W Durham
University

AR

Durham E-Theses

Theory of electron capture in ion-atom collisions

Newby, Charles William

How to cite:

Newby, Charles William (1983) Theory of electron capture in ion-atom collisions, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7174/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/7174/
 http://etheses.dur.ac.uk/7174/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

THEORY OF ELECTRON CAPTURE

IN ION-ATOM COLLISIONS

by

Charles Wiiliam Newby, B.Sc.

A thesis submitted to the University of
Durham in candidature for the Degree of

Doctor of Philosophy.

Departmer.t of Physics,
University of Durham, _
England. October, 1983.

T

NE
25, 1 1984




ABSTRACT

Cross sections for electron capture by éHe2+ ions
from ground state atomic hydrogen are presented for a
4He2+ laboratory energy range from 1 to 800 keV (0.25
to 200 keV amu—l)° The cross sections were calculated
using a coupled channel approximation in which the electronic
wavefunction was expanded in terms of a finite number
of atomic orbital basis states centred upon the target
and the projectile. Electron translation factors which
incorporated a switching function were included in the
basis states. The semi-classical impact paraméter approxi-
mation was employed.

The cross sections presented are for electron capture

4

into the 2s state of He+, and into the n = 2 level of

4He+ using two states and four states respectively in
the basis expansion. Four functional forms of switching
function weré used in the translation factors.

The cross sections are compared with ones calculated
using two-state and four-state atomic basis expansions
which used plane-wave translation factors, and also with
other theoretical and experimental cross sections. Fof
energies£ 2.5 keV amu™t fairly reasonable agreement is
obtained with other data. For energies 2.5 keV amu”
the present cross sections are in poor to extremely poor
agreement with other data, steady divergence of the present
results from existing data being observed with increasing
energy.

The present results are discussed, and conclusions

and suggestions for future work are made.
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CEAPTZR 1

ZNTRODUCTICN

1.1 Electron capture in Icn-atom collisions

The work presented in this thesis is concerned with

the atomic collision process known as electron capture.
This process is the transfer of one or more electrons
during the collision of two atomic species which may be
neutral atoms or electrically charged ions. Electron
capture is also known by other titles, which are '"'charge
exchange' and ''charge transfer’. In this thesis we shall
be considering single-electron capture processes where
only one electron is captured during the collision. Let
us denote the projectile ion or atom by A and the target
ion or atom by (B + e”). That is A and B represent singly
or multiply charged icnic cores. The collision of A and

(B + e ) may lead to one of a number of possible outcomes.

These are listed as follows:-

A+ (B+e )—A + (B + e ), elastic; (1.1.1a)
—>A + (B + e_)x, excitation; (1.1.1b)
—> (A + e ) + B, capture to ground
state (1.1.1c)
—> (A + e7) + B, capture to
excited state; (1.1.1d)
=>A + B + e, ionisation. (1.1.1e)

The process (1.1.1a) involves no conversion of kinetic
energy into internal energy and is termed elastic. This
is not the case with process (1.1.1b) where the target

system is excited (denoted by *). This inelastic process



is known as direct excitation, direct meaning there is

no rearrangement of the particles during the coliision.,
Processes (1.1.1c) ancd (1.1.1d) are electron capture
processes. They beiong to the class of collisions known
as rearrangement collisions. In process (1.1.ic) the electron
is captured into the ground state of the (A + e ) system;
in (1.1.1d) capture to an excited state occurs. The final
process (1.1.le) is ionisation. Here the electron is in
a continuum state rather than a discrete bound state.
At high energies electron capture occurs predominantly
via the radiative process

A+ (B+e) —s (A+e) +B+ Y (1.1.2)
where ¥ is a photon.

If A and B are the same, an electron capture process
is termed "'symmetric', if they are different the process

is "asymmetric'. If there is a zero (or nearly zero) -

energy defect between the initial and final systems, the

process is termed ''resonant ''; if the energy defect is
not zero, the term ''mon-resonant' is used. The process
H" + H(ls) —» H(1ls) + H' (1.1.3)

is an example of symmetrical resomance electron capture.
However, the process

2+

+

He“t + H(lg) —> He(2s) + H (1.1.4)

is an example of asymmetrical (or accidental) resonance
electron capture.

1.2 Controlled thermonuclear fusion

Electron capture processes have attracted much attention

over the past few years owing to their relevance to the



field of controlled thermonuclear fusion. Specifically

the magnitudes of cross sections (see next section) are

of interest to workers trying to achieve the aim of harnessing
the energy of thermonuclear fusion for peaceful purposes.
Most of cheir effort has been directed toward a fusion
reactor in which a magnetically confined plasma is heated

to a temperature at which fusion occurs. The energy released
is then used in a conventional manner to produce steam

which is used to generate electricity in steam turbo-generators.
The problems associated with the realisation of a viable
fusion reactor are difficult. To'bring about fusion in

the plasma requires very high temperatures. This is because
the Coulomb repulsion of the nuclei to be fused has to

be overcome. As this is dependent upon the nuclear charges,
nuclei with small nuclear charges must be used. This is

no major problem, though, as the best isotopes, from this
pcint of view, are those cf hydrogen (deuterium, D and
tritium, T). Deuterium occurs naturally in the form of
"heavy water" (DZO)’ and so may be obtained relatively
cheaply from naturally occurring water. In fact the Coulomb
repulsion is not such a great problem as quantum mechanical
tunnelling through the Couiomb barrier can occur. A major
problem in the fusion research work has been concerned

with confining the plasma. One way of doing this is to

have the plasma in a torus, confinement being achieved

by a combination of poloidal and toroidal magnetic fields.
Unfortunately a high-temperature plasma is highly unstable
and successful confinement remains to be achieved alongside

actual fusion occurring.



An attractive candidate for the fusion reacZion is
the so-called D-T reaczion. This is

4

D+ T=>("He + 3.52 MeV) + (n + 14.06 MeV). (1.2.1)

This process attains reaction rates sufficient for ignition
at temperatures greater than ones corresponding to only

4-5 keV. The 3.52 MeV alpha particles remain in the fully
ionised plasma where they give up their energy through
collisions with the constituents. The neutrons must have
their kinetic energy converted into heat by some means.

One way envisaged of doing this is to surround the reactor
vessel with a lithium blanket inside which the neutrons
would be trapped, their kinetic energy being taken up in
the form of heat by heat exchangers, which in turn would
create steam by some means. ~ This idea has the advantage
that more tritium could be produced via the reaction

6Li + n-—DAHe + T + 4,80 MeV. (1.2.2)

6

The "Li lithium isotope occurs in natural lithium (~ 7.5%)

and so may be obtained fairly easily. The driving of a
100 MW power station would require of the order of 1021
D-T reactions per second. This corresponds to temperatures

being required of the order of 108

K. At such temperatures
the plasma must be kept from coming into contact with the
reactor vessel and hence the need for confinement of the
plasma.

The question arises as to how the plasma is heated.

If magnetic confinement is the method used to confine

the plasma, energy is supplied by means of ohmic heating



from the torcidal current induced in the plasma by the
magnetic field. Beyond 2-3 keV this method of heating

is ineffective, and at such energies, further heating cannot
be procduced by the alpha particles f£rcm the D-T fusion
reaction (1.2.1). Supplementary heating is therefore,
required by some means. A promising method is known as
neutral-beam injection. This is where an intense beam

of neutral deuterium atoms is injected into the plasma

where the atoms are ionised either by electron capture

or by direct ionisation. The resulting D' ions give up
their energy in collisions with the plasma constituents.
Neutral atoms must be used in the beam so that the magnetic
field can be penetrated. The practical use of such a beam
requires some kind of device to produce the beam. The design
of such a device requires the knowledge of cross sections
for atomic collision processes which include that of electron
capture. The production of a neutral beam of deuterium
atoms begins by accelerating a pulsed beam of D' ions produced
by an ion source. Once at an energy of the order of 100 keV,
This D' beam is passed through a gas (molecular deuterium
D2) or metallic vapour target. Partial conversion to fast
neutral atoms or molecules takes place by electron capture,
for example

Dt + D, —» D + D2+, (1.2.3)

Unfortunately this process has a small cross section at
100 keV and so the neutralisation process is somewhat inefficient

An alternative is to use the 'detachment'" reaction



DT o+ DZ —_ D+ e + DZ' (1.2.4)

This has a large cross section but the formation of a D~
beam is difficult. Assuming, though, that the beam of
neutral deuterium atoms has been produced it is injected
into the plasma and heating occurs by ionisation of the
neutral deuterium atoms, as was stated earlier. The actual
précesses occurring in the plasma whereby the neutral D

atoms are ionised are

D+ DY —> D" + D (1.2.5a)
D+ TF —> DT + T (1.2.5b)
D + DY —» Dt + DT 4+ e~ (1.2.6a)
D+ T" == D"+ TV + e (1.2.6b)
e” + D —> Dt + 2e7, (1.2.7)

The cross sections for these processes have been measured

for H and H' and the cross sections for D or T are the

same at the same relative velocity. The electron capture
processes (1.2.5a) and (1.2.5b) have associated cross sections
of the order of 10  2cm® at beam energies of about 10 keV.

The capture process is the mosﬁ important prncess at this
energy. At an energy of 100 keV, though, the capture

—17cm2 but

processes have cross sections of the order of 10
the ionisation processes (1.2.6a) and (1.2.6b) have cross
sections larger by a factor of about 10. The electron ionisation
process (1.2.7) is of little importance at the energies

being considered.

The efficiency of neutral-beam heating is lowered

by the preseﬁce of fully ionised impurity ions such as



Electron capture cccurs resulting in highly-

excized, short-lived states of the impurity ions, namely
— ) -
X8t 4w —s  xlalir (1.2.8)

where X9 is the impurity ion with charge q. These states
then radiatively decay resulting in a loss of power. Also

the ionisation process
X"+ —> X9 s Ht 4+ e (1.2.9)

may occur. This can lead to cold electrons that can be
detrimental to the density and temperature distribution
of the plasma. Another possible process that can occur

within the plasma is
H & x3% —s  H 4 x(9D+ (1.2.10)

where X may be helium or an impurity. The resulting fast
hydrogen atoms cannot be confined magnetically and thus
escape. The increased charge of X results in further
power loss by radiation.

As well as data concerning processes arising from
neutral-beam heating being required, data are required

on the electron capture processes

He?® v H =—= He'* . u' (1.2.11)
Het + H =—= He + HT (1.2.12)

in order that there be a befter understanding of the energy
and particle loss mechanisms which are associated with

the alpha particle heating. Also the impurity ions may
seriously affect the alpha particle heating. Data on the

associated collisions are therefore of interest.



Another area where atomic physics can provide information

f use in fusion research is that of plasma diagnostics.

It is important to be able Lo measure the parameters of

a plasma such as its density and temperature, and also

the concentration of impurity ions and the depth of penetration
of the neutral beam used to heat the plasma. Beams of
hydrogen atoms with energies between 4 to 14 keV have been
used as probes to investigate the plasma. By stqdying

the attenuation of the beam and having a knowledge of the
electron capture and ionisation cross sections for protons
colliding'with hydrogen, and also the cross section for
ionisation of hydrogen atoms by electrons, in this case

the plasma electrons, the path-averaged proton density

in the plasma can be measured. Also it is possible to

study the Doppler-shifted radiation emitted by decaying
hydrogen atoms, formed by electron capture by plasma protons
from injected hydrogen atoms, in order to measure the
temperature of the plasma. The electron capture cross
sections into the excited states of the subsequently decaying
hydrogen atoms can be used to measure the proton density. |
In princiole the impurities in the plasma can be investigated
by this method.

Spectroscopic techniques can be applied to assessing

the depth of penetration of the neutral beam used for heating.
Electron capture by 08+ ions produces O7+ in levels corresponding
ton =5, 6 or 7. By determining the depth in the plasma
from which radiation characteristic of these levels is
emitted, an estimate of the penetration depth of the neutral

beam can be obtained. However, fairly accurate spectroscopic
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information is required for multiply charged ions such
as O7+° This information may be obtained by using beam-
foil spectroscopy wherein a nigh energy beam of singly
ionised particles is passed through a thin foil (often
carbon) ro produce an emergent beam of atomic species in
many different excitation and ionisation states. The line
radiatior from these species can then be measured. Much
more detailed discussions of various aspects of controlled
nuclear fusion are given in the publication edited by

McDowell and Ferendeci (1980).

1.3 Cross sections and reference frames

The quantities which characterise collision processes
between ''particles’ such as atoms, molecules, etc. are
called cross sections. Cross sections can usually be
measured experimentally or altermatively a theoretical
model can be constructed, based either wholly or in part
upon quantum mechanics, the purpose of which is to predict
the cross sections. A collision experiment is, in principle,
very simple, consisting of a collimated, and very nearly
monoenergetic beam of particles, A which is directed at
a target containing scatterers, B. The products of the

collision process occurring are detected in some way (see

figure 1.1).
detector
=%>=E RE Figure 1.1
_ﬁ%zi . \K\ @@Fgegz/{/ A simple collision
PeRm ex periment.
—e > B ‘‘‘‘‘‘
f B
!
——
i
collimabor
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We define the cross section of a certain type of event

in a given collision as the ratio of the number of events
of this type per unit time and per unit scatterer to the
relative flux of the incident particies with respect to
the target. We shall iliustrate this somewhat verbose

definition by considering the total cross section.

Let us suppose that N, particles A reach the target
per unit time. We assume that these particles are parallel
in direction (that is not straying from the beam) and are
monoenergetic. We denote by,4£’the mean number of particles
A per unit volume in the incident beam, and by v their
mean velocity with respect to the target. The flux of
incident particles relative to the target, that is the
number of particles A crossing per unit time a unit area
perpendicular to the beam direction and at rest with respect

to the target) we denote by @QA ; this is given by

O=AALv=N,/S (1.3.1)
where § is the area in cross section of the beam. We assume

that the target is thin and denote by ng the number of particles

B within the "effective" target volume interacting with the

target. If the target is a thin layer of thickness L
then,
N :
ng= SLA, 5 SH/ (1.3.2)

where /@g is the number of particles B per unit volume

A
of the target and /@g is the surface density of the target
particles. If F@G@e is the total number of particles A

which have interacted per unit time with the target scatterers,
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. L N
then under the experimental conditions assumed F\,
b

<z

. - . . . A -
proportional to the relative incident flux QQA and the

number oif target scatterers Ty . Thus
|, .= oy
N@@@ @Z’@@ QAVVJ (1.3.3)

where the constant of proportionality (at a given collision

energy) is called the total cross section for scattering

of particle A by particle B. It should be stressed that
the definition of equation (1.3.3) is only valid for a
thin target. The total cross section O, depends only
upcn the collision energy for a given quantum system being
considered. It is a measure of the tendency of the
particles A and B to interact at the energy being considered.
The dimension of Oy is that of area; we may, indeed,
consider @, as an "effective area" which collects a certain
amount of the incident beam, (see equation (1.3.3)).

The quantity Op,e 1s the total cross section for all
possible collision processes occurring when A and B collide.

That is, it includes elastic scattering

A+ B — A+ B, (1.3.4)
inelastic scattering,

A+B —=—= A + B, (1.3.5)

where * denotes that a possible charge in internal quantum

state has occurred, and reactive scattering
A+ B —> C+ D (1.3.6)

A+ B = C1+C2+ 506 0o +Cn (1.:3.;7)
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where two or more particles are produced which are cifferent
from A and B. The reactive processes (1.3.6) and (1.3.7)
are called rearrangement collisions if they occur via the
exchange of one or more elementary constituent particles.
If a rearrangement collision produces only two particles,
as in process (1.3.6), it is called a binary rearrangement
collision. Electron capture processes are an example of
binary rearrangement collisions, the elementary constituent
particle or particles exchanged during the collision being
one or more electrons. It is possible to conscider total
cross sections for particular processes occurring such

as, say, elastic scattering. This has associated with

it the total elastic cross section Cﬂ%ﬁ which is defined

in an analogous manner to Opee (see equation (1.3.3))
el _ -1

el | )
where PQMW is the total number of particles A scattered
elastically per unit time. If only elastic scattering
¢
occurs then Crot = Tcop . However, if non-

elastic processes occur too then we define the total reaction

) I
cross section €e.e for all such processes by

Gigt = Trge = Tioe - (1.3.9)
It is important to note that the term ''total" as applied
to cross sections may have two different meanings. The
formally correct use of the term is to distinguish between

total cross sections and differential cross sections, the

latter to be discussed shortly. We have used the formally

correct terminology in this discussion. However, it is
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very common in atomic collision physics for 'total cross
section' to mean the total cross section for scattering
into all possible states being considered, whilst ''cross
section'" means the total cross section for scattering into
one or a small number of states. For instance the total
cross section for capture into a particular nlh state of

a hydrogenic ion would be called ''cross section', the total
cross section for capture into all nlm states would be
called '"total cross section'.

The total cross sections discussed so far do not giQe
any information about the angular distribution of the
scattered particles. In order to deal with angular distributions,
it is necessary to choose a co-ordinate frame. The two
most common frames used are the laboratory (L) frame and
the centres of mass ( CM) frame, sometimes called the bary-
centric frame. The laboratory frame is that where the
target B is at rest; the centre of mass frame is that where
the centre of mass of (A + B) is at rest. Working in the
laboratory frame and considering elastic colliéions, we
denote by dﬁ%@z the number of pafticles A scattered per
unit time into solid angle o4k, centred about the
direction (@,,@.) shown in figure 1.2. Provided the target
is thin

d Ny 2Ua4(@L?@L)@Am@O{ZQL.' (1.3.10)

The quantity cgdlengﬁ) is the laboratory
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3C dotacleor

Figure 1.2

Scattering angles in the

laboratory frame.

differential cross section for elastic scattering. It

is also written

T, (6., 2.) = %(@“@U- (1.3.11)
L
Similarly in the centre of mass frame
where
- doa(8
0;4((9@M9,@Z;M)='ﬁ‘—ﬁf ems Fen) (1.3.13)
€

Equations (1.3.10) and (1.3.12) show that

doni(6,, @)l = dalBem, Ber)dcm (1.3.14)
dﬂfg dﬂgﬁ!\\

and also the total elastic cross section is

o= dori(6., 8.V dNy = | ATat(Bers Pem) ol L ep (1.3.15)
A el N em
Ih &£
which is independent of the co-ordinate frame. In a similar

fashion, differential cross sections can be defined for
non-clastic scattering.

1.4 Units

In the work of this thesis atomic units are used,
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unless otherwise stated. This system of units is obtained

by setting @= Me=h = | , where =2 and me are the
charge and rest-mass of the electron respectively. In

this system the unit of length is the Bohr radius, Qe (=

5.29 x 10_9cm) which is the radius of the first Bohr orbit

of the hydrogen atom. The Bohr radius is given by Q@E?ﬁﬂﬁg@a.
Similarly the unit of velocity is the velocity of the electron
in fhe first Bohr orbit of hydrogen ng:e%%% . The unit

of energy is obtained by setting &, me and % to one

in the expression for the ground state energy of the hydrogen
atom which is =Wﬁg@¢/‘2ﬁﬁz . | In atomic units this is T 3.
Thus the atomic unit of energy is lﬁeeé/ﬁz , (27.2 eV

in real units) which is twice the ionisation energy of

the hydrogen atom, 13.6 eV. In atomic physics cross sections

may be expressed in terms of @ﬂs' (= 2.80 x 10_17 cmz),
though sometimes the units used are Ras (= 8.8 x 10717
cmz)° However, the units often adopted are simply 10”16cm2

which are the units used in this thesis for cross sections.
Atomic units are not really suitable for measuring

“collision energies, though the collision velocity is usually

in terms of atomic units.  Ion-atom collision energies

are usually measured in keV, either in the laboratory or

centre of mass frames. If we denote the centre of mass

energy- by Ezcﬂh , and the laboratory energies for B being

at rest and A being at rest by 156 and [EE respectively,

that is Eé and ES are the kinetic energies

of A and B in the laboratory,then it is straightforward

to show that



_ Mg ph B
EMQMMMQE MmM.E | (1.4.1)

where A&A and A&@ are the masses of A and B respectively.
For an ion-atom collision, equations (1.4.1) apply if the

mass of the electron is ignored. It should be noted that
the laboratory energy is dependent upon whether A or B

is at rest. In this work the convention is that B is

at rest whilst A is moving. However, it is important

to specify which of the colliding entities is the projectile
or target when talking about laboratory energies, unless

the meaning is clear. Hence the use of the phrases ''the

be2+ laboratory energy ' or 'the 4He2+ projectile energy "

2+

He
indicating that 4He is the projectile. It is also possible
to divide the laboratory energy by the mass of the projectile

and use this as the energy unit. For example, the 4Hez+

laboratory energy can be divided by 4(the mass of 4He2+
in atomic mass units, amu) to give a laboratory energy
in keV amu l. From equations (1.4.1) we see that
i/MA:, EE/MB which is proportional to the square
of the relative velocity of A and B, and so there is no
need to specify that A is the projectile. If the laboratory
energy is, say, 125 keV amu_1 for A colliding with B, it
is the same for B colliding with A. We note, finally,
that one atomic unit of velocity corresponds to a laboratory

energy of 24.97 keV amu™ L.



CHAPTER 2

EXISTING THEORY AND APPLICATIONS

2.1» Introduction

There arc many excellent review articles and texis
that deal either wholly or in part on the subject of electron
capture in ion-atom collisions. Tor example, McDowell and
Coleman (1970), Bransden (1972), Basu et al. (1978),
Greenland (1982), McCarroll (1982) and Bransden (1983).

This chapter is in no way intended to be an extensive review
of the subject, but rather it is a discussion of some of the
main aspects of the theory of electron capture relevant to
the work presented in this thesis, with mention of some of
the main applications of the theory.

We shall begin by discussing the full quantum mechanical
treatment of the electron capture problem and then discuss
the semi-classical impact parameter approximation Whiuh is
extensively used in theoretical work on ion-atom collisions.
We shall then examine the atomic expansion method and
related expansions, for example, the pseudostate expansion,
and also improvements to the basic atomic expansion
method. Then we shall consider the molecular expansion
method. Finally a brief discussion of electron capture at
high energies will be given. It is possible to use
techniques based upon classical mechanies 1o calculaie
clectron capture cross sections. A discussion of the use of
classical techniques is not given here, but the interestod
reader 1= relerred Lo Scecetion 6 of the rovicw by (}yv(ﬂll:n1d

(1982) lor a discussion and reflorences on this topic.



2.2 Quantum mechanical formulation

We begin by defining the single electron capture

process

A+ (B+e )—=>(A+e ) + B (2.2.1)

A and B may represent singly or multiply charged ionic
cores. As through all this thesis, we adopt the convention
that A is the projectile ion and B is the target ion. We
require a co-ordinate system to describe the process and

this 1s shown in figure 2.1.

Figure 2.1

Electron capture
centre of mass co-

ordinates.

< :
A R 8
-—d
In Figure 2.1 R is the position vector of A with respecct
—
to B, RA is the position vector of B with respect to Lho
centre of mass of (A + e ), Rg is the position vector of
A with respect to the centre of mass of (B + e ) . Vectors

sz and F% are the position vectors of the electron with
respect to A and B respectively, and 7 is the position vector
of the electron with respect to the centre of mass of A

and B. We note, finally, that G is the centre of mass of

the whole system (A + B + e ).
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We denote byﬂAAandﬂABthe masses of A and B respectively,

and by m. the mass of the electron (here we denote electron

mass by me even though Mme=1 in atomic units). The
total mass of the system, W\ is given by

M=My+ Mg+ m, | (2.2.2)
The kinetic unurgy,cTanof the centroe ol muass ol the system

is given by

2
jr - Fkﬂi (2.2.3)
[0~ g 2}\/\

where Rmﬂis the magnitude of the linear momentum of the

centre of mass in the reference frame. When dealing with the
theoretical analysis of a scattering problem, it is useful
to separate ‘the centre of mass motion from the problem
(Farina, 1975) and work in the frame where the centre of
mass is at rest. Hence PCM and '—T;;M(fr-om equalion (2.2.3))
will both be zero. Tor the (A+B+e” ) system we choose Lo
wark in the centre of mass frame, that is, point G in
Figure 2.1 will be at rest.
In order to describe the dynamics of the system in
the centre of mass frame one of three sets of independent
' s = B
centre of mass co-ordinates may be used, namely (F, R) s
- =° —
(FAQ RA) or (’ﬁg;R@> . The centre of mass kinctic
onergy nperatorjr may be written
2

2 2 2 X
TP P _Pe s Pa— Lo Po (2.2.4)
2u Im QMg 2Mp 2pMe 2mp

Py -t — .
where P ,f% and f% are momentum operators conjugate LO



- =D =

=D =2 =

R 5 RA and R@ respectively, and P ,ﬁis and Pg are momentum
=D =D ="

operators conjugate to /~ , i and Iy respectively. The

various reduced masses in the expressions for‘T’of equation

(2.2.4) are given by

M4 My , :M.@(MA’Q’M@)
AAA+AA@ A ﬁﬂﬂ%’ﬂﬂgéwng

/L([z

“MA(MQ%:’M@) s (2.2.5)
/AA8‘=' ?

M= W\@(M&\*M[&) g M g = Me MA N
MA+ N\@'*'Ma MA+M@

(2.2.6)

When dealing with the general theory of collisions it is
convenient to introduce the concept of arrangement channels
(see, for example, Bransden (1983),Chapter 4). Working in
the centre of mass frame, the total Hamiltonian of the

system,M, is written

where the subscriptevaries, and corresponds to a particular
grouping of the particles into aggregates and single
particles. F4a is the Hamiltonian of theée system when the
particles and aggregates are far apart and V& is the inter-
action potential. Normally V& tends to zero as time goes

to plus or minus infinity. The various decompositions of

ﬁﬂglabelled by subscript e ;, correspond to the arrangement



channels of the system. With each arrangement channel

there is associated a set of channels. A channel corresponds
to a particular state of the system before or after the
collision.

When considering the (A+B+e ) system, the arrangement
channels to be considered are the direct arrangement channel
which cortresponds to the centre A interacting with the

(B+e ) system, and the rearrangement arrangement channel
which corresponds to the centre B interacting with the
(A+e™ ) system. For brevity it is usual to omit the word
"arrangement' and talk of the direct and rcarrangoemoent
channels. The process of excitation occurs in the dircoel
channel whilst the electron capture occurs in the re-
arrangement channel. We use the co-ordinates (Fzgﬁg)for
describing scattering in the direct channel and the co-
ordinates (Fiyﬁ§;> for describing scattering in the re-
arrangement channel. The so-called adiabatic co-ordinates
(fi,ﬁ) are useful for dealing with the calculation of the
molecular states of the system (A+B+e ) .
The total Hamiltonian of the (A+B+e ) systom is

denoted by H 1t is given by
H=T=+V (2.2.8)

where the kinetic energy operator_r'was defined earliier in
equation (2.2.4). The potential energy operator\/ is givén

by

V= \/M* e + Vae (2.2.9)



where QVEA and \@@ are the pétentials between the electron.
and A and B respectively and‘VA@is the potential between

A and B. For the case of electron capture where A and B are
nuclei, these potentials are simple Coulomb ones. We

now make the decomposition into direct and rearrangement

channels and write the total Hamiltonian i as

H=H,+V, (2.2.10a)
or H=H, +V. (2.2.10b)

where d and 7 refer to the direct and rearrangement channels

respectively. We have that

Hy= T+ Ve (2.2.11a)

and
Vi = Veu* Vas | (2.2.11b)
H, =T +Vea | (2.2.12a)
and
Ve = Vg ¥ Vag . (2.2.12b)
] = '
We denote by @M(Fgg[&@) the asymptotic "free" state

for the system being in the mth state in the direct channel.

Thus
& _ -é@@
Hd@m"gm A (2.2.13)
where E:m are energy eigenvalues. Similarly we denote by
A, =P
}{ﬂ(fk,RA) the asymptotic '"free" state for the

system being in the nth state in the rearrangement channel.

Thus

A A
foﬂzEmXﬂo (2.2.14)



The asymptotic state for the system bheing in the initial
i Bres &
state L in the direct channel is é@a(Fég&B> and this is

given by

b

@f(&@;@xh@@@k&ﬁ> ?(?@) (2.2.15)

=D
where kg is the initial wave vector of A relative to the

—_ Qﬂ
centre of mass of (B + ) . The ﬁyiffh).is the initial

state eigenfunction of the (B + e7) system and we have
(—zm@v%+vea PF) =& Zi (Fe) (2.2.16)

where &; is the energy eigenvalue of the initial state of

(B + e ). We may relate the total energy ]Eg and E; by
2 |
E.=k +6;. (2.2.17)
Mg

The mg and Iy in equations (2.2.16) and (2.2.17)
respectively are the reduced masses of B and e , and
A and (B + e ) respectively. They are given by the expressions
of cquations (2.2.5) and (2.2.6).

We consider first scattering in the direct channel,
that is excitation processes. We denote the final asymptotic

By =2
"free" state in the direct channel by @§§(F39§%B> . This is

given by
. B, == _ "ﬁ = B,=
@f(%gRg)“QXF(&k§°RB)g§.(r’@) (2.2.18)
—

where k§ is the final wave vector of A relative to the

By=> :
centre of mass of (B + e ) . The function ﬁﬁﬁ(r@) satisfies

the equation

(g_»"_vj +\/@B)g§8(ﬁ;):gf,@’f(%§). (2.2.19)

Amg Ty



It is also true that

2
Es= by 4 €. (2.2.20)
2M
It turns out that for direct scattering the probability

: s & .
of scattering from an initial state ﬂ@éi to a final
B X -
state u@§> is zero unless we work 'on the energy shell"

namely, we have
EézEj};zE. ‘ (2.2.21)

The scattering amplitude for the direct process @==%f is

given by (McDowell and Coleman, 1970)

iaf a0 0L d .
iﬂf’fi(kasﬂ%)z“%j_ﬁ (2.2.22)

- d
whora _T§; is the transition (T-) matrix elcment for

scattering in the direct channel between states labelled

by ¢ andff, The T-matrix element =T}i is given by
d
TF@;@J\/&W’?&) (2.2.23)

(+).
The ﬁf i is the scattering wavefunction corresponding to

the initial state (. It satisfies the Schrddinger equation
{4+ — ()
HY'P=EY"7. (2.2.24)

The (4) denotes that the wavefunction is the solution of the
Schrodinger equation corresponding to outgoing scattered
spherical waves. The differential scattering cross section

in the direct channel is given by

A 2

d@}’: :Jii. ”fﬁfl( i,kf)
dn i

(2.2.25)



2
d
- M@i,kf %H , (2.2.26)
&I ki

For rearrangement scattering, which corresponds to electron
Pa)
Ad
capture, we denote the final asymptotic state by ><§(rkggA>,

This 1s given by

A ey _ 'db = A , >
Xf(”’AQRA%‘@XP(°¢k{;=RA)X§(FA) (2.2.27)
—
where kf is now the final wave vector of the centre of
- : A,
mass of (A +e’) relative to B. The function j<§(fk) is

the final state eigenfunction of the (A + ¢ ) system and

satisfies
i 2 A =5 B, = .
(=2mAvrz +v@A>X§(ﬂ=’A>:7§ Xf((ﬁ;%)p (2.2.28)
where 7§- is the final state energy eigenvalue of the
(A +e) system. The total energy corresponding to the

final state f is E§ and we have

EjF Z‘Efi +2777, (2.2.29)
ZﬂA ’

The my andb/MA in equations (2.2.28) and (2.2.29)
respectively are the reduced masses of A and e—_ , and B
and (A+e ) respectively (equations (2.2.5) and (2.2.6)).

As for direct scattering, we must work on the energy shell
in rearrangement scattering. Setting the total energy to

be E, we have
E@EE]?EE. (2.2.30)

The scattering amplitude for the rearrangement process ( =%ﬁ:

is given by (McDowell and Coleman, 1970)
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&57

F
¢;>Z=%z‘ T ; (2.2.31)
27

— P

where i§5 is the T-matrix element for the rearrangement

process i=%f given by
(&)
<X Y > (2.2.32)

The differential scattering cross section is given by

- F A L 2
deg: - Mo kg j%&(kggﬂ%y@)ﬁ (2.2.33)
doy  Ma
_ Fie '
= Mg @.&ﬁT{f&ﬂ ° (2.2.34)
4o 70° kst

The total scattering cross sections for direct and re-

arrangement scattering are given respectively by

~

d_1 Jed
Oe; =| 298, dN (2.2.35)
g Jﬂ. d

F= r d@ﬁ
¢ = . dN) . 2.2.36
%G J@ @fﬂ ( o )

The asymptotic boundary conditions upon the scattering wave-
) ag?d+) ) ) )
function { corresponding to outgoing spherical scattered

waves are given by

G.HN Z[&MQXP(E ° )+fma@xP«&MR@ /@m ((FB

(2.2.37)

I ° FAREN
R;\%@Zj%z e xp ikaRa alFa) . (2.2.38)
n

Equation (2.2.37) corresponds to the direct (excitation)
channel. The first term in the squariﬂbrackets represents
the incident plane-wave of momentum ka (ﬁgg “)-

The second term represents the outgoing spherical waves
describing the scattered particle A leaving the (B + e’)

system in themth level represented by the eigenfunction



LZZ?(F%) . Equation (2.2.38) corresponds to the re-
arrangement (electron capture) channel. There is no
incident plane—wa?e and so the full expression represents
particle B leaving the (A +e) system in the nth level
represented by the eigenfunction jK;?(EZ) .

At very low energies the scattering wavefunction
may be expanded on a basis of atomic or molecular orbital
wavefunctions and a partial wave decomposition can be made.
The problem becomes one of solving a set of coupled second-
order differential equations. Alternatively, at high
energies provided the ﬂ%ﬂgﬁ is only weakly perturbed by the
collision, the wavefunction fg%dfb may be represented
approximately using the Born or distorted wave approximations.
These methods are discussed in the review by Basu et al,
(1978). When the collision energy is neither in the low
energy nor high energy regions, approaches based on the
full quantal treatment become impractical. However, the
typical ion-atom collision system has a feature that enables
a semi-classical approximation to be used in the system's
description. This feature is that the masses of the centres
A and B are very much greater than the mass Qf the electron
being either excited or captured in the collision, and
hence the motion of the centres may be treated classically
owing to the associated de Broglie wavelength being very
small as compared with atomic dimensions. The result of
this is the semi-classical impact parameter approximation

which will be discussed in more detail in the next section.



2.3 The impact parameter approximation

2.3.1 The impact parameter Schrodinger equation

In the previous section the gquantum mechanical
treatment of ion-atom collisions was discussed. We noted,
though, that in practice it was not practical to employ the
quantal treatment, but due to the much larger masses of the
centres A and B as compared with the electron, it was
possible to describe the motion of A and B classically'as
the de Broglie wavelength for the motion of A and B will
be very much smaller than typical atomic dimensions.
Quantitatively this means that the collision energy E will

be such that
E2eV amu’. (2.3.1)

In addition, if the collision energyﬁz is much greater
than the typical change in electronic energy during a collision
(v 10 eV for a slow collision), then the nuclear motion may
be assumed as being independent of the electronic motion.
Typically independence of nuclear and electronic motion is

present if

E 2100V amu”’ . (2.3.2)

If the collision energy, & satisfies equation (2.3.2) then
the impact parameter approximation is usually wvalid.

When the impact parameter approximation is applied to
a collision problem, a trajectory equation is written down
to describe the classical motion of the massive centres A

and B. Figure 2.2 shows the co-ordinate system employed-



when the impact parameter approximation is used and the
motion of A and B is such that they move along straight-line
paths. (From now on we shall describe the motion of

A and B as "nuclear motion').

Figure 2.2

Impact parameter
co-ordinate system
(straight-line

nuclear trajectoriés).

s, Z=ants

In figure 2.2 the parameter P determines where the position
of the origin O is on the internuclear 1line AB. P is such

that
ospsl . (2.3.3)
We note that

(2.3.4)

The quantity b is the two-dimensional impact parameter
vector. We use Ff to denote the electronic co-ordinate
but unlike in the previous section F9 may have its
origin at any point on AB. In general the nuclear motion
is determined by some effective internuclear potential

=D

'&ﬂ<R) ; and the internuclear co-ordinate R will be a
. =

function of time £ for a given impact parameter b - . Thus



the trajectory equation takes the general form
=D = =D
RER(%@)O (2.3.5)

The electronic motion is described quantum mechanically and
the associated time dependent (impact parameter) Schrodinger
equation will now be derived.

The total Hamiltonian of the (A+B+e ) system is given by

H=T=+V (2.3.6)

==§ﬁv§=%ﬂ°v§+%éﬁ\/@*v&- (2.3.7)
from equations (2.2.4), (2.2.8) and (2.2.9). The reduced
mass of A and B is/u. , and the reduced mass of the electron
and the (A + B) system is mMm (equations (2.2.5) and
(2.2.6)). As the mass of the electron is very small compared
to the masses of A and B, we may put /M & Mg = [ in atomic

units. The Schrddinger equation for the system is thus

given by
<=ZEV§+U(@+H@@=E) @(ﬁ, Fl=o0 (2.3.8)
where the electronic Hamiltonian, %4@& is given by
H@¢:=%V;+V@A4%%*(VA@QU% (2.3.9)

7D =D .
and (R,F) is the wavefunction of the system. The nuclear
=
motion is described by a wavefunction Ff(ER) which satisfies

the potential scattering equation

(«=2-—[]——'V§+ U((‘@GE> F(R). (2.3.10)
ﬁ,’l



It is usually a good approximation to ignore the binding
energy in the initial state €¢ and so the energy E is

given by

Eg_ﬂ_?; + €1

2
3
%,ﬁ:ziﬂvz’ (2.3.11)
2y 2

where v is the relative velocity of the centres A and B;
( k@ is the wavenumber associated with the motion of A
and B).
, ~
We write the wavefunction of the system é@(RQF) as
the product of the nuclear wavefunction [?(R> and a

=D
wavefunction for the electronic motion F%?(Ezgf

@@:F): F((@Y((R:F), (2.3.12)

Substituting for é@(ﬁng in equation (2.3.8) we obtain
N = 2 0 _n ==L==éd s d; -
~5 PRI G TURLF) - 5 FIR). 2 (R,

+F’(@H@¢Y(§ﬁ)30= (2.3.13)

We now write the nuclear wavefunction as
F(R) =expiS(R) (2.3.14)
where
- 2
S(R) » dg[g’ﬁﬂ{g"w@}] (2.3.15)

which is consistent with nuclear motion being described



classically by the trajectory equation (2.3.5), and where the
integration in equation (2.3.15) is along this trajectory.
The approximation defined by equations (2.3.14) and (2.3.15)
for the wavefunction E:(ﬁv is the basic starting pbint of
the semi-classical eikonal approximation (Bransden, 1983)

and F(§> as given by (2.3.14) is termed the eikonal
wavefunction. At high energies the scattering is mainly

into a forward cone of small angular width and the motion

of the centres A and B can be approximated by a straight-

line trajectory equation, namely

R'§E+v(§5 b.¥=o0, (2.3.16)

The velocity vector is parallel to the z-axis (Figure 2.2).
The straight-line trajectory case is consistent with the
effeetive internuclear potential, Lﬂ@ﬁy being ignored.
This resulﬁs in the wavefunction [;(ﬁ) being a plane-

wave, that is

F((Fi) g@XPékiZ@

= expipvig (2.3,17)
==
where £ is the z-component of R . If equation

(2.3.17) is used to substitute for F=m§> in equation
(2.3.13), then the first term is found to be very much
smaller than the second due to being a large
parameter. The first term is neglected and equation

(2.3.13) becomes

'H@ai%?((ﬁf’s)z@v@‘%a YR, 7). (2.3.18)



For the straight-line trajectory case Z%y?\/@ and so we
obtain a time dependent Schrodinger equation, also called

the impact parameter Schrddinger equation

‘H@ﬁ?(ﬁ@)zég%]ﬁ Y7, (2.3.19)

where the notation @/@@]F9 means differentiate with respect
to time keeping Fﬁ fixed. It should be noted that if
non-linear trajectories are considered, équation (2.3.19)

is obtained in the same way by dropping the first term of
equation (2.3.13). Now, though, the trajectory is given by
equation (2.3.5) as determined by the particular &J(ﬁ»-
being used.

2.3.2 Boundary conditions

Before proceeding to consider how the impact parameter
Schrodinger equation (2.3.19) can be solved, we must
consider the boundary conditions of the problem. The un-
perturbed sclutions of equation (2.3.19) are expressed in

@:—_ﬁ

terms of the ‘orthonomal sets of eigenfunctions ﬁgj(Fg) and

A, - -

><klfﬁ) of the (B +e) and (A + e ) systems respectively.

These are solutions of the equations

3 . B,=>
<=%V,§B+\/@@>ﬁf((%)i ; B;17) (2.3.20)
and

<=.?%.Vé+\/@ﬁ>>(f((ﬁ)i m%i‘«m (2.3.21)

where %j and 7)), are the energy eigenvalues of the systems.
B, =
Qﬁj(fb) and 7<§@fh> are quantised with respect to the

space-fixed z-axis. The unperturbed solutions of equation



(2.3.19) are denoted by j@ﬁ,@) and Xﬁs (F:, &) . The

B,
functions é}j@3@> are given by
= =D o =N =D
@jm@)'—f @f((Fg)@xpma[@j@+%ng2’(§+@vor] . (2.3.22)

and satisfy equation (2.3.19) in the asymptotic limit £ =D e
and g <«€FA . We remember that the parameter determines
the position of the origin (equatiors (2.3.3) and (2.3.4)).

Similarly the functions ‘§(F;t> are given by
2 A = Ay o . . . . =N B ‘ ; :
Xk((r,@)zka»@xu@ca[%{t %«&@%%%h@wﬂ (2.3.23)

and these satisfy equation (2.3.19) in the asymptotic limit
E=>%ew and TR <KJIg . We note the presence of the factors
exp=i(Lpv*t +pV-F) and @xpaa[%@u=@»zv%=«n=@ﬁo F’]

These are necessary if the functions @Fgff) and X@«Fp@)
are to satisfy equation (2.3.19) in asymptopia. If the
system is originally in the { th state of (B+e ) , then

the corresponding boundary condition is

= 8
P
V(R e) oo, @ (Fe). (2.3.24)
The probability amplitude for finding the system in the

jth state of (B + e ) after the collision is given by

B, -
.‘”z@iMJ . (Fy6) P (F,e) dP
%«(b) £ = deo V@J (7 )ﬁ?(( 9@»@“: (2.3.25)
and the probability amplitude for finding the system in

the k th state of (A + e ) after the collision is given by

o460

C‘k@(g)z lim JT X@“((F»&)Y@F,,@M?. (2.3.26)
v

The total cross sections for excitation Cﬁj@ or electron



g = 12 POy
capture &7 ; are obtained by integratingﬂ@ga(b)kor lesi (B
(@?éj» respectively over all two-dimensional impact para-

meter space, that is

@jfsjﬂ@-a@})ﬂgd‘g (2.3.27)

e 28
zzﬁi ﬂ@ja@bw bdb, =] (2.3.28)

and .
&y gﬁﬂcu((g)ﬂ&éll‘@ (2.3.29)
zzﬁcLﬂ@M((MHP@@@b (2.3.30)

where the integral over d b has been'simplified due to
azimuthal symmetry.

2.3.3. Solving the impact parameter Schrodinger equation

An approximate solution of equation (2.3.19) can be
performed using a variational principle.
We define the functional I(ﬁ?) where
29
I(f\}?)gjdtjd?‘%m(ﬁ e){H@Pi%?}YﬁH. (2.3.31)
“e® V :
We then vary ¥ andﬁ%ﬁﬁto first order by means of

TV §Y
and ;%C?f‘___%zin‘/%z% %Y%

(2.3.32)

but with the constraint that the boundary conditions are
presérved, This requires SY(Fe)=206 and S‘Y”((F;ﬂ@@ as
£ —> %60 .| It can be shown that §L20 up to terms of
the second order provided ¥ satisfies the Schrodinger
equation (2.3.19).
=
We define a trial function S%}@fye» in terms of two

sets of linearly independent functions, F}«Fi@> and



C%kKF%&? . These functions may be orthonormal for
all € among themselves and indeed we choose them to be such,
namely

C:} h 5 =
ﬂ”(ﬂ@)ﬁ(ﬂ@df’ = 5” (2.3.33)
v

[*!

and

25, =0 = = .
Gk"((f’s,@)@ﬂg(r’g t)dF = gﬂgﬂﬂg . (2.3.34)
C e
v
In order to satisfy the boundary conditions the F} and Gy

must tend to the unperturbed solutions of equation (2.3.19)

as C—>*eo , that is

— B ., .
ﬁ((mb)@@jdm(t)» ¢=> &0 (2.3.35a)
Gy (F, &) = X@((? e), t=>®eo, (2.3.35b)
The trial functlon ‘?? @F @) we expand as
N
/ﬁ?(ﬂ@) Z a; (HF(FD@>+Z Ck((@’)@k@lf e). (2.3.36)
j=! l=1

In fact we could display explicitly a dependence upon the
impact parameter b for the expansion coefficients @; and
€ as well as for the functions Fi and Gfk
For brevity, however, we omit this.
We obtain the coupled first-order differential equations

&Ij and € by requiring that

.97 .
a’ZF‘F @F’,@){HG@ =&°@£-@—"j?j YT,((me):o, JEh2;. . A (2.3.37)
v
r k=12 N
AF gg((m &) H@f@%] VAP e)=0, k=2, .- N (2.3.38)
‘v

which are consistent with .the wariational principle discussed

earlier. The differential equations are (in matrix form)
i,[@M@’%FNM@]zﬁgﬁﬁ)*ggﬁé) (2.3.39a)
[N a(e) +c(((¢)] K @@@)+H@(€) (2.3.39b)



where T denotes Hermition adjoint. We see that these

can be written in a more compact form, namely

.i§é@@)3/\$§@@ (2.3.40)
where
§s<l?%ﬂ) . @'Z(% %) (2.3.41)
and - = =
INGE (g%) o (2.3.42)

The boundary condltlons subject to which equations (2.3.39%a)

and (2.3.39b) must be solved are
ajl-es)=bji , Cpl-wo)=0 (2.3.43)

where index ( corresponds to the initial state of the (B + e )
system. As C=2%¢® the coefficients tend to the probability
amplitudes for excitation and capture defined by equationé

(2.3.25) and (2.3.26)

ajg(b% @:@@@3 (¢) (2.3.44a)
Y= lim
Cpi (b) 6@%0;#“ cplE) . (2.3.44b)

The elements of the matrices in equations (2.3.39a)

and (2.3. 39b) are given by

Nk le) = F PR, 0) Gy lF, 6) dF (2.3.45)

Hjule) =], F;(?a @){H@@"@;&]}ﬂ((ﬁ e d (2.3.46)

Sanr=] & melH, - 2] |

Hjlkte) =] G5 (7603 et ‘ 3L Gy (F, ) 47 (2.3.47)
s .2

Kjk(((t)zwﬂ- ((Fgﬁ){H@f&@‘%j }GM"D@M”’ (2.3.48)

| bjFu

— " . @
Kﬂk ((@) ;gv@f@f”g 5){H@@ EQ 5@:

Fk (FEd7. (23,49
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The @ matrix is known as the overlap matrix. The‘l}j and
tﬂmatrices are known as the direct matrices. ThelS and@S
matrices are known as the exchange matrices.
Green (1965) has shown that the Hamiltonian %%@@
- . - . ?
being Hermitian implies that the ﬁﬁ?? trial solutions

ensure that there is conservation of probability (unitarity),

that is
d (2 ¥%.>=0. (2.3.50)
dt _ , .
From this it can be shown that

e ? A.
(S=M =M (2.3.51)

Equation (2.3.51) yields a related expression

iN=K'-K (2.3.52a)

== ==

s =3 =3 .
and also @;L}—;ﬂ' 9 Dﬂ’Ziﬂ . (2.3.52b)

A further result of probability conservation is Green's

unitarity relation (Green, 1965).

T
A'SA=1 . (2.3.53)
s ladhad
Probability conservation is also expressed by the

exXpression
X - .
) tajireoll + E lcyl+oodl =1, (2.3.54)
js! =t

The expressions of equations (2.3.51) to (2.3.54) are useful

in actual calculations as a check upon the numerical pro-

cedures being used. The excitation and electron capture
cross sections CTj@ and Cfﬁz are given by
9
d 2 T
O’ji‘”zﬁj laj(ves) | bdb, i) (2.3.55)
6

.and
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[oxe]
@'ki::zmj [{ck({%@»ﬂzﬂ@aﬂ[&. (2.3.56)
]

2.3.4 Differential cross sections

It is possible to derive expressions for differential
cross sections within the impact parameter approximation.
For excitation it can be seen intuitively that the

differential cross section is given by

d e
deji . detie) ﬂ@j@b»%%@@)ﬂa (2.3.57)
d N dn

where Ghﬁcgg»idfl is the classical differential CYOSS
section for scattering by the potential U, § is the.
scattering angle and the impact parameter b is a function

of angle B8 , that is, b= b((@> | . The classical

differential cross section is given by

de(6)_ o5 bl8)  db . (2.3.58)

d.N sin@ 8

Similarly for electron capture the differential cross section

is given by

doy; _ da’(e) ﬂ@km,%@)ﬂz. (2.3.59).
dN dL

However, the expressions of equations (2.3.57) and 2.3.59)

are only approximately true. It is possible to derive a
more accurate expression for the differential cross section
beginning with the quantal expression for the scattering
amplitude. This expression applies even if the effective

=D
internuclear potential LJ«R) is zero, and the nuclear

trajectories are linear. We consider excitation scattering

}

the expression for electron capture scattering is derived in

an analogous manner.
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The scattering amplitude is given by

i\ w@»acf—iT (2.3.60)

where cT}g is the T—matrlx element for excitation of
the j th state of (B + e) from the initial state ¢, u

is the reduced mass of A and B. Strictly p¢ should be/M@
(equation (2.2.22)) but we knowlﬂzﬁng as the mass of the
electron is much smaller than the masses of A and B. The

T-matrix element is given by (after equation (2.2.23))
d < B,= == n «4>)>> |
Tj& = @j(f’@»R@) Val Y (2.3.61)

where the @@ (f;9 ) is the final asymptotic state (the argu-

ments have been included to avoid confusion of notation) and
»\f«ﬂ ‘ . . ) .
the ¢ is the scattering wavefunction corresponding

to the initial state. The potential \fﬂ is given by

Vy= V4 + Vas . (2.3.62)

=
=5

In the full quantal treatment the @ij@rggﬁg) would be given

<)
by equation (2.2.15). Similarly the 4§?(Z would be
represented by some appropriate wave mechanical expression.
However, we now bring in the semi-classical approximation
used to derive the impact parameter equation and approximate

{2}
the scattering wavefunction ’ﬁ? ¢ and the asymptotic wave-
, @B = R.) : N ,

function j(ﬁh g/ by eikonal wavefunctions corresponding

to linear trajéctories; that is

@ =D => o = = B =D =h
@j(%gﬁ@)’%@%n@w%oﬁ»@j(Rslf’> (2.3.63)
where @% is the final relative velocity aftér the

collision, and ﬂN@ﬂZH\/R . The wavefunction i§j(R9F). is



B
equivalent to iéj@?g@) given by equation (2.3.22) which is the
solution of the impact parameter Schrddinger equation (2.3.19)
: . ;
in asymptopia. Similarly the scattering wavefunction ;§?@§

is given by
@4395) . e B =D
Y xenpip¥.R.F(R,F) (2.3.64)

g =0
where fﬁ?«R9F> is equivalent to the solution of the impact
parameter Schrddinger equation a%?«r»@) . Combining these

results we have that the scattering amplitude is given by
eD
=a VR 288, |
ﬁg(mcz)’ﬁzj@fﬂ% P @j ((Rsr><\/@ﬂ+ A>>
J N
& MURY(R 7). (2.3.65)

-y =D = =28 T
We make- the small angle approximation that @@#Vﬂ;@g (V-V5).b

and use the result that

(%w\h-)@ { @@M@i ]}@?“

iLHM%%w@gZ }@m (2.3.66)

to obtain (integrating by parts with respect to Zg)

]CL(@)‘:‘“ Wj@%ﬁ JPe'? dR@MWH " (2.3.67)

E=z-69

where F=u(Vg-V); 1312 2mvsin(6/2).
It is then possible to show using the expansion of equation

(2.3.36) that

=

‘f&(@==d db @5@“@[@}((59%@)::5@]

27

[ee ,
=iy bj@(q]l‘@)[@j([‘@ﬁ@@%ég]db. (2.3.68)
@

The differential cross section is cobtained from



'ﬂ, zﬂjfé’ff(@)ﬂﬂ, (2.3.69)
dn !

Similarly for electron capture the scattering amplitude is

given -by

|
f&ﬁ:@)zﬂ/wj?@I@((qwék(bﬁ@@))@ﬂﬂa (2.3.70)
@

and

r P a
dovi = ﬂfw(@ﬁﬂ : (2.3.71)
A |
A full quantal derivation of equation (2.3.70) has been given
by Mc Carroll and Salin (1968). The magnitude of the
momentum transfer vector Qris large, except when @ or Vv are

very small. This means that the Bessel function irz>@%5»

may be replaced by the asymptotic form
Jo ( K@)Ni»ﬂlz sia(bq+Z) (2.3.72)
6 ﬁl; W[b% % - o e J-

It is then‘possible to show that the expressions for the
differential cross sections reduce to the form given in
equation (2.3.57). Greenland (1982) shows that for the
particular case of the nuclear motion being due to the Coulomb
repulsion between the centres A and B, the expression for

the classical differential cross section @‘f@‘g/a[hﬂ. in
equation {(2.3.57) is simply the Rutherford differential

cross section,

2.3.5. Choosing the basis functions

Going back to the expansion of the trial wavefunction
-l - D
AﬁiF(F,6> in terms of the basis functions F}(r»@>
and ka@f»@) , equation (2.3.36) these functions must

be chosen carefully in order to be consistent with the

particular physical aspects of the problem. As more terms



are included in the expansion for ﬁ%v , the nearer V¢ comes

to the exact wavefunction Y . However, the rate of conver-
gence is very much dependent upon the basis functions being

used. The main consideration is that of the speed of the

collision. For very slow collisions (vl a.u.) the adiabatic

approximation is appropriate. Due to the slow relative

speed of the centres A and B, the electron will adjust
adiabatically to their motion and a virtual quasimolecule

will be formed. The nuclear motion will then cause certain
excitations of this molecule which correspond to electron
capture occurring. (The adiabatic approximation (Born and
Fock, 1928) corresponds to where the Hamiltonian of the system
varies slowly with time and so the solutions of the
Schrddinger equation can be approximated by stationary
eigenfunctiuons of the instantaneous Hamiltonian and so an
eigenfunction at one time goes over continuously to the
corresponding eigenfunction at a later time - see, for example,
Schiff (1955)). When the adiabatic approximation is applied
the basis functions are given by combinations of the mole-
cular eigenfunctions of the quasimolecular system comprising
(for a simple one-electron system) the nuclei and the

electron. These molecular eigenfunctions are denoted by

Wn (F, R) which satisfy

He(dﬂ/n(ﬁsﬁ)gEA(R»WA(F;'R{’}Q (2.3.73)

=D N
The R%;U’gR) are found for fixed values of R and so the
e =D
dependence of Q%%K%ER} upon R is parametric. The functions

| =N
N :
‘V;(F}R> are known as Born-Oppenheimer electronic eigen-



functions.

For fast (V2> 1 a.u.) collisions molecular eigenfunctions
are not suitable for describing the collision as they cannot
charge adiabatically as the internuclear distance varies, in
this case, rapidly. At such speeds the electron cannot
ad just easily to the motion of the projectile and electron
capture is improbable. For fast collisions the basis
functions are best represented in terms of atomic eigenfunctions.
In an actual calculation, the coupled differential equations
(2.3.3%9a) and (2.3.39b) must be integrated. In order to
minimise computing time, it is preferable to use an expansion
which includes only a small number of states that are
strongly coupled. This is termed the close-coupling approii—
mation. Ideally one requires as small as possible number of
states being strongly coupled. At low velocities this is
the case for the molecular basis expansion whilst at high
velocities it is true for the atomic basis expansion. |

The atomic basis and molecular basis expansion methods
are very much used in work on ion-atom collisions. - In the
next two sections of this chapter these expansion methods
will be discussed in more detail.

2.4 Atomic and related expansion methods

2.4.1 Basic atomic expansion method

When the velocity of the incident ion is comparable with
or greater than the orbital velocity of the electron in the
target atom, an expansion in terms of atomic orbital wave-
functions, or related functions such as pseudostates, is

appropriate. This is consistent with the fact that at such



velocities the electron spends most of its time bound either
to one or the other ionic centre. In this subsection the
basic atomic expansion method will be discussed.

Let us remind ourselves that we are seeking a solution

of the impact parameter Schrddinger equation

{Hu-éé%]?}‘ﬁ%((ﬁ@)@ (2.4.1)

where the electronic Hamiltonian %%eg is given by

2
Hoy= =2 + Vi + Ves + Vas . (2.4.2)

We describe the nuclear motion by the straight-line trajectory
equation

=y

R=b+¥t . bL.¥=0 (2.4.3)

9

(see figure 2.2).
The electronic wavefuncition ‘%?(Fi&) is expanded in

terms of two sets of orthonormal basis functions{Ej@F»éﬁ

and {G&(ﬁ 6)}
M N
YI(F, )= Z@j(@’)ﬁ‘%@“’; GICRAY (2.4.4)
J:ﬂ 28 ’

In the atomic expansion method the basis functions are

written as follows:—

FiFe) = @;(F) exp-i E%(&%}%Pavz(& + F*\?ﬂ  (2.4.5)
G (Fe)= X (Fadexp =i [mlf.’ ﬂ‘f’%(h{?)ava(f =(H=PN.F] (2.4.6)

S A;—a
where §%F(Fé) and ><k<f%» are atomic eigenfunctions



for (B+e ) and (A+e”) with energy eigenvalues §; and @&
respectively. When we discussed the solution of the
Schrodinger equation (2.4.1) in the previous section of this
chapter, we noted the presence of the factors @XPD@[%PSV%+P@.?]
and @X?ﬂ'%(napﬁava@c@ﬂaﬁ@})@ F’}]‘ in the un-
perturbed solutions of equation (2.4.1) (see equations (2.3.22)
and (2.3.23)). Similarly we see that these factors are
included in the basis states %((F’;(&) and G’MF‘,E’) . The factors
are known as electron translation factors and they need
not be of the form given in equations (2.4.5) and (2.4.6).
The particular form shown here are known as plane-wave trans-
lation factors. Electron translation factors are required to
account for the fact that the electron. if captured, will
acquire a momentum v by virtue of the relative motion of the
ionic centres A and B. Translation factors are required in
this formulation if the boundary conditions are to be satis-
fied énd also if the theory is to be invariant ﬁnder Gallilean
transformation, that is the probability amplitudes must be
independent of the choice of the origin of co-ordinates.
The need for translation factors in theoreticadl descriptions
of electron capture was first recognised by Bates and Mc Carroll
(1958), though within the context of slow collisions using
molecular basis functioms. Shortly after, Bates (1958)
proposed using plane-wave translation factors with an atomic
basis expansion.

In order to derive the explicit forms of the matrix

elements we consider the effect of the operator{}ﬁgdc’&a/agl}
upon the basis functions E’(F, €) and G‘k(i”s £)  as given by



equations (2.4.5) and (2.4.6). We remember that the

notation Q/Q@J&means differentiate with respect to time
F

keeping the electronic co-ordinate F fixed. It is straight-

forward to show that

Ho 5 (B 60 =L{E +Von + Vi + £ pv*) @273

.%},épvvbgf @1‘5»]@%@':&(5 ¢l PV[L’%FFﬁ > (2.4.7)

where we have used the relation
f 12 B,=y — :
("Zvﬁ +\/é@=gj>@j () = 0. (2.4.8)

=

The operator 3/3@' 2 may be written as

2 - 2 3. | (2.4.9)
@@].ﬂ' EE TPY-YF
oY
_8__] - i} —(-p)¥. Ve . (2.4.10)
2C ) oC 2
r A

Using equation (2 4.9) yields

oo

“%]f.sﬁ@ (g + L) BPE) - (9 Ve B R

x@XP%(Eﬁ P PVE +P@-F) . (2.4.11)

Combining equations (2.4.7) and (2.4.11) we obtain

{H@r@g}% }E(ﬁw:(\é +V&®> P78 . (2.4.12)

Similarly

3 = - 7 b
{H@&':ﬁé%]?} Gﬂs‘(rs@)"< ®®+\4—XQ>WB(F9@>. (2.4.13)
The coupled differential equations are obtained from the

relations

v

J ﬁm(ﬁ&){H (=i 3] }Y@ﬁt)d?z@ (2.4.14)



and

!

" o T - =N
@r[f’aﬁ, e){HGQG@%J}@?@m e)dF=o0 (2.4.15)
v IF
which give using equations (2.4.12) and (2.4.13) the

standard coupled differential equatioms
éﬂ;g((t)%%@lﬂ c’(@] =Ha@)+ Kcte) (2.4.16a)
NI . - 7 T
a[[ﬂ g;ét)%'g(lt)]] ‘Eg({tﬁ@g({@’) (2.4.16Db)

where the matrix elements are given by

Nﬁf*(@ff(ﬁz)ﬂ @W'Fﬂ A e tE e (2.4.17)
H; =<2} (Fo)l Vool BERID 80 4\, 6,1 (2.4.18)
Hix =CXF R Vs | XD T Vao 6 (2.4.19)

K,;,k%ﬁ?(f;‘é)l Vi 07| XE(R)D 671, YisNji  (2.4.20)
K =SHNUFRY Vea 97| @?@Deé(m"w%\/&gNﬁ . (2.4.21)

The coupled equations are solved subject to the boundary
conditions given in equation (2.3.43).

For the case where the ionic centres A and B are
nuclei, the potential \%B is given by

\4;@:%%;1- (2.4.22)

This internuclear potential V%@ only affects the phase of
the amplitudes G%&ﬁand Cylt) . Hence total cross sections

for excitation and capture are not dependent upon N%@ as
ﬂl

they are calculated fromﬂ@@@@ andi(ﬁ&wﬂawhich are phase
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independent. However, as may be seen from equations (2.3.638)
and (2.3.70), differential cross sections are dependent upon
the phase of the amplitudes and sc depend upon \@B

Also the total elastic cross section depends upon \éa as

it is calculated fromﬂahﬁm§=ﬂﬂzwhich is phase dependent.

It is possible to simplify the matrix elements by a simple

phase transformation involving \QB . We put
- s 1.0
aj(é)=e>@P[c,@’(@=)]alj((t) (2.4.23)
CME‘)@XPE‘@@“)}CM&') (2.4.24)
where

&
@(HZJT Voelt'VdE". . (2.4.25)

<69

The coupled differential equations become

i[@’(@)-&-ﬁ\j g’(e)] = Pi;jj” a'(e) ¥ Eﬂgﬂ.(((&) (2.4.26a)

«:-EN;?Q'(@) + g%&)]z K'a'tery+H ') (2.4.26b)
where

H3’k=<ﬁf(%)"i Ve | BEI7) > eHEiEE (2.4.27)

F‘IT;RZO@((FZH Vool X (F)> € U1 -7t (2.4.28)

K;k z<;®‘f(ﬁ)ﬂ Vop @%F | XRIE YD e =it (2.4.29)

K= OFEN Ve TN FLRD U (5.4 30

If we examine the form of the matrix elements, we observe
the factors @XP(i5VJﬁ in the overlap and exchange elements.
These correspond physically to the increase in the captured.

electron's momentum. At low energies (£ 1 keV) it is possible



to approximate the factors by unity. At higher energies the
effect of the factors is to cause the% andg matrix elements
to rapidly decrease owing to the factors oscillating rapidly
and this is the reason why electron capture cross sections
fall off very rapidly at high energy as compared with
excitation cross sections which are dependent upon the direct
matrices H and B which do not contain such factors.

For the simple one-electron system the direct elements
can be found analytically. However, the overlap and exchange
elements can only be calculated numerically owing to the
presence of the awkward momentum factors @>q%iﬁﬁﬁ). There
are various techniques available for dealing with the
overlap and exchange matrix elements involving the
factors. Three such methods are described in Appendix 4.3
of Mc Dowell and Coleman (1970). The first method uses
prolate spheroidal co-ordinates. The method is described
more fully in Chapter 4 of this thesis as it was the main
method used to evaluate the matrix elements specific to the
calculations presented in Chapter 5. The second method is
known as the Fourier transform method. It was developed by
Sin Fai Lam in connection with work on electron capture by
protons from helium atoms (Bransden and Sin Fai Lam, 1966:
Sin Fai Lam 1967). The required matrix elements can be
expressed in terms of families of one-dimensional integralsA
after a reduction process has taken place. Noble (1980)
has developed a computer package based on this Fourier trans-
form method. Finally, Cheshire (1967) and Chatterjee et
al. (1967) have developed a method which is based upon |

expressing the required matrix elements in terms of a solution
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of a first-order differential equation.

In a coupled channel calculation as the size of the basis
set increases, the computational time required for calculating
the matrix elements increases substantially. One way round
this is to use a two-state approximation in which only the
initial target state and the final projectile state are
retained in the expansion of the electronic wavefunction
(Bates, 1958). Although this method is not as accurate as
elaborate calculations involving more states being coupled,
the two-state approximation can provide reasonably accurate
cross sections in the energy range where the total cross
section is a maximum. This has been used by Lin and
collaborators in rtheir work dealing with capture from inner
shells of heavy ions (Lin, 1978a, 1978b; Lin et al. 1978:

Lin and Tunnell, 1979). Mc Carroll (1961) applied the two-
state approximation to symmetrical resonant electron capture

in proton-hydrogen collisions, namely
H® + H(ls) —> H(1s) +H . ©(2.4.31)

For symmetrical resonance the two-state coupled differential

equations are
i(a+né)=hatke (2.4.32a)

i(ra+é)=kqe+he (2.4.32b)

where

(2.4.33)

S
I
=

(2.4.34)

=K,=K,, , (2.4.35)

= 5
1]

VA QI
n

X



the matrix elements with subscripts 1! being given by
equations (2.4.17) to (2.4.21). We now introduce the new

amplitudes
ALlt) = ale) = e(e) (2.4.36)
and also set

M:'—%“fﬂ—g‘-ﬂﬂ% 5 (2.4.37)

= k —nh (2.4.38
= K =nB .4.38)
L | =lnl?

This yields the uncoupled equations
i Aze)=(M2L)A (), (2.4.39)
which are to be solved subject to the boundary condition

Az(-00)=1. | (2.4.40)

The solutions are

¢
As(t)= exp =ij> (MEL)dE’ C(2.4.41)
)
from which we have
- ¢ - b
. 7

alt)=cosi| Ldtyexpl-if MdE (2.4.42)

Zen | J—@@

o
=80

rt ¢
| ’
C(t‘)-‘-sin{ LM"}@XP{-& MddEF(-i) . (2.4.43)
oo .
The transition probability for electron capture is given by
r@

!c(wo)ﬂa = sin Lae¢

e

(ﬁ@
= smz{ _%_%;Eﬂﬂ_gg.d@-"y : (2.4.44)
o -




Mc Carroll's calculations were for incident energies from

0.1 keV to 1 MeV. The total cross sections are in rough
agreement with the experimental results of Wittkower et

al. (1966) between 40 and 250 keV. At high energies the
cross section tends to the first-order Brinkman-Kramers
approximation (Brinkman and Kramers, 1930). In this approxi-

mation C(®s)is approximated by

(o)
C(+00) :J[ Lok dt’ (2.4.45)

=@

where
FYS ,'é,A . . .
LW;J@ (Fye™” "1 GI(R) dF . (2.4.46)
I
14

The corresponding Brinkman-Kramers cross section Oy varies
at high energies like V=" . The two-state cross section
approaches O very slowly and very high energies must be
reached before there is reasonable agreement between the two
Cross sections.

If the capture process is not one of symmetrical res-
onance, the two-state equations do not decouple and must be
soived numerically. At very high energies the coupling
between the initial and final states becomes weak and the

coupled equations become

ia=Maq (2.4.47a)
{c=Mc+La (2.4.47b)

where



Mg Hnna Nnﬂ%ﬂﬂ (2.4.48)
l] - HNM ®
— 5
A = Hu = Fw -F?w (2.4.49)
I = E%M
> 2
E; Kau=‘Nnu i (2.4.50)
! ‘=HNMH&

with the solution

—~

cd+oo)>=-=ij [E( @XFJ {Muey -men) aee j,ﬂ-

)

2.4.51)

This approximation is a form of the distorted-wave Born
approximation applied to this problem (Bates,'1958>. Ryufuku
and Watanabe (1978, 1979a, 1979b) have developed a metﬁod
based upon this distorted-wave solution which they term the
Unitarised Distorted- Wave Born Approximation (UDWA).

fhey make the approximation of neglecting the HP@MH term
in the denominators of the expressions of equations (2.4.48)
to (2.4.50). The total propability for capture is P(E>

where b is the impact parameter and this is unitariSed by

writing
Ha
P(b) = siﬁ[@(bﬂ (2.4.52)
where
' 2
p(b) =L, 12 (400 | (2.4.53)
m
and where
CDWH,@@)E C(’g},@@) (2.4.54)

alm



C(4o0) bheing given by equation (2.4.51). The allm are the
quantum numbers of the captured states. Ryufuku and Watanabe
applied the method quite successfully to electron capture

from atomic hydrogen by fully stripped ions, (HY, He2+,

Li3+: etc.). Ryufuku (1982) has extended the UDWA methcd
method to the calculation of ionisation and excitation cross
sections as well as capture cross sections for fully stripped

jons (HT, L13+, B5+, C6+ 14+

and Si ) on atomic hydrogen.
Bransden et al. (1980) have also studied electron
capture by fully stripped ions from atomic hydrogen. They

considered the ions He2+, Li3+, BeZH and B5+

having impact
energies between 5 and 200 keV amu"l. The two-state
approximation was used with no neglect of coupling between
the initial and final states. The total cross sections were
calculated by summing the individual nlm quantum state cross
sections. Reasonable agreement was obtained with experi-:
ment and other theories, though below about 25 keV amu_1
this method seémed to overestimate the cross section somewhat.

A copy of the paper describing the work. of Bransdén et al.

is to be found at the rear of this thesis, p293.

The two-state approximation is limited in its effectiveness
for descfibing,a capture process and it is a much better
approximation to include more states in the expansion that
are strongly coupled. The proton-hydrogen system has been
the subject of much study using the two-centre atomic basis
expansion method. A useful compilation of atomic and
related basis close-coupling calculations using the impact

parameter approximation is given in Table 1 of the review

article by Delos (1981). Part of this table is reproduced



as Table 2.1.

Reference

56 -

Radial functions

Rotating (R) or
nonrotating (NR)
angular functions

McCarroll (19861)

Cheshire (1963); McCarroll,
Piacentini and Salin (1970)

ILovell and McElroy
(1965)

Fulton and Mittleman
(1965)

Flannery (1969)

Wilets and Gallaher
{1966)

Gzllaher and Wilets
(1968)

Rapp, Dinwiddie,
Storm, and Sharp (1972)

Rapp and Dinwiddie
(1972)

Cheshire, Gallaher,
and Taylor (1970)

Sullivan, Coleman,
and Bransden (1972)

Shakeshaft (1976)

1s atomic

Is atomic, varying
orbital exponent

15 425,255 and other
combinations

1s atomic, including
antitraveling orbitals

]'SAZS.AZP:A 2pzA {no
exchange)

152s2p,2p, atomic
1s252p,2p, Sturmian
152s2p,2p, atomic

1s2s2p_2p, atomic
1s2s2p.2p 3s3p 3p, atomic

1s252p . 2p, atomic
15252p,2p 3s3p,3p,
atomic and pseudostate

15,25 ,2p, 2p, +closure
(no exchange)

1s-6s, 2p-4p Sturmian

=}

AR x@

NR

NR

Tabie 2.1 Close-coupled calculations of proton-

hydrogen collisions based on atomic representations

(after Delos (1981)).

Referring to Table 2.1, the non-rotating functions (NR)

are quantised in the space-fixed frame.

Rotating functions

( R) are quantised along the internuclear line. If such

functions are used, the form of the direct and exchange

matrix elements is modified by a term involving the y-

component of the angular momentum operator in the rotating

(body-fixed) frame. A discussion of this is given in

Section 2.3.5 of the review of Bransden (1972).



More detailed discussions of these proton-hydrogen
calculations are given in the review of Delos (1981), and also
atomic basis calculations on the proton-hydrogen system are
discussed by Basu et al. (1978) in their review. Of these
calculations, three of note are the ones performed by
Wilets and Gallaher (1966), Cheshire et al. (1970) and Rapp
and Dinwiddie (1972). 1In these calculations the 1s, 2s
and 2p states were coupled. It was found that the cross
section was not affected greatly by the inclusion ‘of the 2s
and 2p states at energies below 20 keV ., Above this energy,
the 2s and 2p states influence the final result by about 10%.
Rapp and Dinwiddie also included the 3s and 3p states but
found that the coupling with them had little effect upon
the final result.

Collisions between alpha particles and atomic hydrogen
have been investigated theoretically by a number of workers.

2+

Table 2.2 shows some important calculations on the He“"-H

system using atomic expansibns. We shall refer to some of the
calculations shown in the table later in Chapter 5 as the
o2

He“"-H system was the subject of the work of this thesis.

Two recent calculations using atomic basis states with the

He?*-H system being the subject of study , are those of
Bransden and Noble (1981) and Bransden et al. (1983). The
former of these is included in table 2.2. In the work of

Bransden and Noble an 8-state model was used in which the
ls, 2s and 2p states were retained on the H and He centres.
Close agreement was found with experiment up to an energy

of 75 keV amu~}. Bransden and Noble also used the same



Authors Basis States Energy range Comments
{Ref ] H He keV/amu
Basuetal. (1967) Atomic Is 1s2s2p 04 - 8 No transiation factors
Malaviya (1969) Atomic 1s 1s 25 2p 158 ~ 200
Rapp (1973) Atomic 1s252p 1s2s2p 0.25 - 150 Known to contain errors
Rapp (1974) Atomic 1s2s2p 1s2s2p 025 ~ 150
Is2s2p 1s2s2p3s3p
Belkic and Janev (1973) Atomic Is 1s2s2p 3s 3p 6.25 » 750 Continuum Distorted Wave
Calculation

Msezane and Gallagher (1973) Atomic 1s2s2p. 1s2s2p 1.6 -1000 EScudoslaicsu'sed to reproduce

pseudostates united atom-wavefunction
Bransden and Noble (1881)  Atomic 1s2s2p is2s2p 2,5+ 250

Table 2.2 Calculations on He2+—H using
atomic basis states (after Table 4 of Greenland

(1982) with slight amendments).

model toc investigate electron Capture by protons from He™ (1s).
Only up to about 19 keV amu™! was there agreement with
experiment. The cause of this was attributed to the coupling
with continuum intermediate states not being accounted for

in the calculation. Bransden et al. (1983) extended the 8-
stafe work by including the n = 3 states on the‘éentrés, tﬁat
is a 20-state calculation, and also they used the pseudo-
states due to Callaway and Wooten (1974) to investigate
proton—He+ capture. They obtained results that were in
harmony with experiment and other theory. Work similar to
that of Bransden and co-workers has been doné by Fujiwara
(1981) on the He2+—H system. Fujiwara used all states up

to n=2 on the H centre and all states up to n=3 on the He

centre. Fairly good agreemeht was obtained with experimental



data. Bransden and Noble (1982) have also investigated Li3+—H

collisions using a 20-atomic state model.

The atomic basis state expansion begins to become un-
satisfactory at high energies owing to the need for inclusion
of continuum states. We shall now discuss three attempts
to include these states that have been found to be reasonably
successful.

2.4.2 Sturmian functions

Gallaher and Wilets (1968) first introduced Sturmian
functions to take into account the continuum in their work
on proton-hydrogen collisions. The atomic eigenfunctions
used in the two-centre expansion are replaced by functions

of the form

@MFD:% SotM 0, 8,8, kzlagn) (2.4.55)

where‘f%gﬁ“) is a radial function which satisfies

, 2 ’ - .
("?:'ifr* + ﬂ((:i?::) _ ea;g) Snzz("’) = Eﬁ Sm?(f‘) i (2.4.56)

This is the Sturmian equation and is similar to the Schrédinger
equation except that the energy EZ@ is treated as a fixed
parameter and the effective charge Olags acts as the eigenvalue.

In Gallaher and Wilets' work‘Eg was taken as

= i
IE;?:'”'Z@%H»@ . (2.4.57)

The boundary conditions on Eiahﬁ are that it is zero at
the origin and that it decays exponentially at infinity.
A - .
The Sturmian functions ﬂzgﬁ(i‘} are members of an infinite, .

discrete and complete set of states. There is no continuum



unlike hydrogenic functions.
The Sturmian functions are related to scaled radial

hydrogenic functions via the relation
D
Sap(F) = et 0® Ropletnm) . (2.4.58)

Normalisation is expressed by
Fal A
<@\ 2> =1 (2.4.59)

but the Sturmian functions are not orthogonal unless a
weighting factor of H/F’ is included. Taking TEQ as.
given by equation (2.4.57), O, is given by
- A ‘
@gﬂgam (2.4.60)

which gives a mean energy of

E, =<d,IHlZ>
= - U - | o
afe+1)  2(8+)

With this definition of the Sturmian basis set, the ls,

(2.4.61)

2p and 3d Sturmian states coincide with the hydrogenic

ﬂa;z . Problems arise, however, in defining thé trans-
ition amplitudes using Sturmian functions. The resulting
transition probabilities have oscillating components which
do not vanish as € =—eo . However, if a large Sturmian
basis set is used, this problem can be solved as was shown
by Shakeshaft (1976) in his work on proton-hydrogen
collisions. He included the 1s to 6s and 2p to 4p Sturmian
bstates on both centres. Electron capture in proton—He44

and He2+—H collisions has been studied using Sturmian functions



by Winter (1982). Between 19 and 24 Sturmian functions were
used as a basis.

2.4.3 Pseudostate expansion

Cheshire et al. (1970) introduced pseudostate functions
in their work on proton-hydrogen collisions. The Sturmian
expansion discussed previously does not represent the Zs
state of hydrogen well, and this is a major defect as the
degenerate 2s and 2p states are strongly coupled at ‘large
internuclear separations, and so the 2s state must be |
In the work of Cheshire et al. the 1s, 2s and 2p hydrogenic
states were used in the expansion together with 3s and jﬁw

pseudostates. The pseudostate wavefunctions are given by
J%3=d ’

() = expl-Air) Z ot e ¥ Y (6,8)

Am
'@:n’ ‘

(2.4.62)

é,:',{z.-;,nﬂ j21 K=5j+ﬁ+m+2~ .

’
The parameters are such that the functions are orthogonal
with the 1s, 2s and 2p hydrogenic states. The total Cébture
cross sections calculated by Chéshire et ai; agree well with
the experimental results of Béyfieid (1969). The cross
sections for capture into the 2s state of hydregen are in
good agreement with the experimental results of Bayfield
(1969) and Ryding et al. (1966). There is discrepancy -
between Cheshire et al.'s results for capture té the 2Zp
state of hydrogen and the experimental results of Stebbings
et al. (1965) (corrected by Young et al. (1968)). Figures
8;2‘énd 8.3 of Basu et al. (1978) display the 2s and 2p



capture results.

Dose and Semini (1974) have used Gaussian functions to
study the proton-hydrogen system, Gaussian functions being
another type of pseudostate functien. The advantage of
Gaussian functions is that the overlap and exchange matrix
elements containing the @xp(ié@FW factors can be calculated
analytically. Only capture into the 1s state of hydrogen
was investigated but good agreement was achieved with the
results of Cheshire et al. (1970). In the review of Basu
et al. (1978), Table 8.3 Compares the results of Dose and
Semini with the 4 atomic state and 7 atomic/pseudostate
ground state capture results of Cheshire et al. and with the
feéults of Shakeshaft's Sturmian expansion work. |

2.4.4. Scaled hydrogenic basis set

. I :
The Stupian and pseudostate expansions take into

account coupling with continuum states and so may be used
for calcuiations of iéniSation cross sections. Shakeshaft
(1978b) has used a scaléd hydrogenic basis set td'do SUCH
calculations. This set of basisﬁfundtions,is very_similar
to the Sturmian functions, but the scaling factors are such
that the atomic Hamiltonian is diagonalised. The states
almost coincide with'the 1s, 2s, 2p, 3s, 3p and 3d statés.
and overlap the low energy part of the continuum. The

scaled hydrogenic functions,ﬁgﬂm(ﬁ) satisfy

.3 P2 o~ - _
-(,‘”%VF -2a 4 M)Jf@fmm(” =0 . (2.4.63)

L
2 a*

' Shakeshaft used 35 of these functions centred about each



proton with 0gl<2 , ogmgl , €€ng Nﬂ

where N,=9, Ewg=8, N, =6. The scale factors MAa

were chosen as follows: A,, = 0.75n, A, = 0.7n, A_= 0.6n.
Shakeshaft's total ionisation cross section was in fairly
good agreement with the experimental results of Park et al.
(1977). The work of Shakeshaft is interesting in that it
shows that below about 60 keV the cross section for '‘charge
transfer to the continuum" (CTTC) is larger than the cross
section for direct ionisation. Shakeshaft describes this
as being ''remarkable " and shows that any ionisation gpptOXi—
mation which neglects CTTC for proton-hydrogen collisions
will be inadequate below about 100 keV.

2.4.5 Other improvements based on the atomic

expansion method

Apart from the three methods discussed previously,
there are other methods which are based upon the atomic
expansion;

One method is due to Cheshire (1968) who used atomic
wavefunctions with variable charges 2Z{t) which were determiﬁed
using the Euler-Lagrange variational principle. The main '
problem with this method is the large amount of computer
time needed. Mc Carroll et al. (1970) used the method to
study proton-hydrogen collisions in the two-state approxi-
mation. They calculated the differential cross section and
the capture probability as a function of the incident proton
energy for different scattering angles. Recently Campos
ét al. (i983) have calculated total cross sections for the

‘resonance capture process



HY + H(1ls)—> H1ls) +H' (2.4.64)

using a variable effective charge Z(R). However, Campos

et al. used the virial theorem to find Z(R) rather than the
Euler-Lagrange method in order to economise on computer time.
Another method is to expand the wavefunction about three
centres instead of two, namely the nuclei A and B and their
centre of charge (Anderson et al,, 1974). Aﬁderson et al.
considered proton-hydrogen collisions and used 1s and 2s
hydrogenic states on the centres A and B with a 1s He™ state
on centre C, the centre of charge. The inclusion of thé 1s
He™ state partially represented the hydrogenic continuum

and united atom states. An elaborate expansion method using
é modified system of elliptical co-ordinates and orthogonal
polynomials has been used by Morrison and Opik (1978) on

2+_p systems. If the charge ZZA

the proton-hydrogen and He
of the projectile nucleus is much less than the charge EZB
of the target nucleus, then the interaction between the

" incident particle A and the electron can be treated as a
perturbation and the scattering wavefunction can be expanded
in terms of atomic states and pseudostates centred on the
target. Reading and co-workers ( Reading et al. 1976

Ford et al. 1977) have used this method for calculating K-
shell ionisation éross sections for light, fully stripped
ions incident upon heavy, neutral target atoms

( Eggz 13 - 30). Fitchard et al. (1977) applied the method
ton =2 and n = 3 excitation and ionisation in proton-

hydrogen collisions. Between projectile ehergies of 50

and 200 keV excellent agreement was obtained with experi-
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ment. The method was extended ( Reading et al. 1979:

Reading and Ford, 1979) to electron capture processes by
bfully stripped ions from heavy target atoms. Specifically
innef shell ionisation and electron capture in proton-

argon collisions in an overall energy range 1 to 12 MeV

were studied by Ford et al. (1979a, 1979b) using this methed.

The work was extended by Becker et al. (1980) to Hez+

6+

and C incident upon argon in the energy range 1-9 MeV ,

and then by Ford et al. (1981) to H', He?T and Li>" incident

updn neon (0.4 - 4.0 MeV‘amu—l) and carbon (0.2 to 2.0 MeV
-1 :
amu ).
An interesting development of the above single—centred
expansion (SCE) work of Reading and co-workers has been a
method which is termed the one and a half centred expansion

(OHCE), ( Reading et al. 1981). The method utilises a wave-

function expansion of the form

‘\i’ﬁ{wsz a;(b,6) §; (7 e) +Z culb,oo)f(E) X5 (FE).  (2.4.65)
J K o |
The first sum is centred on the target and includes real and

pseudostates. The second sum is centred on the projectile
and contains atomic.statés of importance needed to describe
the capture channels adequatély. The wavefunction ﬁ%%fi&)
satisfies the boundary cbnditions provided the predetermined
function f(&» satisfies |

fle) 0, ¢t —-o

; (2.4.66)
fled= 1, £t 240



A variational procedure is applied and yields a set of
 coup1ed first-order differential equations for thé~éﬁ§litﬁdés
aj@e> coupled with algebraic equations for the éééfficients
Cilb,e0) . Reading et al. (1981) applied the OHCE method
successfully to proton-hydrogen collisions; The SCE method
failed for excitation and ionisation ( Fitchard et al., 1977).
below 50 keV due to electron capture being the dominant
process in this energy region. However, the OHCE method
gave accurate results down to 15 keV, the lowest enefgy
chsidered. The OHCE method was also applied.by Reading

et al. (1982) to ionization and electron capture in H' -

2+

+ : . . .
He' and He - H collisions. Some disagreement was found

between other theory and experiment for the H" - He®

collisions but good agreement was achieved when He2+ - H

was considered. The energy range was 25 - 482.5 keV amu_1

2+

for both H' - He™ and He - H. Ford et al. (1982) héve

considered collisions involving lithium ions using the OHCE

method. They considered H" - Li* for an energy range 70 -

400 keV amu—1 and also H' - Liz+ for an energy range 50 -

1

200 keV amu Both ionisation and electron capture cross

. +

. + . . . . . -
sections were calculated; for H - Li" the ionisation result

was in good agreement with experiment but the capture result

was lower than experiment. Time reversal was used to extract
capture cross sections for the processes Li2+ - H and Li3+ ~ H.
These were higher than experiment. This work was. the first

test of the OHCE method when more than one electron was
present. Fritsch and Lin (1982a) have proposed a modified

two-centre atomic orbital expansion which includes united



atom orbitals as well as separated atom orbitals. Wilets
and Gallaher (1966) noted that for the H' - H system the
atomic orbital expansion fails at low velocities due to
the poor representation of the united atom orbitals even
by the full bound spectrum of the separated atoms.
Investigations by Fritsch and Lin (1982a, b) on the H' - H
and He® - H systems showed that model sensitive partial
cross sections and impact parameter-dependent transition.
probabilities, calculated using their modified atomic orbital.
(AO+) expansion, agreed well with (low velocity) mole;ular
orbital expansion calculations. Fritsch and Lin (1982c)

Q
3+ 7Li“+

have applied the method to Li - H collisions for
impact energies of 1.4 to 140 keV and obtained excellent
agreement with experiment. They have also investigated

HY - Li and He2+

- Li collisions ( Fritsch and Lin, 1983).
The calculated total and partial capture cféss sections are
the first published origin-independent results in the
energy range 0.5 to 20 keV for H' - Li and in the range 0.1
to 2.0 keV‘.amu—1 for He?* - Li. For H' - Li the total
capture cross sections agreed well with experiment but for
He2+ - Li the low energy capture cross sections were much
larger than compafable molecular orbital results.

Lidde and Dreizler (1981) have introduced a method
which is based upon a numerical solution of the impact
parameter Schroddinger equation using a two- centre basis
set of the Hylleraas type. Liudde and Dreizler have applied

this method to proton-hydrogen collisions (Lidde and Dreizler,

1981: 1982a) and also to collisions of He2+7 Li3+, Be4+



and B> with atomic hydrogen (Lidde and Dreiéler, 1982b) .
Recently LUdde and Driezler (1983) have obtained differential
cross sections and capture probabilities for proton-hydrogen
collisions at 1 and 2 keV.

The final improvement we consider is the one most
relevant to the work presented in this thesis. The improve-
ment is that of including a '"'switching function' in the
electron translation factor when using a two-centre atomic
basis expansion. Equations (2.4.5) and (2.4.6) show the
expressions for the basis states when plane-wave translation
factors are used. The modified basis states F;(Fié)
and (%;ﬁ%é) , where the superscript § signifies switching

function, are given by

F76) = @(Fs)exp=i [Ej(t +dvt - LA RV 4 (2.4.67)

ety

Cry(F, £)= X@(&»exp-z[mwg-v"t ~sfRRIVF] L 2468

The function:fﬁ%ﬁ):is the switching function. In equations
(2.4.67) and (2.4.68) the parameter p (see equatiohs (2.4.5)
and (2.4.6)) which determines the position of the origin,

has been set to 1/2. The idea of switching functions (also
known as switching factors) was introduced by Schneiderman
and Russek (1969) in their work on electron capture in
proton-hydrogen collisions. More will be said about switching
functions in the next section of this chapter which deals

with molecular expansion methods as switching functions have

been used a great deal in conjunction with such methods .



However. there have been no previous calculétions to date
employing switching functions with a two-centre atomic
basis expansion. The main properties of the switching

" in value between -1 and

function are that it ''switches
+1 as the electron is transferred from the target centre

to the projectile centre, and also it tends to zero as

the internuclear_separation tends to zero (united atom
limit). It thus gives the atomic expansion more flexibility
by giving it a more molecular character than the plane-

wave tfanslational factors can in the interaction region
where internuclear separation is small and probability

of electron capture is high.

2.5 Molecular expansion methods

2.5.1 Introduction

o

The molecular state expansion method is the appropriate
way of theoretically describing excitation or electron
capture in ion-atom collisions when the relative collision
velocity is small as compared with the classical velocity
of an electron in a Bohr orbit of the target atom. Physically
the effect of the slow projectile is to cause the electron
to move into an orbit around the two nuclear centres so

that a quasimolecule is formed adiabatically. Similarly
the orbit will "unform' adiabatically leaving the electron
in its.initial state. Excitation or electron capture
occurs because the quasimolecule is excited due to the
kinetic energy associated with the relative motion of
the charged centres, and the final state of the system

is where the target is excited or capture has occurred.
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Molecular expansion methods are based upon expanding the
electronic wavefunction in terms of electronic moleculaf
states. At low energies only a few such states aré usually
required to give a reasonable description of the process
whereas many atomic states would normally be required. We
~shall see that the relative motion gives rise to electron-
nuclear coupling matrix elements which are asso;iated with
transitions between the molecular states. Howéver, the
transitions between these states can only take place where
there is near degeneracy of the electronic energy levels
associated with the quasimolecule.

The method of using stationary molecular states to describe
lew'inelastip collisions of ions and atoms is called the
perturbed stationary states (PSS) method. The PSS method
was introduced by Massey and Smith (1933). though the idea
of expanding the wavefunction in terms of molecular states
was proposed by Mott (1931) using the semi-classical impact
pérameter approximat;on. The PSS method is discussed by Mott
and Massey in their well-known text (Mott and Massey, 1965).

We shall now discuss the basic quantum PSS method. In
subsection 2.5.5 of this chapter an illustration of its use
will be given.

For simplicity we consider a single-electron diatomic

molecule ( Figure 2.3).

e

o

Figure 2.3

Molecular (adiabatic)
co-ordinates for the

ABe” system. O is the
centre of mass of (A+B).
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The total Hamiltonian I of the system is given by
H= T Ha (2.5.1)

where L ove is the kinetic energy operator associated with

the nuclear motion. We have
- IRV
1,.: Z/AV@ (2.5.2)

where g1 is the reduced mass of the nuclei, namely

Myt My |
and the electronic Hamiltonian kk@ is given by
2 N
H@dgﬂévﬁ <% \/((FgR) (2.5.4)
where
V(FR)= Vou ¥ Vo + Vg - (2.5.5)

We apply the Born-Oppenheimer approximation (Born and
Oppenhzimer, 1927) to the problem and write the stationary

molecular state wévefunctions Yj’(ﬁ,RB as

TR = LRIV R R (2.5.6)
Qhere'F%(ﬁ» are vibrational wavefunctions fbr the nuclei
and ‘Wﬁﬁ?§>are the adiabatic (Born—Oppenheimer)electronic
wavefunctions'which depend parametrically upon E: . The

electronic and nuclear wavefunctions satisfy respectively

—n =

Ho ’%(F’“ﬁ) = éj.(M’)”(ﬁR)- (2.5.7)
and [:EM@ + EJ-((R)]FR(@ = Ejﬁ, E-A‘((m (2.5.8)

where é%(R)are the electronic energy eigenvalues and Ejﬂ



are the vibrational (nuclear) energy eigenvalues. If we
have an arbitrary state having total energy[E then the total

T R s
wavefunction QK%ZJ&) satisfies the Schr&dinger equation.

H¥(F R)= EY(ER). (2.5.9)

Expanding?@ﬁﬁ) on the basis J\E(F’»ﬁ) we have
U = Z ¥, B 1)

ZF(R Y5(FR) (2.5.10)

" where we have dropppd the index m from Eﬂ@R). It is straight-

forward to show that thls gives
Z {%[Tﬂ&d@ +EJKR» - E]E '_+ ﬁ -F;M@ 7
7

=’=-V=; } =0 (2.5.11)

Projecting upon 7% gives the coupled equations
{vg %Q/M[E =£.((R)]7}F.(@
Z@A V + B@FMR) (2.5.12)

where the coupllng matrlces f% & and Bﬂ; are glven by

K)&(R%L?@- T v, dF (2.5.13)
and
BJMR))EJ ’7’?@%&%@1?. (2.5.14)
v

= a
It should be noted that the operators‘@% and V% operate
with  fixed. Equations (2.5.13) and (2.5.14) are the
electron-nuclear coupling terms. If they are neglected then

equation (2.5.12) becomes

G +aulE -gmillEm=e asas



which is, in fact, the same as the Born-Oppenheimer nuclear
equation, equation (2.5.8) with EZ = Ebﬁ . The electron-

nuclear couplings arise due to the nuclear kinetic energy

-T;MG and are non-diagonal in the basis of adiabatic
(Born-Oppenheimer) states ﬁﬁ(ﬁiﬁ). It is these terms that
lead to transitions between the electronic states. Massey
and Smith (1933) recognised that adiabatic states could be
used for describing the electronic states in slow ion-atom
coliisions. Neglecting the electron-nuclear couplings
corresponds to no electronic transitiohé'occurfiﬁg and only
elastic scattering may be described. Retaining these couélings,
transitions can occur and inelastic scattering may be described.

Before proceeding to discuss in more detail molecular

state expansion methods, some notation must be iﬁtroduced
to de&xibe the molecular states and also correlation diagrams
introduced. If we denote by L,z the opéfator associated
with the component of angular momentum along the inter-
nuclear line, then it is the case that ﬁ%}ﬁfiﬁy' .are

eigenfunctions of L,Z , that is

LZ’?:(F;R"): Xj%({ﬁﬁ) (2.5.16)

4
where %j are the quantum numbers associaﬁed with l_z .
The modulus of Aj is one quantum number used to describe
molecular states. One way of choosing the others required
is to consider the united atom limit(R=9O). The wavefunction
becomes hydrogenic for single-electron molecules and three
quantum numbers a,d,m describe the state. In this 1imit )M

and m are the same. = The molecular states may be denoted



by using the united atom quantum numbers a,2 plus a lower-

case Creek letter @,7,8... to denote bﬁﬂ€©9h2;.. . Hence

we have the notation [s¢, 2pe , 2pjr,... etc. For more

than one electron upper case Greek letters are used, that

is Z:?-rfyél,m. As an alternative we may consider the separated
atom linﬂm:(Rr¢0@>. As R=e@ the molecular wavefunction

must tend to an atomic wavefunction representing the case

when the electron is attached to one or other of the centres;

or to a linear combination of such functions. We may denote
S, . . : Y , ‘
molecular states using the notation l?yﬂﬂ A where A~
7 » . .
and A are separated atom quantum numbers. If the two nuclei

are the same then the system is invariant under the trans-
formation i —>=F and the molecular‘states must be labelled
gerade (5) or ungerade (u) which are even or odd parity
solutions.

Associated with the adiabatic molécuiar states are the
adiabatic potential energy curves Ej(R) which vary.withgﬁo.
An important visual aid in work on moleqular expansion
--methods -is that oﬁwtheprtentialﬁenergy«correlatiqn_diagram
which relates energy levels in the united atom limit with
those in the éeparated atom limit and displays the potential
energy curves E&(R) . Figure 2.4 shows the correlation
diagram for the (HeH)2+ system. It shows the molecular states
and separated atomic systems with which they correlate.
An important theorem associated with adiabatic potential
energy curves is that if levels j and k belong to the.same
symmetry class thenm the curves é%(R3 and &(R) cannot cross

as R goes from 0 to @ . For heteronuclear systems this
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Figure 2.4 The adiabatic potential energies

~of~(HeH)2+ (after fig. 9-5 Bransden, 1983).

theorem requires that two cufves with the samel?%ﬂ may not
CTross (Neumaﬁn and Wigner, 1929). For homonuclear molecules,
states with the same § and ﬂ%jﬂ cannot cross, where S is
a separation constant arising due tc the extra symmetry of
the problem. The no-crossing theorem was proved by Teller

(1937).

2.5.2 The impact parameter PSS method
Although the molecular state expansion is appropriate

for describing collisions in the low energy region, it is



still necessary (above energies of the order of 100 eV amu_lf
to use the impact parameter approximation. Therefbre. the
nuclear motion is treated classically whilst the electronic
motion is treated quantum mechanically and thus we must solve

the Schrddinger equation
) .:@—_, =
-2 2 2257

where ﬁ?ﬁ%ﬁ) is the electronic wavefunction and the

Hamiltonian Pﬁ@d is given by

’ 'H@d =“£fv;“ + V@A’ < V@‘ < \/m@ . (2.5.18).
We intend to expand ﬂYG%f) on a basis of adiabatic molecular

wavefunctions %(F;ﬁ-) which satisfy

Het Y517 R) = £(R) Y5 (F;R). (2.5.19)
For the heteronuclear case ﬁ?ﬂﬁ&)w11l tend in the separated

atom limit to an atomic wavefunction centred upon A or B,

that is

VP R) ,@ (F’B (2.5.20)

’ﬁz(r;mm@ Xk(‘m). (2.5.21)
Sometimes the superscripts A or B are added to the Y-
functions to indicate to which centre the eléectron will be
‘attached to as R—»0o
| For the hﬁmonuclear case “@(F;ﬁ) will tend to linear

combinations of atomic orbital wavefunctions, namely

/Y/ €F R) R*%@@f [@ (F@) + X (FA)]J (2.5.22)
Y (FR) f’f[,@' (F) - XA(FA)] (2.5.23)



The g and u refer to gerade or ungerade symmetry.

Earlier in this chapter we discussed the general solution
of the impact parameter Schrddinger equation (Subsection
2.3.3). We saw how the trial wavefunction was expanded in
terms of two orthonormal sets of functions F;-U%@ and @'MF’”@)
(equation (2.3.36)), the Ef_ functions being associated with
centre B, and the (), - functions being associated with centre
A via the limits given in equations (2.3.35a) and (2.3.35b).

In the atomic expansion method the Fﬁ" andﬂ@&—functions were
expressed in terms of atomic wavéfunctions;@%%ﬁﬁand Xﬁ%#?&
respectively. In the molecular expansion method 5 andlﬁ%g
are expressed in terms of ﬁff%%ﬁ)and ???W%ﬁ) molecular wave-
functions for heteronuclear systems, that is

Fi(Fe) ~ V]IFR)

J (2.5.24)
Gy (F, ) ~ V3(F;R)
or in terms of linear combinations of gerade and ungerade
molecular Qavefdnctiqns,for the homonuclear case, that is
Fire~glyimans vie]
S o _ (2.5.25)
GF e~ E T IEE - VETR] o
There is no reason why the wavefuﬁCtioﬁ.&§Yﬁf) has to be
expanded in terms of two series in the basic PSS methed, though.
In the impact parameter version of the PSS method the electronic
wavefunction S%ﬁ%é) is expanded as follows:-

ﬁ?(?‘i ¢) = Z: a; (e) @j (F,¢)

J

_ . ¢ |
;iai(t)'y’jﬁR)exP[ﬁj g,-mm‘] . (2.5.26)

j =eo

From this expression a set of coupled first-order differential



equations can be obtained

idf Z ﬂa@xP[ é'=’<§jo»d‘,@a7§] (2.5.27)

ﬂ
where \/jj/]:<% 5(?]; %”> . (2.5.28)

The coupled equations (2.5.27) are the PSS equations using
the impact parameter approximation.

The matrix elements \Gﬂﬂ are calculaﬁed assuming that
the time derivative is with respect to the fixed space axes
Molecular wavefunctions are quantised with respect to the

rotating internuclear line and so this rotation must be accounted

for somehow. It is simple to show that

%jﬂ =R 23 +ibyl
=R +iby | . (2.5.29)
atlp 3R eI

(Greenland, 1982) where Ljn is the y'-component of the
angular momentum operator, prime denoting the rotatiﬁg frame.
The ‘B/QR term gives rise’to matrix elements known~as radial
couplings whilst the Ly: term gives rise to matrix elements
known as rotational couplings. |
If we examine the PSS equations (2.5.27), we seé.the‘

presence of the exponential phase factor

¢
expli {(5—«5 d’} (2.5.30)
If the potential eneréy dlfference(é g,) is large for all
internuclear separation R , the states | and _j are weakly
coupled. If(éj*éj@‘vanishes, then the coupling is strong.

We know that from the no-crossing theorem two Dotential'energy

curves corresponding to states of the same symmetry may. not

- cross in the adiabatic representatlon However, they may



approach one another closely. Such a place where this occurs
is known as a pseudocrossing (or avoided crossing). In

the region of a pseudocrossing the radial coupling is large
and the two states concerned are strongly coupled. Figure

7+_

2.5 shows two pseudocrossings for the N’ '-H (1ls) system.

05171 T

€ (R} {(au)
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Figure 2.5 Some ¢ levels of the sysﬁem (N7*4H)
illustrating pseudocrossings at 11.6 and 6.4 a.u.
(after figure 9-4 of Bransden, 1983).

The pseudocrossings occur between the ékeo and §9& levels at
11.6 a.u. and the§ga’ and 4f& levels atr6.4 a.u. It is possible
to solve the coupled equations connecting the two levels at
a crossing or pseudocrossing within an analytic approximation
due to Landau (1932), Zener (1932) and Stﬁcgelberg (1932).
A discussion of the Landau-Zener-Stiickelberg approximation
is given in the text by Bransden (1983).
For the fully-stipped ion-atomsystem (A®" + H(1s)) whefe

A%" is the fully-stripped ion and z#1, the number of pseudo-



crossings is few and so the number of states strongly coupled
to the initial channel is small. This means that at low
velocities (V4la.u.) capture takes place to very specific
final states and other cross sections (for excitation and
ionisation) are small. Let us consider the z = 2 case and
refer to figure 2.4. The initial channel is represented by

2+, H(1ls) as R=eo .

the 2pe orbital which goes over to He
The 2po and 3d¢ states have a pseudocrossing at R = 4.5 a.u.

and the associated radial coupling is stfong. The other coupling
of importaﬁce is rotational between the 2pw and 2pe levels which
is effective for small R values as the 2pnt and 2po” levels

are degenerate in the united atom limit. Hence a qualitative
idea of the behaviour of the cross section may be obtained

using a molecular basis comprising the 2p& , 2p® and 3de states!

The 2p7t and 3d¢ levels correlate to the n = 2 level of He™

as R=00 . Hence at low energies the dominant reaction is

2+

He?® 4 H(lg) —>He'(n = 2) + HY. (7.5.31)

In the region of a pseudocrossing, the radial coupling
matrix eiement varies rapidly and is difficult to calculate
numerically. It is for this reason that an orthogonal
transformation is sometimes made on the adiabatic basis
to produce a new basis in which the radial coupling vanishes.
The new basis is termed a diabatic basis ( Smith, 1969;
Baer, 1975: Heil and Dalgarno, 1979). 1In the diabatic
basis the Hamiltonian P%ed is no longer diagonal. Also

levels ¢ and j which have a pseudocrossing at Re in the



adiabatic basis have a real crossing (k{eakﬁ(ﬁ )= (&%@d%ﬂ(RQE
in the diabatic basis.

The PSS coupling matrix elements\éjﬂ exhibit behaviour
which is somewhat peculiar as will be demonstrated. The

operator@/QGEF may be written

.@] - 2 2. s (2.5.32)
or 27 _ cazj NTRNRT v (2.5.33)
a&]{' et FA ] ‘a

Taking equation (2.5.33) and coupling states j and k

Vi = <V’ﬂ9@] H%>=(Zﬂ=@><7"-i§%i7”& (2.5.34)
we see that \ﬁkdepends upon the choice of orlgln as determlned
by P - If the states ﬁ? and §ﬁg both go over to atomic

orbitals centred upon centre A, that is

VUFR) o XU

R-=D6D .
(2.5.35)
o = g R
?WE(F5§%)§EES X (R)
then from equation (2.5.34)
Vi =<1 &>
05 —0-eKXGRIY. Vel XRE> (2.5.36)
as .
<?< HALE 7} HXE(E\D 0, (2.5.37)

If scates Xgaarml>(ﬁ are connected by a dipole transition
then equation (2.5.36) implies that\ékis not zero at very
large internuclear separation which is not correct physically.
Bates et al. (1953) investigated slow inelastic collisions
using the PSS method. Later Bates and McCarroll (1958)
improved the PSS method by including translation factors

in the formulation and thereby éliminated these problems



of origin dependent couplings and non-zero asymptotic
couplings.

Despite its shortcomings, the impact parameter PSS method
has been used by a number of workers to calculate cross sections.

2+—H system was carried out

The first PSS study of the He
by Piacentini and Salin (1974, 1976, 1977) who calculated
total cross sections. Prior to this most theoretical studies
had been on the proton-hydrogen system ( Chidichimo-Frank
and Piacentini, 1974). (It should be noted that in the
Qﬁork of Piacentini and Salin, the paper of 1974 contains
“incorrect results. The corrected results are in their
paper of 1977).

The impact parameter PSS method has been applied
to collisions between fully stripped ions and atomic hydrogen.

L4y 5+ 8+

Harel and Salin (1977) took Be ', B and O as the fully-

stripped ions. Salop and Olson (1977, 1979) have used

6+ and O8+

the PSS method to study C fully-stripped ions
colliding with atomic hydrogen.

2.5.3 Plane-wave translation factors

Bates and McCarroll (1958) realised that the standard
PSS expansion of “F(RA¢), equation (2.5.26), did not satisfy
the Schrdédinger equation for largelg due to the relative
motion of the two centres A and B. They introduced plane-
wave translation factors into the molecular basis. Considering
the heteronuclear case, we separate the direct and re-

arrangement channels and expand‘gﬁﬁe)as

‘”’?@F,w: Z [@jw) @f«%e) +¢jle) @?(F,é)] (2.5.38)
J -



where the basis functions are given by

&
@f(’ﬁ,@ = A?/Vj@(ﬁm@:z@[%g@ﬁﬁ=ij (&7 + 4 p*vi)de’ ] (2.5.39)

@ (Fe)= '7” (7 R)@%{P[MU -p)¥. 4J"g,€ L -p)v }d(b] (2.5.40)

It can be shown that

e
i 3
a-_i . Q.a - _g) E| o _D.-a=,f @ .Laz ’
{H“@i é QJP}@#E@ == U?T]%'}VJ@XP[ ipv.r &=c£% 3PV Jde ]

(2.5.41)

{Heﬂ,—"@e;] }@ (Fe)=- 'J%]ayf}@xp[é((ﬂﬂﬁ@.%“
€ '
éi££f+§,@n=p»?‘v’f}d&” ] , (2.5.42)

Using equations (2.5.41) and (2.5.42) and the Schr&dinger

equation, equation (2.5.17) yields the coupled equations

{L[@ %Z“\Eﬁk@k ZL{J’*Q" ZKE‘C& ~ (2.5.43a)
k

T — . “
«’[Z Nta_j Ay * & g Kjlk@l_nz ¥ 1}: HﬂzCL‘s (2.5.43b)
By AN
where Njfk ;<@j @k>
: 4
:<V?»H@L$'$HY§>@XP[<EJ‘ (éf-’é@)df”] . (2.5.44)
=9

@1 Hae-i 2], 182>
K‘Y’f]aJ ¥ >@xp[_§ 3 éﬁ"%dt‘”] : (2.5.45)

Jlk <@ IHM lg)@] ®k> N
=@<‘}9’A at]pﬂgyk>@xP{Jﬁ (éf“éﬁ»d@l] (2.5.46)

H



K =<8 i H - 2 145>
"“G<Q7"/Bg - 497 9] ﬁ\l/ﬁ >@x9{j(ég 5@)}&?@’} (2.5.47)

EZ;& :<3@éﬁ He .gi] é§ >
:-=@.<’§%’ﬁ\ 775 1 ﬂyk>@xp{ﬁ

Dg?)d@}.(2,5.4&

-a

Comparing this with the general solution of the Schrddinger
equation. we see that the basis states used here, ?(F, &)

and @%?ﬁt)correepond to the general basis states ’F}(F{k)

and (ikﬁfe) respectively. We note that unitarity is expressed

by the relations

—
iN=K - K (2.5.49)
— T
and tj = tﬂT ; kj = tﬂ (2.5.50)

The introduction of plane-wave translation factors removes

the probleme of the PSS methcd. The matrix elements are

not dependenr upon the origin and they all vanish at large

R The disadvantage is that the exchange elements k: k

and E;h are not easy to evaluate owing to the presence
‘of the momentum transfer factors<@XP(i&@F)which also mean
that the elements must be evaluated at each collision velocity
required. This has resulted in there being few applications
of this method.

Winter and Lane (1978) used the PSS methed to investigate

H_e2+

-H collisions using up to 22 basis states. Prior to
this Piacentini and Salin (1974, 1976, 1977) had studied
the~system using the PSS method but using only three basis

states Qpe ,Zpﬂiaﬁdﬁdez). In the work of Hatton



ét al. (1979) and Winter and Hatton (1980) the molecular
expansion method with plane-wave translation factors was

b 2+

used to calculate total cross sections for "He“ -H collisions

in the 4He2+ energy range 1-70 keV. Excellent agreement
was obtained with experimental data for capture into all
states down to 8 keV. However, the agreement was poor
at lower energies. Winter et al. (1980) investigated the
inverse process of protons on 4He+ ions for centre of mass
collision energies from 1.6 to 14 keV using plane-wave
translation factors in the molecular basis. Their total
cross section results were in very good agreement with
the experimental results of Peart et al. (1977)
Theldifficulties associated with the matrix elements
arising from using plane-wave factors has led to various
approximations being tried. bne is to expand<exP(d§.?)
in pOweré of ¥ and only retain the 1eadingterms when low
velocity collisiong are being considered. Within this

approximation the coupled equations become

:Z ijms +£K.ﬂ;©k (2.5.51a)
ke 5
ic; z Kk ax + ZHka (2.5.51b)

k

where

== ¥} E;t] |y >@XP[M5 - &) dt’] (2.5.52)

, ) -
Kjki-K"?’ ﬂé@‘] HV’k>@xP[j(é -ék)dlt : (2.5.53)

T8 Eoxe



\
The disadvantage of this is that unitarity is not satisfied.

Briggs and Taulbjerg (1975) used exchange elements calculated
at a common origin which was chosen to be the centre of mass
6f the system in order to force unitarity. Bates and Williams
(1964) used the mean value of E<%k and szk to force unitarity.
One final point about the plane-wave translation factors
of Bates and McCarroll (1958) is that it can be shown that
they arise naturally by solving the PSS equations in the
asymptbtic region assumiﬁg that straight-line trajectories
are used to describe the nuclear motion. This is demonstrated
by Greenland (1982). He also shows how the use of a Coulomb
trajectories causes the factors to be modified.
The idea of using translation factors of a type other
than the plahe—wave type is a further improvement of the

basic method. This will be discussed in the next subsection.

2.5.4 OtherAtranslation factors

Although the introduction of plane-wave translation
factors results in the theory being independent of the
choice of origin and free from non-zero asymptotic couplings,
the major defect of the plane-wave factor apprcach is that
the plane-wave factors associate the electron with one
or other of the two centres even in the interaction region.
However, in the region of interaction the electron belongs
to neither of the two centres. Thus plane-wave factors
do not allow adiabatic relaxation of the system to occur.
Schneiderman and Russek (1969) proposed that the piane—

wave translation factors should be modified by the introduction



of what is now termed a switching function fjﬁikb
(Thorson and Delos, 1978a, 1978b). P is the electronic
co-ordirate and R 1is the internuclear co-ordinate. We

remember that in the PSS method the electronic wavefunction

is expanded as

YIF ) = Z qjl((@»'f@:@j;((ﬁ ¢) (2.5.54)

where
€

@j (F,e)= V;(F; R) exp[%‘ﬂ:@ éj@R’)A@'”] , (2.5.55)

the ‘W§(F;R) being adiabatic electronic wavefunctions.
In the Bates and McCarroll (1958) treatment the <@jﬁ%6%.,

become

@j (Fey= Y‘%‘A(FZ R) exp [ﬁ?-,%_aw“;? - «:J;‘(E?‘%gv‘*)dn’c” ] (2.5.56)
. ) =69 '
where the origin position parameter F is taken as being
1/2, that is, the origin is at the centre of the inter-
nuclear line. Schneiderman and Russek (1969) working
on the proton-hydrogen capture process proposed that '@?(F’:H

J
should be given by

&
Q@J(gﬁﬂmﬂ'ﬁfjﬂz{{@w?ﬂf&fﬁ)dt”] (2.5.57)

where f@ﬁﬁ) is such that



fERY==1 for &Ry
as R=bes (2.5,5'8)
-l;@.:’;pﬁ»“’o‘ﬂ’u for IR Krip
and
fﬂﬁ'ﬁ)%@) as R= 0. (2.5.59)

Schneiderman and Russek give a table of conditions which
"they state the function jﬂﬁ R) should satisfy, equations
(2.5.58) and (2.5.59) being the main ones. - They also

propose a switching function which is of the form
f@ﬁ§)2=cos@/@+@@mfj (2.5.60)

where 6 is the angle between §Tand¢F3, and a is a relatively
smali distance:below which the electron essentially 'sees"

a united atom and ceases to ”belong“. to either nucleus
individually. | We shall now obtain the coupled equations
. which arise when a switching function is used. The electronic

wavefunction Y{(ﬁw is expanded as

4 : :
pENE Z a;(e) ¥ (7 R) @%P[%; if 9. - &j {é,-((R))%\f’}d&”] (2.5.61)
J -89

The coupled equations are

' ¢
‘.‘Q}J Z’Z a ij @xF[iI @j:’éh)@“”] . (2.5.62)
o)

k=) -

where

Vi = =¥l LIS - 1< Gutsw. ) Bl vi>
=LA BT + AT V1D + £ <Yl = o>,

[

(2.5.63)



There have been various forms of switching function proposed.
Levy and Thorson (Thorson and Levy, 1969; Levy and Thorson,
1969a, 1969b) working on impact ionisation in the proton-

hydrogen system proposed the switching function

Py a_ 2
L(ER)=-iDzlm) (2.5.64)
P+ 5
Thorson and his collaborators (Lebeda et al. 1971: Sethu
Raman et al., 1973: Rankin and Thorson, 1978) proposed
switching functions which were dependent upon the particular

discrete states with which they were associated. Rankin

and Thorson's proposal for the switching function was

j@ ==tanh R{Eﬂ‘@ﬂ[@ Zat ZﬁMﬂ" IR + (2 - Za)]

+cxj(oja/@(ZQIZA)1} (2.5.65)

where ZAandzgare nuclear charges and stj and B; are parameters
variationally chosen so that the coupling between the discrete
statej and the continuum is a minimum. Rankin and Thorson
were dealing with the ionisation problem but they proposed
that the f? of equation (2.5.65) should be useful for discrete-
discrete close-coupling excitation and capture processes.

An equivalent form of f} is

fj==tamk[§iﬁ(7ﬁ7ﬁﬁ (2.5.66)

where 7) 1is equal to (=-T3)/R  —one of the prolate
spheroidal co-ordinates (?,%ﬁ) . and (-ﬁ;- and m@ are parameters
to be determined. An extension of the work of Rankin and

Thorsonl(1978) was the work of Thorson et al. (1981) who



derived a set of switching functions for the H2+ system

by an analytical two-centre decomposition of the exact
molecular wavefunctions. The switching functions obtained
were closely approximated by the form f:w=@@ﬂ%@7> and

the parameters involved were in excellent agreement with
those obtained by the earlier heuristic optimisation scheme
of Rankin and Thorson.

Kimura and Thorson (1981a) used these analytically
derived switching functions to calculate excitation and
capture cross sections for H" + H(ls)— H' + H(nl) collisions
at projectile energies from 1 to 7 keV. Their results
agreed with experiment better than in a comparable theoretical
study by Crothers and Hughes (1978, 1979). 1In this work
Crothers and Hughes took.f to be a function of R only,
namely §f=.f(ﬁ) which was determined using Euler-Lagrange
optimisation. However, in this work the function{f“@ was not
a true switching function. Kimura and ’Thoréon (1981b)
have also obtained excitation and capture cross sections

2+ 2+

for He - H(ls) collisions at He projectile energies

+

of 1-20 keV, and for H* - He" (1s) collisions at centre

2+ _ H their results

of mass energies 1.6 to 8 keV. For He
were in good agreement with the plane-wave translation

factor werk of Hatton et al. (1979) and Winter and Hatton

(1980). However, for H™ - He® there were significant differences
between the results and those of Winter et al. (1980).

Good agreement was obtained with experiment, though, for

both He?+ - H and H* - He® systems. One point of note



about this work of Kimura and Thorson on the HeHZ* system

was that they used switching functions whose parameters

were determined by the optimisation scheme of Rankin and
Thorson (1978). This was because the analytically derived
switching functions (Thorson et al., 1981) had parameters
which were in not as good agreement with the optimised

ones for the HeH2+ system as were the paramefers of the
analytically derived switching functions with the optimised
ones for the H2+ system. Recently Kimura and Thorson (1983)
have used their switching functions, equation (2.5.66),

to obtain total cross sections for electron capture in

Li3+, Be4+ and B5+ collisions with atomic hydrogen in the
ground state. The projectile energy range was 1-15 keV
amu ~. A combination of the analytical and optimisation

schemes were used to determine the parameters 5} and @j-

Good agreement was obtained with other theory and experiment.
As a follow-on to the work of Taulbjerg et al. (1975),

Vaaben and Briggs (1977) and Fritsch and Wille (1977),

Vaaben and Taulbjerg (1979, 1981) obtained the switching

function

RN Nt DR TR,

, (2.5.67)
(Bori+ Zals) Za+ZEs

f ,— 2

T(FR)=
where F is from the centre of charge of the system.
Vaaben and Taulbjerg determined their switching function
using the criterion that the associated translation factors

must relax adiabatically at intermediate and small internuclear

distances. Vaaben and Taulbjerg (1979) have applied their



2+ _ H electron capture process.

switching function to the He
Riley and Green (1971) have applied the Euler-Lagrange
variational method to the problem of determining a general
plane-wave translation factor (which may include a switching
function) of the electron co-ordinates and time. They
considered three types of translation factor all of which
resulted in complicated optimisation equations. Ponce
(1979) used the Euler-Lagrange method to obtain optimised
translation factors for H' - H collisions, the wavefunction
being expanded in terms of theﬂsﬁb , 2p6y and 2pFumolecular

states. FEach of these three adiabatic states was given

a translation factor of the form

wap[«ifﬂﬁt)], (2.5.68)

Crothers and Todd (1981a) have also adopted the Euler-
Lagrange variational method to the determination of translation
factors with specific consideration being given to adiabatic

states of HeH2+.

This work is an improvement of the earlier
work of Crothers and Hughes (1978, 1979) mentioned earlier
which also used the Euler-Lagrange method. In the work

of Crothers and Todd the translation factors are state

dependent and are given by

T.= @XFE’,J@}(@'@.FQJ (2.5.69)

J

where j%(ﬁ) are the switching functions. Crothers and

Todd (1981b) have applied their variationally determined

translation factors to electron capture in He2+ - H collisions



for_a’r{ez+ collision energies of 2-25 keV. Five adiabatic -

molecular states (2pe ,2pw .3de ,3dm ,Ase ) were employed

in the expansion of the wave-function. Good agreement

was obtained with experiment for the total capture process.
An interesting approach to the switching function

probem has recently been proposed by Dickinson and McCarroll

(1983). They suggest a switching function fﬁﬂ having the

form

(i

Fle) =t -exp(=-Yit-t.l), lI>te>0 (2.5.70a)

o . el < o (2.5.70Db)

such that in the interaction region f@@ is zero (equation
(2.5.70b)) and hence the scattering equations take on the
usual PSS form here. However, outside this region the
functicn1f(@) gives the correct asymptotic behaviour to
the basis states (equation (2.5.70a)). In equation (2.5.70a)

Y is a frequency which is low compared with the natural
frequency of the problem. The time {, is chosen such that
the molecular wavefunctions have assumed their atomic character.
Dickinscn and McCarroll term f£{¢) an "adiabatic switching
factor" (function). Allan et al. (1983) have used the
adiabatic switching function to calculate electron capture
cross sections in H' - Li collisions for centre of mass
collision energies below 20 keV. Reasonable agreement
was obtained in the energy range 0.5 to 8 keV but the results
were very sensitive to the choice of the origin of co-ordinates,

the method being essentially the PSS method with slight



modification.

The theory of electronic translational momentum and
applications of the theory have produced many other scientific
papers over the past few years, for example Thorson and
Delos (1978a, 1978b), Green (1981a, 1981b), Green et al.

(1981, 1982), Shipsey et al. (1983). A useful review of
the worx up to 1981 is given in the review by Delos (1981).

2.5.5. The quantum mechanical PSS method

At very low collision energies (£ 100 eV amu"!) the
change in.electronic energy during a collision will become
comparable with the collision energy. If this is so, the
impact parameter approximation may not generally be applied
and a full quantum mechanical treatment is required.

In the introduction of this chapter, the basic quantum
PSS method was presented. The total wavefunction was expanded

in terms of molecular states, namely

FERE LY R, (2.5.71
‘g -
Projecting upon the basis set {?ﬁ}' gave the coupled equations

%IV@?%%Z/M[E%J:@RH} F(R) = Z(Q, Kjkﬁg +Bi ) Fy(R)
’ ? k (2

.5.72)

where s is the reduced mass of the nuclei and the coupling

matrices pﬁ&and Bﬂgare given by

— g =2 N

Ak :j VTV VadF (2.5.73)
1

“and

Bﬂg J ”Y’”‘V;”Y’MIF. (2.5.74)
v



As an example, let us consider the simple case of symmetric
resonant electron capture, namely
AT + Alls) ——s  A(ls) + AT, (2.5.75)

The total wavefunction is taken as

Yz R = FRYVER) + RIRVIRT), (2.5.76)

that is, a simple two-state expansion. Coupled equations
analogous to those of equation (2.5.72) are obtained.
After making suitable approximations, the uncoupled equations

for @ and Fu' are obtained, namely

I 2 —F ) - | 2.5.77
-5 V§IF9+((E E)fFg =0 (2.5.77)
v - = | 5.
ST% F,L+(E=-EJ)F, =0. »(2.5 78)

We define the scattering amplitudes 1@(@) and j’;(@) by

[@:@P(m R)+ =@‘XP(H§R)§9,M(B)] (2.5.79)

[R-o@@

where € is the scattering angle. AsR=60 the initial

and final atomic states are obtained from linear combinations

of W% aad Ve
IO R’?;% 2(7%)

Ny
(2.5.80)
7, ()

)
jf(wy ) R->60

where Z5(F) is the wavefunction of the ground state of A.
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The ground state eigenenergy £,is given by

Eoz lim Eg(R) = lim EL(R). (2.5.81)
R=>co R=es
It can be shown that the differential cross section for
electron capture is given by
3
Gﬂpgz‘;ﬂflel f0Y] . (2.5.82)
The total cross section is

e
@f:%‘g' M@)) ~$,(0)] *5in0db . (2.5.83)

(]

The scattering amplitudesj%mﬁ@) are calculated by using

the partial wave decomposition

e S | |
@,“wm,a& ;Z;(;L*“)[@XP(IM%‘EM%ﬂ]ﬁ_(cm@)». (2.5.84)

The phase shifts WLM are obtained from the solutions of

d _LiL 2 = 5.
L‘Rf ((R;n:n) +k =2/Mggm]&;:u(m,0 (2.5.85)

which have the asymptotic form
~ L § . 0 R
Gro M§3am(kR=zU@+%,u). | (2.5.86)

The total cross section may be expressed in terms of Wgﬂa

by means of

ed
E%Z(zLM)sm*(%ﬂ]&) : (2.5.87)
L=e

The formula of equation (2.5.87) was used by Dalgarno



and Yadav (1953) to calculate cross sections when A was
hydrogen and the incident energy range was 1leV to 10 keV.
Bates and McCarroll (1958) suggested improving the expansion
of equation (2.5.76) by including plane-wave translation

factors. They had

HUIERY = RIRIX B + FRIZER) (2.5.88)

where
Xﬁ,w (FR)= %[{’Yg + Vo expl-£18.7) £ -v) @xp(—ﬂii?ﬁ)] (2.5.89)

the plus (minus) in the middle of the expression corresponding
to gerade (ungerade) symmetry.

The expression for the cross section ¢ for symmetrical
resonance, equation (2.5.87) is not convenient at energies
above about 100 eV. The wave number K becomes large and~
the functions (};M oscillate rapidly with R, Integration’
of equation (2.5.85) becomes time consuming and also more
partial waves are required as k increases. It is then
necessary to use the impact parameter approximation. Bates
et al. (1953) showed that for symmetrical resonance, using
the impact parameter approximation, the cross section was

given by

@2
@’--f*-;g.rzjs bsial P(b) b (2.5.90)
@



where

f@@

‘ =1/
P((b))g\%j @€9°£M>[ﬂ=§] AR . (2.5.91)
b 2y

2.6 Electron capture at high energies

Discussion of electron capture at high energies begins
with. the Born series. Using the impact parameter approximatioﬁ
the amplitude for electron capture to the k th state of (A+e™)

is given by

ck(b,@o)zt( mj X?“(ﬁtﬁ?(ﬁtm? (2.6.1)

é
=60 Jy,

where f\%((lz’iﬁ) satisfies

{H@p&a%]ﬁ}r Yi(F€) (2.6.2)

A
and .jK:k(ﬁ&) is the unperturbed solution of equation
(2.6.2) for R¥fg . It is simple to show that (Bransden

1983)

Cylb,eo) = - i< IVE[Y D (2.6.3)

where

B
Vo= Vg + V,- (2.6.4)

Using the iterative solution for ¥ the Born series for

Cylb,e9)  can be obtained

Crlbooo) = = (KR TVE + VPGPV S+ 6> (2.6.5)



0, . ' . .
where @d@me) is the unperturbed solution of equation
(2.6.2) for 5i3<&/[, corresponding to the initial state §.

V4 is given by

VB2 W, + Vg (2.6.6)

and G:° is the free particle Green's operator. Opﬁenheimer
(1628) and Brinkman and Kramers (1930) pointed out that

the internuclear pozential Vg should not significantly
affect the electron capture probability. At high energies
the paths of the nuclei will be straight and in this case

the capture cross section should be independent of the
internuclear potential. If \@@ is omitted from equation
(2.6.5) the so-called Brinkman-Kramers series for Cy(b,eo)

is obtained. Taking the first terms of the Born series

and the Brinkman-Kramers series gives the first Born approxi-
mation and the first-order Brinkman-Kramers approximation

respectively
CE“@%»®)§‘L<X@HV@@+VMH@%> (2.6.7)

cﬁm(b,o@%%(}(@ Vol 82> (2.6.8)

( B = Born ; BK = Brinkman-Kramers).

Unfortunately neither the first Born approximation nor

the first Brinkman-Kramers approximation give reliable
results because higher order terms are large at all energies.

1

In the energy region up to a few MeV amu ~ the Brinkman-

Kramers series has been shown to be slowly convergent and
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not to be of practical use in calculations. Simony and
McGuire (1981) have done calculations on the symmetrical

resonance process

H'+ H(1s) —> H(1ls) +HT (2.6.9)

and their results show that the second-order Brinkman-Kramers
cross section is larger than the first-order cross section
which already exceeds experimental data for energies below

3 MeV. The first-order Brinkman-Kramers cross section

is of interest, though, as there is some evidence that

it provides a useful estimate of the ratios of cross sections
for capture into the nl excited state, especially for

large n. Considering bare nuclei A and B with charges
EZAand E?B, Sil (1954) has shown that Brinkman-Kramers
cross sections can be found analytically for capture into
level n1 from any level of the target. For capture from

the ground state into level n

@'%ﬂzg@ZA»Zm = ﬂa@'@z’lxﬂ\(zﬁﬂ Zﬁiﬂ\b (2.6.10)

where

8 §
B = 2 e (ZaZp)
o N E A, Zp) For=t r o)’ (2.6.11)

and where

o= (v + L - Za)av . (2.6.12)
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For large n Cf%ﬂ decreases as Ifa®, which is known as the
Oppenheimer rule.
At asymptotically high velocities the electron capture
cross section is given by the second Born approximation.
Drisko (1955) has shown that for the process of equation

(2.6.9) the second Born asymptotic cross section is given

by
% ~ (o-2a5 +5zﬁ§g>8rm | (2.6.13)
2
where 5%32 is the asymptotic first-order Brinkman-Kramers

cross section given by

5%“33_2-1&3& : (2.6.14)
§ vz

The result of equation (2.6.13) shows that the V™' behaviour
arising from the first-order term is overtaken by a v=%
behavidur arising from the second-order term. Drisko gave
arguments to show that the third Born term modifies the
coefficient 0.295 in equation (2.6.13) to 0.315, but does
not alter the V~" behaviour at large v. This was confirmed
by Shakeshaft (1978a).

An interesting fact is that Thomas (1927) predicted
the Vv-'" behaviour of the cross section using a classical
model. In this binary encounter model of Thomas, the electron
acquires the speed of the projectile, Vv and is deflected

toward the target nucleus. Then the electron is deflected

into a direction parallel with the projectile with loss
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of speed. A discrete atomic orbital expansion cannot represent
these intermediate states and this is why the continuum

must be accounted for, especially at high energies. A

most satisfactory model of high-energy electron capture

is the continuum distorted wave (CDW) model of Cheshire

(1964) which has been applied to electron capture from

hydrogen by protons and alpha particles (He2+

) for energies
above 25 keV amu™ ! and up to 10 MeV amu—l (Belkic and Gayet,
1977). Good agreement with experiment was obtained for
total capture and capture into s states. Belkic and McCarroll
(1977) have used the CDW model to study capture by highly
charged ions (| < Z, <30) from atomic hydrogen. The.
results agree well with experiment. Belkic et al. (1979)
have produced an excellent review on electron capture
in high-energy ion-atom collisions.

This brings Chapter 2 tqfclose, In the next chapter

the presentation of the work of this thesis will be started.
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CHAPTER 3

TWO - CENTRE ATOMIC BASIS METHOD USING

SWITCHING FUNCTIONS : BASIC THEORY

3.1 Introduction

In this chapter the basic theory of this work will be
presented. We shall be considering the single-electron
capture process

A+ (B+e )—m>(A +e ) +8B (3.1.1)
where A is thg fully-stripped projectile ion and (B+e™ ) .
is the single-electron atom or ion target.

The co-ordinate system used is shown in figure 3.1.
The origin QO of the system is at the mid-point of the inter-
nuclear line AB. The (Xx,y,2) co-ordinate frame is fixed in
space with the x- and z- axes as shown. The y- axis is out

of the paper.

-
la

Fig. 3.1

The co-ordinate
system. (Space-
fixed x,y;2 co-

ordinates).
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3.2 Nuclear motion

In this section the theory of the nucliear motion will
be discussed. The motion is treated classically as the
impact parameter approximation will be employed. Thus we
may consider the two ion-centres, A and B, as travelling
along classical trajectories, their motion being described
mathematically by a general trajectory equation

R=R(bF) (3.2.1)

. —
where R is the internuclear vector (figure 3.1) and b

is the two-dimensional impact parameter vector and £ is the
time variable. In general the impact parameter vector is
defined as the vector perpendicular to the linear trajectories
produced by having no internuclear potential, (figure 3.2),

(dashed lines).

~
\ZEE\\ Fig. 3.2

- ~ Diagram defining impact para-
-
_ ~ meter vector b for non-linear
. N
////’/‘_N\%Q\g% trajectories.

At high impact velocities the trajectories are very near
being linear, the actual scattering being mainly in the
forward direction. However, at low velocities the inter-
nuclear potential VAB ZZA ZB/R has a greater effect and
it is more appropriate to use Coulomb trajectories. We
shall see, however, that the straight-line trajectory case
(much used in work on electron capture) is simply a special

case of the Coulomb trajectory with the potential "turned
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off".

The problem of the dynamics of two particles repelling
one another by a Coulomb-type potential ﬁbﬁ? is well-
known and is treated in most standard texts on classical
mechanics, for example Landau and Lifshitz (1960). The
potential is f/R with g}@ in our case. It is both
central (dependent only on Iﬁfi ) and repulsive. The
motion can be written in terms of the following parametric

eguations

. 2, al/a .
R = (Y +b ) coshw + )/, (3.2.2)

2\
=L [y‘z’-frb)agcn%\ w+ Yw | (3.2.3)

.
&

where Y = g}CﬂA\/LB, (3.2.4)

M is the reduced mass of the two nuclei A and B, V; is the
initial relative velocity of A and B, b is the modulus of

)

b and w is the parameter coupling egs. (3.2.2) and (3.2.3).

It is normal to introduce another parameter T given

by

T= (Yz’ﬁ-bz‘

«9)

[\

/2
) siah W . (3.
We see from equations (3.2.2) and (3.2.3) that whenw?(or T )
is equal to zero, that R is a minimum and ¢ is equal to zero.

If we set §'= 0, that is "turn off" the internuclear
potential, we see from equation (3.2.4) that }/== 0 and

equatioﬁs (3.2.2) and (3.2.3) reduce to



R = beoshw, (3.2.6)
E =25 sindw. (3.2.7)
\VES

&

This 1s consistent with the straight-line trajectory

relation

2 2
R*= b*=v; € (3.2.8)

which is obtained from the well-known straight-line

trajectory equation

R=bh +v¢t (3.2.9)
S,

with b.v = 0, (3.2.10)
P

and where V =V;= constant vector.

If the straight-line trajectory approach is used the
diagram shown in figure 3.1 must be amended. Figure 3.3
shows the well-known diagram for the co-ordinates used when

straight-line trajectories are employed. We notec that Z = v¢&.

Fig. 3.3

The co-ordinate

system (straight

line trajectory

case).
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The quantity )/ defined by equation (3.2.4) measures
the strength of the Coulomb repulsion., Clearly as v
decreases the trajectories (which are hyperboiae) will
become more curved and similarly as < increases they
become more curved. For electron capture'g:izg;?zig and so
increasing nuclear charge will lead to more curved trajectories.
The formulation given in the next section will assume
the use of a general trajectoryv, and the velocity gf is a
function of £ . For the straight-line case we take i? as
being constant.

3.3 Formulation of the problem

This section will present the basic theoretical form-
ulation of the two-centre atomic basis method using a
switching function. As in most theoretical work on electron
capture, much of the work centres around the quantum
mechanical matrix elements, namely their derivation and
cevaluation., Chapter 4 will be devoted to discussing the
avaluation of the matrix elements, but in this chapter we
shall deal with their derivation and also simplifications
that can. be made to their form,

We describe the electronic motion using the time-
dependent Schrddinger equation in the impact parameter
approximation

He«—z;;i Y(r,e)=0 (3.3.1)
=

where ¥ (F,¢) is the electronic wavefunction, and Hg

is the electronic Hamiltonian given by

2
H@(_—.-QLV; + Vo + Vep + Vas . (3.3.2)
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The potentials in kﬂ@@ are

V== Zn Yes = — Z8 & Ves = Zafs (3.3
Ta T R

The close—couﬁling approximation (Chapter 2,p 36 ) is
-
used, the trial wavefunction ﬁi}e(rﬂ 6) being expanded in
3

terms of two sets of orthonormal basis functions F}(?% @)and

S,

C%k (F,ﬁ) as follows
N

M .
'?T(Fi(:):Za(j(f)Ff(ﬁe) +ch('e) G (Fe) . (3.3.4)
j:ﬂ ksﬂ

We obtain the usual coupled first-order differential equations
for the coefficients OlJ‘ (¢) and Ck [t) (written in matrix

form)

é[é(‘t‘)-#@é(ﬂ:!: Halt)+ K ¢le) (3.3.52)
{nfa+ i@]= Ratel+ Hew) o

which are to be solved subject to the boundary conditions

aj("@@): gjé ; Ck (—- o) = © (3.3.6)

where index & corresponds to the initial state of (B + e ).
The capture amplitudes ﬁfk;(gj for capture from the

L th state of (B+¢ )to the K th state of (A + e~ ) are given

by

Cri ()= Lim Cult) . (3.3.7)

E=on
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The total electron capture cross sections ({—=k) are

given by
f apr
3
= | (B b (3.3.8)
&, J | Cis (B
which, owing to azimuthal symmetry, may be written
o2
0. Egﬂj | Cx (+)®bdb . (3.3.9)
o

The units of (k¢ are QZOB where a, 1s the Bohr
radius (5.29 x 10_90m ).
The matrix elements of the matrices in equations

(3.3.5a) and (3.3.5b) are in Dirac notation, given by

Nje= <F 1 G2 (3.3.10)
Hjk= SFilHe= ¢ 2/oedpl F D (3.3.11)
R—Tﬁjk = <G lHo =i 2/96:];36;—2> (3.3.12)
Kjk = CFjlHeem Youlel G2 (3.3.13)
Rix = <Gl Ha—i2/e 12l FED> s.a

The theory presented so far applies for any two orthonormal

sets of basis functions‘FfYﬁe) and G%é(?,t) which satisfy

F(r

é-bztao
Mg&fa

B - Y
i - A RV i (3.3.15
J(F’a)exp ¢ (&¢ LVt Ly 7) )

@'bf(ﬂé)t 2 Xk(ﬁﬂ)exp*'i(%ffévaf v ?), (3.3.16)
Fak e



§,» $
the asymptolic boundary conditions«nnfa(ﬂé)nﬂd C#&(ﬁi&)o
B, _
As usual, gﬁ- [F@} are atomic eigenfunctions for the (B+e )
J A o
system with energy eigenvalues gj , and ;Kk_(Fh) are
atomic eigenfunctions for the (A+e ) system with energy

eigenvalues 7& .

S, =
We now specify the form of the basis functions F}(T}f),

and Gré(Fiﬁ) .

- B Pl B
Fjs(ﬁﬁ): ‘@j(f'a)@x&c"i Ejf?'ﬁ"gf“fae “%IE:J(F'R)%% (3.3.17)

A D . T 2 = =y =D
G{(F;c):Xk[rA)Qme@ Z]ke+§‘;v é‘”}%ﬁk(r‘,ﬁ)v.{l. (3.3.18)

The functions fi(ﬁiﬁ? and .9R(F’§7 are the switching

functions. Their main properties are

jcj(['-”,ﬁ}—%-"l for Mg K Ia as R-—» e
(3.3.19)

ﬁk(ﬁé“_bm] for [ &k A as R-» eo,

and

:ﬁ-(ﬁﬁ)-ﬁ-&;l for ['a<< g as R-—>0

(3.3.20)
(P R)—+1  for [« Mg as R
Also their united atom limit is
JCJ'(F,R)—’O
as R— 0. (3.3.21)

9k (F,R) — ©

We note that in general the switching functions may be

channel dependent.
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The basis functions defined by equations (3.3.17) and
(3.3.18) are orthonormal with respect to one another Dby
virtue of the fact that the stomic eigenfunctions are

orthonormal with one another, that is

(FJ?[F;Q: gjm ; <G GiY=8ka, (3.3.22)

as

<@}Bll@’j> = §im XEIXRD = Ska . (3.3.23)

We now make the simplification of replacing the channel
. . . = —ﬁ) = —**)
dependent switching functions f} [r"lﬂ\ and k({‘,ﬂ by a
N —y
sirngle channel independent switching function jﬁ(r,ﬂ) and
henceforth the theory and results presented will be for
this specific case. The conditions (3.3.19), (3.3.20)

and (3.3.21) now reduce to

f[ﬁﬁ)_ﬁ_ﬁl for [ K Fa as R—>o0, (3.3.24)

ffff,ﬁf)—%;» + | for [,K g as R—yeo, (3.3.25)
and

f(FR)—0 as R— 0. (3.3.26)

For completeness we note the new form of the basis functions

using f[falﬁn) instead of fj (F R) and Ik (F,R) .
$,8 8, . i _ el W
ﬂ(ﬁé):*@j(f‘@)exp“e[fjt*gvaf 2f(f‘,,ﬂv.r], (3.3.27)

> A . | i TN _A.A]
@'i(ﬂﬁ)"xk(fi»@xr’i%t+§V%"Zﬂf"; WL, (s.3.28)
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We now require the explicit expressions for the matri$- 
elements (3.3.10) to (3.3.14) cbtained when we use théibasis
functions F;(Fit) and (%iﬁﬁ,é) as given by equations
(3.3.27) and (3.3.28). The expression for the overlap

matrixlﬁdj& is trivial. It is

No= BHRXEED expilej-gu . G20

The expressions for the direct matrix elements P{'k

and %ﬂjk , and the exchange matrix elements k: k and %<j&
are obtained by con51der1ng the effect of the operators kiﬁ

and = 3/3@]? upon the basis functions Ff(F}t) and (%khﬁt),
Algebralc manipulation then yields the expressions for the
elements. The expressions resulting from k% ( and ¢ %/@é}é
operating upon the basis functions are quite 1engthy°
Their derivation and they themselves are given in Apprndix
Al.

The direct and exchange matrix elements are given on

the following four pages.
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Direct 1 matrix ﬁf

(& -ERE

Hik = <8 (Fa) | Vau | BF (Fs) e
- LX) (R £ 7.7z g (Falye! 075
- LGB AINE AT, T B e V"
- L<HENT. Tl BE (7)o (55t
~LHFN AT Bl Fale
LB ENN B (Fa)> et G
+ LB (F)IF7.FIV. Tl @ L)y 80
+-é—<¢f(ﬁ%)((?.?f‘(@ﬁzl B (Falpet (G e
Al Q%MK B (F)y e 1 F"
+L<B{F £ 47 | @25, e i 8t

R R ITA A HA TR,

.éf: .
+{VAB—-§'V2‘+ ““‘éi[}gjk- (3.3.30)
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Direct 2 matrix L‘j

= I Vol X (R 75
RS AL IAAD W A PR B
— LK@ AT (Yo T
=1 OGENT. T XA &
—Zi;_xxg"(&)l(w»vaﬂxk (7))
RN X R B
#1< X?(ﬁé)i A AR I A AV YR it
L CXPEND RS (Bot I X2 1R e B4
o5 CAENEALE] xRy
w5 OQEEE. 81Xy o (07108

+ ;ﬁ_?()(f(ﬁ))! V.7 X:f(ﬁ%‘l?e (g5 =gult

<+ ___l_ i3 a i
{%B ,8% H%{%"ﬂ} J

(3.3.31)
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Exchange 1 matrixﬁé

Kie = CoRINGI XA R 1
A A AP oIA
- BRI AITAT X 1
RCAGY PR NP A PRSI
=A< P (B RV 1 X e R) e (61
SEXG RN F I X 1 R)ye G140
A A VA A
+7’3;<;®jg(f%)[ (7. F“j”(@;{ﬂ X2 R)De i(€j~qu)t
+ <R 2] £ IXEFD 1"
43 <D (F)If 7. 471 X (R)ye (671

AN AP AV R

'ﬁ'{%}@ - é[v2+€o_g§j)]} Njk |

(3.3.32)
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Exchange 2 matrix K

—

<= OGNV 28 R e T
~ 3O Rl v. T g Ae W !

~&nd€

(7J —Eult

~ _Zfl(Xf(/rﬂ 7. r)(VJ:H Vs Al (Fa)p2

. iy s .. S g( ‘~£ )f
G AT AT

B ICAQIICTINIE A P
SR £ R T
4 GUENED A 7. T LB R
ORI 2N (T 8T8, (7 )y -4

AR {{ ” GER TiE

i(g;- -gr)t

(3.3.33)



For case of reference we denote the individual matrix

elements as follows:-

Overlap

NAERC A LA AN
Adk = <ZFa) Vel PRI

A SR EN
Cff;‘ = {g; (F)1¥
D% = <ol v Bl gl
Fii = <ﬁf@m
Grfﬁ = iﬁk (F)?

Hig = <;@f,-@(FB)H(V. ?)v. %

T = oA GG

BN CHIA It

L Lk .=,<ﬁ ((ﬂ’@}) {//A ﬁp“ﬁf({lf’%))_

NAIRTAY NG
AT AN ZNCANY
| B (7))

{
= <;@3%Fg>w% f;] AN

(3.

(3.

(3.

(3.

(3.

034)

-35)

.36)

.37)

.38)

«3.39)

.40)

.3.41)

o 542)

.3.43)

.44)

.45)
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Lxchange 1

A@ﬁaQ@” (Fo)l Vgl X (71> (3.3.57)
B z(gﬁﬁaww,?w?m» (3.3.58)

i =<BPAN@ATENRILED. aas0
D% =BT BH X () 5 3 609
F??E<Q”j@(?@7ﬂ§? ﬂXk(FA ). (3.3.61)
@"?ﬁ E()%%&)HCZHX@F%))_ (3.3.62)

1o E(@’f{@wﬂv_ﬁﬁ IR, (33060

<,@ (F) (7. (@HWX?(@)}Q (3.3.64)

K5 =<af@ien ZIXedED. o
Aja« E‘(@J@(F@)H dL_gHXﬁ(F‘AD. (3.3.66)
<Qf (’r@)h‘?&ﬁ &(FW. (3.3.67)
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Exchange 2
A?ﬁ 5(’?(?-(&”\@{?,@’@@;) (3.3.68)

Bff X CATARTAAN AN (3.3.69)
= XKXSEN@AGAEZLRY . s

D?ﬁ = <X?(FAM\7.@HQ(F@)>. (3.3.71)
ﬁfE‘(X?(Jﬁ“)gWﬂv;ﬂ@f@)). (3.3.72)

Gr_j?f = OGENF I F (7). (3.3.73)

H?i 5<X?(FA)HW.F)\7.§FHJ@E()>. (3.3.74)

TROSERNEANENI PR, caus
rzodmienZHsiay. oo
A~k5<7(?(‘i)”cﬁﬁﬁ)®’k(rﬂ)>- (3,30775

d
Y C HAITAAHANS (3.3.78)
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We see that the matrix elements obtained in this formulation
are much more complicated than the corresponding plane-

wave matrix elements, equations (2.4,17) to (2.4 .21 ).

We note that the relative velocity vector of the nuclear

=D
motion, ¥V , is given by

viel= R (3.3.79)
L

-t
where R is the internuclear vector. For straight-line

trajectqries ¥ is constant. If we look at the expressions
for the direct and exchange matrix elements, equations
(303,30) to (3.3.33), we see that in the straight-line
trajectory case the f&—type elements, which contain éﬂéﬂdt
will be eaqual to zero. Also the final terms of the
expressions containing d@!qﬁﬁt will wvanish.

We now write down expressions for the matrix elements

F\%k ykﬂjk y%%j& 9E<3k and Kjk in terms of simpler

matrix elements PJ?? 5 Vﬁk s MGA 9 Kjk and h]& , the aim

being to remove the internuclear potential terms, and the

exponential eigen-energy phase factors. We have
Njk= le? exp ( (Q-%M _ (3.3.80)
ij; (\{Asgjk -i%'\/jk)«xpé(f'j*fk)t. (3.3.81)
HJ&Z((\/ABS_}k $ij)@x‘ai(7‘,“7;‘)t, (3.3.82)
Kjk_;(VABNf§+ kjk)exf@(gj"%%. (3.3.83)

—

BAS g %
<,k :(\/ABNM +hkj>@xpé(7j=€k)t. (3.3.84)
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b

| 1]
The matrices g’ ,Eg 5 k and‘b 9 whereT denotes Hermitian

]
adjoint, are given by the following expressions (in matrix

form) .

v=AB@+Va&B+ngB+ij@@+L @+_u_/\m

_ L yraebdivy
tfyeeedy] I
| “6%4—“ @@+ ﬂ Fm%elﬁ_w
s g2 tyx T¥ Tzl 2= (3.3.85)
AA 2 ~ AR AR AA ﬂ AA AA
T A e S N 1 G AN
"l[j 2 6(%(V%) I
sLY + T =
NERY AA AR | M)
A 1 1 1 - (3.3.86)

where 1 is the unit matrix.

(3.3.87)
B
H%‘ﬁ'fé-IA@'ﬁ'%KAe'ﬁ‘% A
. ‘ﬁ'
‘LEVZH@-“—V;MNM)

(3.3.88)
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3.4 Simplification of the matrix expressions

In the previous section rather complicated expressions

for the matrices V vM s E and k were obtained in terms of
the various individual matrices @uégf%@@ (:@Q [>@@ .00 etc.
In this section it will be shown how the expressions for
vV,w, Kk and h' (cquations (3.3.85) to (3.3.88)) may be
reduced down to simpler expressions.

We begin by first combining some of the matrices in
the expressions together and replacing the combination by
one matrix which we shall denote by Ef . The following

expressions show this,

2 ' 88
Y@@:M,GJ‘BB%}’J-H@BJ}'L +=H=K - A@
2)
“%‘[V’IH@(;%]I- (3.4.1)
A A N = AR AA AR
VT Y L o R ST FAN
dlv?)
=?‘§[v3+é 0“]1 (3.4.2)
BA _ \,2 - BA BA i BA 1188 1 BA
Yh=reegH vy LK ETAN
LN |
—%ﬂvz’*’é e_LN_ﬂ,, (3.4.3)

It will n.ow be shown how the EB; s g 5 D and E matrices

==

may be combined. We begin by considering the small direct 1

matrix expression, equation (3.3.85).
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From equations (3.3.37) and (3.3.39) we have that the
B3 — B8

elements Cﬁk and Fj& are, in integral form

r
8 BT AN s oy S = B, -
Cﬁf:‘ﬂﬁj?T@M\f.f)(%ﬁovﬁ,@ﬁ(@)dr (3.4.5)
< v
and
B2, - 2 8, -3
Fﬁf—fjﬂ} (FB)(@-F)(@ﬂﬁ&(F@)%F- (3.4.6)
setting
Z(7) = (v.2) 2 (7) (3.4.7)
we have

Cfﬁ:{;@iﬁf)(@;ﬁ:@gﬁ(lﬁ)%? (3.4.8)

Fﬁf jj @%*(F)(V;ﬁ,@ff(ﬂ)dﬁ. (3.4.9)

14

. -
If we have complex functions @(f’)and Y“’) which tend
asymptotically to zero asBFW¢c© , and a real function f(ff)s

then it can be shown (Appendix A2) that

2 ﬁ B (F)FFR. TV AR+ @@*ﬁ»{(wwﬁ(ﬂdﬁ

[ { Bir)rerteie - [ DAFATY A, a0
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Using equation (3.4.10) we can show that

” .
” ~ g .-n-Tv' 7 B,
B3 0 - B3 | 2": —a By @_@%’7/ P . =2
Zﬁcjk““'“’ﬂs = VFUV.M% QF@L],@Z(%)@(F
v

-fw‘. P (P e 0 () ol

Now
vwag E) = 08 erm
+2 V@%Q%(F@)
and also

VAR = 2(y - E) 2 (7)

Vo @] ()= Vea - ;).27(7%).

Using equations (3.4.12) to (3.4.14), equation (3.4.11)

be re-written, after some algebra

BB _ 8 B8 ' 88
2.(;-35‘%‘ jf"—lBj&_szk ”2(%“’5#«) Ujk

BB B8
where the Bjk and DW are given by equations (3.3.36)

B8
and (3.3.38) respectively, and &jjk is given by

Uk =< @il § (7. g 7).

Rearrangement of equation (3.4.15) gives

2B +2CR+2Df +F =-aleg-adVj.

(3.4.11)

(3.4.12)

(3.

(3.

(3.

(3.

(3.

-13)

.14)

can

.15)

.16)

.17)
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Similarly one can show for the direct 2 elements that

o mAA o - ' AA
/Nz,gfjkvz,ujk %%Z_.D ~°2(%“’}&)Ujk (3.4.18)
where

Uﬁf=<XJA(FA)H§(\7F))§X?[%)>. (3.4.19)

To simplify the exchange 1 expression equation (3.3.87)

BA BA
we begin with the (:jk and jlkt which are

Vi f e AR S RS S AP (3.4.20)
[,@B%(Fé) v )(V;ﬂ)\(f(a)dﬁ (3.4.21)

Using the relation (3.4.10) plus the fact that

V;-i*z‘@fﬁ(@):2(%@”%)}@}%(;@) (3.4.22)
and
2 A, A, =
VF X&(%);z(%ﬂ'Wk)X&(/@s% (3.4.23)

we obtain, in a similar manner to the direct expressions,

the following, that

ZB kﬁ’?‘lC &+2D +F®A=ZX@A (3.4.24)
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where
X V W - {&- %)“ N (3.4.25)
and where
= {BRIF 7. BN X DB, (3.4.26)

Wj; <@j@.(f%)ﬁﬁ§:(( A Xk{ 200, (3.4.27)

and
U= <gl@lfie Al mD. (3.4.20
Similarly
ZB?E%-leE%PZD?E*FFﬁB:-ZX?E (3.4.29)
where
X?f WM*}‘(% &‘)U (3.4.30)
and where
\/?E=<X?(aﬁ (.71 Veol Dy (B (3.4.31)
Wﬁf=(X?(mlﬁ?w’ﬂ\/&aﬂ,@f@))’ (3.4.32)
= <Xf(@lﬂ\7 PNZLEY ). (3.4.33)

We now bring together these results. For the direct elements

using equations (3.4.1) and (3.4.2) plus equations (3.4.17)
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and (3.4.18), we find that

y:é%‘ﬂ%-zo”-{}-%(@@@ L% (3.4.34)
w= AL YY e %(gﬁm*&;m) . (3.4.35)
where
Uff’-‘((E,;*égx)(@f(%)ﬁf(ff.F)ﬂ)@'k‘g(ﬁé» (3.4.36)
and
U?ﬁ#ww@)(?@(@ﬂﬂﬁ? | X (P (3.4.37)

'or the exchange elements using eqﬁations (3.4.3) and

(3.4.4) plus equations (3.4.24) and (3.4.29), we find that

k':ﬁ@ﬁ\+f%=§(>§m—ﬂ;%) (3.4.38)
‘?‘:AA@'&“ZAB%%(XM: L,A@). (3.4.39)

It is possible to obtain the matrix h in terms of BA-type
exchange elements as we shall now see., This is useful from
a computational point of view as we only need to compute
BA-type elements in order to obtain the b matrix.

The h matrix is given by

+ N Agyt Aaﬁ"]
T N [V A (e i SIS
It is easy to show that

(ZSA@)?:ZSM & (YMW:YM_ (3.4.41)
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Integrating by parts, it can be shown that

BA

(E:Aa)%;“?z (3.4.42)
and finally
(ﬁﬁ)ﬁ?: EA | (3443
where
ﬁ.?ﬁ =<{g; 17l al XY (3.4.44)
And so we obtain |
b= gBA_%:Y@A_%(Z{BA%%L’@A)- 5 a5

o

This concludes this chapter. We shallAproceed in the next

chapter to look at methods of evaluating the matrix elements.
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CHAPTER 4

EVALUATION OF THE MATRIX ELEMENTS

4,1 Introduction

5, =
In the previous chapter, the basis functions F}«ﬁi 6)
. and (%;6%@)9 given in equations (3.3.27) and (3.3.28), were
used to derive expressions for the matrix elements which
have to be evaluated as part of the calculation of electron
capture cross sections. It was seen that the basis functions
F:;(F,@) and G‘[z(ﬁ(&) contained a switching function f(d»/?)
~ Although the expressions for the direct and exchange
matrix elements, equations (3.3.30) to (3.3.33), were com-
plicated, it was shown in Section 3.4 of the previous chapter
how some of the individual matrix elements could be combined
to yield simpler expressions for the matrix elements \6k,V%&,
kﬁ& and hjk . The final results of Section 3.4 were
equations (3.4.33) and (3.4.34); and equations (3.4.37) and
(3.4.44). The problem of evaluating the individual matrix
elements remaining in the expressions for Vﬁk > %ﬁk 9
kjk and %jk was not dealt with though. |
The <calculations presented in the next chapter were
done using a numerical technique for integrating the
individual elements because this was a general method suited
to the use of different functional forms of switching function.
However, one form of switching function, the "simple"

switching function f? given by

S
ES

R S
ﬁs’ Tept 7 (4.1.1)
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where

7 =la=-Ts , (4.1.2)
R

and where P is a parameter, was such that an analytic method

could be used to compute the elements. Although limited in

that only one switching function could be employed, the

analytic method was useful as a computational check against

the numerical method. Also this analytic method was such

that it could be used with a switching function of the form

2

R .
e N (4.1.3)
jF R&¢Pa Q(?)

where Q(y} is a polynomigal of 7

Q(W=b,7+b373+éﬁ7%” °+5mw-,72“‘"”” ] (4.1.4)

The coefficients &g 53 9 53 , etc. must be such that

Q1) = = (4.1.5)
in order that the function f of equation (4.1.3) satisfies
the switching conditions equations (3.3.24) and (3.3.25) of
the previous chapter. The variable ﬁ , defined in equatioh
(4.1.2) is one of the three Prolate Spheroidal Co-ordinates
( f, 7,£7 ) which were used in evaluating the elements.
These co-ordinates and their use will be discussed latef on

in this chapter. The variable 7 is such that
=1€7¢1 (4,1.6)

and hence the polynomial @7) is bounded between plus and

minus one.
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In this chapter we shall go on to see how the matrix
elements may be evaluated - a central part of the work
presented in this thesis. Both fhe general numerical method
and the special analytic method will be discussed together
with theoretical aspects common to both methods.

4.2 General form of the individual matrix elements and the

atomic orbitals

On pages 117 to 120 (Chapter 3) lists of the individual
matrix elements are given. We saw in Seétion 3.4 of Chapter 3
how simplifications meant that some of the elements, namely
the B-, C-, D- and F- type elements did not have to be cal-
culated. Instead matrix elements of simpler forms appeared
in the formulation, namely KZﬁ? and E%f]elements; equations
(3.4.35) and (3.4.36), and also V?@ ,W?ﬁ and Uj@@
elements equations (3.4.26) to (3.4.28). This is good from
a calculational point of view as the B and C elements
involve a gradient operator §j% acting upon an atomic
orbital state ﬂgj@(ﬁ)> or RX?({FA)> , and this would lead
to awkward expressions. In a similar vein, we shall see
later in this chapter (Section 4.4) how the L- type ex-

: =
pressions which contain §t@&’ may be recast to avoid the

.Y
V@ . - Hence all the elements to be calculated are of the

general form

/V\jgg([&):<7”ifﬁl]m(ﬁ@))ﬂfy@[fh} (4.2.1)
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where
DN H G (4.2.22)
and B?é@>§ﬂ><§(ﬁ@}>p (4.2.2b)

and where &W(F:&} is a function of ¥ and ¢ and is not an
operator acting upon the atomic orbital states. For example,
for the J-type elements m([F,&) is (ﬁ.?}a<§;"f)&.

A choice has to be made as to the form of the atomic
orbital Wavefuﬁctions used. In the calculations presented
in this thesis hydrogenic wavefunctions of the general

form

Vi (F) = Ra@(r)Y@m (6. 2) (4.2.3)

where used.
The E{m@(F» are the hydrogenic radial wavefunctions which

are given by
a~{

_ A\ g-pi
RM((F%@ i r (4.2.4)

i

(€; are coefficients),

and where

7 VA
\Tf;m(@,ﬂ)-‘? Nm[\ém (erﬁ)—B_Y@m(@n@ﬂ» mPpO (4,2.5)
with N,=1/2 if m=o0, (4.2.62)

N = VT if m>0. (4.2.6b)

The spherical harmonics N@m(@.g) are given by
'T‘VZ‘

' 3 @“W@g A im@
Yoo (6.2) ;(—H)m[@zi 7? 'Mw”,ﬂ Po(cos®)e |
A SO

(4.2.7)



where the PZY@@S@»afe associated Legendre functions. We
see from the presence of the (ag)aa phase Zactor that the
Condon-Shortiey phase convention is adopted. The functions
ﬁzﬁ“@%ﬁﬁ)defined by equation (4.2.5) are known as real
spherical harmonics. As their name implies, they are real
functions, The uUse of real spherical harmonics means that
the hydrcgenic orbital wavefunctions j¥ijﬁa(F) of equation
(4.2:3) are real which simplifies the analysis somewhat .,

In particular, if we note that the expressions for_ﬁhe Y

AP

W, k and h matrices derived in Chapter 3, Section 3.4

are

88 - —BB 88
v=A"+Y B*}’i(ug - L )5, (4.2.8)
== A A 2 Sor PN
o AA
WZNM*XM*}’%(QM*N )9 (4.2.9)
: BA
K =A@A*E@A“§£Z§M=L )9 (4.2.10)
— o 8A
ana b =A™ ‘EF'IM‘%(XM‘*‘L ). (4.2.11)

Wé see that using real atomic orbital wavefunctions means
that the expressions display explicitly their real and
imaginéry parts.

Using equation (4.2.7), equation (4.2.5) may be re-

written

\—ﬁm(@,ﬁFNngMﬂm(cos@)c@s m P (4.2.12)

where

1
2821 (f-sm)!
£70  ({4m)! .

LR
Com =2V (4.2.13)

4
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The atomic orbital wavefunctions are given by

<

B = \/
Zitio® Q{a@»ﬂz@%(@ gy ey (82 s (4.2.14)
A 7
XL‘K \\FAE Rgﬂﬂk(ﬂﬂ“ ( A \{(gﬁ)& (MAM (@A,@A) . (492015)

We also note the explicit expressions for the radial wave-

functions and the real spherical harmonics

(re); - (da);
. | o rg]
V4 - “Vﬁb~~ Bﬁ% [+g |
Rfﬂ@)j[&% s} =€ ZZ bﬁ [ ) (4.2.16)
(Aals = Ak - .
_ =M (CAl~1 =P
meeﬂ)g,(fﬂ» L Aplh : (4.2.17)
Pﬂ
after equation (4.2.4).
Y (85, @) = N@ . C (0gp: gl P%.}y {cos8a) cos (mw)jﬁgp
ol gl ol ey T A (4,2.18)
Vv . _ {Aaln
Y(w& @aﬁ&@(@’“‘%) - N@ma)& C(’@\Mmab& P )i feosB) cos (ma)&ﬂ@i 1)

after equation (4.2.12).

Having now specified the form of the atomic orbital
wavefunctions, equations (4.2.14) and (4.2.15), we may now
proceed tu evaluate the general matrix elements /&Q'kfé) cof
equation v4.2.1).

4.3 Spacé—fixed and body-fixed frames and prolate

spheroidal co-ordinates

In the previous section of this chapter the forms of
the atomic orbitals were chosen. We noted that their angular
parts were real spherical harmonics which resulted in the

orbitals teing real, In this section it will be shown how
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matrix elements of the form

aﬁ " - @JA )
M ley= <P T el 707D (4.3.1)
where

P> = @R (4.3.2)
and | 33L§>5”X§(FA)> (4.3.3)

may be evaluated as the métrix.elements required for cal-
culating electron capture cross sections for the method
presented in this thesis, are of the form given in equation
(4.3.1).

The formulation given in Chapter 3 assumed that the
(x,y¥,2) co-ordinate frame was fixed in space. This space-
fixed frame was such that its z-axis lay parallel to the

-l
velocity vectors i‘ﬂ@- at time €¢=0 , (Figure 4.1).

Fig. 4.1

The co-ordinates
at €=0 in the

space-fixed frame
(y-axis is out of

the paper).
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We note in Figure 4.1 the case of curved hyperbolic Coulomb
nuclear trajectories is shown. The two trajectories would be
replaced by lines parallel to the z-axis for the straight-
line trajectory case.

The overlap and required exchange BA-type matrix elements
presented in Chapter 3 are of the general form (excluding the

L-type elements)

Bf&.n‘ A, — '
/V\;ﬁ(t% % (BP0 X (Fa) o 7 (4.3.4)
Y
where m(F, ¢) is some function of 7 and ¢ . The L-type

matrix elements are not of the form in equation (4.3.4) but
we shall later in Section 4.4 see that they may be written
in terms of elements of the form given in equation (4.3.4).
Integrals of the form shown in equation (4.3.4) are known as
two-centre integrals and are generally not straightforward
to evaluate. Although not explicitly shown in equation
(4.3.4), the matrix elements /V\??(&) are in the space-
fixed frame owing to the fact that the formulation was
performed using this as the co-ordinate frame.

The rest of this section will be devoted to showing
how the elements of the form shown in equation (4.3.4) may
be evaluated by performing the necessary integration in the
body-fixed frame using prolate spheroidal co-ordinates. A
transformation is then done into the space-fixed frame. (The
meaning of these terms will be explained anon). The direct
matrix elements (BB-type and AA-type, equations (3.3.35) to

(3.3.56), Chapter 3) were also evaluated using this method.
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More wili: be said about the direct elements at the end of

this section.

Figure 4.2 shows the co-ordinates at some time e >0

and also shows the body-fixed (x',y',z') co-ordinates.,

Figure 4.2

Space-fixed (x,y,z) and body-fixed
(X',y',2"') co-ordinate frames.

(v and y' axes out of the paper).

Figure 4.2 also shows the angle & which is the angle between

=D

R and the x-axis. We note that the z'-axis lies in the same
—

line as the R vector, though opposite in direction. As

the collision proceeds, the. body-fixed frame will move with

-

the vector ]R as seen from the space-fixed frame.

If we consider the general BA-type matrix element in the

space-fixed frame, equation (4.3.4), we may re-write it

SF = SF
B - Y
@4\@] QJ‘;R@@E%M% (r@) Y@@Dﬂmd};) (Eh @g) A (7 ¢)

X7 SF =5
% Ry toais () Ve tmats (8- Za) 7 (439
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Use has been made of the expressions for the atomic orbital

& pan
g(ﬁ@ given in the previous section

Wavefunctions,Q%%f%>and ;<
by equations (4.2.14) and (4.2.15). Also the real spherical
harmonics have been labelled SF to show that they are in

the space-fixed frame. The transformation between the space-
fixed and body-fixed frames is purely rotational and so
lengths are preserved. Hence the radial wavefunctions are
unaffected by the transformation. The m(7, &) functions

are invariant under rotation for ail the elements required.
Some of the m —fﬁnctions contain the switching function

- = .
f(pr) - This is equivalent to a function in terms of

— — = =B
fa and Tp  which we call f?(fh,f@) , that is

- A ‘ - =A
j(‘lﬁ,f’)'% jf@r,R) . (4.3.6)

In general the function :ﬁ(ﬁ%,f%) will not be invariant
under rotation due to the angular depéndence upon (@h,§35>.
and.(@%,Q%ﬁy However, in this work only switching functions
involving [a and [ 8 (moduli of Fi and F% ) have
been used, which are invariant under rotation. Thus when
considerirg the transformation from the body-fixed frame to
the space-fixed frame, it is the relationship between spherical
harmonics in these frames that is important.

If we consider the rotation of one co-ordinate frame
with respect to another defined by two Euler angles &{ and

@ (Figure 4.3),
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Iob\

N

Figure 4.3

Euler angles ( Y =0,

we may relate spherical harmonics in one frame (primed)

to those in another (unprimed) frame via the relation

=l
£
ng (@'>:§ Dm,m(d,@,O)%mf(@i}@ﬂ) (4.3.7)
==L
2 X
where the Dﬁﬁn are elements of the rotation matrix El

(Rose, 1957). The point QQ,J@@ is the same point in
space as (@llﬁﬁ,) but measured relative to the new un-
primed co-ordinate system.

I1f we consider Figure 4.2 we see that for our system
the Euler angles are &€ =0 and ﬁs 54’(37‘5/2) . The
presence of the JT/2 in the expression for @ is in

order to get the correct sense of rotation.



From equation (4.3.7) we may thus relate the space-
fixed spherical harmonics to the body-fixed ones by use of
the relation

==l

=
S b2

V L BF ,
ng {@pﬁj :Z DM’m (@,,,@)Y@ml(@,@”) . (4.3.8)

M=
A corresponding relation exists relating the real spherical

harmonices. It is

'S

%z’i(@"'@%z D... @Y (0,2) (4.3.9)

H=0

where

. (4.3.10)

=N [@«M«@>+«=H> Aol

The Pﬂm factors were defined in the previous section of
2

this chapter, equations (4.2.6a) and (4.2.6b). The g£ @Q)
are Wigner reduced rotation matrices (Rose, 1957). The
derivation of equation (4.3.9) is given in Appendix A3.

We now substitute expressions for the space-fixed real
spherical harmonics from equation (4.3.9), in the
expression for the general BA-type matrix elements in the

@AS
space-fixed frame, /V\ , equation (4.3.5).

$F (2od;
J’ Reaayasy (o ))i vt 6] Ymm 0. 7

B
(Le)

Xmlfﬁ@})eRm@&m&(m) Mm) P)Y@w&ﬁ (G, 'A)@@" (4.3.11)
a’=e

84
We may write the matrix elements [ jé] more

explicitly
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BAT 57 %% |
,,m% ZEM ralsleslylonals 5 {naly (el (maliy | (4.3.12)
where specific dependence upon the quantum numbers has been

displayed. We use the notation of equation (4.3.12) to

re-write equation (4.3.11) as

0 4 SF
{ P it ony 3 s el

oy () . BF
:z D, m}@, @’gw i/\/\ [@nﬁﬂ@wm S(M)&M)M]J} :

= =®
m=e A (4.3.13)

Hence we have a relation linking the matrix elements in
8al S
the space-fixed frame, /VX with those in the
BAIGF
body-fixed frame, /V\ ‘J . We see from equation (4.3.13)
that the relation involves summations over all the magnetic
substates for given @Q@% and (@Ahg . In order to

see this more clearly let us consider a simple example.

Take the element
£13

SF
MW@,BSHA»ZP@)J@?U@ M(E@[Xg@(@] AP, (4.3.14)
v

where we have introduced fairly obvious notation. Use of

equation (4.3.13) yields

M (B15)A.2p0) = D2 (80D, ) (5, 151 A 2p0)
+CD@>@(@)QD0@(@>)M (8,15 [A,2p1) (4.3.15)

where
@F

/V\.F(B |A.2p0)= j .@@S (ﬂ”a] m@r,@)[xgr.(m

(4,3.16)
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A similar expression exists for /V\@Y@JSHPnZPOO We see,
therefore, that in order to obtain an element corresponding
to one pair of magnetic substates in the space-fixed frame
we must calculate the elements corresponding to all the
magnetic substates in the body-fixed frame for given values
of angular momentum quantum numbers @}&% and @@ﬁ& o
Before proceeding to discuss the evaluation of the
body-fixed elements, we must consider the angle 8
between the space-fixed and body-fixed frames in-a little
more detaii as it is a needed quantity in the process of
relating space—fixed and corresponding body-fixed matrix
elements. We saw in Chapter 3, Section 3.2 that the nuclear

motion can be described by the parametric equations

/5
Rf((ya*”b&) coshw + ¥ | (4.3.17)
P
e:é_[{?f’ +8) s iahw +Z(w]9 (4.3.18)

2
where U = %vg . (4.3.19).

This is for Coulomb nuclear trajectories. Using the new

parameter ¢ defined by

= (Vb))  scahw (4.3.20)

the equations (4.3.17) and (4.3.18) become
\ 2 a a3\ /2
Ri{vj=(~ +y2+b) Y (4.3.21)

=_L[T+Ysml‘{”‘=al=’m] (4.3,22)
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There is a one-to-one relation between the pafameter T and
the position of the nuclei on their trajectories for a given
impact parameter b .

When the electron capture matrix elements are computed,
they are calculated at given (b,7§) points. That is, a
given b -value is selected and matrix elements for
different ?’—points are found. Thus an expression for

the angle § in terms of b and T must be found.

In fact the expression is

(4.3.23)

§=2¢ ! J{ (ya%’ PDﬂ.)ﬂlz‘“ Y E(?s'%}’ Y2 "D/a (yﬂ+ H})Ma]
= A |
L

b T
It is derived in Appendix A4.

We remember that setting ¥=0 (equation(4.3.19))
corresponded to the straight-line trajectory case. Putting

v=0 in equation (4.3.21) yieids
)
R= {v°+b°)" (4.3.24)

which if we compare with equation (3.2.8) of Chapter 3,

shows that

T=vt=12 (4.3.25)

in the straight-line case. Hence from equation (4.3.23),

setting Y=0 gives (after some algebra)

§= t@m""% (4.3.26)



which is consistent with the straight-line trajectory

situation (Figure 4.4).

A
§= Can (Z/b)
Fig, 4.4

Angle § in the

straight-line

trajectory case.

We have shown, therefore, how to obtain the space-fixed
BA-type maﬁrix elements in terms of the body-fixed BA-type
matrix eiement39 equation (4.3.13), and also we have an
expressicn for angle 5 in terms of b and T s, equation
(4.3.23). From this angle @ can be found simply and
rotation matrix elements for the real spherical harmonics,

£15m(@) may be calculated. The next topic we must
consider, is that of the actual integration of the BA-type
body—fixéd matrix elements.

The integration of the body-fixed elements is performed
by using a set of co-ordinates which lend themselves readily
to two-centre problems. These are the prolate spheroidal
co-ordinates mentioned earlier in this section. They are

a set of orthogonal curvilinear co-ordinates defined by
=L :
T=g(ra+rs), isi<eo (4.3.27a)
{
?7=‘§(FA=F’@>?'=H§77§U (4.3.27b)

2 (azimuthal angle); 0 F 2. (4.3.27c)



A discussion of these co-ordinates is given in Morse and
Feshbach (1953) and also in Arfken (19870). Figure 4.5
’ =

= =
shows the 7 , 7p and L% vectors in the body-fixed

frame, and also the azimuthal angle & .

Fig. 4.5

The electron co-

ordinates in the body-
fixed co-ordinate

frame. Angle & has

3 ’ been found by projecting

F onto the x'y’-plane.

An important point arising from Figure 4.5 is that the
— =5 . ~
vectors Ty , [ and R have the same azimuthal co-

ordinate & in the body-fixed frame. That is

=B . (4.3.28)

The integration of a typical BA-type element in the body—

fixed frame is fairly straightforward. Transformation is

made to the (§9279£?> co-ordinates and the volume element
dfﬁ is replaced by using

dFE%(§2=73>d§@f7dﬁ, (4.3.29)

The integration is then performed. Details of this will be
discussed later in this chapter. In Appendix A5 expressions
are derived for quantities needed in the integration in

terms of (?, 79127> co-ordinates.
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To recap, we began by having a general BA-type matrix
. \ 8A

element in the space-fixed frame, jk(ﬁ) given in equation:
(4.3.4). We saw how we could relate this to BA-type matrix
elements in the body-fixed frame via the relation of equation
(4.3.13). Finally, we have seen that it is possible to
integrate the body-fixed elements using prolate sphoidal
co-ordinates (§9379ﬁg> . Hence we have a prescription
for evaluating the BA-type matrix elements, and this was
used in the actual calculations of cross sectiohs'presented
in the next chapter.

The direct matrix elements, equations (3.3.35) to

» o . 3 = =1
(3.3.56), Chapter 3, all involve the switching function f(rﬁR) .

' B8 Al
except for the potential matrix elements %\jk and Jk 9
and the direct L-type elements L=jk and §h o
We saw earlier in this section that we may write the switching
==h =2 .
function as ‘ﬁ(f7;9fb) , (equation (4.3.6)), that is, it
—n D

depends in general upon [ and s , though in this
work it depends upon ~x and fg . Hence the direct
elements involving the switching function have a "two-
centre" character.

The method which has been described in this section for
evaluatirg the two-centre BA-type matrix elements, was used
to evaluate all the direct BB~ and AA- type matrix elements,
including the direct potential matrix elements and the direct
L-type elements, which it was possible to do.

In Sections 4.6 and 4.7 of this chapter the numerical
and analytic methods of computing the overlap, direct and

exchange body-fixed matrix elements will be discussed.
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However, before dealing with these, the next two sections
will deal with the L-type elements, and the (@if£> -
factor in @§917gj§> co-ordinates respectively.

4.4 The L-type elements

In section 4.2 mentlorlwas made that the L-type matrix
elements (which contain V’§7ﬁ | ) can be recast so as to
avoid the awkward YJ; operator acting upon an atomic
orbital state, in this section is will be shown how this
may be done using some of the results of Section 3.4 of
Chapter 3 which dealt with simplifying the matrix elemént
expressions,

We begin with the direct matrix elements. Equation

(3.4.17) we remember was

285+ 2CR 2D +F = - 2(5 - ) U aaD)
We may write this more fully as
@7 2§ 9.9, + 2008 (V). Ve + 2(7.5f)
+((&7‘,F)<(V§ﬂ!,@f((/%)> §=2(£j°5&>'<@§@(@ﬂﬂ\7f" | e (Flca.4.2)

Setting f =] in equation (4.4.2) we obtain

<,@’ G AT }@’&(F@¥>==‘<{é§ E.@@@f (ENT. Pl Felfe)) . (4.4.3)

8B
The left-hand side of equation (4.4.3) is Lajk hence

L == (g ”E/:SM' B FN V. P (TR (4.4.4)
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In an analogous manner we find that

. AA ,,A =5
L == J°7&><X uf’Zs j fy /f’m> (4.4.5)

b § [
o

Fer the exchange elements we use the expression given by

equation (3.4.24), namely
BA 84 BA Ba _ BA
e +2C5H +2D + j5= 2 Xk | (4.4.6)
3A =\ /BA _\ /BA_ _ BA
where Xt = Vjk Wik (g =3 Ujk (4.4.7)
Vi U
and the jk s Esand k matrix elements being given by
equations (3.4.26) to (3.4.28). As for the direct matrix

elements, we setfgﬂ‘and the C-, D- and F- type elements

vanish giving
o= RNV XERD
=il \/@g\/wﬁr‘/zkﬂ«mi XeREY.  (aas

In a similar manner an expression forlz & can be obtained

from equation (3.4.29)
L?E = <><?(F/:>H[\/m—\é®= @riﬁkﬂ(@o F)ﬂ@’f@:;» . (4.4.9)

We see that equations (4.4.8) and (4.4.9) are consistent

with the relation
AT BA
(L ) S“L; . (4.4.10)

We have therefore obtained expressions for the L-type matrix
elements, equations (4.4.4), (4.4.5), (4.4.8) and (4.4.9)

=N
which do not involve the §Z§ operator. It was stated in

Section 3.4 that in an actual calculation only the BA-type
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exchange matrix elements are computed. Hence the expression

i AB Y . . . .
for L& , equation (4.4.9), is not required in practice,

752 =Dq . ? A . )
4.5 The {V.Fj-factor in «§9W9£7/ co-ordinates

A factor which occurs in almost all of the individual
. . . =0 = .
matrix elements of this work is (¥.F/) . In this section
an expression for this factor will be derived in terms of

the prolate spheroidal co-ordinates, (§979@’> .

Figure 4.6

Electron co-
, ordinates in the

body-fixed frame.

Figure 4.6 shows a diagram of the co-ordinates in the

-

body-fixed frame. We note that the velocity vector V
lies in the x'z'-plane and so has no y'-component. Thus in

the body-fixed frame (indicated by prime notation)
V. P = VX V2 (4.5.1)

This may be re-written in terms of spherical polar co-

ordinates (Uﬂ)@g}@?) as

@DFgvxlr§ln@c@§ﬂ+vzlﬂ=’@@5@ o (4.5.2)

From some of the results of Appendix A5, namely equations

(A5.19a) to (A5.19c), equation (4.5.2) may be written



)

o

V2= Vel 1(S7-1) =77

3
>

é\

We need, finally, to obtain expressions for the velocity

components Vi and Va' .

Figure 4.7

The space-fixed and

body-fixed frames.,

Figure 4.7 shows the space~fixed and body-fixed frames. We
also note the angle & which is important in determining
the amount of rotation required to transform between the two
frames. In the body-fixed frame the vector v may be

written
{ @ .
vzv'@,b +\/Zn b (4u5o4)

where V. and Vg are the components of ¥ in the body-~fixed
A

frame, and Z} and ké are body-fixed unit vectors,

parallel to the x°- and z'-axes respectively. 1t follows

from Figure 4.7 that

iy- 2R

- de

By conservation of angular momentum we have

1257

V= Rzﬁ b . (4.5.5)

%P@sz’%%g | (4.5.6)



where V) is the initial relative velocity of the nuclei

Aand B, and b is the modulus of the impact parameter

o
g

vector & . Hence using eguation (4.5.6) we see that the

velocity components are

vxasbva/R (4.5.7)
and

vz'zz@@R/@M’ , (4.5.8)
The final expression for [V.F) is thus
@ﬁ;%r@vé’[@% H)(D=7/7}aﬂ%@@s,@?°%‘[2i=§. T . (4.5.9)

The expression in equation (4.5.9) is completely general.
For the special case of straight-line trajectory motion of
the nuclei we begin with the well-known relation for the

straight-line case (see equation (3.2.8)).
a_ 3 8 R -
Ri=h +vi'C | (4.5.10)
=h By
From this we obtain the straight-line trajectory (vof)—

factor

Ya
@,Fz%b%[@a“%ﬂ“@%ﬂ @@s@f=%“/@2@§%] : (4.5.11)
We have thus obtained an expression fcu‘ﬁi?)in terms of

((59%@@ given by equation (4.5.9).

4.6 Evaluating the body-fixed matrix elements - numérical

metihod
In this section the numerical evaluation of the body-
fixed matrix elements will be discussed. As was stated in

the introduction to this chapter, this method was used for



obtaining the matrix elements used to calculate the final
electron capture cross sections presented in Chapter 5 of
this thesis. This was because it was best suited to
investigating the effect of the use of different forms of
‘switching functions.

| The analytic method, which will be discussed in the
next seclion of this chapter, could be used with the
"simple" switching function ﬂfg where

3
fo= =i (4.6.1)

R+p* q s
and the method could also be used with switching fuhctions

of the form

j@.:.pﬁ@@])) (4.6.2)

where the polynomial CQ@ﬂ is given by equation (4.1.4).
.The overlap and required BA-type matrix elements
(excluding L-type elements) may be represented by general

BA-type matrix elements of the form

BA 8x,= - A, A »
MGe= 1 85 (BnEo X ()R . (4.6.3)
v

We know, however, that L-type elements may be written in
terms of elements of the form given in equation (4.6.3)
(Section 4.4). Although not explicitly shown, these
elements are in the body-fixed co-ordinate frame. We may
write equation (4.6.3) more explicitly using the
@&
expressions for the atomic orbital wavefunctions Q%(Fb) and
o, =
;<k(rh) s, equations (4.2.14) and (4.2.15) and the real

spherical harmonics \(mlﬁ)»ﬂ'(me»j (@o 9 @) 9 Y;(@A)&WAM (@A 9 @A>



. . 23,50, A,;‘zf)
which occur in 2 {f%) and X {n) . The expressions for the
real spherical Larmonics are given in equations (4.2.18)

k) - f \BA
and (4.2.,19). The expression forlv\j& becomes

,\J @A = g
/ \/\\u Gk b\\(m:;})j Cf@@)j izl NKM@%& CC’@A@&WN&

| fmcl; (Andis
X J R((Vhoﬁj (ts); () R (GYNATINTA (7%) P@@oﬁj‘](@ os 6s) P wa (cos On)
v .

X cos(mo) B cOS (Mals@p . (€. dF . (4.6.4)

We define angular factors to make the expressions less

complicated. They are

dﬁ% = N((MAM C (0nda (PApdts (4.6.5a)

=N
@j - E\‘(Imo»j CM@DNM@U . (4.6.5b)

We remember that the volume element in prolate spheroidal

co-ordinates is given by
dﬁégﬁ?t%}a)d%fﬁd@ . (4.6.6)

From equation (A5.3c) of Appendix A5, this may be re-

written as
sF=R s didydd . 8.1

M matrs
Thus the jk matrix elements become

o 8 A7
/V\fﬁ = %j(@&ki el glﬁél @{ZWLQQ,@ %Rdﬂ@))jm))j ((@.GR@M»&MAM (r2)

]

1P leos 8P (75 (cos Bal.en (). cos ooy costaaPLa.6.)



We note Lhai the azimuthal angles A and @ have been
repiaced by £a7 from equation (4.3.28). In a similar

- : . . AR, B8
fashion the general direct matrix elements, / \j& and

[\/ﬂ a4 .
uV%jk given by

A BB — 832 =0 - S S
N\j&“’L @j %@F@m(ﬁo@gf@%Bdﬁ’ (4.6.9)

and

\ A LS e "y =D, gD
M?ﬁzﬁ X_j (@)m(r,é)%f(%)dr (4.6.10)

v

are given by
e 9 an
0_0p o | ot g
M jﬁ-%@s‘fj@@% @{% A i3 7% R gaagymes 178 Rgnghy igres (75
b =) @

) (mg) -
X P%j(@@s Bs) U@(Qgpi @6@5 @@)m{(m t). cos ((m@};@c@s{m@gg @ (4.6.11)

and
73 [ !] AR

M?QZ %%dfsJ‘ d@j @/\(72 @f@-973%R((mwrrﬁmﬂfﬂ&mhMAM(@)
0 =] ®

" (AR »
xpﬁ?ﬂ@@s@@ (1) (€05 Ba).sa(Be). cos (maiF cos tmal @ . (4.6.12)

. o _ . : - 8A
The functions ﬁﬁﬁﬂ@} occurring in the expressions for Aﬂjk
BB AA

/V\jk and fv\j& , equations (4.6.8), (4.6.11) and
(4.6.12), may depend upon (¥%.P) and the switching function
f@FiR) , Or quantities involving the gradient operator

=N — =

@% acting upon f(fHHK) . The pa - functions must be
determined in terms of (5977}9) co-ordinates prior to an
actual calculation of matrix elements., We saw in Section

=
4,5, earlier in this chapter, how (V.F) was found in terms



&7 A ~
of 3,7 and & .
The azimuthal integration involved in integrating the -
matrix elements is fairly straightforward. The ﬂf—

integrals that may occur are of the three types as

follows:-
273
2
ISKMD,DM3>S l @@5Mcg@@5m2,@f@7 9 (4.6.13)
®
yﬁi&ﬂ
@L((Mwmz)zj cosm,@ cos ma@ecos TPy  (4.6.14)
o :
' an

and Igﬁmwm&) E’J@ cosmBeosmaFeos*BGdF s  (4.6.15)
where m, and wnl-may be My or Mp with appropriate sub-
scripts‘j or k . These angular integrals are evaluated in
Appendix A6,

We are left, therefore, with a two-dimensional inte-
gration to perform over the variables'g and %’ . This
is performed numerically by using Gaussian integration -
Gauss —‘Legendre integration for the ?? - integral and
Gauss - Laguerre integration with transformed nodes and
weights for the 5 - integral. More will be said about
the numerical techniques used in Chapter 5.

We see that, in principle, the numerical method of
evaluating the matrix elements is not toc difficult, being
based upon a two-dimensional numerical integration technique.
In the next section of this chapter the analytic method will

be discussed.
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4,7 Evaluating the body-fixed matrix elements - analytic

. method

4,.7,1 Introduction

In che previous section the numerical method of evaluating-
fhe body—fixed matrix elements was discussed. This method
allowed the use of any functional form of switching function,
and was used to obtain the electron capture cross sections
presented in Chapter 5.

One of the,switching'functions used in this work was
the "simple" switching function :fs‘mentioned eaflier in this

chapter. We remember that it was given by

Rﬂ
jﬁimﬁ?ﬁg”@ (4.7.1)

where P is a parameter and 7 is one of the prolate
spheroidal co-ordinates which were discussed toward the
end of Section 4.3 of this chapter. We remember that ,7‘

was given by y
72%(@“@, =ﬂ§77]§ﬂ . (4.7.2)

We note that the basic property of the switching function

ﬁ% is from equations (3.3.24) and (3.3.25) of Chapter 3.

j@(ﬁﬁ»%=ﬂ for g &K Ixp as R=>60 | (4.7.3)

jﬁ((ﬁ@%ﬂ for [Aa<KFs as R=e0  (4.7.4)

We see that the switching behaviour of the function fz is
due to the fact that 7 varies between plus and minus one.
The parameter P is present in the expression for f;

in order to give the correct united atom limit for fs o
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That ispvasﬂg§9c>9 f;=@-c> (equation (3.3.26) of
Chapter 3). The absence of the parameter F would result in

£ being indeterminate at RO . We define a function

Lé(s@ by

__R
F(@:Rﬂ#ﬂ?a (4.7.5)

and so we may write fs as

~f§§=F(R>7 . (4.7.6)

It turns out that if the switéhing function fs is employed,
it is possible to evaluate the matrix elements analytically.
The analytic method is such that it can be used when

the function $(Z,R) is of the form
f=-F(R)P() Q) 1.1
where “PlS) ana ) are polynomials given by
P ()= Gota,Gtas G vas § .. a=3" (a.7.9)
and

@@)35@4’?@”‘@* 527@24’ bg}f%‘“,‘ﬁ’ﬂ@@@-ﬂ, (4.7.9)
However, owing to the fact that K may range between one

and infinity, namely

1€ ¥ <60 , (4.7.10)

it would pe impossible to have a switching function of the
form given in equation (4.7.7) as it would not have the
correct switching properties required. Hence a restriction

must be made upon the form of the switching function suitable
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for use with the analytic method of evaluating the matrix
elements. The form was stated in the introduction to this

chapter. It was
fgm‘[i—a% _(?ﬂ) | (4.7.11)

where §(}) is now
Q)= bg@ﬂ% %]g* ‘[55@5‘5 e bgmnﬁzmw o (4.7.12)
“and where the coefficients byyDp,...etc. must be such that
Q=% | (4.7.13)

in order to prodace the correct switching behaviour of the
switching functioh° The rest of this section will be
devoted to discussing the analyfic method of evaluating

the elements using the switching function of the form given

in equation (4.7.11).

4,7}2 Preliminary redUCtionLof fhe matriX‘eleméntS

We begin by sonSidéring the analytic evaluation of the
overlap and éxchange body-fixed matrix elements and we
remember that these may be written as, or for the L-type
elements, written in terms of, general BA-type matrix elements

of the form
\EA = B3, = - A, =
Mﬂs‘: ,@3 (F@)M((Fﬁ)%&((ﬁs)dﬁéo (4.7.14)
v

The fact that this is in the body-fixed frame is not

explicitly shown. We consider the product of the atomic
Bty = A= '

orbital wavefunctions,ﬁ& (Tb)‘and;ﬁ&@i)in the integrand of

the integral above and re-write it as



. TN O = ‘DA. = = -
@f@?(&v@)%k (Fa)=8;etubd ;5 (e, =) . (4.7.15)

The complex conjugation is, in fact, superfluous as we are

using real orbitals. The *anctlongjl (fbgfﬁ)iswgiVen by

44 5 | ]
Q ((f' By f ) - R@iﬂa»j@@)j(m)RKWAWMQAM& (Fa)

XP@Q) (f©$@D>PmAM@@©S@A) cos(mp)j Fs o5 Dpn . (4.7.16)

The angular factors &y and ;. were defined in the
previous sectiong eqﬁations (4.6.52), (4.6.5b), |

We may thus write equation (4.7.14) as

BA = =y = = '
M%\EJ@%J ﬂjkdfﬁpm>m€F9@>dF : (4.7.17)
v

Prolate spheroidal cb-ofdinates fgg@pﬁi)are used to perform
the’integrationo For each of the overlap and exchange
BA-type matrix elements, the function mﬁ@ﬁi)é) is written
in térms of the variables ﬁs 77 and s and where the
switching function f(ﬁgoﬁD is of the form giveh in equation
(4.7.11). The volume elemént d7” must be replaced by the
expression of equation (4.6.6) of the previous séctiono

The result of this is that the overlap and exchange BA-type
elements are shown to be expressible in terms of triple
integrals involving the variables ‘§9 % and ﬁg - As a
simple example, let us consider the potential matrix elements

BA
ﬁ\jk which are

ASes @”H(:gb(fﬁ»@fﬁ, (4.7.18)
v 5
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This becomes

‘ F’

A= - Za8; @%:, @ffm NG

) 0 AR
BA , = =y .
4;[@15 7 @fﬂj&(irgmw . (4.7.19)
an of ® .
where the twd triple integrals are enclosed in the curly
brackets. The actual expressions for the other elements are
rather tedious to derive, but once the expresions have

been obtained it turns out that the triple integrals

involved are of only three types which are as follows:-

. t AR
N BA | ' |
@L-Mmm): d¥ @f@ d@l 5@ ?mWW (4.7.202)
[ .
ng fU 2»7@

°T Falmgat= | dF @/@7 dON:KT" Q((? ﬂ)%( @) “cos @ (4.7.200)

acj* J J o
rC@

I&MMC’ 4% @@ @(;@’ng ?@m@@ga,@ (4.7.20¢)

[

where Mpiﬁa@ o

We call the above integrals f1 -triple integrals. The
three‘@L—triple integrals above can be performed analytically,
and cone of the reascrs .as to why this should be.so is tnat
they have lﬁ to the power 24 and 7 to the power A
in their integrands, where &R and A are non-negative
integers. Now we can see why it was important to state
that only a certain type of switching function could be used
with the analytic method, namely one involving a simple

polynomial function of @ . Anything other than this would
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result in ﬁjL‘-triple integrals that contained perhaps
awkward demoninatOrs9 trigonometric funétionsy etc., in
their integrands. Such integrals couid probably not ke
pefformed analytically, and certainly they could not be
performed using the techniques yet to be described. Before
moving on to see how the three £) -triple integrals of
equations (4.7.20a) to (4.7.20c) can be performed, we note
that, in general, the switching function f(ﬁ}ﬁ%% could be

of the form

jzg?ﬂ?((@?@)((ﬁ) (4.7.21)

as we stated earlier in this section. However, it was ruled
invalid as it would not be a true '"switching" function due to
the presence of the polynomial ﬁ@(§§>

4,7.3 Theﬂ,—trlple 1ntegra1s A ﬂs«mgﬂ>9& Jy&@mgﬂ»

and @ &@ma9m>

L . Ayea .
The integral XA @m @) is
adik

@O i @97

ngf((mgmzjﬂd?cﬂd% @'@j@,ﬁfﬁgm%m . (4.7.22)

We remember from equation (4.7.16) that the fungtion fzjk

is given by

BA — ,
0232 = Runoyan; 170 Reagaan (77)

X ng@w} (cos OB)P@QM (cosBndeos (Mp)j @ cos (a8 (4.7.23)

but where the azimuthal angles A and have been
replaced by angle ﬁgp from equation (4.3.28). ‘Substituting
for the radial wavefunctions using the explicit expressions

given in section 4.2 of this chapter, equations (4.2.16) and
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(4.2.17), equation (4.7.23) becomes (with a little re-

arrangement),

(As=Mndes (ads = (0003 [
; ; - B =04 {o); ¢W$@d
Q&P %‘@ #03@3 S‘/F@FJ&& P] J

A ) Ao '
XP%@L}@k&(@@S@A»P?ﬂd;(@@g5"3)@@5(”%)&C@gfﬁ/ﬂﬁj@o . (4.7.24)
Combining equations (4.7.22) and (4.7.24) gives

(ands=One: (A 2 (eo);
BA
Igg @ms n) S I [(ma»k»(m@%] z Z Alp Ibm; S (/m» )

50
3= (4 7.25)

where the IB is one of the three azimuthal integrals that
occurred when the numerical method was used, equations

. ' BA CP%
(4.6.13) to (4.6.15), and where 84 é&@WQQ» is the integral

0
=Yj = @s);=14
BASP [m ﬂ)zjdggjé(?@ﬂ%m fo [(M& "*f’!?j] ﬂs)b ! @]

) gy .
- mPiﬁﬁf((é@s@A)P(@gﬂ@@s@) . (4.7.26)

By 8A ‘
Similarly for@I -ts(lm,lﬂ

(Apd = ((@AB& (Agy =tan)y
lA E BA P%

.Pgﬂ 9= (4.7.27)

where £GE2 is one of the three azimuthal integrals mentioned
84 P
above and the integral (jr}é%%9m> is given by

2 8
A= +j] B@& =1%q)
BA P@@ e Jdﬁjﬁ@@ - aVF@ @A& 0P j

$7(g°= 135 =570 P@ @@@sﬁﬂﬂ@@”(@@s@ﬂ) : (4.7.28)



1 (m,n) is given by
I (A= (0291 (ngs = f0gh;
-

= EA
G[qu RE FT | T(W%Mggﬂmwﬂ Z , @& O5q 5
i 9

pe sl (4.7.29)

.Finally the integral gﬁI

where the integral'agﬁaﬁmwﬁls given by equation (4.7.26).

We have_reduced down the expressions for the three
A BA B ¢ BA
triple integrals , jk«ﬁ“gﬂy I (ﬁﬂ A) and
CrBA
Ij&émvﬂ) to expressions involving the two double integrals
B4, BA
S w (ra,») and =T= myA) . The next stage is to obtain
expressions for these double integralso

: BA
4,7.4 The double integrals 5 (m A) and T slmgyn)

The integrals S&&&msﬂﬁand 'A=T=;R&W9ﬂ» both contain
associated Legendre functions P(@ ﬁk(@@s @;ﬁ and ng»b(@@s @B))
which must be expressed in terms of the integration variables

f? and % before the integration can be performed. In
Appendix A7 lists of these associated Legendre functions are
given in terms of ‘§ and 7 . If we inspect these
expressions for the associated Legendre functions? we see that
they all contain the factor (ﬁ4ﬁ@> or (§==@D , raised to
the power «@h»& or £@52j respectively, in the de-

nominators. We know that
~=R(E+97) and =R (%=7) (4.7.30)
A 2( 7 CR Z

from equations (A5.2a) and (A5.2b) of Appendix A5, and so we
may express the associated Legendre functions in terms of
Fm and g . The result of this is that we obtain the

(I )
following expressions for P@Q&ﬁk (@@S.@) and Pf{@@ij}(k@s @))



- 165 -

(a8 oM (@ade; Dg@ W o= o
r@@a»&@@@s ad = ( > ’ P-g@fm(s 7) (4.7.31)
o (716 (00Y; (b0} g = (maY;

P&?J(Z@@s 8s) @b) Fg. P wo»‘”@§97) (4.7.32)

(7
Pgﬁ%ﬁa )an 'P(g;b(@ﬁj» do not involve

awkward (?*@) or ((§ ﬁz) factors raised to the powers

where the functions

wﬁ)& or M@)j respectively, in the denominators. As an

s
‘example 'Pa (@@SA) is given by

Py (cos 02)= 351>y

8 8 :
=3(% ‘:’ﬂNﬂZM . (4.7.33)
(% <+ 7)
Using equations (4.7.30) and (4.7.31) gives us that
a ERQ' =2 453 |
Pg(@@§@>=(§> I Pa(?ﬂz) (4.7.34)
where A?i({{%@)g3(@3,:@@_@73) . © (4.7.35)

Substituting for the asscociated Legendre functions

Pi‘?‘?ﬂi‘ P(;zggj((@ms’@@» in the expression for

.AS

@@@S@A) and

(M A), equation (4.7.26) we obtain

oyt [ » |
@ASJ&(M A) (‘2) a ésjf Xe “l "@ %@F &%vu ﬁ’@um

X‘ﬁm?}gjﬂﬁsﬁggﬁf@ )'P(({(?L;;J(?g%])) . (4.7.36)

We see immediately that the introduction of the functions
5 (P (mm .
P (Cndte ('gg% 77]) and ((@@» ﬁé via equations (4.7.31)

and (4.7.32) has resulted in the elimination of the factors

F%MAM (2od;

and e from the integrand of'ASf[g}fmvﬂ»o



By using the binomial expansion for fZ@waénd F@€@°W
nameiy
o Ppﬁ \\Pca
L o»g(;@) (%<7
2
Pc:ﬂ
p=t =1)] per=t_ 7
:(B—> (p=): % 7 (4.7.37)
2 Z Fifpor-i
[ag=1C]

and
=g =] =0
(g

(RY'N T _(g=1)1 (=U)S§%¢$QUWS (4.7.38)
G(‘i’ v sHg=s=1)! 9

we obtain the following expression for,

)Mg & (nly, +p g =2

@A‘ngdmgm)g(%

((,P=u)ﬂ.((§;=n))y

@=ﬂ @‘:ﬂ

4 .
(=1) 8A TPV
Sjl’ssm’(mﬁ”) (4.7.39)

X Fggfpcroﬂj)wégascﬂw
Fze $5@

@AIS

where j&s rglmmya) is given by

@Agﬁﬁlsm(m RDOJ}dgj @77@/%&@3 f@§
Pgﬁf@ @).Pg@@‘”@ 7). (4.7.40)

MEPLG=r=8L R[S

In a similar fashion the integral £ zrbmﬁﬁ%ﬂbof
equation (4.7.28) is given by

o); % Babgs P 2 G=2
T Hhim, 0= (B

=5
-t
SV e T s
r"ssMP F=0i{g=5=1)! jhors(Psn (4.7.41)
Fa@ §°@v .
where gﬂcTsﬁﬁsz&ngm» is given by

((B@=B)M§’l=ﬂw
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pa== N W hr e PSP EGere8ed AP S
T 1ol =) 49 dy e#igy .
N ) f=4

W73 s & (A 50d;
X(ﬁaaﬂ) {{Haﬁﬁ AP (([?S%(@%?)P(@@%:ﬂ (fggﬁ) . (4.7.42)
We have thus obtained the integrals Sjkﬁyhmwandly37=PMF5@Wﬂw

which must be evaluated next.

4.7.5 The double 1ntegrals @ASth%(WMmB and'ﬂerhww&mwﬂ

We begin by putting

XEMmEPEg=F=5S=2 (4.7.43)
and y%.m*F+5 (4.7.44)
in the integrands of equations (4.7.40) and (4.7.42).32 and
y are non-zero integers. Hence @ASJ[&,F{;@M»@» and @ATJ&QPMMQM

become

e 1
C 8A — ' 4P =V ™. YABIM B F Y |
SJM%W‘:[@WJ@?@@ k A=@ d f ? PMA)B P(I@@DJ] (4.7.45)
: 0 =) .
and

c®
T b= ] g7 AL
' (IMQM 8 P((MD?)

((@A?C: {20 (4.7.46)

where the index notation has been changed.
The evaluation of the integrals is begun by inserting

the appropriate expressions for the functions‘gpﬁgﬁk(§9ﬁ>

&WOM( 9@> into the integrands. The result of this

@?B&j
is a set of expressions in terms of the integrals

&) f
Mf@(l%y)zj @{IBJ( dy @4 g =470 % g (4.7.47)
I



and

reo
-84 RS o IN L Tt . _ |
[J\Jj&@%y)il)‘u@?&fjogﬁqé - @/ 27@ . (4.7.48)

As an example, let us consider the 1s->2po capture transition.

1

- v BA,.
The integrals S@(xgy) and Tjﬂz@éﬁ,y)) become

Sﬂs zp@(xgyb J@@Jéw apelh EV/Jsf’cg%?W&P@.P (4.7.49)

=0
and

0
T.gs 2@@(‘%@»57) Jdg[@f?@ ﬂ{@@ Vvsfi ?y(,%zény/g@c?f)m;gpfPz |

| =) (4.7.50)

The functions AES‘?@Q?> and ®§§(('§57> are given by
AE?@@‘(]@E §7+H and [52((??»7) =l (4.7.51)

Substituting for these functions in equations (4.7.49) and

(4,7.50) we obtain

5> (3¢; 9)= J@WJ%?@#M@’% “elog” y(@?p““’“) (4.7.52)

Is3p@

e 0 .
==BA sl 1 e Y 2 Vg v PSP .
Tasgaﬁ@@%»y%Jéff?Jd?@ YRy (§+D(E 1) (1-9°)".ca.7.53)
a -=-ﬂ ’
From equations (4.7.47) and (4.7.48) we see that these

become

(sc5y)= /v\ss 26%@:;4% 5+HD+MHMP@@3@9j> (4.7.54)

Jss 2@@

and

BA 184
rT-s,zp@ @%y» = Nw»ap@ (se1 ay+ﬂ) - Nﬂsvzﬁ@«xﬁy) . (4.7.55)



In a similar manner the other §' and T integrals can be
expressed in terms of the M and N irtegrals. The final
stage of this reduction process is to find expressions for
the integrals ﬁAjﬁ&xgy) and %@fﬁ@xay» which will be
dealt with next.

aAa
4,7.6 The double integralsﬁ%ﬂﬁzﬂﬂandvﬁﬂ?@@ﬁgy»

s . BA
We begin the obtaining of expressions for ﬁﬂgk@xpyﬁand
?@?@&xgy) by dropping the channel indices§j and &, and
the BA superscripts in order to simplify the notation a little.

Thus we have

rr@@ rﬂ -
M@x»yﬁ d% d?]@aﬂﬂ@?% gm?f (4.7.56)

1 % :

A Tu MUl =YD %) o \V3_Y 2y ¥2 |
Nz, y)=| 43| dpe” e 73 (%*=1) 7 (1=7°)". (4705

i.n eaﬂ

It is at this stage that a distinction must be made between
the case where the exponent factors M and w are unequal
and the one where they are equal as this affects the outcome
of the analysis. We deal first with the situation where
/A%ﬁﬁ

1. MV

We substitute the expressions for Fp and Fg in terms
of '§ © and 7 from equations (A5.2a) and (A5.2b) of

Appendix A5 in the AN and N integrals and obtain

[ac) 8

M({x»y)z 75749, @”bﬁ7yd7 (4.7.58)

i =



and
{ - > rl’/a - oIS 5 .
(x,,jy:l Vg gc=1) OJ@O%%D@&) @;f7 (4.7.59)
] ! '
where @g%(/ﬂ%v) (4.7.60a)
and [52%((/4=W , (4.7.60D)

The two integrals in equation (4.7.58) are given by
expressions involving finite séries. They are (from

equations 5.1.8 and 5.1.9 Abramowitz and Stegun, 1965)

)
== 2%
@sxm%@ A
_ 0 e
al o |
= xl g &0 ST s avo  (4.7.61)
jse ’
and ! ,
= =59 .,
8, (b) L@ 5°d7) )
° ° & .
. S Q@ZJ%__,] |
gyﬂg@@“»[@&i T =gl ) - (4.7.62)
is kso
Hence J
M({x,y)z @3%@@2@57(([5> . (4.7.63)
The N integral expression of equation (4.7.59) we re-write
as
N(x,y) = Ax,(@» Bj((&») | (4.7.64)
where
:
- 7
P\x(f@z))gj(@ V51" F (4.7.65)
n .

J -5 %7( /722)””3651777 (4.7.66)

c:



We may express A.(a) and j([b}) as
S
hatar= -0(0.) | & 511 a7 (4.7.67)
By(b)z(ﬂ)y(DQy | l(E i) ”2@77 (4.7.68)
where (D@)%E(é%)% and (Db)yg (@%y . (4.7.69)
Hence A _(ays (=1 (Do) Rsla) (4.7.70)
“and . By({b)g((:g)%[%w@@b) . (4.7.71)

The modified Bessel functionﬁ<yﬁzbhas the integral repres-

entation (equation 9.6.23 Abramowitz and Stegun, 1965)

K, (2)= W_W&a Z%a 1) ,
Cv+2) u .

(Refv) >-% ,largZl<im) | (4.7.72)

Setting ¢2¥,Z=@ and wv=1! yields, after a little

rearrangement,

Ao la) zj[ & N3-0" g3

0

= Kda) | 450 (4.7.73)
a

where we nave used the result

i3
F@)zﬂf , (4.7.74)

Similarly the modified Bessel function Iy@z> has the
integral representation (equation 9.6.18 Abramowitz and

Stegun, 1965)
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L (zy=2]2)” ré@@( WE e
ffm((wcw '

(Refv)>-%). (4.7.75)

Setting 6’57 , =& and Vvsl (we take the minus option

of the plus or minus choice in the exponent) we find
=b
B(bw -4 47

= (b)) (4.7.76)
b

Thus, using these results for A (e)and @@(b) ,- we have from

equations (4.7.70) and (4.7.71)
Ag@ «@1)2 ((awx (DO)%[KU «@)/@] (4‘° 1.77)
and By'((b);(=11)57((Db>57[ﬂ1[n@5)/b] e (4.7.78)

Use of Leibnitz's Theorem gives

A, (a)=: ffio Z«**“»@ 'D@)ﬁ[Kﬂ(Z@lﬂ (4.7.79)

and

B, (b= =§LZ .:ﬂ))[g (D) [I (4.7.80)

V26
The derivatives of the modified Bessel functions can be

obtained from the expression given by eQuation 9.6.29 of

Abramowitz and Stegun (1965), which we re-write as

k

(K ki
CLZ@ ((Z)‘: ZSHEPSW v=k<}:§l§«Z)

(k=oy0,2,... ) 9 (4.7.81)
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. Lo .
where %gﬁg denotes :[v or L ﬁ<y or any linear combination

of these functions. Using equation (407081) gives

@ .
NV E (=0¢e! .
<@> KUQ‘T : Kgc@<>‘2,¢4 (4.7.82)
o 2P e ulfb=w)!
and
v
n W a.ﬂz,E vl
@Dby ID=°2V. wywvawmglucv¢aa¢ o (407083)4
wse

Combining these expresSiohs with the ones of equations
(4;7079)Aand (407080)9 we obtain closed-form expressions

for A (=) and 'By“@) whi'ch' are

A (@1»=’ mw % ( Kunezozug@l) (4.7.84)
wl{€=wll _

and

Y v
. 5 v T -
= mg. (=.=>_‘ Z lucvww(b) ' (4,7.85)
By(b> by ;Z@ 2 w‘:@ Wg KVQW»Q °

The'@q integral is the product of Ax(a) and E@@b» from

equation (4.7.64) and so can be found from the expressions
given in equations (4.7.84) and (4.7.85). The modified Bessel
functions are fairly easy to generate comp‘utatiohally°
More will be said about the computational aspects of the
analytic method in Chapter 5.

We now deal with the case when fﬁg‘vo

2, MBY

As‘for the /MEEV case, the starting point of the

analysis is the ﬁv\ and hﬂ integrals of equations (4.7.56)

and (4.7.57) but where now M=V . Substituting for /jx



and /g in terms of 3 and 7 from equations (A5.2a)

and (A5.2b) cf Appendix A5 gives

&2 0
= =AY, 5 v, ‘
M(%y)%mﬂ j@ 3 @??ojiﬂ dy (4.7.86)

_and

8

@QM ®,.8 B U, _ '
: =l 28 (T=) db. 920190 %dn  (4.7.87)
N@m»yBLw J ( 7 g dy
where )\%R (EVR>°

(4.7.88)
The M integral we write as

g
= a%((%))j ?2)37@517 , (4.7.89)
S sy =0
& integral is given in equation (4.7.61).

M (x»y)

The

The ?? integral is simple., It is

=0

0
Y - 2 = o5 a
[ =g grone

o 5, g=h3:5 ... (4.7.90)

Thus

M«x»y)ﬂﬁ]ov = 2,;{.;:&@@ 5 y: O, 2, %,...

)

© > Y= 13,55, .. (4.7.91)

The N integral we write as

N (90 = AL I)B,

where the ﬁ\

(4.7.92)

integral is defined in equation (4.7.65) and

the expression for it (with argument @ ) is given by equation
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—

(4.7.84). The integral By is given by-

- _
'y ‘zj @57([]@@2‘)%@({@ ] (4.7.93)

={

=

For y'g 1, 3, 5, ... the integral By is zero as the
integrand is an odd function of 7 . For 573 0, Bygsjﬁ/z .
In order to deal with the | y== 2, 4, 6, ... case we

set y‘EQM , that is mMm =1, 2, 3, ...
0
Y = , o, '
By=<[ @zm_@=@z) 2’@?79 mely 2, 3» oo (407094)
. = . :
This is equal to

¢ ,
Eyzzj g G=7)"dy, m=i,2,3,...  (4.7.95)
©

because of the even integrand. We put 7ﬁ35aa@ and By

becomes
= il T iman g
8522“ smgm@d@=j gin &b ) . (4.7,96)
@ ¢)
In general
I
J> sin” 0 dés= Hfé‘fg """ %2””»% (4.7.97)

s -
from equation 651 of the CRC Handbook of Chemistry and

Physics (1975).,

=

Thus Ey becomes

M Al
= _ k=1 _ 2k=1 5T
By=2{ﬂ==2& H'———fk)ai (4.7.98)

or

2R e 2k | (4.7.99)



where A= 1, 2, 3, oo

We remember that yzzpaand that eguation (4.7.99) is
for the case when y =2, 4, 6, ... We have thus found
expressions that ¢an be used to compute the M\ and N integralé
when ms¥Y . Hence the M and N  integrals have been found
in terms of expressions that cén be computed fairly easily
which means that we have coﬁe to the end of this somewhat
involved reduction process to evaluate thé overlap and exchange
body-fixed matrix elements. No mention has been madé‘ofj
the direct matrix elements. We shall see that these can be
found analytically in a very similar fashion.

4,7.7. The direct matrix eiements

As ﬁight be expected; the anélytic evaluation of the
direct matrix elements is very similar to the analytic evaluQ'
ation of the overlap and exchange matrix elements. As with
the overlap and exchange elements, the switching function

f must be of the form given in equation (4.7.11).
We consider first the BB-type elements. The required

direct BB-type elements are of the general form

A B8 B =ny o B hy e A
M= (72) () B, (Fo) IF (4.7.100)
V.

B, =D 8, =D
The product of}@&awfb)and‘ﬁj&@Fb) is given by

= B,=> 6 = ‘
l@fj@%“‘@)/@’& @F@)g@j@&ﬂjk (Fs) (4.7.101)
where
| ﬂ?ﬁ (Fe) = nggj((g@»j((F@DR@%)MQ@&\&(F@)

P@mﬂ&

XPEZ)?}M((@@S@@» (9o €05 B6) cos (me) Ty cos(mods @ . (4.7.102)



- 177 -

The elements may be expressed in terms of the three

integrals

NFHEE Jd Jé@j 48 05

(4.7.103a)

]
BI shlms )3 dl j@W dfﬂoggm@fﬂw - 1)~ 8) ‘eos @ (4.7.103b)
J =l “o
=@@ ‘
88 PN
IM’M n))‘:’ d§Jd%ﬁd’ﬂ 772? cos* @ . .(407010307.)
These are glven by
' (acly =080); AR p=(hadts
BB 88 pé .
& MQR)) I[@m@%»(mfﬁg Bjﬁab&% Sjg(mmD : .
ool @Z,n (4,7.104)
(Ad3=0 ads=@nik
@ Iogd PR - 88
A=) El (m 9 ﬂ» Ig[(m@»ji) «m@»ﬂj b& @ T (Wi 5 R»
psl’  ‘gsi (4,7.105)
and (ackj-U00Y; fagdic (oo
BB
¢ .& M m)«: l[(m.»ﬂydmgwjl bjﬁ)P@ﬂ:% S ry ((ﬁ‘/’ﬂ ﬁl»
(4.7.106)
wheregsgﬁ%whmDand Engzﬁﬁh%mDare given by
J J
8
=Wl =Yl @Q@»“:ﬂ‘#‘@‘] @Qg)&=ﬂ4}@j]
.BSJMM RE jrffﬁjéfsye\’? P84 &raf,[ d] I
_ =)
X?MW“ ng?}?;‘”((@@s ) Pgﬁf(@@s én) (4.7.107)

and

]
Ry )i =0 &p) Hﬁd&awcﬂ
T e J[MJ@@ i gt A0
=

0 755052~ ﬂ»””ﬂ P( g 0560) P12

w» (20 "leosGs) .  (4.7.108)



As with the BA-type elements, the § and T integrals are

expressed in terms of S and T integrals, but wkere now

only one summation is involved instead of two, that is

Peds <= (08 < p g =2 :
@.SPk mﬂ}):’(‘g’)(‘j (@p)s < p i ((G@*@Ba’ﬁ)g
P¢%@ ‘ 64@? -
Xz %g{([@%%‘:ﬁ:cg»ﬂ SJ&DP ms)ﬂ) (4570109)
Fse
“and
BB (8o); T ) Fp+a=2, '
TjkMA‘:(.&) o @)& F L (P*ﬁ’l“zﬂ
P>gea :
(=" ”T
%Lq Fl{ptq=-r-a)l jior (w5 a) (4.7.110)
where

@ o ' :
BB & ‘ i = e
ngb(mmﬁjdgjdﬁﬁ%oé %ﬁ’ogméPéﬂ rff 2@@%&’
g =l

8 umo))j. Kﬁﬂ@)}[& 4 -
P@l?oi) P@@DM ( .,7:.,111)

and
e
BBT s, (m,n) = Jy J@f@ Yo g g MTPTYT Fazﬁ]mw

s Yap a4 BF (molj g 5 im0 |
X (§°=1) {(ﬂ=@) PM@M Pwo%& ° (4.7.112)

Substitution of the‘appropriateDED_functions yields

expressions in terms of the integrals

D g '
Mfg(:z,y)gj d?jd:ﬁ@“%f‘@'v&@§m?ﬁy (4.7.113)
. ) - :
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‘and
e
e P Vs 0,
E:((Z'»y» J 15 V”O@W?% (%°=1) ?ﬁ(n ayws (4.7.114)
where XEmEPpFgor=2 (4.7.115)
and j SALF ) | (4.7.116)

We now substitute thei%7 expression for [T . We find

that .

Mff@x»y)) zjz@;@ﬁg%@{(goﬂ @a%?ydﬁ
! =0

= Ot (a)By(b) (4.7.117)

and

N e j @:.@g gxﬁamﬂ)%dg J @cn"’@@‘yﬁﬂ‘ﬁ;f)ﬂmdz?

A (@) Bylb) (4.7.118)
where a=8(v;+Vs) | (4.7.1192)
=- . (4.7.119b
and b == S(v4vn) . < )

We saw in Subsection 4.7.6 how the e, 8, A and B

integrals could be found. We see that the method of
analyticaily evaluating the BB-type elements is similar to the
method of evaluating the BA-type elements.

The direct AA-type elements can be found using the same
analysis as for the BB-type elements. One slight difference
is that in the expressions corresponding to those of
equations (4070109) and (4.7.110), the factor @=n»f will

not appeara This is because the expression in terms of ‘§



- 180 -

and % for 7z contains the factor@?‘ﬁ?) ; whereas the @7
expression contains @%D@EO

4,7.8 Concluding remarks on the gnalytic method

At first sight the analytic method of e&aluating the
matrix elemehts appears to be rather complicated as it
involves a large amount of tedious algebra. However, the
method is basically very simple in principle. The heart of
the method is in the computation of the three triple integrals
involving thécfl—functions (f) -triple integrals). For the
BA-type matrix elementsg.theée triple integrals were given
in equations (4.7.20a) to (4.7.20c). We saw how the integrals
were progressively réduced down until theybhad been expressed
in terms of simpler integrals which could be expressed in
terms of series expansions of various types; all of which
could be computed. More will be said in Chapter 5 about the
computationaiaspaﬂxsof this method, but it is centred
around calling a subroutine OMEGA from the main program
which returns the f) -triple integrals. It is thenfa simple
matter to compute the matrix elements. In Appendix AS
expressions are given for the BA-, BB-, and AA-type elements
in terms of the N -triple integrals when the switchiﬁg
function is the simple one fg given in equation (4.7.1).

This brings Chapter 4 to a close. In the next chapter the

results of this work will be presented and discussed.
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CHAPTER 5

THE PRESENT. RESULTS AND THEIR CALCULATION

5.1 Intrcduction

The previous two chapters form the theoretical back-
ground to this chapter wherein the results of this work
will be presented. The aim of the work of this thesis
has been to investigate the effect of including a switching
function into the well-known two-centre atomic basis
expansion for calculating electron capture éroés sectigné°

It was decided to consider two specific capture
processes, already mﬁch studied by other workers. The
first was the asymmetrical (accidental) resonance process

4

2+ 4

He“" + H(1ls) —> “He*(2s) + H* (5.1.1)

using a simple two-state approximation in whi;h only

the 1s target and 2é projectile states were retained in
the expansion of the electronic wavefunction. The second
process was electron capture into the n = 2 level of

| 4He+, namely

4 4

Hezf + H(ls) —> “He™(n = 2) + HT (5.1.2)

which is also an asymmetrical (accidental) resonance
process. The process (5.1.2) was studied ﬁsing a 4-state
expansion, that is the 1s target state and the 2s, 2po
and 2p + 1 states being retained in the expansion. Quite
a wide energy range was used in the calculations upon

the processes (5.1.1) and (5.1.2). It was from a 4He2+
laboratory energy of 1 keV to an energy of 800 keV.

In terms of collision velocity this corresponded to a
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range of 0.10 to 2.83 a.u.
Four functional forms of switching function were
employed in the calculations. They were as follows:-

(a) the simple switching function,j%

Js = = F(R)y (5.1.3)

(b) the Schneiderman. and Russek (1969) switching functidn,
Ton | |
f ==F(R)cos® (5.1.4)
SR -

where the ‘angle @ is as shown in figure 5.1,

Figure 5.1

Angle & occurring in f§m~

that is
=
@@5@§=L& (5.1.5)
FR
(c) the cubic switching function, f;

f.=-FRY7p’ | » (5.1.6)



(d) the tanh switching functiongfz,

fr = = F(R) tanb 3y. | (5.1.7)

The variable 7 we know is one of the three prolate
spheroidal co-ordinates (?»@pﬁf) equation (4.3.27b)
and varies between minus one and plus one. It should
be stated that the switéhing function»f?, is an approximate
switching function. The functions fg N fsw and f;
all beccme equal to plus or minus one for large R and
fa <& Ta or ‘FA<<<(iaeaﬁ= = § ). However, the
function @@A&\§@; takes on the values ¥ 0-995  when

7 = 1 and so fﬁ,will never be exactly plus or minus
'one, but this will have negligible (if any effect) upon
the final cross sections.

The function F(R) is given by
Ra
F(R)EW (5.1.8)
where p is a parameter. A choice of the value of p
had to be made. Taulbjerg et al. (1975) took p to be
H/EZA a.u. and this prescription was chosen for the
work presented here, namely p was taken as 1/2 Schneiderman
and Russek (1969) took p to be of the order of 1/8 to
1/16. In both cases, these other workers were using
moleculér states as opposed to atomic states in the ex-
pansion basis. It should be stated that prior to full
production of capture cross sections corresponding to
the parameter p being 1/2 (0.5) cross sections were
computed uéing the Schneiderman and Russek switching

function fsm using.P set to 0.5 and also 0.3 forlcapture
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into the 2s state of 4He+ using two states in the expansion
in the “He?* laboratory energy range‘8 keV to 400 keV;
The change in the value of the cross sections wasinot
significant, the accuracy of agreement being not leéss
than two to three significant figures. Later, during
production work, a run was done calculating the cross

A

section for capture into the n = 2 level of “He® (that

is, four states were used in the expansion) using the

'4He2+ laboratory energy

parameter P set at 0.1 with the
being 400 keV. The cross section changed by about 0.3%.

It was therefore considered that only one value of the
parameter P be used, namely 0.5.

5.2 The method of calculating the cross sections

The calculation of the electron capture cross sections
can be divided into two separate stages. In the first
stage the matrix elements F@;@ » Vik s Wil , kj&
and h@k are computed for different impact parameter
values, the impact barameter represented by b -, and also
for different values of Z , where Z 1is as shown in

figure 5.2

Figure 5.2

The impact parameter
b and the Z co-

. ordinate.
Z-anis :
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=

The quantity £ is the Z-component of R nd is such that
Z=Vl where V  is the collision velocity. It should be
stressed that figure 5.2 is for the case of straight-

line nuclear trajectories such that

R=b <Vt (5.2.1)
and L.vzo | (5.2.2)

that is

Rag %& - Vata

8 3
shb <+ 2 (5.2.3)

which is consistent with figure 5.2. In the calculations

of this work, the trajectories were taken as beiﬁg straight-
line ones. We remember that the tﬁeory presented in
.Chapter 3 was for the case of Coulomb nuclear trajectories
being used, and that setting a parameter Y , given

by equation (3.2.4), to zero corresponded to straight-

line trajectories being used so that the theory was still
applicable to the straight-line trajectory situation.

It should be noted that if Coulomb trajectories were
used, the matrix elements would be computed for different
values of impact parameter b and T instead of b and

Z . The variable ?’ (which becomes edual to Z when
Y= 0) is given by the expression of equation (3.2.5).

Prior to the caléulation of the matrix elements,
it is necessary to set up a mesh of (EUZZ) points; the
nmtfix elements are calculated at each (b92> point. -

In practice this means that a given b value is selected
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and thén the métrix elements are calculated in turn at
each point on a grid of Z points. Then, once this is
done, a new b value is selected and the elements are
calculaced again at the points on the Z grid° Each
value of b corresponds to a given nuclear trajectory
and moving from each point on the grid of Z points
corresﬁonds to the nuclear motion along the trajectory.
In practice either 12 or 30 b values were uéed° The
.number of Z points was 232. However, the elements
only neéded to be computed at 116‘points because by having
half of the Z grid negative and the other half positive
it was possible to compute the elements 1in the negative
part of the grid and use a simple relafion to find the
:values cf the corresponding elements in the positive
part of the grid. Representing quﬁg %&»’M@k»ﬂ%k

or %U& by the element Eﬁk , the relation is
L3
E;jul-2)= E;r(2) T; T (5.2.4)

. R & pas
where | Tﬂ.z (=173 (5.2.5)

Qiand;mjbeing angular momentum and magnetic quantum
numbers associated with the state labelled by the index
J - Clearly utilisation of equation (5.2.4) halves

the computing time required. The matrix elements are
stored in a file or files ready to be used in the second
stage of the calculation.

The computation of the matrix elements requires

the major part of the computer time required in any one
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given calculation. This having been done, thé second

stage of the calculation may be performed. This consists

essentially of integrating the coupled first-order

differential equations for the expansion coefficients
@j@@)and Ciz(t) (see equations (3.3.5a) and (3.3.5b))

subject to the boundary conditions given in equation

(3.3.6). In practice the variable £ is used instead

of € so the'coefficients_are @;(Z) and €x(Z) . Assuming
that Cy{Zg) = Cp (< 00) where Zg is the 2 end point

of the integration, the electron capture cross section

4He+

for capture into the k th state of the ion from the

ith stare of H is found from

bﬁ
a _
@'készmj lenlzg)l” bdb (ad) (5.2.6)
be
where bi‘ and bf are the initial and final b values.

The expression for G@y; is an approximation of the one
“iven in équation (3°3,9)°
The work of this thesis is closely‘related to the
work of Bransden and collaborators (Bransden et al.,
1980; Bransden and Noble, 1981; Bransden et al. 1983)
in that'the method they used is very similar to the one
described above. Indeed some of the computer programs
used to calculate the cross section results presented
in this chapter were based upon ones developed by Dr.
c.J. Noble,’who was one of the aforementioned collaborators.

The work of Bransden and collaborators is similar to
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the work presented here in that a two-centre atomic basis
expansion was used, though with plane-wave translation
factors incorporated. In the work of Bransden et al. of
1980 only two states were used in the expansion (two-
state approximation) to calculate cross sections for

collisions of He?*, Li3* o+

R Be4+ and B~ with H(1ls) at
laboratory energies from 5 to 200 keV amu_lo An eight-
state expansion model was used in the work of Bransden
and Noble (1981) (1s, 2s, 2po, 2p ¥ 1 on each centre)

2+ -~ H collisions and

to calculate cross sections for He
H' - He™ collisions in the centre of mass energy range
2 to ZOC'keV. This work was extended by Bransden et
al. (1983) by using twenty states in the expansion (that
is,.n = 3 states were used).

The main difference between the work of Bransden
and collaborators and this present work is that in the
present work the Mg& and W;k matrix elements were calculated
with the N?{? and ka 5 hjk elements at each (b, 2) point,
that is the V;p and Wik elements were computed in the
first stage of the calculation. In the work of Bransden
and coliaborators, the vg& and Wik matrix elements were
computed in the second stage of the calculation just
prior to the integration of the differential equations.
This was because plane-wave translation factors were
being used and as a result these matrix elements were

given by analytic expressions. It was possible, therefore,

to code these into the program used to integrate the

differential equations and calculate the cross sections.
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As was seen in Chapter 3, the use of a switching function
meant that the expressions for the matrix elements were
complicated. In this work, therefore, \@k and Wit kad

to be integrated numerically together with the other
elements.

5.3 The computer programs and numerical methods

5.3.1 Computing the matrix elements numerically

Five sets of matrik elements are required to obtain
the cross sections in a given calculation. They are F%f@
\vavquﬂghand %U& . A FORTRAN computer program was
developed to calculate these elements when the simple
switching function jg was used. We shall refer to
this program as SWITEL(S) . Subsequently three other
programs were developed from SWITEL(S) for computing the
matrix elements when the Schneiderman and Russek switching
function.:fgﬁ , the qubic switching function f@ and
the tanh switching function qu were used. These other
programs we shall refer to as SWITEL(SR)? SWITEL(C) and
SWITEL(T! respectively. It éhould be noted, though,
that all the SWITEL programs were very neafly the same.
The only difference between the programs was that a small
number of lines of code were different owing to the different
functional forms of the switching functions, equations
(5.1.3) and (5.1.4) and equations (5.1.6) and (5.1.7).

The SWITEL programs are fairly simple in principle.
Basic data, namely the chafgesvand masses of the target
and pfojectile nuclei plus the labératory energy, are

read in from a data file. After reading control switches,
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the nlm quantum numbers of the atomic basis states being
used are read. A subroutine W¢N is called in turn to
calculate various quantities associated with the radial
wavefunction expressions for first the target and then
the projectile. ” Also calculated are the energy eigenvalues
for. the basisAstates éj and P > and the T-factors
of équation (5.2.5). The next majbr step is to sét up
the b°2 mesh discussed in the previous section. This
is‘done~in-a fairly straightforward manner. The number
of b values available is restricted to 12 or 30 with
given values of b stored in BLOCK DATA. However, it

'is possible to choose the Z grid without restriction,
provided_the arrays requifed are large enough. It is
possible to divide the Z grid up into a small number
of regions, a different step-size being used in each
region. In this way a large step-size can be used for
large 2 where the centres of the target and projectile
are far apart, and a small step-size can be used for
small Z where the centres are close'together and the
matrix elements may be varying fairly rapidly with respect
to Z . The number of points in the Z grid may be
chosen without restriction ﬁnlike the b grid.v However
it is possible to divide the b grid up so that a run
can be done for say the first three [ points, then

the next run can be done for the second three points,
etc. until the full 12 or 30 points have beeﬁ done.

‘'The final data read are the numbers of Gauss-Legendre



‘and Gauss-Laguerre nodes in the numerical integration
scheme. It is possible to have 4, 8, 16, 32 or 64 Gauss-
Legendre nodes and 12 or 30 Gauss-Laguerre nodes.

The computation of the matrix elements begins by
looping over the number of points in the b and Z grids
using two DO loops. A subroutine TRAJEC is called to
calculate various factors associated with the classical
nuclear motion such as the time derivatives of R , etc.
Also returned by TRAJEC is the angle § between thé
épace—fixed and body-fixed frames (see figure 4.2) which
is required later when the rotation beﬁweenrthese frames
is performed to obtain the space-fixed matrix eiements,
(we remember from Chapter & that the body-fixed elements
are calculated and then the space-fi#ed elements are
obtainea from these). The number of target and projectile
channels are looped over next and after calculating the &
and 8 factors required (see equations (4.6.5a) and
(4.6.5b)), calling a subroutine AZITH to calculate the

j24 —integrais (see equations (4.6.13) to (4.6.15))
which occur in some other factors, the actual integration
of the B A-type elements begins. The theory of this
integration was discussed in Section 4.6 of Chapter
4. It was noted there that a two-dimensional integration
over the variables ?’and-%> had to be performéda Gaussian
integration (Hildebrand, 1974) is used to obtain the
required integrals, Gauss-Laguerre integration being

used for the § integral and Gauss-Legendre integration
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being wused for the 9 integral. It should be noted
that the lower limit of the § integral is 1 not 0 and
so the required nodes and weights must be transformed.
The nodes and weights for both integrations are held
in BLOCK DATA.

Theend result of this is a set of arrays loaded

with the ﬁﬁﬁﬁp kﬁk and ka elements plus arrays loaded

. BA -84 BA
with the individual elements %\jhg (%j& 9 %%jk 9
BA ‘A BA ’
' fév ;?9 \j (the Aﬁxju are all zero for

straight-line trajectories),Lé?and Zi?ﬁ, All these
elements are in the body fixed frame. A subroutine -DIRECT
is called twice, qh the first call to éalculate and return
the matrix elements VYjk and on the second call to calculate
and return the eleménts Wik . Again these are in the
body-fixed frame. In order to obtain the cross sections

it is necessary to have the matrix elements in the space-

" fixed frame. The theory of this was discussed in Chapter
4. In the SWITEL programs the arrays containing the
body-fixed elements are fed to a subroutine ROTATE together
with angle § mentioned earlier and n and 1 quantum
numbers. The subroutine returns an array of elements

in the space-fixed frame. The actual computation of

the elements is now completed. It only reﬁains to output
them ready for the second stage of thé calculation, namely
the integration of the differential equations for the
expansion coefficients and the calculation of the cross

sections. The mode of outputting the matrix elements
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may be performed in one of two ways. In the first way
all the elements are read to a sequential line file.
In the second way the F@?@ 0 kgk and hjk
elements are read to one random access file and the &Gk
and M@h elements are read to another random access file.
The second way is more versatile in that any number of
basis states may be used, that is it can be used for
both the two-state and the four-state exbansion calculations.
The first way is only used for two-state calculations,
that ié; it may dnly be applied to the process (5.1.1).

5.3.2 Computing the fs matrix elements analytically

If the switching functionsj% and fs'are used, the
matrix elements can be calculated using an analytic method
which involves no numerical integration. Tﬂe theory
of this analytié method was presented in. Section 4.7
of Chapter 4 and it was fairly involved. However, the
method lends itself to computation fairly easily. Three
analytic computer programs were developed for evaluating
the matrix elemenﬁs associated with the switching function

fs . The first we shall refer to an ANALYT(E).
This program computes the ?@ , B%& and hj&
matrix eiements using the analytic method. The other
two programs will be called ANALYT(D1) and ANALYT(D2) .
These compute the\ﬁkaNK1MG&matrix elements respectively
using the analytic method. All three ANALYT programs

are very similar so for brevity only the ANALYT(E) program
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will be discussed. One important point is that these
programs were only developed to a point where they could
output. onto paper the matrix elements which could then
be compared with similar output from the code SWITEL(S)
which uses numerical integration as part of the element
evaluation process. The ANALYT programs wefe only uéed
as a check upon the SWITEL(S) program which was used
for production work together with.its related numerical
programs SWITEL(SR), SWITEL(C) and SWITELkT).
The pfogram ANALYT(E) is more or less the same as

the numerical program SWITEL(S) in the first part of
its MAIN program where the charges and masses of the
target and projectile nuclei and the laboratory energy
are read in from the data file. - The same subroutine
FWFN is called to calculate required radial wavefunction
quantities, eigenenergies and T-factors. The b=2 mesh
is then set uﬁq The points in the b and 2 grids are
looped over in exactly the same fashion as in SWITEL(S),
the subroutine TRAJEC is cailed to obtain various trajectory
factors and then two DO loops are used to loop over the
target and projectile channels. It is at this point
that the similarities between the programs end. In Section
4.7 of Chapter 4 it was shown how the various individual
matrix elements could be written in terms of three so-
called £ -triple integrals if the simple switchiﬁg function

fg was used. These fL -triple integrals are shown in

equations (4.7.20a) to (4.7.20c), and also in Appendix
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A8 expressions are given for the elements in terms of

them. Having gone into the channel DO loops (in MAIN)

a subroutine OMEGA is called. The input parameters

are the channel indices, the internuélear distance divided
by Z,sz and two positive integers used to define the

size of some variably dimensioned arrays. OMEGA returns
arrays containing the f) -triple integrals which are

used to calculate in a straightforward manner the individual
matrix elements, certain combinations of which give the
'kﬂ;and bﬁ matrix elements (ﬁ@?@ are individual matrix
elementS)'which are in the body-fixed frame. A subroutine
ROTATE calculates the required space—fixéd matrix elements.

The first part of the subroutine OMEGA is more or

less the same as the éubroutine AZITH used in the program
SWITEL(E) to calculate the LZ’—integrals, This having
been done, two subroutines ALPBET and LINT are called.
These load arrays ALP and BET, and AI and BI respectively
(that is, ALPBET returns ALP and BET, LINT returns Al

and BI) with the basic § and 7 integrals required for

the calculation. These integrals were denoted by ofsx (@)
and (if the exponent factorsa and ¥ are not equal),
@g(b)(ALP and BET) and by Ax(e) and (if the exponent
féctors,w and v are not equal) By<b) (AI and BI), (see
equations (4.7.61), (4.7.62), (4.7.65) and (4.7.66)
in Chapter 4) If the exponent factors m and v are
not equal then the integrals ©z(@), Fy(b) and

%ngﬁm»v Bj(b> are given by the expressions of equations
(4.7.61), (4.7.62) and (4.7.84), (4.7.85). The expressions
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forcxgmbandﬁgﬂﬁ are simple series expressions but the

ekpressions for Asla)and Byﬂﬂ involve modified Bessel

functions of the second kind, K,(22), and of the first

kind, L, (%) respectively. The subroutine LINT calls a

subroutine BESLRK which returns an array of modified

Bessel functions K%@xb where m is the order (n = 0,

1,2 .....) and 52 is real. The subroutine BESLRK uses

two NAG (Numerical Algorithms Group) subroutine functions:

S18ACF which returns K;@z»aﬁd S18ADF which returns [K,(s2).

BESLRK uses a simple recurrence relation to generate

vthe higher'Order modified Bessel functions. LINT also

calls a subroutine BESLRI which returns the modified

.Bessel functions I;(x» . BESLRI was developed by Sookne

(1973). It is also capable of returning Bessel functions
_:F;&z) . If the exponent factors g and v “are equal

ALPBET and LINT return the arrayé ALP, BET and AI, BI

loaded with the required values of the § and % integrals

when u=v .

The arrays ALP, BET and AI, BI now loaded, the subroutine
OMEGA begiﬁs looping over various indices. During this
process, which is to achieve a guadruple summation, a
subroutine SELECT is called. A pointer is calculated
within SELECT dependent upon the 1 and m quantum numbers
of the target and projectile states and then the pointer
determines as to where the calculation is to branch in
SELECT as it is, in fact, here that the integrals Eﬁ?(xﬁy»
and ﬁ?f@@%y» are found (see équations (4.7.45) and

(4.7.46)). These integrals are given in terms of the
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¥ and 7 integrals computed by ALPBET and LINT, and
the specific expressions depend upon which target and
projectile states are being considered. SELECT therefore
"selects' the correct expression in terms of the arrays
ALP, BET and AI, BI. This is controlled by the 1 and
m quantum numbers hence the reason for the 1 , m dependent
pointer.

Finally the )2 -integrals are multiplied into the -
results of the quadruple summation mentioned above and
OMEGA returns the values of the‘ﬁl—triple integrals to
MAIN. The final calculations are straightforward in
MAIN to yield the required matrix elements.

5.3.3 Computing the cross sections

Subsection 5.3.1 described the SWITEL programs which
d . ' N@A _ k
compute the matrix elements ke ”\G&” Wik 5 K;x and
k-k numerically. We noted that there were four versions
] y
of SWITEL corresponding to the four switching functions
that were used. At the end of the subsection it was
stated that the SWITEL programs could oﬁtput the matrix
elements in two ways. In the first way all the elements

are read to one sequential line file. In the second

BA
way the Fdjk 9 kjk and hjk elements are
read to one random access file and the wgk and ‘mﬁ&

elements are read to another random access file. The
second way would allow more than two states to be retained
in the expansion. However, the first way was only used

when there were two states.
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Two programs for calculating the required capture
cross sections were developed. Both were based upon
programs written by Dr. C.J. Noble for the work of
Bransden et al. (1980, 1983) and Bransden and Noble (1981f
which were mentioned in Section 5.2. The main task in
modifying the programs of Noble was to re-write parts
of them so that the elements Vﬁ& and Wik could
be read by the programs from the storage files. As we
notéd in Section 5.2, in the work of Bransden’and
collaborators the fact that plane-wave translation factors
were being used resulted in the elements \Gk and Wi

being given by analytic expressions the coding for which
was inéluded in the cross seétion program.

The two cross section programs used in this work
corresponded one to thé SWITEL program reading the matrix
elements. to a'sequential line file and this was used
for two-state calculations of thé CToss éections for
the process (5.1.1), ahd the other to the SWITEL program
reading the matrix elements to two random access files.
This was used for studying tﬁe process (5.1.2) using
a four-state éxpansion,vthough it could be used for
doing two-state calculations. The two-state cross section
program‘will be referred to as CROSS2 whilst the more
géneral multistate program which was used for the four-
state calculations, will be refétred to as CROSSM.

The program CROSSM is fairly SCraightforward° It

begins by reading target and projectile data, namely

charges and masses of the nuclei and quantities associated
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with the radial wavefunctions. Also read are various
control switches and the laboratory energy. The first
ma jor step in the calculation process is the calling
of two very similar subroutines PHLNA and PHLNAD. These
multiply the elements computed by SWITEL by their correct
eigenenergy phase factors. In Chapter 3, equations
(3.3.80) to (3.3.84), these are shown. The subroutine

. BA
PHLNA multiplies NJL% N B@jﬁs and hjk by @XPMEJ="4’)WE
and PHLNAD multiplies Yk and Wik by @xpi(%==§km
and  expilg; -yt respectively. In both PHLNA and
PHLNAD the elements are read from the random access storage
files, the phase factors are added and then the new elements
are read into temporary random access storage files.
The integration of.the coupled differential equations
may now begina It is necessary to go into a DO loop
over thé impact paraﬁeter grid. A subroutine START is
called which computes the coefficients @;(Z) and cxlz)
ét the initial integration Z point, £; . This having
been done, the system of differential equations is integrated
by calling the subroutine DE which is a standard Adams’
program With automatic selection of order and step—éize°
(Shampine and Gordon, 1975). As part of the integration
procedure, it is necessary to interpolate the matrix
elements on the Z grid. This is done by the subroutines
SLGINT and SLGIND. They use Lagrange four-point inter-
polation (Hildebraﬁd, 1974). A useful check upon the
numerical accﬁracy is done by using Green's unitarity

relation equation (2.3.53) (see Chapter 2). As the inte-



gration proceeds from the initial Z point, Z; to

the final point, Zg4 after each step Creen's unitarity
relation is computed. At the end of the integration

for the particular impact parameter being dealt with,

a routine ASCOR 1is called. 1In the original code written
by Noble, this routine was required for asymptotically
correcting the coefficients @; and €y , that is they

had to be extrapolated out to Z = <00 in order to
obtain the probabililty amplitudes @j@+C@D and Cp (4 6o)

which could then be used to find cross sections associated

with transitions to individual quanfum states labelled

by the indices j and k. Considering only the four-state
(target 1s; projectile : 2s, 2po, 2Zp 1y case, in fact
the coefficients @;; and gsp#1 do not need correcting,

that is, the required probability amplitudes are equal

to Q,S(Z’f) and Capm(Zﬁ:)‘ provided Zj§ 1is large
enough. However, the coefficients €as and Capo

must be corrected as, in general, their values at Z=2Zg
are not approximately the same as those at Z = <~ @ .

The reason for this is the long-range dipole-type coupling
between the 2s and Zpo states of He™. The method of

correcting the coefficients by extrapolation along the
trajectory is discussed by Wilets and Gallaher (1966)
and Cheshire (1968). The subroutine ASCOR can correct
coefficients calculated when plane-wave translatioﬁ
factors are used in the formulation. However, when a

switching function is used, the correction procedure



will be much more complicated and so ASCOR should not
be used. In fact the switching function coefficients
are not asymptotically corrected by ASCCR, (the subrocutine
is called but it loads an array with the uncorrected
coefficients which are then used). Thus only the cross
section for capture into the n = 2 level of He® can be
calculated. This is the sum of three cross sections
for capture into the 2s, 2po and 2p = 1 states of He™
but of these individual cross sections, only the 2p I 1
is correct. The final part of the MAIN program calls a
subroutine XSECTN to calculate the cross sections using
the integral expression of equation (5.2.6) (this ex-
preésion assumes Ck(2§)f¥ Ck(+§@) . To be strictly
correct the iﬁtegrand should be [Cul+e)’b ). oOne
final and important point about CROSSM is that if the
matrix elements are computed for plane-wave translation
factors being used rather than switching function trans-
lation factors, CROSSM will output plane-wave factor
cross sections. In fact a program PLANEL was written
which computed Pd%?s %@& » Wik kj& and hjk
when plane-wave tramslation factors were used and this
meant that CROSSM could be tested. More will be said
about this in subsection 5.3.5. If CROSSM was used for
finding plane-wave cross sections, the asymptotic correction
routine ASCOR could be used fully.

In a similar fashion to CROSSM, the two-state cross

section program CROSS? begins by reading target and projectile
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data together with switches, etc. The calculation begins
with a DO loop over the 5 grid. Once in this loop,

a subroutine ELEMS is calLedo This reads in the stored
matrix elements and constructs arrays from which the
elements required in the two-state calculation may be
interpolated. It should be stated that the multistate
program CROSSM solves the coupled equations when they

are in the form

tALz) = STMAZ) (5.3.1)
(see equations (2.3.40) to (2.3.42), Chapter 2). However,
the two-state program solves equations which have been
recast into a more convenient form by phase transforming
the coefficients @(®Z) and ¢(2) to give new coefficients
Alz) and C(2) .  The phase-functions are integrals of
certain combinations of the matrix elements. The procedure
for integrating the differential equations is the same
as that in CROSSM. A subroutine START 1is called to
compute Af2Z;) and C(Z) and then the subroutine DE is called
to integrate the equationé out to Zg . Unlike the
program CROSSM, as the integration proceeds CROSS2 uses
the matrix element unitarity relation given by equation
(2.3.52a) as a numerical check upon the interpolation
(Lagrange four-point) as the ®-axis is stepped along.
To check the accuracy of the integration procedure,
the sums of the squares of the moduli of the coefficients
Aand C at 2 = Zg are added together. This should be

very near unity (equation 2.3.54). The subroutine XSECTN
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is called to calculate the capture cross section. As
for CROSSM, CROSSZ may be used to output cross sections for
plane-wave translation factors being used. The program
PLANEL supplies it with the required plane-wave matrix
elements via a storage file.

These descriptions of the cross section programs
are basic in that the programs have other secondary features
not discussed. For example, the program CROSSM has the
facilities to output the interpolated matrix elements
and‘also output direct matrix elements ﬁ=bk and F%ﬁ
both at specific(b»Z> points as an aid to checking the
program. In subsection 5.3.5 more will be said about
checking the programs but prior to this a little more
will be said about the programs of Noble used in the
work of Bransden and’collaborators,

5.3.4 The plane-wave translation factor programs

of Noble.

In thevwork of Bransden et al. (1980), Bransden
and Noble (1981) and Bransden et al. (1983), the plane-
wave matrix elements were computed using a program which
will be referred to as FOURIER and uses the Fourier trans-
form method of Sin Fai Lam
(Sin Fai Lam, 1967). The FOURIER program was written
by Noble (1980). It computes the | ?? pﬁ%k and FU&
matrix elements when plane-wave translation factors are
used. These are then read to either a sequential line

file or a random access file according as to the whether
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a two-state or multistate calculation is to be performed
respectively.

The second stage of the calculation of plane-wave
cross sections is carried out by one of two programs
also written by Noble. The first we shall refer to as
PLANX2 and the second as PLANXM. These are respectiveliy
two-state and multi$tate programs. The programs used
in the present work, described in the previous subsection,
CROSS2 and CROéSM, are based upon these programs. The
programs PLANX2 and PLANXM compute the direct matrix
elements, though, before the integration of the coupled
differential equations and calculation of the cross sections
are performed.

5.3.5 Testing the computer programs

It is vital that rigorous checks and tests are performed
upon computer programs used in tnis kind of work. The
programs which we are dealing with are the SWITEL programs
that compute the matrix elements when a switching function
is used in the formulation, and the CR0OSS2 and CROSSM
programs that integrate the coupled differential equations
and output the cross section

One very useful test of the simple switching function
program SWITEL(S), which computes the matrix elements
numerically, was to compare output from it with output
from the analytic programs ANALYT(E), ANALYT(D1) and
ANALYT(D2) which were discussed in Subsection 5.3.2.

The SWITEL(S) and ANALYT programs were run at various

2+

energies and.(&z) points, mainly for the He - H system



and coupling the 1s target and n = 2 projectile states,
In all cases extremely good agreement was cbtained between
the numerical and analytic codes' output. As an example

4 2+

the codes were run for a He laboratory energy of

20keV at the point on the b=2 mesh b = 4, Z = 5 for
the He2+ - H system with 1s target and n = 2 projectile
states. Using a 16 /12 Gaussian quadrature scheme (16
Gauss-Legendre and i2 Gauss-Laguerre nodes) absolute
agreement was achieved using an output format D16.8,
that is; eight significant figure accuracy. The ANALYT
program could only output matrix elements associated
with the simple switching function fs and so these programs
could nct be used as diagnostic tools to check the other
SWITEL programs SWITEL(SR), SWITEL(C) and SWITEL(T) which
corresponded to the Schneiderman and Russek, the cubic
and the tank switching functions respectively. However,
the other three SWITEL programs were very similar to
SWITEL(S). The only difference was that a few lines of
éode were different owing to the different forms of switching
function. Thus this positive diagnostic result achieved
by using the ANALYT programs to check SWITEL{S) could
be considered valid for the other SWITEL programs provided
very careful coding of the lines of code mentioned was
performed.

Early in the development of the SWITEL programs
it was decided to develop in parallel a program based
upon SWITEL but which computed matrix elements when plane-

‘wave translation factors were being used rather than
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switching function translation factors. This program

was named PLANEL and has been mentioned earlier in this
section. The PLANEL program computed elements which

were stored and then used by either CROSS2 or CROSSM

for calculating plane-wave capture cross sections. These
could then be compared directly with plane-wave capture
cross section results from Noble's tried and tested programs
PLANXZ2 and PLANXM which used elements computed by another
Noble program FOURIER. Also comparisons were made between
matrix elements computed by FOURIER and PLANEL. Good
agreement was achieved between the cross sections produced
by using PLANEL and CROSS2 and CROSSM and those produced
by usinrg Noble's programs FOURIER and PLANX2 or PLANXM.
Table 5.1 shows the comparison between the plane-wave
cross sections obtained using PLANEL and CROSS2, PLANEL

- and CROSSM, and FOURIER and PLANX2 for the process (5.1.1)

4He+ using two states in

capture into the 2s state of
- the expansion. The resultsin the table were obtained
using 12 impact parameters whose values ranged from

3.472 x 1072

to 11.13 a.u. The Z grid began at -12 a.u.
There is very good agreement between the PL2 results and
the PLN results obtained using Noble's programs up to

40 keV. However, the accuracy of agreement goes down

to that of two significant figures at 400 keV. The agree-
ment is good between the PLM results and the PLN results

with a similar decrease in accuracy of agreement at 400

keV.
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Lab. | ’ N f
energy PL2 | PLM : PLN
| (keV) ii i
]
L i
1 0.67695022-3 | 0.67694182-3 | C(.67695169-3
5 0.26763190+0 | 0.26763330+0 0.26763184+0
20 0.23231262+1 | 0.23231400+1 0.23231262+1
40 0.21119339+1 0.21119302+1 0.21119338+1
400 0.65477864-1 0.65478056-1 0.65119137-1

Tavle 5.1

Comparison of plane-wave translation factor cross
section results for capture into 2s state of “He',
PL2, results obtained using PLANEL & CROSS2;

PLM, results obtained using PLANEL & CROSSM;

PLN, results obtained using FOURIER & PLANXZ.

The results are displayed in a format such that

1.2324 = 1.23 x 107%.

(Cross section units : 10_16cm2)

The results of table 5.1 used only two states in
the expansion. Four-state tests were done comparing
the total cross sections obtained using PLANEL and CROSSM
with those obtained using Noble's programs FOURIER and
PLANXM. The cross sections were for capture into the
three n = 2 states of aHe+, The results of this are
displayed in table 5.2. There is good agreement between
the results being compared in lineé(a) and (b) (see
table caption) though with a decrease in accuracy of

agreement as the laboratory energy increases from 40 to
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400 keV. The agreement is very good (5 to 6 significant
figures) for 20 and 40 keV. As for the two-state comparison,
FLab. nlm capture state
energy i +
(keV) 2s0 2po 2p-1
1 (a) 0.16442721-1 | 0.99307692-2 0.64168339-2
(b) 0.16445727-1 | 0.99334556-2 0.64195141-2
5 (a) 0.69494132+0 | 0.13253467+1 0.84408687+0
(b) 0.69497087+0 | 0.13255505+1 0.84422981+0
20 (a) { 0.25112617+1 | 0.51997127+1 0.40949645+1
(b) 0.25112930+1 | 0.51997108+1 0.40949595+1
40 (a) 0.18927889+1 | 0.51399597+1 0.39758756+1
(b) 0.18927791+1 | 0.51399197+1 0.39758423+1
400 (a) 0.12844591+0 | 0.13145528+0 | 0.63796736-1
' (b) 0.12791546+0 | 0.13153327+0 | 0.63808077-1
Table 5.2

12 impact parameters from 3.472 x 10

Comparison of plane-wave translation factor cross

section results for capture intoc the n
He'.

of &

Upper lines

CROSSM.

Lower lines

(a)

FOURIER & PLANXM.

Results format as for table 5.1 . (Cross section

units

10~ 16cm2y.

2 states

: results obtained using PLANEL &
(b)

: results obtained using

-2

used with a 2 grid beginning at -12 a.u.

to 11.13 a.u.

were

The results of these comparisons between the cross

section programs of this work, CROSS2 and CROSSM, and

those written by Noble, PLANX2 and PLANXM, were indicative

that the programs CROSS2 and CROSSM were reliable and

could be used for production of switching function trans-




- 209 -

lation factor capture cross sections. However, the program
PLANEL outputted matrix elements that could be compared
with those from FOURIER, as was mentioned earlier. As
would be expected from the cross section results, the
matrix elements from these programs were in good agree-
ment. This fact was a further recommendation of the
reliability of the SWITEL programs upon which PLANEL

was based. In fact, PLANEL was very similar to SWITEL;

the same two-dimensional Gaussian integration method

was used and the rotation routine ROTATE was>the same.

The main difference was in the integration of the azimuthal
(that is, @& - ) integral when calculating the W@?@»E%k andhjk
matrix elements which used the integral representation

of the integer order Bessel functions (Arfken, 1970)

2R
- oo 7 SR
I;((@f)‘; @MQJ @‘ad’@zg@p’sﬁ ‘dD@Q (5.3.2)
276 A
where
1f2

@g:%w[((ﬁacﬂ)((ﬂw*ﬂ . (5.3.3)

This arose because of the @xp@i@'?) factor.
5.3.6 Preliminary runs - Gaussian quadrature con-

vergence and choice of Z grid

The computer programs having been tested, it was
necessary to do some preliminary runs of the programs as

a prelude to production of final cross section results.

The SWITEL programs were going to be used for computing

the matrix elements. The main question to be answered
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about this first stage of the calculation was concerned
with the number of nodes required in the Gaussian quadrature
scheme. For each of the SWITEL programs (that is, SWITEL(S),
SWITEL(SR), SWITEL(C) and SWITEL(T)) matrix elements
were computed and outputted at four points on the b=z
mesh using four quadrature schemes 16 /12, 16/30, 32/12
and 32/30 (16 /12 means 16 Gauss—Legeﬁdre nodes, 12 Gauss-
Laguerre nodes). The four points on the b-2 mesh (denoted
by (b,2)) were (0.1,0.1), (0.1,10), (7,0.1) and (7,10).
Comparing the elements computed using the four different
quadratures showed that for the three switching functions

f; 5 f@ and fv (simple, cubic and tanh) the use
of a 16/12 quadrature was quite adequate. However, for
the switching function fSR ( Schneiderman and Russek)
it was found that, taken over all four (b,z) points,
16 /12 was not good enough. Comparing the 16 /12, 16 /30
and 32 /30 quadratures, the elements computed with 16 /12
usually only agreed to two significant figures with
the 32/30 elements. However, the 16/30 elements agreed
with the 32 /30 elements to three or four significant
figures. Although better accuracy could have been achieved
by using the 32/30 scheme, this would have required about
twice as much computer time per run and hence the 16/30
quadrature scheme was chosen to be used when fsm matrix
elements were to be computed.

The matrix elements in the calculation are calculated

on a grid of eroints for each value of impact parameter
b as was discussed in section 5.2. It was necessary

to choose a suitable Z grid. The one chosen began at
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z= -27.0, had 22 steps of size (.75 and then 93 steps
of size 0.12. This correspondad to minimum and maximum
possible initiel and final points for integrating the
differential equations of Z{ = -26.0 and Z5 = +26.0
respectively. It was necessary for Z; to at least lie
between the second and third points on the z grid for
the interpolation procedure to perform correctly. The
outer region of the Z grid, where the step-size was
0.75, was where the matrix elements were varying fairly
slowly with respect to Z. The inner region, where the
step-size was 0.12, was where the elements were varying
more rapidly. The choice of step-size in the inner
region was the same as that in the work of Bransden et
al. (1980). In that work the inner region had 92 steps
of size 0.12. = The step size in theouter region of
.75, used in the present work, was larger than that
used in the work of Bransden et al. In their outer region
there were 6 steps éf size 0.2. However, the first
point of the grid in the present work had to be -27.0
whereas Bransden et al. had a first point of -12.0.
Bearing in mind that the matrix elements had to be computed
at each point of the grid, the larger step-size of 0.75
was used in the outer region in the present work in order
to maintain economy of computer time.

The value of the first point of the grid used in
the present work was -27.0. This was chosen by doing
a series of full cross section calculations for capture

4

into the n = 2 level of “He™ using the simple switching
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function ﬁ; at a “He?" laboratory energy of 400 keV.

The iniﬁial and final integration points on the Z -axis

for integrating the differential equations, that is ¢
and Zg4 , were varied from ¥ 6.0 up to £ 49.0. The values
of the cross section obtained are displayed in table

5.3. The usual impact parameter grid of 12 points from
3.472 x 10"2 to 11.13 was used. (The initial point Zg
was the negative of the final point Zgand so only values
of Zgare shown in table 5.3). The region of convergence
was from Zg= 16.0 toZg= 26.0. For values of Z; greater
than 26.0 the cross section's increase in value is probably
due to numerical inaccuracy. In all of the calculations
‘of the present results the matrix elements were computed
using the 2 grid beginning at -27.0. However, most of

the cfoss sections were computed using more than one
value of Zg (2Z;) to ensure that convergence with respect

to the value of Z¢ (£;)had occurred. The values were

in the region of convergence from 16.0 to 26.0. Some

results, namely the ones computed using the Daresbury

Laboratory AS 7000 machine, were only performed usin

aQ

a single value of ZsZy). In this case a value of 24.0
was used for Zg , with -24.0 for Z;.

Apart from the width of the 2 grid being large enough,
it was necessary to test that the step-sizes being used,
namely 0.75 in the outer region and 0.12 in the inner
region, were small enough. This was done by simply halving

the step-sizes so that therewere 44 steps of 0.375



Zg in:?(n=2) ;{ Z &(n=2) %
6.0 9.3862 | 29.0 : 9.7363 |
8.0 $.6574 31.0 ¢ 9.7381
10.0 9.7232 33.0 | 9.7423
12.0 9.7339 35.0 9.7502
14.0 9.7347 37.0 9.7636
16.0 9.7347 39.0 9.7857
18.0 9.7346 41.0 9.8200
20.0 9.7345 43.0 9.8712
22.0 9.7348 45.0 9.9452
24,0 9.7348 47.0 | 10.050
26.0 9.7351 49.0 | 10.195
27.5 9.7355

Table 5.3

Convergence of cross section results for capture

inn = 2 level of aHe+ at a 4He2+ laboratory energy
of 400 keV using the simple switching function f;.
¢ (n=2) denotes the cross section. (Units :

‘ 16

Zgin a.u.; o(n=2) in 107 cm?).

in the outer region and 186 steps of 0.06 in the inner region

and then using this = grid in two full calculations of

cross sections for capture into the three n = 2 states

4 3

+ . . . . .
He  using the simple switching function 3

]

of

In

the first calculation the 4He2+

laboratory energy was

5 keV and in the second calculation it was 400 keV.

The results of these calculations are displayed in table
5.4 together with corresponding results at 5 keV and

400 keV which were calculated using the original z grid

of 22 steps of 0.75 and 93 steps of 0.12. 1In all the

calculations Zg was 24.0. At both energies used there
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i

. Lab. nlm capture state

jenergyl : ;

K(keV) ! 2s0 2po ] 2p-1

| ‘

‘ 5 {(a) 0.84523730+0 0.14265795+1 0.76193243+0

‘ (b) 0.84512118+0 0.14264635+1 0.76195279+0
400 (a) 0.30296729+1 0.48736342+1 0.18315204+1
_ (b) 0.30295820+1 0.48734271+1 0.18315160+1

Table 5.4

Comparison of switching function cross section results
. 4o, +

for capture into the n = 2 states of "He . Upper

lines (a): results obtained using the 2 grid with

22 steps of 0.75 and 93 steps of 0.12. Lower lines

(b) : results obtained using the Z grid with 44

stenps of 0.375 and 186 steps of 0.06. Results

format as for table 5.1. ( Cross section units
10—16 2

cm”).
was very good agreement between the cross section results
obtained using the two Z grids. This was indicative
that the grid with 22 steps of 0.75 and 93 steps of 0.12
was quite adequate for production work.

The number of points in the b grid could either
be 12 or 30. The use of 12 points was cheaper computer
time wise but results were also produced using 30 points.
The final production results revealed that at low energies
( € 5-10 keV) 30 points were required. Above this, 12
points were enough. If 12 points were used their values

2

ranged from 3.472 x 10 ° to 11.13 a.u; if 30 points were

used their values ranged from 1,429 x 10”2 to 31.25 a.u.

5.3.7 A table displaying the programs

To end this section a table is given displaying

the programs used and associated comments (table 5.5).



The table shows the matrix element programs and their
corresponding cross section programs. Also shown are
the number of states that can be dealt with and the type

of transiation factor used. It should be noted that

. Number Type of
clements | sections of Translation
' States factor
PLANX2 2
| FOURIER. PLANXM 32 .plane—wave
, CROSS2 2
PLANEL CROSSM 32 plane-wave
CROSS2 2 switching
SWITEL CROSSM 22 function
‘ : 5 simple
ANALYT - S 2 switching
7 function
TABLE 5.5

The computer programs referred to in the text.

SWITEL denotes either of the four SWITEL progfams: SWITEL(S),
SWITEL(SR), SWITEL(C) or SWITEL(T). ANALYT denotes ANALYT(E),
ANALYT(D1) or ANALYT(D2). It was stated earlier that

he ANALYT programs were not developed to the stage where

cr

they could be used together with the programs CROSS2
and CROSSM for calculation of cross sections.

5.4 The pfesent results

5.4.1 Cross sections for capture into the 2s state
4

+
of THe
In this subsection capture cross section results

are presented for the process (5.1.1), namely the capture
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of the electron from atomic hydrogen by fully stripped
helium ions (alpha particles) into the 2s state of the
singly charged helium ion 4He+o In all this presentation,
the results are for helium nuclei having a mass of 4

amu. The energy range used for this study was from 1

4Hez+ laboratory energy). The results

keV to 800 keV (
were calculated using the two-centre two-state atomic
basis expansion with inclusion of a switching function.
The four forms of switching'function used were given

in the introduction of this chapter, Section 5.1. The
matrix elements were computed by the SWITEL programs

which used Gaussian (numerical) integration. The cross
sections were computed using CROSSZ2 and CROSSM. A useful
comparison was between this work which used a switching
function, and the work of Bransden et al. (1980) in which
cross sections for capture into the 2s state of 4He+

were among the results presented. Bransden et al. used

a two-state approximation but with plane-wave translation
factors instead of switching function translation factors.
However, the energy range used by Bransden et al. was

aHe2+ laboratory energy) and

from 20 eV to 800 keV (
so some extra results were required at low energies.
These were produced by using the programs PLANEL with
CROSS2 and CROSSM . (Bransden et al. used the programs
FOURIER and PLANX2). Table 5.6 displays all the two-

state, plane-wave results for capture into the 2s state



4

of *He®. The table shows the programs used in the cal-

culations and the number of impact parameters employed.

f Programé Used i , ,

i Lab. i Number of Cross
energy | Matrix | Cross impact section
(keV) elements sections | parameters (10-16cm?)

1 | PLANEL CROSSM 30 0.73-3
2.4 " " " 0.23-1
5 L2 e 1A} O°257
12 " CROSS2 12 1.56
20 FOURIER PLANX?2 " 2.32
40 1" it T 2n11
100 " " " 0.963
200 " " " 0.269
400 " " " 0.65-1
800 " " " 0.11-1

- function results for capture into the 2s state of

TABLE 5.6

Two-state plane-wave translation factor cross

-+

sections for capture into the 2s state of 4He
(0.73-3 = 0.73 x 1077).
All the cross sections in table 5.6 were computed on the
IBM 370/168 machine (NUMAC) using double precision.
The results for laboratory energies from 20 to 800 keV
inclusive are those of Bransden et al. (1980).
Table‘5,7.displays the present two-state switching
4He+.
The four forms of switching function are shown on the
left of the table. The parameter p in F(R) (see equation
(5.1.8)) is 1/2. The 12 impact parameter results, labelled
by a), were obtained using the IBM 370/168 machine (NUMAC).

The 30 impact parameter results, labelled by b), were



4He2+ Laboratory energy (keV)
Switching , S
function 1 2.4 5 10 20 40 | 100 400 1 800
~F(R) a) 0.25-3 | 0.19-1 | 0.327 | 1.40 | 3.37 | 4.41 | 4.11 | 2.89 | 2.57
7 b) 0.17-3 | 0.32-1 | 0.297 | 1.45 | 3.36 | 4.41 | 4.11 - b
~F(Rlcos® | a) 0.25-3 | 0.19-1 | 0.319 | 1.37 | 3.25 | 4.13 | 3.55 | 1.95 | 1.39
~Fir)y’ a) 0.25-3 | 0.21-1 | 0.353 | 1.53 | 3.82 | 5.24 | 5.69 | 6.40  8.60
~F(R)eun3, | @) 04243 | 0.18-1 | 0.308 | 1.30 | 2.95 | 3.57 { 2.64 | 2.34 | 3.19
a7 1 b) 0.17-3 | 0.31-1 | 0.281 | 1.34 | 2.94 | 3.57 | 2.64 - -
Table 5.7

Two-state switching function translation factor cross sections

for capture into the 2s state of
are labelled by a)

sections are in units of 10~

He+

30 impact parameter results by b).

16cm2.

(0.25-3

Cross
0.25 x 1073).

12 impact parameter results

81¢
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obtained using the AS 7000 machine of the Daresbury Laboratory.
All the results were computed using double precision.

The two-state results of the present work are also
displayed graphically in figure 5.3 together with other
theoretical data and experimental data. (The key to figure
5.3 is on the page after it).

The striking feature of the graph in figure 5.3 is
the very large discrepancy at high energy between the
?resent two-state atomic expanéion cross sections using
switching function translation factors and the cross section
results of Bransden et al. (1980) who used a two-state
atomic expansion with plane-wave translation factors.

It can also be seen that at low energieé the switching
function and plane-wave translation factor results agree
quite well. The divergence between the two-models would
appear to begin in the region before the cross section's
maximum, namely 2.5 to 4.0 keV amu—l. This corresponds
to a collision velocity of the order of 0.3 - 0.4 a.u.
It is here also that the divergence between the results
obtained using the four different forms of switching function
becomes more pronounced. In contrast, for energies less
than about 2.5 keV amuﬂl, the results associated with
the four.switching funétions are in good agreement, so
much so that only the simple switching function results
are plotted at energies below 2.5 keV amu_l. One point
which ought to be mentioned is that the plane-wave and
switching function two-state results below 2.5 keV amu—1

were those obtained using 30 impact parameters. For
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Cross sections for electron capture into

&

the 2s state of "He™

Theoretical cross sections
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©

, two-state atomic expansion with plane-wave
translation factors, present work and Bransden
et al. (1980);

, two-state atomic expansion with simple switching
function translation factors, present work;

s twb—state atomic expansion with Schneiderman
and Russek switching function translation
factors, present work;

, two-state atomic expansion with cubic switching
function translation factors, present work;

, two-state atomic expansion with tanh switching
function translation factors, present work;

, eight-state atomic expansion, Bransden and
Noble (1981);

, twenty-state atomic expansion, Bransden

et al. (1983);

, eight--state atomic expansion, Msezane and
Gallaher (1973);

, eight-state and , eleven-state atomic
expansion, Rapp (1974);

, ten;state molecular expansion, Hatton et

al. (1979).

Experimental cross sections:

)
¢

, Bayfield and Khayrallah (1975);

, Shah and Gilbody (1978).
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2.5 keV amu™! and above, 12 impact parameters were used.
Also the results for 0.25 keV amu™* (that is, 1 keV) are
not plotted owing to their sma.lness.

On the high energy side of the cross section's maximum
the eighc- and twenty- state plane-wave translation factor
atomic expansion calculations of Bransden and Noble (1981)
and Bransden et al. (1983) agree well with the experimental
date of Shah and Gilbody (1978). This work was an extension
of the two-state work of Bransden et al. (1980) which
tends to underestimate the cross section in this energy
region. The eight- and eleven- atomic state work of Rapp
(1974) would appear to give good results in this region
if the eight-state result at 50 keV amu" 1 is disregarded
and assumed to be spurious. It is, however, puzzling
that thereiis notable disagreement between the eight-state
results of Rapp and Msezane and Gallaher (1973) which
should, in fact, agree. On the low energy side of the
maximum :He only other theoretical calculation worthy
of note is thaf of Hatton et al. (1979)° In this work
a ten-state molecular expaﬁsion was used with plane-wave
translation factors. Below.about 1 keV arnu'1 the two-
state atomic expansion results (plane-wave and switching
function) are in disagreement with Hatton et al.'s results
by about one order of magnitude.

Data from three molecular expansion calculations,
which were not plotted on the graph of figure 5.3, are

compared with the data from the two-state atomic expansion

calculations using plane-wave and switching function



- 223 -

translation factors and also with the results of Hatton
et al.'s calculations for laboratory energies 0.25 - 5.0 keV
amu—1 in table 5.8. Two of the molecular expansion calculations
both employed optimised switching function translation
factors. The one calculation due to Kimura and Thorson
(1981b) used 10 basis functions; the other, due to Crothers
and Todd (1981b), used 5 basis functions. There is good
agreement between the two ten-state molecular calculations
of Hatton et al. (1979) and Kimura and Thorson (1981b)
with slightly less good agreement between these calculations
and the five-state molecular one of Crothers and Todd
(1981b). It is probably unfair to be critical of the
lack of accord between these three molecular state cal-
culations and the atomic state calculations A and B as
the latter only used two states whilst the former calculations
had five.or ten states in the expansion. The three mole-
cular calculations employing translation factors (H, KT
and CT) are in better agreement with one another than
- with the three molecular state PSS calculations of Piacentini
and Salin (1977) denoted by PS.

We end this subsection with a tablé of c.p.u. times
for the computation of two-state matrix elements and cross
sections for capture into the 2s state of 4He+ at a laboratory
energy of 400 kevV (100 keV amu_l) by the computer programs

described in this chapter, table 5.9.
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L Lab. energy (keV amui}[b
0.25 | 0.75 | 2.0 . 5.0
— H x r ¥
A 0.73-3 | 0.059% 0.78% | 2.32
B 0.17-3 0.069%* 0.90* 3.37
PS - 0.28 * 0.98%* 1.15%
H 0.39-1 0.397 1.27 2.37
KT 0.38-1 0.39 * 1.21 2.18
CT - ] 0.395 1.46 2.90
* denotes graphical values.

Table 5.8
Comparison of cross sections for capture into the 2s state

of &

He™: A, two-state atomic expansion with plane-

wave translation factors, present work and Bransden

et al. (1980); B, two-state atomic expansion with

simple switching function translation factors,

present work; PS, three-state molecular expansion

(PSS method in H ref. frame), Piacentini and Salin
(1977); H, ten-state molecular expansion with plane-

wave translation factors, Hatton et al. (1979); KT,
ten-state molecular expansion with optimised switching
function translation factors, Kimura and Thorson (1981b);
CT, five-state molecular expansion with optimised
switching function translation factors, Crothers and
Todd (1981b). Cross sections are in units of

“16em?, (0.73 - 3 = 0.73 x 1073

10 ).
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Program C.p.u. time (s) |
Name t"12i.p. | 30i.p. |

M FOURIER 216 |

C PLANX2 7 -

M PLANEL 683

PW C CROSS?2 7 -
| M PLANEL 681 | | ~1700

C CROSSM 18 ~ 40

M SWITEL(S) 825

C CROSS?2 9 -

M SWITEL(SR)| 1700

C CROSS2 , g -

M SWITEL(C) 835

C CROSS?2 9 -

SF :

M SWITEL(T) 876

C CROSS2 9 " -

M SWITEL(S) _ ~1800 [

C CROSSM ~ 36

M SWITEL(T) ' ~1575 4

C CROSSM - ~ 36

Table 5.9

C.p.u. times for computation of matrix elements (M) and

cross sections (C) for capture into the 2s state of

aHe+

{2 3

at 400 keV for 12 and 30 impact parameters (i.p.).
PW : plane-wave factors; SF : switching function factors.

N : NUMAC (IBM 370/168); D : Daresbury (AS 7000).



5.4.2 Cross sections for capture into the n = 2

level of 4He+

This subsection will follow similar lines to the previous
one. In this subsection capture cross sections for
the process (5.1.2) are presented where instead of the

4

2s state of "He® being the final capture state, we shall

be concerned with the cross section for capture into

the 1 = 2 level of‘4

He* which is equal to the sum of
the three individual cross sections for capture into
the 25, 2po and2pil states. However, és we noted in
subsection 5.3.3, it was not possible to asymptotically
correct the 2s and 2po capture expansion coefficients
when using switching function translation factors in
the twb—centre atomic basis and so only the cross sections
for n = 2 level capture will be presented. The present
calculations use four atomic stétes in the expansion

1s target; 2s, 2po and Zpil projectile. This four-
state work was very similar to the two-state work in
that the energy range was from 1 kev to 800 keV (4He2+
laboratory energy) and the four SWITEL programs were
used to compute the required matrix elements numerically
using Gaussian integration. The program CROSSM was
used to compute the cross sections. In addition to
foﬁr—state atomic expansion switching function trans-
lation factor cross sections being calculated, cross
secticns were calculated using a four-state atomic

expansion with plane-wave translation factors. Here

it was possible to asymptotically correct the 2s and
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2po coefficients and so individual capture cross sections
are presented in addition to the summed n = 2 cross
section. These results were computed using Noble's
programs FOURIER (matrix elements) and PLANXM (differential
equations and cross sections); they are given in table
5.10. FOURIER and PLANXM were used in preference to
PLANEL and CROSSM owing to the FOURIER program being
very much faster computationally than PLANEL (see table
5.12) especially as 30 impact parameter runs were done
up to a laboratory energy of 100 keV (25 keV amu™ 1) .
All the cross sections in table 5.10 were computed on the
IBM 370/168 machine (NUMAC) using double precision.

Table 5.11 displays the present four-state switching
function results for capture into the n = 2 level of

4He+°

The four forms of switching function are shown
on the left of the table. The parameterp in F(R) (see
equation (5.1.8)) is 1/2. The 12 impact parameter results,
labelled by a), were obtained using the IBM 370/168
maéhine (NUMAC). The 30 impact paraﬁeter results,
labelled by b), were obtained using the AS 7000 machine
of the Daresbury Laboratory. 'All the results were
computed using double precision.

The four-state results of the present work are
displayéd graphically in figure 5.4 together with other

theoretical data and some total capture experimental

"data. (The key to figure 5.4 is on the page after it).
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i Lab nlm capturé state ! n=2 ?
| energy ‘ J = |
. (keV) 2so0 - 2po 2pi1 capturej
., | a)0.16-1 [ 0.99-2 | 0.64-2 | 0.33-1 |
| | B) 0.11-1 | 0.84-2 | 0.58-2 | 0.26-1 |
|, | a)0.231 | 0.35% | 0.221 | 0.808
: b) 0.206 0.325 0.177 0.708
5.0 a) 0.695 1.33 0.844 2.86
’ b) 0.656 1.18 0.816 2.65
6.32 a) 0.962 1.76 1.22 3.94
’ b) 0.909 | 1.70 1.20 3.80
10 a) 1.67 3.18 2.43 7.28
b) 1.67 3.18 2.40 - 7.25
15.81 a) 2.43 4.72 3.69 10.84
’ " b) 2.39 4,75 3.71 10.85
20 a) 2.51 5.20 4,09 11.81
' b) 2.48 5.23 4,11 11.81
)5 a) 2.36 5.36 4.26  |11.98
b) 2.37 5.35 4.26 11.98
40 a) 1.89 5.14 3.98 11.01
b) i 12 1A 1A
50 a) 1.56 4.78 3.57 9.91
b) 1) " 1A "
1.1 . 1. . '
100. E; . 2 2”67 “80 5”59
200 a) 0.498 0.838 0.480 1.82
400 a) 0.128 0.132 0.64-1 0.323
300 a) 0.18-1 0.10-1 0.41-2 0.32-1
Table 5.10
Four-state plane-wave translation factor cross sections for
capture into 2s, 2po, 2pi1 states and n=2 level of 4He+ .

12 impact parameter results are labelled by a); 30 impact

Cross sections are in units
0.16 x 1071).

parameter results by b).
of 10" 0em?, (0.16-1 =



4 . 2+
e

H Laboratory energy (keV)
Switching
HLlening 2.4 5 20 40 100 | 400 | 800 |
-FR) 0.854 | 3.03 15.01 | 16.99 | 14.81 | 9.73 27
FRiy 0.808 | 3.16 15.03 | 17.01 | 14.81 | 9.73 17 |
. |
~F{R)cos e _ 2.90 - 15.91 - 7.17 | 5.01
~FRI5® - 3.31 - 19.20 ~ l14.00 }12.15
- 0.792 | 2.73 13.01 | 14.16 | 10.64 | 4.83 | 3.81
F(R)tanh3y 0.752 | 2.87 13.05 | 14.18 | 10.64 | 4.83 | 3.81
Table 5.11

Four-state switching function translation factor cross sections for capture into

the n = 2 level of

impact parameter results by b).
0.46 x 10

(0.46-1 =

12 -impact parameter results are labelled by a) ; 30
-16__2
cm” .

Cross sections are in units of 10

6¢¢
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Key to Figure 5.4

Cross sections for electron capture into the n=2

level of b

He' with comparative total capture data (lab. energy

€2.5 keV amu_l),

Theoretical cross sections

= = oo == o=

“ s =D e e

, four-state atomic expansion with plane-wave
translation factors, n = 2 capture, present work;
, four-state atomic expansioﬁ with simple
switching function translation factors, n = 2
capture, present work;

, four-state atomic expansion with Schneiderman
and Russek switching function translation
factors, n = 2 capture, present work; |

, four—State atomic expansion with cubic switching
funétion translation factors, n = 2 capture,
present work;

, four-state atomic expansion with tanh switching
function translation factoré, n = 2 capture,
present work; |

, eight-state atomic expansion, n = 2 capture,

Bransden and Noble (1981);

, twenty-state atomic expansion, n = 2 capture,
Bransden et al. (1983);
, eight-state atomic expansion, n = 2 capture,

Msezane and Gallaher (1973);

., eight-state and , eleven-state atomic

expansion, n = 2 capture, Rapp (1974);
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© , ten-state molecular expansion, total capture,

Hatton et al. (1979).

Experimental cross section

§ , total capture, Nutt et al. (1978).
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As with the 2s capture grapn in figure Sué, there is
a large discrepancy in the high energy region of the energy
range covered between the present switching function
translation factor cross sections and the plane-wave trans-
lation factor cross sections, both of which were calculated
using a four-state atomic expansion (1ls target state and
2s, 2po and 2pi1 projectile states). In the low energy
region the four switching function cross section curves
almost merge into the plane-wave cross section curve.
Thé switching function results begin to diverge from
the plane-wave results before the cross section’s maximum
at about 2.5 keV amu_l° This corresponds to a velocity
of about 0.3 a.u. which is about the same velocity as where
divergerce occurred with the two-state work. Also the
four individual switching function cross sections begin
to diverge among one another at this velocity. In the
low energyvregion the four switching function cross sections
agree well and only the simple switching function cross
sections are plotted therefore. The plane-wave and switching
function cross section results plotted on the graph are
divided into 12 impact parameter and 30 impactvparameter
results. The 30 impact parameter cross sections are those
corresponding to energies up to and including 2.5 keV amu_1
Above this energy 12 impact parameter cross sections are
plotted.

Above an energy of 50 keV amu—l there is excellent

agreement between the presentfour-state plane-wave results
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and the eight-state and twenty-state plane-wave results

of Bransden and Noble (1981) and Bransden et al.

(1983). This is hardly surprising since the same programs
were used to compute the four-state results as were used

to compute the eight- and twenty-state results, the programs
being written by Noble (see subsection 5.3.4). In the
eight-state work of Bransden and Noble (1981), four-state
runs of the programs were performed to cdmpare the results
with those produced by Malaviya (1969) who used the same
size of basis in his expansion. It should be noted that
the present four-state results are in agreement with Malaviya's
results which are not plotted. There is also good agreement
with the data of Rapp (1974) who used an eight- and eleven-
state atomic expansion, and with the data.of Msezane and
Gallaher (1973) who used an eight-state atomic expansion.
In the energy region from the maximum (~ 6 keV amu—l)

to 50 keV amu_1 the agreement between the present four-
state plane-wave data and other theoretical data is not

as good as that in the region of 50 keV amu~ 1 and above.
On the low energy side of the cross section's maximum

it can be seen that some experimental data have been plotted.
These data due to Nutt et al. (1978) are for total capture

4He+. Similarly some

not capture into the n = 2 level of
theoretical data for total capture, whichwere produced

by Hattoa et al. (1969) using ten molecular states with
plane-wave translation factors, are plotted. At the energieé

being considered in this low energy region ( £ 2.5 keV amu_l)

virtually all the total cross section is due to capture
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into the n = 2 level and so it is valid to make a comparison
with these total capture data. It can be seen that there

is very good agreement between the present plane-wave

and switching function results and the theoretical results
of Hatton et al. (1969) and the experimental results of

Nutt et al. (1978) down to about 0.7 keV amu~'. There

is much better agreement between the present four-state
results and the ten-state molecular results of Hatton

et al. (1969) here thén there is between the present two-
state results and Hatton et al.“s‘results for capture

“He' (see figure 5.3). One reason

into the 2s state of
for this in the higher number of basis states being used
in this‘low energy region (Bransden and Noble, 1982).

We end this subsection with a table of c.p.u. times
for the computation of four-state matrix eiements and

4He+

cross sections for capture into the n = 2 level of
at a laboratory energy of 400 keV (100 keV amu_l) by the

computer programs used in this work, table 5.12.
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Program ] C.p.u. time (s) |
name ‘ 12i.p. ., 30i.p. |
i | i
M FOURIER 327 N ~ 800 N
C PLANXM 19 ~ 40
PW
M PLANEL 2930 _
C CROSSM 24
M SWITEL(S) ~4200 N 7446 D
C CROSSM ~ 35 55
M SWITEL(SR) ~7908 N _
C CROSSM ~ 33
SF
M SWITEL(C) 4064 N _
C CROSSM 38
M SWITEL(T) 4221 N 7130 D
C CROSSM 35 58
Table 5.12

C.p.u. times for computation of matrix elements (M)

and cross sections (C) for capture into the n = 2 level

4

of *He™ at 400 keV for 12 and 30 impact parameters (i.p.).

PW : plane-wave factors, SF : switching function factors

N : NUMAC (IBM 370/168); D : Daresbury (AS 7000).
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5.5 Probability times impact parameter distributions

The probability for electron capture into the 2s

state of 4He+ is ECZA+©®T30 The probability for capture
into the n = 2 level of “He® is { [Cas(+oodi® + lCapottea]®

% M;@gw+$ﬂa} . We denote either of these probabilities
by P and plot the values of bP. against b (b is the
impact parameter). The resulting graphs may be of use
in finding which impact parameters contribute most to

the capture cross section. (Twice the area under the bfe

versus b curve is equal to the cross section in Rae
see equation (3.3.9)). Figures 5.5 to 5.12 show bPe
versus b graphs for capture into the 2s state and the

4

n = 2 level of “He™ éomparing the plane-wave results

(full line) with the simple switchingvfunctioﬁ results
(broken-line)° Elab is the 4He2+laborato-ry energy.
The 5 keV graphs (figures 5.5 and 5.9) used 30 impact
parameters; the other graphs used 12 impact parameters.
The bPe data points were joined by straight lines

for simplicity.

At 5 keV, where the plane-wave and switching function
cross sections are in gecod agreement, similar structure
is observed for the plane-wave and switching function
graphs figures 5.5 and 5.9. This is especially so for
the two-state graph of figure 5.5 where the structure
is almost the same down to an impact parameter of about

1.5 a.u. As the laboratory energy, Elab’ increases

the difference between the areas under the plane-wave
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and switching function curves becomes lafger which,

of course, corresponds to the increasing disagreemént
between the associated cross sections. Also, as Elab
‘increases, there is a marked loss of structure for both -
the plane-wave and switching function curves, though

the curves do retain similarities in the structures
remaiaing. At tﬁe highest energy considered of 400

keV, rhe two-state switching function curve has become
two peaks (figure 5.8) whilst the four-state sWitching
function curve has become one peak (figure 5.12). Probably
the most interesting graph is ﬁhat of figure 5.5 for

Eiap ™ 5 keV and two states being used in the expansion.
For impact parameters 2 1.5 a.u. the observed forms

of ﬁhe bPe ploté are virtually the same. This similarity
is almost certainly correlated with the fact that at
energies of the order of 5 keV and below, the plane-

wave and switching function models are in accord with

one another. |

5.6 The cross sections and the functional form of the

switching function

For the two-state, 2s state capture and four-state,
n = 2 level capture, the cross sections obtained using
switching function translation factors diverge from
those obtained using plane-wave translation factors
in the intermediate to high energy region of the energy
range considered. In addition in this energy region
the cross sections obtained using different functional

forms of the switching function display significant
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differences between one another which must be due to
their different forms.

In the early stages cf the work presented here
the switching functions used were the simple swiiching
function'ﬁ and the Schneiderman anrd Russek switching
function j;a . The motivation for the use of these
switching functions was twofold: the simple switching
function had a very simple form (hence its name), and
the Schneiderman and Russek switching function was
the first switching function to be proposed (Schneiderman
and kussek, 1969). However, when the divergence at
high energies became apparent with the production of
results, it was decided to try and use a switching
function in the translation factor that would have such
a form as to make the translation factors beHave somewhat
like plane-wave translation factors in an attempt to
reproduce reéults close in value to the ones obtained
using plane-wave factors.

If we consider the simple switching function, ﬁ;

fs=-F(Rrlqy (5.6.1)
where

3

R
FR) =57 (5.6.2)

we see that it is of the form

f=-FRlgy) (5.6.3)
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the function fg being obtained when ¢g(p) = 7.
The correct united atom limit is produced by the
function i (R) which tends to zerc as R tends to zero.

Figure 5.13 shows a sketch of F(R) for p = 1/2.

F®) |
-0~ Figure 5.13
Sketch of F{R)
65 forP= 1/2.
i ] | 1
o

ke 30 30 %o R

In the case of the simple switching function g(@)

is a straight line ( g(@)ii@ ), (see figure 5.14).

Figure 5.14
Sketch of g(3) for the
simple switching function,

fs for Inl<l.

y(q) and the switching behaviour of the switching
function is produced. In the case of the plane-wave
translation factors, the electron is attached to
either one centre or the other. In terms of the
function  g(p) this should correspond very nearly

to 9(7» being of the form shown in figure 5.15.
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N gl
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f
! Figure 5.15
_ ! lﬁ) Function g(@) for plane-
i <1 5 wave translation factor,

VIEE

= om = = =) e

=1

With this in mind the function @’@mh(@f@) where @223
was a good candidate for the function g(@) such
that the translation factor would be more like a plane-
wave translation factor. The value of o was chosen
to be 3 in the present work. Also the function @3
was such that it was very nearly f@ﬂﬁug@ reflected
about the line §M7)2'@ and so should produce an

opposite effect to that of Ctanh 37 , see figure 5.16.

n 9q)
<=0

Figure 5.16.

Curve T : g(y)= tanh 37).

Curve S : gdq»: 7 .

Curve C : 9(@)2 @?

o e e e ] e

- = = =
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The results obtained show that indeed the four-
state, n = 2 level capture cross sections associated
'with the tanh switching function in the translation
factors are closer to those obtained using the plane-
wave translation factors than the cross sections obtained
using the simple switching function in the translation
factor. Also the cross sections obtained using the
cubic switching function in the translation factor are
furthest away from the plane-wave translation factor
cross sections (see figure 5.4). However, for the two-
state, 2s state capture cross sections, this is only
true up to about 75 keV amu—1 (see figure 5.3). Above
an energy of about 60 keV amu”l the cross section associated
with the tanh switching function starts increasing,
as indeed does the cross section associated with the
cubic switching function. ©No such behaviour appears
for the four-state, n = 2 level capture cross sections,
though it may appear at higher energies than were considered.
This behaviour is somewhat puzzling but ieaving this
aside, it does appear that the tanh switching function
does improve the cross section results with respect
to the other switching function cross section results,
However, the improvement is not great enough so as to
produce results in accord with those obtained using
plane-wave translation factors. This may be because
the tanh switching function translation factors do not
behave like the plane-wave translation factors in the

small R (internuclear separation) region. The fact
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that the improvement in the results is not very great
with respect to the plane-wave results may be indicative
of the behaviour of the switching function transiation
factors in the small internuclear separation region
being quite significant in its effect and thereby res-
ponsible for the divergence of the present switching
function results from the plane-wave results at high
energies.

5.7 Closing comments

In this chapter the results of this work have been
presented together with some discussion. In the next
and final chapter of this thesis the results and their
implications will be discussed in more detail. Suggestions

for future work will also be made.
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CHAPTER €

CONCLUDING CHAPTER

6.1 Discussion of the results

The results presented in the previous chapter would
seem to indicate that for both two-state and four-state
atomic expansion methods applied to electron capture into

4He+ respectively, the

the 2s state and the n=2 level of
‘use of electron translation factors incorporating a switching
function f(ﬁpﬁ» predicts capture cross sections in
the intermediate to high energy region of the energy range
considered that are in poor to extremely poor agreement
with the cépture cross sections predicted by the use of
plane-wave translation factors. Indeed, at a laboratory
energy of 200 keV amu—1 the disagreement is somewhat greater
than two orders of magnitude. For both two-state and four-
state methods the use of other (albeit similar) forms of
switching function would appear to make little improvement
to the switching function cross section results as compared
with the plane—wave results, even though there are significant
differences between the individual switching function cross
sections which must be attributed to their different forms.
In the low energy region (£2.5 keV amu_l) the agreement
between the switching function and plane-wave capture cross
sections is good.

Before taking the discussion further, let us briefly
review the main reasons for use of switching functions

in the theory of ion-atom collisions. As we saw in Section



2.5 of Chapter 2, the basic molecular expansion method,
the PSS (perturbed stationary state) method has two major
defects, namely that the coupling matrix elements are
dependent upon the choice of the origin of co-ordinates,
and that some of the couplings do not vanish at large inter-
nuclear separation. However, the wavefunction expansion
in terms of orthonormal adiabatic molecular states is very
simple in form and gives rise to straightforward coupled
equations. Bates and McCarroll (1958) introduced plane-
wave trausiation factors into the formulation in order
that the wavefunction describing the electronic motion
should be a solution of the Schrddinger equation at large
internuclear separation. The result of the plane-wave
factors' introduction is the elimination of the two problems
inherent to the PSS method; the coupling matrix elements
are independent of the origin and they all vanish at lérge
internuclear separation. Unfortunately the simple form
of the original PSS expansion has been lost. Now it is
necessary to divide the expansion into two parts corresponding
to the direct and rearrangement channels. This gives rise
to much more complicated coupled equations, and matrix
elements which are difficult and time consuming to evaluate
owing to the presence in some of them of the momentum
transfer factors exp(%{%.P) which arise due to the plane-
wave factors being present in the wavefunction expansion.
The basic theoretical defect of the Bates and McCarroll
method 1is that the introduction of plane-wave translation

factors causes the electron to be associated with either
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one centre or the other. This is correct at large inter-
nuclear separations where, indeedg'this is the case. However,
at small internuclear separations to associate the electron
with either one centre or the other is clearly incorrect

as the electron is, in fact, associated with both centres.
Plane-wave translation factors have been used with good
success in two-centre atomic basis expansion methods for
modelling‘ion?atom collisions in the intermediate and above
energy fegioho Here the need to describe the dynamics

of the electron at small internuclear separation is not

as important as the electron spends most of its time either
upon one centre or the other, hence the reason for atomic
basis states being used. In the low energy, adiabatic

region, though, the electron spends a significant amount

of its time mneither bound to one centre nor the other but
rather it is in some state of the quasimolecule formed

by the two centres and the electron hence the use of molecular
basis»states in the expansion is appropriate. In essence,

the plane-wave translation factors should really be associated
with atomic basis states used in a two-centre expansion.

They clear'y have an "atomic" character es they theoretically
associate the electron to one centre or the other. At
energies in the intermediate and above region this is a

good feature, but at low energies it is not. It is an
interesting paradox that plane-wave translation factors

were introduced into ion-atom collision theory in conjunction

with a molecular basis expansion.

The use of a switching function goes a long way in
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solving vhe problems asscciated with the use of plane-wave
transiation factors. As we have seen, translaticn factors

are important and necessary if the theory is to be origin
independent and devoid of asymptotic couplings that are
non-vanishing. However, the switching function being incorporated
into the translation factor gives it much more flexibility.

At large internuclear separation it is either plus one

or minus one and the translation factor bécomes a plane-

wave one. However, as the system relaxes as the internuclear
separation becomes smaller, the switching function becomes
smaller in value, tending asymptotically to zero as the
internuclear separation goes to zero. This is called the
united atom limit. Thus the translation factors are no

longer plane-wave in form but rather they have modified

in accordance with the electron moving into the situation
where it.is in a quasimolecular state. In contrast to the
plane-wave translation factors, switching function translation
factors have a ''molecular' character, hence their applicability
to low erergy collisions where molecular basis expansions

are employed. Apart from their obvious theoretical advantage
in modelling the small internuclear separation region
effectively, yet giving thé correct asymptotic form to

the wavefunétion for the electfonic motion at large inter-
nuclear separation, their flexibility results in there

being no need to separate the direct and rearrangement
channels. This, again,is a reflection of their molecular

character.
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As far as the author is aware, switching functions
have nevar been used in conjunction with a two-centre
atomic basis expansion. Hence the work described in this
thesis may be of some importance in ion-atom collision
theory. There would appear to be two advantages in the
use of a switching function with an atomic basis. The
one is that the matrix elements are easier to evaluate.
When one considers the complicated expressions which were
presented in Chapter 3 for the direct and exchange matrix
elements, this may appear to be of little value. Indeed,
the computer programs used to compute the matrix elements
numerically were not economic in computer time, and, indeed,
this was the overriding reason why calculations using
larger basis sets were not employed. However, despite
the large number of elements to be calculated, compared
to the overlap and exchange elements arising from the use
of plane—wavé factors with their awkward momentum transfer
factors @XF@ii§z?» , the individual elements are easier
to evaluate. Also almost all of the individual elements
are proportional to the collision velocity or the square
of it. The notable exceptions are the overlap and potential
elements. This means that a calculation can be done at
a particular collision energy, that is, collision velocity
and then the matrix elements, having been stored, used
to generate elements specific to other collision velocities
by simple multiplication of some of the elements by ratios

or squared ratios of the collision velocity at which the

new elements are required to the collision velocity used:
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in the first calculation. Certainly if any serious use

of the two-centre atomic basis switching function method
were to be made, this would be an attractive means of
obtaining the matrix elements. The other advantage gained
by using a switching function with a two-centre atomic

basis expansion is that a much better description of the
small internuclear separation region should be achieved,
that is, the switching function translation factor has

a greater flexibility over the plane-wave translation factor
and thereby introduces molecular character into the atomic
basis expansion. In theofy, this should give the atomic
basis expansion mbre ability to model collisions of ions

and atoms in the low energy region where molecular effects
are important. As far as the high energy region is concerned,
the molecular effects are of limited importance and so

there would appear to be no advaﬁtage in the introduction

of a switching function. If the results presented in this
thesis are correct, then it would appear that the introduction
of a switching function for modelling intermediate to high
energy collisions is a positive disadvantage. In the

light of this discussion, let us now return to the results
of this work.

In the low energy ( £2.5 keV amu™ 1) region it would
appear that there is nothing to be gained = by the use of
switching function translation factors as opposed to plane-
wave translation factors, even though the switching function

results are in good to fair agreement with the plane-wave



results. Any molecular character, introduced by virtue
of the inclusion of the switching function, would appear
to be small if any. At energies 2.5 keV amu"1 it is
clear that the two-centre atomic basis method with switching
function translation factors is not appropriate. The implica-
tion of this is that the switching function approach with
a molecular basis expansion is likewise not appropriate
at such energies, with possibly a similar divergence between
molecular basis switching function results and atomic basis
plane-wave results. With this in mind, it is therefore
interesting to consider some recent total cross section
results for proton-lithium electron capture obtained by
Ermolaev (1983), together with results for the same process
obtained by Allan et al. (1983).

Both Ermolaev and Allan et al. were considering electron
capture of the outer 2s electron from lithium atoms in
the ground state by protons. In the work of Ermolaev a
two-centre atomic basis expansion with plane-wave trans-
atioﬁ factors was used. Two-state, thirteen-state and
nineteen-state calculations were perfofmed. Allan et al.
used a molecular basis expansion with the adiabatic switching
function (factor) suggested by Dickinson and McCarroll
(1983). Six and, in certain cases, seven states were used
in the molecular expansion. The HY laboratory energy range
used was 30 eV - 15 keV. Figure 6.1, reproduced by permission
from the paper of Ermolaev (1983), displays graphically

Ermolaev's atomic basis results ( A0 - atomic orbital)
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Caption to Figure 6.1

Total cross sections for production of H in H' +

Li collisions (L-shell capture). Theoretical data

: MO-molecular expansion of Allan et al. (1983).
Atomic expansions: @ 2-state, present work;

O 12-state, present work; {J 19-state, present
work; MC - classical trajectory Monte Carlo,
Olson (1982); L,K A CDw, Banyard and Shirtcliffe
(1979) for L- and K-shell capture respectively.
Experimental data : § - Gruebler et al. (1970);

¢ - Il'in et al. (1967a, 1967b), D'yachkov and
Zinenko (1968).

and the molecular basis results (MO - molecular orbital)

of Allan et al. (1983), together with comparative theoretical
and experimental data. It should be noted that the results
of Allan et al. were origin dependent and hence thin,

open rectangles are used on the graph to represent the

upper and lower limits for the cross section. The width

of the rectangles has no significance. The reason for

this origin dependence will be stated shortly. It can

be seen that the atomic basis results agree well with the
experimental results of Il'in et al. (1967a, 1967b) and
D‘yachkoQ and Zinénko (1968). The atomic basis results

of Ermolaev at high energies are also in the same general
region of the graph as the classical trajectory Monte Carlo
calculations of Olson (1982) and the CDW calculations of
Banyard and Shirtcliffe (1979). The molecular basis results

are in good accord with the atomic basis results and the
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experimental results of Grlebler et al. (1970) from about
1 to 3 keV (centre of mass, C.M.). However, for C.M.
energies greater than about 5 keV the molecular basis
results diverge from the atomic basis results quite drastically.
If we consider the mdlecular basis (MO) data rectangle
furthest to fhe right, the discrepancy between its centre
and the atomic basis ( AO) curve is abouta factor of 5.

The laboratory energy correéponding to this data rectangle
is 15 keV amu—l; this corresponds to a velocity of 0.77
a.u., This divergence between the switching function results
of Allan et al. (1983) and the plane-wave results of
Ermolaev (1983) is very similar to that observed in the
present work. Also the velocity region wheré the divergence
becomes significant is about the same in both cases, 0.4
~ 0.5 a.u. One qualifying fact that ought to be stated
is that the switching function used by Allan et al. (1983)
was not cf the same type as that used in the present work.
Allan etla'l° used the adiabatic switching function of
Dickinson and McCarroll (1983), which was quoted in equations
(2.5.70) in‘Chapter 2. Reference to those equations
shows that it is a function of time only unlike the one
used in the present work which was a function of electronic
and internuclear co-ordinates F and ﬁ . Also the adiabatic
switching function was zero within the interaction region
which corresponded to thel¢l< €y part of the time axis where

to (>6) was some suitable time value. Outside the

interaction region the adiabatic switching function was



lognp(=Yit=6sl) where ¥ was a frequency which
was low compared with the natural frequency of the problem.
Essentially the adiabatic switching function is a means
whereby the problem can be dealt with using the PSS method
in the interaction region, but with the bonus of the basis
states having the correct asymptotic behaviour. The origin
dependence mentioned earlier arises due to the method
used by Allan et al. being a modified PSS method. Whether
the adiabatic switching function is a true switching
function is open to question.

The cause for the divergence between the switching
function results and the plane-wave results of the present
work above about 2.5 keV amu_1 laboratory energy must be
attributed to the effect of the switching function upon
the two-centre atomic basis expansion. It has been stated
earlier that plane-wave translation.factoré have essentially
an ''atomic" character whilst switching function translation
factors have a "molecular'fcharacter, they being able
to model tﬁe electronic dynamics in the small internuclear
separation region quite effectively. It is possible that
their molecular character is somehow responsible for the
increasing divergence with respect to increasing collision
energy of the switching function results from the plane-
wave results. At low energies, in the adiabatic region,
the molecular basis expansion is appropriate for modelling
ion-atom collisions as only a small number of states are

strongly coupled. This is not the case at high energies,
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in the non-adiabatic region. Here a fairly large molecular
basis set is required. It may be that the introcuction

of a switching function into an atomic basis expansion
with a small number of states gives the expansion sufficient
molecular character so as to be of no practical use for
calculating capture cross sections at energies which are

not in the low energy region. Investigations using larger
basis sets might shed light upon this question. Recently
Bransden (1983p) in a private communication has stated that
T. A. Green has shown that without the momentum transfer
factors.@ﬁ?(ﬁi@%?) in the exchange matrix elements,

it is impossible to obtain the rapid decrease of the capture
cross section at high energies.

6.2 Conclusions and suggestions for future work

The main conclusion of this work would appear to be
that the use of a two-centre atomic basis expansion with
switching function translation factors for calculating
electron capture cross sections has no advantage over the
use ofla two-centre atomic basis expansion with plane-wave
tfanslation factors when only a small number of basis states
are retained in the expansion. In addition, at high energies
there occurs a dramatic divergence of the switching function
capture cross section results from the plane-wave results
owing, presumably, to the inability of the switching
function basis expansion to model the collision
effectively. Calculations upon other systems and using
extended basis sets are required. Further investigations
into the functional form of the switching function may

also be of wvalue.
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APPENDIX Al

u . =5
Effect of the operatorsiotand={8/@%2upon the basis

=80 S et
functionsbj?h@)andﬂ@}@ﬂe)

The expressions for the direct and exchange matrix
elements presented in Chapter 3, Section 3.3 equations
(3.3.30) to (3.3.33) are obtained by considering the effect

of the operators %%@@ and‘”é@/@@k upon the basis functions

Fi# 8 ana Gy (P t)

We have

H@£==%%Z+%A+%B + Ve | (A1.1)
and | |
FiRa =5, «@%W[gw Let-MERTE e
GT&((F,G) X&(ﬁa)ex?aa[%t% v t==f(r R) \’/”F] (A1.3)

Expressions for Ha E’(ﬂé) and H@(l GT'k(E'D £).

. 2
We begin by considering the effect of K?ﬁ upon

Fie)

V§ Fﬂz‘r‘; 9 __,@ea(e;ﬁgva)@%z[fé@)e i$ (7, R))v,r/z] (A1.4)
Now .—a
VR BEE ACREBE +2 T AR, T80
-ﬁ"g(F)%aA(F) (A1.5)

and so (omitting the arguments of the function‘f )

V[g(( AN {fvr/zz] uf@lf’/zv ;@fﬁ({r.))

%2@‘5@(?@) @ (@if@a"ﬁh’) *@(f’s)%a(@ . Wz)n (A1.6)
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It is straightforward to show that

—> . -ﬂ° o - - fﬁ““ &f%?,F/Z ’
vﬁ(@@w h)‘:’i[(\%lf’) Shosarat . (A1.7)

T o 2 =2
_L 2V&@afv.f/z f)a@@jgv"r/z ° (A1.8)

I &Gﬂz'é
=§:hﬂr)(@%
We note that () satisfy the equation

2 8 v 8,2
(-1 95+ o) 2 10=5 B 17%). (41.9)

Using equations (Al.1), (Al.4) and equations (A1.6) to

(A1.8) plus equation (A1.9) we obtain
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In a similar fashion we obtain

Ha Gy (7] = 3y, Gri (P e 4 (Voo % Vg ) Gric (P )
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We have
j (A1.12)
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otz |
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and putting
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Using the results of the previous page we find
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APPENDIX A2

Derivation of the integral identity used in simplifying the

matrix element expressions

We define the integral I19 where I, is given by

1

I, .—_f @ﬁ(ﬂﬁf(ﬁ)ovﬁ/(ﬂaﬁ ) (A2.1)

where the integration is over all space.
. -5 -
The functions @@(r) and ﬁ%/(F) are complex
functions which tend asymptotically to zero as £ —»e® _, The

function f(FW is real,

Integrating I1 by parts
L8Pl - | 1pTE BTV
space v ‘

—j @%(FMC(F)VZY(F)%F (A2.2)

, _—
As @@U’)and Y(F) tend to zero as F->e® , the first
term in square brackets of equation (42.2) is zero. Thus

we have . ’ ' :

L ="Lﬂﬁ)@@7ﬂvﬁ?@ﬁ> P

n>
[\)
o

(%]
N

N T \van g VI

We define next the integral 12°

1, =H> f(FW@*((F)V’%FMF. (A2.4)
v

Integrating I, by parts and ignoring the first term as we

2

did for Il’ we obtain
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L?Lﬁ%(ﬂv{;%ﬂ,@@m((ﬁdf-“
v ernvEne.  wes

We see from equations (A2.3) and (A2.4) that

I=-1, -f DIAFRIVRIF)AF (32.6)

Substituting for 12 from equation (A2.5) we obtain
I, =J1Y(F)Vﬂﬂ),V@ (FYolF
v
r 2 i a4
| YR e (R

Rt e Gl (het

We define the integral I,

L=§ ?(F)VﬂF%V@ﬁF}JF (42.8)

and integrate I, by parts, ignore the first term and we

3

have

L=-| #7507 V(747

| FRrvEviRaE. e

If we exainine equation (A2.7) we see that 13 is the first

term in -the expression and so substituting for 13 from

equation (A2.9) we obtain
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v
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I,= —-K D@ TfR.Tvirde
f;@( ) YIFIV fIF)d7

+| vP PV O a7

;L@%((F)f((ﬁa)va%(fa)df. o

The first term in equation (A2.10) is I, (from equation

1
(A2.1)) and so transferring this to the left hand side of

equation (A2.10) we obtain

.| FAVAVER) a7
| etV P

JL @%((F)ﬂﬂv&'?(ﬂdﬁ (A2.11)

Substituting the expression for I, given by equation (A2.1)

1
in equation (A2.11) and rearranging slightly we obtain the

final result

lj &%) V).V Y Ir)a? +£@”(F>{{vzf PP a7
= J NGl (G | EREET VO, 2.1
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a - -
where thea X7 operator acts only upon the function to its

right. 'This is indicated by the curly brackets.

The relation of equation ( A2.12) is equivalent to

[j”f:(ﬁ))» Héﬂ]- = %ng@ﬁ + U £02).95 (A2.13)

where %%@& is the electronic Hamiltonian given by equation

(3.3.2) of Chapter 3. The expression of equation (A2.13)
was noted by Taulbjerg et al. (1975).
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APPENDIX A3

An expression for the space-fixed real spherical harmonics

in terms of body-fixed real spherical harmonics

We begin with the expression for space-fixed spherical
SF
harmonics ﬂm(@ﬂ@) in terms of body-fixed spherical
BF )0 1
harmonics Y,@m (@» @ ) o
med '

SF 2 [';
10820 _Do o8, 0) Y, (6, 8). (23.1)
B mpgoﬁ )

For the system with which we are concerned

- g= IL |
0120 and 4o (3.2)
where & is the angle between the internuclear vector R and
the (space-fixed) x-axis (see figure 4.2, Chapter 4). We

thus haveA

, =l
g BF
@Sﬁ«&,@@ :jw_: D (0,8,0) Ym" (6,2'). (A3.3)
' wa=il A

‘ The general rotation matrix elements[ziwﬁﬁm0may be
written in terms of Wigner simplified rotation ﬁatrix,
elements, (also known as Wigner reduced rotation matrix
elements) @Zfﬂm (@) , (Rose, 19‘5:7),7 |

Djmg@,ws g gﬁ(ﬁf,m«@%@“‘imy “

(A3.4)

We see,'theref%re, that equation (A3.3) may be written

@Lf'm(@) Y,?Z'(ﬁgﬂu@”) . (A3.5)

SF

A (@ﬁ)@> =

R’z
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From now on the angular arguments of the spherical harmonics
will be omitted. Splitting the summation in equation

(A3.5) we have

'mﬂgﬂl Mi‘é‘-@
£ oF 0 oF
Ygggz dﬂm(wy@ﬁ N @/zm”m() Y@N . (A3.6)
m'=f m'20

Using the relations

2 A
| d i = (=g)m dortin (A3.7)
and }@9%: (=1)" Yﬁfm : (A3.8)

the first summation in equation (A3.6) over negative M’
indices may be replaced by one over positive m’ indices

and hence equation (A3.6) becomes

wej

52:2 mm(@ Z d am(@)Y . (A3,9)

m'el
Using equation (A3.7) and re-arranging slightly we obtaln
from equation (A3.9) W

Y o= lonY 50 Z[dmam @Y+ 2t Yo

(A3.10)

Hence, taking'the complex conjugate, equation (A3.10)

yields

Y2 AL YE R Z{[M ST (AR ) il

(A3,11)

The real spherical harmonics,; in the space-fixed frame,

are given by

= T USF SE
Y;ﬁ:\z Nm[Y@m* Yﬁm ] (A3.12)
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where the W%Wﬁfactors are defined by equations (4.2.6a)

SE
and (4.2.6b), (Chapter 4). Substituting for D

$F o
and |p, 1in equation (A3.12) and using the expression for

the body-fixed real spherical harmonics given by

£
'F=’N [Y YZ ] (A3.13)
we obtain

N d@m(@)y BF*Z.:@[d w3+ (-)" @Lm m(@ﬂ)

(A3, 14)

This may be written in a more compact form as follows:-

2
SE N N/ BF
M=Zé%m@@> ' (A3.15)
m'se

where

| 4 m’ ) 4 ]
@,f,m (8)= N [dmam (B)+(-1) SO ()] (A3.16)
EJM” See N/ SF
We have thus obtained an expression for the A/ in

: ¥ BF
terms of the A6

J



APPENDIX A4

An expression for the rotation arngle S for the

Coulomb trajectory

In this appendix an expression will be derived for the

angle 5 for the case of the nuclear trajectories being
Coulomtic.
T~ A
\- =
g ~ A R
~N y ~
~
N NG
S
> N Z , _
=z 5 N Figure A4.1
> N > < Diagram showing space-
> N fixed and body-fixed
r=§$§\\“§ frames and angle 8 .

Figure A4.1 shows the angle S . It is the angle
between the x-axis (space-fixed) and the vector LQ 0
The initial relative velocity of the nuclei A and B

is V; and so by conservation of angular momentum we have
B2
vib=R d§ (Ad.1)
dt

where b is the modulus of the impact parameter vector

P

b (Figure A4.1).
The parametric equations for the trajectory motion

are

szz‘ﬁ%ba))%@@shw + Y | (A4.2)

¢ :\%BY%P@ZWM@BW*YW] , (A4.3)
; o

We know that these may be re-written in terms of a new



- 275 -

parameter T given by
17
T= (v2¢B) “sinhw (A4.4)

and we thus have

)
RIVI= (22 P &b?) Y (A4.5)
. =
=0 v+ ¥Ysiah T . _
6((75)5%[? XSU% Wa‘a’b&)ﬁ/a] ' (A4.6)

Returning to equation (A4.1), we have

a
L=Ré dT
\/JD R‘;ﬁ’ T (A4.7)
or . L=0%d5 _I (A4.8)
vib=R %2 v
where I (Y)Z @M%d'?f . (A4.9)

From equation (A4.6) we find that T=@T) is given by

: Y
T(“@’):\%@ .+(Tﬂ+y8+[§)%j} (A4.10)

and from (A4.5) this becomes

_ R
Tlv)= TRV - (A4.11)

Substituting forcr(T@ in equation (A4.8) and re-arranging

we obtain an expression for dg/dﬁz which is

s _ ==b.=, A (A4.12)
4T T R{R=Y) |

We now proceed to integrate equation (A4.12). Sub-
stituting the expression for R{¥) in equation (A4.12) and

setting

c?= Y4b® | (A4.13)
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we find

s = b : : (A4.14)
dT = Tzc{}:@a#y((?a# ©8) 7

We know that when T=2© , §= 0O  and so

T .
ot (A4.15
6=b T2 A4Y(T %) 1.15)
@
Putting
T=esinhz (A4.16)
the integral in equation (A4.15) transforms into
Z
;52@[ (A4.17)
c 7] ececoshz+Y

. (<]
‘This may be integrated using the half-angle method applied

to hyperbolic integrals, that is, we put
€= f@aﬂa% : (A4.18)

From equation (A4.18) we obtain

'dzz%;%%,  (A4.19)
and alsc
@@shzz‘g_%%z . (A4.20)
.Equation (A4.17) becomes
. ¢ '
BEBJ 2d¢ , (€>Y). (A4.21)
) (=Yt +c+Y

This may be integfated to yield

o y
§=2 tan B(C;Z) *¢ . (A4.22)
c+Y |
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where use has been made of equation (A4.13). We need to

find & in terms of T . We know that

gm(‘ng,‘% (44.23)
and so
) aﬂ? e [ 2 24072
Z=siah (Z‘) = @@j@ :T*ﬁ%f”@» . (A4.24)

From equation (A4.18) we obtain

!
F= tanhl = (T2 “oc (A4.25)
2 <

Substituting'for £ in equation. (A4.22) and using equation

(A4.13) we obtain the final expression

o (A4.26)

§=2¢an . (2 eB)y o&‘f% e ﬂ@@)"/j
b T
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APPENDIX AS

Expressions for quantities occurring in the body-fixed

integrals in terms of the prolate spheroidal co-ordinates

5,9,8)

Various quantities must be expressed in terms of

@@7&3?co-ordinates in order to perform the integrals

needed Co calculate the matrix elements in the body-fixed

frame. In this appendix expressions for these quantities

will be obtained. .

We begin by reminding ourselves of the definition of

the (gg ?9@7) co—ordinateé

’§§%U§+F%)9ﬂ§?<@©
=<

@:2§(T%==FB)9 &

)2 (@Zimuth@ﬂ @ﬂj}{la)S OSF<LaTT .

From equations (A5.1la) and (A5.1b) we have
- R PR
ﬁ%“‘if(g ﬁ> 9
=R (%-
I ET@? @) .
Also it can be shown that
o b}
Tat % rag%@a+@a%
re - =RIp,

2
and [ 2%_(('§8=??2)0

(A5.1a)
(A5.1b)

(A5.1c)

(A5.23)

(A5.2b)

(A5.3a)
(A5.3b)

(A5.3¢)
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Figure A5.1

Figure requiredzfor calculation of
quantities in (§9279§7> co-ordinates.

Figﬁre‘AS,l shows the familiar electron capture co-ordinate
system. The z'-axis is one of the body-fixed co-ordinates.
We note the introductiqn of the angles e ) @@ and @ o
These are measured from the z'-axis.

Using the cosine rule for triangle AOQ we have

. . 2 ) :
2= r*+E #Rrcos@ (A5.4)
and for triangle BOQ applying the cosine rule

5 : 4
= ?+R =Rrees@ . (A5.5)
é;z -
From equations (A5.4) and (A5.5) we find that
e & 2 2 R?
FA +F@ =2F +T | : (A5.6)
and

-1 =2Rrces® | (A5.7)
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Comparing equation (A5.7) with equation (A5.3b) we

find that

= R 9
Feos© Ji’ 59

(A5.8)

and compering equation (A5.6) with equation (A5.3a) we

find that

F=R (e -1)"
2

(A5.9)

It follows immediately from equations (A5.8) and

(A5.9) that

3y
cos® = (ga%%@z: )¥2

Using the well-known relatidn
sin®@ +cos’@ =1

gives

_ - a
Séa@é’B@g:ﬂMﬂmﬁaﬂ
(S =1)¥2

It follows from Figure AS5.1 that

Feos @2%4”*’@@@5@5
and
A cos 8,= R+FB©@§(9@ .

Using equations (A5.2b) and (A5.8),

gives

cos@g=37-1 |
=7

(A5.10)

(A5.11)

(A5.12)

(A5.13)

(A5.14)

equation (A5.13)

(A5.15)



From this

128 (r\ aﬂva
S@ﬂ@g£ = (=77 . (A5,16)
3-7
In a similar manner equation (A5.14) may be used to give
cosB,= 29+ (A5.17)
5 +7)
which gives in turn
, a ay] /2
5@n<9@:@§ ““M“‘W)j] , (A5.18)
347 |
Drawing tiogether thé results of this analysis we have
‘=E=(?’%3+ 349)% | (A5.19a)
r=4 7 9 .
F@@S@g'% L/ | (A5.19Db)
U2
sm@ﬂ?a“%“”’ﬂ] . (A5.19¢)
. «gﬂ+7zacﬂ»ﬁlg .
and ' i : (A5.194d)
6= .
Fﬁ%(?*ﬂ , | (A5,20a)
N s Ya
sin @Az_[@ ““M”=’7Zﬂ . (A5.20b)
| T+q
and cos Bz 321, (A5.20c)
ERs/ A | |
=R (7= '» (A5.21a)
28 V2
5m@§(@fa="3)@““?@>] . | (A5.21Db)
. §‘=7@ .
and cos g = ﬁ@cd" (A5.21c)
$=7

. This concludes this appendix.
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APPENDIX A6

Azimuthal angular integrals

In this appendix a prescription will be presented for
determining the azimuthal integrals required in the
integration of the matrix elements.

The integrals are

257 |

ﬁﬂmao‘ma)zj cosm, @ cos my & dF (A6.1)
o ®reawm |

@’L;KMMMQZL @@gm,ﬁ@@ﬁm&g@«ysﬁfdl@ ’ (A6.2)

an

gIg((Mogma)gj cosm ¥ cos ng@@gagﬁgu (A6.3)

]
2 ,
The Iu -integral is a standard integral and will be used

in the analysis upon the other two integrals @Ig and ﬁ%Eg o

It is given by (Grobner and Hofreiter, 1961)

gIHZ<H> 7t for A= MaFE O (A6.4)

ATT for MyS g =S 0

To find an expression for 1@13 we begin with the well-

known formula

c@sA@ng%[@@§(A+B)%@@56A=B‘g‘ . (A6.5)
Set.ting‘ A:WM and 3 yields

cosm Gecos T=3| coslom+0)F +cos(m,-1) ]

-
:2‘15@«35 @mn+ﬂ))+@©sﬂma'=ﬂﬂﬁ] , (A6.6)

Using this result the intégral Eﬁ[g - 3 equation

(A6.2), becomes
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AW an
B r( '
Lﬁgj cos(m,<1)F cos mé}@dﬁ+j@@sﬂma=ubfj@@s s B A7,
J
g o (A6.7)

Denoting the integrals in equation (A6.7) as follows:-

@ a%¢
Tﬂzj C©ss((mu+n)),@wsma@dﬁf (A6.8a)
’j J= C©§Umn=ﬂﬂ@@§m‘g@@f,@ (A6.8b)
we have
% — 2] 2] '
"Lc%( J, ¢ j:g) . (A6.9)
Where
: (@) for mm,41% Ma
ﬂ . .
_ Tn = TC for my+l=msse O (A6.10)
27 for mm; TS ma=0
and

© for Hﬁﬂrsﬂugéﬁﬂg

12
T2 7w tor lem=tl=ma% 0 (a6.11)
MZZ©9

[H]

27 for ﬂMu:‘M

The e#pression for @Ig is found by using the formula
cos*@=L(i+cosag) (A6.12)
Substituting for»C©Saﬂf in equation (A6.3) we obtain
gIg %—('L‘{*@K) A (A6.13)
where

3
@KZJ cosm;Fecos msPcos 2@ dT . (A6.14)

@ .
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Using the formula of equation (A6.5), setting A= m, &

and 832 we obtain

ra AR
‘gKg %J cosm+2)Feos Mgfjdﬁéé%}} €cos =27 cos @%ﬁé’l@g .
J. . H20 .
(@] . @

Thus denoting the integrals in equation (A6.15) as follows:-

TSW
ﬁKFJ coS(m, +2)Fcos ma @ dF (A6.162a)
o _
P TS _
@Kggj @@SﬂMn‘?Zﬂ@@Smg@@ (A6.16Db)
©) : A
.we have
gK§%<‘@Kn+@Kz) - (A6.17)
and so
Lz%};(lglﬁ%Kﬁ%@K&) | (A6.18)
where |
(@] for m,+2 % Ma
Kng JX for pu+2= Mm% 0 (A6.19)
2ﬂ for Mn+12M32©
and

o for [mi=2lFm,
,=4 U for lm=2l=maF 0O (A6.20)
ax  for lmy=2l=m,=0
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APPENDIX A7

Associated Legendre functions in terms of prolate spheroidal

co-ordinates

22
Associated Legendre functions Eb (22) are solutions

of the associated Legendre equation which is

o )

(1=33)v" =2V’ [ﬁ((ﬁ%&u)ﬂ%}zc@ (A7.1)
where vs PRlx) (A7.2)
and x=cos 6, (A7.3)

(Section 12.5, Arfken, 1970).

The associated Legendre functions are (up to =2 )

Polsc)=1 | (A7.4)

Pl(sc)= = cos® (A7.52)
Ple) S(1=-2"?=¢in 0 | (A7.5b)

PO (sc) = ((32@2'=u)/2 = (3@@53@=ﬁ)/2 (A7.62)
Pl(5¢) =3 (1-%2)"*=35in® cos ® (A7.6b)
Pi(ee)=3(1-2¢%) = 35ia™6 . (A7.6¢)

Using the expressions for S@ﬂ>@A , €O0s @A R Siﬂ(gs
and @@S(Q@ derived in Appendix A5, equations, (A5.20b),
(A5.20c),; (A5.21b) and (A5.21c), we obtain the following
expressions for the associated Legendre functionsﬁ%gxﬁﬁwﬁﬁand
P@g;?j@@@s@) for values of (QA\)& and M@% up to and including

2.



1. Pmmb {cos Bn)

P (cos8y)E | | |
(A7.7)
P’ (cos Ba) = hbEdl
347 (A7.82)
P, = [tg>-n0-a9]"
 (cos €a) [ Son ‘Wj] . (A7.8D)
| Pi(@@ss@ )=“[§(§%+ ) @41%)]
: T<qr (A7.92)
P! (cos 8= 3000 Dig=0)li- -]
@g 4??1]))8 (A7.9b)
Pz((@ms 8g)= 3(3°=1){1-9
@"5’?1»8 | (A7.9¢)

(rrg) :
2, P«g&‘”((@@S@)

Pg(@@s@)@)g l :
- (A7.10)
P?((@@S@)Z 39=1
I | (A7.11a)
Presson=l--r]" |
e (A7.11b)
8. =] 3((@2} 1)* = (5= 712)
Pz@@ 0s 8g)= [ TS (A7.12a)
P (cos@s)= 38R~ ?gﬁ »B)({ﬂ J’Tl)] ” (A7.12D)
Wa o 1 J
P2 (cos@g) = 3«§a=n»@n=@E2 (A7.120)

(5=9)°
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APPENDIX A8

A8.1 Expressions for the BA-, BB- axd A A- type matrix elements

in terms of N -triple integrals

All the expressions given are for when the "simple"

switching function fé is used where fs is given by

R -

- : | A8.1

ijS RSC&P(‘} 7 ° ( )

We have F(R)= R*[(R*+p%) | (A8.2)

1. BA- type elements

N?§z<gj@((?@)ﬂ><f(ﬁ)> 5 (A8.3)
Pﬂdk&[@ siz.00-2 15k, 2] . (48.4)
Af@§<,@ﬂfﬁ)ﬂ\/e@ﬂ Xe (), (A8.5)
A@‘Z =,Z@jmgg‘§;[ﬁl ?@(US@*QIQM”W] . ' (A8.6)
IR L b ) SRS
&??:%@%Bﬂ%@%ﬂi[ ~J‘?@°J QIBS ]‘u . (A8.8)
H?@=<@f(%“@)ﬂifsh?.FW.’@fsﬂX@(m}s (48.9)

H =8 @f&[EF@Rﬂ [4z) [ Iff(z,z%i 3 (2.4)
%@.Q&EF_LRM. g bR L3 5 ]
p@«&[ﬁf@ﬂ R.bV: [@, .(2 Y=g Lin(2.2)

@@2%@ 1“(@47)] (A8.10)
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K@ADQI (Fadl(V. F){{@J£JJX£(§D> . (A8.11)

K08 =g L@ﬂ&,{%q A1%0,5-21%0,4)

%pﬂ@z&RFKR)[@MRE] I['A (1,49-21 00, 2)]

et R F(R)) @MRS) ﬂ@w[ Plos=2 155 02,0

+p»@skﬂf_ @M@zzﬂ» brala Ly (0; 0-21% 0, -8 12002, 1]
+g;euRE(R) b [@ Sas,0)=ALjat,00 -A1 503,20 ALE0,21]

(A8.12)

: A =< @75, 2. é=, (IFAD (A8.13)

2 =; RF’R)(B . f) I”“(@z) AL5R(4)
Aﬂ; Jdkr__ﬂ_éL.R% _b'v IE@ k(32 al 5k ] (A8.14)
Z\§2<J5(ﬁ>ﬂ\/eﬂﬂ?@(ﬁ>>ﬁ | (A8.15)
k““ A@»@fkR [AL@M%@) ﬂﬁk(@ﬂ)], (A8.16)
J&‘:{@ (FIf (9. dWé@ﬂXﬁ(ﬁ») C asan

v%@mzs__u [@ 01 31080,
+B;et Z@~ EVZ;E@I;@@“»“HI@(@@)] . (A8.18)

W= SIS (BRG]l XER), s
w802 2 BB LA SR - 2T 5, 2]
%@j@@ﬁszﬁobw[lmﬂsw -2 c@(((@»él)] . (A8.20)
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UTE = <@l £,09. 2 I XR (R,

UN=g;00, EEIE). ) A 100, 3= R1%11, 4)]

+8jece REELR) v [ 21 3800,20- 2130

The szk element is given by
L3% = (@7 175)] (9.7 Vgl K5 (72))
- <@f@>>ﬂ«* PVl X5 17209
“(ﬁ 2)&)(' ZH LK ﬂxk (F’AW

from equation (4.4.8) of Section 4.4. Thus

L?g vjﬁﬂ%gf H§ =4 (Eﬂ %k) &J.ﬁ1 Lg ;-

Jk

\/'Aﬂ = <,@ CfF@)ﬂ((v F»\Mxﬁﬁ»%

V§§ﬂ§?@jmﬁzg§i;#@[ﬁ 201,20+ A1 5%02,0)
5 6 d

=@jmz,§;,,w[wu,,@>+g %0,11]

i Lf <£@fo@@ﬁﬂmﬂ‘\vg | %870,

witl, ssonZ. R d) ATk, -A1}E0.1)

- BA BA '
=j@sz@Bj,g@% 11,00~ 2158 10,1)]
15

(A8,

(Aso

(A8,

(AS.

(A8,

(A8,

(ASo

(A8,

21)

22)

23)

24)

25)

26)

28)

29)
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0l = o . AgR(ATE 0 - AT 05,

spses . buil 0T%02,00-81%800,2))  (a5.50)

2., BB—type Elements
/Q\L%Z \GHOSIAVRY- 1) 3 (A8.31)
Alle-Z, g RI5LA ~AT 50, (48.52)

5B 8B BB '
The GJ& R ij R jjﬂs R KJ'& and Ajh elements
are -given by the expressions for their corresponding BA-

type elements but with @B& instead of @&{k , and [) -triple

integrals labelled BB instead of BA, e.g. mI. (0,0)  instead

of ﬁ][?@((@, 1) .

Uﬂx = (g;=€x) <@ (CF@ j?gw P) BERRYY (A8.33)

Uje= (g ='§u:)@ @&R FIR) g [@. k03,20 =a L5a(1 )

=«@=wj@kmm@ﬁ«@»s»ﬂjk«z,)u»l
16 '

The L.% elemen't is given by
L3k = -t ~en) <@ URRNT. P2l Gt FE)

= _ []8B
- Ujk £zl (A8.35)
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from equation (4.4.4), Section 4.4,
- 00‘ 3 ATBB g oy A 58 ¥
Lfﬁg@zjcf&»@j@&%o@fﬁﬂpwj&@gu» A1%801,3)]

B
+({§j°éﬂ:})j@&%i;ﬂ@%[1 {o,2) 2%1 @29@9] , (A8.36)

3. AA-type Elements

. D =2 BTN
A??&Z<XJ’(FA)H\/@BH NOAVIN (A8.37)
afa 7A4 \ A TAA | 3
f?gdz%@&&%[@%ﬂ‘(ﬂ»@) +ﬂIﬂ*(@9“»], (A8.38)
| AA \
The ?§9 #ﬂfﬁv jrff» E<j& and j&?@ elements

are given by the BA-type expressions but with CXj instead
of @j 5 and L) —tfiple integrals labelied AA instead of

BB..
U5t = (- qu) <X G EDIFAV. B X G172 (A8.39)

TAA ' 3 sy [A TAA SATABN oy
U§§=@%"%)@3j@&&R§E@R>°ég?)[@ Jﬂs@»Z) s, ]

| . BTAA
"*@j“%»@@j@mLF’@@,b%[133@((@»3)“ 0] hs.a0)
I |

The ﬂ=?§» element is given by
AAQ‘: ) A =2 e A VAR
L.jk = «7%‘:@[‘3»<XJ ({FA»MV.FMXk(FA§>
= o BA
Ujkugsa | (A8.41)

from equation (4.4.5), Section 4.4.
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' la<oa A J
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Electron capture by fully strizred fons of helfwrs, It ium
- berylliium and beron from stomic hydzogen

B H Bransden, C W Newby and C I Neblet
The University of Durham, Durham DH1 3LE Engiand

Received 1 May 1980

Abstract. A two-state approximation based on atomic wavefunctions is used to calculate
cross sections for electron capture by He?*, Li**, Be** and B** from atomic hydrogen in the
ground state. The velocity range covered is from v = 0-44 to v = 2-8 au which corresponds
to a laboratory energy range of from 5 to 200 keV amu~'. Reasonable agreement is
obtained with the experimental data for He**, Li®* and B**.

ﬁ? [ntroduction

Electron capture by fully and partially stripped ions from atomic hydrogen has attracted
a great deal of experimental and theoretical interest because of the importance of a
knowledge of the corresponding cross sections in fusion research (Gilbody 1979). The
reactions concerned are of the form

X+ H(1s)» XV + 1 (1)

where X" represents the incident ion. If the incident ion is fully stripped so that q is
equal to the nuclear charge, the ion X?* is hydrogenic and characterised by a set of
single-electron quantum numbers alm. When the velocity of the incident ion is slow
compared with the Bohr velocity of the target electron, the wavefunction for the system
can be represented in terms of combinations of molecular orbitals; but at higher
velocities it is more appropriate to base approximations on truncated two-centre atomic
expansions (Briggs 1976, Bransden 1972, 1979a,b). Over a range of laboratory
energies of from about 5 to 200 keV amu™', the truncated expansion approach works
when the nuclear charge is ¢ =1 or g =2, because capture is, for these cases, pre-
dominantly into states with n = 1 or n = 2 respectively, so that the number of important
channels is small. Correspondingly, reasonably accurate total capture cross sections
can be obtained if only those terms representing the important channels are retained in
-the truncated expansions, although for high accuracy it is necessary to use elaborate
expansions including psevdostates. As g increases the principal quantum number of
the most likely final state also increases and in addition the total number of final states of
significance becomes rather large. For this reason it is impracticable to include all the
states of importance in a coupled channel calculation. Fortunately, it has been shown
by Lin and collaborators (Lin 1978a, b, Lin e al 1978, Lin and Tunnell 1979) in
connection with their work on capture from inner shells of heavy ions that over an

+ Now at the Daresbury Laboratory of the Science Research Council, Daresbury, Cheshire, England.

0022-3700/80/214245+11$01.50 © 1980 The Institute of Physics 4245
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energy range about ine energy at which the cross section reaches its maximum value, a
simple two-state approximation can provide usefu! cross secticns. In this approxima-
tion, originaily due to Bates (1958), only those terms representing the initial and final
atomic states are retained in the truncated expansion.

In the present work, we zpply the two-states metaos to capture by He?*, Li**, Be**
and B°* over the range of incident laboratory energies of 5-2030 keV amu™' which
allows ccmparison with the experimental data of Gilbody and his coliaborators (Shah
and Gilbody 1978, Shah er al 1978, Nutt ez @l 1978, Goffe et al 1979} with the
distorted-wave model of Ryufuku and Watanabe (1978, 197%a, b) and the classical
model of Olson and Salop (1977).

2. Theory

The coupled channel approximation has frequently been described in the literature and
only a summary will be given here for convenience. For further details reference may
be made to Bransden (1970, 1972) or to McDowell and Coleman (1970). The
approximation is applied within the impact parameter framework in which the nuclear
motion is treated classically and the wavefunction for the electron satisfies the time-
dependent Schrodinger equation (in atomic units) ' '

(H—i%)\?(r', =0 Qa)

where

H=m 0 mo R0 )

- In equation (2), ra and rg are the distances of the electron from the incident nucleus
X and from the proton, respectively, and r is the position vector of the electron with
respect to the mid-point of the internuclear line. The internuclear separation R is a
function of ¢ which is determined by the classical trajectory describing the nuclear
motion and in this work is taken to be a straight line defined by a constant impact
parameter b and constant velocity ».

In the two-state approximation the wavefunction is written as

Y(rt)=a (f)qb»(?g) exp(—iet) expli(— to.r+ivn]

F (O xnm (Fa) exp(—=in.t) expliGv.r +50°1) (3)

where ¢ is the 1s ground-state wavefunction of atomic hydrogen with eigen-energy «
and ynm is the wavefunction of the ion X~ """ in the state {nim) with corresponding
eigen-energy 7,.. The velocity-dependent factors are required in order for the
Schrddinger equation to be satisfied in the limits ¢t -» £00. Coupled first-order differen-
tial equations for the amplitudes a(f) and c{¢) can be found from a variational principle

and take the form

ila+Sé]=He+Kc

ok s 1 B - (4)
i{S*a+¢l=Ka+ He
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where the matsix clements S, H, B, § and K zze cefined &8

5-—‘ & (re)Xatn(ra) expiv. r) dr explile —m,)1]
H=q[ loEaf{-=+2)er
J : A R
7 = J 2(—.11_ ﬂ) o
H JIXnIm(FA)I —tR) O 5)

ﬂ) dr expli(e — n,)¢]

.71
& = [ 6*(ealiun(ea) explio. iS4

K= anxm(rA)é(fn) exp(—welf)(-—-+ )dv’ expli(an —e)t].

R

We note the relation . _
iS=K*-K : - (6)

which ensures the conservation of probability.

Equaticn (4) is solved subject to the boundary conditions a(t=-c0)=1,
¢(¢ = —0c0) = 0 for each value of the impact parameter b The capture cross sectnon it
the state with quantom numbers n!m is then

Quim =2 fo le(e= -;-do)]’b @ )

and the tota] capture cross section is

@ Z Onlm . (8)
where, for each 7, the sums over / and / range over all the aLowed values of { and m;
lm|<iand 0s<i<(n-1).

The evaluation of the direct matrix clemenis & and H is elementary, and the
principal numerical problem is the efficient evaluation of the overlap S and the
exchange matrix elements X and K. A standard computer package has been developed
to enable the matrix elements for any values of 7, / and m to be calculated (Noble 1980)
using the Fourier transform method of Sin Fai Lam (1967).. This package can be
obtained on request from the CPC Program Library.

In the case of incident He®* ions, previous calculations in the two-state approxima-
tion have been made for capture into the 2s and 2p states of He* by Malaviya (1969).
This affords an independent check on the numerical accuracy of the results, as rather
different numericai methods were used in the two caiculations. It is very satisfactory
that agreement with Malaviya’s cross section was obtained to the three significant
figures published.

~ 3. Results and discussion

Calculations were carried out:at incident energies between § and 260 keV amu™* for
. . ] . -
capture into all final states with # <4 for He* and Li** and for n <5 for Be** and B*".
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The cross sections, &, = Zm Oim, fOT capiure into each complete shell are shown in table
1. Tec compare these with the experimental data for the total capture ¢ross section
o =X, o, a corréction must be made for capture into shells with higher n. This was
snade by assuming a behaviour of the cross section which is shown by the Brinkman-
Xramers cross section at high velocities (McDowell and Colemsan 1970 p 379). Of
course; the Brinkman-Kramers cross section is incorrectin magnitude, but it is effective
in predicting cross section ratios (Crothers and Todd 1980, Chan and Eichier 1979). If
7z 18 the largest value of n for which two-state calculations have been made, our
correction is to use the expression -

(1) = 0 (o) (Mmac/ 1) - )

for all n > ngax. The total cross sections found in this way are included in table 1.

‘Table 1. Calculated cross sections for capture by ions of He**, Li**, Be** and B** from
H(1s), units.of 107*% cm®.

: a(n)

(kevamu™ -  m=1 2 3 4 5 o =So(n)}
He?* .

5 0-0020 10-53 0-03¢  0-0093 . 10-60
10 0024  11-21 0-450  0-037 11-82
25 0-086 579 1-49 0410 841
50 0172 1.79 0-868  0-376 379
100 0-102 0314  0-179  0-093 1 0-84
200 . 0-025 0-031 0-0i6 . 0-008 0-094
Li* , .

5 0-000  20-72 2:43 0-009 - 23-17
10 0-060 1893 6-89 0:328 26-67
25 ¢-002 8-54 648 2.04 20-45
50 0-002 283 280 147 " 9.39
100 0-001 0-611  0-589 0377 218
200 0-601 0081  0-064  0-039 0-23
Be** ' o :

5 8-009 589 434 0-38  0:05 49-86
10 0-000 699 316 316  0-22 4243
25 0-000 4-42  14-20 649 217 31-74
50 0-000 1.96 5-06 353 1.96 16-53
100 0-000 0597 1.089 0-879 0-584 4-35
200 " 0-001 0-112  0-138  0-104 0-069 0-57
854— . .

5 § 210 4963 1298 0-14 65-14
10 216 3719 1845 137 62-00
25 175 16446 1440 5-59 49-65
50 1-03 614 623 391 25-34
100 _ 0-41 1-45 151 111 6-78
200 0-11 021 020 015 0-97

T E is the laboratory energy of the incident jon on a stationary target.
t Allowance made for n > r,. as in equation (9). ’
§ Ground-state capture cross sections (2 = 1) are very small and not given.
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From table 1, we can see that over this energy region capture into the ground siate is
quite unimportant except for the case of He®* where it amounts to 26% of the total
cross section at the highest energy of 200 keV amu™' (v =2-8 au). At lower energies
oniy one or two values of » are important; but, as the energy increases, so does the
number of n values of significance. The behaviour of the cross section as a function of
incident charge ¢ is of interest. For a given relative velocity, Crothers and Todd (1980)
have shown that high-energy approximations, such as the Brinkman-Kramers, the
continuum distorted-wave and the continuum intermediate-state models lead to a ¢°
variation of the cross section.t However, at lower energies the variation may be closer
t0 q° (Presnyakov and Ulantsev 1975). Inour model the variation is roughly q° over the
energy range 10-100 keV amu ™" with deviations at the highest and lowest energies (see
table 2). It is clear that the assumption of proportionality to a power of q is rather too
simple and that simultaneous scaling of cross sections and velocities as in the work of
Ryufuku and Watanabe (1979a) or of Gardner eral (1977) is likely to be more accurate.
However, such a procedure amounts to an empirical interpolation formula, since there
_ does not appear to be any good theoretical reason to suppose that the velocity should
scale.

Table 2. Calculated total cross sections for electron capture divided by g°, units of

10—16 cmz .
E (keV amu™) He** Li** Be®* B -
5 2-65 2:57 - 311 2-69

10 2-95 2-96 2-65 248

25 2:10 2:27 1-98 1-99

50 . _ 0-94 1-04 1-03 1-01

100 0-21 0-24 0-27 0-27

200 0-024 0028 0035  0-039

For a given n at the lowest energies the capture probability increases with / up to the
maximum value allowed, | = n — 1. Asthe energy increases, the higher [ values begin to
be suppressed. A similar trend is found in the Brinkman-Kramers approximation
(Golden et al 1978), the eikonal approximation (Chan and Eichler 1979) and in the
distorted-wave calculations of Ryufuku and Watanabe (1979b). This is illustrated in
table 3 in the case of capture by B** into thz n =5 level of B*".

Table 3. Cross sections for capturé by B** from H(1s): distribution in [ for the shell n =5,

units of 107 *¢ cm?.

E (keVamu™) =0 1 2 3 4
10 . 0069 0204 0315 0358  0-430
50 0-131 0385 0-668 1288  1-441
200 0004 0-021  0-062 0049  0-011

t Atvery large values of v, the Brinkman-Kramers cross section is proportional to q’. see equation (8.2.16) of
McDowell and Coleman (1970).
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Our caiculated cross seciicns are compared with otrer theoretical calculaticns end
with experiment in figures 1—4. The most extensive thegretica: work at intermediate
ererpies covering all the cases we have considered has dbezn by Olson and Saiop (1677)
using the classical Monte Cario meizod of Abrines and Zercivel {1968z, 3) and
Ryufuku and Watanabe (1978, 1979%¢, b) using a unitarised distoried-wave £nr0ach,
Tre classical caicuiations, which cover an energy range of 40-2CC keV amu”}, are
comparable in magnitude witn the two-state calculations and with experiment, but the
shape of the cross section as a function of energy appears rather difierent, the cross
sections decreasing with increasing energy more rapidly than might be expected. Tais
may be due to large statisfical errors being associated with the calcalation of the two
points of highest energy, as noted by Olson and Sziop in their paper. The work of
Ryufuku and Watanabe is based on the distorted-wave solution of equation (4). The

,;10-"5- 1 — . 7 — ——r ~

ook Total capture cross section

200-
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40 +

10

¢/

?
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Cross section for capture
into the 2s level of He*
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G0o2r

el N | N
0L 06 1 2 &L 6810 20 40 60 100
Laboratory energyikeV amu)

Figure 1. Cross sections for eleciron capture by He* ™ from H(ls). Total cross sections ate
shown in the upper part of the figure and cross sections for capture into the 2s state of He”

are shown in the lower half of the figure. Theoretical cross sections: ——X——, two-state
atomic expansion (present work) for total cross sections; ——O-——, two-state atomic
expansion {present work) for 2s capture; ~—— -~ — , unitarised distorted-wave approxima-

tion (UDWA) Ryufuku and Watanabe (1978); O, classical method, Olson and Salop (1977),
O, eight-state atomic expansion, Msezane and Gallaher (1973); +, eight-state and (0,
eleven-state atomic expansion, Rapp (1974); @. three-state molecular orbital expansion,
Piacentini and Salin (1977); - =+ =- =+~ , twenty-state molecuiar orbital expansion,
Winter and Lane (1978); ®, ten-state molecular orbital expansion, iatton er al {1979).
Experimental cross sections: ©, Shah and Gilbody (1978), Nutt e al (1978); O, Bayfield and
Khayraliah (1975); @ Olson et al (1977).
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Figure 2. Total cross sections for electron capture by Li** from H(1s). Theoretical cross
sections: ——X——, two-state atomic expansion (present work); - —-—~— , unitarised
distorted-wave approximation (UDWA), Ryufuku and Watanabe (1979a); ©, classical
method, Olson and Salop (1977). Experimental cross sections: Q, Shah ez al (1978).
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Figure 3. Theoretical total cross sections for electron capture by Be** from H(1s).
——X——, two-state atomic expansion (present work); ~----- , unitarised distorted-
wave approximation (UDwA), Ryufuku and Watanabe (1979a); O, classical method, Olson

and Salop (1977).
distorted-wave charge exchange amplitude is (Bates 1958)

DW, - * /'E_S*H H —_ Y
C (t—oo)—j'_wdr\-——l_mz)exp.(aa(t) 5.()) (10)
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Figure 4. Total cross sections for electron capture by B*™ from H(1s). Theoretical cross
sections: ——X——, two-state atomic expansion (present work); ~---- , unitarised
distorted-wave approximation, Ryufuku and Watanabe (1979a); O, classical method,
Olson and Salop (1977). Experimental cross sections: A, Crandall etal (1979); O, Goffe et
al (1979).

where

H—SI?) a1

8a(t) = L dr (—————1 57 5.(0)= L ar (——ﬁzf;f{ )

Ryufuku and Watanabe make the approximation of neglecting S in the denomina-
tors of these expressions and this should be a good approximation in most cases. They
then unitarise the total probability for capture P(b), defined as

p(b)= ; |C o (2 = 0) (12)
by writing
P(b)=sin*(p(b))*/%. {13)

They derived this expression from the perturbation series by (i) neglecting time
ordering and (ii) omitting the even ordered terms from the series. The latter approxi-
mation is very much open to question. Examination of the coupled channel approxi-
mations of Rapp (1974), for example, in the case of He?" + H(1s) shows that at the lower
energies where the two-state approximation begins to break down, corrections arise
from couplings to the n = 2 levels of H and these couplings do not oecur in the unitarised
distorted-wave model (UpwA). From figures 14, we see that for He®", the UDWA cross
sections are rather close to the two-state cross sections, above 5 keV amu™'. For Li*”,
Be'" and B°", the UDWA cross sections, while agreeing reasonably with the two-state
cross sections at the higher energies, are considerably smaller at the lower energies,
where the unitarisation procedure produces large corrections to the Dw cross section. It
is, of course, hardly necessary to point out that coupicd channel calculations automa-
tically preserve unitarity (in the two-state case if equation (6) is satistied), but while
unitarity is a virtue, it does not guarantee the accuracy of a method.



- 301 -

Electron capture of He?", Li’*, Be*” and B®* from H 4253

At the higher energies the .calculated two-state approximation produces cross
sections which are close to those of the distorted-wave approximation of eguations (10)
and (11); in other words ‘back coupiing’ issmall. Tc take an explicit example, Sahz et a/
(1980) have recently calculated the He" + H(is)~He*(3s) + H " cross section from
625 to 200 keV amu ™" in the DW approximation. Above 25 keV amu"' the bw and
two-state cross sections agree to three significant figures, put below this energy the ow
cross section is too large, exceeding the two-state cross section by a factor of about five

at 6 keVamu™'.

3.1. He"

The case of helium is interesting in that not only the total cross section has been
measured, but also the cross section for capture into the 2s level of He*. From figure 1
we see that the two-state calculations (and the UDWA cross sections) agree rather weil
with the total cross section data of Shah and Gilbody (1978) and Nutt er af (1978) from
5 keVamu™', becoming a little larger than the data at higher energies. The agreement
between the present calculations and the data for 2s capture is less good, but is not
surprising as Malaviya's (1969) work shows that while the n = 2 capture cross section
given by the two-state approximation agrees closely with the results of the more
elaborate five-state approximation above 6 keVamu™', the coupiing between the
degenerate 2s and 2p levels is of importance in determining the cross sections for
capture into the individual 2s, 2p, and 2p.; levels.

The results of the more elaborate eight-state atomic expansion calculations of Rapp
(1974) and Msezane and Gallaher (1973) are also shown in figure 1. As Rapp remarks,
these calculations should agree, but in fact there are considerable differences between
them. For this reason.it is difficult to comment on the agreement of these calculations
(or of the eleven-state work of Rapp) with the two-state calculations and with the data.
Other calculations at the lower energies, based on the MO expansion are shown. Of
these, the recent work of Hatton et al (1979), which is the only MO calculation which is
completely translationally invariant, is in good agreement with the data.

3.2. Li®*, Be** and B

For lithium, the two-state cross section agrees rather well in shape with the data of Shah
etal (1978), but is a little greater in magnitude (see figure 2). For beryllium there is no
data, while for boron the two-state cross section has a similar energy variation to that of
the Belfast data (Gofie et al 1979) and again the calculated cross section is somewhat
greater in magnitude. The lowest energy in the Belfast experiment was around
65 keV amu~' but there is a single measured point at 6 keV amu™' by Crandall er al
(1979). As can be seen from figure 4, this point is in much better agreement with the
UDWA cross section than with the present calculations. Clearly further measurements
in this energy region would be desirable.

4. Conclusions
Over the intermediate energy range we have considered (5-200keV amu™'), the

two-state approximation appears to represent the electron capture cross section to a fair
degree of accuracy. At lower energies, where the molecular aspects of the system will
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become important, the two-state approximation can be improved by using the variable
charge methcd of Cheshire (1968) and it is our intention to expiore this, as weli as to
extend our work to cases with ¢ > 5. At higher energies, continuum intermediate states
are important.and methods such as the Cow or CIS approximaticns shouid be employed
(Belkic eral 1979). Itis unfortunate that, as noted above, there is some disagreement
between the different authors on the resulis of many-state atomic expansicn cal-
culations for He?". To clear up this question, we are planning to repeat the eight-state
calculations and to extend them by adding suitable pseudostates.
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