W Durham
University

AR

Durham E-Theses

Design of microprocessor-based hardware for number
theoretic transform implementation

Shamim, Anwar Ahmed

How to cite:

Shamim, Anwar Ahmed (1983) Design of microprocessor-based hardware for number theoretic
transform implementation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7213/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7213/
 http://etheses.dur.ac.uk/7213/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

DESIGN OF MICROPROCESSOR-BASED HARDWARE FOR

NUMBER THEGRETIC TRANSFORM IMPLEMENTATION

by

Anwar Ahmed Shamim B.Sc., M.Sc.

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

A thesis submitted in accordance with the requlations
for the degree of Doctor of Philosophy at the University
of Durham, Department of Applied Physics and Electronics. /

1983

s
g9 | SHA

Design of Microprocessor-Based Hardware for
Number Theoretic Transform Implementation

Anwar Ahmed Shamim

ABSTRACT

Number Theoretic Transforms (NTTs) are defined in a finite
ring of integers Z,,, where M is the modulus. All the
arithmetic operations are carried out modulo M. NTTs are similar
in structure to DFTs, hence fast FFT type algorithms may be used
to compute NTTs efficiently, A major advantage of the NTT is
that it can be used to compute error free convolutions, unlike
the FFT it is not subject to round off and truncation errors.

In 1976 Winograd proposed a set of short length DFT
algorithms wusing a fewer number of multiplications and
approximately the same number of additions as the Cooley-Tukey
FFT algorithm. This saving is accomplished at the expense of
increased algorithm complexity. These short length DFT
algorithms may be combined to perform longer transforms.

The Winograd Fourier Transform Algorithm (WFTA) was
implemented on a TMS59900 microprocessor to compute NTTs., Since
multiplication conducted modulo M is very time consuming a
special purpose external hardware modular multiplier was
designed, constructed and interfaced with the TMS9900
microprocessor. This external hardware modular multiplier allowed
an improvement in the transform execution time.

Computation time may further be reduced by employing several
microprocessors. Taking advantage of the inherent parallelism of
the WFTA, a dedicated parallel microprocessor system was designed
and constructed to implement a 15-point WFTA in parallel.
Benchmark programs were written to choose a suitable
microprocessor for the parallel microprocessor system. A master
or a host microprocessor is used to control the parallel
microprocessor system and provides an interface to the outside
world. An analogue to digital (A/D) and a digital to analogue
(D/A) converter allows real time digital signal processing.

-i-

ACKNOWLEDGEMENTS

I owe my unbound gratitude to Dr. B. J. Stanier for his
guidance, constructive criticism, invaluable suggestions and

kindly help throughout the period of this project.

I shduld like to thank Prof. G. G. Roberts for allowing me
‘to use the facilities of the Department of Applied Physics and
Electronics. I am grateful to my colleagues for valuable
discussions. Furthermore, I am also thankful to the members of
the workshop for providing the necessary and technical

assistance.

I should also like to thank the computer unit and the

library staff for their co-operation.

I greatly acknowledge the moral and financial support I
received from my parents, brothers, sisters, Mr. A. Khan and
family and H. Khan. I also extend my appreciation to

Prof. N. A. Khan and other friends for their moral support.

My special thanks are due to Dr. M. Ahmed and the South

Fields Trust, London for providing the financial support.

-ii-

Dedicated To My Affectionate Parents

Who Inspired Me To Higher Ideals Of Life

-iii-

ABSTRACT
ACKNOWLEDGEMENTS
CHAPTER 1
Introduction
CHAPTER 2

Elementary Number Theory and Number Theoretic Transforms
2.1 Introduction
2.2 Discrete Fourier Transform and the Convolution
2.3 Congruence
2.4 Chinese Remainder Theorem (CRT)
2.5 Groups, Rings, and Fields
2.6 Number Theoretic Transforms
2.6.1 Mersenne Number Transforms

2.6.2 Fermat Number Transforms

CHAPTER 3
Multiplication Techniques For Microprocessors
3.1 Introduction
3.2 Clocked Multiplication Algorithms
3.2,1 Multiplication on a Microprocessor
3.2,2 Burk-Goldstine - Von-Neumann Method
3.2.3 Robertson's First Method
3.2.4 Robertson's Second Method
3.2.5 Booth's Algorithm
3.2.,6 A Short Cut Multiplication Method

3.2.7 Multiple Digit Multiplication Method

_iv-

3.3 Clockless Multiplication
3.3.1 Array or Parallel Multiplication
3.4 Read Only Memory (ROM) Multiplier
3.4.1 Direct ROM Multiplier
3.4.2 Quarter-Squares Lookup Table Multiplication
3.4.3 Multiplication Using Logarithms
3.5 Parallel Multiplier Chips
3.6 Modular Arithmetic on Microprocessor
3.6.1 Addition Modulo 65521
3.6.2 Subtraction Modulo 65521

3.6.3 Multiplication Modulo 65521

CHAPTER 4
Implementation of the Winograd Fourier Transform Algorithm
4.1 Introduction
4,2 Computation of NTT using WFTA
4.2.1 Determination of the Constants for the WFTA
4.3 Architecture of the TMS9900 Microprocessor

4.4 Implementation on the Microprocessor

CHAPTER 5
External Hardware Modular Multiplier
5.1 Introduction
5.2 Design and Implementation of an External Hardware
Modular Multriplier
5.2.1 Interfacing Considerations
5.2.2 Interfacing the Modular Multiplier with the

TMS9900 Microprocessor

5.3 Results

CHAPTER 6

. 6.1

Multi Processor and Parallel Processor Systems

Introduction

6.2 System Organisation

6.2.1 Single Instruction Single Data (SISD) Machine
6.2.2 Single Instruction Multiple Data (SIMD) Machine
6.2.3 Multiple Instruction Multiple Data (MIMD) Machine

6.2.4 Multiple Instruction Single Data (MISD) Machine

6.3 Multi Processor Systems
6.3.1 Directly Coupled Multi Processor Systems
6.3.2 Indirectly Coupled Multi Processor Systems
6.4 Inter Processor Communication
6.4.1 Time-Shared Bus
6.4.2 Dedicated Link
6.5 Parallel Processor Systems
6.6 Array Processors
6.7 Processor - Memory Interconnection
6.8 Computer Systems
6.8.1 Ring Structure
6.8.2 Star Link
6.8.3 Fully Connected Link
CHAPTER 7
A Dedicated Parallel Microprocessor System
7.1 Introduction
7.2 Choice of a Microprocessor

-vi-

7.3 Architecture of the' MC6809 Microprocessor
7.3.1 Hardware and Software Interrupts
7.3.2 Microprocessor Synchronisation
7.4 Inter Microprocessor Communication
7.5 Dual Microprocessor System
7.5.1 Merits and Demerits
7.6 Design and Implementation of the Dedicated Parallel
Microprocessor System
7.6.1 System Architecture
7.6.2 Design of the Control Microprocessor
7.6.3 Software of the Control Microprocessor
7.6.4 Design of a Typical Slave Microprocessor
7.6.5 Software of the Slave Microprocessors
7.6.6 Synchronisation of the Hardware and the Software
7.7 Transforms of Real Time Signals

7.8 Res_ults

CHAPTER 8
Conclusion
Appendix-A
Modular Arithmetic Routines for the following
microprocessors.
TMS9900, MC6809, 780, 6502
32/16-bit Divide Routine for the MC6809
Appendix-B
Assembler Source Listing for a 15-point WFTA (TMS9900)

FORTRAN Source Listing for a 15-point WFTA

-vii-

Appendix-C

FORTH Source Listing for a 60-point WFTA

Appendix-D
Software of the Parallel Microprocessor System

Assembler Source listing for 15-point WFTA (MC6809)

Appendix-E

Backplane Wiring for the Parallel Microprocessor System

REFERENCES

-viii-

CHAPTER 1

Introduction

The aim of this work was to design hardware to facilitate
the implementation of the Winograd Fourier Transform Algorithm
(WFTA) to compute Number Theoretic Transforms (NTTs) on

microprocessors.

Microprocessors are easy to implement and provide cheap
integer processing power. In recent years there has been a major
breakthrough in the solid state technology, which is responsible

for providing highly reliable hardware.

Cooley and Tukey (8), described a fast and efficient method
to compute the Discrete Fourier Transform (DFT) via the Fast
Fourier Transform (FFT) algorithm (2). The FFT is subject to
truncation and round off errors, since it involves
multiplications with complex irrational roets of unity, which

cannot be represented accurately on a finite precision machine.

Number Theoretic Transforms on the other hand have a similar
structure to DFTs, and are defined in a finite ring of integers
ZM’ where M is the modulus. All the arithmetic operations are
carried out modulo M. Fast FFT type algorithms may also be used
to compute NTTs without round off errors (9) - (15), (20), (80).

‘The results thus obtained are exact.

Winograd (3), (4), proposed short length DFT algorithms

which show improvement over the conventional FFT algorithm. The

WFTA requires fewer multiplications, and roughly the same number
of additions as the Cooley-Tukey FFT algorithm. In the FFT the
transform length is restricted to powers of 2, but in the WFTA
the transform length is the product of several mutually prime
factors. These mutually prime factors are chosen from the short
length (small-N) WFTA., Transform lengths from 2 to 5040 may be
implemented. Implementation of the WFTA requires some constants
to be precomputed and stored in the memory which requires more
memofy than the comparable length FFT (51). The WFTA requires
less multiplications, but at the expense of increased algorithm

complexity and more data transfers (52).

Martin (5), (6), carried out a search for a suitable modulus
M for 16-bit arithmetic on the lines described by Bailey (53),
and found that M = 65521 is suitable for NTT implementation.
Agarwal and Burrus (9), have shown that the transform lengths are

subject to certain constraints.
1- N must divide O(M), where O(M) is gréétest common divisor
(g.c.d) of the set of prime divisors (pi - 1) of M.
O(M) = g.c.d (pi -1
2- An element O of order N must exist such that

aN =1 mod M, #1 mod M, ¥r < N.

-1

3- N must exist in the ring ZM' If M is not prime,

then N may or may not exist. N . N1z mod M.

1-2

4- N must be well factored for fast transform algorithms
to. exist.
5- To implement fast and simple arithmetic mod M, M and

QL must have simple binary representation.

No attempt has been made to compare the WFTA and the FFT nor
to derive any of the algorithms. Martin (5), have discussed
these topics in detail. Here we will emphasise more the hardware
design and implementation to compute NTT via WFTA. McClellan and

Rader (7), provide good references for the NTT and the WFTA.

In chapter 2 basic number theory and Number Theoretic
Transforms, and some fundamental concepts about rings, fields,
and modular arithmetic are described. @ A brief discussion about
Mersenne Number Transforms (MNTs) and Fermat Number Transforms

(FNTs) is also presented.

Chapter 3 describes different algorithms for signed and
unsigned multiplication suitable for microprocessors.
Multiplication using ROM lookup is also described, this method
provides a fast way of multiplying two numbers. However, the
applications may be limited since the size of the ROM increases
rapidly as the size of the input numbers increqse. Fast
multiplier chips are now available which may replace several
discrete components. Finally 16-bit modular arithmetic

operations for a microprocessor are described.

1-3

Chapter 4 describes a step by step approach towards the
implementation of the WFTA to compute the NTT. The WFTA was
implemented on the TMS9900 microprocessor (54), (55), using
Assembler and FORTH (56), (57), lanquages. The WFTA was also
implemented on the MC6809 microprocessor (78), (79), using
Assembler language, and in FORTRAN and Assembler on IBM mainframe

computers (370/168 and 370/4341).

The total transform execution time on a processdr depends
upon the number of operations and the time required to execute
each operation. Ordinary microprocessors do not have hardware
multiplication, even microprocessors with hardware multiply
require a considerable amount of time for multiplication.
Modular arithmetic operations and in particular modular
multiplication, are very slow. Chapter 5 describes a special
purpose (16 x 16-bit) external hardware modular multiplier (mod
65521) interfaced with the TMS9900 microprocessor. This modular
multiplier behaves as an intelligent memory mapped peripheral.
We shall use the term modular for the results reduced modulo M.
This external modular multiplier uses multiplier chips and ROM
lookup techniques to generate the modular product. Finally
compari'son of timings for the implementation of WFTA with and
without using the external hardware modular multiplier are

discussed.

Chapter 6 provides prerequisite information and describes
some of the basic concepts of parallel and multi processor
systems. In addition inter processor communication, array

processors and processor to memory interconnection is also

1-4

described.

The difficulties involved in the uni processor
implementation of the WFTA is that it requires more data
transfers and indexing in the memory to acquire data (52). Since
the WFTA exhibits parallelism in its structure, the possibility
of parallel implementation of the WFTA was investigated. Chapter
7 describes design and construction of a parallel microprocessor

system to implement a 15-point WFTA.

Benchmark programs were written to choose a suitable
microprocessor for the design of a parallel microprocessor
system. Motorola's MC6809 microprocessor gave an optimum choice
among several microprocessors. To investigate the principle of
data exchange between the two microprocessors, a two
microprocessor system (using MC6809) was designed and tested.

The TMS9900 microprocessor was used as a host processor.

Since the modular multiplication is the most time consuming
operatiﬁn, the parallel microprocessor system was designed such
that each of the microprocessor is loaded equally during the
modular multiplication. A control or a master microprocessor is
used to control the parallel structure. The control
microprocessor provides communication between the parallel
microprocessor system and the outside world. Inter
microprocessor communication is through dedicated latches. The
system configuration is that of a master and slave, all the

input/output (1/O) data is through the master microprocessor.

1-5

The system design is described, and the timings for parallel
and uni processor implementation of the 15-point WFTA are
discussed. Finally a 15-point convolution was also implemented on
the parallel microprocessor system. The software development is

the bottleneck of the parallel microprocessor system.

It was found that the execution time of a 15-point WFTA on
the parallel microprocessor system is comparable with the

execution time on IBM mainframe computers.

Software routines are listed in appendix-A to appendix-D.
Appendix-E contains backplane wiring connections for the parallel

microprocessor system.

Fully documented program listings appearing in the

appendices A - D are available in a separate folder.

-~ ———

CHAPTER 2

Elementary Number Theory and Number Theoretic Transforms

2.1 Introduction

The Discrete Fourier Transform (DFT) of a sequence x(n) is

given by:
N-1
X(k) = Y x(n) w | (2.1)
n=0
where k = 0,1,2,...,N-1. The Inverse Discrete Fourier Transform

(IDFT) is given by:
N-1
x(m) = NT Y xqo w (2.2)
k=0
where n = 0,1,2,...,N-1, and W = e—jzﬂ:/N , j = ,I-_l
WN (usually written as W) is the principal root of unity such

N

that W = 1 mod N, where N is the sequence length.

Direct computation of equation (2.1) requires N2 complex
operations. A complex operation is a multiplication followed by
an addition. On a digital computer multiplication of two numbers
requires more computation time than the addition of two numbers.
The multiplication time depends entirely on the software and the
hardware available. To improve the efficiency and to compute
equation (2.1) faster,- the number of multiplications must be
reduced. Various algorithms are available which are more

efficient than the direct computation of equation (2.1).

2-1

In 1965 Cooley and Tukey (8), presented their FFT (Fast
Fourier Transform) algorithm. This algorithm efficiently
computes DFT given by equation (2.1). The number of complex
operations are reduced from NZ to NlogZN. This fractional
saving of N/logZN becomes quite appreciable for sequence
lengths greater than N = 32, It is required by the algorithm for
N to be highly composite and a power of 2, such that N = Zm,

where m is a positive integer. Reference (2), provides

theoretical development of the FFT algorithm in detail.

The Fourier Transforms are complex in general. The
computation of equation (2.1) using the FFT requires
multiplications with complex irrational roots of unity. These
irrational roots cannot be represented accurately on a finite
precision machine. The FFT is subject to cumulative roundoff and
truncation errors. This gives rise to noise at the output of
digital signal processing system, thus detefiorating the

signal-to-noise ratio.

2.2 Discrete Fourier Transform and the Convolution

A common problem in digital signal processing is the

implementation of convolution which is defined by:

N-1
y(n) = Y x(i) h(n-i) (2.3)
i=0
where n = 0,1,2,...,N-1, y(n) is the convolution of two sequences

x(n) and h(n). Direct implementation of convolution by using

2-2

{

equation (2.3) is not efficient., However, the Discrete Fourier
Transform (DFT) can be used to compute convolution efficiently.
Certain transform possess the Cyclic Convolution Property (CCP),

which may be represented as follows:
T(y) = T(h) . T(x) (2.4)

where '.' denotes pointwise multiplication. The inverse of

equation (2.4) is given by:
y =171 [T(h) : T(x)] (2.5)

So a cyclic (circular) convolution may be performed by taking the
inverse transform (T’l) of the product of the transforms of the

two sequences to be convolved.

Let X(k) and H(k) be the Fourier transforms of the sequences

x(i) and h(i) respectively. Then from equation (2.5) we have:

N-1
yim = NS HK) X w (2.6)

k=0

Substituting value of X(k) in equation (2.6) we get,

N-1 N-1
y(n) = N Z H(k) Z x(i) wik wmk
k=0 i=0

2-3

N-1 N-1
Z X(i) N-l Z H(k) W"k(n-i)

i=0 k=0
N-1

= Z x(i) h(n-i)
i=0

To obtain an N point circular convolution of the sequence
h(n-i), if the sequence length is less than N it must be

periodically extended to have a period of N. Hence

N-1
> x(D h(n-i mod N) (2.7)

y(n)
i=0

x(i) * h(i)

where * denotes convolution.

Equation (2.7) shows circular convolution, it is so called
since it evaluates y(n) as if the input sequence were
periodically extended outside thé range [0 to N-l]. This may
also be stated as that for cyclic convolution the indices are
evaluated mod N. If zeros are appended to the sequence so as to
avoid aliasing or overlapping, the cyclic convolution gives the
same results as conventional convolution. Convolution computed
via equation (2.5) is computationally efficient when the sequence
length is highly composite, so that FFT type algorithms can be

applied to it.

2.3 Congruence

Consider two elements a,b of a set. Then for b a positive

integer, if b is a factor of a we can write
a=qgb+r for 0<r<q (2.8)
where q represents the quotient and r the remainder. Equation
(2.8) basically represents a division operation. If the
remainder r = 0 then we say that b divides a and is represented
as b|a. For all integers in the set there are at least two
divisors for each element, either lla or ala. This condition
indicates that a is a prime, with no divisors except 1 and
itself. If r = 0 then we say that a is composite a=gb. Either q
or b or both can be prime or composite. For q and b composite we
can further factorise until we get prime factor factorisation
which is written as:
a= n p;‘i
i
where P; is a prime and ry is an integer exponent. In
equation (2.8) if b is a fixed number then it is called the
modulus. Then for infinitely large number of values of a we can
have the same value of the remainder r. All these values of a
which give the same value of r are said to be congruent and are
denoted by =. The remainder r is called the residue mod b, or
- simply the residue. For example, let b = 5. Then 7 = 2 mod 5,
12 = 2 mod 5, and 17 = 2 mod 5. Numbers 7, 12, 17 are congruent
mod 5. In general we can write
a=r modb

or b , (a-r)

also if a = 0 mod b then bla. Some notations also use angle

2-5

brackets to represent the modulus, for example:
<12> 5 and <13 + 8> 5
The following conditions hold for congruence

KB+ m> =KLKD +<m> > b

b b b
<l-m>b‘='<<l>b-<m>b>b
<Im> b = LD b <m> b> b

The largest number which can divide a and b is called the
greatest common divisor (g.c.d). If the two numbers a and b are
mutually prime i.e. they have no common factors then they are
represented as (a,b) = 1, or a and b have a common factor of 1,
for example (3,4) = 1, and (3,5) = 1, etc. However, if there is a

_common divisor then (8,10) = 2.

2.4 Chinese Remainder Theorem (CRT)

If the residue is known for several mutually prime moduli
then with the help of the Chinese Remainder Theorem (CRT) these
residues can be combined to give the result modulo the product of

all the mutually prime factors.

Let a set of simultaneous congruences be given for which
each of the moduli m; are relatively prime. For each i, bi
is determined through linear congruences. The solution of
the set of congruences is given by:

y = alblM/ml+ azsz/m2+...+ ajbjM/mj (2.9)

where y = a; mod m;, and composite modulus M is given by:

M = '”‘ m, (2.10)
i

provided that m, are relatively prime, bi are defined such
that:

bi (M/mi) = 1 mod m;

For example, let x =2 mod 3, x =2 mod-5 x =4 mod 7. To
solve these simultaneous congruences first we get the product of
mutually prime factors according to (2.10). Hence

M=3.5.7=105
Now from (2.9)

X =2 b, 105/3 + 2 b, 105/5 + & b3 105/7

1 2

:2.35.bl+2.21.b2

Now to determine bl’ b2, b3 such that

+4.15 . by (2.11)

35.b151m0d3 ===>bl=2
21.b251mod5 ===>b2=1
15.b351mod7===>b3=1

substitution of these values in (2.11) gives

x=70.2+42 .1+ 60 .1 =242 = 32 mod 105

2.5 Groups, Rings and Fields

Recall from the previous section that

a=b + Mc (2.12)
where b is the remainder, c is an integer (quotient) and M the
modulus. Then (2.12) may be rewritten as

asb modM % ab 8[1, M-l]
In a finite set [a,b,c,...,M-l] of integers all the elements are
congruent to some integer called the modulus M. Such a set is
denated as ZM. Let there be an operation * defined in ZM,

then the following conditions hold.

2-7

1- Closure : a*b ¥ ab E ZM

2- Associative : (a * b) * c = a *(b * ¢c) ¥ ab,c € ZM
3- Identity element : a * I =1 *a=a ¥ al€ ZM

4- Tnverse element : a * a '+ = I ’v‘-a,a'1 € Z,

5- Commutative : a * b = b ¥ a ¥+ ab E ZM

Where I represents an identity element and a-l is the
inverse of a. If the operation * is defined as ordinary addition
then property 4 represents subtraction, and for ordinary

multiplication it represents division.

If these properties hold then the set of integers ZM is
called a group under the operation *. A group which obeys the
commutative law is called an abelian group or a commutative
group. A group is called a cyclic group if all the elements of
the group can be generated from a single element, this element is
called a generating function. For example 1 is a generating
function under addition mod M. For a group ZM under ordinary
addition '+' and ordinary mulf:iplication '.' operations if the

following distributive laws hold,

a.bb+e)=a.b+a.c
a.b.c)=(a.b).c
(a+b).c=a.c+b.c

A a,b,c € ZM’ then the group is called a ring.

Consider some examples of arithmetic mod 11, the elements in
the ring ZM are [0,1,2,...,10] .
1- Addition : 5 + 8 = 13 = 2 mod 11

2- Negation : -3 = 11 + (-3) = 8 mod 11

2-8

3- Subtraction : 3 -7 =3 + (11 -7) =3 + 4 =7 mod 11
4- Multiplication ¢ 5 . 4 = 20 = 9 mod 11

5

Multiplicative inverse : 6 . 2 = 12 =1 mod 11
6 and 2 are multiplicative inverses of each other

1 1

or 6 =22mod1ll or 27" = 6 mod 11

6- Division : a/b is defined if and only if b'l exists,

1 mod M

therefore, a/b = a . b~
consider 9/2 =9 .6 = 54 = 10 mod 11

from property 5, 6 and 2 are inverses of each other.

The element 2 is an integer root of unity of order 10,

5.

27 = -1 mod 11

10

2 =1 mod 11

2.6 Number Theoretic Transforms

One group of transforms having the CCP are those with DFT
like structure. Let
Xk) = T x(n), so x(n) = 1 Xk)
N-1
X4 = ¥ xm a™ (2.13)
n=0
where k = 0,1,2,...,,N-1,
The inverse is given by:
N-1
xm = N1 Y x@) o™ (2.13a)
k=0
Where (1 is an element of order N, and plays the same role as W in

equation (2.1). Where N is the least positive integer such that

aN =1 mod M, q,N €E [0, M-l]. NTTs use modular arithmetic

and possess the CCP,

Euler's function or Euler's totient function is defined as
the number of integers in the ring ZM which are relatively
prime to a given modulus M. This function is represented by
B(M). If M is composite then B(M)XM, but if M is prime then the
Euler's function @(M)= M-1, for example @(6) = 2, and @(7) = 6.

AM) = M(1-1/p1)(1-1/p2)...(1-1/pr)

where pl,p2,...,pr are different primes dividing M.

Euler's theorem states that for any non zero element a in
the ring ZM’ which is relatively prime to M, (aM) = 1, the
following congruence holds

am(M) =1 mod M

If M is prime then O(M) = M-1 and the Euler's theorem

reduces to Fermat's theorem given by:

a =1 modM

The necessary and sufficient condition for the NTT with the
CCP to exist is that N ,O(M), where O(M) is the greatest common
divisor (g.c.d) given by:

OM) = g.c.d (p; - 1py - Deealp - 1) (2.14)

Thus the maximum transform length Nmax = O(M).

When the transforms in equation (2.13) and (2.13a) are
defined in a finite ring of integers with the CCP, they are known
as Number Theoretic Transforms (NTT) (7), (9) - (15), (80). In

NTTs all the arithmetic -operations are conducted mod M. There

2-10

are several constraints between the modulus M and the transform
length N (9). Since the NTTs are similar in structure to the
DF Ts any algorithm which applies to the DFT can be applied to the
NTT. In other words an NTT is a DFT with the CCP defined in a
finite ring of integers under addition and multiplication. Such
a ring is denoted by ZM. If the modulus M is a composite
number then the multiplicative inverses of all the elements do
not exist. Hence ZM is a field if and only if M is prime. If Q
is of the order of @(M), (where @(M) is the Euler's totient
function), then (| is called the primitive root or the generating
function, the non-zero elements of ZM can be generated by the

powers of the primitive root.

The results obtained by NTTs are exact and are not subject
to cumulative round off or truncation errors. For computing
convolutions using NTTs, the choice of the modulus M has to be

made first, then the corresponding N and ({ may be evaluated.

In a ring of integers ZM, integers may be represented
unambiguously if their absolute value is less than M/2, If the
two sequences to be convolved x(n) and h(n) are scaled such that
y(n) never exceeds M/2, then the convolution in the ring of
integers mod M gives the same results as normal arithmetic. In
most practical applications the impulse response of a digital
system h(n) and the beak amplitude of the input x(n) signal is

usually known.

For efficient implementation of convolution using NTTs the
algorithm should be computationally efficient. Also N should be

highly composite and the modulus large enough to provide a large

2-11

dynamic range of numbers. By suitable choice of N, M and (X it is
possible to define NTTs which can be computed efficiently., If N
is chosen to be a power of 2 the efficiency of the FFT algorithm
can be applied for computation. Binary r'epresentation of O
should also be simple, such that the multiplication could be
performed with ease,. For @ = 2 or a power of 2 the

multiplications are reduced to bit shifts and add.

Discrete convolution may also be obtained by either Mersenne
Number Transform (MNT) or Fermat Number Transform (FNT). These
transforms are special cases of Number Theoretic Transforms. The
multiplications in MNT and FNT are reduced to circular bit shifts
within the word and add (12), (13), (14), (24). On a digital
computer most of the computation time is taken by the
multiplication. The situation is even worse on a microprocessor
because ordinary microprocessors do not have hardware
multipliers. Software implementation of the modular
multiplication requires more time. External hardware modular
multiplier may be implemented to facilitate modular
multiplication. So transforms which do not require
rﬁultiplications at all such as the MNT and FNT are

computationally more efficient.

2.6.1 Mersenne Number Transforms

If the modulus is chosen to be a Mersenne number (Mp),
then the transforms defined in a ring with CCP are called
Mersenne Number Transforms (MNT). The mersenne numbers are

defined as follows:

2-12

M =2P .1
p
where p is prime. Mersenne numbers are of interest only if p is

prime.

Rader (12), have described method for computing circular
convolution using Mersenne Number Transforms. The arithmetic to
compute Mersenne transform requires only additions and circular
shifts _of bits within the word. Circular convolution is computed
in a similar fashion as given by equation (2.5). Mersenne Number
transforms provide error free convolution, since quantisation and
truncation have no meaning in the field of integers. MNTs are
defined in a field under addition and multiplication, also the
associative, commutative and distributive laws hold, except that
division is not defined therefore some numbers do not have

multiplicative inverses mod Mp’ unless Mp is prime.

Mersenne number transforms are defined in a set of p
integers.
N-1
XM = 3 xm) 2™ mod M_ (2.15)
n=0
where k = 0,1,2,...,p-1
"Let q be defined as inverse of p such that
q = Mp - (Mp -1)/p
we have solution
(pg) = 1 mod Mp
if (Mp - 1)/p is an integer
but M -1=2P_.2

p
since. © p ‘ 2P - 2,

2-13

It is a special case of Fermat's theorem which states that, for

every prime p and every integer q, p qp - q, this proves that
is an integer. Since
pq=(p-l)Mp+l=l
thus the inverse transform is given by:
N-1
x(n) =q) XK 2K mod Mp (2.16)
k=0

where n = 0,1,2,...,p-1.

To ease the computations 2P (p is prime) may provide a
suitable modulus, but the transform length is restricted to 2p.
As 2p is not highly composite, it is not of much interest.
Consider modulus 2k + 1, the maximum transform length is 2
since 3 , 2k + 1, hence k must be even (k = pg a composite
number). The other choice for the modulus is 2P - 1, where p is
prime, 2 represents root of unity. This allows addition to be
performed by simple 1ls complement add. Multiplication mod Mp
is done by forming 2 p-bit product of two words, and adding p
least significant bits (ls complement addition). However,
multiplication by Zk mod Mp is quite simple to implement,
requiring bit rotation in a p-bit word. The same is true for the

inverse transform except that the results must be multiplied by

the inverse q.

2-14

2.6.2 Fermat Number Transforms

If the modulus is chosen to be a Fermat number, then the
transform is called a Fermat Number Transform (FNT), Fermat
numbers are defined as:

t

M = F = 2b+]_ (2017)
where b = 2Y, 't = 0,1,2,...

Fermat numbers F0 - F4 are prime and _F5 upwards are
" composite. Then for FNT to exist
N | oF)

b

O(Ft) =2 = N_

ax
" The largest passible transform length in this case is
N =2T m< b
If @ = 2 the FNT can be computed efficiently. The FNT of a
sequence is given by:
N-1
X(k) =) x(h) a™ mod Fy (2.18)
n=0
wher>e k = 0,1,2,...,N-1, and inverse is given by:
N-1 |
xm = N X Xt @™ mod F, (2.19)
k=0
where n = 0,1,2,...,N-l, and N is a power of 2, and (I is the Nth

root of unity, i.e. C{,N = 1 mod Ft' In case of the FNT the

multiplication is equivalent to bit shifts and add.

One of the constraints in the practical implementation of

the FNT is that the wordlength is defined by the transform length

(13). For a general Ft (t>4) the maximum transform length is

2-15

given by N = 2'+2. Since C{,Z = 2 mod Ft’ Q= I 2, the

transform length N = 4 x wordlength. For example arithmetic mod

. . 2 _ - .
F'2 provides us with 6 = 2 modl1l7, 6= fz—mod 17.

Equation (2.18) can be computed efficiently using FFT type
algorithm. In FNT multiplication is equivalent to simple binary
word shift followed by subtraction. Leibowitz (14), have used
slightly different approach for performing modglar arithmetic mod
Ft' In the Agarwal and Burrus (13), method problems arise due
to quantisation when b-bits are used for modular arithmetic.
This is due to the fact that 2b £ -1, hence when -1 is
encountered it is either rounded to 0 or 2. This introduces some

quantisation error. The method described by Leibowitz (14), uses

(b+1)-bits, the extra bit is only used to represent 0.

McClellan (15), have described hardware to implement the
FNT. A different number representation is used in which the bits
are weighted +1, -1 and not as 0, 1 as in conventional binary

representation.

2-16

CHAPTER 3

Multiplication Techniques for Microprocessors

3.1 Introduction

We have seen in the previous chapter that the Number
Theoretic Transforms (NTTs) are defined in a finite ring of
integers ZM. NTTs provide error free convolution (9), (12),
(13). Since in the ring all the numbers are defined precisely, so
there is no ambiguity in their representation on a digital
computer. In contrast floating point numbers cannot be
represented accurately on a digital computer, and floating point

arithmetic is subject to roundoff and truncation errors.

Ordinary microprocessors are integer processing machines and
are available at much lower prices than the floating point
arithmetic processors. A microprocessor provides cheap integer
processing power. By appropriately manipulating the carry bit in
the condition code register, the microprocessor is capable of
performing multi-precision arithmetic, for example an 8-bit
microprocessor can perform 16-bit arithmetic operations. It
seems logical to investigate the possibilities for implementing
NTTs on microprocessors (5), (6). In many microprocessors no
hardware multiplier is available since it requires more hardware
and chip area. When a hardware multiplier is not available
alternative methods may be employed to perform the multiplication

in software or by implementing an external hardware multiplier

(18), (31), (41).

For real time digital signal processing applications,
multiplication must be carried out efficiently. The
multiplication speed can be increased by reducing the total
number of additions (of partial products) or by performing high
speed addition. Carry Save Adders (CSA) or Carry Look Ahead
(CLA) may be used to reduce the carry propagation delay instead

of conventional Carry Propagate Adders (CPA) (16), (17), (23).

3.2 Clocked Multiplication Algorithms

We can classify multiplication in different ways
i.e. serial, parallel, unsigned, signed (twos complement). A
brief outline of different algorithms for binary multiplication

is presented.

3.2.1 Multiplication on a Microprocessor

The simplest form of binary multiplication is multiplication
by two or powers of two. This is analogous to multiplication by
ten or powers of ten (considering integer arithmetic) in the
decimal number system. Multiplication by ten is accomplished by
appending a number of zeros equal to the power of ten towards the
least significant digit. Similarly in the binary number system,
multiplication by two is accomplished by shifting the binary word
towards the most significant bit position and filling the vacated
places by zeros. The number of shifts is equal to the power of
two. Overflow conditions must be detected and dealt with

accordingly. It may be mentioned here that division by two in the

3-2

binary number system is equivalent to shifting the binary word a
number of positions towards the low order significant bits. This
is analogous to shifting of the decimal point in the decimal
number system towards the high order digit position. However, in
the binary number system if the least significant bit was a one
prior to division by two, then the result is subject to
truncation. This may be circumvented by rounding the binary word
prior to shifting, this is done by adding a one to the least

significant bit irrespective of the bit value.

In practice it is quite uncommon to encounter
multiplications by two or a power of two. Hence some other
method must be devised and developed for the implementation of

multiplication on a microprocessor.

The most commonly used method to perform multiplication on
the microprocessor is the shift and add algorithm. The
microprocessor checks the bits in the multiplier one by one and
if a one is encountered the multiplicand is added to the partial
product. After addition the partial product is shifted towards
the least significant bits. If a zero is encountered then no
addition takes place and the partial product is simply shifted
towards low order bits, which is equivalent to shifting of
multiplicand towards the most significant bit position (28).
This method is lengthy and quite inefficient for large numbers.
If subtract instruction is available then an alternative method
may be used. For example a string of ones in the multiplier can
be reduced to subtract for the first 1 encountered, shift for

each subsequent 1 and addition for the first 0 encountered. A

3-3

multiplication by 14 (1110) may be reduced as follows.
3 2 1

14 =27 + 27 + 2
=24_21

10000 - 10
Since the multiplication time increases with the number of
" multiplier bits, the above mentioned method may produce results

faster than the shift and add algorithm. This algorithm may also

be implemented externally in hardware (17), (18).

3.2.2 Burk-Goldstine - Von-Neumann Method

This method was developed for twos complement multiplication
(21). In this method if the multiplier and the multiplicand are
positive no correction of the final result is required. However,
if any of the operands is negative (twos complement) then
correction must be applied to the final result. This step is
necessary since in the twos complement number the sign is
embedded in the number itself. This algorithm generates the

product in the following manner.

Let X, Y be the multiplicand and the multiplier
respectively, where
*
X = x% + X

Y = -y° + Y* (3.1)

-x® and -y° represent the sign bit and X* and Y* give true
value of the numbers. For number representation see Chu (21).
The product is obtained as follows

X" v* = (X + x°) (Y + y?)

= XY + x°Y + y°X + xC%y°

To obtain the correct answer -(x°Y + y°X + x%y®) must be added to
the final product, such that

* ¥* :

XY =XY
If one of the numbers is positive then either -x°Y or -y®X have

to be added.

3.2.3 Raobertson’s First Method

This method multiplies a signed number X with an unsigned

*
number Y = Y. When the multiplier is negative, correction
term -y®X must be added. No correction is required when the

multiplicand is negative (21).

3.2.4 Robertson’s Second Method

In this method if the multiplier is negative, then the
product of -X and -Y is calculated which yields a positive
result, then no correction is required. But if Y = -1 then the
result is not correct. The value of Y must be restricted such

that -1 < Y < 1 (21).

Comparing the two methods, in the first method if the
multiplier is negative then it needs correction, but in the
second method no correction is required. The hardware only needs
to sense the sign bit y° of the multiplier and to complement the

multiplicand X.

3.2.5 Booth’s Algorithm

Booth's algorithm is quite extensively used where serial,
signed twos .complement multiplication has to be implemented (20),
(21), (28), (35), (40), (43), (46). This method has an advantage
over the previous methods that no prior knowledge of the sign and
no correction of the result is required at the end. Also the
product is independent of the sign of the multiplier and the
multiplicand. Let the multiplier and multiplicand be represented
as.

n-1 o

‘»N
X = -xn2 + xn_12 cveet Xg2

n-1 o

Y sesety o2

n
-yn2 + yn_lz

In this method two consecutive bits Y; and Yil of the
multiplier are examined simultaneously, starting from the least
significant bit. Three possible conditionsjcan arise for Y;
and Yi-1

i) if Yy Yy are 01, then the multiplicand is added to the
partial product. After addition the partial product is shifted
by one bit towards the least significant bit position.

ii) if Yp Y1 are 10, then the multiplicand is subtracted
from the partial product and the partial product is
shifted one bit towards the least significant bit position.

iii) if Yjp Yy are 00 or 11, then no addition or subtraction
takes place. However, the partial product is shifted one

bit position towards the least significaht bit.

3.2.6 A Short Cut Multiplication Method

This method involves detection of isolated bits ones or
zeroes. If a sequence of ones are detected then multiple addition
of the multiplicand into the partial product takes place.
Otherwise multiple shifts are performed on the partial product.
Additional hardware may be required to detect the sequence of
ones or zeroes. For example, if the multiplier is 01000100, then
there are onl;/ two additions of 26 and 22. Worst case would

be if the multiplier had alternating ones and zeroes.

3.2.7 Multiple Digit Multiplication Method

This algorithm uses the method of repeated additions of the
multiplicand to the partial product. However, there is a subtle
difference from the method described previously (Booth's
algorithm). In this method two consecutive bits of the multiplier
are checked simultaneously. The following four different
conditions can arise.

i if Yp Yi_p are 00, then no addition takes place

ii) if Yp Yip are 01, then the multiplicand is added into
the partial product.

iii) if Yy Yi.p are 10, then twice the multiplicand is added
into the partial product.

iv) if Yp Y are 11, then three times the multiplicand is

added into the partial product.

Since two consecutive bits are considered only once, the
total number of addition steps are thus reduced and hence there

is an overall improvement in the speed. It may be noted that the

3-7

partial product is shifted two bit positions instead of one after

the addition of the multiplicand into the partial product.

Parasuraman (18), have described a variation in this method
by inspecting three bits at a time and applying correction.
Harman (19), have described a possible method to increase the
multiplication speed by examining the number of ones in the
multiplier and the multiplicand. The operand which has the least
number of ones is chosen as the multiplier. This method may not

find a place in practical applications.

3.3 Clockless Multiplication

All the different techniques described above use clock
signals to generate the shift and the add pulses. Now we
consider some algorithms for clockless multiplication which are
much faster than the methods described before. Clockless
circuits are also referred to as combinatorial circuits, whose

outputs entirely depend upon the current input values.

3.3.1 Array or Parallel Multiplication

This method is generally used when high speed multiplication
is to be performed. All the bits of the multiplier and
multiplicand are fed simultaneously inte an array of logic gates
and full adders. No storage of partial or intermediate products
is required. Chu (21), have described a simultaneous multiplier
in which the two operands are fed into a two dimensional array

structure of logic gates and full adders.

3-8

Rabiner and Gold (20), have also discussed a fast parallel
multiplier which consists of a two dimensional array of 1l-bit
adders. The total multiplication time is the sum of the settling
time and the propagation delay of the logic 'used, after the
operands are fed into the input. The unit cell is shown in
figure (3.1a). These basic cells are cascaded to give a parallel
multiplier structure. Figure (3.1b) shows a 3 x 3-bit parallel
array multiplier. This arrangement can be extended to an n x
n-bit parallel multiplier. A finite amount of time is required
for the carry to propagate through different stages of the
multiplier. The partial products can be generated as shown in
figure (3.2). A problem arises when the partial products have to
be added. For small numbers the conventional ripple carry adder
(CPA) may be used to add the partial products, but for larger
numbers a CLA (Carry Look Ahead) or a CSA (Carry Save Adder) may
be used (22), (23). Davies and Fung (31), and Bate and Burkowski
(33), have described the interfacing of a high speed

combinational array multiplier to a microprocessor.

3.4 Read Only Memory (ROM) Multiplier

With the availability of cheap and fast ROMs for storing
information lookup techniques may be employed to perform
arithmetic operations for a small range of numbers (18), (26),
(27), (28). The ROM is programmed such that the products are
stored in it in an appropriate manner. The address lines are
used as input, and the product is obtained on the data bus. This
method is very fast since the output from the ROM entirely

depends upon the access time of the ROM and may be of the order

3-9

SUM INPUTS

A CARRY OUT CARRY IN

SUM OUTPUT

Figure 3.1a: Unit cell (1-bit adder).

X0Y2 Xi. X0yt X1yo X0.Y0

PS5 P4 P3 P2 P1 PO

Figure 3.1b: 3 x 3 Parallel array multiplier ‘by combining unit
cells.

X0

X2

X3

Figure 3.2: Arrangement

Y

Y1

Y2

Y

o

X0.Y0

&

- X0Y1

&

X0Y2

o

Xay3

&

X1Y0

&

X1.Y1

&

X1Y2

&

X1Y3

&

X2Y0

&
&

xayn

X2Y2

&

X2Y3

&

X3Y0

&

X3.Yt

for genera

s
&

X3Y2

ting

X3Y3

partial products.

of tens of nanoseconds. The ROM lookup technique for
multiplication can be used in variety of ways some of which are

described below.

3.4.1 Direct ROM Multiplier

The multiplier and multiplicand are appropriately connected
to the address bus of the ROM. The product of the two numbers,
which 1is stored at this address is then obtained directly.
Figure (3.3) shows an arrangement for a simple ROM multiplier.
The disadvantage is that if the numbers are large then this

method may become impractical due to complexity, size and cost.

3.4.2 Quarter-Squares Lookup Table Multiplication

Let X and Y be the two n-bit numbers to be multiplied. Then

the product is obtained in the following manner.

XY = (X + Y)? - (X - Y)? (3.1)
4
XY=[X+Y]’-X-Y’ (3.2)
2 2
XY = (X + Y)?2 - (X - Y)? (3.3)
4 4

Squares of the sum and difference of the two numbers are
stored in separate ROMs, Sum and difference is obtained by
conventional method using 'adder. Figure (3.4) shows an

arrangement for such a multiplier.

3-10

ROM
TABLE

XY

Figure 3.3: Direct ROM multiplier.

ADDER

XeY

ROM

SQUARE
TABLE

ADDER

| ADDER

X-Y

ROM
SQUARE
TABLE

T

Figure 3.4: @uar‘ter-squarles lookup table multipliéation.

ROM LOG

LOGX+LOGY

X — LOGX
TABLE “1
*1 ADDER
+ .
ROM LOG |
y — . _
TABLE T06Y

Figure 3.5: Multiplication using logarithrns.

ROM
ANTILOG
TABLE

— XY

In equation (3.1) the product is obtained by dividing the
difference of the output of ROM squarer by 4. In equation (3.2)
the division by 2 is accomplished before feeding the sum and
difference to the ROM square table. This sometimes introduces
truncation _errors. Equation (3.3) is equivalent to equation

(3.1) and gives the same results (26).

For X and Y even or odd we have X = 2m and Y = 2n or
X = Zm + 1 and Y = 2n + 1 respectively. If X and Y are even or
odd equations (3.1) and (3.3) are equivalent, but equation (3.2)

produces truncation errors.

For example, if X is even and Y is odd, then X=2m, Y=2n+l,
substituting these in equation (3.3) we get:

2m2n+l) = @2m + 2n + 1)* - (@2m - 2n - 1)?
4 4

(m+n)? + (m+n) + ¥+ - (m-n)? - (m-n) - %

(m+n)? + (m+n) - (m-n)? - (m-n)

4mn + 2m (3.4)

Considering the case with equation (3.2), we get:

[2m+2n+l] . {Zm-Zn-l] 2 = (m+n)? - (m-n)?
2 2

= 4mn

XY (3.5)

Equation (3.5) shows truncation error of 2m. Davies (28),
have described implementation of this method directly on the Z80

microprocessor in software.

3-11

Johnson (27), have described an improved ROM lookup method.
Partial products are stored in separate ROMS and the lookup
results are added appropriately. Product time depends upon the
access time of the ROMs and the carry propagation delay of the
adders. Parésuraman (18), have also described lookup method for

multiplication.

3.4.3 Multiplication Using Logarithms

Brubaker and Becker (25), have described another approach to
binary multiplication. This method employs logarithm and
antilogarithm tables stored in ROMs. The product of two numbers
are obtained in the following manner.

XY = antilog (log X + log Y)

" This method introduces errors due to truncation and
rounding. A disadvantage in this method is that only the product
of positive numbers can be directly obtained (since the logarithm
of a negative number is undefined). However, the sign of the
product can be generated externally if required. Figure (3.5)
shows an arrangement for the logarithmic multiplier. The

muitiplication time is twice the access time of the ROM.

3.5 Parallel Multipliers Chips

Parallel multiplication can be achieved using discrete
components described. However, VLSI technology now allows the
integration of a complete n x n-bit multiplier on a single chip.
These chips are easy to interface with a general purpose

microprocessor (18), (31), (34), (35), (36), (37), (38), (39),

3-12

(41), (42), (44). Usually these multiplier chips can be cascaded

so as to allow multiplication of arbitrary length numbers.

The methods discussed previously use twos complement
multiplication with discrete components. However, in VLSI chips
a facility may be provided to perform signed or unsigned

multiplication, rounding etc.

Bywater (16), Lewin (17), Rabiner and Gold (20), Chu (21),
Hayes (22), Flores (45), Booth and Booth (46), Abd-alla and

Meltzer (47), are also suggested for further reading.

3.6 Maodular Arithmetic on Microprocessor

Modular arithmetic operations can be implemented on any
microprocessor with uﬁsigned compare instructions. Some
microprocessors may perform these arithmetic operations more
efficiently and faster than the others. This depends upon the
clock frequency, number of accesses to the memory to fetch the
operands and the number of CPU registers available. If the CPU
has enough .registers to hold the operands and the intermediate or
partial products, then the total number of memory accesses are
reduced (during the multiplication), which will produce faster

results.

Modular arithmetic routines were written for several
m-icroprocessors. Results of the routines are -shown in tables
(3.1) to (3.3). Appendix-A contains assembler source listings of
these modular arithmetic routines. the that each of the

microprocessor has a different clock frequency. Renold (48),

3-13

Table 3.1: Results of benchmark programs for modular addition.

Clock Microprocessor Number of Number of Instr Clock Cycles Price
MHZz (No. of bits) Program Bytes | Executed (Time Msec)
3 TMS9900 (16) 36 8 88 (29.3) 50.0

Texas Instr Ltd

~N

M6502 (8) 42 ' 22 74 (37.0) 13.0
MDS Technology)

1 ' M6809 (8) 20 8 60 (40.0) 13.0
Motorola

8 8X300 - (8) 76 26 52 (6.59) " 36.0
Signetics

A 180 (8> 36 . 14 . 75 (18.:74) 11.0
Zilog ‘
COP40D2 (&)

«125 National 205 108 216 (864.90) 4.80

Semiconductors

Table 3.2: Results of benchmark programs for modular subtraction.

Nuhber of

Clock Microprocessor Number of Instn Clock Cycles Price
MH2 (No. of bits) Program Bytes Executed (Time Msec)
3 TMS3900 (16) 24 8 88 (29.3) 50.0
Texas Instrn Ltd
2 M6502 (8) 75 16 59 (29.5) 13.0
MOS Technology
1 M6809 (8) 14 6 32 (32.0) 13.0
Motorola)
8 8X300 (8) 108 50 100 (12.5) 36.0
Signetics
4 180 (8> 49 22 117 (29.24) 11.0
Zilog '
COP402 (&)
«125 National 211 134 268 (1072.0) 4,80

Semiconductors

Table 3.3: Results of benchmark programs for modular multiﬁlication.

Clock

Microprocessor Number of Number of Instr Clock Cycles Price
MHZ (No. of bits) Program Bytes Executed (Time Usec)
3 TMS9900 (16D 18 5 242 (80.0) 50.0
Texas Instrn Ltd .
2 M6502 (8) 333 1246 4866(2433.0) 13.0
M0S Technology
1 M6809 (8 128 60 336 (336.0) 12.0
Motorola
8 8Xx300 (8) 160 325 550 (81.25) 36.0
Signetics
4 180 (8) 252 101 2462 (515.5) 11.0
Zilog :
, COP402 (4) :
«125 National 859 2269 4553 (18212.0)

Semiconductors

have compared performances of five different microprocessors by
means of nine different benchmark programs. He has suggested two
methods for comparison.

i) An instruction of medium complexity (load 8-bit register) is
chosen as an instruction unit. The number of clock cycles for
any instruction is divided by the number of clock cycles of the
instruction unit.

ii) Reduce the clock frequency such that the instruction unit

takes the same time for all the processors.

Smith (58), have also described comparison of three
microprocessors by executing a standard program on each one of
them. The performance is compared by looking at the number of

program bytes required, execution time etc.

To implement modular arithmetic any value of modulus M may
be chosen. The residue is usually computed using division, but
division, like multiplication is not an efficient operation when
implemented oﬁ a microprocessor. Division may also be
implemented externally which may require complex hardware.

Special techniques may be used to compute the residue,

In a decimal number system, if the modulus is chosen to be
10, then the residue of the number is the least significant digit
of the number. For example 103 = 3 mod 10. A similar case is
also true in binary number system. If the modulus is chosen to

k (k is a positive integer) then the residue is found by

be 2
masking out the most significant k-bits except the low order

k-bits which is the residue. A carry into the kth bit is

3-14

congruent to 1 and if added to the least significant k-bits gives
the residue, A choice of modulus Zk-l also provides easy
calculation of the residue. The residue in this case is computed
by adding the k most significant bits to the k least significant
bits. But in some cases if the k least significant bits are ls,
and the k most significant bits are zeros, then the result is not
correct and may be corrected by adding a one to the k least

significant bits.

Let k =4, 27 -1=15
i) 7 x8=56=11 mod 15
in binary form it is given as

0111 x 1000 = 0011 1000

1000
+ 0011

carry = 0 1011 mod F
ii) 14 x 14 = 196 = 1 mod 15
1110 x 1110 = 1100 0100

0100
+ 1100

0001 .mod F

If the modulus is chosen as Zk + 1 then 2k = -1 and

ok (-l)nk. The problem in this case (k-bit arithmetic) is
the representation of -1 if it is encountered, it is either
rounded to 0 or 2. To implement NTT there are several
constraints between the modulus and the wordlength. If the
wordlength of the microprocessor does not allow the required
dynamic range of numbers, the Chinese Remainder Theorem (CRT) may

/

3-15

be used to perform arithmetic modulo product of several moduli.

A search for a suitable modulus made by Martin (5), showed
that a value of M=65521 (216-15) is very convenient for
implementation of the NTTs using the WFTA. This is the first
prime number below 216 and allows a dynamic signal processing
range of nearly 216. Some examples of arithmetic modulo 65521
($FFF1) are given below. $ shows a hexadecimal number. All the
following examples use hexadecimal numbers, $ is omitted. NTTs
deal with unsigned numbers so more emphasis will be given_ to this

type of arithmetic.

3.6.1 Addition Modulo 65521

When two 16-bit numbers are fed into a binary adder, a value
of 216 _ 65521 (=15) must be added to the sum,
i) if a carry was generated or
ii) if the sum was greater than-65521,

However, this may generate a further carry, but not more than two

carries can ever be generated.

i) 0279
+ 041C
carry = 0 0695 mod FFF1
ii) FFEF
+ 0014
carry = 1 0003 mod FFF1
+ 000F
carry = 0 0012 mod FFF1

3-16

3.6.2 Subtraction Modulo 65521

Subtraction is performed in the usual way by adding the twos
complement of the subtrahend to the minuend. A value of 65521
must be added to the result, if the subtrahend was dreater than

minuend.

i) 0352

0212 mod FFF1

ii) 0140

FDDF mod FFF1
3.6.3 Multiplication Modulo 65521

If the product of two 16-bit numbers exceeds 65521 then the
product is reduced modulo 65521.
0003 * 0003 = 0009 mod FFF1
FFFO * FFFO = 0001 mod FFF1

(FFFO = -1 mod FFF1)

3-17

CHAPTER 4

Implementation of the Winograd Fourier Transform Algorithm

4.1 Introduction

The Discrete Fourier Transform (DFT) of a sequence x(n) is
given by:
N-1
XW = ¥ xtn) w (4.1)
n=0

and the inverse is given by:

N-1
x) = NTY x@) w™ ~ (4.2)
k=0
where W = e-JZTr/N, W is an integer root of unity such that

WN = 1, N is the sequence length. Cooley and Tukey (8), showed
an efficient way of computing the DFT which reduces the number of
operations from N2 to NlogZN. Attempts have been made to
further reduce the number of operations. Winograd (3), proposed
a new class of Winograd Fourier Transform Algorithms (WFTA),
which requires only 20 percent of multiplications as that of
Cooley-Tukey's FFT algorithm and roughly the same number of
additions. Winograd proposed short length DFT algorithms of
length 2, 3, 4, 5, 7, 8, 9, 16, with minimum number of
multiplies. Table (4.1) shows number of additions and number of

multiplications for each of these short length DFT algorithms.

4-1

Table 4.1:

Short-length No. of No. of
WFTA Adds Multiplies
2 2 2
3 6 3
4 8 4
5 17 6
7 36 9
8 26 8
9 44 13
16 74 18

Number of additions and multiplications

Winograd short length DFT algorithms.

in the

In the FFT the sequence length is N = Zm, where m is a
positive integer. However, in the WFTA the transform length is
equal to several mutually prime factors. If not more than one
factor is chosen from each of the following groups (2, 4, 8, 16),
(3, 9), (7) and (5), transform lengths in the range from 2 to
5040 are possible. This is done by nesting the short length
algorithms together in the following manner. Each of the short
length DFT algorithms consists of input additions followed by
multiplications and the output additions. In the nested form all
the input additions (for Fhe mutually prime factors) are
performed one after the other followed by multiplications (with
the coefficients) and the output additions. Instead of
performing the multiplications separately for each of the short
length factors, the multiplications are also nested (49). This
algorithm reduces the total number of multiplications at the cost
of increased algorithm complexity. These multiplications are
performed with precomputed transform coefficients. There are two
sets of transform coefficients, one for the forward transform and
the other set for the inverse transform. N_l in equation (4.2)
is combined with the inverse transform coefficients so that the
forward and the inverse WFTA can be computed with equal

computational effort.

For example, for sequence length N = 15 the mutually prime
factors are (3,5 = 1. Figures (4.1) and (4.2) show the 3-point
and 5-point WFTA respectively. Let x0,xl,... denote the input

sequence and X0,X1,... denote the transformed sequence.

3-Point WFTA
N=3 U-=2T/3
tl = x1 + x2 |
mo0 =1. (x0 + tl)

ml = (COSU - 1).t1

m2

JSINU(x1 - x2)

‘sl = m0O + ml

X0 = mO
Xl =381 + m2
X2 =581 - m2

5-Point WFTA
N=5 U-=2T/5
tl = x1 + x4, t2 = x2 + x3, t3 = x1 - x4
th = x3 - x2, t5 = t1 + t2

md =1. (x0O + t5)

ml = ((COSU + COS2U) - 1).t5
m2 = 4(COSU - COS2U).(t1 - t2)
m3 = jSINU.(t3 + t4)

mé4 = j(SINU - SIN2U).t4

m5 = j(SIN2U + SINU).t3

sl =m0 + ml, s2 =s1l + m2, s3 =m5 - m3
s =sl - m2, s5=m3 + mé

X0 = mO0

X1l =82 + 83 .

X2 = s4 + 85

X3 = sb - s5

X4 = s2 - s3

4-3

preweave postweave

Fig.41: 3- Point WFTA

preweave

Fig 42: 5-Point WFTA

postweave

X0

X2
X3

X4

The nested 15-point WFTA is shown in figure (4.3) which
" clearly shows five 3-point pre-weaves (premultiply adds),
followed by three 5-point pre-weaves. This is followed by the
multiplications, the number of multiplications is equal to the
product of the multiplications in individual short length DFT
algorithms. Finally the three 5-point post-weaves (postmultiply
adds) and the five 3-point post-weaves are performed. WEAVE (50)
is an acronym for Winograd Elementary Add Vector Elements. Note
that there are eighteen multiplications in the 15-point WFTA,
since there are three multiplications in the 3-point WFTA and six

multiplications in the 5-point WFTA.

Similarly a 60-point WFTA has three mutually prime factors
3, 4, and 5. First of all twenty 3-point, fifteen 4-point,
twelve 5-point pre-weéves are performed, followed by 72 modular
multiplications with coefficients and the post-weaves for each of

the short length WFTA.

The input and the output data must be reordered or shuffled.
The input and output shuffle vectors are also precomputed and
stored in the memory and the shuffle is then performed using
lookup. The disadvantage in the WFTA is that extra memory is
required just to store the input/output shuffle vectors and the
forward and the inverse WFTA coefficients. However, this
algorithm is computationally efficient on machines on which the

multiplication time is much longer than the addition time.

Silverman (51), have described memory considerations for the

FFT and WFTA, and discussed that the WFTA requires 7N memory

4-4

/R A \\ I/
- X

B\
/-

\AAVV
e

/)N , . MPERE/)(\N

/AN /> o

> o} —o— ‘ - I -
/A * /A

* *— ¥} —=o /
7[- —e— % ~

— >)
3 POINT PRE-WEAVE $ */ 3 POINT POST-WEAVE

S POINT PRE - WEAVE "M"{}l;gﬂm' 5 POINT POST-WEAVE
ccccccccccc

o
- ———

FI1G, 4-3: NESTED 15-POINT WINOGRAD FOURIER TRANSFORM ALGORITHM (WFTA)

g, W7 NS :1://: R/
o . T R \Y

o = -
OUTPUT SHUFFLE

&~

locations as compared to comparable size FFT algorithm which
requires 1.25N memory locations. Unlike the FFT, the WFTA cannot
be computed inplace, Silverman called an analogous approach as
full overlay. Nawab and McClellan (52), have described that in
general the WFTA requires more data transfers than an equivalent
length FFT. In addition they have also discussed the minimum
number of CPU registers required to perform each short length DFT
algorithm efficiently, since register to register instructions

are executed much faster.

4.2 Computation of NTT using WFTA

The Number Theoretic Transform (NTT) of a sequence x{n) is
given by:
N-1
XW = Y xmo (4.3)
n=0

and the inverse is given by:

N-1
-1 -nk
x(n) = N™ 2° X(K) (4.4)
k=0
where Q = e-Jzn/N, and is an integer root of unity, such that

C(N = 1 mod M, where M is the modulus, and (1 is defined in a
finite ring of integers ZM. The choice of modulus is made such
that N| M, if M is prime then N,'M-l. The inverse
N1 is defined such that NN = 1 mod M. If M is not a prime
then N1 may or may not exist. Martin (5), carried out a

search for a suitable modulus on the lines described by Bailey

(53), and found that value of M = 65521 is quite adequate for
16-bit modular arithmetic and it is the first prime below 216.
Since NTTs are similar in structure to the DFT any algorithm

which applies to the DFT can also be applied to the NTT.

4.2.1 Determination of the Constants for the WFTA

Implementation of the WFTA requires some constants to be
precomputed and stored in the memory. These are the input/output
shuffle vectors, transform coefficients etc. Consider that we
want to implement a 15-point WFTA. The following calculations

must be performed before the actual program coding.

1- Choice of modulus M = 65521, since it satisfies the
condition N | OM), where O(M) is the g.c.d of (pi-l).
0(65521) = 13 x 5040 and so this modulus will support

any Winograd transform algorithm (5), (9).

N
'

Choice of transform length N = 15,

-1

Determination of N_l, 15~ = 61153 mod 65521.

\N
I

4- Determination of element of order N,

© o =1 mod 65521, (7791)" = 1 mod 65521.

5- Determination of mutually prime factors 15 = 3 x 5, such
that (3,5) = 1.

6- Determination of j (iota) such that j.j = -1 mod 65521,
j £ 41224 mod 65521, j is an element of order 4, such

that (61226)* = 1 mod 65521.

7- Determination of 271 271 = 32761 mod 65521

8- Determination of the input and output shuffle

or reordering vectors. The input and output shuffle

4-6

vectors are obtained using Chinese Remainder Theorem
(CRT), in the following manner.

let N=r such that (rl) Ty) =1

172
also let q = 0,1,...,rl-l, and q, = 0,1,...,r2-1
The following equation allows mapping from aione dimensional
into a two dimensional array.
(rqu + rlqz) mod N
Let
=0,1,2,3,4

rl=3, r2=5, ql=0,l,2, Q,

We get

(5ql + 3q2) mod 15 (4.5)

Using equation (4.5) we obtain the following input shuffle
vectors |

0 3 6 9 12

5 8 11 14 2

10 13 1 4 7

Similarly the output reordering vectors are obtained, by
using the following relationship and determining the values of x

and y, such that: such that:

5 =1 mod 3 == X = 2

3y =1 mod 5 ==> vy =2 (4.6)
Equation (4.5) is rewritten as

(5qu + 3yq,) mod 15
substituting values of x and y, we get

(10ql + 60p) mod 15 (4.7)

Awhere qq = 0,1,2 and q, = 0,1,2,3,4.

This relationship gives us the output reordering vectors as

9- Determination of the transform coefficients.
By definition
COSU = %(eJU + e‘jU) (4.8)

SINU

1/5. 3@V - &Y (4.9)

where U = 2TC/N

Since division has no meaning in an NTT, the trignometric
functions must be redefined in the number theoretic sense (53).
Rewriting equations (4.8) and (4.9).

cosu = 274U + U

SINU = 2'1(-j)(U -uh

where U = 3 mod 65521, and j is an element of order 4, and

(from step 4) QL = 7791.

The multiplier coefficients for the 3-point WFTA and the

5-point WFTA are calculated separately.

(a) Coefficients for the 3-point WFTA
Let U=0Q > mod 65521

(7791)° = 48847 mod 65521

(48847)"L = 16673 mod 65521

m0 =1

ml=CosU-1=2%W+ul-1

= 32761.(48447 + 16673) - 1

4-8

= 32760 mod 65521
m2 = SINU - 1 = 32761.41224,24297(48847 - 16673)

= 16087 mod 65521

Similarly the 5-point transform coefficients are calculated
in the following manner.
(b) Coefficients for the 5-point transform
Let U = a3 mod 65521
(7791)° = 30887 mod 65521
(30887)"! = 28625 mod 65521

COsU = 32761 . (30887+30887_1) = 29756 mod 65521

SINU = 32761 . 24297(30887-‘30887-1) 13367 mod 65521

COS2U = COSZU - SINZU = 3004 mod 65521

SIN2U = 2, SINU, COSU = 49289 mod 65521
m0 =1

271, (COsU + COS2U) - 1 = 16379 mod 65521

ml

m2 = 2-1. (COSU - COS2U) = 13376 mod 65521

m3 = j(SINU + SIN2U) = 19136 mod 65521
mé4 = j(SIN2U) = 18005 mod 65521
m5 = j(SINU - SIN2U) = 48647 mod 65521

The coefficients for the 3-point and 5-point transform are
now multiplied (mod 65521) together, such that each of the
3-point coefficients is multiplied by each of the 5-point
transform c'oefficients. This multiplication (mod 65521) is
performed using a nested 'DO' loop, such that the 5-point
transform coefficients are indexed by the inner loop and the

3-point transform coefficients are indexed by the outer loop.

4-9

The values of the inverse transform coefficients are
obtained in exactly the same manner (as for the forward
transform), except that all the SINU are changed to -SINU and the
transform coefficients thus obtained are then multiplied by

-1

157 = 61153 mod 65521.

4.3 Architecture of the TMS9900 Microprocessor

Texas Instruments TMS9900 is a single chip 16-bit CPU
~ capable of addressing 64K byte of memory (54), (55). The
instruction set of the microprocessor provides full minicomputer
capébilities (including I/0). There are sixteen general purpose
16-bit registers (RO to R15). These registers can be defined any
where in the RAM whose location is determined by contents of the
workspace pointer. Register to register instructions are
executed faster than memory to register or register to memory
instructions. The three on chip registers are accessible to the
programmer, these registers are:
a) Workspace Pointer (WP): this register holds the address of the
current workspace, which is the same as the address of RO.
b) Program Counter (PC): 16-bit program counter holds the address
of the current instruction.
c) Status register (ST): this register represents the current

machine state.

The workspace concept increases the programming flexibility
and more than one program can reside in the memory and executed
without affecting the other programs. The workspace pointer can

also be changed during the program execution. This allows the

4-10

user to redefine a new set of 16 general purpose registers. The
special purpose registers R13, R1l4 and R15 of the current
workspace contains the contents of old WP, old PC and old ST
respectively, and a return to old workspace reloads these values
in the respective registers. This feature is useful when program
environment is changed to a subroutine, since in a conventional
CPU the entire machine state is saved on the stack, but in case
of the TMS9900 only the workspace needs to be changed. A special
purpose register R12 holds the base address of the Communications
Register Unit (CRU). All the data read or written to the I/O

ports must pass through the CRU.

This microprocessor also contains 16 x 16-bit hardware
(unsigned) multiply and 32/16-bit (unsigned) divide, and unsigned
compare. These features make it suitable for implementation of

the NTT.

4.4 Implementation on the Microprocessor

A 15-point and a 60-point WFTA were implemented on the
TMS9900 microprocessor in assembler lanquage. As there was no
software support available with the TMS9900 microprocessor, a
mainframe computer was used for program assembly. A utility
routine was written in assembler for the TMS9900 to load the
object program directly from the mainframe computer into the
memory of the microprocessor. This provided an efficient way of

testing and debugging the software.

4-11

Appendix-B shows an assembler program source listing of the
15-point WFTA implemented on the TMS9900 microprocessor. A
FORTRAN program listing of the 15-point WFTA is also included in

the appendix-B.

A 60-point WFTA FORTRAN program is listed in (5. A
60-point WFTA was also implemented in the FORTH language, a
source program is listed in appendix-C. FORTH is an interactive

high level language for microprocessors (56), (57).

The 60-point WFTA has three factors 3, 4, 5, so this
transform has a three dimensional structure. In general a
transform length with r factors would have an r dimensional
structure. The input and output shuffle vectors, forward and
inverse transform coefficients are calculated in a similar manner
as for the 15-point WFTA. A 120-point WFTA was also implemented

in FORTRAN on a mainframe computer.

An A/D (analogue to digital) converter and a D/A (digital to
analog) converter was interfaced with the TMS9900 microprocessor

system to perform transforms of real time signals.

4-12

CHAPTER 5

External Hardware Modular Multiplier
5.1 Introduction

Microprocessors have found their way into- many digital
signal processing applications. Multiplication is one of the
basic operation in digital signal processing. Hence the need for
performing multiplication on the microprocessor efficiently is of
vital importance. In many microprocessors no facility is
provided for hardware multiply or divide. However, software
routines can be written to perform the required multiplication or

division operations.

Some of the later versions of microprocessors are provided
with signed or unsigned hardware multiplier. For example
Motorola's MC6809 microprocessor and Texas Instrument's TMS9900
microprocessor contains an 8 x 8-bit and 16 x 16-bit unsigned
hardware multiplier respectively. A considerable amount of time
is needed for multiplication even if the hardware multiplier is
available. For example, for the MC6809 microprocessor, 173 clock
cycles are required to produce a 32-bit unsigned product (clock
speed 1-2 MHz), and for the TMS9900 microprocessor 88 clock
cycles (clock speed 3 MHz) are needed. As we are interested in
the product reduced modulo M, some more time has to be allowed
for modularising the 32-bit result. The most obvious and
straightforward -way to modularise a 32-bit unsigned number is by

division. However, for the MC6809 microprocessor this division

5-1

requires 1264 clock cycles. In total 1337 clock cycles are
required to produce a 1l6-bit modular product. Typical program
coding for 16 x 16-bit (unsigned) multiply and 32/16-bit divide
routine for the MC6809 microprocessor is listed in appendix-A.
An alternative approach can be adopted in which the hardware
multiplier is used to produce a 1l6-bit modular product which
requires then only 336 clock cycles (see appendix-A). In the
case of the TMS9900 microprocessor 132 clock cycles are required
to perform a 32/16-bit unsigned hardware divide, so the total
number of clock cycles is 220. The number of clock cycles
required depends upon the addressing mode of the instruction,
since register to register instructions are executed much faster

than the register to memory instructions.

The time required for modular multiplication can be reduced
further by interfacing a high speed external modular multiplier
to the system to increase the throughput of the system, thus

increasing the range of digital signal processing applications.

Different algorithms may be adopted to implement external
multiplication. Either serial or parallel methods may be
employed. For a parallel multiplier the cost increases
approximately linearly with the number of bits, whereas for a
serial multiplier the execution time increases approximately
linearly. Davies (28), have described some aspects of performing
multiplication on the Z80 microprocessor, and interfacing an
external hardware multiplier to it. Weed (29), have described
theoretical clockless multiplication and division circuits using

4 x 4-bit multiplier chips. The product of larger numbers can be

5-2

obtained by employing more than one multiplier chip and adding
the partial products in an appropriate way. In clockless
(combinatorial) circuits the total multiplication time is the sum
of the propagation delay on the chip, and the carry propagation
delay of the adders. This propagation delay increases
approximately linearly with the number of input bits.
Parasuraman (18), have described a hardware multiplier interfaced

to a microprocessor.

5.2 Design and Implementation of an External Hardware

Modular Multiplier

Large Scale Integration (LSI) techniques now allow the
integration of a complete 8 x 8-bit multiplier on a single chip.
For example Advanced Micro Devices (44), and TRW (30), (39),
(42), have produced single chip 8 x 8-bit (AM255558) and 16 x
16-bit (MPY-16AJ) multiplier respectively. These multiplier
chips have a typical 8 x 8-bit and 16 x 16-bit multiplication
time of approximately 45 and 200 nanoseconds respectively. A
single chip multiplier (8 x 12-bits) to produce the 13 most
significant bits of the product with an internal propagation
delay of about 2 nanoseconds have also been reported, additional

delay due to external components adds up to 30 nanoseconds (32).

The interfacing of an external hardware multiplier with a
microprocessor have been described by Davies and Fung (31). This
interfacing can be achieved in two ways. Either it can behave as
an I/O peripheral or it may be mapped. into the memory space of

the microprocessor.

5-3

An external hardware modular multiplier (mod 65521) was
designed and constructed using wire wrapping techniques. It was

interfaced with the TMS9900 microprocessor.

5.2.1 Interfacing Considerations

We shall use the term modular multipiier for the external
hardware modular multiplier interfaced with the TMS9900
microprocessor. The two choices to interface the modular
multiplier to the TMS9900 are as follows.

i) connect to the I/O port

ii) connect directly to the address and data bus

In the first choice the main disadvantage is that 262 clock
cycles are required to communicate with the external modular
multiplier through the I/O port. The strobe signals for the
modular multiplier must also be generated at the output port.
This process is slow since the TMS9900 communicates with the I/O
ports through the Communications Register Unit (CRU) serially.
The number of clock cycles thus required are more than when the
hardware multiply and divide are used to produce the modular
product. In the latter arrangement the modular multiplier behaves
like an intelligent memory mapped peripheral, with three unique
16-bit addresses. The data is written to two of the addresses

and read from the third.

5.2.2 Interfacing the Modular Multiplier with the
TMS9900 Microprocessor
Figure (5.1) shows a block diagram of the complete
(combinatorial) modular multiplier interfaced with the TMS9900
microprocessor. In figure (5.1) and (5.2) lines with arrowheads

represent the data bus.

This modular multiplier combines two of the forementioned
techniques, using parallel multiplier chips to produce a 32-bit
unsigned product and ROM lookup tables whose outputs are combined
by a modular adder. The 32-bit unsigned product is reduced
modulo 65521 in the following manner. The high order 16-bits of
the 32-bit unsigned product pre-multiplied by a fixed constant
216. 65521 (=15) are added to the low order 16-bits of the
product wusing a modular adder. Direct storage of the
pre-multiplied data would require a 64K X 16-bit ROM. However,
if the output is determined by combining partial products derived
from the 8 low order bits and the 8 high order bits of the high

order 16-bit input, the storage requirement is reduced to two 256

x 16-bit ROMs.

Figure (5.2) shows the block diagram of the modular adder,
which consists of three identical 16-bit binary full adders, with
two inputs Al and A2. The output of FAl is checked by a carry
and overflow detector (CD) circuit (figure 5.3). If a carry or
an overflow is detected this circuit activates the gate Gl and a
value of 216- 65521 (=15) is added to the output of FAl in FA2,

This may generate a carry or overflow activating gate G2 adding a

further value of 15 in FA3. The output of FA3 is the final

5-5

M MULTIPLIER
T BUS DRIVER

. Figure 5.1: Block diagram of the: modular

r 16

TB BUFFER | i,s
L1
LiarcH '
-::A' MODULAR ADDER ™®
' OE
161
' _ Y6,
DATA BUS
: T > L1
16 16 J_
OE| =z CLK
Ol
TMS9900 Sl 16
wils ’
yP o g
oo
ADDRESS | conTRoLF =
~6] LOGIC
BUS T
WE CLK

‘ 16
r—i MAI
LOW
|| ORDER 116
32
A 416
HIGH ROMI
ORDER
v ":fLow ORDER

ROM2

multiplier (mod 65521).

-

8 ? HIGH ORDER"

16

Al — 5

INPUT

}A2 —‘ﬁ—)

FA1

CcD

DATA
(15)

16
+ >
FA2
16
G2
CD
16
DATA.
(15)

16 OUTPUT
MODULAR
SUM

FA3

FA . FULL ADDER

CD CARRY/OVERFLOW
DETECT '

Figure 5.2: Block diagram of the modular adder (mod 65521).

modular sum. A modular adder was designed and constructed for

test purpose before implementing it with the modular multiplier.

The basis of this modular multiplier is four (8 x 8-bit)
multiplier chips (AM255558), which achieve a typical 8 x 8-bit
multiplication in approximately 45 nanoseconds. These multiplier
chips are combined with full adders (SN74LS83) to achieve a 16 x
16-bit to 32-bit multiplication in approximately 110 nanoseconds.
Figure (5.4) shows a photograph of the modular multiplier, the

four multiplier chips can be seen clearly.

Typical program coding and timings for the hardware multiply
and divide operation is shown in figure (5.5), and coding for the
use with the external hardware modular multiplier is shown in

figure (5.6).

On the first and second moveA(MOV) instructions the two
16-bit data words are latched in L1 and L2 (SN74LS374) through a
bidirectional bus driver T (SN74LS245). Address and control
signals for these latches and driver are generated by
appropriately decoding the addresses and gating it with the write
er.'lable (WE) line from the TMS9900 microprocessor. The outputs of
L1 and L2 are directed to the multiplier M., The 32-bit unsigned
product is then split into three parts. The low order 1l6-bits
are connected directly to one of the inputs of the first modular
adder MAI. The high order 16-bits are further split into two
8-bit words. The low order half 8-bits are directed to the
address bus of ROM1 and the other half 8-bits are directed to the

address bus of ROM2, ROM1 and ROM2 are four 256 x 4-bit

(AM27521) PROMSs, with a typical access time of 45 nanoseconds.

5-6

Clock cycles

14
88
132

234

Labels

MOD
MPR
MPD

Mnemonics

MOV
MPY
DIV
RT
DATA
DATA
DATA

Operands

@MPD,R2
AMPR,R2
@MOD,R2

65521

R3 contains the modular product.

Program coding for using hardware
multiply and divide.

Figure 5.5:

Clock cycles Labels Mnemonics Operands
INPUT1 EQU >3FF2
INPUT2 EQU >3FF4
OUTPUT EQU >3FF6
20 MOV @MPR,@INPUT1
20 MOV @MPD,@INPUT2
14 MOV @O0UTPUT,R3
-—-- RT
54 MPR DATA
MPD DATA

R3 contains the modular product.
Figure 5.6: Program coding using external modular multiplier.

(> Shows hexadecimal values, and @ shows symbolic names.)

Typical values stored in ROM1 and ROM2 are shown in tables (5.1)
and (5.2). The output of ROMIL is connected to an input of the
first modular adder MAl, MAl combines the low order 16-bits of
the 32-bit product with the partial product stored in ROMI1 from
the low order 8-bits of the high order 16-bits. MA2 then adds in
the other partial product stored in ROM2, The output of MA2 is
finally the 16-bit modular product of the two current 16-bit
values in the input latches L1 and L2. The output of these
latches, multiplier chips and the PROMs are permanently enabled,
so after the second value is latched in L2 the 16-bit modular
product is available in less than 500 nanoseconds at the output
of MA2, This output can be read back into the microprocessor by
activating the tristate buffer TB (SN74LS5126) at the output of

MAZ2.

The multiply instruction for the TMS9900 microprocessor
works in the following manner. If the multiplicand is in
register Rn and the multiplier is in register Rm. Then after the
multiply instruction Rn:Rn+l holds the product and Rm remains
unchanged. For example, if register R2 contains $FFFF, and R3
contains $FFFF, then after the multiplication the register pair
R3:R4 contains $FFFE0001, where ' shows concatenation of two

registers to form a register pair to hold the 32-bit product.

The division operation also utilises a (consecutive)
register pair to hold the quotient and the remainder. Initially
the dividend is held in a register pair Rn:Rn+l, After the
division the Rn holds the quotient and Rn+l holds the remainder.

For example, if R2 contains the divisor ($0005) and R3:R4

5-7

Table 5.1:Values in ROM1

15
30
45
60
75
90
105
120
135
150
165
180
195
210
225
240
255

270

285
300
315
330

‘345

360
375

390
405
420
435
450
465
480
495
510
525
540
555

570

585
600
615
630
645
660

- 675

690

705

720

735

750
765

780
795
810
825
840
855
870
885
900
915
930
945
960
975
990
1005
1020
1035
1050
1065

1080

1095
1110
1125
1140
1155

1170
1185
1200
1215
1230
1245
1260
1275
1290

1305

1320
1335
1350
1365
1380

1395

1410
1425
1440
1455
1470
1485
1500
1515

1530 .

1545

1560
1575
1590
1605
1620
1635
1650

1665

1680
1695

1710

1725
1740
1755
1770
1785
1800
1815
1830
1845
1860
1875
1890
1905
1920

1935

1950
1965
1980
1995
2010
2025

' 2040
12055

2070
2085
2100
2115
2130
2145
2160
2175
2190
2205
2220
2235
2250
2265
2280
2295

2310

2325

2340
2355
2370
2385
2400
2415
2430
2445
2460
2475
2490
2505
2520

2535
| 2550

2565
2580
2595
2610
2625
2640
2655
2670
2685
2700
2715

2730

2745

2760
2775
2790
2805
2820
2835
2850
2865
2880
2895
2910
2925
2940

2955

2970
2985
3000
3015
3030
3045
3060
3075
3090
3105

3120
3135
3150
3165

| 3180

3195
3210

‘3225

3240
3255
3270
3285
3300
3315
3330
3345
3360
3375
3390
3405
3420
3435
3450
3465
3480
3495

3510
3525
3540
3555
3570
3585
3600
3615
3630
3645
3660
3675
3690
3705
3720
3735
3750
3765
3780
3795
3810
3825

Table 5.2: Values in ROM2

3840
7680
11520
15360
19200
23040
26880
30720
34560
38400
42240
46080
49920
53760
57600
61440
65280
3599
7439
11279
15119
- 18959
22799
26639
30479

34319
38159
41999
45839
49679
53519
57359
61199
65039
3358
7198

11038
14878

18718
22558
26398
30238
34078
37918
41758
45598
49438
53278
57118
60958
64798

3117

6957
10797
14637
18477
22817
26157

29997

33837
37677
41517
45357
49197
53037
56877

60717|

64557
2876
6716
10556
14396
18236
22076
25916
29756
33596

37436
41276
45116
48956

52796

56636
60476
64316

2635

6475
10315
14155

17995

21835

25675}

29515
33355

37195

41035
44875
48715
52555
56395
60235
64075

2394

6234
10074
13914
17754

21594

25434
29274
33114
36954
40794
44634
48474
52314
56154
59994
63834

2153

5993

9833
13673

17513

21353
25193
29033
32873
36713

40553
44393

48233|

52073
55913

59753)

63593
1912
5752
9592
13432
17272
21112
24952
28792

32632|

36472
40312
44152
47992
51832
35672
59512
63352
1671
5511

9351
13191

17031

20871
24711

28851

32391
362381
400771
43911
47751
51591
55431
59271
63111
1430
5270
9110
12950
16790
20630
24470
28310
32150
35990
39830

43670
47510
51350
55190
59030
62870
1189
5029
8869
12709
16549
20389
24229
28069
31909
35749
39589
43429
47269
51109
54949
58789
62629
948
4788
8628

12468
16308
20148
23988
27828
31668
35508
39348
43188
47028
50868
54708
58548
62388
707
Y
8387
12227
16067
19907
23747
27587
31427
35267

189107

42947

46787
50627
54467
58307
62147
466
4306
8146
11986
15826
19666
23506
27346
31186
35026
38866
42706
46546
50386
54226
58066
61906

contains dividend ($0000005B) then after the divide instruction

R3 will contain ($0012) and R4 will contain ($0001).

The dividend must be in a register pair (right justified).
Before perfdrming the division the microprocessor checks if the
divisor is greater than the most significant word of the
dividend. If the divisor is greater then normal division takes
place. However, if the divisor is smaller than the most
significant word of the dividend then overflow bit in the status
register is set and the division operation is aborted, and the

dividend remains unchanged.

In figqure (5.5) register pair (R2:R3) holds the 32-bit
unsigned product resulting from a multiply (MPY) instruction.
After a divide (DIV) instruction R2 holds the quotient and R3

holds the remainder.

Comparing the two values in figure (5.5) and figure (5.6)
shows a saving of 180 clock cycles for a single modular
multiplication. For a clock frequency of 3 MHz the total time

saved for each modular multiplication is 60 microseconds.

5.3 Reéults

A 15-point and a 60-point WFTA transform were run on a
TMS9900 microprocessor, requiring 18 and 72 multiplications
respectively. The execution time for a 15-point WFTA is about &4
milliseconds and for a 60-point WFTA is about 32 milliseconds
using the hardware multiply and divide instructions. @ When the

external hardware modular multiplier is implemented, execution

5-8

time is reduced to about 3 milliseconds for a 15-point transform,

and to about 28 milliseconds for a 60-point transform.

A 60-point WFTA implemented in FORTH requires about 739
milliseconds to execute. When the external hardware maodular

multiplier is used, a saving of 3 milliseconds is achieved.

An interesting point to note is that the modular multiplier
generates the 16-bit modular product between the second and third
.move (MOV) instruction. If the modular multiplier had been
slower, then a delay routine would be required between latching
the second operand into the modular multiplier and reading the

modular product from it.

The modular multiplier was tested extensively. A test
routine for the TMS9900 microprocessor was written to check all
the possible input combinations of the multiplier and the
multiplicand. The modular product obtained fr}Jm the modular
multiplier were compared with modular product of the same two

numbers calculated by the microprocessor itself.

Total cost of this external hardware modular multiplier is
approximatelyof 400 (1980), which is dominated by the cost of the
four multiplier chips. Total power consumption is about 16 watts

and 81 i.c. packages are used in all.

5-9

CHAPTER 6)

Multi Processor and Parallel Processor Systems

6.1 Introduction

A Central Processing Unit (CPU) fetches instructions from
its program memory sequentially under the program control (see
figure 6.1). These instructions are then decoded and executed.
Each instruction may differ in length depending upon the mode of
instruction. These instructions are visualised as stream of

instructions and operands as stream of data.

The data are manipulated in the CPU registers and the
results are stored back in the memory. The arithmetic operations
performed in the CPU registers are much quicker than the register
to memory or memory to register operations. The onchip registers
are also referred to as scratchpad registers. Some of the onchip
registers are not accessible to the programmer and are entirely

used by the CPU.

6.2 System Organisation

Suppose that a processor P is operating at full speed and
capacity. Let MI and MD be the minimum number of instruction
and data stream respectively. The computer systems can then be
organised into four different ways according to the instruction

and data stream.

6.2.1 Single Instruction Single Data (SISD) Machine

In this type of system MI = MD = 1. This arrangement is
typical of a uni processor (with a single Arithmetic-Logic Unit
(ALU), and a Control Unit) system. A single instruction I is
fetched from the program memory sequentially under the ALU
control, and is decoded by the ALU and then executed in m
subinstructions Sys Sgy eeey S (as shown in figure 6.2).
The data are obtained from the data memory, and after the
calculations the results are stored back into it. Each

instruction represents one arithmetic operation on input data D

1
entering the ALU to generate the output data D.

6.2.2 Single Instruction Multiple Data (SIMD) Machine

In this case MI = 1, and My >1. Figure (6.3) shows a
typical SIMD machine. There are m number of processors P. These
processors are arranged in such a manner that the same
instruction stream performs operations on m seperate input data

streams Dl’ DZ""’ Dm' To generate the output data

1 1]
streams Dl’ DZ’“" Dm' This arrangement is typical

of an array processor, with a single control unit with some

arrangement to broadcast instructions to the desired processors.

6.2.3 Multiple Instruction Multiple Data (MIMD) Machine

In this type of system M; >1 and My >1. Figure (6.4)
shows a typical MIMD machine. Processors P are arranged such

that each one is distinct and separate, and a separate

6-2

DATA
_STREAM

CPU

>

MEMORY

INSTRUCTION
STREAM

Figure 6.1: Conventional uni processor system.

D
INPUT A
DATA STREAM
sy |
o
S
2 15
>
1 y i |E
INSTRUCTION ! 0
STREAM : Z
. ! m
o |
Srn w
OUTPUT
+ DATA STREAM

D

Figure 6.2: A Single Instruction Single Data (SISD) machine.

INPUT DATA

STREAM
D D2 » Om
| | |

r’l P ﬁ R 1 Prm
J)] LZ | , Lm

- OUTPUT DATA '

STREAM
PR N

INSTRUCTION STREAM

Figure 6.3: A Single Instruction Multiple Data (SIMD) machine.

INPUT DATA
STREAM

T D2 Dm

]

P1 ' ‘ [-—)1 P2 ------ r—{r Pm .

/

OUTPUT DATA
STREAM :
1, I ' Im
INSTRUCTION STREAM

— | T | I

Figure 6.4: A Multiple Instruction Multiple Data (MIMD) machine.

instruction stream is applied to each of the m processing units.

Let each of the processing units have separate input data

streams Dl’ DZ""’ D to generate the output data streams

m
] ! !

y Dogyeesy D . This system executes several
1 2 m

independent programs concurrently. It basically forms a multi

D

processor system, such that each processor has a separate program

memory.

6.2.4 Multiple Instruction Single Data (MISD) Machine

In this case M; >1 and M = 1. Figure (6.5) shows a
typical MISD machine. The same data passes through different
segments. The same set of data D is being operated upon by m
instructions to generate the output D'. This arrangement can
also be called as an m-segment pipeline processor. A pipeline
processor requires more hardware and complex circuitry, but has
high speed operation. Each of the segments is separated by a

buffer register to hold intermediate results.

6.3 Multi Processor Systems

Experience reveals that parallelism in hardware circuitry
increases the throughput of the system. Increasing the level of
parallelism increases the potential operating speed but also the

hardware and the cost.

Consider a uni processor system with programmed I/O devices.
A CPU performs I/O routines to transfer data to and from the I/O

devices using polling. Polling is a scheme in which the CPU

6-3

INPUT DATA
STREAM
D .

l

[iy —— S1

& f—

INSTRUCTION STREAM
N

SEGMENTS

L

o
OUTPUT DATA
STREAM -

Figure 6.5: A Multiple Instruction Single Data (MISD) machine.

periodically checks the I/O devices to see if any of the devices
needs servicing. The system would tend to slow down when the CPU
is interfaced to rather slow mechanical devices e.q. a card
reader, or a line printer etc. An improvement on programmed I/O
method of data transfer is to implement interrupts. In this case
the CPU does not poll any of the devices, but when the peripheral
or I/O device is ready to receive/transmit data it sends an
interrupt signal to the CPU. The CPU branches to the appropriate
interrupt service routine, and after performing I/O routines
resumes normal operation. A further improvement would be to
employ I/O Processors (IOPs) also called Peripheral Processing
Units (PPUs). These reduce considerably the load on the main
CPU., The IOPs share common memory with the main CPU., But the CPU
still initiates and terminates all the data transfer operations.

The main CPU behaves as a master and the IOPs as slaves.

The advantage of employing CPU and IOPs side by side is that
both can execute their programs concurrently and independently of
each other. This basically forms a type of multi processor
system. Figure (6.6a) shows a single shared link between memory
and I/O devices for local communications. The speed of the
system may suffer if the I/O devices are very slow. However,
figure (6.6b) shows another arrangement with dual bus, in this

case I/O devices are controlled by an IOP (22).

In most practical systems it is required by the processors
to communicate with each other. The multi processor systems can
be classified as directly or indirectly coupled, which depends

upon the method of data exchange.

CONTROL BUS

DATA BUS

MEMORY CPU 1/0

'Figure 6.6a: Local communication between CPU and memory and 1/O

connected through a shared bus.

CONTROL BUS

DATABUS |
MEMORY CPU 10P -
CONTROL BUS 1
DATA BUS | | |
1/o

Figure 6.6b: I_ocal communications with memory and several
' I/O through IOP using dual hus structure.

/o

6.3.1 Directly Coupled Multi Processor Systems

A multi processor system is defined as a computer system
with more than one CPU, sharing a common memory and I/O devices.
The CPUs co-operate with each other at hardware and software
level, and exchange data with each other through common memory
when required (73). This is known as a directly or tightly

coupled multi processor system.

Scales (77), have described two kinds of directly coupled
multi microprocessor systems using Motorola's MCé6809E
microprocessor, namely global-only and local/global type. He has
also discussed the basic hardware differences between the MC6809
and the MC6809E version of the microprocessor. The MC6809E
version requires an external (TTL) clock, but the MC6809 has an
onchip oscillator, which operates by an external crystal. The
MC6809E version provides output signals suitable for a multi

microprocessor environment.

In the global-only type, the microprocessors continuously
use the same global bus, because all the microprocessors share
the common (global) memory. The efficiency of the system is low.
Each microprocessor is granted the bus by the bus arbiter at the
begining of each cycle of the clock E. One of the
microprocessors has higher priority than the rest of the
microprocessors such that the system behaves as a master and
slaves. The master acquires the global bus on powerup reset to
init—ialise the system and peripherals, while the other
microprocessors execute the SYNC instruction and wait for the

interrupt after the reset has been activated. The priority of

6-5

the microprocessors is in round-robin manner. At any instant
only one microprocessor uses the global bus and the clocks are
stretched for other microprocessors. The maximum time for which
the clock can be stretched is 10 microseconds without loss of

data.

In the local/global system each of the microprocessor has
its own local program and data memory connected to the
microprocessor by the local data and address buses. In addition
there is a global memory, data bus, address bus and global 1/O
devices., Each of the microprocessors is allocated a different
task, for example one of them performs the I/O operations, the
other runs the operating system, and the control microprocessor

supervises the entire system.

A bus arbiter controls the flow of the data from the
microprocessors to the global memory and global 1/O devices.
Each of the microprocessors is executing program from its own
local program memory using its local bus. If any of the
microprocessors wishes to access the global memory, it puts a
request to the bus arbiter which makes sure that only one
microprocessor is accessing the global bus at a time to prevent
bus contention. If two microprocessors simultaneously request
the bus arbiter to access the global memory, the bus is granted
by the bus arbiter to the microprocessor which has higher
priority, and sends the other microprocessors into a wait state
with their clocks stretched until the first one has finished the
data transfer into the global memory or the global 1/O device.

As long as the microprocessors are executing programs from their

6-6

own local program memories the speed and efficiency of the system
is a maximum, but as soon as more than one microprocessor wishes
to access the global memory or I/O device, the speed of the
system suffers. The number of microprocessors which can be

interconnected in this manner is limited (4 in this case).

Hoffner and Smith (68), have described a tightly coupled
multi processor system. This system employs two MC6809
microprocessors. These two microprocessors are operated by
opposite phases of a common clock. This prevents simultaneous
access by thé microprocessors to the common memory. The memory
in this system should be twice as fast as the processor read
cycle, to prevent contention. The processors are connected
through a parallel interface buffer to a common memory. The
advantage in this system 1is that in one cycle one of the
processor is writing into the memory, while in the next
(anti-phase) clock the other processor can read this particular
byte. The major drawback in tightly coupled multi processor
systems in general is the memory conflict. The method described
above circumvents memory conflict problem (limited to 2

microprocessors only).

6.3.2 Indirectly Coupled Multi Processor Systems

Indirectly coupled multi processor systems in contrast do
not share a common memory (73). The data exchange takes place
through an‘other medium like magnetic tape, magnetic disk or I/O
ports etc. Each of the CPUs has its own associated memory. In

loosely or indirectly coupled multi processor systems the

6-7

processors work more autonomously as compared to tightly coupled

systems.

Bellm and Sauer (64), have described three different methods

for data exchange between two Intel 8080 microcomputers.

The first method involves parallel data transfer through
Programmable Peripheral Interface (PPI) using I/O ports. A
further port is used for handshaking. @ These handshaking signals
are also referred to as semaphores. Semaphores are memory
locations under the software control which act as flags
indicating the presence or absence of data. When one
microcomputer transfers the data into its output port, it sets a
1-bit flag in the other output port. This port is being
continuously monitlored by the other microcomputer, when it is
expecting data from the other microcomputer. When the signal on
a particular bit changes, the destination microcomputer reads the
output port of the source microcomputer. The destination
microcomputer then acknowledges this by setting a bit in its own
output port. This port is being monitored by the source
microcomputer (after it has transferred data to its output port).
The source microcomputer after receiving this acknowledgement
sends the next data byte. The data transfer can be in either
direction, i.e. each of the two microcomputers can at one instant
behave as source, and in the next instance as destination. A
loop counter determines the number of data bytes to be

transmitted and/or received.

6-8

The second method uses interrupts. When the data are
available at the output port the source sends an interrupt to the
destination. After executing the interrupt routine the two
microcomputers can resume their normal operation independently.
Data exchange still takes place through input and output ports.
The destination microcomputer then reads the data, and sends an

acknowledge signal back to the source.

The third method employs Direct Memory Access (DMA). The
source microcomputer sends a request for DMA to the destination
microcomputer. The destination microcomputer forces its address
and data buses into high impedance state. The source can then
access the address and data buses of the destination
microcomputer to access its memory. Then the source
microcomputer can write into this remote memory as if it were its
own memory. A tristate buffer is required to isolate the common
" buses of the two microcomputers (67), (77). During the DMA the
destination microcomputer is not executing any program. After
the DMA is complete a signal transmitted to the destination
microcomputer restarts it. This method of data transfer requires
complex circuitry. Tanabe and Matsumoto (74) have described a
dual bus microprocessor. This microprocessor is capable of
behaving as a master or a slave depending upon a control signal.
The dual bus architecture allows use of both the buses (local and
global) simultaneously, for example on the internal bus the CPU
is executing its program, while the external bus is being used
for DMA. This prevents the microprocessor idling during DMA,

thus increasing the throughput.

6-9

6.4.1 Time-shared Bus

A time-shared bus is sometimes also referred to as a shared
bus (22), (71), (72). This is a single bus which is used by
several processors to communicate with each other, or with some
other processor or .I/O device at different intervals of time. A
shared bus has more than one source and destination. The shared
bus may be unidirectional or bidirectional. The data transfer
rate is low but the cost is also low. The complexity of the
hardware and control function increases with the increase in the
number of processors on the bus. A major disadvantage is that
only one processor can act as a source at a time, and the rest of
the processors are effectively cutoff from the bus during this
period see figure (6.7). A bus arbiter or a multiplexer controls
the dynamic communication path between the two devices.
Additional systems can be connected to the bus, without major
alterations in the link, provided that the arbiter has the
capacity to control all the devices. Such a system is called a

modular system.

6.4.2 Dedicated Link

A dedicated link is the one in which there is only one
source and one destination per link see figure (6.8). A
dedicated link provides high speed communications at the expense
of increased cost. These dedicated links can either be
unidirectional or bidirectional. If an additional device is to
be connected to the n-device system then n(n-1)/2 number of links

are required. This kind of system is non-modular.

6-11

CONTROL BUS

DATA BUS

Dy D2 Dm
Figure 6.7: A shared bus system.
A B
D c
Figure 6.8: Several devices interconnected through dedicated

link.

6.5 Parallel Processor Systems

The term parallel processing is used in a very general
sense, which involves methods to improve computational speed by

performing calculations simultaneously or in parallel.

i

Each of the CPUs has its own local memory (RAM and ROM),
These local memories are not accessible to any other processor,
not even to the master. The role of the master in this
configuration is to control the data flow to and from the slaves.
The master can also initiate the task. This type of system is
useful in implementing algorithms with inherent parallelism (59),
(61). Then a big task is broken down into subtasks and each
processor is allocated a subtask (73). The processors
communicate with each other through the I/O ports or dedicated
buses. A master processor supervises the entire system. The
master is capable of communicating with all the slaves. This
kind of system is of dedicated type, and it is not very suitable
for general applications. Another approach to such a system |is
that the master is capable of accessing the local memory of the
slave(s). This makes the system programmable and more flexible,
i.e. the master can transfer program(s) into the local memory of
the slave(s) and request them to execute this program on a
particular set of data (63). After completing the task the
slave(s) informs the master and goes into an idle state and waits
for the next task. This method is also useful when the raw data
is to be preprocessed to be used at a later stage during the

program execution by the master.

6-12

A parallel processor system basically forms an MIMD machine.
All the processors are under the control of a central control
unit. Increased parallelism makes the system special purpose or
dedicated, while low order of parallelism makes the system less
efficient. Parallelism in a particular problem is obtained by

examining the size and type of the problem.

FFT type algorithms can be implemented on a parallel
processor system provided that the data exchange among the

processors are performed in an efficient manner (1).

Parallelism in an algorithm is defined as number of
arithmetic operations that are independent and can therefore be
performed in parallel i.e. concurrently. A system which can then
utilise this parallelism in full would give a highly efficient

system.

6.6 Array Processors

A processor is defined as a computer without a control unit
(66). AThese processors can be arranged into arrays with a single
control unit. These processors are then much easier to design
using integrated circuit technology on a single chip. This would
basically form an SIMD machine. The control unit, depending upon
the instruction, can disable or enable a particular processor.
If a separate control unit is provided for each processor then it
would work more autonomously, but still working under the control

of a central control unit.

6-13

Performance of an array processor is the (data) bandwidth or
maximum throughput measured in terms of maximum number of results
that can be generated per unit time. One measure often used for
high performance machines is the number of floating point
operations per second (flops). Sometimes a bigger unit,
megaflops (million floating point operations per second), is also

used.

Array processors are employed for implementation of
algorithms which have inherent parallelism (62), (70). Each
processor share the -task of processing the data, the load on each
processor should be kept at the same level. As the processors
are physically located in close proximity to each other, parallel
connection exists between them. FEach processor can have its own
program and data memory. The control unit can appropriately

enable or disable the processors as required.

6.7 Processor - Memory Interconnection

Processor to memory interconnection is one of the essential
factors to be pohsidered while designing a multi processor
system. The connection to the main memory with a number of
processors can be achieved by multiplexing through a switching

network (87).

Figure (6.9) shows a cross-bar switch matrix interconnecting
processors P and memory or I/O modules M. The advantage of this
arrangement is that the connection between several processors and
memory modules can be achieved simultaneously, provided they are

accessing different memory modules. In this case the efficiency

6-14

PROCESSORS

' P1 P2 Pm
M] t‘} Fa N \\
(@]
- Mz *é QJ """ ﬂ\

MEMORY -

o
A 24

Figure 6.9: Processor-memory interconnection through a cross-bar
switch, '

S SWITCH : 0
P PROCESSOR ,
SG

Y
e m
N

S3

®

-®
T

Sg [- s,

Figure 6.10: Several processors connected to a ring through
switches.

would be a maximum. Some arrangement must be provided to prevent
simultaneous access by two or more processors to a common memory.
The cost of a large cross-bar switch may exceed the total cost of

the rest of the system.

Arden and Berenbaum (65), have described a switch with four
ports, of which one is the input port and the rest are output
ports. The connections of the input port to any of the output
port can be achieved by proper addressing. These three output
ports can further be connected to similar switches which can
extend the capability of the processor to access a bank of
memories. But care should be taken not to connect more than one
processor to the same memory module accessing a different
address. This is referred to as memory interference and it is
entirely under software control. Another kind of contention in a
multi processor system which can arise is the access of the
common system routines or tables. This kind of contention is
called system contention. To overcome this problem the routines
must be reentrant. A reentrant routine is the one which can be
executed by several different progessors simultaneously, data

should be in different data memory for each processor.

Interleaved memories may also be implemented. In an
interleaved memory structure even and odd addresses are located
in different memories, such that they can be accessed one after
the other in quick succession. This reduces the constraints due
to the low access time of the memory. For instance the processor
fetches the instruction (op code) from the even address, in the

next cycle it will fetch operands from the odd address memory

6-15

module.

6.8 Computer Systems

The computer systems can be connected in several ways, few

of them are described below.

6.8.1 Ring Structure

A ring or mesh network is shown in figure (6.10) (22). The
ring structure is used for long distance communicatibns or local
area networks. The switches S1 to S6 behave as multiplexers, the
processors Pl to P6 are interconnected through these switches.
Each of the processor before transmitting the data sends the
address of the destination processor to the link. Appropriate
switch is selected and then the data is transmitted. A
particular switch then selects its local processor as the
destination and routes the data to its local processor, otherwise
forwards it to the next switch in sequence. This form of network
is modular. A facility in the system to reconfigure itself in

case of a switch failure makes the system more reliable,

6.8.2 Star Link

A star link shown in figure (6.11) consists of centralised
controller C. Processors talk with each other through this
central control switch. Failure of the control switch C would

cripple the entire system.

6-16

C CENTRAL
CONTROLLER

P PROCESSOR

Figure 6.11: Several processors connected to a central control
switch to form a star configuration.

P PROCESSOR

Figure 6.12: Fully connected multi processor network.

6.8.3 Fully Connected Link

A fully connected network is shown in figure (6.12). In a
large computer network all the computers may be connected to each
other through a dedicated or a time-shared bus. This allows the
system to bypass a busy or a faulty processor. There is no
central control, each processor is allowed to communicate with
any other processor independently when required. This network
will be costly to implement due to multiple connections. The

fully connected network is highly non-modular.

6-17

CHAPTER 7

A Dedicated Parallel Microprocessor System

7.1 Introduction

A number of microprocessors are available now commercially
(75), (76). Microprocessors are slow for many applications.
However, additional hardware may be employed for better
performance e.g. an array processor interfaced with a main frame
computer may increase its performance many fold (62), (70). The
software on the mainframe computer must be able to detect the
degree of parallelism in an algorithm, and generate appropriate

code for it.

Arden and Barenbaum (65), and Enslow (66), have suggested
that employing several cheap processors in parallel can in
certain cases outperform an expensive mainframe computer. With
the availability of cheap microprocessors parallel processing

technique to vimpl’ement WFTA was investigated.

Figure (4.3) shows a flow diagram of the 15-point WFTA.
Figure (7.1) shows another way of representing it, which
illustrates the two dimensional structure in the algorithm. A
transform of length N, which can be factorised into n mutually
prime factors (N = rlxrzx...xrn) will have an n dimensional
structure. For example in this case N = 15, the two mutually
prime factors are 3 and 5. When the 15-point WFTA is implemented
on a uni processor system, the 'DO' loop simulates a- parallel

processor system, calculating the values sequentially rather than

7-1

- . X} -

o0

10
11

14

0o S 7 0
5 * o
S Ny dt— - .

\
\

\
\

@ —retag =47] ""ﬂ'& g |
¥ ¥
‘ {
© b
[Ramiaie =227 Mg -1-Rag-X o

IRURURIAL

" /
S—-point pre—weave\ < : / 9—point post—-weave
N

Multiplicati
with poefficients

6—point pre—weave 6—point post—weave

Figure 7.1: 16—Point Winograd Fourier Transform Algorithm (WFTA)
showing a two dimensional structure

- X X" V=0

. XY

10
11

14

simultaneously. Coding of a 'DO' loop also hinders efficient
program execution. In the case of the WFTA the program coding
requires double indexing in the memory to acquire data for
arithmetic operations which would load the microprocessor
heavily. The consequence is that the microprocessor will spend
more time in the indexing and data organisation than actually

performing the arithmetic operations.

We are interested in designing a dedicated parallel
microprocessor system to implement the 15-point WFTA.
Implementation of the 15-point WFTA on a parallel microprocessor
system would circumvent some of the problems arising in the uni
processor implementation of the algorithm (59), (61). The amount
of indexing to be performed by each of the microprocessors is
reduced considerably, and fewer data are to be manipulated by
individual microprocessors. This frees the microprocessors for
more vital tasks. Zohar (60), has suggested the use of address
processors to calculate the addresses of the data beforehand,

which would effectively increase the systems efficiency.

Attention is now drawn to some essential factors which must
be kept in mind for designing a parallel microprocessor system.
These factors are, the transform length N, choice of a suitable
microprocessor, inter microprocessor communication, systems

organisation, cost and power requirements etc.

7-2

7.2 Choice of a Microprocessor

To investigate the possibility of parallel implementation of
the 15-point WFTA requires the selection of a suitable
microprocessor. This was done by writing benchmark programs to
test the microprocessor's performance in this application. These
benchmark programs (for modular arithmetic o.perations) were
written for the following microprocessors, TMS9900, MC6809, Z80
(89), 8X300 (90), COP402 (91) and 6502 (92). Among these the
TMS9900 is a 16-bit microprocessor, whereas the MC6809, Z80 and
6502 are 8-bit microprqcessors. The 8X300 and COP402 are 8-bit
and 4-bit micro-controllers respectively. The MC6800
microprocessor was not included in the above list, because the
MC6809 is an enhanced version of the MC6800, and is much faster
and more versatile than its predecessor. All these benchmark
programs were run on the respective microprocessor systems to
test their accuracy, except for the 8X300 and the COP402, which
were not available at the time. Appendix-A contains source
listings of these benchmark programs, listings for the two

micro-controllers are excluded.

Results of these benchmark programs are shown in figures
(7.2) to (7.4). Figure (7.5) shows the cost of these
microprocessors (1981), which was one of the considerations to
obtain a cost effective design (also see tables (3.1) to (3.3)).
Comparison of these results show that the MC6809 microprocessor
gave an optimum choice. Two of the important features of the
MC6809 microprocessor which led to its selection were the

availability of an unsigned hardware multiplier and the SYNC

7-3

8651

401

w
Q

TIME USEC —
N
o

—
o

9900 6502 6809 8X300 Z80 COP402

Figure 7.2: Results of the benchmark programs for modular

10701

401

TIME pSEC —>
N
<

——t
el

w
o

addition.

9900 6502 6809 8X300 Z80 COP402

Figure 7.3: Results of the benchmark programs for modular

subtraction.

18200

24301

T 600-

9 5001

R 400-

=

= 300-
2001

1001

9900 6502 6809 8X300 Z80 - COP402

Figure 7.4: Results of the benchmark programs for modular
multiplication.

|

9900 6502 6808 8X300 . Z80 COPL02

Figure 7.5: Cost of the microprocessors (1981).

instruction. In spite of being an 8-bit microprocessor, its
powerful addressing and indexing modes can provide an outstanding
performance comparable to the 16-bit microprocessors. Among the
rest, only the TMS9900 microprocessor contains an unsigned

hardware multiplier.

7.3 Architecture of the MC6809 Microprocessor

The Motorola's MC6809 microprocessor is an 8-bit
microprocessor, with 16-bit addressing, housed in a 40 pin d.i.l
package. Figure (7.6) shows a block diagram of the CPU

architecture (78), (79).

It consists of two general purpose 8-bit registers A and B,
often called the accumulators. These registers are mostly used
for arithmetic purposes. The repertoire of the microprocessor
contains signed and unsigned 8-bit and 16-bit arithmetic
operations. The accumulators A and B may be concatenated together
to form a 16-bit accumulator D, thus allowing 16-bit arithmetic.
An 8-bit Condition Code register (CC) provides information about

the current machine status.

Two 16-bit index registers X and Y are used in the indexed
mode of addressing. These registers are quite useful when
sequential data access to and from the memory is required.
However, an offset can be specified in the instruction, then the
address in an index register behaves as a base address. The

accumulators can also be used to hold this offset.

7-4

AQ-A1S

DO-D7

T

Figure 7.6: MC6809 CPU block diagram.

1'16 8
<1 PC IR
- -RESET
J—> S > IIV——_W
' le—FIRQ
a Y fe—> INTERRUPT o
: CONTROL |e— IRQ
= X > :
. ' . DMA/BREQ
< D{ A i if R/W
B BUS l—— HALT
<—] DP | cC | CONTROL [—>BA
K - — _5BS
. Y XTAL
ALU je—> l«— EXTAL
TIMING f&— MRDY
L oE
‘L_____>.Q

MPU STATE

BA | BS | |
o | o NORMAL RUNNING

0 1 INTERRUPT ACK.

1 0 SYNC ACK.

1 1 HALT OR BUS GRANT

Table 7.1: MC6809 CPU state.

There are two 1l6-bit stack pointers called the hardware
Stack pointer S, and the User stack pointer U. These stack
pointers can be used with the same addressing modes as the index
registers X and Y. These registers work as pushdown stack
pointers, and are accessible to the programmer. When subroutines
or interrupt routines are to be executed, the microprocessor
automatically utilises the address in the stack pointer S for
saving the entire machine state in the memaory. The stack
pointers U and S may be used as pointers for the pushdown stack
thus supporting pull and push instructions.' This pushdown stack
allows to pass arguments to and from the main program to the

subroutines, interrupt routines etc.

A 16-bit Program Counter (PC) allows access to 64K bytes of
memory. The program counter contains the address of the next
sequential or logical instruction to be executed. An B8-bit
Direct Page (DP) register is available to enhance the direct
addressing mode. The contents of this register serve as high
order 8-bits (AB8-Al5) during the direct addressing. The DP
register is cleared when the microprocessor is reset. This
register allows 8-bvit relative addressing within the page, whose
base address is in the DP register. The direct addressing mode
requires fewer program bytes and executes much faster than the

absolute addressing mode.

The microprocessor also contains an onchip oscillator, which
is accessed through two input pins. This oscillator may be
operated by an external crystal of frequency 4f (where f is the

bus frequency, typically f = 1 MHz). Alternately an external

7-5

(TTL) clock source of 4f may be used to operate the
microprocessor. The latter arrangement is useful in systems where
synchronous processing is required e.g. in multi processor or
parallel processor systems. Two output clock signals E and Q
(1 MHz), are used for external timings. Addresses are valid on
the leading edge of Q, and data are latched on the falling edge

of E.

A low level on the RESET input forces the microprocessor
into a known state. A low level on the DMA/BREQ input forces the
data and address buses into high impedance state, so as to permit
a direct memory access. A low level input on the HALT line halts
the microprocessor indefinitely after the end of current
instruction without loss of data. A MRDY input allows the
microprocessor to access slow memories, by stretching its clock
signals. However, the clock signals may not be stretched beyond
10 microseconds without loss of data. A R/W line indicates a
Read (high) or a Write (low) cycle. Two output signals BA (Bus
Available) and BS (Bus Status) gives information about the

current machine status as shown in table (7.1).

7.3.1 Hardware and Software Interrupts

Three levels of hardware interrupts are available, and are
prioritised in the following order, NMI (Non Maskable Interrupt),

FIRQ (Fast Interrupt ReQuest), and IRQ (Interrupt ReQuest).

The NMI is a negative edge triggered interrupt and cannot be
disabled through software. When this interrupt occurs, the

entire machine state is saved on the hardware stack. This

7-6

condition is indicated by setting the E flag in the condition
code register. After a reset, the NMI will not be recognised

until the first program load of the hardware stack pointer S.

Both the FIRQ and the IRQ are level triggered interrupts and
are maskable, i.e. these interrupts can be disabled or enabled
through the software. If the F or the I bit in the condition
code register is set to logic 1, then the respective interrupt is
disabled. Otherwise it is enabled. The FIRQ is the fast
interrupt in the sense that, unlike NMI and IRQ it does not save
the entire machine state, but saves only the condition code
register and the program counter on the hardware stack. The E
bit in the condition code register remains cleared. The IRQ
interrupt works in a similar fashion as the NMI interrupt, except

that it is maskable.

Three levels of software interrupts are also available, and
are useful for debugging the system and for software development.
Decoding of the low order 4-bits on the address bus determines

which level of interrupt had occured.

7.3.2 Microprocessor Synchronisation

In a parallel processor system a single out of step
processor can produce chaotic results. Synchronisation can be
achieved by handshaking at hardware or software level. The
handshaking allows data exchange between two or more processors

without loss of information.

7-7

The MC68B09 microprocessor is provided with a SYNC
instruction which may be used to synchronise the microprocessor
to an external event. When the microprocessor executes the SYNC
instruction, it stops processing the instructions and waits for
an external interrupt. Two oufput pins BA . BS = 1 indicate the
SYNC acknowledge, where '' represents a logical AND operation
(see table 7.1). If the pending interrupt is a nonmaskable (NMI)
or a maskable interrupt (FIRQ or IRQ) with its mask bits (F or I)
clear, then after receiving the external interrupt the
microprocessor will clear the sync state and will execute the
appropriate interrupt routine. However, if the pending interrupt
is maskable and it is disabled, then the microprocessor will
simply clear the sync state and resume normal operation. This
instruction is ideally suited for the situations where the
expected input data are occuring randomly, and the microprocessor
cannot process further data without it. This data can be from

another microprocessor or from some other source.

The use of SYNC instruction is equivalent to a wait loop.
An advantage of using the SYNC instruction is that it is faster
than the wait loop, since the microprocessor will proceed further
as soon as it receives an interrupt. However, in the case of a

wait loop a small delay may be introduced before the processor

can proceed further.

7.4 Inter Microprocessor Communication

In a multi processor or a parallel processor system it may

or may not be a requirement for the processors to communicate

7-8

with each other at all. However, if a processor requires data
from another processor during the task execution, then some form
of inter processor communication is required. The method of data
exchange will depend upon whether‘the system is loosely or

tightly coupled.

To investigate a principle for inter microprocessor
communication a simple example is presented. Consider a system
with two general purpose processors Pl and P2 (see figure 7.7).
Each of the processor has its own local program memory, and some
arrangement for decoding the address and generating the
appropriate read/write signals. Consider two latches L1 and L2
with tristate outputs, these latches are connected to the
processors such that, Pl can only write into L1 and P2 can only
write into L2, Furthermore, Pl can only read the contents of L2
and P2 can only read the contents of L1, In other words L1 is a
write only and L2 is a read only latch for Pl, and L2 is a write
only and L1 is a read only latch for P2. This arrangement forms
a loosely coupled multi processor system, and the associated
latches may be visualised as I/O ports. These latches are
connected through dedicated parallel data buses, with two
associated control signals. These two control signals are the

output enable (OE) and the clock (CLK) signals.

The two processors exchange data with each other through the
communication latches in the following manner. When required, Pl
writes data into L1 and P2 writes into L2, The processors ére
then synchronised with each other at this instant, and then the

processors read their respective read only latches (88).

| ,
LATCH
CLK| u1 OE
DATA | DATA
CPU pe— ss———3> (CPU
P1 BUS BUS P2
CONTROL CONTROL
LOGIC A— «——— LOGIC
LATCH ’
L2
OE CLK

‘Figure 7.7: A two microprocessor system.

7.5 Dual Microprocessor System

Figure (7.8) shows a block diagram of a practical circuit
based on the idea discussed in the previous section. This system
contains two MC6809 microprocessors Pl and P2, A TMS9900
microprocessor system serves as a host or master to control the
two slaves Pl and P2. Each of the microprocessors has its own
local program memory and no other microprocessor can access it.
A common single phase clock is used to operate the two slaves,
which is separate from the master's clock. The microprocessors
-are located physically very close to each other, and the
interface between the master and slaves is through dedicated
l6-bit latches with tristate outputs. The master's side consists
of a 16-bit data bus, while the slave's side consists of an 8-bit

data bus.

In addition to the communication latches L1 and L2, each of
the two slave microprocessors have associated with them two
additional latches, namely INl, OUT1 and IN2, OUT2 respectively.
IN1 and IN2 serve as the input buffer memory i.e. data to be
transferred to the slaves by the master are held in these
latches. Results calculated by the slaves are stored in the OUT1
and OUT2 latches, which are to be read by the master. The
working of these latches are similar to L1 and L2 as described
before, except that these latches are used to exchange data with

the master.

The HALT and the RESET inputs of the slave microprocessors
are connected to the output port of the master. The logic levels

on this port can be changed individually through the software.

7-10

VOU

Figure 7.8: TMS9900 microprocessor controlling

(MCe6809).

the two slaves

IN1 = Mc:?osv ADDRESS BUS
, 12 ¢
SLAVE
BS PROGRAM
out BA MEMORY
116 FIRQ ~ J
(7)) : o
12 - DATABUS ¢
| 8
- X S1 |«
TMS9900 18 IN G4
MASTER | ‘ - | 1
1/0 Gl G2 | 63 2 o .
PORTS | - |a L1 L2
| > m
ADDRE SS 116 S2 |e G5
- Bus DATA BUS
] > <- e
ADDRESS 1 8
DECODE AND i
CONTROL - PROGRAM
LOGIC . 1 BA \»
; BS MEMOR
........ MC6809 21
TO READ ONLY P2 | ADDRESS BUS
AND WRITE ONLY SLAVE
LATCHES

Initially the master resets and then halts the slaves, until it

has transferred data into the input latches of the slaves.

Another important feature in this system is the
synchronisation between the two slaves. This is achieved by
using the SYNC instruction and the FIRQ interrupt input, with the
F bit in the CC register set to logic 1. When the HALT input
goes high the slaves read the input latches and transfer these
data values into their appropriate communication latches, and
then execute the SYNC instruction. The sync acknowledge signal
from the two brocessors are ANDed (G3) together and inverted to
generate interrupt to themselves. This condition indicates that
valid data are available in the latches L1 and L2. After
receiving the interrupt the slaves read their appropriate read
only latches, and perform the desired operation. One of the
slaves was chosen to perform modular addition and the other

modular subtraction.

Some form of protocol is also necessary between the master
and the slave microprocessors to facilitate synchronisation and
communication. For this purpose an 8-bit status (STATUS) latch is
also associated with each of the slaves S1 and 52, only the least
significant bit is used. The output of the status latch
determines the system status. For example a logic 0 at the
output of the status latch indicates that the slave is busy
executing its program. While a logic 1 indicates termination of
the task (see figure 7.8), the slaves execute the SYNC
instruction after setting status to logic 1. The output of the

two status latches are permanently enabled and are ANDed (Gl)

7-11

together to generate the system status signal. Another - 1-bit
signal which is being ANDed in Gl is obtained from the output
port of the TMS9900 microprocessor. This bit is called the
status control bit (SCB). When this bit is low the status latch
output has no effect on G3, as Gl is disabled. When the master
desires to read the output latches, it sets the status control
bit to logic 1, and continuously monitors for the output of Gl to
go high. When the system status signal goes high, the master
reads the output latches. The slaves execute the SYNC
instruction after outputting the data, hence the slaves will
remain in that state until the status control bit goes low again.
This is done by the master after transferring new values into the
input latches, which forces the output of G3 low, thus generating
an interrupt to the slaves, the slaves repeat the same cycle

again, by first clearing the status latch.

This loosely coupled multi processor system was designed
just to test its performance and the principle of slave-slave and
master-slave communication. Additional software on the master

checks that the results calculated by the slaves are correct.

7.5.1 Merits and Demerits

In general two microprocessors cannot communicate with each
other in real time, without one of them waiting for the other to
send data. But if some intermediate buffer memory is used, then
the source microprocessor can transfer the data into this buffer
memory, and the destination microprocessor can read this data at

leisure. If we are dealing with a single or a double byte

7-12

buffer, then care must be taken that the source does not
overwrite this data before the destination microprocessor had a
chance to read it (64), (68). Another situation might also
arise, in which the destination microprocessor keeps reading the
same data without realising that the data have not been updated
since it was last read. These conditions can be circumvented by
using a single bit flag which indicates whether the data had been

read or updated in the buffer or not.

Previously we have seen that the latch was used as a
communicating medium between the two microprocessors. The input
of the latch is connected directly to the data bus of the source
microprocessor. The output of these (tristate) latches can be
connected directly to the data bus of the destination
microprocessor. The control signal i.e. the clock (CLK) and the
output enable (OE) may be appropriately generated. This means
that each side of the latch consists of ten lines in all, i.e. an
8-bit data bus and two control signals for either the output
enable or the clock signal (since 16-bit data is being
transmitted through a unidirectional dedicated data bus). We are
investigating a method for inter microprocessor communication to
be used for the implementation of the 15-point WFTA., We will see
later that in the parallel microprocessor system (for the
parallel implementation of the WFTA) only one 16-bit value is
exchanged between two microprocessors at any instant on a
particular bus. The use of latches thus reduce the circuit
complexity considerably, but at the expense of increased chip

count, cost and power consumption.

7-13

Alternately a common memory (RAM) can be employed for inter
microprocessor communication. Although it provides more storage
and may be cheaper, it also increases the circuit complexity
conéiderably. The major problem in a shared memory system is to
prevent memory conflict or memory contention. An attempt by two
or more microprocessors to access common memory is called memory
contention. The shared and the local address and data buses have
to be multiplexed (67). The throughput is reduced considerably
when all the processors wish to access the common memory
simultaneously. Hoffner and Smith (68), have suggested a method
of preventing memory contention in a system with two MC6809
microprocessors by operating them opposite phases of a common
clock. The number of microprocessors connected in this manner is

limited to two.

7.6 Design and Implementation of the Dedicated Parallel

Microprocessor System

The dual microprocessor system worked quite satisfactorily.
The method adopted for inter microprocessor communication through
latches seemed quite suitable for the parallel microprocessor
system to implement a 15-point WFTA. Each of these latches would
be connected through dedicated unidirectional 8-bit data buses.
All the data exchange among the microprocessors can then take
place simultaneously, hence the system should provide a very high

efficiency and throughput.

Close examination of figure (4.3) reveals that the
implementation of the 15-point WFTA algorithm consists of

following steps.

7-14

1. Input shuffle or reordering

2. Five 3-point preweave or premultiply adds

3. Three 5-point preweave or premultiply adds

4. Eighteen modular multiplications with precalculated
coefficients

5. Three 5-point postweave or postmultiply adds

6. Five 3-point postweave or postmultiply adds

7. Output shuffle or reordering.

It may be noted here that the 5-point WFTA requires six
modular multiplications which requires extra storage. Hence the
total number of modular multiplications in the 15-point WFTA is
eighteen. Since modular multiplication is the most time consuming
operation, the parallel microprocessor system was designed such
that all the microprocessors share the load equally during the
modular multiplication. This requires 18 microprocessors in the

complete system.

7.6.1 System Architecture

Figure (7.9) shows a block diagram of the dedicated parallel
microprocessor system., The microprocessors are interconnected to
form a two dimensional array with three rows and six columns.
The five 3-point transforms are performed along the columns. The

microprocessors numbered 16, 17, and 18 do not take an active

7-15

. I
C 111 | I e —]
|
A H ! - 2 4 3 . 1 5 16 B
o
|
SN DRSO H U ER R SN Uy
]
- 1 1 [1 [1T 1
|
L-—l, - - N -
¢ 6 7 8 ; - 9 10 17 D
B B B bT B |
1
R e A O e
{ -
[ml . S — 1 I 1
! .
E U 1 L] 92 13 B BV] s 18 F
|
"

Figure 7.9: Block diagram of the parallel microprocessor system
(the control microprocessor is not shown).

part at this stage hence no connection exists between them along
the column. For the three 5-point transforms the microprocessors
are active along the rows. Comparison shows that each '.'
(column wise) in figure (4.3) corresponds to a box which is a
microprocessor with associated hardware in figure (7.9). FEach of
the connecting lines along the rows and columns consists of two
8-bit dedicated data buses with two associated control signals,
to facilitate bidirectional communication between the two
microprocessors. All the microprocessors in the system are driven

from a common single phase clock source of 4 MHz. Each of the

slave microprocessors generate their own local timing signals.

The microprocessors in the system are partially connected,
i.e. there are no redundant connections. This system basically
forms a loosely coupled dedicated MIMD machine. The prototype
system was assembled on seven standard plugin 6U eurocards, using
wire wrapping techniques. The dotted line in the figure (7.9)
shows how these microprocessors are distributed among the six
boards labelled A to F. The seventh board in the system consists

a control or a master microprocessor, with associated circuitry.

7.6.2 Design of the Control Microprocessor

The slave microprocessors are not capable of communicating
directly with the outside world i.e. with a VDU or any other real
time device. Hence an extra dedicated microprocessor is employed
to serve as a host or a master microprocessor (not shown in
figure 7.9). This brings the total number of microprocessors in

the system to nineteen. The control microprocessor not only

7-16

serves as a controller for the slaves, but also provides an
interface to the outside world. The control microprocessor has
an RS-232 serial interface with the VDU to provide access to the
system. Figure (7.10) shows a circuit arrangement for the serial
interface using Motorola's MC6850 ACIA (Asynchronous
Communications Interface Adapter). A baud rate generator
Motorola MC14411 is used to generate the receive/transmit rate

clock for the ACIA (82), (83), (84), (85).

The parallel microprocessor system appears to the master as
a black box, the only part accessible to the master are the input
and the output latches associated with the slaves. This black
box appears as an intelligent peripheral to the control
microprocessor. The master microprocessor transfers data to the
inpuf latches and reads the transformed values from the output
latches. For demonstration purposes the ‘master then reads the
output latches and stores these values into its memory and
displays on the VDU, or oscilloscope via a D/A converter. The
master microprocessor does not interfere in the data exchange
among the slaves, and in fact it is unaware of that. All the 1/0
data has to pass through the master. For large N, this may
become a limiting factor, and may degrade the system's
performance. For example 178 microseconds are required to
transfer fifteen 16-bit data to or from the slave
microprocessors. Alternative arrangement can be made to transfer
the data directly into/from the input and output latches, which

would increase the throughput.

7-17

R/W LINE

E
|] DRIVER |
DATABUS | E R/W P
8 - ‘ |
AO Rs XD 1488 r: RS-232
O o (o1 | ! 1
csi | LUNE +
MC6850 RECEIVER i
CHIP = |
SELECT €s2
| CTs RXD}e 1489
| = _
= | CRXCTX
+5V
%"‘ e |F5
f MC1441) fe—— RESET
b '
| ; 15M - |_RS] RIW] REGISTER
*5V | 0 | 0 | CONTROL
—'“:”‘J | 0 | 1 |sTatus
1834 MHz 1 | o | ReCEIVE
| A 1 | 1 | TRANSMIT

Figure 7.10: ACIA interface.

Figure (7.11) shows circuitry associated with the control
microprocessor. The coﬁtrol microprocessor has it own program
memory of 2K x 8-bits (2716), and 1K x B-bit (2 x 2114) of local
RAM. A number of address decoders (SN74LS154) are required to
access all the input and output latches. A bidirectional bus
transceiver (SN74L.5245) is used to drive all these latches which
reduces loading on the data bus of the microprocessor. However,
the local RAM and ROM are connected directly to the data bus of

the microprocessor.

An 8-bit write only control latch (CONTRL) is associated
with the master (see figure 7.12). The output of the control
latch is permanently enabled and the low order 5-bits are used
for control purposes. A location STATUS in the RAM keeps a
record of the contents of the control latch. These control
signals are as allocated as follows.

Bit 0 : master RESET for the slaves

Bit 1 : HALT for the slaves

Bit 2 : RESET for the baud rate generator

Bit 3 : status control bit (SCB)

Bit 4 : chip enable for the A/D converter

Bit 5 : signal to slaves to perform forward or inverse

transform

These bits can be individually set to a logic 1 or reset to
logic 0 through software using logical bit instfuctions. The
status control bit (SCB) is used to detect the condition of the
complete cycle of the transform (see figures 7.12, 7.13). When

the master desires to read the output latches, it sets the status

7-18

MC6809
MASTER

E

RIW

the master and the slaves.

‘ ANALOGUE
vou CRO SOURCE
ROM RAM ACIA D/A A/D
16 - Y
ADDRESS BUS 8 . |
—— - - >1DRIVER |—e— y
DATA BUS - ;
| —>{ INPUT
 CLOCK i LATCHES |
OUTPUT ENABLE | | EQRS/:«,;LT%
- . [I |
l ACIASELECT | SUTPUT _
ADDRESS DECODE BUS DRIVER i \«——1LATCHES
AND CONTROL _SELECT | b e
LOGIC ' D/A SELECT
- A/D SELECT
ROM SELECT
RAM SELECT
Figure 7.11: Complete parallél microprocessor system showing

! = 0 FORWARD
1=1INVERSE 5
RESET < , CONTRO
! L
HALT e L Taten F— a/p cHip
I
' E gﬁ%&ms ZonTRe
STATUS #i \ eene ™ %OI;ITROL .
F ROM: > '
SLAVE 2 _J
BOARDS ;
]
! BA
: 4BS
i MC6809
i MASTER
|
| —
o RQ
:
. |
'
!
o INHIBIT
| -
SYNC : -
FROM Gz)>—-
SLAVE
BOARDS ! _ S
I INTERRUPT TO
5 SLAVES
|
SLAVE i MASTER
BOARDS | BOARD

Figdre 7.12

DATA BUS

: Master microprocessor ‘with associated circuitry.

Figure 7.13: Arrangement for generating

slave board.

437
AT
MC6809 D A+BUS%+D Q;
8 [
CLK
OE
CONTROL
LOGIC
DATA BUS | 74374
MC6809 +——>10 Q
CLK L
!;oe
CONTROL
LOGIC
o : 7%374 |
| DATA BUS
MC6809 S —>{D Q-
CLK _IOE.
~ CONTROL
LOGIC

‘ , STATUS OUT
FROM SLAVE
| BOARD

STATUS signal from each

control bit (SCB) to a logic 1 and executes the SYNC instruction
and waits for the slaves to complete the transform. When the
slave microprocessors finish the transform cycle, they set their
respective status latches to a logic 1, and execute the SYNC
instruction. At this time the output of the gate Gl goes low
disabling G2, simultaneously generating an interrupt signal to
the master through G3. The master then resumes normal operation
and reads the output latches. However, as long as the status
control bit remains high, it prevents the interrupt signal from
reaching the slaves. After reading the output latches the master
clears the status control bit. This forces the output of Gl
high, enabling G2 and consequently generating an interrupt to the
slave microprocessors. The slaves then start the next cycle of

the transform.

7.6.3 Software of the Control Microprocessor

To facilitate the development of the software, the control
microprocessor provides an interactive interface with the
parallel microprocessor system (see figure 7.11). This allows

manual insertion of data into the parallel microprocessor system.

When the power is switched on, the powerup circuitry resets
the master microprocessor. The master then resets the baud rate
generator and the slaves, and halts the slaves. It then resets
and initialises the ACIA for the data receive/transmit data
format and the baud rate. The halt state of the slaves is then
cleared. Source listing of the monitor program is included in

appendix-D.

7-19

For test purposes a 15-point WFTA verify routine is stored
in a separate ROM (see appendix-D). The control microprocessor
executes the 15-point WFTA on the same input data as the slaves,
and verifies the transformed values obtained from the slave
microprocessors. The control microprocessor displays an error
message on the VDU, if the two results do not tally, and prints
these values. A 15-point WFTA was also implemented in FORTRAN on

a main frame computer to verify these results.

7.6.4 Design of a Typical Slave Microprocessor

A typical circuit arrangement for the slave microprocessor
interfaced with local program memory 2K x 8-bits (2716), local
RAM 1K x 8-bits (2 x 2114) is shown in figure (7.14). However,
microprocessors numbered 16, 17 and 18 have a slight variation in
their circuit arrangement which is shown in figure (7.15). Each
of the six eurocards contains three such circuits. Each of the
slave microprocessors has associated with it input (INPUT),
output (OUTPUT), and status (STATUS) latches, except for the
slaves numbered 16, 17, and 18. In addition a number of
communication latches are also associated with each of them. The
number of latches for a particular microprocessor depends upon
how(many microprocessors it is communicating with. All these
latches are 16-bit (2 x SN74L.5374) latches, with tristate
outputs, except the status latch which is an 8-bit latch. The
clock and the output enable signals are 'generated using a 4-line

to 16-line decoder (SN74L5154), and gqating it appropriately with

E and R/W. All the latches are driven by the bidirectional bus

7-20

RIWe—

MC6809

A_DDRE‘SS% Us 116

[DATA BUS |
276 E— | _2x 214
CS ROM H_}—cg_RAM
PD/GM WE
4RAV
A10 1 _—y
|] BATB
| DIR
Al 4) 0[CE
A 74245
Kl)’ 1/
Afa
AL rf | :
L DATA BUS
A AO-A3.
[I
CONTROL CONTROL
LOGIC LOGIC
Y v v

TO READ ONLY -

LATCHES

associated hardware.

TO WRITE ONLY

LATCHES

v 'Figvure 7.14: Typical slave microprocessor (1

to 15) with

E <
MC6809

R/W <—

1]
ADDRESS BUS 16 o
L "DATA BUS 8 | j

2716 E | _2x214
CS_ROM H}CS__RAM
PD/GM | WE

Zlm

qoe 7425 DRIVER

O U
DD

. AL Al
7 ‘f 8

DATA BUS

' AD-A3
Y

CONTROL
LOGIC

R

1O LATCHES

Figure 7.15: Typical slave microprocessor (16 to 18) with
associated hardware. :

transceiver (SN74L.5245), and the direction of data flow is

controlled by the R/W line.

The operation of slaves numbered 1 to 15 is as follows.
After receiving the reset signal from the master, the slaves set
their respective status latches to 1, and execute the SYNC
instruction. If the status control bit is high, the slaves then
wait until it goes low. After transferring the results to their
respective output latches the slaves set the status latch to a
logic 1 again. Thus allowing the master to read the output
latches. If at this instant the status control bit remains low,
the slaves start the next transform cycle assuming that the data
have been updated in the input latches. The microprocessors
numbered 16, 17 and 18 receive data from other microprocessors
just before the multiplication cycle. They behave as external
modular multipliers, who for the most of the time are idling
(executing a series of SYNC instructions). After performing the
modular multiplications, these microprocessors return the results
to the appropriate microprocessors through communication latches.
These microprocessors then continue to execute another series of
SYNC instructions until the next multiplication cycle. Figure
(7.16) shows a flowchart for the master and slave
microprocessors, which also shows how the software of the master

and the slaves interact. Figure (7.17) shows a timing diagrarﬁ.

7.6.5 Software of the Slave Microprocessors

All the slave microprocessors are executing programs

concurrently although the software of each of the slaves is

7-21

MASTER

POWERUP RESET

INITIALISE
SYSTEM

RESET SLAVES

1

TRANSFER 1ST
SEQUENCE 70
SLAVES h(n)

~y

SAMPLE 2ND
SEQUENCE xin)
TRANSFER TO
SLAVES

!

SLAVES

RESET FROM
MASTER

r

TRANSFORM 1ST
SEQUENCE AND
SAVE RESULT
H{k)

r

SET SCB=1

WAIT FOR
INTERRUPT
FROM SLAVES

Y

INTERRUPT

TRANSFORM 2ND
SEQUENCE AND

SAVE RESULT

X(k)
!

MULTIPLY
Y=H-X
INVERSE
TRANSFORM y(n)

-

READ OUTPUT
LATCHES -

SET SCB=0

-

INTERRUPT

—

R

STORE RESULTIN
OUTPUT LATCHES

SET STATUS =1
WAITFOR -
INTERRUPT

|

SET STATUS=0

|

Figure 7-16 : Flow diagram for the master-slave interaction.

R | N /
MASTER : :
' : ' READ OUTPUT
| | SYNC ACK. | , \ LATCHES : -

INTERRUPT ' INTERRUPT

| END OF CYCLE) (START OF CYCLE)
STATUS " [7
‘ BUSY

SLAVES

 SYNC ACK. m\ / Y A___

Figure 7.17: Timing diagram for the master-slave interaction.

different from any other. The source listings are given in
appendix-D. The symbol Rn means that this particular address is
of a read only latch and it is receiving data from the
microprocessor numbered n, where n can have any value between 1
to 18. For example, in the listing for microprocessor number 1,
R6 means that the microprocessor numbered 1 is receiving data
from microprocessor numbered 6 whose address is $0412.
Similarly, Tn indicates an address of a write only latch, where n
can have any value between 1 to 18. For example, in the source
listing of microprocessor number 1, Té6 means that the
microprocessor numbered 1 is transmitting data to microprocessor

numbered 6 whose address is $0403.

All the modular arithmetic operations are coded directly in
the main program. No subroutines are being used, as this would
slow down the microprocessor considerably. For example for the
MC6809 microprocessor a JSR (jump to subroutine) instruction
requires 7 to 8 clock cycles, and an RTS (return from subroutine)
requires 5 clock cycles. This means that 12 to 13 clock cycles
are required for each subroutine call. Results in table (7.3)
show that the time for a single subroutine call is considerable
as compared to the total transform time. Table (7.2) shows
number of modular arithmetic operations for the 15-point WFTA on

a single and the parallel microprocessor system.

The slaves are executing their programs in an endless loop.
The master must ensure that the output latches are read before

they are over written by the slaves.

7-22

No. of pre-weave modular additions 39
No. of modular multiplications 18
No. of post-weave modular additions 39

—

Table 7.2a: Shows number of operations for the
15-point implementation on a uni processor.

Proc. No. No. of data exchange | No. of additions
Receive | Transmit
P1 2 2 2
P2 6 6 6
P3 5 5 5
P3 5 5 5
P4 4 4 4
P5 4 4 4
P6 4 4 4
P7 8 8 8
P8 7 7 7
P9 6 6 6
P10 6 6 6
P11 3 3 3
P12 7 7 7
P13 6 6 6
P14 6 5 5
P15 5 5 5
Pl6 2 2 1
P17 2 2 1
P18 2 2 1

Table 7.2b: Shows number of operations per microprocessor
for 15-point WFTA on the parallel microprocessor system.
(Each microprocessor is performing one modular multiplication.)

7.6.6 Synchronisation of the hardware and the Software

Synchronisation among the slave microprocessors is one of
the most crucial factors in this system. Recall that the slaves
are executing programs from their own local program memories.
The essential requirement is that they should do so in a
predetermined and in a synchronised manner. Each of the slave
microprocessors after performing a modular arithmetic operation,
stores the result in an appropriate communication latch and
executes the SYNC instruction. The sync acknowledge from all the
slaves are ANDed (G2) together as shown in figures (7.12) and
(7.18). This signal is inverted and fed into the FIRQ interrupt
input of all the slave microprocessors. The result is that the
slaves cannot proceed further until they have all executed the
SYNC instruction. After receiving the interrupt the slaves read
their appropriate read only latches and start processing the data
further (see figure (7.17)). The advantage in this arrangement
is that all the wmicroprocessors always find valid data in the

communication latches.

This synchronisation could also be achieved by coding dummy
instructions such as a NOP (no operation) in the main program.
The purpose of these dummy instructions would be to waste
microprocessor time so that each of the modular arithmetic
operation is executed in equal number of clock cyecles. For
example, 14, 18 or 22 clock cycles are required for a modular add

if the sum > 65535, 65521 > sum > 65535, or sum < 65521

respectively.

7-23

MC6809

BA }
BSs /9 __ :

. i
MC6809 | . | SYNC ouT
BA } FROM SLAVE
BS 9 BOARD

a
‘| sync AcK. !

9

MC6809

BA — ' |-
BSF—0

Figure 7.18: Arrangement for generating the SYNC signal from each
. slave board. «

The former method for synchronisation was chosen for the
system, because the use of the SYNC instruction optimises the
program execution time for each transform cycle. However, in the
latter case the dummy instructions are executed when carries are
generated, so the time for the transform execution time is fixed

(equivalent to worst case).

7.7 Transforms of Real Time Signals

A 12-bit successive approximation analogue to digital (A/D)
converter (RS754) interfaced with the control microprocessor
allows transforms of real time signals (see figure (7.19)). The
conversion time is between 15 to 35 microseconds depending upon
whether the 8-bit or 12-bit mode is being used. @A sample and
hold (S/H) circuit (LF398) is used to hold the input to the A/D

converter steady while the conversion is being carried out.

A latch is connected to the output of the converter, such
that when the conversion is complete the data are automatically
latched into it. A read on this latch by the microprocessor,
also sends a start convert signal to the A/D converter, and to
the S/H circuit to hold the sample. The control microprocessor
then executes the SYNC instruction. When the conversion is
complete, the status bit from the A/D is used (as clock signal
for the latch) to latch the data and simultaneously send an
interrupt signal to the control microprocessor. The advantage is
that the status bit (of the A/D converter) need not be monitored.
The control microprocessor reads this latch, this again sends the

start convert signal to the A/D converter, which then starts

7-24

ANALOGUE
INPUT

L3 HOLD_ —[—
o —{ SAMPLE AND| SAMPLE

=
mim

7| HOLD CIRCUIT [
5
554 13
3 .
CE |6 Jg | STATUS
—a0] RSS74 28 1= -
16-27 +SV
N READ/CONV.
£12
8 L
1 *DL BA| |BS
y D] IRQ
%376 {ELK| T uam [SHKY
MSB —l LSB |
oL ' 8 MC6809

DATABUS |MASTER

Figure 7.19: Analogue-to-Digital (A/D) interface with the master
microprocessor, - :

/L

7/
‘OE (LATCH) U _/
MASTER | syne Aa(-.—-___/ <8 \ /
o > £ - READ
READ/CONV. \ / U CONVERT

/L START
<15 35SEC—>

A/D >/ 4
CONVERTER| &g
HIGH IMPEDANCE SATA
VALID 77 <VALID | >‘—‘

STATUS OF CONVERSION

END

Figure 7.20: Timing diagram for the A/D converter.

converting the next sample. The use of the latch simplifies the
cir"cuitry and also increases the throughput. While the A/D is
converting the next sample, the microprocessor is busy storing
the previous data into the memory. In this manner full advantage
of the conversion time is being utilisedd @A sampling rate of
28KHz is obtained, figure (7.20) shows timing diagram for the A/D

conversion.

Figure (7.21) shows an arrangement for a digital to analogue
(D/A) converter (DAC1220) interface. Actually there are two D/A
converters interfaced with the control microprocessor. One for
displaying the input and the other for displaying the transformed
values on the oscilloscope. These are 12-bit multiplying D/A

converters, with a typical conversion time of 1.5 microseconds.

Figures (7.22) and (7.23) show photograph of the master
board and the slave board (with three microprocessors)
respectively. Figure (7.24) shows a photograph of the parallel

microprocessor system.

A 15-point convolution was also implemented on the parallel
microprocessor system. Figure (7.25a) shows a pulse to be
convolved with itself. Figure (7.25b) shows the NTT of the
pulse. Figures (7.25¢) and (7.25d) show the product of the two
NTTs and the convolution respectively. However, if the amplitude
is large then the effect of modular arithmetic can be seen in

figures (7.26a-7.26d), which shows the folding of amplitude.

mcesog jRATABUSE 539 :
MASTER 8 :
=
 CLK
Figure 7.21:

VREFIN

4

15

17 18

DAC1220

3

1

2

10pF =

LF357:>>—
3 1
§2%K 25K
. *V

Digital-to-Analoque (D/A) interface with the master
microprocessor. :

S ANALOGUE

- OUTPUT

Figure 7.25
(a) Shows a pulse to be convolved with itself.
(b) Shows the NTT of the pulse.
(c) Shows product of the two NTTs.
(d) Shows convolution of the two pulses.

Figure 7.26
(a) Shows a pulse of a larger amplitude to be convolved
with itself.
(b) Shows NTT of the pulse.
(¢) Shows product of the two NTTs.
(d) Shows convolution of the two pulses, folding of the
amplitude occurs due to the use of modular arithmetic.

7.8 Results .

The program timings show that a 15-point WFTA run on a
single MC6809 microprocessor requires approximately 10
milliseconds to execute. However, when the parallel dedicated
microprocessor system is employed, the transform execution time

is reduced to 675 microseconds.

Table (7.3) shows comparison of the 15-point WFTA execution
times. The program written in FORTRAN was not optimised for

time, but it gives a rough estimate for comparison.

System Assembler FORTRAN
MCe6809 10 msec --
Parallel 675 usec -
Structure
TMS9900 4 msec --

IBM 370/168 365 usec 2 msec
IBM 370/4341 1 msec 5 msec

Table 7.3: Comparison of timings for the 15-point WFTA

The total power consumption of the system is about 65 watts,
and the total cost of the system is in the range of 2;‘1500

(1981).

7-26

CHAPTER 8

Conclusion

The object of this work was to investigate and implement
WFTA on microprocessors and to design hardware to improve the
execution time. Special purpose hardware was also designed and

constructed to exploit parallelism in the WFTA.

An external hardware modular multiplier (mod 65521) was
designed, constructed and interfaced with the TMS9900
microprocessor. Since a number of modular additions and
subtractions are also performed it may be beneficial to employ an
external hardware modular adder (mod 65521). If an external
hardware modular adder is used then only three move instructions
are required for external modular add. This will save a compare,
an add, and two branch instructions. There is no benefit in

designing hardware for modular subtraction.

A parallel microprocessor system was designed and
constructed for the implementation of the 15-point WFTA.
Benchmark programs were written for several microprocessors to
select a suitable microprocessor for the parallel structure.
Motorola's MC6809 gave an optimum choice, since it contains an (8
x 8-bit) unsigned hardware multiplier and a SYNC instruction (the
SYNC instruction is used to synchronise fhe microprocessor to an
external event). This parallel microprocessor is a very highly

dedicated MIMD machine. A host processor is used to control the

parallel structure. The use of the host processor was necessary
in the development stages since it provides an interface with the
parallel microprocessor system. A serious difficulty is the
development of the software for the parallel microprocessor
system which requires large amount of effort, since proper
synchronisation between all the microprocessors must be

maintained at all times.

The parallel microprocessor system being very dedicated
executes the 15-point WFTA in times comparable with the IBM
mainframe computers. Table (7.3) shows the program execution
times on the parallel microprocessor system, MC6809 and two IBM
mainframes (model 370/168 and 370/4341). All these programs were
written in assembler language. This agrees with the argument
given by Arden and Berenbaum (65), and Enslow (66), about
achieving higher performance from several cheap processors rather

than an expensive one.

This pragmatic approach to parallel processing, i.e. to
implement one microprocessor per point may not seem to be a cost
effective design approach for a bigger size transform. However,
bigger size transforms can be implemented on the parallel
microprocessor system by combining the power of each of the slave
microprocessors with the power of the parallel structure. The
length of this transform should be an integer multiple N of L,
where N is one of the short length WFTAs, and L is the transform
length implemented on the parallel structure. This may be done
by allowing each of the slave microprocessors to accept N values

from the master, and perform an N point preweave. Then the

parallel microprocessor system is used to perform N (L length)
transforms. Finally each of the microprocessor performs the N

point postweave.

The parallel structure employs microprocessors with 1 MHz
clock, a 2 MHz version of the MC6809 is also available but at
much higher price. If the 2 MHz version is used then faster
memories have to be employed which means further increase in the
total cost of the system. However, this would double the program

execution speed.

Alternately, if an external modular multiplier is interfaced
to each of the slave microprocessors (as described in chapter 5),
this would also almost double the program execution speed.
However, the cost of a modular multiplier is considerable, and

this may not be practical due to cost.

The parallel microprocessor system is not 15 times faster
than a single microprocessor, this is due to the over heads
involved. Estimated time for 60-point WFTA on MC6809
microprocessor is about 50 milliseconds, of which 712
microseconds are required for input/output shuffle. On the
parallel microprocessor system the execution time is about 3.5

milliseconds.

8-3

Appendix-A

Modular arithmetic routines for the following microprocessors
i) TMS9900
ii) MC6809
iii) Z80

iv) 6502

32/16-bit division routine for the MC6809 microprocessor

- Appendix-A S A ‘ A-1

3
P2y

:'- wte nle ~‘ s i wle 'z 3'e =" ey J---J— J-~ n-JtJ ~¢so -‘o — » Vo '2 32 Yo o oJ-Jc 2 e o s'o J;J J W vl ate o 'y Vo
'~ 30383 ~..‘sq~ X3 ».~ pxd tP¥ AP ,~ RPE SR pd XD LRGP AILPRIRI LS
S MODUL AR ARITHM“TIC PRGOG RAMS FOR TM39900 =
oo wo als ale ot 'a Jr J— J wlo als als o'e \'o e s‘- e 2o ‘- PN 4 ~'¢ ~- J ate Jo Jo 0 J Ja s’ e ~' (TS 14 e W vt ute e te alr ls Ale ats yie
o~ AR AP KPR DL LI L PRI XPES ,~-,~ XPAPEd -_- PEDYEPAP24 ,-., PAGX S £NY bid+ e AR E AP)y > pxd

ate e ot e Yo
DI X S S5 Pt Sk

OPTION XREF,SYMT < e s) 3
ook MDDULAP MULTIPLICATIDN

AQORG >4000

o e Vo e o wts ate ats ! e v'e -'. 2o VA Ats i ale 2ts o sh Ja e ol aty
b S Meddednsievesteeesase e e e sdeslesiesye
Mo sl als ale st e sie sy sl sle i a's 3o sie o s'e sls sle W sie sl sho sle wis abe ats o sls whe MOV o} \4 PRyR1

30 dememdedasasesieneseneaitde s e e e nesienss) i Ry

I

|

!

: . l

PR MODULAR ADDITION | MoV DMPR,RY

S0 s veaesieNesk Mot e esiesie slesteste e i e sieaie el e e sle ot i MOV IMPD,R2

' ' | MPY T R1,R2

! DIV IMCD,R2
| MOV R3,3PROD
!) 2>0230
!

o,

START LWPI WKS.
: MOV 3AD1,4R1
MOV D2AD24R2
A R1,R2 }
Joc OVER IWKS 8SS
c1I R2,65521 . laD1 . BSS
: JL OVR : 1an2 8SS
OVER Al R2,15 : ~ - ISuUM 8SS
OVR MOV . R2,3SUM JSUBT1 3SS
o ' fSusT?2 BSS
B soedcolidek e akioiosiokoaionieioges |RES 8SS
% x MODULAR SUBTRACTION x* |MPR BSS
3 senesksoiz ookl | MPD eSS
MOV 3SUBT1,R1 |PRAOD - BSS
MOV~ 2SUBT.2,R2 Bl DATA 45521
M3V R1,4R3 ' ILAST END START

ro

NN NNV NN

S R2,R1 { >
C R3,4R2 B RS
JHE CVER1 ' S
. . Al " R1,65521 | =
OVER1 MOV R1,3dRES | ==
Y st st “"’:"‘"’”‘ sgEgsenene ey e e e N e e e s e g e gt e e e e e e st
% % MODULAR ARITHMETIC PROGRAMS FOR MC6809
st Se¥gsioRNesies s N R e N e N sk Y s s e e e e N e i ek sesig e e e el il e s
%

JMP- 8]
aDS FOB 0
: FD8 ~ ©

NAM M6209
gpPY CREsLySyWyP
ORG $£30

2 FDR 0

Mo seaesieoe N ses oyt e e i e e e ey e sl e sle e .

x sedeze e Seses g

¢ % MODULAR l\ O00ITION S Neson ez yesiosieiasie et e s N e e s e e e sl sl e
M Mool e s sl el e s Y ek MODULAR SU;;TRACT IDN s
s ~—~¢~ ~' ale oty w o ¢\¢J'J il o Vo W's wie ale wio W
$YS BASEEH S gesenzneNe st ey

av _ LDX #SBTN
LON g X4+
SUKD s X4+
8CC SKIP2
ADDD #65521
KIP2 ~ STD ' £
CoJMP nverl

LDD s X++
ADDD s X++
BRCS SKIP
CMPD #65%21
BLO .SKIP1
SKIP a0p00 #15

I
!
|
!
J =
|
I3
: [=
START =~ LDX. = #ADS |3
!
!
I
|
!
v 1S
SKIP1 . STn y X |

Appendix=—2

SETN "FDR 0
FDB
DS 0

o

i

ale W uts abs wis als ~'. e ~'o ~'a ' "- ' o ate oty -'- \‘- ats ts ots \o J ~¢ J- ~- J 4

e Seslesiesesiesinaes) < lesg i

o 16 16 BIT MULT;PICATION *

Ja e ¢~' Ja~ s wts e wis wte '-~¢~--'-- J " .';s'o-'f o nle oo
sasesistesie e nesie NN TR we g siesiesiese

OVER1 LDX #MLTR
LDY SMLTN
Lou ¥PROD1
CLR 04U
cLR 1,U
LDa 1,X
LDR 1,Y
MUL
STD 2yU
LDA 0y X
LoR 1,Y
ML
ADDD 1,U
STD 1,U
8CC SKIP3
" INC DyU "
SKIP3 LDA 14X
L D8 DyY
MUL
ADCD 1,V
STD 1,0
8CC SKIP&
, INC 0,U
SKIP4 LDA Dy X
© . LDpe 7,Y
MUL
ADDD O,U
STOD 0yU

% |pRODOZ2
v Pesesiestoroeedioseenioe et s | PRTE3
P 1“DULARTSIN |PRODA
PO X3 3123 st s e e Yesieste s e e sl sl s sle slesiesie sk | TEMP
Jus'--ﬁ— s o e Jr\ﬁaJ‘ .-~ ~'¢J-~'¢ n--..b-'r '-l J J J e ~‘o '.Jod. wle Wbl W,
N e sy N asiesiesies

N wesese
o3 3 He e e e e <
wte ' o wle wf s ats vio ale ;‘u ~'¢ wo wte ~‘4 -'4 ~ | sty als wls '& -'v b 4 \ v ‘s
236 e e s e i e s ek Be s e s v e ok s st
3 M AR AO T N ES
e r 3
T wte wta wie ale ats ~te l, J o Ve w'e ’ o wts o wle ~'a v wto wio Wl e wie e
S s st e ¥ 3 e s e e e e ¥ s v e sese s e sy

NRG - 100H

START: LD HL, CADD1)

o LD ~ BC,(ADD2)
ADD HL,8C

ale e wle 'y abo »! 4 ;J J \— -J ats as'-\' \"N‘-\
Tl SESLISICIIR

— e sy S e e at— a———

JSKIPE

| SKIPT
roMIT

]oK B
[5xIPC

CIOMITY

[MLTR
[MLTN
| PROO

% MCDULAR ARITHMETIC PROFRAMS FO° ZBO

'y le te o
PRS-

— v — o o ot mttte

* pxd sleae ,~ pad

LDA
8EQ
LD3
UL
ADDE
RCS
CMPD
BLD
ADDD
STD
LDA
8EQ
LoY
CLR
CLR
cLe
LD3
wyL
STD
LDA
BEQ
LD®
MUL
ADDD
BRA
LDD
ADDC
’CS
CMoC
3L0
ADDD
STN
JMp
FO1
FDS
FCR
FCR
FC8
FCe
€DR
END

JP
LD

- CP

JP
Lo
cp
JP

S JP

O DO DD D

1,U
04IT
215

2,U
SKIPS
465521

CSKIPT

#15
24U
o,U
oMIT1
*$TEMO
OyY
1,Y
29 Y
€15

0,Y
O,Y
SKIPE
168

1,Y
SKIPD
1,Y
244
SkIeg
#65521
SKIPC
315
24U
$FE564
0

32 S e e e de e st
PESAPEPESAPLPAPLPX x

Cr e
- O
< 1N

ro’

_Appendix-A

OVER1: LD
ADD
Lo
OVER: JP
y
ADD1: DEFW
AuD2: DEFW
SUM' r‘EFw
WODULAQ
KIP: LD
LD
~AND
SRC
LD -
LD
LD
cp
JP
JP
BACK ¢ LD
"‘ADD
JP -
Lt RO LD
LD
L0
cp
Jp
JP
. JP
OVR: LD
’ JP.
SUBT1: ‘DEFSB
SUBT2: . DEFB
SUBT3: NEFR
SUBT4: DEFS
RES: DEFW
y o nesiRsesmsle e e ek

% MGDULA”

lSKIPZ.

BCy15
HL,EC
CSUM) 9 HL
SKIP

L .
:~O¢‘JO

SU°TPACTICN

HL (SUB*l)
DELCSUBT3)
A
HL,yDE
A, (SUBT3)
D,yA
Ay (SUBT1D
D
NCyOVR
lylERC
3C,565521
HLyB8C
JVR .
Ay (SUBT4)
- DyA
A, (SUBTZ2)
5 .
NC,OVR
I,0VR"
84CK
(RES)»HL
SKIP2

QOO

)
0

~-~‘44

MULTIPLTCATIOH 3

Y2 als obe W ats ate o
SATISAIACR

LD A,(MDRl)
Lo Hy o

LD A, (MPD1)
LD £y A

CALL MULT

LD (PRGD23),,HL
LD 24 (MPR2)
LD Hy A

LD Ay, (MPD2)
LD Eyl

CaLL MULT

Lo

(PRODN1),HL

' ~' '- slu J- ~'¢ -‘- \'a ~'— e ale ~':
g

s
3
YA

s sty sie wie wis sle
e nesie

J J ¢ ~'o s‘o s‘. ~’- IS cnd
LA £KY

— —— —— e m——— e bege S R e e e et S e MmO et St i i e S e S s - —
- —— — — . — — —— e — o — — ——— — i St

3AK:

BAK1:

BAKZ2:

J-)

LC
Lo
LD
LD
CALL
LD
LD
LD
LD
LD

caLL,

Lo
ADD
Je
LD
LD
ADD
LD
LD
Lo
LD
LD
LO
anDd
JP
LD
Lo
ADD-
LD
LD
LD
LD
LD
Lo

LD
Lo
LD
CALL
Lo .
ADD
JP

- LD
ADD
LD
JP
Lo
LD
ce
JP

s': Vo ate we wis wle wie tlp ats Ne ale wte wle oo o
KPP P4 P AP EPAP AP LPAPHP RS

PP”DI PR”DZ DRDDB DQOD“ 3

(PR2D5),yHL
Ay(MPRY)
H,A :

A, (MPD2) .
Eyh

MULT

- NEL(PRODS)

HLyOC

MCy 34K

Byl
4,(PR3D2)
A,R :
(PRID2),A
(PRGNS)H,,HL
4,(PROD&)
c,A
A,(P2GD1)D
DyAa

HLyDE
MC 4 3AK1
2,1
A,(PROD2)
Ay8
(PPID2),A
(PRIDS)yHL
By H

T (PR3D1),A

Lyl
(PRCD4),A

s,

SRR

A,(PPCD1) .

Hy A

£,15

MULT
uC,(PRCD3)

ALy DE

NCyBAKZ2
3Cy15
(PROD2),4HL
2AK3

(PROD2),HL
9255

H

NTy3AK?2

Appendix-A

LD Ay241 JP 1,BAKT
cep L ' JP NC,BAKS
JP Z48AK6 BAKT: LD BCy15
JP NCyBAK3 ADD HL,8C
BAKG6: LD BC,15 BAKS:? LD (PROD3)yHL
' ADD HL,8C JP 0C00H

: LD (PROD3)yHL
BAK3: LD A, (PROD2)

|
|
|
|
|
|
I
|3 sksksseksk ek dee ool desieNe ek
LD HyA [¢ % MULTIPLICATION SUBROUTINE=®
LD Esl5 13 Zealskokdodoesksiodsk sk el e e ek e e ste e 3
CALL MULT |
LD A,L |MULT LD L,0
Lo (TMP2),A | LD Dy0
’ | LD By8
LD Ay 0 fJUMP: ADD HL yHL
LD (TMP1),A | JR " NC,NDADD
LD Esl15 | ADD HL,DE.
CALL MULT INDADD: DJUNZ JUMP
LD DE, (TMP1) l. RET
ADD HL,DE lMPDl. DEFB O
Lo DE,(PROD3) |MPD2 DEFB O
ADD HL,DE » IMPRI: DEFB O
JP NCyBAKSG JMPR2: DEFB O
LD BCy15 |PROD1: DEFEB 0
ADD HL,8C |PRODZ2: DEFB 0
JP BAKS |PROD3: DEFB 0
BAK4 LD (PROD3),HL {PROD4? DEFB O
LD Ay255 |PRODS: DEFB 0
ce H {PROD6: DEFB O
JP NZ,BAKE I TMP1S DEFB 0
LD Ay241 |TMP2: DEFB 0
cp L | END
St seseolosioesitsisioisikaterons Besle s sle sie sievie veaie sfe i sfe e e sfesde e s sl ik e sl e sl sfe e e sk A e el e sk
% % MODULAR ARITHMETIC PROGRAMS FOR 6502 %
B sl e sl et e sie e s sl e sie e Fe e e e e vk e e s e e s e oo e s e e e ke e we e e e e e e ek ek
NAM M6502 | LDA 59X
DRG £1024 | cMp #$F1
% | BEQ SKIPl
% deveskfegedexesk Xk kR Rk e ke ook | BMI SUBT1
%% MODULAR ADDITION % J0VR LDA SeX
sk - semededisioioioiekoie e ks ek ok ek | SKIPL CLC
% | ADC ¥15
START LOX #AD1 | STA SeX
cLC) LDA #0
LDA 19X] ADC 4y X
ADC 3,X | STA by X
STA Se X |SUBT1 JMP SUBT
LDA 0y X RS
ADC 29X | ORG $0023
STA 49 X {AD1 FDS8 0
BCS ODVR {AD2 FDB 0
CMP #SFF | SUM FC8 0
0

BNE SusT1 | SUM1 FC8

mAppendix-A

e wo ais e 4 ' s wle vlo o J J ' 0 \" wlo wis wis s vle o'y o o ol
se o Mevededadlesiosiesesies 2 ste e v e e s ke

MDDULAR SUBTRACTICN

Ja\a\\- o n'o s wio s wir W' whe ‘-\ J J e Wlo uls e oo
w8 ,. e rl\ P —,\ ',~ pXEEPADES) SESRSRRNIR

. 0RG $1024
SUBT - LDX #SUB

Lna %0
STA CHECK
LDA DyX
C MP) ’ 2] X
S BEQ - OMIT
"BCS JMP
o . INC = CHECK
JMP LDA . 19X
“JMP1 SEC
' . §BC X
STA . 54X
B LDA 0y
- SBC 2y X
STA by X
LDA . CHECK
8EN MULTL
cLC _
LDA 54X
ADC #3F1
CSTA - 5,X
LDA GboX
- ADC #SFF
MULT1 “JMP T MULT.
OMIT . LDA 1,Y
T 8 1 -/ 34X .
BEQ ~OMIT1
BCS ~ JMP1
INC'~CHECK
L JMD,“‘JHDI
COMITL LDA'. g0 -
U STA ey
. STA - SeX
C JMp MULT
N . -DRG 50023
- SUB- . Foa - 0
:SUB1 - . FBS . D
SUB2 - FCE 0
Syl - FDB 0
‘VCHECK ECR. N
.J‘ yevesie s '."tz"~’..;'l‘;l\’n\'a::: el ee st '«'.Q.Q..u.-:.-:.l::':

. ORGT 31024
CMULT 0 LDLX o #MPLR

3 3t 3¢

=VMULTIPL;CA*YON ROUTINL S

A ot et G oy v G — — — . — — - — — - — i — — ——
— — — — e G m—— — — —— —— s '
X —— — — —— o - — — —
: — — —— — v s o
) 3%) p33 . A .

" LOA
STA
LDA

STa

JSP

LO&

STA
LDA
STA

LDA
STA
LDA

STA
JSR

LOA
"STa

LDA
STA

STA
JSR
LDA

‘STA

LDa

STA

LOA
STA

LDA

STA
JSR
Loa
STA
LDA

STA,

cLc

L0A

ADC

S .8TA

LDA
ADC

"STA

LDA

- ADC

STA

CLC

LA

e
sTa
LpA

1o N = W
e W e

B .

SU3RT

144X

A
-
> -

13,
LoA
STA
LDA

(o JRV BN AT o B
- % w -
> > >

=

N -
e

o~

x.

O W
- -
,< >

'SUDQT

b
-
>.<

10,X

w
- .
> >

S

164X
124X
144X
13,X
114X

13,

CUQQT

\n

Appendix-A

s

ale Nlaatsute ot
PEIEED 3 S AR 2R

”QU IMC FDR

te wte ots wie
SN

e
P

JMPE

JMmPA

JMPC

OvVRA

'o \‘: e wte oty ad
b4 CP it S

ADC
STA

LDA

adC .
.STA

l:ltul
PrExe]

Loa

cMp
BNE
LDA

ciHe .

30
8CC
cLc
ADC
STA
LDA
anc
STA
LDA
STA

LDA

STA
JSR
cLC
LDA
ADC
STA
LDA
ADC
STA

BCC -

LDA
CMP

3NE

LDA
cMp
BEN
BCC
cLC
ADC
STA
LDA
ADC
STA
LDA
STA
STA
STA
LDA

104X
14.X
#0

9y X
13,X

'r J- ~'o .“ ‘e 3 \‘— ". \" s'a sy \'a slevty ats wte
3, PR ERY

HUDULARIS&Nu s

o sle sle sty o, J 23Sl -

st s w'e wte nt,
SN sie e PRI PN ,,~ N

15X
#3FF
JMPA
164X
$5F1
JMP3
JMPA

#15
164X
#$0
154X
154X
14,4,X
24X
#1c
0y
SURBRT

164X
4y X

164X
15,X
39X

154X
oVRA
15,X
#3FF -
gvea
164X
#3F1
JMPC
DVRA

215
164X
#30
154X

"15,X

%0

17,X
184X
19, X

13,X

S eyl

v Ve ofs uts ~
XAy .‘. PRSER RS

STA
LdAa
STA

JSR
LDAa
STA

LDA .

STA

LD
ST
JSR

cLe
LDA
ADC
STA
LDA
ADC
STA
cLe
LDA
ADC
STA
LDA
ADC
STA
3¢S
cme
SNE
LDA
CMP
REQ
8ce

CcLC

LDA
ADC
STA

LDa

ADC
STA
BRK

'::-’.s-JJJJJ;»-

LDa

‘STA

STA
STA
LOY
JMP
ASL
ASL

s

164X
12, X
16,4 X
154X
19, X
15, X
JumeC
$3F€C
VER1
16, X
#$F1
JUMPC
OVER1

16,X
215
164X
&0
15,X
15,X

s s sls vle wo o ‘ ' J- J J;Jow—*
EPRPEP IR PEY b4

MULT’PLICATIH‘J RGUTIN: S

o P . s Vo wle ate
b Nz slesz SASINIR

L e

D e w w O
o L €

>

[TS B S N FURE — 'Y
> = X

- -

" Appendix-A
8CC BAX : | ARG 10023
LDA - el : IMPLR " FC3 0
gora 15X JMCND1 £CY 0
- STA 1y {MCND2 FC8 n
BAK cLe |TEMPY FC2 N
ROP " Dy X jTEMP2 FCR 2
8CC 5AK1 : fMPR FD3 0
cLe _ IMND Fo8 0
LDA 2y X IPROC] FCsg 0
ADC 4y X |pPRCCZ FC® 0
STA 44X }PROD2 FC3 C
LDA 1,X |PROD4 FC8 n
ADC 3, X | PRGDS FCB n
: STA 34X . |PROCE FC3 ¢
BAK1 DY | PRODT? FC3 ¢
: REQ U7 |PRCDE Fce 0
JMP OVER | TMP1 FC® 0
ouT RTS |TMP2 FC8 0
% | TMP2 FCS e
I END START
% 32/16 BIT DTVISION FOR MC6809 MICROPPDCFSSG
NAM “IVTSION I*
: ORG $0000 | st seesiesiesles Se e desieesie s e e s sl S
START LOX #MLTR e 20 22- BIT PROGUCT IN i
' LDY ¥MLTN |#% % PROD1:PRJIN2:PRID3I:PRIDG
LDU #P20D1 == #2 32 BIT / 16 BIT UNSIGNED =
CLR WU | = CIVISION :
CLR 1,U | 5e siesest desieeseiodene oo esiesl et s sl s
LDA 1,X | 52
LDB " 1,Y I LD9D PRID1
MuL | STOD DVMD2
STD 2,U ! LDD PROD3
LDA C g X I STO DVNDG
LDB . 1,Y ! LDD %)
MUL. | STA - DVND1
ADDD 1,U [STD QUOT1
STOD 1,U ! LDA ¥16
BCC SKIP3 ! STA COUNT
INC - U |DIVICE ASL DVND5
SKIP3 =~ LDA - 1,X I ROL DVND4
Lo2 s Y | eaL DVND3
MUL ! RaL DVND2
ADDD 1,U 1 ROL DVND1
sSTD 1,U0° ! LDA& DVND1
BCC SKIP4 ! BNE SKIP
INC y U A LOD DVND2
SKIP4 LDA - . X | CtMPD DVSR2
' LDB)V [BCS CHECK
“MUL |SKIP LDA DVHL3
ADDD s U I SURA DVSR3
§ STA DVRD3

STD U

’Appendix-A

CHECK

COUNT

DVSR1

Jvsk2

LDA

SBCA .

STA
LDA
SBCA
STA
ASL
ROL

- INC

pec
BME
LDD
STD

- JMP

FCB
FCR
FCB

DVND2
DVSR2
DVYND2
DVND1

DVSR1

DVND1

QuaT2
QuoTl
QUOT2
COUNT
DIVIDE
AVND2
REM -

$0283

- 00

00
0o

{DVSR3
|REM

|QUOT1
|QuaT2
|MLTR
] MLTN
| PROD1
{PRAD2
|PRON2
|PRODG
|OVND1
|DVND2
|OVND3

| DVND4

{DVNDS
I
l

FCR
FC3
FC8
FD8
FbB8
FC8
FC3
FC8
)
FC3
FC8

FC8

FC3
FCs
FCS
END

no

00
09
oe
N0
00
0o
ARY
co
00
n0
00
09
[0R4]
00

x>

Appendix-B

Assembler program source listing for a 15-point WFTA (TMS9900)

FORTRAN program source listing for a 15-point WFTA

Appendix-B8

C 3 ’ Yeneneioioiok ;" Stese 2 sE sl s s :‘:.:‘: sedesioesienios vt e e il e s el e
% S 15 PD*NT NTNU °AD ALGJF;THM (wcTA) M599OO =

107 “WIND15®

OPTION XREF,SYMT

ACRG >6000
START LWPI WSP

LI R4, YREG

LI RS54 XREG

MoV 214(R5),4R0
MOV 324(R5)4R1
BL 2ADDSU3

MOV uswl"(QS)
Moy Q3, 24 (RS5)
Mov 24(R5)yR3

. BL TADD
MOV R3,234(R5)

~.~f~ ‘¢-l J Qos‘os‘-\o o ale w'e u's
PSR (XS4 ,-. iR

U*:L'
< MOV 215(RS) 4RO
MOV - R4, %R5 MoV D26(R5),4R1
MOV D6C(R4)922(R5) BL 24DDSUEB
MOV D12(R4) D4 (RS MOV R2,a15(R5)
MOV 19(R4),DE(RS) MoV R3,226(R5)
MOV . 224(R&4),28(R5) MOV 26(R3),4R3
MOV 210(R4)Y,310(R5) Bl JADD
Mov 216(R4)9y312(R5) MOV - R32,36(R5)
Moy D22(R4)»214(R5) '
MOV A28(R4J,216(RS5) MoV A@18(R5)4yRN
MOV~ 24(R4),218(RS) MOV 228(R3),R1
MOV 320(R4),I20(RS5) 8L 240DSUS
Mav 226(R&Yy222(R5)D MOV R2,218(RS5).
Maov N2C(R&)324(R5) MOV R3,328(25)
MOV d8(R4)»326(R5) MoV F3(R3)F3
s Mav R3,28(R5)
B skslesesiole Yoo e ikl sie e deiekok s
% % 3 PRDINT PREWEAVE 3 se wrdegvededesiosie e oo oo siesierex
se Fosesgsioesiesesie sl e el e sl e e sl :f- Yoo 5 p 0 I N T P R E WE A V c
LI. R5,XREG
3 : o : LI R6yIREG
L00P1 MQv 210(RS)yRN MOV - 22(R5)RO

MOV 23(P5),R1
5L 24005UB

MOV R2,22(RS)
MOV R3,36(RA)

MOV~ 220(R5),R1
BL 2ADDSUB
MOV R2,d10(R3)
M0V R3,220C(R5)
MOV “R5yR3

BL . 2ADD

MavV R3,%P5

MOV .~ 25(R5),R0
MOV 34(R5),R1
BL 3ADDSUB
MOV R2,24(R5)
MOV R3,210(R6)
MOV 26(R6)yR2
BL aADD

MOV R3,28(R6)

MOV~ 212(R5),R0
MOV 222(R5),R1
BL 2ADDSUSB
MOV~ R2,212(R5)
MOV R3,222(R3)
MOV 22(R5) 4R
BL 2ADD

MOV PR3,22(P5)

MoV

l
!
!
!
!
!
I
!
!
!
!
I
!
!
I
!
!
!
I
I
I
I
!
!
|
MavV @14(R4)y328(R5) | ©oBL 2400
‘ !
|
!
f
=
!
!
!
!
!
!
!
!
|
I
!
!
!
!
!
!
!
!
| nov

l_JPJ

2(R5), QO
14(P5),

Appendix—8

3L

MOV

M3av
MoV
BL

MOV

MoV

MOV

8L
MOV
MoV

MOV
Mav
BL

MOV
MOV
MOV
BL

MCV

MOV
MOV
BL

Moy

Hov
mov
8L

Mav

M3V
MOV
5L
MoV
M3V

MOV
MoV

 BL

MOV

MoV -

MOV

BL

Mov

MOV
MOV
BL

MOV
MoV
MOV
8L

TADDSUB
R2,22(R6)
R3,34(R6)
*RF,RB
JADD
R3,::R6

312(R5),R0

. 318(RS5),R1

ADDSUS
R2y@12(R5)
R3,318(R%)

916 (RS),RO
d14(R5),R1
2ADOSUB

R2y314(R5)
R3,222(R6)

D18(R6)I4R2

zADD
2,320(R8)

.@12C(R5),R0

J314(R5)4R1

- 2ADDSUB

R29214(RS)
RP3,316(R5)
P10(RS5),R3
JADD

R3,212(R6)

A22(R5),R0
J328(R53,4R1
JADDSUR

R2,322(R5)
P3,330CRE)

326(R5),R0
224(R5),R1 .

aADDSUR
R24224(RS%)
R34234(R6E)D
@30(R6),R2
2ADD
R34232(kR6)

222(R5),P0

224(R5),P1
JADDSUR
R24326(R6)
R3,228(R6)
320(R5),4R23
JADD

— v - A . S G S e b Aeme heme Rea Geir Bemm M e e mam A b G S e e S G G S G S S i e e G S St e e S e G S me e Geme Mee M e e e e e
. . [V Y IR YRR Y A vy
N A T 2 v

s ats wie
bR

v
Sesesk
MY
wls wlo iy -':

Lo Rt ¢
< x
mn b
Y C

—
o
(@]

0

MoV

Jo wis wlp Vo W oo Fa vis s wts wle uts vte
el sle e de e de e i nesies

LTIPLIC

MOV
JEQ
LI

Jup
LI

LI

LI

MoV
MoV
MPY
DIV
Moy

INCT .

CI
JMNE

So wio wio alo ae sts 1hs ate wle sls Pa ste ale Wg ale iz yte Vg Ve ste
L X PP AT AP AP EPAPLP AP AP % x

« % 5 POINT PQ

MOV

MOV
MOV
BL -
MoV
MIV
MOV
3L

MOV
Mov
mav
BL

MOV
MoV
MOV
BL

MOV
MOV
MOV
MOV

3L

May

MOV

mnv
MoV
BL

IDN
2 ste sto s 3t

se Ao wte s a's st wts wls afe wts e ale ote
XX RS EPLPLPARLREPLPAD AR AR R

STWEAVE

 23,324(R6)

IFWD,R1
FRwl
RT,LOEFR

OVER
RT7T,CUEFF

R4y 0
R8,65521
*Q7+'Rl
PIREG(R4)4R2
R1,R2

PRyR2

R3,2ZREG(RA)

R4
R4y 36
Logr

ROXSY SX

#RE64R3
R2,%RS
32(R6)9R2
3400
R3,22(R6)
26(R6)4RO
I3(R6IyR1

S asUs

R3,a6(R6)
I3(R6IyR2

"J10CR6EDIHWR3

JACD
R3,210(R&)D
22(R6) 4RO
24(REDHR]
2A0DSU8
R2,22(R6)
R3y24(R6)
J2(R6) 4RO
I6(RAI4F1
IADDOSUB
R2422(RS)
R3,28(RS)
24(R5) 4RO
310(R6),R1
24DN0SUR

s oto s sis ate 3o ate ol als sis aly e
PASESFSE DA AP EP RPN

Appaendix-8

Mgy
MOV

MOV
MOV
MOV
BL
MoV
M3IV
MOV
BL
MOV
MoV
MOV
BL
MOV
Mov
MGV
3L
mMav

MOV -

MOV
MOV
BL

MOV
MOV
MOV
MOV
5L

MoV
Mav

MCV
M3V
MoV
8L

MOV,

- MOV
Mov
BL
Mov

MOV .
MOV, -

BL

MOV
MoV
MOV
8L

M3V
Mav

MOV

MOV
BL
MOV

R2,34(R5)
R3,26(R5)

212(R6I4R3
R34310(R5)

D14(RED 402

2AND
?3,214(R5)
218(R6),00
220(R6)Y,401
25U8
R3,318(R6)
220CRED4R2
D22C(R6),R3
2ADD
R3,222(R6)
214C(R6)yR0
216(R6) 4R
2ADDSUB
R2,214(R6)
R3,316(RA)
214(R6) 4RO
218(R6) 4RI
TADDSUB
R2,312(R5)
R3,218(R5)
D16(R6I9RO
222(R6) 4RI
JADDSUB
R2y314(R5)
R3,216(RS5)

224(P6),P3

R3,220(R5)
226C(R6IyR2

“AADD

R3,326(R6)
234(R6)yR2
232(R6),23
2ADD

R3,334(R6)
930(R6) RO

‘232(R6)4R1

25UB

" R3,230(R6)

226(R6)PO

U 928(R6D K1

FADDSUB

R2,326(RE)

R3,228(R6&)D
226(R6IsR0
230(R6DyR1
QaADDSUB

R2,222(R5)

e e e - e e —— e e S s R . G b mm —— e e G e e R o hmn M e e S Gt e e S o Wi S mmmv Gan m e e e i . M mn Sn g St e o
e : s . 2, » an i s F R R YT
P2y 5y 2y r2) 1y " 1) 1} "W w Y 'y

Mov
MOV
M2V
3L

MoV

Mav

o wo Wo o vl e wls Vo she v e Vo e
SITRSISISIRNI ISR

3 POINT

Ao wls We e wls wte vte
SURSICLSLIE

- MCV
MaVv
8L
MOV

Mov
MOV
- BL

MOV

MoV
MOV
BL

MOV

MOV
MOV
BL

MoV

MOV
MOV
BL

MOV

MOV
MOV
eL

MOV
MOV

MOV
MoV
BL

MoV
Mav

MOV
MaV
2L

MOV
Mav

i
t -t 3t
:
33

R3,228(R5)
228(R5)4R0
334(R6)4R1
3400508

R2,3224(RS)
©3,226(RS)

WEAVE

#R5,R3
210(R5),R2
TADD
R2,310(R5)

22(R5)4R3
212(R5)4R2
2400
R3,a12(R5).

24(P5)9R3
214(R5),4R2
3400 ‘

R3,314(R5)

26(R3)4R3
215(R5)yR2
2000
P3,216(P5)

AB(P5)4yR3
218(R5)4R2
2420
22,218(R5)

210CR5),R0
220CR5),R1
2400SU8

R2,210(R5)
§3,320(P5)

212(R35),R0
222(R5)4R1
2ADDSUR

R24212(R5)
R3,322(R5)

[¥8)

4. Yo ste ois Vo wbo Wb als e als s sbe ate
< AP FP LS LEAP AP A A AT

e ale ale ste ato abs ute s ate st o e vz 3'e
PR F OB AI PP PAPAP LS XD LRARS X

- Appendix-B

wle vle wto alp e Jlo J'
AP L%

RS X 914

. o
2R

ADDSUB

PLUS .

to wlo oo wts vy
EREP AP

QUTPUT SHUFFLE

Yo wlo als wie wha sls Mo Wis ale wte sts sty w1s oty whs ale
x EEPADRPLIRPEP P ED LXK P L P-1P14

Moy
MOV
8L

MOV
MOV

MOV
MOV
3L

MOV
HMav

e e v ate 3o Wie wis wlo vis uts
SRSTIRNISI LSRN

MOV,

MOV

MECV

MoV
MOV
MOV
MoV
MoV
MgV
MOV
MOV
MOV
MOV

M3V -

Mav

8

deslese

MOV

Joc
I
JL
AT

216(R5),R0
326(R5),R1
Q2ADDSUB

RZyd16(RS5)
R3y326(R5)

218(R5),RC
F28(REIyR1
2ADDSUB

R2y218(R5)
R34ad28(R5)

».ng <R 6
D12(R5),22(RA)D
?24(R5),24(RED
26(R5),26(P6)
d18(R5),38(R5)
D20(R5),210(R&)

"82(R5)ya12(RA)

‘a ~'- J- J‘ -'a e o
bxy b

914(R5)4214(R6D
¥26(R5),316(R6)D
28(R5),318(R6)
210(R5),320(Rb)
222(R5)y222(R6)
A4 (R5)ya24(F8)
216(R5),326(R6)
d28(R5)4y328(R6)

a>0800

ADD & SUBTQACT SUBR”UTINE*

. W at, ba o Ve Ve als ot
-2 etz PXIPAS B S

R14R2

"‘ROyR2

PLUS
R2,65521
SUB
R2,15

22 w1e wls wla ols als wio als vig oo aly v
EAR RS DRPLPAPLILPRPLSS PR

~I J s \'o J- ~‘- \“ Ja e
2 s

MOV,

C

JL
AZ
RT

ADDITION SUBQJUTIVE

':~J~

ADD A
Joc
LI
JiL

PLLSI [

TAG RT

)HUFFL*

DATA

PO,yR3
RisR2
R1,4R20
FIN
R2,65521

bxd .|. hed 0 b Nz

R24R3
PLUS1
R3465521
TaG
R3,1¢

Yo st e Mo 3te ode vie W vie slo ss wle ote g ats
KPP S A PRI K IR IR R I

VECTORS

1o ale whs 2o wle Wa Ns ale s vie wte vle wte ot
EPLDLPEPEPL P EEPEIEE AP LI

1, 16379,

DATA 19136, 12005,
DATA. 32753, 8192,
DATA 346817, 5753,

DATA 1
DaTa 2
NDATA 6

5087y 23032,
3174, 43615,
1153, 5460,

DATA 46773, 20640,

DATA.
NATA 2

55582y 57331,
21224 34561,

JATA 29504, 28541,

DATA

BSS
BSS
BSS
8SS
£SS
3SS
END

5913, 24748,

32
30
30
35
2

2
START

12376,
48547,
45457,
25311,

R7438,

1445,
158384,

5493,
37375,
26521,
12521,
21938,

Appendix-8

~ S e L L L N N N N N N YL T N YN N N S P N S Y P S Y Y Y Y N N Y T Y I Y e Y Y v e Yo Y s o
P PAPASI P AP APAP LT IR EP L SXPAPRP LR PLPRPLPEPLPAPEPAPEPEDEP LR PAPS PP LD AP LR PLPER AP LPAPAPLPRP LI LIPEPLP P I P LPAPLDES
(S -P T WINOGRAD LGORITHN i FTA
202wl als 4l 3 sle 52 wte ats 272 3o ale alsists 32 whe 902 3le AEs abs 3o 82 V1o 40 W W aT sls als sle A1s 3 2 3le sbs als ale ats ts Mo 3o she ats sls ats st ale Pu sle Vs 3ts sts ais Wi
SRR TR R LD XL SEPEIEDRIRIPEPEEI-F P TP PE PR KP AP PLIAS-RPEPRPE AR LI LI EI-RIRIEPIPL LD AP XIPRPE PRI S I AP PP KPR

IMPLICIT REAL28CA = HyO - 1)
DIMENSION X(15)y Y(15), 2(C18), OUT(15)
DIMENSION COEF(18), COEFR(18)

INTEGER IRF(15), IRFI(15)

REAL:S MCDO

C
C INPUT SHUFFLE VECTORS
¢ o ,
DATA IRF /0, 3, 65 9, 12, 5y Py 11, lb,
1 2, 10, 13, 1, 4y 1/
QUTPUT SHUFFLE VECTORS
DATA IRFI /0y 6y 12, 3, 9, 10, 1, 7, 13,
1 . 4y 59 11, 2y By 14/
c A
c FORWARD TRANSFORM COEFFICIENTS
C : |
DATA COEF /1.0D0, 16379.00, 13376.00, 19136.09,
1 18005.00, 43647.00, 32759.00, 8192.00,
2 45457.D0, 36817.D0, 5753.00, 25311.00,
3 16087.00, 29032.D0, 8748.00, 23174.00,
4 43615.D0, 1465.00/ 3y _
DATA COEFR /61153.D0, 5460.D0, 18364.00, 46773.00,
1 20640.00, 5493.00, 6552.00, 57331.00,
2 37975.00, 28122.00, 34561.00, 24521.00,
3 29504.00, 28641.00,12521.00, 5913.00,
4 24748.D0, 21938.00/ o
READ INPUT DATA ARRAY

OO0

FRD = 0.0 :
READ (5,4x) (Y(I)yI=1,415)
© D0 10 I = 1, 15
10 XCI) = Y(CIRF(CID) + 1)
DC 20 I = 14 5
T = MODOCX(5 + I) + X(10 + 1))
XCI) = MODOCX(CIY + 1)
XCl0 + I) = MODOCX(S + I) - X(C10 + 1))
X¢5 + I) =7
20 CONTINUE

J =1
DO 30 I = 1, 3
IND = 5 = (I - 1) :
S1 = MDDOCXCIND + 2) 4+ XCIND + 5))
$2 = MODOCXCIND + 2) - Y(IND + §))
S3 = MODOCXCIND + 4) + XCIND + 3))
S4 = MODOCXCIMD + &) = XCIND + 2))

S5 = MODO(S1 + S3)

Appendix-B

30

40
50

60
70

80

90

100
110

120

130

Sé M
S7
S8
IC¢Jd =
2qJ
JAQN)

o 2ad
YAQN
1qJ
J = J

CONTINUE

+ + + + +

. IF (FRD

Do 40 I

CDG(S1 - S$3)

S8
1
2)
3)
4)
5)
+ 6

S5
56
S2
S7
Sé

ithowuon

MODO(S2 + S4&) '
MJIDOCSS5 + XCIND + 1))

«EQs 1.D0) GO TO 50

=1, 18

ZC¢I) = MODOCZCIX®COEFCI))D

GO TO 70
DO 60 I

= 1, 18

ZCI> = MODD(ZCID*COEFRCID)

J =1

IND =

= 1, 3
5 % (I -

1)

$9 = MODOCZCJ) + ZCJ + 1))
MODDCS9 + Z(J + 2))

S10
S11
$12
S13
S14
S15
S16
S17 =
XCIND
X CIND
© XCIND
XCIND
XCIND
J = J

o o n non

CONTINUE

DO 90 I

MODOCS9 -
MODOCZCJ

MODOCZCJ

MODO(S10

MODO(S10

MODOCS11

MODD(S11

1) = I¢
2) = S1
3) = 51
4y = <1
5) = S1
6

W

o+

= 1y §

z

4+

+

ND)
A
6
7
5

(J + 2)) .
3) = 2(CJ -+ 4))
4) + 1(J + 5))
S12)

S12)

$13)

S13)

T = MODOCX(I) + X(5 + I))
T2 = MODOCT * X(10 + I))
I) = MODDCT = X(10 + ID)

X(10 +
X(5 +
CONTINUE

.00 100 1

I> =72

= 1, 15

QUTCIRFI(CI) + 1D

CONTINUE

= X(ID

WRITE (65110) (Y(I)yI=1,15)
© *, .5F10.2) :

FORMAT (
WRITE (5

FORMAT (

y120)
4 a’ //)

WRITE (6,130) (DUTCI)yI=1,15)
© ¢y 5F10.2)

FORMAT (
STOP
END

Appendix-8

GO0

10
20

DOUBLE PRECISION FUNCTICN MODOCF)
REAL%E £, MOD

MOD = 65521.00

IF (F .LT. 0.0D0) GO 7@ 10

MODD = DMODCF,MOD)

- 60 10O 2¢C

MODO = MOD - DMOO(-F,M3D)
RETURN
END

Appendix-C

FORTH: program source listing for a 60-point WFTA (TMS9900)

Appendix-

C

(vTHIS PROGPAM PERFORMS WINOGRAD LENGTH 60

FORWARD AN REVERSE

TRANSFORM)

C INPUT ARRAY IS Y AND THE PESULT 0OF TRANSFIRM

IS ALSC STORED IN ARRAY Y

DECIMAL

INTEG
INTEG
INTEG
INTEG

QOO OO O

120 ARRAY RF 120 ARRAY RFI
$ SINT 0 SO ! 2 S1) « S2 tV 6 53 S4 1 10 55 !
$ INTZ O TMO ! 2 TH I & TM1 1 6 TM2 g2 TM3 | 10 THe ;
: 1CHG TMO 2 10 + -TMO ! TM 2 10 + TM ' TM1 2 10 + THM1 |
TM2 2 10 + THM2 1 TM3 @ 10 + TM2 & TM4 2 10 + TMa |
P 2CHG SO @ 12+ SO ! S1 2 12 + 51 SZ 3 12 + S2
' 1S3 2 12 + S3 1 S4 3 12 + S& ! S5 3 12 + S5 1
S -
¢ INPUT SHUFFLE VECTORS) RF FILL
0 72 24 96 48 90 42 114 686 13 60 12 84 36
30 102 54 & 78 80 32 104 56 8 50 2 T4 26
20 92 44 116 68 110 62 14 B6 38 40 112 84 1€
10 82 34 106 58 100 S2 & 76 23 70 22 94 4p
(OUTPUT SHUFFLE VECTORS) RFI FILL A
0 24 48 72 96 30 54 T3 102. 6. 60 B4 108 12
99 114 18 42 66 40 66 88 112 16 70 94 118 22
100 4 28 52 76 10 34 53 82 106 80 104 ~ 3 32
110 14 38 62 86 20 46 62 92 116 .50 74 93 2
H
(COEFFICIENTS FOR FORWARD TRANSFORM)
FCOEF FILL T
1 16379 13376 64390 46385 48647
1 16379 13376, 64390 4h385 43647
1 16279 13376 64390 45385 4BL47T
41224 13991 53009 -266%8 10376 22681
32759 8192 45657 34457 28704 25211
32759 8192 45457 34457 25704 25311
32759 8192 45457 24457 28704 25311
2685 11774 18768 25609 49957 64260
49434 36489 56773 45080 22174 64056
49434 36489 56773 45080 22174 64056
49434 36489- 56773 45080 22174 £405¢
33074 56939 5797 23796 17202

e
. o :

(COEFFIC

(VARIABLES
INTEGER SO

ER S4
ER T3

ER TM1 O

TR OTHM

0 INTEGER St
0 INTEGER S5
0 INTEGER Ta

INTEGER

USED FOR
0 INTEGER S2

™2 0

)

0 INTEGER T1

O INTEGER T5
INTEGER TM3

(ARRAYS USED FOR COMPUTATION)
144 ARRAY FCOUEF 144 ARRAY RCOEF 120 ARRAY X

IZNTS

22

FOP REVERSE TRANSFORM)

TEMPORARY STORAGE

0
n
o

S3
A
MO0
TM4

144 APRAY Y

1019
98
58

o}

118

35
46
556
24

Appendix-C

RCOEF FILL
64429 1365 4591 847 4687 5051¢
64429 1365 4591 3847 4687 50°14
64429 1265 4591 9847 4087 50514

3681 11779 30785 35363 4541 44807
1638 30713 25874 . 17990 25730 55271
1638 30713 25874 17990 25720 55271
1638 30713 25874 17990 25730 55271
27239 15092 52104 12439 25349 1071
58145 9220 13250 44432 50613 27275
58145 922 13250 45432 350519 27274
58145 9220 13250 44432 50619 -27276
50784 2041 30577 40308 60672 45578

A '
(MODULAR MULTIPLICATION ROIUTINE FJIR THE EXTZRMAL
HARDWARE MODULAR MULTIPLIER)
HEX CODE ALJAD 3FF2 2 LT 3FF4 3 LI 3FF6 4 LTI RETU2N
DECIMAL ‘
CUDE 1CALC 8 PCP 9 PGP 0 8 1 2 MOV 0O 9 1 3
MOv 1 4 07 MCV.T PUSH RETURN

: AMULT - ALOAD 144 0 DO I FCOEF + 2 I Y + 3 1CALC
: I Y + 1 2 +L09?P ; _
: BMULT ALOAD 144 0 DO I RCCEF + 2 1 Y + 2 1CALC

I Yy + | 2 +L00P 3
¢ CMULT FLAG 0O = IF AMULT ELSE BMULT THEN
HIRY ’
¢ MODULAR ADDITION) HEX
CUDE MDD 1 POP 2 POP 0 1 0 2 A FNC IF ELSE F£ 1
THEN FFF1 1 CI FH IF & 1 AT 1 PUSH ELSE
-1 PUSH THEN RETURHN
(¢ MODULAR MULTIPLICATICON D
CUDE D/ 7 POP 5 POP FFF1 4 LI 5 0 7 MPY
5 0 4 DIV 6 PUSH RETURN
i (REG4 CCNTAINS DIVISHPR D
(MCDULAR SUBTRACTICN) ’ :
CODE SBT 2 POP 1 POP 03 C L MOV O YO 2 S D202
ELT IF FFF1 1 AI 1 PUSH ELSE 1 PUSH THEN RETUPRPN
(MCDULAR HARDWARE MULTPLIER)~ :
HEX CODE CREG 0 7 CLR 0 8 CLR O 9 CLR RETURN
CUODE ALOAD 3FF2 2 LI 3FF4 3 LI 3FF4 & LI RETURN
CUDE CALC 0 8 12 MOV 0 9 1 3 MJV 1 4« 0 7 MOV 7 PUSH

HI

I

n >

O

RZTURN

(2 PCINT PRE~-WEAVE) DECIMAL
P 3A0 40 C DC I 40 4 X + @ I 80 + X + @ OVER OVER MDD T
40 + Y + ! S8BT I 80 + Y + 1 2 +L00P ; '
T 30AD 40 0 DO 40 + Y + 2 I X + 3 MDD I Y +
I 2 +LOOP ; '
: I3PT 34D 3DAD
¢ 4 POINT PRF=-WEAVE) ,
S 41AD 10 0 DO I Y + 2 I 20 + Y + 2 MDD I X + ¢ 2 +L00P ;
T 42AD 10 0 DO T 10 + Y + 2 I 30 4+ Y 4+ 2 OVFR OVER MDD
I 10 + X + ! SRYT I 30 + X + ! 2 +LD0OP ;

Appéndix—C . i -2

v 4258 10 0D DO T Y 4+ ¥ I 20 4+ Y 4+ 3 SBRYT T 20 4 X + 1 2
' +L00P 3

$ 43AD 10 0 DO I X + & I 10 + X + 2 MDD TM ¢ I ¥ + 3 I 10 +
X + 2 SBYT I 10 + X + ¢ TM 2 T X + 1 2 +L0N0P :
Y
P 44A0 10 0 DD I 40 + Y + @ I 60 + Y + 3 OVER QVER MQH
I 40 + X + !t SBT I 60 + X + | 2 +L00P ;
: 45AD 10 0 DD I S50 + Y + 2 I 70 4 Y + 2 OVER OQVER MDD
I 50 ¢+ X + 1 S3T I 70 + X + 1 2 +.0CG° '
P 48AD 10 0 D0 1 40 + X + @ I 50 + X + 2 MDD TH I I &0 + X +]
2 7 S0 + X + 3 SBT I SC + X + ! T 2 I 40 + X + t 2 +L0Q°
P 49AD 10 O DO I A0 + Y + @ I 190 + Y + 2 QVER QVER 40D
: I §0 + X + | S8BT I 100 + X +.! 2 +L23P ;
P 4AAD 10 0 DO I 90 + Y 4+ 3 I 110 + Y + @ OVER "VER2 M0
I 90 + X + ! SET I 110 + X + | 2 +L0DOP ;
P 4DAD 10 5 D0 I 80 + X + @ I 90 + X +-3 MDD TM I I RO + X +
2 1 90 + X + 3 SBRT I 90 + X + I TM a1 B0 + X + 1 2 +L00®
$ I4PT 41AD 424D 4253 432AD 44AD 45AD 438D 49AD 4AAG 4DAD

:S
(MULTIPLICATION WITH COEFFICIENTS)
0 INTEGER FLAG

¢ FMULT 164 0 DC I FCOEF +« 2 I Y + & D/ I Y + 1 2 «L30P 3
* RMULT 14«4 0 D0 I PCCEF + 2 I Y + 2 0/ 1 Y + 1 2 +L00P ;
P MULT FLAG & 0 = IF FMULT ELSE RMULT THEN 3

(5 POINT PRE-WEAVE 3
I15PT TM 2 X + 3 TM2 2 X + 3 OVER CVER MDD S1
SBT S5 3 Y + | 3 :

[e3)
3
-+

tOI25PT TM1 2 X + 2 TM2 @ X + 9 MDD S2 2 Y + ! TM2 @ X
+ & TM1 @ X + 2 SBT S&¢ 3 Y + 1 %
: I35PT S1 2 Y + .3 S2 & Y + @ OVER OVER MND S1 3 Y + !
"SBT S2 @2 Y + 6 TMO 2 X + 2 S1 @ Y + 2 MDD SO 2 Y + !
¢ I45PT S5 2 Y + 2 S4 2 Y + @ MDD S3 3 ¥ + ! ;
s ISPY INTZ SINT. 24 0 DO I15PT I25PT I35PT T45PT 2(CHG
1CHG 2 +L002P

HN

(5 PODINT POST-WEAVE)

FVPT SO @ Y + & DUP 51 2 Y + 2 MDD T1 !
S5 2 Y + 3 MDD TS ! 3

P 1FVPT S3 2 Y + 3
! 2FVPT S3 2 Y + 2 S4 2 Y + 2 S8BT T2 !
? 3FVPT T1 @ S2 2 Y + 2 COVER QVER MDPC T2 ! SBT T4 &
: 4FVPT T2 @ T3 & OVER OVER MDD TM 2 x + ! S8BT
TM3 2 X + | 3
: S5FVPT T4 2 TS5 @ OVER NVER MDD TM1 2 X-+ t SQT
TM2 2 X + t 3

O5PT INTZ SINT 24 0 DO FVPT 1FVPT 2FVPT 3=V9T
4FVPT S5FVPT 2CAG 1CHG 2 +LUOP ;

se

Y o .
¢ 4 PJINT POST-WEAVE)
401 10 0 DO I X + & I Y + 1 2 +L09p
14D 10 0 D0 I 20 + X + @ T 30 + X + 2 QVEP CVER
MDD I 10 + Y + | SET I 20 + Y + I I 10 + X + = I 20
+Y + 1 2+ LD0P i}

Appendix-C

T 402 10 0 DC I &0 + X + DI 40 + Y 4+ 1 2 4100° 3

P 24D 10 0 ND I 60 + X ¢+ 2 T 70 + X ¢+ 2 OVERP CVER MDD I
5) + Y + 1V SBT T 70 + ¥ + VT B0 +.X + 2T A0 + ¥ + |
2 + L0OOP

$ 403 10 0 DD I f0 4+ X + 2 I 80 + Y + o 2 +100P ;

$9340 107 0 U T 100 + X + 3 I 110 4 ¥ + 3 OVER QVER MOD I
90 + Yy + 1 SBRT I 110 + Y + ! I Q0 + X + &
I 100 + Y + 1 2 + LOOP 3

¢ 04PT 401 14D 402 240 4C2 3240 3

c
-

(3 PGIMT POST-WEAVE)

¢ O3PT 40 0 B3 I Y + 3 I 40 4+ Y + 3 MDD

I RC + Y + 2 CVER QVER MDD I 40
X + 1 2 +LG0P

+ X + T Y + 27

ee 4
>
+
w
o
-
(]
o
(]

¢ INPUT RE-0RDERING VECTOR RF)
Y £+ &8 I X 4+ V2 +L023P 3

(OUTPUT RE-ORDERING VECTOR RFI

: IORD 120 Q C2 I RF + &

: OORD 120 0 DO I X + a I

[#al

¢ TRANSFOPM ICKND I3P7
: 0497 0Q2PT

¢ 1TRANSFORM I0eD 1297
C4PT ND3PT

¢ FRD FOR FOWARD AND INV

)
REI + 2 Y + 1 2 +L00P

T4PT ISPT MULT QO5PY
garn
I4PT
OnRrb

5PT LMULT Q&PT

o rd e

F3R INVERSE TRANSFORHM

USING MULTIPLY AMD DIVIDE INSTRUCTIOM)

: FRD 0 FLAG ! TRANSFORM™

.
’

: INV 1 SLAG ! TRANSFOERM

¢ 1FRD FOR FOWARD AND 1INV FCR IMVERSE TRAMSFIAM

USING EXTEZRNAL HARDOWARE
¢ 1FRD O FLEG ! 1TPANSFORM

X EMPTY Y ZMPTY
HINY

MODULAR MULTIPLI=R)
s ¢ 1INV 1 FLAG ! ITRANSFIRHM 3

Appendix-D

Assembler program source listings for the slave microprocessors
(1 to 18) .

Assembler program source listing for the master microprocessor

Assembler program source listing for a 15-point WFTA (MC6809)

Appendix-=D

puTPUT
STATUS
T6

T2
INPUT
R&

R

SEM

NEXT

L sle
<

OVER

SKP12
SKP13

SKP14-

NaM

£QU
£QU
EQy
£au
EGU
EQU
£ou
Eau

CRG
Map
CRCC
LOuU
CLRA
STA
LDA
8ED
LDA
STA
LODY
LOX
LDA
STA
SYNC
cLRA
STA
LDD
BPA
LDY
LDX
SYNC
{.DD

SYNC
SYNC
80DD
BCS

CMPD

8L

ADDC
SYNC
SYNC
SYNC
ADND
BCS

CHPD
BLC

ADDD

t
2401010000
#PRID1
FLAG
SEM
Fog
g1 |
FLAG
aMCND
FMLTFR
£1 |
STATUS

1

|
STATUS
INPUT
gvEeER
#MCND
#MLTRR

SAVE

I

t
1

Ré&
SKP12
265521
SKP13
£15

P2
SkP1ig
$65521
SKels
515

t
t

-

NUMBER 1

5TD

CLR
CLR
£toa
LD8
MuL
STD
LDA

L03

MuL
ADDD
STO
3CC
INC
LOA
LOA
HUL
ADDD
STND

acc

INC
LDa
LDS
MUL
ADDD
ST

LOA
LDB
MUL
400D
2CS
CMeo
BLO
ADDD

STD

LDA
LDX
CLF

- CLR

cLe
LoR
MUL
STD
LDs.
L2
MUL
4000
200D

1o wlo v'e e ste 3ts e wle nts sla nts ste ste sle ate oo ate ots wig sle Ve
ER AP LR ES TS E IR PAPRPLP LI RPRPLPRPLRRS

MCHMD

[] IV.'
1,10
1,X
1,Y

2,
SKPZ0
#655521
SKP21
%15
241

11
| A

¢TEMD
y X
1,X
24X
41°¢

14X
25 Y

Appendix-D

SkpP22
SKP23

CUNV

MULT

LGP16

LUP19

3CS

cuph

3L0
ADDD
SYnC

STD

SYNC
SYNC
SYNC
STO

SYNC
SYMC

STD

LTA
CHPA
5EQ
CMPA
2E0
LDOD
STD
LBRA
Lac
STD
LERA

INC
LDX
LOY
CLR
CLR
LDA
LOR
MUL
STOD
LDA
LDR
Mut
ADDD
STN
3CC
INC
LDa
LDS8
MUL
ADDD
STD
3cc
INC
LDA
LO"R
MUL
ADDD

SKP22
65521
SKP23
#15

T2

-
0.

SAVE
FLAG
%]
MULT
#2
CONV
SAVE
RES
BEGIN
SAVE
CUTPUT
3EGIN

FLAG
#SAVE
#RES
s U
1,4
14X
1,Y

2y U
s ¥
1,Y

1,U
1,4
LOF1é6

14U
1,U
LOP13

A)
" v

Qo
W O
— O

e rro
NI

p22
apP23

-
3

MLTFR
MLTRR

JMCND

{PRODL
| PROD2
|PROD2
jpRines
FTEMP
|TEMPL
JTEMP2
|SAVE"
| FLAG
{RES

| s

l
[STRT
[

5TD
LDA
LO8
MUL
ADDD
RCS

cHPD

AL

200D

ST0

£04
LD
cLe
cLe
cLe
LD3
MUL
sTR
LDA
L0®
MUL
200D
AD0D
RCS
CHOD
RLD
4000
STD
SYNC
SYNC
SYNC
SYNC
LBRA

FDB
FD2

CRG
=D8
FCB
FCR
FC3
FCB

£C3

FC8

"FCR

€08
FCo
FOS

GRG
EQU
END

[V NS SN ot B A SO o
b= O (Ow w
< W pw o

Y
1,0
¢15

241
L3220
#65521
Lge21
#1858
24U

y U

AL

sy X
14X
2y X
#1¢

= X

o ne
(S RN AS I £)
—

n

ped
[mal
=
-

-1
£1153

$3000

¢FFFE

EFA20N

BEGIN 7

ro

Appendix-D

guTPUT
STATUS
T7

o
P

T3

T1
INPUT
RT
RS

R3

R1
SEM

BEGIN

START

FRO

NEXT

1A
23

SKP12
SKP13

NAM

£Qu
£
EQU
QU
£QU
EQU
FOU
FoU
£
£Qu

[l a W]
EQU

£QU

ORG
NCP
pRrCC
LDOU
CLRA
STA
LDA
=0
LDA
STa
Loy
LDX
Loa
STA
SYNC
CLRA

STA

LOD
Bea
LOY
LDX
SYNC
L3D

SYNC
SYNC

ADDD

8CS

- CMPD

8LO
ADDD
STD
SYNC
4D0D
3CS
CMPD
2L0

EPAPAPLPEPXOLPH

PR3C

fosie e st e e
~¢\.‘,~.,. 4

$F200

5401010700
#PRCD1

FLAG
SEM
F20D

#1
FLAG
£MCND
#MLTFER
z1 .
STATUS

STATUS
INPUT
OVER
#MCND
#MLTRR

SAVE

R7
SKP12
#65521
SKP13
#15

T5

R5
SKP14
#65521
SKP15

fo e B s S e S et Sl s Mt

‘ s--'a 3'e

ISK914
| S¥P15

SKP16

1SKkP17

S

Iy A
. 75

-(-U‘U\

SKP13

KP21

“PZZ
23

seaese St sis
LEPX IR

SSDQ NLH°E° 2

pid

R3
SKP15
#465521
SKP17
215

T1

MCND
y U
1,U
1,X%
1,

1,U
1,U
SKP18
s U
1,X

1,0
1,U
SKez1

U
ETEMP
» X

1,X

Appendix-D

SKP24
SKP25S

SKP26
SKP27

SKP28
SKP29

SKP30
SKP31

CUNV

MuUuLT

CLR
LDAR
MUL
STD
LDa
LDB
MUL
A0DD
aD30
3CS
CMPD
3L0
40930
SYNC

SYNC
ADDD
3CS
CMPD
3L0
ADDD
STD
SYNC
ADDD
BCS
CMPD
aLd
420D
STOD
SYNC
ADDD
8CS
CMPD
8L0
ADDC
STO
SYNC
SYNC

STO
LDA
CMPA
5EQ
CMPA

AEQ

LDD
STD
LBPA
LDD
5TH
LERA

INC
LiOX

29X
#15

y X
9 X
215

1,X
29!
SKP26
#¥65521
SKP2S

K16

R1
SKP26
265521
SK227
#1F

T2

R3
SKP2R
65521
SKeP29
#15

TS

RS
SKP310
#65521
SKP31
¢15

T7

SAVE
FLAG
%]
MULT
%2
CONV
SAVE
RFS
EEGIN
SAVE

ouUTPUT

REGTHM

FLﬂG
CHOAVE

3

LOP15

L3P19

LIP20
Lner21

LOY
cLe
cLe
LDA
LOR
MUL
$TO
LoA
LCS

MUL

2000
STH
pLC
TNC
LDA
Lok
MUL
ADDD
STP
&CcC
INC
LDA
Lo3
MUL

-ADDD

STO

LDA
LDE
UL
£DDD
5CS
CMPD
5LC

2000

STD

LDA
LDX
CLR
cLe
CLR
LOB
MUL
STD
LoA
L2e
MUL .
ADOD
AU0nn
AEOA

SEMe)

~Ln
ADDD

-

RRPES
y U
1,4
14X
1,v

2,4
sy X
1,V

1,4
1,0
L3OPlA
s U
1,2
, Y

1,4
1,U
LorP19

s U
*TZMP

s X
1yX
2,X
®15

1,7
2,':
L Opr?
Honnol
Lgr2n
Y15

-

Appendix-D

Lyp23

MLTFR
MLTRR

bxd

QUTPUT
STATUS
T

Ta

T
INPUT
RE

R&

R¢

SEM

BEGIN

START

FRD

NEXT

STH
SynC
L3D
STD

SYNC

SYNC
SYNC
LDO
STD

LBRA

FD®
=R

EquU
EQU
£Qu
EQU
TGuU
ECU
EQU
c£Qu
TOuU

Equ

CRG
NOP
nrCC
LOU
CLrA
STA
LOA
BEN
LCA
STA
LDY
LDX
LDA
STA
SYNC
CLRA
STA
LD
BREA
Loy
LOX
SYNC
LOD

R3
T5

wy 0
W
>x <
— m

Im >

-~
-

16279
5460

o ais sty o wle abs uts alo ats als o
PO S L X LIPS EIPRY

NAM

680932
$0400
$0402
$0403
$0405
$0407
$0410
$0412
$0414
304156
$0418

$F800

201010000

#PROD1

FLAG
SITM
Fep

21
FLAG
*MCND
#MLTFR
£1
STATUS

STATUS
INPUT
CVER
rMCHD
#MLTRR

SAVE

|

JMCND
|PPODI1
| PoOD2
|PROD3
|PRACS
jTEMP
jTempP]
jTeEMP3
|save
1FLAG

|RES

SYMNC

ORG
e
£C8
FCR
=Ce
FCe
=C8
cCse
FCe
FNDR
FC®
FoR
CRG
=2

END :
1o wts sle ote nls nls ate Wl

R 3

SN TTIININIIT RN

SYNC
apoDd
ECS
cupD
2L
ADDD
STD2
SynC
ADDD
RCS
£4oh
BLO
4000
STHD
SYNC
STD
LDD
Syad
BCC
AD0D

SYNC

STD
cLe
CLR
LOa
Lo3
MUL
5T0
LIn

- LOR

MUL
ADDD
STN
ACC

$N0J00

D OO D DOoOO

Do oo
t oM '

R *JNY. B)
2an Mmom
Z a4 DN
oM

e
SKP12
*6552
SKP1?2
%15
T4

T VW0
P ORI AN I <
<
m

o
Ul - n

ro O~

o<
P

tCMD

y U
1,0
1,
1,

2!
1y
1,U

1,U
SKFP13

Appendix=0

SKP18

SKkpP21

SKP22
SKP232

SKP24
SKP25

INC
LOA
LDe
MuUL
ADDD
STD
3CC
INC
LDA
Log
MUL
ADDD
ST

LOA
LDBA
MUL
ADDD
aCs
cCMPO
sLe
ADDD
STD

LDA
LDX
LR
CLR
CLR
Loea
MUL
STD
LOA
LOB
MUL
ADDD
ADDD
BCS
CMPD
eLe
ADDD
SYNC

SYNC
STH
SYNC
STD
LDD
SUBD
BRCC
ADDD
STD
SYNC
AP00

s U
1,X%

1,U
1,U
SKP21

s U
y U

1,U
#15

22U
SKP22
265521
SKP23
15
294

y U
2 TEMP
» X
1,X

24X

%15

s X
%15
1,X
2y Y
SKP24
#65521

SKP25
#15

T2

SAVE

R2

SAVE
SKP26
265521
T4

A

~ — et . e S e ame S S e et e emm e —
”) - — e e e e d A a—

canv

MULT

LOP15

LAP13

2CS
CHMPD
3L0
ADDD
STD
SYMNC
SYMC

STD
LOA
CHpa
“EQ
CHPA
8EQ
Lot
STD
L3R4
Lop
STD
L3RA

INC
LDX
LOY
CLR
rLe
LDA
LO3
MUL
STD
LA
LD3
MUL
£D00D
STD
acc
INC
LA
LD®"
MUL
ADDD
STD
85CC
INC
LOA
LDS
MUL
ADDD
st

LDAa
LDOR
MUL
400D

SKp2P
€65521
Skpza
215

5ave

FLAG
2]
HULT
B2

cCoNY
SAvVE
RES
BEGTH
SAVE
GuUTPUT
BEGIN

FLAG
#SAvVeE
#RES
y U
14U
14X
1,Y

2,y U
,X

1,Y

1,U
1,9
LOP15%
s U
14X

y Y

1,U

194

LOP19
y U

Appendix-0

LGP2O
LuprP21

LurP22
LuP23

QuUTPUT
STATUS
T9

T3

T16
INPUT
Ry

R

R16
SEM

BeGIN

START

FirD

dr wls wtoaie
CR-RX K1Y

BCS
CMOD
ALD
ADOD
STO

LDA
LOX
CLR
CLR
CLR
Lne
MUL
STO
LDA
LOE
MUL
ADDD
ADDD
ECS
CMPD
5L10
ADDD
STOD
SYNC
LDD

STN

MAM
EqQU
=0U
£ QU
EQU
EQU
£QU
£0U
EQu
EQU

EQU

ORG
NOP
grcc
L2V

. CLRA

STA
LDA
Ben
Loa

" STA
Loy

LOx

Lge2¢
#65521
LoP21
%15
2y

s U
#TEMP

14X
24U
Lee2e2
65521
Lor23
¥15
T2

R2

£8N94
30400
30602
$0403
$0405
$0407
30410
20412
%0414
$04156
%0412

$3FR800

8701010000
#PROD1

FLAG
SEM
FeD

41
FLAG
MCMD
aMLTFER

|
!
!
l
P2OCESSIP

!
!
|
I
!
!
| =z

IMLTFR
IMLTRR
l s

|
JMMCND
|PRCDL
|PeCD2
|pogn3
| PROCS
| TEMP

T o
l TcMPl

jTeEmMp3 .

]SAVE
JFLAG
|RES
| sz

STRT

e

-

FCa .

FC3
FOR
£L3
=3Fr

ORG
EQuy
END

s ute ste als e nts nls te Mo ale e
PR PSRRI AP RPN

NUMEZ

13274
18354

§0000

QO DD OOODLOOO

$FCFE
$FROD
SEGIY

21

STATUS

STATYS
INRPUT
SViR

e MD
ML TR0

SAvVrE

Appandix-0D

SKP14 STC
SYNC
SYNC

STD
CLR
CLR
LJA
LDR
MUL
STN
LDA
Loe
MUL
AnND
ST
3CC
INC

SKP16 LDa
LCR
MUL
ADDD
STD
BCC
INC

SKP19 LD
LDB
MUL
ADND
ST

LDA
LOR
MUL
ADDD
BCS
cmPeD
8L0
SKP20 ADDL
SkP21 ST

LDA
LDX
cLe
CLR
CLR
LO8%
MUL
STN
LOA
L3
MUL
ADOC
ADDD

T156

MCND
s U
1,U
1,X
1yY

24U
s X
1,Y

1,U
1yl

SKP16

29U
SKPZ{
65521

Skp2t

#15
2yl

y U
ETEMP

s X
1,X
249X
¥15

2CS

cMen -

ALO
AD0D
SYNC

SYMC
ADDC
5CS
CHPD
“L0

“A3DD

SYMC
STO
SYnMC
STD
L30
SUBRD
3CC
ACDD
STE
SYNC
SYNC

STD
LDA
CHPA
3ERQ
CMPaA
eEn
LoD
STO
LBRA
Lod
STO

L3724

INC
LOX
LDY
CLR
cLr
LCA
Lo®
MUL
STN
oA
LD®
MuL
ADDD
STD
RCC
INC
LA

)
i
)

SKP
265521
SKPZ:
15

oo
ro o

P15
Sk224

6552
SKP25

$15

T3

SAVE
R3
SAVE
SKP264
65521
T9

SAVE
FLAG
21
MULT
22
CanyV
Save
RES
BEGINM
SAVE
SUT2UT
BEGTIN

FLAG
2SAVE
2RES
y U
1,U
14X
1,Y

24U
2
1,Y

1,1

BIFRY

LOP1A
o U
1,X

Agpendix-D

LCP19

LuP20
LuP21

i o
pxd 3
e -,
o~ -
‘e
R

S QUTPUT
STATUS
T10

T

T16
INPUT
R10

R2

R16
SEM

e
px4

. BEGIN

ADDD

o ain ate
P

LDR
MUL
ADDD
STOD
3ct
INC
LDA
LD®
MUL

. ADDD

STD

LDAa
LDOR
ML
AD0D
aCS
CMPD
SL0
ADNDD

ST

LOA
LOX
CLR
CLR
CLFR
Lo8
MyUL
STH
LDA
LC8
MUL

NAM

EauU
£QuU
£3u

- Fau

£Qu
EQU
SRALY)
QU
EQu
c AU

IRG
NDP
ORCC
LDU
cLea

68095

y Y

1,U
1,U
LCP1S

2y ld

LOPZ0
#65521
LoprP21
215
2yl

y U
aTEMP

9 X
1,X
29 X
#18

1s wis wte nie wis wte wte
KRR R

PRPOCESSCR NUMA

o

$0400
t0402
$0603
30405
¢0407
3010
$0612
$0414
$0416
%0418

$FEO00

#201010000

#PR0OD1

(AN

~no
w no

I
|
|
o
|LOP
|LOP
!
|
I
o
!
|
!
| s

JMLTFR
| MLTRR
| =2

| =2

!
fMCHN
|pPeJ01
|pRGC2
|PROD3
| PRODS
| TEMP
| TEMPL
[TENP3
1Save
[FLAG
IRES

| sz
I
|STRT
1

1o sls ste slo ate vto nls o
PRE-A

200D
BCS
CHPY
LG
£COD
SyHL
SYNC
sTh
LoD
STD
SYNC
SYNC

L3R4

nn
[)
S

IS s BN

IRAG
=07
FCa
FC8
FCe
FCB
FC8
eca
FC3
£ng
~C8
£08

ORG .
ELU
‘END

P T P PR PR VRN PR
PRSI AR LA

ER 5 &

STA

LDA
BEQ
LDA
STA
LDY
LDX
LDA
$TA
SYMC
CLRA
STa
LOD
3RA
LCY
LOX
SyYnC

Vo te We ve ste e sts s Do wle wie she slo wte e sle She abe shs ste sle ste e ole
P SAS SRS AS-£ B2 AR ED A A IR AR A AR AR

241
1.0pP22
265521
Lagez3

LB

T3
P15
SAVE

L8647
5492

$00006

D DD DD DO D DO D

FLAG
SEM
FRD

21
FLAG
#MMCND
gL TFR
41
STATYS

STATUS
INPUT
OVER
*MCHO
RMLTRR

Appendix-0D

SKP12
SKP13

SKP1é&

SKP16

- SKP19

LDD

SYNC
SYNC
ADDD
aCs
cMPD
BLO
200D
STO
SYNC
STOD
LoD
SU8D
BCC
ADDD
STO
sync
SYNC

STD
CLR
cLn
LDA
LDS
MyUL
STD
LDA
LDB
UL
ADDD
STD
BCC
INC
LOA
LO8
MUL
ADDD
sTn
BCC
INC
LDA
LDB
MUL

4000

STD

LoA
LO®
MUL
ANbpo
3CS
CMPD
2L0

SAVE

Q10
SKP12
#65521
SKP13
215

T2

SAVE
R2
SAVE
SKP1a
#65521
T15

15U
1,U
SKP16&
y U
1,X
y Y

1,U
1,U
SKP13

y U

? X

y Y

y U
2 U

1,Y
1°

24U
SKP20
#65521
SKpr2l

fsxp2n
]SxP21

(G (]

PN Ve I %)
x <
v v
[NCRNNY

SKp2a

HULT

e e e o e — = ———— — — —— —— — — — — o —— — - — — - —— o
" — . e e e
i 3

INC
LOX
LOY

15

-

2y

y U
T CMP
1,X
2y Y
#1¢

23
— e e
o X

2yl
SKP22
#55521
SKo23
¥#1¢

R16
$KP24
465521

T2

SAVE
92

SAVE
SKPZ4
$65521
Tin

SAVE
FLAG
#1

MULY
22

CoNV
SAVE

. RES

32GIN
SevVE
guTPUT

3EGIN

FLAG
RCAVE
22ES

Appendix-D

LUPLS cL®

CLR.

LDA
LDB
MUL
STD
LDA
Log
MUL

apnd

STO
8CC
INC
LDA
LOB
MUL

LUP16

ADDD .

STH
BCC
INC
LOA.
LDS
MuUL

LCP19

ADDD

STD

LOA
LD®
MUL

ADDD

BCS

CMrPD

8L0
LuP20
LuP21 STO
LDA
LDX
CLR

cLe
CLR

MAM
QuTPUT EQU
STATUS =QU
Til - EQU
TI £ QU
T7 EQU
INPUT ey
R11 equ
R1 E QU
R7 Faou

400D

R D e e
SRR PAEOKY

680956

g U
1,1
1,X
1,Y

29U
9 X
1yY

1y

L3OP16

1,1
1,U
LOP19
g U
g X
,Y
s U
s U

144
#15

25U
LOP20
£65521
LCP21
#15
25U

s L
$TEMP

r X
1,X

“29 X
PROCESSOR

ats te wle b wis sl
DRI ED DR

PAPEDRPLPEPR

$0400
$0402
30403
$0405
$0407
$Cs10
$0412
$041a
10416

| STM

G O

[SEEEaS Y

- r
O v

MLTF
LTR

X =

L% B IR W IR & B

0 QO ML
& W e

mx Aa 0 20

TR =
w 0V v
—

MV 44 400U
Mo N

<<

n

L e e e e e e e e e e e e e — e —— — '

f ” 7 - — e - —
A .
A
—

o e

o
=

8¢61

!
!
!
|
|
!
!
!
l

LOR
MUL
STD
LDA4
Loz
MJL
ApnG
4000.
38CS
CMPL
aL9
ADDD
STD
SYNC
SYNC
LOD
STD
SyNC
SYRC
LBRA

W ro

R FDO8
R Fog

ORG
FDB
)
FCB
FCR
=C9
FC3
€C8

J
-
o
5]

o e e wle Wl ho wio abs Ale ate ate wla wbe te ots e 2ls she ata ns ats sts ste s sla als 3bs Mbp ug sla ofe uS ote s
PR AP R AR DR AP AR DA A R A AR RS

14X
2y U
L3pP22
#65521
Loe23
¥#15
T1¢

R2
SAVE

MEXT

19136
46777

O D A
O
(]
L
[

D DO D

QDD OO0

SFEFE
$F300

SEGIN

MUMBER 4

QU

0RG
NOP
arce
LOU
N .CLRA
STA
LoA

REn

$0418

$F500

#%01010000
2PR001

CJ

-11

Appendix-0

START

FRD

SKP12
SKP132

SKP1é4

SKP15

SKP16

LDA
STA
LDy
LOX
LDA4
STA
SYML
CLRA
STA
LOD
BRA
LCY
LDX
SYNC
LDD

STD

SYNC
ADDD
RCS

CMPD
BLO
ADDD
STO

SYNC
SYNC
SYNC
SYNC
ADDD
RCS

cCMPD
2L0

ADDD

STD
CLR
CLR
LDA
LO®
MUL
STD
LDA
LDS8
MUL
AODD
sTN

3CC

INC
LDA
LDR
K
ADDD
STD
8CC

%1
FLAG
#MCND
#MLTFR
11

STATUS

STATUS
INPUT
CVER
#ACND
#MLTRE

SAVE
T11

11
SKP12
£65521
SKP13
#15

T1

R7
SKP1la
265521
SKP15
215

MCND
s U

1,
1,
1,

< x

2sU
s X
19Y

1,V
1,U
SKP15
y U
1,X
’Y

1,U
1,U
SKP19

TNC
LOA
Lge
MUL
A000D
ST

LDA
LOR
MUL
aDp0D
5CS
CMPD
2L
ADDD
STD

LOA
L3X
cLe
CLR
cLe
LD"
MuUL
STD
LDaA
Lpe
MUL
ADDD
AD0D
8CS
cMPH
aLe -
4000
SYMC

STC
SYNC
SYNC
SYNC
SYNC
ADDD
aCs
CMPD
KLQ
£DDD
STH
SYNC
ADDD
aCs
CHPD
RLT

“ADDD

SK220
65521
Skez2l
#15
2,U

Q.
-y -

Al S S SN KA I e
v

& DO
—w - -

"
—
)

o=

TRV T " 0 S R
= X 0N XN w -
(RS I E N
(WO AN oV)

—

(CATERIC RN) B o)

T7

e
SKP24
#65521
SKP2¢
#15
T1?

(VoI SRV IR |
- KO R
A D W I e

ro WU ro

~N o O

P

"

Appendix=0

SKpP27

CUNV

MULT

LUP15

LUP1é6

LCPLl9

Ar
o~

STO
LDA
CHPA
BEG
CMPA
ERSES.
LOD
STOD
LBRA
LDO
STD

LARA

INC
LOX
LDY
CLR

_CLR

Lira
L2
MUL
STN
LDA
LUR
MUL
ADDD
STD
3CC
INC
LOA
Lo%
MUL
ADD0
ST
BCC
INC
£LDA
Lpg
MUL
ADDD
STD

LDA
LD®
HUL

ADDD.

acs
CMPD
500

SAVE
FLAG
®1
MULT
22
CONV
SAVE
g=S
8EGIN
SAVE
cyThUT
EGIN

FLAG
#SAVE
#RES
U
g U

1
14X
1,V

2yl
s X
1yY

14U
1,U
LOP16
s U
14X

1,V
1,4
LOP19

y

» X

y Y

s U

15U
#£15

U
Lge20
$55521

Lor21

| PRCD3
|PROD4
| TZMP -
| TEMPY
| TEMP3
| SAVE
[FLAG
fRES

| sk

STRT

IS
o

EYRERY] v
APy

ADDD
STD

LOoA
LDX
CLR
CLR
CLR
LO%

MyL

STO
LDA
L03
MUL
620D
A2DD
ECS
C4PG
&L0
ApND
ST
SYNC
LOD
STD
SYNC
SYMNC
SYNC

L3RA

Fno
FOg

ORG
€93
FCB
FCB
FCB
FC3
FC8
ECe
FC8
FD2
FC3
Fpo

nen
EQU

€10

ty 3 L

#15
2y U

y U
#TE4P

y X
1y,X
29X
#15

) X
) X
$1%°

15X
2,
Lapr22
#65521
Loerz3
215

T1l1

711
SAVE

=
n
>
~

»e,
-d 3%

oone
N
v

DD O DD DO
(e
>
[en]
[ge]

2D DD

$FFFE
TF300

2EGIN

[RSIRVo I
BLN
3

J-172

Appendix-[

QUTPUT
STATUS

Ti2
T2
T10
TS
T6

InPyYT

Ri2
R
R10
RS
Re
ScM

BEGIN

START

FKRD

NEXT

OVER

SKkP12
SKP12

e slo Ale whs wha b ate s wlg ate
L RED-ES-E P2 K4

68097
$0400
$0402
$0403
$0405
$0407
30409
50405
$0419
$0412
30416
$0416
0413
t041A
<041C

$F800

#%01010000

#or00D1

FLAG
SEM
FED

#1
FLAG
#FMCND
EMLTFR
#1
STATUS

STATUS
INPUT
CVEP
#MCHD
#MLTRR

SAVE

T12
R12
SKP12
#65521
SKP13
£15

T2

T10

PESADESEILXPEPAP AP ISR PE LD S ARAREP LD AR

DT S D S R N D L e
CO AR OAE-RP R - ARG RIF IR IR R AT R AP AP AP I XN

JR NUMBER 7

apoD R1G
als SKP1ls
CMPD 65521
3L0 SKP1E&
A0DD =&15%
STD TR
SYNC

A0D0 RS
aCs SKP1éA
CHM2D #565521
210 SKP17
ADDD ¥1°Z
STC T
SYNC

STD MCND
CLR g Ut
CLR 1,4
LDA 1,X
LOR 1,Y
MUL

TR 25U
LDA o X
Lpe 1,Y
My L ‘
apDD 1,U
STD 1,4
3CC SKP1?2
INC y U
LDa 14X
LDR y Y
MUL

ADN0 1,V
STD 1,4
RCC SKo21
INC s 1
LDA y X
LDEe y Y
wuL

29D0 s U
<TD o1
Loca 1,4
Lee 416
HMUL

AJ5D2D 2,U
eCs SKP22
CMPD #65521
eLg SKPZ23
AGDD #15
STD 2al)

Appendix-D

SKP24
SKP25

SKkP26
SKpP27

SKp28
SKP29

- SKP30
SKP31

SKP32
SKP23

SKkP34

e

LDA
LDX

CLR

CLR
cLP
LGS
ML
sSTN
LDa
LD8
HUL
ADDD
ADDD
3CS
CHMPD
8LO
ADDD
SYNC

SYNC
ADDD
LS
cMep
BLO
AQDD
STD
SYnC
ADDO
8CS
CHPD
3L0

ADDD

STO
SYNC
ADDD
RCS

CHPD

BLO
A00DD
SYNC
ADDD
BCS
CMPG
BLO
ADDD
STNH

SYNC

ADDD
BCS
CMPD
LLO
ADDO

1yX
2l
SKP24
65521
SKP25
#15

Ré&
SKP26
£#65521
SKP27
=15

T8

RS
SKP238
#65521
SKP23
#15
T10

R12
SKkP30
#65521
SKP31
#15

R2
SKP32
£65521
SKP33
215
T12

R12
SKP34
©65521
SKP35

#1685

-

-

STD
LA
CMPA
2EN
CHea
RERQ
LO0
STD

LBRA

LDD
STH

L3RA

INC
LDX
LDY .
CLR
CLR
LDa
LDOB
MyL
<TD
LOA
LO2
ML
ADNDD
STD
3CC
INC
LDA
LD®
MUL
ADDD
STS
2CC
INC
Loa
LD&
MUL
ACDD
STD

LDA
LC#
MUL
4D20
8CS
CMeD
2L
A0DD
STH

LoA
LOX

FLAG
aSAYVE
gRES
U

bt s
w w =
< X

2y U
y X
1,Y

1]
L,Ln

1,U
LO”1%
s U
19X
) Y

1,U.
14U
Le»1s
RS
s X
y Y

s U
y 1

1,U
15

2y Y
LOP20
465521
LoP21
¥15
29U

y U
2TEMP

)

-1c

Appendix-D

Lupr22
LGP23

ouTPUT
STATUS
Ti3

T3

Ty

T7
INPUT
R13

R3

RY

RT
SeM

BEGIN

START

FRD

SAVE

cLe y X | STD
cLe 145X { SYNC
cLR 29X | LB2A MNEXT
LDR #15 | =
MUL | MLTFR FDR 8192
! ’ X IMLTRR] 57331
LDA » X .l*
LD? 15 ! ORG 0000
MuL {MCND =08 n
ADDD 14X 1P2001 FCa n
ADDD 2,U |PRCO2 FCce 0
acs Lgp22 |PROD2 FCR 0
C4PD 65521 |PROCS ece 0
8L0 LoP23 | TEMP eCB n
AD0DD #1s [T=MP1 €C8 0
STD T12] T=MP3 ECB 0
SYNC |SAVE FD® n
LOn R12 |FLAG FCB 0
STO TS |RFS FO8 0
SYNC | =
LDD RS] nRG $FFFE
STH T |STRT CEQU $FRON
SYNC ! END REGIN
LoD R12 S
PROCESSOR NUMBER 8
MAM 68098 | STA STATUS
EQU £0400 { SYNC
Eau $0402] CLRA
EQU 30403 |- STA STATUS
EQu $0405 | LOG INPUT
£QU 30407] eRA QVER
EQu $0409 | MEXT LoY $MCMD
EQU $0410 | LOX #MLTRR
EQU $0412 ! SYNC :
EQU $0416 ! L0D SAVE
£Qu $Gsl6b] 5
EGU $0418 [OVFR STO T12
EQU $041A | SYNC
| aDDo R13

nRG $F800 | 8CS SKo12
NOP | CMPD $65521
NRCC #901010000 | L0 SKP13
Lou #PROCI |SkP12 ADDD ¥1°"
cLea [SKP13 STD T3

$TA FLAG | SYNC
LDA SEM ! STD - T9

g Fap | SYNC
LDA L3 | ADDD P93
STA FLAG | BCS SKP1é4
LDy £MCHO | CMPD #£5521
LOX BMLTFR ! LD GKP1S
LDA 21 {skel1s apny %15

Appendix-D

SKP15 STD TT LDAa y X
SYNC LD8 ¥15
STD SAVE MUL
LoD RT ADDD 1,
SUBD SAVE ADDD 2,U

gCS SKe24
CMPD 265521

acce SKP16
ADDD #65521

!
!
|
!
|
!
!
SKP16 SYNC | 2L0 SKP25
b 1SXP24 4900 #1§
STD MCHND | SXP25 SYNC
CLK ’U |::'
cL? 1,U | SYNC
LDA Ty ! STO T7
Lo8 1,Y | SYNC
MUL | 5TD SAVE
S$TH 2yU | LDD RT
LDA g X ! SUBD SAVE
LOP 1,Y ! BCC SKP2A
MUL | ADDD #65521
ADDD 1,U | SKP26 STD T3
STD 1,U | SYNC
8CC SKP18 | A300 R9
INC y U | RCS SKP28
SKP18 LOA 1,X ! CMPD 265521
LOB Y | BLO §K©2Q
MUL |SKkP23 ADND %1%
4DDN - 145U [SKP223 SYNC
STD 1,U ! adcp P2
8CC SkP21] BCS SKP2Q
INC s U | CMPJ #65521
SKP21 LDa Y I L0 SKP31
LDR y Y [SKP2Q ADDD ¢1°%
MUL 1SKP231 STN T12
ADDD y U | SYMC
STD U | ADDD R13
3 | RCS SKDo32
LDA 1,U | CMPD #6552)
LDR 415 ! BLC SXP32
MUL jSxP22 ADDD #15
aDNND 24U | ==
BCS . SKP22 |S«pP23 STP SAVE
cMPD ®65521 | LDA FLAG
BLO SKP22 | CMPA 21
SKkP22 ADDD #15 | 3ER MULT
SkP23 STD 2,U . cMPA w2
2] 8EQ CaNV
LDA y U ! LDD SAVE
LDX #TEMP | STD RES
CLR y X] L3RA BEGIN
CLR 1,X |CONV LOD SAVE
CLR 24X ! STD nuTeyT
LDR #15 I L8?A BEGTH
UL S
|

STHR y X : UL T NCe FLAG

Appendix-D

LDX
LOY
cLe
CLR
LDA
L08
MUL
STD
LDA
LD3B
MUL

LOP15

ADDD

STN
3CC
INC
LOA
Lon
MUL

LOP16

ADDD

STD

~
5CC

INC
LDA
LOR
MUL

LCP1S

ADDD

STD

LDA
LD8
MUL

ADDD

BCS

CHPD

aLad
LoprP20

Lop21l STOo

QuUTPUT £0QuU
STATUS EQU

T1a EQuU
T« < QU
TS EQU
Ti7 EQU

ADDO

- MNAM

m
wn <
m

- e w w ®”
< =< CC T

et

2]

y
» X
1yY

1yU
1,4
LOP16
s U
1,X%
s Y

1,U
1,U
LOP19

1,U
#15

2y U
Lae20
#65521
LgP21
®1%8
24U

y U
#TEMP
X
19X
29X
¥18

R P R R e
PRSP R EE- R)

p

30400
50402
30403
€0405
$0407
$0409

68099

,.
“
s

=
-

| MUL
! STN
| LDA
! Los
| MUL
I 2990
! ap0od
! PCS
! CMPD
| PLO
|LoP22 ADDD
fLar23 STO
| SYNC
! LOD
! STD
! Lon
! STOD
| SYNC
| LD"N
| STD
! SYNC
| SYMC
! LBRA
) =

IMLTF? L}
| 4LTR2 £08
| 5t

| NRG
| MCND FD8
|PRODY €C3
|PRCO2 FC®
|PRCO3 FCB
| PROD eCe
| TEMP FCS8
| TEMPY FCB
{TEMP R FCB
|SAVFE FDA
| FLAG ECE
|RES =pa
l s

f ORrRG
|STRT EGU
] END -
ES

SSDR NUVBCR 9
IIMPUT LQU
P14 FQU
| P4 £
[R8 £ QU
1R17 EQu
| SEM £Qu

o
XY

14X
2y

Lge22

#65521
Laop22 -

415
T12

29
T7
01>

-~

tY

45657
27975

0 A W
tnmom
A inon
-t O

@ n

e

LY
'3

be Wy ats ats 2le Mo nls ate ate ate whe aTe als 3t abs ho ate afe ate Ste s 2toate ote ote
p < SRS AR IR A S RAP R I KRS

$0¢10

$0s12
$0414
$0a1F
c(sl®
3dela

Appendix-D

INPUT EQU
Rl EQU
R4 EQU
R8 SINIY)
R17 EU
StM EqQuU

ORG
NGP
arCC
LOuU
CLRA
STA
LDA
BER
START LDA
STA
FED LDY
LDX
LDA
STA .
SYNC
CLRA
STA
Lon
RRA
NEXT LOY
LDX
SYNC
LOD

BEGIN

OVER ST
Svnc
ADDU
8CS
cHed
8LO
SKP12 . AGDU
SKP13 STN
SYNC
sSTD
SYMC
susd
a3CcC
AoDD
SKP1lé4 STO
SYMC
SYNC

STH
CLe
cee
LOA
LA

$0410
$0412
$0616
30416
$0418
50414

$F300

£#401010009

#PRODI

FLAG
SEM
FRD

#]
FLAG
$MCND
EMLTFR
#1
STATUS

STATUS
INPUT
pveER
aMCMD
#MLTRR

SAVE
Tla

Rl4
SKP12
#65521
SKP13
£15

T4

TE

R

SKP14
#65521 -
T17

MCHD
U
1,4
1y
1,Y

e i G e e . e — e e S See S S e S o — T e S —
S
2y

SKP15

SKkp20
S«r2l

SKP19

MUL
STD
LOA
Lbe
MUL
ADDD
STD
ace
INC
LOA
Lo®"
MUL
ADDD
STC
ace
INC
LDa
LD®
MUL
A00D
STOD

LDA
£08
MUL
ADDO
8Cs
CMPD
3L0
ADDD
STOD

L0A
LOX
cLe
rLR
CLR
LDA
MyUL
STD
L0A
L08
MUL
aD0D
AD0D
RECS
CMPO
aLe

£000

SYNC

CYNC
LDDD
eCS

1,U

415

24U
SKP29
465521
SKP21
215
2yl

s U
#7zMpP
9 X
145X
2y X
#15

Appendix-D

SKP24
SKP25

SKP26

SKP28
SKP29

SKP30

SKP31

CUNYV

MULT

LGP15

CMPD
L0
ADDU
SYNC
STC
SYNC
STO
LDD
SURD
BCC
ADDD
SYNC
ADDD
&CS
CMPD
LD
ADDD
STD
SYNC
ADDD
RCS
cMpPL
BLO
AJDC

STD
LDA
CHMPA
BEN
CMPA
BER
LDD
STD
LBRA
LOD
STD
LERA

INC
LDX
LDy
cLR
CLR
LDA
LD3]
MUL
STD
LDa
LI3
MUt
ADDD
STD
3CccC
INC

265521
SKP25
%15

T8
SAVE
©8
SAVE
SKP25
465521

R4
SKP28
#65521
SKP29
&15
T1l4

Rla
SKP30
#65521
SKP31
#15

SAVF
FLAG
21
MULT
#2
CONV
SAVE
RES
BEGIN
save
ouTPUT
3EGIN

FLAG
#SAVE
#RES
2 L
1,0
1,X
1,Y

23U
y X
1,Y

1,U

1,U

LOP16
s U

Loa
LO®
MUL
ADDD
STD
aCr
INC
LOA
Lna
MUL

ACDD

sTD

LDA
Loe
MUt
ADDD
2CS
CMPD
2L0
ADDD
STD

.LDA

LOX
cLe
CLR
CLR
LDB
MUL
STD
LDA
LD3
MUL
ADDD
AD2D
aCs
CMpPD
aLo
8000
STD
SYNC
SYNC
LOD
STH
LoD
STD
SYNC
LOD
STD
Sync
LBRA

h

=20

(]

1,1
L2P13

1,
#1686 .

2y U
L3220
#65521
Lgr21
415
24U

y U
ETEMP

» X
1,X
29 ¥
18

s X
y X

-~
~

1,
2,
LOP22
#65521
L3P23
#15

Tg

R17
T14
R8

T17

Appendix-D
MLTRR 08 24521 fTEMPL £C8 0
(S [TEMP3 FCa 0
oRnG $0000 | SAvVE EDR 0
MCND FDB 0 |FLAG FCR 0
PRCD1 FCR 0 |RES FDER 0
PROD2 FCB n | =
PROD3 FCR 0 { 1RG tFCFE
PKODG FCB 2 | STRT EQU eFR0(Q
TEMP FCR 4] END BEGIN
% e PROCESSIR NUMBE2 10
NAM 680910] cCMeD 865521
guTPUT EQU $0400 | BLO SKP13
" STATUS EQU £0402 |SKP12 A00D %1%
T15 £QU $0403 JSxP13 STD TS
T> EQU $0405 | SYNC
T7 - EQU $0407 | STD TT
T17 EQU $0407 | SYMC A
INPUT EQuU $0410 | STD SAVE
R15 eQu 30412 ! Lon R7
R5 EQU t0414 ! SuURD SAVE
R7 EQU $0416 | RCC CK214
R17 EQU $0¢18 ! ADDD #65521
SEM EQU $041A |SKP14 STO T17
5] SYNC
NRG $FB00 ! SYNC
NOP | s
crCC ¥201010000 { STOD MCND
Lnu #PROT1] CLR y!!
BEGIN CLRA] CLR 1,U
STA FLAG ! LoA 14X
LDA SEM I LD8 1,Y
BEQ - FopD ! ML
START LOA %1 ! STD 25U
STA FLAG ! Loa y X
FRD _LDY #MCMD | LD% 1,Y
CoLDY 2MLTFR | HUL
LDA 21 ! 400D 14U
STA STATUS | STO 1,U
SYNC | acce SkP1é
CLRA , | INC y U
STA STATUS |SKP16 LOA 1,X
LDD INPUT | " LDS y Y
BRA JVER | MUL
MEXT Loy #MCND | 400D 1,U
LDX EMLTRR | STD 19U
SYNC | 8CC SkP19
LDOD SAVE ! INC y U
S JSKP13 LDA ¥
OVER STD T15% f L0" A {
SYNC | MyL
ADND P15 | 820D y U
] STD o U

acs SKP12

]
s—

B T S S S I R D A & A LR B A S e
P LR IA4 PEAE-AI X AI-EIPRD AP AP A A R LR AR A

Appendix-D

SKP2D
SkP21

SkpPz2

SKP23

SKP24

SKP26

Skpzae
SKP29

L2a
LOR
MUL
A30n
BCS
CMPD
8LC
ADDOD
STH

LDa
LOX
cLe
CLR
CLR
Lo3
MUL
STO
Loa
LDE
MUL
ADDD

_A0D0

8CS
CHPD
5L0
ADDD

SYNC'

SYNC
sSusD
8CC
4200
SYNC
STO
SYNC
STD
LoD
SU30
3cc
A0D0
SYNC
ARDD
pCsS
cCMPD
“L0
8300
sTR
SyYnC
4900
B.LCS
CMPD
KLU

2yl
SKP20
£65521
SKP21
LB

24l

yU
¥TEMD
y X
1,X
2, X
#15

Z =<

O C

B WDV DN QY
2ROy R e e
re wn ro
W N
[

0

217
SKP24
65521

T7

SAVE
R7
SAVE
SKP2h
865521

R5
SKP22
#¥65521
SKP29
¥15
T15

R15 -

“MP20
165521
SKP31

w
x
0
LW
(@)

(@]

=
‘Q
Ly
—

(@}
3
=
<

MULT

LNP19

rrr
[W N
o 0

ro Mo

—m e e e e e A iy e S S e e — A e = e e (T mem b . e S —— - —— G s A—a M cmaa e o T . e am e e - St e . - —— — —
v . ae
'ty 5
- O

ADDD

STD

Lba
CMPA

-
REND

CHMpA

e §)
1
-

L29o
STS
L3RA
L3S
STD
L2rA

ITNC
LOX
LDY
cLe
oLz
LDA
LOS
MUL
STN
LDa
LoP
MUL
400D
STH
aCC
INC
LDA
LDR
MUL
420D
STH
ace
TNC
LOA
Lo®
MUL
2000
STO

L3Aa
LSS
YL
4509
S
CMPD
RLO
ADDD

¢Tp

w
|
o
18]

%15

SAVE
FLAG
4]
MULT
L
SNV
Save
RES
S5ZGIN
SLVE"
guYouyr

3TGIN

FLAG
2SAVE
2RES
g U
1,7
1,Y
1,Y

0”13

2,U
Lgep2ac

#35521

Lage21
=15

24U

Appencix-—D

LupP22
LGP23 ST2

QUTPUT EQU
-STATUS £ GU
T6 EQU
T12 £Qu
INPUT £
) £
Ri2 EQ
SEM E

e

BEGIN

START LDA

FRD LOY

s U
#TEMP

s X
1,X

29X
#15

Ul X

- 1
14X
2y U
Lop22
#65521
LopP22
218
T17

R T R TR P S LR S TR S
SUSEINISININE RS

PmOC

cyeseys Yo Y eyt ne
PRI-EPRE LS e

680911

$0400

30402

$0403
50405
50410
£0612
$0414
30616

#%0101000°
" #PROD1

FLAG
SEM
FRD

#1
FLAG
#MCND
#MLTFR
&1
STATUS

STATUS
INPUT

!
!
I e

| MLTFR
JMLTRR
| =

|

| MCND

PRID1

IDPDDZ
|PPo
lpvuaa
[TEMP
| TEMPL
|TE4P3
!savc

(]

m
rv 1
vy 1s

ST

-
!

29

I
[R
o
!
I
!
!

SJQ WUVPFA

o,

(S IRV

IRG
cne
£Co
£C8Y
L8
=CA
FCa
eCa
FC8
€03
FCE
FOR’

STC
cLR
cLe
LDA
LG3

DD D D e

DO DD D e

SFFFE
$ER00
3EGIN

ovee
aMCND
HMLTRR

SAVE
Té

CAVE
R6
SAVE
SKP12
¥65221

P12
SKP14
#65521
SXP15
#15

MCND

h-272

Appendix-D

SKP16

SKP19

SKP20
SkpP21

Skp22
SKp23

MUL
STD
LDA
LDB
MUL
ADDD
STD
BCC
INC
LDA
LN8
MUL
ADDD
STD
BCC
INC
LDA
LD8
HUL
ADDD
STD

LOA
LD®
MUL
ADDD

aCs

CMPD
8LO
ADDD
STOD

LOA
LOX
cL®
CLR
cLe
LOR
MUL
STH
LDA
LDR
MUL

ADDC
LADDD

8CS
cMpPD
3L0
ADNDD
SYNMC

ST

SYNC
SYNC

24U
1,Y

1,U

-SKP1é

s U
y U

1,U
¥15

25U
SkP29
#65521
SKP21
15
24U

U
FTEMP
’ X
1,X
24X

®15

y X
s X
#15

1,
29U
kP22
#65521
SKP22
215

i e - . e . . e A S—— . . G ey S aan e e Gmn m— R S — i —— —— — — —— —— P ——— —— G- om— o— S w— o o f—n A - — mn i Wt S octm S
2, vy
bl '3

v 3

KP24

CONV

MULT

LAP1S

LOP16

LOoP19

SYNC
SYNC
STO
SYNC
STD
LDD
SUBD
8CC
400D

STD
LDA
CMPA
BEQ
CMPA
3EQ
LDD
STO

LARA

LDD
ST
LSRA

SINC

LOX
Loy
CLR
CLR

Loa .

LD?
MUL
STD
LDA
LOB
MUL
400D
STD
8CC
INC
LDA
LOB
MUL
ADDD
STD
BCC
INC
LOA
LD08
MUL
a90od
STD

T6

SAVE
R6
SAVE
SKP24
#65521

SAVE
FLAG
#1
MULT
72
CONV
SAVE
RES
BEGIN
SAVE
QuUTPUT
"BEGIN

FLAG
$SAVE
#RES
s U
1,U
1,X
1,Y

2,V
y X
1y,Y

1,U
1,U
LCF16
2 1
1,X
y Y

1,U
1,U
L3P19

()

=24

Appendix-D

MUL | LDD R6

ADDD 2,V | STD SAVE

RCS LorP20 - SYNC

CHPD #6€5521 l SYNC

5L0 LorP21 I SYMC
LOP20 ADDD #15 | LBRA NEXT
LupP21 STD 2,V |
% IMLTFR FDR 16087

- LDA s U IMLTRR F0B 29504

LDX #TEMP RS

CLR » X ! ORG $0000

CLR 1yX | MCND FD8 0

CLR 29X |PROD1 FC8 Q

LDA" #¥15 |PROD2 cC8 3

MUL {PROD3 FCB 0

STO s X | PRODSG FCB 0

LDA 2 X | TEMP £CB 0

LDB #15] TEMP1 FCB 0

MUL | TZMP3 FCR 0

ADDD 1,yX] SAVE FD8 0

ADODD 2,U |FLAG FCB n

BCS Leo22 }RES FDR 0

CMPD #65521 f =

85LO Lger22 | ORG $FFFE
LupP22 ADDD %15 |STRT EQU $FS300
LopP23 STD Té | END REGIN

SYNC |
* * PROCESSOR NUMBER 12
e sfe e ste 2ig e sle e sle st sl she st sie 3t sl e e e e e ek siie s e s e e sl Sl e e et il s s s s N s e s v sl e sl

NAM 580912 | FRD LOY #MCND
ouTPUT EQU $0400 | LOX FMLTEFR
STATUS EQu 80402 | LDA %1
T7 ©OEQU $0403 ! STA STATUS
T15 EQU $0405 | SYNC
T13 EQU $0407 ! CLRA
T11 EQU $04609 | STA STATUS
INPUT £Qu $0410 | LDD INPUT
R7 EQU %0612] BRA OVER
R15 . . EQU $0414 INEXT LDY #MCND
R13 = EQU 30416 ! LDX #MLTRR
Ri1l £QU $0418 | SYNC
"SEM EQU $041A | LDD SAVE
sl | s

ORG $FBOO0 |OVER STD T7

NOP | SYNC

gRrRCC #%01010000 I STD SAVE

LDU #PROD1 ! LOD RY
BEGIN CLRA | SUBD SAVE

STA FLAG | BCC SKP12

LDA SEM | ADDD =465521 .

BEQ FRD 1SKP12 SYNC
START LDA 21 | STD T1S

STA FLAG ! SYNC

Appendix-D

FRD LDY
LDX
LDA
STA
SYNC
CLRA
STA
LCD
3RA

MEXT LIY
LDX
SYNC
LDD

OVER STD
SYNC
STD
LoD
-SU8BD
BCC
ADDD
SKP12 SYNC
STO
SYNC
ADOD
BCS
CMPD
BLO
SKP14 ADDD
SKP15 STD
SYNC
ADDD
BCS
CMPD
BLC
SKP16 ADDOD
SKP17 STD
SYNC

STD
CLR
CLR
LOA
L08
MUL
STD
LDA
LDR
MUL
ADDO
STD
BCC
INC
SKkP18 LDA

#MCND
#MLTFP
#1
STATUS

STATUS
INPUT
CVER
#MCND
#MLTRR

SAVE
Tr

SAVE
R7
SAVE
SKP12
465521

T1%

R15
SKP1l4
#65521
SKP15
415
712

R13
SKP16
£65521
SKP17
#15
T11

MCND
2 U
1,U
1,X
1,Y

29U
s X
1,Y

1,U
1,U
SKP18
y U
1,')(

— — o — c——— e T G — e S e e TS MRS Atn —— S e S time S G G ot S M Gmm e Gmin e i e S e m— . — — —

SKpP21

SKpP22
SKP23

SKP24
SKP25

SKP26
SKP27

SKP28

LD8
MUL
400D
STD
8CC
INC
LDA
LDB

“MUL

ADDD
STD

LDA
LD8
MUL
ADDD
BCS
CMPD
L0
ADDD

. STD

LDA
LOX
CLR
cLe
CLR
LDR
MUL
STD
LDA
LOB
MUL
ADDD
ADDD
BCS
CMPD
8L0C
ADDD
SYNC

SYNC
ADDD
BCS
CMPD
3L0
ADDD
STD
SYNC
ADDD
8CsS
CMPD
BLO
A0DD

s Y

1,U
1,U
SKP21

s U

y X

' Y
s U
y U

1,U
415

24U
SKP22
#65521
SkpP23
¥15
2yU

y U
#TEMP
s X

R11
SKP26
#65521
SKP27
415
T13

P13
SKR28
©65521
SKP29
415

Appendix-D

SKP29

SKP30
SKP31

SKP32

CONV

b3

MULT

LOP15

LOP16

LUP19

STD
SYNC
ADDD
BCS
CMPD
3L0
ADDD
SYNC
STD

SYNC

STD
LOD
SUsD
BCC
ADDD

STD
LDA
CMPA
BEQ
cCMPA
BEQ
LDD
STD
LBRA
LDD
STD
LBRA

INC
LDX
LDY
CLR
CLR
LDA
LO8
MUL
STD
LDA
LOB
MUL
ADDD
STD
BCC
INC
LDA
LOB
MUL
ADDD
STD
BCC
INC
LDA
LD8

T15

R1S
SKP30
265521
SKP31
215

77

SAVE
RT
SAVE
SkP32
#65521

SAVE
FLAG
#1
MULT
#2
CONV
SAVE
RES
BEGIN
SAVE
guTeuT
BEGIN

FLAG
#SAVE
KRES
2 U
1,U
1,X
1,Y

25U
» X
1,Y

1,U
1,U
LOP16
'y
1,X
' Y

1,0
1,18
Lorly
yU
» X
y Y

— i S i T (S S S — S T—in G Gt —— — . Sy Sms Smm S e — e o S o —
—— v —— — — —— —— T —— —— e — —— —

A
r13

Laop292
LapP21

[R o |
0 9
ra N
w

rr

IMLTFR
IMLTRR
|

I
[MCND
[PRODY
Ipryn2
{PROD3
|PRODG
| TEMP

MUL
ADDD
STH

LDa
LDg
MUL
ADDO
8CS
CMPD
8L0
ADDD
STD

LDA
LDX
CLR
CLR
CLR
L'DB
MUL
STO
LDA
LOB
MUL
ADDD
A0DD
BCS
CMPD
RLO
aDDD
STD
SYNC
LOD
STD
SYNC
LDD
STD
SYNC
LDD
STD
SYNC
LBRA

FOB
FDB

ORG
FOB
“on
Fen
FCR
FCB
FCR

s U
yU

1,U
#15

2y Y
LOP20
#65521
LoP21
415
2yU

yU
STEMP
’X
14X
25X

#15

s X
y X
#15

14X
29U
LOP22
#65521
LaP23
#15

7

RT
T13

R13
T7

RY
SAVE

NEXT

29032
28641

$0NN0

O O D D3SO

<

=27

Appendix-D

FCB
FCB
FD®&
FC8

TEMPL
TEMP3
SAVE
FLAG
RES

MNAM
EQU
EQU
EQU
EQU
EQU
EQU
£QU
EQU
EQU
QU

OUTPUT
STATUS
T8

Tl4
T12
INPUT
RE

R1é4
R12
SEM
ORG
NOP
arCC
Lou
CLRA
STA
LDA
BEQ
LDA
STA
LOY
LOX
LDA
STA
SYNC
CLRA
STA:
LOD
BRA
LOY
LDX
SYNC
LDD

BEGIN

START

FRD

NEXT

STD
SYNC
STD
Loo
SUBRD
BCC
ADDD
SYNC
sTD
SYNC

OVER

SKP12

SFEO DO DO
7,

s sta ale ala sls wle aie
SIRAICIIS

3e sl wo als Mo Wo wle vl wts e ot
EQEPEPRP AP X SRAR

STRT

s
EAY

1 oo als ats 210 2's als Wle ale 2ts aie wls s stz Wlo als ol wie 3l
PARA A DAP LD AP ESXS TP LPLPAP KPP
-
PROCESSOR NU
W wlo als oty als als Wlo e o te
P2 P14 SIPRSTLRSo 8o

680913
$0400
30402
$0403
$0405
$0407
$0410
$0412
$0a414
$0416
$0418

SKP14
SKP1S

$F800 SKP16
#201010000
#PROD1

FLAG
SEM
FRD
C#1
FLAG
#MLTFR
#1
STATUS

STATUS SKP18
INPUT
OVER

#MCND

#MLTRR

SAVE
SKP21
T8

SAVE
RY
SAVE
SKP12
#¥65521

Tl4

e o e e tm . St S = e aomn S e hEE o S — — — — — — —
— e ——— —— —— - — — — oy S — — ——e—

ETS

12} 3

Yo ale wts ols wis wla
EPXP RS SIPEPLPES

A0DD

ORG
EQU
END

e wlo ste als v's s s
SERISININIIR

MBRER 13

BCS
CMPD
LD
ADDD
STO
SYNC
STD
LOD
SUsD
BCC
ADDD
SYNC

sSTO
CLR
CLR
LDA
LD8
MUL
STD
LDA
LDB
MUL
ACDD
ST
8CC
INC
LDA
LD8
MUL
ADDD
STD
RCC
INC
LDA
08
F.‘|UL
ADODD
STD

LDA
LD®
MUL
ADDD
BCS

b4

28

$FFFE
$FRO0

BEGIN

o sl wie sie sl ale o als Me ats wte Wis e vie ie wis Whe
PAPX SR BAPIPLSAPLP T PRPRPEPL XPie

P14
SKPla
265521
SKP15
*1°%
T12

SAVE
R12
SAVE
SKP14&
#65521

MCMD
y U
1,U
1,X
1,Y

24U
» X
1,Y

1,U
1,U
SKP18

Appendix-D

SKp22
SKP23

SKP24 .

SKP25

SKP26

SKP28

SKP29

SKP30

CMPD
BLO
ADDD
STD

LDA
LDOX
CLR
CLR
CLR
.08
MUL
STD
LDA
LDB
MUL
ADDD
ADDD
8CS
CMPD
BLO
ADDD
SYNC

SYNC
STD
SYNC
STD
LDD
SusD
8CC
ADOD
STD
SYNC
ADDD
BCS
cMPD
BLO
ADDD
SYNC
STD
SYNC
STD
LOD
Sus0
8CC
ADDD

STD
LDA
CHMPA
REQ
CMPA
BEQ

#65521
SKp22
#15
29U

y U
#TEMP

s X
14X
29X
#15

1,X
25U
SKP24
#65521
SKP25
#15

T12

SAVE
R12
SAVE
SKP26
#65521
T1l4

R1l4
SKpP28§
#65521
SKP29
#15

T8

SAVE
RS
SAVE
SKP30
#65521

SAVE
FLAG
#1
MULT
&2
CONY

— o — — o — - —
— S G e S S S R ——— m— |
—— o o —— e e = — s — —
p — - — . - — — ——— —— ——— — — an i— —— ——— —
b
e
3%

CONYV

LOP16

LOP19

LarP20
LaP21

LDD
sTD
L824
LDD
STO
LBRA

INC
LDX
LDY
CLR
CLR
LDA
LD8
MUL
STD

LDA

LO8
MUL
ADDD
STD
BCC
INC
LDA
Lo®e
MUL
ADDD
STOD
gcc
INC
LDA
L DB
MUL
ADOD
STD

LDA
LO8
MUL
ADDD
BCS
CMPD
BLO
aDDD
STD

LDa
LDX
CLR
CLR
cLR
L0"
MUL
STD

SAVE
RES
BEGIN
SAVE
QuTePyT
BEGIN

FLAG

1,U
1,U
LOP16
U
19X

1,V
1,4
LOP19

29U
LQ0P20
#65521
LOP21
415
2yU

s U
#TEMP

s X
1, X
29 X
#1565

s X

Append

Lop22
LopP23

e
P

OUTPUT
STATUS
T9

T13
T18
INPUT
RS

R13
R1ig
SEM

BEGIN

STARTY

FRD

ix-D
L DA » X } s
LDB #158 IMLTFR FDB 8748
MUL | MLTRR FD8 12521
ADDD 14X |
ADDD 2,U | ORG $0000
BCS LOP22 | MCND FDR 0
CMPD #65521 |PROD1 FC8 0
BLO LOP23 | PROD2 FC8 0
ADDD #15 |PRJID3 FCR 0
STD T8 |PRCD4 FCR 0
SYNC JTEMP FCR 0
LDD R8 |TEMPL £CH 0
STO T4 |TEMP3 £CS n
LDD R14 | SAVE DR 0
STD T12 | FLAG FC3 0
SYNC |RES FOB 0
LDD R12 | e
STD SAVE ! 0RG $FFFE
SYNC | STRT EQU $FR00
SYNC | END 8EGIN
LBRA NEXT | =
PROCESSOR NUMBER 14
NAM 680914 | RRA CVER
EQU $0400 fNEXT LDY #HMCND
EQU $0402 ! ’ LDX #MLTRR
EQU $0403 | SYNC
EQU $0405] LDD SAVE
EQU 50407 | =
EQU $0410 |OVER STD T3 -
EQU $0412 | SYMNC
EQU 50614] STD SAVE
EQU $0416 | LOD P9
EQU $0418 ! SUBD SAVE
! 8CC SKP12
0RG $F800 | ADDD #65521
NOP]SXP12 SYNC
gRrCC #270101000C0 | STD T13
LDU #PROD1 i SYNC
CLRA I SUBD R13
STA FLAG | 8CC SKP14
LDA SEM | ADDD #65521
BEQ Fep |SKP14 STD T1R
LDA #1 ! "~ SYNC
STA FLAG | SYNC
Loy #MCND f 3 .
LDX HMLTER | STOD MCND
LDA #1 { CLR s U
STA STATUS | CLR 1,U
SYNC | LOA 14X
CLRA | LDB 1,Y
STA STATUS] MUL
LOD | STO 24U

INPUT

o
J

30

Py

Appendix-D

SKP16

SKP19

24
23

SKP20
SKp21

SkpP22
SKkpP23

LDA
LDSB
MUL
ADDD
STD
3CC
INC
LDA
L3S
MUL
ADDD
STD
BCC
INC
LDA
LDB
MUL
ADDD
STD

LDA
LDB
MUL
ADND
BCS
cCMPD
BLO
ADDD
STD

LDA
LDX
CLR
cLR
cLr
LDB
MUL
STD
LDA
LD®
MUL
ADDD
ADDD
BCS
cMPD
BLO
ADDD
SYNC

SYNC
ADDD
BCS
CMPD
BLO

9 X
1,Y

1,U
1,U
SKP16

24U
SKP20
#65521
SKP21
#15
24U

' U
#TEMP
,x
1,X
29X
#15

1,X

SKrP22
#65521
SKP23
#15

K18
SKP2«
265521
SKP25

e e e e e — — . — o —— e e S b o Cmm e e —mm G o e e ome e Ani— o _— e omem
-
—— it am e e e e e m— . — e S— ——— — — e
3o .
% 2
3 .

|SKP24
| SkpP25

SKP26

w3
P
B
ro
o

L3IP16 -

ADDD
SYNC
STD
SYNC
STD
LDD
susD
8CC
ADDD
SYNC
STHO
SYNC
STD
LOD
SueD
BCC
ADDD

STD
LoA
CMPA
REQ
cMPA
3EQ
LoC
STD
LBRA
L0O

STO

LBRA

INC
LOX
LOY
cLP
CLP
LDA
LD8
MUL

STD .

LDA
LDS
MUL
ADDD
STHD
BCC .
INC
LDA .
LD8
MUL
ADDD
STH
8CccC
INC

€15
T13

SAVE
R13
SAVE
SKP2#4
#65521

T9

SAVE
2]

"SAVE

SKkpPZz8
#65521

SAVE
FLAG
%1
MULT
82
CONV
SAVE
RES
‘BEGIN
SAVE
QUTPUT
BEGIN

FLAG
#SAVE
¥RES
y U
1,U
14X
1,Y

24U
s X
1,Y

1,U
1,4
LOP16
) U
1,X
)Y

1,U

1,U

LOP19
s U

5-31

Appendix-D
LOP1S LOA y» X 1L3P23 STD . T13
LD8 ' Y] SYNC
MUL -] SYNC
ADDD U | LOD R13
STD s U ! STD Ti8
: ! LDD R13
LDA 1,U | STO T9
LD3 #15 | SYNC
MUL | L0D R9
ADDD 2,U ! STD SAVE
BCS LopP20 | SYNC
CMPD ~#65521 i LBRA NEXT
BLO LOP21 [ES
LOP20 ADDD 215 |MLTFR FD& 1465
LOP21 STD 25U] MLTRR FDB 2193¢
st RS
- LDA y U | CRG $0000
L DX #TEMP {MCND £08 o -
CLR y X |PRID1 - FCB 0
CLR 1,X | PRODZ2 FC8 0
CLR 29X {PROD3 FC8 0
LDB #15 | PRCD4 FC8 0
MUL | TEMP FC8 0
STD s X | TEMPL FCB ¢
LOA » X | TEMP3 FCS 0
LbA 815 |SAVE FDB 0
MUL | FLAG FCB G
ADDD 14X |RES FDB 0
ADDOD 2,1 (S
BCS Lcp22 | ORG $FFFE
CMPD #65521 {STRT EQU $F800
gLO LoP23 | END BEGIN
Lupr22 ADDD #1S | %
b 3123t sl s sie e st sl siesie e st sl Yl e nesfoe e sk el e e s Nk RN sy sesiese sy denesie o nene i)
% PROCESSCR NUMBER 15
MNAM 680915 ! STA FLAG
QuUTPUT EQU $0400 | L0A SEM
STATUS EQU $0402 | REQ FRD
Ti10 EQU $0403 }START LDA #1
T12 EQU $0405 | STA FLAG
T18 EQU- $0407 | FRD LOY #MCND
INPUT EQU $0410] LOX #MLTFR
R10 EQU $0412 | LDA 1.
R12 EQU $0414 1 STA STATUS
R18 EQU $0416 | SYNC
SEM EQU $0418 | CLRA
ORG $FROO0 ! STA STATUS
o LoD INPUT
ORG $F800 | AR A OVER
NCP INEXT LDY #MCND
JRrRCC #701010000 | LOX gULTRE
L0ou 4PRND1 | SYHC
BeGIN CLRA ! LDOD SAVE

$o wbo Po sl as wts wlo utr wls ais ale als 3o wle wle 3le 3's sle 3o Ve
St G- F AP AP X AP LP P EPRPLY

15 30s ste 2lo sts ate v ale sle Vo sle SPe als wls ale ats ha ule Wio ule oty ate
PO EPABLPRPRPLSRPLPLPLPE P % Wty

Appendix-D

-OVER

SKpP12

SKP1l4

SKP16

SKP19

AL
"

STD
SYNC
STD
LDD
susD
BCC
ADDD
SYNC
STD
SYNC
STD
LDD
susD
8CC
ADDD
STC
SYNC
SYNC

ST
CLR
CLR
LDA
LD8
MUL
STD
LDA
LO8
MUL
ADDD
STD
BCC
INC
LDA
LDSB
MUL
ADDD
STD
accC
INC
LDA
LOB
MUL
ADDD

STD

LDA
LOB
MUL
ADDD
BCS
CHPD
BLC

T10

SAVE
R10
SAVE
SKP12
#65521

T12

SAVE
R12
SAVE
SKP14
465521
T18

MCHND

s U
1,U
1,X
1,Y

2y U

SKP20
#65521
SKP21l

— —— —— e d— — py —— — — — — —— — — —— — — —— — — —
— m— — — — — — —— — —
— — — ——— —— e - — — — — — —— — — — —

| SKP20
|sxpP21

SKpP22
SKpP23

SKP24

SKP26

3
v

KP28

CONV

AD0D
STD

LDA
LDX
CLR
CLR
CLR
LDB
MUL
STO
LDA
L03
MUL
ADDD
ap00
8CS
CMPD
BLO
ADCD
SYNC

SYNC
susd
8CC
4000
SYNC
STD
SYNC
STD
LDD
SusoD
BCC
490D
SYNC
STD
SYNC
STH

LOD |

5UBD
BCC
ADDD

STD
LDA
CHPA
REN
CMPA
8EQ
LCD
STD
LERA
LOD
STD

#15
24U

2 U
RTEMP
’X
14X
23X
#15

465521
SKP23
¥15

p1e

SKP24
#65521

T12

SAVE
212
SAVE
SKkP26
#65521

T1i0

SAVE
R10
SAVE
SKP23
#65521

SAVE
FLAG
71
MULT
2
CONV
SAVE
RES
BEGIN
SAVE
ouUTPUT

D-32

Appendix-0

MULT

LUP1S

LUP16

LUP1S

LUP20
LopP21

Ta
T5
Ra
RS
SEM

LOX

‘. y's
ISR 332

LBRA

INC
LDX
LDY
CLR
CLR
LDA
L DR
MUL
STD
LDA
LDB
MUL
ADOD
STD
BCC
INC
LDA
L0RB
MUL
ADDD
STD
BCC
INC
LDA
LDB
MUL
ADDD
STD

LDA
LDS8
MUL
ADDD
BCS
CMPD
aLo
ADDD
STD

LD&

o als wle ate sts wbs
AP EPEPEP LSRR

EQU
EQU
EQU
QU
FQu

BEGIN

FLAG
#SAVE
#RES
U

< X C

?
’
’
?

[N

24U
» X

1,Y

1,U
1,U
LOP16
U
1,X
' Y

1,U
#15

25U
L0P20
#65521
LoprP21
215
24l

s U
$TEMP

o vls als wis whe alw
ORARARAEAS

680916

$0410
$0412
$0416
$0416
$0418

$F300

1 vlo als ole ale wie wis ste oly
(RS LP AP RPLORP TP APRP LY

PRDC SSUR

J:s‘ J

e e

W ate

!
I
I
!
|
!
I
!
!
I
!
I
I
!
!
It
I
!
!
!
!
|
!
| 2
!
I
=
!

!
!
I
!
|
!
I
i
I
!
|

Lopr22
LapP23

MLTFR
M

MCND
PR3JD1
PR3D2
PROD3
PROD4G
TEMP
TEMPL
TEMP3
SAVE
FLAG
R:S

s e
SRR

STRT

2 e de Nt
LPXP AR

BEGIN

START

JJ

<NE3ENe

CLR
CLR
CLR
LOB
MUL
STD
Loa
LD8
MUL
A0DD
400D
ECS
CMPD
]LQO
ADOD
STD
SYNC
SYNC
SYNC
SYNC
LDC
STHD
LBRA

FDS3
FOAa

ORG
FC8
FC8
=C3
FCS
=C8
=C8
FC8
FCB
FDB
FCB
FD3

ORG
EQU
END

1,X
25U
LapP22
#55521
LGPZR
#15
T18

R18
SAVE
NEXT

23174
5913

A
o
(e}
o
o

QO DO ODDODOOO DO Ot

Vo ats abs J. Vo wts wle wls ste vis sl ste ale Ws ats o ats sls aly sl nbe be ate g g ste wie Mo e
XQ S LPL AP LD I PAPEP ISP AP RS LR XL SR IR P LI IR SRS

NUMBER 16

. NDP :
QRCC #%01010000
LDOU #PROD1
CLRA
STA FLAG
LDA SEM
BEQ FRD

#]

LDA

Appendix-0

FRD

NEXT

OVER

SkP12
SKP13

SKP14

SKP17

SKP18

STA
LDY
LOX
3RA
Loy
LDX
SYNC
SYNC
SYNC
SYNC
SYNC
LOD

ADDD

BCS
CMPD
BLO
ADDD
SYNC

STD
CLR
CLR

- LDA

LDg
MUL
STD
LDA
LDOR
MUL
ADDD
STD
acc
INC
LDA
LD8
MUL
ADDD
STD
3CC
INC
LDA
LDB
MUL
ADDD
STC

LDA
LOB
MUL

- ADDD

BCS

- CMPD

8L0
ADDD

FLAG
#MCND
#MLTFR
DVER
#AMCND
EMLTRR

R&

RS
SkKP12
#65521
SKP13
15

MCND
s U

s e
- . -
< xX C

24U
SKP18
#65521
SKP19
215

SKP19

o
pae

SKpP20
SKpP21

SKP

IMLTFR

| s

!
{MCND
|PROD1
|PRCD2
|PROD3
| PRODS
| TEMP
|TEMPL
| TEMP3
]SAVE

IMLTRR

STD

LDA
LDX
CLR
CLR
CLR
LDB
MUL
STD -
LOA
Loa
Myt
200D
ADDD
BCS.
£MeD
RLO
AD0D
SYNC

STD
STOD
SYNC
SYNC
SYNC
SYNC
SYNC
LDA
cMePA
BEQ
LBRA
ING
SYNC
LOD
57O
SYNC
SYNC
SYNC
LBRA

FDB
FD®

ORG
FDB
FCS
FCB
FCB
FCS8
FC8
FCB
FCB
€04

1,X

25U
SKP

¥65521

SK?2
#15

TS5
T4

FL
rl
SK

BEGIN

FL

RS
T4

180C5
5493

o
D
(e]
o

DO DO DO DO W

20

21

AG

p

AG

J-35

Appendix-0

FLAG

T9
T10
R9
R10
SEM

BEGIN
STAPT
FRD

NEXT

OVER

SKP12
SKP13

FCB

£QU
EQU
EQU
EQU
£Qu

ORG
NDP
grRCC
LOU
CLRA
STA
LDa
BEQ

- LDA

STA
LOY
LDX
BRA
LDY
LOX
SYNC
SYNC
SYNC
SYNC
SYNC
LDD
ADDD
BCS
CMPD
8LO
ADDD
SYNC

STO
CLR
CLR
LCA
LOB8
MUL
STD
LDA

108

MUL
ADDD
STD
BCC

NAM

do vie oo ate !‘n f- ate alo ols ale o s‘ ‘ J vl J
PP AP S LD AP AP AP AL pxd

|
|STRT

l

J-J 2l ste
PPy

ORG
EQU
ND

J 0 J ws whe n's ale
P XS APRILS

pRDCESSOR NUMB:P 17

‘e oo

Yo wle Wt wly ol nte ts ota 3 J: ate wls ats o
A A A SFSEPAD LS EPED LI XD LR ALY

680917

$0410
$0412
$041¢
$0416
30418

$F800

#%01010000
#PROD1

FLAG
SEM
FRD

¥1
FLAG
#MCND
ML TFR
NVER
¥MCND
#MLTRR

R9

R10
SKP12
#65521
SKP13

#15

MCND
s U

N =
- W e
< x

24U
1,Y

1,U
1,U

SKP1l4

JJJ

I
|SXP1a

SKP17

SKP18
SKP19

SKP20
SKP21

st

— — — — — — ——— o — —
a— — — — — — . G ———— S S Gt e e A e A S G e S G — —— T bmld i S T grmin S S—
. s ae !
2y "

2 Y it Y s vla b ste ots ol
C- 4 ,. broxSx g

INC
LDA
Lo®
MUL
£DDD
STD
acc
INC
LDA
Lb8
MUL
ADDD
STD

LDA
L08
T MUL
ADDD
BCS
cMPD
BLO
ADDD
STD

LOA
LDX
CLR
CLR
CLR
Lbe
MUL
STO
LOJA
LD8
MUL
ADDD
ADODD
8CS
CMPD
BLO
ADDD
SYNC

STD
STO
SYNC
SYNC
SYNC

$SFFFE
$FB09
BEGIN

2yU
SKP1E
465521
SKP19
¥15
24U

1,X
2V
SKPZO
465521
SKpP21
#15

T10
T3

o e e Vo ats sls ste W n's Vo ws nle ute oty 3ie Mo sle whe we e Wo afe sl vie
PER-AD AL EPRPEPAI AP LD LS AP AP R A RARAR S APLPXPE

Appendix-D ' : D-37

SYNC |MLTRR FDS 34561
SYNC . | =
LDA FLAG ! CRG $7000
CMPA 41 |MCND F0¢§ N
BEQ SKP {PPOD1 FCR 0
LBRA BEGIN | PRODZ FCB 0
SKP INC FLAG jpe2D3 FCB 0
SYNC ’ | PRODA FCB !
LDD R10 | TEMP FCB 0
STD T9 |TEMP1 FCR 0
SYNC | TEMP3 FCB]
SYNC | SAVE FD3 N
LDD R9 ‘ JFLAG FCB N ..
STD 710 | =
SYNC : | aRG $FFFE
LBRA NEXT | STRT EQU $F200
5 | END BEGIN
MLTFR F0R 5753 l
b 3% PQDCCSSDR NUMBER 18
s st s vy e sie e Nk s e SR sl ek sesere e sies st e e st B s e sk e e el ok slgslg sl ne e
NAM 6809138 [SkpP13 SYNC
Tla - EQU $0410 RS
T15 EQU $0412 I STO MCND
R14 EQU $0414 | CLR s U
R15 EQU $0416 | CLR 1,U
SEM EQU $0418 I Loa 1,X
RS | LD3 1,Y
ORG $F300 . I MUL
NOFP | STD 24U
DRCC #%01010000 ! LDA s X
Lou #PROD1 | LDB 1,Y
BEGIN CLRA ! MuL:
STA FLAG ! ADDD 1,V
LDA SEM ! STO 1,U
BEQ FRD ! BCC SKP14
START Lba #1 ! INC yU
STA FLAG }SKP14 LDA 1,X
FKD LDY #MCND I LDB y Y
LDX RMLTFR] MUL
BRA ODVER | ADDD 1,U
NEXT LDY #MCND | STD 1,U
LLX #MLTRR | 8CC SKP17
OVER SYNC] INC y U
SYNC | SKP17 LDA y X
SYNC | LD® s Y
SYNC | MUL
SYNC | ADDD ' U
LDD R14 | STO s U
ADDD P15 |
BCS SKP12 l LDA 1,U
CMPD #65521 | LDR 415
8Lo SKP13 | UL
] ADDD 2,V

SKP12 - ADDD #15

Appendix-D

SKP18
SkP19

SKP20
SkP21

s
R
-

b
oo
pr4

e

ACIACR
ACIASR
ACIARX
ACIATX
ARYOUT
INPUT
OUT1M
OuT1L
guT2M
ouT2L
DATA
CUNTRL
b

BRI

8CS
cCMPD
8LO
ADDD
STD

LDA
LOX
CLR
CLPR
CLR
LOB
MUL
STD
LOA
LDB
MUL
ADDD
ADDD
3CS
CMPD
5L0
ADDD
SyYnC

STD
STD
SYNC
SYNC
SYNC
SYNC

"SYNC

LDA

NAM

EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU

LDA

SKP18 l CMPA
#65521 ! BEQ
SKP19 ! LBRA
1S5 | Sxp INC
29U | SYNC
I LDD
y U I STO
ETEMP | SYNC
» X I SYnC
1,X I LoD
29X | STD
#15 ! SYNC
I LBRA
» X | =
2 X IMLTFR FOB
#15 | MLTRR EDB
E
15X l. ORG
29U IMCND - FD8
SKP20 | PROD1 FCB
#65521 |PRCDZ2 FCHB
SKP21] PROD3 FC8
#15 | PRODG FC8
| TEMP FCB
| TEMP1 FCe
T15 | TEMP3 FCB
T14 fSAVE FD2
|FLAG =C8
| %
! ORG
| STRT EQU
I END .
FLAG | =
_CONTROL MICROPROC
2 v Sl sl st sl s e e s sl e e sl e sl el e sl e sl e Sl el B 3
CONTROL | ORG
. |START NOP
$1040 ! ORCC
$1040 I . LDS
$1041 | CLRA
$1041] STA
$1020 | STA
$1000 [LDA
$1050 | STA
$1051 | LDA
$1052 ! STA
$1053 I LDA
$1054 | STA
$101¢€ | LDA
' I STA
#200000110 ! STA

‘?OO")OOOO()

ESSCR

P e Wo ats 2l vle e st Ao wbe v wle ols a's ats sle 4 ats sbe ats sla ale le 2o
XA EDE AR A L a R e R A R R RO R AR AR

#1
SKP
83EGIN
FLAG

R15
T14

R14
T15

$0000

Q

$FFFE
$F800
REGIN

$F800

#%2€1010000
#3230

CONTRL
STATUS
#200000101
CONTRL
413
ACIACR
%11
ACIACR
#%¥00000111
CONTRL:
TMP

Appendix-D

STA

LDA

STA

STA

BrA

INIT LDS
: LDA

JSR

JSR

BEGIN JSR
' JSR

JSR
cMPa

BEQ

CMPA

BEQ

L BRA

SKP1 LDA
STA
LDX
LDA
STA
JSR
LDY
LDX
JSR
: BRA
SKP2 LDA
STA
LDY
LDX
JSR
LDX
LDA
STA
JSR
JSR
JSPR

MGDFY JSR
LDX
LDA
JSR
JSR
JSR

CMPA

BEQ .
JSR
LSLA
LSLA
LSLA
LSLA
REQ

CONTRL
£200000111
CONTRL
STATUS
BEGIN
#3830
#$07
TXR
CRLF
CRLF
PFX
RCX
#°1
SKP1
#°2
SKP2
pse

#1
FLAG
EMSG3
#15
CNT
DSPLY
¥IN1
BARYIN
EXG
MODFY
82
FLAG
#IN2
#ARYIN
EXG
#MSG8
813
CNT

DSPLY

CRLF
PEX

CRLF
RARYIN
#$20
TXR
RCX
TXR
#400
LERD
VALID

MOVE

— . —— — —— — — — — ——— i Wom S — e S — — — — e ae —— vy St s S S wran S
— ——— —— — — i — -
S t— e — — — ——
. — .

LOCPS

READ

JSR
JSR
cMea
BERQ
JSR
ADDA
2RA .
LDA
LSRA
LSRA
LSRA
LSRA
2RA
CLRA
STA
CMPA
L3HS
JSR

LOA
LSRA
LSFA
LS2A
LSRA
JSR
JSP
LDA -
ANDA
JSR'
JSR
LDA
JSR
LDA
JSR
LD8
LDA
LSRA
LSRA
LSRA
LSRA
JSPR
JSR

LDB

LDA
ANDA
JSR
JSR
LDA
JSR

JSR
JSP
CMPA
LDA

RCX
TXR
#300
SK5
VALID
TMP

SKé
TM™MP

SKé

CNT

430 :
ERMSGY -
CRLE

CNT

CONVA
TXR
CNT
#30F
CONvVA
TXR

TXR
4320
TXR
CNT
By X

CONVA
TYR
CNT
By X
a1QF
CriNvVAa
TXR
#4320
TXR

RCX

TXR
#e0D
STATUS

Appendix-D

INCR

SKP3

CMPA
BEQ
CMPA
BEQ
JSR
LSLA
LSLA
LSLA
LSLA
STA
JSR
JSP
JSR
ADDA
LD8
STA
LDA
INCA
cMoA
BHS
STA
BRA
LDA
DECA
BLT
STA
LBRA

JSR
JSR
JSR
LDY
LDA

‘CMPA

BNE
LDA
ANDA
STA
STA
LOX
JSR
LOX
JSR
LBRA
LDA
DRA
STa
STA
LOX
JSR
LDX
JSR

RTS

#°=-
DECR
#%20
INCR
VALID

TMP
RCX
TXR
VALID
THP
CNT
ByX
CNT

¥30
MOVE
CNT
LODPS
CNT

MOVE
CNT
LOOPS

CPLF
PFX
CeLF
¥ARYIN
FLAG
#1
SKP3
STATUS
#710111111
CONTRL
STATUS
#IN1
EXG
#INPUT
EXG
BEGIN
STATUS
#201000000
CONTRL
STATUS
#INZ
EXG
$INPUT
EXG

ANDA
STA
ORA
STA
SYNC
ANDA
STA
ST

"LDX

JSR
JSR
LDX
LDA
STA
Jse
JSP
LDX
JSP
JSR
LDA
STA
LDX
LDD
STD
DEC
BNE
LDA
LSRA
BCC
LDA
ANDA
CMPA
LBEQ
LBRA

LDA
JSR
DEC
BNE
RTS

- LDB

3IT8
BEQ
STA
RTS

LDA
LSRA
8CC
LCA
ANDA
STA

4211111110
CONTRL
#400001001
CONTRL

911110111
CONTRL
STATUS

F0UT
EXCHG.
CRLF
#MSGa
211
CNT
DSPLY
CRLF
®QUT
ARAY
CRLF
#15
CNT
#OUY

s X++4
DUT2M
CNT
SKP5S
ACIASR

SKP4
ACIARX
#38TF
8’0
GET

8EGIN

y X+
TXR
CNT
psSPLY

#$02
ACIASR
WALT
ACIATX
RETURN

ACIASR

RTX
ACTARX
437F
STATUS

Appendix-D

CUNVA cCMPA
BLS

ADDA
ADDA
ANDA
RTS

OMIT

CRLF LDA
JSP
LDA
JSF

RTS

LDA
ORA
STA
STA
LDY
SYNC

EXCHG

LDOD
STD
LDD
STD
LDD
STO
LDD
STD
LDD
STD
LDD
STD
LDD
STC
LDD
STO
LDD
STH
LDD
STD
LDD
STD
LDD
STD
LD
STO
LDD
STO
LDD
STD
ANDA
STA
ANDA

#9

OMIT
#°A-"9-1
#°0

#STF

£#30D
TXR
£50A
TXR

STATUS
#200001000
CONTRL
STATUS
£ARYOUT

' Y

» X
24Y
29X
4,Y
449X
64Y
by X
8y Y
8,y X
10,Y
10,X
12,Y
124X
14,Y
144X
16,Y

169X

18,Y
184X
20,Y
204X
224Y
224X
244 Y
244X
26,Y
264X
28,Y
28B4y X
#%11110111
CONTRL
KSTF

— s —— v — — o o— f— — 4 p—
. . — — g S s S i i s (S s S A s Mmoo mon S euam S — —
— — ——n — — o AT — R s G a— —
Y3
"W LY LN
iy

LOOPW

L3CPX

LOGCPY

LO0PZ

RTS

JSR
JSR
LDX
LDA
STA
JSR
JSR
JSR
LDA
NRA
STA
STA
LDA
STA
LDY
LDX
LDU
LDD

SYNC

LDD
STD
STD
STD
DEC
BNE

LDA
ANDA
STA.
TRA
STA
SYNC
ANDA
STA
STA

LDX
JSR
LOY
LDA
STA
LDOD
STD
LOD
$TD
DEC
“MNE
LDnea
LSRA
8CC

STD

CRLF
PEX
BMSHG
#12

CNT

DsSPLY
CRLF

PFX

STATUS
2700010000
STATUS
CONTRL

#15

CNT

#ARYIN
FINPUT
#IN2

DATA.

DATA
1 X ++
s Y44
yU++
CNT
LOOPY

STATUS -
#%11111110
CONTRL
220001001
CONTRL

#%11110111
CIONTPL
STATUS

#3UT
EXCHG
#IN2
#¥15
CNT
g X ++
QuT2M
s Y4+

QUTIM

CNT

Lnoez
ACTIASP

LOgPX
ouT24

Appendix-=D

REPEAT

LOGP

DsSP

SK9

LOOPE

0K

CMPA
LBEQ
JSR
JSR
LDX
LDY
LA
STA
LDOD
STD
LDD
STO
DEC
BNE
LDA
LSRA
acc
LDA
ANDA
CMPA
LBEQ
cMea
LBEQ
LBRA

JSR
LOX
LDA
STA
JSR
JSR
JSR
JSR
LDX
JSR
JSR
JSR
LDX
LDA
STA
JSR
JSR
LOX
JSR
JSR
JSR
LODX
Loy
LDA
STA
LDD
STOD
LDD
RTS

#°¢
BEGIN
CRLF
PF X
#0UT
#$IN2
#15
CNT
yY 44
QUT1M
g X++

"OUT2HM

CNT
LOOoP
ACIASR

REPEAT
ACIARX
#$7TF
#°1
SKP1

#°2

- SKP2

LOOPX

CRLF

¥MSGS

#7
CNT
DSPLY
CPRLF
PFX
CRLF
#IN1
ARAY
CRLF
CRLF
#MSGH
R7
CNT
pseLy
CRLF
#IN2
ARAY
CRLF
PEX
#IN1
#IN2
#15
CNT

s X+ +
QUTI1M
s Y4+

— e - B e i S S P ——— — — —

ARAY

fAGAIN
[LOOP?2
|LOOP1
]

o
m
—

VALID

CHK1

w
(A
[y

DEC
BNE
LDA
LSRA
8CC
LDA
ANDA
CMPA
LBEQ
LBRA

LDA
STA
cLR
CLR
LDA
INC
LSRA
LSRA
LSRA
LSRA
JSR
JSR
LDA
ANDA
JSR
JSR
INC
DEC
BEN
LDA
CMPA
BEQ
BRA
JSR
BRA
LDA
cMPA
8EQ
LDA
JSR
INC
BRA
RTS

SUBA
CMPA
BHI
PTS
SUBA
CMPA
oLS:
ARA
FCC

CNT
LnorPE
ACIAS®

SK9

"ACIARX

#37F
£°1
SKP1

SKP2

#30
CNT
CNT1
CNT2
» X

CNT2

CONVA
TXR

y X+
#$QF
CaONVA
TXR
CNT2
CNT
SET
CNT2
44
CHKT
LoOP1
cRLF
AGAIN
CNT1
%4
OVER
#3%20
TXR
CNT1
LOQP2

¥°0

%9
CHK1

r7
#$OF
0K
ERMSG3
"Address Too Large” .

Append

PFX

ERMSG1

ERMSG3

DI A N
WOW W W

Pad e oo
% P2 -x4

s e \': e
pxd A S PR £ -,~

ix-
. {MSG2 FCC
LDX #¢MSGT | MSG3 FCC
LDA #6 | MSG4 FCC
STA CNT | MSGS FCC
JSR DSPLY IMSGé FCC
RTS |MSGT FCC “CONV:
|MSGS FCC
JSR CRLF | =2
LOX #MSG1 | ORG $0081
LDA #17 | STACK RMB 1
STA CNT | TMP RM8 2
JSR CRLF {CNT " RAB 1
JSR DSPLY {CNT1 RMB 1
JSR CRLF [CNT2 RMB 1
LBRA IMIT ISTATUS RME 1
JSR CRLF |FLAG R1E 1
LDX CRMSG2 | IN1 RMe 30
LDA 217 {IN2 RME 30
STA CNT |0UT RMA 30
JSR CRLF |ARPYIN RMB 30
JSP DSPLY | % .
JSR CRLF ! 0RG $FFFC
LBRA INIT |STRT FQU $F800
‘ ! END START
NAM WINO15
NINDGQAD S 15 POINT ALuOR*THM
LDX !AX | LDD 20,Y
LDY #ARYIN | STD 204X
252 R R e e s el < s Nk ' . LDo 264 Y
INPUT RCDDDERING 1 STOD 224X
'Sl s e e stk | LDD 24 Y
LDD ,Y- A STD 244X
STO s X] . LDD ByY
LDOD 6y Y | STD 264X
STD 249X ! LOD l4,Y
LDD 12,Y ! STD 289 X
STD by X ’ IS
LDC 18,Y | = e yesie e sie s eisiiesie e et s ik
STD 69X | = -POINT
LDD 244Y } 5 ety e el e szl
STD 84X fSKP2 LOD 10,X
LDD 10,Y | ADDD 20, X
-STD 104X | BCS JMP1
LDD 16,Y | CMPD #65521
STD 12,X] . BLO JMP2
LOD 22,Y | JMP1] ADDD %15
STD 14,X | JMP2 STC TMP1
LDD 28,Y R 8000) X
STO 164X | aCs JMP3
- LDD 4,Y] CMPD #655°21
| =z

“Invalid HEX Digit”

‘Enter Response’

‘Convolution
‘Array 1°
‘Array 2°

‘Enter Values”’

PRE-WEAVE @

JORORUROR
SR R -E X4

o Yot v e Te s s it s e sle e i sto s oo ols
pEPLPLPLPRPEPIPIP SR PAS x < 2 X g

Appendix-D

BLO
JMP3 ADDD
JMP& STD
LDD
SUBD

BCC

ADDD

JMPS STD
LDD

STD

LOD

ADOD

acs

CMPD

8L0

JMP6 ADDD
JMPT STOD
ADDOD

BCS

CMPD

BLD

JMPS ADDD
JMP9Y STD
LDD
SUBD

BCC
ADDD

JMP10 STD
LDD

STD

LOD
ADDD

8CS
CMPD

- BLO
JMP11 ADDD
JMP12 STD
: ADDD

RCS
CMPD

BLO
JMP13 ADDD
JMP14 STD
LDD
SUBD

B8CC
ADDD

JMP15S STD
LDD

STD

LDD

ADDD

BCS
CMPD

JMP&
#165

2 X
10, X
204X
JMP5S
#65521
20y X
TMP1l
10,X
124X
224X
JMP6
¥65521
JMP T
#15
TMP1
29X
JMP8
$65521
JMP9
#15
29X
124X
224X
JMP10
#65521
224X
TMP1,
124X
la,y, X
244X
JMP11
#65521
JMP12
215
TMP1
44X
JMP13
#65521
JMP14
$1°5
449 X
144X
244y X
JMP15
#65521
249 X
TMP1
14,)(
16,X
264 X
JHPYE6
#65521

{ BELD
1JMP16 AJ0D
{JMP17 STO
ADDD
8CS
cMeD
BLO
JMP18 ADDD
JMP19 STD
LDD
SUBD
BCC

ADDD

JMP20 STO
LDD
STOD
LOD
ADDD
8CS
CMPD
BLO
JMP21 ADDD
JMp22 STD
ADDD
BCS
CMPD
8L0
JMP23 ADDD

LOD
susD
8CC
ADDD
JHUP25 STD
LD0
sTD

e J J J J wle ate ofs ul,
px S 12

JMP17
#15
TMP1
54X
JMpP1g
#65521
JMP19
#15
€y X
164X
264X
JMP20
#65521
264X
TMP1
164X
18,X
284X
JHP21
#65521
JMP22
#15
TMP]
84y X
JMP23
#65521
JMP24
®15
84X
18,X
284X
JMP28
#465521
284X
TMPI
18

«Ja~-::_‘

SRSISASIINLS

2 * 5 PDINT PQE NCAV: <

g e e e sl s i vesia)

Loy
LDD
4000
BCS
CMPD
BLO
JMP26 ADDD
JMP2T STD
LDD
SUBD
8CC
ADDD
JMP28 STD
LOD

|
|
|
|
|
|
]
|
|
|
!
|
|
!
|
|
|
!
1J
1 J
|
|
|
|
1J
|JMP24 STH
|
|
|
|
|
|
|
|
|2
|
|
|
|
|
|
|
|
1J
|
!
|
|
|
!
] ADND

o vto als wba oty als als als ate
SREASININIININR

5Z
29 X
84X
JMP26
2865521
JMP27
15
23 Y
2y X
By X
JMP28
#65521
6y Y
4y X
6'!

Appendix-D

JMP29
JMP30

JMP31

JiHMP32
JMP33

JMP34
JMP35

JMP36
JMP37

JMP38

JMP39
JMP4O

JMP&]

BCS
cCMPD
BLO
ADDD
STD
LOD
SuU8Dd
8CC
ADDD
STD
ADDD
BCS
CMPO
BLO
ADDD
STO
LDD
ADDD
BCS
CMPD
BLO
ADDD
STD
ADDD
B8CS
CMPD
5LO
ADDD
STD
LOD
SuBsD
BCC .
ADDD
STD
LDD
STD

LDD
ADDD
aCs
CMPD
8L0
ADDD
STO
LDD
SUBD
8CC
ADDD
STD
LDD
ADDD
BCS
CHPD
BLO

JMP29
#65521
JMP30D
#15
4y Y
6y X
449X
JMP31
#65521
10,Y
69Y
JMP32
#65521
JMP33
#1°5
ByY
29 Y
JMP 34
865521
JMP35
#15
TMP1

y X
JMP36
#65521

JMP3T .

#15
y Y
25 Y
Gy Y
JMP38
#65521
4,Y
TMP1
2y Y

12,X
18,X
JMP 39
#65521
JMP40
215
16,4Y
124X
185X

"JMP41

#65521
18,Y
l4,X
164X
JMP4 2
¥65521
JMP&G 2

| JMP&2
[JMP43

JUP4s

JMP45
JMP&46

JMPGT
JMP4E

JMP49
JMPS50

Jues1

JMP52

JMP53

JMP5 4

— e cEmm . i G - m— M g S i Gwn M i R e At ot inn St S o vt A e S— G——— S i i S ol ot o Sl Siin S S S i oty S g
£l
4 "

| JMP56
| JMPST
| .

400D
STD
LDD
SUBD
3CC
4DDD
STC
ADDD
8CS
CMPD
BLO
A30D
STD
LOD
ADDD
B8CS
CMPD
8LO
ADDD
STD
ADDD
3CsS
CMPD
BLO
AQODD
STO
LOD
SusD
BCC
AGDD
STD
LDD
STD

LOD
ADDD
8cCs
CMOD
8L0
ADDD
STD
LoD
SysD
BCC
ADDD
STD
LDD
400D
8CS
CMPD
L0
A0DD
STD
LoD

#15

16,Y
164X
14,X

JMP4s -

#65521
22, Y
18,Y
JMP4S
#65521
JMP4LE
#1565
20,Y
16,Y
l14,Y
JMP4T
#55521
JMP4sg
#15
TMP1
10,X
JMP&49
#65521
JMPSO
#15
12,Y
14,Y
14,Y
JMP31
#65521
16,4Y
TMO]
14,Y

ZZ’X
28,4 X
JMP52
#65521
JMPS53
#15
264Y°
224 X
284X
JMP54
#65521
30,Y
244X
264 X
JMPS55
#65521
JMPST
£16

S 28,Y

264X

Appendix

JMP58

JHMP59
JMP60

JMP6E1
JMP6&2

JIMPE3
JMP&4

JMPS5

p

3% % MULTIPLICATION =

wa wle ats of
4 EESAR S '-

LoOP

DVeR1
OVER2

-D

SUBD
5CC
ADDD
sSTD
ADDD

‘8CS

cMPD
8LO
ADDD
STD
LDD
ADDD
BCS
CMPD
BLO

ADDD

STO

ADDOD

BCS
CMPD
BLO
200D
STO
Loo
SUBD
BCC
ADDOD
STO
LDD
STO

udwuua.’

'CLRA

STA
LDS
LDA
BEQ
LDY
BRA
LDY

-LDA

LDO
STOD
LDD
STO
LOX
LDY
LDU
CLR
CLR
LDA
LDS
MUL

244X
JMP58
#65521
34,Y
30,Y
JMPS9
#65521
JMP60
#15
32,4Y
26,4, Y
28,Y
JMPE1

#65521

JMPH2
215
TMP1
204X
JMP63
865521
JMP 64
#15
244 Y
264 Y
28,Y
JMP6ES
#65521
28,4Y
TMP1
267

" atle als sls vl wle whe
~r~o pxd LD X PR

'o J
PASL PAS S EOA

IND
%1
FRD
OVERL
4COEFR
OVER2
$COEFF
IND
Ay Y
MLTR
’S
MLTN
#MLTR
#MLTN
#PROD1
,u

[
< = C

]
?
b

. — —— —— - —— " — — i — — S —— — —— o il s v b —— i o e Gt - m—— o m— — — o ——
—— —— — — — — — — — — . —— —— d— ot -

W
x
-
he
w

SKIF4

Y
"

SKIP6
SKIPT

SKIPA

w
Pl
4
0

n

SKIPD

w
o
4
0
ju

KIpC

(7]

STC
LDA
LD8

- MuL

ADDD
STD
8CC
INC
LDA
L DB
MUL
ADDD
STD
acc
INC
LDA
LD8
MUL
400D
STD

LDA
L08
MUL
ADDD
BCS
CMPD
BLO
ADDD
STD
LDA
LOY
CLR
CLR
CLR
LD8
MUL
STO
LDA
REQ
Lo8
ML
ADCD
BRA

LoD

ADDD
BCS
CMPD
BLO
ADDD
STD
LDA
ADDA
STA

1,U
#15

24U
SKIPs
#65521
SKIP7
1S

24U

I,Y

24U
SKIPR
¥65521
SKIPC
#15

s S+ ¢

IND
%2
IND -

Appendix-D

CMPA
LBLS

% % S-POINT

LDX

LDY

LDD

STD
ADDD

BCS

CMPD

BLO
JMP6T ADDD
JMP68 STD
LOD
ADDD

8CS

CMPD

BLO
JMP69 ADDD
JHPTO STD
LDD

SusDh

BCC

ADOD

JMPT71 STD
LDD

ADDD

8CS

CMPD

BLO

JMPT2 ADDD
JHPT3 STO
LoD

sSusD

BCC

ADDD

JMPT4 STD
- SUBD

8CC

ADDD

JMPTS STD
LOD

STD

LDD

ADDD

RCS
CMPD

BLO

JMPT6 ANDD
JMPTT STD
: LDD
ADDD

J \ wha ois v
32 PAPXD)

K34
Loor

4«044J¢ll

DDST WEAV

oo wio wls ats ale wte Ve ats uts ws
pAS- LRI XP ED LR PEI-LIPRY l'\

aAX
A

29Y
JMPET
#65521
JMPE 8
#15
29X
ByY
10,Y
JMP6E9
¥65521
JMPTD
#15
10,Y
6y Y
ByY
JMPT1
#65521
84X
24X
4Ly Y
JMPT2
#65521
JMPT3
#15
TMP1
29X
G4 Y
JMP T4
#65521
44X
10,Y
JMPTS
#65521
69X
TMP1
29 X
44X
IO'Y
JMPTA
465521
JMPTT
#15
44X
29X
By X

JMPTS
JMPT9

JMPBO

JUPGKT
JUP68

JUPTO

JUPT1

JUDT’
JUPT3

JUPT &

|

|

|

|

1J

!

|

|

|

|

|

|

]

|

|

!

|

|

!

|

|

!

|

|

|

I
fJUPES
|

|

!

|

|

!

|

|

!

|

|

!

I

|

!

|

]

|

|

|

|

1 JUPTS
|
|
!
|
|

8Cs
cmed
BLO
ADDO
STD
LOD
sSusDd
BCC
£DDD
STD
LCD
STD

LDD
STO
ADDD
BCS
CMPD
8L0
400D
STD
LDD
ADDD
8CS
cMPD
8LD
400D
STD
LDD
SUBD
BCC
ADDD
STD
LDD
ADDD
BCS
CMPD
PLO
400D
STD
LDD

SUBD

BCC
ADDD
STN
548D
BECC
ADNDD
STD
LDD
STD
LDD
ADDD
RCS

JMPT8
#65521
JMPT9
¥15
TMP1
24X
8y X
Jmesgqp
#65521
2yX
TMP1
29X

12,Y
IO’X
14,Y
Juee?
265521
Jupreg
#15
124X
20,Y
22, Y
JuP69
#65521
JueTo
%15
22, Y
18,Y
20,Y
JUPT1
#65521
18, X
124X
16,Y
Jup72
#65521
JupT3
#15
TMP1
124X
16,Y
Jur74
#65521
l1ay X
22,Y
JupTs
HE5521
164X
TMPL
124X
144X
22, Y

JUPT6

Appendix-[

JUPT76
JUPTT

JUPT8
JUPTI

JupPgo

SKP6T
SKP68

SKP69
SKP70

SKP71

SKPT2
SKP73

SKPT4

CMPD
BLO
ADDD
STD
LDOD
ADDD
BCS
CMPD
BLO
ADDD
STD
LOD
SUB80
aCC
ADDD
STD
LoD
STD

LDD
STD
ADDD
&CS
cMPD
8L0
ADDD
STD
LDD
ADDD
BCS
CMPD
BLO
ADDD
STD
LOD
susp
BCC
ADDD
STD
LOD
ADDD
3CS
CMPD
8LO
ADDD
STD
LDD
SusD
8CC
ADDD
STD
SuUsD
BCC
ADDD

#65521
JUPTT
15
144X
12,X
184X
JUPTS
#65521
Juero
15
TMP1
12,X
184X
JUP8O
265521
18,X
TMP1
124X

24,4,Y
204X
26,4, Y
SKP67
#65521
SKPé68
#15
224X
32,Y
34,Y
SKP69
#65521
SKPT0
#1¢
34,Y
30,Y
32,Y
SKPT1
#65521
284X
224X
28,Y
SKPT2
#65521
SKP73
%15
TMP1
22y X
28,Y
SKPT4
#65521
244X
24,Y
SKPT5
65521

!
I
!
!
I
|
|
|
!
I
!
I
!
|
!
I
|
!
!
!
[
|
|
!
I
| R
[ES
I
I
|
|
!
1J
1J
I
|
I
!
|
1J
{J
!
I
|
!
|
|
1J
I
|
!
|
!
|

SKPT°

SKP7
SKP7

SKPY
SKP7

SKP8

MP8
JMP82

\D
W

\.O

Jupg
JMpg

JuP8

g

6
7

8
9

0

oo
b4

STD

LDD
STD

e e o o2
ROAR A

LDD
ADDD
8CS
CMPD
RLC
ADDD
STO
LOD
AODD
8cCSs
cMPD
8L0
ADDD
STD
LOD
sSusD
8CC
ADDD
STD

LDD

STD

JJ

264X
TMP1
224X
244X
3b4,Y
SKPTé&
#65521
SKPT7
#15
2449 X
229X
284X
SKP78
#65521
SKP78
#15
TMP1
224X
28 X
SKP80
265521
284X
TMP1
224X

JJJJ

2 wte wte
PR

we ote \lp e ad
pr-S DK P EIRY

3 PDINT PUST -WEAVE

O B ad e
PRSEPF KX

1

9

5
6

>
'

LDD
£ADDD
8CS
CMPD
RLO
400D
STD
LDD
ADDD
aCs
CMPD
8LC
£DDD
STD
LDD
ADDD
BCS
CMPOD
BLO
ADDD
STD
LOD
ADGD
ACS
£MeD
bLO

- £0DD

J J o aie
,~ 3R

,X
10,X
JMoesgl
465521
JMPB2
#15-
104y X

24 X
124X
JMes3
$65521
JMPB4
#15

124X

49 X
14,X
JMP85
- #65521
JMP84
£15
144X

59X
16,44
JMP 37
265521
JMp2e
#15

e wie alg ats
..,.,,\ .‘..,-,,x

JJJ

Appendix-D

JMPBS STD 164X | ' BLO JMP99
LDD 8y X | JMP98 ADDD #15
ADDD 18B,X . { JMP39 STDO TMP1
BCS JMP8Q | LOD 164X
CMPD #65521 | SUBD 284X
BLO JMP9O | RCC JMP100
JMP89 ADDD #15 i 40DD #65521
JMPSO STO 18,X | JMP10O SN 269 X
LDD 194X | LDD TMP1
ADDD 20, X | STD 164X
BCS JMPI1 | LOD 18,X
CMPD #65521 | ADDD 284X
- BLO JMPQa2 | 8CS JMP101
JMP91 ADDD #15 | CMFD #”65521
JMPA2 STD THMel ! L0 Juerlnz
L3D 10,X }JMP101 ADDD #15
SUBD 20,X |JMP102 STD TMP1
BCC JMPA11 | LOD 184X
: ADDD #65521 ! SUBD 284X
JMP911 STD 20X | 3CC JMP103
LDD TMP1] ADDD #65521
STD 10,X |JMP103 STD 28y X
LDD 124X i LDD TMP1
ADDD 22,X ! STD 18,X
RCS JMpg22 | % el e s et sl sl e e I
CMPD 265521 | =z 2 QUTPUT SHUFFLE
BLO JMPS3 | s sesr st e sieste s ste st e e sl e Sl sl sl sl N e e
JMP922 ADDD #15] t. DX #AX
JHP93 STD TMP1 ! LDY #0UT -
LDD 124X | Lon » X
SUBD 224X | STD s Y
8CC JMP94 | L DO 124X
ADDD #65521 | STD 24Y
JMP 94 STD 224X | LOD 244X
LDD TMP1 | STD 4y Y
STD 12,X | LDOD 649X
LDD 14,X | STD 6yY
ADDD 24, X ! LOD 18,X
BCS JMPS5 | STD By Y
cMPD 865521] LDD 20X
8LO JMPS6 | STOD 10,Y
JMPS5 ADDD %165 | LDD 2 X
JHPIS STD TMP1 | STOD 12,7
' LDD 145X ! LDD "~ 144X
SUBD 244X | STC 14,Y
BCC JMPO7T | LDD 264X
ADDD #65521 | STO 164Y
JMPIT STD 244X] Lo 34X
LOD TMP1] STC 18,Y
STD 144X ! LOD 104X
- LDD 164X | STD 20,Y
ADDD 26, X | LOD 224X
BCS JMPG8] STD 22,Y
CMPD #65521 }

LOD 49X

ts Wty Vo wis uls uts
PR R 1Y

Appendix=-D) - D-50

FD8 16087,29032,8748

FO3 5913,24748,21928
END STRY

FDB . 19136,18005,48647
FOB 32759,8192445457
FDB 36817,5753,25311

STD 24,4, Y |
LDOD 164X I FDR 23174443£15,1455
STD 264 Y |COEFR D& 61153,5460,18354
LOD 28,y X | FD8 46772,20640,5493
STD 284 Y | FD3 6552457331,37975
% : | . FD8 28122,34561,24521
CUEFF FDB 1,6379,13276 | FDB 295064,428641,12521
|
]
!

e

Apper)dix—E

Backplane wiring connections for the parallel microprocessor
system

Appendix-E : o £-1

1-8
9-1¢
15-22
23=-28
25~36
37-38
39-456
47-48
49-56
57-60
49-56
57-60
$1-68
69-70
71-78
75-80
g1-88
89-92
81-88
83-92

! I
W W oo

i
.
o

[CL RVl
|

DU e oun e

W WMo W
3Ll

[B |

B SRS R §Y)

£ O

»
Ui
|
~
o

47-54
55-56
51-64
65-68

Backplane pin connections for tne parallel

microprocessor system.

Flow of data from SOURCE (TX) => DESTINATION (RX)
80ARD MO A - (PRJICESSOR N2 1 2 3)

SINE A - SINE B

FUNCTION PROCESSORH# |PIN® FUMCTION PROCEISSORw
: |
DATA IN 1 2 3 | 1-3 RX g -> 2
CLOCK 12 3 { 9-10 CLICK g -> 3
DATA OUT 1 2 3 f11-1¢ RX 4 => 2
OE 12 3 {19-20 cLCCK 4 -> 3
TX 1 -> 6 |
cCLOCK 1 -> 6 f 74 STATUS OUT
R X 6 -> 1 |75 SYNC ouT
CLACK 6 => 1 176 SYNC N
T X 2 => 7 177 SYSTEM £LOCK
cLOCK 2 -> 7 178 HALT
TX 2 => 5. 179 RESET
CLOCK 2 -> 5 [29-61-93 +VCEL
R X 7T -> 2 |32-64-96 5ROUND
cLOCK 7 -> 2 | '
R X 5 => 2 |
CLACK 5 => 2 |
TX 2 -> 2 |
CLOCK 3 -> 8 !
TX 3 -> 4 |
cLnck 3 -> & |

90ARD NO 8 - (PROCESSCR & 5 16D

SIDE A SIDE P

FUNMCTION PROCESSOR# |PIN# EYNCTION
|

DATA IN 4 5 174 STATUS CUT
CLOCK 4 5 |75 SYNC QUT
DATA CQUT &4 5 176 SYHC N
OE 4 5 177 SYSTEM CLOCK
TX 4 => 9 |78 HALT
CLICK 4 => 9 179 " PESET
TYX 4 => 3 [29-61-93 +VCC
CLOCK 4 => 3 |32-64-96 GROUND
R X g => & I
cLOCK 9 -> 4 |
RX 2 =>4 |
CLOCK A -> & I
TX 5 -> 10 I
CLOCK 5 => 10 |

Appendix-E

51-564
65-68
69-76
77-78
79-86
87-88

PIN#

1-8

g9-14
15-22
23-28
29~36
37-40
29-36
37-40
41-48
45-50
51-58
59-60
61-488
69-T4
61-68
6v-T4
61-68
69-74
75-52
33-84
85-92
9z-94

PIN#®

1-2

9-12
13-20
21-24
25=32
33-38
25-22

35-38

25-32

TX

5 => 2
cLOCK' 5 => 2
R X 10 -> 5§
cLeCk 10 -> S
R X 2 -> 5
CLOCK 2 -> 5
BCARD NO C
SIDE A
FUNCTION PROCESSOR#
DATA IN 6 7 8
CLOCK 6 7 8
DATA CUT 6 7 8
0g £ 7 8
TX 6 => 11
CLOCK 6 -> 11
TX 6 -> 1
CLOCK 6 -> 1
RX 11 -> 6
CLACK 11 -> 6
e X 1 -> 6
CLACK 1 -> 5
TX 7 -> 12
cLOCK 7 -> 12
TX 7T -> 2
CLOCK 7 -> 2
TX 7 -> 10
CLACK 7 => 10
RX 12 -> 7
CLOCK 12 -> 7
& X 2 -> T
CLOCK 2 => 7
BDARD NG D -
SIDE A
FUNCTIAON PROCESSOR=
DATA IN 9 10
CLACK 9 10
JATA OUT 9 10
Ce 9 10
TX 9 => 1le
CLACK 9 => 16
TX g =-> 4
CLICK - 9 =>4
TX 2 -> 2

!

7

[29-61-93 +VCC
I3

sIne 3

EUNCTION PRJCESSCR
DX 10 > 7
cLOCK 19 => 7
TX g -> 13
cLoc 2 -> 13
TX 2.-> 3

T CLOCK 3 -> 3

TX g8 -> 9
cLock g -> =©
X 13 -> 8
cLncx 13 => 3
2 X 2 -> 3
cLOCK 3 -> 3
R X 9 -> 3
CLACK 9 -> '3
STATUS OUT
SYNC ouT
SYNC Iy
SYSTEM CLDCK
HALT

RESET

2-64-%6 GROUNMD

(PROCESSOR 9 10 17)

SIDE #

FUNCTICN poaCeEssnP
RX 5 => 190
CLOCK 5 -> 10
oX 7 -> 19
cLack T -> 10

STATUS OUY
SYNC JuT
SYHNC iN
SYSTEM LLNCK

-4

e

Appendix-%

33-38
39-46
47-48
4y=-55
57-58
59-66
67-68
69-T6
77-82
69-16
77-82
£9-76
77-82
83-90
91-92

PIN#

1-8

y-14
15-22
23-28

29-36.

37-38
39-46
47-48
49-56
571-50
49-56
57-60
61-68
65-70
71-78
79-80

81-88

g9-32
21~-88
By-32

PIN#

gLock
RX
CLOCK
BX
cLoCk
RX
CLaCK
TX
CLACK
TX
CLOCK
TX
CLOCK
RX
CLOCK

9 ->
14 =>
14 =>

4 =>

4 =>

g =>

8 ->
10 =>
10 ->
10 ->
10 ->
10 =>
10 ->
15 =>
15 ->

b
QO N ~NITTVITUVT N O 00 D0 DWW

-

178

179
[29-61-
|22-66-

!
!
|
!
I
!
|
!
!
I
!

HALT

RESET
23 +V(C(C
96 GROUND

80ARD NO £ - (PROCESSOR 11 12 12D

SIDE A
FUNCTION

DATA IN
CLOCK
DATA CUT
ne

TX
CLOCK

R X
CLOCK
TX
CLGCK
TX
cLoCk
RX
CLOCK
RX
CLOCX
TX
CLOCK
TX
CLOCK

SIDE A

[

FUNCTION

DATA 1IN
CLOCK

PROCESSCR®
11 12 13
11 12 13
11 12 13
11 12 13
11 -> 6
11 -> 6

5 => 11

£ => 11
12 -> 7
12 -> 7
12 -> 15
12 -> 15
T => 12

7 -> 12

15 -> 12
15 => 12
13 => 8
13 -> 8
12 =-> 14
12 => 14

— vt —

PIN#

[I
N = = 00
O O

WO = O =

—— e G - — A— —
— g
|

|74

|76
|77
|78
|79
[29-61-
|32-¢6-

SINE 8

SUNMCTION PROCESSNPe

R X 3 -> 13
CLOCK g -> 12
RX Cle -> 13
cLock 16 -> 13
STATUS 0OUT
SYNC 2uT
SYNC IN
SYSTEM CLOCK
HaLT
RESET

93 +VCC

96 GRCOUND

BOARD NC F - (PROCESSCP 14 15 18) .

PROCESSORA

14 15
14 15

SIDE =
FUNCTIOM

STATUS CUT
SYHNC uT

Appendix-¢t

13-20 DATA JUT 14 15 |76 SYNC IN
21-24 DE 14 15 |77 SYSTEM CL7CK
25-32 TX 14 -> 9 129-61-73 +VCC
33-36 CLOCK 14 => 9 [32-64-73¢6 GROUND
25-32 TX 16 => 13 | ‘
33=-36 CLOCK 164 => 12 I
37-64 RX a -> 14 |
45-46 CLICK 9 => 14)
47-54 PX 12 -> 14 |
55-56 CLJCK 13 => 14 |
57-64 TX 15 => 10 |
65-68 CLOCK 15 => 10 {
57-64 TX , 15 => 12 !
65-68 CLOCK 15 => 12 {
69-76 RX 10 -> 15 |
77-78 CLOCK 10 => 15]
79-86 RX 12 => 15 !
87-88 CLOCK 12 =-> 15§ |
|

CONTROL BOARD
SIDE A

PIN# FUNCTICN PROCESSOR% |PIN# FUNCTION PROC=ZSSORH
|

1-8 DATA OUT |47-54 DATA IN
17-18 CLOCK 1 |63-64 CE 1
19-20 CLOCK 4 l65-66 OF 7
21-22 CLICK 7 l67-68 OF 13
23-24 CLOCK . 10 [69-70 OF 4
25-26 CLOCK 13 |71-72 OF 10
27-28 CLOCK 6 [73-74 Gt 11
29-30 CLICK N |75-76 OF 2
31-32 CLOCK 12 |77-78 ©F 8
33-34 - CLOCK 15 179-80 Gt 14
35-36 CLOCK 3 g1-82 GE 5
37-38 CLOCK 1. |83-84" CE 6
39-40 CLOCK 14 |85-36 CF 12
41-42 CLOCK 2 |&7-88 Ct 3
43-44 CLOCK 5 {e9-90 OF 9
45-46 CLOCK 3 [91-92 C& 15

SIDE 8

1-6 STATUS IN

7-12 SYNC IN
13 SYNC OUT
14-19 _ SYSTEM CLOCK QUTPUT TN PRCCESSCRS
20 RESET TO CTHER BOARDS
21 HALT TO OTHER B0ARDS
27 -9V F0R RS-232 RX

29-61-93 +VCC SV PCWER FJR ALL BOARDS
3z~-64-95 GROUND

I

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

REFERENCES

Bergland, G.D: 'Fast Fourier Transform Hardware Implementation
- An Overview', IEEE Trans. Audio Electroacoustics, Jun. 1969,
vol AU-17, pp. 104-108.

Brigham, E.O.: The Fast Fourier Transform, Prentice Hall
Inc., Englewood Cliffs, N.J., 1974,

Winograd, S.: 'On Computing the Discrete Fourier Transform',
Math. Comput. 1978, vol. 32, pp. 175-199.

Winograd, S5.: 'On Computing the Discrete Fourier Transform',
Proc. Nat. Acad. Sei., 1976, vol. 73, pp. 1005-1006.

Martin, S.C.P.: Number Theoretic Transform Implementation
using Microprocessors, Ph.D. thesis, 1980, Univ. of Durham.
Martin, S.C.P, and Stanier, B.J.: 'Microprocessor
Implementation of Number Theoretic Transforms', Electron.
Cir. and Syst., Jan. 1979, vol. 3, pp. 21-26.

McClellan J.H., and Rader C.,M.: Number Theory in Digital
Signal Processing, Prentice Hall Inc., Englewood Cliffs,
N.J. 1979.

Cooley, J.W., and Tukey, J.W.: 'An Algorithm for the Machine
Calculation of Complex Fourier Series', Math. Comput., 1965,
vol. 19, pp. 297-301.

Agarwal, R.C,, and Burrus, C.S.: 'Number Theoretic Transforms
to Implement Fast Digital Convolution', Proc. IEEE, 1975, vol. 63,
pp. 550-560.

Vanwormhoudt, M.C.: 'On Number Theoretic Fourier Transform in
Residue Class Rings', Corresp., IEEE Trans., 1977, vol. ASSP-25,

pp. 585-586.

Ref-1

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Leibowitz, L.M,: 'Fast Convolution by Number Theoretic
Transforms', NRL Report 7924, Sept. 1975.

Rader, C.M.: 'Discrete Convolutions via Mersenne Transforms',
IEEE Trans. Comput., 1972, vol. C-21, pp. 1269-1273.

Agarwal, R.C., and Burrus, C.S.: 'Fast Convolution Using
Fermat Number Transform with Applications to Digital
Filtering', IEEE Trans., 1974, vol. ASS5P-22, pp. 87-97.
Leibowitz, L.M.: 'A Simplified Arithmetic for the Fermat
Number Transform', IEEE Trans., 1976, vol. ASSP-24,
pp. 356-359,

McClellan, J.H.: 'Hardware Realisation of a Fermat Number
Transform', IEEE Trans., 1976, vol. ASSP-24, pp. 216-225.
Bywater, R.E.H.: Hardware/Software Design of Digital
Systems, Prentice Hall Inc. Englewood Cliffs, N.J., 1981,

Lewin, D.: Theory and Design of Digital Computers, Thomas
Nelson and Sons Ltd., 1972,

Parasuraman, B.: 'Hardware Multiplication Techniques for
Microprocessor Systems', Computer Design, 1977, pp. 75-82.
Harman, M.G.: 'An Attempt to Design an Improved
Multipication System', IEEE Trans. Comput., 1968, vol. C-17,
pp. 1090,

Rabiner, L.R., and Gold, B.: Theory and Application of
Digital Signal Processing, Prentice Hall Inc. Englewood Cliffs,
N.J., 1975.

Chu, Y.: Digital Computer Design Fundamentals, McGraw
Hill, 1962.

Hayes, J.P.: Computer Architecture and Organisation, McGraw

Hill, Kogakusha Ltd., 1978.

Ref-2

(23)
(24)

(25)
(26)

(27)

(28)

(29)
(30)

(31)

(32)

(33)

(34)

Gosling, J.B.: Design of Arithmetic Units for Digital
Computers, McMillan Press Ltd., London, 1980.

Nussbaumer, H.J.: 'Fast Multipliers for Number Theoretic
Transforms', IEEE Trans. C-27, Aug. 1978, pp. 764-765.
Brubaker, T.A., and Becker, J.C.: 'Multiplication Using
Logarithms Implemented with Read-Only Memory', IEEE Trans.
Comput., vol. C-24, pp. 761-765.

Chang, T.: 'Binary Read-Only-Memory Multiplier’,
Eletron. Lett., 13 Dec. 1973, vol. 9, pp. 580-581.

Johnson, N.: 'Improved Binary Multiplication System',
Electron. Lett.,, 11 Jan. 1973, vol. 9, pp. 6-7.

Davies, A.C.: 'Trade-offs in Fixed-Point Multiplication
Algorithms for Microprocessors', Comput. and Dig. Techniques,
1979, vol. 2, pp. 105-112.

Weed, M.: 'Clockless Multiplication and Division Circuits',
BYTE, Dec. 1978, pp. 128-136.

Artwick, B.A.: Microcomputer Interfacing, Prentice Hall Inc.,
Englewood Cliffs, N.J., 1980.

Davies, A.C., Fung, Y.T.: 'Interfacing a Hardware Multiplier
to a General-Purpose Microprocessor', Microprocessors, 1977,
vol. 1, pp. 425-432.

Evanczuk, S.: 'Josephson Chip Multiplies Ultra Fast',
Electronics, 14 July, 1982, pp. 48-50.

Bate, J., and Burkowski, F.: 'A High Speed Extended
Precision Multiplier for a Microprocessor', Proc. Int.
Symp. on Mini and Micro Computers, Montreal, Canada, 11-18
Nov. 1977, pp. 10-13.

Robinson, D.: 'Hardware Multiplier/Divider Unit for 8-bit

Ref-3

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

Microprocessor Systems', New Electronics (G.B), Mar. 1979,
vol. 12, pp. 20.

Mick, J., and Springer, J.: 'An Integrated ‘Circuit,
High-Speed Serial-Parallel Multiplier', Apr. 1976, pp. 42, 46.
Rollenhagen, D.C., Kimball, R.M., and Shay, H.P.: 'LSI
Multiplier-Divider for 8080', Proc. IEEE 1977 Nat. Aerospace
and Electron. Conf., NAECON 1977, Dayton, Ohio, U.S.A.,
17-19 May, pp. 887-892.

Day, M.J.: 'Faster Multiply with Microprocessor Hardware
Multiply Device', Electron (G.B.), 27 Feb. 1978, pp. 39.

Waser, S., Newton, V.: 'Increasing Multiplication Speed',
Electron (G.B.), 12 Dec. 1977, pp. 57-58.

Rohr, P.: 'LSI Multiplierst The Second Generation', 1979 Int.
Micro and Mini Computer Conf., Houston, Texas, U.S.A., Nov. 1979,
pp. 140-143,

Ambikairajah, E., and Carey, M.J.: 'Technique for Performing
Multiplicat‘ion on a 16-bit Microprocessor using extension of
Booth's Algorithm', Electron. Lett.,, 17 Jan. 1980, vol. 16,
pp. 53-54.

Giest, D.J.: 'MOS Processor Picks up Speed with Bipolar
Multipliers', Electroniecs (U.S.A.), July 1977, vol. 50,

pp. 113-115,

 '16*16-bit Multipliers meet Military/Commercial High Speed

Applications', Comput. Des. (U.S.A.), Aug. 1976, vol. 15,
pp. 50.

McCrea, P.G., and Matheson, W.S.: 'Design of High Speed
Fully Serial Tree Multiplier', IEEE. Proc. Jan. 1981,

vol. 128, pp. 13-20.

Ref-4

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

Advanced Micro Devices: 'AM255558, Eight-bit by Eight-bit
Combinational Multiplier', Preliminary data sheet.

Flores, I.: The Logic of Computer Arithmetic, Prentice
Hall Inc., Englewood Cliffs, N.J., 1963.

Booth, A.D, and Booth, K.H.V.: Automatic Digital
Calculators, l\3utterworth and Co. Ltd., London, 1965.

Abd-Alla, A.M, and Meltzer, A.C.: Principles of Digital
Computer Design, Prentice Hall, Englewood Cliffs, N.J., 1976,
vol. 1.

Renold, A.: Comparison of some 8-bit Microprocessors by
means of Benchmark Programs, Mitt. Agon. (Switzerland),
Oct. 1981, pp. 71-75.

Kolba, D.P., and Parks, T.W.: 'A Prime Factor FFT Algorithm
Using High-Speed Convolution', IEEE Trans.,, vol. ASSP-25,
Aug. 1977, pp. 281-294.

Morris, L.R.: 'A Comparative Study of Time Efficient FFT and
WFTA Programs for General Purpose Computers', IEEE Trans.,
vol. ASSP-26, Apr. 1978, pp.141-150.

Silverman, H.F.: 'An Introduction to Programming the Winograd
Fourier Transform Algorithm (WFTA)!, IEEE Trans., vol. ASSP-25,
Apr. 1977, pp. 152-165.

'Correction and an Addendum to an Introduction to Programming
the Winograd Fourier Transform Algorithm (WFTA)!, IEEE Trans.
ASSP-26, 1978, pp. 268.

Nawab, H., and McClellan, J.H.: 'Bounds on the Minimum Number
of Data Transfers in WFTA and FFT Programs', IEEE Trans.,
vol. ASSP-27, Aug. 1979, pp. 394-398.

Bailey, D.: 'Winograd's Algorithm Applied to Number-Theoretic

Ref-5

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

Transforms', Electron. Lett.,, 1 Sept. 1977, vol. 13 pp. 548-549.

Texas Instruments Ltd.: TMS9900 Microprocessor Data Manual,
Aug. 1976.

Texas Instruments Ltd.: TMS990/100M Microcomputer User's
Guide, Mar. 1978,

Moore, C.H.: 'FORTH: A New Way to Program a
Minicomputer', Astron. Astrophy. Suppl., 1974, vol. 15,

pp. 497-511.

Brodie, L.: Starting Forth, Prentice Hall Inc.,, Englewood
Cliffs N.J., 1981.

Smith, M.F.: 'Comparative Software Analysis of the MC6809
Microprocessor', Microprocessors and Micro Systems, vol. 5,

Nov. 1981, pp. 401-404.

Mintzer, F.: 'Parallel and Cascade Microprocessor
Implementation for Digital Signal Processing', IEEE Trans.

ASSP-29, Oct. 1981, pp. 1018-1027.

Zohar, S.: 'Outline o-f a Fast Hardware Implementation
of Winograd's DF T Algorithm', IEEE ICASSP, Apr. 1980, vol. 3,

pp.796-799.

Mintzer, F.: 'Attributes of Parallel and Cascade
Microprocessor Implementations of Digital Signal Processing',

IEEE Int. Conf. ASSP, April 1980, ICASSP, vol. 3, pp. 912-915.

Duff, M.J.B.: 'Array Processing', Electronics and Power
Nov./Dec. 1980, pp. 888-893.

Bain, W.L., and Jump, J.R.: 'Hardware Scheduling Strategies
for Systems with many Processors', Proc. Int. Conf. Parallel

Processing, Bellaire, MI, U.S.A., Aug. 1978, pp. 184-187.

Bellm, H., and Sauer, A.: 'Methods of Data Exchange Between

Ref-6

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

Microcomputers', Proc. Microprocessing and Microprogramming,
Amsterdam, N. Holland, 3-6 Oct. 1977, Microcomputer Archit.,
pp. 16-22.

Arden, B.E., and Berenbaum, A.D.: 'A Multi-Microprocessor
Computer System Architecture', Proc. 5th Symp. Operating
System Principles, Operating System Rev,, Nov. 1975, vol. 9,

pp. 114-121.

Enslow, P.H.: Multiprocessor and Parallel Processing,
John Wiley and Sons, 1974.

Pollard, L.H.: 'Multiprocessing with the TI9900', Eleventh
Ann. Asilomer Conf. Circuits Systems and Computers, Pacific Grove,
CA, U.S.A., 7-9 Nov. 1977, pp. 461-465.

Hoffner, Y., and Smith, M.F.: 'Communication Between two
Microprocessors Through Common Memory', Microprocessors and
Microsystems, July/Aug. 1982, vol. 6, pp. 303-308.

Witten, I.H., and Jenkins, R.L.: 'Processor-ﬁ’rocessor
Dialogue Through Existing Input-Output Channels', Computer
and Digital Techniques, Oct. 1978, vol. 1, pp. 125-130.
Parkinson, D.: 'An Introduction to Array Processors',
Syst. Int. (G.B), Nov. 1977, vol. 5, pp. 21-23.

Caprani, 0., Jensen, K.H., and Ougaard, U.: 'Microprocessors
Connected to a Common Memory', Microprocessor and
Microprogramming Amsterdam, Netherland, 3-6 Oct. 1977,
Euromicro Symp., Microcomputer Architec., pp. 175-181.
Hughes, P., and Doone, T.: 'Multiprocessor Systems',
Syst. Int. (G.B), Feb. 1978, vol. 6, pp. 20-21.

Raphael, H.: 'Multiprocessor Techniques for uP Systems',

Electron. Eng. (G.B), 1978, vol. 50, pp. 65-67.

Ref-7

(74)

(75)

(76)

(77)

(78)

(79)
(80)

(81)

(82)

(83)
(84)

(85)

(86)

(87)

Tanabe, K., and Matsumoto, K.: 'l6-bit Microprocessor
with Dual Bus Architecture', Proc. Spring COMPCON, 1979, San
Francisco, 26 Feb. to 1 Mar. 1979, N.Y., U.S.A., pp. 98-101.
Crushman, R.H.: 'uP/uC Chip Directory', EDN, Oct. 1979,
pp. 133-240.

Crushman, R.H., and Bucker, J.: 'EDN Seventh Annual uP/uC
Chip Directory', EDN, Nov. 1979, pp. 94-211.

Scales, H.: 'Multiprocessing with the Motorola's MC6809E',
BYTE, Jul. 1981, pp. 136-156.

Leventhal, L.A.: 6809 Assembly lLanguage Programming,
Osborne McGraw Hill, 1981.

Motorola Semiconductors Ltd.: MC6809 Data sheet.

Leibowitz, L.M.: 'A Binary Arithmetic for the Fermat Number
Transform', NRL Réport 7971, 18th Mar. 1976.

Gallacher, J.: 'Processor-Processor Communication',
Microprocessors and Microsystems, Sept. 1979, vol. 3,
pp. 317-320.

Fronheiser, K.: 'Device Operation and System Implementation
of the Asynchronous Comminications Interface Adapter (MC6850)
Motorola Semiconductors Ltd., Application Note AN-754,
Motorola Semiconductors Ltd.,, MC6850 Data Sheet.

Wakerly, J.: 'Serial Communications', Microprocessor and

Microsystems, 1981, vol. 5, pp. 247-253.

 Motorola Semiconductors Ltd.: MC14411 Data Sheet.

Texas Instruments Ltd.: The TTL Data Book for Design

Engineers.
Patel, J. H.: Processor-Memory Interconnection for

Multiprocessors', Proc. 6th Ann. Symp. on Computers Architec.,

Ref-8

(88)

(89)
(90)
(91)
(92)

Philadelphia, PA, 23-25 Apr. 1979, N.Y., U.S.A, pp. 168-177.
Davidson, K.A., Parsons R.L. etal: 'Processor-to-Processor
Inter-Communication Employing a Common Storage Module',
IBM Tech. Disc. Bull., Mar. 1979, vol. 21, pp. 3959-3960.

Zaks, R.: Programming the Z80, 1982, SYBEX Inc.

Signetics: 8X300 Data Sheet.

National Semiconductors Ltd.: COP402 Data Sheet.

Zaks, R.: Programming the 6502, 1978, SYBEX Inc.

a‘i

Ref-9

