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Design of Microprocessor-Based Hardware for 
Number Theoretic Transform Implementation 

Anwar Ahmed Shamim 

ABSTRACT 

Number Theoretic Transforms (NTTs) are defined in a finite 
ring of integers ZM' where M is the modulus. All the 
arithmetic operations are carried out modulo M. NTTs are similar 
in structure to DFTs, hence fast FFT type algorithms may be used 
to compute NTTs efficiently. A major advantage of the NTT is 
that it can be used to compute error free convolutions, unlike 
the FFT it is not subject to round off and truncation errors. 

In 1976 Winograd proposed a set of short length OFT 
algorithms using a fewer number of multiplications and 
approximately the same number of additions as the Cooley-Tukey 
FFT algorithm. This saving is accomplished at the expense of 
increased algorithm complexity. These short length OFT 
algorithms may be combined to perform longer transforms. 

The Winograd Fourier Transform Algorithm (WFTA) was 
implemented on a TMS9900 microprocessor to compute NTTs. Since 
multiplication conducted modulo M is very time consuming a 
special purpose external hardware modular multiplier was 
designed, constructed and interfaced with the TMS9900 
microprocessor. This external hardware modular multiplier allowed 
an improvement in the transform execution time. 

Computation time may further be reduced by employing several 
microprocessors. Taking advantage of the inherent parallelism of 
the WFTA, a dedicated parallel microprocessor system was designed 
and constructed to implement a 15-point WFTA in parallel. 
Benchmark programs were written to choose a suitable 
microprocessor for the parallel microprocessor system. A master 
or a host microprocessor is used to control the parallel 
microprocessor system and provides an interface to the outside 
world. An analogue to digital (A/D) and a digital to analogue 
(D/ A) converter allows real time digital signal processing. 
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GiAPTER 1 

Introduction 

The aim of this work was to design hardware to facilitate 

the implementation of the Winograd Fourier Transform Algorithm 

(WFT A) to compute Number Theoretic Transforms (NTTs) on 

microprocessors. 

Microprocessors are easy to implement and provide cheap 

integer processing power. In recent years there has been a major 

breakthrough in the solid state technology, which is responsible 

for providing highly reliable hardware. 

Cooley and Tukey (B), described a fast and efficient method 

to compute the Discrete Fourier Transform (OFT) via the Fast 

Fourier Transform (FFT) algorithm (2). The FFT is subject to 

truncation and round off errors, since it involves 

multiplications with complex irrational roots of unity, which 

cannot be represented accurately on a finite precision machine. 

Number Theoretic Transforms on the other hand have a similar 

structure to DFTs, and are defined in a finite ring of integers 

Z M' where M is the modulus. All the arithmetic operations are 

carried out modulo M. Fast FFT type algorithms may also be used 

to compute NTTs without round off errors (9) - (15), (20), (80). 

The results thus obtained are exact. 

Winograd (3), (4), proposed short length OFT algorithms 

which show improvement over the conventional FFT algorithm. The 

~ 
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WFT A requires fewer multiplications, and roughly the same number 

of additions as the Cooley-Tukey FFT algorithm. In the FFT the 

transform length is restricted to powers of 2, but in the WFTA 

the transform length is the product of several mutually prime 

factors. These mutually prime factors are chosen from the short 

length (small-N) WFTA. Transform lengths from 2 to 5040 may be 

implemented. Implementation of the WFT A requires some constants 

to be precomputed and stored in the memory which requires more 

memory than the comparable length FFT (51). The WFTA requires 

less multiplications, but at the expense of increased algorithm 

complexity and more data transfers (52). 

Martin (5), (6), carried out a search for a suitable modulus 

M for 16-bit arithmetic on the lines described by Bailey (53), 

and found that M = 65521 is suitable for NTT implementation. 

Agarwal and Burrus (9), have shown that the transform lengths are 

subject to certain constraints. 

1- N must divide O(M), where O(M) is greatest common divisor 

(g.c.d) of the set of prime divisors (p. - 1) of M. 
1 

O(M) = g.c.d (p. - 1) 
1 

2- An element a of order N must exist such that 

aN :: 1 mod M, a r '¢ 1 mod M, ¥- r < N. 

3- N-l must exist in the ring ZM. If M is not prime, 

-1 then N may or may not exist. N • N-l - 1 mod M. 
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4- N must be well factored for fast transform algorithms 

to. exist. 

5- To implement fast and simple arithmetic mod M, M and 

a. must have simple binary representation. 

No attempt has been made to compare the WFT A and the FFT nor 

to derive any of the algorithms. Martin (5), have discussed 

these topics in detail. Here we will emphasise more the hardware 

design and implementation to compute NTT via WFT A. McClellan and 

Rader (7), provide good references for the NTT and the WFTA. 

In chapter 2 basic number theory and Number Theoretic 

Transforms, and some fundamental concepts about rings, fields, 

and modular arithmetic are described. A brief discussion about 

Mersenne Number Transforms (MNTs) and Fermat Number Transforms 

(FNT s) is also presented. 

Chapter 3 describes different algorithms for signed and 

unsigned multiplication suitable for microprocessors. 

Multiplication using ROM lookup is also described, this method 

provides a fast way of multiplying two numbers. However, the 

applications may be limited since the size of the ROM increases 

rapidly as the size of the input numbers increase. Fast 

multiplier chips are now available which may replace several 

discrete components. Finally 16-bit modular arithmetic 

operations for a microprocessor are described. 

1-3 



Chapter 4 describes a step by step approach towards the 

implementation of the WFTA to compute the NTT. The WFTA was 

implemented on the TMS9900 microprocessor (54), (55), using 

Assembler and FORTH (56), (57), languages. The WFTA was also 

implemented on the MC6809 microprocessor (78), (79),. using 

Assembler language, and in FORTRAN and Assembler on IBM mainframe 

computers (370/168 and 370/4341). 

The total transform execution time on a processor depends 

upon the number of operations and the time required to execute 

each operation. Ordinary microprocessors do not have hardware 

multiplication, even microprocessors with hardware multiply 

require a considerable amount of time for multiplication. 

Modular arithmetic operations and in particular modular 

multiplication, are very slow. Chapter 5 describes a special 

purpose (16 x 16-bit) external hardware modular multiplier (mod 

65521) interfaced with the TMS9900 microprocessor. This modular 

multiplier behaves as an intelligent memory mapped peripheral. 

We shall use the term modular for the results reduced modulo M. 

This external modular multiplier uses multiplier chips and ROM 

lookup techniques to generate the modular product. Finally 

comparison of timings for the implementation of WFTA with and 

without using the external hardware modular multiplier are 

discussed. 

Chapter 6 provides prerequisite information and describes 

some of the basic concepts of parallel and multi processor 

systems. In addition inter processor communication, array 

processors and processor to memory interconnection is also 

1-4 



described. 

The difficulties involved in the uni processor 

implementation of the WFTA is that it requires more data 

transfers and indexing in the memory to acquire data (52). Since 

the WFTA exhibits parallelism in its structure, the possibility 

of parallel implementation of the WFTA was investigated. Chapter 

7 describes design and construction of a parallel microprocessor 

system to implement a 15-point WFT A. 

Benchmark programs were written to choose a suitable 

microprocessor for the design of a parallel microprocessor 

system. Motorola's MC6809 microprocessor gave an optimum choice 

among several microprocessors. To investigate the principle of 

data exchange between the two microprocessors, a two 

microprocessor system (using MC6809) was designed and tested. 

The TMS9900 microprocessor was used as a host processor. 

Since the modular multiplication is the most time consuming 

operation, the parallel microprocessor system was designed such 

that each of the microprocessor is loaded equally during the 

modular multiplication. 

used to control the 

A control or a master microprocessor is 

parallel structure. The control 

microprocessor provides communication between the parallel 

microprocessor system and the outside world. Inter 

microprocessor communication is through dedicated latches. The 

system configuration is that of a master and slave, all the 

input/output (1/0) data is through the master microprocessor. 
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The system design is described, and the timings for parallel 

and uni processor implementation of the 15-point WFT A are 

discussed. Finally a 15-point convolution was also implemented on 

the parallel microprocessor system. The software development is 

the bottleneck of the parallel microprocessor system. 

It was found that the execution time of a 15-point WFTA on 

the parallel microprocessor system is comparable with the 

execution time on IBM mainframe computers. 

Software routines are listed in appendix-A to appendix-D. 

Appendix-E contains backplane wiring connections for the parallel 

microprocessor system. 

---- -- --- ---- -- -- ----- -~---

Fully documented program listings appearing in the 

appendices A - D are available in a separate folder. 

'---'----- ----------- ---------------------- -
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D-fAPlER 2 

Elementary Number Theory and Number Theoretic Transforms 

2.1 Introduction 

The Discrete Fourier Transform (OFT) of a sequence x(n) is 

given by: 

N-1 

X(k) = L x(n) wnk (2.1) 

n=O 

where k = 0,1,2, ••• ,N-l. The Inverse Discrete Fourier Transform 

(lOFT) is given by: 

N-1 

x(n) = N-1 L X(k) w-nk (2.2) 

k=O 

-j2Tt/N . r, where n = 0,1,2, ••• ,N-1, and W = e , J = ,J -1. 

W N (usually written as W) is the principal root of unity such 

that WN = 1 mod N, where N is the sequence length. 

2 Direct computation of equation (2.1) requires N complex 

operations. A complex operation is a multiplication followed by 

an addition. On a digital computer multiplication of two numbers 

requires more computation time than the addition of two numbers. 

The multiplication time depends entirely on the software and the 

hardware available. To improve the efficiency and to compute 

equation (2.1) faster, the number of multiplications must be 

reduced. Various algorithms are available which are more 

efficient than the direct computation of equation (2.1). 

2-1 



In 1965 Cooley and Tukey (8), presented their FFT (Fast 

Fourier Transform) algorithm. This algorithm efficiently 

computes DFT given by equation (2.1). The number of complex 

operations are 2 reduced from N to Nlog2N. This fractional 

saving of N/log 2 N becomes quite appreciable for sequence 

lengths greater than N = 32. It is required by the algorithm for 

m N to be highly composite and a power of 2, such that N = 2 , 

where m is a positive integer. Reference (2), provides 

theoretical development of the FFT algorithm in detail. 

The Fourier Transforms are complex in general. The 

computation of equation (2.1) using the FFT requires 

multiplications with complex irrational roots of unity. These 

irrational roots cannot be represented accurately on a finite 

precision machine. The FFT is subject to cumulative roundoff and 

truncation errors. This gives rise to noise at the output of 

digital signal processing system, thus deteriorating the 

signal-to-noise ratio. 

2.2 Discrete Fourier Transform and the Convolution 

A common problem in digital signal processing is the 

implementation of convolution which is defined by: 

N-1 

y(n) = L x(i) h(n-i) (2.3) 

i=O 

where n = 0,1,2, ••• ,N-1, y(n) is the convolution of two sequences 

x(n) and h(n). Direct implementation of convolution by using 
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equation (2.3) is not efficient. However, the Discrete Fourier 

Transform (OFT) can be used to compute convolution efficiently. 

Certain transform possess the Cyclic Convolution Property (CCP), 

which may be represented as follows: 

T(y) = T(h) • T(x) (2.4) 

where '.' denotes pointwise multiplication. The inverse of 

equation (2.4) is given by: 

(2.5) 

So a cyclic (circular) convolution may be performed by taking the 

inverse transform (T-1) of the product of the transforms of the 

two sequences to be convolved. 

Let X(k) and H(k) be the Fourier transforms of the sequences 

x(i) and h(i) respectively. Then from equation (2.5) we have: 

N-1 

y(n) = N-1 L H(k) X(k) w-nk (2.6) 

k=O 

Substituting value of X(k) in equation (2.6) we get, 

N-1 N-1 

y(n) = N-1 L H(k) L x(i) wik w-nk 

k=O i=O 
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N-1 N-1 

= L x(i) N-1 L H(k) w-k(n-i) 

i=O k=O 

N-1 

= L x(i) h(n-i) 

i=O 

To obtain an N point circular convolution of the sequence 

h(n-i), if the sequence length is less than N it must be 

periodically extended to have a period of N. Hence 

N-1 

y(n) = L x(i) h(n-i mod N) (2.7) 

i=O 

= x(i) * h(i) 

where * denotes convolution. 

Equation (2. 7) shows circular convolution, it is so called 

since it evaluates y(n) as if the input sequence were 

periodically extended outside the range [o to N-1] • This may 

also be stated as that for cyclic convolution the indices are 

evaluated mod N. If zeros are appended to the sequence so as to 

avoid aliasing or overlapping, the cyclic convolution gives the 

same results as conventional convolution. Convolution computed 

via equation (2.5) is -computationally efficient when the sequence 

length is highly composite, so that FFT type algorithms can be 

applied to it. 
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2.3 Congruence 

Consider two elements a,b of a set. Then for b a positive 

integer, if b is a factor of a we can write 

a = qb + r for O<r<q (2.8) 

where q represents the quotient and r the remainder. Equation 

(2.8) basically represents a division operation. If the 

remainder r = 0 then we say that b divides a and is represented 

as b I a. For all integers in the set there are at least two 

divisors for each element, either II a or a I a. This condition 

indicates that a is a prime, with no divisors except 1 and 

itself. If r = 0 then we say that a is composite a=qb. Either q 

or b or both can be prime or composite. For q and b composite we 

can further factorise until we get prime factor factorisation 

which is written as: 

where p. 
1 

a = pi 1 n r. 
is a prime and r. . 1 is an integer exponent. In 

equation (2.8) if b is a fixed number then it is called the 

modulus. Then for infinitely large number of values of a we can 

have the same value of the remainder r. All these values of a 

which give the same value of r are said to be congruent and are 

denoted by =· The remainder r is called the residue mod b, or 

simply the residue. For example, let b = 5. Then 7 = 2 mod 5, 

12 = 2 mod 5, and 17 = 2 mod 5. Numbers 7, 12, 17 are congruent 

mod 5. In general we can write 

a = r mod b 

or b I (a-r) 

also if a = 0 mod b then b I a. Some notations also use angle 
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brackets to represent the modulus, for example: 

<12> 5 and <13 + 8> 5 

The following conditions hold for congruence 

<I + m> b = <<I> b + <m> b> b 

<I - m> b = <<I> b - <m> b> b 

<Im> b = <<I> b <m> b> b 

The largest number which can divide a and b is called the 

greatest common divisor (g.c.d). If the two numbers a and b are 

mutually prime i.e. they have no common factors then they are 

represented as (a,b) = 1, or a and b have a common factor of 1, 

for example (3,4) = 1, and (3,5) = 1, etc. However, if there is a 

. common divisor then (8,10) = 2. 

2.4 Dlinese Remainder Theorem (CRT) 

If the residue is known for several mutually prime moduli 

then with the help of the Chinese Remainder Theorem (CRT) these 

residues can be combined to give the result modulo the product of 

all the mutually prime factors. 

Let a set of simultaneous congruences be given for which 

each of the moduli m. are relatively prime. 
1 

is determined through linear congruences. 

the set of congruences is given by: 

For each i, bi 

The solution of 

(2.9) 

where Y :! ai mod mi, and composite modulus M is given by: 

M = IT mi (2.10) 

i 
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provided that m. are relatively prime, b. are defined such 
1 1 

that: 

b. (M/m.) = 1 mod m. 
1 1 1 

For example, let x = 2 mod 3 , x = 2 mod 5, x = 4 mod 7. To 

solve these simultaneous congruences first we get the product of 

mutually prime factors according to (2.10). Hence 

M = 3 • 5 • 7 = 105 

Now from (2.9) 

X = 2 b1 105/3 + 2 b2 105/5 + 4 b3 105/7 

= 2 • 35 • b1 + 2 • 21 • b2 + 4 • 15 • b3 

Now to determine b1, b2, b3 such that 

35 b1 - 1 mod 3 ===> b1 = 2 

21 b2 - 1 mod 5 ===> b2 = 1 

15 b3 = 1 mod 7 ===> b3 = 1 

substitution of these values in (2.11) gives 

(2.11) 

x = 70 • 2 + 42 • 1 + 60 • 1 = 242 - 32 mod 105 

2.5 Groups, Rings and Fields 

Recall from the previous section that 

a = b + Me (2.12) 

where b is the remainder, c is an integer (quotient) and M the 

modulus. Then (2.12) may be rewritten as 

a = b mod M 41- a,b E [1, M-~ 
In a finite set [a,b,c, ••• ,M-1] of integers all the elements are 

congruent to some integer called the modulus M. Such a set is 

denoted as ZM. Let there be an operation * defined in ZM, 

then the following conditions hold. 
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1- Closure : a * b 4f a,b E ZM 

2- Associative : (a * b) * c = a * (b * c) ¥ a,b,c E ZM 

3- Identity element : a * I = I * a = a * a,I E: ZM 

4- Inverse element : a * a -1 I -1 
ZM = ~ a,a E: 

5- Commutative : a * b = b * a ¥ a,b E ZM 

Where I represents an identity element and a -1 is the 

inverse of a. If the operation * is defined as ordinary addition 

then property 4 represents subtraction, and for ordinary 

multiplication it represents division. 

If these properties hold then the set of integers ZM is 

called a group under the operation *· A group which obeys the 

commutative law is called an abelian group or a commutative 

group. A group is called a cyclic group if all the elements of 

the group can be generated from a single element, this element is 

called a generating function. For example 1 is a generating 

function under addition mod M. For a group ZM under ordinary 

addition '+' and ordinary multiplication '.' operations if the 

following distributive laws hold, 

a • (b + c) = a • b + a • c 

a • (b • c) = (a • b) • c 

(a + b) • c = a • c + b • c 

-¥ a,b,c ~ ZM' then the group is called a ring. 

Consider some examples of arithmetic mod 11, the elements in 

the ring ZM are [o,I,Z, ... ,IO ]· 

1- Addition : 5 + 8 = 13 = 2 mod 11 

2- Negation : -3 = 11 + (-3) = 8 mod 11 
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3- Subtraction : 3 - 7 = 3 + (11 - 7) = 3 + 4 = 7 mod 11 

4- Multiplication : 5 • 4 = 20 = 9 mod 11 

5- Multiplicative inverse : 6 • 2 = 12 = 1 mod 11 

6 and 2 are multiplicative inverses of each other 

-1 -1 or 6 = 2 mod 11 or 2 = 6 mod 11 

6- Division : alb -1 is defined if and only if b exists, 

I - -1 therefore, a b = a • b mod M 

consider 912 = 9 • 6 = 54 = 10 mod 11 

from property 5, 6 and 2 are inverses of each other. 

The element 2 is an integer root of unity of order 10, 

2
5 = -1 mod 11 

2
10 = 1 mod 11 

2.6 Number Theoretic Transforms 

One group of transforms having the CCP are those with DFT 

like structure. Let 

X(k) = T x(n), so x(n) = T-1 X(k) 

N-1 

X(k) = L x(n) a nk (2.13) 

n=O 

where k = 0,1,2, ••• ,N-1. 

The inverse is given by: 

N-1 

x(n) = N-1 L X(k) a -nk (2.13a) 

k=O 

Where a is an element of order N, and plays the same role as W in 

equation (2.1). Where N is the least positive integer such that 

2-9 



aN :: 1 mod M, a ,N E [a, M-1} NTTs use modular arithmetic 

and possess the CCP. 

Euler's function or Euler's totient function is defined as 

the number of integers in the ring ZM which are relatively 

prime to a given modulus M. This function is represented by 

¢CM). If M is composite then ,¢(M)<M, but if M is prime then the 

Euler's function (lJ(M)= M-1, for example Jl1(6) = 2, and 0(7) = 6. 

,¢(M) = M(1-1/p1)(1-1/p2) ••• (1-1/pr) 

where p1,p2, ••• ,pr are different primes dividing M. 

Euler's theorem states that for any non zero element a in 

the ring ZM' which is relatively prime to M, (a,M) = 1, the 

following congruence holds 

~(M) - 1 d. M a = mo 

If M is prime then O(M) = M-1 and the Euler's theorem 

reduces to Fermat's theorem given by: 

M-1 
a = 1 mod M 

The necessary and sufficient condition for the NTT with the 

CCP to exist is that N J O(M), where O(M) is the greatest common 

divisor (g.c.d) given by: 

O(M) = g.c.d (p1 - 1)(p2 - 1) ••• (pr - 1) (2.14) 

Thus the maximum transform length N = O(M). max 

When the transforms in equation (2.13) and (2.13a) are 

defined in a finite ring of integers with the CCP, they are known 

as Number Theoretic Transforms (NTT) (7), (9) - (15), (80). In 

NTTs all the arithmetic operations are conducted mod M. There 
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are several constraints between the modulus M and the transform 

length N (9). Since the NTTs are similar in structure to the 

DFT s any algorithm which applies to the DFT can be applied to the 

NTT. In other words an NTT is a DFT with the CCP defined in a 

finite ring of integers under addition and multiplication. Such 

a ring is denoted by ZM. If the modulus M is a composite 

number then the multiplicative inverses of all the elements do 

not exist. Hence ZM is a field if and only if M is prime. If a 

is of the order of ¢(M), (where ¢(M) is the Euler's totient 

function), then a is called the primitive root or the generating 

function, the non-zero elements of ZM can be generated by the 

powers of the primitive root. 

The results obtained by NTTs are exact and are not subject 

to cumulative round off or truncation errors. For computing 

convolutions using NTTs, the choice of the modulus M has to be 

made first, then the corresponding N and a may be evaluated. 

In a ring of integers ZM' integers may be represented 

unambiguously if their absolute value is less than M/2. If the 

two sequences to be· convolved x(n) and h(n) are scaled such that 

y(n) never exceeds M/2, then the convolution in the ring of 

integers mod M gives the same results as normal arithmetic. In 

most practical applications the impulse response of a digital 

system h(n) and the peak amplitude of the input x(n) signal is 

usually known. 

For efficient implementation of convolution using NTTs the 

algorithm should be computationally efficient. Also N should be 

highly composite and the modulus large enough to provide a large 
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dynamic range of numbers. By suitable choice of N, M and a. it is 

possible to define NTTs which can be computed efficiently. If N 

is chosen to be a power of 2 the efficiency of the FFT algorithm 

can be applied for computation. Binary representation of a. 

should also be simple, such that the multiplication could be 

performed with ease. For a. = 2 or a power of 2 the 

multiplications are reduced to bit shifts and add. 

Discrete convolution may also be obtained by either Mersenne 

Number Transform (MNT) or Fermat Number Transform (FNT). These 

transforms are special cases of Number Theoretic Transforms. The 

multiplications in MNT and FNT are reduced to circular bit shifts 

within the word and add (12), (13), (14), (24). On a digital 

computer most of the computation time is taken by the 

multiplication. The situation is even worse on a microprocessor 

because ordinary microprocessors do not have hardware 

multipliers. Software implementation of the modular 

multiplication requires more time. External hardware modular 

multiplier may be implemented to facilitate modular 

multiplication. So transforms which do not require 

multiplications at all such as the MNT and FNT are 

computationally more efficient. 

2.6.1 Mersenne Number Transforms 

If the modulus is chosen to be a Mersenne number (M ), 
p 

then the transforms defined in a ring with CCP are called 

Mersenne Number Transforms (MNT). The mersenne numbers are 

defined as follows: 
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M = 2P - 1 
p 

where p is prime. Mersenne numbers are of interest only if p is 

prime. 

Rader (12), have described method for computing circular 

convolution using Mersenne Number Transforms. The arithmetic to 

compute Mersenne transform requires only additions and circular 

shifts of bits within the word. Circular convolution is computed 

in a similar fashion as given by equation (2.5). Mersenne Number 

transforms provide error free convolution, since quantisation and 

truncation have no meaning in the field of integers. MNTs are 

defined in a field under addition and multiplication, also the 

associative, commutative and distributive laws hold, except that 

division is not defined therefore some numbers do not have 

multiplicative inverses mod M , unless M is prime. 
p p 

Mersenne number transforms are defined in a set of p 

integers. 

N-1 

X(k) = L x(n) 2nk 

n=D 

where k = D,1,2, ••• ,p-1 

mod M 
p 

· Let q be defined as inverse of p such that 

q = Mp - (Mp -1)/p 

we have solution 

(pq) = 1 mod M 
p 

if (M - 1)/p is an integer 
p 

but 

since 

M - 1 = 2P - 2 p 

P I 2P - 2. 
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It is a special case of Fermat's theorem which states that, for 

every prime p and every integer q, pI qP - q, this proves that 

is an integer. Since 

pq = (p-1) M + 1 = 1 
p 

thus the inverse transform is given by: 

N-1 

x(n) = q [ 

k=O 

where n = 0,1,2, ••• ,p-1. 

X(k) 2-nk mod M 
p 

(2.16) 

To ease the computations 2P (p is prime) may provide a 

suitable modulus, but the transform length is restricted to 2p. 

As 2p is not highly composite, it is not of much interest. 

Consider modulus 2k + 1, the maximum transform length is 2 

since 3 / 2k + 1, hence k must be even (k = pq a composite 

number). The other choice for the modulus is 2P - 1, where p is 

prime, 2 represents root of unity. This allows addition to be 

performed by simple 1s complement add. Multiplication mod M 
p 

is done by forming 2 p-bit product of two words, and adding p 

least significant bits (1s complement addition). However, 

multiplication by 2k mod M is quite simple to implement, 
p 

requiring bit rotation in a p-bit word. The same is true for the 

inverse transform except that the results must be multiplied by 

the inverse q. 

2-14 



2.6.2 Fermat Number ·Transforms 

If the modulus is chosen to be a Fermat number, then the 

transform is called a Fermat Number Transform (FNT). Fermat 

numbers are defined as: 

b 
M = Ft = 2 + 1 

t where b = 2 , t = 0,1,2, ••• 

(2.17) 

Fermat numbers F 
0 

- F 4 are prime and .F 5 upwards are 

· composite. Then for FNT to exist 

N I O(F t) 

O(F t) = 2b = N max 

The largest possible transform length in this case is 

m <. b 

If a = 2 the FNT can be computed efficiently. The FNT of a 

sequence is given by: 

N-1 

X(k) = L x(n) a nk mod Ft 

n=D 

where k = 0,1,2, ••• ,N-1, and inverse is given by: 

N-1 

x(n) = N-1 L X(k) a -nk mod F t 

k=O 

(2.18) 

(2.19) 

where n = 0,1,2, ••• ,N-1, and N is a power of 2, and U is the Nth 

root of unity, i.e. a N -; 1 mod F t• In case of the FNT the 

multiplication is equivalent to bit shifts and add. 

One of the constraints in the pr.actical implementation of 

the FNT is that the wordlength is defined by the transform length 

(13). For a general Ft (D4) the maximum transform length is 
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., 

given by N = 2t+2• Since a 2 ~ 2 mod Ft' a : JZ: the 

transform length N = 4 x wordlength. For example arithmetic mod 

F 2 provides us with 62 - 2 mod 17, 6 = J2 mod •17. 

Equation (2.18) can be computed efficiently using FFT type 

algorithm. In FNT multiplication is equivalent to simple binary 

word shift followed by subtraction. Leibowitz (14), have used 

slightly different approach for performing modular arithmetic mod 
~ 

F t• In the Agarwal and Burrus (13), method problems arise due 

to quantisation when b-bits are used for modular arithmetic. 

This is due to the fact that 2b = -1, hence when -1 is 

encountered it is either rounded to 0 or 2. This introduces some 

quantisation error. The method described by Leibowitz (14), uses 

(b+1)-bits, the extra bit is only used to represent D. 

McClellan (15), have described hardware to implement the 

FNT. A different number representation is used in which the bits 

are weighted +1, -1 and not as 0, 1 as in conventional binary 

representation. 
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GiAPTER 3 

Multiplication Techniques for Microprocessors 

3.1 Introduction 

We have seen in the previous chapter that the Number 

Theoretic Transforms (NTTs) are defined in a finite ring of 

integers ZM. NTTs provide error free convolution (9), (12), 

(13). Since in the ring all the numbers are defined precisely, so 

there is no ambiguity in their representation on a digital 

computer. In contrast floating point numbers cannot be 

represented accurately on a digital computer, and floating point 

arithmetic is subject to roundoff and truncation errors. 

Ordinary microprocessors are integer processing machines and 

are available at much lower prices than the floating point 

arithmetic processors. A microprocessor provides cheap integer 

processing power. By appropriately manipulating the carry bit in 

the condition code register, the microprocessor is capable of 

performing multi-precision arithmetic, for example an 8-bit 

microprocessor can perform 16-bit arithmetic operations. It 

seems logical to investigate the possibilities for implementing 

NTTs on microprocessors (5), (6). In many microprocessors no 

hardware multiplier is available since it requires more hardware 

and chip area. When a hardware multiplier is not available 

alternative methods may be employed to perform the multiplication 

in software or by implementing an external hardware multiplier 
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(18), (31), (41). 

For real time digital signal 

multiplication must be carried 

processing applications, 

out efficiently. The 

multiplication speed can be increased by reducing the total 

number of additions (of partial products) or by performing high 

speed addition. Carry Save Adders (CSA) or Carry Look Ahead 

(CLA) may be used to reduce the carry propagation delay instead 

of conventional Carry Propagate Adders (CPA) (16), (17), (23). 

3.2 Clocked Multiplication Algorithms 

We can classify multiplication in different ways 

i.e. serial, parallel, unsigned, signed (twos complement). A 

brief outline of different algorithms for binary multiplication 

is presented. 

3.2.1 Multiplication on a Microprocessor 

The simplest form of binary multiplication is multiplication 

by two or powers of two. This is analogous to multiplication by 

ten or powers of ten (considering integer arithmetic) in the 

decimal number system. Multiplication by ten is accomplished by 

appending a number of zeros equal to the power of ten towards the 

least significant digit. Similarly in the binary number system, 

multiplication by two is accomplished by shifting the binary word 

towards the most significant bit position and filling the vacated 

places by zeros. The number of shifts is equal to the power of 

two. Overflow conditions must be detected and dealt with 

accordingly. It may be mentioned here that division by two in the 
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binary number system is equivalent to shifting the binary word a 

number of positions towards the low order significant bits. This 

is analogous to shifting of the decimal point in the decimal 

number system towards the high order digit position. However, in 

the binary number system if the least significant hit was a one 

prior to division by two, then the result is subject to 

truncation. This may be circumvented by rounding the binary word 

prior to shifting, this is done by adding a one to the least 

significant bit irrespective of the bit value. 

In practice it is quite uncommon to encounter 

multiplications by two or a power of two. Hence some other 

method must be devised and developed for the implementation of 

multiplication on a microprocessor. 

The most commonly used method to perform multiplication on 

the microprocessor is the shift and add algorithm. The 

microprocessor checks the bits in the multiplier one by one and 

if a one is encountered the multiplicand is added to the partial 

product. After addition the partial product is shifted towards 

the least significant bits. If a zero is encountered then no 

addition takes place and the partial product is simply shifted 

towards low order bits, which is equivalent to shifting of 

multiplicand towards the most significant bit position (28). 

This method is lengthy and quite inefficient for large numbers. 

If subtract instruction is available then an alternative method 

may be used. For example a string of ones in the multiplier can 

be reduced to subtract for the first 1 encountered, shift for 

each subsequent 1 and addition for the first 0 encountered. A 
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multiplication by 14 (1ll0) may be reduced as follows. 

14 = 23 
+ 22 

+ 21 

= 24 - 21 

= 10000 - 10 

Since the multiplication time increases with the number of 

multiplier bits, the above mentioned method may produce results 

faster than the shift and add algorithm. This algorithm may also 

be implemented externally in hardware (17), (18). 

3.2.2 Burk-Goldstine - Von-Neumann Method 

This method was developed for twos complement multiplication 

(21). In this method if the multiplier and the multiplicand are 

positive no correction of the final result is required. However, 

if any of the operands is negative (twos complement) then 

correction must be applied to the final result. This step is 

necessary since in the twos complement number the sign is 

embedded in the number itself. This algorithm generates the 

product in the following manner. 

Let X, y be the multiplicand and the multiplier 

respectively, where 

* X = -xo + X 

* (3.1) Y = -yo + y 

* * -xo and -yo represent the sign bit and X and y give true 

value of the numbers. For number representation see Chu (21). 

The product is obtained as follows 

* * X Y = (X + x 0
) (Y + y 0 ) 
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To obtain the correct answer -(x 0 Y + y0 X + x0 y0
) must be added to 

the final product, such that 

* * X Y =X Y 

If one of the numbers is positive then either -x0 Y or -y0 X have 

to be added. 

3.2.3 Robertson's First Method 

This method multiplies a signed number X with an unsigned 

* number Y = Y. When the multiplier is negative, correction 

term -y 0 X must be added. No correction is required when the 

multiplicand is negative (21). 

3.2.4 Robertson's Second Method 

In this method if the multiplier is negative, then the 

product of -X and -Y is calculated which yields a positive 

result, then no correction is required. But if Y = -1 then the 

result is not correct. The value of Y must be restricted such 

that -1 < Y < 1 (21). 

Comparing the two methods, in the first method if the 

multiplier is negative then it ·needs correction, but in the 

second method no correction is required. The hardware only needs 

to sense the sign bit y0 of the multiplier and to complement the 

multiplicand X. 
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3.2.5 Booth's Algorithm 

Booth's algorithm is quite extensively used where serial, 

signed twos complement multiplication has to be implemented (20), 

(21), (28), (35), (40), (43), (46). This method has an advantage 

over the previous methods that no prior knowledge of the sign and 

no correction of the result is required at the end. Also the 

product is independent of the sign of the multiplier and the 

multiplicand. Let the multiplier and multiplicand be represented 

as. 

n n-1 ° X = -x 2 + x 
1

2 •••• + X 0 2 
n n-

In this method two consecutive bits y. and y. 1 of the 
1 ·-

multiplier are examined simultaneously, starting from the least 

significant bit. Three possible conditions can arise for y. 
. 1 

and y. 1 1-

i) if y., y. 1 are 01, then the multiplicand is added to the 
1 1-

partial product. After addition the partial product is shifted 

by one bit towards the least significant bit position. 

ii) if y., y. 
1

. are 10, then the multiplicand is subtracted 
1 . 1-

from the partial product and the partial product is 

shifted one bit towards the least significant bit position. 

iii) if y ., y. 1 are 00 or 11, then no addition or subtraction 
1 1-

takes place. However, the partial product is shifted one 

bit position towards the least significant bit. 
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3.2.6 A Short Cut Multiplication Method 

This method involves detection of isolated bits ones or 

zeroes. If a sequence of ones are detected then multiple addition 

of the multiplicand into the partial product takes place. 

Otherwise multiple shifts are performed on the partial product. 

Additional hardware may be required to detect the sequence of 

ones or zeroes. For example, if the multiplier is 01000100, then 

there are only two additions of 2
6 

and 22• Worst case would 

be if the multiplier had alternating ones and zeroes. 

3.2. 7 Multiple Digit Multiplication Method 

This algorithm uses the method of repeated additions of the 

multiplicand to the partial product. However, there is a subtle 

difference from the method described previously (Booth's 

algorithm). In this method two consecutive bits of the multiplier 

are checked simultaneously. The following four different 

conditions can arise. 

i) if y., y. 1 are 00, then no addition takes place 
1 I-

ii) if y., y. 1 are 01, then the multiplicand is added into 
1 1-

the partial product. 

iii) if y., y. 1 are 10, then twice the multiplicand is added 
1 1-

into the partial product. 

iv) if y., y. 1 are 11, then three times the multiplicand is 
. 1 1-

added into the partial product. 

Since two consecutive bits are considered only once, the 

total number of addition steps are thus reduced and hence there 

is an overall improvement in the speed. It may be noted that the 
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partial product is shifted two bit positions instead of one after 

the addition of the multiplicand into the partial product. 

Parasuraman (18), have described a variation in this method 

by inspecting three bits at a time and applying correction. 

Harman (19), have described a possible method to increase the 

multiplication speed by examining the number of ones in the 

multiplier and the multiplicand. The operand which has the least 

number of ones is chosen as the multiplier. This method may not 

find a place in practical applications. 

3.3 Clockless Multiplication 

All the different techniques described above use clock 

signals to generate the shift and the add pulses. Now we 

consider some algorithms for clockless multiplication which are 

much faster than the methods described before. Clockless 

circuits are also referred to as combinatorial circuits, whose 

outputs entirely depend upon the current input values. 

3.3.1 Array or Parallel Multiplication 

This method is generally used when high speed multiplication 

is to be performed. A 11 the bits of the multiplier and 

multiplicand are fed simultaneously into an array of logic gates 

and full adders. No storage of partial or intermediate products 

is required. Chu (21), have described a simultaneous multiplier 

in which the two operands are fed into a two dimensional array 

structure of logic gates and full adders. 
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Rabiner and Gold (20), have also discussed a fast parallel 

multiplier which consists of a two dimensional array of 1-bit 

adders. The total multiplication time is the sum of the settling 

time and the propagation delay of the logic ·used, after the 

operands are fed into the input. The unit cell is shown in 

figure (3.1a). These basic cells are cascaded to give a parallel 

multiplier structure. Figure (3.1b) shows a 3 x 3-bit parallel 

array multiplier. This arrangement can be extended to an n x 

n-bit parallel multiplier. A finite amount of time is required 

for the carry to propagate through different stages of the 

multiplier. The partial products can be generated as shown in 

figure (3.2). A problem arises when the partial products have to 

be added. For small numbers the conventional ripple carry adder 

(CPA) may be used to add the partial products, but for larger 

numbers a CLA (Carry Look Ahead) or a CSA (Carry Save Adder) may 

be used (22), (23). Davies and Fung (31), and Bate and Burkowski 

(33), have described the interfacing of a high speed 

combinational array multiplier to a microprocessor. 

3.4 Read Only Memory (ROM) Multiplier 

With the availability of cheap and fast ROMs for storing 

information lookup techniques may be employed to perform 

arithmetic operations for a small range of numbers (18), (26), 

(27), (28). The ROM is programmed such that the products are 

stored in it in an appropriate manner. The address lines are 

used as input, and the product is obtained on the data bus. This 

method is very fast since the output from the ROM entirely 

depends upon the access time of the ROM and may be of the order 
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Figure 3.2: Arrangement for generating partial products. 



of tens of nanoseconds. The ROM lookup technique for 

multiplication can be used in variety of ways some of which are 

described below. 

3.4.1 Direct ROM Multiplier 

The multiplier and multiplicand are appropriately connected 

to the address bus of the ROM. The product of the two numbers, 

which is stored at this address is then obtained directly. 

Figure (3.3) shows an arrangement for a simple ROM multiplier. 

The disadvantage is that if the numbers are large then this 

method may become impractical due to complexity, size and cost. 

3.4.2 Quarter-Squares Lookup Table Multiplication 

Let X and V be the two n-bit numbers to be multiplied. Then 

the product is obtained in the following manner. 

XV = (X + V) 2 
- (X - V) 2 

4 

XV = (X + V) 2 
- (X - V) 2 

4 4 

(3.1) 

(3.2) 

(3.3) 

Squares of the sum and difference of the two numbers are 

stored in separate ROMs. Sum and 8ifference is obtained by 

conventional method using add«;!r. Figure (3.4) shows an 

arrangement for such a multiplier. 
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In equation (3.1) the product is obtained by dividing the 

difference of the output of ROM squarer by 4. In equation (3.2) 

the division by 2 is accomplished before feeding the sum and 

difference to the ROM square table. This sometimes introduces 

truncation errors. Equation (3.3) is equivalent to equation 

(3.1) and gives the same results (26). 

For X and Y even or odd we have X = 2m and Y = 2n or 

X = 2m + 1 and Y = 2n + 1 respectively. If X and Y are even or 

odd equations (3.1) and (3.3) are equivalent, but equation (3.2) 

produces truncation errors. 

For example, if X is even and Y is odd, then X=2m, Y=2n+1, 

substituting these in equation (3.3) we get: 

2m(2n+1) = (2m + 2n + 1)2 

4 
- (2m - 2n - 1)2 

4 

= (m+n) 2 + (m+n) + ! - (m-n) 2 
- (m-n) - ! 

= (m+n) 2 + (m+n) - (m-n) 2 
- (m-n) 

= 4mn + 2m (3.4) 

Considering the case with equation (3.2), we get: 

= 4mn 

1: XV (3.5) 

Equation (3.5) shows truncation error of 2m. Davies (28), 

have described implementation of this method directly on the zao 

microprocessor in software. 
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Johnson (27), have described an improved ROM lookup method. 

Partial products are stored in separate ROMS and the lookup 

results are added appropriately. Product time depends upon the 

access time of the ROMs and the carry propagation delay of the 

adders. Parasuraman (18), have also described lookup method for 

multiplication. 

3.4.3 Multiplication Using Logarithms 

Brubaker and Becker (25), have described another approach to 

binary multiplication. This method employs logarithm and 

antilogarithm tables stored in ROMs. The product of two numbers 

are obtained in the following manner. 

XV = antilog (log X + log Y) 

' This method introduces errors due to truncation and 

rounding. A disadvantage in this method is that only the product 

of positive numbers can be directly obtained (since the logarithm 

of a negative number is undefined). However, the sign of the 

product can be generated externally if required. Figure (3.5) 

shows an arrangement for the logarithmic multiplier. The 

multiplication time is twice the access time of the ROM. 

3.5 Parallel Multipliers Chips 

Parallel multiplication can be achieved using discrete 

components described. However, VLSI technology now allows the 

integration of a complete n x n-bit multiplier on a single chip. 

These chips are easy to interface with a general purpose 

microprocessor (18), (31), (34), (35), (36), (37), (38), (39), 
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(41), (42), (44). Usually these multiplier chips can be cascaded 

so as to allow multiplication of arbitrary length numbers. 

The methods discussed previously use twos complement 

multiplication with discrete components. However, in VLSI chips 

a facility may be provided to perform signed or unsigned 

multiplication, rounding etc. 

Bywater (16), Lewin (17), Rabiner and Gold (20), Chu (21), 

Hayes (22), Flores (45), Booth and Booth (46), Abd-alla and 

Meltzer (47), are also suggested for further reading. 

3.6 Modular Arithmetic on Microprocessor 

Modular arithmetic operations can be implemented on any 

microprocessor with unsigned compare instructions. Some 

microprocessors may perform these arithmetic operations more 

efficiently and faster than the others. This depends upon the 

clock frequency, number of accesses to the memory to fetch the 

operands and the number of CPU registers available. If the CPU 

has enough .registers to hold the operands and the intermediate or 

partial products, then the total number of memory accesses are 

reduced (during the multiplication), which will produce faster 

results. 

Modular arithmetic routines were written for several 

microprocessors. Results of the routines are -shown in tables 

(3.1) to (3.3). Appendix-A contains assembler source listings of 

these modular arithmetic routines. Note that each of the 

microprocessor has a different clock frequency. Renold (48), 
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Table .3.1: Results of benchmark programs for modular addition. 

Clock Microprocessor Number of Number of Instr: Clock Cycles Price 
MHz (No. of bits) Program Bytes Executed (Time )Jsec) 

3 TMS9900 (16) 36 8 88 (29.3) so.o 
Texas Instr. Ltd 

2 M650Z (8) 42 22 74 (37.0) 13. 0 
I MOS Technology 

1 M6809 (8) 20 8 40 ( 40. 0) 13.0 
Motorola 

8 8 X 300 ( 8) 76 26 52 (6.50) 36.0 
Signetics 

4 zao (8) 36 14 75 (18.74) 11. 0 
Zilog 

COP402 (4) 
• 1 2 5 National 20 5 108 216 (864.0) 4.80 

Semiconductors 
.._________ 

·---------·-



Table 3.2: Results of benchmark progr~ms for modular subtraction. 

Clock Microprocessor Number of Number of Instr. Clock Cycles Price 
MHz (No. of bits) Pro']ram Bytes Executed (Time }Jsec) 

3 TM$3900 (16) 24 8 88 (29.3) 50.0 
Tex~s Ins tr. Ltd 

2 M6502 ( 8) 75 16 59 (29.5) 13.0 
MOS Technology 

1 M6809 ( 8) 14 6 32 (32.0) 13. 0 
Motorola 

8 8 X 300 (8) 10'3 50 100 (12.5) 36.0 
Signetics I 

.. I 

4 Z80 (8) 49 22 117 (29.24) 11.0 I 
Zilog 

COP402 (4) I 
.125 National 211 134 268 (1072.0) 4.80 

Se"'iconductors 
---- ~---~--- ~-- -- ~---·-



Table 3.3: Results of benchmark programs for modular multiplication. 

Clock r-1 i c r o p r o c e s so r Nuf'l'lber of Number of Instr. Clock Cycles Price 
Ml-iz (No. of bits) Pro<Jram Bytes Executed (Time Usee) 

3 TM$990(1 (16) 18 5 242 (80.0) so.o 
Texas Instr: Ltd 

2 M6502 ( 8) 333 1246 4866(2433.0) 13.0 
t-10S Tecnnology 

1 M6809 (8) 128 60 336 (336.0) 13. 0 
I 

Motorola 

' 

8 8X300 ( 8) 160 .325 550 (81.25) 36.0 
Si gn.et ic s 

4 zao (8) 252 1013 2462 (615.5) 11.0 
Zilog 

COP402 (4) 
.125 National 859 2269 4553 (18212.0) 4.80 

Semiconductors 
------- I..__ ____ ---------- --- - ---- -- -- --- - - ---- - - - -- - -- --



have compared performances of five different microprocessors by 

means of nine different benchmark programs. He has suggested two 

methods for comparison. 

i) An instruction of medium complexity (load 8-bit register) is 

chosen as an instruction unit. The number of clock cycles for 

any instruction is divided by the number of clock cycles of the 

instruction unit. 

ii) Reduce the clock frequency such that the instruction unit 

takes the same time for all the processors. 

Smith (58), have also described comparison of three 

microprocessors by executing a standard program on each one of 

them. The performance is compared by looking at the number of 

program bytes required, execution time etc. 

To implement modular arithmetic any value of modulus M may 

be chosen. The residue is usually computed using division, but 

division, like multiplication is not an efficient operation when 

implemented on a microprocessor. Division may also be 

implemented externally which may require complex hardware. 

Special techniques may be used to compute the residue. 

In a decimal number system, if the modulus is chosen to be 

10, then the residue of the number is the least significant digit 

of the number. For example 103 = 3 mod 10. A similar case is 

also true in binary number system. If the modulus is chosen to 

be 2k (k is a positive integer) then the residue is found by 

masking out the most significant k-bits except the low order 

k-bits which is the residue. A carry into the kth bit is 
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congruent to 1 and if added to the least significant k-bits gives 

the residue. A choice of modulus 2k -1 also provides easy 

calculation of the residue. The residue in this case is computed 

by adding the k most significant bits to the k least significant 

bits. But in some cases if the k least significant bits are 1s, 

and the k most significant bits are zeros, then the result is not 

correct and may be corrected by adding a one to the k least 

significant bits. 

Let k = 4, 4 2 - 1 = 15 

i) 7 x 8 = 56 = 11 mod 15 

in binary form it is given as 

0111 X 1000 = 0011 1000 

carry = 0 

1000 
+ 0011 

1011 mod F 

ii) 14 x 14 = 196 = 1 mod 15 

1110 X 1110 = 1100 0100 

carry = 1 

0100 
+ 1100 

0000 
+ 0001 

0001 . mod F 

If the modulus is chosen as 2k + 1 then 2k = -1 and 

The problem in this case (k-bit arithmetic) is 

the representation of -1 if it is encountered, it is either 

rounded to 0 or 2. To implement NTT there are several 

constraints between the modulus and the wordlength. If the 

wordlength of the microprocessor does not allow the required 

dynamic range of numbers, the Chinese Remainder Theorem (CRT) may 
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be used to perform arithmetic modulo product of several moduli. 

A search for a suitable modulus made by Martin (5), showed 

that a value of M=65521 (2 16 -15) is very convenient for 

implementation of the NTTs using the WFTA. This is the first 

16 prime number below 2 and allows a dynamic signal processing 

16 range of nearly 2 • Some examples of arithmetic modulo 65521 

($FFF1) are given below. $ shows a hexadecimal number. All the 

following examples use hexadecimal numbers, $ is omitted. NTTs 

deal with unsigned numbers so more emphasis will be given to this 

type of arithmetic. 

3.6.1 Addition Modulo 65521 

When two 16-bit numbers are fed into a binary adder, a value 

of 216 - 65521 (=15) must be added to the sum, 

i) if a carry was generated or 

ii) if the sum was greater than· 65521. 

However, this may generate a further carry, but not more than two 

carries can ever be generated. 

i) 

carry = 0 

ii) 

carry = 1 

carry = 0 

0279 
+ 041C 

0695 

FFEF 
+0014 

0003 
+ OOOF 

0012 

mod FFF1 

mod FFF1 

mod FFF1 
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3.6.2 Subtraction Modulo 65521 

Subtraction is performed in the usual way by adding the twos 

complement of the subtrahend to the minuend. A value of 65521 

must be added to the result, if the subtrahend was greater than 

minuend. 

i) 

ii) 

0352 
-0140 

0212 mod FFF1 

0140 
- 0352 

FDEE 
+ FFF1 

FDDF mod FFF1 

3.6.3 Multiplication Modulo 65521 

If the product of two 16-bit numbers exceeds 65521 then the 

product is reduced modulo 65521. 

0003 * 0003 : 0009 mod FFF1 

FFFO * FFFO : 0001 mod FFF1 

(FFFO - -1 mod FFF1) 
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a-iAPTER 4 

Implementation of the Winograd Fourier Transform Algorithm 

4.1 Introduction 

The Discrete Fourier Transform (DFT) of a sequence x(n) is 

given by: 

N-1 

X(k) = L x(n) wnk (4.1) 

n=O 

and the inverse is given by: 

N-1 

x(n) = N-1 L X(k) w-nk (4.2) 

k=D 

where W = -j2TT/N 
e ' W is an integer root of unity such that 

WN :: 1, N is the sequence length. Cooley and Tukey (8), showed 

an efficient way of computing the DFT which reduces the number of 

2 
operations from N to Nlog

2
N. Attempts have been made to 

further reduce the number of operations. Winograd (3), proposed 

a new class of Winograd Fourier Transform Algorithms (WFTA), 

which requires only 20 percent of multiplications as that of 

Cooley-Tukey's FFT algorithm and roughly the same number of 

additions. Winograd proposed short length DFT algorithms of 

length 2, 3, 4, 5, 7, 8, 9, 16, with minimum number of 

multiplies. Table (4.1) shows number of additions and number of 

multiplications for each of these short length DFT algorithms. 
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Short-length No. of No. of 

WFTA Adds Multiplies 

2 2 2 

3 6 3 

4 8 4 

5 17 6 

7 36 9 

8 26 8 

9 44 13 

16 74 18 

Table 4.1: Number of additions and multiplications in the 

Winograd short length OFT algorithms. 



In the FFT the sequence length is N = 2m, where m is a 

positive integer. However, in the WFT A the transform length is 

equal to several mutually prime factors. If not more than one 

factor is chosen from each of the following groups (2, 4, 8, 16), 

(3, 9), (7) and (5), transform lengths in the range from 2 to 

5040 are possible. This is done by nesting the short length 

algorithms together in the following manner. Each of the short 

length OFT algorithms consists of input additions followed by 

multiplications and the output additions. In the nested form all 

the input additions (for the mutually prime factors) are 

performed one after the other followed by multiplications (with 

the coefficients) and the output additions. Instead of 

performing the multiplications separately for each of the short 

length factors, the multiplications are also nested (49). This 

algorithm reduces the total number of multiplications at the cost 

of increased algorithm complexity. These multiplications are 

performed with precomputed transform coefficients. There are two 

sets of transform coefficients, one for the forward transform and 

the other set for the inverse transform. N-1 . 
In equation (4.2) 

is combined with the inverse transform coefficients so that the 

forward and the inverse WFTA can be computed with equal 

computational effort. 

For example, for sequence length N = 15 the mutually prime 

factors are (3,5) = l. Figures (4.1) and (4.2) show the 3-point 

and 5-point WFTA respectively. Let xO,x1, ••• denote the input 

sequence and XO,X1,... denote the transformed sequence. 
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3-Point WFT A 

N = 3, U = 2 11: /3 

tl = x1 + x2 

mO = 1 • (xO + tl) 

m1 = (COSU - 1). tl 

m2 = jSINU(x1 - x2) 

· s1 = mO + m1 

XO = mO 

X1 = s1 + m2 

X2 = s1 - m2 

5-Point WFT A 

N = 5, U = 2 11:/5 

t1 = x1 + x4, t2 = x2 + x3, t3 = x1 - x4 

t4 = x3 - x2, t5 = tl + t2 

mO = 1 • (xO + t5) 

m1 = (t{COSU + COS2U) - 1).t5 

m2 = t{COSU - COS2U).(t1 - t2) 

m3 = jSINU.(t3 + t4) 

m4 = j(SINU - SIN2U). t4 

m5 = j(SIN2U + SINU). t3 

s1 = mO + m1, s2 = s1 + m2, s3 = m5 - m3 

s4 = s1 - m2, s5 = m3 + m4 

XO = mO 

X1 = s2 + s3 . 

X2 = s4 + s5 

X3 = s4 - s5 

X4 = s2 - s3 
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The nested 15-point WFT A is shown in figure (4.3) which 

clearly shows five 3-point pre-weaves (premultiply adds), 

followed by three 5-point pre-weaves. This is followed by the 

multiplications, the number of multiplications is equal to the 

product of the multiplications in individual short length OFT 

algorithms. Finally the three 5-point post-weaves (postmultiply 

adds) and the five 3-point post-weaves are performed. WEAVE (50) 

is an acronym for Winograd Elementary Add Vector Elements. Note 

that there are eighteen multiplications in the 15-point WFTA, 

since there are three multiplications in the 3-point WFTA and six 

multiplications in the 5-point WFT A. 

Similarly a 60-point WFTA has three mutually prime factors 

3, 4, and 5. First of all twenty 3-point, fifteen 4-point, 

t wei ve 5-point pre-weaves are performed, followed by 72 modular 

multiplications with coefficients and the post-weaves for each of 

the short length WFT A. 

The input and the output data must be reordered or shuffled. 

The input and output shuffle vectors are also precomputed and 

stored in the memory and the shuffle is then performed using 

lookup. The disadvantage in the WFTA is that extra memory is 

required just to store the input/output shuffle vectors and the 

forward and the inverse WFTA coefficients. However, this 

algorithm is computationally efficient on machines on which the 

multiplication time is much longer than the addition time. 

Silverman (51), have described memory considerations for the 

FFT and WFTA, and discussed that the WFTA requires 7N memory 

4-4 



O• • .. • • ~ I ec:::: • • t • • 0 

3•· • fit :-....: :Y • • • ~ :::A 1\ • • 6 

-=== -- " {~\ \ • • 6 • • '''k.' {:Y .,. • lit • ~' )\\ y I 1: J ll 12 

9 • • I I ly / " ~ • • lit • ; ........ / k~t t \, • - • rrr r' .. r, ''' 3 

12 • · • ! ! ! t·~ •"-::: "' • • I • 7' :;11- • •lf\ \ \ \ • • 9 

.,. • * 
·s 4t ·- I I I I -I Y Y Y e e e ~ • "= e e e \ \ \ \ "f ,• 10 • iii \ 

w8 tt ' 19- I I I • ~ ' y , y y ~ -....... ~ • I • ~ ~ j \ \ \ _ .... , I ,, ---..... iii 1 I 
~ w 

~ 
~ 

~11 

~ 
\ \ I ~·- I I " I ........... H • • • ., ~- " I~ \ \ ..,\ \ I I ,. 7 ~ ''' rr rr "'"' r:>- ~' r i\ \i YJ ::::l 

1- 14 tt \ \ X I 1+- I ...... I " """ • • * • )I .,c / " .,.,. \ ~\ \ X I I • 13 '' rv v r' r' i ti rr, 
I 
Vl 

1-ir 
z 2 , \ y I I {., - I "aC "< • * • 7£ ;;;.- ~ ... - ¥'\ y X X I ,. 4 ~ 

.... . . 
10 • f II X 'flf • • • ...,.e 

13 t~ f I I \ \-a.- • k :A<= • 

4 ~ '.olll- ~r ' I '\. ~ • • 

7 • ... - ........ "< • • 

5 POINT PRE- WEAVE lol.liiPliCATIC.N 
WITH 

COEFFICIENTS 

3 POINT POST -WEAVE 

5 POINT POST-WEAVE 

FIG. 4·3: tESTED 1 S-POINT WINOGRAD FOURIER TRANSF~M ALGORITHM (WF TA) 

5 

11 

2 

8 

14 

5 



locations as compared to comparable size FFT algorithm which 

requires 1.25N memory locations. Unlike the FFT, the WFTA cannot 

be computed inplace, Silverman called an analogous approach as 

full overlay. Nawab and McClellan (52), have described that in 

general the WFT A requires more data transfers than an equivalent 

length FFT. In addition they have also discussed the minimum 

number of CPU registers required to perform each short length OFT 

algorithm efficiently, since register to register instructions 

are executed much faster. 

4.2 ~tion of NTT using WFTA 

The Number Theoretic Transform (NTT) of a sequence x(n) is 

given by: 

N-1 

X(k) = I x(n) ank (4.3) 

n=O 

and the inverse is given by: 

N-1 

x(n) = -1 r N . X(k) a-nk (4.4) 

k=O 

where a = e -jZTT/N, and is an integer root of unity, such that 

aN :: 1 mod M , where M is the modulus, and a is defined in a 

finite ring of integers ZM. The choice of modulus is made such 

that N I M, i.f M is prime then N I·M-1. The inverse 

N-1 is defined such that NN-1 = 1 mod M. If M is not a prime 

-1 then N may or may not exist. Martin (5), carried out a 

search for a suitable modulus on the lines described by Bailey 
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(53), and found that value of M = 65521 is quite adequate for 

16-bit modular arithmetic and it is the first prime below 2
16

• 

Since NTTs are similar in structure to the OFT any algorithm 

which applies to the OFT can also be applied to the NTT. 

4.2.1 Determination of the Constants for the WFTA 

Implementation of the WFTA requires some constants to be 

precomputed and stored in the memory. These are the input/output 

shuffle vectors, transform coefficients etc. Consider that we 

want to implement a 15-point WFT A. The following calculations 

must be performed before the actual program coding. 

1- Choice of modulus M = 65521, since it satisfies the 

condition N I O(M), where O(M) is the g.c.d of (p.-1). 
I 

0(65521) = 13 x 5040 and so this modulus will support 

any Winograd transform algorithm (5), (9). 

2- Choice of transform length N = 15. 

3- Determination of N-1, 15-1 = 61153 mod 65521. 

4- Determination of element of order N, 

a 15 = 1 mod' 65521, (7791)15 = 1 mod 65521. 

5- Determination of mutually prime factors 15 = 3 x 5, such 

that (3,5) = 1. 

6- Determination of j (iota) such that j.j = -1 mod 65521, 

j = 41224 mod 65521, j is an element of order 4, such 

that (41224)4 '= 1 mod 65521. 

7- Determination of T 1, T 1 = 32761 mod 65521 

8- Determination of the input and output shuffle 

or reordering vectors. The input and output shuffle 
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vectors are obtained using Chinese Remainder Theorem 

(CRT), in the following manner. 

Let N = r1 r2 such that (r1 , r2 ) = 1 

also let q1 = 0,1, ••• ,r1-1, and q2 = 0,1, ••• ,r2-1 

The following equation allows mapping from a one dimensional 

into a two dimensional array. 

Let 

We get 

(5q 
1 

+ 3q
2
) mod 15 (4.5) 

Using equation (4.5) we obtain the following input shuffle 

vectors 

0 3 6 9 12 

5 8 11 14 2 

10 13 1 4 7 

Similarly the output reordering vectors are obtained, by 

using the following relationship and determining the values of x 

and y, such that: such that: 

5x - 1 mod 3 --~ -- X = 2 

3y - 1 mod 5 --~ y = 2 (4.6) 

Equation (4.5) is rewritten as 

(5xq1 + 3yq
2
) mod 15 

substituting values of·x and y, we get 

(10q1 + 6qz) mod 15 (4.7) 
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where q1 = 0,1,2 and q2 = 0,1,2,3,4. 

This relationship gives us the output reordering vectors as 

0 6 12 3 9 

10 1 7 13 4 

5 11 2 8 14 

9- Determination of the transform coefficients. 

By definition 

casu = HejU + e -jU) 

·u -·u 
SINU = 1/j. HeJ - e J ) 

where U = 2T[/N 

(4.8) 

(4.9) 

Since division has no meaning in an NTT, the trignometric 

functions must be redefined in the number theoretic sense (53). 

Rewriting equations (4.8) and (4.9). 

casu = 2-1cu + u-1) 

SINU = 2-1(-j)(U - u-1) 

where u = a 5 mod 65521, and 

(from step 4) a = 7791. 

is an element of order 4, and 

The multiplier coefficients for the 3-point WFTA and the 

5-point WFT A are calculated separately. 

(a) Coefficients for the 3-point WFT A 

Let U = aS mod 65521 

C7791)5 = 48847 mod 65521 

(48847f
1 = 16673 mod 65521 

mO = 1 

-1 ( -1) m1 = casu - 1 = 2 u + u - 1 

= 32761.(48447 + 16673) - 1 
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= 32760 mod 65521 

m2 = SINU - 1 = 32761.41224.24297(48847 - 16673) 

= 16087 mod 65521 

Similarly the 5-point transform coefficients are calculated 

in the following manner. 

(b) Coefficients for the 5-point transform 

Let U = a 3 mod 65521 

(7791)3 = 30887 mod 65521 

(30887r1 = 28625 mod 65521 

casu = 32761 • (30887+30887-1) = 29756 mod 65521 

SINU = 32761 • 24297(30887.:30887-1) ::: 13367 mod 65521 

CaS2U = cas2u - SIN2U :: 3004 mod 65521 

SIN2U = 2. SINU. CaSU ::: 49289 mod 65521 

mO = 1 

m1 = 2-1• (CaSU + caS2U) - 1 ::: 16379. mod 65521 

m2 = 2-1• (CaSU - CaS2U) ::: 13376 mod 65521 

m3 = j(SINU + SIN2U) : 19136 mod 65521 

m4 = j(SIN2U) : 18005 mod 65521 

m5 = j(SINU - SIN2U) : 48647 mod 65521 

The coefficients for the 3-point and 5-point transform are 

now multiplied (mod 65521) together, such that each of the 

3-point coefficients is multiplied by each of the 5-point 

transform coefficients. This multiplication (mod 65521) is 

performed using a nested 'Da' loop, such that the 5-point 

transform coefficients are indexed by the inner loop and the 

3-point transform coefficients are indexed by the outer. loop. 
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The values of the inverse transform coefficients are 

obtained in exactly the same manner (as for the forward 

transform), except that all the SINU are changed to -SINU and the 

transform coefficients thus obtained are then multiplied by 

-1 15 = 61153 mod 65521. 

4.3 Architecture of the TM59900 Microprocessor 

Texas Instruments TMS9900 is a single chip 16-bit CPU 

capable of addressing 64K byte of memory (54), (55). The 

instruction set of the microprocessor provides full minicomputer 

capabilities (including 1/0). There are sixteen general purpose 

16-bit registers (RO to R15). These registers can be defined any 

where in the RAM whose location is determined by contents of the 

workspace pointer. Register to register instructions are 

executed faster than memory to register or register to memory 

instructions. The three on chip registers are accessible to the 

programmer, these registers are: 

a) Workspace Pointer (WP): this register holds the address of the 

current workspace, which is the same as the address of RD. 

b) Program Counter (PC): 16-bit program counter holds the address 

of the current instruction. 

c) Status register (ST): this register represents the current 

machine state. 

The workspace concept increases the programming flexibility 

and more than one program can reside in the memory and executed 

without affecting the other programs. The workspace pointer can 

also be changed during the program execution. This allows the 
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user to redefine a new set of 16 general purpose registers. The 

special purpose registers R13, R14 and R15 of the current 

workspace contains the contents of old WP, old PC and old ST 

respectively, and a return to old workspace reloads these values 

in the respective registers. This feature is useful when program 

environment is changed to a subroutine, since in a conventional 

CPU the entire machine state is saved on the stack, but in case 

of the TMS9900 only the workspace needs to be changed. A special 

purpose register R12 holds the base address of the Communications 

Register Unit (CRU). All the data read or written to the 1/0 

ports must pass through the CRU. 

This microprocessor also contains 16 x 16-bit hardware 

(unsigned) multiply and 32/16-bit (unsigned) divide, and unsigned 

compare. 

the NTT. 

These features make it suitable for implementation of 

4.4 Implementation on the Microprocessor 

A 15-point and a 60-point WFTA were implemented on the 

TMS9900 microprocessor in assembler language. As there was no 

software support available with the TMS9900 microprocessor, a 

mainframe computer was used for program assembly. A utility 

routine was written in assembler for the TMS9900 to load the 

object program directly from the mainframe computer into the 

memory of the microprocessor. This provided an efficient way of 

testing and debugging the software. 
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Appendix-B shows an assembler program source listing of the 

15-point WFTA implemented on the TMS9900 microprocessor. A 

FORTRAN program listing of the 15-point WFTA is also included in 

the appendix-B. 

A 60-point WFT A FORTRAN program is listed in (5). A 

60-point WFTA was also implemented in the FORTH language, a 

source program is listed in appendix-C. FORTH is an interactive 

high level language for microprocessors (56), (57). 

The 60-point WFTA has three factors 3, 4, 5, so this 

transform has a three dimensional structure. In general a 

transform length with r factors would have an r dimensional 

structure. The input and output shuffle vectors, forward and 

inverse transform coefficients are calculated in a similar manner 

as for the 15-point WFTA. A 120-point WFTA was also implemented 

in FORTRAN on a mainframe computer. 

An A/0 (analogue to digital) converter and a D/A (digital to 

analog) converter was interfaced with the TMS9900 microprocessor 

system to perform transforms of real time signals. 
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D-fAPTER 5 

External Hardware Modular Multiplier 

5.1 Introduction 

Microprocessors have found their way into. many digital 

signal processing applications. Multiplication is one of the 

basic operation in digital signal processing. Hence the need for 

performing multiplication on the microprocessor efficiently is of 

vital importance. In many microprocessors no facility is 

provided for hardware multiply or divide. However, software 

routines can be written to perform the required multiplication or 

division operations. 

Some of the later versions of microprocessors are provided 

with signed or unsigned hardware multiplier. For example 

Motorola's MC6809 microprocessor and Texas Instrument's TMS9900 

microprocessor contains an 8 x 8-bit and 16 x 16-bit unsigned 

hardware multiplier respectively. A considerable amount of time 

is needed for multiplication even if the hardware multiplier is 

available. For example, for the MC6809 microprocessor, 173 clock 

cycles are required to produce a 32-bit unsigned product (clock 

speed 1-2 MHz), and for the TMS9900 microprocessor 88 clock 

cycles (clock speed 3 MHz) are needed. As we are interested in 

the product reduced modulo M, some more time has to be allowed 

for modularising the 32-bit result. The most obvious and 

straightforward way to modularise a 32-bit unsigned number is by 

division. However, for the MC6809 microprocessor this division 
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requires 1264 clock cycles. In total 1337 clock cycles are 

required to produce a 16-bit modular product. Typical program 

coding for 16 x 16-bit (unsigned) multiply and 32/16-bit divide 

routine for the MC6809 microprocessor is listed in appendix-A. 

An alternative approach can be adopted in which the hardware 

multiplier is used to produce a 16-bit modular product which 

requires then only 336 clock cycles (see appendix-A). In the 

case of the TM59900 microprocessor 132 clock cycles are required 

to perform a 32/16-bit unsigned hardware divide, so the total 

number of clock cycles is 220. The number of clock cycles 

required depends upon the addressing mode of the instruction, 

since register to register instructions are executed much faster 

than the register to memory instructions. 

The time required for modular multiplication can be reduced 

further by interfacing a high speed external modular multiplier 

to the system to increase the throughput of the system, thus 

increasing the range of digital signal processing applications. 

Different algorithms may be adopted to implement external 

multiplication. Either serial or parallel methods may be 

employed. For a parallel multiplier the cost increases 

approximately linearly with the number of bits, whereas for a 

serial multiplier the execution time increases approximately 

linearly. Davies (28), have described some aspects of performing 

multiplication on the zao microprocessor, and interfacing an 

external hardware multiplier to it. Weed (29), have described 

theoretical clockless multiplication and division circuits using 

4 x 4-bit multiplier chips. The product of larger numbers can be 
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obtained by employing more than one multiplier chip and adding 

the partial products in an appropriate way. In clockless 

(combinatorial) circuits the total multiplication time is the sum 

of the propagation delay on the chip, and the carry propagation 

delay of the adders. This propagation delay increases 

approximately linearly with the number of input bits. 

P arasuraman (18), have described a hardware multiplier interfaced 

to a microprocessor. 

5.2 Design and Implementation of an External Hardware 
Modular Multiplier 

Large Scale Integration (LSI) techniques now allow the 

integration of a complete 8 x 8-bit multiplier on a single chip. 

For example Advanced Micro Devices (44), and TRW (30), (39), 

(42), have produced single chip 8 x 8-bit (AM25S558) and 16 x 

16-b it (MPY -16AJ) multiplier respectively. These multiplier 

chips have a typical 8 x 8-bit and 16 x 16-bit multiplication 

time of approximately 45 and 200 nanoseconds respectively. A 

single chip multiplier (8 x 12-bits) to produce the 13 most 

significant bits of the product with an internal propagation 

delay of about 2 nanoseconds have also been reported, additional 

delay due to external components adds up to 30 nanoseconds (32). 

The interfacing of an external hardware multiplier with a 

microprocessor have been described by Davies and Fung (31). This 

interfacing can be achieved in two ways. Either it can behave as 

an I/O peripheral or it may be mapped into the memory space of 

the microprocessor. 
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An external hardware modular multiplier (mod 65521) was 

designed and constructed using wire wrapping techniques. 

interfaced with the TMS9900 microprocessor. 

5.2.1 Interfacing Considerations 

It was 

We shall use the term modular multiplier for the external 

hardware modular multiplier interfaced with the TMS9900 

microprocessor. The two choices to interface the modular 

multiplier to the TMS9900 are as follows. 

i) connect to the 1/0 port 

ii) connect directly to the address and data bus 

In the first choice the main disadvantage is that 262 clock 

cycles are required to communicate with the external modular 

multiplier through the I/0 port. The strobe signals for the 

modular multiplier must also be generated at the output port. 

This process is slow since the TMS9900 communicates with the 1/0 

ports through the Communications Register Unit (CRU) serially. 

The number of clock cycles thus required are more than when the 

hardware multiply and divide are used to produce the modular 

product. In the latter arrangement the modular multiplier behaves 

like an intelligent memory mapped peripheral, with three unique 

16-bit addresses. The data is written to two of the addresses 

and read from the third. 
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5.2.2 Interfacing the Modular Multiplier with the 
TMS9900 Microprocessor 

Figure (5.I) shows a block diagram of the complete 

(combinatorial) modular multiplier interfaced with the TMS9900 

microprocessor. In figure (5.I) and (5.2) lines with arrowheads 

represent the data bu& 

This modular multiplier combines two of the forementioned 

techniques, using parallel multiplier chips to produce a 32-bit 

unsigned product and ROM lookup tables whose outputs are combined 

by a modular adder. The 32-bit unsigned product is reduced 

modulo 6552I in the following manner. The high order I6-bits of 

the 32-bit unsigned product pre-multiplied by a fixed constant 

2I 6- 6552I (=I5) are added to the low order I6-bits of the 

product using a modular adder. Direct storage of the 

pre-multiplied data would require a 64K x I6-bit ROM. However, 

if the output is determined by combining partial products derived 

from the 8 low order bits and the 8 high order bits of the high 

order I6-bit input, the storage requirement is reduced to two 256 

x I6-bit ROMs. 

Figure (5.2) shows the block diagram of the modular adder, 

which consists of three identical I6-bit binary full adders, with 

two inputs AI and A2. The output of FAI is checked by a carry 

and overflow detector (CD) circuit (figure 5.3). If a carry or 

an overflow is detected this circuit activates the gate GI and a 

value of 2I6- 6552I (=I5) is added to the output of F AI in F A2. 

This may generate a carry or overflow activating gate G2 adding a 

further value of I5 in F A3. The output of F A3 is the final 
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modular sum. A modular adder was designed and constructed for 

test purpose before implementing it with the modular multiplier. 

The basis of this modular multiplier is four (8 x 8-bit) 

multiplier chips (AM255558), which achieve a typical 8 x 8-bit 

multiplication in approximately 45 nanoseconds. These multiplier 

chips are combined with full adders (SN74LS83) to achieve a 16 x 

16-bit to 32-bit multiplication in approximately llO nanoseconds. 

Figure (5.4) shows a photograph of the modular multiplier, the 

four multiplier chips can be seen clearly. 

Typical program coding and timings for the hardware multiply 

and divide operation is shown in figure (5.5), and coding for the 

use with the external hardware modular multiplier is shown in 

figure (5.6). 

On the first and second move (MOV) instructions the two 

16-bit data words are latched in L1 and L2 (SN74LS374) through a 

bidirectional bus driver T (SN74LS245). Address and control 

signals for these latches and driver are generated by 

appropriately decoding the addresses and gating it with the write 

enable (WE) line from the TMS9900 microprocessor. The outputs of 

L1 and L2 are directed to the multiplier M. The 32-bit unsigned 

product is then split into three parts. The low order 16-bits 

are connected directly to one of the inputs of the first modular 

adder MAl. The high order 16-bits are further split into two 

8-bit words. The low order half 8-bits are directed to the 

address bus of ROM1 and the other half 8-bits are directed to the 

address bus of ROM2. ROM1 and ROM2 are four 256 x 4-bit 

(AM27521) PROMs, with a typical access time of 45 nanoseconds. 
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Figure 5.3: Carry and overflow detect circuit. 

Figure 5.4: Photograph of the external hardware modular 
multiplier. 



Clock cycles Labels Mnemonics Operands 

14 
88 
132 

234 

MDV @MPD,R2 
MPY @MPR,R2 
DIV @MOD,R2 
RT 

MOD DATA 65521 
MPR DATA 
MPD DATA 

R3 contains the modular product. 

Figure 5.5: Program coding for using hardware 
multiply and divide. 

Clock cycles Labels Mnemonics Operands 

INPUT1 EQU >3FF2 
INPUT2 EQU >3FF4 
OUTPUT EQU >3FF6 

20 MDV @MPR,@INPUT1 
20 MDV @MPD,@INPUT2 
14 MDV @OUTPUT,R3 

RT 
54 MPR DATA 

MPD DATA 

R3 contains the modular product. 

Figure 5.6: Program coding using external modular multiplier. 

(> Shows hexadecimal values, and @ shows symbolic names.) 



Typical values stored in ROMl and ROM2 are shown in tables (5.1) 

and (5.2). The output of ROMl is connected to an input of the 

first modular adder MAl. MAl combines the low order 16-bits of 

the 32-bit product with the partial product stored in ROMl from 

the low order 8-bits of the high order 16-bits. MA2 then adds in 

the other partial product stored in ROM2. The output of MA2 is 

finally the 16-bit modular product of the two current 16-bit 

values in the input latches Ll and L2. The output of these 

latches, multiplier chips and the PROMs are permanently enabled, 

so after the second value is latched in L2 the 16-bit modular 

product is available in less than 500 nanoseconds at the output 

of MA2. This output can be read back into the microprocessor by 

activating the tristate buffer TB (SN74LS126) at the output of 

MA2. 

The multiply instruction for the TMS9900 microprocessor 

works in the following manner. If the multiplicand is in 

register Rn and the multiplier is in register Rm. Then after the 

multiply instruction Rn:Rn+l holds the product and Rm remains 

unchanged. For example, if register R2 contains $FFFF, and R3 

contains $FFFF, then after the multiplication the register pair 

R3:R4 contains $FFFEOOOl, where ':' shows concatenation of two 

registers to form a register pair to hold the 32-bit product. 

The division operation also utilises a (consecutive) 

register pair to hold the quotient and the remainder. Initially 

the dividend is held in a register pair Rn:Rn+l. After the 

division the Rn holds the quotient and Rn+l holds the remainder. 

For example, if R2 contains the divisor ($0005) and R3:R4 
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Table 5.1: Values in ROM 1 

0 390 780 1170 1560 1950 2340 273() 3120 3510 

IS 405 795 ttBS 1575 1965 2355 2745 3135 3525 

30 420 810 1200 1590 1980 2370 2760 3150 3540 

45 435 825 1215 1605 1995 2385 2775 3165 3555 

60 450 840 1230 1620 2010 2400 2790 3180 3570 

75 465 855 1245 1635 2025 2415 2805 3195 3585 

90 480 870 1260 1650 2040 2430 2820 3210 3600 

105 495 885 1275 1665 2055 2445 2835 3225 3615 

120 510 900 1290 1680 2070 2460 2850 3240 3630 

135 525 915 1305 1695 2085 2475 2865 3255 3645 

150 540 930 1320 1710 2100 2490 2880 3270 3660 

165 555 945 1335 1725 2115 2505 2895 3285 3675 

180 570 960 1350 1740 2130 2520 2910 3300 3690 

195 585 975 1365 1755 2145 2535 2925 3315 3705 

210 600 990 1380 1770 2160 2550 2940 3330 3720 

225 615 1005 1395 . 1785 2175 2565 2955 3345 3735 

240 630 1020 1410 1800 2190 2580 2970 3360 3750 

255 645 1035 1425 IBIS 2205 2595 2985 3375 3765 

270. 660 1050 1440 1830 2220 2610 3000 3390 3780 

285 . 675 1065 1455 1845 2235 2625 3015 3405 3795 

300 690 1080 1470 1860 2250 2640 3030 3420 3810 

315 705 1095 1485 1875 2265 2655 3045 3435 3825 

330 720 lftO 1500 1890 2280 2670 3060 3450 

345. 735 tt25 1515 1905 2295 2685 3075 3465 

360 750 ff40 1530 ;920 2310. 2700 3090 3480 

375 765 It 55 1545 ·1935 2325 2715 3105 3495 



Table 5.2: Values in ROM2 

0 34319 3tt7 37436 6234 40553 9351 43670 12468 46787 

3840 38159 6957 41276 10074 44393 13191 47510 16308 50627 

7680 41999 10797 45116 13914 46233 17031 51350 20148 54467 

11520 45839 14637 48956 17754 52073 20871 55190 23988 58307 

15360 49679 18477 52796 21594 55913 24711 59030 27828 62147 

19200 53519 22317 56636 25434 59753. 28551 62870 31668 466 

23040 57359 26157 60476 29274 63593 32391 tt89 35508 4306 

26880 61199 .29997 64316 33tt4 1912 36231 5029 39346 8146 

30720 65039 33837 2635 36954 5752 40071 8869 43188 11986 

34560 3358 37677 6475 40794 9592 43911 12709 47028 15826 

38400 7198 41517 10315 44634 13432 47751 16549 50868 19666 

42240 .11038 45357 14155 48474 17272 51591 20389 54708 23506 

46080 14878 49197 17995 52314 2tt12 55431 24229 58548 27346 

49920 18718 53037 21835 56154 24952 59271 28069 62388 31186 

53760 22558 56877 25675 . 59994 28792 63111 31909 707 35026 

57600 26398 60717 29515 63834 32632 1430 35749 4547 38866 

61440 30238 64557 33355 2153 36472 5270 39589 8387 42706 

65280 34078 2876 37195 5993 40312 9tt0 43429 12227 46546 

3599 37918 6716 41035 9833 44152 12950 47269 16067 50386 

7439 41758 10556 44875 13673 47992 16790 51109 19907 54226 

11279 45598 14396 48715 . 17513 51832 20630 54949 23747 58066 

15tt9 49438 18236 52555 21353 55672 24470 58789 27587 61906 

18959 53278 22076 56395 25193 59512 28310 62629 31427 

22799 57tt8 25916 60235 29033 63352 32150 948 35267 

26639 60958 29756 64075 32873 1671 35990 4788 39107 

30479 64798 33596 2394 36713 55ft 39830 8628 42947 



contains dividend ($00000058) then after the divide instruction 

R3 will contain ($0012) and R4 will contain ($0001). 

The dividend must be in a register pair (right justified). 

Before performing the division the microprocessor checks if the 

divisor is greater than the most significant word of the 

dividend. If the divisor is greater then normal division takes 

place. However, if the divisor is smaller than the most 

significant word of the dividend then overflow bit in the status 

register is set and the division operation is aborted, and the 

dividend remains unchanged. 

In figure (5.5) register pair (R2:R3) holds the 32-bit 

unsigned product resulting from a multiply (MPY) instruction. 

After a divide (DIV) instruction R2 holds the quotient and R3 

holds the remainder. 

Comparing the two values in figure (5.5) and figure (5.6) 

shows a saving of 180 c 1 oc k cycles for a single modular 

multiplication. For ·a clock frequency of 3 MHz the total time 

saved for each modular multiplication is 60 microseconds. 

5.3 Results 

A 15-point and a 60-point WFTA transform were run on a 

T MS9900 microprocessor, requiring 18 and 72 multiplications 

respectively. The execution time for a 15-point WFTA is about 4 

milliseconds and for a 60-point WFTA is about 32 milliseconds 

using the hardware multiply and divide instructions. When the 

external hardware modular multiplier is implemented, execution 
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time is reduced to about 3 milliseconds for a 15-point transform, 

and to about 28 milliseconds for a 60-point transform. 

A 60-point WFTA implemented in FORTH requires about 739 

milliseconds to execute. When the external hardware modular 

multiplier is used, a saving of 3 milliseconds is achieved. 

An interesting point to note is that the modular multiplier 

generates the 16-bit modular product between the second and third 

move (MOV) instruction. If the modular multiplier had been 

slower, then a delay routine would be required between latching 

the second operand into the modular multiplier and reading the 

modular product from it. 

The modular multiplier was tested extensively. A test 

routine for the TMS9900 microprocessor was written to check all 

the possible input combinations of the multiplier and the 

multiplicand. The modular product obtained from the modular 

multiplier were compared with modular product of the same two 

numbers calculated by the microprocessor itself. 

Total cost of this external hardware modular multiplier is 

approximately~ 400 (1980), which is dominated by the cost of the 

four multiplier chips. Total power consumption is about 16 watts 

and 81 i.e. packages are used in all. 
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a-w>TER 6 

Multi Processor and Parallel Processor Systems 

6.1 Introduction 

A Central Processing Unit (CPU) fetches instructions from 

its program memory sequentially under the program control (see 

figure 6.1). These instructions are then decoded and executed. 

Each instruction may differ in length depending upon the mode of 

instruction. These instructions are visualised as stream of 

instructions and operands as stream of data. 

The data are manipulated in the CPU registers and the 

results are stored back in the memory. The arithmetic operations 

performed in the CPU registers are much quicker than the register 

to memory or memory to register operations. The onchip registers 

are also referred to as scratchpad registers. Some of the onchip 

registers are not accessible to the programmer and are entirely 

used by the CPU. 

6.2 System Organisation 

Suppose that a processor P is operating at full speed and 

capacity. Let M1 and M0 be the minimum number of instruction 

and data stream respectively. The computer systems can then be 

organised into four different ways according to the instruction 

and data stream. 
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6.2.1 Single Instruction Single Data (SISD) Machine 

In this type of system MI = MD = 1. This arrangement is 

typical of a uni processor (with a single Arithmetic-Logic Unit 

(ALU), and a Control Unit) system. A single instruction I is 

fetched from the program memory sequentially under the ALU 

control, and is decoded by the ALU and then executed in m 

subinstructions ... ' (as shown in figure 6.2). 

The data are obtained from the data memory, and after the 

calculations the results are stored back into it. Each 

instruction represents one arithmetic operation on input data D 
I 

entering the ALU to generate the output data D. 

6.2.2 Single Instruction Multiple Data (SIMD) Machine 

In this case MI = 1, and MD > 1. Figure (6.3) shows a 

typical SIMD machine. There are m number of processors P. These 

processors are arranged in such a manner that the same 

instruction stream performs operations on m seperate input data 

streams D1 , D2 , ••• , 
I 

str.eams Dl' 

D . m 
I 

D m 

To generate the output data 

This arrangement is typical 

of an array processor, with a single control unit with some 

arrangement to broadcast instructions to the desired processors. 

6.2.3 Multiple Instruction Multiple Data (MIMD) Machine 

In this type of system MI > 1 and MD > 1. Figure (6.4) 

shows a typical MIMD machine. Processors P are arranged such 

that each one is distinct and separate, and a separate 
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instruction stream is applied to each of the m processing units. 

Let each of the processing units have separate input data 

streams D1, D2, ••• , Dm to generate the output data streams 
I I I 

D 1' D 2' ••• ' D 
m 

This system executes several 

independent programs concurrently. It basically forms a multi 

processor system, such that each processor has a separate program 

memory. 

6.2.4 Multiple Instruction Single Data (MISD) Machine 

In this case MI > 1 and M0 = 1. Figure (6.5) shows a 

typical MISD machine. The same data passes through different 

segments. The same set of data D is being operated upon by m 
I 

instructions to generate the output D. This arrangement can 

also be called as an m-segment pipeline processor. A pipeline 

processor requires more hardware and complex circuitry, but has 

high speed operation. Each of the segments is separated by a 

buffer register to hold intermediate results. 

6.3 Multi Processor Systems 

Experience reveals that parallelism in hardware circuitry 

increases the throughput of the system. Increasing the level of 

parallelism increases the potential operating speed but also the 

hardware and the cost. 

Consider a uni processor system with programmed I/O devices. 

A CPU performs I/O routines to transfer data to and from the I/O 

devices using polling. Polling is a scheme in which the CPU 
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periodically checks the I/O devices to see if any of the devices 

needs servicing. The system would tend to slow down when the CPU 

is interfaced to rather slow mechanical devices e.g. a card 

reader, or a line printer etc. An improvement on programmed 1/0 

method of data transfer is to implement interrupts. In this case 

the CPU does not poll any of the devices, but when the peripheral 

or 1/0 device is ready to receive/transmit data it sends an 

interrupt signal to the CPU. The CPU branches to the appropriate 

Interrupt service routine, and after performing 1/0 routines 

resumes normal operation. A further improvement would be to 

employ 1/0 Processors (lOPs) also called Peripheral Processing 

Units (PPUs). These reduce considerably the load on the main 

CPU. The lOPs share common memory with the main CPU. But the CPU 

still initiates and terminates all the data transfer operations. 

The main CPU behaves as a master and the lOPs as slaves. 

The advantage of employing CPU and lOPs side by side is that 

both can execute their programs concurrently and independently of 

each other. This basically forms a type of multi processor 

system. Figure (6.6a) shows a single shared link between memory 

and 1/0 devices for local communications. The speed of the 

system may suffer if the 1/0 devices are very slow. However, 

figure (6.6b) shows another arrangement with dual bus, in this 

case 1/0 devices are controlled by an lOP (22). 

In most practical systems it is required by the processors 

to communicate with each other. The multi processor systems can 

be classified as directly or indirectly coupled, which depends 

upon the method of data exchange. 
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6.3.1 Directly Coupled Multi Processor Systems 

A multi processor system is defined as a computer system 

with more than one CPU, sharing a common memory and 1/0 devices. 

The CPUs co-operate with each other at hardware and software 

level, and exchange data with each other through common memory 

when required (73). This is known as a directly or tightly 

coupled multi processor system. 

Scales (77), have described two kinds of directly coupled 

m u It i microprocessor systems using Motorola's MC6809E 

microprocessor, namely global-only and local/global type. He has 

also discussed the basic hardware differences between the MC6809 

and the MC6809E version of the microprocessor. The MC6809E 

version requires an external (TTL) clock, but the MC6809 has an 

onchip oscillator, which operates by an external crystal. The 

MC6809E version provides output signals suitable for a multi 

microprocessor environment. 

In the global-only type, the microprocessors continuously 

use the same global bus, because all the microprocessors share 

the common (global) memory. The efficiency of the system is low. 

Each microprocessor is granted the bus by the bus arbiter at the 

begining of each cycle of the clock E. One of the 

microprocessors has higher priority than the rest of the 

microprocessors such that the system behaves as a master and 

slaves. The master acquires the global bus on powerup reset to 

initialise the system and peripherals, while the other 

microprocessors execute the SYNC instruction and wait for the 

interrupt after the reset has been activated. The priority of 
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the microprocessors is in round-robin manner. At any instant 

only one microprocessor uses the global bus and the clocks are 

stretched for other microprocessors. The maximum time for which 

the clock can be stretched is 10 microseconds without loss of 

data. 

In the local/global system each of the microprocessor has 

its own local program and data memory connected to the 

microprocessor by the local data and address buses. In addition 

there is a global memory, data bus, address bus and global 1/0 

devices. Each of the microprocessors is allocated a different 

task, for example one of them performs the 1/0 operations, the 

other runs the operating system, and the control microprocessor 

supervises the entire system. 

A bus arbiter controls the flow of the data from the 

microprocessors to the global memory and global 1/0 devices. 

Each of the microprocessors is executing program from its own 

local program memory using its local bus. If any of the 

microprocessors wishes to access the global memory, it puts a 

request to the bus arbiter which makes sure that only one 

microprocessor is accessing the global bus at a time to prevent 

bus contention. If two microprocessors simultaneously request 

the bus arbiter to access the global memory, the bus is granted 

by the bus arbiter to the microprocessor which has higher 

priority, and sends the other microprocessors into a wait state 

with their clocks stretched until the first one has finished the 

data transfer into the global memory or the global 1/0 device. 

As long as the microprocessors are executing programs from their 
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own local program memories the speed and efficiency of the system 

is a maximum, but as soon as more than one microprocessor wishes 

to access the global memory or 1/0 device, the speed of the 

system suffers. The number of microprocessors which can be 

interconnected in this manner is limited (4 in this case). 

Hoffner and Smith (68), have described a tightly coupled 

multi processor system. This system employs two MC6809 

microprocessors. These two microprocessors are operated by 

opposite phases of a common clock. This prevents simultaneous 

access by the microprocessors to the common memory. The memory 

in this system should be twice as fast as the processor read 

cycle, to prevent contention. The processors are connected 

through a parallel interface buffer to a common memory. The 

advantage in this system is that in one cycle one of the 

processor is writing into the memory, while in the next 

(anti-phase) clock the other processor can read this particular 

byte. The major drawback in tightly coupled multi processor 

systems in general is the memory conflict. The method described 

above circumvents memory conflict problem (limited to 2 

microprocessors only). 

6.3.2 Indirectly Coupled Multi Processor Systems 

Indirectly coupled multi processor systems in contrast do 

not share a common memory (73). The data exchange takes place 

through an other medium like magnetic tape, magnetic disk or I/O 

ports etc. Each of the CPUs has its own associated memory. In 

loosely or indirectly coupled multi processor systems the 
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processors work more autonomously as compared to tightly coupled 

systems. 

Bellm and Sauer (64), have described three different methods 

for data exchange between two Intel 8080 microcomputers. 

The first method involves parallel data transfer through 

Programmable Peripheral Interface (PPI) using I/O ports. A 

further port is used for handshaking. These handshaking signals 

are also referred to as semaphores. Semaphores are memory 

locations under the software control which act as flags 

indicating the presence or absence of data. When one 

microcomputer transfers the data into its output port, it sets a 

1-bit flag in the other output port. This port is being 

continuously monitored by the other microcomputer, when it is 

expecting data from the other microcomputer. When the signal on 

a particular bit changes, the destination microcomputer reads the 

output port of the source microcomputer. The destination 

microcomputer then acknowledges this by setting a bit in its own 

output port. This port is being monitored by the source 

microcomputer (after it has transferred data to its output port). 

The source microcomputer after receiving this acknowledgement 

sends the next data byte. The data transfer can be in either 

direction, i.e. each of the two microcomputers can at one instant 

behave as source, and in the next instance as destination. A 

loop counter determines the number of data bytes to be 

transmitted and/or received. 
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The second method uses interrupts. When the data are 

available at the output port the source sends an interrupt to the 

destination. After executing the interrupt routine the two 

microcomputers can resume their normal operation independently. 

Data exchange still takes place through input and output ports. 

The destination microcomputer then reads the data, and sends an 

acknowledge signal back to the source. 

The third method employs Direct Memory Access (DMA). The 

source microcomputer sends a request for DMA to the destination 

microcomputer. The destination microcomputer forces its address 

and data buses into high impedance state. The source can then 

access the address and data buses of the destination 

microcomputer to access its memory. Then the source 

microcomputer can write into this remote memory as if it were its 

own memory. A tristate buffer is required to isolate the common 

buses of the two microcomputers (67), (77). During the DMA the 

destination microcomputer is not executing any program. After 

the DMA is complete a signal transmitted to the destination 

microcomputer restarts it. This method of data transfer requires 

complex circuitry. Tanabe and Matsumoto (74) have described a 

dual bus microprocessor. This microprocessor is capable of 

behaving as a master or a slave depending upon a control signal. 

The dual bus architecture allows use of both the buses (local and 

global) simultaneously, for example on the internal bus the CPU 

is executing its program, while the external bus is being used 

for DMA. This prevents the microprocessor idling during DMA, 

thus increasing the throughput. 
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6.4.1 Time-shared Bus 

A time-shared bus is sometimes also referred to as a shared 

bus (22), (71), (72). This is a single bus which is used by 

several processors to communicate with each other, or with some 

other processor or 1/0 device at different intervals of time. A 

shared bus has more than one source and destination. The shared 

bus may be unidirectional or bidirectional. The data transfer 

rate is low but the cost is also low. The complexity of the 

hardware and control function increases with the increase in the 

number of processors on the bus. A major disadvantage is that 

only one processor can act as a source at a time, and the rest of 

the processors are effectively cutoff from the bus during this 

period see figure (6.7). A bus arbiter or a multip_lexer controls 

the dynamic communication path between the two devices. 

Additional systems can be connected to the bus, without major 

alterations in the link, provided that the arbiter has the 

capacity to control all the devices. Such a system is called a 

modular system. 

6.4.2 Dedicated Link 

A dedicated link is the one in which there is only one 

source and one destination per link see figure (6.8). A 

dedicated link provides high speed communications at the expense 

of increased cost. These dedicated links can either be 

unidirectional or bidirectional. If an additional device is to 

be connected to the n-device system then n(n-1)/2 number of links 

are required. This kind of system is non-modular. 
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6.5 Parallel Processor Systems 

The term parallel processing is used in a very general 

sense, which involves methods. to improve computational speed by 

performing calculations simultaneously or in parallel. 

Each of the CPUs has its own local memory (RAM and ROM). 

These local memories are not accessible to any other processor, 

not even to the master. The role of the master in this 

configuration is to control the data flow to and from the slaves. 

The master can also initiate the task. This type of system is 

useful in implementing algorithms with inherent parallelism (59), 

(61). Then a big task is broken down into subtasks and each 

processor is allocated a subtask (73). The processors 

communicate with each other through the 1/0 ports or dedicated 

buses. A master processor supervises the entire system. The 

master is capable of communicating with all the slaves. This 

kind of system is of dedicated type, and it is not very suitable 

for general applications. Another approach to such a system is 

that the master is capable of accessing the local memory of the 

slave(s). This makes the system programmable and more flexible, 

i.e. the master can transfer program(s) into the local memory of 

the slave(s) and request them to execute this program on a 

particular set of data (63). After completing the task the 

slave(s) informs the master and goes into an idle state and waits 

for the next task. This method is also useful when the raw data 

is to be preprocessed to be used at a later stage during the 

program execution by the master. 
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A parallel processor system basically forms an MIMD machine. 

All the processors are under the control of a central control 

unit. Increased parallelism makes the system special purpose or 

dedicated, while low order of parallelism makes the system less 

efficient. Parallelism in a particular problem is obtained by 

examining the size and type of the problem. 

FFT type algorithms can be implemented on a parallel 

processor system provided that the data exchange among the 

processors are performed in an efficient manner (1). 

Parallelism in an algorithm is defined as number of 

arithmetic operations that are independent and can therefore be 

performed in parallel i.e. concurrently. A system which can then 

utilise this parallelism in full would give a highly efficient 

system. 

6.6 Array Processors 

A processor is defined as a computer without a control unit 

(66). These processors can be arranged into arrays with a single 

control unit. These processors are then much easier to design 

using integrated circuit technology on a single chip. This would 

basically form an SIMD machine. The control unit, depending upon 

the instruction, can disable or enable a particular processor. 

If a separate control unit is provided for each processor then it 

would work more autonomously, but still working under the control 

of a central control unit. 
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Performance of an array processor is the (data) bandwidth or 

maximum throughput measured in terms of maximum number of results 

that can be generated per unit time. One measure often used for 

high performance machines is the number of floating point 

operations per second (flops). Sometimes a bigger unit, 

megaflops (million floating point operations per second), is also 

used. 

Array processors are employed for implementation of 

algorithms which have inherent parallelism (62), (70). Each 

processor share the task of processing the data, the load on each 

processor should be kept at the same level. As the processors 

are physically located in close proximity to each other, parallel 

connection exists between them. Each processor can have its own 

program and data memory. The control unit can appropriately 

enable or disable the processors as required. 

6. 7 Processor - Memory Interconnection 

Processor to memory interconnection is one of the essential 

factors to be considered while designing a multi processor 

system. The connection to the main memory with a number of 

processors can be achieved by multiplexing through a switching 

network (87). 

Figure (6. 9) shows a cross-bar switch matrix interconnecting 

processors P and memory or 1/0 modules M. The advantage of this 

arrangement is that the connection between several processors and 

memory modules can be achieved simultaneously, provided they are 

accessing different memory modules. In this case the efficiency 
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would be a maximum. Some arrangement must be provided to prevent 

simultaneous access by two or more processors to a common memory. 

The cost of a large cross-bar switch may exceed the total cost of 

the rest of the system. 

Arden and Berenbaum (65), have described a switch with four 

ports, of which one is the input port and the rest are output 

ports. The connections of the input port to any of the output 

port can be achieved by proper addressing. These three output 

ports can further be connected to similar switches which can 

extend the capability of the processor to access a bank of 

memories. But care should be taken not to connect more than one 

processor to the same memory module accessing a different 

address. This is referred to as memory interference and it is 

entirely under software control. Another kind of contention in a 

multi processor system which can arise is the access of the 

common system routines or tables. This kind of contention is 

called system contention. To overcome this problem the routines 

must be reentrant. A reentrant routine is the one which can be 

executed by several different processors simultaneously, data 

should be in different data memory for each processor. 

Interleaved memories may also be implemented. In an 

interleaved memory structure even and odd addresses are located 

in different memories, such that they can be accessed one after 

the other in quick succession. This reduces the constraints due 

to the low access time of the memory. For instance the processor 

fetches the instruction (op code) from the even address, in the 

next cycle it will fetch operands from the odd address memory 
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module. 

6.8 Computer Systems 

The computer systems can be connected in several ways, few 

of them are described below. 

6.8.1 Ring Structure 

A ring or mesh network is shown in figure (6.10) (22). The 

ring structure is used for long distance communications or local 

area networks. The switches 51 to 56 behave as multiplexers, the 

processors Pl to P6 are interconnected through these switches. 

Each of the processor before transmitting the data sends the 

address of the destination processor to the link. Appropriate 

switch is selected and then the data is transmitted. A 

particular switch then selects its local processor as the 

destination and routes the data to its local processor, otherwise 

forwards it to the next switch in sequence. This form of network 

is modular. A facility in the system to reconfigure itself in 

case of a switch failure makes the system more reliable. 

6.8.2 Star Link 

A star link shown in figure (6.11) consists of centralised 

con troller C. Processors talk with each other through this 

central control switch. 

cripple the entire system. 

Failure of the control switch C would 
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6.8.3 Fully Connected Link 

A fully connected network is shown in figure (6.12). In a 

large computer network all the computers may be connected to each 

other through a dedicated or a time-shared bus. This allows the 

system to bypass a busy or a faulty processor. There is no 

central control, each processor is allowed to communicate with 

any other processor independently when required. This network 

will be costly to implement due to multiple connections. The 

fully connected network is highly non-modular. 

6-17 



D-V\PTER 7 

A Dedicated Parallel Microprocessor System 

7.1 Introduction 

A number of microprocessors are available now commercially 

(75), (76). Microprocessors are slow for many applications. 

However, additional hardware may be employed for better 

performance e.g. an array processor interfaced with a main frame 

computer may increase its performance many fold (62), (70). The 

software on the mainframe computer must be able to detect the 

degree of parallelism in an algorithm, and generate appropriate 

code for it. 

Arden and Barenbaum (65), and Enslow (66), have suggested 

that employing several cheap processors in parallel can in 

certain cases outperform an expensive mainframe computer. With 

the availability of cheap microprocessors parallel processing 

technique to implement WFT A was investigated. 

Figure (4.3) shows a flow diagram of the 15-point WFTA. 

Figure (7.1) shows another way of representing it, which 

illustrates the two dimensional structure in the algorithm. A 

transform of length N, which can be factorised into n mutually 

prime factors (N = r1 xr2x ••• xr n) will have an n dimensional 

structure. For example in this case N = 15, the two mutually 

prime factors are 3 and 5. When the 15-point WFTA is implemented 

on a uni processor system, the 'DO' loop simulates a· parallel 

processor system, calculating the values sequentially rather than 
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simultaneously. Coding of a 'DO' loop also hinders efficient 

program execution. In the case of the WFTA the program coding 

requires double indexing in the memory to acquire data for 

arithmetic operations which would load the microprocessor 

heavily. The consequence is that the microprocessor will spend 

more time in the indexing and data organisation than actually 

performing the arithmetic operations. 

We are interested in designing a dedicated parallel 

microprocessor system to implement the 15-point WFTA. 

Implementation of the 15-point WFTA on a parallel microprocessor 

system would circumvent some of the problems arising in the uni 

processor implementation of the algorithm (59), (61). The amount 

of indexing to be performed by each of the microprocessors is 

reduced considerably, and fewer data are to be manipulated by 

individual microprocessors. This frees the microprocessors for 

more vital tasks. Zohar (60), has suggested the use of address 

processors to calculate the addresses of the data beforehand, 

which would effectively increase the systems efficiency. 

Attention is now drawn to some essential factors which must 

be kept in mind for designing a parallel microprocessor system. 

These factors are, the transform length N, choice of a suitable 

microprocessor, inter microprocessor communication, systems 

organisation, cost and power requirements etc. 
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7.2 Choice of a Microprocessor 

To investigate the possibility of parallel implementation of 

the 15-point WFTA requires the selection of a suitable 

microprocessor. This was done by writing benchmark programs to 

test the microprocessor's performance in this application. These 

benchmark programs (for modular arithmetic operations) were 

written for the following microprocessors, TMS9900, MC6809, Z80 

(89), 8X300 (90), COP402 (91) and 6502 (92). Among these the 

TMS9900 is a 16-bit microprocessor, whereas the MC6809, Z80 and 

6502 are 8-bit microprocessors. The 8X300 and COP402 are 8-bit 

and 4-bit micro-controllers respectively. The MC6800 

microprocessor was not included in the above list, because the 

MC6809 is an enhanced version of the MC6800, and is much faster 

and more versatile than its predecessor. All these benchmark 

programs were run on the respective microprocessor systems to 

test their accuracy, except for the 8X300 and the COP402, which 

were not available at the time. Appendix-A contains source 

listings of these benchmark programs, listings for the two 

micro-controllers are excluded. 

Results of these benchmark programs 

(7.2) to (7.4). Figure (7.5) shows 

are 

the 

shown in figures 

cost of these 

microprocessors (1981), which was one of the considerations to 

obtain a cost effective design (also see tables (3.1) to (3.3)). 

Comparison of these results show that the MC6809 microprocessor 

gave an optimum choice. Two of the important features of the 

MC6809 microprocessor which led to its selection were the 

availability of an unsigned hardware multiplier and the SYNC 
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instruction. In spite of being an 8-bit microprocessor, its 

powerful addressing and indexing modes can provide an outstanding 

performance comparable to the 16-bit microprocessors. Among the 

rest, only the TMS9900 microprocessor contains an unsigned 

hardware multiplier. 

7.3 Architecture of the MC6809 Microprocessor 

The Motorola's MC6809 microprocessor is an 8-bit 

microprocessor, with 16-bit addressing, housed in a 40 pin d.i.l 

package. Figure (7.6) shows a block diagram of the CPU 

architecture (78), (79). 

It consists of two general purpose 8-bit registers A and B, 

often called the accumulators. These registers are mostly used 

for arithmetic purposes. The repertoire of the microprocessor 

contains signed and unsigned 8-bit and 16-bit arithmetic 

operations. The accumulators A and B may be concatenated together 

to form a 16-bit accumulator D, thus allowing 16-bit arithmetic. 

An 8-bit Condition Code register (CC) provides information about 

the current machine status. 

Two 16-bit index registers X and Y are used in the indexed 

mode of addressing. These registers are quite useful when 

sequential data access to and from the memory is required. 

However, an offset can be specified in the instruction, then the 

address in an index register behaves as a base address. The 

accumulators can also be used to hold this offset. 

7-4 



AO -A15 00-07 

J 

*-
~ 

1111! 

16 Is 
' .. PC - ... IR 

u - .. -
.. s - ... I 

"" y - .. INTERRUPT 
CONTROL 

... ... X ... - - .,. 
I 

o{ A ' -~. 
B ... .. 

BUS 

- DP cc ...._ ... CONTROL 

~ 
'P I 

vw 
ALU .. -

TIMING 

I 

Figure 7.6: MC6809 CPU block diagram. 

MPU STATE 
BA BS 

0 0 NORMAL RUNNING 

0 1 INTERRUPT ACK. 

1 0 SYNC ACK. 

1 1 HALT OR BUS GRANT 

Table 7.1: MC6809 CPU statP.. 

~ 

fE-

fE-
~ 

~ 

oE--

... 
_ .... 

Vee 
Vss 

RESET 
NMI 
FIRQ 

IRQ 

DMA/BREQ 
R/W 
HALT 
BA 

BS 
XTAL 
EX TAL 
MRDY 

E 
Q 



There are two 16-bit stack pointers called the hardware 

Stack pointer S, and the User stack pointer U. These stack 

pointers can be used with the same addressing modes as the index 

registers X and Y. These registers work as pushdown stack 

pointers, and are accessible to the programmer. When subroutines 

or interrupt routines are to be executed, the microprocessor 

automatically utilises the address in the stack pointer 5 for 

saving the entire machine state in the memory. The stack 

pointers U and 5 may be used as pointers for the pushdown stack 

thus supporting pull and push instructions. This pushdown stack 

allows to pass arguments to and from the main program to the 

subroutines, interrupt routines etc. 

A 16-bit Program Counter (PC) allows access to 64K bytes of 

memory. The program counter contains the address of the next 

sequential or logical instruction to be executed. An 8-bit 

Direct Page (DP) register is available to enhance the direct 

addressing mode. The contents of this register serve as high 

order 8-bits (A8-A15) during the direct addressing. The DP 

register is cleared when the microprocessor is reset. This 

register allows 8-bit relative addressing within the page, whose 

base address is in the DP register. The direct addressing mode 

requires fewer program bytes and executes much faster· than the 

absolute addressing mode. 

The microprocessor also contains an onchip oscillator, which 

is accessed through two input pins. This oscillator may be 

operated by an external crystal of frequency 4f (where f is the 

bus frequency, typically f = 1 MHz). Alternately an external 
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(TTL) clock source of 4f may be used to operate the 

microprocessor. The latter arrangement is useful in systems where 

synchronous processing is required e.g. in multi processor or 

parallel processor systems. Two output clock signals E and Q 

(1 MHz), are used for external timings. Addresses are valid on 

the leading edge of Q, and data are latched on the falling edge 

of E. 

A low level on the RESET input forces the microprocessor 

into a known state. A low level on the DMA/BREQ input forces the 

data and address buses into high impedance state, so as to permit 

a direct memory access. A low level input on the HALT line halts 

the microprocessor indefinitely after the end of current 

instruction without loss of data. A MRDY input allows the 

microprocessor to access slow memories, by stretching its clock 

signals. However, the clock signals may not be stretched beyond 

10 microseconds without loss of data. A R/W line indicates a 

Read (high) or a Write (low) cycle. Two output signals BA (Bus 

Available) and BS (Bus Status) gives information about the 

current ·machine status as shown in table (7 .1). 

7 .3.1 Hardware and Software Interrupts 

Three levels of hardware interrupts are available, and are 

priori tised in the following order, NMI (Non Maskable Interrupt), 

FIRQ (Fast Interrupt ReQuest), and IRQ (Interrupt ReQuest). 

The NMI is a negative edge triggered interrupt and cannot be 

disabled through software. When this interrupt occurs, the 

entire machine state is saved on the hardware stack. This 
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condition is indicated by setting the E flag in the condition 

code register. After a reset, the NMI will not be recognised 

until the first program load of the hardware stack pointer S. 

Both the FIRQ and the IRQ are level triggered interrupts and 

are maskable, i.e. these interrupts can be disabled or enabled 

through the software. If the F or the I bit in the condition 

code register is set to logic 1, then the respective interrupt is 

disabled. Otherwise it is enabled. The FIRQ is the fast 

interrupt in the sense that, unlike NMI and IRQ it does not save 

the entire machine state, but saves only the condition code 

register and the program counter on the hardware stack. The E 

bit in the condition code register remains cleared. The IRQ 

interrupt works in a similar fashion as the NMI interrupt, except 

that it is maskable. 

Three levels of software interrupts are also available, and 

are useful for debugging the system and for software development. 

Decoding of the low order 4-bits on the address bus determines 

which level of interrupt had occured. 

7 .3.2 Microprocessor Synchronisation 

In a parallel processor system a single out of step 

processor can produce chaotic results. Synchronisation can be 

achieved by handshaking at hardware or software level. The 

handshaking allows data exchange between two or more processors 

without loss of information. 
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The MC6809 microprocessor is provided with a SYNC 

instruction which may be used to synchronise the microprocessor 

to an external event. When the microprocessor executes the SYNC 

instruction,· it stops processing the instructions and waits for 

an external interrupt. Two output pins BA • BS = 1 indicate the 

SYNC acknowledge, where '.' represents a logical AND operation 

(see table 7.1). If the pending interrupt is a nonmaskable (NMI) 

or a maskable interrupt (FIRQ or IRQ) with its mask bits (F or I) 

clear, then after receiving the external interrupt the 

microprocessor will clear the sync state and will execute the 

appropriate interrupt routine. However, if the pending interrupt 

is maskable and it is disabled, then the microprocessor will 

simply clear the sync state and resume normal operation. This 

instruction is ideally suited for the situations where the 

expected input data are occuring randomly, and the microprocessor 

cannot process further data without it. This data can be from 

another microprocessor or from some other source. 

The use of SYNC instruction is equivalent to a wait loop. 

An advantage of using the SYNC instruction is that it is faster 

than the wait loop, since the microprocessor will proceed further 

as soon as it receives an interrupt. However, in the case of a 

wait loop a small delay may be introduced before the processor 

can proceed furthe~ 

7.4 Inter Microprocessor Communication 

In a multi processor or a parallel processor system it may 

or may not be a requirement for the processors to communicate 
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with each other at all. However, if a processor requires data 

from another processor during the task execution, then some form 

of inter processor communication is required. The method of data 

exchange will depend upon whether the system is loosely or 

tightly coupled. 

To investigate a principle for inter microprocessor 

communication a simple example is presented. Consider a system 

with two general purpose processors PI and P2 (see figure 7.7). 

Each of the processor has its own local program memory, and some 

arrangement for decoding the address and generating the 

appropriate read/write signals. Consider two latches LI and L2 

with tristate outputs, these latches are connected to the 

processors such that, PI can only write into LI and P2 can only 

write into L2. Furthermore, PI can only read the contents of L2 

and P2 can only read the contents of LI. In other words LI is a 

write only and L2 is a read only latch for PI, and L2 is a write 

only and LI is a read only latch for P2. This arrangement forms 

a loosely coupled multi processor system, and the associated 

latches may be visualised as 1/0 ports. These latches are 

connected through dedicated parallel data buses, with two 

associated control signals. These two control signals are the 

output enable (OE) and the clock (CLK) signals. 

The two processors exchange data with each other through the 

communication latches in the following manner. When required, PI 

writes data into LI and P2 writes into L2. The processors are 

then synchronised with each other at this instant, and then the 

processors read their respective read only latches (88). 
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7.5 Dual Microprocessor System 

Figure (7 .8) shows a block diagram of a practical circuit 

based on the idea discussed in the previous section. This system 

contains two MC6809 microprocessors P1 and P2. A TMS9900 

microprocessor system serves as a host or master to control the 

two slaves P1 and P2. Each of the microprocessors has its own 

local program memory and no other microprocessor can access it. 

A common single phase clock is used to operate the two slaves, 

which is separate from the master's clock. The microprocessors 

·are located physically very close to each other, and the 

interface between the master and slaves is through dedicated 

16-bit latches with tristate outputs. The master's side consists 

of a 16-bit data bus, while the slave's side consists of an 8-bit 

data bus. 

In addition to the communication latches L1 and L2, each of 

the two slave microprocessors have associated with them two 

additional latches, namely IN1, OUT1 and IN2, OUT2 respectively. 

IN1 and IN2 serve as the input buffer memory i.e. data to be 

transferred to the slaves by the master are held in these 

latches. Results calculated by the slaves are stored in the OUT1 

and OUT2 latches, which are to be read by the master. The 

working of these latches are similar to L1 and L2 as described 

before, except that these latches are used to exchange data with 

the master. 

The HALT and the RESET inputs of the slave microprocessors 

are connected to the output port of the master. The logic levels 

on this port can be changed individually through the software. 
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Initially the master resets and then halts the slaves, until it 

has transferred data into the input latches of the slaves. 

Another important feature in this system is the 

synchronisation between the two slaves. This is achieved by 

using the SYNC instruction and the FIRQ interrupt input, with the 

F bit in the CC register set to logic 1. When the HALT input 

goes high the slaves read the input latches and transfer these 

data values into their appropriate communication latches, and 

then execute the SYNC instruction. The sync acknowledge signal 

from the two processors are ANDed (G3) together and inverted to 

generate interrupt to themselves. This condition indicates that 

valid data are available in the latches L1 and L2. After 

receiving the interrupt the slaves read their appropriate read 

only latches, and perform the desired operation. One of the 

slaves was chosen to perform modular addition and the other 

modular subtraction. 

Some form of protocol is also necessary between the master 

and the slave microprocessors to facilitate synchronisation and 

communication. For this purpose an 8-bit status (STATUS) latch is 

also associated with each of the slaves 51 and 52, only the least 

significant bit is used. The output of the status latch 

determines the system status. For example a logic 0 at the 

output of the status latch indicates that the slave is busy 

executing its program. While a logic 1 indicates termination of 

the task (see figure 7.8), the slaves execute the SYNC 

instruction after setting status to logic 1. The output of the 

two status latches are permanently enabled and are ANDed (G1) 

7-11 



together to generate the system status signal. Another · 1-bit 

signal which is being ANDed in G1 is obtained from the output 

port of the TMS9900 microprocessor. This bit is called the 

status control bit (SCB). When this bit is low the status latch 

output has no effect on G3, as G1 is disabled. When the master 

desires to read the output latches, it sets the status control 

bit to logic 1, and continuously monitors for the output of G1 to 

go high. When the system status signal goes high, the master 

reads the output latches. The slaves execute the SYNC 

instruction after outputting the data, hence the slaves will 

remain in that state until the status control bit goes low again. 

This is done by the master after transferring new values into the 

input latches, which forces the output of G3 low, thus generating 

an interrupt to the slaves, the slaves repeat the same cycle 

again, by first clearing the status latch. 

This loosely coupled multi processor system was designed 

just to test its performance and the principle of slave-slave and 

master-slave communication. Addi tiona! software on the master 

checks that the results calculated by the slaves are correct. 

7.5.1 Merits and Demerits 

In general two microprocessors cannot communicate with each 

other in real time, without one of them waiting for the other to 

send data. But if some intermediate buffer memory is used, then 

the source microprocessor can transfer the data into this buffer 

memory, and the destination microprocessor can read this data at 

leisure. If we are dealing with a single or a double byte 
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buffer, then care must be taken that the source does not 

overwrite this data before the destination microprocessor had a 

chance to read it (64), (68). Another situation might also 

arise, in which the destination microprocessor keeps reading the 

same data without realising that the data have not been updated 

since it was last read. These conditions can be circumvented by 

using a single bit flag which indicates whether the data had been 

read or updated in the buffer or not. 

Previously we have seen that the latch was used as a 

communicating medium between the two microprocessors. The input 

of the latch is connected directly to the data bus of the source 

microprocessor. The output of these (tristate) latches can be 

connected directly to the data bus of the destination 

microprocessor. The control signal i.e. the clock (CLK) and the 

output enable (OE) may be appropriately generated. This means 

that each side of the latch consists of ten lines in all, i.e. an 

8-bit data bus and two control signals for either the output 

enable or the clock signal (since 16-bit data is being 

transmitted through a unidirectional dedicated data bus). We are 

investigating a method for inter microprocessor communication to 

be used for the implementation of the 15-point WFT A. We will see 

later that in the parallel microprocessor system (for the 

parallel implementation of the WFTA) only one 16-bit value is 

exchanged between two microprocessors at any instant on a 

particular bus. The use of latches thus reduce the circuit 

complexity considerably, but at the expense of increased chip 

count, cost and power consumption. 
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Alternately a common memory (RAM) can be employed for inter 

microprocessor communication. Although it provides more storage 

and may be cheaper, it also increases the circuit complexity 

considerably. The major problem in a shared memory system is to 

prevent memory conflict or memory contention. An attempt by two 

or more microprocessors to access common memory is called memory 

contention. The shared and the local address and data buses have 

to be multiplexed (67). The throughput is reduced considerably 

when all the processors wish to access the common memory 

simultaneously. Hoffner and Smith (68), have suggested a method 

of preventing memory contention in a system with two MC6809 

microprocessors by operating them opposite phases of a common 

clock. The number of microprocessors connected in this manner is 

limited to two. 

7.6 Design and Implementation of the Dedicated Parallel 
Microprocessor System 

The dual microprocessor system worked quite satisfactorily. 

The method adopted for inter microprocessor communication through 

latches seemed quite suitable for the parallel microprocessor 

system to implement a 15-point WFTA. Each of these latches would 

be connected through dedicated unidirectional 8-bit data buses. 

All the data exchange among the microprocessors can then take 

place simultaneously, hence the system should provide a very high 

efficiency and throughput. 

Close examination of figure (4.3) reveals that the 

implementation of the 15-point WFTA algorithm consists of 

following steps. 

7-14 



1. Input shuffle or reordering 

2. Five 3-point preweave or premultiply adds 

3. Three 5-point preweave or premultiply adds 

4. Eighteen modular multiplications with precalculated 

coefficients 

5. Three 5-point postweave or postmultiply adds 

6. Five 3-point postweave or postmultiply adds 

7. Output shuffle or reordering. 

It may be noted here that the 5-point WFTA requires six 

modular multiplications which requires extra storage. Hence the 

total number of modular multiplications in the 15-point WFTA is 

eighteen. Since modular multiplication is the most time consuming 

operation, the parallel microprocessor system was designed such 

that all the microprocessors share the load equally during the 

modular multiplication. 

complete system. 

7 .6.1 System Architecture 

This requires 18 microprocessors in the 

Figure (7.9) shows a block diagram of the dedicated parallel 

microprocessor system. The microprocessors are interconnected to 

form a two dimensional array with three rows and six columns. 

The five 3-point transforms are performed along the columns. The 

microprocessors numbered 16, 17, and 18 do not take an active 
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part at this stage hence no connection exists between them along 

the column. For the three 5-point transforms the microprocessors 

are active along the rows. Comparison shows that each '.' 

(column wise) in figure (4.3) corresponds to a box which is a 

microprocessor with associated hardware in figure (7.9). Each of 

the connecting lines along the rows and columns consists of two 

8-bit dedicated data buses with two associated control signals, 

to facilitate bidirectional communication between the two 

microprocessors. All the microprocessors in the system are driven 

from a common single phase clock source of 4 MHz. Each of the 

slave microprocessors generate their own local timing signals. 

The microprocessors in the system are partially connected, 

i.e. there are no redundant connections. This system basically 

forms a loosely coupled dedicated MIMD machine. The prototype 

system was assembled on seven standard plugin 6U eurocards, using 

wire wrapping techniques. The dotted line in the figure (7.9) 

shows how these microprocessors are distributed among the six 

boards labelled A to F. The seventh board in the system consists 

a contrql or a master microprocessor, with associated circuitry. 

7 .6.2 Design of the Control Microprocessor 

The slave microprocessors are not capable of communicating 

directly with the outside world i.e. with a VDU or any other real 

time device. Hence an extra dedicated microprocessor is employed 

to serve as a host or a master microprocessor (not shown in 

figure 7 .9). This brings the total number of microprocessors in 

the system to nineteen. The control microprocessor not only 
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serves as a controller for the slaves, but also provides an 

interface to the outside world. The control microprocessor has 

an RS-232 serial interface with the VDU to provide access to the 

system. Figure (7.10) shows a circuit arrangement for the serial 

interface using Motorola's MC6850 ACIA (Asynchronous 

Communications Interface Adapter). A baud rate generator 

Motorola MC14411 is used to generate the receive/transmit rate 

clock for the ACIA (82), (83), (84), (85). 

The parallel microprocessor system appears to the master as 

a black box, the only part accessible to the master are the input 

and the output latches associated with the slaves. This black 

box appears as an intelligent peripheral to the control 

microprocessor. The master microprocessor transfers data to the 

input latches and reads the transformed values from the output 

latches. For demonstration purposes the ·master then reads the 

output latches and stores these values into its memory and 

displays on the VDU, or oscilloscope via a D/ A converter. The 

master microprocessor does not interfere in the data exchange 

among the slaves, and in fact it is unaware of that. All the 1/0 

data has to pass through the master. For large N, this may 

become a limiting factor, and may degrade the system's 

performance. For example 178_ microseconds are required to 

transfer fifteen 16-bit data· to or from the slave 

microprocessors. Alternative arrangement can be made to transfer 

the data directly into/from the input and output latches, which 

would increase the throughput. 
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Figure (7.11) shows circuitry associated with the control 

microprocessor. The control microprocessor has it own program 

memory of 2K x 8-bits (2716), and 1K x 8-bit (2 x 2114) of local 

RAM. A number of address decoders (SN74LS154) are required to 

access all the input and output latches. A bidirectional bus 

transceiver (SN74LS245) is used to drive all these latches which 

reduces loading on the data bus of the microprocessor. However, 

the local RAM and ROM are connected directly to the data bus of 

the microprocessor. 

An 8-bit write only control latch (CONTRL) is associated 

with the master (see figure 7 .12). The output of the control 

latch is permanently enabled and the low order 5-bits are used 

for control purposes. A location STATUS in the RAM keeps a 

record of the contents of the control latch. 

signals are as allocated as follows. 

Bit 0 master RESET for the slaves 

Bit 1 HALT for the slaves 

Bit 2 RESET for the baud rate generator 

Bit 3 status control bit (SCB) 

Bit 4 chip enable for the A/D converter 

These control 

Bit 5 signal to slaves to perform forward or inverse 

transform 

These bits can be individually set to a logic 1 or reset to 

logic 0 through software using logical bit instructions. The 

status control bit (SCB) is used to detect the condition of the 

complete cyc~e of the transform (see figures 7.12, 7.13). When 

the master desires to read the output latches, it sets the status 
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control bit (SCB) to a logic 1 and executes the SYNC instruction 

and waits for the slaves to complete the transform. When the 

slave microprocessors finish the transform cycle, they set their 

respective status latches to a logic 1, and execute the SYNC 

instruction. At this time the output of the gate G1 goes low 

disabling G2, simultaneously generating an interrupt signal to 

the master through G3. The master then resumes normal operation 

and reads the output latches. However, as long as the status 

control bit remains high, it prevents the interrupt signal from 

reaching the slaves. After reading the output latches the master 

clears the status control bit. This forces the output of G1 

high, enabling G2 and consequently generating an interrupt to the 

slave microprocessors. 

the transform. 

The slaves then start the next cycle of 

7 .6.3 Software of the Control Microprocessor 

To facilitate the development of the software, the control 

microprocessor provides an interactive interface with the 

parallel microprocessor system (see figure 7.11). This allows 

manual insertion of data into the parallel microprocessor system. 

When the power is switched on, the powerup circuitry resets 

the master microprocessor. The master then resets the baud rate 

generator and the slaves, and halts the slaves. It then resets 

and initialises the ACIA for the data receive/transmit data 

format and the baud rate. The halt state of the slaves is then 

cleared. Source listing of the monitor program is included in 

appendix-D. 
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For test purposes a 15-point WFT A verify routine is stored 

in a separate ROM (see appendix-D). The control microprocessor 

executes the 15-point WFTA on the same input data as the slaves, 

and verifies the transformed values obtained from the slave 

microprocessors. The control microprocessor displays an error 

message on the VDU, if the two results do not tally, and prints 

these values. A 15-point WFTA was also implemented in FORTRAN on 

a main frame computer to verify these results. 

7 .6.4 Design of a Typical Slave Microprocessor 

A typical circuit arrangement for the slave microprocessor 

interfaced with local program memory 2K x 8-bits (2716), local 

RAM 1K x 8-bits (2 x 2114) is shown in figure (7.14). However, 

microprocessors numbered 16, 17 and 18 have a slight variation in 

their circuit arrangement which is shown in figure (7.15). Each 

of the six eurocards contains three such circuits. Each of the 

slave microprocessors has associated with it input (INPUT), 

output (OUTPUT), and status (STATUS) latches, except for the 

slaves numbered 16, 17, and 18. In addition a number of 

communication latches are also associated with each of them. The 

number of latches for a particular microprocessor depends upon 
( 

how many microprocessors it is communicating with. All these 

latches are 16-bit (2 x SN74LS374) latches, with tristate 

outputs, except the status latch which is an 8-bit latch. The 

clock and the output enable signals are generated using a 4-line 

to 16-line decoder (SN74LS154), and gating it appropriately with 

E and R/W. All the latches are driven by the bidirectional bus 
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transceiver (SN74LS245), and the direction of data flow is 

controlled by the R/W line. 

The operation of slaves numbered 1 to 15 is as follows. 

After receiving the reset signal from the master, the slaves set 

their respective status latches to 1, and execute the SYNC 

instruction. If the status control bit is high, the slaves then 

wait until it goes low. After transferring the results to their 

respective output latches the slaves set the status latch to a 

logic 1 again. Thus allowing the master to read the output 

latches. If at this instant the status control bit remains low, 

the slaves start the next transform cycle assuming that the data 

have been updated in the input latches. The microprocessors 

numbered 16, 17 and 18 receive data from other microprocessors 

just before the multiplication cycle. They behave as external 

modular multipliers, whci for the most of the time are idling 

(executing a series of SYNC instructions). After performing the 

modular multiplications, these microprocessors return the results 

to the appropriate microprocessors through communication latches. 

These microprocessors then continue to execute another series of 

SYNC instructions until the next multiplication cycle. Figure 

(7.16) shows a flowchart for the master and slave 

microprocessors, which also shows how the software of the master 

and the slaves interact. Figure (7.17) shows a timing diagram. 

7 .6.5 Software of the Slave Microprocessors 

All the slave microprocessors are executing programs 

concurrently although the software of each of the slaves is 
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different from any other. The source listings are given in 

appendix-D. The symbol Rn means that this particular address is 

of a read only latch and it is receiving data from the 

microprocessor numbered n, where n can have any value between 1 

to 18. For example, in the listing for microprocessor number 1, 

R6 means that the microprocessor numbered 1 is receiving data 

from microprocessor numbered 6 whose address is $0412. 

Similarly, Tn indicates an address of a write only latch, where n 

can have any value between 1 to 18. For example, in the source 

listing of microprocessor number 1, T6 means that the 

microprocessor numbered 1 is transmitting data to microprocessor 

numbered 6 whose address is $0403 • 

. All the modular arithmetic operations are coded directly in 

the main program. No subroutines are being used, as this would 

slow down the microprocessor considerably. For example for the 

MC6809 microprocessor a JSR (jump to subroutine) instruction 

requires 7 to 8 clock cycles, and an RTS (return from subroutine) 

requires 5 clock cycles. This means that 12 to 13 clock cycles 

are required for each subroutine call. Results in table (7.3) 

show that the time for a single subroutine call is considerable 

as compared to the total transform time. Table (7.2) shows 

number of modular arithmetic operations for the 15-point WFTA on 

a single and the parallel microprocessor system. 

The slaves are executing their programs in an endless loop. 

The master must ensure that the output latches are read before 

they are over written by the slaves. 
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No. of pre-weave modular additions 39 
No. of modular multiplications 18 
No. of post-weave modular additions 39 

Table 7.2a: Shows number of operations for the 
15-point implementation on a uni processor. 

Proc. No. No. of data exchange No. of additions 
Receive Transmit 

P1 2 2 2 
P2 6 6 6 
P3 5 5 5 
P3 5 5 5 
P4 4 4 4 
P5 4 4 4 
P6 4 4 4 
P7 8 8 8 
P8 7 7 7 
P9 6 6 6 
P10 6 6 6 
Pll 3 3 3 
P12 7 7 7 
P13 6 6 6 
P14 6 5 5 
P15 5 5 5 
P16 2 2 1 
P17 2 2 1 
P18 2 2 1 

Table 7.2b: Shows number of operations per microprocessor 
for 15-point WFTA on the parallel microprocessor system. 
(Each microprocessor is performing one modular multiplication.) 



7 .6.6 Synchronisation of the hardware and the Software 

Synchronisation among the slave microprocessors is one of 

the most crucial factors in this system. Recall that the slaves 

are executing programs from their own local program memories. 

The essential requirement is that they should do so in a 

predetermined and in a synchronised manner. Each of the slave 

microprocessors after performing a modular arithmetic operation, 

stores the result in an appropriate communication latch and 

executes the SYNC instruction. The sync acknowledge from all the 

slaves are ANDed (G2) together as shown in figures (7.12) and 

(7 .18). This signal is inverted and fed into the FIRQ interrupt 

input of all the slave microprocessors. The result is that the 

slaves cannot proceed further until they have all executed the 

SYNC instruction. After receiving the interrupt the slaves read 

their appropriate read only latches and start processing the data 

further (see figure (7 .17)). The advantage in this arrangement 

is that all the microprocessors always find valid data in the 

communication latches. 

This synchronisation could also be achieved by coding dummy 

instructions such as a NOP (no operation) in the main program. 

The purpose of these dummy instructions would be to waste 

microprocessor time so that each of the modular arithmetic 

operation is executed in equal number of clock cycles. For 

example, 14, 18 or 22 clock cycles are required for a modular add 

if the sum > 65535, 65521 > sum > 65535, or sum < 65521 

respectively. 
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The former method for synchronisation was chosen for the 

system, because the use of the SYNC instruction optimises the 

program execution time for each transform cycle. However, in the 

latter case the dummy instructions are executed when carries are 

generated, so the time for the transform execution time is fixed 

(equivalent to worst case). 

7. 7 Transforms of Real Time Signals 

A 12-bit successive approximation analogue to digital (A/D) 

converter (RS754) interfaced with the control microprocessor 

allows transforms of real time signals (see figure (7.19)). The 

conversion time is between 15 to 35 microseconds depending upon 

whether the 8-bit or 12-bit mode is being used. A sample and 

hold (S/H) circuit (LF398) is used to hold the input to the A/D 

converter steady while the conversion is being carried out. 

A latch is connected to the output of the converter, such 

that when the conversion is complete the data are automatically 

latched into it. A read on this latch by the microprocessor, 

also sends a start convert signal to the A/D converter, and to 

the S/H circuit to hold the sample. The control microprocessor 

then executes the SYNC instruction. When the conversion is 

complete, the status bit from the A/D is used (as clock signal 

for the latch) to latch the data and simultaneously _send an 

interrupt signal to the control microprocessor. The advantage is 

that the status bit (of the A/D converter) need not be monitored. 

The control microprocessor reads this latch, this again sends the 

start convert signal to the A/D converter, which then starts 
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converting the next sample. The use of the latch simplifies the 

circuitry and also increases the throughput. While the A/0 is 

converting the next sample, the microprocessor is busy storing 

the previous data into the memory. In this manner full advantage 

of the conversion time is being utilised. A sampling rate of 

28KHz is obtained, figure (7.20) shows timing diagram for the A/0 

conversion. 

Figure (7.21) shows an arrangement for a digital to analogue 

(0/ A) converter (OAC1220) interface. Actually there are two 0/ A 

converters interfaced with the control microprocessor. One for 

displaying the input and the other for displaying the transformed 

values on the oscilloscope. These are 12-bit multiplying 0/A 

converters, with a typical conversion time of 1.5 microseconds. 

Figures (7 .22) and (7 .23) show photograph of the master 

board and the slave board (with three microprocessors) 

respectively. Figure (7.24) shows a photograph of the parallel 

microprocessor system. 

A 15-point convolution was also implemented on the parallel 

microprocessor system. Figure (7.25a) shows a pulse to be 

convolved with itself. Figure (7.25b) shows the NTT of the 

pulse. Figures (7 .25c) and (7.25d) show the product of the two 

NTTs and the convolution respectively. However, if the amplitude 

is large then the effect of modular arithmetic can be seen in 

figures (7.26a-7.26d), which shows the folding of amplitude. 

7-25 



v REF IN 

10pF 

4 17 18 
·DATA BUS· 1 

MC6809 74374 DAC1220 
MASTER 8 

15 2 3 
OE _f ":;:-

CLK 

-:;-

F iqure 7.21: Diqi tal-to-Analogue (0/ A) interface with the master 
microprocessor. 
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Figure 7.22: Photograph of the master microprocessor with 
associated hardware. 

Figure 7.23: Photograph of the slave microprocessor showing 
three slaves on the board with associated hardware. 



Figure 7.24: Photograph of the complete parallel microprocessor 
system. 
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Figure 7.25 
(a) Shows a pulse to be convolved with itself. 
(b) Shows the NTT of the pulse. 
(c) Shows product of the two NTTs. 
(d) Shows convolution of the two pulses. 
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a 
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Figure 7.26 
(a) Shows a pulse of a larger amplitude to be convolved 

with itself. 
(b) Shows NTT of the pulse. 
(c) Shows product of the two NTTs. 
(d) Shows convolution of the two pulses, folding of the 

amplitude occurs due to the use of modular arithmetic. 

a 
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7.8 Results · 

The program timings show that a 15-point WFT A run on a 

single MC6809 microprocessor requires approximately 10 

milliseconds to execute. However, when the parallel dedicated 

microprocessor system is employed, the transform execution time 

is reduced to 675 microseconds. 

Table (7 .3) shows comparison of the 15-point WFT A execution 

times. The program written in FORTRAN was not optimised for 

time, but it gives a rough estimate for comparison. 

System Assembler FORTRAN 

MC6809 10 msec --
Parallel 675 usee --
Structure 

TMS9900 4 msec --
IBM 370/168 365 usee 2 msec 

IBM 370/4341 1 msec 5 msec 

Table 7.3: Comparison of timings for the 15-point WFTA 

The total power consumption of the system is about 65 watts, 

and the total cost of the system is in the range of £ 1500 

(1981). 
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Conclusion 

The object of this work was to investigate and implement 

WFT A on microprocessors and to design hardware to improve the 

execution time. Special purpose hardware was also designed and 

constructed to exploit parallelism in the WFT A. 

An external hardware modular multiplier (mod 65521) was 

designed, constructed and interfaced with the TMS9900 

microprocessor. Since a number of modular additions and 

subtractions are also ·performed it may be beneficial to employ an 

external hardware modular adder (mod 65521). If an external 

hardware modular adder is used then only three move instructions 

are required for external modular add. This will save a compare, 

an add, and two branch instructions. 

designing hardware for modular subtraction. 

There is no benefit in 

A parallel microprocessor system was designed and 

constructed for the implementation of the 15-point WFTA. 

Benchmark programs were written for several microprocessors to 

select a suitable microprocessor for the parallel structure. 

Motorola's MC6809 gave an optimum choice, since it contains an (8 

x 8-bit) unsigned hardware multiplier and a SYNC instruction (the 

SYNC instruction is used to synchronise the microprocessor to an 

external event). This parallel microprocessor is a very highly 

dedicated MIMD machine. A host processor is used to control the 

8-1 



parallel structure. The use of the host processor was necessary 

in the development stages since it provides an interface with the 

parallel microproce~sor system. A serious difficulty is the 

development of the software for the parallel microprocessor 

system which requires large amount of effort, since proper 

synchronisation between all the microprocessors must be 

maintained at all times. 

The parallel microprocessor system being very dedicated 

executes the 15-point WFTA in times comparable with the IBM 

mainframe computers. Table (7.3) shows the program execution 

times on the parallel microprocessor system, MC6809 and two IBM 

mainframes (model 370/168 and 370/4341). All these programs were 

written in assembler language. This agrees with the argument 

given by Arden and Berenbaum (65), and Enslow (66), about 

achieving higher performance from several cheap processors rather 

than an expensive one. 

This p rag mat i c approach to parallel processing, i.e. to 

implement one microprocessor per point may not seem to be a cost 

effective design approach for a bigger size transform. However, 

bigger size transforms can be implemented on the parallel 

microprocessor system by combining the power of each of the slave 

microprocessors with the power of the parallel structure. The 

length of this transform should be an integer multiple N of L, 

where N is one of the short length WFTAs, and L is the transform 

length implemented on the parallel structure. This may be done 

by allowing each of the slave microprocessors to accept N values 

from the master, and perform an N point preweave. Then the 
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parallel microprocessor system is used to perform N (L length) 

transforms. Finally each of the microprocessor performs the N 

point postweave. 

The parallel structure employs microprocessors with 1 MHz 

clock, a 2 MHz version of the MC6809 is also available but at 

much higher price. If the 2 MHz version is used then faster 

memories have to be employed which means further increase in the 

total cost of the system. However, this would double the program 

execution speed. 

Alternately, if an external modular multiplier is interfaced 

to each of the slave microprocessors (as described in chapter 5), 

this would also almost double the program execution speed. 

However, the cost of a modular multiplier is considerable, and 

this may not be practical due to cost. 

The parallel microprocessor system is not 15 times faster 

than a single microprocessor, this is due to the over heads 

involved. Estimated time for 60-point WFTA on MC6809 

microprocessor is about 50 milliseconds, of which 712 

microseconds are required for input/output shuffle. On the 

parallel microprocessor system the execution time is about 3.5 

milliseconds. 
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Modular arithmetic routines for the foJJowing microprocessors 

i) TMS9900 

ii) MC6809 

iii) ZBO 

iv) 6502 

32/16-bit diVision routine for the MC6809 microprocessor 
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... ... 

* * MODULAR ~RITHM~TIC PROGRAMS FOR TMS9900 
"'· .,. ****************************************************** 

I ;:: OPTION XREF,SYI-1T 
AORG >4000 I ;:: * MODULAR MULTIPLICATION 

I ::: 
I 

.,t.,. ...... ... ~ .. , .. MODULAR ADDITION ::: I 
I 

* **************************** 
* START 

OVER 
OVR ... ... 

UJPI 
t~OV 

r>1DV 
A 
JOC 
CI 
JL 
AI 
r~ov 

WKS. 
@AOl,iU 
2A02,R2 
Rl,R2 
OVf:R 
R2,65521 
OVP 
?2 ,15 
R2,@SUM 

* **************************** * * MODULAR SUBTR~CTION 

MDV JSUBTl,Rl 
r~ov · llSUST2,R2 
MlJV Rl,R3 
s R2,Rl 
c R3,R2 
JHE OVERl 
AI Rl,65.521 

OVERl ~10V Rl,@RES ... •.. 

... •.. 

... . ,. 
wKS 
AOl 
A02 
SUM 
SUBT1 
$UiH2 
RES 
MPR 
;~ p J 

PROD 
~~ 0 8 
LAST ..• ... 
•'• ... 
•'• .,. 
•'• ... , ... 

:;: 

MOV ~MPR,Rl 

MOV .:iH·IPR,Rl 
r-lOV llMPO,R2 
MPY R 1, R 2 
O!V ;moo,R2 
MDV R3, Ql DRIJ.O 

s :i))0080 

9$5 32 
BSS 2 
BSS 2 
RSS 2 
3SS 2 
BSS 2 
BSS 2 
5SS 2 
BSS 2 
BSS 2 
DATA 65521 
END START 

* ************~***************************************** ... .,. * MOOULAQ ARITHMETIC PROGRAMS FOR MC6809 ~·.. . .,. 
* ****************************************************** ... . ,. 

•'• .,. 

NAM 
OPT 
ORG 

M6809 
CRE,L,S,I..I,P 
$30 

I 
lADS 
I 
I 
I :;: 

JMP OV~D 

FOB 0 
FOB 0 
I=IJB ·. 0 

A-1 

... . ,. 

::: t,: M.ODULA? AD:JITION * I* **************************** 
* ~*************************** I* * MODULAR SU3TRACTIDN 

... . ,. 
... .. , .. , 

START 

SI\IP 
SK U'l 

LOX 
LflO 
tl OD::J 
BCS 
CMPD 
BLO 
o. 0 OD 
s fri 

tJAOS 
,X++ 
,x++ 
SKIP 
"65521 

.SKIP1 
lj15 

' X 

I* **************************** 
I ::: 
lOVER 
I 
I 
I 
I 
IS t<. I P 2 
I 

LOX 
LD':l 
SUBO 
BCC 
AOOO 

! 

s Trl 
JMP 

t:!SBTN 
,X++ 
,X++ 
SKIP2 
!165521 
' J 
fJ v ~~ rn 
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SbTN FD8 0 
FOB 0 
FDS 0 

"'• ... 
... ~~~~~~~~~~~~~~~~~~~~~~·~·-·· ! ... .. ............... , .... , ..... , ... "'•"'"!" ................... , ................ , ................... , ...... ~ ............. , ......... , ......... , .... , .. 

,.; .. ... 16:::16 f:\IT MULTIPICATION "1:. I •,• •,• 
.... ~~~·-~-~-~~~-~-~~-~··~-~-~~- I ... .. , .......... , .... , .... , .... , .............................................. , .................... , .... , .... , .... , .... , .... , .... , ..... , .............. 
... I ... 
0VER1 LOX tHIL T P. ISKI 0 6 

LOY ttr·1L Hl ISKIP7 
LOU !tP~001 ! 0/·1!T 
CLR o., u I 
CL~ 1 t u !SKIPS 
lOA 1 , X. I 
LD3 1 ~ y I 
MUL I 

STO z,u 
LOA 0 , X 
LOB 1 ' y SKIP A 
~1UL 

AODD l,U 
STO 1, u 
BCC SK!P3 
INC o,u 

SKIP3 L DA 1 , X 
l D~ 0' y SKIPE 
~1Ul SKI PC 
ADDD 1, u 
STQ 1,u 
BCC SKIP4 
!NC o,u SK!::>8 

SKIP4 LOA o,x SK.IPC 
LD8 I) , y 0"'1IT1 
~WL MLTR 
ADDD o,u t~L TN 
STD o,u PR0~1 

.,_ PQ002 ... 
'!:: ---·~-~~~-~-~~~~·-~·-~·-·~~-¥¥¥~¥--~~·--¥-¥-¥¥¥¥¥~¥-~--- PRCD3 
... ..• r·10DULARISING . .. PR004 . ,. . .. .,. 
•'· ............ .,, ........................... J .. ~· ..... • .................................................................................................. T E ~~ P ... ¥¥¥¥¥¥¥~~~----¥¥¥¥¥¥~··-¥-¥¥ 
... ... 

* MCDULA~ ARITHMETIC PROGRAMS FOP ZBO 

LOA 
5EQ 
LD3 
~~uL 

ADOC 
RCS 
C r~o D 
BLO 
ADDD 
STD 
LOA 
SEQ 
L::lY 
CLR 
CLR 
CLR 
LDo 
"'UL 
STD 
LOA 
13EQ 
L.O ~ 
MUL 
ADDD 
BRA 
L DO 
ADDD 
BCS 
CW>[; 

3LO 
A. ODD 
STD 
JMP 
FD9 
r=og 
FCB 
FC~ 

FC~ 

FCS 
~=oP. 

=No 

1 'u 
Q:HT 
~ 15 

z,u 
SKIP5 
~t65521 
SKIP7 
!tl5 
z,u 
o,u 
ornr1 
:tT~i-10 

O,Y 
1 'y 
2' y 
:i15 

o,v 
0 'y 
SKIPE 
II 1 5 

1 ' y 
SKIP.fJ 
1 'y 
2,lJ 
SK~ 0 ~ 
1165521 
SKI PC 
:i15 
2,U 
tt:S64 

0 
0 
0 
0 
I) 

0 
b 

... . ,. 

--~----~~--~---~~-~~-·~~-~~~~~--~~----~·~--~---·--·---... , .... , .......... , ......... , ........................................ , .................... , ............................... , .......... , ............... , .... , .... , .... , ..................... , ..... , .... , .... , ............ ~ .... , ..... , ...... , ......... , ......... , ......... , .................... . 

.~~*~~*~*~**~*****~********** 
•'• ..• MODULAR ADDITION 
****************~~*~******** 

START: 
'JRG 
LD 
LD 
~DO 

100H 
11L,(A001) 
f:'.C,(A002) 
YL,BC 

JP c,cv~Rl 

LD A,255 
CP H 
JP tlZ,JVEk' 
LD A, 2 41 

CP L 
JP ?,QV=Rl 
JP r-.JC,OVE~ 

A-2 
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OVERl: LD 5(, 1 5 I LC tJ , ( 1-1 p t< 2 ) 
ADO t-IL,BC I LD H ,.A 

LD ( S U ~1) , H L I LD A, ( !·1 P 01 ) 
OVER: JP SK!? I LD :: 'A 

I CALL ~ULT 

AUD1: OEFW 0 I LD (PDJ05),HL 
AU02: OEFW 0 ! LO A,CM?Rl) 
sur~: OEFW 0 I LO "1 ' A .. **************************** I LD A,(i~P02) , . ... f·10 DIJLA R SU8TRACTIC~J ... I LD :'A , ... ., . . ........................ ..} .. ~., ................................................................................................................... I CALL "1ULT , .., ...... "'"" .. , ......... , .................. ~"•'" .. , ........ , .......... , .... , .... ~ ....... , ..... , .... , ...................... "•"'"'!"' .. , .. 

SKIP: LD HL,(SUBTl) ! LD Cl!:,(PR005) 
LD D~tCSUBT3) I ADD HL,Jc 
AND A I JP ~., c ' ?, tlK 

SBC HL,OE I LD B,l 

LD A,CSUBT3) I LD .l,(P~:JD2) 

LO !),.l I ADD A,~ 

LD A,CSUBT1) I LD CPR'J02),A 
CP 0 !oAK: LO (PRO':'I5),HL 
JP NC,OVR I LD .l,(;JR004) 

JP Z,ZERO ! LD ::'A 
BACK: LO 3C,65521 I LD A,(P=/0~1) 

ADD HL·, SC I LD D,A 
JP OVR I ADD "iL,DE 

ZLRO: LD A,CSUBT4) I JP ~!( , 3 A K 1 
LJ o,A I LD. ~ , 1 

LD A,CSUBT2) I LD A,(P~002) 

CP 0 I ADD A' g 

JP NC,OVR I LD CPPJD2),A 
JP Z,OVR IBAK1: LD (?RJll5),Hl 
JP RACK. ! LD A,H 

OVR: LD CRES),t-~L 
,. LD (?RJOl),A 

JP SKIP2 I LD t.,L 
• I . , LD (?PC04),A 

SUBTl: DEFB 0 I . , 
SUBT2: OEF8 0 I . ~~··~·~·~···-~-·--·~--~--·--, ¥¥¥¥¥¥-¥¥¥¥¥¥-¥¥¥YY¥¥Y¥¥Y¥¥¥ 

SUBT3: 0:FB 0 I 0 ... PRQ01:PRQDZ:PR003:PRQD4 ::: , ..• 
SUBT4: DEl=~ 0 I . ................................................................................................................... ~· ................................. , "' .... , ..... ,.. ........ , ......... , ......... "' ....... , .... , .. "'•"' ..................................... , .. ~o· ., ..... , .......... , .... , ... , ....... 

RES: OEFW 0 I 0 , 
****************~*****#***** I LD A,(PP001) 

0 ... MIJDULAR MUL TIPLICATICPJ ·'· I LD H,A , ... .,. . ~~~~~·-··-·~~~~~~~~~~~·--~~~ I LD =' 15 , .. , ........ , .... , .......... , .......................................................... , .... , .... , ........................................ .,., ....... 
SKID2: LD A,(I-\PR1) I CALL t~UL T 

LD H,A I LD DE,CPRr::J3) 
LO A,O~P01) I ADD rlL,DE 
LO E,A I JP NC,BAK2 
CALL ~1UL T I LD ?.Ct15 
LD (PR003),HL I ADO HL,SC 
LD A,(MPR2) I LD CPR'JJ3),HL 

LD H,A I JP ~.AK 3 

LD A, (I~ P 0 2) I8AK2: LD (PROD3),HL 

LD E, A I LJ 0,255 
CALL MULT I CP H 

L~ (PPOr:Jl),HL I JP ~JZ,3AKJ 
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BAIC.6: 

BAK3: 

BAK4: 

* 

LD 
CP 
JP 
JP 
LD 
ADD 
LO 
LO 
LO 
LD 
CALL 
LO 
LD 

LO 
LO 
LO 
CALL 
LO 
ADD 
LD 
ADO 
JP 
LO 
ADO 
JP 
LO 
LO 
CP 
JP 
L:J 
CP 

A1 241 
L 
Z,BAK6 
NC,BAK3 
BC ,15 
HL,BC 
(PR003),HL 
A, (PROD2) 
H,A 
E,15 
MULT 
A,L 
CTMPZ),A 

A,O 
CTMPl),A 
E,t5 
MULT 
OE,(TMPl) 
HL,DE 
DE,(PR003) 
HL,DE 
NC,BAK4 
BC,l5 
HL,BC 
BAK5 
(PR003) 1 HL 
.A, 25 5 
H 
NZ,BAK~ 

A1 241 
L 

BAK7: 

BAKS: 

JP 
JP 
LO 
ADD 
LO 
JP 

Z,BAK7 
NC 1 BAK5 
BC 1 15 
HL 1 BC 
(PR093),HL 
OOOOH 

A-4 

**************************** ; * MULTIPLICATION SUBROUTINE* 
**************************** 

MULT: 

JUMP: 

NOAOD: 

MPOl: 
MPOZ: 
MPRl: 
MPRZ: 
PROOl: 
PR002: 
PR003: 
PR004: 
PRODS: 
PROD6: 

L,O 
o,o 
Bt8 
HL 1 HL 

.NC 1 NOAOD 
HL,OE. 
JUMP 

TMPl: 
fTMP2: 

LD 
LO 
LO 
ADO 
JR 
ADO 
OJNZ 
RET 
OEFB 
DEFB 
DEFB 
OEFB 
OEFB 
DEFB 
DEFB 
OEFB 
OEFB 
DEFB 
OEFB 
DEFB 
END 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

I 

... ... ****************************************************** .... ... * MODULAR ARITHMETIC PROGRAMS FOR 6502 * * ****************************************************** 
NAM M6502 
ORG $1024 

* **************************** * * MODULAR ADDITION ... ... 
* **************************** ... ... 
START LOX 

CLC 
LOA 
AOC 
STA 
LOA 
AOC 
S TA 
BCS 
01P 
BNE 

#AOl 

ltX 
3 1 X 
5,x 
o,x 
z,x 
4,X 
OVR 
•sFF 
SUBTl 

OVR 
SKIPl 

SU8Tl 

AOl 
A02 
SUM 
SUMl 

LOA 
CMP 
BEQ 
BMI 
LOA 
CLC 
AOC 
STA 
LOA 
AOC 
STA 
JMP 

ORG 
FOB 
FOB 
FCB 
FCS 

5 t X 
I$Fl 
SKI Pl 
SU8T1 
5,X 

Nl5 
s,x 
*0 
4 1 X 
4., X 
SUBT 

$0023 
0 
0 
0 
0 
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... ! LDA e.,x ... 

... ~*************************** I STA z,x ... 
•'• ·::;: MODULAR SUBTRACTION •'• I LOA 6,X ...... . .. 
... -·-·------------------------ I STA I) ' l( .. , .. . ~i· ....... , .... , ......... , .............. , ............... , ......... , ........................ , .............. , ... , ............ , .......... , .. 4\' 

•'• I JSP SU~RT ....... 
ORG SliJ 24 I LOA 4,X 

SU~T LOX ~SUB I"•. ... 
LOA tiO I STA 16,.( 

STA CHECK I LOA 3,X 
L DA o,x .I STA 1 59 X 
C"'P 2,X I LOA 7 ·,X 

REQ OM!T I STA 2, X 
BCS JM? I -LOA 6,Y 

I~C CHECK I STA o,x 
JMP LOA 1 ,-x I JSR SU3RT 
JMPl S E.C I L DA 4~X 

SoC 3,X .I STA 14 9 X 
STA s,x I LOA ?,X 
LOA o,x I ST~ 13,X 
S8C z,x I LD~ F, X 

S T .A 4,X I .STI\ 2, X 

L 0 ll. CHECK I LDA s,x 
REQ ~WLTl I STA 0,X 
CLC I JSR ~ U? RT 
L DA s,x I LDA t.,X 
ADC ~$Fl I . STA 1 2 ' .X 
S T.A 5,X I LOA ., '( -· ' ·.·· 
LOA 4,X I STA 11 , X 

ADC li$FF I LDA . .,_'X 
STA 4,X L STA · 2 ,_x 

MULTl . ji~P · ~IULT I ... •.. 
O~IIT L JA l,Y ' .L D .A. 5, X 

CMP. 3,X I ST.l OtX 
BEQ OM!Tl I JSR SU~RT 

BCS JMPl I LDA 4,X 
INC" ¢HECK I STA 1 0, X 

Jl-.1g JI·IP 1 I LDA 3, X 

01'11!1 ~q~ ~0 ! ST .:1. c; ' X 
~ ; i. / . : .t ·~: .. 

STA ~;x I ... ... 
STA s;x I CLC 
Jr-.1P MULT I LDA l4,X 
ORG 'tC.023 ·I AOC 1 2 , X 

SUB FDP. () I ST~ 14,X 

SUBl FDS 0 I LD"A 1 3; X 
SUBZ FCB 0 

' 
A I) C 11 , X 

SUB3 FOB 0 I STA 13,X 
CH!:CK != c 8. 0 

' 
LOA itO 

..• ' I ADC 9,X ... 
"· *********************~*#***~ I STA 1,X ... 
... . .. MULTlPL!CAT!Qq ROUTINE ... I CLC ..• . .. . .. 
..... ~·--~~~··~~~·~·~--··~~~~~··· ! Ul~ 1 5 , X ..• ..,~ .. ,.. ,., ........ "·~ ~ ..... , .. ~·~ ....... , ..... , .. '"'!'' ... , ................ f .... , .... , ............... , ......... , ......................... 

"" ........ ' ... I A JC l4,X 
' ORG ·. I ST~ $·1 (\ 2 4 . 1 5 ' ~ . ' . ·~ . · .. ·.t. . • ~ 

HUL.T ll:X liMP~~ ! ~p ~'- :1 3, X 
• - t •. :·. 

: ... .. . :~· . 

; .. ' ::·:·;{~'j<: ·,·: . ... ··':: .. · .. ... •:r .. <> ··. \:.····· . 
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A DC 10,x I STA 2 ' Y. 
ST~ l4.X I LD~ . ;t 1 5 

LDA ttl) I STA 0' y 

AJC 9,X I ~· 
STA 13, X I JSq su:.cn 

•'• I LD~ 4. ' y .,. 
•'• ~~-~~----------~------------ I STA 1 8, X •.. ..., .... , .... , .... , ........... , ......... , ........ ~ ..... , ..... , .... , ......... , ........... , .... , .... , .................. ,~ .. , ......... , .... , .... , .. 
•'• ·'· ROUT IN: FOR 1·1 'J 0 U L A R I S I N G •'• ! LDA 3 , X ... . ,. . .. 
!~::: -~~--h-~-~------~-~------~--.. , .... , .... , ..... , .... , .... , ..................... , ...... ,,. ........ , .... , .... , .... , .......... , ..... , .... , .......... , .... , .... _, .... , .... , ............. ! STA ? 'X 
•'• I .,. LD~ -115 

LOA 1s,x I STA I) ~ X 

01P li$FF I JSR SUE'~T 

RNE JMPA I C LC 
L DA 16,X I LOA 4 9 X 

Ci-1P :tSFl ' 
AOC 1 ~,X 

3EQ J ~1 p 0 I STA 1 9, X 

?.CC JMPA I LOA 3,x 
Jf·l p 3 CLC ! ADC 1 8, X 

A. DC ~ 1 5 ! STA 1 3 , X 

STA 1 6 , X I CLC 
LOA ~i$0 I L:JA 16,X 
.l\ () c 1s,x I ADC 1 9 , X 

STA 15,X I STA 16, X 
Jt·1P A L DA 14,X I LOA 1 5 , X 

STA 2tY I ADC 1 Q, , X 

LOA ~1: I STA 1 5, X 
STA 0, X ·I :.cs J ur~ P c 
JSR SU~RT I C 11P #$~~ 

CLC I SNE ':)VERl 
LDA 16,X I LOA 16,X 
AD( 4, X I (MD •$Fl 
STA 16,X I 8EJ JU~PC 

LOA 15,X I BCC ov:;n 
A DC 3,X I JUMP( CLC 
STA lS,X I L DA 16,X 
BCC OVRA I ADC rtl5 
LOA 15,X I STA 16, X 
CMP q$ff. I LOA #0 

3Nf OVPA I ADC 1 5 , X 
LDA 16,X I STA 1 5, X 

U1P ~$F=1 ICJVt;P.1 BRK 
SEQ JMPC I•'• .,. 
BCC OVRA '•'• .,. ***********~*****~*****~**** 

JNPC CLC I-·· ... MULTIPLICATION ROUTINE •'• ... ., . .,. 
A DC .It 11) I -·· ~-~~--~~-~-~-~--~~~~~~~--~--... 

~¥~--~---·-¥-------~--------
STA 16,X I ... .,. 
LOA #$0 ISU8PT LOA #0 
AOC 1 5, X STA 1 , X 
s:A 15,X I STA 3,X 

OVRA LOA liO I STA 4,X 
STA 1 7 , X I LOY ttlj 

STA 1 3 , X I JMP ~~1(_. 

STA 19,X 1 ov~ Q .A SL 1 , X 

LOA 13,X I ~SL 2, X 
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BAK 

BAKl 

OUT 
•'• .,. 
... . ,. 
•'• ... 

BCC BA'< 
LOA ~1 

OP.ll l,X 
STA l,X 
CLC 
ROP !),X 

gee flt~Kl 

CLC 
LOA z,x 
A DC , .. , X 
STA 4,X 
LOA l,X 
A!JC 3,X 
STA 3,X 
DEY 
P.!:Q ~UT 

JMP OVER 
RTS 

I 
IMPLP. 
I1-1CN!Jl 
1 ~~c No 2 
ITf.MPl 
ITEMP2 
IMPR 
IMND 
I PROD! 
IPRC'D2 
fPROD3 
IPR'J04 
I PRODS 
IPROC6 
IPPOD7 
IPRG08 
ITMPl 
ITMP2 
IT~~ P 3 

I 

ORG 
Fcg 
t=(CI, 

FC8 
FC3 
!=CB 
FD~ 

FJS 
FC9 
FC~. 

FC'3 
FC5 
FCB 
FC3 
FC3 
FC e. 
FCI?o 
FCS 
FC~ 

END 

~0023 

0 
0 
0 
0 
0 
0 
0 
0 
Q 
0 
I) 

0 
c 

0 
0 
0 
0 
START 

A-7 

-~~~~--~~-~~~-~~--~~~~·~~-·-~·~~---~~~~~----·-~-·~~--¥¥¥¥¥¥¥¥¥¥¥¥~¥¥¥¥¥¥¥¥¥¥¥--¥-~¥------------¥¥¥¥¥¥¥¥¥¥~-

....... . ,. ~ 32/16 BIT DIVISION FOR MC6809 MICROPRJCESSCR 

START 

SK IP3 

SKIP4 

NAM 
ORG 
LOX 
LOY 
LDU 
CLR 
CLR 
L8A 
LOB 
~UL 

srn. 
LOA 
LOB 
MUL 
ADDD 
STD 
BCC 
INC 
LOA 
L08 
MUL 
ADOO 
STQ 
ace 
I ~JC 
LOA· 
LOB 

. ~1UL 
AOQD 
STD 

DIVISION 
$0000 
#MLTR 
~MLTN 

#P~OOl 

,u 
l,U 
1 , X 
1 'y 

.2 'u 
'X 

1 , y 

1 ,u 
l,U 
SKIP3 

,u 
1 , X 

' y 

1,U 
1 'u 
SK!P4 

,u 
' X 
'v 
,u 
'u 

I::: 
I::: ~-··~~····-~-~--~-~-~~---~--,, ........... , ..... ~ .. , ..... ~ ....................... ,.. ....................................... , ................ "'•"' ....... , .... , .... , ..... .. 
I :': ~: 

I ::: ot,: 

I ::: ::: 
I ::: ::: 

32-BIT PRODUCT IN 
PROD1:PPOD2:P~u03!~RJ04 

... . ,. 

... . ,. 
32 BIT I 16 BIT UNSIGNED * 
CI'/JSION •'• .,. 

I* ~~~*~**~*~*~**~************* 
I::: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
IDIVICE 
I 
I 
I 
I 
I 

' I 
I 
I 
ISK!P 
I 
I 

LOIJ 
STO 
LDD 
STD 
LDD 
STA 
STO 
LOA 
STA 
ASL 
RDL 
~OL 

POL 
RDL 
LOA 
RilE 
LOD 
OP'D 
BCS 
LOA 
suP. A 
STA 

PRODl 
0 V~·J D 2 
PROD3 
:JVNJ4 
:tO 
DVNOl 
QUOTl 
~16 

COUNT 
OVND5 
DVN04 
DVN03 
DVND2 
IJVNDl 
OVNDl 
SKIP 
DVND2 
ovs~ 2 
CH:CK 
DVr.JD3 
::JVS~3 

QVND3 
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LOA OVND2 !DVSR3 FC~ 00 
SBCA DVSR2 !REM FC3 00 
STA DVN02 IQUOTl FC3 00 
LOA DV"JDl fQUOT2 FOB oc 
sgcA OVSRl IMLT?. FOB 00 
STA DVN Dl I 1·1L TN FCB 00 
ASL QUOT2 I?ROOl FC'3 00 
ROL ()UOTl IPROD2 FCB oc 
INC QUOT2 IPROD3 FC'3 00 

CHECK o::c C OU~!T IPR004 1=(3 00 
BNE DIVIDE IDVNOl FCB 00 
LOO t:lVND2 I.DVN02 FCS 00 
ST:J R E 14 · !DVN03 FC:3 00 
JMP $0283 .!DVN04 F'"o I....J 00 

CUUNT FCB 00 tovrws FC'3 00 
DVSRl. FCB co I END 
::JVSF'2 FCB 00 I 
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Assembler program source listing for a 15-point WFT A (TMS9900) 

FORTRAN program source listing for a 15-point WFTA 



Appendix-g 

•'• .,. 

p -1 

•'• .,. 15-POINT·W!NOGRAD ALG~RITHM cwcTA) TMS9900 •'• .,. 

·'· ........ ~~~~~-~-~--~~-~-~----~~------~-~·~~--~--~------------¥~¥~¥¥¥~¥¥¥¥¥~¥-~¥~~¥~-~--¥~¥0¥¥~¥¥-¥¥¥¥¥~~¥-¥ ____ ¥ 

ST~RT 

... . ,. 

!DT 'HHJ015' 
OPTION XREF,SY~T 

ACRG >6000 
U~DI I..JSP 
LI R4,YREG 
LI RS,XREG 

- ---------------~---~----~--~ ----·--¥¥¥¥¥¥~-~----~~-¥¥¥¥¥ 

•'• ..• 

•'• .,. 

INPUT SHUFI=L!= 

rv18V :::R4,:::RS 
~ov @o(R4),@2(RS) 
MDV @12CR4),34(P.5) 
MDV @lq(R4),@6CR5) 
~10 v J'24CR4),@8(R5) 
~lOV illOCR4),@10CR5) 
r~ov @16CR4),@12CR5) 
~-1 ov 322CR4) ,@14(R5) 
1'-IOV Cl2BCR4),@16(R5) 
r-1ov @4(R4),@13CR5) 
r~ov :l20CR4), nOCR5) 
r-~a v @26CR4),@22CR5) 
r1 ov @2CR4),c.1?.4CR5) 
~10V @8(R4),.il26CR5) 
~1 ov @14(R4) ,:::128CR5) 

* **************************** * * 3 POINT PREW~AVE •'· . ,. 
...... .. ..... ~ ....................................................................................... .,~ ........................................ .;. .... • .. 
¥ ¥¥¥¥¥¥~--~-¥¥~--¥¥¥¥¥¥¥Y¥¥¥¥ 

•'• .,. 

... . ,. 
LODPl 

•'• .,. 

LI 

MO.V 
r~ ov 
BL 
~10V 

r~ov 

~~0 v 
BL 
1·10V 

MDV 
MOV 
gl 
MOV 
t10V 
r~ JV 
tiL 
MOV 

RS,XREG 

@10(R5),R0 
3l20CRS),Rl 
i'ADDSUB 
R2,@l0CR5) 
R3,@20CR5) 
:;:R5,R3 
~ADD 

R3,:::P,5 

@12CRS),R0 
~22CRS),Rl 

@ADDSU6 
R2dl2(t:?5) 
R3,@22CP5) 
~2CP.5),R3 

.l)A')D 
!='3,.il2(D5) 

, ..• •.. 
I r~ov ~l4(R5),R0 

I MOV @24(R5),Rl 
I BL 2ADDSU3 
I 1-!0V ~2,~14(R5) 

I MOV R 3 , .JJ 2 4 C ~ 5 .) 
I ~-10 v 2'4(t<5),R3 
I BL i-~00 

I MOV R3,0:4(1<5) 
I ·'· ... , .. 
I MDV il16(K5),~0 

I MDV .il26('15),Rl 
I BL :.JAODSUB 
I ~~0 v R2,@16(P5) 
I ,·~ov R3,.il26(~5) 

I MOV .i'6(R5),R3 

I oL uADD 
I MQV !:13,36(R5) 

I* 
I M'JV @18(R5),P.0 
I MDV il28CP.5),Rl 
I BL aADDSU5 
I MDV R 2 , a 1 3 ( R 5 ). 
I HOV R3,@29(D5) 
I MCJV 33(R5),P.3 
I BL ,iJAOD 
I MOV R3,@8(R5) 
I::: 
I::: ~~~·~-~~··~~--~~~~~·~~~~--~~ _,.. .. , .............. - .......... , .. "'('> .. , ............... '"'(" .,, ............................... , ................ , ................................ 

I ~- .... 5 POINT PREWEAVE •'· 
•.• ... .,. 

I•'· ~~-~-~-~·~-·~h--~~~~-~-~~-~-. .. .. , .. "'•"' ............ , .... , .................. , .... , ............................ ,. ........ , ... , .. ~ ..... , .......... , .... , .............. ,.. 
I•'• ... 
I LI R6,ZREG 
I WJV Cl2CP5),R0 
I MCV 1~(P5),Rl 

I SL ~~o.rsua 

I MOV ~ 2, 2 2 C R 5·) 
I MQV ~3,@6(R6) 
I ... ... 
I MQV @~(R5),R0 

I t-10V a/4(R5),P.l 
I BL !!ADD SUB 

I MDV R2,@4(R5) 
I MQV R3,@10(R6) 
I MDV il6(R6),R2 
I BL a,lOD 
I ~1CV R3,@8(R6) , ... ... 
I MDV Ol2(P5),t?O 

I 1·10V ).:.(P5),Pl 
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3L a)A~DSU8 I HCV ?.3,@24(R6) 
~1 0 V· R2,a2CR6) I•'• .. 
MOV R3,::.J4CR6) I ::: ~-------·------------·------.. , ...................................... , .... , .... , .... , .. "" ........ , .... , ......... , .... , ..... , ..... , .... , ..................................... 
r~ov :::R~,R3 I ... . ,. ::: ).IULTIPLICATION ·'· ., . 

SL @ADD I•'• ---------------·------------. ,. ............. , ..... , .... , .... , ........... , .................... , .... , ................. , ............................. , .... , .... , .... , .... , ............ 

~ov R3,:::R6 I :-,: 
•'• I MDV ;FWD,~l .,. 
... I .,IEQ F~WD . ,. 

~1 0 v @12CRS),R0 I LI ;n,COEFC? 

/·10V · .::J18CR5),~1 I•'• ... 
BL 2ADOSU3 I J ~:1 p OVER 
t~OV R2,@12(R5) IFRWO LI P.7,CIJEFF 
r~ o v R3,@18CRS) I ::: 

:::: IOV=R L! R4,0 
MOV @16(RS),R0 I LI R8,65521 
r~ ov @14(R5) ,~1 ILOCP ('1,0V :::R7+,Rl 

RL ,i)AODSUB I NOV JJZREGCR4),R2 
MDV R2,@14CR5) I r~ P v ~ 1 , R 2 
MOV R3,iil2ZCR6) I OIV P?R,R2 

/·10V a 1 3 C R 6 ) , R 2. I /·1(JV . R3dZREGCR4) 
BL 2ADD I INC T R4 
~1CV R3,@20CR6) I cr R4,3b 

·'· I JN5 LOOP .,. 
MDV @12CR5),R0 I ... •,• 

MDV @14(R5),Rl I•'• ----------------------------... ---~¥¥¥¥¥ _____ ¥¥-¥¥¥~¥~~----
e.L @AODSUB I•'• :::: 5 POINT POSTwEAVc !:: .,. 
r~ov R2,@14CR6) I ... ~-····~··~···--·-·~-··-····-.,. 

-~----¥----~¥----¥-----~----
/10 v P3,Cll6CR6) l :~ 
r~ o v @11J(~S),R3 I MOV :;:R6,R3 

BL @ADD I MOV R3,:::RS 

MDV R3d12(R6) i MDV 32CR6),R2 
•'• I ~L. .iJ~DD .,. 

MDV @22CR5),~0 I ,.~,. v R3,22CR6) 
nov :il23CR5),Rl I WJV J6(R6),R0 
SL :ilAOOSUB I MOV .~3(R6),R1 

MDV R2,@22CR5) I 3L .:!SUS 

MDV P.3,J30(R6) I 1·10V R3,0l6(R6) 
•'• I r~o v ::l3CR6),R2 .,. 

MDV @26CRS),RO I WJV ~10(1<6),~3 

~~ ov @24CRS),Rl I BL :JADD 
BL @Ar::>DSU8 I MDV R3,211J(R6) 
MDV R2,@24(R5) I r~ov 1>2(R6),R0 
;\1 DV R3,@34(R6) I MOV i'4(R6),P.l 

~~a v @30(R6),P2 I i3L ])A ::lOS US 
~L @ADD I MC1V qz,C12CR6) 
11 ov R3,@32CR6) I MDV R3,@4(R6) 

•'• I MDV .iJ2CR6),R0 .... ~ 

rwv @22CRS),P0 I. HQV .!l6(R6),Rl 
MDV ?24CRS),Pl I 3L .::JADDSU3 
BL @AODSUB l MDV ~2,i'2CR5) 

MDV R2,Cl26(R6) I ; l·lOV R3,.:t8CR5) 

t~ 0 v R3,@28CR6) I fHlV ~4(R6),R0 

r-~ov 3)20CRS.),R3 I 1·1 tJ v 310CR6),Rl 
BL ::JAQO I BL ;:JAOfiSU~ 



a:..< 
··' <J 

~ov R2 9 @4(~5) I I·~OV ~3d28CR5) 

~~ 0 v R3 9 0:6(R5) I WJV .:)23CR6),RO 
•'• I MQV cl134CR6),Rl .,. 

r·10V @12(~6) 9 R3 I aL aAJDSUS 
MOV R3,@10CR5) I i~1 0 v R2d24CRS) 
MDV 314(R6) 9 P2 I ~~Q v ~3,@26CPS) 

8L 3A~D . I::: 
;'·10V ~3,214CR6) I::: ··~··········~······~······· .... ~ ............ , ...... ~ ....................... ~ ...... , .... , .. _, .... , ..... , ..................... , .... , .......... , ..... , ... , .... ' .. , ........... 

~1 0 v ~18(R6),R0 
, ... :': 3 POINT PQSTWEt.VE •'• ... 

/ 
... 

MDV ~20CR6),Rl 
, ... ··~·····~···~··············-... .. , ................. ,, ........................ , .. :·" ....... , .... ,.. .. , .... , .... , ... , ......... , .............. , .... , .... , ............... 

BL JSU8 , ... ... 
MDV R3 9 @18CR6) I . MCV :::~S,R3 

~·1 0 v <i'20CR6) 9 R2 I MOl/ lll 0 C R 5 ) , R'2 

MDV ·ll22(R6),?3 I BL .VA DO 
BL @ADD I 1·101/ R3,Q:lOCR5)" 
MOV R3,@22(Kf;) , ... ... 
1\10 v @14(R6),?0 I ~, n v ;:)2(RS),P3 
MDV .:iJ16(R6),Rl l ~18 v J:ll2CR5),R2 

3L ~AODSUB I BL @ADO 
MDV R2,@14(R6) I MOV R3,@12CR5). 
MDV R3 9 Jl6(R6) , ... .,. 
1·10V 214(R6),R0 I r~o v :i)4(P5),R3 
MDV @18CP6),Rl I MOV 314(R5),R2 

BL 2ADOSUB I BL @~DO 

f·10V R2,@12CR5) I ~-10 v Rj 9 @14(R5) 

1-1DV R3 9 .1H8(R5) I•'• .,. 
MDV @16CR6),RO I MOV :il6(R5),R3 
MDV @22CR6),Rl l ~IG V ill6(q5),R2 

5L @AODSUB I BL ~ADD 

MDV R2,314(R5) J ~1 [) v P.3,216CPS) 
MDV R3,@16CR5) I::: 

... I MDV aJ8CP.5),R3 ... 
t~OV @24(?.6),P3 I MCV @18CR5) 9 R2 

~10V R3,@20CR5) I BL @~:)~ 

rwv j)26(R6),q2 I MDV t.>3,.il18CR5) 

8L .:;)A[) 0 J•'• ... 
MOV R3 9 @26CR6) I rviOV 310CR5) 9 RO 

. r~ov @34CR6),?2 I t-IOV 320CR5),Rl 
NOV :\'32(R6),~3 I eL JADClSUc 
BL O:ADD MC'V R2 9 210CR5) 
1'\0V R3,@34(R6) ''10V 1:(3,320(P5) 
t~OV. => 3 0 CR 6 > , R 0 "' 

~lOV · @32CR6),Rl MCV al2(R5).,RO 

BL @SUB MOV -ll22CR5) ,Rl 
1·1DV R3,~30Cq6) BL @AODSU:! 
r~ o v @26(R6) 9 PO MOV qz,il12CR5) 

MOV @ 2 8 ( R 6'), ~: 1 1~0 v R3,.:J22CR5) 

BL iAODSUB :-': 

110V R2,@26CP.6> ~'iO v ,j)l4(~5) 9 RO 

I-10V R3,228CR6) MDV ~2.:.(~5),Rl 

MCJV .ll26(R6),R0 ~L 1ADOSUB 
r1nv il30CR6),rn t-1CV "2,~14(1='5) 

BL O'A::JuSU8 I-1JV C::':\,i).!. .. (P.5) 

~~ 0 v R2,G.l22(R5) :': 
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•'• .,. 

...... .,. 

~A 0 V 
~10V 

8L 
~10V 

~~ 0 v 

MDV 
MDV 
3L 
MDV 
1-10 v 

'il16CRS),R0 
ll26CRS),R1 
@ADD SUB 
R2,@16CR5) 
R3,@26(R5) 

@18CRS),RC 
JJ28(R5),R1 
~ADDSUB 

R2,:!180:5) 
R3,.il28CR5) 

* * OUTPUT SHUFFL~ •'• .,. - --~~·~··········~··········~ .. , .................... , ......... , .... , .... , .... , .... , .... , .... , .... , .... , ............. , .... , ..... , ................... , ................... , .... , .. 
•'• .,. 

... ; .,. 

... . ,. 

MOV. :::R5,:::R6 
r~ov @12CR5),~2CR6) 

MDV @24CRS),OJ4(R6) 
r-1ov ~6(R5),@6(P6) 

r.10V @18CRS),:il3(K5) 
~~ov ~20CR5),J10(R6) 
r~ov @2(R5),cill2(R6) 
r~ov ll14(R5),@14(R6) 
'10V @26CR5),@16CR6) 
MDV ll8CR5),@18CR6) 
MDV 310CR5),@20(Ro) 
MDV :iJ22CR5),@22CR6) 
MQV <i)4(R5),cil24CF:6) 
I-10V· .lJ16CR5) ,CJ26CR6) 
r·10V Cl28CR5),@28(R6J 

B @>0800 

# * ADD & SUBTRACT SUBROUTINE* 

~.,. 
A ODS UB 

PLUS 

~10V 

A 
JOC 
CI 
JL 
AI 

R1,R2 
RO,P.2 
PLUS 
R2,65521 
SUB 
R2 ,15 

ISU~ 

I 
I 
I 
I 
I FitJ 
I::: 

~, ov. 
s 
c 
JL 
AI 
RT 

?.-4 

PO, R3 
:n, R3 

~ 1 '~ 0 
~I;~ 

R3,65521 

I* ***************~~*~***~***** 
I* * ADDITION SUBROUTINE •'• ... 
I* *****~********************** 
I::: 
!ADD 
I 
I 

. I 
I PLUS1 
I TAG 
I t.: 
I::: 

A R2,R3 
JOC PLUS1 
C! R3,65521 
JL TAG 
u .R 3, 1 5 
en 

I* **************************** 
I ::: ::: SHUFFLE= VECTORS ·'· .,. 

I* *****~*~~~***~*************~ 
I ::: 
ICCEFF 
I 
I 
I 
I 
f 

... . ,. 
WSP 
Yt<EG 
XRfG 
ZREG 
LIM 
~WD 

LAST 

DATA 1 ' 16379, 
DATA 19136, 1S005, 
DATA 32759, 8192, 
DATA 36817, 5753, 
O.HA 16087, 2'1032, 
DATA 23174, 43615, 
DATA 61153, 5460, 
DATA 46773, 20640, 
DATA 6552, 57331, 
[')ATA 2.0 122, 34561, 
JATA 29504, 28641, 
~ATA 5 91 3' 24748, 

8SS 32 
ess 30 
BSS 30 
sss 36 
5SS 2 
ass 2 
END START 

13376, 
48547, 
45457, 
25311, 

R748, 
1-+~5, 

1836-., 
54q3, 

37975, 
24521~ 
12521, 
21933, 
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c 

c 
c 
c 

c 

* 15-POINT WINOGRAD ALGOQITH~ (WFTA) 

~~~~~----------------------------------------~--·-----¥¥¥~~¥¥¥¥¥¥¥¥¥¥¥¥¥¥~¥¥¥••¥¥¥¥¥¥¥¥¥¥¥-¥¥¥-¥¥¥¥¥¥¥¥¥¥¥¥¥~ 

IMPLICIT REAL*S(A - H,O - l) 
DIMENSION X(15), YC15), ZC18), OUT{15) 
DIM~NSION COEFC13), COEFRC18) 
lNTEGER IQF(15), IR~IC15) 

REAL*8 MODO 

C INPUT SHUFFLE VECTORS 
c 

DATA IRF 10, 3, 6, 9, 12, 5, P, 11, 14, 
1 2, 10, 13, 1, 4, 11 

c 
C OUTPUT SHU~FLE VECTORS 
c 

DATA IRFI 10; 6, 12, 3, 9, 10, 1, 7, 13, 
1 4, 5, 11, 2, a, 14/ 

c 
C FORWARD TRANS~ORM COEFFICIENTS 
c 

c 

DATA 
1 
2 
3 
4 

DATA 
1 
2 
3 
4 

COEF /1.QO, 16379.00, 13376.~0, 19136.80, 
18005~00, 48647~00, 32759.00, 8192.00, 
45457.00, 36817.00, 5753.00, 25311.00, 
16087.00, 29032.00i 8748.00, 23174.00, 
43615.00, 1465.00/ 
COEFR /61153.00, 5460.00, 18364.00, 46773.00, 
20640.00, 5493.00, 6552.00, 57331.00, 
37975.00, 28122.~0, 34561.~0, 24521.00, 
29504.00, 28641~00,12521.00, 59f3.DO, 
24748.00, 21938.00/ 

C READ INPUT DATA APRAY 
c 

FRO = 0.0 
READ (5 1 *) CY(I),I=1,15) 
DO 10 I = 1, 15 

10 XCI) = YCIRFCI) + 1) 

DC 20 I = 1, 5 
T = MOOO(XCS + I) + XC10 + IJ) 
XCI) = MOOOCXCI) + T) 
XC10 + I) = MO.DOCXC5 + I) - XClO + !)) 
tc5 • I) = r 

~0 CONTINUE 
J = 1 
DO 30 I = 1, 3 

IND = 5 * CI - 1) 
$1 = MOOOCXCINO + 2) + X(!NO • 5)) 

$2 = MODOCXCIND + 2) - XCIND + 5)) 
$3 = MOOOCXCIND + 4) + XCINO + 3)) 
$4 = MOOOCXCIND + 4) X(INO • 3)) 
S5 = MODOC$1 + 53) 

B-5 
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c 

S6 = MODGCS1 
S.7 = 1--1000(52 + 
s B = r~ a DOcs 5 + 
ZCJ) = SS 
ZCJ + 1) = S5 
ZCJ + 2) = S6 
ZCJ + 3) = S2 
ZCJ + 4) = S7 
ZCJ + 5) = S4 
J = J + 6 

30 CONTINUE 

53) 
S4) 
X(INO + 1)) 

IF CFRD .EQ• 1.00) GO TO 50 
DO 4 0 I = 1, 18 

40 Z(I) = MODOCZCI)*CDEFCI)) 
GO TO 70 

50 DO 60 I = 1, 18 
60 ZCI) = MOOOCZCI)*CDEFQ(I)) 
70 J = 1 

DO 8 0 I = 1, 3 
IND - 5 * CI - 1) 
S9 = MOOO(Z(J) + ZCJ 
S10 = MODOCS9 + ZCJ + 
S11 = MODOCS9 - ZCJ + 
S12 = MODDCZCJ + 3) -
S13 = MOOOCZCJ + 4) + 
S14 = MODOCSlO + 512) 
$15 = MODOCS10 - S12) 
$16 = MODOCS11 + $13) 
$17 = MODOCS11 - S13) 
XCIND + 1) = Z(J) 
XCIND + 2) = $14 
X(IND + 3) = Sl6 
XCIND + 4) = CS17 
X(IND + 5) = S15 
J = J + 6 

80 CONTINU!:·· 
DO 90 I = 1, 5 

+ 1)) 

2)) 
2)) 
ZCJ + 4)) 

ZCJ + 5)) 

T = MGDO(X(I) + X(S + I)) 
T2 = MODOCT ~ XClO + !)) 
XC10 + !) = MODOCT - XClO + !)) 
xes+ I>·= rz 

90 CONT!NUE 
DO 100 I = 1, 15 

OUTCIRF!CI) • 1) = XCI) 
100 CONTINUE 

WRITE (6,110) CYCI),I=1,15) 
11 0 F 0 R r~ A T C ' ' , . 5 F 1 0 • 2 ) 

WRITE (6,120) 
120 FORMAT (' ',II) 

WRITE (6,130) (OUT(!),I=1,15) 
130 FORM~T (' ', 5F10.2l 

STOP 
END 

B-6 
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c 
c 
c 

DOUBLE PRECISJON FUNCTION MODOCF) 
REALt.:8 f, MOD 
MOO = 65521.00 
IF (F .LT. 0.000) GO TO 10 . 
MODO = DMOOCF,MOD) 
GO TO 20 

10 MODO = MOD - DM08(-F,MOD) 
20 R!:TURN 

END 

B-7 
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FORTH program source listing for a 60-point WFTA (TMS9900) 



At-Jpendix-C 

( THIS PROGPAM PERFORMS WINOGRAD LENGTH 60 
FORWARJ AN~ REVERS~ TPANSFO~M ) 

C INPUT AR~AY IS Y AND THE ?ES~LT OF TRANSF1RM 
IS ALSO STORED IN AR?AY Y ) 

: s 

: s 

DECIMAL ( VARIABLES USED FOR TEMPOPARY STORAGE ) · 
0 INTEG::R SO 0 INTEGER Sl 0 INTEGER 52 0 InTEG~R 53 
0 INTEGER $4 0 INTEGER S5 0 INTEGER Tl 0 I~TEGER TZ 
0 INTEGER T3 0 INTEGER T4 0 INTEGER TS 0 !NTEG::R TMO 
0 INTEGER T~l 0 INTEGER TM2 0 INTEGER TM3 0 INTEGER TM4 
0 INTEGER H1 

C ARRAYS USED FOR CO~PUTATION ) 
144 ARRAY FCOEF 144 ARRAY RCOEF 120 A~RAY X 144 ADRAY Y 
120 ARRAY RF 120 ARRAY RFI 
SINT 0 SO ! 2 Sl ! 4 S2 ! 6 S3 ! ? S4 ! 10 SS ! 
INTZ 0 TMO ! 2 TM ! 4 TM1 ! 6 TM2 ! 8 TM3 ! 10 T~4 t ; 

lCHG TMO 3 10 • TMO ! TM J 10 • T~ ! TMl ~ 10 + T~l ! 
TM2 2 10 + TM2 ! TM3 @ 10 + T~? t TM4 @ 10 + TM4 

2CHG SO @ 12. + SO ! 51 ~ 12 + S1 ! 52 ~ 12 • 52 
! S3 a 12 • 53 J 54 ~ 12 +·54 ! ss J 12 + ss ! : 

( INPUT SHUFFLt VECTORS ) RF FILL 
0 72 24 96 48 90 42 114 66 1 '3 60 12 84 36 

30 102 5'+ 6 7~ 80 32 104 56 8 ~~~ ? 74 26 :J~ .. 
20 92 44 116 68 110 f,2 1 4 86 313 40 1 , ? ... 64 1c 
10 82 34 106 58 100 52 4 76 23 70 22 94 46 

( OUTPUT 5f-IUFFLE VECTORS ) ~FI FILL 
0 24 4~ 72 96 30 54 73 102 6. 60 84 10.3 12 

90 114 18 42 66 40 64 88 112 16 70 94 11.3 22 
100 4 28 52 76 10 34 58 82 106 80 104 3 32 
110 14 38 62 

: s 
( COEFFICIENTS 

rCOEF 

. " • ..J 

1 
1 
1 

41224 
32759 
32759 
32759 

3685 
.49434 
49434 
49434 
33074 

FILL 
16379 
16379 
16379 
13991 

8192 
8192 
8192 

11774 
36489 
36489 
36489 
S6 93 9 

86 

FOR 

13376 
13376 
13376 
~3009 

45457 
45457 
45457 
18768 
56773 
56773 
56773 

32 

20 44 63 92 116 . 50 

F=ORWARD TRANSFORM ) 

64390 46385 48647 
64390 46385 43647 
64390 453R5 48647 

·26608 10376 22681 
34457 28704 25311 
34457 28704 25311 
34457 28704 2.5311 
25609 49957 64260 
45080 23174 64056 
45080 23174 64C·56 
45080 23174 64056 

5797 23796 17202 

( CO E F F I C I= tiTS F 0 1:> R: V E K S E TRANS F 0 R M. ) 

74 93 2 

C-1 

lOP. 
98 
88 

118 

35 
46 
56 
26 



RCOEF FILL 

: s 

64429 1365 
64429 1365 
64429 1365 

3681 1177g 
1638 30713 
1638 30713 
1638 30713 

27239 15092 
58145 qzzo 
58145 9220 
58145 9220 
50784 2041 

4591 9347 
4591 98-+7 
4591 9847 

30785 . 35358 
25874. 17990 
25874 17990 
25874 17990. 
52104 12439 
13250 44432 
13250 4.-+432 
13250 44432 
30577 4.0308 

4687 50Cil4 
4687 50~14 

4o87 50514 
4541 64807 

25730 55271 
25730 55271 
25730 55271 
25949 1071 
50619 27276 
50619 2727':-
50619 27276 
60673 45578 

( MODULAR MULTIPL!CATIQN RJUTINE FOR T~E EXT~RM~L 

~AROWARE MODULAR MULTIPLI::R ) 
HeX CODE ALOAO 3F~2 2 L! 3FF4 3 LI 3FF6 4 L! ~ETU~N 

DC:CIMAL 
CODE !CALC 8 PCP 9 POP 0 g 1 2 MOV 0 q 1 3 

~OV 1 4 0 7 MCV 7 PUSH ~~TURN 

A~ULT ALOAD 144 0 DO I FCGEF + @ I Y + ~ !CALC 
T y + ! 2 +LOJP . .. ' BMULT AL0.40 144 0 DO I ~cc=~ + ·~ I v + 5) !CALC 
I y + ! 2 +LOQP . 

' CMULT FLAG 0 = IF AI·IUL T ELSE 1;)~1UL T THEN . , .. . .) 

C MODULAR ADDITION ) HEX 
CGDE MOD 1 PDP 2 POP 0 1 0 2 A FNC If ELSE F 1 AI 

THEN FFF1 1 CI FH IF F 1 AI 1 PUSH ELS~ 

1 PUSH THE~J RfTURrJ 
( MODULAR MULTIPLICATION ) 

CUDE 0/ 7 POP 5 POP FF.F1 4 LI 5 0 7 MPY 
5 0 4 DIV 6 PUS~ RETURN 

( REG4 CONT~INS DIVIS~R ) 
( MCDULAR SU6TR~CTION ) 

CODE SBT 2 POP 1 POP 0 3 0 1 MDV 0 1 0 2 S 0 2 ° 3 C 
FLT IF FFFl 1 AI 1 PUS~ ELSE 1 PUSH TH~N R~TUP~ 

( MCDULAR HARJWARE MULTPLIER ) . 
H~X CODE CREG 0 7 CLR 0 8 CLR 0 9 CLR RETUKN 
CODE ALOAD 3FF2 2 LI 3FF4 3 LI 3FF6 4 LI RETURN 
CODE CALC 0 8 1· 2 MDV 0 9 1 3 MQV 1 4 0 7 MOV 7 PUSH R~TURN 

: s 
( 3 POINT PRE-WEAVE ) DECIMAL 

3AD 40 C DC I 40 + ~ + @ I 80 + X + @ OVER OV~R ~~D ! 
40 + Y + ! SBT ! 80 + Y + ! ' +LQOP 

3DAD 4a 0 DO I 40 + Y + ~ I X + 3 ~09 I .Y + 
! 2 +LOOP 

I3PT 3AO 3JAD ; 

( 4 POI;JT PRE-WEAVE ) 

41AD 10 0 DO T y + "' I 20 + y + @ MOO I X. + ! 
.., +LOOP ... C.• '-

42AO 10 0 DO I 10 + y + CJ I 30 + y + :J OVEP OVED r·l D (1 

I 10 + X + ! S1H I 30 + X + ! 2 +LOOP . 
' 

C-2 



Appendix-( 

42SB 10 0 DO I Y + ~ I 20 + Y + J S~T ! 20 + X + I 2 
+LOOP ; 

43AO 10 0 Db I X + & I 10 + X + @ MCO T~ 

X + @ SBT I 10 + X + Ttvl ::: T X + 

I I + 

2 +LnDP 
:i I 10 + 

: s 
44AC 1 0 0 DO I 40 + y + Q) I 60 + y + @ 'JV':R ov:R '-~OJ 

I 40 + X + ! SeT I 60 + X + 2 +LOOP . 
I 

45AD 10 0 DO I 50 + '( + jJ I 70 + v + @ OVO:R OV~R I·IOQ 

I 58 + X + ! 5:.>T I 70 + X + 2 +i..:OG 0 . 
' 

48AD 1 0 0 DD I 4(1 + X + ~iJ I 50 + y + .;! '~00 :r-1 ! I <+0 + X 
j) I 50 + X .. :il 5 P, T I 50 + X + T i~ a ... 40 + '( + ! 2 

49AD 10 0 on I 30 + y + @ I 100 + y + .:l OV~P OVtR :~C)J 

I 80 + X + ! S ~T I 100 + X +. ., +LJCJP . 
'- ' 

4AAD 10 0 DQ I 90 + y + a I 110 + y + @ ov:P ':'Vf~ :'·100 
I 90 + X + ! 5P.T I 110 + X + 2 +LOOP ; 

4DAD 10 0 DO I RO + X + @ J: 90 + X + . @ MOrl Tt-l ! I 80 + X 
a' I 90 + X + "'\ SP.T I 90 + X + ! T ~~ a I 80 + X + ! 2 OJ 

I4PT 41AO 42AD 4253 43AD 44AJ 45All 43no 4QAG 4AAO 4DAO 

: s 

: s 

: s 

C MULTIPLICATION WITH COE~FICIENTS ) 
0 HJT f G E R F L ~ G 
FMULT 144 0 DO I FCOEF + @ I Y + ~ Dl I Y + 2 +LOOP 
RMULT 144 0 D~ I PCrE~ + @ I Y + ~ 0/. I Y + 2 +LOD? 
MULT FLAG a 0 = IF F~ULT ELSE RMULT THEN 
( 5 P(li~T PRE-WEAVE ) 
I15PT TM ~ X + i TM3 @ X + @ OVER CVER MOD 51 @ Y + ! 

SBT S5 @ V + ! ; 
I25PT TM1 @ X + 2 TM2 a X + ~ MOO S2 @ Y + TM2 @ X 

+ @ TM1 @ X + @ SBT 54 3 Y + ! ; 
I35PT Sl ~ Y + 3 52 @ Y + @ OVER OVER M~D 51 3 Y + 

5BT S2 @ Y + ! THO @ X + @ S1 @ Y + a MOO SO @ Y + 
I45PT SS @ Y + ~ S4 @ Y + @ MOO S3 @ Y + 
I5PT INTZ SINT 24 0 DO I15?T I25PT I35PT I45PT 2CHG 

1CHG 2 +LOOP i 

( 5 PO HIT POST-WEAVE ) 

FVPT so @ y + @ DUP Sl a y + J) t·~ DO T1 TMO C,r 

1FVPT 53 @ y + j) 55 a y + @ I~ DO TS ! 
2FVPT 53 2 y + a 54 j) y + ~1 SoT T3 ! 
3FVPT Tl @ $2 @ y + 3 8VER OVER ~~ r ~ T2 $ o T 
4FVPT T2 ~ T3 a; OVER OVER I~OD T ~~ a X + ! SBT 

T ~13 ,lJ X + I • 
• I 

SFVPT T4 3 TS 2 OVER OVER MOD TMl 3 X + ! S~T 

TM2 J X + 
05PT INTZ SINT 24 0 DO FVPT 1FVPT 2FVPT 3~VPT 

4FVPT SFVPT 2CrlG 1CHG 2 +LOOP ; 

C 4 PJINT POST-WEAVE ) 

X 

T4 

401 10 0 DO I X + @ I Y + ! 2 +LOOP 
140 10 0 DO I 20 + X + 3 T 30 + X + .]) OVE:D C'Vt:K 

+ 

~DO I 10 + Y + ! SBT I 30 + Y + 
+ V + ! 2 + LOOP ; : 

I 10 + X + '· I ? " ~v 

c-: 

+. 
+LODe> 

+ 
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422 10 0 DC 
240 10 (I no 

S::l + y + 
2 + LOOP 

4D3 10 0 JQ . 340 10 0 U!J . 
90 + y + 
I 100 + 

. (" 
• ..J 

04PT 401 14[\ 

I 40 + 
I 60 + X 

SfH ! 

I O(l + 
I 100 + 

! SBT 
I 

I 
y + ! 2 

402 248 

X + J I 40 + 
+ :i) I 70 + 

70 + y + ! 

X + @ I RCJ + 
X + ;) I !.10 
110 + y + 

+ LOOP . 
• 

L.23 34~ 

( 3 POI~T POST-WEAVE ) 

y + 

X + ~ 
T 50 -

y + 

+ X 
I 00 

: 03PT 40 0 CJ I Y + i I 40 + Y + J ~rD 

I 2 •Lnoo . 
• 

OVED C'VER ·~a ::J I 
+· X + ?! ~ f •J + y ... 

2 •UJO::> 
+ ~ JYrR ov~:> '1 0 iJ 

+ X + CJ 

I 80 + Y + a CV~~ OVER MOD I 40 + X • 
+ X + ! I Y + Z I X + ! ~ +LOOP 

sEn T ?O 

• c . -) 

( INPUT R~-OROEPING V~CTOQ ~F ) 
!ORO 120 0 CD I RF + 2 Y + 2 ! X + ! 2 +L~JP : 
( OUTPUT QE-JRDERING V~CTDR ~~r ) 
OORC ~20 0 QO I X + ~ I RFI + ~ Y + ! 2 +LOOP ; 

TRANSFOP.'~ IOFfl I3?T !4PT l:5PT 1·1UL T DSPT 
04PT CDPT OJPD 

lTRANSFCJRM IOQD I?DT I4 PT I5PT U~UL T Q5DT 

04PT r:l3PT O!JRD 

( FRO FOR FCJ~APD AND I~V FJR INVE~SE TQANSFOQM 
USING ~ULTIPLY AND DIVIDE INSTQUCT!OM ) 

: FRO 0 FLAG ! TRANSFOR~ ; : INV 1 ~LAG ! TRA~SFOQM 

( 1 F R 0 F 0 R f 0 '.-1 A R D AN 0 1 HJ V F C R P.! V C: R S E T R A ~IS I= DR ~1 
USING EXT~RNAL HA~DWARE MODULAR M~LTIDLicR ) 

: lFRD 0 FltG ! 1TPANSFORM ; : liNV 1 FLAG ! lTRANSFJRM 
)( EMPTY Y c~1PTY 

: ~ 

(-!.. 

+ 

I 
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Assembler program source listings for the slave microprocessors 
(1 to 18) . 

Assembler program source listing for the master microprocessor 

Assembler program source listing for a 15-point WFT A (MC6809) 
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•'• ************************************************************** ., . 
... •'• PPOCESSCJR ''JUI'< ?. E q ! 

... . ,. . .. . .. 
•'• ************************************************************** .,. 

N A ~·1 68091 I 51", p 1 5 STD :4 c rJ o 
OUTPUT f. JU S0400 I C LR II ' ·-· 
STATUS E:JU $0402 I CLR 1 ' 1,' . 

Tb E tJU $0403 I LOA 1 ' X 
T2 tOU $0405 I LOR 1 ' y 

INPUT EQU $0410 I ~~ UL 
R6 EQU ~0412 I STD 2,!J 

R;:: r ;;;u ~0414 I LOA ' X 
S E ~'1 EJU o;Q416 L :l3 1 ' y 
•'• 'I :·lUL •.. 

eRr.. $~!:-:00 I AOIJO 1 'u 
'!JP STfl 1 'u J. 

GRCC ~t~;OlOlOOOO RCC St< 0 H: 

LCIU tt P R12 D 1 u~c ' !J 
BEGIN CLRA s 1<'. p 16 L 0 A ! ' X 

STA FL A;G LD~ ' y 
LOA S t=M' i·1UL 
~f:Q F ~~o! AODD 1 'u 

START 
I 

LOA ~ 1 I STC" 1 'u 
STA FLA

1

G c.cc SKD19 

FRO L0Y :: HOJO INC 'u I 

L DX ;t M L.T F R IS'<P1q LD c.. ' '1. I 
LOA #1 I I LOB ' y 
STA STATUS I "'lUL 
S yt,!C I A ODD 'u 
CL~ll. I I STD 'u 
STA STATUS I ... ... 
LDD : ~! P LIT I LOA 1 'u 
RPA OVE~ I LOR ~15 

'• 

NEXT L DY 1: 1·1 C i~ D MUL 
LOX Z:f..1LTRR I AODD z,u 
s n.Jc I ?.CS s I<', p 20 

LDO S c. V ,E i Ci·IPD z~.sssn 

... i I fiLO St<P21 .,. 
OVER S Y ~I.C ISKP20 ADOD li 1 5 

SYNC ISKP21 STD 2 ' IJ 
.A DOD R6 I•'• ... 
BCS SKP12 I LOA I I 

' l.. 

C~l P:l .to65521 I LOX t:TEM 0 

~:L 0 SKP13 I CU' ' X 
SI\P12 A DOC 1;:15 I CLR 1 ' X 
SKP13 S·YNC I CL~ z,x 

SYNC I LOP, !tl5 

s Yf\tC I ~11J L 
ADO~ P2 I SHl ' X 
BCS SKD14 I LOC.. ' X 
Ct-'tPD !t65521 I L:JB .rn s 
BLO $11. 0 15 I r·1UL 

SKP14· A o:JD t;l5 I .~ D 0 iJ 1 , X 

•'• I tl ODD 2,U ... 
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scs SKP22 STO ' IJ 
cr~ PD tt65521 LOA 1 'u 
3LO SKP23 L :J 8 til5 

SJ<..P22 AJDD ::<15 ;.llJL 
SKP23 SYNC AOOD :?,U 
... RCS L0°20 ... 

STD TZ C '.<Dr '' ...; "'b5S21 
S'!'\JC o,LO L0°21 
S'!'NC ILGP20 A8DD .tilt; 

SO!C ILOP21 STu 2tU 
STO T6 I ... .,. 
S 'f'-IC I LOA t u 
S\'NC I LOX 1t T C: ~1P 

•'• I CLD t X .,. 
STD SAVE I (LD 1 , X 

L C:rA FLAG I CL~ 2 , X 
CIWA ~1 I L 03 li • c: 

.J. -· 

:HQ 1·1UL T I 1-AUL 
CHPA #2 I srn ' y 
~1 c Q c orJ v I LDA ' X 
LOO SAVE I LD~ It 1 5 
$TO Rf.S I "!UL 
L bRA o::GIN ' AODD 1 , X 

CUNV L J [: SAVE I ADCJD . 2 t I.J 

STO OUTPUT I RCS LDP22 
L B R 1\ 3EGIN I U1D8 li65521 

•'• I ~L:J L0°2? .,. 
,'-1UL T INC FL/l.G ILOP22 O.J[l:J ~ 1 5 

LDX #SAVE IL!JP23 STO SAV: 
LOY /I' RES I S Y'·IC 
CLR 'u I SYNC 
CLR 1 ' 'J I SYNC 
LOA 1 , X I SY"JC 
LOB l , y I UIPA NEXT 
t·1UL I ... ... 
STO 2 ' 'J I r~ L T F R !=QB ]_ 

LDA 'y I :-IL TR R F03 61153 

LOR 1 'y I ... ... 
1·1\J L I ORG $0(101) 

ADDD 1 'u 1 r~c~n ::og I) 

ST:J l,U IP~OOl FCS 0 

RCC LDP16 IPR002 FCP. 0 

INC 'u IPRCJD:?. FCg l"r 

LGP16 L D ~ 1, X !P~CD4 FC8 0 

LD'3 ' y IT= ~·1? F(g 0 

''IUL ITt::~Pl FCB I~ 

ADDO 1 'u I TEMP? . FCS 0 

STD 1 'u !SAVE c:os 0 

sec: L 0 P11 !FLAG c:cg 0 

INC , u IRES FD5 ('• 

LUP19 LOA ' X 
, ... 

•,• 

LOB t y l SRG t.FC:FE 
r,1UL ISTt:1T EQU 1r=poo 

A:JDD ,:J I fHD a;: G It~ 
/ . 



AtJpenclix-0 
n ~ 
li- _"'; 

... ~~~~~-~-~~~-------------------~--------------~---~-----------~ ... ¥¥¥~~-·~-~~-~¥¥¥~¥¥¥¥YY¥¥Y~¥¥Y¥¥¥¥-¥¥¥-¥~YY¥YY¥¥-Y-~¥¥~~¥¥~¥~~~ 

... . .. PRac::ssoR NUW?.ER 2 
. .. ... . .. •.• 

... ----~-----------~--------------------------------------------·-... ... .................. , .... , .... , .......... , ............... , .... , .... , .............. , ............... , .............. , ..... , ..... , .... , .... , .... , .... , ............. ,~ ....... , ........ , .................... , .... , .... , ............................ , .... , .... , .... , .... , .................................... ,., ............... 
r,J .Ar-1 68092 ISt<.Pl4 a~OD It 1 5 

OUTPUT ~QU ~0400 IS!<'. P 15 STD T3 
STATUS E JU >1:0402 I SY"JC 
T7 EQU ~04(13 I ~DOD R3 
TS E •.:lU $0405 I Cl($ $1<. 0 16 
T::> EQU ~0407 I CMDO t16552l 

Tl FQU ~ 0 40 •:J I CILO S K 0 1 ... 

INPUT f()U $0410 ISKP16 ~ 0[10 lt 1 5 
R7 r::Qu $0412 ISKP17 STD T1 
RS E':!U !0414 I S HIC 
R.::. EQU $0416 I STD 1·1( NO 

Rl EQU $0413 I C LR 'u 
StM f.QLI f041A I CL~ 1 'u 
... 

' 
LOA 1 , X ... 

ORG $F800 I L :J ~ 1 ' y 
NOP I '·lUL 
o~cc ,.o.;o 101 01) 00 I STD ;o,u 
LDU 2iPRGD1 I LJt. ' X 

BEGIN CL~A I L03 1 ' y 
STA FLAG I MUL 
L 0 'l SEM I :.ooo 1 'u 
Cl,~(1 ... - ·~ F~ D l STD l 'u 

START L Oil ~1 I sec St<.D18 
S T.A FLAG I : r-.JC 'u 

FRO LJY t: !~ C N 0 !SKP18 LOC; 1 ' '( 
LOX ;Hil TF R I LIJ~ ' y 
L D.A !l 1 I i._.,UL 
STA ST.ATUS I ACJDD 1 'u 
SYNC I S T ~l 1 'u 
CLR~ I ~,(( SKD21 
STA STATUS I r~c ,u 
LJD HlPUT ISKP21 LOA ' X 
BC/A OVER I Log 'y 

NEXT LDV #r~ CN 0 I MUL 
lox ~ :~L T R R I 0.000 'u 
SYNC I STD 'u 
LDD SAVE I•'• .,. 

-·· I LOA 1 'u ... 
OVER SYNC I LOS :i 1 5 

SYNC I r-1UL 

AODD R7 l ADJD z,u 
BCS SKP12 I ~cs St<'. 0 22 
OlPD 1t65521 I C:·IP D 11S552l 
f.ILO SKP13 l RLG SKD23 

SKP12 ADDO lt15 I S KP 2 2 AOOO til5 
SJ\P13 STCl TS IS!<P23 STD z,u 

SHJC I•'• ... 
ADOD R5 I LO~ 'u 
3CS SK?l4 I LOX t:TE r·:P 
OlPD 1165521 I C L~ 'X 
~. L 0 SKP15 I .t:L? 1 , X 



A~pendix-J 

CLR 2 , X I LOY ;:QES 

LOR 1!15 ILOP15 CLC? 'u 
HUL I CL=' 1 'u 
STO 'X I L D .l 1 1 X 

LOA ' X I LOK 1 ' v 
LDB ~15 I ~UL 

1,1 LJ L STO 2 ''J 
AJJD 1 , X LO~ ' X 
AJJO z,u LOS 1 ' 'f 
9CS SKr24 I·IUL 
CMP[) .tt65521 ADOD 1 'u 
SLO SKP25 STD J 'u 

SKP24 ll.f1JD !t 1 ~- ecr: LCJDlA 
$1\P25 SYfiJC ! N C ' !J 
•'• ILOP1t? L DA 1 , X .,. 

S Y "lC I LOP. ' y 

ADDO t<l I •A UL 
gcs SKP26 I ADOD 1 'u 
U1PO ~65521 I ST!:' 1, u 
3LO $1('::>27 I ~-CC LOP19 

SKP26 ArlDO 1:15 I I!'JC 'u 
SKP27 STD T3 IL:JPlr~ LOA ' X 

SYNC I L~3 ' y 
AD:JO R3 I t·!UL 
BCS SKP2Fl I A D~O , u 
01PD .tt65521 I STD 'u 
:3LO SK 0 29 ! ... .,. 

SKP28 .ll. JDD i:!15 I LD~ 1 , u 
SKP29 STD T5 I L o e. ~15 

SYNC I t~UL 

ADDO R5 ! t.ODO z,u 
gcs SKD30 ! c,cs LCJD20 
CMPD ~65521 I C ~1 PO 4>65521 
BL:J SKP31 I ?, LO LJP21 

SKP30 ADDD 11115 ILJP20 ADDD it 1 s 
SKP31 STO T7 IUJ 0 21 STD z,u 

S Y!\!C , ... . ,. 
SYNC I L DA 'u 

•'• I LOX :tT c 1-lP .,. 
s T':l SAVE I CLR ' X 
L DA FLAG I CU' 1 , X 
c r~ P A n I C LR 2 , X 
BEQ >1UL T I LOB :t 1 5 

Cl-1 P A tt2 I ~1UL 

P.EQ C\!i\IV I STD ' y 
.L DD SAVE I LDA ' Y, 
STD R>=:S 

' 
l :J '?· ~tlS 

L8PA E EGH~ I i'-1UL. 
C UtJV L D ') SAVE I .~DOD J ' y 

ST[I OUTPUT I tdJOD 2 , I~ 

I H? A 1'. F G Ttl I [', ( r 1 n P :·? 
i:{ I . ( ~~I)! J II 0 r. '· :• 1 

r~UL T I r,J ( FL {I G I ('. L I J I. u r>.: -~ 

L [)) II'· A V F. ILCJ?22 llOClU '11':> 
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··- I C'~G SI).JOO ..• 
LUP23 STQ .... 

1..> !r~ow ~~R 0 
Sf "!C IPP:JDl FCB 0 

L J :J R3 I PP082 FU\ (\ 

STD TS IPRG03 ~cl) 0 

SYiJC l PPJC4 FC~ G 
SPIC IT::MP ~cs 0 

SfNC I T r: ,, D 1 r:cg 0 

LDD C\3 IT::f-jDJ ~=c~ 0 

STD S~VE IS~V~ F f) p, 0 
L3RA I~:: X T !FLAG ~=c~ (.' 

··- IR~S FOB 0 -·· 
MLTFR FOB 16379 I CRG <!FFF=~ 

MLTRR C::):<. 5460 IST;:;T :- -~U ~ F ~{· 'l 
.. , I :NO Ll:: G! ~; -.· 
;•: ~~~~~~~~~~~~~~~~~~~~~~~~~h~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~h 

.. , ......... , .... , .. "'t'"' ............ , .... , .... ,~ ..................... , .... , ..... , ............... , .... , .... , .... , ... "!" ,, ... , .... , ..... , .... , .............................. , .... , .... , .... , ......... , ............................. , ............................ , .... , .... , ......... , .. "•" ............ , ..... 

··- ·'· PROCESSC:R i·IUHfl, c P 3 ·" ... . .. . .. 
:::: 

~~~~~~~~~~~~~~~~~~~~~~~~~h~~~~~~~~~-~-~~~~~~~~~~~~~~~~~~~~~~~-........ , .... , .... , .... , ......... , ......... , ............................... , .... , .. "t" ........... , .. "t'" .. , .... , ..... , .............. , ........ , .... , .... , ......... , ........ , ....... , ....... , ............................. , .... , ................ -.- - ... ~.- ~ .................... , .... , ............. , .. 

~~A r-1 68093 !l)VcP s y ~~ c 
OUTPUT E :'.)U $0400 SnJC 
STATUS E :JU $0402 .lOOO C\8 

Tb ~QU ~0403 ~cs SK;Jl2 
T4 E~U $0405 (J~ p 0 ~65521 

T<:: :Qu $0407 ! r..Lo SKPl? 

II--. PUT ECU $0410 ISKP12 A JCIO r:15 
R8 F.QU $0412 Is'< P 1 3 STJ T4 
R4 EQ!J S0414 I S Y '-!C 
R~ ::Qu $0416 I A DOD q4 

StM : Ql.l- $0418 I RCS s 1<'. p 14 

:::: I ( ~~ D 0 ,6ssn 
ORG $F800 I BLO SK 0 15 
~·I 0 P ISKP14 nooo It 1 5 
IJ?CC ri 0{01010000 ISKP15 ST~ T":l 

LOU #PP.QOl I S y r,J (. 

BEGIN CLRA I STO SAV': 
STA FLAG I LDD Q2 

LOA S :C:I-1 l SU~:l SAVE 
BE') FC10 I BCC SKD16 

START LO~ .ttl I AO')O "65521 

STA FLAG ISKP16 SYNC 
FRO LOY ;HlCtJO I•'• ..• 

LOX "I~L T F R I STC 1·1Ct!D 
LOA 1:1 I CLP. ' u 
STA STATUS I CLI:I 1 'u 
S H!C I LOll 1 , X 
CLRA I L 03 1 ' v 
STA STATUS I r~ UL 
LDil INPUT I STD 2 , I J 

BRA OVER I L:.JI\ ' ( 

l'H. X T LOY 1'1 r~ C t1 D I L DR 1 ' y 
L [1 X ttl~LTRP I ~LJL 

SYNC I AODD J 'u 
LC"IO SAVE I ST[1 1 'u 

... I ... 0(( :. 1<. p 1 .s 



.-, 

Appendix-l.l D-S 

INC ,u ecs Sr< 0 2P 
SKP18 LOA 1 , X CHPD ~65521 

LOB ' y ~L'J SKP2° 
MUL !5!<.??.3 AJOD ll' 1 s 
A80D 1 'u !SKP2'? STO T.?. 
STD ! 'u ! S P.JC 
3(( SKD2l . I s y ~!( 
INC 'u ' ~: 

SKP21 LOA ' X I STD SAV: 
LOR ' y I LOA ~L~G 

~~ UL I Cf.1DA ttl 

AODD ' u I r:;. E Q t-11JLT 
STQ 'u I C 1-1PA ~2 

... I ~C:Q ([~NV . ,. 
LOA 1 ' lJ I LOr S.lV' 
L DR itl5 I STO RES 

I·~ U L I Lci~A Bf.:G!r-1 
AQOD z,u 1 c :n;v L CJQ SAV': 

°CS SKP22 I srn OUTPUT 
(r-1DJ t;65.521 

' 
L3?.A Br:G!N 

e u: St<P2~ I·'· ... 
SKP22 AD')D ti.l5 IMULT INC F LA 1) 

SKP23 STD 2,U I LOX t:SAVE. 
•'• I LOY atRC<: .,. .. - ....... 

L DA 'u ILCJP15 CLq ' !J 
L DX nTF.MP I rL?. 1 'u 
CLr< ' )( I LOA 1 , X 

CLR 1 , X I LD3 1 ' y 
CLR 2, X I 1-IUL 
LOB til 5 I STD z,u 
1-1 UL I L::JA ' X 
ST'J ' X I LD~ 1 ' y 
LOA ' X I ~1UL 

LOB ~15 I ADD::l 1 ' u 
1·1UL I STD 1 ''J 
A DuD 1 ' _"( I :J.(( LIJ 0 16 
ADDU 2 'u I INC ,u 
BCS SKP24 ILOP16 L JA 1 ' /.. 
CMP:l :t65521 I LD~ ' y 

[:,LO SKP25 I I-1UL 
SKP24 A DOD :t15 I AOOD 1 'u 
SKP25 SY"lC I STO 1 f. 

' J 

::: I sec LOD19 
s n~c I I r~ C 'u 
STD T2 ILCJP19 LOA ' .'1.. 

SYNC I LOS ' y 
STO 5AVE I 1·1UL 
LDD P2 I .'1000 ,u 
SUBD SAVE I STfl 'J 
RCC SKP26 , ... .,. 
AO'JD 1:165521 I LOA 1 'u 

SKP26 STD T4 I L DR lfl5 

SYNC I MUL 

~['f)Q C::4 I A::JOIJ 2 ' u 



Appendix-[) 
,..I_""! 

LUP20 
LGP21 
·'· ... 

LUP22 
LLP23 

RCS LOP20 
CW'C :;65521 
P,LO LOP21 
ADDD :t15 
STD 2,'.! 

LOA ,U 
LOX 
CU' 
CLK 
CLR 
LCl8 
~1 Ul 
STO 
L DA 
LOt. 
t~ U L 
ADJD 
A DOQ 
:'.( s 
CMPJ 
5LO 
ADDD 
ST(I 
SYNC 
LDD 
ST(I 

u T E r~ P 

' X 
1 'j 
2, X 
:: 1 5 

' X 
'X 

:tl: 

1 , X 
z,u 
LCP22 
tt65521 
LOP23 
li 1 c. 

T2 

P2 
SAVE. 

I 
I 
I 
I 
I 
I 
I •'• .,. 
IMLTI=P. 
IMLTP~ 
I:': 

I 
I r1c r~o 
IP~ODl 

IP~CD2 
IPP.JC\3 
IPR084 
l T:: i·1 P 
I T E ~·i P 1 
IT::~D3 

Is ~·JE 
I FLAG 
IRFS 
I::: 
I 
ISTRT 
I 
I::: 

S Y ~JC 
SYNC 
LJD 04 

STD T2 
SPJC 
Lf,t:;A N::n 

;J RG 
FD3 
c:cs 
c:c~ 

r=cs 
~=c~ 

c:c~ 

1=(3 

F C:3 
F~~ 

!= C:3 
C::::JI? 

'JRG 
:: r~u 
F tJ 0 

13 1 76 
13364 

$0000 
0 
0 
0 
0 
0 
0 
c 
0 
0 
0 
0 

$1=c::Ft: 

t.F q 0 0 
O.EGirJ 

~~~~~~~~~~~~~~~~~~~~-~~~~-~~-~~~~~~~~-~~~~~~~~~~~~~~~-~.~-~~~~~ ............. , ..... , ........ , ....................... , .......... , ..... "' .. , .... , ............. , ........ , ........ , .......... , .................. , ..... , .............. , ........ , .............. , .... , ................. , ..... ~ .......... , ............................................. , .... , ............... ,. 
PROCESSJP NUMB~~ 4 

... ... 
..... .. .................................... ., .............................................................................................. _ ....................... .) .... • .... • ..... • ..... • .... • .... • .... • .... • .... • ..... • .... • ..... • .... • .... • .... • .... • .... • .... • ..... • .... • .... • .... • .... • .... • .... • ..... • .... • .... • .... • .... • .... • .. ...... ... ..... , .... , ..... , .... , .... , .................................................... -.......................................... , ... , .... , .... , ....................... , .... , .... , .......................................................... , .... , .... , ...................... , ................................ .. 

OUTPUT 
STATUS 
TSi 
T3 
T16 
INPUT 
~'1 

R:;, 
Rl6 
SEM 

Bi:GIN 

STAI·H 

':.QU 
EQU 
f.QU 
EQU 
~ Qll 

EQU 
E ~JU 
~JU 

~~G 

NC'JP 
ORCC 
LJU 
CLP.A 
S T A-

LD~ 

B~') 

LDA 
STA 
LOY 
LC'!X 

68094 
~0400 

$0402 
$0403 
J0405 
$0407 
:S0410 
:;0412 
$0t-14 
$0416 
'!>0418 

$FI300 

""~01010000 
rtPRODl 

FLAG 
SEM 
FPO 
:i 1 
FLt\G 
:, nc ~!O 
~ 1·1 L T !=I:? 

~~EXT 

IOVEC> 
I 

' I 
I 
I 
!SKP12 
lSKPlJ 
I 
I 

.I 
I 

LlJll 
STA 
SH1C 
C L ~.A 
'3TA 
LDD 
~RA 

LDY 
LOX 
SYNC 
LDD 

S 'f"JC 
SYNC 

I'll 
STATUS 

STAT•JS 
I:~ PUT 
ov:R 
H1(~.:o 

:P-1LT~O 

SAV:= 

,1fJOD (.':1 

u.c. )I(J' 12 
CMP!) tt65521 
ML'l SKPL' 
ADO;) ill~ 

S TO T 3 
SYNC 
SUPD P3 
RCC St<.Pl.:. 
AJC'Cl #6c;5:'1 



SKP14 ST~ T16 I BCS s 1", p 2 2 

SYNC I (i'-10!) ~65521 

S OIC I i3LO SKDZ3 
... 15!(?22 A~OD !115 ... 

STD r1Cf,10 !SKP23 SnJC 
CLR ,u I"• •,• 

CLR 1 'u I S Y ~!C 
L~lA 1, X I A:JQO Pl6 

LDR 1 ' y I "'>CS SK =>24 

1·1 IJ L I U~::>C ::65521 
ST'I 2,U I ~LU SK. 0 25 
L DA ' X ISK.P24 AJOD ':15 
LDC\ 1 ' y ISKP25 SPJC 

1·1UL ! STD ·n 
.A91!J 1 'u I SYNC 

STD 1 'u I ST~ s;:,.vt. 
sec SKC'l6 ! L~r-.)_ R3 
I II! C ·,U I 5U'30 5AV: 

SKP16 LDA 1 , X I '3CC SK 0 26 
LCB ' y I AOOD :!65521 
f·IUL ISK?26 STC: Tg 

ADOD 1 'u I SYNC 
STD l,IJ I SYNC 
BCC SKD19 1 ... ... 
r r~ c 'u I ST!J SIIV: 

SKP19 L~A 'y I LOA FLAG 
LOB ' y I Cr~PA #1 
~~ UL I 3EQ ~1UL T 

ADOD ,~ I 01?~ ::2 
STJ ' u 

PC() 
1.1 ,_ " (IJNV 

::: LDD s:.vo: 
LOA 1,U ! ST::I R:s 
L:J6 t:15 I LBRA ::I~GPJ 

iWL. ICJNV LJ~ S&lVE 
ADDJ z,u I STD DUT=>UT 
RCS SK P 2 0 I LB?A· tlt=G!N 

CMPQ :i65521 I ... ... 
E1 L 0 SKP21 I ~1U L T H~C FLAG 

SKP20 A DOl: t115 I L~X ztSAV: 
SKP21 s T'") 2,U I LOY ::t.;t:S 
... IL:JP15 CLR 'u . ,. 

LDA ' u I CL? 1 'u 
LOX z;:r= i~ P I LCA 1 ' X: 

C L '~ 'X LD~ 1 'v 
CLP 1 , X I tvlUL 
CLR 2 , X I srn 2 'L! 
LCJI3 :q:; I L:JA ,I 'f 

MLIL I L Of'. 1 ' y 

ST~ ' X I I~U l 

LOA ' X I AUOD 1 1 I! 

LD:1 I{ 1 c, I .S T fJ l ' u 
nuL I r:cc LOPl~ 

AOOC 1 , X I INC . 'u 
AODD 2,1J IUJP16 L:JII 1 , X 



Appendix-0 

Lf}!=\ ' y I .1000 2 ' lj 
r·1UL I 3CS LOD22 
ADDD 1 'u I UlP~J tt65521 

STO 1 'u I ?, LC LCJD23 
~. cc LCP19 ILOP22 .t: COD t: 1 ~· 

INC 'u ILOP23 s y r:c 
LUP19 LOA ' X I SYNC 

LOP· ' y I ST~ TJ 
MUL I LD~ Plt, 

ADClJ , u I STD 'SAVO::: 
STO ,u I SYNC 

::: I s nJC 
LDA , 

t I J I LSRA u:xr 
.L 

L0~ ~15 I::: 
HUL I r-IL T F R c: D ;:>, 43~47 

AJDD ·2 'u ~~~LTRK c;:~ 549? 

RCS LO?ZrJ , ... ·-· 
OlPD ~65521 

, ... ·-· 
t.LO LOP21 I 'J~G ~; 0 () 0 C'· 

LUP20 AiJI)O ~1S I ~~C W! c: 0 ;:, 0 

LuP21 STU 2 'u jPDJ01 F C ~- 0 
•'• IP 0 0C2 ..• FCB 0 

LOA 'u IP~003 ;:co 0 

L ::JX t:TEMP IPR004 FC5 " J 

CLR 'X I p:\IP FCB (') 

CLP 1, X IT:: r~ P 1 C:(::l, G 

CLP ? 'X I Tft.IDJ ;:::c 1 0 

LOB ~1~ !.S.lVE F[)g (' 

~~ UL !FLAG ;:::(5 0 

S T ~) t X !R:S FOR 0 

U'A ' X 
I:;: 

LC5 ~15 I QRG 5FFF: 
ML1L ISTRT ::::::u ~FqQI) 

ADDJ 1, X ., c: ~-JO ;lEG I'l 

•.. .............................................................. ,J .. ............................................................................... ,J., ..... , ... .,),. ~· ....... .J .. ...... ..... ..~ .. ..J .. ................................. .J .. .................... ~ ...................................................... .. , ..... , ......... , ................ , .......... ~ .. , ................... , .. -, ..... , ........ -...... , .... , ......... , ......... , .... , .. ,, ........ -..... , .... , .... , ......... , ..... , .... , .... , .. -... , .... , .. " .. -..... , ............... , ......... , ..... '•" ...... , .... , .. '•" ....... , .. -..... , ........... -.- ., ... , .. 
·'· ... PDOCESSDR NUH3ER 5 ::~ ..• ., . 
•'• 



t~ A~ 68095 STA FLAG 
OUTPUT E:JU $0400 LOA s::--1 
STATUS =uu ~0402 Elt:Q FR[l 

T10 :: :) u $0403 ISTA 0 ":" LO~ :tl 

Ti. F~U ~0405 I STII FLa.G 

Tl6 EQU !0407 IFP.O L DY ~tt~U·l J 

INPUT EQU $0•dQ I LOX z: ·~ L T F R 

RlO ":QU $0412 I LOA 11'1 

R) EQU $0414 s T .n S"rAT:JS .. '-
Rl6 EQU $QL..l6 s v~·c 
Sf:t-1 :: ~J u !.0418 CLRA 
..• sra. STHL.!S ..• 

1RG $F800 LD'J INPUT 
NC 0 C,RO lJVfR 

ORCC 1t~{010101JOO !NEXT LOY ;oT>!UlD 

L DU ~?ROD1 I LOX i2 ~~ L T R ~ 

B::GIN CLC<:Il I S Yr-lC 



Appendix-D 0-1(1 

L D Cl SAVE IS'<P20 AD9D t' 1 5 
~:: IS'<?21 <:.TL' z,u 
OVER SYNC , ..• ·.-

s n~c I LOA 'u 
ADDO ~10 I LCJX t:T ErA P 
P, ( S SKD12 I C'L'? ' X 
c ,~1?0 ~65521 I CL.R 1 , X 
8LO SKP13 I CLR 2 ' y 

SKP12 . .l. ODD ~15 I LD~ :t 1 5· 
SI'\Pl3 STD T2 I ~UL 

S~NC I STG ' X 
STO SAVE I LOA ' X 
LJD R2 I L o:. ~] 5 

SURD SAVr; I ~>1U L 

BCC SKP14 I .'lJDD 1 ' v. 
AO'JD :t65~21 I AOl'D z,u 

SKP14 STO T16 I ?.CS SKD22 
S Y ~JC I ( r-1DJ !t65521 
SYNC I :::. LO 51< 0 23 

-·· ISKP22 aoo:J II 1 ~ .,. 
STO ~~ c iJ l) ISKP23 S~NC 

CLR 'u I•'• .,. 
CL~ 1,U I SYNC 
LOA 1 , X I SUBD ?.16 
LD5 1 ' y I sec SK 0 24 
MUL I t.ODG 1165521 
STO 2 'u I SU'24 snJc 
LD!l. ' '1. I ST~ TZ 
LOR 1 ' y I SYNC 
:--1UL I STO SAV'f: 
A DOD 1 'u I LOO oz 
STD 1 'u I SUBD SAV~ 

BCC SKP16 I RCC SK"2.S 
INC ,u I AJDD ~6~521 

SKP16 LOA 1 , X ISKP26 STD :10 
LD5 ' y I s y ~~ c 
r·IUL I SYNC 
A JDQ 1 'u , ... .,. 
ST!J 1 'u I STD SAVE 
BCC SKP19 I LJA fLAG 
INC ' lj I UIPA ttl 

SKP19 LOA 'X I Q~l"l 
··' t.l:.' HIJL":' 

LOB ' y I CrH'!\. 1:2 

1·1UL I ~cQ c ~ ~~ v 
ADOD ,u I L Df" snv::: 
STD ,u I STD ~cs 

~:~ I LB?A 3: G I 'J 

L~A 1 'u I CQtJV LOG St.Vr: 
L 0~ :n: I STD O~JTDUT 

~·1 U L I L~PA 3':~HJ 

.A llDD z,u I·'· ... 
3CS SK 0 20 I t·1!J L T !NC FLC.:~ 

OH'D 11'65521 I LDX ;:5.!\V~ 

o. L 0 SKP21 I LCJY :::JES 
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LOP15 

LUP16 

LCP19 

•'• .,. 

LUP20 
LGP21 

CLR 
CLR. 
L:JA 
LOB 
f"lUL 
STQ 
LOA 
L:Jt?. 
~·1U L 
ADIJD 
STO 
BCC 
INC 
LDA 
L DB 
~UL 

ADJD 
STD 
8CC 
INC 
LDA. 
LOS 
~~ UL 
.AD fl D 
STD 

LOA 
LDP. 
~~u L 
ADOD 
BCS 
C·1PD 
gLO 
AOOD 
STO 

LOA 
lOX 
CLR 
CLD 
CLP 

'u 
1 'u 
1 , X 

1 'y 

2,U 

' X 
1 ' y 

1 'u 
1 'u 
LOP16 

'u 
1, X . 

' y 

1 'u 
1 'u 
LOP19 

'u 
' X 
' y 

'u ,u 

1,1.1 
tt15 

2,U 
LOP20 
~65521 

LOP21 
::il5 

2 'u 

,u 
:tTEMP 

' X 
1 , X 

: 2, X 

I LOR :.' 1 5 

I t"1UL 
I STD ' X 
I LOa ' X 
I LD:2 I! 1 ~ 

I r1 uL 
I AOrlD 1 , X 

I ~ 8~~' 2 'u 
l scs LJP 2 
I (MPD ::i6S 21 

I ~L'J LOD23 
IVJP22 ADDD 1:115 

!LOP23 STO TH: 
I s y ~~ c 
I s y "1( 

I LDJ R2 
I STD SAVE. 

I s y '!( 

I s n~c 
I LBPA '·JE X T 
I********************** 
I 1·1L TF R l=OB 19136 
IMLTRR FDg 46773 
I•'• ... 
I OP.G ¢.0000 

! i'1 c ~-JO FD~ n 
1Pqco1 c:cg 0 

I?ROOZ 1=(8 0 
IPCW['3 FCR 0 
IDRC84 C:(~ 0 
IT ET•1P FCC, 0 
I T C: r~ P 1 c:ca 0 

ITC:MP3 F(g 0 

IS~V: ~=o~ 0 
I FU.G f=C3 0 
I R:: S ;:!Jo. 

. l.- .... 0 
I ... 
i ...... 

1RG ~F::F;: 

ISTRT :Qu $FjQO 
I ':NC P,Er;~~! , ... ... 

~ ~~~~~~~~~~~~~~~~~~-~~~~~~~~-~~~~~~~~~-~~~~-~h---h~-----hh-hhh~ ... ,... .., ..... , .. , ............. , ......................... , ........... , ..... , ....................... , .......... , ..... , .......... , ..... , .... , ....................... , .... ~ .. , .... , .... , ......................... , ..... , .... , ... , .. , ... , ............ " ., ... , ............ , ....................... , .... , ... , ..... .. 

OUTPUT 
STATUS 
T11 
T• 
·J. 

T7 
INPUT 
Rll 
Rl 
R7 

•'• .,. ~POCESSJR NUMBEP 6 :': 

~~-~~hh~~~~~~~~~~·~~h-~·~~~~-~~~~·-~-~-h--~h~-~--·~-~--h~-~h-~ .. , .. "•"' .......................... , ..... , ... , ..... , .... , .... , ............... , .... , ..... , ......... , .... , ... , .. "'•"' ................ , .... , .............. , .... , .... , ........ , .... , ......... , .... , .................. , ......... , ...................... , .... , .... , ...................... , .... , .... , .... , ......... .. 
rJ.~ M 68096 Is ::;-1 E=QU $0418 

E QU $0400 , ... .,. 
::Ju $0402 ! ORG $Fi:i00 
EQU $()403 I ~.J Ll p 

f.QU $0405 I o~cc ~~~Ol·JlOOOO 

EQU $0407 I LDU ::P~ODl 

E :; U $0410 I8EG!N .CL;>A 
:: :;)u $0412 I STA FLAG 
~ r:JI.J $0414 I LOA ) :: ~1 

>>)U 't0416 I Q ~' ,., 
I;_ .4, FQ[J 



Appencii.x-0 [J-12 

STAP.T LOA ltl PIC 'u 
STA FLAG IS!< 0 19 LOA ' X 

Fl-(0 Lf1Y IH,lCN 0 I LIJ:: ' '( 

LOX ,r,t'1L TF !:' I r·,UL 

LJA It 1 

' 
llODCJ 'u 

STA STATU~ I STQ !I 
9V 

SHJC I::: 
CLRA I LOA 1 'u 
STA STATUS I LD~ :t' 1 5 

LOn I'J PUT I !··1Ul 

B;;:A OVER I AOOO z,u 
NE:XT LCY :t>10JD I scs SIP20 

LOX ~t-IL TR!:.! I O~PD !i65521 
SYNC I SLO S II. D 21 
L DO SAVF. ISKP2Q AOOD itl5 

-·· ISKP21 STD 2 'u .,. 
OVER STD Tll , ... ..• 

SYNC I LD4 'u 
.L\ DOD R 11 I LJX :t T E ,'·1 ::> 

PC~ SKP12 I CLP ' X 
C"''PD li'65521 I CLR 1 ' Y. 

t1LO S!<.P1.3 I CLP 2 ' y . 

SKPl2 AOOD t' 1 :; I LD~ It 1 5 

SKP13 STD T 1 I IJ.UL 
S YN.C I STD ' X 
SYNC I LDA ' X 
SYNC I L D~. !:'15 

SYNC I "'UL 
AOOD R7 I AODO 1 , X 

8CS SKD14 I .\DOD 2 'u 
OIPO :t65521 I ~.c s SKP22 
i3L~ SP'15 I CMDD #65521 

SKP14 AOO:J ,.'t 15 I ~LO ~KP23 

:::' ISK..P22 AJDD :i 1 5 
SKP15 STO r~ CN 0 SKP23 SP:C 

CLR ,u •'• 

CL~ l,U STC T7 

LOA 1, X SYNC 
LD?. 1 'y SYNC 
~~uL S YtlC 
STO z,u S Y ~!C 
LOA ' X ADOD V} 

LOS l ' y ~. c s SK?24 
"1UL C I'-1P 0 :t65521 
AJD:J 1 ' IJ kLO SKP2C: 
STIJ 1 'u SKP24 ADOD ~1'i 

3CC SKP16 SKP25 SEl T1! 
INC ' IJ 

s y ~J c 
SKP16 LOil 1 , X !\DOD "11 ... 

LO~ , y c,cs SKP26 
>IUL UP'D ~65521 

AOOD 1 ' lJ RL~ SKD27 
STD 1 'u ISKP2b .ADQD 1115 

~cc SKP19 I··· ... 



Appenclix-0 ~1-1: 

SKP27 STCI SAVE !L2P20 AOOO It 1 5 
LOA FLAG ILOP21 STf'l 2 'u 
U1PA .If 1 I•'• ... 
BEQ MIJLT I L~A 'u 
c ~~ p ,.\ ::2 I LOX ~tT'=i~P 

g:Q CONV I CLP. ' X 
LOD S.L\ V E l CLR 1 ' _x 

STO p;:.) I CLR ~ ' X 
L B P .~ i.lEGIN I L~S 1t15 

CUNV LDO SAVE I 1~UL 

STJ CUTOUT I STJ ' X 
LARA 6 EG I f.J I L D~ ' X ... I LCJ3 ~15 ... 

:'·1UL T HJC FLAG I ~wL 

LOX #SAVE I l\JC'D 1 , X 
L [) y li!RES I A~DD 

., ,, 
... ' ..... 

LUP15 CLR ,u I ECS LJP22 
CLR 1 'u I C '•I PO ~t65521 

L[iu 1 , X I FLJ LOP23 
LJB 1 ' v IL~P2?. ADf)D t: 1 5 
'1LJ L IL'JP23 ST~ T11 
ST') 2,U I SYNC 
LOA ' X I LOD ;.' 11 

LJ~ 1 ' y I STD SAV: 
~IUL I SYNC 
.AD ll8 1 'u I SH!C 
STD 1 'u I SYNC 
sec LOP16 ! L'3RA ~~~X T 

INC 'u I*********************** 
LUP16 LOA 1 , X lr-1L TF ~ I= Do 32759 

Log 'y I r1 L T ~ R F DP 6::52 

~1UL I•'• •.• 

A. ODD 1 'u I OKG t.onoo 
ST'J 1 ' lj I i·1C i~D C:~3 IJ 

BCC LDP19 IP;;:Jol FCR 0 

INC 'u IDDQD2 FCB 0 

LGP19 LJA ' X . IP~CD3 FCB 0 

LOB ' y I>'R004 FC3 0 

MUL I TeMP· FCS 0 
AODD 'u T:: ~1 D 1 c:rp .J ' 0 

STO ,u TEHP3 FC5 0 
•'• SAVE FOE' 0 .,. 

L DA l,U FLAG FC3 I) 

LD~ ::<15 RF.S ~= D c. ('\ 

f~UL •'• .,. 
A!:JOD ."'' u ~~r, $FFFF 
gc ~. L0°20 STRT E:QU H 1300 

C:MPO t;'o5521 C IJ ~) 0 EGit! 

I)LO LOP21 ~: 

:::: ~:~ 

... I ... . ,. . .. 
•'· I·'· ... ., . 
~::: 

, ... 
-'•" 

•'• ... I ... •.. 
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•'• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~~~~~~~h~~~~~~~-~~~~~~~~~ . ,. .............. , ..... , ..... , .... , .... , ..... j' ... , .... , .... , .... , ..... , ......... , .............. , .... , .... , ..... , ................................................. , .... , ............. , .... , ..... , .... , ... , .... , .... , .... , .... , .... , .... , ....................................... , ..... , .... , .... , ............ , .... , •• , .... , .. 

•'• ~:: PROCESS·JR NUf"13 E? 7 •'• ... . .. 
•'• ~~~~~~~-~~~~~~~~~-~~~~~~~~~~-~~~~---~~-~-~~-~~-~~~~~-~-~~~~-~-•,• ....................... , .... , .... , .... , ....................................................... , .... , .... , .... , .... , ......... , ........ j' .... , .... , ........ f ... , .... , .... , .............. , .............................. , ...................................................... , .... , ............................. 

'•JA f·1 68097 CIOOD PlO 
OUTPUT EQU SO<tOO p, c s S K P 14 

STATUS EQU t0402 ( ~1 D 0 it6~52! 

T12 EQU $0403 3L::J SK 0 15 
TZ f ou $ 0 4'0 5 SKP14 ~ 0.00 1t15 
TlO f!)U $0407 SKP15 STD T8 

Tb E QU $04(\9 SHIC 
T6 EQU ~o.:..os t.OOD R8 

IhPUT EQU $QL.10 t:lCS $I<', PH 

Rl2 fCU 'f0412 Ci·',::>8 :t65521 

RL EQU "S0414 ~LO St<.P17 
RlO f Ql_l <£0416 S 1(. P16 li.ODD !tl~ 

Ro ::wu ~041:.3 SKP17 S T =-· T6 

Ro :au S041A I SYNC 
Sd~ E :jU ~ 041C I•'• .,. 
··- I .,. STO I·' CUD 

ORG $F800 I CLP ' 1.1 
~~ 0 p I CLR 1 ' !j 

ORCC ~~;0101000(1 I LOA 1 ' X 
LOU ;,' 0 R001 I LQ~ 1 'y 

BEGIN CLkA I ·~u L 
STA FLAG I STD 2 'u 
LOA S!::M l LOA ' X 
BEQ FP.D I Log 1 ' y 

START L 0~ i!t1 I MUL 
STA FLAG I li.OOD 1 'u 

FtW LOY :H1C~JO I STD 1 ' iJ 
LOX ttT'1 L T F D I 5CC SKP1!:l 
LOA til I INC 'u 
ST~ STATUS ISK?l3 LOA 1 ' X 
S Y ~JC I L J~ ' y 
CLRll. I r,~UL 

STA STATUS I ADC!D 1 'u 
LOO HJPUT I )TD 1 ''-' 
BRA OV EP ' RCC Si<. 0 21 

NEXT LOY i1 1·1Cf·ID I INC ' IJ 
LOX. iH1L TR R I S~P21 LOA ' '1. 
s Y r~c I LOR ' y 

LDD SA. V E I :1• UL 
•'• I ADDD '1_1 .,. 
OVER STD T12 I STO ' '-' 

SYNC I•'• ... 

ADDD ~~ 1 2 I LD.l 1 ,u 
RCS SKP12 I l 0?. Ill 5 

CMPD Jt65521 I 1·1UL 
5LO SI",P13 I AD80 2,U 

Si<-Pl2 AOQO 1t15 I c:cs SK?22 
SKP13 s Tf' T2 I Ct-1 P D :165521 

s '( ~~ c I E'.LC <;KP23 

STD T10 Is t<. P 2 2 AODO 1115 
:-;n1c .ISI".P(:'. ~, rn ?,IJ 



~1Jperictix-D u-lS 

•'• IS'<P35 ST8 SAv:: .,. 
LOA ,u I l 0A fLAG 
LDX t.T::;MP I cr., P A ~! 

CLR 'X I 0
• E0 ~ill L i 

CLR 1 , X I Cr-1 P A li 2 
CLP 2, X I ;l, EQ COi·JV 

L'"'" U..; :: 1 5 I LOD SAV: 
I'IUL I STD R:=s 
STf\ 'X I LB;<A ·. 8 ~ G! ~J 

LOA ' X 1 c 'J r·~ v LDD s~v:= 

LOP.. :tt 1 5 ! STQ ']:JT PUT 

1·1UL I L3~A 57:GPJ 
A [) Cl [l 1 , X I•'• .,. 
.AODD 2 'u IMI.ILT INC FLAG 
:3CS SKP24 I LOX rtSA'/13: 

Ci1PD 1!65521 I LOY ll~ES 

BLCJ SKP25 ILOP15 CLR 'u 
Si<.P24 AODD itl5 I CL'< 1 ' IJ 
SKP25 S OJC I L ~Cl 1 ' y 
... I L'JP. 1 ' y . ,. 

SYNC I ~~u L 
AOCD R6 I ~. T 'J 2 'u 
~cs SKP26 I L 0 .~ ' X 
01PD !:65521 I L D?. 1 ' y 
BLO SKP27 I ~·11_1 L 

SI<.P26 AOOD ::15 I ADOO 1 'u 
SKP27 STD T8 I STD 1 'u 

S Y~JC I sec LiJ 0 16 
AODD R8 I INC ' u 
gcs SK?28 ILCJP16 L DA l , X 

C/-1PO :t65521 I L D~ ' y 
8LO SKP29 I ~1lJ L 

SKP28 A :IDD t<15 I AODD 1 'u . 
SKP29 STO T10 I ST~ 1 'u 

SnJC I ?,(( LfJPlq 
ADJD R 1 ·) I ItJC 'u 
~cs SKP30 ILIJP19 l DA ' X 
CHPD ::65521 I L o~. , y 

5LO SKP31 I PUL 
SKP30 .!1 DOD ~15 AODD ,u 
SKP31 SYNC STO ' u 

AO!JD P2 :~: 

BCS SKP32 LOA 1 'u 
CMPr'; ::65521 L DP.· It 1 5 
bLO SKP33 1·1UL 

SKP32 A'JnD 1:15 ADDD 2 'u 
SKP33 STIJ T12 .RCS LOPZO 

SYNC C.'-1 PO ~65521 

II. DOD R12 P,L 0 L0°21 
BCS SKP34 LCJP20 AODD if 1 5. 
(~1 p 0 tt65521 LJP21 STD 2 'u 
bLO SKP35 ... . ,. 

SI<.P34 .AJDU ~15 l8A 'u ..• L:JX :t T :'I~ P . ,. 



Appendix-!! LJ-1~ 

CLD ' X I STD SAV: 
CLt:? 1 , X I SYnC 
CL'< 2, X I LB?A NEXT 
L JS lt15 I•'• ... 
r·1 UL IMLTFR FDS 8192 
STD 'X !MLTRR c: D P. 57?.31 
LOA ' X 

'I::: 
LOP. ~15 I CJRG ~0000 

1·1UL I 1·1CNO c:og 0 
ll.ClJO 1 , X !P?ODl c:ce 0 

ADJU 2,U 1Pt;'C02 FC~ 0 

BCS LCP22 IPQ013 FC ['. C' 

C:J, p [) ~65521 I?~CC4 c:r~ 
. \.. '-' 0 

8L'J LOP23 I TU1P c:ce 0 

LLP22 ~DOD :115 IT:: 1·1 P 1 c:co 0 

LGP23 ST[l T12 !T:MP3 FCB 0 

SHJC IS~VE FO~ 0 

LDO R12 I FLAG FCB 0 
STD TO '-' IRt=S C:Qg 0 
s Yf\! c I•'• ... 
LD'J RS I 'lKI3 'SFFF: 
STO T12 ISTRT · EQU ~F80Q 

SYNC I E;I.J~ BEGIN 
LO~ P.12 , ..• .,. 

...... .. ............................................................................................................... "" ....................................... .J ..... • ..... • .... • .... • .... • .... • ..... • .... • ... • .... • .... • .... · .... • .... • .... • .... • .... • .... • ... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .. .. ,... .. ..... , .... , ... , .............. , .... , ..... , ................... , .... , .... , ..... , ................... , ................... , ............ , .... , ......... , .... , ......... , .... , ......................... ~ ........ , ......... , ..... ~ .. , .... , .............. ·.~ .. , ..... ~ ................. , .................. , ............... .. 
... ... PROCESSOR NUMBER 8 

~ ~~~~~~~~~~~~~-~~~~--~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ "'(" ,, .... , .... , ........ , ........................... , .... , ..... , .......... , .... , ......... , .......... , .... , .... , .... , ..... , .... , .... , ........ , ......... , ..... ~ .. , ................... , .... , .......... , .... , .... , ..... , ................... , .... , ............... , ............................. , .... , .... , ................... , ..... .. 

OUTPUT 
STATUS 
Tl3 
T3 
T'1 
T7 
INPUT 
Rl3 
R3 
R'9 
R7 
Stf'l 
•'• .,. 

B1:GIN 

START 

FRO 

f..JAI'1 
EQU 
ECJU 
EQU 
E\.JIJ 
=au 
EQU 
~QU 

EQU 
EQU 
EQLI 
Ewu 
EQU 

ORG 
NOP 
ORCC 
L8U 
CL 0 A 
STA 
l DA 
B E :~ 
LOA 
STL\ 
LDY 
LOX 
LOA 

68098 
!!;Q400 
!-0402 
30403 
$0405 
";0407 
$0409 
$0410 
$0412 
$0414 
'li0416 
$0418 
$041A 

$F800 

1fO,.;Q1010000 
ttPRDD1 

FLAG 
SE:M 
F ::> C• 
It ~. 

FLAG 
llf<~ChiO 

li f~L T F R 
1t1 

I rJEXi 
I 

OVF? 

I s ~~'- P 1 4 

STA 
SYNC 
CL?A 
5TA 
LOG 
~. R A. 
LOY 
LCJX 
S Y '•JC 
LDD 

ST8 
S'fNC 
~DD:J 

~cs 
CMP::J 
RLO 
ADDD 
STO 
SYNC 
SH' 
s Y ~Jc 
ADDD 
~cs 

C ~~ P D 
::J,LO 
ADDD 

STATUS 

ST~TUS 

I'~ PUT 
OVEP 
:t ~.1 c f·l 0 
;: :·1 L T ~ R 

S~VE 

T13 

Dl3 
SK 0 12 
~65521 

SKP13 
t' 1 r::: 

... -lj 

T9 

D9 
S K P 14 
~+6552l 

r, ~: p 1 (:', 

:q 5 



Appendix-~ G-17 

SKPlS ST') T7 LelA ' X 
SYNC L Cl8 ~15 

STD SAVE 'AUL 
LDD R7 ADJD 1 t X 

SUBD SAVE AODD 2t~ 

~CC SKP16 c,cs Sl\ 0 24 

A DOD tr65521 CMPO ::65521 

SKP16 S '!'f\IC :;>. LO SKD2'i 
... IS !<.P 2 4 AJOD ::1 5 ... 

STD HC t-10 IS'<P25 SYNC 
CLR , u I•'• .,. 
CLP. 1, u 1. SYNC 
LOA .!. ' X l S T C:' T7 
L Q[l, 1 ' y I S'I'NC 
~UL I )T~ SAVE 
S T rl z,u I LDD ?.7 

LOA 'X I s u Q, 0 s~v:: 

LOP. 1 , y I PCC SKP26 
MUL I AJClD :t65521 
.ODDD 1 'u ISKD26 STD T'j 

STQ 1 'u I S'I'NC 
sec SKP18 I ~ODD P9 

INC ' IJ I PCS SK>'2S 
SKP18 LOA 1 , X I ("1P!) 'l65521 

L 06 ' y I !3LO SK. 0 2C1 
MUL Is 1<. P 2 8 ADIJD :t1c; 

ADDCl 1 , u ISKP29 S v t~C 

STD 1 , u A. DOD p 3 . 

13CC SKP21 9CS SK??.Q 
INC 'u C ~·1 PO 1165521 

SI\P21 LOA ' '( 
O,L'J S K P 31 

LOB , y ISKP30 AJOO !i 1 c; 

/-',IJL ISK.P31 SEI TD 
AOOD 'u ' S H!C 

STO 'u I A!J8D R13 
... I ~cs S K 0 3 2 . ,. 

LOA 1 , u I (~P[' 116::.521 

LOR :J 1 5 I BLQ SKP3? 
~1UL Is 1(.? 3 2 .~ODD li15 
a.D:JD z,u I•'• ... 
ecs .SKP22 ISI(P33 SF' SC.Vc 
(!"lP[l l:i65521 I l DA I= LAG 
eLO S!<P23 I C t-1PA :t1 

SK P 22 Af)')O ~15 I 3!:~ ~1UL T 

SKP23 STD 2 'u I C1'1P A ::z 
•'• I SEQ CONV .,. 

LOA ,u LDD SA'v'~ 

LOX :t T EIW I STD !;1:S 

CLR ' X I LSRA 8F.GIN 
C LR 1 , X ICDtJV LD'J SAVF. 
CLP. 2, X I STO Oi.JTDI.JT 

.L DR t: 1 5 I L ~PA P c: ,- T 1-1 
,J ~ u .• 

~~ U L , ... . ,. 
srn ' X !H~LT 'PJC F LAI· 



Appendix-D J-1? 

L JX ,:SAVE MUL 
LOY trPES s Tr) ' X 

LOP15 CL~ , u LOA x· , .. 
CLR 1, u LOS 1115 
LOA 1 'X ~·WL 

L~':. 1 , y A:J::JD 1 , X 

MUL tll)[)Q 2,U 
STD ;::,u r: c s LD 0 22 
L DA ' X Cf.1PO :t6552l 
LOa 1 , '( PLO LCJP23 
"1UL ILOP22 A'JDD ::15. 
AD1D 1 'u I L0P23 SFl Tl~ 

STO 1 , 'J I S Y !JC 

sec LOP16 ! L:J:J ;;:'9 

INC ,u I STD T7 

LuP16 LDC. 1 , X I LDCl Ql~ 

LDD , y I STD T9 

~wL I SHiC 

AOOD 1 'u I L O'l R7 
STD 1 'u I STD SAVE 

gee LOP19 I SYNC 
INC 'u I S Y~ 1 C 

LCP19 LDA ' X I LBRA N:XT 
LDR , y , ... .,. 
MUL lt~LTFP 1=')'3 45457 
ADDD , 'J I i~ L. T R R ~=os 37975 
STO 'u 

, ... ... 
... I . ,. O~G soooo 

L')A 1, u 1 r-1:No FOB 0 

LD5 11'15 IPR'j01 c:cg 0 

MUL IP~C')2 !=(~ 0 

AuOD z,u JPR003 1=(8 1'1 
C' 

RCS LQP20 IP:;>JO-+ c:cs 0 
OlPO #65521 l T:: r-1 P I=(S 0 

3LO LOP21 IT :=r~ P 1 r::cB 0 

LOP20 ti.DD::l ~15 IT::MP3 FC B 0 

LuP21 STD z,u ISAV~ FO~ (1 

•'• !FLAG FCP 0 ... 
LDA 'u I RES c:os 0 

LOX tiT:l'IP !•'• .. 
Clq ' 'I( I ORG s-c:r::::: r- . -

CLI:' 1 , X ISTRT 1= r' 11 -'>,c. ~FSOO 

CLR 2,X I END 8:GIN 
L D.O. !il5 I::: 

•'• ~-~~~~--~~~~~~~~~~~~~~~~~-~~-~~~~~-~~·~~~~~~--~~~~~~--~~-~---~ .,. ..., ..... , ................ , .. ~ ......... , ............... , .... , .......... , .................. , ..................... , .... , .......... , .... , ........................ , ......................... , .......... , ......... , .... ,~ .. , .... , ........ , ... , .... , ....... , .... , ......... , .... , .... , .... , ... , ... , .... , .... , ........ , ...... 
•'• •'• PROCE:SSOR N lJit, 8: ~ 9 

... ... . ,. . .. 
!:: ~~-~~~~~~~~~~~~~~~~~-~~~-~~~--~-~~~~~~~~~-~~-~~~-~~-~~~~~-~~-~ ....... , .. ,, ......... , .... , .... , .. ~ ..... , .............. , .... , .... , ............................................. , .......... , .... , ......... , ......... , ......... , .... , ............. , ......... , ....................... , ......... , ........ , ........ , .... , .... , ........ , ................. , ......... , ...... , ....... 

~~A·~ 68(199 I HI PUT f '.JU $0410 
our'ouT [ IJU $0400 IP14 fQU ~0412 

SlATUS E ')ll $0402 184 E 'JU $0414 

Tl4 F.QU i0403 I R 8 F.QU ~0411: 

T4 ::wu ~04 1)5 IR17 f.QU ¢,(14lq 

Hl EQU $0407 IS':M ::au <;Q41A 

Tl7 ~QU $0409 , ... ..• 



Appenclix-0 

INPUT EQU $0410 I ~1 UL 
Rl4 E QU 50412 I )TD z,u 
R4 EQU $0414 I LJA 'X 

R8 ::Qu ~0416 I L D~. 1 ' v 
Rl7 cC/U $0418 I ~,UL 

s c t~ f r,JU $Q41A I ADDO .1 'u 
-·· I STD 1 'u .,. 

ORG $F800 I qcc SKP16 
NDP I INC ,u 
ORCC ,:~~01010000 ISKP16 LOA 1 , X 

LDU ~PR'JDl I L D~ ' y 
BEGIN CLPA I ~~ UL 

STA FLAG I ADDO 1 'u 
LOA s-=: i·l I STC 1 'u 
BEQ FRJ 3CC SKP19 

START LDA ;il II\4C 'u 
STA FLAG SK?l9 LOll ' X 

F f; 0 LDY iiMCNO LOR ' y 
LOX #MLTFt< ~~ UL 
LOA Ill .lDDD 'u 
STA STATUS STC! ' 'J 
SfNC -·· '•' 

CLRA LOA 1 ' u 
STA STATUS LJB :215 

L:lD HJ?UT ~UL 

BPA OVER AOOD z,u 
NtXT l~Y :: r-1 c r-~ o RCS Sl\ 0 20 

LOX t: ~1L TR R CMPO ~655.?1 

s n:c ~LO SKP2l 
L DO $1\VE SK?20 AODD ttl5 

-·· $!<?21 STO z,u .. ., ... 

OVER STO Tl4 ·'· .,. 
s VN( LDA 'u 
AODLJ ~14 I LDX u.T ::' !-1P 

8CS SKP12 I CLt:> ' X 
CI1PD t:65521 l r: L R 1 , X 
t\LO SKP13 l CLR 2, X 

SKP12 ADOO 1:15 I L oe. 1115 
SKP13 STD T4 I ~~ UL 

SYNC I STO ' X 
STC' T8 I LO~ ' ;: 
S Y ~JC I LIJB ttl5 
sugD RS I r-~ u L 
r::.cc SKD14 I ADOD 1 ' .'( 
!\ J DD P65521 · I AOOO z,u 

SKP14 STO Tl7 I 11CS SKP22 
SYNC I O!PD tt65S.?l 

s '( tJ c I ~LC S K P 2 3 

-·· ISKP22 '•' 
AD::l!J l 1 ~. 

~. r n rAe r·J n !SK.f'.'?. s Y rJ c 
( U' 'u I,., 

C L ~· ] , ! I I ~ v t,IC 

L :) A 1 , X I c.ooo C'l7 

l J p, 1 ' y ~ c 5 SK?24 
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CMPD !165521 ILCJP16 LOA 1 , X 
3LC1 SKP25 I LD'\ ' v 

SKP24 ADDU 11'15 I ~1UL 

SI\P25 syqc I AOQD 1 'u 
STO TB I S El 1 ' 1J 
SYNC I ~.cc L:JPl'j 

STD SAY>:. I INC ' lj 

LDD ~8 ILOP19 LelA '.v 
SU80 SAVE I LD3 ' '( 
BCC SKP26 I 1·1UL 
A ODJ tt65521 I ACDD 'u 

SKP26 SH<C I STD ' LJ 
A ODD R4 I•'• ..• 
5CS SKPZ'l I LOA 1 '!.! 
C I~ PO #65521 I LOB !!15 
bLC SKP2g I I~UL 

SKP28 A DDO 1: 1 5 I !1000 2 'u 
St<.P29 STD T14 I 0. c s LOD2Q 

S HIC I Cf-1P0 1165.521 
.A DOD R1't I PLO LOP21 
BCS SKD30 IL·JP20 AOOO ~15 

C~'-1PJ .tt65521 IL'JP21 srn 2 'u 
8LO SKP31 I ... .,. 

SKP30 1\ JDO ~15 I . L 0~ 'u ... I LOX t'T~HP . ,. 
SKP31 STO SAVf- I CLP ' X 

L 0.!\ FLAG I CLP ! ' X 
C1·1PA 1t1 I (LQ 2 ' '( 
BEQ t~ IJ L T I LCJ6 ~ 1 'i 
CMPA 112 I '-'UL 
'3EQ CONY I s T[l ' X 
LDD SAVE I L:J:- ·y ' ' 

STD RF.S I L D~ .<:15 
L8RA er:GIN . I ~UL 

CUNY LDD SAVE I ADDD 1 , X 
STD OUTPUT I ~OJD 2 'u 
LPRA 3EGIN I ?.C S LOP22 

!::: I c ~~ p [J #6S521 
~~uL T Ti'JC FLAG I BL:J LJP23 

LOX #SAVE ILOP22 A ClOD li 1 c:; 

L DY ,rtRES ILJP23 STO T8 

LUP15 CLC/ ' IJ . ! SP!C 
CLR 1 'u I s '(!\! c 
LOA 1 , X I LDD R17 
LOg 1 'y I STJ T14 
t~UL I LDD P8 

STD z,u I SE'· T1 7 

L Cl a. ' X I SYNC 
L:J3 1 'v I LDD Pl4 

t<~UL I STD SAVE 
ADOO 1 'u I S Y :JC 

STQ 1 ' IJ I LB?I.\ t--; EXT 

3(( LOP16 I:;: 
I~C 

' t..J 
IMLTFP F8~ 2531! 



Appendix-[! D-21 

MLTRR FD8 2 4 5.21 ITEMP1 f=C5 0 
~:: ITC:MP3 ~c? 0 

o~r, $0000 !SAVE FO;:l, 0 

MCND FD5 0 !FLAG FC'3 ') 

PRC:81 FC8 0 IR~S FOr. 0 

Pf\002 FCB (\ I~: 

PR003 FC f.. 0 I :JRG ;;I=FFE 

Pk004 FCB 0 ISTKT :: (~ !j ~~=eoo 

TEMP FC~ 0 I :No 0 E G I~~ 
•'• ~~~~~-~--~~~-~~--~--~~·--··-~~~~--h~~~-~---~~--~~~--~----~-~~h .,. .. ........... , .... , ..... ~ .. , ...... , .............. , ............. 'I'" ....... , .... , ......... , .... , .... j' ........ , .......... ~ .. , ....... , ............... , ............ , ... , ............... , ......................... , .................... , ............. , .... , ............... , .............. , .. ':' .................... , .. 

... . .. PRCCESSJR ~.JU r~ e E ~ 10 ::: .,. ., . 

... ~**********n***~*~****~*~****~**~*********************~******* .,. 
N A'·1 680910 Ct-! 0 0 li65521 

OUTPUT EQU $0400 BLO SK P 13 

STATUS EQU $0402 ISKP12 4:::JDD 1:!15 
TlS EQU ~0403 ISKP13 STD TS 
T:> E r~U $0405 I S Y !·~C 
T7 EQU $0407 I STD T7 
Tl7 !:QU $0401 I SYNC 
rr~PuT EQU $0410 I STO SAVE 
Rl5 ::QU $0412 I L ·JD R7 
R5 E;;)U $0414 I SU?..D SAVE 
R7 E :)U $0416 I RCC SKP14 

Rl7 EQU $0418 I A DOD ~65521 

SE:M EQU ·~041A ISKDlf+ ST9 T17 
... I S YtJC . ,. 

ORG $F800 I snJC 
NOP I•'• ... 
Ct;>CC :t~~OlOlOIJOO I STO r~c ~J o 
L :.lU 1tPRQ:J1 I CLR ,u 

BeGIN CLRA I CLR 1 'u 
S T .~ FL AS L iJ A. 1 , X 
LOA s~M -'' I LOS 1 ~ y 

6EQ Ft.lD I \~ 'j l 

START LOA ::1 I ST[l 2,U 
STA FLAG I LIJ t!. ' X 

FRO LOY ~tMC rw I L oo, 1 'y 

LOX ~HLTFt:/ I .'·~ Ul 

LOA ltl I ADC1Cl 1 'u 
STA STATUS I STJ 1 'u 
SYf..JC I ~cc SKP16 
CL?A I INC 'u 
ST~ STATUS ISKP16 LOA 1 , X 
LD0 INPUT I LD3 ' y 

5RA ::JVER I 1·1UL 

Nt:XT L8Y t:HOJD I AODD 1' u 
LOX ~i'J.LTRR I ST~ 1 ':J 
s V~JC I sec S!<. 0 lg 

LDO SAV~ I :NC ,u 
•'• IS!<.Pl9 LOA t '( ..• 
OVER STD T15 I l [)Cl ' y 

SYNC I MUL 
1\D:.JJ Dl5 I .0. :J Q J 'u 
scs SKP12 I ST(I ,u 



I'- J ? 
..J ~--

.,. Is tc. P 3 o AOGO ~ 1 5 
LJA 1 'u I·'· •.• 

L 0 ~· !ot15 Is k'. P 31 STCl s .tJ. v r: 
r~UL I LDA Fl A', 
.A;) Or) 2,U I C ~~ P A It 1 

BCS SKP20 I o. E ~ t·lUL T 
UiPD t;65521 I C:~P A t:2 

SLO SKP21 i3EQ ~r~JV 

SKP20 AI)Ou 1t15 LJD SAVE 
SKP21 ST') 2,1_1 t"T'"> 

..) I~ ~t=S 

•'• L:PA 5::GIN ... 
LDA 'u IC'JNV LD0 s~v~ 

LJX ttTf:MD I STfl oun>ur 
CL~ ' X I L::?A ;::, = ,- T \1 

,_ ~ " - I'> 

CLR 1 , X I•'• .,. 
CLR 2, X I r~UL T !NC FL..C.C-
LOR :t15 I LOX ;:s:.v:: 
'~UL I L ::lY Z>~i:<; 

STD 'X IL2P15 C L o 'I ' .__ 

LDL\ , X I CL~ 1 I lj 

LD5 ttlS I L::JA 1 t y 

~1U L LD5 1 , y 

ADDD • 'i J. , .. r·tUL 
AODD 2,U ST!1 2 ~ l_l 

f1CS SKP22 L~H , X 
c;.~ P D :it65521 LD? : ' y 
BLLl SKP23 HUL 

SKP22 .D. D'JD :t15 ADDD 1 , u 
•'• S T:::• 1 ' ll •,• 

Sl\ 0 23 SP.JC. sec l0~16 

SHJC DJC . t u 
S L'~D :::17 ILOP16 LOA 1 ' '( 
BCC SKP24 I LO::. 'y 

A~:JD 1:'65;,21 !'·lUL 
$1\P24 SYNC LI:JllO 1 ' IJ 

STCJ T7 SHl ~ 'u 
s n-:c ~cc LCe>lg 

STO SAVE I •\I C 'u 
L:JD R7 !L0?19 LOt. ' X 
SU?.D SAVE I LO~ ' y 
3(( SK?26 I 'A Ul 

:..ooo tt65521 I ~ODD , u 
$K 0 26 s y ~J c I S T:'· t u 

,\ D D D RS , ... •.. 
P:CS SKP22 I L QA. 1 II· - t .__ 

01Pll :t65521 ! LOS !i15 
t) t ~ 
.. ' L. u SK029 I '·1 UL 

SKP28 .A Jr)[) ~15 I t1ClDD 2,U 
SI\P29 srr T15 I ~ c s LOP2(' 

SPJC Ut?O .tr6<;521 

.A·JDLl R 1 5 u. LG LCJ 0 21 

BCS ~·.'\P30 ILJP28 .1 020 ~ 1 5 

('r-JPO rt65521 ILCIP21 ~· T [' ? 'u 
bLU SKP31 I•'• ..• 
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LCJP22 
LOP23 

•'• .,, 

L~A 

L C'' X 
Clt:i 
CL~ 

CLR 
LD6 
t·1 'J L 
STC\ 
L JA 
L 0:0 
:~ UL 

A~~o 

AOOO 
scs 
c '-1 p [J 

3LO 
llODD 
STJ 
SYNC 
s n~c 
SYNC 
S Y ~IC 
L:JD 

, u 
~tT::~lP 

'X 
1 , X 
2, X 
1J'!5 

' X 
' X 

~15 

1 , X 
2, u 
LOP22 
:465521 
LOP23 

R17. 

I 
I 
I, .. .,, 

I i·1L T F ~ 
I "'1L T R R 
I-·· .,, 

I 
It~ c r,JC 
IP~J~1 
ID?iJC2 
IPPGD3 
IP::l:.J['4 
IT~MP 

I T:: 1·1 o 1 
ITc'~?3 

ISAVf. 
I FLAG 
IRES 
I ... .. 
I 
ISTr:T 
I 
I ... 

'•' 

SF' S-lv: 
L3RA f·l: X T 

FOS ~6~17 

c:c~ 2312.? 

QRG $000') 
<=CJB 0 
t:'(£1 0 
:=cg 0 
r:c~ 0 
:= c ;:>, c 
;: c :. [l 

cc~ 0 
F(8 0 
c:og 0 
F~C 1, ,, I) 

F D?, 0 

O~G SFFF:' 
E;:)U ;:=qoc 
f. ~10 3 E G I~~ 

~~~~~~~--~~----~-~-~----------~-----~---~-~----------~--~---··-~ ~ ............ , ......... , ............... , .. ~, .... , .... , .... , .... , .... , ......... , .... , ......... , ............................. , ......... , ... , ..... , ...... , .. ,, .............. , ..... , ... , ....... ":" .. , .... , .................. , ..... , .... , .......................... , ........ , ......... , ...................... , .. 
PROCESSJR NUVBEQ 11 

..... .. ............................................................................. ,.t., ............................ ·~ .................. ·~ ..... "'~ .. ·~ .. ·~ .... ~ ...... "'~ ....................... ~ "'' ........................................ ·~ ... ~ ... ., ........................ "'" ..... "''" .......... J • ..... 
~... ... ......... "'r"' .. , ........... , ............... , .......................................... , .. "•" .. , .................. '"r"' ........ , ... , .... , .... , .................................... , ..................... "•" ......... "•" .............. , ...................................... , ............. , ................. .. 

OUTPUT 
·STATUS 
T6 
T12 
INPUT 
R6 
Rl2 
ScM 

BEGIN 

START 

ff<O 

~JAM 

EQU 
EQU 
EJU 
EQU 
E ~~u 
EQIJ 
f. I~ U 
E .. ~u 

O~G 

NO? 
ORCC 
LOU 
CLRA 
STA 
L DA 
c:. E Q 
LCIA 
STA 
LOY 
LOX 
LOA 
STA 
SYNC 
CLRA 
STA 
LDD 

680911 
$0400 
~0402 

$0403 
$0405 
$0411) 
!.0412 
$0414 
!-Ot..16 

$F800 

!1';;01010000 
~PROOl 

FLAG 
SEM 
F~D 

#1 
FLAG 
~1·1CND 

~H·ll T FR 
~1 

STATUS 

STATUS 
INPUT 

! 
I NEXT 
I 
I 
I 
I , .. •.. 
lOVER 

I 
I 
I 
I 
I 
I 
ISKP12 

SKP14 
•'• .,, 

SKP15 

3?-A 
LOY 
LJY 
SYNC 
LDD 

STD 
SYNC 
STD 
LDD 
SUSD 
F..CC 
~DOD 

SYNC 
SYNC 
s yr..; c 
SYNC 

OVED 
l:f-1 c "J LJ 
11 ·~ L T R ~ 

S.!l V'f 

T, .o 

2AVE 
R6 
SAVC: 
SKP12 
jt6~521 

AODD Pl2 
?.CS SKP14 
c f~ p 0 
o. L(:' 

ADDQ 

STD 
Clkl 
CLR 
LOA 
Lc:'•g 

1165521 
SKP15 
:t15 

~10lC· 

,u 
1 , u 
1 , X 
1 ' y 
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MUL SYNC 
STD z,u SYNC 
LOA 'X STD T6 
LOB 1 'y SYNC 
MUL STD SAVE 
ADOD l,U LDD R6 
STD 1,U SUBO SAVE 
BCC SK 0 16 sec SK 0 24 
INC ,u ACJOD 1'!65521 

SKP16 LOA 1 , X ... ..• 
LOS 'y SKP24 STO SAV~ 

MUL LD~ FL~G 

ADCJO 1 'IJ C~1PA ill 

STO 1,U BEQ MULT 
BCC St<P19 CMPA 1Z2 

It\JC ,u g;:Q CONV 
SKP19 LOA ' X LDD snv!= 

L DB ' y STCJ RES 
r-~ UL Li3RA 5EG!N 

ADOD ' IJ 
I c :F~ v LDD SAVe 

ST:J ,u I ST~ OUTPUT 
..• I L5RA SEC, IN . ,. 

l DA 1,U I•'• .,. 
LD~ ~15 I i·1UL T INC FLAG 
r,1UL I LOX #SAV= 
ADDu 2,l! I L DY tiRES 

.:. c s sf<', p 2 0 ILi!P15 CLR 'u 
CMPD ~65521 I CLR 1 'u 
blO SKP21 I L Ll:. 1 , X 

SKP20 AOQD tt15 I L 03 1 ' y 
$!(_P21 STD 2 'u I '·1UL 
•'• I STO 2 'u ... 

L ::JA ,u I LOA ' X 
LOX #TE~P I L08 1 ' y 

CLR ' X I r.IUL 
CLP. 1 , X I 0.000 1 'u 
(LD 2, X I STO 1 'u 
LCJB ttlS I !1(( LOP16 

MUL I INC 'u . 
STO ' X ILOP16 LOA 1, X 

LOA ' X I LOB ' v 
L 08 tt15 '1UL 
!'1UL AODD 1 'u 
t~ D DO 1, X STD 1 'u 
A.ODU 2 'u BCC L:JP19 
5CS ~KP22 !NC 'u 
C r~PD #65521 LOP19 LOA ' X 
SLCI SKP23 LD5 ' y 

S~<-.P22 A::J'JO ::15 ~UL 

SKP23 SYNC AOOO 'u 
·'• STD ' IJ .,. 

STD T12 •'• .,. 
SY"JC LOA 1 , L! 

S Y "IC ~OR iilc; 
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MUL I LDD R6 
AODD 2,U I ST:J SAVE 
6CS LOP20 I SYNC 
01PD #65521 I S Yf>IC 
gLQ LOP21 I SYNC 

LOP20 AODD #15 I LBRA ~J =X T 

I,.UP21 ST8 2,U I ... .,. 
... IMLTFR F08 16087 . ,. 

LOA ,u IMLTRR FOB 29504 
LOX ttT'=MP I·'• .,. 
CLR , X I 'JRG $0000 
CLR l,X t-1CNO FOB 0 

CLR 2, X P~001 FC9 0 
LD~ #15 PR002 r:cA 0 
~1UL PROD3 FCB 0 

STD t X PT<004 FCB 0 
L DA t X TEMP FCB 0 

LOB #15 TE14P1 FCB 0 
f--1UL r::r4P3 r:cR 0 

AOOO 1 t X SAVE FOB 0 
A~DO 2,U FLAG FCB (\ 

BCS L0°22 RES FOB 0 
CMPO #65521 •'• ... 
BLO LOP23 ORG $FFFF. 

LUP22 AD~O 11115 STRT EQU $FI300 
LOP23 STD T6 END REG IN 

SYNC •'• .,. 
•'• ~~~~~~~~~~~~~~~~-~~~~~~- ~~~~~~~~·~~~~~·~~~·~~~~~~~~·~·~·~····· ... ¥~¥¥¥¥¥¥¥¥¥¥¥-~¥¥¥¥¥¥~¥¥¥~ ...... ~-¥¥¥¥¥¥¥¥¥¥¥¥~-¥¥¥~~¥¥¥¥¥¥-¥¥¥-¥¥ 

* .... PROCESSOR NUr-'8ER 12 J • . ,. .,. 

·'· ************************************************************** .,. 
NM~ 680912 IFRJ LOY It~~ Ci~ 0 

OUTPUT EQU $0400 I LOX ~MLT:=R 

STATUS E QU ~0402 I LOA ttl 

T7 E QU $0403 I STA STATUS 
T15 EQU $0405 I SYNC 
Tl3 EQU $0407 I CLRA 
Tl1 EQU $0409 I STA STATUS 
INPUT EQU $0410 I LDD INPUT 
R7 E QU ~0412 I 8 RA OVER 
Rl5 . EQU $0414 I NEXT LOY #MCND 
Rl3 EQU $0416 I LDX #MLTRR 
Rll EQU $0418 I SYNC 

. S E f·1 E QU S041A I LDD SAVE 
•'• I ... .,. .,. 

ORG $F800 lOVER STD T7 
NOP I SYNC 
ORCC #~:01010000 I STO SAVE 
LOU #PROD1 I LDD P.7 

BEGIN CLRA I SUBD SAVE 
STA FLAG I BCC SKP12 
LOA S ::M I ADOD :r65521 

BEQ FP.O ISK.Pl2 SYNC 
START LOA Ill I STO T15 

S T.A FLAG I SYNC 
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FRO LOY 4'r~CN 0 I LOB ' y 
LOX #MLTFP. I MUL 
LOA #1 I A.DD8 1 'u 
STA STATUS I STD 1 'u 
SYNC I sec SK 0 21 
CLRA I INC 'u 
STA STATUS ISK.P21 LOA ' X 
LDD INPUT I LOB 'y 
gR A. CVER I MUL 

~J tXT LDY #M·CND I AOOO ,u 
LOX P.~1LTRR I STO 'u 
SYNC I ::' 
LO[l SAVE I LOA 1 'u 

•'• I .,.. LOB .lt15 
OVER STD T7 I r~UL 

S 'fNC I ADDD .:.,u 
STQ SAVE I BCS SK.P22 
LDD R7 I CMPO zt65521 

·SUBD SAVE I ~LO Si<.P23 
BCC SKP12 ISKP22 ADDD lt15 
AJOD lf65521 ISKP23 . S T[) 2 'u 

SKP12 SYNC I -·· ... 
STD T15 I LOA 'u 
SYNC I LOX ~TEt-IP 

ADDD 1:115 I CLR ' X 
BCS SKP14 I CLP 1 , X 
CMPD #65521 I CLR 2 ' )( 
BLO S K P15 I LOA 1115 

SKP14 AODD ~15 I MUL 
SKP15 STO T13 I STO 'X 

SYNC I L 8A ' X 
AODO R13 I L 08 It 1 5 
BCS SKP16 I I~UL 

CMPO #65521 I AOOD 1 , X 
BLC S.K P 17 I AODD z,u 

SKP16 AODO ti15 BCS SKP24 
SKP17 STD T11 CMPD lf65521 

SYNC BLO SKP25 
·'· SKP24 AODD IHS .,. 

STO MCNO SKP25 s Y :~c 
CLR ,u •'• .,. 
CLR l,U SYNC 
LOA 1, X AOOO Rll 
LOB 1 ' y BCS SKD26 
MUL 01ro 1165521 
STD 2,U SLO SK 0 27 
L DA. ' X S K P2 6 ADDD ltl5 

LOR 1 ' y SK.P27 STD T13 
MUL SYNC 
11.000 1 'u AOOD P.l3 

STO 1 'u BCS SP'28 
BCC SKP18 CMPD 1165521 
I~·~ C 'u BLO SKP29 

SKP18 LOA 1 , X SK.P28 ll.ODO .:il5 
' 
l 
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SKP29 STO T15 I "'1UL 
SYNC I ADOD 'u 
ADDD R15 I STO ,u 
BCS SKP30 I::: 
01PD ,65521 I LDO 1 'u 
3LO SKP31 I l DB ;115 

SKP30 ADDD ~t15 I ~WL 

SKP31 SYNC I AODO 2,U 
STO T7 I BCS LOP20 
SYNC I CMPD #65521 
STO SAVE I BLO LOP21 
LDD R7 ILOP20 ADDD It 1 5 
SUSD SAVE ILDP21 STD 2tU 
BCC SKP32 •'• .,. 
ADDD ~65521 LOA ,u 

·'· LOX :tTEMP .,. 
SKP32 STD SAVE CLR t X 

LOA FLAG CU' 1 , X 
CI~PA ;,1 CLR 2tX 
BEQ MULT LOB 1t15 
UIPA 112 MUL 
BEQ CONY STD ' X 
LDD SAVE LOA 'X 
STO RES LOB 1:15 
L BRA BEGIN I~UL 

CONV LOO SAVE ADDD 1 t X 
STD OUTPUT ADDD 2tU 
LBRA BEGIN P.CS LDP22 

)'• .. CMPD it65521 
MULT INC FLAG ~LO LOP23 

LOX #SAVE LOP22 ADDO 1115 
LOY #RES LDP2 3 STD T7 

LOP15 CLR ,u SYNC 
CLR 1 'u LDD R7 
LOA 1 t X STO T13 
LOB 1 'y SYNC 
MUL LOD R 1 3 
STD 2,U STD T7 
LOA ' X 

SYNC 
L!JB 1 'y LDD rn 
~1UL STD SAVE 
A!JDD 1 'u SYNC 
STO l 'u LBRA NEXT 
BCC LDP16 ... . ,. 
INC 'u MLTFR FOB 29032 

LOP16 LOA 1 , X MLTRR FOB 28641 
LOB ' y 

... ... 
MUL ORG !0000 
ADOO 1 ' IJ I~C NO Ffif\ 0 

srn l , I J PRCJOl ,: c !'. f) 

BCC LOP 1 '-J P~UrJ2 F(.f1 () 

INC ,u PP.003 FCR 0 

LUP19 LCIA ' )( 
IPROD4 FCB 0 

LDB 'y !TEMP FCB 0 
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TEMPl FCB 0 I ... . ,. 
TH1P3 FCR 0 I ORG $FFFE 
SAVE FDS 0 ISTRT EQU $F800 
FLAG FCP. 0 I END BEGIN 
RES FD5 0 I t.: 
•'· ****~*******************************~************************* .,. 
•'• •'• PROCESSOR NUl-~ BE R 13 ::: .,. .,. 
·'· ************************************************************** .,. 

~J A~l 680913 I AOOO D14 
OUTPUT EQU $0400 I 8CS 5KP14 
STATUS EQU $0402 I CMDO .tt6552l 
T8 EQU $0403 I SLO SKP15 
T14 EQU $0405 ISKP14 ADOO :t15 
Tl2 EQU $0407 IS K P15 SEl Tl2 
INPUT EQU $0410 I SYNC 
Rtl ~QU $0412 I STD SAVE 
R14 EQU $0414 I LDD ~12 

Rl2 EQU $0416 I S:.J8D SAVE 
SEM EQU $0418 I BCC SK P 1 A 
•'• I ADDD 1165521 .... 

ORG $F800 ISKP16 SYNC 
NQP I•'• .,. 
ORCC #~~01010000 I STD r~OJL:l 

L DU i*PROD1 I CLR ,u 
BEGIN CLRA I C LR 1 'u 

ST~ FLAG I LOA 1 , X 
LOA SEM I LOB 1 'y 

BEQ FP D I 1·1UL 
START L DA #1 I STD 2,U 

STA FLCIG I LOA 'X 
FRO LOY ,:tMCNO I L 08 1 ' y 

LOX "MLTFR I MUL 
LOA #1 I A. ODD 1 'u 
STA STATUS I STD. l,U 
SYNC gee SKP18 
CLRA INC ,u 
STA STATUS SKP13 LOA 1 , X 
LOD INPUT L 05 'y 
BRA OVER ~1UL 

NEXT LOY #MCND AOOD 1 'u 
LOX #"''LTRR STD 1,U 
SYNC ~cc SKP21 
LDO SI\VE INC ,u 

•'· SKP21 LOA 'X ... 
OVER STO T8 LOB ' y 

SYNC '·1UL 
STO SAVE AOOD ,u 
LDO R8 STO 'u 
SU80 SAVE •'• .,. 
BCC SKP12 LOA 1 'u 
ADOO ,65521 LDC:. 1115 

SI\Pl2 SYNC "1UL 
STD Tl4 AODD 2 'u 
SYNC BCS SKP22 
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CMPO Ji65521 I LDO SAV:: 
BLO SKP23 I STO RES 

SKP22 ADDD ~15 I L8°A 8EGIN 
SKP23 STD z,u ICDNV LDD SAVE 
::: I STD OUTPUT 

LOA ,u I LBRA B=GIN 
LOX #TEMP I•'• ... 
CLR 'X IMULT !NC FLAG 
CLR 1 , X I LOX 1iSAVE 
CLR z,x I LCJY If RES 
LDfl 1115 ILDP15 CLR ,u 
l'-11J L I CLR 1 'u 
STD ,x I LOA 1 , X 
LOA 'X I LOg 1 'y 
LOB #15 I MUL 
r-wL I STO 2,U 
ADDD 1 , X I LDA ' X 
AD!JD z,u I L.DB 1 ' '( 
BCS SKP24 I MUL 
CMPD til6'5521 I .A DOD 1 'u 
RLO SK P 2 5 I STD 1 'u 

SKP24 AODD #15 I RCC LOP16 
SKP25 s y ~J c I INC ,u 
~- ILOP16 L DA 1 , X ... 

SYNC I LOe ' y 
STD T12 I I~UL 

SYNC I AOOD 1 'u 
STD SAVE I. STO 1 ' IJ 
LDD R12 I BCC LDP19 
SUBD SAVE I INC 'u 
BCC SKP26 ILDP19 LOA ' X 
ADOD #65521 I LOB ' y 

SKP26 STO T14 I MUL 
SYNC I AO!JO 'u 
AO!JO Rl4 I STD 'u 
BCS SKP28 f.::: 
CMPO #65521 I LOA 1,U 
BLO SK ?2 9 I LOB 1115 

St<..P28 AODO #15 I ~UL 

SKP29 Sl'NC I ADDD 2,U 
STD TB I P..CS LDP20 
SYNC I CMPO 1165521 
STD SAVE I BLO LOP21 
LDD R8 ILOP20 ADOD It 1 5 
SUBD SAVE ILOP21 STO z,u 
BCC SKP30 I ... ... 
ADOD #65521 I LOLl. 'u ... I LOX :tTE~P ... 

SKP30 STO- SAVE I CLR 'X 
LOA FLAG I CLR 1, X 
C 1-1PA lil I CL?. 2 , X 

R=Q MULT I LD'3 us 
Cr-1PA #2 I MIJL 

BE(J CONV I STD 'X 
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L DA ' X 
... ... 

LOB Ill~ MLTFR FOB 8748 
MUL 14L T R R FDS 12521 
ADOD 1, X ... . ,. 
ADOD z,u ORG ~000(1 

BCS LOP22 MCNO FOR 0 
CMPD t£65.521 PR001 FCB 0 

8LO LOP23 PR002 FCB 0 

LOP22 l'l.ODD ii15 PR•J03 FCB 0 
LOP23 STD TS ?~C04 FCB 0 

SYNC T Fr-1P FCB 0 

LDD R8 TEMP1 ~cB 0 
STD Tl4 TEMP3 ~cs 0 

LDD Rl4 S.GVE ~os 0 
STD T12 FLAG FC3 0 

SYNC RES FOB Q 

LOD Rl2 :;: 

STD SAVE ORG $FFFt 
SYNC STRT '=QU ~F80C 

SYNC END SEGIN 
LB~A NEXT ... ..• 

..• ***********************u************************************** ... ... ... PROCESSOR NU1·1BEC1 14 J • . ,. . .. .,. 

•'• ************************************************************** .,. 
N.l'l.M 680914 I SRA OVER 

OUTPUT EQU $0400 I NEXT LOY #1·1CND 
STATUS EQU $0402 I LOX ~MLTRR 

T9 EQU $0403 I SYNC 
Tl3 EQU $0405 I LDO SAVt: 
T18 EQU i0407 I•'• ... 
INPUT E ')U $0410 lOVER STO T9 

R9 EQU $0412 I SYNC 
R13 EQU $0414 I STD SAV: 
Rl8 EQU $0416 LDD P9 

SEM EQU $0418 SUBD SAVE 
... BCC SKP12 . ,. 

ORG $F800 ADDD 1165521 
NOP S!<.P12 SYNC 
ORCC ~~~01010000 STD T13 
LOU 1'PROD1 Sl'"'C 

BEGIN CLRA sugo R13 
STA FLAG sec SKP14 
LOA SEM ADDD lt65521 
BEQ FRO S I<.P14 STD T1R 

START L DA #1 SYNC 
STA FLAG SYNC 

FRO LOY· #MCND ... ... 
LOX 1f 1·1 L T F R STD I·~ CN 0 
LDA #1 CLR 'u 
STA ST.I'l.TUS C LR 1 'u 
SYNC LOA 1 , X 
CLRA LOB 1 ' y 
STA STATUS MUL 
LDD INPUT ST8 z,u 
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LOA ' X 
ISKP24 A ODD 1t15 

LD6 1 'v ISKP25 SYNC 
MUL I STD T13 
AODD 1 'u I SYNC 
STD 1 'u I STO SAVE 
BCC SKP16 I LDO P.13 
INC 'u I su~o SAVE 

SKP16 LOA 1 , X I sec SKP26 
LD5 ' y I ADOD tf65521 
NUL ISK?26 S~NC 

ADOO 1,U I STD T9 
STO 1 'u I SYNC 
BCC SKP19 I STO SAVE 
INC 'u I L DO P.9 

SKP19 LOA 'X I sugo ·sAv= 
LOB 'v I BCC SI'.P2!3 
MUL I AOOD #65521 
AOOO 'u I ~: 
STD ,u ISKP28 STD SAVF: 

.... I .... LOA FLAG 
L DA 1,U I CMPA li1 
LOB 7:15 I REQ MULT 
~1UL I CMPA #2 
AO':lD z,u I 5EQ CONV 
BCS SKP20 I LDO SAVE 
CMPO #65521 ' STD RES 
RLO SKP21 I LB~A BEGIN 

SKP20 AOOO filS I c QtJ v LDD SAVE 
SKP21 STD z,u I STD OUTPUT 
•'• I LBRA BEGIN .,. 

LDA 'u 
I ... ... 

LOX ltTF~lP IMULT INC FLAG 
CLR ' X I LOX ~SAVE 

CLR 1 , X I LOY :;'DES 

Clq z,x ILOP15 CLP 'u 
LOB tt15 I CLP 1 'u 
11UL I LOA 1 , X 

STO ' X I L 08 1 'y 
LOA ' X I MUL 
LOS #15 I STD z,u 
MUL I L DA ' X 
ADOO 1,X I LOS 1 'y 
ADDD 2,U I ~1UL 

BCS SK?22 I AOOD 1,U 
CMPO #65521 I STD 1 'u 
BLO SKP23 I 8CC . LOP16 

SKP22 AODD .r,t 15 I INC ,u 
SKP23 SYNC IL:JP16 · LOA . 1 , X 
... I LOB 'y ... 

SYNC I MUL 
AODD R18 I ADOD 1-,U 
RCS SKP24 I STD 1 'u 
CMPO 1165521 I ~cc LOP19 
BLO SKP25 I INC ,u 
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LUP19 LOA ' X IL~P23 STO T13 
LOB 'y I SYNC 
MUL I SYNC 
ADDD ,u I LDO R13 
STD 'u I STD Tl8 

... I LDD R1.3 ... 
LOA 1 'u I STO T9 
L~S ~15 I SYNC 
MUL I LDD R9 
ADDD 2,U I STD SAVE 
BCS LOP20 I· SYNC 
CMPO tt65521 I LBRA ~~EXT 

BLO LOP21 I ... ... 
LUP20 ADDD it15 !MLTFR Foe. 1465 
LGP21 STD 2,U IMLTRR FOB 21938 
•'• ::: .,. 

L D.O. 'u CRG ioooo 
LOX ttTEMP f·1CNO t=Qr:, 0 

CLR 'X PR801 1=(8 0 
CLR l,X PR002 FCB 0 
CLR 2, X PR003 FCB 0 

L DB .illS PR004 t=(g 0 
f·IUL T:MP FCB 0 
STD ' X T Ei'lPl FC B 0 

L i:H 'X TE1·1P3 FCS 0 
LOB #15 SAVE FOB 0 
MUL FLAG FCB 0 

AODD l,X RES FOB (1 

ADDD 2,U ... ... 
BCS LCP22 I ORG $FFFE 
CMPD #65521 ISTRT EQU $F800 
BLO LOP23 I END BEGIN 

LUP22 .O.DDD ltlS I ~: 
... ************************************************************** ... 
... .,, PROCESSOR NU~BER 15 ... ... ... ., . 
... ~~~~~~~~-~~~~~~~~·~~~·~···-~··~·~········~~~~·~~··~·~~·~·~~~~~ ... ,,. .. "'!'" .. , .... , ..... , ......... , ......... , .... , .... , ..... , ..... , .... , ..... , .... , ..... , ........... ~ ... , ........ '"l" ... , ...... , ........... , .... , ......... , .... , .... , ..... , ..... , ........ , ..... , .... , .......... , ....................... , ................................... , .............. , ..... , ..................... , ........... , ..... , ..... , ... 

NAt~ 680915 I STA FLAG 
OUTPUT EQU $0400 I L DA SEM 
STATUS EQU $0402 I ~EQ FRO 
TlO F.QU $0403 !START LOA #1 

Tl2 EQU $0405 I STA FL~G 

T18 EQU $0407 !FRO L DY #MCND 
INPUT EQU $0410 I LOX #MLTFI:! 

R10 E ~~u $0412 I LOA ~1 

R12 EQU $0414 . I STA STATUS 
R18 EQU $0416 I SYNC 
SEM EQU $0418 I CLRA 

ORG $F800 I STA STATUS 
... I LDO INPUT . ,. 

ORG $FSOO I 11RA OVER 
NOP INfXT L DY It MOJO 

ORCC tn~ClOlOOOO I l 0 )( 'Hil TRD 

L Dtl liPROOl I s '(I.J c 
BtGIN CLRA I LDO SAVE 
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·'· ISKP20 ADOD ns ... 
OVER STO T10 ISKP21 STD 2,U 

SYNC I··· .,. 
STD SAVE I LOA 'u 
LOD R10 I LOX ft T E ~~ P 

SUBD SAVE I C LR ' '/. 
BCC SKP12 I CLR 1 , X 
ADOD ~65521 I C LR 2,X 

SKP12 S Y ~.JC I LOB ~15 

ST~ T12 I M!JL 
SYNC I STQ ' X 
STD SAVE I LOA ' X 
L DO R12 I LOB ~ 1 5 
SUBD SAVE I 1·1UL 
sec SKP14 I ADDD 1 , X 
ADDD :'165521 I ADOD z,u 

SKP14 STD Tl8 I BCS S K P 2 2 
SYNC I Cf~ PO ii65521 
SYNC I 8LO Sl<P23 

.... ISKP22 ~ODD ~ 1 5 . ,. 
STD MCNO ISKP23 SYNC 
CLR ,u J·'· ...... 
CLR l,U I SYNC 
LOA l,X I SUBD RlQ 
LOS 1 'y sec StU'24 
MUL .0. DOD 1165521 
STD 2,U SKP24 SHIC 
LOA 'X STD T12 
LOB 1 , y SYNC 
MUL STD SAVE 
AuOD l,U LDD ?12 
STD l,U SUBD SAVE 
BCC SKP16 BCC SK.P26 
!NC ,u AODD #65521 

SKP16 LOA l,X SK?26 SYNC 
LOB ' y 

ST~ T11) 
i'IUL SYNC 
AODO l,U STO SAVE 
STD 1 'u LDD r->10 

BCC SKP19 SUBD SAVE 
INC ,u fiCC SK 0 23 

SKP19 LOA ' X ADOIJ 1165521 
LOB 'y "'• .,. 
MUL SKP28 STD SAVE 
ADDO ,u LOA FLAG 
STO 'u OIPA ill 

... BEQ i•IUL T ... 
LOA 1 'u C ~~ PA #2 

LOB #15 SEQ CGNV 
r~UL LDD SAVE 
ADOD z,u STD Rf.S 
BCS SKD20 L8?A BEGIN 
Cr'WO tt65521 C OtJV LOD SAVE 
BLQ SK P 21 ST!J OUTPUT 
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LBRA BEGIN CLR ' X ... CLR 1 , X . ,. 
MULT INC FLAG CLR 2, X 

LOX /if SAVE LOR ~15 

L DY #RES f-AUL 
LOP15 CLR ,u STO ,.x 

CL~ 1 'u LOA. ' X 
LOA 1, X LD'3 #15 
L DB 1 'y 1-IUL 
MUL AOOD 1 , X 
STO z,u .A DOD 2tU 
L DA ' X E.CS L:JP22 
LOB 1 'y CMPD ii65521 
MUL ~LO LOP23 
AODD 1,U LOP22 AOOO #15 
STD 1,U LOP23 STD T18 
BCC LDP16 SYNC 
INC 'u SYNC 

LlJP16 LOA 1 , X SYNC 
LOB ,y I SYNC 
r~UL I LOD R18 
ADDD l,U I ST!J SAVE 
STD l,U I LB~A NEXT 
BCC LDP19 I ::: 
INC ,u IMLTFR 1=08 23174 

Li.JP19 LOA ' X IMLTRR FO~ 5913 
LOB ' y I•'• .... 1 .. 

MUL I ORG !0000 
ADDD ,u I 1-1C NO FOB 0 

STD ,u IPRODl FCB 0 
•'• IPRODZ ... r::cs 0 

LOA l,U IPROD3 FCS 0 

LOB #15 IPROD4 r::cg 0 
MUL !TEMP c::ce 0 
AODO 2,U ITE1~Pl FCB 0 

ccs LOP20 IT'=r-1P3 FCB 0 

Cl-1 PD ii65521 I SAVE FOB 0 

BLO LOP21 I FLAG 1=(8 0 

LUP20 ADDO ~15 IRES FOB 0 
LOP21 STO z,u I•'• .,. 
•.. I ... O~G ~FFF!: 

LOA , u ISTP.T EQU tF800 
LOX #TEMP I E r~o BEGIN 

... -~---------------------~------~-------------------------------.,. ¥~~~~~-¥¥¥¥~--¥¥¥••¥¥¥~¥¥¥¥_¥_¥¥¥¥¥¥¥¥¥¥¥~¥¥¥¥¥¥~¥-¥~¥¥¥¥-¥¥¥¥¥ 

•'• ... .PR 0 CESS OR NUl~ BE R 16 :-:: . ,. . , . 
•'• ************************************************************** ... 

NAM 680916 I NOP 
T4 E (JU $0410 I QRCC rtt01010000 

TS EQU $0412 I L DU nPRODl 

R4 EQIJ $0414 !BEGIN CLRA 
R5 !=QU $0416 I STA FLAG 
SE:M f QU $0418 I LOA S =~I 
•'• I BEQ I=RD .,. 

ORG SF800 !START LOA 1!1 
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S T A. FLAG SKP19 STO 2;U 
FRO LOY ~1·1CND t.: 

LDX fii·1L TFR LOA ,u 
BRA OVER LOX ltT!:MP 

NEXT LOY #MCND CLR 'X 
LOX #~1L TP R CLR 1 , X 

OVER SYNC CLR z,x 
SYNC LOB ~15 

SYNC ~~UL 

SYNC STO ' X 
SYNC LOA ' 'I 
LOD R4 LOB 1tl5 
A ODD RS ~·1 U L 
BCS SKP12 ADDD 1 , X 
CMPD '165521 AODD z,u 
BLO SKP13 BCS SKP20 

SKP12 AODO ttl5 CMPO #65521 
SKP13 SY0JC BLO SK::>21 
... SKP20 AOOD 111 5 
'•' 

STD t'ICND SKP21 SYNC 
CLR ,u •'• .,. 
CLR 1,U STO TS 

. L DA 1, X STD T4 
LOB 1 ' y SYNC 
MUL SYNC 
STO z,u SYNC 
LOA 'X SYNC 
LDR 1 'y SYNC 
MUL LOA FLAG 
ADOD 1 1 U C~1PA Ill 
STD 1 'u BEQ SKP 
E\CC St<.P14 LBRA s=GIN 
INC ,u SKP INC FLAG 

SKP14 LOA 1 , X SYNC 
L oe. ' y LDO RS 
MUL STD T4 
ADOD 1 'u SYNC 
STD 1 9 U SYNC 
sec SK?l7 SYNC 
INC ,u L8RA N!:XT 

SKP17 LOA ,x •'· ... 
LOB t y IMLTfR ~DB lBOCS 
~1UL !MLTRR FD~ 5493 
ADDD ,u , ... .,. 
STD t ~J I ORG $0000 

..,, I MOJO FOB 0 
'•' 

LOA l,U IPRQ!:ll FCB 0 

LOB 1tl5 IPROD2 FCB 0 

MUL IPR0~3 FCB 0 

AOOD 2 'u IPR004 FCS 0 

8CS SKP18 IT E I~P FCB 0 

CMPO #65521 JTENPl FC:3 0 
BLO SKP19 ITEMP3 FCB 0 

SKP18 ADDD ttlS !SAVE co~ 0 
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FLAG FCB 0 I ORG SFFFE 
... ISTRT EQU $F800 ... 
•.. I ~iW BEGIN ... 
... ************************************************************** ... 
... ... PROCESSOR N UJ~ 8 E R 17 , . ... . .. ., . 
... ************************************************************** ... 

NM1 680917 I INC ,u 
T9 fQU $0410 IS!<P14 LOA 1 , X 
TlO EQU $0412 I L ::l ~- ' y 
R9 =Qu $0414 I MUL 
R10 EQU $0416 I AOOD 1,U 
SU1 EQU $0 418 I STD 1 'u ... I ~cc SKP17 ... 

ORG $F800 I INC ,u 
NOP ISI<P17 LOA ' X 
ORCC lt%01010000 I L D~ ' y 
LOU #PRDD1 MUL 

BEGIN CLRA AOOO 'u 
STA FLAG STO ,u 
L~A SEM •'• ... 
REQ FRD LOA 1 'u 

STAPT LOA ~1 LD~ .H5 
STA FLAG ~UL 

FJ.<O LDY #MCND ADDD 2,U 
LOX ztMLTFR BCS S K P 18 
BKA C"JVtR CMPD ii65521 

NEXT LOY ttMCND BLfl SKP19 
LOX ~MLTRR SKP18 AODD ~15 

OVER SYNC SKP19 STD 2,U 
SYNC ... ... 
SYNC LDA ,u 
SH'C LOX ttTEMP 
SYNC CLR ' X 
LDD R9 CLR 1 , X 
ADDD R10 CLR 2,X 
BCS SKP12 LD~ #15 
CMPD ~65521 t·1UL 
BLO SKP13 STO ' X 

SKP12 ADOD #15 L DA ' X 
SKP13 SYNC LOB #15 
... MUL 
~-

SiD r~CND ADDD 1 , X 
CLR ,u AODD 2,U 
CLR l,U I ~cs SK P2 0 
L DA 1 , X I CMPD ,!165521 
L DB 1 'y I BLO SKP21 
MUL ISKP20 AODD :tl5 
STD 2,u ISK.P21 SYNC 
l 0.11 ' X 

I ::c 

.L DB 1 ' y I STD T!O 

~1UL I STCl T9 

AOOD 1,U I SYNC 
STD 1 'u I SYNC 
BCC SK ~14 I SYNC 
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SYNC I~LTRR f DB 34561 
SYNC I ~~ 
LOA FLAG I CRG $')000 

OlPA ~1 IMCfW FD5 0 

BEQ SKP IPP001 FC!: 0 
L BRA BE G. IN I PR002 FCg 0 

SKP INC FLAG IP~003 FCB (I 

SYNC IPROD4 FCS t) 

LDO RlO IT Et~P FCB 0 

STD T9 ITEMPl FCP, 0 

S 'fNC ITFMP3 FCB 0 
S 'f~IC IS~VE' Fog I) 

LDD R9 I FLAG FCB I) ... 
STD TlO I ... .,. 
SYNC I r:JRG $FFFE 
L8RA NEXT ISTRT E :-;) U $FSOO 

·'· I E i~ 0 8 E G If.J 
'I" 

f·1L TFR F D f3 5753 , ... .,. 
•'• ************************************************************** .,. 
"'· ... PROCESSOR NUt~BER 18 •'• .... .,. .,. 
•'· ************************************************************** .,. 

NAM 680918 ISKP13 SYNC 
Tl4 EQU $0410 , ... .,. 
TlS EQU $0412 I STO MCND 
Rl4 E ::)U $0414 I CLR ,u 
R15 EQU $0416 CLR 1 'u 
SEM EQU $0418 lOA. 1 , X 
•'· LD3 1 ' v .,, 

OPG $F800- t~UL 

NOP STCl z,u 
ORCC 't%01010000 LOA ' X 
L DU #PROD1 LOB l,Y 

BEGIN CLRA r-1 u L ~ 
STA FLAG AOOD 1,U 
LOA SEN STD 1, u 
BEQ FRO BCC SKP14 

START LOA t:l INC ,u 
STA FLAG SKP14 LOA 1 , X 

FkO LOY #MCND LOB ' y 
LDX #MLTFR ~1UL 

BRA OVER I ADDD 1 'u 
NEXT LOY #I~CNO I STD 1 'u 

LDX ~MLTRR I BCC SKP17 
OvER SYNC I INC , u 

SYNC I S.K p 1 7 LOA ' X 
SYNC I LD?) 'v 
SYNC I MUL 
SYNC I ADOD ,u 
LDD Rl4 I STD ,u 
AODO P.l5 , ... .,. 
BCS SK P 12 I L DA 1 , u 
01PD· N65521 I LOR .1115 

BLO SKP13 I ·~uL 

SKP12 AODD #15 I ADDD 2,U 
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BCS SKP18 CMPA :t1 
CMPD t£65521 SEQ SKP 
gLo SKP19 LBPA BEGIN 

SKP18 ADOO '*15 SKP INC FLAG 
SKP19 STD z,u SYNC 
•'• LDO R15 ... 

LOA ,u STD Tl4 
LOX #TEMP SYNC 
CLR 'X s.nJc 
CLP 1,X LOO R14 
CLR 2 t X STD T15 
L 08 #15 SYNC 
MUL LBRA N::XT 
STO ' X 

... . ,. 
LOA t X MLTFR FOB 43615 
LDB ~15 ."1L TR R FOB 24743 
MUL I ::: 
AD;JD 1, X I ORG $0000 
ADDD z,u I r~CNO FOB 0 
3CS SKP20 I PRDD1 FCB 0 

CMPO #6 55 21 IPR002 FCB 0 
5LO SK?21 IPR003 FCB 0 

SKP20 AODD #15 IP~004 FCB 0 
SKP21 SYNC I TEMP FCB !' 
... ITEMP1 !=CR 0 ... 

STD T15 ITEMP3 FC B 0 
STO T14 IS AVE F 0?. 0 

SYNC I FLAG c:cs a 
SYNC I ... ,.,. 

SYNC I ORG $FFFE 
SYNC ISTRT F:QU $F800 
SYNC I END REG IN 
LOA FLAG I ... ... 

... ... ... **************************~*************~********************* ... ... . .. CONTROL MICROPROCESSOR ::: ... ... 
•'• ************************************************************** .,. 
...... : ... 
.,. NM1 CONTROL ORG $F800 .,. 
:::~ STA~T NOP 
ACIACR EQU $1040 ORCC #%01010000 
ACIASR EQU $1040 LOS tt~ao 

ACIARX EQU $1041 CLRA 
ACIATX EQU $1041 STA CONTRL 
ARYOUT EQU $1020 STA STATUS 
INPUT EQU $10QO LOA # 0~00000101 

OUT 1M EQU $1050 STA CONTRL 
OUT1L EQU $1051 LOA t.!$13 
OUT 2M EQU $1052 STA ACIACR 
OUT2L EQU $1053 LOA It $11 
DATA E fJU $1054 STA ACIAC~ 

(UNTRL EQU $101!.: LOA ..,~00000111 

::: STA CONTRL 
LOA tt~~OOOOOllO STA T ~1 p 
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STA CONTRL JSR RC X 
LOA #%00000111 JSR TXR 
STA CONTRL C f~PA !#'$00 
STA STATUS F\=Q SK5 
BRA BEGIN JSR VALI 0 

INIT LOS !it$80 AOOA T~P 

LOA # $0 7 SRA. SK6 
JSR TXR SK5 LOA T"'!P 
JSR CRLF LS~A 

BEGIN JSR CRLF LSRA 
JSR PFX LSRA 
JSR RCX LSRA 
CMPA #. , 1 gRA SK6 
BEQ SKPl ZERO CLRA 
CNPA #'2 SK6 STA CNT 
BEQ SKP2 CMPA ~~0 

LSRA DSP L3HS EQr1SG1 
•'• LOOPS JSR (qLc: .,. 
SKP1 LOA 1t1 "'· '•' 

STA FLAG JiARITE: LOA C"JT 
LOX #rASG3 I LSPA 
LOA #15 I LSRA 
STA CNT LSRA 
JSR DSPLY LSRA 
LOY #INl JSR CO NVA 
LOX #.~RYIN JSR TXR 
JSR EXG L:JA CNT 
BRA MOOFY ANDA # $0 F 

SKP2 LOA #2 JSR CONVA 
STA FLAG JSR TXR 
lOY #IN 2 L uA t~'= 

LOX #ARVIN JSR TXR 
JSR EXG LOA tt$20 

LOX i'H-1SG8 JSR TXR 
LOA #13 LOB CNT 
STA OJT LOA B,X 
JSR DSPLY LSRA 
J SR CRLF LSRA 
JSP P FX LSRA 

.. , LSRA .,.. 
MOOFY JSR CPLF JSP. CON VA 

LOX ~ARVIN JSR TXR 
LOA ti$20 LOB C ~lT 
JSR TXR LOA 8, X 

JSR RCX A tJ 0 A 11~01= 

JSR TXP I .J s J;' CClNV A 

CMPA #~00 I JSR TXP. 

BE (J ZERO I L DA rt't20 

JSR VALID I JS~ TXR 
LSLA , ... ... 
LSLA I READ JSR RCX 
LSLA I J SP TXR 
L SL A I C"1PA li !. 0 (I 

B~Q MOVE I LOA STATUS 
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01PA #'- I ANDA li%11111110 
BEQ OECR I STA CONTRL 
C MPA #$20 I ORA iio/,00001001 
BEQ INCR I STA CONTRL 
JSR VALID I SYNC 
LSLA I ANOA ~%11110111 

LSLA I STA CONTRL 
LSLA I STA STATUS 
LSLA I ... ... 
STA H1P IC'JNV 'LOX #OUT 
JSR RCX I JSR EXC~G 

JSR TXR I JSR CRLF 
JSR VALID I LOX tH1 SG4 
ADDA Tr~P I LOA 1111 

LOB CNT I STA CNT 
STA B,X I JSP OSPLY 

INCR L DA CNT I JSP. CP.LF 
INCA I LOX ~tOUT 

CM 0 A # 30 I JSR ARAY 
BHS t~OVE I JSR CRLF 
STA CNT ISKP4 LOA li15 

BRA LOOPS I STA CNT 
DECR l DA CNT I LOX 1tOUT 

OECA ISKPS LDD ,X++ 
BLT MOVE I STO OUT 2M 

STA CNT I DEC CNT 
L8RA LOOPS I BNE SKPS 

... I LOA ACIASR ... 
MOVE JSR CPLF I. LSRA 

JSR PFX BCC SKP4 
JSR CRLF LOA ACIARX 
LDV ttARYIN ANDA #$7F 
LOA FLAG CMPA t:'G 

01PA ~H LSEQ GET 
8NE SKP3 LBRA SEGIN 
LOA STATUS ... ... 
ANOA ttY,10111111 OSPLY LOA ,X+ 
STA CONTRL JSR TXR 
STA STATUS DEC CNT 
LOX #I".Jl P,NE DSPLY 
JSR EXG ens 
LOX ~INPUT 

... . ,. 
JSR f:XG TXR LOB r,"S02 

LBRA BEGIN ~~A IT 3ITB ACIASR 
SKP3 LOA STATUS BEQ WAIT 

ORA #%01000000 STA ACIATX 
STA CONTRL RTS R:TURN 
STA STATUS "· ... 
LOX #IN2 RCX LOA ACUSR 
JSR EXG LSRA 
LOX #INPUT 8CC RCX 
JSR EXG LOA ACI.HX 

... ANOA ti$7F ... 
RTS STA STATUS 
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"'• I ~TS .,. 
CO NVA CMPA #9 I·'· .,. 

BLS OMIT I ... ... 
ADDA ~·A-'9-1 IG~T J SR C~LF 

Dt-1! T ADDA #'0 I JSR PFX 
ANDA· #S7F I LOX IIM$G4 

RTS I LOA #12 
... I STA CNT . ,. 
CRLF LOA ~$00 I JSR DSDLY 

JSP TXR I JSR CRLf= 
LOA tt$0A I JSR PFX 
JSR TXR ILOOPW LOA STATUS 
RTS I ORA ~t%00010000 

·'• I STA STATUS .,. 
EXCHG LOA STATUS I STA CONTRL 

'JRA ~?~00001000 !LOOP X LOA #15 
STA CONTRL STA C"lT 
STA STATUS LOY #ARY!N 

L DY #ARYOUT LOX #INPUT 
SYNC LOU liiNZ 

·'• LDD DATA .,. 
EXG LDO , y LOOPY ·sYNC 

STO 'X LDD 0 AT A 
LDD 2,Y STD ,X++ 
STO z,x STD ,Y++ 
LDD 4,Y STD ,U++ 
sTn 4,X DEC C"JT 
LCJD 6,Y BNE LOOPY 
STO 6,X ::: 

LDD 8 'y L DA STATUS 
STO 8,X ANDA ~%11111110 

LDD 10,Y STA CIJNTRL 
STD lO,X f'JRA ~tY,OOC01001 

LDD 12,Y STA CONTRL 
STD 12,X SYNC 
LDD 14,Y ANOA #%11110111 
STO 14,X STA CCJNTPL 
LDD 16,Y STA STATUS 
ST'J 16,X ... . ,. 
LDD 1 8' y LOX #OUT 
STD 18,X JSR EXCYG 
L DO 2 0, y LOY #INZ 
STD zo,x LOA ;1115 
LDQ zz,v I STA CNT 
STD 22,X ILOOPZ LDD ,X++ 
LDO 24,Y I STD OUT2~~ 

STO 24,X I L DO 'y ++ 

LDD 26,Y I STD OUTlM 
STD 26,X I DEC CNT 
LDD 2 8, y I. ~ NE LOOPZ 
STD 2 8, X I LOO A( !.ASP. 
ANDA #"'.11110111 I LSt;~A 

STA CONTRL I sec LOOP X 
ANDA #$7F I STO OUT2~·1 
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CMPA # ~~ I DEC CNT 
LBEQ BEGIN I B ~J E L'JOP:: 
JSR CRLF I LOA ACIAS~ 

JSR PFX I LSqA 
REPEAT LOX "OUT I 8CC SK9 

LOY IIIN2 I L DA ACIARX 
L~A #15 I ANDA #l7f 
STA C"lT I CI~PA #, 1 

LOOP LDO ,Y++ I LBEQ SKP1 
,'. 

I SEl OUT 1M LBRA SKP2 
L DO ,X++ I t.' 
STO ·OUT21~ IARAY LOA #30 
DEC CNT . I STA eNT 
BNE LOOP I AGAIN CLR CNT1 
LDA ACIASR LOOP2 CLR Ct..IT2 
LSRA LOOPl LOA ' X 
gee REPEAT INC CNT2 
LOA AeiARX LSRA 
ANDA #<;7F LSRA 
Ct~PA #, 1 LSRA 
L5EQ SKPl LSRA 
CM 0 A #'2 JSR CONVA 
LBEQ SKP2 JSR TXR 
LBRA LOOP X LDA ' X + ... 1\NOA :t<£ 0 F ... 

DSP JSR CRLF JSR CON VA 
LOX #MSG5 JSR TXR 
LOA #7 INC CNT2 
STA CNT DEC eNT 
JSR OSPLY BEQ SET 
JSR CPLF LOA eNT2 
JSR PFX C I~ PA t/4 

JSR eRLF BEQ eHKT 
LOX #!Nl 8R~ LOOPl 
JSR ARAY OVER JSR eqLF 
JSR CRLF BRA AGAIN 
JSR eRLF CHKT LOA CNT1 
LOX ~MSG6 e ~1 PA ti4 

LOA #7 SEQ OVER 
5TA eNT LOA .r,i$20 

JSR OS PLY J SR TXR 
J SR CRLF INC e ~1 T 1 
LOX #IN2 BRA LOOP2 
JSR AP.AY SET RTS 
JSR CRLF ... ... 
JSR PfX VALID SUBA # '0 

SK9 LOX ~INl I CMPA ~9 

LOY #IN2 I BHI e H K.l 

L DA #15 I PTS 
STA eNT leHKl SUBA P7 

LOOPE LDO ,X++ I ( I~PA lt$0F 

STD OUT 1M I ?. L S: OK 
LOD ,Y++ I 'IRA ERMSr,3 

OK RTS I MSGl FCC 'Address Too Large'. 
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•'• ... 
PFX 

·'· .,. 

L DX 
LOA 
STA 
JSR 
RTS 

ttMSG7 
#6 
CNT 
OSPLY 

ERMSGl JSR CRLF 
LOX #MSGl 
L DA #17 
STA CNT 
JSR CRLF 
JSR OSPLY 
JSR CRLF 
LBRA HJIT 

Efd·1SG3 JS~ CRLF 

•'• ... 

·'· .,. 

.... . ,. 
•'• . ,. 
•'• .,. 

... ... 

LOX 1H1SG2 
LDA il17 
STA CNT 
J SR CRLF 
JSP. OSPLY 
JSR CRLF 
LBRA IN!T 

NAM WINOlS 

LOX .~AX 

LOY #ARVIN ................................ ____ ..._ .................................... 
.;, ..... , ..... , .. "1 .................... , .... , .... , ..... , .... , .................................. , .......... , .... , .. 

... INPUT R~ORDERING •'• ... ., . 
*******************~** 

LDD ,y 
STD 'X 
L DO 6,Y 
STD z,x 
LDO 12,Y· 
STO 4,X 
LDD 18,Y 
STD 6,x 
LDD 24,Y 
STO s,x 
LDD lO,Y 
STO 1 0, X 
LDD 16,Y 
STD 12,X 
L:JD 2 2, y 
STD 14,X 
LDD 28,Y 
STO 16,X 
LDD 4,Y 

D-43 

MSG2 FCC 'Invalid HEX Digit' 
MSG3 FCC 'enter Response' 
MSG4 FCC 'Convolution , 

t-ISGS FCC 'O.rray 1 , 

MSG6 FCC . 'O.rray 2 , 

I,SG 7 FCC 'CIJNV: . 
MSG8 FCC ·=nter Values' 
::: 

ORG $0081 
STACK RMB 1 
T'1P Pt·18 2 
CNT Ri·IB 1 
CNTl Ri·1B 1 
C NT 2 I) r~ R 1 
STATUS RMB 1 
FLAG R r~s 1 
HH Rf,~. 30 
IN2 R Me 30 

lOUT ~t-18 30 
IAPYIN RMB 30 
I ::: 
l O~G <;FFFC:: 
ISTRT ~QU $F800 
I END START 

I LOO 20,Y 
I STD zo,x 
I LDD 26,Y 

STO 22,X 
LDD z,v 
STD 24,X 
LDO 8' y 
STD 26,X 
LDD 14,Y 
STD 28,X 

·'· ,. 
•.. ----------------------... .. ................. , ......... , .......... , ......... , ......................... , .. " .. ~ .......... , .... , ............ 
::: •'• 3-POINT PRE-wEAVE :~~ .,. 
•'· ........................................................................................ .,. ....... , ..... ,. ................. , .. "'f"' ............. , ............. , ...... , .. ~ ....... 'f" ~ ... ~, ........ '•" 

s I( p 2 LDD lO,X 
ADOO 2 0, X 
~cs JMPl 
CMPO #65521 
13 LO JM::>Z 

JMPl ADDD fJ 1 5 
I J ~1 P 2 STD T 1·1 P 1 
I aoo~ ' X 
I Cl, c s Jr-IP3 
I C~PD 1165521 
I ;:, 
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BLO JMP4 I PLO Jt~Pl7 

Jt·1P3 ADDD #l5 IJMP16 ~JDD ttl5 
JMP4 STD ' X IJMP17 STD TMP1 

LDD lO,X I ADOD 6,X 
su~.o 20,X I scs JMP18 
BCC JMP5 C ~~PO ~65521 

ADDD lt65521 BLO JMP19 
Jl"IP5 STD zo,x J"1P18 ADDD ~15 

LDD TMPl JMP19 STD 6,X 

STD 10 9 X LOO 16,X 
LOD 12,X SUBD 26,X 
ADDD zz,x RCC JMP20 
scs JMP6 :.ooo· ~65521 

CMPO ::65521 J~1P20 STD 26 9 X 
SLO JMP7 LDO TMP1 

J,.IP6 ADDD it15 STD 16 9 X 
JI"IP7 STD TMPl LOO 18,X 

ADOD 2, X ADDD 28,X 
BCS JMP8 scs J/o1P21 
Ct-IPD .it65521 CMPO #65521 
BLO JMP9 BLO Jt~P22 

J,.1P8 ADDO .1115 JMP21 AOOO #15 
Jt-1P9 STD 2, X J~P22 STD H1Pl 

LDD 12,X A ODD 8, X 

SUBO zz,x RCS JMP23 
BCC JMP10 Cf-IPO H65521 
ADDD #65521 BLO JMP24 

JMPlO STD 22,X J!\IPZ 3 ADDD tt15 
LDO Tr~ p 1' JMP24 STQ 8, X 
STD 12,X LDD 18,X 
LDD l4 9 X SUBD 28,X 
ADOD 24 9 X sec JNP25 
scs J t~ p 11 AOOD ti65521 
cr~PD #65521 Jr1P25 STO 28,X 
BLO JMP12 LDO THPl 

Jf-1Pll ADDD tt15 STD 18,X 
Jt·IP12 STO TMP1 •'• ··~~~·~~~···~·~~~~~·~~ .,. ¥¥~¥¥¥¥¥¥¥-¥¥¥¥¥¥~¥---

ADOD 4,X ... .. . 5-POitH P~E-WEAVE :~:: . ,. .,. 
8CS J~1P13 I ... ~~···~~·~~··~~-··~~·~~ . ,. ....................... , .... , .... , .... , ............................................................................... 
C r~PO #65521 LOY Ill 

BLO JMP14 LDD 2 ' l( 

JHP13 ADDO #15 AODD 8 t X 

JMP14 STD 4,X BCS JMP26 
LDD l4,X CMPD tt65521 
SUBD 24,X 8LO JMP27 
BCC JM 0 15 JMP26 ADDD 1115 
ADDD lt65521 JIW27 STO 2,v 

JI'1Pl5 STO 24,X LDO 2 , X 

LDD TMP1 sur.o 8, X 
STD 14, X 13CC JMP28 
LDD 16, X ..".ODD #65521 
AODD 26,X JMP28 STD f..,Y 

BCj Jr-1Pl6 LOD 4 , X 

CMPLJ lf65521 AD no 6, X 
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BCS JMP29 IJMP42 ADDD 1115 
CMPO #65521 IJ"'1P43 STO 16,Y 
BLO JMP30 I LOD 16,X 

Jt-tP29 ADDD #15 I SUBD 14,X 
Jt-IP 30 STD 4,Y I ace JMP44 

LOO 6,X I ~DOD 1165521 
SUBD 4,X IJ~P44 STD 22,Y 
BCC JMP31 I AOOD 18,Y 
ADDD #65521 I BCS JMP45 

Jl"iP31 STD lO,Y I CMPD 1165521 
.C\000 6,V I BLO JMP46 
BCS JMP32 IJ'~P45 ADOD #15 
Ct~PO #65521 IJMP46 STD 20,Y 
BLO JMP33 I LOD 16,Y 

JNP32 ADD:::l #15 I ADOD 14,Y 
Jt•lP33 STO s,v I BCS JI-IP4 7 

LDD 4,Y I CMPO tt65521 
ADDU 2, y I BLO JMP43 
BCS JMP34 IJMP47 A:JDO 1115 
C ~~PO •65521 IJ"'1P48 STD TMPl 
BLO JMP35 I ADDO 10,x 

JNP34 AODD 1tl5 I ~cs JMP49 
Jt-1P35 STD TMPl I Ct~PO 1165521 

AODD ' X I BLO JMP50 
BCS JMP36 IJMP49 ADDD U5 
CMPO #65521 IJMPSO STO 1 2' "( 
SLO JMP37 I LDD l4,Y 

JNP36 ADDD #15 I SUSD 16,Y 
Ji-'t p 3 7 STD 'y I BCC JI-IP 51 

LOO 2,Y I ADDD #65521 
SUBD 4,Y IJ'~P51 STD 16' y 
BCC . JMP38 I LDD TMD1 
ADDD #65521 I STD 14 9 Y 

J/'1P3 8 STQ 4,Y , ... .,. 
LDD TMPl I LDD 22,X 
STD 2,Y I AODD 28,X 

....... I 8CS J r~ P 52 . ,. 
LDD 12,X I CM 0 0 j#65521 
AODD 18,X I BLO JMP53 
e.cs JMP39 J ~1P 52 ADDD 1115 
CMPO #65521 JMP53 STD 26,Y· 
BLO JMD4Q LDD 2 2, X 

Jl'-1P39 AJDD F115 SUSD 28 9 X 
J 11 P40 STD 14 9 Y BCC JMP54 

LDD 12,X ADDD ~65521 

SUBD 1 8 ·,X JMP54 STD 30 ,y 
BCC J ~~ p 41 L DD 24d 
ADDO t165521 ~ODD 26,X 

J 1·1 p 41 STD 18,Y ?.CS JMP56 
LDD l4,X 01PO il65521 
AODO 16,X oLD JMP57 
BCS JM 0 42 JMP56 AODD !il5 
(;-1 p 0 1t65521 Jt.1P 57 STD 2 s ,y 
RLO JMP43 LDD ?.6,X 
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SUBD 24,X STD 2 'u 
sec JMP58 LOA ' X 
ADDD #65521 LOB 1 ' y 

JMP58 STIJ 34,Y ~~ UL 
ADOD 30,Y AODO 1 'u 
~es JMP59 STO 1 'u 
e ~,PO 1165521 gee SKIP3 
BLO J ~1 p 60 ! Ne ,u 

JI'1P5 9 ADDD #15 SKIP3 LOA 1, X 

JMP60 STD 32,Y LOB ' y 
LOD 26,Y ~~UL 

AC)OO 28,Y ADOD 1 'u. 
BCS JMP61 STO 1 'u 
C~1PD #65521 gee SKIP4 
BLO Jt~P62 INC 'u 

Jt-IP61 ADOD #15 SKH'4 LOA ' X 
Jtv1P62 STO TMP1 LOB ' y 

ADOO zo,x MUL 
BCS JMP63 AODO ,u 
U~PD tt65521 STD ,u 
[jLQ JMP64 I:~ 

JHP63 A.JOD #15 I LOA 1 'u 
Jtv1P64 STD 24,Y I L 09 ,!115 

LDD 26,Y I MUL 
S U BD 28,Y I AODO 2,U 
BCe JMP65 I BCS SKIP6 
AODD 1165521 I C I~ PO #65521 

JNP65 STD 28,Y I P.,LO SKIP7 
LOO H1P1 ISKIP6 ADDO 1115 
STIJ 26 ,.'( ISKIP7 STD 2,U 

•'• ~······--·--~--------- I LD~ ,u ..• ¥¥¥¥¥¥¥~¥¥-¥¥~¥¥¥¥¥¥¥¥ 

·'· ... MULTIPLICATION ... I LOY :II T ~ i·IP . ,. ... . .. 
::: --------·--·----------¥¥¥¥~¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥~ I CLD. ' y 

CLRA I CLR .1,Y 
STA IND I CLR 2 'y 
L:lS #Z I LOB li15 

~OOP LOA FRO I MUL 
REQ OV~Rl ISKIPA STO ' y 
LOY ~CC1EFR I LOA ' y 
BRA ov::R2 I B::Q SKIP~ 

OVERl LOY ;,coEFF I LOB ~15 

OVER2 LOA IND I MIJL 
LDO A,Y ! ADCD 1 ' y 
STO MLTR I BRA SKIPQ 
LDD ' s ISK!PE LDD 1 ' y 
STO MLTN ISKIPO AOOO 2,u 
LOX #MLTR I BeS SKIPS 
LOY #MLTN I CMPD 1165521 
LOU #PROD1 I RLO SK!PC 
CLR ,u ISKIPo ADOO :t 1 5 
CLR 1 'u ISKIPC STD ,S++ 
LOA 1 ' )( I LD.l IND 
LOB 1 'y I AODA 112 
r~UL I STA IN 0 
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CMPA 1134 BCS JMP78 
L BLS LOOP U1PD 1165521 

·'· ~~~~~~~~-~·~·-~-~-~~-· BLO JMD79 .,. ¥¥¥~¥¥¥~~-~¥¥¥¥¥¥¥¥¥¥¥ 

~( •'• 5-PO!NT POST-WEAVF: ·'• JMP78 .A ODD tt15 .,. .,. 
•'• ~········~·-~·------·· JI-1P7 9 STD TMPl .,. ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥-¥¥¥¥ 

L :J X ~AX LDO z,x 
L DY #Z SUBD 8, X 
L DO ' y BCC JM 0 8(1 
STD ' X AODD ,1t65521 
ADDD z,v J ~1 P8 0 STD P,x 
BCS Jt·1P67 LDD TMP1 
CMPO ~J65521 STO 2, X 
BLD JMP68 •'• .,. 

J~IP67 AODD #15 LDD 12 9 Y 
Jtv1P68 STO 2, X STO 10,X 

LDD 8 'y AOOD 14 ,.,. 

ADDD lO,Y BCS JUP67 
scs JMP69 CMPO :t65521 
CMPD ti65521 BLO JUP6S 
BLD JMP70 JUP67 AODD li15 

JI'-IP69 ADDD ~15 JUP68 STD 12,X 
JI·1P70 STO lO,Y LDD 2 0 ,y 

LDO 6,Y AOOD 22,Y 
suso 8,Y ~cs JUP69 
BCC JMP71 CMPO #t6552l 
ADOD #t65521 BLO JUP70 

J ~1 P71 STD 8,X JUP69 ADDD It 1 5 
LDO 2, X JUP70 ST:J 22,Y 
ADDD 4 9 Y LOD 18,Y 
BCS JMP72 SU3D 20,Y 
CMPD ti65521 BCC JUP71 
BLO JI-IP 73 ADOD ~65521 

J~1P72 AODD #15 JUP71 STO 1 3, X 
Jt·IP7 3 STO HW1 LDD 12, X 

LDO z,x ADOD 16,Y 
SUBD 4 9 Y BC S JUP72 
BCC JMP74 CMPD t165521 
AOOO ~65521 PLO JUP73 

Jt-1P74 STD 4,X JIJP72 ADDD JilS 

SUBD lO,Y JUP7 3 STO HIDl 

BCC JMP75 LDD 12,X 
ADDD #65521 SUBD lt>,Y 

JtviP7 5 STD 6,X BCC JUP74 
LDD TMPl AOOD t165521 
STD 2, X JUP74 srn 1 4, X 

LDD 4 9 X SU~D 22,Y 
AD~D 1 0 ' y HCC JUP F· 

nCS JMP76 Anno 116~'<' 1 

CMPU ~65521 JUJ-175 STQ 16 9 X 
BLO Jt,1P77 LDO TMPl 

J~1P76 ADDO ttl5 STD 1 2 ')( 
JI'1P77 STD 4 9 X LDD 14,X 

LDD 2 , X .4 ODD 22,Y 
ADDD 8 ' )( P.CS JUP76 
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cr~PD #65521 IS'<P75 STD 26, X 
SLO JUP77 I L!JD TMPl 

JUP76 ADDD #15 I STD 22,X 
JUP77 STD 14 ,.x I LDD 24,X 

L DD 12,X I .t~DDD 34 ,y 
ADDD 18,X I BCS St<P76 
BCS JUP78 I CMPO it65521 
U1PD #65521 I PLO SKP77 
BLO JUP79 ISKP76 l\000 II 1 5 

JUP78 ADOD ft15 SKP77 STO 24,X 
JUP79 STD TMP1 LDD 22,X 

LDD 12,X ADDD 28,X 
SUBD 18, X 8CS SKP7 .c: 

nCC JUP80 CMDD it65521 
ADOD .~65521 BLO SK 0 79 

JUP80 STD 1 8, X SKP78 ~DOD 1115 
LQD Tt"P1 SKP79 STD TMP1 
STD 12,X LDD 2 2, X 

... SUBD zs,x . ,. 
LDD 24,Y BCC SK 0 80 
STD 20,X. ADDD it65521 
ADDD 26,Y SKP80 STD 28,X 
scs SKP67 LDD TMPl 
CMPO 1'165521 ~ I STO 22,X 
BLO SKP68 I•'• ~~···~~··~~···~···~·~~ ... ~¥¥¥¥¥¥¥¥¥~¥¥¥¥¥¥¥¥¥¥~ 

SKP67 AOOD #15 I ... J • 3-POINT POST-WE liVE •'• . ,. . ,. ., . 
SK P68 STD 22,X I•'• ~·~·-~·~~·--~-------·· .,. -~-¥--¥·-·------~·-·--

LOD 32,Y I LDD 'X 
ADDD 34,Y I ADOO 10, X 
8CS SKP69 I BCS J/>1 °81 
01PD :!*65521 I Cr~tPD 1165521 
BLO SKP70 ! RLO Jt·1 P8 2 

SKP69 ADOD ~15 IJ~P81 AODD i:l5 
SKP70 STO 34,Y I J/~P8 2 STD 1Q,X 

LDD 30,Y I LDC' 2, X 
sugo 32,Y I ADDD 12, X 
BCC SKP71 I ~cs JI~P93 

ADDD 1165521 I CMPD #65521 
SK P71 STD 28,X I BLC JMP84 

LOD 22,X IJ~·1P83 ADDD ~15 

AOOD 28,Y IJ"''P84 STD 12,X 
scs SKP72 I L DO 4,X 
CMPD #65521 I ADDD 14,X 
BLO SKP73 I acs JMP85 

SKP72 ADDD #15 I CMPD #65521 

~KP73 STO TMP1 I f:lLO JMP86 
LDO 22,X I J t~P 8 5 ADDD .t' 1 5 
SUBD 28,Y IJMP86 STD 14, X 
BCC SKP74 I L DO 6, X 

Anoo 1165521 I 1\000 1 f:, , X 

SKP74 STD 24,X I P-CS JMP 37 

SURD 34,Y I (;~P() ttb5521 
BCC SKP75 I bLO J ~~ p i3 8 

ADQD 1:65521 IJ"'P87 · C. ODD It 1 5 
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Jt-IP88 STD 16,X I BLO JMP99 
LDD 8, X IJMP98 ADOD #15 
ADDD 18,X IJMP99 STD TMP1 
BCS JMP89 I LDD 16,X 
CMPD ~65521 I SUBD 26,X 
BLO JMP90 I 8CC JMPlOO 

Jl'tP89 ADDD #15 I ADOD ~65521 

JI'-1P90 STD 18,X IJ~1P100 ST') 26,X 
LDO 10, X I LDD H1Pl 
AD:JD zo,x I STD 16,X 
BCS JMP91 I LDD 18, X 
Ct-'1 p 0 *65521 I ADDD 28,X 
BLO JM 0 92 I BCS JM 0 101 

JMP91 ADOD 1!15 I C ~~ F' D rt65521 
JMP92 STD Tl~ o 1 I !:1-LO J ~·IP 10 2 

L:JD 10, X IJMP101 ADDD 1115 
SUBD zo,x IJMP102 STD THD1 
BCC Jt-1 p 911 I LDO 18,X 
AODD #65521 I SUBD 28,X 

J t-1 p 911 STD 20,X I sec JMP103 
LDO TMP1 I ADDD ~65521 

STD lO,X IJMP103 STD 28,X 
LOD 12,X I LDD TMP 1· 
ADDO 22,X I STD 18,X 
scs JI-1P922 I~: ·~~~~·········~·~···~~ r-¥¥¥¥¥¥¥¥-¥¥-¥¥¥¥¥¥¥¥ 

CMPD ~65521 I ... ·'• OUTPUT 3HUFFLE ·'· .,. . .. . .. 
BLO JMP93 I•'· ··~···~··········~··~· .,. .., ........ " .... ,. ... , ......................... , .... , .... , ............................................ , .... , .. 

JMP922 AODD .It 15 I L JX #AX 
Jr·tP93 STD Tt-1 P 1 I LOY t~QUT 

LDD 12,X I LDO ' X 
SUBD 22,X I STD 'y 
BCC Jt-1P94 I LDD 12, X 
ADDD #65521 I STD 2 'y 

J 1·1P 94 STD 22,X I LDO 24,X 
LDD Tt-1.Pl I STD 4' y 

STD 12,X I LDD 6,X 
LDO 14,X I srn 6,Y 
ADDD 24,X r LDO 1 8, X 
P.CS JMP95 I STD 8' y 
CMPD ~65521 I LDD 2 0, X 
BL!J JMP96 I STD lO,Y 

JMP95 ADOD #15 I L DO 2, X 
J f·IP96 STD TMPl I STD 12tY 

LDD 14,X I L 0 [' . 14,X 
SUBD 24,X I STD 14,Y 
BCC JMP97 I LDD 26,X 
ADO!:> #65521 I SiD l6,Y 

JMP97 STO 24,X I LDC' B, X 
LOQ .H1Pl I STC 1 8 ' y 
STO 14,X I LDO 10, X 
LDD 16,X I s:o 20 ,y 
~DOD 26,X I LDO 22,X 
ecs JMP98 I STO 2 2 'y 
CMPD :t6"i521 I LDD 4 , X 
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STD 24,Y I ~DB 16087,29032,8748 
LDO 16,X I ~0~ 23174,43615,1465 
ST[) 26,Y ICOEFR c:oe, 61153,5460,18364 
LDD 28,X I FD8 46773~20640,5493 
STO 28,Y I FD3 6552,57331,37975 

•'· I FOB 28122,34561;24521 ... 
COEFF FOB 1,6379,13376 I FOB 29504,28641,12521 

FOB 19136,18005,486471 FJ8 5913,Z474S,21938 
FOB 32759,8192,45457 I END STRT 
FOB 36817,5753,25311 ! ::: 
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Backplane wiring connections for the parallel microprocessor 
system 
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8ackpl.;1ne pin connections for t ne narallel 
microprocessor system. 
Flow of dai:a from SCJURC7. ( TX) -) D!:STIN~.TI:J~~ (RX) 

SOAP.D NO A - ( DRJCESSOR NQ ! 2 3) 

S!OE A SI!J~ R 

PIN# Fur~ c -r I r r·J PROC!:SSORtt IP!N;t FUNCT!CJN ?ROC:SSQPtt 
I 

1-8 DATA IN 1 2 .;) I 1-8 ~X s -> 3 

9-14 CLOCK. 1 
., 3 I 9-10 CL!JCK e -) 3 '-

1:,-22 DATA OUT 1 2 3 111-18 RX 4 -> "l -
23-28 JE 1 2 3 11 g-2o CLCCK 4 -> 3 

2<;-36 TX 1 -> 6 I 
37-38 CLOCK 1 -> 6 174 STA"!'US OUT 
3~-46 RX 6 -> 1 175 SYNC OUT 
47-48 CLQCK 6 -) 1 176 SYNC HJ 

49-Sb TX 2 -> 7 177 SYSTE~~ CLOCK. 
s-r-60 CLOCK 2 -> 7 178 rlALT 
49-56 TX 2 -> 5 179 RESET 
57-60 CLOCK 2 -) 5 129-61-93 +VCC 
61-68 RX 7 -) 2 132-64-96 G!:10UN~ 

69-70 C LOC'<. 7 -> 2 I 
71-78 RX 5 -> 2 I 
79-80 CLOCK 5 -> 2 I 
81-RS TX ':l -) 2 I -' 

8 '::1-9 2 CLOCK 3 -> 8 I 
81-88 TX 3 -) 4 I 
8'::1-92 CLnCK 3 -) 4 I 

~.OARO NO g - (DRJCESSCR 4 5 16) 

SIOE A SID!: p 

PIN# FUNCTION PRoc=ssoR~ I PIN# ~UNCTI'JI\J 

I 
1-8 DATA IN 4 5 74 ST.~TUS CUT 

<.:1-12 CLOCK 4 5 75 5PJC OUT 
13-20 DATA OUT 4 5 76 SYNC IN 
21-24 DE 4 5 77 SYSTF.r-1 CLCCK 
25-32 TX 4 -> 9 78 ~~LT 

33-36 CLOCK 4 -) g 79 P!:SF.T 
2S-32 TX 4 -> ':l 29-61-93 •VCC ..J 

33-36 CLOCK 4 -> 3 32-64-96 GRIJUtJO 

3-l-44 RX 9 -) 4 
45-46 CLOC !<, 9 -> 4 

47-54 RX 3 -> 4 

55-56 CLOCK 3 -> .:.. 

57-64 TX 5 -) 1 0 

6~-68 CLQCK 5 -> lf) 
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5 ., -64 TX 5 -> 2 I 
65-68 CLOCK 5 -> 2 I 
69-76 RX 10 -> 5 I 
77-78 CLCCK 1 0 -> 5 I 
7·Y-86 RX 2 -> 5 1. 
87-88 CLOCK 2 -) 5 I 

BCl\RD NO c - C0 Pr:c=ssoP 6 
.., 

'l) I 

SIDE A CT[\C 
.J •• - 0 

PIN# FUNC""ION PROCESS:JR# I D::: •,j :,t c:uNCTION PRJC.::SSCR:t 
I 

1-8 JATA Hl 6 7 8 I 1-8 DX 10 -> 7 
'9-14 CLOCK 6 7 8 I 9-10 CLOCK ·1:) -> 7 

1~-22 DATA OUT 6 7 8 111-18 TX Q -> 13 ·-
23-28 OE 6 7 8 119-24 CLQCK ·;.; -> 13 .., 

29-36 TX 6 -> 11 lll-18 TX 0 -> 3 

37-40 CLOCK 6 -> 11 119-24 CLOCK. .j -) 3 
29-36 TX 6 -> 1 111-18 TX 5 -> g 

37-40 CLOCK. 6 -> 1 119-24 CLOCK 3 -> c. 

41-,.48 RX 11 -> 6 125-32 P.X !3 -> 8 

49-50 CLCICK 11 -> 6 133-34 CLOCK 1 3 -> -;:, 
·J 

51-58 RX 1 -> 6 135-42 RX ., -) -~ -
5':1-60 CUJCK 1 -> 6 143-44 CLOCK 3 -> •) 

·J 

61-68 TX 7 -> 12 145-52 RX 9 -> ~-

69-74 CLOCt<. 7 -> 12 153-54 CLLJCK 9 -) -~ 

61-68 TX .., -> 2 I I 

6'3-7~ C L CJ.C K 7 -> 2 174 ST.ATUS OUT 
61-68 TX 7 -> 10 175 SYNC OUT 
69-74 CLCJCK 7 -> 10 176 SYNC I ~J 

75-52 RX 12 -> 7 177 s Y s T: 1-1 CL QC K 

33-84 CLOCK 12 -> 7 173 HALT 
85-:92 RX , -> 7- 179 RESET '-

92..-94 CLOCK 2 -> 7 129-61-93 +VCC 
132-64-96 G R OU~! 0 

~H1ARO no D - CPROCESS!li\ 9 10 1 7) 

SIDE .ll. S!OE 8 

PIN:ti FIJNCTLJN PRCJCESSORrt I P DJ ~t FUNCTION P~OC':SSDP~ 

I 
1-B D A"'!".~ IN 9 10 I 1-8 RX 5 -) 10 

9-12 CLCJCI<. 9 10 I 9-10 CLOCK 5 -) 1 0 

13-20 :JATA OUT 9 1 0 111-12 ~X 7 -> 1 () 

21-24 c~ 9 1C !19-21) CLoer.·. 7 -> 11) 

2;,-32 TX q -> 14 I 
33-38 C L CJO. 9 -> 1 4 174 STI\TIJS ~UT 

2S-32 TX 9 -> 4 I 7 5 SYNC OUT 
3::1-38 CLJCK 9 -) 4 176 SHJC IN· 

2S-32 T.X ~ -> 0 177 SYSTEr"l C L r,cy.: 
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33-38 CLOCK 9 -> 3 178 HALT 
39-46 RX 14 -> q 179 RESET 
47-48 CLOCK 14 ;..) 9 129-61-93 +VCC 
4':1-56 P.X 4 -> q 132-64-96 G r:our.J o 
57-58 C L 0 CJ<. 4 -> 9 I 
59-66 RX 8. -> g I 
6 7-6·8 CLOCK 8 -> 9 I 
69-76 TX 10 -> 15 I 
77-82 CLJCK 10 -> 15 I 
69-76 TX ·1 0 -> 5 I 
77-82 CLOCK 10 -> 5 I 
6 ') -7 6 TY 10 -> 7 I 
77-82 CLOCK 10 -> 7 I 
8::1-90 RX 15 -> 10 I 
91-92 CLOCK 1 5 -) 1!) I 

SOARD NC ~ - (PROCESSOR 11 12 13) 

SIDE A SI~E g 

PlNft FUNCTION PROCESSOR!:! I PHJ# ::::u~·'C T I 0 N PROC~SSIJP~ 

I 
1-8 DATA HJ 11 12 13 I 1-8 ?X <.3 -> 13 
9-14 CLOCK 11 12 13 I 9-10 CLOCK g -) 1 3 

15-'22 OATA OUT 11 12 13 111-18 ~X 14 -> 13 
23-28 OE 11 12 13 119-20 CLOCK 14 -> 1 3 

ZiJ-36 TX 11 -> 6 I 
37-38 CLOCK 11 -> 6 174 STATUS QUT 

39-46 RX ;, -) 11 175 SYNC JUT 

47-48 CLOCK 6 -) 11 176 SYNC I~. 

49-56 TX 12 -> 7 177 SYSTEf4 CLQC!<. 

57-60 CLOCK 12 -> 7 173 r'l\LT 
4CJ-56 TX 12 -> 1 5 179 RES~T 

57-60 CLOCK 12 -> 15 129-61-93 +VCC 
61-68 RX 7 -> 12 132-64-96 GPOUND 
69-70 CLOCK 7 -) 12 I I 

71-78 RX 1 5 -> 12 I 
79-80 CLCJCl<. 15 -> 1?. I 
81-88 TX 13 -) 8 I 
8':1-'32 CLOCK 13 -> g I 
81-88 TX 13 -> 14 I 
8':7-92 CLOCK 13 -> 14 I 

BOARD NQ ~ - CPRQCESS~D 14 15 18) 

S!OE A .~I 0 C: n, 

PIN# FUN C T I CJ ~~ PPOC::SSOP# IDINb F U f,J ( T I 0 1·! 

I 
1-8 DATA IN 14 1 5 174 ST.!ITUS GlJT 

9-12 CLCJCK 14 1 5 I 7 s s y fl( 'lUT 



Appenclix-E :-4 

13-20 DATA CJIJT 14 15 176 SYNC I~ 

21-24 OE 14 15 177 s v·s T E 1·1 CL'::CI< 
2:--32 TX 14 -> 9 I29-61-Q3 +VCC 
33-36 CLOCt< 14 -> 9 l32-64-'j6 GPOUW1 

25-32 TX 14 -> 13 I 
3::.;-36 CLOCK 14 -> 1 3 I 
37-44 RX 9 -> 14 I 
4S-46 CLJCK 9 -> 14 I 
47-54 PX 13 -> 14 I 
5S-56 CL:JCt<. 13 -> 14 I 
57-64 TX 1 5 -) 10 I 
6S-68 CLOCI< 15 -> 1 0 I 
57-64 TX 1 5 -> 12 I 
6.:--68 CLOCK 15 -> 12 I 
69-76 ~:X 10 -> 15 I 
77-78 CLOCK 10 -:-) 15 I 
7'-j-86 ~X 12 -> 15 I 
87-88 CLOCI<. 12 -> 15 I 

I 

CONTROL BOARD 

SI!JE ~ 

PlNit FUNC TIC ~J PROCESSOR# Pii'J# l=l.iNCT!ON P~oc:ssoR~ 

1-3 DATA OUT 47-54 DATil IN 
17-18 CLOCK. 1 63-64 CE 1 
1':1-20 CLOCK 4 65-66 Of: 7 

21-22 CLCJCK 7 67-68 Of 1 3 

23-24 CLOCK 10 69-70 Of 4 

25-26 CLOCK 13 71-72 Of. 10 

27-28 CLOCK 6 73-74 c,.. ,_ 11 

29-30 CLJCK 9 75-76 DE 2 

31-32 CLOCK 12 77-78 o: 8 

33-34 CLOCK 1 5 79-80 CE 14 

35-36 CLOCK 3 181-82 GE 5 

37-38 CLOCK 11 183-34' CE 6 

39-40 CLOO, 14 185-86 OF 12 

41-42 CLOCI< .,. I s 7.- 8 8 c: 3 '-

43-44 C L 0 C!<. 5 189-90 OE 9 
4;i-46 CLOCK 3 191-92 r--

'- c;· 1 5 

SIDE g 

1-6 STtlTUS IN 
7-12 SYNC IN 

13 S Y ~JC OUT 
l<t-19 SYSTEt1 CLOCK OIJTDUT rn PPCC~SSORS 
., .. 
.:.U RfS~:T TO OTHER g1AROS 
21 HALT TO OTHER oOAt;~D) 

27 -9V FOP Rj-232 RX 
2~-61-93 +VCC 5V POWE~ !=:)(;) ALL eDARCS 
3i-64-96 G q our~ o 
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