserve momentum are included. Wolff (1962)
" has pointed out that subsequent averaging of the Green’s function resuits
in momentum being conserved at the averaged impurity scattering event. The

proof of this will be left to the section 4.2.

‘-As_'ls evident from the large numbér of diagrams in the Green’s -

function expansion it is a significant problem to approximate the series
gﬁgcurately.‘ th Ieasi since thé Impur!iies may be Ioc;ated in clusters or
in psequ—rand_om locations In the host lattice. Edvyards (1961, 1962). has
chsldered_" ensemble ranging from complete spacial order to complete
dl‘sorder. Intermediate states of order, for example clusters. are however

more complex. . In this chapter only the simpler calculation of an array of

Crandamly located impurities s considered.  With these provisors we proceed

to calculate the Dyson‘s equations for electron-impurity interactions.
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4.2 KOHN AND LUTTINGER AVERAGING LEADING TO DYSON’S EQUATION.

To develop Dyson’s equation the wavevector expansion of the
Green’s function is first developed (as was done in chapter 2). For this

the Fourier transform of the impurity potential

N
v(r) = ) v(r - Rj)
: 3
(420.01a)
2
_ e
vix) = 4mMeE X

where R are the N impurity locations, is required. For this the Impurity

|
density pq is defined

. iq.R.
Pg = e J . (420.01b)

o] I
ul™ 2

~where 0 is the crystal volume. The Fourier transform is then given by

V(r) = f-p; w(q) eiq'rdaq ' (420.01c)

The wavevector expansion of the total Green’s function involves interaction

matrix elements of the form

W(nl,mk) = f ¢;l(r) v(r) 6, () a’r

x ig. 3 _ * 3
JJ ¢>nl(r)ech rahmk(r) a'r W(qD)pg dq (420.02)

where the ¢n|('r) are Bloch functions belong to the nth band. The overlap
Integral has' been calculated In section 2.2.3 so the Green’s function

expansion (Eq. 410.02) in functional form becomes

' o] 0, 0
G (nk, mq) G (nk)bkqbnm + G (nk)W(nk,mq)G (mq) +

+ 271 C@mwmnk,n 16 (n 1)w(n'1,mp 6 (ma)
n

'l

N

(420.03a)
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A self energy may be identified In this expression

.0
. G(nk'mq) =‘ G (nk) akqonm + GO (nk) 21 (nk,mq)Go (mg) +

1. 0 . .2 :
+ 5 G (nk)X (nk.‘mcr)Go (mq) (420.03b)

where E] is the first order self energy and i2 contains second order
interactions. This (Eq. 420.03) is simply the wavevector equivalent
expressloﬁ to the Feynman diagrams in. Eq‘. 410.02. Since momentum is not
conserved the Green's function is expressed as a Kernel with the wavevector
and -band before scattering nk and those after mq. Thevensemble averaged

Green's function is then formed

S N d3Ri
<G(nk,mq) > = Sff.. 6(nk,mq) I] A (420.04)

where there are N independent integrals. This form of. ensemble average.
used initially by (Kohn and Luttinger 1957) has been shown to be the best
approkimétlon to allll bﬁi a negligible number of arrangements of a
complé‘telly random array 'of impurities  (Landau & Lifshitz 1977). If the A
Green's function from Eq. 420.03 is substituted in Eq. 420.04, using EQq.
420.02 for the potential the ensemble averaged Green’s function may be
‘ derived. For exam'ple the third term -in Eq; 420.03, that corresponds to two

-' . electron scatterings from the impurities becomes

. _<§(;,.'0A'(nk)“w‘nk,n' 16 (n'1)w(n'1,m)c° (mq) > = A (420.05)

EGO (nk) <W(nk,n'1)w{n'l,mq) >G0 (n'l) Go (mq)
1

. where the averaging has been taken Inside the wavevector summations and the

unperturbed Green's functions are iInvariont under the averaging procedure.
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The averaged potential is now developed using Eq. 420.02
. _
«<W(nk,n'l)W(n'l,mq)> = [f I(k,l;kl) I(l,q;kz) W(kl)W(kz)
: 4 * 3 3
<Py Py d kl a7’k (420.06)
12 2

" The overlap' integrals of chapter 2 are used (Eq. 223.18)

I(nlmia) = [ o, (ne T T () a¥r

. .
I 1= 8(q-k+l) A (420.07)

it remains to derive the ensemble averaged impurity density In
- Eq. 420.06. Taking the' impurity density defined in Eq. 420.01b and the

' averaging technique from Eq. 420.04 we find for example

N

<pk> = o) 5(]{)
| (420.08) .
o " N_ . N(N-1) ' -
<pkpqplpj> = n4 0 (k+q+1+j) + 04 [cgmg (k)_b(q"’l"‘J)
’ N(N-1) (N-2
+ T 6(k+q)8(1+3)] + ( l( ) T 6(k+q)8(1)6(3)
comb ) 9] comb
N(N-1 N-2) (N-3
+ ¢ )(4 A )(G(R)G(Q)ﬁ(l)G(j))
- '

whére the summation Is over all combinations (comb) of the wavevectors.
The generalization of this series was first developed by Kohn and Luttinger
(1957) and later extended by Edwards (1961, 1962) to situations that

... possess some order. But for large N in a random ensembie

N N2 N1 N
PPy +...> = ;ﬁ 8(T k; ) + ;ﬁ (% 5(§ki)6§=§+lgj)) +

(420.09)

Using this .expression for the ensemble averagéd impurity density there are
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two-'p"art_s to me’._;s'_;olutlon of Eq .;4‘26.-(3)'6:',;_;,T-hé_'first derives from "~

: -'::'N'.-»b.:"‘f‘.',“'- e e Lo ’ BT : .o R
~—-§6.(k+'q)' .. ST S - (420.10a)

.. which‘corresponds to two electron scatterings form the same impurity or the
o s_égond _s'ét'f of diagrams in Eq. 410.02. Whilst the second derives from

N(N-1 ‘

71—3—1 0(k)O(q) - (420.10b)

~.which. ‘Corresponds 1o two scatterings from different impurities.  This

. & . second’ expression can be reproduced by a simple product of one electron

. scattering évents of the form represented by the second term in Eq. 420.03
5. .and:.does not. thien contribute to the irreducible self energy. However If

'the_firs't,,:..of-',thé,se is investigated the integrals over k. and k, give:

1
SR T AL (K, 1) BB (k-q) W (k- LWk
-~ <W(nk,n'l)W(n'l,mq)> = 5

T . - (420.11)
2 Now v.i'_eglacihg the summation over | by an integral
od _ a31

1. o (2m)

E G (nk) W(nk n' 1)G (n'LYw(n'l,mqg) G (mq)> =

R (420.12)
G —= T A k1) B O(k—q) w(k-1) W(l k)
oo emy..nt oL
L G (nk) G (n 1) G (mq) da 1

»"whe:r;e Nd is the Impurity density. Interpreting this diagrammatically the

impurity tons are replaced by crosses. Only 1/Nth of the diagrams (Eq.

410.02) have to be drawn since the different Impurities are no longer

distinguished.  Representing the potentials in Eq. 420.12 by the screened
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coulombic interactions shown in EQ. 410.03. Eq. 420.12 may be drawn
e X (420.13)

Notice that the averaging procedure has resulted in the joining of the
loose ends of the coulomb interactions in the un-averaged series and

scaling each cross by the donor concentration N This averaged impurity

g
scattering conserves momentum (as in the equivalent electron-electron
interaction). The electrons are not now seen as scattering off individual
impurities. but rather from the whole ensemble of impurities. All the
remaining terms In tﬁe average Green’s function may be. freated in a similar
way. It is considerably easier to derive this serles by jolhlng the like

»ends' of coulomb interactions of the un-averaged series (Eq. 410.02)

“-directly and then interpreting the resulting diagrams. Al the posslblé
terms in the averaging of the impurity density are obtained for example the

terfn representing Eq. 420.10b is the third diagram on the right hand side

of.the foilowing expansion of Eq. 420.04

IS 4

TiToX
< > =,{\+1::::X+ + Toooox + Fosoix’ (i
friix
: ‘ NN
(420.14)
”";x EE S
+ 7 + + L T S
RS Pl ’

This set of diagrams is already much condensed from the diagrams shown in

.~ the last section however this may be ‘condenséd further into the abbreviated
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(420.15)

which is equivalent to Dyson’'s equation. The irreducible self energy

diagram is defined by the series

V4

[

(420.16)

AR
Y
\“"k'/
+

wat uypy
AN R/]

A}
\

it is clear from the above diagrams that there are several
important differences between the electron-electron and electron—~impurity
self energy expressions. The electron may 'for example interact with the
Same Irhpufity many times without apparent change to the physical situation
- (seé 3rd and 5th diagrams in Eq. 420.16). In the electron-electron exampie
an electfon would interact with the another electron only once. forming an
élect'ron. hole pair or exciting a plasmon that at some later time could
-recombine (decay). - Secondly an explicit averagihg of the electron impurity
Intéraction has beenlperforr;ned. ~In chapter 5"the fluctdatlons about this
mean interaction are considere_d. The calculations in this chapter thus

incorporate a rather crude but effective approximation to the real situation.
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4.3 CANCELLATICN OF THE FIRST ORDER TERMS.

At this point the Iimplications of the first order term in Eq.

420.16 are considered
D ¢ (430.01)

This is just the average of the electron-impurity interaction. It must
have the same magnitude as the average electron-electron interaction Eq.
;

222.06

(PR (430.02)

_ but because of the opposite sign on the charge of the ionised donor
:impﬁrities the interaction energy has the opposite ‘slgn.' The two- first
order terms _above then cancel, a result that was used previously in chapter
2 .and chapter 3. This cancellation only occurs for thq first order terms
© since. as Wolff (1962) points out only in this term are both the electron—
electron . and electron-impurity interactions static. The following

simplified expression for the self energy remains..

‘ NI I Vaa
@ = fb TS o4 i o4 .. L : (430.03)
. [ lz==7" N P _

This cancéllatlon is of course only prevalent lﬁ the macroscopic .
.sly$t.er_n. When looking at the microscopic system there would be some regions
where the impurity concentration was above the average. In these areas for
an n-type semiconductor there would be a net positive, electron attracting
field. There would aiso be areas where the impurities ~were fow. with the
_ associated effective negative charge. These fluctations In the average

impurity potential are dealt with in detail in chapter 5.
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4.4  APPROXIMATIONS TO THE SELF ENERGY.

in thlAs section two self energy expressioﬁs'are derived. The
first, derived from 'the Green’s function of the last sections, is detailied
in section 4.4.1. The second from the more conventional perturbation
series is preseméd in section 4.4.2. This latter derivation is included
to obutline the eséential differences between the two approaches. although
both produce the same résult to the order of approximation chosen. The
Greeﬁ’s function formuilation _Is by far the most amenable to improving the

accuracy of the calculation.

4.4.1 Green’s function formulation.

As in the electron—-electron calculations to sum the whole series
of diagrams would. even if such a sum were possible, be a waste of time
considering the apprdximations already made in deriving the model. It is
quité adequate to sum only the most important diagrams. Wolff (1962)

considers the second order term

@ = -r"“i;x (441.01)

i
e~
, ’
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x
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Mahan (1981) in his book considers at length the serles

® ks

cesei 4+ | TN 4 L L (441.03)

éorresbondlng 'to mulitiple 'scattering from the same impurity. Which he uses
in fhe Iimit of low impurity céncentration. More recently Ghazali and
Serre (1982, 1983) use an iterative calcu!atio‘n to obtain the self energy
" based on Klauders's (1961) theory using the series

®
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vertex corrections

(441.04)

1]
‘él

They also include a simple form for the electron-electron self energy In
_thelr‘ calculation. However they only use the simplest Thomas Fermi
appr'dximati‘on (232.09) to the electron screening. in this thesis the

simplest approximation to the self energy is used
,{ ok . ’ (441.05)

" ‘whilst 'ihdlcatlng in section 4.6 the likely range of accuracy of this
* approximation. The dlagram may be translated as

. : : N . '
AL(mik,w) = — = T 6 (niL,w) IW(1-k,0) |7 A 0k, 1ya’L
A(2m) m
(441.06)

This "expre'ssion. as will be shown in the next section. may be derived from
second order perturbation theory and has been used by several authors

#

(Sernelius and Berggren 1981, Berggren and Sernelius 1981, Wolff 1962).
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To conclude this section one of the more important higher order
terms in the self energy expansion is derived for later use. The fourth
order term that Wolff believes to give the most important correction to the

above approximation is chosen

T
S

::,EX
5&:"
2 (441.07)

This diagram comes from the fourth term in the ensemble averaged self
energy Eq. 420.16 and corresponds as shown above to two impurity scattering
events. Translated for the simpler case ignoring the inter-band coupling.

by dropping the summation over m. gives a contribution to the self energy

of
Nd ’ 0 0 0
BAL(k',0) = 53— [J 6 (q,W)G (k'~-q-k,w)G (k,w)
A7 (2n)

(441.08)
2
W(k'-q,w) W(k'-k,w) > a’q a’k

Where it should be noted that even in this simple model omitting the band

indices the integral

4 3 .
J; e 2m S T T ' G
— () (/) SJIIr ) ( ) (441.09)
(217)6 €€y K2 q2+x2 _ k2+g2

8inyY sina _
dédpdadydkdqg

q2+k2—2qk(cosacos'y + sinasinycos(6-8))
‘where- fhe 'sph'erlcal 'polar angles defining k and .q are (@.8) and (y.6) is’
not straight forwar.d. Wolff uses a simple method of approximating such
cdmplex diagrams so that for each of the four coulomb interactions a factor
of e2/eerx2 is introduced, each of the three energy denominators introduce

2 ) .
a factor of k /m, whilst the cut off in the coulomb matrix element give a

. 3 ,
factor ot & 1rom the integrations. Thus the above term is proportonal to

4 " M ) 4 o

o e” n ) 3 e Na
Ny (<Zg) () () =m0 () g
EErK K r K

This Indicates that the perturbation expansion breaks down for a hfgh
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concentration at which this term becomes the same size as the second order

term (Eq. 441.05

2
A
2.2 5
(L) €€r K
' : , 1/6
since the Thomas Fermi wavevector x is proportional to Nd . A more

serious limitation will be encountered at finite temperature (chapter 7)

when the concentration dependence of the Thomas Fermi wavevector changes

to N -2 for non-degenerate silicon. When this happens the perturbation

d
series fails at low concentrations.

4,42 The conventional second order perturbation series.

- The principle objective of this section is to point out the
esseﬁtial differénces between the conventional perturbation expansion and
the Green’'s function formulatloﬁ that was considered in the last section.
The latter gives a far more precise definlt.ion of the electron-impurity
self energy. however the former, being grounded in elementary quantum
mechanics, gives perhaps a better introduction to the physical processes.
in essence one impurity in the ensemble is considered in isolation from the
others that are supposed to form a uniform background positive charge.
.Using its potential as a perturbation. on the hamiltonian of the host
lattice its effect upon the energy of the s'urroundlng eiectrons_and holes
.'is éstir‘nateq. Ha_viﬁg, obtained the mégnitude of' .this' effect it is
m'ultiplied by the number of impurities in the 'solid to obtain the effect of
all the impurities.  Inherent in the derivation is the assump.tion that the
'uhpuritmﬁ are randomly located in the solid since wore they placed on a
latico tho Qav«_uum:llun_z; would bo rn&nih,ncud coherently by nelghbdurlng

scallering centres so. that one impurity could not be treated in isolation.
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Provided that the impurity potential V(r) is a small perturbation on the

host semiconductors hamil'tonian H0 the total hamiltonian is written
o .
H = H + vV(r) . , (442.01)

The unperturbed wavefunctions are taken as plane waves throughout this
section in order t0 reduce the complexity of the expressions though Bloch
functions could equally well be used. The perturbed wavefunctions '&k(r)

and eigenvalues Ek are given by solving
o | |
H ¥ (r) = (H + V(r))rk(r) = E ¥ - (442.02)

From conventional perturbation theory (see for example Landau and Lifshitz

' . 1977 or Schiff 1968) the perturbed energy may be expressed as a series

) 1, .2 3 ' :
Ek-- E, + E + E +E_+ . . .. | (442.‘os)

Where the superscript denotes the order of smallneés q_f the terms: The
first order term, thai Is just the average po'tentlal, must cancel with the
~ average electron-electron energy (see section 4.3). The change in the
eigenvalues. and hence the band edges, is then given by the sum of second

and higher order terms. The second order term is given by

. : 2
BB I : ‘
EZ - ea! - (442.04)

(E2 - E) |
R - <
The matrix elements M, - will be defined later and the eigenvalues E, are
for the moment supposed to form a discrete set. The prime on the summation

means that the term when k equals q is omitted. For the third order term

2
PR T o S A O My, q!
k—gz ’€0 €Ov _Mk,k_g €02 :
Akl x (442.05)
: ._ﬁqz PV
€qk ¥ 2m " 2om

The matrix elements are of the form
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x : ' 3
Mk,q = <k|Vlg> = [ Vk(r)V(r)rq(r) d'r (442.06)

where v‘k(r) are taken as plane waves. Were they Bloch waves the overlap
integral would be dealt with as in chapter 2. Writing the potential as a

fourier expansion in W(q)

ig.r _3
vir) = fw(@ e ¥ a’q
sO that
1 -ik.r il.r _3 ig.r _3
Mo og=3/e S W@y e a1 T g
N .
1l i +q- .
= Lorwa gt MIINT 93 ¥
n
1 3 1
=4 f W(l) Gl’k_q a1 = g Vk-q) (442.07)

where 1 is the volume. Replacing the summation by an integral in the

second order term (EQ. 442.04) we get

2
g2 _ 1 S f = IW(k-qc))I d3q , (442.08)
n(2m) € (k) - € (k-q)

where W(q) must be small for q equal to zero since the k equal q term is
éffectlve_ly included in the integral whilst omitted .expncnly from the
summation in Eq. 442.04. This must be ‘multiplied by the number of
R lmpuriiie's to obtain the effect of all the Impurities on the eigenstates.

. . N v ' 2
Ei - 4 I |W(k-q) | a3q 4 (442.09)

.(21r)3' eo'(k) - ECx-ay

Where Nd is the impurity concentration. 'This has the same form as the

second order term of the Green’'s function expansion derived in the last
, =

saction £q. 441.06.

Al this point It becomes clear that to represent the situation

'-cojrectly the screening effect that the many electrons ‘in the conduction
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band have upon the impurity potential has to be inciuded. in the Thomas
Fermi approximation the unscreened coulombic potential

2 : _
e .
V(r) T (442.10)

Is replaced by the Thomas Fermi screened potential that is often use in the '
electron-impurity problem (see for example Chapter 5. Ghazali and Serre
(1982, 1983), Mahan (1981)). The screened potential is

2
e - - .
V(r) = e KT (442.11)
amee T

Where the damping factor k is the inverse T‘hom'as Fermi screening length

g V3
2 3.1/3,4 - 3/2
K = 4(—= —_—) M ‘ (442.12)
('”) (aeff ) C )

where the symbols have their usual meaning (see Appendix A). The Fourier
Transform of this potentiai
2

1 (442.13)

Wi = z 2
fr (@ + «°)

is the static, small q version of the screened potential derived in chapter
2 in the plasmon pole approximation. Substitution of this in Eq. 442.09

results in an integral that may be ‘solved analytically to give
ei o ‘
.. S 442.14a
AE (ki) _‘ ( )

This Is the gecond order. perturbation shift in the energy ‘of conduction
band states ét the Dbottom of__one of - the six valleys du.e to the electron-
tmpu-rity interaction i‘n the. Thomas Fefmi approximétion. A similar shift,
- but of opposite sign. exists for valence band states so that the total

_:‘"_c'hango in the band gap due 10 electron-impurity interactions in the Thomas
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4.5 CALCULATION OF THE ELECTRON-IMPURITY SELF ENERGIES IN SILICON.

As with the calculations of the preceding chapter the shift in
the bandg edges is given by the real part of the electron-impurity self

energy (c.!. Eq. 240.06)

el ei o)
AE (k) = XRe (L (n;k,wnk)) ' (450.01a)

where Ze' is the ensemble averaged self energy. as outlined above. In the

above wonk is the unperturbed energy or in the spherical band approximation

(M) =

2 R R
o _ Aq ' (450.01b)
nk 2mn 4

with m. the effective mass for the band n. The change In the band gap due

1o the electron-impurity self energy is given by

ei ei ei : -
= - 450.02
AEeg. AEC (ki) AEv (0) | (45 )

where the self energy is defined by (see Eq. 441.06)

. : N
HZel(n;k,w) = ———2—5 r S Go(n;l,w)|W(1—k,w)|2Anm(k,1)d31

A (2m) " . (450.03a)

with unperturbed Green'’s function

1

6% ik, w) = = : = ‘ (450.03Db)
: - (W - W, + i0sgn(w ,-wg))
the approximation to the screened interaction W(q.w) is given by '
2 2
W((qQ,w) = e /eerq € (q,w) (450.03cC)

with €(q.w) given by the plasmon pole approximation to the electron

", gielectric function (Eq. 240.07¢)
2
“l

| ' . ' . : . i
£ {uey - ( R ) (4%0.033)

(wl(q) ~ 10) - w
where the'plasm_on dispersion relationship w,(q). the plasma frequency W,

®
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~and the Lamda function A are also defined in Eq. 240.07.

There is a considerable saving in the computation of the

electron-impurity ‘band edges over the electron-electron calculations in

previous chapters. in"~ the first place the intrinsic electron-impurity
interaction is non-existent by definition. Thus no subtraction of
intrinsic self energies is required. in the second placed there is no

lrequenpy integral. the ensemble averaged electron-impurity interaction
being static.  Finally the denominator of both conduction and valence
. expressions are the only band dependent variables. Thus from Eq-. 450.01,
450.03 and the energy differences (Eq. 320.04 and Eq. 330.05D)

m._-+ m .
L el

H
AEv(k) = - Zm AEC (k) (450.04)
de '

as was shown by Berggren and Sernelius 1981, we can reduce Eq 450.02 to

one integration.

o} 2
. m_+ m N IW(q,w_.) |
ei H L d cO 2
= . 4 * .05
AEeg (1 + —5 3 I 5 o 4mq dq (450 )
: de & (2m) (Weg - wcq) :

Substituting for the screened potential and for the energies in the

denominator this becomes

2
AEei i . m + m 4Nde 1
Teg - ( ’ zmde ) qer£€€y k3.
: £
2 2
© . 1+ a(w/ky) .
J 2 2 2) Akg)
0 (K/kg) + (Wke)  + a(a/kg)
m (450.06)
3 op
a4 = — ——— = 0.5951 :
: 4 m
de

The Integration was carried out on the IBM 370 computer using the -NAG

library routine DOVAJF. Graphs of the results are presented in Fig 4.1.
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"Fig 4.1. Zero temperature change in the electron-impurity self energy of the conduction

band (AEil); valence band (TAEill)and band gap in the plasmon pole approximation
and the Thomas Fermi appfokimation.' (ﬁ231)<from Berggren et al 1981.



4.6 SUMMARY AND DISCUSSION OF RESULTS.

In this chapter the ensemble averaged electron-impurity self
energy has been calculated using the ensemble averaged Green's function
(Eqg. 420.04)

N a’r,
<L(nk,mq)> = [[f.. L(nk,mq) [] a
. i

where n and m indicate the band and k and q are wavevectors. This has been
found to provide a convenient means of averaging the effect of N randomly
sited impurities in the se‘miconductor, voldme . This ensemble averaged
total Green’s function may conveniently be expressed in terms of an
ensemble averaged seif ehergy (L) in thé form of Dyson’s equation (Eq.

420.15)

(420.15)

The ensemble averaged electron—-impurity self energy has.been found to be
described to second order by the expression (Eq. 441.06)

N

AL(n;k,w) ‘=-——9—3' rJ Go(n;l,w) IW(1l-k,w) I2 l\nm(krl)d31
o A@2r) m .

where G0 is the unperturbed Green’s  function, W(q.(o) represents the
screened electron—irﬁpurlty interaction (in this thesis. the plasmon pole
approxlmationvsection 2.3.2) ar_ld Anm represents ‘the coupling between Sands
n and m. The Ir‘\.trlnsic semiconductor has no electron-impurity interaction
s0 that lrge changefln electron—lmpurlty self energy due to the presence of

the pdsltlvely charged lonised impurities is given by the real part of this
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self energy (Eq. 450.01a)
ei ei . o
AE (k) = ARe (L (n"k""nk))

This represents thé changé in the energy bf the band n d-ue to the electron-
impurity interaction. The -change'in the band gap due to these interactions
ls given by the a%fference between the change in energy of the bottom of

one of the six conduction band valleys (AEeic(O)) and the change in energy

of the top of the valence band (AEelv(O). Eq. 450.02)

ei ei, . ei .
AEeg = AE_ (ki) - AE, (9)

this is given by (Eq. 450.05)

0 2
el . mH + mL Ndr |W(q,wco)l o2 a
BEgg = (1 ¢+ N 3 ) 0 _4ma <4
. (2m) (wco - wcq)

From the results dréwn in Fig 4.1 it can be seen that the
electron-impurity Interactions result in a band gap . narrowing which is
numericauy smaller than the corresponding reduction due to electron-
electroh Interactions‘(Fig 3.6). These results are compared to the results
-obtainéd by Berggreﬁ and Sernelius (1981) who use the Lindhard dielectric
bfunctio'n and ‘are also plotted Iin Fig 4.1. It can be seen that the preseﬁt
'rAesuAIts based on the plasmon pole_-approxlmation agree within a few meV with :
thgég res_ulfs baséd on the full Lindhard function. The Lindhard formula
may 4theAn be 'appro'xim‘ated by the plaémon pole apbroximation for the
eléctron—impurity | interactions as well as the electron-electron
interactions of the previous chaptef. This justifies the extension of the

plasmon pole calculations to finite temperature in the calculations of

chapter 7.

-Also plotted in Fig 4.1 are the band gap narrowing results

based on the Thomas Fermi screened potential (Eq. 442.14) and used .in
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. - el ) ) . " ' o
- chapter 5 (AE gTF)' Calculated using the self energy expression Eq.
442.09 where the coupling between the valence bands is ignored. using the

average valence band effective mass (Eq. 210.04)

3/2  3/2.2/3
m = a + = R
v ( L 'mH ) _ mo 0.5% mo

i iy : .
These results (AE® gTF Plotted in Fig 41 snow the Thomas Fermi
- approximation to underestimate the band gap reduction. particularly at low
concentrations where plane waves do not represent the electron

wavefunctions adequately.

To combare_these results - with - the ‘r'e'cent calculations of
Ghazall_ .ar-md Se-rre‘mentlc;ned In sectlon. 441 a contribution due to the
electron-electron interaction needs to be added. In ‘their analysis they
solve for the total Green's function (equfvalent to Eq. 420.15 using a sum
of the electron-impurity (Eq. 441.04) and electron-electron (L, in  Ghazali
.and Serre 1983) selt energies. Whilst their calculatlorj is simplified by
usl,ng': the simplé Tﬁoma$ Ferm! screened interact}on and a \)ery'simple
exprve:v;sian for the electron-electron interaction they improve the
‘,estimati_dAn.-Qf the tbt_al Green’'s function Dby taking the series to Infinite
- order. ‘Thuvs‘ comparison between the two calculations _are difficult since
the gxc?'térm. can not just be subtracted. --Howe(/er. the plasmon pole
) "chau_nlge‘ in the conduction band electron-impurity self ené}gy from Fig 4.1 at

N =2 3 is about 1.5 (R) which is the energy of the band bottom

+d T eff_. ‘ _

~ shown in Fig. 1 of Ghazali and Serre (1983). It Is clear from the
compafison between Thomas Ferml and plasmon pole resqlts. that therg is a
':Iarge discrepah.cy between results from these ’Interacjtion. An improvement
to the ‘calqu‘lations ,of Ghazali and Serre would be to ﬁse the plasmon pole

approximati'on to the electron dielectric function whenever appropriate in

preference to the Thomas Fermi results that they use.
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The plasmon pole self energies plotted in Fig 4.1 are then

valid until- the perturbatlon approxumatlon breaks down at concentrations

where the |mpur|ty separation (Nd -1 3) approaches sihcon s atomic spacing.

Thls 000urs above donor concentrations of 102] -3 (see Fig 2.4), where

Nd_]/'3 approaches d (5.4.10°8 ¢cm™)  the lattice constant. At low

concentratlons the‘ limiting concentration Is the'Mon metal insulator
transitlon that occurs at about 6. 10]8 -3 at zero temperature. in the
region of this transition a modification of Ghazali and Serre’s (1982,
'1983)‘ usiné the blasmon pole approximation coﬁld be used to describe the

"'merging of the impurity band.



CHAPTER 5

BAND TAIL DUE TO RANDOM IMPURITY LOCATION.

The éffects so far considered - concerning electron-impurity
._.in'ieraciidn's héve"relied on .a complete cancellation of the first order
e!ectron—eleétron ‘se;lf energies with the first order electron-impurity
interéc't.ions From elementary considerations this cancellatiion may be seen
1o be_,rﬁ.a-intqined‘ in the bulk semiconductor wheré the net number of
| electrons equaAls the net number of Ionlsed centres. However in microscopic
feglor_fs. ivn--v.the se_miconduvctor‘ this cancella_tidn may be Iimperfect. n
"_.,.r..eg:ilc-ms of very "high q.obnbr concentration ‘a net _positive charge. or
- attractive pote_ntlaAI 'e‘xists..' Whilst in correspondingly low concenfratlon
regions the._r_e_avvers.e' wIII" be true. so that the macrpscoplc balance is
maintained._ ,Fig. 5._1 summarizes these two fundam‘emally different e_lectrpﬁ—
impurity ._éffegts." The upper diagram Indicates _the lowering of the
: ébnduct;oﬁ b'andr' a.nd the raising of the valence band- due to the change in
'selif.enAergy- qalcdlated in the previous chapter. In the. lower diagrams the
B s?ﬁwi¢onduptp'r" isl' div_ided into a number of dlfferent' cglls. Although the
 : avérage Iméd;ity co_ncéhtration in all the cells is fixed the sample
concenir_atiqn in each cell may fluctuate. about this m‘e.ah‘." In cells with
high dﬂ'qno_r. .Cdncentrétlons extra électrons are attracied‘ into states with

_beIOvQ .avera'g_e'erierrg_y formgd by _thése poten;lél wells. >Conversely celis

with low donor concentrations introduce states above the average valence
"_._band énergy. ‘ Close to the average band edge these states will be more
) nume"rou‘s since r_ribr"e_l cells rv'with the approp.riate- concentfatlon exist, whilst
states de.epjérx in the'band gap will be Iess'nurﬁerous. The net effect is to
!'nt(q_d;u“cfa a tail on- i,hé density of states 'of eacﬁ band. Furthermore states
.--.(mop in iﬁ‘a band '.la'll will be highly localized since the cells with the

. appropriate c"o.n'cemrauon of impurities will be few and far between. The
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previous calculations have then to be supplemented in order to further

improve the description of heavily doped silicon.

Aithough electrons in the localized states may contribute to
" conduction by Hopping. their neighbouring extended states higher in the
bands have a higher mobility. A distinction is made between three physical

band gaps to do justice in accounting for experimental observations:

a) . Fnrst the gap assocuated with the exitation of electrons
| from the top of the valence band to the lowest unoccupied state
in the conduction band.

b Secondly the so called mobility gap or that between the
- .top of the ‘va!ence band (where the hole states are extended and
aliow .free movement of holes through the crystal) and the

“lowest extended state in the conduction band.
() ‘ FmaHy the minimum energy gap between localized states

“in valence and those in the conduction band tans

f,he 'etudles of this chapter span the localized states deep in
'the band_tail“.to the extended staies In the parabolic oand itself. The alm.
is to ﬁn_o .v_a- unified theory from which to caliculate the density of states
of the band for all energies through localized to extended states. To this
end~.‘in s,e,'ction‘s.]_ the .Iocelized states deep in the tail are considered
u'sting: a method frequently used to describe these states In semiconductor
' ’lasers (see for example Hwang 1970, Casey and Panish 1979) due to Halperin
and Lax (1966 1967, 1973). The interpretation of Halperin and Lax's
,_results relating to the precise correspondence b'etween band tail and host
baod ie o_iffer'ent from the lnteroretaiion hither to 'g'iven. ‘The present
in'terp'reta'tAiori‘le': supported by a study of a quantum mechanicalitechni'que

due to Lloyd -and Best (1975) in section 5.2. that provides similar results.



Numerical results of the .caiculations for silicon in the spirit of these

two techniques are present in sections 5.1.4-and 5.2.6.

“5.1. HALPERIN AND LAX APPROACH

’ .Ha‘lperin and Lax (1966, 1967, 1973) have produced a formulation
wherre the electron wavefunctions (y‘(x)) of a given elgenvalge (Ei) - deep in
the band tail are assumed to have the same shépe (w!(xs » f(x—xo)) and
hence -the_ same kihetic energy @, Their argument for the existence of
these tybicél wavefunctions is based on the following simple thought
experiment;u |
| Suppése the wavefunction for a state deep in the band tall were

;spread‘out 6ver a large volumé. it would then have a small kinetic
energy of - localization. The probability of finding the excess'
cdncentration df impurities over the large voluhe requiréd to support
sugh;a !a'rge Awavef'un(‘:tlon would be very small. Conversely supposing
the Was)efgnction‘to' be excessively locallzed and hence having a very
hlgh ‘k,i_ne_tic_ energy of ‘Iocalilzatlon. ‘The proba'billty of finding 4tr.|e
\_/er'y’ lérge :excess concentration ‘of impurlliés,' whose potential energy
is feq’uired'to balance this high kinetic energy. will be small.
Anoptlmum shape of wavefunction Is then exbeéted tha.t ié not too large and
nottoo ,:ssn_all, Mth a corresponding optimum kinetic energy of localization.
To .'.'ﬁn.d ,t_he..density”of states deep In the tail Halperin and Lax then
4:c"o.mp'ute_“ the probability of ﬂnding‘ the necessary magnitude of impurity

tluctuation capable of supporting these optimum wavefunctions.



Halperin and Lax modelled the impurity centres of charge Z_e by

a Thomas Fermi screened potential

vi{x-x_) = - Z_ e2 1) 510.01
i %a amee 1%-%] exp (- K|xX-x4 7 ( .01)
‘ r i ‘ .
where x, are the Impurity locations. It is the position dependent

potential. fluctuation .about the mean value that is required (V). If the

distrlbu_t.ion of Impurities within the semiconductor (n(2)) is taken to be

described by n@

n(z) = 'Z-‘a(z - xy) (510.02)
B 1 . )

Then the position dependent fluctuation of the total impurity potential
~ (vV(x) about its mean value for the crystal (<V>) Is given by -
V(k) = -Zi:_v(x—xi) - < :ZL: v'(x—xi) > = [ v(x-z) (n(z) - N) dz
(510.03)
virlth';N the average concentration of impurities. They proceed by estimating
the size of the typical wavefunction (f(x—xo)) trapped’ in a  particularly
o déép po;ential"well at x and its energy (E(x)) - by a variational

_-c'algtjlation. -The energy of this state may be written

EGx)

,j £(x-x;,) H £(x-x) dx = 6 + Vs (x,)

'fﬂw%)Tﬂ*%)u;ffMﬁJ%W)@
R ‘ (510.04)
this 'has been split into kinetic (8) and potential Ns) parts.  Since - the
~.elgenfunction (f(x-xo));.ié assumed to be short range the potential Vs(x )
' a'ctsl asa i‘ocal average for ihe potential V(x) that varies with Xy At
yari6u§ _'places ‘within the crystal,v\_ls will have an unusually large 'negétive _
yalgl‘e,.cOr-rQsponding to'hlg‘h accumulations of lmpurlty centres. Halpérin

and’ Lax. then compute the number of these minima In the potential energy



(Vs) W"?C"." would support the ‘iyplcai’ wavefunctions and hence also the
de‘nslty of st'altes (pf(E)). |

_Givén the premise that the 'density of states in the tail falis

the : '
rapid_ly‘ asklow energy tail is traversed. Halperin and Lax claim that
optimization of f(x)- qorresponds to maximizing the dénsity of states. They
justified this by the following simple argument:; .

The variational estimate of the energy (Eq 510.04) is bound by
definition to over estimate the true ground state energy unless the
correct wavefunction were chosen. Thus the density of states
,éscribed to 'this estimate of the energy must at worst be an under
éstﬁnate. - The best procedure fc;r the calculation of the actual
dénsity is then to maximize the density of states.

In fact Halperin and Lax do not maximize the whoie density of states. -
ekpression, as will be detailed in the next vsection, but take some care
over a..tihorou'gh evaluation of the errors Involved In arriving at their
optimum density ofvstates dquviﬁg the limits for the‘ validity -of their

arg'urrjents. which are deait with in section 5.2.4.

51,0 . .Calculation of the density of states.

To calculate the density  of étates deep within tr;e tail,

‘Hal_éérm énd Lax 'poslnjlate a close one~to-one correspondence betwéen focal
'-mi‘n&ir.na'.in'tr.le potential Vs(y) and the energies of 'eigehsfateso in the
vicinity of E. Thus the density of states must depend upon the probability
densities that the potential .energy. Vs(y) takes the va|u§ (E-8), whilst at
the '_s;a:rr_l‘g' time. having' ;erd gradient éimﬁ’_ltaneously with the double
';ﬂ,fferén;ga! b'eing-'p‘ols"vitive‘ (conditions that specify a minima in Vs(y).

'Halpérjn"and Lax’s minimum counting method (a three dimensional



generalization of that used by Rice (1954 pp 209-213) in random noise

problems) reduces the expression for the density of states to

3 : .
0,0,0,(6-E) 2
1273 : - .
pf(E) = 5 3 7 exp( - -(e———Ez—L— ) (511.01)
(217) ¢ o, 2¢0

where the variances of the distribution of the potentiai (Vs(y)) at' a

random point y about a mean value of E-6 is

t0 2 = s - way)>?
= f f(x—y)zf(x'—y)z <V(X)V(x')> dxdx' - O (511.02)
and the variance that the gradient (Vsz(x)) of  the potential is

slmulfaneously zero is given by
2 2 2 1 , .
Eoi;~ = '_‘:f:,oz' = §05 = 3 <[Vst(y)][vyvs(}t)]> (511.03)
- Halperin and Lax maximize this density of states (Eq 511.00)

- numerically for a function of the form

£00 = (a 1) Y35 (xn/1x) ‘  (511,04)

They only consider states deep in the tail. where the exponent of Eq 511.01
dominates. So the optimization of fx) is performed by maximizing only the

. - exponent @f«Eq.~ 511.01. Having found 00 they substitute back into- the

:'exprejssIOns‘ for -the variances to obtain the first order approximation of
: ;he density of states -

‘ ‘E';?K:a | , EK‘Z y 4 _ ;
Py (E) = —3 a(v) exp( - — b(v) ) 4 (511.05)

They tabulate values for the dimensionless parameters a(v) and b(v) for
differ_eng values of the energy (v) that they normalize with respect to the
) LM A

Thomas Fe_rrfn_q screening length (k). For example in the conduction band tail



they take
v = (Ec + Eo - E)/EK ‘(511.05)

where E = %42/ 2m
and with average electron-impurity potential (Eo) given by’

2
e .
E = = - N ‘ f
- Eq V8> , 3 E Za a (511.07)
’ : ‘EErK

Recently Samathiyakanit et al (1979, 1982) have published results for an
analytical derivation of the functions a(v) and b(v) that agree well with

Halperin and Lax’s numerical values (see Table 5.1).

5.1.2 Asymptotic form for the density of states.

Halperin and Lax’s density of states may be evaluated for
" clarity with a particular form of the function f() equivalent to the
asymptotic form of Halperin and Lax’s function (Eq 511.04) namely

: o 3 1/2 :

f(r) = ¢(xr) = | 2 ) e T o (512.01)

. /4 . .

The variance 5002 (Eq. 511.02) with this function becomes (y=0)

3 2

| ;dvoz = ( .:— ) S o~ da(X+x') <V(x)V(x')> dxdx' (512.02a)

The adtocorrelatlon function of the Thomas Fefmi potentiai. given by

s _ - - . . 2
,<V(_x)V(x')>=‘§eK'xx' i €=—e+‘—leNZ'
. 2 K a a
: (amee_) a
r

(512.02b)

~may be approximated for a short range potential by
Vv = 228 bx - x) (512.02c)

K

- giving



(o ° = 22 : (512.03)

Whilst the variances 5012. €022 and 503'2 (Eq. 511.03) are given by

: . 5

2 2. 2 4a . .
fol = 502 = 503 = 3 S ) (512.04)
Substituting in Eq 511.01 for the variances

2

(KE ) 3 2 E
‘ K 2 K 3 (T + &) K
P (E) = (Z) (T + &) exp( - )
£ ‘ ,gz 33/2”2 a ‘(a/x)a 2¢
(512.05).
. a 2
T= (%)

Optimization . of the wavefunction by maximizing the argument of the
ekponential of Eq 512.05 with respect to the range parameter a of the

wavefunction results in the expression

L (KE )3 E 2
o 128 3/2 16 1/2
P(E) = — ; £ / exp( - 32 - ¢ / )
C2mm ¢ o ' 3 2¢

(512.06)

This' e'xpreslélbn, ca!culated from the asymptotic formv.'b_fA Halperiﬁ and Lax’'s
functioﬁ. may be compared with the asymptotic form of their density of
_ states. This éompa\_rison is presented In Table §.1 aloné with a comparison
Aofv'data from Iatér papers by other workers'(Samathlyakénit et al 1979,
' 1 982) taking a density of states expression of the-form

K | éxak-s | E:Kz |

, .pl(E')f = gz ' a(v) exp( - ; b(v) ) N (512.07)




Table 5.1

Comparison of a(v) and b(v) from Eq 512.07.
Halperin and Lax 1966 and Samathiyakanit 1979

a(v) b(v)
‘ : 1.5 0.5
Eq 512.07 , 0.48 v 3.08 v
' 1.5 .5
Halperin and Lax 1966 0.4 v 3.0 vo '
Samathiyakanit 1979 0.23 ul'5 3.54 23
‘5.1.8 The precise relationship between host band and the tail.

- In Halperin and Lax's origi.nal paper (1966) and elsewhere
(Sama'th'iyékanit 1979), the position of the band tail' relative to the host
band “has been calculated from the normalized energy parameter v (Eq.
511.06). - However from a careful study of the physics behind these

expressions this expression (Eq: 511.06) is found to be incorrect.

Following the arguments in Wolff's (1962) paper, outlined in
section 4.3, the average first order electron—impurity energy Eo ' Is
cancelled out by the first order electron—electron energy. The position of

the band tail relative to the unperturbed band edge will then be given as
v.= (E, - E)/EK v : (513.01)

Also having used the screened impurity pbtemials (Eq 510.01) ln'the
‘variét'io'nal -calculatlon-'of the energy of the localized wavefunctions of the
~vb'and_ tail (Eq 510.04) the effect of these on the conduction band states
| must be considered as is done iﬁ chapter 4. To obtain the correct relative
..pos_itiéns ‘oAf'tAa‘\il states and unperturbed ban.d the corrected conduction band

_ edge (Ec"g must be used

-59 -



ei

‘c | Tc “CTF (513.02)

Where,EC is the unperturbed band edge. AEC.”_.ei the ‘change in electron-
impurity self energy in the Thomas Fermi approximation at the bottom of the

conduction band edge (Eq. 442.14a. Fig 4.1).

Finally the effect of electron-electron éelf energies on both

‘the tail and extended states have to be included. -Halperin and Lax
. explicitly: ignore this correction in their paper for simplicity. However
* in chapters 2. and 3 the effect of electron-glectron self energies on the
extended. states has been calculated. The localized states of the band tall

. hoWe'\A/er.A.ap'pvkoach delta functibns with a spread of wavevectors in Fourier
space. - One of the results from the exchange calculations, reported here

(chAapte‘rs 2 and 3) éﬁd elsewhere (Berggren and Sernelius 1981, Abram et al

1979) is that A‘Eee be esseritially wavevector -indepgndeﬁt. From this we

ﬁlight» logically suppose th4at the electro-n-electron shift be the same for

. both ektended\and tail states. At worst it might produce a marginal
correction to the tail state energies. Combining Eq 513.01 and 513.02 an

ex'p‘res_sion for the energy of the tail states relative to the perturbed band

 edge is .obtained

o ed : ' : '
= . - - 513.03
v = (E;_: + AE_pp E)/E, o (513 )

A similar expression exists for the valence band

- E)/E B | (513.04)

= aeS:
V.= F(Ev + ~VTF.

‘These expressions can be seen to differ from Eq. 511.06. The net effect of

‘correctly 'lncludvlhg the electron-impurity self energy in the calculation of
“the exiended states in the band proper, is to decrease the amount by which _

the band tail extends into the band gap. In Hwang (1970) and Casey and

=310 =



Panish (1979) the 5and tail is linked to the host band by an arbitrary
smooth cu'rve'-however the interprétation above agrees well with the quantum
mechanical method .of Lloyd and Best deta_iled in .§ection 5.2 that is
expected to be more accurate for the states close to -and including - the

extended states of the host band.

5.1.4 - Calculations for silicon’s conduction band. -

In this section results for the band tail from the Haiperin
" and Lax model for the conduction (Fig 5.2) band of pncbmpensated n-type
.silic.on is' presented.' The valence' band will have a similar tail (not shown
:h‘ere_);.' 'Tﬁé:effeci of compensation on these calc.ulati.orjs wbuld be two fold,
'i‘n' the flrst case ~th9 scaling parémeter £ would bevAincreased since it
.ere‘nds. upbn the -total impurity concentration '(Eq. 51\2.02_b). Whilst at the

- samé time the Thomas Fermi screening length would be effected since it

depends upon the difference between Impurity types.

. Silicon's conduction band has six ellipsoidal energy surfaces

(}see ,se'c.tlo'"n 2.1. The density . of states expression s then modified to
inélude these by multiplying by the number of valleys (Mc), whilst using
the 'dehsity of states effective mass for one valley lﬁ the expressions for
screen”‘g length. The effective mass used for the valence band
‘-ca'lculati.ons, | is the density éf. .states ‘effective mass. Finally the
"occ,Upan.cy of the el'génstates is accounted for by multiplying by a factor of

2 to account for the two possible spin states.of each occupying electron.

. Inthis fashion the detailed structure of the bands is approximated so that

" a simple expression resulted for Halperin and Lax's density of electron




states
E 3:(3 | E 2‘ - :

- Kz a(v) exp( - X b(v) ) (514.01)
£ : - 2¢ :

pl(E) =2 M

Values of the screening length k calculated for a donor concentration of
1020 cmn3 were used to evaluate  this expresAsion, using values of a(v) and
b(v) ffom their paper and Eq. 513.03 and 513.04 for the remaining
parameters. Th.e results . are plotted in Fig 5.2 for the conduction band.
The Thomas Fermi expression used to calculate thé electron-impurity self
e.nergy_ is glven'_ln Eq. 442.14a. Had this not peen included in the
no'rfnéli_zed energy parameter then (Eq. 513.03 and Eq. 513.04) the host band
position shown in the figures would have been attalned‘. - The baﬁd tail can
' be seen to be very small in.comparlson to the host band. It will have

_little effect on the integrated density of states in -device applications.

However it may still have an effect on optical transitions.

5.1.5 Vall_dlty of Halperlh and Lax approach.

In their paper Halperi-n and Lax (1966, section 7) perform a
:det,ailed ‘analys,i‘s of ‘t'he limits td which their density of state's expression
bl_s' .valid.' ' -ln' Fig 5.3 these are summarized for silicon. In the. first place
-‘lltheir condition 'for linear screening requires th'at_thé potentiai VO s

- small in comparison to the Fermi energy. or (equation 6.9)
€1/2 CE. L s ~ (515.01)

this I:fs only true above a concentration of 10%° cm_3

(Fig 5.3). For the
Gaussian statistics used In the derivation of Eq. 511.01 to be valid the
'aVe_r_gge pyr_hb’er of scattering centres within the range of the function must

- be Iéfge.; The range',of the wavefunction Is given by: the inverse root of

the kinetic energy so (equation 7.5)

=95.12 =
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) : : (515.02)

Finally the method assumes that there are no excited states or (equation

7.6)
b(v) > 66 ' ‘ (515.03)

These three conditions define a region of validity for the above band tail
that spans an order of magnitude in the energy of the tail (see Fig 5.3).

At a donor ‘concentration of 1020 c

m_"3 this results in the calculated values
for the density of states in the tail being 'v_alid from 2 meV to 33 meV.
However this is ‘\‘/ery sensitive 1o the validity of Gaussian statistics (Eq.
515.02): it for‘éxample the requiremen{ for 10 -centres within ihe
influence.of the wavefunction is cc.msidered' this_: range at 1020 is  reduced
to 2 meV to about 3 me\‘/} (see Fig 5.3). 'At hlgher'concentrations these
conditions become less stringent as the_ tail extends.. It sﬁould also be-
noted that in gallium arsenide fdr example due to ‘the .different effective

masses the range of validity will be much greater.

5.2  LLOYD AND BEST APPROACH,

Lioyd-and Best (1975) have developed a variational theory and
“conclude that rather than maximizing the density of states as Halperin and
Lax have done,_it is the pressure function (P(E)). or the double integral

of the density of states (N(E).

~ E € : :
_P(E) = [ [ N(e)y .de de - . ' (520.01)

.thét must be maximized to obtain the closest. appr'oXimat?on to ",“-,?.4 trueg

density df,jsiates. However deep In the band 1ail this principle is

- 513



ecjuivalent to Halperin and Lax’s maximization of the.'de‘nsity of states. In
their theory .Lloyd and Best divide the semiconductor up into a number of
eqqal volume cells. They estimate the :average imburity potential Within
each cell and choose triél wavefunctions assumed to bé orthonormal with
those In adjacent cells. They then estimate the density of states within
each cell optimizing the .cell sizes by maximizing the double integral of

the density of states. hence obtaining an optimum density of states.

In section 5.2.1 Lloyd and Best's variat'lonal'principle is
outll,r':ed. In section 5.2.2 an improvement to Vt}he'ir procedure for
calculating the optimum density of states is- develobed. In section 5.2.3
the normalized forms for the density of states, integrated density of
states and . pressure functions. that allow us to-‘consider a number Aof
different ,tr-ial wavefunctions are.calculateq. Section- 5.2.4 compares the
a%,ymptotic forms of the density of states due to thregtrial wavefunctions
with the asymptotic 'forhw of Halperin and Lax. " In -section 5.2.5 the
normalized numerical results for. ghe density of states from the lécalized
lail states to the extended states in the host band are g.lv‘en, -discussing
some interesting feétures of Lloyd andrBest‘§ approach. Finally in section
5.2.6 results-.for the best calculations of- the téil ~on the density of .

states in silicon’s conduction and valence balnds are presented.

5.2.1 The variational principle.

lnl this section the variational 'principlé developed by Lloyd
énd Best (1975? ié presented. Lloyd and Best _consider'é hypothetica! many- -
“fermion problem ln}'which. the slng‘le—jp_artléleAeigenstates of intere.s't are
filled (one fermion to each stéte Igﬁorlng for't'he momelm'4 spin) ub to some

Fermi energy u. They like Halperin and Lax ignore electron-electron '

P



exchange energies that have to be included at the,c_:énd. on the caiculation.
The many electroﬁ‘ screen}ng of the impurity centres is includgd by suitableé
choices of trial wavefunction and impurity potential.‘ The energy of this
many-particle systém of volume V is given fn termé of the single-particie
density-of-states function 'by |

I o .
E_(u) = V [ E N(E) dE ~ (52}-01)

Jpes
But this Ié the ground state of the many-fermion problém ‘ang as such n may
be estimated variatiof\a\lg. Letting the triai basis‘-st'até of the .many-
fermion wavefunction be represented by ¢a(r,x), wheré | A represents the
variational parameter(s) and @ being cdnvenieﬁt quaﬁtum number(s).. They
then write - an approximate densltY-of—states assumlﬁg the single-particle

states to be orthonormal

N(E,\) =

1

"L O(E - <a|H|a>) ' - (521.02)
a

where H is the élngle electron random Hamlltonian of the problem.
- Substitution of this approxlmate density of states Into. Eq 521.01 gives
‘Eo(p.,)‘) an  approximation to the true ground states energy. The totall
nurﬁber of bartlcles (N N) may' aléo be'expressed in terms of this
appréximate_ density of states .
' u . . '

CN(#,N) = J N(E,\) dE ' o (521.03)

- ; : 4

These expressions. form - the basis ‘of the variational approach

developed by Lioyd and Best. In what follows three methods of obtaining

the variational principle are described.



al From the Canonicat Ensemble

leer)-. that the total number of particles has to be kept
consta'm. from A:fb"‘he'rmodynamlcs provided the _éystem is in thermal
equlllbrlum (at T=0) and has fixed volumé V the bart'r_cles will fill up fhe
states in the band so as to minimize the Helmholtz free energy (F). But
this is just the ground state energy |
o o ~
F=U—TS=U=VJ‘EN(E,A)\)dEV_" (521.04)
. .=—C0 :
Thus'Whilst minimizing the ground state energy Dby vé_rying A the Fermi
energy 4 must simultaneously be varied to keep the total number of
particles (Eq. 521.03) constant. If the integration of Eq 521.04 s

performed by parts

L E

Eo(u,x) = v ( m £ N(E,x) aE - [ Q{N(e,)‘). de dg:) '('521.05)'

Thus-the mlinl'mizat‘ion of E0 corresponds to maxinﬂzlng' the double intqg?al
of the density of states provided the first term of Eq 521.05, that is
formed by the product of Fermi energy and total number of particles.' is
kept constapt. Notice-that by substituting for Ed the double integral may
be re-written | |

L E m .'

P(u,\) = [ [ N(e,\) de dE~=:f (L - E) N(E,\) dE (521.06)

o

This variational principle may be obtained more rigorously by
seeking the minimum in the following. equivalent fashion. '
For a minimum | | |

l TV ' -
3 . ! IN(E, A d
U:o—f E——é-x—ldE+§%ﬂ-N(#,U

- 00



But from the constraint

(N
aN 3N (E, \) A :
ax - °%° _{o ETY aE + 3y K N

Combining these

’(N) .
au 3 Y
Woo- g @-w BED 4

- 00
Which is equivalent to maximizing the function P(u.)\) provided u is taken
as a constant

KL E M

P(u,\) = [ [ N(€,\) de dE = [ (4 - E) N(E,\) dE (521.07)
-0 =00 - 00 .
b) From Grand Canonical Ensemble

Above, by varying u to maintain the total number of particles
constant at constant temperature (T=0) and volume, the Helmhoitz free
energy is minimized. - Lloyd and Best claim that an equivalent way to fill
up the states in the tail is to keep the fermi energy constant whilst
varying the total n.umber' of particles. It is then the thermodynamic
potential 1 that is a minimum with respect to changeé in state at constant
chemical pOten'tial, temperature (T=0) and volume (see for example Lifshitz
and Pitaevs.kii 1980). The pressure (1 = - PV) of the many fermion gaé must
then be maximized. The following outlines the calculation of this pressure

function.

To calculate the probability wnN't'hat a system of fixed volume
with a variable number (N) of none interacting particles is in the state n
with energy EnN the Grand Canonical Ensemble or Gibbs distribution for

variable number of particies (Lifshitz and Pitaevskii 1980) is used

wnN = exp((N1 + uUN - EnN)/_kT)f' ‘ (.521..08)
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distribution

1 =) ) wony = exp((/KT) | T exp((uN - E N)/KT)

n N n N
rearranging
N = - kT log (L ) exp((uN - E_.)/KT))

n N

in the present calculation particles that may be c‘lassif'ied into groups of
U particles each with energy €y and different quahtum state K are
considered. The total number of particles N. the total energy EnN of a

particular collection of quantum states K, represented by n. are given by
(521.09)

So from standard statistical mechanics the probabili,ty of finding- the

system in this state is given by

Von = 11wy = exp(( + uN - E ) /KT) - (521.10a)
K K

Where. the probablliiy of the group of Ny particleé occupying the quantum

state K with energy € is given by

jwhg-= gxp((nK +Ank(“ -~ €g))/KT) - ‘ (521.10Db)
Where hK-’ the _poténtial of the set of states Aquamlzed by K. is given Dby
normalizing

1 =) w, = exp(/kT) ) exp((ung - €,n.)/kT)

- . n_ - K : n,_ - :

K K



‘rearranging

n, = - kT 1oge(§ exp(n, (4 - €.)/KT)) | (521.10c)
; |

By Pauli's principle the occUpatlonaI numbper n, may only be one or zero for

K
fermions. Eq 521.10c may then be simplified

QK = — kT log_(1 + exp((4 - €,)/kT))

The total thermodynamic potential 01 is then given by
N = - KT § log, (1 + exp((k - €)/kT)) - (521.11)
K ' _

When kT becomes smaller than the difference between chemical potential and
eigenvalue then the potential becomes

n= - § (B - € , ' ' (521.12)

Assuming that the wavevector K is a good quantum number in every cell the

summation over K is replaced with an integral
N=-v /[ (- €) NK ak
a = J w - e .

where N(K) is the density of states with wavevector between K and K ‘+ dK.
Since in the bulk of the semiconductor K is no longer a'good quantum number
the K ir,iteg'ral is replaced by one over the energy 10 get

u ’ o .
N ="-V [ (k- E) NE) E = - VP(H) (521.13)

. The system  will seek to minimize N1 that corresponds to maximizing the
pressure function

P(w) = [ (b - E) N(E) QE o 3 C. . (521.14)

=00



c) From' Matrlg theory
-Subsmuﬂng Eq 521.02 for the ‘density' of states into the
expression for.the grbund state energy Eq 521.01
E (E) = [ <alH|a> T (5#1.15)
p :
The ground state energy. may then be represented by a sum of ordered
eigehvalues. Also on sdbstitutloh of the deﬁsity of stat'es in‘to Eq 520.01
the pressure function becomes -

P(E) = T (4 - <alH|a>) _ - . (521.16)
p _

Now Fan (1949) has produced a theorem merely frpm' matrix analysis that

states the following inequality

N

E' E; € ) <ajH|a> A ' ' (521.17)
i T a : : -

Where E, are the true eigenvalues and the ia> form any set of orthonormal

i
~ vectors. Thus to obtain the best approximation to the trueAground state

the pressure function must be maximized.

522 - Calculations of the best density of states.

Having * outlined the basl§: vaﬂaflonal principle this section
deals with tﬁé method of obtaining the best density of states. Because it .
s a:' hypothetical many fermion problem that is belng' con's.idered the Fermi
ene'rgy. used in the above derivation of the variational .'prlnciple does not
necessarlly relate to the real AFermi energy. Choosing an arbifrary .en'ergy
wlth-ln. lhe" band tail (E) the above.p'rlnciple__is used.- to optimize the

varlational parameter for that energy M(E).. This was used by Lloyd and



Best to give an estimate for the density of states at that energy
N(E) = N(E,M(E)) : . , (522.01)

in doing so they ignore the problem of exchange energy between states above

the arbitrarily chosen energy that may or may not be filled.

An imprpvement to Lioyd and Sest'é method is to choose the
optimum values of AE) as above. - but rather than using these values in the
'oriQinaI*density ' éf states expression. to use thé “optimized pressure
function

_ maximum

P(E, M\ (E)) = wort s PEMD . (522.02a)

which is equivalent to solving

_a_P_éf)%’_ll = J‘ (”- - E) —ala(_%ll dE = O (522‘0213)
. -0 : s : A

The pressure function as can be seen from Eq. 521.06 (or Lloyd and Best ‘
1979 Eq. 2.3 - 2.4) is just the double integral of ‘t'he'density of states.
By 'do_uble dlfferenrtiatlng fhe opﬂmum preséure func_tiprix. with respect to
eﬁergy,f the best estimate of the density of states is” obtained. This is

presented formally as -

" N(E) = J P(E";L%(E).) : . - (522.03) "
. ag2 - : ‘ .

This rather formidabie task, that of numerically double differentiating a
maximized function may be simplified. The maximized bressuré function is
given by (Eq. 522.02a and Eq. 521.06)

CPMAAL) = [ (- E) N(E, A (k) 4E

-



Ditferentiating once

OP (u, \ (1)) n

= [ N(E,\ (1)) dE
au - ne (522.04)
X O\ (&) ?.(u-- o) ON(E, A (K)) aE
ap - O, (1)

where the second term on the right hand side is just the condition for
maximizing P(u.)\) (Eq. 522.02b). multiplied by a ﬁﬁlte constant

3x_ (1) |
_ ———au
and is equal to zero unless this gradient becomes infinite. Writing the
- integral of the density of states as L(u.\)

I .
L(u,\) = [ N(€,\) de ’ (522.05)

-o.
the optimum density of states is then given by dlfferentlating- L(y..xm(p.))

with reépect to the energy u. This §ing|e numerical differenilatlon Is
easier than the initial double differentiation-' proposed above. Numerical
results for the ndrmallzed best  density of states are'presented in section

5.2.5.

52.3. Expressions for the density of states and Pressure
functions.

Having detailed the calculation of the opti.mum density of
states from the variational prihclple in the previous sections. in this
section the caléulation of the trial denéity of states_-._uslng tloyd and
Best's .tria'l wavefunétion is presented. Normalizing parameters are also
presented that ﬁmake the nﬁfnerical caiculations ‘of later sections

independent of semiconductor and trial wavefunction.



To calculate their density of states Lloyd and Best chose the
following set of trial functions. normalized with respect to the cell
(denoted by ¢) size xs

-3/2 '
N /‘ exp(ik.r) where cell ¢ contains r

¢c, K (r,A) = _
o] : where r is. outside cell ¢
(523.01)

A is the variational parameter. The random Hamiitonian of their model is

given by

2 .
H = n- 2
- 2m

v° o+ v(r) , o ' (523.02)
Where V(r) is the random fluctuation in the impurity potential given in Eq.
510.03 where the average Impurity potential of the crystal as a whole has

been subtracted. The density of states (Eq 521.02) is then rewritten In

terms of this trial function using the expectation value

2.2
® . ' 3
<a|H|a> = <c,k|H|c, k> = smo t J ¢c,k(r) v(;) ¢c,k(r) dr
(523.03)
so that the density of states becomes
: ' 2 .2 4
1 1 Ak ' 3. '
-.N(E'x} = ﬁg [ ;—3- % 6(E - o - <Ve>) ] (523.04)

Where «c> Is the expectation value of the potential for the cell (¢) and N

is the total number of celis.

The summations in Eq. 523.04 are now evaluated. 'Flrst the
summation over tHe §e||s (c). Just as in the .Halperir_l and Lax caiculations
it is assumed that there are a large number of impurﬁties within each cell
.s‘o fhat ihe central',.lirhit-theorem may be Ihplementéd. taking the potential
t_o .vary with a Gaussian dVIStrIbuti'on‘at;out a me;'-m value. taken to be zero

2
R

. : 2
- <VC>
pP(«Vcr) = ( oW exp - Su

(523.05a)

.



The variance (w) is inversely proportional t0 the cell size (see section

5.2.4), and is expressed in the form
2 2 .3 '
W= <<V > - <V> = g /\ : . (523.05b)

Performing the summation over cells thus reduces to an integral over the

expectation value of the pdtential in each cell «vo». From‘Eq. 523.04

1/2 .
N(E,\) = (-27;) ;-3 ) (523.06)
oo 2 2 S 2
Ak v :
J L 6(E - sm- - <Ve») exp (- i';w;)ddlc>
o k

Considering now the éummétion over k states, the discrete
- nature of the ‘low k states has to be included. w_hilsi summing over an
infinite number of states closely packed further into the host band. The
summation over k states Is replaced by an infegral over :k states however to
partially to account for the discrete nathre of the low energy eigenstates
ot the cell. Lloyd énd Bést» shift the energy origin by a Azero—po‘int energy
_((ﬁ2/2m)x/x2), caléuléted_from thé ground state energy' of a square well
. potential (x = 3n2$. A better apbroxlmation might be'ufound by including
more than ]Qst the first term in this se(ies (private bomn_iunicatidns Rees).

however this is thoughi to be too involved for the present calculations.

: 172
1 1
N(E,\) = ( ) B ] ) .
2me’ . ap® (523.07)
o o 2 2 2 ’ 2
AkY AT x .2 <Ve>
.g J 6(E - Sm - éﬁ(;i) = «Veci)k exp(- -—zr)d<‘lc>dk

‘The integral over ,the potential fluctuation is elementary.
however the wavevector integral may be most readily exbressed in terms of

Parabolic  Cylindor functions (Ua.z)).  These are ddllneq by (Abramowitz
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and Stegun 1970)

2 - . . 2
_ 1. -z /4 a-1/2 -zs-8 /2
U(a,z) = ———_——I‘(l/2+a) e [ s | e ds (523.08)
. 0

80 that the density of states expression becomes

a/2
N(E,\) = —— (%) b
A

2
1/2 -z°/4
/2 o _/ U(1,2) (523.09a)
an :

with energy -and variational parameter b given

o2 . A .
b = 372 (523.09Db)
k .
and
2 1/3
E o) b
z = o+ Xom _4.) (523.09c)

'.ngq 523.09 gives the total density of eigenstates in the band. However by
normalizing the above expressions a more useful expression for the density

of states. that is material and trial wavefunction independent may be

‘obt‘ained. Introducing the normalized parameters for energy €,

om > a 277° '
E=(—5)o0o =5 € 4 ' : (523.10)
2 3
AT . X )
‘ _and length p
2 2 2 - R .
A X , - .
A= 2—'m) 232 P o : (523.11)
. em o

the density of states N(E) becomes

am 2 2 270° ' SR '
N(E) = ( -3 ) o 3 n(e) . _ . ‘ (523,12a)
. A ' X . .

and the normalized density of states (n(e)is then given by

/2 o ' . 3/2
1 - 3/4 -2 /4
n(e.p) = (25) = 871y, = (X) n el
an ayan ' ' .. 3m o
z=- 5+ o3 877 | ~ (523.12p)



where 8 = 1/p

Using these vnorma.liied parameiers the density of states (N(E))
for a variety of semlcdnductors ‘with differiﬁg etfectivé mass (m) may be
calculated.  The trial wavefunctlon'may_ also be ‘adjusted to a limited
exient (see section 5.2.4). varying not o'nly the potential fluctuation
parémeter O but also the zero pdim energy parameter_;'(.‘ Thus a variety of
different results may bé obtained froh ]ﬁst one set of numerically

calculated normalized curves (n‘(e)) that are independent'of 0. m and Xx.

The i'ntegral of the density “of states L(E.\) (Eq.l 522.05). and
its double integral. or the pressure function P(E.\) (Eq. 521.06) may also
be calcuiated fa;om this h’orma_llzed' denslty of states. ' From Eq 523.12b for'
the normalized density of states and the récurrenée'.relation'ships for the
Pérébolbic Cylinder functions (AbrabmoMtzAand'Stegun' 1970) the normalized

integral of the density of states (I(€.p)) becomes

3/2 . _.2,, - :
1(e,p) = ( X 1 ,199/’4 e (4 u(2,z) (523.13)

2 2
3n s8V2am

And its double integral. or the normalized pressure function (p(€,p))

3/2 2

| s 1 15/4 - 4 '

ple,p)y = ( xz) = 8 /% 72 /% y(3,2) . (523.14)
: icY/ svan o '

5.2.4 .~ Comparison of the asymptotic form with Halperin and_

Lax.

in the previous section useful expressions for the -vnormallzed
density 61 states (n(e.p)). integrated density of states (i(e.p)). and
pressure functions (p(e.p)) ha\)ébeén derived. These expressions are
‘normalized with respect to the zero 'point energy paramet'er ‘x (Eq. 523.07) ‘

and the potential fluctuation parameter g (Eq. 523.050). These functions



were derlved in the last section with the trial wavefunction (Eq. 523.01)
used by Lloyd énd Best (1975). In this section the asymptotic form of the
density of states, that is only reached deep in the tail (i€} > 4.0.102). |

is considered. The méximization of the pressure function and the
v.c:alcmation of the optimum density of states (section 5.2.2) may be
performed analytically. By comparison with the\>Halperin and Lax’s

asymptotic function (Eq. 512.07) the trial function (Eq. 523.01) used by

‘Lioyd and Best is improved.

From the previous analysis it s clear that the density of
states algorithm must consist of two parts. Flr"st maximizing the
nofmalized functions and secondly providing suitable values for the
variance 02 zero point energy x and effective: mass m. 'In this section the
maximization of the .nor_malized function is performed in part a). The
p_rinciple part of the section (part b)) Is devoted to a comparison of the
'a'sympto‘ticvforms of Halperin and Lax with Lloyd and Best's functions for
three trial wavefunctions (in parts D, i) and ii)). A table comparing

all these functions is presented (Table 5.2).
a) Maximization in the low energy limit

'Maxrlmizlngvthe pressﬁre function ‘(Eq 520.01) in the low energy
limit corresponds precisely t0 maximizing the density of states expre.ssion
(Eq 523.12) as can. be verified by writing the asymptotic forms of these
functions. Fér consistency only the pressure function ‘is maximized here.
By diqférehxgaging ple.p) from Eq. 526.14 with respect to 8 (8 = 1/p) apart

from '_tne trivial solution (8=0- see section 5.2.5 this maximization
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corresponds to solving

2
g% = 0 = e—Z /4(U(1,z) - 4772 Bl/z U(e,z))

(524.01)

2 172
+ 37 B/

N

3/2
B/

Solutions of this equation for different B and € correspond to finding
those values of A that maximize the pressure function. T_he asymptotic fo}m
for the Parabolic Cylinder functions may be reached in o‘ne of two ways: By
inserting a large negative value of € Or by inserting a small value for
B. whilst ensuring a negative value for e. . Both 4t-hese methods (which
: correspond to thosé for obtaining the asymptotic form of Halperin aﬁd tax’'s
density of states function section 5.1) result in a large. positive value.
for the dimensionless parameter z in Eq 524.01. The appropriate asymptotic

form for U(a.2) is (Abramowitz and Stegun 1970)

2 : :
Uia,x) = e % (4 x-a—.s(l _ (a+1/2)éa+3/2)‘ +..) (524.02)

2x

So the asymptotic form for this maximization condition becomes

2
-2°/2 -3/2 1/2 -1
e 2 /2,7% /2,

3B _ ., .

35 ° = ) (524.03)

(1 - 41)‘23

Substituting for z from Eq 524.01 the inaximlzatlon, of p corresponds to

setting

g = Lel T ' v : (524.04)

' .Ha\;ing o:t).tained this optimdm valug of B in the low energy tail -
it can be substituted into the density of states expression Eq 523.12 (both
of ‘the methods for obtaining the density of states rﬁentioned in section
522 may' be shown to be equiva!ent‘deep in the tail) and take the
- asymptotic form for the Parabolic Cylinder function. This gives normaliied

expression for the optimized density of states -

b R 2Ry g
t



v 3/2 1/2"
n(e) = (—3) 5 '
37 6427

3
X 1 -87° |€)|
e

(524.05)
This Is only reached deep in the band tall (e! > 40109 due to the

comparatively large second factor in the parentheses of the parabolic

cylinder function asymptotic form E£q. 524.02.
)] Calculation of the zero point energy and variance

Results for three trial wavefunctions of the .asymptotlc form to
fhe’optimized density of states are presented in parts i, i) and iiD.
Table 5.2 summarizes the results for all three.

0 | ” With the orthonormal set- of triél wavefunctions uSe_d by
Lloyd and Best (Eq 523.01) the ground state énergy is slmlplyvthat
cofrespondlng to the minimum wayevectofs supported by a box

: 2

E'o = 3% (%) ° ; X = a2 | - (524.06)
VWhllst_ the variance may be caiculated as in Eq. 523.01 from the
autocorrelation  function. This is approximated for the short range
‘potential by Eq. 512.03. The variance is then given by |

3 ) 2 e2 2 an i
£ ) 6 = (—3) Ng = —3 ¢ (524.07)

K €€
r

1
G

‘CD
wid

w =

-

>

The variance and zero point energy allow us to calculate the normalizing

-parameters of Eq 523.10-523.12 for this first trial wavefunction at a donor

concentration of 1020 cm™ >

' . -8 :
E = 0.35 € (eV) i A= 5:8.10 p (cm). (524.08)

The density of states may also be written in the form of the Halperin and Lax



asymptotic function (Eq 512.07). Using Eq. 524.05 and 523.12

‘ 3 2
M 3 KE E
c 2
N(E) = 2 (6 e) 5~ exp(- 27 5—:— v1/2) (524.09)
8vy2m EK ¢ :
Comparison of this with Eq 512.07 shows thét an extra factor (gS/EKG) has

been introduced into the prefactor of the above expression due to the lack

of any energy dependence. This factor may easily be shown to be equal to

3 5 1/2 aa-/2 N>
I N—ul off T (524.10)
& = 576 (3) 5/2.5 '
N M
K a c
where ¢t is the effective Bohr radius NT is . the total impurity
concentration and N is the excess donor concentration. in an

d
uncompensated semiconductor this expression reduces further since the
latter two impurity concentrations are the same. At a concentration of
18 -3 -3
c

10 m  this factor is calculated as 5.83.10_6, whilst at 1()2] cm it is

found to be 1.84.10—4, varying as the square root of the uncompensated

impurity concentration.

A more important difference between the. Halperin and Lax and
Lloyd and Best asymptotic forms Is the difference in argument of the
exponential. Two further trial wavefunctions were used‘~ln an attempt to
improve the agreement between the two asymptotic forms deep in the band
tai!.
.ii) . . Orthonormal sinusoidal wavefunctions for a box volume \
centred at the origin
3/2 n_mx n Ty ﬁzﬂz

) ‘cos cos cos

524.11
A A A ( )

2 2
¢'}£ )(r) = (5

where x.y and z are the components of r in those directions and the nv are

integers defining the discrete wavevectors. This wavefunction gives a



variance of

2 27w
0" = S5 ¢ . , (524.12)
K .

and a density of states

N(E) = M (£

1/2
&) 5= eXP(- 55 T S~V ) (524.13)

iii) Finally the spherical, almost orthonarmal wavefunction

(3) 3 /2

) (r) = (%) et T oo (524.14)
n
The ground state (k=0) energy of this wavefunction is given by
2 2 2 2
A a N a .
<H> = >m + <V.‘> = “3m . (524.15)
so that x = 1 and A = 1/a
The variance of this third wavefunction is given by (c.f Eq 512.04)
o® = % : (524.16)
P

from which the nqrmalized parameters for a concentration of 1020 cm“3

may
be calculated from Eq. 523.10-523.12.
-9

E = 14.2 € (eV) ; A = 1.67.10 p (cm) (524.17)
and the den‘sity of eigenstates becomes

' 3 2

3 KE E
16 2 1/2
NE) = m 2T (Ey K - 22 0% 0 (s24.10)
: 2 27 2¢ .
64V2 E ¢ :

A cdmparison of the asymptotic forms for-the density of states
“tor these three wavefunctions Is made in Table 5.2 with the previous

results (Table 5.1) from section 5.1. - Taking a density of states

= 5.31



expression of the form _
3 3 2

E‘K K EK .
N(E) = M_ 5 a(v) exp( - — b(v) ) (524.19)
£ 2¢ :
‘Table 5.2
Comparison of a(v) and b(v) from Eq 512.07,
Halperin and Lax 1966, Samathiyakanit 1979,
and Lloyd and Best (Nd=NT=10200m3)
a(v) ' b(v)
Eq 512.07 0.48 oS 3.08 v°°°
_ 1.5 0.5
Halperin and Lax 1966 0.4 v 3.0 v
Samathiyakanit 1979 o.zs'vl's 3.54 v°'5
Lloyd and Best 1979 -9 o
¢ (1) ' 5.29.10 19.7 v
‘ -7 0.5
$(2) ' 1.79.10 5.85 v
-5 0
¢ (3) , 5.46.10 3.08 v

It can be seen from this table that the trial function that
best fits the asymptotic form of Halperin and Lax's’ function is ¢(3).

However as the energy normalization in EQ. 524.17 shows, this asymptotic

form is only reached at an energy of (e! > 4.0.1).02) 5.6.103 ev below the

host band. It is clear that aithough the two asymptotic functions do have

the same exponential form, this alone is not a sufficient indication of
i NP . .

~

their’ compatability.



9.2.5 Numerical calculations.

For energies other than deep in the tail or within the host
band. where the usual e”z limit to the density of states is observed. the
best density of states must be optimized numerically. The numerical
algorithm used is straight forward. it is only I)(i'efly mentioned here. The
numerical. results for the normalized denéity of statés derived as detailed
in section 5.2.5 are presented in Fig 5.5. For energies close to the host
band. in the region where the optimum box size becomes Iinfinite
corre.sponding td extended states. the detail . of the'pressure maximization
produce§ a discontinuity in the box size as shown in.Fig 5.4. An analogy
n&-aybe drawn between this and the mobility edge. although no conducﬁvity
calculations are presented .that prové tﬁis relationship. The main _~résults
“of this section, those of the normalized density of states may be used for
any' semiconductor. or At.rial waQefunction depending of the cho.ice of

-normalization parameters given in Eq. 523.10~523.12.

- The algorihm used to determine the.olptim‘um' densiiy of states
has .eAffective>ly been- outlined in section 5.2.5. Fig 5.4 shows a series of
cuvrve_s forlthe pressufe-_function ple.p) for different 'reciprobal cell size
B‘ (B=1/p) and ‘energy € close tb the host band. For energies below the
intrqpsig band edgé (€=0) the maximization s simple. and corresponds to
solving Eq. 524.01 ;or =8, These points §f maximum pressure are also
plotted in Fig 54. However as this figure shows as the energy €
: approaches'posltive v?alues a sudden change in _Bmax occqrs at an energy of
€=7.91.10"° beyond which the vé'lue of p at the origin Gie 8 max=0)' becomes
grégter. The change In By from 3.25 1072 10 zero corresponds to a sudden

change from a finite cell size. to an infinite cell size. This change

s'ugg,ests the presence of a sudden change from localized states in the band

—



p(e,B) 10°3
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- Fig 5.4 Maximizing .the pressure function p(€,8) with respect
R

to inverse cell size B for energies close to the host

band (€ = + ve).



'tqil toextehded ététes in “the host band t'h-at migﬁt. represent a mobility
edge. Above this edge the extended states would contribute to the
conductivity in the normal way, whilst the localized states beiow the edge
would 'contribﬁte by‘ hopping. The present observatldns do not however
present any ,'definitive description of this ‘edge that could only come from

conductivity calculations.

Having calculated the optimum pressure (or‘doubie integral of
the density of states) from Bméx these. can be double differentiated to

obtain the optimum density of states. This s achieved by differentiating

x) as prescribed by the method

the integral of the density of states e84
of section 5.2.2. Clearly at the point at which Bmax suddenly = moves to

Bmax = 0 the differentiation routine will produce a singularity that occurs

close to the parent band and is not shown in Fig 5.5. Beyond this change
with 'Bmax=o the parent band is generated with density df eigen states given

by

n(e) = ﬁis el/2 :_ (525.01)
' an Lo

Finally the curve obtained by allowing 8 to ~ tending towards  its

max
saturation value (Bsat) is also: given in Fig 5.5. The asymptotic form of
this density of states for large positive € is given by

2 -
3m_,1/2 | . (525.02)

. 1 _
nu(f) = 3 (€ )

that also tends towards the host band sha'pe given.in Eq. 525.01 as €

increases.

‘The problems of obt_allning,.th"e- optimum density of states for
- those energles close to the host band does not alter the principle result
of these calculations which is .that the density of states within ‘the tall .

s low |

LA

comparison with that in the band. as can be seen from Fig 5.5.
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5.2.6 Numerical results for the conduction band.

Using the normalized curves.in Fig 5.5 and the trial function
$(1) and ¢(3) detailed in section 524 the density of states for the
conduction band of silicon may be generatéd. This is shown in Fig 5.6 with
the results from Halperiﬁ and Lax's calculations. In these caléulations
the detailed natufe of silicon’s conduction bands is accounted for Dby

calculating the density of states in one of the six ellipsoidal valleys

(section 2.1) and muitiply the result by the number of valieys (Mc = 6 for
silicon). .
M. 3/2 .2 :
N(E,\) = —9-5 (95) p/2 &% /% y,2) : (526.01)
amr A _

de=0.32m°) is wused in aII‘ the

normalizing expressions (EqQ. 523.10-523.12).

The density of states effective mass (m

5.3 CONCLUDING REMARKS.

Halperin ‘and Lax produced a formulation for the density of

N

states deep in the band tail where they perform four operations:

a) Choose the form of a typical wavefunction deep in the tail.

[ .

b)Y Using this wavefunction énd modellir'\gvthe' impurities as a
éuperpositlon of Thomas Fermi screened potentials calculate the
ground state by a variational caiculation.

c). Calculate the density of states by counting the. numbér of
o potential '.weus, formed b.y small feg'lons ln space accumulating .
more lonised: Iimpurities than' the average concentration -

~ throughout the semiconductor.
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d Optl'mizing the chosen wa\.vefulnction by ‘maximizing this density
of states. '
This minimum counting method breaks down for energies close to the host
band because at these energies the one-to-one relationship between
potential wells and their' associated eigenstates no longer holds.  The
localized” yvavefunciidns th,eﬁ bégi‘_n to extend.over rhore than one minima
interfering with neighbouring Wavefﬁnctions: |
Lioyd .and Best in their work (1975) approach the calculation of
tail states from the other end. starting with these extended states and

moving deeper into the tail. Their method has the following steps:

a Divide the whole of space up disjoint cells of the same volume
)‘2. |

D) Fit trial wavefunctions (¢(1)) into these boxes..

c) Calcuiate the density of states a‘ssuming each Dbox contains a

sample of impurities. the number of that varies from box to
box about a mean value. It is assumed that the impurities are
distributed uniformly within each box.
) Optimize the cell size by maximizingthe double Integral of this
.density of states |
Becéuse the cells fill all space, when they optimize the cell size in
the band tail they under estimate the density of states because they do not
Plcﬁ oug Lhe very 'short range states counted in Halperi_ri and Lax’'s method.
Hdwever cloger to the host band where the wavefunctions become extended and
begin to fill all space the disjoint cell approximation improves. For
ehefgies within the host band the cell size becomes infinite and the host

density of states is reproduced exactly.

Thus ‘the calculation based on Lioyd and Best's variational

calculation of the density of states within the band tail must give a



reasonable approximation to the density of states c-lose_- @o the band edge.
However although their va’riationél prlnciplé. may be valid over all energies
in the tail it is difficultb)?use. 'EAt best a trial fun_ctidn, like ¢(@3) -might
be fitted to Halperin and Lax's tail to: brovide a link between the deep.
tail and the host band. Deep ;n the.t.ail Halperin and Lax's calculation
is expected to give a better estimate to the density' of states.  Although
the precise means of linking these two célculétions remains a problem it is
clear from the Lioyd and ABest calculatlor’is (see Fig 5.5 that the band tail
is much smaller than has previously been.supposed. Convincing arguments
have also been ‘given in section 5.1.3 for relative .pbsitions of the host
band and the tail calculétéd from Halperin and Lax_'é results (Fig 5.2).
Recent calculations on high—stress optical birefringence (Sernelius 1983)

are also In agreement with the hypothesis presented here that there Is not

a substantial band tail.



. CHAPTER 6

AN ALTERNATIVE APPROACH TO THE ELECTRON-IMPURITY PROBLEM.

6.0 INTRODUCTION.

in previous chapters the electron-electron and electron-
impurity interactions have been considered separately 'hoping in the final
'analysis tb sum these contributions to the band gap -narrowing. These
interactions have been studied in a perturbation expansion to second order
of smallness. In this chapter a self consistent approach to the electron-—
impurity interactions is introduced to which the electron-electron self.
'energy must be added later. Although It. is obviously more useful to
consider a random Iaﬁice of donors. as Ghazali and Serre (1982, 1983) do.
a regular lattice of impurity centres is Investigated here to study the
salient features of similar caiculations by Mahan (1980)'that Berggren and
Sernelius (1981) and Selloni et al (1982) have discussed. Thl.s method
might be extended at a later stage for a random system of donors. ‘However

at first the regular lattice of donors Is considered.

As a starting point to the calculation of the electron-impurity
interaction energies the band edges have been calculated in a simple Wigner
- Seitz type calculation. The calculation is based on those made by

. Similar :
Baltensperger (1953) and is A to those recently made by Engstrom (1983).
This method has been extended using the currently available numerical

routines (from the Numerical Algorithms Group) to improve and extend the

calculations for silicon. In section 6.1 the details of the Wigner-Seitz

method used are given.

At low concentrations the impurities are far apart in the host

§”icc§ﬂ lattice. To. a first approximation the donor impurity centres are

‘ . =6.1-=



hydrogen like so that the electrons fall into states that have an energy
equal to the effecflve ‘Rydbe.rg constant (Reff = 319 meV in silicon) below
the continuum or conduction band energy. As the' donor concentration
lncreasés the donor potentials begin .to.interact causing a splitting of the
Iimpurity level.  The broadening of the impurity level into a band with
Increasing concentratlong‘ finally results in its merging with the host
band. At this point in the conpentratlon range thé bottom of the impurity
| band is consldered' to be the same as the parent band ed'ge. The energy of
the wavefunction occupying the Ilowest state in the 'periodlc impurity
potential gives a measure of the energy of the band ‘bottom relétive to its -
unperturbed position.  In the low density limit this energy might be
expected. fq approach the effective Rydberg value. However the presence of
the large ﬁumber of impurity electrqns in the conduction band resuits in a
screening of all the various coulombic Iinteractions in the crystal
characterized by K the Thomas Fermi screening length (see section 4.4.2).
Since the screening length (1/k) is less than the average Impurity
separatiﬁn over all of the concentration range of interest in silicon (see
Fig 2.4) the impurity potential is short range. In the Wigner-Seitz method
the wavefunction and energy of the states aré calculated. it then becomeé
possible to rr;ake a self consistent calculation of the screened potential in
t'h'ls aPproxImatlon. The choice of screened potential is made ln. section
6.2. Having thus determined the energy of the conduction band. the
wavefunction for ihe lowest state in this band and the screened impurity
potential th is then ;possiblle to calculate the enefgy and wavefﬁnctlon of a
hple from the valence band In the same.potentlal. The shift in enérgy of .
the valence band 'is thus also obtained in section 6.3. Section 6.4 -
'goqgglng a ggscu§§ggn qf these results for a }egglar impurity lattice andv'a -

comparison with the results from previous sections.

]
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6.1  WIGNER SEITZ METHOD.

‘A periodic ~ array of positively charged impurity ions
superimposed on the hostl semicondu‘ctor' lattice is téken. Each ion may be
surrounded by an s- or VOro'noi (see Brostow et al 1978) polyhedra that fill
aI! space. The Wigner Seitz assurﬁption that these 'polyhedra may be
replaced by spheres of evqualv volume is made. These spheres are assumed to
be of such a size that they contain many of the host sémiconductor lattice
sites. Thus to inciude tpe screening effect of the host sem’.iconductor the
macroscopié value of the relative dielectric constant €, (1.8 for silicon)
Is used with the éffective mass for the electrons aﬁd holes. Clearly close
to .the centre of the polyhedra where the coulombic potential due to the
posi_tivé charge varies rapidly the effective mass .approximation'will fail
‘aiqng_ with linear screening approximations. Close to the impurity centre
an‘ improved model for the impu}ity potential is required to account for the
different impurity types such as is included in Selloni and Pantelides
(14982). -No attempt has been made to calculate these central cell
- corrections that will modify the energies in the present regular' impurity
- lattice vapproximation but may not effect the more realistic random lattice
,‘approximation (Berggren and Sernelius (1983)). I;nplicit_ in the use of the
intrinsic effective masses for the bands is the assumption that the band
shapes do not change for high .concentrations. 'If one considers that the
tpta,l_ ndmber of states Aml.JSt .remain constant, at least for substitutional
h ifnpu}ities. then it is clear that the states for the impurity band must
éome tfrom the parent band which in'turn.must aItef its shape. It is
| expected th%t this. Coriection. to the effeéti\)e ~méss is small (Abram et al )

- je78).



_In. common with other Wigner - Seitz calculations the’ spherical
approximation to the polyhedra is made choosing cells of the same volume as

the original polyhedra with radius g = @ranN )" where N is the

d d
impurity concentration).  This can be justified (Mott & Jones 1958) by
noticing that the potentia‘l is weak and the éleétron wavefunction flat far
from the impurity centre  (see Fig 6.2) thus the actual shape of the
boundary is not too critical. This might be of use were the present
Calcuiaiions té'be extendéd tb co'pe with a random -arrangement of donors,
where ~ different impurity centres have differing - surroundings and a
distributions of sphere radii might be considered. The potential energy of
-the‘impurity lattice may now be divided ub into two parté: THat which is
due to th'e interaction between the charges in one cell and .that part which
is due to the interaction. of bolyhedra With each other. .The second of
which will be small since the cells are electrically neutral and close to -
‘spherical and is neglected. The radial part of the Schrodiﬁger équation is
.nc')w solved iﬁ the spherically symmetric ce!l for the Aelectron_s in the .lowest
eigenstate . (k=0). -

.2m
e
(E

—Z - VENY e =0 (sl0.01)

2 .
v (r) + o

‘_Where m_ _is the density of states effective mass and V(r) is the screened

de
impurity potential and Ek the eigenvalue to be calculated. To fulfil the

requirement for the periodic wavefunction to extend smoothly throughout

space the gradient must be zero at the Wigner-Seitz boundary

%’f‘ =0 -3 . ¥(0) = finite . . ' (610.02)

(Cohen '1972. Anderson 1963). A condition that might still hold in a high

. "'density. random impurity calculation. Also that the wavefunction be finite
N L IR S

i

- al the Eﬁ_gg! -centre (r=0). . This boundary condition is equivalém to .
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- choosing a hydrogen like wavefunction at the-origin. '

The problem can be re.—expressed in terms of the dimensionless

variable p = r/a__. where a is the effective Bohr radius and with the

eff eff
effective Rydberg constant (Rm) as the unit of energy:

: 4
R, = —3 5 = 31.97 mev
: 321 (eer) '
' (610.03).
1 2 : -
(o —2191) + (e - x(p)) ¥®) = O
p= °P

2 2

_Where x(p) é (2n}ie/ah ) A s v{r)
" A NAG Library routine DO2KEF was used to solve the above
equation, it finds a specific eigenvalue X of a regular singular second

orderSturm - Liouville system
(P(X)Y')' + Q(x;\)y = 0  (610.04)

"~ on a finite or_ infinite 'range. using a Pruefer Transformation and a
Shooting method. it reports values of the eigenfunction and Its

derivatives subject to boundary conditions of the form
C(x, )Py’ + D(x,\y = 0 - (610.05)

| provided ihat,p(x) is not zero and of one s'ign and that 3Q/d\ is not zero

as x varies for any A and is of one sign throughout. the interval.

“Clearly in this problem p(x) = p? so the first condition is
~ violated at the"Origin. ' l-lowever this is just where the wavefunction is
'expected to be close to the hydrogen like form (e p ) .therefore make the .
boundary close but not equal to P = 0., s .only'_'the ratio of the ‘~

fun_ctions C(x,)‘) and D&x.\) that matter so the actual boundary conditions

= 6.5 =



are expressed as;

p = pg C=1:D=20
(610.06)

P¥0 €C=1:D=p

All that remains is to specify the form of the screened potentiai to be

used in the calculation.

6.2 CHOICE OF IMPURITY POTENTIAL.

A simple Coulombic potential was used in the numerical routine
‘the results of which were checked against the analytical solution expressed
in terms of Confluent Hypergeometric. Functions M (a.c:x) (Baltensperger

1953). The wavefunction in this approximation is given by

- 1 : ' . .
Vn(p) = e P/2 P M(1l+1-)\,21+2;p) . (620.01)
and the eigenvalues given by

2 :
= - 2
.E)‘ e /BTTEEraeffX , | » ) (620.02)

The‘eigenvalues calculated by the numerical routine were found to agree

with those calculated from above to an accuracy of 1 part In 105.

This first potential corresponds to the condition that must
_exist at .'I‘bw impurity densities in the semiconductor. VOnIy one electron is
' 'allov;éd to enter e,ac'h sp‘here where thé central positively éharged impurity
potential binds the electrof\‘ in . a hydrqgen like orbital.  The I'owest_
eigenvaiue in the impurity band saturates at":the effective Rydberg energy‘.
‘of 33 meV in silicon. Indeed if the calculation of the highest state in
‘l_'the band \‘A(g@ p‘erformed as B'aIAtenspe'rger ddes, this wquld also saturates at

',th'is energy. For above an impurity concentration of about 5 1018 cm_3 . the

- 6.6 =



model predicts a rapid lowering of the pottdm of the impurity band and a
raising of the top of the band (see Baltensperger Fig 1) that eventually
merges. with the conduction band. This model then predicts the broadening

of the impurity level into an impurity band with the onset of heavy doping.

An improvement to this potentiai which begins to take into
account the scre_eningrof‘ the impurity charge by the' electroﬁ gas in the
_condu_c:tion band ls to include a uniform distribution of charge in the cell
due to all the. other electroﬁs in the crystal '(Mott & Jones 1958). In this’
~_model the screen.iﬁg electrons are assumed to have plane wave form and the
wavéfunctions are:j flat, that is ‘expected _to-be true in the high density
limit. There are then N-1 electrbns coﬁtributing to the screening where N
ié the total number of impurities. ‘_ This amounts to a cqncentration of one
electron distributed unitormly over the cell. The screened potential may
| then be calculated from Gauss Law to,_be: | |

ez ezr2 3é '
v(r) = - . - . 3+ o , (620.03)
b oy X T
‘I.ITEEr 811€€r s Bneer g

- which in terms 0f the reduced variables becomes

2
e, 3
3 -ps

pS

oin

_x(p)}é_- (620.04)

~Wh§re..the first term is the unperturbed potential, the second is that due

to.an ever increasing sphere of uniform charge density. and the final term

ST o

ensures that the potential is zero at the Wigner Seitz pohndary.

A first classical calculation may'be made for the electron in
its gzround state using the screened potential above. The eigenvalue may be

calculated - in a first order perturbation .calculation assuming plane



wavefunctions to give:

_ 3 2
6u = «<vs> = — S v(r) amr dr
anrg |
. 2 2 v 1/3
= -0.3 = - .
q (e /41reerrs) - 0.484 (e /4nesr) Nd
< l M
= ~-5,901 (Nd/lo 8)1/3 mevV (620.05)
where the values have - been calculated for silicon. This compares

favourably with the values obtained by Sholl (1967) for body-centred cubic.
face—centred cubic and hexagonal close-packed lattices. Mahan (1980)

quotes these values as

e s 2 1/3
Etotal = 1.444 (e /amee) N (620.06)
- 2 1/3 S
6u = Ny aE/AaNd? = 0.481 (e /amee ) N

This approximation to the energy of the conduction band is presented in Fig -

6.1. It can be seen to reduce to zero as the concentration is decreased.

»Howevér these calcmafions suffer from the disadvantaéé that a
pla_ne wave is taken iﬁ the calculétion' to re;presént the true'wavefunctiOn;_
:'that is in fact more 'c‘omplex.v A sécond.more sophisticated calculation is
to p‘ut .th’isl screened potential into the. num_efical routine outlined above.
lnl t‘his_calculation ‘the actual wavefunction and ,ei'g.ém)a‘_lue that wouid .
‘resglt' frgmj an electron occupying a potential well ~of this form' is

calculated. The resuits. of this numerical calculation are also presented

S
FEREN

‘in.'.fig.&]. At low concentrations : tmé, ehe'rlgy saturates at the
efféctiye' Rydberg value (33meV in éiiiéon) ‘'since the screening electrons
é’r{'e" so thinly spread as to to be Ineffectual. Whilst at  high

"'conc;entra‘tions‘, where the wavefunctions do ‘indeed become flatter. the
- .‘.h.u’me.rica,i ‘mé'moo,éqq the c'lass’icalr expfessidﬁ (Eq:.‘62('J.05) approach each

_other.
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An important failing of this numerical solution is that on one
hand a plane wave is assumed for the screening c'loud 'whil-st ‘on the other
hand a pefiAodic non-uniform charge distribution results from the true
ground state wavefunction éalculated. A more physicélly acceptable model
is one where the screening cloud is bunched up aboﬁt the positively charéed
donor. To .make this a more realistic approximation to the screening cloud

the screened potential needs to be improved.

The actual form of the wavefunction as v;rell as the lowest
eigenva'lue are calculated in the numerical .calculation as defined by Egq.
610.01- 610.02. A self consistent screeniné, éhar'ge may then be calculated
. tfrom this -wavefunction. Thi; self consistent approach s;cr'eens the impurity
pbtential by exactly the -right amount solving the p;esent model exactly.
~To do this a parabolic band is assumed above the conduction band edge (see

for example Mott and Jones 1958)
- ik, . ‘ o
Py = e Ty . : (620.07)

Given wavefunctions of this form the charge within a sphere radius r and

he,nti:e from Gauss’s Law the pdtential seen by the electron may be calculated
Mo

r 2 2 L2 2 L L]
y - 2 1 J /ry [t gy ()l dr'' dr
V)= - e (§ ' r )
' : . r 8 o .
2 2
J r© ¥ dr
- bound | . . (620.08) .
V... _is chosen so that V(r) = 0 as in EQ: 620.03. The calculation is
- bound ; s g .

"in‘itia.tedb by. choosing a form fbr' the potential V(r) then this potential is
used- fo ca_!culate an approkimaAte_wav’efun‘qtion and eigenvalue. = This
'wavetuﬁction--‘is -ther;n used. 10 calculate the wavefunctions of the higher k .
] states ‘(Eig _ng.07) and »henc'e‘ the s_creeni’ng of the coulembic potential.

This iterative 'prqg,ess is carried on until the eigenvalue saturates at
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which point both this and the w'ave'fun'ctl'on are'self-consistent.

6.3 SELF CONSISTENT CALCULATION OF ELECTRON AND HOLE ENERGY.

‘ A Followlng the procedure ln the prevlous sections the lmpurlty~
:potentlal is found self consistently by solvlng EQ. 610.01 with the self
m‘conslstent potentlal Eq 620. 08 by an |terative calculatlon The resultlng
sell- conslstent lmpu_rlty pote_ntlal_ ls plotted in Flg 6.2a. Aiso plotted in
:.;this figure Is the Thomas Ferml potential often used in similar problems
..Thls ':ls' dlfferent from the self consistent potentlal because it s

: .calculated on the assumption of an infinite cell slze it has a non zero

",-;value~at the cell boundary. whilst the self consistent potential Is

calculated- on the assumption that the potential is zero at the boundary.

However as‘ the concentration decreases the two potentials would be expected

) ..;::{to glve better agreement. The' ‘p'robabll'ity densltle_s of"t_he electron

.Awavefunctlon Is also plotted ln Flg 6.2 for two values of LAT It shows the -

.fex'pected rise close to the centre.of.the cell (see Mahan (1980) Fig 5. As

frs decrease at hlgher lmpurlty concentratlons the ~wavefunction can be'

" _‘seen 10 get flatter 80 that ln the hlgh denslty {imit the plane waves used
’-"in the classlcal calculation” (Eq. 620, 05) become more realistic. Finally

:Flg 6 3 shows the change in the electron elgenvalue with concentratlon

ln prevuous sectlons ln this . chapter the change in electron

: energles due to the presence of varlous lmpurlty potentials has been

Ry c onsldered A posmvely charged hole In the valence band however would

"».also be affected by the presence ol these lmpuritles Postulatlng the

"‘;,.presence of a test hole ln the valence band the Influence that thls hole
,has upon the screenlng cloud about the lmpurlty centre may be neglected o

slnce there Is only one hole supposed to be at the top of the valence band.

=610~
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' A.T_he appropriate Schrodinger equatioﬁ to bel"s'oi’i/ed is

.vzlifk(‘r) + 2m%(Ek + V(D)) ¥ (r) = O S ’ (630.01)
where * the sign of the potential term (compare: with Eq. 610.01) s
cdns'is_ten,t with  the ohposite charge‘ that the hole. V(N the screened
'poten.tial. _h.a"S‘aIre,ady~ been discussed in the self cé_)'nsistent eleétron energy
Calcbulz‘a.tion.”' The boundary con.ditions for t'hé problem. are different from .
the _'elec‘tron‘ calculation. In_this case fhe héle must” be repelled from thé
p_ositivelyucharged ioniséd impurity at the cehtre of the sphere. . The
w_avefunétion li's chosen to have zero gradient at both the centre and the
“edge of the sphere in order to satisfy the required smoothness of the
wa-v_ef_unction throughout spacé. These conditions are expressed in terms of
A:-".t;he bpund'a,’ry con4di'tions‘ Eq. 610.04-610.05 as -

:'p‘ =ps " €C=173: D= o . _
LN - . AT (630.02)

‘With these ~modified boundary conditions and the self consistent potential
‘shov_vn in Fig 6.2a_- the hole energy plotted in Fig 6.3 is éalculated. This.

".l_"sh0ws' the _"e:@pected rise in brobability density of the hole towards the

..:. boundaries of the sphere where the wavefunctions flatten off. with zero

' .gradient at"the boundary. - This calculation results in a positive value of

’ ”18 .eigenyaiye;Ek,for the hole shown in Fig 6.3.
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6.4 - DISCUSSION OF RESULTS.

The inCreaee in the holes enerpy results in-a downward shift of
E the valence hahd edge and hence aﬁaddiﬁive contribution to the band gap
. (see Fig 6.3) in contrast to the previous eleCtron-—impufity calculations .on
‘a rahqom i_mpurity'lattice '(chapter 4). It should be stress_ed at this point
that the downward shift in the valence band for this model with periodic
- i'mpurit'y lattice has been found by Mahan (1980) as weil as Berggren and
Serneli'ua (1981) though the magnitudes of the shift vary. |n. order to
’und'e-rsta_nc_i the. do’an_vafd shifts of conduction and valence bands more fully’
.»ihe.f average or first order terms must be considerep as in previous

_calculations (chapter 4).

.Because»the solution of eq. 610.01 qu.. 630.01) gives the total
change in- the energy of electrons (holes)" at the bottom (top) of the . -
,‘c'on_ductiq_n_-(vale‘nce)v band it includes the first order term excluded from
~our prevnous calculatlpns (see section 4.3). -prever the impurity
'petentnal has arbltranly been chosen to be equall to zero at the cell
’ boundary » lt,might equally well be chosen so that the integral of the
upotentval over the cell is zero as would be expected by the cancellauon of} :
the electron electron and electron impurity mteracnons (section 43) To

' compare wuth calculatlons in prevnous chapters the ‘'volume average of the:

VG "\,4!»\ U

s eened potentnal has to be removed from the.. two bands. solwng instead of




Eq. 610.01 the equation

av

.2m .
2 . de
V ¥,(r) + —5(E] - V' (r))¥, (r) = O : (640.01)
A '
‘IWher'e
Vi(r) = V(r) + ‘vav' o | (640.02)
and
V= - %'I,V'(#)- a’r L | (640.03)

where v.is the volume of the sphere. Clearly since V_ s a constant

E' = E_ + V__ - - (640.04)
o o av . -l

So that the shift in the conduction band edge shown in Fig 6.3 is reduced

"'by Vav'. At the same tlmé, as can.be verified from EqQ. 630.01, the valence
‘ﬁa'n.d §hift ns also reduced by Vav a$ would be expected since thé average
'termveffécté, both.‘:t_Sand-s equ'any. These reduced shifts could then be
.*co'mbéred with the: ;prevlously calculated electron-impurity self energies.
How'eve} they dq h_og effect -the_ much smaller electron—lmpurity band gap
narrowiﬁg _results (only 5 meV over the entire Aconcentration range).,
6§lc'uiéied in: ‘t.he present model with a regular impurity lattice.  Berggren
,‘aﬁd'Serrjelius "have exp‘lalﬂnéd 4t.h.is _Iargé discrepancy in the electron-
".imAp"urify ba_nﬁ gap ’ﬁarrowing in» terms of the coherent .reinforclﬁg of the -
im‘puri'ty'A potgntial' in -the regAuIar lattice as compared to the random
'la_t_tice. ' T'h‘éy. ca!culé:ted‘_th‘e: second qrdef perturbation energy of a regular
"iattice and find conclu's'ively" that the resuning. bahd gap 'parrowjng is

small as has been found above.



CHAPTER 7

CALCULATION OF THE SELF ENERGY INTEGRALS AT FINITE TEMPERATURE

}

7.0 INTRODUCTION.

in thlschapter the calcu,lati_ons»_of‘»pr_ev:lou‘s-. chapters- uslng the

."plas.mon pole approxlmatlon are extended to finite' temperature‘.’ As
'comparisons ‘between results calculated using the Llndhard dlelectric'
function (Berggren and Sernellus 1981) and - those of the prevnous chapters
A-vhas shown the plasmon pole approxtmatton provndes a relattvely srmple
"mean_s of V_modellmg the electron screenlng <.of donors In heavily doped'
silicon - This the‘n. lustltles the extenslon.:'ot. the "p-resent- approach 1o
4f|nlte temperature .The finite «temperature plas_rnonv polev approximatlon has

~ been used before in other problems(Zlmmermann and""ﬁosler (119"76), Young.
‘l/an Drlel (1982) 'to‘r and electron-hole liquid), hoﬁev_ér this ‘is the  first.
'tlme that the present method mcludlng the q __ term h'as» been.: _used | for ‘»

: heavnly doped snllcon

For a summary of the contrlbutlons to the band gap narrowlng

"".:wr,dealt wnh ln chapters 2 to 4 see. an 71 " The fimte ‘temperature'

to the band gap narrowlng are. detlned by substntuting the ;

T Haski

Sections 71 and 72 deal wnth the derlvatuon~

temperature vartables for substltutlon tnto the two .se_lt

:.';:..energy expresslons Eq 24007 and 441 06 E Flg 72 summanzes the -

. .”_f_'ilconcentratton dependent ftmte temperature quantmes calculated in sectuon ‘

:7 2 (K eF) comparlng them wlth those calculated at zero temperature (see‘
‘ "'f:_j'Flg 24) As has been seen from the calculatlons at fmlte temperature the'-;-'

'Mott metal non,—metal transltlon (Nc) determlnes f the lower ,bound- in .

=70 =

emperature quantltles into the self energy expresslons



Fig 7.1.

20 -3

“In heavily doped'sillcon (T=0. donor concentratlon of 10" cm %)

the band gap narrowmg (meV) calculated in the plasmon pole

_approximation (2.3:2) may be divided into shifts in the

conduction (AEC) and valence (AEV) ban_d edges. . These are

divided . into electron-electron (ee. chapter 3)." and “electron-

-"impugi'ly- (el Chapter'4) vcontributi'ons'. The eleclron—"electron'

‘. &'1 LFE AN

contrnbutlons are subdlwded (3 1. 0 lnto coulomb hole (ch) and '

dynamlc screened exchange (sx) terms. ln the valence band the

*ee exchange energy |s agam SUDdIVlded (330) mto exchange

between-.for example electrons in the ,heavy ‘hole band (HH) and

exchange between. heavy and - light hole bands (HL. To
~ supplement the electron—:imp,ufl_ty_ self energy calculations ' the L
band tailing, effect of fluciuation's ‘in the average potential

are consndered in chapter 5,
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V concentration to which the calculations are valid. Before describing the
finite temperature calculations the change in this concentration at high

temperature is considered.

Below the Mot critical density (N ) the impurity electrons  are
weli.localized_ about the impurity centres and form a 'separate impurity
bband.} The iow concentration semiconductor has then for example a Curie-
Vtieiss type suSceptibility typical for vinteraction iocalized' magnetic
moments For higher densities however the electron screemng length (1/1)
is. reduced (see '.Fig 7.2) so that eventually the screening due to free
electrons in the conduction band reduces the binding energy of the donors
N to such an extent that the impurity electrons are no ionger bound to the
impurities 'and'l the impurity band is considered to have r_nerged with the host
bano. ' The susceptibility is then Pauli-like, consistent with the
'assumption that a free—electron gas_‘occupies the host band. Similar
t.ra_'n'sitions .oo_cur in the extrinsic specific heat capacity Mot 1974,
1978). -.The Mott critical density is then dependent upon the ratio between
the screening radius (\ = 1/K) and the effective Bohr radius (@gp for the
' .4bou‘nd impurity electrohs (Kittel .1976. pp 300). - Whe'n ..)‘ is greater than .
) .ae." the impurity electrons are essentiaiiy uneffected by the screening and

are bound to the impurities Whenab is greater than X the’ i_mpurity

eff

eiectrons arereffectiveiy screened from the impurities and behave as in a

ggi. At finite temperatures and low concentrations the screening length

......

I

The finite temperature Mott transntion might then be expected to occur at .

higher 'concentration_s. By maintaining the ratio of aetf”‘ . the 300 K Mott

s transition may be estimated from the more rigorous zero temperature
" calculations. " In this way the Mott transitions of between 2 and 3.1019

cm—s at 300 K are estimated from zero temperature data due to Sernelius and.

_72_



Berggren (1981) piotted .in Fig 7.2. "

The electron;electrdn cal,c.:ulat_'rorts of sectien 7.3 correspond to
thoae "in .chapter 3. whilst in 7.4 the electron-impurity calculations
co'rresbortdtng to. those in chapter' 4 are presented. .' The band tailing
caicUlatiorts of ch.apter 5 have not been etctended to finite temperature,
because o'f the retatlvel;t small modification :that' these make . in
“un'eompensated heavily doped n-typé sllicon at zero temperature. Likewise
the calct:lationa of chapter 6 are not extended to finite'temperature‘
-'Ebecause‘ they do not constitute a. particularly " useful. approach to the
4'ca|cu|atio':rt of the band gap narrowjng, although t_rtey do serve in providing
( ' a ,s:l'vightly different approach. The main re_sults of ‘this_chapter may be
fqt}hd in Fig 7.12 for the finite temperature band gap narrowing.

.7.'1 DERIVATION OF THE SELF ENERGY EXPRESSIONS AT FINITE
TEMPERATURE

In tms sectiort the finite temperature Gr’eeh's “function
(section 71 N and the fimte temperature plasmon pole mverse dielectric -

tunctlon (sectlon 7 1.2) are derwed

e ARE ' ..~ Finite temperature Green’s function.

"An equivalent way of writing the zero temperature unperturbed
.- @Green’s function for the band n (Eq 221.03) is in terms of the step

) functions a().

o .
o Ry _e(ef - enk) 0 (e - ef) _ .
G (n;k,@) = —— o o o - (711.01a)
ST (W ',"'(dnk‘- ib) ‘I‘A(w,— w‘f‘k + ;5),
0 o .
wherg f"hk = -/'1‘1

The ﬂrst term descnbes the propagator for an @cc,ntutxon beneath the Ferml
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surface., whilst the second describes the.'propagati'én .above that surface.
Where at low temperatures the Fermi surface may be‘ described by the above
step' functions, at higher temperatures fhe Fermi-Diraé distribution must be
used. The correct finite te.mperature Green’s functfdn is then given by
(Mahan 1981, Hedin and Lundqvist 1969)

£ ' 1 - f

0] nk nk '
G (n;k,w) = + : (711.01b)

o . : S B
(w—wnk.— ib) (w-wnk+;6)

where fnk is the Fermi-Dirac distribution function

£ = ‘ 1 ‘ _ (711.01c)

exp (e, - €)/KT) + 1

‘To distinguish it ffom the zero temperature Fermi le\;el € the finite
‘temperature Fermi energy is denoted by € This ex_presslon (Eq: 711.01b)
reduces to the former (Eq. 711.01a) on letting T the temperature tend
towards zero. In calculations in n-type semiconductors for ‘the valence

band ‘the Fermi energy will again be many kT from the appropriate energy

0

€ so that the Fermi distribution reduces to a step function in this band

nk

at any temperature.

71200 Finite temperature inverse dielectric function.

| In section 2.3 thé plasmon pole approximation (including the q4
'térm In ;he plésmon dispersion) was shown to ‘be a good appioximation to the
_zero témpe?ature electron dielectric function. The plésmon‘ pole
lapproximation as discussed above and elsewhere (Du Bois 1959, Pines 1961,
Lundqvist 1967) amounts to describing the response of the electron gas to
eXtegnaI yel'ectrlic fields by excitation of 'Iongitqdinal ' oscillations in the 7
vgleq;trorg g'z_és'. kno‘\fm '_jas ptasmons’ (Kittel 1976). This description s found

‘> only to be strictly valid up to a critical frequency We (see Fig 2.6). For

_?'4-



higher wa\)e\)ectqrs the Imaginary part of the LlndhardA dleiectric function
becomes 'non—zeré and the pole in the inverse diélectric fuhctlon‘ compiex.
Physically this corresponds to dampingv of the -plasmon oscillations.
Howéver by .Comparlso,n with the results of Berggrgn and Sernelius it has
been  shown (see chapters 2. 3. 4) that the plasmon pole approximation is
'good '-a.\t‘,_zero ;emperature. It therefore seéms appro,p"rlate to exteﬁd the. -
& ’plasr'r_!on pole appro#imation- to finite iemper_ature directly rather than going
th‘rdugh. a detaile'dv derivation of the more involved: finite temperature
len'dhardA'_’dielectric function. This is performed by making the rather
'arbitir‘ary dMsion of the plasmon term in the Inverse d'ielectric function
into Bose pfopégamn and coupling constant (Du Bois 1959;'Phes 1961,

" Lundqvist 1967).

If one looks at the zero temperature Feynman representation of

‘an electron-phonon interaction diagrams like

, __>__ - - 3 - - < (712.01)
kK ’ qQ - ~l+q o

-oécgr where

N s (712.02a)

"' _represents the phonon and may be interpreted as .

1

‘ R wo - (W (q) - if)
: Eébh, o'fA the vertices "i'.ntroduce the coupling constant
M. -
g . o o . _ (712.02c)

"o

- vyh(e_i'e‘M ns the matﬁx element for the. éléctron—phonqn ,lnteract!od and v ié
; o the"g__/;.o!urggtk 'Lh!s is of the s.ame_' form as the plas';mon. pole contribution to
ing zerp gqmggrq;g@ !p'verse dielectric fanNon tfor exa,mp!ve Eq. 240.07¢).

Use of the plasmon propagator " in the effective potential amounts 10

= 7.5~=



- ‘replacing the screened interactions shown in. previd'u,s_ Feynman di'agra_m'
expansions of the self energy (like 'Eq 222.04 or 420.16) by these (EQ

712.01) Bose propagators (see for example Bergersen et al 1973). The

expression
o o - _(’da
—t -+ —EP (712.03)

i
P
+

(Bose propagator)’
€ (q,w) C 2w, (9)
is thén used to define the finite temperature plasmon pole approximation to

. the inverse dielectric function.

At finite temperature the Bose "propagator takes the form

(Mahan (1981, Fetter and Walecka (1971), Hedin and Lundqvist (1969

: 1+ N S N,
B LW - (W (@) - 1D) w - (w,(q) + id)
(712.04a)

wher'eN_ is the Bose Einstein distribution for the plasmons with energy

hw, (@ defined by’

N - 1 ' o - (712.04Db)
T expéiu, (@/kT) -1 |

s0_that the lhvér’se dielectric function becomes (using Eq, 712_.03{

1+ N _ : TN )

v.‘»(zn- 2 2 2
.pv w - (W (@) - ib)f‘,v‘.w',f (w, (q) -+ 16) .

(712.05a)

7Y The 'éa'me dispersion relationship as in the finite temperature calculations
T (Eq. 282100 -

‘ am
. 5.

SRR 2 Mae :
B T e

the onI%giffereQ‘c'e being the use of thetf'ﬂ'nite temperature Fermi energy €

LR EEE ER

that i calculated In the next section.
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7.2 EVALUATION OF THE FERMI ENERGY AND THOMAS FERMI SCREENING
LENGTH. ‘

The calculation of the Fermi energy is central to the
evaluation of the plasmon dispersion relationship (Eq. 712.06) so this i§
studied in detail below (section 7.2.1). No detafled derivation of the
finite temperature Thomas Fermi screening length is presented here since
" this is a well known quantity (Dingle 1955. Fistul 1969, Panish et al 1967,
Abram et al .1978). However its calculation ‘includes the same
applfoximations needed for the calculation of the Fermi energy. it is then
quoted in section 722 Finally in section 7.2.3 a useful expression for
~ the plasmon dispersion relationship at finite temperature that has the same

form as its zero temperature counterpart (Eq. 240.070) is derived.

7.21 - . Calculation of the Fermi energy.

First let us dispel the notion ihat it Is Fer‘mi energy modified
by the exchlangeienergies that should be included in the expressions.
Looking firét at the contribution of ihe self énergy’ to the. band energy
. (fbr'example Eq. 240.04 and'240.05), tﬁe band'ehe_rgy is given by an
iterative éolugion-of Eq. 240.04. This has been taken to first order (Eq.
24,'0',_05). - The qpantiiieé used to evaluate this first order expression are
then t.hé_ ‘_un‘p-ert‘urbed values. To improve this approximation both better
épprogimations to the self energy and fﬁrther iteration of Eq. 240.04 would

" be required.

For the present calculations _.each. of the. impurities is assumed
to allow one electron into the conductiori band Fermi sea. The Impurity
bﬁnd is assumed to have merged with the host band and the hole structure to

have the same ‘shape as the intrinsic conduction band (density of states

- 7.7 -



'proportionai to (energy) 12 Indeed‘thls app’rOximation is. ‘made‘impiicitiy
_at zero temperature when uslng equatlons like Eq. 22104 for the Fermi

' _ wavevector The number of electrons In one conduction band vailey (n ) is -

"then (see ,Biakemore 1962)

_ " om, kr Y2 172
. ©de . € ) :
'ne = 4n(—f——{—). S — — de
o . o1+ex1:>(€—1))
o 3/2 o | ,.

- 4 ,%m_de_k.T'_ 1,172 ¢ L : (;721'.01a)

= An( ) ) > .1/2(17) L .
. vvhere' m ' ;~_is‘-the density of 'states effective mass of the conduction band

-de
vavlie'y"and 7 is the normalized Fermi energy given by

7 = ka__c S - ~ (721.02b)
and FV2(7)) is a Fermi DIrac integral The effective mass Mie does not

"'-;vary very signihcantly with the increase in doping (Abram et al 1978). nor

' fis.the k .dependence of the sel_f energy significant (Berggren and Sernelius
1981-) so this parabolrc approximatlon may well be justified The impurity
' concentration is given by muitlpiying the above electron concentration per

valiey by the number of valleys (Mc = 6 for silicon see section 2.1)-

3/2
1/2

2m kT 1 . _ -
> A E‘l/?(n”y _ (721.02)

= g g de

'T'o' _solve . the  above equation the electron  (impurity)

":'lconcentration (Eq 7.'21,02) is caiculated for a se‘r’ies of trial Fermi

"i.energles measured with respect to the conduction band edge | The Fermi
‘Dirac mtegral was calcuiated uslng the NAG quadrature routine DOiAJF ln _
'_.Fig. 7.3 the results of this calculation both for zero (Eq._ 221.04) and 300 '

".iK are - presented This shows that the. Fermi energy drops betow . the

E conduction band edge at a concentration of about 2 5. 1019 _3_ with  this =

ik YR

simple’ model for the band. At higher _concent_rations in strongiy degenerate

conditions the Fe_rmi energy tends towards the zero temperature value. -In
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Fig 7.2 a comparison is made between

1/2
2m :
de F

('—;5—)

and the nof'malizing parameter kF used in later sectioﬁs of this chapter
(see Eq. 723.02). Although both tend towards the zero temperature
expression (Eq. 221.04b) in the strongly degenerate semiéonduc_tor kF is
6n|y an expression used to make easy the comparison between finite and zero

temperature expressions.

7.2.2 . Caiculation of the Thomas Fermi screening length.

In the calculation of the Thomas Fermi screening length the
parabolic approximation for the conduction band is again made, arriving at

the expression (Fistul 1969, Panish et al 1867, Abram et al 1978. Appendix A)

3/2

m 2

2 de 1/2
xr)

) F_ (n) (722.01)
zﬂﬁz esr 172

which reduces to the zero temperature expression (Eq. 231.12) on letting T

tend towards zero.

7.23 The finite temperature plasmon dispersion relationship.

The finite temperature plasmon diépersion relationship may bé
expfessed in a way to ease comparisons between the finite temperature
expressions and theny:a ze'ro temperature counterparts. Thus Eq. 712.05b may
be simplifﬂed. by normalizing the wavevectors~ and Thomas Fermi inversé

screening length with respect to the quantity

' /2
M 2m 1/2
1 c de KT .
= = (2 ) A2 )2 F_oy,2(M (723.01)
RF 3an Nd 1 A

which reduces  to the expression for the inverse square of the Fermi
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-Wav’eyeetor at 'zerofte_m'perature (Eq:;"’22-1.04). Eq. ,71‘2.0.5'6 then becomes

.
w_ . 4m
2 } .2 2 de 4
w,(q) = —5 (K +d + 35— q ) _ (723.02)

with the no'rrn'ali_z_ed‘ inveree Thomas Fermi screening ‘Ien:gt'h given by

2 M 2. .
2 K R > de kT
K® == = —— (—5) 3 (Fo1/2(M) (723.023)
ikl amNg oA eff . “

which on letting T tend towards zero reduces to the normalized parameter
. u’se'd-'previousl_‘y (for example in 322.03). Using this normalized parameter
hlghllghts . the 'similarlty between  the z‘ero- temperature and finite

temperatu re expresslons below.

. 7.8 'CALCULATION OF THE ELECTRON-ELECTRON EXCHANGE ENERGIES.

ln chapter 2 and 3 the zero temperature ‘self energy was deflned '

) (Eq 240 07)

o ‘ﬁ}.‘. (n k w) 2t i) ff G (m k—q w—v) el'ﬂ (w- V) .Ar'xm
' - (211) m _ o
' eff(q.V) q qdv ~ (730.01a) -

“"l’vwhere the screened interaction W ff(q w) used is deﬂned by

eﬁ(q,w) =f e /eerq €(q,w) S (730.01b)
T |

. fem * %em o ~ 70089
' "A'VC‘_ O : 'ALH:'-' 3/4 sin 9 - AZH.H. = 1/4 4(1+3cos 0)

'".,,th.e -preeent Aca'leule'tions the ﬁnite .temp‘era;tur_e} Gr_e‘en’s function (from
?'Ed';’ 71102) aﬁd the, .}w'erse i’-dl'elec__irlc_ func:tlon' (from’ é‘q". 712.05) are‘
' _"_substituted Imo theee expresslons _Qn: perfvertmllng :the. 'frequenCy integral
‘:j:irg_ _gr_!e eggg_ ene gy (Eg. 780.01a) -poles .in- trle Green’s functlon (leading 'to

. the screened Qynam!p exchange terms) .and poles in the. interaction «eading
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to the. vcou’lomb hole terms) "a‘re ‘fdund (Eq. 310.03). The same contour (Fig
3.1) is used as dictated by the exponential convergence factor introduced
into Eq._ 730.01a. The reeulting expressions ‘for the coulomb hole and
screened exchange terms are as follcws
(2;)3 g St k-q eff(q nk‘ w:l(k Aq)) B 474

RIS (k) = -
(730.02a)
'thice_ﬂthet’-where nre\riously this wavevector"integral \ryae from zero to the
"'Ferrni ‘wavevector, .now the integral will be over all q and the explicit
: ‘inclustcn of the Fermi Dira}c function fm,k—q will provide the cut-off.

e2 wpz

- ch . -
AL (k). =+ ) [
o (2m) eer!n q zwl(Q)

ol

((Nq +.1)
(730.02b)

o - o0 ‘ o
G (mikeq 0w (D) + NG, (mik k-q,w ) +w (q)))A a’q

 which can be seen to reduce to the zero temperature expressions (Eq.

£ 310.06) on letting the temperature tend towards zero.

it |s the change in the self energy due to the inclusion of the .

"'1-1 many electrons in the conductron band that is of mterest As in chapter 3

e ._the Intrmsic self energy must be subtrarted from the. perturbed self energy

Aso that the change in energy of the conductlon band is given by (Eg.

31007

¢ = AED (k) + AECT (k) = neem; Xy + Re (ZC o 06))

(730.03a)’
"\whe_re'onl'ytthe ekchange between electrons in the conduction band with each
other need be considered Whilst for the valence band the intrinsic

~silicon- already has an unscreened exchange energy (E ) whlch must  be
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'A':'}iéubtr‘ac.ted (Eq:310.070)

ee. . ax. ch
AEC (k) = AE- (k) + AE. (k) ‘ .
v .V , v . o 3
| T ce L (730.03b)

t_(Ré(ﬁgﬁf,‘tmx-nécnziﬁt<k5>) + Re (BECT ()

The sum of the two parts to the exchange energy may also be

derlved as was done In section 3.3.3. Takmg the Cauchv prmcnple parts

T ‘ : o > W2
R ch+sx 51 . e . p
 AE (k) v S — (- £ ¢+ —=E
. B 3 5 k- .
.o (2") M eeq m,k-q = 2w, (@)
‘a-:'N' + . .- +
i Ng 7ty k-q - Ng kg 3
B = - () w -w_ + w, (qQ)
“nik T “mk-q T Y n.k ~ “m,k-q 1
' ' ' (730.04)

,whlch may;:be "c0mpared with the related example of the electron-phonon self

| 'energy calculated by Hedln and Lundqvist (1969) As men'tioned' in section

: j. 3. 2 and 3 3. the main concern is with the bottom of the conductlon band and

' the top of the valence ‘band in this thesis. However Eq. 730 02 and Eq

'730=.04'with the appropriate choice of energy difference  will glve the
electron electron contributlon to the self energy of electrons at any
| wavevector at flnute temperature in the following -two sections (7.3.1 for

"‘W;'conductlon -band calculatlons and 7.3.2 for valence ‘band calculations) we

fconfme ourselves to the calculation of the change m energy of the band

Lfgap u&ng Eq 73002 and Eq. 730.04,




7.3.1 Numerical results for the conductlon band terms at finite

temgerature

When_ the Cauchyv prlnelple,part of tne“ As'elf energy Integrais
(Eq.‘ 730.03) is taken the resulting expressions for the conduction band may
be evaluated numerically.  Full use.of the NAG library of Fortran
: subroutlnes was made to furrllsh the necessary dua'dratur‘e routines. The
precedure follewed having first chosen a temperature'is to select a Fermi
energy. calculate the approeriate.concentralion as described in section
‘7.2.1 and finally calculate the various contributions to the change in self

" energy at the band edge (see Fig 7.6).

From Eq. 730 02 and the energy‘ dlfference (Eq. 320.04) the
'electron -electron contributions to the conduction band self energy at the

bottom of one of the six conductlon band valleys is

oo 2
: o ~2 : wp : .
BB = — [ q (2 - z o ,..2) 99
217 €€ 0 o_)l(q) - Qcc(q)»

(731.01a)
thls reduces to - the zero temperature expression (Eq 322.02). The. coulomb

a hole comnbutnon is

. oo o -, 2
AECP o e? (N _“’cc‘q’ “p
= D) 0 2
arvee, o 9P o @? - Wl @
P 1
dq (731.01b)

0 )
2w1(Q).( wo (@) + 0} (q))

'.whlch also reduces to the zero temperature expresslon (Eq 322.02). These

' lntegrals are calculated separately.



ay  for the_"fAEs"xc terms

This screened exchange term reduces to the difference between

-,lwoi lntegrals derived trom the two terms in the :lnverse dielectric

tuncuon " The Har"ee Fock contnbuuon u]) © and  the  screening
contrib_uti,on (I2).
AeS Xk y = -
.AEC‘(R;) = - I+ I,
L © .2
. Sx e . Ae2 - B wp
AEg Ry =m rZec Jfe,q (1 - - @2 - o0 2 ) a4
T €€ o W) (D = W (D '
(731.02)
- where 1,..the finite temperature Hartree Fock contribution. is given by
. -2 m, kTW
e de 172 _
I, = — (—=) F_1/2(M (731.03)

» 2
2mee,
- the. Fermi Dirac integral is calculated as described in seCtioh_ 7.21. The
. numeri'cally Calculated _v'alues for this integral may be compared with .those

of the zero temperature Hartree Fock contrrbutlon or .the first parts of

Eq 321 03
_AEHF’ = - 1.323.10 ° Nl'/3.' (ev) S  (731.04)

Be 7T 7R Ta

fBoth the numertcal results of Eq 731.03 and Eq. 731. 04 are plotted in Flg

. 7.4."" As can be seen trom this plot the finite temperature Hartree Fock

term lS 20 mev smaller than the OK counterpart merging with the former

- fonly above a donor concentratton of 1020 _3 when n—type silicon becomes

.'”strqn'gly_degenerate.‘ The ‘second mtegral Py or the screening ' contribution

- t0 .the exchange ene,rgy. is given on normalizing the wavevectors with

714 =
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Fig 7.4 Change in energy of .the conduction band due to screened dynamic exchange at 3OOK and constituent parts.



respect to the parameter k. (see Eq. 723.01 and an 7.2).

T2 ' /2.
2 a ™M 2m 172 )
2 _q c . de (KTm) .
* k—2 = ZN ) (ﬁz ) 2 F-.l/z(") (7.31'05.a)
- 37 N, _ ,
oy :
2 2 © .
T 3 e kFK . dx
2 2

27 Eer, 0 j(exp(‘l’izk;x?‘/ZmdekT - n) + 1).(x2 +.x2)

| (731.05Db)
This i_nt_egra'lAapart from the ‘Fermi Dirac  distribution function Vis similar
A'_to the second part.of Eq. 321.03. The numerical integration was pertormed_
usirtg.t.he NAG routine DOVAJF. The results of this numerical calculation

~are plotted in Fig 7.4.

The results of these two integrals and’ there difference -are

plotted in Fig 7.4 over a range of concentrations, for a temperature of

300K. The co'ntribution AES'Xc at zero temperature differ from the finite

temperature contribution only by a fraction of a meV over the entire energy
: . SX L '
range. The calculation of AE c involves the difference between two large

contributions (Ii and 12). The large difference between the zero and

. ﬁnite.‘temperature Hartree Fock contributions 4 is matched by a similar

' Iarge change in screenmg contribution, so that the net change in ae™ T s

'sman (Iess than 2 meV at mosv. For high concentratlons o 1029, at- 300K

R

‘the Fermi Durac dlstnbutlon functlon is Iittle d_tfferent from the - step -

: function used m the zero temperature calculatuons S0 the two contnbuuons

4 l]' and |2 ) .reduce‘ 10 the -zero temperature result. for these_ “high

- . concentrations.



" b). . for the AECh terms

The coulomb hole contribution to the conduction band exchange
energy at the oottom of one of the six valleys may aiso be performed in two

parte and is formed by the. difference between these contributions-

(]j<-i) = I {2 ) - (731.08)
o 0 2
ch ez WCC(Q) wp
AE N I Nq W '(Ct) 0 2 !
27 €g. o 1 w. (q) wcc(q)
wz
2w iq) - dq.
L7 (W (@) + wy (D)

2 *® L
I = — K f :
1 2 Xr - 2 ,
B 2m €€ - 0 exp(ﬁwp(K2+q +aq4)1/2/ (KkT)) - 1 .
g 1/2 _ o A
(3~ C,{z —) S da _ (731.07)
KT+ q +.0q K° + q S .

_where the wavevectOrs have been normalized with respect to the parameter kF
as recommended m sectron 723 Thrs mtegral was evaluated numerically -
.using the NAG routme DOTAJF. the results 'are plotted in Fig 7.5. This‘is'

f,van entrrely new contnbutlon o the shrft of the conductlon band. not found.

'!q the zero temperature expressaons |t |s however less than 2 meV for all
.t . xL,z _, .

v". I on the other hand is equrvalent to the zero temperature’
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‘coulomb hole term. (EqQ. 322.01). 1t is given after making the substitutions

op - K q 2 1 -t
B8 = = 0.5951 ; K = — P () =
‘},mde k1-“ kF t
by
Sl e2.- l - . :
;2 = —-3—-—— kF‘ f (1 t) o (731.08)
sn ee : e : .

. . dt
(K248-1) £%4 (1-28) t+8+V( (K +8-1) t7+ (1-28) £+8) B (£ 2-2+1) )

The integral I, was performed by the NAG routine DOVAPF. The calculated

" values of_ l2 a‘re compared with the zero temperature valu'es_'in Fig 7.5. _The
differénce.betl‘heen them, large at low concentrations and small at high
':'concentrations.' is due- to smalier ‘electron screening at finite temperature.
This i.ncreases the negative charge surrounding a test'charge. hence
decrea‘sing the energy of the coulomb hole.' Numerical results-lor. both -
' .these contributions' ,to" the conductio'n band self energ.y ‘avnd 'thereA difference'

are plotted in Fig 7.5.

- 1.3.2° ' -Numencal results for the valence band terms at finite :
' o temperature

".'-__?Wnen‘-'c‘dnsiaerlng the valence band.. in 'sympath'y with the
' calculatlons at zero temperature it |s convement to deal with the total

:electron electron exchange contrlbutlon (Eq 73004) a_nd the screened

exchange contrlbutlon (Eq 730. 02a) separately The: coulomb hole term is

‘ Aagam more dlfllcult 10 evaluate due to the pole at the lntersectlon of the -

'plasmon dlspersmn Curve with the electron energy The summed contrlbutlon

" ".-"..j‘:l'however avonds thns problem When the Cauchy prmcrple part ot the valence

zband self ene_rgy mtegrals (Eq. 730.03) are taken they result in

expressigns -'t',h._at' may be evaluated numerically. Full'use of the NAG library



.of Fortran éubro'utines \rvae 'rnade 0 furnish the necessary quadrature
routtnes some of thCh are the same as have been used previously. The
procedure followed having first chosen a temperature was to select a Fermi
“ 'energy. calcutate the appropriate concentraticn as described in section
__7.2.1 and fmally calculate the varuous contrtbuttons to the self energy at.

the band edge (see th 7.7,

From Eq. 730.04 and the energy 'diff_erence (Ed. 330.05b) the
electr_on~e|eCtron contributions to the valence band self energy may be
'_‘derived.‘. chever only the change in self energy of the yalen'ce band
Ael'ectr_cns _due to the‘ laddltional co'nduction band el_ectrcne is of i'nterest.,
The Hartree: Eddk terrn must then be subtracted'from'the total valence band
‘Aself energy' as 'it'v.ras in 'th'e- zero temperawre caiculations (see section
3.3);' Thls amounts to adding one to the bracketed part of the integrand of
,Eq.' 730-.0‘4. The change in self energy of for example the heavy hole

' valence band electrons are then given by

: ' ’ 2 . W
Ch+SX‘ : . 1 e : : - P
AE, (k)=———'2f———(1-f 4+
H. .3 ] 2 . m, k-
B mekeq, " 20, @
N+ 1 -.f . N 4+ £
: : : k- ) : . m, k-
—3 — mxd -9 g ) d’a
S Wl - @ w°'-w°"+w(q) m
wH,k m,k-.:q H,k vm,}(—.q

(732;01)

R ‘g.uPerformmg the angular part of the wavevector mtegral for k= 0 using EQ.

.«

h "‘5539

S

‘,’ab for the energy ditference in the valence band “the following

=1 may be made

~~~~~~ mk-q~ - .
.  - b 0 . . ".2'
- ch+8x ' e? Wy (D). S W
e 00 = 515 (N T3 3
‘ o 477 m o €€, wl(q) ‘ wﬂm(q,) - wl(q)
R A _
oo P - 1. .
L+ —) dq (732.02)
Po2w, (q) o . _
el (wﬁw(q) + _‘wl(q)')

- 7.18 =



the first part of wmch may be compared with *the zero temperaiure
expressuon Eq 332 01. Whllst the second part can be compared to Eq

330 06 The SCreened dynamic exchange part is gnven by

‘ sx‘ _e® “p :
BE, =.--4 > N r);‘:f (< @2 . 5) da (732.03)

where the Hartre_e-Fock contribution has again been subtracted as in EQ.

330.03. AThe‘ coulomb ho_le contribution has to be eévaluated. by subtraction.

2 for the ag, ™" terms. -

' Treating: the tw.o parts of the valenee-. band summation
‘seperate_ly. Coniribu;ions due to exchange»between for example electrons in
the h_eaix{_y hole band with those_'from the same band (HH) and those between
'_'heavy alnd light ﬁole bands (HL are identified. '-The shift in the heavy
hole band is obtamed by summing these contnbutnons This sum is feund Ato,
be the same for the llgnt hoie band since the energy dlfferences (Eq.
QS0.0SD) are'_the 'same for both bands‘ at k=Q. The four contributions to the

electron=electron shift of the valence band are

sx+ch I L _ : - sx+ch
H = 7 Iywp * Town T Tamn Yt Tomn T O2EL
: . @ 2 .0 2
sx+ch ) P e me(q) wp
AEL - k)y = —5 Y —( : - .
P m e, Ya(q @l (@2 - w(@3
A M o EEy 1 - Yhm t1 1 :
) (732.04)
W2 o |
L - P 1 -
+ - dq
o 2w, (9) 0 s '
where o . |
- S ;m”j o L2
2 ‘ Cw, (d) - LW S .
I = —e [N Hm I dg  (732.05)
-~ 1Hm 4 2 9 w, (@ ( y2 _ 0 @ 2
n eer o w, (9 me q:

a complelely new mlegral similar to that in the zero temperature screened

EERATE



exchange _integrai Eq. 330.05c. and an rintegral‘ equivalent to the zero

temperature integral Eq 330.06

_— L 2
: ) . .
: R e . P . 1 . -
I = - — — ‘ ' . 732.06
2HM - nPee Iz@l(q) W, (@) + w2 (@) o ( !
: " €& 0 (Wy (D Hm (T
H‘HH is given by the expression
, . -
I - 8 K Kz 1 .
1HH ‘ F 2 2 2
' 4m €€ 0 exp(ﬁpr(K +x +8x-)/kKTK) - 1
' a 1/2
.( Ty X ) . 1 : .
: : ; : X
!(2<|'x2+[3x4 _ax4+x2+K2
' (732.07) -
o Aamop‘- ‘ : : Mde y : '
- B = am = ‘0'.5951 P Yy T B (n?) = 0.2548

- wmch -was evaluated usmg the NAG.routine DO1AJF. Resuits for this
: integral are shown |n Fig 7.7 and show that it-contributes less than 1 meV
to the total valence band exchange over the. entire densny range However

-‘V-the comparable mtegral for. the exchange between the heavy and ||ght hole

elect_ronsv C o
R e ©
I_-l._"_'.." Kz'f T 1
1HL -~ 2 Sy SR o2 2 el
-an g,Er_ o €XP (ﬁpr(K +X +8x _)./kTK) -1
R Loyt VR . -
(S 4)' ——5 dx = (732.08)
v Co K +x-+8x% ax +x +K '
sméb.‘- my 2
B=4m.=05951,’yh-6(r)=2488
de L
_ K
a=/3—v=-1.eea,x=k—
4 k.

LS
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plasmon peak by the present |nverse dlelectnc functton The same pr'oblems .
were encountered when attemptlng to evaluate the zero temperature screened
exchange contrlbu'_tion in sectlon 3.3.2. and has.been_ commvented on in
sectlon 2.3..3.""Th,e problem'arlsesl‘because the plasrn_on'peak is not damped
as it sho'uld- be _lsee Fig 2.7 _-tor zero temperature). The -plasmon peak
occurs when -the plas_mon dlspersion curve l'ntersects the _light electron
energy (W (q) = eoLd)‘.' : This point changes in enersgy slnce the dlsperslon'
-relatlonshlp depends upon the Thomas Fermi screenlng length in Table 7.1

va. |l$l of the energy values of this lntersectl_on are presented for
dlfferent concentratlons | |

o Table 7.1

. Plasmon energy. and the exchange contrtbution
.. between heavy and light hole ‘bands I, and i,

TN Aw - energy of e/kTr - - I o I '
o ?3‘., P . peak r=300k. IO ?HL. ‘
»(.Cm'}l)-‘ ~ . (mev) (mev) . . (mev)..  (mev) -
1.0 e 43,3 1.8 = 2.32  1.79
o ,1.1015 21,22 . 53,5 2.07 - 2.97 4,36
L 1--.19;3' . . 87.09 ©..104.0 ;4,02 --0.76 . 9.19
Co1.1000 00 212,15 0 292 11.31 .- .0.003 17.15 °

. 1.,10°7 7 -670.89 ¢ 974 37,68 . . . 29.84 -

"5'--~{‘-Also shown m Table 71 lS the value of. this mtersectlon energy normalized

: wath respect to the thermal energy (e/kT) Thls shows that the multtplyingu |

T 'ifactor'N acts as a strong dampmg factor above a concentratlon of about

‘1-10]8 where e/kT > 3. The values of l calculated from Eq.. 732.07 using the

- .\A’_NAG r0utme DOlAQF reduce to zero beyond this concentratuon Thus the

problems of numerlcally calculatlng this mtegral are unlmportant for the -

_-concentratlon reglon of mterest to us above the Mott transmon The

":.'values of l]HL,_'whic‘h a're negatlve because of. the_ large .negative-

contnbutlon from the mtegrand of: Eq 732 08 below the intersection point,



are - not }reli‘é_ble. The comparable numerical routiné to - calculate the zero
lemperature screened exchange terms does not given the correct results
either, as indicated after Eq. 332.09. However these values for 'HL are

included in the following analysis and there magnitude is shown in Fig 7.7.

- The contribution |

oHpn 1S lust the zero temperature contribution

with the finite temperature w](q) (Eq. 331.02). And gives

3mop : K q 2 1 -t

B = g = 0.5951 ; K=¢— ; (3= ) =
de F F t

o Mae 2_ ‘ _ Mde 2_

Yy, =B () = 2488 ; vy =8 (7—) = 0.2548
L : H :
2 2 1/2

I = 4 —— K —t (732.09a)
2HL -t J =% '

dt

(K%4-1)£%+ (1-28) t+B+V(( (K*+8-1) £+ (1-28) t+8) YL (t%-2t41))

and
, : ex"l . 172 |
Lyn' = * —5—— § (=% : (732.09b)
' 16m €€ k_ O : _
dat

2 .2 2 2 ‘ a2
(K +8-1)t +(1-28)t+B8+V(((K +8-1)t +(1-28) t+B) v (T -2t+1))
which were calculated using the NAG routine DO1APF._ The numerical results

for the sum of the |, and 02. contributions are given in Fig 7.7. The I2

1
contributions form the greater part of the sum. ‘The zero temperature
N L sx+ch’ . ~ L ' ,

contribution of the AEV terms 'is also plotted and it shows that this
is less than 2 meV greater than the 300K values. Thus the change in the
band gap reduction due to temperature below an electron concentration of

20 -3 L ' , N e
100" cm comes mainly from the conduction band contribution shown in Fig -

7.6,

-7.22-



‘). for the E> terms.

. The screened exchange 'pvart of the finite 'temperature electron-
electron : self~‘e'ner‘gy- (Eq. 732.vt)3).reduces.to the same form as the zero
,temperature expressnons with the appropriate choice of K and kF ~ (see
sectton 332) The resultung expresstons at finite temperature are (see
- Eq. 332.06 and 3-32.oe) "

am’ . m. 2

‘op ‘de S
a = z=— (. (=) - 1) = 1.893
L 4mde. _ mL.
3"’55- o Mae 2:
a, = (1~ (z—) ) = 0.3403
Hf- ‘.!mde L mH
a0y = 4 X ; 2a ke M
vL - A\ 2 2 2 C.2.1/2
: smee, (Kp + ga, ) (ko + 4a K ) T k)
(732.10a)
L 2. "k -o1/2
AE_ . (0) = + —= ( ' =) (732.10Db)
vH* ™" x J + k . .
. - emee 2K @y T F _

These . expression  are .evaluated with the finite temperature parameters
- replacing K and kF.

.The results for these two expressions are presented in Fig 7.8

and the dtfference between the total (th 7.7) and screened exchange (th

e .'7_.8), or the coulomb hole terms are presented in th 79 These-graphs .

'x;’show» that although the screened exchange contrtbuttons do decrease in size
wnhmcreas:ng .temperature, so do the coytomb ho_le t_errns; ‘Since these
fco.ntrihotions ‘erev' subtractive this results in only a‘ smatl decrease in the
- \ralence .hendt.energy.":‘The c‘onduction band contrtbu‘tions are hoWever
,v.”_addi"ti-v.e,, restnting_ m a large ‘change in energy- of the‘conduction band edoe

due to temperature (see Fig 7.6).
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733 Summary. -

_tn"ith_is 'sect_ion.lthe_shifts :'in the conduction: and valence bands
due to .'the" c.:h'a"ng'e.ih' screeneg electron—electron exchange energies (EQ."
. 300. 02 and 300 03) have been calculated at flmte temperature it has been
tound that in the plasmon pole approxrmatuon these can be split up into
cou!ombuhole_and sc_reened dynamic exchange .contnbuttons (named by Hedin

1965 in.connection with electrons gases in metals see section 3.1)

A ee . -.A sx : A Ch(k)

Eclk) = BEC () + 8B (K)
JREC LN _‘A sx - ch(k)
E, (%) = 8B, (k) + AE,

‘Thecoulom‘b hole contributions: (see Eq. 731.01b and 732.02. 732.03)

" ) 2
AECh(k) _ e Fn W (k) “p
c VT t a w, (@) 2 0 - 2
- 2mee. o, - 1 w, (@ - w k)
2w 'I()CI) ) o ) dd
1 twcc(k,;q) + wl»(CI))
o Qéh,'f?r' e? 'vm(k’q) : L
a0 s =21y (g -
_ an® es‘ m e _“’1(q) W ¢ _,CI) - w, (@
AT RS I .
S ?“’ @ (o O, @~ 0y (D)

‘;f'?d}! he energles of both conduction and valence bands contributing a
’ 20

- small mcrease (+10 meV at 10" cm 3) to the change in the band gap as in

"“the zero temperature results of chapter 3 (see th 75 and Fig 7.9). The °

screened~dynamid exchange contributions of each ba‘nd (Eq. 731.0‘1a and



732 03) however act in opposnte directions both to reduce the gap (th 7.4

and 7 8)

e - 2 W

AES R (k) = - — (¢ (1 p 5
. C () —A~ 2 f c,q ( " . > OAk > q

zrﬂv;eer 0. . ‘ W) (@ - w (kq)
. © 2

sES () = b e ? ) a

v : 2 ~ 2 ) >

. _an ESr m O, w (a) - w (k,q)°

. With approprtate choice of the energy difference in these expressions the

change in the band energy at any value of k may be determined

o - o

.0
‘wckl-ch (k-q) ~ Qcc(k'm
0 0
Yok T Yy (k-q) T YnF D

The major difference betweeh th'e zero ternperature calculations
of chapter 3 and the ualues for the change in the conduction (valence) ,band
bottom (top) at a temperature of 300K shown in thlS chapter is a small
"_'lncrease in -the flnlte temperature band gap at low concentratlons This
43 '

~ increase is caused mamly by the reductlon ¥4 meV at 10 ) in the

wconductlon band Shlft (th 76) The valence band shift (Fig 7.7) remains -

wlthln a 2 meV of its. zero temperature. value. 'The large change in the

conductlon band shift is due to the decreased screemng (small 1/k) at low
"concentratlons (Flg 72) Thls has  a dlsproportlonate effect on the

conductlon band where the magnltudes of the screened dynamuc exchange and

'-'i'_ coulomb hole terms are addltlve The sum of this electron electron band,

_.gap reductlon and the electron lmpurlty band gap reductlon calculated in

N 'the next sectton results m a net mcrease in the band gap reductlon due to

-the Iarge lncrease in the latter contribution,



7.4 - CALCULATION-OF THE ELECTRON-IMPURITY .SELF __ENERGIES.

In this section the extension of the electron-impurity self
energies catcuiated in chapter 4 to finite temperature is considered. The
electron 1mpur|ty energres are by far the most simple to evaluate since the

mteractlon is’ essemlally static.

740 'Numeri‘c'alvresults for_siticon.

Th‘e ensemble averaged self energy expressmn used was derived
in detail in. chapter 4 and is unchanged at frmte temperature apart from
the uSe of the approprlate finite temperature parar'neters. The electron-
imp'u'rity self energy of the band n is then given by (Eq. 450.03a)

Ng

'hf.ei('n';'k,.w) = T3 E J' G (n 1,w) IW(1- k w)' Anm(k 1 d 1
S 'ﬁ(zn) :
(740.01)

. whilst the appropriate shift in the band edge is Qiyen by the real part of

_this self energy
- ei « ' 0
: éEn, (k) = ﬁRe(Z(n;k,wnk)) (740.02)

 The _c_h'gnAg_e_A in the band ‘gap due to the electron-impurity self ‘energy is

given by
»ﬁEeg = .AE“;»_(k ) - _,A‘Ev ,Y(o). . | . | (‘7.40.03)



This is reduced to one integral in Eq. 450.06

2
AE:ei _ '1 +~ mH + mI.. 4Nde 1
eg = 7 (1 2Mye qefe€8y k3
A F
o 2 2
® 1+ a(q/kF) , '
S 5 > 3) d(a/kg)
0 (K/kg) * (Q/kF) + a(a/kg)
_ _ | (740.04)
a -'EmeP'. = 0.5951
4 mg . 4

where in place.of the zero temperature quantities ki ..and k the finite
temperature variables kF (Eq. .722.02) and the finite temperature Thomas

~ Fermi screening length « (Eq. 723.01) are substituted.

This integral was solved numerically using the NAG library
rouiine DOTAJF for a ﬁumber of different impurity concentrations. A number
~of ditferent Fermi en:ergie-svwere selécted that were then used to calculate
the impurity concentration they represented as indicated in section 7.2.0.
These impurity concentrations and Fermi energies' were then used to evaluate
the ,Tnorrias Fermi screening length and hence the band gap reduction detailed
“in Eq. 740.01. Results for this calculation for a temperature of 300K are
‘pr.efsent‘ed in Fig 7.19 which also shows the zero temperature results from

"Fig 4.1. These show that for low concentrations (< 3 102 em™) e 300k

results diverge. However at high concentrations (above 1020 cm—3) in the
strongly degenerate semiconductor the results tend towards the zero

‘temperature results.
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742 "i'CQn‘clus.‘lons and validity of results.

To clarify the above results calculated from the plasmon pole
approximation Fig 7.11 shows the zero and 300K Thomas Fermi resuits
(AETF ). These _are calculated by substituting the appropriate finite

'temperatu_r'e values into- Eq. 442.14. The average first order interaction

given by -

) : . 2

1 .3 - e
Eo T V) dr=- 2 Na

o €EE_K

’ b &

N ~ .
= - 1.53 10 —% (ev) (742.01)

“-is also presented in this figure. As has been discussed (section 4.3 -and
Wolff 1962) this first order term is cancelled by the first order electron-
_electron self energy. However as shown in Fig 7.11 at 300 K this first

order term becomes smauer than the second order self energy below a.
19 -3

o ’concentratlon of about 2 10 cm . Clearly this Indtcates a break down ot

the vpert.urb_etion ser‘.l_e‘s at low concentrations. As h~es been discussed in
_»‘seetto’n_,‘_ 46 th"e_.per'tui_rpatiqn i‘se_rles breeks down e\ren in the -vdegenerat_e
: mate‘r_'ia"l Aifgte’:rm:s_ o'fbhli.gh—' enough order are consldered. However as Ghazali
and Serre (1982, 1985) _have shown if the self energy diagrams are eummed to
mfmite order a me'aningfu'l‘ :reeult is  still obtain‘ed;- For the present
‘calculatlons where the ‘only interest is with concentrations above the Mott_“
'_transmon at about 3 10]9 rr_t-s the ._second order self energy calculated is
.. stm useful: _‘ ‘The upper concentration limit  to .the electron-impurity
"calctjlattons is stitl the same bemg deﬂned by the.pomt at which the
‘-Jmpurny potenttal may no Ionger be considered as a small perturbatlon to

the cry_s_tal potential. This point has been estlmated in chapter 4 to be

- - 21 -3 . .
above .a donorconcenlratlon of 107 cm ~ silicon where the donor separation

- 7.28 -
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7.5 CONQLUSIONS.

In Fig‘  7.12‘ the sumv-of fhe eléctron-electron and xelectron-
" impurity self ene_rgieé_ is presented for both zer.o and‘300 K. As detailed
in the introductionf th.ese resu.l;ts a.re only valid above the Mott critical -
concentration which:' is higher than zero temperature value due to the
incréaéed low concént(ation electron screening length (/k see Fig 7.2).
,Bel‘ow this éoﬁcentration. although the electron-—eléctron self _ene?gies
.shown in Fig 7.6 énd_Fig 7.7 are still valid when there are Nd electrons  in
Vthe cpnduc}ioh band. the electron-impurity self energy is no longer valid
(section 7.4.2 and 4.5). The Mott transition then defines the lower
-concentration .Iimit to the results. At concentrations below 10]9 cm—3 the
experimehtal band gap narrdwing results might well be best described .by the
statisticél -approach‘es of Heasell (1979) and Popovic (1979)” where a
| degenerate se'mi—p'opulated impurity band separate from the host band is
'cohsiQeréd. However above the Mott critical density the true many body

- effects - calculated in the previous sections should .be used. assuming a

merged conduction and impurity band.

"‘PerhapsA the most promisir’ng recent wor,k>fin the intermediate
: .',:conc‘:‘eﬁtratio.h_.'range_ close td fhé Mott trans'ition hés beén Carried out by
'Ghazéyi and -S‘er;e‘-(l198.2. 1983) where the self energy is su.mmed 10" infinite
»order v‘an'd the thsity'- of states is derived directly from :the imaginary part
Qf 'the' tqiél Green"s .function‘ With the use of the plasmon: pole.
» ap‘p‘rlolximatibin and the electron-electron exchange. enérgi_es_' from section 7.3

“this could also be extended to finite temperature.

- 7.29 -
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A METHOD FOR THE EXPERIMENTAL MEASUREMENT OF BAND GAP
NARROWING.

8.0  INTRODUCTION.

A‘recent review of experimental techniques has been made by
'Mertens' et al (‘1981‘). in the past the measurement of band gap narrowing in
semlconductors has been performed by the measurement of the absorption
A “coefftment for band to band photoexc:tatron (Volf'son and Subashiev
(1967) and -by the measurement of the pn product (Slotboom and de Graff
"‘_»197--6, Me‘rtens<'et al. 1980). The present method to measure band gap
narr0wing_ in heavily doped n-type silicon may be classed"amongst- the Iatter
conductwuty type measurements. It invoives the noveibs‘e of. a wide base
parasmc transustor formed by the p-type substrate on which Integrated
lnjection Logtc structures are fabrlcated (all the devices were fabricated

: wrth ‘ion rmplantatuon of |mpurmes by Plessey (Caswe!l) Ltd). Based upon

BRSS the measurement of the- substrate saturatlon current densrty (J .over  a

pso’.

range ot temperatures (200 to 400 K) the measurements requrre the knowledge'
"‘"vo_f'f'r'the' transport tactor mmonty carrier drffus:on coefficient  (or
mobihty) .in. the heavrly arsemc doped buried Iayer the intrinsic band gap

“(sectlon 824) and carner concentratlon (section 825) " The temperature

o .'gependences of these vartous parameters mcludung jUﬂCthﬂ areas (section '

[ R RGN SR

1 8.2.6) through thCh the currents flow are also consrde_red. For the
'.'-j.pre.sent_ work values _for. the”rnobility, at. 300K are taken from the literature

.. (section 8.2.3). The transpOrt factor is -calculated (section 8.2.1) from a

’ "-measurement of the hole Current injected into the heavily - doped burted

‘layer from the Integrated tn;ectron Logrc cells (Jp sectron. 822, The

:results obtamed mclude not only the band gap narrowrng (100 * 25 meV) in

| 'the heavnly dopeq purgeg layer (2.4. 1019 _3), but  also  temperature -



dependences of the carrier mobilities in the various regions of"the device

and the minority carrier lifetime in the buried layer (30 £ 10 ns).

~The use of Integrated lnjeétibn Logic transistors to measure-
band géb na'rr.bwing is not new: (Mer’teﬁs 1980). however the previous method -
used a heavﬂyI ddped n-type‘subst.rate making r'ninolriXy diffusion length
measurements on the back of the slice using optical techniques that rely
upon.t.he optical bandgap shrinkage occurring at much higher doping levels

than those used in the device.

-_The experimental method requires the lnfroduction of many
diﬁerem .symbol's, not used ih any ofher chapter of this thesis. For this
reason we summarize in section 8.1 all the im'portant 'symbolsA used. Section
8.2 treats th.e~ salient features of -th.e théory required to analyse
integ‘rated."l;\‘jecﬁ’on Logic structures. Section 8.2.1 and 8.2.2 give the
lmainbiexpréssion‘s vreq‘uired_ to measure the band gc;lp narrowing. In section
8.A3 the megn'oq of analysing the various terminal currents for the range of
temperatures is.. dis_cu_sse’d. in section 8.4 the details of the experimental
rAesults' are 'preseﬁted outlining the géneral agreement between these results
'for‘the terf_lperature dependence of carrier mobility in lightly p-type and
heavily r)—t'ypg goped regions of the lmegrated Injeétioﬁ -‘Logic struc.tures.
witﬁ thosé pUtiIislhed_in the literature. Finally in section 8.4.5 tﬁe band

" gap narrowing results are presented.
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8.1 . LIST-OF THE SYMBOLS U‘SED;A.NDWHA_TfTHEYDENOTE. :

-area of buried layer junction A

'substraté current.

Ab b
' Ac .area of liL base contact.. :
Acol ' area of IIL collector junction.
A ‘ general junction.area. :
A" ;unctton ‘area of the Iateral pnp transustor
'Ao+ (_A _) . area of lIL coliector oxide covered p+ (p-) base
AB C area of liL super B base junction.
Dav‘ , .- average minority carrier diffusion coefficient.
Db ‘ minority (hole) carner diffusion coefficient in buried
o tayer.
D’ o minority (hole) carrier dtffus:on coefﬂc:em in lateral pnp
n base. '
Dn =D T minority carrier diffusion coefficient.
D o minority carrier diffusion coefficients.
Dg " minority (hole) carrier diffusion coefficient in substrate.
D . minority (electron) carrier diffusion COfolClent in super 8
LT _ base. L
Eé CUEY. energtes of conduction and valence bands
- Eg- 0 -Fermi energy. :
CE_ intrinsic energy gap. ,
9 E_ = 1.1200 eV (T=300K)  see section 8.2.4.
E (Nd) concenQratlon dependent energy gap. '
e ¢ - EqNy = E; = AE (N ) see section 8.2.4.
- AE (‘Nd) C concenQratson degendenq band gap narrowmg
R . Fermi Dirac integral jth order. ,
,Gjb o Gummel number for the buried layer.
GI ' Gummel number for the base of the lateral pnp transistor.
G, ' Gummel number for the super 8 base.
'bﬁ|cot l‘ nj HL terminal currents.
by : _ difference current (4, =1 =~ 1._).
".I » b inj

... vertical collector current. density. "L
: ,' vertical injection of.electrons into, contact covered base
“vertical injection of electrons into n+ collector
) verttcat injection of electrons into oxide covered p+ (p-)
_ base. ,
“.vertical injection of electrons in substrate transustor
" lateral injection of holes Into p+ injector. -
) vertical injection of- ‘holes to ‘substrate (saturatton value).
- verttcal injection of holes to n+ puried layer from liL base .
(saturation vatue of J_). :
-Boltzmann constant = 1, 38?500 3 k7!
“'minority (hole)- carrier diffusion length’ in buried layer
minority carrier diffusion lengths. B
. Number of valleys in conduction band (M’ "6 in smcon).‘
conductlon (valence) density. of states effgctnve masses.
|mpur|ty concentration as a function of distance x.
eftective conductlon band density of states for one valley.
“intrinsic camersconcentratnon
o n"'=- n.’f T exp(-E _/kT) see sectlon 8.2.5.
- eftectnve intinsic carrieP concentration.
L . on =n exp(E_- E (N )) seesectlon825 _
R I B} ';electron concentrat%n lngthe coliector of the substrate




%<<<<<—l.o‘oz
Oo0OC T <«
o (o 2 « 2« I )

™o T

mean

“Exss

Aransistor. _ .
effective valence band density of states..
hole concentration in. the buried layer. -19
numerically equal to the electronic charge = 1.6.10 C.
temperature (K). '
base emitter voitage.
collector base voltage.
colliector supply voltage. ,
mean vaiue of V___‘s measured for a particular temperature.

_substrate buried quer junction voltage.

width of lateral pnp base.
width of puried layer.

‘width of super 8 base.

distance.
minority carrier mobility.
minority carrier lifetime.

Some subscripts:

E.B.C.inj.sub

no

3353 0n» =
©

- n+

1,.2.3.4

(sub)

denote emitter base collector injector substrate of the
IIL gate. - '

n+ buried layer.

super 8 base.

lateral transistor.

substrate.

denote electron and hole density respectively.
denote light and heavy impurity concentrations
respectively.

used to distinguish cells 1,2.3.4.

general subscript.
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8.2  THEORETICAL BACKGROUND.

»Thé c_or_nplexit.y of tﬁe Alnte'grated tnjectipn ‘Logic devices is
such that '.a"_-deta‘il'ea-v‘;ranspdrt analyéis of the structures is not fleasi'ble.
for a short .éftudy." 'H'q.we‘ver 't_he' fesults obtained inQicated that. the simple
éxpriéSs‘i"ons' uséd ‘were"ade.qu'atve to desc}ibe the 'terminél currents. in 'this
section 'tv'h'e‘ detailed expressioris used to describe the terminal curreﬁts. are

presented.

A 't_ypiqai Integrated InngtIon Logic cell of the type used in
the greééht e’ipérimems is sﬁown in Fig 8.1. The equivaient vcircz-;it and
biaAs,ing, arrangéments for th‘eA cell are shown in Fig 8.2. As can be seen
from -Fig é.] fhe cells are of a composite base structure., with heavily p-
type doped ihp!ants surrounding the active low doped p-type base to lower
the nas:é 'r‘e“s_ista.ﬁcéb _(éluhkett_ et al 1978). The whole structure |is
" :.v:'surr'g;')‘urid'ed' by a heavily r_m-tybe_ dopedv.guard' ring-thai extends into the
_hea\.,/lly ’n;type dobed_ ‘bb.uri'eq Ilay.ér and to which the emitter contact (not
f:‘sAhow'r;,._,in an 8..1)' is .mléde.’ It is this buried Iaye:r, detailed in Fig 8.3.
”':th‘af ; is o'f".primary interest »si}mée it forms the base 6f the pnp parasitic'
‘t“ra'r;s'ist()r A(ma.'rkgd as T3 in Fig 8.2). The Integrated Injeciion_ Logic
| traps.i;;g(')r is used o fnéasufe the elle_c.tron ;) and hole currents ()
'ﬁha"t_i‘pa__ss _'through the-uppef pn j.Un‘ction, whilst the substrate curreqt (Jps)
ines a -»m‘eﬁa,s‘vubrie o( the‘_ hole c'u'rrent that succeeds in traversing this
{aye'r. By,cdmparing Jpv a‘nq' Jps tpe transport parametérs for the heavily

A dobeq' buried layer may ‘be determined.

~'In “section 8.2.1° the details of the transport through the
buried layer are preser.iteld. in 8.2.2 the principle behindA the measurement
of ,J;p'v is presented.. In’ the remaining sections (8.2.3 to 8.2.6) the most

. important parameters (mobility. - intrinsic  band gap. intiinsic carrier

I}
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concentration, depletion layer widths) required for the above expressions

are discussed.

8.2.1 Transport through the buried layer.

‘Using simple theory, with recombination in the base and zero
hole dénsity at T3's base collector depletion layer' edge. the current
' densmes shown in F'g 8.3 for the wide base parasitic pnp transistor may

be descnbed by the foilowing expressuons (Sze 1981 pp 137)

aD,p, . W

Jpv = T coth(-ﬂ—) ( exp (qV,o/kKT) - 1 ) o (821.01)
b i Y .
J_ . = TPy 1 V, /KT) - 1 (821.02)
Ps - L .ginh(W_ /L) ( exp(q pe/ KT) ) !
b b b’ .
P o ‘qunS 4 ' o - . -
= - - (0 ; - : : .03
Iis - I .(vexp(qub/‘kT) 1) - . (821.03)
’ Where‘Jpv is th'e ‘holqcurrent entering ihe buried tayer and Jps is the
current which succeeds in traversing the layer. J _ the electron current
- from the substrate is _held at zero (V__ =0). J . is A not  detailed here

sb ni
- since It depends upon the premse nature of the regnon above the buried

‘Iayer in this case an lntegratedA lnjectlon Log_nc transistor. Often the
B influence of the non-uniforrn heavily‘dop‘edk n+ base region are taken into

) account by rep|acmg pb by

SR

-4-—-“..‘,le b - L (821.04)

Where Gb is the Gummel number (Gummel 1961, and Eq. 821.11) and nieisthe

effective intrinsic carrier concentration (see section 8.2.5) given by

2 2 2 -E (i
n2 o 2 GAE/KT 2 3 E (N, T) /KT

) ‘ (821,05)
Clie i ‘ io S
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With- temperature, and concentration -depend_ent_‘b_anq gap (see section 8.2.4)

given by the’ expression

E (N_,T) = E L AE (N4 ' 821.06
g( a'? g('I') Eg( a’ | v | ( )
AEg(Nd) the effective band gapAnarrowlng is- supposed to be temperature
independent in what follows. Substituting these expressions into the

expressions for Jpy @Nd J o (EQ. 821.01 and 821.02) gives

Qb n° W W _
. b ie b b : . . .
pv T Te b COR(ED) exp(@Vpe/K (821.07)
: b - b b - :
2
- gD, n . W ' ' '
R YT b e - b . . -
e S T T -exp (qV, _/kT)
pPs’ Gb ]-"b' ssnh(wb/Lb,) T2 be
* Tpgo P (TVpe/RD - e2n0w)

‘V ‘The-GummelAcalculation is usually performed within a n'artow base transistor
and a."s“'sur‘nes: no reoornblnation in the base region. Howe.ver the current .
: vc_len.vsi‘ty_ expressions above (Eq. 821.01 and Eq. 821.02) are calculated on the
s’p'ecifio ass,ump‘tlon that reoombination does occur in the base. This
‘apparent contradlctlon of usung the Gummel number tvhilst allowing for
recomblnatlon IS not reconcllable using sumple theory I-lowever it has been
ashown -at, least for .low impurity .-concentrations that a falr amount of
' recombmatlon does not signmcantly change the Gummel number (Gummel 1961,
"'1970). 1 one requ:red a more .exact analysis of the 0urrent densmes the
contlnuuty and current den‘slty equahons would :have to- be solved
; numerlcally ,l/v'ithm the n+ buried laye’r. A more important approximation
4vmade above is that the concentratlon dependent band gap narrowing is
. constant throughout the buried. Iayer shown in Fug 83 Band gap narrowing
results denved m the following sectlons correspond then to some sort of"
average narrowmg through the buned‘layer " The va‘natlon of intrinsic.

IREREN 1

carrier concentration and moblhty in the n+ buried layer could be

a



accounted for with. use of the generalized Gummel num_ber (Hart 1981 pp 110)

v D,y Dy 2 S

Gy =S 5 (__ o) N(x) dax . : (821.09)

A : le .o . .

0. o

Dy and n,_ both concentration dependent with average diffusion coefficient

. “ . ,

av - W f»Dp(x) dx ‘ S (821.10)
o

and the inherent knowledge of the concentration .dependent band gap

narrowing _:and mobility.i in Wha_t follows the simpler definition of the
Gummel number is used
- - | |
GB.=. f N(x) “dx - E " ' (821.11)
o A | A _
~ belng merely a convenient way of averaging the impurity profile N&).

As to the method of. calculation of the band gap narrowing

b (the substrate to buried layer voitage) is kept equal to zero.

the substrate current is unaffected by Jns and gives a measure of Jps

provided vS

directly. The tfa'nsport factor is given by

Cvtr = 22 2 W : . (821.12)
- J_. ' .- b . , : ‘ _ _ .
' PV cosh( L_) : : : :
¢, hence by rearranging
B V2 | |
‘Wb/;’b _-;.1._94.93( =t -(::F - 1) ) R (821.1‘3)

4(jhe negative 's‘lg'n givés an un-physical solution) which on substitution
into the expressior‘), for the substrate - current (Eq. 821.08) gives the

~_effective band gap narrowing

gb n.z'

i, :
- ) + KT Lg.ge(J )

E AEg: = —A:kT Logé(. ' Ipso
b -
- kKT Log (i—;w ) ’ (821.14)
® L osinn( =)
b L



The saturation hole current. Jp- . m,i’grh:i equally be used to provide a less
accurate (because‘of extrapolatio_n -errors) 'valu'e for the band gap
narrowlhg. however,'the hole:cu‘rrent chosen gives a more direct result.
Using the relarions_hip |

L_ = (D

821.15
bp = ( : )

T
o7p)
and the buried layer width W) the ‘minority carrier diffusion length Wy
and life time (Tp) of the carriers may also be calculated. By varying both

voltage V. and the temperature it was hoped to test the validity of the

be
‘above expressions and thus to 'estimate the band gap narrowing.

8.22.  Measurement of Jov

| Measurement of the transport factor (Eq. 821.12) requires the
_me‘as\u're.me'.nt‘ of Jpv. Berger et al (1972 also see Berger 1979) introduced
" theAbasic ‘met‘hoo of separating out- the various injection currents in the
.Integrated Injection »lfogic'transistor, The structure used is different
__from the original lmegrated Ihjection : Logic transistors in  that it
rncorporates a composate base region wi»th'p+ implanrs surrounding- the
‘-'-’jacttve low doped super B base to reduce base recombmatlon (Plunkett et al
31978) ' Flg 8.4 shows a cross sectlon of a typical ‘cell. Berger’s method
.been .“extendedﬂ to mclude' other current - densities for example

- recombmatron in- base reglon and srdeways leakage to the n+ guard ring
(Yang et al 1978) However chooslng cells with large aspect ratio and
narrow base"(see Frg .8.1) it is expected that the major current densities

‘are those shown in Fig 8.4.

The principle of the method may be summarized with the help of

IO SN & D N

~ Fig 8.4. "In describing the base current (lb) ~ tive components are

:g,g:
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.oentnti_gg;charagtgrtz_ed by J«pl'.'J_hqf' .Jr_to'-’.‘jnc' J‘pv and ~the  associated

junction areas. .

I = A_J + ' R . : + . ‘
b 1 pl. Ao—‘?ng— +_Ao+tho+_ ',Aanc + AbJpv (822'0;)

Since the injector current _(AI Jm) is measured directy and may be

subtracted from the base current there are only four unknown current
densniee (Jno+' Jno—' Jnc' Jpv)' So that the difference current ld ' for
four similar integrated Injection Logic cells (denoted by 1, 2, 3, 4) may

be given by.the matrix equation

Il Ao_Al AQ+l Al AL I o
1.2\ A 2 A 2A2A2 J .
. : - %o+ ~ ‘no+
d. - o c A1:) ‘no _ (822.02)
13 )] \a_3a 3253 Ab3/' AU
\T .4 A A 4 A
I_d : .'o—‘l o+ c4"'hl:>4 : Jpv

The _subStrate _(col!ectOr) currents are given by the substrate (collector)

current dlensilty Jsub (_Jcol) and junction area Ab (Acol)f

Provided the area matnx in Eq. 822.02 has a non - zero

' .‘:determlnant (hence the need for the collector rmplant to av0|d the sum of _

"two columns equallng a thtrd) the matrlx equatlon can be solved for the various
'current densmes Thus the two merged transistors are not essential to
"-:,the measurement ofJ _since» the A_nmeetor current does not etfect the'
"difteren_ce- Current. _In the present ,measure'mente the injector is however
used 10 provide the fo_drth cell as can he seen in Fig 8.5 of the four
| ceils. The tirst has no collectdr imblant ‘(:Acoﬂ ‘= 0. 'me second is a
‘_ cqmblete lntegrated.; Injection Logie cell, the .thir‘d‘has only the heavily
doped- p—‘type base'irnplant and»,the fourth.is‘ created'-by reversing the role
; of base and m;ector so that the three prevtous contacts used 1o collect 'b

1 t0 3 were then earthed to provide the measurement of I inj 4. Fug 8.6
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V-shows the lmpurlty proflles for the n- type collector Q2. 102 - p+ base (5

10 9) super B base (peak concentration 6. 10 6 n- type epitaxial layer (5.
15 : ‘
10 )._ The p-type surface top up Implant that peaks at 0.1 um from the

surface is to ensure a p-type oxide covered p- base region.

The basic method can and has been extended {0 measure more
current- densities (Yang‘ et al .1978) merelyiby choosing the appropriate
geometries_for a larger number ol lntegrated lnjection Logic like cells.
The only apparent criterion to be satistied is the non;zero determinant of
-the area matrix equivalent 1o that in Eq. 822.02. However apart from this
care._is.‘ reouir‘ed in .the design of such cells since the resulting current
densitles 'are essentjal_ly calculated from differences between currents. If
these subtractions involve large component parts and derive small results
the errors 50 produced in the calculated current densities may be large.
For examole glven the results of the following sections for the present set
A-of devncee (Flg 8.5) and areas (Table 8.8) the error resultlng from a 1%
-mcrea e ln each ot the junction areas is presented in Table 8.1. Thus a
’l% mcrease |n the measured area for the oxide covered p+ lmplant in cell 2
results in a , 22% decrease in the calculated value of Jp ~but only a, 2%

-}':ln,crea_se ln ,JnoA_.‘ A. similar - error analysls of the etfects of inaccuracies .
in the ’,mea_s_'urement of _the_ lour difference currents on’ the values of the

~ Current densities calculated from Eq. 822.02 is presented in Table 8.2,

lt is clear from these’results that surprtsmgly large errors in
,'.lp may be generated partlcularly lf Id2 or the oxide covered p+ area on
: .cells 2 and 3 were maccurately measured These errors are hard to predlct
since . they depend |n delatl upon the relatlve sizes of termlnal currents
.a,nd _junctlon 358?.3.: lndeed even the small change in’ areas due to depletion

widtns were important.



' Table 8.1 -
% change in current densities produced by inbreasfng junction areas by 1%

Vp=528.5 mV. T=297.4 K, 1,1=28.8 nA, | 437218 nA,

b d d
| 4=117 nA. J__ =2.39.10 2,y =8.82.10"% 4 =2.12.10"°2
' . ," no_ . . . no+ . . ’ nc . . T

2=21.2 nA, |

J =1.84.10°
d pv

A 1A 1 A1 Al

0= o+ ¢ b Ao-2 Ao+2 A02 Ab2
no- 00 -1.6 -0.3 -0.5 05 17 03 04
Jno+ 00 -14 -0.2 -04 1.3 46 .07 1.2
dne 0.0 -06 -0.1 -0.2 05 19 03 05
oy 00 66 1.0 20 -6.1 -21.9 -3.3 -5.8

Ap8 A3 A3 A8 A 4 A 4 A4 A4
Jno- 00 00 00 00 - 00 00 00 00
Jnos 0.0 -3.8 -0.5 -0.9 00 00 00 00
Yne 0.0 -0.3 -0.1 -0.1 00 -09 -1.1 -03
oy 00182 16 3] 0.0 05 06 0.2

Table 8.2

% éhange in current densities produced by
increasing different currents by 1%

-15.7 36.4 -18.4.

1y 42 43 g4

dpo- 38 -28° 00 0.0

dnos 38 76 53 0.0

4 14 .0 =32 04 24
- gne -13
_pv -

_'.,"' a" ghbr0qgh fo!!_ow up experiment the: currenf densities
fc_alqulated ‘below c.oﬁid. be used‘.tq assist ‘in the designfof a second set of
device ‘strp.cAtl‘Jre.s to’ improve the present err»or prone cells. However
reasonable '.re'su‘lt's. are obtained from f_he ‘present cells justifying the

method of averaging used below to improve the current measurements.



8.23. K Carrier:mobilities and diffusion coefficients. .

in sé_ction 8.3 we show how the temperature dependence of the
'minofity- carrier - mobility may be célculated from _the' -e§perimenta| results.
Aithough - a‘__cii'r'e_ct‘ rr_measurément bf ‘the temperature and concentration
dependent mobility ;L»‘(N)-i_\«(dul_d' ée deéirable in a rﬁqfe thorough analysis of
Eq. 821 ..07. andl Eq. 821.08 the p'resent values are adequate. The values used
: aré de"ri‘ved_ from the'exp_ression (Caughey et al 1967)- . |
A“ma*'—”umin

1 + (N/Nref)a

+ Lo o (823.01)"

CR(N) =
The values of the constants nmax and umm in Table 8.3..are taken from Hart
(1981 pp 101, '

o _ Table 8.3

Mobility data

Hmax #min @  Nref .

_ 2y 2 tem TS

T = 300K (cm~/Vs) (cm~/Vs) “em- )
Electrons 1360 - 92~ 091  1310,]

Holes - 495 * 47.7 - . 076  1.9.10

‘The minority carriers are not subject to -Fermi Dirac statistics
- s0 that the .thermal. equilibrium relationship between diffusion coefficient

. (D) and mobility (4) reduces to the Einstein relationship (Sze 1981 pp 29)

D= =g o o . SR (823.02)

=813 -



8.2.4 .  Intrinsic band gap. -

| The -temperature 'dependent. intrinsic band :Q'ap' is Clearly a very
impqrtant 'pa‘rameter and is obta_in_ed_ from a  best ‘fit of the data of
Mactarlane et al (1558). Tbe_ir data obtalned trom eptical absorption
measurements were obtained using 'very high' reselution .(~ -0.0015 ew)
equrpment and falls near the average of othef measurements (Barber 1967).

in what follows the expression

S o -4 2 :
. - . 4,878 10 . T° -4
"Eg(T) = 1.165 -.— ~ 4+ 1.58.10 T (eV)(824.01)

T + 180"

was used. The concentration dependent change in the band gap (AEg(Nd)) is

. assumed to have no temperature dependence. Thus the concentration

dependent band gap (Eg.(Nd.T)) is given by
E (NG, T) = E_(T), - AE (Nd) | | " o (ea4.02)
8.2.5 " intrinsic carrier concentration.

ﬂThe sduare of the tempe'rature} dependent_ intrinsic  carrier.

. concentratnon used in Eq. 821.14 may be written
/2 3

277(mm) kT . ‘ R P | )
HE D ) M eXP(-Ey (N4, T)/KT)  (825.01)

‘»This : slrghtly under' 'estimates the temperature dependence since the
effectlve masses of the conductlon and valence bands are temperature
4'_dependent (Barber 1967 Jaeger et al 1980) In- yvhat ~to||ows the 300K value
of 1.45.10' % cm™  (sze 1981) for the intrinsic c‘arrier concentration is

used extrapblating- othe;r'\'ialues from this.

- 8,]4 =



Usmg the band gap quoted in - Eq. 823.01 the square of ihe

'mtrmsnc carrler concentratlon becomes

2 . . ' . ) ) ' . . .
4-9;&1.1033,r3 exp (-E_/XT)

1]

nfo 73 egp-'(-'g_,g/km):- o - (gmv'e) __ (825.02)

When extending thls expressnon 0 deal _with the heavlly doped degenerate

SlllCOl’l Fermi Dlrac statistics should be used (Blakemore 1962) wrmng

T N Mo Faya(Bp - E*?/*T’
) exp((E - E_)/KT) e
.,.’?’-_""c :Mc 1+ o 27 exp((E: - E-c)/k’r) (82'5'03)
A"p»?’Nv exp((E = E_)/kT)

,where an approxlmatlon for the Fermi Dirac mtegral developed by Blakemore
hasbeen used. _Eq. 825.02 becomes -
2 : exp((Ev -_Ec)(kT)

B, “=nps=N N_'M —— _ . (925.04).
1e oV © © 1 40,27 exp ((E, - E_)/KT)

" usingthe ‘sl_mple formula
Pie T “at;?fp‘?EQ/RT’fzw‘

gt s (825.05)

"'fto evaluate the concentratlon dependent carrier concentration thus under
' estlmates the phySlcal band gap narrowmg (AEg’l by the amount
:'_‘=.-. e T o + 0.27. S o ¢
AES: = AEg + KT Log, (1 + 0.27 exp((E, - E)/kT)) (825.06)
~ This expression is valid whilst. (B = E /KT < 1.3°

Numerlcally thls amounts to a small correctlon of about 6 mev
10 the band gap dependmg on the separatlon between conductlon band and‘
Ferml Ievel (Flg 7.3). These expressnons_ also ignore the small

concentration dependence of the effective mass due to electron-electron



exchange that has been noted in chapter 2.

‘826 - Depletion layer caiculations.

Sideways depletion widths df the n+ c'ollec'tdr and of the p+
base are the only widths to erfect‘atheljunctioh areas ‘used in calculating
Jpv', . The vertical co_llect_cr deplet'idh' width is required wheh com.parihg
'calculat'ediv'a'nd 'measured Gummei numpers and is also calculated. Since the -
experirhental esiima_ticn of Jpv and tc a lesser extent Jps A rely critically
upon the'iunction areas which “in turn depend 'uplo‘n_'the depletion layer
calculation it would seem that an,improvemem would be to.measure the
., .depletich.widths, wiAth perhaps an AC measurement of depletion capacitance.
. This ,vras‘thought to be beyond the ._scope of the present‘ ‘v_vork where we rely
' upon depletion' widths calculated under the depletion appr_oxlmation. More
detail'ed.' study .of the ‘performahce wvould require both ihe inclusicn- of band
:gap narrowrng (and the correspondmg use of heterostructure analysis) as
i'well as space charge in. the depleted regron The results of the present’

-depletron w:dth calculahons are presemed in Frg 8.6. superumposed on the’

A varrous |mpur|ty rmplant profiles.

lgnormg space charge the solutlon of Porsson s equatron (Sze

: -.'1981) reduces to |

X.:.S

= [ ( N (x) N4(x) ). dxds "_. (ev) . (826.01)
X1 x1 °° ST : o )
where the,'junction voltage '(Vj). is expressed in . electron volts.  The

. junction  voltage is .reduced by any fQ_rWard _biased voitage applied

externally to the junction .

V. =V - v S o ' (B26.02)



- ,Whe"r‘,ef.\/e.'i‘s_‘.‘vthe'_.exxernal voltage ‘applied to the junction and. Vbi is the
built in v’dlt,ag'e,.. In terms of the band diagram shown in Fig 8.7 the

~ junction voltage may be expressed as
V.=E_. -V -V o T (826.03)

With separation: oetWéen Fermi energy and conduction band. (Vn) on the n side

given by

v 2mm KT 3/2' - V_ .
e ’ n

| Nd(x) ag n = 2 ( ____2__ ) 4."Mc F1/‘2( -—}? ) (826.04)

h
where kT is expressed in eV. The separation of valence band edge and Fermi

energy onA__the.'p side of the junction given by

' o .2rlmvk'1‘ 3/2' - Vp .

Where F is a Fermi Dirac integral ”(B_Iakemore. 1962). With the

172 | _
_ xapproxim.ation“to the Fermi D{rac ivhtegral ‘used ' above (Eq. 825.03) Eq.

826.02 can be rewritten”

<
1l

o " KT Lo, (/N0 =2

v
All of the junciions_ in. the device may ,be répresented by the -

" KT Loge(NV/Na(x)‘—- .27) o ' S " (B26.06)

A:.:_'.";Isu‘l;j)"'e“rbo{itioﬁ of some .combin_gtion of step or Gaussian like distributions of
jmpuéitiég as can b“e"se‘en" from Fig 8.6. fhe_'s"u_per;._ﬁ b;s_é - cbllecto_{
j_urj\c_}ti_oh. is :C 4a‘n_'A examplé of - a Gaussiaﬁ' ._lik,e ~d’lfsg'r’i_butlcjn meeting an
effgéti'vc-;-_ly_sqyére_ :f:_qlvle(;‘tdl_';‘ 'p:r_'of,iile_. Thus 1o -sol9e for the depletion

" widths of ‘these junctions the double integral of a Gaussian is required

=817 =



Fi‘g', 8.7.  .Energy band dlagram deflnlng the varlables used in the depletlon
o : Y_Wldth (W ) calculatlons.. : :



(Eq.. 82601) for which the expressions (Abramowitz and Stegun 1970)
by - .2

ff exp(- x—) axay’= b (@(@)-gm) + (Z(b)-Z(a)) (826.07a)
aa - . -

Q(*)'?'f exp (- :—l ax SR (826 .07b)
oA o S ' . ST
Z(x) = exp(- 37 - . . -~ (826.07C)

“are us_ed..i ‘The depletion vvidths of all the junctlons'v/ere- calculated and
are ’summarlzed'ln Flg '8.6 “in the p+ epttaxlal mtertace the temperature
and voltage dependence of this depletlon width are presented with 'the
theorettcal Gummel number (Eq 821. H) for the lateral base in Tables 84
' '.and.8:5,.r | |

Table 8.4

L VOltage vanatlon of lateral base. length T= 300K

15 —3' _ 19 fa'
»ud-sw em ,.»Na-ato :
>V applled depletlon base length * ‘Gummel number
_ width W, -G
mew wm am cm™?
0. - 0484 . 4208 . ‘~j214910}§
200, - 0.427 . . - 4.356 S 237830,
400 7o 03600 4422 . - (2210000
©..2600 0279 - . 4504 - 225210,
..800 -7 0159 .4.623°- . 2.31210

The Gummel number for the lateral base varies by about 3% over a ‘l :

.typlcal 200 mV change m V the applled voltage ‘ _Th_e' _small change in" -

b
'depletlon “widths W|ll however ,-notf‘ effecr the area'- of this junction
‘ .'..'srgnlftcantly Table 8 5 shows that the. various samplmg voltages (Vmean)

'chosen for each temperature result in the Gummel number and depletion
,wudths bemg held constant desplte the change in temperature A depletlo_n

,‘wnh ot .32 p.m is taken tor the area AI measurements |n sectlon 8. 4 l

=8.18 =



Tabte 8.5
Lateral Gummel number and depletuon wndth atv

15' =3 _ 19 '~'.-3-
40—510 N, = 310

mean

‘tempe-  applied depletion Gummel number

rature  voltage  width Gl 2
(K) omvy T (um) cm .
©365.96  364.5  0.3401 2.234.10}2

355.88 389.0 0.3360 2.234.10]2
. 339.85 427.5 0.3398 ‘2.234.'10]'2 »
- 322:81 °  468.5 0.3225 .2.234.10]2 '
.. 313.04 491.0 0.3187 2.234.10"]2
" 312.75 492.0 0.3185 2.2,34.10]2
-297.40 -~ 528.5 0.3119 2.235.1 0.l 2
283.51 559.0 0.3068 2.235.10.|2
264.59 603.5 0.2984 2.246. 10]2
. 236.67 734.0  0.2539 2.253. 10]2
207.32 665.0 0.3040  2.223.10

'Conside‘ring the lateral depletion width of- the collector base
. junction the - booster compensatlng p- implant at the surface (Fig 8.6)
'results m a grading in the concentration and hence the depletion width

:II not be umform Rather it wnll vary from as httle as 0.11 um at the

""surface (Table 8. 6 net acceptor concentration = 1 10]7 —3) to perhaps as

oo 16,
L much as 16 u.m deeper m the dthce (net acceptor concemratuon = 510

Table 8. 6'

: ,Sndeways depletnon layer (wm) on collector (N = 1 25, 10 0y for various

temperatures and acceptor concentratnons (N_=5.10 16 .10

- T (K, 3660 355.9 339.9 322.8 313.0 312.8 297.4 283.5 264.6 236.7 207.3
1E17  0.11 011 0.11 0.117 0.11 0.31 0.11 0.11 0.11.0.12 0.12
5616 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17

The diffusion length of the' electrons in this region ,(Na"",'.f'-‘o]e’ is of

the order of tens ’,\oj‘-mte,_rgns (Wolf: 1969), as such much of this hen-



uniformlty must be transparent to the electrons A' valye of .16 um- is
taken as the sudeways depletlon wndth |n the measuremem of A ol (section

841)

'T‘hev—ver‘tical depletion width below the coueotoh ‘ts calculated .
assummg the n+ oollectOr to have a step profue whnlst fitting the super B8
base profnle (Fug 8.6) 10 a Gaussnan ~W|th the coilector held at the base
voltage (Vg = O the junction voltage (Eq. 826.02 is'.the built in voltage
(Eq. 827.06) for the junction. Results for these calculations are shown in
' _Table ‘8.7. | |
. Table 8.7

Temperature variation of the collector depletion width

- and Gummel number G . N =1.25.10%% em~3, N_ see Fig 8.6.
- tempe- depletion base length Gummel number
, re:;x)u;e width 4 wg‘ o - Gﬁ2

) (um) (wm) (em™ )

o ' 12
'365.96 0.159 . . 0.481 ©1.180.10 7
355.88 0.160 0.480 - 1.176.10 7
339.85 0.161 0.479 - 1.171.100
322.81 0.162 0.478 1.165.10) 7
313,04 0.163 . = 0.477 © 1.162.100
1312.75 1 0.163 - 0.477  1.162.10)7

297.40 '0.164. -~ 0.476. © 1.157.10)
283,51 " 0.165 0.475 1.152.10

- 264.59  0.166 0.474 41.146.1012

..236.67 . . 0.168 . 0.472 1.137.10] 7

©207.32 . °0.170 - . 0.470 -  1.129.10

The -débnéiiéh .va'vi‘.d'th f’of the lower ]unotion Of -the su-‘Ap,e'r-B base with the
'epntaxnal Iayer and heavny doped buned |ayer however has . the full Vb

'applied_ redumng the - bunt in voltage. Coupled wnth this the smaH
“impurity oohcentratiohs (Fig 8.6) result in a very small depletion width at
this juhctibn (less tha‘_'n-;.on‘g.'pm)l»,‘ Taking mis'as z,ero:_ and the junction at
1um .b._ej'géawhme_'su'rfatc'_ejﬁthe-'theotetical -Gummel- humber'vmr the active baee

',is'ca‘lculated (Eq. 821.11)-and Is also tabulated in Table 8.7.



A_Th'e depletion widths Care"summarize'dlin ._F%g' 8.6. where the edge
of the depletioq layer is indicated by a vertical line. This cIearfy shows
that the baée. emittef junction (see Fig _8.1) for the p+ epitaxial junction
o'ccurs‘ at about 0.55 um. whilst the super R epitaxial junction occurs at
about 1 um. This difference results in a small difference in buried layer
width as shown in Fig 8.1. This is-not importaﬁt since as shown in Fig 8.3
the bulk of th e arsenic -impurity concéntration lies _d_eeber in the device so

that the fluctuation of Gb beneath the cells is smali.

8.3 EXPERIMENTAL TECHNIQUE.

In séctiori 8.2.1 the basic method of calculating the band gap
narrowing was presented (Eq. 821.14). it reguires the measurement of the
tkansport paramete.r (Eq. 821.12) for tHe heavily doped buried I;':lyer shown
in Fig 8.3. ‘This in turn requires the measurement of both the substrate

current-and buried layer junction area A (hence J'ps) and the hole current

b
- density Jpv' This latter curterw_t density is meas'uri.e'd by Berger et al
(1972) injéction method outtined in section 8.2.2. Thus the measurement of
the band gap n'a\rrowi.ng is rgdll'ced to the mea_surémem‘of.ar‘eas. and currents
wlih th‘eA additfonél -data'- presented  in sé'cti-on 8.2 of diffusion coefticients
-.i.ntr.iintsic kbéﬁnd gép' avnd ,.imvr'insic carrier ,co_ncentratior{.'. fhe temperature of
‘.'t'r'\e ..c'ell_s. ‘is ‘deterrin'ihed iteratively - (§e¢t}on '8.42) from the collector |
be

. current using both the intercept current (V = 0) and the current at a
) to reduce errors in the temperature

mean value of the voltage (Vmean

sensitive intercept currents.

In section 8.3.1 the basic experimental technique and equipment
used is Qutlinéd. The method of averaging the currents and obtaining the

temperature * dependence of the diffusion coefficients (mobilities) is

- 821 -



"outlined : in: section 8.3.2. The experimental results are left until section

8.4

8.3.1 - Basic experimental technique.

.:Measurement of “the current voltage characterlstics .of the
cells. that were fabricated by Plessey (Caswell Ltd. was performed by
'selecting a ‘range ot base cu'rrents using a Keighley.current source whilst
biasing the device as shown in Fig 8.2.A Al extern'al wiring was'screened
and the'de\ilces were mounted in a screened metal _bdx in order to reduce
lnterterence vvheh making the low current me’asuremehts. The . coliector

?current (l ) was provided - through a. Tektromx 576 curve tracer the supply

ol
voitage Vcc Dbeing varied in order that the collector base voitage was zero.
All- other currents  and voltages were monltor_ed ~using  Keighley
electrometers. The  temperature. of the 'devlces was controlled by an

0ve_rhead cooling'hea_d placed in contact with the packages using a silicon

- compound to improve thermal contact between the package and the head.

Typlcal current voltage measurements on the devices are shown in
"Flg 88 to Flg 8 ll The results that follow -are based on measurements_

” made at eleven different temperatures m the range 200K 10 400K on one set

s ot cells . The base currents chosen (10 nA to 0.3 p.A) restrlct the - current

voltage | .cnaractensttcs to therr linear re_glon ‘with ideality factor
aporOleately 'equalto unlty- (m ~ 3l).j As can be _seen from the current
voltage plots all the currents fati on good stratght lines thus only four
base currents of . lOnA 30nA lOOnA and 300nA were. used the dlflerence
currents (Eq.__822;02) ‘belng measured at each base .current. Desplte t-h_e :
small numoert ot base currents the eleven temperatures -and tour cells with

thirteen currents and four voitages to measure represent over 500 different

=822 =
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'CU'r'rent" measurerﬁems that make up' the calcu;ation of the band gap
narrowing. -F-or this reason only one set’ of ‘célls was measured in detail
although alt the aVaiiable sets were tesfed to ensur‘e‘ that the set chosen
was re'preséntative of‘ the whoie. Measurement of a ia.rger sample of de\)ices‘

. would be very tedious without autdmation.

8.3.2 Averaging currents.

From section 8.2~.2 it is clear that the mqasuremem of the
cﬁrréntsis‘.igritical to the estimation of Jpv and ‘thus '~by Eq. 821.14 to the
band gap narrowing. " In order to improve this measurerﬁent. averaging of the
variousl currents is performed for all temperatures ﬁsed.. in this way the
changeAm the band gap is balculat_ed from an average over the eleven
different 4‘temperatures. This howeyer poses several problems since as
defined by for -éxample Eq.. 821.08 thé Current densities depend _upon
I.e"G .v w 'and Lb) : aﬁd applied .Av‘olta'ge (from vgltage

b b

dependence of depletion widths Gb' Wb) dependent péra’meters. Hence in

" temperature @ n

future measurements it would be advisable to make iri_débéndent measurements
of at '|eas_t__‘"_‘me'umu's'ioﬁ coefficient (mobility) over the whole range of
temperéture.": In -the présént work howe;/er the temperat’ﬁre measurements are
‘used to obtain a be'stkfi; for the currents at a tem':perature of 300 K. Thé
ter_npé"raturé‘ d.eApend,e_ric»_e‘ of the mobility ('or~di‘ffus_idn coefﬁcients)' is then
an ind;réct‘ re'sdltlof- the me'asure__mehts and is compared with published
values to support the accuracy 6f the principle mgaéurement, that of the

band gap narrowing.

_ Averaging 'the cu}éents is performed by considering a simple
expressions for the terminal -currents (see for example EQ. 821.08) with

ideality factor m of the form given In Eq. 832.01.

=823 -



_ CI:'A,j'- Dnlz L
I = ———— exp (qV, /MkT) + I

G sat

T exp(qV, /mkT) + I

o at (832, 01)

Where Ai Is the approprrate junction area D the mmorlty carrier diffusion
coefficient and_q the Gummel ndmber for the hase regi_on and 'sat .is small
< 0.1. nAlfor"_ithe substrate current)'.'- :From s'e_ctionA8.2_.6 it is clear that
G. and te a lesser ex.tent .Aj depend upon the app‘lied_vqltage vbe (Table

8.4, A D.n and G all have temperature dependences. Thus we might

' ekpectf Eq. 8_32'.01 to 'reduce to an expression of the form

(3+n)

I=A vY T exp(—l-:’g/k'pj exp (qV/mkT)’ (832.02)

whe're‘A. .v,- n sa‘nd m are cqnstants._ rn the following sections iAt is hoped
t.o' measure these .con‘stams for each of the terminal“currents using least
squares fits to average the input data. Unfortunately in the absence of
any'- direct measurement of the voltage dependenee of G (and Aj) and  with
only two varlables (V and T this appears to be an msurmountable problem.

- We consrder in what follows a functionat form of

(3+n)

‘I =AT exp(fzéjkT) ‘exp (qQV/mkT) S (832.03)

- Where the vOltage dependence of G and A] will modify'- the value of m

_‘sllghtly (m © 1003 rather than m = . Two plots were consrdered that

together obtam the best values for A n and m Furst a plot of
togyo o) = 3 109, (M) *+ Bg/XT ed o) (832.04)

against Iog]IO(T') is used 1o obtain values for A and n. . This plot (see for
example Flg 8.13. 815 816) however suffers from the dusadvantage of

having o,nly-,‘a small range of temperatures from whrch to extrapolate
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(!og]'o(T) varies from .2.32 to 2.57) the constants. The second piot is of

1°g10(1(v;vmean))"(3+n)1°910(T)+Eg/kT1°910( ) (832.054a)

here V i ‘mean val fv ' meas
where Vo on s the A_ean ue o Vbes from the rneas(ureme»ngs for that

~temperature (used in section 8.2.6) against

qv /KT 1og10( )' . (832.05b)

mean
.'lTnis elot_ (_see_‘ fo‘r_example Fig 814 8:17) gives a much more aecurate
extrapolation o.f A since the latter varies over a-larger range than the
previous Ieg(T.).i piot (typically 5 to 16). - This impros}ed value of A is then
used with a convemem average value from the first plot (at log(m = 2.5)
| to gwe an |mproved value for n.

(av ordinate at'log(T) = 2.5) A o
—_— ' ' (832.06)

2.5 - 2.5

This alters the plot defined by Eq. 832.05 which is _then-.repeated. Thus by_'
iteration best fit values for the constants A. n. and m in Eq. 832.03 are

~obtained. -

_ . éy choosmg a dnfferent value for the potenual ..(Vmean)A .xat each
? -"»:temperature the p+ epltaxnal depletuon wndth is held constant (Table 8.5 in
.“secuon 826) so that the Iateral and .verucal base areas remain the same.
-rhrougheqt the' te‘_mpe__ravture'_ range. An_y te,mperature -dependence "detected
ii(Tn-) -will th_en; be "a.result 6f the 'temvp.erature" depenqen'ce of the ditfusion
Hc_c')efficient b-and to ai’le‘sser 'extent mé effeetire 'rn'ass_,es used in the
caleulation- . of )t_he ) lntrinsic carrler concentration.. This latter
.temperature dependence whlch may be as much as T (from the. data of

A Jaeger el al 1980) is cgnored assngmng n to the temperature dependence of

the diffusion (,oemcuent



D=D_ T Cal e (832.07)

Having evaluated ‘the -temperature dependence of the diffusion
coefficient (and by virtue of ‘the Einstein relationship"the mobility) the
Gummel number (G) may be evaluated-from Eq. 832.01 and Eq. 832.03
6 s —21 2 =29 : S (832.08)

where the intrinsic carrier concentration 'is given by (section 8.2.5)

g - o o 31,3 _
ng® = Ay, T exp(-Ey/KT) = 4:9161.107 17 exp(-E/kT)

8.4 EXPERIMENTAL RESULTS.

The thebrétical expressiof)§ used to an.ahtl,ys’eA the experimental
daja . ﬁa’ve _‘be:,‘en-- Aou'tlined" in section 82 in se_ctlbn 8.3 {hé basi>c. ‘
A:é;_;.;')e'rimevntailv'At‘éc.:ihniqqe has been detailed. in this section the measurements
of ju'n(v:ti‘on_-are‘a\_"(e.é.]”),‘ an_ci fembera}ure (8.4.2) comp;léte_ the information .
fequi(gq tb' ana_lys;é' the 11 sets‘of. current voltége meas}ﬁfréments, madve‘on the'.

four In.;_egAr.atje;q_ Injeétidn Logic cells' detailed in an 8.5. "VTb test the
'V."v:;x"'li'ci:i"t_y'; .qft':_'t‘hhe':' de;pléjtion Jaye’rb' calculéfidns in sect.ion'_.v 8.2.6 the Gummel
humﬁef@_f&? the sg.ipérf_,e, base (GB = 1.-20'4.10]2 cm-2, ."'sfeACtion ; 8420 and
l(.at-e.r'é‘l' pnb‘)t.i*_ahéie‘;t'cijvr (G': = 2.2_%.'(»):.4.‘10?2 em 2, sgéf_ion 843  are
| __measu'red.v '.Thesg cOm.pa.rze‘ within '\’a few percent with t’h‘e_'theoretic‘al values

2"‘(Tiable 8.7 and 2.23.10'%  (Table 7.5 calculated in° section

of 1.16.10"
' - 8:2.6. The temperature dependence of mobility is. also measured for the two

base regions.

In section '8'.4.4 the substrate current is averaged by a method



similar to that detailed in section 8.3 thus, using the junction area Ab'
the substrate 0urrént'density Jpsi is ‘measur'ed. However due to the
recombination in ‘the buried layer the expression used for the substrate

current (Eq. 821.08) involves a term in WL that ~introduces an

b
additional temper.atu;re. dependenée. The difference currents (ld) are
analysed to p_ervide values for the current density J “at each of the
‘temperatures following the procedure set out in section 8.2.2. These
current dénsifieé are used to evaluate the temperavtﬁre dependence of the

transport factor (Eq. 821.12). Thus the temperatu(e”dependence of the

factor in W /L is measured (Fig 8.18) and the minority carrier mobility
0 __2

: N, = 2.410'°, by - 58 7% cm?/vs) in the heavily doped buried layer may be
extracted from the least squ‘ar.es., fit substrate current data. The minority
carrier lifet‘imle in the heavily dbped region may a‘ISO‘_be calculated (Eq.
'821.15): and- is. found to be 30 £ 10 ns. Finally i_n sectidn 8.4.5 the
preceeding déta is used in the expression for the band gap narrowing (Eq.

821.14) to obtain a value for the band gap reduction in the buried layer of

100°% 15 meV.

841 . Area measurements.

.M-e;»asg)rem‘éms qf the j‘unc.tion areas were m;a__dé through a shearing-
ﬁiéroéqopé bclm ‘the 'fa‘priéated devices. T_hese; wérel supplemented Dy
| meaéurenﬁen'ts made from the -mask set and from photog’réphs of the devices
wi'th and Withdut. the "m‘etavlizatior‘m' removeq.‘ The above areas were then
édjustéd for sideways solid state ' diffusion by adqﬁg on 2/3 ot the
junction depth (Fig 8.6) to the horizontal dimensions. Corrections for the
depletion layer widths ‘calc'::uliate'd'in section 8.2.6 were made resulting in

the following junction areas:
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Table 8.8

Junction areas.

“Cell - . - Areain um? : o
Ao- Ros A e Aeal A
1 464.87 138429 89.71 193887 0.0 20.47
2 14805 138429  89.71 1938.87 288.9  20.47
3 0.0 184916  89.71 193887 0.0 20.47
4 0.0 526.88 26469  791.56 0.0 61.40

8.42 - Temperature measurement.

"The collector current is determined mainly from parameters in
the lightly doped super B base. As such it is taken to be .independent of
heavy doping effects.. Using simple theory (Sze 1980. Hart 1981 the

cotlector current may be described by an expression of the form

i : :
- exp(qVp/KT) + I 35at (842.01)

‘."With ~qumve:|_hu.’rr;_bevr‘~GBA = f -NAa(‘x)v dg . |

‘ Ujs’ing ghe . firét a;/eragi"ng' plot detailecj in Eq. 832.04 an
esffmaié’ r_nay be ‘rnadév Qf the temper_atu_ré dependence of_. the .mobillty in the -
superB bé‘se using th_e tem~per_ature 6alculated from the _s'lop"e of the current

: :_3\/6'{3"99 p|ots ;(_for‘exa‘mpl‘é Fig 8.9, as‘sum»i_n}g‘:_an Ai_deamy- factor m=]‘ in the

| ) ;1'sp'a| Vw.ay).'. ) .-Thi's gr_ahﬁ is pres}ented _ iﬁ Fig .8.12.  ‘When fhese fi;st
. e§tim'a}tes "t_:o_vthe temper;tu{g--_alre UAsedbtheAy pfodubé 5_-'s'ystematic scatter on

the’ Ia:te.rl r;s'ults. ‘fhis c_an‘be avoided by usin‘g.the line of regression (x

on y) shown (A=0.97, n=' - 1.32) to predict the best fit value of the
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int_e:rcept'parameter léo for a given temperature .

. n : ’ 4 ' -
ICO = A T exp (- Eg/kT) - . (842.02)

Hence using values tor the collector current at the voltage Vmean , the
optimum slope» of the current voltage plots may be calculated and a more

accurate value for the temperature may be determined. These results for

" ‘the temperature before optimization an_d after are presented in Table 8.9.

- The temperature dependence of the dlftUSlon coeftncnent is now
~found from the values of A and n above using EQ. 832.07 and values from

, section 8.2.4

o ' 3156 .
D =D . T = 51565.4 T T1-3158 _ ye/q ke (842.03)

This results in a temperature dependence for the mobility of 177232 hat

compares favourably with those quoted in Sze (1981) -2.42 and Wolf (1969)

Table 8.9

* Temperature from the collector current (K)

- from IV curves . improved E.
B . temperature @B
. 363.0 - 365.96 1.1031
3595, . 35588 1.1059.
.-343:5 339.85 - 1.1103 -
321.0 322.81 1.1149
Lo o .. .3128 . 313.04 1.1175
P e e 8118 L 31275 - 1.1176
R Yoo . 2962 - . 297.40 1.1216
2836 - 28351 - 1.1252
264.1 - 264.59 1.1300 .
2426 236.67 . 1.1368
' 208.2 - 207.32 ~ 1.1436

The collector area (A )‘given in 'Table 8.8 is 288.9 um2 -which

substltuted into Eq. 832,08 gwes GB 120410‘2 This is very close to

| the the value calculatgq in se_ctron 8.2.6 from the integral of the super 8



base of"l'.le £,.0."04.l,0]2 em 2 This indicates -that. the 't_emperature

measurements quoted in Table 8.9 have been succesfull.

843 _’C-lI and temperature dependence'of.u in the lateral transistor.

-'._.Another'me_asure of the success of the-experi‘mental measurements
vis found .‘ln -' a comparlson of the .i.njector current wlth lts theoretical .
-vvalue..‘ The injector current’ l‘s also essentlally a collector current and
from ssmple theory provuded the lnjector is held at the same potentlal as
'the epttaxlal layer_ it may be described by an expressmn snmllar to Eq.

842.01

I, o= — exp (qQVy, o/ KT) + Iinjsat . (843.01)

-fVl_l-ith,-‘G‘ummel’n_umberG = J Ny (x) dx

"l-lov"v_‘eve_r ’where ln the case of the prevtousl collector current the base
‘v epltaxlal depletlon wudthlls very_. small- due to the»slmilarlty of impurlty
"conc"entratlons‘.l’n'"that junction (sectlon 8.2.6)’ in the mjector the p+
'.-epltaxlal ;unctlons have much larger depletton W|dths due to the contrast .
ln _.lmpurl_ty_ concentratlon._. Consequent the 'voltage dependence of the.
"":’Iateral Gummel number is expected 10 be more pronounced (see Table 8.4).
Thts ls'reflected m an-apparently non — umty tdeanty factor in the '
--xm;ector current (see dtscussuon after Eq 832 03) From the change ln
'Gummel number shown ln Table 84 the apparent ldeallty factor would be
a“bout 0.3% greate‘r than unity (ie m = 1.003). ~The effect of the
temperature and voltage dependence of the depletlon widths shown in Table
. 8. 4 are reduced by usmg the m;ector current at the voltages Vmean' The

calculated Gummel number wuth these voltages varies by only a few percent

'wnth increase in temperature (Table 8.5).

= 8.30 =



The method outltned ln sectton 8.3.2 lor averaglng the values
tor the constants A n and m in Eq 832.03 applred to 843 01 is adopted.
A-The first plots defined by Eq. 832 04 is shown m an 8. 13.  As expected
from the mcreased voltage dependence of the lateral Gummel number and
hence lnaccurate values for the ‘ldeallty factor. the intercept plot has a
greater scatter than in the Flg 8. 12 for the collector current .Indeed. the
four .Iowest temperature mtercepts for cell 4 consrs_tently over estimate
the interc'e'pt.ﬁ These values were ignored when taking the average of the
cell. 4 data since they appear to represent a -sYstematlc error in the
’measurements. lntercepts from the - rematnlng cells lte close to one another

and result in three lines of regression (x.on y) that almost -connCtde. .

The second plot defined by Eq. 832.05 is presented in Fig 8.14.
it ls’;’clear_ that this se'cond_ figure gives -more accu_rate values for the
intercept than the first, _because of the increased ‘range of the abscissa.

“~In Table 8.10 the values of A. n and m from the two plots. are presented.

Table 8, 10

N Best ttt parameters for the mjector current

cell A':E'f S IO ‘m G cm 2
' Flg 13 Fig 14 - Fig13  Fig 14 Fig 14 'Fig 14 -
“ | " 2

-7‘._35 0.9697° '-2.3762 -2.0242 1.0118 = 2.08.10
. 2368 0.2468 -2.5425 = -1.7497 1.0065 1.71.10
..68.67 . 0.7157 -2.7241 ~ -1.9313° 1.0074 1.66.10
581 . 22202 -2.1162 -1.9490. 1.0087  -1.78.10

12
12
12

¥ 'w,‘fro”—q;f

From Eq 832.07 the temperature dependence of the dlfquIOn coefficient may

be measured and hence by the‘ Einstein relatronshtp (Eq. 823.01) the
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mobility, Using Eq, 823.02 and Table-8.3 (N, = 4.7.10’.9";;7&"‘3)

10 .-2.9

w, = 1.53.10° T cr_rt?/\'rs" ' f (843.02)
e . =29 ., T t

This temperature dependence of T for the mobility is rather steeper
than those quoted in the literature (eg'Sze T‘2‘2). . Whilst  the Gummel

num'ber' caloulatevd from Eq. 832.08 is given in Table 8.10. The theoretical
Gummel number from Table 8.5 derived from the integral of the base
concentration is 22.10'%2 cm™? that agrees well with those shown in Table.

8.10.. -

8.4.4 - Temperature dependent mobmty in_the heavlly doped buried
: Iaxer . r .

In order to caiculate the band gap narrowmg the substrate and
ditference,data also need averagtng.' The ‘same techntque introduced in
sect‘ion. ’8.3{2 is u_’s.ed’ with the_ exoeption» tha,t the intrinsic 'carrier-~
‘concen'tratton n s replaced b)t _--.the_j etfec_ttve" intrinsic  carrier
_.concentration , intrbdbced in Eq 825 05. Thibs requires a first
'- approxnmatuon to the band gap. narrowmg that 'win~la'ter'be trhprdv_ed. Fbr
the substrate Current the temperature dependence of the wb/Lb tactor' in Eq.- -
821 08 has also to be conStdered - |

' Gtven an estimate for the band gap narrowing (AEg) the substrate

current (Eq. 825 05) at the vottagesv mean is best futted to an expression

of the form

L (3n> S o
Tewb T A e"P‘ (Eg = AEG)/KT) ?’f‘,".“.’pe/’-“" . (B44.01) -

The ftrst plot (Eq 832 04) is - adapted by tncludmg the esttmated band gap
narrowing of 100 meV and are given m th 8.15 tor the four cells Except

at low temperatures where tn substrate curr’gnt |s parttcutarly srnall and -

=832 =
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dtfficu'lrt tomeasure .the rnterceptsx lle on good stratght lines. The least'
squares fits for these ‘points reveal the data for A and n (Eq. 844.01)
gwen in Table 8 11 for a value of AEg of 100 meV However the Wb/Lb
parameter in Eq 821 08 |s sttll needed before these parameters (A, n) may
be anatysed tor this the drfference current has to be analysed

~ Table 8.11

Substrate currént best fit parameters A_Eg = 100meV

cell A n
1 38210 ;0 ©0.6237 0
2 15810 0.3508
3 3.36.10 0.2160
" -10 A

2.53.10 10.5450

The difference currents 'd urere-calculated at‘ each‘\ralue of |b
_:chosen (the alternatrve approach ts to use the least squares data from the
base and in]ector currents) Thus a graph .simttar to those in Fig 8.8 -
Frg 8 12 could have been drawn up showlng each measured dlfference current.
" In this way _errors mtroduced‘ by averaging the injector and base current
.data__:‘: a:re ayo,'id'edf ‘_‘.TA_he '.differenc,e'current data is then 'ave_raged following
"t‘_he .proceduref'outli‘ned~ in‘-sect_ion;.&:_s.é'.- k Fttting the ;d’at_a to expressions

LI =R

(3+n)
Tg o AT

‘-."‘T"he :;f'r'nc_tusi_on (or-":"exctus‘to:n) :of'-:t'he A'Egt‘in ‘this expresston isi not strictly .
valrdsmceld |s made up the sum of four dtfferent current density :
contributiohs , (see sectron 8.2.2). Its presence »_(br-. absence) merely :
_."_aqj'u’s’ts th'e Value‘-o‘t;-n 'thained .in t‘h'e temperature range considered. Flg.
e 5"6"1"5?, the saturation piot fcjr‘"tn'is currs'r{t'(sg. ssz.'b;t,iw'nh aE; = 100
meV) and the best fit' pirameters obtained from. the second plot (Eq. 832.05)

"shown-in Fig 8.17 are presented in Table 8.12.

=833 =
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" _Table 8.12

" Best fit parameters for difference currents g

A n - m

'-8.077.102 -6.1380° 1.17396
1.058.10% . -3.9885  1.11124 .
1.242.10_) -2.1585  1.05990
5.352.10°° -1.7292 . 1.05995

The best fit 'Qiff-erence data presented ih..Table 8.12 are-theo
~ processed (see section 8.2.2) using'the areas oiven_ in Table 8.8 .to
calculate,the values of Jpv thatva're presented in 'Taole 8.13 un‘der -the
'heaoi_ng" Jpv~(a). - The unaveraged difference data was','also processed 10 give
v_aldes prese_nted as Jpv(b). .
| | | | Table 8.13

S v caloulated from ‘best fit (a) and raw (b) difference data

temp . applied _‘J,pv(_a) : AJpv‘(vb)
: voltage: . -2 o
K mv) - (Acm ) - . (Acm )
136506 364.5  2.644.10_5 210310
85588 . 389.0 © 272310, 322410,
33985 425 277310 4844105
32281 4685 292210,  3.291.10
313.04 4910 289210, 427210,
31275 4920 2921007, 1777.007,
20740 5285 | 2969.10_,  1.841.10_,
28351 5500 . 2743100,  -1.338.10_,
26450 6035 265110,  5.883.10_,
236.67 7340 ~ -8.859.10_s  -1685.10
207.32 6650 ~ 6.499.10 °.  1.293.10

‘Consndermg the. firstl set of values' the negative value at
T= 237K corresponds exactly to the one collector current nmercept that did
_"not fall close to. the average in Fig 812 - 3.44, log(T) = 2.385) and for
‘..\.AN,_hICh a-’large 'correctlon to T'IS maoe (242K to 237K) The |asf three

as shown by Table 8. 5 where

* measuréments suffer from poor choice of V
_measurements suffer from poor choice of Vo, ¢



the calculated Gummel number - is signifipéntly diffe.Arént_from the preVidixs
valhéé_. ' T.he:s’e values rﬁay then be ighored due .to .‘errvors arising from
<‘inAaccuracy in fhe tempera’ture and poor avera_ging. The .second set of Jpv

dgta iltugtrates the se‘ns‘itivity of Jpv to tﬁe ditference data input and
‘gives an order of magnitu_de illustration of the errors in the measurement
that range from .a-factor of 2 larger than the averaged value at T=340K to
| 1.6 smaller ath-_-'312.7_5.' This large e}ror in J‘pv- does not however effect
the calculation of AEQ'» significantly. because of ‘thAe‘- relative sizes of the

components’ that maké up Eq. 821.11.
.Valués for the transport factor and hence va]bes for W/L and the
lifetime may be calculated (Eq. 821.12 to 821.13) from either of the values

b
844.01). These are given in Table 8.14 and show consistent values for

of JpV given in Table 8.13. and the values of ls,p . (Table - 811 and Eq.
~minority carrier lifetime of (30 % 10) ns in agreement with those published
_in Hart (1981 pp 97) for a concentration of 2.4.10'°.

Table 8.14a

W/L and lifetime (1) data calculated with
' data from the four substrate currents

temp-. applied  W/L from best fit o7
- ~ . voltage: -data ‘ (nsec)
® . mw 1 2 3 4 1.2 3 a

- 36596 - 3645 23 23 23 21 17 17 171 21
'355.88  389.0 23 23 23 21 18 18 18 22
. 33985 4275 23 - 23 23 2) 19 2019 23
32281 4685 22 22 22 20 21 22 21 26
313.04 4910 22 22 22 20 23 23 23 28
31275 4920 22 22 22 20 23 23 23 28
297.40 5285 21 21 .21 1.9. 26 27 26 32
283.51  559.0° 21 20 . 20 19 29 31 30 36
- 26459 6035 . 19 18 1.8 1.7 38 .40 40 48
. 236.67°  734.0 , _
207.32° 6650 1.5 1.4 13 13 80 94 97 113

= 8,35 =



~Table 8.14b

" W/L and lifetime (1) data calculated with
~ data from the four substrate currents .’

temp applied W/L from raw data T

voltage - ' . (nseQ)
K (mv) . ] 2 3 4 1 2 3 a4

36596 3645 20 231 21 1.8 24 24 23 29
355.88 -~ 389.0 24 25 25 23 17 17 17 20
339.85 427.5 28 28 29 26 13 13 13 15
322.81 468.5 23 23 24 21 20 20 20 24
313.04 491.0 26 26 26- 24 - 17 17 17 20
312.75 492.0 1.7 %7 1.7 15 40 41 40 53
297.40  528.5 16 16 1.6 1.4 44 46 45 59
283.51 559.0 : o

. 264.59 6035 .23 22 22 21 24 26 25 30
. 236.67 - 734.0 S : _
207.32 665.0° 23 21 21 20 30 33 33 37

Finally the logarithm of the parameter in Eq. 821.08 for the
subé;tr_.ate current
> - . (844.03)
S s:tnh(Wb/th : T

b
is plotted agatns_ttlog('.l')' in Fig 8.18. Least squares fits were performed
on these data. from which the temperature dependence_s ot the parameter tor
the f0ur cells a 701 4703 5704 4ng T_O 2 are calcmated. Using these .
-‘._‘values and the n an_d»A yalues»trom Table 8.1t .the ternperature dependent
ditfusion coefficient may be calcu'lated and is presented in Table 8.15.‘.

-The raw data also ts used to determine a ‘similar plot to that in Fig 8.18

- derwmg a second set of data () also presented in this table.

Clearly the error mtroduced by the sensmvrty of Jp to. . the
dlfference currents results in inaccuracies in the temperature dependence
of the mobmty However from’ the data in Table 8.15 we might reasonably
: expect zero temperature dependence for the mobtluty ‘Slotboorn et al (1976)

,m their work on the band gap narrowmg also found. that the mobtlnty of

=.8.36 =
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holes in heavily doped silicon was constant with temperature.
Table 8.15

' n__2..
= T cm /Vvs) for the n+
p -~ #po Lor e

Mobility data (x
buried layer from best fit (a) and raw (b) data

cell y.po(a) n upo(b) n.

1 8.6 0.336 . 202 -0.217

2 19 0.198 _ 388 -0.331

3 27 0.137 530 -0.386

4 14 0.256 254 -.0'257. ‘
.. 845 Measurement of band gap narrowing.

- Having ﬁOV;I determined the values and temperature dependénce of
all the components making up Eq 821.14 é.new value for the band gap
'4}n'arr_owing' may be calculated. This will of Course adjust the temperature
'depe'ndenc'esnéalculat'ed in the previbus sebtion so to be thorough the
calcu!at'ion must be’ ilerative. However with the data presented in >t'he

.previous'sections the band gap narrowing 'for 300K may be calculated.

. The substrate current density at 300 K- may be evaluated from.

Fig 8.15 s0 that the natural togarithm of Jpso is given by

log (I ) = Y 1og (10) - 1log (A.)

(E_ - 0.1)

.+ 31log (T) - — 7 . (845.01)

‘where Y is the ordinate taken Fig 8.15 at X = log,,(300).  This varies from
- 29.77 for cells 1.2 and 3, to - 29.57 for cell 4. The remaining measured

parametef. that of the function in W/L. may be calculated from Fig 8.18
P D & S T A .

: b . . o - ,
log (——=— W, ) = - 0.58 £ 0.1 - (T=300K) (845.02)
= b \i:;&- ,,-T— ' .

It is clear that this latter parameter has .a small influence upon the

= 337 =



" eventual ‘band gap narrow‘i’ngfre:suj‘t.fj-The_'._Gurhmel ‘number for the heavily .

doped buried'layerv is taken directly from the fabrication details for the

buried layer. ThlS ion |mplantatlon was an Arsenlc lmplant of 10]6 atoms

cm-2 ‘at 25KeV. ~.Supposing al_l.v the ions lmplanted to be electrucally active

this gives a Gummel number of'l'o]6 cm_g,'. Using the mobility data from

Table - 8.3 the hole diffusion coefficient for an average concentration for

the buried Iélyer_(Gb/Wb =24 ¢ 1.0.1019 c.mcs) is 1.53 cmzsec_]. Finally

the electronic charge (q = :1.6.10_]9 C) and intrinsic carrier concentration

= (145 £ 0.05) 10'° cm_3)' complete the ‘necessary data. Using these

values in Eq. 821.14 the band gap narrowing becomes .
-AEg- = 25,89 (32.9‘-29.67+o.58) = (99.6 t 15) mevV (B845.03)

The major error .in the above figure for the band gap narrowing for heavily
‘doped (2410]9 _3) n- type silicon arises from the uncertainty in the
concentratnon to which thls band gap narrowmg should be ascrlbed The
- buried layer (Flg 8.3) is seen to have a peak concentration of 7. 10]9 _3.

Consndermg the theoretucal calcuiations of the bano gap narrowmg (Flgi
7.12). the band gap narrowing at this donor concemranon is of the order

of- 50 mev greater than at 2. 10]9 m e

The erro.-_r ‘due 10 the use of Maxwell Boltzmann rather than Fermi
Dirac- statistics throughout the analysis expressed in the form of Eq 825.06 |

" amounts to an error of
~ KT '1oge(1'+i 0.27 exp((E, - E_)/kT)) o (845 .04)

whach since the Fermi Ievel is. almost at the same energy as the conduction -

band (Fug 7 3 at 300K and 2. 10‘9 73 s only 6 meV.



8.5 - CONCLUSION

.fo summariz.e the measurements made in this chapter the
t'heor'etic;al ~(Tables l_8.5, 8.7 .and expefimentally .Imeasured (Table 8.10,
_section 8.4.2) Gummel numbers for the sensitive lateral base region are
within 18%, whilst the more stab.le super 8 base measurements are within 3%
of the the‘oreticaﬁ value. The more accurate result: is due to maintaining .
the collector dépletion width by holding the collector base voltage at
zero, whilst the inaccuracy of the Iaterél Gummel nufﬁber is due~ to the
voltage dependent (Table 8.4).variation of the depietion wi;itn on p* bése‘

implant.shown in Fig 8.4,

The temperature depéndences of the minority carrier mobility in

lateral (N = 4.7.10"® cm™3, up = 6.88.10° 7722 cm?ve), super 8 N, = 2.5

d
3 -2.32

10 em™3,
= 24100 ecm™3, By = 58.7 T
TS 27 (Sze 1980) and ° (Mertens 1980) respectively.

K, = 6.30.108 T cm2/Vs) and heavily doped buried layer (N ’

0 cm2/v$) compare well with values quoted eise

where of T

_ Measurement of the transport factor through the buried layer
with the devices chosen was difficult because of .the large error in
calculated values of Jbv (Table 8.1, 8.2) caused by poor choice of cell

. shapes. However these measurements resulted in a minority carrier lifetime:

) 3

in the buried layer (N_ = 2.4.10 '~ cm ) of (30 + 10) ns in agreement with

d

published . values (Hart 1981 pp 97). The band gap narrowing measured in

this buried layer is (100 + 15) meV. This measurement is mainly affected

by the non-uniformity of the buried tayer through "which the band gap

narrowing varies from 0 to perhaps as much as 140 meV at the peak donor
o o

c

; ] -3 R : - .
. concentration of 7.10° m ~. _This error could be overcome _in future

measurements by using a more detailed Gummel calculation which inctuded

band qgap narrowing  considerations (Eq.  821.09). The error in  the

]
\’.&'
ooy
=)

|



" measurement. of oy could ‘also easily be improved by a different choice of
geomet(ies' for the célls ‘(section 8.2.2) and would then provide further
check on the band gap narrowing (Eq. 821.14) that could equally be written

in- . rath .
in terms_of Jpvo rather than Jpso




CHAPTER 9

SUMMARY AND_ CONCLUSIONS

9.0 SUMMARY AND CONCLUSIONS

both experimental and theoretiéal results have oéen presented

tnal sugport'tne claim that-a-physicat band gap harrowing exists in the
neavy depi.ng region. -The .conce_ntrati'on at t«hich thi"‘s,band gap narrowing
starts\' depends upon the rnetal insulator transitionAcharvacterised by the
‘ Mott critical density (N.). oAt concentrations below this density the
:mpunty band is wetl separated from the host band edge However above

-this concentratlon the lmpurity band has merged wnth the host band. The
'concentratnon, at. which . this btendmg of host and impurity band occurs "

| ’varies with tempe"ra’ture. (4.10]8 ato K 2210'% a 300 K and type of

impurity (310 '8 502, 7.10'® (as) Sernelius et al 1981 The electron-
electron . and electron- impumy calculatlons presented tn thls thesis assume
that the bands have merged so the above concentratton acts as a lower bound

to the valtdity. of these results.

".In surnmary. the change in the self e.ne,rg‘tes (AZ(k) of electron
due to, 'electro.'n¥electron (ee) and electron-_i,mpurity 7_(ei:) interactions have
_,been“ calculated. This change in the selt energy due to the presence of the
}-é'xt'ra carriers and impdrities is interpreted-'as a shift in the dispersion j
| {'curves for the conductton (AE (k) and vatence (AE K) bands. | The

g’

has been calculated

concentration (N’ ) -dependent change in band edges due’to these interactions

* AE (k.'l:)fj 'AEV‘Q)'-% Azc(t{i) - A}ZQ(O) (900.01)

~ & 'is the wavevector of one of the six conduction band valley



whilst.the shift at k=0 describes the change in the valence band top.

. Expressions for the self energy in silicon are derived in
chapter 2.- From this chapter the self energy of electrd_h in the band n is

given by (Eq. 223.19)

in(w-v)
3

fhzee(n;k,w) = l LSS Go(m;k-q,w—v) e
o (27r) m '

. .3
A Vege (V) dTgdy (900.02)

with Go(n;k.w) the unperturbed Green’'s function in the band (Eq. 240.01)

and the screened interaction W__(q.w) - (Eq. 231.02) with the overlap

eff
integrals A, defined in Eq. 223.18. This first approximation to the self
energy ignores the vertex corrections and uses the free particle propagator

rather than the total Green’s function.
The effective potential

o 2. 2 ‘ o S -

Yege (4, W) =€ /E€, T €(q,@) ' : (900.03) -~

is in this thesus modelied by the plasmon pole approxumatlon to the

' 'velectron dvelectnc funcnon (e(q.w)). This is given by (Eq. 240.07c).

2
-1 . . . . . _
e (W) = 1 - B (900.04)
(w (q) - i6) - w .

wnh dlspersuon relatnonshap (Eq 232 10) where a term in q ) is included

to gave better Iarge q agreement with the Lindhard functvon

.-II

“l(q) wp% + gd,p?qz/ K+ eqz/ﬁz A
ki : T : - (900.0%)
2 . q2 3md§ T -
wp . ( l + ——5 * ’ 2 2 )
L kK 4m k. «

‘The real part of the self energy expression (Eq. -240.07):.
" describes the.exchange energy of an electron in' the band n. This is made ..

up of several parts characterised by the summation over band index m. Thus

:?9:2?



the self energy contribution to the conduction band is - made up of exchange
energies between electrons in the same band (Zeecc) .and exchange between

the electrons in the conduction.band and the valence band_(};eecv)

ee - _ee ee - ' ‘ ' :
Zc —‘):cc' + ch : : (900.06)

However as Inkson (1976) points but-it is the change i'ln the band energies
§ ihat- is of interest. This is derived from the difference between this self
, . . . int

energy and that present in the intrinsic semiconductor (L' n)' Thus the

change in the conduction band energy is defined by (chapter 3)

' ee' ee ee - int  _int ee ee
o= - - = = S .07
AL, = Lo+ L, Lo — Loy Loc = AE, (900.07)

" A similar expression may be derived for the valence band -

ee ee _ee int int ee. int ee .
sz', = }:vc + Zvv - z‘.vc - ):vv = ):W - zvv = AE (900.08)

However in this case the Intrinsic valence band has a self energy since it
T is full of electrons in contrast to the intrinsic conduction band.  This "

'_’Hartre‘e Fock energy must be subtracted from the valence tjand contribution.

ln chapter 3 thé shms in the conduction arid -vélenc,e bands due-
:to the c_.hahi.g.e in. scfeened veléctron—electroh exchangé energies (Eq. 300.02
‘Aéhd.‘.soo._OB)n are ca.lculléted.' It is -found that in the plasmon pole
"qggirgfi_r:hiati'c_)p ;theafs'e can be split up‘ into coulomb hole and screened dynamic
-zexchi'g:ﬁgg ce’nmbggons mémed by Hediﬁ 1965 in .conne_cﬁon with electrons

gases in metals see section 3.1)

ee . sx ch .
AE.(K) = AE. (k) *»-AEC (k).

(900.09)
“ ee _gx ch . ,
AEv (k) = AE_ (k) + éﬁ:v_.(k)

f

“w

@
]



‘The coulomb hole contributions (see Eq. 320.03 and 330.04)

, - © 2

ch e . Y - 1 a

AEc(k)-+22-f24 ) ) q
‘ moEEL o 2w, (Q) (wck - wc(k_q)-;wl(CI))
- .2 o 2 (800.10)

ch P s

AE, (k) = + —F5— Z S 5 o dq
an® €€, m o gql(q) (W - Y (k-q) ~ w, (@)

reduce the A_eAnergies of both conduction and valence bands contributing a
smaill increaée (+10 meV at 1020 cm—.a) t0 the change in the band gap as
predicted by Inkson 1976 (see Fig 3.5). ' The screened .dynamic exchange
contributions of each band (Eq. 320.03 and 330.04).nowe§er act in opposite

directions, both to reduce the gap (Fig 3.4)

. 2 K¢ w2
sx - e . _ . P
AE; (k) = - R I (@ @2 - @° -o° )2) aq
2T Efr o w, (Wek™%c (k-q)
o S 2 (900.11)
2 w .
sx P
2y =+ —o— L f (- P ) aq
41! €€ mo “ (CI) (ka""m(k-q))

With appropriate choice of the energy difference in these expressions the

' change in the band energy at any value of k may be determined

o 0

s .
[A) - W ’ - . = - W (qu)

ck , c.(}-(- q) cc (800.12)
o o

ok T Yy (k-q) T Yun D

Thelsum of gleétron—électron contriputionsitrom the valence
band ._(Fi}“g_3.3A) and the cqnduétion band (Fig 3.2) is made in Fig 3.6 were
th'e_ _total. "eléc'tron-'eleé‘tron cdntribution to. the band gap narrowing is‘
shown It can be seen that these results differ by only a few meV from the
results of Berggren and Sernelius calculated with the Lindhard dlelectnc
Afunlctuon; (Ft_g 3.2 ang _3;3). .Thgs agreement justitied the ‘use of the

plasmon pole appfoximatiqn in chapter 7 at finite temperature.



Chapter 4 s concerned with the ensemble averaged electron-
rmpunty self energy _Thts is calculated using the ensemble averaged

Green’s function (Eq. 420.04)

S . Nde _ .
“<I(nk,mq)> = fff... E(nk m™mq) 1'1 a A (900.13)

where n and m indicate the band and k and q are _wayevectbrs. This has beeéen
found'tc provide a convenient means of averaging the effect of N randornly
sited. ,irhpurities |n the'se.‘miconductdr.. volume 0. The Aensemble a‘vera‘ged.'.
electron_—impur_tty -selt ehergy has been found to be described to second

order by the'expression (EQ. 441.06)

. N' RN
o qa .2 3
ABL(nik,w) = ——3 ): f G’ (n;1, ) IW(l-k,w)| . A (k,1)d"1
L : —H(zﬂ) S :
1(900.14)
~-where _Go the unperturbed Greens function-; .W(q.w) represents the-f._

scre'ened electron—lmpurtty mteractnon (in thls thesns the plasmon pole'.“-
t :‘ apprOximation Section 2.:_5.2) and An' represents the coupling between bands :.

n and _m.' The 'tntrinsic Semtcchductor has no.electr_on-nmpurny mteract:o_n,
" sovvtha‘t -the ch'ange in electron-impurity selt energy due to the presence of .

: the p03|t|vely charged ionised- |mpurtt|es is gtven by the real part of thns '

| -fsetf energy (Eq 450.012)

. Agn(k) % ﬁgg(z (n k, wnk)) « s S ._(900‘. 1s5) -

_Thns represents the change in the energy of the band n due to the electron-

' rmpunty mteractton The change in the band 9ap due to these interactions

is glven by the dtfference between the change in energy of the bottom ot -

one of the six conductnon band vatleys (ag® (k)) and the change in energy - -

of the top ot the. vatence band (AE (0). Eq‘ .450.02)
At-:?;' =A-"Aée+(k.)n;~ AE81('0.) | o o (900.16)

o <T- I - S A

=986=



this is given by (Eq. 450.05)

A_Eei _ (1- + mH + mL Nd |W(q,wco)| 4ﬂ§2 dq
eg 2m 3 J o o
g : de A(2m) (W - W)

co cq’”

;From'tn_e results drawn .in_Fig' 4.1V it can be seen that the
électron-—lnipurity -interactions result in a band gap. narrowing which is
numerically smaller than the corresponding reduct‘i‘on--‘due to electron-
electron interactions (Fig 3.6). These results are compared td the results
obtained by Berggren and Sernelius (1981) who use 1ﬁe Linghard die.lectric
function and are also ploﬁed in FigA 4.1.v it can be seen that the present
results based on the plasmon pole approﬂmaﬁon agree wlithin a few meV with
these résults~based on the full Lindhard function. The Lindhard formula
may ailso‘ be approximated by thelplasmon‘ pole approximation for the -

“electron-impurity interactions.

The plasmon:‘pole self energies plotted in Fig 4.1 are valid .

until -the perturbation approximation breaks down at concentrations where

the impurity s,eparavlion.(Nd-VS) approaches silicon’s étomic spacing. This

21 ¢m™3 (see Fig 2.4), where Nd'”3

) the lattice constant. - At low concentrations

occurs above donor concentrations of 10

~approaches d 5.4.10 cm ™3

the limiting concentration is the Mott- metal insulator transition that

occurs at about 6.10 8 cm 8 at zero temperature.

- The etje_c‘t_"qt. the random impurity p.otenti'al-ana the associated
random av_é_;iagé potenﬁap is studied in_chapter 5 by two methods. Halperin
. and Lax 4produced v-a fOrmplatién tor the density of statéé deep in the band
~tail.  This has until now been inte‘r‘preted as producing a finite bang tail -
'.}hat extends ‘some 30:.Ar'ne\./ into the band gap. In this thesis thevaverage.:'
| eiectron-i'm;puri'ty .intefr‘acftioh. is .éhowh to lower - the anerturbed band edge

so as 10 diminish the scale of this tail. This is qualifiea by the second




jsét of  calculations .based .on Lioyd and; Best's vériatiénal calculation of
,me'dené,ity' of'siat'es within the band tail.;tna:t gives a good approximation
10 the density of states close to-the band edge. whilst deeper in the tail
.Halperin and Lax’s calculation is expected to give a befter' estimate to the
density of states. Although tné precise means 'of linking these two
calculations remains a vproblém it is clear espemally from the Lloyd and
Best caiculations (see an 5.3 that the band tail is much smaller man has
previously been supposed. indeed both the modifned Halperin and Lax tanl
in shown in an 52 (and fig 5.6) and the Lioyd Best tail shown in F|g 5.6
both intercepts with the host density of states at (2 £ . 108 ev em™2

This is in agreement with the rec_ent work of .Sernelius 1983 on the high-

stress birefringence and piezoresistance in heavily doped germanium.

In chapter 6 the electron-impurity inte?gct_ion in an ordered
array of iﬁtpurity cehtreé is 'caléulaged. In comrﬁo,n‘ with otﬁer workérs
(Berggren and Sernelius (1981, 1983) M;han (1980) the electron-impurity
mteractnon- in this model is found to be small beéause the inter-Va‘Iley |
séa&t_ering incfuded byi Selloni and _Pantelides (1983) na s not bee_n included.
'Ho.v)ever" this mod_el is  not’ physicaly acceptable. éince in the real
semiconductor t'he b.impu-ritAies are mbre likely to be _sitéd randomly than in '

‘ordered arrays. -

The. most promising calculations of chapter 3 éﬁd chapter 4 for
-.mef glectron-etectron “an_chi Aeiectron_—-impurity- .i’nteractions are extended 10
finite temperature in ichapter 7. Tﬁis iis made possible, by the: simple
struciure _of. the plasmon pole'dielectric function us‘edA in these chapters.
"The coulomb hole and.screened dynamic exchange comrfbuﬁons to the chahge

. in".the electron-electron self energy (n‘amed."by Hedin 1965 in connection



with electrons gases in metals see section 3.1)

a eék - ™) + 4 ch %)
ECTh) = AED (k) + AEC

(900.17)
ee . - 8x ch
8E, (k) = &E_ (k) + AE, (k)
at finite. temperature become (see Eq. 731.01b and 732.02, 732.03)
. oo ’ 2
aeSP (k) = e i ( N o *® p
c 7T 2 T w, (q) 2
2m €€ _ wl(q) - w c (Ko Q)
w2 -
2w ?q) o ' ) 4q
1 (W (k.q) + w, (D))
(900.18) .
@ 0 2
sEg (k) = —5— L [ (Ng Ca— 3
: 4n €€, m w, (q) w, _(k,9) - w, (Q)
o 1 vm 1
W2
p 1
+ dq
2w, (9F) o ..
1 (wvm(k,q) - wl(q))

r’e‘dq;;il'n:g thé energies .o'f,t_)'om conduction and valence bands contributing a
~ small increase (+10 meV at 1022 cm™) 10 the change in the band gap as in
the 2ero temhberat_ure fesuits of chapter 3 (sée Fig 7.5 and Fig ?.9). The
screeﬁed dynanno exchange contributions of each band (Eq. 73L01a and

'73203) however act in opposite directions. .both to reduce the gap (Fig 7.4

. and 7.8)
AEc(k)'=- _ffc,q(l' 2 ) 2)ciq
27 €€ w,(q) - w_ (k,q)
r O 0l _ cc
o ez '- o up2 A _ (900.19)
BE, (k) =+ —— T [ ( > 0o > ) dq
am e, o wl(CI) - wm(k,Q)

Wwith appropriate choice of the energy ditference in these ex'p'ressions the



change in the band energy at any value of k may be determined

0 o

w - w = - wo (k,q)
ck ¢ (k-q) cc (900. 20)
wo ° wo (k,q)

vk T Yvik-q) T Yvv
The major difference betWeen the zero terﬁpérature calculations
of chapter 3 and the valués for thg ‘change in thé conduc:tion (valehce) bang
bottom j(tbp) ét a 'iemperature qf"SOOK :.shown in chapter 7 is a small
increase in the finite temperatu(§<band gap at low concentrations; This
increase’ ié éaqsed' mainly by the reduction (7 meV at 1017 cm—a) in the
conduction band shift (Fig 7.6). The valence band shift (Fig 7.7) remains
within a 2 meV ot it zéro temperature value. The |érge change in the
conduction band shift is due to the decreased screening.(small 1/k) at low
.'concentrations (Fig 7.2). 4This‘ has a disproportionate effect on the
conduction band where the maghitudes of tﬁe screene,d dynamic exchange and
.coulomb hole terms are additive. The sum of this électron-electron band
gan reduction and the electron-impurity band ,gab re‘dyct‘ion c'élculated in

the section 7.4 results in a net increase in the band gap reduction due to

the large increase in the latter contribution.

- in f‘=ig‘ 7.12 the sum of the electroﬁfelectrqn and electrbﬁ-
irﬁhurity self energies is brese’n_ied for both zero and 300 K. As detailed
in the introductibﬁ td -Achapter 7 these _results are only valid ébove the
Mott critical concentration thch is higﬁer than zero temperature value due |
to the increased- low concentration electron screening length (1/x see Fig
A74.2). Below this concentration. aithough tﬁe electron-electron seif
energies shown in F‘ig'»7’.6 and Fig 7.7 are still valid when there are Nd‘
electrdns‘ in the conduction béna. Sth_e electron-impurity self gneréy vis no
longer valid (SQQiQO 7.4.2 and 4.5. The Mot transition then defines the

lower concentration limit to the results: At low concentrations below 101> -

i)
o
o .
il



em™2 the experimental band gap narrowing resuits might well be best
described by the statistical approaches‘: of Heasell (1979) and Popovic
. '(1979) where a degenérate semi—populated' impu‘rity ‘band separate from the
host band is' considered. H.owgvér above the Mott critical density the true
many body éffects calculated in the previous sections should be used.

assuming a merged conduction and impurity band.

Finally in chapter 8 the expefimemal measurements of the band
gap narrowing and minority carrier Iitet'ime. in a heavily n-type doped
silicon buried léyer are detailed. These measu_remen;# are made in and
lntegratéd '-lnjéction Logic transistor and many ofhef parameters are
measured. -Measurement éf:the-~transporf factor_triroug_h the buried layer
.4wam‘ the 'devic,;es' chosen was ditficult. because o‘t‘ the large error in
calculated va_lt;es.ol the mi:no'rity‘c.urrent entering tﬁe bur§eq layer (Jpv
Table 8.1. 8.2) caused by poor choice of cell shapes. However these
rheésuremems resulted in.a minority cérrier lifetimé in the Dburied layer

19 3

Ny =240 cm ) of (30 % 100 ns in- agreement with published values.

(Hart 1981 pp 97). The band gap narrowing measured in this buried layer is
(100 * .15') meV. 4This measurer‘n‘ent is mainly affected by the non-uniformity
of the ‘bu'riejd layer through which the band gap narroMng varies from 0 to
_ pefhaps asl?nuch' as 150 meV at the peak donor lconcen‘tration of 7.10]9 cm-a.
_ This error could be’ ovefcomé in future vmeasmemems. by using a more
Oetaile’d- Gummel clal‘cu.iaAlio'n .Mvwich included‘ band gap narrowing
considerations (Eq. 821.69)._ The error in the mea-suremeni: of Jpv couid
also easily be_ improved by a Adiﬂerent choice of geometries for the cells .

(seqtion 8.2.2) and .would- then 'provide further . check on the band gap

narrowing (Eq. 821.14).

To put these experimental results into perspective Fig 9.1

n
(.

.9.10



shows the band gap narrbwing CQICuQated in chapter 7 at zero and 300 K.
' Also plotted are 'results-by Balkanskii ‘et al (1969) for 35K and 300K
defived vfrom optical 'ﬁeasuremems. Although these experimental results are
much lower than' thé present theorétical ‘results the trend of increasing
band gép narrowing for higher te‘mperat‘urAes at low concentrations is cleafly .
-inoicatea'. Also plotted is the -empirical formula derived from collector
~current measurements by Slotboom et al (1976) |

BE_(N.) = 9 (R + (R)> + 0.5)3) (mev)
g Ma -
(900.21)

N

17)

'R = log (
- €10

{Thls can be seen to give band gap narrowing resuits within 10 meV of the

fero temperature theoretical values. Finally the present result of (100 %

15) meV at a concentration of 2.4.10'2 cm™> is plotted. Recently ihe
,! . . :

difference between optical and transport measurements of the band gap
narrowing has been reduced by the interpretation of luminescence results by

~ Dumke (1983).
i
i

9.1  FUTURE WORK

{
:A
it
+

improvements  to the present theore'ticbal calcﬁlations for
beavily dopqd,'siliqon could be made at two levels. In the fifst place the
. present calcufations can .easlly be extended to cope with other materials.
For tﬁis reason in Appehdix A values quoted 4_a_re .fok silicon and gallium
Aar;e,e_nide. “in the second place the accuracy of the present calculations
could be imp,roved. by numerically evaluating the overlap integrais (Anm(k.q))g

or by increasing the number of terms in the self energy as outlined below.

A major improvement to the theoretical calculations presented

here it is 10 consider Klauder's (1961) best approximation 1o the static

= 9.1
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(energy- E or w - independent) electron-impurity Green's function uséd
recently by Ghazali and Serre. (1983, and Eq. 441.04). In functional form
Eq. 441.04 reduces to (Ghazali and Serre Eq. 2)

N

K(q,p) = 5 J W6 (p-k) (W(-k) + K(k,p)) a'k

. (2m) o : :
ei (%10.01)
L") = K(0,k)

k. @ ang p are wavevectors., K(q.p) is the vertex function that when solved
by iteration gives a series like EQ. 441.04. On setting g=0 in K(g.p) the
electron-impurity self energy shown in Eq. 441.04 is derived. G(k) is the

total Green’s function ‘

G(k) = —3 '_1_1 : ‘ | : (910.02)
(G (K)) + L(k)

@%0 is the unperturbed Green's function and the total self energy is
- given by - the sum of electron-electron and electron-impurity self energies

(Ghazali and Serre (1983) Eq. 2¢)
L) = 2500 + 5 (k) I (910.03)

The spectral density (AK.E)) and hence the density “of electron - states
(p(E)) is given by the imaginary part of the total Green's . function -

(Ghazali and Serre (1983) Eq. 3 and 4)

A(k,E) = £ (1/7) Im G(k,E)
' . (910.04)

pP(E) = (/) Tr A(k,E)
. 1 is the volume and Tr means sum over the k's and spin states.

On solving the equations Eq. 910.01 to 910.04 Ghazali and Serre
calculate the density of states due to electron-impurity and electron-
electron interactions in a simple semiconductor (non degenerate parabolic

bands). However for the electron-impurity interaction they use the Thomas




Ferm‘i potential.  In future work the pla:smon polé approximation to the
electron dielectric’ function Oeri\)ed in cnépter 2 could be used. For the
ponstant contribution frorr; the electron-electron interactions they include
' only the Hartree Fock exchange energy at the Fermi energy. An improvement
would be to use 4the elecfron—elegtron sh4itts calculated in chapters 3 or 7
shown in Fig 7.6 and Fig 7.7. Still further improvement would come from
including the degeneracy of the valence band although this would result in

significant extra complexity.




APPENDIX A

Containing selected variables and constants for silicon doped .n-type with
N cm~3) donor impurities.  Values [13.1] are for n-type GaAs as a

comparison.

INTRINSIC BAND GAP (see section 8.2.4)

4.879.10 % o2

-4
v
T+ 180 +1.58.10 T (eV)

E (T) = 1.165 -
g(™ = 1.,

INTRINSIC EFFECTIVE MASSES AT 4 K.
Conduction band

mt = 0.19 mo

Aml 0.97 mo

Number of equivalent conduction band valleys Mc =6
=11
2:°1/3

= . = . 327
mde (mlmt) 0.3 . 2 m_o
[f 0.067.m°]
: -1
mo. = 3(%— + %—) = 0.2596 mo
P v+ ™
(= 0.067 mO].
Vaience band
_mL‘- = 0.16 m_ [= p.ogz "‘o:]~
mH = 0.5 mo [= 0.45 mo] |
. 3/2 32 .2/3 _ _ .
. m, = (m,L + m ) = 0.559 m .'[- 0.47 mo]

RELATIVE DIELECTRIC CONSTANT ¢ = 11.8 [= 13.1]
LATTICE PARAMETER 5.43 & (5.65 &)

© ATOMIC DENSITY 5.0.10°% cm > (4.42.10%% cm ™)

..A_]...




EFFECTIVE BOHR RADIUS

2
. amee N -7 6
A,¢g = — 3 = 1.9086.10 cm [= 1,035 10 un]
. m e
de

EFFECTIVE RYDBERG

2
e
= =———————— = 31,965 meV [= 5.311 meV]

R =
eff 87”:‘Fraeff

THOMAS FERMiI SCREENING LENGTH

2 e 6f (E
C =S rem (- )
€€,
Parabolic band
3/2
=M 2 (mde ) e VI
e 2 -1/2
2mh EEr /
Boltzmann statistics
2
2 S MNa e 103 Na 2
K = e KT 1.775.10 T~ cm
X
Degenerate statistics
1/3 _
i/6 M
K = 2 (3) VC Ncll/_s = 8.25-’-&9.103 N;/G cm 1
14 aeff
[= 1.951.10° N;/S cm 1y
THOMAS FERMI ENERGY
2 2 :
r - -
E = K - 7.9352,10 8 NI/3 ev [= 2.165.10 8 N1/3 ev]
K 2m a d
de :
FERMI WAVEVECTOR (T=0)
2 1/3 -
_ ., 3m 1/3 _ /3 - -1 __ _ 1/3 -1
kf = (Mc ) Nd = 1.,7025 Nd cm [-.37094 Nd cm "}

- A2 -



FERMI ENERGY (T=0)

22
E_ = hw, = f_ 3.375.10 2 N3 ev
£ £ .?.mde _' ' d

' -14
(= 1.1145.10 N2/ 3

a ev]

PLASMA ENERGY

2

N_e 1/2
Aw_ = K "—d—m—") = 2.1215.10 11 N;/z ev
P €€ Mo
[= 3.963.10 ! Né/z ev]
iIMPURITY STRENGTH PARP:METER (CHAPTER 5)
¢ = e 20 o . 1.1304.10 Y% NP (ev?)
. K T da
(amee_ )
r
[= 3.881.10 1° NZ/S ev?)
N, = Ny + N_

- A3 -
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