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ABSTRACT

Using the Atiyah-Ward construction, we examine the
solutions of the self-dual Yang-Mills equations for an
SU(2) gauge theory, dimensionally reduced from |R"% to

|R?2. There are two main reasons for doing this:

(i) To provide a large class of relatively simple
examples which elucidate how non-singularity and physical
field configurations are related to the parameterization of

the Atiyah-Ward construction.

(ii) To construct analogues, for pure non-abelian
gauge theories, of the superconducting vortex solutions
of the abelian Higgs model, in the hope that these will
provide the dominant field configurations describing

the QCD wvacuum.

First, BHcklund transformations are used to
construct axially symmetric solutions, and the analogues
of the 't Hooft instantons. These results are then
generalised, within the twistor theoretic framework of
the Atiyah-Ward construction, to produce an infinite
dimensional parameter space of complex non-singular
solutions in each of the Atiyah-Ward ansdtze. The
field configurations are expressible as unitary group
integrals occurring in lattice gauge theories - this

leads to a simple proof of non-singularity, and a



convenient means of calculating properties of the
field configurations using strong and weak coupling
expansions. The structure of the field configurations
is further elucidated using symmetry arguments and
numerical computations. Finally, suggestions are

made as to how these solutions may play a role in the

QCD confinement mechanism.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Non-Abelian Gauge Theories

This thesis is concerned with an exploration of
certain aspects of the mathematical structure of non-
abelian gauge theories (Yang & Mills 1954, Shaw 1955),
the quantum field theories currently understood to
describe the strong and electroweak interactions of
elementary particles, and widely believed to provide
(at least a fundamental part of) a framework in which
these interactions, together possibly with gravity,
arise as the low energy limit of a single unified

theory. For a review see Abers & Lee 1973.

Gauge theories are physically motivated by the
requirement that they be locally invariant under a
fixed, generally non-abelian Lie group G of internal
symmetries, in exactly the same way that electromagnetism
is invariant under local changes of phase of particle
wave functions, and in much the same way that Einstein's
theory of general relativity is invariant under local
Lorentz transformations. These theories are mathematically
attractive in that they are based on the differential
geometry of fibre bundles with structure group G in
a manner analagous to the way in which general relativity

is based on the differential geometry of (pseudo)-



Riemannian manifolds. From this point of view, gauge
theories fulfill, to some extent, Einstein's vision
that all laws of physics should be ultimately expressible

in geometric terms.

Explicitly, a gauge potential is a 4-vector

function Ap(x) of space-time, taking values in the
Lie algebra L(G) of G. This defines a connection of a
fibre bundle over space-time with structure group G,

and with covariant derivative:
D =35 + A (1.1.1)

The gauge field is the curvature tensor:

F = [D,.,D]=23A -3A + [A,A] (1.1.2)
Bv H v o v H H v

and two gauge potentials define equivalent connections

if and only if they are equivalent up to a gauge

transformation:

A+ A 1

! (1.1.3)
p p &

- -1
=g A
g A8t B o,

where g(x) is a smooth G-valued function of space-time.
This implies that FPV transforms under the adjoint
-1

representation of G, va > va =g vag.

In the absence of other matter fields, ie for a



pure gauge theory, the Lagrangian density is proportional

to the norm squared of the curvature tensor:

L = -1]|F||2 = -1<F™,F (1.1.4)
A 4 By

where <,> denotes the Killing form on L(G). In the

classical theory, we are interested in gauge potentials

which are the extrema of the action functional

S = |d*xL. The Euler-Lagrange equations for this

variational problem are the Yang-Mills equations:

Dprv =0 (1.1.5)

A similar set of equations, which follow automatically

from the definition (1.1.2), are the Bianchi identities:

Dszv =0 (1.1.6)

where *FM" = %epVApF is the Hodge dual of FHY.

Ap
Lagrangians describing the interaction of gauge
fields with matter fields are constructed from the
principal of minimal coupling: simply take a standard
(ungauged) Lagrangian of interacting bosonic and
fermionic matter fields transforming under certain
linear representations of G, replace all space-time
derivatives by covariant derivatives (1.1.1), and add

the Lagrangian (1.1.4) to provide a kinetic term for



the gauge potentials.

Example 1

The gauge theory of the strong interactions,
Quantum Chromodynamics (QCD), consists simply of an
SU(N) (N=3) gauge potential (the 'gluon’' field),
interacting with (Dirac) fermionic quarks in the

fundamental representation of the colour group SU(N):

- _ 2 v
L = %‘HFUVH + ¥.DY (1.1.7)

¥ > g¥ under gauge transformations.

This theoryvis unique in the respect that it 1is
the only known four dimensional theory of the strong
interactions which has the experimentally required
property of asymptotic freedom ie the running coupling
constant tends to zero as the cut-off parameter
defining the regularised quantum field theory is
taken to its limiting value (ultra-vioclet cut-off
A » =  or, equivalently, lattice spacing a - 0 in the
lattice regularised theory). This implies that, at
short distances, quarks behave as though they are
quasi-free, in agreement with the parton model. The
asymptotic freedom property allows the application of

perturbation theory to high energy hadronic processes,



where it predicts small logarithmic corrections to
the scaling predictions of the parton model. These
predictions are consistent with observation, but
unfortunately, perturbative QCD seems unable to make
predictions that are so strikingly accurate that they
definitely establish QCD as the undisputed theory of

the strong interactions.

Examgle 2

Another important example of an interacting
gauge-matter theory is that of a non-abelian gauge
field interactionwith a bosonic Higgs field taking
values in the Lie algebra of G, and hence transforming

under the adjoint representation of the gauge group:

L=-1]||F 2 31D ¢]|2- V(@) (1.1.8)
LIIE,, 112+ B1ID, o]12 v

¢ - g-IQg under gauge transformations

where the potential V is invariant under gauge
transformations. In the case that V(@) has a manifold
of degenerate minima acted upon transitively by G,
these theories constitute the bosonic sectors of

Grand Unified Theories (GUTs) responsible for the high
energy symmetry breakdown via the Higgs mechanism

(Higgs 1964, 1966, Englert & Brout 1964, Guralnik,



Hagen & Kibble 1964).

For example, if G = SU(N), and a minimum @O of

lyo,,,Nr

respectively then the gauge group G undergoes spontaneous

V(®) has eigenvalues Al,o,,gkr with degeneracies N

symmetry breaking to the subgroup of G leaving 2
invariant, ie

SU(N) » SU(Nl)x...xSU(Nr)xU(l)r-l (1.1.9)

eg when N=5, N1=3, N2=2, we have the high energy sector
of the minimal Grand Unified Theory SU(5) » SU(3)xSU(2)xU(1).

An important property shared’(for somewhat
different reasons) by the above two examples is that the
particle-spectrum obtained from a naive perturbative
expansion of the defining Lagrangian does not correspond
to the low energy physical particle spectrum. For
example, the low energy particle spectrum of the
strong interaction does not consist of a quark-gluon
plasma, as suggested by the Lagrangian (1.1.7) -
quarks and gluons are confined in colour singlet states
of baryons, mesons, and possibly glueballs etc. Also,
as explained in the following section, the claésical
equations of motion of the Lagrangian (1.1.8) possess
finite energy magnetic monopole soliton solutions. If
Grand Unified Theories provide a correct description

of nature, these magnetic monopoles should provide



an important contribution the particle content of the
early universe - for example, they have large gravitational

mass (“dO17

GeV) and, when coupled to fermions they have
the remarkable property of catalysing baryon decay at
approximately strong interaction rates (Callan 1982,

Rubakov 1982).

The above examples illustrate the point that
probably the most important problem of quantum field
theories, particularly asymptotically free quantum
field theories, is the determination of the physical
particle spectrum from the defining Lagrangian. Until
this problem is solved for the relatively simple examples
above, it is hard to imagine how the particle spectrum
of, say, N=8 supergravity will be determined. Clearly,
to solve these problems, we have to go beyond the
constraints of perturbation theory - the next section
reviews the main approaches to non-perturbative quantum

field theory that have been employed to date.



1.2 Non-Perturbative Methods of Quantum Field Theory

There is only one technique of non-perturbative
field theory that has so far got anywhere near to
making experimentally testable predictions, and that is
the technique of Monte Carlo simulations (Binder 1979)
of lattice regularised field theory (Wilson 1974).
Despite early optimism in the calculation of hadron
masses (Hamber & Parisi 1981, Marinari et al 1981),
even these techniques have not yet achieved sufficiently
high statistics to make reliable predictions. Moreover,
even if the quahtitative results can be made reliably
accurate, these techniques will give us little

qualitative insight into the underlying physical processes,

in particular into what are the dominant field

configurations.

A more ambitious program in this direction was
initiated by Polyakov in 1975; he suggested that
quantum field theories could be approximated semi-
classically by calculating the Gaussian fluctuations
around classical solutions (called instantons) of the
euclidean space field equations. Classical solutions
of the Minkowski space field equations are also
important for the rather different reason that, in
some theories, they describe topologically stable finite
energy soliton-like objects which should provide part
of the non-perturbative particle spectrum of the full

quantum theory.



We give below brief descriptions of these three

topics.

(a) Lattice Gauge Theories

Wilson's formulation of lattice gauge theories
(LGT's) exploits in a natural way the geometric
interpretation of gauge theories. The fundamental

geometric object is the path ordered exponential:
U(C) = P exp J‘d”pr (x)
c H

- which is a function from paths C in space-time to
elements U(C) of the gauge group G; U(C) describes the
parallel transport of internal symmetry vectors along
the curve C. Wilson's idea is to describe gauge fiéld
configurations on a lattice by assigning a gauge group
element to every elementary path element, or 'link' of
the lattice. A path C in the lattice is simply a
sequence of consecutive links 21,..,,2n say, and the

path ordered exponential along C is given by:

Uu(cC)

li
[
by
e
b
[
=

The Wilson action of a given field configuration

is defined in terms of the trace of the path ordered
exponentials around elementary loops (ie the boundaries

of elementary squares, or plaquettes), as follows:
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Z{/// ggmﬁle Fﬁaimeﬁte P
9, 0.

> A\
w

3F211+gﬂl+23¢ﬂ%

S = -1 L Tr(nm U + h.c.] (1.2.1)

EgzPlaquettes P

where
nu = UR Uu U U s
P 1 %2 %3 %

and g is the gauge coupling constant.

The quantum field theory is defined by an equivalent

statistical mechanical partition function:

where the integrals are performed with respect to the
Haar measure on G, and the parameter 8 = 1/g2 plays the

role of inverse temperature.

Remarks

(1) It is important to note that g? is not an absolute
constant, but a function of the lattice spacing a.
Typically, physical correlation lengths of Green's

functions are given by:
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2 = n(g?)a (1.2.2)

where n(g?) is a dimensionless function of g2 giving
the correlation length in terms of numbers of unit
lattice spacings. So, if g were constant, all physical
correlation lengths would collapse to zero with the
lattice spacing, in the continuum limit a » O.

Instead, a chosen correlation length (or other suitable
dimensional physical quantity) is held fixed at its
observed value (dimensional transmutation), and then

equ (1.2.2) defines g? implicitly as a function of a,

giving rise to the Callan-Symanzik renormalisation

group equations. As a consequence of (1.2.2), we have:
n(gz(a)) » = as a » 0

So, in the continuum limit a » 0, lattice Green's
functions must be correlated over an infinite number
of unit lattice spacings, ie g2 » g2 wﬁere the
lattice statistical mechanical theory has a 2nd
order phase transition at Bc = l/gg. Thus,

continuum field theories are defined at 2nd order

phase transition points of lattice field theories.

(2) The trace function in (1.2.1) is not the unique
possible choice - the universality property of critical
phenomena suggests that an identical continuum limit

is obtained by replacing it by any function x:G » C
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satisfying the same symmetry property as trace:

1

x (V 7UV) = y (U) VU,VeG

ie x is a class function on G. For a compact group,

the Peter-Weyl theorem implies that this can be written
uniquely as a linear sum of irreducible characters of

G, so the most general possible action is given by:

S = - z £8 (x [TU] + h.c) (1.2.3)
Plaquettes r 3P

where X, are the irreducible characters of G, and

Br are associated inverse couplings. (Note: Trace

is the character of the fundamental representation).

The study of these generalised action (or mixed action)

lattice gauge theories is not purely academic. For
example, the phase structure of SU(N) LGT's is very

much elucidated by studying the behaviour in the BoBa

phase plane, where BF’BA are the inverse couplings
associated with the fundamental and zdjoint representations
of SU(N) (see eg Drouffe 1982, Caneschi, Halliday &

Schwimmer 1982).

(3) Lattice chiral models are defined similarly,

as follows:

Given a compact group G, physical states are

defined by assigning a group element UX to every
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lattice site x, and the (generalised) action is given by:

-1 -1
S=- 1z e (x [0 U "]+ x [U U] (1.2.4)
links(xy) r © Tk roy X

Note the global GxG invariance:

-1
UX > VLUXVR . (VL,VR)EGXG
This class of models is rather general; with a
suitable choice of G and suitable restrictions on the
action, all the classical spin systems (eg Ising, Potts,

Clock & Heisenberg models) can be obtained as special

cases.
Vi

There is some evidence that the behaviour of
d=4 lattice gauge theories is somewhat analagous to
that of the corresponding d=2 lattice chiral models;
in particular, for a non abelian compact simple group,
both are asymptotically free, and Monte Carlo simulations
suggest that their phase diagrams have similar structures.
Also, the d=1/d=2 lattice chiral/gauge model is trivial
in the sense that its partition function factorises

into a product of single-site/link partition functions:

z = (MU exp(-Z B (x_(U) + x_(u"1y) (1.2.5)
G r i r r

(The theories also reduce to this single integral in

the mean field approximation d»=.) The integrals
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(1.2.5) (for G=U(N)) will reappear in chapters 2 and 5,

albeit in a rather different context.

(b) The Semiclassical Approximation

For reviews and references, see Coleman 1977,

and Zinn-Justin 1981, 1982.

In quantum field theory, we are largely interested
in the evaluation of Green's functions, defined typically

by euclidean functional integrals of the form:
) -S(¢)/ g2
I = |[[De]e F(e) (1.2.6)

Finite dimensional integrals of this form can
be evaluated asymptotically as g?-0 using the saddle
point approximation. For example, if we have a one

dimensional integral of the form (1.2.6), and S(¢)
(i), then approximating S(¢) by quadratic
expansions about Q(i) in the neighbourhoods of ¢(1)

has minima ¢

leads to an approximation for (1.2.6) as a sum of
Gaussian integrals centred about the minima ®(l),
and we obtain Laplace's result:

(i)
.y -S /g? 1
I ~ ZF(l)e g 2 ]2, as g2-+0
2 )

1 1" (1)
§° (¢ (1.2.7)

where

F1) 2 peol)y ana s(1) - sl



This simple picture is complicated by the following

two facts:

(1) 1If S(¢), F(¢) are analytic in ¢, a better approx-
imation may be obtained by deforming the integration
contour to pass through the paths of steepest descent
through all saddle points of S(¢) in the complex ¢-plane
- this is the well known method of steepest descents.
(2) For finite dimensional integrals over |R",

provided the minima of S(¢) are isolated, equ (1.2.7)

becomes:
(i), »
.y =S /g
1~ zpte [ g2 ]n/z’ as g2+0
i 1
2detC (1.2.8)
where C(i) is the nxn matrix of second derivatives of
S at ¢.:
i
(i) 2
Ckz = 275

More generally, the minima of S may occur on a
k-dimensional submanifold M of |R®, in which case the
sum in (1.2.8) is replaced by an integral over M, and
(1)

the determinants are replaced by det'C defined as

the products of non-zero eigenvalues of C(i),
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These results are expected to generalise, in some
sense, to the case of infinite dimensional functional
integrals of the form (1.2.6), since one way of
defining the latter is as a limit of finite dimensional

integrals.

In this case, the saddle points of the action are
simply the finite action solutions o0f the classical
equations of motion in euclidean space - these are

called instantons. The determinants must also be

replaced by suitably regularised functional determinants

of the integral operators with kernels:

Co(x,y) = 8283

6e(x)6ely)|oe=0,

So, to perform a semiclassical approximation of a
quantum field theory, at least three non-trivial

problems must be solved:

(i) Determine the moduli space M of all instantons.
(ii) Calculate the functional determinants of
Gaussian fluctuations about points of M.

(iii) Determine the integration measure on M.

It is not too surprising that this program has
been carried out for only a very limited number of
models. In most applications, step(i) is simplified

first by restricting attention to those instantons



of smallest non-zero action, and then by assuming that
the other dominant instanton configurations can be
approximated in some sense as superpositions of these.

This is called the instanton gas approximation, and its

validity is rather questionable.

Another source of difficulty is the question of
what type of classical solution we expect to contribute
to equ (1.2.8). The analogy of the steepest descent
approximation for one dimensional integrals strongly
suggeéts that finite action complex saddle points
should be just as important as real saddle points,
though the deformation of integration contou;s_in
infiﬁite.dimensional.complex configuration space rather
defies ordinary geometfic intuition. Some authors
have also considered the possibility that infinite
action solutions (or 'merons') contribute to the
semi-classical/agproximation9 despite the fact that
the factor e o8 in equ (1.2.8) suggests that these

give zero contribution.

(c) Topologically Stable Extended Objects

In this section, we consider solutions of classical

d’l. For

field equations in Minkowski space-time |R
a review, see Goddard & Olive 1978. We are particularly
interested in stable finite energy solutions with

localised energy density - these are called 'extended

objects'. If finite energy solutions exist, their
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stability can often be guaranteed using topological
arguments - a continuous time development of a classical
field defines a homotopy equivalence of the field
configurations at different times, so the homotopy

classes of certain associated maps must be conserved.

The prototypical example for us is that of a
scalar field thoery with a (possibly gauged) symmetry
group G which is spontaneously broken down to a

subgroup H, ie

L =-1 prF”” + %Dp¢.Du® - V(o) (1.2.9)
Z

where ¢ transforms under some linear representation of

G, and V(ge) = V(e), VgeG.

We assume the conventions that V has absolute

minimum value zero, and we define the vacuum manifold

M = {d; V(3) = 0}

which we assume to be acted upon transitively by G
with isotropy group H, so that M is topologically

equivalent to the homogeneous space G/H.

Now, finite energy solutions are expected to

satisfy the boundary conditions:
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(i) D _o{x,t) + 0

%

as X+ (1.2.10)

(i) V(a(x,t)) - O
n,

ie the scalar field must approach the Higgs vacuum

sufficiently quickly at spatial infinity. Condition
(ii) implies that the asymptotic Higgs field takes
values in the vacuum manifold, hence there exists a

Sd-l

map ¢ : + M defined by:

5_(A) = lime(ra),  vaesd™?

Y >

This map determines a homotopy class:

q(@)end_l(M) = nd_l(G/H)

and, since ¢(x,t) evolves continuously with time,

q(®) is conserved; it is called the topological charge

of ¢.

Another important class of models displaying topo-
logically conserved quantities is that of the non-
linear sigma models, where a 'free' scalar field is
constrained to take values in a compact Riemannian

manifold M:

L = %Dpono , oeM
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In this case, we impose the trivial boundary

conditions
o(x,t) » constant as x-e

Hence, the field o extends to a map on the one
point compactificatin of le,o :Sd > M, and the
homotopy class of this map defines a conserved

topological charge:
q(c)swd(M)

Note. Strictly speaking, the above relative homotopy
groups wn(X) should be replaced by absolute homotopy
classes %n(X). However, in all applications of

interest to us, this distinction is not important.
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Example 1: Vortices

The first examples of topologically stable
extended objects in relativistic field theories were
provided by Nielsen & Olesen in 1973. They considered

the Abelian Higgs model, consisting of a U(1l) gauge

field, A}J interacting with a complex scalar Higgs

field o
L = —%vaF“v+%(Du¢)*(Dp¢)—V(¢) (1.2.11)
Dp¢ = (8p+ieAp) ¢, V(¢ = gﬂ(wfc-az)z
In this case, M = {¢;]|¢]|=a} = Sl, so, in two

" spatial dimensions, d=2, topological charges are elements

of -

1

(S7)

n

L] Z

ie the topological charge is given by the integer
winding number of ¢ as it sweeps round a large circle
at infinity; this is called the vorticity of the field
configuration. Writing ¢, = ae* X for the asymptotic

Higgs field, we have:

q(¢) = 1 [x]=_1 [In¢] (1.2.12)
2 wi 2 i

where L] denotes the change in going round a large

circle at infinity.
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The presence of the gauge field implies that
more is true; condition (i) of the Higgs vacuum
equs (1.2.10) implies that, at sufficiently large

distances:

A =
u

¢ = 3p1n¢ (1.2.13)

o |

2,0 = i
¢ e
Hence, the total magnetic flux ¢(R) through a

large disc of radius R is given by:

o(R) = | BdS = J A de¥ (by Stokes' theorem)
x | 2R x| =R H

"

ifln¢] as R*=, by (1.2.13)
e
Hence, using (1.2.12), the total magnetic flux

¢ in the x xz-plane is given by:

1

® = 271q(¢) (1.2.14)
e .

ie the total magnetic flux is quantized in integer

multiples of 27/e.

Now, let C be any simple closed curve which does
not pass through any zeros of ¢. Then we can define
the vorticity around C as the Poincare index of the

2-dimensional vector field ¢, and this reduces to the
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above definition of vorticity around a circle at

infinity. It is therefore natural to identify vortex
positions with the zeros of ¢. It is found that, for
vortices of sufficiently large separation, the modulus

of the Higgs field differs appreciably from its asymptotic
. value a only in neighbourhoods of radius (Aa)_1 around
vortex positions and the magnetic field differs
appreciably from zero only in neighbourhoods of radius

-1 L
(ea) around vortex positions.

It is important to note that the abelian Higgs
model is in fact a relativistic version of the
Ginzburg-Landau macroscopic theory of superconductivity.
The density of Cooper pairs is determined by the Higgs
field ¢, and the Meissner effect (ie the expulsion of
a weak applied magnetic field from a superconductor,
apart from a small penetrationdepth) arises as a
consequence of the effective mass acquired by the

photon via the Higgs mechanism.)

In certain (ie type II) superconductors, a
strong applied magnetic field can penetrate the
superconductor by the formation of quantized magnetic
flux tubes whose interiors are in the normal (ie non-
superconducting) phase. These correspond exactly to
the above vortex solutions extended along lines in

three spatial dimensions.
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The above superconducting magnetic vortex lines
were proposed by Nielsen and Olesen as field theoretic
models for dual strings, which at the time were thought
to describe low energy hadronic physics. Since then,
various analogues of the above model have been proposed
by several different authors (eg 't Hooft 1978, 1979,
1981, Nielsen & Olesen 1979) wherein confinement is
conjectured to occur in QCD through the formation of
a superconducting ground state. These are mostly
based on the observation that, in the superconducting
Higgs phase of the abelian Higgs model, we have permanent
magnetic confinement - all magnetic flux is squeezed
into thin tubes which can only terminate in a magnetic
monopole or anti-monopole. Thus, monopole-anti-monopole
pairs are joined by magnetic flux tubes, and their
energy must vary linearly with separation. 't Hooft
uses the analogy of duality transformations in abelian
lattice gauge theory to suggest that QCD is in an
'electric confining' phase, which is, in some sense,
dual to a 'magnetic confining Higgs phase. Unfortunately,
none of these models has been entirely successful in
explaining confinement - the main difficulty seems to
be the identification of the correct degrees of freedom

in a pure gauge theory (ie without Higgs fields)

required to give the desired dynamics.

For completeness, let us note that vortices tend
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to occur more generally in theories where a gauge
group G is spontaneously broken to a discrete subgroup
H. In this case, we have G/H = §7ﬁl where % is the
pullback of H in the universal covering group ¢ of Gs;

standard covering space theory then tells us that the

vortex charges are elements of -
NN s ")
nl(G/H) = 7 (H) = H
o

Example 2: Magnetic Monopoles

The possibility of the existence of magnetic
monopoles was first noticed by Dirac (1931). The
main observation is that a gauge potential Ap need not
be single valued; we could define Ap = A; on patches
Ui of space-time, provided we impose the consistency

condition:

A; is gauge equivalent to Aﬂ on UnUJ whenever

u'nud is non-empty, ie for a U(l) gauge theory:

i 1] i3
al - ad _oa vhu (1.2.15)
p X pX on B

where exp(—iele) is a single-valued function on

vihud e

_e[x1I] ez (1.2.16)
211[ ]C
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where [.]C denotes the change in y around a closed

curve C.

Condition (1.2.15) simply means that we are
treating the gauge potential in its proper geometric
setting, as a U(1) -connection on a U(l)-bundle over
space-time. Condition (1.2.16) reflects the compactness
of the gauge group - it is necessary if the gauge group
acts on a complex scalar or spinor field, such as a

Schr8dinger wave function.

Now, consider a 2-sphere S embedded in 3-space
IR®, and cover S with upper and lower hemispheres
Sl’ 82 intersecting in the equator C of S

ie
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let
1
Ap on S1
A—_-
A
& Ap on 82
and
2 1
AT = A" -3 S.NnS
s B pX on 91Ny

Then, using Stokes' theorem, the magnetic charge

g enclosed by S is given by:

g=j ﬁ.d§=f d%-l%+J dg.R

1 2

=[x]. = 2m, neZ, by (1.2.16)

) e
geel ie gqeZ (1.2.17)
27 2 wh

the Dirac quantization condition for magnetic charge.

This analysis has been extended to a non-abelian
gauge group H by Wu and Yang (1975). 1In this case,

the gauge transformation relating A1 and A2 on C

defines a map b:C~H, and magnetic charges are classified
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topologically by the corresponding homotopy classes
[h]anl(H). Topologically, a non-trivial magnetic charge
measures the non-trivial twisting of the H-bundle when
restricted to the 2-sphere S. As a consequence, the
gauge field must have at least one singularity in the
interior of S, since all bundles on contractable

spaces are trivial. This unpleasant feature can be
avoided if H is the residual gauge symmetry group of

a larger spontaneously broken group G, as in (1.2.9)

('t Hooft 1974, Polyakov 1974). 1In this case,
singularities may be replaced by points at which

H is not well-defined (eg at zeros of the Higgs field ¢),
and in certain cases it is possible to prove the
existence of smooth solutions of the equations of

motion which asymptotically have non-zero H-magnetic
charge. The magnetic charge is in fact identical to

the topological charge of Higgs field, g = q(@)enZ(G/H);
this is a consequence of the homotopy exact sequence

for the fibration G ? G/H, which implies, for a simply

connected Lie group G:
nz(G/H) = nl(H)

The simplest example occurs when an SU(2) gauge
group is broken to U(1) by an adjoint representation

(ie isovector) Higgs field ¢, with:
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V(g) = A2(92-a2)2, ¢¢|RS3

&>

In this case, the vacuum manifold is a 2-sphere
so magnetic charges are classified by ﬂZ(SZ) = Z, ie
by the winding number of ¢, is it maps the 2-sphere
at spatial infinity to a 2-sphere in isospin space. As
remarked previously, the general Georgi-Glashow model
(1.1.8) with gauge group G and an adjoint representation
Higgs field also possesses magnetic monopoles. For
example, with symmetry breaking pattern (1.1.9),
magnetic charges are classified topologically by:

nI[SU(Nl)x.,.st(Nr)xU(l)r'lj = gt1

Example 3: Yang-Mills Instantons

Yang-Mills instantons are finite action solutions
of the Yang-Mills equations {(1.1.5) on euclidean 4-space
IR*. The finite action constraint suggests that the

gauge potential be 'pure gauge' at infinity

and any such gauge transformation g(x) defines a map
from the 3-sphere at spatial intinity to the gauge

group G.

It is easily seen that the homotopy class of
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this map is gauge invariant, and this defines the

instanton charge:

q ETT3(G) =z

- for any non-abelian compact simple Lie group G. Note
that any finite action solution is extendable to the
one-point compactification S4 of |R4, and the instanton
charge can be expressed as an integral over S4 of the

curvature tensor and its dual (Coleman 1977):

32n2q = d"x<F _,*F > (1.2.18)
84 ]J\) }JV



-31-

1.3 Bogomol 'nyi Equations and Dimensional Reduction

An important phenomenon is known to occur in
appropriate physical limits of certain classical field
theories, and that is the existence of lst order

differential equations, called Bogomol 'nyi equations

which imply the 2nd order static Euler-Lagrange

equations of the theory (Bogomol'nyi 1976).

As a rule, solutions of these lst order equations

are absolute minima (rather than just saddle points)

of the energy functional, in distinct topological

sectors of the theory.

The prototype examples are provided by the self-
dual and anti-self-dual Yang-Mills equations on

euclidean 4-space |R" (Belavin et al 1975).

va = 1*va (1.3.1)
These are lst order equations in the gauge potential
Ap, and, together with the kinematically necessary
Bianchi identities (1.1.6), they clearly imply the
2nd order Yang-Mills equations (1.1.5). Finite action
solutions of (1.3.1) are absolute minima of the action
functional on each of the distinct instanton charge

sectors of the theory. For:
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1 juwmlz - 1 <f ||F||%2J<F,*F> J’ 1] ]2)
4g? 4g?

= 2(S * 8m2q) by (1.2.18)
gz

¥ sz 8n?|q|

=2
=)

with equality if and only if (1.3.1) is satisfied.
Solutions of the self-duality equations must be
instantons of positive topological charge, and those

of the anti-self-duality equations are anti-instantons,

of negative topological charge.

The first step in constructing all instanton solutions
of (1.3.1) was taken by Atiyah and Ward in 1977. Using
the twistor space construction of Penrose, they showed
that there is a one-one correspondence between solutions
of the self-duality equations on |R"* (resp $*), and
certain holomorphic vector bundles on CP3NCP! (resp
CP3 ), giving rise to a sequence of distinct ansHtze
aysag..- describing self-dual fields. In fact, the
Atiyah-Ward construction can be generalised to provide
a construction for all (anti)-self-dual gauge potentials
on any (anti)-self-dual Riemannian 4-manifold M4 (ie
one for which the Weyl conformal tensor is (anti-)-

self-dual). Both the self-duality and anti-self-

duality equations can be solved if W = 0 ie if M"
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is conformally flat. (Atiyah et al 1978).

The Atiyah-Ward construction actually produces
solutions of the self-duality equations which are
complex and singular; extra constraints have to be
imposed to guarantee reality and non-singularity -
the determination of necessary and sufficient conditions
for non-singularity is in fact a highly non-trivial
unsolved problem. As a result, the Atiyah-Ward construction
is not well suited to the construction of instantons.
This problem was solved by Atiyah, Drinfeld, Hitchin &
Manin (ADHM, 1978) by first noting a result of Serre -
that holomorphic bundles on €P3 are necessarily
algebraic - and then using modern algebraic geometric
techniques of Horrocks & Barth to construct the required

algebraic bundles.

Example 1: Nielsen-Olesen Vortices

Consider the abelian Higgs model, with energy

functional:
E =‘ﬁ\d2x(%|Di¢{2 + $BZ + A2(|¢|2 - a2)2) (1.3.2)
8

where D, = 3, - ieA,. In the special case A?/e? =1,

this can be written as follows:
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E =fd2x[%|(DliiD2)¢|2 + 3(Bze(¢9-a?))2

2

So, if the fields are asymptotically in the Higgs
vacuum, the surface term vanishes by Stokes' theorem,

and we are left with:

E’%j d?x(](D;*1iD,)¢|? + [Bte(¢d-a®)|?)

2
= iea?lo, ¢ = Total Magnetic Flux
2
= *r1alq, by (1.2.14)
‘. E z ma?|q| (1.3.3)

with equality if and only if:
(D, = iD2)¢ =0 (1.3.4)

B+ e(¢¢ - a2) =0

e
2
So, we have obtained two sets of Bogomol'nyi
equations for the abelian Higgs model, whose solutions
are respectively vortices and anti-vortices saturating
the inequélity (1.3.3). These equations can be further

simplified following Jacobs & Rebbi (1979). Without

loss of generality, absorb e into the definition of
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the gauge potential, and set a=1 by a rescaling of X .
Then, defining complex co-ordinates @ = x1+ix2,

w = xy-ix,, the first of equs (1.3.4) becomes:

(3 - iA)¢ = (3 + iA)¢ = O (1.3.5)

9A - 3A + i(¢e - 1) =0
Z

Impose Lorentz gauge 3A + 3A = 0, so that we can

express A in terms of a real superpotential y:

A = iaws A- = —1811)

Define f = e ¥¢. Then (1.3.5) is equivalent to:

235y = 1(e?VFF - 1)
8 A
The first of these simply states that f is an
analytic function of w; the second can be further
simplified by defining:

2y

= ffe™ =y =y + log|f|

giving us the equation:
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23y = 1(e?X - 1) | (1.3.6)
8
(Note. Strictly speaking, (1.3.6) has é-function

sources at the zeros of f ie at the vortex locations.)

Despite its apparent simplicity, equ (1.3.6) has
so far resisted any attempts at an exact solution -
not even the axially symmetric charge one vortex is
known in closed form. However, there is an existence
theorem, due to Taubeé (1980), which states that the
Bogomol 'nyi equs (1.3.3) possess real analytic static
multi-vortex solutions for any finite number N of
vortices located at arbitrary points in the xlxz—plane.
This result can be understood intuitively by noticing
that the parameter A?/e? measures the relative strengths
of the Higgs attraction and magnetic repulsion between
vortices - Jacobs & Rebbi have verified numerically
that two vortices attract each other for r2/e? < 1,
and repel each other for A%?/e? > 1, at all separations.
The intermediate case A2/e? =1 is a sort of non-
interacting limit - the forces on vortices exactly
balance each other, so that multi-vortex configurations

can exist in static equilibrium, as stated above.

Example 2. 't Hooft-Polyakov Monopoles

Consider again the Georgi-Glashow model consisting
of an SU(2) gauge theory spontaneously broken to U(1)

by an adjoint representation Higgs field ¢. The
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residual U(1l) gauge symmetry is picked out by the direction
of 2 in isospin space, so the total U(l) magnetic charge

in a volume V is given by:

g =11 @.Bkdsk = 1[ Db e.Bd%x
a |ov al Vv

-using Stokes' theorem and the equations of motion.

Hence the energy functional is given by:

E =3 J\d3x<|lBkll2 + [ID @] |2 + V(o))
= t ag * %[ d3x(||Bk p Dk¢||2 + V(%))
ie E z alg]

with equality if and only if:

(i) B, = %D ¢ (1.3.7)

(ii) v(e) = o (1.3.8)

ie the Bogomol'nyi equations (1.3.7) imply the 2nd

order equations of motion if the Lagrangian is in the

Prasad-Sommerfield limit of vanishing Higgs potential,

A +» 0, but still maintaining the non-trivial boundary

conditions ||¢]}?% + a2 as X > . (Prasad & Sommerfield 1975)
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Again, there is an existence theorem (Jaffe &
Taubes 1980, Taubes 1981) which establishes the existence
of sufficiently widely separated static multi-monopole
(resp anti-monopole) solutions of (1.3.7). This result
also has a physically intuitive interpretation; for
A > 0, the residual Higgs field has a finite mass, so
the Higgs attraction is only short range, and therefore
cannot overcome the long range magnetic repulsion
between vortices at sufficiently large separation.
However, in the Prasad-Sommerfield limit » » 0, the
residual Higgs field becomes massless, and hence long
range, and this does indeed exactly balance the

magnetic repulsion.

Dimensional Reduction

'Dimensional reduction' is the name given to the
study of field theories on some Riemannian manifold M
which are invariant under some group S of isometries
of M. This process generally leads to the construction
of a more complicated field theory on the lower dimensional
space of orbits of S, M/S; it has been used mainly to
construct complicated physically realistic models in
four dimensions starting from relatively simple models
in higher dimensions, and to study the effects of
imposing certain symmetry constraints on solutions of
classical field equations (Forgacs & Manton 1980,

Chapline & Manton 1981).
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The simplest example occurs when a pure gauge

4+N to |R4 by requiring the

theory is reduced from |R
fields to be independent of the extra N dimensions.

The Lagrangian density is:

where the indices run over ordinary space-time indices
W,v, and over the extra indices i,j. We impose the

Ai; this implies:

constraint ai = 0, and define Qi

F . =239 + [A,0.] =D o,
pi pi p’i pi

Fij = [Qi,éjl

_ H 1 § )

3L o..D% . + 3[e.,0.].[0,,0.]
ie we are left with an inteéracting gauge theory in
ordinary space-time with N adjoint Higgs fields and a

non-trivial quartic potential:
Vo) = 3l1[e;.e,]112

For example, we may regard the Georgi-Glashow model

as the dimensional reduction of a pure gauge theory from

4,1 .
IR to |R3’1, with the 4th component of the gauge

potential becoming an effective adjoint Higgs field
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0) of the

Moreover, for static solutions (ao
field equations with AO = 0, the Bogomol'nyi equations
(1.3.7) are precisely the dimensional reduction of the
self-dual Yang-Mills equations (1.3.1) in the four
euclidean spatial dimensions (Manton 1978). As a result
the techniques developed to solve the self-duality
equations have been applied to the Bogomol'nyi equations
for magnetic monopoles. It turns out that the original
Atiyah-Ward construction is much better suited to the
construction of self-dual monopoles than it is for
instantons - for an SU(2) gauge group, a complete
(4n-1)-parameter family of separated charge n monopole
solutions can be obtained in the nth. Atiyah-Ward
ansatz (Ward 1981 a,b,c, Prasad 1981, Corrigan & Goddard
1981). Problems still remain however - there is still
no general proof that these solutions are non-singular,
and it is not known how the 4n-1 parameters of the
Cofrigan—Goddard ansatz are related to the structure
of the physical field configurations. The ADHM
construction has also been generalised to give a
construction for monopoles for an arbitrary gauge
group (Hahm 1981, 1982). This construction guarantees
real, non-singular solutions - it is however difficult
to implement in practice, involving the solution of
systems of lst order non-linear ordinary differential
equations (see eg Bowman et al 1983), and it is
unclear whether or not the solutions thus obtained

coincide with those obtained from the Atiyah-Ward

construction.
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.Returning to the topic of dimensional reduction,
Forgacs & Manton considered the more general situation
of a pure gauge theory with gauge group G defined on a
space whose extra dimensions form a compact homogeneous
manifold, ie M = IRd x S/R, where S is a compact group
of isometries, and R is the isotropy group. Note that
for a gauge theory, invariance under S means that
S-transformations can be removed by gauge transformations.
Forgacs & Manton showed that the isotropy group R has
an embedding § in G, and that the resulting gauge
symmetry on IRd is simply the centraliser CG(a) of
R in G ie the subgroup of elements of G which commute
with K. The other components of the gauge field
become effective Higgs fields. If, moreover, the
embedding R - ﬁ £ G extends to an embedding S - g s G,
then the gauge symmetry CG(ﬁ) is spontaneously broken

to CG(§) on IRd.

eg Také G = SU(2) on M = |R2 x S2, where S?
is realized as the coset space SU(2)/U(l1). We can
embed the isotropy group onto a maximal tqrusl§ = U(1)
in G, and this extends naturally to an embedding

S » g = G. Therefore:
" n,
CG(R) = U(l1), CG(S) =1

ie we have an effective abelian gauge theory on |R?

which is spontaneously broken to the identity subgroup.
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The effective Lagrangian is in fact that of the
Bogomecl 'nyi limit A=1 of the abelian Higgs model
(1.3.2), and the self-duality equations on |R%x §2
reduce to the Bogomol'nyi equations (1.3.4) for
vortices (Ward 1982). Unfortunately however; the

Weyl tensor on |[R%x S? is neither self-dual nor anti-
self-dual, so the general construction of Atiyah,
Hitchin & Singer cannot be applied to give a geometric

construction of separated multi-vortices.

Statement of Aims

This work was begun shortly after the proof of
Taubes' existence theorems for multi-vortex and multi-
monopole solutions, and the geometric construction of
monopole solutions in the Atiyah-Ward ansHdtze. The
original aim was to investigate whether or not vortices
in the Bogomol'nyi limit of the abelian Higgs model
could be constructed in a similar manner to that of
self-dual monopoles. For the reasonsmentioned above,
no progress was made on this problem - the self-duality
equations on |R?x S? are not twistor-solvable, so there
is no (known) geometric construction of multi-vortices,
despite the purely analytic existence theorems for

such solutions.

However, the existence of non-trivial structure
in the dimensional reduction |RZx S2 » |R%? of the

self-dual Yang-Mills equations suggests that the
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4 +_lR2 of the self-duality

dimensional reduction |R
equations might lead to some interesting solutions
analagous in some sense to Nielsen-Olesen vortices.
Indeed, following the construction of instanton

solutions in four dimensions, and monopcle solutions

in three dimensions, it is natural to ask what happens

in lower dimensions. Such solutions should be relatively
simpler than the higher dimensional cases, so they

should provide a new class of examples which shed

some light on outstanding problems of the Atiyah-Ward
construction such as how non-singularity and the

structure of physical field configurations are related

to the parameterization of the Atiyah-Ward ansdtze.

Further motivation is provided by a recent paper
of Corrigan & Goddard (1984), where it is established
that the ADHMN construction gives rise to some sort of
'reciprocity' between self-dual Yang-Mills systems
in 4+0 and 0+4 dimensions for instantons, and in
3+1 and 1+3 dimensions for monopoles. It is further
conjectured that this reciprocity is most fully realized
for self-dual Yang-Mills systems in 2+2 dimensions,
which should be in some sense self-reciprocal. This
is precisely the system that we propose to study,
albeit within the Atiyah-Ward formalism rather than

the ADHMN formalism.
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Thus, our primary goal is to study the mathematical
structure of the solutions of the self-duality equations,
dimensionally reduced from IR4 to ]RZ, As a more
ambitious long-term goal, we are bearing in mind the
fact that several authors have proposed an essentially
two dimensional confinement mechanism for QCD, arising
from the conjectured dominance of superconducting
vortex-like structures in the QCD vacuum. We are
therefore seeking analogues for pure non-abelian
gauge theories of the Nielsen-Olesen vortices of the
abelian Higgs model, in the hope that, via the semi-
classical approximation, these will provide the

dynamical mechanism needed to justify these still

rather vague ideas on confinement.
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1.4 Real Singular Solutions of the Two Dimensional

Self-Duality Equations - A First Attempt

In complexified co-ordinates:

<
|

= (x1+ix2)//2 z (X3-iX4)//2

<)
[

N
i

= (xl-ixz)//Z (x3+ix4)//2
the self-duality equations (1.3.1) take the particularly
simple form (Yang 1977):

F =pF— =F -+ F =0 (1.4.1)
Yy 2

yz vy zz
Let us seek solutions of (1.4.1) for an SU(2)
gauge group which are Xg- and xa-independent. With
the convention that the gauge potentials are hermitian,

make the ansatz:

(1.4.2)

where all fields are independent of X3 and Xy

ie az = az = 0. Then, writing 3 = By’ 3 = 3?, (1.4.1)



is equivalent to:

3A - BA + 2i(BB - yy) =0 (1.4.3)
(3 + iA)B = (3 - iA)g = O
(3 - iA)y = (3 + iA)y = 0

These equations are remarkably similar to the
Bogomol 'nyi equations for Nielsen-Olesen vortices -
they simply replace the constant symmetry breaking mass
parameter with another covariantly constant Higgs field,

with opposite conventions for covariant derivatives:

B = (3

Dy

K " iAk)B, Dky = (Bk + iAk)y
Equs (1.4.3) can be simplified in a similar
manner to equs (1.3.5). Impose Lorentz gauge on the

abelian part A of the gauge field, 3A + 3A = 0, so

there exists a real field y such that:

idy, A =-idy

g
1

Define:

Hh
I
™
o
}
R4
h
I
™
o
1
<
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Then equs (1.4.3) are equivalent to:

(1) 3f = 3f = 0 (1.4.4)

(ii) 3g

i
@

0Q

|
o

(iii) 983y = ffezw—gge
(i) & (ii) simply mean that f and g must be
analytic in y. In order to further simplify equ (iii),

we need to consider two distinct cases:

Case (i). One of f,g = O

Without loss of generality, suppose g = 0, and

define the field x by:
e?X - £Fe?V - x = v+ log|f|
Then equ (iii) is equivalent to:

33y = e % - 1216 (1.4.5)

ie a Liouville equation, with § -function sources at

the zeros of f. Note that the 'Higgs fields' B,y

are given by:

B = f e , y =0
| £]

The Liouville equation is well known to be
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completely integrable; 1its solutions are related by
BHcklund transformaticns to solutions of the Laplace
ecuaticn, giving the general real solution:

e2X _ 2R (W)F' (D) (1.4.6)

|F(0)+F(2) |2

where F is an arbitrary analytic function of

w = x1 + iX,.

2

Case (ii) £ £ 0, g £ 0

In this case, we can write equ (iii) as follows:

25y = /£Tgg [VEF 2 -/ gg e ]
gg ff
So, defining the field x by:
2x = 2x _ _ 1
e =/ ff e =x =y + slog|f
gg | gl

we see that equ (iii) is equivalent to

92x = 2hh sinh 2y - I 286 (1.4.7)

where h=vfg, and the é-function sources occur at the

zeros and poles of f and g. In the special case h = 1

ie f = 8_1, equ (1.4.6) reduces to the sinh-Gordon equation,

which is also known to be completely integrable - it



has an auto-BHckland transformation which can be used

to generate hierarchies of solutions.

In this case, the ‘'Higgs fields' are given by -

8 = f .hheX, vy = g .-hhe X

|£] lg|

Thus, our original ansatz (1.4.2) has been
reduced to two completely integrable equations,
both of which are similar to, though not equivalent to,
the vortex equation (1.3.4). These results were also
obtained by Saclioglu (1981 a,b). He first used the
CFTW ansatz (Corrigan & Fairlie 1977, 't Hooft
(unpublished), Wilcek 1977) to obtain the solution,

given in our notation by -

B = iy . y =0, vy = 2log(logr)
r2log r?

This can also be obtained from the solution
of the Liouville equation (l1.4.6), with the choice
F(w) = logw. DNote that this solution has rather nasty
singularities at the origin r=0 and on the circle
r=1, In fact, Saclioglu verified that any solution
of the Liouville equation gives rise to a self-dual
gauge field with singular curves. He then went on
to consider the solution obtained from the radial
sinh-Gordon equation - in this case, line singularities

are avoided, bhut the solution still has a singularity
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at the origin, and infinite total action.

This material is included to illustrate a point
that will emerge more clearly in the next chapter -
that, modul o some reasonable assumptions on boundedness
of the fields, all non-vacuum real solutions of the
two dimensional self-duality equations are singular.
So, in order to construct non-trivial non-singular

solutions, we shall have to consider strictly complex

gauge fields. Also, we clearly need a more sophisticated
approach than the simple ansatz (1.4.2); fortunately,

such an approach is provided by the Atiyah-Ward construction.
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CHAPTER 2

AXTALLY SYMMETRIC SELF-DUAL VORTICES

2.1 The Atiyah-Ward Construction

In this section, we review the most basic details
of the Atiyah-Ward construction, and establish notation,
and some preliminary results. Further details may be
found in Corrigan et al (1978), Corrigan and Goddard

(1981), Prasad (1981) and Prasad and Rossi (1980).

Throughout, we work in complexified euclidean
space-time €', and we consider complexified gauge
fields taking values in sl(N,C), the complexified

Lie algebra of SU(N). We denote the Killing form on
s1(N,C) by:

<A,B>= -2TrAB
A,B ESI(N;‘C)
llal]?2=<a,a>

and we use the convention for gauge transformations:

G 1 1

A =G ApG+G' apc, Apesl(N,C), GeSL(N,C)

y

-

We define Yang-variables for Xps@az
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y = 1 (x +ix,) 7 - 1(xy-1x,)
2 /2
2 /2

with respect to which the self-duality equations become

(Yang 1977):

(2.1.1)

Il

By (2.1.1)(a), Ay’ A, are pure gauge for fixed
y, z, and A;, A~ are pure gauge for fixed y, z; hence

there exist two matrix functions -

: 64 +~ SL(N,C)

ol

D,

called generating matrices, such that:

Gauge transformations Ap + GAp induce transformations -

D » DG, D > DG
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and for fixed Ay’A§’Az’AE’ the matrices D,D are determined

up to a transformation:
D » V(y,z)D, D » V(y,z)D

where V,V are arbitrary SL(N,C)-valued functions of the

variables indicated.

Now define J = DD 1. This is clearly a gauge-

invariant SL(N,C)-valued function, which transforms

under V-transformations as:
=, = = -1
J > V(y,2)JIV "(y,z)

Also, equ (2.1.1)(b) is equivalent to a chiral

model like equation for J:

-1 -1,
(3,370, 4,57, = 0

(2.1.2)

-1 1

It
o

& (J J’y)’z+(J J’z)’E
We now specialize to SL(2,C) gauge fields. Using
the gauge freedom for the D-matrices, we may choose

the matrices D, D to be lower and upper triangular

respectively:
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3 J=1(1 o
o \ p 902400

This is called Yang's R-gauge. ¢ ,p,p0 are independent

complex valued functions of y,z,y,z. Reality requires:

(2.1.3)

ol
I

©
A

o = ¢,

means equal on R%:Ca°

.where

In R-gauge, the potentials are given by:

A = -1 <¢, 0 ) , A -1 (¢, 0 )
Yoo y z = 2
¢ 209 _¢9y 2¢ Zpsz -4’92

A§=_]_.__ <¢9'§ 20,;) 3 AE=_1__ <¢9E 2992>
2¢ \0 "ty 2¢ \ 0 I

and equations (2.1.1)(b), (2.1.2) are equivalent to

Yang's R-gauge equations:

1 - - _y -
(aya§+azag)10g¢+;2(o,yp,§+p,zp,Z) =0

2y _ 2y _ =
(p,y/¢ )’y+(p’z/¢ )o5 =0 (2.1.4)

—-— _— 2 =
(psy/¢2)9y+(psz/¢ )92 0
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2.1.1 Theorem (Corrigan, Fairlie, Goddard & Yates 1978)

(1) Let (¢, p,p) be a solution of (2.1.4). Then so

I

is (¢I,p R EI) where:

$2+pp $2 +pp $2+pp

and the corresponding potentials are gauge equivalent.

(ii) Let (¢, p, p) be a solution of (2.1.4). Then so

is (¢BypB ,7@) where:

&£ =1/

B _ - B _ = _
oy ps,/92 p iy o o»y/¢2
B _ _ 2 —B = - 2
p 9}7 = 992/¢ P >z Dﬁy/‘i’

(iii) A solution of (2.1.4) is given by:

psy = ¢’Z psz = —¢9'§
D,; = ¢’Z p’; = ’¢’9y
where (aya; +azaz)¢ =0
Notes
(1) Solution (iii) is just the C&IW ansatz, and

constitutes the first of the Atiyah-Ward ansdtze ay -

(2) The transformations B,I are BHcklund transformations.
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They are separately involutive ie B?= 12= identity.
However, the transformation BI is non-involutive and

gives rise to a sequence of distinct ansitze

BI BI BI BI BI

——>a2————ra————> _ 3 —

4

called the Atiyah-Ward ansHtze.

(iv) The BI-transformations can be integrated explicitly

as follows:

Suppose we have a sequence of functions Ak(x)

A

of length 2n + 1, -n £ k n, which satisfy the Cauchy-

Riemann like equations:

W T TN 0 2% T Sk

(2.1.5)

We call (Ak) a bA-chain, and (2.1.5) the

A-chain equations. Define the fundamental nxn matrix

D™ = (4. )
j-1i
. (n) _
ie D = Ao Al AZ e An—l
A-l AO Al .
by B_qb, .

-n+l ¢t o

3 oooooooooo
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Then, a solution in the a_ ansatz, in Yang's

R-gauge, is given by:

¢ = detD(n)/detD(n—l)
_ _ n
"n‘%—)- L
detD A .
L
Ay by b
A_n . A_l
(2.1.6)
R ES DL B B B IR
(n-1) )
detD AO .Al A2
A—1 Ao Al
By + o o - o By

Note that non-singularity is guaranteed if

(n)

detD is non-vanishing throughout space-time.

Now, in the construction of monopole solutions,
the reduction to |R3 was performed by demanding that

the A-chain take the form:

iax4 n
Ak(x) = e Ak(xl,xz,x3) (2.1.7)
iax, ~ iax, iax,
4 4 — 4
=> $ = e ¢, p = e ps p = € P
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N

where a4¢ = 84p = qu =0

In this case, the fact that Ak satisfies the
Y
4-dimensional Laplace equation implies that A

satisfies the 3-dimensional Helmholtz equation.

The following result guarantees that, provided
the conditions of reality and non-singularity are
satisfied, then solutions of the form (2.1.7), in the
a ansatz, describe magnetic monopole configurations of

charge n.

Superposition Theorem (Prasad 1981)

Suppose that (2.1.7) is satisfied for (¢k,pk,3k)

in the ansatz ay s k=1, 2, .....

Then in the nth amsatz:

n
(i) | |e]]2 = ||A4|[2 = a2- g v21nq>k
k=1
5 I1¢]]2 = a2-v21n detd‘™
(ii) Energy density
£ = +3V2||¢||2 = -3v2v21n detp™

(iii) Total Energy, E_ = 4man
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2.2 Dimensional Reduction to |R?

Let us now consider the dimensicnal reduction
of a pure SU(2) Yang-Mills gauge theory from |R*
to |R2, requiring the theory to be translation invariant

in the extra two dimensions.

Write A3 = @1, A4 = @2, and impose the condition

0. Then we have:

@

w
1
-4

I
1

3

Fip = 3Ay-3,8) + [81,A,], Fy, = [¢,9,]

14 7
Faz3 = D% » Fay =Dy

Hence the Yang-Mills Lagrangian becomes:

L= 3[|B[|2+2][D;oq |23 ][Dyo,[|2+3][[2y-2,]1]2

where B=F i=1,2. So, we have an SU(2) gauge field

12>
Ai interacting with two adjoint Higgs fields 2,9,

with an extra interaction term:

V(oy,8)) = 31| [0g,9,]112

This model has also been considered by Nielsen
and Olesen (1973), and Lohe (1977). We shall in fact

construct solutions with the non-trivial monopole-like
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boundary conditions:
l'®1||2+329 I!‘bzllz"’bz as (X19X2) +

so we should regard the potential V as the Bogomol 'nyi

limit X»0 of the potential:

V'(e1,0,) = 3[|[o7-0,] ]2 + £(||®||2-c2)2
where ||e[[2 = [[eg||2 + []o,|[2, c2 = a2+b%# 0, (c>0).

The self-duality and anti-self-duality equations

reduce to Bogomol'nyi-like equations for this model:

B = i[@l,sz

Doy

I+

Dyey =

|
o

(2.2.1)

¢, =0

So, we shall seek solutions of equations (2.2.1)
which are essentially the 2-dimensional analogues of
self-dual monopoles. The reduction to |R? is performed

in exact analogy with the monopole situation, by

requiring that:
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iax,+bx,)

_ 3 4o

Ak(x) = e Ak(xl’XZ)
( (2.2.2)
i(ax,+bx, ) i(ax,+bx,)
2 $ = e 3 4$np=e 3 439

- i(ax3+bx4)g
p = e p

qJ— v
where a3¢ = 84¢ = 0 etc

Prasad's Superposition Theorem has some immediate

corollaries for the ansatz (2.2.2).

2.2.1 Corollary

Suppose equ (2.2.2) is satisfied. Then the norms
of the Higgs fields @1,®2, and the energy density

are given, in the nth ansatz by:

||¢11|2 = a2-v21n detD(n), ||c1>2||2 = b2-v2]1np detD(n)

> |]¢]]? = c2-2921n detD'™

(n)
£ = *%V2|l¢1||2 = *%V2||¢2||2 = -3y2y2ln detD n

Note that we can replace (a,b) by any 2-vector
of length ¢, by performing an appropriate rotation in

the X3X%, plane.

Since each Ak satisfies the 4-dimensional Laplace

equation, equ (2.2.2) implies that each Xk satisfies
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the 2-dimensional Helmholtz equation:

ZI\J 2’\‘
V<A = Ja
k -~ S %

n,
So, if ¢>0, we can expand each Ak in cylindrical
Bessel functions:

ils

N
2Kg(cr))e

A = T (A I (cr) + B
R A K,

where (r,0) are cylindrical polar co-ordinates in the

xlxz—plane.

For the most part, we shall consider solutions

")

where each Ak We then have:

is non-singular.

A 0 ]_Q,e

Ak = Ej_wAk,EIQ(Cr)e (2.2.3)
o eST(E (8) + % Tk, 208y, ag row

— Kk L=1"" ¢

Jer T

from the asymptotic expansion of Il(x) (Appendix A,

equ (A.5)).

2.2.2 Corollary
Suppose the following hypotheses hold:

(1) Equ (2.2.2) is satisfied.

4V
(ii) Each B is non-singular ie equ (2.2.3) is

satisfied.
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(iii) DetD(n)# 0 Vxe|R2, so the gauge field configuration

is non-singular.

Then, in the nth ansatz:

|14 112 ~a?-nc, ||e,]|? ~ bZ-nc
r Y
=7 |{2]]2 ~c2(1 - 2n) as r»e (2.2.4)
cr

£ v-nc/2r3 as re+e

Also, if E(R) is the total energy (or total action) in

a disc of radius R centred at the origin, then -

E(R) ~ nmc » 0 as R+ (2.2.5)
R

Hence the total energy, or total action in the

xlxz—plane is zero.

If, moreover, the associated gauge field is real,

then -

|{¢]]? =c? and ¢ = O

Hence, any solutions satisfying hypotheses (i)-(iii)

are either strictly complex, or the Higgs vacuum.
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Proof

Hypotheses (i), (ii), (iii) imply, using the
asymptotic'expansion of equ (2.2.3):

in(ax,+bx,)
detD(n) " e 3 4

where d(n)(e) is a

non-vanishing, non-singular function

of 6 only, and 2 2 0.

I\

Hence:

In detD(n) ~ner + 0(lnr)

=) v2n detD(n) v~ nc (;92lnr = 0, T

> 0)
T

> v2y2n detd'™

A nc , as r+rw

r2

and equs (2.2.4) follow from Corollary (2.2.1)

E(R) = J'd2xg -3 jdzxv2||¢1||2
x| sR |

x|§R

Also:

f dp. glle |2
x| =R

~nm/R , as R » =, by (2.2.4).

Finally, for real gauge fields, ¢ z 0 everywhere,
since the Killing form on the compact group SU(2) is
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positive definite. Hence -

Jﬁdzxg(x) =0 3 £ =0 on |R2
and

e= «1v2|]e[]2 ||o]]? »cZas roe

5 ll8]f2 = c2on |R2

QED

In fact, equs (2.2.4) tell us that, for ¢ > O,
£ is negative at sufficiently large distances. This
again implies immediately that the associated gauge
field is strictly complex. All solutions satisfying
hypotheses (i) - (iii) of Corollary (2.2.2) will turn
out to be soliton-like enhancements of positive energy
density immersed in a sea of negative energy density,
in such a way that the total energy integrates to zero.
The existence of such solutions was first pointed out

by Dolan (1978), who coined the term 'voidon'.

In addition to the rather strong non-singularity
conditions (ii) and (iii), Corollary (2.2.2) supposes
that the given self-dual solution arises from one of
the a_ ansdtze described in theorem (2.1.1) (or,
equivalently, that the transition function of its
associated holomorphic vector bundle over €P3™€P!
is equivalent to one which is upper triangular - see

Chapter 5.1). This is known to be true for instantons



and monopoles, but still requires proof for solutions
satisfying our boundary conditions. It is therefore
of interest to know what can be said about an arbitrary
smooth solution of equs (2.2.1). Some information is

provided by the next result.

2.2.3 Theorem (Lohe 1977, Saclioglu 1981)

Let (Al’A ) be a solution of equs (2.2.1),

22 %%

which is smooth on |R2. Then its total action can be
written as a contour integral:
S =+1lim d2.<¢2,D.¢1> (2.2.6)
R+ IxI:R J J

Proof

The energy density is given by:
g = sCIBIIZ [1[os 9] 1% Do [ ]Dge]]2
= 3CI[B Loy, 8] 112+ Dy &) D,y |12 Dy &3 &)%)
(B, [9), 8 ]>- Dy ) ,Dp 9 >+ Dy ¢,y 85 >)
So if, say, the field is self-dual:
£ = <B,[@l,¢2]>—<D1¢1,D2¢2>+<D2¢1,D1¢2>

Expanding this in terms of Al’AZ’Ql’QZ’ it can be

written as a sum of three groups of terms.
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(i) £ = <32@1931¢2>— <81¢932®2>
+ <A, - BA, [@l, <I>2]>

(ii) - <31@19 EAzsq)z])‘ <[‘f\19¢1]932®2>

<oy Bt <Bre] e

+

(iii) <ap.8,1 [o, 00> -<B. ] By, 0]

t<fag. ol [y 5]

Group (iii). Note the following identity (which is a

consequence of the cyclic property of trace).
(*) <A, B,C]>= <, [A,B]>= <B,[C,A]>
This, together with the Jacobi identity, gives:
<[Bya8y 0 Lo 0d> = <epue,[A),4)]]>
<¢1,[[¢2,A1],A2] + [Al,EQZ,Aé]]> (Jacobi)

= <loy.a0u [ap. 01>+ <loghay1s [01.8, 1> by

=<[ap. 0], (8,01 - <[ay, 0], [ay,0,]>

Hence, group (iii) vanishes.



Group (ii).

<81A2 - 32A

t <Ay, [319).9,]>
- <Ay [og.29)]>
= 2y<h,, [eg,0,]>

R RI Lo TAY e
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62<@2gal¢1> (%)

Rearranging, using (*), this equals:

<hys[07.9)95]>
<bps[a591.95)>
25<81 [27.0,]>

32<¢2,[A1,(1)1]> (FF%

Adding (**) and (***) we obtain:

£ = 3,<0

1°92:D09%9> -

82<¢2,D ¢, >

11

(2.2.7)

= eijai<®2,Dj®1>

Hence (2.2.6) is an immediate consequence of

Stokes' theorem, since, by hypothesis, ¢ has no

singularities on |RZ2. QED
2.2.4 Corollary

Let (Al,Az,él,éz) be any real, smooth, finite
action solution of equs (2.2.1), for any compact gauge

group G, satisfying the boundary conditions:
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[le. 1|2 » aZ, ||d>2||2 > b? as r+o

1!

Then it is the wvacuum, ie
£ 20, [le 112 =az, [|o,[|2 = b2

Proof
The finite action constraint, together with the
positive definiteness of the Killing form for a
compact group, forces the solution to approach the
Higgs vacuum sufficiently quickly at infinity. In

particular:

2 _- = <> o
[1D;e 511 0 (L) 3 IIbje5ll =0cly asr
T2 T

Also, (2.2.6) gives us:

/I s lin % IRIPATRIEENT
x| =R

+ 0 as Rorw

3 l l M

from the boundary conditions on I|¢i|| and ||Di<1>J

Hence S = 0, and the conclusion follows as in
Corollary (2.2.2).
QED
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Thus, we have proved conclusively, that in order to
construct non-trivial non-singular solutions of equs (2.2.1)
it is necessary to drop the reality constraint. This
will be done in the following, where we shall construct
a wealth of non-singular complex solutions, with some
properties rather analogous to those of the real

Nielsen-Olesen vortices of the Abelian Higgs model.

Effective U(1l) Theory

In this section, the R-gauge equations are
rewritten in a form where the vortex interpretation
of the forthcoming solutions becomes apparent. It
is useful at this stage to note two facts which will
emerge from the twistor theoretic treatment of

Chapter 5.

Fact 1. (Corollary of Theorem (5.2.3)). Suppose that

(6,p,0)s (0',p0'.p') are solutions of the self-duality
equations obtained from one of the Atiyah-Ward ansdtze,
after reducing from [R* to |R2 by the imposition of

equ (2.2.2). Then these solutions are gauge equivalent
if and only if their corresponding A-chains are

equivalent up to a scale transformation

ie Ai(x) = AAk(x), Vk, xeC™M0

Such a transofmation clearly leaves (¢,p,p)

unchanged (Cf equ (2.1.6)); hence, after reduction
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from |R* to |R?, the R-gauge functions (¢,p,p) are

gauge invariant scalars. Hence, any new fields defined

in terms of (¢,p,p) will also be gauge invariant.

Fact 2. We shall see in Chapter 5 (Theorem (5.3.1))
that it is possible to construct a large family of

manifestly non-singular solutions which satisfy the

condition -

i(ax3+bx )n,

Ak(x) = e Ak(xl,xz)
(2.2.8)
\n n,
where A—k = Ak“, Yk
This condition implies that -
in(ax,+bx,) "

detD(n) = e 3 4 detD(n) (2.2.9)

v 4"
where D™ = (Aj_i) is a hermitian nxn matrix, and

hence has real determinant. Non-singularity is a
-consequence of the additional result:

m(n) 2
detD > 0, Vxe |R (2.2.10)

Also, substituting (2.2.8) into equs (2.1.6) yields:

¢

o = detp(m) (2.2.11)
n

det'I\J':n_lj
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v n, *
o = (-1)" detE'™
detp 0~ )
v ~
7 = (-1 lgeep(™)
a o a(n-1
detD
where
“(n) ~ " N N
E = Al Az A3 An
n v} n
Ao Aq )
n, ") n,
bi1 b M _
n, 4%
—n+2 -4

and these imply -

(2.2.12)

Note that (2.2.12) (ii) is distinctly different

from the reality condition (2.1.3).

ny
In terms of (34, p,p), the R-gauge equations
become (writing m2 = c2/2):
n

v n '\l'\‘
3y3§log¢ + 1 (g, _p,= - mpp) =0 (2.2.13)
32
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4"

4 ¥) LAVERRA VY
(p,y/¢2),§ + mAp/92) =0

Y Y MV AY)

(p,=/62), 2(T /42
p y/¢ ) g + m2(p/9?)

It
(o]

Now, using (2.2.9) (i), we can write

4V
¢ =eX, x real valued
in terms of which equs (2.2.13) become (dropping the

tildes onp, p):

_2)( — _
3 39—y + (p, p,— - m? =0 2.2.14
v yx e P yp - mépp ) ( )

2
Py = + = 2(3= R
vy mep ( yx)p y

— -
P, — + m 2(3 . x)p,—
yy i vy
and these could be regarded as equations for a rather
unconventional field theory involving a real Liouville
like scalar field x interacting with a complex scalar

field p .

A yet more suggestive way of writing these equations
is provided by defining the following fields (making

use of equs (2.2.12) (ii)):

JE ST RS L TN (2.2.15)
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ab '\,/ " ab Ny
AT = i x =19 »  Ac = -id-x = -iac¢/
y 19 X y¢ ¢ v 1egx ¢/ ¢
ab _ ab _ ab _ o
B = alAz azAl = -Vex
so that A?b, A%b represent an 'effective abelian'
gauge field such that ayA§b + a;A;b = 0 (Lorentz gauge).

Then equs (2.2.14) are equivalent to:

~B30 = (p?Py ) (3P yyx _ 2y (2.2.16)
5 y y
pabpaby 4 nm2y = @
y 'y
where D2P = 5 - ia2P p3P _ iAib, so it is
y y y y y y

natural to regard these as Bogomol 'nyi like equations for
an unconventional U(1l) gauge theory interacting with a
complex scalar Higgs field . We shall see that, in the

nth ansatz, ¥ satisfies the expected boundary conditions

for a vortex of charge n.

Note that, in Cartesian co-ordinates, equs
(2.2.16) take the manifestly covariant form:
ab _ ab ab 4 . ab ab v+ . 20w %
-B = (Di ‘P)(Di Py¥* o+ 1eij(Di W)(Dj ¥) ceYY
(2.2.17)

D?bDibw + iBaPy 4 o2y = 0
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Finally, let us note how the conventional SU(2)
gauge potentials are related to the effective abelian
fields. From the expressions for the gauge potentials

in Yang's R-gauge we have:

A =i / a2P 0
y o7 y
202P y -a2b
y y
(2.2.18)
A— = i / a2P 2(p2P y)*
y 3 y y
0 -a2P
y
AZ = %(@1 + i@z) = -ivy 1 0
/2 22\ 2y 21
(2.2.19)
AE = _1_(@1 - i<D2) = lY_ 1 -2 yx

Using equ (2.2.19), we can relate ||¢}||? and ¢

to the effective Higgs field as follows:
[le]]2 = -2Tr(ef + 0%) = c2(2¥¢* - 1) (2.2.20)

£ = -19v2||e||2= -c?2v2(yy¥)
2
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By (2.2.20), fields satisfying the hypotheses

of Corollary (2.2.2) must have:

¥ ~ 1 - N » 1, as r+w (2.2.21)

2cr
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2.3 Non-Singular Axially Symmetric N-Vortices

The non-singular axially symmetric N-vortex
solutions are constructed in a manner analogous to
Prasad’s construction of the axially symmetric
N-monopole solutions (Prasad 1981, Prasad & Rossi 1980).
We find that, as is also the case of monopoles,
for N>1, the energy density is concentrated in an
annulus whose radius increases as N increases. 1In
contrast, however, the construction of the axially
symmetric N-vortices is much simpler than that for
monopoles; the N-vortex solution will be obtained
simply by applying the BI-transformations N times to

the a; ansatz for the single vortex.

Recall that the BPS monopole is constructed in
the a; ansatz by first defining:
1ax4r\,

2y 27
$1 % ¢ Ao(xl’XZ’X3)’ v Ao =4 Ao

To obtain a spherically symmetric, non-singular
N
field configuration, Ao is then chosen to be the
non-vanishing spherically symmetric solution of the

3-dimensional Helmholtz equation, namely:
4o = sinh ar/r
o

Similarly, to construct the l-vortex solution,

we define, in the ay ansatz:
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B i(axy+bx, ), ( ) Y, ) 31
¢1 = e AO Xq5%9) s via, = clag (2.3.1)

Y
and choose 8, to be the non-vanishing axially symmetric

solution of the 2-dimensional Helmholtz equatiocn, namely:

A= Io(cr) (2.3.2)
To obtain the corresponding gauge field
configuration, let us write down the CEFTW

ansatz with the choice (2.3.1):

Ay =1 azlnX a+ib (2.3.3)
2 © N
-a+ib -azlnA
o)
A2 = -% allnAo -b+1a’\l )
b+ia —allnA
. . . N
A3 = -% ib (82—181)1nAO )
N
(82+181)1nAO -ib
. . . N
A, = —% < -ia (al-laz)hle
",
(31+132)1nA0 +ia

Hence (2.3.2) gives us the field configuration:

Al = % c Il(cr) fg a+ib (2.3.4)
I (cr) r
o)
-a+ib -¢ I,(exr) x
1 2

Io(cr) T
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A2 = —% c Il(cr) ﬁl -b+ia
T
b+ia -c Il(cr) il
I (ecr) 1
o
Ay = % b -c Il(cr) x,-ix,
I (cr) r
o
c Il(cr) xl+ix2
I (cr) r -b
o
A4 = '% a ic Il(cr) xl-ixz
I (cr) r
o

ic Il(cr) x1+ix2 4

I (cr) T
o)

Using Prasad's Superposition Theorem with:

(1) i(ax3+bx4)

detD =e I (cr)
0
we find:
||¢1||2 = czll(cr)z-bz, ||¢2||2 = cle(cr)Z—aZ
I_(cr)? I (cr)?2
o o)

(2.3.5)
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3 [le]]2 = cz['Z I,(cr)2-1 }

Io(cr)2

E(R) = 2rc2(cR) Il(CR) [1-1 Il(cR) - Il(cR)Z}

I (eR) | cR I (cR) I (cR)?

Note, from (2.3.5), that ||¢||2 increases
monotonically from -c? to ¢? as r increases from
zero to infinity. This is in contrast with the BPS
monopole, where the minimum of the norm of the Higgs
field is zero. However, we shall see that the
effective complex scalar Higgs field v has the

expected behaviour for a charge 1 vortex.

Integration of the BHcklund Transformations

Recall that we are reducing from IR4 to [R2 by

demanding that the 4 -chain take the form of equ (2.2.2).

i (vz+vZ) /Y2, -
Ak(x) = e By Yy = a+ib, y = a-ib

Hence, in terms of Xk’ the a-chain equs (2.1.5)
read:

" v A " iy A (2.3.6)
3yby TLY fpe1c 3FPke1 TOIX A U
/7 2

In terms of cylindrical polar co-ordinates
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y =1 e 7 - re 18 we have:
/2 /2
_ -ie . B i@ :
ay - e (8 _-i3,), 3 =e¢e (ar+%ae)
2 /2

Hence, in (r, 6) co-ordinates, the A-chain equs

read:

. _ = 1i6v
(ar-%ae)xk" lye by
(2.3.7)
-ién

. Y .
(ar+%ae)Ak+l = iye Ay

These equations are solved in complete generality

as follows:

2.3.1 Theorem. Equs (2.3.7) are solved by:

kK o ) ie
Eg_ (a2+k12(cr)+81+k(-1) Kl(cr))e

(2.3.8)

where a B, are arbitrary complex parameters.

Proof
Since each Xk satisfies the Helmholtz equation,

it has an expansion in Bessel functions:

o]

N L 146
Ak(r,e) =Zj—w[ Ak,zlz(cr)+8k,2(_l) Kg(cr)] e

Claim

Equs (2.3.7) are satisfied if and only if:
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For,

_ ' _ £
= ngioo[Ak,Z(Iz(cr)tg?ll(cr))+8k,2( 1)

(K; (cr)_aK (cr))] e™*?

cr

_ +1 i
=c I | Akﬂllql(cr)+Bk#(-1f Kizplerl| e

8

L=-c

from Appendix A (equ (A.8)).

Hence equ (2.3.7) (ii) is equivalent to:

- 2 +1 i
[ 81 g Tpenterd B g C-DTTK) (en] e

L=-=

- iy 1 b+l - 128
= %g_ f [ Ak92+112+1(cr)+8k (-1) K2+1(cr) Je

= e sL+1

and this is equivalent to (*), as required.
Similarly, (2.3.7) (i)& (*).

Finally, write:
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Then the recurrence relations (*) are solved

inductively by:

and the result follows.

2.3.2 Corollary

Integration of the BI-transformations on

axially symmetric l-vortex yields the A-chain:

4"
Ak

= Eka(cr), g =1y e-ieeU(l)
c
Proof
This follows immediately from the choice
a2=O(Q%1), and 8, =0 V2, in equ (2.3.8), using

Ik = I_k,kez.

the

(2.3.9)

We can now complete the description of the a;

ansatz for the axially symmetric l-vortex.

We have:

-2
Il
—
(o]
—
(@]
=
~

©e

Il

|
o
—

p—

~
0
H
~r

Il
'—l
=<
[t
=

—

~~
@]
H
N

Hence, in the 'effective abelian'picture:
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ab _ ab _ /
Ar = 0, Ae = -¢ lecr) (2.3.190)
I (ecr)
o
ab
> B = —VzlnIO(cr) = -cz(l—Il(cr)z)
I (cr)?
o)
and
y o= iy ei® I,(cr)
C —————
Io(cr)

Hence, ¥ has a unique zero of order 1 at the
origin, |¥| - 1 monotonically as r » », and ¥ has
unit winding number at infinity. So, ¥ satisfies the
boundary conditions for a unit vortex, as claimed.
Note however that there is an infinite negative
effective abelian magnetic flux - this point will be

returned to later.

We can now use the A-chain (2.3.9) to form
solutions in any of the Atiyah-Ward ansHtze ay -
these will constitute the axially symmetric N-vortex
solutions. eg N=2. 1In the 2nd ansatz ays the above
A-chain gives:

*(2)

detD = Io(cr)z-Il(cr)2 > 0
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2
po= 1y 2i0,2_
(=) I1-1.%,
I
o
where I, = Ik(cr). In this case, non-singularity is

automatic since I_(x) > I, x), V¥xe |R.

Hence:
— 2ie
2 2_
¥ (LX) "€ I1 IoIZ
2 .2
Io-Il
(cr)? /8 r-0
2 Y] ~
) l T >

using equs (A.3), (A.5) (Appendix A). So, the

boundary conditions for a charge 2 vortex are satisfied.

After some algebra, we also obtain:

2 _ ~ 2 1- 2_.72)-~ 7
[le]]2 =c?2[1 81,1, (r(I2-12)-1 I,)]

2¢(72_72
T (I0 Il)

ab _ 2 ry_72- 2_12)-
B = c2 [1-13-41 I, (r(12-13)-1_1,)]

12 _2.72_ 12
Io T (IO Il)

(2.3.11)
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The N-vortex Solution

Substituting the A-chain (2.3.9) into equs
(2.2.11), and using equ (B.1l) (Appendix B) to remove
the factors of ¢ from the determinants, we obtain,

in the Nth ansatz:

V) -
g(N) _ detB(N)/detD(N 1) (2.3.12)
r\,(N) N -N
p = ('1) g Il 12 I3 « e s & IN
detB N-1 .
I, I I
I I, Ih
To(n-2) - 1
ny
=(N) _ N-1 N
o= DT e I I, I Iy
detD :
Io I1 I2
I—1 Io I1
T (n-2) !

where Ik z Ik(cr), and:



-87-

+(N)

detD = IO I1 12 . ?N—l (2.3.13)
I1 Io I1
)
FZ I1 IO !
IN—li Io

- a persymmetric matrix of Bessel functions.

Numerical Study of the Axisymmetric N-Vortex

Equ (2.3.11) shows that a direct analytic calculation
of the gauge invariant quantities, |[|¢]||2, ¢ is very
unwieldy, even in the case N=2. It is therefore
necessary to resort to a numerical calculation. This
has been performed as follows:

(N)

(1) Calculate detD of equ (2.3.13) on a sufficiently

fine grid of points.

(2) Calculate |]¢||2 and £ using the expressions in
Corollary (2.2.1), with the Laplacian approximated by

central differences:

2 _ g4 6 _ 58 ~
72 5 1 2 [62 - 6% + 65 - 6% ]
(6x)

12 90 560

+ 1 §2 - &% + 685 - 48
- [ 85 °y T %y 851
(sy) 12 90 560
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The accuracy of the algorithms used has been
checked by comparing with the known analytic results of

equs (2.3.5) and (2.3.11).

In Figure 1, ||¢||%2(r), E(R) and ¢(r) are
plotted for the axially symmetric N-vortex (N=1 to 5)
with the characteristic length ¢l oset equal to

unity. Note -

(i)  ||¢||Xr) increases monotonically from -c? at the
origin to +c 2 at infinity, and the profile becomes
increasingly spread out as N increases; in fact,

||| 12(x) crosses the zero axis at r = 2N/c. This

agrees very well with the asymptotic formula (2.2.4):

[Je]]2 ve 1 - 20), 1 +e
cY

S []¢]|2=0 at r = 2N

c
(ii) For N>1, the energy density ¢(r) vanishes at the
origin, and the region of positive energy density is

concentrated in an annulus, inside the region

r g 2N/c, where |[|¢]|? <0. ¢ (r) attains its maximum

at r = N/c, for large N.

Hence, the N-vortex solution differs appreciably

from the vacuum in a disc of radius 2N units of



characteristic length centred at the origin; it is
natural to identify this as the 'core' region of the
N-vortex, in analogy with the axially symmetric

'monopole core' of Prasad and Rossi.

In the remainder of this section, we shall prove
that the axisymmetric N-vortex solutions are non-singular
and we shall verify some of the above behaviour for
general N by examining the asymptotic behaviour of the
fields as r »0 and r» =« . The non-singularity proof
uses the technique of Prasad and Rossi for proving
non-singularity of the axisymmetric monopoles in a

neighbourhood of the xlxz-plane°

2.3.3 Theorem
For the axially symmetric N-vortex solution
(2.3.12), we have:

detB(N)

> 0, Vxe|R2
Hence the solution is non-singular.

Proof

Using the integral representation for Bessel
functions (Appendix A):
27

I(z) = de e
2m

1keezcose



we find, from (2.3.13):

-9~

2 cr(cos®8, +...+cos8.)
detS(N) =J del deN e 1 eN
o)
27 2T
27 cr(cos61+...+cos8N)
Nt OESN o)
2T 27
where
16 2i62
W(B,,... ,6q) = 1 e e
1 N . . .
-16 10
2 2
e 1 e
-21i6 -i6
e 3 e 3 1
.—(N—l)ieN
e .

W(el,oea,eN)

WE8 (qys-

i(N-l)e1

Hence, using the Weyl identity (Appendix B, equ (B.3))

N

_ i 2 -
cés W(%{ly.,,qﬂN)).iEj431n (ei e.) (2.3.14)
N 2
we have:
2w N
v(N) )
= 6....ds6 I 6. - 6.
detD §! JO d 1 d i<j431n % )
2w 27 2
(2.3.15)

6.+... 6
ecr(cos 1 +Ccos N)

and the result follows, snce the integrand is positive.
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Fig. 1(a)
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(a) || ¢ || for axially symmetric N-string, N = | to 5.
(b) E(R) for axially symmetric N-string, N = | to 5.
(c) Energy density é: of axially symmetric N-string, N = | to 5.
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Relation to Single-Link Lattice Gauge Theory and

Asymptotic Behaviour of the Fields

An alternative proof of non-singularity, together
with a very compact expression for detB(N), can be
obtained by exploiting a correspondence between T8plitz
determinants and U(N) group integrals, explained in

Appendix B, Theorem B (whose proof is virtually identical

to that of theorem (2.3.3) above).
Throughout this section, we set c=1.

2.3.4 Theorem

For the axially symmetric N-vortex solution,

detB(N) = du e
U(N)

where dU is the Haar measure on U(N).

%TI(U+U+) (2.3.16)

Proof

Again use the integral representation for Ik:

2T . Liz+z*)
Ik(r) = J de etk rcost _ gg.zkez
o 5 U(l) z

5

This implies, from Theorem B:

“(N)

detD = det(I _, (1))
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& —]z'l(U+U+)
= dU.det(e )
J U(N)

N

= dU.e
4 U(N)

%Tr(uw )

QED
Remarks
(1) Non-singularity is an immediate consequence of
(2.3.16), since the integrand is positive. In fact,
"

it is clear from (2.3.16) that detD(N)(r) is monotonically

increasing from 1 at r=0 to infinity as r >«

(2) The expression (2.3.16) is, in fact, the single-site/
link partition function for a U(N) lattice chiral/gauge
theory, with the radial variable r replacing the inverse
coupling (or inverse temperature) B. Hence, 'small r'
and 'large r' expansions of (2.3.16) are equivalent
respectively to 'strong coupling' and 'weak coupling'
expansions of the corresponding lattice gauge theory,
and these are obtained by referring to relevant parts

of the literature on lattice gauge theories. This is
very convenient, since the obvious procedure of
inserting power series and asymptotic expansions of
Bessel functions into equ (2.3.13) becomes virtually

impracticable for NR?4.

(3) Using the lattice gauge theory analogy, we can

also obtain an extremely useful and suggestive expression



for the effective complex scalar Higgs field W(N)o

From equ (2.3.12), with a slight change in previous

notation, we have:

dN () Ne i ot () (Jy| = 1
detd'N
V(N) _
where detE = det(I, , (1)),

, . Using theorem B:

r .

=(z+2z%)

Ik+1(r) = dz . zk,,ze-2
U(l) =z

T +
=(U+u™)
S deck™N) dU det(Ue? )
U(N)
r +
. =Tr(U+U0™)
. det%(N) = J\ dU.detU.e2 (2.3.17)
U(N) cT
N i(6.+...+0 )
_ 1 Z"del,..deN n4sin2(ei-e.)e 1 N
h N isj L 1
© 2gq 27 2
r(cosel+...+coseN)
e
~ T +
) =Tr(U+U™)
R e LI dU.detU.e?
JU(N)
8 LTr(U+U )
dU.e7
JU(N)
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,‘n W(N) = (i—yei

HN detu» (2.3.18)
where <> denotes the expectation value with respect to
the partition function (2.3.16). This immediately

M) < 1, vxe|R2.

tells us that |y

In fact, from (2.3.17) and (2.3.15), we deduce:

dete™ (0) = dU.detU = 0
U(N)

and deté‘N) «,detﬁ(N) as r oo
5 Wy -0, M .1 as res,
and, from (2.3.18), W(N) has winding number N at

infinity, as required for the vortex interpretation.

In fact, regarding r as an inverse temperature
1/T, a nice physical picture emerges. At the vortex
centre, r=0 9 T=«=, so the probability distribution of
UeU(N) is completely random (wrt the Haar measure),

so, |¥]| = | detU>| = 0.

As r+o, T>0, and the probability distribution
becomes frozen around the identity element of U(N),

so |¥| = | detU>]| » 1 as 1+~
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Small r Behaviour

Expanding the partition function (2.3.16) in

powers of r, we obtain:

N ®
detp™ - % 1 (E)m+n du. (Tru)™(TruH ™
m,n=0 minl!" 2 U(N)

But, the above cumulants vanish unless m=n

(cf Appendix B, equ (B.4), hence -

defh(N) - 3 1 E)Zn du. (Tru)*(TruH "
= U(N)

Rules for calculating strong coupling cumulants
have been given by Bars and Green (1979), Bars (1980),
and Samuel (1980). The results that we need are:
n! . n <N
J'dU.(TrU)n(TrU"L)n =
(N#l)!-l, n=N+1

2n
(a0 N+1 , 2(N+1)+O(r2(N+2))

'\, l r - 1 r
v detd = Im@ w27

detB’(N) _ e(r/2)2(1_ 1 (5)2(N+1)+0(r2(N+2))
(N+1)12 ‘2
(2.3.19)
2 lndetB(N) _ .2 1 . 2(N+1)+O(r2(N+2))

r p—
7 w2y
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Hence, using Corollary (2.2.1), we obtain small r

expansions for ||e]]|2,¢
[le]]?2 = -1+ 2 (£)2N+O(r2(N+1))
(N2 2
(2.3.20)
S 1L sy
2(N-1)12 2

in qualitative agreement with the above numerical

results.

Let us also examine the small r behaviour of the

effective abelian fields.

Using (2.3.19), we have:

¥=decd™ =141 Moo
det5 V1) (n1ye 2
5> x=1n¥ =1 x, Mo (2.3.21)
(N1)2 2
N Bab - ov2y = -1 (E)Z(N—l)+0(r2N)
(N-1)12 2

Finally, let us calculate the small r behaviour

of W(N). Expanding equ (2.3.17) in powers of r:
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1

dec™ - % (£)m+“ du.detU. (Tr) " (TruH™
m,n=0 min! "2 U(N)

(2]

L 1 (%)
n=0 (N+n)In? ‘2

N+2n du.detU. (TrU) M (TruH)yN+n
U(N)

(from equ (B.4), since detU consists of an e-tensor

contracted with N copies of U g).

deck™ — 1 r )N Jﬁu,detu,(TrU+)N+0(rN+2)
w1 (2

But,

dU.detU.(TrU+)N
U(N)

il

2x . .
de dV.det(elBV).(e.leTrVJr)N
o 2 SU(N)

dv,(Trv+)N, (' detv=1)
SU(N)

dv.v*t V2SN 1A
SU(N) @1%1 @292 NN

€q. ... €q ... (from equ (B.5))
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oderE™ =1 r Mo (2.3.22)
Ni“2
v = (7N N oM (2.3.23)
2N
ie W(N) has a zero of order N at the origin, as indeed

it must, if it is to describe N vortices superposed

at the origin.

Large r Behaviour

Brower and Nauenberg (1981) have considered the
leading order weak coupling behaviour of the partition
function of a single-link U(N) lattice gauge theory
in the presence of an arbitrary matrix source J.

Using a saddle point approximation, they find, for non-
singular J: .

+
2¢3,1% = dU‘eBTr(UJ+J ut)

U(N)

N

1
- 2
~ eXP(ZB bX /Xi) T , as PB>ow,
1= nm=l | g (/x +/x )
- n m

=2

where X s +o0sX  are the (non-zero) eigenvalues

of J1I1.

This implies, in our case of interest:
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detB(N) "~ const eNr as ¢+«

2
rN /2 (2.3.24)

lndet%(N) v Nr - gzlnr + const

This result can be understood qualitatively by
noting that the saddle point of the integrand of
equ (2.3.16) occurs at U=1 - hence the factor eNr,
and that we havé to integrate over a neighbourhood
of this saddle point in the N2-dimensional manifold

_N2
U(N) - hence the factor r N /2.

This result tells us nothing new about the
asymptotic behaviour of ||¢]|]|2,¢ and W(N), but it does
allow us to determine the asymptotic behaviour of the

effective abelian gauge field. We find -

¥ oo oI~ (N-3
(2.3.25)

x v r-(N-3)lnr

Aab v 0, Aab nvo-1 o+ (N-D)1

r 5] ?
(2.3.26)
and Bab = -V2Zy ~ -1, as r o
r

We can use these results to calculate the total

(N)

effective abelian magnetic flux ¢ "(R) in a large disc
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of radius R centred at the origin. We have:

Q(N)(R) = d2x B3 - - d2xv2y = dn.vy
| x[<R | x| <R | x| =R

v -21R(1-(N-3)1), as Rrw, by (2.3.25)
R

e M (R) v 2%(N-3)-21R, as Rew (2.3.27)

Hence we have the bizarre result that the
axisymmetric N-vortex has infinite negative total

magnetic flux, whereas the difference in fluxes of

distinct assHtze is quantized in the same units as

Nielsen-0Olesen vortices:
o MRy - e M @R) 0 25(N-M), as Rsw (2.3.28)

Large N Behaviour

Gross & Witten (1980) evaluated the partition function -

. N Tr(u+u™)
;- du & BTT(U+U™) _ .
U(N) U(N)

for fixed A =N/B, in the limit N+«. They found that, in
this limit, the above weak and strong coupling results

are exact for As2, xz 2 respectively,
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ie lim 1nZ = 1 . Az 2
N+ o N2 N
2 + 3lnx - 3, rs 2
A 2 4

This abrupt change in analyticity behaviour at
A=2 gives rise to the Gross-Witten 3rd order phase

transition in the large-N limit of lattice QCD,.

For us, it implies, as New:

A
zZ

1n detb(N) = r2 5 r
4 (2.3.29)

v
2

Nr - N21lnr - 3N2,
2 N 4

By Corollary (2.2.1), this gives:

[le}]2 = -1 , T< N (2.3.30)

Note that |]¢||2 is continuous, with discontinuous
lst derivative at r=N; ||¢|]|2crosses the zero axis

at precisely r=2N, as guessed from the previous numerical

results.

Also -
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and the discontinuity in the lst derivative of |[|e]]?2
implies that the positive energy density is concentrated

on a ¢&function supported on the circle r=N. Explicitlys:

g=1 8(r-N)-_ N H(r-N) (2.3.31)
2N or3
where H is the Heaviside function, and the coefficient
of the é-function is obtained from the requirement
f(i%{£= 0. Hence, in the large-N limit, the energy
density attains its maximum on a ring of radius N,

as conjectured from the numerical results.

Finally, the large N-behaviour of the effective

abelian gauge field is given by:

y = 1n detﬁ(N) - 1n detﬁ(N_l)
0 . r < N-1
r2-(N-1)r+N21lnr+3N2 s N-1 < r < N
4 2 N 4

r+(N-3)1lnr-3(N-3) R rz N
2
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‘B - g2 = /0 r s N-1 (2.3.32)

R |

(note that this is continuous, with discontinuous

lst derivatives).
Hence, at least in the large N limit, the effective
abelian magnetic field also has a ring-like structure

concentrated in the region r & N.

Summary of Results

Since some of the above results are somewhat
disjointed, let us now summarize what we have learnt

about the axisymmetric N-vortex configurations.

(1) The short distance behaviour (equs (2.3.20)) and
the long distance behaviour (equs (2.2.4)) of |]¢]]?
and ¢ are consistent, for general N, with the ring-like
structure conjectured from numerical results for small
N. We have also verified, in the large N limit, our
conjectured picture of the 'vortex core' consisting

of the region r % 2N where ||¢]|]|? < 0, with the energy

density attaining its maximum on the ring r % N.
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(N)

(2) The effective complex scalar field v satisfies

all the boundary conditions required to describe a

Nielsen-Olesen vortex of charge N located at the origin,

ie

(i) It has a unique zero of order N at the origin

(equ (2.3.23)).

(ii) PP(N)I converges monotonically to unity as r»e«,

(N) around any simple

(iii) The change of phase of ¥
closed path encircling the origin is 2sN. (From equ

(2.3.18) and the remarks thereafter.)

The peculiar fact that ||¢]||? interpolates from -c?
at the origin to +c? at infinity is a simple consequence

of the above behaviour of ¥, and equ (2.2.20):

Ple]]2 = c22y¥ - 1)
(3) Although the effective abelian magnetic flux does
not satisfy the flux quantization law of Nielsen-Olesen
vortices, it does consist of a fixed infinite negative

flux plus a finite flux obeying the quantization law:

8 M (R) ~ (-2@®-m) + 2¢N, as Rew.
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It is amusing to note that if we 'divide' two

distinct ansHtze ays am (N >M) as follows:

2 L D
¥ = $(N)/$(M)9 Y- B:(N)/'S(M)9 - p(N)/p(M)

Y
and then form the fields (Aib,w) from (3,5,p) as previously

ie y = ‘Y(N)/\P(M)
A2b _ Aab(N) _ Aab(M)
u u p

then ¥ satisfies the boundary conditions for a Nielsen-
Olesen vortex of charge N-M, and the total magnetic

b is 27n(N-M). It is an interesting open

flux of a2
u

question whether any of these bear any relation to the

Nielsen-Olesen vortices in the Bogomol'nyi limit of the

abelian Higgs model.

For completeness, ¥ and B are plotted in Figure 2,

for N=1 to 5.
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b for the axially symmetric N-vortex, N=1 to =.
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2.4 Some Singular Axially Symmetric Solutions

If in theorem (2.3.1), we choose o, = 0, and

L
By = GQ 0° V2eZ, then we obtain the a-chain
9

i o= ok e, £ = iye ° (2.4.1)
- .

Hence, in the ay ansdtze, we obtain solutions
analogous to the axisymmetric N-vortices, with Ik(cr)
replaced everywhere by (—l)kKk(cr), Using equ (B.1l),

these solutions are:

T e BN ge ey (N-1) (2.4.2)
g(N) - _¢N Ky K, Ky Ky
s D) .
etD :
Ko K K
K, K, K
Kon-2) . -« .. .. Ky
— N
s - e Ky Ky Ky Ky
detp V- 1) :
etD .
Ko K1 K2
K, K K
K_(n-2) Ky
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where Kk = Kk(cr), and:
deed™ - k. ok, K, ... K (2.4.3)
o] 1 2- " 'N-1
K K K
KZ Kl Ko
Ky-1- -0 Ko

In the following figure, ||¢||%,¢ are plotted

for these solutions, with N=1 to 4.

Notice that the asymptotic behaviour of |]|e¢|]|2,¢
is rather different than that for the non-singular
solutions (2.3.12). Using the asymptotic expansions of

Kk(Z) (equ (A.5)), we have (cf Proof of Corollary (2.2.2)):

(cr)N[2 r2
S Ple]]2 ~ c2(1+2N)
cr
as Y-rw
£ ~ Nc/2r3
Hence, in this case, ||¢]|]|2 » c2+, € » 0+, as r>=.

Also, from equ (A.4), these solutions are singular

at r=0. For example, in the case N=1:
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v
A ~ -lner, r+ 0
o

> [le]]2 A ezl - 2 o T 0
(er)?1ln(er)?

In fact, the short distance behaviour of the
N=1 solution is identical to that of Saclioglu's
singular solution, since the latter occﬁrs in the
"t Hooft ansatz, with the choice Ao(x) = 1lnr.
However, the singularity at finite r is now avoided,
since Ko(cr) > 0, Vr > 0. This phenomenon carries over

to general N, as the next result shows:

2.4,1 Theorem
For the solutions (2.4.2),

detB(N)

# 0, ¥r > 0.

Hence the solutions are non-singular for r # 0.
Proof (cf Proof of theorem (2.3.3)).

Use the integral representation (equ (A.7), Watson

p 181):

K (exr) = 3 J\ du.ef¥ecT coshu

dul.,,du, e

” —cr(coshu1+...+coshuN)
N N

V(ul,.,,,uN)
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—cr(coshu1+°°,+coshuN)
= 1 I dul,.eduNe

2N GESN
V(uo(l)’°°°°uc(N))
where
u 2u (N-1)u
V(ul, 9uN) = 1 e 1 e % ... . e 1
-u u
e 2 1 e 2
-2u -u
e 3 e 3 1
-(N-1)u
e N 1

Weyl's identity (equ (2.3.14)) implies (setting

ek ==iuk):
N
iN(N-1) .
r V(u .U (-1)% M 4sinh?2,u.-u.

g, o) oD 5 it
< detﬁ(N) =

(-1)%N(N_l) . du du ﬁ 4sinh?2,u. -u

1°°°""°N. . (71 ])
2N N o 1<] 7

(2.4.4)

e—cr(coshu1+...+coshuN)

and the result follows, since the integral is positive.

QED
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Remark

The structure of equ (2.4.4), by analogy with
equs (2.3.15), (2.3.16), suggests that the fundamental
determinant of the singular solutions (2.4.2) satisfies:

-ETI(R+R‘1)

(N) 2

detﬁ o dR.e
H

where H' is the non-compact NZ2-dimensional sub-manifold
of GL(N,C) consisting of positive hermitian matrices

R = eH (H hermitian). Since any GeGL(N,C) can be
expressed uniquely as G = RU, R5H+, UeU(N), this seems to
indicate some connection between general self-dual

solutions in a and group integrals over GL(N,C).

NB

Since we are interested, ultimately, in the
construction of solutions which may have some application
to the semi-classical approximation, we shall concentrate
in the following chapters on the construction of

further non-singular solutions.
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Fig 3
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||e]|2,6 for the singular solution (2.4.2), N=1 to &4
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CHAPTER 3

ONE DIMENSIONAL SOLUTIONS

3.1 Dimensional Reduction to le

i

In this chapter, we address ourselves briefly
to the question of what happens if we reduce the
self-duality equations a further dimension from
|R4 to |Rl. In this case, we have a third effective
Higgs field 23 = Ay, and the Bogomol'nyi equations

(2.2.1) become:

(W)
=)
I

1 = [(25505]
Do, = [o5,2;] (3.1.1)

Do,y = [Ql,éz]

The d = 1 gauge field A can be removed by a gauge

transformation to Coulomb gauge, giving us the equations:

= 1
0. = 2eijk[¢j,¢kj (3.1.2)

These are Nahm's equations (Nahm 1981, Corrigan &

Goddard 1984), which occur in the extension of the

ADHM construction to include self-dual monopoles. Let



us briefly examine the behaviour of solutions of these

equations.

forms a triad of 3-vectors;

Note that, in the SU(2) case, 1,¢2,®3

it is useful to bear this

)

analogy in mind in the general case, and define the

“"volume element'':

vV = <@19[¢2,¢3]>

(3.1.3)

Then, using equ (3.1.2), and the cyclic property

of the Killing form, we obtain the following equations:

€g

d_<q>l,<p2> = <q>1,d<p2> + <d®l,®2>
dx dx dx

<¢19 [¢39‘D1] > +<[429 %:l 9@2>

<03s[01-01]> * <[ep-07] 503>

=0 ete

and §_<¢1,®1> = 2<¢1,d®1>

ie

dx dx

i
[N
A
(=)

A\
—
©

Il
[p*]
<
(1)
ct
[p]

(3.1.4)
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5 “%ede> oy, i=1,2,3
dx

Similarly:

dv = <d¢19[¢29¢3]> * <@1’[d®2’®3]> +o<oys[op,deq]>

dx dx dx dx

= <dog, [9,,05]> + <doy,[e3,07]> + <deg.[ey.9,]>

dx dx dx
= <d¢1,d®l> + <d¢2,d®2> + <d¢3,d¢3>
dx dx x dx dx dx
3

dv = 1 ||de ||? (3.1.5)

dx i=1 K

This implies dV/dx z 0 when 2,,%2,,%4 are in the
real Lie algebra of a compact group, since the Killing
form is then positive definite. Equs (3.1.4), (3.1.5)
give us the further equation:

3

a [le. |12 = =z ||de, |]2,  i=1,2,3 (3.1.6)

0 k=1 —X

dx? dx

Now, since equs (3.1.2) are a special case of
equs (2.2.1), we know from Theorem (2.2.3) that they

can have no non-trivial non-singular real solutions.

We can in fact improve on this result, in this case, by

showing that any real non-trivial solution of (3.1.2)

is bounded below by a function with a pole singularity.
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3.1.1 Theorem
Let (®1g¢29®3) be a real solution of equs (3.1.2)
for a compact gauge group. Suppose that, for a fixed

point x_e|R, we have:
o

2 = 2 i
Vix ) =V #0 5 A2 =|le . (x)||2 #0, Vi

Let A

maxAi. Then the following inequalities

are satisfied:

V(x) = Yo (3.1.7)
1-v (x-x )13
o] o
AZ
||<1>].L||2 2 A-f—.L-A2 + A?Z , i=1,2,3
_ _ 2
[1-V, (e-x ) | (3.1.8)

O

Proof. Step 1

Note, from (3.1.4), that:

V(xo) #0 @i(xo) £ 0, d@il # 0, Vi
dx _
X=X
o)
9 dv > 0, by (3.1.5)
dx _
X=X
o

Hence, by continuity, @i%O, d@i/dx#O and dV/dx>0 in

some neighbcurhood ot X 3 in particular, we are allowed
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tc divide by ||t1>.l||2 in this neighbourhood.

Step 2

Use the Cauchy-Schwarz inequality, together with
(3.1.4), (3.1.5) to obtain a differential inequality
for V. (This is wvalid, since the Killing form is

positive definite).
We have, for each i=1,2,3, by Cauchy-Schwarz:

<o ,de>2 s |[ag[]2 ||de, []2

dx dx
= 2
= |1de. ||2 2z <e,,do, >
dx dx
[Te 112
l —

= V2 | by (3.1.4)
2
1o 11

3
dv 2z ¢ V2 , by (3.1.5) (3.1.9)
dx i=1]]e |2
i

Step 3

Solve (3.1.4) in a neighbourhood of X in terms

of the function:

| ®
dx'V(x") ¢ dW = V(x), Wx ) =0

X X
o d

W(x)
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Then, if II%KXO)Ilz = Ai’ (3.1.4) is solved by:
e i(x)||2 = A% + 2W(x) (3.1.10)

and equ (3.1.9) becomes:

3
d?w z % 1 dW,2 2 3 dw, 2 (3.1.11)
i=17 5 (g%’ (T’
dx? (A§+2W) (AZ+2W)
where A = maxAi.
Step 4
Finally, let W; = A2+W. Then (3.1.11) implies:
2
d2w1 > 3 dw1 2, wl(x ) = A2  dw =V
(—=) ° 72 & |.. °
dx2 2W, dx X=X,

(3.1.12)

Since W, > 0 in a neighbourhood of X > we may

write this as:

w.d2u. - 2
W,d Wy E(dw1 z 0
dx? 2 dx
_1
&  wPae Wit o
dx?
-1
dz(wlz) <0 (provided W; > 0) (3.1.13)
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Integrate (3.1.13) twice, using the initial conditions

in {(3.1.12). We obtain, after the first integration:

0 (3.1.14)

A

1 _
d (le) + /2 V
= =0
AZ

and, after the second integration:

Nof=

Wt L 2 V (x-x_) 5 0
> Wy (x) 2z A? 1
2 1y (x-x )-1]2 (3.1.15)
‘o o
AZ

Equ (3.1.7) is now an immediate consequence of

(3.1.14), and equ (3.1.8) follows from equ (3.1.10):
2 _ A2 _ 2
|| @ i|| = A7 - A% + 2W, QED

Hence, each ||¢,|| is bounded below by a function
with a simple pole. Indeed, it is easily seen that
any pole singularity of a solution of (3.1.2) must be
a simple pole singularity. This is in fact an
essential feature of Nahm's construction - monopole
solutions are constructed from normalizable solutions
of the dimensionally reduced Dirac equation in the
presence of solutions of equ (3.1.2), and the pble
singularities ensure that there are just the right

number of normalizable solutions.
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3.2 The Complex Soliton Solution

We shall now construct a necessarily complex non-
singular solution of equ (3.1.2) for an SU(2) gauge
group. The construction is exactly analagous to that of
the axisymmetric l-vortex. We reduce to lRl by
demanding:

i(mx,+ax,+bx, )
B (x) = e 27773 4Xk(x) (3.2.1)

\
4 A, must satisfy the d=1 Helmholtz equation

gi-Xk = AZXk, A2 = m%24c? = mZ+a2+b? (3.2.2)
dx?

Prasad's superposition theorem implies, for

solutions satisfying (3.2.1):

(N)

||°1||2 = ||A3||2 = a2 - 42 1ndetD (3.2.3)
dx 2
'l¢2|12 = ||A4|I2 = b2 - 42 1ndet‘V
- dx?
||¢3||2 = l|A2||2 = n? - d? 1ndetd V)
dx?
3 ||¢||2d:fl|‘b1||2+ I[tey |12 +1legl|?

= x2 - 3d2 lndetp™)

dx?

g = -3d* 1ndetp ‘™)

dx*t
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In the a; ansatz, in order to guarantee non-singularity,

choose Xo to be the non-vanishing solution of equ (3.2.2),

which is symmetric under x+-x, namely:

KO(X) = 2coshix = e 4 ¢ M (3.2.4)

We can use equ (2.3.3) to write down the corresponding
gauge field configuration; this is simplified if we
use the global S0(3) invariance of equs (3.1.2):

. » R..%., ReSO(3)

to choose a=b=0, r=m#0:

A=A, = -m 1 0 (3.2.5)
13
0 -1

@1 = A3 = —% 0 l+tanhmx
1-tanhmx 0
¢2 = A4 = -i% 0 tanhmx+1
tanhmx-1 0
¢3 = A2 = -% mt anhmx 0

0 -mtanhmx

A is removed by applying a gauge transformation

such that:
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dg = gA
dx
ie g(x) = e MX/2
0 emx/Z

after which we obtain the simplified expressions:

¢1 = -m sechmx. 0 1 = -m sechmx.o
m = 1
2 2
1 0
¢, = m sechmx. 0 -i = m sechmx.o
2 = e 2
2 2
i 0
¢, = -imtanhmx. 1 0 = -imtanhmx. o
3 = = 3
2 2
0 -1

(3.2.6)

and we recognize the appearance of functions which

are familiar from the profiles of sine-Gordon and

¢“-theory solitons. We call this solution the

'complex soliton' or 'compiex wall' solution.
Using equ (3.2.3), we have:
122 = m2(1 - 3 sech?mx)

£ = m*sech?mx(3 sechZmx - 2)

(3.2.7)

and the total energy E(R) in an interval (-R,R) is
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given by:
E(R) = 2m3sech?mR.tanhmR (3.2.8)
'\12m3e-2mR, R-)cn

so, E(R)»0 as R+, as in the case of complex vortices -
the "complex soliton" is another example of a '"voidon"

(Dolan 1978).

These functions are plotted in Figure 4. Note
that the fields approach their asymptotic values much
more quickly than vortices, since there is an exponential

decay rather than a power law decay to the Higgs vacuum.

For completeness, let us compute the full a-chain

generated by the complex soliton solution. After

1

reduction to |R”, the A-chain equs (2.3.6) read:

" .=

(%§ +may = -ivdy 4 (3.2.9)
Qv .

(S_X - m)Ak+1 = ivd,

N\
Also, since each Ak satisfies the Helmholtz

equ (3.2.2), we may write:
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and equs (3.2.9) are then equivalent to the recurrence

relations:

i 5 B = _iY B
SEI kel omy K

3 Lk
& o = (y) " o,

g = (-ip)5
k n k L —=X’_ By
(A-m)

(x+m)k

So, the general solution of equs (3.2.9) is

given by:

Bo= (S e ('1)k30 A X (3.2.10)
(x—m)k (A+m)k
For the complex soliton solution, ao=80=1, so its

corresponding A-chain is:

5, = (iy)k [ ¥ 4 (1)K e‘*x'] (3.2.11)

| Cem) Cem) K

This a-chain does not generate any new solutions

in the higher ansHtze, since it is easily seen that:

detS(Z) = constant
detﬁ(N) =0, YN =z 3

This is not too surprising, since we are solving
the first order system (3.1.2), which has a finite

number of degrees of freedom.
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I1e]]?

0.5 p

0.0 - . —

-0.5 +

0.5 F

0.0

0 i > 3 4
|1e]|]2%(x), &(x), and E(x) for the complex soliton solution.
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CHAPTER 4

SEPARATED VORTEX SOLUTICNS TI:

BACKLUND TRANSFORMATIONS APPRCACH

4.1 Separated Charge 2 Solutions

This chapter represents a first attempt at the
construction of finitely separated vortex solutions.
A more general and more complete approach is adopted
in Chapter 5. Recall, from Chapter 2, that the behaviour
of the axially symmetric N-vortex solutions was found
to be more or less analogous to that of the axially
symmetric N-monopole solutions. In contrast we shall
find that, at least for large values of the separation
pérameter, the behaviour of the separated vortex solutions
is remarkably different to that of the separated

monopole solutions.

' Again;rfhe actual construction of the solutioﬁs
is much simpler than in the monopole case. In analogy
with the 't Hooft ansatz for separated instantons, we
simply linearly superpose the functions b for axially
symmetric l-vortices in the lst ansatz, and then integrate
up to the Nth ansatz to ensure correct asymptotic
behaviour of the fields. The remarkable thing is that,
unlike the cases of instantons and monopoles, this
procedure does not give rise to uncontrollable

singularities in the higher ansitze.
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Fcr example, in the N=2 case, we take:

i(ax3y+bxy ),
¢1 = e AO(Xlgxz)

n
where Xo is chosen to be a linear sum of two Ao's for
axially symmetric l-vortices situated at the points
(hl’k1)°(h2’k2) say,

n
ie AO = an(crl) + BIo(crz) (4.1.1)

where a,B are positive real constants, equivalent up

to a common scale factor, and:

1
r, [(xl—hl)2+(x2-k1)2]2,

1
- 2 - 212
T, [(x1 hz) +(x2 k2) ]
Since the A-chain equs are linear, integration
of the BHcklund transformations simply gives us a

~linear superposition of aA-chains of the type equ (2.3.9):

> 2
Il

aETIk(crl) 4 Baglk(crz) (4.1.2)

where

ivr - ' eU(1)

/7C(Y‘Y1) /2c(y-yy)
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and

Y1 7 1

1(hy+iky), y, = %(h2+ik2)
/2 /2

Hence, working in the a, ansatz, the fundamental

determinant is given by:

detB(Z) =

= az[lo(crl)z—Il(crl)zj + thlo(crz)z—ll(crz)z]
(4.1.3)

1

- -1
+ aB[ZIO(crl)IO(crz) - (5251 tE16, )Il(crl)ll(crz)j

In this case, it is possible to give a '"'bare hands

proof of non-singularity. Since gl,gzeU(l), we have:

-1 -1 — -
5251 + 5152 = 5152 + €281

2Re£1§2

1

2Re£1€2

and glgileU(l) > |Reglg£1| <1

Hence, from (4.1.3)
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detB(z)

+

2aB[IO(cr1)IO(cr2) - Re(glgil)ll(crl)Il(crz)]

v

a2[I_(er)2-1 (er)2] + 82[I_(cr,)2-1,(cr,)?]

+ ZaB[IO(crl)Io(crz)—ll(crl)ll(crz)]

v

o, Vxe [R2
since I_(r) > Il(r) 2 o, Y¥re |R
Hence the charge 2 solution 1s non-singular.

Numerical Study

Without loss of generality, let us consider

displacements along the xl—axis, centred at the origin,

ie let:
= = - 2
Ty /(x1+h)2+x§, r, /{x;-h) +X5 (4.1.4)
Then Reglfz = r?2-h?, so we have:

)

= az[lo(crl)z—ll(crl)zj + 82[Io(cr2)2-11(cr2)2]

2) -
detB ? = aZ[Io(crl)z—Il(crl)zj + Bz[Io(crz)z-Il(crz)%J

+ ZQB[IO(crl)IO(ch) - (rz-hz)Il(crl)Il(crz)]
T, T
172
(4.1.5)
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This solution has been studied numerically for
various values of the separation parameter h, with
characteristic length ¢ 11, As in Chapter 2, this
was achieved by evaluating equ (4.1.5) and its 1st
and 2nd Laplacians on a sufficiently fine grid of
points. By virtue of equ (2.2.20), we can identify
the vortex locations with the points where |]|¢]||2
attains its absolute minimum value of -1. This occurs
the

at the points (xl,xz) = (th ,0); we call h

phys phys

physical separation parameter.

We might expect intuitively that h h;

4
phys
however, this is certainly not the case for large
values of h. ||?||2 and ¢ are plotted along the Xy
axis in figure 5(a) for h=2.5, 5.0, 7.5, 10.0 and in
figure 5(b) for h=20, 30, 40, 50, witha==1. We
find numerically:

~v h for 0 = 0.6

1A
=
A

hphys

.and for large values of h we have the table:

B hphys Emax tmin
1 0.9 0.16 -0.24
3 1.5 0.342 -0.167

10 2.0 0.687 -0.257

30 2.5 0.875 -0.296

50 2.7 0.925 -0.309

80 2.9 0.951 -0.316
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So, for large h, hphys varies extremely slowly with h.

Also, note that the energy density profile of an

isolated l-vortex (Fig 1) has:

un

3 = 0.5, 3 -0.02

max min

So, the energy density of the separated solution
is clearly not converging to that of two isolated
l-vortices; it is much more strongly peaked along the

X.-axis.
1

Variation of the parameter B8 /o does not alter this
behaviour significantly; for sufficiently large values
of h it simply has the effect of translating the
profiles along the xl—axis, with the actual separation

of the vortices remaining unchanged.

The vortex profiles along the xyaxis are even
more surprising. Whereas the separation along the
xl—axis varies very slowly with h, there is an
'elongation' along the X,-axis, roughly of the same
order as h. This behaviour is clearly shown in the
contour plots of Figures 6(a) and 6(b), where the
energy density is plotted between -Aéxl,xzéé and —Agxlgé,
-8§X2§8 respectively, for various values of the
separation parameter. The corresponding surface

plots are shown in Figures 7(a) and 7(b).
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Thus we reach the conclusion that, at least within
this class of separated solutions, it is impossible to
approach the energy-density and Higgs field profiles
of two isolated l-vortices at large separation. In
fact, comparison with the plots of the complex soliton
in Figure 4 seems to suggest that the energy density
profile of the separated 2-vortex is approaching that of

two complex solitons.
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h=0.5 h = 1.0

Contour Plots of Energy density for the separated 2-string at h = 0.5,1.0,
1.5,2.0.

Contour Key: At Contour n, g>= -0.1 + 0.08n.
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Fig 7(a)
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Asymptotic Behaviour as h»«

The above numerical results are so counter-
intuitive that we clearly need some analytical results
to test their validity. To this end, let us perform
an asymptotic expansion of equ (4.1.5) as he=,

for fixed x,y <<h.
Explicitly, we shall assume that:
X,y 5 0(logh) ¥ e* = 0(h) etc,
and ignore terms of order x2/h2, y2/h2. Thus we have:

r; vh(l + x + y2), r, “h(l - x + y?) (4.1.6)

h h? h h?2
> 1 ~1(1 - %), 1~ 1(1 + %)
r h h T, h h
> -(r2-h?) ~ 1
1'11'2

Inserting the asymptotic expansions (A.5) into

equ (4.1.5), we obtain:
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2r . 2r T, +T
detb(Z) v oal e 1, g2 e 2 + 2aB e 1 2(2— 1l - 1)

2 2 poapmea
anl 2wr2 2nJr1r2 4r1 4r2

and, using equs (4.1.6) this becomes: -

2 -2x 2h

f\; 2
detD(Z)m eZh e’ /h(aze X+B2e ) + o e (2 - 1)
2m h? m h 2h
2 -
" e2h e’ /h (aze2X +BZ e 2x + 4agh) (4.1.7)
27 h?
If we reparameterize o ,8 as follows:
X X
a=de . B=6eo~?xo=%1n8/a
then equ (4.1.7) becomes:
", 2
detD?) & 25%20 oF /Plsinn? (x-x ) + K] (4.1.8)

7 h?

So, for large h, varying B8 /o merely translates
the profiles a distance X, along the x-axis, as discovered
previously from numerical calculations. So, without

loss of generality, we may set xo=0 to obtain:

(2)

1ndetD ~ y? + In(sinh®+h) + constant

h

(2)

>  v2lndetD “’ ~ 2h. 1+2sinh %

(h+sinh?x)?
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|fe]]2 ~1 - 4h. 1+2sinh?x (4.1.9)
(h+sinh%x) 2

So, for x,y 5 0(logh), ||¢]]|2 is independent of y.

This clearly gives the 'elongation’ behaviour along

the y-axis which was observed previously.
Also, analysis of (4.1.9) gives:

Il@llzmin ~ -1 at sinh?x ~ h, as h»=

= i 2 >
2 sinh hphys ~ h, as h

h v~ log2/h, as h-= (4.1.10)

phys
This is in good agreement with the above numerical
results. To obtain some idea of how slow the growth

of h is, note that h = 5000 ¥ h ~ 4,95,
phys

phys
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4.2 Separated Charge N Solutions

The obvious ansatz for separated N-vortex configurations
which generalizes that of the separated 2-vortex of equ

(4.1.2) is to choose:

N

& = 51 a, I (er ), ag >0 (4.2.1)

1
T, = [(xl—xl(z))2 + (xz-xél))‘z]2

where (xiz),xéz)) are N fixed points in the xlxz—plane,

and then integrate this up to the Nth ansatz.

This gives us the A-chain:

"\ N k
A, = I a &, Ik(crl), a, >0 (4.2.2)
2=1
where
g, = 1%y cU(1)
/fc(y-y(z))
and
y(xa) _ %(Xiz) N ixé“)
V2

The proof that this gives us a non-singular
solution is a combination of the above proofs of
non-singularity of the separated 2-vortex and axially
symmetric N-vortex solutions. First note that the

(N)

"
term-by-term expansion of detD can be arranged into
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sums of complex conjugate pairs:

(£+€-1) x Product of Bessel functions

where & is a product of 6?1, %=1,...,N; hencecge U(1).

So, g+g_1 = g¢+¢ = 2Ret, and this is bounded by

2. Hence we deduce that it is sufficient to prove:

G(N)

= Io(rl) Il(rl) IZ(rl) ..... IN—l(rl)
Il(rz) Io(rz) Il(rz)
IZEIB) Il(r3) Io(r3?.
IN_l(rN). . .Io(rN)
=> cS(N) > 0 Vrl,...,rNalR

Proof (cf Thm (2.3.3))
Using the integral representation (A.7) for

Bessel functions, and the Weyl identity (B.3):

1
N! oeS

G(N) _ i 2T de. ds (rlcosel+°..+rNcoseN)
N O 24 27
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FZTI (r,cos® +...+r . cos 6_)
=1 de1 . deN e 1 1 N N
N'Jo 27 2T
N 6.-06
M 4sin2(°i “j) > O
i<j 2
since integrand is positive. QED

Remark

We have in fact constructed a much larger family
of non-singular solutions than we originally intended;
the above proof actually goes through for any ansatz
a,, not only k=N. For example, equ (4.2.1) clearly
gives a non-singular solution in the a,-ansatz, which
we might interpret as a 'distorted' l-vortex solution.
In Chapter 5, this family of solutions will be extended

much further.
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CHAPTER 5

SEPARATED VORTEX SOLUTIONS II: TWISTOR SPACE APPROACH

In this chapter, we construct an infinite
dimensional parameter space of complex vortex solutions,
strictly containing those found in Chapter 2 and

Chapter 4.

Recall that, in Chapter 2, BHcklund transformations
were applied to a non-singular axially symmetric solution
in the a, ansatz to construct non-singular axially
symmetric solutions in the a ansdtze (n 2 2).

Separated solutions were constructed in Chapter 4 by
applying BHcklund transformations to linearly superposed

solutions in the a, ansatz.

1
The point of view here is somewhat different;
we shall make more direct use of the twistor space
formalism underlying the Atiyah-Ward construction.
Explicitly, we shall write down an ansatz for the
transition functions of the holomorphic vector bundles
over CPi\CPl corresponding to non-singular self-dual
gauge fields on |R?2via the Atiyah-Ward correspondence.
This ansatz may be regarded as being analagous to
(though much simpler than) the Corrigan-Goddard
ansatz for monopoles (Corrigan & Goddard 1981).

As in the case of the finitely separated monopole
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solutions, this approach serves to illustrate the power
of twistor space methods over BHcklund transformation

me thods.

It is hoped that the relative simplicity of these
solutions will help to shed some light on outstanding
problems for the monopole solutions. For example,
there is still no proof of non-singularity of the
Corrigan-Goddard ansatz for finitely separated monopoles,
even in the charge 2 case, and the only proof of non-
singularity of the general axially symmetric case
relies on sophisticated algebraic geometric techniques-
related to the ADHMN construction (Hitchin 1983). Also,
it is not at all clear how the parameters in the
Corrigan-Goddard ansatz are related to the physical
parameters of the monopoles, for example their positions.
Soth of these problems are greatly simplified for our

class of complex vortex solutions.
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5.1 Review of Twistor Space

Twistor space was introduced by Penrose (1967) as a
convenient device for discussing the conformal geometry
of 4-dimensional Minkowski Space. It is in fact more
properly related to the conformal geometry of 4-
dimensional complex euclidean space, @4; results on
real euclidean space IR4 and real Minkowski space
|R3”1 are obtained by restriction to appropriate real

subspaces.

A null vector xpeC4 satisfies prp = 0.

A null 2-plane Z in €4 is one such that every

tangent vector is null.

Given a 2-plane Z in Ca, choose two linearly
independent tangent vectors uﬁvp. These define a

non-zero 2-form -
uAveAZCH* = CB

- which is uniquely determined up to complex scalar
multiplication, so it defines a unique point in

CPS.

A plane is (anti)-self-dual if a representative

of its class of 2-forms is (anti)-self-dual.
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An g-plane is a self-dual null plane.
A B-plane is an anti-self-dual null plane.
The construction of twistor space begins with
the identification of points xpe@” with 2x2 complex
matrices as follows:

X = %, + ix.o > detx = x. x (5.1.1)
pp

This defines an isomorphism C4 = SB8S', where

S is the space of complex 2-spinors equipped with

the symplectic form €4 = 0 1
-1 0

A (projective) twistor has homogeneous co-ordinates

given by a pair of complex 2-spinors -
z* = [w,m]ecP?, (w,m)eSBS'NO
The (projective) line at infinity is defined by -
I, = {[w,m]; = =0} = CP

Points of CP3\Iw are related to points xpe@

via the equation -

w = X, m # 0 (5.1.2)
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It is easily seen that -

(a) For fixed xe@a, the set of all [wgn] satisfying
(5.1.2) form a projective line in CP3\IW. Conversely,

any line in @PB\Im arises from a unique point x.

(b) For fixed [w,n]eCP1~CP19 the set of all x satisfying

(5.1.2) forms a B-plane in @4, and conversely.
Hence (5.1.2) defines 1-1 correspondences -

{ Points in ®4 }«+{ Projective lines in CPz\@Pl}

(5.1.3)

{8 -plane in 64 }<>{ Points in CP3\CP1}

(5.1.4)

ie
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(5.1.3) implies that @4 can be embedded in the
moduli space of all projective lines in CP3, which,
using PlUcker co-ordinates, can be identified with a
quadratic variety in @P59 the Klein quadric QS(Atiyah
1979). Q5 is thus identified as the conformal com-
pactification of @4, with "lines through infinity in
CP3 corresponding to "points at null infinity™ in the
extension of @4, The conformal compactifications

4 4 3.1

Y
R" »s’, |R > M4 (compact Minkowski Space) are

obtained by restriction to appropriate real subspaces.

In fact, restricting to xelRQ, equation (5.1.2)
defines a bundle projection map -

ceihept - RY (5.1.5)

with typical fibre &Pl, and this extends, as above,
to the Penrose fibration

GP3 CP 84 ] (5.1.6)

The Atiyah-Ward correspondence between self-dual
gauge fields on |R4 and holomorphic vector bundles
on GPQ\CPl can either be obtained using (5.1.4)
(Ward 1977, 1982), or using the fibration (5.1.5) to
pull back bundles (Atiyah 1979). We shall give a

statement of the main theorem, referring to the above

for proofs, and a brief description of the construction
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of the holomorphic vector bundle and the reconstruction

of its appropriate gauge field (Corrigan et al 1978).

5.1.1 Lemma
A gauge connection Ap on ®4 is self-dual if and

only if its restriction to any B-plane is flat.

5.1.2 Theorem (Atiyah-Ward Correspondence)

There is a 1-1 correspondence between -
(i) Self-dual GL(n,C)-connections on Ca.
(ii) Holomorphic rank n vector bundles over CP3~€P1

which are trivial when restricted to projective lines.

Note
We obtain self-dual G-connections for subgroups
GCGL(n,C) by imposing certain restrictions on the
bundle E eg for self-dual SL(n,f)-connections it is
required that the determinantal line bundle, detE,
be trivial.
The flatness of restrictions of self-dual connections

to B-planes is simply a consequence of the equations

F = F

— — =0
y 2 y 2

-since it is always possible to choose co-ordinates
where 3/3y andd?/3%z are tangent to a given B8-plane.

This in turn implies that the restriction of Dp to
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a B-plane is integrable ie that parallel transport of

n
a column vector function ¥:Z » € via the equation
VPDUW = 0, vatangent to 2

is independent of the path chosen on Z.

(Explicitly, we can define -

X

Gz(xo,x) = Pexp J

A (x')dx'p; X,X €7
x_ H ©

0

where the path-ordered integral is independent of the

path in Z from x, to x, and then -
vP(s +a DY =0, vvPtangent to Z
B Bz

& v (0 = Cla,x )y (x).)

Hence, given a B8 -plane ZeCP1~CP1 (by (5.1.4)),

we can define the fibre over Z by -

n
o]

E, = {¥; VUDUW = 0, ¥vPtangent to 2}

and this defines a vector bundle E ~» CPQ\CPl satisfying

the requirements of (ii).

We next need to set up co-ordinates and transition

functions for this vector bundle. Note first that
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CP3\.(EP1 is covered by the two standard affine pieces -

U1 = {[w,ﬂ]; ™ # 01}, U2 = {[w,n]; o # 01}

Next, given a B-plane Z, choose

(1)
X, wl/nl 0 s Ty # 0
a.)2/1r1 0

It

(2) _
X, = 0 wl/n2 Ty # 0
0 w2/n2
Then ¥Z(x;1)) are co-ordinates for E over Ul
and WZ(XQZ)) are co-ordinates for E over U2

and the co-ordinates on the two patches are related

on the overlap UlﬂU2 by -

- : ~W*(xLll)w=*G'(x(l),xﬂ2))?'(XLZJ% -
z "z z "z z z "z
Hence, very conveniently, E is locally trivial
on Uy and Uy and its isomorphism class is specified
by the single transition function G : UlﬂU2 > GL(n,C)

given by -

(1) _(2)
X

Glw,n) = Gz(xZ X,

)
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G(w,m) is cailed the patching function, and it is

determined up to bundle equivalence transformations -
Ny
G »G = ANGA (5.1.7)

where Ai:Ui > GL(n,€) (i=1,2) are holomorphic maps on
the standard affine pieces U,,U,. Note that bundle
equivalence transformations contain gauge transformations

of the associated self-dual connections.

We must also see how to reconstruct Ap(x) from

G(w,m). Given xe@a, let ® be the corresponding projective

line in CPi\CPl. Since E|R® is trivial, we can 'split"

G as follows:
Glxm,m) = Hix,)K(x,¢) !
where ¢= nl/nzemm, the Riemann sphere, and:

H(x,z) is analytic on U, (ie for #0)

K(x,t) is analytic on U, (ie for g#=)

These are determined up to gauge transformations:

H(x,z) » H(x,z)r(x), K(x,z) » K(x,z)r(x)

To reconstruct A“, we have to solve
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A dxP = ¢is g ax”,  (dx)v =0

U zZ p oz

But -
o af _ _ _
Apdx = Aade = (A11 CAlZ)dxll+(A21 cAzz)dx21
So, we obtain (for i=1,2):
S | |

A..,-tA., = H " (3 -z JH = K “ (2 -zo )K

11 12 3; 3_)( B_X a—x

il i2 il i2

Reconstruction of the Atiyah Ward AnsHtze
Let us define a convenient set of co-ordinates of

twistor space. We have:
X = 1f xg-ix, X -ix, =v/2i/ z y

x1+ix2 -x3—ix4 y -2z

= i[(x3-ix4)w1+(xl-ix2)n2]

v
e

—
|

w, = i[(xl+ix2)n1-(x3+ix4)n2]
Define co-ordinates (up,v,z) of Uanz by:

(5.1.8)
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3 up=1i (xl-ix2)+(x3—ix4)' = % (y+z)
2 C 2 ¢

i['x +ix,) o= (Xg+ix, )l iy z-2)
2 /2

In terms of these, inhomogeneous co-ordinates

on Ul’UZ are given respectively by:

-1 -1
1T MM (5.1.9)
U2 : (EI’EZ’II) = (2pz,2v,1)

TT2 TT2 'ﬂ'2

In general, the splitting procedure described
above is very difficult to implement. However, it
has been done explicitly by Corrigan et al (1978)
for SL(2,€) patching functions wh;ch"a;erequivalent to
an upper triangular patching function of the form:
G(u,v,z) = cn A, v,z) Y (5.1.10)
(b )

where A is an arbitrary holomorphic function of

HsVv,L.

The conditicer thet the patching function



G(xm,7) depends on x,z only through the variables

B,Vv,% implies -

D.G = 0, where Di =393 -3

0Ky 9%y,

> D,a =0, if G takes the form (5.1.10)
2 (_+r3da=( -g3)a=0 (5.1.11)
oy 3z 3z Ay

Now suppose that A(p,v,g) A(x3z) has Laurent

expansion:

Alx3z) = % Ak(x)c_k
k=- e
(5.1.12)

271 | ¢

y a0 = 1 f&c cKalx, 0)
'z

Then (5.1.11) is precisely equivalent to the

condition that the Laurent coefficients Ak(x)

“éégisfy the A-chain equations (2.1.5) - this is in
fact the natural origin of the A-chain equations.

We therefore call A(x,z) the generating function

of the A-chain (Ak(x)X After performing the splitting
procedure, Corrigan et al found that (5.1.10) gave

rise to self-dual gauge fields, given in Yang's

R-gauge by equations (2.1.6).
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5.2 Dimensional Reduction in Twistor Space

Recall that, in Chapter 2.2, we guaranteed Xq- and
x4-translationa1 invariance of a self-dual SL(2,C)
gauge potential by requiring that its A-chain satisfy
equ (2.2.2). This implies that the generating function
s (x3z) takes the form:

i(ax.,+bx, )
A(x;0) = e 374 Bxpax,5 0) (5.2.1)

But, from (5.1.8):

povo = ixg o+ iy - yo)
z

N

(5.2.2)

TR A iy + yz)

2

Hence, equ (5.2.1) is equivalent to -

ea(u—v)+ib(u+v)f(

A(p,\),C) = U’\)sC)

where, keeping X s%o fixed:

f 0 =3f/8(p-v) =3f/a(p+v) =0

=) f is a function of ¢ only.

Hence we have proved:



5.2.1 Proposition

Dimensional reduction from|R* to |R? via the
imposition of equ (2.2.2) is implemented, in the twistor
space construction, by a choice of generating function
of the form:

b (v, = @@HTVIFIDBE ) ey TV

(5.2.3)
where f is an arbitrary function which is analytic
in some annular neighbourhood of {0 < |g| < «}
QED
Let us now determine the patching functions of

previously constructed solutions.

(a) The Axisymmetric N-Vortex Solutions

Since all non-singular axially symmetric N-vortices
are obtained from the same A -chain, equ (2.3.9),
their associated patching functions must have the

‘same generating function. From equ (2.3.9):

i(ax3+bx4) "

A(x;z) = e pX (5)k1k(cr), £ = /Zili
k=-w'¢ cr

This is simplified using the generating function

for Bessel functions (equ (A.6)):

A(x3z) = exp(i(yz+yz)expler (€ + £))
/3 e 8
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= exp(i (y(z+y) + y(z - y©))), by definition of ¢
/2 :

———\)
_ o YHTY

, by (5.1.8)

A(p,v, o) = ea(p—\))+ib(p+v)

(5.2.4)
So, comparing with equ (5.2.3), we see that the
axially symmetric N-vortices have the simplest possible

patching function, corresponding to the choice f(z) = 1.

For completeness, let us include the translational
degrees of freedom ie let us calculate the patching
function of an ..xially symmetric N-vortex situated

at (x{l),xél))ele°

Under a translation in |R?:

y » y—y(l), y(1) _ l(xil)+ix§1))
/2
“we have:
u->u‘_j;i(l)» v-»v“iy(l)C
V2 T 2

Werp (i 3y D -3 1)

V2 4
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Hence, the patching function for the linearly

translated axielly symmetric N-vortex is defined by:

(0) = exp(i(Ty e - 43 (5.2.5)

2 C

(b) The Separated N-Vortex Solutions {(Chapter 4.2)

The &A-chain of equ (4.2.2) is just the linear
superposition of the &A-chains of linearly translated
axially symmetric vortices. Hence, the patching

function is defined by:

N
F(z) = 1 a expliCyy*r - y3¢0)) (5.2.6)
=1 & =
/2 4
where
a, > 0, y(l) = l(xiz)+ix§2))
/2

We can now use the calculation of equ (5.2.4)
to relate the general soiution of the aA-chain equs

(equ (2.3.8), Theorem (2.3.1)) with equ (5.2.3).

5.2.2 Proposition

Suppose the generating function satisfies equ

(5.2.3), where f(z) has Laurent expansion.

fe ]

_ - £
f(g) = fgc

=~ o0

Then the associated A-chain takes the form of equ

(2.3.8), with:



-165-
a, = (i_-y_) fz, B, = 0, ¥YeeZ
Proof

From equ (5.2.4), we have:

a(p-v)+ib(p+v) i(ax,+bx,) o _
= e 3 4 by 5212(cr); 2

L=-o

e

i(ax,+bx,)
_ 3 4, ® £ -2 ® -m
S A(p,v,z) = e (Zi_wa Iyc )(mi_mfmc )

i(ax3+bx4) ®

= e s (¢ fmglIm);'k
k=-= £+m=k
o] by = L f EQIQ
2 +m=k
, o . —(k+2 i
- @ B g 1, (eae e
¢’ g=-o"C

and, comparing with equ (2.3.8), the result follows.
QED
As a consequence, any solution derived from this
framework automatically satisfies the non-singularity
condition of equ (2.2.3), and hence has the asymptotic

behaviour of equs (2.2.4), (2.2.5), Corollary (2.2.2).

The singular solutions of Chapter 2.4 do not seem



to fit naturally into the twistor space construction.

Bundle Equivalence Transformations

Let G(up,v,z) be a patching function satisfying

equ (5.2.3), ie

G(p,v,0) = /" e "W (1)
0 g-n
This is bundle equivalent (written G = ¢) to
patching functions of the form:
G = 4,G U, > SL(2,C) (*)
G = A1 Az, Ai. i L(2,

where Al,A2 are holomorphic, ie in terms of the
inhomogeneous co-ordinates of equ (5.1.9):

- -1 -1 -

where the functions are analytic in the variables

indicated.

Hence we can transfer the p,v-dependence to
the diagonal entries of G, using a bundle equivalence

transformation with:



Al = e YH 0 5 Az =fe” YV 0
0 e’ P 0 elV
5 Glp,v.z) = /e"W‘Y"’;“ £(z) (5.2.7)
\ 0 e(YP-YV)C-n

We now ask the following question:

Given two patching functions of the form (5.2.7),
defined respectively by analytic functions f(¢),
%(C), what are the necessary and sufficient conditions
on f and f which ensure that the two patching functions

are bundle equivalent?

By (*) we must have:

8w ba e—(Yp-Yv)cn %(c)
Co  du 0 e(yp—?v)c—n
e-(Yp—?v);n f(z) a b
& o )
0 e(Yp-YV)g-n c, dO

where a_,b_,c_,d_ are analytic on U2(|c| < l+g)

and 8 wyD wC wsd o are analytic on U1(|c| > 1-¢)

This implies:



- —_ r\J -—-_ -
a.e (yp-vyw) 0 awf+bwe(Yp YV)C n \
— fll ——
cme—(Yp_YV)gn cmf+cime(“l_\(\))c_n /
TN . -(yo-Yv) n 0\
_ ( c fia o (yp YV) 0 dOLTboe z }
o o _ ;
= _ (yu~+vyv) -n //
\ c e(Yp Y\))C n doe 4
which, in turn, implies:
(1) (ax-a )e—(yp-ﬁv)cn =c f
® %0 o

(2)  (d_-d e WV n o o f

(3) awnf-d_f = boe°(w—w) r,n—bme(w'”) ;D

(4) ¢ = cme—Z(Yp_YV)CZn

Since the exponential term in (4) has essential
singularities both at z=0 and¢=«, the analyticity

constraints on Cys Cow require:

Hence, again using the analyticity constraints:

(D)

NV

a = a, > a constant

I
48]
8

I

(2)

I
|
o,
8
N
a.
I
o
8
f

)do = constant
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Hence (3) impiies:
£(z) = kf(g) + Boe-(Yp'YV)gn + Bme(YP“Yv)Q-n

where ke, and Bogsw are analytic on Ul’UZ respectively,
ie B, is an analytic function of (pg,v,2)

8» is an analytic function of (p,vc_lg_l)

But e*(YH-YV)

has essential singularities both
"
at =0 andg=«. So the condition that f depends on

¢t only forces:

Hence we have proved:

5.2.3 Theorem

Two patching functions of the form described
in Proposition (5.2.1), defined respectively by
analytic functions f(Z), %(C};'are‘bundle equivalent

if and only if:

() = kf(o), keC\O
QED

As a Corollary, we obtain Fact 1, quoted in the

section on effective abelian fields in Chapter 2.2.



5.3 Patching Functions for Non-Singu.ar Sclutions

The question to wnich we address ourselves in this
section is, what chcice of f{z) in equ (5.2.3)

guarantess Us non-gingular soluticns?

Recall from equ (5.2.5) that tne axially symmetric
i-vortex solution situated at the point (x§1>9x§1))elR2
is given, in the lst ansatz, by:

F(z) = explac+a), o = iy Prigty (5301

¢ /2

Let us now make two observations:

(1) Experience with self-dual monopoles (Ward 1981,
Corrigan & Goddard 1981) suggests that non-singularity
is guaranteed if A (p,v,z) has no zeros on UlﬂU2°
(There is still, however, no general proof of this
statement). Imposing this condition, in our case,

means that f may be written as an exponential:
f(z) = expP(2) (5.3.2)

where P is analytic in some annular neighbourhood of

{0 < |g| < =}

(2) Hence, a natural generalization of equ (5.3.1) is
provided by choosing f(z) of the form (5.3.2), with,

in the Nth ansatz:



It
2

2{z) ot ((xk;‘~}—ak), o¢o<c:1R9 cv,keC(k?,_ 1) (5.3.3)
Remarks

{Z) Zqu (5.3.3) is equivalent tc requiring that P

be a homogenecus polynomial of degree N on CP19
satisfying the extra conditions:

O - Pz hH (5.3.4)

This is similar to, though not the same as, the
condition that P be a hermitian polynomial on @Pl.
We shall see later that it gives rise to manifestly

non-singular solutions.

(2) Note that P(z) in equ (5.3.3) has 2N+1 real
parameters. However, o may be removed by a scale
transformation, leaving 2N free parameters, precisely
the number required to describe the positions of N
finitely separated vortices. (This interpretation

is made with some reservations, however, since the
forthcoming proof of non-singularity does not require

the constraint deg P = N).

(3) The linear parameter ale€ in equ (5.3.3) corresponds
to the two translational degrees of freedom; it can

be removed by a translation (cf equ (5.2.5)):
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y ¥ =Y " Y, where a; = 1vy (5.3.5)

Calculation of A-chain

For completeness, let us compute the corresponding
A-chain when f is given by equ (5.3.2), and P(g) is
a general function analytic on some annular neighbourhood

of {0 < |¢| < =}, with Laurent expansion:

P(g) =

L. -2 [N )
, (alc ta L B LY B L ) (5.3.6)

1

Il ~8

3 A(mC)=ea(p-\))+ib(p+v)eP(c)

i(ax,+bx,) _ _ L _
= e 3 4 exp( 1 (yyZ-vyt 1)+a1c+a1g 1+61—B
/21

-1

exp( ¥ (ogtt+ay ™ 24g,c2-8,c7%))

2=2
and, applying a translation of the form (5.3.5) to
remove a,, this becomes:

i(ax3+bx4)

A(x3z) = e exp( 1

vy ! '1\ _ -
.(yy z-yy't T8 z-Byc )

exp( 1 (a c¥+a 27448 cb B c74)
=2

Now, parameterize (Xl,X2)5|R2 by cylindrical polar

co-ordinates (r,,¥;) defined by:
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yy' = crye
21 2

Similarly, parameterize ao,,B, as follows:
-1y,
ap, = crge R 2z 2
2
-iﬂxg
By = csge s L 0z 1
2
i(ax,+bx,)
AMx;z) = e 34
-1y iv, _ ix ix
exp(crl(e 1C+e 1y 1)+Csl(e lc—e 1c 1)
2 2
exp(c I rz(e Rg2+e KC jL)+s,@(e z
2 %=2

Xk(x) = 1 de gkz(x;;)
27mi z

o 27

expl(c 3 (rpcos(e-y,)+is
=2

Hence we finally obtain:

L

e

Jzn ike crijcos(6-y;) irs;sin(e- x;)

sin&(0-x,)))

(5.3.7)
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N ™8

2T .
(x) = de elkeexp(c (r cost(8-y )+is sint(6-x )))
0o 2w g=1 % L L %

(5.3.8)

If P(z) also satisfies the constraint (5.3.4),

then 8, = 0, V2, so the A-chain is given by:

2T ke w
A (x) = de e " explc r cost(8-y,)) (5.3.9)
5 2 L
o 2v =1

Note that the integral in equ (5.3.9) is a
rather natural generalization of the integral
representation for modified Bessel functions equ (A.7)
(i), from which the 8-chain.of equ (2.3.9) can be
recovered in the axisymmetric case P(z) = 0. Note
also that the polar co-ordinates (rl,wl) are related
to the original co-ordinates (r,0) by:

iwl _
r, =71, e =f = %¥e

-1i6
5.3.1 Theorem
Suppose -thaty in the Nth--Atiyah-Ward ansatz, _

the generating function is given by:

Ap,v,g) = e PTYVE()

eP(c) 1

where f(g) = , and P(¢) = P(z ).

Then:
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. X v,
(i) k- Ak, YkeZ
(ii) Detﬁ(N) is real valued; hence the gauge invariant
quantities |[]|¢]|]|2, ¢ of the associated field configuration

are real valued.

B(N)

(iii) Det > 0, ¥xe|R%Z; hence the associated

field configuration is non-singular.

Proof

(i) is an immediate consequence of equ (5.3.9),

B(N) “v(N)

and it implies that is hermitian. Hence detD

is real valued, and so are ||¢||2, ¢, from Corollary

(2.2.1).

The non-singularity proof follows the now familiar
argument of Theorem (2.3.3). Using equ (5.3.9), we

have:

det%(N)

”‘2“ N ©
de....de . exp(c I Ir

1 . 1 N (COSR(Gi'wz))
ﬁ!cJESNJ o 2 27 i=1 2=l

g

WO ()5 e85 (M)
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27 N
81,9 1 4sin? 6. -6,
; . (71 7 3) (5.3.10)
o 2n 2 i< >

exp(c H Ty (

>0, since the integrand is positive.
QED
Remarks
(1) (i) and (ii) justify Fact 2, quoted in the section

on effective U(1l) fields in Chapter 2.2.

Note that the condition that |]|¢]|]|2%, ¢ be real
valued seems intimately related to non-singularity.
If P(z) is a general analytic function, the pure
imaginary term in the exponent of equ (5.3.8) causes
the non-singularity proof to fail (the integrand
of equ (5.3.10) is no longer positive), and it causes

detﬁ(N), ||¢]]|% and £ to be complex valued.

(2) In the above theorem, there is no restriction
that P be a polynomial of bounded degree. 1In fact,

the theorem goes through for the even more general

choice:
£(z) = ayetn (e’ (5.3.11)
where oy > 0, and P,(¢) = PE(Z—l), v
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(The separated solutions studied in Chapter 4 are of
this type). Since gauge transformations are equivalent
only to scale transformations of the generating
functions, this means that, in each ansatz, we have
constructed an extremely large infinite dimensional
parameter space of complex non-singular self-dual

gauge fields.

Relation with Generalized Action Lattice Gauge Theory

Consider solutions satisfying the hypotheses of
theorem (5.3.1), with c=1. Using equ (5.3.9) the

A-chain can be rewritten as:

o -igy it
A () = gg.zkexp(% z rz(zze TR )
u(l) z =1

So, by Theorem B, the fundamental determinant is

given by:

-igy) g 109,
+

deeBM) - du.det exp(3 & rE[UZe U e 1)
U(N) L=1

N ~i2y, L, ify
= dU.exp(3 £ rQTr[UQe Yiuthe Q])
U(N) 2 =1

(5.3.12)

ie detB(N) is equal to the partition function for a

single-site/link mixed action U(N) lattice chiral/
-igy
gauge theory, with the parameters rge ¢ playing

the role of complex inverse couplings or temperatures.
In this formalism, non-singularity is simply a

consequence of the reality of the Hamiltonian of the
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corresponding lattice gauge theory.
. 10y

Note that the spatial parameters r,e form
the complex inverse temperature associated with the
Wilson component of the action, so, as previocusly
noted, the axisymmetric case ry=0 V222 corresponds
to the usual Wilson lattice gauge theory. In fact,
translation invariance of the Haar measure can be
used to remove the angular dependence from the Wilson

component of the action in (5.3.12):

det ™) - dU exp(X1 Tr(U+U")) (5.3.13)
U(N) 5
-ie(y, -v,) ie (v, -, )
exp(} ¢ rlTr[Ule P e Pl IR
2=2

We can also obtain a formula for the effective

(N)

complex scalar field V¥ analagous to that of the

axisymmetric case. Using Theorem B, we have, in the
notation of equ (2.2.1):
-iy igy
detﬁ(N) = dU.detU,exp(%ZrlTr(Ule fiutte "))
U(N) %
(5.3.14)

iNw, +
=e dU.detU.eXp(rlTr(U+U ))
2
exp(: 3 1,Tr(U'e P e 17y 5.3.19)
L=2
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again using translation invariance of the Haar measure.

Hence we obtain:

o(N) _ (—l)N detﬁ(N)*

(5.3.16)
detl N

(—1)N<detU+>

-1y o
= (-e 1)N<detU+>' = (iyele)N<detU+>'

where < ° >, < " >' denote the expectation values with

respect to the partition functions in equs (5.3.12),

(5.3.13) respectively.

Note that, for fixed r , (% 2 2), we have from
equs (5.3.13), (5.3.15):

detB(N) " ng exp(rlTr(U+U+))
2

iNy
detE(N) nvoe 1 de.detU.exp(rlTr(U+U+)),

2

>

kS|

ie as Ty > these solutions have the same asymptotic

behaviour as the axially symmetric N-vortices
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Iw(N)l > 1, ¢V pag winding number

In particular,
N at infinity, and the total magnetic flux obeys the
'quantization law' (2.3.27) as before, so these

solutions describe non-singular vortices of charge N.

Aside

MY
Writing F(r,¥) = 1ln detD(N)

(r,v) for the free
energy of the partition function (5.3.12), and using
equ (2.2.20) which relates ||¢||2 to ¥, we obtain a

remarkable formula for the single-link U(N) mixed

action lattice gauge theory:
V2F = 1 - <detU><detU”> (5.3.17)

It is not at all obvious how this formula could

be derived directly.
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5.4 Study of Field Configurations

We shall now study the physical field configurations
of the solutions of Thecrem (5.3.1), with the additional
constraint that, in the Nth ansazz, ? is a homogeneous
polynomial of degree < N. This gives us a total of
2N free parameters, which are expected to describe the
positions of N finitely separated vortices. We shall
use a combination of symmetry arguments, small
parameter expansions, and numerical computations to

provide evidence for this hypothesis.

Let us recall how euclidean symmetries are realized
in twistor space (Corrigan & Goddard 1981, O'Raif eartaigh,
Rouhani and Singh 1981, 1982). 0(4) transformations
are realized on xeM(2,C) (of equ (5.1.1)) by SL(2,C)

transformations:
-1
X + uxu ueSL(2,C)

and the corresponding action on twistor space 1is given

by:
W * Yw, T > um
In particular:

u = a b ¢ ¢ » ag + b

c d cz + d
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so SL(2,€) acts as the group of conformal transformations

on the Riemann sphere @Pl spanned by ¢.

Note the actions on real space and twistor space

of the following SL(2,C) transformations:

SL(2,€) Transformation Action on ]R” Action on CP3\6P1

ei¢ 0 2y > e_21¢y : (p,v,c)+(p,v,e21¢c)
0 e 10 z >z

- -1
0 1 ) ty »y : (Byv,g)y>Cv,p,z 7))
1 0 z > -z

— -1
0 -1 :y > -y : (pyv, ) »(v,p,-C 7))
1 0 Z +"-Z-

Hence, if by an appropriate rotation in the
XqX, - plane, we choose y=-7Y, the factor er-Yv of the
generatlng functlon is left unchanged by 0(2) trans-

formations of the xlxz-plane.

Therefore, 0(2) transformations of our solutions
correspond to transformations of the analytic functions
P(z) induced by the following transformations of the

Riemann sphere:
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Rotations:

Reflections:

Xy 7%y s T > g

(5.4.2)

Xy * "X, T > C

Also, |RZ-translations of our solutions are given

by (cf equ (5.2.5)):

y >y - 8: P(z) »P(z) + az+ o, o= ivyB

C 2 (5.4.3)

Finally, gauge transformations are given by:

P(z) » P(z) + o a, = constant (5.44)

Examples (1) Axial Symmetry

P(z) gives rise to an axially symmetric field if

and only if:
P(z) = P(ei¢c), V¢ $P = a = constant

Hence, the only axially symmetric solutions in

this formalism are the non-singular axially symmetric

vortices studied in Chapter 2.3.
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(2) Reflection Symmetry

C., symmetry under (i)x1 > -x%, or (ii)x2 > =%,

2
requires respectively, in the notation of equ (5.3.3):

il
g
]
I
]
—
L
[o]

It
N
et

?\"
el
-

(i) P(op)

(ii) P(¢g)

I
o
Y

and these imply respectively:

(1) P(z) = ek(ck+(-1)kc_k), €1 € IR, k even

k

I~ 2

1
iR, k odd

k

(ii) P(2z) ek( gk-}-g_

N
j ) EkelR

k=1

Hence, symmetry under D2 = C2xC2 generated by

reflections in both co-ordinate axes requires:

P(z) =’f’e2k(12k+§72k7, éZkelR (5.4.5)
k

ie only even degree terms with real coefficients are

allowed.

(3) Reduction of Charge 2 Case

-1 - -2
P(z) = 0L+ WL + azcz + oyt

1
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Remove a,,a, by a translation, and remove the
1°%1 P
phase of a, by a rotation. This leaves us with the

D,-symmetric polynomial:
P(z) = e(z2 + ¢ %), eelR (5.4.6)

Hence, the general charge 2 solution has preferred
axes, with respect to which it is D2-symmetric. So,
we expect the vortices to be separated along one of

these axes, with ¢ parameterizing the separation distance.

(4) DH—Szmmetry

Let DN be the dihedral group of order 2N generated
by the rotation and reflection:

eiZ /N

y Vs x2 > —xz

Clearly, in the Nth assatz, P(g) is invariant

under rotation through 27/N if and only if:

P(z) = acN + ag

As above, we can remove the phase of a by a

rotation to leave:

P(o) = el + ¢, R (5.4.7)
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. . . -1
and this is now also invariant under Xy > =X, ok T > C 7,

so it is the general D -symmetric solution. We expect

N
it to describe N separated vortices situated on the
vertices of a regular polygon of N vertices, again with
e parameterizing the separation distance.

More generally, the D,-symmetric solution, for

M
M =N is given by:

P(¢g) =

where N = MQ + R, Q,ReZ, 0 =R < N-1

Small Parameter Expansions

Let us consider the small € behaviour of the

simplest D, -symmetric solution in the Nth assatz, (M < N),

M

which we parameterize as:
P(2) =,(£)M(QM,t,Q:M) S o (5.4.-8)
2

In order to verify that this gives us a separated
N-vortex solution, we must determine the locations of
the zeros of the effective complex scalar Higgs field
w(N) of equ (5.3.16). Since 0 < detﬁ‘N)< ®
¥xe|R?2, this is equivalent to determining the zeros

of detﬁ(N), where, from equ (5.3.15), writing
(r9 (p) = (rl,wl)t
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deté‘N)

e dUodetUcexp(ETT(U+U+))
U(N) 2

xp (511 1o (oMb B0

Expanding this to lowest order in e gives:

(N) ~(N)

n,
detE = detE

e=0

. M . .
+ e NV (Ey du.detU.Tr (UM MY, yMAMY,
20 o

T o1 r R(Tr(usutyK

Y
k=0 k! ‘2’

Next, consider the behaviour of this expression
for small r; assuming r=0(e), and ignoring terms of

0(€N+1), we have, from equs (2.3.22) and (B.4):

detg(N) =
iNy N M -iMy - N-M
e 1l r + e e
[m 7 S wwT?

o

du.detu.Tr (U™ (TrutH)N M j
U(N)

But, (cf proof of equ (2.3.22)):
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du.detv.Tr (v ™y (Tru"HV M
U(N)

av. T (v ey N
SU(N)

+

dV(VZ . VZ . ...vt LW .-
SU(N) 1% %293 "M% %M+l M1

€

1
N!

€
01 G2 " OMOM+1°° "N 92%3° %1 MM+l
_ (;l)M+1 . .
N' al...aN al..-aN
_ (_1)M+1

-So -we- obtain:

(N)
detg =1 ,r £ r
N1 (3 Wt 2 Q)

-

-1 AN oMl oy (M NM
IR

i
where z = re  '. Hence:

oaN

(from (B.5))

NoiNy | Mel M N-MOE(N-MDY

(5.4.9)
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detB M — (M VML M L gy M

2Ny ] (N-M) ¢ J

o detEM™ gz =0o0r ()Mo o (M
(N-M) !

Hence, if M <N, there is a zero of order N-M at
the origin, and the other zeros are of order 1, at

the points (r,¢) given by:

S T R (5.4.10)
(N-M) !
v=1 + 27K, k=0, , M-1
M

So, as expected from symmetry considerations, we have
a vortex of charge N-M at the origin, with M charge 1
vortices sitting on the vertices of a regular M-gon
centred at the origin. Moreover, for small e, the

physical separation varies linearly with €.

(f) \\’>_ P/Qame

=




In the DN-symmetric case, M=N, the vortex at
the origin disappears, and, as coniectured above, we
have N single vortices sitting on the vertices of a

reguiar N-gcn, of physical racdius:
r= ) MV (5.4.11)

Finally, we can use equ (5.4.9) to obtain a small
parameter expansion for the solution with general P(g),
degP < N. Parameterize P(z) as follows:

N k —ikwk -k ikwk

P(2) = (e 2) (gfe v R
k=1

A

Suppose r and ¢ (2 £ k £ N) are all of the same

N
order ¢, and work to order € . We have, as above:

detﬁ(N) - NV dU detU exp(gTr(U+U+))
U(N) 2

k(b -¥)

k —lk(wk‘w) + U+ke _l)

exp(z(ek/Z)kTr[U e

ik(wk-w)
e

r r e

du.detU.Tr (U*Ky  (pry+y VK]
U(N)



: N iv L s (N T
- 1 NeiNv, o kel (e e kyk N-k 1(N-k)¥
(5.4.12)
Hence we finally obtain, in terms of the complex
variable z = relw:
N iy b
detﬁ(N) = 1 [aN— g NI (—gke k)kzN k]
N k=1TN-K) 1
ie if akem, and o = O(ek), and r = 0(e), then:
N
P(g) = = (Ekck + akc_k)
k=1
N N-k
5 aecE™ 1 (BN s DF w o« B v oM
N! k=1 (N-K)1T
(5.4.13)

So, if P(z) is a polynomial of degree £ N, then for
sufficiently small values of its coefficients, and for

g(N)

sufficiently small z, det is a polynomial of
degree N in the complex variable z. So, by the

fundamental theorem of algebra, detE(N) has prec1se1y

N zeros, so the solutlon descrlbes N separated vortices

which are close together.

Moreover, any complex polynomial of degree N
can be written in the form of (5.4.12) or (5.4.13),
with a suitable choice of parameters ek,wk. Thus,
given any cluster of N points sufficiently close
together in the complex (r,y)-plane, there exists
a degree N polynomial P(z) which describes N vortices

situated approximately at these points.



Numerica:® Study

The gauge invariant quantities ||@]||?, & are
plotted between -5 = X, = 5, -5 = X, £ 5 for the DN
symmetric N-vortex solution with N=2,3,4 in Figures
8, 9, 10 respectively, for increasing values of the
separation parameter e, with parameterization (5.4.8):

N
P(t) = (3) A

The same method was used as that for the numerical
work in Chapter 2 and Chapter 4; detB(N) was calculated
on a fine grid of points by applying numerical
integration routines to the integral expression (5.3.9)

for the A-chain.

In view of the naturality of the solutions,
together with the above nice analysis of the case of
small separation, we might expect these solutions to
display behaviour analagous to that of the Nielsen-
Olesen vortices in the Bogomol'nyi limit of the
Abelian Higgs model ie to separate out to an approximate
linear superposition of isolated l-vortices.
Unfortunately however, this is not the case - the solutions
still exhibit bizarre unexpected behaviour for large

values of the separation parameter (e } 1).

The charge 2 separated solution exhibits the same

elongation behaviour perpendicular to the axis of



separation as that observed for the charge 2 soiutions
in Crapter 4; however, unlike the solutions of Chapter
4, the physical separation seems to remain the same

order of magnitude as the separation parameter e.

For the higher charge solutions (N=3,4), there is
not only a distortion in the shape of the vortices for
large separation parameter (e 2 1), but also a
development of secondary minima of the Higgs field
and corresponding maxima of the energy density -
for € > 1 and N > 2, the charge N solution seems to

have 2N local minima of the Higgs field.

Thus, whereas it is possible to interpret the
solutions as N finitely separated vortices for small
values of the separation parameter € 5 1, this
interpretation does not seem entirely tenable for
e > 1. Again it seems impossible, within this class
of solutions, to approach an approximate linear super-

position of isolated vortices at large separation.
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Contour Plots of the separated 2-vortex solution, e = 0.5, ¢ = 1
Contour Key: ||¢||% = -1.0 + 0.05(n-1)
£ = -0.05+ 0.025(n-1)

n
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Fig 8(b)

lof]?

1.5,2

Same as Fig 8(a), e

Contour Key: Eq = -0.25 + 0.05(n-1)
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Hig 9(a)

Contour Plots of the D3—symmetric separated 3-vortex solution,

e = 0.5,1.
-1.0 + 0.05(n-1)

Contour Key: [l |2

3
n

-0.02 + 0.01(n-1)
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Contour Plots of ||¢]||2, & for the D4 symmetric separated

4-vortex solution, € = 0.5,1.

Contour Key: |lef]2 = -1.0 + 0.05(n-1)

&, = -0.005 + 0.005(n-1)
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CHAPTER 6

CON
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-

USICONS

6.1 Summary of Results

Since our original goal was to find, for pure
nonabelian gauge theories, structures analogous to
the superconducting vortices of the abelian Higgs
model, let us compare the properties of our solutions
with those of Nielsen-Olesen vortices. First of all,
we have seen that, after dimensional reduction, the
R-gauge equations reduce to equations for an unconventional
U(1) gauge theory interacting with a massive complex
scalar field ¥ involving higher derivative couplings,
and with mass of the same order as the characteristic
mass c. In the nth Atiyah-Ward ansatz, Y satisfies
boundary conditions identical to those of the complex
scalar field of a Nielsen-Olesen vortex of charge n.
For ‘ail values of ¢, |Y¥| is asymptotically equal to
unity, and the characteristic length c—1 measures
the size of regions of space over which |¥| differs
appreciably from its asymptotic value. Unlike Nielsen-

Olesen vortices, which have a short range magnetic

field with finite quantized flux, the effective
magnetic field of our solutions is the superposition
of a long range part with infinite total flux, and a

short range part with finite total flux obeying the
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same quantization law as Nielsen-Olesen vortices.

The non-singularity condition forces the solutions
to be strictly complex of zero total action. This in
turn, leaves far fewer constraints on the dimension of
the parameter space of solutions than is the case for
the real charge n multi-vortices in the Bogomol'nyi
limit of the abelian Higgs model, which are know to
form a 2n-dimensional manifold (Weinberg 1979). 1In
contrast, we have constructed an infinite dimensional
parameter space of complex non-singular solutions in
each of the Atiyah-Ward ansHtze. We can however
identify a natural 2n-parameter subfamily of solutions
in the nth ansatz (ie those with deg P(Z) £ n) which,
for small separation parameters (less than the character-

l), behave like n finitely separated

istic length c
vortices. Unfortunately, numerical evidence indicates
that this interpretation breaks down for large
separations. This is a little disappointing - it __
was expected by the author that this 2n-parameter
family would display behaviour analagous to that of
Nielsen-Olesen vortices in the Bogomol'nyi limit A = 1,
ie that, for sufficiently large separations, the energy

density would be an approximate linear superposition

of energy densities of separated vortices.

The class of non-singular solutions constructed
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in Chapter 5 was obtained using educated guesswork from
the monopole construction of Corrigan & Goddard (1981) -
it was guessed that one of the conditions guaranteeing
non-singularity was the non-vanishing of the patching
function. The fact that our solutions do indeed turn
out to be non-singular lends some credance to (though

it does not prove) the assertion that monopoles obtained
from the Corrigan-Goddard ansatz are non-singular. It
might be an interesting exercise to take a Fourier
transform in the x3—variab1e of the A-chain equations
for monopoles, thus obtaining the A-chain equations for
vortices, with ¢ = /a2 + p? (p = conjugate momentum),
and thus express multi-monopoles in some sense as
"Fourier transforms' of multi-vortices. The results of
this thesis may then be useful in calculating properties
of multi-monopole field configurations, and, perhaps in

finding a relatively simple proof of non-singularity.

It is still unclear whether or not the ADHMN
construction could be generalized to describe our
solutions. 1In its present formulation, the ADHMN
construction yields real non-singular solutions of
the self-duality equations, so it would have to
undergo a non-trivial modification in order to
yield complex non-singular solutions. It may just
be that Corrigan-Goddard reciprocity is trivial in

2+2 dimensions in that the only real non-singular

solution is the vacuum.
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Finally, let us remark that, although we have
concentrated here on self-dual vortex solutions of
SU(2) gauge theory, such solutions clearly also exist
for larger gauge groups G - the simplest possible of
such solutions could be obtained from embeddings of
SU(2) in G, though the general case is expected to be
more complicated than this (cf work on multimonopoles
in higher gauge groups (Athorne 1983, Bais & Wilkinson
1979, Ward 1982a). Since the long range behaviour of
magnetic fields of self-dual vortices is similar to
that of monopoles, it is also expected that the general
analysis of nonabelian magnetic charge due to Goddard,
Olive & Nuyts (1977) will go through word-for-word in
the.definition of self-dual vortex charges for higher

gauge groups.
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6.2 Speculations on Possible Physical Applications

The contribution of complex saddle points of the
classical action to the semi-classical approximation
of the functional integral has been studied in the
context of the quantum mechanical double well oscillator
by Richard & Rouet (1981 a,b) and in the context of
finite temperature quantum mechanics and field theory
by Lapides & Mottola (1982). Both sets of authors find
that this approximation procedure is an ideal substitute
for the instanton gas approximation. It is therefore
natural to suggest that our class of non-singular complex
solutions to pure nonabelian gauge theory should provide
an important contribution to the semi—claésical
evaluation of QCD. Indeed, the fact that these solutions
are 'voidons', ie they are complex solutions of zero
total action, seems absolutely essential if this
interpretation is going to be correct. Solutions with

finite action on IR2 would have infinite action on [R*%,

and hence would not contribute to the semi-classical

formula (1.2.8) due to the exponential damping factor:

- 2
e S/g“h

Moreover, the above exponential damping factor
suggests that, if complex saddle points do indeed
contribute to the semi-classical evaluation of QCD,

then those with zero total action should provide a
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dominant contribution of roughly the same order as the
real perturbative vacuum. This idea was first suggested

by Dolan (1978).

Before these ideas can properly be put to the

test, two non-trivial problems have to be solved:

(1) The functional determinants of Gaussian fluctuations
about our solutions have to be computed. If there exists
a reformulation of the ADHMN construction for complex
solutions in 2+2 dimensions, then it should prove useful
in this problem. (cf corresponding problem for instantons

(Corrigan et al 1979, Osborn 1979)).

(2) Since the instanton gas approximation is clearly
inapplicable for saddle points of zero total action,

the full details have to be worked out of deforming

the functional integration contour in complex configuration
space, and of performing the integral over the appropriate

infinite dimensional moduli space of complex solutions.

Since we are ultimately interested in finding an
essentially two dimensional mechanism giving rise to
the QCD confinement phenomenon, let us briefly review
some of the progress that has already been made in
this direction, and make some suggestions as to how

the self-dual vortex solutions might add to this

progress.
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(a) Lattice Gauge Theories

It was shown by Wilson (1974) that a pure lattice
gauge theory with static quark sources is confining if

the expectation value of the loop correlation function

W(c) = X(HUR)
c

satisfies the 'area law':

Wlc)> n e 9B as A»w

where A is the area of a minimal surface spanning the
loop C. (x = trace for the fundamental (Wilson)
coupling). This gives rise to an asymptotically linear
interquark potential V(R) ~ oR as R ; ¢ is called the

string tension. Wilson showed moreover that all

lattice gauge theories (ie nonabelian and abelian) are
coﬁfining at sufficiently strong coupling, with

¢ v ln g? as g+ =. The confining phase of LGT is in
fact analagous to the high temperature disordered
phase of the corresponding lattice chiral model, the
string tension being analagous to the mass gap =
inverse correlation length of the 2-point correlation
function:

<x(UxU}‘,1) > v x-y 1/ Ix-y | »=
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The conventional wisdom is that nonabelian gauge
theories will be confining in the continuum limit if
there is no 2nd order phase transition separating the
confining strong coupling region from the asymptotically
free weak coupling region. The difference between
nonabelian and abelian LGT's should be that the
nonabelian theories remain disordered for all values
of the coupling, whereas, at weak coupling, abelian
theories should be in an ordered 'Coulomb phase' with
a perimeter law for Wilson loops. So, the main question
that has to be answered is, what are the excitations
that disorder lattice gauge theories? In particular,
why are nonabelian theories disordered at weak coupling,

whereas abelian theories are not?

These questions have been partially answered by
Monte Carlo simulations of SU(N) LGT's and chiral
models (see eg Ardill et al 1982, Creutz et al 1983,
Caneschi et al 1982, Kogut et al 1981, 1982, 1983).

For a fundamental (Wilson) coupling:

BFXF(U) = 8pTr U
a rapid crossover from weak to strong coupling behaviour
is observed for N=2, 3, whereas for N24 there is

lst order phase transition separating the weak and

strong coupling regions. This is however not deconfining
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- it just gives rise to a discontinuity in the string
tension. This phenomenon can be better understood by

considering the theory with adjoint coupling.
pr— + -
Bpxa(U) = 8, ((TxrU)(TTU") - Tr1))

In this theory, elements of the centre ZN of
SU(N) are effectively trivial, so the global group is
actually SU(N)/ZN. Monte Carlo simulations show that
there is always a 1lst order phase transition in these
models due to the destruction of ZN-monopole condensates

and thin Z -vortices, which are responsible for

N
confinement in the strong coupling phase. It should
be noted that, like the lst order phase transitions,

these topological objects are artifacts of the lattice

regularization.

In the mixed theory, with both fundamental and
adjoint couplings, the lst order phase transition
point on the BA—line forms part of a line of 1lst order
phase transition points extending towards the eF—line.
For N=2,3, this line terminates before it reaches the
BF—line, giving rise to the rapid crossover behaviour
of the Wilson model, whilst for N24 it terminates
after it has crossed the Wilson line, giving rise to

the lst order phase transition in the Wilson model.

Of course, it is still possible to continue round
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this line for negative BA, and thus connect the strong

coupling region to the weak coupling region.

The lesson to be learned from this is clear - the
fluctuations guaranteeing confinement at strong coupling
are not responsible for confinement at weak coupling.
The 1lst order phase transition line is associated with
a change of the confinement mechanism, which, at weak
coupling, must be due to fluctuations associated with

the nonabelian degrees of freedom of the gauge group.

(b) Instantons

The instanton contributions to the functional
integral have been calculated exactly for the 2-
dimensional €P" models (Eichenherr 1978). 1In the
GPl case, the k-instanton solutions yield an effective
partition function equivalent to that of a classical
neutral Coulomb gas of 2k particles at the critical
temperature T=1 where the pressure diverges (Berg &
LUscher 1979). This indicates that the dilute gas
approximation (DGA) is rather poor for this model
(it is in fact divergent). Four dimensional gauge
theories are expected to suffer from the same problem,
but unfortunately there is no corresponding exact
calculation of the semi-classical partition function to

test this hypothesis.
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Nielsen-Olesen vortices and 't Hooft-Polyakov
monopoles are, respectively, the instantons of the
1+1 dimensional abelian Higgs model, and the 2+1
dimensional Georgi-Glashow model. It has been shown
(using the DGA) that these give rise to confinement
in these models, essentially because of the restoration
of apparently broken gauge symmetries due to the
instantons' tunnelling between perturbatively degenerate
vacua (Coleman 1977, Polyakov 1977). Again, there is
no corresponding result for 4-dimensional gauge
theories - Yang Mills instantons decay far too rapidly
to affect the integral for large Wilson loops (Coleman

1977).

It has been argued, again using the DGA, that Yang-
Mills instantons are responsible for the rapid crossover
from weak to strong coupling in SU(2) LGT (Callan,
Dashen & Gross 1979). However, as remarked earlier,
this bhenomenon seems more related to the first order
phase transition line in the mixed action theory. In
fact, studies of mixed action lattice chiral models
(Kogut et al 1981, 1983) indicate that even models
without instantons have a rapid crossover - it just
happens that those models with instantons have a more

rapid crossover than those without.

The upshot of all this is that, despite some
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success in lower dimensional theories, there is very
little ewdence that instantons play an essential role
in the QCD confinement phenomenon. From our point of
view, this is not too disappointing - if complex zero
action solutions do contribute, they are certainly
expected to dominate the instanton contributions, and
it is hard to imagine how instantons (or merons) could
give rise to an essentially two dimensional confinement

mechanism.

(¢c) The Copenhagen Vacuum

The Copenhagen group has proposed that confinement
follows in QCD if the QCD vacuum is equivalent to a
statistical mechanical system of random colour magnetic
flux (Ambjorn & Olesen 1980, Nielsen & Olesen 1979,
Olesen 1982). This picture is inspired by a phenomenon
that occurs in solid state physics, namely, the large
distance dynamics of a d-dimensional system coupled to
a random magentic field is equivalent to that of the
(d-2)-dimensional system without the random field.

It is then argued, -heuristically, that the Wilson
correlation function of QCID, should behave similarly
to that of QCD,. A more explicit (but none-the-less
still heuristic) argument has been given by Nielsen &

Olesen, and it goes as follows.

The flux ¢ through a domain D is supposed to be

random in the sense that:
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<¢> = 0, <<1>2>D +# 0

and @ is uncorrelated from domain to domain. One
then considers a domain D, of area A, divided into

small uncorrelated domains Di° Then:

<¢2> = 2<¢2> o
p = ! p, = A
i i

so, using the central limit theorem to approximate the

statistical distribution of ¢ by a normal distribution:

p(®) = 1  exp(-92/0A)
v 1A

we obtain, for a curve C spanning the domain D:

W(C) = Tr P exp(% Apdxp) = et?
c

lfbD

= <W(C)> = <ei¢>D " f dQD e p(@D)

S W(C)> ~ e 9B

ie the area law. Perhaps the most severe criticism of
this argument has been given by Llscher, who pointed out
that it is by no means obvious why the minimal surface
spanned by C should be picked out. ‘However, it has

been argued by Olesen that, conversely, if one assumes

the area law, then it follows that some additive flux
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must be independently distributed over the minimal
surface spanning a Wilson loop. Thus, an important
constraint on any candidate theory of confinement along
these lines, is that it must give rise to random fluxes
on minimal surfaces, but not on non-minimal ones. Note
also that the additivity property of the flux is rather
non-trivial for nonabelian theories, but it might
follow if the vacuum is dominated by topologically
non-trivial objects, such as effective abelian magnetic

flux tubes.

Finally, another criticism that could be raised is
that the abelian-like flux has not been properly defined,
and no dynamical mechanism has been proposed for the
formation of magnetic flux tubes. Ambjorn & Olesen
have considered the possibility that ZN vortices give
rise to the desired dynamics. However, from the above
rémarks on lattice gauge theories, it seems, at least
to the author, that topological objects related to the
centre of the gauge group are only relevant at strong
coupling, and not in the weak coupling continuum limit.
Thus it is tempting to make the alternative proposal
that, via the semi-classical approximation, self-dual
vortices provide the dynamical mechanism for the
formation of the Copenhagen vacuum. In this case, the
flux is effectively abelian, with gauge group given by

a maximal torus in SU(N) singled out by a choice of
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R-gauge, and it seems at least plausible that, in analogy
with the instantons of the CP" models, the suitably
deformed semi-classical functional integral is

equivalent to the partition function of a random

vortex gas, with the required properties for confinement.
The main advantage of this approach, if it works, is

that is should give a well-defined analytic calculational
procedure for making non-perturbative predictions, such
as the ratio between the string tension and the

A-parameter.

Of course, until the difficult problems (1) & (2)
have been solved, and hard calculations have been done,
this idea must retain the status of a rather bold
conjecture. However, it is hoped that the conceptual
simplicity and the structural richness of the self-dual
vortex solutions will persuade physicists that it is
worth the effort to check whether these ideas are

correct or not.
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APPENDIX A

Properties of Modified Bessel Functions

(Abromowitz & Stegun, Watson)

We shall deal throughout with modified Bessel
functions In(z), Kn(z) of integer order. Note

the identity:

I (z) =1 (z), K (z) = K (z) (A.1)
n -n n -n

Power Series Expansions

Ny o(32)%K (A.2)

In(Z) = ( )
K=0y 1 (n+k) !

z
2

Small z Behaviour

I (z) = (32)°[1 + 22+ z! + oL
n n!  &(n+rl)1  32(n+2) !

(4.3)
Ko(z) v -lnz (A.4&4)

as z-0

K (z) v (a-D! z)"", (n>0)
n 2 2

Asymptotic Expansions (z-w):

/ZWZ 8z

In(z) N e? [1 - (4n2-1) + '.°1 , largz| < %

(A.5)
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Ko(z) ~ e ™ |1+ (4n2-1) + ... ], |argz| < 31
/22 8z 2
Generating Function:
z 1
F(e+2) @
e = 1 tfr (2) (4.6)
k=- ®
Integral Representations
" zcos 6 2T ke zcose
I(z) = décoske.e = dee” e
o 2T o 2m
(A.7)

Kk(Z) = J\mdu,coshku.e'zcoShu = Jnnggqekue°2COShu

Derivative Recurrence Relations

If Ln(z) is a linear combination of In(Z) and

(-l)nKn(z):

L)(z) ¥ nL (z) =L (z) (A.8)

n+l
z —



APPENDIX B

T8plitz Determinants and U(N) Group Integrals

Given a sequence (Gk; -w<k<w ), the associated NxN

T8plitz determinant is defined by:

det(G, )

k

This is precisely the form of detD

in the text.

¢, G, ..
-1 S Gy

6., ¢
-N+1-

encountered

A well known elementary property of T8plitz

determinants is the following:

det(XR‘kG2

Proof

det(Al-ng

-k

-k

detGl_ reC

kD

(B.1)
N-1
2
R S
AGy
G
OL
G
o
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_ -1.-2  -(N-1) ) N-1
= X "x T..e G, AGy r2G, TGy
2
G_; G, 126G,
¥ 2
' G, MG, %G,
. ° N~l
G—N+]. . )\ GO

and the result follows, after cancelling the factors of i

from the columns.
QED
Given F:U(N)~+C, define its U(N) group integral:

I(F) = [\dUF(U)
C

where dU is the Haar measure on U(N), ie the unique

measure such that:

du = d(uv) = d(VU), VVeU(N)

du = 1
U(N)
ie ie

Diagonalising U=T'AT, TeU(N),A = diag(e 1,...,e ),

and

the Haar measure is given by (Weyl 1939):

du = dT.dp(ei)

where

=

ie. -iei
I dBiA(e Lyace )

du(ei) =1
Nt i=1 5
w




N N )
= 1 il de. I 4sin 8. -6
NI i=1 —= k<t (k_2)
27 2

where A(xi) is the Vandermonde determinant:

= der* ) - 1 )
A(x) = et(xk ) = kH (xk-x£
<f

When F is invariant ie F(V'UV) = F(U), WU,VeU(N),

the dT integration is trivial, and we are left with:
I(F) = L[dp(ei)F(A)
Using these results, we can establish a remarkable
connection between T8plitz determinants and U(N) group

integrals.

Theorem B (Prasad & Rossi, 1980)

Suppose Gk is defined by:

2T . .
G, = \[ doe k% (et®) - %M dz.z5G(z, z%)
0 27 U(l) =z

where G:U(1)»C is defined by a power series:

Extend this to a map G:U(N)-M(N,€) defined by:

cu,ut) = g UuwH*
k,2 k,2



Then,

det (G

) = dU.detG(U,U")
aok J;(N)

(B.2)

27 N N N 1ei
=1 nde.. 1 4sin2,68,-96,,. 0 G(e )
N! 0 i=1—2'—;LT' k<t ( kz 2) i=j;

Proof

Using the integral rperesentation for Gk’ we have:

1

2T 161 leN
det(G,_,) = . déy...dog.Gle 7)...Gle THW(Oy,...,00)
27 27m

where

i(g-k)8

8.,) = det(e

W(Gl,c,., N

Since Gi are dummy integration variables, we can

rewrite this as:

det (G ) =
£

2t N N 1ei
-k z I de6. - G(e )W(eo(l)"
N

1
N! oeS,. Jo i=17—l i=1
kit

and the result follows from Weyl's identity:

T W(e ) = (e i)A(e i)

’ 9°°°96

N (B.3)

.2 _
= I 4 sin (ei 8

.. i)
i<j 3

°°’90(N)
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N>
M
(V3]
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In a power series expansion of equ (B.2), we

will typically have to evaluate integrals of the form:

1 - du.u_ ., ...u . ut .
LSRRI N S LR R U J;(N) *181 e pfn Y15

Writing U = eleV, VeSU(N), we have:

[a B

I _ J'z1T eei(m-n)a 4v. v
aj By - vy 6y A SU(N) @ By

Y Al vt

Gn]%n Y161 Yndn

(B.4)

Rules for calculating the latter SU(N) integrals
have been given by Creutz, 1977. The most elementary

of these is:

(B.5)
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