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ABSTRACT 

C . f l ~ t b 4u 2 + ross sect~ons or e ecLron cap ure y ne ions 

from ground state atomic hydrogen are presentee for a 

4He 2+ laboratory energy range from 1 to 800 keV (0.25 

-1 d to 200 keV amu ). The cross sections were calculate 

using a ~oupled channel approximation in which the electronic 

wavefunction was expanded in terms of a finite number 

of atomic orbital basis states centred upon the target 

and the projectile. Electron translation factors which 

incorporated a switching function were included in the 

basis states. The semi-classical impact parameter approxi-

mation was employed. 

The cross sections presented are for electron capture 

4 + into the 2s state of He , and into the n = 2 level of 

4He+ using two states and four states respectively in 

the basis expansion. Four functional forms of switching 

function were used in the translation factors. 

The cross sections are compared with ones calculated 

using two-state and four-state atomic basis expansions 

which used plane-wave translation factors, and also with 

other theoretical and experimental cross sections. For 

, -1 f . 
energies~ 2.5 keV amu airly reasonable agreement is 

""- -1 obtained with other data. For energies ~2.5 keV amu 

the present cross sections are in poor to extremely poor 

agreement with other data, steady divergence of the present 

results from existing data being observed with increasing 

energy. 

The present results are discussed, and conclusions 

and suggestions for future work are made. 
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CEAPTER 1 

:NTRODUSTION 

1~1 Electron cspture in ~en-atom col~isions 

The work presented in this thesis is concerned with 

the atomic collision process known as electron capture. 

This process is the transfer of one or more electrons 

during the collision of two atomic species which may be 

neutral atoms or electrically charged ions. Electron 

capture is also known by other titles, which are "charge 

exchange" and "charge transfer". In this thesis we shall 

be considering single-electron capture processes where 

only one electron is captured during the collision. Let 

us denote the projectile ion or atom by A and the target 

ion or atom by (B +e-). That is A and B represent singly 

or multiply charged ionic cores. The collision of A and 

(B + e-) may lead to one of a number of possible outcomes. 

These are listed as follows:-

A + (B + e-)--->A + (B + e-)' elastic; 
;': 

=<;)A + (B + e-) 
' excitation; 

---?l (A + e-) + B, capture to 
state 

,._ 
-=i:l (A + e-)' + B, capture to 

excited state; 

~A + B + e , ionisation. 

ground 

(l.l.la) 

(l.l.lb) 

( 1. 1. lc) 

(l.l.ld) 

(l.l.le) 

The process (l.l.la) involves no conversion of kinetic 

energy into internal energy and is termed elastic. This 

is not the case with process (l.l.lb) where the target 

system is excited (denoted by*). This inelastic process 
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is known as direct excitation, direct meaning there is 

no rearrangement of the particles during the collision. 

Processes (1.1.1c) anc (1.1.1d) are electron Ca?ture 

processes. They be:ong to the class of collisions known 

as rearrangement collisions. In process (1.1.1c) the electron 

is captured into the ground state of the (A + e system; 

in (1.1.1d) capture to an excited state occurs. The final 

process (1.1.1e) is ionisation. Here the electron is in 

a continuum state rather than a discrete bound state. 

At high energies electron capture occurs predominantly 

via the radiative process 

A + ( B + e-) =:> (A + e-) ·A- + B + If (1.1.2) 

where is a photon. 

If A and B are the same, an electron capture process 

is termed "symmetric", if they are different the process 

is "asymmetric". If there is a zero (or nearly zero) 

energy defect between the initial and final systems, the 

process is termed "resonant"; if the energy defect is 

not zero, the term "non-resonant" is used. The process 

H+ + H ( 1s ) ~ H ( 1s ) + H+ (1.1.3) 

is an example of symmetrical resonance electron capture. 

However, the process 

He 2+ + H(ls) ~~ He+(2s) + H+ (1.1.4) 

is an example of asymmetrical (or accidental) resonance 

electron capture. 

1.2 Controlled thermonuclear fusion 

Electron capture processes have attracted much attention 

over the past few years owing to their relevance to the 
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field of controlled thermonuclear fusion. Specifically 

the magnitudes of cross sections (see next section) are 

of interest to workers trying to achieve the aim of harnessing 

the energy of thermonuclear fusion for peaceful purposes. 

Most of :heir effort has been directed toward a fusion 

reactor in which a magnetically confined pla~ma is heated 

to a temperature at which fusion occurs. The energy released 

is then used in a conventional manner to produce steam 

which is used to generate electricity in steam turbo-generators. 

The problems associated with the realisation of a viable 

fusion r8actor are difficult. To bring about fusion in 

the plasma requires very high temperatures. This is because 

the Coulomb repulsion of the nuclei to be fused has to 

be overcome. As this is dependent upon the nuclear charges, 

nuclei with small nuclear charges must be used. This is 

no major problem, though, as the best isotopes, from this 

point of view, are those of hydrogen (deuterium, D and 

tritium, T). Deuterium occurs naturally in the form of 

"heavy water" (D 20), and so may be obtained relatively 

cheaply from naturally occurring water. In fact the Coulomb 

repulsion is not such a great problem as quantum mechanical 

tunnelling through the Coulomb barrier can occur. A major 

problem in the fusion research work has been concerned 

with confining the plasma. One way of doing this is to 

have the plasma in a torus, confinement being achieved. 

by a combination of peloidal and toroidal magnetic fields. 

Unfortunately a high-temperature plasma is highly unstable 

and successful confinement remains to be achieved alongside 

actual fusion occurring. 



An attractive cand~da.te for :t:e fusion reaction is 

the so-cal:ed J- T rec:c:ior:.. Ti.1is is 

4 D + T =) ( He + 3. 52 rv:ev) + ( n + 14. 06 MeV) . (L2.1) 

This process attains reaction rates sufficient for ignition 

at temperatures greater than ones corresponding to only 

4-5 keV. The 3.52 MeV alpha particles remain in the fully 

ionised plasma where they give up their energy through 

collisions with the constituents. The neutrons must have 

their kinetic energy converted into heat by some means. 

One way envisaged of doing this is to surround the reactor 

vessel with a lithium blanket inside which the neutrons 

would be trapped, their kinetic energy being taken up in 

the forffi of heat by heat exchangers, which in turn would 

create steam by some means. This idea has the advantage 

that more tritium could be produced via the reaction 

6Li + n -P 
4He + T + 4. 80 MeV. (1.2.2) 

The 6Li lithium isotope occurs in natural lithium<~ 7.5%) 

and so may be obtained fairly easily. The driving of a 

100 MW power station would require of the order of 10 21 

D-T reactions per second. This corresponds to temperatures 

being required of the order of 108K. At such temperatures 

the plasma must be kept from coming into contact with the 

reactor vessel and hence the need for confinement of the 

plasma. 

The question arises as to how the plasma is heated. 

If magnetic confinement is the method used to confine 

the plasma, energy is supplied by means of ohmic heating 
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fro~ the toroida~ c~rrent induced in the plas~a by the 

magnetic field. Beyond 2-3 keV t~is met~od of heating 

is ineffective, and at such energies, further heating cannot 

be produced by the alpha particles from the D-T fusion 

reaction (1.2.1). Supplementary heating is therefore, 

required by some means. A promising method is known as 

neutral-beam injection. This is where an intense beam 

of neutral deuterium atoms is injected into the plasma 

where the atoms are ionised either by ~lectron capture 

or by direct ionisation. The resulting D+ ions give up 

their energy in collisions with the plasma constituents. 

Neutral atoms must be used in the beam so that the magnetic 

field can be penetrated. The practical use of such a beam 

requires some kind of device to produce the beam. The design 

of such a device requires the knowledge of cross sections 

for atomic collision processes which include that of electron 

capture. The production of a neutral beam of deuterium 

atoms begins by accelerating a pulsed beam of D+ ions produced 

by an ion source. Once at an energy of the order of 100 keV, 

This D+ beam is passed through a gas (molecular deuterium 

D2 ) or metallic vapour target. Partial conversion to fast 

neutral atoms or molecules takes place by electron capture, 

for example 

+ D + D2 . (1.2.3) 

Unfortunately this process has a small cross section at 

100 keV and so the neutralisation process is somewhat inefficient 

An alternative is to use the "detachment" reaction 
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D + e + D2 . 

This has a large cross sec~ion but the formation of a 0-

bezm is difficult. Assuming 3 though, that the beam of 

neutral deuterium atoms has been produced it is injected 

into the plasma and heating occurs by ionisation of the 

neutral deuterium atoms 3 as was stated earlier. The actual 

processes occurring in the plasma whereby the neutral D 

atoms are ionised are 

D + n+ =::::> D+ + D ( L 2. Sa) 

D + T+ =9::> n+ + T (1.2o5b) 

D + n+ =~ n+ + n+ + e ( 1 o 2 o 6a) 

D + T+ =~ D+ + T+ + e (1.2.6b) 

e + D => n+ + 2e- 0 (1.2o 7) 

The cross sections for these processes have been measured 

for H and H+ and the cross sections for D or T are the 

same at the same relative velocity o The electron capture 

processes (1.2o5a) and (1.2o5b) have associated cross sections 

f h -15 2 o t e order of 10 em at beam energies of about 10 keV. 

The capture process is the most important pr0cess at this 

energy. At an energy of 100 keV, though, the capture 

processes have cross sections of the order of 10-17 cm2 but 

the ionisation processes (1.2.6a) and (1.2.6b) have cross 

sections larger by a factor of about 10. The electron ionisation 

process (1.2.7) is of little importance at the energies 

being considered. 

The efficiency of neutral-beam heating is lowered 

by the presence of fully ionised impurity ions such as 
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C6+ ' ,...8+ an.c. v o Electron ca?~ure occurs res~lting i~ high:y-

excited, short-lived states o~ the impurity ions, namely 

(1.2.8) 

where xq+ is the impurity ion with charge q. These states 

then radiatively decay resulting in a loss of power. Also 

the ionisation process 

(1.2.9) 

may occur. This can lead to cold electrons that can be 

detrimental to the density and temperature distribution 

of the plasma. Another possible process that can occur 

within the plasma is 

where X may be helium or an impurity. The resulting fast 

hydrogen atoms cannot be confined magnetically and thus 

escape. The increased charge of X results in further 

power loss by radiation. 

As well as data concerning processes arising from 

neutral-beam heating being required, data are required 

on the electron capture processes 

He 2+ + H ~ He+ + H+ 

+ He + H 

(1.2.11) 

(1.2.12) 

in order that there be a better understanding of the energy 

and particle loss mechanisms which are associated with 

the alpha particle heating. Also the impurity ions may 

seriously affect the alpha particle heating. Data on the 

associated collisions are therefore of interest. 
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Another area where atomic physics can provide information 

of use in fusion research is t~at of plasma diagnostics, 

It is important to oe able to me&sure the pararr.eters of 

a plasma such as its density and temperature, and also 

the concentration of impurity ions and the depth of penetration 

of the neutral beam us~d to heat the plasma, Beams of 

hydrogen atoms with energies between 4 to 14 keV have been 

used as probes to investigate the plasma, By studying 

the attenuation of the beam and having a knowledge of the 

electron capture and ionisation cross sections for protons 

colliding with hydrogen, and also the cross section for 

ionisation of hydrogen atoms by electrons, in this case 

the plasma electrons, the path-averaged proton density 

in the plasma can be measured, Also it is possible to 

study the Doppler-shifted radiation emitted by decaying 

hydrogen atoms, formed by electron capture by plasma protons 

from injected hydrogen atoms, in order to measure the 

temperature of the plasma. The electron capture cross 

sections into the excited states of the subsequently decaying 

hydrogen atoms can be used to measure the proton density. 

In princi9le the impurities in the plasma can be investigated 

by this method, 

Spectroscopic techniques can be applied to assessing 

the depth of penetration of the neutral beam used for heating. 

Electron capture by o8 + ions produces o7
+ in levels corresponding 

ton= 5, 6 or 7. By determining the depth in the plasma 

from whicl1 radiation characteristic of these levels is 

emitted, an estimate of the penetration depth of the neutral 

beam can be obtained. However, fairly accurate spectroscopic 



9 

information is required for multiply charged ions such 

as o7+. This information may be obtained by using beam-

fo~l spec~roscopy wherein a high energy beam of singly 

ionised particles is passed through a thin foil (often 

carbon) to produce an emergent beam of atomic species in 

many different excitation and ionisation states. The line 

radiatioP from these species can then be measured. Much 

more detailed discussions of various aspects of controlled 

nuclear fusion are given in the publication edited by 

McDowell and Ferendeci (1980). 

1.3 Cross sections and reference frames 

The quantities which characterise collision processes 

between ''particles" such as atoms, molecules, etc. are 

called cross sections. Cross sections can usually be 

measured experimentally or alternatively a theoretical 

model can be constructed, based either wholly or in part 

upon qua~tum mechanics, the purpose of which is to predict 

the cross sections. A collision experiment is, in principle, 

very simple, consisting of a collimated, and very nearly 

monoenergetic beam of particles, A which is directed at 

a target containing scatterers, B. The products of the 

collision process occurring are detected in some way (see 

figure 1.1). 

Figure 1.1 

A simple collision 

experiment. 
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We define the cross section of a certain type of event 

in a given collision as the ratio of the number of events 

of this type ?er unit time and per unit scatterer to the 

relative flux of the incident particles with respect to 

the target. We shall illustrate this somewhat verbose 

definition by considering the total cross section. 

Let us suppose that N~ particles A reach the target 

per unit time. We assume that these particles are parallel 

in direction (that is not straying from the beam) and are 

monoenergetic. We denote by ./J..( the mean number of particles 

A per unit volume in the incident beam, and by v their 

mean velocity with respect to the target. The flux of 

incident particles relative to the target, that is the 

number of particles A crossing per unit time a unit area 

perpendicular to the beam direction and at rest with respect 

""' to the target) we denote by Wt::~ ; this is given by 

(1.3.1) 

where 5 is the area in cross section of the beam. We assume 

that the target is thin and denote by ~® the number of particles 

B within the "effective" target volume interacting with the 

target. If the target is a thin layer of thickness ~ 

then, 

A 

w B ~ 5.2 N!] ~ 5/~ ( 1. 3 0 2 ) 

where ~ is the number of particles B per unit volume 
A 

of the target and ~ is the surface density of the target 

particles. If Nl?@f? is the total number of particles A 

which have interacted per unit time with the target scatterers, 
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~q 
then under the experimental conditions assumed~ u"<ie;@~ is 

proportionai to the relative ~~cident flux ~~ and the 

number o:L target sc&t:terers lli~c Thus 

where the constant of proportionality (at a given collision 

energy) is called the total cross section for scattering 

of particle A by particle B. It should be stressed that 

the definition of equation ( 1. 3. 3) is only valid for a 

thin target. The total cross section 0"15'@1? depends only 

upun the collision energy for a given quantum system being 

considered. It is a measure of the tendency of the 

particles A and B to interact at the energy being considered. 

The dimension of ©r~@~ is that of area; we may, indeed, 

consider ©;.®~ as an "effective area" which collects a certain 

amount of the incident beam 9 (see equation (1.3.3)). 

The quantity g'~@~ is the total cross section for all 

possible collision processes occurring when A and B collide. 

That is, it includes elastic scattering 

A+B ===0 A + B ~ (1.3.4) 

inelastic scattering, 

A + B (1.3.5) 

where ·k denotes that a possible charge in internal quantum 

state has occurred, and reactive scattering 

A + B ======> C + D (1.3.6) 

A + B =:> (1.3. 7) 
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where two or more partic~es are produced which are cifferent 

from A and B. The reactive processes (:.3.6) a~d (1.3.7) 

are called rearrangement collisions if they occur via the 

exchange of one or more elementary co~stituent particles. 

If a rearrangement collision produces only two particles, 

as in process (1.3.6), it is called a binary rearrangement 

collision. Electron capture processes are an example of 

binary rearrangement collisions, the elementary constituent 

particle or particles exchanged during the collision being 

one or more electrons. It is possible to confider total 

cross sections for particular processes occurring such 

as, say, elastic scattering. This has associated with 

it the total elastic cross section Rr~& v~®C: which is defined 

in an analogous manner to U((lf)/t (see equation (1.3.3)) 

N c~ :g tRi' ei 1l 
u (r:(c)f \8!' h:g ~~ uu.@ (1.3.8) 

h li\. n l!i · h 1 b f 1 w ere u "'a-6lt ~s t e tota num er o partie es A scattered 

elastically per unit time. If only elastic scattering 

occurs then However, if non-

elastic processes occur too then we define the total reaction 

cross section for all such processes by 

tFV' IF' = 0' tf'7 r::,d ( 1 3 9 ) v {!;()(( = 1;.#/t@f.t = lid (t@~ • 0 • 

It is important to note that the term "total" as applied 

to cross sections may have two different meanings. The 

formally correct use of the term is to distinguish between 

total cross sections and differential cross sections, the 

latter to be discussed shortly. We have used the formally 

correct terminology in this discussion. However, it is 
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very common in atomic collision physics for "total cross 

section" to mean the total cross section for scattering 

into all possible states being considered, whilst "cross 

section" means the total cross section for scattering into 

one or a small number of states. For instance the total 

cross section for capture into a particular nlm state of 

a hydrogenic ion would be called "cross section", the total 

cross section for capture into all nlm states would be 

called "total cross section". 

The total cross sections discussed so far do not give 

any information about the angular distribution of the 

scattered particles. In order to deal with angular distributions, 

it is necessary to choose a co-ordinate frame. The two 

most common frames used are the laboratory (L) frame and 

the centres of mass ( CM) frame, sometimes called the bary-

centric frame. The laboratory frame is that where the 

target B is at rest; the centre of mass frame is that where 

the centre of mass of (A + B) is at rest. Working in the 

laboratory frame and considering elastic collisions, we 

denote by d. N4 l the number of particles A scattered per 

unit time into solid angle d~l~ centred about the 

direction (~~~fl1~) shown in figure 1.2. Provided the target 

is thin 

J N~l :;: a<!1a ~ ~n.? !lid ~t. nG~ d. 1l n.. (1.3.10) 

The quantity ~l (ra'l..? flfoJ is the laboratory 
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Figure 1,2 

Scattering angles in the 

laboratory frame, 

differential cross section for elastic scattering. It 

is also written 

, n~ ~ d1. 01:t~ ( e~ ~ p;o.} 
o;n~o.7Po.J ~ 

dfl~ 

Similarly in the centre of mass frame 

where 

Equations (1.3.10) and (1,3.12) show that 

J. ~l { ~Q;M ll Rfc#J dJ.fl.cr.M 
J.fl(;/'A 

and also the total elastic cross section is 

(1.3.11) 

(1.3.12) 

(1.3.1.3) 

(1.3.14) 

~ l ~I d (f' rd... ( 8 0. ~ ¢~ ~ J fl f!. ::;: I d1 if ru__( e,M ~ Pfci'A) o1. fl CM ( 1 • 3 . 1 5 ) 
dflr:.. J.fle:M 

A .ft. 

which is independent of the co-ordinate frame. In a similar 

fashion, differential cross sections can be defined for 

non-clustic scattering. 

1.4 Units 

In the work of this thesis atomic units are used, 
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unless otherwise stated, This system of units is obtained 

by setting ~ ~ M('?. ~~ :;;: ~ , where =~ and Ma are the 

charge and rest-mass of the electron respectively. In 

this system the unit of length is the Bohr radius, a~ (= 

-9 5.29 x 10 em) which is the radius of the first Bohr orbit 

of the hydrogen atom. 
a, a 

The Bohr radius is given by at@:;;;~ /Me~ • 

Similarly the unit of velocity is the velocity of the electron 

in the first Bohr orbit of hydrogen V@ ~ e2/~ The unit 

of energy is obtained by setting e?~~ and l\ to one 

in the expression for the ground state energy of the hydrogen 

atom which is =flVUe.(/)l~a In atomic units this is ~· 
~;~2. 

Thus the atomic unit of energy is JVU~e lf\J , (27.2 eV 

in real units) which is twice the ionisation energy of 

the hydrogen atom, 13.6 e V, In atomic physics cross sections 

may be expressed in terms of A"'i1: 2 -17 2) ~~ (= .80 x 10 em , 

though sometimes the units used are n ao2, ( = 8. 8 x 1 o - 1 7 

2 em). H th . ft d d . 1 1o-16 2 owever, e un~ts o en a opte are s~mp y em 

which are the units used in this thesis for cross sections. 

Atomic units are not really suitable for measuring 

collision energies, though the collision velocity is usually 

in terms of atomic units. Ion-atom collision energies 

are usually measured in keV, either in the laboratory or 

centre of mass frames. If we denote the centre of mass 

energy by E reM , and the laboratory energies for B being 

rc~ E® at rest and A being at rest by 6 6 and b respectively, 

that is E~ 
b and are the kinetic energies 

of A and B in the laboratory,then it is straightforward 

to show that 
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E = M® EA = Me;, E® 
e;~= M 1\,=AA AA ~ 

ME/"r~o fV~A ?r~® 
(1.4.1) 

where Mp. and M® are the masses of A and B respectively. 

For an ion-atom collision, equations (1.4.1) apply if the 

mass of the electron is ignored. It should be noted that 

the laboratory energy is dependent upon whether A or B 

is at rest. In this work the convention is that B is 

at rest whilst A is moving. However, it is important 

to specify which of the colliding entities is the projectile 

or target when talking about laboratory energies, unless 

the meaning is clear. Hence the use of the phrases "the 

4He 2+ laboratory energy" or "the 4He 2+ projectile energy" 

. d. . h t 4H 2+ . th . t. 1 It . 1 . bl Ln LcatLng t a e LS e proJec 1 e. LS a so possL e 

to divide the laboratory energy by the mass of the projectile 

and use this as the energy unit. For example, the 4He 2+ 

laboratory energy can be divided by 4(the mass of 4He 2+ 

in atomic mass units, amu) to give a laboratory energy 

in keV -1 amu From equations (1.4.1) we see that 

which is pr.0portional to the square 

of the relative velocity of A and B, and so there is no 

need to specify that A is the projectile. If the laboratory 

-1 energy is, say, 125 keV amu for A colliding with B, it 

is the same for B colliding with A. We note, finally, 

that one atomic unit of velocity corresponds to a laboratory 

energy of 24.97 keV amu- 1 . 
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CHAPTER 2 

EXISTING THEORY AND APPLICATIONS 

2.1 Introduction 

There aru many excellent review articles and texts 

that deal either wholly or in part on the subject of electron 

capture in ion-atom collisions. For example, McDowell and 

Coleman (1970), Bransden (1972), Basu et al. (1978), 

Greenland (1982), McCarroll (1982) and Bransden (1983). 

This chapter is in no way in tended to be an ex tens i v<-: rev i <~w 

of the subject, but rather it is a discussion of some of the 

main aspects of the theory of electron capture relevant to 

the work presented in this thesis, with mention of some of 

the main applications of the theory. 

We shall begin by discussing the full quantum mechanical 

treatment of the electron capture problem and then discuss 

the semi-classical impact parameter approximation whic:h is 

extensively used in theoretical work on ion-at.om col 1 isions. 

We shall then examine the atomic expansion m(;thod and 

related expansions, for example, the pseudostate expansion, 

and also improvements to the basic atomic expansion 

method. Then we shall consider the molecular expansion 

method. Finally a brief discussion of electron capture at 

high energies will be given. It is possible to use 

techniques based upon classical mechanics to cal culat<; 

electron capt.un-: cross sections. A discussi()n of Lh<: us<: of' 

< · l : 1 s s i c: 1 I t. ( · < · 11 n i q 11 <: s i s not. ~; i v < • n 11< · r<! , b u 1. Uw i n L c· r· <! s L <: d 

t"<':td<·t· 1:--: l'<'l"<·t·t·(·cl t.o 0<'cf.ion li ()r Lh<' n~vi<·w hy (;r·<·(·nl:tncl 

( 1 ! ) 0 2 ) r ()!. : l d i s ('us s i () n and l' c r (; r· (. n <: (' s () n l h i s f.() p i c . 
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2.2 Quantum mechanical formulation 

We begin by defining the single electron capture 

process 

(2.2.1) 

A and B may represent singly or multiply charged ionic 

cores. As through all this thesis, we adopt the convention 

that A is the projectile ion and B is the target ion. We 

require a co-ordinate system to describe the process and 

this is shown in figure 2.1. 

-!> 

Figure 2.1 

Ele~tron capture 

centre of mass co­

ordinates. 

In Figure 2.1 R is the position vector of A with rcsp(~CL 
....!> 

to B, RA is the position V8Ctor of B with rc:sp(~CL to Lhc 
..J> 

centre of rna s s of ( A + e- ) , R ~a is the p o s j t ion v e c tor of 

A with respect to the centre of mass of (B + e-) Vectors 

~ ...J; 

rtz; and r~ are the position vectors of the electron with 

respect to A and B respectively, and r is the position vector 

of the electron with respect to the centre of mass of A 

and B. We note, finally, that G is the centre of mass of 

the whole system (A+ B +e-). 
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We denote by MA and Mr9 the masses of A and B respectively, 

and byM£the mass of the electron (here we denote electron 

mass by Rlfl<Z even though me-= ~ in atomic units). The 

total mass of the system~ is given by 

i::; gjvcn by 

(2.2.3) 

where P~M is the magnitude of the 1 inear momentum of the 

centre of mass in the reference frame. When dealing with the 

theoretical analysis of a scattering problem, it is useful 

to separate the centre of mass motion from the problem 

(Farina, 1975) and vmrk in the frame whRre the C:f~ntn; o-r 

mass is at rest. Hence Pcmand Tc/V;(from equation (2.2.:~)) 

will both bu zero. For the (A+B+e-) system we chooS(! l.o 

wa~ in the centre of mass frame, that is, point G in 

Figure 2. 1 will be at rest. 

In order to describe the dynamics of the system in 

the centre of mass frame one of three sets of independent 

centre of mass co-ordinates may be used, namely u~~ R) 
-" 

or ( ~ » R~) The centre of mass kinct. ic 

()n<-~rgy opt"" r-a Lor T may be! writ t:en 

P2 2 2. a 

T = -- + L = ~ + _p_1_ = k. + f{_ ( 2 . ::L t1 ) 
2j! 2~ 2)Jp. 2MA 2fA® 2M0 

...... .... -A 

where P , PA and P® are momentum operators conjugaL(! t.o 
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"'"" -=" ="""' dl 

R ~ ~~ and R® respectively 9 and P 
.,='> 

and rQ are momentum 
~ <=':> =" 

operators conjugate to F 9 FA and u® respectively. The 

various reduced masses in the expressions forT of equation 

(2.2.4) are given by 

01\.~~ ffl@, MA 
M A ..1} filll.e 

fMl - m.~Me 
··~~- M®, '} ffl~ 

(2.2.5) 

(2.2.6) 

When dealing with the general theory of collisions it is 

convenient to introduce the concept of arrangement channels 

(see, for example 9 Bransden ( 1983) ,Chapter 4). Working in 

the centre of mass frame 9· the total Hamiltonian of the 

system 9 H 9 is written 

H= Hot+ Vet (~.2.7) 

where the subscript e-t varies 9 and corresponds to a particular 

grouping of the particles into aggregates and single 

particles. H e:1 is the Hamil ton ian of the system when the 

particles and aggregates are far apart and v~ is the inter­

action potential. Normally Vru. tends to zero as time goes 

to plus or minus infinity. The various decompositions of 

H~ labelled by subscript 0! 9 correspond to the arr·angem<Jn t 
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channels of the system. With each arrangement channRl 

there is associated a set of channels. A channel corresponds 

to a particular state of the system before or after the 

collision. 

When considering the ( A+B+e-) system 9 the arrangement 

channels to be considered are the direct arrangement channel 

which corresponds to the centre A interacting with the 

(B+e-) system 9 and the rearrangement arrangement channel 

which corresponds to the centre B interacting with the 

sys tf:!m. For brevity it is usual to om i L t.h<-~ wo nl 

"arrangement." and t.alk of thf:! din!et and r'<!ar·r·ang<!m<·nt. 

channels. The process of exeitat]on occurs in t.h<! din:c:t. 

channel whilst the electron capture occurs in the re-
-"' ....., 

arrangement channel. We use the co-ordinates (rB»~~)for 

describing scattering in the direct channel and the co-
="' .-!:> 

ordinates (1~» R~) for describing scattering in the re-

arrangement channel. The so-called adiabatic co-ordinates 

are useful for dealing with the calculation of the 

molecular states of the system (A+B+e-). 

The total Hamiltonian of the sys L<:rn is 

denoted hy H. I L is given by 

(2.2.8) 

where the kinetic energy operator Twas defined earlier in 

equation (2.2.4). The potential energy operator\{ is giv~n 

by 

(2.2.9) 



22 

where v(f.fl\ and v<!.~ are the potentials between the electron 

and A and B respectively and V~® is the potential between 

A and B. For the case of electron capture where A and B are 

nuclei 9 these potentials are simple Coulomb ones. We 

now make the decomposition into direct and rearrangement 

channels and write the total HamiltonianH as 

H ::: H~ + V11 (2.2.10a) 

or ( 2 • 2.1 Ob) 

where d and F refer to the direct and rearrangement channels 

respectively. We have that 

and 

and 

We denote by 

vd ~ \k"-} vA~ J) 

H ... = T-? v~A 

(2.2.11a) 

(:),.2.llb) 

(2.2.12a) 

(2.2.12b) 

the asymptotic "free" state 

for the system being in themth state in the direct channel. 

Thus 

(2.2.13) 

where E~ are energy eigenvalues. Similarly we denote by 

Xp. -'I ~ 'II 
1\ ( rA~ RAJ' the asymptotic "free" state for the 

system being in the nth state in the rearrangement channel. 

Thus 

(2.2.14) 
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Th(: asympLoLic st.al<-: for lhP system hcing in t.he in.iUal 
IB -" 

sta t.e i. in the direct channel is ~ ~ {~ v R~) and this is 

given by 

(2.2.15) 

~ 

where ~~ is the initial wave vector of A relative to the 

centre of mass of (B + e-) 

state eigenfunction of the (B + e-) system and we ha~e 

(2.2.16) 

where E i is the energy eigenvalue of the initial state of 

(B + e-). We may relate the total energy E; and by 

The Wl~ and )A~ in equations (2.2.16) and (2.2.17) 

respectively are the reduced masses of B and e- ~ and 

A and (B + e-) respectively. They are given by the expressions 

of (~quaLi(>ns (2.2.5) and (2.2.6). 

We consider first scattering in the direct channel~ 

that is excitation processes. We denote the final asymptotic 

"free" state in the direct channel by ~; (~~ R~) 
given by 

This is 

·~~ c=b ~) cd.> R" ~ ..J> 

'±:§(r@SJR~ =~;tpld:<*. [$JJl/f(rwJ <2.2.18) 

-.J> 

where k§ is the final wave vector of A relative to the 

centre of rna s s of ( B + e- ) . The fun c t j on flf j { ~) sat is f i e s 

the equa·t ion 

(2.2.19) 
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It is also true that 

2!. 

E* ~ J:L c} ff' . 
:l)Aw 

(2.2.20) 

lL turns out that for direct scattering the probability 

of scattering from an initial state to a final 

~~:> state ~~¥ is zero unless we work "on the energy shell" 

namely 9 we have 

(2.2.21) 

The scattering amplitude for the direct process i -=':?f is 

given by (McDowell and Coleman 9 1970) 

A A J/ 
~ .,..!:> =:!:. TI!<J. ff i ( k ~ I> k§) ~ = ~~ 1' i ( 2 0 2 0 2 2) 

T-~ 
wh<~r·c -§i is the transition (T-) matrix element for 

scattering in the direct channel between states labelled 
d 

by i and f o The T-matrix element Tf~ is given by 

(2.2.23) 

~~t> The .l .. is the scattering wavefunction corresponding to 

the initial state i . It satisfies the Schrodinger equation 

(2.2.24) 

The(~) denotes that thewavefunction is the solution of the 

Schrodinger equation corresponding to outgoing scattered 

spherical waves. The differential scattering cross section 

in the direct channel is given by 

(2.2.25) 
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For rearrangement scattering 9 which corresponds to electron 
==6 

capture? we denote the final asymptotic state by x;(~~R~). 
This is given by 

==!> 

x;o:~ ~ (J ~ ~i!rl=d~· RPJ x; (~) (2.2.27) 

where is now the final wave vector of the centre of 

v:~~.' 1·s relative to B. The function ~r''hl 

the final state eigenfunction of the (A+ e-) system and 

satisfies 

(2.2.28) 

where 'Pj? is the final state energy eigenvalue of the 

system. The total energy corresportding to the 

final sLate f and we have 

2. 

Ef = k <r i?f · 
:J.)AA 

(2.2.29) 

The !M.p. and jAA in equations (2.2.28) and (2.2.29) 

respectively are the reduced masses of A and e 9 and B 

and (A+e-) respectively (equations (2.2.5) and (2.2.6)). 

As for direct scattering 9 we must work on the energy shell 

in rearrangement scattering. Setting the total energy to 

be lE, we have 

(2.2.30) 

The scattering amplitude for the rearrangement process i ~f 

is given by (Mcbowell and Coleman 9 1970) 
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=ff' 

where l§a is the T-matrix element for the rearrangement 

process ~ =Pf given by 

(2.2.33) 

(2.2.34) 

The total scattering cross sections for direct and re-

arrangement scattering are given respectively by 

dl 
dl ff{} & • d11 
difi 

d if§~. Jifi . 
dfl 

(2.2.35) 

(2.2.36) 

The asymptotic bound~ry conditions upon the scattering wave­
~~<}) 

function X i corresponding to outgoing spherical scattered 

,...., \ J. ~ ~u~ £k~ RA )(~ tf:) 
~~~~ ~' g ~ ~~ ~ • 

[ft, {!:!. 

( 2. 2. 38) 

Equation (2.2.37) corresponds to the direct (excitation) 

channel. The first term in the square brackets represents 

the incident plane-wave of momentum 

The second term represents the outgoing spherical waves 

describing the scattered particle A leaving the (B + e-) 

system in themth level represented by the eigenfunction 
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Equation (2.2.38) corresponds to the re-

arrar.gement (electron capture) channel. There is no 

incident plane-wave and so the full expression represents 

particle B leaving the (A+ e-) 

represented by the eigenfunction 

system in the vu th level 

{:; =" "" X fll {He.)} 

At very low energies the scattering wavefunction 

may be expanded on a basis of atomic or molecular orbital 

wavefunctions and a partial wave decomposition can be made. 

The problem becomes one of solving a set of coupled second-

order differential equations. Alternatively 9 at high 
~a~» 

energies provided the X ~ is only weakly perturbed by the 
~~&«9» 

collision 9 the wavefunction ~ i may be represented 

approximately using the Born or distorted wave approximations. 

These methods are discussed in the review by Basu et al. 

(1978). When the collision energy is neither in the low 

energy nor high energy regions 9 approaches based on the 

full quantal treatment become impractical. However 9 the 

typical ion-atom collision system has a feature that enables 

a semi-classical approximation to be used in the system's 

description. This feature is that the masses of the centres 

A and B are very much greater than the mass of the electron 

being either excited or captured in the collision 9 and 

hence the motion of the centres may be treated classically 

owing to the associated de Broglie wavelength being very 

small as compared with atomic dimensions. The result of 

this is the semi-classical impact parameter approximation 

which will be discussed in more detail in the next section. 
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2.3 The impact parameter approximation 

2.3.1 The impact parameter Schrodinger equation 

In the previous section the quantum mechanical 

treatment of ion-atom collisions was discussed. We noted~ 

though 9 that in practice it was not practical to employ the 

quantal treatment~ but due to the much larger masses of the 

centres A and B as compared with the electron 9 it was 

possible to describe the motion of A and B classically as 

the de Broglie wavelength for the motion of A and B will 

be very much smaller than typical atomic dimensions. 

Quantitatively this means that the collision energy E will 

be such that 

(2.3.1) 

In addition~ if the collision energy E is much greater 

than the typical change in electronic energy during a collision 

<~ 10 eV for a slow collision)~ then the nuclear motion may 

be assumed as being independent of the electronic motion. 

Typically independence of nuclear and electronic motion is 

present if 

(2.3.2) 

If the collision energy~ E satisfies equation (2.3.2) th~n 

the impact parameter approximation is usually valid. 

When the impact parameter approximation is applied to 

a collision problem 9 a trajectory equation is written down 

to describe the classical motion of the massive centres A 

and B. Figure 2.2 shows the co-ordinate system employed 
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when the impact parameter approximation is used and the 

motion of A and B is such that they move along straight-line 

pathso (From now on we shall describe the motion of 

A and B as "nuclear mot ion"), o 

Figure 2o2 

Impact parameter 

co-ordinate system 

(straight-line 

nuclear trajectories)o 

In figure 2o2 the parameter ? determines where the position 

of the origin 0 is on the internuclear line ABo p is such 

that 

We note that 

""" The quantity ~ is the two-dimensional impact parameter 
.d:> 

vectoro We use F to denote the electronic co-ordinate 
eb 

but unlike in the previous section F may have its 

origin at any point on ABo In general the nuclear motion 

is determined by some effective internuclear potential 

9 and the internuclear co-ordinate will be a 
eb 

function of time ~ for a given impact parameter ~ Thus 
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the trajectory equation takes the general form 

The electronic motion is described quantum mechanically and 

the associated time dependent (impact parameter) Schrodinger 

equation will now be derived. 

The total Hamiltonian of the (A+B+e-) system is given by 

from equations (2.2.4)~ (2.2.8) and (2.2.9). The reduced 

mass of A and B is p and the reduced mass of the electron 

and the (A + B) system is ~ (equations (2.2.5) and 

(2.2.6)). As the mass of the electron is very small compared 

to the masses of A and B 9 we may put m 'it& Me§ g in atomic 

units. The SchrBdinger equation for the system ~s thus 

given by 

where the electronic Hamiltonianp ~~~ is given by 

and ~(~~r)is the wavefunction of the system. The nuclear 

rEI~~ motion is described by a wavefunction ~ ~~ # 

the potential scattering equation 

which satisfies 
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It is usually a good approximation to ignore the binding 

energy in the initial state f6 and so the energy ~ is 

given b~' 

where v is the relative velocity of the centres A and B; 

( ~i is the wavenumber associated with the motion of A 

and B) o 

We write the wavefunction of the system ~(~9 F) 
!C"J~'t 

the product of the nuclear wavefunction r~~J and a 

wavefunction for the electronic motion 1£'~~~r) 

as 

(2o3o12) 

Substituting for ~((~P) in equation (2o3o8) we obtain 

-i;; nrtl 'V("f<R. r)-,tr Vtt n1o. v~ "f'CR.rJ 

=} F(~) H~~ "f'~~~'F) = o 0 c 2 0 3.13) 

We now write the nuclear wavefunction as 

(2.3.14) 

where 

(2.3.15) 

which is consistent with nuclear motion being described 
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classically by the trajectory equation (2.3.5)~ and where the 

integration in equation (2.3.15) is along this trajectory. 

The approximation defined by equations (2.3.14) and (2.3.15) 

for the wavefunction F«~~ is the basic starting point of 

the semi-classical eikonal approximation (Bransdenp 1983) 

and as given by (2.3.14) is termed the eikonal 

wavefunction. At high energies the scattering is mainly 

into a forward cone of small angular width and the motion 

of the centres A and B can be approximated by a straight-

line trajectory equation 9 namely 

(2.3.16) 

The velocity vector is parallel to the z-axis (Figure 2.2). 

The straight-line trajectory case is consistent with the 

effective internuclear potential 9 being ignored. 

Th i_s rcsul ts in the wavefunct ion F«~~ being a plane-

wavc 9 that is 

o=-!1 

where Zm is the z-component of R If equation 

(2.3.17) is used to substitute for ~(~) in equation 

(2.3.13) 9 then the first term is found to be very much 

smaller than the second due to ~ being a large 

parameter. The first term is neglected and equation 

(2.3.13) becomes 

(2.3.18) 
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For the straight-line trajectory case Z~ 2; Vt and so we 

obtain a time dependent Schrodinger equation, also called 

the impact parameter Schr6dinger equation 

{2.3.19) 

where the notation ~~~t]? means differentiate with respect 

to time keeping fixed. It should be noted that if 

non-linear trajectories are considered, equation {2.3.19) 

is obtained in the same way by dropping the first term of 

equation {2.3.13). Now, though, the trajectory is given by 

equation {2.3.5) as determined by the particular u~~l 
being used. 

2.3.2 Boundary conditions 

Before proceeding to consider how the impact parameter 

Schrodinger equation {2.3.19) can be solved, we must 

consider the boundary conditions of the problem. The un-

perturbed solutions of equation {2.3.19) are expressed in 

nt®r=i:>" 
terms of the ··orthonomal sets of eigenfunctions JY j ~f)®)) and 

and {A+ e-) systems respectively. 

These are solutions of the equations 

{2.3.20) 

and 

{2.3.21) 

where €1 and~~ are the energy eigenvalues of the systems. 

n;f®(=~:> '\\ ~;:!?~./\ ~ 
JY j r~ &~ and A~..> P Ni are quanti sed with respect to the 

space-fixed z-axis. The unperturbed solutions of equation 
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( 2. 3 ~ 19) are denoted by i]i~~» and 'X~«F'l> IC~ The 

functions ~:~~ ~~ are given by 

and satisfy equation ( 2 o 3.19) in the asymptotic limit ~ =0 g @§ 

We remember that the parameter~ determines 

the position of the origin (equatioffi (2.3.3) and (2.3o4))o 

Similarly the functions x:o:;~~) are given by 

X~iF,t)"' x:«~l®ltW-1 &~~ 9fln-~l"v"t'"'lll-~)if'.?] (2.3.23) 

and these satisfy equation (2.3o19) in the asymptotic limit 

II: ~z~ and Fb\ ~~ F® We note the presence of the factors 

o/ID a a ""'en\\ fr ~a ~..£> c=!>] 
~~[p>=f.~:i'~ V tr ?flV.ff" j1 and ®~~=~~~D=~»OV rt: = ~O=~uV. f' . 

~@ ""' A =" "'I 
These are necessary if the functions "'J''::j{?~rt~ and X~«rr»~t' 

are to satisfy equation (2.3.19) in asymptopia. If the 

system is originally in the l th state of (B +e-) , then 

the corresponding boundary condition is 

( 2. 3 0 24) 

The probability amplitude for finding the system in the 

jth state of (B +e-) after the collision is given by 

01·. (~) ~ UAA j ~~tJ«r~e) yr~~~»J.'F 
J 4. 11; =1){-€:2) ~ J ( 2 0 3. 25) 

and the probability amplitude for finding the system in 

the~ th state of (A + e-) after the collision is given by 

(2.3.26) 

or electron 
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capture U~ are obtained by integrating ~tOljc.«'~~~or ~Ccii~,~~~ 
li ~ jl respectively over all two-dimensional impact para-

meter space, that is 

d J ~ > ~ 
(9' j ~ g I ~ @p H\)1 H vi ~ (2.3.27) 

r ~ 2 n @ ~ (Qlj a« fuJ ~ ~ 2. ~ J ~ l) i ~j (2.3.28) 

and 

u.:. ""J ~ c~,!bH" .~r (2.3.29) 

=.tnn ,~.~~~~ ~.J~ (2.3.30) 
@ =C> 

where the integral over ~~ has been simplified due to 

azimuthal symmetry. 

2.3.3. Solving the impact parameter SchrBdinger equation 

An approximate solution of equation (2.3.1~) can be 

performed using a variational principle. 

We define the functional I{1t~ where 

I('f)= lit l.JF't"eF, ~>{ He1 ~' kl~}iC'cF,G;l. 
We then vary 4r and~CJ to first order by means of 

and 

1P'~~c0-ST 

1r~~i'{j>-v ~Y~ } 

(2.3.31) 

(2.3.32) 

but with the constraint that the boundary conditions are 

preserved. This requires ~?~~((~=D© and ~1E"~«f~~!C'~~ © as 

t ~ ~©:0 • It can be shown that ~I:::;o up to terms of 

the second order provided ~ satisfies the Schrodinger 

equation (2.3.19). 

We define a trial function 4f?~~~~» in terms of two 

sets of linearly independent functions 9 Fj«r»~» and 
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These functions may be orthonormal for 

all [; among themselves and indeed we choose them to be such, 

namely 

j fj~o~. ~)f;«l",do~F"' ~.i'J 
'VJ 

(2.3.33) 

and 

J G~ ~r~ t~ Gr~«r~ ~}~F ~ ~r/~ . 
'IJ 

( 2. 3. 34) 

In order to satisfy the boundary conditions the fj and ~~ 

must tend to the unperturbed solutions of equation (2.3.19) 

as t=D :*,@:@ , that is 

F; ~;;: rd =i;> ~; a~~ll rr~ j) t =={> 2 ~ (2.3.35a) 

Gr~ o~'~ (e~ ==~> X~ u~l) rc~ j) (C ==t> 2'£w • (2.3.35b) 

The trial function ~? «r'i> ~) we expand as 
M . N 

tKt. <-) "'L @jj c d JF.jo", ~J <} [ c~ II:) <Z~ IF'', tl. 
j ~o ~go 

(2.3.36) 

In fact we could display explicitly a dependence upon the 
=" 

impact pBrameter b for the expansion coefficients @lj and 

as well as for the functions iF· J and 

For brevity, however, we omit this. 

We obtain the coupled first-order differential equations 

t2lj and ~ ~ by requiring that 

J
r rc' ~ eb {H . ~ 1 ~ ~ =" 
'IJ J.r~j lF»t) c,g =~~J?j x.?«r~t'~~()3 

L .JtG~!P, ~>{ H,.1- i A-Jt} 'f ... a~ ~> "'o, ~ :;;: ~ j) 2, ... N ( 2. 3. 38) 

which are consistent with .. the- .variational principle discussed 

earlier. The differential equations are (in matrix form) 

i [~ ~Cf) =} ~fJrc)] ~~~(~~?~~it) 

~ [~ 1 ~~Lc~ 9 ~~(eij ~ K! ~t) ?8~te/ 

(2.3.39a) 

(2.3.39b) 
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where l denotes Hermi tion adjoint o We see that these 

can be written in a more compact form, namely 

( 2 0 3. 40) 

where 

s "(! ~) M~(H ~) (2o3o41) 
~ N'f X 5I ~ H 

= = = and 

A lt) ~{f@l~J) ( 2. 3 0 42) 
= .~Ud 

The boundary conditions subject to which equations (2.3o39a) 

and (2.3.39b) must be solved are 

(2o3.43) 

where index ~ corresponds to the initial state of the (B + e-) 

system. As /C==l>c}~ the coefficients tend to the probability 

amplitudes for excitation and capture defined by equations 

(2.3.25) and (2.3.26) 

OJJ· [ ~ t) ~ a K ffl «)] j ~ rd ( 2 . 3 . 44a ) 
~~<C>c::9 

(n_• n:~ ~ ~ Q.m ~~e~» 0 (2.3.44b.) 
!,:> d re ~ c!)>@:§J 

The elements of the matrices in equations (2.3.39a) 

and (2.3.39b) are given by 

N. ~it} ~ J F f ~f5~ ~~ G~-iP~ ~~ tdr 
J '\;? 

H J ~ !~l = t f j uo!, ~l{Hat ~ i frl) F~«t. tl .11 

Hi hHl "1 Gr J" IF, ~l{ H&! ~i k],J G-~lF, tl4? 

Kiu lt) "'1Ft IF, ~l ~@! ~t. fr]J Gr& !F, tl <dP 

K i ~ It l ""I Gr j !I"', t{H~1 ~ i lf]J F fu (f, ~~ olF. 
v 

(2.3.45) 

( 2 . 3. 46) 

(2.3.47) 

( 2 0 3. 48) 

(2.3.49) 
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TheN matrix is known as the overlap matrix. 
= TheH ahd 

= 

~matrices are known as the direct matrices. The~ and K 
= = = 

matrices are known as the exchange matrices. 

Green ( 1965) has shown that the Hami 1 toni an H<Z ~ 

""""'?"""'""' being Hermitian implies that the ~ " trial solutions 

ensure that there is conservation of probability (unitarity), 

that is 

From this it can be shown that 

Equation (2.3.51) yields a related expression 

and also 

( 2 . 3. 50) 

(2.3.51) 

(2.3.52a) 

(2.3.52b) 

A further result of probability conservation is ~reen's 

unitarity relation (Green, 1965). 

( 2. 3. 53) 

Probability conservation i~ also expressed by the 

expression 

f ~ I a i 1 + oo H " 7 t I c & 17., l !" "' 1. ( 2 . 3 . s4 ; 
j ::.1 1:;1:0 

The expressions of equations (2.3.51) to (2.3.54) are useful 

in actual calculations as a check upon the numerical pro-

cedures being used. 

191 
cross se~tions tr;& 

The excitation and electron capture 

and are given by 

(j'A " .a n J\:1 1 ( -} oo l ~ " b .11. , 
© 

(2.3.55) 

and 
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(2.3.56) 

2.3.4 Differential cross sections 

It is possible to derive expressions for differential 

cross sections within the impact parameter approximation. 

For excitation it can be seen intuitively that the 

differential cross section is given by 

(2.3.57) 

where is the classical differential cross 

section for scattering by the potential U D ~ is the 

scattering angle and the impact parameter b is a function 

of angle e ' that is ' ~ ~ ~ { e} The classical 

differential cross section is given by 

(2.3.58) 

Similarly for electron capture the differential cross section 

is given by 

(2.3.59) 

However, the expressions of equations (2.3.57) and 2.3.59) 

are only approximately true. It is possible to derive a 

more accurate expression for the differential cross section 

beginning with the quantal expression for the scattering 

amplitude. This expression applies even if the effective 

internuclear potential is zero, and the nuclear 

trajectories are linear. We consider excitation scattering -

the expression for electron capture scattering is derived in 

an analogous manner. 
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The scattering amplitude is given by 

d dJ 
f-~1@»~=~ T.~ 

~ 2tnr ,0 
=r'~ 

~ jt is the T-matrix 

(2.3.60) 

where element for excitation of 

thej th state of (B +e-) from the initial state~, p 

is the reduced mass of A and B. Strictly JA should be JACD 

(equation (2.2.22)) but we know~ ~~Q as the mass of the 

electron is much smaller than the masses of A and B. The 

T-matrix element is given by (after equation (2.2.23)) 

(2.3.61) 

~ ~ c:!l c=!> ~ 
where the ~j (F0 'V ~lDg is the final asymptotic state (the argu-

ments have been included to avoid confusion of notation) and 

the is the scattering wavefunction corresponding 

to the initial state. The potential \/~ is given by 

VIi :;; Vrg/4, <=} v A ® 0 ( 2 . 3 . 6 2 ) 

~ ~ d> c=!> 

In the full quantal treatment the ~;«F® 9 Rm» would be given 

by equation (2.2.15). Similarly the 4E"'~f» would be 

represented by some appropriate wave mechanical expression. 

However, we now bring in the semi-classical approximation 

used to derive 'the impact parameter equation and approximate 

~ l'*'~ 
the scattering wavefunction X i and the asymptotic wave-

~ ~ =-"" 

function ~ j { f'Gl? R@} by eikonal wavefunctions corresponding 

to linear trajectories; that is 

( 2. 3. 63) 

.=~e:, 

where v'* 
collision, and 

is the final relative velocity after the 

~ ~~ ~ ~ V ~ The wavefunction ~: ~ ~'V ~) is 
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equivalent to i~~~~(('~ given by equation (2.3.22) which is the 

solution of the impact parameter Schrodinger equation (2.3.19) 

P{V«?. D 
in asymptopia. Similarly the scattering wavef~nction x ~ 

is given by 

( 2. 3. 64) 

where ~«~~~~ is equivalent to the solution of the impact 

parameter Schrodinger equation 4E'fr~ it) Combining these 

c=!l =" do d d) 'tl f 
We make· the small angle approximation that «v=v*t~~ ~V=V<J».I9 

and use the result that 

( v~A" vAw) ~~ ""' {H~~ <} i 

( 2 0 3. 66) 

to obtain (integrating by parts with respect to 2~) 

(2.3.67) 

where 

It is then possible to show using the expansion of equation 

(2.3.36) that 

tj1tel'"-it',:J di: (ll'f·' [llrJffi>,MJ~&,J 
'"_ 'JA" r~. 'J. (,~>rill j ~~ • .,.,) - & .j] .~~. 

@ 

(2.3.68) 

The differential cross section is obtained from 
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(2.3.69) 

Similarly for e~ectron capture the scattering amplitude is 

given py 

f ~ U~) ~ = d;w vJ ~ J: «@J ~~ c ~(~~?IS§»~~ 
&~ @ ~ 

(2.3.70) 

and 

(2.3.71) 

A full quantal derivation of equation (2.3.70) has been given 

by Me Carroll and Salin ( 1968) . The magnitude of the 
d 

momentum transfer vector ~· is large, except when ® or ~ are 

very small. This means that the Bessel function T@ (&[~,~» 

may be replaced by the asymptotic form 

(2.3.72) 

It is then possible to show that the expressions for the 

differential cross sections reduce to the form given in 

equation (2.3.57). Greenland (1982) shows that for the 

particular case of the nuclear motion being due to the Coulomb 

repulsion between the centres A and B, the expression for 

the classical differential cross section dJ.ql!!.j J.f1 in 

equation (2.3.57) is simply the Rutherford differential 

cross section. 

2. 3. 5. Choosing the basis functions 

Going back to the expansion of the trial wavefunction 

"'fr<ii'(F,t) in terms of the basis functions fF.oO~lll(~ 

and , equation (2.3.36) these functions must 

be chosen carefully in order to be consistent with the 

particular physical aspects of the problem. As more terms 
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are included in the expansion for~?~ the nearer~~ comes 

to the zxact wavefunction 4r . However, the rate of conver-

gence is very much dependent upon the basis functions being 

used. The main consideration is that of the speed of the 

collision. For very slow collisions (~~1 a.u.) the adiabatic 

approximation is appropriate. Due to the slow relative 

speed of the centres A and B, the electron will adjust 

adiabatically to their motion and a virtual quasimolecule 

will be formed. The nuclear motion will then cause certain 

excitations of this molecule which correspond to electron 

capture occurring. (The adiabatic approximation (Born and 

Fock, 1928) corresponds to where the Hamiltonian of the system 

varies slowly with time and so the solutions of the 

Schrodinger equation can be approximated by stationary 

eigenfunctiuons of the instantaneous Hamiltonian and so an 

eigenfunction at one time goes over continuously to the 

corresponding eigenfunction at a later time - see, for example, 

Schiff (1955)). When the adiabatic approximation is applied 

the basis functions are given by combinations of the mole-

cular eigenfunctions of the quasimolecular system comprising 

(for a simple one-electron system) the nuclei and the 

electron. These molecular eigenfunctions are denoted by 

~&lJ (F; ~) which satisfy 

(2.3.73) 

~~ ~ 

The ~~r ~ ~} are found for fixed values of R and so the 

dependen·.::e of ~~ CP~ !) upon 'i is parametric. The functions 
. ~· 

~(r~R~ are known as Born-Oppenheimer electronic eigen-
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functions. 

For fast {~~~ 1 a.u.) collisions molecular eigenfunctions 

are not suitable for describing the collision as they cannot 

change adiabatically as the internuclear distance varies, in 

this case, rapidly. At such speeds the electron cannot 

adjust easily to the motion of the projectile and electron 

capture is improbable. For fast collisions the basis 

functions are best represented in terms of atomic eigenfunctions. 

In an actual calculation, the coupled differential equations 

{2.3.39a) and {2.3.39b) must be integrated. In order to 

minimise computing time, it is preferable to use an expansion 

which includes only a small number of states that are 

strongly coupled. This is termed the close-coupling approxi­

mation. Ideally one requires as small as possible number of 

states being strongly coupled. At low velocities this is 

the case for the molecular basis expansion whilst at high 

velocities it is true for the atomic basis expansion. 

The atomic basis and molecular basis expansion methods 

are very much used in work on ion-atom collisions. In the 

next two sections of this chapter these expansion methbds 

will be discussed in more detail. 

2.4 Atomic and related expansion methods 

2.4.1 Basic atomic expansion method 

When the velocity of the incident ion is comparable with 

or greater than the orbital velocity of the electron in the 

target atom, an expansion in terms of atomic orbital wave­

functions, or related functions such as pseudostates, is 

appropriate. This is consistent with the fact that at such 
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velocities the electron spends most of its time bound either 

to one or the other ionic centre. In this subsection the 

basic atomic expansion method will be discussed. 

Let us remind ourselves that we are seeking a solution 

of the impact parameter Schrodinger equation 

(2.4.1) 

where the electronic Hamiltonian H~t is given by 

(2.4.2) 

We describe the nuclear motion by the straight-line trajectory 

equation 

(2.4.3) 

(sec figure 2.2). 

The electronic wavefunction 

terms of two sets of orthonormal 

and { G~tf? ~)J 

cy-(r~ it) is expanded in 

basis functions {Fj H;;» ~~ 

~ N 

"f (P, tl = [ ajlt> Fj cr, tl + [ ckttl &~ r;, tl . 
;~~ k~i . 

(2.4.4) 

In the atomic expansion method the basis functions are 

written as follows:-

( 2. 4. 5) 

G=~t!Gd:;;; x:o~~J~np=i [,~t +~ ~ij=rri\/t =~u-p)v.r] (2.4.6) 

where fJ1U==';) and X~~~J are atomic eigenfunctions 



- 46 

for (B+e-) and (A+e-) with energy eigenvalues Ej and ty& 

respectively. When we discussed the solution of the 

Schrodinger equation (2.4.1) in the previous section of this 

chapter, we noted the presence of the factors ~ ~ f =i ~ ~2 V'2 IC-=} fltl· #] 
and~ ~p=i[i «~=p»avar = (~ ~ p~~- ~] in the un-

perturbed solutions of equation (2.4.1) (see equations (2.3.22) 

and ( 2 . 3 . 2 3 ) ) . Similarly we see that these factors are 

included in the basis states~~~£-» and G~~~~} . The factors 

are known as electron translation factors and they need 

not be of the form given in equations (2.4.5) and (2.4.6). 

The particular form shown here are known as plane-wave tran~ 

lation factors. Electron translation factors are required to 

account for the fact that the electron: if captured, will 
....!> 

acquire a momentum V by virtue of the relative motion of the 

ionic centres A and B. Translation factors are required in 

this formulation if the boundary conditions are to be satis-

fied and also if the theory is to be invariant under Gallilean 

transformation, that is the probability amplitudes must be 

independent of the choice of the origin of co-ordinates. 

The need for translation factors in theoretic~l descriptions 

of electron capture was first recognised by Bates and Me Carroll 

(1958), though within the context of slow collisions using 

molecular basis functions. Shortly after, Bates (1958) 

proposed using plane-wave translation factors with an atomic 

basis expansion. 

In order to derive the explicit forms of the matrix 

elements vJe consider the effect of the operator {H~~ =· i ~~~d;;} 
upon the basis functions Fj!~ t) and G~(i~~d as given by 
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equations (2.4.5) and (2.4.6). We remember that the 

notation ~~~~J~means differentiate with respect to time 
/? 

~ 

keepi.ng the electronic co-ordinate u= fixed. It is straight-

forward to show that 

H F .,., ri/ ~ t? ~ , u 3 3) fD _, 'i\ 
tt~ J ~rp t~ ~L~i.v? v@~ + w~& 9 2 ~ ~ fl}i {u=®» 

c} i fv.~ ~liD«~~]@~~=~ ( E1 ~ c} ~ r2.~/((? rv. r) 
where we have used the relation 

{=fv; c}\k~ =Ej)p;Jtr;) = o. 

The operator '@ / ~t ].,., may be written as r 

or 

Using equation (2.4.9) yields 

(2.4.7) 

(2.4.8) 

(2.4.9) 

(2.4.10) 

= i ~] .. FJ lF: t) ~ [= (€J + i r~ v 2
) ¢l{Fa} = t p v .Vp ¢fi~)J 

r . 

(2.4.11) 

Combining equations (2.4.7) and (2.4.11) we obtain 

{ Ho~ ·· '~tJ,.} F; lP. t> " ( v. ... + v~'ID) ~ j 1r, e> . ( z. 4.121 

Similarly 

{_H,.I - i kJ,.,} Gr~ IF,tl" ( \Ia® + \&.o) Gr hiP,~). ( 2. 4.13 I 
The coupled differential equations are obtained from the 

relations 

(2.4.14) 
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and 

t G{rF, ~+~"' ~ i ;;~~,] 4r'~F; ~)a!F"' 0 

which give using equations (2.4.12) and (2.4.13) 

standard coupled differential equations 

i ~{t)-? ~ fU~J ~ tj ~{~)? ~ ~{t] 

i [~f> ~{t)-} £~t~ = ~ £{~)c?8£~t) 

where the matrix elements are given by 

the 

(2.4.16a) 

(2.4.16b) 

(2.4.17) 

(2.4.18) 

(2.4.19) 

(2.4.20) 

The coupled equations are solved subject to the boundary 

conditions given in equation (2.3.43). 

For the case where the ionic centres A and B are 

nuclei, the potential VA@ is given by 

(2.l~.22) 

This internuclear potential v~~ only affects the phase of 

the amplitudes OljC~) and C&(~). Hence total cross sections 

for excitation and capture are not dependent upon VA® as 
a 2 

they are calculated from ~<OJ.b~(g])»~ and I C~~ru~)i which are phase 
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independent. However, as may be seen from equations (2.3.68) 

and (2 .3.70), differential cross sections are dependent upon 

the phase of the amplitudes and so depend upon VA~ . 
Also the total elastic cross section depends upon ~Q as 

2. 
it is calculated from ! OJ~«oo»= ~ ~ which is phase dependent. 

It is possible to simplify the matrix elements by a simple 

phase transformation involving VAra We 

a J « ~ ) = ~ ~ r> t l f1J l ~ )] 01 J l ~ > 

C~{t) ~ ®~f?ti mHHc~H·} 
where 

Pdlt)"' r v.,~(t')dt'. 
-©9l 

The coupled differential equations become 

i [£;~H + ~ f/lt}]: tf £b 
0 l~» -o- ~o 5/lrd 

i [~t Eh) c} f 0{til ~ ~ 0 ~oft~-} t:f f 0
H) 

where 

Hj'~ =<¢ft~~~ VCf.A i J2J:l~> >~i~~j~f~)t 

HJ~ = <xj «~)I Va~l X~ l~))~i(-ryj -?ttH 

put 

K;~ ~<p;ja=;~ ~ v~W; ~;.~.? ~ x~a~~> etlfj =~1t~t 

K!~ = <x~U~)I V!tft. <e~t~.i1~ pJ: o=;~)ei~~J-f&»t . 
) .!! 

(2.4.23) 

(2.4.24) 

(2.4.25) 

(2.4.26a) 

(2.4.26b) 

(2.4.27) 

(2.4.28) 

(2.4.29) 

(2.4.30) 

If we examine the form of the matrix elements, we observe 

the factors ~~if{=l'btiv.?» in the overlap and exchange elements. 

These correspond physically to the increase in the captured 

electron's momentum. At low energies ( ~ 1 ke V) it is possible 
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to approximate the factors by unity. At higher energies the 

effect of the factors is to cause the K and K matrix elements 
"'""'- ~ 

to rapidly decrease owing to the factors oscillating rapidly 

and this is the reason why electron capture cross sections 

fall off very rapidly at high energy as compared with 

excitation cross sections which are dependent upon the direct 

matrices H and H which do not contain such factors. - -
For the simple one-electron system the direct elements 

can be found analytically. However, the overlap and exchange 

elements can only be calculated numerically owing to the 

presence of the awkward momentum factors ~ ~p~±a\!.1~. There 

are various techniques available for dealing with the 

overlap and exchange matrix elements involving the 

factors. Three such methods are described in Appendix 4.3 

of Me Dowell and Coleman ( 1970). The first method uses 

prolate spheroidal co-ordinates. The method is described 

more fully in Chapter 4 of this thesis as it was the main 

method used to evaluate the matrix elements specific to the 

calculations presented in Chapter 5. The second method is 

known as the Fourier transform method. It was developed by 

Sin Fai Lam in connection with work on electron capture by 

protons from helium atoms (Brans den and Sin Fai Lam, 19·66: 

Sin Fai Lam 1967). The required matrix elements can be 

expressed in ter~s of families of one-dimensional integrals 

after a reduction process has taken place. Noble (1980) 

has developed a computer package based on this Fourier trans-

form method. Finally~ Cheshire (1967) and Chatterjee et 

al. (1967) have developed a method which is based upon 

expressing the required matrix elements in terms of a solution 
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of a first-order differential equation. 

In a coupled channel calculation as the size of the basis 

set increases, the computational time required for calculating 

the matrix elements increases substantially. One way round 

this is to use a two-state approximation in which only the 

initial target state and the final projectile state are 

retained in the expansion of the electronic wavefunction 

( Bates , 1 9 58 ) . Although this method is not as accurate as 

elaborate calculations involving more states being coupled, 

the two-state approximation can provide reasonably accurate 

cross s~ctions in the energy range where the total cross 

section is a maximum. This has been used by Lin and 

collaborators in their work dealing with capture from inner 

shells of heavy ions (Lin, 1978a, 1978b; Lin et al. 1978: 

Lin and Tunnell, 1979). McCarroll (1961) applied the two-

state approximation to symmetrical resonant electron capture 

in proton-hydrogen collisions, namely 

H+ + H ( 1 s ) ----<> H ( 1 s ) + H +. (2.4.31) 

For symmetrical resonance the two-state coupled differential 

equations are 

(2.4.32a) 

(2.4.32b) 

ilvhere 

(2.4.33) 

= 
h=Hoo:;;:HBi (2.4.34) 

k =Koa=Kn 9 (2.4.35) 
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the matrix elern~nts with subscripts ~U being given by 

equations (2.4.17) to (2.4.21). We now introduce the new 

arnpli tudes 

(2.4.36) 

and also set 

(2.4.37) 

(2.4.38) 

This yields the uncoupled equations 

(2.4.39) 

which are to be solved subject to the boundary condition 

(2.4.40) 

The solutions are 

Ax Ct) "' ex rf < [ (M ± L) .u· ') (2.4.41) 

from which we have 

(2.4.42) 

( 2 . 4. 43) 

The transition probability for electron capture is given by 

lct+ooll' = si,'f[L .~eJ 
~ s , h 2.[J ~ ~ = ,q h o1 e} ( 2 . 4 . 44 ) 

~ -!oui~ 
~~ 
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Me Carroll's calculations were for incident energies from 

0.1 keV to 1 MeV. The total cross sections are in rough 

agreement with the experimental results of Wittkower et 

al. (1966) between 40 and 250 keV. At high energies the 

cross section tends to the firs~order Brinkmah-Kramers 

approximation (Brinkman and Kramers, 1930). In this approxi­

mation C~-:>(i:9)» is approximated by 

(2.4.45) 

where 

L -J ~ ='>" ~v.? ="> fi~ ~~= J0f U"~11 <e L f?J«r0 ~ ~r. 
'1/ Fe. 

(2.4.46) 

The corresponding Brinkman-Kramers cross section U~~ varies 

t h · h · 1 ;ke H ~D.?. • a- ~g energ~es L v The two-state cross section 

arproaches tr~~ very slowly and very high energies must be 

reached before there is reasonable agreement between the two 

cross sections. 

If the capture process is not one of symmetrical res-

onance, the two-state equations do not decouple and must be 

solved numerically. At very high energies the coupling 

between the initial and final states becomes weak and the 

coupled equations become 

(2.4.47a) 

(2.4.47b) 

where 
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(2.4.48) 

(2.4.49) 

(2.4.50) 

with the solution 

This approximation is a form of the distorted-wave Born 

approximation applied to this problem (Bates, 1958). Ryufuku 

and Watanabe (1978, 1979a, 1979b) h?ve developed a method 

based upon this distorted-wave solution which they term the 

Unitarised Distorted-.Wave Born Approximation (UDWA). 
. ;!!. 

They ma!:<e the approximation of neglecting the I N;J term 

in the den~minator~ of the expressions of equations (2.4.48) 

to (2.4.50). The total propability for capture is P(b) 

where b is the impact parameter and this is unitarised by 

writing 

(2.4.52) 

where 

(2.4.53) 

and where 

(2.4.54) 
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c«-c-IOQ) being given by equation (2.4.51). The ~fl>Mare the 

quantum numbers of the captured states. Ryufuku and Watanabe 

applied the method quite successfully to electron capture 

from atomic hydrogen by fully stripped ions, (H+, He 2+ 

Li 3+ ~ etc. ) . Ryufuku (1982) has extended the UDWA method 

method to the calculation of ionisation and excitation cross 

sections as well as capture cross sections for fully stripped 

;ons ( H+ L. 3+ s5+ c6+ d S. 14+) . h d 
.L. , ~ , , an ~ on atom~c y rogen. 

Bransden et al. (1980) have also studied electron 

capture by fully stripped ions from atomic hydrogen. They 

. d d h . H 2+ L. 3+ B 4 + d B5+ h . . t consL ere t e 1ons e , ~ , e an av~ng Lmpac 

energies between 5 and 200 keV -1 amu The two-state 

approximation was used with no neglect of coupling between 

the initial and final states. The total cross sections were 

calculated by summing the individual nlm quantum state cross 

sections. Reasonable agreement was obtained with experi-

ment and other theories, though below about 25 keV -1 amu 

this method se~med to overestimate the cross section somewhat. 

A copy of the paper describing the work of Bransden et al. 

is to be found at the rear of this thesis, p293. 

The two-state approximation is limited in its effectiveness 

for describing. a capture process and it is a much better 

approximation to include more states in the expahsion that 

are strongly coupled. The proton-hydrogen system has been 

the subject of much study using the two-centre atomic basis 

expansion method. A useful compilation of atomic and 

related basis close-coupling calculations using the impact 

parameter approximation is given in Table 1 of the review 

article by Delos (1981). Part of this table is reproduced 
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Rcfere!'lce 

1\IcCarroll (1961) 

Cheshire (196o); I'vlcCarroll, 
Piacentini and Salin (1970) 

Lovell :;.nd McElroy 
(1965) 

Fulton and Mittleman 
(1965) 

Flannery (1969) 

Wilets and Gallaher 
(1966) 

GcJ.laher and Wilets 
(19G8) 

RRpp, Dinwiddie, 
Storm, and Sharp (1972) 

Rapp and Dinwiddie 
(1972) 

Chcsh ire, Gallaher, 
and Taylor (1\170) 

Sullivan, Coleman, 
a.1d Bransden (1972) 

Shai<eshaft (1976) 
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Radial functions 

ls atomic 

fs atomic, varying 
orbital exponent 

lsA2sA2s 8 and other 
combinations 

ls atomic, including 
antitravel ing orbitals 

ls A2s A2PxA 2p zA (no 
exchange) 

ls2s2P.2Pz atomic 

ls2s2px2Pz Sturmian 

ls2s2px2Pz atomic 

ls2s2px2Pz atomic 
ls2s2p:r:2p;Js3p.3p, atomic 

ls2s2p.2f>z atomic 
ls2s2p.2p;3s3p.3p, 
atomic and pseutlostate 

lsA2sA2Px 2p 8 +closure 
(no exchfnge f 

l,s-Gs, 2p-4p Sturm ian 

Rotating (R) or 
nonrotating (KR) 
angular functions 

R 

R 

R 

R 
R 

R 
R 

NR 

NR 

Table 2.1 Close-coupled calculations of proton-

hydrogen collisions based on atomic representations 

(after Delos ( 1981) ) . 

Referring to Table 2.1, the non-rotating functions (NR) 

are quantised in the space-fixed frame. Rotating functions 

( R) are quanti~ed along the internuclear line. If such 

functions are used, the form of the direct and exchange 

matrix elements ~ modified by a term involving the y-

component of the angular momentum operator in the rotating 

(body-fixed) frame. A discussion of this is given in 

Section 2.3.5 of the review of Bransden (1972). 
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More detailed discussions of these proton-hydrogen 

calculations are given in the review of Delos (1981), and also 

atomic basis calculations on the proton-hydrogen system are 

discussed by Basu et al. (1978) in their review. Of these 

calculations, three of note are the ones performed by 

Wi 1 ets and Gallaher ( 1966), Cheshire et al. ( 19 70) and Rapp 

and Dinwiddie (1972). In these calculations the 1s, 2s 

and 2p states were coupled. It was found that the cross 

section was not affected greatly by the inclusion of the 2s 

and 2p states at energies below 20 keV ., Above this energy, 

the 2s and 2p states influence the final result by about 10%. 

Rapp and Dinwiddie also included the 3s and 3p states but 

found that the coupling with them had little effect upon 

the final result. 

Collisions between alpha particles and atomic hydrogen 

have been investigated theoretically by a number of workers .. 

Table 2.2 shows some important calculations on the He 2+-H 

system using atomic expansions. We shall refer to some of the 

calculations shown in the table later in Chapter 5 as the 

He 2+-H system was the subject of the work of this thesis. 

Two recent calculations using atomic basis states with the 

He 2+-H system being the subject of study , are those of 

Bransden and Noble (1981) and Bransden et al. (1983). The 

former of these is included in table 2.2. In the work of 

Bransden and Noble an 8-state model was used in which the 

1s, 2s and 2p states were retained on the Hand He centres. 

Close agreement was found with experiment up to an energy 

of 75 keV amu- 1 . Bransden and Noble also used the same 
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Author> Basis States Energy range Comments 

{Ref.] H He lteV/amu 

Basu et al. (1967) Atomic ls ls 2s 2p 0.4 -> 8 No transbiion factor> 

Malaviya (1969) Atomic ls ls 2s 2p 1.58 ..... 200 

Rapp (1973) Atomic ls 2s 2p Is 2s 2p 0.25 ..... 150 Known to contain error> 

R~pp (i974) Atomic ls 2s 2p ls2s 2p 0.25 .... 150 
is 2s 2p ls2s :2p 3s 3p 

Belkic and Janev (1973) Atomic Is ls2s2p 3s 3p 6.25 .... 750 Continuum Distorted Wave 
Cakulation 

Msezane and Ga!lagher (1973) Atomic Is 2s 2p ls2s 2p 1.6 ... 1000 1?5eudostaies v5ed to reproduce 
pseudostates united atom wavefunction 

Briu1sden ana t'oble (19Bl) Atomic Is 2s2p is2s2p 2o5_,. 250 

Table 2.2 C 1 1 · H 2+ H . a cu at~ons on e - us~ng 

atomic basis states (after Table 4 of Greenland 

(1982) with slight amendments). 

+ model to investigate electron capture by protons from He (1s). 

9 -1 . Only up to about 1 keV amu was there agreement with 

experiment. The cause of this was attributed to the coupling 

with continuum intermediate states not being accounted for 

in the calculation. Bransden et al. (1983) extended the 8-

state work by including the n = 3 states on the c~ntr~s, that 

is a 20-state calculation, and also they used the pseudo­

states due to Callaway and Wooten ( 1974) to investigate 

+ proton-He capture. They obtained results that were in 

harmony with experiment and other theory. Work similar to 

that of Bransden and co-workers has been done by Fujiwara 

(1981) on the He 2+-H system. Fujiwara used all states up 

to n=2 on the H centre and all states up to n=3 on the He 

centre. Fairly good agreement was obtained with experimental 
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data. Bransden and Noble (1982) have also investigated Li 3+-H 

collisions using a 20-atomic state model. 

The atomic basis state expansion begins to become un-

satisfactory at high energies owing to the need for inclusion 

of continuum states. We shall now discuss three attempts 

to include these states that have been found to be reasonably 

successful. 

2.4.2 Sturmian functions 

Gallaher and Wilets ( 1968) first introduced Sturmian 

functions to take into account the continuum in their work 

on proton-hydrogen collisions. The atomic eigenfunctions 

used in the two-centre expansion are replaced by functions 

of the form 

(2.4.55) 

where Sn.aCr) is a radial function which satisfies 

(2.4.56) 

This ts the Sturmian equation and is similar to the Schrodinger 

equation except that the energy E~ is treated as a fixed 

parameter and the effective charge ot,.,~ acts as the eigenvalue. 

In Gallaher and Wilets' work E:a was taken as 

The bou·ndary conditions on ~J]~rd are that it is zero at 

the origin and that it decays exponentially at infinity. 
A .,.c, 

The Stur.mian functions ~fl ( r) are members of an infinite, 

discrete and complete set of states. There is no continuum 
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unlike hydrogenic functions. 

The Sturmian functions are related to scaled ~adial 

hydrogenic functions via the relation 

(2.4.58) 

Normalisation is expressed by 

(2.4.59) 

but the Sturmian functions are not orthogonal unless a 

weighting factor of ~ / rr is included. Taking IE11 as 

given by equation '(2.4.57), ~tiUA is given by 

(2.4.60) 

which gives a mean energy of 

(2.4.61) 

With this definition of the Sturmian basis set, the 1s, 

2p and 3d Sturmian states coincide with the hydrogeni.c 

/lf/1\ 1 Problems arise, however~ in defining the trans-

ition amplitudes using Sturmian functions. The resulting 

transition probabilities have oscillating components which 

do not vanish as (t =!>©© However, if a large Sturmian 

basis set is used, this problem can be solved as was shown 

by Shakeshaft (1976) in his work on proton-hydrogen 

collisions. He included the 1s to 6s and 2p to 4p Sturmi~n 

+ states on both centres. Electron capture in proton-He 

and He 2+-H collisions has been studied using Sturmian functions 



- 61 

by Winter (1982). Between 19 and 24 Sturmian functions w~re 

used as a basis. 

2.4.3 Pseudostate expansion 

Cheshire et al. (1970) introduced pseudostate functions 

in their work on proton-hydrogen collisions. The Sturmian 

expansion discussed previously does not represent the 2s 

state of hydrogen well, and this is a major defect as the 

degenerate 2s and 2p states are strongly coupled at ·large 

internuclear separations, and so the 2s .state must. be 

adequately descrioed in coupled channel calculations. 

In the work of Cheshire et al. the 1s, 2s and 2p hydrogenic 

states were used in the expansion together with 15 and 1p 

are givenby 

(2.4.62) 

The parameters are such that the functions are orthogonal 

with the 1s, 2s and 2p hydrogenic states. T~e total captur.e 

cross sections calculated by Cheshire et al. agre.e well with 

the experimental results of Bayfield (1969). The cross 

sections for capture into the 2s state of hydrogen are in 

good agreement with the experimental results of Bayfield 

(1969) and Ryding et al. (1966). There is discrepant~ 

between Cheshire et al. 's results for capture to the 2p 

state of hydrogen and the experimental results of Stebbings 

et al. (1965) (corrected by Young et al. (1968)). Figures 

8.2 and 8.3 of Basu et al. (1978) display the 2s and 2p 
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capture results. 

Dose and Semini ( 1974) have used Gaussian functions to 

study the proton-hydrogen system, Gaussian functions being 

another type of pseudostate function. The advantage of 

Gaussi~n functions is that the overlap and exchange matrix 

elements containing the ~~~(~i~~~ factors can be calculated 

analytically. Only capture into the 1s state of hydrogen 

was investigated but gobd agreement was achieved with ihe 

results of Cheshire et al. (1970). In the review of Basu 

et al. ( 197 8) , · Table 8. 3 compares the results of Dose and 

Semini with the 4 atomic state and 7 atomic/pseudostate 

ground state capture results of Cheshire et al. and with the 

results of Shakes haft's Sturmian expansion work. 

2.4.4. Scaled hydrogentc basis s~t 
r 

The Stqnian and pseudostate expansions take into 

account coupli-ng with continuum states and so may be used 

for calculations of ionisation cross sectio~s. Shakeshaft 

( 1978b) has used a scaled hydrogenic bas·is set to do such 

calculations. This set of basis func'tions is very. similar 

to the Sturmian functions, but the scaling factors are such 

that the atomic Hamiltonian is diagonalis~d. The states 

almost coincide with the 1s, 2s, 2p, 3s, 3p and 3d states 

and overlap the low energy part of the continuum. The 
IPb . 

scaled hydrogenic functions fl/fll!ml~) satisfy 

(2.4.63) 

Shakeshaft used 35 of these functi6ns centred about each 
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proton with 0 ~ 1l ~ 2 

where N.o =9, Na =8, NLl =6. The scale factors Afil)11 

were chosen as follows: AM= 0.75n~ A.,., 0 = 0.7n, A== 0.6n. 

Shakeshaft's total ionisation cross section was in fairly 

good agreement with the experimental results of Park et al. 

(1977). The work of Shakeshaft is interesting in that it 

shows that below about 60 keV the cross section for "charge 

transfer to the continuum" (CTTC) is larger than the cross 

section for direct ionisation. Shakeshaft describes this 

as being "remarkable " and shows that any ionisation approxi­

mation which neglects CTTC for proton-hydrogen collisions 

will be inadequate below about 100 keV. 

2.4.5 Other improvements based on the atornic 

expansion method 

Apart from the three methods discussed previously~ 

there are other methods which are based upon the atomic 

expansion. 

One method is due to Cheshire (1968) who used atomic 

wavefunctions with variable charges Z(t) which were determined 

using the Euler-Lagrange variational principle. The main 

problem with this method is the large amount of computer 

time needed. Me Carroll et al. (1970) used the mSthod to 

study proton-hydrogen collisions in the t~o-state approxi-

mat ion. They calculated the differential cross section and 

the capture probability as a function of the incident proton 

energy for different scattering angles. Recently Campos 

et al. (:i983) have calculated total cross sections for the 

resonance c.:1pture process 
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+ . + H + H(1s)..-.{::> H(ls) +H ( 2 0 4 0 64) 

using a variable effective charge ~(~»0 However, Campos 

et al. used the virial theorem to find ~«~~ rather than the 

Euler-Lagrange method in order to economise on computer time. 

Another method is to expand the wavefunction about three 

centres instead of two, namely the nuclei A and B and their 

centre of charge (Anderson et al.~ 1974). Anderson et al. 

considered proton-hydrogen collisions and used 1s and 2s 

hydrogenic states on the centres A and B with a 1s He+ state 

on centre C, the centre of charge. The inclusion of the 1s 

He+ state partially represented the hydrogenic continuum 

and united atom states. An elaborate expansion method using 

a modified system of elliptical co-ordinates and orthogonal 

polynomials has been used by Morrison and Opik (1978) on 

2+ ~ the proton-hydrogen and He -H systems. If the charge ~A 

of the projectile nucleus is much less than the charge ~~ 

of the target nucleus, then the interaction between the 

incident particle A and the electron can be treated as a 

perturbation and the scattering wavefunction can be expanded 

in terms of atomic states and pseudostates centred on the 

target. Reading and co-workers (Reading et al. 1976; 

Ford et al. 1977) have used this method for calculating K-

shell ionisation cross sections for light, fully stripped 

ions incident upon heavy~ neutral target atoms 

( :2~= 13- 30). Fitchard et al. (1977) applied the method 

to n = 2 and n = 3 excitation and ionisation in proton-

hydrogen collisions. Between projectile energies of 50 

and 200 keV excellent agreement was obtained with experi-
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ment. The method was extended (Reading et al. 1979; 

Reading and Ford, 1979) to electron capture processes by 

fully stripped ions from heavy target atoms. Specifically 

inner shell ionisation and electron capture in proton-

argon collisions in an overall energy range 1 to 12 MeV 

were studied by Ford et al. (1979a, 1979b) using this method. 

2+ The work was extended by Becker et al. (1980) to He 

and c6+ incident upon argon in the energy range 1-9 MeV 

+ 2r d .3+ and then by Ford et al. (1981) to H , He an L1 incid~rtt 

upon neon (0.4- 4.0 MeV amu- 1 ) and carbon (0.2t.o 2.0 MeV 

-1) amu . 

An interesting development of the above single-centred 

expansion (SCE) work of Reading and co-workers has been a 

method which is termed the one and a half centred expansion 

(OHCE), (Reading et al. 1981). The m~thod ut~lises a wave-

function expansion of the form 

"ftr; ~)" [ aj(b,d ~j cr. tl ~ t c~(h,oo)f(t) x~ (1', t). 
j ~ 

(2.4.65) 

The first sum is centred on the target and includes real and 

pseudostates. The second sum is centred on the project~le 

and contains atomic. states of importance needed to describe 

the capture channels adequately. 

satisfies the boundary conditions provided the predetermined 

function fl~» satisfies 

f (;:) ==(> 05! it ~ -oo 

1 f H:) =i> 
( 2 .. 4. 66) 

~ ) t ==D ..00~ 
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.A variational procedur~ is applied and yields a set of 

coupled first-order diff~rential equations for the ~mpl1tud~s 

coupled with algebraic equations for the coefficients 

Reading et al. (1981) applied the OHCE method 

successfully to proton-hydrogen collisions. Th.e SCE method 

failed for excitation artd ionisation ( Fitchard et al~ 197n 

below 50 keV due to electron capture being the do~inant 

process in this energy region. However, the OHCE method 

gave accutate results down to 15 ke~ the lowest energy 

considered. The OHCE method was also applied by Reading 

et al. (1982) to ionization and electron capture in H+-

Some disagreement was found 

betweeri other th~bry and experiment for the H+ - He+ 

collisions but good agreement was achieved when He 2+ - H 

was co;:1sidered. The energy range was 25 - 482.5 keV amu-1 

for both H+ - He+ and He 2+ - H. Ford et al. (1982) have 

considered collisions involving lithium ions using the OHCE. 

method. They considered H+ - Li+ for an energy range 70-

400 keV amu-1 and also H+ - Li 2+ for an energy rartge 50 -

200 keV amu- 1 Both ionisation and elec~ron captUr~ cross 

sections were calculated; for H+ - Li+ the ionisation result 

was in good agreement with experiment but the capture result 

was lower than experiment. Time reversal was used to extract 

capture cross sections for the processes Li 2+ - H and Li 3+ - H. 

These were higher than experl.ment. This work was_ the first 

test of the OHCE- method when more than one electron was 

present. Fritsch and Lin (1982a) have proposed a modified 

cwo-centre atomic orbital expansion which includes united 
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atom orbitals as well as separated atom orbit~ls. Wilets 

and Gallaher (1966) noted that for the H+ - H system the 

atomic orbital expansion fails at low velocities due to 

the poor representation of the united atom orbitals even 

by the full bound spectrum of the separated atoms. 

Investigations by Fritsch and Lin (1982a, b) on the H+ - H 

and He+ - H systems showed that model sensitive partial 

cross sections and impact parameter-dependent transition 

probabilities, calculated using their modified atomic orbital 

(AO+) expansion, agreed well with (low velocity) molecular 

orbital expansion calculations. Fritsch and Lin 11982c) 

h 1 . d h h d L- 3+ H 11" . f 7L· 3+ .ave app ~e t e met o to ~ - co ~s~ons or ~ 

impact energies of 1.4 to 140 keV and obtained excellent 

agreement with experiment. They have also investigated 

H+- Li and He 2+- Li collisions ( Fritsoh and Lin, 1983). 

The calculated total and partial capture cross sections are 

the first published origin~independent results in the 

energy range 0. 5 to 20 keV for H+ - Li and in the range 0.1 

to 2. 0 ke V amu- 1 for He 2+ - Li. For H+ - Li the total 

capture cross sections agreed well with experiment but for 

He 2+- Li the.low energy capture cross sections were much 

larger than comparable molecular orbital results. 

Ludde and Dreizler (1981) have introduced a method 

which is based upon a numerical solution of the impact 

parameter Schrodinger equation using a two- centre basis 

set of the Hylleraas type. Ludde and Dreizler have applied 

this method to proton-hydrogen collisions (Ludde and Dreizler, 

1981: 1982a) and also to collisions of He 2+, Li3+, Be4+ 
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and B 5-r with atomic hydrogen ( Ludde and Dreizler, 1982b). 

Recently Ludde and Driezler (1983) have obtained differentiql 

cross sections and capture probabilities for proton-hydrogen 

collisions at 1 and 2 keV. 

The final improvement we consider is the one most 

relevant to the work presented in this thesis. The improve-

ment is that of including a "switching function" in the 

electron translation factor when using a two-centre atomic 

basis expansion. Equations (2.4.5) and (2.4.6) show the 

expressions for the basis states when plane-wave translation 

factors are used. The modified basis states ~s(~, ~) 

and , where the superscript s signifies switching 

function, are given by 

S -" Iii, -~> t ' [ t D '-t .! f ( ~ E")--'~ ....~>] Grk(r,t)= )<~(r~venp-1. ·~~ -?iV -i r'~~ V.r . • (2.4.68) 

The function ft~R} is the switching function. In equations 

(2.4.67) and (2.4.68) the parameter f (see equations (2.4.5) 

and (2.4.6)) which determines the position of the origin, 

has been set to 1/2. The idea of switching functions (also 

known as switching factors) was introduced by Schneiderman 

and Russek (1969) in their work on electron capture in 

proton-hydrogen collisions. More will be said about switching 

functions in the next section of this chapter which deals 

with molecular expansion methods as switching functions have 

been used a great deal in conjunction with such methods. 
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HoweVer. there have been no previous calculations to d~te 

employing switching functions with a two-centre atomic 

basis expansion. The main properties of the switching 

function are that it "switches" in value between -1 and 

+1 as the electron is transferred from the target centre 

to the projectile centre, and also it tends to zero as 

the internuclear separation tends to zero (united atom 

limit). It thus gives the atomic expansion more flexibility 

by giving it a more molecular character than the plane-

wave translational fattors can in the interaction region 

where internuclear separation is small and probability 

of electron capture is high. 

2.5 Molecular expansion methods 

2.5.1 Introduction 

The molecular state expansion method is the appropriate 

way of theoretically describing excitation or electron 

capture in ion-atom collisions when the relative collision 

velocity is small as compared with the classical velocity 

of an el€ctron in a Bohr orbit of the target atom. Physically 

the effect of the slow projectile is to cause the electron 

to move into an orbit around the two nuclear centres so 

that a quasimolecule is formed adiabatically. Similarly 

the orbit will "unform" adiabatically leaving the electron 

in its initial state. Excitation or electron capture 

occurs because the quasimolecule is excited due to the 

kinetic energy associated with the relative motion of 

the charged centres 9 and the final state of the system 

is where the target is excited or capture has occurred. 
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Molecular expansion methods are based upon expanding the 

electronic wavefunction in terms of electronic molecular 

states. At low energies only a few such states ~re usually 

required to give a reasonable description of the process 

whereas many atomic states would normally be required. We 

shall see that th~ relative motion gives rise to electron-

nuclear coupling matrix elements which are associated with 

transitions between the molecular states. However, the 

transitions between these states can only take place, where 

there is near degeneracy of the electronic energy levels 

associated with the quasimolecule. 

The method of using stationary molecular states to describe 

slow inelastic collisions of ions and atoms is called ;the 

perturbed stationary states (PSS) method. The PSS method 

was introduced by Massey and Smith (1933). though the idea 

of expanding the wavefunction in terms of molecular states 

was proposed by Mott (1931) using the semi-classical impact 

parameter approximation. The PSS method is discus~ed by Mott 

and Massey in their well-known text (Matt and Massey, 1965). 

We shall now discuss the basic quantum PSS method. In 

subsection 2.5.5 of this chapter an illustration of its use 

will be given. 

For simplicity we consider a single-electron diatomic 

molecule Figure 2. 3). 

Figure 2.3 

Molecular (adiabatic) 

co-ordinates for the 

ABe- system. 0 is the 

centre of mass of ( A+B) . 
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The total Hamiltonian H of the system is given by 

(2.5.1) 

where lJ:I!!% is the kinetic energy operator associated with 

the nuclear motion. We have 

where~ is the reduced mass of the nuclei, namely 

M4 Me 
JA:: M/Jl+Mr;; 

and the electronic Hamiltonian ~G[ is given by 

where 

( 2 . 5 . 2 ) 

(2.5.3) 

(2.5.4) 

( 2 . 5 . 5 ) 

We apply the Born-Oppenheimer approximation (Born and 

Oppenheimer, 1927) to the problem and write the stationary 

molecular state wavefunctions 1j{~~ ~) as 

(2.5.6) 

where f;~(R} are vibrational wavefunctions for the nuclei 

and "Y]if; R} are the· adiabatic (Born-Oppenheimer) electronic 
=="' 

wavefunctions which depend parametrically upon R The 
I 

electronic and nuclear wavefunctions satisfy respectively 

and 

H~a 'Vjfr» ~~ ~ €l l W\~ ~ fr~ 1() 

[1M~ c} l; {~]] ~vu {~} ~ Ej~ F;~ ~~) 

(2.5.7) 

(2.5.8) 

where ~iR,) are the electronic energy eigenvalues and Ejvu 
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are the vibrational (nuclear) energy eigenvalues. If we 

have an arbitrary state having total energy E then the total 

wavefunction ~«~ 0C~ satisfies the Schrodinger equation. 

(2.5.9) 

Expanding"f«~~~» on the basis 4tj«~» JO we have 

y~~»~» ~ 'S '1] eF» ~~ 
J 

~ L fJ n~~ij{~ ~~ (2. 5.101 

· where we have droppJd the index ~n. from FJ~R~. It is straight­

forward to show that this gives 

t {'YJ[ TA ... ~ fj(~l- E] ~ + fj T. •• 7-; 
J 

= ~ ~11J . v~ ~ } ~ o . 
Projecting upon J) gives the coupled equations 

{v; +.<p[IE -E}rnJ} r;c~J 

where 

~;[{1u~fuo~V ~;~>r~nu 
J:t, . ~ 

the coupling matrices Aj~ and BJ~ are 

(2.5.12) 

given by 

Ajk 1 Rl = L 1j" Vt 't~ .rr (2.5.13) 

and 

(2.5.14) 

~ 2l. 

It should be noted that the operators ~~ and V~ operate 
.....,. 

vJith rr fixed. Equations (2.5.13) and (2.5.14) are the 

electron-nuclear coupling terms. If they are neglected then 

equation (2.5.12) becomes 

(2. 5.15) 
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which is, in fact, the same as the B6rn-Oppenheimer nuclear 

equation, equation (2.5.8) with E:;;: E;~ The electron-

nuclear couplings arise due to the nuclear kinetic energy 

lJ~w~ and are non-diagonal in the basis of adiabatic 

(Born-Oppenheimer) states YJU~; l~ . It is these terms that 

lead to transitions between the electronic states. Massey 

and Smith (1933) recognised that adiabatic states could be 

used for describing the electronic states in slow ion-atom 

collisions. Neglecting the electron-nuclear couplings 

corresponds to no electronic transitions occurr{ng and m1ly 

elastic scattering may be described. Retaining these couplings, 

transitions can occur and inelastic scattering may be described. 

Before proceeding to discuss in more detail molecular 

state expansion methods, some notation must be introduced 

to describe the molecular states and also correl~tion diagrams 

introduced. If we denote by Lz the operator associated 

with the component of angular momentum along the inter-

nuclear line, then it is the case that are 

eigenfunctions of L :g that is 

(2.5.16) 

where ).. 
.I are the quantum numbers associated with L~ . 

The modulus of A· J is one quantum number used to describe 

molecular states. One way of choosing the others required 

is to consider the united atom limit ~i\~o) . The wavefunction 

becomes hydrogenic for single-electron molecules and three 

quantum numbers V~.,.R 3 M describe the state. In this limit Aj 

and M are the same. The molecular states may ~e den6ted 
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by using the united atom quantum numbers ~»/1, plus a lower-

case Greek letter qv'f[v~··· to denote ~~n~~@~DD2!, ••• Hence 

we have the notation hif D 1 ~ff » .lpn ~ ... etc. For more 

than one electron upper case Greek letters are used, that 

is L: 1 n~ ~, .... As an alternative we may consider the separated 

atom limit (f\-.:.oo). As R-i)® the molecular wavefunction 

must tend to an atomic wavefunction represent:ing the case 

when the electron is attached to one or other of the centres; 

or to a linear combination of such functions. 

molecular states using the notation ~~~A'l' 
f}p 

and ;;. are separated atom quantum numbers. 

We may denote 

If the two nuclei 

are the same then the system is invariant under the trans­

formation F ~~r and the molecular states must be labelled 

gc~ade (') or ungerade (u) which are even or odd parity 

solutions. 

Associated with the adiabatic molecular states are the 

adiabatic potential energy curves EJ{ff?.l which vary with R. 

An important visual aid in work on molecular expansion 

···methods is that of--the potential .ene.rgy corre.la.tiqn_c:lJ_qgxam 

which relates energy levels in the united atom limit with 

those in the separated atom limit and displays the potential 

energy curves Ej (R} Figure 2.4 shows the correlation 

diagram for the (HeH) 2+ system. It shows the molecular states 

and separated atomic syste~s with which they correlate. 

An important theorem associated with adiabatic potential 

energy curves is that if levels j and k belong to the same 

symmetry class then the curves .fj{R~ and Ek(R) cannot cross 

as R goes from () to 00 For heteronuclear systems this 
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Figure 2.4 The adiabatic potential energies 

~~f~~H)J+ (afte·r fig. 9-5 Bransden~ 1983). 

theorem requires that two curves with the same l~j~ may not 

cross (Neumann and Wigner, 1929). For homonuclear molecules, 

states with the same S and ~Aj~ cannot cross, where 5 is 

a separation constant arising due to the extra symmetry of 

the problem. The no-crossing theorem was proved by Teller 

(1937). 

2.5.2 The impact parameter PSS method 

Altho0gh the molecular state expansion is appropriate 

for describing collisions in the low energy region, it is 
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still necessary (above energies of the order of 100 eV amu- 1 ) 

to use the impact parameter approximation. Therefore the 

nuclear motion is treated classically whilst the electronic 

motion is treated quantum mechanically and thus we must solve 

the Schrodinger equation 

{He< ~I /;]i'} "f CF, t) 

where 1r{~t) is the electronic wavefunction and the 

Hamiltonian H0 d is given by 

(2.5.17) 

(2.5.18) 

We intend to expand "f'lr,t) on a basis of adiabatic molecular 

wavefunctions ')j'(f1R)which satisfy 

(2.5.19) 

For the heteronuclear case {j(f;0C) will tend in the separated 

atom limit to an atomic wavefunction centred upon A or B, 

that is 

(2.5.20) 

(2.5.21) 

Sometimes the superscripts A or B are added to the 

functions to indicate to which centre the el~ctron will be 

attached to as R-i>OO 

For the homonuclear case ~lr; R) will tend to linear 

combinations of atomic orbital wavefunctions, namely 

( 2. 5. 22) 

(2.5.23) 
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The 9 and ~ refer to gerade or ungerade symmetry. 

Earlier in this chapter we discussed the general solution 

of the impact parameter Schrodinger equation (Subsection 

2. 3. 3). We saw how the trial wavefunction was expanded in 

terms of two orthonormal sets of functions ~a~~ t} and Grti~v d 

(equation (2.3.36)), the Fj- functions being associated with 

centre B, and the Gr~- functions being associated with centre 

A via the limits given in equations (2.3.35a) and (2.3.35b). 

In the atomic expansion method the~- andG~-functions were 

expressed in terms of atomic wavefunctions JiJI~«rw~ and X~~f:;.} 

respectively. in the molecular expansion method f'j and G1r 
""'V_.,l&l """' """\\ ~A ., -"~ 

are expressed in terms of t j ~Jl';fitli and u j!lf'; (0{.11 molecular wave-

functions for heteronuclear systems, that is 

J Fj tr,t> 
Gr~lr, td 

111 -" -1> 

~"f'-~F;~J 
.JJ } ( 2. 5. 24) 

or in terms of linear combinations of gerade and tmgerade 

molecular waveftinctiqns for the homonuclear case, that is 

~ {G t) ~ ~ [ "f 1
9
lr; t(~ -n- Yj

14

[rp t()] 
(2.5.25) 

There is no reason why the wavefunction ~(r, t) has to be 
expanded in terms of two series in the basic PSS method, though. 

In the ir~pact parameter version of the PSS method the electronic 

wavefunction "f'(~r) is expanded as follows:-

Ylr, ~) = ~ ai (t) ~j (F1 t) 
J 

= ~ a;lt) )jlF; ill ellp[-if Ej(Rl dt'] (2.5.26) 

From this expressi.on a set of coupled first-order differential 
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equations can be obtained 

i iP.i"' s l!!j' \'it"'"~ [ i r:U; ~£1,)oH'] ( 2 0 5 .. 2 7) 

2~J 

where \1/ :::(1) 1 3~].) 'Yj') · (2.5.28) 

The coupled equations (2.5.27) are the PSS equations using 

the impact parameter approximation. 

The matrix elements \l;;n are calculated assuming that 

the tim8 derivative is with respect to the fixed space axes 

Molecular wavefunctions are quantised with respect to the 

rotating internuclear line and so this rotation must be accounted 

for somehow. It is simple to show that 

a~l = R ;R ·H ~ L~· 1 2. s. zg 1 

(Greenlend, 1982) where l~, is the y'-component of the 

angular momentum operator, prime denoting the rotating frame. 

The ~/"JR term gives rise to matrix elements known as radial 

couplings whilst the L~~ term gives rise ~o matrix elements 

known as ro.tational couplings. 

If we examine the PSS equations (2.5.27), we s~e the 

presence of the exponential phase factor 

"'"~' [~ ( !£;- trl a1 t'] . (2.5.30) 

If the potential energy difference (£j =~r) is large for all 

internuclear separation R. , the states j and j' are weakly 

coupled. If (f;-.rfio} vanishes, then the coupling is strong. 

We know that from the no-crossing theorem two potential energy 

curves corresponding to states of the same symmetry may not 

cross in the adiabatic represe6tation. Ho~ever, they may 
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approach one another closely. Such a place where thi~ occur~ 

is known as a pseudocrossing (or avoided crossing). In 

the region of a pseudocrossing the radial coupling is large 

and the two states concerned are strongly coupled. Figure 

2.5 shows two pseudocrossings for the N7+-H (1s) system. 

2. 5 "-----'----'-'--'-----'---'----'--'--' 
0 2 4 6 8 10 12 14 

R (au) 

Figure 2. 5 Some tY 
. 7 

levels of the system (N ++H) 

illustrating pseudocros$ings at 11.6 and 6.4 a.u. 

(after figure 9-4 of Bransden, 1983). 

The pseudocrossings occur between the i&~O" and f'q levels at 

11.6 a.u. and the fl;lv and ~fu- levels at 6.4 a.u. It is possible 
Jl 

to solve the coupled equations connecting the two levels at 

a crossing or pseudocrossing within an analy~ic approximation 

due to LSndau (1932), Zener (1932) and Stfickelberg (1932). 

A discussion of the Landau-Zener-Sttickelberg approximation 

is given in the text by Bransden (1983). 

For the fully-stipped ion-atom system (A2 + + H( 1s)) where 

A2 + is the fully-stripped ion and z•1, the number of pseudo-
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crossings is few and so the number of states strongly coupled 

to the initial channel is small. This means that at low 

velocities (V~1a.u.) capture takes place to very specific 

final states and other cross sections (for excitation and 

ionisation) are small. Let us consider the z = 2 case and 

refer to figure 2.4. The initial channel is represented by 

2+ the 2r(V' orbital which goes over to He + H( 1s) as ~=000 • 

The .lpa- and 3dlu states have a pseudocrossihg at R = 4. 5 a.u. 

and the associated radial coupling is strong. Th~ other coupling 

of importance is rotational between the 21?W and 2~@" levels wnich 

is effective for small R values as the 21f7lt and .dl.!rl? levels 

are degenerate in the united atom limit. Hence a qualitative 

idea of the behaviour of the cross section may be obtained 

using a molecular basis comprising the apr, 2pn and 3~u states. 

The 2pn and 3d.v levels correlate to the n = 2 level of He+ 

as R~oo. Hence at low energies the dominant reaction is 

2+ +( He +- H ( 1 s) ~ He n (:2.5.31) 

In the region of a pseudocrossing, the radial coupling 

matrix element varies rapidly and is difficult to calculate 

numerically. It is for this reason that an orthogonal 

transformation is sometimes made on the adiabatic basis 

to produce a new basis in which the radial coupling vanishes. 

The new basis is termed a diabatic basis (Smith, 1969; 

Baer, 1975: Heiland Dalgarno) 1979). In the diabatic 

basis the Hamiltonian H@! is no longer diagonal. Also 

levels i and j which h~ve a pseudocrossing at Rc in the 



81 

adiabatic basis have a real crossing ( H~du (~~}~ fH~~~jgO~~) 

in the diabatic basis. 

The PSS coupling matrix elements ~jo exhibit behaviour 

which is somewhat peculiar as will be demonstrated. The 

operator ~~~t]? may be written 

(2.5.32) 

(2.5.33) 

v;·k = <'YJ~ ~~~d~ Y~> = ~~ = P~<~ I v. Vr) Y~> ( 2. 5. 34) 
[/;:; 

we see that \1t. depends upon the choice of origill as determined 

by r . i. f the states 1] and "t~ both go over to atomic 

orbitals centred upon centre Al that is 
'~ 

Xfl~) 
] 

~(rvR)~~ 
( 2. 5. 35) 

fo, -" } 
S) 

JV~,(P»R} ~ X& ~rp. 

then from equation {2.5.34) 

\j.~ = <)j I ~~Jl Y~> 
.....!). 

~ =t!-fP}(X~.o·l~)~'v. '\7~/\1 X~lrPl)) 
t_~~ ..-. LS 

(2.5.36) 

as 

<X j! 0.) I te-] ~ i X~ ( ~ )) ~ o . 
rA , 

(2.5.37) 

vA vA , 
If states Aj and A & are connected by a dipole transition 

then equation ( 2. 5. 36) implies that ~C! is not zero at very 

large internuclear separation which is not correct physically. 

Bates et al. (1953) investigated slow inelastic collisions 

using the PSS method. Later Bates and McCarroll (1958) 

improved the PSS method by including ttanslation factors 

in the formulation and thereby eliminated these problems 
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of origin dependent couplfngs and non-zero asymptotic 

couplings. 

Despite its shortcomings, the impact parameter PSS method 

has been used by a number of workers to calculate cross sections. 

The first PSS study of the He 2+-H system was carried out 

by Piacentini and Salin (1974, 1976, 1977) who calculated 

total cross sections. Prior to this most theoretical studies 

had been on the proton-hydrogen system ( Chidichimo-Frank 

ahd Piacentini, 1974). (It should be noted that in the 

work of Piacentini and Salin, the paper bf 1974 co~tains 

incorrect results. The corrected results are in their 

paper of 1977). 

The impact parameter PSS method has been applied 

to collisions between fully stripped ions and atomic hydrogen. 

Harel and Salin (1977) took Be4 +, s5+ and o8 + as the fully-

stripped ions. Salop and Olson (1977, 1979) have used 

the PSS method to study c6+ and o8 + fully~stripped ions 

colliding with atomic hydrogen. 

2.5.3 Plane-wave translation factors 

Bates and McCarroll (1958) realised that the standard 

PSS expansion of 4E"«.r;td ~ equation ( 2. 5. 26), did not satisfy 

the Schr6dinger equation for large R due to the relative 

mot ion of the two centres A and B. They introduced plane-

wave translation factors into the molecular basis. Considering 

the heteronuclear case, we separate the direct and re­

arrangement channels and expand ~(~~) as 

(2.5.38) 
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where the basis functions are given by 

~ ;i f',tl = l"j&a';IO ®l1rr>[- 'rv.ii' ~ 'J!~> f-:- tr","M t ·] , z. s. 39 1 

.M A .,.., '\\ F'<fl/?:o ..,c, --"> [· ..,c, .., ·1; etA -"-- o .,a a.~ .JJ o] 't-{rv t 1 -::;. 11 ,j ~II;,~~~u;p g«o=~»~.rr~tt l!,cs.b "a«u=lfu 'If JJ&.t!C ·• (2.5.40) 
J -a 

It can be shown that 

~~~ -1 .,~,.}@jcF. t> :: - & {kl .. "~'"ii e "r [-<, if.i''- .JjEf .. tpVJ .1 e] 

{H el - i. :dr} 92; a'; t)"' -1{~~1;;, Yfl ~ up[i I 1- ~»if. F 

-•f{ej-:-;l:ll-p~\/}<~t']. 
-<10 

(2.5.41) 

(2.5.42) 

Using equations (2., 5.41) and (2.5.42) and the Schrodinger 

equation, equation (2.5.17) yields the coupled equations 

t[~Nk/'cit~?CJ] = ~ K;ki)J~ -t I;Hi~c~ 
where Nj& ~(~~ i q)~) 

= < 'Y"t I e ';J'.l' I f'k) e np[ fc ~i·- ~:thlt'] , 
-~ 

H _ <;,t ~~ H . 61 u ~ ~. ) 
j~- '¥lj . @~ = ~ ~~J,r" ~·· ~ti /{ 

= - i<'tjl 0~].0 I~: >~~r[a: J l Ej- t~~ ~eJ p 
f'g ~~ 

(2.5.43a) 

(2.5.43b) 

( 2. 5. 44) 

(2.5.45) 

( 2. 5. 46 ) 
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( 2. 5. 4 7) 

( 2 0 50 48) 

Comparing this with the general solution of the Schrodinger 

equation. we see that the basis states used here, ~; {FJ IS:·~ 
and ~;{~t) correspond to the general basis states F.o {r1 ~) 
and 6r&tr; (f) respectively. We note that uni·taricy is expressed 

by the relations 

and 

0 -1" 
iN~K=K 
~ - ~ 

(2.5.49) 

(2.5.50) 

The introduction of plarie-wave translation factors removes 

the problems of the PSS method. The matrix elements are 

not dependent upon the origin and they all vanish at large 

R The disadvantage is that the exchange elements Kjft 

and k:j~ are not easy to evaluate owing to the presence 

of the momentum transfer factors ®)trt:le.av.~) which also mean 

that the elements must be evaluated at each collision velocity 

required. This has resulted in there being few applications 

of this method. 

Winter and Lane (1978) used the PSS method to investigate 

H 2+ H 11· . . t 22 b . e - c0 ~s~ons us~ng up o as~s states. Prior to 

this Piacentini and Salin (1974, 1976, 1977) had stUdied 

the system using the PSS method but using only three basis 

states ClpO"' ,&p?ii' and ~dv). In the work of Hatton 
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et al. (1979) and Winter and Hatton (1980) the molecular 

exparision method with plane-wave translation factors was 

used to calculate total cross sections for 4He 2 +-~ collisions 

in the 4He 2+ energy range 1-70 keV. Excellent agreement 

was obtained with experimental data for capture into all 

states down to 8 keV. However, the agreement was poor 

at lower energies. Winter et al. (1980) investigated the 

4 + inverse process of protons on He ions for centre of mass 

collision ~nergies from 1.6 to_14 keV using plane-wave 

translation factors in the molecular basis. Their total 

cross section resolts were in very good agree~ent with 

the experimental re~ults of Peart et al. (1977). 

The difficulties associated with the matrix elements 

arising from u~ing plane-wave factors has led to various 

approximations being tried. One is to expanci <S ~!P~Ii ~- r~ 
.;;., 

in powers of v and only retain the leading terrris when low 

velocity collision~ are being considered. Within this 

approximation the coupled equations become 

i OJ i :;; L Hj ~ 01 ~ -} [ Kj ~ <C Ct 
~ es 

(2.5.51a) 

i cj = '[ Kjk a~: + [ HJk c~ 
~ ~ 

( 2. 5. 51b) 

where 

Kj& =- t('Y';I dat"]J "!'~ ) emp[fu:j- f~l Jt'] 
rt4 -~ 

(2.5.52) 

Kjk =- i(Y:~ :ai'r·r~ > ·urH]e;- e:> .!t'] (2.5.53) 
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\ 
The disadvantage of this is that unitarity is not satisfied. 

Briggs and Taulbjerg (1975) used exchange elements calculated 

at a common origin which was chosen to be the centre of mass 

of the system in order to force unitarity. Bates and Williams 

(1964) used the mean value of K1c. and R.~ 
J 

to force unitarity. 

One final point about the plane-wave translation factors 

of Bates and McCarroll (1958) is that it can be shown that 

they arise naturally by solving the PSS equations in the 

asymptotic region assuming that straight-line trajectories 

are used to describe the nuclear motion. This is demonstrated 

by Greenland (1982). He also shows how the use of a Coulomb 

trajectories causes the factors to be modified. 

The idea of using translation factors of a type other 

than the plane-wave type is a further improvement of the 

basic method. This will be discussed in the next s_1.1bsection. 
. ' 

2.5.4 Other translation factors 

Although the int~oduction of plane-wave translation 

factors results in the theory being independent of the 

choice of origin and free from non-zero asymptotic couplings, 

the major defect of the plane-wave factor approach is that 

the plane-wave factors associate the electron with one 

or other ·of the two centres even in the interaction region. 

However, in the region of interaction the electron belongs 

to neither of the two centres. Thus plane-wave factors 

do not allow adiabatic relaxation of the system to occur. 

Schneiderman and Russek ( 19.69) proposed that the plane-

wave translation factors should be modified by the introduction 
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- ((' 2:> ~ 

of what is now termed a switching function r «rvl~» 
(Thorson and Delos, 1978a, 1978b). is the electronic 

-=<i. 

co-ordinate and R is the internuclear co-ordinate. We 

remember that in the PSS method the electrbnic wavefunction 

is expanded as 

( 2. 5. 54) 

where 

(2.5.55) 

the ~(rt R) being adiabatic electronic wavefunctions. 

In the Bates and McCar.roll (1958) treatment the ~j(rvitl 

b.ecome 

P; cF, n = I"' ~·4 c ~ iih "P [ "<! '"·" - i J;(;J'" +FlM' J ( 2. s. s6) .. ~ 
where th~ origin position parameter p is . taken as beihg 

1/2, that is, the origin is at the centre of the inte·.c...,. 

nuclear line. Schneiderman and Russek (1969) working 

on the proton-hydrogen capture process proposed that ~j(r,t) 

should be given by 

igi tr'; tl = 1j If'; ~l) ~ Jtf [t if IF. iil it. F 

- i J( f j..,. ~rl"ti 1~{'17;, IV. Fflf.ar)dl t'] 
=€3 

(2.5.57) 

- -'> 

where f~r: r~u is s.uch that 
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for 

:::: l as (2.5.58) 

for 

and· 

(2.5.59) 

Schneiderman and Russek give a table of conditions which 

they state the function ftr, R) should satisfy, equations 

(2.5.58) and (2.5.59) being the main ones. They also 

propose a switching function which is of the form 

(2.5.60) 

.,!:> 

where e is the angle between R and ""r , and a1 is a relatively 

small distance below tvhich the electron essentially "sees" 

a united atom and ceases to "belong" to either nucLeus 

individually. We shall now obtain the coupled equation~ 

which arise when a switching function is used. The electronic 

wavefunction ~fr, t) is· expanded as 

"':'IF. t)= [ aJ;{t))jlF,i\> enprl •f V.t'- 'J { fjl~)Y; ..t)ore] ... ( 2. 5. 61) 
J ~ -~ 

The coupled equations are 

iOi "' [ a~ \0~ ~1ipq t(E;-€~).Jt'] 
rs?i l ~~ 

(2.5.62) 

where 

\;jk = - i<~ I ~~tJpi Y~ > -i ("\Yj ~ ~Hv. rLVti 'Y"t1 > 

-t<l'J I '\7j I§ il. i'JIT, > + t<'YJ I [ Vp( f 11. r'lf I Yb) + :l: < 'l'j I :.~l f v. 1') i')Vh >. 
(2.5.63) 
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There h2ve been various forms of switching function proposed. 

Levy and Thorson (Thorson and Levy, 1969; Levy and Thorson, 

1969a, 1969b) working on impact ionisation in the proton-

hydrogen system proposed the switching function 

f « F ~~:;;:: ~ ffi a= Fl"lL ( 2. 5. 64) 
o ip,;a -:F F ID ~ 

Thorson and his collaborators (Lebeda et al. 1971; Sethu 

Raman et al., 1973~ Rankin and Thorson, 1978) proposed 

switching functions which were dependent upon the particular 

discrete states with which they were associated. Rankin 

and Thorson's proposal for the switching function was 

~ = = t 12A h R{ J ~J[Ci!A + Z~Hr~ = rBH~? ( ~14 ~ i!~)J 

?Otj !o,@(2e/2',J} (2.5.65) 

where 'ZA and~8are nuclear charges and C!j and ~ .D are parameters 

variationally chosen so that the coupling between the discrete 

state j and the continuum is a minimum. Rankin and Thorson 

were dealing with the ionisation problem but they proposed 

that the f. of equation (2.5.65) should be useful for discret~ 
J 

discrete close-coupling excitation and capture processes. 

An equivalent form of fj is 

f.== t~~h[~j ~f11 =i'JP] 
j 

(2.5.66) 

where 'PJ is equal to «DA ~ rm}/R -one of the prolate 

spheroidal co-ordinates {!1 3 ~~/E) , and ~J and ~J are parameters 

to be determined. An extension of the work of Rankin and 

Thorson (1978) was the work of 'Thorson et al. (1981) who 
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derived a set of switching functions for the H2+ system 

by an analytical two-centre decomposition of the exact 

molecular wavefunctions. The switching functions obtained 

were closely approximated by the form 'ffg=~@~~(~~~ and 

the parameters involved were in excellent agreement with 

those obtained by the earlier heuristic optimisation scheme 

of Rankin and Thorson. 

Kimura and Thorson (1981a) used these analytically 

deriv~d switching functions to calculate excitation and 

capture cross sections for H+ + H(1s)~ H+ + H(nl) collisions 

at projectile energies from 1 to 7 keV. Their results 

agreed with experiment better than in a comparable theoretical 

study by Crothers and Hughes (1978, 1979). In this work 

Crothers and Hughes took f to be a function of~ only, 

namely :f= f (~) which was determined using Euler-Lagrange 

optimisation. However, in this work the functionf~~} was not 

a true S'vitching function. Kimura and Thorson (1981b) 

have also obtained excitation and capture cross sections 

for He 2+- H(1s) collisions at He 2+ projectile energies 

of 1-20 keV, and for H+ -He+ (ls) collisions at centre 

of mass energies 1.6 to 8 keV. For He 2+ - H their results 

were in good agreement with the plane-wave translation 

factor work of Hatton et al. (1979) and Winter and Hatton 

(1980). However, for H+- He+ there were significant differences 

between the results and those of Winter et al. (1980). 

Good agreement was obtained with experiment, though, for 

both He2+ - H and H+ - He+ systems. One point of note 
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2+ about this work of Kimura and Thorson on the HeH system 

was that they used switching functions whose parameters 

were determined by the optimisation scheme of Rankin and 

Thorson (1978). This was because the analytically derived 

switching functions (Thorson et al., 1981) had parameters 

which were in not as good agreement with the optimised 

2+ ones for the HeH system as were the parameters of the 

analytically derived switching functions with the optimised 

+ ones for the H2 system. Recently Kimura and Thorson (1983) 

have used their switching functions, equation (2.5.66), 

to obtain total cross sections for electron capture in 

Li 3+, Be4
+ and B5+ collisions with atomic hydrogen in the 

ground 

-1 amu 

schemes 

state. The projectile energy range was 1-15 keV 

A combination of the analytical and optimisation 

- {j 
were used to determine the parameters~ and 1;· 

Good agreement was obtained with other theory and experiment. 

As a follow-on to the work of Taulbjerg et al. (1975), 

Vaaben and Briggs ( 1977) and Fritsch and Wille ( 1977), 

Vaaben and Taulbjerg (1979, 1981) obtained the switching 

function 

(2.5.67) 

where is from the centre of charge of the system. 

Vaaben and Taulbjerg determined their switching function 

using the criterion that the associated translation factors 

must relax adiabatically at intermediate and small internuclear 

distances. Vaaben and Taulbjerg (1979) have applied their 
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switching function to the He 2+ - H electron capture process. 

Riley and Green (1971) have applied the Euler-Lagrange 

variational method to the problem of determining a general 

plane-wave translation factor (which may include a switching 

function) of the electron co-ordinates and time. They 

considered three types of translation factor all of which 

resulted in complicated optimisation equations. Ponce 

(1979) used the Euler-Lagrange method to obtain ootimised 

translation factors for H+ - H collisions, the wavefunction 

being expanded in terms of the ~.\lifSJ , 2.[f©i'~ and .:!l.fP~r.A molecular 

states. Each of these three adiabatic states was given 

a translation factor of the form 

(2.5.68) 

Crothers and Todd ( 1981a) have also adopted the Euler-

Lagrange variational method to the determination of translation 

factors with specific consideration being given to adiabatic 

2+ states of HeH . This work is an improvement of the earlier 

work of Crothers and Hughes (1978, 1979) mentioned earlier 

which also used the Euler-Lagrange method. In the work 

of Crothers and Todd the translation factors are state 

dependent and are given by 

( 2. 5. 69) 

are the switching functions. Crothers and 

Todd (1981b) have applied their variationally determined 

translation factors to electron capture in He 2+ - H collisions 
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for 4He 2+ collision energies of 2-25 keV. Five adiabatic 

molecular states ( 2~<t7 , 2>rw ~ ]tilv , 3d n , Jl.s<W ) were employed 

in the expansion of the wave-function. Good agreement 

was obtained with experiment for the total capture process. 

An interesting approach to the switching function 

probem has recently been proposed by Dickinson and McCarroll 

(1983). They suggest a switching function ft~ having the 

form 

(2.5.70a) 

=o (2.5.70b) 

such th8t in the interaction region fl~~ is zero (equation 

(2.5.70b)) and hence the scattering equations take on the 

usual PSS form here. However, outside this region the 

functionfi~~ gives the correct asymptotic behaviour to 

the basis states (equation (2.5.70a)). In equation (2.5.70a) 

V is a frequency which is low compared with the natural 

frequency of the problem. The time tQ is chosen such th~t 

the molecular wavefunctions have assumed their atomic character. 

Dickinscn and McCarroll term fle-) an "adiabatic switching 

factor" (function). Allan et al. (1983) have used the 

adiabatic switching function to calculate electron capture 

cross sections in H+ - Li collisions for centre of mass 

collision energies below 20 keV. Reasonable agreement 

was obtained in the energy range 0.5 to 8 keV but the results 

were very sensitive to the choice of the origin of co-ordinates, 

the method being essentially the PSS method with slight 
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modification. 

The theory of electronic translational momentum and 

applications of the theory have produced many other scientific 

papers over the past few years, for example Thorson and 

Delos (1978a, 1978b), Green (1981a, 1981b), Green et al. 

(1981, 1982), Shipsey et al. (1983). A useful review of 

the work up to 1~81 is given in the review by Delos (1981). 

2.).5; The quantum mechanical PSS method 

At very low collision energies (~ 100 eV amu-1 ) the 

change in electronic energy during a collision will become 

comparable with the collision energy. If this is so, the 

impact parameter appro~imation may not generally be applied 

and a full quantum mechanical treatment is required. 

In the introduction of this chapter, the basic quantum 

PSS method was presented. The total wavefunction was expanded 

in terms of molecular states, namely 

Jf iF: R~ ~ t F;O~}~ a~p 1\). (2.5.71) 

J 

Projecting upon the basis set {~} gave the coupled equations 

fv; ~ &;.e[r~ f1 o~JJ} FJOn ~ t t2 A'1 ~. v~ ~ Bj&) Fhl~) 
~ .J) ~ (2.5.72) 

where~ is the reduced mass of the nuclei and the coupling 
__, 

matrices Aj& and Bjk are given by 

(2.5.73) 

and 

Bj & = J "~'"' v; "f & Jr . 
'(1 

(2.5.74) 
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As an example, let us consider the simple case of symmetric 

resonant electron capture, namely 

A(ls) + A+. (2.5.75) 

The total wavefunction is taken as 

(2.5.76) 

that is; a simple two-state expansion. Coupled equations 

analogous to those of equation (2.5.72) are obtained. 

After making suitable approximations, the uncoupled equations 

for~ and F~a are obtained, namely 

(2.5.77) 

=.!... '\f:.o2. f: + ~ E = Ew) C" = 0 · 
djll w. 14 lJ illl 

(2.5.78) 

We define the scattering amplitudes f~{e~ and£(~~ by 

(2.5.79) 

where e is the scattering angle. As R~oo the initial 

and final atomic states are obtained from linear combinations 

of ~ a·ad "t\!1 

A- ( 1; ? "~"~} ~~ 
(2.5.80) 

J (~, ~ "I<~) ~ 

where~(~) is the wavefunction of the ground state of A. 
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The ground state eigenenergy fa is given by 

fE@:;! UM ~$~~~ ~ ~iM f~~~~. 
~=000 ~=i>W 

( 2. 5. 81) 

It can be shown that the differential cross section fdr 

electron capture is given by 

I~(j~ ~ ~ ~f,le) ~ tltS) ~2,. ( 2. 5. 82) 

The total cross section is 

a"' .y.j"H, U;~l - f.jel i~ ''" 0 M. 
<f) 

(2.5.83) 

The scattering amplitudes f .. {®) are calculated by using . . 9·-
the partial wave decomposition 

68) 

~.)e) "'.l: ~ c.; (lL-1- ')[@up (a; 'lt.M>- 1] PL (cos el. ( 2. 5. 84) 

The phase shifts ~~·M are obtained from the solutions of 

(2.5.85) 

which have the asymptotic form 

(2.5.86) 

The total cross section may be expressed in terms of 1!. 
~,,~ 

by means of 

@:@ 

q ~ n; t ~.& L <} ij ~ £ i V\!!. ( ~ ~ = ~ ~) . (2.5.87) 
~ 1!.:.;:® 

The formula of equation (2.5.87) was used by Dalgarno 
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and Yadav (1953) to calculate cross sections when A was 

hydrogen and the incident energy range was leV to 10 keV. 

Bates and McCarroll (1958) suggested improving the expansion 

of equation (2.5.76) by including plane-wave translation 

factOTS. They had 

(2.5.88) 

where 

the plus (minus) in the middle of the expression corresponding 

to gerade (ungerade) symmetry. 

The expression for the cross section ~ for symmetrical 

resonance, equation (2.5.87) is not convenient at energies 

above about 100 eV. The wave number k becomes large and 

the functions G~M oscillate rapidly with R. Integration· 

of equation (2.5.85) becomes time consuming and also more 

partial waves are required as~ increases. It is then 

necessary to use the impact parameter approximation. Bates 

et al. (1953) showed that for symmetrical resonance, using 

the impact parameter approximation, the cross section was 

given by 

u = 2 )'(I .. ~ .... " f'«~l .J~ 
@ 

(2.5.90) 
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where 

r«~l g ~t''u~ ~ '·l ~- ~r'.m. (2.5.91) 

2.6 Electron capture at high energies 

Discussion of electron capture at high energies begins 

with the Born series. Using the impact parameter approximation 

the amplitude for electron capture to the k th state of (A+e-) 

is given by 

(2.6.1) 

satisfies 

(2.6.2) 

X A_., 
and ~~~~~ is the unperturbed solution of equation 

( 2 . 6 0 2 ) f 0 r IF Pl. << r w It is simple to show that (Bransden 

1983) 

( 2 • 6 • 3 ) 

where 

(2.6.4) 

Using the iterative solution for "W the Born series for 

C~(tk,~~ can be obtained 

( 2 • 6 • 5 ) 
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is the unperturbed solution of equation 

( 2. 6. 2) for !J0 <<!Fe. corresponding to the ini~ial state ~. 

VIA is given by 

( 2 . 6 . 6 ) 

and G/~ is the free particle Green's operator. Oppenheimer 

(1928) and Brinkman and Kramers (1930) pointed out that 

the internuclear po':ential v/0.Q should not significantly 

affect the electron capture probability. At high energies 

the paths of the nuclei will be straight and in this case 

the capture cross section should be independent of the 

internuclear potential. If VA~ is omitted from equation 

(2.6.5) the so-called Brinkman-Kramers series for C~{b,®} 

is obtained. Taking the first terms of the Born series 

and the Brinkman-Kramers series gives the first Born approxi-

mation and the first-order Brinkman-Kramers approximation 

respectively 

(2.6.7) 

( 2 . 6 . 8 ) 

( Ia ~ Born ; ~~: Brinkman-Kramers). 

Unfortunately neither the first Born approximation nor 

the first Brinkman-Kramers approximation give reliable 

results because higher order terms are large at all energies. 

h -1 In t e energy region up to a few MeV amu the Brinkman-

Kramers series has been shown to be slowly convergent and 
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not to be of practical use in calculations. Simony and 

McGuire (1981) have done calculations on the symmetrical 

resonance process 

( 2 . 6 . 9 ) 

and their results show that the second-order Brinkman-Krarners 

cross section is larger than the first-order cross section 

which already exceeds experimental data for energies below 

3 MeV. The first-order Brinkman-Kramers cross section 

is of interest, though, as there is some evidence that 

it provides a useful estimate of the ratios of cross sections 

for capture into the nl excited state, especially for 

large n. Considering bare nuclei A and B with charges 

'ZA and Z 13 , Sil ( 1954) has shown that Brinkman-Kramers 

cross sections can be found analytically for capture into 

level nl from any level of the target. For capture from 

the ground state into level n 

(2.6.10) 

where 

(2.6.11) 

and where 

( 2. 6.12) 
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For large n Qi'~~n decreases as u/fU'!J , which is known as the 

Oppenheimer rule. 

At asymptotically high velocities the electron capture 

cross section is given by the second Born approximation. 

Drisko (1955) has shown that for the process of equation 

(2.6.9) the second Born asymptotic cross section is given 

by 

(2.6.13) 

where U~~E is the asymptotic first-order Brinkman-Kramers 

cross sP.ction given by 

ZJOCU := J.. D~ ,Olr ( 2. 6 .14) 
ll 5 ~aa 

Th lt f t • (2 6 13) ShOWS that "-Lhe y•&:!\ behaV;OUr e resu o equa ~on . . L 

arising from the first-order term is overtaken by a v=OB 

behaviour arising from the second-order term. Drisko gave 

arguments to show that the third Born term modifies the 

coefficient 0.295 in equation (2.6.13) to 0.315, but does 

not alter the v=nB behaviour at large v. This was confirmed 

by Shakeshaft (1978a). 

An interesting fact is that Thomas (1927) predicted 

the vono behaviour of the cross section using a classical 

model. In this binary encounter model of Thomas, the electron 

acquires the speed of the projectile, ~ and is deflected 

toward the target nucleus. Then the electron is deflected 

into a direction parallel with the projectile with loss 
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of speed. A discrete atomic orbital expansion cannot represent 

these intermediate states and this is why the continuum 

must be accounted for, especially at high energies. A 

most satisfactory model of high-energy electron capture 

is the continuum distorted wave (CDW) model of Cheshire 

(1964) which has been applied to electron capture from 

hydrogen by protons and alpha particles (He 2
+) for energies 

-1 -1 above 25 keV amu and up to 10 MeV amu (Belkic and Gayet, 

1977). Good agreement with experiment was obtained for 

total capture and capture into s states. Belkic and McCarroll 

(1977) have used the CDW model to study capture by highly 

charged ions ( ~ < 'g!A < '30) from atomic hydrogen. The. 

results agree well with experiment. Belkic et al. (1979) 

have produced an excellent review on electron capture 

in high-energy ion-atom collisions. 
C! 

This brings Chapter 2 toAclose. In the next chapter 

the presentation of the work of this thesis will be started. 
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CHAPTER 3 

TWO - CENTRE ATOMIC BASIS METHOD USING 

SWITCHING FUNCTIONS : BASIC THEORY 

3.1 Introduction 

In this chapter the basic theory of this work will be 

presented. We shall be considering the single-electron 

capture process 

A+ (B +e-)~ (A+ e-) + B (3.1.1) 

where A is the fully-stripped projectile ion and (B+e-) 

i.s the single-electron atom or ion target. 

The co-ordinate system tised is shown in figure 3.1. 

The origin G of the system is at the mid-point of the inter­

nuclear line AB. The (x 9 y 9 z) co-ordinate frame Ls fixed in 

space with the x- and z- axes as shown. The y- axis is out 

of the paper. 

.e-

A 

Fig. 3.1 

The co-ordinate 

system. (Space-

fixed x 9 y 9 z co­

ordinates) . 
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3o2 Nuclear motion 

In this section the theory of the nuclear motion will 

be discussedo The motion is treated classically as the 

impact parameter approximation will be employedo Thus we 

may consider the two ion-centres 9 A and B 9 as travelling 

along classical trajectories 9 their motion being described 

math~matically by a general trajectory equation 

-ll -ll ...J. ) 

R = R (b.~ t 
...J. _...\) 

where R is the internuclear vector (figure 3 o 1) and b 

is the two-dimensional impact parameter vector and t is the 

time variable. In general the impact parameter vector is 

defined as the vector perpendicular to the linear trajectories 

produced by having no internuclear potential 9 (figure 3.2) 9 

(dashed lines) . 

Diagram defining impact para-
~ 

meter vector b for non-linear 

trajectories. 

At high impact velocities the trajectories are very near 

being linear 9 the actual scattering being mainly in the 

forward direction. llowever 9 at low velocities the inter­

nuclear potential ~.S = Zi:A ']: B/R has a greater effect and 

it is more appropriate to use Coulomb trajectorieso We 

shall see 9 however 9 that the straight-line trajectory case 

(much used in work on electron capture) is simply a special 

case of the Coulomb trajectory with the potential "turned 
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off". 

The problem of the dynamics of two particles repelling 

one another by a Coulomb-type potential ~/R. is well-

known and is treated in most standard texts on classical 

mechanics 9 for example Landau and Lifshitz (1960). The 

potential is )/R with ) > 0 in our case. It is both 

1 ~1 central (dependent only on !' ) and repulsive. The 

motion can be written in terms of the following parametric 

equations 

R - 2. ~)l/3 y 
(Y+b cosf..w-+." ( 3 0 2 0 2 ) 

f; = [ { l' '+ b ') ,,. s i " " w -T y"" J (3.2.3) 
V· 

/ .. 
where Y= '5/~ v-/· (3.2.4) 

JA is the reduced mass of the two nuclei A and B~ \li is the 

initial relative velocity of A and B~ b is the modulus of 
-ll 

b and w is the parameter coupling eqs. (3.2.2) and (3.2.3). 

It :i_s normal to introduce another parameter Y given 

by 

( 3 . 2 0 5 ) 

We see from equations (3.2.2) and (3.2.3) that whenW(or Y) 

is equal to zero~ that R is a minimum and t is equal to zero. 

If we set '5 = 0 9 that is "turn off" the internuclear 

potential~ we see from equation (3.2.4) that Y = 0 and 

equations (3.2.2) and (3.2.3) reduce to 
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R b rt. osA. w (3o2o6) 
,J 

f; 12. $t~?of.,_w, (3o2o7) 

\f. 
" 

This is consistent with the straight-line trajectory 

relation 

which is obtained from the well-known straight-line 

trajectory equation 

~ ...t. -..!> 

R= b -1- v t (3o2o9) 

J,. 
.....l 

with b 0 v 0 
" 

(3o2o1Q) 

--ll. J 

and where V =V·= !. constant vector a 

If the straight-line trajectory approach is used the 

diagram shown in figure 3al must be amcndeda Figure 3.3 

shows the well-known diagram for the co-ordinates used when 

straight-line trajectories are employed. We note that Z = V f:. 

The co-ordinate 

system (straight 

line trajectory 

case) o 
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The quantity Y defined by equation ( 3 0 2 0 4) measures 

the strength of the Coulomb repulsiono Clearly as 

decreasEs the trajectories (which are hyperbolae) will 

become rr;ore curved and similarly as ~ increases they 

become more curved 0 For e lee tron capture r::::. ZA 7/i and so 

increasing nuclear charge will lead to more curved trajectorieso 

The formulation given in the next section will assume 

-..li 
the use of a general trajectory 9 and the velocity v is a 

function of t . -l> 

For the straight-line case we take V as 

being constant. 

3.3 Formulation of the problem 

This section will present the basic theoretical form-

ulation of the two-centre atomic basis method using a 

switching function. As in most theoretical work on electron 

capture, much of the work centres around the quantum 

mechanical matrix elements 9 namely their derivation and 

evaluation. Chapter 4 will be devoted to discussing the 

(:val uat. ion of the rna t rix elements 9 but in this chapter we 

shall deal with their derivation and also simplificatibns 

that can. be made to their form. 

We describe the electronic motion using the time-

dependen~ Schr6dinger equation in the impact parameter 

approximation 

(3.3.1) 

where Y (r, t) is the electronic wavefunction 9 and ~~~ 

is the electronic Hamiltonian given by 

(3.3.2) 
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n ' Trw potentials in Me« are 

The close-couPling approximation (Chapter 2 9 p 36 ) is 

used? the trial wavefunction "'fr { r) t) being expanded in 

terms of two sets of orthonormal basis functions Ff(t, t) and 

c-t (r, t) as follows 

foil N 

"f.,.(~tl=[ aj(t) F/(f: t) +I C~C-t) G{ (P, t} . (3.3.4) 

j=n k:;ga 

We obtain the usual coupled first-order differential equations 

for the coefficients aj (t} and ck (t) 

form) 

H a (t) + K c (t) 
~At~ 4A::::l,.., 

(written in matrix 

(3.3.5a) 

(3.3.5b) 

which arc to be solved subject to the boundary conditions 

(3.3.6) 
J 

where index i. corresponds to the initial state of ( B + e-). 

The capture amplitudes Ck~(rJ for capture from the 

a. t h state of ( B+e- ) to the k t h state of ( A + e- ) are given 

by 

c k i {b) :: ( i. ~ c ~ lt) . (3.3.7) 
~-PO!) 
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The total electron capture cross sections (J~k) are 

given by 

(3.3.8) 

which 9 owing to azimuthal symmetry 9 may be written 

IJk, "'2nJ""Ic,c ..... H'bdb 
0 

The units of Oi~i 

radius (5.29 x 10-9cm )o 

,3 
are ac where 

(3.3.9) 

Ol 0 is the Bohr 

The matrix elements of the matrices in equations 

(3.3.5a) and (3o3.5b) are in Dirac notation 9 given by 

N·k= J 
(F~!Grf) 

J 
(3.3o10) 

H·K J = (Fj! H~«- ~ d/.n];l Ft > (3o3o11) 

H·t;; 
J 

<&jiH<?t- t" ~/;;t]ti Gr~> (3o3.12) 

K ·k - ( FJ' l Het -
. 

d/.?(;]p l Gr t > - I. 

J 
(3.3o13) 

R ·k - <Grj I Het- t ~ /:;n ] ~ ( Fe: ) . -
J 

(3o3.14) 

The theory presented so far applies for any two orthonormal 

sets of basis functions f:jCGt) and GJt_ Cr, t) which satisfy 

F f { r: t) t :;;:! Jl) J~ (f~ tJ) ~)f. p - i ( €J t --r ~ v Z; t ..:- i" v. r ) c 3 o 3 o 15 ) 

f8 (< 0A 

Gr t c r:, t) t _ P * 1 X~ ( ~ ) <ex f ~ i ( f t t ~ ~ v 2, t - :t v. r) , c 3 • 3 0 16 > 

'A<~ r~ 
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s -"' ) r_~ _.. ) 
Lhc asyrnptoLic: boundary eonclitions onFJ(r,f: and vr~;..(rr,f:. 

¢ /FJ .J) 
1\s usual 9 j ( r~ are atomic eigf:)n:funct ions for the ( B+e-) 

A ..J, 

syster.1 with energy eigenvalues r&j and X&. (rA) are 

atomic eigenfunctions for the (A+e-) system with energy 

eigenvalues 
s ....., ) 

We now specify the form of the basis functions Fj (r, t 

and Gr~ (G t} 

S' __. ) f6 8 ....b • ~ ! a n f (-4 o) -ll ...~:.] F· (r t = · (r?JL~.xo-~ t·t+-v t -- . i,d" v.r J J J ! J 'fJ 1J (3.3.17) 

(3.3.18) 

The functions fj{GR) and Jk{r, R) are the switching 

functions. Their main properties are 

fj cr,RJ~ _, for rf} << rA as R~ oo 

(3.3.19) 

~kcr:t;~-1 for r~ << rA as R.~oo~ 

and 

f· cr, r<J -p -rr ' for rA << rB as {\~oO 
J 

(3.3.20) 

Jk (t, jt)~ -rr l for rA <-< ra as R~oo. 

Also their united atom limit is 

:fj rr, F<) ~ 0 } as R~ o. (3.3.21) 

Jk rr, "RJ --7 0 

We note that in general the switching functions may be 

channel dependent. 
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The basis functions defined by equations (3.3.17) and 

(3.3.18) are orthonormal with respect to one another by 

virtue of the fact that the atomic eigenfunctions are 

orthonormal with one another, that is 

(3.3.22) 
I 

as 

(3.3.23) 

We now m'lke the simplification of replacing the channel 

dependent switching functions fj r t, Rl and 5 k rr~R_,> by a 

single channel independent switching function f (r, R) and 

henc0forth the theory and results presented will be for 

this specific case. The conditions (3.3.19), (3.3.20) 

and (3.3.21) now reduce to 

and 

f(f,l{) ~ -t 

f t r, itJ ----7' + , 

as R-7 o . 

(3.3.24) 

as R~oo 
I 

(3.3.25) 

(3.3.26) 

For completeness we note the new form of the basis functions 

(3.3.27) 

(3.3.28) 
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We how require the explicit expressions for the matrix 

e~ements (3.3.10) to (3.3.14) obtained when we use the basis 
!C'$' ...ll \ s ...n \ 

functions Uj(r,tg and ~&(F,~~ as given by equations 

(3.3.27) and (3.3.2~). The expression for the overlap 

matrix Nj&. is trivial. It is 

(3.3.29) 

The expressions for the direct matrix elements H jk 

and f1jk ~ and the exchange matrix elements k:jk and Kj& 
are obtained by considering the effect of the operators ~( 

and= i djdt]p upon the basis functions FI(r, t) and &!Cri t). 

Algebraic manipulation then yields the expressions for the 

elements. The expressions resulting from H~! and ~ i. ~jn]i 
operating upon the basis functions are quite lengthy. 

Their derivation and they themselves are given in Apprndix 

Al. 

The direct and exchange matrix elements are given on 

the following four pages. 
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Di_roct 1 matrix H ._. 

-i <rnjc~)l cv. rJ vr2,f t 95: (rs )>.e 'uj -(lc)t 

+ ~~ < ¢ J ( fs) I f 2, ~ f6 t ( r rJ) > e i ( Ej - ( "' t 

+ ~ <¢ja(reHfe\i.~rv. V?:fl ¢tu=~s)>e i(fj-f,dt 

+ t <¢tcf{J)I (v. -rt (~fY'l ¢: c rB)>e i(fj- f~r.Jt 

+ ~ < (l): ( r.)! (i/. nf !t-l,f}l Jl)~ crsJ > e i (€j- f~)t 

+.l <¢·s(reH fr dl\J ~fb)~(r )>~i{fi-!Etdt 
J. J o ~IC lk I& 

-l <¢i~u=a') ~ v. Vr I ¢:(ra~>e ~ CEj- fiJt 
2 

(3.3.30) 
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Direct 2 matrix Ej 

- ~ < x;u~~!(v. FJC~;fl V;fx: (G ~>.e ~t~;-?cr.Je: 

-i <x;u~~!v.~;f[X:(~}>~~r~1 -~~Jt 

- ~ \ xjcfPi)lcv. r~ V/fl -xt (ii)).;t i(1j-r~Je 
+ va< Xj(~)( fa! X;(;;.)>..e djj -jAH 

1J 

+ ~ <xj(f,. )I (v. r)! (9~ftl x~ (~))e a9j -jk>t 

+-f < xj1r ... )! cv.r»f;j/] 1 x ~ u;.1>-e • r11- f•l' 

+~ <xj(~)lfr. JI\1~ x:(ftJ>.;t il'fj-1ltlt 
cdlir. 

+ 1 <x;,r;~l\f.v,lxk(J~1>e u1j-j~)~ 

+ { ~3- ~[ v'+t1'tn bjk. 

(3.3.31) 
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Exchange 1 matrix~ 

kjf~ = ( 0~t(~~~~~~ Xt(~))e i(Ej -1ttH 

-t <f2ftcna)l f v. ~~ x;cr;.)>e ;(Ej - 1
k
1
t 

+ t < f?lt r~ H f c\1. rJ v. vtf 1 x: (~)>.e.~ uj -9h)f: 

+j <$Z) tcre) l (v. r:t (v#ftl x; (F:J>.e 'C€j-1k)t; 

+ ~ <wtcr~s l! rv. r1{ ~~]f) l xz (fA l>-e '(E; -1klt 

+ J.. < rzJ ~ (({) i f r. '-11 X t-{,.; ) > e i ( Ej -1 h) t 
l J Jt ~ A 

+ ~ <t5f1(rQH v. ~[X :(~)'>-e i (fj -11\Jr: 

+ {~a -: [ v' + ~ ~(~'~) Njk . 



- 116 -

Exchange 2 matrix ~ 

- ~ <X/{r;,Jf v. ~z!fl J2ft(~J>.e i(?i- fttJt 

-~ < xtrtAH cv. PJ v/f 1 f2f: ct,J >-e i(fj- fltJt 

4 ~~'(Xj(FA)l f:~. [JZft(raJ>-e &rjj -f~Jt 

_g_ ~ <xfr~)[ffv.rJ -v. ~f l!O'k8(~JI.e d'jj-{~)1; 

+! <xt(~)l (v. rf(V; ftl f2fe/~u~s J>-e i(1i =E~)t 

+ ~ < x;u="ll cv. o{;>~]f} l.!Zf to2~~l>eifV'k'' 
+ ~ < xjAc~) l f r. Jt t¢f (ra}>-e i(?i-te:J~ 

dl~ 

-l <x;c0J l v. ~ IJ2ft rraJI.e i(1j- €&Jb 

+[ ~~- ~ [ va+ t ~lt)]} N&;. 
(3.3.33) 
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For ease of reference we denote the individual matrix 

elements as follows:-

Overlap 

Direct 1 

Bjet - (~/(r/0)~ f -v. V;~JO:rrw~>. 

cj; = <w1~u=L&)~ iv. rHV~f). v,! P:o~~>>. 

~!Zl < 3 
-!> u ll. i ,;~ ,..Jl > Grj~ = ~- (r~)~ f lJUk(r~) . 

H;: = <!Zfj9Cr~)\f(v.r)v.~fl¢k®a~!J)>. 
. f)!$ ~ ...JI i _. .Jl a ! -"' )2 ~ (?{,ff, .,!! '\) 

Jj& = \Jtfj (r~»u ht. r) \ 9;;JJ IJO& (reD . 

K:: = <9Jisff's)i !il.rlf ~/Juatc~>>. 
1\~~ = <roJ~tr~)~fr. Jv~/lf:(rff;)>. 

J dt 

(3.3.37) 

(3.3.38) 

(3.3.39) 

(3.3.40) 

(3.3.41) 

(3.3.42) 

(3.3.43) 

(3.3.44) 

(3.3.45) 
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Direct 2 

C 7~ = ( Xft~) ~ (i}. rH~f). ~ [X~ (rA)>. 

DAA =( lil ..11 ~-ll _..!,f~vA...!)) 
j ~ = X j { r A~ 1 v. ~ ij A er ( rA ~ . 

rt: = <X j ( i~J! nf. r] ~a f I X: u==~}) . 
Gr j~ = < x;u~~)[ ftl ~ x; u=~~}> . 
H.~ = < x ~ u~:A) ~ f { v. r) v. ~ f 1 x: o~A 1 > . 
T~ ;E<xfu~~)l(v.rt(v#tti x:(rpJ>. 

K ;: = <x ju='~)! tV. n{ ft]f}lx~ct~~l>. 
A;= <x7U~)! f r. ff i X: l~>>. 

L ~: =(X ju=~AH v. V# ~X~ U~~)) . 

(3.3.46) 

(3.3.47) 

(3.3.49) 

(3.3.50) 

(3.3.51) 

(3.3.52) 

(3.3.53) 

(3.3.54) 

(3.3.55) 

(3.3.56) 
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Exchange 1 

A ~~ = < !2Jj ® ( r~) ~ V:@ ~ X~ l r#.) > . 

B ~ = < !dJ®(ro~~ f v. V; ~X: u~/4)). 

c ~ = < J0!t ~t 8) i n1. rH v~fl ~ ~ x ~ n:~) >. 
~A 12 ...a i .-JI ~ fA -" > D j k :: <%] ( r®) ~ v. V# fa X~ ( rA) . 

F~ = <wt(rsHcV.r)v/flX~o~AJ>. 
r_ Q;A ( n~l2 ..J> D f 2 

TI X ft>l ....~> )I'\ 
ujllt =. .P'j (R"sh ! ~(rt"' /. 

HM -< rt;(-"'-Tif ...1\..11 ....f,-!lf~XA(...A') . jk : }0' j r&ln [V. p-~ V. V11 ~ ~ fP.1 . 

T j~ = \}2Jt(r~}~Cv. rHV:f~~~ X~(~>>. 

K~: = <fll 1~(r®)Uv.rJ{1Jfjlx~(~)>. J ~tJ~ 

1\~: = <!O'tcre)lf r. !WI x~ rrAJ >. 

LM .-- { B .-t> \U c=!l f7i fr4. -~> > 
jft = ¢j (r~n v. v; a X & lrA) . (3.3.67) 
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ExchangP. 2 

~~ ~ 

Hi~ = <xj lrAHfnl. rJ \1. v~fl¢;c~l>. 

r;: = <x)crf))i(v. r)~(~ftl fZIZ(~J>. 

K 7~ = <X~(f,.)! (if. i'Jl ft]t} 1,0 trt.J>. 

1\~==<x;(~Hft.#l!O~C~)>. 

L; ~ <x;u~~~H v. ~ t 91: c~)>. 

(3.3.68) 

(3.3.69) 

(3.3.70) 

(3.3.71) 

(3.3.72) 

(3.3.73) 

(3.3.74) 

(3.3.75) 

(3.3.76) 

(3.3.77) 

(3.3.78) 
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We see that the matrix elements obtained in this formulation 

are much more complicated than the correspondihg plane-

wave rna trix elements 9 equations ( 2. 4o17 ) to ( 2.4 .21 ) • 

We note that the relative velocity vector of the nuclear 
_n 

motion, V 9 is given by 

(3.3.79) 

...J!, 

where R is the internuclear vector. For straight-line 

~ 

trajectories V is constant. If we look at the expressions 

for the direct and exchange matrix elements 9 equations 

(3.3.30) to (3.3.33) 9 we see that in the straight-line 

trajectory case the 1\ -type elements 9 which contain dJ\}/dJ.t 

will be 2qual to zero. Also the final terms of the 

expressions containing cUv&)/dlt will vanish. 

We now write down expressions for the matrix elements 

in terms of simpler 

being to remove the internuclear potential terms 9 and the 

exponential eigen-energy phase factors. We have 

N. '- =: N ~~ _D "P i ( €. - fJ fl.\) t ( 3 3 8 0 ) i It J ~ ---.. " J "! b\1 }} • 0 0 

H j k = (Vp.s ~j ~ + Vj f\) ~ xp i ( f i - f tJ t c 3. 3. 81) 

HJ& = ~VAabj&-+ Wjk)~xp '(7J -1, .. }t. (3.3.82) 

Kjb. =(VAaNJ~'=IF kjtt)~Jtft(~j-1tr.U:. (3.3.83) 

- EJAJS ~ ~ 
Kjk ~(VAaN&j + ht.jb'~){pi{~j=fet)t. (3.3.84) 
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.[). 

The matrices l( 9 w 9 k and h u 9 where 1' denotes Hermi t.ian 
.........,., ~ <=d ~ 

adjoint 9 are given by the following expressions (in matrix 

form). 

v =A r;Jm + v 8 Gr~{J oo}o.!. H @~ ~ l T&l/JJ +.!. k 12~ + J..f\IE!~ 
"""""""" T~ ~= ~~ J..,..... 2== 

~l.[v~+ t J(v~J I 
~ ~ lk ~ 

· (. n f()@® .1. c ~@J .!. DW>~. ..L F ~~ !. L~8 ) 
-tt -0 -} +"ll ..!J=.A +'~~ l- 1~ 4.~ ,...., <!'.; ....... (3.3.85) 

(3.3.86) 

where I is the unit matrix. 

L =A~~+ Y2Gr~+ .!.HM +1 T~A+.!. KM+lJ\ M 
~ ,.._ ~- ~-- 'ff- &....., 2.-.-

~ l[u~ + t oHv"}l N l$A 
~ II ~ ~ ~ ""'=' 

- t(~~B&JA +! ( W>#o + l DM +1. F f!A ~ !L ~A) 
~"""' J. ..... 2.- &J._,. J,.-. . (3.3.87) 

(3.3.88) 
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3o4 Simplification of the matrix expressions 

In the orevious section rather complicated expressions . )' 

for the matrices V' 9 1;J 9 k and h were obtained in terms of 
~ .,., - = i\@3($) D~~ c~B D[$@; 

the various individual rna trices n 9 !() ~ · 9 · ~ o o o etc o 
~ ~ c::;:P .,p::d 

In this section it will be shown how the expressions for 

V ~ W 9 k and ~t (equations (3.3.85) to (3o3o88)) may be 
Gd Pit' <fPr/11' ~ 

reduced down to simpler expressions. 

We begin by first combining some of the matrices in 

the expressions together and replacing the combination by 

one matrix which we shall denote by Y 
~ 

The following 

expressicns show this. 

Y!J~ = k.aGr®~ +l. H~~ + 1 T ~~ +!.K~@ +l.l\~@ 
- g - 4-" ~ ..,_, 2..... ~-

-~[v·H~~·ux. (3.4.1) 

(3.4.2) 

(3.4.3) 

Y[;l,~- ~ AIS3 n HA® l. T;;J&s +!. K~~ + l A AfJ _ v r_ 1F- + :JJ. 11 ~ - ¥~ 4~ 1- - -

_.L[va+ t ~[vajl (NM)t 
~ dH j _, · (3o4.4) 

It will now be shown how the B ~ C 9 D and F - .,.,., - matrices 

may be combined. We begin by considering the small direct 1 

matrix expression 9 equation (3.3.85). 
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From equations (3,3,37) and (3.3.39) we have that the 
®!Zl !;= ®I%J 

elements Li/~ and r Ffz are9 in integral form 
J) Ji 

r 
IIJa 1/ . @w~..,"" .... '""'t //_.:, t" n f);f&,~'y, ....!> 

Cj !~ = J ~ ~ J®il f V.r H fl&J JJa '~iff ;ur,dr10»dltr 
. v 

and 

setting 

(3.4.7) 

we have 

(3.4.8) 

(3.4.9) 

If we have complex functions ~(f'~and ~{f) which tend 

asymptotically to zero as riF~~~ 9 and a real function ffr)1! 
then it can be shown (Appendix A2) that 

1 f ~" {f)~f(r>. ~ "'f!f)olt +[ (p"rrl[vt'flr~"'f(f)df' 
v v 

(3.4.10) 
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Using equation (3.4.10) we can show that 

(3.4.11) 

Now 

V/[[v.rJJ0ft*(~il = 
(3.4.12) 

and also 

(3.4.13) 

(3.4.14) 

Using equations (3.4.12) to (3.4.14)~ equation (3.4.11) can 

be re-written~ after some algebra 

(3.4.15) 

18m M 
where the Bjk and Dj~t are given by equations (3.3.36) 

~$ 
and (3.3.38) respectively~ and ujl!r. is given by 

(3.4.16) 

Rearrangement of equation (3.4.15) gives 

(3.4.17) 
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Similarly one can show for the direct 2 elements that 

where 

(3.4.19) 

To simplify the exchange 1 expression equation (3.3.87) 
~fo, IE' ®hl 

we begin with the C j 1s and II j C! which are 

(3.4.20) 

and 

(3.4.21) 

Using the relation (3.4.10) plus the fact that 

(3.4.22) 

and 

(3.4.23) 

we obtain, in a similar manner to the direct expressions 9 

the following 9 that 

(3.4.24) 
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where 

and where 

and 

Similarly 

where 

XA® vA~ \ n /A~ \ A/3 
jk = j~- wjk +(~j-f&~u.]~ 

and where 

V A~ ( V A f..~~ \ n f f d> dl• \ I rr rA ® v ....~~ ') 
j~ = Aj lrAo! ~v.rJv<f!dJ'U&~r!ZJB 

w;:= <Xj(~)lf(v.f}\k~~~ :(~~> 
u,;: = <XfOi»ifcv.r»IJak~(fa)). 

We now bring together these results. 

(3.4.31) 

(3.4.32) 

(3.4.33) 

For the direct elements 

using equations (3.4.1) and (3.4.2) plus equations (3.4.17) 
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and (3.4.18)? we find that 

where 

and 

¥or the exchange elements using equations (3.4.3) and 

(3.4.4) plus equations (3.4.24) and (3.4.29) 9 we find that 

It is possible to obtain the matrix h in terms of BA-type 

exchange elements as we shall now see. This.is useful from 

a computational point of view as we only need to compute 

BA-type elements in order to obtain the 

The h matrix is given by 

It is easy to show that 

matrix. 

(3.4.40) 

(3.4.41) 
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IntHgrating by parts 9 it can be shown that 

and finally 

where 

(3.4.44) 

And so we obtain 

(3.4.45) 

This concludes this chapter. We shall proceed in the next 

chapter to look at methods of evaluating the matrix elements. 
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CHAPTER 4 

EVAL~ATION OF 1~E MATRIX ELEMENTS 

Introduction 

In the previous chapter 9 the basis functions Fjsf~ t) 
Grtffut) 9 given in equations (3.3.27) and (3.3.28) 9 were 

used to derive expressions for the matrix elements which 

have to be evaluated as part of the calculation of electron 

capture cross sections. It was seen that the basis functions 

F/(r,t) and Grt(P,~} contained a switching function ffi~~R). 
Although the expressions for the direct and exchan~e 

matrix elements 9 equations (3.3.30) to (3.3.33) 9 were co~-

plicated 9 it was shown in Section 3.4 of the previous chapter 

how some of the individual matrix elements could be combined 

to yield simpler expressions for the matrix elements ~k~~&; 

The final results of Section 3.4 were 

equations (3.4.33) and (3.4.34); and equations (3.4.37) and 

(3.4.44). The problem of evaluating the individual matrix 

elements remaining in the expressions for 'VJ~ 9 ~j ~ 9 

k.i &. and hg& was not dealt with though. 

The ~alculations presented in the next chapter were 

done using a numerical technique for integrating the 

individual elements because this was a general method suited 

to the use of different functional forms of switching function. 

However 9 one form of switching function 9 the "simple" 

switching function {$ given by 

(4.1.1) 
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where 

and where r is a parameterp was such that an analytic method 

could be used to compute the elements. Although limited in 

that only one switching function could be employed 9 the 

analytic method was useful as a computational check against 

the numerical method. Also this analytic method was such 

that it could be used with a switching function of the form 

f- (4.L3) 

where Q(~) is a polynomi(Jal of r 
(4.1.4) 

The coefficients h, 9 b13 9 bsr 9 etc. must be such that 

Q{±o)=±U (4.L5) 

in order that the function f of equation (4.1.3) satisfies 

the switching conditions equations (3.3.24) and (3.3.25) of 

the previous chapter. The variable ~ 9 defined in equation 

(4.1.2) is one of the three Prolate Spheroidal Co-ordinates 

( i 1 i!j 1 pi ) which were used in evaluating the elements. 

These co-ordinates and their use will be discussed later on 

in this chapter. The variable ~ is such that 

and hence the polynomial Q(q;} is bounded between plus and 

minus one. 
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In this chapter we shall go on to see how the matrix 

elements may be evaluated - a central part of the work 

presented in this thesis. Both the general numerical method 

and the special analytic method will be discussed together 

with theoretical aspects common to both methods. 

4.2 General form of t.he individual matrix elements and the 

atomic orbitals 

On pages 117 to 120 (Chapter 3) lists of the individual 

matrix elements are given. We saw in Section 3.4 of Chapter 3 

how simplifications meant that some of the elements~ namely 

the B-~ C-~ D- and F- type elements did not have to be cal-

culated. Instead matrix elements of simpler forms appeared 
~®21 =?J~ . 

in the formulation~ namely uj~ and uj~ elements~ equations 

V@A w/0/ij v'Ml (3.4.35> and (3.4.36)~ and also jrr, 9 jtX and jC! 

elements equations (3.4.26) to (3.4.28). This is good from 

a calculational point of view as the B and C elements 
---!1 

involve a gradient operator ~t acting upon an atomic 

orbital state ~fdt(r~}) or ~X~{rA~) ~ and this would lead 

to awkward expressions. In a similar vein 9 we shall see 

later in this chapter (Section 4.4) how the L- type ex-
..,.11 

pressions which contain V-~1 may be recast to avoid the 
~ 

\1/; . · Hence all the elements to be calculated are of the 

general form 

(4.2.1) 



where 

and 
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~r :> = ~ 10~ (~;> 
~~~> ~ ~ x:lf1»> ~ 

and where f!Vd (f. t) -A 
is a function of 1 and (t and is not an 

operator acting upon the atomic orbital states. For example 9 

f.....,:, f\~ 
for the J~type elements uvv.(F,e} is (v.rY\V-r J. 

A choice has to be made as to the form of the atomic 

orbjtal wavefunctions used. In the calculations presented 

in this thesis hydrogenic wavefunctions of the general 

form 

(4.2.3) 

where us~d. 

The R~~{r} are the hydrogenic radial wavefunctions which 

are given by 
e~.-12 

·R -'"/!' \ I{- B -l). i 
~~~r) = .el L c, r 

i: u 

( (6• are coefficients) 9 

and where 

with Ncvu = i/l 
N~: TI/e/5 if ~ )> 0 . 

(4.2.4) 

(4.2.5) 

(4.2.6a) 

(4.2.6b) 
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where the ?;(~©s~Jare associated Legendre functions. We 

see from the presence of the (~ g Y:;;, phase ~actor that the 

Concon-Stortley phase convention is adoptedo The functions 

Yacw (®.p!) defined by equation ( 4. 2. 5) are known as real 

spherical harmonics. As their name implies 9 they are real 

functions. The tise of real spherical harmonics means that 

the hydrcgenic orbital wavefunctions ~ilAA (r) of equation 

(4.2.3) are real which simplifies the analysis somewhat. 

In particular 9 if we note that the expressions for the ~ 

and matrices derived in Chapter 3 9 Section 3.4 

are 

(4.2.10) 

(4o2o11) 

We see that using real atomic orbital wavefunctions means 

that the expressions display explicitly their real and 

imaginary parts. 

Using equation (4.2.7) 9 equation (4.?..5) may be re-

written 

(4.2.12) 

where 

(4.2.13) 
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The atomic orbital wavefunctions are given by 

JZj()(F-;; ~ R(~e~JMrJJ (rBJ} YtJG~i (c-JiJQ,1j ( fB&, [iJB) 

X~(~»= R,~A1~lJ?~»&(rfl~ Yc,qfo'l)c.(~1tl~et (~A-~t:.) 
We also note the explicit expressions for the radial wave-

functions and the real spherical harmonics 

after equation (4.2.12). 

Having now specified the form of the atomic orbital 

wavefunctions~ equations (4.2.14) and (4.2.15)~ we may now 

proceed tu evaluate the general matrix elements ~j~(t) of 

equation ;4.2.1). 

4.3 Space-fixed and body-fixed frames and prolate 

spheroidal co-ordinates 

In the previous section of this chapter the forms of 

the atomic orbitals were chosen. We noted that their angular 

parts were real spherical harmonics which resulted in the 

orbitals ~eing real. In this section it will be shown how 
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matrix elements of the form 

where 

~ rg > ~ ~ nt® ...t. ) ~ ~.i = ij WJ (rtBJ~ 

and 1 ~~>= ~ x~o~~)> 

may be evaluated as the matrix elements required for cal-

culating electron capture cross sections for the method 

presented in this thesis 9 are of the form given in equation 

The formulation given in Chapter 3 assumed that the 

(x 9 y 9 z) co-ordinate frame was fixed in space. This space-

fixed frame was such that its z-axis lay parallel to the 

velocity vectors ± -;;JjJJ, at time ~ = 0 9 (Figure 4.1). 

Fig. 4.1 

The co-ordinates 

at ( = 0 in the 

space-fixed frame 

(y-axis is out of 

the paper). 
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Wu note in Figure 4.1 the case of curved hyperbolic Coulomb 

n~clear trajectories is shown. The two trajectories would be 

replaced by lines parallel to the z-axis for the straight-

line trajectory case. 

The overlap and required exchange BA-type matrix elements 

presented in Chapter 3 are of the general form (excluding the 

L-type elements) 

where M (i~ ~~ 
..Jl 

is some function of r and e The L-type 

matrix elements are not of the form in equation (4.3.4) but 

we shall later in Section 4.4 see that they may be written 

in terms of elements of the form given in equation (4.3.4). 

Integrals of the form shown in equation (4.3.4) are known as 

two-cent~e integrals and are generally not straightforward 

to evaluate. Although not explicitly shown in equation 

(4.3.4)~ the matrix elements ~f:(~) are in the space­

fixed frame owing to the fact that the formulation was 

performed using this as the co-ordinate frame. 

The rest of this section will be devoted to showing 

how the ~lements of the form shown in equation (4.3.4) may 

be evaluated by performing the necessary integration in the 

body-fixed frame using prolate spheroidal co-ordinates. A 

transformation is then done into the space-fixed frame. (The 

meaning of these terms will be explained anon). The direct 

matrix elements (BB-type and AA-type~ equations (3.3.35) to 

(3.3.56)~ Chapter 3) were also evaluated using this method. 
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More will be said about the direct elements at the end of 

this section. 

Figure 4.2 shows the co-ordinates at some time ([: )© 

and also shows the body-fixed (x 1 ~y 0 9 Z 0 ) co-ordinates. 

Figure 4.2 

Space-fixed (x~y 0 z) and body-fixed 

(y and y 1 axes out of the paper). 

Figure 4.2 also shows the angleS which is the angle between 
...I;. 

R and the x-axis. We note that the z 0 -axis lies in the same 
.-A 

line as the ~ vector 9 though opposite in direction. As 

the collision proceeds 9 the body-fixed frame will move with 

the vector ~ as seen from the space-fixed frame. 

If we consider the general BA-type matrix element in the 

space-fixed frame 9 equation (4.3.4) 9 we may re-write it 

(4.3.5) 
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Use has been made of the expressions for the atomic orbital 

wavefunctions PfJr:®{fb} and X~f~} given in the previous section 
J 

by equations (4.2.14) and (4.2.15). Also the real spherical 

harmonics have been labelled SF to show that they are in 

the space-fixed frame. The transformation between the space-

fixed and body-fixed frames is purely rotational and so 

lengths are preserved. Hence the radial wavefunctions are 

unaffected by the transformation. The !NV.(Y, t) functions 

are invariant under rotation for all the elements required. 

Some of the~ -functions contain the switching function 

This is equivalent to a function in terms of 
--!> 

dtil, and which we call j(~p~) 9 that is 

-Jl d '"""' ~~ 
JJ (~. rl§J = f ~r, f?-11 (4.3.6) 

....!> ...!:>" In general the function JJ(FCJ, ~IJ will not be invariant 

under rotation due to the angular dependence upon { ®?:!• f21A.) 

and (i&J~p9JibJ). However 9 in this work only switching functions 

involving r~ and ~~ 
~ 

(moduli of !A, and ) have 

been used 9 which are invariant under rotation. Thus when 

considering the transformation from the body-~ixed frame to 

the space-fixed frame 9 it is the relationship between spherical 

harmonics in these frames that is important. 

If we consider the rotation of one co-ordinate frame 

with respect to another defined by two Euler angles ~ and 

~ (Figure 4.3)~ 
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Figure 4.3 

Euler angles ( )/ = 0). 

we may relate spherical harmonics in one frame (primed) 

to those in another (unprimed) frame via the relation 
r;:;u':i'l 

""' ( ~. pJ) = [ o:'"' (01, ~, o) Yo""' ( e: %') (4.3.7) 

{;:/1,':-fl 

12 
where the \Duw,~ are elements of the rotation matrix 

(Rose, 19.57). The point ~81_. Pi) is the same potnt in 

(/f't. p. nt''\\ space as ~~ ,;v ~ but measured relative to the new un-

primed co-ordinate system. 

If we consider Figure 4.2 we see that for our system 

the Euler angles are ~ = © and ~::; ~ c}>(K/2) . The 

presence of the fl( /2 in the expression for ~ is in 

order to g~t the correct sense of rotation. 
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From equation (4.3.7) we may thus relate the space-

:'ixed spberical harmonics to the bogy-fixed ones by use of 

the relation 

(4.3.8) 

A corresponding relation exists relating the real spherical 

harmonic~. It is 

~'=12 
~~r \ 11 y-@rr ' ' 
Y,M(e.J0)~ Ldf)W1,~(F} !}~' (e,p) S) 

~':: ll1> 

where 

(4.3.9) 

(4.3.10) 

The Nc:;;J factors were defined in the previous section of 

this chapter, equations (4.2.6a) and (4.2.6b). The d ~{~~ 
"""" 

are Wigner reduced rotation matrices (Rose 9 1957). The 

derivation of equation (4.3.9) is given in Appendix A3. 

We now substitute expressions for the space~fixed real 

spherical harmonics from equation (4.3.9), in the 

explicitly 
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where specific dependence upon the quantum numbers has been 

displayed. We use the notation of equation (4.3.12) to 

re-write equation (4.3.11) as 

(4.3.13) 

Hence we have a relation linking the matrix elements in 
rM&~] 'J;!r 

the space-fixed frame 9 ~ j~ · with those in the 

[M~Ali~IF 
body-fixed frame 9 j~ • We see from equation (4.3.13) 

that the relation involves summations over all the magnetic 

substates for given (B~): In order to 
J 

see this more clearly let us consider a simple example. 

Take the element 

M 'r<~.!siA,::~,. .. )= J l?~"(rt:cr.t~[X~.c~f.;~r, 
v 

where we have introduced fairly obvious notation. 

equation (4.3.13) yields 

. JV\(Bpb~A.il,©) =JJ;@:~~)!J@~{~}M~~(f8J, !s~A.lpOl) 

+ J)e: (~~l)a:~~~M @~(IS; h ~ A.lrD) v 

where 

(4.3.14) 

Use of 

(4.3.15) 

(4.3.16) 



therefore~ that in order to obtain an element corresponding 

to one pair of magnetic substates in the space-fixed frame 

we must calculate the elements corresponding to all the 

magnetic substates in the body-fixed frame for given values 

of angular momentum quantum numbers (x~t 
Before proceeding to discuss the evaluation of the 

body-fixed elements 9 we must consider the angle :£ 

between the space-fixed and body-fixed frames in a little 

more detail as it is a needed quantity in the process of 

relating space-fixed and corresponding body-fixed matrix 

elements. We saw in Chapter 3 9 Section 3.2 that the nuclear 

motion can be described by the parametric equations 

1/2,. 

R:::(¥J+b~) cosfriw+Y ~ (4.3.17) 

t = l.r(Ya+bl)Y'J1si~hw + ~w] 
~~ ~ (4.3.18) 

where r~ ~vi2. (4.3.19). 

This is f0r Coulomb nuclear trajectories. Using the new 

parameter T defined by 

(4.3.20) 

the equations (4.3.17) and (4.3.18) become 

(4.3.21) 

(4.3.22) 
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~here is a one-to-one relation between the parameter ~ and 

the position of the nuclei on their trajectories for a given 

impact pa~ameter b 
When the electron capture matrix elements are computed 9 

they are calculated at given {b. 1"~ points. That is 9 a 

given b -value is selected and matrix elements for 

different ~-points are found. Thus an expression for 

the angle b in terms of b and 1:' must be found. 

In fact the expression is 

It is derived in Appendix A4. 

We remember that setting '(-:::.0 (equation(4.3.19)) 

corresponded to the straight-line trajectory case. Putting 

Y=O in equation (4.3.21) yields 

(4.3.24) 

which if we compare with equation (3.2.8) of Chapter 3? 

shows that 

in the straight-line case. Hence from equation (4.3.23)? 

setting ~-;;;; 0 gives (after some algebra) 

(4.3.26) 
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wh~ch is consistent with the straight-line trajectory 

situation (Figure 4.4). 

Fig. 4.4 

Angle ~ in the 

straight-line 

trajectory case. 

We have shown~ therefore 9 how to obtain the space-fixed 

BA-type matrix elements in terms of the body-fixed BA-type 

matrix elements 9 equation (4.3.13)~ and also we have an 

expression for angle ~ in terms of b and ~ 9 equation 

( 4. 3 o 23) o From this angle ~ can be found simply and 

rotation matrix elements for the real spherical harmonics, 
12 

j)m,~(~) may be calculated. The next topic we must 

consider 9 is that of the actual integration of the BA-type 

body-fixed matrix elements. 

The integration of the body-fixed elements is performed 

by using a set of co-ordinates which lend themselves readily 

to two-ce~tre problems. These are the prolate spheroidal 

co-ordinates mentioned earlier in this section. They are 

a set of orthogonal curvilinear co-ordinates defined by 

(4.3.27a) 

(4.3.27b) 

(4.3.27c) 
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A discussion of these co-ordinates is given in Morse and 

Feshbaeh (1953) and 
~ =="> 

shows the :c= = "4 9 u 0 

frame 9 and also the 

also in Arfken 
~ 

and l{ vectors 

azimuthal angle 

(1970)o Figure 4.5 

in the body-fixed 

f1J 

Figo 4.5 

The electron eo­

ordinates in the body~ 

fixed co-ordinate 

frame. Angle fd has 

been found by projeGting 
,..!> 

r onto the x'yn-plane. 

An important point arising from Figure 4.5 is that the 
~ 

...,!) .d> 

veetors F~ 9 F~ and R have the same azimuthal eo-

ordinate ~ in the body-fixed frame. That is 

(4.3.28) 

The integration of a typical BA-type element in the body-

fixed frame is fairly straightforward. Transformation is 

made to the (1 \l"P)PP/) co-ordinates and the volume element 

dliF'
~ 

is replaced by using 

(4o3o29) 

The integration is then performed. Details of this will be 

discussed later in this ehaptero In Appendix A5 expressions 

are derived for quantities needed in the integration in 

terms of eo-ordinateso 
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To recap 9 we began by having a general BA-type matrix 

M ®At ~ 
frame9 r~~ry given in equation 

d 
element in the space-fix~d 

(4.3.4). We saw how we could relate this to BA-type matrix 

elements in the body-fixed frame via the relation of equation 

(4.3.13). Finally 9 we have seen that it is possible to 

integrate the body-fixed elements using prolate sphoidal 

co-ordinates (1 ~ PJ cu !lJ} Hence we have a prescript ion 

for evaluating the BA-type matrix elements 9 and this was 

used in the actual calculations of cross sections presented 

in the next chapter. 

The direct matrix elements 9 equations (3.3.35) to 

(3.3.56) 9 Chapter 3 9 all involve the switching 
If)~ 

except for the potential matrix elements t\j~ 

and the direct L-type elements L jB 
j~ and 

function f(r,)R) 9 

and 

L
AA 
r~ 

A~ A 
·~ J 

We saw earlier in this section that we may write the switching 

function as (equation (4.3.6)) 9 that is 9 it 
~ ..,;:, 

depends L1 general upon HA and rB ~ though in this 

work it depends upon t=A and Hence the direct 

elements involving the switching function have a "two-

centre" character. 

The method which has been described in this section for 

evaluating the two-centre BA-type matrix elements~ was used 

to evaluate all the direct BB- and AA- type matrix elements 9 

including the direct potential matrix elements and the direct 

L-type elements 9 which it was possible to do. 

In Sections 4.6 and 4.7 of this chapter the numerical 

and analytic methods of computing the overlap, direct and 

exchange body-fixed matrix elements will be discussed. 
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However~ before dealing with these 9 the next two sections 

will deal with the L-type elements 9 and the Cv.r~ -
factor in ~;J 0 1j 9 fo!) co-ordinates respectively. 

4.4 The L-type elem~nts 

In section 4.2 mention was made that the L-type matrix 
~ 

elements (which contain Vo~~ ) can be recast so as to 

avoid the awkward operator acting upon an atomic 

orbital state. In this section is will be shown how this 

may be done using some of the results of Section 3.4 of 

Chapter 3 whicn dealt with simplifying the matrix element 

expressions. 

We begin with the direct matrix elements. Equation 

(3.4.17) we remember was 

We may write this more fully as 

<%t(F;)l2f vo v~ ?l(v.r)(V~f)o~fl + l~vo~f} 

+uJ.r)(v;f)IJ2ft~~~>~=2(f;=ft.}(pj;(~}Hl\!or)~J2f':(~~).c 4.4. 2) 

Setting f ~ ~ in equation (4o4.2) we obtain 

(flJj®lr{)lv.v;JiPlft~)) ~ = «f;=~J(J~t(~)ivat~~~~a~~~)>. (4.4.3) 

The left-hand side of equation (4.4.3) is 
fj&J 

LJ~ he nee 

(4.4.4) 
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In an analogous manner we find that 

For the exchange elements we use the expression given by 

equation (3"4"24)? namely 

(4o4o6) 

equations (Jo4o26) to (3o4o28). As for the direct matrix 

elements? we set f:;:: D · and the C- 9 D- and F- type elements 

vanish g:i.ving 

BJA. ( nf® =:!; 1 .d) --" ! vA ( ....t>~) 
Ljl. ~ Pj (r~)~ v. v~ A&. rAP 

~ (!O;~c~;j[ Ve~ = v~ = (~j = ~~~(v.PJ~ x:(~)) 0 

. J 

· Ae 
In a similar manner an expression for~j~ can be obtained 

from equ~.tion ( 3. 4 o 29) 

(4.4o9) 

We see that equations (4o4.8) and (4o4o9) are consistent 

with the relation 

(4.4o10) 

We have therefore obtained expressions for the L-type matrix 

..., 
which do not involve the V; operator o It was stated in 

Section 3o4 that in an actual calculation only the BA-type 
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exchange matrix elements are computed. Hence the expression 

1, A3 _,_. . 
for 6;& 9 equaL1on (4.4.9)9 lS not required in practice. 

4.5 The Jv.?}-factor in (i\) 1DW) co-ordinates 

A factor which occurs in almost all of the individual 

matrix elements of this work is In this section 

an expression for this factor will be derived in terms of 

the prolate spheroidal co-ordinates~ ('1 \) 'l);;PJ~ 

----~~~~~~~t~~------~~~~g 

...!) 

=V/~ 

Figure 4.6 

Electron co­

ordinates in the 

body-fixed frame. 

Figure 4.6 shows a diagram of the co-ordinates in the 
..ll 

body-fixed frame. We note that the velocity vector V 

lies in the x 1 z'-plane and so has no y'-component. Thus in 

the body~fixed frame (indicated by prime notation) 

(4.5.1) 

This may be re-written in terms of spherical polar co­

ordinates «F)) ~~flJ) as 

(4.5.2) 

From some of the results of Appendix A5 9 namely equations 

(A5.19a) to (A5.19c) 9 equation (4.5.2) may be written 
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We need 9 finally 9 to obta!n expressions for the velocity 

components v.%' and Vzo 

Figure 4o7 

The space-fixed and 

body-fixed frameso 

Figure 4.7 shows the space-fixed and body-fixed frames. We 

also note the angle ~ which is important in determining 

the amount of rotation required to transform between the two 

frames. In the body-fixed frame the vector ~ may be 

written 

where v~~ and 
~ 

frame 9 and fib 

(4.5.4) 

.,!; 

V2 • are the components of V in the body-fixed 
A 

and ~& are body-fixed unit vectors 9 

parallel to the xv- and z 1 -axes respectively. It follows 

from Figure 4.7 that 

(4.5.5) 

By conservation of angular momentum we have 

(4.5.6) 
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where v~ is the initial relative velocity of the nuclei 

/2.~ and B 9 and lb is the modulus of the impact parameter 
P'h 
' vector 0 Hence using equation (4.5.6) we see that the 

velocity components are 

and 

J> '""11 The final expression for ffv.r; is thus 

The expression in equation (4.5.9) is completely general. 

For the 3pecial case of straight-line trajectory motion of 

the nuclei we begin with the well-known relation for the 

straight-line case (see equation (3.2.8)). 

(4.5.10) 

From this we. obtain the straight-line trajectory 

factor 

(4.5.11) 

d) ""'11 We have thus obtained an expression forf~r1 in terms of 

~§v'ifjvrpj) given by equation (4.5.9)o 

4.6 Evaluating the body-fixed matrix elements - numerical 

method 

In this section the numerical evaluation of the body-

fixed matrix elements will be discussed. As was stated in 

the introduction to this chapter 9 this method was used for 
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obtain~ng the matrix elements used to calculate the final 

electron capt~re cross sections presented in Chapter 5 of 

this thesis. This was because it was best suited to 

investigati~g the effect of the use of different forms of 

switching functions. 

The analytic method 9 which will be discussed in the 

next section of this chapter 9 could be used with the 

"simple" switching function f $ where 

(4.6.1) 

and the method could also be used with switching functions 

of the form 

(4.6.2) 

where the polynomial Q~~~ is given by equation (4.1.4). 

The overlap and required BA-type matrix elements 

(excludin~ L-type elements) may be represented by general 

BA-type matrix elements of the form 

(4.6.3) 

We know 9 however, that L-type elements may be written in 

terms of elements of the form given in equation (4.6.3) 

(Section 4.4). Although not explicitly shown 9 these 

elements are in the body-fixed co-ordinate frame. We may 

write equation (4.6.3) more explicitly using the 
Q,.d> 

expressions for the atomic orbital wavefunctions ~j«rQ} and 
;:. ~ 

'X&(Ii'A) 9 equation·s (4.2.14) and (4.2.15) and the real 

spherical harmonics ~ffclgliMo»] ~ ®o ~ gGJ) ~ Yefi>mJ&~~~tz ~BA ~PIA) 
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The expressions for the 

yeal spherical ~aTmo~ics aTe given in equations (4a2a:8) 

' ( Ll 2 19) T' · f '""q, QA ana. ~. o o ~1e express1on -or i/'1,)\ ~ ~ becomes 
.!) 

PI\~ ~ N~W':lcllJ CJ!2&J; «v.rud,g N ~AA;;,u& CetttJe-saw4CJ 

(4.6.4) 

We define angular factors to make the expressions less 

complicated. They are 

at~ ::: N(VVlltJ~ C U!A~& «Mtj»eo 

~ j ~ N f~o»_p C «U@»j «wur;;»j 

(4.6a5a) 

(4.6a5b) 

We remember that the volume element in prolate spheroidal 

co-ordinates is given by 

(4.6.6) 

From equation (A5.3c) of Appendix A5, this may be re-

written as 

(4.6.7) 
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have been 

from equation (4.3.28). In a similar 

fashion the general direct matrix elements 9 and 

given by 

and 

and 

P~al·t ~ p(M!l)&( ~ d tf1J 
U (Q~l/li(,@S8~Ju UA>k 'o~9M.wu{Fpd. c,©$«t¥UA~JPh:,©5(ffi1tJ~&P. (4.6.12) 

MCA 
The functions vq{r9 ft) occurring in the expressions for r-.. il:s 

J 

M IMl M~!JJ jk and jls 9 equations (4.6.8)~ (4.6.11) and 

(4.6.12) 9 may depend upon {v.P» and the switching function 

fCr~ R~ , or quantities involving the gradient operator 
~ ~ 

VF' acting upon fa~~~} The m- functions must be 

determined in terms of (~vry~w~ co-ordinates prior to an 

actual calculation of matrix elements. We saw in Section 

dl dl~ 
4.5, earlier in this chapter 9 how ~V.rg was found in terms 
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and 

~he azimuthal integration involved in integrating the 

matrix elements is fairly straightfo:::-ward. The fl}-

integrals that may occur are of the ~hree types as 

fo::..lows~-

1
2?.71 

e I a «t!lfiJa v lfvb~ ~ ~ ©$ ~0 f1J ~@§ VL!ili). fl! tJ1f!1 l) 

@ 

r2lw 

$Ia ~fflo 11 AA2>~:::; L ({.@$ !!Vuofl} ~tt;S> !i:IUzfJ ({;rt)$ p/ djd 'U 

· aR 

and ~r~~~o 11 VV'U2-.~~1 ~©$JMaW~©>5Wi>2ofi/&©$artJ Jp/ ~ 
.® 

(4.6.13) 

(4.6.14) 

(4.6.15) 

where Mo and W'lla may be wuc::, or Vv'\lQ with appropriate sub­

scripts j or ~ • These angular integrals are evaluated in 

Appendix A6. 

We are left, therefore, with a two-dimensional inte-

gration to perform over the variables 1 and ~ This 

is performed numerically by using Gaussian integration -

Gauss - Legendre integration for the '1/ - integral and 

Gauss - Laguerre integration with transformed nodes and 

weights for the j- integral. More will be said about 

the numerical techniques used in Chapter 5. 

We see that, in principle, the numerical method of 

evaluating the matrix elements is not too difficult, being 

based upon a two-dimensional numerical integration technique. 

In the next section of this chapter the analytic method will 

be discussed. 
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4.7 Evaluating the body-fixed matrix elements - analytic 

method 

4.7.1 Introduction 

In ~he previous section the numerical method of evaluating-

the body-fixed matrix elements was discussed. This method 

allowed the use of any functional form of switching function 9 

and was used to obtain the electron capture cross sections 

presented in Chapter 5. 

One of the. switching functions used in this work was 

the "simple" switching function f 5 mentioned earlier in this 

chapter. We remember that it was given by 

(4.7.1) 

where p is a parameter and ~ is one of the prolate 

spheroidal co-ordinates which were discussed toward the 

end of Section 4~3 of this chapter. We remember that ' 

was given by / 

(4.7.2) 

We note that the basic property of the switching function 

f~ is from equations (3.3.24) and (3.3.25) of Chapter 3. 

t{F:R~ ~ = ~ 

fgir~ R~ ~ c} ~ 

as ~ ~ §© ~ ( 4 • 7 • 3 ) 

as ~~eO ( 4. 7. 4) 

We see that the switching behaviour of the function f 5 is 

due to the fact that ~ varies between plus and minus one. 

The parameter f is present in the expression for 

in order to give the correct united atom limit for 
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(equation (3.3.26) of 

Chapter 3) 0 The absence of the parameter f would result in 

ir, being indeterminate 
.JJ~ at ~ g ({) We define a function 

F{~) by 

and so we may write f~ as 

It turns out that if the switching function fg is employe~~ 

it is pqssible to evaluate the matrix elements analytically. 

The analytic method is such that it can be used when 
c£:, 

the function f{rD ~ ~ is of the form 

(4.7.7) 

where 1?{~~ and Q«ro~ are polynomials given by 

and 

Q(~~:;; ~@c}~oii(( 9 b2 ~69 ~t~1'33c}···9b~PiltJ. (4.7.9) 

However p owing to the fact that ~ may range between one 

and infinity 9 namely 

(4.7.10) 

it would be impossible to have a switching function of the 

form given in equation (4.7.7) as it would not have the 

correct switching properties required. Hence a restriction 

must be made upon the form of the switching function suitable 
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for use with the analytic method of evaluating the matrix 

elements. The form was stated in the introduction to this 

chapter. It was 

where ~«~) is now 

(4.7o12) 

and where the coefficients ~a 9 !bv~ .. • etc. must be such that 

in order to produce the correct switching behaviour of the 

switching funct~on. The rest of this section will be 

devoted to discussing the analytic method of evaluating 

the elements using th~ switching function of the form giv~n 

in equation (4.7.11). 

4.7.2 Preliminary reduction ,of the matrix elements 

We begin by considering the analytic evaluation of the 

overlap and exchange body-fixed matrix elements and we 

remember that these may be written as~ or for the L-type 

elementsp written in terms ofp general BA-type matrix elements 

of the form 

MJ~ ~ I gr·(rr.)AA ~~, ~» x~ ~~}~?' . 
w 

(4.7.14) 

The fact that this is in the body-fixed frame is not 

explicitly shown. We consider the product of the atomic 
nlJJ tJ' f! d:> % "'Yf #o =!> ~ 

orbital wavefunct ions Pj u FrM and ~gJ~.?dn the integrand of · 

the integral above and re-write it as 
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?he corr.p1ex conjugation is~ in fact~ superfluous as we are 
n !§lA c0 ~\\ 

using real orbitals. Tine function J:,&JC:!, (1/o'JFt:o/Jis given by 

The· angular factors ~ & and fP.J. were defined in the 

previous section~ equations (4.6.5a)p (4.6.5b). 

We may thus write equation (4.7.14) as 

M ~"'~;Ill& J n j~ a~, ~}V!fJ«P.~»JJF , 
~ '' 

( 4 0 7 0 17) 

Prolate spheroidal co-ordinates {~o7lfj'J fJ~ are used to perform 

the integration. For each of the overlap and exchange 

BA-type matrix elements P the function fft7U ~ ?CJ (( ~ is written 

in terms of the variables «§ l:l 'Pd and pi 9 and where the 

switching function 1 «r'i> ~~is of the form given in equation 

,JJ~ (4.7.11). The volume element ~u must be replaced by the 

expression of equation (4.6.6) of the previous section. 

The result of this is that the overlap and exchange BA-type 

elements are shown to be expressible in terms of triple 

integrals involving the variables "§ ~ ?£ and f1} . As a 

simple examplep let us consider the potential matrix elements 

AM 
j& which are 

&JA I fJ CJ cd:, f= J ~ ~AI =!:> ~ ...../) <=!j A)~~ fd] ~rLID»t &@tJ~~(rA!J{gJF. 
1:? Fp; 

(4.7.18) 
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This becomes 

(4o1c19) 

where the two triple integrals are enclosed in the curly 

bracketso The actual expressions for the other elements are 

rather tedious to derive, but once the expresions have 

been obtained it turns out that the triple integrals 

involved are of only three types which are as follows:-

~~~: {a.,ll) = J: 11J ~~J;pn~~ '&"'r/ 
n =o © 

® &J!J 1 ~ I o II J:~ @CJ A ~f14',s ~O!af! t::.~D!A d 
~I j ~ ~ Wil ~ uu » ~ JJ @1 ~ @J d n; ~ 1 ~ ~ ~ = n ~ ~ ~ = ~ t lS@ g p 

0 on @ 

~r~~,.,~~ ~ J;il I ~,J~ n~~ <!J"t«"~.,$" fll 
D =D @ 

where fi!/'1:. ~ Vil ~ © o 

(4o1o20a) 

(4o7o2Qb) 

(4o1o20c) 

We c.all the above integrals fl -t:tiple integrals o The 

threefi -triple integrals above can be performed analytically, 

and one of the reasons_as to why this should be so is that 

they have ·13 to the power tvil and ~ to the power ?il 

in their integrands, where ~ and bi\ are non-negative 

integerso Now we can see why it was important to state 

that only a certain type of switching function could be used 

with the analytic method, namely one involving a simple 

polynomial function of ~ Anything other than this would 
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result in fl -triple integrals that contained perhaps 

awkward demoninators 9 trigonometric functions~ etco~ in 

their integrandso Such integra:s could probibly not be 

performed analytically~ and certainly they could not be 

performed using the techniques yet to be describedo Before 

moving on to see how the three fi -triple integrals of 

equations (4.7o20a) to (4oL20c) can be performed~ we note 

that~ in general~ the switching function j(~p~\ could be 

of the form 

as we stated e~rlier in this section. However~ it was ruled 

invalid as it would not be a true "switching" function due to 

the presence of the polynomial if {1 ~ . 
A. ®~ ®I[i)A 

4. 7. 3 The fi -triple integrals m>IJ~ «wu'i!vu~ 0 ffu ;& ~Wil'i!tu» 
~IM and <m J~ ~M»~~ 

tJ If ®tJ 
The integral £d1j~ tivvuDvub is 

~r;:trn,,>" I:llf,~l~~ntg 1l"'z( . 
0 oQ (§) 

(4o7o22) 

&J~ 
We remember from equation (4o7o16) that the function i]Jk 

is given by 

(4.7.23) 

but where the azimuthal angles ~~ and ~& have been 

replaced by angle ~ from equation (4.3.28). Substituting 

for the radial wavefunctions using the explicit expressions 

given in section 4.2 of this chapter~ equations (4o2.16) and 
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(4.2.17)~ equation (4.7.23) becomes (with a little re.-

f6)«ffl[j~&r1 'f. ru/VV~JGJ»j (! ® '\\ rn:! ~. I@ 
~tr ~fi~~C<, v,(;.©>f>f?J!Jv'U{!Jr;:Jj ~~@$ 0 131! ~©~ {MtiJ~~fo ~@§ {Mo J w • (4.7.24) 

Combining equations (4.7.22) and (4.7.24) gives 

where the SIn is one of the three azimuthal integrals that 

occurred when the numerical method was used~ equations 
@fo, (E fJ <ffJ 

(4.6.13) to (4.6.15)~ and where dJjt:.«vvv,'i){;;J~ is the integral 

®tl. ~ f~ =I.:~l o. n . ""J!!1&~t:J ='C#;rro !0 [~C3=u ?~]no [t&a»i=u <}~1 
;J j& {Pti~vu~= @ . &J~ ~ & ?o ® 

0 =U 

(4.7.26) 

where ~Ia is one of the three azimuthal integrals mentioned 

®4Tf!J~ above and the integral j&?~~~~ is given by 

SJ/iJ T. P<flJ, . =1 ~~J 0 n 0 =j!!l&f?[j 0 =~ff'Q p[«ff[j»C:s =0 cfr>~) rr= iQIY();o£ {>1.1 
-~~M.gF.)= @:UI (§.J~{%. ~ N[J UQ 

J 0 =0 

(4.7.28) 
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/X]~ IE' f?'lJ 
where the integral .J)jDJ{/~NJvco»is given by equation (4.7o26)o 

We have reduced down the expressions for the three 

&, I Qt:J · Q I I.Sfi.J 
triple integrals lill ;ts«AA'ila:.» 9 1fu. jts «ffl'i!fU.» and 
~ M .1il.I j & {~M 51 Vil~ to expressions involving the two double integrals 

M f?2- @fJ T f?'f!. S;~ffwu~:~/i\1~ and Jfufc::Jil/i\1~. The next stage is to obtain 

expressions for these double integrals. 

&JJJ !E'; 7.;, !l ~ u I71J ~ !OJ@) ®~T00 
4.7o4 The double integrals :J,t&~AAofUIJ and J&~wu'ilfUv 

~I'J.!E' ff{!t 12~ ==r (?!{X 
The integrals .id)j/!dAAilV\1~ and u J~i~~A» both contain 

fi5l ~watJ~I':l~ ~ rBJ«AAo)j1' ~ ~ 
associated Legendre functions l[{&c.)~ u~@B @p,» and 1r (f!e),g u"©~ Bg 

which must be expressed in term_s of the integration variables 

1 and 'Pj before the integration can be performed. In 

Appendix A7 lists of these associated Legendre functions are 

given in terms of ~ and 'Pj If we inspect these 

expressions for the associated Legendre functions 9 we see that 

they all contain the factor ~11-{? 11 ~ or {~ = va » 9 raised to 

the power U!tJ»& or respectively~ in the de-

nominators. We know that 

(4.7.30) 

from equations (A5.2a) and (A5.2b) of Appendix A5 9 and so we 

may express the associated Legendre functions in terms of 

~ and 

following 

ff=@ The result of this is that we obtain the 

fB) ~WilA»~ 17 i(j, '\\ rEJJ«fM! o»j ti .6l \\ 
expressions for tr ~Ot:Jb~ ue£:©$ ©l?JIJ and II «trrJJnj (1,'@$ (glfJIJ 
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© ~~~~&,? . co '1:1 = ~~ ~aQ~»e:, = efl!'J& t.J {B) «F"10~G. /10? " '\\ 
u «fJc)& ~!,~@$ ®iJIJ = =:1 f?J u '{ff8J~Cr U Slv Jt/)) 

&J 

[(S)«wuGJ~j ~~~~.\.~ {f!o~J pf,f}Q»j & p «Mo»; « "'§ » 
u {ficJj {:0@$ ~B u=r£J d[JJ «fio»j ll '1 

t.:;, ©'~tJ~tJ ~ ffJ @(WJo}j{ \\ 
where the functions IJ g§tJ~& {~ SJ 'Ffj)) and If ((i&}j ~ 9 f1 !J do not involve 

awkward ("§ 9 trg » or ~rf = ~) factors rais~d to the powers 

{/tfJ~~ or {Ji~~j respectively P iii the denominators o As an 

example ·~~ ~«:©~ ~~) is given by 

~ ~(~f>'?n~(n=rt 0 

~1} 9 ~)~ 

Using equations (4.7.3B) and (4o7.31) gives us that 

p; (~@.~>@.,):~::(1)" r;, ~" ap! {ll' 'J'j} 

where Af:«13~1~~~~~2=~)~~=tt~ . 

We see immediately that the introduction of the functions 
PJ fB) ~vvuc)& u d[?. \\ @ ~~WilD~} f/"72. \\ 

lr ((Od!!: ~'fJSJ7!j2l and ll «lfdJ»j~~DI!Jil via equations (4.7.31) 

and (4.7.32) has resulted in the elimination of the factors 

rr;/ttt:J~& and r@ ~!ia»; from the integrand of &~S)!f«t;:a\)vd. 
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By using the binomial expansion for u=;}f?=o» ~neil ur/t!J,=O» 

namely 

(4.7o37) 

and 

(4.7.39) 

@Al Tr~ ~ 
In a similar fashion the integral .ff~ «~'~>Vil» of 

equation (4.7.28) is given by 

(4.7.41) 
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which must be evaluated next. 

4 0 7 0 5 The double integrals ®~ s:s-~P$«f:Yu~ fiil » . an:dffiLJ T[J;p~~vvd 

We begin by putting 

and 

:If.::; M c:'? fP 9&;], =IF=.$ =dl, 

jj::w9P?~ 

(4 .• 7.43) 

(4.7.44) 

in the integrands of equations (4.7 .40) and (4.7 .42). ~ and 

tN;; ~ff>~ ®AT=f?~ :J are non-zero integers. Hence .::J j fs1pr;«rM>~~» and j ~l)P.a «w:uSJ~ » 

become 

(4.7.45) 

and 

T ~: {1!. yl "'I~"§ r.1'U ~-jl4 .'i> £"i"iiJ 1" 't'J ~ ('ll'- ~ )''· { ~ ~ 'Iii.,~~. 
o =D ~A~~mt:Jl!.r@pffMo)! (4.7.46) 

(tr~1~:~ !fio); 

where the index notation has been changed. 

The evaluation of the integrals is begun by inserting 

the appropriate expressions for the functions ~ ~ffmt:J~f:Jh} 51'1 ~ 
IJiJCil»tJ $)·6 

and into the integrands. The result of this 

is a set of expressions in terms of the integrals 

M J~ ~~. ~~"' 1 ~ ~f.t? ~ -p&l"'" ~~";"a "§ "' ~ ~ 
0 oO 

(4.7.47) 
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and 

r@ ro 
N ;: {Jl: ~~)~ 11 rei~J~i dl~ ~P~rfb g=~;Po1 25erl8= ~~OhJ 1~1: = ~i'i!J2,. < 4 0 1o 48 > 

00 =~ 

As an example 9 let us consider the ls ~ 2po capture transit ion 0 

= =@#J 
The integrals s j&i~~ ~~ and Tj cd~~JJ» become 

5 ~~. fl::tt M» ~J~f ~ l>l.&~•p•IA .fl~llozi"&'§"?IWfil p• ®F"@: < 4 0 7. 4 9) 
lls~dlfP® ~· ll.!J ~ U ·~ o 

0 =D 

a~~".«"', .~~~~J=-4 ~~£P·~ &~!!,, ~ r~'(1" ~ o"·(~ -tt·~' r ~.!) r: . 
0 =0 ( 4 0 7 0 50 ) 

The functions Ap~ttf~~) and ®p:f!{ll~~ are given by 

and (4.7o51) 

Substituting for these functions in equations (4.7o49) and 

(4.7.50) we obtain 

(4.7o52) 

From equations (4.7o47) and (4.7.48) we see that these 

become 

(4o7.54) 

and 

(4o7.55) 
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In a similar manner the other S and T integrals can be 

expressed in terms of the M and N ictegra:sa The final 

stage of this reduction process is to find expressions for 

the integrals MJ:{u'J)J~ 
dealt with nexto 

and which will be 

4a7.6 The double integrals~~~~o$§~and rNJ~~~~Sl;\2~ 
ffUil:. @t:J 

We begin the obtaining of expressions for u~~~~~.~~and 

~nM L u~ j& ~:Jt'il ])~ by dropping the channel indices J and ~ and 

the BA superscripts in order to simplify the notation a little. 

Thus we have 

I
@9 Jo 

M ~J:f.llry}~~ @]3fJ dw~=p~ ~~~U&J ~~ ~l~ (4 01.56) 
n ~n 

N (x. yJ ""J~ 1 J~w£ft'"' ~-""' 1"'(1'~ ij}'"'-w~«n ~t»'"'. < 4. 7. s 7) 
0 "'0 

It is at this stage that a distinction must be made between 

the case where theexponent factors ;w and ~ are unequal 

and the one where they are equal as this affects the outcome 

of the analysiso We deal first with the situation where 

We substitute the expressions for ~ and F® in terms 

of ""ff · and up from equations (A5.2a) and (A5o2b) of 

Appendix A5 in the ~ and N integrals and obtain 

t•u~, :;~"" J:~.,'\] -§'"' .11 J~-&~ '9 47 
fi =il 

(4o7o58) 



and 

(4.7.60b) 

The two integrals in equation (4.7.58) are given by 

expressions involving finite series. They are (from 

~quations 5.1.8 and 5.1.9 Abramowitz and Stegunp 1965) 

(4.7.61) 

and 

(4.7.62) 

Hence 

(4.7.63) 

TheN integral expression of equation {4.7.59) we re-write 

as 

(4.7.64) 

where 

(4.7.65) 

and 

(4.7.66) 
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We may express !Ar_i~@» and ~.27 «i§l~ as 
. !P@:§ 

II ~~II 'SJ 01. 
A:;J.~@]~~ «=Q~~~ ~@fl j <g=I§J, «33 2

= D~" 2 d ~ 
0 

and 

!:JJ}tb> ~ (- n)~(oS f~-~'W~~- -t~"Pa ,jj~ 
=0 

where (D6J~~~(!)as and (~eJ~~ (~}SJ o 

Hence A2:?.(@~~ ~=~»~([D8~~A0 (@» (4.7.70) 

and ~JJ{~»~ff=o~~~[Ol~~SJ~@«~~ 0 (4.7.71) 

The modified Bessel functionK~~~,has the integral repres-

entation (equation 9.6.23 Abramowitz and Stegun~ 1965) 

Setting ((~lfD ~~<m. and ~ g 0 yields~ after a little 

(4.7.73) 

where we have used the result 

(4.7.74) 

Similarly the modified Bessel function I~«~) has the 

integral representation (equation 9.6.18 Abramowitz and 

Stegun ~ 1965) 
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(we take the minus option 

of the plus or minus choice in the exponent) we find 

jOj f1 ~ J. 0 =~~ (/ . 8\\Dci}l 

[g)@~~»~ =0 ~ . d =~ » dl.' 

= n In~lb~ (4.7.76> 
= fu> 

Thusp usi:J.g these results for~ff@~and l§@)«lb» p we have from 

equations (4.7.70) and (4.7.71) 

and 

A~ «&1) ~ ~= ~ ~~ ([O)cJ~ D~o ff @~ f cea 

B:o (~) = {- R)l1(~~}l n I.« b)!~] 
Use of Leibnitz 0 s Theorem gives 

and 

(4.7.77) 

\ 

(4.7.78) 

(4.7.79) 

~ 

B {b}=10il \ ~=af~~ (D~~~(Io~b~ . <4.Lso> 
Y a_$j?O ~ v~ 

lk" '&8® 

The derivatives of the modified Bessel functions can be 

obtained from the expression given by equation 9.6.29 of 

Abramowitz and Stegun (1965)p which we re-write as 
~ 

~«!:!.» u [ ~d ~ (/ '\\ 
x~fl~~JCJ $~«~=$~~ L~=~¢tl~>~z)) ~ 

.f)g@ 

'il 
(4.7.81) 
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where ~ v denotes IV> or ~ ~ wv> ~·~ or any linear combination 

of these functions. Using equation (4.?.81) gives 

(4.7.83) 

Combining these expresstons with the ones of equations 

(4.7.79) and (4.7.80)~ we obtain closed-form expressions 

for !A~«a~ and SJJ ~[§>~ which are 

(4.7.84) 

and 

jJ ~ 

[! {fi>)""~ \{~~)~\ lnoV9~w{~~ (4.7.85) 
JJ ~£1· .~~ ~ L w~av=w~~ 

V§® t:i'2® 

The N integral is the product of ~~«@» and IESJ?~&>~ from 

equation (4.7.64) and so can be found from the expressions 

given in equations (4.7.84) and (4.7.85). The modified Besse~ 

functions are fairly easy to generate computationally. 

More will be said about the computational aspects of the 

analytic method in Chapter 5. 

We now deal with the case when p g V • 

2. p:cs'iY 

As for the p '$ "tJJ case~ the starting point of the 

analysis is theM and N integrals of equations (4.7 .56) 

and (4.7.57) but where now p;;;;,'t::fJ Substituting for ~~ 



174 -

and !F m3 in terms of ~ and 1 
and (A5.2b) of Appe~dix A5 gives 

from equations (A5.2a) 

and 

1~ 10 Ntx,'j)~ _ "' ·~f"'il"!"(f~n)%!.1~. ~ 1(H{l"'J.? 
l.Jil ~~ 0 0 

where ~ g:p~ ~~v~). 

TheM integral we write as 

M (x,,» I "" 0(, l ~» r l'Jl7 ..!"! . 
~3ll9 =0 

(4.7.89) 

The a integral is given in equation (4.7.61). 

The ?J integral is simple. It is 

r ~ ~ J~ "' J! n ' "" @' Ji.' .. ' ••• 
=Q 

(4.7.90) 

Thus 

The N integral we write as 

(4.7.92) 

where the ~ integral is defined in equation (4.7.65) and 

the expression for it (with argument <OJ. ) is given by equation 
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(4o7o84). The integral 'JJ) is given by 

~ 

For = y;= 1 p 3 p 5 9 • o. the integral ~$ is zero as the 

integrand is an odd function of ' For !J ~ 0 n ®~ ~ !fil/Jl · 

In order to deal with the JJ = 2 9 4 9 6 9 •• o case we 

set P:J ~ 2-.Ml 9 that is 

(4o7.94) 

This is equal to 

~,"'2 r~"~(~ -vz·~"" d11' 
@ 

(4o7o95) 

because of the even integrand. We put 1JI ~ 'l!ali\J@ and i 27 

becomes 

(4.7.96) 

In general 

(4.7o97) 

from equation 651 of the CRC Handbook of Chemistry and 

Physics (1975). 
= 

Thus ~JJ becomes 

(4o7o98) 

or 

(4.7.99) 
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where .cvu. = 1 9 2 9 3 9 ••• 

We remember that ~l3d'P\lanc1 that eq_ua~ion (4.7o99) is 

for the case when '= 2 9 4 9 6 9 ••• We have thus found 

expressions that can be used to compute theM and U\fJ integrals 

when JAf3 V' • Hence the M and N integrals have been found 

in terms of expressions that can be computed fairly easily 

which means that we have come to the end of this somewhat 

involved reduction process to evaluate the overlap and exchange 

body-fixed matrix element~. No mention has been made of 

the direct matrix elements. We shall see that these can be 

found analytically in a very similar fashion. 

4.7.7. The direct matrix elements 

As might be expected 9 the analytic evaluation of the 

direct matrix elements is very similar to the analytic evalu-

ation of the overlap and exchange matrix elements. As with 

the overlap and exchange elements 9 the switching function 

f must be of the form given in equation (4.7.11). 

We consider first the BB-type elements. The required 

direct BB-type elements are of the general form 

AA IMJ I mGwn =!>~ ...6 m® 11 c=!::>""' JJ-=> 
UV'i:.j;&.~ vfb;iJ ~rr£iJIJMffrr'iJ~»fo~ufF®IJ&Jfr. (4.7.100) 

The 
. ®i:J .d) ® e=t> 

product of fiJJJ «f'c?r;;~ and pi~ {u@~ is given by 

where 
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The elements may be expressed in terms of the three 

integrals 

(4o'l.103a) 

(4o7.103b) 

( 4 0 'l 0 1·0 3 c) 

(4o7.107) 

and 

(4.7.108) 
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As with the BA-type elements 9 the $ and lr integrals are 

expressed in terms of r anct T integrals 9 but wtere now 

only one summation is involved instead of two 9 that is 

(4a1a1Q9) 

and 

(4o7a11Q) 

where 

(4a1a111) 

and 

(4a1a112) 

Substi tlil:ion of the appropriate 0 ~ functions yields 

expressions in terms of the integrals 

~ 0 . 

. M jf I:><' :1! "'I ,! 1 I .l ~ £vir@ .g.-"&t;, Su Pi ;g 
· I cfl . 

(4a7a113) 



and 

where 

and 
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~~~¢!!V9cg=IJ=& 

'J ~ ~~?' 

We now substitute the 13 0 ~ expression for J@ 

where 

and 

~ A~~~~ r85~«~~ 

a1 ~ t«v; 9~es~ 
~ ~= ~«~jc}Vfh~ 

(4o7oll5) 

(4o7a116) 

We find 

(4o7o117) 

(4o1o118) 

(4o1o119a) 

(4o7o119b) 

We saw in Subsection 4o 7 o6 how the ~»~»A and ~ 

integrals could be foundo We see that the method of 

analytically evaluating the BB-type elements is similar to the 

method of evaluating the BA-type elementso 

The direct AA-type elements can be found using the same 

analysis as for the BB-type elementso One slight difference 

is that in the expressions corresponding to those of 

equations (4o7o109) and (4o7o110)~ the factor «=o»? will 

not appearo This is because the expression in terms of ~ 
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and V£ for F~ contains the factor «'il d?o/j » 9 whereas the FQ 

expression contains ff"fj=f/j~. 

4.7.8 Concluding remarks on ths ah~lytic msthod 

At first sight the analytic method of evaluating the 

matrix elements appears to be rather complicated as it 

involves a large amount of tedious algebra. However 9 the 

method is basically very simple in principle. The heart of 

the method is in the computation of the three triple integrals 

involving the fi -functions ( fi -triple integrals). For the 

BA-type matrix elements 9 these triple integrals were given 

in equations (4.7.20a) to (4.7.20c). We saw how the integrals 

were progressively reduced down until they had been expressed 

in terms 6f simpler integrals which could be expressed in 

terms of series expansions of various typesp all of which 

could be computed. More will be said in Chapter 5 about the 

computational aspects of this method 9 but it is centred 

around calJ.ing a subroutine OMEGA from the main program 

which returns the fi -triple integrals. It is then: a simple 

matter to compute the matrix elements. In Appendix AS 

expressions are given for the BA- 9 BB- 9 and AA-type elements 

in terms of the fl -triple integrals when the switching 

function is the simple one f~ given in equation (4.7.1). 

This brings Chapter 4 to a close. In the next chapter the 

results of this work will be presented and discussed. 
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CHAPTER 5 

THE PRESENT RESULTS AND THEIR CALCULATION 

5.1 Intrcduction 

The previous two chapters form the theoretical back-

ground to this chapter wherein the results of this work 

will be presented. The aim of the work of this thesis 

has been to investigate the effect of including a switching 

function into the well-known two-centre atomic basis 

~xpansion for calculating electron capture cross sections. 

It was decided to consider two specific capture 

processes, already much studied by other workers. The 

first was the asymmetrical (accidental) resonance process 

( 5 0 1 0 1 ) 

using a simple two-ptate approximation in which only 

the 1s target and 2s projectile states were retained in 

the expansion 6f the electronic wavefunction. The second 

process was electron capture into the n = 2 level of 

4 + He , namely 

which is also an asymmetrical (accidentai) resonance 

process. The process (5.1.2) was studied using a 4-state 

expansion, that is the 1s tatget state and the 2s, 2po 

and 2p + 1 states being retained in the expansion. Quite 

a wide energy range was used in the calculations upon 

the proceGses (5.1.1) and (5.1.2). It was from a 4He2+ 

laboratory energy of 1 keV to an energy of 800 keV. 

In terms of collision velocity this corresponded to a 
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range of 0.10 to 2.83 a.u. 

Four functional forms of switching function were 

employed in the calculations. They were as follows:­

(a) the simple switching function,§~ 

(5.1.3) 

(b) th2 Schneiderman and Russek (1969) switching function, 

·~~ 

f ·~ = Fi~~rt©>£@ 
§~ 

(5.1.4) 

where the angle ® is as shown in figure 5.1, 

A 
Figure 5.1 

Angle 9 

that is 

(c) the cubic switching function, f~ 

g 
occurring in ;$~· 

(5.1.5) 

(5.1.6) 
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(d) the tanh switching function 9 ff'i? 

The variable ~ we know is one of the three prolate 

spheroidal co-ordinates {1~~»~» equation (4.3.2lb) 

and varies between minus one and plus one. It should 

be stated that the switching function f~ is an approximate 

switching function. The functions f3 ' f$L"l and fcs 
all beccme equal to plus or minus one for large ~ and 

96 ~ ~ or Ft:~ ~ rrn (i.e.; b'J = ~ ~) 0 However, the 

function t@~ ~ ~~. takes on the values ~ @·~~§' when 

~ = ~ 1 a·nd soY? will never be exactly plus or minus 

one, but this will have negligible (if any effect) upon 

the final cross sections. 

The function !F~~~ is given by 

fQ~~ ~ ~a 
"i9fP& 

(5.1.8) 

where ~ is a parameter. A choice of the value of r 
had to be made. Taulbjerg et al. (1975) took p to b~ 

1/~A a.u. and this prescription was chosen for the 

work presented here, namely [P was taken as 1/2 Schneiderman 

and Russek (1969) took ~ to be of the order of 1/8 to 

1/16. In both cases, these other workers were using 

molecular states as opposed to atomic states in the ex-

pansion basis. It should be stated that prior to full 

production of capture cross sections corresponding to 

the p~rameter p being 1/2 (0.5) cross sections were 

computed using the Schneiderman and Russek switching 

function fs~ using r set to 0.5 and also 0.3 for c~pture 
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into the 2s state of 4He+ using two states in the expansion 

in the 4He 2+ laboratory 8 keV to 400 keVo energy range 

The change in the value of the cross sections was not 

significant~ the accuracy of agreement being not l~ss 

than two to three significant figureso Later, during 

production work, a run was done calculating the cross 

section for capture into the n = 2 level of 4He+ (that 

is, four states were used in the expansion) using the 

parameter [F set at Oo 1 with the 4He 2+ laboratory energy 

being 400 keVo The cross section changed by about Oo3%o 

It was therefore considered that only one value of the 

parameter p be used, namely O.So 

5o2 The method of calculating the cross sections 

The calculation of the electron capture cross sections 

can be divided into two separate stageso In the first 

. ND~ 
stage the matrix elements J~ v .~~ v WJD ~ ~JEs 

and ~j~ are computed for different impact parameter 

values, the i~pact parameter represented by b , and also 

for different values of ~· , where &: is as shown in 

figure 5o2 

Figure 5.2 

The impact parameter 

~ and the ~ co-

ordin~te. 
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~ 

The quantity ~ is the ~:,.component of ~ and is such that 

z~ve where v is the collision velocity. It should be 

stressed that figure 5.2 is for the ca$e of straight-

line n1nclear trajectories such that 

and 

that is 

(5.2.1) 

( 5 0 2 0 2 ) 

2 ~ 

~ ~ c0> IZ (5.2.3) 

which is consistent with figure 5.2. In the calculations 

of this work, the trajectories were taken as being straight-

line ones. We remember that the theory presented in 

Chapter 3 was for the case of Coulomb nuclear trajectories 

being used, and that setting a parameter r ' given 

by equation (3.2.4), to zero corresponded to straight-

line trajectories being used so that the theory was still 

applicable to the straight-line trajectory situation. 

It should be noted that if Coulomb trajectories were 

used, the matrix elements would be computed for different 

values of impact parameter b and 1"' instead of b and 

z The variable 't (which becomes equal to Z when 

V= 0) is given by the expression of equation (3.2.5). 

Prior to the calculation of the matrix elements, 

it is necessary to set up a mesh of (bpz) points; the 

matrix elements are c~lculated at each (b» z) point. 

In practice this means that a given b value is selected 



186 

and then the matrix elements are calculated in turn at 

each point on a grid of ~ points. Then~ once this is 

done~ a new b value is selected and the elements are 

calcula~ed again at the points on the ~ grid. Each 

value of b corresponds to a given nuclear trajectory 

and moving from each point on the grid of ~ points 

corresponds to the nuclear motion along the trajectory. 

In practice either 12 or 30 ~ values were used. The 

number of Z points was 232. However~ the elements 

only needed to be computed at 116 points b~cause by having 

half of the z grid negative and the other half positive 

it was possible to compute the elements in th~ negative 

part of the grid and use a simple relation to find the 

values of the corresponding elements in the positive 

N ~tl L 
part of the grid. Representing j ~ D ~ ~ ~ Wj~ » ~fl 

or hjCI by the element !Ej [! ~ the relation is 

(5.2.4) 

where (5.2.5) 

!Ji and WV.j being angular momentum and magnetic quantum 

numbers associated with the state labelled by the index 

J Clearly utilisation of equation (5.2.4) halves 

the computing time required. The matrix elements are 

stored in a file or files ready to be used in the second 

stage of the calculation. 

The computation of the matrix elements requires 

the major part of the computer time required in any one 
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given calculation. This having been done~ the second 

stage of the calculation may be performed. This consists 

essentially of integrating the coupled first-orde~ 

differential equations for the expansion coefficients 

@j~lr~ and ~~~~»(see equations (3.3.5a) and (3.3.5b)) 

subject to t.he boundary conditions given in equation 

(3.3.6). In practice the ~ariable Z is used instead 

of t so the coefficients are dl;«&» and ierzff~~ • Assuming 

where Z§ is the ~ end point 

of the integration, the electron capture cross section 

for capture into the~ th state of the 4He + ion from the 

ith state of H is found from 

1
~* 

if~&~ J.y[ ~~ll~~ff»ij~ [b~[b ~@.®3» 
lb.t 

where ~a and b§ are the initial and final ~ values. 

The expression for ©r~a is an approximation of the one 

~iven in equation (3.3.9). 

The work of this thesis is closely related to the 

work of Bransden and collaborators (Bransden et al., 

1980; Bransden and Noble, 1981; Bransden et al. 1983) 

in that the method they used is very similar to the one 

described above. Indeed some of the computer programs 

used to calculate the cross section results presented 

in this ~hapter were based upon ones developed by Dr. 

C.J. Noble, who was one of the aforementioned collaborators. 

The work of Bransden and collaborators is similar to 
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the work presented here in that a two-centre atomic basis 

expansion was used~ though with plane-wave translation 

factors incorporated. In the work of Bransden et al. of· 

1980 only two states were used in the expansion (two-

state approximation) to calculate cross sections for 

collisions of He 2+, Li 3+, Be4+ and BS+ with H(1s) at 

f -1 laboratory energies rom 5 to 200 keV amu An eight-

state expansion model was used in the work of Bransden 

and Noble (1981) (1s, 2s, 2po, 2p ± 1 on each centre) 

to calculate cross sections for He 2+ - H collisions and 

H+ - He+ collisions in the centre of mass energy range 

2 to 200 keV. This work was extended by Bransden et 

al. (1983) by using twenty states in the expansion (that 

is, n = 3 states were used). 

The main difference between the work of Bransden 

and collaborators and this present work is that in the 

present work the 

NM 
with the j 13 and 

that is the V;~ 

Vj~ and ~J~ matrix elements were calculated 

kj~ P hj~ elements at each (11lD ~~ point, 

and Wj11 elements were computed in the 

first stage of the calculation. In the work of Bransden 

and collaborators, the V,g~ and W.g~ matrix elements were 

computed in the second stage of the calculation just 

prior to the integration of the differential equations. 

This was because plane-wave translation factors were 

being used and as a result these matrix elements were 

given by analytic expressions. It was possible, therefore, 

to code these into the program used to integrate the 

differential equations and calculate the cross sections. 
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As was seen in Chapter 3, the use of a switching function 

meant that the expressions for the matrix elements were 

complicated o In this work, therefore, V.orz and WJL:l had 

to be integrated numerically together with the other 

elements. 

5.3 The computer programs and numerical methods 

5o 3 o 1 Computing the matrix elements numerically 

Five sets of matrii elements are required to obtain 
. NQ~ the cross sections in a given calculationo They are j~ 

A FORTRAN computer program was 

developed to calculate these elements when the simple 

switching function f 5 was usedo We shall refer to 

this program as SWITEL5) Subsequently three other 

programs were developedfrom SWITEL(S) for computing the 

matrix elements when the Schneiderman and Russek switching 

function fs~ , the cubic switching function f~ and 

the tanh switching function f 1r were used. These other 

programs we shall refer to as SWITEL(SR), SWITEL(C) and 

SWITEL(T' respectivelyo It should be noted, though, 

that all the SWITEL programs were very nearly the same. 

The only difference between the programs was that a small 

number of lines of code were different owing to the different 

functional forms of the switching functions, equations 

(5.1.3) and (5olo4) and equations (5ol.6) and (5.1.7). 

The SW:TEL programs are fairly simple in principleo 

Basic data, namely the charges and masses of the target 

a.nd projectile nuclei plus the laboratory energy, are 

read in from a data fileo After reading control switches, 
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the nlm quantum numbers of the atomic basis states being 

used are read. A subroutine W?N is called in tur~ to 

calculate various quantities associated with the radial 

wavefur.ction expressions for first the target and then 

the projectile. Also calculated are the energy eigenvalues 

for the basis states ~j and ~~ , and the T:..factors 

of equation (5.2.5). The next major step is to set up 

the b=z mesh discussed in the previous section. This 

is done· in a fairly straightforward manner. The number 

of b values available is restricted to 12 or 30 with 

given values of b stored in BLOCK DATA. However, it 

is possible to choose the ~ grid without restriction, 

provided the arrays required are large enough. It is 

possible to divide the ~ grid up into a small number 

of regions, a different step-size being used in each 

region. In this way a large step-size can be used for 

large 2 where the centres of the target and projectile 

are far apart, and a small step~size can be used for 

smal.l Z where the centres are close together and the 

matrix elements may be varying fairly rapidly with respect 

to Z The number of points in the ~ grid may be 

chosen without restriction unlike the b grid. Ho·wever 

it is possible to divide the [lp grid up so that a run 

can be done for say the first three ~ points, then 

the next run can be done for the second three points, 

etc. until the full 12 or 30 points have been done. 

·The final data read are the numbers of Gauss-Legendre 
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and Gauss-Laguerre nodes in the numerical integration 

scheme. It is possible to have 4~ 8~ 16 9 32 or 64 Gauss­

Legendre nodes and 12 or 30 Gauss-Laguerre nodes. 

The computation of the matrix elements begins by 

looping over the number of points in the b and ~ grids 

using two DO loops. A subroutine TRAJEC is called to 

calculate various factors associated with the classical 

nuclear motion such as the time derivatives of ~ , etc. 

Also returned by TRAJEC is the angle ~ between the 

space-fixed and body-fixed frames (see figure 4.2) which 

is required later when the rotation between, these frames 

is performed to obtain the space-fixed matrix elem~nts, 

(we remember from Chapter 4 that the body-fixed elements 

are calculated and then the space-fixed elements are 

obtained from these). The number of target and projectile 

channels are looped over next and after calculating the ~ 

and ~ factors required (see equations (4.6.5a) and 

(4.6.5bJ), calling a subroutine AZITH to calculate the 

~ -integrals (see equations (4.6.13) to (4.6.15)) 

which occur in some other factors, the actual integration 

of the B A-type elements begins. The theory of this 

integration was discussed in Section 4. 6 of Chapter 

4. It was noted there that a two-dimensional integration 

over th~ variables ~'and ~ had to be performed. Gaussian 

integration (Hildebrand, 1974) is used to obtain the 

required integrals, Gauss-Laguerre integration being 

used for the ) integral and Gauss-Legendre integration 
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being used for the ~ integral. It should be noted 

that the lower limit of the ~ integral is 1 not 0 and 

so the required nodes and weights must be transformed. 

The nodes and weights for both integrations are held 

in BLOCK DATA. 

Thaend result of this is a set of arrays loaded 

N @t,) k L with the jf':3v j~ and lnjl.! elements plus arrays loaded 

A~ !~"::_IDA H®A 
with the individual elements jlJ JJ l.bd!jCs l' jB3 9 

T~,/2). K ~&, A Gl~ A mJA 
.; J~ ~ .0~ 9 .& '1.j~ (the L l.jC:l are all zero for 

. h 1 . . . ) LM d A ~A All h s tratg t- 1ne traJectortes , jCl an j ~;s • t ese 

elements are in the body fixed frame. A subroutine ~DIRECT 

is called twice, oh the first call to calculate and return 

the matrix elements Vj~ and on the second call to calculate 

and return the elements W.nt:t • Again these are in the 

body-fixed frame. In order to obtain the cross sections 

it is necessary to have the matrix elements in the space-

fixed frame. The theory of this was discussed in Chapter 

4. In the SWITEL programs the arrays containing the 

body-fixed elements are fed to a subroutine ROTATE together 

with angle ~ mentioned earlier and n and 1 quantum 

numbers. The subroutine returns an array of elements 

in the space-fixed frame. The actual computation of 

the elements is now completed. It only remains to output 

them ready for the second stage of the calculation, namely 

the integration of the differential equations for the 

expansion coefficients and the calculation of the cross 

sections. The mode of outputting the matrix elements 
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may be performed in one of two ways. In the first way 

all the elements are read to a sequential line file. 

N 0~ fl_ 1L 
In the second way the j ~ v ~~~ and lill_ges 

elements are read to one random access file and the Vj~ 

and ~j~ elements are read to another random access file. 

The second way is more versatile in that any number of 

basis states may be used, that is it can be used for 

both the two-state and th~ four-state expansion calculations. 

The first way is only used for two-state calculations, 

that is, it may only be applied to the process (5.1.1). 

5.3.2 Computing the fu matrix elements analytically 

If the switching functions f$ and ft!; ·are used, the 

matrix elements can be calculated using an analytic method 

which involves no numerical integration. The theory 

of this analytic method was presented in Section 4.7 

of Chapter 4 and it was fairly involved. However, the 

method lP.nds itself to computation fairly easily. Three 

analytic computer programs were developed for evaluating 

the matrix elements associated with the switching function 

fs The first we shall refer to an ANALYT(E). 

This program computes the ~~~ 

matrix elements using the analytic method. 

and h.o& 

The other 

two programs will be called ANALYT(D1) and ANALYT(D2). 

These compute the Vg~ and Wj~ matrix elements respectively 

using the analytic method. All three ANALYT programs 

are very similar so for brevity only the ANALYT(E) program 
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will be discussed. One important point is that these 

programs were only developed to a point where they could 

output onto paper the matrix elements which could then 

be compared with similar output from the code SWITEL(S) 

which uses numerical integration as part of the element 

evaluation process. The ANALYT programs were only used 

as a check upon the SWITEL(S) program which was used 

for production work together with its related numerical 

programs SWITEL(SR), SWITEL(C) and SWITEL(T). 

The program ANALYT(E) is more or less the same as 

the numerical program SWITEL(S) in the first part of 

its MAIN program where the charges and masses of the 

target and projectile nuclei and the laboratory energy 

are read in from the data file. The same subroutine 

WFN is called to calculate required radial wavefunction 

quantities, eigenenergies and T-factors. The [b)=~ mesh 

is then set up. The points in the [§, and ~ grids are 

looped over in exactly the same fashion as in SWITEL(S) 9 

the subroutine TRAJEC is called to obtain various trajectory 

factors and then two DO loops are used to loop over the 

target and projectile channels. It is at this point 

that the similarities between the programs end. In Section 

4.7 of Chapter 4 it was shown how the various individual 

matrix elements could be written in terms of three so-

called ~ -triple integrals if the simple switching function 

f~ was used. These fi -triple integrals are shown in 

equations (4.7.20a) to (4.7.20c), and also in Appendix 
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A8 expressions are given for the elements in terms of 

them. Having gone into the cha~nel DO loops (in ~AIN) 

a subroutine OMEGA is called. The input parameters 

are the channel indices~ the internuclear distance divided 

by 2,~/~ and two positive integers used to define the 

size of some variably dimensioned arrays. OMEGA returns 

arrays containing the 11 -triple integrals which are 

used to calculate in a straightforward manner the individual 

matrix P.lements, certain combinations of which give the 

~j~ and ~_qCs matrix elements ( N~~ are individual matrix 

elements) which are in the body-fixed frame. A subroutine 

ROTATE calculates the required space-fixed matrix elements. 

The first part of the subroutine OMEGA is more or 

less the same as the subroutine AZITH used in the program 

SWITEL ( 8) to calculate the jd -integrals. This having 

been done, two subroutines ALPBET and LINT are called. 

These load arrays ALP and BET, and AI and BI respectively 

(that is, ALPBET returns ALP and BET, LINT returns AI 

and BI) with the basic g and~ integrals required for 

the calculation. These integrals were denoted by ~~~~» 

and (if the exponent factors~ and v are not equal), 

,:;~~~ (ALP and BET) and by A~{~~ and (if the exponent 

factors p and ~ are not equal) W21 ~~~ (AI and BI), (see 

equations (4.7.61), (4.7.62), (4.7.65) and (4.7.66) 

in Chapter 41 If the exponent factors p and '1:1 are 

not equal then the integrals ©g~ «@~ o ~~ ~ f9J » and 

are given by the expressions of equations 

(4.7.61), (4.7.62) and (4.7.84), (4.7.85). The expressions 
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for ©:i~~a) and ~27 «19» are simple series expressions but the 

expressions for A~ee»and ~J?~&>~ involve modified Bessel 

functions of the second kind, Kuu«~~, and of the first 

kind, Iuu~~} res~>ectively. The subroutine LINT calls a 

subroutine BESLRK which returns an array of modified 

Bessel functions Kvu~~» where !AI is the order (w = 0, 

1,2 .: ... )and~ is real. The subroutine BESLRK uses 

two NAG (Numerical Algorithms Group) subroutine functions: 

S18ACF which returns ~~~~and S18ADF which returns Ko~~». 

BESLRK uses a simple recurrence relation to generate 

the higher order modified Bessel functions. LINT also 

calls a subroutine BESLRI which returns the modified 

Bessel functions IQC=» . BESLRI was developed by Sookne 

(1973) .. It is also capable of returning Bessel functions 

J,.«11:) . If the exponent factors p and <rJ are equal 

ALPBET and LINT return the arrays ALP, BET and AI, BI 

loaded with the required values of the ~ and 1J · integrals 

whenp:;;; v . 

The arrays ALP, BET and AI, BI now loaded, the subroutine 

OMEGA begins looping over various indices. During this 

process, which is to achieve a quadruple summation, a 

subroutine SELECT is called. A pointer is calculated 

within SELECT dependent upon the 1 and m quantum numbers 

of the target and projectile states and then the pointer 

determines as to where the calculation is to branch in 

SELECT as it is, in fact, here that the integrals SJ~~~D~» 
=~~ 

and Tjtl~~~~» are found (see equations (4.7.45) and 

( 4. 7 0 46 ) ) . These integrals are given in terms of the 



197 

~ and~ integrals computed by ALPBET and LINT, and 

the specific expressions depend upon which target and 

projectile states are being considered. SELECT therefore 

"selects" the correct expression in terms of the arrays 

ALP, BET and AI, BI. This is controlled by the 1 and 

m quantum numbers hence the reason for the 1 , m dependent 

pointer. 

Finally the tJ -integrals are multiplied into the 

results of the quadruple summation mentioned above and 

OMEGA returns the values of the fi -triple integrals to 

MAIN. The final calculations are straightforward in 

MAIN to yield the required matrix elements. 

5.3.3 Com~uting the cross sections 

Subsection 5.3.1 described the SWITEL programs which 

N®~ n_ 
computed the matrix elements jC3 l) ~rr v Wjj ~ S> ~.0 et and 

h.olk numerically. We noted that there were four versions 

of SWITEL corresponding to the four switching functions 

that were used. At the end of the subsection it was 

stated that the SWITEL programs could output the matrix 

elements in two ways. In the first way all the elements 

are read to one sequential line file. In the second 

way the and elements are 

read to one random access file and the and 

elementi are read to another random access file. The 

second way would allow more than two states to be retained 

in the expansion. However, the first way was only used 

when there were two states. 
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Two programs for calculating the required capture 

cross sections were developed. Both were based upon 

programs written by Dr. C.J. Noble for the work of 

Bransden et al. (1980, 1983) and Bransden and Noble (1981) 

which were mentioned in Section 5.2. The main task in 

modifying the programs of Noble was to re-write parts 

of them so that the elements vj~ and could 

be read by the programs from the sto~age files. As we 

noted in Section 5.2, in the work of Bransden and 

collaborators the fact that plane-wave translation factors 

were being used resulted in the elements VJ~ and W,g~ 

being given by artalytic expressions the coding for which 

was included in the cross section program. 

The two cross section programs used in this work 

corresponded one to the SWITEL program reading the matrix 

elements to a sequential line file and this was used 

for two-state calculations of the cross sections for 

the process (5.1.1), and the·other to the SWITEL program 

reading the matrix elements to two random access files. 

This was used for studying the process (5.1.2) using 

a four~state expansion, though it could be used for 

doing two-state calculations. The two-state cross section 

program will be referred to as CROSS2 whilst the more 

general multistate program which was used for the four­

state calculations, will be referred to as CROSSM. 

The program CROSSM is fairly straightforward. It 

begins by reading target and projectile data, namely 

charges and masses of the nuclei and quantities associated 
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with the radial wavefunctionso Also read are various 

control switches and the laboratory energyo The first 

major step in the calculation process is the calling 

of two very similar subroutines PHLNA and PHLNADo These 

multiply the elements computed by SWITEL by their correct 

eigenenergy phase factorso In Chapter 3, equations 

(3o3o80) to (3o3o84)~ these are showno The subroutine 
. ND& i 

PHLNA multiplies j~ , ~j~ 

and PHLNAD multiplies 

and respectivelyo In both PHLNA and 

PHLNAD the elements are read from the random access storage 

files, the phase factors are added and then the new elements 

are read into temp6r~ry random access storage fileso 

The int~gration of the coupled differential equations 

may now begino It is necessary to go into a DO loop 

over the impact parameter grido A subroutine START is 

called which computes the coefficients tllj«~» and Cet«2:~ 

at the initial integration 2:: point, Z,;. o Th.is having 

been done, the system of differential equations is integrated 

by calling the subroutine DE which is a standard Adams' 

program with automatic selection of order and step-sizeo 

(Shampine and Gordon, 1975) o As part of the integration 

procedure, it is necessary to interpolate the matrix 

elements on the ~ grid o This is done by the subroutines 

SLGINT and SLGINDo They use Lagrange four-point inter-

polation (Hildebrand, 1974)0 A useful check upon the 

numerical accuracy is done by using Green's unitarity 

relation equation (2o3o53) (se~ Chapter 2)0 As the inte-
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gration proceeds from the initial to 

the f:lnal point, ~g after each step G-reenQs unitarity 

relation is computed. At the end of the integration 

for the particular impact parameter being dealt with, 

a routine ASCOR is called. In the original code written 

by NoblP., this routine was required for asymptotically 

correcting the coefficients @..ff and ~~ , that is they 

had to be extrapolated out to Z :;;: ? w in order to 

obtain the probabililty amplitudes @j«.fr~» and ~~;s~c!?~» 

which could then be used to find cross sections associated 

with transitions to individual quantum states labelled 

by the indices j and k. Considering only the four-state 

( t 1 · · 1 2 s, 2po, 2p _+ 1) targe s; proJect~ e : case, in fact 

the coefficients @ 05 and ~~pz1 do not need correcting, 

that is, the required probability amplitudes are equal 

to provided 'Z~ is large 

enough. However, the coefficients Cas and Cape 

must be corrected as, in general, their values at Z=Zf 

are not approximately the same as those at Z ::;::: ~WI • 

The reason for this is the long-range dipole-type coupling 

between the 2s and 2po states of He+. The method of 

correcting the coefficients by extrapolation along the 

trajectory is discussed by Wilets and Gallaher ( 1966) 

and Cheshire ( 1968). The subroutine ASCOR can correct 

coefficients calculated when plane-wave translation 

factors are used in the formulation. However, when a 

switching function is used, the correction procedure 
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will be much more complicated and so ASCOR should not 

be used. In fact the switching fu~ctio~ coe~ficients 

are not asymptotically corrected by ASCOR~ (the subroutine 

is called but it loads an array with the uncorrected 

coefficients which are then used). Thus only the cross 

section for capture into the n = 2 level of He+ can be 

calculated. This is the sum of three cross sections 

for capture into the 2s 9 2po and 2p ~ 1 states of He+ 

but of these individual cross sections, only the 2p ~ 1 

is correct. The final part of the MAIN program calls a 

subroutine XSECTN to calculate the cross sections using 

the integral expression of equation (5.2.6) (this ex-

pression assumes C.~t(Zf) ~ C~(?oo~ To be strictly 

correct the integrand should be ~Cu~-o-«W» ~
2

b ) . One 

final and important point about CROSSM is that if the 

matrix elements are computed for plane-wave translation 

factors being used rather than switching function trans-

lation factors, CROSSM will output plane-wave factor 

cross sections. In fact a program PLANEL was written 

which computed and 

when plane-wave translation factors were used and this 

meant that CROSSM could be tested. More will be said 

about this in subsection 5.3.5. If CROSSM was used for 

finding plane-wave cross sections, the asymptotic correction 

routine ASCOR could be used fully. 

In ~ similar fashion to CROSSM 9 the two-state cross 

section program CROSS2 begins by reading target and projectile 
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data together with switches 9 etc. The calculation begins 

r 
with a DO loop over the :91 grid. O::.ce in this loop 9 

a subroutine ELEMS is called. Tb.is reads in the stored 

matrix elements and constructs arrays from which the 

elements required in the two-state calculation may be 

interpolated. It should be stated that the multistate 

program CROSSM solves the coupled equations when they 

are in the form 

(5.3.1) 

(see equations (2.3~40) to (2.3.42), Chapter 2). However, 

the two-state program solves equations which have been 

recast into a more convenient form by phase transforming 

the coefficients ~«~»and ~«~» to give new coefficients 

J\(z)and (~~». The phase-functions are integrals of 

certain combinations of the matrix elements. The procedure 

for integrating the differential equations is the same 

as that in CROSSM. A subroutine START is called to 

computeA{2';) and c~~e» and then the subroutine DE is called 

to integrate the equations out to Z§ Unlike the 

program CROSSM, as the integration proceeds CROSS2 uses 

the matrix element unitarity relation given by equation 

(2.3.52a) as a numerical check upon the interpolation 

(Lagrange four-point) as the 6 =axis is stepped along. 

To check the accuracy of the integration procedure, 

the sums of the squares of the moduli of the coefficients 

A and C at 2:.:;;::: Z§ are added together. This should be 

very near unity (equation 2.3.54). The subroutine XSECTN 



203 

is callEd to calculate the capture cross section. As 

for CROSSM, CROSS2 may be used to output cross sections for 

plane~wave translation factors being used. The program 

PLANEL supplies it with the required plane-wave matrix 

elements via a storage file. 

These descriptions of the cross section programs 

are basic in that the programs have other secondary features 

not discussed. For example, the program CROSSM has the 

facilities to output the interpolated matrix elements 

and also output direct matrix elements HJ~ and Hj& 

both at specific (b~~) points as an aid to checking the 

program. In subsection 5.3.5 more will be said about 

checking the programs but prior to this a little more 

will be said about the programs of Noble used in the 

work of Bransden and collaborators. 

5.3.4 The plane-wave trarislation factor programs 

of Noble. 

In the work of Bransden et al. (1980), Bransden 

and Noble (1981) and Bransden et al. (1983), the plane-

wave matrix elements were computed using a program which 

will be referred to as FOURIER and uses the Fourier trans-

form method of Sin Fai Lam 

(Sin Fai Lam, 1967). The FOURIER program was written 

by Noble ( 1980). It computes the N ~~ v ~J~ and hj~ 
matrix elements when plane-wave translation factors are 

used. These are then read to either a sequential line 

file or a random access file according as to the whether 
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a two-state or multistate calculation is to be performed 

respectively. 

The second stage of the calculatior. of plane-wave 

cross sections is carried out by one of two programs 

also written by Noble. The first we shall refer to as 

PLANX2 and the second as PLANXM. These are respectively 

two-state and multi~tate programs. The programs used 

in the present work, described in the previous subsection, 

CROSS2 and CROSSM, are based upon these programs. The 

programs PLANX2 and PLANXM compute the direct matrix 

elements, though, before the integration of the coupled 

differential equations and calculation of the cross sections 

are performed. 

5.3.5 Testing the computer programs 

It is vital that rigorous checks and tests are performed 

upon computer programs used in this kind of work. The 

programs which we are dealing with are the SWITEL programs 

that compute the matrix elements when a switching function 

is used in the formulation, and the CROSS2 and CROSSM 

programs that integrate the coupled differential equations 

and output the cross sections. 

One very useful test of the simple switching function 

program SWITEL(S), which computes the matrix elements 

numerically, was to compare output from it with output 

from the analytic programs ANALYT(E), ANALYT(Dl) and 

ANALYT(D2) which were discussed in Subsection 5.3.2. 

The SWITEL(S) and ANALYT programs were run at various 

energies and (~z) points, mainly for the He 2
+ - H system 
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and coupling the 1s target and n = 2 projectile states. 

In all cases extremely good agreement was cbta~ned between 

the numerical and analytic codes~ output. As a:-1 example 

the codes for a 4He 2+ laboratory of were run energy 

20keV a~ the point on the ~= ~ mesh ~ = 4, z = 5 for 

the He 2
+ - H system with 1s target and n = 2 projectile 

states. Using a 16 /12 Gaussian quadrature scheme ( 16 

Gauss-Legendre and 12 Gauss-Laguerre nodes) absolute 

agreement was hchieved using an output format D16.8, 

that is, eight significant figure accuracy. The ANALYT 

program could only output matrix elements associated 

with t~e simple switching function f$ and so these programs 

could net be used as diagnostic tools to check the other 

SWITEL programs SWITEL(SR), SWITEL(C) and SWITEL(T) which 

corresponded to the Schneiderman and Russek, the cubic 

and the tank switching functions respectively. However, 

the other three SWITEL programs were very similar to 

SWITEL(S). The only difference was that a few lines of 

code were different owing to the different forms of switching 

function. Thus this pos{tive diagnostic result achieved 

by using the ANALYT programs to check SWITEL(S) could 

be considered valid for the other SWITEL programs provided 

very car~ful coding of the lines of code mentioned was 

performed. 

Early in the development of the SWITEL programs 

it was decided to develop in parallel a program based 

upon SWITEL but which computed matrix elements when plane-

wave translation factors were being used rather than 
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switching function translation factors. This program 

was named PLANEL and has been mentioned earlier in this 

section. The PLANEL program computed elements which 

were stored and then used by either CROSS2 or CROSSM 

for calculating plane-wave capture cross sections. These 

could then be compared directly with plane-wave capture 

cross section results from Noble's tried and tested programs 

PLANX2 and PLANXM which used elements computed by another 

Noble program FOURIER. Also comparisons were made between 

matri~ elements computed by FOURIER and PLANEL. Good 

agreement was achieved between the cross sections produced 

by using PLANEL and CROSS2 and CROSSM and those produced 

by usiPg Noble's programs FOURIER and PLANX2 or PLANXM. 

Table 5.1 shows the comparison between the plane-wave 

cross sections obtained using PLANEL and CROSS2, PLANEL 

and CROSSM, and FOURIER and PLANX2 for the process (5.1.1) 

capture into the 2s state of 4He+ using two states in 

the expansion. The results in the table were obtained 

using 12 impact parameters whose values ranged from 

3.472 x 10-2 to 11.13 a.u. The~ grid began at -12 a.u. 

There is very good agreement between the PL2 results and 

the PLN results obtained using Noble's programs up to 

40 keV. However, the accuracy of agreement goes down 

to that of two significant figures at 400 keV. The agree­

ment is good between the PLM results and the PLN results 

with a similar decrease in accuracy of agreement at 400 

keV. 
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Lab. I 

i, energy 
\ (keV) 

PL2 PU1 PLN 

1 

5 

20 

40 

400 

II 

0.67695022-3 0.67694182-3 0,67695169-3 

0.26763190+0 0.26763330+0 0.26763184+0 

0.23231262+1 0.23231400+1 0.23231262+1 

0.21119339+1 0.21119302+1 0.21119338+1 

0.65477864-1 0.65478056-1 0.65119137-1 

Taole 5.1 

Comparison of plane-wave translation factor cross 

section results for capture into 2s state of 4He+. 

PL2, results obtained using PLANEL & CROSS2; 

PLM, results obtained using PLANEL & CROSSM; 

PLN, results obtained using FOURIER & PLANX2. 

The results are displayed in a format such that 

1.23-4 = 1.23 X 10-4 . 

(Cross section units : 1o-16cm 2 ) 

The results of table 5.1 used only two states in 

the expansion. Four-state tests were done comparing 

the total cross sections obtained using PLANEL and CROSSM 

with those. obtained using Noble's programs FOURIER and 

PLANXM. The cross sections were for capture into the 

three n 2 states of 4He+. The results of this are 

displayed in table 5.2. There is good agreement between 

the results being compared in lines(a) and (b) (see 

table cavtion) though with a decrease in accuracy of 

agreement as the laboratory energy increases from 40 to 
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400 keV. The agreement is very good (5 to 6 significant 

figures) for 20 and 40 keV. As for the two-state comparison~ 

jl Lab. ' nlm capture state 
.energy 

! 
+ (keV) 

1 

5 

20 

40 

400 

2so 2po 2p-1 

(a) 0.16442721-1 0.99307692-2 0.64168339-2 
(b) 0.16445727-1 0.99334556-2 0.64195141-2 

(a) 0.69494132+0 0.13253467+1 0.84408687+0 
(b) 0.69497087+0 0.13255505+1 0.84422981+0 

(a) 0.25112617+1 0.51997127+1 0.40949645+1 
(b) 0.25112930+1 0.51997108+1 0.40949595+1 

(a) 0.18927889+1 0.51399597+1 0.39758756+1 
(b) 0.18927791+1 0.51399197+1 0.39758423+1 

(a) 0.12844591+0 0.13145528+0 0.63796736-1 
(b) 0.12791546+0 0.13153327+0 0.63808077-1 

Table 5.2 

Comparison of plane-wave translation factor cross 

section results for capture into the n 
of 4He+. 

2 states 

Upper lines (a) : results obtained using PLANEL & 
CROSSM. Lower lines (b) : results obtained using 

FOURIER & PLANXM. 

Results format as for table 5.1 . (Cross section 
. 10-16 2) un~ts : em . 

12 f 4 -2 impact parameters rom 3. 72 x 10 to 11.13 a.u. were 

used with a &: grid beginning at -12 a.u. 

The results of these comparisons between the cross 

section programs of this work, CROSS2 and CROSSM, and 

those written by Noble, PLANX2 and PLANXM, were indicative 

that the progra~CROSS2 and CROSSM were reliable and 

could be used for production of switching function trans-
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lation factor capture cross sections. However, the program 

PLANEL outputted matrix elements that could be compared 

with those from FOURIER, as was mentioned earlier. As 

would b~ expected from the cross section results, the 

matrix elements from these programs were in good agree-

ment. This fact was a further recommendation of the 

reliability of the SWITEL programs upon which PLANEL 

was based. In fact, PLANEL was very similar to SWITEL; 

the same two-dimensional Gaussian integration method 

was used and the rotation routine ROTATE was the same. 

The main difference was in the integration of the azimuthal 

(that is, fP} - ) integral when calculating the Ng~ v ~.D~ andh;~ 

matrix elements which used the integral representation 

of the integer order Bessel functions (Arfken, 1970) 

(5.3.2) 

where 

(5.3.3) 

This arose because of the ~ np « i ~- r~ factor. 

5.3.6 Preliminary runs - Gaussian quadrature con-

vergence and choice of Z grid 

The computer programs having been tested, it was 

necessary to do some preliminary runs of the programs as 

a prelude to production of final cross section results. 

The SWITEL programs were going to be·used for computing 

the matrix elements. The main question to be answered 
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about this first stage of the calculation was concerned 

with the number of nodes required in the Gaussian quadrature 

scheme. For each of the SWITEL p~ograms (that is, SWITEL(S), 

SWITEL(SR), SWITEL(C) and SWITEL(T)) matrix e~ements 

were conputed and outputted at four points on the~-~ 

mesh using four quadrature schemes 16 /12, 16/30, 32/12 

and 32/30 ( 16 /12 means 16 Gauss-Legendre nodes, 12 Gauss­

Laguerre nodes). The four points on the b~~ mesh (denoted 

by o~p2:)) were (0.1,0.1), (0.1,10), (7,0.1) and (7,10}, 

Comparing the elements computed using the four different 

quadratures showed that for the three switching functions 

fs , f\1: and f.v (simple, cubic and tanh) the use 

of a 16/12 quadrature was quite adequate. However, for 

the switching function f5~ ( Schneiderman and Russek) 

it was found that, taken over all four (~~~) points, 

16 /12 was not good enough. Comparing the 16 /12, 16 /30 

and 32/30 quadratures, the elements computed with 16 /12 

usually only agreed to two significant figures with 

the 32/30 elements. However, the 16/30 elements agreed 

with the 32 /30 elements to three or four significant 

figures. Although better accuracy could have been achieved 

by using the 32/30 scheme, this would have required about 

twice as much computer time per run and hence the 16/30 

quadrature scheme was chosen to be used when fs~ matrix 

elements were to be·computed. 

The matrix elements in the calculation are calculated 

on a grid of ~ points for each value of impact parameter 

~as was discussed in section 5.2. It was necessary 

to choose a suitable ~ grid. The one chosen began at 
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Z= -27.0, had 22 steps of size 0.75 and then 93 steps 

of size 0.12. This corresponded to m:::.nirnurn ar:d maximum 

possible initi&l a~d fin&l points for integrating the 

differential eq~ations of ~d = -26.0 and "Zy = +26.0 

respectively. It was necessary for &:c. to at least lie 

betweer. the second and third points on the & grid for 

the interpolation procedure to perform correctly. The 

outer region of the ~ grid, where the step-size was 

0.75, was where the matrix elements were varying fairly 

slowly with respect to Z. The inner region, where the 

step-size was 0.12, was where the elements were varying 

more rapidly. The choice of step-size in the inner 

region wds the same as that in the work of Bransden et 

al. (1980). In that work the inner region had 92 steps 

of size 0.12. The step size in the outer region of 

0.75, used in the present work, was larger than that 

used in the work of Bransden et al. In their outer region 

there were 6 steps of size 0.2. However, the first 

point of the grid in the present work had to be -27.0 

whereas Eransden et al. had a first point of -12.0. 

Bearing in mind that the matrix elements had to be computed 

at each point of the grid, the larger step-size of 0.75 

was used in the outer region in the present work in order 

to maintain economy of computer time. 

The value of the first point of the grid used in 

the present work was -27.0. This was chosen by doing 

a series of full cross section calculations for capture 

into the n = 2 level of 4He+ using the simple switching 
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function f.t 4 2+ at a He laboratory energy of 400 keVo 

The initial and final integration points on the~ -axis 

for integrating the differential equations, that is 2i 

and ~§ , were varied from = 6o0 up to = 49o0o The values 

of the cross section obtained are displayed in table 

5o3. The usual impact parameter grid of 12 points from 

. -2 
3.472 x 10 to 1L13 was usedo (The initial point '2"::~ 

was the negative of the final point ~§and so only values 

of.z1 are shown in table 5o3)o The region of convergence 

was from Z§ = 16 o 0 to &:.if = 26.0 o For values of~§ greater 

than 26.0 the cross section's increase in value is probably 

due to numerical inaccuracy. In all of the calculations 

of the present results the matrix elements were computed 

using the z grid beginning at -2700. However, most of 

the cross sections were computed using more than one 

value of Zf (Zi) to ensure that convergence with respect 

to the value of Z§ (Z1 )had occurred. The values were 

in the region of convergence from 16.0 to 26.0. Some 

results, namely the ones computed using the Daresbury 

Laboratory AS 7000 machine, were only performed using 

a single value of Z; ~l )o In this case a value of 24.0 

was used for "£.§ , with -24. 0 for ~ ~ . 

Apart from the width of the 2 grid being large enough, 

it was necessary to test that the step-sizes being used, 

namely 0.75 in the outer region and 0.12 in the inner 

region, were small enough. This was done by simply halving 

the step-sizes so that there were 44 steps of 0.375 
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1 1-

\==-z-*-~-~ ~( n~~~~~-~2~~~~ -~--~e;-( "-·=_2_)---~ 
6.0 9.3862 29.0 9.7363 

8o0 9.6574 31.0 9.7381 

10o0 9.7232 33.0 9o7423 

12o0 9o7339 35o0 9o7502 

14.0 9.7347 37.0 9.7636 

16.0 9.7347 39.0 9.7857 

18.0 9.7346 41.0 9.8200 

20.0 9.7345 43.0 9o8712 

22.0 9o7348 45o0 9.9452 

24.0 9.7348 47.0 10o050 

26o0 9o7351 49o0 10.195 

27o5 9o7355 

Table 5.3 

Convergence of cross section results for capture 

inn= 2 level of 4He+ at a 4He 2+ laboratory energy 

of 400 keV using the simple switching function f5 . 

U(n=2) denotes the cross section. (Units: 

a. u. ; ~(n=2) in 1o-16cm2 )0 

in the 011ter region and 186 steps of 0. 06 in the inner region 

and then using this z grid in two full calculations of 

cross sections for capture into the three n = 2 states 

of 4He+ using the simple s~vitching function f 5 In 

the first calculation the 4He 2+ laboratory energy was 

5 keV and in the second calculation it was 400 keV. 

The results of these calculations are displayed in table 

5.4 together with corresponding results at 5 keV and 

400 keV which were calculated using the original ~ grid 

of 22 steps of Oo75 and 93 steps of 0.12. In all the 

calculations Z§ was 24 o 0 o At both energies used there 
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: Lab. nlm capture state ! 1 energy 

~ + r (keV) 2so 2po j 2p-1 
I I 

(a) 0.84523790+0 0.14265795+1 0.76193243+0 
5 (b) 0.84512118+0 0.14264635+1 0.76195279+0 

400 
(a) 0.30296729+1 0.48736342+1 0.18315204+1 
(b) 0.30295820+1 0.48734271+1 0.18315160+1 

Table 5.4 

Comparison of switching function cross section results 

for capture into the n = 2 states of 4He+ . Upper 

lines (a): results obtained using the~ grid with 

22 3teps of 0.75 and 93 steps of 0.12. Lower lines 

(b) : results obtained using the 6 grid with 44 

steus of 0.375 and 186 steps of 0.06. Results 

format as for table 5 .1. ( Cross section units 

10-16cm2 ). 

was very good agreement between the cross se2tion results 

obtained using the two z grids. This was indicative 

that the grid with 22 steps of 0.75 and 93 steps of 0.12 

was quite adequate for production work. 

The number of points in the b grid could either 

be 12 or 30. The use of 12 points was cheaper computer 

time wise but results were also produced using 30 points. 

The final production results revealed that at low energies 

( ~ 5-10 keV) 30 points were required. Above this, 12 

points were enough. If 12 points were used their values 

ranged from 3.472 x 10-2 to 11.13 a.u; if 30 points were 

used their values ranged from 1.422 x 10-2 to 31.25 a.u. 

5.3.7 A table displaying the programs 

To end this section a table is given displaying 

the programs used and associated comments (table 5.5). 
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The table shows the matrix element programs and their 

corresponding cross section programs. Also shown are 

the number of states that can be dealt with and the type 

of translation factor used. It should be noted that 

Matrix Cross Number Type of 

elements sections of I Translation 
States factor 

FOURIER PLANX2 2 plane-wave PLANXM ~2 

PLANEL CROSS2 2 plane-wave CROSSM ~ 2 

SWITEL 
CROSS2 . 2 switching 
CROSSM ~ 2 function 

2 
simple 

ANALYT -
~ 2 

switching 
function 

TABLE 5.5 

Th8 computerprograms referred to in the text. 

SWITEL denotes either of the four SWITEL programs: SWITEL(S), 

SWITEL(SR), SWITEL(C) or SWITEL(T). ANALYT denotes ANALYT(E), 

ANALYT(Dl) or ANALYT(D2). It was stated earlier that 

the ANALYT programs were not developed to the stage where 

they could be used together with the programs CROSS2 

and CROSSM for calculation of cross sections. 

5,4 The present results 

5.4.1 Cross sections for capture into the 2s state 

of 4He+ 

In this subsection capture cross section results 

are presented for the process (5.1.1), namely the capture 
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of the electron from atomic hydrogen by fully stripped 

helium ions (alpha particles) into the 2s state of the 

singly charged helium ion 4He+o In all this presentation, 

the results are for helium nuclei having a mass of 4 

amu. The energy range used for this study was from 1 

4 2+ keV to 800 keV (He laboratory energy). The results 

were calculated using the two-centre two-state atomic 

basis expansion with inclusion of a switching functiono 

The four forms of switching function used were given 

in the introduction of this chapter, Section 5.1o The 

matrix elements were computed by the SWITEL programs 

which used Gaussian (numerical) integrationo The cross 

sections were computed using CROSS2 and CROSSM. A useful 

comparison was between this work which used a switching 

function, and the work of Bransden et al. (1980) in which 

cross sections for capture into the 2s state of 4He+ 

were among the results presented. Bransden et al. used 

a two-state approximation but with plane-wave translation 

factors instead of switching function translation factors. 

However) the energy range used by Bransden et al. was 

f 4 2+ rom 20 teV to 800 keV ( He laboratory energy) and 

so some extra results were required at low energies. 

These were produced by using the programs PLANEL with 

CROSS2 and CROSSM. (Bransden et al. used the programs 

FOURIER and PLANX2)o Table 5o6 displays all the two-

state, plane-wave results for capture into the 2s state 
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4 + of He , The table shows the programs used in the cal-

culations and the number of impact paramete~s employed. 

"''"--or --. --
II I Programs Used :j Lab. Number of I Cross 

energy Matrix I Cross impact i section 
I (10-16cm2) (keV) 

1 

2.4 

5 

12 

20 

40 

100 

200 

400 

800 

elements 
i 

sections parameters 

PLANEL CROSSM 30 0' 7 3-3 

" il II 0.23-1 

" il " 0.257 

" CROSS2 12 1. 56 

FOURIER PLANX2 " 2.32 

" " " 2.11 

" " " 0.963 
I 

" " " 0.269 
I 

" " " 0.65-1 
' 

" li li 0.11-1 

TABLE 5.6 

Two-state plane-wave translation factor cross 

sections for capture into the 2s state of 4He+. 
-3 (0.73-3 = 0.73 X 10 ), 

~ 

All the cross sections in table 5.6 were computed on the 

IBM 370/168 machine (NUMAC) using double precision. 

The results for laboratory energies from 20 to 800 keV 

inclusive are those of Bransden et al. (1980). 

Table 5.7 displays the present two-state switching 

function results for capture into the 2s state of 4He+. 

The four forms of switching function are shown on the 

left of the table. The parameter p in F(R) (see equation 

(5.1.8)) is 1/2. The 12 impact parameter results, labelled 

by a), were obtained using the IBM 370/168 machine (NUMAC). 

The 30 impact parameter results, labelled by b), were 



Switching 
function 

~F(R'~ 

-F'(R}cosB 

= F(~)11~ 

- F{R}tCJvu~ 3~ 

4He 2
+ Laboratory energy (keV) 

r 
1 2.4 5 10 20 40 100 400 ! 800 

a) 0.25-3 0.19-1 0.327 1.40 3.37 4.41 4.11 2~89 l 2~57 
b) 0.17-3 0.32-1 0.297 1.45 3.36 4.41 4.11 

a) 0.25-3 0.19-1 0.319 1. 37 3.25 4.13 3.55 ! 1.95 i 1.39 
I 

" a) 0.25-3 0.21-1 0.353 1. 53 3.82 5.24 5.69] 6.4.0 8.60 

a) 0.24-3 0.18-1 0.308 1. 30 2.95 3.57 2.64 2. 3'-~ i 3. 19 
b) 0.17-3 0.31-1 0.281 1. 34 2.94 3.57 2.64 - 1 -

~~ 

Table 5.7 

Two-state switching function translation factor cross sections 

for capture into the 2s state of 4He+ . 12 impact parameter results 

are labelled by a); 30 impact parameter results by b). Cross 
sections are in units of 10-16cm2 .(0.25-3 = 0.25 x 10- 3 ). 

I 
N 
....... 
00 
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obtained using the AS 7000 machine of the Daresbury Laboratory. 

All the results were computed using double precision. 

The two-state results of t~e present work are also 

displayed graphically in figure 5.3 together with other 

theoretical data and experimental data. (The key to figure 

5.3 is on the page after it). 

The striking feature of the graph in figure 5.3 is 

the very large discrepancy at high energy between the 

present two-state atomic expansion cross sections using 

switching function translation factors and the cross section 

results of Bransden et al. (1980) who used a two-state 

atomic expansion with plane-wave translation factors. 

It can also be seen that at low energies the switching 

functio11 and plane-wave translation factor results agree 

quite wel.l. The divergence between the two-models would 

appear to begin in the region before the cross section's 

4 -1 maximumJ namely 2.5 to .0 keV amu This corresponds 

to a collision velocity of the order of 0.3 - 0.4 a.u. 

It is here also that the divergence between the results 

obtained using the four different forms of switching function 

becomes nore pronounced. In contrast, for energies less 

than about 2.5 keV amu- 1 , the results associated with 

the four switching functions are in good agreement, so 

much so that only the simple switching function results 

-1 are plotted at energies below 2.5 keV amu . One point 

which ought to be mentioned is that the plane-wave and 

-1 switching function two-state results below 2.5 keV amu 

were those obtained using 30 impact parameters. For 
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Key to Figure 5. 3 

Cross sections for electron capture into 

4 .J... 
the 2s state of He· . 

Theoretical cross sections : 

, two-state atomic expansion with plane-wave 

translation factors, present work and Bransden 

et al. ( 1980) ; 

= = = - ~ , two-state atomic expansion with simple switching 

function translation factors, present work; 

.......... , two-state atomic expansion with Schneiderman 

and Russek switching function translation 

factors, present work; 

, two-state atomic expansion with cubic switching 

function translation factors, present work; 

, two-state atomic expansion with tanh switching 

function translation factors, present work; 

, eight-state atomic expansion, Bransden and 

Noble ( 1981); 

, twenty-state atomic expansion, Bransden 

et al. (1983); 

0 , eight-·s tate atomic expansion, Msezane and 

Gallaher (1973); 

~ , eight-state and [] , eleven-state atomic 

expansion, Rapp (1974); 

@ , ten-state molecular expansion, Hatton et 

al. (1979). 

Experimental cross sections: 

! 
£ 

, Bayfield and Khayrallah (1975); 

Shah and Gilbody (1978). 
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2.5 keV amu- 1 and above, 12 impact parameters were used. 
~ 

Also the results for 0.25 keV amu-~ (that is, 1 keV) are 

not plotted owing to their sma~lness. 

On the high energy side of the cross section's maximum 

the eighc- and twenty- state plane-wave translation factor 

atomic expansion calculations of Bransden and Noble (1981) 

and Bransden et al. (1983) agree well with the experimental 

date of Shah and Gilbody (1978). This work was an extension 

of the two-state work of Bransden et al. (1980) which 

tends to underestimate the cross section in this energy 

region. The eight- and eleven- atomic state work of Rapp 

(1974) would appear to give good results in this region 

if the eight-state result at 50 keV amu- 1 is disregarded 

and assumed to be spurious. It is, however, puzzling 

that there is notable disagreement between the eight-state 

results of Rapp and Msezane and Gallaher (1973) which 

should, in fact, agree. On the low energy side of the 

maximum ~he only other theoretical calculation worthy 

of note is that of Hatton et al. (1979). In this work 

a ten-state molecular expansion was used with plane-wave 

translation factors. -1 Below about 1 keV amu the two-

state atomic expansion results (plane-wave and switching 

function) are in disagreement with Hatton et al. 's results 

by about one order of magnitude. 

Data from three molecular expansion calculations, 

which were not plotted on the graph of figure 5.3, are 

compared with the data from the two-state atomic expansion 

calculatJons using plane-wave and switching function 
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translation factors and also with the results of Hatton 

et al. 's calculations for laboratory energies 0.25 - 5.0 keV 

amu- 1 in table 5.8. Two of the molecular expansion calculations 

both employed optimised switching function translation 

factors. The one calculation due to Kimura and Thorson 

(1981b) used 10 basis functions; the other, due to Crothers 

and Todd (1981b), used 5 basis functions. There is good 

agreement between the two ten-state molecular calculations 

of Hatton et al. (1979) and Kimura and Thorson (1981b) 

with slightly less good agreement between these calculations 

and the five-state molecular one of Crothers and Todd 

(1981b). It is probably unfair to be critical of the 

lack of accord between these three molecular state cal-

culations and the atomic state calculations A and B as 

the latt~r only used two states whilst the former calculations 

had five or ten states in the expansion. The three mole-

cular calculations employing translation factors (H, KT 

and CT) are in better agreement with one another than 

with the three molecular state PSS calculations of Piacentini 

and Salin (1977) denoted by PS. 

We end this subsection with a table of c.p.u. times 

for the computation of two-state matrix elements and cross 

sections for capture into the 2s state of 4He+ at a laboratory 

energy of 400 keV (100 keV amu- 1 ) by the computer programs 

described in this chapter, table 5.9. 
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( -1 Lab. energy keV amu ) 

0.25 .75 I 2.0 5.0 ;i i 0 
~ 

'i 'I ,; 

A 0.73-3 
\i 

0.059* o. 7 8~- ~ 2.32 

B 0.17-3 0 0 069~' o. 9o~·, 3.37 

PS - 0.28 ·k 0.98;'' 1 0 15;\-

H 0.39-1 0.397 L27 2.37 

KT 0.38-1 0.39 .. k 1. 21 2.18 

CT - 0.395 L46 2.90 

* denotes graphical values. 

Table 5.8 

Comparison of cross sections for capture into the 2s state 

f 4u + A . . . h 1 o ne : , two-state atom1c expans1on w1t p ane-

wave translation factors, present work and Bransden 

et al. (1980); B, two-state atomic expansion with 

simple switching function translation factors, 

present work; PS, three-state molecular expansion 

(PSS method in H ref. frame), Piacentini and Salin 

(1977); H, ten-state molecular expansion with plane-

wave translation factors, Hatton et al. (1979); KT, 

ten-state molecular expansion with optimised switching 

function translation factors, Kimura and Thorson (1981b); 

CT, five-state molecular expansion with optimised 

switching function translation factors, Crothers and 

Todd (1981b). Cross sections are in units of 

-16 2 . -3 
10 em . (0.73- 3 = 0.73 x 10 ). 
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Program CopoUo time ( s ) 

Name ~ 12Lpo 30i. p 0 ! 
:• 

M FOURIER 216 
N 

1 

c PLANX2 7 - I 
M PLANEL 683 N PW c CROSS2 7 -

I 
681 A,1700 M PLANEL N N c CROSSM 18 - 40 

M SWITEL(S) 825 N c CROSS2 9 -

M SWITEL(SR) 1700 N c CROSS2 9 -

M SWITEL(C) 835 N c CROSS2 9 -

SF 
M SWITEL(T) 876 N c CROSS2 9 -

M SWITEL(S) IV 1800 D c CROSSM - 36 ..... 

M SWITEL(T) -157 5 D I c CROSSM - - 36 

Table 5.9 

C.pou. times for computation of matrix elements (M) and 

cross sections (C) for capture into the 2s state of 
4 He+ ac 400 keV for 12 and 30 impact parameters (i.p.) o 

PW : plane-wave factors; SF : switching function factors. 

N: NUMAC (IBM 370/168); D: Daresbury (AS 7000)0 
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So4o2 Cross sections for capture into the n = 2 

level of 4He+ 

This subsection will follow similar lines to the previous 

oneo In this subsection capture cross sections for 

the process (5o1o2) are presented where instead of the 

2s state of 4He+ being the final capture state, we shall 

be concerned with the cross section for capture into 

the n = 2 level of, 4He+ which is equal to the sum of 

the three individual cross sections for capture into 

the 2s, 2po and2p±1 stateso However, as we noted in 

subsection So3o3, it was not possible to asymptotically 

correct the 2s and 2po capture expansion coefficients 

when using switching function translation factors in 

the two-centre atomic basis and so only the cross sections 

for n = 2 level capture will be presentedo The present 

calculations use four atomic states in the expansion 

: ls target; 2s, 2po and 2p±1 projectileo This four-

state work was very similar to the two-state work in 

that the energy range was from 1 keV to 800 keV c
4He 2+ 

laboretory energy) and the four SWITEL programs were 

used to compute the required matrix elements numerically 

using Gaussian integrationo The program CROSSM was 

used to compute the cross sectionso In addition to 

four-state atomic expansion switching function trans-

lation factor cross sections being calculated, cross 

sections were calculated using a four-state atomic 

expansion with plane-wave translation factors. Here 

it was possible to asymptotically correct the 2s and 
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2po coefficients and so individual capture cross sections 

are presented in addition to the summed n = 2 cross 

section. These results were computed using Noble's 

programs FOURIER (matrix elements) and PLANXM (differential 

equations and cross sections); they are given in table 

5.10. FOURIER and PLANXM were used in preference to 

PLANEL and CROSSM owing to the FOURIER program being 

very much faster computationally than PLANEL (see table 

5.12) especially as 30 impact parameter runs were done 

-1) up to a laboratory energy of 100 keV (25 keV amu . 

All the cross sections in table 5.10 were computed on the 

IBM 170/168 machine (NUMAC) using double precision. 

Table 5.11 displays the present four-state switching 

function results for capture into the n = 2 level of 

4He+. The four forms of switching function are shown 

on the left of the table. The parameterf in F(~)(see 

equation (5.1.8)) is 1/2. The 12 impact parameter results, 

labelled by a), were obtained using the IBM 370/168 

machine (NUMAC). The 30 impact parameter results, 

labelled by b), were obtained using the AS 7000 machine 

of thP. Daresbury Laboratory. All the results were 

computed using double precision. 

The four-state results of the present work are 

displayed graphically in figure 5.4 together with other 

theoretical data and some total capture experimental 

data. (The key to figure 5.4 is on the page after it). 
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" !..,ab. nlm capture state l '! II ' n=2 'I I 
'! energy 

~ 
+ caoture' 

I (keV) ·~ 2so 2p-1 : ' ' 
I 

! 0.~9-2 : 
~ 

! ' I 

I a) 0.16-1 0.64-2 0.33-1 I 
I 1 ' l •I b) 0.11-1 0.84-2 0.58-2 0.26-1 
I ; ; i1 

I 

2.4 a) 0.231 0.356 0.221 0.808 
b) 0.206 0.325 I 0.177 0.708 

I I 

.J.O a) 0.695 1. 33 0.844 2o86 
b) 0.656 1.18 0.816 2.65 

6.32 a) 0.962 1. 76 1o22 3.94 
b) 0.909 ! 1. 70 1. 20 3.80 

10 a) 1o67 3o18 2.43 7o28 
b) 1.67 3.18 2o40 . 7 0 25 

15.81 a) 2o43 4. 72 3o69 10~84 
b) 2.39 4o75 3o71 10.85 

20 a) 2o51 5o20 4o09 11.81 
b) 2.48 5o23 4 011 11.81 

25 a) 2o36 5.36 4o26 11.98 
b) 2.37 5.35 4.26 11.98 

40 a) 1o89 5.14 3.98 11.01 
b) II " II " 

50 a) 1. 56 4.78 3.57 9.91 
b) " II II " 

100 a) 1o12 2o67 1.80 5o 59 
b) II " II " 

200 a) 0.498 0.838 0.480 1.82 

400 a) Oo128 0.132 0.64-1 I 0.323 

L~soo a) Oo18-1 0.10-1 Oo41-2 0.32-1 

Table 5.10 

Four-state plane-wave translation factor cross sections for 

capture into 2s, 2po, 2p~1 states and n=2 level of 4He+ o 

12 impact parameter results are labelled by a); 30 impact 

parameter results by b). Cross sections are in units 
f -16 2 -1 o 10 em .(0o16-1 = 0.16 x 10 ). 
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4 2+ He Laboratory energy (keV) 
, -

Switching 1 2.4 5 10 20 40 100 400 1 sao function ' 
' 

I ~ ,i 

- F(R)k1 a) 0.46-1 0.854 3.03 8.31 15.01 16.99 14.81 9.73 8.:1 II 
I 9.73 i 8.17 tl b) 0.36-1 0.808 3.16 8.39 15.03 17.01 14.81 

-F!~)co$® 
I, 

a) - - 2.90 - - 15.91 - 7.17 i 5.01 

=F(R))~~ a) - - 3.31 - - 19.20 - l14.00 12.15 

=F(~}t<E~h3~ 
a) 0.43-1 0.792 2.73 7.40 13.01 14.16 10.64 1 4.83 r 3.81 
b) 0.33-1 0.752 2.87 7.46 13.05 14.18 10.64 l 4.83 ~ 3.81 

-

Table 5.11 

Four-state switching function translation factor cross sections for capture into 

then= 2 level of 4He+. 12·impact parameter results are labelled by a) ; 30 

impact parameter results by b). Cross sections are in units of 1o-16cm2 . 
1 (0.46-1 = 0.46 X 10- ). 

i 
I 

N 
N 
1.0 
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Key to Figure 5o4 

Cross sections for electron capture into the n=2 

level of 4He+ with comparative total capt~re data (labo er.ergy 

-1 
~ 2 o 5 ke V amu ) o 

Theoretical cross sections : 

, four-state atomic expansion with plane-wave 

translation factors, n = 2 capture, present work; 

= = = ~ = , four-state atomic expansion with simple 

switching function translation factors, n = 2 

capture, present work; 

·········· , four-state atomic expansion with Schneiderman 

and Russek switching function translation 

factors, n = 2 capture, present work; 

• ~ • = • = • , four-state atomic expansion with cubic switching 

function translation factors, n = 2 capture, 

present work; 

, four-state atomic expansion with tanh switching 

function translation factors, n = 2 capture, 

present work; 

, eight-state atomic expansion, n = 2 capture, 

Bransden and Noble (1981); 

, twenty-state atomic expansion, n = 2 capture, 

Bransden et alo (1983); 

0 , eight-state atomic expansion, n = 2 capture, 

Msezane and Gallaher (1973); 

1- ,, eight-state and[] , eleven-state atomic 

expansion, n = 2 capture, Rapp (1974); 
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@ , ten-state molecular expansion, total capture, 

rtatton et alo (1979)o 

Experimental cross section : 

f , total capture, Nutt et alo (1978)0 
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As with the 2s capture graph in fig~re 5.3, there is 

a large discrepancy in the high energy region of the energy 

range covered between the present switching function 

translation factor cross sections and the plane-wave trans-

lation factor cross sections, both of which were calculated 

using a four-state atomic expansion (1s target state and 

2s, 2po and 2p±1 projectile states). In the low energy 

region the four switching function cross section curves 

almost merge into the plane~wave cross section curve. 

The switching function results begin to diverge from 

the plane-wave results before the cross sectionvs maximum 

-1 at about 2.5 keV amu This corresponds to a velocity 

of about 0.3a.u. which is about the same velocity as where 

divergerce occurred with the two-state work. Also the 

four individual switching function cross sections begin 

to diverge among one another at this velocity. In the 

low energy region the four switching function cross sections 

agree well and only the simple switching function cross 

sections are plotted therefore. The plane-wave and switching 

function cross section results plotted on the grap.h are 

divided into 12 impact parameter and 30 impact parameter 

results. The 30 impact parameter cross sections are those 

corresponding to energies up to and including 2.5 keV ~u-1 

Above this energy 12 impact parameter cross sections are 

plotted. 

-1 
Abo~e an energy of 50 keV amu there is excellent 

agreement between the presentfour-state plane-wave results 
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and the eight-state and twenty-state plane-wave results 

of Bransden arcd Noble (1981) and Bransden et al. 

(1983). This is hardly surprising since the same programs 

were used to compute the four-state results as were used 

to compute the eight- and twenty-state results, the programs 

being written by Noble (see subsection 5.3.4). In the 

eight-s~ate work of Bransden and Noble (1981), four-state 

runs of the programs were performed to compare the results 

with those produced by Malaviya (1969) who used the same 

size of basis in his expansion. It should be noted that 

the present four-state results are in agreement with Malaviya's 

results which are not plotted. There is also good agreement 

with the data of Rapp (1974) who used an eight- and eleven-

state atomic expansion, and with the data of Msezane and 

Gallaher (1973) who used an eight-state atomic expansion. 

-1) In the energy region from the maximum (~ 6 keV amu 

-1 f to 50 keV amu the agreement between the present our-

state plane-wave data and other theoretical data is not 

. -1 
as good as that in the region of 50 keV amu and above. 

On the low energy side of the cross section's maximum 

it can be seen that some experimental data have been plotted. 

These data due to Nutt et al. (1978) are for total capture 

not capture into then= 2 level of 4He+. Similarly some 

theoretical data for total capture, which were produced 

by Hatto~ et al. (1969) using ten molecular states with 

plane-wave translation factors, are plotted. At the energies 

-1 being considered in this low energy region ( ~ 2.5 keV amu ) 

virtually all the total cross section is due to capture 
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into the n = 2 level and so it is valid to make a comparison 

with these total capture data. It can be seen that there 

is very good agreement between the present plane-wave 

and switching function results and the theoretical results 

of Hatton et al. (1969) and the experimental results of 

Nutt et al. (1978) down to about 0.7 keV amu-1 . There 

is much better agreement between the present four-state 

results and the ten-state molecular results of Hatton 

et al. (1969) here than there is between the present two-

state results and Hatton et al. 1 s results for capture 

into the 2s state of 4He+ (see figure 5.3). One reason 

for this in the higher number of basis states being used 

in this low energy region (Bransden and Noble, 1982). 

We end this subsection with a table of c.p.u. times 

for the ~amputation of four-state matrix elements and 

cross se~tions for capture into the n = 2 level of 4He+ 

at a laboratory energy of 400 keV (100 keV amu-1 ) by the 

computer programs used in this work, table 5.12. 



PW I 

SF 

Table 5.12 

M 
c 

.Program 
name 

FOURIER 
PLANXM 

M PLANEL 
C CROSSM 

M SWITEL(S) 
c CROSSM 

M SWITEL(SR) 
c CROSSM 

M SWITEL(C) 
c CROSSM 

M SWITEL(T) 
c CROSSM 
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I~ C.p.u. time (s) 
12i.p. 30i.p. 

I lr ~ 
,I " I 'I 

327 N ~sao 
N 19 """ 40 

2930 N 24 -

"'04200 N 7446 D 
~ 35 55 

.,.,7908 N 33 -
<Y 

4064 N 38 -

4221 N 7130 D 35 58 

C.p.u. times for computation of matrix elements (M) 

and cross sections (C) for capture into the n = 2 level 

of 4He+ at 400 keV for 12 and 30 impact parameters (i.p.). 

PW : plane-wave factors, SF : switching function factors 

N : NUMAC (IBM 370/168); D: Daresbury (AS 7000). 
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5.5 Probability times impact parameter distributions 

The probability for e~ectron capture into the 2s 

4 + f t~ state of He is &C;u(9©:11>~J • The probability for capture 

into the n = 2 level of 4He + is { ~C.as(+oo~ ~.a-? ~~.ape(+®» ij ~ 

? ~IS':.af?~~~<?eD)~~.a} • We denote either of these probabilities 

by r~ and plot the values of ~~(!; against b ( ~ is the 

impact parameter). The resulting graphs may be of use 

in finding which impact parameters contribute most to 

the capture cross section. (Twice the area under the b~ 

versus ~ curve is equal to the cross section in n ~@a 

see equation (3.3.9)). Figures 5.5 t6 5.12 show bP~ 

vers~s ~ graphs for capture into the 2s state and the 

n = 2 level of 4He+ comparing the plane-wave results 

(full line) with the simple switching .function results 

(broken line). Elab is the 4He
2
+laboratory energy. 

The 5 keV graphs (figures 5.5 and 5.9) used 30 impact 

parameters, the other graphs used 12 impact parameters. 

The bP<!: data points were joined by straight lines 

for simplicity. 

At 5 keV, where the plane-wave and switching function 

cross sections are in geed agreement, similar structure 

is observed for the plane-wave and switching function 

graphs figures 5.5 and 5.9. This is especially so for 

the two-state graph of figure 5.5 where the structure 

is almost the same down to an impact parameter of about 

1.5 a.u. As the laboratory energy, Elab' increases 

the difference between the areas under the plane-wave 
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and switching function curves becomes larger which, 

of co~rse, corres?onds to the increas~ng disagreement 

between the associated cross sectionso Also, as Elab 

increases, there is a marked loss of structure for both 

the plane-wave and switching function curves, though 

the c~rves do retain similarities in the structures 

remaL1ingo At the highest energy considered of 400 

keV, che two-state switching function curve has become 

two peaks (figure 5o8) whilst the four-state switching 

function curve has become one peak (figure 5o12)o Probably 

the most interesting graph is that of figure 5oS for 

Elab ~ 5 keV and two states being used in the expansiono 

For iri1pact parameters ~ 1 o 5 a o u o the observed forms 

of th~ ~Pc: plots are virtually the same o This similarity 

is almost certainly correlated with the fact that at 

energies of the order of 5 keV and below, the plane-

wave and switching function models are in accord with 

one another. 

5.6 the cross sections and the functional form of the 

switching function 

For the two-state, 2s state capture and four-state, 

n = 2 level capture, the cross sections obtained using 

switching function translation factors diverge fron1 

those obtained using plane-wave translation factors 

in the intermediate to high energy region of the energy 

range consideredo In addition in this energy region 

the cross sections obtained using different functional 

forms of the switching function display significant 
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differences between one another which must be due to 

their different forms. 

I~ the early stages of the wo~k presented ~ere 

the switching functio~s used were the simp:e switching 

function 1, and the Schneiderman and Rus sek switching 

function fsrl The motivation for the use of these 

switching functions was twofold: the simple switching 

function had a very simple form (hence its name), and 

the Schneiderman and Russek switching function was 

the first switching function to be proposed (Schneiderman 

and k•1ssek, 1969). However, when the divergence at 

high energies became apparent with the production of 

results, it was decided to try and use a switching 

function in the translation factor that would have such 

a form as to make the translatidn factors behave somewhat 

like plane-wave translation factors in an attempt to 

reproduce results close in value to the ones obtained 

using plane-wave factors. 

If we consider the simple switching function~ }
5 

(5.6.1) 

where 

(5.6.2) 

we see that it is of the form 
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the function f$ being obtained when 'J) «1}# ::; "1, • 

The correct united atoiT. limit is produced by the 

• S'/lrcs;~ 
funct1.on u ~~"-U' which tends to zero as ~ tends to zero. 

Figure 5.13 shows a sketch of F~~] for ~ = 1/2. 

Figure 5.13 

Sketch of F«~~ 

for IP = 1/2. 

In the case of the simple switching function jl~» 

is a straight line ( ~l'iiJ):;;;;; ~ ), (see figure 5.14). 

-o 

~lri£» 
·HD. --

=n 

Figure 5.14 

Sketch of 9l'i(» for the 

simple switching function, 

fs for ~~~ ~ 1. 

As ~ varies between plus and minus one so too does 

$l~» and the switching behaviour of the switching 

function is produced. In the case of the plane-wave 

translation factors, the electron is attached to 

either one centre or the other. In terms of the 

function this should correspond very nearly 

to being of the form shown in figure 5.15. 
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Figure SolS 

Function rg;«'iJ} » for plane-

wave translation facto~ 

With this in mind the function ~@vu~ {©:?'} where @1 *- 3> 

was a good candidate for the function '{~~ such 

that the translation factor would be more like a plane-

wave translation factor. The value of ~ was chosen 

to be 3 in the present work. Also the function ~] 

was su~h that it was very nearly tcro~h 3~ reflected 

and so should produce an 

opposite effect to that of t~0.~ 31J 
r:, S]ff1J» 

, see figure S.16. 

Figure So16. 

Curve T ~a'1J»~ t~Vil~31Vjj. 
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~he results obtained show that indeed the four-

state, n = 2 level capture cross sections associated 

with the tanh switching function {n the t~anslation 

factors are closer to those obtained using the plane-

wave tran~lation factors than the cross sections obtained 

using the simple switching function in the translation 

factor. Also the cross sections obtained using the 

cubic switching function in the translation factor are 

furthest away from the plane-wave translation factor 

cross sections (see figure 5.4). However, for the two-

state, 2s state capture cross sections, this is only 

true cp to about 75 keV amu- 1 (see figure 5.3). Above 

-1 an en~rgy of about 60 keV amu the cross section associated 

with the tanh switching function starts increasing, 

as indeed does the cross section associated with the 

cubic switching function. No such behaviour appears 

for t~e four-state, n = 2 level capture cross sections, 

though it may appear at higher energies than were considered. 

This behaviour is somewhat puzzling but leaving this 

aside, it does appear that the tanh switching function 

does improve the cross section results with respect 

to the other switching function cross section results. 

However, the improvement is not great enough so as to 

produc~ results in accord with those obtained using 

plane-Have translation factors. This may be because 

the tanh switching function translation factors do not 

behave like the plane-wave translation factors in the 

small R (internuclear separation) region. The fact 
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that the improvement in the results is not very great 

with respect to the plane-wave results may be indicative 

of the behaviour of the switc~ing fu~ctior. transiation 

factors in the small internuclear separation region 

being quite significant in its effect and thereby res­

ponsihle for the divergence of the present switching 

functi.on results from the plane-wave results at high 

energies. 

5.7 Closing comments 

In this chapter the results of this work have been 

presented together with some discussion. In the next 

and final chapter of this thesis the results and their 

implications will be discussed in more detail. 

for future work will also be made. 

Suggestions 
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CHAPTER 6 

CONCLUDING CHAPTSR 

6.1 Discussion of the results 

The results presented in the previous chapter would 

seem to indicate that for both two-state and four-state 

atomic expansion methods applied to electron capture into 

the 2s state and the n=2 level of 4He+ respectively, the 

use of electron translation factors incorporating a switching 

function predicts capture cross sections in 

the intermediate to high energy region of the energy range 

considered that are in poor to extremely poor agreement 

with the capture cross sections predicted by the use of 

pldne-wave translation factors. Indeed, at a laboratory 

-1 energy of 200 keV amu the disagreement is somewhat greater 

than two orders of magnitude. For both two-state and four-

state methods the use of other (albeit similar) forms of 

switching function would appear to make little improvement 

to the switching function cross section results as compared 

with the plane-wave results, even though there are significant 

differences between the individual switching function cross 

sections which must be attributed to their different forms. 

In the loN energy region -1) (~2.5 keV amu the agreement 

between the switching function and plane-wave capture cross 

sections is good. 

Before taking the discussion further, let us briefly 

review the main reasons for use of switching functions 

in the th~ory of ion-atom collisions. As we saw in Section 
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2.5 of Chapter 2, the basic molecular expansion method, 

the PSS (perturbed stationary state) method has two major 

defects, namely that the coupli~g IT.atrix elements are 

dependent upon the choice of the origin of co-ordinates, 

and that some of the couplings do not vanish at large inter­

nuclear separation. However, the wavefunction expansion 

in terms of orthonormal adiabatic molecular states is very 

simple in form and gives rise to straightforward coupled 

equation~. Bates and McCarroll (1958) introduced plane-

wave trartslation factors into the formulation in order 

that the wavefunction describing the electronic m.otion 

should be a solution of the Schrodinger equation at large 

internuclear separation. The result of the plane-wave 

factors' introduction is the elimination of the two problems 

inherent to the PSS method; the coupling matrix elements 

are inderendent of the origin and they all vanish at large 

internuclear separation. Unfortunately the simple form 

of the original PSS expansion has been lost. Now it is 

necessary to divide the expansion into two parts corresponding 

to the direct and rearrangement channels. This gives rise 

to much more complicated coupled equations, and matrix 

elements which are difficult and time consuming to evaluate 

owing to the presence in some of them of the momentum 

transfer factors @~~«~~~.r~ which arise due to the plane­

wave factors being present in the wavefunction expansion. 

The basic theoretical defect of the Bates and McCarroll 

method is that the introduction of plane-wave translation 

factors causes the electron to be associated with either 



252 

one centre or the other. This is correct at large inter­

nuclear separations whe~e, ir.deed, this is =he case. Eowever, 

at small internuclear separations to associ~te the electron 

with either one centre or the other is clearly incorrect 

as the electron is, in fact, associated with both centres. 

Plane-wave translation factors have been used with good 

success in two-centre atomic basis expansion methods for 

modelling ion-atom collisions in the intermediate and above 

energy region. Here the need to describe the dynamics 

of the electron at small internuclear separation is not 

as important as the electron spends most of its time either 

upon one centre or the other, hence the reason for atomic 

basis states being used. In the low energy, adiabatic 

region, though, the electron spends a significant amount 

of its time neither bound to one centre nor the other but 

rather it is in some state of the quasimolecule formed 

by the two centres and the electron hence the use of molecular 

basis sta~es in the expansion is appropriate. In essence, 

the plane-wave translation factors should really be associated 

with atomic basis states used in a two-centre expansion. 

They clearly have an "atomic" character as they theoretically 

associate the electron to one centre or the other. At 

energies in the intermediate and above region this is a 

good feature, but at low energies it is not. It is an 

interesting paradox that plane-wave translation factors 

were introduced into ion-atom collision theory in conjunction 

with a molecular basis expansion. 

The use of a switching function goes a long way in 
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solving che problems associated with the use of plane-wave 

translation factors. As we have seen, trar.slaticn factors 

are impoYtant and necessary if the theory is to be origin 

independent and devoid of asymptotic couplings that are 

non-vanishing. However, the switching function being incorporated 

into the translation factor gives it much more flexibility. 

At large internuclear separation it is either plus one 

or minus one and the translation factor becomes a plane-

wave one. However, as the system relaxes as the internuclear 

separation becomes smaller, the switching function becomes 

smaller in value, tending asymptotically to zero as the 

internuclear separation goes to zero. This is called the 

united atom limit. Thus the translation factors are no 

longer plane-wave in form but rather they have modified 

in accordance with the electron moving into the situation 

where it is in a quasimolecular state. In contrast to the 

plane-wave translation factors, switching function translation 

factors have a ''mol~cular'' cha~acter, hence their applicability 

to low er.ergy collisions where molecular basis expansions 

are employed. Apart from their obvious theoretical advantage 

in modelling the small internuclear separation region 

effectively, yet giving the correct asymptotic form to 

the wavefunction for the electronic motion at large inter­

nuclear separation, their flexibility results in there 

being no need to separate the direct and rearrangement 

channels. 

character. 

This, again, is a reflection of their molecular 
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As far as the author is aware, switching functions 

have nevar been used in conjunction with a two-centre 

atomic basis expansion. Hence the work described in this 

thesis may be of some importance in ion-atom collision 

theory. There would appear to be two advantages in the 

use of a switching function with an atomic basis. The 

one is that the matrix elements are easier to evaluate. 

When one considers the complicated expressions which were 

presented in Chapter 3 for the direct and exchange matrix 

elements, this may appear to be of little value. Indeed, 

the comFuter programs used to compute the matrix elements 

num~rica~ly were not economic in computer time, and, indeed, 

this was the overriding reason why calculations using 

larger basis sets were not employed. However, despite 

the large number of elements to be calculated, compared 

to the overlap and exchange elements arising from the use 

of plane-wave factors with their awkward momentum transfer 

factors ~nr~~~~.F~ , the individual elements are easier 

to evaluate. Also almost all of the individual elements 

are proportional to the collision velocity or the square 

of it. The notable exceptions are the overlap and potential 

elements. This means that a calculation can be done at 

a particular collision energy, that is, collision velocity 

and then ~he matrix elements, having been stored, used 

to generate elements specific to other collision velocities 

by simple multiplication of some of the elements by ratios 

or squared ratios of the collision velocity at which the 

new elements are required to the collision velocity used· 
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in the first calculation. Certainly if any serious use 

of the two-centre atomic basis switch~r.g function method 

were to be made, this would be an attractive means of 

obtaining the matrix elements. The other advantage gained 

by usin& a switching function with a two-centre atomic 

basis expansion is that a much better description of the 

small internuclear separation region should be achieved, 

that is, the switching function.translation factor has 

a greater flexibility over the plane-wave translation factor 

and thereby introduces molecular character into the atomic 

basis expansion. In theory, this should give the atomic 

basis expansion more ability to model collisions of ions 

and atoms in the low ertergy region where molecular effects 

are important. As far as the high energy region is concerned, 

the molecular effects are of limited importance and so 

there would appear to be no advantage in the introduction 

of a switching function. If the results presented in this 

thesis are correct, then it would appear that the introduction 

of a switching function for modelling intermediate to high 

energy collisions is a positive disadvantage. In the 

light of this discussion, let us now return to the results 

of this work. 

In the low energy ( ~2.5 keV amu- 1 ) region it would 

appear that there is nothing to be gained by the use of 

switching function translation factors as opposed to plane­

wave translation factors, even though the switching function 

results are in good to fair agreement with the plane-wave 
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results. Any molecular c~aracter 9 introduced by virtue 

of the inclusion of the switching funct~on, would appear 

to be small if any. At energies :P2.5 keV amu-1 it is 

clear that the two-centre atomic basis method with switching 

function translation factors is not appropriate. The implica-

tion of this is that the switching function approach with 

a molecular basis expansion is likewise not appropriate 

at such energies, with possibly a similar divergence between 

molecular basis switching function results and atomic basis 

plane-wave results. With this in mind 9 it is therefore 

interestin_g to consider some recent total cross section 

results for proton-lithium electron capture obtained by 

Ermolaev (1983), together with results for the same process 

obtained by Allan et al. ( 1983) . 

Both Ermolaev and Allan et al. were considering electron 

capture of the outer 2s electron from lithium atoms in 

the ground state by protons. In the work of Ermolaev a 

two-centre atomic basis expansion with plane-wave trans-

ation factors was used. Two-state, thirteen-state and 

nineteen-state calculations were performed. Allan et al. 

used a molecular basis expansion with the adiabatic switching 

function (factor) suggested by Dickinson and McCarroll 

(1983). Six and, in certain cases, seven states were used 

in the molecular expansion. + The H laboratory energy range 

used was 30. eV- 15 keV. Figure 6.1~ reproduced by permission 

from the paper of Ermolaev (1983), displays graphically 

Ermolaev's atomic basis results ( AO - atomic orbital) 
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Caption to Figure 6 .1 

Total cross sections for production of H in H+ + 

Li collisions (L-shell capture). Theoretical data 

: MO-molecular expansion of Allan et al. (1983). 

Ator11ic expansions: @ 2-state, present work; 

0 13-state, present work; [] 19-state, present 

work; M C - classical trajectory Monte Carlo, 

Olson (1982); LDK 6 CDW, Banyard and Shirtcliffe 

(1979) for L- and K-shell capture respectively. 

Experimental data : Q - Gruebler et al. (1970); 

~- Il 1in et al. (1967a, 1967b), D'yachkov and 

Zinenko (1968). 

and the uolecular basis results (MO- molecular orbital) 

of Allan et al. (1983), together with comparative theoretical 

and experimental data. It should be noted that the results 

of Allan et al. were origin dependent and hence thin, 

open rectangles are used on the graph to represent the 

upper and lower limits for the cross section. The width 

of the rectangles has no significance. The reason for 

this origin dependence will be stated shortly. It can 

be seen that the atomic basis results agree well with the 

experimental results of Il'in et al. (1967a, 1967b) and 

D'yachkov and Zinenko (1968). The atomic basis results 

of Ermolaev at high energies are also in the same general 

region of the graph as the classical trajectory Monte Carlo 

calculations of Olson (1982) and the CDW calculations of 

Banyard and Shirtcliffe ( 1979). The molecular basis results 

are in good accord with the atomic basis results and the 
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experimental results of Gruebler et al. (1970) from about 

1 to 3 keV (centre of ffiass 5 C.M.). However 5 for C.M. 

energies greater than about 5 keV the molecular basis 

results diverge from the atomic basis results quite drastically. 

If we co~sider the molecular basis (MO) data rectangle 

furthest to the right, the discrepancy between its centre 

and the atomic basis ( AO) curve is abouta factor of 5. 

The laboratory energy corresponding to this data rectangle 

is 15 keV amu- 1 ; this corresponds to a velocity of 0.77 

a.u. This divergence between the switching function results 

of Allan et al. (1983) and the plane-wave results of 

Ermolaev (1983) is very similar to that observed in the 

present work. Also the velocity region where the divergence 

becomes significant is about the same in both cases, 0.4 

- 0.5 a.u. One qualifying fact that ought to be stated 

is that r.he switching function used by Allan et al. (1983) 

was not of the same type as that used in the present work. 

Allan et al. used the adiabatic switching function of 

Dickinson and McCarroll (1983), which was quoted in equations 

( 2. 5. 70) in Chapter 2. Reference to those equations 

shows that it is a function of time only unlike the one 

used in the present work which was a function of electronic 

and internuclear co-ordinates F and tt Also the adiabatic 

switching function was zero within the interaction region 

which corresponded to the~~~~~® part of the time axis where 

t@ ~'::P @~ was some suitable time value. Outside the 

interaction region the adiabatic switching function was 
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where was a frequency which 

was low compared with the natural frequency of the problem. 

Essentially the adiabatic switching function is a means 

whereby the problem can be dealt with using the PSS method 

in the interaction region, but with the bonus of the basis 

states h~ving the correct asymptotic behaviour. The origin 

dependence mentioned earlier arises due to the method 

used by Allan et al. being a modified PSS method. Whether 

the adiabatic switching function is a true switching 

function is open to question. 

The cause for the divergence between the switching 

function results and the plane-wave results of the present 

-1 b work above about 2.5 keV amu laboratory energy must e 

attributed to the effect of the switching function upon 

the two-centre atomic basis expansion. It has been stated 

earlier ~hat plane-wave translation factors have essentially 

an "atomic" character whilst switching function translation 

factors have a "molecular " character, they being able 

to model the electronic dynamics in the small internuclear 

separation region quite effectively. It is possible that 

their molecular character is somehow responsible for the 

increasing divergence with respect to increasing collision 

energy of the switching function results from the plane-

wave res~lts. At low energies, in the adiabatic region, 

the molecular basis expansion is appropriate for modelling 

ion-atom collisions as only a small number of states are 

strongly coupled. This is not the case at high energies, 
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in the non-adiabatic region. Here a fairly large molecular 

basis s8t is required. It may be that the introduction 

of a sw~tching function into an atomic basis expansion 

with a small number of states gives the expansion sufficient 

molecular character so as to be of no practical use for 

calculating capture cross sections at energies which are 

not in the low energy region. Investigations using larger 

basis Stts might shed light upon this question. Recently 

Bransden (1983~ in a private communication has stated that 

T. A. Green has shown that without the momentum transfer 

factors ~ ~~~z HI.~~ in the exchange matrix elements, 

it is impossible to obtain the rapid decrease of the capture 

cross section at high energies. 

6.2 Conclusions and suggestions for future work 

The main conclusion of this work would appear to be 

that the use .of a two-centre atomic basis expansion with 

switching function translation factors for calculating 

electron capture cross sections has no advantage over the 

use of a two-centre atomic basis expansion with plane-wave 

translation factors when only a small number of basis states 

are retai~ed in the expansion. In addition, at high energies 

there occurs a dramatic divergence of the switching function 

capture cross section results from the plane-wave results 

owing, presumably, to the inability of the switching 

function basis expansion to model the collision 

effectively. Calculations upon other systems and using 

extended hasis sets are required. Further investigations 

into the functional form of the switching function may 

also be of value. 
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APPENDIX Al 

Effect of the opera tors He[ and= a @/~£"]tupon the basis 

r=$_, \\ t(=$11""" i\ 
functions U'"z er?p~/) and IVJ[3~1f"o eg 

The expressions for the direct and exchange matrix 

elements presented in Chapter 3 9 Section 3.3 equations 

(3.3.30) to (3.3.33) are obtained by considering the effect 

of the opera tors H~g and- a ~l~t]? upon the basis functions 

F/(r~ t) and Grfs {~ t) 

We have 

_(A 1;, 1 ) 

and 

( Al. 2) 

(A1.3) 

:11. 
We begin by considering the effect of '\1-r upon 

F/(f. ii:}. 
~r.\i..., '~ ... H~J.fJ=t~a~~n2![r()?Q,(..-~ iiifei.~HJ.r!Jl <A1.4) 

'\r1 1J; {tr. ~t~ - ~ V~tt tt21 j r®t~ ~ J 
Now 

V',~ (i':J B Ci"~'"' A l d V,' B IF} + 1 ~A 1 r>. ~ EHP) 

+ Blr)V/A(r) ( Al. 5) 

and so (omitting the arguments of the function J ) 

(AL6) 
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It is straightforward to show that 

CAL 7) 

and that 

v?a{rz ~f~.?!&) ~ f ~v.t~ ~\??;¥~~ af v.?/& 

..n=. R.J> n.,JC, 0 df f!.?t:J. ~ .bf r"' -n\) r...;; q,K~ 0. dJt~.rt~ 
& ~ V. ~? ~ ;<t Jb ~ ~- Jr t1 ~ V. '0'af. JJJ'@ 

rrf~ & ~tv.r/JJ,=l, --'""'lJff;;jiJ3 ~tv.r/21 
= ~ v ~ &IF b!. rr U' ~ vrr )J J ~ ( AL 8) 

!Otft]f_, 1\ 
We note that~l~V satisfy the equation 

( Al. 9) 

Using equations (Al.l) 9 (Al.4) and equations (A1.6) to 

(A1.8) plus equation (A1.9) we obtain 
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H~afj£lf: t) = tj fjslP:t~ + {~~ +~®} fjsfr, d 

; =a· (ifj .f?~)l!f<J)rt ocf v. r /6f cod~ n ~® ((c..D \ -t ~ (.) ~ .lJ v. VI? ftJJ· ._rr(j/) 

-t ( \1. v?f) ~55(r; t)- ,i cv.rJ(V
2 f) F/ c~ t J 

+ ~ v~f~ Fj$ (r, t~ +t f c v. rJ (if. V;f) F1~ tr; t) 

In a similar fashion we obtain 

Hf!n Gr~ (r, tJ = ~tt &~ u=~ ~~ + (V~@ ~ vfo.@) Gr~ cr. g;) 

. ,..((~~~jvaJt &fv.rl~f~ n XP.(...a' 
- ~ .f .!£ v. v; ~ rf!.!J 

.. -i ('1Jk -{r!. ~i1 ) t if v. r/J. -' -a)(~ f) 0 vtl\( ~ "!! 
- ~ .z ~ .!l ( v. r vt o v; A & rA ~ 

- ~ lv. ~f) Q-~ «~ ~)- ~ cv. rJ (V/f) Gr~ u~, t) 

+j-v•JaGr~ (r,t) + ~f HJ.r) (v.Vtf)&!(r,.t) 

(ALlO) 

(Al.ll) 
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We have 

(AL 12) 

(AL13) 

Now 

(A1.14) 

(Al.15) 

(A1.16) 

(Al.17) 

as 

(A1.18) 

and putting 

(AL19) 
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Using the results of the previous page we find 

( AL 20) 

Similarly 9 using 

(AL21) 

\ 
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APPENDIX A2 

Derivation of the integral identity used in simplifying the 

matrix element expressions 

We define the integral I 1 ~ where r 1 is given by 

I,"' J ~f/mVtcrt Vi'ma~r , 
'(? 

(A2.1) 

where the integration is over all space. 

The functions ~(r~ and '"'¥ ~r) are complex 

functions which tend asymptotically to zero as r ~oo The 

function f (r} is real. 

Integrating I
1 

by parts 

I. =[iP*rnw>V't',rl~~ ~I ttrJV~V<n.V"f£rlt~.r 
$(!<!3~(1 v -1 <!>*{t)f(f)\l""f(f)c.i(. <A2.2l 

As ~(t~ and ~(r) ~ J ! tend to zero as Il-l> @'9 » the first 

term in square brackets of equation (A~2) is zero. Thus 

we have 

L =-fJtrJV~*(rlV'tcr>a~r 

-J iJ/rr)fcrrv"Y(TJ,;.r. 
'¥/ 

(A2.3) 

We define next the integ~al I 2 • 

(A2.4) 

Integrating r 2 by parts and ignoring the first term as we 

did for r 1 ~ we obtain 
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L =-J 't(F)Vf1Fl. V<l/lf} o~r 
'if 

-I i' er}flf) v"~"a''»Jr. 
'if 

We see from equations (A2.3) and (A2.4) that 

Substituting for 1 2 from equation (A2.5) we obtain 

I, = J,Ycr'>Vf rr1. Vcf>#cF> orr 

+ f Ycr)flfJV"if(o~Ja~r 
~ 

-J if/ct)f(fJV'"f<r) JP. 
v 

We define the integral r 3 

I
3 
= f 'Y (;=!}'\7f (P). V cp *tfl Jr 

v 
(A2.8) 

and integrate r 3 by parts~ ignore the first term and we 

have 

I~=-J if/'(nVfcf). Vi'(TY Jr 
'If 

-I ~*u=rterJV'fa=J dr . 
\f 

(A2.9) 

If we examine equation (A2.7) we see that 1
3 

is the first 

term in the expression and so substituting for 1
3 

from 

equation (A2.9) we obtain 

I 
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I, :: -I if/(f'l Vfct). V"t if) d.F 
v 

-i if/(tJ'ttfJV'f(i'Jotr 

+ f Ycflf!f'r\t~*crJ dr 
?! 

The first term in equation (A2.10) is r
1 

(from equation 

(A2.1)) and so transferring this to the left hand side of 

equation \A2.10) we obtain 

Substituting the expression for r
1 

given by equation (A2.1) 

in equation (A2.11) and rearranging slightly we obtain the 

final result 

2 L ~ttm VtcrJ. V''f'if)otr +{ fcr~v~ttrJ)i'(rJ elf 

=[f v·~"crl}lfuYtcrl JP-JfmHr>V'"'Y<tJJt, <A2 .12) 
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nl(!. 
where th2 v operator acts only upon the function to its 

right. ~his is indicated by the curly brackets. 

The relation of equation ( A2.12) is equivalent to 

(A2.13) 

where ~~~ is the electronic Hamiltonian given by equation 

(3.3.2) nf Chapter 3. The expression of equation (A2.13) 

was noted by Taul bjerg et al. ( 197 5) . 
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APPENDIX A3 

An expression for the space-fixed real spherical harmonics 

in terms of body-fixed rea: sp~erical harmonics 

We begin with the expressdon for space-fixed spherical 

harmonics '(;~(~9 ~~ in terms of body-fixed spherical 

Y ~lf !l 0 ,nh0\ 
harmonics .!tVv~J~~»%1~ # • 

.1'[5!1 

Ysr 1 '\\ = ~ ~ B v r;~ o u 
lM~fJ~/f};=~~m'C¥1. ~~~raO) ~.&~'~~ v¢ ~. 

f;/gojJ 

£A3.1) 

For the system with which we are concerned 

and (A3.2) 
o:!l 

where 5 is the angle between the internuclear vector R and 

the (space-fixed) x-axis (see figure 4.2? Chapter 4). We 

thus have 

~":gf} 

.$f = \ ff y @~ fl B 0~ 
Y.@W'l{6\~~= 4=~)D~~Pil{[))))(Fll}~~ JPwl~rs')pJ J 0 CA3.3) 

~~~'G~JJ ' 
. ~H 

The general rotation matrix elements ~DV>~~~~gi?J»~~may be 

written in terms of Wigner simplified rotation matrix 

elements? (also known as Wigner reduced rotation matrix 
12 

elements) Ji.;;J~.rp.~~) ~(Rose? 195.7) 9 

(A3.4) 

may be written 

(A3o5) 



272 

From now on the angular arguments of the spherical harmonics 

will be omittedo Splitting the summation in equation 

Using the relations 

11 Wl.(J fJ 
J.f/U~vvo ~ ( = ~) reLw/ ~ (A3o7) 

~ 

and ~, ~ .. = ( ~ r· Y.§: (A3.8) 
!) 

the first summation in equation (A3.6) over negative ~d 

indices May be replaced by one over positive ~0 
indices 

and hence equation (A3.6) becomes 

~~gJ . wlgfl 
.$W ·~ & yew~ ·\ JJ y ~if 

Y~w.:::. ~ &Jw:/uw {~) ire/ c} ~ d~"M (~~ flw/ o 

r;;/ 'it. ~ fi;:/' 'g@ 

Using equation (A3.7) and re-arranging slightly we obtain 

Hence 1 taking the complex conjugate 1 equation (A3.10) 

The real spherical harmonics 1 in the space-fixed frame 1 

are·given by 

(A3.12) 
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where tlie NWil factors are defined by equations (4o2o6a) 

YM' 
and (4o2a6b) 9 (Chapter 4)o Substituting for Bm 

Y$[? <:} . . 

and EM in equation (A3o12) and using the expression for 

the body-fixed real spherical harmonics given by 

(A3o13) 

we obtain 

This may be written in a more compact form as follows:-

(A3o15) 

where 
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APPENDIX A4 

An expression for the rotation angle for the 

Coulomb trajectory 

In this appendix an expression will be derived for the 

angle ~ for the case of the nuclear trajectories being 

Coulomtic. 

Figure A4.1 shows the angle 

Figure A4.1 

Diagram showing space­

fixed and body-fixed 

frames and angle ~ . 

It is the angle 
' =h 

between the x-axis (space-fixed) and the vector R 
The initial relative velocity of the nuclei A and ~ 

is and so by conservation of angular momentum we have 

(A4.1) 

where ~ is the modulus of the impact parameter vector 
.dJ 

b (Figure A4.1). 

The parametric equations for the trajectory motion 

are 

(A4.2) 

(A4.3) 

We know that these may be re-written in terms of a new 
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parameter ~ given by 

and we thus have 

Returning to equation (A4.1)~ we have 

V· b ~ R~ ~ . J. ((' 
~ J"t d1 ff 

(A4.7) 

or d l = 103 cl ~ ~ 
v a) = If% &:!If • Ttid 

(A4.8) 

where The)~ dt/dit. (A4.9) 

From equation (A4.6) we find that lr~Y) is given by 

and fro~ (A4.5) this becomes 

(A4.11) 

Substituting for lr(~) in equation (A4.8) and re-arranging 

we obtain an expression for dl~/di.it which is 

d/~ = [b (A4.12) 
7i = ~~~=11» 

We LOW proceed to integrate equation (A4.12). Sub­

stituting the expression for~«~} in equation (A4.12) and 

setting 

(A4.13) 
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we find 

(A4.14) 

We know that when ((~ © 9 $ ~· © and so 

(A4.15) 

Putting 

the integral in equation (A4.15) transforms into 

This may be integrated using the half-angle method applied 

to hyperbolic integrals 9 that is 9 we put 

CA4.18) 

From equation (A4.18) we obtain 

(A4.19) 

and also 

(A4.20) 

(A4.21) 

This may be inte~rated to yield 

(A4.22) 
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where use has been made of equation (A4.13). We need to 

find fJ: in terms of 'ff We know that 

(A4.23) 

and so 

(A4.24) 

From equation (A4.18) we obtain 

(A4.25) 

Substituting for f in equation (A4.22) and using equation 

(A4.13) we obtain the final expression 



278 

APPENDI{ A5 

Expressions for quantities occurring in the body-fixed 

integrals in terms of the prolate spheroidal co-ordinates 

(~ ~ 27d~ ¢} 

Va~ious quantities must be expressed in terms of 

~1~,»~)co-ordinates in order to perform the integrals 

needed ~o calculate the matrix elements in the body-fixed 

frame. In this appendix expressions for these quantities 

will be obtained. 

We begin by reminding ourselves of the definition of 

the f1J <;~<;pi) co-ordinates 

1f ~ t U'/, <} u~ ~ ~ ~ ~ ~ ~ ~ 

l ~ k ( FtJ = F ~} 9 = ~ ~ ry ~ ~ 

pJ (~~i M~ th~[ ~/i\,~a)~ f{)'f£ BI:!E :1 n . 
From equations (A5.1a) and (A5.1b) we have 

Also it can be shown that 

and 

(A5.1a) 

(A5.1b) 

(A5.1c) 

(A5.2a) 

(A5.2b) 

(A5.3a) 

(A5.3b) 

(A5.3c) 
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Figure A5. 1 

Figure required for calculation of 

quantities in f~ 5J #'J '»p;) co-ordinates. 

Figure -AS .1 shows the familiar electron capture co-ordinate 

system. The z 0 -axis is one of the body-fixed co-ordinates. 

We notE. the introduction of the angles i9~ 9 

These are measured from the z'-axis. 

Using the cosine rule for triangle AOQ we have 

. :a 

!F"' ~ ~ r.a {> fL ? rR li <e. @ s t8J 
p~ . ~ ~ 

(A5.4) 

and fo~ triangle BOQ applying the cosine rule 

(A5.5) 

From equations (A5.4) and (A5.5) we find that 

(A5.6) 

and 

(A5.7) 
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Comparing equation (A5.7) with equation (A5.3b) we 

find that 

(A5.8) 

and compz.ring equation (A5.6) with equation (A5.3a) we 

find that 

(A5.9) 

It follows immediately from equations (AS.8) and 

(A5.9) :hat 

(A5.10) 

Using the well-known relation 

(AS.ll) 

gives 

(A5.12) 

(A5.13) 

and 

Using equations (A5.2b) and (A5.8), equation (A5.13) 

gives 

(A5.15) 
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From this 

~
0!2 

~??2 n~/lc 3~ 
. 6 =i~~ =u/)~u=i/IJ, 

$~!7Ui91(J)=, d 

~=1! 
(A5.16) 

In a similar manner equation (A5.14) may be used to give 

which gives in turn 

(A5.18) 

Drawing together the results of this analysis we have 

(A5.19a) 

(A5.19b) 

(A5.19c) 

and (A5.19d) 

(A5.20a) 

(A5.20b) 

and (A5.20c) 

(A5.21a) 

(A5.2lb) 

and (A5.21c) 

This 
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APPENDIX A6 

Azimuthal angular integrals 

In this appendix a prescription will be presented for 

determining the azimuthal integrals required in the 

integration of the matrix elements. 

The integrals are 

tJ ·JZl/lii 
I/mo~M2)~ ~()J$flVUa/d IS©$, fflafo/ dlfl)' SJ 

. @ :! ~ 

~I.~ ~ffl n SJ M2) ~1· ~ © ~ MD p/ ~@ ~ ffl fC, pJ ~ © $ f/ dJ W v 
@ 

p r ~ IIlii •• M.),. r :,~"'·PI ., .. $ "'·pi""~. pi dfl/ . 
@ 

-I . The n -integral is a standard integral and will 

in the analysis upon the other two integrals ~!~ 

It is given by (Grabner and Hofreiterp 1961) 

r .o for AA 0 $ AA~ 

tvr,~l n for .07\l.o ~ M~ * © 

21'[ for ~o ~M2. :g © 0 

be used 

f9 I~ and ~ 

(A6.4) 

To find an expression for W'I~ we begin with the well-

known formula 

""'A go$8"' f[c.os iA -lf!l/-} <::©$(A~ B~ 
Setting /A;;;;UV~.otJ and ~~ FJ yields 

~~5 Ms fl} <6~$ fJ·~ l[,o~ «1Mb-} O~f} c} te© $ «Mn= ~~~a 

"'! [.:©$ ~~"'• VO)f@' +!: @$ i Mo-D i)'!l'] , 

Using this result the integral PI 6 ~ equation 

(A6.2) 9 becomes 

(A6.5) 

(A6.6) 
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Denoting the integrals in equation (A6o7) as follows~-

(A6.8a) 

(A6.8b) 

we have 

where 

© for M 0 c}~$;M2 

PTo 'Jfft for Mn <:?~ ~ Ms~ 0 (A6o10) 

~~ for ~o "{?~ ~ M2.~ 0 

and 

© for ~Mo= ll~ * M.21. 

STZS = n for ~ Mo = fi ~ = ~~? ((} (A6o11) 

dli(' for ~ mo = ~ ~ ~ M2. ~ 0 ~ 

The expression for ~r~ is found by using the formula 

(.@~2pJ~ !{~ dJ'>(k()$:ifo!) . (A6.12) 

Substituting for rt,©'ly,fJ in equation (A6o3) we obtain 

(A6.13) 

where 

(A6.14) 
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Thus denoting the integrals in equation (A6ol5) as follows:-

we have 

and so 

where 

and 

%JP-fl = 
~o= 

~~ = a= 

© 

'jf[ 

l~ 

(A6o16a) 

(A6ol6b) 

(A6o17) 

(A6o18) 

(A6o19) 

for fMo=~~? M2,. 

for ~ Mo ,;,l~ ~ Ma '* ©> (A6o20) 

for ~Mo=J.~ ~ Ma ~ © 
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APPENDIX A7 

Associated Legendre functions in terms of prolate spheroidal 

co-ordinates 

Associated Legendre functions ~(~) are solutions 

of the associated Legendre equation which is 

( 1 ~ x•)v" ~ 2~v'"" ~(.Hnl ~ 6 :'~~v ~ <0 

where v~ Pn«.n.) (A7.2) 

and (A7.3) 

(Section 12.5, Arfken, 1970). 

The associated Legendre functions are (up to 1~~ ) 

P7~~~ ~ x ~ t;©§ ra 
P ~ ~~» ~ «~ =.dt2)D'2),~ s l V\ e 

P:lx) ~ (35'Jta= ~)/2 ~ f~~©~2 &J = ~)/1 
f~{J&) ~ 3x{~ ~~~}n'~~ 3 $~va ~ ~@f$ ® 

f~~~)~ ~~ij =X2}~ ,35$~0.~~ 

Using the expressions for 

(A7.4) 

(A7.5a) 

(A7.5b) 

(A7.6a) 

(A7.6b) 

(A7.6c) 

and 16©£®@ derived in Appendix A5 9 equations, (A5.20b), 

(A5.20c), (A5.21b) and (A5.21c), we obtain the following 

expressions for the associated Legendre functions P~~e;i~®l>~and 
IE»~!M~· '\ . !Tfil ~ 1/fJ ~ 
ll«£2GJ~g 21~~©$®@8' for values of ~~M& and «JI§/Jj up to and including 

2 0 
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(A7.7) 

(A7.8a) 

(A7.8b) 

(A7.9a) 

(A7.9b) 

(A7.9c) 

(A7.10) 

(A7 •. 11a) 

(A7.llb) 

(A7.12a) 

(A7.12b) 

(A7.12c) 
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APPENDIX A8 

A8 .1 Expressions for the BA-, BB- md A A- type matrix elements 

in terms of n -triple integrals 

All the expressions given are for when the "simple" 

switching function f$ is used where ~ ][~ 

~2 

fll~ =i8~' 0 

We have F«~»~ Wf.~}«WJ,3 <fr(f2~ 

1. BA- type elements 

A~~ (p;i®l~»~V<Z~~ x:a=:J) ~ 

A®~~~ J ~.r->4 ~~r~ I~~l~~co) +: I~~~©~~»1 
jlt . .iC.~fJ~~~l.!Ja J .u J 0 

is given by 

(A8.1) 

(A8.3) 

( A8. 4) 

(A8.5) 

(A8.6) 

(A8.7) 

(A8.8) 

(A8.9) 

(A8.10) 
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(A8.13) 

(A8.15) 

(A8.16) 

(A8.17) 

(A8.18) 

(A8.19) 
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U ®f:l = / m ffJ ~ n g: c0 d> ~ ""'0' t:J fl c=C> " \, 

Y j tl = ""fo j ~ FffJ » u JJ ~ « v. rr ~ u ~ ~ ~ F~ vI' D 

u ~: ~ !§. ~£1 ~Ef!] . ~ [ ~ I J: e~l) j) = it I~~ 1 ~ ~ ~ ij 
J ~J 314 &1& 

LQ~ 
The j~ element is given by 

L~~~ (fo!J>«~~~«~.r»V®@~ xg{~»} 

= (pjf{F;~~«v.r»VM~ X~ «G~) 

=(~J~~Cl)~~l«~~~«v.FH Xt~F;J) CA8.23) 

from equation (4.4.8) of S~ction 4.4. Thus 

(A8.29) 
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2. BB-type Elements 

(A8.31) 

(A8.32) 

/A @@ 
.!. 'bj ~ elements 

are given by the expressions for their corresponding BA­

type elements but with ~~ instead of ©t~ ? and ll -triple 

t5.\I@0t7 "' integrals labelled BB instead of BA? e.g. m, jC3ll@l)» instead 

of i I~~ «@)) ~ ~ • 

(A8.33) 

(A8.34) 

(A8.35) 
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from equation (4.4.4) 9 Section 4.4. 

(A8.36) 

(AS .37) 

(A8.38) 

[:':£:; H{io,(;'; ~~~b'.l K~~ !A. At?o 
The GJC!P ,g & 9 .J J ~ 9 j ~ and g 1.g C:<. elements 

are given by the BA-type expressions but with ~J instead 

of ~j 9 and ll -triple integrals labelled AA instead of 

BB. 

Oj~ ~ ~~J =~~~ < x~~~~ ~fs«v.r~~ "X~ g~»> ~ (A8.39) 

=#o · ~rtf ~ rr~ 1~/Afl c:. 1 ~t2'.f/ ~1 U ~~«1Jiln=b'il~»©1n~&Ja ~~~~J'.Jl~2~lLJ11. J~\\~l>J.>=J'& jesd~e;;,Ul 
JJ -a .!I -a .JJ ~2 dt It 

-~cf~r'l~l©!j 01~< R§~~~~. li>v,[!I~~ i©,~hHftga,il]. <As. 40 > 
u~ 

lf:o~· 
The J~ element is given by 

L7~ ~=~1J =~es»<Xfu~~»~~v.r)~X~u~A~> 

~ = n=n~~~ 
\Y' j lk ~ §53 :5 0 

from equation (4.4.5) 9 Section 4.4. 

(A8.41) 
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B H lBra:nsden; C W Newby and C J N'c'h:et 
The University of Durham, Durham DHl 3LE England 

Receiveclll.Vlay 1980 

Absi~zd. A two-state approximation based on atomic wavefunctions is used to calculate 
cross sections for electron capture by He2

+, LiH, Be4
+ and B5

+ from atomic hydrogen in the 
ground state. The velocity range covered is from v = 0·44 to v = 2·8 au which corresponds 
to a laboratory energy range of from 5 to 200k.eVamu-1

: Reasonable agreement is 
obtained with the experimental data for He2

\ Li3
+ and BS+ .. 

Electron capture by fully and partially stripped ions from atomic !hydrogen has attracted 
a great deal of experimental and theoretical interest because of the importance of a 
knowledge of the corresponding cross sections nn fusion research (Gilbody 1979). The 
reactions concerned are of the form 

(1) 

where xq+ represents the incident ion. If the incnd!ent ion is fully stripped so that q is 
equal to the nuclear charge, the ion Xq+ is hydrogenic and characterised! by a set of 
single-electron quantum numbers nlm. When the velocity of the incident ion is sliow 
compared with the Bohr velocity of the !arget electron, the wavefunction for the system 
can be represented in terms of combinations ox molecuiar orbitals; but at higher 
velocities it is more appropriate to base approximations on truncated two-centre atomic 
expansions (Briggs 1976, Bransden 1972, 1979a, b). Over a range of laboratory 
energies of from about 5 to 200 keV amu-\ the truncated expansion approach works 
when the nuclear charge is q = 1 or q = 2, because capture is, for these cases, pre­
dominantly into states with n = 1 or n = 2 respectively, so that the number of important 
channels is small. Correspondingly, reasonably accurate iota! capture cross sections 
can be obtained if only those terms representing the important channels are retained :in 
the truncated expansions, although for high accuracy it is necessary to use elaborate 
expar.sions including pseudostates. As q increases the principal quantum number of 
the most likely final state also increases and in addition the total number of final states of 
significance becomes rather large. lFor this reason it is impracticable to include all the 
states of importance in a coupled channel calculation. Fortunately, it has been shown 
by Lin and collaborators (Lin 1978a, b, Lin eta/ 1978, Lin and Tunnell 1979) in 
connection with their work on capture from inner shells of hemvy ions that over an 

t Now at the Daresbury Laboratory of the Science Re~earch Council. Daresbury, Cheshire, England. 

0022-3700/80/214245 + 11$01.50 © l980 The Knstitute of Physics 4245 
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energy ra:nge about the energy at which 1he cross section :reaches its maximum value, a 
simple two-state ap:;>rmr:rnatio:n can provide tLSefu! CrOSS sec~icns. ln ~his app:rox~ma­
~:on, o:dginally due to Bates (1958), only H:.ose terms .rep:rese::~ing th.:e ~::::da! and fi::a1 
atom:c sta::es are rel:ai:r..eel b. t!:e t:rancated exr.~a:::s~c:.1. 

~ ... k l . " . • . vw 2+ L·3+ D 4+ an ~.&e ;p:resent wor , we app y the two-states :r..et;wu to CZ?~ure Dy ..c"1le , · 1 , JDe 
and B 5 

... over the range of inc~C:en~ tabo:a~ory energues of 5-2C~ ki!V amu -l which 
al:ows comparison with tbe expe::ime::1tal data cf Gilbody and his coii&oo:rators (Shah 
and Gi!body 1978, Shah et al 1978, Nuta et al 1978, Goffe ret al 1979) with the 
distorted-wave model o~ Ryufuku anc1 Watanabe (1978, 1979a, b) a::r.dl ~he classical 
model of Olson and Salop (1977). 

The coupled channel approximation has frequently foeen described in the literature and 
only a summary will be given here for convenience. For further details reference may 
be made to Bransden (].970, 1972) or to McDowell and Coleman (1970). The 
approximation is applied within the impact parameter framework in which the nuclear 
motion ns treated classically and the wavefunction for the electron satisfies the time­
dependent Schrodinger equaiion (in atomic units) 

·(2a) 

where 

(2b) 

In equation (2), r11. and! r8 are the distances of the electron from the incident nucleus 
X and from the proton, respectively, and r is the position vector of the electron with 
respect to the mid-point of the intemuclear line. Th.e internuclear separation IH is a 
function of t which is deterrmined by tlhe dassical trajectory describing the nuclear 
motion and in this work is taken to be a straight line defined by a constant impact 
parameter b and constant velocity v. 

In the two-state approximation the wavefunction is written as 

'l'(r, t) =a (t)q'J(r8 ) exp( -i.:-t) exp[i(-} &1. r + ~v2t)] 

+ c(t)Xnim (.r A) exp( -i77nt) exp[i(}v. V' + ~ v 2
t) (3) 

where ch is the ls ground-state wavefunction of atomic hydrogen with eigen-energy .:­
and Xnlm is the wavefunction of the ion X(q-1)+ in the state (nlm) wii:h corr~sponoing 
eigen-energy 71n· The velocity-dependent factors are required in order for the 
Schrodinger equation to be satisfied in the limits t ~ ±oo. Coupled first-order differen­
tial equations for the amplitudes a(t) and c(t) can be found from a variational principle 
and take the form 

i[a +SC] = Ha + Kc 

i[S*a + c] = Ka +fie 
(4) 



IH!=q f l~{o>s)l2(- 7~ + ~) ~? 

IRI = J lxr.rm(?p.)l
2
(- :m + :) dlo> 
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K = J ~0(1i'a};(,.lm(?A) e~p(iv. 1?)(- :., + ~) dl? exp[i(G:- 'i1n)t] 

K =J x~z ... (li'A)¢'(1?a) exp(-ft!V. ?)(- r: +~) d!I? eEp[i('f1,. -~;:)t]. 

We note the relation 

~hich ensures the conserv21~no:rn o~ p:rolbalbili~y. 

(5) 

(6) 

Equation (4) fs soUved S'lllbject to ~lite boundla:ry condi~iorrr.5 a(t =-co)= 1, 
c(t =-co)= 0 for each value of the impact parameter b. The captl'Jlre cross section i.:rn~lb 
~he state with quantum numbers nlm lis iliern 

o .. 1m = 2w fo ic<t = +ooWb dlb (7) 

and the total capture cross section lis 

Q= E O .. t ... (8) 
nlm 

where, ·tor each n, the sums over m and l range over &ll1 tlhte a11!oweo1 vallues of l and m; 
lml:s:/ and O~l~(n -ll). 

The evaluation ol: !the dlirect matrix eliemen~ H amdl iii is eiementary, and the 
principal numericai probiem RS ihe effidellilt evahaatfon of !the overlap § and the 
exchange matrix elements K and K. A standard compu!terpa.ckage has been deve~oped 
to enable the matrix elements for any vaiues of n, i and m to foe cakullated (Noble 1980) 
using the Fourier transform me!thod! of Sirn lFai lLam (1967) .. This package can be 
obtained! on request ~rom the CPC Program Library. 

lin the case of incident He2 
... ions, previous calculations in the two-state approxima­

tion have been made for capture into the 2s ancl2p s~ates of He"' by Mala~ya (1969). 
This affords an independent check on the nwnericai accuracy of the results, as rathell' 
clifierent numericai methocls were usecii illl the two caicuiattons. h ns. very sa~isfactory 
that agreement witlht Malaviya's cross sectton was olo~aineG! to t'he duee significant 
figures published. 

Calculations were carried out•at incident energies hetweel.'\1 5 &nd 2GD i.(eV a:r.m.1- 1 for 
capture into all final states w~th n :s:;4 for He2

+ aino1 U 3"'and fo:r n ~ S f01i Be4
+ and B5

+. 
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The cross secl:ons, u,. = 2.tm Utrn, for capture tnio each com:;>lete shell are shown an. table 
1l.. To compare ~hese with tlhe e;rperimentaa da1a for ihe totZll capture cross section 
u = 2.,. u"' a ccrrec~ion mus1 be r.cace for; capture in~o sl:eUs wi::1 ~1:g:-:er n. This was 
made by assuming a behaviour of the c:ross section wt:,;ch is show11 'by t~~e S:-::1kman­
X:-arners cross section at hfgh velocit:es (McDowe:~ a:;;d Coleman :.970 p 379). Of 
course; the JBr:nkman-Kramers cross section is incorrect in magnitude, but it is effedve 
i:n predicting cross section rat:os (Cmthers and Todd 1980, Chan and E1chler 1979). H 
nm""" fis ~he largest value of n for whiclht awo-state cakuiations have been made, our 
correction is ao use the expression 

(9) 

for all n > nma,. The total cross sections found in this way are included! in table 1. 

'll'olbllle ll.. Calculated cross sections for capture by ions of He2+, Li3•, Be4
• and BS+ f~om 

H(1s), units of 10-16 cm2
• 

u(n) 
E 
(!cev amu - 1)t. · n=l 2 3 4 5 u = I.u(n)~ 

He2
• 

s . 0·0020 10·S3 0·034 0·009S 10·60 
10 0·024 11·21 0·490 0·037 11·82 
2S 0·0§6 S·79 1·49 0·410 8·41 
so 0·172 1·79 0·868 0·376 3·79 

100 1!).102 0·314 0·179 0·093 0·84 
200 0·025 0·031 0·016 0·008 0·094 

Li3+ 

s 0·000 20·72 2·43 0·009 23·17 
10 0·000 18·94 6·89 0·328 26·67 
2S C·002 8·54 6·68 2·04 20·45 
so 0·002 2-83 2·80 1·47 9·39 

100 0·001 0·611 O·S89 0·377 2·18 
200 0·001 O·OIU 0·064 0·039 0·25 

B 4+ e . 
s 0·000 5·89 43·4 0·38 0:05 49·86 

10 0·000 6·99 31·6 3·.16 0·22 42·43 
25 0·000 4·42 14·20 6·49 2·i7 31·74 
so 0·000 1-96 5·06 3·53 1·96 16·S3 

100 0·000 O·S97 1·089 0·879 O·S84 4·3S 
200 . 0·001 0·112 0·138 0·104 0·069 O·S7 

Bs"'" 
5 § 2·10 49·63 12·98 0·14 6S·l4 

10 2·16 37·19 18·4S 1·37 62·00 
2S 1·75 16·46 14·40 5·59 49·65 
so 1-03 6·14 6·23 3·91 25·34 

100 0·41 1·45 1·Sl 1·11 6·78 
200 0·11 0·21 0·20 0·1S 0·97 

t E is the laboratory energy of the incident ion on a stationary target. 
; Allowance made for n > ~'~mu as in equation (9). 
§ Ground-state capture eros.> sections (n = 1) are very small and not given. 
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F::om table 1, we can see ~hat over this energy region capture into ~he ground state is 
q:.;;~e i.lr.impo::-tar.t except for the case of He2

+ where it amounts lo 26% of the total 
cross sect:on a~ tt:e hig~>est er.ergy of 2GO keVamu- 1 (v =2·8 au). At :ower energies 
or::y one or two values of n are important; but, as the energy increases, so does the 
number o: n vaiues of significance. The behaviour of the cross secaion as a function of 
indC:ent c:1arge q is of interest. For a given relative velocity, Crothers ar.d Todd (1980) 
have shown that high-energy approximations, such as the Brinkman-K.ramers, the 
contini!um distorted-wave and ahe continuum intermediate-state mode!s lead to a q 3 

variation of the cross section.t However, at lower energies the variation may be closer 
to q 2 (JPresnyakov and Ulantsev 1975). In our model the variation is roughly lover the 
energy range 10-100 keV amu -t with deviations at abe highest and lowest energies (see 
table 2). It is clear that the assumption of proportionality to a power of q is rather too 
simple and that simultaneous scaling of cross sections and velocities as in the work of 
Ryufuku and Watanabe (1979a) or of Gardner eta/ (1977) is likely to be more accurate. 
However, such a procedure amounts to an empirical interpolation formula, since there 
does not appear to be any good theoretical reason to suppose that the velocity should 
scale. 

1I'oMe ~. Calculated total cross sections for electron capture divided by q2
, units of 

10-16cm2. 

E (keVamu- 1
) He2+ Lil+ Be4 + BS+ 

5 2·65 2·57 3·11 2·69 
10 2·95 2·96 2·65 2·48 
25 2·10 2·27 1·98 1·99 
50. 0·94 1-04 1-03 1-01 

100 0·21 0·24 0·27 0·27 
200 0·024 0·028 0·035 0·039 

for a given n at the lowes~ energies the capture probability increases with l up to the 
maximum value allowed, I= n -1. As the energy increases, the higher l values begin to 
be suppressed. A similar trend is found in the Brinkman-Kramers approximation 
(Golden et al 1978), the eikonal approximation (Chan and Eichler 1979) and in the 
distorted-wave calculations of Ryufuku and Watanabe (1979b). This is illustrated in 
table 3 in the case of capture by BS+ into th'e n = 5 level of B4

+. 

1I'mble 3. Cross sections for capture by B5
+ from H(1s): distribution in I for the shell n = 5, 

units of 10-16 cm2
• 

10 
50 

200 

1=0 2 

0·069 0·204 0·315 
0·131 0·385 0·668 
0·004 0·021 0·062 

3 4 

0·358 0·430 
1·288 1·441 
0·049 0·011 

t At very large values of v, the Brinkman-Kramers cross section is proportional to q 5
, see equation (8.2.16) of 

McDowell and Coleman (1970). 
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Ou::- calcu:ateci cross se~:ions are cc~;>a:;-ec:l wit:: o·1::e:r ~i:~o;et:ca: calc;;:i:::c:::s z.r:c 
wi~h experiment :r.. rig~res : -.t; .. T::e most e;rte;:sive t::eore~:ca: wc1·k at £::;.t~n:r;edia~e 
er..ergies coveri:r.g al~ the ca~es we have cor.siC:erecl has 'De~n by o:so:: a:r:c S;:,lop (~S77) 
;,;.s:::1.g t!1e c:ass:ca[ Mon:e Ca:::o met!:o!ll of Abrir..es a:::.O: ?ercivz.; (1. %6a, '.:;) t.nQ 

R}luf-;.;iw and Wa1anabe (197§, 1979z, b) us~::;g a unita::ise~ c::st0:c~ec'.-VJz.ve <:::;:,::-oa::h. 
Tr..e classiczl calcuiations, wh.ic~ cover :m energy range of 40-2CC l(eV ar.n:.:~-t, are 
comparab:e in magnitude witin the two-state caiculat:ons and with ex;?e:::::;::e:~:~. b;1t the 
shape of the cross section as a function of e:r;ergy appears rather difleren~, C!:e c::oss 
sections decreasing with increasing energy more rapidly than might be expected. T:1is 
may be due to large statistican errors being associated with the calc~lation of t~1e !wo 
points of highest energy, as noted by Olson and Sa:op in their paper. Tile work of 
Ryufuku and Watanabe is based on the distorted-wave solution of equataon (4). The 

,1Q-16 

l.O·O · Total capture cross section 

20 

100 

6'0 
1,·0 

+ 
N' 
E 
~ 
c 
.2 -u 
Ql 
(J) 

(J) 
(J) 
0 .... 
u 

Cross section for capture 
into the 2s level of He• 

+ 

002 

Ol.06 , 2 4 6 810 20 l,Q 60 100 
Laboratory energyi~eV amu·1) 

!Fiig'l.IIYe l. Cross sections for electron capture by He~+ from H(ls). Total cross sections ate 
5hnwn in the upper part of the figure and cross sections for capture into the 2s stale of He::+ 
are shown in the lower· half of the figure. Theoretical cross sections: --x--, two-state 
atomic expansion (present work) for total cross sections; ---0--, two-state atomic 
expansion (present work) for 2s capture;------, unitarised distorted-wave approxima­
tion (UDWA) Ryufuku and Watanabe (1978'1; 0, classi.cal method, Olson and Salop ( 1977); 
0, eight-state atomic expansion, Msezane and Gallaher (1973); +. eight-state and D. 
eleven-state atomic expansion, Rapp ( 1974); 0. three-state molecular orbital expansion, 
Piacentini and Salin (1977); - ·- ·- ·- · -, twenty-state molecular orbital expansion, 
Winter and Lane (1978); ®.ten-state molecular orbital expansion, rtatton era/ (1979). 
Experimental cross sections:¢, Shah and Gil body (1978), Nutt e/ a/ (1978); ¢,Bayfield and 
Khayrallah 0975); Q. Olson era/ (1977). 
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IFQgmr~e 2. Total cross sections for electron capture by Li3
+ from H(ls). Theoretical cross 

sections: --x--, two-state atomic expansion (present work);------, unitarised 
distorted-wave approximation (UDWA), Ryufulcu and Watanabe (1979a); 0, classical 
method, Olson and Salop (1977). Experimental cross sections: Q, Shah eta/ (1978). 
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01 L---2--~t.--6_s_1Lo---zo---,-o-~---,o~o~z~o~o~,o~o~~~o~ 

La bo.ratory energy (keV om•J~) 

!Figure 3. Theoretical tdtal cross sections for electron capture by BeH from H(ls). 
--X--, two-state atomic expansion (present work); ------, unitarised distorted­
wave approximation (uowA), Ryufuku and Watanabe ( 1979a); 0, classical method, Olson 
and Salop ( 1977). 

distorted-wave charge exchange amplitude is (Bates 1958) 

nw( Joo (K-S*H) '( () (. c~ r=oo)= _"" d\ l-ISI2 expt8a t -8c n) (10) 
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where 

~10·16 

10001 
600 
l.OO 

I . ---
2ool__.------ i 
100 

6·0 
1.0 

'E 
.:= 20 
c 
.'2 
u 1·0 
"' "' 06 
"' "' 01. e 
u 

02 

01~---------L--------~------~~ 
2 i. 6 S 10 20 i.O 60 100 200 i.OO 600 

Laboratory energy (keV omu-1) 

1Fig111re ~. Total cross sections for electron capture by Bh from H(ls). Theoretical cross 
sections: -x-, two-state atomic eJtpansion (present work); -----, unitarised 
distorted-wave approximation, Ryufuku and Watanabe (1979a); 0, classical method, 
Olson and Salop (1977). Experimental cross sections: f;,, Crandall eta/ ( HJ79); Q, Goffe et 
a/ (1979). 

J, H -SK) 
Oa(t)= _,dr'(l-jSj2 f, (ii-S*K) 

Oc(t) = -oo d( 1 -jSj2 . (11) 

Ryufuku and Watanabe make the approximation of neglecting S 2 in the denomina­
tors of these expressions and this should be a good approximation in most cases. They 
then unitarise the total probability for capture P(b ), defined as 

p(b) = L IC~~ (i = oo)!2 (12) 
nlm 

by writing 
P(b) = sin\p(b))112

• (13) 

They derived this expression from the perturbation series by (i) neglecting time 
ordering and (ii) omitting the even ordered terms from the series. The latter approxi­
mation is very much open to question. Examination of the coupled channel approxi­
mations of Rapp (1974 ), for example, in the case of He2 ~ + H(ls) shows that at the lower 
energies where the two-state approximation begins to break down, corrections arise 
from couplings to then = 2 levels of Hand these couplings do not occur in the unitarised 
distorted-wave model (uowA). From figures 1-4, we see that for He2

+, the UDWA cross 
sections are rather close to the two-state cross sections, above 5 keVamu- 1

. For Li 3 
... , 

Be4
+ and B5

+, the UDWA cross sections, while agreeing reasonably with the two-state 
cross sections at the higher energies, are considerably smaller at the lower energies, 
where the unitarisation procedure produces large corrections to the ow cross section. It 
is, of course, hardly necessary to point out that coup!c:d channel calculations automa­
tically preserve unitarity (in the two-state case if equation (6) is satisfied). but while 
unitarity is a virtue, it does not guarantee the accuracy of a method. 
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At the higher energies the calculated two-state approximation produces cross 
sections which are close to those of the distorted-wave approximation of eq:..tations (10) 
and (11 ); in other wo;ds 'back coupiir.g' is sma~l. To ta:(e an explicit exaw;Jle, Saha et al 
(1980) have recentiy calculated the Ee2

+ + H(ls)-> Ee +(3s) + H+ cmss sectiOi: from 
6·25 to 200 keVamu- 1 in the ow approximation. Above 25!(eVarr.u- 1 the ow and 
two-state cross sections agree to three significant figures, b;J~ below this energy the -::>W 
cross section is too large, exceeding the two-state cross section by a factor of about five 
at 6 keV amu- 1

• 

3.1. He+ 

The case of helium is interesting in that not only the total cross section has been 
measured, but also the cross section for capture into the 2s level of He+. From figure 1 
we see that the two-state calculations (and the UDWA cross sections) agree rather wen 
with the total cross section data of Shah and Gilbody (1978) and Nutt et al (1978) from 
5 keV amu-\ becoming a little larger than the data at higher energies. The agreement 
between the present calculations and the data for 2s capture is less good, but is not 
surprising as Malaviya's (1969) work shows that while then= 2 capture cross section 
given by the two~state approximation agrees closely with the results of the more 
elaborate five-state approximation above 6 ke V amu -\ the coupi;ng between the 
degenerate 2s and 2p levels is of importance in determining the cross sections for 
capture into the individual 2s, 2p0 and 2p"' 1 levels. 

The results of the more elaborate eight-state atomic expansion calculations of Rapp 
(1974) and Msezane and Gallaher (1973) are also shown in figure 1. As Rapp remarks, 
these calculations should agree, but in fact there are considerable differences between 
them. For this reason.it is difficult to comrrient on the agreement of these calculations 
(or of the eleven-state work of Rapp) with the two-state calculations and with the data. 
Other calculations at the lower energies, based on the MO expansion are shown. Of 
these, the recent work of Hatton et al (1979), which is the only MO calculation which is 
completely translationally invariant, is in good agreement with the data. 

3.2. Li3
+, Be 4

+ and B 5
+ 

For lithium, the two-state cross section agrees rather well in shape with the data of Shah 
et al (1978), but is a little greater in magnitude (see figure 2). For beryllium there is no 
data, while for boron the two-state cross section has a similar energy variation to that of 
the Belfast data (Goffe et al 1979) and again the calculated cross section is somewhat 
greater in magnitude. The lowest energy in the Belfast experiment was around 
65 keV arnu- 1 but there is a single measured point at 6 keV amu- 1 by Crandall et al 
(1979). As can be seen from figure 4, this point is in much better agreement with the 
UDWA cross section than with the present calculations. Clearly further measurements 
in this energy region would be desirable. 

4. Col!ldusnons 

Over the intermediate energy range we have considered (5-200 ke V amu - 1
), the 

two-state approximation appears to represent the electron capture cross section to a fair 
degree of accuracy. At lower energies, where the molecular aspects of the system will 
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become importan1, the two-.state approJtimation can be improved by usir..g the variable 
charge metl:cd of Cheshire (1968) and it is ou:r btention to eJtpl.nre ~his, as well as to 
extend our work to cases with q > 5. At higher energies, continuurr. intermediate stc;tes 
are irr:portantand methods such as the cow or crs approximations shoula be emp~oyed 
(Belkic et al 1979). It is unfortunate that, as noted above, there is some disagreement 
between the different authors on the results of many-state atomic expans:on cal­
culations for He2

+. To clear up this question, we are planning to repeat the eight-state 
calculations and to extend them by adding suitable pseudostates. 

This work was supported, in part, by the Science Research Council. One of us (CWN) 
wishes to acknowledge the receipt of a Science Research Council studentship. 
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