
Durham E-Theses

Design of microprocessor-based hardware for number

theoretic transform implementation

Shamim, Anwar Ahmed

How to cite:

Shamim, Anwar Ahmed (1983) Design of microprocessor-based hardware for number theoretic

transform implementation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7213/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7213/
 http://etheses.dur.ac.uk/7213/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

~(}'J CF MlffiCFROCESSOR-BASEO HARDWARE FOR

NUM3ER 11-ECRETIC TRANSFORM IMPLEMENTATION

by

Anwar Ahmed Shamim B.Sc., M.Sc.

The copyright of this thesis rests with the author.

No quotation from 'it should be published without

his prior written consent and information derived

from it should be acknowledged.

A thesis submitted in accordance with the regulations
for the degree of Doctor of Philosophy at the University
of Durham, Department of Applied Physics and Electronics. ;

1983

' -

Design of Microprocessor-Based Hardware for
Number Theoretic Transform Implementation

Anwar Ahmed Shamim

ABSTRACT

Number Theoretic Transforms (NTTs) are defined in a finite
ring of integers ZM' where M is the modulus. All the
arithmetic operations are carried out modulo M. NTTs are similar
in structure to DFTs, hence fast FFT type algorithms may be used
to compute NTTs efficiently. A major advantage of the NTT is
that it can be used to compute error free convolutions, unlike
the FFT it is not subject to round off and truncation errors.

In 1976 Winograd proposed a set of short length OFT
algorithms using a fewer number of multiplications and
approximately the same number of additions as the Cooley-Tukey
FFT algorithm. This saving is accomplished at the expense of
increased algorithm complexity. These short length OFT
algorithms may be combined to perform longer transforms.

The Winograd Fourier Transform Algorithm (WFTA) was
implemented on a TMS9900 microprocessor to compute NTTs. Since
multiplication conducted modulo M is very time consuming a
special purpose external hardware modular multiplier was
designed, constructed and interfaced with the TMS9900
microprocessor. This external hardware modular multiplier allowed
an improvement in the transform execution time.

Computation time may further be reduced by employing several
microprocessors. Taking advantage of the inherent parallelism of
the WFTA, a dedicated parallel microprocessor system was designed
and constructed to implement a 15-point WFTA in parallel.
Benchmark programs were written to choose a suitable
microprocessor for the parallel microprocessor system. A master
or a host microprocessor is used to control the parallel
microprocessor system and provides an interface to the outside
world. An analogue to digital (A/D) and a digital to analogue
(D/ A) converter allows real time digital signal processing.

-i-

AO<NOWLEDGEMENTS

I owe my unbound gratitude to Dr. B. J. Stanier for his

guidance, constructive criticism, invaluable suggestions and

kindly help throughout the period of this project.

I should like to thank Prof. G. G. Roberts for allowing me

to use the facilities of the Department of Applied Physics and

Electronics. I am grateful to my colleagues for valuable

discussions. Furthermore, I am also thankful to the members of

the workshop for providing the necessary and technical

assistance.

I should also like to thank the computer unit and the

library staff for their co-operation.

I greatly acknowledge the moral and financial support I

received from my parents, brothers, sisters, Mr. A. Khan and

family and H. Khan. I also extend my appreciation to

Prof. N. A. Khan and other friends for their moral support.

My special thanks are due to Dr. M. Ahmed and the South

Fields Trust, London for providing the financial support.

-i i-

Dedicated To My Affectionate Parents

Who Inspired Me To Higher Ideals Of Life

-iii-

ABSTRACT

ACKNOWLEDGEMENTS

a-IAPTER 1

Introduction

a-IAPTER 2

Elementary Number Theory and Number Theoretic Transforms

2.1 Introduction

2.2 Discrete Fourier Transform and the Convolution

2.3 Congruence

2.4 Chinese Remainder Theorem (CRT)

2.5 Groups, Rings, and Fields

2.6 Number Theoretic Transforms

2.6.1 Mersenne Number Transforms

2.6.2 Fermat Number Transforms

a-IAPTER 3

Multiplication Techniques For Microprocessors

3.1 Introduction

3.2 Clocked Multiplication Algorithms

3.2.1 Multiplication on a Microprocessor

3.2.2 Burk-Goldstine - Von-Neumann Method

3.2.3 Robertson's First Method

3.2.4 Robertson's Second Method

3.2.5 Booth's Algorithm

3.2.6 A Short Cut Multiplication Method

3.2. 7 Multiple Digit Multiplication Method

-iv-

3.3 Clockless Multiplication

3.3.1 Array or Parallel Multiplication

3.4 Read Only Memory (ROM) Multiplier

3.4.1 Direct ROM Multiplier

3.4.2 Quarter-Squares Lookup Table Multiplication

3.4.3 Multiplication Using Logarithms

3.5 Parallel Multiplier Chips

3.6 Modular Arithmetic on Microprocessor

3.6.1 Addition Modulo 65521

3.6.2 Subtraction Modulo 65521

3.6.3 Multiplication Modulo 65521

D-IAPTER 4

Implementation of the Winograd Fourier Transform Algorithm

4.1 Introduction

4.2 Computation of NTT using WFT A

4.2.1 Determination of the Constants for the WFT A

4.3 Architecture of the TMS9900 Microprocessor

4.4 Implementation on the Microprocessor

D-IAPTER 5

External Hardware Modular Multiplier

5.1 Introduction

5.2 Design and Implementation of an External Hardware

Modular Multiplier

5.2.1 Interfacing Considerations

5.2.2 Interfacing the Modular Multiplier with the

TMS9900 Microprocessor

-v-

5.3 Results

D-IAPTER 6

Multi Processor and Parallel Processor Systems

6.1 Introduction

6.2 System Organisation

6.2.1 Single Instruction Single Data (SISD) Machine

6.2.2 Single Instruction Multiple Data (SIMD) Machine

6.2.3 Multiple Instruction Multiple Data (MIMD) Machine

6.2.4 Multiple Instruction Single Data (MISD) Machine

6.3 Multi Processor Systems

6.3.1 Directly Coupled Multi Processor Systems

6.3.2 Indirectly Coupled Multi Processor Systems

6.4 Inter Processor Communication

6.4.1 Time-Shared Bus

6.4.2 Dedicated Link

6.5 Parallel Processor Systems

6.6 Array Processors

6. 7 Processor - Memory Interconnection

6.8 Computer Systems

6.8.1 Ring Structure

6.8.2 Star Link

6.8.3 Fully Connected Link

D-IAPTER 7

A Dedicated Parallel Microprocessor System

7.1 Introduction

7.2 Choice of a Microprocessor

-vi-

7.3 Architecture of the MC6809 Microprocessor

7 .3.1 Hardware and Software Interrupts

7 .3.2 Microprocessor Synchronisation

7.4 Inter Microprocessor Communication

7.5 Dual Microprocessor System

7.5.1 Merits and Demerits

7.6 Design and Implementation of the Dedicated Parallel

Microprocessor System

7 .6.1 System Architecture

7 .6.2 Design of the Control Microprocessor

7.6.3 Software of the Control Microprocessor

7 .6.4 Design of a Typical Slave Microprocessor

7.6.5 Software of the Slave Microprocessors

7 .6.6 Synchronisation of the Hardware and the Software

7.7 Transforms of Real Time Signals

7.8 Results

a-1APTER 8
Conclusion

Appendix-A

Modular Arithmetic Routines for the following

microprocessors.

TMS9900, MC6809, ZBO, 6502

32/16-bit Divide Routine for the MC6809

Appendix-8

Assembler Source Listing for a 15-point WFTA (TMS9900)

FORTRAN Source Listing for a 15-point WFTA

-vii-

Appendix-C

FORTH Source Listing for a 60-point WFTA

Appendix-0

Software of the Parallel Microprocessor System

Assembler Source listing for IS-point WFT A (MC6809)

Appendix-E

Backplane Wiring for the Parallel Microprocessor System

REFERENCES

-viii-

GiAPTER 1

Introduction

The aim of this work was to design hardware to facilitate

the implementation of the Winograd Fourier Transform Algorithm

(WFT A) to compute Number Theoretic Transforms (NTTs) on

microprocessors.

Microprocessors are easy to implement and provide cheap

integer processing power. In recent years there has been a major

breakthrough in the solid state technology, which is responsible

for providing highly reliable hardware.

Cooley and Tukey (B), described a fast and efficient method

to compute the Discrete Fourier Transform (OFT) via the Fast

Fourier Transform (FFT) algorithm (2). The FFT is subject to

truncation and round off errors, since it involves

multiplications with complex irrational roots of unity, which

cannot be represented accurately on a finite precision machine.

Number Theoretic Transforms on the other hand have a similar

structure to DFTs, and are defined in a finite ring of integers

Z M' where M is the modulus. All the arithmetic operations are

carried out modulo M. Fast FFT type algorithms may also be used

to compute NTTs without round off errors (9) - (15), (20), (80).

The results thus obtained are exact.

Winograd (3), (4), proposed short length OFT algorithms

which show improvement over the conventional FFT algorithm. The

~
1-1

WFT A requires fewer multiplications, and roughly the same number

of additions as the Cooley-Tukey FFT algorithm. In the FFT the

transform length is restricted to powers of 2, but in the WFTA

the transform length is the product of several mutually prime

factors. These mutually prime factors are chosen from the short

length (small-N) WFTA. Transform lengths from 2 to 5040 may be

implemented. Implementation of the WFT A requires some constants

to be precomputed and stored in the memory which requires more

memory than the comparable length FFT (51). The WFTA requires

less multiplications, but at the expense of increased algorithm

complexity and more data transfers (52).

Martin (5), (6), carried out a search for a suitable modulus

M for 16-bit arithmetic on the lines described by Bailey (53),

and found that M = 65521 is suitable for NTT implementation.

Agarwal and Burrus (9), have shown that the transform lengths are

subject to certain constraints.

1- N must divide O(M), where O(M) is greatest common divisor

(g.c.d) of the set of prime divisors (p. - 1) of M.
1

O(M) = g.c.d (p. - 1)
1

2- An element a of order N must exist such that

aN :: 1 mod M, a r '¢ 1 mod M, ¥- r < N.

3- N-l must exist in the ring ZM. If M is not prime,

-1 then N may or may not exist. N • N-l - 1 mod M.

1-2

4- N must be well factored for fast transform algorithms

to. exist.

5- To implement fast and simple arithmetic mod M, M and

a. must have simple binary representation.

No attempt has been made to compare the WFT A and the FFT nor

to derive any of the algorithms. Martin (5), have discussed

these topics in detail. Here we will emphasise more the hardware

design and implementation to compute NTT via WFT A. McClellan and

Rader (7), provide good references for the NTT and the WFTA.

In chapter 2 basic number theory and Number Theoretic

Transforms, and some fundamental concepts about rings, fields,

and modular arithmetic are described. A brief discussion about

Mersenne Number Transforms (MNTs) and Fermat Number Transforms

(FNT s) is also presented.

Chapter 3 describes different algorithms for signed and

unsigned multiplication suitable for microprocessors.

Multiplication using ROM lookup is also described, this method

provides a fast way of multiplying two numbers. However, the

applications may be limited since the size of the ROM increases

rapidly as the size of the input numbers increase. Fast

multiplier chips are now available which may replace several

discrete components. Finally 16-bit modular arithmetic

operations for a microprocessor are described.

1-3

Chapter 4 describes a step by step approach towards the

implementation of the WFTA to compute the NTT. The WFTA was

implemented on the TMS9900 microprocessor (54), (55), using

Assembler and FORTH (56), (57), languages. The WFTA was also

implemented on the MC6809 microprocessor (78), (79),. using

Assembler language, and in FORTRAN and Assembler on IBM mainframe

computers (370/168 and 370/4341).

The total transform execution time on a processor depends

upon the number of operations and the time required to execute

each operation. Ordinary microprocessors do not have hardware

multiplication, even microprocessors with hardware multiply

require a considerable amount of time for multiplication.

Modular arithmetic operations and in particular modular

multiplication, are very slow. Chapter 5 describes a special

purpose (16 x 16-bit) external hardware modular multiplier (mod

65521) interfaced with the TMS9900 microprocessor. This modular

multiplier behaves as an intelligent memory mapped peripheral.

We shall use the term modular for the results reduced modulo M.

This external modular multiplier uses multiplier chips and ROM

lookup techniques to generate the modular product. Finally

comparison of timings for the implementation of WFTA with and

without using the external hardware modular multiplier are

discussed.

Chapter 6 provides prerequisite information and describes

some of the basic concepts of parallel and multi processor

systems. In addition inter processor communication, array

processors and processor to memory interconnection is also

1-4

described.

The difficulties involved in the uni processor

implementation of the WFTA is that it requires more data

transfers and indexing in the memory to acquire data (52). Since

the WFTA exhibits parallelism in its structure, the possibility

of parallel implementation of the WFTA was investigated. Chapter

7 describes design and construction of a parallel microprocessor

system to implement a 15-point WFT A.

Benchmark programs were written to choose a suitable

microprocessor for the design of a parallel microprocessor

system. Motorola's MC6809 microprocessor gave an optimum choice

among several microprocessors. To investigate the principle of

data exchange between the two microprocessors, a two

microprocessor system (using MC6809) was designed and tested.

The TMS9900 microprocessor was used as a host processor.

Since the modular multiplication is the most time consuming

operation, the parallel microprocessor system was designed such

that each of the microprocessor is loaded equally during the

modular multiplication.

used to control the

A control or a master microprocessor is

parallel structure. The control

microprocessor provides communication between the parallel

microprocessor system and the outside world. Inter

microprocessor communication is through dedicated latches. The

system configuration is that of a master and slave, all the

input/output (1/0) data is through the master microprocessor.

1-5

The system design is described, and the timings for parallel

and uni processor implementation of the 15-point WFT A are

discussed. Finally a 15-point convolution was also implemented on

the parallel microprocessor system. The software development is

the bottleneck of the parallel microprocessor system.

It was found that the execution time of a 15-point WFTA on

the parallel microprocessor system is comparable with the

execution time on IBM mainframe computers.

Software routines are listed in appendix-A to appendix-D.

Appendix-E contains backplane wiring connections for the parallel

microprocessor system.

---- -- --- ---- -- -- ----- -~---

Fully documented program listings appearing in the

appendices A - D are available in a separate folder.

'---'----- ----------- ---------------------- -

1-6

D-fAPlER 2

Elementary Number Theory and Number Theoretic Transforms

2.1 Introduction

The Discrete Fourier Transform (OFT) of a sequence x(n) is

given by:

N-1

X(k) = L x(n) wnk (2.1)

n=O

where k = 0,1,2, ••• ,N-l. The Inverse Discrete Fourier Transform

(lOFT) is given by:

N-1

x(n) = N-1 L X(k) w-nk (2.2)

k=O

-j2Tt/N . r, where n = 0,1,2, ••• ,N-1, and W = e , J = ,J -1.

W N (usually written as W) is the principal root of unity such

that WN = 1 mod N, where N is the sequence length.

2 Direct computation of equation (2.1) requires N complex

operations. A complex operation is a multiplication followed by

an addition. On a digital computer multiplication of two numbers

requires more computation time than the addition of two numbers.

The multiplication time depends entirely on the software and the

hardware available. To improve the efficiency and to compute

equation (2.1) faster, the number of multiplications must be

reduced. Various algorithms are available which are more

efficient than the direct computation of equation (2.1).

2-1

In 1965 Cooley and Tukey (8), presented their FFT (Fast

Fourier Transform) algorithm. This algorithm efficiently

computes DFT given by equation (2.1). The number of complex

operations are 2 reduced from N to Nlog2N. This fractional

saving of N/log 2 N becomes quite appreciable for sequence

lengths greater than N = 32. It is required by the algorithm for

m N to be highly composite and a power of 2, such that N = 2 ,

where m is a positive integer. Reference (2), provides

theoretical development of the FFT algorithm in detail.

The Fourier Transforms are complex in general. The

computation of equation (2.1) using the FFT requires

multiplications with complex irrational roots of unity. These

irrational roots cannot be represented accurately on a finite

precision machine. The FFT is subject to cumulative roundoff and

truncation errors. This gives rise to noise at the output of

digital signal processing system, thus deteriorating the

signal-to-noise ratio.

2.2 Discrete Fourier Transform and the Convolution

A common problem in digital signal processing is the

implementation of convolution which is defined by:

N-1

y(n) = L x(i) h(n-i) (2.3)

i=O

where n = 0,1,2, ••• ,N-1, y(n) is the convolution of two sequences

x(n) and h(n). Direct implementation of convolution by using

2-2

equation (2.3) is not efficient. However, the Discrete Fourier

Transform (OFT) can be used to compute convolution efficiently.

Certain transform possess the Cyclic Convolution Property (CCP),

which may be represented as follows:

T(y) = T(h) • T(x) (2.4)

where '.' denotes pointwise multiplication. The inverse of

equation (2.4) is given by:

(2.5)

So a cyclic (circular) convolution may be performed by taking the

inverse transform (T-1) of the product of the transforms of the

two sequences to be convolved.

Let X(k) and H(k) be the Fourier transforms of the sequences

x(i) and h(i) respectively. Then from equation (2.5) we have:

N-1

y(n) = N-1 L H(k) X(k) w-nk (2.6)

k=O

Substituting value of X(k) in equation (2.6) we get,

N-1 N-1

y(n) = N-1 L H(k) L x(i) wik w-nk

k=O i=O

2-3

N-1 N-1

= L x(i) N-1 L H(k) w-k(n-i)

i=O k=O

N-1

= L x(i) h(n-i)

i=O

To obtain an N point circular convolution of the sequence

h(n-i), if the sequence length is less than N it must be

periodically extended to have a period of N. Hence

N-1

y(n) = L x(i) h(n-i mod N) (2.7)

i=O

= x(i) * h(i)

where * denotes convolution.

Equation (2. 7) shows circular convolution, it is so called

since it evaluates y(n) as if the input sequence were

periodically extended outside the range [o to N-1] • This may

also be stated as that for cyclic convolution the indices are

evaluated mod N. If zeros are appended to the sequence so as to

avoid aliasing or overlapping, the cyclic convolution gives the

same results as conventional convolution. Convolution computed

via equation (2.5) is -computationally efficient when the sequence

length is highly composite, so that FFT type algorithms can be

applied to it.

2-4

2.3 Congruence

Consider two elements a,b of a set. Then for b a positive

integer, if b is a factor of a we can write

a = qb + r for O<r<q (2.8)

where q represents the quotient and r the remainder. Equation

(2.8) basically represents a division operation. If the

remainder r = 0 then we say that b divides a and is represented

as b I a. For all integers in the set there are at least two

divisors for each element, either II a or a I a. This condition

indicates that a is a prime, with no divisors except 1 and

itself. If r = 0 then we say that a is composite a=qb. Either q

or b or both can be prime or composite. For q and b composite we

can further factorise until we get prime factor factorisation

which is written as:

where p.
1

a = pi 1 n r.
is a prime and r. . 1 is an integer exponent. In

equation (2.8) if b is a fixed number then it is called the

modulus. Then for infinitely large number of values of a we can

have the same value of the remainder r. All these values of a

which give the same value of r are said to be congruent and are

denoted by =· The remainder r is called the residue mod b, or

simply the residue. For example, let b = 5. Then 7 = 2 mod 5,

12 = 2 mod 5, and 17 = 2 mod 5. Numbers 7, 12, 17 are congruent

mod 5. In general we can write

a = r mod b

or b I (a-r)

also if a = 0 mod b then b I a. Some notations also use angle

2-5

brackets to represent the modulus, for example:

<12> 5 and <13 + 8> 5

The following conditions hold for congruence

<I + m> b = <<I> b + <m> b> b

<I - m> b = <<I> b - <m> b> b

<Im> b = <<I> b <m> b> b

The largest number which can divide a and b is called the

greatest common divisor (g.c.d). If the two numbers a and b are

mutually prime i.e. they have no common factors then they are

represented as (a,b) = 1, or a and b have a common factor of 1,

for example (3,4) = 1, and (3,5) = 1, etc. However, if there is a

. common divisor then (8,10) = 2.

2.4 Dlinese Remainder Theorem (CRT)

If the residue is known for several mutually prime moduli

then with the help of the Chinese Remainder Theorem (CRT) these

residues can be combined to give the result modulo the product of

all the mutually prime factors.

Let a set of simultaneous congruences be given for which

each of the moduli m. are relatively prime.
1

is determined through linear congruences.

the set of congruences is given by:

For each i, bi

The solution of

(2.9)

where Y :! ai mod mi, and composite modulus M is given by:

M = IT mi (2.10)

i

2-6

provided that m. are relatively prime, b. are defined such
1 1

that:

b. (M/m.) = 1 mod m.
1 1 1

For example, let x = 2 mod 3 , x = 2 mod 5, x = 4 mod 7. To

solve these simultaneous congruences first we get the product of

mutually prime factors according to (2.10). Hence

M = 3 • 5 • 7 = 105

Now from (2.9)

X = 2 b1 105/3 + 2 b2 105/5 + 4 b3 105/7

= 2 • 35 • b1 + 2 • 21 • b2 + 4 • 15 • b3

Now to determine b1, b2, b3 such that

35 b1 - 1 mod 3 ===> b1 = 2

21 b2 - 1 mod 5 ===> b2 = 1

15 b3 = 1 mod 7 ===> b3 = 1

substitution of these values in (2.11) gives

(2.11)

x = 70 • 2 + 42 • 1 + 60 • 1 = 242 - 32 mod 105

2.5 Groups, Rings and Fields

Recall from the previous section that

a = b + Me (2.12)

where b is the remainder, c is an integer (quotient) and M the

modulus. Then (2.12) may be rewritten as

a = b mod M 41- a,b E [1, M-~
In a finite set [a,b,c, ••• ,M-1] of integers all the elements are

congruent to some integer called the modulus M. Such a set is

denoted as ZM. Let there be an operation * defined in ZM,

then the following conditions hold.

2-7

1- Closure : a * b 4f a,b E ZM

2- Associative : (a * b) * c = a * (b * c) ¥ a,b,c E ZM

3- Identity element : a * I = I * a = a * a,I E: ZM

4- Inverse element : a * a -1 I -1
ZM = ~ a,a E:

5- Commutative : a * b = b * a ¥ a,b E ZM

Where I represents an identity element and a -1 is the

inverse of a. If the operation * is defined as ordinary addition

then property 4 represents subtraction, and for ordinary

multiplication it represents division.

If these properties hold then the set of integers ZM is

called a group under the operation *· A group which obeys the

commutative law is called an abelian group or a commutative

group. A group is called a cyclic group if all the elements of

the group can be generated from a single element, this element is

called a generating function. For example 1 is a generating

function under addition mod M. For a group ZM under ordinary

addition '+' and ordinary multiplication '.' operations if the

following distributive laws hold,

a • (b + c) = a • b + a • c

a • (b • c) = (a • b) • c

(a + b) • c = a • c + b • c

-¥ a,b,c ~ ZM' then the group is called a ring.

Consider some examples of arithmetic mod 11, the elements in

the ring ZM are [o,I,Z, ... ,IO]·

1- Addition : 5 + 8 = 13 = 2 mod 11

2- Negation : -3 = 11 + (-3) = 8 mod 11

2-8

3- Subtraction : 3 - 7 = 3 + (11 - 7) = 3 + 4 = 7 mod 11

4- Multiplication : 5 • 4 = 20 = 9 mod 11

5- Multiplicative inverse : 6 • 2 = 12 = 1 mod 11

6 and 2 are multiplicative inverses of each other

-1 -1 or 6 = 2 mod 11 or 2 = 6 mod 11

6- Division : alb -1 is defined if and only if b exists,

I - -1 therefore, a b = a • b mod M

consider 912 = 9 • 6 = 54 = 10 mod 11

from property 5, 6 and 2 are inverses of each other.

The element 2 is an integer root of unity of order 10,

2
5 = -1 mod 11

2
10 = 1 mod 11

2.6 Number Theoretic Transforms

One group of transforms having the CCP are those with DFT

like structure. Let

X(k) = T x(n), so x(n) = T-1 X(k)

N-1

X(k) = L x(n) a nk (2.13)

n=O

where k = 0,1,2, ••• ,N-1.

The inverse is given by:

N-1

x(n) = N-1 L X(k) a -nk (2.13a)

k=O

Where a is an element of order N, and plays the same role as W in

equation (2.1). Where N is the least positive integer such that

2-9

aN :: 1 mod M, a ,N E [a, M-1} NTTs use modular arithmetic

and possess the CCP.

Euler's function or Euler's totient function is defined as

the number of integers in the ring ZM which are relatively

prime to a given modulus M. This function is represented by

¢CM). If M is composite then ,¢(M)<M, but if M is prime then the

Euler's function (lJ(M)= M-1, for example Jl1(6) = 2, and 0(7) = 6.

,¢(M) = M(1-1/p1)(1-1/p2) ••• (1-1/pr)

where p1,p2, ••• ,pr are different primes dividing M.

Euler's theorem states that for any non zero element a in

the ring ZM' which is relatively prime to M, (a,M) = 1, the

following congruence holds

~(M) - 1 d. M a = mo

If M is prime then O(M) = M-1 and the Euler's theorem

reduces to Fermat's theorem given by:

M-1
a = 1 mod M

The necessary and sufficient condition for the NTT with the

CCP to exist is that N J O(M), where O(M) is the greatest common

divisor (g.c.d) given by:

O(M) = g.c.d (p1 - 1)(p2 - 1) ••• (pr - 1) (2.14)

Thus the maximum transform length N = O(M). max

When the transforms in equation (2.13) and (2.13a) are

defined in a finite ring of integers with the CCP, they are known

as Number Theoretic Transforms (NTT) (7), (9) - (15), (80). In

NTTs all the arithmetic operations are conducted mod M. There

2-10

are several constraints between the modulus M and the transform

length N (9). Since the NTTs are similar in structure to the

DFT s any algorithm which applies to the DFT can be applied to the

NTT. In other words an NTT is a DFT with the CCP defined in a

finite ring of integers under addition and multiplication. Such

a ring is denoted by ZM. If the modulus M is a composite

number then the multiplicative inverses of all the elements do

not exist. Hence ZM is a field if and only if M is prime. If a

is of the order of ¢(M), (where ¢(M) is the Euler's totient

function), then a is called the primitive root or the generating

function, the non-zero elements of ZM can be generated by the

powers of the primitive root.

The results obtained by NTTs are exact and are not subject

to cumulative round off or truncation errors. For computing

convolutions using NTTs, the choice of the modulus M has to be

made first, then the corresponding N and a may be evaluated.

In a ring of integers ZM' integers may be represented

unambiguously if their absolute value is less than M/2. If the

two sequences to be· convolved x(n) and h(n) are scaled such that

y(n) never exceeds M/2, then the convolution in the ring of

integers mod M gives the same results as normal arithmetic. In

most practical applications the impulse response of a digital

system h(n) and the peak amplitude of the input x(n) signal is

usually known.

For efficient implementation of convolution using NTTs the

algorithm should be computationally efficient. Also N should be

highly composite and the modulus large enough to provide a large

2-11

dynamic range of numbers. By suitable choice of N, M and a. it is

possible to define NTTs which can be computed efficiently. If N

is chosen to be a power of 2 the efficiency of the FFT algorithm

can be applied for computation. Binary representation of a.

should also be simple, such that the multiplication could be

performed with ease. For a. = 2 or a power of 2 the

multiplications are reduced to bit shifts and add.

Discrete convolution may also be obtained by either Mersenne

Number Transform (MNT) or Fermat Number Transform (FNT). These

transforms are special cases of Number Theoretic Transforms. The

multiplications in MNT and FNT are reduced to circular bit shifts

within the word and add (12), (13), (14), (24). On a digital

computer most of the computation time is taken by the

multiplication. The situation is even worse on a microprocessor

because ordinary microprocessors do not have hardware

multipliers. Software implementation of the modular

multiplication requires more time. External hardware modular

multiplier may be implemented to facilitate modular

multiplication. So transforms which do not require

multiplications at all such as the MNT and FNT are

computationally more efficient.

2.6.1 Mersenne Number Transforms

If the modulus is chosen to be a Mersenne number (M),
p

then the transforms defined in a ring with CCP are called

Mersenne Number Transforms (MNT). The mersenne numbers are

defined as follows:

2-12

M = 2P - 1
p

where p is prime. Mersenne numbers are of interest only if p is

prime.

Rader (12), have described method for computing circular

convolution using Mersenne Number Transforms. The arithmetic to

compute Mersenne transform requires only additions and circular

shifts of bits within the word. Circular convolution is computed

in a similar fashion as given by equation (2.5). Mersenne Number

transforms provide error free convolution, since quantisation and

truncation have no meaning in the field of integers. MNTs are

defined in a field under addition and multiplication, also the

associative, commutative and distributive laws hold, except that

division is not defined therefore some numbers do not have

multiplicative inverses mod M , unless M is prime.
p p

Mersenne number transforms are defined in a set of p

integers.

N-1

X(k) = L x(n) 2nk

n=D

where k = D,1,2, ••• ,p-1

mod M
p

· Let q be defined as inverse of p such that

q = Mp - (Mp -1)/p

we have solution

(pq) = 1 mod M
p

if (M - 1)/p is an integer
p

but

since

M - 1 = 2P - 2 p

P I 2P - 2.

2-13

(2.15)

It is a special case of Fermat's theorem which states that, for

every prime p and every integer q, pI qP - q, this proves that

is an integer. Since

pq = (p-1) M + 1 = 1
p

thus the inverse transform is given by:

N-1

x(n) = q [

k=O

where n = 0,1,2, ••• ,p-1.

X(k) 2-nk mod M
p

(2.16)

To ease the computations 2P (p is prime) may provide a

suitable modulus, but the transform length is restricted to 2p.

As 2p is not highly composite, it is not of much interest.

Consider modulus 2k + 1, the maximum transform length is 2

since 3 / 2k + 1, hence k must be even (k = pq a composite

number). The other choice for the modulus is 2P - 1, where p is

prime, 2 represents root of unity. This allows addition to be

performed by simple 1s complement add. Multiplication mod M
p

is done by forming 2 p-bit product of two words, and adding p

least significant bits (1s complement addition). However,

multiplication by 2k mod M is quite simple to implement,
p

requiring bit rotation in a p-bit word. The same is true for the

inverse transform except that the results must be multiplied by

the inverse q.

2-14

2.6.2 Fermat Number ·Transforms

If the modulus is chosen to be a Fermat number, then the

transform is called a Fermat Number Transform (FNT). Fermat

numbers are defined as:

b
M = Ft = 2 + 1

t where b = 2 , t = 0,1,2, •••

(2.17)

Fermat numbers F
0

- F 4 are prime and .F 5 upwards are

· composite. Then for FNT to exist

N I O(F t)

O(F t) = 2b = N max

The largest possible transform length in this case is

m <. b

If a = 2 the FNT can be computed efficiently. The FNT of a

sequence is given by:

N-1

X(k) = L x(n) a nk mod Ft

n=D

where k = 0,1,2, ••• ,N-1, and inverse is given by:

N-1

x(n) = N-1 L X(k) a -nk mod F t

k=O

(2.18)

(2.19)

where n = 0,1,2, ••• ,N-1, and N is a power of 2, and U is the Nth

root of unity, i.e. a N -; 1 mod F t• In case of the FNT the

multiplication is equivalent to bit shifts and add.

One of the constraints in the pr.actical implementation of

the FNT is that the wordlength is defined by the transform length

(13). For a general Ft (D4) the maximum transform length is

2-15

.,

given by N = 2t+2• Since a 2 ~ 2 mod Ft' a : JZ: the

transform length N = 4 x wordlength. For example arithmetic mod

F 2 provides us with 62 - 2 mod 17, 6 = J2 mod •17.

Equation (2.18) can be computed efficiently using FFT type

algorithm. In FNT multiplication is equivalent to simple binary

word shift followed by subtraction. Leibowitz (14), have used

slightly different approach for performing modular arithmetic mod
~

F t• In the Agarwal and Burrus (13), method problems arise due

to quantisation when b-bits are used for modular arithmetic.

This is due to the fact that 2b = -1, hence when -1 is

encountered it is either rounded to 0 or 2. This introduces some

quantisation error. The method described by Leibowitz (14), uses

(b+1)-bits, the extra bit is only used to represent D.

McClellan (15), have described hardware to implement the

FNT. A different number representation is used in which the bits

are weighted +1, -1 and not as 0, 1 as in conventional binary

representation.

2-16

GiAPTER 3

Multiplication Techniques for Microprocessors

3.1 Introduction

We have seen in the previous chapter that the Number

Theoretic Transforms (NTTs) are defined in a finite ring of

integers ZM. NTTs provide error free convolution (9), (12),

(13). Since in the ring all the numbers are defined precisely, so

there is no ambiguity in their representation on a digital

computer. In contrast floating point numbers cannot be

represented accurately on a digital computer, and floating point

arithmetic is subject to roundoff and truncation errors.

Ordinary microprocessors are integer processing machines and

are available at much lower prices than the floating point

arithmetic processors. A microprocessor provides cheap integer

processing power. By appropriately manipulating the carry bit in

the condition code register, the microprocessor is capable of

performing multi-precision arithmetic, for example an 8-bit

microprocessor can perform 16-bit arithmetic operations. It

seems logical to investigate the possibilities for implementing

NTTs on microprocessors (5), (6). In many microprocessors no

hardware multiplier is available since it requires more hardware

and chip area. When a hardware multiplier is not available

alternative methods may be employed to perform the multiplication

in software or by implementing an external hardware multiplier

3-1

(18), (31), (41).

For real time digital signal

multiplication must be carried

processing applications,

out efficiently. The

multiplication speed can be increased by reducing the total

number of additions (of partial products) or by performing high

speed addition. Carry Save Adders (CSA) or Carry Look Ahead

(CLA) may be used to reduce the carry propagation delay instead

of conventional Carry Propagate Adders (CPA) (16), (17), (23).

3.2 Clocked Multiplication Algorithms

We can classify multiplication in different ways

i.e. serial, parallel, unsigned, signed (twos complement). A

brief outline of different algorithms for binary multiplication

is presented.

3.2.1 Multiplication on a Microprocessor

The simplest form of binary multiplication is multiplication

by two or powers of two. This is analogous to multiplication by

ten or powers of ten (considering integer arithmetic) in the

decimal number system. Multiplication by ten is accomplished by

appending a number of zeros equal to the power of ten towards the

least significant digit. Similarly in the binary number system,

multiplication by two is accomplished by shifting the binary word

towards the most significant bit position and filling the vacated

places by zeros. The number of shifts is equal to the power of

two. Overflow conditions must be detected and dealt with

accordingly. It may be mentioned here that division by two in the

3-2

binary number system is equivalent to shifting the binary word a

number of positions towards the low order significant bits. This

is analogous to shifting of the decimal point in the decimal

number system towards the high order digit position. However, in

the binary number system if the least significant hit was a one

prior to division by two, then the result is subject to

truncation. This may be circumvented by rounding the binary word

prior to shifting, this is done by adding a one to the least

significant bit irrespective of the bit value.

In practice it is quite uncommon to encounter

multiplications by two or a power of two. Hence some other

method must be devised and developed for the implementation of

multiplication on a microprocessor.

The most commonly used method to perform multiplication on

the microprocessor is the shift and add algorithm. The

microprocessor checks the bits in the multiplier one by one and

if a one is encountered the multiplicand is added to the partial

product. After addition the partial product is shifted towards

the least significant bits. If a zero is encountered then no

addition takes place and the partial product is simply shifted

towards low order bits, which is equivalent to shifting of

multiplicand towards the most significant bit position (28).

This method is lengthy and quite inefficient for large numbers.

If subtract instruction is available then an alternative method

may be used. For example a string of ones in the multiplier can

be reduced to subtract for the first 1 encountered, shift for

each subsequent 1 and addition for the first 0 encountered. A

3-3

multiplication by 14 (1ll0) may be reduced as follows.

14 = 23
+ 22

+ 21

= 24 - 21

= 10000 - 10

Since the multiplication time increases with the number of

multiplier bits, the above mentioned method may produce results

faster than the shift and add algorithm. This algorithm may also

be implemented externally in hardware (17), (18).

3.2.2 Burk-Goldstine - Von-Neumann Method

This method was developed for twos complement multiplication

(21). In this method if the multiplier and the multiplicand are

positive no correction of the final result is required. However,

if any of the operands is negative (twos complement) then

correction must be applied to the final result. This step is

necessary since in the twos complement number the sign is

embedded in the number itself. This algorithm generates the

product in the following manner.

Let X, y be the multiplicand and the multiplier

respectively, where

* X = -xo + X

* (3.1) Y = -yo + y

* * -xo and -yo represent the sign bit and X and y give true

value of the numbers. For number representation see Chu (21).

The product is obtained as follows

* * X Y = (X + x 0
) (Y + y 0)

3-4

To obtain the correct answer -(x 0 Y + y0 X + x0 y0
) must be added to

the final product, such that

* * X Y =X Y

If one of the numbers is positive then either -x0 Y or -y0 X have

to be added.

3.2.3 Robertson's First Method

This method multiplies a signed number X with an unsigned

* number Y = Y. When the multiplier is negative, correction

term -y 0 X must be added. No correction is required when the

multiplicand is negative (21).

3.2.4 Robertson's Second Method

In this method if the multiplier is negative, then the

product of -X and -Y is calculated which yields a positive

result, then no correction is required. But if Y = -1 then the

result is not correct. The value of Y must be restricted such

that -1 < Y < 1 (21).

Comparing the two methods, in the first method if the

multiplier is negative then it ·needs correction, but in the

second method no correction is required. The hardware only needs

to sense the sign bit y0 of the multiplier and to complement the

multiplicand X.

3-5

3.2.5 Booth's Algorithm

Booth's algorithm is quite extensively used where serial,

signed twos complement multiplication has to be implemented (20),

(21), (28), (35), (40), (43), (46). This method has an advantage

over the previous methods that no prior knowledge of the sign and

no correction of the result is required at the end. Also the

product is independent of the sign of the multiplier and the

multiplicand. Let the multiplier and multiplicand be represented

as.

n n-1 ° X = -x 2 + x
1

2 •••• + X 0 2
n n-

In this method two consecutive bits y. and y. 1 of the
1 ·-

multiplier are examined simultaneously, starting from the least

significant bit. Three possible conditions can arise for y.
. 1

and y. 1 1-

i) if y., y. 1 are 01, then the multiplicand is added to the
1 1-

partial product. After addition the partial product is shifted

by one bit towards the least significant bit position.

ii) if y., y.
1

. are 10, then the multiplicand is subtracted
1 . 1-

from the partial product and the partial product is

shifted one bit towards the least significant bit position.

iii) if y ., y. 1 are 00 or 11, then no addition or subtraction
1 1-

takes place. However, the partial product is shifted one

bit position towards the least significant bit.

3-6

3.2.6 A Short Cut Multiplication Method

This method involves detection of isolated bits ones or

zeroes. If a sequence of ones are detected then multiple addition

of the multiplicand into the partial product takes place.

Otherwise multiple shifts are performed on the partial product.

Additional hardware may be required to detect the sequence of

ones or zeroes. For example, if the multiplier is 01000100, then

there are only two additions of 2
6

and 22• Worst case would

be if the multiplier had alternating ones and zeroes.

3.2. 7 Multiple Digit Multiplication Method

This algorithm uses the method of repeated additions of the

multiplicand to the partial product. However, there is a subtle

difference from the method described previously (Booth's

algorithm). In this method two consecutive bits of the multiplier

are checked simultaneously. The following four different

conditions can arise.

i) if y., y. 1 are 00, then no addition takes place
1 I-

ii) if y., y. 1 are 01, then the multiplicand is added into
1 1-

the partial product.

iii) if y., y. 1 are 10, then twice the multiplicand is added
1 1-

into the partial product.

iv) if y., y. 1 are 11, then three times the multiplicand is
. 1 1-

added into the partial product.

Since two consecutive bits are considered only once, the

total number of addition steps are thus reduced and hence there

is an overall improvement in the speed. It may be noted that the

3-7

partial product is shifted two bit positions instead of one after

the addition of the multiplicand into the partial product.

Parasuraman (18), have described a variation in this method

by inspecting three bits at a time and applying correction.

Harman (19), have described a possible method to increase the

multiplication speed by examining the number of ones in the

multiplier and the multiplicand. The operand which has the least

number of ones is chosen as the multiplier. This method may not

find a place in practical applications.

3.3 Clockless Multiplication

All the different techniques described above use clock

signals to generate the shift and the add pulses. Now we

consider some algorithms for clockless multiplication which are

much faster than the methods described before. Clockless

circuits are also referred to as combinatorial circuits, whose

outputs entirely depend upon the current input values.

3.3.1 Array or Parallel Multiplication

This method is generally used when high speed multiplication

is to be performed. A 11 the bits of the multiplier and

multiplicand are fed simultaneously into an array of logic gates

and full adders. No storage of partial or intermediate products

is required. Chu (21), have described a simultaneous multiplier

in which the two operands are fed into a two dimensional array

structure of logic gates and full adders.

3-8

Rabiner and Gold (20), have also discussed a fast parallel

multiplier which consists of a two dimensional array of 1-bit

adders. The total multiplication time is the sum of the settling

time and the propagation delay of the logic ·used, after the

operands are fed into the input. The unit cell is shown in

figure (3.1a). These basic cells are cascaded to give a parallel

multiplier structure. Figure (3.1b) shows a 3 x 3-bit parallel

array multiplier. This arrangement can be extended to an n x

n-bit parallel multiplier. A finite amount of time is required

for the carry to propagate through different stages of the

multiplier. The partial products can be generated as shown in

figure (3.2). A problem arises when the partial products have to

be added. For small numbers the conventional ripple carry adder

(CPA) may be used to add the partial products, but for larger

numbers a CLA (Carry Look Ahead) or a CSA (Carry Save Adder) may

be used (22), (23). Davies and Fung (31), and Bate and Burkowski

(33), have described the interfacing of a high speed

combinational array multiplier to a microprocessor.

3.4 Read Only Memory (ROM) Multiplier

With the availability of cheap and fast ROMs for storing

information lookup techniques may be employed to perform

arithmetic operations for a small range of numbers (18), (26),

(27), (28). The ROM is programmed such that the products are

stored in it in an appropriate manner. The address lines are

used as input, and the product is obtained on the data bus. This

method is very fast since the output from the ROM entirely

depends upon the access time of the ROM and may be of the order

3-9

P5

SUM INPUTS

CARRY OUT CARRY IN

SUM OUTPUT

Figure 3.la: Unit cell O-bit adder).

0

P4 P3

Figure 3.lb: 3 x 3 Parallel array multiplier by combininq unit
cells.

XO.YO

PO

YO. Yl Y2 Y3

XO.YO . XO.Y1 XO.Y2 XOY3

X1

X1.YO X1.Y1 X1.Y2 X1.Y 3

X2.YO X2.Y1 X2.Y2 X2.Y3

X3.YO. X3.Y1 X3Y2 X3.Y3

Figure 3.2: Arrangement for generating partial products.

of tens of nanoseconds. The ROM lookup technique for

multiplication can be used in variety of ways some of which are

described below.

3.4.1 Direct ROM Multiplier

The multiplier and multiplicand are appropriately connected

to the address bus of the ROM. The product of the two numbers,

which is stored at this address is then obtained directly.

Figure (3.3) shows an arrangement for a simple ROM multiplier.

The disadvantage is that if the numbers are large then this

method may become impractical due to complexity, size and cost.

3.4.2 Quarter-Squares Lookup Table Multiplication

Let X and V be the two n-bit numbers to be multiplied. Then

the product is obtained in the following manner.

XV = (X + V) 2
- (X - V) 2

4

XV = (X + V) 2
- (X - V) 2

4 4

(3.1)

(3.2)

(3.3)

Squares of the sum and difference of the two numbers are

stored in separate ROMs. Sum and 8ifference is obtained by

conventional method using add«;!r. Figure (3.4) shows an

arrangement for such a multiplier.

3-10

X

y

X
y

•

X

y ---1

ROM
TABLE XV

Figure 3.3: Direct ROM multiplier.

ROM
ADDER X+ y SQUARE

TABLE

ROM
ADDER X-Y SQUARE

TABLE

ADDER t---"""'1 + 4 t---XY

Figure 3.4: Quarter-squares lookup table multiplication.

ROM LOG LOGX X TABLE
ROM + LOGX•LOGY

ADDER ANTILOG

ROM LOG
TABLE

y TABLE
LOGY

Fiqure 3.5: Multiplication usinq loqr1rithrns.

XY

In equation (3.1) the product is obtained by dividing the

difference of the output of ROM squarer by 4. In equation (3.2)

the division by 2 is accomplished before feeding the sum and

difference to the ROM square table. This sometimes introduces

truncation errors. Equation (3.3) is equivalent to equation

(3.1) and gives the same results (26).

For X and Y even or odd we have X = 2m and Y = 2n or

X = 2m + 1 and Y = 2n + 1 respectively. If X and Y are even or

odd equations (3.1) and (3.3) are equivalent, but equation (3.2)

produces truncation errors.

For example, if X is even and Y is odd, then X=2m, Y=2n+1,

substituting these in equation (3.3) we get:

2m(2n+1) = (2m + 2n + 1)2

4
- (2m - 2n - 1)2

4

= (m+n) 2 + (m+n) + ! - (m-n) 2
- (m-n) - !

= (m+n) 2 + (m+n) - (m-n) 2
- (m-n)

= 4mn + 2m (3.4)

Considering the case with equation (3.2), we get:

= 4mn

1: XV (3.5)

Equation (3.5) shows truncation error of 2m. Davies (28),

have described implementation of this method directly on the zao

microprocessor in software.

3-11

Johnson (27), have described an improved ROM lookup method.

Partial products are stored in separate ROMS and the lookup

results are added appropriately. Product time depends upon the

access time of the ROMs and the carry propagation delay of the

adders. Parasuraman (18), have also described lookup method for

multiplication.

3.4.3 Multiplication Using Logarithms

Brubaker and Becker (25), have described another approach to

binary multiplication. This method employs logarithm and

antilogarithm tables stored in ROMs. The product of two numbers

are obtained in the following manner.

XV = antilog (log X + log Y)

' This method introduces errors due to truncation and

rounding. A disadvantage in this method is that only the product

of positive numbers can be directly obtained (since the logarithm

of a negative number is undefined). However, the sign of the

product can be generated externally if required. Figure (3.5)

shows an arrangement for the logarithmic multiplier. The

multiplication time is twice the access time of the ROM.

3.5 Parallel Multipliers Chips

Parallel multiplication can be achieved using discrete

components described. However, VLSI technology now allows the

integration of a complete n x n-bit multiplier on a single chip.

These chips are easy to interface with a general purpose

microprocessor (18), (31), (34), (35), (36), (37), (38), (39),

3-12

(41), (42), (44). Usually these multiplier chips can be cascaded

so as to allow multiplication of arbitrary length numbers.

The methods discussed previously use twos complement

multiplication with discrete components. However, in VLSI chips

a facility may be provided to perform signed or unsigned

multiplication, rounding etc.

Bywater (16), Lewin (17), Rabiner and Gold (20), Chu (21),

Hayes (22), Flores (45), Booth and Booth (46), Abd-alla and

Meltzer (47), are also suggested for further reading.

3.6 Modular Arithmetic on Microprocessor

Modular arithmetic operations can be implemented on any

microprocessor with unsigned compare instructions. Some

microprocessors may perform these arithmetic operations more

efficiently and faster than the others. This depends upon the

clock frequency, number of accesses to the memory to fetch the

operands and the number of CPU registers available. If the CPU

has enough .registers to hold the operands and the intermediate or

partial products, then the total number of memory accesses are

reduced (during the multiplication), which will produce faster

results.

Modular arithmetic routines were written for several

microprocessors. Results of the routines are -shown in tables

(3.1) to (3.3). Appendix-A contains assembler source listings of

these modular arithmetic routines. Note that each of the

microprocessor has a different clock frequency. Renold (48),

3-13

Table .3.1: Results of benchmark programs for modular addition.

Clock Microprocessor Number of Number of Instr: Clock Cycles Price
MHz (No. of bits) Program Bytes Executed (Time)Jsec)

3 TMS9900 (16) 36 8 88 (29.3) so.o
Texas Instr. Ltd

2 M650Z (8) 42 22 74 (37.0) 13. 0
I MOS Technology

1 M6809 (8) 20 8 40 (40. 0) 13.0
Motorola

8 8 X 300 (8) 76 26 52 (6.50) 36.0
Signetics

4 zao (8) 36 14 75 (18.74) 11. 0
Zilog

COP402 (4)
• 1 2 5 National 20 5 108 216 (864.0) 4.80

Semiconductors
.._________

·---------·-

Table 3.2: Results of benchmark progr~ms for modular subtraction.

Clock Microprocessor Number of Number of Instr. Clock Cycles Price
MHz (No. of bits) Pro']ram Bytes Executed (Time }Jsec)

3 TM$3900 (16) 24 8 88 (29.3) 50.0
Tex~s Ins tr. Ltd

2 M6502 (8) 75 16 59 (29.5) 13.0
MOS Technology

1 M6809 (8) 14 6 32 (32.0) 13. 0
Motorola

8 8 X 300 (8) 10'3 50 100 (12.5) 36.0
Signetics I

.. I

4 Z80 (8) 49 22 117 (29.24) 11.0 I
Zilog

COP402 (4) I
.125 National 211 134 268 (1072.0) 4.80

Se"'iconductors
---- ~---~--- ~-- -- ~---·-

Table 3.3: Results of benchmark programs for modular multiplication.

Clock r-1 i c r o p r o c e s so r Nuf'l'lber of Number of Instr. Clock Cycles Price
Ml-iz (No. of bits) Pro<Jram Bytes Executed (Time Usee)

3 TM$990(1 (16) 18 5 242 (80.0) so.o
Texas Instr: Ltd

2 M6502 (8) 333 1246 4866(2433.0) 13.0
t-10S Tecnnology

1 M6809 (8) 128 60 336 (336.0) 13. 0
I

Motorola

'

8 8X300 (8) 160 .325 550 (81.25) 36.0
Si gn.et ic s

4 zao (8) 252 1013 2462 (615.5) 11.0
Zilog

COP402 (4)
.125 National 859 2269 4553 (18212.0) 4.80

Semiconductors
------- I..__ ____ ---------- --- - ---- -- -- --- - - ---- - - - -- - -- --

have compared performances of five different microprocessors by

means of nine different benchmark programs. He has suggested two

methods for comparison.

i) An instruction of medium complexity (load 8-bit register) is

chosen as an instruction unit. The number of clock cycles for

any instruction is divided by the number of clock cycles of the

instruction unit.

ii) Reduce the clock frequency such that the instruction unit

takes the same time for all the processors.

Smith (58), have also described comparison of three

microprocessors by executing a standard program on each one of

them. The performance is compared by looking at the number of

program bytes required, execution time etc.

To implement modular arithmetic any value of modulus M may

be chosen. The residue is usually computed using division, but

division, like multiplication is not an efficient operation when

implemented on a microprocessor. Division may also be

implemented externally which may require complex hardware.

Special techniques may be used to compute the residue.

In a decimal number system, if the modulus is chosen to be

10, then the residue of the number is the least significant digit

of the number. For example 103 = 3 mod 10. A similar case is

also true in binary number system. If the modulus is chosen to

be 2k (k is a positive integer) then the residue is found by

masking out the most significant k-bits except the low order

k-bits which is the residue. A carry into the kth bit is

3-14

congruent to 1 and if added to the least significant k-bits gives

the residue. A choice of modulus 2k -1 also provides easy

calculation of the residue. The residue in this case is computed

by adding the k most significant bits to the k least significant

bits. But in some cases if the k least significant bits are 1s,

and the k most significant bits are zeros, then the result is not

correct and may be corrected by adding a one to the k least

significant bits.

Let k = 4, 4 2 - 1 = 15

i) 7 x 8 = 56 = 11 mod 15

in binary form it is given as

0111 X 1000 = 0011 1000

carry = 0

1000
+ 0011

1011 mod F

ii) 14 x 14 = 196 = 1 mod 15

1110 X 1110 = 1100 0100

carry = 1

0100
+ 1100

0000
+ 0001

0001 . mod F

If the modulus is chosen as 2k + 1 then 2k = -1 and

The problem in this case (k-bit arithmetic) is

the representation of -1 if it is encountered, it is either

rounded to 0 or 2. To implement NTT there are several

constraints between the modulus and the wordlength. If the

wordlength of the microprocessor does not allow the required

dynamic range of numbers, the Chinese Remainder Theorem (CRT) may

3-15

be used to perform arithmetic modulo product of several moduli.

A search for a suitable modulus made by Martin (5), showed

that a value of M=65521 (2 16 -15) is very convenient for

implementation of the NTTs using the WFTA. This is the first

16 prime number below 2 and allows a dynamic signal processing

16 range of nearly 2 • Some examples of arithmetic modulo 65521

($FFF1) are given below. $ shows a hexadecimal number. All the

following examples use hexadecimal numbers, $ is omitted. NTTs

deal with unsigned numbers so more emphasis will be given to this

type of arithmetic.

3.6.1 Addition Modulo 65521

When two 16-bit numbers are fed into a binary adder, a value

of 216 - 65521 (=15) must be added to the sum,

i) if a carry was generated or

ii) if the sum was greater than· 65521.

However, this may generate a further carry, but not more than two

carries can ever be generated.

i)

carry = 0

ii)

carry = 1

carry = 0

0279
+ 041C

0695

FFEF
+0014

0003
+ OOOF

0012

mod FFF1

mod FFF1

mod FFF1

3-16

3.6.2 Subtraction Modulo 65521

Subtraction is performed in the usual way by adding the twos

complement of the subtrahend to the minuend. A value of 65521

must be added to the result, if the subtrahend was greater than

minuend.

i)

ii)

0352
-0140

0212 mod FFF1

0140
- 0352

FDEE
+ FFF1

FDDF mod FFF1

3.6.3 Multiplication Modulo 65521

If the product of two 16-bit numbers exceeds 65521 then the

product is reduced modulo 65521.

0003 * 0003 : 0009 mod FFF1

FFFO * FFFO : 0001 mod FFF1

(FFFO - -1 mod FFF1)

3-17

a-iAPTER 4

Implementation of the Winograd Fourier Transform Algorithm

4.1 Introduction

The Discrete Fourier Transform (DFT) of a sequence x(n) is

given by:

N-1

X(k) = L x(n) wnk (4.1)

n=O

and the inverse is given by:

N-1

x(n) = N-1 L X(k) w-nk (4.2)

k=D

where W = -j2TT/N
e ' W is an integer root of unity such that

WN :: 1, N is the sequence length. Cooley and Tukey (8), showed

an efficient way of computing the DFT which reduces the number of

2
operations from N to Nlog

2
N. Attempts have been made to

further reduce the number of operations. Winograd (3), proposed

a new class of Winograd Fourier Transform Algorithms (WFTA),

which requires only 20 percent of multiplications as that of

Cooley-Tukey's FFT algorithm and roughly the same number of

additions. Winograd proposed short length DFT algorithms of

length 2, 3, 4, 5, 7, 8, 9, 16, with minimum number of

multiplies. Table (4.1) shows number of additions and number of

multiplications for each of these short length DFT algorithms.

4-1

Short-length No. of No. of

WFTA Adds Multiplies

2 2 2

3 6 3

4 8 4

5 17 6

7 36 9

8 26 8

9 44 13

16 74 18

Table 4.1: Number of additions and multiplications in the

Winograd short length OFT algorithms.

In the FFT the sequence length is N = 2m, where m is a

positive integer. However, in the WFT A the transform length is

equal to several mutually prime factors. If not more than one

factor is chosen from each of the following groups (2, 4, 8, 16),

(3, 9), (7) and (5), transform lengths in the range from 2 to

5040 are possible. This is done by nesting the short length

algorithms together in the following manner. Each of the short

length OFT algorithms consists of input additions followed by

multiplications and the output additions. In the nested form all

the input additions (for the mutually prime factors) are

performed one after the other followed by multiplications (with

the coefficients) and the output additions. Instead of

performing the multiplications separately for each of the short

length factors, the multiplications are also nested (49). This

algorithm reduces the total number of multiplications at the cost

of increased algorithm complexity. These multiplications are

performed with precomputed transform coefficients. There are two

sets of transform coefficients, one for the forward transform and

the other set for the inverse transform. N-1 .
In equation (4.2)

is combined with the inverse transform coefficients so that the

forward and the inverse WFTA can be computed with equal

computational effort.

For example, for sequence length N = 15 the mutually prime

factors are (3,5) = l. Figures (4.1) and (4.2) show the 3-point

and 5-point WFTA respectively. Let xO,x1, ••• denote the input

sequence and XO,X1,... denote the transformed sequence.

4-2

3-Point WFT A

N = 3, U = 2 11: /3

tl = x1 + x2

mO = 1 • (xO + tl)

m1 = (COSU - 1). tl

m2 = jSINU(x1 - x2)

· s1 = mO + m1

XO = mO

X1 = s1 + m2

X2 = s1 - m2

5-Point WFT A

N = 5, U = 2 11:/5

t1 = x1 + x4, t2 = x2 + x3, t3 = x1 - x4

t4 = x3 - x2, t5 = tl + t2

mO = 1 • (xO + t5)

m1 = (t{COSU + COS2U) - 1).t5

m2 = t{COSU - COS2U).(t1 - t2)

m3 = jSINU.(t3 + t4)

m4 = j(SINU - SIN2U). t4

m5 = j(SIN2U + SINU). t3

s1 = mO + m1, s2 = s1 + m2, s3 = m5 - m3

s4 = s1 - m2, s5 = m3 + m4

XO = mO

X1 = s2 + s3 .

X2 = s4 + s5

X3 = s4 - s5

X4 = s2 - s3

4-3

xO + mo xo

xl

x2
m2 __ ...,.. __ --.1111...._ ____ ...,..- X2

mult.
prewave. postweave

F·ig.41: 3- Point WFTA

XO

X1

x2 X2

x3

ms
~-.~~----~~----~~~~- X4

m3

mult.
pr@weave postwe~ve

Fig.4·2: 5-Point WFTA

The nested 15-point WFT A is shown in figure (4.3) which

clearly shows five 3-point pre-weaves (premultiply adds),

followed by three 5-point pre-weaves. This is followed by the

multiplications, the number of multiplications is equal to the

product of the multiplications in individual short length OFT

algorithms. Finally the three 5-point post-weaves (postmultiply

adds) and the five 3-point post-weaves are performed. WEAVE (50)

is an acronym for Winograd Elementary Add Vector Elements. Note

that there are eighteen multiplications in the 15-point WFTA,

since there are three multiplications in the 3-point WFTA and six

multiplications in the 5-point WFT A.

Similarly a 60-point WFTA has three mutually prime factors

3, 4, and 5. First of all twenty 3-point, fifteen 4-point,

t wei ve 5-point pre-weaves are performed, followed by 72 modular

multiplications with coefficients and the post-weaves for each of

the short length WFT A.

The input and the output data must be reordered or shuffled.

The input and output shuffle vectors are also precomputed and

stored in the memory and the shuffle is then performed using

lookup. The disadvantage in the WFTA is that extra memory is

required just to store the input/output shuffle vectors and the

forward and the inverse WFTA coefficients. However, this

algorithm is computationally efficient on machines on which the

multiplication time is much longer than the addition time.

Silverman (51), have described memory considerations for the

FFT and WFTA, and discussed that the WFTA requires 7N memory

4-4

O• • .. • • ~ I ec:::: • • t • • 0

3•· • fit :-....: :Y • • • ~ :::A 1\ • • 6

-=== -- " {~\ \ • • 6 • • '''k.' {:Y .,. • lit • ~')\\ y I 1: J ll 12

9 • • I I ly / " ~ • • lit • ; / k~t t \, • - • rrr r' .. r, ''' 3

12 • · • ! ! ! t·~ •"-::: "' • • I • 7' :;11- • •lf\ \ \ \ • • 9

.,. • *
·s 4t ·- I I I I -I Y Y Y e e e ~ • "= e e e \ \ \ \ "f ,• 10 • iii \

w8 tt ' 19- I I I • ~ ' y , y y ~ -....... ~ • I • ~ ~ j \ \ \ _ , I ,, ---..... iii 1 I
~ w

~
~

~11

~
\ \ I ~·- I I " I H • • • ., ~- " I~ \ \ ..,\ \ I I ,. 7 ~ ''' rr rr "'"' r:>- ~' r i\ \i YJ ::::l

1- 14 tt \ \ X I 1+- I I " """ • • * •)I .,c / " .,.,. \ ~\ \ X I I • 13 '' rv v r' r' i ti rr,
I
Vl

1-ir
z 2 , \ y I I {., - I "aC "< • * • 7£ ;;;.- ~ ... - ¥'\ y X X I ,. 4 ~

.... . .
10 • f II X 'flf • • • ...,.e

13 t~ f I I \ \-a.- • k :A<= •

4 ~ '.olll- ~r ' I '\. ~ • •

7 • ... - "< • •

5 POINT PRE- WEAVE lol.liiPliCATIC.N
WITH

COEFFICIENTS

3 POINT POST -WEAVE

5 POINT POST-WEAVE

FIG. 4·3: tESTED 1 S-POINT WINOGRAD FOURIER TRANSF~M ALGORITHM (WF TA)

5

11

2

8

14

5

locations as compared to comparable size FFT algorithm which

requires 1.25N memory locations. Unlike the FFT, the WFTA cannot

be computed inplace, Silverman called an analogous approach as

full overlay. Nawab and McClellan (52), have described that in

general the WFT A requires more data transfers than an equivalent

length FFT. In addition they have also discussed the minimum

number of CPU registers required to perform each short length OFT

algorithm efficiently, since register to register instructions

are executed much faster.

4.2 ~tion of NTT using WFTA

The Number Theoretic Transform (NTT) of a sequence x(n) is

given by:

N-1

X(k) = I x(n) ank (4.3)

n=O

and the inverse is given by:

N-1

x(n) = -1 r N . X(k) a-nk (4.4)

k=O

where a = e -jZTT/N, and is an integer root of unity, such that

aN :: 1 mod M , where M is the modulus, and a is defined in a

finite ring of integers ZM. The choice of modulus is made such

that N I M, i.f M is prime then N I·M-1. The inverse

N-1 is defined such that NN-1 = 1 mod M. If M is not a prime

-1 then N may or may not exist. Martin (5), carried out a

search for a suitable modulus on the lines described by Bailey

4-5

(53), and found that value of M = 65521 is quite adequate for

16-bit modular arithmetic and it is the first prime below 2
16

•

Since NTTs are similar in structure to the OFT any algorithm

which applies to the OFT can also be applied to the NTT.

4.2.1 Determination of the Constants for the WFTA

Implementation of the WFTA requires some constants to be

precomputed and stored in the memory. These are the input/output

shuffle vectors, transform coefficients etc. Consider that we

want to implement a 15-point WFT A. The following calculations

must be performed before the actual program coding.

1- Choice of modulus M = 65521, since it satisfies the

condition N I O(M), where O(M) is the g.c.d of (p.-1).
I

0(65521) = 13 x 5040 and so this modulus will support

any Winograd transform algorithm (5), (9).

2- Choice of transform length N = 15.

3- Determination of N-1, 15-1 = 61153 mod 65521.

4- Determination of element of order N,

a 15 = 1 mod' 65521, (7791)15 = 1 mod 65521.

5- Determination of mutually prime factors 15 = 3 x 5, such

that (3,5) = 1.

6- Determination of j (iota) such that j.j = -1 mod 65521,

j = 41224 mod 65521, j is an element of order 4, such

that (41224)4 '= 1 mod 65521.

7- Determination of T 1, T 1 = 32761 mod 65521

8- Determination of the input and output shuffle

or reordering vectors. The input and output shuffle

4-6

vectors are obtained using Chinese Remainder Theorem

(CRT), in the following manner.

Let N = r1 r2 such that (r1 , r2) = 1

also let q1 = 0,1, ••• ,r1-1, and q2 = 0,1, ••• ,r2-1

The following equation allows mapping from a one dimensional

into a two dimensional array.

Let

We get

(5q
1

+ 3q
2
) mod 15 (4.5)

Using equation (4.5) we obtain the following input shuffle

vectors

0 3 6 9 12

5 8 11 14 2

10 13 1 4 7

Similarly the output reordering vectors are obtained, by

using the following relationship and determining the values of x

and y, such that: such that:

5x - 1 mod 3 --~ -- X = 2

3y - 1 mod 5 --~ y = 2 (4.6)

Equation (4.5) is rewritten as

(5xq1 + 3yq
2
) mod 15

substituting values of·x and y, we get

(10q1 + 6qz) mod 15 (4.7)

4-7

where q1 = 0,1,2 and q2 = 0,1,2,3,4.

This relationship gives us the output reordering vectors as

0 6 12 3 9

10 1 7 13 4

5 11 2 8 14

9- Determination of the transform coefficients.

By definition

casu = HejU + e -jU)

·u -·u
SINU = 1/j. HeJ - e J)

where U = 2T[/N

(4.8)

(4.9)

Since division has no meaning in an NTT, the trignometric

functions must be redefined in the number theoretic sense (53).

Rewriting equations (4.8) and (4.9).

casu = 2-1cu + u-1)

SINU = 2-1(-j)(U - u-1)

where u = a 5 mod 65521, and

(from step 4) a = 7791.

is an element of order 4, and

The multiplier coefficients for the 3-point WFTA and the

5-point WFT A are calculated separately.

(a) Coefficients for the 3-point WFT A

Let U = aS mod 65521

C7791)5 = 48847 mod 65521

(48847f
1 = 16673 mod 65521

mO = 1

-1 (-1) m1 = casu - 1 = 2 u + u - 1

= 32761.(48447 + 16673) - 1

4-8

= 32760 mod 65521

m2 = SINU - 1 = 32761.41224.24297(48847 - 16673)

= 16087 mod 65521

Similarly the 5-point transform coefficients are calculated

in the following manner.

(b) Coefficients for the 5-point transform

Let U = a 3 mod 65521

(7791)3 = 30887 mod 65521

(30887r1 = 28625 mod 65521

casu = 32761 • (30887+30887-1) = 29756 mod 65521

SINU = 32761 • 24297(30887.:30887-1) ::: 13367 mod 65521

CaS2U = cas2u - SIN2U :: 3004 mod 65521

SIN2U = 2. SINU. CaSU ::: 49289 mod 65521

mO = 1

m1 = 2-1• (CaSU + caS2U) - 1 ::: 16379. mod 65521

m2 = 2-1• (CaSU - CaS2U) ::: 13376 mod 65521

m3 = j(SINU + SIN2U) : 19136 mod 65521

m4 = j(SIN2U) : 18005 mod 65521

m5 = j(SINU - SIN2U) : 48647 mod 65521

The coefficients for the 3-point and 5-point transform are

now multiplied (mod 65521) together, such that each of the

3-point coefficients is multiplied by each of the 5-point

transform coefficients. This multiplication (mod 65521) is

performed using a nested 'Da' loop, such that the 5-point

transform coefficients are indexed by the inner loop and the

3-point transform coefficients are indexed by the outer. loop.

4-9

The values of the inverse transform coefficients are

obtained in exactly the same manner (as for the forward

transform), except that all the SINU are changed to -SINU and the

transform coefficients thus obtained are then multiplied by

-1 15 = 61153 mod 65521.

4.3 Architecture of the TM59900 Microprocessor

Texas Instruments TMS9900 is a single chip 16-bit CPU

capable of addressing 64K byte of memory (54), (55). The

instruction set of the microprocessor provides full minicomputer

capabilities (including 1/0). There are sixteen general purpose

16-bit registers (RO to R15). These registers can be defined any

where in the RAM whose location is determined by contents of the

workspace pointer. Register to register instructions are

executed faster than memory to register or register to memory

instructions. The three on chip registers are accessible to the

programmer, these registers are:

a) Workspace Pointer (WP): this register holds the address of the

current workspace, which is the same as the address of RD.

b) Program Counter (PC): 16-bit program counter holds the address

of the current instruction.

c) Status register (ST): this register represents the current

machine state.

The workspace concept increases the programming flexibility

and more than one program can reside in the memory and executed

without affecting the other programs. The workspace pointer can

also be changed during the program execution. This allows the

4-10

user to redefine a new set of 16 general purpose registers. The

special purpose registers R13, R14 and R15 of the current

workspace contains the contents of old WP, old PC and old ST

respectively, and a return to old workspace reloads these values

in the respective registers. This feature is useful when program

environment is changed to a subroutine, since in a conventional

CPU the entire machine state is saved on the stack, but in case

of the TMS9900 only the workspace needs to be changed. A special

purpose register R12 holds the base address of the Communications

Register Unit (CRU). All the data read or written to the 1/0

ports must pass through the CRU.

This microprocessor also contains 16 x 16-bit hardware

(unsigned) multiply and 32/16-bit (unsigned) divide, and unsigned

compare.

the NTT.

These features make it suitable for implementation of

4.4 Implementation on the Microprocessor

A 15-point and a 60-point WFTA were implemented on the

TMS9900 microprocessor in assembler language. As there was no

software support available with the TMS9900 microprocessor, a

mainframe computer was used for program assembly. A utility

routine was written in assembler for the TMS9900 to load the

object program directly from the mainframe computer into the

memory of the microprocessor. This provided an efficient way of

testing and debugging the software.

4-11

Appendix-B shows an assembler program source listing of the

15-point WFTA implemented on the TMS9900 microprocessor. A

FORTRAN program listing of the 15-point WFTA is also included in

the appendix-B.

A 60-point WFT A FORTRAN program is listed in (5). A

60-point WFTA was also implemented in the FORTH language, a

source program is listed in appendix-C. FORTH is an interactive

high level language for microprocessors (56), (57).

The 60-point WFTA has three factors 3, 4, 5, so this

transform has a three dimensional structure. In general a

transform length with r factors would have an r dimensional

structure. The input and output shuffle vectors, forward and

inverse transform coefficients are calculated in a similar manner

as for the 15-point WFTA. A 120-point WFTA was also implemented

in FORTRAN on a mainframe computer.

An A/0 (analogue to digital) converter and a D/A (digital to

analog) converter was interfaced with the TMS9900 microprocessor

system to perform transforms of real time signals.

4-12

D-fAPTER 5

External Hardware Modular Multiplier

5.1 Introduction

Microprocessors have found their way into. many digital

signal processing applications. Multiplication is one of the

basic operation in digital signal processing. Hence the need for

performing multiplication on the microprocessor efficiently is of

vital importance. In many microprocessors no facility is

provided for hardware multiply or divide. However, software

routines can be written to perform the required multiplication or

division operations.

Some of the later versions of microprocessors are provided

with signed or unsigned hardware multiplier. For example

Motorola's MC6809 microprocessor and Texas Instrument's TMS9900

microprocessor contains an 8 x 8-bit and 16 x 16-bit unsigned

hardware multiplier respectively. A considerable amount of time

is needed for multiplication even if the hardware multiplier is

available. For example, for the MC6809 microprocessor, 173 clock

cycles are required to produce a 32-bit unsigned product (clock

speed 1-2 MHz), and for the TMS9900 microprocessor 88 clock

cycles (clock speed 3 MHz) are needed. As we are interested in

the product reduced modulo M, some more time has to be allowed

for modularising the 32-bit result. The most obvious and

straightforward way to modularise a 32-bit unsigned number is by

division. However, for the MC6809 microprocessor this division

5-1

requires 1264 clock cycles. In total 1337 clock cycles are

required to produce a 16-bit modular product. Typical program

coding for 16 x 16-bit (unsigned) multiply and 32/16-bit divide

routine for the MC6809 microprocessor is listed in appendix-A.

An alternative approach can be adopted in which the hardware

multiplier is used to produce a 16-bit modular product which

requires then only 336 clock cycles (see appendix-A). In the

case of the TM59900 microprocessor 132 clock cycles are required

to perform a 32/16-bit unsigned hardware divide, so the total

number of clock cycles is 220. The number of clock cycles

required depends upon the addressing mode of the instruction,

since register to register instructions are executed much faster

than the register to memory instructions.

The time required for modular multiplication can be reduced

further by interfacing a high speed external modular multiplier

to the system to increase the throughput of the system, thus

increasing the range of digital signal processing applications.

Different algorithms may be adopted to implement external

multiplication. Either serial or parallel methods may be

employed. For a parallel multiplier the cost increases

approximately linearly with the number of bits, whereas for a

serial multiplier the execution time increases approximately

linearly. Davies (28), have described some aspects of performing

multiplication on the zao microprocessor, and interfacing an

external hardware multiplier to it. Weed (29), have described

theoretical clockless multiplication and division circuits using

4 x 4-bit multiplier chips. The product of larger numbers can be

5-2

obtained by employing more than one multiplier chip and adding

the partial products in an appropriate way. In clockless

(combinatorial) circuits the total multiplication time is the sum

of the propagation delay on the chip, and the carry propagation

delay of the adders. This propagation delay increases

approximately linearly with the number of input bits.

P arasuraman (18), have described a hardware multiplier interfaced

to a microprocessor.

5.2 Design and Implementation of an External Hardware
Modular Multiplier

Large Scale Integration (LSI) techniques now allow the

integration of a complete 8 x 8-bit multiplier on a single chip.

For example Advanced Micro Devices (44), and TRW (30), (39),

(42), have produced single chip 8 x 8-bit (AM25S558) and 16 x

16-b it (MPY -16AJ) multiplier respectively. These multiplier

chips have a typical 8 x 8-bit and 16 x 16-bit multiplication

time of approximately 45 and 200 nanoseconds respectively. A

single chip multiplier (8 x 12-bits) to produce the 13 most

significant bits of the product with an internal propagation

delay of about 2 nanoseconds have also been reported, additional

delay due to external components adds up to 30 nanoseconds (32).

The interfacing of an external hardware multiplier with a

microprocessor have been described by Davies and Fung (31). This

interfacing can be achieved in two ways. Either it can behave as

an I/O peripheral or it may be mapped into the memory space of

the microprocessor.

5-3

An external hardware modular multiplier (mod 65521) was

designed and constructed using wire wrapping techniques.

interfaced with the TMS9900 microprocessor.

5.2.1 Interfacing Considerations

It was

We shall use the term modular multiplier for the external

hardware modular multiplier interfaced with the TMS9900

microprocessor. The two choices to interface the modular

multiplier to the TMS9900 are as follows.

i) connect to the 1/0 port

ii) connect directly to the address and data bus

In the first choice the main disadvantage is that 262 clock

cycles are required to communicate with the external modular

multiplier through the I/0 port. The strobe signals for the

modular multiplier must also be generated at the output port.

This process is slow since the TMS9900 communicates with the 1/0

ports through the Communications Register Unit (CRU) serially.

The number of clock cycles thus required are more than when the

hardware multiply and divide are used to produce the modular

product. In the latter arrangement the modular multiplier behaves

like an intelligent memory mapped peripheral, with three unique

16-bit addresses. The data is written to two of the addresses

and read from the third.

5-4

5.2.2 Interfacing the Modular Multiplier with the
TMS9900 Microprocessor

Figure (5.I) shows a block diagram of the complete

(combinatorial) modular multiplier interfaced with the TMS9900

microprocessor. In figure (5.I) and (5.2) lines with arrowheads

represent the data bu&

This modular multiplier combines two of the forementioned

techniques, using parallel multiplier chips to produce a 32-bit

unsigned product and ROM lookup tables whose outputs are combined

by a modular adder. The 32-bit unsigned product is reduced

modulo 6552I in the following manner. The high order I6-bits of

the 32-bit unsigned product pre-multiplied by a fixed constant

2I 6- 6552I (=I5) are added to the low order I6-bits of the

product using a modular adder. Direct storage of the

pre-multiplied data would require a 64K x I6-bit ROM. However,

if the output is determined by combining partial products derived

from the 8 low order bits and the 8 high order bits of the high

order I6-bit input, the storage requirement is reduced to two 256

x I6-bit ROMs.

Figure (5.2) shows the block diagram of the modular adder,

which consists of three identical I6-bit binary full adders, with

two inputs AI and A2. The output of FAI is checked by a carry

and overflow detector (CD) circuit (figure 5.3). If a carry or

an overflow is detected this circuit activates the gate GI and a

value of 2I6- 6552I (=I5) is added to the output of F AI in F A2.

This may generate a carry or overflow activating gate G2 adding a

further value of I5 in F A3. The output of F A3 is the final

5-5

M MULTI PLJE R
T BUS DRIVER
TB BUFFER 16
L1] LATCH ' L2

·~~MODULAR ADDER
TB

. OE

16

, 16

16--~
~

_f)ATA BUS - - MA1 MA2
~ L1 T j -· ...

16-16

fCLK 16 ~ 16 j ~ z
LOW 0 ..J - 0 ,
ORDER , ~ 16 TMS9900

01: M _...__ 16 u 16 w ... - 32 ~p Q: z
0 0

u
16 4 16 ADDRESS CONTROL

L2 - HIGH ROM1 ROM2 -..
BUS 16 LOGJC

ORDER
_J ~ fwe I CLK ~ 8 LOW ORDER 8 HIGHO RDER.

F iqure 5.1: Block diagram of the' modular multiplier (mod 65521).

A1
16 16 16

1::.. _ ... - -
NPUT FA1 FA2 FA3

A2 1! 1§ -- 16 ..

A A
Gl J G2J

FA J I J I CD co CD

~· 16

DATA DATA
(15) (15)

Figure 5.2: Bl.ock diagram of the ·modular adder (mod 65521).

16
.L.

OUTPUT
MODULAR

SUM

FUL
CARl
DET

ADDER
Y/OVERFLOW

ECT

modular sum. A modular adder was designed and constructed for

test purpose before implementing it with the modular multiplier.

The basis of this modular multiplier is four (8 x 8-bit)

multiplier chips (AM255558), which achieve a typical 8 x 8-bit

multiplication in approximately 45 nanoseconds. These multiplier

chips are combined with full adders (SN74LS83) to achieve a 16 x

16-bit to 32-bit multiplication in approximately llO nanoseconds.

Figure (5.4) shows a photograph of the modular multiplier, the

four multiplier chips can be seen clearly.

Typical program coding and timings for the hardware multiply

and divide operation is shown in figure (5.5), and coding for the

use with the external hardware modular multiplier is shown in

figure (5.6).

On the first and second move (MOV) instructions the two

16-bit data words are latched in L1 and L2 (SN74LS374) through a

bidirectional bus driver T (SN74LS245). Address and control

signals for these latches and driver are generated by

appropriately decoding the addresses and gating it with the write

enable (WE) line from the TMS9900 microprocessor. The outputs of

L1 and L2 are directed to the multiplier M. The 32-bit unsigned

product is then split into three parts. The low order 16-bits

are connected directly to one of the inputs of the first modular

adder MAl. The high order 16-bits are further split into two

8-bit words. The low order half 8-bits are directed to the

address bus of ROM1 and the other half 8-bits are directed to the

address bus of ROM2. ROM1 and ROM2 are four 256 x 4-bit

(AM27521) PROMs, with a typical access time of 45 nanoseconds.

5-6

)----OUTPUT= 1
FOR 00-015 >65521

CARRY OUT
FROM FULL ADDER

Figure 5.3: Carry and overflow detect circuit.

Figure 5.4: Photograph of the external hardware modular
multiplier.

Clock cycles Labels Mnemonics Operands

14
88
132

234

MDV @MPD,R2
MPY @MPR,R2
DIV @MOD,R2
RT

MOD DATA 65521
MPR DATA
MPD DATA

R3 contains the modular product.

Figure 5.5: Program coding for using hardware
multiply and divide.

Clock cycles Labels Mnemonics Operands

INPUT1 EQU >3FF2
INPUT2 EQU >3FF4
OUTPUT EQU >3FF6

20 MDV @MPR,@INPUT1
20 MDV @MPD,@INPUT2
14 MDV @OUTPUT,R3

RT
54 MPR DATA

MPD DATA

R3 contains the modular product.

Figure 5.6: Program coding using external modular multiplier.

(> Shows hexadecimal values, and @ shows symbolic names.)

Typical values stored in ROMl and ROM2 are shown in tables (5.1)

and (5.2). The output of ROMl is connected to an input of the

first modular adder MAl. MAl combines the low order 16-bits of

the 32-bit product with the partial product stored in ROMl from

the low order 8-bits of the high order 16-bits. MA2 then adds in

the other partial product stored in ROM2. The output of MA2 is

finally the 16-bit modular product of the two current 16-bit

values in the input latches Ll and L2. The output of these

latches, multiplier chips and the PROMs are permanently enabled,

so after the second value is latched in L2 the 16-bit modular

product is available in less than 500 nanoseconds at the output

of MA2. This output can be read back into the microprocessor by

activating the tristate buffer TB (SN74LS126) at the output of

MA2.

The multiply instruction for the TMS9900 microprocessor

works in the following manner. If the multiplicand is in

register Rn and the multiplier is in register Rm. Then after the

multiply instruction Rn:Rn+l holds the product and Rm remains

unchanged. For example, if register R2 contains $FFFF, and R3

contains $FFFF, then after the multiplication the register pair

R3:R4 contains $FFFEOOOl, where ':' shows concatenation of two

registers to form a register pair to hold the 32-bit product.

The division operation also utilises a (consecutive)

register pair to hold the quotient and the remainder. Initially

the dividend is held in a register pair Rn:Rn+l. After the

division the Rn holds the quotient and Rn+l holds the remainder.

For example, if R2 contains the divisor ($0005) and R3:R4

5-7

Table 5.1: Values in ROM 1

0 390 780 1170 1560 1950 2340 273() 3120 3510

IS 405 795 ttBS 1575 1965 2355 2745 3135 3525

30 420 810 1200 1590 1980 2370 2760 3150 3540

45 435 825 1215 1605 1995 2385 2775 3165 3555

60 450 840 1230 1620 2010 2400 2790 3180 3570

75 465 855 1245 1635 2025 2415 2805 3195 3585

90 480 870 1260 1650 2040 2430 2820 3210 3600

105 495 885 1275 1665 2055 2445 2835 3225 3615

120 510 900 1290 1680 2070 2460 2850 3240 3630

135 525 915 1305 1695 2085 2475 2865 3255 3645

150 540 930 1320 1710 2100 2490 2880 3270 3660

165 555 945 1335 1725 2115 2505 2895 3285 3675

180 570 960 1350 1740 2130 2520 2910 3300 3690

195 585 975 1365 1755 2145 2535 2925 3315 3705

210 600 990 1380 1770 2160 2550 2940 3330 3720

225 615 1005 1395 . 1785 2175 2565 2955 3345 3735

240 630 1020 1410 1800 2190 2580 2970 3360 3750

255 645 1035 1425 IBIS 2205 2595 2985 3375 3765

270. 660 1050 1440 1830 2220 2610 3000 3390 3780

285 . 675 1065 1455 1845 2235 2625 3015 3405 3795

300 690 1080 1470 1860 2250 2640 3030 3420 3810

315 705 1095 1485 1875 2265 2655 3045 3435 3825

330 720 lftO 1500 1890 2280 2670 3060 3450

345. 735 tt25 1515 1905 2295 2685 3075 3465

360 750 ff40 1530 ;920 2310. 2700 3090 3480

375 765 It 55 1545 ·1935 2325 2715 3105 3495

Table 5.2: Values in ROM2

0 34319 3tt7 37436 6234 40553 9351 43670 12468 46787

3840 38159 6957 41276 10074 44393 13191 47510 16308 50627

7680 41999 10797 45116 13914 46233 17031 51350 20148 54467

11520 45839 14637 48956 17754 52073 20871 55190 23988 58307

15360 49679 18477 52796 21594 55913 24711 59030 27828 62147

19200 53519 22317 56636 25434 59753. 28551 62870 31668 466

23040 57359 26157 60476 29274 63593 32391 tt89 35508 4306

26880 61199 .29997 64316 33tt4 1912 36231 5029 39346 8146

30720 65039 33837 2635 36954 5752 40071 8869 43188 11986

34560 3358 37677 6475 40794 9592 43911 12709 47028 15826

38400 7198 41517 10315 44634 13432 47751 16549 50868 19666

42240 .11038 45357 14155 48474 17272 51591 20389 54708 23506

46080 14878 49197 17995 52314 2tt12 55431 24229 58548 27346

49920 18718 53037 21835 56154 24952 59271 28069 62388 31186

53760 22558 56877 25675 . 59994 28792 63111 31909 707 35026

57600 26398 60717 29515 63834 32632 1430 35749 4547 38866

61440 30238 64557 33355 2153 36472 5270 39589 8387 42706

65280 34078 2876 37195 5993 40312 9tt0 43429 12227 46546

3599 37918 6716 41035 9833 44152 12950 47269 16067 50386

7439 41758 10556 44875 13673 47992 16790 51109 19907 54226

11279 45598 14396 48715 . 17513 51832 20630 54949 23747 58066

15tt9 49438 18236 52555 21353 55672 24470 58789 27587 61906

18959 53278 22076 56395 25193 59512 28310 62629 31427

22799 57tt8 25916 60235 29033 63352 32150 948 35267

26639 60958 29756 64075 32873 1671 35990 4788 39107

30479 64798 33596 2394 36713 55ft 39830 8628 42947

contains dividend ($00000058) then after the divide instruction

R3 will contain ($0012) and R4 will contain ($0001).

The dividend must be in a register pair (right justified).

Before performing the division the microprocessor checks if the

divisor is greater than the most significant word of the

dividend. If the divisor is greater then normal division takes

place. However, if the divisor is smaller than the most

significant word of the dividend then overflow bit in the status

register is set and the division operation is aborted, and the

dividend remains unchanged.

In figure (5.5) register pair (R2:R3) holds the 32-bit

unsigned product resulting from a multiply (MPY) instruction.

After a divide (DIV) instruction R2 holds the quotient and R3

holds the remainder.

Comparing the two values in figure (5.5) and figure (5.6)

shows a saving of 180 c 1 oc k cycles for a single modular

multiplication. For ·a clock frequency of 3 MHz the total time

saved for each modular multiplication is 60 microseconds.

5.3 Results

A 15-point and a 60-point WFTA transform were run on a

T MS9900 microprocessor, requiring 18 and 72 multiplications

respectively. The execution time for a 15-point WFTA is about 4

milliseconds and for a 60-point WFTA is about 32 milliseconds

using the hardware multiply and divide instructions. When the

external hardware modular multiplier is implemented, execution

5-8

time is reduced to about 3 milliseconds for a 15-point transform,

and to about 28 milliseconds for a 60-point transform.

A 60-point WFTA implemented in FORTH requires about 739

milliseconds to execute. When the external hardware modular

multiplier is used, a saving of 3 milliseconds is achieved.

An interesting point to note is that the modular multiplier

generates the 16-bit modular product between the second and third

move (MOV) instruction. If the modular multiplier had been

slower, then a delay routine would be required between latching

the second operand into the modular multiplier and reading the

modular product from it.

The modular multiplier was tested extensively. A test

routine for the TMS9900 microprocessor was written to check all

the possible input combinations of the multiplier and the

multiplicand. The modular product obtained from the modular

multiplier were compared with modular product of the same two

numbers calculated by the microprocessor itself.

Total cost of this external hardware modular multiplier is

approximately~ 400 (1980), which is dominated by the cost of the

four multiplier chips. Total power consumption is about 16 watts

and 81 i.e. packages are used in all.

5-9

a-w>TER 6

Multi Processor and Parallel Processor Systems

6.1 Introduction

A Central Processing Unit (CPU) fetches instructions from

its program memory sequentially under the program control (see

figure 6.1). These instructions are then decoded and executed.

Each instruction may differ in length depending upon the mode of

instruction. These instructions are visualised as stream of

instructions and operands as stream of data.

The data are manipulated in the CPU registers and the

results are stored back in the memory. The arithmetic operations

performed in the CPU registers are much quicker than the register

to memory or memory to register operations. The onchip registers

are also referred to as scratchpad registers. Some of the onchip

registers are not accessible to the programmer and are entirely

used by the CPU.

6.2 System Organisation

Suppose that a processor P is operating at full speed and

capacity. Let M1 and M0 be the minimum number of instruction

and data stream respectively. The computer systems can then be

organised into four different ways according to the instruction

and data stream.

6-1

6.2.1 Single Instruction Single Data (SISD) Machine

In this type of system MI = MD = 1. This arrangement is

typical of a uni processor (with a single Arithmetic-Logic Unit

(ALU), and a Control Unit) system. A single instruction I is

fetched from the program memory sequentially under the ALU

control, and is decoded by the ALU and then executed in m

subinstructions ... ' (as shown in figure 6.2).

The data are obtained from the data memory, and after the

calculations the results are stored back into it. Each

instruction represents one arithmetic operation on input data D
I

entering the ALU to generate the output data D.

6.2.2 Single Instruction Multiple Data (SIMD) Machine

In this case MI = 1, and MD > 1. Figure (6.3) shows a

typical SIMD machine. There are m number of processors P. These

processors are arranged in such a manner that the same

instruction stream performs operations on m seperate input data

streams D1 , D2 , ••• ,
I

str.eams Dl'

D . m
I

D m

To generate the output data

This arrangement is typical

of an array processor, with a single control unit with some

arrangement to broadcast instructions to the desired processors.

6.2.3 Multiple Instruction Multiple Data (MIMD) Machine

In this type of system MI > 1 and MD > 1. Figure (6.4)

shows a typical MIMD machine. Processors P are arranged such

that each one is distinct and separate, and a separate

6-2

DATA
STREAM

CPU MEMORY

INSTRUCT ION
STREAM

Figure 6.1: Conventional uni processor system.

INSTRUCTION
STREAM

D
UT ! INP

DA TA STREAM

s,
S2

' ' I
I

'
I

I

I

Sm

(/)
z
0 -....
(,)
~
0:::
(/)

z -CD
~
(/)

TPUT ! ou
D' DATA STREAM

Fiqure 6.2: A Sinqle Instruction Sinqle Data (SISD) machine.

I

I

.....

o,
I

p1

L
0,

INPUT DATA
STREAM

02

I
ri ~

L
02

OUTPUT OAT
STREAM

INSTRUCTlON STREAM

Om
A

Figure 6.3: A .Single Instruction Multiple Data (SIMD) machine.

12

INPUT DATA
STREAM

02

,
02

OUTPUT DATA
STREAM

INSTRUCTION STREAM

Dm

,
Dm

F iqure 6.4: A Multiple Instruction Multiple Data (Mitv1D) machine.

instruction stream is applied to each of the m processing units.

Let each of the processing units have separate input data

streams D1, D2, ••• , Dm to generate the output data streams
I I I

D 1' D 2' ••• ' D
m

This system executes several

independent programs concurrently. It basically forms a multi

processor system, such that each processor has a separate program

memory.

6.2.4 Multiple Instruction Single Data (MISD) Machine

In this case MI > 1 and M0 = 1. Figure (6.5) shows a

typical MISD machine. The same data passes through different

segments. The same set of data D is being operated upon by m
I

instructions to generate the output D. This arrangement can

also be called as an m-segment pipeline processor. A pipeline

processor requires more hardware and complex circuitry, but has

high speed operation. Each of the segments is separated by a

buffer register to hold intermediate results.

6.3 Multi Processor Systems

Experience reveals that parallelism in hardware circuitry

increases the throughput of the system. Increasing the level of

parallelism increases the potential operating speed but also the

hardware and the cost.

Consider a uni processor system with programmed I/O devices.

A CPU performs I/O routines to transfer data to and from the I/O

devices using polling. Polling is a scheme in which the CPU

6-3

~
i1

~
w
~
(/)

z
0

i2 -.... u
:::>
~
(/)
z

im

INPUT DATA
STREAM

D

51

lr

52

l
i
j

l

Sm

I
D

OUTPUT DATA
STREAM

(/) z
w
~
(!)
w
(/)

Figure 6.5: A Multiple Instruction Single Data (MISD) machine.

periodically checks the I/O devices to see if any of the devices

needs servicing. The system would tend to slow down when the CPU

is interfaced to rather slow mechanical devices e.g. a card

reader, or a line printer etc. An improvement on programmed 1/0

method of data transfer is to implement interrupts. In this case

the CPU does not poll any of the devices, but when the peripheral

or 1/0 device is ready to receive/transmit data it sends an

interrupt signal to the CPU. The CPU branches to the appropriate

Interrupt service routine, and after performing 1/0 routines

resumes normal operation. A further improvement would be to

employ 1/0 Processors (lOPs) also called Peripheral Processing

Units (PPUs). These reduce considerably the load on the main

CPU. The lOPs share common memory with the main CPU. But the CPU

still initiates and terminates all the data transfer operations.

The main CPU behaves as a master and the lOPs as slaves.

The advantage of employing CPU and lOPs side by side is that

both can execute their programs concurrently and independently of

each other. This basically forms a type of multi processor

system. Figure (6.6a) shows a single shared link between memory

and 1/0 devices for local communications. The speed of the

system may suffer if the 1/0 devices are very slow. However,

figure (6.6b) shows another arrangement with dual bus, in this

case 1/0 devices are controlled by an lOP (22).

In most practical systems it is required by the processors

to communicate with each other. The multi processor systems can

be classified as directly or indirectly coupled, which depends

upon the method of data exchange.

6-4

CONTROL BUS

DATA BUS

MEMORY CPU I/O I/O

Figure 6.6a: Local communication between CPU and memory and I/0
connected through a shared bu~

CONTROL BUS ----.
DATA BUS -----·

MEMORY CPU lOP

CONTROL BUS -----·
DATA BUS -·-- ---

1/0

Figure 6.6b: Local communications with memory and several
I/0 through IOP using dual hus structure.-

I/o

6.3.1 Directly Coupled Multi Processor Systems

A multi processor system is defined as a computer system

with more than one CPU, sharing a common memory and 1/0 devices.

The CPUs co-operate with each other at hardware and software

level, and exchange data with each other through common memory

when required (73). This is known as a directly or tightly

coupled multi processor system.

Scales (77), have described two kinds of directly coupled

m u It i microprocessor systems using Motorola's MC6809E

microprocessor, namely global-only and local/global type. He has

also discussed the basic hardware differences between the MC6809

and the MC6809E version of the microprocessor. The MC6809E

version requires an external (TTL) clock, but the MC6809 has an

onchip oscillator, which operates by an external crystal. The

MC6809E version provides output signals suitable for a multi

microprocessor environment.

In the global-only type, the microprocessors continuously

use the same global bus, because all the microprocessors share

the common (global) memory. The efficiency of the system is low.

Each microprocessor is granted the bus by the bus arbiter at the

begining of each cycle of the clock E. One of the

microprocessors has higher priority than the rest of the

microprocessors such that the system behaves as a master and

slaves. The master acquires the global bus on powerup reset to

initialise the system and peripherals, while the other

microprocessors execute the SYNC instruction and wait for the

interrupt after the reset has been activated. The priority of

6-5

the microprocessors is in round-robin manner. At any instant

only one microprocessor uses the global bus and the clocks are

stretched for other microprocessors. The maximum time for which

the clock can be stretched is 10 microseconds without loss of

data.

In the local/global system each of the microprocessor has

its own local program and data memory connected to the

microprocessor by the local data and address buses. In addition

there is a global memory, data bus, address bus and global 1/0

devices. Each of the microprocessors is allocated a different

task, for example one of them performs the 1/0 operations, the

other runs the operating system, and the control microprocessor

supervises the entire system.

A bus arbiter controls the flow of the data from the

microprocessors to the global memory and global 1/0 devices.

Each of the microprocessors is executing program from its own

local program memory using its local bus. If any of the

microprocessors wishes to access the global memory, it puts a

request to the bus arbiter which makes sure that only one

microprocessor is accessing the global bus at a time to prevent

bus contention. If two microprocessors simultaneously request

the bus arbiter to access the global memory, the bus is granted

by the bus arbiter to the microprocessor which has higher

priority, and sends the other microprocessors into a wait state

with their clocks stretched until the first one has finished the

data transfer into the global memory or the global 1/0 device.

As long as the microprocessors are executing programs from their

6-6

own local program memories the speed and efficiency of the system

is a maximum, but as soon as more than one microprocessor wishes

to access the global memory or 1/0 device, the speed of the

system suffers. The number of microprocessors which can be

interconnected in this manner is limited (4 in this case).

Hoffner and Smith (68), have described a tightly coupled

multi processor system. This system employs two MC6809

microprocessors. These two microprocessors are operated by

opposite phases of a common clock. This prevents simultaneous

access by the microprocessors to the common memory. The memory

in this system should be twice as fast as the processor read

cycle, to prevent contention. The processors are connected

through a parallel interface buffer to a common memory. The

advantage in this system is that in one cycle one of the

processor is writing into the memory, while in the next

(anti-phase) clock the other processor can read this particular

byte. The major drawback in tightly coupled multi processor

systems in general is the memory conflict. The method described

above circumvents memory conflict problem (limited to 2

microprocessors only).

6.3.2 Indirectly Coupled Multi Processor Systems

Indirectly coupled multi processor systems in contrast do

not share a common memory (73). The data exchange takes place

through an other medium like magnetic tape, magnetic disk or I/O

ports etc. Each of the CPUs has its own associated memory. In

loosely or indirectly coupled multi processor systems the

6-7

processors work more autonomously as compared to tightly coupled

systems.

Bellm and Sauer (64), have described three different methods

for data exchange between two Intel 8080 microcomputers.

The first method involves parallel data transfer through

Programmable Peripheral Interface (PPI) using I/O ports. A

further port is used for handshaking. These handshaking signals

are also referred to as semaphores. Semaphores are memory

locations under the software control which act as flags

indicating the presence or absence of data. When one

microcomputer transfers the data into its output port, it sets a

1-bit flag in the other output port. This port is being

continuously monitored by the other microcomputer, when it is

expecting data from the other microcomputer. When the signal on

a particular bit changes, the destination microcomputer reads the

output port of the source microcomputer. The destination

microcomputer then acknowledges this by setting a bit in its own

output port. This port is being monitored by the source

microcomputer (after it has transferred data to its output port).

The source microcomputer after receiving this acknowledgement

sends the next data byte. The data transfer can be in either

direction, i.e. each of the two microcomputers can at one instant

behave as source, and in the next instance as destination. A

loop counter determines the number of data bytes to be

transmitted and/or received.

6-8

The second method uses interrupts. When the data are

available at the output port the source sends an interrupt to the

destination. After executing the interrupt routine the two

microcomputers can resume their normal operation independently.

Data exchange still takes place through input and output ports.

The destination microcomputer then reads the data, and sends an

acknowledge signal back to the source.

The third method employs Direct Memory Access (DMA). The

source microcomputer sends a request for DMA to the destination

microcomputer. The destination microcomputer forces its address

and data buses into high impedance state. The source can then

access the address and data buses of the destination

microcomputer to access its memory. Then the source

microcomputer can write into this remote memory as if it were its

own memory. A tristate buffer is required to isolate the common

buses of the two microcomputers (67), (77). During the DMA the

destination microcomputer is not executing any program. After

the DMA is complete a signal transmitted to the destination

microcomputer restarts it. This method of data transfer requires

complex circuitry. Tanabe and Matsumoto (74) have described a

dual bus microprocessor. This microprocessor is capable of

behaving as a master or a slave depending upon a control signal.

The dual bus architecture allows use of both the buses (local and

global) simultaneously, for example on the internal bus the CPU

is executing its program, while the external bus is being used

for DMA. This prevents the microprocessor idling during DMA,

thus increasing the throughput.

6-9

6.4.1 Time-shared Bus

A time-shared bus is sometimes also referred to as a shared

bus (22), (71), (72). This is a single bus which is used by

several processors to communicate with each other, or with some

other processor or 1/0 device at different intervals of time. A

shared bus has more than one source and destination. The shared

bus may be unidirectional or bidirectional. The data transfer

rate is low but the cost is also low. The complexity of the

hardware and control function increases with the increase in the

number of processors on the bus. A major disadvantage is that

only one processor can act as a source at a time, and the rest of

the processors are effectively cutoff from the bus during this

period see figure (6.7). A bus arbiter or a multip_lexer controls

the dynamic communication path between the two devices.

Additional systems can be connected to the bus, without major

alterations in the link, provided that the arbiter has the

capacity to control all the devices. Such a system is called a

modular system.

6.4.2 Dedicated Link

A dedicated link is the one in which there is only one

source and one destination per link see figure (6.8). A

dedicated link provides high speed communications at the expense

of increased cost. These dedicated links can either be

unidirectional or bidirectional. If an additional device is to

be connected to the n-device system then n(n-1)/2 number of links

are required. This kind of system is non-modular.

6-11

CONTROL BUS

DATA BUS

o, 02 Dm

Figure 6. 7: A shared bus system.

A B

0 C

Figure 6.8: Several devices interconnected throuqh dedicated
link.

6.5 Parallel Processor Systems

The term parallel processing is used in a very general

sense, which involves methods. to improve computational speed by

performing calculations simultaneously or in parallel.

Each of the CPUs has its own local memory (RAM and ROM).

These local memories are not accessible to any other processor,

not even to the master. The role of the master in this

configuration is to control the data flow to and from the slaves.

The master can also initiate the task. This type of system is

useful in implementing algorithms with inherent parallelism (59),

(61). Then a big task is broken down into subtasks and each

processor is allocated a subtask (73). The processors

communicate with each other through the 1/0 ports or dedicated

buses. A master processor supervises the entire system. The

master is capable of communicating with all the slaves. This

kind of system is of dedicated type, and it is not very suitable

for general applications. Another approach to such a system is

that the master is capable of accessing the local memory of the

slave(s). This makes the system programmable and more flexible,

i.e. the master can transfer program(s) into the local memory of

the slave(s) and request them to execute this program on a

particular set of data (63). After completing the task the

slave(s) informs the master and goes into an idle state and waits

for the next task. This method is also useful when the raw data

is to be preprocessed to be used at a later stage during the

program execution by the master.

6-12

A parallel processor system basically forms an MIMD machine.

All the processors are under the control of a central control

unit. Increased parallelism makes the system special purpose or

dedicated, while low order of parallelism makes the system less

efficient. Parallelism in a particular problem is obtained by

examining the size and type of the problem.

FFT type algorithms can be implemented on a parallel

processor system provided that the data exchange among the

processors are performed in an efficient manner (1).

Parallelism in an algorithm is defined as number of

arithmetic operations that are independent and can therefore be

performed in parallel i.e. concurrently. A system which can then

utilise this parallelism in full would give a highly efficient

system.

6.6 Array Processors

A processor is defined as a computer without a control unit

(66). These processors can be arranged into arrays with a single

control unit. These processors are then much easier to design

using integrated circuit technology on a single chip. This would

basically form an SIMD machine. The control unit, depending upon

the instruction, can disable or enable a particular processor.

If a separate control unit is provided for each processor then it

would work more autonomously, but still working under the control

of a central control unit.

6-13

Performance of an array processor is the (data) bandwidth or

maximum throughput measured in terms of maximum number of results

that can be generated per unit time. One measure often used for

high performance machines is the number of floating point

operations per second (flops). Sometimes a bigger unit,

megaflops (million floating point operations per second), is also

used.

Array processors are employed for implementation of

algorithms which have inherent parallelism (62), (70). Each

processor share the task of processing the data, the load on each

processor should be kept at the same level. As the processors

are physically located in close proximity to each other, parallel

connection exists between them. Each processor can have its own

program and data memory. The control unit can appropriately

enable or disable the processors as required.

6. 7 Processor - Memory Interconnection

Processor to memory interconnection is one of the essential

factors to be considered while designing a multi processor

system. The connection to the main memory with a number of

processors can be achieved by multiplexing through a switching

network (87).

Figure (6. 9) shows a cross-bar switch matrix interconnecting

processors P and memory or 1/0 modules M. The advantage of this

arrangement is that the connection between several processors and

memory modules can be achieved simultaneously, provided they are

accessing different memory modules. In this case the efficiency

6-14

PROCESSORS

pl p2

M, I'

'"' "

0 - M2 \, '

>
~
0 I ' .,
~

I .
UJ

I I t t ~

Mn

Figure 6. 9: Processor-memory interconnection through a cross-bar
switch.

S SWITCH

P PROCESSOR

Figure 6.10: Several processors connected to a ring throuqh
switches.

would be a maximum. Some arrangement must be provided to prevent

simultaneous access by two or more processors to a common memory.

The cost of a large cross-bar switch may exceed the total cost of

the rest of the system.

Arden and Berenbaum (65), have described a switch with four

ports, of which one is the input port and the rest are output

ports. The connections of the input port to any of the output

port can be achieved by proper addressing. These three output

ports can further be connected to similar switches which can

extend the capability of the processor to access a bank of

memories. But care should be taken not to connect more than one

processor to the same memory module accessing a different

address. This is referred to as memory interference and it is

entirely under software control. Another kind of contention in a

multi processor system which can arise is the access of the

common system routines or tables. This kind of contention is

called system contention. To overcome this problem the routines

must be reentrant. A reentrant routine is the one which can be

executed by several different processors simultaneously, data

should be in different data memory for each processor.

Interleaved memories may also be implemented. In an

interleaved memory structure even and odd addresses are located

in different memories, such that they can be accessed one after

the other in quick succession. This reduces the constraints due

to the low access time of the memory. For instance the processor

fetches the instruction (op code) from the even address, in the

next cycle it will fetch operands from the odd address memory

6-15

module.

6.8 Computer Systems

The computer systems can be connected in several ways, few

of them are described below.

6.8.1 Ring Structure

A ring or mesh network is shown in figure (6.10) (22). The

ring structure is used for long distance communications or local

area networks. The switches 51 to 56 behave as multiplexers, the

processors Pl to P6 are interconnected through these switches.

Each of the processor before transmitting the data sends the

address of the destination processor to the link. Appropriate

switch is selected and then the data is transmitted. A

particular switch then selects its local processor as the

destination and routes the data to its local processor, otherwise

forwards it to the next switch in sequence. This form of network

is modular. A facility in the system to reconfigure itself in

case of a switch failure makes the system more reliable.

6.8.2 Star Link

A star link shown in figure (6.11) consists of centralised

con troller C. Processors talk with each other through this

central control switch.

cripple the entire system.

Failure of the control switch C would

6-16

C CENTRAL
CONTROLLER

P PROCESSOR

Figure 6.11: Several processors connected to a central control
switch to form a star configuration.

P PROCESSOR

Figure 6.12: Fully connected multi processor network.

6.8.3 Fully Connected Link

A fully connected network is shown in figure (6.12). In a

large computer network all the computers may be connected to each

other through a dedicated or a time-shared bus. This allows the

system to bypass a busy or a faulty processor. There is no

central control, each processor is allowed to communicate with

any other processor independently when required. This network

will be costly to implement due to multiple connections. The

fully connected network is highly non-modular.

6-17

D-V\PTER 7

A Dedicated Parallel Microprocessor System

7.1 Introduction

A number of microprocessors are available now commercially

(75), (76). Microprocessors are slow for many applications.

However, additional hardware may be employed for better

performance e.g. an array processor interfaced with a main frame

computer may increase its performance many fold (62), (70). The

software on the mainframe computer must be able to detect the

degree of parallelism in an algorithm, and generate appropriate

code for it.

Arden and Barenbaum (65), and Enslow (66), have suggested

that employing several cheap processors in parallel can in

certain cases outperform an expensive mainframe computer. With

the availability of cheap microprocessors parallel processing

technique to implement WFT A was investigated.

Figure (4.3) shows a flow diagram of the 15-point WFTA.

Figure (7.1) shows another way of representing it, which

illustrates the two dimensional structure in the algorithm. A

transform of length N, which can be factorised into n mutually

prime factors (N = r1 xr2x ••• xr n) will have an n dimensional

structure. For example in this case N = 15, the two mutually

prime factors are 3 and 5. When the 15-point WFTA is implemented

on a uni processor system, the 'DO' loop simulates a· parallel

processor system, calculating the values sequentially rather than

7-1

0
1
8

8
4
6

e

' 8

I
10
11

18
18
1.&

-

I
n
p
u
t
s
h
u
f
f
1
e

iooo.-

I
I

0 / /
0 / //

lD / ,;x. /
/ /

8 / /

• / /
W_ / /

/ / I
8 / /

u / / t 1 / /_

/ /

I / ./
14 / /

• ./ / ' L

18 ~ / /
B / / ., / /_

/ / ~

8-polnt--~
~

j_
I

.....

...
:::

'~

• J\

:::

~ v y

Kultlplloatlon
with Ooefflalenta

r--

/ / 0
L~ / 1Q

/ ...x- / 0
/ /

0 / ./ 8
/ / 1 u

/ / 11 t
/ p

u
/ / 18 t

/ / .,
gl / / B

L u
/ / 8 f

/ L _18. f
/ / • 1

/ e

/ / I
/

/ " / / 1B
/

.___

S-po!nt post.-wea1

6-point pre-weave 6-po!nt post-weave

Figure 7.1: 16-Point Winograd Fourier Transform Algorithm {WFTA)
showing a two dimensional structure

0
1
8

8

' C5

8

' ·e

I
10
11

18
18
14

simultaneously. Coding of a 'DO' loop also hinders efficient

program execution. In the case of the WFTA the program coding

requires double indexing in the memory to acquire data for

arithmetic operations which would load the microprocessor

heavily. The consequence is that the microprocessor will spend

more time in the indexing and data organisation than actually

performing the arithmetic operations.

We are interested in designing a dedicated parallel

microprocessor system to implement the 15-point WFTA.

Implementation of the 15-point WFTA on a parallel microprocessor

system would circumvent some of the problems arising in the uni

processor implementation of the algorithm (59), (61). The amount

of indexing to be performed by each of the microprocessors is

reduced considerably, and fewer data are to be manipulated by

individual microprocessors. This frees the microprocessors for

more vital tasks. Zohar (60), has suggested the use of address

processors to calculate the addresses of the data beforehand,

which would effectively increase the systems efficiency.

Attention is now drawn to some essential factors which must

be kept in mind for designing a parallel microprocessor system.

These factors are, the transform length N, choice of a suitable

microprocessor, inter microprocessor communication, systems

organisation, cost and power requirements etc.

7-2

7.2 Choice of a Microprocessor

To investigate the possibility of parallel implementation of

the 15-point WFTA requires the selection of a suitable

microprocessor. This was done by writing benchmark programs to

test the microprocessor's performance in this application. These

benchmark programs (for modular arithmetic operations) were

written for the following microprocessors, TMS9900, MC6809, Z80

(89), 8X300 (90), COP402 (91) and 6502 (92). Among these the

TMS9900 is a 16-bit microprocessor, whereas the MC6809, Z80 and

6502 are 8-bit microprocessors. The 8X300 and COP402 are 8-bit

and 4-bit micro-controllers respectively. The MC6800

microprocessor was not included in the above list, because the

MC6809 is an enhanced version of the MC6800, and is much faster

and more versatile than its predecessor. All these benchmark

programs were run on the respective microprocessor systems to

test their accuracy, except for the 8X300 and the COP402, which

were not available at the time. Appendix-A contains source

listings of these benchmark programs, listings for the two

micro-controllers are excluded.

Results of these benchmark programs

(7.2) to (7.4). Figure (7.5) shows

are

the

shown in figures

cost of these

microprocessors (1981), which was one of the considerations to

obtain a cost effective design (also see tables (3.1) to (3.3)).

Comparison of these results show that the MC6809 microprocessor

gave an optimum choice. Two of the important features of the

MC6809 microprocessor which led to its selection were the

availability of an unsigned hardware multiplier and the SYNC

7-3

u
w
(/)

40

~ 20
w
~
.....

10

0~----~----~----~----~--~_. ____ _. ___
zso COP402 9900 6502" 6809 8X300

Figure 7.2: Results of the benchmark programs for modular
addition.

1070 i
40

l 30
u
w
(/)

~

w 20
~ -.....

10

0~----~-----L----~~----~----~----_. __ _
COP402 9900 6502 6809 BX300 ZBO

Figure 7.3: Results of .the benchmark programs for modular
subtraction.

50

10

I
6502 6809 8X300 Z80 · COP402

Figure 7.4: Results of the benchmark proqrams for modular
multiplication.

o~--~--~--~--~--~----~1
COP402 6809 8X300 . Z 80 9900 6502

Figure~ 7.5: Cost of the microprocessors (1981).

instruction. In spite of being an 8-bit microprocessor, its

powerful addressing and indexing modes can provide an outstanding

performance comparable to the 16-bit microprocessors. Among the

rest, only the TMS9900 microprocessor contains an unsigned

hardware multiplier.

7.3 Architecture of the MC6809 Microprocessor

The Motorola's MC6809 microprocessor is an 8-bit

microprocessor, with 16-bit addressing, housed in a 40 pin d.i.l

package. Figure (7.6) shows a block diagram of the CPU

architecture (78), (79).

It consists of two general purpose 8-bit registers A and B,

often called the accumulators. These registers are mostly used

for arithmetic purposes. The repertoire of the microprocessor

contains signed and unsigned 8-bit and 16-bit arithmetic

operations. The accumulators A and B may be concatenated together

to form a 16-bit accumulator D, thus allowing 16-bit arithmetic.

An 8-bit Condition Code register (CC) provides information about

the current machine status.

Two 16-bit index registers X and Y are used in the indexed

mode of addressing. These registers are quite useful when

sequential data access to and from the memory is required.

However, an offset can be specified in the instruction, then the

address in an index register behaves as a base address. The

accumulators can also be used to hold this offset.

7-4

AO -A15 00-07

J

*-
~

1111!

16 Is
' .. PC - ... IR

u - .. -
.. s - ... I

"" y - .. INTERRUPT
CONTROL

... ... X ... - - .,.
I

o{ A ' -~.
B

BUS

- DP cc_ ... CONTROL

~
'P I

vw
ALU .. -

TIMING

I

Figure 7.6: MC6809 CPU block diagram.

MPU STATE
BA BS

0 0 NORMAL RUNNING

0 1 INTERRUPT ACK.

1 0 SYNC ACK.

1 1 HALT OR BUS GRANT

Table 7.1: MC6809 CPU statP..

~

fE-

fE-
~

~

oE--

...
_

Vee
Vss

RESET
NMI
FIRQ

IRQ

DMA/BREQ
R/W
HALT
BA

BS
XTAL
EX TAL
MRDY

E
Q

There are two 16-bit stack pointers called the hardware

Stack pointer S, and the User stack pointer U. These stack

pointers can be used with the same addressing modes as the index

registers X and Y. These registers work as pushdown stack

pointers, and are accessible to the programmer. When subroutines

or interrupt routines are to be executed, the microprocessor

automatically utilises the address in the stack pointer 5 for

saving the entire machine state in the memory. The stack

pointers U and 5 may be used as pointers for the pushdown stack

thus supporting pull and push instructions. This pushdown stack

allows to pass arguments to and from the main program to the

subroutines, interrupt routines etc.

A 16-bit Program Counter (PC) allows access to 64K bytes of

memory. The program counter contains the address of the next

sequential or logical instruction to be executed. An 8-bit

Direct Page (DP) register is available to enhance the direct

addressing mode. The contents of this register serve as high

order 8-bits (A8-A15) during the direct addressing. The DP

register is cleared when the microprocessor is reset. This

register allows 8-bit relative addressing within the page, whose

base address is in the DP register. The direct addressing mode

requires fewer program bytes and executes much faster· than the

absolute addressing mode.

The microprocessor also contains an onchip oscillator, which

is accessed through two input pins. This oscillator may be

operated by an external crystal of frequency 4f (where f is the

bus frequency, typically f = 1 MHz). Alternately an external

7-5

(TTL) clock source of 4f may be used to operate the

microprocessor. The latter arrangement is useful in systems where

synchronous processing is required e.g. in multi processor or

parallel processor systems. Two output clock signals E and Q

(1 MHz), are used for external timings. Addresses are valid on

the leading edge of Q, and data are latched on the falling edge

of E.

A low level on the RESET input forces the microprocessor

into a known state. A low level on the DMA/BREQ input forces the

data and address buses into high impedance state, so as to permit

a direct memory access. A low level input on the HALT line halts

the microprocessor indefinitely after the end of current

instruction without loss of data. A MRDY input allows the

microprocessor to access slow memories, by stretching its clock

signals. However, the clock signals may not be stretched beyond

10 microseconds without loss of data. A R/W line indicates a

Read (high) or a Write (low) cycle. Two output signals BA (Bus

Available) and BS (Bus Status) gives information about the

current ·machine status as shown in table (7 .1).

7 .3.1 Hardware and Software Interrupts

Three levels of hardware interrupts are available, and are

priori tised in the following order, NMI (Non Maskable Interrupt),

FIRQ (Fast Interrupt ReQuest), and IRQ (Interrupt ReQuest).

The NMI is a negative edge triggered interrupt and cannot be

disabled through software. When this interrupt occurs, the

entire machine state is saved on the hardware stack. This

7-6

condition is indicated by setting the E flag in the condition

code register. After a reset, the NMI will not be recognised

until the first program load of the hardware stack pointer S.

Both the FIRQ and the IRQ are level triggered interrupts and

are maskable, i.e. these interrupts can be disabled or enabled

through the software. If the F or the I bit in the condition

code register is set to logic 1, then the respective interrupt is

disabled. Otherwise it is enabled. The FIRQ is the fast

interrupt in the sense that, unlike NMI and IRQ it does not save

the entire machine state, but saves only the condition code

register and the program counter on the hardware stack. The E

bit in the condition code register remains cleared. The IRQ

interrupt works in a similar fashion as the NMI interrupt, except

that it is maskable.

Three levels of software interrupts are also available, and

are useful for debugging the system and for software development.

Decoding of the low order 4-bits on the address bus determines

which level of interrupt had occured.

7 .3.2 Microprocessor Synchronisation

In a parallel processor system a single out of step

processor can produce chaotic results. Synchronisation can be

achieved by handshaking at hardware or software level. The

handshaking allows data exchange between two or more processors

without loss of information.

7-7

The MC6809 microprocessor is provided with a SYNC

instruction which may be used to synchronise the microprocessor

to an external event. When the microprocessor executes the SYNC

instruction,· it stops processing the instructions and waits for

an external interrupt. Two output pins BA • BS = 1 indicate the

SYNC acknowledge, where '.' represents a logical AND operation

(see table 7.1). If the pending interrupt is a nonmaskable (NMI)

or a maskable interrupt (FIRQ or IRQ) with its mask bits (F or I)

clear, then after receiving the external interrupt the

microprocessor will clear the sync state and will execute the

appropriate interrupt routine. However, if the pending interrupt

is maskable and it is disabled, then the microprocessor will

simply clear the sync state and resume normal operation. This

instruction is ideally suited for the situations where the

expected input data are occuring randomly, and the microprocessor

cannot process further data without it. This data can be from

another microprocessor or from some other source.

The use of SYNC instruction is equivalent to a wait loop.

An advantage of using the SYNC instruction is that it is faster

than the wait loop, since the microprocessor will proceed further

as soon as it receives an interrupt. However, in the case of a

wait loop a small delay may be introduced before the processor

can proceed furthe~

7.4 Inter Microprocessor Communication

In a multi processor or a parallel processor system it may

or may not be a requirement for the processors to communicate

7-8

with each other at all. However, if a processor requires data

from another processor during the task execution, then some form

of inter processor communication is required. The method of data

exchange will depend upon whether the system is loosely or

tightly coupled.

To investigate a principle for inter microprocessor

communication a simple example is presented. Consider a system

with two general purpose processors PI and P2 (see figure 7.7).

Each of the processor has its own local program memory, and some

arrangement for decoding the address and generating the

appropriate read/write signals. Consider two latches LI and L2

with tristate outputs, these latches are connected to the

processors such that, PI can only write into LI and P2 can only

write into L2. Furthermore, PI can only read the contents of L2

and P2 can only read the contents of LI. In other words LI is a

write only and L2 is a read only latch for PI, and L2 is a write

only and LI is a read only latch for P2. This arrangement forms

a loosely coupled multi processor system, and the associated

latches may be visualised as 1/0 ports. These latches are

connected through dedicated parallel data buses, with two

associated control signals. These two control signals are the

output enable (OE) and the clock (CLK) signals.

The two processors exchange data with each other through the

communication latches in the following manner. When required, PI

writes data into LI and P2 writes into L2. The processors are

then synchronised with each other at this instant, and then the

processors read their respective read only latches (88).

7-9

.;. ...
~

LATCH
CLK L1 OE

DATA DATA
CPU ..,; CPU - --.,.

P1 BUS BUS P2

CONTROL CONTROL
LOGIC - - LOGIC

LATCH
L2

OE CLK

Figure 7.7: A two microprocessor system.

7.5 Dual Microprocessor System

Figure (7 .8) shows a block diagram of a practical circuit

based on the idea discussed in the previous section. This system

contains two MC6809 microprocessors P1 and P2. A TMS9900

microprocessor system serves as a host or master to control the

two slaves P1 and P2. Each of the microprocessors has its own

local program memory and no other microprocessor can access it.

A common single phase clock is used to operate the two slaves,

which is separate from the master's clock. The microprocessors

·are located physically very close to each other, and the

interface between the master and slaves is through dedicated

16-bit latches with tristate outputs. The master's side consists

of a 16-bit data bus, while the slave's side consists of an 8-bit

data bus.

In addition to the communication latches L1 and L2, each of

the two slave microprocessors have associated with them two

additional latches, namely IN1, OUT1 and IN2, OUT2 respectively.

IN1 and IN2 serve as the input buffer memory i.e. data to be

transferred to the slaves by the master are held in these

latches. Results calculated by the slaves are stored in the OUT1

and OUT2 latches, which are to be read by the master. The

working of these latches are similar to L1 and L2 as described

before, except that these latches are used to exchange data with

the master.

The HALT and the RESET inputs of the slave microprocessors

are connected to the output port of the master. The logic levels

on this port can be changed individually through the software.

7-10

..

vou

. -~ IN1 ~ MC6809
ADDRESS BUS

P1
12

SLAVE

BS
PROGRAM

14- MEMORY OUT1 BA
16. FIRQ
(/) l OATA_8US :::> - _.
CQ

8
__. ·4(51 14-

~ t- r G' TMS9900 oc{ ·~ c
MASTER "" _r

L G1 G2 -~ 2
""'""

::0 1/0 - " m L1 PORTS J :J: Ul - -)> m
we r- ~

-f
~

;)Gs ADDRESS 16 52 ~ BUS ,PATA BUS - I 8 ADDRESS
FJfQ DECODE AND

CONTROL PROGRAM LOGIC ~ ~T2 .BA MEMORY
BS

,~
MC6809 12 ~

P2 ADDRESS BUS
TO READ ONLY

~ IN2 r. SLAVE AND WRITE ONLY
LATCHES

Figure 7.8: TMS9900 microprocessor controlling the two slaves
(MC6809).

f
L2

1

Initially the master resets and then halts the slaves, until it

has transferred data into the input latches of the slaves.

Another important feature in this system is the

synchronisation between the two slaves. This is achieved by

using the SYNC instruction and the FIRQ interrupt input, with the

F bit in the CC register set to logic 1. When the HALT input

goes high the slaves read the input latches and transfer these

data values into their appropriate communication latches, and

then execute the SYNC instruction. The sync acknowledge signal

from the two processors are ANDed (G3) together and inverted to

generate interrupt to themselves. This condition indicates that

valid data are available in the latches L1 and L2. After

receiving the interrupt the slaves read their appropriate read

only latches, and perform the desired operation. One of the

slaves was chosen to perform modular addition and the other

modular subtraction.

Some form of protocol is also necessary between the master

and the slave microprocessors to facilitate synchronisation and

communication. For this purpose an 8-bit status (STATUS) latch is

also associated with each of the slaves 51 and 52, only the least

significant bit is used. The output of the status latch

determines the system status. For example a logic 0 at the

output of the status latch indicates that the slave is busy

executing its program. While a logic 1 indicates termination of

the task (see figure 7.8), the slaves execute the SYNC

instruction after setting status to logic 1. The output of the

two status latches are permanently enabled and are ANDed (G1)

7-11

together to generate the system status signal. Another · 1-bit

signal which is being ANDed in G1 is obtained from the output

port of the TMS9900 microprocessor. This bit is called the

status control bit (SCB). When this bit is low the status latch

output has no effect on G3, as G1 is disabled. When the master

desires to read the output latches, it sets the status control

bit to logic 1, and continuously monitors for the output of G1 to

go high. When the system status signal goes high, the master

reads the output latches. The slaves execute the SYNC

instruction after outputting the data, hence the slaves will

remain in that state until the status control bit goes low again.

This is done by the master after transferring new values into the

input latches, which forces the output of G3 low, thus generating

an interrupt to the slaves, the slaves repeat the same cycle

again, by first clearing the status latch.

This loosely coupled multi processor system was designed

just to test its performance and the principle of slave-slave and

master-slave communication. Addi tiona! software on the master

checks that the results calculated by the slaves are correct.

7.5.1 Merits and Demerits

In general two microprocessors cannot communicate with each

other in real time, without one of them waiting for the other to

send data. But if some intermediate buffer memory is used, then

the source microprocessor can transfer the data into this buffer

memory, and the destination microprocessor can read this data at

leisure. If we are dealing with a single or a double byte

7-12

buffer, then care must be taken that the source does not

overwrite this data before the destination microprocessor had a

chance to read it (64), (68). Another situation might also

arise, in which the destination microprocessor keeps reading the

same data without realising that the data have not been updated

since it was last read. These conditions can be circumvented by

using a single bit flag which indicates whether the data had been

read or updated in the buffer or not.

Previously we have seen that the latch was used as a

communicating medium between the two microprocessors. The input

of the latch is connected directly to the data bus of the source

microprocessor. The output of these (tristate) latches can be

connected directly to the data bus of the destination

microprocessor. The control signal i.e. the clock (CLK) and the

output enable (OE) may be appropriately generated. This means

that each side of the latch consists of ten lines in all, i.e. an

8-bit data bus and two control signals for either the output

enable or the clock signal (since 16-bit data is being

transmitted through a unidirectional dedicated data bus). We are

investigating a method for inter microprocessor communication to

be used for the implementation of the 15-point WFT A. We will see

later that in the parallel microprocessor system (for the

parallel implementation of the WFTA) only one 16-bit value is

exchanged between two microprocessors at any instant on a

particular bus. The use of latches thus reduce the circuit

complexity considerably, but at the expense of increased chip

count, cost and power consumption.

7-13

Alternately a common memory (RAM) can be employed for inter

microprocessor communication. Although it provides more storage

and may be cheaper, it also increases the circuit complexity

considerably. The major problem in a shared memory system is to

prevent memory conflict or memory contention. An attempt by two

or more microprocessors to access common memory is called memory

contention. The shared and the local address and data buses have

to be multiplexed (67). The throughput is reduced considerably

when all the processors wish to access the common memory

simultaneously. Hoffner and Smith (68), have suggested a method

of preventing memory contention in a system with two MC6809

microprocessors by operating them opposite phases of a common

clock. The number of microprocessors connected in this manner is

limited to two.

7.6 Design and Implementation of the Dedicated Parallel
Microprocessor System

The dual microprocessor system worked quite satisfactorily.

The method adopted for inter microprocessor communication through

latches seemed quite suitable for the parallel microprocessor

system to implement a 15-point WFTA. Each of these latches would

be connected through dedicated unidirectional 8-bit data buses.

All the data exchange among the microprocessors can then take

place simultaneously, hence the system should provide a very high

efficiency and throughput.

Close examination of figure (4.3) reveals that the

implementation of the 15-point WFTA algorithm consists of

following steps.

7-14

1. Input shuffle or reordering

2. Five 3-point preweave or premultiply adds

3. Three 5-point preweave or premultiply adds

4. Eighteen modular multiplications with precalculated

coefficients

5. Three 5-point postweave or postmultiply adds

6. Five 3-point postweave or postmultiply adds

7. Output shuffle or reordering.

It may be noted here that the 5-point WFTA requires six

modular multiplications which requires extra storage. Hence the

total number of modular multiplications in the 15-point WFTA is

eighteen. Since modular multiplication is the most time consuming

operation, the parallel microprocessor system was designed such

that all the microprocessors share the load equally during the

modular multiplication.

complete system.

7 .6.1 System Architecture

This requires 18 microprocessors in the

Figure (7.9) shows a block diagram of the dedicated parallel

microprocessor system. The microprocessors are interconnected to

form a two dimensional array with three rows and six columns.

The five 3-point transforms are performed along the columns. The

microprocessors numbered 16, 17, and 18 do not take an active

7-15

A

c

E

I I I
I I I I I I I I I I 1 1 I
I

1 I
1 2 3 I 4 5 16

I

"""" - """" I - -
I
I
I

----------- ------------ ----- ----+- ----------- ------------------
I

I l1 I J I
I I I I I I 1 J I I

I
I

6 -- 7
....

8
I 1-.

9
.....

10 17 I
P""'"

""""
~ I """" """"

I
I
I ---------- --------- ---- ------+- ----------- ---~-------------

I

I.... . 11

'
I I 1

I I I ..
I I I I I I 1

I
I

12 13
I

14 15 - . 1-. I 1-. L-

I
I

- -- L__ I L__

Figure 7. 9: Block diagram of the parallel microprocessor system
(the control microprocessor is not shown).

1 l
I

18

8

D.

F

part at this stage hence no connection exists between them along

the column. For the three 5-point transforms the microprocessors

are active along the rows. Comparison shows that each '.'

(column wise) in figure (4.3) corresponds to a box which is a

microprocessor with associated hardware in figure (7.9). Each of

the connecting lines along the rows and columns consists of two

8-bit dedicated data buses with two associated control signals,

to facilitate bidirectional communication between the two

microprocessors. All the microprocessors in the system are driven

from a common single phase clock source of 4 MHz. Each of the

slave microprocessors generate their own local timing signals.

The microprocessors in the system are partially connected,

i.e. there are no redundant connections. This system basically

forms a loosely coupled dedicated MIMD machine. The prototype

system was assembled on seven standard plugin 6U eurocards, using

wire wrapping techniques. The dotted line in the figure (7.9)

shows how these microprocessors are distributed among the six

boards labelled A to F. The seventh board in the system consists

a contrql or a master microprocessor, with associated circuitry.

7 .6.2 Design of the Control Microprocessor

The slave microprocessors are not capable of communicating

directly with the outside world i.e. with a VDU or any other real

time device. Hence an extra dedicated microprocessor is employed

to serve as a host or a master microprocessor (not shown in

figure 7 .9). This brings the total number of microprocessors in

the system to nineteen. The control microprocessor not only

7-16

serves as a controller for the slaves, but also provides an

interface to the outside world. The control microprocessor has

an RS-232 serial interface with the VDU to provide access to the

system. Figure (7.10) shows a circuit arrangement for the serial

interface using Motorola's MC6850 ACIA (Asynchronous

Communications Interface Adapter). A baud rate generator

Motorola MC14411 is used to generate the receive/transmit rate

clock for the ACIA (82), (83), (84), (85).

The parallel microprocessor system appears to the master as

a black box, the only part accessible to the master are the input

and the output latches associated with the slaves. This black

box appears as an intelligent peripheral to the control

microprocessor. The master microprocessor transfers data to the

input latches and reads the transformed values from the output

latches. For demonstration purposes the ·master then reads the

output latches and stores these values into its memory and

displays on the VDU, or oscilloscope via a D/ A converter. The

master microprocessor does not interfere in the data exchange

among the slaves, and in fact it is unaware of that. All the 1/0

data has to pass through the master. For large N, this may

become a limiting factor, and may degrade the system's

performance. For example 178_ microseconds are required to

transfer fifteen 16-bit data· to or from the slave

microprocessors. Alternative arrangement can be made to transfer

the data directly into/from the input and output latches, which

would increase the throughput.

7-17

AO

DATA BUS

8

•SV

E R/W LINE
DRIVER

CS1
MC6850

~----~~1488L-----~

UNE
RECEIVER

RS-232

CHIP -----tCS2
SElECT CTS RXD....._----tU89_ _ __,

DCO

•SV
CRX CTX

MC144 11__RESET

15M RS RIW REGISTER
•SV

0
0 0 CONTROL

0 1 STATUS

1·834 MHz 1 0 RECEIVE
1 TRANSMIT

Figure 7.10: ACIA interface.

Figure (7.11) shows circuitry associated with the control

microprocessor. The control microprocessor has it own program

memory of 2K x 8-bits (2716), and 1K x 8-bit (2 x 2114) of local

RAM. A number of address decoders (SN74LS154) are required to

access all the input and output latches. A bidirectional bus

transceiver (SN74LS245) is used to drive all these latches which

reduces loading on the data bus of the microprocessor. However,

the local RAM and ROM are connected directly to the data bus of

the microprocessor.

An 8-bit write only control latch (CONTRL) is associated

with the master (see figure 7 .12). The output of the control

latch is permanently enabled and the low order 5-bits are used

for control purposes. A location STATUS in the RAM keeps a

record of the contents of the control latch.

signals are as allocated as follows.

Bit 0 master RESET for the slaves

Bit 1 HALT for the slaves

Bit 2 RESET for the baud rate generator

Bit 3 status control bit (SCB)

Bit 4 chip enable for the A/D converter

These control

Bit 5 signal to slaves to perform forward or inverse

transform

These bits can be individually set to a logic 1 or reset to

logic 0 through software using logical bit instructions. The

status control bit (SCB) is used to detect the condition of the

complete cyc~e of the transform (see figures 7.12, 7.13). When

the master desires to read the output latches, it sets the status

7-18

VDU I I CRO I ANALOGUE
URCE

J
1

ROM RAMI I 0/A [$
MC6809
MASTER

16 l
ADDRESS BUS

E~
RIWLJ..h---,

8 l • .
DATA BUS

, loRIVER~

CLOCK

OUTPUT ENABLE

__ ..,. ____ ------------------------------------
1
I

~ :.1 INPUT ~
LATCHES

ACIA SELECT OUTPUT

~PARALLEL
pP SYSTEM

ADDRESS DECODE BUS DRIVER LATCHES
'--t AND CONTROL SELECT

- - - - - • - - - - - - - - -- -- - -- - - - • • - - - - • - • -- - - - -A

LOGIC 0/A SELECT

t l ROM SELECT

A/0 SELECT

RAM SELECT

F iqure 7.11: Complete para lie I microprocessor system showinq
the master and the slaves.

RESET

HALT

STATUS
FROM
SLAVE
BOARDS

SYNC
FROM
SLAVE
BOARDS

SLAVE
BOARDS

I OFORWARD
.DATA BUS

t =
;""'": 1 INVERSE ls I
I
I 0 ·-I

CONTROL t 1 J_ A/D CHIP ·-- LATCH I
I ENABLE I (2 3 I
I
I RESET STATUS
I BAUD RATE .. I CONTROL c:::. GEN. '1: BIT ...

r
8 ·~-

c:

Gl
SYNC.

1~ ACK. I-- BA
~ BS

A MC6809

I G3 MASTER
I y I
I
I

FIRQ I
I

INHIBIT
"!"--

I G2 _.
f

INTERRUPT TO -

MASTER
BOARD

SLAVES

Figure 7.12: Master microprocessor with associated circuitry.

MC6809

CONTROL

74371.
DATA BUS .. D

8

LOGIC t----'

.MC6809
DATA BUS 74374

........ _ __,_ __ """, D Q ~----

CONTROL
LOGIC

MC6809

CONTROL
LOGIC

8

CLK
OE

-:.ir

74374

DATA BUS
- D

8

CLK

Q-

lOE.
-=

I .,.

I
I
I
I
I
I
I

STATUS OUT
FROM SLAVE
BOARD

Figure 7.13: Arrangement for generating STATUS signal from each
slave board.

control bit (SCB) to a logic 1 and executes the SYNC instruction

and waits for the slaves to complete the transform. When the

slave microprocessors finish the transform cycle, they set their

respective status latches to a logic 1, and execute the SYNC

instruction. At this time the output of the gate G1 goes low

disabling G2, simultaneously generating an interrupt signal to

the master through G3. The master then resumes normal operation

and reads the output latches. However, as long as the status

control bit remains high, it prevents the interrupt signal from

reaching the slaves. After reading the output latches the master

clears the status control bit. This forces the output of G1

high, enabling G2 and consequently generating an interrupt to the

slave microprocessors.

the transform.

The slaves then start the next cycle of

7 .6.3 Software of the Control Microprocessor

To facilitate the development of the software, the control

microprocessor provides an interactive interface with the

parallel microprocessor system (see figure 7.11). This allows

manual insertion of data into the parallel microprocessor system.

When the power is switched on, the powerup circuitry resets

the master microprocessor. The master then resets the baud rate

generator and the slaves, and halts the slaves. It then resets

and initialises the ACIA for the data receive/transmit data

format and the baud rate. The halt state of the slaves is then

cleared. Source listing of the monitor program is included in

appendix-D.

7-19

For test purposes a 15-point WFT A verify routine is stored

in a separate ROM (see appendix-D). The control microprocessor

executes the 15-point WFTA on the same input data as the slaves,

and verifies the transformed values obtained from the slave

microprocessors. The control microprocessor displays an error

message on the VDU, if the two results do not tally, and prints

these values. A 15-point WFTA was also implemented in FORTRAN on

a main frame computer to verify these results.

7 .6.4 Design of a Typical Slave Microprocessor

A typical circuit arrangement for the slave microprocessor

interfaced with local program memory 2K x 8-bits (2716), local

RAM 1K x 8-bits (2 x 2114) is shown in figure (7.14). However,

microprocessors numbered 16, 17 and 18 have a slight variation in

their circuit arrangement which is shown in figure (7.15). Each

of the six eurocards contains three such circuits. Each of the

slave microprocessors has associated with it input (INPUT),

output (OUTPUT), and status (STATUS) latches, except for the

slaves numbered 16, 17, and 18. In addition a number of

communication latches are also associated with each of them. The

number of latches for a particular microprocessor depends upon
(

how many microprocessors it is communicating with. All these

latches are 16-bit (2 x SN74LS374) latches, with tristate

outputs, except the status latch which is an 8-bit latch. The

clock and the output enable signals are generated using a 4-line

to 16-line decoder (SN74LS154), and gating it appropriately with

E and R/W. All the latches are driven by the bidirectional bus

7-20

E
R/W ~

f

.....)-L.c

E <~~~~~-1---t

R/W4--.....
MC6809 .

l ._
ADDRESS BUS 16

...--....a-.-..a.l_ DATA BUS
2716

--~cs ROM
E---t

8 J

PD/GM
}---

- 2x2114
CS RAM

r--
-- WE

A!!,_
1

A4

-...... ---
1

R!W

A10 1.r,

}-- R/W

1 8
8

~
..... DIR

J---....... ..;.._-=a6E 74 245
f

. r 1
11

'1,--'

CONTROL
LOGIC

t
TO READ ONLY·
LATCHES

1

A 8

DATA BUS

4 A0-A3

I

CONTROL
LOGIC

t.
TO WRITE ONLY
LATCHES

·Figure 7.14: Typicai slave microprocessor (1 to 15) with
associated hardware.

,

E
R/W

I..-

L...-.c

h.-
F

E -r----1
MC 6809

I
ADDRESS BUS f6

2716
r-'----t B R 0 M

PO GM

I

A10

~ ~
1 f

1 I'
~"

......

DATA BUS 8 r
E-~- h_ _2x2114

.-- ~ CS RAM
WE
I

R/W

DIR
l----.---.n"'oe 7424 s

A4
...... ..._1

4

7i.
8

DATA BUS

A0-A3

L-----------~~~.~~----1 CONTROL
LOGIC -

TO LATCHES

Figure 7.15: Typical slave microprocessor (16 to 18) with
associated hardware.

BUS
DRIVER

transceiver (SN74LS245), and the direction of data flow is

controlled by the R/W line.

The operation of slaves numbered 1 to 15 is as follows.

After receiving the reset signal from the master, the slaves set

their respective status latches to 1, and execute the SYNC

instruction. If the status control bit is high, the slaves then

wait until it goes low. After transferring the results to their

respective output latches the slaves set the status latch to a

logic 1 again. Thus allowing the master to read the output

latches. If at this instant the status control bit remains low,

the slaves start the next transform cycle assuming that the data

have been updated in the input latches. The microprocessors

numbered 16, 17 and 18 receive data from other microprocessors

just before the multiplication cycle. They behave as external

modular multipliers, whci for the most of the time are idling

(executing a series of SYNC instructions). After performing the

modular multiplications, these microprocessors return the results

to the appropriate microprocessors through communication latches.

These microprocessors then continue to execute another series of

SYNC instructions until the next multiplication cycle. Figure

(7.16) shows a flowchart for the master and slave

microprocessors, which also shows how the software of the master

and the slaves interact. Figure (7.17) shows a timing diagram.

7 .6.5 Software of the Slave Microprocessors

All the slave microprocessors are executing programs

concurrently although the software of each of the slaves is

7-21

MASTER

P-OWERUP RESET
INITiALISE

SYSTEM
RESET SLAVES

TRANSFER 1ST
SEQUENCE TO
SLAVES h(n)

I

' SAMPLE 2ND
SEQUENCE x(n)
.TRANSFER TO
SLAVES

SET SCB= 1
WAIT FOR
INTERRUPT
FROM SLAVES

REAO OUTPUT
LATCHES

SET SCB= 0

INTERRUPT

-
INTERRUPT

SLAVES

RESET FROM
MASTER

TRANSFORM 1ST
SEQUENCE AND
SAVE RESULT
H(k)

I ...
TRANSFORM 2ND
SEQUENCE AND
SAVE RESULT
X(k)

t.4UL TJPLY
Y = H ·X
INVERSE
TRANSFORM y(n)

STORE RESULT IN
OUTPUT LATCHES

SET STATUS :1
WAIT FOR -
INTERRUPT

1

SET STATUS:O

Figure 7·16: Flow diagram for the master-slave interaction.

SCB

MASTER

SYNC ACK.

STATUS

SLAVES
· SYNC ACK.

READ OUTPUT
LATCHES

INTERRUPT
END OF CYCLE)

INTERRUPT
(START OF CYCLE)

BUSY

Figure 7.17: Timing diaqram for the master-slave interaction.

different from any other. The source listings are given in

appendix-D. The symbol Rn means that this particular address is

of a read only latch and it is receiving data from the

microprocessor numbered n, where n can have any value between 1

to 18. For example, in the listing for microprocessor number 1,

R6 means that the microprocessor numbered 1 is receiving data

from microprocessor numbered 6 whose address is $0412.

Similarly, Tn indicates an address of a write only latch, where n

can have any value between 1 to 18. For example, in the source

listing of microprocessor number 1, T6 means that the

microprocessor numbered 1 is transmitting data to microprocessor

numbered 6 whose address is $0403 •

. All the modular arithmetic operations are coded directly in

the main program. No subroutines are being used, as this would

slow down the microprocessor considerably. For example for the

MC6809 microprocessor a JSR (jump to subroutine) instruction

requires 7 to 8 clock cycles, and an RTS (return from subroutine)

requires 5 clock cycles. This means that 12 to 13 clock cycles

are required for each subroutine call. Results in table (7.3)

show that the time for a single subroutine call is considerable

as compared to the total transform time. Table (7.2) shows

number of modular arithmetic operations for the 15-point WFTA on

a single and the parallel microprocessor system.

The slaves are executing their programs in an endless loop.

The master must ensure that the output latches are read before

they are over written by the slaves.

7-22

No. of pre-weave modular additions 39
No. of modular multiplications 18
No. of post-weave modular additions 39

Table 7.2a: Shows number of operations for the
15-point implementation on a uni processor.

Proc. No. No. of data exchange No. of additions
Receive Transmit

P1 2 2 2
P2 6 6 6
P3 5 5 5
P3 5 5 5
P4 4 4 4
P5 4 4 4
P6 4 4 4
P7 8 8 8
P8 7 7 7
P9 6 6 6
P10 6 6 6
Pll 3 3 3
P12 7 7 7
P13 6 6 6
P14 6 5 5
P15 5 5 5
P16 2 2 1
P17 2 2 1
P18 2 2 1

Table 7.2b: Shows number of operations per microprocessor
for 15-point WFTA on the parallel microprocessor system.
(Each microprocessor is performing one modular multiplication.)

7 .6.6 Synchronisation of the hardware and the Software

Synchronisation among the slave microprocessors is one of

the most crucial factors in this system. Recall that the slaves

are executing programs from their own local program memories.

The essential requirement is that they should do so in a

predetermined and in a synchronised manner. Each of the slave

microprocessors after performing a modular arithmetic operation,

stores the result in an appropriate communication latch and

executes the SYNC instruction. The sync acknowledge from all the

slaves are ANDed (G2) together as shown in figures (7.12) and

(7 .18). This signal is inverted and fed into the FIRQ interrupt

input of all the slave microprocessors. The result is that the

slaves cannot proceed further until they have all executed the

SYNC instruction. After receiving the interrupt the slaves read

their appropriate read only latches and start processing the data

further (see figure (7 .17)). The advantage in this arrangement

is that all the microprocessors always find valid data in the

communication latches.

This synchronisation could also be achieved by coding dummy

instructions such as a NOP (no operation) in the main program.

The purpose of these dummy instructions would be to waste

microprocessor time so that each of the modular arithmetic

operation is executed in equal number of clock cycles. For

example, 14, 18 or 22 clock cycles are required for a modular add

if the sum > 65535, 65521 > sum > 65535, or sum < 65521

respectively.

7-23

MC6809
BA
BS

MC6809
BA
BS

MCS809
BA
BS

_,.
"'

-
-"'

."'

'

-

SYNC ACK.

I

SYNC OUT
FROM SLAVE
BOARD

Figure 7.18: Arrangement for . generating the SYNC siqnal from each
slave board.

The former method for synchronisation was chosen for the

system, because the use of the SYNC instruction optimises the

program execution time for each transform cycle. However, in the

latter case the dummy instructions are executed when carries are

generated, so the time for the transform execution time is fixed

(equivalent to worst case).

7. 7 Transforms of Real Time Signals

A 12-bit successive approximation analogue to digital (A/D)

converter (RS754) interfaced with the control microprocessor

allows transforms of real time signals (see figure (7.19)). The

conversion time is between 15 to 35 microseconds depending upon

whether the 8-bit or 12-bit mode is being used. A sample and

hold (S/H) circuit (LF398) is used to hold the input to the A/D

converter steady while the conversion is being carried out.

A latch is connected to the output of the converter, such

that when the conversion is complete the data are automatically

latched into it. A read on this latch by the microprocessor,

also sends a start convert signal to the A/D converter, and to

the S/H circuit to hold the sample. The control microprocessor

then executes the SYNC instruction. When the conversion is

complete, the status bit from the A/D is used (as clock signal

for the latch) to latch the data and simultaneously _send an

interrupt signal to the control microprocessor. The advantage is

that the status bit (of the A/D converter) need not be monitored.

The control microprocessor reads this latch, this again sends the

start convert signal to the A/D converter, which then starts

7-24

OE
OE

ANALOGUE
INPUT

13 HOLD I
,..--6-1 SAMPLE AND SAMPLE _j

·01 T 7 HOLD CIRCUIT. 8

~ 5

cs 13
~ 3

CE · STATUS
AO

6 RS574 28

r' 16-27 2 -•SV

" REAO/CONV.

12

8 4
I I I l

1 D CLK 1 D CLK 74374 11 ~ 7!.374 11
MSB LSB

al 8

DATA BUS

6
~ 6

BA 85

iRa

MC6809
MASTER

Figure 7.19: Analogue-to-Digital (A/D) interface with the master
microprocessor.

I
j.OE (LATCH)

MASTER
SYNC ACK. \ J ?/' \ I

READ/CONV.

STATUS \ ~ 15 ;;;SEC :.\ I
AID

CONVERTER! CS \ I 7~£ \ I

READ

CONVERT

START

END
OF CONVERSION

I DATA I) HIGH IMPEDANCE (DATA)
\VALID _ _ 7/ _VALID . _ -

Fiqure 7.20: Timing diagram for the A/0 converter.

/

converting the next sample. The use of the latch simplifies the

circuitry and also increases the throughput. While the A/0 is

converting the next sample, the microprocessor is busy storing

the previous data into the memory. In this manner full advantage

of the conversion time is being utilised. A sampling rate of

28KHz is obtained, figure (7.20) shows timing diagram for the A/0

conversion.

Figure (7.21) shows an arrangement for a digital to analogue

(0/ A) converter (OAC1220) interface. Actually there are two 0/ A

converters interfaced with the control microprocessor. One for

displaying the input and the other for displaying the transformed

values on the oscilloscope. These are 12-bit multiplying 0/A

converters, with a typical conversion time of 1.5 microseconds.

Figures (7 .22) and (7 .23) show photograph of the master

board and the slave board (with three microprocessors)

respectively. Figure (7.24) shows a photograph of the parallel

microprocessor system.

A 15-point convolution was also implemented on the parallel

microprocessor system. Figure (7.25a) shows a pulse to be

convolved with itself. Figure (7.25b) shows the NTT of the

pulse. Figures (7 .25c) and (7.25d) show the product of the two

NTTs and the convolution respectively. However, if the amplitude

is large then the effect of modular arithmetic can be seen in

figures (7.26a-7.26d), which shows the folding of amplitude.

7-25

v REF IN

10pF

4 17 18
·DATA BUS· 1

MC6809 74374 DAC1220
MASTER 8

15 2 3
OE _f ":;:-

CLK

-:;-

F iqure 7.21: Diqi tal-to-Analogue (0/ A) interface with the master
microprocessor.

+V

2

3

-v

+V

ANALOGUE
OUTPUT

Figure 7.22: Photograph of the master microprocessor with
associated hardware.

Figure 7.23: Photograph of the slave microprocessor showing
three slaves on the board with associated hardware.

Figure 7.24: Photograph of the complete parallel microprocessor
system.

' -------------1

Figure 7.25
(a) Shows a pulse to be convolved with itself.
(b) Shows the NTT of the pulse.
(c) Shows product of the two NTTs.
(d) Shows convolution of the two pulses.

I

a

b

c

d

Figure 7.26
(a) Shows a pulse of a larger amplitude to be convolved

with itself.
(b) Shows NTT of the pulse.
(c) Shows product of the two NTTs.
(d) Shows convolution of the two pulses, folding of the

amplitude occurs due to the use of modular arithmetic.

a

b

c

d

7.8 Results ·

The program timings show that a 15-point WFT A run on a

single MC6809 microprocessor requires approximately 10

milliseconds to execute. However, when the parallel dedicated

microprocessor system is employed, the transform execution time

is reduced to 675 microseconds.

Table (7 .3) shows comparison of the 15-point WFT A execution

times. The program written in FORTRAN was not optimised for

time, but it gives a rough estimate for comparison.

System Assembler FORTRAN

MC6809 10 msec --
Parallel 675 usee --
Structure

TMS9900 4 msec --
IBM 370/168 365 usee 2 msec

IBM 370/4341 1 msec 5 msec

Table 7.3: Comparison of timings for the 15-point WFTA

The total power consumption of the system is about 65 watts,

and the total cost of the system is in the range of £ 1500

(1981).

7-26

D-IAPTER 8

Conclusion

The object of this work was to investigate and implement

WFT A on microprocessors and to design hardware to improve the

execution time. Special purpose hardware was also designed and

constructed to exploit parallelism in the WFT A.

An external hardware modular multiplier (mod 65521) was

designed, constructed and interfaced with the TMS9900

microprocessor. Since a number of modular additions and

subtractions are also ·performed it may be beneficial to employ an

external hardware modular adder (mod 65521). If an external

hardware modular adder is used then only three move instructions

are required for external modular add. This will save a compare,

an add, and two branch instructions.

designing hardware for modular subtraction.

There is no benefit in

A parallel microprocessor system was designed and

constructed for the implementation of the 15-point WFTA.

Benchmark programs were written for several microprocessors to

select a suitable microprocessor for the parallel structure.

Motorola's MC6809 gave an optimum choice, since it contains an (8

x 8-bit) unsigned hardware multiplier and a SYNC instruction (the

SYNC instruction is used to synchronise the microprocessor to an

external event). This parallel microprocessor is a very highly

dedicated MIMD machine. A host processor is used to control the

8-1

parallel structure. The use of the host processor was necessary

in the development stages since it provides an interface with the

parallel microproce~sor system. A serious difficulty is the

development of the software for the parallel microprocessor

system which requires large amount of effort, since proper

synchronisation between all the microprocessors must be

maintained at all times.

The parallel microprocessor system being very dedicated

executes the 15-point WFTA in times comparable with the IBM

mainframe computers. Table (7.3) shows the program execution

times on the parallel microprocessor system, MC6809 and two IBM

mainframes (model 370/168 and 370/4341). All these programs were

written in assembler language. This agrees with the argument

given by Arden and Berenbaum (65), and Enslow (66), about

achieving higher performance from several cheap processors rather

than an expensive one.

This p rag mat i c approach to parallel processing, i.e. to

implement one microprocessor per point may not seem to be a cost

effective design approach for a bigger size transform. However,

bigger size transforms can be implemented on the parallel

microprocessor system by combining the power of each of the slave

microprocessors with the power of the parallel structure. The

length of this transform should be an integer multiple N of L,

where N is one of the short length WFTAs, and L is the transform

length implemented on the parallel structure. This may be done

by allowing each of the slave microprocessors to accept N values

from the master, and perform an N point preweave. Then the

8-2

parallel microprocessor system is used to perform N (L length)

transforms. Finally each of the microprocessor performs the N

point postweave.

The parallel structure employs microprocessors with 1 MHz

clock, a 2 MHz version of the MC6809 is also available but at

much higher price. If the 2 MHz version is used then faster

memories have to be employed which means further increase in the

total cost of the system. However, this would double the program

execution speed.

Alternately, if an external modular multiplier is interfaced

to each of the slave microprocessors (as described in chapter 5),

this would also almost double the program execution speed.

However, the cost of a modular multiplier is considerable, and

this may not be practical due to cost.

The parallel microprocessor system is not 15 times faster

than a single microprocessor, this is due to the over heads

involved. Estimated time for 60-point WFTA on MC6809

microprocessor is about 50 milliseconds, of which 712

microseconds are required for input/output shuffle. On the

parallel microprocessor system the execution time is about 3.5

milliseconds.

8-3

Appendix-A

Modular arithmetic routines for the foJJowing microprocessors

i) TMS9900

ii) MC6809

iii) ZBO

iv) 6502

32/16-bit diVision routine for the MC6809 microprocessor

· Appendix-A

... ...

* * MODULAR ~RITHM~TIC PROGRAMS FOR TMS9900
"'· .,. **

I ;:: OPTION XREF,SYI-1T
AORG >4000 I ;:: * MODULAR MULTIPLICATION

I :::
I

.,t.,. ~ .. , .. MODULAR ADDITION ::: I
I

* ****************************
* START

OVER
OVR

UJPI
t~OV

r>1DV
A
JOC
CI
JL
AI
r~ov

WKS.
@AOl,iU
2A02,R2
Rl,R2
OVf:R
R2,65521
OVP
?2 ,15
R2,@SUM

* **************************** * * MODULAR SUBTR~CTION

MDV JSUBTl,Rl
r~ov · llSUST2,R2
MlJV Rl,R3
s R2,Rl
c R3,R2
JHE OVERl
AI Rl,65.521

OVERl ~10V Rl,@RES ... •..

... •..

... . ,.
wKS
AOl
A02
SUM
SUBT1
$UiH2
RES
MPR
;~ p J

PROD
~~ 0 8
LAST ..• ...
•'• ...
•'• .,.
•'• ... , ...

:;:

MOV ~MPR,Rl

MOV .:iH·IPR,Rl
r-lOV llMPO,R2
MPY R 1, R 2
O!V ;moo,R2
MDV R3, Ql DRIJ.O

s :i))0080

9$5 32
BSS 2
BSS 2
RSS 2
3SS 2
BSS 2
BSS 2
5SS 2
BSS 2
BSS 2
DATA 65521
END START

* ************~***,. * MOOULAQ ARITHMETIC PROGRAMS FOR MC6809 ~·.. . .,.
* ** ,.

•'• .,.

NAM
OPT
ORG

M6809
CRE,L,S,I..I,P
$30

I
lADS
I
I
I :;:

JMP OV~D

FOB 0
FOB 0
I=IJB ·. 0

A-1

... . ,.

::: t,: M.ODULA? AD:JITION * I* ****************************
* ~*************************** I* * MODULAR SU3TRACTIDN

... . ,.
... .. , .. ,

START

SI\IP
SK U'l

LOX
LflO
tl OD::J
BCS
CMPD
BLO
o. 0 OD
s fri

tJAOS
,X++
,x++
SKIP
"65521

.SKIP1
lj15

' X

I* ****************************
I :::
lOVER
I
I
I
I
IS t<. I P 2
I

LOX
LD':l
SUBO
BCC
AOOO

!

s Trl
JMP

t:!SBTN
,X++
,X++
SKIP2
!165521
' J
fJ v ~~ rn

Appendix-0.

SbTN FD8 0
FOB 0
FDS 0

"'• ...
... ~~~~~~~~~~~~~~~~~~~~~~·~·-·· ! , , , ... "'•"'"!" , , , ~ , , , , ..

,.; 16:::16 f:\IT MULTIPICATION "1:. I •,• •,•
.... ~~~·-~-~-~~~-~-~~-~··~-~-~~- I , , , , , .. , , , , , , , , ,
... I ...
0VER1 LOX tHIL T P. ISKI 0 6

LOY ttr·1L Hl ISKIP7
LOU !tP~001 ! 0/·1!T
CLR o., u I
CL~ 1 t u !SKIPS
lOA 1 , X. I
LD3 1 ~ y I
MUL I

STO z,u
LOA 0 , X
LOB 1 ' y SKIP A
~1UL

AODD l,U
STO 1, u
BCC SK!P3
INC o,u

SKIP3 L DA 1 , X
l D~ 0' y SKIPE
~1Ul SKI PC
ADDD 1, u
STQ 1,u
BCC SKIP4
!NC o,u SK!::>8

SKIP4 LOA o,x SK.IPC
LD8 I) , y 0"'1IT1
~WL MLTR
ADDD o,u t~L TN
STD o,u PR0~1

.,_ PQ002 ...
'!:: ---·~-~~~-~-~~~~·-~·-~·-·~~-¥¥¥~¥--~~·--¥-¥-¥¥¥¥¥~¥-~--- PRCD3
... ..• r·10DULARISING . .. PR004 . ,.,.
•'·,, J .. ~· • .. T E ~~ P ... ¥¥¥¥¥¥¥~~~----¥¥¥¥¥¥~··-¥-¥¥
... ...

* MCDULA~ ARITHMETIC PROGRAMS FOP ZBO

LOA
5EQ
LD3
~~uL

ADOC
RCS
C r~o D
BLO
ADDD
STD
LOA
SEQ
L::lY
CLR
CLR
CLR
LDo
"'UL
STD
LOA
13EQ
L.O ~
MUL
ADDD
BRA
L DO
ADDD
BCS
CW>[;

3LO
A. ODD
STD
JMP
FD9
r=og
FCB
FC~

FC~

FCS
~=oP.

=No

1 'u
Q:HT
~ 15

z,u
SKIP5
~t65521
SKIP7
!tl5
z,u
o,u
ornr1
:tT~i-10

O,Y
1 'y
2' y
:i15

o,v
0 'y
SKIPE
II 1 5

1 ' y
SKIP.fJ
1 'y
2,lJ
SK~ 0 ~
1165521
SKI PC
:i15
2,U
tt:S64

0
0
0
0
I)

0
b

... . ,.

--~----~~--~---~~-~~-·~~-~~~~~--~~----~·~--~---·--·---... , , , , .. , , , , , , , , , , , , ~ , , , , , ,

.~~*~~*~*~**~*****~**********
•'• ..• MODULAR ADDITION
****************~~*~********

START:
'JRG
LD
LD
~DO

100H
11L,(A001)
f:'.C,(A002)
YL,BC

JP c,cv~Rl

LD A,255
CP H
JP tlZ,JVEk'
LD A, 2 41

CP L
JP ?,QV=Rl
JP r-.JC,OVE~

A-2

. Appendix-A . A- 3

OVERl: LD 5(, 1 5 I LC tJ , (1-1 p t< 2)
ADO t-IL,BC I LD H ,.A

LD (S U ~1) , H L I LD A, (!·1 P 01)
OVER: JP SK!? I LD :: 'A

I CALL ~ULT

AUD1: OEFW 0 I LD (PDJ05),HL
AU02: OEFW 0 ! LO A,CM?Rl)
sur~: OEFW 0 I LO "1 ' A .. **************************** I LD A,(i~P02) , f·10 DIJLA R SU8TRACTIC~J ... I LD :'A ,,} .. ~., ... I CALL "1ULT , .., "'"" .. , , ~"•'" .. , , , , ~ , , , "•"'"'!"' .. , ..

SKIP: LD HL,(SUBTl) ! LD Cl!:,(PR005)
LD D~tCSUBT3) I ADD HL,Jc
AND A I JP ~., c ' ?, tlK

SBC HL,OE I LD B,l

LD A,CSUBT3) I LD .l,(P~:JD2)

LO !),.l I ADD A,~

LD A,CSUBT1) I LD CPR'J02),A
CP 0 !oAK: LO (PRO':'I5),HL
JP NC,OVR I LD .l,(;JR004)

JP Z,ZERO ! LD ::'A
BACK: LO 3C,65521 I LD A,(P=/0~1)

ADD HL·, SC I LD D,A
JP OVR I ADD "iL,DE

ZLRO: LD A,CSUBT4) I JP ~!(, 3 A K 1
LJ o,A I LD. ~ , 1

LD A,CSUBT2) I LD A,(P~002)

CP 0 I ADD A' g

JP NC,OVR I LD CPPJD2),A
JP Z,OVR IBAK1: LD (?RJll5),Hl
JP RACK. ! LD A,H

OVR: LD CRES),t-~L
,. LD (?RJOl),A

JP SKIP2 I LD t.,L
• I . , LD (?PC04),A

SUBTl: DEFB 0 I . ,
SUBT2: OEF8 0 I . ~~··~·~·~···-~-·--·~--~--·--, ¥¥¥¥¥¥-¥¥¥¥¥¥-¥¥¥YY¥¥Y¥¥Y¥¥¥

SUBT3: 0:FB 0 I 0 ... PRQ01:PRQDZ:PR003:PRQD4 ::: , ..•
SUBT4: DEl=~ 0 I ~· , "' , ,.. , , "' , , .. "'•"' , .. ~o· ., , , , ... ,

RES: OEFW 0 I 0 ,
****************~*****#***** I LD A,(PP001)

0 ... MIJDULAR MUL TIPLICATICPJ ·'· I LD H,A ,,. . ~~~~~·-··-·~~~~~~~~~~~·--~~~ I LD =' 15 , .. , , , , .. , , , .. .,.,
SKID2: LD A,(I-\PR1) I CALL t~UL T

LD H,A I LD DE,CPRr::J3)
LO A,O~P01) I ADD rlL,DE
LO E,A I JP NC,BAK2
CALL ~1UL T I LD ?.Ct15
LD (PR003),HL I ADO HL,SC
LD A,(MPR2) I LD CPR'JJ3),HL

LD H,A I JP ~.AK 3

LD A, (I~ P 0 2) I8AK2: LD (PROD3),HL

LD E, A I LJ 0,255
CALL MULT I CP H

L~ (PPOr:Jl),HL I JP ~JZ,3AKJ

Appendix-A

BAIC.6:

BAK3:

BAK4:

*

LD
CP
JP
JP
LD
ADD
LO
LO
LO
LD
CALL
LO
LD

LO
LO
LO
CALL
LO
ADD
LD
ADO
JP
LO
ADO
JP
LO
LO
CP
JP
L:J
CP

A1 241
L
Z,BAK6
NC,BAK3
BC ,15
HL,BC
(PR003),HL
A, (PROD2)
H,A
E,15
MULT
A,L
CTMPZ),A

A,O
CTMPl),A
E,t5
MULT
OE,(TMPl)
HL,DE
DE,(PR003)
HL,DE
NC,BAK4
BC,l5
HL,BC
BAK5
(PR003) 1 HL
.A, 25 5
H
NZ,BAK~

A1 241
L

BAK7:

BAKS:

JP
JP
LO
ADD
LO
JP

Z,BAK7
NC 1 BAK5
BC 1 15
HL 1 BC
(PR093),HL
OOOOH

A-4

**************************** ; * MULTIPLICATION SUBROUTINE*

MULT:

JUMP:

NOAOD:

MPOl:
MPOZ:
MPRl:
MPRZ:
PROOl:
PR002:
PR003:
PR004:
PRODS:
PROD6:

L,O
o,o
Bt8
HL 1 HL

.NC 1 NOAOD
HL,OE.
JUMP

TMPl:
fTMP2:

LD
LO
LO
ADO
JR
ADO
OJNZ
RET
OEFB
DEFB
DEFB
OEFB
OEFB
DEFB
DEFB
OEFB
OEFB
DEFB
OEFB
DEFB
END

0
0
0
0
0
0
0
0
0
0
0
0

I

... ... ** * MODULAR ARITHMETIC PROGRAMS FOR 6502 * * **
NAM M6502
ORG $1024

* **************************** * * MODULAR ADDITION
* ****************************
START LOX

CLC
LOA
AOC
STA
LOA
AOC
S TA
BCS
01P
BNE

#AOl

ltX
3 1 X
5,x
o,x
z,x
4,X
OVR
•sFF
SUBTl

OVR
SKIPl

SU8Tl

AOl
A02
SUM
SUMl

LOA
CMP
BEQ
BMI
LOA
CLC
AOC
STA
LOA
AOC
STA
JMP

ORG
FOB
FOB
FCB
FCS

5 t X
I$Fl
SKI Pl
SU8T1
5,X

Nl5
s,x
*0
4 1 X
4., X
SUBT

$0023
0
0
0
0

Appendix-A A-5

... ! LDA e.,x ...

... ~*************************** I STA z,x ...
•'• ·::;: MODULAR SUBTRACTION •'• I LOA 6,X
... -·-·------------------------ I STA I) ' l(.. , .. . ~i· , , , , , , , , ... , , , .. 4\'

•'• I JSP SU~RT
ORG SliJ 24 I LOA 4,X

SU~T LOX ~SUB I"•. ...
LOA tiO I STA 16,.(

STA CHECK I LOA 3,X
L DA o,x .I STA 1 59 X
C"'P 2,X I LOA 7 ·,X

REQ OM!T I STA 2, X
BCS JM? I -LOA 6,Y

I~C CHECK I STA o,x
JMP LOA 1 ,-x I JSR SU3RT
JMPl S E.C I L DA 4~X

SoC 3,X .I STA 14 9 X
STA s,x I LOA ?,X
LOA o,x I ST~ 13,X
S8C z,x I LD~ F, X

S T .A 4,X I .STI\ 2, X

L 0 ll. CHECK I LDA s,x
REQ ~WLTl I STA 0,X
CLC I JSR ~ U? RT
L DA s,x I LDA t.,X
ADC ~$Fl I . STA 1 2 ' .X
S T.A 5,X I LOA ., '(-· ' ·.··
LOA 4,X I STA 11 , X

ADC li$FF I LDA . .,_'X
STA 4,X L STA · 2 ,_x

MULTl . ji~P · ~IULT I ... •..
O~IIT L JA l,Y ' .L D .A. 5, X

CMP. 3,X I ST.l OtX
BEQ OM!Tl I JSR SU~RT

BCS JMPl I LDA 4,X
INC" ¢HECK I STA 1 0, X

Jl-.1g JI·IP 1 I LDA 3, X

01'11!1 ~q~ ~0 ! ST .:1. c; ' X
~ ; i. / . : .t ·~: ..

STA ~;x I
STA s;x I CLC
Jr-.1P MULT I LDA l4,X
ORG 'tC.023 ·I AOC 1 2 , X

SUB FDP. () I ST~ 14,X

SUBl FDS 0 I LD"A 1 3; X
SUBZ FCB 0

'
A I) C 11 , X

SUB3 FOB 0 I STA 13,X
CH!:CK != c 8. 0

'
LOA itO

..• ' I ADC 9,X ...
"· *********************~*#***~ I STA 1,X ...
... . .. MULTlPL!CAT!Qq ROUTINE ... I CLC ..•
..... ~·--~~~··~~~·~·~--··~~~~~··· ! Ul~ 1 5 , X ..• ..,~ .. ,.. ,., "·~ ~ , .. ~·~ , , .. '"'!'' ... , f , , , ,

"" ' ... I A JC l4,X
' ORG ·. I ST~ $·1 (\ 2 4 . 1 5 ' ~ . ' . ·~ . · .. ·.t. . • ~

HUL.T ll:X liMP~~ ! ~p ~'- :1 3, X
• - t •. :·.

: :~· .

; .. ' ::·:·;{~'j<: ·,·: ··':: .. · •:r .. <> ··. \:.····· .

Appendix-A A- 6

A DC 10,x I STA 2 ' Y.
ST~ l4.X I LD~ . ;t 1 5

LDA ttl) I STA 0' y

AJC 9,X I ~·
STA 13, X I JSq su:.cn

•'• I LD~ 4. ' y .,.
•'• ~~-~~----------~------------ I STA 1 8, X •.. ..., , , , , , ~ , , , , , , , ,~ .. , , , , ..
•'• ·'· ROUT IN: FOR 1·1 'J 0 U L A R I S I N G •'• ! LDA 3 , X ,. . ..
!~::: -~~--h-~-~------~-~------~--.. , , , , , , , ,,. , , , , , , , , , _, , , ! STA ? 'X
•'• I .,. LD~ -115

LOA 1s,x I STA I) ~ X

01P li$FF I JSR SUE'~T

RNE JMPA I C LC
L DA 16,X I LOA 4 9 X

Ci-1P :tSFl '
AOC 1 ~,X

3EQ J ~1 p 0 I STA 1 9, X

?.CC JMPA I LOA 3,x
Jf·l p 3 CLC ! ADC 1 8, X

A. DC ~ 1 5 ! STA 1 3 , X

STA 1 6 , X I CLC
LOA ~i$0 I L:JA 16,X
.l\ () c 1s,x I ADC 1 9 , X

STA 15,X I STA 16, X
Jt·1P A L DA 14,X I LOA 1 5 , X

STA 2tY I ADC 1 Q, , X

LOA ~1: I STA 1 5, X
STA 0, X ·I :.cs J ur~ P c
JSR SU~RT I C 11P #$~~

CLC I SNE ':)VERl
LDA 16,X I LOA 16,X
AD(4, X I (MD •$Fl
STA 16,X I 8EJ JU~PC

LOA 15,X I BCC ov:;n
A DC 3,X I JUMP(CLC
STA lS,X I L DA 16,X
BCC OVRA I ADC rtl5
LOA 15,X I STA 16, X
CMP q$ff. I LOA #0

3Nf OVPA I ADC 1 5 , X
LDA 16,X I STA 1 5, X

U1P ~$F=1 ICJVt;P.1 BRK
SEQ JMPC I•'• .,.
BCC OVRA '•'• .,. ***********~*****~*****~****

JNPC CLC I-·· ... MULTIPLICATION ROUTINE •'•, . .,.
A DC .It 11) I -·· ~-~~--~~-~-~-~--~~~~~~~--~--...

~¥~--~---·-¥-------~--------
STA 16,X I,.
LOA #$0 ISU8PT LOA #0
AOC 1 5, X STA 1 , X
s:A 15,X I STA 3,X

OVRA LOA liO I STA 4,X
STA 1 7 , X I LOY ttlj

STA 1 3 , X I JMP ~~1(_.

STA 19,X 1 ov~ Q .A SL 1 , X

LOA 13,X I ~SL 2, X

Appendix-A.

BAK

BAKl

OUT
•'• .,.
... . ,.
•'• ...

BCC BA'<
LOA ~1

OP.ll l,X
STA l,X
CLC
ROP !),X

gee flt~Kl

CLC
LOA z,x
A DC , .. , X
STA 4,X
LOA l,X
A!JC 3,X
STA 3,X
DEY
P.!:Q ~UT

JMP OVER
RTS

I
IMPLP.
I1-1CN!Jl
1 ~~c No 2
ITf.MPl
ITEMP2
IMPR
IMND
I PROD!
IPRC'D2
fPROD3
IPR'J04
I PRODS
IPROC6
IPPOD7
IPRG08
ITMPl
ITMP2
IT~~ P 3

I

ORG
Fcg
t=(CI,

FC8
FC3
!=CB
FD~

FJS
FC9
FC~.

FC'3
FC5
FCB
FC3
FC3
FC e.
FCI?o
FCS
FC~

END

~0023

0
0
0
0
0
0
0
0
Q
0
I)

0
c

0
0
0
0
START

A-7

-~~~~--~~-~~~-~~--~~~~·~~-·-~·~~---~~~~~----·-~-·~~--¥¥¥¥¥¥¥¥¥¥¥¥~¥¥¥¥¥¥¥¥¥¥¥--¥-~¥------------¥¥¥¥¥¥¥¥¥¥~-

....... . ,. ~ 32/16 BIT DIVISION FOR MC6809 MICROPRJCESSCR

START

SK IP3

SKIP4

NAM
ORG
LOX
LOY
LDU
CLR
CLR
L8A
LOB
~UL

srn.
LOA
LOB
MUL
ADDD
STD
BCC
INC
LOA
L08
MUL
ADOO
STQ
ace
I ~JC
LOA·
LOB

. ~1UL
AOQD
STD

DIVISION
$0000
#MLTR
~MLTN

#P~OOl

,u
l,U
1 , X
1 'y

.2 'u
'X

1 , y

1 ,u
l,U
SKIP3

,u
1 , X

' y

1,U
1 'u
SK!P4

,u
' X
'v
,u
'u

I:::
I::: ~-··~~····-~-~--~-~-~~---~--,, , ~ .. , ~ ,.. , "'•"' , , ,
I :': ~:

I ::: ot,:

I ::: :::
I ::: :::

32-BIT PRODUCT IN
PROD1:PPOD2:P~u03!~RJ04

... . ,.

... . ,.
32 BIT I 16 BIT UNSIGNED *
CI'/JSION •'• .,.

I* ~~~*~**~*~*~**~*************
I:::
I
I
I
I
I
I
I
I
I
IDIVICE
I
I
I
I
I

' I
I
I
ISK!P
I
I

LOIJ
STO
LDD
STD
LDD
STA
STO
LOA
STA
ASL
RDL
~OL

POL
RDL
LOA
RilE
LOD
OP'D
BCS
LOA
suP. A
STA

PRODl
0 V~·J D 2
PROD3
:JVNJ4
:tO
DVNOl
QUOTl
~16

COUNT
OVND5
DVN04
DVN03
DVND2
IJVNDl
OVNDl
SKIP
DVND2
ovs~ 2
CH:CK
DVr.JD3
::JVS~3

QVND3

Appendix-A A-8

LOA OVND2 !DVSR3 FC~ 00
SBCA DVSR2 !REM FC3 00
STA DVN02 IQUOTl FC3 00
LOA DV"JDl fQUOT2 FOB oc
sgcA OVSRl IMLT?. FOB 00
STA DVN Dl I 1·1L TN FCB 00
ASL QUOT2 I?ROOl FC'3 00
ROL ()UOTl IPROD2 FCB oc
INC QUOT2 IPROD3 FC'3 00

CHECK o::c C OU~!T IPR004 1=(3 00
BNE DIVIDE IDVNOl FCB 00
LOO t:lVND2 I.DVN02 FCS 00
ST:J R E 14 · !DVN03 FC:3 00
JMP $0283 .!DVN04 F'"o I....J 00

CUUNT FCB 00 tovrws FC'3 00
DVSRl. FCB co I END
::JVSF'2 FCB 00 I

Appendix-B

Assembler program source listing for a 15-point WFT A (TMS9900)

FORTRAN program source listing for a 15-point WFTA

Appendix-g

•'• .,.

p -1

•'• .,. 15-POINT·W!NOGRAD ALG~RITHM cwcTA) TMS9900 •'• .,.

·'· ~~~~~-~-~--~~-~-~----~~------~-~·~~--~--~------------¥~¥~¥¥¥~¥¥¥¥¥~¥-~¥~~¥~-~--¥~¥0¥¥~¥¥-¥¥¥¥¥~~¥-¥ ____ ¥

ST~RT

... . ,.

!DT 'HHJ015'
OPTION XREF,SY~T

ACRG >6000
U~DI I..JSP
LI R4,YREG
LI RS,XREG

- ---------------~---~----~--~ ----·--¥¥¥¥¥¥~-~----~~-¥¥¥¥¥

•'• ..•

•'• .,.

INPUT SHUFI=L!=

rv18V :::R4,:::RS
~ov @o(R4),@2(RS)
MDV @12CR4),34(P.5)
MDV @lq(R4),@6CR5)
~10 v J'24CR4),@8(R5)
~lOV illOCR4),@10CR5)
r~ov @16CR4),@12CR5)
~-1 ov 322CR4) ,@14(R5)
1'-IOV Cl2BCR4),@16(R5)
r-1ov @4(R4),@13CR5)
r~ov :l20CR4), nOCR5)
r-~a v @26CR4),@22CR5)
r1 ov @2CR4),c.1?.4CR5)
~10V @8(R4),.il26CR5)
~1 ov @14(R4) ,:::128CR5)

* **************************** * * 3 POINT PREW~AVE •'· . ,.
...... ~,~ .. .;. • ..
¥ ¥¥¥¥¥¥~--~-¥¥~--¥¥¥¥¥¥¥Y¥¥¥¥

•'• .,.

... . ,.
LODPl

•'• .,.

LI

MO.V
r~ ov
BL
~10V

r~ov

~~0 v
BL
1·10V

MDV
MOV
gl
MOV
t10V
r~ JV
tiL
MOV

RS,XREG

@10(R5),R0
3l20CRS),Rl
i'ADDSUB
R2,@l0CR5)
R3,@20CR5)
:;:R5,R3
~ADD

R3,:::P,5

@12CRS),R0
~22CRS),Rl

@ADDSU6
R2dl2(t:?5)
R3,@22CP5)
~2CP.5),R3

.l)A')D
!='3,.il2(D5)

, ..• •..
I r~ov ~l4(R5),R0

I MOV @24(R5),Rl
I BL 2ADDSU3
I 1-!0V ~2,~14(R5)

I MOV R 3 , .JJ 2 4 C ~ 5 .)
I ~-10 v 2'4(t<5),R3
I BL i-~00

I MOV R3,0:4(1<5)
I ·'· ... , ..
I MDV il16(K5),~0

I MDV .il26('15),Rl
I BL :.JAODSUB
I ~~0 v R2,@16(P5)
I ,·~ov R3,.il26(~5)

I MOV .i'6(R5),R3

I oL uADD
I MQV !:13,36(R5)

I*
I M'JV @18(R5),P.0
I MDV il28CP.5),Rl
I BL aADDSU5
I MDV R 2 , a 1 3 (R 5).
I HOV R3,@29(D5)
I MCJV 33(R5),P.3
I BL ,iJAOD
I MOV R3,@8(R5)
I:::
I::: ~~~·~-~~··~~--~~~~~·~~~~--~~ _,.. .. , - , .. "'('> .. , '"'(" .,, , ,

I ~- 5 POINT PREWEAVE •'·
•.•,.

I•'· ~~-~-~-~·~-·~h--~~~~-~-~~-~-. , .. "'•"' , , , , ,. , ... , .. ~ , , , ,..
I•'• ...
I LI R6,ZREG
I WJV Cl2CP5),R0
I MCV 1~(P5),Rl

I SL ~~o.rsua

I MOV ~ 2, 2 2 C R 5·)
I MQV ~3,@6(R6)
I
I MQV @~(R5),R0

I t-10V a/4(R5),P.l
I BL !!ADD SUB

I MDV R2,@4(R5)
I MQV R3,@10(R6)
I MDV il6(R6),R2
I BL a,lOD
I ~1CV R3,@8(R6) ,
I MDV Ol2(P5),t?O

I 1·10V).:.(P5),Pl

Appendix-8 R-2

3L a)A~DSU8 I HCV ?.3,@24(R6)
~1 0 V· R2,a2CR6) I•'• ..
MOV R3,::.J4CR6) I ::: ~-------·------------·------.. , , , , , .. "" , , , , , , ,
r~ov :::R~,R3 I ,. :::).IULTIPLICATION ·'· ., .

SL @ADD I•'• ---------------·------------. ,. , , , , , , , , , , , , ,

~ov R3,:::R6 I :-,:
•'• I MDV ;FWD,~l .,.
... I .,IEQ F~WD . ,.

~1 0 v @12CRS),R0 I LI ;n,COEFC?

/·10V · .::J18CR5),~1 I•'• ...
BL 2ADOSU3 I J ~:1 p OVER
t~OV R2,@12(R5) IFRWO LI P.7,CIJEFF
r~ o v R3,@18CRS) I :::

:::: IOV=R L! R4,0
MOV @16(RS),R0 I LI R8,65521
r~ ov @14(R5) ,~1 ILOCP ('1,0V :::R7+,Rl

RL ,i)AODSUB I NOV JJZREGCR4),R2
MDV R2,@14CR5) I r~ P v ~ 1 , R 2
MOV R3,iil2ZCR6) I OIV P?R,R2

/·10V a 1 3 C R 6) , R 2. I /·1(JV . R3dZREGCR4)
BL 2ADD I INC T R4
~1CV R3,@20CR6) I cr R4,3b

·'· I JN5 LOOP .,.
MDV @12CR5),R0 I ... •,•

MDV @14(R5),Rl I•'• ----------------------------... ---~¥¥¥¥¥ _____ ¥¥-¥¥¥~¥~~----
e.L @AODSUB I•'• :::: 5 POINT POSTwEAVc !:: .,.
r~ov R2,@14CR6) I ... ~-····~··~···--·-·~-··-····-.,.

-~----¥----~¥----¥-----~----
/10 v P3,Cll6CR6) l :~
r~ o v @11J(~S),R3 I MOV :;:R6,R3

BL @ADD I MOV R3,:::RS

MDV R3d12(R6) i MDV 32CR6),R2
•'• I ~L. .iJ~DD .,.

MDV @22CR5),~0 I ,.~,. v R3,22CR6)
nov :il23CR5),Rl I WJV J6(R6),R0
SL :ilAOOSUB I MOV .~3(R6),R1

MDV R2,@22CR5) I 3L .:!SUS

MDV P.3,J30(R6) I 1·10V R3,0l6(R6)
•'• I r~o v ::l3CR6),R2 .,.

MDV @26CRS),RO I WJV ~10(1<6),~3

~~ ov @24CRS),Rl I BL :JADD
BL @Ar::>DSU8 I MDV R3,211J(R6)
MDV R2,@24(R5) I r~ov 1>2(R6),R0
;\1 DV R3,@34(R6) I MOV i'4(R6),P.l

~~a v @30(R6),P2 I i3L])A ::lOS US
~L @ADD I MC1V qz,C12CR6)
11 ov R3,@32CR6) I MDV R3,@4(R6)

•'• I MDV .iJ2CR6),R0 ~

rwv @22CRS),P0 I. HQV .!l6(R6),Rl
MDV ?24CRS),Pl I 3L .::JADDSU3
BL @AODSUB l MDV ~2,i'2CR5)

MDV R2,Cl26(R6) I ; l·lOV R3,.:t8CR5)

t~ 0 v R3,@28CR6) I fHlV ~4(R6),R0

r-~ov 3)20CRS.),R3 I 1·1 tJ v 310CR6),Rl
BL ::JAQO I BL ;:JAOfiSU~

a:..<
··' <J

~ov R2 9 @4(~5) I I·~OV ~3d28CR5)

~~ 0 v R3 9 0:6(R5) I WJV .:)23CR6),RO
•'• I MQV cl134CR6),Rl .,.

r·10V @12(~6) 9 R3 I aL aAJDSUS
MOV R3,@10CR5) I i~1 0 v R2d24CRS)
MDV 314(R6) 9 P2 I ~~Q v ~3,@26CPS)

8L 3A~D . I:::
;'·10V ~3,214CR6) I::: ··~··········~······~······· ~ , ~ ~ , , .. _, , , , , , , ... , ' .. ,

~1 0 v ~18(R6),R0
, ... :': 3 POINT PQSTWEt.VE •'• ...

/
...

MDV ~20CR6),Rl
, ... ··~·····~···~··············-... .. , ,, , .. :·" , ,.. .. , , , ... , , , , ,

BL JSU8 ,
MDV R3 9 @18CR6) I . MCV :::~S,R3

~·1 0 v <i'20CR6) 9 R2 I MOl/ lll 0 C R 5) , R'2

MDV ·ll22(R6),?3 I BL .VA DO
BL @ADD I 1·101/ R3,Q:lOCR5)"
MOV R3,@22(Kf;) ,
1\10 v @14(R6),?0 I ~, n v ;:)2(RS),P3
MDV .:iJ16(R6),Rl l ~18 v J:ll2CR5),R2

3L ~AODSUB I BL @ADO
MDV R2,@14(R6) I MOV R3,@12CR5).
MDV R3 9 Jl6(R6) ,,.
1·10V 214(R6),R0 I r~o v :i)4(P5),R3
MDV @18CP6),Rl I MOV 314(R5),R2

BL 2ADOSUB I BL @~DO

f·10V R2,@12CR5) I ~-10 v Rj 9 @14(R5)

1-1DV R3 9 .1H8(R5) I•'• .,.
MDV @16CR6),RO I MOV :il6(R5),R3
MDV @22CR6),Rl l ~IG V ill6(q5),R2

5L @AODSUB I BL ~ADD

MDV R2,314(R5) J ~1 [) v P.3,216CPS)
MDV R3,@16CR5) I:::

... I MDV aJ8CP.5),R3 ...
t~OV @24(?.6),P3 I MCV @18CR5) 9 R2

~10V R3,@20CR5) I BL @~:)~

rwv j)26(R6),q2 I MDV t.>3,.il18CR5)

8L .:;)A[) 0 J•'• ...
MOV R3 9 @26CR6) I rviOV 310CR5) 9 RO

. r~ov @34CR6),?2 I t-IOV 320CR5),Rl
NOV :\'32(R6),~3 I eL JADClSUc
BL O:ADD MC'V R2 9 210CR5)
1'\0V R3,@34(R6) ''10V 1:(3,320(P5)
t~OV. => 3 0 CR 6 > , R 0 "'

~lOV · @32CR6),Rl MCV al2(R5).,RO

BL @SUB MOV -ll22CR5) ,Rl
1·1DV R3,~30Cq6) BL @AODSU:!
r~ o v @26(R6) 9 PO MOV qz,il12CR5)

MOV @ 2 8 (R 6'), ~: 1 1~0 v R3,.:J22CR5)

BL iAODSUB :-':

110V R2,@26CP.6> ~'iO v ,j)l4(~5) 9 RO

I-10V R3,228CR6) MDV ~2.:.(~5),Rl

MCJV .ll26(R6),R0 ~L 1ADOSUB
r1nv il30CR6),rn t-1CV "2,~14(1='5)

BL O'A::JuSU8 I-1JV C::':\,i).!. .. (P.5)

~~ 0 v R2,G.l22(R5) :':

Appenclix-8

•'• .,.

...... .,.

~A 0 V
~10V

8L
~10V

~~ 0 v

MDV
MDV
3L
MDV
1-10 v

'il16CRS),R0
ll26CRS),R1
@ADD SUB
R2,@16CR5)
R3,@26(R5)

@18CRS),RC
JJ28(R5),R1
~ADDSUB

R2,:!180:5)
R3,.il28CR5)

* * OUTPUT SHUFFL~ •'• .,. - --~~·~··········~··········~ .. , , , , , , , , , , , , , , , , , ..
•'• .,.

... ; .,.

... . ,.

MOV. :::R5,:::R6
r~ov @12CR5),~2CR6)

MDV @24CRS),OJ4(R6)
r-1ov ~6(R5),@6(P6)

r.10V @18CRS),:il3(K5)
~~ov ~20CR5),J10(R6)
r~ov @2(R5),cill2(R6)
r~ov ll14(R5),@14(R6)
'10V @26CR5),@16CR6)
MDV ll8CR5),@18CR6)
MDV 310CR5),@20(Ro)
MDV :iJ22CR5),@22CR6)
MQV <i)4(R5),cil24CF:6)
I-10V· .lJ16CR5) ,CJ26CR6)
r·10V Cl28CR5),@28(R6J

B @>0800

* ADD & SUBTRACT SUBROUTINE*

~.,.
A ODS UB

PLUS

~10V

A
JOC
CI
JL
AI

R1,R2
RO,P.2
PLUS
R2,65521
SUB
R2 ,15

ISU~

I
I
I
I
I FitJ
I:::

~, ov.
s
c
JL
AI
RT

?.-4

PO, R3
:n, R3

~ 1 '~ 0
~I;~

R3,65521

I* ***************~~*~***~*****
I* * ADDITION SUBROUTINE •'• ...
I* *****~**********************
I:::
!ADD
I
I

. I
I PLUS1
I TAG
I t.:
I:::

A R2,R3
JOC PLUS1
C! R3,65521
JL TAG
u .R 3, 1 5
en

I* ****************************
I ::: ::: SHUFFLE= VECTORS ·'· .,.

I* *****~*~~~***~*************~
I :::
ICCEFF
I
I
I
I
f

... . ,.
WSP
Yt<EG
XRfG
ZREG
LIM
~WD

LAST

DATA 1 ' 16379,
DATA 19136, 1S005,
DATA 32759, 8192,
DATA 36817, 5753,
O.HA 16087, 2'1032,
DATA 23174, 43615,
DATA 61153, 5460,
DATA 46773, 20640,
DATA 6552, 57331,
[')ATA 2.0 122, 34561,
JATA 29504, 28641,
~ATA 5 91 3' 24748,

8SS 32
ess 30
BSS 30
sss 36
5SS 2
ass 2
END START

13376,
48547,
45457,
25311,

R748,
1-+~5,

1836-.,
54q3,

37975,
24521~
12521,
21933,

Appendix-B

c

c
c
c

c

* 15-POINT WINOGRAD ALGOQITH~ (WFTA)

~~~~~----------------------------------------~--·-----¥¥¥~~¥¥¥¥¥¥¥¥¥¥¥¥¥¥~¥¥¥••¥¥¥¥¥¥¥¥¥¥¥-¥¥¥-¥¥¥¥¥¥¥¥¥¥¥¥¥~ 

IMPLICIT REAL*S(A - H,O - l) 
DIMENSION X(15), YC15), ZC18), OUT{15) 
DIM~NSION COEFC13), COEFRC18) 
lNTEGER IQF(15), IR~IC15) 

REAL*8 MODO 

C INPUT SHUFFLE VECTORS 
c 

DATA IRF 10, 3, 6, 9, 12, 5, P, 11, 14, 
1 2, 10, 13, 1, 4, 11 

c 
C OUTPUT SHU~FLE VECTORS 
c 

DATA IRFI 10; 6, 12, 3, 9, 10, 1, 7, 13, 
1 4, 5, 11, 2, a, 14/ 

c 
C FORWARD TRANS~ORM COEFFICIENTS 
c 

c 

DATA 
1 
2 
3 
4 

DATA 
1 
2 
3 
4 

COEF /1.QO, 16379.00, 13376.~0, 19136.80, 
18005~00, 48647~00, 32759.00, 8192.00, 
45457.00, 36817.00, 5753.00, 25311.00, 
16087.00, 29032.00i 8748.00, 23174.00, 
43615.00, 1465.00/ 
COEFR /61153.00, 5460.00, 18364.00, 46773.00, 
20640.00, 5493.00, 6552.00, 57331.00, 
37975.00, 28122.~0, 34561.~0, 24521.00, 
29504.00, 28641~00,12521.00, 59f3.DO, 
24748.00, 21938.00/ 

C READ INPUT DATA APRAY 
c 

FRO = 0.0 
READ (5 1 *) CY(I),I=1,15) 
DO 10 I = 1, 15 

10 XCI) = YCIRFCI) + 1) 

DC 20 I = 1, 5 
T = MOOO(XCS + I) + XC10 + IJ) 
XCI) = MOOOCXCI) + T) 
XC10 + I) = MO.DOCXC5 + I) - XClO + !)) 
tc5 • I) = r 

~0 CONTINUE 
J = 1 
DO 30 I = 1, 3 

IND = 5 * CI - 1) 
$1 = MOOOCXCINO + 2) + X(!NO • 5)) 

$2 = MODOCXCIND + 2) - XCIND + 5)) 
$3 = MOOOCXCIND + 4) + XCINO + 3)) 
$4 = MOOOCXCIND + 4) X(INO • 3)) 
S5 = MODOC$1 + 53) 

B-5 



Appendix-B 

c 

S6 = MODGCS1 
S.7 = 1--1000(52 + 
s B = r~ a DOcs 5 + 
ZCJ) = SS 
ZCJ + 1) = S5 
ZCJ + 2) = S6 
ZCJ + 3) = S2 
ZCJ + 4) = S7 
ZCJ + 5) = S4 
J = J + 6 

30 CONTINUE 

53) 
S4) 
X(INO + 1)) 

IF CFRD .EQ• 1.00) GO TO 50 
DO 4 0 I = 1, 18 

40 Z(I) = MODOCZCI)*CDEFCI)) 
GO TO 70 

50 DO 60 I = 1, 18 
60 ZCI) = MOOOCZCI)*CDEFQ(I)) 
70 J = 1 

DO 8 0 I = 1, 3 
IND - 5 * CI - 1) 
S9 = MOOO(Z(J) + ZCJ 
S10 = MODOCS9 + ZCJ + 
S11 = MODOCS9 - ZCJ + 
S12 = MODDCZCJ + 3) -
S13 = MOOOCZCJ + 4) + 
S14 = MODOCSlO + 512) 
$15 = MODOCS10 - S12) 
$16 = MODOCS11 + $13) 
$17 = MODOCS11 - S13) 
XCIND + 1) = Z(J) 
XCIND + 2) = $14 
X(IND + 3) = Sl6 
XCIND + 4) = CS17 
X(IND + 5) = S15 
J = J + 6 

80 CONTINU!:·· 
DO 90 I = 1, 5 

+ 1)) 

2)) 
2)) 
ZCJ + 4)) 

ZCJ + 5)) 

T = MGDO(X(I) + X(S + I)) 
T2 = MODOCT ~ XClO + !)) 
XC10 + !) = MODOCT - XClO + !)) 
xes+ I>·= rz 

90 CONT!NUE 
DO 100 I = 1, 15 

OUTCIRF!CI) • 1) = XCI) 
100 CONTINUE 

WRITE (6,110) CYCI),I=1,15) 
11 0 F 0 R r~ A T C ' ' , . 5 F 1 0 • 2 ) 

WRITE (6,120) 
120 FORMAT (' ',II) 

WRITE (6,130) (OUT(!),I=1,15) 
130 FORM~T (' ', 5F10.2l 

STOP 
END 

B-6 



Appendix-B 

c 
c 
c 

DOUBLE PRECISJON FUNCTION MODOCF) 
REALt.:8 f, MOD 
MOO = 65521.00 
IF (F .LT. 0.000) GO TO 10 . 
MODO = DMOOCF,MOD) 
GO TO 20 

10 MODO = MOD - DM08(-F,MOD) 
20 R!:TURN 

END 

B-7 



Appendix-C 

FORTH program source listing for a 60-point WFTA (TMS9900) 



At-Jpendix-C 

( THIS PROGPAM PERFORMS WINOGRAD LENGTH 60 
FORWARJ AN~ REVERS~ TPANSFO~M ) 

C INPUT AR~AY IS Y AND THE ?ES~LT OF TRANSF1RM 
IS ALSO STORED IN AR?AY Y ) 

: s 

: s 

DECIMAL ( VARIABLES USED FOR TEMPOPARY STORAGE ) · 
0 INTEG::R SO 0 INTEGER Sl 0 INTEGER 52 0 InTEG~R 53 
0 INTEGER $4 0 INTEGER S5 0 INTEGER Tl 0 I~TEGER TZ 
0 INTEGER T3 0 INTEGER T4 0 INTEGER TS 0 !NTEG::R TMO 
0 INTEGER T~l 0 INTEGER TM2 0 INTEGER TM3 0 INTEGER TM4 
0 INTEGER H1 

C ARRAYS USED FOR CO~PUTATION ) 
144 ARRAY FCOEF 144 ARRAY RCOEF 120 A~RAY X 144 ADRAY Y 
120 ARRAY RF 120 ARRAY RFI 
SINT 0 SO ! 2 Sl ! 4 S2 ! 6 S3 ! ? S4 ! 10 SS ! 
INTZ 0 TMO ! 2 TM ! 4 TM1 ! 6 TM2 ! 8 TM3 ! 10 T~4 t ; 

lCHG TMO 3 10 • TMO ! TM J 10 • T~ ! TMl ~ 10 + T~l ! 
TM2 2 10 + TM2 ! TM3 @ 10 + T~? t TM4 @ 10 + TM4 

2CHG SO @ 12. + SO ! 51 ~ 12 + S1 ! 52 ~ 12 • 52 
! S3 a 12 • 53 J 54 ~ 12 +·54 ! ss J 12 + ss ! : 

( INPUT SHUFFLt VECTORS ) RF FILL 
0 72 24 96 48 90 42 114 66 1 '3 60 12 84 36 

30 102 5'+ 6 7~ 80 32 104 56 8 ~~~ ? 74 26 :J~ .. 
20 92 44 116 68 110 f,2 1 4 86 313 40 1 , ? ... 64 1c 
10 82 34 106 58 100 52 4 76 23 70 22 94 46 

( OUTPUT 5f-IUFFLE VECTORS ) ~FI FILL 
0 24 4~ 72 96 30 54 73 102 6. 60 84 10.3 12 

90 114 18 42 66 40 64 88 112 16 70 94 11.3 22 
100 4 28 52 76 10 34 58 82 106 80 104 3 32 
110 14 38 62 

: s 
( COEFFICIENTS 

rCOEF 

. " • ..J 

1 
1 
1 

41224 
32759 
32759 
32759 

3685 
.49434 
49434 
49434 
33074 

FILL 
16379 
16379 
16379 
13991 

8192 
8192 
8192 

11774 
36489 
36489 
36489 
S6 93 9 

86 

FOR 

13376 
13376 
13376 
~3009 

45457 
45457 
45457 
18768 
56773 
56773 
56773 

32 

20 44 63 92 116 . 50 

F=ORWARD TRANSFORM ) 

64390 46385 48647 
64390 46385 43647 
64390 453R5 48647 

·26608 10376 22681 
34457 28704 25311 
34457 28704 25311 
34457 28704 2.5311 
25609 49957 64260 
45080 23174 64056 
45080 23174 64C·56 
45080 23174 64056 

5797 23796 17202 

( CO E F F I C I= tiTS F 0 1:> R: V E K S E TRANS F 0 R M. ) 

74 93 2 

C-1 

lOP. 
98 
88 

118 

35 
46 
56 
26 



RCOEF FILL 

: s 

64429 1365 
64429 1365 
64429 1365 

3681 1177g 
1638 30713 
1638 30713 
1638 30713 

27239 15092 
58145 qzzo 
58145 9220 
58145 9220 
50784 2041 

4591 9347 
4591 98-+7 
4591 9847 

30785 . 35358 
25874. 17990 
25874 17990 
25874 17990. 
52104 12439 
13250 44432 
13250 4.-+432 
13250 44432 
30577 4.0308 

4687 50Cil4 
4687 50~14 

4o87 50514 
4541 64807 

25730 55271 
25730 55271 
25730 55271 
25949 1071 
50619 27276 
50619 2727':-
50619 27276 
60673 45578 

( MODULAR MULTIPL!CATIQN RJUTINE FOR T~E EXT~RM~L 

~AROWARE MODULAR MULTIPLI::R ) 
HeX CODE ALOAO 3F~2 2 L! 3FF4 3 LI 3FF6 4 L! ~ETU~N 

DC:CIMAL 
CODE !CALC 8 PCP 9 POP 0 g 1 2 MOV 0 q 1 3 

~OV 1 4 0 7 MCV 7 PUSH ~~TURN 

A~ULT ALOAD 144 0 DO I FCGEF + @ I Y + ~ !CALC 
T y + ! 2 +LOJP . .. ' BMULT AL0.40 144 0 DO I ~cc=~ + ·~ I v + 5) !CALC 
I y + ! 2 +LOQP . 

' CMULT FLAG 0 = IF AI·IUL T ELSE 1;)~1UL T THEN . , .. . .) 

C MODULAR ADDITION ) HEX 
CGDE MOD 1 PDP 2 POP 0 1 0 2 A FNC If ELSE F 1 AI 

THEN FFF1 1 CI FH IF F 1 AI 1 PUSH ELS~ 

1 PUSH THE~J RfTURrJ 
( MODULAR MULTIPLICATION ) 

CUDE 0/ 7 POP 5 POP FF.F1 4 LI 5 0 7 MPY 
5 0 4 DIV 6 PUS~ RETURN 

( REG4 CONT~INS DIVIS~R ) 
( MCDULAR SU6TR~CTION ) 

CODE SBT 2 POP 1 POP 0 3 0 1 MDV 0 1 0 2 S 0 2 ° 3 C 
FLT IF FFFl 1 AI 1 PUS~ ELSE 1 PUSH TH~N R~TUP~ 

( MCDULAR HARJWARE MULTPLIER ) . 
H~X CODE CREG 0 7 CLR 0 8 CLR 0 9 CLR RETUKN 
CODE ALOAD 3FF2 2 LI 3FF4 3 LI 3FF6 4 LI RETURN 
CODE CALC 0 8 1· 2 MDV 0 9 1 3 MQV 1 4 0 7 MOV 7 PUSH R~TURN 

: s 
( 3 POINT PRE-WEAVE ) DECIMAL 

3AD 40 C DC I 40 + ~ + @ I 80 + X + @ OVER OV~R ~~D ! 
40 + Y + ! SBT ! 80 + Y + ! ' +LQOP 

3DAD 4a 0 DO I 40 + Y + ~ I X + 3 ~09 I .Y + 
! 2 +LOOP 

I3PT 3AO 3JAD ; 

( 4 POI;JT PRE-WEAVE ) 

41AD 10 0 DO T y + "' I 20 + y + @ MOO I X. + ! 
.., +LOOP ... C.• '-

42AO 10 0 DO I 10 + y + CJ I 30 + y + :J OVEP OVED r·l D (1 

I 10 + X + ! S1H I 30 + X + ! 2 +LOOP . 
' 

C-2 



Appendix-( 

42SB 10 0 DO I Y + ~ I 20 + Y + J S~T ! 20 + X + I 2 
+LOOP ; 

43AO 10 0 Db I X + & I 10 + X + @ MCO T~ 

X + @ SBT I 10 + X + Ttvl ::: T X + 

I I + 

2 +LnDP 
:i I 10 + 

: s 
44AC 1 0 0 DO I 40 + y + Q) I 60 + y + @ 'JV':R ov:R '-~OJ 

I 40 + X + ! SeT I 60 + X + 2 +LOOP . 
I 

45AD 10 0 DO I 50 + '( + jJ I 70 + v + @ OVO:R OV~R I·IOQ 

I 58 + X + ! 5:.>T I 70 + X + 2 +i..:OG 0 . 
' 

48AD 1 0 0 DD I 4(1 + X + ~iJ I 50 + y + .;! '~00 :r-1 ! I <+0 + X 
j) I 50 + X .. :il 5 P, T I 50 + X + T i~ a ... 40 + '( + ! 2 

49AD 10 0 on I 30 + y + @ I 100 + y + .:l OV~P OVtR :~C)J 

I 80 + X + ! S ~T I 100 + X +. ., +LJCJP . 
'- ' 

4AAD 10 0 DQ I 90 + y + a I 110 + y + @ ov:P ':'Vf~ :'·100 
I 90 + X + ! 5P.T I 110 + X + 2 +LOOP ; 

4DAD 10 0 DO I RO + X + @ J: 90 + X + . @ MOrl Tt-l ! I 80 + X 
a' I 90 + X + "'\ SP.T I 90 + X + ! T ~~ a I 80 + X + ! 2 OJ 

I4PT 41AO 42AD 4253 43AD 44AJ 45All 43no 4QAG 4AAO 4DAO 

: s 

: s 

: s 

C MULTIPLICATION WITH COE~FICIENTS ) 
0 HJT f G E R F L ~ G 
FMULT 144 0 DO I FCOEF + @ I Y + ~ Dl I Y + 2 +LOOP 
RMULT 144 0 D~ I PCrE~ + @ I Y + ~ 0/. I Y + 2 +LOD? 
MULT FLAG a 0 = IF F~ULT ELSE RMULT THEN 
( 5 P(li~T PRE-WEAVE ) 
I15PT TM ~ X + i TM3 @ X + @ OVER CVER MOD 51 @ Y + ! 

SBT S5 @ V + ! ; 
I25PT TM1 @ X + 2 TM2 a X + ~ MOO S2 @ Y + TM2 @ X 

+ @ TM1 @ X + @ SBT 54 3 Y + ! ; 
I35PT Sl ~ Y + 3 52 @ Y + @ OVER OVER M~D 51 3 Y + 

5BT S2 @ Y + ! THO @ X + @ S1 @ Y + a MOO SO @ Y + 
I45PT SS @ Y + ~ S4 @ Y + @ MOO S3 @ Y + 
I5PT INTZ SINT 24 0 DO I15?T I25PT I35PT I45PT 2CHG 

1CHG 2 +LOOP i 

( 5 PO HIT POST-WEAVE ) 

FVPT so @ y + @ DUP Sl a y + J) t·~ DO T1 TMO C,r 

1FVPT 53 @ y + j) 55 a y + @ I~ DO TS ! 
2FVPT 53 2 y + a 54 j) y + ~1 SoT T3 ! 
3FVPT Tl @ $2 @ y + 3 8VER OVER ~~ r ~ T2 $ o T 
4FVPT T2 ~ T3 a; OVER OVER I~OD T ~~ a X + ! SBT 

T ~13 ,lJ X + I • 
• I 

SFVPT T4 3 TS 2 OVER OVER MOD TMl 3 X + ! S~T 

TM2 J X + 
05PT INTZ SINT 24 0 DO FVPT 1FVPT 2FVPT 3~VPT 

4FVPT SFVPT 2CrlG 1CHG 2 +LOOP ; 

C 4 PJINT POST-WEAVE ) 

X 

T4 

401 10 0 DO I X + @ I Y + ! 2 +LOOP 
140 10 0 DO I 20 + X + 3 T 30 + X + .]) OVE:D C'Vt:K 

+ 

~DO I 10 + Y + ! SBT I 30 + Y + 
+ V + ! 2 + LOOP ; : 

I 10 + X + '· I ? " ~v 

c-: 

+. 
+LODe> 

+ 
+LQ'JO 



Appendix-( 

422 10 0 DC 
240 10 (I no 

S::l + y + 
2 + LOOP 

4D3 10 0 JQ . 340 10 0 U!J . 
90 + y + 
I 100 + 

. (" 
• ..J 

04PT 401 14[\ 

I 40 + 
I 60 + X 

SfH ! 

I O(l + 
I 100 + 

! SBT 
I 

I 
y + ! 2 

402 248 

X + J I 40 + 
+ :i) I 70 + 

70 + y + ! 

X + @ I RCJ + 
X + ;) I !.10 
110 + y + 

+ LOOP . 
• 

L.23 34~ 

( 3 POI~T POST-WEAVE ) 

y + 

X + ~ 
T 50 -

y + 

+ X 
I 00 

: 03PT 40 0 CJ I Y + i I 40 + Y + J ~rD 

I 2 •Lnoo . 
• 

OVED C'VER ·~a ::J I 
+· X + ?! ~ f •J + y ... 

2 •UJO::> 
+ ~ JYrR ov~:> '1 0 iJ 

+ X + CJ 

I 80 + Y + a CV~~ OVER MOD I 40 + X • 
+ X + ! I Y + Z I X + ! ~ +LOOP 

sEn T ?O 

• c . -) 

( INPUT R~-OROEPING V~CTOQ ~F ) 
!ORO 120 0 CD I RF + 2 Y + 2 ! X + ! 2 +L~JP : 
( OUTPUT QE-JRDERING V~CTDR ~~r ) 
OORC ~20 0 QO I X + ~ I RFI + ~ Y + ! 2 +LOOP ; 

TRANSFOP.'~ IOFfl I3?T !4PT l:5PT 1·1UL T DSPT 
04PT CDPT OJPD 

lTRANSFCJRM IOQD I?DT I4 PT I5PT U~UL T Q5DT 

04PT r:l3PT O!JRD 

( FRO FOR FCJ~APD AND I~V FJR INVE~SE TQANSFOQM 
USING ~ULTIPLY AND DIVIDE INSTQUCT!OM ) 

: FRO 0 FLAG ! TRANSFOR~ ; : INV 1 ~LAG ! TRA~SFOQM 

( 1 F R 0 F 0 R f 0 '.-1 A R D AN 0 1 HJ V F C R P.! V C: R S E T R A ~IS I= DR ~1 
USING EXT~RNAL HA~DWARE MODULAR M~LTIDLicR ) 

: lFRD 0 FltG ! 1TPANSFORM ; : liNV 1 FLAG ! lTRANSFJRM 
)( EMPTY Y c~1PTY 

: ~ 

(-!.. 

+ 

I 



Appendix-0 

Assembler program source listings for the slave microprocessors 
(1 to 18) . 

Assembler program source listing for the master microprocessor 

Assembler program source listing for a 15-point WFT A (MC6809) 



Appenclix-0 

•'• ************************************************************** ., . 
... •'• PPOCESSCJR ''JUI'< ?. E q ! 

... . ,. . .. . .. 
•'• ************************************************************** .,. 

N A ~·1 68091 I 51", p 1 5 STD :4 c rJ o 
OUTPUT f. JU S0400 I C LR II ' ·-· 
STATUS E:JU $0402 I CLR 1 ' 1,' . 

Tb E tJU $0403 I LOA 1 ' X 
T2 tOU $0405 I LOR 1 ' y 

INPUT EQU $0410 I ~~ UL 
R6 EQU ~0412 I STD 2,!J 

R;:: r ;;;u ~0414 I LOA ' X 
S E ~'1 EJU o;Q416 L :l3 1 ' y 
•'• 'I :·lUL •.. 

eRr.. $~!:-:00 I AOIJO 1 'u 
'!JP STfl 1 'u J. 

GRCC ~t~;OlOlOOOO RCC St< 0 H: 

LCIU tt P R12 D 1 u~c ' !J 
BEGIN CLRA s 1<'. p 16 L 0 A ! ' X 

STA FL A;G LD~ ' y 
LOA S t=M' i·1UL 
~f:Q F ~~o! AODD 1 'u 

START 
I 

LOA ~ 1 I STC" 1 'u 
STA FLA

1

G c.cc SKD19 

FRO L0Y :: HOJO INC 'u I 

L DX ;t M L.T F R IS'<P1q LD c.. ' '1. I 
LOA #1 I I LOB ' y 
STA STATUS I "'lUL 
S yt,!C I A ODD 'u 
CL~ll. I I STD 'u 
STA STATUS I ... ... 
LDD : ~! P LIT I LOA 1 'u 
RPA OVE~ I LOR ~15 

'• 

NEXT L DY 1: 1·1 C i~ D MUL 
LOX Z:f..1LTRR I AODD z,u 
s n.Jc I ?.CS s I<', p 20 

LDO S c. V ,E i Ci·IPD z~.sssn 

... i I fiLO St<P21 .,. 
OVER S Y ~I.C ISKP20 ADOD li 1 5 

SYNC ISKP21 STD 2 ' IJ 
.A DOD R6 I•'• ... 
BCS SKP12 I LOA I I 

' l.. 

C~l P:l .to65521 I LOX t:TEM 0 

~:L 0 SKP13 I CU' ' X 
SI\P12 A DOC 1;:15 I CLR 1 ' X 
SKP13 S·YNC I CL~ z,x 

SYNC I LOP, !tl5 

s Yf\tC I ~11J L 
ADO~ P2 I SHl ' X 
BCS SKD14 I LOC.. ' X 
Ct-'tPD !t65521 I L:JB .rn s 
BLO $11. 0 15 I r·1UL 

SKP14· A o:JD t;l5 I .~ D 0 iJ 1 , X 

•'• I tl ODD 2,U ... 



Appenclix-D 0-2 

scs SKP22 STO ' IJ 
cr~ PD tt65521 LOA 1 'u 
3LO SKP23 L :J 8 til5 

SJ<..P22 AJDD ::<15 ;.llJL 
SKP23 SYNC AOOD :?,U 
... RCS L0°20 ... 

STD TZ C '.<Dr '' ...; "'b5S21 
S'!'\JC o,LO L0°21 
S'!'NC ILGP20 A8DD .tilt; 

SO!C ILOP21 STu 2tU 
STO T6 I ... .,. 
S 'f'-IC I LOA t u 
S\'NC I LOX 1t T C: ~1P 

•'• I CLD t X .,. 
STD SAVE I (LD 1 , X 

L C:rA FLAG I CL~ 2 , X 
CIWA ~1 I L 03 li • c: 

.J. -· 

:HQ 1·1UL T I 1-AUL 
CHPA #2 I srn ' y 
~1 c Q c orJ v I LDA ' X 
LOO SAVE I LD~ It 1 5 
$TO Rf.S I "!UL 
L bRA o::GIN ' AODD 1 , X 

CUNV L J [: SAVE I ADCJD . 2 t I.J 

STO OUTPUT I RCS LDP22 
L B R 1\ 3EGIN I U1D8 li65521 

•'• I ~L:J L0°2? .,. 
,'-1UL T INC FL/l.G ILOP22 O.J[l:J ~ 1 5 

LDX #SAVE IL!JP23 STO SAV: 
LOY /I' RES I S Y'·IC 
CLR 'u I SYNC 
CLR 1 ' 'J I SYNC 
LOA 1 , X I SY"JC 
LOB l , y I UIPA NEXT 
t·1UL I ... ... 
STO 2 ' 'J I r~ L T F R !=QB ]_ 

LDA 'y I :-IL TR R F03 61153 

LOR 1 'y I ... ... 
1·1\J L I ORG $0(101) 

ADDD 1 'u 1 r~c~n ::og I) 

ST:J l,U IP~OOl FCS 0 

RCC LDP16 IPR002 FCP. 0 

INC 'u IPRCJD:?. FCg l"r 

LGP16 L D ~ 1, X !P~CD4 FC8 0 

LD'3 ' y IT= ~·1? F(g 0 

''IUL ITt::~Pl FCB I~ 

ADDO 1 'u I TEMP? . FCS 0 

STD 1 'u !SAVE c:os 0 

sec: L 0 P11 !FLAG c:cg 0 

INC , u IRES FD5 ('• 

LUP19 LOA ' X 
, ... 

•,• 

LOB t y l SRG t.FC:FE 
r,1UL ISTt:1T EQU 1r=poo 

A:JDD ,:J I fHD a;: G It~ 
/ . 



AtJpenclix-0 
n ~ 
li- _"'; 

... ~~~~~-~-~~~-------------------~--------------~---~-----------~ ... ¥¥¥~~-·~-~~-~¥¥¥~¥¥¥¥YY¥¥Y~¥¥Y¥¥¥¥-¥¥¥-¥~YY¥YY¥¥-Y-~¥¥~~¥¥~¥~~~ 

... . .. PRac::ssoR NUW?.ER 2 
. .. ... . .. •.• 

... ----~-----------~--------------------------------------------·-... ... .................. , .... , .... , .......... , ............... , .... , .... , .............. , ............... , .............. , ..... , ..... , .... , .... , .... , .... , ............. ,~ ....... , ........ , .................... , .... , .... , ............................ , .... , .... , .... , .... , .................................... ,., ............... 
r,J .Ar-1 68092 ISt<.Pl4 a~OD It 1 5 

OUTPUT ~QU ~0400 IS!<'. P 15 STD T3 
STATUS E JU >1:0402 I SY"JC 
T7 EQU ~04(13 I ~DOD R3 
TS E •.:lU $0405 I Cl($ $1<. 0 16 
T::> EQU ~0407 I CMDO t16552l 

Tl FQU ~ 0 40 •:J I CILO S K 0 1 ... 

INPUT f()U $0410 ISKP16 ~ 0[10 lt 1 5 
R7 r::Qu $0412 ISKP17 STD T1 
RS E':!U !0414 I S HIC 
R.::. EQU $0416 I STD 1·1( NO 

Rl EQU $0413 I C LR 'u 
StM f.QLI f041A I CL~ 1 'u 
... 

' 
LOA 1 , X ... 

ORG $F800 I L :J ~ 1 ' y 
NOP I '·lUL 
o~cc ,.o.;o 101 01) 00 I STD ;o,u 
LDU 2iPRGD1 I LJt. ' X 

BEGIN CL~A I L03 1 ' y 
STA FLAG I MUL 
L 0 'l SEM I :.ooo 1 'u 
Cl,~(1 ... - ·~ F~ D l STD l 'u 

START L Oil ~1 I sec St<.D18 
S T.A FLAG I : r-.JC 'u 

FRO LJY t: !~ C N 0 !SKP18 LOC; 1 ' '( 
LOX ;Hil TF R I LIJ~ ' y 
L D.A !l 1 I i._.,UL 
STA ST.ATUS I ACJDD 1 'u 
SYNC I S T ~l 1 'u 
CLR~ I ~,(( SKD21 
STA STATUS I r~c ,u 
LJD HlPUT ISKP21 LOA ' X 
BC/A OVER I Log 'y 

NEXT LDV #r~ CN 0 I MUL 
lox ~ :~L T R R I 0.000 'u 
SYNC I STD 'u 
LDD SAVE I•'• .,. 

-·· I LOA 1 'u ... 
OVER SYNC I LOS :i 1 5 

SYNC I r-1UL 

AODD R7 l ADJD z,u 
BCS SKP12 I ~cs St<'. 0 22 
OlPD 1t65521 I C:·IP D 11S552l 
f.ILO SKP13 l RLG SKD23 

SKP12 ADDO lt15 I S KP 2 2 AOOO til5 
SJ\P13 STCl TS IS!<P23 STD z,u 

SHJC I•'• ... 
ADOD R5 I LO~ 'u 
3CS SK?l4 I LOX t:TE r·:P 
OlPD 1165521 I C L~ 'X 
~. L 0 SKP15 I .t:L? 1 , X 



A~pendix-J 

CLR 2 , X I LOY ;:QES 

LOR 1!15 ILOP15 CLC? 'u 
HUL I CL=' 1 'u 
STO 'X I L D .l 1 1 X 

LOA ' X I LOK 1 ' v 
LDB ~15 I ~UL 

1,1 LJ L STO 2 ''J 
AJJD 1 , X LO~ ' X 
AJJO z,u LOS 1 ' 'f 
9CS SKr24 I·IUL 
CMP[) .tt65521 ADOD 1 'u 
SLO SKP25 STD J 'u 

SKP24 ll.f1JD !t 1 ~- ecr: LCJDlA 
$1\P25 SYfiJC ! N C ' !J 
•'• ILOP1t? L DA 1 , X .,. 

S Y "lC I LOP. ' y 

ADDO t<l I •A UL 
gcs SKP26 I ADOD 1 'u 
U1PO ~65521 I ST!:' 1, u 
3LO $1('::>27 I ~-CC LOP19 

SKP26 ArlDO 1:15 I I!'JC 'u 
SKP27 STD T3 IL:JPlr~ LOA ' X 

SYNC I L~3 ' y 
AD:JO R3 I t·!UL 
BCS SKP2Fl I A D~O , u 
01PD .tt65521 I STD 'u 
:3LO SK 0 29 ! ... .,. 

SKP28 .ll. JDD i:!15 I LD~ 1 , u 
SKP29 STD T5 I L o e. ~15 

SYNC I t~UL 

ADDO R5 ! t.ODO z,u 
gcs SKD30 ! c,cs LCJD20 
CMPD ~65521 I C ~1 PO 4>65521 
BL:J SKP31 I ?, LO LJP21 

SKP30 ADDD 11115 ILJP20 ADDD it 1 s 
SKP31 STO T7 IUJ 0 21 STD z,u 

S Y!\!C , ... . ,. 
SYNC I L DA 'u 

•'• I LOX :tT c 1-lP .,. 
s T':l SAVE I CLR ' X 
L DA FLAG I CU' 1 , X 
c r~ P A n I C LR 2 , X 
BEQ >1UL T I LOB :t 1 5 

Cl-1 P A tt2 I ~1UL 

P.EQ C\!i\IV I STD ' y 
.L DD SAVE I LDA ' Y, 
STD R>=:S 

' 
l :J '?· ~tlS 

L8PA E EGH~ I i'-1UL. 
C UtJV L D ') SAVE I .~DOD J ' y 

ST[I OUTPUT I tdJOD 2 , I~ 

I H? A 1'. F G Ttl I [', ( r 1 n P :·? 
i:{ I . ( ~~I)! J II 0 r. '· :• 1 

r~UL T I r,J ( FL {I G I ('. L I J I. u r>.: -~ 

L [)) II'· A V F. ILCJ?22 llOClU '11':> 



Appendix-:.> f'-5 

··- I C'~G SI).JOO ..• 
LUP23 STQ .... 

1..> !r~ow ~~R 0 
Sf "!C IPP:JDl FCB 0 

L J :J R3 I PP082 FU\ (\ 

STD TS IPRG03 ~cl) 0 

SYiJC l PPJC4 FC~ G 
SPIC IT::MP ~cs 0 

SfNC I T r: ,, D 1 r:cg 0 

LDD C\3 IT::f-jDJ ~=c~ 0 

STD S~VE IS~V~ F f) p, 0 
L3RA I~:: X T !FLAG ~=c~ (.' 

··- IR~S FOB 0 -·· 
MLTFR FOB 16379 I CRG <!FFF=~ 

MLTRR C::):<. 5460 IST;:;T :- -~U ~ F ~{· 'l 
.. , I :NO Ll:: G! ~; -.· 
;•: ~~~~~~~~~~~~~~~~~~~~~~~~~h~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~h 

.. , ......... , .... , .. "'t'"' ............ , .... , .... ,~ ..................... , .... , ..... , ............... , .... , .... , .... , ... "!" ,, ... , .... , ..... , .... , .............................. , .... , .... , .... , ......... , ............................. , ............................ , .... , .... , ......... , .. "•" ............ , ..... 

··- ·'· PROCESSC:R i·IUHfl, c P 3 ·" ... . .. . .. 
:::: 

~~~~~~~~~~~~~~~~~~~~~~~~~h~~~~~~~~~-~-~~~~~~~~~~~~~~~~~~~~~~~-........ , .... , .... , .... , ......... , ......... , ............................... , .... , .. "t" ........... , .. "t'" .. , .... , ..... , .............. , ........ , .... , .... , ......... , ........ , ....... , ....... , ............................. , .... , ................ -.- - ... ~.- ~ .................... , .... , ............. , .. 

~~A r-1 68093 !l)VcP s y ~~ c
OUTPUT E :'.)U $0400 SnJC
STATUS E :JU $0402 .lOOO C\8

Tb ~QU ~0403 ~cs SK;Jl2
T4 E~U $0405 (J~ p 0 ~65521

T<:: :Qu $0407 ! r..Lo SKPl?

II--. PUT ECU $0410 ISKP12 A JCIO r:15
R8 F.QU $0412 Is'< P 1 3 STJ T4
R4 EQ!J S0414 I S Y '-!C
R~ ::Qu $0416 I A DOD q4

StM : Ql.l- $0418 I RCS s 1<'. p 14

:::: I (~~ D 0 ,6ssn
ORG $F800 I BLO SK 0 15
~·I 0 P ISKP14 nooo It 1 5
IJ?CC ri 0{01010000 ISKP15 ST~ T":l

LOU #PP.QOl I S y r,J (.

BEGIN CLRA I STO SAV':
STA FLAG I LDD Q2

LOA S :C:I-1 l SU~:l SAVE
BE') FC10 I BCC SKD16

START LO~ .ttl I AO')O "65521

STA FLAG ISKP16 SYNC
FRO LOY ;HlCtJO I•'• ..•

LOX "I~L T F R I STC 1·1Ct!D
LOA 1:1 I CLP. ' u
STA STATUS I CLI:I 1 'u
S H!C I LOll 1 , X
CLRA I L 03 1 ' v
STA STATUS I r~ UL
LDil INPUT I STD 2 , I J

BRA OVER I L:.JI\ ' (

l'H. X T LOY 1'1 r~ C t1 D I L DR 1 ' y
L [1 X ttl~LTRP I ~LJL

SYNC I AODD J 'u
LC"IO SAVE I ST[1 1 'u

... I ... 0((:. 1<. p 1 .s

.-,

Appendix-l.l D-S

INC ,u ecs Sr< 0 2P
SKP18 LOA 1 , X CHPD ~65521

LOB ' y ~L'J SKP2°
MUL !5!<.??.3 AJOD ll' 1 s
A80D 1 'u !SKP2'? STO T.?.
STD ! 'u ! S P.JC
3((SKD2l . I s y ~!(
INC 'u ' ~:

SKP21 LOA ' X I STD SAV:
LOR ' y I LOA ~L~G

~~ UL I Cf.1DA ttl

AODD ' u I r:;. E Q t-11JLT
STQ 'u I C 1-1PA ~2

... I ~C:Q ([~NV . ,.
LOA 1 ' lJ I LOr S.lV'
L DR itl5 I STO RES

I·~ U L I Lci~A Bf.:G!r-1
AQOD z,u 1 c :n;v L CJQ SAV':

°CS SKP22 I srn OUTPUT
(r-1DJ t;65.521

'
L3?.A Br:G!N

e u: St<P2~ I·'· ...
SKP22 AD')D ti.l5 IMULT INC F LA 1)

SKP23 STD 2,U I LOX t:SAVE.
•'• I LOY atRC<: .,. .. -

L DA 'u ILCJP15 CLq ' !J
L DX nTF.MP I rL?. 1 'u
CLr< ')(I LOA 1 , X

CLR 1 , X I LD3 1 ' y
CLR 2, X I 1-IUL
LOB til 5 I STD z,u
1-1 UL I L::JA ' X
ST'J ' X I LD~ 1 ' y
LOA ' X I ~1UL

LOB ~15 I ADD::l 1 ' u
1·1UL I STD 1 ''J
A DuD 1 ' _"(I :J.((LIJ 0 16
ADDU 2 'u I INC ,u
BCS SKP24 ILOP16 L JA 1 ' /..
CMP:l :t65521 I LD~ ' y

[:,LO SKP25 I I-1UL
SKP24 A DOD :t15 I AOOD 1 'u
SKP25 SY"lC I STO 1 f.

' J

::: I sec LOD19
s n~c I I r~ C 'u
STD T2 ILCJP19 LOA ' .'1..

SYNC I LOS ' y
STO 5AVE I 1·1UL
LDD P2 I .'1000 ,u
SUBD SAVE I STfl 'J
RCC SKP26 ,,.
AO'JD 1:165521 I LOA 1 'u

SKP26 STD T4 I L DR lfl5

SYNC I MUL

~['f)Q C::4 I A::JOIJ 2 ' u

Appendix-[)
,..I_""!

LUP20
LGP21
·'· ...

LUP22
LLP23

RCS LOP20
CW'C :;65521
P,LO LOP21
ADDD :t15
STD 2,'.!

LOA ,U
LOX
CU'
CLK
CLR
LCl8
~1 Ul
STO
L DA
LOt.
t~ U L
ADJD
A DOQ
:'.(s
CMPJ
5LO
ADDD
ST(I
SYNC
LDD
ST(I

u T E r~ P

' X
1 'j
2, X
:: 1 5

' X
'X

:tl:

1 , X
z,u
LCP22
tt65521
LOP23
li 1 c.

T2

P2
SAVE.

I
I
I
I
I
I
I •'• .,.
IMLTI=P.
IMLTP~
I:':

I
I r1c r~o
IP~ODl

IP~CD2
IPP.JC\3
IPR084
l T:: i·1 P
I T E ~·i P 1
IT::~D3

Is ~·JE
I FLAG
IRFS
I:::
I
ISTRT
I
I:::

S Y ~JC
SYNC
LJD 04

STD T2
SPJC
Lf,t:;A N::n

;J RG
FD3
c:cs
c:c~

r=cs
~=c~

c:c~

1=(3

F C:3
F~~

!= C:3
C::::JI?

'JRG
:: r~u
F tJ 0

13 1 76
13364

$0000
0
0
0
0
0
0
c
0
0
0
0

$1=c::Ft:

t.F q 0 0
O.EGirJ

~~~~~~~~~~~~~~~~~~~~-~~~~-~~-~~~~~~~~-~~~~~~~~~~~~~~~-~.~-~~~~~ ............. , ..... , ........ , ....................... , .......... , ..... "' .. , .... , ............. , ........ , ........ , .......... , .................. , ..... , .............. , ........ , .............. , .... , ................. , ..... ~ .......... , ............................................. , .... , ............... ,. 
PROCESSJP NUMB~~ 4 

... ... 
..... .. .................................... ., .............................................................................................. _ ....................... .) .... • .... • ..... • ..... • .... • .... • .... • .... • .... • ..... • .... • ..... • .... • .... • .... • .... • .... • .... • ..... • .... • .... • .... • .... • .... • .... • ..... • .... • .... • .... • .... • .... • .. ...... ... ..... , .... , ..... , .... , .... , .................................................... -.......................................... , ... , .... , .... , ....................... , .... , .... , .......................................................... , .... , .... , ...................... , ................................ .. 

OUTPUT 
STATUS 
TSi 
T3 
T16 
INPUT 
~'1 

R:;, 
Rl6 
SEM 

Bi:GIN 

STAI·H 

':.QU 
EQU 
f.QU 
EQU 
~ Qll 

EQU 
E ~JU 
~JU 

~~G 

NC'JP 
ORCC 
LJU 
CLP.A 
S T A-

LD~ 

B~') 

LDA 
STA 
LOY 
LC'!X 

68094 
~0400 

$0402 
$0403 
J0405 
$0407 
:S0410 
:;0412 
$0t-14 
$0416 
'!>0418 

$FI300 

""~01010000 
rtPRODl 

FLAG 
SEM 
FPO 
:i 1 
FLt\G 
:, nc ~!O 
~ 1·1 L T !=I:? 

~~EXT 

IOVEC> 
I 

' I 
I 
I 
!SKP12 
lSKPlJ 
I 
I 

.I 
I 

LlJll 
STA 
SH1C 
C L ~.A 
'3TA 
LDD 
~RA 

LDY 
LOX 
SYNC 
LDD 

S 'f"JC 
SYNC 

I'll 
STATUS 

STAT•JS 
I:~ PUT 
ov:R 
H1(~.:o 

:P-1LT~O 

SAV:= 

,1fJOD (.':1 

u.c. )I(J' 12 
CMP!) tt65521 
ML'l SKPL' 
ADO;) ill~ 

S TO T 3 
SYNC 
SUPD P3 
RCC St<.Pl.:. 
AJC'Cl #6c;5:'1 



SKP14 ST~ T16 I BCS s 1", p 2 2 

SYNC I (i'-10!) ~65521 

S OIC I i3LO SKDZ3 
... 15!(?22 A~OD !115 ... 

STD r1Cf,10 !SKP23 SnJC 
CLR ,u I"• •,• 

CLR 1 'u I S Y ~!C 
L~lA 1, X I A:JQO Pl6 

LDR 1 ' y I "'>CS SK =>24 

1·1 IJ L I U~::>C ::65521 
ST'I 2,U I ~LU SK. 0 25 
L DA ' X ISK.P24 AJOD ':15 
LDC\ 1 ' y ISKP25 SPJC 

1·1UL ! STD ·n 
.A91!J 1 'u I SYNC 

STD 1 'u I ST~ s;:,.vt. 
sec SKC'l6 ! L~r-.)_ R3 
I II! C ·,U I 5U'30 5AV: 

SKP16 LDA 1 , X I '3CC SK 0 26 
LCB ' y I AOOD :!65521 
f·IUL ISK?26 STC: Tg 

ADOD 1 'u I SYNC 
STD l,IJ I SYNC 
BCC SKD19 1 ... ... 
r r~ c 'u I ST!J SIIV: 

SKP19 L~A 'y I LOA FLAG 
LOB ' y I Cr~PA #1 
~~ UL I 3EQ ~1UL T 

ADOD ,~ I 01?~ ::2 
STJ ' u 

PC() 
1.1 ,_ " (IJNV 

::: LDD s:.vo: 
LOA 1,U ! ST::I R:s 
L:J6 t:15 I LBRA ::I~GPJ 

iWL. ICJNV LJ~ S&lVE 
ADDJ z,u I STD DUT=>UT 
RCS SK P 2 0 I LB?A· tlt=G!N 

CMPQ :i65521 I ... ... 
E1 L 0 SKP21 I ~1U L T H~C FLAG 

SKP20 A DOl: t115 I L~X ztSAV: 
SKP21 s T'") 2,U I LOY ::t.;t:S 
... IL:JP15 CLR 'u . ,. 

LDA ' u I CL? 1 'u 
LOX z;:r= i~ P I LCA 1 ' X: 

C L '~ 'X LD~ 1 'v 
CLP 1 , X I tvlUL 
CLR 2 , X I srn 2 'L! 
LCJI3 :q:; I L:JA ,I 'f 

MLIL I L Of'. 1 ' y 

ST~ ' X I I~U l 

LOA ' X I AUOD 1 1 I! 

LD:1 I{ 1 c, I .S T fJ l ' u 
nuL I r:cc LOPl~ 

AOOC 1 , X I INC . 'u 
AODD 2,1J IUJP16 L:JII 1 , X 



Appendix-0 

Lf}!=\ ' y I .1000 2 ' lj 
r·1UL I 3CS LOD22 
ADDD 1 'u I UlP~J tt65521 

STO 1 'u I ?, LC LCJD23 
~. cc LCP19 ILOP22 .t: COD t: 1 ~· 

INC 'u ILOP23 s y r:c 
LUP19 LOA ' X I SYNC 

LOP· ' y I ST~ TJ 
MUL I LD~ Plt, 

ADClJ , u I STD 'SAVO::: 
STO ,u I SYNC 

::: I s nJC 
LDA , 

t I J I LSRA u:xr 
.L 

L0~ ~15 I::: 
HUL I r-IL T F R c: D ;:>, 43~47 

AJDD ·2 'u ~~~LTRK c;:~ 549? 

RCS LO?ZrJ , ... ·-· 
OlPD ~65521 

, ... ·-· 
t.LO LOP21 I 'J~G ~; 0 () 0 C'· 

LUP20 AiJI)O ~1S I ~~C W! c: 0 ;:, 0 

LuP21 STU 2 'u jPDJ01 F C ~- 0 
•'• IP 0 0C2 ..• FCB 0 

LOA 'u IP~003 ;:co 0 

L ::JX t:TEMP IPR004 FC5 " J 

CLR 'X I p:\IP FCB (') 

CLP 1, X IT:: r~ P 1 C:(::l, G 

CLP ? 'X I Tft.IDJ ;:::c 1 0 

LOB ~1~ !.S.lVE F[)g (' 

~~ UL !FLAG ;:::(5 0 

S T ~) t X !R:S FOR 0 

U'A ' X 
I:;: 

LC5 ~15 I QRG 5FFF: 
ML1L ISTRT ::::::u ~FqQI) 

ADDJ 1, X ., c: ~-JO ;lEG I'l 

•.. .............................................................. ,J .. ............................................................................... ,J., ..... , ... .,),. ~· ....... .J .. ...... ..... ..~ .. ..J .. ................................. .J .. .................... ~ ...................................................... .. , ..... , ......... , ................ , .......... ~ .. , ................... , .. -, ..... , ........ -...... , .... , ......... , ......... , .... , .. ,, ........ -..... , .... , .... , ......... , ..... , .... , .... , .. -... , .... , .. " .. -..... , ............... , ......... , ..... '•" ...... , .... , .. '•" ....... , .. -..... , ........... -.- ., ... , .. 
·'· ... PDOCESSDR NUH3ER 5 ::~ ..• ., . 
•'• 

............................................................................... , .................................................................................................................................................................................................................................................... .,. .. ........... , .. , .................. -..... , .......... , .... , .... , .... , ..... , .... , .... , .... , ....................... , ..... , ... , .... , ............................... -: ............................. , ....................... _ .. , .. , ............. , .... , .. .,, .... , .... , .............. , ... , ................ ,, ... _, .. 

t~ A~ 68095 STA FLAG 
OUTPUT E:JU $0400 LOA s::--1 
STATUS =uu ~0402 Elt:Q FR[l 

T10 :: :) u $0403 ISTA 0 ":" LO~ :tl 

Ti. F~U ~0405 I STII FLa.G 

Tl6 EQU !0407 IFP.O L DY ~tt~U·l J 

INPUT EQU $0•dQ I LOX z: ·~ L T F R 

RlO ":QU $0412 I LOA 11'1 

R) EQU $0414 s T .n S"rAT:JS .. '-
Rl6 EQU $QL..l6 s v~·c 
Sf:t-1 :: ~J u !.0418 CLRA 
..• sra. STHL.!S ..• 

1RG $F800 LD'J INPUT 
NC 0 C,RO lJVfR 

ORCC 1t~{010101JOO !NEXT LOY ;oT>!UlD 

L DU ~?ROD1 I LOX i2 ~~ L T R ~ 

B::GIN CLC<:Il I S Yr-lC 



Appendix-D 0-1(1 

L D Cl SAVE IS'<P20 AD9D t' 1 5 
~:: IS'<?21 <:.TL' z,u 
OVER SYNC , ..• ·.-

s n~c I LOA 'u 
ADDO ~10 I LCJX t:T ErA P 
P, ( S SKD12 I C'L'? ' X 
c ,~1?0 ~65521 I CL.R 1 , X 
8LO SKP13 I CLR 2 ' y 

SKP12 . .l. ODD ~15 I LD~ :t 1 5· 
SI'\Pl3 STD T2 I ~UL 

S~NC I STG ' X 
STO SAVE I LOA ' X 
LJD R2 I L o:. ~] 5 

SURD SAVr; I ~>1U L 

BCC SKP14 I .'lJDD 1 ' v. 
AO'JD :t65~21 I AOl'D z,u 

SKP14 STO T16 I ?.CS SKD22 
S Y ~JC I ( r-1DJ !t65521 
SYNC I :::. LO 51< 0 23 

-·· ISKP22 aoo:J II 1 ~ .,. 
STO ~~ c iJ l) ISKP23 S~NC 

CLR 'u I•'• .,. 
CL~ 1,U I SYNC 
LOA 1 , X I SUBD ?.16 
LD5 1 ' y I sec SK 0 24 
MUL I t.ODG 1165521 
STO 2 'u I SU'24 snJc 
LD!l. ' '1. I ST~ TZ 
LOR 1 ' y I SYNC 
:--1UL I STO SAV'f: 
A DOD 1 'u I LOO oz 
STD 1 'u I SUBD SAV~ 

BCC SKP16 I RCC SK"2.S 
INC ,u I AJDD ~6~521 

SKP16 LOA 1 , X ISKP26 STD :10 
LD5 ' y I s y ~~ c 
r·IUL I SYNC 
A JDQ 1 'u , ... .,. 
ST!J 1 'u I STD SAVE 
BCC SKP19 I LJA fLAG 
INC ' lj I UIPA ttl 

SKP19 LOA 'X I Q~l"l 
··' t.l:.' HIJL":' 

LOB ' y I CrH'!\. 1:2 

1·1UL I ~cQ c ~ ~~ v 
ADOD ,u I L Df" snv::: 
STD ,u I STD ~cs 

~:~ I LB?A 3: G I 'J 

L~A 1 'u I CQtJV LOG St.Vr: 
L 0~ :n: I STD O~JTDUT 

~·1 U L I L~PA 3':~HJ 

.A llDD z,u I·'· ... 
3CS SK 0 20 I t·1!J L T !NC FLC.:~ 

OH'D 11'65521 I LDX ;:5.!\V~ 

o. L 0 SKP21 I LCJY :::JES 



Appendix-[) 0-11 

LOP15 

LUP16 

LCP19 

•'• .,. 

LUP20 
LGP21 

CLR 
CLR. 
L:JA 
LOB 
f"lUL 
STQ 
LOA 
L:Jt?. 
~·1U L 
ADIJD 
STO 
BCC 
INC 
LDA 
L DB 
~UL 

ADJD 
STD 
8CC 
INC 
LDA. 
LOS 
~~ UL 
.AD fl D 
STD 

LOA 
LDP. 
~~u L 
ADOD 
BCS 
C·1PD 
gLO 
AOOD 
STO 

LOA 
lOX 
CLR 
CLD 
CLP 

'u 
1 'u 
1 , X 

1 'y 

2,U 

' X 
1 ' y 

1 'u 
1 'u 
LOP16 

'u 
1, X . 

' y 

1 'u 
1 'u 
LOP19 

'u 
' X 
' y 

'u ,u 

1,1.1 
tt15 

2,U 
LOP20 
~65521 

LOP21 
::il5 

2 'u 

,u 
:tTEMP 

' X 
1 , X 

: 2, X 

I LOR :.' 1 5 

I t"1UL 
I STD ' X 
I LOa ' X 
I LD:2 I! 1 ~ 

I r1 uL 
I AOrlD 1 , X 

I ~ 8~~' 2 'u 
l scs LJP 2 
I (MPD ::i6S 21 

I ~L'J LOD23 
IVJP22 ADDD 1:115 

!LOP23 STO TH: 
I s y ~~ c 
I s y "1( 

I LDJ R2 
I STD SAVE. 

I s y '!( 

I s n~c 
I LBPA '·JE X T 
I********************** 
I 1·1L TF R l=OB 19136 
IMLTRR FDg 46773 
I•'• ... 
I OP.G ¢.0000 

! i'1 c ~-JO FD~ n 
1Pqco1 c:cg 0 

I?ROOZ 1=(8 0 
IPCW['3 FCR 0 
IDRC84 C:(~ 0 
IT ET•1P FCC, 0 
I T C: r~ P 1 c:ca 0 

ITC:MP3 F(g 0 

IS~V: ~=o~ 0 
I FU.G f=C3 0 
I R:: S ;:!Jo. 

. l.- .... 0 
I ... 
i ...... 

1RG ~F::F;: 

ISTRT :Qu $FjQO 
I ':NC P,Er;~~! , ... ... 

~ ~~~~~~~~~~~~~~~~~~-~~~~~~~~-~~~~~~~~~-~~~~-~h---h~-----hh-hhh~ ... ,... .., ..... , .. , ............. , ......................... , ........... , ..... , ....................... , .......... , ..... , .......... , ..... , .... , ....................... , .... ~ .. , .... , .... , ......................... , ..... , .... , ... , .. , ... , ............ " ., ... , ............ , ....................... , .... , ... , ..... .. 

OUTPUT 
STATUS 
T11 
T• 
·J. 

T7 
INPUT 
Rll 
Rl 
R7 

•'• .,. ~POCESSJR NUMBEP 6 :': 

~~-~~hh~~~~~~~~~~·~~h-~·~~~~-~~~~·-~-~-h--~h~-~--·~-~--h~-~h-~ .. , .. "•"' .......................... , ..... , ... , ..... , .... , .... , ............... , .... , ..... , ......... , .... , ... , .. "'•"' ................ , .... , .............. , .... , .... , ........ , .... , ......... , .... , .................. , ......... , ...................... , .... , .... , ...................... , .... , .... , .... , ......... .. 
rJ.~ M 68096 Is ::;-1 E=QU $0418 

E QU $0400 , ... .,. 
::Ju $0402 ! ORG $Fi:i00 
EQU $()403 I ~.J Ll p 

f.QU $0405 I o~cc ~~~Ol·JlOOOO 

EQU $0407 I LDU ::P~ODl 

E :; U $0410 I8EG!N .CL;>A 
:: :;)u $0412 I STA FLAG 
~ r:JI.J $0414 I LOA ) :: ~1 

>>)U 't0416 I Q ~' ,., 
I;_ .4, FQ[J 



Appencii.x-0 [J-12 

STAP.T LOA ltl PIC 'u 
STA FLAG IS!< 0 19 LOA ' X 

Fl-(0 Lf1Y IH,lCN 0 I LIJ:: ' '( 

LOX ,r,t'1L TF !:' I r·,UL 

LJA It 1 

' 
llODCJ 'u 

STA STATU~ I STQ !I 
9V 

SHJC I::: 
CLRA I LOA 1 'u 
STA STATUS I LD~ :t' 1 5 

LOn I'J PUT I !··1Ul 

B;;:A OVER I AOOO z,u 
NE:XT LCY :t>10JD I scs SIP20 

LOX ~t-IL TR!:.! I O~PD !i65521 
SYNC I SLO S II. D 21 
L DO SAVF. ISKP2Q AOOD itl5 

-·· ISKP21 STD 2 'u .,. 
OVER STD Tll , ... ..• 

SYNC I LD4 'u 
.L\ DOD R 11 I LJX :t T E ,'·1 ::> 

PC~ SKP12 I CLP ' X 
C"''PD li'65521 I CLR 1 ' Y. 

t1LO S!<.P1.3 I CLP 2 ' y . 

SKPl2 AOOD t' 1 :; I LD~ It 1 5 

SKP13 STD T 1 I IJ.UL 
S YN.C I STD ' X 
SYNC I LDA ' X 
SYNC I L D~. !:'15 

SYNC I "'UL 
AOOD R7 I AODO 1 , X 

8CS SKD14 I .\DOD 2 'u 
OIPO :t65521 I ~.c s SKP22 
i3L~ SP'15 I CMDD #65521 

SKP14 AOO:J ,.'t 15 I ~LO ~KP23 

:::' ISK..P22 AJDD :i 1 5 
SKP15 STO r~ CN 0 SKP23 SP:C 

CLR ,u •'• 

CL~ l,U STC T7 

LOA 1, X SYNC 
LD?. 1 'y SYNC 
~~uL S YtlC 
STO z,u S Y ~!C 
LOA ' X ADOD V} 

LOS l ' y ~. c s SK?24 
"1UL C I'-1P 0 :t65521 
AJD:J 1 ' IJ kLO SKP2C: 
STIJ 1 'u SKP24 ADOD ~1'i 

3CC SKP16 SKP25 SEl T1! 
INC ' IJ 

s y ~J c 
SKP16 LOil 1 , X !\DOD "11 ... 

LO~ , y c,cs SKP26 
>IUL UP'D ~65521 

AOOD 1 ' lJ RL~ SKD27 
STD 1 'u ISKP2b .ADQD 1115 

~cc SKP19 I··· ... 



Appenclix-0 ~1-1: 

SKP27 STCI SAVE !L2P20 AOOO It 1 5 
LOA FLAG ILOP21 STf'l 2 'u 
U1PA .If 1 I•'• ... 
BEQ MIJLT I L~A 'u 
c ~~ p ,.\ ::2 I LOX ~tT'=i~P 

g:Q CONV I CLP. ' X 
LOD S.L\ V E l CLR 1 ' _x 

STO p;:.) I CLR ~ ' X 
L B P .~ i.lEGIN I L~S 1t15 

CUNV LDO SAVE I 1~UL 

STJ CUTOUT I STJ ' X 
LARA 6 EG I f.J I L D~ ' X ... I LCJ3 ~15 ... 

:'·1UL T HJC FLAG I ~wL 

LOX #SAVE I l\JC'D 1 , X 
L [) y li!RES I A~DD 

., ,, 
... ' ..... 

LUP15 CLR ,u I ECS LJP22 
CLR 1 'u I C '•I PO ~t65521 

L[iu 1 , X I FLJ LOP23 
LJB 1 ' v IL~P2?. ADf)D t: 1 5 
'1LJ L IL'JP23 ST~ T11 
ST') 2,U I SYNC 
LOA ' X I LOD ;.' 11 

LJ~ 1 ' y I STD SAV: 
~IUL I SYNC 
.AD ll8 1 'u I SH!C 
STD 1 'u I SYNC 
sec LOP16 ! L'3RA ~~~X T 

INC 'u I*********************** 
LUP16 LOA 1 , X lr-1L TF ~ I= Do 32759 

Log 'y I r1 L T ~ R F DP 6::52 

~1UL I•'• •.• 

A. ODD 1 'u I OKG t.onoo 
ST'J 1 ' lj I i·1C i~D C:~3 IJ 

BCC LDP19 IP;;:Jol FCR 0 

INC 'u IDDQD2 FCB 0 

LGP19 LJA ' X . IP~CD3 FCB 0 

LOB ' y I>'R004 FC3 0 

MUL I TeMP· FCS 0 
AODD 'u T:: ~1 D 1 c:rp .J ' 0 

STO ,u TEHP3 FC5 0 
•'• SAVE FOE' 0 .,. 

L DA l,U FLAG FC3 I) 

LD~ ::<15 RF.S ~= D c. ('\ 

f~UL •'• .,. 
A!:JOD ."'' u ~~r, $FFFF 
gc ~. L0°20 STRT E:QU H 1300 

C:MPO t;'o5521 C IJ ~) 0 EGit! 

I)LO LOP21 ~: 

:::: ~:~ 

... I ... . ,. . .. 
•'· I·'· ... ., . 
~::: 

, ... 
-'•" 

•'• ... I ... •.. 



Appl?ndix-0 0-14 

•'• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~~~~~~~h~~~~~~~-~~~~~~~~~ . ,. .............. , ..... , ..... , .... , .... , ..... j' ... , .... , .... , .... , ..... , ......... , .............. , .... , .... , ..... , ................................................. , .... , ............. , .... , ..... , .... , ... , .... , .... , .... , .... , .... , .... , ....................................... , ..... , .... , .... , ............ , .... , •• , .... , .. 

•'• ~:: PROCESS·JR NUf"13 E? 7 •'• ... . .. 
•'• ~~~~~~~-~~~~~~~~~-~~~~~~~~~~-~~~~---~~-~-~~-~~-~~~~~-~-~~~~-~-•,• ....................... , .... , .... , .... , ....................................................... , .... , .... , .... , .... , ......... , ........ j' .... , .... , ........ f ... , .... , .... , .............. , .............................. , ...................................................... , .... , ............................. 

'•JA f·1 68097 CIOOD PlO 
OUTPUT EQU SO<tOO p, c s S K P 14 

STATUS EQU t0402 ( ~1 D 0 it6~52! 

T12 EQU $0403 3L::J SK 0 15 
TZ f ou $ 0 4'0 5 SKP14 ~ 0.00 1t15 
TlO f!)U $0407 SKP15 STD T8 

Tb E QU $04(\9 SHIC 
T6 EQU ~o.:..os t.OOD R8 

IhPUT EQU $QL.10 t:lCS $I<', PH 

Rl2 fCU 'f0412 Ci·',::>8 :t65521 

RL EQU "S0414 ~LO St<.P17 
RlO f Ql_l <£0416 S 1(. P16 li.ODD !tl~ 

Ro ::wu ~041:.3 SKP17 S T =-· T6 

Ro :au S041A I SYNC 
Sd~ E :jU ~ 041C I•'• .,. 
··- I .,. STO I·' CUD 

ORG $F800 I CLP ' 1.1 
~~ 0 p I CLR 1 ' !j 

ORCC ~~;0101000(1 I LOA 1 ' X 
LOU ;,' 0 R001 I LQ~ 1 'y 

BEGIN CLkA I ·~u L 
STA FLAG I STD 2 'u 
LOA S!::M l LOA ' X 
BEQ FP.D I Log 1 ' y 

START L 0~ i!t1 I MUL 
STA FLAG I li.OOD 1 'u 

FtW LOY :H1C~JO I STD 1 ' iJ 
LOX ttT'1 L T F D I 5CC SKP1!:l 
LOA til I INC 'u 
ST~ STATUS ISK?l3 LOA 1 ' X 
S Y ~JC I L J~ ' y 
CLRll. I r,~UL 

STA STATUS I ADC!D 1 'u 
LOO HJPUT I )TD 1 ''-' 
BRA OV EP ' RCC Si<. 0 21 

NEXT LOY i1 1·1Cf·ID I INC ' IJ 
LOX. iH1L TR R I S~P21 LOA ' '1. 
s Y r~c I LOR ' y 

LDD SA. V E I :1• UL 
•'• I ADDD '1_1 .,. 
OVER STD T12 I STO ' '-' 

SYNC I•'• ... 

ADDD ~~ 1 2 I LD.l 1 ,u 
RCS SKP12 I l 0?. Ill 5 

CMPD Jt65521 I 1·1UL 
5LO SI",P13 I AD80 2,U 

Si<-Pl2 AOQO 1t15 I c:cs SK?22 
SKP13 s Tf' T2 I Ct-1 P D :165521 

s '( ~~ c I E'.LC <;KP23 

STD T10 Is t<. P 2 2 AODO 1115 
:-;n1c .ISI".P(:'. ~, rn ?,IJ 



~1Jperictix-D u-lS 

•'• IS'<P35 ST8 SAv:: .,. 
LOA ,u I l 0A fLAG 
LDX t.T::;MP I cr., P A ~! 

CLR 'X I 0
• E0 ~ill L i 

CLR 1 , X I Cr-1 P A li 2 
CLP 2, X I ;l, EQ COi·JV 

L'"'" U..; :: 1 5 I LOD SAV: 
I'IUL I STD R:=s 
STf\ 'X I LB;<A ·. 8 ~ G! ~J 

LOA ' X 1 c 'J r·~ v LDD s~v:= 

LOP.. :tt 1 5 ! STQ ']:JT PUT 

1·1UL I L3~A 57:GPJ 
A [) Cl [l 1 , X I•'• .,. 
.AODD 2 'u IMI.ILT INC FLAG 
:3CS SKP24 I LOX rtSA'/13: 

Ci1PD 1!65521 I LOY ll~ES 

BLCJ SKP25 ILOP15 CLR 'u 
Si<.P24 AODD itl5 I CL'< 1 ' IJ 
SKP25 S OJC I L ~Cl 1 ' y 
... I L'JP. 1 ' y . ,. 

SYNC I ~~u L 
AOCD R6 I ~. T 'J 2 'u 
~cs SKP26 I L 0 .~ ' X 
01PD !:65521 I L D?. 1 ' y 
BLO SKP27 I ~·11_1 L 

SI<.P26 AOOD ::15 I ADOO 1 'u 
SKP27 STD T8 I STD 1 'u 

S Y~JC I sec LiJ 0 16 
AODD R8 I INC ' u 
gcs SK?28 ILCJP16 L DA l , X 

C/-1PO :t65521 I L D~ ' y 
8LO SKP29 I ~1lJ L 

SKP28 A :IDD t<15 I AODD 1 'u . 
SKP29 STO T10 I ST~ 1 'u 

SnJC I ?,(( LfJPlq 
ADJD R 1 ·) I ItJC 'u 
~cs SKP30 ILIJP19 l DA ' X 
CHPD ::65521 I L o~. , y 

5LO SKP31 I PUL 
SKP30 .!1 DOD ~15 AODD ,u 
SKP31 SYNC STO ' u 

AO!JD P2 :~: 

BCS SKP32 LOA 1 'u 
CMPr'; ::65521 L DP.· It 1 5 
bLO SKP33 1·1UL 

SKP32 A'JnD 1:15 ADDD 2 'u 
SKP33 STIJ T12 .RCS LOPZO 

SYNC C.'-1 PO ~65521 

II. DOD R12 P,L 0 L0°21 
BCS SKP34 LCJP20 AODD if 1 5. 
(~1 p 0 tt65521 LJP21 STD 2 'u 
bLO SKP35 ... . ,. 

SI<.P34 .AJDU ~15 l8A 'u ..• L:JX :t T :'I~ P . ,. 



Appendix-!! LJ-1~ 

CLD ' X I STD SAV: 
CLt:? 1 , X I SYnC 
CL'< 2, X I LB?A NEXT 
L JS lt15 I•'• ... 
r·1 UL IMLTFR FDS 8192 
STD 'X !MLTRR c: D P. 57?.31 
LOA ' X 

'I::: 
LOP. ~15 I CJRG ~0000 

1·1UL I 1·1CNO c:og 0 
ll.ClJO 1 , X !P?ODl c:ce 0 

ADJU 2,U 1Pt;'C02 FC~ 0 

BCS LCP22 IPQ013 FC ['. C' 

C:J, p [) ~65521 I?~CC4 c:r~ 
. \.. '-' 0 

8L'J LOP23 I TU1P c:ce 0 

LLP22 ~DOD :115 IT:: 1·1 P 1 c:co 0 

LGP23 ST[l T12 !T:MP3 FCB 0 

SHJC IS~VE FO~ 0 

LDO R12 I FLAG FCB 0 
STD TO '-' IRt=S C:Qg 0 
s Yf\! c I•'• ... 
LD'J RS I 'lKI3 'SFFF: 
STO T12 ISTRT · EQU ~F80Q 

SYNC I E;I.J~ BEGIN 
LO~ P.12 , ..• .,. 

...... .. ............................................................................................................... "" ....................................... .J ..... • ..... • .... • .... • .... • .... • ..... • .... • ... • .... • .... • .... · .... • .... • .... • .... • .... • .... • ... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .... • .. .. ,... .. ..... , .... , ... , .............. , .... , ..... , ................... , .... , .... , ..... , ................... , ................... , ............ , .... , ......... , .... , ......... , .... , ......................... ~ ........ , ......... , ..... ~ .. , .... , .............. ·.~ .. , ..... ~ ................. , .................. , ............... .. 
... ... PROCESSOR NUMBER 8 

~ ~~~~~~~~~~~~~-~~~~--~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ "'(" ,, .... , .... , ........ , ........................... , .... , ..... , .......... , .... , ......... , .......... , .... , .... , .... , ..... , .... , .... , ........ , ......... , ..... ~ .. , ................... , .... , .......... , .... , .... , ..... , ................... , .... , ............... , ............................. , .... , .... , ................... , ..... .. 

OUTPUT 
STATUS 
Tl3 
T3 
T'1 
T7 
INPUT 
Rl3 
R3 
R'9 
R7 
Stf'l 
•'• .,. 

B1:GIN 

START 

FRO 

f..JAI'1 
EQU 
ECJU 
EQU 
E\.JIJ 
=au 
EQU 
~QU 

EQU 
EQU 
EQLI 
Ewu 
EQU 

ORG 
NOP 
ORCC 
L8U 
CL 0 A 
STA 
l DA 
B E :~ 
LOA 
STL\ 
LDY 
LOX 
LOA 

68098 
!!;Q400 
!-0402 
30403 
$0405 
";0407 
$0409 
$0410 
$0412 
$0414 
'li0416 
$0418 
$041A 

$F800 

1fO,.;Q1010000 
ttPRDD1 

FLAG 
SE:M 
F ::> C• 
It ~. 

FLAG 
llf<~ChiO 

li f~L T F R 
1t1 

I rJEXi 
I 

OVF? 

I s ~~'- P 1 4 

STA 
SYNC 
CL?A 
5TA 
LOG 
~. R A. 
LOY 
LCJX 
S Y '•JC 
LDD 

ST8 
S'fNC 
~DD:J 

~cs 
CMP::J 
RLO 
ADDD 
STO 
SYNC 
SH' 
s Y ~Jc 
ADDD 
~cs 

C ~~ P D 
::J,LO 
ADDD 

STATUS 

ST~TUS 

I'~ PUT 
OVEP 
:t ~.1 c f·l 0 
;: :·1 L T ~ R 

S~VE 

T13 

Dl3 
SK 0 12 
~65521 

SKP13 
t' 1 r::: 

... -lj 

T9 

D9 
S K P 14 
~+6552l 

r, ~: p 1 (:', 

:q 5 



Appendix-~ G-17 

SKPlS ST') T7 LelA ' X 
SYNC L Cl8 ~15 

STD SAVE 'AUL 
LDD R7 ADJD 1 t X 

SUBD SAVE AODD 2t~ 

~CC SKP16 c,cs Sl\ 0 24 

A DOD tr65521 CMPO ::65521 

SKP16 S '!'f\IC :;>. LO SKD2'i 
... IS !<.P 2 4 AJOD ::1 5 ... 

STD HC t-10 IS'<P25 SYNC 
CLR , u I•'• .,. 
CLP. 1, u 1. SYNC 
LOA .!. ' X l S T C:' T7 
L Q[l, 1 ' y I S'I'NC 
~UL I )T~ SAVE 
S T rl z,u I LDD ?.7 

LOA 'X I s u Q, 0 s~v:: 

LOP. 1 , y I PCC SKP26 
MUL I AJClD :t65521 
.ODDD 1 'u ISKD26 STD T'j 

STQ 1 'u I S'I'NC 
sec SKP18 I ~ODD P9 

INC ' IJ I PCS SK>'2S 
SKP18 LOA 1 , X I ("1P!) 'l65521 

L 06 ' y I !3LO SK. 0 2C1 
MUL Is 1<. P 2 8 ADIJD :t1c; 

ADDCl 1 , u ISKP29 S v t~C 

STD 1 , u A. DOD p 3 . 

13CC SKP21 9CS SK??.Q 
INC 'u C ~·1 PO 1165521 

SI\P21 LOA ' '( 
O,L'J S K P 31 

LOB , y ISKP30 AJOO !i 1 c; 

/-',IJL ISK.P31 SEI TD 
AOOD 'u ' S H!C 

STO 'u I A!J8D R13 
... I ~cs S K 0 3 2 . ,. 

LOA 1 , u I (~P[' 116::.521 

LOR :J 1 5 I BLQ SKP3? 
~1UL Is 1(.? 3 2 .~ODD li15 
a.D:JD z,u I•'• ... 
ecs .SKP22 ISI(P33 SF' SC.Vc 
(!"lP[l l:i65521 I l DA I= LAG 
eLO S!<P23 I C t-1PA :t1 

SK P 22 Af)')O ~15 I 3!:~ ~1UL T 

SKP23 STD 2 'u I C1'1P A ::z 
•'• I SEQ CONV .,. 

LOA ,u LDD SA'v'~ 

LOX :t T EIW I STD !;1:S 

CLR ' X I LSRA 8F.GIN 
C LR 1 , X ICDtJV LD'J SAVF. 
CLP. 2, X I STO Oi.JTDI.JT 

.L DR t: 1 5 I L ~PA P c: ,- T 1-1 
,J ~ u .• 

~~ U L , ... . ,. 
srn ' X !H~LT 'PJC F LAI· 



Appendix-D J-1? 

L JX ,:SAVE MUL 
LOY trPES s Tr) ' X 

LOP15 CL~ , u LOA x· , .. 
CLR 1, u LOS 1115 
LOA 1 'X ~·WL 

L~':. 1 , y A:J::JD 1 , X 

MUL tll)[)Q 2,U 
STD ;::,u r: c s LD 0 22 
L DA ' X Cf.1PO :t6552l 
LOa 1 , '( PLO LCJP23 
"1UL ILOP22 A'JDD ::15. 
AD1D 1 'u I L0P23 SFl Tl~ 

STO 1 , 'J I S Y !JC 

sec LOP16 ! L:J:J ;;:'9 

INC ,u I STD T7 

LuP16 LDC. 1 , X I LDCl Ql~ 

LDD , y I STD T9 

~wL I SHiC 

AOOD 1 'u I L O'l R7 
STD 1 'u I STD SAVE 

gee LOP19 I SYNC 
INC 'u I S Y~ 1 C 

LCP19 LDA ' X I LBRA N:XT 
LDR , y , ... .,. 
MUL lt~LTFP 1=')'3 45457 
ADDD , 'J I i~ L. T R R ~=os 37975 
STO 'u 

, ... ... 
... I . ,. O~G soooo 

L')A 1, u 1 r-1:No FOB 0 

LD5 11'15 IPR'j01 c:cg 0 

MUL IP~C')2 !=(~ 0 

AuOD z,u JPR003 1=(8 1'1 
C' 

RCS LQP20 IP:;>JO-+ c:cs 0 
OlPO #65521 l T:: r-1 P I=(S 0 

3LO LOP21 IT :=r~ P 1 r::cB 0 

LOP20 ti.DD::l ~15 IT::MP3 FC B 0 

LuP21 STD z,u ISAV~ FO~ (1 

•'• !FLAG FCP 0 ... 
LDA 'u I RES c:os 0 

LOX tiT:l'IP !•'• .. 
Clq ' 'I( I ORG s-c:r::::: r- . -

CLI:' 1 , X ISTRT 1= r' 11 -'>,c. ~FSOO 

CLR 2,X I END 8:GIN 
L D.O. !il5 I::: 

•'• ~-~~~~--~~~~~~~~~~~~~~~~~-~~-~~~~~-~~·~~~~~~--~~~~~~--~~-~---~ .,. ..., ..... , ................ , .. ~ ......... , ............... , .... , .......... , .................. , ..................... , .... , .......... , .... , ........................ , ......................... , .......... , ......... , .... ,~ .. , .... , ........ , ... , .... , ....... , .... , ......... , .... , .... , .... , ... , ... , .... , .... , ........ , ...... 
•'• •'• PROCE:SSOR N lJit, 8: ~ 9 

... ... . ,. . .. 
!:: ~~-~~~~~~~~~~~~~~~~~-~~~-~~~--~-~~~~~~~~~-~~-~~~-~~-~~~~~-~~-~ ....... , .. ,, ......... , .... , .... , .. ~ ..... , .............. , .... , .... , ............................................. , .......... , .... , ......... , ......... , ......... , .... , ............. , ......... , ....................... , ......... , ........ , ........ , .... , .... , ........ , ................. , ......... , ...... , ....... 

~~A·~ 68(199 I HI PUT f '.JU $0410 
our'ouT [ IJU $0400 IP14 fQU ~0412 

SlATUS E ')ll $0402 184 E 'JU $0414 

Tl4 F.QU i0403 I R 8 F.QU ~0411: 

T4 ::wu ~04 1)5 IR17 f.QU ¢,(14lq 

Hl EQU $0407 IS':M ::au <;Q41A 

Tl7 ~QU $0409 , ... ..• 



Appenclix-0 

INPUT EQU $0410 I ~1 UL 
Rl4 E QU 50412 I )TD z,u 
R4 EQU $0414 I LJA 'X 

R8 ::Qu ~0416 I L D~. 1 ' v 
Rl7 cC/U $0418 I ~,UL 

s c t~ f r,JU $Q41A I ADDO .1 'u 
-·· I STD 1 'u .,. 

ORG $F800 I qcc SKP16 
NDP I INC ,u 
ORCC ,:~~01010000 ISKP16 LOA 1 , X 

LDU ~PR'JDl I L D~ ' y 
BEGIN CLPA I ~~ UL 

STA FLAG I ADDO 1 'u 
LOA s-=: i·l I STC 1 'u 
BEQ FRJ 3CC SKP19 

START LDA ;il II\4C 'u 
STA FLAG SK?l9 LOll ' X 

F f; 0 LDY iiMCNO LOR ' y 
LOX #MLTFt< ~~ UL 
LOA Ill .lDDD 'u 
STA STATUS STC! ' 'J 
SfNC -·· '•' 

CLRA LOA 1 ' u 
STA STATUS LJB :215 

L:lD HJ?UT ~UL 

BPA OVER AOOD z,u 
NtXT l~Y :: r-1 c r-~ o RCS Sl\ 0 20 

LOX t: ~1L TR R CMPO ~655.?1 

s n:c ~LO SKP2l 
L DO $1\VE SK?20 AODD ttl5 

-·· $!<?21 STO z,u .. ., ... 

OVER STO Tl4 ·'· .,. 
s VN( LDA 'u 
AODLJ ~14 I LDX u.T ::' !-1P 

8CS SKP12 I CLt:> ' X 
CI1PD t:65521 l r: L R 1 , X 
t\LO SKP13 l CLR 2, X 

SKP12 ADOO 1:15 I L oe. 1115 
SKP13 STD T4 I ~~ UL 

SYNC I STO ' X 
STC' T8 I LO~ ' ;: 
S Y ~JC I LIJB ttl5 
sugD RS I r-~ u L 
r::.cc SKD14 I ADOD 1 ' .'( 
!\ J DD P65521 · I AOOO z,u 

SKP14 STO Tl7 I 11CS SKP22 
SYNC I O!PD tt65S.?l 

s '( tJ c I ~LC S K P 2 3 

-·· ISKP22 '•' 
AD::l!J l 1 ~. 

~. r n rAe r·J n !SK.f'.'?. s Y rJ c 
( U' 'u I,., 

C L ~· ] , ! I I ~ v t,IC 

L :) A 1 , X I c.ooo C'l7 

l J p, 1 ' y ~ c 5 SK?24 



Appendix-[") J-20 

CMPD !165521 ILCJP16 LOA 1 , X 
3LC1 SKP25 I LD'\ ' v 

SKP24 ADDU 11'15 I ~1UL 

SI\P25 syqc I AOQD 1 'u 
STO TB I S El 1 ' 1J 
SYNC I ~.cc L:JPl'j 

STD SAY>:. I INC ' lj 

LDD ~8 ILOP19 LelA '.v 
SU80 SAVE I LD3 ' '( 
BCC SKP26 I 1·1UL 
A ODJ tt65521 I ACDD 'u 

SKP26 SH<C I STD ' LJ 
A ODD R4 I•'• ..• 
5CS SKPZ'l I LOA 1 '!.! 
C I~ PO #65521 I LOB !!15 
bLC SKP2g I I~UL 

SKP28 A DDO 1: 1 5 I !1000 2 'u 
St<.P29 STD T14 I 0. c s LOD2Q 

S HIC I Cf-1P0 1165.521 
.A DOD R1't I PLO LOP21 
BCS SKD30 IL·JP20 AOOO ~15 

C~'-1PJ .tt65521 IL'JP21 srn 2 'u 
8LO SKP31 I ... .,. 

SKP30 1\ JDO ~15 I . L 0~ 'u ... I LOX t'T~HP . ,. 
SKP31 STO SAVf- I CLP ' X 

L 0.!\ FLAG I CLP ! ' X 
C1·1PA 1t1 I (LQ 2 ' '( 
BEQ t~ IJ L T I LCJ6 ~ 1 'i 
CMPA 112 I '-'UL 
'3EQ CONY I s T[l ' X 
LDD SAVE I L:J:- ·y ' ' 

STD RF.S I L D~ .<:15 
L8RA er:GIN . I ~UL 

CUNY LDD SAVE I ADDD 1 , X 
STD OUTPUT I ~OJD 2 'u 
LPRA 3EGIN I ?.C S LOP22 

!::: I c ~~ p [J #6S521 
~~uL T Ti'JC FLAG I BL:J LJP23 

LOX #SAVE ILOP22 A ClOD li 1 c:; 

L DY ,rtRES ILJP23 STO T8 

LUP15 CLC/ ' IJ . ! SP!C 
CLR 1 'u I s '(!\! c 
LOA 1 , X I LDD R17 
LOg 1 'y I STJ T14 
t~UL I LDD P8 

STD z,u I SE'· T1 7 

L Cl a. ' X I SYNC 
L:J3 1 'v I LDD Pl4 

t<~UL I STD SAVE 
ADOO 1 'u I S Y :JC 

STQ 1 ' IJ I LB?I.\ t--; EXT 

3(( LOP16 I:;: 
I~C 

' t..J 
IMLTFP F8~ 2531! 



Appendix-[! D-21 

MLTRR FD8 2 4 5.21 ITEMP1 f=C5 0 
~:: ITC:MP3 ~c? 0 

o~r, $0000 !SAVE FO;:l, 0 

MCND FD5 0 !FLAG FC'3 ') 

PRC:81 FC8 0 IR~S FOr. 0 

Pf\002 FCB (\ I~: 

PR003 FC f.. 0 I :JRG ;;I=FFE 

Pk004 FCB 0 ISTKT :: (~ !j ~~=eoo 

TEMP FC~ 0 I :No 0 E G I~~ 
•'• ~~~~~-~--~~~-~~--~--~~·--··-~~~~--h~~~-~---~~--~~~--~----~-~~h .,. .. ........... , .... , ..... ~ .. , ...... , .............. , ............. 'I'" ....... , .... , ......... , .... , .... j' ........ , .......... ~ .. , ....... , ............... , ............ , ... , ............... , ......................... , .................... , ............. , .... , ............... , .............. , .. ':' .................... , .. 

... . .. PRCCESSJR ~.JU r~ e E ~ 10 ::: .,. ., . 

... ~**********n***~*~****~*~****~**~*********************~******* .,. 
N A'·1 680910 Ct-! 0 0 li65521 

OUTPUT EQU $0400 BLO SK P 13 

STATUS EQU $0402 ISKP12 4:::JDD 1:!15 
TlS EQU ~0403 ISKP13 STD TS 
T:> E r~U $0405 I S Y !·~C 
T7 EQU $0407 I STD T7 
Tl7 !:QU $0401 I SYNC 
rr~PuT EQU $0410 I STO SAVE 
Rl5 ::QU $0412 I L ·JD R7 
R5 E;;)U $0414 I SU?..D SAVE 
R7 E :)U $0416 I RCC SKP14 

Rl7 EQU $0418 I A DOD ~65521 

SE:M EQU ·~041A ISKDlf+ ST9 T17 
... I S YtJC . ,. 

ORG $F800 I snJC 
NOP I•'• ... 
Ct;>CC :t~~OlOlOIJOO I STO r~c ~J o 
L :.lU 1tPRQ:J1 I CLR ,u 

BeGIN CLRA I CLR 1 'u 
S T .~ FL AS L iJ A. 1 , X 
LOA s~M -'' I LOS 1 ~ y 

6EQ Ft.lD I \~ 'j l 

START LOA ::1 I ST[l 2,U 
STA FLAG I LIJ t!. ' X 

FRO LOY ~tMC rw I L oo, 1 'y 

LOX ~HLTFt:/ I .'·~ Ul 

LOA ltl I ADC1Cl 1 'u 
STA STATUS I STJ 1 'u 
SYf..JC I ~cc SKP16 
CL?A I INC 'u 
ST~ STATUS ISKP16 LOA 1 , X 
LD0 INPUT I LD3 ' y 

5RA ::JVER I 1·1UL 

Nt:XT L8Y t:HOJD I AODD 1' u 
LOX ~i'J.LTRR I ST~ 1 ':J 
s V~JC I sec S!<. 0 lg 

LDO SAV~ I :NC ,u 
•'• IS!<.Pl9 LOA t '( ..• 
OVER STD T15 I l [)Cl ' y 

SYNC I MUL 
1\D:.JJ Dl5 I .0. :J Q J 'u 
scs SKP12 I ST(I ,u 



I'- J ? 
..J ~--

.,. Is tc. P 3 o AOGO ~ 1 5 
LJA 1 'u I·'· •.• 

L 0 ~· !ot15 Is k'. P 31 STCl s .tJ. v r: 
r~UL I LDA Fl A', 
.A;) Or) 2,U I C ~~ P A It 1 

BCS SKP20 I o. E ~ t·lUL T 
UiPD t;65521 I C:~P A t:2 

SLO SKP21 i3EQ ~r~JV 

SKP20 AI)Ou 1t15 LJD SAVE 
SKP21 ST') 2,1_1 t"T'"> 

..) I~ ~t=S 

•'• L:PA 5::GIN ... 
LDA 'u IC'JNV LD0 s~v~ 

LJX ttTf:MD I STfl oun>ur 
CL~ ' X I L::?A ;::, = ,- T \1 

,_ ~ " - I'> 

CLR 1 , X I•'• .,. 
CLR 2, X I r~UL T !NC FL..C.C-
LOR :t15 I LOX ;:s:.v:: 
'~UL I L ::lY Z>~i:<; 

STD 'X IL2P15 C L o 'I ' .__ 

LDL\ , X I CL~ 1 I lj 

LD5 ttlS I L::JA 1 t y 

~1U L LD5 1 , y 

ADDD • 'i J. , .. r·tUL 
AODD 2,U ST!1 2 ~ l_l 

f1CS SKP22 L~H , X 
c;.~ P D :it65521 LD? : ' y 
BLLl SKP23 HUL 

SKP22 .D. D'JD :t15 ADDD 1 , u 
•'• S T:::• 1 ' ll •,• 

Sl\ 0 23 SP.JC. sec l0~16 

SHJC DJC . t u 
S L'~D :::17 ILOP16 LOA 1 ' '( 
BCC SKP24 I LO::. 'y 

A~:JD 1:'65;,21 !'·lUL 
$1\P24 SYNC LI:JllO 1 ' IJ 

STCJ T7 SHl ~ 'u 
s n-:c ~cc LCe>lg 

STO SAVE I •\I C 'u 
L:JD R7 !L0?19 LOt. ' X 
SU?.D SAVE I LO~ ' y 
3(( SK?26 I 'A Ul 

:..ooo tt65521 I ~ODD , u 
$K 0 26 s y ~J c I S T:'· t u 

,\ D D D RS , ... •.. 
P:CS SKP22 I L QA. 1 II· - t .__ 

01Pll :t65521 ! LOS !i15 
t) t ~ 
.. ' L. u SK029 I '·1 UL 

SKP28 .A Jr)[) ~15 I t1ClDD 2,U 
SI\P29 srr T15 I ~ c s LOP2(' 

SPJC Ut?O .tr6<;521 

.A·JDLl R 1 5 u. LG LCJ 0 21 

BCS ~·.'\P30 ILJP28 .1 020 ~ 1 5 

('r-JPO rt65521 ILCIP21 ~· T [' ? 'u 
bLU SKP31 I•'• ..• 



Appenciix-D !J-23 

LCJP22 
LOP23 

•'• .,, 

L~A 

L C'' X 
Clt:i 
CL~ 

CLR 
LD6 
t·1 'J L 
STC\ 
L JA 
L 0:0 
:~ UL 

A~~o 

AOOO 
scs 
c '-1 p [J 

3LO 
llODD 
STJ 
SYNC 
s n~c 
SYNC 
S Y ~IC 
L:JD 

, u 
~tT::~lP 

'X 
1 , X 
2, X 
1J'!5 

' X 
' X 

~15 

1 , X 
2, u 
LOP22 
:465521 
LOP23 

R17. 

I 
I 
I, .. .,, 

I i·1L T F ~ 
I "'1L T R R 
I-·· .,, 

I 
It~ c r,JC 
IP~J~1 
ID?iJC2 
IPPGD3 
IP::l:.J['4 
IT~MP 

I T:: 1·1 o 1 
ITc'~?3 

ISAVf. 
I FLAG 
IRES 
I ... .. 
I 
ISTr:T 
I 
I ... 

'•' 

SF' S-lv: 
L3RA f·l: X T 

FOS ~6~17 

c:c~ 2312.? 

QRG $000') 
<=CJB 0 
t:'(£1 0 
:=cg 0 
r:c~ 0 
:= c ;:>, c 
;: c :. [l 

cc~ 0 
F(8 0 
c:og 0 
F~C 1, ,, I) 

F D?, 0 

O~G SFFF:' 
E;:)U ;:=qoc 
f. ~10 3 E G I~~ 

~~~~~~~--~~----~-~-~----------~-----~---~-~----------~--~---··-~ ~ ............ , ......... , ............... , .. ~, .... , .... , .... , .... , .... , ......... , .... , ......... , ............................. , ......... , ... , ..... , ...... , .. ,, .............. , ..... , ... , ....... ":" .. , .... , .................. , ..... , .... , .......................... , ........ , ......... , ...................... , .. 
PROCESSJR NUVBEQ 11

..... ,.t., ·~ ·~ "'~ .. ·~ .. ·~ ~ "'~ ~ "'' .. ·~ ... ~, "'" "''" J •
~... "'r"' .. , , , .. , .. "•" .. , '"r"' , ... , , , , "•" "•" , , ,

OUTPUT
·STATUS
T6
T12
INPUT
R6
Rl2
ScM

BEGIN

START

ff<O

~JAM

EQU
EQU
EJU
EQU
E ~~u
EQIJ
f. I~ U
E .. ~u

O~G

NO?
ORCC
LOU
CLRA
STA
L DA
c:. E Q
LCIA
STA
LOY
LOX
LOA
STA
SYNC
CLRA
STA
LDD

680911
$0400
~0402

$0403
$0405
$0411)
!.0412
$0414
!-Ot..16

$F800

!1';;01010000
~PROOl

FLAG
SEM
F~D

#1
FLAG
~1·1CND

~H·ll T FR
~1

STATUS

STATUS
INPUT

!
I NEXT
I
I
I
I , .. •..
lOVER

I
I
I
I
I
I
ISKP12

SKP14
•'• .,,

SKP15

3?-A
LOY
LJY
SYNC
LDD

STD
SYNC
STD
LDD
SUSD
F..CC
~DOD

SYNC
SYNC
s yr..; c
SYNC

OVED
l:f-1 c "J LJ
11 ·~ L T R ~

S.!l V'f

T, .o

2AVE
R6
SAVC:
SKP12
jt6~521

AODD Pl2
?.CS SKP14
c f~ p 0
o. L(:'

ADDQ

STD
Clkl
CLR
LOA
Lc:'•g

1165521
SKP15
:t15

~10lC·

,u
1 , u
1 , X
1 ' y

Appendix-0 D-24

MUL SYNC
STD z,u SYNC
LOA 'X STD T6
LOB 1 'y SYNC
MUL STD SAVE
ADOD l,U LDD R6
STD 1,U SUBO SAVE
BCC SK 0 16 sec SK 0 24
INC ,u ACJOD 1'!65521

SKP16 LOA 1 , X•
LOS 'y SKP24 STO SAV~

MUL LD~ FL~G

ADCJO 1 'IJ C~1PA ill

STO 1,U BEQ MULT
BCC St<P19 CMPA 1Z2

It\JC ,u g;:Q CONV
SKP19 LOA ' X LDD snv!=

L DB ' y STCJ RES
r-~ UL Li3RA 5EG!N

ADOD ' IJ
I c :F~ v LDD SAVe

ST:J ,u I ST~ OUTPUT
..• I L5RA SEC, IN . ,.

l DA 1,U I•'• .,.
LD~ ~15 I i·1UL T INC FLAG
r,1UL I LOX #SAV=
ADDu 2,l! I L DY tiRES

.:. c s sf<', p 2 0 ILi!P15 CLR 'u
CMPD ~65521 I CLR 1 'u
blO SKP21 I L Ll:. 1 , X

SKP20 AOQD tt15 I L 03 1 ' y
$!(_P21 STD 2 'u I '·1UL
•'• I STO 2 'u ...

L ::JA ,u I LOA ' X
LOX #TE~P I L08 1 ' y

CLR ' X I r.IUL
CLP. 1 , X I 0.000 1 'u
(LD 2, X I STO 1 'u
LCJB ttlS I !1((LOP16

MUL I INC 'u .
STO ' X ILOP16 LOA 1, X

LOA ' X I LOB ' v
L 08 tt15 '1UL
!'1UL AODD 1 'u
t~ D DO 1, X STD 1 'u
A.ODU 2 'u BCC L:JP19
5CS ~KP22 !NC 'u
C r~PD #65521 LOP19 LOA ' X
SLCI SKP23 LD5 ' y

S~<-.P22 A::J'JO ::15 ~UL

SKP23 SYNC AOOO 'u
·'• STD ' IJ .,.

STD T12 •'• .,.
SY"JC LOA 1 , L!

S Y "IC ~OR iilc;

Appendix-0 D-25

MUL I LDD R6
AODD 2,U I ST:J SAVE
6CS LOP20 I SYNC
01PD #65521 I S Yf>IC
gLQ LOP21 I SYNC

LOP20 AODD #15 I LBRA ~J =X T

I,.UP21 ST8 2,U I,.
... IMLTFR F08 16087 . ,.

LOA ,u IMLTRR FOB 29504
LOX ttT'=MP I·'• .,.
CLR , X I 'JRG $0000
CLR l,X t-1CNO FOB 0

CLR 2, X P~001 FC9 0
LD~ #15 PR002 r:cA 0
~1UL PROD3 FCB 0

STD t X PT<004 FCB 0
L DA t X TEMP FCB 0

LOB #15 TE14P1 FCB 0
f--1UL r::r4P3 r:cR 0

AOOO 1 t X SAVE FOB 0
A~DO 2,U FLAG FCB (\

BCS L0°22 RES FOB 0
CMPO #65521 •'• ...
BLO LOP23 ORG $FFFF.

LUP22 AD~O 11115 STRT EQU $FI300
LOP23 STD T6 END REG IN

SYNC •'• .,.
•'• ~~~~~~~~~~~~~~~~-~~~~~~- ~~~~~~~~·~~~~~·~~~·~~~~~~~~·~·~·~····· ... ¥~¥¥¥¥¥¥¥¥¥¥¥-~¥¥¥¥¥¥~¥¥¥~ ~-¥¥¥¥¥¥¥¥¥¥¥¥~-¥¥¥~~¥¥¥¥¥¥-¥¥¥-¥¥

* PROCESSOR NUr-'8ER 12 J • . ,. .,.

·'· ** .,.
NM~ 680912 IFRJ LOY It~~ Ci~ 0

OUTPUT EQU $0400 I LOX ~MLT:=R

STATUS E QU ~0402 I LOA ttl

T7 E QU $0403 I STA STATUS
T15 EQU $0405 I SYNC
Tl3 EQU $0407 I CLRA
Tl1 EQU $0409 I STA STATUS
INPUT EQU $0410 I LDD INPUT
R7 E QU ~0412 I 8 RA OVER
Rl5 . EQU $0414 I NEXT LOY #MCND
Rl3 EQU $0416 I LDX #MLTRR
Rll EQU $0418 I SYNC

. S E f·1 E QU S041A I LDD SAVE
•'• I,. .,.

ORG $F800 lOVER STD T7
NOP I SYNC
ORCC #~:01010000 I STO SAVE
LOU #PROD1 I LDD P.7

BEGIN CLRA I SUBD SAVE
STA FLAG I BCC SKP12
LOA S ::M I ADOD :r65521

BEQ FP.O ISK.Pl2 SYNC
START LOA Ill I STO T15

S T.A FLAG I SYNC

Appendix-0 J-26

FRO LOY 4'r~CN 0 I LOB ' y
LOX #MLTFP. I MUL
LOA #1 I A.DD8 1 'u
STA STATUS I STD 1 'u
SYNC I sec SK 0 21
CLRA I INC 'u
STA STATUS ISK.P21 LOA ' X
LDD INPUT I LOB 'y
gR A. CVER I MUL

~J tXT LDY #M·CND I AOOO ,u
LOX P.~1LTRR I STO 'u
SYNC I ::'
LO[l SAVE I LOA 1 'u

•'• I .,.. LOB .lt15
OVER STD T7 I r~UL

S 'fNC I ADDD .:.,u
STQ SAVE I BCS SK.P22
LDD R7 I CMPO zt65521

·SUBD SAVE I ~LO Si<.P23
BCC SKP12 ISKP22 ADDD lt15
AJOD lf65521 ISKP23 . S T[) 2 'u

SKP12 SYNC I -·· ...
STD T15 I LOA 'u
SYNC I LOX ~TEt-IP

ADDD 1:115 I CLR ' X
BCS SKP14 I CLP 1 , X
CMPD #65521 I CLR 2 ')(
BLO S K P15 I LOA 1115

SKP14 AODD ~15 I MUL
SKP15 STO T13 I STO 'X

SYNC I L 8A ' X
AODO R13 I L 08 It 1 5
BCS SKP16 I I~UL

CMPO #65521 I AOOD 1 , X
BLC S.K P 17 I AODD z,u

SKP16 AODO ti15 BCS SKP24
SKP17 STD T11 CMPD lf65521

SYNC BLO SKP25
·'· SKP24 AODD IHS .,.

STO MCNO SKP25 s Y :~c
CLR ,u •'• .,.
CLR l,U SYNC
LOA 1, X AOOO Rll
LOB 1 ' y BCS SKD26
MUL 01ro 1165521
STD 2,U SLO SK 0 27
L DA. ' X S K P2 6 ADDD ltl5

LOR 1 ' y SK.P27 STD T13
MUL SYNC
11.000 1 'u AOOD P.l3

STO 1 'u BCS SP'28
BCC SKP18 CMPD 1165521
I~·~ C 'u BLO SKP29

SKP18 LOA 1 , X SK.P28 ll.ODO .:il5
'
l

Appendix-D D-27

SKP29 STO T15 I "'1UL
SYNC I ADOD 'u
ADDD R15 I STO ,u
BCS SKP30 I:::
01PD ,65521 I LDO 1 'u
3LO SKP31 I l DB ;115

SKP30 ADDD ~t15 I ~WL

SKP31 SYNC I AODO 2,U
STO T7 I BCS LOP20
SYNC I CMPD #65521
STO SAVE I BLO LOP21
LDD R7 ILOP20 ADDD It 1 5
SUSD SAVE ILDP21 STD 2tU
BCC SKP32 •'• .,.
ADDD ~65521 LOA ,u

·'· LOX :tTEMP .,.
SKP32 STD SAVE CLR t X

LOA FLAG CU' 1 , X
CI~PA ;,1 CLR 2tX
BEQ MULT LOB 1t15
UIPA 112 MUL
BEQ CONY STD ' X
LDD SAVE LOA 'X
STO RES LOB 1:15
L BRA BEGIN I~UL

CONV LOO SAVE ADDD 1 t X
STD OUTPUT ADDD 2tU
LBRA BEGIN P.CS LDP22

)'• .. CMPD it65521
MULT INC FLAG ~LO LOP23

LOX #SAVE LOP22 ADDO 1115
LOY #RES LDP2 3 STD T7

LOP15 CLR ,u SYNC
CLR 1 'u LDD R7
LOA 1 t X STO T13
LOB 1 'y SYNC
MUL LOD R 1 3
STD 2,U STD T7
LOA ' X

SYNC
L!JB 1 'y LDD rn
~1UL STD SAVE
A!JDD 1 'u SYNC
STO l 'u LBRA NEXT
BCC LDP16 ,.
INC 'u MLTFR FOB 29032

LOP16 LOA 1 , X MLTRR FOB 28641
LOB ' y

... ...
MUL ORG !0000
ADOO 1 ' IJ I~C NO Ffif\ 0

srn l , I J PRCJOl ,: c !'. f)

BCC LOP 1 '-J P~UrJ2 F(.f1 ()

INC ,u PP.003 FCR 0

LUP19 LCIA ')(
IPROD4 FCB 0

LDB 'y !TEMP FCB 0

Appendix-0 0-28

TEMPl FCB 0 I ,.
TH1P3 FCR 0 I ORG $FFFE
SAVE FDS 0 ISTRT EQU $F800
FLAG FCP. 0 I END BEGIN
RES FD5 0 I t.:
•'· ****~*******************************~************************* .,.
•'• •'• PROCESSOR NUl-~ BE R 13 ::: .,. .,.
·'· ** .,.

~J A~l 680913 I AOOO D14
OUTPUT EQU $0400 I 8CS 5KP14
STATUS EQU $0402 I CMDO .tt6552l
T8 EQU $0403 I SLO SKP15
T14 EQU $0405 ISKP14 ADOO :t15
Tl2 EQU $0407 IS K P15 SEl Tl2
INPUT EQU $0410 I SYNC
Rtl ~QU $0412 I STD SAVE
R14 EQU $0414 I LDD ~12

Rl2 EQU $0416 I S:.J8D SAVE
SEM EQU $0418 I BCC SK P 1 A
•'• I ADDD 1165521

ORG $F800 ISKP16 SYNC
NQP I•'• .,.
ORCC #~~01010000 I STD r~OJL:l

L DU i*PROD1 I CLR ,u
BEGIN CLRA I C LR 1 'u

ST~ FLAG I LOA 1 , X
LOA SEM I LOB 1 'y

BEQ FP D I 1·1UL
START L DA #1 I STD 2,U

STA FLCIG I LOA 'X
FRO LOY ,:tMCNO I L 08 1 ' y

LOX "MLTFR I MUL
LOA #1 I A. ODD 1 'u
STA STATUS I STD. l,U
SYNC gee SKP18
CLRA INC ,u
STA STATUS SKP13 LOA 1 , X
LOD INPUT L 05 'y
BRA OVER ~1UL

NEXT LOY #MCND AOOD 1 'u
LOX #"''LTRR STD 1,U
SYNC ~cc SKP21
LDO SI\VE INC ,u

•'· SKP21 LOA 'X ...
OVER STO T8 LOB ' y

SYNC '·1UL
STO SAVE AOOD ,u
LDO R8 STO 'u
SU80 SAVE •'• .,.
BCC SKP12 LOA 1 'u
ADOO ,65521 LDC:. 1115

SI\Pl2 SYNC "1UL
STD Tl4 AODD 2 'u
SYNC BCS SKP22

Appendix-0 0-2°

CMPO Ji65521 I LDO SAV::
BLO SKP23 I STO RES

SKP22 ADDD ~15 I L8°A 8EGIN
SKP23 STD z,u ICDNV LDD SAVE
::: I STD OUTPUT

LOA ,u I LBRA B=GIN
LOX #TEMP I•'• ...
CLR 'X IMULT !NC FLAG
CLR 1 , X I LOX 1iSAVE
CLR z,x I LCJY If RES
LDfl 1115 ILDP15 CLR ,u
l'-11J L I CLR 1 'u
STD ,x I LOA 1 , X
LOA 'X I LOg 1 'y
LOB #15 I MUL
r-wL I STO 2,U
ADDD 1 , X I LDA ' X
AD!JD z,u I L.DB 1 ' '(
BCS SKP24 I MUL
CMPD til6'5521 I .A DOD 1 'u
RLO SK P 2 5 I STD 1 'u

SKP24 AODD #15 I RCC LOP16
SKP25 s y ~J c I INC ,u
~- ILOP16 L DA 1 , X ...

SYNC I LOe ' y
STD T12 I I~UL

SYNC I AOOD 1 'u
STD SAVE I. STO 1 ' IJ
LDD R12 I BCC LDP19
SUBD SAVE I INC 'u
BCC SKP26 ILDP19 LOA ' X
ADOD #65521 I LOB ' y

SKP26 STO T14 I MUL
SYNC I AO!JO 'u
AO!JO Rl4 I STD 'u
BCS SKP28 f.:::
CMPO #65521 I LOA 1,U
BLO SK ?2 9 I LOB 1115

St<..P28 AODO #15 I ~UL

SKP29 Sl'NC I ADDD 2,U
STD TB I P..CS LDP20
SYNC I CMPO 1165521
STD SAVE I BLO LOP21
LDD R8 ILOP20 ADOD It 1 5
SUBD SAVE ILOP21 STO z,u
BCC SKP30 I
ADOD #65521 I LOLl. 'u ... I LOX :tTE~P ...

SKP30 STO- SAVE I CLR 'X
LOA FLAG I CLR 1, X
C 1-1PA lil I CL?. 2 , X

R=Q MULT I LD'3 us
Cr-1PA #2 I MIJL

BE(J CONV I STD 'X

Appendix-D D-30

L DA ' X
... ...

LOB Ill~ MLTFR FOB 8748
MUL 14L T R R FDS 12521
ADOD 1, X ,.
ADOD z,u ORG ~000(1

BCS LOP22 MCNO FOR 0
CMPD t£65.521 PR001 FCB 0

8LO LOP23 PR002 FCB 0

LOP22 l'l.ODD ii15 PR•J03 FCB 0
LOP23 STD TS ?~C04 FCB 0

SYNC T Fr-1P FCB 0

LDD R8 TEMP1 ~cB 0
STD Tl4 TEMP3 ~cs 0

LDD Rl4 S.GVE ~os 0
STD T12 FLAG FC3 0

SYNC RES FOB Q

LOD Rl2 :;:

STD SAVE ORG $FFFt
SYNC STRT '=QU ~F80C

SYNC END SEGIN
LB~A NEXT•

..• ***********************u************************************** PROCESSOR NU1·1BEC1 14 J • . ,.,.

•'• ** .,.
N.l'l.M 680914 I SRA OVER

OUTPUT EQU $0400 I NEXT LOY #1·1CND
STATUS EQU $0402 I LOX ~MLTRR

T9 EQU $0403 I SYNC
Tl3 EQU $0405 I LDO SAVt:
T18 EQU i0407 I•'• ...
INPUT E ')U $0410 lOVER STO T9

R9 EQU $0412 I SYNC
R13 EQU $0414 I STD SAV:
Rl8 EQU $0416 LDD P9

SEM EQU $0418 SUBD SAVE
... BCC SKP12 . ,.

ORG $F800 ADDD 1165521
NOP S!<.P12 SYNC
ORCC ~~~01010000 STD T13
LOU 1'PROD1 Sl'"'C

BEGIN CLRA sugo R13
STA FLAG sec SKP14
LOA SEM ADDD lt65521
BEQ FRO S I<.P14 STD T1R

START L DA #1 SYNC
STA FLAG SYNC

FRO LOY· #MCND
LOX 1f 1·1 L T F R STD I·~ CN 0
LDA #1 CLR 'u
STA ST.I'l.TUS C LR 1 'u
SYNC LOA 1 , X
CLRA LOB 1 ' y
STA STATUS MUL
LDD INPUT ST8 z,u

Appendix-0 D-31

LOA ' X
ISKP24 A ODD 1t15

LD6 1 'v ISKP25 SYNC
MUL I STD T13
AODD 1 'u I SYNC
STD 1 'u I STO SAVE
BCC SKP16 I LDO P.13
INC 'u I su~o SAVE

SKP16 LOA 1 , X I sec SKP26
LD5 ' y I ADOD tf65521
NUL ISK?26 S~NC

ADOO 1,U I STD T9
STO 1 'u I SYNC
BCC SKP19 I STO SAVE
INC 'u I L DO P.9

SKP19 LOA 'X I sugo ·sAv=
LOB 'v I BCC SI'.P2!3
MUL I AOOD #65521
AOOO 'u I ~:
STD ,u ISKP28 STD SAVF:

.... I LOA FLAG
L DA 1,U I CMPA li1
LOB 7:15 I REQ MULT
~1UL I CMPA #2
AO':lD z,u I 5EQ CONV
BCS SKP20 I LDO SAVE
CMPO #65521 ' STD RES
RLO SKP21 I LB~A BEGIN

SKP20 AOOO filS I c QtJ v LDD SAVE
SKP21 STD z,u I STD OUTPUT
•'• I LBRA BEGIN .,.

LDA 'u
I

LOX ltTF~lP IMULT INC FLAG
CLR ' X I LOX ~SAVE

CLR 1 , X I LOY :;'DES

Clq z,x ILOP15 CLP 'u
LOB tt15 I CLP 1 'u
11UL I LOA 1 , X

STO ' X I L 08 1 'y
LOA ' X I MUL
LOS #15 I STD z,u
MUL I L DA ' X
ADOO 1,X I LOS 1 'y
ADDD 2,U I ~1UL

BCS SK?22 I AOOD 1,U
CMPO #65521 I STD 1 'u
BLO SKP23 I 8CC . LOP16

SKP22 AODD .r,t 15 I INC ,u
SKP23 SYNC IL:JP16 · LOA . 1 , X
... I LOB 'y ...

SYNC I MUL
AODD R18 I ADOD 1-,U
RCS SKP24 I STD 1 'u
CMPO 1165521 I ~cc LOP19
BLO SKP25 I INC ,u

Appendix-D D-32

LUP19 LOA ' X IL~P23 STO T13
LOB 'y I SYNC
MUL I SYNC
ADDD ,u I LDO R13
STD 'u I STD Tl8

... I LDD R1.3 ...
LOA 1 'u I STO T9
L~S ~15 I SYNC
MUL I LDD R9
ADDD 2,U I STD SAVE
BCS LOP20 I· SYNC
CMPO tt65521 I LBRA ~~EXT

BLO LOP21 I
LUP20 ADDD it15 !MLTFR Foe. 1465
LGP21 STD 2,U IMLTRR FOB 21938
•'• ::: .,.

L D.O. 'u CRG ioooo
LOX ttTEMP f·1CNO t=Qr:, 0

CLR 'X PR801 1=(8 0
CLR l,X PR002 FCB 0
CLR 2, X PR003 FCB 0

L DB .illS PR004 t=(g 0
f·IUL T:MP FCB 0
STD ' X T Ei'lPl FC B 0

L i:H 'X TE1·1P3 FCS 0
LOB #15 SAVE FOB 0
MUL FLAG FCB 0

AODD l,X RES FOB (1

ADDD 2,U
BCS LCP22 I ORG $FFFE
CMPD #65521 ISTRT EQU $F800
BLO LOP23 I END BEGIN

LUP22 .O.DDD ltlS I ~:
... ** ...
... .,, PROCESSOR NU~BER 15, .
... ~~~~~~~~-~~~~~~~~·~~~·~···-~··~·~········~~~~·~~··~·~~·~·~~~~~ ... ,,. .. "'!'" .. , , , , , , , , , , , , , ~ ... , '"l" ... , , , , , , , , , , , , , , , , , , , , , ...

NAt~ 680915 I STA FLAG
OUTPUT EQU $0400 I L DA SEM
STATUS EQU $0402 I ~EQ FRO
TlO F.QU $0403 !START LOA #1

Tl2 EQU $0405 I STA FL~G

T18 EQU $0407 !FRO L DY #MCND
INPUT EQU $0410 I LOX #MLTFI:!

R10 E ~~u $0412 I LOA ~1

R12 EQU $0414 . I STA STATUS
R18 EQU $0416 I SYNC
SEM EQU $0418 I CLRA

ORG $F800 I STA STATUS
... I LDO INPUT . ,.

ORG $FSOO I 11RA OVER
NOP INfXT L DY It MOJO

ORCC tn~ClOlOOOO I l 0)('Hil TRD

L Dtl liPROOl I s '(I.J c
BtGIN CLRA I LDO SAVE

Appenclix-0 0-33

·'· ISKP20 ADOD ns ...
OVER STO T10 ISKP21 STD 2,U

SYNC I··· .,.
STD SAVE I LOA 'u
LOD R10 I LOX ft T E ~~ P

SUBD SAVE I C LR ' '/.
BCC SKP12 I CLR 1 , X
ADOD ~65521 I C LR 2,X

SKP12 S Y ~.JC I LOB ~15

ST~ T12 I M!JL
SYNC I STQ ' X
STD SAVE I LOA ' X
L DO R12 I LOB ~ 1 5
SUBD SAVE I 1·1UL
sec SKP14 I ADDD 1 , X
ADDD :'165521 I ADOD z,u

SKP14 STD Tl8 I BCS S K P 2 2
SYNC I Cf~ PO ii65521
SYNC I 8LO Sl<P23

.... ISKP22 ~ODD ~ 1 5 . ,.
STD MCNO ISKP23 SYNC
CLR ,u J·'·
CLR l,U I SYNC
LOA l,X I SUBD RlQ
LOS 1 'y sec StU'24
MUL .0. DOD 1165521
STD 2,U SKP24 SHIC
LOA 'X STD T12
LOB 1 , y SYNC
MUL STD SAVE
AuOD l,U LDD ?12
STD l,U SUBD SAVE
BCC SKP16 BCC SK.P26
!NC ,u AODD #65521

SKP16 LOA l,X SK?26 SYNC
LOB ' y

ST~ T11)
i'IUL SYNC
AODO l,U STO SAVE
STD 1 'u LDD r->10

BCC SKP19 SUBD SAVE
INC ,u fiCC SK 0 23

SKP19 LOA ' X ADOIJ 1165521
LOB 'y "'• .,.
MUL SKP28 STD SAVE
ADDO ,u LOA FLAG
STO 'u OIPA ill

... BEQ i•IUL T ...
LOA 1 'u C ~~ PA #2

LOB #15 SEQ CGNV
r~UL LDD SAVE
ADOD z,u STD Rf.S
BCS SKD20 L8?A BEGIN
Cr'WO tt65521 C OtJV LOD SAVE
BLQ SK P 21 ST!J OUTPUT

Appendix-0 0-34

LBRA BEGIN CLR ' X ... CLR 1 , X . ,.
MULT INC FLAG CLR 2, X

LOX /if SAVE LOR ~15

L DY #RES f-AUL
LOP15 CLR ,u STO ,.x

CL~ 1 'u LOA. ' X
LOA 1, X LD'3 #15
L DB 1 'y 1-IUL
MUL AOOD 1 , X
STO z,u .A DOD 2tU
L DA ' X E.CS L:JP22
LOB 1 'y CMPD ii65521
MUL ~LO LOP23
AODD 1,U LOP22 AOOO #15
STD 1,U LOP23 STD T18
BCC LDP16 SYNC
INC 'u SYNC

LlJP16 LOA 1 , X SYNC
LOB ,y I SYNC
r~UL I LOD R18
ADDD l,U I ST!J SAVE
STD l,U I LB~A NEXT
BCC LDP19 I :::
INC ,u IMLTFR 1=08 23174

Li.JP19 LOA ' X IMLTRR FO~ 5913
LOB ' y I•'• 1 ..

MUL I ORG !0000
ADDD ,u I 1-1C NO FOB 0

STD ,u IPRODl FCB 0
•'• IPRODZ ... r::cs 0

LOA l,U IPROD3 FCS 0

LOB #15 IPROD4 r::cg 0
MUL !TEMP c::ce 0
AODO 2,U ITE1~Pl FCB 0

ccs LOP20 IT'=r-1P3 FCB 0

Cl-1 PD ii65521 I SAVE FOB 0

BLO LOP21 I FLAG 1=(8 0

LUP20 ADDO ~15 IRES FOB 0
LOP21 STO z,u I•'• .,.
•.. I ... O~G ~FFF!:

LOA , u ISTP.T EQU tF800
LOX #TEMP I E r~o BEGIN

... -~---------------------~------~-------------------------------.,. ¥~~~~~-¥¥¥¥~--¥¥¥••¥¥¥~¥¥¥¥_¥_¥¥¥¥¥¥¥¥¥¥¥~¥¥¥¥¥¥~¥-¥~¥¥¥¥-¥¥¥¥¥

•'•PR 0 CESS OR NUl~ BE R 16 :-:: . ,. . , .
•'• ** ...

NAM 680916 I NOP
T4 E (JU $0410 I QRCC rtt01010000

TS EQU $0412 I L DU nPRODl

R4 EQIJ $0414 !BEGIN CLRA
R5 !=QU $0416 I STA FLAG
SE:M f QU $0418 I LOA S =~I
•'• I BEQ I=RD .,.

ORG SF800 !START LOA 1!1

Appendix-0 J-35

S T A. FLAG SKP19 STO 2;U
FRO LOY ~1·1CND t.:

LDX fii·1L TFR LOA ,u
BRA OVER LOX ltT!:MP

NEXT LOY #MCND CLR 'X
LOX #~1L TP R CLR 1 , X

OVER SYNC CLR z,x
SYNC LOB ~15

SYNC ~~UL

SYNC STO ' X
SYNC LOA ' 'I
LOD R4 LOB 1tl5
A ODD RS ~·1 U L
BCS SKP12 ADDD 1 , X
CMPD '165521 AODD z,u
BLO SKP13 BCS SKP20

SKP12 AODO ttl5 CMPO #65521
SKP13 SY0JC BLO SK::>21
... SKP20 AOOD 111 5
'•'

STD t'ICND SKP21 SYNC
CLR ,u •'• .,.
CLR 1,U STO TS

. L DA 1, X STD T4
LOB 1 ' y SYNC
MUL SYNC
STO z,u SYNC
LOA 'X SYNC
LDR 1 'y SYNC
MUL LOA FLAG
ADOD 1 1 U C~1PA Ill
STD 1 'u BEQ SKP
E\CC St<.P14 LBRA s=GIN
INC ,u SKP INC FLAG

SKP14 LOA 1 , X SYNC
L oe. ' y LDO RS
MUL STD T4
ADOD 1 'u SYNC
STD 1 9 U SYNC
sec SK?l7 SYNC
INC ,u L8RA N!:XT

SKP17 LOA ,x •'· ...
LOB t y IMLTfR ~DB lBOCS
~1UL !MLTRR FD~ 5493
ADDD ,u ,,.
STD t ~J I ORG $0000

..,, I MOJO FOB 0
'•'

LOA l,U IPRQ!:ll FCB 0

LOB 1tl5 IPROD2 FCB 0

MUL IPR0~3 FCB 0

AOOD 2 'u IPR004 FCS 0

8CS SKP18 IT E I~P FCB 0

CMPO #65521 JTENPl FC:3 0
BLO SKP19 ITEMP3 FCB 0

SKP18 ADDD ttlS !SAVE co~ 0

Appendix-0 0-36

FLAG FCB 0 I ORG SFFFE
... ISTRT EQU $F800 ...
•.. I ~iW BEGIN ...
... ** ...
... ... PROCESSOR N UJ~ 8 E R 17 ,, .
... ** ...

NM1 680917 I INC ,u
T9 fQU $0410 IS!<P14 LOA 1 , X
TlO EQU $0412 I L ::l ~- ' y
R9 =Qu $0414 I MUL
R10 EQU $0416 I AOOD 1,U
SU1 EQU $0 418 I STD 1 'u ... I ~cc SKP17 ...

ORG $F800 I INC ,u
NOP ISI<P17 LOA ' X
ORCC lt%01010000 I L D~ ' y
LOU #PRDD1 MUL

BEGIN CLRA AOOO 'u
STA FLAG STO ,u
L~A SEM •'• ...
REQ FRD LOA 1 'u

STAPT LOA ~1 LD~ .H5
STA FLAG ~UL

FJ.<O LDY #MCND ADDD 2,U
LOX ztMLTFR BCS S K P 18
BKA C"JVtR CMPD ii65521

NEXT LOY ttMCND BLfl SKP19
LOX ~MLTRR SKP18 AODD ~15

OVER SYNC SKP19 STD 2,U
SYNC
SYNC LDA ,u
SH'C LOX ttTEMP
SYNC CLR ' X
LDD R9 CLR 1 , X
ADDD R10 CLR 2,X
BCS SKP12 LD~ #15
CMPD ~65521 t·1UL
BLO SKP13 STO ' X

SKP12 ADOD #15 L DA ' X
SKP13 SYNC LOB #15
... MUL
~-

SiD r~CND ADDD 1 , X
CLR ,u AODD 2,U
CLR l,U I ~cs SK P2 0
L DA 1 , X I CMPD ,!165521
L DB 1 'y I BLO SKP21
MUL ISKP20 AODD :tl5
STD 2,u ISK.P21 SYNC
l 0.11 ' X

I ::c

.L DB 1 ' y I STD T!O

~1UL I STCl T9

AOOD 1,U I SYNC
STD 1 'u I SYNC
BCC SK ~14 I SYNC

Appendix-[) 0-37

SYNC I~LTRR f DB 34561
SYNC I ~~
LOA FLAG I CRG $')000

OlPA ~1 IMCfW FD5 0

BEQ SKP IPP001 FC!: 0
L BRA BE G. IN I PR002 FCg 0

SKP INC FLAG IP~003 FCB (I

SYNC IPROD4 FCS t)

LDO RlO IT Et~P FCB 0

STD T9 ITEMPl FCP, 0

S 'fNC ITFMP3 FCB 0
S 'f~IC IS~VE' Fog I)

LDD R9 I FLAG FCB I) ...
STD TlO I,.
SYNC I r:JRG $FFFE
L8RA NEXT ISTRT E :-;) U $FSOO

·'· I E i~ 0 8 E G If.J
'I"

f·1L TFR F D f3 5753 ,,.
•'• ** .,.
"'· ... PROCESSOR NUt~BER 18 •'•,. .,.
•'· ** .,.

NAM 680918 ISKP13 SYNC
Tl4 EQU $0410 ,,.
TlS EQU $0412 I STO MCND
Rl4 E ::)U $0414 I CLR ,u
R15 EQU $0416 CLR 1 'u
SEM EQU $0418 lOA. 1 , X
•'· LD3 1 ' v .,,

OPG $F800- t~UL

NOP STCl z,u
ORCC 't%01010000 LOA ' X
L DU #PROD1 LOB l,Y

BEGIN CLRA r-1 u L ~
STA FLAG AOOD 1,U
LOA SEN STD 1, u
BEQ FRO BCC SKP14

START LOA t:l INC ,u
STA FLAG SKP14 LOA 1 , X

FkO LOY #MCND LOB ' y
LDX #MLTFR ~1UL

BRA OVER I ADDD 1 'u
NEXT LOY #I~CNO I STD 1 'u

LDX ~MLTRR I BCC SKP17
OvER SYNC I INC , u

SYNC I S.K p 1 7 LOA ' X
SYNC I LD?) 'v
SYNC I MUL
SYNC I ADOD ,u
LDD Rl4 I STD ,u
AODO P.l5 ,,.
BCS SK P 12 I L DA 1 , u
01PD· N65521 I LOR .1115

BLO SKP13 I ·~uL

SKP12 AODD #15 I ADDD 2,U

Appendix-0 ::>-39

BCS SKP18 CMPA :t1
CMPD t£65521 SEQ SKP
gLo SKP19 LBPA BEGIN

SKP18 ADOO '*15 SKP INC FLAG
SKP19 STD z,u SYNC
•'• LDO R15 ...

LOA ,u STD Tl4
LOX #TEMP SYNC
CLR 'X s.nJc
CLP 1,X LOO R14
CLR 2 t X STD T15
L 08 #15 SYNC
MUL LBRA N::XT
STO ' X

... . ,.
LOA t X MLTFR FOB 43615
LDB ~15 ."1L TR R FOB 24743
MUL I :::
AD;JD 1, X I ORG $0000
ADDD z,u I r~CNO FOB 0
3CS SKP20 I PRDD1 FCB 0

CMPO #6 55 21 IPR002 FCB 0
5LO SK?21 IPR003 FCB 0

SKP20 AODD #15 IP~004 FCB 0
SKP21 SYNC I TEMP FCB !'
... ITEMP1 !=CR 0 ...

STD T15 ITEMP3 FC B 0
STO T14 IS AVE F 0?. 0

SYNC I FLAG c:cs a
SYNC I ... ,.,.

SYNC I ORG $FFFE
SYNC ISTRT F:QU $F800
SYNC I END REG IN
LOA FLAG I

... **************************~*************~********************* CONTROL MICROPROCESSOR :::
•'• ** .,.
...... : ...
.,. NM1 CONTROL ORG $F800 .,.
:::~ STA~T NOP
ACIACR EQU $1040 ORCC #%01010000
ACIASR EQU $1040 LOS tt~ao

ACIARX EQU $1041 CLRA
ACIATX EQU $1041 STA CONTRL
ARYOUT EQU $1020 STA STATUS
INPUT EQU $10QO LOA # 0~00000101

OUT 1M EQU $1050 STA CONTRL
OUT1L EQU $1051 LOA t.!$13
OUT 2M EQU $1052 STA ACIACR
OUT2L EQU $1053 LOA It $11
DATA E fJU $1054 STA ACIAC~

(UNTRL EQU $101!.: LOA ..,~00000111

::: STA CONTRL
LOA tt~~OOOOOllO STA T ~1 p

Appendix-a 0-39

STA CONTRL JSR RC X
LOA #%00000111 JSR TXR
STA CONTRL C f~PA !#'$00
STA STATUS F\=Q SK5
BRA BEGIN JSR VALI 0

INIT LOS !it$80 AOOA T~P

LOA # $0 7 SRA. SK6
JSR TXR SK5 LOA T"'!P
JSR CRLF LS~A

BEGIN JSR CRLF LSRA
JSR PFX LSRA
JSR RCX LSRA
CMPA #. , 1 gRA SK6
BEQ SKPl ZERO CLRA
CNPA #'2 SK6 STA CNT
BEQ SKP2 CMPA ~~0

LSRA DSP L3HS EQr1SG1
•'• LOOPS JSR (qLc: .,.
SKP1 LOA 1t1 "'· '•'

STA FLAG JiARITE: LOA C"JT
LOX #rASG3 I LSPA
LOA #15 I LSRA
STA CNT LSRA
JSR DSPLY LSRA
LOY #INl JSR CO NVA
LOX #.~RYIN JSR TXR
JSR EXG L:JA CNT
BRA MOOFY ANDA # $0 F

SKP2 LOA #2 JSR CONVA
STA FLAG JSR TXR
lOY #IN 2 L uA t~'=

LOX #ARVIN JSR TXR
JSR EXG LOA tt$20

LOX i'H-1SG8 JSR TXR
LOA #13 LOB CNT
STA OJT LOA B,X
JSR DSPLY LSRA
J SR CRLF LSRA
JSP P FX LSRA

.. , LSRA .,..
MOOFY JSR CPLF JSP. CON VA

LOX ~ARVIN JSR TXR
LOA ti$20 LOB C ~lT
JSR TXR LOA 8, X

JSR RCX A tJ 0 A 11~01=

JSR TXP I .J s J;' CClNV A

CMPA #~00 I JSR TXP.

BE (J ZERO I L DA rt't20

JSR VALID I JS~ TXR
LSLA ,
LSLA I READ JSR RCX
LSLA I J SP TXR
L SL A I C"1PA li !. 0 (I

B~Q MOVE I LOA STATUS

Appendix-0 D-40

01PA #'- I ANDA li%11111110
BEQ OECR I STA CONTRL
C MPA #$20 I ORA iio/,00001001
BEQ INCR I STA CONTRL
JSR VALID I SYNC
LSLA I ANOA ~%11110111

LSLA I STA CONTRL
LSLA I STA STATUS
LSLA I
STA H1P IC'JNV 'LOX #OUT
JSR RCX I JSR EXC~G

JSR TXR I JSR CRLF
JSR VALID I LOX tH1 SG4
ADDA Tr~P I LOA 1111

LOB CNT I STA CNT
STA B,X I JSP OSPLY

INCR L DA CNT I JSP. CP.LF
INCA I LOX ~tOUT

CM 0 A # 30 I JSR ARAY
BHS t~OVE I JSR CRLF
STA CNT ISKP4 LOA li15

BRA LOOPS I STA CNT
DECR l DA CNT I LOX 1tOUT

OECA ISKPS LDD ,X++
BLT MOVE I STO OUT 2M

STA CNT I DEC CNT
L8RA LOOPS I BNE SKPS

... I LOA ACIASR ...
MOVE JSR CPLF I. LSRA

JSR PFX BCC SKP4
JSR CRLF LOA ACIARX
LDV ttARYIN ANDA #$7F
LOA FLAG CMPA t:'G

01PA ~H LSEQ GET
8NE SKP3 LBRA SEGIN
LOA STATUS
ANOA ttY,10111111 OSPLY LOA ,X+
STA CONTRL JSR TXR
STA STATUS DEC CNT
LOX #I".Jl P,NE DSPLY
JSR EXG ens
LOX ~INPUT

... . ,.
JSR f:XG TXR LOB r,"S02

LBRA BEGIN ~~A IT 3ITB ACIASR
SKP3 LOA STATUS BEQ WAIT

ORA #%01000000 STA ACIATX
STA CONTRL RTS R:TURN
STA STATUS "· ...
LOX #IN2 RCX LOA ACUSR
JSR EXG LSRA
LOX #INPUT 8CC RCX
JSR EXG LOA ACI.HX

... ANOA ti$7F ...
RTS STA STATUS

Appendix-a 0-41

"'• I ~TS .,.
CO NVA CMPA #9 I·'· .,.

BLS OMIT I
ADDA ~·A-'9-1 IG~T J SR C~LF

Dt-1! T ADDA #'0 I JSR PFX
ANDA· #S7F I LOX IIM$G4

RTS I LOA #12
... I STA CNT . ,.
CRLF LOA ~$00 I JSR DSDLY

JSP TXR I JSR CRLf=
LOA tt$0A I JSR PFX
JSR TXR ILOOPW LOA STATUS
RTS I ORA ~t%00010000

·'• I STA STATUS .,.
EXCHG LOA STATUS I STA CONTRL

'JRA ~?~00001000 !LOOP X LOA #15
STA CONTRL STA C"lT
STA STATUS LOY #ARY!N

L DY #ARYOUT LOX #INPUT
SYNC LOU liiNZ

·'• LDD DATA .,.
EXG LDO , y LOOPY ·sYNC

STO 'X LDD 0 AT A
LDD 2,Y STD ,X++
STO z,x STD ,Y++
LDD 4,Y STD ,U++
sTn 4,X DEC C"JT
LCJD 6,Y BNE LOOPY
STO 6,X :::

LDD 8 'y L DA STATUS
STO 8,X ANDA ~%11111110

LDD 10,Y STA CIJNTRL
STD lO,X f'JRA ~tY,OOC01001

LDD 12,Y STA CONTRL
STD 12,X SYNC
LDD 14,Y ANOA #%11110111
STO 14,X STA CCJNTPL
LDD 16,Y STA STATUS
ST'J 16,X ,.
LDD 1 8' y LOX #OUT
STD 18,X JSR EXCYG
L DO 2 0, y LOY #INZ
STD zo,x LOA ;1115
LDQ zz,v I STA CNT
STD 22,X ILOOPZ LDD ,X++
LDO 24,Y I STD OUT2~~

STO 24,X I L DO 'y ++

LDD 26,Y I STD OUTlM
STD 26,X I DEC CNT
LDD 2 8, y I. ~ NE LOOPZ
STD 2 8, X I LOO A(!.ASP.
ANDA #"'.11110111 I LSt;~A

STA CONTRL I sec LOOP X
ANDA #$7F I STO OUT2~·1

Appendix-0 D-42

CMPA # ~~ I DEC CNT
LBEQ BEGIN I B ~J E L'JOP::
JSR CRLF I LOA ACIAS~

JSR PFX I LSqA
REPEAT LOX "OUT I 8CC SK9

LOY IIIN2 I L DA ACIARX
L~A #15 I ANDA #l7f
STA C"lT I CI~PA #, 1

LOOP LDO ,Y++ I LBEQ SKP1
,'.

I SEl OUT 1M LBRA SKP2
L DO ,X++ I t.'
STO ·OUT21~ IARAY LOA #30
DEC CNT . I STA eNT
BNE LOOP I AGAIN CLR CNT1
LDA ACIASR LOOP2 CLR Ct..IT2
LSRA LOOPl LOA ' X
gee REPEAT INC CNT2
LOA AeiARX LSRA
ANDA #<;7F LSRA
Ct~PA #, 1 LSRA
L5EQ SKPl LSRA
CM 0 A #'2 JSR CONVA
LBEQ SKP2 JSR TXR
LBRA LOOP X LDA ' X + ... 1\NOA :t<£ 0 F ...

DSP JSR CRLF JSR CON VA
LOX #MSG5 JSR TXR
LOA #7 INC CNT2
STA CNT DEC eNT
JSR OSPLY BEQ SET
JSR CPLF LOA eNT2
JSR PFX C I~ PA t/4

JSR eRLF BEQ eHKT
LOX #!Nl 8R~ LOOPl
JSR ARAY OVER JSR eqLF
JSR CRLF BRA AGAIN
JSR eRLF CHKT LOA CNT1
LOX ~MSG6 e ~1 PA ti4

LOA #7 SEQ OVER
5TA eNT LOA .r,i$20

JSR OS PLY J SR TXR
J SR CRLF INC e ~1 T 1
LOX #IN2 BRA LOOP2
JSR AP.AY SET RTS
JSR CRLF
JSR PfX VALID SUBA # '0

SK9 LOX ~INl I CMPA ~9

LOY #IN2 I BHI e H K.l

L DA #15 I PTS
STA eNT leHKl SUBA P7

LOOPE LDO ,X++ I (I~PA lt$0F

STD OUT 1M I ?. L S: OK
LOD ,Y++ I 'IRA ERMSr,3

OK RTS I MSGl FCC 'Address Too Large'.

Appendix-0

•'• ...
PFX

·'· .,.

L DX
LOA
STA
JSR
RTS

ttMSG7
#6
CNT
OSPLY

ERMSGl JSR CRLF
LOX #MSGl
L DA #17
STA CNT
JSR CRLF
JSR OSPLY
JSR CRLF
LBRA HJIT

Efd·1SG3 JS~ CRLF

•'• ...

·'· .,.

.... . ,.
•'• . ,.
•'• .,.

... ...

LOX 1H1SG2
LDA il17
STA CNT
J SR CRLF
JSP. OSPLY
JSR CRLF
LBRA IN!T

NAM WINOlS

LOX .~AX

LOY #ARVIN ____ ..._
.;, , , .. "1 , , , , , , , , ..

... INPUT R~ORDERING •'•, .
*******************~**

LDD ,y
STD 'X
L DO 6,Y
STD z,x
LDO 12,Y·
STO 4,X
LDD 18,Y
STD 6,x
LDD 24,Y
STO s,x
LDD lO,Y
STO 1 0, X
LDD 16,Y
STD 12,X
L:JD 2 2, y
STD 14,X
LDD 28,Y
STO 16,X
LDD 4,Y

D-43

MSG2 FCC 'Invalid HEX Digit'
MSG3 FCC 'enter Response'
MSG4 FCC 'Convolution ,

t-ISGS FCC 'O.rray 1 ,

MSG6 FCC . 'O.rray 2 ,

I,SG 7 FCC 'CIJNV: .
MSG8 FCC ·=nter Values'
:::

ORG $0081
STACK RMB 1
T'1P Pt·18 2
CNT Ri·IB 1
CNTl Ri·1B 1
C NT 2 I) r~ R 1
STATUS RMB 1
FLAG R r~s 1
HH Rf,~. 30
IN2 R Me 30

lOUT ~t-18 30
IAPYIN RMB 30
I :::
l O~G <;FFFC::
ISTRT ~QU $F800
I END START

I LOO 20,Y
I STD zo,x
I LDD 26,Y

STO 22,X
LDD z,v
STD 24,X
LDO 8' y
STD 26,X
LDD 14,Y
STD 28,X

·'· ,.
•.. ----------------------... , , , , , .. " .. ~ , ,
::: •'• 3-POINT PRE-wEAVE :~~ .,.
•'· .. .,. , ,. , .. "'f"' , , , .. ~ 'f" ~ ... ~, '•"

s I(p 2 LDD lO,X
ADOO 2 0, X
~cs JMPl
CMPO #65521
13 LO JM::>Z

JMPl ADDD fJ 1 5
I J ~1 P 2 STD T 1·1 P 1
I aoo~ ' X
I Cl, c s Jr-IP3
I C~PD 1165521
I ;:,

Appendix-0 ~-44

BLO JMP4 I PLO Jt~Pl7

Jt·1P3 ADDD #l5 IJMP16 ~JDD ttl5
JMP4 STD ' X IJMP17 STD TMP1

LDD lO,X I ADOD 6,X
su~.o 20,X I scs JMP18
BCC JMP5 C ~~PO ~65521

ADDD lt65521 BLO JMP19
Jl"IP5 STD zo,x J"1P18 ADDD ~15

LDD TMPl JMP19 STD 6,X

STD 10 9 X LOO 16,X
LOD 12,X SUBD 26,X
ADDD zz,x RCC JMP20
scs JMP6 :.ooo· ~65521

CMPO ::65521 J~1P20 STD 26 9 X
SLO JMP7 LDO TMP1

J,.IP6 ADDD it15 STD 16 9 X
JI"IP7 STD TMPl LOO 18,X

ADOD 2, X ADDD 28,X
BCS JMP8 scs J/o1P21
Ct-IPD .it65521 CMPO #65521
BLO JMP9 BLO Jt~P22

J,.1P8 ADDO .1115 JMP21 AOOO #15
Jt-1P9 STD 2, X J~P22 STD H1Pl

LDD 12,X A ODD 8, X

SUBO zz,x RCS JMP23
BCC JMP10 Cf-IPO H65521
ADDD #65521 BLO JMP24

JMPlO STD 22,X J!\IPZ 3 ADDD tt15
LDO Tr~ p 1' JMP24 STQ 8, X
STD 12,X LDD 18,X
LDD l4 9 X SUBD 28,X
ADOD 24 9 X sec JNP25
scs J t~ p 11 AOOD ti65521
cr~PD #65521 Jr1P25 STO 28,X
BLO JMP12 LDO THPl

Jf-1Pll ADDD tt15 STD 18,X
Jt·IP12 STO TMP1 •'• ··~~~·~~~···~·~~~~~·~~ .,. ¥¥~¥¥¥¥¥¥¥-¥¥¥¥¥¥~¥---

ADOD 4,X 5-POitH P~E-WEAVE :~:: . ,. .,.
8CS J~1P13 I ... ~~···~~·~~··~~-··~~·~~ . ,. , , , , ...
C r~PO #65521 LOY Ill

BLO JMP14 LDD 2 ' l(

JHP13 ADDO #15 AODD 8 t X

JMP14 STD 4,X BCS JMP26
LDD l4,X CMPD tt65521
SUBD 24,X 8LO JMP27
BCC JM 0 15 JMP26 ADDD 1115
ADDD lt65521 JIW27 STO 2,v

JI'1Pl5 STO 24,X LDO 2 , X

LDD TMP1 sur.o 8, X
STD 14, X 13CC JMP28
LDD 16, X ..".ODD #65521
AODD 26,X JMP28 STD f..,Y

BCj Jr-1Pl6 LOD 4 , X

CMPLJ lf65521 AD no 6, X

App~ndix-0 D-45

BCS JMP29 IJMP42 ADDD 1115
CMPO #65521 IJ"'1P43 STO 16,Y
BLO JMP30 I LOD 16,X

Jt-tP29 ADDD #15 I SUBD 14,X
Jt-IP 30 STD 4,Y I ace JMP44

LOO 6,X I ~DOD 1165521
SUBD 4,X IJ~P44 STD 22,Y
BCC JMP31 I AOOD 18,Y
ADDD #65521 I BCS JMP45

Jl"iP31 STD lO,Y I CMPD 1165521
.C\000 6,V I BLO JMP46
BCS JMP32 IJ'~P45 ADOD #15
Ct~PO #65521 IJMP46 STD 20,Y
BLO JMP33 I LOD 16,Y

JNP32 ADD:::l #15 I ADOD 14,Y
Jt•lP33 STO s,v I BCS JI-IP4 7

LDD 4,Y I CMPO tt65521
ADDU 2, y I BLO JMP43
BCS JMP34 IJMP47 A:JDO 1115
C ~~PO •65521 IJ"'1P48 STD TMPl
BLO JMP35 I ADDO 10,x

JNP34 AODD 1tl5 I ~cs JMP49
Jt-1P35 STD TMPl I Ct~PO 1165521

AODD ' X I BLO JMP50
BCS JMP36 IJMP49 ADDD U5
CMPO #65521 IJMPSO STO 1 2' "(
SLO JMP37 I LDD l4,Y

JNP36 ADDD #15 I SUSD 16,Y
Ji-'t p 3 7 STD 'y I BCC JI-IP 51

LOO 2,Y I ADDD #65521
SUBD 4,Y IJ'~P51 STD 16' y
BCC . JMP38 I LDD TMD1
ADDD #65521 I STD 14 9 Y

J/'1P3 8 STQ 4,Y ,,.
LDD TMPl I LDD 22,X
STD 2,Y I AODD 28,X

....... I 8CS J r~ P 52 . ,.
LDD 12,X I CM 0 0 j#65521
AODD 18,X I BLO JMP53
e.cs JMP39 J ~1P 52 ADDD 1115
CMPO #65521 JMP53 STD 26,Y·
BLO JMD4Q LDD 2 2, X

Jl'-1P39 AJDD F115 SUSD 28 9 X
J 11 P40 STD 14 9 Y BCC JMP54

LDD 12,X ADDD ~65521

SUBD 1 8 ·,X JMP54 STD 30 ,y
BCC J ~~ p 41 L DD 24d
ADDO t165521 ~ODD 26,X

J 1·1 p 41 STD 18,Y ?.CS JMP56
LDD l4,X 01PO il65521
AODO 16,X oLD JMP57
BCS JM 0 42 JMP56 AODD !il5
(;-1 p 0 1t65521 Jt.1P 57 STD 2 s ,y
RLO JMP43 LDD ?.6,X

Appendi)(-0 i)-46

SUBD 24,X STD 2 'u
sec JMP58 LOA ' X
ADDD #65521 LOB 1 ' y

JMP58 STIJ 34,Y ~~ UL
ADOD 30,Y AODO 1 'u
~es JMP59 STO 1 'u
e ~,PO 1165521 gee SKIP3
BLO J ~1 p 60 ! Ne ,u

JI'1P5 9 ADDD #15 SKIP3 LOA 1, X

JMP60 STD 32,Y LOB ' y
LOD 26,Y ~~UL

AC)OO 28,Y ADOD 1 'u.
BCS JMP61 STO 1 'u
C~1PD #65521 gee SKIP4
BLO Jt~P62 INC 'u

Jt-IP61 ADOD #15 SKH'4 LOA ' X
Jtv1P62 STO TMP1 LOB ' y

ADOO zo,x MUL
BCS JMP63 AODO ,u
U~PD tt65521 STD ,u
[jLQ JMP64 I:~

JHP63 A.JOD #15 I LOA 1 'u
Jtv1P64 STD 24,Y I L 09 ,!115

LDD 26,Y I MUL
S U BD 28,Y I AODO 2,U
BCe JMP65 I BCS SKIP6
AODD 1165521 I C I~ PO #65521

JNP65 STD 28,Y I P.,LO SKIP7
LOO H1P1 ISKIP6 ADDO 1115
STIJ 26 ,.'(ISKIP7 STD 2,U

•'• ~······--·--~--------- I LD~ ,u ..• ¥¥¥¥¥¥¥~¥¥-¥¥~¥¥¥¥¥¥¥¥

·'· ... MULTIPLICATION ... I LOY :II T ~ i·IP . ,.
::: --------·--·----------¥¥¥¥~¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥~ I CLD. ' y

CLRA I CLR .1,Y
STA IND I CLR 2 'y
L:lS #Z I LOB li15

~OOP LOA FRO I MUL
REQ OV~Rl ISKIPA STO ' y
LOY ~CC1EFR I LOA ' y
BRA ov::R2 I B::Q SKIP~

OVERl LOY ;,coEFF I LOB ~15

OVER2 LOA IND I MIJL
LDO A,Y ! ADCD 1 ' y
STO MLTR I BRA SKIPQ
LDD ' s ISK!PE LDD 1 ' y
STO MLTN ISKIPO AOOO 2,u
LOX #MLTR I BeS SKIPS
LOY #MLTN I CMPD 1165521
LOU #PROD1 I RLO SK!PC
CLR ,u ISKIPo ADOO :t 1 5
CLR 1 'u ISKIPC STD ,S++
LOA 1 ')(I LD.l IND
LOB 1 'y I AODA 112
r~UL I STA IN 0

Appendix-D 0-47

CMPA 1134 BCS JMP78
L BLS LOOP U1PD 1165521

·'· ~~~~~~~~-~·~·-~-~-~~-· BLO JMD79 .,. ¥¥¥~¥¥¥~~-~¥¥¥¥¥¥¥¥¥¥¥

~(•'• 5-PO!NT POST-WEAVF: ·'• JMP78 .A ODD tt15 .,. .,.
•'• ~········~·-~·------·· JI-1P7 9 STD TMPl .,. ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥-¥¥¥¥

L :J X ~AX LDO z,x
L DY #Z SUBD 8, X
L DO ' y BCC JM 0 8(1
STD ' X AODD ,1t65521
ADDD z,v J ~1 P8 0 STD P,x
BCS Jt·1P67 LDD TMP1
CMPO ~J65521 STO 2, X
BLD JMP68 •'• .,.

J~IP67 AODD #15 LDD 12 9 Y
Jtv1P68 STO 2, X STO 10,X

LDD 8 'y AOOD 14 ,.,.

ADDD lO,Y BCS JUP67
scs JMP69 CMPO :t65521
CMPD ti65521 BLO JUP6S
BLD JMP70 JUP67 AODD li15

JI'-IP69 ADDD ~15 JUP68 STD 12,X
JI·1P70 STO lO,Y LDD 2 0 ,y

LDO 6,Y AOOD 22,Y
suso 8,Y ~cs JUP69
BCC JMP71 CMPO #t6552l
ADOD #t65521 BLO JUP70

J ~1 P71 STD 8,X JUP69 ADDD It 1 5
LDO 2, X JUP70 ST:J 22,Y
ADDD 4 9 Y LOD 18,Y
BCS JMP72 SU3D 20,Y
CMPD ti65521 BCC JUP71
BLO JI-IP 73 ADOD ~65521

J~1P72 AODD #15 JUP71 STO 1 3, X
Jt·IP7 3 STO HW1 LDD 12, X

LDO z,x ADOD 16,Y
SUBD 4 9 Y BC S JUP72
BCC JMP74 CMPD t165521
AOOO ~65521 PLO JUP73

Jt-1P74 STD 4,X JIJP72 ADDD JilS

SUBD lO,Y JUP7 3 STO HIDl

BCC JMP75 LDD 12,X
ADDD #65521 SUBD lt>,Y

JtviP7 5 STD 6,X BCC JUP74
LDD TMPl AOOD t165521
STD 2, X JUP74 srn 1 4, X

LDD 4 9 X SU~D 22,Y
AD~D 1 0 ' y HCC JUP F·

nCS JMP76 Anno 116~'<' 1

CMPU ~65521 JUJ-175 STQ 16 9 X
BLO Jt,1P77 LDO TMPl

J~1P76 ADDO ttl5 STD 1 2 ')(
JI'1P77 STD 4 9 X LDD 14,X

LDD 2 , X .4 ODD 22,Y
ADDD 8 ')(P.CS JUP76

Appendix-D

cr~PD #65521 IS'<P75 STD 26, X
SLO JUP77 I L!JD TMPl

JUP76 ADDD #15 I STD 22,X
JUP77 STD 14 ,.x I LDD 24,X

L DD 12,X I .t~DDD 34 ,y
ADDD 18,X I BCS St<P76
BCS JUP78 I CMPO it65521
U1PD #65521 I PLO SKP77
BLO JUP79 ISKP76 l\000 II 1 5

JUP78 ADOD ft15 SKP77 STO 24,X
JUP79 STD TMP1 LDD 22,X

LDD 12,X ADDD 28,X
SUBD 18, X 8CS SKP7 .c:

nCC JUP80 CMDD it65521
ADOD .~65521 BLO SK 0 79

JUP80 STD 1 8, X SKP78 ~DOD 1115
LQD Tt"P1 SKP79 STD TMP1
STD 12,X LDD 2 2, X

... SUBD zs,x . ,.
LDD 24,Y BCC SK 0 80
STD 20,X. ADDD it65521
ADDD 26,Y SKP80 STD 28,X
scs SKP67 LDD TMPl
CMPO 1'165521 ~ I STO 22,X
BLO SKP68 I•'• ~~···~~··~~···~···~·~~ ... ~¥¥¥¥¥¥¥¥¥~¥¥¥¥¥¥¥¥¥¥~

SKP67 AOOD #15 I ... J • 3-POINT POST-WE liVE •'• . ,. . ,. ., .
SK P68 STD 22,X I•'• ~·~·-~·~~·--~-------·· .,. -~-¥--¥·-·------~·-·--

LOD 32,Y I LDD 'X
ADDD 34,Y I ADOO 10, X
8CS SKP69 I BCS J/>1 °81
01PD :!*65521 I Cr~tPD 1165521
BLO SKP70 ! RLO Jt·1 P8 2

SKP69 ADOD ~15 IJ~P81 AODD i:l5
SKP70 STO 34,Y I J/~P8 2 STD 1Q,X

LDD 30,Y I LDC' 2, X
sugo 32,Y I ADDD 12, X
BCC SKP71 I ~cs JI~P93

ADDD 1165521 I CMPD #65521
SK P71 STD 28,X I BLC JMP84

LOD 22,X IJ~·1P83 ADDD ~15

AOOD 28,Y IJ"''P84 STD 12,X
scs SKP72 I L DO 4,X
CMPD #65521 I ADDD 14,X
BLO SKP73 I acs JMP85

SKP72 ADDD #15 I CMPD #65521

~KP73 STO TMP1 I f:lLO JMP86
LDO 22,X I J t~P 8 5 ADDD .t' 1 5
SUBD 28,Y IJMP86 STD 14, X
BCC SKP74 I L DO 6, X

Anoo 1165521 I 1\000 1 f:, , X

SKP74 STD 24,X I P-CS JMP 37

SURD 34,Y I (;~P() ttb5521
BCC SKP75 I bLO J ~~ p i3 8

ADQD 1:65521 IJ"'P87 · C. ODD It 1 5

Appendix-~

Jt-IP88 STD 16,X I BLO JMP99
LDD 8, X IJMP98 ADOD #15
ADDD 18,X IJMP99 STD TMP1
BCS JMP89 I LDD 16,X
CMPD ~65521 I SUBD 26,X
BLO JMP90 I 8CC JMPlOO

Jl'tP89 ADDD #15 I ADOD ~65521

JI'-1P90 STD 18,X IJ~1P100 ST') 26,X
LDO 10, X I LDD H1Pl
AD:JD zo,x I STD 16,X
BCS JMP91 I LDD 18, X
Ct-'1 p 0 *65521 I ADDD 28,X
BLO JM 0 92 I BCS JM 0 101

JMP91 ADOD 1!15 I C ~~ F' D rt65521
JMP92 STD Tl~ o 1 I !:1-LO J ~·IP 10 2

L:JD 10, X IJMP101 ADDD 1115
SUBD zo,x IJMP102 STD THD1
BCC Jt-1 p 911 I LDO 18,X
AODD #65521 I SUBD 28,X

J t-1 p 911 STD 20,X I sec JMP103
LDO TMP1 I ADDD ~65521

STD lO,X IJMP103 STD 28,X
LOD 12,X I LDD TMP 1·
ADDO 22,X I STD 18,X
scs JI-1P922 I~: ·~~~~·········~·~···~~ r-¥¥¥¥¥¥¥¥-¥¥-¥¥¥¥¥¥¥¥

CMPD ~65521 I ... ·'• OUTPUT 3HUFFLE ·'· .,.
BLO JMP93 I•'· ··~···~··········~··~· .,. .., " ,. ... , , , , .. , , ..

JMP922 AODD .It 15 I L JX #AX
Jr·tP93 STD Tt-1 P 1 I LOY t~QUT

LDD 12,X I LDO ' X
SUBD 22,X I STD 'y
BCC Jt-1P94 I LDD 12, X
ADDD #65521 I STD 2 'y

J 1·1P 94 STD 22,X I LDO 24,X
LDD Tt-1.Pl I STD 4' y

STD 12,X I LDD 6,X
LDO 14,X I srn 6,Y
ADDD 24,X r LDO 1 8, X
P.CS JMP95 I STD 8' y
CMPD ~65521 I LDD 2 0, X
BL!J JMP96 I STD lO,Y

JMP95 ADOD #15 I L DO 2, X
J f·IP96 STD TMPl I STD 12tY

LDD 14,X I L 0 [' . 14,X
SUBD 24,X I STD 14,Y
BCC JMP97 I LDD 26,X
ADO!:> #65521 I SiD l6,Y

JMP97 STO 24,X I LDC' B, X
LOQ .H1Pl I STC 1 8 ' y
STO 14,X I LDO 10, X
LDD 16,X I s:o 20 ,y
~DOD 26,X I LDO 22,X
ecs JMP98 I STO 2 2 'y
CMPD :t6"i521 I LDD 4 , X

Appendix:....o D-50

STD 24,Y I ~DB 16087,29032,8748
LDO 16,X I ~0~ 23174,43615,1465
ST[) 26,Y ICOEFR c:oe, 61153,5460,18364
LDD 28,X I FD8 46773~20640,5493
STO 28,Y I FD3 6552,57331,37975

•'· I FOB 28122,34561;24521 ...
COEFF FOB 1,6379,13376 I FOB 29504,28641,12521

FOB 19136,18005,486471 FJ8 5913,Z474S,21938
FOB 32759,8192,45457 I END STRT
FOB 36817,5753,25311 ! :::

Appendix-£

Backplane wiring connections for the parallel microprocessor
system

Appendix-E C:::-1

8ackpl.;1ne pin connections for t ne narallel
microprocessor system.
Flow of dai:a from SCJURC7. (TX) -) D!:STIN~.TI:J~~ (RX)

SOAP.D NO A - (DRJCESSOR NQ ! 2 3)

S!OE A SI!J~ R

PIN# Fur~ c -r I r r·J PROC!:SSORtt IP!N;t FUNCT!CJN ?ROC:SSQPtt
I

1-8 DATA IN 1 2 .;) I 1-8 ~X s -> 3

9-14 CLOCK. 1
., 3 I 9-10 CL!JCK e -) 3 '-

1:,-22 DATA OUT 1 2 3 111-18 RX 4 -> "l -
23-28 JE 1 2 3 11 g-2o CLCCK 4 -> 3

2<;-36 TX 1 -> 6 I
37-38 CLOCK 1 -> 6 174 STA"!'US OUT
3~-46 RX 6 -> 1 175 SYNC OUT
47-48 CLQCK 6 -) 1 176 SYNC HJ

49-Sb TX 2 -> 7 177 SYSTE~~ CLOCK.
s-r-60 CLOCK 2 -> 7 178 rlALT
49-56 TX 2 -> 5 179 RESET
57-60 CLOCK 2 -) 5 129-61-93 +VCC
61-68 RX 7 -) 2 132-64-96 G!:10UN~

69-70 C LOC'<. 7 -> 2 I
71-78 RX 5 -> 2 I
79-80 CLOCK 5 -> 2 I
81-RS TX ':l -) 2 I -'

8 '::1-9 2 CLOCK 3 -> 8 I
81-88 TX 3 -) 4 I
8'::1-92 CLnCK 3 -) 4 I

~.OARO NO g - (DRJCESSCR 4 5 16)

SIOE A SID!: p

PIN# FUNCTION PRoc=ssoR~ I PIN# ~UNCTI'JI\J

I
1-8 DATA IN 4 5 74 ST.~TUS CUT

<.:1-12 CLOCK 4 5 75 5PJC OUT
13-20 DATA OUT 4 5 76 SYNC IN
21-24 DE 4 5 77 SYSTF.r-1 CLCCK
25-32 TX 4 -> 9 78 ~~LT

33-36 CLOCK 4 -) g 79 P!:SF.T
2S-32 TX 4 -> ':l 29-61-93 •VCC ..J

33-36 CLOCK 4 -> 3 32-64-96 GRIJUtJO

3-l-44 RX 9 -) 4
45-46 CLOC !<, 9 -> 4

47-54 RX 3 -> 4

55-56 CLOCK 3 -> .:..

57-64 TX 5 -) 1 0

6~-68 CLQCK 5 -> lf)

Appendix-E E -2

5 ., -64 TX 5 -> 2 I
65-68 CLOCK 5 -> 2 I
69-76 RX 10 -> 5 I
77-78 CLCCK 1 0 -> 5 I
7·Y-86 RX 2 -> 5 1.
87-88 CLOCK 2 -) 5 I

BCl\RD NO c - C0 Pr:c=ssoP 6
..,

'l) I

SIDE A CT[\C
.J •• - 0

PIN# FUNC""ION PROCESS:JR# I D::: •,j :,t c:uNCTION PRJC.::SSCR:t
I

1-8 JATA Hl 6 7 8 I 1-8 DX 10 -> 7
'9-14 CLOCK 6 7 8 I 9-10 CLOCK ·1:) -> 7

1~-22 DATA OUT 6 7 8 111-18 TX Q -> 13 ·-
23-28 OE 6 7 8 119-24 CLQCK ·;.; -> 13 ..,

29-36 TX 6 -> 11 lll-18 TX 0 -> 3

37-40 CLOCK 6 -> 11 119-24 CLOCK. .j -) 3
29-36 TX 6 -> 1 111-18 TX 5 -> g

37-40 CLOCK. 6 -> 1 119-24 CLOCK 3 -> c.

41-,.48 RX 11 -> 6 125-32 P.X !3 -> 8

49-50 CLCICK 11 -> 6 133-34 CLOCK 1 3 -> -;:,
·J

51-58 RX 1 -> 6 135-42 RX ., -) -~ -
5':1-60 CUJCK 1 -> 6 143-44 CLOCK 3 -> •)

·J

61-68 TX 7 -> 12 145-52 RX 9 -> ~-

69-74 CLOCt<. 7 -> 12 153-54 CLLJCK 9 -) -~

61-68 TX .., -> 2 I I

6'3-7~ C L CJ.C K 7 -> 2 174 ST.ATUS OUT
61-68 TX 7 -> 10 175 SYNC OUT
69-74 CLCJCK 7 -> 10 176 SYNC I ~J

75-52 RX 12 -> 7 177 s Y s T: 1-1 CL QC K

33-84 CLOCK 12 -> 7 173 HALT
85-:92 RX , -> 7- 179 RESET '-

92..-94 CLOCK 2 -> 7 129-61-93 +VCC
132-64-96 G R OU~! 0

~H1ARO no D - CPROCESS!li\ 9 10 1 7)

SIDE .ll. S!OE 8

PIN:ti FIJNCTLJN PRCJCESSORrt I P DJ ~t FUNCTION P~OC':SSDP~

I
1-B D A"'!".~ IN 9 10 I 1-8 RX 5 -) 10

9-12 CLCJCI<. 9 10 I 9-10 CLOCK 5 -) 1 0

13-20 :JATA OUT 9 1 0 111-12 ~X 7 -> 1 ()

21-24 c~ 9 1C !19-21) CLoer.·. 7 -> 11)

2;,-32 TX q -> 14 I
33-38 C L CJO. 9 -> 1 4 174 STI\TIJS ~UT

2S-32 TX 9 -> 4 I 7 5 SYNC OUT
3::1-38 CLJCK 9 -) 4 176 SHJC IN·

2S-32 T.X ~ -> 0 177 SYSTEr"l C L r,cy.:

Appendix-E

33-38 CLOCK 9 -> 3 178 HALT
39-46 RX 14 -> q 179 RESET
47-48 CLOCK 14 ;..) 9 129-61-93 +VCC
4':1-56 P.X 4 -> q 132-64-96 G r:our.J o
57-58 C L 0 CJ<. 4 -> 9 I
59-66 RX 8. -> g I
6 7-6·8 CLOCK 8 -> 9 I
69-76 TX 10 -> 15 I
77-82 CLJCK 10 -> 15 I
69-76 TX ·1 0 -> 5 I
77-82 CLOCK 10 -> 5 I
6 ') -7 6 TY 10 -> 7 I
77-82 CLOCK 10 -> 7 I
8::1-90 RX 15 -> 10 I
91-92 CLOCK 1 5 -) 1!) I

SOARD NC ~ - (PROCESSOR 11 12 13)

SIDE A SI~E g

PlNft FUNCTION PROCESSOR!:! I PHJ# ::::u~·'C T I 0 N PROC~SSIJP~

I
1-8 DATA HJ 11 12 13 I 1-8 ?X <.3 -> 13
9-14 CLOCK 11 12 13 I 9-10 CLOCK g -) 1 3

15-'22 OATA OUT 11 12 13 111-18 ~X 14 -> 13
23-28 OE 11 12 13 119-20 CLOCK 14 -> 1 3

ZiJ-36 TX 11 -> 6 I
37-38 CLOCK 11 -> 6 174 STATUS QUT

39-46 RX ;, -) 11 175 SYNC JUT

47-48 CLOCK 6 -) 11 176 SYNC I~.

49-56 TX 12 -> 7 177 SYSTEf4 CLQC!<.

57-60 CLOCK 12 -> 7 173 r'l\LT
4CJ-56 TX 12 -> 1 5 179 RES~T

57-60 CLOCK 12 -> 15 129-61-93 +VCC
61-68 RX 7 -> 12 132-64-96 GPOUND
69-70 CLOCK 7 -) 12 I I

71-78 RX 1 5 -> 12 I
79-80 CLCJCl<. 15 -> 1?. I
81-88 TX 13 -) 8 I
8':1-'32 CLOCK 13 -> g I
81-88 TX 13 -> 14 I
8':7-92 CLOCK 13 -> 14 I

BOARD NQ ~ - CPRQCESS~D 14 15 18)

S!OE A .~I 0 C: n,

PIN# FUN C T I CJ ~~ PPOC::SSOP# IDINb F U f,J (T I 0 1·!

I
1-8 DATA IN 14 1 5 174 ST.!ITUS GlJT

9-12 CLCJCK 14 1 5 I 7 s s y fl('lUT

Appenclix-E :-4

13-20 DATA CJIJT 14 15 176 SYNC I~

21-24 OE 14 15 177 s v·s T E 1·1 CL'::CI<
2:--32 TX 14 -> 9 I29-61-Q3 +VCC
33-36 CLOCt< 14 -> 9 l32-64-'j6 GPOUW1

25-32 TX 14 -> 13 I
3::.;-36 CLOCK 14 -> 1 3 I
37-44 RX 9 -> 14 I
4S-46 CLJCK 9 -> 14 I
47-54 PX 13 -> 14 I
5S-56 CL:JCt<. 13 -> 14 I
57-64 TX 1 5 -) 10 I
6S-68 CLOCI< 15 -> 1 0 I
57-64 TX 1 5 -> 12 I
6.:--68 CLOCK 15 -> 12 I
69-76 ~:X 10 -> 15 I
77-78 CLOCK 10 -:-) 15 I
7'-j-86 ~X 12 -> 15 I
87-88 CLOCI<. 12 -> 15 I

I

CONTROL BOARD

SI!JE ~

PlNit FUNC TIC ~J PROCESSOR# Pii'J# l=l.iNCT!ON P~oc:ssoR~

1-3 DATA OUT 47-54 DATil IN
17-18 CLOCK. 1 63-64 CE 1
1':1-20 CLOCK 4 65-66 Of: 7

21-22 CLCJCK 7 67-68 Of 1 3

23-24 CLOCK 10 69-70 Of 4

25-26 CLOCK 13 71-72 Of. 10

27-28 CLOCK 6 73-74 c,.. ,_ 11

29-30 CLJCK 9 75-76 DE 2

31-32 CLOCK 12 77-78 o: 8

33-34 CLOCK 1 5 79-80 CE 14

35-36 CLOCK 3 181-82 GE 5

37-38 CLOCK 11 183-34' CE 6

39-40 CLOO, 14 185-86 OF 12

41-42 CLOCI< .,. I s 7.- 8 8 c: 3 '-

43-44 C L 0 C!<. 5 189-90 OE 9
4;i-46 CLOCK 3 191-92 r--

'- c;· 1 5

SIDE g

1-6 STtlTUS IN
7-12 SYNC IN

13 S Y ~JC OUT
l<t-19 SYSTEt1 CLOCK OIJTDUT rn PPCC~SSORS
., ..
.:.U RfS~:T TO OTHER g1AROS
21 HALT TO OTHER oOAt;~D)

27 -9V FOP Rj-232 RX
2~-61-93 +VCC 5V POWE~ !=:)(;) ALL eDARCS
3i-64-96 G q our~ o

(1) Bergland, G.D: 'Fast Fourier Transform Hardware Implementation

- An Overview', IEEE Trans. Audio Electroacoustics, Jun. 1969,

val AU-17, pp. 104-108.

(2) Brigham, E.O.: The Fast Fourier Transform, Prentice Hall

Inc., Englewood Cliffs, N.J., 1974.

(3) Winograd, S.: 'On Computing the Discrete Fourier Transform',

Math. Comput. 1978, val. 32, pp. 175-199.

(4) Winograd, S.: 'On Computing the Discrete Fourier Transform',

Proc. Nat. Acad. Sci., 1976, val. 73, pp. 1005-1006.

(5) Martin, S.C.P.: Number Theoretic Transform Implementation

using Microprocessors, Ph.D. thesis, 1980, Univ. of Durham.

(6) Martin, S.C.P, and Stanier, B.J.: 'Microprocessor

Implementation of Number Theoretic Transforms', Electron.

Cir. and Syst., Jan. 1979, val. 3, pp. 21-26.

(7) McClellan J.H., and Rader C.M.: Number Theory in Digital

Signal Processing, Prentice Hall Inc., Englewood Cliffs,

N.J. 1979.

(8) Cooley, J. W., and Tukey, J. W.: 'An Algorithm for the Machine

Calculation of Complex Fourier Series', Math. Comput., 1965,

val. 19, pp. 297-301.

(9) Agarwal, R.C., and Burrus, C.S.: 'Number Theoretic Transforms

to Implement Fast Digital Convolution', Proc. IEEE, 1975, val. 63,

pp. 550-560.

(10) Vanwormhoudt, M.C.: 'On Number Theoretic Fourier Transform in

Residue Class Rings', Corresp., IEEE Trans., 1977, val. ASSP-25,

pp. 585-586.

Ref-1

(11) Leibowitz, L.M.: 'Fast Convolution by Number Theoretic

Transforms', NRL Report 7924, Sept. 1975.

(12) Rader, C.M.: 'Discrete Convolutions via Mersenne Transforms',

IEEE Trans. Comput., 1972, val. C-21, pp. 1269-1273.

(13) Agarwal, R.C., and Burrus, C.S.: 'Fast Convolution Using

Fermat Number Transform with Applications to Digital

Filtering', IEEE Trans., 1974, val. ASSP-22, pp. 87-97.

(14) Leibowitz, L.M.: 'A Simplified Arithmetic for the Fermat

Number Transform', IEEE Trans., 1976, val. ASSP-24,

pp. 356-359.

(15) McClellan, J.H.: 'Hardware Realisation of a Fermat Number

Transform', IEEE Trans., 1976, val. ASSP-24, pp. 216-225.

(16) Bywater, R.E.H.: Hardware/Software Design of Digital

Systems, Prentice Hall Inc. Englewood Cliffs, N.J., 1981.

(17) Lewin, D.: Theory and Design of Digital Computers, Thomas

Nelson and Sons Ltd., 1972.

(18) Parasuraman, B.: 'Hardware Multiplication Techniques for

Microprocessor Systems', Computer Design, 1977, pp. 75-82.

(19) Harman, M.G.: 'An Attempt to Design an Improved

Multipication System', IEEE Trans. Comput., 1968, val. C-17,

pp. 1090.

(20) Rabiner, L.R., and Gold, B.: Theory and Application of

Digital Signal Processing, Prentice Hall Inc. Englewood Cliffs,

N.J., 1975.

(21) Chu, Y;: Digital Computer Design Fundamentals, McGraw

Hill, 1962.

(2 2) Hayes, J.P.: Computer Architecture and Organisation, McGraw

Hill, Kogakusha Ltd., 1978.

Ref-2

(23) Gosling, J.B.: Design of Arithmetic Units for Digital

Computers, McMillan Press Ltd., London, 1980.

(24) Nussbaumer, H.J.: 'Fast Multipliers for. Number Theoretic

Transforms', IEEE Trans. C-27, Aug. 1978, pp. 764-765.

(25) Brubaker, T.A., and Becker, J.C.: 'Multiplication Using

Logarithms Implemented with Read-Only Memory', IEEE Trans.

Comput., vol. C-24, pp. 761-765.

(26) Chang, T.: 'Binary Read-Only-Memory Multiplier',

Eletron. Lett., 13 Dec. 1973, vol. 9, pp. 580-581.

(27) Johnson, N.: 'Improved Binary Multiplication System',

Electron. Lett., 11 Jan. 1973, vol. 9, pp. 6-7.

(28) Davies, A.C.: 'Trade-offs in Fixed-Point Multiplication

Algorithms for Microprocessors', Comput. and Dig. Techniques,

1979, vol. 2, pp. 105-112.

(29) Weed, M.: 'Clockless Multiplication and Division Circuits',

BYTE, Dec. 1978, pp. 128-136.

(30) Artwick, B.A.: Microcomputer Interfacing, Prentice Hall Inc.,

Englewood Cliffs, N.J., 1980.

(31) Davies, A.C., Fung, Y.T.: 'Interfacing a Hardware Multiplier

to a General-Purpose Microprocessor', Microprocessors, 1977,

vol. 1, pp. 425-432.

(32) Evanczuk, S.: 'Josephson Chip Multiplies Ultra Fast',

Electronics, 14 July, 1982, pp. 48-50.

(33) Bate, J., and Burkowski, F.: 'A High Speed Extended

Precision Multiplier for a Microprocessor', Proc. Int.

Symp. on Mini and Micro Computers, Montreal, Canada, 11-18

Nov. 1977, pp. 10-13.

(34) Robinson, D.: 'Hardware Multiplier/Divider Unit for 8-bit

Ref-3

Microprocessor Systems', New Electronics (G.B), Mar. 1979,

val. 12, pp. 20.

(35) Mick, J., and Springer, J.: 'An Integrated 'Circuit,

High-Speed Serial-Parallel Multiplier', Apr. 1976, pp. 42, 46.

(36) Rollenhagen, D.C., Kimball, R.M., and Shay, H.P.: 'LSI

Multiplier-Divider for 8080', Proc. IEEE 1977 Nat. Aerospace

and Electron. Conf., NAECON 1977, Dayton, Ohio, U.S.A.,

17-19 May, pp. 887-892.

(37) Day, M.J.: 'Faster Multiply with Microprocessor Hardware

Multiply Device', Electron (G.B.), 27 Feb. 1978, pp. 39.

(38) Waser, S., Newton, V.: 'Increasing Multiplication Speed',

Electron (G.B.), 12 Dec. 1977, pp. 57-58.

(39) Rohr, P.: 'LSI Multipliers: The Second Generation', 1979 Int.

Micro and Mini Computer Conf., Houston, Texas, U.S.A., Nov. 1979,

pp. 140-143.

(40) Ambikairajah, E., and Carey, M.J.: 'Technique for Performing

Multiplication on a 16-bit Microprocessor using extension of

Booth's Algorithm', Electron. Lett., 17 Jan. 1980, val. 16,

pp. 53-54.

(41) Giest, D.J.: 'MOS Processor Picks up Speed with Bipolar

Multipliers', Electronics (U.S.A.), July 1977, val. 50,

pp. 113-115.

(42) '16*16-bit Multipliers meet Military/Commercial High Speed

Applications', Comput. Des. (U.S.A.), Aug. 1976, val. 15,

pp. 50.

(43) McCrea, P.G., and Matheson, W.S.: 'Design of High Speed

Fully Serial Tree Multiplier', IEEE. Proc. Jan. 1981,

val. 128, pp. 13-20.

Ref-4

(44) Advanced Micro Devices: 'AM25S558, Eight-bit by Eight-bit

Combinational Multiplier', Preliminary data sheet.

(45) Flores, I.: The Logic of Computer Arithmetic, Prentice

Hall Inc., Englewood Cliffs, N.J., 1963.

(46) Booth, A.D, and Booth, K.H.V.: Automatic Digital
\

Calculators, Butterworth and Co. ltd., London, 1965.

(47) Abd-Alla, A.M, and Meltzer, A.C.: Principles of Digital

Computer Design, Prentice Hall, Englewood Cliffs, N.J., 1976,

val. 1.

(48) Renold, A.: Comparison of some 8-bi t Microprocessors by

means of Benchmark Programs, Mitt. Agon. (Switzerland),

Oct. 1981, pp. 71-75.

(49) Kolba, D.P., and Parks, T.W.: 'A Prime Factor FFT Algorithm

Using High-Speed Convolution', IEEE Trans., val. ASSP-25,

Aug. 1977, pp. 281-294.

(50) Morris, L.R.: 'A Comparative Study of Time Efficient FFT and

WFTA Programs for General Purpose Computers', IEEE Trans.,

val. ASSP-26, Apr. 1978, pp.l41-150.

(51) Silverman, H.F.: 'An Introduction to Programming the Winograd

Fourier Transform Algorithm (WFTA)', IEEE Trans., val. ASSP-25,

Apr. 1977, pp. 152-165.

'Correction and an Addendum to an Introduction to Programming

the Winograd Fourier Transform Algorithm (WFTA)', IEEE Trans.

ASSP-26, 1978, pp. 268.

(52) Nawab, H., and McClellan, J.H.: 'Bounds on the Minimum Number

of Data Transfers in WFTA and FFT Programs', IEEE Trans.,

val. ASSP-27, Aug. 1979, pp. 394-398.

(53) Bailey, D.: 'Winograd's Algorithm Applied to Number-Theoretic

Ref-5

Transforms', Electron. Lett., 1 Sept. 1977, val. 13 pp. 548-549.

(54) Texas Instruments Ltd.: TMS9900 Microprocessor Data Manual,

Aug. 1976.

(55) Texas Instruments Ltd.: TMS990/100M Microcomputer User's

Guide, Mar. 1978.

(56) Moore, C.H.: 'FORTH: A New Way to Program a

Minicomputer', Astron. Astrophy. Suppl., 1974, val. 15,

pp. 497-511.

(57) Brodie, L.: Starting Forth, Prentice Hall Inc., Englewood

Cliffs N.J., 1981.

(58) Smith, M.F.: 'Comparative Software Analysis of the MC6809

Microprocessor', Microprocessors and Micro Systems, val. 5,

Nov. 1981, pp. 401-404.

(59) Mintzer, F.: 'Parallel and Cascade Microprocessor

Implementation for Digital Signal Processing', IEEE Trans.

ASSP-29, Oct. 1981, pp. 1018-1027.

(60) Zohar, S.: 'Outline of a Fast Hardware Implementation

of Winograd's OFT Algorithm', IEEE ICASSP, Apr. 1980, val. 3,

pp. 796-799.

(61) Mintzer, F.: 'Attributes of Parallel and Cascade

Microprocessor Implementations of Digital Signal Processing',

IEEE Int. Conf. ASSP, April 1980, ICASSP, val. 3, pp. 912-915.

(62) Duff, M.J.B.: 'Array Processing', Electronics and Power

Nov./Dec. 1980, pp. 888-893.

(63) Bain, W.L., and Jump, J.R.: 'Hardware Scheduling Strategies

for Systems with many Processors', Proc. Int. Conf. Parallel

Processing, Bellaire, MI, U.S.A., Aug. 1978, pp. 184-187.

(64) Bellm, H., and Sauer, A.: 'Methods of Data Exchange Between

Ref-6

Microcomputers', Proc. Microprocessing and Microprogramming,

Amsterdam, N. Holland, 3-6 Oct. 1977, Microcomputer Archit.,

pp. 16-22.

(65) Arden, B.E., and Berenbaum, A.D.: 'A Multi-Microprocessor

Computer System Architecture', Proc. 5th Symp. Operating

System Principles, Operating System Rev., Nov. 1975, val. 9,

pp. 114-121.

(66) Enslow, P.H.: Multiprocessor and Parallel Processing,

John Wiley and Sons, 1974.

(67) Pollard, L.H.: 'Multiprocessing with the TI9900', Eleventh

Ann. Asilomer Conf. Circuits Systems and Computers, Pacific Grove,

CA, U.S.A., 7-9 Nov. 1977, pp. 461-465.

(68) Hoffner, Y., and Smith, M.F.: 'Communication Between two

Microprocessors Through Common Memory', Microprocessors and

Microsystems, July/Aug. 1982, val. 6, pp. 303-308.

(69) Witten, I.H., and Jenkins, R.L.: 'Processor-Processor

Dialogue Through Existing Input-Output Channels', Computer

and Digital Techniques, Oct. 1978, val. 1, pp. 125-130.

(70) Parkinson, D.: 'An Introduction to Array Processors',

Syst. Int. (G.B), Nov. 1977, val. 5, pp. 21-23.

(71) Caprani, 0., Jensen, K.H., and Ougaard, U.: 'Microprocessors

Connected to a Common Memory', Microprocessor and

Microprogramming Amsterdam, Netherland, 3-6 Oct. 1977,

Euromicro Symp., Microcomputer Architec., pp. 175-181.

(72) Hughes, P., and Doone, T.: 'Multiprocessor Systems',

Syst. Int. (G.B), Feb. 1978, val. 6, pp. 20-21.

(73) Raphael, H.: 'Multiprocessor Techniques for uP Systems',

Electron. Eng. (G.B), 1978, val. 50, pp. 65-67.

Ref-7

(74) Tanabe, K., and Matsumoto, K.: '16-bit Microprocessor

with Dual Bus Architecture', Proc. Spring COMPCON, 1979, San

Francisco, 26 Feb. to 1 Mar. 1979, N.Y., U.S.A., pp. 98-101.

(75) Crushman, R.H.: 'uP/uC Chip Directory', EON, Oct. 1979,

pp. 133-240.

(76) Crushman, R.H., and Bucker, J.: 'EON Seventh Annual uP/uC

Chip Directory', EON, Nov. 1979, pp. 94-211.

(77) Scales, H.: 'Multiprocessing with the Motorola's MC6809E',

BYTE, Jul. 1981, pp. 136-156.

(78) Leventhal, L.A.: 6809 Assembly Language Programming,

Osborne McGraw Hill, 1981.

(79) Motorola Semiconductors Ltd.: MC6809 Data sheet.

(80) Leibowitz, L.M.: 'A Binary Arithmetic for the Fermat Number

Transform', NRL Report 7971, 18th Mar. 1976.

(81) G a 11 a cher, J.: 'Processor-Processor Communication',

Microprocessors and Microsystems, Sept. 1979, val. 3,

pp. 317-320.

(82) Fronheiser, K.: 'Device Operation and System Implementation

of the Asynchronous Comminications Interface Adapter (MC6850)

Motorola Semiconductors Ltd., Application Note AN-754.

(83) Motorola Semiconductors Ltd., MC6850 Data Sheet.

(84) Wakerly, J.: 'Serial Communications', Microprocessor and

Microsystems, 1981, val. 5, pp. 247-253.

(85) Motorola Semiconductors Ltd.: MC14411 Data Sheet.

(86) Texas Instruments Ltd.: The TTL Data Book for Design

Engineers.

(87) Patel, J. H.: Processor-Memory Interconnection for

Multiprocessors', Proc. 6th Ann. Symp. on Computers Architec.,

Ref-8

Philadelphia, PA, 23-25 Apr. 1979, N.Y., U.S.A, pp. 168-177.

(88) Davidson, K.A., Parsons R.L. etal: 'Processor-to-Processor

Inter-Communication Employing a Common Storage Module',

IBM Tech. Disc. Bull., Mar. 1979, val. 21, pp. 3959-3960.

(89) Zaks, R.: Programming the Z80, 1982, SYBEX Inc.

(90) Signetics: 8X300 Data Sheet.

(91) National Semiconductors Ltd.: COP402 Data Sheet.

(92) Zaks, R.: Programming the 6502, 1978, SYBEX Inc.

Ref-9

