

Durham E-Theses

Series-tuned cavity frequency multipliers

Oxford, D.F

How to cite:

Oxford, D.F. (1983) Series-tuned cavity frequency multipliers, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7175/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-These
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details.

SERIES-TUNED CAVITY FREQUENCY MULTIPLIERS

by
D.F. Oxford
B.Sc(Eng), M.Sc., A.M.I.E.E.

A thesis submitted to the Faculty of Science, University of Durham, for the degree of Doctor of Philosophy

The copyright of this thesis rests with the author.
No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

ABSTRACT

The project investigates the theory and design of varactor diode frequency multiplier circuits. Special consideration is given to multipliers which use series-tuned transmission-line cavities for filtering and impedance marching and an assessment is made of the merits of these cavities. Practical multiplier circuits are constructed in microstripline and are tested with the objective of verifying the analytical predictions.

The theory of the series-tuned cavity is given and its performance is predicted by computer plots of the insertion loss when it is used between a $50-\Omega$ source and a $50-\Omega$ load. These predicted results are verified on experimental series-tuned cavities in which the transmission lines are of two types, namely, coaxial lines and microstriplines, and the predictions are used in due course in the design of the multiplier circuits.

A new method of analysis for frequency multiplier circuits is introduced in which the device equation is written in terms of a Chebyshev expansion. The coefficients of the terms in the device equation are then given by the results of a spectrum test on the device and this has the considerable advantage that the device law will include the effects of parasitics caused by the test circuit which will be similar to those which occur when the device is used in a multiplier circuit. The method can be used to analyse both shunt mode and series mode multipliers and is used here on three particular circuits: the shunt-diode doubler, the shunt-diode tripler and the shunt-diode tripler with idler. Expressions are obtained for the power delivered to the load resistance and the input and output capacitances of the diode.

The main achievement of the analysis is that it produces a method for finding the conditions for matching a non-linear reactive diode to a source and a load so that the harmonic power delivered to the load at the required output frequency can be maximised. Measurements on practical shunt-diode doublers using microstrip technology are reported and they indicate that the predictions given by the analysis of doubler circuit operation are of the correct order. The foundations for the design of microstrip series-tuned cavity multipliers have been laid and further investigations, especially with regard to multipliers with idlers, would be of value.

ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisor Dr. B.L.J. Kulesza for his guidance and help throughout this project. His great enthusiasm and scholarship were an invaluable stimulation.

Ny thanks are also extended to the Directorate of Newcastle Polytechnic for allowing and encouraging me to undertake the work and to Mr. A. Ritchey (Head of School of Electronics, Newcastle Polytechnic) and Professor G.C. Roberts (Department of Applied Physics and Electronics, University of Durham) for placing the facilities of their departments at my disposal and to Mrs. L. Bateson for typing the thesis.

I would also like to thank all my friends and colleagues at Newcastle Polytechnic who gave me considerable assistance, especially Dr. E. Korolkiewicz and Dr. R. Armstrong.

Finally I wish to thank my wife Jean, and my children Kate and John, for their encouragement and understanding during the considerable time taken by the project.

[^0]
SERIES $-T U N E D ~ C A V I T Y ~ F R E Q U E N C Y ~ M U L T I P L I E R S ~$

CONTENTS

Page
CHAPTER 1: THE DEVELOPMENT OF FREQUENCY MULTIPLICATION TECHNIQUES 8
1.1 Introduction 9
1.2 Historical Review 12
CHAPTER 2: ANALYSIS OF THE SERIES-TUNED CAVITY 19
2.1 Introduction 19
2.2 Analysis of the Series-Tuned Cavity 21
2.3 Theoretical Results for the Series-Tuned Cavity 27
2.3.1 Variation of cavity length 27
2.3.2 Variation of probe position 28
2.3.3 Design procedure 28
2.4 The Coaxial Series-Tuned Cavity 39
2.5 The Microstrip Series-Tuned Cavity 44
2.6 Conclusion 49
CHAPTER 3: PERFORMANCE OF PRACTICAL SERIES-TUNED CAVITIES
3.1 Introduction 51
3.2 A Practical Coaxial Cavity 52
3.2.1 Design details 52
3.2.2 Tests on Cavity Cl 53
3.2.3 Summary 54
3.3 A Practical Microstrip Cavity 55
3.3.1 Design details 55
3.3.2 Tests on Cavities M2 and M4 56
3.3.3 Tests on Cavity M1 57
3.3.4 Summary 57
3.4 Conclusion 58

CONTENTS (Concinued)
Page
CHAPTER 4: A METHOD OF ANALYSING DIODE MULTIPLIER CIRCUITS AND ITS APPLICATION TO THE SHUNG-DIODE DOUBLER
4.1 Introduction 75
4.2 A Method of Analysis for Multiplier Circuits in Terms of Varactor Spectral Data 76
4.3 Shunt-Diode Doubler Analysis 84
4.3.1 Two-term approximation to the diode characteristic 84
4.3.2 Three-term approximation to the diode characteristic 95
4.3.3 Four-term approximation to the diode characteristic 99
4.4 Conclusion 104
CHAPTER 5: ANALYSIS OF THE SHUNT-DIODE TRIPLER
5.1 Introduction 108
5.2 Shunt-Diode Tripler without Idler 109
5.2.1 Two-term approximation to the diode characteristic 109
5.2.2 Three-term approximation to the diode characteristic 111
5.2.3 Four-term approximation to the diode characteristic 117
5.3 Shunt-Diode Tripler With Idler 118
5.3.1 Two-term approximation to the diode characteristic 118
5.3.2 Three-term approximation to the diode characteristic 121
5.3.3 Four-term approximation to the diode characteristic 127
5.4 Conclusion 129
CHAPTER 6: PERFORMANCE OF PRACTICAI MULTIPLIER CIRCUITS 132
6.1 Introduction 133
6.2 General Test Procedure 135
6.3 Microstrip Cavity Multipliers 137
6.3.1 Design details 137
6.3.2 Practical results 138
6.3.3 Summary 143
CONTENTS (Comtinued) Page
6.4 Coassial Cavicy Muiripliers 144
6.4.1 Incroduccion 144
6.4.2 Design decails 144
6.5 Conclusion
CHAPTER 7: CONCLUSION 158
7.1 The Analysis of the Mulriplier Circuic 159
7.2 Practical Muleiplier Circuics 164
7.3 Furure Developmencs 167
REFERENCES 169
APPENDICES
Lisr of Appendices ro Chaprex 2 Al
2(i) A2
List of Appendices ro Chaprer 4 A9
4 (i) A10
4 (ii) Al4
4(iii) A15
4 (iv) A16
4 (v.) A18
4 (vi) A21
List of Appendices to Chapter 5 A23
5 (i) A24
5(ii) A25
5(iii) A28
5 (iv) A31
5 (v) A32
5(vi) A. 34
5 (vii) A37

CHAPTER I

1.1 Introduction 9
1.2 Historical Review 12

1.1 Introduction

The investigation of the theory and the design of diode frequencymulciplier circuits were the main objectives of this project. Such circuits have been developed over many years because they provided stable sources at VHF, UHF, and microwave frequencies when driven by crystal-controlled oscillators in the 10 MHz to 100 MHz range. As a particular example there is a need for a stable $12-\mathrm{GHz}$ microwave source which can be used as the local oscillator of an $11-\mathrm{GHz}$ receiver. At the present time $11-\mathrm{GHz}$ receivers are required for the reception of television signals from satellites and a receiver having a local oscillator driven from a crystal-controlled source would have advantages in terms of cost and performance over alternative systems. In the last five years there have been developments with crystal oscillators which utilize surface acoustic waves (SAW) at frequencies around 1 GHz and it is possible that one of these circuits could be used in the proposed $12-\mathrm{GHz}$ source. A multiplier chain of two doublers and a tripler, for example, would then be required to multiply from 1 GHz up to 12 GHz .

Basically, multiplier circuits consist of a non-linear element which is energised at a particular frequency. As a result, harmonics of the input fundamental frequency are generated in the non-linear element and a particular component of the spectrum is then selected by a filter and delivered to the load. In order to obtain highly efficient multiplier circuits variable reactance diodes are normally used as the non-linear elements. Although transistor frequency multipliers are presently used extensively, especially in the UHF range, they will not be investigated here. A very important part of the multiplier circuit is the microwave filter necessary for extraction
of the required harmonic and the bype selected for use in ctis project is the series-tuned transmission-line cavity. The analysis of this type of filter is dealt with in Chapter 2 and its performance is predicted by a numer of compurer-plotted graphs. The design and testing of practical series-tuned cavities is reported in Chapter 3 which also gives the comparison of the advantages of the two types of transmission line which were used, namely, the coasial line and the microstrip line。

The analysis of frequency multipliers is uswally based on the characteristic of the non-linear diode. The new approach presented here is to write the diode equation in terms of the harmonic spectrum generated within it under specified test conditions. Tois has the considerable advantage that the device law will then include the effects of parasitics which will be reflected in the hamonic spectrum. When the diode is embedded in a multiplier circuit it is to be ensured that the parasitic elements will be very similar to those in the test circuit. This method of analysis is developed in Chapter 4 and it is used to predict the performance of several multiplier circuits with the results as reported in Chapters 4 and 5.

It was initially thought that the coazial cavity would be used in the construction of most of the multiplier circuits because it was easily-tumed by mechanical means. However, the fact that microscrip line multipliers could be produced much more easily, quickly and cheaply led to this type of circuit being used almost exclusively in the development of the practical multipliers. Microstrip lines are, of course, presently being used widely in commercial microwave integrated circuits for the same reasons. The problem of tuning the microstrip line cavity was satisfactorily solved as reported in Chapter 6 which gives details of the design and testing of the practical maltiplier circuits.

In conclusion the objectives may be sumarized as follows:
(a) the analysis of the operation of the series-tuned cavity so that its performance as a filter may be predicted,
(b) the design, construction and testing of practical seriestued cavities to verify the predicted performance and to prepare for the use of these cavities in multiplier circuits,
(c) the analysis of diode multiplier circuits where the device characteristic is written in tems of the harmonic spectrum generated by the diode under specified test conditions. The input and output impedances of the non-linear circuit are to be investigated to find the conditions for maximum power transfer,
and
(d) the design, construction and testing of practical diode multiplier circuits using series-tuned cavities as input and output filters. The circuits will be tested to verify the results predicted by the theoretical analysis.

1.2 Historical Review

In the early nineteen fifties the semiconductor diode began to be used as a voltage-controlled capacitor in applications such as the automatic control of the resonant frequency of tuned circuits. As semiconductor technology improved a special type of diode was developed for this purpose and was given the name "varactor diode" which is a contraction of the words "variable" and "reactor". The varactor diode soon found many other applications in the microwave frequency range, for example, in parametric amplifiers, frequency converters, mixers, modulators, and frequency multipliers.

Interest in the use of the varactor as a frequency multiplier was stimulated by a paper by MANLEY and ROWE (Reference 20, 1956). which led to the prediction that a varactor with negligible parasitic resistance should be 100% efficient as a frequency multiplier. The performance of a varactor is degraded by a parasitic series resistance which was first investigated by UHLIR (Reference 41, 1958) who suggested a simple equivalent circuit consisting of a resistance in series with a non-1inear capacitance. In another important paper PAGE (Reference 28, 1958) showed that the maximum efficiency obtainable when generating the nth harmonic in a non-linear resistance cannot exceed $1 / n^{2}$.

Towards the end of the nineteen fifties varactor diode frequency multipliers were being extensively investigated and many circuit analyses have been presented since that time. A major contribution was contained in the book by PENFIELD and RAFUSE (Reference 29, 1962) who gave computed results for multipliers using abrupt-junction varactors with and without idlers. Their analyses assumed that the varactor was not over-driven, i.e. not driven into forward conduction. A similar treatment is given by LEESON and WEINREB (Reference 18, 1959) who
analysed frequency multiplier circuits for small signals by using a Taylor Series expansion about the operating point for the non-linear Q-V relationship. They extended the analysis to apply to large signals as the harmonics generated are of small amplitude relative to the fundamental drive. In 1965 SCANLAN and LAYBOURN (References 33, 34) analysed varactor multipliers with and without idlers and one of their conclusions was that a cascade of two doublers would be more efficient than a single times-four multiplier with idler. This result applied before it was realised that over-driving the varactor could produce higher output powers at higher efficiencies and for higher orders of multiplication.

A further development was the invention of the step-recovery diode which can conduct a large reverse current for a brief time immediately following forward conduction. The reverse current then ceases abruptly and the result is that considerable power can be generated at the harmonics of the input current frequency. The steprecovery diode has a doping profile which is not abrupt at the junction and some diodes of this type are known as "graded-jumction varactors".

The extension of multiplier circuit analyses to cover the cases of graded-junction varactors and step-recovery diodes in circuits where the diodes were driven into the conducting state started with BURCKHARDT (Reference 04, 1965) with a complete numerical solution for a variety of circuits. A publication by SCANLAN and LAYBOURN (Reference 35, 1967) concluded that operation in the over-driven mode, especially when using the characteristic attributed to a step-recovery diode resulted in a much higher efficiency which is defined as the ratio of output power to power available from the source.

HAMILTON and HALL (Reference 09, 1967) published the first complete account of the operation of multipliers using steprecovery diodes (SRD) switching between forward conduction and the reversemias condicion. The circuits used at that time were mainly of the coaxial cavity and waveguide cavity type but since then stripline and microstrip filters have been increasingly used in multiplier circuits. The analysis of the $S R D$ multiplier uses the equivalent circuit of KOTZEBUE (Reference 14, 1965) which is based upon the physical theory of the operation of the SRD given by MOLL, KRAKAUER and SHEN (Reference 24, 1962). An altemative approach by GARDINER and WAGIEALLA (Reference 08,1973) represented the step recovery effect as a charge-controlled switch which allowed the device to be represented as a time-varying element thus permitting the application of linear circuit theory.

The design of step-recovery multipliers using coaxial cavities has been given in various application notes (References 10, 26). A multiplier using microstrip output filters is described by ACCATINO and ANGELUCCI (Reference 01, 1979) with an output power of about 20 dBin at a frequency of 12.948 GHz . It is expected that output powers of this order will be obtained from the circuits investigated in this project.

Recently avalanche diodes have been investigated in frequency muitiplication circuits and high order multiplication has been achieved. Multiplication from 1 GHz to 35 GHz with an output power of 250 mW and conversion loss of 13 dB has been claimed by ROLLAND et al (Reference 31, 1973) using silicon avalanche diodes, and GaAs diodes were used by KRAMER et al (Reference 15,1976) to achieve an output of 100 mW at 32 GHz from an input of 400 mW at 4 GHz . These circuits take power
frow a d.c. bias supply bus in sous applications xay weil supersede other multipliex circuits.

A recent commerciallyomanufactured sweep oscillator uses two dual-gate field-effect rransistors in a donbler circuit to give $\Rightarrow 10$ dim at 26 GHz (Reference 11, 1982). This circuit, in comon with most contemporary multipliers, uses microstripline technology.

There is a large amomt of techaical literature on the subject of resonant cavities as microvave circuit elements, one of the early contributions being by MONTGOMERI, RICKIE and PURCELL (Reference 25, 1948). Many of the iransmission-line resonant filters whick have been described have been with parallel coupling, for exauple, CRISTAL (Reference 05, 19642 described interdigital and comb-line filters which used coupled circular cylindrical rods, and MATTHAEI had described similar filters (References 21, 22, 1962). The series-tuned coaxial cavity has been used in experimental mizer circuits by EMMETT (Reference 06, 1974) and in frequency multiplier circuits by SAUL (Reference 32, 1974) and KULESZA (Reference 17, 1967) who obtained excellent results with capacitive transformers as matcbing circuits.

From about 1960 onwards the stripline (or tri-plate) type of transmission line began to be the subject of research and development in mixcrowave filters and numerous publications appeared swch as the book by MATTHAEI, YOUNG \& JONES (Reference 23, 1964). The stripline is a balanced transmission line with a single strip conductor parallel to and mid-way between two parallel conducting planes which are the return path. All three conductors are separated by an insulating dielectric. If one of the conducting planes is removed the structure remaining is a copper strip separated from a ground plane by a thin dielectric plate and this mbalanced line is called a microstrip line.

The characceriseic impedance and wavelengtz of signals in microstrip is a function of che geometry and various papers have derived formulae Eor the parameters (references $13,36,37,38,42$).

The unbalanced nature of microstrip means that the travelling waves exist in the dielectric substrate and in the air above the strip conductor and it is convenient to introduce the concept of an effective dielectric constant which can be used in the formulae for characteristic impedance and wavelength. Very important comtributions on this subject were made by kJEELER (Reference 42, 1965) and SCENEIDER (Reference 36,1969). Useful data on the mitreing of corners on microsirip lines to prevent reflections and attenuation is given by RELLEY er al (Reference 12, 1968). The series capacirance of a gap in a microstrip line has been investigated and repored by BENEDEK and SILVESTER (Reference 03, 1972) who also calculated the shunt capacitance ar a step in the line. The latter occurs in the quarter-wavelength transformer configuration which is used for impedance matching in the circuits described in Chapter 6. Details of band-pass microscrip line filcers are given by FLEMING (Reference 07 , 1977) although no references have been found for the series-tuned microstripline cavicies used in this project.

Finally, an important aspect of multiplier operation is the effect of the embedding of the non-linear device in a microwave circuit. Early analyses of frequency multipliers often ignored this effect and started from the mathematical law,

$$
\begin{equation*}
C_{i}=c_{o}{ }^{\gamma}\left(1-v_{a} / \phi\right)^{-\gamma} \tag{1.1}
\end{equation*}
$$

where C_{i} is the incremental capacitance of the varactor junction when V_{a} is the voltage applied across it. The other quantities in equation (1.1) are the contact potential ϕ, the constant γ which depends upon the doping profile and a constant $C_{0}{ }^{\circ}$ which is the capacitance when zero voltage is applied across the jmction. KULESZA (Reference 16, 1966) for example, computed the efficiencies of multipliers using varactors having various values of γ and showed that for $Y=\frac{1}{2}$ the second harmonic is the highest harmonic present. This conclusion, however, might be modified by the effect of parasitics upon the device law. The analysis used in this project (Chapters 4 and 5) employs a characteristic for the device which includes the effects of the parasitics present when the diode is embedded in a typical circuit. This method was suggested by ARMSTRONG (Reference 02, 1983) and is applied to several multiplier circuits in this report.

CHAPTER 2

ANALYSIS OF THE SERIES-TUNED CAVITY

Page

2.1 Introduction 19
2.2 Analysis of the Series-Tuned Cavity 21
2.3 Theoretical Results for Series-Tuned Cavity 27
2.3.1 Variation of cavity length 27
2.3.2 Variation of probe position 28
2.3.3 Design procedure 28
2.4 The Co-axial Series-Tuned Cavity 39
2.5 The Microstrip Series-Tuned Cavity 44
2.6 Conclusion 49

2.1 Introduction

The seriesttuned cavity is defined here as a length of shortcircuited transmission line connected to a tuning capacitor to form a series resonant circuit. The transmission line is of length just less than a quarter wavelength so that its input impedance is an inductive reactance. It is normally required that the selectivity of the circuit should remain at a high value under load conditions. Power can be extracted from the cavity via a coupling loop, a capacitor probe or a probe which is directly coupled to the conductors as shown in the schematic diagrams of Figures $2.1,2.2$ and 2.3 .

$$
\text { Mutual } \frac{\text { Figure 2.I }}{\text { Inductive Coupling }}
$$

Figure 2.2
Capacitive Counling

Figure 2.3
Direct Coupling

Two types of transmission line which are particularly useful in UAF and microwave circuits, namely the coaxial line and the microstrip line, will be used as cavities operating in the seriestuned mode. They will be required for use as filters and matching networks in the frequency multiplier circuits investigated in Chapter 6.

The analysis and predicted performance for the series-tuned cavity are presented in this chapter and practical results for some examples of coaxial and microstrip cavities are given in Chapter 3.

2.2 Analysis of the series-tuned cavity

In the first instance the cransmission line is assumed to be lossless in order to simplify the analysis. Furthermore, the simplest type of coupling is used, namely, direct coupiing and the primary objective is to obtain the variation of the frequency plot of the available power gain as various parameters of the cavity are changed. The parameters of importance are the length of the cavity $D C$, the position of the probe $D P$, the value of the tuning capacitance C_{s} and the characteristic impedance Z_{0}. The parameters of the circuit are the source resistance R_{s} and the load resistance R_{L}.

A normalised frequency variable f^{\prime} is used so that the results may be generalised to design a cavity for any required frequency. The symbols employed are defined as the analysis is developed although a full list is also given in Appendix 2(i).

The input impedance $Z_{\text {in }}$ of a length $D C$ of a transmission line terminated in an impedance Z_{T} ohms is given by

$$
\begin{equation*}
z_{\text {in }}=z_{0} \frac{z_{T}+j z_{0} \tan \beta(D C)}{z_{0}+j z_{T} \tan \beta(D C)} \tag{2.1}
\end{equation*}
$$

where β is the phase change constant per metre length of the transmission line which has zero attenuation per unit length.

When the transmission line is terminated in a short circuit the input impedance is reactive given by

$$
\begin{equation*}
z_{s c}=j z_{o} \tan B(D C) \tag{2.2}
\end{equation*}
$$

The electrical length of the cavity measured in radians of phase change is

$$
\begin{equation*}
\theta=\beta(D C) \tag{2.3}
\end{equation*}
$$

and B can be wricten in terns of the inducence and capacitance per unic length of line, L_{m} and C_{m} as

$$
\begin{equation*}
\beta=2 \pi f \sqrt{L_{m} C_{m}} \tag{2,4}
\end{equation*}
$$

or for an air-dielectric line as

$$
\begin{equation*}
\beta=\frac{2 \pi I}{c} \tag{2.5}
\end{equation*}
$$

where c is the velocity of light in aix.
The frequency at which che cavity is a quarter wavelength long will be called $f_{\text {cav }}$ and hence

$$
\begin{align*}
& 4(D C)=\frac{c}{f_{\text {cay }}}=\lambda \tag{2.6}\\
\therefore \quad(D C) & =\frac{\lambda}{4}
\end{align*}
$$

and

$$
\begin{equation*}
\theta=\frac{B c}{4 f_{c a v}}=\frac{\pi f}{2 f} \tag{2.7}
\end{equation*}
$$

If the frequency f is normalised by dividing by $f_{c a v}$ then

$$
\begin{equation*}
\theta=\frac{\pi}{2} f^{\prime} \tag{2,8}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{\circ}=\frac{f}{f_{\text {cav }}} \tag{2.9}
\end{equation*}
$$

The series resonant frequency of the unloaded cavity (i.e. $R_{L}=\infty$) will be less than $f_{c a v}$, denoted as f_{0} and given by the relation

$$
\begin{equation*}
\frac{1}{2 \pi f_{o} C_{S N}}=Z_{o} \tan \frac{\pi}{2} \frac{f_{o}}{f_{c a v}} \tag{2.10}
\end{equation*}
$$

The unloaded series resonant frequency f_{0} may also be normalised and expressed as,

$$
\begin{equation*}
f_{0}^{\circ}=\frac{f_{0}}{f_{c a v}} \tag{2.11}
\end{equation*}
$$

Ar che frequency f_{0} the value of θ can be cailed θ_{0} where

$$
\begin{equation*}
\theta_{0}=\frac{\pi}{2} \frac{f_{0}}{f_{c a v}} \tag{2.12}
\end{equation*}
$$

The caviry paramerer $D C$ and the cuning capacicance $C_{\text {SN }}$ are included in che expressions for che variables θ and θ_{0} respecrively (see equacions (2.6, (2.7), (2.10) and (2.12)) and the position of the probe $D P$ in the angle ϕ given by

$$
\begin{equation*}
\phi=\beta(\mathrm{DP})=\frac{2 \pi f(\mathrm{DP})}{c} \tag{2.13}
\end{equation*}
$$

The source resistance R_{s} will inicially be assumed to equal Z_{o} and the load impedance Z_{L} will be normalised as

$$
\begin{equation*}
Z_{L}^{p}=\frac{Z_{L}}{Z_{0}} \tag{2.14}
\end{equation*}
$$

The inpur impedance of che loaded caviry ar che rerminals $1,1^{\text { }}$ as shown in Figure 2.4 is $\mathrm{Z}_{\mathrm{i} / \mathrm{p}}$, and using equations (2.1), (2.2), (2.3), (2.13) and (2.14) this can be expressed as

$$
\begin{equation*}
Z_{i / p}=Z_{0} \frac{\{-\tan (\theta-\phi) \tan \phi\}+j Z_{L}^{\prime}\{\tan (\theta-\phi)+\tan \phi\}}{Z_{L}^{\prime}\{1-\tan \phi \tan (\theta-\phi)\}+j \tan \phi} \tag{2.15}
\end{equation*}
$$

Figure 2.4

Whea the input capacitor C_{S} is included, the cocal input impedance $2_{\text {IN }}$ is given by

$$
\begin{equation*}
z_{I N}=z_{i / p}-j \frac{1}{2 \pi \mathcal{F}_{s}} \tag{2.16}
\end{equation*}
$$

or

$$
\begin{equation*}
Z_{I N}=R_{i / p}+j H_{i / p}-j \frac{1}{2 \pi f C_{s}} \tag{2.17}
\end{equation*}
$$

These resistances, reactances and impedances can be normalised by dividing by Z_{o} so that

$$
\begin{equation*}
Z_{I N}{ }^{p}=R_{i / p}{ }^{0} \leqslant j\left(X_{i / p}^{0}-\frac{1}{Z_{0} 2 \pi E C_{s}}\right. \tag{2.18}
\end{equation*}
$$

The real and imaginary parts of equation (2.15) are plotred against f° in Figures 2.2, 2. 10 and the modulus of $\mathrm{Z}_{\mathrm{i} / \mathrm{p}}{ }^{\circ}$ is shown in Figure 2.8.

The quantity measured during swept-frequency tests is the ourpur voltage V_{L} and this is normally calibrated against the signal generator output into 50Ω, making the ratio V_{L} to $E_{s} / 2$ a useful quantity to compute. The load power P_{L} and the masimum power available from the source P_{A} are related to the available power gain G by the following equations

$$
\begin{gather*}
G=\frac{P_{L}}{P_{A}} \tag{2,19}\\
P_{L}=\frac{\left|V_{L}\right|^{2}}{\left|Z_{L}{ }^{0} Z_{0}\right|^{2}} R_{L} \tag{2.20}\\
P_{A}=\frac{E_{S}{ }^{2}}{4 Z_{0}} \text { where } R_{S}=Z_{0} \tag{2.21}
\end{gather*}
$$

If Z_{E}^{\prime}, is real chen,

$$
\begin{gather*}
\frac{V_{L}}{E_{s / 2}}=\sqrt{\frac{\left(Z_{L}^{1} Z_{o} P_{L}\right)}{\left(Z_{o} P_{A}\right)}}=\sqrt{Z_{L}} G \tag{2.22}\\
G=\frac{1}{Z_{L}}\left(\frac{V_{L}}{E_{s / 2}}\right) \tag{2.23}
\end{gather*}
$$

The insertion loss is is decrease in load power caused fy connecting the 2-port network between the signal source and the load and is thus

$$
L=10 \log _{10} \frac{P_{A}}{P_{I}}
$$

or

$$
\begin{equation*}
\mathbb{L}=10 \log _{10} Z_{L}^{\prime}-20 \log _{10}\left(\frac{V_{\mathbb{L}}}{E_{\mathbb{S} / 2}}\right) \tag{2.24}
\end{equation*}
$$

Expressions for P_{I} and P_{A} may be easily obtained using equation (2.17) When the cavity losses are assumed to be zero. Alternatively the load power may be deduced using the Thévenin Equivalent circuit for the caviry as shown in Figure 2.5, leading to

$$
\begin{gather*}
V_{O C}^{0}=\frac{V_{O C}}{E_{\mathbb{G}}}=\frac{j \cos (\theta-\phi)\{\tan \theta-\tan (\theta-\phi)\}}{1 \& j\left\{\tan \theta-\frac{1}{2 \pi f C_{s} Z_{o}}\right\}} \tag{2.25}\\
Z_{o / p}{ }^{0}=\frac{Z_{o / p}}{Z_{o}}=\frac{\operatorname{can} \phi\left\{X_{c}^{j}-\tan (\theta-\phi)\right\}+j \tan \phi}{\operatorname{Re}+j \operatorname{Im}} \tag{2.26}
\end{gather*}
$$

where $\operatorname{Re}=1-\operatorname{can} \phi \tan (\theta-\Phi)$
and $\quad \operatorname{Im}=\tan \phi+\tan (\theta-\phi)+\frac{\{\tan \phi \tan (\theta-\phi)-1\}}{2 \pi \mathrm{f}_{\mathbf{s}} \mathrm{Z}_{\mathrm{o}}}$

An expression for P_{L} is

$$
P_{L}=\frac{E_{s}{ }^{2} R_{i / p}{ }^{p} Z_{o}}{Z_{o}^{2}\left(1+R_{i} / p^{p}\right)^{2}+\left(Z_{o} X_{i / p}{ }^{p}-\frac{1}{2 \pi f C_{s}}\right)^{2}}
$$

Some of che equations developed in this section are plotted in section 2.3 .

2.3 Theoretical Results for Series-Tumed Cayity

The equations (2.15) to (2.27) can be used to plot che variation of $G, L, 2 V_{0} / E_{s}$ and $Z_{I N}{ }^{0}$ with normalised frequency f^{0} for various values of Z_{L}, A and θ_{0}. Graphs of some of these quantities are shown in Figures 2.6 to 2.13. A is che racio of the distance of the probe from the short circuic to the lengeh of the cavity.

2.3.1 Variacion of cavity lexiget

Winch reference to Figure 2.6 it can be seen that two series resonant Erequencies occur, one jusi below the quarter wavelength and the ocber just below the three-quarter wavelength frequency where the cavity is again inductive. The available power gain G and insertion loss L curves in Figures 2.6 and 2.7 respectively, show that the length of the cavity mast not te too near a quarter wavelength ($\theta_{0}=\frac{\pi}{2}$), in fact, zero insertion loss occurs when $\theta_{0}=81^{\circ}$. This happens when the input impedance $Z_{i / p}$ is 50Ω resistive in series with an inductive reactance which can then be resonated with the tuming capacitor C_{s} 。

The matching of the inpert impedance of the loaded cavity to the source can easily be obtained from the graphs in Figures 2.9 and 2.10. The frequency at whinch $R_{i / p}{ }^{p}=1$ is noted and the value of X_{i} / p pt this frequency is resonated by adjusting $C_{s^{\circ}}$. This occurs at $\theta_{0}=81^{\circ}$ and there are no other values of θ_{0} which give this maximum power transfer.

The "selectivity" of the cavity may be measured from the graphs of output voltage versus frequency which are given in Chapter 3 where practical and theoretical graphs are compared. A 'Q-factor' of about 20 is obtained for the first resonance when $Z_{L}^{\prime}=1, A=0.1$, and $\theta_{0}=81^{\circ}$.

2.3.2 Variation of probe position

The position of the probe or load coupling is given By the constant A which is usually of the order of 0.1 . As che probe is moved cowards the input end of the cavity the resonant peaks tend co broaden as shom in Figure 2.13. The value of G Eor the first resonance when $A=0.2$ (see Figure 2.13) could be adjusted to che matched condicion of mity if a different value of θ_{0} were used. This could be obtained by ploting curves of $\mathbb{R}_{i / p}{ }^{\circ}$ and \mathbb{R}_{i} / p ${ }^{p}$ Csimilar to Frigures 2.9 and 2.10%, for farious values of θ_{0} for $A=0.2$.

Further investigations show that the response for $A=0.57$, for e\#maple, can be changed by making $\theta_{0}=88^{\circ}$ so that the first resonance disappears and the second resonance becomes more selective. This can Be seen from the practical result shown in Figure 3 , in Chaprer 3 .

2.3.3. Design procedure

Since the load impedance Z_{L} will normally be specified, Z_{L}^{\prime} is known. Graphs of $R_{i / p}{ }^{\eta}$ and $X_{i / p}{ }^{i}$ can then be plotred using particular values of A (for emample 0.1 and 0.2) for various values of θ_{0}. This enables θ_{0} to be determined wich produces zero attenuation at the first resonance, and the graphs of G and L can then be plotted. A suitable pair of values of θ_{0} and A can then $b e$ chosen to give the required selectivity. The normalised resonant frequency is obtained from the graph of L (in

Eigure 2.7) which gives $f_{s}{ }^{0}$ of 0.8 .
Then $f_{\text {cay }}$ may be found from

$$
\begin{equation*}
f_{\text {cav }}=\frac{f_{s}}{f_{s}} \tag{2.28}
\end{equation*}
$$

and hence the required length of cavity $D C$ may be determined from equation (2.6), i.e.

$$
D C=\frac{3.10^{8}}{4 f_{\mathrm{cav}}}
$$

The value of θ_{0} is known and can be used to find the required $C_{S N}$ which tunes the unloaded cavity. If equations (2.10) and (2.12) are combined the following expression for the capacitance may be obrained,

$$
\begin{equation*}
C_{S N}=\frac{1}{4 f_{\text {cav }} Z_{0} \theta_{0} \tan \theta_{0}} \tag{2.29}
\end{equation*}
$$

Values of $C_{S N}$ for any $f_{\text {cav }} \quad Z_{0}=50 \Omega$ and certain values of θ_{0} are shown in Figures 2.14 and 2.15 . The actual value of C_{S} required when the cavity is loaded will be different from $C_{S N}$ and will be needed to resonate with $X_{i / p}{ }^{8}$, and therefore $i t$ will be slightly greater than $C_{S N}$.

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

2.4 The Coasiai Series-Tuxed Cavity

A coamial series-tuned cavity with directocoupled load is illustrated in Figuse 2.16.

Figure 2.16

The dominant mode in coaxial transmission lines is the eransverse electromagnetic (TEM) with the electric and magnetic field components always at right angles to each other and to the direction of propagation. Different modes occur when the frequency is high enough such that the wavelength becomes equal to the mean circumference of the coaxial system. Formulae for the parameters with TEM propagation on the coaxial line are well-known and are sumarised below so that they may be used in design calculations. A schematic diagram is shown in Figure 2.17.

Figure 2.17
Schematic Diagram of Coazial Caviry

The inductance per metre and the capacitance per metre are

$$
\begin{align*}
& L_{m}=\frac{\mu_{0} \mu_{r}}{2 \pi} \ln \left(\frac{b}{a}\right) \text { henrys per metre } \tag{2.30}\\
& C_{m}=\frac{2 \pi \varepsilon_{0} \varepsilon_{r}}{\ln \left(\frac{b}{a}\right)} \text { farads per metre } \tag{2.31}
\end{align*}
$$

where 2 b is the diameter of the outer conductor
2a is the diameter of the inner conductor
μ_{r} is the relative permeability of the material between the two
μ_{0} is the permeability of free space, and
ℓn is the natural logarithm
ε_{r} is the relarive permittivity of the material between the two conductors, and
ε_{0} is the permittivity of free space.

The characteriscic impedance of any cransmission line is

$$
\begin{equation*}
z_{o}=\sqrt{\frac{R_{m}+j \omega L_{m}}{G_{m}+j \omega C_{m}}} \tag{2.32}
\end{equation*}
$$

where $\mathbb{R}_{n}=$ series resistance of line per wetre
$G_{m}=$ shumt capacitance of line per metre
$\mathbb{I}_{\mathrm{m}}=$ inductance of line per metre
$C_{m}=$ capacitance of line per metre

If R_{m} and $G_{\text {ma }}$ are negligibly small then for a coaxial line,

$$
z_{o}=\sqrt{\frac{L_{m}}{C_{m}}}
$$

From waich

$$
\begin{equation*}
z_{0} \simeq 60 \sqrt{\frac{\mu_{x}}{\varepsilon_{I}}} \ln \left(\frac{x^{(x}}{a}\right) \tag{2.33}
\end{equation*}
$$

and हhen $\mu_{r}=1$ and $\varepsilon_{r}=1$ as for the air-dielectric line,

$$
\begin{equation*}
z_{0}=60 \ln \left(\frac{b}{a}\right) \tag{2.34}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{0} \simeq 138 \log \left(\frac{b}{a}\right) \tag{2.35}
\end{equation*}
$$

where \log is the $10 g a r i t h m$ to the base 10 .

The wavelength λ for a signal of frequency f is given by equation (2.36)

$$
\begin{equation*}
\lambda=\frac{c}{E \sqrt{\mu_{\Psi} \varepsilon} r} \tag{2.36}
\end{equation*}
$$

where c is the velocity of electromagnetic waves in free space.
The variation of characteristic impedance with b and a is given by equation (2.35) which is shown as a graph in Figure 2.18. This shows that it is difficult to make a coaxial line with a value of Z_{0} much less than 208 as the ratio b / a becomes less than 1.4. A lower characteristic impedance can be produced by using a dielectric other than air but this will increase dielectric losses which are generally more significant than conductor losses at microwave frequencies.

The attenuation per metre of an air-dielectric coaxial line can be shown to be a minimum for $\frac{b}{a}$ of 3.6 which corresponds to a characteristic impedance of 77 ohms. However, the attenuation does not increase by more than 20% within the range $2 \leqslant \frac{b}{a} \leqslant 9.5$ which corresponds to the range of characteristic impedance 40 to 136 ohms. The graph of attenuation against $\frac{b}{a}$ is shown in Figure 2.19.

Figure $2.18 \mathrm{Z}_{\mathrm{o}}$ versus b/a for a coaxial line

Figgure 2.19 Attenuation versus b/a for a coaxial line

The microstrip series-tuned cavity

The microstrip transmission line has been the subject of extensive research and development in recent years because of its suitability for use in microwave integrated circuits. A microstrip circuit is normally produced using the techniques developed for printed-circuit board production, however, more accuracy is required with the conductor patterns. The reproducibility of the photolithographic process, the ease of production and the small size give the microstrip considerable advantages over the altemative waveguide and coaxial systems.

A microstrip transmission line is shown in Figure 2.20 and can be seen to consist of three pares: (i) a substrate which is initially fully clad with copper on both sides (ii) a ground plane of copper on one side of the substrate and (iii) a conductor pattern of strips of copper on the opposite side.

Figure 2.20
Cross-section of microstrip transmission line

The conducting sirip is surromded by two different materials, air and substrate, the latter consisting of any of the following: p.E.f.e.-impregnated glass Eibre, alunina, saphire or ferrite。 Dne co tris lack of symmety tine propagation along the transmission line is not exactly TEM and exact computation of the venocity of propagation and characteristic impedance are difficult. An effective relative pemictivity $\varepsilon_{e f f}$ has a value between the values of relative permittivity for air and che substrate. A useful formula for $\varepsilon_{\text {eff }}$ is given by SCHNEIDER (reference 36) which shows that it depends upon the ratio w/b as well as the relative permitcivity of the substrate, i.e.

$$
\begin{gather*}
\varepsilon_{\text {eff }}=\frac{\varepsilon_{r} \& 1}{2}+\frac{\varepsilon_{I}-1}{2}\left(1 * \frac{10 \mathrm{~B}}{W}\right)^{-\frac{1}{2}} \text { for } \frac{W}{\mathrm{~h}} 22 \tag{2.37}\\
\varepsilon_{\text {eff }}=\frac{\varepsilon_{r} \& 1}{2}+\frac{\varepsilon_{I}-1}{2}\left(1+\frac{10 h}{W}\right)^{-\frac{1}{2}}+C \text { for } \frac{W}{h} \leqslant 2 \tag{2.38}\\
C=0.468 \frac{\left(\varepsilon_{r}+0.5\right)}{1.5}\left(\frac{t}{W}\right)^{\frac{1}{2}}
\end{gather*}
$$

where
and ε_{r} is the relative permittivity of the substrate
li is the chickness of the substrate
E is the width of the transmission line
t is the thickness of the transmission line

The characteristic impedance of the microstrip is

$$
\begin{equation*}
z_{o}=\frac{z_{\mathrm{OA}}}{\left(\varepsilon_{\mathrm{eff}}\right)^{\frac{1}{2}}} \tag{2.39}
\end{equation*}
$$

where $Z_{O A}$ is the characteriscic impedance of a microstrip with a substrate having a relative permittivity ε_{r} of $\mathbb{1}_{\text {, }}$ and $\varepsilon_{e f f}$ is the effective relative permittivity given by equations (2.37) and (2.38).
$Z_{0 A}$ may be calculated from

$$
\begin{equation*}
z_{O A}=60 \ln \left(\frac{8 h}{W}+\frac{w}{4 h}\right) \text { for } \frac{W}{h} \leqslant 1 \tag{2.40}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{\mathrm{OA}}=\frac{120 \pi}{\frac{W}{h}+2.42-0.44 \frac{h}{W}+\left(1-\frac{h}{W}\right)^{6}} \text { for } \frac{W}{h} \geqslant 1 \tag{2.41}
\end{equation*}
$$

The wavelength of a signal of frequency f in the microstrip is

$$
\begin{equation*}
\lambda_{\text {II }}=\frac{\lambda_{0}}{\left(\varepsilon_{e f f}\right)^{\frac{1}{2}}} \tag{2.42}
\end{equation*}
$$

where λ_{0} is the wavelength in a microstrip with a substrate having a relative permittivity ε_{r} of $1 . \lambda_{O}$ is also the free-space wavelength and for a signal of frequency f is

$$
\begin{equation*}
\lambda_{0}=\frac{3.10^{8}}{f} \text { metres } \tag{2.43}
\end{equation*}
$$

The attenuation in the microstrip transmission line is due to conductor loss and dielectric loss, which are both dependent upon the characteristic impedance and frequency. An example of the typical parameters for a $50-\Omega$ microstrip on a fibre-glass substrate is given in Table 2.1 below.

The variation of characteristic impedance with the width of conductor strip for the example given in table 2.1 is shown in Figure 2.21 . The microstrip transmission line can be used as a series-tmed cavity if a discrete variable capacitor or a fixed-value chip capacitor is used as the tuning capacitor as shown in Figure 2.22 .

Figure 2.21

Microstrip series-tuned cavity
Figure 2.22

2.6 Conclusion

The cheorerical resules shown graphically in Figures 2.6 co 2.13 show char the selecriviry of the cavity when feeding a $50-\Omega$ resiscive load is a maximum when che probe is posirioned near the short-circuiced end. The Q-factor of 20 observed for the case when $A=0.1, Z_{L}^{0}=1$ and $\theta_{0}=81^{\circ}$ is obrained with an effective series resistance of 100Ω. The usioaded Q of the caviry might be of che order of 20,000 , or grearer, but the cavicy is loaded by che source resiscance and load resistance each of which is 50Ω in che case considered. सigher values of loaded Q-factor can be obrained but at the expense of an increasing insercion loss due to mismatch.

A design procedure is given in section 2.3 .3 so chat the required cavicy lengek, eapping point and series capacitance may be calculaced for any case。 Graphs of $R_{i / p}{ }^{\circ}$ and $X_{i / p}{ }^{\prime}$ are useful in choosing suirable values of θ_{0} and A. There may be cases when Z_{L} is nor equal ro Z_{o} and the caviry may then be used to provide impedance match at the required frequency.

Experimencal results on two practical cavities are given in Chapter 3 and chese show very licrle deviacion from the cheorecical resules obrained in chis chapeer.

CBAPTER 3

PERFORMANCE OF PRACTICAL SERIES-TUNED CAVITIES

Page
3.1 Introduction 51
3.2 A Practical Coaxial Cavity 52
3.2.1 Design details 52
3.2.2 Tests on cavity CI 53
3.2.3 Summary 54
3.3 A Practical Microstrip Cavity 55
3.3.1 Design details 55
3.3.2 Tests on cavities M2 and M4 56
3.3.3 Tests on cavity M1 57
3.3.4 Summary 57
3.4 Conclusion 58

3.1 Incroduction

The theoretical results predicted in Chapter 2 apply to resonant cavities constructed with any type of transmission line. Coaxial transmission lines have been used for many years and have the important advantage, when compared with microstriplines, that the electromagnetic field is enclosed. A practical coaxial cavity was therefore designed and tested and the details are given in section 3.2 .

Coaxial tecfinology is now being replaced in many microwave applications by a planar technology because the latter produces smaller and more easily manufactured circuits. The resulting transmission lines are either striplines or microstrips as described in section 2.5 . Three microstrip cavities were designed, produced and tested with results presented in section 3.3.

The coaxial cavity was called "cavity Cl" and the microstrip cavities were given the titles "cavity M1", "cavity M2" and "cavity M4"。

3.2 A Practical Coaxial Cavity

3.2.1 Design derails

The cavity Cl was designed to have a characteristic impedance of 50Ω and a first resonance $2 t 192 \mathrm{MHz}$. A $50-\Omega \mathrm{G} . \mathrm{R}$. connector was used at the input and an adjustable airgap in the centre conductor of the coazial transmission line provided the required tuning capacitance C_{s}. The mechanical design of the mainly-brass cavity is illustrated in Figures 3.1, 3.2 and 3.3.

Dimensions of the cavity
Consider a value of θ_{0} of 81°, then from equation (2.12),

$$
\begin{equation*}
f_{\text {cav }}=90 \times \frac{192 \mathrm{MHz}}{81^{\circ}}=213.3 \mathrm{MHz} \tag{3.1}
\end{equation*}
$$

The cavity length DC may then be found from equation (2.6) as,

$$
\begin{equation*}
D C=\frac{c}{4 \mathrm{f}}=\frac{3.10^{8}}{4213.310^{6}}=35.1 \mathrm{~cm} \tag{3.2}
\end{equation*}
$$

Equation (2.35) can be used to determine the required ratio of B to A (see Figure 3.1). The values used for B and A were those of the 50- Ω connector, namely,

$$
\begin{align*}
& A=7 \mathrm{~mm} \tag{3.3}\\
& B=16 \mathrm{~mm} \tag{3.4}
\end{align*}
$$

The value of input capacitance required to resonate the unloaded cavity can be calculated from equation (2.10) as,

$$
\begin{equation*}
C_{S N}=\frac{1}{2 \pi f_{0} Z_{0} \tan \theta_{0}}=\frac{1}{2 \pi 19210^{6} 50 \tan \left(81^{\circ}\right)}=2.6 \mathrm{pF} \tag{3.5}
\end{equation*}
$$

Tae parallel plate capacicor was produced with annular plates and the plate area A_{c} is given by the value in expression (3.6)

$$
\begin{equation*}
A_{c}=\frac{\pi}{4}\left\{\left(7.10^{-3}\right)^{2}-\left(3.510^{-3}\right)^{2}\right\}=28.910^{-6} \mathrm{~m}^{2} \tag{3.6}
\end{equation*}
$$

It is useful to know the distance between the plates, ${ }_{c}{ }_{c}$. when the parallel-plate capaciror has capacitance $\mathbb{C}_{S N}$ given by equation (3.5),

$$
\begin{equation*}
d_{c}=\frac{A_{c} \varepsilon_{0}}{C_{S N}}=\frac{28.910^{-6} 8.85610^{-12}}{2.610^{-12}}=0.098 \mathrm{~mm} \tag{3.7}
\end{equation*}
$$

This value of d_{c} is very small and it suggests that a very fine thread adjustment is required on part H of the cavity shown on Figure 3.3.

3.2.2 Tests on cavity Cl

Sweptfrequency tests were carried out on the cavity with a proke consiscing of the stiff inner conductor of a $50-\Omega$ coaxial cable. The probe is shown the photograph in Figure 3.4. The load resistor was the $50-\Omega$ diode detector used with the sweep oscillator. Graphs of $2 \mathrm{~V}_{\mathrm{L}} / \mathrm{E}_{\mathrm{s}}$ versus frequency were plotted using an $\mathrm{X}-\mathrm{Y}$ plotter.

Test 2A: The position of the probe was such that DP was 3.5 cm and thus it was one tenth of the length of the cavity. The practical results were plotted on the same axes as theoretical results from computer plots of the equations developed in Chapter 2, see Figures 3.5 and 3.6 .

Test $2 \mathbb{B}$: Variation of the tuning capacitor C_{s} produced responses as shown in Figure 3.7, the corresponding theoretical results being shown in Figure 3.8.

Test 2C: This test was conducted with DP of 20 cm so that $A=0.57$ for which the theoretical results are plotted in Figure 2.13. The practical results are shown in Figure 3.9.

Test 22: If the value of C_{s} is decreased to 0.5 pF the "third harmonic resonance" becomes sharper as the practical results of Figure 3.10 indicate. However, it should be noted that the available power gain G at chis resonance is approximately 0.16.

3.2.3 Conclusion

The correlation between practical and theoretical results is very good as displayed in Figures 3.5 and 3.6. At the resonance the voltage response is about 10% below the theoretical voltage response; the practical response is thus less than 1 dB below the theoretical. This difference is probably due to the losses in the cavity.

The construction of the cavity requires careful design of the input capacitance and of the probe connection.

3.3 A Practical Microserip Cavity

3.3.1 Design derails

A microstrip test board with layout as shown in Figure 3.11 was produced to oftain practical results which could be compared with the theoreical resuits of Chapter 2. The board consisted of a fibreglass substrate with conductor strips of wideh 2.7 mm , previous tests having shom that these cransmission lines have characteristic impedance of 508 and effective relative permittivity of 3.17 .

In fact three cavities, numbered $M 1$, $\mathbb{N} 2$ and $M 4$, were included on the board with dimensions and data as given in Table 3.1. The short circuits were produced using brass screws through the substrates to make the contact between the baseplate and the strip.

	Cavity M1	Cavity M2	Cavity M4
Input terminal	1 A	2 A	4 A
Outpur remminal	18	3 B	5 B
Physical Length (DC)	155 mm	73 mm	73 mm
Predicted $\mathrm{f}_{\text {cav }}$ (assuming $\varepsilon_{\text {eff }}=3.17$)	272 MHz	577 MHz	577 MHz
A $=\frac{\mathrm{DP}}{\mathrm{DC}}$	0.1	0.1	0.1

TABLE 3.1

3.3.2 Tests on cavicies $\mathbb{M} 2$ and W4

Test 3A: Cavity $\mathbb{M} 2$ was fed through a variable capacitor connected to input terminal 2A as shown in Figure 3.12. The output coupling was a copper wire soldered between the cavity and the microstrip connected to outpur terminal 3 B . The value of C_{s} was the minimum obrainable on the variable capacitor used and was measured as 3 pF . The swept frequency response is shown in Figure 3.13.

Test 3B: The above test was repeated on cavity $M 4$ to investigate the effect of the type of probe connection (cavity M4 has a 50- Ω microstrip probe). The response is shown in Figure 3.14 which shows that the resonant peaks are at the same frequencies as for cavity M2 but the high-frequency transmission of the system is better for cavity M4.

Test 3C: The value of the capacitor C_{s} was changed to 5 pF to obtain a different response and the procedure of test 3 A was repeated. The response has the first resonance at 430 MHz and is shown in Figure 3.15.

Test 3D: Cavity M2 was fed via C_{s} but the output was taken from a position which was 0.2 of the cavity length from the short-circuited end. The output was taken via a copper wire link to the $50-\Omega$ microstrip connected to point $4 B$. The value of C_{s} was adjusted to give a maximum height first resonance and the response was as shown in Figure 3.16 with the resonance at 460 MHz .

3.3.3 Tests on caviey M1

Test 3E: Cavicy M1 was fed via a variable capacitor C_{s} connected at inpur IA and the ousput was connected to IB via a direct copper wire link to a point 0.1 times the cavity length from the s / c end of the cavity. It was found that the maximum value of C_{s} gave a low amplitude resonance at 202 MHz and the minimum value of C_{s} also gave a swall first resonance but at 255 MH 2 . The response for minimum C_{s} is given in Figure 3.17 . The value of θ_{0} was estimated to be 84°.

Test 3F: This was similar to the previous test but with C_{s} adjusted to give a maximum amplitude first resonance, see Figure 3.18. The value of θ_{0} for this was estimated to be 78°.

3.3.4 Susmary

It was found that the microstrip probe was more effective than the copper wire probe connection at the higher frequencies. This is shown clearly by comparing Figure 3.13 with 3.14.

The correiation between practical results and theoretical results can be seen by comparing Figure 2.6 with Figure 3.17. It is not as good as for the coaxial cavity but this could be due to the difficulty of providing a tuning capacitor which does not disturb the transmission. A fixed-value chip capacitor could be used but this would not provide the adjustability required. The practical results show a loss compared with the theoretical results of about 2.5 dB for cavity M 1 and 1.7 dB for cavity M2.

3.4 Conclusion

The practical results obrained for the cavities are in close agreesment with the cheorecical results predicced in Chapter 2. This is shown in Figures 3.5 and 3.6 for cavicy Cl and in che comparison of Figures 2.6 and 3.87 for caviey $M 1$.

The results for che practical coasial cavicy show char at the resonance the voleage response is about 10% below the theorecical voltage response; this is a difference of less than 1 dB . It is probably due to the losses in the connectors and, io a swaller extent, the losses in the caviry.

The correlation between practical resules and cheorecical results for the microstrip cavity was not as good as for the coasial cavicy. There was a difference of at least 1.7 dB which could be due to connector loss, cavity loss and radiarion loss.

The construction of the coaxial caviry requires careful design of the input capacitance and che probe connection. The microstrip cavicy was more easily manufacrured but there was a difficulcy in designing the inpur runing capaciror. The construcrional details for each rype of cavicy are given in sections 3.2 .1 and 3.3.1.

Figure 3.3

Figure 3.5
Test 2A

$\frac{\text { Figure } 3.6}{\text { Test } 2 \mathrm{~A}}$

Figure 3.7
Test 2B

Figure 3.8
Test 2B

Figure 3.9 Test 2C

Figure 3.10
Test 2D

Figure 3.11
Microstrip cavities
(Full size drawing)

Figure 3.12
Test 3A: circuit diagram

Figure 3.13
Test 3A

Figure 3.14
Test 3B

Figure 3.15
Test 3C

Figure 3.16
 Test 3D

Figure 3.17
Test 3E

$$
\frac{\text { Figure } 3.18}{\text { Test } 3 \mathrm{~F}}
$$

CHAPTER 4

A METHOD OF ANALYSING DIODE MULTIPLIER CIRCUITS AND ITS APPLICATION TO THE SHUNT-DIODE DOUBLER

Page4.1 Introduction 75
4. 2 A Method of Analysis for Multiplier Circuits in Terms of Varactor Spectral Data. 76
4.3 Shunt-Diode Doubler Analysis 84
4.3.1 Two-term approximation to the diode characteristic 84
4.3.2 Three-term approximation to the diode characteristic 95
4.3.3 Four-term approximation to the diode characteristic 99
4.4 Conclusion 104

This chapter develops a method of analysing frequency multiplier circuits and uses it to obtain expressions for the performance of the shont-diode doublet circuit. Diode tripler circuits, with and without idlers, are dealt with by the same method in Chapter 5.

The method of analysis is explained in Section 4.2 and can be used for either shunt-connected or series-connected diodes. It assumes that the diode is tested with a cosinusoidal drive of charge in the shunt case or voltage in the series case and the resulting spectra of voltage and charge, respectively, are used to specify the nonlinear characteristic of the diode. The performance of the multiplier circuit is then obtained in terms of the magnitudes of the components of the test spectrum.

The performance of a shunt-connected varactor-diode doubler is investigated in Section 4.3 and expressions are found for the maximum output power, the drive levels and load resistance values for which the analysis is valid. The capacitance presented by the diode to the input circuit, and the output capacitance of the diode operating in the second harmonic output circuit are also obtained. These expressions are initially found by an approximate analysis used because of its relative simplicity; the approximation is that the diode does not generate harmonics higher than the second when tested with the cosinusoidal drive. The modifications required when the third and fourth harmonics are taken into account are then investigated in Sections 4.3 .2 and 4.3 .3 and further insight is gained into the operation of the circuit. A large amount of algebra involved in obtaining these solutions has been put into appendices, and a sumary of the results of the analysis is given in Section 4.4.

4.2 A Method of Analysis for Multipliex Circuits in Terms of Varactor Spectral Data

Early work on varactor harmonic generators assumed that operation was constrained so that the woltage across the diode never exceeded the reverse breakdown voitage in one direction and trie contact potential of the junction in the other direction. In practice, especially where automatic bias is used for the varactor, harmonic generators are usually driven so that the contact potential is exceeded in the forward direction wifor results in a short pulse of forward current. This type of operation produces an increased output power and efficiency and is the basis of the switching multipliers which use the step recovery diode (reference 09). The analysis used in this chapter assumes that forward conduction does not occur so that it will not strictly apply to step recovery diode multipliers, although it is hoped that it may be adapted to this case in the furure. However, the method is of considerable interest as it gives closedform solutions which are not restricted to small signals as was the case with the early analyses (reference 17). The method is an adaptation of that proposed by R. ARMSTRONG (reference 02).

Many papers on varactor multipliers have used the relationship between the voltage across the varactor jumction V_{a} and the incremental capacitance C_{i} as

$$
\left.\begin{array}{l}
c_{i}\left(v_{a}\right)=\frac{c_{0}^{r}}{\left(1-\frac{v_{a}}{\phi}\right)^{r}} \text { when } v_{a}<\phi \tag{4.1}\\
c_{i}\left(v_{a}\right)=\infty \quad \text { when } v_{a}=\phi
\end{array}\right\}
$$

where ϕ is the concact porencial. The measurement of che characreristic of the varactor has also been the subject of several invescigations for emample, SMITH and BRANER (reference 37, 1972) and NUYTS and VAN OVERSTRAETEN (reference 26, 1969). Here che varactor Q/V relacionship wil be caken as the sum of Chebyshev Polynomiais as shown in equarion (4.2) for che series diode case and equacion (4.3) for che diode in the shunc comection.

$$
\begin{align*}
& Q=\sum_{n=0}^{\infty} Q_{n o} T_{\mathrm{n}}(v) \tag{4.2}\\
& V=\sum_{n=0}^{\infty} V_{n o} T_{n}(q) \tag{4,3}
\end{align*}
$$

In the above relacionships the coefficients $Q_{n o}$ are the open circuic hamonic charges developed in che diode when it is driven by a cosinusoidal volrage, the coefficients $V_{\text {no }}$ are the open circuir harmonic volrages developed across the diode when ic is driven by a cosinusoidal charge, and v and q are normalised quantities which are explained in equations (4.12) and (4.4) in the subsequent cext.

(i) The shunt diode

The diode in the shinc connection will now be considered in decail
so that equacion (4.3) can be fully explained.
The characteristics for the diode are shown in Figure 4.1 where,
$C_{i}=$ incremental capacitance
$Q_{d}=$ cotal charge on $p-s i d e$ of juncrion
$Q_{i}=$ injecred charge
$\mathrm{V}_{\mathrm{a}}=$ applied volrage

With reference to Figure 4.1 the diode will be used at a bias of $-V_{B}$ such that the value of $Q_{B}=\frac{1}{2} Q_{B D}$; this will enable the charge to be varied between $-Q_{B D}$ and zero. The diode will be tested by varying the charge Q_{d} by \hat{Q}_{10} cos ωt about the bias value $-Q_{B}$ and \hat{Q}_{10} will be $Q_{B}=\frac{1}{2} Q_{B D}$. A normalised variable may be defined as the fractional variation in charge, i.e.

$$
\begin{equation*}
q=\frac{Q_{d}-\left(-Q_{B}\right)}{\hat{Q}_{10}} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
-1 \leqslant q \leqslant+1 \tag{4.5}
\end{equation*}
$$

Consequently the value of q in the test can be written as

$$
\begin{equation*}
q_{0}=\frac{\hat{Q}_{10} \cos \omega \tau}{\hat{Q}_{10}}=\cos \omega t=\cos \theta \tag{4.6}
\end{equation*}
$$

To apply the cosinusoidal drive to the charge, the diode must be supplied with a sinusoidal current; an expression for this is obtained by differentiating Q_{d} with respect to time, i.e.

$$
\begin{align*}
i_{0}=\frac{d}{d t}\left(Q_{d}\right) & =\frac{d}{d t}\left(\hat{Q}_{10}+Q_{B}\right) \\
& =-\omega \hat{Q}_{10} \sin \omega t \tag{4.7}
\end{align*}
$$

When the diode is tested with the cosinusoidal drive of equation (4.6), a spectrum of voltages will be generated which will contain only cosine terms as shown in equation (4.8). The test circuit is shown in Figure 4.2 ; in practice this test may prove difficult to do as a very high impedance instrument would be needed to find the voltage spectrum.

$$
\begin{equation*}
V_{0}=V_{00}+\hat{V}_{10} \cos \omega t+\hat{\nabla}_{20} \cos 2 \omega t+\hat{V}_{30} \cos 3 \omega t+\ldots \text { etc } \tag{4.8}
\end{equation*}
$$

Figure 4.2
Theoretical Test Circuit

The variation of charge can be measured from the bias point and the woltage about the bias point $-V_{B}$; in effect the Q_{d}, V_{a} curve is then translated so that $\left(-Q_{B},-V_{B}\right)$ is now the origin, and the new variables are Q and V 。

The amplitudes of the components of the spectrum in equation (4.8) can now be used as the coefficients in the characteristic of the diode as expressed by

$$
\begin{equation*}
V=V_{00}+\sum_{n=1}^{\infty} \hat{V}_{n 0} T_{n}(q) \tag{4.9}
\end{equation*}
$$

where $V=$ voltage deviation from bias value
$q=$ normalised charge deviation given by equation (4.4).
and $T_{n}(q)$ is the Chebyshev Polynomial of order n.

The justification for writing equation (4.9) is given in Appendix 4(i).
When the diode is used in a shunt multiplier circuit it is driven Wy the sum of two current components, one of the input frequency and the other of the required output frequency as shown in Figure 4.3 . The spectrum of voltages produced is thus different from that produced under no-load conditions. The objective of the analysis is to find the spectrum of voltages produced in the multiplier in terms of the spectrum produced under no-load conditions.

Figure 4.3
Shunt-connected multipler circuit

The charge variation on the diode in the multiplier circuit is permitted to have two sinusoidal components of input and ourput frequencies but the total variation must not exceed the variation caused under no-load conditions: for this reason the fundamental frequency charge amplitude is assumed to be $a \hat{Q}_{10}$ where " a is a constant which is less than unity and the nth harmonic charge amp litude is $b \hat{Q}_{10}$ where ${ }^{\circ} \mathrm{b}$ " is a constant also less than unity. This composite charge variation is substituted into equation (4.3) in order to determine the required voltage spectrum. This method of analysis is used in the later sections dealing with shunt multiplier circuits.
(ii) The series diode

In this case the diode must be biassed to the mid-point of its total voltage swing which is $\left(\phi+V_{B D}\right)$ as shown in Figure 4.1 , giving finally

$$
\begin{equation*}
-V_{B}=\frac{-V_{B D}+\phi}{2} \tag{4.10}
\end{equation*}
$$

The diode will be tested by varying the voltage V_{a} about the bias value $-V_{B}$ by \hat{V}_{10} cos ωt

$$
\begin{equation*}
\hat{\mathrm{V}}_{10}=\frac{\mathrm{V}_{\mathrm{BD}}+\phi}{2} \tag{4.11}
\end{equation*}
$$

A normalised variable v may be defined as the fractional variation in voltage relative to $\hat{\mathrm{V}}_{10}$, i.e.

$$
\begin{equation*}
v=\frac{V_{a}-\left(-V_{B}\right)}{\hat{V}_{10}} \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
-1 \leqslant v \leqslant+1 \tag{4.13}
\end{equation*}
$$

The diode will be tested by applying a cosinusoidal voltage and under no-load conditions the normalised rest voltage is

$$
\begin{equation*}
v_{0}=I \cos \omega t=\cos \theta \tag{4.14}
\end{equation*}
$$

The rest circuit is shown in Figure 4.4 and the spectrum of charge which is generated is given by equation (4.15).

$$
\begin{equation*}
Q_{0}=Q_{00}+\sum_{n+1}^{\infty} \hat{Q}_{n 0} \cos n \omega r \tag{4.15}
\end{equation*}
$$

It is assumed that variations in woltage and charge occur about the bias point which is the "new origin" for the non-linear Q / \mathbb{V} relationship. The test spectrum amplitudes given in equation (4.15) can be used as coefficients in the Chebyshey expansion which represents the diode characteristic as in equation (4.2) which is repeated

$$
\begin{equation*}
Q=Q_{00}+\sum_{n=1}^{\infty} \hat{Q}_{n o} T_{n}(v) \tag{4.16}
\end{equation*}
$$

where $Q=$ charge deviation from bias value and $y=$ nomalised voltage deviation from bias voltage。

The justification for writing equation (4.16) is given in Appendiz 4(i).

When the diode is used in a series multiplier circuit as shown in Figure 4,5 the voltage variation across the diode consists of two components, one at input frequency and the other at output frequency.

$$
\hat{\mathrm{V}}_{1} \cos \omega t-\hat{\mathrm{V}}_{\mathrm{n}} \cos (n \omega t+\phi)
$$

Series-connected Multiplier Circuit

The voltage variation must not exceed the variation used in finding the test spectrum and for this reason the drive must be reduced to $a \hat{V}_{10}$ cos ω there ' a ' is a constant which is less than 1. The composite voltage variation is substituted into equation (4.16) so that the required charge spectrum is obtained. This method of analysis would be used to deal with series multiplier circuits.

4.3 Shunt-Diode Doubler Analysis

4.3.1 Twowterm approximation to the diode characteristic

In this approximate analysis the voltage spectrum obrained for the diode under test assumes that harmonics of higher order chan the second are negligible. Thus the test spectrum in this case is,

$$
\begin{equation*}
V_{0}=V_{00}+\hat{V}_{10} \cos \omega \tau+\hat{V}_{20} \cos 2 \omega \tau \tag{4.1.7}
\end{equation*}
$$

and the diode characteristic can be expressed as

$$
\begin{equation*}
\nabla=V_{00}+\hat{V}_{10} T_{1}(q)+\hat{V}_{20} T_{2}(q) \tag{4.18}
\end{equation*}
$$

The normalised charge variation used in the test is cosinusoidal, i.e.

$$
\begin{equation*}
q=\frac{q_{0}}{\hat{Q}_{10}}=\frac{\hat{Q}_{10} \cos \omega t}{\hat{Q}_{10}}=\cos \omega t \tag{4.19}
\end{equation*}
$$

When the diode is used in the shunt-connected doubler circuit the charge variation is due to the flow of the two currents show in the diagram of Figure 4.6. These currents and the current in the diode are given in the equations below.

Figure 4.6
Shunt diode doubler

$$
\begin{align*}
& q=a \cos \omega t-b \cos (2 \omega t+\phi) \tag{4.20}\\
& I=-a \omega \hat{Q}_{10} \sin \omega t+b 2 \omega \hat{Q}_{10} \sin (2 \omega t+\phi) \tag{4.21}
\end{align*}
$$

As stated in Section 4.2, the charge variation must not exceed that used in the test so that the following approximate conditions should hold:-

$$
\begin{align*}
& -1 \leqslant a \leqslant+1 \\
& -1 \leqslant b \leqslant+1 \tag{4.22}\\
& -1 \leqslant a+b \leqslant+1
\end{align*}
$$

The voltage specirum generated in the diode can be found by substituting (4.20) into (4.18) resulting in

$$
\begin{align*}
V=V_{00} & +\hat{V}_{10} T_{1}\{a \cos \omega t-b \cos (2 \omega t+\phi)\} \\
& +\hat{V}_{20} T_{2} \quad\{a \cos \omega t-b \cos (2 \omega t+\phi)\} \tag{4.23}
\end{align*}
$$

Substituting for T_{1} and T_{2} yields

$$
\begin{align*}
v & =V_{00}-\hat{V}_{20}+a^{2} \hat{V}_{20}+b^{2} \hat{V}_{20} \\
& +\hat{v}_{10} a \cos \omega t-\hat{\nabla}_{20} 2 a b \cos (\omega t+\phi) \\
& -\hat{\nabla}_{10} b \cos (2 \omega t+\phi)+\hat{\nabla}_{20} a^{2} \cos 2 \omega t \tag{4.24}\\
& -\hat{\nabla}_{20} 2 a b \cos (3 \omega t+\phi) \\
& +\hat{V}_{20} b^{2} \cos (4 \omega t+2 \phi)
\end{align*}
$$

Now consider the fundamental and second harmonic components of the voltage across the diode with "-sin wt" and "-sin $2 \omega t$ " raken as the reference phasors.

Then

$$
v=\hat{V}_{1}+\hat{v}_{2}
$$

where

$$
\begin{equation*}
\hat{v}_{1}=-j a \hat{V}_{10}+j 2 a b \hat{v}_{20} \angle \phi \tag{4.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathrm{v}}_{2}=+\mathrm{jb} \hat{\mathrm{v}}_{10}\left\lfloor\varphi-\mathrm{ja} \hat{\mathrm{v}}_{20}\right. \tag{4.26}
\end{equation*}
$$

The currents may be written in similar form as,

$$
\begin{align*}
& \hat{I}_{1}=a \omega \hat{Q}_{10} \tag{4.27}\\
& \hat{I}_{2}=-2 b \omega \hat{Q}_{10} \angle \phi \tag{4.28}
\end{align*}
$$

The peak value phasor for the voltage across the load resistor is

$$
\begin{equation*}
v_{L}=2 b \omega \hat{Q}_{10} R_{L} \angle \phi \tag{4.29}
\end{equation*}
$$

The output equivalent circuit
The output circuit may be represented by an equivalent circuit as in Figure 4.7.

One of the voltages in the "diode circuit" is in quadrature with the current and may be replaced in Figure 4.7 by a capacitor which represents the output capacitance of the diode. This capacitance C_{0} is shown in Figure 4.8 and because ir would de-cune the second harmonic filter it must be ${ }^{7}$ balanced' by the inclusion of an inductive reactance shown as X_{L}.

Figure 4.8

It can be deduced that the current must be in phase with the emf generated by the diode and the value of ϕ must be -90°.

The value of C_{o} is given by,

$$
j b \hat{\mathrm{~V}}_{10} L \phi=\left(-2 b \omega \hat{Q}_{10}\left(-90^{\circ}\right)\left(-j \frac{1}{2 \omega \mathrm{C}_{0}}\right)\right.
$$

from which

$$
\begin{equation*}
c_{o}=\frac{\hat{Q}_{10}}{\hat{\mathrm{~V}}_{10}} \tag{4.30}
\end{equation*}
$$

The inductive reactance X_{L} required to maintain the tuning of the filter in the output circuit is shown to be

$$
\begin{equation*}
X_{L}=\frac{1}{2 \omega C_{0}}=\frac{\hat{v}_{10}}{2 \omega \hat{Q}_{10}} \tag{4.31}
\end{equation*}
$$

The final output equivalent circuit is show in Figure 4.9.

Figure 4.9

Then, equating emf to current times load resistance, gives $-j a^{2} \hat{v}_{20}=-j 2 b \omega \hat{Q}_{10} R_{L}$
and finally

$$
\begin{equation*}
\frac{\mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \omega \hat{\mathrm{Q}}_{10} \mathrm{R}_{\mathrm{L}}}{\hat{\mathrm{~V}}_{20}}=\frac{2 \hat{\mathrm{I}}_{10} \mathrm{R}_{\mathrm{L}}}{\hat{\mathrm{~V}}_{20}} \tag{4.32}
\end{equation*}
$$

Equation (4.32) is an important relationship between a and b and R_{L}.

The input equivalent circuit
The input equivalent circuit may be derived by considering equations (4.25) and (4.27) and using the value for ϕ which has been recently determined.

Figure 4.10
Input Equivalent Circuit

One of these voltage components lags by 90° on the input current and this is due to the input capacitance $C_{\text {IN }}$. The other component represents the resistance reflected into the input circuit due to the dissipation of load power. The source impedance must be assumed to have an inductive component X_{1} so that the input filter is not de-tuned. The input equivalent circuit has the final version as shown in Figure 4.11

Figure 4.11
Input Equivalent Circuit-final version

The input capacitance and reflected resistance are given below.

$$
\begin{align*}
&-j a \hat{V}_{10}=a \omega \hat{Q}_{10}\left(-j \frac{I}{\omega C_{I N}}\right) \\
& \therefore \quad C_{I N}=\frac{\hat{Q}_{10}}{\hat{V}_{10}} \tag{4.33}\\
& R_{L}{ }^{\beta}= \frac{2 a b \hat{V}_{20}}{a \omega \hat{Q}_{10}}=\frac{2 b \hat{V}_{20}}{\hat{I}_{10}} \tag{4.34}
\end{align*}
$$

Substituting from (4.32) into (4.34) results in

$$
\begin{equation*}
R_{L}^{\prime}=2 b \frac{2 b R_{L}}{a^{2}}=\frac{4 b^{2} R_{L}}{a^{2}} \tag{4.35}
\end{equation*}
$$

The power relationships

The power in the output circuit may be written, using the diagram of Figure 4.9, as

$$
\begin{equation*}
P_{L}=\left[\frac{a^{2} \hat{V}_{20}}{\sqrt{2}}\right]^{2} \frac{1}{R_{L}}=\frac{a^{4} \hat{V}_{20}^{2}}{2 R_{L}} \tag{4.36}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{L}=\left(\frac{a^{2} \hat{V}_{20}}{\sqrt{2}}\right)\left(\frac{2 b \omega \hat{Q}_{10}}{\sqrt{2}}\right)=\omega a^{2} b \dot{\hat{Q}}_{10} \hat{\mathrm{~V}}_{20} \tag{4.37}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{L}=\left[\frac{2 b \omega \hat{Q}_{10}}{\sqrt{2}}\right]^{2} R_{L}=2 b^{2} \omega^{2} \hat{Q}_{10}^{2} R_{L} \tag{4.38}
\end{equation*}
$$

The power in the input circuit can be expressed in terms of the reflected load R_{L} ' and as the diode is assumed loss-free the formulae derived in this way should be identical with those given in (4.36), (4.37) and (4.38): this is shown below

$$
\begin{equation*}
P_{I N}=\left[\frac{a \omega \hat{Q}_{10}}{\sqrt{2}}\right]^{2} R_{L}^{\prime}=\frac{a^{2} \omega^{2} \hat{Q}_{10}^{2}}{2} \frac{4 b^{2} R_{L}}{a^{2}}=2 b^{2} \omega^{2} \hat{Q}_{10}^{2} R_{L} \tag{4.39}
\end{equation*}
$$

$$
\begin{equation*}
P_{I N}=\left(\frac{a \hat{\mathrm{Q}}_{10}}{\sqrt{2}}\right)\left(\frac{2 \mathrm{ab} \hat{\mathrm{~V}}_{20}}{\sqrt{2}}\right)=a^{2} \mathrm{~b} \omega \hat{Q}_{10} \hat{\mathrm{~V}}_{20} \tag{91}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{I N}=\left[\frac{2 a b \hat{v}_{20}}{\sqrt{2}}\right]^{2} \frac{I}{R_{L}}=2 a^{2} b^{2} \hat{v}_{20}^{2} \frac{a^{2}}{4 b^{2} R_{L}}=\frac{a^{4} \hat{v}_{20}^{2}}{2 R_{L}} \tag{4.41}
\end{equation*}
$$

Variations of ${ }^{\gamma} a^{p}$ and ${ }^{\circ} b^{p}$ with R_{T}, R_{S} and E_{S}
It is important to be able to find values for ${ }^{\circ} a{ }^{\prime}$ and ${ }^{\circ} b$ ' when the signal source is applied to the multiplier circuit.

Figure 4.12

Consider the circuit of Figure 4.12.
The input current for the doubler will be,

$$
\begin{equation*}
\hat{I}_{1}=\frac{\hat{E}_{S}}{R_{S}+R_{L}}=a \omega \hat{Q}_{10} \tag{4.42}
\end{equation*}
$$

Substituting from (4.35) for $R_{L}{ }^{\circ}$,

$$
\begin{equation*}
\hat{E}_{S}=a \omega \hat{Q}_{10}\left(R_{S}+\frac{4 b^{2} R_{L}}{a^{2}}\right) \tag{4.43}
\end{equation*}
$$

A further relationship exists between ' a ' and ' b ' namely (4.32), repeated below,

$$
\begin{equation*}
b=\frac{a^{2} \hat{v}_{20}}{2 \omega \hat{Q}_{10} R_{L}} \tag{4.44}
\end{equation*}
$$

If ' b^{\prime} is eiminated from the equations (4.43) and (4.44) taken simultaneously, equation (4.45) is obtained.

$$
\begin{equation*}
\left.\hat{E}_{S}=a \omega \hat{Q}_{10} R_{S}+\frac{4 R_{L} \omega \hat{Q}_{10}}{a} \frac{a^{2} \hat{\mathrm{~V}}_{20}}{2 \omega \hat{Q}_{10} R_{L}}\right)^{2} \tag{4.45}
\end{equation*}
$$

This cubic equation in ' a ' can be put in the form,

$$
\begin{equation*}
a^{3}=-\left\{\frac{\omega^{2} \hat{Q}_{10}{ }^{2} R_{S} R_{L}}{\hat{\mathrm{~V}}_{20}{ }^{2}}\right\} a+\left\{\frac{\hat{E}_{S} R_{L} \omega \hat{Q}_{10}}{\hat{\nabla}_{20}{ }^{2}}\right\} \tag{4.46}
\end{equation*}
$$

A graphical solution may be obtained for ${ }^{\circ} a^{\text {" }}$ as the intersection of graphs of the functions $F_{1}(a)$ and $F_{2}(a)$ shown in Figure 4.13.

Figure 4.13
where

$$
\begin{equation*}
F_{1}(a)=a^{3} \tag{4.47}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}(a)=-\left\{\frac{\omega^{2} \hat{Q}_{10}^{2} R_{S} R_{L_{2}}}{\hat{\mathrm{v}}_{20}^{2}}\right\} a+\left\{\frac{\hat{\mathrm{E}}_{\mathrm{S}} \mathrm{R}_{\mathrm{L}} \omega \hat{\mathrm{Q}}_{10}}{\hat{\mathrm{~V}}_{20}^{2}}\right\} \tag{4.48}
\end{equation*}
$$

Noting that,

$$
\begin{equation*}
\omega \hat{Q}_{10}=\hat{I}_{10} \tag{4.49}
\end{equation*}
$$

The intercepts ${ }^{\circ} c^{0}$ and ${ }^{\circ} \mathrm{d}^{0}$ in Figure 4.13 are

$$
\begin{align*}
& c=\frac{\hat{E}_{S} \hat{\mathbb{I}}_{10} R_{\mathrm{I}}}{\hat{\mathrm{~V}}_{20}{ }^{2}} \tag{4.50}\\
& d=\frac{\hat{\mathrm{E}}_{\mathrm{S}}}{\hat{\mathrm{I}}_{10} \mathrm{R}_{\mathrm{S}}} \tag{4.5I}
\end{align*}
$$

Values of ${ }^{0} a^{0}$ and ${ }^{0} b^{0}$ required to give maximum \mathbb{P}_{L}
An expression for ${ }^{7}$ normalised ${ }^{\circ}$ power can be derived from (4.37)
as

$$
\begin{equation*}
P_{N}=\frac{P_{L}}{\hat{I}_{10} \hat{V}_{20}}=a^{2} \sigma \tag{4.52}
\end{equation*}
$$

Obviously the load power increases as both ${ }^{9} a{ }^{\text {P }}$ and ${ }^{\circ} b^{p}$ increase and these are always related through equation (4.44). However, the restriction given in equation (4.22) must apply even when P_{N} is a maximum. Thus, for maximum swing on the characteristic, $a+b=1$ may be substituted into (4.52) giving

$$
P_{N}(\text { with max. signals })=a^{2}(1-a)
$$

Equation (4.53) is plotted on Figure 4.18 (page number 102) and is found to have the following maximum value

$$
\begin{equation*}
P_{N}(\max)=0.148 \tag{4.54}
\end{equation*}
$$

and this occurs when

$$
\left.\begin{array}{l}
a=0.667 \tag{4.55}\\
b=0.333
\end{array}\right\}
$$

Then,

$$
\left.\begin{array}{rl}
\mathrm{P}_{\mathrm{L}}(\max) & =0.148 \hat{\mathrm{I}}_{10} \hat{\mathrm{~V}}_{20} \tag{4.56}\\
\text { or } & =0.148 \omega \hat{\mathrm{Q}}_{10} \hat{\mathrm{~V}}_{20}
\end{array}\right\}
$$

Values of drive and load required for maximum power
The intercepts ${ }^{\circ} c{ }^{\prime}$ and ' d^{\prime} on Figure 4.13 depend upon R_{L}, R_{S} and E_{S}. If any of these quantities change then either c or d changes or perhaps both c and d change. However, for masimum power $a=0.667$ and $a^{3}=.3$ (approx) and by considering the graph of $F_{2}(a)$, the ratio

$$
\begin{equation*}
\frac{d}{c}=\frac{d-0.667}{0.3} \tag{4.57}
\end{equation*}
$$

By substituting (4.50) and (4.51) into (4.5.7) the following relationship is obtained between the drive conditions and the load for maximum power,

$$
\begin{equation*}
\frac{\hat{E}_{S} R_{L}}{R_{20}{ }^{2} \hat{I}_{10}}-0.667 \frac{R_{L} R_{S}}{R_{20}^{2}}-0.3=0 \tag{4.58}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{20}=\frac{\hat{\mathrm{V}}_{20}}{\hat{\mathrm{I}}_{10}} \tag{4.59}
\end{equation*}
$$

Sumary

(a) The maximum second harmonic power which can be extracted from the shumt diode doubler circuit is given by equation (4.56).
(b) The maximum power is extracted when E_{S}, R_{S} and R_{L} obey the relationship given in result (4.58).
(c) Only certain values of $E_{S} ; R_{S}$ and R_{L} are permitted fur this analysis to be valid. They must produce a value of ' a ' in the graphical solution of Figure 4.13 which does not exceed unity and which gives a value of ' b^{\prime} from equation (4.44) such that the restrictions of equation (4.22) are maintained.
(d) The input capacicance of the diode is given by equation (4.33) This suggests that the input capacitance presented by the diode is independent of the magnitude of the drive and the load but this is modified when a third harmonic voltage is assumed to be generated by the diode.
(e) The output capacitance of the diode is given by equation (4.30) and is the same result as for the input capacitance, namely, $c_{0}=\frac{\hat{Q}_{10}}{\hat{V}_{10}}=C_{I N}$

This formula is modified when a third harmonic voltage is assumed to be generated by the diode.

4.3.2 Three-term approximation to the diode characteristic

This analysis is similar to that carried out in Section 4.3.1 but in this case the third harmonic of the test spectrum will be taken into account.

The test spectrum is

$$
\begin{equation*}
v_{0}=\nabla_{00}+\hat{v}_{10} \cos \omega t+\hat{v}_{20} \cos 2 \omega t+\hat{v}_{30} \cos 3 \omega t \tag{4.60}
\end{equation*}
$$

and the diode characteristic can be expressed as

$$
\begin{equation*}
\nabla+V_{00}+\hat{V}_{10} T_{1}(q)+\hat{V}_{20} T_{2}(q)+\hat{\mathrm{V}}_{30} \mathrm{~T}_{3}(\mathrm{q}) \tag{4.61}
\end{equation*}
$$

The normalised charge variation in the test is cosinusoidal i.e.

$$
\begin{equation*}
q=\frac{\hat{Q}_{10} \cos \omega t}{\hat{Q}_{10}}=\cos \omega t \tag{4.62}
\end{equation*}
$$

The doubler circuit is shown in Figure 4.6, and the charge on the diode has a second harmonic component as shown in

$$
\begin{equation*}
q=a \cos \omega t-b \cos (2 \omega t+\phi) \tag{4.63}
\end{equation*}
$$

The current into the diode is therefore as shown in Figure 4.6 and is

$$
\begin{equation*}
I=-a \omega \hat{Q}_{10} \sin \omega t+b 2 \omega \hat{Q}_{10} \sin (2 \omega t+\phi) \tag{4.64}
\end{equation*}
$$

The analysis will differ from the previous because more terms will be generated in the voltage, i.e.

$$
\begin{align*}
V=V_{00} & +\hat{V}_{10} T_{1}\{a \cos \omega t-b \cos (2 \omega t+\phi)\} \\
& +\hat{V}_{20^{2}} T_{2}\{a \cos \omega t-b \cos (2 \omega t+\phi)\} \\
& +\hat{V}_{30} T_{3}\{a \cos \omega t-b \cos (2 \omega t+\phi)\} \tag{4.65}
\end{align*}
$$

which should be compared with equation (4.23).

Equation (4.65) can be expanded, as shown in Appendix 4 (iii), resulting in

$$
\begin{align*}
V=V_{00} & -\hat{V}_{20}+a^{2} \hat{V}_{20}+b^{2} \hat{V}_{20}-\hat{V}_{30} 3 a^{2} b \cos \phi \\
& +\hat{V}_{10^{a}} \cos \omega t-\hat{V}_{20^{2}} a b \cos (\omega t+\phi)+\hat{V}_{30^{3}} a^{3} \cos \omega t \\
& -\hat{V}_{30} 3 a \cos \omega t-\hat{V}_{30} 6 a b^{2} \cos \omega t \\
& -\hat{V}_{10} b \cos (2 \omega t+\phi)+\hat{V}_{20^{a^{2}}} \cos 2 \omega t+\hat{V}_{30} 3 b \cos (2 \omega t+\phi) \\
& -\hat{V}_{30} 6 a^{2} b \cos (2 \omega t+\phi)-\hat{V}_{30} 3 b^{3} \cos (2 \omega t+\phi) \\
& -\hat{V}_{20^{2}} 2 a b \cos (3 \omega t+\phi)+\hat{V}_{30^{2}} a^{3} \cos 3 \omega t+\hat{V}_{30} 3 a b^{2} \cos (3 \omega t+2 \phi) \\
& +\hat{V}_{20^{2}} b^{2} \cos (4 \omega t+2 \phi)-\hat{V}_{30} 3 a^{2} b \cos (4 \omega t+\phi) \\
& +\hat{V}_{30^{3}}{ }^{3 a b} \cos (5 \omega t+2 \phi) \\
& -\hat{V}_{30^{2}} b^{3} \cos (6 \omega t+3 \phi) \tag{4.66}
\end{align*}
$$

The terms at fundamental frequency and second harmonic frequency shown in equarions (4.25) and (4.26) are thus modified to include terms dependent upon $\hat{\nabla}_{30}$ ㅇ.e.

$$
\begin{align*}
& \hat{\mathrm{V}}_{1}=-j a \hat{\mathrm{~V}}_{10}+j 2 \mathrm{ab} \hat{\mathrm{~V}}_{20}\left[\phi-j 3 \mathrm{a} \hat{\mathrm{~V}}_{30}-j 6 a \hat{\mathrm{~V}}^{2} \hat{\mathrm{~V}}_{30}+j 3 \mathrm{a} \hat{\mathrm{~V}}_{30}\right. \tag{4.67}
\end{align*}
$$

The fundamental and second harmonic currents are as in Figure 4.6 and are given by equacions (4.27) and (4.28). The outpust equivalent circuit is thus modified due to the three extra terms in (4.68).

The output equivalent circuit

The output equivalent circuit of Figure 4.7 is modified to satisfy equation (4.68) and is shown in Figure 4.14.

Figure 4.14

The value of C_{o} given previously by result (4.30) must now change because the voltage across it has been modified. A formula for C_{o} can be obtained by equating voltage to current times reactance

$$
j\left(\hat{\mathrm{~V}}_{10} \mathrm{~b}+\hat{\mathrm{V}}_{30}\left[6 \mathrm{a}^{2} \mathrm{~b}+3 \mathrm{~b}^{3}-3 \mathrm{~b}\right\}\right) \operatorname{l中}=\left(-2 \mathrm{~b} \hat{\mathrm{Q}}_{10}(\phi)\left(-j \frac{1}{2 \omega \mathrm{C}}\right)\right.
$$

hence,

$$
\begin{equation*}
c_{o}=\frac{\hat{Q}_{10}}{\hat{v}_{10}+\hat{V}_{30}\left(6 a^{2}+3 b^{2}-3\right)} \tag{4.69}
\end{equation*}
$$

The relationship between ' a " and "b" given in result (4.32) is not affected by the "third harmonic terms" in (4.68).

The input equivalent circuit
The circuit of Figure 4.10 which was derived in the previous analysis must be modified due to the extra terms in result (4.67). Thus Figure 4.10 could be redrawn as in Figure 4.15 , the angle ϕ taking the value -90° as in the previous case.

Figure 4.15

The terms in \hat{V}_{30} in result (4.67) do not affect the reflected resistance $R_{L}{ }^{\prime}$ and results (4.34) and (4.35) are unchanged. The input capacitance $C_{I N}$ is modified, ie.

$$
-j\left\{a \hat{V}_{10}+\hat{V}_{30}\left(3 a^{3}+6 a b^{2}-3 a\right)\right\}=a \omega \hat{Q}_{10}\left(-j \frac{1}{\omega C_{I N}}\right)
$$

hence

$$
\begin{equation*}
C_{I N}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{V}_{30}\left(3 a^{2}+6 b^{2}-3\right)} \tag{4.70}
\end{equation*}
$$

From this point the analysis is no different from that in secrion 4.3.1. The power relationships of equations (4.36) to (4.41) again apply and the values of ' a ' and ' b ' are also unchanged.

Summary
(a) The third order term in the characteristic does not make any difference to the outpur power generated at this 2nd harmonic or to the required values of R_{S}, R_{L} and E_{S} for any required output power.
(b) The only effects are on the input and output capacitances of the diode. These are given by equations (4.69) and (4.70) which are repeated below:-
(4.69) $\quad C_{0}=\frac{\hat{Q}_{10}}{\hat{v}_{10}+\hat{V}_{30}\left(6 a^{2}+3 b^{2}-3\right)}$
(4.70)

$$
C_{I N}=\frac{\hat{Q}_{10}}{\hat{v}_{10}+\hat{V}_{30}\left(3 a^{2}+6 b^{2}-3\right)}
$$

4.3.3 Four-term approximation to the diode characteristic

The analysis for this case is shown in Appendix $4(\mathrm{v})$ and it leads to the following results.

The output equivalent circuit
The equivalent circuits of Figures 4.7 and 4.14 will need to be modified to that shown in Figure 4.16.

$$
-j 2 b \omega \stackrel{\rightharpoonup}{Q}_{10}
$$

The output capacitance, \mathbb{C}_{0}, will be as predicted in Figure 4.14 and given by equations (4.69).

However, the relationship between ' a " and " b ' developed in equation (4.32) will be modified, as,

$$
\begin{align*}
& -j\left\{a^{2} \hat{v}_{20}+\hat{v}_{40}\left(4 a^{4}+6 a^{2} b^{2}-4 a^{2}\right)\right\}=-j 2 b \omega \hat{Q}_{10} R_{L} \\
& \therefore \quad \tag{4.71}\\
& \therefore R_{L}=\frac{a^{2} \hat{v}_{20}+\hat{V}_{40}\left(4 a^{4}+6 a^{2} b^{2}-4 a^{2}\right)}{2 b \omega \hat{Q}_{10}}
\end{align*}
$$

The input equivalent circuit

The equivalent circuits of Figures 4.10 and 4.15 require modification due ro extra terms appearing in the voltage generators; Figure 4.17 shows all the terms at frequency ω from equation (8) in Appendix 4 (v).

Figure 4.17

The input capacitance will be as given in (4.70) as it is not dependent upon $\hat{\mathrm{V}}_{40}$. However, the reflected resistance R_{L} ' will be modified from the value given in (4.34).

$$
\begin{equation*}
R_{L}^{\prime}=\frac{\hat{V}_{20} 2 a b+\hat{V}_{40}\left\{8 a^{3} b+12 a b^{3}-8 a b\right\}}{a \omega \hat{Q}_{10}} \tag{4.72}
\end{equation*}
$$

If equation (4.72) is divided by equation (4.71) then.

$$
\frac{R_{L}}{R_{L}}=\frac{2 a b\left[\hat{V}_{20}+\hat{V}_{40}\left(4 a^{2}+6 b^{2}-4\right)\right]}{a \omega \hat{Q}_{10}} \frac{2 b \omega \hat{Q}_{10}}{a^{2}\left[\hat{V}_{20}+\hat{V}_{40}\left(4 a^{2}+6 b^{2}-4\right)\right]}
$$

or
$\frac{R_{L}{ }^{p}}{R_{L}}=\frac{4 b^{2}}{a^{2}}$

Hence (4.73) shows the expected relationship between $R_{L}{ }^{\circ}$ and $R_{L}{ }^{\circ}$

The power relationships

The load power P_{L} will contain the extra terms in $\hat{\mathrm{V}}_{40}$ compared with (4.37),

$$
P_{L}=\frac{1}{\sqrt{2}}\left\{a^{2} \hat{V}_{20}+\hat{\nabla}_{40}\left(4 a^{4}+6 a^{2} b^{2}-4 a^{2}\right)\right\} \frac{2 b \omega \hat{Q}_{10}}{2}
$$

or

$$
\begin{equation*}
P_{L}=\hat{V}_{20} \hat{\mathrm{I}}_{10} a^{2} b+\hat{V}_{40} \hat{\mathrm{I}}_{10} a^{2} b\left(4 a^{2}+6 b^{2}-4\right) \tag{4.74}
\end{equation*}
$$

Variations of ' a^{\prime} and ${ }^{\circ} b^{\prime}$ with R_{S}, R_{S} and E_{S}
The equation (4.42) still applies to the analysis and if the substitution is made for $R_{L}{ }^{\prime}$ from equation (4.73) then

$$
\begin{equation*}
E_{S}=a \omega \hat{Q}_{10}\left(R_{S}+\frac{4 b^{2}}{a^{2}} R_{L}\right) \tag{4.75}
\end{equation*}
$$

Now 'b" can be eliminated by taking (4.75) and (4.71) simultaneously to obtain an equation relating ${ }^{\prime} a{ }^{\text {p }}, E_{S}, R_{S}$ and R_{L} which requires a numerical solution by computer.

Variation of $P_{\text {I }}$ with ' a ' and 'b'
As in section 4.3 .1 it can be assumed that the following approximate relationship will hold if the charge variation is not to exceed the test condition,

The equation (4.76) may be substituted into the load power equation (4.74) co obtain P_{L} as a function of "a",

$$
\begin{equation*}
P_{L}=\hat{V}_{20} \hat{I}_{10} a^{2}(1-a)+\hat{\mathrm{V}}_{40} \hat{\mathbb{I}}_{10} a^{2}(1-a)\left[4 a^{2}+6(1-a)^{2}-4\right] \tag{4.77}
\end{equation*}
$$

Hence

$$
\begin{equation*}
P_{L}=\hat{V}_{20} \hat{I}_{10} F_{3}(a)+\hat{V}_{40} \hat{I}_{10} F_{4}(a) \tag{4.78}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{3}(a)=a^{2}-a^{3} \tag{4.79}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{4}(a)=-10 a^{5}+22 a^{4}-14 a^{3}+2 a^{2} \tag{4.80}
\end{equation*}
$$

The functions $\mathrm{F}_{3}(\mathrm{a})$ and F_{4} (a) are plotted on Figure 4.18. As the function $F_{4}(a)$ is negative in most of the range $0 \leqslant a \leqslant 1$ it is apparent that the load power is reduced by the fourth harmonic term in the diode spectrum. The value of $\mathrm{F}_{4}(\mathrm{a})$ at $\mathrm{a}=.667$ is -0.23 .

Sumary

The inclusion of the fourth harmonic term in the diode rest spectrum has the following effects:-
(a) The load power is reduced as shown by result (4.76).
(b) If E_{S} and R_{S} are adjusted so that $a=.667$ then the load power is given by,
$P_{\mathrm{L}}=0.148 \hat{\nabla}_{20} \hat{\mathrm{I}}_{10}-0.23 \hat{\nabla}_{40} \hat{\mathrm{I}}_{10}$
(c) The values of ${ }^{\circ} a^{\circ}$ and ${ }^{\circ} b^{\prime}$ may be found by the simultaneous solution of equations (4.71) and (4.75).

4.4 Conclusion

The analysis has produced some interesting results for the shuntdiode doubler which are summarised below:-
(a) The reflected load resistance $R_{L}{ }^{\circ}$ due to a load R_{L} on the output circuit is given by,

$$
\begin{equation*}
R_{L}^{\prime}=\frac{4 b^{2}}{a^{2}} R_{L} \tag{4.73}
\end{equation*}
$$

The values of ${ }^{\circ} a^{p}$ and ${ }^{\circ} b^{p}$ depend upon the load and the drive, i.e. R_{L}, R_{S} and E_{S}. Approximate values for ${ }^{\prime} a{ }^{p}$ and ${ }^{\circ} b$ ' can be found using the graphical solution in Figure 4.13 of the equation (4.46). A more accurate solution for ${ }^{\circ} a^{\circ}$ and ${ }^{\circ} b$ ' requires that equations (4.71) and (4.75), repeated below, be solved simultaneouslys

$$
\begin{align*}
& 2 b \hat{I}_{10} R_{L}=a^{2} \hat{V}_{20}+\hat{V}_{40}\left(4 a^{4}+6 a^{2} b^{2}-4 a^{2}\right) \tag{4.71}\\
& E_{S}=a \hat{I}_{10}\left(R_{S}+\frac{45^{2} R_{L}}{a^{2}}\right)
\end{align*}
$$

(b) There is a maximum value of power which can be extracted at second harmonic without over-driving the circuit. This occurs when the approximate values of ' $a^{\text {P }}$ and ${ }^{\circ} b^{\prime}$ ' are 0.667 and 0.333 and the load power is then given by (4.81), repeated below,

$$
\begin{equation*}
P_{L}(\max)=0.148 \hat{\mathrm{~V}}_{20} \hat{\mathrm{I}}_{10}-0.23 \hat{\mathrm{~V}}_{40} \hat{\mathrm{I}}_{10} \tag{4.81}
\end{equation*}
$$

(c) The diode presents a capacitance $C_{I N}$ to the input circuit at fundamental frequency which varies with load and drive, and therefore with ' a ' and 'b'. If a third harmonic term is included in the diode spectrum $C_{\text {IN }}$ varies with drive as expressed by equation (4.70) repeated below,
(4.70) $\quad C_{I N}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{\mathrm{V}}_{30}\left(3 \mathrm{a}^{2}+6 \mathrm{~b}^{2}-3\right)}$

The no-load value of $C_{\text {IN }}$ may be written as,
$C_{I N}($ no load $)=\frac{\hat{Q}_{10}}{\hat{V}_{10}}=C_{10}$
As che output power is increased from zero the input capacitance increases and reaches a maximum value at maximum power of,
$C_{\text {IN }}\left(\max P_{L}\right)=\frac{\hat{Q}_{10}}{\hat{V}_{10}-\hat{V}_{30}}$
(d) The output capacitance of the diode C_{0} is given by,

$$
\begin{equation*}
c_{0}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{V}_{30}\left(6 a^{2}+3 b^{2}-3\right)} \tag{4.69}
\end{equation*}
$$

and this has a no-load value of,

$$
\begin{equation*}
c_{0}(\text { no load })=\frac{\hat{Q}_{10}}{\hat{\mathrm{~V}}_{10}+3 \hat{\mathrm{~V}}_{30}} \tag{4.84}
\end{equation*}
$$

As the load on the multiplier circuit increases the value of C_{0} increases and at maximum output power it has the value C_{10},
$C_{0}\left(\max P_{L}\right)=\frac{\hat{Q}_{10}}{\hat{V}_{10}}=C_{10}$
(e) An expression can be derived for the output resistance of the circuit in terms of the multiplier circuit parameters ${ }^{\circ} a$ ' and ${ }^{\circ} b$ ' and the derivation is shown in Appendix 4 (vi). The output resistance R_{0} shown to be;
$R_{0}=\left\{\frac{1-a^{2}}{2 b}\right\} \frac{\hat{\mathrm{V}}_{20}}{\hat{\mathrm{I}}_{10}}$
and at maximum output power R_{0} is therefore
R_{0} (opt) $=\frac{5}{6} \frac{\hat{\mathrm{y}}_{20}}{\hat{\mathrm{I}}_{10}}$

This value of the output resistance can be matched in the output circuit to the load resistance R_{L} by the use of an impedancetransforming technique, and the maximum possible output power is then obtained. The source should then be chosen to kave values of E_{s} and R_{s} which produce the required values of ${ }^{\circ} a^{\circ}$ and ${ }^{\circ} b^{\prime}$ of $2 / 3$ and ${ }^{1 / 3}$ respectively. The source e.m.f. and intemal resistance sfrould satisfy the condition,
$\hat{E}_{s}=\frac{2}{3} \hat{I}_{10} R_{s}+\frac{5}{9} \hat{V}_{20}$

The effective source resistance could be reduced by transformation to as low a value as possible so that less power would be lost in the source.

CHAPTER 5

ANALYSIS OF THE SHUNT-DIODE TRIPLER
Page
5.1 Introduction 108
5.2 Shunt Diode Tripler Wichout Ider 109
5.2.1 Two-term approximation to the diode characteristic 109
5.2.2 Three-term approximation to the diode characteristic 111
5.2.3 Four-term approximation to the diode characteristic 117
5.3 Shunt Diode Tripler With Idler 118
5.3.1 Two-cerm approximation to the diode characteristic 118
5.3.2 Three-cerm approximation to the diode characteristic 121
5.3.3 Four-term approximation to the diode characteristic 127
5.4 Conclusion 129

5.1 Introdaction

This chapter uses the method of analysis developed in Chapter 4 to predict the performance of varactor diode tripler circuits. The shme-diode tripler without idler is analysed in section 5.2 and the tripler with idler is dealt with in section 5.3. The basic circuits are stown in Figures 5.1 and 5.4 respectively.

Each analysis is carried out initially for a diode having a tes c spectrum which contains only d.c., fundamental frequency and second harmonic frequency terms. Then the test spectrum is extended to third and fourth harmonic terms so that the effect of these terms can be evaluated.

In section 5.4 the results are tabulated with results for the shuntdiode doubler so that it is easy to compare the three circuits considered.

5.2 Shunc-Diode Tripler Without Idler

S.2.1 Two-term approximation to the diode characteristic

This analysis is similar to that followed in section 4.3 .1 except That the charge variation in the diode will be permitted at fundamental frequency and third harmonic frequency oniy. The diode characteristic is

$$
\begin{equation*}
\nabla=V_{00}+\hat{V}_{10} T_{1}(q)+\hat{V}_{20} T_{2}(q) \tag{5.1}
\end{equation*}
$$

When the diode is used in the shunt-connected tripler circuit of Figure 5.1 the charge variation is

$$
\begin{equation*}
q=a \cos \omega t-b \cos (3 \omega t+\phi) \tag{5.2}
\end{equation*}
$$

The diode current can be obtained by differentiating the actual charge; hence

$$
\begin{equation*}
I=-a \omega \hat{Q}_{10} \sin \omega t+b 3 \omega \hat{Q}_{10} \sin (3 \omega t+\phi) \tag{5.3}
\end{equation*}
$$

As before, the charge variation in the tripler circuit must not exceed that for the diode under test conditions so that the following conditions must be observed

$$
\begin{align*}
& -1 \leqslant a \leq+1 \\
& -1 \leqslant b \leqslant+1 \tag{5.4}\\
& -1 \leqslant a+b \leqslant+1
\end{align*}
$$

Figure 5.1
Shunt-diode tripler circuit

The voltage spectrum generated in the circuit is

$$
\begin{align*}
\mathrm{V}=\mathrm{V}_{00} & \leqslant \hat{\mathrm{~V}}_{10} \mathrm{~T}_{1}\{a \cos \omega t-\mathrm{b} \cos (3 \omega t+\phi)\} \tag{5.5}\\
& +\hat{\mathrm{V}}_{20} \mathrm{~T}_{2}\{a \cos \omega t-\mathrm{b} \cos (3 \omega t+\phi)\}
\end{align*}
$$

and this can be expanded to

$$
\begin{align*}
v & =v_{00}-\hat{V}_{20}+\hat{v}_{20} a^{2}+\hat{\nabla}_{20} b^{2} \\
& +\hat{\nabla}_{10} a \cos \omega t \\
& +\hat{V}_{20} a^{2} \cos 2 \omega t+\hat{v}_{20} 2 a b \cos (2 \omega t+\phi) \\
& -\hat{V}_{10} b \cos (3 \omega t+\phi) \\
& -\hat{v}_{20} 2 a b \cos (4 \omega t+\phi) \\
& +\hat{\nabla}_{20} b^{2} \cos (6 \omega t+2 \phi) \tag{5.6}
\end{align*}
$$

The voltage components at 1 st and 3rd harmonic frequencies in (5.6) can be written in phasor form, taking -sin ωt as the reference phasor,

$$
\begin{align*}
& \hat{\mathrm{V}}_{1}=-j a \hat{\mathrm{~V}}_{10} \tag{5.7}\\
& \hat{\mathrm{~V}}_{3}=+j \mathrm{~b} \hat{\mathrm{~V}}_{10}\langle\phi \tag{5.8}\\
& \hat{I}_{1}=a \omega \hat{Q}_{10}=a \hat{\mathrm{I}}_{10} \tag{5,9}\\
& \hat{I}_{3}=-3 \mathrm{~b} \omega \hat{Q}_{10 \angle \phi}=-3 \mathrm{~b} \hat{\mathrm{I}}_{10} / \phi \tag{5.10}
\end{align*}
$$

From the expressions for the input and output currents and voltages it can be deduced that no power is absorbed at the input because the voltage \hat{V}_{1} and the input current \hat{I}_{1} are in quadrature. Similarly the output e.m.f. \hat{V}_{3} is in quadrature with I_{3} and cannot deliver power to R_{L}.

Sumary:

When the diode does not generate a third harmonic under test conditions it cannor be used in this particular circuit as a tripler.

5.2.2 Three-term approximation to the diode characteristic

The diode characteristic is

$$
\begin{equation*}
\mathrm{V}=\mathrm{V}_{00}+\hat{\mathrm{V}}_{10} \mathrm{~T}_{1}(\mathrm{q})+\hat{\mathrm{V}}_{20} \mathrm{~T}_{2}(\mathrm{q})+\hat{\mathrm{V}}_{30} \mathrm{~T}_{3}(\mathrm{q}) \tag{5.11}
\end{equation*}
$$

The charge variation when the diode is connected in the circuit of Figure 5.1 is given by

$$
\begin{equation*}
q=a \cos \omega t-b \cos (3 \omega t+\phi) \tag{5.12}
\end{equation*}
$$

and the diode current is

$$
I=-a \omega \hat{Q}_{10} \sin \omega t+3 b \omega \hat{Q}_{10} \sin (3 \omega t+\phi)
$$

or

$$
\begin{equation*}
I=-a \hat{I}_{10} \sin \omega t+3 b \hat{I}_{10} \sin (3 \omega t+\phi) \tag{5.13}
\end{equation*}
$$

The voltage spectrum generated in the circuit is

$$
\begin{align*}
\mathrm{V}=\mathrm{V}_{00} & +\hat{\mathrm{V}}_{10} \mathrm{~T}_{1}\{a \cos \omega t-\mathrm{b} \cos (3 \omega t+\phi)\} \\
& +\hat{\mathrm{V}}_{20} \mathrm{~T}_{2}\{a \cos \omega t-\mathrm{b} \cos (3 \omega t+\phi)\} \\
& +\hat{\mathrm{V}}_{30} \mathrm{~T}_{3}\{a \cos \omega t-b \cos (3 \omega t+\phi)\} \tag{5.14}
\end{align*}
$$

The voltage spectrum of expression (5.14) can be expanded into the equation containing 22 terms shown in Appendix 5(i). The fundamental and third harmonic terms are

$$
\begin{align*}
v & =\hat{V}_{10} a \cos \omega t-\hat{V}_{30} \cos \omega t\left(3 a-6 a b^{2}-3 a^{3}\right) \\
& -\hat{V}_{30} 3 a^{2} b \cos (\omega \tau+\phi) \\
& +\hat{V}_{30} a^{3} \cos 3 \omega r-\hat{V}_{10} \cos (3 \omega \tau+\phi) \\
& +\hat{V}_{30} \cos (3 \omega \tau+\phi)\left(3 b-6 a^{2} b-3 b^{3}\right) \tag{5.15}
\end{align*}
$$

The voltage components at 1 st and 3rd harmonic frequencies in (5.15) can be written in phasor form, taking - sin ωt as the reference phasor, as

$$
\begin{equation*}
\hat{\mathrm{V}}_{1}=-j a \hat{\mathrm{~V}}_{10}-j a 3 \hat{\mathrm{v}}_{30}\left(\mathrm{a}^{2}+2 \mathrm{~b}^{2}-1\right)+j \hat{\mathrm{v}}_{30} 3 a^{2} \mathrm{~b} L \dot{\varphi} \tag{5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathrm{V}}_{3}=+j b \hat{\mathrm{~V}}_{10} \angle \phi-j a^{3} \hat{\mathrm{~V}}_{30}+j \hat{\mathrm{~V}}_{30} 3 b\left(\mathrm{~b}^{2}+2 \mathrm{a}^{2}-1\right)\lfloor\phi \tag{5.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{I}_{1}=a \omega \hat{Q}_{10} \tag{5.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{I}_{3}=-3 b \omega \hat{Q}_{10} L \phi \tag{5.19}
\end{equation*}
$$

The input and output equivalent circuits are developed in Appendix 5(ii). The phase angle ϕ is again shown to be -90° and third harmonic terms appear in the expressions for C_{0} and $C_{\text {IN }}$

$$
\begin{align*}
& c_{c}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{V}_{30}\left(6 a+3 b^{2}-3\right)} \tag{5.20}\\
& C_{I N}=\frac{\hat{Q}_{10}}{\hat{\nabla}_{10}+\hat{V}_{30}\left(3 a^{2}+6 b^{2}-3\right)} \tag{5.21}
\end{align*}
$$

The equivalent input and output circuits are shown in Figure 5.2.

Figure 5.2
Equivalent circuit of tripler

Variation of ${ }^{8} a^{p}$ and ${ }^{\circ} b^{7}$ with $R, ~ R ~ a n d ~ E s$
One relationship between ${ }^{\prime} a^{\prime}$ and ${ }^{\prime} b^{\prime}$ can be obtained from the output circuit in which

$$
-j a^{3} \hat{V}_{30}=-j 3 b \omega \hat{Q}_{10} R_{L}
$$

hence

$$
\begin{equation*}
a^{3}=\frac{3 \omega \hat{Q}_{10} R_{L} b}{\hat{V}_{30}} \tag{5.22}
\end{equation*}
$$

The other relationship comes from the input circuit where

$$
\begin{equation*}
\hat{E}_{s}=a w \hat{Q}_{10} R_{s}+\hat{V}_{30} 3 a^{2} b \tag{5.23}
\end{equation*}
$$

Eliminating ${ }^{\prime} b^{\prime}$ from equations (5.22) and (5.23) produces

$$
\begin{equation*}
a^{5}=-\left\{\frac{\omega^{2} \hat{Q}_{10}^{2} R_{s} R_{L}}{\hat{V}_{30}^{2}}\right\} \quad a+\left\{\frac{\hat{E}_{s} R_{L} \omega \hat{Q}_{10}}{\hat{V}_{30}}\right\} \tag{5.24}
\end{equation*}
$$

It is instructive to compare this equation with the similar one obtained in the shumt-diode analysis, namely equation (4.46).

A graphical solution can be obtained for equation (5.24) as shown in Figure 5.3 where

$$
\begin{gather*}
F_{5}(a)=a^{5} \tag{5.25}\\
F_{6}(a)=-\left\{\frac{\omega^{2} \hat{Q}_{10}^{2} R_{s} R_{L_{L}}}{\hat{V}_{30}^{2}}\right\}+\left\{\frac{\hat{E}_{s} R_{L} \omega \hat{Q}_{10}}{\hat{V}_{30}^{2}}\right\} \tag{5,26}\\
c=\frac{E_{s} \hat{I}_{10} \cdot R_{L}}{\hat{V}_{30}^{2}} \tag{5.27}
\end{gather*}
$$

and

$$
\begin{equation*}
d=\frac{E_{s}}{\hat{I}_{10} R_{s}} \tag{5.28}
\end{equation*}
$$

Figure 5.3

Values of "a and "这 for marinuw ioad power

The expression for load power given in equation (5.29) can be obtained by inspection of Figure 5.2

$$
\begin{equation*}
P_{L}=\left(\frac{a^{3} \hat{V}_{30}}{\sqrt{2}}\right)\left(\frac{3 \omega 5 \hat{Q}_{10}}{\sqrt{2}} 2=\frac{3}{2} a^{3} \hat{b} \hat{v}_{30} \hat{I}_{10}\right. \tag{5.29}
\end{equation*}
$$

Using the condition specified in equation (5.4) the load power may also be writcen as

$$
\begin{equation*}
P_{L}=\hat{V}_{30} \hat{I}_{10} 1.5 a^{3}(1-a) \tag{5.30}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{L}=\hat{\nabla}_{30} \hat{I}_{10} F_{7} \quad \text { (a) } \tag{5.31}
\end{equation*}
$$

The fumction $F_{7}(a)=1.5 a^{3}(1$ - a) has a maximum of 0.158 when ${ }^{\circ} a^{\prime}=0.75$ and $^{\prime} b^{\prime}=0.25$ 。

Hence the maximum load power is

$$
\begin{equation*}
P_{1}(\text { max })=0.158 \hat{\mathrm{~V}}_{30} \hat{\mathrm{I}}_{10} \tag{5.32}
\end{equation*}
$$

Values of $E R_{s} R_{f}$ co give masimum load power
The point $\left(0.75,0.75^{5}\right)$, i.e. $(0.75,0.237)$ must lie on the straight line graph of Figure 5.3, therefore

$$
\begin{equation*}
0.237=-0.75\left\{\frac{\hat{I}_{10}{ }^{2} R_{s} \cdot R_{L_{2}}}{\hat{v}_{30}{ }^{2}}\right\}\left\{\frac{E_{s} R_{L} \hat{I}_{10}}{\hat{v}_{30}{ }^{2}}\right\} \tag{5.33}
\end{equation*}
$$

Re-arranging equation (5.33), the maximum load power occurs when

$$
\begin{equation*}
E_{s}=\hat{V}_{30}\left\{0.237 \frac{R_{30}}{R_{L}}+0.75 \frac{R_{s}}{R_{30}}\right\} \tag{5.34}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{30}=\frac{\hat{V}_{30}}{\hat{I}_{10}} \tag{5.35}
\end{equation*}
$$

Equation (5.34) can be compared directiy with (4.58); the equations are similar in form although the constants are different.

Sumary

(a) The maximum third hamonic power which can be extracted from the shunt diode tripler is given by equation (5.32) repeated below,

$$
\begin{equation*}
P_{L}(\max)=0.158 \hat{\mathrm{~V}}_{30} \hat{\mathrm{I}}_{10} \tag{5.32}
\end{equation*}
$$

(b) The maximum power is extracted when $E_{S} R_{S}$ and R_{L} satisfy the relationship given in (5.34) repeated below,

$$
\begin{equation*}
E_{s}=\hat{\nabla}_{30} \quad\left\{0.237 \frac{R_{30}}{R_{L}}+0.75 \frac{R_{s}}{R_{30}}\right. \tag{5.34}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{30}=\frac{\hat{\mathrm{V}}_{30}}{\hat{\mathrm{I}}_{10}} \tag{5.35}
\end{equation*}
$$

Note that there is a restriction on the value of R_{L} if $d>1$ in Figure 5.3.
(c) Only certain values of E_{s}, R_{s} and R_{L} are permitted. They must produce values of ' a ' and ${ }^{9} b^{\prime}$ ' which satisfy the conditions of equation (5.4).
(d) The input capacitance of the diode is given by equation (5.21) repeated below,

$$
\begin{equation*}
c_{I N}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{\mathrm{V}}_{30}\left(3 \mathrm{a}^{2}+6 \mathrm{~b}^{2}-3\right)} \tag{5.21}
\end{equation*}
$$

(e) The output capacitance of the diode C_{o} is given by equation (5.20) repeated below

$$
\begin{equation*}
c_{o}=\frac{\hat{Q}_{10}}{\hat{v}_{10}+\hat{\mathrm{v}}_{30}\left(6 \mathrm{a}^{2}+3 \mathrm{~b}^{2}-3\right)} \tag{5.20}
\end{equation*}
$$

5.2.3 Four-term approximation to the diode characteristic

The diode characteristic is

$$
\mathrm{V}=\mathrm{V}_{00}+\hat{\mathrm{V}}_{10} \mathrm{~T}_{1}(\mathrm{q})+\hat{\mathrm{V}}_{20} \mathrm{~T}_{2}(\mathrm{q})+\hat{\mathrm{V}}_{30} \mathrm{~T}_{3}(\mathrm{q})+\hat{\mathrm{V}}_{40} \mathrm{~T}_{4}(\mathrm{q})
$$

The voltage spectrum generated in the circuit of Figure 5.1 is

$$
\begin{align*}
\mathrm{V}=\mathrm{V}_{00} & +\hat{\mathrm{V}}_{10} \mathrm{~T}_{1} \quad\{a \cos \omega t-\mathrm{b} \cos (3 \omega t+\phi)\} \\
& +\hat{\mathrm{V}}_{20} \mathrm{~T}_{2} \quad\{a \cos \omega t-b \cos (3 \omega t+\phi)\} \\
& +\hat{\mathrm{V}}_{30} \mathrm{~T}_{3} \quad\{a \cos \omega t-b \cos (3 \omega t+\phi)\} \\
& +\hat{\mathrm{V}}_{40} \mathrm{~T}_{4}\{a \cos \omega t-b \cos (3 \omega t+\phi)\} \tag{5.37}
\end{align*}
$$

The voltage spectrum of equation (5.37) can be expanded into the equation containing 48 terms shown in Appendix 5(iii); the fundamental and third harmonic terms are found to be no different from those given in equation (5.15) of the analysis in section 5.2.2. Thus the extra term taken in the diode test spectrum does not affect the 3rd harmonic output from the circuit, or the input and output capacitances of the diode.

Summary

The amplitude of the fourth harmonic generated in the spectrum when the diode is tested does not appear to affect the operation of the tripler circuit in any way. It is noted that many extra terms appear in the voltage spectrum at 2 nd and 4 th harmonic.

5.3 Shur-Diode Tripler with Idler

5.3.1 Two-term approximation to the diode characteristic

The circuit will perinit second and third harmonic currents to flow in the diode in addition to che fundamental current. The basic circuit is shown in Figure 5.4.

Figure 5.4
Shunt diode circuit with idler

In the first instance it will be assumed that the diode characteristic generates only first and second harmonics when tested with a cosinusoidal charge variation

$$
\begin{equation*}
q_{0}=\frac{\hat{Q}_{10} \cos \omega t}{\hat{Q}_{10}}=\cos \omega t \tag{5.38}
\end{equation*}
$$

The diode characteristic can be written as

$$
\begin{equation*}
\mathrm{V}=\mathrm{v}_{00}+\hat{\mathrm{V}}_{10} \mathrm{~T}_{1}(\mathrm{q})+\hat{\mathrm{V}}_{20} \mathrm{~T}_{2}(\mathrm{q}) \tag{5.39}
\end{equation*}
$$

As second and third harmonic currents are permitted to flow, the charge variation on the diode will be

$$
\begin{equation*}
Q=a \hat{Q}_{10} \cos \omega t-b \hat{Q}_{10} \cos \left(2 \omega t+\phi_{2}\right)-c \hat{Q}_{10} \cos \left(3 \omega t+\phi_{3}\right) \tag{5.40}
\end{equation*}
$$

and the normalised charge will therefore be

$$
\begin{equation*}
q=a \cos \omega t-b \cos \left(2 \omega t+\phi_{2}\right)-c \cos \left(3 \omega t+\phi_{3}\right) . \tag{5.41}
\end{equation*}
$$

or

$$
\begin{equation*}
q=a \cos \theta-b \cos \left(2 \theta+\phi_{2}\right)-c \cos \left(3 \theta+\phi_{3}\right) \tag{5.42}
\end{equation*}
$$

The charge variation on the diode in the multiplier circuit must not exceed the test level hence the following conditions apply to the values of a, b and c

$$
\begin{equation*}
-1 \leqslant a \sin \theta-b \cos \left(2 \theta+\phi_{2}\right)-c \cos \left(3 \theta+\phi_{3}\right) \leqslant+1 \tag{5.43}
\end{equation*}
$$

An approximate limitation on a, b and c may be taken as

$$
\begin{align*}
& -1 \leqslant a, b, c \leqslant \leqslant 1 \\
& -1 \leqslant a+b+c \leqslant+1 \tag{5.44}
\end{align*}
$$

The voltage spectrum generated in the diode can be obtained by substituting the expression for q of eqation (5.42) into the diode characteristic of equation (5.39). This is detailed in Appendix 5(7) and the terms of frequency $\omega, 2 \omega$ and 3ω and given in equations (5.45) (5.46) and (5.47), using complex notation to indicate the phase of the components with - sin wt being the reference phase

$$
\begin{align*}
& \hat{\mathrm{v}}_{1}=-j a \hat{\mathrm{v}}_{10}-j b c \hat{\mathrm{v}}_{20} \angle \Phi_{3}-\phi_{2}+j a b \hat{\mathrm{v}}_{20} \angle \varphi_{2} \tag{5.45}\\
& \hat{\mathrm{v}}_{2}=+j b \hat{\mathrm{v}}_{10} \angle \Phi_{2}+j a c \hat{\mathrm{~V}}_{20} \angle \Phi_{3}-j a^{2} \hat{\mathrm{v}}_{20} \tag{5.46}\\
& \hat{\mathrm{v}}_{3}=+j c \hat{\mathrm{v}}_{10} \angle \Phi_{3}+j a b \hat{\mathrm{v}}_{20} \angle \phi_{2} \tag{5.47}
\end{align*}
$$

The currents in the three branches are obtained by differentiating equation (5.40) with respect to time giving the following expressions

$$
i_{1}=-a \omega \hat{Q}_{10} \sin \omega t
$$

bence

$$
\begin{equation*}
\hat{I}_{1}=a \omega \hat{Q}_{10} \tag{5.48}
\end{equation*}
$$

and

$$
i_{2}=+b 2 \omega \hat{Q}_{10} \sin \left(2 \omega t+\Phi_{2}\right)
$$

hence

$$
\begin{equation*}
\hat{I}_{2}=-\mathrm{b} 2 \omega \hat{Q}_{10} \angle \Phi_{2} \tag{5.49}
\end{equation*}
$$

and

$$
i_{3}=+c \cdot 3 \omega \hat{Q}_{10} \sin \left(3 \omega t+\phi_{3}\right)
$$

hence

$$
\begin{equation*}
\hat{\mathrm{I}}_{3}=-c 3 \omega \hat{\mathrm{Q}}_{10} \angle \Phi_{3} \tag{5.50}
\end{equation*}
$$

The third harmonic output circuit may be drawn as in Figure 5.5

Figure 5.5

Whatever the value of ϕ_{3}, the voltage generator jc $\hat{\nabla}_{10} \|_{\phi_{3}}$ is always in quadrature with the current and hence can deliver no power; it is in the correct phase to represent che voltage across the output capacitance of the diode, $C_{03^{\circ}}$ If the values of ϕ_{2} and ϕ_{3} are raken as $-\pi / 2$ (as in previous cases) the circuitt of Fígure 5.5 produces no output power and cannot obey circuit analysis laws. A possible solution would be for the component R_{3} to be a pure inductance but this would de-tune the third harmonic filter. It is proposed to repeat the analysis with a third and fourth harmonic term in the diode characteristic.

5.3.2 Three-term approximation to the diode characteristic

The diode characteristic is

$$
\begin{equation*}
\mathrm{V}=\mathrm{V}_{00}+\hat{\mathrm{V}}_{10} \mathrm{~T}_{1}(\mathrm{q})+\hat{\mathrm{V}}_{20} \mathrm{~T}_{2}(\mathrm{q})+\hat{\mathrm{V}}_{30} \mathrm{~T}_{3}(\mathrm{q}) \tag{5.51}
\end{equation*}
$$

When the normalised charge variation of equation (5.52) is substitured into (5.51), extra terms are generated in the voltage spectrum as detailed in Appendix 5 (vi) and listed in equations (5.53), (5.54) and (5.55) below.

$$
\begin{align*}
\hat{\nabla}_{1}= & -j a \hat{V}_{10}-j 2 b c \hat{V}_{20} / \phi_{3}-\phi_{2}+j 2 a b \hat{V}_{20} L \phi_{2} \\
& +\hat{V}_{30}\left[+j 3 a-j 3 a^{3}-j 6 a b^{2}-j 6 a c^{2}+j 3 a^{2} c \angle \phi_{3}+j 3 b^{2} c \angle 2 \phi_{2}-\phi_{3}\right] \tag{5.53}
\end{align*}
$$

$$
\begin{align*}
\hat{\mathrm{v}}_{2} & =j b \hat{\mathrm{v}}_{10} L \phi_{2}+j 2 a c \hat{\mathrm{v}}_{20} \angle \varphi_{3}-j a^{2} \hat{\mathrm{~V}}_{20}+\hat{\mathrm{v}}_{30}\left[-j 3 b \varphi_{2}\right. \\
& \left.+j 3 b^{3} \angle \phi_{2}+j 6 a^{2} b \angle \phi_{2}+j 6 b c^{2} \angle \phi_{2}-j 6 a b c \angle \phi_{3}-\phi_{2}\right] \tag{5.54}
\end{align*}
$$

$$
\begin{align*}
\hat{V}_{3} & =j c \hat{V}_{10} \angle \Phi_{3}+j 2 a 5 \hat{V}_{20} \angle \Phi_{2}+\hat{V}_{30}\left[-j a^{3}-j 3 c \angle \Phi_{3}\right. \\
& \left.+j 3 c^{3} \angle \Phi_{3}+j 6 a^{2} c \angle \Phi_{3}-j 3 a b^{2} \angle 2 \Phi_{2}+j 6 b^{2} c \angle \Phi_{3}\right] \tag{5.55}
\end{align*}
$$

The equation (5.55) may be used to re-drav che equivalent third Karmonic circuit of Figure 5.5. Assuming, as in previous cases, that ϕ_{2} and ϕ_{3} are both $-\pi / 2$ then the equivalent circuit is as shown in Figure 5.6

Figure 5.6
Third harmonic output circuit

From equations (5.55) and (5.50)

$$
\frac{1}{3 \omega c_{03}}=\frac{c \hat{\mathrm{v}}_{10}+2 a b \hat{\mathrm{v}}_{20}+\hat{\mathrm{v}}_{30}\left[3 c^{3}-3 c+6 a^{2} c+6 \mathrm{c}^{2} c\right]}{c 3 \omega \hat{Q}_{10}}
$$

hence

$$
\begin{equation*}
C_{03}=\frac{\hat{Q}_{10}}{\hat{v}_{10}+\frac{2 a b}{c} \hat{v}_{20}+\hat{\mathrm{v}}_{30}\left[6 a^{2}+6 b^{2}+3 c^{2}-3\right]} \tag{5.56}
\end{equation*}
$$

The equivaient circuit at second harmonic frequency can be derived from equations (5.54) and (5.49) and is shown in Figure 5.7

Figure 5.7
Second harmonic output circuit

The capacitance $\mathrm{C}_{\mathrm{O} 2}$ is given by

$$
\frac{1}{2 w C_{02}}=\frac{b \hat{\nabla}_{10}+2 a c \hat{V}_{20}+\hat{V}_{30}\left[3 b^{3}+6 a^{2} b+6 b c^{2}-3 b\right]}{b 2 \omega \hat{Q}_{10}}
$$

hence

$$
\begin{equation*}
c_{02}=\frac{\hat{Q}_{10}}{\hat{v}_{10}+\frac{2 a c}{b} \hat{v}_{20}+\hat{v}_{30}\left[6 a^{2}+6 c^{2}+3 b^{2}-3\right]} \tag{5.57}
\end{equation*}
$$

Power at second and third harmonic
From Figures 5.6 and 5.7 , the second harmonic load power is $P_{2}=\frac{\left(a^{2} \hat{\mathrm{~V}}_{20}+6 a b c \hat{\mathrm{~V}}_{30}\right)}{d / 2} \frac{\left(2 \mathrm{~b} \hat{\mathrm{Z}}_{10}\right)}{d / 2}$
or

$$
\begin{equation*}
P_{2}=a^{2} b \hat{V}_{20} \hat{I}_{10}+6 a b^{2} c \hat{\mathrm{~V}}_{30} \hat{\mathrm{I}}_{10} \tag{5.58}
\end{equation*}
$$

and the third harmonic load power is

$$
P_{3}=\frac{\left(a^{3} \hat{\mathrm{v}}_{30}-3 a b^{2} \hat{\mathrm{v}}_{30}\right)}{\sqrt{2}} \frac{\left(3 \mathrm{c} \hat{I}_{10}\right)}{\sqrt{ } 2}
$$

or

$$
\begin{equation*}
P_{3}=\frac{3}{2} a c\left(a^{2}-3 b^{2}\right) \hat{\nabla}_{30} \hat{I}_{10} \tag{5.59}
\end{equation*}
$$

The input equivalent circuit

An equivalent input circuit may be derived from equations (5.53)
and (5.48); it is drawn in Figure 5.8.

Figure 5.8
Input equivalent circuit

From the equations (5.53) and (5.48) the reflected resistance is

$$
R^{\prime}=\frac{2 a b \hat{\nabla}_{20}+\hat{V}_{30} 3 c\left(a^{2}+b^{2}\right)}{a \omega \hat{Q}_{10}}
$$

or

$$
\begin{equation*}
R^{r}=2 b \frac{\hat{V}_{20}}{\hat{I}_{10}}+\frac{3 c}{a}\left(a^{2}+b^{2}\right) \frac{\hat{V}_{30}}{\hat{I}_{10}} \tag{5.60}
\end{equation*}
$$

The input capacirance of the diode is given by

$$
\frac{1}{\omega C_{I N}}=\frac{a \hat{\mathrm{~V}}_{10}+2 b c \hat{\mathrm{~V}}_{20}+\hat{\mathrm{V}}_{30}\left[3 a^{3}+6 a b^{2}+6 a c^{2}-3 a\right]}{a \omega \hat{Q}_{I 0}}
$$

hence

$$
\begin{equation*}
C_{I N}=\frac{\hat{Q}_{10}}{\hat{\nabla}_{10}+\frac{2 b c}{a} \hat{\nabla}_{20}+\hat{V}_{30}\left[3 a^{2}+6 b^{2}+6 c^{2}-3\right]} \tag{5.61}
\end{equation*}
$$

Variation of ${ }^{\prime} a^{p},{ }^{\gamma} b^{\prime}$ and ${ }^{\prime} c^{\gamma}$ with $R_{2} R_{3} R_{s}$ and E_{s}
Applying Kirchfoffs Laws to the three equivalent circuits provides three equations in ${ }^{\circ} a^{8}{ }^{8} b^{p}$ and ${ }^{\circ} c^{8}$

$$
\begin{align*}
& \hat{\mathrm{E}}_{s}-a \hat{\mathrm{I}}_{10} \mathrm{R}_{\mathrm{s}}=2 \mathrm{ab} \hat{\mathrm{v}}_{20}+3 \mathrm{a}^{2} c \hat{\mathrm{~V}}_{30}+3 \mathrm{~b}^{2} c \hat{\mathrm{~V}}_{30} \tag{5.62}\\
& \mathrm{a}^{2} \hat{\mathrm{~V}}_{20}+6 \mathrm{abc} \hat{\mathrm{~V}}_{30}=2 \mathrm{~b} \hat{\mathrm{I}}_{10} \mathrm{R}_{2} \tag{5.63}\\
& \mathrm{a}^{3} \hat{\mathrm{~V}}_{30}-3 \mathrm{ab}{ }^{2} \hat{\mathrm{~V}}_{30}=3 c \hat{\mathrm{I}}_{10} \mathrm{R}_{\mathrm{s}} \tag{5.64}
\end{align*}
$$

Simultaneous solution of the three equations will produce values of ' $a^{\prime}{ }^{\prime} b$ ' and ' c ' which must obey the restrictions of equation (5.44).

Variation of second and third harmonic powers with ${ }^{9} a^{\prime}$, ${ }^{\circ} b^{\prime}$ and ${ }^{\text {' }} c^{\prime}$
Equations (5.58) and (5.59) are repeated below

$$
\begin{equation*}
F_{2}=a^{2} \hat{\bar{v}}_{20} \hat{\bar{I}}_{10}+6 a b^{2} c \hat{V}_{30} \hat{I}_{10} \tag{5.58}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{P}_{3}=\hat{\mathrm{V}}_{30} \hat{\mathrm{I}}_{10}\left(\frac{3}{2} a c^{3}-\frac{\mathrm{q}}{2} \mathrm{ab}^{2} \mathrm{c}\right) \tag{5.59}
\end{equation*}
$$

If a cercain relacionship exists between ${ }^{\circ} a^{\circ}$ and ${ }^{\circ} b^{\prime}$ then P_{3} will be zero for any value of c. From (5.59) this relationship is

$$
a^{2}=3 b^{2}
$$

or

$$
a=1.732 \mathrm{~b}
$$

If the third harmonic power is zero the question arises whether the second harmonic power is then at a maximum. This depends upon the relative values of $\hat{\mathrm{V}}_{30} \hat{\mathrm{I}}_{10}$ and $\hat{\mathrm{V}}_{20} \hat{\mathrm{I}}_{10}$ and if these are of the same order then it is possible that the value of P_{2} given by (5.58) can exceed the value of P_{2} given by equation (4.90). The latter equation has a negative fourth harmonic contribution and this requires investigation in the case where an idler is included and the four term approximation is used for the diode characteristic.

Sumary

(a) There is no easy approximate solution to the problem of finding the currents in the three branches in this case. A numerical solution of equations (5.62) (5.63) and (5.64) is apparently required.
(b) If values of ' a^{\prime}, ' b ' and ' c ' can be found by a numerical solution ' then the power in eacti circuit can be calculated using (5.58) and (5.59).
(c) The third harmonic power is reduced by the flow of second harmonic current and the second harmonic power can be increased if the term $\hat{\mathrm{V}}_{30}$ is comparable to $\hat{\mathrm{V}}_{20}$.
(d) The input capacitance $C_{\text {IN }}$ is affected by both second and third harmonic currents and is given in equation (5.61). The output capacirances of the diode at second and third harmonic, C_{02} and $\mathrm{C}_{03^{2}}$ are given in equations (5.57) and (5.56) respectively.

5.3.3 Four-term approximation to the diode characteristic

The details of this analysis are given in Appendix 5 (vii) where it is shown that the equivalent circuit given in Figure 5.9 can be derived.

Figure 5.9
Full equivalent circuit

The foilowing expressions relate to the quantities shown in Figure 5.9:

$$
\begin{gather*}
\hat{E}_{2}=\hat{\mathrm{V}}_{20} a^{2}+\hat{\mathrm{V}}_{30} 6 a b c+\hat{\mathrm{V}}_{40}\left(4 a^{4}-6 a^{2} b^{2}+12 a^{2} c^{2}+6 b^{2} c^{2}-4 a^{2}\right) \tag{5.66}\\
\hat{E}_{3}=\hat{\mathrm{V}}_{30}\left(a^{3}-3 a b^{2}\right)+\hat{\mathrm{V}}_{40}\left(-4 b^{3} c\right) \tag{5.67}\\
R_{b}^{0}=\frac{\hat{V}_{20}}{\hat{I}_{10}} 2 b+\frac{\hat{V}_{30}}{\hat{I}_{10}} \frac{3 c}{a}\left(a^{2}+b^{2}\right)+\frac{\hat{V}_{40}}{\hat{I}_{10}} 4 b\left(2 a^{2}+3 b^{2}+6 c^{2}-2\right) \tag{5.68}\\
C_{I N}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\frac{2 b c}{a} \hat{v}_{20}+\hat{V}_{30}\left[f_{5}(a, b, c)\right]+\hat{V}_{40}\left[f_{6}(a, b, c)\right]} \tag{5.69}
\end{gather*}
$$

where

$$
\begin{equation*}
f_{5}(a, b, c)=6 b^{2}+6 c^{2}+3 a^{2}-3 \tag{5.70}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{6}(a, b, c)=\frac{4 b c}{a}\left(3 b^{2}+3 c^{2}+9 a^{2}-2\right) \tag{5.71}
\end{equation*}
$$

Expressions for the second and third harmonic outputs powers may be derived as

$$
\begin{align*}
P_{2} & =\hat{V}_{20} \hat{I}_{10}\left(a^{2} b\right)+\hat{V}_{30} \hat{I}_{10}\left(6 a b^{2} c\right) \\
& +\hat{V}_{40} \hat{I}_{10}\left(4 a^{4} b+6 a^{2} b^{3}+12 a^{2} b c^{2}+6 b^{3} c^{2}-4 a^{2} b\right) \tag{5.72}\\
P_{3} & =\hat{V}_{30} \hat{I}_{10}\left(\frac{3}{2} a^{3} c-\frac{2}{2} a b^{2} c\right)+\hat{V}_{40} \hat{I}_{10}\left(-6 b^{3} c^{2}\right) \tag{5.73}
\end{align*}
$$

and the input power (at fundamental frequency) is given by

$$
\begin{align*}
P_{1} & =\hat{\mathrm{V}}_{20} \hat{\mathrm{I}}_{10}\left(\mathrm{a}^{2} \mathrm{~b}\right)+\hat{\mathrm{V}}_{30} \hat{\mathrm{I}}_{10}\left(\frac{3 a c}{2}\left[a^{2}+b^{2}\right]\right) \\
& +\hat{\mathrm{V}}_{40} \hat{\mathrm{I}}_{10}\left(2 a^{2} \mathrm{~b}\left[2 a^{2}+3 b^{2}+6 c^{2}-2\right]\right) \tag{5.74}
\end{align*}
$$

Hence, as expected,

$$
\begin{equation*}
P_{1}=P_{2}+P_{3} \tag{5.75}
\end{equation*}
$$

The analysis for the eripler circuit without idler gives results winch have similarities with chose for the doubler circuit.

The ratios of the peak values of second harmonic current to fundamental current to fundamental test current are b:a:l where the values of ' a ' and ${ }^{\circ} b^{\prime}$ ' may be obtained by solution of the equarion (5.24). The approximate values may be found by a graphical method shown in Figure 5.3.

The maximum third harmonic power is given by the result (5.32).
The output (third farmonicl power only depends upon the magnitude of the third harmonic generated in the test spectrum, the magnitudes of fundamental, second and fourtif harmonics do not directly affect the output power, see result (5.29).

The input and output capacitances are dependent upon the fundamental and third harmonic amplitudes generated in the test spectrum, see results (5.20) and (5.21).

When an idler circuit is used the analysis appears to show that the third harmonic power P_{3} is reduced by the flow of second harmonic current. However, the second harmonic power P_{2} can be increased as indicated in equation (5.72) which compares with (4.83). When an idler is used the third harmonic term $\hat{\mathrm{V}}_{30}$ contributes to P_{2}.

The input and output capacitances of the diode, which cause detiming of the filter circuits, are aiso dependent upon $\hat{\mathrm{V}}_{10}, \hat{\mathrm{~V}}_{20}, \hat{\mathrm{~V}}_{30}$ and $\hat{\nabla}_{40}$ when an idler circuit is used whereas with no idler circuit they only depend upon $\hat{\mathrm{V}}_{10}$ and $\hat{\mathrm{V}}_{30}$.

The values of ' $a^{\text {' }}$ ' b^{\prime} and ' c ' require the solution of three simultaneous equations, (5.62) (5.63) and (5.64), which should be done using numerical methods.

Table 5.1 compares the results obtained for the three circuits considered in Chapters 4 and 5.

	Shunt-diode doubler	Shunt-diode tripler
Output power P_{L}	$\begin{aligned} P_{2} & =\hat{V}_{30} \hat{I}_{10} a^{2} b \\ & \Rightarrow \hat{V}_{40} \hat{I}_{10}\left\{a ^ { 2 } b \left(4 a^{2}+6 b^{2}-\right.\right. \end{aligned}$	$P_{3}=\hat{V}_{30} \hat{I}_{10} \frac{3}{2} a^{3} c$
$\mathrm{C}_{\text {IN }}$	$\frac{\hat{Q}_{10}}{\hat{\mathrm{~V}}_{10}+\hat{\mathrm{V}}_{30}\left(3 a^{2}+6 b^{2}-3\right)}$	$\frac{\hat{Q}_{10}}{\hat{v}_{10}+\hat{V}_{30}\left(3 a^{2}+6 c^{2}-3\right)}$
$\mathrm{C}_{\text {OUT }}$	$\frac{\hat{Q}_{10}}{\hat{\mathrm{~V}}_{10}+\hat{\mathrm{V}}_{30}\left(6 a^{2}+3 b^{2}-3\right)}$	$\frac{\hat{Q}_{10}}{\hat{\mathrm{~V}}_{10}+\hat{\mathrm{V}}_{30}\left(6 a^{2}+3 c^{2}-3\right)}$
$\mathrm{R}^{\prime}{ }_{L}\left(=R_{\text {LN }}\right)$	$\begin{aligned} & \frac{\hat{V}_{20}}{\hat{I}_{10}} 2 b+\frac{\hat{V}_{40}}{\hat{I}_{10}} 4 b\left(2 a^{2}+3 b^{2}-\right. \\ & =4 \frac{b^{2}}{a^{2}} R_{L} \end{aligned}$	$\frac{\hat{\mathrm{V}}_{30}}{\hat{I}_{10}} 3 a c=\frac{9 c^{2}}{a^{2}} R_{L}$
Simultaneous Equations for a, b, c.	$\begin{aligned} & \hat{\mathrm{V}}_{20} a^{2}+\hat{\mathrm{V}}_{40}\left(4 a^{4}+6 a^{2} b^{2}-\right. \\ &-2 b \hat{I}_{10} R_{L}=0 \\ & E_{s}-a \hat{I}_{10} R_{s}-\frac{4 b^{2} R_{L}}{a} \hat{I}_{10}= \end{aligned}$	$a^{3} \hat{V}_{30}-3 c \hat{I}_{10} P_{L}=0$ $E_{s}=a \hat{I}_{10} R_{s}-\hat{V}_{30} 3 a^{2} c$
$\begin{aligned} & \text { approx } a, b, c \\ & \text { for } P_{L}(\max) \end{aligned}$	$\begin{aligned} & a=0.667 \\ & b=0.333 \end{aligned}$	$\begin{aligned} & a=0.75 \\ & c=0.25 \end{aligned}$
timated P_{L} (max)	$0.148 \hat{V}_{20} \hat{I}_{10}-0.23 \hat{\mathrm{~V}}_{40} \hat{\mathrm{I}}_{10}$	$0.158 \hat{V}_{30} \hat{I}_{10}$

Shunt-diode triplet with second-harmonic idler

\quad and harmonic
$P_{2}=\hat{V}_{20} \hat{I}_{10} a^{2} b+\hat{V}_{30} \hat{I}_{10} 6 a b^{2} c$
$+\hat{V}_{40} \hat{I}_{10}\left\{a^{2} b\left(4 a^{2}+6 b^{2}+12 c^{2}\right.\right.$

-4) $\left.-6 b^{3} c^{2}\right\}$

$$
\begin{aligned}
P_{3} & =\hat{V}_{30} \hat{I}_{10}\left(\frac{3}{2} a^{3} c-\frac{9}{2} a b^{2} c\right) . \\
& +\hat{V}_{40} \hat{I}_{10}\left(-6 b^{3} c^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{\nabla}_{20} \frac{2 b c}{a}+\hat{\nabla}_{30}\left\{3 a^{2}+6 b^{2}+6 c^{2}-3\right\}+\hat{V}_{40} \frac{4 b c}{a}\left\{9 a^{2}+3 b^{2}+3 c^{2}-2\right\}} \\
& c_{02}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{\nabla}_{20} \frac{2 a c}{b}+\hat{V}_{30}\left\{6 a^{2}+3 b^{2}+6 c^{2}-3\right\}+\hat{V}_{40} \frac{4 a c}{b}\left\{3 a^{2}+9 b^{2}+3 c^{2}-2\right\}} \\
& c_{03}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{V}_{20} \frac{2 a b}{c}+\hat{V}_{30}\left\{6 a^{2}+6 b^{2}+3 c^{2}-3\right\}+\hat{\sigma}_{40} \frac{4 a b}{c}\left\{3 a^{2}+3 b^{2}+9 c^{2}-2\right\}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\hat{V}_{20}}{\hat{I}_{10}} 2 b & +\frac{\hat{\nabla}_{30}}{\hat{I}_{10}}\left(3 a c+\frac{3 c b^{2}}{a}\right)+\frac{\hat{V}_{40}}{\hat{I}_{10}} 45\left\{2 a^{2}+3 b^{2}+6 c^{2}-2\right\} \\
& =\frac{4 b^{2}}{a^{2}} R_{2}+\frac{9 c^{2}}{a^{2}} R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& a^{2} \hat{\nabla}_{20}+\hat{V}_{30} 6 a b c-2 b \hat{I}_{10} R_{2}=0 \\
& a^{3} \hat{V}_{30}-\hat{\nabla}_{30} 3 a \dot{D}^{2}-3 c \hat{I}_{10} R_{3}=0 \\
& E_{s}-a \hat{I}_{10} R_{s}-\hat{\nabla}_{20} 2 a b-\hat{V}_{30} 3 a^{2} c-\hat{V}_{30} 3 b^{2} c=0
\end{aligned}
$$

requires numerical solution

CHAPTER 6

PERFORMANCE OF PRACTICAL MULTIPLIER CIRCUITS

6.1 Introduction 133
6.2 General Test Procedure 135
6.3 Microstrip Cavity Multipliers 137
6.3.1 Design details 137
6.3.2 Practical results 138
6.3 .3 Sumary 143
6.4 Coaxial Cavity Multipliers 144
6.4.1 Introduction 144
6.4.2 Design details 144
6. 5 Conclusion 146

6.1 Incroduction

The design, construction and testing of practical frequency multiplier circuits are described in this chapter. The multipliers were designed as frequency doublers with the diode in the shunt connection as shown in the basic circuit of Figure 6.1, and the input and output filters were required to have low impedance at fundamental and second harmonic frequencies respectively.

Figure 6.1

One objective of the investigation was the assessment of the merits of the series-tuned cavity as a component in frequency multiplier circuits. This form of filter was therefore used in the multiplier circuit as represented in Figure 6.2. Each cavity consisted of a length of short-circuited transmission line with a series tuning capacitor at che input and an output tapping near the short-circuited end. In Figure $6.2, C_{S 1}$ and $C_{S 2}$ are the series tuning capacitors of the input and output cavities respectively.

Figure 6.2^{\prime}

It had been intended that the cavities would be constructed in both coaxial and microstripline forms but it was quickly decided, however, that multipliers employing microstripline technology would be the main line of investigation as these were more easily, quickly and cheaply made rather than the type which used coaxial cavities. Microstrip multiplier designs are described in section 6.3 and details for a proposed coaxial multiplier are given in section 6.4. In general, only frequency doubling circuits were investigated.

It would be instructive to attempt to verify the predicted results summarized in the conclusion of Chapter 5 regarding the performance of shunt-diode multiplier circuits. This investigation however, required more than the available time and thus a series of tests was carried out which gave an indication of the correctness of the theoretical predictions.

6.2 Generai mest Procedura

When a multiplier was connected between a signal source and a load, as represented in the ciscuits of Figures 6.1 and 6.2 , the variables external to the multiplier were the e.mof. and internal resistance of the source and the load resistance. The input fundamental current was assumed to be a fraction "a" of \hat{I}_{10} " where the latter was defined as the amplitude of the fundamental current supplied to the diode under the spectrum test conditions. The second harmonic current delivered to the load, and, incidently, also passing through the diode, was assumed to be $2 \hat{b I I}_{10}$ where the parameter " b " was actually the ratio of the second harmonic charge variation to the fundamental charge variation during the spectrum test as defined in equation (4.20). The total current flowing in the diode was assumed to cause a variation in charge not greater than that in the spectrum test, and was expressed as,

$$
\begin{equation*}
I=-a \hat{I}_{10} \sin \omega t+2 b \hat{I}_{10} \sin (2 \omega t-\pi / 2) \tag{6.1}
\end{equation*}
$$

as derived in section 4.3 .1 .
The parameters "a" and " b " could be called the "multiplier circuit parameters" and they were shown to play an important role in the operation of the multiplier. The second harmonic load power P_{L} had been shown in the theoretical analysis to depend upon these parameters as,

$$
\begin{equation*}
P_{\mathrm{L}}=a^{2} b \hat{I}_{10} \hat{V}_{20} \tag{6.2}
\end{equation*}
$$

where $\hat{\mathrm{V}}_{20}$ was the amplitude of the second harmonic of the voltage spectrum generated in the diode under test conditions in which the diode current is $-\hat{\mathrm{I}}_{10} \sin \omega t$.

The values of the mulciplier circuit parameters depend upon the source and load and they can be found using the graphical method of Figure 4.13. The maximum load power P_{L} (max) was predicted to occur at a particular pair of values of "a" and "b" given by,

$$
\begin{align*}
& a=0.667 \tag{6.3}\\
& b=0.333 \tag{6.4}\\
& P_{L}(\max)=0.148 \hat{I}_{10} \hat{V}_{20} \tag{6.5}
\end{align*}
$$

The practical tests on the multipliers were required to show that the values of the multiplier circuit parameters varied in accordance with the predictions given by the graphical solution to the equations relating "a" and "b" to \hat{E}_{S}, R_{S} and R_{L}. It was difficult at the frequencies used to provide source and load resistances of any value other than 50Ω except by incorporating impedance-matching circuits within the multiplier. Thus all the series-tuned cavities were designed with 50- Ω transmission. lines and impedance transformation was used between the cavities and the diode. With the effective values of \hat{E}_{s} and R_{s} remaining constant, the value of " a " was expected to decrease from unity as R_{L} was reduced from infinity, i.e. as the loading was increased. The value of " b " was given by,

$$
\begin{equation*}
b=\frac{\hat{\nabla}_{20} a^{2}}{2 \hat{I}_{10} R_{L}} \tag{6.6}
\end{equation*}
$$

and this was expected to increase as the value of R_{L} was reduced. The quantity which could be measured was, of course, the load power which was given by equation (6.2). At a particular value of R_{I} the load power was expected to reach a maximum value.

6.3 Microstrip Cavity Multipliers
 6.3.1 Design derails

Several experimental shmi-diode frequency doublers were designed and tested with iapat cavities tuned to 1.56 GHz at wich frequency a 2 率 solid-state laboratory source was available. The connection of the diode in parallel with the microstripline can be seen in the photograph of Figure 6.1. The diode was rigidly clamped in position by a fibreglass strip and the cavity tuning was achieved by adjustable parallel-plate capacitors with dielectric consisting of MYLAR sheet of thickness 50.10^{-6} m.

The development of the multiplier design is indicated in Figure 6.2 to 6.7 which show the negatives used for the microstrip circuits. The particular features of each circuit were:
(i) Doubler No. 11A, Figure 6.2.

Doubler with no impedance matching.
(ii) Doubler No. 12, Figure 6.3.

Doubler with impedance matching for 258 in the output circuit by means of a quarter-wavelength transformer. Extra connections have been provided at input and output so that the input and output cavities could be independently tuned.
(iii) Doubler No. 13, Figure 6.4.

Doubler with iupedance matching to present 25Ω to the diode in both input and output circuits by means of quarter-wavelength transformers. Input and output cavities could be independently tumed before connection to the diode.
(iv) Doubler No. 14, Figure 6.5.

Doubler with impedance matching to present 208 to the diode in both input and output circuits by means of quarter-wavelength
transformers. Input and ourput cavities could be independently tuned before connection to the diode but the output cavity was, in fact, connected in the wrong direction.
(v) Doubler No. 14A, Figure 6.6. Doubler wief 20Ω values for R_{L} and R_{s} similar to design No. 14 but with output cavity in correct direction.
(vi) Doubler No. 15, Figure 6.7.

Doubler arranged so that single-stub matching may be used for impedance matching in the input and output circuits. Input and output cavities could be independently tuned before connection to the diode. All microstriplines have characteristic impedance of 50Ω.

6.3.2 Practical results

The results of measurements made on the doublers are shown in
Table 6.1. Test 1 in the table gives the output powers with the cavities separately tuned to the input and output frequencies of 1.56 GHz and 3.12 GHz respectively, and test 2 was with the tuming capacitors adjusted for maximum second harmonic output power. Further tests were carried out for some of the doubler circuits in order to assess the effects of the settings of the tuning capacitors. The circuits were fed from the 2 W solid-state source through an attenuator and the output power was measured using the attenuator on the spectrum analyser.

		Doubler Test Circuit Nember				
		12A	12	13	14 A	15
$\begin{gathered} \text { TEST } \\ 1 \end{gathered}$	Input at $\mathrm{f}_{0}(\mathrm{dBm})$	+27	+30	+30	+30	+30
	Output at $2 \mathrm{f}_{0}(\mathrm{dBm})$	-10	0	49	* 7	-7
	Output at F_{0} (dBal)	-3	-5	44	*1	+1
	$\mathrm{C}_{\text {IN }}$ (divisions)	+2	-2	+1.75	+2.1	+2.75
	c_{0} (divisions)	0	+3.5	-1.5	-2	-3
$\begin{gathered} \text { TEST } \\ 2 \end{gathered}$	Input at f_{0} (dBm)	+27	+30		+30	+30
	Output at $2 \mathrm{f}_{\mathrm{o}}$ (dBm)	-8	8		+15	+12
	Output at f_{0} (dBm)	-5	12		+13	+29
	$\mathrm{C}_{\text {IN }}$ (divisions)	+1.5	+.7		-1.6	0
	C_{0} (divisions)	+1	+2		-1.1	0
$\begin{gathered} \text { TEST } \\ 3 \end{gathered}$	Input at f_{o} (dBm)	$+27$			+30	
	Output at $2 \mathrm{f}_{\mathrm{o}}$ (dBm)	$+7$			+13	
	Output at f_{0} (dBm)	\$4			+23	
	$\mathrm{C}_{\text {IN }}$ (divisions)	+1.5			+2.1	
	C_{0} (divisions)	+1			-1.1	
$\begin{gathered} \text { TEST } \\ 4 \end{gathered}$	Input at $\mathrm{f}_{0}(\mathrm{dBm})$	+33				
	Output at $2 \mathrm{f}_{\mathrm{o}}$ (dBm)	-7				
	Output at f_{0} (dBm)	+4				
	$\mathrm{C}_{\text {IN }}$ (divisions)	\$1.5				
	Co_{0} (divisions)	$\div 1$				

Table 6.1
(i) Doubler No. 11A.

The lengths of the cavities were found to be incorrect on this design which was the first circuit to use 1.56 GFz as the input frequency. The microstrip widch was, by mistake, not increased to that needed for the Duroid substrate which was used in place of the fibreglass previously employed at lower frequencies. The input and output cavities were separately tuned by cutting gaps in the copper striplines with a sharp blade and using silver conducting paint to make necessary connections; the sweptfrequency responses are shown in Figures 6.8 and 6.9.

The second harmonic output power was very small presumably because there was no impedance matching in the circuit. There was a relatively large output component at f_{0} due to the poor performance of the cavity filters which are not working between 50Ω impedances. This circuit had microstriplines of characteristic impedance 65Ω.
(ii) Doubler No. 12.

The results were improved relative to those of doubler No. 11 but the output power was much lower than required.
(iii) Doubler No. 13.

The quarter-wavelength transformers were designed to match from 50Ω to 25Ω, and the results showed some improvement but the second harmonic output was not sufficiently large. Later tests on doubler 14 A showed that very fine tuning adjustment was required in order to obtain the best output, and it was possible that larger output powers were available from this circuit.
(ivy) Doubler No. 14.
This was designed but nor completed as the output cavity was in the wrong direction.
(v) Dosbler No. 14A.

This was the re-design of dowiler No. 14 with impedance matching of 50Ω ro 20Ω. The diode was mounted in the 20Ω microstripline. A standing wave test was carried out on this doubler using the circuit represented in Figure 6.10 and ehe standing wave patterns were as shown in Figure 6.11.

It was found that careful adjustment of the tuning capacitors could produce an output of +15 dBm whick was greater chan previously obrained. As the output power was increased the SWR measured on the slotted line decreased as expected.
(vi) Doubler No. 15.

This doubler was designed with all microstriplines having 50Ω characteristic impedance. Tests 1 and 2 were then made in the usual manner except that the SWRs were also measured, giving results of 36 and 15 respectively.

An open-circuit stub was then painted onto the circuit using silver conducting paint to provide impedance matching using the "single stub matching" technique.

The $50-\Omega$ stub was at a position 1.3 cm from the diode on the output side and a stub length of 0.55 cm gave maximum output at $2 f_{0}$. However, the output obtained was only -5 dBm and the SHR was 30.

Test 2 showed that the cavities could be tuned so ethat a second harmonic output power of $\$ 12 \mathrm{dBm}$ could be obtained but this was not Valid as the filters were also allowing the fundamental frequency input power to appear at the output. As che input power contains +10 dBm of second hamonic, the output power should be considerably kigher than this, for example, in the range 20 dBm to 30 dBm .

The stub matching was not successful in this case; the length of stub required might be expected to be more than a quarter-wavelength whereas it appeared to require a very short stub to improve the output power. Stub matching should be possible but apparently not by the technique used here.

6.3.3 Sumary

(i) It was found that the cavity tuning capacitors required adjustment from their initial settings when each doubler circuit was rested. This was expected as tife diode acts as a capacitance in boch the input and the output circuits.
(ii) The second harmonic output power P_{2} was measured for the following transformed values of R_{L} and R_{s} :
$R_{L}=20 \Omega, R_{s}=20 \Omega ; P_{2}=+15 \mathrm{dBm}$
$R_{L}=25 \Omega, R_{s}=25 \Omega ; P_{2}=+9 \mathrm{dBm}$
$R_{L}=50 \Omega, R_{s}=50 \Omega ; P_{2}<0 \mathrm{dBm}$
These figures show that changes in R_{L} and R_{s} with E_{s} constant produce changes in the multiplier parameters " a " and " b " which are measured as changes in P_{2}. Obviously, more extensive testing is required to verify the theory of Chapter 4.
(iii) Stub-matching tecfinique requires further investigation as a method of impedance matching to produce a good transfer of power from the source to the load.

6.4 Coaxial Cavicy Multipliers

6.4.1 Incroduction

The design of coaxial cavity multipliers has been detailed in various technical application notes from manufacturers such as Motorola Semiconductor Products Incorporated and Hewlett Packard Lid Creferences 10 and 262. These designs have used the transmissionline cavity as a tapped parallel-tuned circuit with input and output tappings as shown in Figure 6.12 so that filtering and impedance transformation are achieved togetfier.

An objective of this project was the investigation of the use of series-tuned coaxial cavities in frequency multipliers, and a preliminary design is discussed in the next section of this report. Series-tuned cavities had been used successfully in coaxial multipliers by KULESZA (Reference 17, 1967) who reported an efficient multiplier chain giving multiplication by a factor of 144 . The matching between the diode and coaxial cavities in his circuits was implemented where possible by capacitative transformers and this gave an overall efficiency of 2.5% which at the time was an excellent performance for such a high multiplication factor. In view of this previous work, this thesis has concentrated upon implementing the series cavity circuits in microstripline.

6.4.2 Design details

A preliminary design for a coaxial multiplier is shown in the photograph of Figure 6.13. The input and output cavities were designed to have series resonant frequency of 1 GHz and 2 GHz respectively, and the outer conductors were of square cross-section which is the usual practice. The diode was situated in a hole through the piece of white insulator (P.T.F.E.) in Figure 6.13 to connect between the outer of the cavity and a brass disc inner conductor which was set into the middle
of the insulator. Probes connected the \mathbb{N}-rype input and output sockets co the centre threaded conductors of the cavicies by means of springy strips of Srass. The Ehreaded centre conductors form tuning capacitances with the disc in the witce insulabor and the capacitances are held at fired values fy tightening the knurled lock nuts.

When the diode was replaced by a direct connection so that each cavity could be separately tuned to the desired frequencies, it was found that a cavity could only be tuned wfien the inner conductor of the other fiad been almost completely removed. Thus this particular design was $a b a n d o n e d$.

It was obvious that the two cavities should be completely screened from each other by the insertion of an eartfied plate in the position occupied by the diode in Figure 6.13. The cavities might be more easily designed if positioned side-by-side rather than back-to-back and a proposed design is skown in Figure 6.14. However, this design was not produced because experimental microstripline circuits were far easier, cheaper and quicker to produce and therefore the microstrip designs were pursued with the greater vigour.

6.4 Conclusion

Frequency doublers using varactor diodes in microscripline circuits with series-tuned cavities have been designed, conscructed, and tested with the objective of verifying the multiplier theory developed in Chapers 4 and 5. This type of multiplier circuit, i.e. microstripline, was investigated because the development of experimental circuits was much easier, quicker and cheaper than designs which use coaxial transmission lines.

The tests were required to show that the multiplier circuit parameters "a" and " 6 ", and hence the second harmonic output power were dependent upon the source e.m.f. E_{s}, the source resistance R_{s} and the load resistance R_{L} in the manner stated in the conclusions of Chaper 4. The actual values required for R_{s} and R_{L} for maximum output power were not found from spectral tests on the varactor diodes because this was too large a project. It was suspected, however, that the values needed for R_{s} and R_{L} would be less than 10Ω because impedance matching of this order has always been used in varactor diode multiplier circuits. The source and load resistances R_{s} and R_{L} were transformed to seyeral different values. Gy means of quarter-wavelength transformers and the second harmonic output power was measured for each case. The resules are summarised in section 6.3 .3 and it can be seen that increasing the transformation ratios N_{1} and N_{2} (where source resistance is transformed to $\mathrm{R}_{\mathrm{s}} / \mathrm{N}_{1}{ }^{2}$ and load resistance to $\mathrm{R}_{\mathrm{L}} / \mathrm{N}_{2}{ }^{2}$) produced an increase in output power. The values of N_{1} and N_{2} should have been increased until a decrease in the output power was observed as this situation is predicted by the theory of Chapter 4. However, the highest value which was used for both N_{1} and N_{2} was 1.58 and higher values than this become difficult as the stripline widtf increases.

When the diode was connecred in paraliel between a wide strip conductor and the earth plane it was not at all certain that the eravelling wave could be assumed to arrive correctiy at the diode. In one case the effect of connecting three diodes in parallel was investi̊gated but no otivious advantage was noted.

The maximum second harmonic power obtained from the microstrip dowbier was +15 dBm at 3.12 GHz when the effective source and load resistances were both 20 . The actual input power in this case was not measured but the available power from the source was +30 dBm . It is thought that more output power would have been obtained with the "correct" matching, and that very careful tuning would also produce a greater output. Although it cannot be claimed that the theory of Chapter 4 has been verified, much useful experience on the design of microstrip doublers has been obtained.

A future investigation might make more use of the impedancetransforming properties of the series-tuned cavity. All the computer studies in Chapter 2 were made for a load resistance of 50Ω because microwave power measurements are usually made in a $50-\Omega$ load. However, it is possible for impedance transformation to be achieved in the series-tuned cavity and higher transformation ratios might be obtained compared with those in quarter wavelength transformer designs.

Figure 6.2
Doubler No. 11A

Diode

Short circuit

Diode

Short circuit

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12
Schematic Diagram of
Paralle1-tuned Coaxial Cavity

Earth connection

Figure 6.14

CHAPTER 7

CONCLUSION

Page

7.1 The Analysis of the Multiplier Circuit 159
7.2 Practical Multiplier Circuits 164
7.3 Future Developments 167

7.1 The Analysis of the Multiplier Circuit

The predictions of the performance of the shunt-diode doubler and tripler which materialize from the analyses are sumarized in Table 5.1 in the conclusion to Chapter 5. Formulae are given for the maximum load power from the multipliers in terms of parameters obtained from a spectral test on the diode over a specified part of its characteristic; the measurement of these parameters is a separate problem which is discussed later. The results show that there are definite limits to the amounts of power which can be converted to second and third harmonic output power and that these are dependent upon the parameters $\hat{\mathrm{V}}_{20}$ and $\hat{\mathrm{V}}_{30^{\circ}}$. These parameters are the amplitudes of the second and third harmonic voltages generated by the diode when it is excited by a specified amplitude cosinusoidal charge variation at fundamental frequency, and they are dependent upon the degree of non-linearity of the diode characteristic. Other researchers have stated that all the input power may be converted to output power (assuming zero losses) if a complex conjugate impedance match is used at the input (reference 18). However, this last statement does not mean that the available power from the source can all be converted to a particular harmonic power.

The second harmonic output power from a doubler is theoretically diminished by the presence of a fourth harmonic in the diode test spectrum and it is probabie that simíar resuits would be obtained for a tripler circuit in which the third harmonic output power would be decreased by any sixth harmonic appearing in the diode spectrum. This reduction in output power due to higher harmonic terms in the test spectrum is caused by the production of an output e.m.f. which is in antiphase with the "principal" output e.m.f. Hence the analysis predicts
that a "basic" doubler would produce more output power if the test spectrum of its diode did not contain fourth harmonic. Note that this assumes that a fourth harmonic current is not allowed to flow anywhere in the circuit.

A number of other researchers (e.g. reference 16) mention that only the second harmonic is present if the diode characteristic has the parameter $\gamma=\frac{1}{2}$, and this agrees with one of the conclusions of Chapter 5 which predicts that a "basic" tripler circuit will produce zero output if its diode test spectrum has no harmonics higher than the second. When an idler is used with the shunt-diode tripler the analysis of Chapter 5 indicates that the third harmonic power may be less than for the basic tripler circuit. It also proposes that the second harmonic output power can be greater when a third harmonic idler.is used than for a basic doubler circuit. Results from other researchers have always indicated that the output power is always increased by the use of idlers in that the currents of the two frequencies are said to mix in the non-linear characteristic and produce power at the required sum or difference frequency. The present analysis shows that this may not always be the case and further investigation is required.

The effects of the diode capacitance on the de-tuning of the filters in the input and output circuits are included in the analysis. To a first approximation the input and output capacitances are both equal to the ratio of the test charge amplitude \hat{Q}_{10} to the fundamental component of the voltage generated during the spectrum test, $\hat{\mathrm{V}}_{10}$. This value, symbol C_{10}, is also the output capacitance on no-load when terms up to the fourth harmonic are included in the diode test spectrum. However, for such a test spectrum the input and output capacitances of the diode will
vary as the mulciplier output power changes. As the output power is increased from zero (i.e. no load) the input capacitance increases from C_{10} and reaches a maximum value at maximum output power. The outpur capacitance fas a no-load value which is lower than C_{10} and it incteases as the outpur power is increased until it reaches the value C_{10} at maximum output power. The results imply that the output filter would require no re-tuning if the multiplier were required to operate on maximum output power. It is noted that the input and output capacitances depend only upon the fundamental and third harmonic terms in the diode test spectrum in the basic doubler and tripler circuits. In the case of the tripler with secondharmonic idler all the harmonic terms of the diode test spectrum appear in the formulae for input and output capacitance (see Table 5.12.

The results predicted for multiplier operation by the analysis are difficult to prove due to the practical problems involved in finding the test spectrum for the shunt-connected diode. It is possible to measure the spectrum of currents for a reverse-biased diode driven by a sinusoidal voltage and this would give the parameters required for use in the analysis of the series-diode multiplier. If the $C_{i}-V$ characteristic of the diode could be calculated from the data in the "series spectrum" then it should be possible to generate the "shunt spectrum" for the diode by a mathematical method. This has not yet been attempted and might form part of a future investigation.

The multiplier circuits analysed in this report have been circuits in which very little forward current is allowed to flow in the diode. Hence the "overdriven case" has not been considered and this is unfortunate in that it generally gives higher output power and efficiency
compared with multipliers which generate harmonics due to the nonlinearity of the reverse-biassed part of the diode characteristic. In the analysis given by Hamilton and Hall (reference 09) the varactor diode is used as a narrow-pulse generator which gives an output rich in high-order harmonics of the input frequency. In order to apply the present method of analysis the diode would require a spectrum rest under conditions in which step-recovery action occurs. In this case the spectrum would probably contain sine and cosine terms and thus the phase of each component would require to be measured. These terms would complicate the analysis as they would give rise to Chebyshev Polynomials of the second kind in the diode characteristic. The first kind and second kind polynomials are defined as $T_{n}(\theta)=\cos \left(n \cos ^{-1} \theta\right)$ and $U_{n}(\theta)=\sin$ ($n \cos ^{-1} \theta$) respectively and their inclusion in the characteristic will lead to many other terms in the multiplier circuit equations. Thus the results might be too complex for interpretation and it might be necessary to evaluate them using the computer in which case the method would have no advantage when compared with a numerical analysis which starts from the diode characteristic.

In all the theoretical work in this report the series resistance of the varactor diode and the losses in the filter circuits have been ignored. This has been done to simplify the analysis so that the important problem of imedance matching would not be obscured. Obyiously the usual requirement in diode multipliers is for maximum output power when driven from a specific source, and the main achievement of the present analysis is that a method is proposed by which this can be accomplished. The output resistance R_{o} has been shown in Chapter 4 to depend upon the multiplier circuit parameters ' a^{\prime} and ' b ' and the ratio $\hat{\mathrm{V}}_{20} / \hat{\mathrm{I}}_{10}$. When the circuit operates at maximum
power the output resistance has its optimum value, \mathbb{R}_{0} (opt), and this has been evaluated at $0.833 \hat{\mathrm{~V}}_{20} / \hat{\mathrm{I}}_{10}$. For operation at maximum output power the load resistance R_{L} should be matched to $R_{0}(o p t)$ by impedance transformation and the source e.m.f. and internal resistance should then be chosen to give the required values of the multiplier circuit parameters ${ }^{2} a^{3}$ and " b ". The value of source resistance R_{s} can be cransformed to match the input resistance of the circuit and the value of E_{s} must then be adjusted to obtain the correct values of "a" and " b "。

7.2 Practical Multiplier Circuits

The design of the practical multiplier circuits shom in Chapter 6 was developed using the series-tuned cavity as the basic filter circuit. The computerplotted graphs of the performance of the cavity bad been plocted for operation between a source of 508 and a load of 503 , and thus in the multiplier circuit the cavity was again expected to work between 500 resistances, and impedance transforming circuits were inserted between the cavities and the diode. The shunt-connected diode multiplier was chosen because it was easier to mount in the microstripline circuit.

Two types of impedance transforming circuit were investigated in the multiplier circuits, namely, the quarter-wavelength transformer and single stub matching. Of the two the former appeared to be the more promising and it was also easier to design. The variables in single stub matcfing are the position and length of the stub and it was impossible to calculate the required values of these on both input and output sides of the diode. It was also very difficult to adjust the four variables by "trial and error" to attempt to obtain efficient harmonic generation. The quarter-wavelength transformers were much simpler to design as they consisted of a length of line of characteristic impedance Z_{12} which could be found from $\sqrt{Z_{1} \cdot Z_{2}}$ where Z_{1} and Z_{2} were the impedances which were to be matched. The lengths of these sections were required to be a quarter-wavelength at the relevant frequency i.e. 3.12 GHz in the output circuit and 1.56 GHz in the input circuit.

Several impedance transformations were made using the quarterwavelength transformer technique and the output powers obtained from the circuits showed an increase as the transformation ratio increased.

The maximum cransformation used was from 20Ω to 50Ω with the diode in the $20^{-\Omega}$ microstripline. Any further decrease in the impedance of the line containing the diode was not carried out as the width of the line was becoming excessive. It was considered that a single diode of the "pill" farm might not be properly fed from a wide microstripline and this needed further investigation which was curtailed due to lack of time. One technique which was tested involved the connection of three varactor diodes in parallel across the wide 20-ת microstripline but this appeared to make no improvement. A method is perhaps required by which the output circuit transformation ratio is continuously variable and the values of \hat{E}_{s} and R_{s} are also separately variable; in the tests carried out here the effective yalues of \hat{E}_{s} and R_{s} were both dependent upon the transformation ratio N_{1}. A particular fixed source having emf and internal resistance \hat{E}_{s} and R_{s} respectively becomes an effective source of emf \hat{E}_{S} / N_{1} and resistance $R_{S} / N_{1}{ }^{2}$ and has the same available power. One method of changing the available power would be to use attenuators between the source and the multiplier circuit and it would also be possible to use a microstrip power splitter to drive two doubler circuits in parallel, or push-pull.

One difficulty that was noticed with the circuit used here was the poor selectivity apparently achieved by the output cavity. When the output cavity was separately tuned to the second harmonic frequency of 3.12 GHz (i.e. before connection in the multiplier circuit) the multiplier output at fundamental frequency was usually at least $6 \cdot \mathrm{~dB}$ below the second harmonic output, but when the cavities were re-tuned for maximum second harmonic output the fundamental output was also considerably increased. It must be concluded that the
series-tmed cavity is a difficult component to use in the multiplier circuit due to the fact that the impedance presented to the cavity by the diode is a value which can change considerably if the circuit conditions vazy. This variation in impedance would also, of course, degrade the performance of most other filter circuits.

There were considerable difficulties in converting the theoretical multiplier circuit into a practical design but the experience gained during the project is invaluable and it is felt that the foundations Fave been laid for the design of microstrip series-tuned cavity multipliers. However, if high output power is the main consideration then the step-recovery type of multiplier could need to be given more attention, and the microstrip parallel-tuned cavity should also be investigated.

7.3 Future Deveiopments

An important investigation which was not made due to lack of time was the measurement of the parameters $\hat{\mathrm{V}}_{10}, \hat{\mathrm{~V}}_{20}, \hat{\mathrm{~V}}_{30}$ erc for the diode. One method of finding these parameters which may be used in the future would involve the multiple reflections which occur when the diode teminates a slotted line which also has a mismatch at the generator end. In this case standing waves exist on the slotted line at fundamental and harmonic frequencies and from their measurement the spectrum generated in the diode may be calculated. This method could be used to check the measurement of the spectrum of the series-connected diode which can be obtained by more conventional means.

It would be useful to investigate the performance of the seriestuned cavity with load resistances having various values in the range 1Ω to 20Ω. This would entail computer calculations which would give the filter frequency response of the cavity when matching the $50-\Omega$ source or load to the diode impedance.

Orher practical objectives which should be pursued include the verification of the results predicted for the operation of the multiplier with idler. This might be rather easier than the verification of the basic multiplier circuit operation as the second harmonic output could be observed, for example, as the third harmonic load was varied.

Further theoretical work would also be useful on the subjecrs covered in this project. One such topic is the connection between the "series spectrum" and the "shunt spectrum" of a diode, as mentioned in section 7.1, which would be useful for deriving the latter from the former which happens to be much more easily measured.

The application of the method of anaiysis to the "overdriven case", which has also been discussed in section 7.1 , might, if successful, yield useful results on the impedance matching which is needed in scep-recovery multipiier circuits. Another application for the analysis is the multiplier circuit which uses either the silicon or gallium arsenide avalanche diode, a relatively recent circuit which is used for multiplication in the range 10 GHz to 100 GHz . When multipliers are used in chains the load presented by the second stage on the first stage obviously affects the operating conditions of that stage and vice versa. The problem here is to operate both stages in the best conditions so that the final output power reaches the desired level. The interdependence of the two stages could be responsible for the generation of spurious frequency components and an investigation might discover the mechanism by which they occur. Thus the analysis could produce some very useful results but the full verification of doubler operation should first be made.

1. ACcatino, Lo, and ANGELJCCI, A.
"A Ku-Band Times Six Microscrip SRD Multiplier" CSELT Rapporti Tecnici, Vo. VII, No. 2, Giugno 1979.
2. ARMSTRONG, R.
"Spectral Identification of Non Linear Devices"
PhD Thesis, University of Durkam, 1983.
3. BENEDEK, R。, and SILVESTER, P 。
"Equivalent Capacitances for Microstrip Gaps and Steps" IEEE Trans on Microwave Theory and Techniques, Vol. MTI-20, No. 11, November 1972, pp. 29-733.
4. BURCXHARDT, C.B.
"Analysis of Varactor Frequency Muitipliers for Arbitrary Capacitance Variation and Drive Level", BELL SYSTEM TECH J. Vo1. 44, p. 75, 1965.
5. CRISTAL, R.G.
"Coupled Circular Cylindrical Rods Between Parallel Ground Planes" I.E.E.E. Trans on Microwave Theory \& Techniques, Vol. MTI-12, pp. 428, July 1964.

O6. EMMETT, J.R.
"Microwave Lattice Mixers at 4.5 GHz"
PhD Thesis, University of Durham, 1974.
07. FLEMING, M.A.
"Mícrustrip Circuits and Filters on Printed Circuit Board Substrates"
Report, Ukaea, Harwell, Oxon, England, August 1979, available from HMSO, London, England.
08. GARDINER, J.G., and WAGIEALLA, W.Z.
"The Step-Recovery Diode in Series Mode Harmonic Generation" University of Bradford, Post Graduate School of Electrical and Electronic Engineering, Report No. 44, 1973.
09. BALELTON, S., and HALI, R.
"Shunc-Mode Harmonic Generation using The Step Recovery Diode" Microwave Joumnal, pp. 69-78, April 1967.
10. BERLETT PACKARD

Appiication Note $928{ }^{\text {"Kinghand Step Recovery Multipliers"。 }}$
11. HEWLETT PACKARD
"A Frequency Doubler with High Output Power from 18 to 26.5 GHz H.P. Journal, Volume 33, No. 2, February 1982.
12. KELLEY, D.et al
"Microstrip Filters and Couplers"
EEEE Trans. on Microwave Theory and Techniques, August 1968, Pp. 560-562.
13. KOMPA, G., and MEHRAN, R.
"Planar Waveguide Model for Calculating Microstrip Components" Electron-Letters, 1975, Vol. 11, pp. 459-460.
14. KOTZEBUE, K.L.
"A Circuit Model of the Step-Recovery Diode"
Proc. IEEE, Correspondence, December 1965, pp. 2119-2120.
15. KRAMER, B.M., DERYCKE, A.C., FARRAYRE, A., and MASSE, C.F.
"High-Efficiency Frequency Multiplication with GaAs Avalanche Diodes"
IEEE Trans. on Microwave Theory \& Techniques, November 1976, pp. 861-863.
16. KILESZA, B.L.J.
"Highly Efficient Harmonic Generation using Varactors with HyperAbrupt Junctions"

Electronic Comumicator, Vol. 1, No. 4, July/August 1966, p. 10.
17. KULESZA, B.L.J.
"Efficient Harmonic Generation and Frequency Changing using
Semiconductor Devices"
PhD Thesis, University of Birmingham, October 1967.

28．LEESON，D．B．and WEDNREX，S。
${ }^{\text {rP }}$ Frequency Multiplication with Non－İnear Capacitors－A Circuic Analysis＂Proc．Inst．Radio Engineers，Vol．46， pp．2076－2084，December 1959。

19．MAKIMOTE，M。 and YAMASHITA，S．
＂Bandpass Filcers using Paraifel Stepped Impedance Resonators＂ IEEE Trans on Mix crowave Theory and Techniques，Vol．MTT－28， No．12，December 1980，pp．1413－1417．

20．MANLEY，J．M and ROWE，H．E．
＂Some General Properties of Non Linear Elements－Part I General Energy Relations＂

Proc．IRE．Vol．44，pp．904－913，July 1956.
21．MATTHAEI，G．L．
＂Interdigital Band－Pass Filters＂
IEEE Trans．on Microwave Theory and Techniques，Vol．MTT－10， pp．479－491，November 1962.

22．MATTHAEI，G．L．
＂Comb－Line Band－Pass Filters of Narrow or Moderate Bandwidth＂
Microwave Journa1，Vol．6，pp．82－96，August 1963.
23．MATTHAEI，G．L．，YOUNG，L．，and JONES，E．M．T．
Book，＂Microwave Filters，Impedance Matching Networks and Coupling Structures＂

McGraw－Hill，1964．
24．MOLL，J．L．；KRAKAUER， $\mathrm{S}_{\text {，}}$ ，and SHEN； R ，
＂ $\mathrm{P}-\mathrm{N}$ Junction Charge－Storage Diodes＂
Proc．IRE，January 1962，pp．43－53．
25．MONTGOMERY，C．G．，RICKIE，R．H．，and PURCELL，E．M．
Book，＂Principles of Microwave Circuits＂
pp．208－239，Radiation Laboratory Series，McGraw－Hill，1948．
25. MOTOROEA

Schaffner, G. (Editcr)
"Design Tips for Coaxial-Cavity Varactor Multipliers"
Application Note AN-159
Motorola Semiconductor Products Inc.
27. NUYTS, Wo, and VAN OVERSTRAETEN, R.J.
"Numerical Calculations of the Capacitance of Linearly Graded
Si P-N Junctions"
Electronic Letters 5, pp. 54-55, 6th February 1969.
28. PAGE, C.H.
"Harmonic Generation with Ideal Rectifiers",
Proc. IRE, Vol. 46, pp. 1738-1740, October 1958.
22. PENFIELD, Po, and RAFUSE, R.P.

Book, "Varactor Applications"
M.I.T. 1962 。
30. PETROT, B.Y.
"Stability of Steady States of Varactor Frequency Multipliers" Radio Engineers and Electronic Physics, Vol. 21, Part 6, pp. 81-89, 1976.
31. ROLLAND, P.A., SALMER, G., DERYCKE, A., and MICHEL, J.
"Very-High-Rank Avalanche Diode Frequency Multiplier"
Proc. IEEE, December 1973, pp. 1757-1758.
32. SAUL, P.H.
"Evaluation of a Step-Recovery Diode in a Broad-Band Frequency Multiplier"

PhD Thesis, University of Durham, 1974.
33. SCANLAN, J.O., and LAYBOURN, P.J.R.
"Large Signal Analysis of Varactor Harmonic Generators without Idlers"

Proc. IEE, 1965, Vol. 112, pp. 1515-1520.
34. SCANRAN, J.O., and LAYBOURN, P.L.R.
"Analysis of Varactor Murcipliets wich Idlers"
The Radio and Electronic Engineer, Vol. 31, No. 6, pp. 35 -36., Jene 1966.
35. SCANLAN, J.O., and LAYBOURN, P.J.R.
"Analysis of Varactor Harmonic Generators with Arbicrary Drive Levels ${ }^{17}$

Proc. IEEE, Vol. 14, No. 11, Pp. 1598-1604, November 1967.
36. SCHNEIDER, M.V.
"Wicrostrip Lines for Mincrowave Incegraced Circusits"
B.S.T.J. May-June 1969, pp. 1421-1444.
37. SCHNEIDER, M.V.
"Microstrip Dispersion"
Proc. IEEE, 1972, Vol. 60, pp. 144-146.
38\% SMITH, R.Bo, and BRANER, B.
"Measurement of Varactor Capacitance Parameters"
The Radio and Electronic Engineer, Vol. 42, No. 8, pp. 381-387, August 1972.
32. STINEHELFER, H.E.
"An Accurare Calculation of Uniform Microstrip Transmission Lines"
IEEE Trans on Microwave Theory \& Techniques, Vol. MTT-16, No. 7, 1968, pp. 439-444.
40. TANG, C.C.H.
"An Exact Analysis of Varactor Frequency Multipliers"
IEEE Trans. on Microwave Theory and Techniques, Vol. MTT-14, pp. 210-212, April 1966.
41. UHLIR, A.
"The Potential of Semiconductor Diodes in High-Frequency Communications"
Proc. IRE. Vol. 46 , pp. 1099-1115, June 1958.
42. WHEELER, H.A.
"incansmission-Line Properties of Parallel Strips Separated by
a Dielectric Sheet"
IEEE. Trans. on Microwave Theory \& Techniques; Vol. MTT-13, 1965. pp. 172-185.

APPENDICES TO CHAPTER 2

2(i) List of symbols A2

Appercias 2(i)

List of Symbols
Note that in a few cases a symbol has been used for wore than one parameter, but this does not cause confusion as ir is always clear which paramerer is meanc from the concemt in which ir is found.

1.	A	Racio of DP ro DC
2 。	${ }^{\text {A }}$ c	Plare area of runing capaciror for coaxial caviry
3(i).	a	Radius of inner conductor in coaxial eransmission line
3(ii)	a	Racio of che fundamencal charge variacion in the diode in a shunc mulciplier circuit to che fundamencal charge variacion used in finding the rest spectrum of the diode
4(i).	b.	Radius of ourer conductor in coaxial reansmission line
$4(\mathrm{ii})$ 。	b	Racio of che second harmonic charge variation in the diode in a shunt multiplier circuit to the fundamental charge variacion used when finding the test spectrum of che diode

5. $C_{\text {IN }}$ Inpur capacirance

6.	C_{i}	Incremencal capacitance of varactor diode
7.	C_{m}	Capacirance per unit lengrh of transmission line
8.	C_{0}	Ourput capacitance
9.	C_{o}	Incremencal capacirance of diode ar $V_{a}=$ zero
10.	C_{02}	Ourpur capacitance at $2 n d$ harmonic frequency

II。	${ }_{0} 03$	Ourpur capacieance as 3rd harmonic frequency
12.	${ }^{\text {c }}$	Capacirance of series runing capacitor at input of shorc-circuiced eransmission line cavicy
13.	C_{SN}	Value of C_{s} which produces series resonance with the unloaded caviry when θ has a specific value θ_{0}
14(i).	c	Velocity of esm. waves in vacuum
14(ii).	c	Racio of the chird harmonic charge variacion in the diode in a shunc mulciplier circuir to the fundamencal charge variarion used when finding the test spectrum of the diode
15.	DC	Lengch of shorc-circuiced eranswission line cavity
16.	DP	Discance between posicion of probe and shorr-circuir end of caviry
17.	d_{c}	Distance between plates of tuning capacitor for coazial cavicy
18.	E_{S}	E.m.f. of signal source
19.	E_{2}	E.m.f. at second harmonic frequency
20.	E_{3}	E.mof. ar third harmonic frequency
21.	$\begin{aligned} & \mathrm{F}_{1}(\mathrm{a}) \\ & \mathrm{F}_{7}(\mathrm{a}) \end{aligned}$	Function used in multiplier analysis
22.	\pm	Freguency
23.	$\mathrm{f}^{\text {' }}$	Normalised frequency: ratio of f to f cav
24.	f CAV	Frequency ar which cavity is a quarcer wavelength long
25.	f_{0}	Series resonant frequency of the unloaded caviry when value of C_{S} i.s $C_{S N}$ and value of θ is θ

26.	$E_{0}{ }^{\circ}$	Nomalised walue of E_{0}; ratio of E_{0} co $\mathrm{E}_{\text {cav }}$
27.	G	Available power gain; racio of P_{L} co P_{A}
28.	G	Shumt conductance per metre length of transmission line
29.	h	Thickness of dielecrric in mixcroserip line
30.	$\hat{I}_{\underline{a}}$	Amplicude of current of harmonic frequency of order n
31.	i_{0}	Inpur currenc producing cosinusoidal charge variarion for generacion or diode volrage specrrm
32.	L	Inserion loss in dib
33.	$\mathrm{L}_{\text {m }}$	Inductance per unit lengeh of transmission line
34.	\log	Logarichm to che base 10
35.	In	Natural logarithm to the base "e"
36.	P_{A}	Power available from the signal source
37.	P_{L}	Load power
38.	P_{1}	Inpur power at fundamencal frequency
32.	P_{2}	Load power ar second harmonic frequency
40.	P_{3}	Load power at chird harmonic frequency
41.	Q	Charge
42.	Q_{B}	Bias charge on varactor \}
43.	$\mathrm{Q}_{\text {BD }}$	Charge on varaccor diode at breakdown voltage
44.	$Q_{\text {d }}$	Total charge on the p-side of diode junction

45.	Q_{i}	Corage injected into diode
46.	\hat{Q}_{n}	Axplirude of charge of harmonic frequency of order n
47.	Q_{10}	Open-circuir harmonic charges developed on che varactor diode when driven by the test voltage of cosinusoidal form
48.	q	Normalised charge variarion on varacror diode
49.	$\mathrm{R}_{\mathrm{i}} / \mathrm{p}$	Resistive part of $\mathrm{Z}_{\text {IN }}$
50.	$\mathbb{R}_{i / p}$	Real pare of $Z_{I N}$; ratio of $R_{i / p}$ to Z_{0}
51.	R_{L}	Load resistasce
52.	$R_{L}{ }^{0}$	Reflecred load resiscance in the equivalenc inpur circuir of the diode mulciplier
53.	$\mathrm{R}_{\text {III }}$	Series resistance per metre lengch of transmission line
54.	R_{S}	Resiscance of signal source
55.	R_{2}	Load resistance ar second harmonic frequency
56.	R_{3}	Load resistance at third harmonic frequency
57.	R_{30}	Ratio of $\hat{\mathrm{V}}_{30}$ to $\hat{\mathrm{I}}_{10}$
58.	$T_{n}()$	Chebyshev polynomial of order n
59.	t	Thickness of conductor in microstrip line
60.	V	Volrage
61.	V	Voltage across the varactor diode
62.	V_{B}	Bias volcage on the varactor
63.	$\nabla_{B D}$	Breakdown volrage of the varacror diode

64.	V_{L}	Volcage across che load impedance Z_{2}
65.	V_{0}	Volrage specerum produced by varaccor diode driven by cosinusoidal clarge variacion
66.	Voc	E.mof. of Thévenin equivalent circuic
67.	$V_{O C}{ }^{\circ}$	Ratio of $\mathrm{V}_{O C}$ ro E_{S}
68.	\hat{V}_{n}	Amplitude of volcage of harmonic frequency of order n
69.	$\mathrm{V}_{\text {no }}$	Open-circuir harmonic voleages developed in the varactor diode when driven with a cosinusoidal charge variacion
70.	v	Nommlised voltage generated in the varactor diode
71.	W	Widch of conduccor in microscrip line
72.	$\mathbb{X}_{\mathrm{i} / \mathrm{p}}$	Reactive part of $\mathrm{Z}_{\text {IN }}$
73.	$\mathbb{K}_{i / p}$	Imaginery part of $Z_{I N}{ }^{\circ}$; racio of $\mathbb{X}_{i / p}$ to Z_{0}
74.	X_{L}	Induccive reactance used to re-rune the ourput circuit of the multiplier
75.	X_{I}	Inducrive reactance used to re-tune the inpur circuic of che mulciplier
76.	$\mathrm{Z}_{\text {IN }}$	Inpur impedance of the loaded cavity including the tuning capacitor C_{S}
77.	$z_{\text {IN }}{ }^{\prime}$	Normalised valine of $\underline{Z}_{\text {IN }}$; ratio of $\underline{Z}_{\text {I }}$ IN to $\underline{7}_{0}$
78.	$\mathrm{Z}_{\text {in }}$	Inpur impedance
79.	$\mathrm{Z}_{\mathrm{i} / \mathrm{p}}$	Inpur impedance of the loaded cavity, not including tuning capacitor C_{S}
80.	Z_{L}	Load impedance
81.	$z_{L}{ }^{\ominus}$	Normalised load impedance; racio of Z_{L} co Z_{0}

82.	z_{0}	Canacceriscic impedzace of eraswissiou line
83.	z_{OA}	Characteriscic impedance of microscrip asswaing relarive permicrivicy of dielecrric is 1
84.	$z_{0 / p}$	Output impedance of Thevenin equivalent circuit
85.	$Z_{o / p}{ }^{p}$	Racio of $\mathrm{Z}_{\mathrm{o} / \mathrm{p}}$ co Z_{0}
86.	$z_{\text {SC }}$	Inpur impedance of cransmission line cerminaced in a shore circuir
87.	Z_{T}	Terminacing impedance
88.	β	Phase change constanc per unic lengch of eransmission line
89(1).	γ	Propagation conscanc pex unir lengeh of cransmission line
89(ii).	γ	Constane in varacror diode characteristic
90.	$\varepsilon_{\text {eff }}$	Effecrive relative permircivity in microstrip line
91.	ε_{0}	Permircivicy of free space
92.	ε_{T}	Relarive permitrivity of the dielectric of a eransmission line
93.	λ	Wavelengeh
94.	$\lambda_{G}, \lambda_{\text {m }}$	Wavelengch in microserip line
95.	λ_{0}	Free-space wave length
96(i).	θ	Electrical length of cavity in radians
96 (ii).	θ	Used as wt
97.	θ_{0}	Value of θ for che caviry ar the frequency $f_{\text {o }}$

98(8)	ϕ	Elecarical lexgh in radians equivalent to che discance D ?
98(ii).	ϕ	Work funcrion, used in varactor diode characrexisric
98(i̇i) 。	ϕ	Phase angle
99.	μ_{0}	Pemmabilicy of Eree space
100.	μ_{*}	Relacive permeabilicy of the dielecrric of a cransmission line
101.	ω	Angular frequency

APPENDICES TO CHAPTER 4

Page
4(i) To show that the coefficients of the Chebyshev Expansion Al0 representing a non-linear characteristic are the magnirudes of the harmonics obtained by driving the non-linear characteristic with a cosinusoidal drive.
4(ii) Derivation of equation (4.24) from equation (4.23). A14
4 (iii) Derivation of equation (4.66) from equation (4.65). A15
4 (iv) Extra terms due to inclusion of terms $\hat{V}_{40} T_{4}(q)$ in the diode A16 characteristic.
4(v) Fourterm Appromimation to the Diode Characteristic. Al 8
4 (vi) The derivation of a formsla for the output resistance of A21 the diode at the harmonic output frequency.

Appendix 4 (i)
To show that the coefficients of the Chebystev Expansion represemaing a momiticear characteriscic are the maguitules of the harmonics obeained by driving the non-linear characceriscic with a cosimusoidal drive.

Equation (4.9) expresses the characteriscic of the diode,

$$
V=f(Q)
$$

in the form of the sum of Chebyshev Polynomials $T_{n}(q)$ where q is the normalised charge deviation from the bias value. In the proof given below, the variable q is replaced by x and the variable V is replaced by y.

Equation (4.16) expresses the characteriscic of the diode,

$$
Q=f(v)
$$

in che form of che sum of Chebyshev Polynomials $T_{n}(v)$ where v is the normalised voltage deviacion from the bias value. In the proof given below, the variable v is replaced by x and che variable Q is replaced by \mathbf{y}.

Proof:

Let the non-linear characteristic be given by the power expansion given in equation (1) and the sum of the Chebyshev Polynomials in equarion (2).

$$
\begin{align*}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \tag{1}\\
& y=c_{0}+c_{1} T_{1}(x)+c_{2} T_{2}(x)+c_{3} T_{3}(x) \ldots \tag{2}
\end{align*}
$$

Noce chac the Chebyshey Polynomials are cefined as in (3) below,

$$
\begin{equation*}
X_{n}(x)=\cos \left(n \cos ^{-1} x\right) \tag{3}
\end{equation*}
$$

If we make x vary with time, i oe apply a drive to the chaxacteriscic (2) given by equation (4) below chen resulc (5) would be obrained.

$$
\begin{align*}
& \bar{L}=\cos \omega t=\cos \theta \tag{4}\\
& \text { Subsciguce (4) inco (2). } \\
& y=c_{0}+c_{1} T(\cos \theta)+c_{2} T_{2}(\cos \theta)+c_{3} \mathbb{T}_{3}(\cos \theta) \ldots \\
& \therefore \quad \because=c_{0}+c_{1} \cos \left(\cos ^{-1} \cos \theta\right)+c_{2} \cos \left(2 \cos ^{-1} \cos \theta\right) \\
& +c_{3} \cos \left(3 \cos ^{-1} \cos \theta\right)+\ldots . \\
& \ldots y=c_{0}+c_{1} \cos \theta \& c_{2} \cos 2 \theta \& c_{3} \cos 3 \theta+\ldots \tag{5}
\end{align*}
$$

The equation (5) shows chat the amplitudes of the harmonics generaced when the non-linear characteristic given in (1) and (2) is driven by the cosinusoidal function given in (4) are the coefficients of the Chebyshev cerms used in the characteristic in (2)。

Thus ic can be concluded that the diode characteriscic may be wrircen as eicher equacion (4.9) or equarion (4.16)

It is useful to see how the " c ' coefficients are relared to the ${ }^{\circ} a^{\text {' }}$ coefficiencs used in (1). The Chebyshev Polynomials are given below in equarions (6) to (11).

$$
\begin{align*}
& T_{0}(x)=1 \tag{6}\\
& T_{1}(x)=x \tag{7}\\
& T_{2}(x)=2 x^{2}-1 \tag{8}
\end{align*}
$$

$$
\begin{align*}
& T_{3}(x)=4 x^{3}-3 x \tag{9}\\
& T_{4}(x)=8 x^{4}-8 x^{2}+1 \tag{10}\\
& T_{5}(x)=16 x^{5}-20 x^{3}+5 x \tag{11}
\end{align*}
$$

Substituring these inco (2).

$$
\begin{align*}
y=c_{0} & \& c_{1} \oiint+c_{2}\left(2 x^{2}-1\right)+c_{3}\left(4 x^{3}-3 x\right) \& c_{4}\left(8 x^{4}-8 x^{2} * 1\right) \\
& \& c_{5}\left(16 x^{5}-20 x^{3}+5 x\right) \tag{12}
\end{align*}
$$

Equating coefficients of powers of x in equacions (1) and (12) we can obcain the following results:-

$$
\begin{align*}
& a_{0}=c_{0}-c_{2}+c_{4} \ldots \tag{13}\\
& a_{1}=c_{1}-3 c_{3}+5 c_{5} \ldots \tag{14}\\
& a_{2}=2 c_{2}-8 c_{4}+\ldots \tag{15}\\
& a_{3}=4 c_{3}-20 c_{5}+\ldots \tag{16}\\
& a_{4}=8 c_{4}-\ldots \tag{17}\\
& a_{5}=16 c_{5}-\ldots \tag{18}
\end{align*}
$$

The advancage of the Chebyshev represencacion for the non-linear characteristic is that each rerm in the series improves the approximation of the law.

It can similarly be shown that,
$c_{0}=a_{0}+\frac{1}{2} a_{2}+\frac{3}{8} a_{4}+\ldots$.
$c_{1}=a_{1}+\frac{3}{4} a_{2}+\frac{5}{8} a_{5}+\ldots$
$c_{2}=\frac{1}{2} a_{2}+\frac{1}{4} a_{4}+\ldots$.
$c_{3}=\frac{1}{8} a_{3}+5 / 16 a_{5}+\ldots$.
$c_{4}=\frac{1}{8} a_{4} * \ldots$. (23)
$c_{5}=1 / 16 a_{5} \& \ldots$. (24)

Appendiz 4(iii)

```
Derivation of equarion (4.24) from equarion (4.23).
```

(4.23) may be mritten as,
$V=V_{00}+\hat{V}_{10}\{a \cos \theta-b \cos (2 \theta+\phi)\}$
$+\hat{\mathrm{V}}_{20} 2\{a \cos \theta-b \cos (2 \theta+\phi)\}^{2}-1$
$=\nabla_{00}-\hat{v}_{20}$
$+a \hat{\nabla}_{10} \cos \theta-b \hat{\nabla}_{10} \cos (2 \theta+\phi)$
$-2 \hat{\mathrm{~V}}_{20^{2}} \cos ^{2} \theta+2 \hat{\mathrm{~V}}_{20^{\delta}}{ }^{2} \cos ^{2}(2 \theta+\phi)$
$-4 \hat{\mathrm{~V}}_{20} \mathrm{ab} \cos \theta \cos (2 \theta<\phi)$
$=V_{00}-\hat{V}_{20}$
$+a \hat{\mathrm{~V}}_{10} \cos \theta-\mathrm{b} \mathrm{V}_{10} \cos (2 \theta+\phi)$
$\Rightarrow 2 \hat{\mathrm{~V}}_{20^{a}}{ }^{2}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right)+2 \hat{\mathrm{~V}}_{20^{b}}{ }^{2}\left\{\frac{1}{2}+\frac{1}{2} \cos (4 \theta+2 \phi\}\right\}$
$-4 \hat{\nabla}_{20^{a b}}\left\{\frac{1}{2} \cos (3 \theta+\phi)+\frac{1}{2} \cos (\theta+\phi)\right\}$
$=v_{00}-\hat{v}_{20}+a^{2} \hat{v}_{20}+b^{2} \hat{v}_{20}$
$+a \hat{\nabla}_{10} \cos \theta-2 a b \hat{V}_{20} \cos (\theta+\phi)$
$+a^{2} \hat{\mathrm{v}}_{20} \cos 2 \theta-\hat{\mathrm{v}}_{10} \mathrm{~b} \cos (2 \theta+\phi)$
$-\hat{\mathrm{V}}_{20}{ }^{2 \mathrm{ab}} \cos (3 \theta+\phi)$
$+\hat{\mathrm{V}}_{20^{\mathrm{b}}}{ }^{2} \cos (4 \theta+2 \phi)$

Appencier 4(ixi2)

Derivation of equation (4.66) from equation (4.65).

$$
\begin{align*}
V=V_{C O} & +\hat{\nabla}_{10^{T}} T_{1}\{a \cos \theta-b \cos (2 \theta+\phi)\} \\
& +\hat{V}_{20} T_{2}\{a \cos \theta-b \cos (2 \theta+\phi)\} \\
& +\hat{V}_{30} T_{3}\{a \cos \theta-b \cos (2 \theta+\phi)\} \tag{4.65}
\end{align*}
$$

$=$ The 10 terms given in result (4.24) which are obtained from the first 3 term of (4.65)

$$
\begin{gathered}
\& \hat{\mathrm{v}}_{30} 4\{a \cos \theta-b \cos (2 \theta+\phi)\}^{3}-3\{a \cos \theta \\
-[\cos (2 \theta+\phi)\}
\end{gathered}
$$

$=$ The 10 terms of result (4.24)

$$
\begin{aligned}
& +\hat{\nabla}_{30} 4 a^{3} \cos ^{3} \theta-12 \hat{\mathrm{~V}}_{30^{a}} \mathrm{a}^{2} \cos ^{2} \theta \cos (2 \theta+\phi) \\
& +12 \hat{\mathrm{~V}}_{30} \mathrm{a} \cos \theta \mathrm{~b}^{2} \cos ^{2}(2 \theta+\phi)-4 \hat{\mathrm{~V}}_{30^{b^{3}} \cos ^{3}(2 \theta+\phi)} \\
& -3 \hat{\mathrm{~V}}_{30^{a}} \cos \theta+3 \mathrm{~b} \hat{\mathrm{~V}}_{30} \cos (2 \theta+\phi)
\end{aligned}
$$

$=$ The 10 terms of result (4.24)

$$
\begin{aligned}
& +\hat{\nabla}_{30^{4 a^{3}}\left(\frac{3}{4} \cos \theta+\frac{1}{4} \cos 3 \theta\right)} \\
& -\hat{\mathrm{V}}_{30^{12 a^{2}} \mathrm{~b}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) \cos (2 \theta+\phi)}+\hat{\mathrm{V}}_{30} 12 \mathrm{ab}^{2} \cos \theta\left[\frac{1}{2}+\frac{1}{2} \cos (4 \theta+2 \phi)\right] \\
& -\hat{\mathrm{v}}_{30^{4 b^{3}}}\left[\frac{3}{4} \cos (2 \theta+\phi)+\frac{1}{4} \cos (6 \theta+3 \phi)\right] \\
& -\hat{\mathrm{V}}_{30} 3 \mathrm{a} \cos \theta+\hat{V}_{30} 3 \mathrm{~b} \cos (2 \theta+\phi)
\end{aligned}
$$

Appencis 4(iv)

Extra terms due to inclusion of cesm $\stackrel{\rightharpoonup}{V}_{40} T_{4}(q)$ in the diode characteristic.

The extra cerms, $\nabla_{E X}$ are

$$
\begin{aligned}
V_{E X I} & =\stackrel{W}{Y}_{40} T_{4}\{a \cos \theta-b \cos (2 \theta+\phi)\} \\
= & \hat{V}_{40}\left[8\{a \cos \theta-b \cos (2 \theta+\phi)\}^{4}-8\{a \cos \theta-b \cos \right. \\
& \left.(2 \theta+\phi)\}^{2}+1\right]
\end{aligned}
$$

$=\hat{\nabla}_{40}\left\{3 a^{4}+3 b^{4}+12 a^{2} b^{2}-4 a^{2}-4 b^{2}+1\right\}$
$+\hat{\nabla}_{40} \cos (\theta+\phi)\left\{8 a b-12 a b^{3}-12 a^{3} b\right\}$
$\Rightarrow \hat{\nabla}_{40} \cos (\theta-\phi)\left\{-4 a^{3} b\right\}$
$\therefore \hat{\nabla}_{40} \cos 2 \theta\left\{4 a^{4}+12 a^{2} b^{2}-4 a^{2}\right\}$
$+\hat{\mathrm{V}}_{40} \cos (2 \theta+2 \phi)\left\{6 \mathrm{a}^{2} \mathrm{l}^{2}\right\}$
$+\hat{\mathrm{V}}_{40} \cos (3 \theta+\phi)\left\{8 \mathrm{ab}-12 \mathrm{a}^{3} \mathrm{~b}-12 a \mathrm{~b}^{3}\right\}$
$+\hat{\mathrm{V}}_{40} \cos 4 \theta\left\{\mathrm{a}^{4}\right\}$
$\Rightarrow \hat{\nabla}_{40} \cos (4 \theta+2 \phi)\left\{4 b^{4}+12 a^{2} b^{2}-4 b^{2}\right\}$
$+\hat{\mathrm{V}}_{40} \cos (5 \theta+\phi)\left\{-4 a^{3} b\right\}$
$+\hat{\nabla}_{40} \cos (5 \theta * 3 \phi)\left\{-4 a b^{3}\right\}$
$+\hat{\nabla}_{40} \cos (6 \theta \pm 2 \phi)\left\{6 a^{2} b^{2}\right\}$
$+\ddot{\mathrm{V}}_{40} \cos (7 \theta+3 \phi)\left\{-4 \mathrm{ab}^{3}\right\}$
$+\hat{\mathrm{V}}_{40} \cos (8 \theta+4 \phi)\left\{\mathrm{b}^{4}\right\}$

$$
\begin{align*}
& =30 \text { teres of result (4.24) } \\
& -\hat{\mathrm{V}}_{30} 3 \mathrm{a}^{2} \mathrm{~b} \cos \phi \\
& * \hat{\mathrm{~V}}_{30^{3 a}}{ }^{3} \cos \theta+\hat{\mathrm{V}}_{30^{6}} \mathrm{ab}^{2} \cos \theta-\hat{\mathrm{V}}_{30} 3 \mathrm{a} \cos \theta \\
& -\hat{\nabla}_{30} 6 a^{2} \sigma \cos (2 \theta+\phi)-\hat{\nabla}_{30} 3 b^{3} \cos (2 \theta+\phi) \\
& +\hat{\mathrm{y}}_{30} 3 \mathrm{~b} \cos \left(2 \theta^{\circ}+\phi\right) \\
& \Rightarrow \hat{V}_{30} a^{3} \cos 3 \theta \div \hat{V}_{30} 3 a b^{2} \cos (2 \theta+2 \phi) \\
& -\hat{\mathrm{V}}_{30} 3 \mathrm{a}^{2} \mathrm{~b} \cos (4 \theta+\phi) \\
& +\hat{\mathrm{v}}_{30} 3 \mathrm{ab}^{2} \cos (5 \theta+2 \phi) \\
& -\hat{\mathrm{V}}_{30^{6}} \mathrm{~b}^{3} \cos (6 \theta+3 \phi) \\
& =v_{00}-\hat{v}_{20}+a^{2} \hat{\mathrm{v}}_{20}+\mathrm{b}^{2} \hat{\mathrm{y}}_{20}-\hat{\mathrm{v}}_{30} 3 \mathrm{a}^{2} \mathrm{~b} \cos \phi \\
& \Rightarrow \hat{\mathrm{~V}}_{10^{\mathrm{a}}} \cos \theta-\hat{\mathrm{V}}_{20} 2 \mathrm{ab} \cos (\theta+\phi)+\hat{\mathrm{V}}_{30} 3 \mathrm{a}^{3} \cos \theta \\
& +\hat{\mathrm{V}}_{30}{ }^{6 \mathrm{ab}}{ }^{2} \cos \theta-\hat{\mathrm{y}}_{30} 3 \mathrm{a} \cos \theta \\
& -\hat{\mathrm{V}}_{10} \mathrm{~b} \cos (2 \theta \rightarrow \phi)+\hat{\mathrm{V}}_{20^{2}}{ }^{2} \cos 2 \theta-\hat{\mathrm{V}}_{30} 6 \mathrm{a}{ }^{2} \mathrm{~b} \cos (2 \theta+\phi) \\
& -\hat{\nabla}_{30} 3 \mathrm{~b}^{3} \cos (2 \theta * \phi) \div \hat{\mathrm{V}}_{30} 3 \mathrm{~b} \cos (2 \theta+\phi) \\
& -\hat{\mathrm{V}}_{20}{ }^{2 \mathrm{ab}} \cos (3 \theta+\phi)+\hat{\mathrm{V}}_{30} \mathrm{a}^{3} \cos 3 \theta+\hat{\mathrm{V}}_{30} 3 \mathrm{ab}{ }^{2} \cos (3 \theta+2 \phi) \\
& +\hat{\mathrm{v}}_{20^{\mathrm{b}^{2}}} \cos (4 \theta+2 \phi)-\hat{\mathrm{v}}_{30} 3 \mathrm{a}^{2} \mathrm{~B} \cos (4 \theta+\phi) \\
& +\hat{\mathrm{V}}_{30}{ }^{3 \mathrm{ab}}{ }^{2} \cos (5 \theta+2 \phi) \\
& -\hat{\mathrm{V}}_{30} \mathrm{~b}^{3} \cos (6 \theta+3 \phi) \tag{4.66}
\end{align*}
$$

Appendix $4(\mathrm{~V})$

The Analysis of the Shunt Diode Miultiplier using the Four-Term Approximacion co the Diode Characteriscic.

This analysis is similar to that carried out in sections 4.3 .1 and 4.3.2 but in this case the fourth harmonic of the test spectrum will be taken into account.

The east spectrum will be assumed to be that given by equation (1) and the diode characteristic will be expressed as equation (2)

$$
\begin{equation*}
\nabla_{0}=\nabla_{00}+\hat{\mathrm{V}}_{10} \cos \omega \tau \leqslant \hat{\mathrm{y}}_{20} \cos 2 \omega t+\hat{\mathrm{V}}_{30} \cos 3 \omega t+\hat{\mathrm{V}}_{40} \cos 4 \omega t \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\nabla=\nabla_{00}+\hat{\mathrm{V}}_{10^{T}}(\mathrm{q})+\hat{\mathrm{V}}_{20^{2}}(\mathrm{q})+\hat{\mathrm{V}}_{30^{T}}(\mathrm{q})+\hat{\mathrm{V}}_{40} \mathrm{~T}_{4}(\mathrm{q}) \tag{2}
\end{equation*}
$$

The nomalised charge variation in the test is cosinusoidal as in equation (3)
$q=\frac{\hat{Q}_{10} \cos \omega t}{\hat{Q}_{10}}=\cos \omega t=\cos \theta$

The shunt-diode doubler circuit is as shown in Figure 4.6 and the charge on the diode then has a second barmonic component. The fundamental charge variation is assumed to be reduced to a fraction ${ }^{\circ} a^{\prime}$ of its rest value and the second harmonic charge variation is ${ }^{8} b$ ' times the test value where ' b ' is also a fraction. The conditions given in (4.22) must hold for the values of ${ }^{\prime} a$ ' and ${ }^{\prime} b$ ' for this analysis to remain appropriate.

Thus the noxmalised diode charge q is given by (4) and che current by (5) after differentiating the expression for charge.

$$
\begin{align*}
& q=a \cos \omega t-b \cos (2 \omega t+\phi) \tag{4}\\
& I=-\alpha \hat{Q}_{10} \sin \omega t+b 2 \omega \hat{Q}_{10} \sin (2 \omega t+\phi) \tag{5}
\end{align*}
$$

The expression for q in (4) is then substituted into the characteriscic equation (2) with θ in place of ωt

$$
\begin{align*}
V=V_{00} & \& \hat{\nabla}_{10^{T}} T_{1}\{a \cos \theta-b \cos (2 \theta+\phi)\} \\
& \& \hat{\nabla}_{20^{2}} T_{2}\{a \cos \theta-b \cos (2 \theta+\phi)\} \\
& \& \hat{\nabla}_{30^{2}} T_{3}\{a \cos \theta-b \cos (2 \theta+\phi)\} \\
& \& \hat{V}_{40^{2} 4}\{a \cos \theta-b \cos (2 \theta+\phi)\} \tag{6}
\end{align*}
$$

Twenty-six extra terms are generated in the voltage due to the inclusion of the term $\hat{V}_{40} \mathrm{~T}_{4}(\mathrm{q})$ in equation (4.72). All the extra terms are given in appendix $4(i v)$ and those at frequencies ω and 2ω only are shown in equation (7) below.

$$
\begin{align*}
& \nabla(\text { extra terms })=\hat{\mathrm{V}}_{40} 8 \mathrm{ab} \cos (\theta+\phi)-\hat{\mathrm{V}}_{40} 12 \mathrm{a}^{3} \mathrm{~b} \cos (\theta+\phi) \\
& \text { - }-\hat{\mathrm{V}}_{40}{ }^{12 a b^{3}} \cos (\theta+\phi)-\hat{\mathrm{V}}_{40} 4 \mathrm{a}^{3} \mathrm{~b} \cos (\theta-\phi) \\
& +\hat{\nabla}_{40} 4 a^{4} \cos 2 \theta+\hat{V}_{40} 12 a^{2} b^{2} \cos 2 \theta \\
& +\hat{\mathrm{V}}_{40} 6 \mathrm{a}^{2} \mathrm{~b}^{2} \cos (2 \theta+2 \phi)-\hat{\mathrm{V}}_{40} 4 \mathrm{a}^{2} \cos 2 \theta \tag{7}
\end{align*}
$$

The equations (5) and (6) will now require to be modified to include all the terms in (4.67) and (4.68) plus terms due to equation (7); the revised equations are shown below in (8) and (9).

$$
\begin{aligned}
\hat{V}_{1} & =\hat{\nabla}_{10}(-j a)+\hat{V}_{20}(j 2 a b \phi)+\hat{V}_{30}\left(-j 3 a^{3}-j 6 a b^{2} \& j 3 a\right) \\
& +\hat{\nabla}_{40}\left\{-j 8 a b\left\lfloor\phi+j 12 a^{3} b \phi \phi+j 12 a b^{3}\left\lfloor\phi+j 4 a^{3} b \phi\right\}\right.\right.
\end{aligned}
$$

and inserting $\phi=-\pi / 2$

$$
\begin{aligned}
\hat{\mathrm{V}}_{1}= & \hat{\mathrm{V}}_{10}(-j a)+\hat{\mathrm{V}}_{20}(2 a b)+\hat{\mathrm{V}}_{30}\left(-j 3 a^{3}=j 6 a b^{2}+j 3 a\right) \\
& +\hat{\mathrm{V}}_{40}\left\{-8 a b+12 a^{3} b+12 a 5^{3}-4 a^{3} b\right\}
\end{aligned}
$$

or

$$
\begin{align*}
\hat{\nabla}_{1}= & \hat{\nabla}_{10}(-j a)+\hat{\nabla}_{20}(2 a b)+\hat{\mathrm{V}}_{30}\left(-j 3 a^{3}-j 6 a b^{2}+j 3 a\right) \\
& +\hat{\mathrm{V}}_{40}\left(8 a^{3} b+12 a b^{3}-8 a b\right) \tag{8}
\end{align*}
$$

and

$$
\begin{aligned}
\hat{\nabla}_{2}= & \hat{\nabla}_{10}(b)+\hat{V}_{20}\left(-j a^{2}\right)+\hat{V}_{30}\left(6 a^{2} b+3 b^{3}-3 b\right) \\
& +\hat{V}_{40}\left\{-j 4 a^{4}-j 12 a^{2} b^{2}+j 4 a^{2}+j 6 a^{2} b^{2}\right\}
\end{aligned}
$$

or

$$
\begin{align*}
\hat{\nabla}_{2}= & \hat{\nabla}_{10}(b)+\hat{\nabla}_{20}\left(-j a^{2}\right)+\hat{\nabla}_{30}\left(6 a^{2} b+3 b^{3}-3 b\right) \\
& +\hat{\nabla}_{40}\left(-j 4 a^{4}-j 6 a^{2} b^{2}+j 4 a^{2}\right) \tag{9}
\end{align*}
$$

The output equivalent circuit can be found for this case by considering equation (9) above and Figure 4.14 is shown to be modified to Figure 4.16 which is given in section 4.3.3.

Appendis 4(vi)

The derivation of a formula for the output resistance of the diode at the harmonic output frequency.

An output equivalent circuit (see Figure 4.10) is shom below.

Figure 1
The reduction in the second harmonic e.m.f. from -j $\hat{\mathrm{V}}_{20}$ to $-\mathrm{ja}{ }^{2} \hat{\mathrm{~V}}_{20}$ could be due to the internal resistance of the source, R_{0}. Thus Figure 1 could be re-drawn to include a source resistance,

$$
\begin{equation*}
R_{0}=\left(\frac{1-a^{2}}{2 b}\right) \frac{\hat{\mathrm{F}}_{20}}{\hat{\mathrm{I}}_{10}} \tag{1}
\end{equation*}
$$

The ourpur equivalent circuit of Figure 2 is at the frequency 2ω. The maximum output power is obtained wen the load resistance R_{L} is matched co R_{0} and then the values of ${ }^{\circ} a^{\circ}$ and ${ }^{\circ} b^{\prime}$ will be ${ }^{2} / 3$ and $1 / 3$ respectively.

$$
\begin{equation*}
\text { Let } R_{0}=R_{0}(\text { ope }) \text { when } a=2 / 3, b=1 / 3 \tag{2}
\end{equation*}
$$

Bence,

$$
\begin{equation*}
R_{0}(\text { opt })=\frac{5}{6} \frac{\hat{\mathrm{~V}}_{20}}{\hat{I}_{10}} \tag{3}
\end{equation*}
$$

The mass output power may then be calculated as

$$
\begin{equation*}
P_{L}(\text { mas })=\frac{\left(\frac{20}{\|^{2}}\right)}{4 R_{0} \text { (opt) }}=\frac{3}{20} \hat{\mathrm{~V}}_{20} \hat{I}_{10} \tag{4}
\end{equation*}
$$

and this agrees with the previous calculation shown in equarion (4.56).

Circuit operation ar maximum output power:
The load resistance R_{L} should be matched to R_{o} (opt) by impedance transformation. The source should then be chosen to have values of E_{s} and R_{s} (which give the required values of ${ }^{\prime} a^{\gamma}$ and ${ }^{\circ} b^{r}$) which satisfy the condition

$$
\begin{equation*}
\hat{E}_{s}=\frac{2}{3} \hat{I}_{10} R_{s}+\frac{5}{9} \hat{\mathrm{y}}_{20} \tag{5}
\end{equation*}
$$

The source impedance could be reduced by transformation to as low a value as possible so that less power would be lost in R_{s}.

APPENDTCES TO CEAFEER 5

5(i) The full expansion of equarion (5:14) A24.
5(ii) Development of the equivalent ciscuit of Figure 5.1 A25 in section 5.2.2.
5(i̊ii) The full expansion of equacion (5.37) A28
5(iv) Identicies needed in 5.3.2. A31
5(v) Analysis of section 5.3.1. A32
5(vi). Analysis of section 5.3.2. A 34
5 (vii) Analysis of section 5.3.3. A37

Appendiz 5(i)
The full expansion of equation (5.14)

The equation (5.14) can be expanded using equations (6) to (9)
in Appendix 4 (is. The following result may then be obtained:

$$
\begin{aligned}
\mathrm{V} & =\mathrm{V}_{00}-\hat{\mathrm{V}}_{20}+\hat{\mathrm{V}}_{20} \mathrm{a}^{2}+\hat{\mathrm{V}}_{20} \mathrm{~b}^{2} \\
& +\hat{\mathrm{V}}_{10} \mathrm{a} \cos \theta-\hat{\mathrm{V}}_{30} 3 \mathrm{a} \cos \theta+\hat{\mathrm{V}}_{30} 3 \mathrm{a}^{3} \cos \theta+\hat{\mathrm{V}}_{30} 6 \mathrm{ab}{ }^{2} \cos \theta \\
& -\hat{\nabla}_{30} 3 \mathrm{a}^{2} \mathrm{~b} \cos (\theta \div \phi) \\
& +\hat{\mathrm{V}}_{20} \mathrm{a}^{2} \cos 2 \theta+\hat{\mathrm{V}}_{20} 2 \mathrm{ab} \cos (2 \theta+\phi) \\
& -\hat{\mathrm{V}}_{10} \mathrm{~b} \cos (3 \theta+\phi)+\hat{\mathrm{V}}_{30} 36 \cos (3 \theta+\phi)+\hat{\mathrm{V}}_{30} \mathrm{a}^{3} \cos 3 \theta \\
& -\hat{\mathrm{V}}_{30} 3 b^{3} \cos (3 \theta+\phi)
\end{aligned}
$$

$-\hat{V}_{30} 6 a^{2} \mathrm{~b} \cdot \cos (3 \theta+\phi)$
$-\hat{\mathrm{V}}_{20} 2 \mathrm{ab} \cos (4 \theta+\phi)$
$-\hat{\mathrm{V}}_{30} 3 \mathrm{a}^{2} \mathrm{~b} \cos (5 \theta+\phi)+\hat{\mathrm{V}}_{30} 3 \mathrm{ab}{ }^{2} \cos (5 \theta+2 \phi)$
$+\hat{\mathrm{V}}_{20} \mathrm{~b}^{2} \cos (6 \theta+2 \phi)$
$+\hat{\mathrm{y}}_{30} 3 \mathrm{ab}^{2} \cos (7 \theta-2 \phi)$
$-\hat{\mathrm{v}}_{30} \mathrm{E}^{3} \cos (9 \theta+3 \phi)$
where the substitution

$$
\begin{equation*}
\theta=\omega t \tag{1a}
\end{equation*}
$$

has been used as an abbreviation.

Apperdias 5(iii)

Development of the equivalent circuit of Figure 5.1 in section 5.2.2.

An equivalent output circuit may be drawn using equations (5.17) and (5.19) as shown in Figure 1 below.

Figure 1

Two of the voltage generators in Figure 1 are lagging the current by 90° and may be considered as the output capacitance C_{0} of the diode. The reactance of C_{0} can be written as

$$
\frac{1}{3 \omega C_{0}}=\frac{b \hat{\nabla}_{10}+\hat{\mathrm{V}}_{30}\left(3 b^{3}+6 a^{2} b-3 b\right)}{3 b \cos \hat{Q}_{10}}
$$

or

$$
\begin{equation*}
c_{0}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\hat{V}_{30}\left(6 a^{2}+3 b^{2}-3\right)} \tag{1}
\end{equation*}
$$

The output capacitance causes de-tuning of the output circuit filter but this must be assumed to be corrected so that only 3rd harmonic current flows in the load. The load current must be in phase with the generator e.m.f. and thus the value of ϕ must be -90°.

Then,
$-j a^{3} \hat{V}_{30}=-j R_{L} \quad 3 b \omega \hat{Q}_{10}$
and

$$
\begin{equation*}
a^{3}=\frac{3 \omega \hat{Q}_{10} R_{L}}{\hat{\nabla}_{30}} \tag{2}
\end{equation*}
$$

Equation (2) is an important relationship between ${ }^{\circ} a^{\prime}$ and ${ }^{\circ} b^{\prime}$ and becomes equation (5.22) in section 5.2.2.

An equivalent circuit at the inpur frequency may be obtained using equations (5.16) and (5.18) and it is shown in Figure 2 below

Figure 2

One voltage generator may be replaced by the input capacitance $C_{\text {IN }}$ as shown in Figure 5.2. A compensating inductance must also be shown to prevent detuning of the input filter. The value of $C_{\text {IN }}$ is derived from,

$$
\frac{1}{\omega C_{I N}}=\frac{a \hat{\nabla}_{10}+a \hat{\mathrm{~V}}_{30}\left(3 a^{2}+6 b^{2}-3\right)}{a \omega \hat{Q}_{10}}
$$

from which

$$
\begin{equation*}
C_{I N}=\frac{\hat{Q}_{10}}{\hat{\mathrm{~V}}_{10}+\hat{\mathrm{V}}_{30}\left(3 \mathrm{a}^{2}+6 \mathrm{~b}^{2}-3\right)} \tag{3}
\end{equation*}
$$

The other voltage generator in the circuit of Figure 2 represents the load resistance reflectedinto the input circuir, $R_{L}{ }^{0}$

Hence

$$
\begin{equation*}
\mathbb{R}_{L}{ }^{\circ}=\frac{\hat{\nabla}_{30} 3 a^{2} \hat{b}}{a \omega \hat{Q}_{10}} \tag{4}
\end{equation*}
$$

If (2) and (4) are combined then resulc (5) is easily obeained,

$$
\begin{equation*}
R_{L}^{\circ}=9 \frac{b^{2}}{a^{2}} R_{L} \tag{5}
\end{equation*}
$$

Appendizs 5 (ijin)

The full expansion of equation (5.37).

When equation (5.37) is expanded it will contain the 22 terms of equation (I) in Appendix $5(i)$, pius extra cems due to the fourth hamonic term:

Hence

$$
\begin{equation*}
V=22 \text { terms }+ \text { extra texms } \tag{1}
\end{equation*}
$$

由here extra terms $=\hat{V}_{40} T_{4}\{a \cos \theta-b \cos (3 \theta \div \phi)\}$

$$
\begin{array}{r}
=\stackrel{\rightharpoonup}{v}_{40}\left[8\{a \cos \theta-b \cos (3 \theta+\phi)\}^{4}-8\{a \cos \theta-b \cos \right. \\
\left.(3 \theta+\phi)\}^{2}+1\right]
\end{array}
$$

$$
=\stackrel{\theta}{\nabla}_{40}\left[8 a^{4} \cos ^{4} \theta-32 a^{3} b \cos ^{3} \theta \cos (3 \theta+\phi)\right.
$$

$$
+48 a^{2} b^{2} \cos ^{2} \theta \cos ^{2}(3 \theta+\phi)-32 a b^{3} \cos \theta \cos ^{3}(3 \theta+
$$

$$
+8 b^{4} \cos ^{4}(3 \theta+\phi)-8 a^{2} \cos ^{2} \theta
$$

$$
\left.+16 a b \cos \theta \cos (3 \theta+\phi)-8 b^{2} \cos ^{2}(3 \theta+\phi)+1\right]
$$

The terms in equation (2) can now be expanded using the useful identities given in equations (3) to (11):

$$
\begin{align*}
& \cos ^{2} A=\frac{1}{2}+\frac{1}{2} \cos 2 A \tag{3}\\
& \cos ^{3} A=\frac{3}{4} \cos A+\frac{1}{4} \cos 3 A \tag{4}\\
& \cos ^{4} A=\frac{5}{8}+\frac{1}{2} \cos 2 A+\frac{1}{8} \cos 4 A \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \cos A \cos B=\frac{1}{2} \cos (A+B)+\frac{1}{2} \cos (A-B) \tag{6}\\
& \cos ^{2} A \cos B=\frac{1}{2} \cos B+8 \cos \left(2 A+B B+\frac{B}{2} \cos (2 A-B)\right. \tag{7}
\end{align*}
$$

$\cos ^{3} A \cos B=\frac{3}{8} \cos (A+B)+\frac{3}{8} \cos (B-A)+\frac{1}{8} \cos (3 A-B)+\frac{1}{8} \cos (3 A+B)$
$\cos ^{2} A \cos ^{2} B=\frac{i}{8}+\frac{1}{4} \cos 2 A+\frac{1}{4} \cos 2 B+\frac{1}{8} \cos (2 A+2 B)+\frac{1}{8} \cos (2 A-2 B)$
$(A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}$
$(A-B)^{4}=A^{4}-4 A^{3} B+6 A^{2} B^{2}-4 A B^{3}+B^{4}$
. Extra terms $=\hat{W}_{40}\left[8 a^{4}\left(\frac{5}{6}+\frac{1}{2} \cos 2 \theta \& \frac{1}{6} \cos 4 \theta\right)\right.$

$$
\begin{aligned}
& -32 a^{3} B\left(\frac{\theta}{8} \cos (4 \theta+\phi)+\frac{3}{8} \cos (2 \theta+\phi)\right. \\
& +\frac{1}{8} \cos (\infty \phi)+\frac{1}{8} \cos (6 \theta+\phi)
\end{aligned}
$$

$+48 a^{2} b^{2}\left\{\frac{1}{6}+\frac{1}{6} \cos 2 \theta+\frac{1}{4} \cos (6 \theta+2 \phi)+\frac{1}{8} \cos (8 \theta+2 \phi)+\frac{1}{8} \cos (4 \theta+\right.$
$-32 a b^{3}\left\{\frac{3}{8} \cos (4 \theta+\phi)+\frac{3}{8} \cos (2 \theta+\phi)+\frac{1}{8} \cos (8 \theta+3 \phi)+\frac{3}{8} \cos (10 \theta+3 \phi)\right.$
$+86^{4}\left\{\frac{5}{8} \div \frac{1}{2} \cos (6 \theta+2 \phi)+\frac{1}{8} \cos (12 \theta+4 \phi)\right\}$
$-8 a^{2}\left\{\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right\}$
$-16 a b\left\{\frac{1}{2} \cos (4 \theta+\phi)+\frac{1}{2} \cos (2 \theta+\phi)\right\}$
$\left.-8 b^{2}\left\{\frac{1}{2}+\frac{1}{2} \cos (6 \theta+2 \phi)\right\}+1\right\}$

$$
\begin{align*}
& =\hat{\gamma}_{40}\left[1+5 a^{4}-4 a^{3} b \cos \phi+12 a^{2} b^{2}+5 b^{4}-4 a^{2}-43^{2}\right. \\
& +4 a^{4} \cos 2 \theta-12 a^{3} b \cos (2 \theta+\phi)+12 a^{2} b^{2} \cos 2 \theta \\
& -12 a b^{3} \cos (2 \theta * \phi)-4 e^{2} \cos 2 \theta+8 a b \cos (2 \theta * \phi) \\
& 4 a^{4} \cos 4 \theta-12 a^{3} b \cos (4 \theta+\phi)+6 a^{2} b^{2} \cos (4 \theta+2 \phi) \\
& -12 a b^{3} \cos (4 \theta+\phi)+8 a b \cos (4 \theta \div \phi) \\
& -4 a^{3} b \cos (6 \theta+\phi)+12 a^{2} b^{2} \cos (6 \theta+2 \phi)+4 b^{4} \cos (6 \theta+2 \phi) \\
& -4 b^{2} \cos (6 \theta+2 \phi) \\
& +6 a^{2} b^{2} \cos (8 \theta+2 \phi)-4 a b^{3} \cos (8 \theta+3 \phi) \\
& -4 a b^{3} \cos (10 \theta+3 \phi) \\
& \left.\div \mathbb{6}^{4} \cos (12 \theta+4 \phi)\right] \tag{12}
\end{align*}
$$

The extra terms given in equation (12) do not include any of frequency ω or 3ω. The terms in (5.37) at these frequencies are as given in equation (5.15) of section 5.2.2.

Appenciex 5(iv)

Identìties needed in 5.3.2.

$$
\begin{array}{rl}
(A-B-C)^{3}= & A^{3}-B^{3}-C^{3}-3 A^{2} B-3 A^{2} C+3 A B^{2} \\
& +3 A C^{2}+6 A B C-3 B^{2} C-3 B C^{2} \\
\operatorname{Cos} A \cos B \cos C & =\frac{1}{4} \cos (A+B+C)+\frac{1}{4} \cos (A-B-C) \\
& +\frac{1}{4} \cos (A+B-C)+\frac{1}{6} \cos (A-B+C) \\
(A-\mathbb{I}-C)^{4}= & A^{4}+B^{4}+C^{4}+6 A^{2} B^{2}+6 A^{2} C^{2}+6 B^{2} C^{2} \\
& -4 A^{3} B-4 A B^{3}-4 A C^{3}-4 A^{3} C+4 B^{3} C \\
* & 4 \mathbb{B C}^{3}+12 A^{2} B C-12 A B^{2} C-12 A B C^{2} \tag{3}
\end{array}
$$

Appendiss 5(v)
Analysis of section 5.3.1.

$$
\begin{align*}
& \nabla=V_{00}+\hat{V}_{10}[\{A-B-C\}]+\hat{V}_{20}\left[2\{A-B-C\}^{2}-1\right] \tag{1}\\
& \text { were } A-B-C=a \cos \theta-b \cos \left(2 \theta * \phi_{2}\right)-c \cos \left(3 \theta \div \phi_{3}\right) \tag{2}\\
& \therefore V=V_{00} \& \hat{V}_{10}[A-B-C] \\
& +\hat{V}_{20}\left[2 A^{2}+2 B^{2}+2 C^{2}+4 B C-4 B C-4 A C-1\right] \tag{3}\\
& =\nabla_{00}-\hat{\nabla}_{20}+\hat{\nabla}_{10} a \cos \theta-\hat{V}_{10} b \cos \left(2 \theta+\phi_{2}\right)-\hat{V}_{10} c \cos \left(3 \theta+\phi_{3}\right) \\
& * \hat{\mathrm{~V}}_{20}\left[2 \mathrm{a}^{2} \cos ^{2} \theta+2 \mathrm{~B}^{2} \cos ^{2}\left(2 \theta+\phi_{2}\right)-2 \mathrm{c}^{2} \cos ^{2}\left(3 \theta+\phi_{3}\right)\right. \\
& +4 b c \cos \left(2 \theta+\phi_{2}\right) \cos \left(3 \theta \div \phi_{3}\right) \\
& -4 a b \cos \left(2 \theta+\phi_{2}\right) \cos \theta \\
& \left.-4 \mathrm{ac} \cos \left(3 \theta+\phi_{3}\right) \cos \theta\right] \tag{4}\\
& =V_{00}-\hat{V}_{20}+\hat{V}_{10} a \cos \theta-\hat{V}_{10} b \cos \left(2 \theta+\phi_{2}\right) \\
& -\hat{V}_{10} c \cos \left(3 \theta+\phi_{3}\right) \\
& +\hat{\mathrm{V}}_{20} 2 \mathrm{a}^{2}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) \\
& +\hat{\mathrm{V}}_{20} 2 \mathrm{~b}^{2}\left[\frac{1}{2}+\frac{1}{2} \cos \left(4 \div 2 \phi_{2}\right)\right] \\
& +\hat{\mathrm{V}}_{20} 2 \mathrm{c}^{2}\left[\frac{1}{2}+\frac{1}{2} \cos \left(6 \theta+2 \phi_{3}\right)\right] \\
& +\hat{\mathrm{V}}_{20} 4 \mathrm{bc}\left[\frac{1}{2} \cos \left(5 \theta+\phi_{2}+\phi_{3}\right)+\frac{1}{2} \cos \left(\theta+\phi_{3}-\phi_{2}\right)\right] \\
& -\hat{\mathrm{V}}_{20} 4 \mathrm{ab}\left[\frac{1}{2} \cos \left(3 \theta+\phi_{2}\right)+\frac{1}{2} \cos \left(\theta+\phi_{2}\right)\right] \\
& -\hat{V}_{20} 4 a c\left[\frac{1}{2} \cos \left(4 \theta+\phi_{3}\right)+\frac{1}{2} \cos \left(2 \theta+\phi_{3}\right)\right]
\end{align*}
$$

$$
\begin{align*}
& \therefore V=V C O-\hat{V}_{20}+a^{2} \hat{V}_{2 C}+b^{2} \hat{V}_{20}+c^{2} \hat{\nabla}_{20} \\
& +\hat{\mathrm{v}}_{10} \mathrm{a} \cos \theta+\hat{\mathrm{V}}_{20} 2 b c \cos \left(\theta+\phi_{3}-\phi_{2}\right) \\
& -\hat{\mathrm{V}}_{20} 2 \mathrm{ab} \cos \left(\theta+\phi_{2}\right) \\
& -\hat{\mathrm{V}}_{10} \mathrm{~b} \cos \left(2 \theta+\phi_{2}\right)+\hat{\mathrm{v}}_{20} \mathrm{a}^{2} \cos 2 \theta-\hat{\mathrm{v}}_{20} 2 \mathrm{ac} \cos \left(2 \theta+\phi_{3}\right) \\
& -\hat{\nabla}_{10} \mathrm{c} \cos \left(3 \theta+\phi_{3}\right)-\hat{\mathrm{V}}_{20} 2 \mathrm{ab} \cos \left(3 \theta+\phi_{2}\right) \\
& +\hat{\mathrm{V}}_{20} \mathrm{~b}^{2} \cos (4 \theta+2 \theta 2)-\hat{\mathrm{V}}_{20} 2 \mathrm{ac} \cos \left(4 \theta+\phi_{3}\right) \\
& +\hat{\mathrm{V}}_{20} 2 \mathrm{bc} \cos \left(5 \theta+\phi_{2}+\phi_{3}\right) \\
& +\hat{\nabla}_{20} c^{2} \cos \left(6 \theta+2 \phi_{3}\right) \tag{6}\\
& \therefore \hat{\mathrm{V}}_{1}=-j a \hat{\mathrm{v}}_{10}-\mathrm{j} 2 \mathrm{bc} \hat{\mathrm{~V}}_{20} / \Phi_{3}-\phi_{2}+\mathrm{j} 2 \mathrm{ab} \hat{\mathrm{v}}_{20} \angle \Phi_{2} \tag{7}\\
& \hat{\nabla}_{2}=+j b \hat{v}_{10} L \Phi_{2}+j 2 a c \hat{\nabla}_{20 L \Phi}-j a^{2} \hat{v}_{20} \tag{8}\\
& \hat{\mathrm{v}}_{3}=+j c \hat{\mathrm{~V}}_{10} \underline{\Phi_{3}}+j 2 \mathrm{ab} \hat{\mathrm{~V}}_{20} \underline{\Phi_{2}} \tag{9}
\end{align*}
$$

Appendis 5(vi)

Analysis of section 5.3 .2

The extra terms generated in the spectrum are,

$$
\begin{equation*}
\hat{V}_{E X}=\hat{V}_{30}\left[\{4 A-B-C\}^{3}-3\{A-B-C\}\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
A= & a \cos \theta \tag{2}\\
R= & b \cos \left(2 \theta+\phi_{2}\right) \tag{3}\\
C= & c \cos \left(3 \theta+\phi_{3}\right) \tag{4}\\
\therefore \hat{V}_{E X} & =\hat{V}_{30}\left[4 A^{3}-4 \mathbb{B}^{3}-4 C^{3}-12 A^{2} B-12 A^{2} C+12 A B^{2}\right. \\
& +12 A C^{2}+24 A B C-12 B^{2} c-12 B^{2} \\
& -3 A+3 B+3 C] \\
& =\hat{V}_{30}\left[4 a^{3} \cos ^{3} \theta\right. \\
& -4 b^{3} \cos ^{3}\left(2 \theta+\phi_{2}\right) \\
& -4 c^{3} \cos ^{3}\left(3 \theta+\phi_{3}\right) \\
& =12 a^{2} b \cos ^{2} \theta \cos \left(2 \theta+\phi_{2}\right) \\
& -12 a^{2} c \cos ^{2} \theta \cos \left(3 \theta+\phi_{3}\right) \\
& +12 a^{2} \cos ^{2}\left(2 \theta+\phi_{2}\right) \cos \theta \\
& +12 a c^{2} \cos ^{2}\left(3 \theta+\phi_{3}\right) \cos \theta \\
& -12 b^{2} c \cos ^{2}\left(2 \theta+\phi_{2}\right) \cos \left(3 \theta+\phi_{3}\right) \\
& -12 b c^{2} \cos ^{2}\left(3 \theta+\phi_{3}\right) \cos \left(2 \theta+\phi_{2}\right) \\
& +24 a b c \cos ^{2}\left(3 \theta+\phi_{3}\right) \cos \left(2 \theta+\phi_{2}\right) \cos \theta \\
& \left.-3 a \cos ^{2}+3 b \cos \left(2 \theta+\phi_{2}\right)+3 c \cos \left(3 \theta+\phi_{3}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& \hat{\nabla}_{E X S}=\hat{\mathrm{V}}_{30}\left\{4 a^{3}\left\{\frac{3}{6} \cos \theta+\frac{1}{4} \cos 3 \theta\right\}\right. \\
& -40^{3}\left\{\frac{3}{8} \cos \left(2 \theta+\phi_{2}\right)+\frac{1}{4} \cos \left(6 \theta+3 \phi_{2}\right)\right\} \\
& -4 c^{2}\left\{\frac{3}{4} \cos \left(3 \theta+\phi_{3}\right)+\frac{1}{4} \cos \left(9 \theta+3 \phi_{3}\right)\right. \\
& -12 a^{2} \bar{b}\left\{\frac{1}{2} \cos \left(2 \theta+\phi_{2}\right)+\frac{\pi}{6} \cos \left(4 \theta+\phi_{2}\right)+\frac{1}{4} \cos \left(-\phi_{2}\right)\right\} \\
& -12 a^{2} c\left\{\frac{1}{2} \cos \left(3 \theta+\phi_{3}\right)+\frac{1}{6} \cos \left(5 \theta+\phi_{3}\right)+\frac{1}{6} \cos \left(-\theta-\phi_{3}\right)\right\} \\
& +12 a \sigma^{2}\left\{\frac{1}{2} \cos \theta+\frac{8}{4} \cos \left(5 \theta+2 \phi_{2}\right)+\frac{4}{} \cos \left(3 \theta+2 \phi_{2}\right)\right\} \\
& +12 a c^{2}\left\{\frac{1}{2} \cos \theta+\frac{1}{4} \cos \left(7 \theta+2 \phi_{3}\right)+k \cos \left(5 \theta+2 \phi_{3}\right)\right\} \\
& -12 b^{2} c\left\{\frac{1}{2} \cos \left(3 \theta+\phi_{3}\right)+\frac{1}{4} \cos \left(7 \theta+\phi_{2}+\phi_{3}\right)+\frac{5}{4} \cos \left(\theta+2 \phi_{2}-\phi_{3}\right)\right\} \\
& -128 c^{2}\left\{\frac{1}{2} \cos \left(2 \theta+\phi_{2}\right\}+\frac{1}{2} \cos \left(8 \theta+2 \phi_{3}+\phi_{2}\right)+\frac{1}{6} \cos \left(4 \theta+2 \phi_{3}-\phi_{2}\right)\right\} \\
& \Rightarrow 24 \mathrm{abc}\left(\frac{1}{6} \cos \left(6 \theta * \phi_{3}+\phi_{2}\right) \div \frac{1}{4} \cos \left(\theta_{3}-\phi_{2}\right)\right. \\
& \left.+\frac{\{ }{8} \cos \left(4 \theta+\phi_{3}+\phi_{2}\right)+\frac{\mathrm{I}}{4} \cos \left(2 \theta+\phi_{3}-\phi_{2}\right)\right\} \\
& \left.-3 a \cos \theta+3 b \cos \left(2 \theta+\phi_{2}\right)+3 c \cos \left(3 \theta+\phi_{3}\right)\right] \\
& \therefore \hat{V}_{E X}=\hat{V}_{30}\left[-3 a^{2} b \cos \phi_{2}+6 a b c \cos \left(\phi_{3}-\phi_{2}\right)\right. \\
& -3 a \cos \theta+3 a^{3} \cos \theta-3 a^{2} c \cos \left(\theta+\phi_{3}\right) \\
& +6 a b^{2} \cos \theta+6 a c^{2} \cos \theta-3 b^{2} c \cos \left(\theta+2 \phi_{2}-\phi_{3}\right) \\
& +3 b \cos \left(2 \theta+\hat{T}_{2}\right)-3 b^{3} \cos \left(2 \theta+t_{2}\right)-6 a^{2} b \cos \left(2 \theta+\phi_{2}\right) \\
& -6 b c^{2} \cos \left(2 \theta+\phi_{2}\right)+6 a b c \cos \left(2 \theta+\phi_{3}-\phi_{2}\right) \\
& +3 c \cos \left(3 \theta+\phi_{3}\right)+a^{3} \cos 3 \theta-3 c^{3} \cos \left(3 \theta+\phi_{3}\right) \\
& -6 a^{2} c \cos \left(3 \theta+\phi_{3}\right)+3 a b^{2} \cos \left(3 \theta+2 \phi_{2}\right)-6 b^{2} c \cos \left(3 \theta+\phi_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -3 a b^{2} \cos \left(4 \theta+\phi_{2}\right)-35 c^{2} \cos \left(4 \theta+2 \phi_{3}-\phi_{2}\right)+6 a b c \cos \left(4 \theta+\phi_{3}{ }^{\circ} \phi_{2}\right) \\
& -3 a^{2} c \cos \left(5 \theta+\phi_{3}\right)+3 a b^{2} \cos \left(5 \theta+2 \phi_{2}\right)+3 a c^{2} \cos \left(5 \theta+2 \phi_{3}\right) \\
& -b^{3} \cos \left(6 \theta+3 \phi_{2}\right)+6 a \delta c \cos \left(6 \theta+\phi_{3}+\phi_{2}\right) \\
& +3 a c^{2} \cos \left(7 \theta+2 \phi_{3}\right)-35^{2} c \cos \left(7 \theta+\phi_{2}+\phi_{3}\right) \\
& -3 b c^{2} \cos \left(8 \theta+2 \phi_{3}+\phi_{2} 2\right. \\
& \left.-c^{3} \cos \left(9 \theta+3 \phi_{3}\right)\right]
\end{aligned}
$$

The extra terms generated at $\omega, 2 \omega$ and 3ω are shown in equations (5) (6) and (7) with $-\sin \theta$ raken as reference phasor.
$\hat{F}_{2}(e x)=\hat{V}_{30}\left[-j 3 b\left\lfloor\phi_{2}+j 3 b^{3} L \phi_{2}+j 6 a^{2} b L \phi_{2}\right.\right.$

$$
\begin{equation*}
+j 6 b c^{2}\left\lfloor_{2}-j 6 a b c \mid \Phi_{3}-\phi_{2}\right] \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& \hat{\mathrm{V}}_{3} \text { (es) }=\hat{\mathrm{V}}_{30}\left[-\mathrm{ja} \mathrm{a}^{3}-\mathrm{j} 3 \mathrm{c} L \Phi_{3}+j 3 \mathrm{c}^{3} \underline{L \Phi}_{3}\right. \\
& +j 6 a^{2} c \not \varphi_{3}-j 3 a b^{2}\left\lfloor 2 \Phi_{2}+j 6 b^{2} c\left\lfloor_{3}\right]\right. \tag{7}
\end{align*}
$$

$$
\begin{align*}
& \hat{V}_{1}(e \pi)=\hat{V}_{30}\left[+j 3 a-j 3 a^{3}+j 3 a^{2} c L \Phi_{3}\right. \\
& -j 6 a b^{2}-j 6 a c^{2}+j 3 \sigma^{2} c\left\lfloor 2 \phi_{2}-\phi_{3}\right] \tag{5}
\end{align*}
$$

Appendix 5 (viz)

Analysis of section 5.3.3.

Extra terms due to the 4 tE harmonic:

$$
\begin{align*}
& \hat{V}_{E X}=\hat{V}_{40}\left[8\{A-B-C\}^{4}-8\{A-C-C\}^{2}+1\right\} \tag{1}\\
& \text { where } A\left.=B-C=a \cos \theta-\cos \left(2 \theta+\phi_{2}\right)-c \cos (3 \theta+\phi\}^{2}\right) \\
& \therefore \hat{V}_{E X}=\hat{V}_{40}\left[8 \left\{A^{4}+B^{4}+C^{4}+6 A^{2} B^{2}+6 A^{2} C^{2}+6 \dot{B}^{2} C^{2}-4 A^{3} \mathbb{B}\right.\right. \\
&-4 A B^{3}-4 A C^{3}-4 A^{3} C+4 B^{3} C+4 B C^{3}+12 A^{2} B C \\
&=\left.12 A B^{2} C-12 A B C^{2}\right\}-8\left[A^{2}+B^{2}+C^{2}-2 A B\right. \\
&=2 A C+2 B C\} * 1]
\end{align*}
$$

$$
=\hat{V}_{40}\left[8 a^{4} \cos ^{4} \theta\right.
$$

$$
-8 b^{4} \cos ^{4}\left(2 \theta+\phi_{2}\right)
$$

$$
-8 c^{4} \cos ^{4}\left(30+93^{2}\right.
$$

$$
+48 a^{2} \theta^{2} \cos ^{2} \theta \cos ^{2}(2 \theta+\phi 2)
$$

$$
\leftrightarrow 48 a^{2} c^{2} \cos ^{2} \theta \cos ^{2}\left(3 \theta+\phi 3^{2}\right.
$$

$$
+485^{2} c^{2} \cos ^{2}\left(2 \theta+\phi_{2}\right) \cos ^{2}\left(3 \theta+\phi_{3}\right)
$$

$$
-32 a^{3} b \cos ^{3} \theta \cos \left(2 \theta+\phi_{2}\right)
$$

$$
-32 a b^{3} \cos \theta \cos ^{3}\left(2 \theta+\phi_{2}\right)
$$

$$
-32 a c^{3} \cos \theta \cos ^{3}\left(3 \theta+\phi_{3}\right)
$$

$$
+32 b^{3} c \cos ^{3}\left(2 \theta+\phi_{2}\right) \cos \left(3 \theta+\phi_{3}\right)
$$

$$
* 32 b c^{3} \cos \left(2 \theta * \Phi_{2}\right) \cos ^{3}\left(3 \theta * \phi_{3}\right)
$$

$$
-32 a^{3} c \cos ^{3} \theta \cos \left(3 \theta+\phi_{3}\right)
$$

$$
+48 b^{2} c^{2}\left\{\frac{1}{4}+\frac{1}{6} \cos \left(4 \theta+2 \phi_{2}\right)+\frac{1}{6} \cos \left(6 \theta+2 \phi_{3}\right)+\frac{1}{8} \cos \left(10 \theta+2 \phi_{3}+2 \phi_{2}\right.\right.
$$

$$
+\frac{1}{8} \cos \left(2 \theta+2 \phi_{3}-2 \phi_{2}\right)
$$

$-32 a^{3} b\left\{\frac{3}{8} \cos \left(3 \theta+\phi_{2}\right)+\frac{3}{8} \cos \left(\theta+\phi_{2}\right)+\frac{1}{8} \cos \left(\theta-\phi_{2}\right)+\frac{1}{8} \cos \right.$ $\left.\left(5 \theta+\phi_{2}\right)\right\}$
$-32 a b^{3}\left\{\frac{3}{8} \cos \left(3 \theta+\phi_{2}\right)+\frac{3}{8} \cos \left(\theta+\phi_{2}\right)+\frac{1}{8} \cos \left(5 \theta+3 \phi_{2}\right)+\frac{1}{8} \cos \right.$ $\left.\left(7 \theta+3 \phi_{2}\right)\right\}$
$-32 a c^{3}\left\{\frac{3}{8} \cos \left(4 \theta+\phi_{3}\right)+\frac{3}{8} \cos \left(2 \theta+\phi_{3}\right)+\frac{1}{8} \cos \left(8 \theta+3 \phi_{3}\right)+\frac{1}{8} \cos \right.$ $\left.\left(10 \theta+3 \phi_{3}\right)\right\}$
$-32 a c^{3}\left[\frac{9}{8} \cos \left(4 \theta+\phi_{3}\right)+\frac{3}{8} \cos \left(2 \theta+\phi_{3}\right)+\frac{1}{8} \cos \left(\phi_{3}\right)+\frac{1}{8} \cos \left(6 \theta+\phi_{3}\right)\right.$

$$
\begin{align*}
& +96 a^{2} b c \cos ^{2} \theta \cos \left(2 \theta+\phi_{2}\right) \cos \left(3 \theta+\phi_{3}\right) \\
& -96 a^{2} c \cos \theta \cos ^{2}\left(2 \theta+\phi_{2}\right) \cos \left(3 \theta+\phi_{3}\right) \\
& -96 a t c^{2} \cos \theta \cos \left(2 \theta+\phi_{2}\right) \cos ^{2}\left(3 \theta+\phi_{3}\right) \\
& -8 a^{2} \cos ^{2} \theta-8 b^{2} \cos ^{2}\left(2 \theta-\phi_{2}\right)-8 c^{2} \cos ^{2}\left(3 \theta+\phi_{3}\right) \\
& \Rightarrow 16 \mathrm{ab} \cos \theta \cos \left(2 \theta+\phi_{2}\right) \\
& +16 a c \cos \theta \cos \left(3 \theta * \phi_{3}\right) \\
& -16 b c \cos \left(2 \theta+\phi_{2}\right) \cos \left(3 \theta+\phi_{3}\right) \\
& +1] \tag{3}\\
& =\stackrel{\rightharpoonup}{V}_{40}\left[1+8 a^{4}\left\{\frac{5}{6}+\frac{1}{2} \cos 2 \theta+\frac{1}{8} \cos 4 \theta\right\}\right. \\
& -8 b^{4}\left\{\frac{5}{8}+\frac{1}{2} \cos \left(4 \theta+2 \phi_{2}\right)+\frac{1}{8} \cos \left(8 \theta+4 \phi_{3}\right)\right\} \\
& -8 c^{4}\left\{\frac{5}{8}+\frac{1}{2} \cos \left(6 \theta+2 \phi_{3}\right)+\frac{1}{8} \cos \left(12 \theta+4 \phi_{3}\right)\right\} \\
& +48 \mathrm{a}^{2} \mathrm{~b}^{2}\left\{\frac{1}{4}+2 \cos 2 \theta+\frac{1}{6} \cos \left(4 \theta+2 \phi_{2}\right)+\frac{1}{8} \cos \left(6 \theta+2 \phi_{2}\right)+\frac{1}{8}\right. \\
& \left.\cos \left(2 \theta+2 \phi_{2}\right)\right\} \\
& +48 a^{2} c^{2}\left\{\frac{1}{4}+\frac{1}{4} \cos 2 \theta * \frac{1}{4} \cos \left(6 \theta+2 \phi_{3}\right)+\frac{1}{8} \cos 0\left(8 \theta+2 \phi_{3}\right) \div \frac{1}{8}\right. \\
& \left.\cos \left(4 \theta+2 \phi_{3}\right)\right\}
\end{align*}
$$

$\div 32 \sigma^{3} \in\left\{\begin{array}{l}3 \\ \cos \left(5 \theta+\phi_{2}+\phi_{3}\right)+\frac{3}{\theta} \cos \left(\theta+\varphi_{3}-\varphi_{2}\right)+\frac{1}{6} \cos \left(3 \theta+3 \phi_{2}-\phi_{3}\right)\end{array}\right.$ $\left.+\frac{1}{8} \cos \left(9 \theta+3 \phi_{2}+\phi_{3}\right)\right\}$
$+32 b c^{3}\left\{\frac{3}{8} \cos \left(5 \theta+\phi_{2}+\phi_{3}\right) * \frac{3}{6} \cos \left(\theta+\phi_{3}-\phi_{2}\right)+\frac{1}{\partial} \cos \left(7 \theta+3 \phi_{3}-\phi_{2}\right)\right.$ $\left.\Leftrightarrow \frac{1}{8} \cos \left(11 \theta+3 \phi_{3}+\phi_{2}\right)\right\}$
$\Rightarrow 96 a^{2} b c\left\{\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta I\left[\frac{1}{2} \cos \left(5 \theta+\phi_{2}+\phi_{3} \downarrow+\frac{1}{2} \cos \left(\theta+\phi_{3}-\phi_{2}\right)\right]\right\}\right.\right.$
$-26 a \sigma^{2} c\left\{\left[\frac{1}{2}+\frac{1}{2} \cos \left(4 \theta+2 \phi_{2}\right)\right]\left[\frac{1}{2} \cos \left(4 \theta+\phi_{3}\right)+\frac{1}{2} \cos \left(2 \theta+\phi_{3}\right)\right]\right\}$
$-96 a \pi c^{2}\left\{\left[\frac{1}{2} \leqslant \frac{1}{2} \cos \left[6 \theta * 2 \phi_{2}\right)\right]\left[\frac{1}{2} \cos \left(3 \theta+\phi_{2}\right)+\frac{1}{2} \cos \left(\theta \div \phi_{2}\right)\right]\right\}$
$-8 a^{2}\left\{\frac{1}{2} \& \frac{1}{2} \cos 2 \theta\right\}$
$-8 \pi^{2}\left\{\frac{1}{2} \leqslant \frac{1}{2} \cos \left(4 \theta * 2 \phi_{2}\right)\right\}$
$-8 c^{2}\left\{\frac{1}{2}+\frac{1}{2} \cos \left(6 \theta+2 \phi_{3}\right)\right\}$
$+16 \mathrm{ab}\left\{\frac{1}{2} \cos \left(3 \theta+\phi_{2}\right)+\frac{1}{2} \cos \left(\theta+\phi_{2}\right)\right\}$
$+16 \mathrm{ac}\left\{\frac{1}{2} \cos \left(4 \theta+\phi_{3}\right)+\frac{1}{2} \cos \left(2 \theta+\phi_{3}\right)\right\}$
$-16 b c\left\{\frac{1}{2} \cos \left(5 \theta+\phi_{3}+\phi_{2}\right)+\frac{1}{2} \cos \left(\theta+\phi_{3}-\phi_{2}\right)\right.$

The terms at fundamental frequency are:

$$
\begin{align*}
\hat{\mathrm{v}}_{1}(\operatorname{ex})=\hat{\mathrm{v}}_{40}[& -12 a^{3} b \cos \left(\theta+\phi_{2}\right)-4 a^{3} b \cos \left(\theta-\phi_{2}\right) \\
& -12 a b^{3} \cos \left(\theta+\phi_{2}\right)+12 b^{3} c \cos \left(\theta+\phi_{3}-\phi_{2}\right) \\
& +12 b c^{3} \cos \left(\theta+\phi_{3}-\phi_{2}\right)+8 a b \cos \left(\theta+\dot{\phi}_{2}\right) \\
& -8 b c \cos \left(\theta+\phi_{3}-\phi_{2}\right)+24 a^{2} b c \cos \left(\theta+\phi_{3}-\phi_{2}\right) \\
& \left.\cdot 12 a^{2} b c \cos \left(\theta-\phi_{3}+\phi_{2}\right)-24 a b c^{2} \cos \left(\theta+\phi_{2}\right)\right] \tag{5}
\end{align*}
$$

The eezms at second inamonic are:

$$
\begin{align*}
\hat{\nabla}_{2}(\text { ex }) & =\hat{\nabla}_{40}\left[4 a^{4} \cos 2 \theta \approx 12 a^{2} b^{2} \cos 2 \theta\right. \\
& +6 a^{2} b^{2} \cos \left(2 \theta+2 \phi_{2}\right)+12 a^{2} c^{2} \cos 2 \theta \\
& +6 b^{2} c^{2} \cos \left(2 \theta+2 \phi_{3}-2 \phi_{g}\right)-12 a c^{3} \cos \left(2 \theta+\phi_{3}\right) \\
& -12 a^{3} c \cos \left(2 \theta+\phi_{3}\right)-4 a^{2} \cos 2 \theta \\
& \& 8 a c \cos \left(2 \theta+\phi_{3}\right)-24 a \sigma^{2} c \cos \left(2 \theta+\phi_{3}\right) \\
& \left.-12 a b^{2} c \cos \left(2 \theta+2 \phi_{2}-\phi_{3}\right)\right] \tag{6}
\end{align*}
$$

The terms at third hamonic frequency are:

$$
\begin{align*}
\hat{V}_{3}(e \pi) & =\hat{V}_{40}\left[-12 a^{3} b \cos \left(3 \theta+\phi_{2}\right)-12 a b^{3} \cos \left(3 \theta+\phi_{2}\right)\right. \\
& +4 b^{3} c \cos \left(3 \theta+3 \phi_{2}-\phi_{3}\right)+8 a b \cos \left(3 \theta+\phi_{2}\right) \\
& +12 a^{2} b c \cos \left(3 \theta+\phi_{2}+\phi_{3}\right)+12 a^{2} b c \cos \left(3 \theta+\phi_{3}-\phi_{2}\right) \\
& \left.-24 a b c^{2} \cos \left(3 \theta+\phi_{2}\right)-12 a b c^{2} \cos \left(3 \theta+2 \phi_{3}-\phi_{2}\right)\right] \tag{7}
\end{align*}
$$

The reference phasor will be taken as - sin, as previously, and if $\phi_{2}=\phi_{3}=-\pi / 2$ the equations for V_{1}, V_{2} and V_{3} can be written in complex notation as,

$$
\begin{align*}
\hat{V}_{I}= & -j a \hat{\nabla}_{10}-j 2 b c \hat{V}_{20}+2 a b \hat{V}_{20} \\
& +\hat{V}_{30}\left[-j 3 a^{3}+j 3 a+3 a^{2} c-j 6 a 6^{2}-j 6 a c^{2}+3 b^{2} c\right] \\
& +\hat{\mathrm{V}}_{40}\left[-j 12 b^{3} c-j 12 b c^{3}+j 8 b c-j 36 a^{2} b c\right. \\
& \left.+8 a^{3} b+12 a b^{3}-8 a b+24 a 6 c^{2}\right] \tag{8}
\end{align*}
$$

$$
\begin{align*}
& \stackrel{\oplus}{\nabla}_{2}=b \stackrel{\circ}{\nabla}_{10}+2 a c \stackrel{\Delta}{\nabla}_{20}-j a^{2} \stackrel{\Delta}{V}_{20} \\
& +\stackrel{\rightharpoonup}{V}_{30}\left[-3 b+3 b^{3}+6 a^{2} b+6 b c^{2}-j 6 a b c\right] \\
& \Leftrightarrow \hat{V}_{40}\left[-j 4 a^{4}-j 6 a^{2} \delta^{2}-j 12 a^{2} c^{2}-j 6 b^{2} c^{2}+j 4 a^{2}\right. \\
& \left.+12 a c^{3}+12 a^{3} c-8 a c+36 a b^{2} c\right] \tag{9}\\
& \stackrel{\rightharpoonup}{\mathrm{V}}_{3}=\mathrm{c} \stackrel{\rightharpoonup}{\nabla}_{10} * 2 \mathrm{ab} \stackrel{\stackrel{\rightharpoonup}{\mathrm{~V}}}{20} \\
& \therefore \stackrel{\stackrel{\rightharpoonup}{V}}{30}\left[-3 c * 3 c^{3}+6 a^{2} c+6 ⿷^{2} c-j a^{3}+j 3 a 5^{2}\right] \\
& \Rightarrow \stackrel{\rightharpoonup}{Y}_{40}\left[+12 a^{3} b+12 a b^{3}+36 a b c^{2}-8 a b+j 4 b^{3} c\right] \tag{10}
\end{align*}
$$

The equations (8). (9) and (102 may be used to modify the equivalent circuits of Figures 5.6,5.7 and 5.8. The expression for C_{03} given in equation (5.56) would become,

$$
\begin{aligned}
c 3 \omega \hat{Q}_{10} \frac{1}{3 \omega \mathrm{C}_{03}}=c \hat{\mathrm{~V}}_{10} & +2 a b \hat{\mathrm{~V}}_{20}+\hat{\mathrm{V}}_{30}\left[3 \mathrm{c}^{3}+6 a^{2} c+6 b^{2} c-3 c\right] \\
& +\hat{\mathrm{V}}_{40}\left[12 a^{3} \mathrm{G}+12 \mathrm{ab}^{3}+36 a b c^{2}-8 a b\right]
\end{aligned}
$$

Hence $C_{03}=\frac{1}{\hat{\mathrm{~V}}_{10}+\frac{2 \mathrm{ab}}{c} \hat{\mathrm{~V}}_{20}+\hat{\mathrm{V}}_{30}\left[\mathrm{~F}_{1}[(\mathrm{abc})]+\hat{\nabla}_{40}\left[\mathrm{E}_{2}(\mathrm{abc})\right]\right.}$
where $f_{1}(a b c)=6 a^{2}+6 b^{2}+3 c^{2}-3$

$$
\begin{equation*}
f_{2}(a b c)=\frac{4 a b}{c}\left(3 a^{2}+3 b^{2}+9 c^{2}-2\right) \tag{12}
\end{equation*}
$$

The equation (5.57) must be modified to,

$$
\begin{aligned}
\frac{1}{2 \omega C_{02}} b 2 \omega \hat{Q}_{10} & =b \hat{\mathrm{~V}}_{10}+2 a c \hat{\mathrm{~V}}_{20}+\hat{\mathrm{V}}_{30}\left[3 b^{3}+6 a^{2} b+6 b c^{2}-3 b\right] \\
& +\hat{\mathrm{V}}_{40}\left[12 a^{3} c+12 a c^{3}+36 a b^{2} c-8 a c\right]
\end{aligned}
$$

and chus.

$$
\begin{equation*}
c_{02}=\frac{\hat{Q}_{10}}{\hat{V}_{10}+\frac{2 a c}{b} \hat{\nabla}_{20}+\hat{V}_{30}\left[f_{3}(a b c)\right]+\hat{V}_{40}\left[f_{4}(a b c)\right]} \tag{14}
\end{equation*}
$$

where $f_{3}(a b c)=6 a^{2}+6 c^{2}+3 b^{2}-3$

$$
f_{4}(a b c)=\frac{4 a c}{b}\left(3 a^{2}+3 c^{2}+9 b^{2}-2\right)
$$

The second and chird barmonic powers given in equations (5.58) and (5.59) must be modified in the following ways:

$$
\begin{gathered}
P_{2}=\left[a^{2} \hat{v}_{20}+6 a b c \hat{\nabla}_{30}+\hat{v}_{40}\left(4 a^{4}+6 a^{2} b^{2}+12 a^{2} c^{2}+6 b^{2} c^{2}-4 a^{2}\right)\right] \\
\\
\cdot \frac{1}{d^{2}} \cdot \frac{1}{d^{2}}\left[26 \hat{\bar{I}}_{10}\right]
\end{gathered}
$$

or

$$
\begin{align*}
& P_{2}=\hat{V}_{20} \hat{I}_{10}\left(a^{2} b\right) \leqslant \hat{V}_{30} \hat{I}_{10}\left(6 a b^{2} c\right)+\hat{V}_{40} \hat{I}_{10}\left(4 a^{4} b+6 a^{2} b^{3}+12 a^{2} b c^{2}\right. \\
&\left.+6 b^{3} c^{2}-4 a^{2} b\right) \tag{17}
\end{align*}
$$

$P_{3}=\left[a^{3} \hat{V}_{30}-3 a b^{2} \hat{V}_{30}-4 b^{3} c \hat{\mathrm{~V}}_{40}\right] \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[3 c \hat{\mathrm{I}}_{10}\right]$
or
$P_{3}=\hat{V}_{30} \hat{I}_{10}\left(\frac{3}{2} a^{3} c-\frac{2}{2} a 6^{2} c\right)+\hat{V}_{40} \hat{I}_{10}\left(-6 b^{3} c^{2}\right)$

The reflected resistance in the input circuit becomes,
$R^{\prime}=\frac{2 a b \hat{V}_{20}+\hat{V}_{30}\left(3 a^{2} c+3 b^{2} c\right)+\hat{V}_{40}\left(8 a^{3} b+12 a b^{3}+24 a b c^{2}-8 a b\right)}{a \hat{I}_{10}}$
or
$R^{9}=2 b \frac{\hat{V}_{20}}{\hat{I}_{10}}+\frac{\hat{V}_{30}}{\hat{I}_{10}} \frac{3 c}{a}\left(a^{2}+b^{2}\right)+\frac{\hat{V}_{40}}{\hat{I}_{10}} 4 b\left(2 a^{2}+3 b^{2}+6 c^{2}-2\right)$.

The input capacicance $C_{\text {IN }}$ previousiy expressed in equaticn (5.61) is modified below to include the fourth harmonic term

$$
\begin{aligned}
\frac{1}{\omega C_{\mathbb{D}}} a \omega \hat{Q}_{10}=a \hat{\nabla}_{10} & +25 c \hat{\nabla}_{20} \& \hat{\nabla}_{30}\left[3 a^{3}+6 a b^{2}+6 a c^{2}-3 a\right] \\
& +\hat{ष}_{40}\left[12 b^{3} c+12 b c^{3}+36 a^{2} b c-8 b c\right]
\end{aligned}
$$

os
$C_{I V}=\frac{\hat{Q}_{10}}{\hat{\bar{V}}_{10}+\frac{2 \mathrm{bc}}{\mathrm{a}} \hat{\nabla}_{20}+\hat{\nabla}_{30}\left[\mathrm{f}_{5}(\mathrm{abc})\right]+\hat{\nabla}_{40}\left[\mathrm{~F}_{6}(\mathrm{abc})\right]}$

Where $f_{5}(a b c)=\left(6 b^{2}+6 c^{2}+3 a^{2}-3\right)$
$f_{6}(a b c)=\frac{4 b c}{a}\left(3 b^{2}+3 c^{2}+9 a^{2}-2\right)$

The equivalent circuits for fumdamental, second and chird harmonic frequencies are shown in section 5.3.3.

[^0]: D.F. Oxford

 December 1983

