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ABS'::'rl.ACT 

Delayed fracture, slow crack growth and corrosion in sintered 

WC-Co alloys containing 6, 13 and 16% cobalt by weight, have been 

observed ~d evaluated at room te~perat~e in a variety of env~ro~ents 

including laboratory air, distilled water a~d dilute nitric acid. 

Data from strength tests and double torsion tests have been analysed 

using theories of stress corrosion and brittle ~racture, to obtain 

estimates of the stress corrosion parameter, n, which best describe 

the behaviour. 

strength data. 

A statistical method has been developed for analysing 

Observation of specimens in soak tests has shown 

corrosion to occur in some environments. Inspection of bend strength 

specimen fracture faces has indicated the source of fracture initiation. 

A simple, and reliable method of precracking we-co double torsion 

specimens has been developed. 
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1. ll\~::w:r:r:JC'I'IGN 

The object of this study was to observe and evaluate time 

dependent effects on the strength of t~~gsten carbide-cobalt 

(WC-Co) materials with particular emphasis on stress corrosion. 

This x~~ge of alloys has fo~nd considerable ~se in s~aping a~d 

forming tools and in wear resistant applications. So exte:::-.sive is 

their usage that even a modest increase in tool performance wo~l~ 

greatly increase the profitability of manufacturing industry (Lardner, 

1981) 0 Since the introduction of we-co materials, cutting speeds, 

for example, have increased by approximately an order of magnitude 

over those achieved by conventional cutting steels (Schwartzhopf,Kieffer, 

1960). 

To maximise performance, component behaviour must be well understood. 

However, such an understanding can rarely be achieved through experience 

gained from studies of existing usage. Invariably, tests on the 

materials from which the components are made must be performed in the 

laboratory, where individual factors influencing the behaviour, can 

be isolated and studied in depth. Only then is it possible to build 

up a comprehensive picture of material behaviour from which component 

behaviour can be reliably predicted. 

The success of WC-Co materials lies in their high strength, 

retention of hardness at elevated temperatures, and good wear properties. 

However, of equal importance to the production engineer is an estimate 

of the likely component life. To obtain this, the material properties 

must be studied in relation to time dependent factors - how strength 

varies with time and hence, the influence of such mechanisms as 

fatigue, creep, wear, ageinw,and corrosion. 

Another time dependent mechanism is stress corrosion. The 

resulting slow crack growth inducing delayed fracture has received 



2. 

r::'!l.c:"l attention in g::.asses ar..~ ca:r:-a:::~.cs (see, in :::aview, ~·! ac::::!J.ar.., ::1.9 74; 

1Hiederho:r-n,l974; Adams, Mcl\llilla."l, 1977) a."'l.d in metals (also in :-eview, 

Logan, 1966; Scully, 1971). However little is known of its effects 

in we-co materials. Searches through the literat11re fo:r data wh.ich 

mig~t indicate the presence of stress corrosive cechanis=s, yie:c i~formation 

which, firstly, is extre~ely limited, and seco~dly is, for t~e ~ost part, 

either contradictory or inconclusive. (A review may be ~ound in 

Section 3. 6). 

The first to investigate delayed fracture in WC-Co materials in 

terms of stress corrosion were Braiden et al (1977). Although a 

significant dependence of strength on rate of loading to fracture was 

detected at elevated teffiperatures, results at ambient temperatures were 

somewhat inconclusive, and, as a result, led to the study reported here. 

The effects of stress corrosion may be investigated using two 

distinct approaches. The first involves the measurement of strength 

degradation under the action of stress corrosive cracking, and the 

second, an investigation of the crack growth itself. By carefully 

controlling influential factors, which include applied stress, test 

environment, and temperature, throughout the duration of the test, and 

by analysing the resulting strength or crack growth data using theories 

of stress corrosion, estimates may be made of parameters characterising 

the behaviour. Since two approaches are available parameters obtained 

from each can be compared, thereby increasing confidence and reliability 

in observations and parameter estimates. A brief review of typical 

stress corrosion behaviour is given in Chapter 2. 

A test programme to investigate stress corrosive slow crack growth 

and consequent delayed fracture was therefore developed to highlight 

these features whilst avoiding, or taking into account influences from 

other factors which might cause misinterpretation of the results. 

0 



Obwio";,Lsly delayed i:rac~G:'.11.:re i~!i'..1ced by fatig11e ca~ he easi:;:.y avoicez, by 

ensu~ing that loads a~e not cyclic. However, identifying stress 

corrosion when say, corrosion independent of stress is also present, 

is not so easy. Further, the behaviour may be obscured by non-ti~e 

dependent factors, such as small changes in ~aterial corepositionc or 

specimen surface finish. In this respect an o~tline of general we-co 

behavio~r with particular emphasis on strength and fracture, is given 

in Chapter 3. 

One factor which cannot be avoided is the strength dependence of 

3. 

of we-co materials upon inherent flaws. Their random, and in most cases, 

unpredictable nature induces a degree of uncertainty into results. 

In consequence, analysis of delayed fracture requires both the use of 

fracture mechanics (Pook, 1970; Knott, 1973) to model the effect of 

flawsD and also a statistical approach to model their randomness (Weibull, 

1951; Stan:ley et al, 1973; Braiden, 1975). This is particularly 

necessary when effects of delayed fracture are expected to be little 

larger than random variations due to material flaws, and as such, are 

likely to be obscured. The delayed fracture model and the methods of 

analysis are developed in Chapter 4. 

In this wor~, the primary concern has been the influence of applied 

stress and its variation with time in laboratory air. In addition, 

effects of different environments, namely distilled water and dilute nitric 

acid, have been investigated briefly. 

temperat'IU!l'e. 

All tests were performed at room 

Throughout this report, the term "strength" refers to the stress, 

calculated using linear elastic continuum mechanics, applied to a 

specimen at the point of catastrophic failure. No accoWlt is taken of 

any microstructural features such as flaws or cracks. 

stated, the strength is measured in bending. 

Unless otherwise 



2. STRESS CO:.i.R.OS::':ON 

2.1 Introduction 

Stress corrosion is discussed in terms of its effects on strength 

and lifeti~e, factors inflQencing the degree of delayed fract~re, 

mec~anisms, slow crack growth ~~d mathe~atical ~odels representing the 

behaviour quantitatively. The review provides details of expected 

behaviour, investigatory approaches and analytical techniq~es for use 

in the development of a test programme to study stress corrosion in 

we-co materials. 

The discussion is based to a large extent upon reports of tests 

on what are traditionally considered more brittle materials, such as 

glasses and ceramics. It is from their behaviour, however, that 

modern stress corrosion theories were developed. Even so, the theories 

appear to model relatively well various types of slow crack growth for 

which widely different machanisms, some based on more ductile behaviour, 

have been proposed (Evans, Langdon, 1976). 

2.2 Effects of stress corrosion on strength and lifetime, and factors 
influencing the degree of delayed fracture 

Grenet (18~9) first observed that glass which had supported a 

constant load for some time, suddenly failed without warning. Since 

then, this delayed fracture phenomenon, dubbed "static fatigue" at an 

early stage (although now more correctly called stress corrosion) has 

been found to be controlled by three major factors - applied load, 

environment and temperature. 



M~ch eaEly work involved the appl!cation o: const~~t loads 

until failure occurred. Experiments on vario~s glasses and porcelain 

(BakeT, Preston, l94S; Gurney, Borysowski, 1948) revealed that the 

ti=e to fractuze decreased w~en s~cime~s were subjected to a ~ig~er 

constant loacllo 

Work on similar materials in which the load was increased at a 

constant rate showed that the strength was greater at higher loading 

rates (Kropschot, Mikesell, 1957; Creyke, 1968). 

Thus, in general, the strength diminishes as both the magnitude 

of the load and period of application prior to failure are increased. 

2.2.2 Environment 

The strength and lifetime under prolonged loading were also 

found to be influenced by the test environment. A major factor 

appeared to be the quantity of water present. 

From tests on various glasses in vacuum (Baker, Preston, 1946) 

including heat treatments to remove absorbed, or surface water (Gurney, 

Pearson, 1949) and tests in a r~~ge of relative humidities (Mould, 

Southwick, 1951-61) and liquid water (Baker, Preston, 1946), the 

strength was found to decrease as the water content in the test 

environment was increased. The materials were also found to become 

more susceptible to delayed fracture. 

2.2.3 Temperature 

The test temperature was also found to be influential (Vannegut, 

Glatbart, 1946; 'Kropschot, Mikesall, 1957) although the relationship 

between strength and temperature was not simple. The strength reached 

0 
a minimum at around 200 C for the glasses studied ~~d increased as the 
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fracture was more ~renounced when the stre~gth was low. 

These results were corroborated by Proctor et a~ (1967) who 

suggested that twooech~~is~ were ~~asent- a thermally controlled 

interaction bei..-waen material a.."ld e:n.viro!:'...zent 9 li::::li tec1 by tne ava:llabili ty 

of 't'tater both in t!~e envi:ronm.ent a..n.t! absoJrbedl in the material. They 

also noted that at high temperat~s ( > 200°C) &"l ad:c1i tic:r:al factor was 

present, namely a chemical change in the material. 

2.3 Theories and models of stress corrosion 

Many theories have been proposed to explain the mechanisms of 

stress corrosion ranging from the early theories of Orowan (1944); 

Murgatroyd and Sykes (1944, 1947); Taylor (1947); Gurney (1947); 

Stuart and Anderson (1953) involving viscous pockets of material within 

an elastic matrix, rearrangement of atomic lattices and environmental 

corrosion, to the modern theories of Weidmann and Holloway (1974) and 

Lawn (1975) incorporating concepts of limited plastic deformation, and 

atomically kinked cracked fronts. However, perhaps most widely adopted 

for practical usage are the theories of Charles and Hillig (1958, 1962). 

Charles (1958) proposed that a thermally activated chemical reaction 

takes place at the tip of an atomically sharp crack, the reactants being 

the material at the tip and a corrosive species in the environment. 

Further, for stress corrosive crack growth to occur, the material at 

the tip has to experience tensile stresses tending to open the crack, 

although magnitudes are less than the critical level for catastrophic 

fail"~JZe. The reaction br~aks material bonds revealing new sites for 

stress corrosion, and hence elongates the crack. 

The longer this relatively slow crack propagation is allowed to 



7. 

conditions for catasto?hic failu=e are reached. Hence the cor~es~ondir~ 

a~plied stress at this ~oint, and the~efo~e the fracture strength as 

me&sU?ed using continu~ mechanics aTe smalle~. Thus all fac~ors which 

tend ~o increase t~e rate of chemical reaction be~ween material ar.j 

enviro~~ent, s~ch as higher applie~ s~~esses for longe~ d~ations, greater 

concentration of corrosive species in the enviro~ent, and higher 

temperatures, increase the rate of crack growth and hence cause reductions 

to strength and lifetime. 

Charles attempted to express the behaviour mathematically. Relating 

the velocity of sub-critical crack growth, v, to the crack length, a, 

the critical crack length, ai' an activation energy term, A, the gas 

constant, R, the temperature , T such that 

v = + 
-A/RT 

where ~ , p and n are constants and k is a term representing stress-

i~ependent corrosion, and by assuming a simple relationship to hold 

between v and the tensile stress,~ , at the crack tip, such that 
m 

v = 

where ~ is a constant, he was able to develop simple equations relating 

strength or lifetime to test conditions. 

For example, the mean lifetime, t, of specimens held under a 

constant applied stress, c:i , untiJi. failure, is given by 
c 

log (t) = -n log(or ) 
c + constant 

Also the mean fracture strength, ~f of specimens loaded at a 

constantly increasing rate of stress, &, is given by 

1 
(n+l) log (&) + constant 

2.1 

2.2 
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an. i!x.porta."'lt pa:!."t in specifyir..g the Cl.egree of stress co::r::rosicn. Charles 

compared values of n (now co~only called the stress corrosion par~eter) 

obtained f::ro~ cor.stant st~ess, ar.m constant stress rate tests c~ soda-li~e 

g!ass specime~s in satu::ratecl wate::r va~o~::r at reo~ te~e::rat~e a~~ fou~d 

them to be in good agreement (n ~16). 

Charles and Hillig (1S62) aevelopedthe tneo::ry Z~the::r and de~onstrated 

the possible existence of a set of limiting conditions below which stress 

corrosion cracking vrould not occur. This supported the experimental 

findings of Mould and Southwick (1959-61). 

2.4 Stress corrosive slow crack growth 

A major step forward in the investigation of stress corrosion came 

with the development of test techniques involving large artifically 

induced cracks, for fracture toughness measurements. Adapting the 

techniques to allow observation of slow crack growth, early workers in 

this field (Wiederhorn, Bolz·, 1967, 1970; Sclh.onart et al, 1970; 

Kies, Clark, 1970; Mostovoy et al, 1971; Carter, 1971) demonstrated 

that when a material was tested in a particular environment, a unique 

curve could be achieved experimentally relating crack tip velocity to 

a parameter incorporating both the applied load and the crack length. 

The shape was similar to that predicted theoretically (for exareple, 

by Shand (196l)}from the theories of Charles and Hillig (1958, 1962). 

The commonest parameter plotted against the crack tip velocity, v , 

is the plane strain stress intensity factor~ 

KI• in the crack opening mode I (see Knott (1973)). It is related to 

tlle applied\ stress, c:r, a."'ldl the crack length, a, by 



K_ 
.iL 

2.3 

where Y is a geo~etrical factor associated with the test technique. 

9. 

The general shape of t:'le c::.:r"ve oay be seen o:n the K
1 

- v diag:ra;n shoon 

sc~ecatically in F~gure 2.1. T:~ee regie~ are evident ly~~ between 

two limiting values of K,. The lower Jl.ioit Jrepresents a stress corrosion 
.:l. 

limit, K , below which slow crack growth cannot occur (see Section 2.3). 
!0 

The u~per limit is the cJritical stress intensity factor KIC" In between, 

v increases with K in region 1, remains a~proximately constant during 
I 

further increases of K
1 

in region 2, and increases again with K
1 

in 

region 3. 

Wiederharn(l967) explained the three regions in the following way. 

In region 1, crack growth is controlled by the rate of chemical reaction 

between the material at the crack tip and a corrosive species in the 

test environment. In region 2, crack growth is limited by the rate at 

which the corrosive species can be tJranspoJrted to the crack tip. Crack 

growth in region 3 is ~robably controlled by a combination of mechanical 

tearing and chemical action. 

Diederhorn found that for glass specimens tested using the double 

cantilever beam technique, general levels of crack velocities in regions 

1 and 2, increased as the amount of water in the test environment rose. 

Further work by Wiederhorn a.rW Bob (1970) deJ::l~nstrated a similaX' effect 

when the temperature was raised (up to S0°C). ' These results support 

the findings from strength tests discussed in Section 2.2. 

Since these first studies. many materials have been tested in a 

simi::Le.r way using various test config1.lll'ations. K - v diagrams (or their 
I 



c~bi~e (Ev~~s. Lange, 1975; Ketchie~. Tressler, 1975; M~e~zy, Tressler, 

~;977), si~ico::1 ni tz-i..C.e (Eva,"'ls, IJ!Jiec'le::-horn,].974), a.J:.::..r.::r.ir.a (Evans, :973) 

1974; Yo~~g. Beav~ont, 1976). T~ey all dis~lay one or more of the 

regior~ shc~m in Figuze 2.2. 

2.5 Use of the K
1

-v diagram to p~edict strength and lifetime 

The uniqueness of the K
1

-v curve provides a useful basis for 

quantitative representation of stress corrosion behaviour. Evans (1972) 

proposed that each region be expressed in the form 

v = AXn 
I 

2.4 

where A is the intercept, and n the gradient of each region when drawn 

as a straight line using logarit~io axes. 

Using Equation 2.4 a.n.dl the fx-acture mechanics relationship for K
1 

given by Equation 2.3, eq~,uations may be foJrmuJLated relating strengths 

and lifetimes to various types of loading and test conditions. 

The task may be made easier by assuming that for simple types of 

loading, regions 2 and 3 of the K
1 

- v diagram can be ignored. High 

voloci ties in these regions irtd.icate that the specimen passes through 

to the critical level for catastxophic failure, so quickly that the 

extent of crack growth is negligible. The effects of regions 2 and 3 

have been described by Evans and Johnson (1974, 1975). 

Thus, considering region 1 alone, Equations 2.3 and 2.4 cay be 

combined and integrated to form the expression 
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and t = t ·? wl:eZ'e 

to the initial application of stress C7 , wh:'.ch is a function o:": -:, a.nldl f 

the final application, not necessarily representing the point of failure. 

One example of si~ple loading is a constant stress rate test, where 

t2e stress is raised at a constant rate, er , until the specimen fails, 

at a stress, '1 . Equation 2.5 may be used to show, to a close 

approxi~ation, that 

= r 2 (y (n + 1) ] l Ayn(n-2)ai(n-2)/2 

1/(n+l) 

2.6 

The various elements of Equation 2.6 may be seen clearer in its 

logarithmic form 

log ( cr.f ) 1 
= --=--(n+l) 

1 1 [ 2(n+l) J -- og 
(n+l) Ayn(n-2) 

2.7 

The first term on the right-hand side of Equation 2.7 shows the 

dependence of strength upon the stress rate, the second indic~tes the 

brittle dependence of strength on the crack length, and the third is a 

constant scaling factor. 

Applying Equation 2. 7 to batches of specimens failing at a mean 

stress of OJ under stress rate 6r , and assuming that the mean initial 

crack length, a. is the same for a!l batches 
]. 



:~g = 
~ 

1 "\., ::.cg (&) + ccr..s·tar:~ 
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2.8 

Likewise, t~e mean lifeti~, t,of a batch of specimens tested at 

a c~ns~an~ st~ess, 

Leg (t) 

c: 
c 

is given by 

-n llog {cr ) + consta:c-:: 
c 

2.9 

Eqwatio~s 2.8 and 2.9 are exactly the same as those de~ived by 

Charles (1958) (see Equations 2.2 and 2.1 respectively in Section 2.3). 

7.2 0 

These equations not only permit the prediction of strength and lifetime, 

but conversely allow estimation of the stress corrosion parameter, n, from 

strength tests for comparison with estimates from crack propagation tests 

using a large crack specimen. 

There are few reports of both approaches being applied to the same 

material. However, Evans and Johnson (1975) found good agreement between 

n - values obtained from stress rate tests and double torsion crack 

propagation tests on soda-lime silicate glass. In contrast, tests 

performed by Davidge et al (1973) on alumina gave quite different n-values 

from each type o1 test - n = 21.5 from bend strength tests and n = 30-60 

from double torsion tests. 

At present, the cause of this difference is unknown. However, 

strength tests and crack propagation tests are fundamentally dissimilar 

in a number of respects. Firstly, the crack size and extent of 

cracking are considerably greater in crack propagation tests. Secondly, 

crack growth in crack propagation tests is effectively in one direction, 

whereas in strength tests it is likely to be three dimensional. Thirdly, 

there may be a need for cll:'ack initiation prior to propagation in 

stll:'ength tests, whereas crack gl'owth in crack propagation tests is 

invariably fX'om an existing sharp crack -Davidge and Tappin (1968) have 



13. 

!azge c~ack techni~ues used fo~ frect~~e toug~~ess measurements do not 

a:I .. we.ys give ccmpa':'able res:nl±s when a~plied to the s~e ma:terial 

2.6 S~a:'y 

St~ess co~~osion is a thermally activated checical reaction between 

the material and a corrosive species in the environment, occurring at 

the tip of a crack subjected to tensile stresses tending to open it. 

The resulting slow crac~ gr~th, at a level of stress intensity factor 

less than that required for catastrophic failure, reduces the continuum 

strength of a specimen and its lifetime. 

Major factors influencing the degree of stress corrosion, and hence 

delayed fracture, include the applied stress, the test environment 

including temperature, and the variation of these with time. 

Experimental evidence of stress corrosion may be obtained using 

two approaches. Firstly, variations in strength and lifetime are 

evident from traditional bend tests. Secondly, recently developed large 

cracktechniques have enabled slow crack growth to be studied directly. 

Data from both strength tests involving simple t~~es of loading, 

and the K
1

- v diagram obtained from crack propagation tests may be 

analysed to provide estimates of the stress corrosion parameter, n. 



3.1 Introa~ction 

The properties of WC-Oo ~atexials ~e discussed with particlllar 

emphasis on s~Tength, fracture a~d mechaniscs of failure, ar.d tt.e 

T~e l~~~ted i~oxocation available on delayed fracture in 

we-co n:.aterials is @.lso considered. 

The review provides details of the general behaviour of WC-Co 

materials and indicates fa.otors to be controlled in the test programme 

so that their influence does not obscure any delayed fracture effects. 

3.2 Factors influencing the strength 

Factors influencing the strength of WC-Co alloys include the 

composition and structure of the material, the temperature at which 

the tests are performed, and local factors such as material flaws, 

icpurities and residual stresses in the specimen. 

Material composition and grain size 

The major constituents of we-co materials aTe a hard cer~ic 

granular phase of tungsten carbide (WC), set in a softer metallic 

matrix of cobalt (Co). In general, the materials are specified by the 

cobalt content (either by volume, V or by weight, W ) and the mean 
Co Co 

we grain diameter, ~c· Their mechanical properties are controlled by 

the manufacturing process, and to some extent by subsequent machining. 

At a constant value of ~~ the strength increases with Vco until 

a maximum is reached. Further increases in VCo cause the strength 

to decrease. A similar variation is observed when VCo is held constant 

and ~C increased; again there is a particular value of ~c for optimum 

St!l'engtho The interaction between these two factors is such that the 

value of VCo required to maximise the strength depends on the value of 



Atte~ts have been ~a~e to find a single paxaxeter characte?ising 

the material which displays a uniq~e ~e:ationship wit~ the strength. 

Althoagh so~e degree of 

correlation appears to ex:.s·:: for low ACo' t:·l.is is not apparent fo;r higher 

val\.Zes. ReJre, a reJI.atio:n.ship proposed! by Druckel' (1964) seen:.s o:;ore 

s~itable, in which the strength is related primariay to d . 
we. 

3.2.2 Temperature 

The effects of tempel'ature on strength are fairly similar for 

all commercial gr~es of we-co. As the te~perature is raised above 

ambient, the strength remains relatively constant (Platov, 1960) or shows 

a slight increase (Kreimer et al, 1955) up to a transition temperature, 

the level of which tends to decrease with increasing V . 
Co 

Beyond this, 

the strength drops rapidly. The transition temperature is typically 

0 0 
between 200 C and 600 c. 

3.2.3 Microstructural factors 

Microstructural factors range from large holes or pores, 

trurough impurities and phase boundaries, to microscopic "flaws" such 

as dislocation pile-ups. 

Porosity is present in all WC-Co alloys, although to a ~~ch lesser 

extent in hot-isostatically pressed materials than in sinteredl materials 

(Lardner, 1974). 

Impurities are of two main types. The first are "foreign bodies" 

introduced with the starting materials, or from the surro~ndings during 



major constituents, and originate pri~arily from the manufactuxing 

process. These include free carbon, the embrittling eta phase, and 

tungste~ dissolved in the ooba~t pnase. 

to so;::e ex~en.t (S:..:z:L~i, K::;.:Oota, l96S; Ueda et ~l, I.977a; Suz-.::.ld et 

al, 1978). 

Phase boun~ies and microsco~ic fla~s have received considerable 

attention in the search for a fracture model. Their influence on 

crack initiation andlpreferred paths of propagation a.:re discussed in 

Section 3.5. 

The general effect of all the local factors listed above is to 

attract stress concentrations around them. Since commercial grades 

of we-co materials do not contain sufficient dislocation mobility for 

significant stress relief, local factors or flaws, have a considerable 

influence upon the site of initial failure and the fracture strength. 

The wide range of types of flaws and their generally random size, shape, 

orientation and distribution through the material induce a correspondingly 

wide variability in strength. Employing Weibull statistics (see Section 

4.2) to model the variability, C~ermant et al (1977) found that the Weibull 

-
modulns, m., increased both with increasing veo' and decreasing '\rc (a low 

value of m indicates a wide variability in strength, and hence a strong 

dependence on flaws, or a wide range of flaw sizes). 

The influence of flaws introduces two additional factors affecting 

the strength - specimen size, and surface finish. As specimen 

dimensions increase, the strength tends to decrease (Gurland, 1961); 

a bigger critical flaw controlling failure is more likely to be found 

in larger specimens. A decrease in strength is also apparent with 

increasingly severe surface finishes (Gurland, 1961; Chermant et al, 1977). 



one which in tu~n is better than a sp~k eroded surface. Again the 

critical flaw is likely to be l~ger wi~~ roug~er su~face finisces. 

3.3 Factors influencing ~he fractUEe t~~gruness ~~d its meas~re2ents 

The ea~liest ~e~ort of fractu~e toughr.ess ~easuremer.ts in w~-Co 

mate~ials is by Ke~~Y (1911). 

inducing precracks with a row of Knoop indentatio~s across the width 

of the specimen. However, do~bts have been expressed (Inglestrom, 

Nordberg, 1974) on the validity of the method. of preerac~ing ~ince 

indenting, in addition to introducing small cracks, also induces large 

residual stresses which may influence subsequent pr~agation. The 

method is also limited in the grades of material that may be studied, 

because cracks ~e not formed ~ound indentations in large cobalt 

content alloys at room temperatures. 

In ~~ attempt to overcome the problems of initiating a sh~p 

precrack, Chermant et al (1974,1976) investigated crack propagation 

from notches cut with diamond wheels of varying thicknesses. However, 

the apparent values of fracture toughness decreased with notch root 

radius, until a certain value was reached below which no further decrease 

was observed. The low level was also achieved using sp~k eroded 

notches, prompting the authors to suggest th~t such notches satisfactorily 

represent a sharp precrack. This evidence led Pickens and Gurland (1978) 

and Nakrunura and Gurland (1980) to use a similar technique in their own 

investigations. 

Murray and Perrott (1976) however, found that upon loading double 

torsion specimens with spark eroded notches, the load reached a high 

level which, after the start of crackp~opagationdropped rapidly to a 

lower level. The authors proposed that the high level represents crack 



in~tiation, necessaTy beca~se tee s~a~~ e~ode~ r.otch was no~ i~diately 

suitable for crack propagation. 

A further problem associated with fracture toughness tests using 

spark eroded notches as al ternat::.ves to p:rec:racks is that ini t:~al crac~t 

growth cc.c:Rrs through a l:'egion of mateJria]. seveJrely darr.a,ged 0y sparl'h 

erosion (Al~ond, Roebuck, 1978). Since this region is un:representative 

of the bulk, estimates of fra~ture toughness so measured are obviously 

suspect. 

Greater reliability, then, should be accorded to the values of 

fracture toughness obtained from techniques involving a sharp precrack. 

Lueth (1974) induced precracks into double cantilever beam specimens by 

opening a machined notch with a steadily advancing wedge. Berry (1975, 

1976) also used a wedge to precrack notched bend specimens, although 

he applied the precrack load using an impact technique. To retain the 

crack inside the specimen, he added compressive loads to the specimen 

sides, tending to close the crack. This technique was used by 

Inglestrom and Nordberg (1974) to precrack compact tension specimens. 

However they found the apparent fracture toughness to be dependent 

upon the magnitudes of the side loads; below a certain magnitude 

the apparent value remained constant but above that level, it increased. 

Why this should happen is still unclear, although the compressive stress 

field may, in addition to halting the crack within the specimen, produce 

a crack front which is unsuitable for immediate propagation - some 

re-initiation may be necessary. 

Recently Almond and Roebuck (1978) have returned to the Knoop 

indenting methods of Kenny (1971). They improved the technique by 

re~oving material containing residual stresses induced during indenting, 

by diamond grinding (annealing proving unsuccessful) and induced cracks 



in cc~a:t ~l~oys by ~e~for~~cg the ope~a:ion 

in liquid nitrogen. 

Despite the vaxious test config1i.ll;rations, pJrecracking techniques 

ar.d their relative, suita~i!ity, similar trer.ds have been observed. 

FJracture toughness, KIC increases bo~h with co~alt content, vco• 

and n::ea."'l WC grain size, dWC (Inglestro::J, NoxC:.be:r.g, 1974; Ch.e.rman~ et 

al, 1974, :ll.976). Unlike the variation in fracture strength, K 
IC 

continues to rise at high values of Vco and ~c· Further a unique 

relationship between the mean free path in the cobalt phase,A , and 
Co 

the critical strain energy release rate, GIC where 

= (1 - . '&2) 
E 

and E and 'IJ are Young's modulus and Poisson's ratio respectively, has 

been proposed by Murray (1977) of the form 

where Ot. and fl are constants. The relationship fits well the 

3.1 

experimental data obtained by Murray and others (Lueth, 1974; Pickens, 

Gurland, 1978; Nakamura, Gurland, 1980). 

3.4 Crack resistance 

The uncertainty of predicting fracture from strength data led to 

the development of large crack techniques and the use of fracture 

toughness as a comparative measure. However, the experimental 

difficulties encountered in such tests have resulted in the search for 

another alternative. 

When an indentor is pressed into some materials such as glass or 



the basis fo~ Ker~y's p~ec~acking techni~~e discussed in Section 3.3. 

Palmqvist (1957) proposed that the total length~L7 of cracks 

emanating fro~ the corners of a Vickers py~amid ir.dentation, prod~ced 

u:a.d.er a load, P, \.'as ~ei.atecil to the rresistance of the materrial to 

czoacking. He defined t~e Palmqvist toug~ness, or crack zoesis~ar.ce, 

W, as 

W = P/L 

Workers (Vis ~anadham, Venables, 1977; Peters, 1979) finding 

experimentally that W increased with A for we-co alloys containing 
Co 

3.2 

less than about 16% cobalt by weight, proposed that a linear relationship 

exists of such a form that when combined with Murray's (1977) G
1

G- A Co 

relationship (Equation 3.1) demonstrates that W is proportional to o
1

C. 

If the proposal can be accepted then the test provides a simple 

method of obtaining estimates of fracture toughness. However, great 

care has to be taken in preparing the specimen surfaces for inden.tation 

since residual stresses influence the value of W (Exner, 1969; French, 

1969). 

3.5 Mechanisms of failure 

The thickness of cobalt binder film separating two adjacent WC 

grains depends both upon the cobalt content, V , and the we grain 
Co 

-
size, <\vc· At large VCo and dWC' the film thickness is relatively 

large and capable of significant plastic deformation. Yielding tends 

to transfer load from the matrix to the grains, and assuming the 

preferential crack path to Toe transgranular, makes grain fracture mdre 

likely. (Gurland, Norton, 1956). This supports the findings of 



D:r'J:.citex ~:1..36.!.::) w:-:o p.:roposetir tbat :::re.Ot'1·J:-e of n:'.g!:l v and ~~ r'l g:rat;es co d-. 

a::1.c.'l. hence their strength was inf:'.uenced al2ost entirely by crack 

initiation in we grains and! hence C\.t\lco 

As the film thic~ness decreases (thxough a reduction in V or · Co 

~iiJC) ~ the yield. strength of the fil.'ll increases beca';;lse of the pxoximi ty 

of the hard we grains. Hence JLess plastic deformation occurs prior 

to transgranular fracture. (GurJLand, Bardzil, 1966; Gur!and, Norton, 

1956) 0 

With further decreases in film thickness, the cobalt appears to 

play a much lesser part in controlling fracture. The binder may 

become discontinuous resulting in · contiguous grains and areas devoid 

of material. These areas of weakness cause a transferal of the type 

of pre~erential fracture path from transgranular to intergranular 

(Gurland, Bardzil, 1955). 

Early workers, referenced above, suggested that a carbide skeleton 

may be present in low VC0/~C alloys allowing crack propagation to 

proceed through the specimen with the minimum of crack blunting by the 

softer cobalt phase. Recent work by Lee and Gurland (1978) indicated 

a high probability of such a skeleton existing. 

To summarise the corresponding variation in strength and fracture 

toughness, the types of fracture path delineated by Chermantand 

Osterstock (1976) have been used. They proposed four types -

transgranular cleavage (which they labelled) W/C; intergranular 

fracture between conti~ous grains, WC/WC; intergranular fracture at 

matrix - grain boundaries, WC/Co; and intergranular fracture completely 

within the matrix, Co/c.o. 

In low cobalt alloys where the binder film thickness is thin, 

fracture is predominantly of the WC/WC type through areas of weakness. 



Consequently strength an~ f~acture tough~ess are both low. 

As the binder film thickness increases, areas of we~~ness 

disappear, cobalt ~egins to to~ghen the ~aterial and W/C fracture 

beco~es core evident. Fai~~re is gcverned by a co~bir-ation o~ the 

~lastic~ty of the cobalt filn and its thic~ness, ar.d the increase 

in yield strength of tt:e filo. imposed by the p:roximity of hard 

Ca.Jr'bide grains. The corepromise of constrained plasticity produces 

the highest strengths and a high fracture toughness. 

With large binder thickness, W/C fracture is seen less frequently. 

Instead, a large proportion of crack growth is of the WC/Co and Co/Co 

type, demonstrating that for fracture to occur, the crack must 

necessarily pass through a considerable volume of cobalt, because 

the binder thickness is large, with little or no grain contiguity. 

Since a large amount of energy is required to propagate a crack 

through the cobalt region, the fracture toughness is very high. 

Conversely the strength is relatively low. But in this case the 

criterion appears to be crack initiation rather than propagation; 

substantial yielding of the matrix passes load to the grains making 

initiation of the W/C type more likely, and both reduce the load 

bearing ability of the material. 

A mathematical model has been developed by Murray (1977) to 

describe the relationship between critical strain energy release rate, 

GIC' in the crack opening mode I (see Knott (1973)) and the mean free 

path in the cobalt matrix, A co· He proposed that fracture is 

controlled by plasticity of the cobalt phase at the crack tip, even 

for extremely small binder thicknesses. Further the plasticity is 

constrained by the proximity of hard carbide grains such that the 



matrix yield streng-;~'1 is consiC.ezoab::.y higheX' tha,.J. t:1.a'.: fo-.~nC. in s:'-ngle 

phase cobalt material. Murray found that the matrix yield strength 

was constant foX' a.:n grades of we-co studied and approxirnate2.y eq,u.al 

to t~ice the theoret~cal shear stressp ~ th• 

Renee, introducing terms to represent inteX'nal stresses, ~ 
Co 

in the matrixp and rcughness factor, ~ to describe the deviatoric 

nature of crack growth~ Murray derived a relationship between G and 
IC 

A such that 
Co 

where E and V are Young 9 s modulus and Poisson 9 s ratio respectively 

for the material. 

The intercept is considered to be influenced by the surface energy 

of cobalt, mode II and III crack growth (see Knott (1973)) and slip at 

Co-we interfaces. 

Thus, to summarise, the fracture behaviour of WC-Co materials may 

be thought of as a complex mixture of brittle cracking and constrained 

plasticity, the degree of each being dependent upon the composition and 

structure of the alloy. 

3.6 Delayed fracture and slow crack growth 

Delayed fracture has been investigated in WC-Co materials both 

in respect to fatigue (for example, Dawihl,l941; Kreimer et al, 1958; 

Hara, Yazu, 1968; Evans, Linzer~ 1976) and high tem~erature creep 

(for example Ueda et al, 1975; Suzuki et al, 1977a). However, reports 



of behav~our which might be caused by st~ess corrosion are scarce. 

Of these, most involved the measurement of bend strength in ambient 

conditions under cifferent rates of loading. So~e cannot be 

considered because ether delayed fract~re cechanis2s may heve been 

present. In this respect, high te~erature work has to be discarQed 

because of the possible influence of creep (Ueda et al, 1977b,JL977c; 

Suzuki et al, 1977b; BraideD. et "al, 1977) or toughening through 

crack blunting (see work on Si~N4 by Evans andWiederhorrll974)). 

The remaining reports are by no means consistent. Gurland (1961) 

applied three loading rates (6, 600, 6000 lb/sec) to WC-10% Co 

specimens and found no influence on the strength. Conversely, Smaglenko 

and Loshak (1973) found considerable rate effect. Applying deformation 

3 
rates between 0. 5 and 5 x 10 mm/sec to alloys containing 6-25% cobalt, 

they observed a significant increase in strength with deformation rate 

in all but the 6% cobalt alloy. The change in strength with deformation 

rate increased as the cobalt content became greater. 

The rate effect noticed by Knotek et al (1978) was not as straight-

forward. The strength tended to decrease as the rate was raised, 

until a minimum was reached. At higher rates, the strength began to 

increase again. Doi et al (1975) however, recorded a rise in strength 

with crosshead speeds up to 10 mm/sec, above which the strength dropped 

rapidly. The drop was more pronounced in large grain alloys. 

Scanning electron microscopy revealed that low rate fracture surfaces 

showed a preference for crack propagation along Co-WC boundaries whereas 

at high rates, grain cleavage and crack nucleation at the boundaries 

of contiguous grains were evident. The authors explained this 

phenomenon in terms of embrittlement at high strain rates eaused by 



25. 

the tir:e bet'f!een ini tia.l 1oat1 a~plication and :::ailu:re being so short 

as to limit the extent of stress relieving plastic deformation. 

Braiden et al (1977) specifically set out to investigate delayed 

fracture in WC-Co materials in terms of stress corrosion and tzsed 

~any of the concepts and techni~ues developed for use on other ~ateria~s. 

Initial tests on WC6% Co specimens under crosshead rates of O.J05, 0.05 

and 0.5 mm/min proved inconclusive; the authors pointed oat the 

difficulty of drawing reasonable conclusions because of the scatter 

of strengths in any one test case, caused by the brittle dependence 

on materials flaws. They calculated the Weibull modulus for the 

variability in strength to be approximately 9. 

To investigate further, Braiden et al employed a form of stepped 

loading used by Davidge et al (1973) for tests on alumina (details of 

this type of loading are given in Section 6.3). The tests provided 

evidence of delayed fracture during periods of constant load, and 

data which, when compared with results from rate tests, produced an 

estimate of the stress corrosion parameter, n, of approximately 200. 

Similar tests were performed on WC-167£o specimens, but although 

delayed fracture was observed, insufficient data were available for 

conclusions to be drawn. 

Braiden et al also attempted to study slow crack growth in WC-Co 

materials using the double torsion technique. However tests proved 

unsuccessful because of the difficulties encountered in precracking the 

plate specimens - a precrack once initiated, travelled rapidly through 

the complete specimen. The authors suggested that such rapid 

propagation indicated a steep slope on the K
1 
-v diagram and hence a large 

value of n - which was in agreement with their strength test results. 



Almond et aJ. (;.976) foL~:c.d. s::.ow c::cac:t g::corYth'\1l'hen WC-6% Co speci:::c.ens 

containing pyramid indentations with cracks emanating from each corner 

(see Section 3.4), were exposed to hydrogen fluoride (HF) vapour. 

Prolonged ex~os~xe caused fl~~es to brea~ away from around the 

indentation. The authors proposed that the phenomenon was stress 

corrosive since crack enlargement and flaking only occurred when the 

residual stresses, introduced by indenting, were left in specicens 

during exposure to HF vapour; if the residual stresses were re~oved 

by annealing, crack growth was not observed. However annealing may 

also have caused crack blunting, which would tend to inhibit further 

crack growth. 

Further evidence of slow crack growth may be present in the work 

of Murray (1977). He produced a diagram of load against time for 

double torsion specimens with spark eroded notches loaded at a constant 

crosshead speed. The load rose initially to a high level, when crack 

growth began, reducing the load to a lower level. This remained roughly 

constant for a short while before dropping to zero as the crack emerged 

from the specimen. Murray proposed that the high level of load 

represented that required to induce crack initiation and the low level, 

that for rapid propagation and hence representative of the critical 

conditions for catastrophic failure. However, the high level can also 

be explained in terms of end effects unrepresentative of general 

behaviour which are peculiar to the double torsion specimen as described 

by Trantina (1977) , Bruce and Koepke (1977) and Shetty and Virkar 

(1978). Further, the persistence of the lower level indicates a 

relatively slow rate of crack growth, and is similar to the theoretical 

stress corrosive crack growth behaviour predicted .hy Evans (1972); if 



the high level i~ediately to ze~o. 

Given the evidence detailed above, it is apparent that few 

conclusions may be drawn as to the presence of stress co~~osive 
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z=.e~hanisms. Res~lts f~cm st~ength tests are co~~radictory or inconclusive" 

and there are few repo~ts of slew crac~ grc~th. The strengt~ behavio~ 

reported by Lo.shalk and Smaglenko ( l913) and Braidien ( 1977) and possible 

slow crack growth seen in the work of Murray (1977) can be satisfactorily 

modelled using stress co~rosion theo~ies. However, the theories cannot 

describe the complex v~iation of strength with rate of loading observed 

by Knotek et al (1978) and Dei et al (1975). 

Further, there is no information as to whether the behaviour 

discussed above is in any vray environmentally assisted; apparent stress 

corrosive cracking in HF vapour reported by Almond et al (1~76), provides 

little supporting evidence since the test environment is so different, 

chemically, from laboratory air used by the other workers. 

General fracture mechanisms in WC-Co materials, discussed in 

Section 3.5, likewise give few clues as to the expected behaviour. 

The materials have a brittle phase capable of supporting slow crack 

grovJth but also have a potentially ductile phase which may iP~ibit, or 

prevent crack propagation under conditions less than those required 

for catastrophic failure. 

However, giving consj.deration to the degree of variation observed 

in strengths under the ranges of loading rates employed in the tests 

discussed above, delayed fracture, if present in we-co materials when 

tested in laboratory air at room temperature, is likely to be small, 

and comparatively much smaller than stress corrosive delayed fracture 

observed in glasses and alumina (see Chapter 2). 
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The strength,fracture toughness and crack resistance of we-co 

materials are infl~enced ~Y the cobalt content and the mean we grain 

size. The strength is further influenced by te~erature ~~d 

structural factors ir.cluding pores, imp~xities and surface damage. 

Fracture of WC-Co mater:ii.a!s may be cor.sidered a complex mixture 

of brittle cracking and constrained plasticity, the dominance of each 

depending upon the composition and structure of the alloy. 

Evidence of delayed fracture, or s!ow crack growth which may be 

induced by stress corrosion, is extremely limited. Delayed fracture, 

if present in ambient conditions, is likely to be small. Nothing is 

known regarding any environmental, or thermal influence tinder these 

conca tions. Further there is no evidence to indicate whether reported 

variations of strength with loading rate are controlled by stress 

corrosive mechanisms, or not. 
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4, PflAI.\j:PLE':ON At\TD AJ.Y.&YS:S 02' S'J:'P.,EI\1"3':R "JATA 

4ol Int~OdllCtion 

In this chapter~ analytical techniques axe developed to compare the 

d:'..s-::ributions of s·':xengths obtained fro::n bend tests involving '0\iffe~ent 

types of loading to fail~e~ to assess the sign!fic~~ce of any cbservecl 

deJLayed fxa~ture e:':fects ~ and to. estimate JPa:ira=.eters C.esc:ribing the 

belb.aviO'll'.ro 

The techniques are based on a failure model developed fro~ theories 

of brittle fracture and stress corrosion~ using Weibull statistics to 

account for the variability in strength due to material flaws. The 

method of maximum likelihood is incorporated for parameter estimation~ 

and transformation equations are developed to enable results from tests 

involving different types of time dependent loading~ to be compared. 

In addition, a graphical method of displaying delayed fracture -

the SPT diagram - is discussed. 

4.2 Brittle fracture model 

The analysis of brittle fracture is commonly approached using the 

model developed by Griffith (1921). He represented a material flaw, 

or crack by ~£ ellipse with major and minor axes of lengths 2a and 2b 

respectively. Using the model to represent a crack of zero thickness 

and of length a~ Griffith proposed that ane condition for brittle fracture 

was that the decrease in strain energy due to the formation of a crack must 

be at least equal to the energy·required to create the new surfaces, such 

~atthe continuum s~~ess, ~I~ at fracture is given by 

4.1 
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lengthg respectivelyg for the material. Thus the strength is directly 

proportior.al to a =unction of the ~odel flaw size. 

Although the !!!Odel :flaw ca::mot be cor..sidered a direct rep:resentatio::l 

of real material flaws - which are in the majority of cases, fax too 

conplex in size, shape, orientation and distribution, for mathematical 

representation- it may be tho~ghtof as an.equivalent. Thus, if 

material flaws are assu.med to be random by nature, then through the 

equivalent model flaw, the corresponding strengths should likewise be 

random. 

The representation of this variability requires a statistical 

approach. Consider a variable, X, demonstrating variability in a 

number of observations. The probability, P, of an observed value of 

X being equal to, or less than a fixed value, x, is defined as the 

cumulative distribution function (cdf), F(x) such that 

P { X~x} = F(x) 

In general a c~f may be expressed in the form 

F(x) = 1 
-f(x) 

e 

where f(x) is some function of x. 

One such function proposed by Weibull (1951) is of the form 

f(x) ( X - X )m 
= u 

X 
0 

4 2 

4.3 

4.4 

where xu is a lowest limit of possible x, x
0 

is a normalising, or scaling 

factor, and m is a shape factor, now commonly called the Weibull modulus. 

This distribution has been applied to observations of brittle strength, 

or• (Gucer, Gurland, 1962; Davies, 1973) where x is taken as zero, and 
u 

F generally referred to as the cumulative failure probability (cfp). 

Using ~ as the corresponding scaling factor 
0 

F(x) = P { o-1 ~ X} = 1 4.5 
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Consi.o.er a SaJllp:.e o:r N obse:':'vat::'..ons o::: o-~, wheZ'e (cr.,.). is tl:e 
.L. J. ]. 

i 9 th wher.. the d.ata aX'e ranked in ascending order of cagni tude. 

If (cr'
1 

)i is plotted against the cor::respor.C\ing rr!edian, or oean rant< 

value (obtained from star..dard tables (Johnsonv 1S64)) assigned to the 

c~p, F(~I)i, for t~e whole sample, then, fro~ Eq~ation 4.6, the points 

should lie a:.ong a curve g::'..ven by 

4.6 

or in its logarithmic fOX'm 

4.7 

When Weibull paper is used, where axes are adjusted in the manner 

of Equation 4.7, the relationship should be linear with a gradient of 

m. Obviously, since the N observations represent only a sample of the 

behaviour, the points are unlikely· to lie exactly along a straight line; 

the deviation from it represents errors due to sampling. However, the 

exact location of the straight line is unknown, but may be estimated by 

drawing a best straight line by eye through the plotted points. 

Confidence bands can be added (Johnson, 1964) to produce an area on 

the Weibull diagram in which the true straight line is, say, 99% certain 

to lie. Also, simple formulae have been developed by Sivill (19'74) to 

assess the possible error in the Weibull modulus, m. 

Thus, the distribution of strengths may be characterised using the 

Weibull diagram to obtain estimates of the parameters describing the 

best straight line - usually the Weibull modulus, m, and the median 

strength, ~M' corresponding to a cumulative failure probability of 50% 

(F(CT'
1

) = 0.5) - and the o:onfidence that may be placed in them. 
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that 

4.8 

The first term on the xight-hand side oi Equat~o~ 4.8 repxesents 

the vaxiability in &
1 

and is govexr..e.d by the magnitl!lde of m. The 

s~aller m beco~es, the greatex the variability in ~I is seen. The 

second term on the right-hand side acts as a scaling factor on ~I. 

4.3 Stress corrosion model 

With the inclusion of stress corrosion effects in the failure 

model, consideration must be given to time as a variable. When stress 

corrosion does not occur, only the stress at failure is important, 

whereas when it does, consequen~ sub-critical slow crack growth 

introduces the need for the loading prior to failure and its variation 

with time to be defined. 

Development of the failure model, described below, has been based 

on an applied continuum. stress raised at a constant rate to failure. 

However, similar procedures may be adopted, in principle, for other types 

of loading, where mathematical representation is simple. 

4.3.1 The failure model 

In section 2.5, the applied stress of fracture, ~f' under a 

constant stress rate ~ was shown to be given by 

2(n+l )IY 
[ ] 

1/(n+l) 

= AYhcn-2)ai(n-2)/2 (Equation 2.6) 



n is the stress coTrosion par~eter, ar.d A, Y are constants -

where 

Reffriting Equation 2.6 inlqgaxthimic form 

]. 

(n+l) log(C=) + 

I 
log (C ) = l 

(n+l) log n = constant 
[ 

2 (n+l) J 
AY (n-2) 

I log (C ) 
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4.9 

Equation 4.9 shows the dependence of strength upon time dependent 

loading, the initial flaw size, and a constant scaling factor. 

Potentially Equation 4.9 could be used to estimate the stress 

corrosion parameter,n, given experimental data, but the operation is 

impeded by the unknown quantity a .• 
1 

4.3.2 Comparison of average. behaviour 

One method of avoiding the measurement of a. is to compare 
1 

the average behaviour of a number of identical specimens rather than of 

individuals. If the total number of specimens to be tested is split 

into several batches, then the average size of the equivalent theoretical 

flaw for each batch will be approximately the same. Then, if all specimens 

in each batch are tested to failure using the same stress rate, a- , and 

different batches are tested at different stress rates, then the 

relationship between mean strength df , for each batch, and stress 

rate is given, from Equation 4.9, by 

log (Of ) = 

where log CCII) = log 

1 
(n+l) log (C:r 

II ) + log (C ) 

(CI) + (n-2) ( 1 ) , (n+l) log a
1112 

=constant 4.10 

Thus, a plot of log (o-J) against log (~ ) should yield a straight 

line relationship, where n may be calculated from the gradient of the 

best line through the points. 
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Ro~ev~r, e~ro~s axe poten~ially hig~. F~~stiy the behav~o~r of 

each batch is represented by only one n~ber - the me~~ strength - and 

thus, no account is taken of the distribT.lltion or tne presence of any 

"extreme" values, which tc::md to have a considerab~e effect on the o::ean. 

Secondly, the average equivalent flaw size of each batch is unli:<ely 

to be exactly the same, par~icularly when batch sizes are s~all, because 

the speci~ens form only a random sample of the whole. Thirdly, the 

total number of specimens available for testing 0limits not only the 

batch size but also the number of batches, and hence the number of stress 

rates employed. Thus, some error must be expected when trying to fit 

a best straight line through relatively few points on the graph of log (cr,r ) 

against log f b ) • 

4.3.3 Statistical representation of the random variable a. 
1 

The method can be improved if the random variable a1 is 

approached statistically. This may be achieved by considering the 

material behaviour under a different set of conditions. 

If the specimens are loaded to failure in such a way that stress 

corrosion is prevented from occurring, say, in an inert environment, 

then the inert strength, ~I' may be related to the initial theoretical 

flaw size, a
1

, and the critical stress intensity factor, KIC' (see 

Section 2.4) by 

K 
IC 

1/2 
= 

where Y is the same geometrical constant used in Equation 2.6. 

Combining Equations 4.9 and 4.11 to eliminate a. produces 
l. 

4.11 
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h ( ITI) l (.CI) + (n-2) , (· Y ) w ere log C · = og (n+l) .... og. K = constant .•.• 
\ IC 

4.12 

Now the strength is dependent upon the 11.mr·Jmown ine:rt stJrength, 

ci. However, ~I is identical to the brittle strength discussed in 

Section 4.2. T~~s Weibull statistics cay be introduced once again, 

to represent the variability in or· 
Consider a s~ple of N observations obtained from tests at a 

single stress rate. Then Equation 4.12 reduces to 

( (n-2) ( ) ~CIV) log Cl't ) = log cr + log , 
r (n+l) I 

4.13 

If (CY' f )i is the i' th observation when the data are ranked in 

ascending order of magnitude, then by noting that Of is directly 

proportional to CJ'
1

, the ranked order of cri is the same as that of GJ . 
Thus (crf )i may be plotted against the corresponding median, or mean 

rank value assigned to the cfp, F(O"'I \, for the whole sample. 

The points should lie along a curve described by a combination 

of Equations 4. 7 and 4.13 to elliminate <YI such that 

log log [ l-!( .,..
1
)} 

m(n+l) V 
(n-2 ) log (CJ'r ) - log (C ) 

h 1 (cv) 1 ( ) m(n+l) 1 (CIV) t t w ere og = m og CJ'
0 

+ (n~2 ) og = cons an 4.14 

Hence, once again, on Weibull paper with logarithimic axes, the 

relationship should be linear, but this time with a slope of m(n+l)/(n-2). 

However, for large n, this approximates to m. 

Estimates of the median strength, cr , and m may be made from the 
M 

Weibull diagram for each batch of specimens and hence for each stress 

rate employed. 
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trez:ds ar.ti the presence of any "extre:;ne" valt:.es. In t~e case o~ the 

latter, a more suita::>le straight line might be drawn if they are 

ignorec1. 

T~e procedure to esticate the stress corrosion ~aTa±eter, n 

conti~ues by observing that estimated values of ~ fer each stress 
M 

rate correspond to the same c~ulative failure probability of 0.5 and 

hence the same median inert strength, (~ ) 
I M. 

Hence, returning to equation 4.12 

l VI 
log (~M) = (n+l) log (u ) + log (C ) 

VI where log (C ) = log (CIII) (n-2) l ( ) t t + (n+l) og cr1 = cons an .•• 4.15 

This may be compared with Equation 4.10 used in the first method 

to describe the relationship of mean strength with stress rate. Here, 

a plot of log (~M) against log (~ ) should yield a straight line 

relationship where n may be calculated from the gradient of the best 

line through the points. 

This method benefits over the first, in that the representation 

of a batch - still using a single number, ~ - is based not only on 
M 

mathematical analysis of the data, but also upon a study of the 

distributions and any peculiarities that may be present in them. 

This method is still limited in that only a relatively few results 

are analysed statistically at any one time; samp!ing crrc=s are 

therefore likely to be large. Although Davidge et al ( 19·73) found the 

technique useful for ana].ysingstrength data from tests on alumina, where 

n is relatively low, Braiden et al (1977) could place little significance 

in their results from tests on WC-Co materials in ambient conditions; 

their estimates of n~ 200 for WC6% Co indicated that the expected changes 
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in stre::1gth ur..d.e:r C'.if:Ze:re::1t z-ates of lcaC:.:.'..Jig vJere si!:j_la::- ir.. si.ze to 

possible errors d~e to s~pl:.'..ng. The authorsalso noted that reasonable 

increases in batch size were likely to reduce sampling errors only 

slig~t::.y. 

A tech.niq,ue. to a.TJ.alyse strengths origi::1ating from tests involving 
different. stress ·rates to fa:.'..lure 

One alternative is to develop a technique which analyses all data 

together irrespective of the stress rate employed. Since the single large 

batch to be operated on statistically is considerably larger than individual 

stress rate batches, significant reductions in sampling errors might be 

expected. 

An analytical technique of this type was developed by Jakus et al 

(1978). Using as a failure model a combination of Equations 4.7 and 

4.12 (which elimates cr
1

) of the form 

[log (crJ )-
1 

(n+l) 
(n-2) log 
m(n+l) + constant 

4.16 

they ranked data according to the magnitude of the left-hand side of 

Equation 4. 16 trea:ted as a single term. To do this they had to guess 

an initial value of n. 

Rearranging Equation 4.16 to the form 

log (cry. ) = l log co- ) + (n-2) 
(n+l) m(n+l) log log [ l-~(0'1 >]+ constant 

they performed a multivariate regression analysis to obtain estimates 

of 1/(n+l), (n-2)/m(n+l), and the constant~from which they calculated 

a new value of n. 



33. 

The ini t:.al g:.:.essed ve.::.:::e :::£ n I?Jas ::-e3):'..a:::e::'. by tt.e ne"."r va:Z::.xe ar..C. 

the whole operatior. repeated: in an iterative loop, until a best 

"regression" estimate of r: \'?aS ob"tained. 

The tec:1.niq_ue was apJ;:.i.ed to WC-Co data obta:.ne.d in the present 

st:2dy, bt.:t t:':le outco::ne differed in or:e respect f::o:n the Te::_Jorts o:f 

Ja:tus et al. Whereas tr..ey inC:icate a sing:.e best estimate cf n, the 

we-co C:ata yielded a ra."lge of "best" est:'..mates at which the iteration 

process stopped. The final value depended upon the guessed value used 

at the start of iteration. 

Further, the technique appears to involve a multivariate regression 

using the "least squares" method. Since this requires all data to have 

an equal degree of confidence, and since the multivariate regression is 

performed on ranked data "•here more extreme values have less confidence 

attached to them, the statistical validity of the analysis appears to 

be in doubt. The authors were approached by letter with a request for 

clarification of these points but declined to answer. 

4.4 Development of the "maximum likelihood" technique 

In the light of the various shor.tcomings associated with existing 

methods of obtaining estimates of the stress corrosion parameter, n, 

from stress rate tests, an alternative technique has been developed 

(Wright et al, 1982). It employs theories of brittle fracture and 

stress corrosion, with Weibull statistics, using the method of ma~imum 

likelihood to analyse unranked strength data within a single analysis 

irrespective of the stress rate employed. The technique makes maximum 

use of the data, by minimising possible sampling errors, whilst maintaining 

statistical validity, and obtains estimates of the stress corrosion 



39. 

the significance of any rate effect on the strength. A further cevelopment, 

incorporating the Monte CaTlo method assesses the suitability of the 

failuze ~odel in rep~esenting the ~aterial behaviour. A simi::..ar 

techniqt:=.e bas been ::::eve::..c;:ed by Trust:::u.i!l an:::: Jayatilal{;a {J;.97S) to 

estimate parameters of brittle fracture. 

4.4.1 The failure model 

The failure model is based on Equations 4.5 and 4.12 describing 

brittle, and stress corrosion behaviour respectively. 

The two equations may be combined by first writing 

= m log(::) 4.17 

The cumulative distribution function (cdf) of ~ may be obtained 

from Equation 4.6 such that 

= 

4.18 

This probability distribution with no parameters, is known as the 

Gumbel or "extreme-value" distribution (Fraser,1976). 

The elimination of o-
1 

from Equation 4.12 using Equation 4.18 gives 

log ( <J" f ) 
l 

= (n+l) 

where B = log (CIII) + 

log (er) + (n- 2) . ~ + B 
m(n+l) 

constant 4.19 

Equation 4.19 demonstrates that the model predicts a linear regression 

of log (c:rf ) on log (6-) ~ the slope of which is 1/(n+l). The second term, 

involving the random variable, ~. represents the variability in ~ . 
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The fina3. ~e:rm ir:te:;ocept, B - fl. 
i::.vo:ives a n;.;.z:;.be:r of un1c•m paZ'ameters, 

all constant. 

The distinctive featu::res of this model are: 

(i) the "er::'oZ'" C:ist::=..bution is "extreme valt::e" rathe:r than the 

In conseq~ence, the 

standa:rc1 "least sc;,uares" theo:::-y is not applicable, 

(ii) The "errors" in the f::acture strength dataare mo:::"e properly 

systematic random variation caused by the variability in ffiaterial flaws, 

the size of which cannot be measured. Thus, these errors are not 

expected to be negligible, and close fit of a straight line to the 

(log (~), log (~r )) data will not be obtained. In this context, 

measurement error may be neglected. 

4.4.2 Use of the model to estimate unknown parameters, n, m, B 

Although the "least squares" method of linear regression is not 

applicable in this case, another standard statistical procedure - the 

method of maximum likelihood estimation (Fraser,l976) - is valid, It 

may be used to obtain not only estimates of the unknoWn parameters in 

the model (given by Equation 4.19) but also confidence limits for them. 

Consider a sample of N observations (X., Y.) where 
J. J. 

where i 

X = log (C:r ) 
i 

l, 2, 3 ....... N. 

for the i'th obseFvation, 



Fro::~ Ec;:.:i.at::~n ~ol9, 

' (n-2) y ... 
X. ll'. B = (n+l) + 

m(n-'-'l) 
+ 

i ~ ::1. 
4.20 

Fo:r tempo:::-a:ry ::1otatic~al convenience, this may be w:ritten 

:6. 
~ 

= :-X. + sY. + t 
~ J. 

r m/(n-2) 

s = m(n+l)/(n-2) 

t = -mB(n+l)/(n-2) 

4.21 

4::.. 

The cdf of Y. for a given X. = x. (i.e. a fixed preset stress rate) 
1 ~ ~ 

is given from Equations 4.18 and 4 21 by 

p { yi ~ y i} ( 
+ t)} = p t ll'i ~ (r X. + s yi ~ 

= 1 - exp r - exp (r X. + S y. + t)J l ~ -~ 

Now the probability density function (pdf) of Y., g(y.) is the 
1 J. 

derivative of the cdf. Thus 

g(yi) = exp [ - exp(r xi + s yi + t) J .exp(r xi + s yi + t ). s 

The likelihood is the product of these terms over the whole sample 

so that the log-likelihood, or support, t, is given by 

N 
p = log n g (Yi) 

i=l 
N 

= L log g (Y.) 
~ 

i=l 

N 

= [ [ (rXi+ s Y. + t)-exp(rX.+ :;Y. +t) + logs] 
l. ~ ~ 

i=l 
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N 

= L ( ::- :og ( cc_ ) + s ::'..og 
•!. 'l -;;_ 

i=l 

-exp (:>:' 1og (&i) + s log (o-f i)+ t~ + log (s) 1 .,.., 

T:'le ma.xin::u.m :;:.i:.r;:e:.ihocc1 esti:::!ates of r, s, t are obtained by 

t::aximising f{. Exact formulae a:z-e not available, btA.t- the maxim:is at ion 

can be c&rried out easily using a standard nureerical technique. The 

estimates of n,m,B cay then be obtained from Equation 4.21. 

The values assigned to n,m,B at the end of the maximi:sation procedure 

are only estimates. Thus an indication of the confidence that may be 

placed in them is required. 

be employed, (Fraser,l976). 

To this end, a likelihood ratio test may 

Suppose that ~ is the maximum support 
r 

obtained when the parameters n,m,B are restricted by one fixed constraint. 

If% is the maximum unrestricted support, then 

= 

has approximately a ?( 2 
distribution on one degree of freedom, under the 

null hypothesis that the constraint actually holds. 

For example, if the constraint is that the stress corrosion 

parameter, n = n , where n is some preassigned number, and if the 
0 0 

maximum support under this restriction is denoted by ;f_ , then 2(fo-jf_ ) 
no n<o 

has a X 2 distribut~_on with one degree of freedom if n = n0 • The upper 

5% point of this distribution is 3.84, so that the coJJ,ection of values 

of n , such that 
0 

provides a 95% confidence interval for n. 
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A sini:::.ar p::-oce:~:.:re =.c.y be a6",o;,:/:ec', to obtain conf:f_dence interva:s 

for m and B. If si~ultanecus confidence statements about two or three 

of the parameters are required, then the res~lting 1( 2 
distribution 

".7:.:11 have two o:r three deg::-ees o£ ::reedo::J respectively. 

Sometimes it may be necessary to sho-:-; that the fracture stress is 

being influenced by the stress rate to a significant degree, so that 

~•Y apparent correlation between tr.e two is not merely an effect of 

sampling o In this case, the null hypothesis is that the fracture 

stress is not influenced by the stress rate, so that a single constraint 

applies, namely that n = on. If fi and$ are the unrestricted, and 
QO 

restricted supports respectively, then 

= 4.22 

Whether there is a sig:1ificant departure from the null hypothesis 

that no rate effect exists is assessed by comparing )( 2 calculated 

using Equation 4.22 with the distribution of 't 2 
in one degree of 

freedom given in standard tables. 

4.4.3 Assessing the validity of the model 

Up to this point, the validity of the model and in particular, 

the Weibull assumption, has not been questioned. Some attempt to do 

so may be made by examining the residuals,~., in Equation 4.20, which 
]. 

may be expressed in the form 

~­
]. = 

m(n+l) 
(n-2) [ Y. 

]. 

l 
( n+l) 0 

~i is evaluated for each O{i,Yi) = (log (6-), log ("})), given the 

es~imated values of m,n,B. If the Wei bull assumption is corre.ct, then 



value" d:.stribt::tion. This Eay be checke~ graphically by first t~ansfo?ming 

the :0. us:i.ng the prot ability integral transform 
l. 

= 

The resulting l7. (i = 1,2,3 ..••• N) should be app:r.oxi;.r.ate::.y uniformly 
~ 

distributed in the interval (O,l). If tbese N values are o~dered in 

magnitude and then plotted against i/N (i = 1,2,3 •.. N) the points should 

0 . lie close to the 45 l~ne from(O,O) to (1,1). 

Obviously, sampling fluctuations tend to generate departures from 

this ideal form. If the discrepancies yielded by the data are large, 

then this would indicate the Weibull model was unsatisfactory. 

To assess the significance of the discrepancies, a Monte Carlo 

technique (Fraser, :!!..976) may be used. Artificial data sets of similar 

size to the real data sets are constructed with pseudo-random numbers 

using the failure model defined by Equations 4.5 and 4.12, and predefined 

values of m,n,and B. The maximum likelihood method is applied and the 

graphs displaying the standardised residuals plotted as for the real 

data. It may be shown (Fraser, 1976) that the distribution of the 

residuals does not depend on the values of m,n,B, so it is immaterial 

what values are chosen for the simulation. 

The graphs displaying the standardised res.iduals for the artificial 

data sets are combined to form an envelope for comparison with the curves 

for the real data sets. If the curves do not lie to any significant 

extent, outside the envelope, then there is no justification for rejecting 

the Weibull hypothesis. 
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4. 5 Trar..sf:oi:nation o::'? st::-er..g-.::::1 c~ata 

Comparison of results from tests in which specimens are fractured 

using different types of time dependent loading can indicate the 

p::esence of a delayed fracture reechani.srn and may be used to ob·tain 

esti:=a-::es o::: parrur.eters describing the bet.avic;J.r (see Sect.icn 2. 5). 

Si;r.ple transformation equations relating data from cons·:tant stress. 

and consta."lt stress rate tests, from VJhich the stress coJrrcsion 

par~eter, n, may be assessed, have already been discussed (see Equations 

2. 8 and 2 • 9 ) . Other transformations have been developed for r:::ore con::plex 

types of loading. Davidge et al (1973) used the stepped loading test 

(see Section 6.3) on alumina specimens, but treated the results as if 

coming from a constant stress test. If a specimen had.withstood more 

than one constant level, only the highest was used; lbwer levels and 

periods of increasing load were assumed to have insignificant effect 

on the lifetime. 

Braiden et al (1977) accommodated failure of WC-Co specimens on 

periods of both constant stress and constant stress increase. Failures 

during initial loading up to the first constant level were treated as 

rate failures; Davidge's approach was adopted for failures during constant 

load periods; and specimens which failed during a period of increasing 

load after one or moTe constant stress periods were assumed to have 

suffered negligible slow crack growth during the short period of load 

increase and were therefore assigned the full lifetime of the constant 

load period. 

Both Davidge et al and Braiden et al used transformations to reduce 

loading rate data and stepped loading data to equivalent stresses, o-
lSEC' 

which if applied instantaneously, and held constant, would give each 

specimen a lifetime of one second. To do this, they needed to guess a 
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valu.e of n. 1:': t:~e of c- l SEC 

transfor;nations were repeated using a diffe:::ent value of n. A best 

estimate of n was ob>c ained v;hen the two sets of cr 
1 

SEC were coincident. 

The tra~sformations chosen for the present study are, in soce 

cases, u:cre f:.:mclan:.en·:al in that they take into account t~'le co::Jp:!'..ete 

loaC.ing history of each specimen from the ti::ne of initial loading to 

the point of fracture. This technique has been employed by Evans anc1 

Fuller (:!..974) to estimate failure times under cyclic loads. Assumptions 

include the sole importance of region 1 on the K - v diagram; the non­
I 

existence of any lower stress corrosion limit; and the absence of any 

time-dependent failure mechanisms, other than stress corrosion. 

The fundamental equation governing region 1 slow crack growth is 

given by Equation 2.5 (see Section 2.5). The left-hand side of this 

equation, governing crack growth from initial loading, when a = a to 
i 

failure when a= af , may be reduced if significant slow crack growth 

is assumed (Evans, Johnson, 1975) so that 

1 J"t da 2 
n/2 ~ (n-:-2)/2 AYn n 

a AY (n-2) a. 
1 

a. 
1 

where A and Y are constants and n is the stress corrosion parameter. 

Since this is independent of parameters associated with loading, 

or final conditions, the left-hand side of Equation 2.5 is approximately 

constant for all types of loading. Thus, when a stress, CT , which is 

a function of time, t, is applied between times t = ti and t = tf 

J 
tf cr n 

t. 
1 

dt constant 4.23 



Consid.e:r a co~'lstan.t stress, 

t . Then fxom Eq~at~on 4.23 
c 

c:r (ji"' 
c. 

t_ = 0 
]. 

tf = t 
c 

r~ n n 
and cr dt = CY' 

t. 
c 

J. 

t 
c 
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4.24 

Consider now, a constant stress rate, C1' , applied from an initial 

stress, o- , at times, t = 0 until failure at a stress, o-'- at time 
i " 

t = t 
r 

Then 

J t! and! 

t. 
l. 

cr 

CY' 

t. 
J. 

tf 

n 
dt 

By allowing cr. 
J. 

n 
0" dt 

= 

= 

= 

= 

0'. + &t 
~ 

0 

t 
r 

( O"'i 
. J+l 

+ tOrt 
r 

= 
o(n+l) 

0 and noting, then, that err ;: iT tf 

= 4.25 
&- (n+l) 

Using Equation 4.23, strength and lifetimes from one type of 

loading (denoted by the suffix 1) may be compared with those from another 

(denoted by suffix 2), such that 
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I .I 

J 
' n n l 

CTl d"!: = I 0"2 dt 4.26 
j 

til ti2 

T:':lus compa:ri::1g tests &.t two d::"..ffe:rent constant stresses, fro::n 

Eq~;.ation 4.24 

or 

4.25 

or 

n 
= orc2 tc2 

= 4.27 

Comparing tests at two different constant stress rates from Equation 

n+l n+l crt 1 c:~2 
oi (n+l) = 6-

2
(n+l) 

n+l 
OJ. ( 0]1) 4.28 = 

o;2 6--2 

Comparing the lifetime, t , under a constant stress rate where the 
r 

fracture stress is O""f , with the equivalent lifetime, tc' that would be 

seen if instead of a constant stress rate, the fracture stress, crf , is 

applied instantaneously and held constant until fracture, then from 

Equations 4.24 and 4.25, 

= 

or, by noting that cr-y. = 

t = tf 
c 

n + 

with cr 
c 

C:r (n+l) 

(r t .f 

1 

= 

' 4.29 • 0 ••• 
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Eq:J.ations 4. 27, 4. 28 2.r..d. 4. 29 form ';!:.e basic transfor::natj_cns -::.sad 

by Davitige et all. (1973) anc: Braiden et aJ. (1977). 

Now consider stepped loading which may be thought of as a constant 

stress rate, &- , in;; .. ti.ally :?.rom st:::-ess, Oj_ , interrup-:::ed by periods of 

Each pe:::-iod, p . , of wh:i.ch there az-e M in totaJ. 
J 

constant stress. 

(:Le.j = l, 2, So. o oM), involves a consta!lt stz-ess cr . , held for a ti::ne 
CJ 

t. 0 

J 

Each period of loading, whether under constant stress rate, or 

constant stress may be considered to induce a small amount of crack 

growth. 

Thus for the first period under a stress rate, from time t= 0 to 

time t = t
1

, the crack grows from 

Then from Equation 2.5 

a = a. 
~ 

to a a = Io 

= 

n 
(c:r .+ a-t) dt 

]. 

( )
n+l ( )n+l 

"'r · cr i 

~ (n+l) 

For the next period ~ at a constant stress ~1 , - the crack grows 

l ( a II 

n 
AY 

J a 
I 

da 
n/2 

a 
= 

= 

= 

Then 

n 
c:rcl d. t 
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Applying this techniq:ue to all periocis, and. by noting that 

f 
af 

J 
a 

T 

( 
a 

da J.da I: . 
l }. 

c. a 
n/2 = n/2 

+ 
n/2 v ...... --

AYn AYn a AYn ) a a 
a. a. a I 
~ ~ 

( 0"' .f ) n+l_ ( 0". ) n+l) M 

I 
af 

~ L. nt P then 1 da = + cr 
n n/2 &- (n+l) :P=l 

cp 
AY a 

a. 
l. 

where ff; is the final stress at fracture. 

Thus, from Equation 4.23 and allowing loading to commence from zero 

stress (i.e. 0"' • = 0) 
~ 

rf o" dt = 

t. 
~ 

(or: )n+l 
f 

er .(n+l) 

M 

L ntp + cr 4.30 cp 

p=l 

Equation 4.30 may be compared with the equivalent equations governing 

constant stress and constant stress rate loading - Equations 4.24 and 

4.25 respectively. 

The procedure used by Davidge et al (1973) and Braiden et al (1:977) 

of transforming all data to G"lSEC' the cqui ... v"'alcnt constant stress, which 

when instantaneously applied would give each specimen a lifetime o.f one 

second, has also been adopted in the present study. 

Using Equations 4.24, 4.25 and 4.30 and by noting from Equation 2.24 

that 



n 
D)_ SEC 

then, the fo:lowing transformation equations may be derived 

for constant stress, 

cr 
l SEC 

for constant stress rate, 

cr1SEC 

for stepped loading , 

cr 
lSEC = 

r 

l 

cr. t 1/n 
c c 

er(n+l) + 

4.6 Graphical representation of delayed fracture behaviour 

52. 

4.31 

4.32 

4.33 

When strength is dependent upon a nominal constant, variability due 

to material flaws, and the degree of stress corrosive slow crack growth, 

a relatively large number of parameters are required for its specification. 

In such a case, the information is far better displayed graphically. 

Davidge et al (1973) constructed an SPT diagram relating a constant 

applied stress (S) to the cumulative failure (or survival) probability 

(P) for a range of possible lifetimes (T). 

The diagram shown schematically in Figure 4.1 comprises a series 

of lines, each for a different lifetime, the slope of each being 

governed by the Weibull modulus, m, and their separation by the stress 

corrosion parameter,n. 
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As we~: as providi~g i~for~a~ion for p~ediction of behavio~r, it a!so 

allows quick assessmen~ of strength characteristics. For example, lines 

for lifetimes incre2sing by orders of mag~itude which lie close together 

indica':::e }Little del::.yed fre.ctu:re, and lines with steep gradients inC.icate 

little variability in strength d~e to material flaws. 

The SPT diag::-a.u is easily constructec. using transformation equations 

(see Section 4.5) when the medlian strength, Weibull modulus and stress 

corrosion parameter are all known. However it only applies to specimens 

of the same material, shape and size as those tested to obtain the 

parameters from which the SPT diagram was instructed. If the specimens 

or the test conditions are different, corrections need to be introduced, 

(Stan~ey et al, 1973; Braiden, 1975) or another diagram constructed 

more suited to the conditions. 

4. 7 Summary 

Techniques have been developed to al1ow comparison of data from 

tests involving different types of loading to failure, and hence 

obtain estimates of parameters describing the behaviour. The techniques 

use theories of brittle fracture and stress corrosion within a statistical 

framework based on the Weibull distribution, incorporated to take into 

account the random variability of strength caused by its dependence 

upon material flaws. 

The parameters of brittle fracture and stress corrosion, once 

estimated, may be u.3ed to construct an SPT diagram which displays the 

behaviour graphically. 
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5. CHA.~ACTERISA':':'ICN OF ft(A.TERIAL8 

5.1 Introduction 

WC-Co alloys CC·ntainir..g 6, !3 and 167~ ~obal t by Weight 1 all having 

a nominal mean we grain size of l~, were chosen for bend strength and 

double torsion tests. 

To minimise a~y variations in streng~h due to small differences in 

the material (see Chapter 3) bend specimens were prepared using tool tips 

from a single manufactured batch for each grade. 

Although the double torsion specimens could not be prepared from 

the same material used for bend specimens, they were obtained from the 

same manufacturer and were,in themselves, from a single manufactured batch 

for each grade. 

The manufacturer's specifications are given in Table 5.1. As a 

check, and to provide further information, some material properties were 

measured in the laboratory. A summary of the results is given in Table 

5.2 and details of tests are discussed briefly below. 

5. 2 Hardness 

Hardness was measured on an Avery Hardness Testing machine fitted 

with a Vickers diamond indentor.Prior to testing, the machine was checked 

using a standard slab of known hardness. 

Tests were performed using loads of 50kg and lOOkg, and the Vickers 

hardness values obtained from standard tables. At h:ast teu iudentations 

were made on each type of specimen for each material. Indentations 

were put into specimen faces polished using a 6p diamond paste, (see 

Section 6.2.3). 
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5.3 Crack resista~ce 

The lengths of cracks emanating from t~e corners of pyramid 

indentations were measured during hardness tests. The crack 

resista~ce was asse;sed gra~hically according to Equation 3.2. 

A plot of inverse crack resistance, 1/W, against hardness shown 

in Figure 5.1, shows that although values of l/W are a little low, 

they do follow the general trend found by Visw anadham and Venables 

(1977). Occasionally the precise location of the crack tip was 

difficult to see, and crack lengths possibly underestimated. As such, 

this may explain the low values of 1/W. 

5.4 Coercive force 

Facilities were not available in the department to measure either 

coercivity or coercive force. Instead, ~he manufacturer performed 

the tests. Four bend specimens of each material were packaged 

individually and left unidentified apart from a code number which had 

no connection with the material composition. The manufacturer's results 

showed quite distinctly the specimens of each material. 

5.5 Microstructural investigation 

Polished specimens were etched with a mixture of equal quantities 

of sodium hydroxide and potassium ferricyanide, each in 20% solution. 

The etched surfaces were viewed under a Vickers microscope, 

photographed - see Plates 5.1 - 5.3 - and analysed to obtain estimates 

of the mean free path in the cobalt phase, A , and the mean we grain 
co 

size, <\vc (Murray, 1.977). 
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Straight lines were drawn, so~e at right angles to each other, 

on the photographs, and the grains intercepting each line were counted. 

Hence, the average n~ber of grains per unit length, NL' was calculated. 

A simi::.ar proced~re •yhere g:::-ains ware ccu:::ted within squares drawn on 

th.e photographs, obtained e.stimates of the average number of grains per 

unitarea,Ns"Five lin9s and five squares were analysed for each material 

and specimen type, involving at least 18 grains per line, and at least 

200 grains per square. 

The values of ct,NC and A co were estimated using 

-
'\vc 

and 

whereVco is the volumetric cobalt content. (Fullman, 1953). 



6 S~RENGTR TESTS 

6.1 !ntToduction 

In this chapte~, work to investigate the presence of delayed 

fracture in WC-6% Co, WC-12% Co and WC-16% Co loaded in laboratory 

aiJr at room tempe:ra·:;u.re, i~ described. Strength tests are performed 

using differer.t types of loadir.gr Tiith respect to tiner prior to 

f::c-acture. The resu:ts are analysed, and parameters describing the 

behaviour evaluated using the various techniques discussed in Chapter 

Tests are also perforffied in distilled water to assess the influence 

of environment and hence the presence of environmentally-assisted stress 

corrosion. Also included is a brief study of the effects of soaking 

specimens in distil~ed watsr prio::c- to loading to identify the presence 

of corrosion which may be uninfluenced by stress. 

Finally details of the fracture process are discussed in terms of 

observations through the microscope of the fractured specimens. 

6.2 Experimental details 

6.2.1. Measurement of strength 

All strengths were measured in bending. This type of loading 

was considered beneficial to the study of stress corrosion since continuwr. 

mechanics indicate the maximum tensile stresses to lie on the specimen 

surface, where any chemical reaction between material and environment 

must necessarily occur. 

The three point bend configuration was chosen for its practical 

simplicity and consequent potential high accuracy of loading. An 

alternative - four point bending - although inducing high stresses over 

a large proportion of the specimen (the strength thereby being controlled 



by a g:::eate:r vol'-'.t:r.e o~ matE.·::::. a:'..) "''as rejec~ed beca:.xse c:f the diffic:.x1. ties 

of alignment and cor..sequent. lack of loadir.g accuracy. 

The continuum bend strength~ ~f , was calculated from the fracture 

load, P, tee specime~ dimensions of width,b~ and dept~d, and the three 

po~nt bend span, L, using the standard re~ationship 

= 6.1 

Test ri~ 

The rig designed to carry out three point bending is shown in 

Plate 6. l. 

Particular aspects of the design include accurate alignment of the 

loading rods using non-load-bearir-g brass formers machined as one; a 

device secured in the top :aw of the testing machine to ensure that 

the centre loading rod reme.ins in contact with the specimen across the 

whole width; a horizontally mounted load cell and frame to measure, 

and minimise any horizontal components of the load; a perspex container 

for environmental tests in liquids; and trip gear to remove the load 

immediately fracture occurs, thereby minimising any further damage to 

the specimen. 

Load was applied using a Dartec MlOOO servo-hydraulic testing machine. 

6.2.3 Specimen p~eparation 

Material for specimens was obtained in the form of cutting 

tool tips, commercially available • Initial specimen preparation was 

.. 
performed by contrac~ors outside the department. Specifications 

included each specimen to have nominal dimensions of 20 x 5 x 2mm. An 

additional constraint was placed on the thickness such that variations 



between specime:J.s of t:'le sc.:ne rr:.aterial s~1.oulC:: not exceed _2: O.Clm::n. 

To minimise variability in surface finish, the contractors were 

instructed to grind all specimens of each material together. 

Upon return, the surf~ce texture, although consistent for all 

specimens of one material, showed differe~ces between materials - see 

Plate 6.2. Straigt-t ridges were apparent on WC6% Co specimens and to 

a lesser extent on VCC16% Co specimens, whereas the surfaces of WC13% Co 

specimens had a roughness which was non-directional. The contractors 

later revealed that some lapping, with a SiC paste had been necessary 

to achieve the specified tolerances on specimens of the higher grade 

materials. 

Half the specimens of each material were diamond polished within 

the department, leaving the other half with the ground finish. 

doing, the effects of surface finish could be assessed. 

By so 

Polishing was performed in two stage~. Firstly a 23pm diamond 

paste was used to remove approximately 50pm of material. Then 

polishing continued with a 6~ paste until the majority of scratches 

had been removed, as observed under a microscope .at a magnification of 

400. 

This process gave specimens a mirror finish. Scanning electron 

micrographs, shown in Plate 6.3, indicate that polishing preferentially 

removed cobalt from the surface leaving WC grains standing slightly 

proud. 

Prior to testing, all specimens were cleaned in acetone which was 

removed by evaporation using a hot air blower. 

6.2.4 Loading and associated errors 

Each test involves the identical testing of a number of specimens. 



Following the appT.o~~h of Eva~s (1972) 1 the stress 1 ox change of stress 

was maintained const~~t for eac~ batch 1 and the loads required to 

achieve this calcul~:ted using individual specimen dimensions. 

Errors in the c.alculated fracture strength arise from variations 

of di~ensions over t~e specimen, the definition of measuring e~ipzent, 

off-centre loading &1d thermal drift of tbe test machine servo-system. 

Estimates of these errors, s~~arised in Table 6.1 give a maximum 

estimated error in the fracture strength (using Equation 6.1) of 

approximately ~ 3%. 

6.3 Time dependent loading tests 

One of the most direct methods of observing delayed fracture is to 

apply a constant stress which is maintained until the specimen fails. 

However, because of the variability in strength of we-co materials, 

the test is not particularly suitable; some specimens will fail after 

a few seconds, whereas others, although stressed at the same level, may 

survive for days. 

The range of test durations may be reduced using a constant stress 

rate to failure. The use of this type of test, expected behaviour and 

analysis of results have peen discussed in detail in Chapter 4. 

Another practical improvement on the constant stress test is the 

stepped loading test, used by Davidge et al (1973) and Braiden et al 

( 1977). A constant load is applied for a prescribed time, after which, 

if the specimen has not failed, the load is raised to a higher load 

and held constant again. Increments are applied (using a constant 

stress rate) until failure occurs. 

6.4 Stress rate tests 

6.4.1 Test details 

Five stress rates were chosen for the tests ranging from 0.1 
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The test duration governed the lowest rate, while the possibility of 

errors due to testing machine response limited the upper rateo 

Fracture times were typically 20,000 ar.d 2 seconds at each extremeo 

24 specimens of each grade of WC-Co were tested at each stress rate, 

12 with a ground finish and 12 with a polished finisho 

Analysis and discussion of results 

The results are presented in Figures 6.1 - 6.6. Overall a trend 

of increasing strength with stress rate is apparent, as predicted by 

stress corrosion theory. 

Closer inspection reveals considerable differences between, and within 

batches. For example, strengths of WC6% Co specimens with a polished 

finish, tested at 100 MN/m
2

s display a greater variability than strengths 

obtained at other rates. Also, the strengths of WC13% Co specimens 

with a rough finish, foTm very uneven distributions at all stress rates; 

although the majority of results fall into a relatively small band, a few 

are much lower. 

Considering these differences of distribution, due most probably to 

sampling, analytical methods involving the representation of a batch by 

a mean,·or median strength (see Section 4.3) were thought inappropriate. 

Instead, the data were analysed using the maximum likelihood technique 

described in Section 4o4o For comparison, data from stress rate tests 

an soda-lime glass were also analysed. 

To check that the failure model involved in the analysis was suitable 

to represent the results from tests on both soda-lime glass and WC-Co 

materials, the Monte Carlo technique was employed (see Section 4.4.3). 

The residuals from the real data sets when superimposed on the envelope 
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of residuals from 36 artificial data sets of similar size - see Figures 

6.7- 6.13- gave no justification for rejecting the model. Examples 

of graphs for the artificial data sets are shown in Fi~Jre 6.14. 

Results of the maximum likelihood analysis are summarised in 

Table 6.2. 

A similarity in estimates of the Weibull modulus,mp from we-co 

and glass specimens indicate the distributions of strength to be much 

the same. Thus the behaviour of WC-Co materials, like glass, is 

relatively brittle and hence influenced by inherent flaws. Estimates 

of m from we-co data increase with cobalt content; this agrees with 

the work of Chermant et al (1977). 

A trend is also apparent with surface finish. Estimates of m are 

higher from polished specimens than from ground specimens, indicating 

that a rougher surface ind'.!Ces a greater variability in strength. 

However, the effect is small, and may be insignificant - the 95% 

confidence intervals overlap to a considerable extent, particularly for 

WC-6% Co and WC-13% Co. 

Estimates of n for the WC-Co materials are higher than for soda­

lime glass, indicating stress corrosion, or at least, delayed fracture 

to be much less evident. Even so, a significant stress rate effect 

on the strength is indicated in all but one case - WC6% Co with polished 

surfaces. The reason why this ba,tch is different remains u!'..knovm. 

variations of estimated n between different grades of we-co and 

between different surface finishes are not straightforward. Considering 

first polished specimens, n for WC-6% Co is much lower than the values 

of n for WC-13% Co and WC-16% Co which are similar. From ground specimens, 

n tends to decrease with increasing cobalt content, a trend which has been 



reported by Smag:e~ko and ~os~ak (2973). 

Comparing all the results, and giving consideration to the large 

confidence intervals, a maximum likelihood estimate of n~lOO is apparent 

in all but two cases; estimates from polished WC-6% Co and ground WC-16% 

Co spec~mens are mach lower. 

Now the strength of WC-16% Co specimens appears to be surface 

sensitive as indicated by the trend in estimated m. Perhaps surface 

flaws introduced by grinding are sharper, or larger, and hence more 

critical than both flaws in the bulk of the material and flaws introduced 

by diamond polishing. If so then fracture is more likely to initiate from 

the surface than from within the bulk in ground specimens. Hence any 

stress corrosive influence should be more noticeable and a lower value 

of n expected. This hypothesis, however, cannot explain the low value 

of n obtained from polished WC-6% Co specimens. 

mechanism has been found to explain this. 

At present, no possible 

Nonetheless, all the above observations must be treated with caution. 

The maximum likelihood technique obtains, solely, estimates of parameters 

which best fit the data. If sample sizes are small, or the data not 

perfectly modelled by the Wei bull distribution, then e!'rors may arise. 

The extreme sensitivity of estimates of n to error is illustrated by the 

wide 95% confidence intervals shown on Table 6.2. Thus although trends 

have become apparent, little signi~icance can be given to them at present. 

They are discussed further in conjunction with the results from stepped 

loading tests in Section 6.6. 

6.5 Stepped loading tests 

6.5.1 Test details 

A constant stress rate of 10 MN/ rf s was used to raise the stress 



to ten pre~ete~roined const~~t levels. 

The magnitude of stress for each level were obtained from a 

2 Weibull diagram of the data from stress rate tests at 10 MN/m s on 

WC-16% Co specimens with g~o~nd surfaces, correponding to cumulative 

failure probabilities of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90%. 

Tests were performed using one of three maximum times for the 

periods of constant stress - 50, 500 and 5000 seconds. 

Only specimens of WC-16% Co were available for these tests being 

part of the same manufactured batch from which the stress rate test specimens 

were.prepared. As with the rate tests, half the specimens were polished and the rest 
C\ 

left wi th,.(grounpt finish (see Section 6. 2.3)o Twelve specimens with each finish were 

testedto failure using each of the three maximum constant stress periods. 

6.5.2 Analysis and discussion of results 

The results are presented in Figures 6.15 and 6.16. Also 

2 included are the corresponding results from the 10 MN/m s stress rate 

tests - effectively stepped loading tests with a maximum constant 

stress period of zero. Data from specimens failing during a period of 

increasing stress are shown as lines whereas those failing during a 

period of constant stress are shown as crosses. 

In each test case, at least 50% of the specimens failed during a 

constant stress period, indicating the presence of delayed fracture 

mechanisms. 

Mean strengths for each batch are shown on Figure 6.17a. Although 

representation by mean values was not entirely suitable, particularly 

since many of the original data were confined to particular values 

governed by the. predefined constant stress levels, it was hoped that 

any gross trends would become evident. 



64. 

A decrease in s~rength with inc~easing constant stress duration is 

apparent for ground specimens~ this being the expected behaviour predicted 

by theories of stress corrosion. The trend is similar in polished 

specimens apart from those tested using 5000 second constant stress 

periods. Here, the mean strength is much higher - similar to the mean 

from the stress rate tests with no constant stress periods. 

However~ the mean strengths compared above are to some extent biased 

by a number of data originating from specimens which didnot reach the 

first constant stress level. To overcome this, these data were removed 

and the means recalculated. For purposes of comparison, stress rate 

fracture strengths below the 5% failure probability stress - the first 

constant stress level - were also removed. This operation is considered 

fair in that all batches were treated alike. 

The adjusted means are shown in Figure 6.17b. A similar trend 

is apparent for both surface finishes, although not that predicted by 

stress corrosion theories. A decrease in mean strength (with little 

apparent influence of surface finish) accompanies an increase in 

constant stress duration up to 500 seconds. The mean strength rises 

again at durations of 5000 seconds although this is less apparent for 

polished specimen results. 

A number of possible causes of this phenomenon were investigated. 

Firstly, the random distribution of material flaws may have induced the 

effect and thus the trends observed are merely differences due to 

sampling. However, this seems unlikely (although not impossible), 

since the effect appears in two sets of data analysed separately. 

Secondly, the test itself was investigated. Whereas 50 and 500 

second tests lasted a relatively short time (in the order of minutes ),tests 

involving 5000 second constant stress durations lasted most of a working 
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dayp and tests en the whole spanned two weeks. O~e possible vaxianle 

was the laboratory environrr.entp but no correlation between strength and 

relative humidityp or temperature (the variation of both being extremely 

small) could be fourido Even sop small changes in the zero position 

of the testing machine were detected. Howeverp these produced an error 

in the loading of less thar• Oo5% which is too small to account for the 

variation in mean strength. 

Thirdly, a slow acting relaxation mechanism tending to inhibit 

crack propogation, perhaps by blunting, may be activep the effect of 

whichbeeomes significant only over long periods of timeo 

present, there is no evidence to support this. 

However, at 

6.6 Comparison of results from stress rate and stepped loading tests 

Stress rate, and stepped loading data were compared using the ~1 SEC 

transformation analysis described in Section 4.5. Data from each type 

of test were analysed together irrespective of stress rate, or constant 

stress duration employed. However data from specimens with different 

surface finishes were not combined. 

Transformation was carried out using a range of possible n - values 

10, 30, 100, 1000. The distributions of ~iSEC so obtained from stress 

rate and stepped loading data from WC-16% Co specimens, are shown in 

Figures 6.18 - 6.21. Individual points have not been plotted; instead 

the points (60 in number from stress rate tests, and 36 from stepped 

loading tests for each surface finish) have been joined by a continuous 

line to preserve clarity. Curves from WC-6% Co and WC-13% Co stress 

rate data are shown in Figures 6.22 - 6.25. 

Contrary to the results of the maximum likelihood analysis, no 

significant difference in m is apparent between polished and ground 

specimens; large differences in curve gradients (from which m is measured) 



occur only at high, ~d low c~ulative failu=e p=obabilities, whe~e 

confidence in the curve position is low. The gross deviation seen in 

the ground WC-13% Co curves, for example, is caused by just a few data 

from specimens conte.ining a large surface flaw on the fracture face. 

For all three grades of WC-Co no sigLificant difference in median 

strengths is apparent between polished and ground specimens. Either the 

difference in surface finish is not sufficient to induce a significant 

change in strength, or the materials are not surface sensitive, the 

strength possibly being controlled more by flaws throughout the volume. 

The above mentioned observations are apparent for all values of n 

used to calculate CY
1
SEC • 

The WC-16% Co curves from stress rate data are similar in shape to 

curves from stepped loading data. Only the positions of the curves are 

different, changing with the value of n used in the CY
1

SEC - transformation. 

With n = 10, the stepped loading curves appear to the right of the stress 

rate curves, and when n = 1000, they appear to the left. 

If delayed fracture mechanisms are the same in both types of 

test, then the stress rate, and stepped loading curves should be 

coincident when the correct value of n has been used to obtain ~iSEc• 

This occurs when n~45, although it is subject to error for reasons of 

material flaw variability, and suitability of fracture model discussed 

previously. Indeed, if the range of maximum likelihood estimatesof n 

for WC-16% Co obtained from stress rate data - n = 45-110 - are used for 

transformation, the stress rate, and stepped loading curves are still 

sufficiently close for the difference between them to be considered 

insignificant. 

To summarise, the following deductions have been made concerning 

the behaviour of WC-6% Co, WC-13% Co, and WC-16% Co when loaded in 



lanoxaiory aix at room te~pexature. 

The strength depends upon the loading history prior to failure. 

Although the effect is small, it is statistically significant, and 

estimates of the stress corrosion parameter, n, which best describe 

the behaviour lie between 30 and 120. 

So far, no evidence has been found of any significant variation of 

n with material composition, although an increase in cobalt content tends 

to reduce the variability in strength indicated by an increase in m. 

No significant influence of specimen surface finish~ has been 

retected, upon the mean strength or its variability or upon delayed fracture. 

U.nusual distributions or levels of strength recorded in stress rate, 

and stepped loading tests probably arose merely because of small samples 

and the particular distribut:io ns of flaws in specimens within each 

batch; another batch, or a. larger batch might have produced quite 

different results. This highlights the difficulties of assessing the 

significance of delayed fracture effects when variations due to random 

material flaws are of a similar order of magnitude. The tests have 

demonstrated that for characterisation of behaviour, mathematical 

analysis for parameter estimation must be accompanied by a graphical 

method whereby the effects of extreme values and unu.s~o~.at. distributions 

can be assessed. 

6.7 Environmental tests 

The search for an environmental influence on delayed fracture 

requires not only an investigation of any corrosive effects on the 

strength but also the separation of effects that are stress-enhanced 

from those which occur independent of the stress in the material. 

Distilled water was chosen as an alternative test environment 

to laboratory air qecause it induces considerable stress corrosion 

cracking in other materials (see Sections 2.2.2 and 2.4). 



6.8 Pre:i~inary enviror~ental tests 

6.8.1 Test details 

' 2 
A stress rate of 2MN/m s was used to test to failure a batch 

of WC13% Co specimens with ground faces. 

To investigate environmental effects on the strength, half the 

specireens were tested in laboratory air and the other half in distilled 

water. To differentiate between stress-independent, and stress-

enhanced corrosion, half the specimens to be tested in each environment 

were soaked in distilled water for approximately 150 hours before being 

loaded. As such, the soak time was considerably longer than the time 

under load ( ""20 minutes), so that any effects of stress-independent 

corrosion during loading could be considered negligible. 

If stress-independent corrosion occurs, then all soaked specimens 

irrespective of the test environment should show a degradation in 

strength. Similarly if stress-enhanced corrosion is present, then 

specimens loaded in distilled water should be weaker than those tested 

in air, irrespective of whether they were presoaked or not. (This 

assumes that water is, in general, a more corrosive environment than 

laboratory air.) 

These tests formed part of a preliminary series to develop techniques. 

Consequently, the specimens tested, were not from the same manufactured 

batch as those used in the main stress rate tests. However, they were 

from a single manufactured batch from the same m~~ufacturer. 

All specimens to be tested in air after a presoak in distilled 

water, were dried by evaporation using a hot air blower, prior to loading. 

6.8.2 Analysis and discussion of results 

After one day of soaking, small brown spots were seen on 

specimen faces. Further soaking increased the discolouration until 



whole surfaces were covered to var~c~s degrees = see Plate 6.4. The thickest 

deposits were found in the vicinity of the original brown spots where 

microscopic inspection revealed the presence of a surface flaw. 

A similar pheno~enon had heen noticed when distilled water was 

placed on recently polished surfaces of WClS% Co speci~ens. Small brown 

deposits appeared after approximately one houll:'. Surface flaws found at 

these sites were estimated fron further polishing to be between 10 and 

20 ~ deep. 

In both cases, surface discolouration indicated corrosion to have 

taken place during soaking, and the colours, in extreme cases ranging 

from yellow, green and blue to brown, suggest that the deposits were 

compounds of cobalt. 

Why corrosion should occur preferentially in the vicinity of a 

surface flaw is still unclear. Perhaps the confined space within a 

flaw increases the activity of chemical reaction between the material 

and a corrosive species in the environment. 

Another possible explanation is that residual stresses were present 

in the surface, and locally concentrated by a flaw, such that their 

presence enhanced corrosion in that area - in other words, a stress 

corrosive mechanism. 

However, residual stresses introduced dur-ing sintering and subsequently 

modified by machining and surface preparation, tend to be compressive 

(French, 1969; Jaensson, 1971) and hence unsuitable for stress corrosive 

crack opening. It is possible, though, that the stress concentrating 

effect of flaws may produce tensile components in the residual stress 

field. Murray (1977) reports that although residual stresses in the WC 

phase are both compressive on the surface and internally, in the cobalt, 

they are compressive on the surface but tensile internally. It is 



possibleD then that at the deepest point o~ the surface flawD the stress 

field may be suitable for stress enhanced corrosion. 

The strengths of specimens bork soaked and unsoaked are displayed in 

FigTJJre 6.26. A fiTst inspection of the data reveals a much wider 

distribution of strengths from specimens which were soaked prior to testing. 

Xn particularD a greater numbe!' of low strengths are evident. 

i@ investigate further the effects of soaking, results were grouped 

together as to whether specimens were soaked or unsoaked, but independent 

of loading environment. Each set was ranked and plotted on a Weibull 

diagram - see Figure 6.27a. 

Little confidence may be placed in the slightly lower range of data 

recorded from soaked specimens at the high failure probability/high 

strength end of the curves. However, the difference between soaked and 

unsoaked data becomes considerable at the lower end. 

Microscopic inspection of the fractured pieces of soaked specimens 

revealed in almost all those failing at a low stress, the presence of a 

large heavilycorrodem surface flaw along the line of fracture (see for 

example Plate 6.4). Inspection of the fracture face indicated the 

flaw to be the likely site of crack initiation (see Section 6.11.4). 

Few large surface flaws in the vicinity of crack initiation were 

observed in soaked specimens f.~iling at higher. strengths. A sim"ilar 

inspection of unsoaked specimens revealed far fewer critical surface 

flaws. 

The low strengths recorded from soaked specimens could be due, 

merely, to the presence of a large critical surface flaw, and by chance, the 

soaked batch contained more specimens with such a flaw. However, the 

correlation between low strength and the critical surface flaw being 

heavily corroded~indicates that the flaw has been enlarged, or 

sharpened by the chemical reaction. This action makes the flaw more likely 



to become cxoitical -:nan ot?::e::c flaws elsew:h.e:r~? in "Cne mate:rial, and also tends 

to reduce the failu:re strength. This may explain the greater 

number of surface flaws being critical in soaked specimens than in 

unsoaked speci~ens. 

Soaked specimens in which fxoacture initiated away from heavily 

corroded surface flaws tended to fail at much higher stresses -

similaE in magnitude to the strengths of ~nsoaked specimens. Thus 

general corrosion over the su.rface away from heavily corroded areas 

does not appear to have any significant influence on the strength. 

Regrouping, r~anking and replotting the results according to 

the loading environment but irrespective of whether speimens were 

presoaked or not, produced the Weibull curves shown in Figure 6.27b. 

The two curves are relatively similar apart from the mid failure 

probability/mid strength region. 

However little significance can be attached to the difference. 

Grouping of results independent of soaking, or not, assumes there to be 

no soak effect. But this appears not to be the case from the previous 

grouping. Inspection of both curves revealed almost all soaked 

specimen results to lie at the low strength ends. The curves, therefore, 

are biased by the predominant effect of soaking. A similar investigation 

of the· soak/no soak curves in Figure 6.27a revealed the data from 

specimens loaded in air and water to be fairly evenly distributed. 

there is no evidence of any influence of loading environment and 

therefore, of any stress-enhanced corrosion. If present, its effect 

Hence, 

on the strength must have been extremely small - too small to distinguish 

from the general variability in strength due to material flaws, and 

certainly much smaller than the effect of long term soaking in the absence 

of externally applied loads. 
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To s·r~~a~ise» the pxe:i~ir.axy e~viron=e~tal tests have indicated 

coTTOsion to occur when we-co speci~ens are soaked in disti~led waterp 

particularly around surface flaws. The strength is lower than expected 

when failure initiates from a heavily corroded flawp indicating the 

flaw to have been enlargedp or sharpened. 

assisted stress corrosion mas been four.:d. 

6.9 Main Environmental tests 

6.9.1 Test details 

No evidence of environ=entally 

In consideration of the preliminary test resultsp the main 

environmental tests were designed to enhance any environmentally 

assisted stress corrosion present, whilst minimising corrosion effects 

during soaking, (this is not simple, since magnification of any stress 

enhanced corrosion requires a longer period of loading in the corrosive 

environment, which also increases the degree of stress-independent 

corrosion). To minimise effects of sampling, all remaining WC16% Co 

specimens (all with ground faces) of the material used to provide 

specimens for stress rate and stepped loading testsp were tested. To 

increase the batch size still further, no specimens were subjected to 

long presoaks. 

Hence, thirty specimens were loaded to failure using a stress rate 

of 1MN/m2s (half the rate used in preliminary tests), in laboratory air, 

and another thirty similarly tested in distU_led WR,ter. 

Since specimens tested in water effectively experienced a duration 

of soaking equal to the loading time to failure (approximately 40 minutes), 

specimens to be loaded in air were» therefore·, presoaked for a similar 

time, and dried prior to loading (see Section 6.8.1 for details). 

Since materials were the same, results from stress rate tests and 

environmental tests could be directly compared. 
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Analysis ~~d discussior. of resu~ts 

As expected~ with so short an exposure to distilled water, 

specimens showed no visible signs of corrosion. 

The recorded strengths are displayed in Figure 6.28. Included 

for comparison are the results from the equivalent lMN/m2s stress rate 

tests in air (in which no presoak of any sort was used). Since no 

influence of surface finish was detected (see Section 6.6), data from 

specimens with polished and ground faces have been combined to reduce 

possible sampling errors. 

2 
One extremely low strength (1460 MN/m ) recorded during environmental 

tests in air, originated from a specimen containing a large surface flaw 

0.2 mm deep (see Plate 6.7). Because it is so different from the rest 

it has been treated as an extreme value and, consequently, ignored in 

the following discussion. It has, however, been included in the 

accompanying diagrams for completeness. 

Taking this into account, the range of strengths from both stress 

rate and environmental tests in air are similar. The range from 

environmental tests in water is slightly larger, extending further 

particularly at the low strength end. 

The data in each set were ranked and plotted on a Weibull diagram -

see Figure 6.29. As for previous diagrams, individual points have been 

joined together to form a continuous line, so that clarity is improved. 

Also included in Figure 6.29 are 5% and 95% confidence bands calculated 

for the best straight line passing through data from the environmental 

tests in air (thus there is a 90% probability that the true behaviour 

lies within the area bounded by the confidence bands). 

No significant difference is apparent between the curves from stress 

rate tests and environmental tests in air. (The small portion of the 

former lying outside the confidence bands can be ignored - no evidence 



has been found to suggest that this is caused by anything other than 

effects of sampling. Also data from stress rate tests were fewer 

in number than data from environmental tests and hence confidence bands 

should be slightly further apart.) Thus, the short soak period in 

enviro~ental tests appears to have had a negligible effect on the 

strength. This implies that any strength degradation seen in results 

from environmental tests in water (where effective soak times were 

similar), is unlikely to have been caused by corrosion independent of 

the applied load. 

The high failure probability/high strength portion of the curve 

for environmental tests in water is similar to the other two curves. 

However, the low strength end deviates to lower strengths for the same 
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failure probability. The shape is similar to the soaked specimen curve 

in Figure 6.27a from preliminary environmental tests, although not so 

pronounced. Even so, since the lower portion of the curve lies outside 

the confidence bands for the environmental tests in air, a degree of 

significance in the deviation is indicated. 

The apparent link between low strength and fracture initiation 

from heavily corroded flaws found in preliminary soak tests (see Section 

6.8.2) prompted a similar microscopic inspection of fracture faces here. 

However, specimens in whi'ch fracture appeared -to initiate from large 

surface flaws were not so numerous (18% instead of 26% of the total). 

Further, there was no predominance of surface initiation in specimens 

loaded in water; indeed slightly (although, not significantly) more 

specimens of this type were found from tests in air. The inspection 

also indicated approximately 50% of all specimens to have failed initially 

from sub-surface flaws, and therefore, presumably uninfluenced by the 

test environment (assuming we-co materials to be impervious to distilled 



wa~er); six of the ten weakest specimens loaded to failure in water 

were of this type. 

Thus, although a trend of reduced strength has been noticed tending 

to indicate the existence of stress corrosion mechanisms, at present 

there is no additional evidence to support this. Hence, littJLe 

significance can be attached to it. Further work is required to check 

that the trend is not mereJLy a coincidental effect of sampling. 

6.10 A Comparison of the influence of environment on the strength 
of we-co and alumina materials 

Tests on we-co materials have shown that, at room temperature, 

a change of test environment from laboratory air to distilled water 

produces little, if any, effect on delayed fracture when specimens are 

loaded to failure. Far more significant is the degradation in strength 

found after long-term soaking with no externally applied loads. 

This behaviour is quite different from that observed in environmental 

Bend specimens, similar in size to the WC-Co 

specimens, were loaded to failure using a range of stress rates, in 

laboratory air and in Ringers Solution (commonly used to simulate body 

fluid, and as such, considered relatively corrosive), both with and 

without a presoak. Results, all obtained at room temperature, are 

shown in Figure 6.30. 

The degradation in strength with decreasing stress rate in Ringers 

Solution may be represented by a value of the stress corrosion parameter, 

n~40. This indicates that delayed fracture is likely to be less obvious 

in an A1
2

0.3/Ringers Solution system than in a glass/laboratory air system 

but more obvious than in a we-Co/laboratory air system (comparable 

estimates of n are given in Table 6.2). 

Alumina is approximately 15% weaker when tested in Ringers Solution 
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instead of laboratory air, a:tho~gh fractured ur-der the same rate of 

loading. The effect is stress corrosive since tests involving a presoak 

of one hour (considerably longer than the time taken to load the specimen 

to fracture) did not influence the strength significantly. Thus, any 

effect of corrosion which is inQependent of applied stress, if present, 

must be extremely small. The dominant influence appears to be stress-

enhanced corrosion. The behaviour is opposite to that of WC-Co materials 

tested in air, or water, where corrosion during soaking is predominant. 

6.11 Inspection of fractured specimens 

All fractured specimens were inspected by eye and under the 

microscope. Both the region of initial fracture, and subsequent crack 

propagation bec·ame evident by viewing each specimen from the side, the 

tensile face and the fracture face. 

6.11.1 The specimen side 

Fracture rarely initiated exactly at mid-span. In a few 

specimens, it occurred almost 2mm off centre on the tensile face. 

The crack propagated initially at approximately 90° from the tensile 

face. As it approached mid-thickness it turned towards mid-span, 

evemually travelling almost parallel to the tensile face (see Figure 6.31). 

When the crack reached mid-span, the remaining unbroken ligament fractured, 

again perpendicular to the tensile face. 

6.11.2 The tensile face 

Cracking seen across the width of the tensile face followed a 

distiHctive pattern common to all specimens. The characteristics were 

symmetrical abot:t a point, the position of which across the width appeared 



to be rand:)m, When t~e point !ay close to one edge, the pat~e~n appeared 

p~edominar.~ly on one side only, between the point and the other eGge, 

The following description follows the crack path from the point of symmetry 

to one edge (see Figure 6.31), 

Initially the crack path from the point was virtually straight, lying 

perpendicular to the edge, Then it deviated in a zig-zag fashion with 

increasing amplitude. Eventually crack branching was seen at peak deviations, 

Most branches were just a few micrometers long but some extended much 

further, sometimes reaching the edge, Occasionally severe crack branching 

produced a chip completely separated from the main fractured pieces. 

Near the edge, b•-•th the major crack and crack branches tended to turn 

inwards towards the original line of crack growth, 

The fracture strength appeared to influence the extent of the cracking, 

If it was low, the straight region of cracking from the point of symmetry 

was long, with little deviation or crack branching. At high strengths, 

the straight regions were hardly discernible, and crack branching severe, 

producing a large delta of branches near the edge and as many as three 

separate chips, 

Crack branching was seen repeatedly to occur at approximately 30°, an 

angle given some- significance by Kalthoff (1971), 

6.11.3 The fracture face 

The fracture face also displayed characteristics common to all 

specimens (see Plate 6.5) with a point of symmetry coincident with the 

point of symmetry observed on the tonsile face, 

Around the point was seen a smooth semi-elliptical region with the major 

axis lying along, or parallel to the tensile face, It corresponded to the 

region of straight cracking observed on the tensile face. Beyond the 

smooth region, the surface undulated with increasing roughness as the distance 



from the point of symmetry became greater. 

_, thin strip of the fracture face adjacent to the compressive face 

displayed a different texture comprising ridges running parallel to that 

face. This region correspo~ded to the fina: ligament to be broken, as 

described in Section 6.11.1. 

Closer inspection of the smooth elliptical region often revealed a 

flaw near its centre. This was particularly ev:i.dent in WC 6% Co 

specimens. The flaw was almost always a pore, or hole. 

Observing the smooth region under the microscope revealed feint 

lines radiating outwards from the centre and away from the tensile face. 

When the region contained a surface flaw, lines near the flaw radiated 

away from its perimeter. Away from the flaw lines appeared to radiate 

more from the tensile face, although still in a direction away from the 

flaw- see Plates 6.6 and 6.7. A similar pattern was seen when the 

flaw lay sub-surface. In the ligament between the tensile face and the 

flaw, lines, although indistinctPappeared to radiate from the flaw, 

diverging as they ap~roached the tensile face - see Plates 6.8 and 6.9. 

An example of a smooth region in which a large flaw could not be found 

is shown in Plate 6.10. 
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In general, a low fracture strength was accompanied by the observation 

in the smooth region of a large flaw, lying on, or near the tensile face. 

The smooth region was usually large. As strengths increased, flaws 

became smaller, and less frequently seen. In addition the size of the 

smooth region decreased; at high strengths it was almost impossible to 

identify. 

6 .ll. 4 Relation of observations to strength test results 

If a "weakest link" concept is applied to brittle fracture, then 

a crack initiates at a point where the stress first reaches or exceeds the 



the level requ:.red ~.::o se9arate two adjacent atoms. Rapid propaga~ion 

follows~ resulting in immediate catastrophic failure of the specimen. 

Introducing also a continuum mechanics approach to the three point bend 

specimen, a crack should initiate simultaneously across the width at 

mid-span on the tensile face, along the line of maximum tensile stress. 

Propagation then follows uniformly in a direction perpendicular to the 

tensile face, up through the thickness of the specimen, towards the 

compressive face. 

This model must be modified on two accounts when applied to WC-Co 

materials. Firstly, the model assumes the material. to be homogeneous. 

WC-Co materials by their very nature are not; a propagating crack may be 

passing through a we grain at one instant followed immediately by a period 

spent in the cobalt matrix. In this respect, observations m~e by 

Gurland and Bard<~:il (1955) of grain cleavage just prior to fracture 

probably indicate conditions of crack initiation having been met in 

the we grain, but subsequent propagation halted at the grain boundary by 

the cobalt matrix which is far more crack resistant. 

A second modification is necessary to take into account the effect 

of flaws both on crack initiation and propagation. A flaw tends to 
I 

! 

attract concentrations of stress such that critical conditions for fracture 

are likely to be reached there rather than in a region without a flaw. 

Consequently, if the critical flaw lies sub-surface, away from mid-span, 

and somewhere across the width of the bend specimen, then propagationis 

very different from that predicted by the mode!. The crack, once 

initiated, must travel downwards towards the tensi,le face, outwards across 

the width, and inwards towards mid-span, as well as upwards through the 

thickness towards the compressive face. 

This concept of multidirectional cracking .radiating outwards from a 

point may be compared with the description of fracture and points of symmetry 



given in Sections 6.11.1 - 6.ll.3o The centre of syro~et~y lies in the 

smooth region seen in the fracture face. Following the crack growth backwards 

towards its origin, it is not unreasonable to assume that the radiating lines 

seen in the smooth region follow the direction of cracking. Further, when 

the lines are seen to radiate fro~ a large flaw, then the flaw is likely to 

be the stress concentrator which first became critical, and hence, 

initiated fracture (Almond, Roebuck, 1980). 

A investigation of this type has a direct bearing on the bend strength 

results. Firstly, fracture strengths observed in environmental tests 

incorporating a long presoak in distilled water (see Section 6.8), were 

lower than expected when a heavily corroded surface flaw was seen on the 

fracture face. Observations of the fracture face, the patterns of 

cracking, and particularly the position of the flaw at the centre, or 

point of symmetry, indicated that it was the initiator of fracture. 

Observations of presoaked specimens failing at higher stresses showed in 

most cases, failure to initiate either from a subsurface, and therefore 

uncorroded flaw, or from a region where a large flaw could not be found. 

The "weakest link" concept appears to be applicable here. Assuming 

failure to initiate at a point where critical conditions are first met, 

or exceeded, the sharpening or enlarging effect of corrosion on a surface 

flaw, tends to increase the stress concentration in that area, thereby, 

both increasing the likelihood of failure initiation from that flaw, and 

lowering the applied stress necessary to cause failure. If, however, the 

critical conditions are reached elsewhere - say, at a large subsurface flaw -

then since the critical region is unaffected by corrosion (assuming the 

material to be impervious) the stress concentration and hence fracture 

strength remain unaltered. Thus, corrosion, although occurring in all 

presoaked specimens may not always have a significant effect on their 

strength. 
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A second observ2./;icn ccr,.cezo:::~s specimens testeC\ -;J.sing stepped I.oac::i.ng. 

When failu:re occt:rs dur::r..g a pe::-iod of cons tan/; stress, the prese:1ce of a 

delayed fracture mechanism is indicated. However, fracture faces of 

some specimens which had failed in this manner, indicated failure to have 

initiated from a sub-sariace flaw. The direction of radiating lines on 

the soooth region, between the flaw and the tensile face (see Section 6.11.3) 

indicate cracking to be from the former to the latter, and this is 

supported by elastic theory (Roark, Young, 1975)o Using as a model, a 

be~ in bending with a hole near the tensile face, the highest theoretical 

stress occurs at the edge of the hole nearest the tensile face. 

If this is the case, then the test environment is unlikely to have 

had any influence on fracture; the relative imperviousness of WC-Co 

materials prevents any corrosive species in the air from reaching a crack 

l_J;ropagating from a subsurface flaw. Once the crack reaches the tensile 

face, where the corrosive species first comes into contact with the crack 

tip, the critical crack length has probably been exceeded, and propagation 

is rapid. Thus, delayed fracture in this case appears to be independent 

of test environment with controlling mechanisms lying solely within the 

behaviour of the material. 

An alternative explanation might be that environmental corrosion on 

the surface modified the stress field in the rest of the specimen, 

including around the critical sub-surface flaw. However, this is unlikely, 

given the negligible visible evidence of corrosion in stepped loading tests 

in air. By comparison, the heavily corroded flaws seen in environmental 

tests produced significant reductions in strength only when failure 

initiated from them, and even then reductions were small. 

Another alternative is that the "constant" load during which failure 

occurred was not, in fact, constant. However test records showed no 

trace of deviation or perturbation. It is conceivable that slight 



oscillations of the servo-system in the testing machine - usually m~ch 

too small to be seen - were the source. liowever this would require the 

constant applied stress to lie just fractionally below the fracture stress 

of the specimen. Since ap~rcxireately 40% of all specimens failing during 

a period of constant stress contai~d a critical sub surface flaw, it is 

extremely unlikely the predeterm~ned constant stress levels should 

re~eatedly lie so close. 

6.12 Summary of strength test results 

Time dependent loading tests in laboratory air have shown that 

delayed fracture occurs in WC-Co alloys containing 6, 13 and 16% cobalt 

by weight. An increase in strength with stress rate to failure is 

similar to that predicted by stress corrosion theories. No differences 

in behaviour have been detected between specimens tested using either 

constant stress rates or stepped loading. 

Estimates from maximum likelihood, and transformation techniques, 

of the stress corrosion parameter, n, which best describe the behaviour, 

lie between 30 and 120. No significant influence of material composition 

or specimen surface finish has been found. 

The degree of delayed fracture in WC-Co materials in air is much less 

than in others such as soda lime glass and alumina for which n has been 

estimated to be approximately 19 and 40 respectively (see also Evans (1974)). 

The influence of test environment on delayed fracture has yet to be 

ascertained. Although a trend of decreasing strength was noticed when 

specimens were loaded to failure in distilled water instead of laboratory 

air, no supporting evidence has been found. If such an influence exists, 

then it is extremely small, and certainly much smaller than the effects of 

testing alumina in Ringers Solution instead of laboratory air. 

Distilled water, however, had a significant effect on the strength 



w~en ur.loa~ed s~ec~rre~s we?e soaked in it, p?io? to being tes~ed. 

Prolonged soaking caused severe corrosion particularly around surface 

flaws, which were shown, in subsequent strength tests to have been 

enlarged or sharpened by the action. The mechanisffis are not known at 

present, altho~gh possible factors influencing the degree of corrosion 

include residual stresses in the specimen surface. By comparison, the 
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strength of alumina was notsignificantlydegraded when specimens were 

soaked in Ringers Solution prior to testing; strength"reduction was 

predominantly stress corrosive requiring the presence of an applied load. 

Observations of the fractured pieces of bend specimens have shown 

fracture faces to display a common pattern of varying roughness which 

appears symmetrical about a point. The frequent presence in that 

location, of a large material flaw indicates that it is the critical 

flaw governing failure. The symmetrical pattern, hence,follows the 

progression of crack growth through the specimen. 

The investigation led to the conclusion that unexpected low strengths 

recorded in environmental tests including a long presoak in distilled 

water, were caused by fracture initiating from heavily corroded flaws. 

Also sub-surface initiation was sometimes observed in specimens failing 

during a period of constant stress in stepped loading tests, thereby 

suggesting that delayed fracture in air was not necessarily environmentally 

assisted. 
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7. CRACK PR0FAGATION TES?S 

7.1 Introduction 

A simple method of introducing precracks into specimens is developed 

for do~ble torsion tests, chosen to investigate slow crack growth in 

we-co materials at room tempec:-ature. 

Measurements o! crack growth rates and corresponding stress ir:.tensi ty 

factors are used to construct K -v diagra~s from which slow crack growth 
I 

behaviour is evaluated. 

Details are also given of slow crack growth observed in WC-Co bend 

specimens soaked in dilute nitric acid. 

7.2 Choice of test configuration 

Various test configurations have been developed to study crack 

propagation. Most commonly employed are edge-cracked three, or four 

point bend, compact tension, double cantilever beam, tapered double 

cantilever beam, constant moment, and double torsion - see Figure 7.1. 

(Pook, 1970; Braiden, 1976; Jay a tilaka,l979). The relative suitability 

of each depends upon the properties of the material to be investigated. 

Of particular relevance in choosing a configuration for WC-Co materials, 

is their poor machineability, and the difficulty of sintering large 

specimens. Also, many configurations designed, primarily, to measure 

fracture toughness are not suitable for the st1idy of slow, sub-critical 

crack growth. 

Bend specimens with a large precrack initiated at mid-span are 

relatively easy to prepare, but permit little slow crack growth because 

the critical crack length is short. Also the specimen is wide in 

relation to its depth, allowing non-uniform crack growth across the 

width, which is difficult to both measure and represent mathematically. 



T~e cc~ao~ te~s~on cc~~iguxatio~~ likewise a:lows Iit~:e slew crack 

growth. Additional problerrs arise in applying the tension loads necessary 

to open the crack. The use of jaws gripping the specimen, runs the risk of 

it slipping and becoming misaligr-ed (overtightening can induce berrding), 

and holes drilled in the speci~en to allow insertion of loading reds, tend 

to act as stress concentrators such that failure initiates from them 

rather than from the precrack. 

Both the straight and tapered t.ypes of double cantilever beam suffer 

from similar loading problems. 

crack growth. 

However they do sustain considerable slow 

In all the configurations so far described, except the tapered double 

cantilever beam, measurements of velocity and stress intensity factor used 

to construct the KI-v diagram, ~ust be obtained by continuously monitoring 

the crack length. In some configurations, however, the stress intensity 

factor is independent of crack length, and relies only upon specimen 

dimensions, material properties and the applied load. 

One such "constant K" specimen is the tapered cantilever beam 

although in addition to loading problems already mentioned, the techniques 

requ:ii:res large specimens and accurate machining of the taper. 

The constant moment configuration is also of the "constant K'' type. 

The rectangular plate specimen, although simple to manufacture, and able 

to contain considerable slow crack growth, must be loaded through two 

moment arms. A method must be found of fixing the arms to the specimen 

so that the joint is strong enough to withstand the high bending moments 

required to induce crack growth. 

"Constant K " specimens of the double torsion type, again rectangular 

plates and, thus, simple to manufacture, are far easier to load. A 

four-point bend configuration is used to provide torsion in two arms. 

Since loading is totally compressive, neither tension grips nor holes for 



'!':1.e speci:z;en can s:.1.sta::.n s1on crack g::-o'\?th 

along the whole length of the plate. Thus for reasons noted aboveD 

the double torsion configuration was chosen for the present study. 

One poss~ble disadva~tage is the relatively complex type of crac~ growth -

this is disc~ssed in Section 7.3. 

7.3 The double torsion test 

The double torsion specimen, shown schematically in Figure 7.2 

consists of two arms with the crack acting as a common boundary. Torsion 

is applied to each arm, but in opposite directions. The consequent 

deflection of the arms tends to open the crack, propagating it along 

the length of the specimen. 

The configuration was originally devised by Outwater and Jerry (1966) 

and developed first by Kies and Clark (1969) and later by Evans (1972). 

It has been successfully employed for the study of slow crack growth 

in many materials, including glass (Weidmann, Holloway,l974; Mai, Gurney, 

1975), graphite (Freiman, Mecholsky,l978), silicon carbide (Evans, 

Wiederhorn, 1974~ Evans, Lange, 1975; McHenry,Tressler, 1977), and in 

epoxy resins (Phillips, Scott, 1974; Young, Beaumont, 1976.) 

Torsion is applied to the specimen of depth, d, and width, W, 

containing a crack of length a, using a four-point bend arrangement. 

A total load, P, applied to the inner points, is split equally between 

each armo Each cut<::r point then takes the reaction load, P/2,irom the 

specimen. The distance between inner and outer points, Wm• acts as 

the moment arm providing the~rsion. 

Treating each arm as a rectangular bar under pure torsion, the angle 

of twist, e, is given by 

e 7.1 



the mate:r:..a::.. 

Assumir~ 0 to be s~all, so that the deflection, y, of each inner 

loading point is obtained approximately from y = e.w , and specifying 
m 

the specimen compli~~ce, C, to be t~e value of y for ~nit load (i.e, 

C = y/P), then fro~ Equation 7,1 

c = 
6a(W )

2 
(1 + i'P) 

::n 7.2 

Often a groove is cut into the specimen to guide the crack (see 

The thickness,d~of material through which the crack passes 

is therefore less than the thickness of the rest of the specimens. 

As the crack passes along the groove, it releases strain energy, 

induced into the specimen by the load. The strain energy release rate 

per unit thickness, G, for the specimen is given by 

G = 
l p2 

"'---
2 d 

7.3 
n 

Combining Equations 7.2 and 7.3 toeliminateC gives 

G = 
3(1+17) 7.4 

E w dnd 

Under plane strain conditions, the stress intensity factor, K, is 

related to G by 

7.5 

Thus by combining Equations 7.4 and 7.5 

K = 7.6 
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K$ therefore~ depends only u~cn specimen di~ensions, ~aterial 

properties and the applied load. Since K is not influenced by the 

Some concern has been expressed by Evans (1973) as to the ~ode of 

crack growth in the double torsion specimen. The general direction of 

propagation alor..g the length is perpendicular to the directio::l of lca.d:lng~ 

and hence would appear to be Mode II! crack grovnh (see Knott (1973)). 

However, Evans proposed that at any instant the crack is in fact travelling 

perpendicularly from the tensile face to the compressive face. 

The characteristic cwrved crack front seen in double.torsion specimens 

(shown in Figure 7.3) supports this view. At the greatest extent of 

crack growth along the tensile face - point A in Figure 7.3 - the crack 

has just emerged from the tensile face, whereas a short distance back 

(B), the crack has travelled further through the thickness. Thus a thin 

width-wise section cut from the specimen passing through the crack front -

CC' on figure 7.3 - is effectively a beam loaded in four-point bending, 

with a mid-span crack travelling upwards through the thickness. In this 

case crack growth is of type Mode I. 

Since the d~fference between the extent of crack growth in the tensile 

face and on the compressive face is generally much greater than the 

specimen thickness (Evans 6 1972), it is reasonable to assume that plane 

st~ain conditions are presenta 

Estimates of G $ the critical strain energy release rate, for soda 
c 

lime glass using the double torsion configuration are in good agreement 

with GIC~ the critical strain energy release ra~e for Mode I cracking 

measured using other configurations (Evans, 1973). Thus Equation 7.6 

may be rewritten in terms of the plane strain stress intensity factor 

for Mode I cracking, K
1

, such that 



= P v~ 
m 

Hcweve~, Jayati2aka (1979) ~uestions whether sufficient evidence has 

nee~ amassed to s~pport the ~gument. 

7.4 Use of the do~ble torsion test to measure slow crack growth 

First studies of slow crack growth using the double torsion test 

involved the estimation of propagation rates from optical measurements 

of the crack front as it progress along a specimen subjected to a constant 

load (Kies, Clark, 1969). 

Evans (1972, 1974) improved the experimental technique by transferring 

control from load to displacement of the inner loading points, and by 

noting the following relationships. 

A controlled displacement, y, induces a load P into the specimen 

containing a crack of length, a. Evans showed experimentally that the 

specimen compliance, C, (= y/P) is linearly related to a such that 

c = Al a + A2 oooooooooo 7.8 

where A 
1' A2 are constants. 

Thus 

y = P(A
1 

a + A2) 0000000000 7.9 

If a constant displacement rate, yc, is applied to the specimen, then 

from Equation 7.9 

~ 
dt = 7.10 
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Ass1.:..tt:.r.g tl:e::.: ·c::e spec:.:::e:J. :.s "co::s'::a..""t K" a."1C'. t:=:at a s'i:::=-ess coJr:rosive 

relationship exists between the stll:'ess intensity factor, K
1

, ar.d crack tip 

velocity, v , ( = da/dt) of the form 

v = A K n 
I 

(Eq1.1ation 2.4) 

whelre A is a constant, and n is the stress coll:'xosion factor, then a 

constant displacement rate should induce a constant crack tip velocity. 

Further K
1 

and P should remain constant such that Equation 7.10 reduces 

to 

v = da 
dt 

7.11 

Hence, estimates of both stress intensity factor and crack velocity, 

do not require the measurement of crack length or rate of propagation. 

By calculating v and K
1 

using Equations 7.11 and 7.7 respectively, 

a single point may be plotted on the K
1

-v diagram. By performing tests 

at a range of displacement rates, the K
1

- v curve can be constructed. 

This technique, however does not make efficient use of the specimen; 

only one point of the K
1

- v diagram is obtained from each period of 

constant displacement rate, during which some considerable crack growth 

may have occurred. 

The efficiency is greatly improved if a constant displacement 

technique is used instead. A constant displacement rate is applied 

to raise the lorud to some predetermined level. When reached the 

displacement is held constant. Initially the crack velocity is high, 

and the consequent increase in crack length raises the compliance of 

the specimenv thereby reducing the load. As the specimen progressively 

relaxes, the crack velocity decreases inducing a lower rate of unloading. 



to 

9lo 

Under a constant displacexent dy/dt = Op and equation 7.10 reduces 

v = 
d. a 
dt = AP 

1 
7.::..2 

Letting Pf ar.d af represent the load and crack lengthp respectively, 

at the end of relaxationp then from Equation 7.9, since y is constant, 

= 
(Al af + A2 ) 

("\a + A
2 

) 
7.13 

where P and a now represent load and crack length at some intermediate 

point during relaKation. 

Combining Equations 7.12 and 7.13 to eliminate a 

v 7.14 

Denoting the compliance at the end of relaxation by Cf and noting 

from Equation 7.8 that Cf = A
1

af+A
2 

then Equation 7.14 reduces to 

v = . ·(- dP) dt' 7.15 

Again v may be calculated \-!ithou.t the need to measure crack lengths 

or propagation rates. P, P f and dP/dt are easily measured from a load-

time record of the test; Cf is obtained by lowering the load under a 

constant displacement rate at the end of relaxation, and noting the 

relationship between P andy (C = y/P, hence C = y/~); and A
1 

is 

calculated from a prior compliance calibration. 

Hence, by analysing a number of points along a single relaxation 

curve, a large portion of the K -v diagram may be constructed. 
I 



A fi~a: note ~ust be ~ace concerr.ir.g the direction of crack 

propagation. Equations 7.11 and 1.15 give the velocity of crack 

propagation in a direction along the length of the specimen. Howeverp 

as shown in Section 7.3 the validity of the do~ble torsion test requires 

crack propagation to be co~sidered perpendicular to this. 

Let the crack front be represented approximately by a diagonal 

straight line - see Figure 7.4 - jointing the crack tips seen on the 

tensile face and the compressive face. If the difference in the extent 

of cracking on each face is denoted by ~a. and d is the thickness of 
n 

the specimen through which the crack passes, then the through-thickness 

velocity vt' is related to the lengthwise velocity, vL, by 

d = n 
= 

Thus ~ is the correction factor that must be applied to Equations 

7.11 and 7.15 such that for a constant displacement rate 

v = . (*) 7.16 

and for a constant displacement 

v = 7.17 

7.5 Experimental details 

7.5.1 Test rig 

The double torsion rig is shown in Plate 'l.l. 

Particular aspects of the design include the maximisation of 

rig stiffness, so that deflections of a relatively stiff specimen could 
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be easily seen; in t:C.~.s ;:oes:;eot also~ nak:.~g a::.J. joints metal-to-metal 

contact (to increase stiffness~ and avoid ti~e=depenCent effects~ ad~esive 

used at the joints was carefully placed so as not to lie in the path of 

the load); and finally, allowing as much access as possible to the 

specimen,whilst loaded for observation and measurement of crack growth. 

Load was applied using an Instron 1195 testing machine which co~ld 

provide both a constant displace~ent and constant rate of displacement 

through the crosshead on the loading frame. Load was contin~ously recorded 

through a load cell on a pen recorder. 

7.5.2 Specimen preparation 

Rectangular specimens were prepared from plates, 3:i" x l" x g" 

of we-co alloys containing 6,13 and 16% cobalt by weight. 

Sintering of such large plates had introduced considerable distortion. 

A few specimens were prepared from less distorted plates by diamond 

polishing, but the operation was extremely time consuming and expensive 

in polishing materials. The majority were prepared by contractors. 

Specimens were requested to be nominally 80x25x2mm with opposite 

faces and edges ground flat and parallel. However, when distortion was 

severe, grinding was to continue until all surface undulations had been 

removed. Next, a groove lmm wide with a depth equal to half the 

specimen thickness, was to be cut lengthwise down the middle of one face. 

Finally a through-thickness notch, lmm wide and 5mm long was to be cut 

into each end of the specimen in line with the groove. 

After initial preparation, the ungrooved face of each specimen was 

diamond polished to~oduce a mirror finish (see Section 6.2.3). Final 

checks on the thickness - the most critical dimension - showed that, 

although differences existed between specimens, variation over the 

surf ace of any one s~~ecimen did not exceed + 0. Olmm. This was also 



Further refinements were made as a result of p~eli~inaxy tests ar.d 

these are described in Section 7.5.3. 

Precracking tests and techn~gues 

To introduce a precrack into a speciffien, a crack must be initiated 

and then subsequent propagation minimised. The problems encountered by 

others in precracking WC-Co specimens have been discussed in Section 3.3. 

In the present study, precracking was first attempted using an impact 

loading technique. A wedge made from tool steel was placed in a notch 

cut into the end of the specimen mounted wertically such that the other 

end rested on a firm base. Compressive loads to halt propagation once 

the crack had been initiated were applied to the specimen sides by placing 

it in the jaws of a vice. The impact load was applied by hitting the 

wedge with a fibre-headed mallet. 

in Figure 7.5a. 

The technique is shown schematically 

Tests were first performed on soda-lime glass microscope slides which 

were similar in size to the we-co specimens. Some degree of success 

was achieved with precracks as short as 5mm in length being produced. 

Approximately 50% of ungrooved WCG% Co specimens, similarly tested, 

were successfully precracked. However, precracks were appreciably 

longer ( 20-40mm) than in glass specimens (higher loads required for 

crack initiation were less easy to control), and some deviated to one 

side. 

A few tests on grooved specimens were a~l unsuccessful. Although 

the groove stopped deviation, crack propagation could not be stopped 

within the specimen. A possible explanation is that the groove tends 

to induce bending moments in the specimen under the action of the 

compressive side loads, which tend to open the crack on the opposite 



face~ a.Vld he~ce aid its progress through t~e specin:.en (see Figu.re 7. 5b). 

Precracks could not be initiated in WC13% Co and WC16% Co specimens. 

Instead the wedge chipped pieces of material from the side of the notch, 

indicating that the notch was not sha~p er.ough to induce crack initiation 

at the tip. 

The narrowness of a machined notch is limited by the thickness. of 

the cutting wheel. Hence to achieve finer notches, spark erosion was 

used to sharpen existing machined notches. By using copper shim, 

14fm thick, notches approximately 0.2 mm wide and l mm deep were spark 

eroded - see Plate 7.2. The operation was performed in paraffin to 

dissipate the heat, and consequently all specimens were thoroughly 

cleaned in acetone afterwards. 

With the sharpened notch, cracks were initiated in specimens of all 

three grades of WC-Co although not all could be stopped from propagating 

completely through. 

In Section 3.3, the effect of spark erosion on crack propagation 

tests has been discussed in terms of the damage it does to the material, 

and some damage was found around the tips of sharpened notches in the 

present study. .However, unlike Chermant et al (1974,1976) and others, 

who used spark eroded notches as substitute precracks, ~ere they were used 

merely as stress concentrators to aid crack initiation. The tip of 

each precrack once initiated lay some distance from the region of damaged 

material, 

Two observations made after the introduction of spark eroded notches, 

led to the discontinuation of the impact loading technique. 

Firstly, successfully precracked specimens when placed in the double 

torsion rig and loaded us~ng a constant displacement rate, gav8 an audible 

"click" at the onset of crack growth, accompanied by a rapid drop in load. 



two pieces and the load dropped to zero. In cases where immediate re~oval 

of the load had retained the crack within the specimen, subsequent crack 

growth ~nder a reapplied load was far easier to control. 

It appeared that some degTee of crack re-in~tiation was requi~ed for 

propagation to start from the precrack. Possibly the shape of the 

precrack tip produced by one loading conf~guration - impact loading 

through a wedge - was unsuitable for subsequent propagation under a 

different loading configuration - in the double torsion test. Hence a 

method of precracking using the double torsion configuration was required. 

The second observation was made during the precracking of WC 16% Co 

specimens. A precrack could be introduced with a single large impact 

load~ but also just as successfully, with a number of smaller impacts. 

This indicated the possible presence of a slow crack growth mechanism. 

Taking into account both observations a new test was devised whereby 

a specimen with a notch sharpened by spark erosion was placed in the double 

torsion rig and loaded using a cyclic displacement to induce fatigue 

crack growth. 

As the displacement amplitude was raised, the onset of crack growth 

became evident when the amplitude of the recorded load cycles, showing 

initially a corresponding increase, suddenly ceased to rise so quickly 

and occasionally decreased. By immediately removing the load precracks 

as short as 5mm were introduced. These were obviously too short for crack 

growth tests since the tip still lay in the region damaged by spark erosion. 

However, by reapplying a load, not necessarily cyclic, subsequent crack 

propagation occurred without an "audible" click, and was found to be 

extremely controllable so that a precrack of suitable size was easily 

attained. 



The tecr~~ique p?oved cosplete:y s~ccess~~~ o~ t~e few specimens 

prec:rracked in this way. Subsequent tests showed that cyclic displacements 

were not necessary a~d that a sireple constant displace~ent rate was just 

as effective. The modified technique proved repeatable and reliable for 

all subseq~ent specimens. 

Its success seems to be dependent upc•n two facto:~rs. Firstlyp the 

smoothness with which a crack propagated f:~rom a spark eroded notch -

with no indication, in most cases, of any initiation being required -

indicates that a tiny precrack was already present p introduced during 

spark erosion. Secondly, the controllability of subsequent crack 

propagation indicated the presence of slow crack growth mechanisms. 

7.5.4 Procedure to ensure the reliability of results 

Evans (1972pl974) described the load-time curve expected 

theoretically from a double torsion specimen loaded under a constant 

displacement rate, as follows. After an initial rise, the load remains 

constant as the crack propagates along the length of the specimen. 

However Trantina (1977) from stress analysis of the test, and Shetty and 

Virkar (1978) from experiments on soda-lime glass, have shown that a 

constant load is unlikely to be observed when either the crack, or the 

remaining unbroken ligament is short. In both cases, mixed mode cracking 

takes place, and hence, the theories used by Evans become invalid. 

Displacement rate tests were performed on precracked specimens of 

soda-lime glass and We-Co materials. The load time record, shown schematically 

in Figure 7.6, was similar for all, and followed the behaviour described 

above. 

After an initi~l rise in load (region A in Figure 7.6) during which 

crack propagation was negligible, the load decreased (region B). Sometimes 

the change occurred in a single drop, sometimes in a number of small 



jureps~ ~~d so~eti~es ~n a scooth c~ve. Why j~ps sho~:d be pxesent in 

so~e tests ~~d not in others is still llnclear. 

When no further drops in load were observed, the crack length was 

found to be between 20 and 30mm for both glass and we-co specimens. 

Tb.e region of j':'..l.:llps was followed by a period of constant load (region 

C), which displays the behaviour predicted theoretically by Evans (1972, 

1974) 0 

When the crack came within 20mm of the end of the specimen, the load 

began to fall again (region D), this time in a smooth curve. As the 

crack approached the end of the specimen the rate of change of load increased 

until final fracture. 

It is essential therefore that the precrack tip lies in region C 

before crack propagation tests begin. In the present study, this 

requirement provided not only the conditions for valid theoretical analysis, 

but also ensured that propagation occurred away from material damaged by 

spark erosion around the notch. 

The guiding groove 

In the past~ the need for a groove to guide crack growth down 

the middle of the specimen has been considered essential. Indeed, its 

presence has been assumed in the majority of relevant diagrams and 

theoretical formulae found in the literature. Without a groove, slight 

inaccuracies in loading alignment, and small variations in specimen 

thickness across the width cause the crack to deviate to one side. 

However, a groove introduces new problems. Schematic diagrams 

of the groove represent it as rectangular in cross-section with a flat 

base 9 through the middle of which runs the crack. Practically, it is 

difficult to machine a groove of this shape and, hence, any deviation 

of the crack takes it into a region with a slightly greater thickness. 



F~~the~, gxoove coTners ac~ as stress co~ce~trato~s tending to attxact 

crack growth towards t~em. 

Pabst and Weich (1982) compared K
1 

-v diagrams obtained from 

al~ina double torsion specimens both with and without a groove. The 

grooves, all precision mac~~ned, comprise~ some with a rectang~lar cross-

section and others with a more ro~nded cross-section. The authors 

found that specimens containing grooves of either cross-section gave 

a far wider scatter of results than tho~ungrooved. 

Murray (1977) chose to replace a machined groove with a spark 

eroded "scratch" for fracture toughness measurements. However, spark 

erosion can severely damage the material and possibly influence slow 

crack growth. 

A few ungrooved specimens of soda-lime glass and WC 6% Co were 

tested at the beginning of the present study but crack growth, central 

for a short distance, eventually deviated to one side in every case. 

All other specimens contained grooves with slightly sloping walls, 

a relatively flat base and rounded corners - see Figure 7. 7. In almost 

all WC 6% Co and WC 16% Co, the crack remained at the base of the groove. 

In the remaining few of these materials, and in all the we 13% Co 

specimens, the crack deviated into the groove wall. This became 

immediately apparent during the test from the load-time record. As soon 

as the crack passed into a thicker part of the specimen, the load tended 

to rise under displacement rate control. When this was seen, the test 

was abandoned. ·The susce~tibili ty of WC 13% Co specimens to this has 

yet to be explained. 

Observation of the crack 

Observation of a crack in a we-co double torsion specimen is 

difficult for a number of reasons: the crack opening displacement is small·, -
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dye penetrants cannot be used beca~se of their possib:e corrosive inf:uence 

on crack growth; when the specimen is grooved the crack is invariably 

obscured on that side by the roughness of the base~- polishing inside 

the groove is d~fficult; and on t~e compressive ungrooved side, the 

crack rarely penetrates ~he surface (Murray, 1977~- a thin ligament of 

material remains unbroken. 

However, if the ungrooved face is diamond polished to a mirror finish, 

an impression of the crack is visible in the form of a "kink" - see Plate 

7.3. 

Measurements from ungrooved specimens, polished both sides, of the 

"kink" length in relation to the crack length on the tensile face, 

revealed a consistent difference of 3mm. The 'kink" length was therefore 

considered a good repres~ntative of the extent of crack growth (and the 

difference used to calculate the correction factor, ~. in Equations 7.16 

and 7.17). 

Observation and measurement of the "kink" during a test we1re aided 

by placing behind the specimen, a piece of card on which was drawn a grid 

of straight parallel lines. When the reflection of a line in the 

polished specimen surface, crossed the "kink" a discontinuity was observed -

see Plate 7.4. The extent of the kink was lightly marked at the edges 

of the specimen, using a felt-tipped pen, allowing accurate measurement at 

the end of the test. The ability to measure the length of the "kink" with 

load applied, gave much better estimates of the extent of crack growth. 

When the load was removed, the crack closed and the "kink" appeared shorter. 

7.5.7 Compliance measurements 

The compliance of a double torsion specimen depends upon the 

specimen dimensions; material properties, dimensions of the loading 
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configuration and the crack length - see Equation 7.2. 

The dimensions of the loading configuration are constant since 

the same rig was used for all specimens 1 and material properties assumed 

constant for specimens of the same grade oi we-co. 

Further, little variation in dimensions was found in specimens of 

the same grade although significant differences in ~ean thickness were 

recorded between specimens of different grades - 1.75 1 1.60 and 1.07mm 

for WC-6% Co, WC-13% Co and WC-16: Co respectively (representing the 

relative distortion of original plates and subsequent qegree of machining 

in specimen preparation - see Section 7.5.2). 

Hence a compliance calibration diagram was constructed using 

measurements of compliance at various crack lengths, taken from all 

specimens - see Figure 7.8. 

The compliance was calculated using the testing machine cDosshead 

position as a measure of displacement. Consequently, it included a 

contribution from the test rig. The compliance of the double torsion 

rig alone is indicated in Figure 7.8 and was subt~acted from compliance 

measurements to obtain an estimate of the specimen compliance. 

Assuming a relationship between specimen compliance, c, and crack 

length,. a, of the form 

c = (Equatio:n 7. 8) 

-1 
the constant,A

1
,was estimated to be 7,5 ~ld 25 rru~ for WC~6%Co, 

Co and WC-16% Co respectively, and the constant, A
2 

was 0.06m/MN with 

no apparent influence of material composition. 

7.5.8 Estimation of errors 

The characteristic shape of a K
1
-v diagram is of a curve spanning 
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a ~ange of crac~ velocities seve~a~ orC.eTs of ~agn~t~de wide~ b~t on:y a 

short range of K
1

• Hence errors in v are like:i:.y to have nn.::ch less effect 

on the estimation of the stress corrosion parameter,n~ than errors in K
1

• 

Possible errors in K
1 

arise from a lower limit to the sensitivity of 

measuring equipment; variations of specimer.s dimensions along its ~ength, 

particularly the thickness; and drift of the testing machine control system. 

Largest estimates of errors are summarised in Table 7.1 and compared with 

smallest measured values of each parameter. Co~bining these according to 

Equation 7. 'I, a maximum possible error in K
1 

is estimated to be "'4%. 

Onefurther parameter - Poisson's ratio; v - is required for the 

calculation of K 
I 

This could not be measured in the department. Instead 

values found in the literature (Lardner,McGregor, 1951-2) were used - w = 0.21 

for WC 6% Co and V = 0.24 for WC16% Co. 

7.6 Preliminary tests on soda-lime glass specimens 

To evaluate the double torsion rig, constant displacement tests were 

first performed on soda-lime glass specimens prepared from the same batch 

of microscope slides used to produce the bend specimens for comparative 

strength tests (see Section 6o4o2). 

The resulting K
1

-v diagram- see Figure 7.9 -shows clearly the three 

regions of crack growth described by Wiederhorn (196"/) o The curves lie, 

as expected, between the curves obtained by Evans (1972) from tests in 

distilled water and toluene ~d display a similar degree of scatter. 

Estimates of the stress corrosion parameter,n, for region 1, lie in 

the range 15-19, which is in good agreement with bath the maximum likelihood 

estimate of 19 obtained from the bend strength tests and published data 

(Adams,McMillan, 19Ti)o 

7 o 'I A note on "jumps" observed on load relaxation curves 

Load relaxation curves obtained from constant displacement tests on 



soda~lin:.a giass s;pecimensp displayed a siead:i.ly dec:':'easing rata of change 

of load, shown schematically in Figure 7.!0a. In corresponding curves 

from we-co specimens, however, the decrease in load was interrupted by a 

series of "ju=Ips" - see Figuxe 7.10b. The position of the "jumps" appeared 

to be x~~dom along the relaxation curve. 

When K
1

-v diagrams were constructed fxom the curves, the shape was of 

a straight line of increasing crack velocity, v, with stre.ss intensity factor 

K
1

, interrupted with spikes which, as K
1 

decreased, showed first a decrease 

in v followed by an increase, and then a final decrease back to the straight 

line, - see Figure 7.11. 

At present, the cause of this phenomenon is unknown. One possibility 

is that the crack front comes up against a~all area of material more resistant 

to cracking. As cracking continues around it, the unbroken ligament maintains 

the stiffness of the specimen and, hence, the load supported under a constant 

displacement. When the ligament finally breaks, the specimen suddenly 

relaxes to a level governed by the extent of crack growth around the 

obstacle, and the load drops. 

However, no visual evidence of any obstacles couldbe found when the 

fracture faces were inspected (see Section 7.10). Similarly no evidence 

was found of crack arrest lines which had been observed accompanying jumps 

in the load during tests on epoxy resins by Phillips and Scott (1974), and 

Young and Beaumont (1976). 

Despite the source remaining unknown, the random occurrences of the 

"jumps" indicate them to be localised effects and not representative of 

the general behaviour. Hence they were removed wherever possible during 

the construction of the K
1
-v diagrams. 

Occasionally a drop in velocity was noticed at the end of the relaxation 

curve. However, observations of other curves showed this to be due to a 

"jump" rather than a threshold of slow crack growth. 



7. 8 WC=Co dol.db:e tc:::sio::l ~;;est res\J.:.::. ts a..1.d C:.iso-;;,ssion 

The K
1

-v diagr~s obtained from constant displacement tests on we 6% Co 

and we 16% Co are presented in Figures 7.12 and 7.13. (Similar tests on 

WC 13% Co had to be abandoned because of crack deviation into the guiding 

groove wall - see Section 7.5.5). 

Curves were rejected if effects of a short crack, or short unbroKen 

ligament were detected (see Section 7.5.4). This was easily detected from 

the K
1

-v diagram since curves from those regions displayed a lower gradient. 

A number of relaxations were applied to each specimen. The curves in 

Figures 7.12 and 7.13 are labelled both with the test number of the specimen 

and the number of the relaxation. (Intermediate numbers which do not 

appear, were attached to specimens in which the crack travelled into the 

groove wall, or to relaxations in which load "jumps" were too numerous or 

too large to permit analysis.) 
for-

The K
1 
-v curves;{ both WC-Co materials display a number of similar 

characteristics within the range of K
1 

and v studied. 

Firstly, the levels of K
1 

over which slow crack growth has been 

recorded are much higher than for soda-lime glass (see ~igure 7.9). The 

materials are obviously more resistant to crack growth. 

The ranges of K
1 

lie close to the critical level for rapid propagation. 

This may be seen by comparing the results with values of Klc obtained from 

the literature - see Figure 7.14. 

No evidence of a lower threshold, or limit to slow crack growth has 

been found. 

Finally, slow crack growth behaviour displayed on K
1
-v diagrams using 

logarithmic axes, may be described by a straight line. There is no 

evidence of more than one region. Measurements of n from the gradients 

range from 60-150for we 6% Co and 75-180 for we l:6% co. At present, 

the extent of each range disallows any conclusions as to a relationship 



between n and ma~erial composition. However the general levels are considerably 

higher than estimates of n (=15-19) for soda-lime glass~ indicating slow 

crack growth to be much less in evidence. 

Inspection of the K
1

-v c~ves for each grade oi we-co reveals considerable 

variability in K
1

• Variations between curves from the same specimen come 

within expected error bands (see Section 7.5.8), and as such may be considered 

insignificant. Variations between specimens~ however, are much larger. 

They may be caused by small differences in material and specimen preparation, 

or by the presence of a guiding groove - see Section 7.5.5. 

A more precise estimate of n was not obtainable for a n1)mber of reasons. 

Firstly~ the slopes of the K
1

-v lines are steep (corresponding to high values 

of n); even a slight error in measurement, or judgement as to the best 

line fitting the data causes a considerable change in the magnitude of n 

calculated from the slope. Secondly, each line spans a very small range of 

K • 
I' 

since K
1 

is extremely sensitive to specimen dimensions~ particularly 

the thickness, the estimate is likely to be influenced by small undetected 

variations along the path of the crack. Thirdly, the load relaxation 

curves used to obtain the K1-v lines were "adjusted" to remove irregular 

"jumps" in the load; the estimate of n is influenced by the judgement used 

in deciding where "jumps" begin and end, particularly when they are small, 

or close together. 

7.9 Inspection of double torsion specimen fracture faces 

Inspection of the fracture faces by eye revealed a finish similar in 

texture to that of the smooth region on the fracture faces of bend specimens 

(see Section 6.10). The surfaces were virtually featureless~ with a 

notable absence of material flaws - see Plate 7.5. 

Viewing the surfaces under the microscope at high magnification (x 900) 

individual we grains could be seen. The faces of some were shiny and 

lightly scored indicating grain Cleavage. When two corresponding areas from 



indicated conside:rcab:.e interg;ra.'Tlular fxactv.re. However$ apparent 

catching grains with shiny surfaces did not necessarily indicate trans­

granular fracture; one side could have been the impression of a grain 

left on the cobalt matrix if fracture occurred along a grain boundary. 

The surfaces were also viewed through a scanning electron microscope. 

However» at high magnification the two phases were not easily distinguishable. 

7.10 Evidence of environmentally assisted slow crack growth in we-co materials 

Double torsion specimens were not available in sufficient numbers to 

allow an investigation of slow crack growth in environments other than 

laboratory air. However$ evidence of environmentally assisted slow crack 

growth was found when fractured pieces of bend specimens were soaked in 

dilute nitric acid. Crack growth seen emanating from pyramid indentations 

previously introduced into these specimens, led to a brief survey of the crack 

resistance test as a possible method of identifying and evaluating slow 

crack growth. 

Crack growth in dilute nitric acid 

Four fractured pieces of WC-Co bend specimens with polished faces 

were soaked in a 10% solution of nitric acid. 

The-first specimen- of WC 16% Co- contained pyramid indentations from 

an earlier hardness test. After it had been soaked for a day$ some 

discolou1:ation of the surfaces was noticed, particularly around the 

indentations. Cracks at the four corners of the pyramid$ also introduced 

during the hardness test (see Section 3.4) appeared to have grown slightly. 

After three days' soaking, discolouration was widespread, indentation 

cracks were enlarged and crack growth was observed away from the indentations -

see Figure 7 .1_5 • The face which had been in tension during the bend test, 



extent than the co:x:.pressive face, and in one place a chip had come away. 

At this stage, the acid solution had turned a pale maroon colour, 

indicating a reaction with the cobalt in the specimen, and contained a 

sedi~ent of tiny particles of material which had broken away from the bulk. 

A second specimen, this time of WC 13% Co, soaked in nitric acid, 

displayed substantial cracking after one day. The pattern of crackir.g was 

different from that seen in the first specimen, in that the cracks tended 

to lie parallel to the specimen edges - see Figure 7.16. Further soaking 

led to chips falling away from all edges to leave the specimen in the shape 

of a lozenge (see Plate 7.7). 

Another two specimens, one each of WC-13% and WC-16% Co, were soaked 

and the crack patterns are shown in Figure 7.17, after two and five days. 

Preferential cracking around edges in the WC-13% Co specimen is evident 

once more (see Plate 7.8). 

Differences in crack patterns between the two grades of WC-Co 

indicate either a fundamental difference in material response to acid 

attack, or more probably, an influence of the specimen structure and 

preparation. Specimens of the same grade of we-co were prepared together 

(see Section 6.2.3) although different grades were prepared separately. 

Thus, slight variations in, say, grinding or polishing, might have induced 

different degrees of surface damage, or residual stresses, tending to 

promote or inhibit crack growth. 

Cracking in WC-13% Co specimens was observed to follow not only the 

specimen edges but also the fractured edge. This evidence coupled with 

preferential cracking seen on the tensile face, indicates that the previous 

strength test was an influencing factor. This supports the view that 

controlling mechanisms are associated more with the condition of the 

specimen than with the material alone. 



(1976), who observed spalling aro~nd hardness inder.~ations when specimens 

were exposed to hydrogen fl2oride vapour, proposed that crack growth was 

controlled by stress corrosive mechanisms whereby residual stresses 

introduced d~ring i~dentir.g 9 enhanced corrosion. Alt~o~gh this may explain 

crack growth around ir.dentat~ons in the pr~sent study. it does not explain 

crack growth away from indentations. Microstructural and chemical 

approaches to the investigation of material damage and reaction with 

corrosive species are required to find out more about this behaviour. 

Environmental crack resistance tests 

Evidence of surface cracking led to the development of the 

crack resistance test to study slow crack growth in different environments. 

Normally, cracks emanating from the corners of a pyramid indentation 

are considered to be stationary after the initial application of the 

indenting load, and their combined length a function of that load (see 

Section 3.4). However, in a corrosive medium, it was hoped that slow 

crack growth would occur and that the total crack length would be 

influenced by not only the indenting load, but also the duration of its 

application, and the test environment. 

H~dness tests were performed on soda-lime glass microscope slides 

and fractured halves of we-co double torsion specimens, in laboratory 

air and distilled water, employing a range of loads and indenting 

durations. Some specimens were soaked in water after indenting to 

promote any stress corrosive crack growth enhanced by residual stresses. 

Estimates of crack resistance, however, showed no significant 

dependence on test environment, load duration or the inclusion of a period 

of soaking after ~ndenting. In hindsight, the maximum load duration (5 



:!..09. 

min~tes) was proba~ly too s~ort to pro~ote a sig~~=icant degree of slow 

crack growtL1 .• Time was not available for further tests. 

7. ll St:.r:::11ary of crack propagation test :Tesul ts 

Slow crac!{; growth has been observed in WC-6% Co and WC-13% Co 

materials in laboratory air, using the do~ble torsion technique. The 

success of these tests was due, primarily, to the development of a new 

technique for introducing pre-cracks into specimens. using a constant 

displacement rate to induce crack growth from a machined notch sharpened 

by spark erosion. 

Crack growth behaviour, when displayed on a K
1
-v diagram using 

logarithmic axes, may be characterised by a single straight line, with 

a series of spikes of rapidly decreasing and increasing crack tip velocity, 

dispersed randomly along it. The spikes are assumed to be due to local 

L 
inhomogenei~s and, therefore, have been ignored during analysis of the 

behaviour. 

The value of the stress corrosion parameter,n, is estimated to lie 

between 60 and 180. No significant influence of material composition has 

been detected. 

The degree of slow crack growth in WC-Co materials in air is much 

less than in soda-lime glass, for which estimates of n from double torsion 

tests lie between 15 and 19. 

Soak tests on pieces of fractured bend specimens in a 10% solution 

of nitric acid, have produced evidence of considerable slow crack growth, 

the extent and location of which appears to be influenced by specimen 

preparation and the previous strength test. 



De?.ayed :fracture in sinte;reC: WC=Co materials has .been investigated 

using two appxoaches - its influence on bend strength~ and its deperidence 

upon slow subcritical crack growth. 

Be~d strength tests in:volvi::).g bo-::h co:r:sta~t ::rates of stress increase p 

and stepped loading, have displayed delayed fracture ar.d the ti~e 

dependent nature of strer..gth in we-co alloys containing 6~ 13 and 16% Co 

by weight, in laboratory air at room temperature. Characterising the 

behaviour using the stress corrosion parameter,n, estimates lie between 

30 and 120. If confidence bands associated with each estimate are also 

included, the range of possible n is much larger. No evidence has been 

found of a significant influence of material composition or specimen 

surface finish~ nor- has any variation in behaviour been detected 

betw~en specimens tested using different types of loading. 

Double torsion tests have revealed slow crack growth in WC-6wt% Co 

and WC-l6wt% Co, in laboratory air at room temperature. The general 

behaviour when displayed on a K
1
-v diagram with logarithmic axes, may 

be represented by a single straight line. Estimates of no from the 

gradient~ lie between 60 and 180. No significant influence of material 

composition has been detected. Further, no evidence has been found of 

a limiting value of stress intensity factor below which slow crack growth 

does not occur. 

Both approaches have produced ranges of estimated n in the same order 

of magnitude~ and not very different from the estimate of 200 by 

Braiden et al (1977). Although estimates from double torsion tests 

are slightly higher than those from bend strength tests (as found by 

Davidge et al (1973) in similiar tests on alumina), the extent of each 

range disallows any significance to be placed in the difference. 

However, if a real difference exists, then it may be due to the fundamental 



discussed in Section 2.5. 

Both approaches have also she-wn an apparent lack of influence of 

material composition. 

be sn:.aJ.l • 

If such an influence exists, then its effect must 

These results common to both approaches~ suggest that in laboratory 

aix at room temperature, delayed fracture and the time dependent nature 

of strength observed inbend tests, and slow subcritical crack growth seen 

in double torsion tests are all controlled by similar failure mechanisms. 

To investigate the influence of environment on delayed fracture, 

bend strength tests were also performed in distilled water, incorporating 

various presoaks. A trend of reduced strength was noticed in some 

specimens, possibly indicating a stress corrosive reaction. However, 

no evidence was found to support this. Indeed, inspection of the 

fracture faces of some low-strength specimens indicated sub-surface fracture 

initiation where environmental influence is unlikely. 

Evidence suggesting that delayed fracture in WC-Co materials in 

ambient conditions, does not require environmental assistance, came from 

stepped loading tests. Inspection of the fracture faces of some specimens 

which failed during a period of constant stress, thereby displaying 

delayed fracture, indicated the critical flaw to lie sub-surface. Assuming 

the materials to be impervious, slow crack growth apparently occurred 

without the need for a corrosive species from the test environment to 

be present at the crack tip. 

However, both the effects of environment on strength and the source of 

fracture need to be studied further. At present, there is insufficient 

evidence for conclusions to be drawn, and thus, the influence of environment 

on delayed fracture; mechanisms of slow crack growth; and hence, whether 

stress corrosion occurs in WC-Co materials in ambient conditions, all 

remain unknown. 



corrosive or not, have teen onserved and evaluated. The time deper.cent 

nature of the strength of WC-Co materials in ambient conditions may be seen 

by constructing an S~ diagxam (see Section 4.6). Typical values of the 

Weibu!: ~odu:~s 9 ~=:0, the stress corrosic~ parameter, r. = iOO, and a 

co:1s-::a.~t stress of 25CO NfN/!:r? applied to a specimen to give it a 50% 

cuoc~lative probability of failure after o~e second, were used to construct 

the diagram shown in Figure 8.1. 

The diagram illustrates that a decade increase in the lifetime requires 

the applied stress to be reduced by just 2%; equivalent reductions for soda-

lime glass and alumina are approximately 11% and 6% respectively. An 

equivalent STP diagram for soda-lime glass in air is shown in Figure 8.2. 

Delayed fracture in WC-Co alloys in ambient conditions, therefore, is 

almostinsignificant. Evan for a lifetime increase of many decades, the 

required reduction in applied stress is still far less than the variability 

in strength due to material flaws. Safety factors introduced to reduce 

the probability of failure will automatically lower the applied stress 

to a level where delayed fracture effects may be ignored. 

Far more significant is the slow degradation of unloaded specimens 

when soaked in distilled water, or a 10% solution of nitric acid. In 

distilled water, particularly severe corrosion occurred around surface 

flaws tending to enlarge, or sharpen them. In nitric acid, corrosion 

was accompanied by extensive slow crack growth across the surface. In 

both cases, corrosion appeared to be controlled by structural aspects 

of the specimen and material. Possible influencing factors include the 

presence of a material flaw on the surface, and also surface damage and 

T 
residual stresses introduced during specimen ~eparation. 

The importance of this phenomenon lies in the way in which specimen 

degradation - and, hence, reduction in strength and lifetime - occurs 



over a perioC of even whe::1 r..o ex-:er:cal :::.oais are applied. Hences 

relat:'..r:.g t~"J:'..s to co;n:_:lo::::.e!:\ts :'..:2 se:rv:'..ce, t::e v.sef'!:.l :::.;_fe rr.ay nc"; on:y :Je 

influenced by working loads and environments, but also by conditions of 

storage. 

Larger than all ch~~ges d~e to different types of loading, or test 

envirc~~ent, is the variabiLity in strength caused by material flaws. 

The random nature of the va::riation not only tends to cbscure effects due 

to other factors but also introduces the need for a level of difference 

to be achieved before each effect can be called significant. Thus, if 

the effect is small, it may not be possible to prove its existence with 

a given number of specimens, since the difference in strength does not 

exceed the variability that might be expected due to material flaws. 

This was seen in the main environnental tests (see Section 6.92) where 

an apparent trend of strength reduction occurred at the low cumulative 

failure probability/low strength end of the Weibull line. Since 

confidence in the line is low at either end, the trend, although noted, 

could not be classed as significant without supporting evidence. 

Variability in strength also limits the precision to which 

parameters describing the behaviour can be calculated. Further, each 

estimate must be accompanied by an indication of the confidence that 

may be placed in it. 

One method of reducing uncertainty is to increase the number of 

specimens tested. However, to make any significant improvements, the 

increase would have to be extremely large (Braiden, et al, 1977) which, 

in the majority of cases, is irepossible given limited time and finance. 

An alternative might be to perform tests on hot isostaticallypressed 

(HIP) WC-Co materials where variability in flaw sizes is reported to be 

much smaller (Lardner,l974). However, conclusions drawn from HIP materials 

may not necessarily apply to sintered materials. 
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The alternative c:Cosen io2' the presen-:: study was to maximise tt.e 

efficiency of data malysis. Hence the maxiffium likelihood analysis was 

developed to analyse stress rate data from strength tests, By combining 

strengths irrespective of the stress rate employed~ the number of data 

analysed together was increased Toy a factor of fiveD thereby considerably 

increasing the confidence in estimated paraoceters. 

However, the technique me=ely provides estimates of parameters which 

best fit the data, Since the recorded strengths come from r~~dom samples 

of specimens, extreme values might be present, tending to distort the 

analytical results, especially if sample sizes are small. A major 

drawback of mathBmatical techniques is that such occurrences are not 

immediately obvious. 

The low-strength variation in soaked bend specimens from the preliminary 

environmental tests, for example, would have been wrongly identified 

by a mathematical technique, since the behaviour was unexpected. Instead 

a graphical method of analysis using the Weibull diagram was more suitable. 

Further, by using a transformation analysis in conjunction with the 

Weibull diagram, a trend of decreasing Weibull modulus with increasing 

surface roughness indicated by the maximum likelihood analysis, was shown 

to be of little significance. 

The use of a crack propagation technique such as the double torsion 

test, avoids the variability due to material flaws by ensuring propagation 

occurs in a controlled and measurable manner from a large artificially 

induced crack. However, the test involves a degree of practical difficulty. 

In this respect, the development of a reliable and repeatable method of 

precracking we-co plates has made the test far easier. Nonetheless, 

improvements are still required, particularly regarding the method of 

crack guiding. Grooves, used in the present study because cracks in 

ungrooved specimens could not be stopped from deviating to one side, were 



cot entire:y satisfactory. :n ad.C:i tier:. to ca:u.sing occasiona: abandonrr:en'!: 

of the test whe~ the crack travelled into the groove wall, they were 

probably responsible for the wide scatter in K
1
-v lines obtained from 

speci~ens of nominally the same material. 

Otcex possible causes of scat~er are slight variations in material 

composition or specireen preparation. This highlights another problem 

with large crack techniques in that large specimens are required for 

accurate crack growth measurement. However, the sintering of large WC-Co 

plates is relatively difficult, often resulting in severe distortion. 

Consequently, considerable machining is needed to produce a suitable 

double torsion specimen, with the obvious likelihood of introducing 

surface damage and residu~l stresses. 

Finally, a phenomenon peculiar to double torsion tests on WC-Co 

materials is the observation of "jumps" in load relaxation curves (none 

were found in similar curves from soda-lime glass specimens). They 

not only obscure a more general behaviour upon which they are superimposed, 

but may also affect that behaviour and, hence, influence the estimation 

of n. At present, neither their source, nor their influence is known. 
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9. C2l\!C:..:JS ICNS 

Aspects of the time dependent strength behaviour of sintered we-co 

alloys containing 6,13 and 16% cobalt by weight, have been studied. 

Bend strength tests, double torsion tests and soak tests have been used 

to obse:rve, and evaluate delayed fracture, slew c:orack g:rcwth and corrosion, 

at room temperature, in a variety of envi!'onments including laboratory air, 

distilled water and dilute nitric acid. 

Resu:lts of bend strength tests in ai:r, indicate the presence of 

delayed fracture mechanisms, in that the strength increases with the 

rate of loading to fracture in stress rate tests, and that delayed 

fracture has been observed directly during periods of constant stress 

in stepped loading tests. 

Double torsion tests in air have shown evidence of stable sub-critical 

slow crack growth. When the behaviour is displayed on a K -v diagram 
I 

using logarithmic axes, it may be represented by a single straight line 

lying close to the critical stress intensity factor. No lower threshold 

for slow crack growth has been detected. Superimposed on the general 

behaviour are randomly dispersed 'spikes' of rapidly increasing and 

decreasing velocity, which are ascribed to local material inhomogeneities. 

Using the stress corrosion parameter,n, to describe strength and crack 

growth behaviour, estimates lie between n ~ 30-120 and n = 60-180 from bend 

strength tests and double torsion tests respectively. The similarity 

of both ranges suggests that failure mechanisms are the same in both 

types of test. 

No significant influence of material composition, or specimen surface 

finish on n has been detected. Material composition has, however, been 

shown to affect the Weibull modulus,m, and, hence, the variability in 

strengths induced by random inherent flaws : m increases and the variability 

decreases in alloys with higher cobalt contents. 



Compaxed with soda-lime g:ass in airp or alvEtir.a in aingers 

Solution, the grades of WC-Co s~udied display very litt2.e delayed 

fract?..:::"e. An inc~ease in lifetime of one order of magnitude is 

acco::n9anied by a dec:::ease in st:-:e:c.gth of approximately 2% - -:his is 

fax less than the expec~ed varability in strength due to material flaws. 

Strength tests in distilled water anc laboratory air have provided 

no evidence to suggest that delayed fracture is significantly influenced 

by one environment more than the othe:c and, hence, no evidence of 

delayed fracture being significantly environmentally assisted. In 

contrast, the strength and delayed fracture of alumina is influenced 

to a considerable extent when tests are performed in Ringers Solution 

instead of laboratory air. 

Corrosion of WC-Co materials has been observed when unloaded 

specimens are soaked in both distilled water and in a 10% solution of 

nitric acid. Corrosion in distilled water is particularly severe 

around surface flaws. Subsequent bend tests have shown unexpectedly 

low strengths to accompany failure initiated from heavily corroded 

surface flaws, indicating the flaws to have been enlarged and/or 

sharpened by the corrosive action. Soaking pieces of previously 

fractured bend specimens in dilute nitric acid causes considerable slow 

crack growth, the extent and location of which is apparently influenced 

by specimen preparation and the previous strength test. 

Corrosion independent of externally applied loads is far more 

significant than stress enhanced corrosion in distilled water for the 

we-co materials studied. This may be compared with alumina in Ringers 

Solution where stress corrosion is dominant - no evidence of stress -

independent corrosion has been found. 



pe~fo~~ed over a r~~ge of stress rateso The f~acture model, incorporating 

theories of stress corrosion and brittle fract~re, with Weibull statistics, 

has an "extre:JJ.e val11.e" error distribution. Paxameter estireation is 

acco3plis~ed using t~e methcd of maxim~ like2ihccd. The technique 

obtains tt.e significance o~ a."tly rate effect; estimates of the stress 

co~rosion par~ete~,n, and the Weibull modulus,m; confidence intervals 

for these parameters; ~~d an assessment of the validity of the modelo 

Another technique has been developed to compare strength data from 

tests involving different types of loading to failure. Again u.Sing 

theories of stress corrosion and brittle fracture, with Weibull statistics, 

strength data are transformed to values that would be expected under a 

common type of loading. The complete loading history is analysed from 

~4e initial application of load to the point of fracture. This obtains 

a graphical ~epresentation of the distributions of strength allowing the 

immediate observation of any deviations from expected behaviour, and 

extreme values which might distort the evaluation of parameters. It may 

also be used to obtain estimates of the stress corrosion parameter,n. 

A simple and reliable method of precrackiP~ WC-Co double torsion 

specimens has been developed. A constant displacement rate is applied 

to propagate a precrack from a machined notch which has been sharpened by 

spark erosion. The method permits easy control of the precrack length, 

so that the crack tip can be precisely placed both outside the region of 

material damaged by spark erosion and inside a region of the specimen 

where stress corrosion theories are valid. 
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Delayed fracture, slow crac~ growth and corrosion need to be studied 

ove~ a wider range oi enviro~ents and at various tereperatures. By so 

doir..g, :::..abo:ratory tests ca.-:1 approac:':l service conditions met by we-co 

co::rrpone::1ts. 

The present study has involved observation and evaluation of the 

effects of time dependent failure mecha~isms. However, to investigate 

the mechanisms directly, microstructural and chemical approaches are 

needed to discover the corrosive chemical reactions and factors 

controlling reaction rates. 

Individual items arising from the present study, which are likely 

to benefit from further work include an investigation of sub-surface 

fracture initiation in bend specimens failing during a period of 

constant stress; the development of a suitable method of guiding 

cracks in double torsion specimens; an analysis of "jumps" seen in 

load relaxation curves from double torsion tests on WC-Co materials; 

an investigation of the role of flaws and cracks in controlling corrosion 

and the possible influence of residual stresses; and further development 

of the crack resistance test to study slow crack growth. 
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WC-6wt'7oCo WC-13w-:%co WC-16wt%Co 

No~i~al co~position 

by weight 6%Co 94%WC 13%Co 87%WC l6%Co 84%Co 

Chemical analysis - c 5.70/5.85% 5.2/5.4% 5.0/5.2% 

- Co 6.00/6.50% 12.5/!3.5% 15.5/16.5% 

- Ti < 0.05% "' 0.05% < 0.05% 

- Fe < 0.03% < 0.02% <. 0.20% 

Porosity (ASTM) A2,Bl-,Cl- A2,B1-,C1- A2,Bl-,Cl-

Hardness (HV) 1500-1600 1175-1275 1050-1150 

Density (gm/cm3) 14.8-15.0 14.16-14.35 13.80-14.00 

Coercivity (KA/m) 13.5-15.9 7.5 - 9.5 6.7- 8.4 

Bend Strength (KN/m:n2 ) 1.54-l.G5 2.39-2.70 2.47-2.93 

TABLE 5.1: Characterisation of Materials - Manufacturer's specifications 



I BEND SPECIMENS DOUBLE TORSION SPECIMENS 

i!wcG%Co WC13%Co WCl6%Co WC6%Co I WC13%Co WCJL6%Co 

J.V1ear. ::f:::'ee path in 
li ccbal t, k ([J.Q) 0.16 0.35 0.44 0.12 0.26 0,3]. 

Co I• 
II ,: 

Mea.."1. 'tfC grain 
II size d , (!J. m) 1.4 1.3 1.3 1.1 1.0 0.9 we II 

ii 
Mean hardness (Hv) 

;I 
I' 

(Std Dev. n ~ 2%) 1700 1280 1150 1630 1280 1170 

Mean crack resistance 
W(kg/mm) 
(Std.Dev:" Z30%) 0.12 0.34 0.63 0.12 0.39 1.09 

Coercive Force 
Hc(Oe) 240 108 95 

Characterisation of materials - laboratory test results 



Variable Typical Value largest estimated 
error 

Load, p (N) 2000 15 

Three-point bend 
16 Oq005 

span, L (mm) 

Specimen width, 
5 0.05 

b (mm) 

Specimen depth, 
2 0.01 

d (mm) 

TABLE 6.1. Largest estimated errors in variables 
used to calculate the bend strength. 



No. of Range of No. of ML 95% conf. ML 95% conf. Sig~i£~oanca,P 
Material different estimate interval interval cf :::-a·:::a e::::e6t specimens stress rates estimate 

(MNm-2sec-l) stress of n for n of m for m tested rates 

Soda-lime glass 68 4-260 7 
(abraded) 

19 14-28 8.6 7.2-10.2 

WC-6wt%Co(l)* 60 0.1-1000 5 110 46-f 6.5 5.3-7.8 

WC-6wt%Co(2)* 60 0,1-1000 5 34 24-56 6.8 5.6-8.1 

WC-13wt%Co(l) 58 0.1-1000 5 93 50-620 9.1 7.3-H.2 

WC'-l3wt%Co(2) 58 0.1-1000 5 1.20 59-UOO 10.0 8.0-12.2 

WC-16wt%Co(l) 60 0.1-1000 5 45 34-70 8.8 7.2-10.6 

WC-16wt%Co(2) 60 0.1-1000 5 110 64-330 12.4 9.9-15.0 

TABLE 6.2: Maximwn likelihood estimates of m and n, related confidence intervals and the signific?nce of 
observed rate effect u.s'ing bend strength data from stress rate tests in laboratory condi t;;.ons o:i soo1a-lime 
glass and we-co materials. 

* Surface finish of specimens: (l) ground; (2) diamond polished, 

f No finite upper limit exists. 

ff P =probability of rate effect being at least.as large as that observed when the null hypothesis is true 
(conventionally, P< 0,05 is termed "significant") 

ff 

5 X ~.8- 8 

c 0 ~-2 

7 X :l() 
-s 

0.823 

0.028 
···6 2 . -"' :K ~--' 

C.C047 



Variable 

Load, P(N) 

Specimen thickness, 
d (rnm) 

Thickness in grooved 
region, dn (rnm) 

Specimen width, 
w (mm) 

Moment arm, 

wm (rnm) 

Typical Value 

100 

1.0 

0.5 

25 

7.5 

Largest Estimated 
Error 

0.3 

0.015 

0.015 

0.06 

0.01 

TABLE 7.1. Largest estimated errors in variables used to 
calculate the stress intensity factor, K1 



> 
01 
0 -
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log Kr 

FIGURE 2.1: Typical form of the KI-v diagram, showing the three 

regions of slow crack growth behaviour lying between the lower 

threshold KIO• and the critical level, KIC· KI - plane strain 

stress intensity factor in the crack opening mode, I; V- crack 

tip velocity. 



~ t increasing 

FIGURE 4.1: Typical form of the SPT diagram. 

stress; F - cumulative failure probability; 

log O"c 

~ - constant applied 
c 

t - lifetime. 
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Common large crack technique configurations. (a), e'dge 

cracked three point bend; (b) edge cracked four point bend; (c) compact 

tension; (d), double cantilever beam; (e), tapered double cantilever 

beam; (f), constant moment; (g), double torsion. 
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FIGURE 7.7: Approximate shape, in cross-section of crack-guiding 

grooves in double torsion specimens used in this study. 
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FIGURE 7.13: K
1
-v diagram for WC-16% Co at 20°C in laboratory air. 

See Figure ?.12 for details. 
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FIGURE 7.15: Cracked surfaces of the first WC-16% Co specimen to be 

soaked in a 10% solution of nitric acid. - after 3 days. F, fracture 

face; T, tensile face; C, compressive face. 

where chips have broken away. 

Shaded regions indicate 

T 

( 

FIGURE 7.16: Cracked surfaces of the first WC-13% Co specimen to be 

soaked in a 10% solution of nitric acid - after 1 day. 

7.15 for details of symbols.) 

(See Figure 
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solution of nitric acid- after 2, and.5 days (see Figure 7.15 for details cof symbols). 
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10 .um 

PLATE 5.1: Etched sur:f ace of WC--6% Co. 



10 JJm 

PLJ\TE 5. 2: Etche d s urf a ce of WC - 13% Co. 



10 )Jm 

PLATE 5.3; Etched surface of WC-16% Co. 



PLATE 6 , 1: 

(a ) 

( b ) 

The three point be nd rig. ( a ) wi th load appl ied ; 
(b) with the top portion r emoved to s how t he 
s pe cime n, loading rods, alignment formers and 
e nvi r onment al box . 



PLATE 6 . 2 

( a ) 

( b ) 

( c ) 

10 iJ m 

\ 
(aLL) 

Scanning electron micrographs of the surf aces of 
be nd specimens with a ground finish. ( a ) WC -6% Co ; 
(b ) WC - 13% Co; ( c ) WC - 16% Co . 



PLATE 6 . 3 : Sc anning e l e ctron micrographs of the s urfaces of 

( Q) 

( b ) 

( c ) 

10 j.J m 

\ 
( a ll ) 

be nd s pe cime ns with a polished f inish . ( a ) WC-6% co; 
( b ) WC-13% Co ; ( c ) WC - 16% Co . 



PLATE 6. 4: 

_I ~ N S I L~ __ _ 
FACE 

COMPRESS IVE ----------
FACE 

PLATE 6.5: 

Smm 

WC-13% CO specimen loaded to failure after a presoak 
of 150 hours in distilled water. Excessive dis ­
colouration around surface flaws, and the critic al 
fl aw on the line of fracture can be clearly s een . 

A 
I 

I 

I • 

B 

c 

1mm 

WC - 16% spe cimen fracture face showing the approx im a t e 
location of fracture initiation (0) , the smooth 
e lliptical r egion (A) , the outer rough r egion (B) and 
t he f inal lig ame nt to be broke n (C), 



PLATE 6,6: 

( a ) 

400 um 

( b ) 

40~m 

Scanning electron micrograph of a WC - 16% Co specimen 
fracture face containing a large surface flaw. ( a) 
general view; (b) close-up of flaw. 



PL ATE 6. 7: 

( Cl ) 

4001-Jm 

( b ) 

40wm 

Sc anning electron micrographs of a WC - 16% Co specime n 
fracture face containing an extremely large surface 
flaw. (a) general view; (b) close-up of flaw. (An 
enlargement of this flaw appears on the Frontispiece.) 



( Q ) 

400~m 

( b ) 

100~m 

PLATE 6.8: Scanning electron micrographs of a WC-16% Co spe cime n 
fracture face containing a sub-surface flaw·. ( a ) 
gene ral view; (b) close-up of flaw. 



PLATE 6 .9 : 

(a ) 

200 j.Jffi 

20 urn 

20JJm 

Scanning e lectron micrographs of a WC-6%Co spe cime n 
fr acture f ace containing a large sub - surf ace multiple 
fl aw system. (a) gene r a l view; (b) close-ups of cre sce nt­
s h ape d voids. 



PLATE 6.10: 

( (l ) 

400um 

(b) 

Scanning electron microgr aphs of a WC - 16% Co spe cimen 
fract ure face on which no l arge flaw was detected. 
( a ) general view; (b) close - up of apparent site of 
fracture initiation . 



PLATE 7. 2: 

PLATE 7 .l: . The double torsion rig. 

Smm 

WC - 6% Co double torsion spe cime n with a machine d 
notch sharpened by spark e rosion. 



PLATE 7. 3: 

PLATE 7.4: 

The "kink" on the compressive ungrooved face of a 
double torsion specimen, highlighted by the reflected 
boundary of a dark object. 

Observation of the "kink" using reflections of a 
parallel line grid seen in the surface of the specimen. 
(The crack may be seen by viewing the Plate obliquely 
along the grid lines.) 
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PLATE 7.5: Fr acture face of a WC- 6% Co double t o r s ion spe cimen. 

2mm 



PLATE 7, 6: 

50 JJm 

Matching portions of the two fracture faces of a 
WC-16% Co double torsion specimen. 



PLATE 7.7: 

( Q ) 

2mm 

( b ) 

The first WC - 13% Co specimen to be s o aked in a 10% 
solution of nitric acid - after 14 d ays. The e d ges 
h ave broke n away to leave the specime n in the shape 
of a loze nge. ( a ) t e nsile face ; (b) compressiv e face. 



PLATE 7,8: 

( Q ) 

2 mm 

( b } 

The second WC - 13% Co specime n to be soake d in a 10% 
solution of nitric acid - after 14 d ays, ( a ) t e nsil e 
fQce; (b) compre ssive face, 


