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ABSTRACT 

Sixteen axenic c:_ultures of algae fran acid streams of kna.rm water 

chemistry were produced without the use of antibiotics. These included 

four strains of Euglena mutabiUs (Durllam Culture Collection No. 0464, 

o64o, 0641, 0642). Strain 0464, isolated from Brandon Acid Stream, eo. 
Durham, was selected for detailed study; the pH of the stream was 2. 6. 

The optimum yield of E. mutabiZis 0464 in the basal rredium at pH 2.6, 

occurred· at a photon flux density of 100 ].liiOl m -l s -l. All four strains 

(0464, 0640, 0641, 0642) had optimum yields between pH 3.4 and 4.0. Adapt

ation to lCM and high pH was checked with strain 0464 and it was found 

that this strain could be adapted to graN at pH 1.5. and at pH 8.5. 

The nutritional requirerrents and tolerance to heavy rretals of strains 

D464, 0640 and 0641 was investigated under standard grONth oonditions and 

was found that Na (10 rrq 1-1 to 25 rrq 1-l) improved yield. Strains 0464, 

0640 and 0641 grew in the vitamin-free basal rredium, ha.vever in the strain 

chosen for detailed study (0464) adding vitamin B
1 

and B
12 

improved yield. 

Heterotrq;nic and rnotoheterotrophic grONth was investigated using 

strains 0464, 0640 arid 0641 and was found that they utilize the folla.ving 

organic carlxm substrates, glucose, fructose,· sucrose, glycerol, lactic 

acid and acetate. Yield was least in acetate. These strains also util

ized (3-alanine, 01-asparagine, glycyl-glycine, urea, uric acid and ethanol

amine as sole nitrogen source in the presence of light but not in the dark. 

Using strain 0464 phosphatase activity was checked and was found that thi$ 

strain had both acid and alkaline cell surface rnosphatclse activity. 

All three strains (0464, 0640, 0641) tested shCMed tolerance to vary

ing concentrations of different heavy metals. Tolerance in the diminish..

ing order appears to be as follows: Al>Mn>Pb>Ni>Co>Zn>Cu>Fe>Cd. 

ik Factors influencing Zn toxicity "ltRifj. investigated using strain 0464 

andAwas found that Zn toxicity w-.:i.nfluenced by the size of the inoculum,, 

tl;le pH arid the carposition. of gro.vth medium. Na and Ca (above 10 rrq 1-l) 

increased toxicity to Zn, while Cl (up to and including 75 rrq 1-l) and 

glycy.l-glycine reduced Zn toxicity. K (160 rrq 1-1), .Mg (200 rrq 1-l) and 
I 

Mn (80 rrq 1-1) had no effect on Zn toxicity in strain 0464. • 
I 
I 

1 
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ABBREVIATIONS 

oc degree Celcius 

1. litre 

ml mill.ili tre 

mg mill:igr arnrne 

mol molar 

~m micrometre 

~g micrograrnrne 

ng nanograrnrne 

h hour 

d day 

dw dry weight 

min minute 

X mean 

sd standard deviation 

nm nanometer 

dia diameter 
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CHAPTER ONE 

INTRODUCTION 

1.1 Acid Environments 

1.11 General 

Acid environments with their characteristic 

low pH, high acidity and low species diversity have been 

reported from Australia, Canada, Italy, Japan, South Africa, 

United Kingdom and United States of America (Lackey, 1938; 

Brock, 1969; Van Everdingen, 1970; Castenholz, 1973; 

Hargreaves e t a Z., 19 7 5) • Although most sites are from 

volcanic areas and therefore of natural occurrence, -<-: in 

recent years man's activities associated with the mining for 

coal, copper, lead, zinc, barite, manganese and gold, together 

with discharges from industries dealing with battery manu-

facture, tanning, chrome plating and the burning of fossil 

fuel in factories and electricity degenerating plants,have 

greatly increased the incidence of acid in fresh water bodies which 

hitherto have been alkaline or near neutral. Acidification 

of rivers due to coal mine discharge in Virginia and Tennessee 

in U.S.A., wher~ several hundreds of miles of river water has 

become unsuited for drinking or recreational purposes,has been 

~ell documented (Barnes and Rombergen, 1968; Nicholas and 

Bullow, 1973). In England and Wales too, mining has led to 

an increase in acidity in some streams (Hargreaves, 1977). 

1.2 Hydrogen Ion Concentration 

Hydrogen 'ion is by far the most important factor in growth 
j 

and reproduct~on as it affects the ionic state and therefore ! 
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the availability of nutrients to the organisms (Cholnoky, 

1960} • Cholnoky postulated that at low pH hydr.ogen ions 

may adsorb to particulate matter and displace cations in the 

exchange complex which may then leach out of the micro environ

ment. The influence of pH on growth (Hargreaves and Whitton, 

19.76; Shehata, 1981} and the solubility of heavy metals (Van 

Everdingen, 1970; Hargreaves et al., 1975} has been well docu

mented. The concentration of hydrogen ion influence the 

solubility and therefore the availability of certain metals 

to the algae in the growth medium. Most metals in solution 

at low pH become precipitated at higher pH and thus become un

available for·the organisms. Harding and Whitton (1977} ob

served a reduction in Zn toxicity in Stigeoclonium tenue• when 

the pH was raised from 6.1 to 7.6. In Hormid~um rivulare~ 

Say and Whitton (1977} found an increase in Zn toxicity when 

the pH was reduced from 8.0 to 3.0 and Shehata (1981} found 

a marked decrease in toxicity of Zn to Anacystis nidulans~ 

when the pH was raised from 6.5 to 8.0. 

1.21 Internal pH 

The existence of a different internal pH independ-

ent to that of the external pH has long been recognised. Crude 

measurements of internal pH on crushed cells have been reported ~ 

using microelectrodes, indicators such as bromothymol blue_o.:ncl 0J ~ 
measurements of external and internal weak acids and bases · 

(Caldwell, 1956; Waddel and Bates, 1969}. Other methods used 

are the determinati~ilj of the amount of fluorescence quenched in 

':':~-:~·0-· cells which ha~~:~ absorbed amines (Schuldiner et al., 1972} and· 

the use of 5.5 dimethyloazolidine 2-4-dione. (DMO} a metaboli

cally inert non-toxic weak acid that- does not form complexes 

with proteins or lipids (Butler et al. 1 1966; Cassin, 1974}. 



Using c14 
DMO determination of the internal pH has been 

carried out in Streptococcus lactis (Kashket and Wilson, 

1973}, Bacillus acidocaldarius (Yamazaki et al., 1973}, 
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· Thiobacillus ferrooxidans (Amemiya and Umberit, 1974}, 

Chlamydomonas acidophila (Cassin, 1974}, Chara corallina 

(Walker and Smith, 1975), Cyanidium caldarium (Enami and 

Fukuda, 1975), Chlor~lla pyrenoidosa, Scenedesmus quadricauda 

and Euglena mutabilis (Lane and Burris, 1981). 

It is very unlikely that the internal pH corres

ponds to the external pH in any org~nism. Thomas et al 

(1976), using fluorecine diacetate)reported that Bacillus 

acidocaldarius had ~n internal pH range of 2.0 to 7.0. In 

Chara corallina, Walker and-Smith (1975) recorded a cyto

plasmic pH of 7.7 when the external pH was 5.0 to 6.0, while 

in Cyanidium caldarium, the authors found a steady internal 

pH of 7.5 over an external pH range of 6.0 to 8.0. In 

Euglena mutabilis (Lane and Burris, 1981) found a wide range 

of internal .pH ranging from 5.0 at very low external pH to 

8.0 at higher external pH. An interesting feature in Euglena 

mutabilis was that it was able to regulate its internal pH 

up to external pH 6.0 and not beyond. Whereas the acid non 

tolerant Scenedesmus qua~ricauqa and Chlorella pyrenoidosa, 

continued to maintain the internal pH levels near neutrality. 

1.3 Nutrient Status of Acid Water 

The nutrient status of acid mine water differs from site 

to site and in general is probably eutrophic (Hargreaves, 1977). 

Bennett (1969) reporting on the nutrient status of acid mine 
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-1 discharge gave concentrations of 6.64 - 0.1 mg 1 No3~N 
-1 and 4.8 - 0.5 mg 1 P0

4
-P. Hargreaves (1977) in a survey 

of Brandon . Acid Stream (Section·2.3lll · made oMer a 

-1 period of three years found 3.2 - 0.044 mg 1 No
3

-N and 

0.63 - 0.01 mg 1-l P0
4
-P. C~rbon forms another important 

growth requirement in acid environments as solubility of co2 

is reduced at low pH values. By adding co2 .up to a concen

tration of 5.4 ~g 1-1 , Ohle (1981) found that the absolute 

photosynthetic maximum of 330 ~g C 1-l ·was reached. But when 

the co2 supply was stopped, the rate of photosynthesis strongly 

decreased. Coleman and Colman (1981) too, found co2 to be a 

·growth limiting factor in CoccochZoris peniocystis. Beardall 

(1981) concluded that co2 in acid waters must be the only car-

bon species to cross the pla~emma; thus suggesting that 

co2 to be a growth limiting factor for algal growth in acid 

environments, as co2 gets rapidly lost from acid water as it 

equilibrates with the atmosphere. Wilcox and De Costa (1982) 

suggested that co2 in acid lakes to be from the atmosphere and 

not necessarily from metabolic'activities .of other micro-

organisms. 
I 

Although co2 seems to be limiting in acid environ
~ 

ments ~~- Satake and Saijo (1974) and Ohle (1981) foundnco2 

content of acid lake water to be more than the theoretical 

value for co2 dissolved in acid waters. 

In addition to macroelements that may be limiting in 

acid waters, Hunter (1972) observed that trace element requi~e-
, 

ment by many microorganisms increase at low pH. 
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1.4 Heavy Metals in Acid Water 

A number of potentially toxic heavy metals including 

Zn, Cu, Mn, Fe, Al, Pb, Cd, Ni and Co in varying concentra

tions have been reported from acid waters worldwide (Van 

Everdingen, 1970; Hawley, 1971; Hargreaves et aZ.J 1975; Jansson, 

1981). Van Everdingen reported a number of heavy metals in 

over 11 sites with pH 2.2 to 5.5 in the Kootenay National Park 

in British Columbia. Sheath et aZ.,(l98l) found increased 

heavy metal concentration due to long term acidification. 

Stokes et aZ.J(l98l) found increased mercury in fish in acidic 

lakes. Rasmussen and_Sand-Jensen (1979) reported that iron 

occurs in high concentration with other elements in the order 

Mn>Zn>Ni>Pb>Cr>Cd. In addition to Fe, Hargreaves (1977) 

found high concentration of Al in Brandon Acid Stream (Table 

2. 6) • 

1.5 Sources of Acidity 

1.51 Air borne 

The burning of coal in industries and the resultant 

sulphur dioxide emission has greater implication in the acidi

fication of water bodies as air borne acid particles are carried 

many hundreds of miles from the source, depending on the meteor

oligical conditions prevailing at the time of emission. Many 

lakes in Sweden have become acidic in the past two decades, 

resulting in total fish kill in some (Brosset, 1973; Henriksen 

and Wright, 1977). Long term fumigation by sulphur dioxide 

and sulphuric acid aerosols from nearby lignite burns has 

resulted in the acidification of som~ ~undra ponds at the 

Smoking Hills in N.W.T. in Canada (Sheath et aZ~ 1981). 



25 

1.)2 Water borne 

The oxidation of inorge.nic and organic sulphur is 

believed to U€ the cause of acid production. The acid produced 

is predomin~ntly sulphuric and hence is thought to be due to the 

oxidation of any sulphide from either mineral or organic source. 

Of the sulphides, masc<,ri te and pyrite are most important. 

Pyrite differ from mascari te in that the lc..tter alters much more 

on oxic~tion (Hiley, 1960). Sulphuri tic materials in 

combination with iron, m;.;.y in theory, oxidise to form sulphur 

dioxide or sulphuric acid dependirlb on the availability of water. 

Thus: 1. FeS2 + o
2 

:r,eso
4 

+ so
2 

2. FeS2 + 2H20 + 102 ~ 2FeSO 
4 

+ 2H2so 4 

This means that not only sulphuric acid but also ferrous sulphat~ 

will be produced. In acid streams ferrous sulphate in the 

presence of sulphuric acid and oxygen oxidise itself to ferric 

sulphate. 

When the acid concentration in the stream is reouced due to 

uther effluents ferric sulphc;.te will be hydrolysed thus: 



Ashmead (1955) observed that the oxidation of 

Fes
2 

in sterile water was slow compared to unsterile mine 

water and leads to a hypothesis that the production of acid 
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in mine water was not purely a chemical reaction. Lundgren 

et al.,(l972) reported that Thiobacillus - Ferrobacillus group 

of bacteria are directly responsible for much of the acid 

produced in mine waste water as a result of oxidation of 

ferrous ions with the production of sulphuric acid. This is 

further confirmed by Fjermng5tad and Nilssen (1982). From 

the available literature it appears that the process of acid 

formation seems to be a combination of geochemical and bio-

chemical processes. It is probable that the initial chemical 

process under wet or moist condition where 

+ 7 0 

followed by bacterial action with Thiobacillus ferrooxidans 3 

where 

subsequent chemical action: 

Fe (SO ) + FeS 3 FeSO + 2 S 

followed by bacterial action by Thiobacillus where 

S + 3 0 + H
2

0 ·2 H+ + so
4 

1.6 Biological Components of Acid Waters 

1.61 General 

The absence of many of the common aquatic macrophytes 

·is a characteristic feature of acid streams. Except for 
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Vallisneria sp.~ Typha latifolia~ Juncus oxycarpus~ Eleocharis 

acicularis~ E. obtusa~ Sphagnum truncatum~ Scirpus fluitans~ 
~ 

Carex sp. ~ Isoetes sp. ~ Phragmites .:"<·\~ • (Heaton, 1951; Moor 

and Clarkson, 1967; Patrick et al .. J 1974; Stokes et al., 1981), 

a few bryophyte~ represented by Drepanocladus fluitans~ 

- bicranell" sp.) Ciphalozia bic~spidata and Jungermannia 

(Hargreaves, 1977; Wehr and Whitton, 1983), acid streams appear 

bare of veg~tation. Yet acid waters contain a large diverse 

microbial population of yeast, fungi, bacteria and algae. 

Yeast represented by Saccharomyces ellipsoider~ S. guttalata~ 

S. cerevisiae~ Rhodotorula~ Candida sp.~ and Trichosporum 

(Starkey and Waksman, 1943; Cooke et al 1960). Aspergillus~ 

Penicillium~ Trichoderma~ Helminthosporium~ Trichothecium 

(Ehrlich, 1963; Weaver and Nash, 1968) form the major fungi 

in acid streams. 

1.62 Bacteria 

The presence of sulphur oxidising bacteria_ in acid 

streams was reported as early as 1919 by Powell and Parr. 

Waksman and Jaffe (1922), identified Thiobacillus thiooxidans 

and Temple and Koehler (1954) described and named an iron re-

ducing bacterium Thiobacillus ferrooxidans. Leathen et al "J 

(1956) isolated Ferrobacillus ferrooxidans from bituminous coal 

mine waste water at pH 2.5 - 4.5. Uchino and Doi (1967) de-

scribed Bacillus coagulans. - Dugen et al.,(l9_70) isolated 

bacteria from acid mine waters of pH 2.0 - 4.0, which included 

.Bacillus~ Microococcus~ Sarcenia~ Crenothrix and Microsporium. 

Other bacteria in acid waters are Thermoplasma acidophilum~ 

whose cell rnembrance . is in direct contact vvi th 

the hot acid (Patrick et al~ 1970), Bacillus acido-

caldarius (Doemel and Brock, 1971), Thiobacillus organoparus 
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which has a. morphological similarity with Thiobacillus thiooxidans 

(Markosyan~ 1973) and Sulfobolus ac~docaldarius (Brocket al.~ 

1972). 

1. 63 Algae 

As algae are primary producers in any ecosystem, 

their presence is vital for the establishment and continued 

maintenance of ~pecies diversity, especially in extreme 

situations created by the presence of acid in the environment.: 

Surveys carried out by Lackey (1938), Steinback (1966), 

Weaver and Nash (1968), Bennett (1969) and Hargreaves et al., 

(1975) provide a comprehensive list of algae found in acid 

streams. Euglena mutabilis is by far the most common species 

to be recorded in all acid situations, exception being its 

absence from Kootenay Paint Pots in British Columbia (Wehr 

and Whitton, 1983). Hargreaves et al .. ~ (1975) recorded a 

90% abundance of this species in a survey of 15 sites in 

England with a pH of 3.0 and below. Other species recorded 

include Pinnularia acoricola (71%), Gloeochrysis turfosa (61%). 

Nitzschia subcapitellata, N. elliptica var. alexandrina, 

Eunotia exigua, Chlamydomonas applanata var. acidophila 

Hormidium rivulare occurred in over 20% of all reaches sur-

veyed. In extremely low pH below 2.0, Chlamydomonas applanata 

var. acidophila seem to dominate Fott and McCarthy (1964). 

Chlorella, Stichococcus, Scenedesmus, Ulothrix zonata, U. 

subtilis and Navicula sp. are also inhabitants of acid environ

ments (Fott and McCarthy, 1964; Stokes et al., 1973, Satake 

and Saijo, 1974). The eukaryotic algae, Cyanidium caldarium, 

a thermal acidic species has,too, been very well documented 

(Geitler, 1936, Doemel and Brock, 1971, Aldo et al.)l981). 
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Blue green algae are conspicuous by their absence 

in acid streams, (Brock, 1973}. A recent report by Lazarek 

, (1~80} referred to an algal mat consisting of Lyngbya sp., 

OsciZZatoria sp.~ and Pseudoanabaena sp. in the sediments 

of Lake Gardsjor in S.W. ~weden; the pH of the lake water 

and not the lake sediment from which the algae were seen was 

found to be 4.3 - 4.7. 

1.7 Photoheterotrophic ~nd Heterotrophic Growth in Algae 

Algae are considered to be primary producers because of 

their ability to photosynthesise, yet there are a number of 

them that lack the photosynthetic apparatus and hence depend 

on organic substrates for growth and reproduction. However, 

there are some photosynthetic algae that utilize organic sub-
. Cld~~ 

strates both in the light and also in the dark. '._;,·' Rhodo-
1\ 

~ 
phyceae ~-~: Phaeophyceae both have been cultivated and none 

show any ability to utilize organic carbon in the dark (Droop 

and McGill 1966}. So are pelagic .diatoms and coloured 

Dianophyceae (Provasoli and McLaughlin, 1963}, Khoja and 

Whitton (1971} reported 17 heterotrophic Cyanophyceae out of 

a collection of 24. In the Chlorophyceae, Chloroccocales 

have been reported to be able to grow in the dark (Beijerinck 

1890 referred to by Droop (1974}. 
.e 

Eugenophyceae as a group 
~ 

has not been fully tested for heterotrophy though different 

strains of Euglena ha~~t been experimented with. 

Algae may appear to be obligate phototrophs, yet it is 

very difficult to demonstrate this. Stewart (1974} reported 

Droop's reference to the Scottish Marine Biological Assoc-

iation's collection in which 91 were apparently obligate photo-

trophs. This may be due,to some· vital requirement such as 



30 

the right. concentration of the substrate. Prymnesium parvum 

a member of the Haptophyceae which was thought to be an 

obligate phototroph has been now shown to utilize glycerol 

in the dark provided the substrate was over 0.25 M (Rahat 

and Jahn 19~5; Rahat and Spira (1967). Anita et aZ.,(l969) 

found the same for a marine cryptomonad Chroomonas saZina. 

Acetates and sugars have been tested on different strains 

of EugZena. The Manix and Vischer strains of EugZena graciZ~B 

used only acetic acid and butyric acid, while Pringsheim's 

strain of the same species used a great range of straight-

chain fatty acids (Cramer and Myers 1952). Provasoli (1938) 

found his strain E. graciZis var. europhora used lower branched 

acids and'alcohols as well. Sugars and sugar alcohol are not 

used by any of the above strains. Further Cramer and Myers 

(1952) and Hurlbert and Rittenburg (1962) found E. graciZis 

var. baciZZaris could utilize the carbon skeleton of some 

amino acids as sole carbon source while Pringsheim's E. 

graciZis var. saccharophiZa. could utilize both acetate and 

glucose. 

• I 
Although the necessity for carbon in most natural env1ron~ 

ments does not present a problem to most algae, yet in low pH 

environments where co2 and light are limiting factors the 

ability to ut~lize organic substrates will enhance its chance 

for growth and survival 

1.8 Factors Influencing Heavy Metal Toxicity 

1.81 Nutrients and Heavy Metals 

The effect or the effects of a particular metal 

on an organism may or may not be seen, as often organisms are 
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able to alter their environment to suit themselves or trans-

form themselves_ (mutate) to suit the environment. Either 

way the effect of the metal may remain obscure. This is 

further complicated by the presence of other metals which 

may be antagonistic, thus masking the effect of the metal. 

Abelson and Aldous (1950) found that in Escherichia coli 

the toxic effect of nickel, cobol.t, cadmium, zinc and manganese 

reduced with ~ncreased concentration of magnesium in-the growth 

medium. In- Bcwi llus licheniformis, Haavik ( 1976) , - showed 

. -1 
that an addition of lg 1 magnesium to inhibitory level of 

manganese, iron, cobolt, nickel and copper· could antagonise 

the effect of these metals. 

Say and Whitton (1977) reported that magnesium and 

calcium reduced Zn to~icity to Hormidium rivulare. The 

influence of calcium increased over a wide range of concen-

trations compared with magnesium which was more effective in 

reducing zinc toxicity at lower levels. With zinc sensitive 

strains of H. ·rivulare, the influence of magnesium was small 

as was seen in another green alga, Stigeoclonium tenue exam-

ined by Harding and Whitton (1977). G~chter (1976) however 

found that the concentration of calcium did not appear to 

affect the toxicity of zinc, lead, mercury or copper to 

natural populations of phytoplanktons. The situation is a 

complex one in that antagonism and synergism may not only 

occur between heavy metals and essential elements but among 

themselves (Jones, 1964). Stratton and Corke (1979) found 

that the combination of Hg 11 and Cd or Ni and Cd brought 

about either a s~ergistic or antagonistic effect on growth 

in Anabaena inaequalis, depending on the actual combination 

of metals used. Using sublethal concentration of metals in 
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pairs, Hg 11 and Cd brought about a synergistic effect while 

Cd and Ni an antagonistic effect on growth. The combined 

effect of zinc and cadmium increased toxicity in Hormidium 

riv~lare(Say and Whitton, 1979), which is similar to the 

effect of these metals to Lemna valdiviana (Hutchinson and 

Czryska, 1972). Hutchinson (1973) reported that copper and 

nickel interacted synergistically towards growth of some green 

algae while Se antagonised Cd toxic~ty. With Euglena gracilis, 

Nakano et al.,(l978) found that Cd and Zn antagonised each other. 

They reported that in the presence of 20 mg 1-l .cd the gener

ation time in zinc free medium was 57 hours compared. to 27 

-1. 
hours with the addition of 2 mg 1 zinc. Falchuk et al ... 

(1975) found similar results with Euglena gracilis in that 

zinc reduced cadmium toxicity. This is further confirmed by 

the work of PakUme et al-,(1970) and Upitis et al..~ (1973), 

who reported similar results with Chlorella in that zinc re-

duced cadmium toxicity. Reporting on a study of the effect 

of phosphate and nitrate on a blue green alga Plectonema 

boryanum, and a green alga Chlorella vulgaris, Rana and Kumar 

(1974) concluded that the presence of relatively higher concen-

tration of phosphate but not nitrate improve the growth, pro-

tecting the algae from the toxic effect of zinc. In 

Hormidium r.ivulare (Say and Whitton, 1977) and in Stigeoclonium 

tenue (Harding and Whitton 1977), phosphate reduced Zn 

toxicity. W.ith sulphate however, Say and Whitton (1977) 

found no detectable influence in reducing zinc toxicity in 

Hormidium rivulare. 
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1.9 Aims 

Literature search indicated that 

1. acid stream water differs from site to site both in 

their mineral content and composition; 
/ 

2. some 6ations (Mg, Ca) reduced toxicity to zinc in 

some algae; 

3. metals may react among themselves thus masking their 

true nature; 

4. pH influence toxicity to heavy metals. 

It was hypothesised that tolerance to_heavy metals in 

acid stream algae was linked to the nutrient status and the 

interactions between different metals in solution. 

Two specific aims of this project were 

(a) to obtain a number of axenic algal strains from acid 

sites of known water chemistry without the use of any 

antibiotics, and 

(b) to use a common acid stream isolate, Euglena mutabilis 3 

to investigate its nutritional requirements and toler-

ance to heavy metals under standard laboratory con-

ditions. 

It was hoped that the result of the investigation would 

shed some light on the survival strategy of acid stream algae. 



CHAPTER TWO 

MATERIALS AND METHODS 

2.1 Culture Techniques 

2.11 Cleaning of Glassware 

All glassware (Pyrex brand) was detergent washed 

and soaked in 2% HN0 3 for over 30 minutes. It was then 

rinsed in distilled water at least six times and dried in 

the oven at l00°C before use. 

2.12 Culture Vessels 

34 

Stock cultures for use as inoculum were maintained 

in 100 ml straight neck conical flasks closed with silicon 

bungs. 100 ml Erlenmyer conical flasks with high grade non 

absorbent cotton wool was used for experiments. 

2.13 Sterilization 

20 ml of growth medium in 100 ml conical flasks 

were sterilised by autoclaving at 121°C (10.35 KN m-
2

) for 

15 minutes. The autoclaved medium was left to stand at room 

temperature for 24 hours to equilibrate with the atmosphere 

before inoculation. 

2.14 Production of Axenic Cultures 

As antibiotics induce mutation (Ladha and Kumar 

1978) only physical methods were used in isolation and purifi-

cation. Cells were first grown on solid medium and by re-

peated transfer of cells from one agar plate to another fungus 

free colonies were established. This was achieved as follows. 

Pasteur pipetteswere drawn into fine capillary and the end was 

then heated to form a 'bulb'. The petri dish containing the 
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·algal colonies were examined with a binocular dissection 

microscope. A few cells from a single colony were removed 

by placing the 'bulb' of the Pasteur pipette carefully on 

the colony and streaking on to sterile agar. 

Having produced a fungus free culture the next 

stage in the purification was to eliminate the bacteria. 

The fungus free cultures were transferred to liquid medium 

and when the cells have multiplied the liquid culture was 

sprayed onto sterile agar plates by placing a few drops of 

culture on a sterile injection needle.fixed to a Swinnex 

filter holder with a sterile·o.2 ~m Nuclepore filter. The 

Swinnex filter holder was connected to a gas cylinder by 

means of a rubber tubing. When the air was released from 

the ~as cylinder it passed through the sterile filter and 

forced the algae to spread out in the spray. The spray was 

caught on agar plates. The plates were covered with cling 

film and left in the growth room. When colonies appeared 

they were examined with the dissection microscope and if 

bacteria were seen then the process was repeated. 

· 2.15 Test for purity 

Cells from colonies that appeared to be free of 

bacteria were transferred to liquid medium and when they multi

plied, a few drops of the culture were examined under the micrq

scope. If no bacteria were seen then the cells were placed on 

different bacterial test media (Table 2.1). These bacterial 

test pl~tes were covered with aluminium foil to prevent light 

entering and to encourage bacterial growth, were left in the 

growth room at 25°c. If no bacterial colonies appeared in 2 

weeks of incubation (growth of bacterial colonies in contaminated 
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agar plates ~sually occut in 3 days of incubation) the alga 

was regarded axenic. 

TABLE 2.1 Bacterial test media 

1. N.A. (Nutrient agar) 

13 g of Nutrient agar (Oxoid, U.K.). 

10 g of Agar (Difco Bacto, ·Michigan, U.S.A.) in 1000 ml 

of distilled water. 

2. SST 

10 g of glucose 

10 g of tryptone (Oxoid Batch No. 328:...6449, 

0.5 g of yeast extrqct (Oxoid, U.K.). 

10 g of agar in 1000 ml of 

3. P.G. (Peptone and Glucose) 

1.0 g of glucose 

1.0 g of peptone (BDH) . 

distilled water. 

10 g of Agar in 1000 ml pf distilled water. 

4. Y.E. (Yeast extract) 

30 g of yeast extract (Oxoid, U.K.). 

10 g Agar in 1000 ml of distilled water. 

5. C.A. (Casamino Acid) · 

U.K.). 

0.12% Casamino acid (Difco Lab.U.S.A.) in the basal 

growth medium. 

10 Agar. 
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2.16 Maintenance of Stock Cultures 

Axenic stocks of algae (Table 2.2) were maintained 

on agar slopes in test tubes closed with silicon bungs.and 

.incubated in a refrigerator at 7°C under continuous low light. 

Low light and low temperature will ~nsure slow rate of cell 

division and as such individual slopes could be maintained this 

way for over six months. Fresh slopes were made every six 

months. All isolates were maintained in the basal medium with 

added ammonium chloride and 5 mg 1-l aluminium, except Euglena 

mutabiZis strain D641 isolated from a fielp zinc concentration 

of 21 mg 1-l was maintained with 10 mg 1-l Zn so that it may 

not lose its tolerance to Zn. 

2.17 Sub culturing of Algae 

For subculturing of the algae a horizontal laminar 

flow sterile cabinet (Microflow Pathfinder, conforming to S.B. 

5295 Class 1) was used. The cabinet was sprayed with absolute 

alcohol and the fan switched on and.left for about 10 minutes 

before commencing inoculation. The inoculum was transferred 

to the culture vessel by using a sterile plastic tip fixed to 

a Gilson adjustable volume pipetteman. The purity of the 

inoculum (axenic state) was checked for each experiment using 

a range of bacterial test m~dia. Periodic checks were made 
' 

to see if the filters in the ~noculating cabinet were function-

ing properly by placing bacterial test plates in different 

locations in the cabinet and incubating them in the growth room 

at 25°C. 



TABLE 2.2 List of Algal Stocks 

Organism Durham Stream & Reach No. 
CUlture No. and count:ry of origin. 

1. · Hormidiwn sp. 0451 9001-01 Wyoming, U.S.A. 

2. Hormidiwn sp. 0452 9001-01 II II 

3. Chlamydomonas 0454 9009-20- II II 

4. Ch tamydomonas 0455 9008-50 II II 

5. Chlamydomonas 0456 9013-03 II' II 
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State of purity 

Clonal axenic 

+ 

+ 

+ + 

+ + 

+ + 

6 • Chlamydomonas . 0457 0127-05 Brandon Acid Stream,U.K. + + 

7. Stichococcus sp. 0460 0127-05 II II II II + + 

8. ChloreUa Sp. 0461 9008-50 Wyaning, U.S. A. + + 

9. Stichococcus sp. 0462 9008-50 II II + 

10. Eunotia sp. 0463 0127-05 Brandon Acid Stream,U.K. + 

11. Euglena mutabi lis 0464 0127-01 II II II II + + 

12. Phormidium sp. 0472 1005 Belgium 

13. Raphidonema Sp. 0477 0218 Wales, U.K. + 

14. Stichococcus sp. 0478 9011~01 Wyoming, U.S.A. + + 

15. Stichococcus Sp. 0479 0216-15 Wales, U.K. + + 

16. Euglena mutabilis 0640 0221-01 Wales, U.K. + + 

17. Euglena mutabilis 0641 0298 Gategill Mine, England + + 

18. Euglena mutabilis 0642 near Malham Tarn II + + 

19. Chlorella sp. 0643 Mt.Erebus + + 

20. Chlorella Sp. 0644 Lake fudoike, Japan + + 

21. Cyanidiwn caldarium 0645 II II II + + 

22. Pinnularia braunii 0646 II II II + 
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2.2 Media 

2.21 Development of growth Media 

For algal growth a modification of No.lO formula 

of Chu (1942) was used. This was done by reducing carbonate 

and phosphate and adding EDTA as a chelating agent with trace 

metals added as AC microelements. As repeated subculture of 

different strains of Euglena mutabilis in nitrates as nitrogen 

source did not induce its utilization, nitrogen was added as 

ammonium (NH4Cl). This modification was used in all algal 

assays (Table 2.3a; Appendix 1). All stocks except Na 2sio
3 

·were of Analar grade and were prepared in de-ionised double 

distilled water and were_stored in a refrigerator (i.e. in the 

dark) at 4°C. The growth medium (Table 2.1) was prepared in 

de-ionised double distilled water and the pH was reduced 

before autoclaving by adding a few drops of 10% H2so
4

• 

2.22 Solid Media 

In the preparation of solid media for isolation, 

purification and storage of algal cultures from acid environ

ments, high quality agar, supplied by Difco Bacto, Michigan, 

U.S.A., was used. At the initial stages of purification of 

contaminated algae, 'Pyrex' brand glass petri dishes were 

used and were replaced with transparent disposable sterile 

plastic petri dishes. This enables examination without ex-

posure of petri dishes thus avoiding cross contamination. 

Agar gets denatured when autoclaved in the presence 

of acid and does not set on cooling. This was overcome by 

autoclaving the agar separately and mixing it with double 
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TABLE 2.3a Composition of growth medium; modifications to 
Chu's No. 10 formula (Salts} 

Chu's original formula No.lO modified 
growth medium 

K
2

HP04 
KH

2
Po4 

MgS04 
Na

2
co

3 
Na

2
Si0

3 
Na2HC0

3 
CaC12 
Ca(N03 ) 2 
FeC1 3 
MnC1 2 
NaMoO 

MnC1 2 
ZnS04 
Cuso4 
Coso4 
HBo

3 
NH 4Cl 

EDTA (ethylen~diaminetetra

acetic acid) 

10 - 5 

25 

20 

25 

40 

8 

8.0 

25.0 

25.0 

16.0 

37.0 

2.24 

0.45 

0.007 

0.05 

0.056 

0.019 

0.01 

0.07 

16.0 

2.45 

TABLE 2.3b Composition of the growth medium (elements) 

Elements 

N 

p 

s 

Cl 

Na 

K 

Mg 

Ca 

Si 

Fe 

Mn 

Mo 

Zn 

Cu 

Co 

B 

C · t · (mg 1-_l) ompOSl lOTI 

6.83 

1. 76 

80 

34.7 

7.0 

2.24 

2.25 

9.77 

2.5 

0.5 

0.012 

0.0025 

0.012 

0.005 

0.002 

0.125 
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strength autoclaved low pH medium while still warm. When 

agar solidifies, there is· an upward shift in the pH by about 

0.5 pH units. As such it was necessary to reduce the pH 

of the medium by a further 0.5 pH units below the required 

pH value, so that when the autoclaved agar and the medium 

are mixed together the required pH is achieved. Depending 

on the humidity in_ the sterile cabinet (Section 2.17) conden-

sation does take place and this can be avoided by not closing 
~ 

the lids of the petri dishes immediately after pouring the agqr. 

2.23 Organic Substrates 

All organic substrates (Table 2.4) were filter 

sterilised by passing through a sterile 0.2 ]Jm Nuclepore filter 

held in an autoclaved Swinnex filter holder and added to the 

growth medium, aceptically. 

2.24 Materials used in toxicity test 

The effect of a number of heavy metals (Table 2.5) 

on growth in Euglena mutabilis and the combined effect of Zn 

and other other heavy metals was checked using stocks of 

heavy metals prepared in de-ionised distilled water and 

stored at 4°C in the refrigerator. Microelement stocks 

were prepared omitting the particular element under investig

ation and added to the growth medium, where applicable. 

2.25 .E.!:!....E.uffers 

For experiments conducted at and below pH 3.0 

no buffer was added as there was no change in the pH of the 

medium even after 30 days of incubation in the basal medium. 

Whereas for experiments at pH 3.4 and above different buffers 



TABLE 2.4 Organic substrates and their concentration 
in the growth medium 

As carbon source Concentration 

D.:_Glucose 0.01 M 

D(-)Fructose 0.01 M 

Sucrose 0.01 M 

Glycerol 0.01 M 

Lactic acid 0.01 M 

Acetate (sodium) 0.001 M 

As nitrogen source 

B-Alanine 0.01 M 

Dl-Asparagine 0.01 M 

Glycine 0.01 M 

Glycyl-glycine 0.01 M 

Urea 0.01 M 

Uric acid 0.01 M 

Ethanolamine 0.01 .[>1 

Phosphorus 
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Sodium B-glycerophosphate (BCH product 1. 76 mg 1-l 

DNA (Deoxyriboneuclic acid) sodium salt 
from Herring sperm type VII, Sigma 
product 

Phytic acid (Inositol Hexaphosphoric acid) 
Soduum salt from corn type V, Sigma 
product 

Lecithin (Phosphataylcholine) BDH product 

1. 76 

1. 76 

1. 76 

II 

II 

II 
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TABLE 2.5 List of elements used in toxicity test 

Elements salt in the 
complementary 

Salt used salts added if ' 
tested basal medium element is omitted 

Na NaN0
3

; NaCl NaHC0
3

; NaSi03 
CaC03 ; CaSi03 

K KN0
3 

KH
2

Po
4 

NaH 2Po4 

Hg f'.1gSO 4 ; MgC1 2 
HgS04 

Ca Ca(N0
3

)
2 

CaC1 2 HCl 

Mn MnC1 2 
MnC1 2 

Fe FeN03 
FeC1 2 

HCl 

Al AlS04- AlC1 2 

·zn znso4- ZnC1
2 

znso
4 

HCl 

Cu cuso
4 

CuS0
4 

Ni NiS0
4

- NiC1
2 

Co Coso4 
Coso

4 

Pb Pb(N0
3

)
3 

Cd CdC1 2 

N NH
4

(N0
3

) 2 
NH 4Cl HCl 

p KH 2Po4 
KH 2Po4 

KN0 3 

~-------------------
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(Table 2.6) were added to the basal medium because the algae 

were able to reduce the pH of unbuffered medium. To measure 

the pH of both solid and liquid media model EIL 7050 pH meter 

was used. When adding different buffers, the required pH 

value was obtained by adding a few drops of 0.1 M NaOH. 

TABLE 2. 6 IJist of pH buffers and ·their stabi.ltty range 

Buffer concentration stability ra·nge 

Dimethyl glutaric acid 

HEPES (N-2-hydroy~~erazine-.,. 

N-2-ethanesulphonic acid) 

Borax lsodium tetraborate) 

2.3 Algal Cultures 

-1 
0.5 g 1 

-1 0.5 g 1 

-1 
0.5 g 1 

2.31 Description of collecttbn sites 

2.311 Durham Area 

pH 3.2 to 7.0 

6.8 to 8.2 

9. 0 10.0 

Brandon Acid Stream (Grid Ref. ZN 

212 404) is about 5 kilometers from the Science Site of Durham 

Qniversity. It appears to originate from a spoil tip. 

Hargreaves (1977) hypothesised its origin to be a deep spring 

in the coal seam. The current proposal from the National Coal 

Board to operate an opencast mine adjacent to the stream leads 

to a _similar speculation. Whatever be its origin, this stream 

had been running at a pH of 2.6 for well over a decade. Brandon 

Pithouse Acid Stream, in addition to its low pH, has a number of 

heavy metals in solution (Table 2.7). The dominant flora of 

the stream where it emerges from a clay pipe is the moss 



-1 
TABLE 2. 7 Wat·er chemis·try of :sites from which E"ug"l;ena· mut·abilis was isolated (mg 1 ) 

Stream 

Brandon 

Acid 

Stream 
(Strain 
D 464) 

Grid Ref. 

ZN 212 404 

Gatehill NY 326 2~9 
Mine 
Stream 
(Strain 
D 641) 

Adeer NS 298 396 
Factory 
effluent 
(Strain 
D 640) 

Nr. Malham 
Tarn 
(Strain 
D 642) 

- = no rreasurerrent made 

pH Na K 

2.6 11.7 0.8 

3.7 

1.9 31.3 3.4 

3.5 

Mg ca Zn cu Mn Fe Al Pb Cd Ni .·Co 

52.5 53 1.1 0.57 5.6 82 . 25 0.1 0.5 0.2 

9.6 21.1 0.008 2.42 .26 0.41 0.03 0.27 0.1 

4.5 16.5 0.21 0.083 0.119 6 2 4.9 0.001 0.07 0.05 

~ 
U1 
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Dicranella sp., mostly in the protonemal stage. Other algal · 

assemblage of this stream are Chlamydomonas applanata var. 

acidophila~ Euglena mutabilis and Eunotia exigua~ with Euglena 

mutabilis on soft mud where the water was flowing very slow. 

2.312 Cumbria 

Gategill Mine Stream (Grid Ref. NY 326 259) 

from acid discharge from underground workings of old lead mine 

had Englena mutabilis growing on Jungermannia leaves. Chem

ical analysis of the water showed high concentration of Zn 

(Tab 1 e 2 • 7 ) • 

2.313 North Yorkshire 

Allan Pentecost provided Sphagnum palustre 

from a site with low pH near Malham Tarn in North Yorkshire 

Fen. Euglena mutabilis was removed from the moss by squeezing 

the moss and plating it on to agar. 

2.314 Other Areas 

Stock cultures of acid algae were provided 

by B.A. Whitton from stocks held at Durham University algal 

culture collection. 

2.32 Morphology of Euglena mutabilis 

Euglena mutabilis conforms to the general description 

of euglenoids in that it has a flexible pelicle and a con

specuous red eye spot. One striking difference is that it 

has no emergent flagellum. Although this characteristic is 

also found in other Euglena species like E. obtusa~ E. elenkinii~ 

k. fenestrdta~ E. salina and E. vermiformis~ E. mutab!lis can 

be identified by the presence of two or three large chloroplasts 
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a number of short rectangular paramylum granules with 5-7 

discoid chromataphores. Under different nutritional con-

ditions (heterotrophic growth) lipids are also seen. Elect-

ron microphotographs show the characteristic serrated pelicle 

and the rudiments of the flagellu~. Microscopic examination 

carried out under identical conditions of E. mutabilis cells 

in their·exponential growth phase indicated that all four 

strains of. E. mutabilis used in this study had its own average 

size (Table 2.8). 

TABLE 2.8 , Cell dimensions in fully extended cells of 
Euglena mutabilis from 20 day old cultures 
in the basal medium 

Strain 

D 464 range 60-140- ~m 

D 460 " 40- 80 ~m 

D 461 " 32- 70 ~m 

D 642 " 40- 90 ~m 

D 464 " 20- 40 

D 640 " 10- 30 

D 641 " 15 - 30 

D 642 " 20 - 35 

2.4 Algal Assay 

2.41 General 

length when fully extended 
(observation based on 100 cells) 

majority 70 - 90 ~m 

" 56 - 64 ~m 

" 40 - 56 ~m 

" 45 - 70 ~m 

width when fully extended 

majority 25 - 30 ~m 

" 15 - 25 ~m 

" 20 - _35 ~m 

" 25 - 30 ~m 

The task of purification of acid stream algae 

without the use of antibiotics was a very long and time con-

suming exercise. In all 16 algal strains were obtained 

(Table 2.7). As much time had been spent in the process of 
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purification, it wa·s decided to concentrate on one species. 

Euglena mutabilis was chosen because of its wide spread 

occurrence in acid environments (Section 1.63). For algal 

assay three strains of Euglena mutabilis from three sites 

of known water chemistry (Table 2.7) were selected. A 

fourth strain (D642) was included for selected experiments 

only. 

2.42 Incubation and light source 

Flasks dbntaining the inoculum were left in the 

25°C growth room, on glass shelves and light was provided by 

warm-white fluorescent tubes. The flasks were placed in such 

-2 -1 a manner as to receive a photon flux density of 100 ~~mol m s 

as measured with the Biospherical Instrumen~ Inc. No. QSP 170 

with the laboratory sensor (QSL lOOP). In order to provide 

equal illumination, the flasks were moved about every 24 hours. 

As the experiments were conducted static, the flasks were 

shaken at least twice daily. 

For the experiment to determine the effect of 

light and temperature on growth, the temperature cross gradient,. 

an instrument similar to the one described by Van Baalen and 

Edwards (1973) was used. 

In order to prevent light entering the flasks 

during dark heterotropic growth, the flasks were first wrapped 

with black polythene sheet and then covered over with aluminium 

foil. The mouth of the flasks were covered with cotton wool 

to prevent li9ht ~ntering and not air. The experiment was 

carried out static in the growth room at 25°c. After an in-

cubation period of 2 months, growth was measured as yield and 

microscopic examination made for morphological changes. 
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2.43 Growth medium 

Experiments were carried out in 100 ml conical 

flasks using 20 ml of growth medium. The mouth of the flask 

was covered with high grade non absorbent cotton wool. 

2.44 Inoculum 

A standard inoculum judged both by cell number 

and age structure is important in interpreting the results. 

In order to achieve this for all the experiments, only cells 

of 10 to 15 day old at their exponential growth phase was used. 

The stock culture for inoculum was diluted to get a standard 

inoculum size of 100 cell ml (±15) for each experiment. 

2.45 Cell count and doubling time 

At the end of an experiment, the cell density 

was estimated by counting the number of cells in each flask. 

This was done by taking 0.05 ml of culture on to a haemacyto-

meter and counting all the cells on the grid. Four samples 

were taken from each flask and as each experimental condition 

had four replicates, the result i~ that of 16 separate cell 

counts. 

Growth rate as doubling time was calculated by 

subtracting the number of cells at the end of the experimental 

period from that of the beginning and dividing the result by 

the time using the formula of Fogg (1975) 

= 
t 

Generation time (G) 

0 log
10 

N 

= 0.301 

Kl 

where K1= Relative growth constant 
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N = Number of cells at the end of the experiment 

No = Number of cells at the beginning of the experiment 

t = Time 

G = Generation time (doubling time) 

2.46 Dry weight 

At the end of an experiment the dry weight of 

-1 the cells was taken as rog ml . One ml of culture was re-

moved from each flask with a Gilson adjustable volume pipette-

man and placed on a 2.5 em GF/C filter (Whatman U.K.) and was 

filtered under suction. The cells were washed four times with 

distilled water to prevent any carry over of materials from the 

growth medium. Each filter paper containing the algae was 

folded once to form a semi circle and placed on separate - ... ~ .. 

aluminium foil to avoid filters sticking together. The filters 

were dried in the oven at 105°C for 48 hours. At the end of 

48 hours the filters in their aluminium foil covers were quickl~ 

transferred to a desiccator to prevent absorption of water as 

they cooled to~ambient temperature. The filters were weighed 

in a Mettler type 16 balance. Pre-determined weight of the 

filter paper (mean of 25 filters from the same batch dried in 

the oven at 105°C for 48 hours) was subtracted from the weight 

of the filter with the algal contents to determine the weight 

of the algal cells. 

2. 4 7 Microscopy _ 

Growth of algae on solid media during purification 

and ·a test for purity (Section 2.32) were examined using a 

Nikon binocular microscope. Cell count, and morphology in 

liquid cultures was carried out on a Carl Zeiss microscope by 

placing 0.05 ml of·culture in a haemacytometer counting 
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chamber (depth 1 mm; Improved Neuber ruling). 

2.5 Quantitative Experiments 

2.51 Influence of light and temperature on growth 

In order to establish the optimum light intensity 

and temperature regime for growth of Euglena mutabi.lis under 

laboratory conditions strain 0464 was grown in the basal medium 

at pH 2.6 for 20 days at a photon flux density of 40, 80, 100 

and 120 ~mol m- 2s-l and temperature regimes of' 15, 20, 25 and 

30°C in the cross gradient (Section 2.42). There were 4 

flasks for each temperature regime and light intensity. At 

the end of 20 days of incubation, each flask was counted four 

times for cell number and dry weight was taken (Sections 2.44; 

2.45) .. 

2.52 Influence of pH g,n growth 

With a view to finding the optimum pH for growth 

under laboratory conditions, .Euglena mutabilis strains 0464, 

0640, 0641 and 0642 were subcultured in a series of pH valu~s 

ranging from pH 1.0 to 10, using inocula from stocks grown in 

the field pH values (Table 2.7). Experiments were carried 

out static in the growth room at 25°C and a photon flux density 

-2 -1 
of 100 ·~mol m s for 20 days. The experiment was repeated 

using inocula from a standard_ pH of 2. 6 with strain·s D464, D640 

and 0641. In order to see if long term subculture in low and 

high pH could bring· about adaptation, E. mutabilis D464 was sub-

cultured for 6 months in pH 1.8 and 7.6, the experiment was 

repeated using inocula from pH 1.8 and 7.6 with inocula from 

pH 2.6 as control over the same range of pH values. 
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2.53 Exposure and survival time at extreme pH values 

In order to see whether cells exposed to pH 1.0, 

·1.2, 1.4·and 10.0 (where cells looked dead) were viable, 

they were removed from the flasks by filtering on a 0.25 ern 

GF/C filter and were placed in the basal medium at pH 2.6. 

Their recovery from exposure to specific pH on a time scale 

from 30 minutes to 20 days of exposure was carried out, under 

standard growth condition. 

2.54 Influence of macro and micro nutrients on growth 
in Euglena mutabiZis 

In order to check"the effect of rnacronutrients 

(Na, K, Mg, Ca) and micronutrients (Zn, Cu, Co, Mn) on growth 

in E. mutabiZis, strain D464, D640 and D641, modifications to 

the basal medium were made as follows. Microelernent stocks 

were prepared omitting the particular element under investig-

ation. With macroelernents, sodium present in the basal medium 

as salts of carbonate and silicate wer~ replaced with sodium 

nitrate. This resulted in an incxease of Na concentration 

from 7 to 10 rng 1-1 • With experiments with potassium, K was 

added as KN03 replacing KH2Po4 with sodium salt with the same 

concentration of Po
4
-P. Inocula for experiments to check 

the effect of rnacronutrients, was taken from the basal medium 

where as for experiments dealing with rnicronutrients, was taken 

from stocks grown in the absence of the particular element under 

investigation. Using a standard inoculum of 102 cells rnl-l 

growth as yield was checked after 20 days of incubation under 

standard growth conditions (Section 2.42). Each experiment 

was repeated four times with four replicates. 
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2.55 Influence of vitamins on growth 

In order to see the effect of vitamin B
1 

and B12 

on yield in Euglena mutabilis, strain D464 was subcultured 

in the basal medium in the presence of 1 ~g 1-l vitamin B
1 

-1 
and 1 ~g 1 vitamin B12 and combined vitamin B1 with B

12 

with vitamin free basal medium as control, under standard 

growth conqitions (Section 2.4). Vitamins were sterile 

filtered and added aseptically. As cobalt forms an important· 

constituent of vitamin B12 it was hypothesised that an in

crease in the cobalt concentration (Table 2.9a) could bring 

about the same effect as vitamin B12 . In order to check this 

hypothesis stocks were grown in cobalt free medium and cells 

were transferred to growth medium with different concentrations 

of Co. The growth as yield was measured after 20 days of 

_incubation. 

2.56 Utilization of organic substrates in light 
and in darkness 

With a view to see if Euglena mutabilis could 

utilize different organic substrates for growth and repro-

duction in the presence and absence of light, investigations 

were carried out using strains D464, D640 and D641 under 

standard growth conditions (Section 2.42). The organic sub-

strates (Table 2.4) were added aseptically to the autoclaved 

growth medium and growth as yield was measured as cell number 

and dry weight. 

2.57 Utilization of organic phosphates 
2.571 Organic P determination 

Phosphorus determination to establish 

whether organic P was stable at pH 2.6 at which pH growth 

experiments were conducted, was carried out according to the 



TABLE 2.9a List of Microe1ements and their concentrations used in the growth experiments (m:g 1-1 ) 

Con. 0.001 0.002 0.005 0.013. 0.025 0.05 0.1 0.2 0.25 0.4 0.5 0.6 0.8 1.0 1.5 2.0 4.0 6.0 8.0 10.0 

Zn . I I I I I I I I I I 
i 

cu I I I I I I I I I 

Mn I I I I I I I 

Co I I I I I I 

TABLE 2.9b List of Macroe1ements and their concentrations used in growth experiments (~g 1-1 ) 

Con. 0 2.5 5.0 7.0 10.0 20.0 40.0 80 t2o 140 160 220 1 

- . 
Na - - - I I I I I I I I 

K - I I I I I I I 

Mg I I I I I I I 
-

Ca I I I I I I I I 

U"1 
;~ 
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modifications of Eisenreich et al., (1975). 

2.572 Soluble reactive phosphorus (SRP) 

An aliquot of organic P solution (Table 2.2) 

. was diluted to 25 ml with distilled water. Then 5 ml of 

'mixed reagent' was added. 

to proceed for 10 minutes. 

Colour development was allowed 

Then absorbance was read at 880 nm 

on the Shimadzu Double Beam Spectrophotometer. The P con-

centration was determined using a calibration curve. 

2.573 Total phosphorus (TP) 

This was determined as follows. 5 ml of 

lN H2so4 was added to 100 ml of organic P solution in 250 ml 

Erlenmyer flask followed by addition of 0.7g potassium per-

sulphate. The flask was covered with aluminium foil and 

autoclaved at 121°C for 30 minutes. After cooling, 5 ml of 

'mixed reagent' was added and colour development was allowed 

to proceed for 10 minutes. The absorbance was read at 880nm 

on the Shimadzu Double Beam Spectrophotometer. The P con-

centration was determined using a calibration curve con

structed in the same way as for SRP determination. 

2.574 Acid phosphatase activity 

Growth experiments at different pH regimes 

in which growth was seen both at acid and alkaline pH values 

suggested that Euglena mutabilis may have both acid and 

alkaline phosphatase activities as a strategy for 9rowth 

both at acid and alkaline pH. In order to investigate 

phosphatase activity, 20 day old cultures of Euglena mutabilis 

D464 was used. Cells were filtered through a 0.45 membrane 

filter and transferred to acid washed Universal bottles. 
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2 ml of acetate buffer (pH 5.0) was added, followed by 

0.5 ml of 0.0. M Cacl 2 . The Universal bottle was left 

to equilibrate at 25°C for 15 minutes in the water bath. 

Then 0.5 ml of phosphate substrate (p-nitrophenyl phosphate) 

was added and left to incubate in the water bath for 15 

minutes. 8 ml of NaOH 0.05 N was added~ The contents were 

mixed thoroughly and filtered. The absorbance was then 

read at 410 nm on Shimadzu Double Beam Spectrophotometer. 

2.575 Alkaline phosphatase activity 

For alkaline phosphatase activity inst_ead 

of acetate buffer, Tris buffer (pH 9.0) was added and the 

rest of the. procedure followed as for acid phosphatase and 

the absorbance read using the Shimadzu Double Beam Spectre-

~hotometer at 410 nm. 

2.58 Heavy metal tolerance 

One of the significant features of acid streams 

is the presence of heavy metals (Section 1.4). As Euglena 

mutabilis, strains D464, D640 and D641 were isolated from 

streams with a number of heavy metals (Table 2.6), it was 

·decided to investigate the tolerance to Zn, Cu, Mn, Fe, Al, 

Pb, Cd, Ni and Co in the basal growth medium at pH 2.6 

(Table 2. 10) . Metal stocks were prepared in de-ionised 

double distilled water from which different concentrations 

were added to the growth medium. A standard inocula of 

10-2 cells ml-l was incubated in different metal concentrat-

·ions under standard growth conditions (Section 2.42). 

When any particular element was omitted, comple-

mentary salts were added (Table 2.5) replacing those in the 

basal medium. Each experiment was carried out four times 
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with four replicates. At the end of the incubation period 

of 20 days, each flask was sampled four times for cell number 

and the dry weight taken (Section 2.45; 2.46). Microscopic 

examination (Section 2.47) was carried out to see if any 

morpholoigal changes in the cells, due to the presence of 

heavy metals, in the growth media. 

2.59 Factors influencing zinc toxicity in 
Euglena mutabi.lis D464 

2.591 Influence of inoculum size 

In order to have a standard inoculum size 

which will result-in a recognisable yield both as cell number 

and dry weigh.t at the end of 20 days of incubation at sub

-1 
lethal (40 mg 1 ) Zn, different cell densities of E. mutabilis 

D464 from stocks grown in the basal medium at pH 2.6 were· 

incubated for 20 days. At the end of the period of incub-

ation, each flask was examined four times for cell number and 

the dry weight: recorded. Having repeated the experiment four 

times with four replicates, it was seen that to have an apprec-

. bl · ld · 20 d h · 1 · f 10-2 cells ml-l 1a e y1e 1n ays, t e 1nocu urn s1ze o 

was necessary. Therefore this inoculum size was used for . 

all experiments. 

2.592 Influence of major cation~ and anions 
on zinc toxicity 

The influence of major cations and anions 

(Table 2.10) on Zn toxicity was checked using different con-

centrations of Na,_ K, Mg, Ca, Cl and ammonium nitrogen in 

20 ml of growth media under standard growth conditions. 

When certain element was omitteq; complementary salts were 

added to compensa~e for the loss (Table 2.5). Influence 
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of Cl on Zn toxicity at sublethal level was checked with 

HCl~ Each experiment was done four times wit~ four replic-

ates. At the end of 20 days of incubation cell count and 

dry weight measurements were taken (Sections·2.45; 2.46). 

2.593 Influence of organic substrates on 
zinc toxicity 

The influence of glycyl-glycine and S-

glycerophosphate on yield in E. mutabiZis, at sub-ethal zinc 

concentration (40 mg 1-l), was investigated using different 

concentrations of these organic substrates. Stocks of these 

substrates were prepared in de-ionised double distilled water 

and made sterile by passing through a sterile 0.2~m Nucle0pore 

filter and added to autoclaved media under sterile conditions. 

Yield was ·measured as cell density and dry weight after 26 

days of incubation under standard growth conditions. 

2.594 Influence of other heavy metals on 
zinc toxicity 

In order to check the influence of other 

heavy metals (Cu, Mn, Fe, Al, Cd, Ni, Co) on zinc toxicity 

-1 : 
in sublethal and inhibitory Zn levels, ( 28 mg 1 ) rretal stocks were 

prepared in de-ionised double distilled water from which 

different concentrations were added to the basal medium 

(Table 2.10). Each metal was checked four times with four 

replicates for each concentration. At the end of 20 days of 

incubation, cell count and dry weight measurements were taken. 
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TABLE 2.10 List of Elements and their concentrations used 
in "'t!oxicity ttests (mg 1-1) 

Elerrent-+ N* Nt P" Cl INa K Ca Mg Zn CU Mn Fe J Al Fb Cd Ni Co 
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CHAPTER THREE 

RESULTS 

3.1 Introduction 

Experiments were designed and carried out under stand-

ard growth conditions (Section 2.4) to see the effects of a 

number of environmental factors on growth in Euglena mutabilis. 

The results are based on experiments repeated four times 

with four replicated for each. parameter under investigation. 

0 All experiments were carried out in the growth room at 25 C 

-2 -1 and a photon flux density of 100 ~mol m s . 

3.2 Influence of temperature and light intensity on growth 
(yield) in Euglena ~utabilis D464 

In order to establish the optimum temperature and light 

intensity for growth under laboratory conditions, Euglena 

mutabilis D464 was subcultured at different light intensities 

and temperatures on the cross~gradient apparatus (Section 2.44). 

The inoculum was taken from the basal medium at pH 2.6. 

four temperature regimes and four light intensities, yield 

With 

was checked over ·a 20 day period (Figure 3.1, Table 3.1). 

0 Optimum yield was at 25 C at a photon flux density of 100 ~mol 

-2 -1 m s 
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Fig. 3.1 Influence of light intensities and temperature 

regimes on yield J.n E. mutabilis D464 in 20 days using 

an inoculum of 10-2.; cells ml-l 
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TABLE 3.1 Influence of different light intensities and 
light regimes on yield in Euglena mutabilis 0464 
in· 20 days using an inoculym of 100 cells ml-1. 
n = 16; dry weight in g_l-

Light intensities 
~-2 -1 

{JJmolPm s ) 

40 

80 

100 

120 

15 

X 0.23 

sd 0.05 

-
X 0.26 

sd 0.04 

X 0.29 

sd 0.05 

X 0.2 

sd 0.07 

3.3 Influence of.pH 

20 

0.26 

0.05 

0.28 

0.07 

0.33 

0.05 

0.28 

0.05 

Temperature regimes {°C) 

25 

0.39 

0.03 

0.42 

0.07 

0.51 

0.01 

0.38 

0.03 

30 

0.21 

0.03 

0.24 

0.04 

0.22 

0.05 

3.31 Influence of pH on growth 

In order to check the influence of pH on growth 

in Euglena mutabilis, inoculum from strains 0464, 0640, 

0641 and 0642 were produced by culturing at the same pH 

values as in their natural environments from whence they 

were isolated {Section 2. ; Table 3.2) and using a standard 

inoculum {Section 2.43), their growth was checked as yield 

in a range of pH values from 1.0 to 10.0 after 20 days of 

incubation {Fig. 3.2). With a view to see the effect of 

pH on growth with inoculum from a standard pH, strains 0464, 

0640 and 0641 were subcultured at pH 2.6 to produce the in-

oculum and the experiment was repeated {Fig. 3.3). In both 
. . 

experiments the yield was optimum between pH 3.4 and 4.0, 

{ see Tab 1 e 3 . 3 ) • 



TABLE 3.2 Influence of pH on yield (dry weight) in E. 
mutabiZis 0464, 0640, 0641 and 0642 using 
inocula from stocks grown at field pH values. 
Inoculum size l 100 cells ml-1; n = 16; dry 
weight in .g 1- ·; - = no growth 

pH 

1.8 

2.2 

2.6 

3.0 

3.4 

4.0 

5.0 

6.0 

6.8 

7.0 

7.6 

8.0 

8.5 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X. 

sd 

-
X 

sd 

X 

sd 

X 

sd 
-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-0464 

0.42 

0.01 

0.44 

0.05 

0.51 

0.03 

0.87 

0.01 

1. 33 

0.06 

1. 32 

0.07 

0.29 

0.05 

0.97 
0.01 

0.74 

0.01 

0.53 

0.04 

0640 

0.34 

0.03 

0.84 

0.07 

1. 33 

0.06 

1. 41 

0.1 

1. 45 

0.03 

1~43 

0.04 

1. 41 

0.01 

0.98 

0.82 
0.07 

0641 

0.35 

0.02 

0.38 

0.01 

0.42 

0.05 

0.49 

0.06 

0.91 

0.04 

0.89 

0.02 

0~84 

0.07 

0~49 

0.43 

0.04 

0.42 

0.05 

0642 

0. 80 

0.05 

1.06 

0.01 

1. 30 

0.05 

1. 24 

0.05 

0.84 

0. 70 

0.03 

0.63 

0.05 

0.54 

0.07 

64 



TABLE 3.3 Influence of pH on yield (dry weight)in E. 
mutabilis D464, D640 and D641 using inocula 
from stocks grown in a standard pH (pH 2.6). 
Ino£ylum size = 100 cells ml-1; dry weight in 
g 1. ; n = 16; - = no growth 

pH 

1.8 

2.2 

2.6 

3.0 

3.4 

4.0 

5.0 

6.0 

7.0 

7.6 

X 

sd 

-
X 

sd 

-
X 

sd 

X 

sd 

-
X 

sd 

-
X 

sd 

-
x· 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

D464 

0.42 

0.03 

0.43 

0.06 

0.51 

0.07 

0.87 

0.01 

1. 32 

0.04 

1. 31 

0.07 

1. 29 

0.08 

0.97 

0.1 

0.73 

0.05 

0.53 

0.02 

D640 

0.38 

0.05 

0.44 

0.01 

1. 33 

0.01 

1. 42 

0.05 

1. 53 

0.06 

1. 52 

0.07 

1. 41 

0.1 

1. 40 

0.05 

0.48 

o.·o1 

D641 

·o. 39 

0.01 

0.41 

0.07 

o. 48 

0.06 

o. 50 

0.04 

0.51 

0.01 

0.53 

0.02 

0~52 

0.05 

0.52 

0.03 

0.52 

0.03 

0.47 

0.01 

65 
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Fig. 3.2 Influence of pH on yield in E. mutabilis D464, 

D640, D641 and D642 with inocula from stocks 

grown at field pH values in batch culture at 
0 -2 ' -1 25 C and photon flux density of 100 ~mol m s 
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Fig. 3.3 Influence of pH on yield in E. mutabiZis D464, 

D640 and D641 subcultured from a standard pH 

of 2.6 in batch culture at 25°C and photon flux 
-2 -1 

density of 100 ~mol m s 

Fig. 3.4 Influence of prolonged subculture at pH 1.8 and 

7.6 on yield at different pH values at 25°C and 
-2 -1 photon flux density of 100 ~mol m s in E. 

mutabiZis 
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3. 32 Influence of prolonged ·subcultur·e on ·adaptation 
to higher and lower· pH Values 

In order to see if·prolonged subculture at pH 

1.8 and 7.6 could bring about an adaptation to lower and 

higher pH,.strain 0464 was subcultured for six months at 

these pH values (Section 2.472) and the experiment was re-

pea ted. The results (Fig.3.4 and Table 3.4) compared with 

the results of earlier experiments (Fig.3.3) showed that 

growth had taken place at pH values hitherto not seen; 

indicating that adaptation to these pH values had taken place. 

3. 33 Exposure time and surviva~ a·t Very ·1ow pH val-ues 

In earlier experiments (Section 3.2) strain 0464 

when subcultured from pH 1.8 in a series of pH values from 

1.0 to 10.0, there was no visible growth in pH 1.0, 1.2 and 

10.0 in 20 days of incubation. When these cells were trans-

ferred 'to the basal medium, there was recovery in cells ex-

posed to pH 10.0 and not in pH 1.0 and 1.2. Experiments 

carried out to see their survival time under these low pH 

values (Section 2.472) indicated that the maximum exposure 

time for recovery at pH 1.0 is 6 hours and in pH 1.2, four 

days (Tables 3.1 and 3.5). 

TABLE 3.5 Time course of survival in very low pH values 
in Euglen~ mu~abili~ 0464 

maximum exposure at pH 1.0 at pH 1.2 

time for recovery 6.0 h 4.0 d 
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TABLE 3.4 Influence of prolonged subculture in low and 
high pH media on growth in different pH values 
in E. m1.dabi lis D464 measured as dry weight 

pH 

1.5 

1.8 

2.2 

2.6 

3.0 

3.4 

4.0 

5.0 

6.0 

7.0 

7.6 

8.0 

8.5 

X 

~a 1-l) in 20 days using an inocula of 100 cells 
ml-.r; n = 16. 

Inocula from 

pH 1.8 pH 2.6 pH 7.6 

0.35 no growth 

sd 0.01 

X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

X 

sd 

-
X 

sd 

-
X 

sd 

X 

sd 

0.42 

0.01 

0.44 

0.04 

0.51 

0.05 

0.83 

0.07 

1. 29 

0.1 

1. 30 

0.1 

1. 27 

0.1 

0.94 

0.02 

0.34 

0.1 

0.22 

0.01 

no growth 

no growth 

0.41 

0.05 

0.51 

0.01 

0.51 

0.07 

0.87 

0.05 

1. 31 

0.1 

1. 31 

0.2 

1. 29 

1.05 

0.97 

0.1 

0.73 

0.06 

0.53 

0.05 

o. 35 

0.05 

0.35 

0.05 

0.39 

0.06 

0.76 

0.08 

1. 30 

0.5 

1. 31 

0.3 

1. 30 

0.04 

1.01 

0.07 

0.92 

0.04 

0.87 

0.01 

0.78 

0.01 
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3. 34 Influence of pH on doubling time in. Euglena mutabilis 

Experiments conducted to check the doubling time 

in· E. mutabi Zis~ strains D464, D640 and D64l. (Section 2. 4 4) ·, in 

different pH values indicated (Table 3.6) that although all 

three strains had different doubling times, ~-co'}.· the shortest 

doubling time was seen between pH 3.4 and 4.0 in all strains 

·tested. 

3.35 Influence of pH on morphology 

Microscopic examination of cells showed at low 

pH limit of 1.8 over 50% of the cells were rounded up (c. 

28 ~min dia.) and in most cases these rounded cells were 

brown in colour. Frequently cells were seen together in 

pairs. At and below pH 1.5 many of the cells were colour-

less. There were examples of cells which had retained the 

fusiform shape of Euglena but had ~ transparent protoplasm. 

rn·the upper pH range at and above pH 6.0 'giant 

cells' were often seen along with normal cells. They were 

about the same length as the normal cells (Table 2.8 & 3.7) 

but were not moving and several times broader with a very 

compactly packed granular cytoplasm. Another 

conspicuous feature often seen at the higher pH range was 

that cells were stuck together in a gelatinous mass. At 

the optimum pH (pH 3.4-4.0) however, the cells, though gran

ular, were very actively moving about. 



TABLE 3.6 Doubling -time (h) inEugZ.ena mutabiZ.is at 25°C and photon flux density of 100 ~mol 
-2 -1 

m s in batch culture at·pH 2.6 

0- 5 days 0 - 10 days 0 -· 15 days 0 - 20 days 
pH 

D640 I D641 D464 D640 D641 D464 D464 D640 D641 D464 D640 D641 

1.8 97 0 5 .. 30.7 107 .1· 84 0 7 - 34 0 5 - 104. 86 .1· 49 0 8'· 104 0 5' 88 0 2 . 52 0 2 .. 103.7 
I 

. 2 0 2 4 7 0 6~ 30.1 . 99 0 2 . 66 0 3 . 32 0 2: 98. T. 68.2 39 0 2 .. . 96 0 5 60.L 48.3 9 7 0 2. 

•. 

2.6 42.:n 24.7 97.3 52 0 6. 22.5 80.2. 60.3 36 0 3 . 86 0 3· 66.6 42 0 7 . 86 0 9. 

3 0 0 40.4> 25.5 . 9 7 0 5 . 40. 5 .. 25 0 5. 80.5: 43.2 29 0 9. 81.7 45.1 . 42 .s 80.6 

3.4 42 0 2:- 25 0 3: 98 .1·. 40.3 27 0 6:·. 68 0 1~ 41. L 29 0 8. 72 0 5 .. 43.2 42 0 1: 72.i 

l 
4.0 4 7 0 4i 27. s· · 98 0 5.: 41.6 32 0 5.'. 70. 3~ 42 0 3. 36.8 

j 

7 4 0 9 . \ 4 3 0 4~ . 42 0 3. 74. 5·. 

48.1". 
i 

5.0 49 0 0~ 27.2 99.1: 46 0 2: .. 33 0 s:. 81.2: 39 0 4:. 79.3 l 51.2: 43 0 2" 82 0 7. 

9 . I ~ 
1 

6.0 5 0 5. 1 29 0 2 .. 99 0 8 l 53 0 2 - 35 0 3: 82 0 3 .. 54.2 39.7 83.4 .. 1 55.3: 44 0 3. 84. 3.' 

7.0 -
-1 

- - 67.5 - 97 0 5: 69.3 - 88 0 6 .. 68.5 - 89 0 8.: 

I 
8.0 -. 1 - - - - - - - - - - -

j 

j I 
--------- L_~ 

--.1 
w 
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TABLE 3. 7 Influence of pH on cell size in Euglena l7lil.tabilis D464 

Cell size pH 1.8 pH 2. •6 pH 3.4 pH 7.6 

Range length ( ~m) 20-40 32-140 40-150 35-120 

width ( ~m) 2-14 2-18 2.5-22 2-20 

majority length ( ~m) 32-36 40-90 45-100 43-80 

wiegh ( ~m) 2.5-9 2.5.:..12 3-18 2.5-15 

-------------------------------

3.4 Influence of macronutrients on yield 

3.41 Introduction 

Experiments were conducted to check the effect 

of Na, K, Mg and Ca on yield in different strains of Euglena 

mutabilis. Using standard inocula, strains D464, D640 and 

D641 were subcultured at 25°C and a photon flux density of 

100 ~E m~ 2 s-l for 20 days. Each experiment was repeated 

four times with four replicates for each concentration. of 

element under investigation. The basal medium had the 

following concentrations of macroelements: 

7 
-1 

Na mg 1 

2.5 
-1 

K mg 1 

2.5 
-1 

Mg mg 1 

10.0 
-1 

Ca mg 1 

3.42 Influence of sodium on yield 

Growth measured as yield in Euglena mutabilis~ 

D464, D640 and 0641 indicated that an increase in the Na 

concentration up to 25 mg 1-l brought about an increase in 

the cell density. 
-1 

Further increase above 25 mg 1 reduced 

yield (Fig.3.5, Table 3.8). 
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Fig. 3. ,5 Influence of Na on yield in E. mutabi lis D464, 

D640 and D641 in batch culture at 25°C and 
. -2 -1 

photon flux density of 100 ~mol rn s 
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TABLE 3.8 

Na (mg 1-l) 

7.0 

10.0 

15.0 

20.0 

25.0 

30.0 

40.0 

80.0 

140 

Influence of sodium on yield in E. mutabiZis 
0464, 0640 and 0641 measured as dry weight 

(g 1-1) in 26 days in batch culture in 25°c 
and photon flux density of 100 ~mol m-2 s-1; 
n = 16 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

X 

sd 

-
X 

sd 

-
X 

sd 

0464 

0.52 

0.01 

0.55 

0.01 

0.63 

0.1 

0.82 

0.1 

0.91 

0.12. 

0.78 

0.06 

0.76 

0.1 

0.52 

0.06 

0. 31 

0.01 

0640 

0.94 

0.06 

1.03 

0.1 

1.17 

0.05 

1. 29 

0.1 

1. 32 

0.15 

1. 30 

0.1 

1. 29 

0.15 

0. 92 

0.03 

0.39 

0.05 

0641 

0.37 

0.01 

o. 41 

0.05 

0.47 

0.1 

0.59 

0.01 

0.63 

0.07 

0.61 

0.01 

0.52 

0.08' 

0.44 

0.01 

0.29 

0.03 

77 



"78 

3.43 Influence of potassium on yield 

The influence of K on yield was similar in that 

all three strains showed optimum yield at 5.0 mg 1-1 . Further 

increase had no effect on yield (~ig.3.6, Table 3.9). 

3.44 Influence of magnes~um on yield 

The influence of Mg on yield both as cell number 

and dry weight in three strains of Euglena mutabiZis D464, 

D640 and Dq41 were examined under standard growth conditions. 

Results (Fig. 3. 7). indicate a requirement for Mg as there was 

no growth (yield) in the total absence of this element. In

crease up to 10 mg 1-l brought about an increase in yield 

and further increase up to and including 160 mg 1-l had no 

effect on yield in all three strains tested (Table 3.10). 

3.45 Influence of calcium on yield 

The effect of Ca on yield under standard growth 

conditions (Section 2.44), was checked with three strains 

of EugLena mu tabi Lis. The results (Fig. 3. 8, Table 3.9) indicated 

optimum yield at 80 mg 1-l Ca. There was no growth in any 

of the three strains in the absence of Ca (Table 3.11). 

3.5 Influence of micronutr~ents on yield 

3.51 Introduction 

The influence of major microelements on growth 

in Euglena mutabiZis was carried out under standard laboratory 

conditions (Section 2.4) in the basal medium at pH 2.6. Using 

a standard inocula of 102 cells ml-l from stocks grown in the 
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TABLE 3.9 Influence of potassium on yield in E. mutabi lis 
D464, D640 and D641 in batch culture, measured as 
dry weight (g 1-:-1) in 20 days in 25°C and photon 
flux density to 100 JJmol m-2 s-1. n = 16. 

K (mg 1-1) D464 D640 D641 

-
1.0 X . o. 21 0.19 0.19 

sd 0.05 0.07 0.04 

-2.0 X 0.37 0.29 0.24 

sd 0.04 0.05 0.03 

-2.5 X 0.52 0.91 0. 39 

sd 0.03 0.05 0.07 

-5.0 X 0.53 0.92 0. 40 

sd 0.01 0.04 0.02 

-
10.0 X 0.52 0.93 0. 40 

sd 0.01 0.05 0.04 

-20.0 X 0.52 0.92 0.39 

sd 0.05 0.1 0.05 

-40.0 X 0.52 0.93 0.38 

sd 0.07 0.5 0.02 

-80.0 X 0.52 0.92 0.39 

sd 0.04 0.05 0.06 

-140.0 X 0.53 0.93 0.38 

sd 0.01 0.15 0.14 
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Fig. 3.6 Influence of K on yield in E. mutabilis D464, 

D640 and D641 in batch culture in 20 days at 
0 -2 -1 

25 C and photon flux density of 100 ~mol m s 
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Fig. 3.7 Influence of Mg on yield in E. mutabilis D464, 

D640 and D641 in batch culture in 20 days at 
0 -2 -1 

25 C and photon flux density of 100 ~mol rn s 
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TABLE 3.10 

Mg (mg 1-1) 

2.5 

5.0 

10.0 

20.0 

40.0 

80.0 

160.0 

·84 

Influence of magnesium on yield in E. mutabiZ.is 
0464, 0640 and 0641 measured as dry weight 

. (g 1-1) in 20 days_2t 25°C 
and photon 
n = 16. 

in batch culture 
flux density of 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

0464 

0.52 

0.01 

0.69 

0.05 

0.87 

0.01 

0.87 

0.1 

0.86 

0.01 

0.87 

0.1 

0.86 

0.04 

100 ~mol m s-1; 

0640 

0.91 

0.06 

0.89 

0.01 

0.87 

0.05 

0.87 

0.01 

0.88 

0.04 

0.89 

0.05 

0.88 

0.02 

0641 

0.42 

0.02 

0.56 

0.06 

0.55 

0.02 

0.55 

0.05 

0.55 

0.02 

0.54 

0.04 

0.54 

0.02 
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TABLE 3.11 Influence of calcium on yield (dry weight in 
(gl-l).in E. mutabiZis 0464, D640 and D641 in 

~=~~~t~u~;uf~oi~m;~ ~~1s 5~f;2~
0

=· ·~~·~· photon flux 

Ca (mg 1-1) D464 D640 D641 

-
5.0 X 0.42 0.73 0.24 

sd 0.01 0.04 0.03 

-
10.0 X 0.52 0.92 0.43 

sd 0.04 0.02 0.04 

-
20.0 X 0.74 0.97 o. 51 

sd 0.1 0.04 0.04 

40.0 X 0.97 1.12 0.69 

sd 0.04 0.05 0.04 

80.0 X 1.03 1. 24 0.73 

sd 0.4 0.3 0.04 

-160.0 X 0.99 1.03 0.57 

sd 0.3 0.04 0.04 

-200.0 X 0.79 0.97 0.54 

sd 0.1 0.04 0.2 

-240.0 X 0.52 0.31 0.51 

sd 0.04 0.01 0.04 
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Fig. 3.'8 Influence 

D640 and 

25°C and 

of Ca on yield in E. mutabilis D464, 

D641 in batch culture in 20 days at 
. -2 -1 

photon flux density of 100 ~mol m s 

I. 
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absence of the particular element under investigation, ex-

periments were conducted with different concentrations of 

microelements. Each experiment was carried out four times 

with four replicates for each experimental condition. 

The basal medium had the following concentrations of metals: 

Zn 0.013 -1 mg 1 

Cu 0.002 -1 mg 1 

0.002 -1 
Co mg 1 

0.01 -1 
Mn mg 1 

3.52 Influence of zinc on yield 

Effect of Zn on yield in Euglena mutabilis 0464, 

0640 and 0641 was measured after 20 days of incubation in 

the basal medium with different concentrations of Zn. The 

results (Fig.3.9.) indicated improved yield with Zn (Table 

3. 12) . 

3.53 Influence of copper on yield 

The results (Fig.3.1Q) of the experiments con-

ducted to see the influence of Cu on growth in Euglena mutabilis 

-1 
indicated an optimum yield at 0.005 mg 1 Cu in strain 0464 

-1 
and 0641 while strain 0640 was at 0.002 mg 1 . 

increase reduced yield (Table 3.13). 

3.54 Influence of manganese on yield 

Further 

The influence of Mn on yield in Euglena mutabilis 

strain 0464, 0640 and 0641 was checked with different con-

centrations·of Mn in the basal medium at pH 2.6. Results 
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TABLE 3.12 Influence of zinc on yield measured as dry 
weight (g 1-1) in E. mutabilis 0464, 0640 
and 0641 in batch culture in 20 days at 25°c 
and photon flux density of 100 ]JmOl rn- 2 s-:1; 
n = 16. 

Zn (rng 1-1) 0464 0640 0641 

--Zn X 0.41 0.54 0.21 

sd 0.01 0.03 0.05 

-0.013 (basal medium) X 0.51 0.92 0.43 

sd 0.04 0.03 0.01 
' 

-
0.05 X 0.74 0.94 0.52 

sd 0.02 0.04 0.01 

-0.5 X 0.97 1.03 0.63 

sd 0.1 0.13 0.04 

-1.0 X 1. 23 0.97 0.61 

sd 0.14 0.04 0.03 

2.0 X 1.13 0.94 0.57 

sd 0.5 0.03 0.02 

-4.0 X 1.03 0.89 0. 54 

sd 0.2 0.04 0.02 

-6.0 X 0.97 0.87 0.55 

sd 0.04 0.03 0.01 

-8.0 X 0.83 0.84 0.47 

sd 0.04 0.01 0.01 

-10.0 X 0.63 0.84 0. 40 

sd 0.01 0.04 0.02 
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Fig. 3.9 Influence of Zn on yield in E. mutabilis D464, 

D640 and D641 in batch culture in 20 days at 
0 -2 -1 25 C and photon flux density of 100 ~mol m s 
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TABLE 3.13 

Cu (mg 1-l) 

-Cu 

0.002 

92 

Influence of copper on yield as dry weight 
(g 1-1) in E. mutabilis D464, D640 and 0641 
in batch culture in 20 days at 25°C ~nd photon 
flux density of 100 ~tno'l tn-2 s-1·;· h' - 1'6' .. 

-
X 

sd 

-x. 

sd 

-

D464 

0.40 

0.03 

0.44 

0.01 

D640 

0.41 

0.03 

0.45 

0.04 

D641 

0.29 

0.01 

0.35 

0.02 

0.005 (basal medium) X 0.51 

0.03 

o. 91 

0.01 

o. 42 

0.02 

0.01 

0.05 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

sd 

-
X 

sd 

-
X 

sd 

-
X 

0.49 

0.02 

0.47 

0.1 

o. 44 

sd · 0. 01 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

-
X 

sd 

0.41 

0.02 

0.40 

0.04 

0.37 

0.04 

o. 38 

0.03 

0.34 

0.01 

0.83 

0.05 

0.81 

0.04 

0.77 

0.03 

0.69 

0.04 

0.58 

0.03 

0.56 

0.01 

0.51 

0.01 

0.47 

0.03 

0. 41 

0.01 

0.39 

0.04 

0.37 

0.05 

0.35 

0.01 

o. 35 

0.01 

0.34 

0.02 

0.31 

0.02 

0. 30 

0.02 

\ 
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Fig. 3.10 Influence of Cu on yield in E. mutabiZis D464, 

D640 and D641 in batch culture in 20 days at 
0 -2 -1 25 C and photon flux density of 100 ~mol m s 
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Fig. 3.11 Influence of Mn on yield in E. mutabilis 

D464, D640 and D641 in batch culture in 20 days 

at 25°C and photon flux density of 100 ~mol 
-2 -1 m s 
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-1 . 
(Fig.3.-ll) indicated an optimum yield at 0.025 mg 1 for 

strain 0464 and 0641 and 0~40 was at 0.01 mg 1-1 . In-

creased concentration above 0.025 brought about a reduction 

irr the yield (Table 3.14). 

3. 55 Influence of cobalt ·on yield 

With inoculum from Co-free medium, Euglena mutabilis 

0464, 0640 and 0641 showed improved growth in the 0.002 mg 

-1 
1 Co. Further increase from 0.002 to 0.05 showed no ad-

verse effect on yield .. With increased Co concentration 

-1 
from 0.05 to 1.0 mg 1 there was a reduction in the yield 

(Fig.3.12; Table 3.15). 

3. 6 Photoheterotrophic and heter-otrophic growth 

3.61 Introduction 

Preliminary investigation indicated that Euglena 

' mutabilis0464, 0640 and 0641 can utilise a number of organic 

nitrogen and phosphorus in the growth media at pH 2.6 and 

also carbon substrates in the presence of atmospheric carbon 

Experiments were set up to compare growth in the 

different organic substrates (Table 2.4). Parallel ex-

periments were conducted in the basal growth medium as con-

trol. 
2 -1 

Using standard inocula of 10 cell ml from cultures 

grown in organic substrates, growth as yield was checked at 

0 . -2 -1 
25 c and photon flux density of 100 ~mol m s in 20 days in 

different organic substrates. Each experiment was repeated 

four times with four replicates~ 
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TABLE 3.14 Influence of manganese on yield measured as 
dry weight (g 1-1) in E. mutabiZis D464, D640 
and D641 in batch culture in 20 d~¥s at 25°C and 
photon flux density of 100 ~mol m s-1; 
n = 16 .. . . . . . . . . . . ...... 

Mn (mg 1-1) D464 D640 D641 

0 X 0.41 0.54 0.37 

sd 0.04 0.01 0.03 

0.012 (basal medium) X 0.52 o. 91 0. 42 

sd 0.01 0.03 0.01 

0.025 X 0.54 0.87 0.51 

sd 0.03 0.02 0.04 

-0.05 X o. so 0.84 0.51 

sd 0.02 0.03 0.01 

0.1 X 0.47 0.77 0.47 

sd 0.04 0.03 0.01 

-0.5 X 0.47 0.61 0.41 

sd 0.02 0.01 0.03 

-1.0 X 0.41 0.51 0.39 

sd 0.03 0.04 0.01 



TABLE 3.15 Influence of cobalt on yield measured as dry 
weight (g 1-1) . in E. mutabiZis 0464, 0640 
and 0641 in batch culture in 20 day~ at 25°C 
and photon flux density of 100 ~mol m- 2 s-1; 
n = 16. 

Co 
-1 (mg 1 ) 0464 D640 0641 

0 X 0.41 0.57 0. 30 

sd 0.01 0.03 0.04 

-
0.002 (basal medium) X 0.52 0.92 0.42 

sd 0.02 0.04 0.01 

-0.01 X 0.52 0. 91 0. 40 

sd 0.02 0.01 0.03 

0.05 X 0.52 0.87 0.37 

sd 0.01 0.04 0.03 

0.1 X 0.51 0.76 0.34 

sd 0.04 0.03 0'.03 

0.25 X 0.49 0.72 0.31 

sd 0.01 0.04 0.02 

0.5 X 0.44 0.69 0.31 

sd 0.04 0.03 0.02 

1.0 X 0.42 0.52 0.32 

sd 0.01 0.02 0.01 

99 

.. 
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Fig. 3.12 Influence of Co on yield in E. mutabilis D464, 

D640 and D641 in batch culture in 20 days at 
0 -~ -1 

25 C and photon flux density of 100 ~mol m ~s. 
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3.62 Influence of organic nitrogen on yield 

The influence of alanine, asparagine, glycyl

giycine, glycine,urea, uric acid and ethanolamine (Table 2.2) 

on yield in E~glena mutabilis was checked after 20 days of 

incubation under standard growth conditions. Results 

(Fig.3.13) indicate better_growth (yield) in glycyl-glycine 

and asparagine compared with yield in the basal medium 

(Table 3.16). 

TABLE 3.16 

Basal medium 

Alanine 

Asparagine 

Glycine 

Influence of organic nitrogen on yield measured 
as dry weight (g 1-1) in E. mutabilis 0464, 
0640 and 0641 in batch culture in 20 days at 25°C 
and photon,flux density of 100 ~mol m-2 s-1; n=l6. 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

0464 

0.52 

0.02 

o. 40 

0.03 

0.73 

0.04 

0.51 

0.03 

0640 

0. 92 

0.04 

0.99 

0.04 

1.07 

0.1 

0.71 

0.01 

0641 

0.41 

0.02 

0. 31 

0.01 

0.44 

0.03 

0.43 

0.04 

Glycyl-glycine X 1. 42 

0.2 

1.14 

0.3 

1.17 

0.1 sd 

Urea X 

sd 

-Uric acid X 

sd 

-Ethanolamine X 

sd 

0.31 

0.04 

0.34 

0.04 

0.33 

0.02 

0.33 

0.03 

0.37 

0.01 

0.33 

0.01 

0.72 

0.03 

0.74 

0.03 

0.47 

0.04 

,' 



. 103 

3.63 Influence of organic phosphate on yield 

With B-glycerophosphate, DNA and phytic acid 

whose stability over the usual incubation period of 20 

days was seen to be stable (Section 2.45), yield was 

checked and was found to be similar to that of the basal 

medium in D641, whereas in D464, and D640, yield was better 

in the basal medium (Fig. 3.14, Table 3.17). 

TABLE 3.17 Influence of organic phosphate on yield measured 
as dry weight (g 1-1) in E. mutabiZis D464, 
D640 and D641 in batch culture in 20 days at 25°C 
and photon flux density of 100 ~m·ol" m--2- ·s-1; ·n=l6. 

D464 D640 D641 

Basal medium X 0.52 0.91 0.42 

sd 0.02 0.04 0.01 

B-glycerophosphate X 0.39 0. 52 0.37 

sd 0.03 0.02 0.01 

DNA X 0.41 0.63 0.41 

sd 0.04 0.02 0.01 

-Phytic acid X o. 40 0.53 0.42 

sd 0.04 0.02 0.03 'I 
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Fig. 3.13 Influence of organic nitrogen on yield in 
E. mutabilis D464, D640.and D641 in batch 
culture in 20 days at 25°C and photon flux 
density of 100 ~mol m-2 s-1 

Fig. 3.14 Influence of organic phosphate on yield in 
E. mutabilis D464, D640 and D641 in batch 
culture in 20 days at 25°C and photon flux 
density of 100 ~mol m-2 s-1 
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3.64 Influence of organic carbon on yield 

With organic carbon (Table 2.2) all three 

strains had improved growth (yield) in glucose. The 

lowest yield was in acetate (Fig. 3.16, Table 3.18). 

TABLE 3.18 Influence of organic carbon on yield measured 
as dry weight (g 1~1) in E. mutabiZis D464, 
D640 and D641 in batch culture in 20 days at 25°C 
and photon flux density of 100 ]Jmol m-2 s-1; n=l6 .: 

D464 D640 D641 

Basal medium X 0.51 o. 91 0.41 

sd 0.03 0.04 0.02 

Glucose X o. 92 1. 32 0.52 

sd 0.04 0.1 0.03 

-Glycerol X 0.79 0.97 0.39 

sd 0.04 0.04 0.01 

Sucrose X 0.87 0.72 0. 40 

sd 0.03 0.04 O.Ol 

Lactic acid X o. 63 . 0.47 0.37 

sd 0.02 0.04 0.01 

Acetate X 0.42 0.39 0.27 

sd 0.04 0.01 0.03 
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Fig. 3.15 Influence of organic carbon on yield in 

E. mutabiZis D464, D640 and D641 in batch 

culture in 20 days at 25°C and photon flux 
-2 -1 

density of-100 ~mol m s 
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3.65 Influence of vitamins on yield 

Experiments conducted with EugZena mutabiZis 

D464 in the presence of 1 ~g 1-l vitamin B
1 

and 1 mg 1-l 

vitamin B
12

, both singly and in combination in the basal 

medium, indicated better yield in the presence of added 

109 

vitamins (Figs. 3.16 and 16a). Experiments conducted re-

·placing Co with vitamin B12 too improved yield (Table 3.19). 

TABLE 3.19 Influence of vitamins on yield measured as 

Basal medium 

dry weight in E. mutabiZis D464 in 20 days at 
25oc and photon flux density of 100 ~mol m-2 s-1; 
n = 16. 

X 0.51 g l:c-1 

(vitamin free) sd 0.03 

- -1 
+ vitamin B1 X 1. 28 g 1 

(l,.vg 1-1) sd 0.1 

-1 
+ vitamin B12 X 1.11 g 1. 

( 1 p_g. 1-1 ) sd 0.2 

+ vitamin B1 and ·x 1.03 
-1 

g 1 

vitamin B12 
sd 0.1 



110 

Fig. 3.lfi Influence of vitamin B1 and a12 on yield in 

E. mutabiZis D464 in b~tch culture in 20 days 
0 

at 25 C and photon flux density of 100 ~mol 
-2 . -1 m s 

Fig. 3.16a Influence of Co and a12 on yield in E. 

mutabiZis D464 in batch culture in 20 days 

at 25°C and photon flux density of 100 ~mol 
-2 -1 m s 
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3.66 Utilization of organic carbon and nitrogen 
in the dark 

112 

In order to check whether Euglena mutabilis could 

utilize organic carbon and nitrogen substrates in the ab-

sence of light, strain D464) D640 and D641 were subcultured 

using inocula from stocks grown in the basal medium and 

from stocks grown in organic substrates under investigation 

(Section 2.42}. Results (Fig.3.17} indicated that they 

could utilize different organic carbon a'nd nitrogen substrates:. 

Euglena mutabilis D640 (estuarine origin} had better yield 

in all substrates including acetate in which substrate D464 

and D641 had very low yield (Table 3.20}. There was noJ 

growth in any of the nitrogen substrates tested. 

TABLE 3. 20 Influence ·of organic carbon substrates on dark 
heterotrophic growt~ in E. mutabilis ~i64, D640 
and D641 measured as dry weight (g l } in 60 
days at 2soc. Inoculum from organic substrates 

Glucose 

Glycerol 

Sucrose 

Lactic acid 

Acetate 
(Na salt} 

-
X 

sd 

-
X 

sd 

X 

sd 

X 

sd 

-
X 

sd 

D640 

0.47 

0.04 

0.44 

0.01 

0.41 

0.02 

0.44 

0.03 

0.25 

0.03 

:D464 

0.42 

0.01 

0.33 

0.04 

0.24 

0.04 

0.03 

0. 23 

0.01 

----------------------------

D64l 

0.34 

0.03 

0.32 

0.03 

0.31 

0.01 

0.32 

0.01 

0.19 

0.04 

·~ . . 
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Fig. 3.17 Influence of organic carbon substrates on yield 

in dark heterotrophic growth in E. mutabiZis 

D464 in 20 days at 25°C and photon flux density 
- -2 -1 

of 100 ~mol m s 
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3.67 Morphological changes in heterotrophic growth 

Cells examined after 5 days of incubation in 

organic substrates, many of the cells in lactic acid, 

acetate, alanine, urea, uric acid and ethanolamine were 

rounded up (c.26 ~min dia.) but green. In substrates 

in which growth occurred, cells were often seen stuck in 

a clear transparent jelly-like substance. In dark grown 

' 
cultures cells without chloroplast and eye spots were a 

common feature. In both .light and dark grown organic carbon 

substrates cells were seen in the mist of globular bodies 

of c. 7.9 to 11.8 ~m-dia. With organic nitrogen substrates 

cells gr.own in glycyl-glycine had similar bodies but were 

smaller (c. 3.8 to 4.5 ~m dia.). 

3.7 Heavy metals tolerance in Euglena mutabilis 

3.71 Introduction 

The influence of a number of heavy metals, Zn, 

cu; Fe, Al, Pb, Ni, Co and Cd was examined using three 

strains of Euglena mutabilis. Experiments were conducted 

static using 20 ml of culture media at pH 2.6 at a photon 

flux density of 100 mol m- 2 s- 1 in the growth room at 25°C. 

Each. experiment was carried out four times with four re-

plicates. Cell count and dry weight measurements were 

done on the 20th day after inoculation. 



The basal medium has the following concentration of 

metals: 

Zn 

Cu 

Mn 

Fe 

Al 

Pb 

Cd 

Ni 

Co 

0.013 mg 1 -1 

0.004 II 

0.012 II 

0.5 II 

0.0 II 

0.0001 II 

0.0001 II 

0.0001 II 

0.002 II 

3.72 Influence of zinc on yield 

116 

E. mutabiZis D464, D640 and D641 were subjected 

to different concentrations of Zn in the basal medium. Growth 

measured as yield in 20 days indicated that all three strains 

tolerate similar Zn concentration though they were isolated 

from different field Zn concentration and all three stra±ns 

recovered from exposure to 80 mg 1-l ·zn (Fig.3.18 and Table 3~21) . 

. 3.73 Influence of copper on yield 

Response to Cu concentration up to 1 mg 1-l was 

similar in all three strains of E. mutabiZis. Further in-

creases up to 75 mg 1-l indicated tolerance up to 40 mg 1-l 

Cu with higher tolerance in D641, (Fig. 3.19 and Table 3.22). 

There was no recovery from exposure to a concentration of 

75 mg 1-l Cu in 20 days. 
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TABLE 3.21 Influence of zjnc on yield measured as dry 
weight (g 1-1) in E. mutabilis 0464, 0640 
and 0641 in batch culture in 20 days at 25°C 
and photon flux density of 100 ~mol m-2 s-1 

n = 16. 

0464 0640 0641 

znso4 (m:g 1-1) 

-0.013 (basal medium X 0.51 o. 92 0. 41 

sd 0.04 0.02 0.01 

-1.0 X 1. 23 0.97 0.61 

sd 0.14 0.04 0.03 

-5.0 X 1.03 0.87 0.52 

sd 0.04 0.02 0.01 

10.0 X 0.63 0.84 0. 40 

sd 0.01 0.02 0.04 

-
20.0 X 0.42 0.41 0.31 

sd 0.02 0.01 0.04 

40.0 X 0.17 0.23 0.12 

sd 0.03 0.04 0.01 

ZnC1 2 
-1 (mg 1 ) 

-
1.0 X 1. 24 1.11 0.76 

sd 0.11 0.1 0.04 

-
5.0 X 1.10 0.89 0.54 

sd 0.1 0.04 0.01 

-
10.0 X 0. 60 0.82 0.40 

sd 0.03 0.01 0.04 

-
20.0 X 0.42 0. 41 0.32 

sd 0.02 0.01 0.03 

-
40.0 X 0.18 0.25 0.15 

sd 0.01 0.04 0.01 

-
50.0 X 0.15 o. 20 0.15 

sd 0.01 0.04 0.02 
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pig. 3.18 Influence of Zn on yield in E. mutabilis 

D464, D640 and D641 in batch culture in 20 

days at 25°C and photon flux density of 100 

~mol 
-2 -1 

m s 
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TABLE 3.22 Influence of copper on yield measured as dry 
weight (g 1-1)· ' E mutabiZis in batch culture l.n . 
in 20 days_~t ~~0c and photon flux density of 
100 ~mol m s .; n = 16. 

D464 D640 D641 

Cu (mg 1-1) 

Basal medium X 0.51 0.92 0.41 

sd 0.04 0.03 0.01 

1.0 X 0.34 0.47 0.31 

sd 0.03 0.01 0.01 

2.5 X o. 30 0.27 0. 30 

sd 0.01 0.04 0.02 

5.0 ·X 0.24 0.22 0.27 

sd 0.02 0.04 0.01 

10.0 X 0. 20 0.16 0.26 

sd 0.01 0.03 0•.01 

20.0 X 0.16 0.12 0. 20 

sd 0.03 0.01 0.01 

40.0 X 0.12 0.09 0.16 

sd 0.03 0.01 0.02 
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Fig. 3.19 · Influence of Cu on yield in E. mutabiZis 0464, 

0640 and 0641 in batch culture in 20 days at 
0 -2 -1 25 C and photon flux density of 100 ~mol _m s' 
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3.74 Influence of manganese on yield 

The effect of increased concentration of Mn on 

yield in E. mutabilis D464, D640 and D641 indicated no re-

duction in yield in all three strains in a concentration of 

-1 
80 mg 1 (Table 3.23). 

3.75 Influence of iron on yield 

Increasing the Fe concentration from 0.5 to 1.0 

mg 1-l had no significant effect on yield. Further increase 

up to 7.5 reduced yield. Increased concentration from 7.5 

to 10.0 brought about a total stoppage in growth in D464 and 

-1 
there was no growth in D640 and D641 above 5.0 mg 1 . Cells 

were alive at 25 mg 1-l with no recovery at 50 mg 1-l after 

an exposure to this concentration in 20 days (Fig.3.20., Table 

3.24). 

3.76 Influence of aluminium on yield 

An increase up to 1 mg 1-l Al brought about en-

hanced growth in all strains of E. mutabilis. Further in-

crease up to 1000 mg 1-l had no significant increase in 

yield (Table 3.25). 

3.77 Influence of lead on yield 

'.Vi th increased concentration of Pb t1r..·-~ 1)1Utcl,·~UW~o 

(1.0 mg 1-~Pb: reduced yield in E. mutabilis D464, D640 and 

D641. Increasing the Pb concentration from 1.0 to 10.0 mg 



·.~.- .·· . '~.:: 
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TABLE 3.23 Influence of_Tanganese on yield measured as dry 
weight (g 1 ) in E. mutabilis D464, D640 and 
D641 in batch culture in 20 days at 25°C and 
photon flux densi.ty of 100 1-1mol m-2 s-1; n = 16. 

Mn 
-1 

(mg 1 ) D464 D640 D641 

Basal medium (0.012) X 0.51 o. 91 0.41 

sd 0.03 0.01 0.03 

0.1 X 0.52 0.92 0.42 

sd 0.03 0.03 0.03 

-
1.0 X 0.51 0.91 (. 4 2 

sd 0.04 0.01 0.04 

5.0 X 0. 50 0.92 0.41 

sd 0.04 0.03 0.01 

10.0 X 0.51 0.91 0.41 

sd 0.04 0.04 0.01 

20.0 X o. 50 o. 92 o. 40 

sd 0.02 0.04 0.03 
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TABLE 3. 24 Influence of {ron on yield measured as· dry 
weight (g 1- ) in E. mutabilis 0464, 0640 
and 0641 in batch culture in 20 days ~~ 25oc 
and photon flux density of 100 ~mol m s-1 ; 
n = 16. 

-1 
Fe (mg 1 ) 

0 

0.5 (basal medium). 

1.0 

2.5 

5.0 

7.5 

X 

sd 

X 

sd 

-
X 

sd 

X 

sd 

X 

sd 

-
X 

sd 

0464 0640 0641 

0.41 0.87 0.39 

0.02 0.04 0.01 

0.52 0. 91 0.41 

0.03 0.01 0.04 

o. 4 7 0.79 0.36 

0.05 0.03 0.01 

0.31 0.48 0.23 

0.04 0.02 0.01 

0.26 0.18 

0.01 0.04 

0.17 0.13 

0.03 0.02 
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TABLE 3.25 Influence of aluminium on yield measured as dry 
weight -·(g 1-1) in E. mutabilis 0464, 0640 and 
0641 in batch culture in 20 days ~i 2~~c and 
photon flux density of 100 ~mol m s ; n = 16. 

0464 0640 0641 

0 X 0.51 0.92 0. 41 

sd 0.04 0.02 0.01 

-1.0 X 0.57 0.98 0.43 

sd 0.04 0.01 0.03 

2.5 X 0.53 0.95 0. 43 

sd 0.02 0.04 0.01 

-5.0 X 0.52 0.92 0.41 

sd 0.04 0.01 0.03 

-10.0 X 0.52 0.92 0. 41 

sd 0.03 0.04 0.01 

-100.0 X 0.51 0.91 0.41 

sd 0.04 0.01 0.03 

-1000.0 X 0.51 0.92 0. 41 

sd 0.04 0.02 0.01 
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Fig. 3.20 Influence of Fe on yield in E. mutabilis 0464, 

0640 and 06fl in batch culture in 20 days at 
0 . -2 -1 

25 C and photon flux density of 100 ~mol m s 

Fig. 3.21 Influence of Pb on yield in E. mutabilis 0464, 

0640 and 0641 in batch culture in 20· days at 
0 -2 -1 

25 C and photon flux density of 100 ~mol rn s 
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TABLE 3.26 Influence of lead on yield measured as dry 
weight (g 1-l) ~n E. mutabilis D464, D640 
and D641 in batch culture in 20 days !~ 2~0c 
and photon flux density of 100 ~mol m s 1 ; n=l6 .. 

D464 D640 D641 

Pb (mg 1-1) 

q. X 0.51 o. 92 0.41 

sd 0.02 0.03 0.01 

0.05 X o. 50 0.90 0.39 

sd 0.04 0.01 0.03 
I 

0.1 X 0.47 0.84 0.34 

sd 0.04 0.02 0.01 

-
0.25 X 0.44 0.72 o. 30 

sd 0.04 0.01 0.03 

-
0.5 ·x o. 40 0.64 0.21 

sd 0.03 0.01 0.04 . 

1.0 X o. 40 0.64 0.23 

sd 0.04 o.o1 0.03 

-5. 0 . X 0.41 0.67 0.24 

sd 0.02 0.03 0.01 

10.0 X 0.42 o. 67 0.25 

sd 0.02 0.04 0.01 

20.0 X 0.45 0.72 o. 34 

sd 0.04 0.01 0.02 

40.0 X 0.53 0.86 0.38 

sd 0.03 0.05 0.01 

80.0 X 0. 52 0.92 0.42 

sd 0.03 0.02 0.04 

-160.0 X 0.53 0.93 0.43 

sd 0.01 0.04 0.02 

-
200.0 X 0.52 0.92 0.42 

sd 0.03 0.01 0.04 
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1-l had no significant effect on yield (Fig. 3.22). Further 

.increase from 10.0 to 100 brought about an increase in the 

yield (Table 3.26). 

3.78 Influence of cadmium on yield 

E. mutabilis D640 and D641 had no growth above 

-1 -1 
0.1 mg 1 Cd, whereas D464 grew at 0.5 mg 1 . Cells 

were alive at 25 mg 1-l and there was no recovery from ex

posure to 30 mg 1-1 Cd (Fig. 3.22, Table 3.27). 

3.79 Influence of n~ckel on yield 

Increased Ni concentration from 0.0 to 0.25 mg 

-1 
1 brought about an ~ncrease in yield in E. mutabilis D464, 

D640 and D641, (Fig.3.23, Table 3.28). Further increase 

reduced yield. There was growth at and including 25 mg 1-l 

-1 in strain D640 while D464 and 0641 grew at 40 mg 1 . All 

-1 ' three strains recovered from exposure to 80 mg 1 N~. 

3.710 Influence of cobalt on yield 

E. mutabilis 0464, D640 and 0641 grew in the 

absence of added Co. Yield increased when subcultured in 

-1 
the basal medium (0.002 mg 1 Co) compared with cobalt free , 

medium (Table 3.29). There was growth at 40 mg 1-1co and 
. -1 

no recovery from exposure to 80 mg 1 Co in all three strai~s. 

3. 8 Factors influencing zinc tQxicity in Euglena inUtabilis ·o464 

3.81 Introduction 

The influence of major cation and anions (Na, K, 

Mg, Ca, Cl, N), organic. substrates (8-glycerophosphate, 



TABLE 3.27 

-1 
Cd (mg 1 ) 

0 

0.005 

0.01 

0.1 

0.25 

0.5 

1.0 
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Influence of cadmium on yield measured as.dry 
weight (g 1-1 ) in E. mutabilis D464, D640 and 
D641 in batch culture in 20 days at 25°C and 
photon flux density of 100 ~mol m-2 s-1; n = 16. 

D464 D640 D641 

X 0.51 0.92 0. 41 

sd 0.03 0.01 0.04 

-
X 0. 50 0. 90 0. 40 

sd 0.04 0.01 0.04 

X 0. 50 0.87 0.36 

sd 0.03 0.01 0.04 

X 0.42 0.76 0. 30 

sd 0.01 0.04 

-
X 0.37 0.62 0.23 

sd 0.04 0.02 0.01 

X o. 22 no growth no growth 

sd 0.01 

no growth 



TABLE 3.28 Influence of nickel on yield measured as dry 
weight (g 1-1) in E. mutabilis 0464, 0640 and 
0641 in batch culture in 20 days a1 25°C and 
photon flux density of 100 ~mol m- s-1; n = 16. 

. 0464 0640 0641 

0 X 0.51 0.92 0.41 

sd 10.02 0.04 0.01 

0.25 X 0.54 0.95 0.44 

sd 0.03 0.01 0.03 

0.5 X 0.54 0.94 0.44 

sd 0.04 0.01 0.03 

l.O X 0.53 0.93 0.43 

sd 0.03 0.01 0.04 

5.0 X 0.51 0.85 0.36 

sd 0.04 0.01 0.03 

10.0 X 0.46 0.81 0.32 

sd 0.03 0.01 0.03 

20.0 X 0.33 0.72 0.26 

sd 0.04 0.01 0.04 

25.0 X 0.34 

sd 0.04 

40.0 X o.23 0.12 

sd 0.03 0.1 
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~ig. 3.22 Influence ~f ~i on yield in E. mutabiZis D464, 

D640 and D641 in batch culture in 20 days at 
0 . -2 -1 

25 C and photon flux density_of 100 ~mol m s 

Fig. 3.23 Influence of Cd on yield in E. mutabiZis D464, 

D640 and D641 in batch culture in 20 days at 
0 -2 -1 

25 c and photon flux density of 100 ~mo1,.m s 
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TABLE 3.29 Influence of cobalt on yield measured as dry 
weight (g 1-1) in E. mutabilis 0464, 0640 and 
0541 in batch culture in 20 days a5 25~C and 
photon flux density of 100 ~mol m- s- ; n = 16. 

-1 Co (mg 1 ) 

0.002 (basal medium) 

0.25 

0.5 

1.0 

2.5 

5.0 

10.0 

20.0 

40.0 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

-
X 

sd 

-
X 

sd 

X 

sd 

-
X 

sd 

X 

sd 

0464. 0640 0641 

0.51 0.92 0.41 

0.02 0.02 0.01 

0.49 o. 90 0.39 

0.03 0.01 0.02 

0.47• 0. 90 0.37 

0.04 0.01 0.03 

0.45 0.86 0.34 

0.03 0.04 0.01 

0.43 0.86 0. 30 

0.04 0.01 0.01 

0. 40 0.75 0.27 

0.01 0.03 0.04 

0.36 0.71 0.25 

0.04 0.01 0.01 

0.33 o. 69 0.22 

0.02 0.04 0.01 

0.16 0.24 0.11 

0.04 0.1 0.03 
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glycyl-glycine) and other heavy metals (Cu, Mn, Fe, Al, Pb, 

Cd, Ni, Co) on zinc toxicity in E. mutabiZis D464 was exam

ined under standard growth conditions in sublethal (40 mg 1-l) 

and at inhibitory level (20 mg 1-1 ) Zn, using E. mutabiZis 

D464. Inoculum for the experiments using organic substrates 

was from stock grown in the organic substrate under investig-

ation. Ench experiment was conducted four times with four 

replicates for each parameter under investigation. 

3.82 Influence of inoculum size 

With increased inoculum from 25 to 500 cells 

-1 
ml , there was a r~duction in zin~ toxicity at sublethal 

--1 
Zn level (40 mg 1 ) in E. mutabiZis D464 (Fig. 3.24, Table 

3. 30) . 
-2 -1 . 

A minimum of 10 cells ml is necessary for a 

recognisable yield both as cell number and dry weight in 20 

days of incubation (Section 2.4). 

3.83 Influence of pH on zinc toxicity 

'With increased pH from 2.6 to 5.5 both at sub

lethal· (40 mg 1-l) and inhibitory (20 mg 1-1 ) Zn levels, 

toxicity decreased up to and including pH 4.0. Further in-

crease above pH 4.0, toxicity to Zn at both sublethal and 

inhibitory Zn levels increased. There was no yield above 

pH 5.5 (Fig. 3.25, Table 3.31). 

3.84 Influence of major cations on zinc toxicity 

The influence of major cations (Na, K, Mg, Ca) 

on zinc toxicity in E. mutabiZis D464 was investigated under 

· standard laboratory growth conditions (Section 2. 4) . Each 
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TABLE 3.3o Influence of inoculum size on sublethal (40 mg ]:-l) 
Zn concentration ip E. mutabiZis 0464, measured as 
dry weight (g 1~1) in batch culture in 20 days at 
25oc and photon flux density of 100 ~mol m-2 s-1; 
n = 16. 

Inoculum size 
-1 

(cells ml ) 

25 

50 

100 

200 

300 

400 

500 

dry weight (mg ml- 1 ) 

·x 0.21 

sd 0.01 

-
X 0.22 

sd 0.03 

-
X 0.51 

sd 0.03 

-
X 0.53 

sd 0.01 

-
X o. 50 

sd 0.04 

X o. 46 

sd 0.03 

-
X 0.44 

sd 0.03 
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Fig. 3.24 Influence of inoculum size on Zn toxicity in 

E. mutabilis in batch culture in 20 days at 
0 -2 -1 

25 C and photon flux density of 100 ~mol m s 
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TABLE 3.31 Influence of pH on sublethal and inhibitory Zn 
levels_\n E. mutabiZis D464 as dry weight 

0 (g 1 ) in 20 days in batch culture at 2I C 
and photon flux density of 100 ~mol m-2 s- ; 

pH 

2.6 

3.0 

3.4 

4.0 

5.0 

5.5 

n = 16. 

X 

sd 

X 

sd 

·-
X 

sd 

-
X 

sd 

X 

sd 

X 

sd 

sublethal Zn level 
( 40 mg 1-1) 

0.31 

0.04 

0.33 

0.03 

0. 48 

0.04 

0.48 

0.04 

o. 30 

0.03 

o. 22 

0.01 

inhibitory Zn level 
( 20 mg 1-1) 

0.42 

0.03 

0.44 

0.01 

0.48 

0.01 

0.48 

0.03 

0.42 

0.01 

0.31 

0.04 
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Fig. 3.25 Influence of pH on 

in batch culture in 

flux density of 100 

Zn toxicity in E. mutahiUs D464 

20 days at 25°C and photon 
-2 -1 

].lmol m s 

·. 
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experiment was carried out four times with four replicates 

for each concentration·used~ 

3.841 Influence of sodium 

Experiments conducted to check the influ~ 

ence of Na on zinc both at sublethal (40 mg 1-1 ) and inhib

itory (40 mg 1-l) Zn levels indicated increased Zn toxicity 

with increased Na concentration (Fig.3.26, Table 3.32). 

3.842 Influence of potassium· 

In the presence of sublethal Zn concentrat

ion, increasing the concentration of K from 2.5 to 5.0 mg 1-l 

brought about an increase in yield. Further increase from 

5.0 to 160 mg 1-l had no significant effect on zinc toxicity 

at sublethal level (Table 3.33). 

3.843 Influence of combined potassium and 
sodium on zinc toxicity 

With 25 mg 1-l Na and 40 mg 1-l Zn, increased 

K concentration from 2.5 mg 1-l to 20 mg 1-1 , reduced toxicity 

to Zn in E. mutabilis. Further increase from 20 mg 1-1 to 

-1 . . . 
100 mg 1 reduced tolerance {?able 3.34). 

3.844 Influence of magnesium 

Increased Mg concentration to sublethal 

zinc level had no effect on either reducing or increasing 

Zn toxicity in E. mutabilis 0464 over the range of concen-

trations of lQ to 160-mg 1 
-1 Mg (Table 3. 35) • 
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Fig. 3.26 Influence of Na on Zn toxicity in E. mutabiZis 
D464 in batch culture in 20 days at 25°C 
and photon flux density of 100 ~mol m-2 s-1 
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TABLE 3.32 Influence of sodium on sublethal and inhibitory 
Zn levels in E. mutabiLis D464 measured as dry 
weight (g 1~1) · in batch culture in 20 days at

1 25°C and photon flux density of 100 ~mol m-2 s- ; 
n = 16. 

sublethal Zn level inhibitory Zn level 

7 (basal medium) x 0.31 0.42 

sd 0.04 0.01 

·. 
10 X 0.27 0. 40 

sd 0.01 0.04 

15 X 0.27 0.38 

sd 0.04 0.03 

20 X 0.24 0. 32 

sd 0.03 0.01 

25. X o. 20 0.31 

sd 0.04 0.03 

30 X 0.13 0.31 

sd 0.04 0.02 

-
35 X no growth 0. 25 

sd 0.03 

40 X 0.12 

sd 0.04 



TABLE 3.33 Influence of potassium on Zn toxicity at 
sublethal Zn level in E. mutabilis D464 
measur~d as dry weight (g .1-1) in batch 
culture in 20 days at ~soc and photon flux 
density of 100 ~mol m- s-1; n ·= 16. 

-1 
dry weight (g 1 ) 

2.5 (basal medium) X 0.31 

sd 0.04 

5.0 X 0.33 

sd 0.03 

10.0 X 0.33 

sd 0.04 

20.0 X 0.33 

sd 0.03 

40.0 X 0.34 

sd 0.04 

-
80.0 X 0.33 

sd 0.02 

-
160.0" X 0.33 

sd 0.02 

147 
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TABLE 3.34 Influence of combined sodium and potassium 
on zinc toxicity in E. mutabilis D464 measured 
as dry weight (g 1-1 ) in .batch culture in 20 
days ~t 25°C and photon flux density 100 ~mol 
m-2 s ; n = 16. · · 

K (mg 1-1 ) sublethal Zn level plus 25 mg 1-l Na 

2.5 X 

sd 

-5.0 X 

sd 

-10.0 X 

sd 

20.0 X 

sd 

-30.0 X 

sd 

-40.0 X 

sd 

50.0 X 

sd 

60.0 X 

sd 

80.0 X 

sd 

100~0 X 

sd 

0.21 

0.01 

0.22 

0.04 

0.25 

0.02 

0.26 

0.04 

0.24 

0.03 

0.24 

0.03 

0.22 

0.03 

0. 20 

0.02 

0.18 

0.02 

0.15 

0.02 



TABLE 3.35 

2.5 

5.0 

10.0 

20.0 

40.0 

80.0 

160.0 

200.0 
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Influence of magnesium on zinc toxicity in 
E. mutabiZis D464 measured as dry weight(g 1-1 ) 
in batch culture in 20 days at ~5°c and photon 
flux density of 100 ~mol m-2 s- ; n = 16. 

dry weight (g 1-1, 

X 0.31 

sd 0.02 

X 0.33 

sd 0.02 

-
X 0.35 

sd 0.02 

X 0.35 

sd 0.02 

X 0.34 

sd 0.04 

X 0.34 

sd 0.03 

X 0.34 

sd 0.02 

-
X 0.35 

sd 0.02 
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3. 845 Influ·ence ·of calc·ium 

Experiments conducted to see the effect 

of increased Ca concentration had on zinc toxicity at sub

lethal level (40 mg 1-l) and at inhibitory level (20 mg 1-1 ) 

Zn, indicated increased toxicity with increased Ca concen-

-1 -1 
tration above 10 mg 1 with no yield above 30 mg 1 with 

-1 
sub'lethal and 60 mg 1 inhibitory level of zinc (Fig. 3.27, 

Table 3.36). 

3.85 Influence of anions on zinc toxicity 

3.851 Influence of chloride 

Increasing the Cl concentration from 35 to 

70 mg 1-l reduced toxicity to sublethal level of Zn in 

E. mutabilis 0464. Further increase from 70 to 90 mg 1-l 

Cl reduced tolerance (Table 3.37). 

3. 852 Influence of ·ammoniurn-n·i trogen 

Increasing the concentration of ammonium-

nitrogen in the basal medium in the presence of sublethal 

zinc levels, had no significant effect on Zn toxicity 

(Tab 1 e 3 • 3 8 ) . 
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Fig. 3.27 Influence of Ca on 

in batch culture in 

flux density of 100 

Zn toxicity in E.· mutabiZis 0464 : 

20 days at 25°C and photon 
-2 -1 

~mol rn s 

r 
I 
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TABLE 3.36 Influence of calcium ori zinc toxicity in 
E. mut1bilis D464 measured as dry weight 
. (g 1- ) in batch culture in 20 days a~2 
2~~C and photon flux density 100 ~mol m 
s ; n = 16. 

Ca (mg 1-l) dry weight ( g 1-1, 

153 

sublethal Zn level inhibitory Zn level 

5.0 X o. 24 0. 30 

sd 0.02 0.01 

10.0 X 0.31 0.41 

sd 0.04 0.03 

20.0 X 0.21 0.33 

sd 0.01 0.04 

-30.0 X 0.11 0.22 

sd 0.03 0.01 

40.0 X no growth 0.16 

sd 0.03 

50.0 -
X 0.12 

sd 0.03 

60.0 X 0.11 

sd 0.04 



TABLE 3.37 Influence of chloride on Zn toxicity in 
E. mutqfiZis D464 measured as dry weight 

~g 1- ) in batch culture in 20 days at 
25 C and photon flux density of 100 ~mol 
m-2 s-1; n =·16. 

35.0 X 

sd 

40.0 X 

sd 

50.0 X 

sd 

60.0 X 

sd 

70.0 X 

sd 

80.0 X 

sd 

90.0 X 

sd 

0.31 

0.03 

0.31 

0.04 

0.32 

. 0.03 

0.32 

0.01 

o. 31 

0.04 

0.32 

0.03 

o. 31 

0.01 

·-

154 
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TABLE 3. 3 8 Influence of ammonium-nitrogen on Zn toxicity 
iri E. mutabiZis D464 measured as dry weight in 
batch culture in 20 da~s ar 25°C and photon flux 
density of 100 ~mol m- s- ; n = 16. 

N (mg -1· 1 ) dry weight (g 
·-1 1 ) 

10.0 X 0.31 

sd 0.03 

20.0 X 0.31 

sd 0.04 

25.0 X 0. 30 

sd 0.04 

-30.0 X o. 31 

sd 0.03 

35.0 X 0.32 

sd 0.01 

-40.0 X 0.31 

sd 0.03 

-50.0 X o. 31 

sd 0.02 

-
60.0 X 0.32 

sd 0.03 

-70.0 X 0.32 

sd 0.04 

-
80.0 X 0. 32 

sd 0.02 

-
160.0 X 0.31 

sd 0.03 
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3.86 Influence of organic substrates on zinc toxicity 

3.861 Influence rif glycyl-glycine 

In the presence of sublethal zinc level 

(40 mg 1-l) increased concentration of glycyl-glycine nitrogen 

had no effect on Zn toxicity (Table 3.39). 

3.862 Influence of S-glycerophosphate 

With increased S-glycerophosphate-P, 

there was increased toxicity with increased P (Table 3.40). 

3.87 Influence of other heavy metals on zinc toxicity 

3.871 Influehce of copper 

With increased Cu in the_ growth medium, 

both at sublethal (40 mg 1-l) and inhibitory level (20 mg 1-l) 

of Zn, yield decreased with increased Cu levels (Table 3.41). 

3.872 Influence of manganese 

The results (Table 3.42) of the experiments 

conducted to check·the influence of Mn on sublethal Zn level, 

indicate no effect on zinc toxicity. 

3.873 Influence of iron 

Increasing the Fe concentration to both 

sublethal and inhibitory level of Zn, increased Zn toxicity 

with no yield in the sublethal level at 1 mg 1-l Fe (Fig. 

3 • 2 8 , Tab 1 e 3 • 4 3 ) • 

.' 
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TABLE 3.:39 Influence of glycy1-glycine-nitrogen on Zn 
toxicity in ~· mutabiZis D464 measured as dry 
weight in ba~ch culture in 20 day~ 2 at_~5oc and 
photon flux density of 100 ).!mol m s ; n = 16. 

glyc~l-glycine-ni~ro~en 

(mg_ 1-1) dry weight (g 1-1) 

5.0 X 0. 30 

sd 0.01 

10.0 X 0.31 

sd 0.04 

-20.0 X 0.34 

sd 0.04 

30.0 X 0.34 

sd 0.03 

35.0 X 0.35 

sd 0.03 

40.0 X 0.36 

TABLE 3.40 Influence of S-glycerophosphate on Zn toxicity 
in E. mutabiZis D464 in batch culture measured as 
dry weight in 20 days at 25°C and photon flux 
density of 100 ).!IDOl m-2 s-1; n = 16. 

S-glycerophosphate 

(mg 1-1) dry weight (g l-1) 

1.8 X 0.24 

sd 0.01 

2.5 X 0.23 

sd 0.04 

5.0 X 0.21 

sd 0.03 

10.0 X o. 20 

sd 0.03 

20.0 X 0.17 

sd 0.03 

30.0 X 0.13 

sd 0.01 
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TABLE 3.41 Influence of Cu on sublethal and inhibitory Zn 
levels in E. mutabiZis .0464 measured as dry weight 
in batch culture in 20 days

2
at 25°C and photon 

flux density of 100 ~mol m- s-1; n = 16. 

Cu (mg 1-l) 

0.004 

0.01 

-
0.05 

0.1 

0.25 

0.5 

TABLE 3. 42 

1.0 

5.0 

10.0 

20.0 

40.0 

80.0 

sublethal Zn level inhibitory Zn level 

-1 -1 
X 0.31 mg ml 0. 41 g 1 

. sd 0.01 0.04 

-
X 0.22 0.34 

sd 0.01 0.04 

X 0.17 0.22 

sd 0.03 0.01 

X . 0.12 0.16 

·sd 0.02 0.04 

X 0.01 0.12 

sd 0.04 0.02 

X no growth o.·1 

sd 0.04 

Influence of Mn on sublethal Zn levels in E 
mutabilis 0464 measured as dry·weight (g 1-l) 
in batch culture in 20 days at 25°C and photon 
flux density of 100 ~mol m-2 s-1; n = 16. 

dry weight (-9" 1-1). 

X 0.31 

sd 0.03 

X 0.31 

sd 0.04 

X 0.31 

sd 0.01 

X 0.31 

sd 0.04 

X 0.31 

sd 0.01 

X 0.31 

sd 0.04 

X 0.32 

sd 0.01 
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Fig. 3. :23 Influence of Fe on 

in batch culture in 

flux density of 100 

Zn toxicity in E. mutabilis D464 

20 days at 25°C and photon 
-2 -1 

lJIDOl m S 
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TABLE 3. 4 3 Influence of Fe OJt:.sUb_l.et.L'1al and inhibitory Zn l_evels 
in E. mutabiZis D464 measured as dry weight in 
batch culture in 20 days at 2soc and photon flux 
density of 100 ~mol m-2 s-1; n=l6. 

-1 Fe (mg 1 ) sublethal Zn level inhibibitory 

-1 
X 0.32 g 1 0.41 0.5 (basal medium) 

sd 0.01 0.04 

-1.0 X 0. 20 0.31 

sd 0.02 0.01 

2.5 X no growth 0.22 

sd 0.04 

5.0 X 0.17 

sd 0.04 

3.874 Influence of aluminium 

Increasing the Al concentration from 

-1 1 to 100 mg 1 , in the presence of sublethal Zn levels, 

there was no significant change in the tolerance to Zn. 

-1 ' Further increase from 100 to_lOOO mg 1 Al increased 

toxicity to sublethal Zn concentration (Table 3.44). 

3.875 Influence of lead 

Results of the experiments conducted to 

Zn 

g 1 

see the effect of increasing the concentration of Pb to sub-

lethal and inhibitory level of Zn indicated that with in-

level 

-1 

creased Pb toxicity to zinc increased (Fig. 3.29, Table 3.45). 

3.876 Influence of cadmium 

With increased Cd concentration from 0 

to 0.1 mg 1-l increased Zn toxicity, with no yield above 

0.1 mg 1-l Cd at sublethal Zn level (Fig. 3.30, Table 3.46). 



TABLE 3.44 

0. 

1.0 

2.5 

5.0 

10.0 

50.0 

100.0 

200.0 

250.0 

500.0 

1000.0 
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Influence of Al on sublethal levels in E. 
mutabilis D464 measured as dry weight (g 1-l) 
in batch culture in 20 day§ 2at_f5°C and photon 
flux den·sity of 100 )..lmol m s ; n = 1·6·. __ _ 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

dry weight (g_ 1~~) 

0.31 

0.01 

0.32 

0.03 

0.32 

0.01 

0.33 

0.04 

0.32 

0.04 

0.33 

0.03 

0.32 

0.03 

o. 30 

0.02 

0.26 

0.04 

o. 22 

0.03 

0. 20 

0.01 
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Fig. 3.29 Influence of Pb on 

in batch culture in 

flux density of 100 

Zn toxicity in E. mutabiZis D464 

20 days at 25°C and photon 
-2 -1 

)lmol m s 
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TABLE 3.45 Influence of Pb on sublethal and inhibitory 

0.0 

0.05 

0.1 

0.25 

0.5 

0.75 

1.0 

1. 25 

1.5 

Zn levels in E. mutabiZis D464 measured as dry 
weight in batch culture in 20 days at_f5°C and 
photon, flux density of 100 lliDOl m-2 s ; n=l§..:_ 

sublethal Zn level inhibitiory Zn level 

0.31 -1 0. 41 -1 
X g 1 g 1 

sd 0.03 0.01 

X 0.22 0.41 

sd 0.01 0.04 

-
X 0. 20 o. 40 

sd- 0.04 0.01 

-
X 0.17 0. 40 

sd 0.04 0.01 

-
X 0.13 0.38 

sd 0.02 0.04 

X no growth 0.34 

sd 0.02 

-
X 0.31 

sd 0.03' 

X 0.27 

sd 0.03 

X 0.12 

sd 0.02 
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Fig. 3.;o. Influence of Cd on 

in batch culture in 

flux density of 100 

Zn toxicity in E. mutabilis D464 

20 days at 25°C and photon 
-2 -1 

)lmol m s 
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TABLE 3.46 Influence of Cd on sublethal and inhibitory 
Zn levels in E. ~~tabiZis D464 measured as 
dry weight (g 1 ) in batch culture in 20 
days a!2 25~l and photon flux density of 100 
~mol m s ; n = 16 

sublethal Zn level inhibitory 

0.0 X 0.31 g -1 1 0. 41 g 

sd 0.02 0.01 

-0.005 X 0.17 0.31 

sd 0.04 0.03 

0.01 X 0.12 0.22 

sd 0.01 0.04 

0.05 X no growth 0.17 

sd 0.03 

0.1 X 0.13 

sd 0.03 

3.877 Influence of nickel 

Zn 

1 

Increasing the nickel concentration above 

0.25 to 5.0 mg 1-l in the presence of both sublethal and 

inhibitory Zn levels, increased Zn toxicity (Table 3.47)'. 

3.878 Influence of cobalt 

level 

-1 

Increased Co concentration from 0.002 mg 

1-l to 5.0 mg 1-l there was no change in Zn toxicity whereas 

above 5 mg 1-l Cd, reduced toxicity to Zn (Fig.3.31; Table 

3.48}. 
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TABLE 3.47 Influence of Ni on sublethal and inhibitory Zn 
levels in E. mutabiZis D464 measured as dry 
weight _(g 1-1) in batch culture in 20 day~ a~ 1 25°C and photon flux density of 100 ~mol m s 

0.0 

0 •. 25 

0.5 

1.0 

5.0 

10.0 

20.0 

40.0 

n = 16. 

X 

sd 

X 

sd 

X 

sd. 

-
X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

sublethal Zn level 

0.31 

·o.o4 

0.27 

0.04 

0.25 

0.04 

0.23 

0.03 

0.22 

0.01 

0.17 

0.02 

0.17 

0.03 

0.12 

0.03 

-1 
g 1 

inhibitory Zn level 

-1 
0.41 g 1 

0.01 

0.41 

0.03 

0.41 

0.03 

0.38 

0.01 

0.44 

0.04 

0.27 

0.04 

0.23 

0.01 

0.17 

0.04 
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Fig. 3. 31 Influence. of Co on· Zn toxicity in E. mutabiUs D464 

in batch culture in 20 days at 25°c· and photo'n 
-2 -1 flux density of 100 ~mol rn s 
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TABLE 3.48 Influence of Co on sublethal Zn levels in 
E. mutabilis D464 measured as dry weight 

jg 1-1) in batch culture in 20 days at 
25°C and photon flux density of 100 ~mol 
m-2 s""l; n = 16. 

0.002 

0.25 

0.5 

1.0 

5.0 

10.0 

20.0 

40.0 

50.0 

X 

sd 

X 

sd. 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

X 

sd 

-
X 

sd 

-
X 

sd 

0.31 

0.03 

0. 32 

0.02 

0.32 

0.03 

0.31 

0.04 

0.32 

0.04 

o. 31 

0.01 

0.32 

0.02 

0.26 

0.03 

0.22 

0.02 
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Most algae in aquatic habitats are found in near neutral 

pH with a few at extreme pH limits. In acid environments, 

one of the problems that acid algae have to surmount is assoc

iated with hydrogen ions causing depletion of essential 

nutrients from the microenvironment (Section 1.2). The pH 

range at which algae occur may vary, with some low pH thermo

philic species growing at extreme low pH (Brock, 1972). Fott 

and McCarthy (1964) isolated Chlamydomonas acidophila from a 

peat bog at pH 1.0 and Hargreaves et al.Jl975) Euglena mutabilis 

from pH 1.5. In the current research four strains of E. 

mutabilis, 0464, 0640, D641 ~nd D642 were isolated from acid 

environments with pH 2.6~ 1.9, . 3.5 and 3.7, respectively. 

Laboratory investigations indicate that all four strains have 

a wide range of pH tolerances, with an optimum yield between 

pH 3.4 and 4.0. This is close to the findings of Dach (1943) 

where he .reported that E. mutabilis had a total range of growth 

from pH 2.1 to 7.9 with a maximum growth between pH 3.4 and 5.4. 

It was possible to adapt E. mutabilis D464, isolated from 

and maintained at pH 2.6 1 to grow to pH 1.5 and 8.5 by continuous 

subculture in very low (pH 1.8) and high (pH 7.6) pH for six 

months. 

Dach (1943) reported that E. mutabilis survived for at 

least 12 days when grown in organic medium over a range of 

pH values of pH 1.4 to 7.9. The author found that at pH 1.0 

it survived for 6 hours and at pH 1.4 for 4 days. In the 

current investigation it was found that E. mutabilis 0464, in 
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inorganic basal medium could survive for 6 hours in_ pH 1.0 

and for four days in pH 1.2. There was r~covery from ex-

posure to pH 1.4 even after 20 days. 

The presence of E.··~utabiZis in acid environments (ex-

ception being its absence from Kootenay Paint Pots, British 

Columbia, Wehr and Whitton, 1983), may have some relevance 

to an internal pH.mechanism that may be in operation. Lane 

and Burris (1981) found that E. mutabiZis has a different ·. 

internal pH to that of the external environment. The authors 

found that its internal pH is below pH 6.0 at low external pH 

and that with external pH rising above 6.0, E. mutabiZis was 

not abl~ to maintain its internal pH. If maintaining a 

steady internal "pH is an energy requiring process, then the 

cost of maintaining the internal pH may drain valuable energy 

which is otherwise used for growth and reproduction. 

4.2 Influence of Nutrients 

Euglena mutabiZis, D464, D640 and D641 were subjected 

to different concentrations of major cations and anions in 

the growth media, under standard laboratory conditions. It 

was found that there was improved yield with increased Na 

concentration. Allen (1952) reported that Anabaena cyZindrica 

required 'app~eciable' concentrations of Na for better growth. 

-1 -1 
Increased K concentration from 2.5 mg 1 to 5.0 rng 1 irn-

proved yielCi in E; mutabiZis·\·Iith no effect al::>oye 5.0 mg 1-l ' ?here \vas no ' 

growth in the absence of Hg and Ca.· Retovsky and Klasterska 

(1961) observed that ChZoreZZa cells became 'chlorotic, en-

larged and extensively vaculated' in the absence to Mg. In 

the current investigation, in the absence of Mg, E. mutabiZis 
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became enlarged and dark brown in colour. Chang and Kahn 

(1966) reported that in E. gracilis there is a Mg dependent 

ATPase and a Ca dependent ATPase. It is probable that a 

similar system may be in operation in E. mutabiZis. 

Of th~ different inorganic nitrogen sources for algal 

nutrition, nitrates and ammonium ions are the most common. 

Though some use both nitrates and ammonium-nitrogen, some use 

ammonium-N preferentially when supplied with both nitrate\~·- and.: 

ammonium ions as nitrogen source _(Syrett, 1962). Sakari (1976) 
tJw.. 

noted that in a pH range of 4.6 to S.l,~greater part of the 

total nitrogen consists of NH 4 and nitrogen in the form of 

nitrates become un·available at low pH. With all three strains 

of E. mutabilis tested, there was growth only in ammonium-N 

and not in nitrates. Continous subculture in the basal medium 

with nitrate-N did not induce growth in all three strains. 

Similar findings with E. gracilis (Neilson and Larsson, 1980) 

and in 12 strains of ChloreZla protothecoides (Albert~no and 

Tadd,~fj 1978), where the algae were unable to utilize nitrate::--· 

have been reported. Moss (1973) found that.most Euglenophyta 

tested in cultures seem unable to utilize nitrates. 

With the micronutrients (Zn, Cu~ Mn, Co) tested, Zn 

brought about an increase in yield even when supplieq in macro 

level (10 mg 1-1 ). This confirms Hargreaves and Whitton (1976) 

who found similar increase in growth with increased Zn concen-

tration. This increase in growth with added Zn may be due to 

Zn being used in the protein-synthesis as hypothesised by 

Prask and Plocke (1971) or as·Keilin and Mann (1940) to be 

involved with co2 fixation. The latter seems to be a more 

probable explanation as co2 levels (Section 1. 3) a.;f!! low ~5' 

low pH. 
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Green and co-workers (1939) demonstrated that there is 

a direct participation of Cu in photosynthesis in Chlorella 

pyrenoidosa where the addition of, organic compounds which 

form co):Tlplexes wfth Cu, resulted in a reversible decrease in 

photosynthetic activity. With concentration of Cu falling 

below 10-7M Walker (1953) found deficiency symptoms in 

Chlorella sp. while Greenfield (1942) found toxic effec~of 

Cu at this concentration in C. vulgaris. In the current 

investigation Cu as 'impurities' -1 { > 0.-002 mg 1 ) brought about 
·. 

measurable yield which increased with Cu concentration up to 

and including 0.005 mg 1-1 . Further increase up to 1.0 mg 1-l 

reduced yield. 

Manganese has been shown to be a requirement for algal 

growth (Harvey, 1947) in photosynthesis, in respiration, in 

nitrogen metabolism and in relation to_other elements in the 

growth medium (Wiessner, 1962). Harvey found that ~m was 

necessary for 'vigorous' growth in "Chlamydomonas" and a 

marine Cryptomonas. Walker (1954) found similar results with 

Chlorella pyrenoidosa. Brown (1954) demonstrated that Hill 

Reaction ·is completely suppressed in the absence of Mn. Hewitt 

(1958) found respiration was reduced in C. pyrenoidosa and 

Ankistrodesmus braunii in the absence of Mn. In nitrogen 

metabolism, Noack and Pirson (1939) reported that the rate of 

growth in C. pyrenoidosa is reduced in the absence of Mn 

whether nitrate or an ammonium salt is used as nitrogen source. 

Waren (1933) found an antagonism between Mn and Ca in 

Miarasterias rotata, where Mn increased cell division in high 

concentration of Ca and inhibited cell division in low concen-

tration of Ca. Pirson (1939) reported an antagonism between 

Mn and K, where at low concentration of K, C. pyrenoidosa 
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required low concentration of Mn whereas with high concen-

tration of K it required higher concentration of Mn for healthy 

growth. Although E. mutabi lis was able to grow~··· in Mn free 

basal medium (except for Mn as 'impurities') its addition 

(0.012 mg 1-l) improved yield. Any further addition from 

0. 012 to 1. 0 mg 1-l Mn t,o the basal medium had no effect on 

yield. 

Krauss (1955) reported that cobalt stimulated growth in 

Scenedesmus obliquus and Holm-Hansen et al.~(l954) showed the 

importance of Co to a number of blue-green algae and its re-

placeability by vitamin B12 . When E. mutabilis grown in 

cobalt free medium was subcultured in the basal medium with 

-1 
0.002 mg 1 , Co

1
yield was improved. A similar result was 

seen when cells were subcultured in 1 mg 1-1 .vitamin B
12

. 

. ·. 

As Co is a known constituent of vitamin B12 , it was hypothesised 

that the improved yield seen in the presence of cobalt was due 

to its incorporation into vitamin B12 . But experiments 

carried out with Co and vitamin B12· showed improved yield in 

the presence of vitamin B12 without Co than with Co without 

vitamin B12 • As no Gheck was made to see if cultures grown 

in the presence of Co had any vitamin B12 at the end of the 

incubation period, it is not possible to state whether E. 

mutabilis is a vitamin B12 synthesisor or not. Scott and 

Ericson (1955) using co
60 

found no trace of vitamin B12 in 

Rhodymenia palmata though they found it in some unidentified 

organic compound. Another source of vitamins for E. mutabilis 

was suggested by Lieb (1971). The author r.eported sighting 

some motile 'bacteria like' particles (0.5 - 1.0 ~m) moving 
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inside the cell~ Surek and Melkonian (1981) also reported 

intracellular bacteria inside E. mutabilis. Lieb is of the 

opinion that these 'bacteria'(seen when fixed in Transeau's 

preservative made up of one part formaldehyde,· three parts 

95% ethyl alcohol and six parts water) provided the necessary 

vitamins in exchange for space in a symbiotic relationship. 

While the presence of these 'motile bacteria like particles' 

is confirmed within cells fixed in Transeau's preservative, 

phase contrast microscopic examination of cells at different 

phases of growth, sonicated cell contents and electron.micro-

scopy did not reveal the presence of any bacteria. Also, 

sonicated cell contents incubated in different bacterial 

growth media at different pH did not produce any bacterial 

growth. 

While the ability to utilize organic substrates for 

energy is vital for organisms including some colourless algae 

that are devoid of chlorophyll, some photosynthetic algae have 

the capacity to utilize organic compounds both in light and in 

darkness (Section 1.7). With E. mutabilis it was seen that 

they could use a number of organic carbon substrates (in the 

presence of atmospheric co2 ) both in light and in the dark. 

Glucose brought about more yield compared to other carbon 

substrates used. With acetate, iriitial experiments with O.OlM 

concentration was seen to be toxic and as such the concentration 

was reduced to O.OOlM. In all three strains tested yield was 

least in acetate. Their inability to utilize O.OlM concen-

tration may be due to the low pH (2.6) as reported by Samejima 

and Myers (1958) where the authors reported that acetate was 

toxic to Chlorella pyrenoidosa at a concentration of 0.004M at 

pH 4.5 while the threshold was 0.12M at pH 6.7. 
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Of the different organic nitrogen substrates tested, 

there was no growth in the dark in any of the substrates. 

With photoheterotrophic growth there was measureable growth 

(yield) when subcultured in asrfragine-nitrogen and glycyl

glycine_...;,ni trogen, using inocula from the basal medium in 20 

days of incubation. For the other substrates (Table 2.4) 

repeated subculture in_the organic substrate was necessary 

to induce utilization of organic nitrogen. As E. mutabilis 

utilized organic nitrogen in the light and not in the dark 

it appears that nitrogenase activity is somehow restricted 

in the dark. Of the different organic substrates used by 

E. mutabilis, yield was least in urea. The poor yield 

in urea may be due to insufficient urase produced by the 

alga, yet urea can be utilized by Chlorella in the absence 

of urase (Syrett, 1962). Thus leading to some other explan

ation. 

·. 

Having established that the different organic phosphates 

are stable over the experimental period of 20 days and that 

there is both acid and alkaline phosphatase activity in E. muta

bi lis D464 3 experiments carried out to compare yield during 

utilization of organic substrates with inorganic P, indicate 

a 'preference' to orthophosphate as yield was more in Po4-P 

compared to the organic substrates used. 

4.3 Influence of Heavy Metals 

Although all streams have metals in solution, acid streams 

in particular have a number of toxic peavy metals (Section 1.4). 

In such acid environments E. mutabilis is suggested to be an 

early coloniser (Sheath et al.J 1982). Experiments were designed 
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and carried out to check the influence of a number of heavy 

metals. (Ta;ble 2~5),· ~~- yieid ir1 ot.~er strains of E. Tr~¥tabiZis_ D46•1,D640,D64l 

isolated from different areas of known water chemistry (Table 

2. 7) • Of the different heavy metals tested Al had the least 

toxic effect on y-ield even ~rflt 1000 mg 1-l Al in the growth 

medium. Least tolerance was seen in Cd where l.O,mg 1-l Cd 

resulted in complete stoppage of growth. Although the concen-

tration of Fe in Brandon~· Acid' Stream from which ·str-ain 

D464 was isolated was 82 mg 1-1 , yet this strain was not able 

to tolerate above 10 mg 1-l in the basal medium. This was 

the case with the other two strains. Although some of the 

concentrations of metals used in the toxicity test are more 

than the levels met with in natural habitats, ~ ·. it is possible 
the . 

to speculate that w-ith the different metals testedAtoleranceu'H 

be as follows ; · -····· · :·Al>Mn>Pb>Ni>Co>Zn>Cu>Fe>Cd. 

Within the time available it was not possible to check the rate 

of accumulation of the different metals and the influence of 

.the various permutations of metal tolerance. Instead, as 

improved yield was seen with increased Zn (10 mg 1-1 ) a number 

of factors influencing. Zn toxicity we.vf!- tested using strain D464. 

4.4 ~actors influencing zinc toxicity 

The influence of a number of factors influencing 

Zn toxicity at sublethal (40 mg 1-l) and inhibitory (20 mg 1-l) 

level of Zn in the growth medium was examined. It was found 

that to have a measureable yield in 20 days of incubation a 

minimum inoculum size was necessary. This inoculum size 

(102 cells ml-l) was used in all the experiments. 

Another factor influencing Zn toxicity was the pH of the 

growth medium. It was found that toxicity was least at pH 3.4 



181 

and it increased when the pH was r·aised above 4.0 with no 

yield at pH 5.5. 

Of the different major cations, sodium and calcium in-

creased toxicity, while magnesium and potassium had no effect 

on Zn toxicity. It was hypothesised that increased toxicity 

seen with increased Na was due to the extrusion of K ions due 

to the Na/K 'pump'. It was found that in the presence of 

25 mg 1-l Na, toxicity to sublethal Zn levels decreased with 

increased K, thus suggesting the possible action of the Na/K 

'pump' in action. In Hormidium rivuZare Hargreaves and 

Whitton (1976) found that in low pH (2.7) the alga grew in 

the presence of 30 mg 1-l Zn in a medium with 100 mg 1-l ca 

but was able to withstand only 10 mg 1-l Zn in a medium with 

. . -1 
10 mg 1 Ca. Thus it app~ars that in H. rivuZare increased 

calcium concentration will resurt in the reduction of zinc 

toxicity. But in E. mutabiZis. increased zinc toxicity was 

seen with increased calcium. 

Chlorine is said to be the major halogen in most algae, 

the bulk of which is present as chloride or as organic com-

pound (O'Heocha et aZ, 1958). In Ei mutabiZis with chloride 

there was a marked reduction in Zn toxicity when the concen-

-1 -1 
tration of Cl was increased from 35 mg 1 to 75 mg 1 . 

With further increase in the Cl concentration above 75 mg 1-l 

there was an increase in Zn toxicity. Thus it appears that 

with concentrations up to and including 75 mg 1-1)c1 has the 

effect of reducing Zn toxicity whereas with further increasesa 

synergistic effect is seen; this may be due to the binding of 

some essential nutrients that become unavailable for metabolic 

activities. 
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Increased levels of.glycyl-glycine-nitrogen reduced Zn 

toxicity at sublethal Zn level whereas·arnrnonium-nitrogen 

increased Zn toxicity in E. mutabiZis. This may be due to 

Zn being bound to organic substrates and thus becoming un-

available to the organism. Yet with organic phosphate 

supplied· as ·B-glycerophosphate toxicity to Zn) at sublethal Zn 

level increased. 

Of the different heavy metals checked for synergism and 
• 

antagonism with Zn; it was found that Cu, Fe, Cd, Ni, Co and 
-1 . 

Al above 100 mg 1 , showed increased toxicity at sublethal 

Zn levels, while Mn and Al below 100 mg 1-l had no effect on 

Zn toxicity. Peterson (1968) reported that although Zn is 

an essential trace element for Scenedesmus quadricauda in 

the presence of Cu.i.t:is toxic. A similar synergistic re-

action seems to take place in E. mutabiZis. 

Concluding remarks 

All four strains of Euglena mutabiZis~ though isolated 

from different field pH, had optimum yield between pH 3.4 and 

4.0. They had a wide pH range for growth and had similar 

nutritional requirements and tolerance to heavy metals. 

-1 
Strain D464 isolated from a field Zn concentration of 1.1 mg 1 

and D641 from 2l · mg 1-l tolerated the same Zn concentration 

under laboratory conditions. 

Although· toxic effect of high concentration of different 

heavy metals seems tm affect the us~al reproductive process 
{ 

.. ::of binary fission, it was not possible to establish a single 

factor responsible for toler~pce t'o heavy metals. 
~-·--- ---------- ·---------·------ -- -- ------------------------------- ------'-----' -

E. mutabiZis seems to be well adapted to live in low pH 
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and high concentrations of a number of heavy metals which are 

toxic to most algae. Lloyd (1977) reported that heavy metals 

are not available for uptake because of the marked changes 

brought about by low pH. The author reported that many 

cations exist in true agueoussolutions at low pH (pH 3.0) and 

that ions are not as well absorbed as other inorganic complexes. 

Hargreaves (1977) postulated that hydrogen ions may form a 

'barrier' preventing toxic substances from entering the cell. 

65 Bachmann (1963) found Zn uptake by Golenkinia paucispina 

cells was reduced more by hydrogen ions than Ca, Mg, Na and K 

in that order. Patterson (1983) working on Zn accumulation 

in Mougeotia strain isolated from stream (Durham Code No. 0097) 

reported that Mougeotia accumulated extremely high concentrat

ions of Zn from stream water and hypothesised a 'detoxicific-

ation process' within the cell as. a means of tolerance. Exam-

ination of water chemistry data of Vi~~acid streams in 

England (Appendix 3) indicated that E. mutabilis was found in 

all but two streams (Stream No. 0137 and 0158). The only 

common denominator to be found is the low Zn level in these 

two streams. 

Either by preventing the entry of toxic heavy metals 

(Hargreaves 1977), or by a process of detoxification (Batterson~ 

1983), E. mutabilis appears to be well adapted to occupy newly 

formed acid environments. As no measurements of accumulation 

of heavy metals was carried out, it is not possible to say 

whether E. mutabilis accumulates heavy metals or not. Yet 

the presence of an active contractile vacuole tempts to hypo-

thesise an active or a passive intake of)and an active energy 
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requiring expulsion of J heavy metals by means of the contractile 

vacuole. 

SUMMARY 

{a) There are a number of bacteria and fungi associated with 

the algae in acid environments. Clonal axenic cultures 

of Euglena mutabiZis and other unicellular green algae 

·: were produced without using any antibiotics, thus avoid-

ing possible risk of mutation. 

{b) E. mutabiZis isolated from different field pH values 

{1.9, 2.6, 3.5 and 3.7) has a pH optima between pH 3.4 

and 4.0. It was possible to adapt strain 0464 isolated 

from,and maintained at pH 2.6~to grow at pH 1.5 and 8.5 

by continuous subculture. 

(c) Although E. mutabiZis 0 464 grows in the vitamin-free 

basal medium there was improved yield in the presence of 

vitamin B1 and B12 with higher yield in vitamin B
1 

com

pared with vitamin B12 • 

{d) With the macroelements tested, {Na, K, Mg and Ca), there 

was improved yield in strain 0464, 0640 and 0641 with in

creased sodium concentration up to and including 25 mg 1-1 . 

{e) Yield improved with Zn, Cu, Mn and Co in microquantities, 

in E. mutabiZis 0464, 0646 and 0641. Of the trace elern

ents tested there was improved yield at 10 
-1 

rng 1 Zn 

compared to the basal medium with 0.013 mg 
-1 

1 . 

{f) A number of organic substrates were tested both for their 

suitability for heterotrophic and photoheterotrophic growth. 

With organic carbon all tests showed a positive effect. 
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With acetate, however, a lower concentration of (O.OOH1) 

was needed as growth was suppressed at O.OlM. There 

was growth in all organic nitrogen substrates tested in 

the light ·and not in the dark. E. mutabiZis D464 shows 

both acid and ~lkaline cell surface phosphatase activity. 

(g) The influence of a number of heavy metals was examined 

and it was found that E. mutabiZis D464, D640 and D641 is 

tolerant to a number of heavy metals to varying degrees . 

Aluminium was· the least toxic metal in that yield .?: -,~ was 

-1 
not reduced even at a concentration of 1000 mg 1 . 

Cadmium was the most toxic metal, suppressing growth at 

-1 
1. 0 mg 1 . Tolerance in diminishing order appears to 

be as follows:. Al>Mn>Pb>Ni>Co>Zn>Cu>Fe>Cd. 

1 (h) The effect of a number of environmental factors on zinc 

. ·. 

toxicity in E. mutabiZis D464 was checked and it was found 

that the inoculum size, pH and the composition of the 

growth medium had a profound influence on Zn toxicity. 

Toxicity to Zn increased in the presence of Na ( 10 mg 1-1) , 

Ca (10 mg 1-1) , Cu (0.01 mg 1-1) , Fe ( 1.0 mg 1-1) , Pb · 

(0.1 mg 1-1), Cd (0.005 mg i -l) 1 ih (0.25 mg 1-1) and 

-1 . 
Al (above 100 mg 1 .) wh1le it decreased with Cl (up to· 

and including 75 mg 1-1 ) and glycyl-glycin~. K (160 mg -1-l), 

Mg (200 mg 1-1 ) and Mn (80 mg 1-1 ) had no effect on Zn 

toxicity. 
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APPENDIX ONE 

INFLUENCE OF DIFFERENT INORGANIC NITROGEN SUBSTRATES 

ON GROWTH IN EUGLENA MUTABILIS 

The effect of different inorganic nitrogen substrates 

on growth in Euglena mutabilis was investigated with inocula 

from pH 2.6 with strains D464, D640 and D641, in both nitrogen 

as ammonium and as nitrate in the basal medium. Yield in 20 ·. 

d .t 25°C d h t fl d 't f 100 )..lmol m- 2 s-1 ays a . an p o on ux ens1 y o 

(Fig. A.l) indicated utilization of nitrogen only as ammonium 

and not nitrate. Repeated subculture in nitrate did not 

induce growth. 

/ 



187 

Figure A.l Influence of Nitrate on yield in 
Euglena mutabiZis 
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TABLE A.l Influence of different inorganic nitrogen 
substrates on yield (dry weight) in E. 
mutabiZis in 20 days az 25°C and photon flux 
density of 100 ~mol rn- s-1. n = 16. 

I 
D464 D640 D641 

Nitrogen 
. rnl-1 -1 -1 

substrate 
rrg sd m::J·rnl sd rrgrnl sd 

NH 4 
0.51 0.01 0.67 0.01 0.31 0.04 

CaN03 0.12 0.01 0.13 0.01 0.12 0.01 

NaN0 3 
0.13 0.02 ·o.11 0.02 0.13 0.02 

I I 
I I. I 

KN03 
0.11 . 0.02 I 0.13 I 0.01 0.11 0.01 

I I I I 

I f I 
I ! i i ' 

' 

·. 



APPENDIX TWO 

STABILITY OF ORGANIC P IN ACID MEDIUM 

Experiments conducted to see if organic P remains 

stable over the .normal incubation period of 20 days 

(Section 2.477) showed that organic P was stable over 

0 the incubation period of 20 days at pH 2.6 at 25 C and 

-2 -1 
photon flux density of 100 ]Jmol m s ; (Table A.2). 
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TABLE A.2 Fate of organic P in the growth medium 

-1 day 1 (rrq 1 ) -1 day 5 (rrq 1 ) 
Substrate 

S.R.P. SRP/ SRP; 
T.P. T.P. T.P. S.R.P. T.P. 

S-G1ycerophosphate 1.54 0.3 19.48 1.46 0.30 20.56 

rnA 1.13 0.33 29.20 1.11 0.34 30.63 

Phytic Acid 1.53 0.32 20.92 1.37 0.27 19.70 

lecithin 1.56 0.28 17.94 1.34 0.21 
! 

15.67 

G1ucose-r-ro4 1.34 0.30 22.40 1.28 0.32 25.0 

---- -------- - - ----

day 10 (rrq 1-1) 

SRPj 
T.P. S.R.P. T.P 

1.43 0.31 20.62 

1.19 0.31 28.18 

1.311 0.31 22.79 

1.32 0.30 22.72 

1.26 0.34 26.98 

' 

-1 I day 20 (rrq 1 ) 
I 

SRPj J 
T.P. S.R.P. T.P"I 

i 

1.42 0.32 22.53 1 

I 
I 

1.10 0.30 I 
21.22 I 

I 
1.35 0.31 22.9 

1.31 0.32 24.42 
' 

1.25 o.31 1 24.8 I 

j 

I l 
~ 

t-' 
1.0 
t-' 



APPENDIX THREE 

WATER CHEMISTRY OF LON pH SITES IN ENGLAND 

Stream No. and Name· 

0136 Cannock opencast acid stream 

0137* Polesworth.Acid Stream 

0138 Bridford Acid Stream 

0139 Birch Coppice Acid Stream 

0140 Kingsbury Acid Stream 

0157 Rowley Acid Stream 

0158* Chrisnall Hall Acid Stream 'B' 

0159 Chrisnall Hall Acid Stream 'C' 

0160 Denby Acid Stream 'B' 

* No Euglena mutabilis recorded. 

Grid ref. 

SJ 990083 

SK 257939 

sx 816854 

SP 255001 

SP 233986 

SD 858331 

SD 549125 

SD 549125 

SD 392485 
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APPENDIX THREE - Water Chemistry of lm..r pH sites in England 

l 
I 

I Stream 136 137 138 . 139 140 i 157 No. ' 

I 
j 

~ 
pH 2.1 2.5 3.0 2.2 2.9 I 2.5 i 

' Acidity 5CXX)() 2100 836.0 25333.3 I 4533.33 ~10933. 7 
' 

02 8.7 95.67 0.50 91.33 64.33 i 36.67 [ 

' : Na 23.7 325.7 16.1 877.7 650.33 ' 593.33 I 

K 3.6 6.66 4.65 2.61 7.63. i 
6.35 I 

i 
Mg 278.0 197.7 22.83 651.0 362.0 I 748.8 ! 
ca 401.0 251.0 49.73 275.33 373.0 \ 441.67 
Zn 62.0 0.69 82.67 18~27 

l 
34.06 I 6.25 

\ 
3.2 0.05 0.70 2.22 0.24 

I 
0.09 Cu I 

~1n 120.0 44.83 29.0 117.97 100.93 162.67 
Fe CXX)().O 103.31 76.1 3686.67 202.67 3753.33 
Al 501.0 3.71 8.12 1092.0 298.67 168.33 
Pb 0.1 0.15 1.16 1.12 0.25 0.06 
Co 4.1 1.62 0.28 6.33 2.17 2.24 
Ni 3.1 2.87 1.32 16.2 5.27 4.09 
PO-P 4 0.8 0.1 .0.14 5.12 0.1 0.19 
NH -N 4 4.0 3.19 0.39 2.85 4.59 5.87 
so -s 4 3642.0 950.0 460.3 5189.33 1001.1 4125.0 
Cl 32.0 185.0 28.5 123.57 186.67 27.67 
Si 11.5 17.67 25.37 46.33 11.25 ! 25.5 

I 

I 

158 159 

3.0 2.7 

1900 7900 

101.0 106.0 

51.7 "53. 7 

16.5 16.0 

505.0 425.0 

397.0 425.0 

0.65 1.16 

0.22 0.81 

28.9 81.0 

10.1 1250.0 

55.0 ·130.0 

0.18 0.34 

0.55 1.21 

3.05 5.5 

0.29 0.57 

1.1 1.41 

1014.0 1443.0 

29.5 29.0 

26.0 41.0 

I 

I 160 I 

I 
j 3.0 I 
I 13300 

82.5 

218.0 

4.85 
\ 602.0 

317.5 

5.95 

0.66 

81.2 

1825.0 

299.0 

0.18 

1. 71 

6.5 

2.0 

1.49 

1727.0 

22.75 

32.0 

I 
I 
I 

I 

I-' 
\D 
w 
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APPENDIX FOUR 

AC MICROELEMENT STOCK 

(low Mn level) 

using 1 rnl 1-l 

Salt M1 ;Wt. quantity in g 1-l elerrent in :rrg 1-l 

H2Bo 3 61.84 2.86 0.5 

MnC1 2 ·4H20 198. 0.181 0.05 

ZnS04 .7H20 287.6 0.222 0.05 

Cuso4 5H 0 . 2 249.69 0.079 0.02 

Coso4 7H 20 281.13 0.042 0.008 

N2Ho0 4. 2H 20 241.95 0.027 0.010 

Made up to one litre with deionised double distilled 

water and 0.25 mi of AC microelement stock was added to a 

litre of growth medium. 
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