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ABSTRACT

The properties of nonlinear devices, semiconductor diodes, were
determined at high frequencies using the method of spectral characterisa-
tion. Such characterisation was carried out employing a specially developed
technique where the components of the harmonic spectrum generated within
these diodes at radio and microwave frequencies were measured.

The theory of spectral analysis, based on Fourier principles,
was reviewed. It was applied to the periodic gate function, which plays
a fundamental role in signal analysis, in order to lay the foundation for
the theoretical investigation carried out between pulses of known shapes
and their corresponding spectra. Some useful relationships were established
and applied in the evaluation of devices. Based on the fundamental properties
of the periodic gate function, two new sampling procedures were introduced.

The harmonic generating properties of practical diodes, where the
nonlinearity in the element is an inherent condition, were examined. It
was established that the spectrum generated within the device, at a particular
drive level, gives the "fingerprint" of the diode, i.e. represents fully its
nonlinearity. Measurement methods, both at low and high frequencies, were
also discussed.

The new technique, called the Multiple Reflections Resonant Line
(MRRL) method was developed and described in the thesis to measure a complete
spectrum. The method employed a coaxial slotted line system terminated by the
device under test. The basic transmission line theory was extended to include
the phenomena of multiple reflections along and resonance of, the line. The
properties of the standing waves were then related to the device parameters.
The twelve microwave diédes were successfully modelled which included parasitics
using the new spectral technique. An attempt was made to evaluate these

devices for particular applications.
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CHAPTER 1

1. INTRODUCTION

Nonlinearity, a subject of great mathematical and physical
interest is on the whole multidisciplinary, i.e. it includes electronics,
optics and astronomy. Nonlinearity of devices, especially forms an
extensive topic within this branch of technology. Many high frequency
components and systems use nonlinear solid state devices as passive or
active elements. The design of such components requires a knowledge of
the behaviour of the semiconductor devices under varying d.c. bias and
microwave operating conditions. Many modern applications in electrical
technology are based in a fundamental way on this nonlinear phenomenon.
It is particularly important in the field of communication wherc¢ the
essential circuits like harmonic generators and frequency converters
operate only if a nonlinear element is present. It is therefore ad-
vantageous to know the full extent of their harmonic generating
capabilities for the efficient performance.

At the present time, the extent and the method of characterisation
of these devices, especially at high frequencies is grossly inadequate.
The data sheets provided by most manufacturers are generally incomplete.
Normally, the device parameters available are the static characteristics
and those obtained from low frequency measurements. If the dynamic
characteristics are given, they are generally at one particular test
frequency and drive level. It is important to note that the behaviour
of a nonlinear device is critically dependent on the drive level. For
most high frequency applications, it is not adequate to rely on the low
frequency measurement of the device, because some of its parameters, even
parasitics, inherent and due to encapsulation, may be frequency dependent.

Besides, measurement of the series resistance at low frequencies is difficult




and inaccurate. High frequency measurements are therefore necessary
for the complete device characterisation.

The efficiency of frequency conversion depends on the amplitudes
of the harmonic voltages and currents generated within the nonlinear
element. In order to describe fully a device by means of its harmonic
spectrum, there is a need to know the amplitude of each component as well
as its relative phase. At present there are no single instruments
available that can measure the complete spectrum of amplitudes and phases.
Existing spectrum analysers cover a wide range of frequencies right up to
about 40 GHz but can only measure the amplitudes of the input frequencies.
If the phase spectrum is not known, a great deal of information is lost
especially about the imaginary, usually frequent-dependent, terms of the
physical or electrical parameters. However, if the response waveform of
the element is known then the complete spectrum may be found by the usual
Fourier analysis methods. There are however, three main constraints with
such an approach. Firstly, it is difficult to derive a precise law for
the practical device. Secondly, the analysis which is normally lengthy
requires a lot of approximation and consequently further assumptions.
Thirdly, the method is restricted to lower frequencies because of the
sampling rate difficulties.

In order to determine the properties of a nonlinear device at high
frequencies, there is a need to measure the spectral content generated
within it. It is further justified by the fact that such spectra are the
unique representations of the device nonlinearity which provides the
constants (harmonic coefficients) inherently associated with a particular
behaviour. The complete spectrum thus gives the '"fingerprint" of the
device at a specific drive level. On achieving this, there is no need Lo

rely on the inaccurate I-V or C-V laws.



The main objective of this work was to characterise a family of
devices at high frequencies by means of the spectral components generated
within their nonlinearities. This resulted in the development of the
technique called the Multiple Reflections Resonant Line (MRRL) method.

In Chapter 2, the thoery of spectral analysis based on the
Fourier principles are reviewed. A periodic gate function, which often
plays a fundamental role in signal analysis is Fourier analysed and its
properties reviewed. This will form a basis in the theoretical investi-
gation, where relations are established, of the spectral behaviour of
pulses of different shapes.

Chapter 3 outlines the harmonic generating properties of nonlinear
devices. It begins with the classification of high frequency practical
diodes which are solid state and nonlinear in behaviour. The phenomenon
of nonlinearity and the historical development of its analysis are
described. The proposed device characterisation and evaluation by the method
of spectral representation are considered and the display of the unique
dynamic characteristics constitutes the "fingerprint" of the device.
Measurement methods at high and low frequencies are also indicated.

Finally, general applications of nonlinear devices are given.

The theory of the new technique of spectrum measurements called
the Multiple Reflections Resonant Line method is described in Chapter 4.

The method employs the coaxial slotted line system. The operating principles
consist of the setting up of multiple reflections, the creation of harmonic
standing waves and establishing the conditions of resonance under known
conditions. The nonlinear device, terminating the line acts as the

harmonic generator, is driven by a single frequency source. The expressions
for the generated harmonic voltage and the complex impedance at harmonics,

are also derived.




In Chapter 5, measurement and experimental procedures are covered.
The equipments and experimental arrangements are first described followed
by the calibration procedures. The setting of the resistive multiple
termination which forms an important component in the experimental set-up
is discussed. The spectrum analyser, which is a selective voltmeter,
plays a key role in the measurements for it is used to measure the stand-
ing waves at harmonics and -the fundamental drive current. Other dis-
cussion includes the d.c. measurements and some detailed aspects related
to the technique described. Finally, the experimental procedures are listed
to avoid ambiguity.

The results of both the d.c. and the harmonic measurements are
presented in Chapter 6. The static characteristics of the twelve diodes
chosen for the prdject are tabulated and their properties examined. The
results of harmonic measurements are presented in the form of graphs for
the following spectral quantities,the generated voltage, relative phase,
impedance magnitude and the parasitic capacitance plotted against the
fundamental drive current. Discussion on the harmonic generating properties
of each diode will then be made in terms of these new spectral representations.
This includes the examination of the behaviour of one spectral quantity, for
example the harmonic amplitude, in relation to other quantities like relative
phases and impedance, within the given drive level range.

Finally, in Chapter 7, an assessment of the method covering the
accuracy and errors, significance and possible improvements are given.
Evaluations of devices will be made on the basis of the experimental
results of the spectral characterisation presented in Chapter 6. This
includes the explanation and interpretation of the results which will
ultimately provide the basis for device classification. Suggestions for

future work arising from this research are also offered.




CHAPTER 2

THEORY OF SPECTRAL ANALYSIS

2.1 INTRODUCTION

The ultimate aim of employing any analytical method in the experi-
mental investigation of device behaviour is generally to obtain, if possible,
a closed form expression for its response. The devices used are the non-
linear microwave diodes. However, in normal experimental work only the method
of piecewise analysis may be possible. As the energising function will
normally be periodic, i.e. of sinusoidal or periodic waveform, the resulting
response will be a harmonic frequency spectrum. Consequently, the procedure
adopted in the determination of the components in the frequency spectrum may
be referred to as spectral analysis. The resultant Fourier series may be
obtained, at low frequencies, from a time function display on the oscilloscope
using numerical methods and computer facilities. In a few lucky cascs jiomay
be possible to obtain a formula for such a time function. The direct numerical
method from a time display is restricted however by the bandwidth limitation
of the oscilloscope, with the upper cut-off of about 70 MHz. The frequency
spectrum of the response can be measured directly using a wave or spectrum
analyser. Normally wave analysers can be used up to 500 MHz and spectrum
analysers up to 220 GHz.

The fundamentals of Fourier analysis for periodic signals and the
réquired mathematical constraints in its applications are first reviewed.
This is followed by a brief treatment of the concept of the Fourier inlegral
as used in the analysis of aperiodic signals. A detailed illustration of
Fourier analysis using the'well—known periodic gate function is also presented

in this Chapter. In addition, applications of a periodic gate function in the

analyses of arbitrary waveforms are given. Generated spectra of both




periodic and aperiodic waveforms are theoretically determined and
examined.
2.2 FUNDAMENTAL RELATIONS IN FOURIER ANALYSIS

1
A general trigonometric Fourier series( ) for a periodic function may

be written as,

f(t) = 2 + E ancos(nwot) + E bn51n(nmoi) (2.2.1)
n=1 n=1

or simplified to,

ool

: - E 2.7
f(t) = Cncos(nwot + ¢n) ! )
n=o
where
;
c - (a2.+p %" (2.2.3)
n n n
-1 bn
o = tan (- — ) (2.2.4)
n a_

The coefficient Cn represents the amplitude while ¢n is the phase

shift for the nth harmonic and Wy is the fundamental frequency.
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The Fourier coefficients are given by:
T
2
1
a = = f(t)dt (2.2.5)
o T
_I
2
T
2
2 -
a = = f(t)cos(ny t)dt (2.2.6)
n T o]
_I
2
T
2
2 .
b = = f(t)sin(nw t)dt (2.2.7)
n T . o}
_T
2

The function can also be represented by an exponential form,

jnwot
£f(t) = E Fn e ) t < t<t, (2.2.8)

l —jnw Jf
where Fn = T f(t)e © a4t (2.2.9)

All the above equations are valid subject to certain requirements. These

(2

are summarised by the well known weak or strong Dirichlet conditions




which involve singularities, uniqueness, orthogonality and convergence
criteria (outlined in the Appendix A) and are based on the finite energy
concept.

The Fourier series as represented by egn. 2.2.8 is applicable to
a periodic signal. The transition to an aperiodic signal representation
is obtained by making the period approach infinity. This can be achieved
by considering initially the exponential form of the Fourier series of a
periodic function. The derivation (given in Appendix B) leads eventually

to the final expression for Fourier transforms, i.e.

]

} £(t)

1

-
—

o
~

F(w) dt (2.2.10)

— 0o

aq (1

+ 00

£(t) = SL‘l Flw) | = = Flw)ed®t qu (2.2.11)

There are two types of spectra, discrete and continuous, which are
obtained from periodic and aperiocdic signhals respectively. In the discrete

or line spectrum the components are harmonically-related. With successive

increase in the period the signal tends to become aperiodic, resulting in an
increase in the density of harmonic components. In the limit, as the period T }
tends to infinity, the spectrum no longer remains discrele bul becomen

continuous. Hence an aperiodic signal represents the limiting behaviour

of the Fourier series. However, pulses of similar waveform whether periodic

or aperiodic will produce similar envelopes of their amplitude spectra.




2.3 PROPERTIES OF THE PERIODIC GATE FUNCTION

One of the most important functions, (which plays a fundamental role
in signal analysis), is the train of pulses( ) shown in Fig.2.1. Its
importance lies in the fact that it is often utilised as a gating waveform
in the analysis of various functions. This periodic gate function is a
single polarity rectangular wave whose height and markspace ratio can be

varied according to the needs. Its Fourier coefficients may be obtained

using eqn. 2.2.9, i.e.

T
2 .
1 —anot
Fn = 7 f(t)e dat
-_ I
2
Tm sin x
= = — (2.3.1)
T
m T
= —_— < < -~
f(t) 0 5 ft] 5
Tm
= < —
| 1 el < 5
X = nw Tm/2
. sin x . (4) ) .
The ratio is called the Fourier kernel and is sometimes
symbolised (or denoted) as sinc(x). Its spectrum is identical to that

of the familiar optical diffraction pattern, illustrated in Fig.2.2. As this
important function occurs very often in communication theory, a brief review
of its properties may be useful. The main features are that the peak value of
the main lobe is unity occurring at Lhe origin, i.e. x 0O, the zeros are ot

the nonzero multiples of @ and the sidelobes are relatively slowly decaying.
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The frequency spectrum which may be deduced from egn. 2.3.1 is a line or
discrete spectrum with components located at the multiples of the fundamental
frequency W which is given by %ﬂ , as shown in Fig.2.3. As the period T
becomes larger and larger, the fundamental frequency %ﬂ becomes smaller and
smaller and hence there are more and more frequency components in a given
range of frequency. On simplifying equation 2.3.1 the Fourier coefficient

Fh is given by :

T
. m i
sS1ln [ﬂ'ﬂ' ‘,‘1'.,‘_
F, = (2.3.7)

n nmw

Thus, on increasing the period T, the amplitude of the frequency components
will decrease as L sin [:(nﬂT ) l-] for particular values of n and
nmw m® T m
Rewriting egqn. 2.3.1 in terms of fundamental frequency, the Fourier coefficient
Fn is given by :
T
. m
sin (nwO > )

F,oo= nm (2.3.3)

"Thus the zeros will occur at integral multiples of m and the sine term

will correspond to

nw —g = kv , nk = 1,2,..... (2.3.4)

(] = — 3 T 3y s e — (2.3.5)

Therefore the envelope of the spectrum depends upon the pulse shape, given

by T When, on the other hand, T is kept constant and Tn is
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increased ( Tm< T), the amplitude of the frequency components will

will increase according to egn. 2.3.1.

1 sin Eﬁ) T ,
ny T m
and the frequencies corresponding to zeros will fall., However, the
frequency spacings between adjacent harmonics remain the same. The
pulse width T determines the frequency of the first zero of the amplitude
function, as given by eqn. 2.3.5. This helps as a first approximation to
establish the range of frequencies required to reconstruct the pulse from
Fourier components.
The Fourier series for a train of pulses of unit height which are

symmetrical may now be written as,

'm 2Tm sin X
S(t) = 7t T 5 I cos(nwot) (2.3.6)
n=1
nw_ T
3 om
x 2
It is called the switching or the periodic gate function. It may be

written as

£f(t) = A.S(t)

where A is the amplitude. By varying different parameters involved in

this kind of periodic train of pulses, the extreme conditions may be deduced.

(3)

As T tends to infinity , the function f(t) consists only of non-repetitive

pulse, and the spectrum then represents a non-periodic function over the whole
T

, m

interval (-«,«)., The term 7  in eqn. 2.3.6 is defined as d.c. level for a
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unit pulse height. Other periodic trains of pulses of different shapes
and symmetries may also be considered and their corresponding periodic
gate functions found. In general, the function S(t) can be multiplied by

an arbitrary waveform f(t) to give a sampled function fs(t) i.e.

fs(t) = f(t). S(t)

whose properties may be easier to examine.

2.4 ANALYSIS AND SPECTRA OF PERIODIC WAVEFORMS

2.4.1 Introduction

The relationship between pulse shapes and their frequency spectréb’b)
will be examined next. A detailed analysis was carried out for the
periodic waveforms which then were categorised as (a) symmetrical and
(b) asymmetrical types. Next, within each group the geometrical shapes
were chosen to be representative of the types normally met in practice.
In every case the behaviour of such pulses was also chosen to be mathe-
matically definable.

In the symmetrical case, the pulse is defined as the shape that Aas
a vertical line of symmetry. The analysis was carried out by considering
two positions of the origin, i.e. the one that lies on the vertical axis of
symmetry and the other at the leading edge. In the former case the waveform
may be considered to be in even-function symmetry while in the latter in odd-
function symmetry. The selected shapes were rectangular, trapezoidal, sinu-
soidal, sinusoidal squared, and triangular as shown in Tables 2.1 and 2.2.
The asymmetrical pulses however are defined as the shapes that do not have
a vertical line of symmetry. The choice made was as shown in Table 2.3.

The start of the pulse was taken as the origin in the analysis of each
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asymmetrical waveform. Every pulsé was first Fourier analysed to obtain
the expressions for its coefficients ; from these the relative amplitudes
and phases of the harmonics were determined and examined. Finally, the
amplitude and phase spectra were plotted for each pulse waveform under
consideration. The knowledge of symmetry of the function f(t) is
important because this very often helps to simplify the analysis and
hence reduce the computing time.

2.4.2 The Methods of Analysis and Computation

A rectangular, single polarity train of pulses, repeated periodically,
was chosen as the reference waveférm within which other pulse configurations
were introduced. This provided an easy comparison between different pulse
shapes. It also reduced the choice of the shapes needed to cover as wide a
range of variations as possible. The reference pulse was made to have its
origin at the leading edge or the central line of symmetry, be of unity height
and have the ratio of its duration (1) to the pulse repetition period (T) equal

to 0.1, i.e. % = 0.1. The well-known spectrum of this type of pulse, often

called the periodic gate function, has a §i§—5 distribution of amplitudes and
its envelope consists of a number of lobes. For this particular case, i.e.
= = 10, each lobe will contain nine harmonic components, whilst every tenth
harmonic will be zero.

If a periodic waveform is completely described by a known time function,
then its Fourier coefficients can be obtained using egns. 2.2.5, 2.2.6 and 2.2.7.
However, for the case where this is not possible separate expressions must be
derived. Thus, it is obvious that the Fourier coefficients can be determined
provided that the pulse waveform can be completely described and the integral

equations solvable. A summary of all expressions for the Fourier cocfficients

of the pulses considered is presented in Tables 2.1, 2.2 and 2.3.
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2.4.3 Symmetrical Pulses

In the case of even-function symmetrical waveforms (types chosen are
shown in Table 2.1) only cosine terms are present and the amplitude spectrum
is given by the coefficient a s where 'n' is an integer. Since the coefficient
bn is equal to zero for all 'n', the phase within each lobe remains constant
at 0° or 1800. Waveforms with odd-function symmetry do have both cosine and
sine terms, resulting in the existence of phase in addition to amplitude
spectra. However, for the square pulse with odd-function symmetry, the series
comprised only the sine terms. For convenience, the amplitude spectra may be
represented by 'spectrum envelope'. Attempts were made to establish any
relationships between the areas of different pulse waveforms and other para-
meters. It was found from the spectrum envelopes, that the fundamental ampli-
tudes are approximately proportional to the areas of the pulses (shown in
Table 2.4).

From the expressions for the Fourier coefficients (Table 2.1), it can
be seen that they are either positive or negative, depending on the harmonic
number 'n’'. As the Fourier coefficient expression for the rectangular pulse
is a sine function, the Fourier coefficients do have both positive and negative
values. However, in the case of triangular pulses whose Fourier coefficient
expression is given by the square of the sine function, all the coefficients
will have positive values. If the area of the pulse under consideration is
greater than one half that of the reference pulse, the amplitude spectira have
both positive and negative values. On the other hand if this area is less
than one half that for the reference pulse, the amplitude spectra are always
positive.

Theoretically, pulses of identical shapes produce the same amplitude
spectrum envelope, irrespective of where the origin lies. This can be verified

for even function symmetry by considering Table 2.1 and the corresponding




The Values of Pulse Area and their Corresponding Phase Variation

TABLE 2.4:
and the Amplitude at the Fundamental
PULSE PHASE VARIATION IN
Area Major First Minor | Second Minor
Waveform C x 10”
{square units Lobe Lobe Lobe 1
Rectangular 200 0°-180°| 0°-180° 0°-180° 19.8
Trapezoidal 150 0°-234° | 54°-306° 126°-306° 14.8
Sinusoidal 133 0°-270° | 90°-»70° 90 =p70" 13.2
.  dal
Sinusoida 106 0°-342° | 162°-340° 162°-340° 10.6
Squared
Triangular 100 0°-360° | 0%-360° - 9.9
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Figs 2.4(a) and 2.4(b). Data for odd function symmetry is given in

Table 2.2 and Figs 2.5 ; here Fig.2.5(a) shows symmetrical pulses of
different shapes while Fig 2.5(b) gives their respective amplitude

spectra ; Fig 2.5(c) to 2.5(g) gives amplitude and phase spectra for the
pulses listed in Table 2.2. Phases are computed from the Fourier co-
efficients an and bn’ and the phase angles fall to the quadrant corréspond—
ing toc the signs of these coefficients. The observations on the phase
variations between harmonics up to the thirty sixth harmonic for different
pulse waveforms are summarised in Table 2.4. The ﬁpper limiting values
of the phases in the major lobes appear to have some relationship with the
areas of the pulse waveform. This is illustrated in Fig 2.7 plotted from
data obtained in Table 2.4. Another significant observation here is that
the phase variations are linear within each lobe ; furthermore the range of
variation depends on pulse shapes.

2.4.4 Asymmetrical Pulses

The pulses considered here are those of triangular and trapezoidal
of varying shapes,exponential and sinusoidal. However, those of symmetrical
shapes are the special cases of the general pulses. The origin is
chosen to be at the leading edge. All appropriate expressions are summarised
in Table 2.3. Figs 2.6(a) and 2.6(b) refer to pulses of triangular and
trapezoidal shapes. Figs. 2.6(c) to 2.6(f) detail the amplitude and phase
spectra for different triangular pulses. Figs.2.6(g) to 2.6(k) refer to
trapezoidal pulses and Figs 2.6(1) to 2.6(p) refer to exponential and sinu-
soddal pulses. As each of the pulses considered had to be fitted into the
reference pulse, the basic equations for some pulses require modification.
In general phase variations for asymmetrical pulses are nonlinear.

A lobe in an amplitude spectral envelope is said to exist if the curve

crosses a zero-point. In all cases except for those of triangular cases of
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C and D, all asymmetrical waveforms considered do not have any lobe.
However, these amplitude spectral envelopes do have crests and troughs.

2.5 ANALYSIS AND SPECTRA OF APERIODIC WAVEFORMS

An aperiodic waveform may be defined as that where the period of
its oscillation is undefined. The period can either be infinite or varying
randomly. Generally aperiodic signals are generated by a cluster of non-
harmonically related sinusoidal frequencies around some centre frequency
which is closely associated with some characteristic peculiar to device
producing the signal. In this analysis it is more instructive to consider
cases where the period is infinite.

The Fourier analysis of aperiodic signals will lead to the existence
of Fourier transform, as given in the Appendix B. The Fourier coéfficient

of a rectangular train of periodic pulses is given by, (as in egn. 2.2.9).

T
1 : _jnmbt
Fn =7 f(t)e dt
_TI
2
Tm sin x nonm
=T T where x = —5 (2.5.1)
Fn is discrete dependent upon the integral values of n. The Fourier

transform for the corresponding same aperiodic pulse is given by (in

the Appendix)

Flw) = f(t)e dt (2.5.2)
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As the pulse repetition period tends to infinity, hence
correspondingly the fundamental frequency will tend to zero. ©So the
harmonic spectrum will comprise components of 'zero fundamental frequency'
and hence become infinitely close together. Thus w and F(w) become
continuous. Comparing egns. 2.5.1 and 2.5.2, it will be seen that a single
‘universal' envelope curve may be plotted for a given pulse shape independ-
ent of its repetition period.

2.6 APPLICATION OF PERIODIC GATE FUNCTION

In applying the periodic gate function two new mcthods of sampling
are presented. Both are involved with the analysis of an arbitrary waveform.
In the analysis of an arbitrary periodic waveform, sampling is normally done
and often carried out horizontally. This is because the waveform is sampled
into time intervals over the entire period. The first method, to be known
as the pulse width method, involves with the vertical sampling. In the
second method the waveform under consideration is divided into pulses of
standard shapes with known spectra. Each of the pulses then constitutes a
periodic gate function.

The Pulse Width Method

A periodic pulse of arbitrary shape is first considered. Suampling
is carried out by breaking the waveform into pulseé. The pulses are of
_equal height but of varying widths, as shown in Fig 2.8(a). Effectively,
the vertical axis of the waveform is divided into intervals of equal height.
This type of approach leads finally to a summation of trains of pulses of
various widths and hence the method may be referred to as the pulse width
method. The resulting waveform after sampling will be a step approximation
as shown in Fig 2.8(b).

The phase shift may be considered by making the lowesl pulsce Lhe

reference whose midpoinl is chosen to be vsero. A vertical axis may Lhen




FIG. 2-8(a) SAMPLING OF A
WAVEFORM BY THE PULSE
WIDTH METHOD

F1G.2:9(a) AN ARBITRARY
PERIODIC WAVEFORM

F1G. 2-8(b) A STEP APPROXIMATION

F1G.2-9(b) SAMPLING OF AN
ARBITRARY WAVEFORM INTO
STANDARD PULSES
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be drawn through the point. The centre points for other pulses are now

found and the differences between these and the chosen point give the
Rewriting egqn. 2.3.2 to include the phase shift

relative phase shifts.

term, the Fourier series may now be written as,

Tm 2Tm sin x
A —_— o — e cos nw {t + t )
T T X o - m

n=1

M
7 1
ao = A E T m
m=1
M t
, sin(nwt m)
a = 24 g T —————— . CcoS (nwotm)
(nmt )
m=1 m
M ]
- . sin(nmt m)
bn = + 2A % T W T sin(nwotm)
(nwt m)
m=1

where 1 = —% is the duty cycle.

Standard Pulse Sampling Method

The second method of sampling concerns with the division of an
arbitrary periodic waveform into pulses of identifiable shapes. The

common shapes are trapezoidal, rectangular and triangular. Pulses of

(2.6.1)

(r.6.7)

(2.6.3)

(2.6.4)
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these standard shapes have their own spectra. As an example, the wave-
form as shown in Fig 2.9(a) may be approximated to comprise pulses of
trapezoidal (pulses A and B) and triangular (pulse C) shapes, as in
Fig 2.9(b). The behaviour of the whole waveform may then be approximated
o& the

to the suq&pehaviour of the sampled pulses. This is justified because the .
concern is essentially in the area under the curve. Hence, the Fourier
coefficients for the whole waveform become the sum of Fourier coefficients
of individual pulses. The general behaviour of the spectra due to pulses
of these standard shapes can be easily obtained, as discussed in section 2.4.
2.7 SUMMARY

As the concepts of amplitude and phase spectra are derived from
Fourier analysis, the basic ideas of Fourier analysis woere revioewed and
the conditions governing the validity of its application were discussed.
Fourier series and transforms are the mathematical representation of Lhe
periodic and aperiodic phenomena, respectively. It is well-known that
the analytical relationship between time and frequency domains may be
established by using Fourier series and integrals. Representation of Fourier
series may be made in terms of trigonometric or complex functions. It is
widely applied in studies related to electrical circuits and mechanical
vibrating systems which involve periodic potentials and forces, respectively.
The Fourier transform pair is in fact one of the integral transforms that are
commonly used in operational analysis. The frequency distribubtion ol harmonics
in Fourier series is a line spectrum whereas that in a Fourier integral is a
continuous spectrum. For convenience the line spectra are represented by
the spectrum envelopes. It is significant to note that a given pulse whether
periodic or aperiodic gives identical spectrum envelope, hence amplitude spectra.

The response of the element may be examined for the steady state or

transient behaviour. Depending which behaviour is of interest it may be
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advantageous to use different types of excitation signals. From the
harmonic components computed, the physical properties of the element may
be determined and if possible expressed in terms of electrical analogues.
It will be very important initially to establish whether the element is
linear or nonlinear. From the inductive and capacitative analogues and
the behaviour of the response, the characteristics of the element may be
derived.

The behaviour of spectra due to periodic gate function under
different conditions was discussed. The periodic gate (swiltching) funclion
as represented by the Fourier series can be applied in the analysis of an
arbitrary waveform. In this application two new sampling procedures are
introduced whereby a waveform under consideration is sampled into pulses

vertically or divided into pulses of standard shapes. This is in contrast

to the conventional mode of sampling where sampling is carried out horizontally.

Spectra of mathematically defined waveforms of different shapes, fixed
height and duty cycle were theoretically examined. Each of the waveforms was
Fourier analysed and the Fourier coefficient expressions are summarised in
Tables 2.1, 2.2 and 2.3. The relationship between the pulse shapes and the
frequency spectra investigated are presented in Figs 2.4(b), 2.5(b) to 2.5(g)
and 2.6(c) to 2.6(p). Such information based on the analysis of pulse shapes
and hence spectra generated within, can help in the characterisation of
devices. Apart from obvious ”fingerprinting”, the approach may help in
obtaining the equivalent circuits, i.e. physical modelling of devices. The
properties of such equivalent circuits may then be examined using the spectra
over a wider range of frequencies. The effects of parasitic components may
be deduced from the shapes of the speclrum envclopes and the relative amplibade

and phases of Lhe harmonic components.,




21

CHAPTER 3

HARMONIC GENERATING PROPERTIES OF NONLINEAR DEVICES

3.1 CLASSIFICATION OF PRACTICAL DEVICES

The practical devices to be considered here are solid-state diodes
which are nonlinear in behaviour and which operate at high frequencies.

The amount of work concerned with high frequency applications now constitutes
a significant area of the electronics industry. It is comparatively recent
in origin and its growth has been as phenomenal as that of semiconductor
technologies. The growth of the latter has been due to the ever increasing
demand for specific devices. This demand has led to the creation of more
varieties and families of semiconductor devices, which in turn have resulted
from improved fabrication techniques and advances in technical knowledge.
Systematic studies on these devices require Lhat suitable criteria be
established for their classification.

According to Watson(7 ) these devices may be divided into two groups
based, with some overlapping, on the device behaviour and the device
structure. Their behaviour may further classify them as (a) variable
resistances (varistors), (b) variable reactances (varactors), (¢) controllable
impedance diodes and (d) negative resistance elements. All these devices
display nonlinear behaviour. The varistor is predominantly a nonlinear
resistive element with a small reactive component whereus the varaclor
behaves as a nonlinear reactive element witﬁ a small resistive component
the reactance in the former case and resistance in the latter are normally
described as parasitics. The varactors may have planar p-n junction
structures or point-contact structures which can operate as metal-semi-
conductor Schottky barriers. The controllable impedance diodes are wide-
spaced p-i-n diodes where the conductance is very nearly proportional to

the minority carrier population stored within them. As the carrier mobility




is low within the space-charge layer at microwave frequencies, such diodes
have a quasi-linear impedance, whose value depends upon the direct current
or low frequency bias. Negative resistance diodes form an important
separate class. They exhibit a terminal impedance which has a negative
real part over a finite bandwidth and dynamic range. This property is
often exploited in circuits where low power oscillations are involved.
Devices may also be classified on the basis of their structural
features, as is evident by considering the structures of planar p-n
junctions, metal-semiconductor (Schottky barrier) diodes, microwave
bipolar transistors, ficld effect transistors (FETs), mebal-insulalor-
semiconductor (MIS) and metal-oxide-semiconductor (MOS) devices and point
contact diodes. Planar p-n junction diodes are extensively used in
electronic circuitry. When heavily doped to give a very thin depletion
layer these can be used as tunnel or backward diodes. Gunn and IMPATT
diodes are also examples of devices having a planar p-n structure ; here
however the space-charge region is sufficiently large to give a finite
transit time, resulting in the negative resistance effecl which in bturn
allows oscillation to take place. Scholtky barrier diodes consist ol
metal-semiconductor conbacts, with rectifying properlbics haced on omajorily
carrier conduction ; in normal operation they exhibit virtually no storage
of minority carriers, a problem in early p-n junctions. Microwave tran-
sistors behave in a similar way to normal transistors but require that the
transit-time is reduced. Field effect transistors (FETs) are unipolar
devices. They are constructed from either p or n type material with the

field existing between the source and the drain ; the flow of current is

controlled by the bias at the gates. They have the following characteristic

features : (a) voltage in addition to current gain (b) efficiency higher
than that of bipolar (c¢) low noise figure (d) operaling Crcquency of up

to X-band and (e) high input impedance. Point contact diodes are made by
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placing a sharp pointed wire in contact with the surface bf a suitable
semiconductor ; the main feature is the low parasitic capacitance.
There are other classifications, based on different criteria which however
do not contribute towards any further simplification in the studies of
devices.

The devices chosen for the project were of different semiconductor
material, structure and mechanism of operation. They comprised silicon
point contact diodes, Schottky barrier diodes made from silicon and

gallium arsenide and germanium backward diodes.

3.2 THE PHENOMENON OF NONLINEARITY

When a device is excited by a signal and the output is proportional
to the input the device is referred to as linear. If this is not so the
device is nonlinear. The nonlinearity in a device may be examined by
considering the basic elements whithin it, the resistance R, the inductance
L and the capacitance C, which may contribute to the storage and dissipative
effects. 1In an electrical network the circuit element capable of storing
electromagnetic energy is defined as reactance, whereas that which dissipates
it is resistance. If the stored energy is predominantly in the electric
field, the reactance is said to be capacitive and if the stored energy is
predominantly in the magnetic field, the reactance is said to be inductive.
However, it is more convenient to deal in terms of currents and voltages
rather than electromagnetic fields. Hence in general, nonlinearity in
devices may be due to any or all of these elements where each may existh
with varying degree. In many device applicutions the nonlinearity of one
of these elements is utilised, while the others (which are considered as
parasitics) are suppressed.

When a nonlinear element is energised by a sinusoid of single

frequency generation of new frequencies will result in addition to the
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direct current. These new freguencies are inter-related and are integral
multiples of the fundamental frequency. However, if two or more
sinusoidal inputs are used to drive the nonlinear element, intermodulation
will be produced ; this comprises the sum and difference freguencies of the
individual inputs.

However, for the purpose of this work nonlinearity in electrical
networks and systems will be highlighted. The significance of the need
for a deeper understanding of nonlinear electrical system is obvious. It
is remarkable to note that almost the entire modern electrical technology
is essentially based on nonlinear phenomena, for cxample, dali procensing
and work related to microprocessors involve non-linear networki.
Communication systems employ non-linear devices for processes such as
modulation, frequency conversion, detection, signal processing, decision
processes and even linear amplification. The operation of control systems
where optimisation is essential also involves non-linear elements.

The developmént(ég) of the work related to non-linear analysis
occurred during the eighteenth century. The effort included acquiring the
solution in closed and in an approximate form. Eminent workers during the

périod from 1880 to 1920 included Poincare, Linstedb, Liaupounol ™ qnd

Bendixsen. The general development during this period Lended lLowards

covering specialised cases of nonlinear mechanics. During the period
between 1920 to 1940 the theory and methods of analysis received the
greatest attention. This was due to the interest concentrated upon the
rapid development of nonlinear electric-circuit behaviour. Van der Pol(9 )
(1920) started the work on the analysis of triode oscillation and this was
followed by a number of other papers on electron-tube devices. With growing

interest in military applications, intense development on this Lopic took

place. After this period the major efforts were dircclod Lowirds L develop
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ment of non-linear control systems. Since then contemporary interests,
related to modern applications like communication systems, have received
wide support.

Higgins( 8) listed twenty four general methods of solving non-
linear problems. As the methods are wide ranging, depending upon various
applications and constraints, it is not necessary to describe them. One
of the central themes of this thesis is spectral measurements and analysis
is involved in the manipulation of spectra. The spectral measurements give
the impedance of the device under particular operational conditions. From
the amplitude and phase spectra, the general behaviour of the system may
be predicted. In addition, equivalent circuits may also be proposed.

It is interesting to note that the development of classical and
modern theory of non-linear differential equations is closely linked to the

10,11)
development of non-linear mechanics and electrical circuits( As the

non-linear analysis methods(ll) employed often have serious limitations in
terms of accuracy, length of calculation and area of application, there scoms
to be always a need to improve existing methods in addition to employing
methods used in other fields. With the approximate approach( 12) to
procedures and the analysis of results,; it becomes essential to monitor
continually the physical significance and the precise mathematics involved.
A precise and complete insight(ls) of the behaviour of non-linear systems
can be achieved through an intensive investigation and analysis of the actual
system together with the associated solution of the corresponding differential
equations of performance. Approximating to linear systems may be useful only
within limited conditions of operation. Studying a particular branch of
non-linear analysis is quite a challenge because of the few references
available. It becomes complex because of the absence of a unified theory
(14)

and the imperfections in the results. In addition ;, the theory has

been developed by people with differing interests and background such as,
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astronomers, pure and applied mathematicians, mechanical, electronic,
control and acoustical engineers, etc. and they use different approaches.

3.3 PROPERTIES OF GENERATED HARMONIC SPECTRA

One way of representing the responses of devices or circuits
excited by sources of different frequencies is by their spectra. The
spectral representation is a plot showing the relative output of harmonic
components as a function of frequency for the non-linear device, circuit
or system. Two types of spectra amplitude and phase are normally
distinguished. They are given by equations 2.2.3 and 2.2.4 respectively.
The frequency content of the response of a non-linear device is given in
terms of harmonic frequencies ; for a linear device, of course no
harmonics are generated.

The frequency spectrum is a unique representation of lLhe device
behaviour, dependent upon the drive level and the device parameters. The
impedance is the most important electrical parameter which is dependent
upon the drive level. So, anything that causes variation in complex
impedance will correspondingly cause variation in both the amplitude and
phase spectra. These spectra provide a graphical method of representing
the device or its impedance. From the behaviour of these spectra at
different levels, the behaviour at the intervening or extrapolated levels

may be easily predicted provided that the device law docs nol change.  From

the device behaviour as represented by the frequency speclrum, it may be
possible to propose and hence verify an a.c. equivalent circuit for the
device.

In the design, fabrication, operation and application of any device
or circuit, it is essential to know both its static and dynamic characteristics
and parameters. The device or circuit behaviour is normally found under

different operational conditions for the purposes of assessing its suitability
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for various functions and performance requirements. As an example, under
certain optimum conditions, a varactor can be used as an amplifier and because
of its low 1loss property may satisfy one of the important performance
requirements for amplifiers,

In low frequency work the two spectra, amplitude and phase, are
usually obtained from Fourier analysis carried out on the distorted wave-
form (generated by the non-linear device) which can easily be displayed.
At high frequencies this technique is not suitable because of the limited
bandwidth of the oscilloscope used to display the output and only the amplitude
spectra are obtainable, generally through the use of spectrum analysers.
Consequently, a technique which is central to this thesis called the Multiple
Reflections Resonance Line method was developed with which both amplitude and
phase can be obtained at different harmonics.
3.4 MODELLING AND 'FINGERPRINTING' OF DEVICES

(15)

In solving nonlinear problems any attempt to generalise the

formulation of their solutions often leads to unwieldy results. Hence,
non-linear analysis depends on different types of charactcrisation procedurc:
where there are preferred methods for a particular set of problems. Many
nonlinear problems can naturally be solved through the use of nonlinear
differential equations. However, as their solutions caﬁnot often be
written in a closed form, development of other methods becomes necessary.

A new technique central to the thesis is presented in the next Chapter. It
involves the harmonic spectrum of a nonlinear device leading towards the
'fingerprinting'.

Modelling is a procedure where the behaviour of a physical system

is approximated. In recent years the concepl of physical modelling hos
been widely developed and proved successful. It is one of the mosl basic
(16 )

principles in scientific analysis because a physical system is seldom
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analysed in its original form. The main reason for the need for modelling
is that the actual physical system is too complex to have a simple analysis.
The complexity may arise from nonessential factors. However, the basic
principle in modelling is to extract the essentials. The main aim is to
establish a relationship between physical device parameters and the device
characteristics. The device is normally characterised in its simplest

form and with an acceptable accuracy so that the performance of a particular
circuit using this device, operating within specific conditions can be
predicted. A given device is first properly formulated in terms of certain
physical variables and explicit expressions derived meeting all the require-
ments of the device designs and circuits. This abstracted problem can then
be solved by a suitable technique and the results of the analysis can be
expressed in terms of appropriate parameters. As these parameters represent
the device characteristics they can be related to and interpreted in terms
of the original problem. This general approach facilitates access to the
fundamental problems and highlights the special cases from a wide variety

of problems using the séme general ideas.

In dealing with physical modelling(l7) it is essential initially to
know the objective of the work in order to have an overall picture. The
ranges of variables involved ought to be known so as to ensure that the
extent and limitation of the operation and the applications are known. The
choice of mathematical technique must be known too because this will determine
how complex the analysis will be. It is important to know the physical
mechanism of operation of the device or system as modelling is the realisation
of such a device or system.

'Fingerprinting' of a device is a modelling process where the device
behaviour can be uniquely described. The harmonic frequency spectrum generated

by a nonlinear device is a unique representation of the actual device behaviour.
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Therefore 'fingerpriting' of a device can be made using the harmonic
frequency spectrum. At present there is no satisfactory way of 'finger-
printing' a nonlinear device. The dynamic characteristics are not presented
over defined ranges of frequency and drive level. Hence, for simple,
reliable and accurate 'fingerprinting' of a device certain criteria must

be established and conditions defined. One of the most important criteria
is that the device must remain stable throughout the measurement and this
represents non-destructive testing. A single frequency source is another
criterion, for this ensures the production of a unique harmonic frequency
spectrum. Cther criteria include (a) drive level, this is because the
frequency spectrum is level dependent and (b) stability of conditions, they
are the physical system and environment.

The basic difference between 'fingerprinting' and modelling is that
the former gives the true representation of the device under the actual
working conditions. The quantities chosen or adopted in the 'fingerprinting'
may then be related to the real behaviour of the devices. In this work the
spectral representation of the device constitutes the mode of 'fingerprinting'.
The behaviour of the amplitude and phase spectra may be used in the assess-
ment. At present, in most manufacturers' data sheets for devices, only
static characteristics are supplied ; if dynamic characteristics are given
they are generally incomplete. As an example, quantities like noise figure,
conversion loss and r.f. impedance are given at a particular test frequency
without any specification of the operating level. Taking the mixer applica-
tion as an example of device assessment a matched pair of particular devices
is required ; on carrying out the spectral characterisation for both the

devices the device behaviour at harmonics may be compared or malched.
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1,2)
3.5 NUMERICAL FOURIER ANALYSIS( """ AT LOW FREQUENCIES

This method involves the examination of a distorted waveform due
to a response from a nonlinear device. Suppose this waveform is as shown
in Fig.3.1. It is subdivided equally into M sections over a period T
along the time-axis. If each section be At, then T = MAt,. Let tm
be the time at the end of the mth time interval. It may be written as,

t = mALt, for 1l€m <M. So at tm’ there exists a corresponding ordinate
f(tm). Therefore, the approximate Fourier coefficients for a periodic

case may be written as,

M

a % E (mAt) (3.5.1)

m=1

M

=N

m=1

M

E : (mAt) cos(nmAt) (3.5.2)

bn-:: % E' ‘ (mAt) sin(nmAt) (3.5.3)

m=1

So from the above eguations it can be seen that the variables involved
are: M, m, At, n and f(tm). Hence, for a certain fixed value of M and
at partibular values of harmonic n and f(tm) obtained for all values of
m from one to M, the Fourier coefficients can be numerically declermined.
Thus, the amplitude and phase spectra can be obtained.

It is obvious that the higher the value of M, the closer is the
approximation to the actual value of the coefficients. In the limit as

At tends to zero, the Fourier coefficient equations 3.5.1, 3.5.2 and 3.5.3

tend to integrals as given by equations 2.2.5, 2.2.6 and 2.2.7 respectively.

The numerical evaluation of the Fourier coefficients may be easily carried
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out using a computer or a programmable calculator, where the subroutines
are available. As the number of sections M and the harmonic order n to
be considered will be relatively small, it may not be necessary to use the
fast Fourier transform method. The accuracy of the result depends greatly
upon the technique by which the ordinates are obtained. They are obtained
either by direct measurement from the time function displayed on the
oscilloscope or from the manual or photographic reproduction.

Next, an experiment is described where the method of numerical
Fourier analysis is applied. The circuit diagrams are shown in Figs 3.2
and 3.3. Throughout the experiment, the open-circuit voltage of the
oscillator is taken as a reference and this is calibrated using a high
impedance valve voltmeter. At any particular reference voltape, the
fundamental current is first noted using the wave analyser as illustrated
in Fig 3.2. Next, with the device connected in the circuit shown in
Fig 3.3, the source oscillator level is adjusted to give the same funda-
mental current as before, using the wave analyser. Then the distorted
waveform generated by the device is displayed on the oscilloscope. The
harmonic content of the distorted waveform is analysed by numerical Fourier
analysis, and the amplitude and phase spectra are obtained. This method is
suitable for low frequency work because there is sufficient bandwidth in
available oscilloscopes. However, the bandwidth may be increased
with the use of accessories like sampling adaptors connected to
the oscilloscope to extend measurements up to 1GHz. The amplitude spectra at
this particular reference voltage may also be found using the wave analyser.
This is done by tuning the wave analyser to any desired harmonic frequency

and the current obtained.
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3.6 APPLICATION OF NONLINEAR DEVICES

The nonlinear devices form basic units in a variety of systems
applications. Traditionally, they are often referred to in terms of
crystal rectifiers, used as detectors, frequency converters, noise and

) . . . (18)
harmonic generators. In early works on radio communication , the
crystal rectifiers were almost universally used as low level detectors in
radio receivers. The point contact diode for example was used because
. . . . (19 ) . .

of its low impedance rectification. In the past nonlinear devices
were found to be useful in certain applications, after which parbticular
methods of characterisaltion and analysis were developed. In modern applico-

. . - . o (20) . .
tions, variable impedance devices became significant . Their development
was stimulated by the advent of microwave radar during the Second World War.
In modern terms, these devices are referred to as mixer diodes used for
frequency conversion in heterodyne receivers and detector diodes used in
video receivers.

e1,229)

These nonlinear devices have wide ranging applications from
communication systems, radio éstronomy, space navigation, radar systems

to missile electronic systems. A communication system is involved wilh
transmitting and receiving speech, data or TV pictures. The transmilber
and the receiver may be éeparated by a large distance. A radar system will
be concerned with the transmission and detection of high freguency signals.
The subsystems like transmitters and receivers will be involved with
processes like mixing, detecting and amplification of signals. Each process
must satisfy certain specific requirements within the overall performance of

the subsystems and systems. Thus, there is a need to know the characteristics

not only of the subsystems and systems but alsoc of the devices to be used.
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So, the choice of a nonlinear device in any application will
normally depend upon (a) its behaviour and (b) the performance require-
ment with some overlap between them. Taking as an example of device

(7))

behaviour its nonlinear reactive properties can be seen that the
varactor can be applied in frequency converters, frequency multipliers,
dividers, mixers, modulators, parametric amplifiers ; high frequency power
sources ; power conversion from one frequency to another. The useful
frequency range is limited by parasitic series resistance and in some
cases parasitic lead inductance.

The performance requirements of the device are dictated by the
system in which it is to be used. In the case of a receiver for example,
the overall performance requirements are: sensitivity, bandwidth and
powerhandling capability. If, for instance, a high gain amplifier is
required one might consider using a negative resistance device where the
narrow band width and high gain characteristics are advantageous.

3.7 MEASUREMENT METHODS AT HIGH FREQUENCIES

(23,24)

Progress in high frequency applications goes hand in hand with

fhe development of the measurement techniques at these frequencies. Whatever
measurement method is developed, it has to be adapted for use)%ither in the
laboratory, factory or field,keeping in view its precision and convenience.

At low frequencies where the physical dimensions of the circuits are very

much smaller than those of the associated wavelengths, the circuit elements

can be characterised by four dimensions, viz ; mass, length, time and chargc.
Consequently, the technique of lumped circuit analysis works very well.
However, as the operating frequencies get higher, the dimensions of the
circuits required get smaller to the extent that they become comparable to

the associated wavelengths. Thus, the passive elements in a microwave frequency

system may take the form of hollow-pipe waveguide transmission lines or striplines.
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In these the waves are characterised by their power, and frequency ; their

analysis requires the adoption of a distributed circuit approach. The

measurements are made on the basis of the effects of disturbances of the

electromagnetic field due to discontinuities in the propagation of guided
aves(2l’25).As there are no simple methods of measuring these fields,

circuit and device parameters are indirectly measured.

Prior to 1965, almost all high frequency measurement systems #2)
employed coaxial, waveguide or stripline circuits. With the improvement in
integrated circuit technology microstrip lines have recently been widely used.
As the demand for operation at ever higher frequencies is increasing, there
23

is a continuing effort towards working with smaller circuits

3.8 CONCLUSION AND COMMENTS

The Chapter started with the classification of solid-state nonlinear
devices as applied in high frequency work. A systematic approach becomes
essential because of the rapid rate of growth of the types of devices. The
proliferation of devices is due to advancement in device technology initiated
by their applications each of which carried varying sets of performance
requirements. It is interesting to note that modelling has become an essential
part of the characterisation and analysis of different types of devices.

In the discussion of the phenomenon of nonlinearity, it is indicated
how the phenomenon and its assoéiated problems ériginated. A brief hisLoricul\
perspective is also given, emphasising the period together with the workers
and their contributions. The application and significance of nonlinear
devices are also given. Initially nonlinearity is discussed in a broad sense
and is followed by more specific examples. The analytical methods developed
tend to be related to particular problems rather than covering the general

cases. It can also be seen that the subject of nonlinearity is mulrtidisciplinary

within the confines of physical sciences.
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The idea of spectral representation is introduced because finger-
printing of devices may be made using these spectra. This represents a new
approach towards device assessment and characterisation. This is because
the spectra give the dynamic characteristics of the device and hence the
operational conditions may be specified. The spectra obtained may be related
to the established device parameters. Thus the spectra provide a way of
characterising a device whereby an equivalent circuit may be proposed and
assessed. Spectral representations give a new high frequency technique
where both amplitude and phase spectra may be obtained.

Numerical Fourier analysis suitable for low frequency work is
presented in some detail. The idea of spectral representation at high
frequency is in fact developed from this low frequency work. Various
applications of nonlinear devices are discussed because their wide range
of application has significant scientific interests which revolutionise
systems like communication and computers where there are vital commercial
and military implications. The development of measurement methods plays a
key role in device application, since the device can then be specially adapt.cd
for any desired application. 1In the upper range of high frequency applications,
the sizes of circuits and systems become very small thereby increasing the

difficulties of precision fabrication of every component.
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CHAPTER 4

THE MULTIPLE REFLECTIONS RESONANT LINE (M.R.R.L.)

METHOD FOR SPECTRUM MEASUREMENTS

4.1 INTRODUCTION

A novel high frequency spectrum measurement technique has been
developed called the Multiple Reflections Resonant Line Method. This
method offers a means of measuring a complete spectrum generated within
a nonlinear device. A complete spectrum refers to both the amplitude
and phase spectra. The method employs a slotted line system with
accesséries such as a probe and carriage assembly, adjustable trans-
mission line, precision attenuators and instruments like a power-meter
and an r.f. valve voltmeter. In addition a spectrum analyser, a key
component in the measurement, is used to measure standing waves at the
harmonics and the fundamental.

(26,27,28)

A number of important transmission line properties -« are employed
in the mathematical formulation of the method. The effects of the
multiple reflections(zg’ao ) along the line and the line resonance( 1)
form the foundations in the theory of the method. This accounts for the
behaviour of the standing waves at the harmonics and the fundamental when
a nonlinear device is used to terminate the line. The creation of resonance
conditions is made possible with the incorporation of an adjustable length
of line. However, the idea of matching or mismatching at the ends of the
line still forms the operational basis in the measurement technique. The
most important aspect of the method is the creation of standing waves at
the harmonics and the fundamental under standard conditions when the

mismatched termination is known. The standing waves at different harmonics

are measured using a spectrum analyser which acts as a seleclive detector,
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The nonlinear device terminating the line is energised by the
fundamental frequency incident wave. This causes generation of
harmonics which are then transmitted towards the excitation source end.
A deliberate mismatch of the generator impedance is made so that standing
waves at the harmonics can be obtained. This is because the standing
waves will only be created if there is a mismatched load. The behaviour
of the standing waves is dependent upon that termination. As both ends
of the line are mismatched, multiple reflections occur. By varying the
length of the line, the amplitude of the standing waves peaks and the line
then is at a resonant condition. From the standing wave measurements the
device impedance Zn' phase 4h and open circuit voltage Vn at the nth
harmonic may be obtained.

At the present time only the magnitude of the harmonic vol Lopern
or currents produced by the nonlinear devices at high frequencies can be
measured using the existing instruments. No single instrument is available
for the direct measurement of relative phases of the harmonics. The
Multiple Reflections Resonant Line Method discussed here represents a way
of measuring a complete spectrum. It also provides a means of collecting
the necessary data for spectral characterisation and evaluation and hence
device fingerprinting.

4.2 THE THEORY OF MULTIPLE REFLECTIONS

Whenever there is a matched termination at the load cnd of n
transmission line system, all the incident waves will be abgorbed and
none will be reflected. If however there is a mismatch, then standing
waves will bé created. In general, whatever the value of the source
impedance, the behaviour of the waves will only be affected by the
terminating impedance of the line. Further, there will be multiple

feflections of waves when the excitation and the load ends of the line
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are mismatched. The incident wave at the fundamental frequency is first
reflected at the load end and then reflected at the excitation end. These
continued reflections back and forth will create standing waves when
equilibrium is achieved. The stationary wave pattern is governed solely

by the reflection coefficient at the receiving end. The effect of multiple
reflections is merely to alter all values by a constant factor. The
importance of the standing wave measurements lies in the fact that properties
like voltage standing wave ratio (VSWR), phase shift and wavelength can be
related to the device impedance.

Fig. 4.1 is an equivalent circuit for a slotted line with its ends
connected to a generator and load respectively. The right-hand side of LL'
refers to the load end and that of the left of EE' refers to the excitation
source end. The subscripts 'g', 'L' and '0' of the impedance Z represent
signal generator, load and the line, respectively. The length 'f' is the
total length of the line and 'x' is a point measured from the load end.

The phasor voltage, V(x,R), at a point 'x' and for the line of length '@
will now be derived when Zg and ZL are not equal to the characteristic
impedance Zo of the line.

When the excitation source is connected to the line, the initial
steady state wave will see the apparent impedance of the line as Zo.

Therefore, the initial voltage at the generator end of the line is

V., = V. o (4.2.1)

This term represents a voltage divider at the excitation end. On traversing

a distance 'E' to reach the load, the voltage may be wrilten as vie—Ym




FIG.&-1 A GENERAL CIRCUIT DIAGRAM FOR A
COAXIAL SLOTTED LINE
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As the load impedsance is mismatched, the incident wave on reaching the

load produces a reflected voltage,

where p 1is the coefficient of reflection defined as

Z - Zo
0 = T (4.2.2)
o}
The complex wave propagation constant vy is given by
Y = a + JB (4.2.3)

where o and g are the attenuation and phase constants

respectively. The voltage VL signifies the first reflection at the

1
load end. This reflected wave will undergo further reflection on reaching

the signal generator and because of introduced mismatch. The magnitude of

the reflected voltage now is

—YR'

which may be.designated as Vgl implying the first reflection at the signal

generator end. This may now be written on substitution for VLl as

_ -2v8% Y
Vgl = pgpLVie (¥ Y
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Similarly, it can be shown that for second reflec

L2

Vg2 = Dg DL Vi

or in general for the nth

reflections,
(n-1)
_ n —(2n-1) Y%
VLrl = pg DL Vie
n -2nyL
vgn = (ogpL) Vie

tions

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

In conclusion, the voltage at any point x from the lcad end and for the

line of length ' v(x,%) is the sum of all the voltages due to the

initial incident wave at x and the multiple reflections that follow.

Hence,

=)

V(x,2) = V.an(E_X) E v, e ™%
i Ln
n=1
Rewriting gives,
e
. =y (R--
V(x,2) = e Y{*x) \ v, + v e
i / , gn

v e YU 40 )
gn
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which, on substitutiuon for VLn and Vgn’ results in

- - -2 2 2 2 -4 9
V(XyQ) = Vle Y( X) 1 + pgpf Y + pgpL e Y +.0
-yX g -Y4 2 -3ya
+ Ve Y b€ Y5y PPy, © Yool (4.2.9)

Now, by extracting a common factor in the second term of egn. 4.2.9 and

rearranging the expression, we get

_ -y (g-x) -y(a+ x) -2y 2 2 -dyg
Vix,8) = v.e + oy V;e 1+ PPLE + oo ©
leading finally to,
Vix,g) = V.e Y* ¥ 4 5 77 L
1 L 1 - e oYL
QgpL

since the infinite series in the second factor may be written in a closed

form. The expression for the voltage can further be written as,

z 14+ pLe_zYx

Vix,g) = V ¢~y (a—x) (4.2.10)
g o 1 - —2'y9,

pgpLe

which finally represents a general equation for the phasor voltage V(x,yp).

If the load impedance ZL is equal to the characteristic impedance
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Zo’ then the reflection coefficient of the load p. becomes zero, and

L

egn. 4.2.10 reduces to

2o —v{&-x)
V(ix,%) = V —— e (4.2.11)
g\ Z2 + 24
g o
where there is only the incident wave. On the other hand, if the
generator impedance Zg is made equal to Zo’ pg will be equal to zero,
and egqn. 4.2.10 is simplified to
' v X -YX
V(x) = —% eY + pe (4.2.12)

The above equation for the phasor voltage is valid in conventional applicalions
of the slotted line (with no multiple reflections) and is independent of the

1)

3 .
line length '§'. This kind of equation( is generally written as

X -YX

(4.2.13)

where AeYX and Be—Yx represent the waves travelling towards and away from

the load, respectively.

Normally, the slotted line used is lossless, i.e. & = 0 giving
1
# = jB and egn. 4.2.10 may then be written as
7 (l * pLe-JQBX )
V(x,2) = v, —Z—-:"—T eI BLAX) (4.2.14)

g o ( -jZBz)
(1 anpge
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resulting in the magnitude

-j28x

1-op 1+ p e
= - 4.2.15
V(x,2) Vg 5 - e'JZBl| (4.2 )

L'g
ZO 1 - pg
where vV [ = \'J
g Zg + ZO ' g 2 '

Egqn. 4.2.15 is one of the key equations in the theory of this measurement

method.

4.3 RESONANCE ALONG THE LINE

Standing waves can be created along a transmission line of any
particular length. However, with multiple reflections, variation of the
line length will change the magnitude of the standing waves, though the
pattern remains the same. Tﬁe typical standing wave pattern is as shown
in Fig.4.2a. If the length of the slotted line is continuously increased,
the magnitude of the standing wave will undergo a series of alternating
maxima and minima. This is illustrated in Fig.4.2b where at a point x, the
magnitudes vary between points A and B. The incidence of maxima and minima
of the waves suggests the resonance and anti-resonance behaviour of the line.
Thus the length of the line that corresponds to the magnitude at its maximum
may be referred to as mmax and that for the minimum as Emin' This is as
shown in Fig.4.2¢. As the resonance or extreme value of the magnitude occurs
at a particular length of the slotted line, the behaviour may be referred to
as the line resonance.

This resonance behaviour may also be seen mathematically in eqgn.4.2.15

by examining the denominator more closely. The definition of reflection
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coefficient shows that if the generator impedance Zg is real and less than

Zo’ Zg will be negative. If the load impedance is complex, then the load

reflection coefficient may be written as

| e (4.3.1)

Consequently, egn. 4.2.15 may be modified to

Hl bley ) i@t ] '

1
[V(x,8)] = ‘vg ' (4.3.2)
-3 (2821 >]'
I[l v loplle ] e |
where
) 1 -0
IV | — Vv ______..g._>
g g 2
and further simplified to
%
2
\ gl + 2|pL| cos{2Bx - ¢L) + IDLI g
V(x,2) = |V | — (4.3.3)
g 5 2} %
1+ 2|0L||Dglcos(282—wL)+ le, | Oogl

The only variable in the denominator of eqn. 4.3.3 is the line length
'%2', which in turn contributes towards the variation of |V(x, ) |
The value of V(x, %) as the line length 'g' is varied reaches a maximum
when
cos (281 max " ¢L) = =l (1.3.4)

and a minimum when

cos (282 nin " wL) = 1 (4.3.5)
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Ix
' zmax

So |V(x,8) | now designated as |V(
min

)[ may be written on

substitution of the above conditions as

%
2
1+ 2fp, | cos(28x = ¢.) + |o, |
'
V(x,ﬂ ) = l \" L L L (4.3.6)

max g _

min * ‘ [l + |pL|| pgl]

The conditions under which |V(x,%) | reaches maximum i.e. |V(x,2max)|may

be aptly referred to as that of resonance and when |V(x,% )|is minimum

min
as anti-resonance.

Using these resonant conditions, the phase ¢L of the complex
reflection coefficient of the load may be determined either from egn.4.3.4,
giving

EBkmax - WL = (2k + 1)w (4.3.7)

or eqn. 4.3.5, giving

ZB%min - wL = (2km ) (4.3.8)
where

B=;&:2—" , k = 0,1, 2.
and

Vo= 284 ~(2k + 1)m = 2842 - 2kT (4.3.9)

L max min
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It is to be noted that k is zero or an integral value in the expression
for phase wL under resonant or anti-resonant condition.

In conclusion it should be emphasised that the extreme values of
the magnitudes of the standing wave |V(x,% )|  are dependent upon the
resonant conditions of the line at any point x ; the existence of resonance
depends critically on multiple reflections and the key variable is the line

length.

4.4 STANDING WAVE PROPERTIES

4.4.1 Complex Reflection Coefficient

Whenever two identical waves of the same frequency travel in opposite
directions along a slotted line system standing waves will be created. This
fundamental phenomenon of interference in an electrical network is caused
by a discontinuity, for example a mismatched termination. Under normal
measurement techniques standing waves are obtained for only one frequency.
The circuit for this kind of measurement was shown in Fig.4.1. In most

cases, the generator or the source impedance, Zg’ is equal to the characteristic

impedance Zo of the line. Thus standing waves created will be solely due to ‘
the reflection at the load end. If however, in addition to the mismatch
at the load end, there is one at the generator end, multiple reflections
will result.
Whenever there are multiple reflections standing wave properties may
be deduced from the stationary wave measurements based on egn. 4.3.3. It
will be seen that the numerator depends upon the value of x, i.é. the
distance from the load end. As discussed in the last section, the de-
nominator depends upon the line length 'g'. At a particular length 'g'
of this transmission line, the extreme value of |V(x,%)] can either be

maximum or minimum, with the corresponding values of x as xma or x . ,
X min
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respectively. The magnitude of the standing wave is maximum,

i.e. |V(xmax,2)|when

cos (Zmeax - wL) =1

and minimum, i.e. [V(x_. ,%)|when
min

cos (Zmein - wL) = -1

This implies that

2meax - ¢L = 2m™
and Zmein - ¢L = (2m + 1)m
where
m = 0, 1, 2.....
giving
¢L = (ZmeaX - 2m7) = Zmein - (2m +1)w

It is again to be noted that m is zero or an integral value in the
expression for phase wL at X hax or X . .-

Therefore,in summary, the magnitude of the standing waves at maximum

and minimum for a particular length of the line is given by

. T

(4.4.1)

(4.4.3)

(4.4.4)

(4.4.5)

R 2
1+ 2|pL||pg|cos(28Q:¢L) + |pL| lpgl

1s
v
3

2

(4.4.6)
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The extreme values for the standing wave magnitude under the conditions

as given by egns. 4.3.6 and 4.4.6 may be summarised as,

| ]
P
1+

|p !]
L (4.4.7)

oy 1o, 1]

The phase of the complex reflection coefficient of the load

+1

by may be computed from eqn. 4.4.5. It is to be emphasised that this

is applicable for the case of the complex load impedance, at a particular

frequency. The eqn. 4.4.7 sugeéts that under two extreme conditions of x,
i.e. x and x . and those for '&' | i.e, & and £ =, there are four
max min max min
combinations [V(x, %) | that can be measured, they arc
, B. + |OL|]
bv(x & )a = lV U ' —= (4.4.8)
max  max g 1 - lpl |pl
L g
, [1 R "’L']
Vix % )| = |V l (4.4.9
max’ min g

lV(x .
min max

[1
i_ ng'ﬂ [l _ Ile]ﬁ (4.4.10)

. 1—|pl]
y 1 = bvg ] = L (4.4.11)

ITIr]

HV(X L,
min’ min

These equations may be manipulated to give an expression for
IDLI as,

Vix___,% )] = |V(x L . )|

D U 1 max’ max max’ min
[ = .
L le |

g IV(Xmax’Emax)I + |V(x

(4.4.12)
% . )|

max’ min
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This is an important equation derived in order to compute the value for
the magnitude of the complex reflection coefficient of the load, |OL!
Basically two measurements under conditions of resonance (at Zmax) and

anti-resonance (at lmin) are required to obtain |p and they are,

L]

Iv(xmax ’ g'max) | and IV( xmax ! Q’min

)|

The quantity |e | is known, because it is fixed. The most interesting
points demonstrated by eaqn. 4.4.12 are that it is simple, the quantities
involved are easily measurable and oniy relative measurements are required.

The phase angle ¥ may be computed using either egqn. 4.3.9 or 4.4.5.

L
Hence the complex reflection coefficient for the load o may be computed.
The egn. 4.4.12 may also be written as,
1 [lv(xmax’gmax) | /’V(Xmax’ Q'min) l] -1 3
le | = 5T (4.4.13)
& [Iv(xmax’‘l'max)I /lv(xmax’g“min) l] +

where the ratio

v
I (xmax’gmax)l// IV(xmax’ﬂ'min)|

is an important quantity. This ratio may be examined by referring

back to the expression for IV(x,%)I as given by eqn. 4.3.3. It can be
shown that,
|V(x, ) | L L+ Je | 1ol
max 12
-o= IL’//I/o — A (4.4.14)
vix, o, 01 77 L= o1 legl
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This means that the ratio has a constant value, at every point x along
the line provided that the load impedance does not change. However,
for purposes of measurements, the point xmax is chosen in order to work
with bigger voltages.

4.4.2 Input Impedance of the Line

The expression for the current |I(x,2)| at a point x along a

transmission line of length 'g' may be obtained based on the same ideas

as that for the voltage |V(x,g) | - It can be shown that,
\'4 |1 - pLe-Jgsx '
II(x,m)‘ = £ (4.4.15)
Z + Z .
g ° '1 _ e JZBSL‘

On substituting the complex reflection coefficient o for the load into

ean. 4.4.13 gives, on simplification

1
%
vg 1 - 2|pL| cos(2px —wL) + lop |
I(xvl) = 3
Zg t % 1+ 2o [lor [cos(28a—y. Wlo || |2 ] %
Py ol —‘DL)*pg Py,
(4.4.18)
From eqns. 4.3.3 and 4.4.16 for |V(x,,)| and |I(x,8)| , respectively,
an expression for the input impedance |Z(x,g)| may be found, i.e.
| I
20| Alx,8)
[I(x, ) |
%
2
31+ 2o, |cos(2Bx—¥ ) + |p; | {
2(x,0)| = |z L L. L
’ o 7 (4.4.17)

2

1 - 2|pL|cos(28x~wL) + |DL|
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4.4.,3 Load Impedance — General Relationships

Suppose a load terminating the line has a complex impedance ZL

which may be written in the usual way as

7 - R + j X (4.4.18)

On normalising with the characteristic impedance, it becomes,

N
2]
=<

L L . L ‘
z + J Z (A.A.I))

o} o o}

But, from the definition of the complex reflection coefficient, it can be

shown that,
Z (1 + p,)
= = (—l-—_—l“-)- (4.4.20)
0 °L
0)

. . . . 3
Substituting PL from eqn. 4.3.1 into that of 4.4.20 leads to the expre381oé

for the normalised real and imaginary parts of the impedance, which are ;

2

RL (1 - |pL| )
= = (4.4.21)
R 2

o] 1l - 2]pL| cosy +|pLI
X 2o, | sin

L 7 L L
Ro = 5 (4.4.22)

1 - 2|pL| cos wL + |pL]
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Thus the magnitude of the complex load impedance is given by,

1
%
2 2
= 4.4,
|ZL| (RL + XL ) ( 23)
and that for the phase
X
o -~  tan * L (4.4.24)
L R
L
4.5 THE NONGLLINEAR DEVICE AS THE LOAD

4.5.1 Equivalent Circuit of the Device

The behaviocur of a nonlinear device is level dependent. In most
cases current through the device may be expressed as a power series of the

voltage applied, i.e.

n
TOREEE E a [v(t)] (4.5.1)

and for a sinusoidal drive,
v(t) = Vo cos(wot)

the current i(t) may be written as,

o

z ; Vn cos(nwot + ¢n) (4.5.2)

o

i(t)

il

which is the summation of components of the harmonic spectrum. This leads
to the idea of the equivalent circuit for the non-linear device terminating

the line.
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At the fundamental frequency, reflection of the excitation signal
occurs at the device end and there will be reflections at the energising
source end if Zg is not equal to ZO. So far in the case where there are
multiple reflections, the circuit may be represented as shown in Fig 4.3.
However, the approximate equivalent circuit for the nonlinear device at the
fundamental may be represented as shown in Fig 4.4.

At the nth harmonic, the nonlinear device might be looked upon as
a generator comprising its own harmonic impedance Zn' and an open—-circuit
voltage Vn’ as shown in Fig.4.b. Therefore to the nonlinear device the

excitation end becomes the load of Zg impedance where x is the distance of

that load to the probe, as shown in Fig.4.6. Retaining Lhc cyuivalent

circuit for the nonlinear device which includes all harmonics it may be

drawn as in Fig.4.7. The measurements will lead towards the computations

of the complex reflection coefficient, Py the complex impedance, Zn’ and
the amplitude and relative phases of the nonlinear device at the nth harmonic.

4.5.2 Standing Waves at Harmonics

When a load terminating the slotted line is a nonlinear device, then
on excitation harmonics will be generated. This nonlinear device becomes
the harmonic generator. The harmonics generated will be transmitted Lowards
the excitation end. In order, however, for the standing wavei to be crealed
at harmonics, there must be a mismatch at the energising source. Thus it is
essential that a deliberate mismatch be devised. This mismatch of the slotted
line at both ends will create multiple reflections at the harmonic frequencies.
Next, by varying the length of the line a resonant condition is obtained which
will be indicated by achieving a maximum amplitude of the standing wave pattern.

Comparing the circuits of Figs 4.1 and 4.6, it is clear that they are
similar in form. Fig.4.1 shows the circuit working at the fundamental while

that of Fig.4.6 indicates that the circuil is valid at the “th harmonic.
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Therefore, the equation for the magnitude of voltage [V(x,2)| at the n
harmonic will also be similar in form to that at the fundamental. The

standing wave magnitude at the fundamental frequency is given by eagn.4.2.15,

i.e.
-jegx
1 - o [ +p, € I
_ ___g) L
VoA = Vg < 2 1 B o o o288
L &
. th .
Hence, at a particular n harmonic, the voltage |V(x,£)| , now denoted
as IVn(x,E) | , may be written as,
~j28 x
1 - pn) |l + pge l
V_(x = |V —/ . (4.5.3)
[V, (x:2) | n > | SETA) |
1 - pnpg e
The generator voltage Vg and its reflection coefficient Py are replaced by
the open circuit voltage Vn and the reflection coefficienl o of the
harmonic generator, respectively. Similarly, the reflection coefficient
of the load oL is replaced by that of the generator, i.e. pg. This is
so because the generator impedance now becomes the load. As o is complex,
it may be written as
Jv
n
O Y (4.5.4)
The generator impedance Zg can be made resistive and fixed at a

definite value in terms of a fraction of the characteristic impedance 7
[
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This will make the reflection coefficient pg real and negative. The
equation 4.5.3. may now be written as,

’<l _ e I—j28nx )'

g e
o —~j(2B &~
(1 + gl oyl 0N
n'' “gle

which may be simplified to

%
2
1 -2 ]|p |cos(2B8 x) + o |
! g n g L
= 4.5.
‘Vn<x,9«)| |Vn | 5 R (4.5.5)
[
1+ 2|pn||pg cos(28n wn)+ lpgl Ipnl
where,
t (l - pn)
Iv ‘ = v (4.5.6)
n n 2
WA
. Vn 2
or v ‘ = | 1 -2lp lcos¥_ + |e_| (4.5.7)
n 2 n n n
w
and Bn = ;2 = %I
ph n

4.5.3 Complex Reflection Coefficients at the Harmonics

The complex reflection coefficient at the nth harmonic, Py may
be derived by methods similar to those used in the case of the fundamental
frequency. Initially (by considering the standing waves at the nth harmonic
the expression for the voltage at a point x for the line length 'g') |Vn(x,g)|
is as given by eqn. 4.5.5. The extreme conditions (maxima and minima for
the line lengths %ax and Lrin and distances X ax’ and X oin respectively)

in egn. 4.5.5. for the harmonic cases can be examined in a similar way as
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for the fundamental (eqn. 4.3.3.). Consequently, the expression for

|Vn(x,z)| under the conditons of maxima and minima can be obtained

and this is

L1215, 1]

t
Vn(xmax’g'max ‘ = Vn [ 13 (4.5.8)
min min ‘pn'|°g|
It is important to note that |V(x,%)]| as given by eqn.4.3.3.
is derived for the case of fundamental frequency when the load impedance
is complex. As a result the phase angle term by, for the complex reflection

coefficient of the load appears in both the numerator and the denominator
of that equation. This results in two expressions for the phase angle vy,
and they are given by eqns. 4.3.9 and 4.4.5. However, the volLage
|Vn(x,g)| for the nth harmonic, as given by egn. 4.5.5, contains the load
impedance which is real. This results in the phase angle, b for the

complex reflection coefficient, o of the device at the nth harmonic

appearing only in the denominator. By considering the maximum and minimum

values of |Vn(x,z)| , it can be shown that,

Yy = 25%2 nax (2k + L)w = ZBn mmin ~ 2kn (4.5
where

K = 0,1, 2......

The variable k as defined above appears in the expression for the phase
angle wn at the conditions of resonance and anti-resonance. The eqn.4.5.8

allows four combinations of extreme voltage values of IVn(x,z)I . With
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t
the quantity |pg| known and the term |Vn | eliminated, the magnitude
th .
of reflection coefficient of the nonlinear device at the n harmonic

can then be written as,

Vo (x g )| - |V (x L. )|
1 | n “max’'“max n “max’“min
loyl = . (4.5.10)
eyl
g |Vn(xmax’g'max)| * |Vn(xmax’2min)'
or
V(x . ,8 )| - ,V (x . .8 . )|
1 ' n “min’“max n “min’*min -
oyl = o . (4.5.11)
P
= ’Vn(xmin’gmax)‘ * ]Vn(xmin’ﬁmin)|

4.5.4 Input Impedance of the Line at Harmonics ??anaf)

The expression for the input impedance of the line at the harmonics
may be obtained using the general eqn. 4.4.17. This equation is applicable
for any frequency for which the load is complex whose reflection coefficient
is oL The circuit diagram is the same as that already shown in Fig.4.1.
However at the harmonics, the load is made deliberately resistive, hecnce
its reflection coefficient is real and may be written as |pg| . The
circuit is shown in Fig.4.6. The expression for the input impedance L;&X;%TT

h
at the nt harmonic may finally be written as

%

2
1 -2 cos(2 +
loglcos(2s x) + |o, | ‘

|

(4.5.12)

N

2
1 + 2|pg|cos(23nx) + ’pgl g

The relationship between the input impedance of the line and the

conditionsg of resonance and anti-resonance will now he establiched.
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From eqn. 4.5.9 it can be shown that,

A Y
. _ _n n
% max = (2x + 1) 7 + 58 (4.5.13)
n
and
Ka ll’n
= =>4 _ 4.5.14
*min 2 * 28 (4.5.14)
n
where § . and g . are the resonant and anti-resonant line lengths,
max min
respectively. This is illustrated in Figs.4.8a and b. At the point
v
along the line (Fig.4.8a) where x = Qmax— Eg— , the voltage is maximum.
n

The term cos(Zan) in eqn. 4.5.12 then becomes

cos(28_8 - )

cos(28nx) n’" max n

= =1
under resonant conditions, giving

1+ logl

n
7 (Cmax = 357 )7 ) | 12,
n 1 - lpg|

By definition, the voltage standing wave ratio (VSWR) is
lvsur| =

giving in conclusion

'ZI’I (( Q'max -
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This shows that at resonance, the point at which the voltage is maximum
corresponds to that of the maximum input impedance. This then represents

the parallel resonance circuit of the line at Xax’ where it now becomes

4

n
(Qmax T 28 ).
n

On the other hand, at a point (Fig. 4.8b) where x = (g . - n/23n),
the term cos(Zan) in egn. 4.5.12 becomes
cos(23nx) = cos(23n Boin T wn)
= 1
under the anti-resonant condition, giving
Yy - eyl
24
Zn((p“min T X Qmin) ‘ - %0 L+ o |
n g
v I 2, |
‘zn((mmin - 5%— Vs Zmin) ‘ = —— (4.5.16)
n IVSWRI

Thus, it is seen that, under anti-resonant conditions of the line, the
voltage minimum occurs at a point where the input impedance of the line
is minimum. This implies that at this particular point, the equivalent
circuit of the line is of a series resonance type.

4.5.5 Device Impedance

In considering the impedance of a diode, its equivalent circuit
must first be examined. The approximate equivalent circuits for the non-
linear device at the fundamental and the harmonic frequencies are shown

in Figs. 4.4 and 4.7, respectively. Let the apparent value of the complex
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]
impedance of the diode at the nth harmonic be Zn . For a series

1
equivalent circuit, Zn may be written in the normal complex form as

yA = Z + R (4.5.17)

where

The resistive component of the diode impedance is Rn and that of the

reactive part is Xn' The reactance is basically capacitive. The
apparent impedance comes about because the device is terminated with Lhe
characteristic impedance Ro. On normalising with the characteristic

impedance, egn. 4.5.17 becomes

(4.5.18)

’:Ul><
o

(e}
e}
o

But, from the definition of the coefficient of reflection for the device

at a particular harmonic n, it can be shown that,

Zn (l + pn)
] = (1.5.19)

o} (1 - pn)

Substituting o from eqn. 4.5.4 into eqn. 4.5.19 leads to the expression
for the normalised real and imaginary parts of the complex impedance of

the device which are, respectively

2
R_ [l-lpnI]

= 2
o [ 1 - 2|pn fcos w,  + Ipnl J




61

and

X 2|pn |Sin \vn (4 . 21)

|=

jr e}

2
[l - 2[pn|cos b, ot lop | ]

These quantities can be calculated from the complex value of the
reflection coefficient o .

From the value of the apparent resistivﬁ% component Rn| of the
diode impedance, the true value of the component Rn may be deduced. In
the same way from the value of the reactance Xn’ the capacitance Cn at

the nth harmonic can be obtained. Finally, the magnitude of the impedance

i.e.

Z = (R + X) (4.5.22)
and that of its phase o i.e.

{(4.5.23)

may be found.

4.5.6 Amplitude and Relative Phases

Basically, the whole aim of the measurements is to produce the
amplitude and relative phase spectra. The amplitude spectrum is the
variation of the magnitude of the open-circuit voltage |Vn| of the device
with harmonic frequency. The relative phase spectrum is a plot of (¢n—¢l)
versus harmonic frequency where ¢ is the phase of the complex impedance
of the device. The subscript of ¢ refers to the harmonic number. The
relative phases are represented with respect to that of the fundamental.
An expression for |Vn| may be derived by first considering any of the

vV (x

combinations of | n

”: 1 e ) . < e
max’mmax) | as given by eqgn. 4.5.18. Suppose

min min
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VvV (x ) 8 ) is considered, i.e.
n “max’ “max

UNEI) )| = |v '| (4.5.24
ax max n (1 _ lp || o I)
g n
hence,
vV (x 2 |
|v 'l = n__max max (4.5.25)
n 1 + |pg'
L= Jegllenl

'
But from Equation 4.5.7, an ' is given by:

V1 %
. n 2
an | = 5 [: - 2|pn|cos b, * Ipn[} (4.5.26)

1
Equating an | from Equations 4.5.25 and 4.5.26, an expression for |Vn|

can be derived, i.e.

nI B %
g/ 1-2 2
- lpn|cos wn + |pnl

L= logllegl
All the quantities in the denominator can be found and the absolute

['3 ) may be computed by considering the coupling

value of V (x ,
n “max’ *max

coefficient between the probe and the slotted line at the respective
harmonics. Hence the magnitude of open circuit voltage of the diode
at harmonics can be computed. In the case of the phase spectrum, the
phases at a particular harmonic can be found by using Equalion 4.5.23.
Relative phases of harmonics are found by considering the phase of &

particular harmonic with respect to that of the fundamental.
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4.6 CONCLUSION

One of the basic aims df the work is to develop a method of measure-
ment of a complete spectrum generated within a nonlinear device at high
frequencies. This involved the derivation of mathematical expressions
(based on multiple reflections and line resonance) and the establishment
of measurement procedures. As the basic equipment employed was a slotted
line system with mismatched termination , the procedures involved measuremenf
of the standing waves. There was a need to create standing waves at the
harmonics under known conditions and to relate the measurements of a particular
frequency component in the spectrum under investigation.

The measurement technique developed is called the Multiple Reflections
Resonant Line method. The idea of resonant line comes about because the
voltage IV(x,m)l along the line reaches a maximum (resonance) and a minimum
value (anti-resonance) for particular lengths of the transmission line, i.e.
'gmax' and 'Zmin" respectively. In order to arrive at these conditions of
resonance or anti-resonance, an expression for the voltage |[V(x,%)| , based
on the multiple reflections was derived. Multiple reflections were achieved
when the ends of the transmission line were mismatched.

_A deliberate mismatch of the driving source end leads to a new type
of measurement of the diode impedances at the harmonic frequencies. Making
the load impedance at the harmonics resistive contributes towards a major
simplification in the expression for the voltage |V(x,%)| , given by eqn.4.5.5.
This impedance was kept at a known (resistive) value throughout the meaéurement,
thereby making the standing waves at the harmonics identical. This was possible
because the standing wave pattern of any reflection is decided only by the load
impedance.

In addition to the derivation of the expression for the voltage | V(x,4)]

an expression for that of the current |I(x,t)| was similarly obtained. Thus,
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the ratio of the two gives the input impedance |Z(x,%)| . Under the
conditions of resonance (lmax) and anti-resonance (Emin)’ the resultant
equations for the voltage |V(x,&)| and the input impedance |Z(x,%)| now
may be compared. This was discussed in section 4.5.4. It was shown that
under resonant conditions and at a point along the transmission line where
the voltage is maximum, the input impedance is also maximum. On the other
hand, under the condition of anti-resonance, at a point along the line when
the voltage is minimum, the input impedance is minimum. These observations
are explained in terms of the resonant equivalent circuits. The parallel
and series resonant circuits are referred to the former and the latter cases,
respectively.

The method is initially involved with the measurement of the complex
reflection coefficient of the nonlinear diode at the nth harmonic. This
requires the setting of both the resonant and anti-resonant conditions from

e

which the following quantities may be measured, i.e. |V _(x , &
n “max’ max

'Vn(xmax’gmin)l’ lvn(xmin’g'max)l’ 'Vn(xmin’lmin)| ! lmax and gmin'

From these, the diode impedance Zn’ open circuit voltage anl and phase angle
¢n at the nth harmonic may be calculated. Hence the amplitude and the
relative phase spectra at different drive levels can now be plotted. In
addition, from the approximate equivalent circuit and the impedance of the

diode at a particular harmonic, the nature of the parasitics involved may

be established and values estimated.
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CHAPTER 5

MEASUREMENTS AND EXPERIMENTAL PROCEDURES

5.1 INTRODUCTION

Basically, the measurement technigue and the experimental procedures
were connected with the Multiple Reflections Resonant Line method. In
addition, any test or evaluation of a microwave diode by any technique must
also include the measurements of the static characteristics as reference.

It provides an initial assessment of the diode and its rectification
properties. For example, the values of the reverse saturation current IS
and the series resistance ry obtained are considered to be important diode
parameters. The experimental arrangements and the initial calibrations
necessary in any measurement are first discussed. Next, discussions of the
diode static characteristics and the spectrum measurements are made. Finally,
a general assessment is made of the measurement methods.

5.2 EQUIPMENT AND INITIAL CALIBRATIONS

5.2.1 General Arrangements

The circuit for the d.c. measurements of the diodes is shown in
Fig. 5.1. It.comprised the d.c. supply source and the potentiometer of
1K @ . The diode in series with a known resistor of 50 © was connected
across the potentiometer and the 1M € resistor. The 50 § resistor was
introduced in order to measure the current through the diode while that of
1M @ to reduce the current drain on the voltage source. The d.c. valve
voltmeter was used in the measurements of voltages as shown in Fig.5.1.

The experimental arrangement for the spectrum measurements is shown
in the block diagram of Fig.5.2. It comprised four parts, (a) the oxcitalion

end, (b) the slotted-line system, (c) the load end and (d) the spectrum
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analyser. The excitation end lay to the left of the terminals EE' as
shown in Fig.5.2. It consistéd of the signal generator followed by a
fixed attenuator, variable attenuator, low pass filter and another fixed
attenuator. The fixed attenuator was used to reduce the level in order
to protect the components that followed in addition to isolating the
source from the line. The variable attenuator provided a means of
adjusting the input level of the signal. The low pass filter was used
to prevent any harmonics and spurious signal from the source reaching the
line. Finally, a resistive termination of known impedance was deliberately
introduced to provide the mismatch at the excitation end.

The slotted-line was a coaxial type, comprising accessories like
the probe and carriage assembly, an adjustable transmission line, a T-junction
and a stub tuner. The ends of the line were connected to the generator and
the load, respectively. The load end (Fig. 5.2) was on the right-hand side
of the terminals DD', and included the diode, placed in the holder. The
diode was then terminated with the characteristic impedance, Zo' The component
used for this termination was-the precision attenuator, which allowed connections
to be made to the spectrum analyser. Finally, the spectrum analyser, an importuant
component in the arrangement, was used to measure, (i) standing waves at the
harmonic and fundamental frequencies through the probe and carriage assembly,

and (ii) the current at the fundamental frequency through the diode.

5.2.2 Diode Holder

As the project involved the investigation of diode properties, the
construction of a proper diode holder was essential. The holder (shown in
Fig 5.3) was manufactured in a coaxial form and adapted for use with the
General Radio (GR) system having the characteristic impedance of 50 ohm.
The main requirement for a properly designed holder was that it should match

the line. 1t had to mect the test that when the diode holder was short-
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circuited (with a dummy made of brass, identical in shape to the diode
encapsulation) and terminated with the characteristic impedance it
produced no standing waves ; under these conditions the dimensions of
both the inner and outer conductors of the diode holder would then meet

the specifications required for matching purposes. It can be shown that

32,33,34)
for a coaxial lossless transmission line, the characteristic impedance(
at high frequencies is given by
1 u a
26 7 on e M %
where p and e are the permeability and permittivity of the medium,
respectively ; 'a' is the internal diameter of the outer conductor and 'b'

is the diameter of the inner conductor. The encapsulated diodes used were
of the shapes shown in Fig.5.4.

The calibration of the diode holder was made by first placing a
dummy in the holder. The whole unit (diode holder) was then used to
terminate the transmission line. The unit was in turn connected to a
matched termination, ZO. With the modulated waves incident onto the diode
holder, standing waves were measured using a sensitive SWR-meter. In
practice, the occurrence of small reflections could be tolerated and the
diode holder used had a very satisfactory VSWR of 1.02.

5.2.3 Resistive Multiple Termination

An important element that contributed towards simplification of
the measurement method was the introduction of the resistive multiple
termination at the energising source end. This was done to create a
mismatch with a known value of impedance. The components making up the
termination were the precision attenuators ; each was resistive over a

.wide range of frequencies having the characteristic impedance of Ro'
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Thus a parallel connection with two of them constituted a double termination
giving an impedance of RO/2. Similarly, three of these components when
connected in parallel formed a triple termination having an impedance of
RO/3. As these resistive terminations were independent of frequency and
level when acting as a load, they always produced the same VSWRs at
harmonics although not necessarily of the same magnitudes.

The reflection coefficient of the diode at the nth harmonic |p nl ,
given by egn. 4.5.10 or 4.5.11, is a function of the reflection coefficient,

] pgl at the excitation end. Since therefore, |pg| was required in all the
harmonic measurements, its value was made fixed and known by making the
impedance at the excitation end, and hence the voltage standing wave ratio
{VSWR) on the line, constant.

Tables 5.18 and 5.1b give the results of the line calibrations for
the double and triple termination at the fundamental drive frequencies of
1.560 GHz and 450 MHz, respectively. Greater sensitivity in measurement
was achieved when the termination with higher VSWR value is chosen. The
triple termination was preferred to the double because the resulting VSWR
value for the former was higher than that for the latter. For this reason,
the triple termination was chosen for the case of the fundamental drive
frequency of 1.560 GHz (Table 5.la). However, this was not the only criterion
in deciding‘which type of termination was preferable in the measurements. Its
VSWR values should also be relatively constant over a range of harmonic
frequencies. Hence, because of this requirement the double termination was
chosen for the fundamental drive of 450 MHz (Table 5.1b).

5.2.4 Coaxial Slotted Line

The coaxial slotted line is a device where normally standing waves
are created and measured. The output from the slotted line was obtained via

a probe coupled into the field inside the transmission line. As the probe




TABLE 5.1(a): Line Calibrations for the double and triple terminations

at fl equal to 1.560 GHz

VSWR VSWR

Harmonic double termination triple termination

n
3B ratio dB ratio

1 6 2.0 9 2.8
5 6 2.0 9 2.8
3 a 1.6 9 2.8
4 6 2.0 10 3.2
5 6 2.0 11 3.6
6 6 2.0 10 3.2

TABLE 5.1(b): Line Calibrations for the double and triple terminations

at fl equal to 450 MHz.

. VSWR VSWR
Harmonic
double termination triple termination
n

dB ratio dB ratio

1 6 2.0 7 2.2

2 6 2.0 4 1.6

3 5 1.8 6 2.0

4 6 2.0 8 2.5
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‘ (21)
coupling was of the capacitive type ,the voltage induced in the probe

circuit was proportional to that existing between the inner and the outer
conductors of the line at any probe position. The main advantage of this
kind of coupling were the ease and convenience of adjustment of the coupling
with only one variable (i.e. the penetration depth of the probe) and the
relative insensitivity to small frequency changes.

It was essential that the calibration of the slotted line included
the loading effect. This was carried out by determining the coupling
coefficient between the line and the probe for different penetration depths
of the latter. A large coupling coefficient would eliminate the loading
effect ; however, this would reduce the sensitivity of the measurements.
The main aim of the calibration was to establish an optimum depth for the
probe penetration. This would give a sufficiently high coupling coefficient
and an adequate sensitivity in the measurements at different frequencies.
Once this depth was found, it was held fixed throughout the entire measure-
ments at the fundamental and harmonic frequencies for different drive levels.
Any further variation in the depth would significantly affect the measurements
at different harmonics because the properties of the device at different
frequencies were inter-related. The measurement of the coupling coefficienl
for each harmonic was then carried out.

The calibrating procedure was performed by generating the harmonics
in the diode from the excitation end with a matched line as the load. The
ratio of the level measured at the end of the termination to that on the line
gives the coupling coefficient between the line and probe. This calibration
was carried out at different harmonic frequencies.

The results of the calibrations of the probe coupling with the slotted
line are presented in Tables 5.2a and 5.2b for the fundamental drive frequencies

. (f) of 450 MHz and 1.560 GHz, respectively. It is important to note Lhat




TABLE 5.2(a):

Calibration of the Probe Coupling for f; equal to 450 MHz

1
Voltage measured at Voltage measured Coupling
Harmonic the end of the on the line Coefficient
n termination
(dB) (dB) dB ratio
1 66.0 53.5 13 4.5
2 60.0 42.0 18 7.9
3 56.0 42.0 14 5.0
4 60.0 38.0 22 12.6
Table 5.2(b): Calibration of the Probe Coupling for fl equal to 1.560 GHz
Voltage measured Voltage measured Coupling
S at the end of the on the line Cccfficient
Harmonic
termination
n
V(dB) V'(dB) dB ratio
1 56.0 37.0 19 8.9
2 71.0 48.0 23 14.1
3 56.0 38.0 18 7.9
4 54.0 36.0 18 7.9
5 50.0 39.0 11 3.5
6 35.0 29.0 6 2.0
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different probe penetrations on the slotted line were usgd at different
fundamental frequencies because of differences in the measured levels,

The coupling coefficients at the harmonic frequencies were recorded and
used in determining the actual values of the voltages on the line measured
with the probe.

5.2.5 Spectrum Analyser

Firstly, the frequency scale was calibrated. This was done by
measuring the frequency accurately using the slotted line. The frequency
scale was then adjusted to coincide with the correct value. For level
measurements, a reference height was established against which ali other
readings were taken. This was done with all other controls being in
calibrated positions. The calibrations of attenuators in the spectrum
analyser were compared to the known values of precision attenuators. For
proper operation and protection of the spectrum analyser, the input level
had to be adequately attenuated. This was because the maximum allowable

input level specified was 1 pW.

5.3 MEASUREMENT OF DIODE STATIC CHARACTERISTICS
. ) ) . . (19,35)
In the static d.c. characterisation, the diode exponential law
was assumed to be
aVa—ur i
i = I (e - 1) (5.1)

where i, is the current, IS, the saturation current, Va, the applied voltage,

ros the series resistance and o is defined as,

with n the ideality factor. The main purpose of the d.c. measurements was
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to determine the above parameters for the practical diodes. The circuit
employed was as shown in Fig 5.1.

The forward current If was calculated from the voltage across
a known load resistance in series with diode. The applied voltage Va
was measured across the diode and the load resistance. For the low current
range, the term arsi in the exponent of eqn. 5.1 is very small compared to

that of aVa, and hence may be neglected. The eqn. 5.1 may then be written

as

giving

n (If + IS) = aVa + &n IS (5.2)

However, as the measurable forward current I_ values were generally

f

a few orders of magnitude higher than that for the saturatlion current T ,

bl

eqn. 5.2 can be written as,

wn (If) =V + en I (5.3)

From the graph of (gan If) against Va’ the parameters Is and o can be
obtained. The value of ¢ was then used to plot another graph in order
to get the parameters rs and again Is,

The eqn. 5.1 may be written in the form

aVa»aRIf

-1) (%.4)
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Rearranging the terms gives,

V - oRI

o o

(I, + 1) = I_e ° d (5.5)
When working at higher current levels the term aRIf becomes significant

and hence cannot be neglected. However, the saturation current IS may

again be neglected because it is a few orders of magnitude lower than that

for the forward current If. The egn. 5.5 can be written as
-aR
If = 1 e e
aV - S
e
giving
I
e = - 5.6
gn v gn IS aRIf (5.6)
a
e
I
Therefore, from the graph of gn v Versus If, the parameters R and
o

a
IS may be found. ©

The capacitances of the diodes were measured directly using the

1 MHz capacitance-meter.

5.4 SPECTRUM MEASUREMENTS

5.4.1 Introduction

In general this specially developed technique of spectrum measure-
ments is involved with the standing waves both at the fundamental and
harmonic frequencies. The load is a microwave diode. Such a method can
also be applied at any suitable frequency for any load. As the standing
waves reflect the behaviour of the load, the result of the standing wave
measurements can be related to the diode behaviour under its normal

operational condition. As an example, a diode working under a certain
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drive level will have a different impedance at different frequencies. The
expression for the complex impedance of the diode is derived from the basic
properties of the standing waves.

As the aim of the work is to assess the harmonic generating
properties of a diode, the method of spectral characterisation becomes

appropriate. The spectra of interest will be those of the amplitude and

relative phases. The quantities that can be determined are, the magnitude
th

of the open circuit voltage, Ian , and the complex impedance at the n

harmonic. In addition, the diode parasitics may be estimated from the

proposed equivalent circuit of the diode.

In developing this new measurement method, one of Lhe firsl Lashks
was to design and construct a diode holder suitable for use with thc
slotted line (discussed in section 5.2.2). Next, the aim was to create
standing waves at the harmonic frequency components of the diode spectrum.
It is significant to note that even with adequate filtering to prevent
harmonics from the source, low level standing waves at the harmonics are
still produced due to a slight mismatch at the excitation end. However,
this is unimportant, because in order to create standing waves at the
harmonics generated within the diode, the excitation generator irmnedance
must be mismatched. From the standing wave measurements diode impedances
at different harmonics may be combuted.

The above ideas lead to the concept of multiple-reflections along
the line when the ends are mismatched, and their characterisation may need
nonconventional experimental techniques. From the mathematical formulation
for the magnitude of the standing waves at any frequency, the variables
involved are the distance from the load end and the total length of the
transmission lines as given by eqn. 4.2.15. Variation of the line length

contributes towards the idea of resonance along the line.
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Manipulation of egn. 4.5.3 for |Vn(x,g)| , {(to solve for the amplitude
of reflection coefficient |pn| at the nth harmonic), shows that it may be
computed if the reflection coefficient of the generator pg is known. Further-
more, if pg is real, this contributes towards a major simplification in the
expression for |Vn(x,z)| . Consequently, in order to solve for lpnl '
pg should be known and real. Fortunately, this can be achieved by introducing
'double' or 'triple! terminations using the characteristic impedances which
are resistive (Ro//Ro, RO//RO//RO) at the energising end.

In conventional slotted line measurements, the waves are modulated
normally with an a.f. signal. The standing waves are measured using the
VSWR-meter which normally contains a sensitive, narrow-band a.f. amplifier.

In this project, however, standing waves at harmonics were measured directly
via the probe and carriage assembly using the spectrum analyser. As the
spectrum analyser is a high frequency, frequency-selective and very sensitive
voltmeter, the harmonic waves need not be modulated., Without the spectrum
analyser, other suitable methqu of detection would have to be devised.

The proper spectrum measurements were carried out once all the
necessary calibrations of the equipments and components were made. Basically,
these were concerned with the harmonic components of a spectrum -—enerated
within a diode. At each harmonic and for a particular fundamental drive
frequency, measurements were carried out over a suitable range of drive
levels, after which these were repeated for all the measurable harmonics.

At this stage, there was a need to decide on the fundamental drive frequency,
the choice of reference drive level and its operational range. The measure—
ment method will then be discussed based on the theory developed in Chapter 4.
The spectrum measurements were carried out on six types of diodes (two for
each) which were, gallium aréenide and silicon (two types) Schottky barrier,

germanium backward and silicon point contact (two types) diodes.
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5.4.2 Choice of Reference Drive Level

Generally the characteristics of the diodes are level dependent and
therefore the actual drive conditions must be established. This is
important because it must form the right basis for reference and comparison.
Whatever quantity is selected to fix the drive level, it must be reliably
repeatable. This means that any measurements made on the device under
similar operating conditions will give identical results. An important
parameter is the diode impedance, for it will remain the same for a particular
drive level. The quantities that have been considered were power, applied
voltage, current at the fundamental and the d.c. rectified current.

Power was not a suitable quantity to monitor the drive level on
the diode because the power-meter employed a thermistor which measured only
the real part of the complex current. Voltage could not be used either
because no voltmeter of sufficiently high impedance was availablc ; in
addition, measurement of voltage poses a problem caused by the uncertainty
in the measurement of the applied voltage at the end of the line for it will
change on varying the length of the line. The d.c. rectified current(l8 )
was not suitable because of its complex dependence on frequency and the
voltage. At low voltage levels the decrease in the d.c. rectified current
with increasing frequency was much smaller than at higher voltage levels.

It was decided that the true representation of the drive level was the
current Il at the fundamental frequency measured through the diode. This
was justified because the complex impedance of the diode at a particular
Il level would always be the same. Therefore, as tﬁe generated harmonic
spectra are critically dependent on the fundamental drive current, the

measurements at the harmonics can then be correctly monitored with reference

to this level.
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5.4.3 Fundamental Drive - Choice of Frequencies and Levels

and Calibrations

Firstly, the choice of frequency to drive the diode was made.
This depended on the signal generator satisfying the following require-
ments, viz, that the frequency lay within the operating limits of the
slotted line and that simultaneously the generator had adequate output
level. There is a need for high outputs so that the devices are driven
sufficiently hard to allow measurement of low level higher harmonics.
In addition, there was a need to have more atlenuation to provide a good
termination.

Next, the range of the required fundamental frequency drive levels
(Il) was considered. It was important that the fundamental current drive
was properly chosen so that the measurements at all the harmonic frequencies
could be carried out. This was to allow for comparison to be made of the
diode behaviour at different frequencies for specific drive levels. The
upper limit of the drive current, which depends on the maximum output of
the signal generator, is restricted by the high attenuation required for a
good termination at the excitation source end. Furthermore, as therc is a
need to change the line length for the conditions of resonance ('%max') and
anti-resonance ('%min'), the drive level will vary. This is because at
resonance and anti-resonance, the input impedances of the line become maximum
and minimum respectively. The highest value of the fundamental drive current
under anti-resonant condition will then be its upper limit. The lower limit
of the drive was then determined by first obtaining the highest harmonic
standing wave under anti--resonant condition after which the level was decreased
until the proper measurement at the harmonic could be made. This then gave
the lower limit for the fundamental drive. Further reducing the fundamental

drive will restrict the measurements to fewer harmonics. It must be emphasised
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that throughout this procedure the drive level must not exceed that of
the burnout for the device.

The spectrum analyser was next calibrated for the fundamental
frequency current. This was done by measuring the r.f. voltage across
the characteristic impedance ZO in series with the diode. The value of
the current computed was then related to the reading on the spectrum
analyser. Throughout the experiment the spectrum analyser was used to
measure the harmonic standing waves along the slotted line and the funda-
mental frequency current through the diode.

5.4.4 Harmonic Measurement Procedures

The equipment, working at a particular harmonic and drive level
is shown in Fig.5.2. The measurement procedure consisted of two parts
which were, the setting up of the condition of resonance and the condition
of anti-resonance. In both cases (resonant and anti-resonant)} the magnitudes
of the standing waves at the anti-nodes and the nodes were measured while
maintaining the same drive level. The measurements were carried out according
to the following steps:

(i) The probe was tuned to the desired harmonic frequency, using a
variable matching stub, as indicated by the spectrum analyser. The frequency
was also verified by measuring the wavelength along the slotted line.

(ii) The condition of resonance of the line was first obtained. This
was done by varying the total length of the line until the standing wave
(magnitude) peaked. With this resonant length of the line 'Qn 'and at any

a

probe position 'x' the magnitude of the standing wave is |Vn'(x‘mmax)l

The value of between the terminals EE' and DD' (Fig.5.2) was then

1 1
 max
measured and recorded.

(iii) While retaining the line under the resonant condition, the

spectrum analyser was reset to measure the fundamental drive current. The

drive level was then set to the required value.
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(iv) Next, the spectrum analyser was retuned to read the voltage
at the nth harmonic (still under the resonant condition). The probe was
moved to the anti-node ('x ') and the node ('x . ') positions of the

max min

standing waves. The corresponding magnitudes of the standing wave

1) ]
|vn (Xmax’%nax)l and lvn (xmin’ﬂmax)f

were then measured.

(v) The condition of anti-resonance of the line was next obtained.
This was done by varying the length of. the line until the magnitude of
the standing wave reached a minimum. The length of the line lkmin' was
then measured.

(vi) Keeping the anti-resonant condition of the line, the spectrum
analyser was reset to measure the drive level. This level had to be adjusted
to the value set earlier in order to maintain the same drive level under both
the conditions of resonance and anti-resonance.

(vii) Finally, the spectrum analyser was retuned to measure the
maximum and minimum values of the standing wave under the anti-resonant
condition. This was done by moving the probe to the positions of the onti-
node('xmax‘) and the node ('xmin’) of the standing wave. The corresponding
magnitudes of the standing wave at these points

IV ' (x (x

W )| and
n max min

v . .
A mln’zmln)l

were then measured.
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In summary, the four quantities measured at a particular harmonic
frequency and the drive level were the magnitudes of the standing wave

at the anti-node and the node under the resonant condition, i.e.

vV ' (x Y o) and |V '(x . ,%
n max max n min max

and those under the anti-resonant condition, i.e.

) and | V '(x

X . o R
n max miin n min

min
Other variables involved in the measurements were the line lengths

(' ''and '% . ') and the probe positions ('x ''and 'x_, ').
max min max min

Finally, using the measured quantities mentioned above (i.e.
voltages, lengths of the transmission line and the probe positions),

the following diode parameters

on - complex reflection coefficient
Zn - complex impedance
| an - generator voltage

th , . A .
at the n harmonic and a specific drive level can be determined by the
methods shown in the theory. At each harmonic frequency, the process
was repeated for different drive levels within the fundamental frequency

current range chosen.




80

5.5 CONCLUSION AND COMMENTS

The theory and the measurement of the diode static characteristics
have been outlined. In the measurement it was essential that the bias should
not exceed the burn out level. In addition, while taking the measurement,

a precaution was taken where the d.c. supply on the diode was for only short
time intervals. This was to prevent the diode from getting over heated
thereby causing changes in the diode characteristics.

A presentation of the spectrum measurement technique by the Multiple
Reflections Resonant Line (MRRL) method was given. This has been specially
developed for measurements where the load is a nonlinear diode. Relevant
ideas related to the operation and application of the coaxial slotted line
have been outlined. In the conventional slotted line measurements, mulbiple
reflections are rarely considered because the source impedance is normally
taken to be the characteristic impedance ; hence no reflection of waves
would result at the source end. The idea of multiple reflections, leading
to that of line resonance, provides another useful application of the slotted
line.

With the creation of standing waves at harmonics under well-defined
conditions, meaningful measurements at different harmonic frequencies could
be made. From the measurement point of view an interesting aspect of thig
technique is that there are two conditions that have to be satisfied. The
first condition is that the VSWR obtained at harmonics should be constant
(fixed by the type of termination chosen). The second condition is that
the difference in lengths of the transmission line under the conditions of
resonance and anti-resonance at a particular harmonic (frequency) should
correspond to a quarter wavélength. Checking the extent to which these two
conditions are fulfilled helps to confirm whether the measurements taken are

reliable.
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A discussion on the equipment and the experimental bench was given.
One interesting aspect in the experimental arrangément was the key role
played by the spectrum analyser. The use of the multiple termination at
the energising end represented another unique feature of the method. As
the measurements involved the variation in the length of the transmission
line, the use of an adjustable line became essential. This line was well
lubricated in order that the conditions of resonance and anti-resonance be
more precisely established. The connections between the components along
the transmission line had to be rigidly made to prevent mismatches. The:
diode was placed at the end of the line rather than the beginning because
of the need for a proper monitoring of the fundamental current drive level
If it was placed at the beginning of the line a reliable drive level could
not be measured because of variations in the input impedance along the line.
A coaxial diode holder was constructed to be compatible with the shapes of
the test diodes and the slotted line system. As the nonlinear device
behaviour is level dependent, a quantity which measured the level reliably
was established, and that was the current at the fundamental frequency.
Indications on the procedures adopted in the calibration of various equipments
and components were also given. Detailed measurement procedures were finally
outlined.

The novelty of the method lies in the fact that a complete spectrum
generated within a nonlinear device at high frequencies can be obtained.
At the present time only the amplitude spectra can be measured and no high
frequency method is available to obtain both the amplitude and the phase
spectra. These spectra provide the means of device 'fingerprinting'. From
the complex impedance and the equivalent circuit proposed, device characterisa-
tion under specific operating conditions can be found. Hence, this mipht be

looked upon as the device characterisation. This technique too provided
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a means of comparing the device behaviour under different drive levels.
In essence this was device matching at harmonics and it constituted a
further application of the method in device assessment. Therefore the
technique provided a better way of characterising a device for definite
drive levels and frequencies, thus giving a more complete picture of the
diodes used as nonlinear elements.

At present, the characterisation of such devices is inadequate
because of insufficient information about their capabilities in frequency
converting applications. In the data sheet for devices for example, the
parameters given are usually vague with no reference to the critical
guantities like the drive levels and frequencies. Very often some of these
given parameters are based on one point measurements, and others on measure-
ments made at low frequencies. 1In addition, the quantities obtained are
also approximate.

The measurements involved in this high frequency tLechnique are
simple once relevant components and instruments are calibrated. In the
computation of the device impedance, only relative measurements of the
standing waves are required. However, the actual value for the generator
voltage of the device at the harmonics can be easily obtained by considering
the coupling coefficients between the line and the probe. The sensitivity
of measurement may be improved by increasing the precision of the attenuator
scale on the spectrum analyser used. The lowest scale available in the
spectrum analyser used was 1dB. Another factor is increasing Lhe resul Ling,

VSWR value of the multiple termination adapted to the transmission iinc.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 INTRODUCTION

The results of the experimental d.c. and the harmonic spectrum
measurements carried out on the diodes are presented. In the case of
the former, they take the form of the graphs from which the diode para-
meters were found ; for the latter, the amplitude and phase spectra are
given in addition to the diode impedance at different harmonics and the
effect of parasitics. The experimental methods and proccdures were already
discussed in Chapter 5. Two sets of measurements were carricd oul for
each diode. The fundamental drive frequency chosen was 450 MHz for one
set and that 1.560 GHz for the other. The first was chosen to suit the
measurements for the lower range of frequencies of the slotted line avail-
able and the second for the higher range. The 450 MHz source had a maximum
available output of 50mW while that for 1.560 GHz source had a constant
output of 1.5W.

From the static characteristics and the results of the harmonic
spectrum measurements, the six types of diodes (two diodes for ¢ich Lype)
were characterised and assessed. The amplitude and phase spectra provided
the means for the device 'fingerprinting' and comparison against other
devices of the same type. In addition, it provided the required information
about the component values of the equivalent circuit.

3

6.2 STATIC CHARACTERISTICS

Typical results of the d.c. measurements are presented in Figs

6.2.1 and 6.2.2. For each diode, two graphs were drawn, the zn(if) versus
i
f .
Va’ and n (;avé> versus 1f' The values of the parameters IS, rS, o and n,

for the static characteristics are summarised in Table 6.1. The actual diode
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parameters given by the manufacturer (on special request) are also
included in the table. It was not possible to obtain the parameters of
the static characteristics for the germanium backward diode. This may

have been due to the fact that they had unacceptable wide variations.

In other cases, the measured values of the constant o ( o = - ET )
were in very good agreement with those supplied by the manufacturer. On
examining the measured values of the ideality factor n , those for the
silicon Schottky barrier diodes (types DC1504F and DC1515) were about 1.1l
and were smaller than those for the gallium arsenide Schottky barrier,
silicon point contact and germanium backward diodes. This implied that the
I-V characteristics for the silicon diodes were closer to ideal. It is
interesting to note that the ideality factor is very close to unity at low
dopings and high temperatures. However, it can substantially depart from
unity when the doping is increased or the temperature lowered. The value
of the ideality factor indicates also the type of mechanism of conduction
in devices. In the case of an abrupt p-n junction, when the ideality factor
is one, the diffusion current becomes dominant and when the value is two,it
is the recombination current-that is significant. In general the ideality
factor values vary from one to two.

The performance of devices such as rectifiers, mixers anu detectors
depends greatly on the product of the parasitic components(s’la’36 )
series resistance and junction capacitance whose effect should ideally be
minimised. There is then a need to minimise the values of this product for
the sensitivity property of a diode. From the results in Table 6.1, the
series resistance of gallium arsenide Schottky barrier diodes is smaller
compared to other diodes, thus may give better detector and mixer performances.

(19)

The cut-off frequency at zero bias is given by

1

co 27r .
50 jo
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(where Teo is the series resistance and Cjo is the junction capacitance
at zero bias). This again shows that the gallium arsenide Schottky
barrier diodes will have higher cut-~off frequency potential if the
junction capacitances of the diodes are of the same order of magnitude.
Further, the diode noise temperature ratio depends also on the series
resistance.

In the case of the saturation current, no comparison can be made
between the measured values and those supplied by the manufacturer because
of the differences in the measurement units used. However, in both cases
the trends of the values were agreeable. Comparing the values of the
saturation current for different diodes, the gallium arsenide Schottky
barrier type has the lowest which for the two diodes were 1.9 x lO*lR and
3.1 x lO—l2 amperes. The values of the saturation currents for other diodes
were, of the order of 1.0 x 10—lO ampere for the silicon Schottky barrier,
1.0 x 1079 ampere for the silicon point contact and 1.0 x 1074 ampere for
the germanium backward. These results are consistent with the fact that
lower saturation is due to larger energy band gap for the semiconductor.
For a Schottky barrier diode the saturation current is given by,

) -a Vg

IS = aA T exp TR

where a is the diode area ; A* is the Richardson's constant and VB is the
barrier height. As the saturation current is due mainly to the thermally
generated carriers, it has a strong dependence on temperature. So as the
saturation current for gallium arsenide Schottky barrier diodes are smaller
than those of the silicon type, the former may operate better at high
temperatures than that of the latter.

It is hoped that in very many applications that the diodes normally

behave as var:ﬁéftors9 i.e. pure current dependent resistance. Consequently,
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capacitance and the series loss resistance of the p-n junction are the
parasitic components. The values of the capacitances measured are given

in Table 6.1. The total capacitance for most of the diodes given by the
manufacturer was of the order of 0.30 pF. The capacitance measured for

the silicon Schottky barrier diode was close to that given by the manufacturer,
while that for the gallium arsenide Schottky barrier, the value was 0.60pF
(this was twice that given by the manufacturer). However, for the silicon
point contact diodes, the values obtained were, 2.00, 1.66, 1.40 and 1.60pF.

6.3 HARMONIC SPECTRA

In presenting the results of the harmonic measurements, the widely

1,2,37) was first considered.

employed method of the harmonic discrete spectra
Such spectra (amplitude and phase) for the gallium arsenide Schottky barrier
diodes a specific fundamental frequency drive level is shown in Figs 6.3.1

and 6.3.2. Each is the 'fingerprint' of the devices at a particular drive
level. Unfortunately, this type of representation does not appear Lo be
useful as the number of measurements that may be displayed is limited.

In order to overcome the need for a large number of plots, an
alternative method, the continuous amplitude and phase representation of
harmonics against the drive level, was introduced. This was done by in-
corporating thé harmonic discrete spectra of a diocde at all the rdrive levels
into continuous plots. Each complete display contains therefore the 'finger-
print' at every energised level which can be extracted at wille In addition,
the dynamic behaviour of the devices may be compared for different levels at
particular harmonics. This was especially suitable because the different
types of diodes were tested in pairs.

One of the biggest limitations on the experimental side was lack of
sensitivity in the instrument used. Consequently, the sixth and higher

harmonics could not be measured. Although the obtained 'fingerprint' of
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a(v ) n r_ ohm I Crotal (pF)
Diode manu—
measured manu-"" measured manu-— measured manu— measured measured manu-—
facturer
facturer facturer facturer (amp) (A/sz ) facturer
GaAs Schottky barrier _12
DC 1322(1) 32 + 1 1.25+0.04 6 +1 1.9x%x10 _7 0.30+0.02
34.8 1.15 6 12 5 x 10 0.15
DC 1322(2) 32 + 1 1.25+0.04 8 +1 3.1x10° 0.31+0.02
Si Schottky barrier ~10
DC 1504F(1) 36 + 1 1.11+0.03 34 + 1 9.0x10 _a 1.00+0.02
36.4 1.1 15 —9 10 0.33
DC 1504F(2) 37 + 1 1.08+0.03 32 + 1 1.1x10 0.36+0.02
Ge backward 5
DC 3021(1) 20 + 1 2.0 +0.1 23 + 1 7.4x10° -
DC 3021(2) 20 + 1 2.0 0.1 10 + 1 1.0x10™% -
Si Schottky barrier
DC 1515(1) - - - - 4 -
36.4 1.1 20 10 10~ 0.31
DC 151(2) 36 + 1 B 1.11+0.03 47 + 1 8.0x10" 0.35+0.02
5i point contact -6
CS 12BR(1) 30 + 1 1.33+0.04 12 + 1 2.3x10 2.00+0.05
30.8 1.3 30 -6 - 0.3
CS 12BR(2) 32 + 1 1.25+0.04 26 + 1 1.2x10 1.60+0.09
Si point contact -6
¢S GB(1) 29 + 1 1.38+0.04 19 + 1 1.9x10 1.40+0.09
30.8 1.3 30 6 - 0.3
CS QR{2) 32 + 1 1.25-0.04 12 +1 1.6x10 1.60+0.05
TA3ZLZ 6.1: The DC Characteristics
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the device is still valid, it may not be adequate in some cases.
Presentation of the results on each type of diodes will be made
in separate sections (of the Chapter) that follow. Each section comprises
two parts and they are the results of measurements at the fundamental
frequency of 1.560 GHz and that of 450 MHz. The description of the harmonic
spectra and impedances will be made here. However, the explanation and
interpretation of different features are to be dealt with in the final
Chapter.

6.4 GaAs SCHOTTKY BARRIER DIODE - (X BAND DETECTOR DIODE)

- Types DC1322/1 and DC1322/2 - 1.560GHz

Comparing the two amplitude spectra, it can be seen that the
second harmonic amplitude for one diode has an unusual drop between 3.5
and 5.0 mA. The pattern for the third, fourth and fifth harmonics appears
to be similar for the two devices. It shows that the fourth harmonic is
greater than the third above 6.2 mA for one diode and 4.7 mA for the second.
There exists also a peak at 1.7 mA for the first diode in Fig 6.4.1(a).

The corresponding phase spectra are shown in Figs 6.4.1(b) and
6.4.2(b). Large variations in phases are observed in all the harmonics
for the first diode and that the third and the fifth harmonics for the
second diode. On the other hand, the phases for the second and ihird
harmonics of the first diode (for levels above 3.5mA) and that fur the second
and fourth harmonics of the second diode have relatively small changes. There
is a phase discontinuity for the fourth harmonic at 2.5 mA.

The impedance (at different harmonics) plots are given in Figs
6.4.1(c) and 6.4.2(c). The values of the impedance at the second, third
and the fourth harmonics of the second diode fall with an increase in the
drive level. Similar trends occur for the second, third and the fifth

harmonics at levels above 3.9 mA for the first diode. However, the impedince
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curves at the fifth harmonic for both diodes show large variations.

The plots for the capacitance at the harmonics are shown in Figs
6.4.1(d) and 6.4.2(d). There were less variations in values for the
second diode than that for the first. It is apparent in Fig 6.4.2(4d)
that the average value of the capacitance for all the harmonics lay
between 0.6 and 1.0 pF.

There was a trend shown by the first diode to increase the second
and fourth harmonic amplitudes with the increase in drive (Fig 6.4.1(a))
and at the same time there was a corresponding decrease in the phases
(Fig 6.4.1(b)). Similar behaviour is observed for the fourth harmonic
of the second diode. However, the fifth harmonic amplitudes which are
generally bf low levels (of the second diode) decrease, while that for the
corresponding phases increase, with the drive. There exists an inflexion
point for each of the impedance curves of the second and third harmonics
of the first diode and that of the fifth harmonic for the second diode.

_At this point there is a corresponding discontinuity in the phases. At a
particular drive level, a nonlinear curve between phase and harmonic number
is generally obtained. The relative variations in phase and capacitance
correspond with those of the impedance. This may be noted in the case of

the second harmonic for the first diode (Figs 6.4.1(b), 6.4.1(c, and 6.4.1(d))
where small changes in the impedance contribute towards the simi’ wrly small
variations in phases and capacitances. All occur at relatively bigh harmonic
amplitudes except in the case of the fifth harmonic.

450 MHz

The amplitude spectra for the pair of diodes are given in Figs
6.4.3(a) and 6.4.4(a). The amplitudes for the second harmonic of both
diodes increase with the increase in drive. However, the fourth harmonic
amplitude (for the first diode) appears to have a peak and a dip. The third
harmonic amplitude for the second diode remains constant when the drive is

increased.
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The phase spectra for the diodes are given in Figs. 6.4.3(b) and
6.4.4(b). The second harmonic phases for the first diode seem to decrease
with the increase in the drive level. There are small variations in
phases for the second and third harmonics of the second diode. On the
other hand, all the other harmonics for both the diodes had big variations
in values,

The impedance (at different harmonics) plots are given in Figs.
6.4.3(c) and 6.4.4(c). The values of the impedance at the second harmonic
for the first diode seem to increase with the increase in the drive while
those for the second diode remain constant., As for the third harmonic the
impedance for the first diode tends to increase with drive, however, the
reverse is true for the second diode.

Comparing the capacitance plots in Figs 6.4.3{(b) and 6.4.4(b),
the variations in the values were the same. The average value of the
capacitance for the first diode was 0.6 pF and that for the second was
1.0 pF.

In the case of the first diode, the second harmonic phase decreases
and the second harmonic voltage, of relatively high value, increases with
the increase in the drive. Large changes in the third and fourt. harmonic
phases correspond to similar variations in the impedance while - i1e harmonic
generator voltage is relatively iow. The impedance at the secor harmonic
for the second diode (Fig. 6.4.4(c)) has a constant value over almost a
complete range of levels which is also reflected in small variations in
the values of the phases and capacitances. In addition, the corresponding
harmonic generator voltage, of relatively high value, increases with increase

in drive.
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6.5 Si SCHOTTKY BARRIER DIODE ~ (X BAND MIXER DIODE)

(Types DC1504F/1 and DC1504F/2. — 1.560GHz

The behaviour and the order of magnitude of the harmonic
amplitudes (Figs 6.5.1(a) and 6.5.2(a)) for both diodes are almost
identical except those of the fourth. Generally, the open circuit
voltages increase with those of the drive levels. The fourth harmonic
amplitudes are higher than those of the third in the case of the first
diode. The fifth harmonic amplitudes for both diodes have little
variations in values within the given drive range in addition to having
low peaks.

The fourth and fifth harmonic phases decrease more with the
increae in level, compared against those of the second and third, for
the first diode (Figs 6.5.1(b) and 6.5.2(b)). The behaviour of the
third and fifth harmonic phases for both diodes is similar. Furthermore,
the value of the third harmonic phases are almost constant.

The behaviour of the impedance at the third harmonic for both
diodes are almost similar with magnitudes fairly constant (Figs 6.5.1(c)
and 6.5.2{(c)). There are peaks for the impedance curve for the fifth
harmonic at 1.6 mA for the first diode and that of the second harmonic at
1.5 mA for the second diode..

The capacitance at the third harmonic for both diodes is almost
constant and of similar values (Figs 6.5.1(d) and 6.5.2(d)). However,
the second, fourth and the fifth harmonics of the first diode and those
of the fourth and fifth for the second diode have bigger variations in
values;

At the drive level corresponding to the peak of the fifth harmonic
voltage (for both diodes), there is an inflexion ﬁoint on the curve of

the same harmonic phase. For the first diode, there is a clear case of the
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decrease in the fourth harmonic phases and an increase in the correspond-
ing amplitude with the increase in the drive level. Another interesting
behaviour is that for the third harmonic, values of the amplitude,
impedance, phase and the capacitance are fairly constant.

450 MHz

The second and third harmonic voltages of the second diode generally
increase with the drive level (Fig 6.5.4(a)). In the case of the first
diode, the second harmonic voltage has a peak (Fig 6.5.3(3)) and the curve
for the third harmonic is wave-like.

The second harmonic phase of the first diode (Fig 6.%.3(b)) has an
abrupt change at 0.9 mA drive. As for the second diode, therc are small
variations in the values of the second and third harmonic phases (Fig 6.5.4(b)).

The behaviour of the impedance at the second, third and the fourth
harmonics of the first diode is wave-like and their values vary substantially
(Fig 6.5.3(c)). However, the values of the impedance at the second and third
harmonics for the second diode have small variations within the drive level
range (Fig 6.5.4(c)).

Similar pattern in the béhaviour of the capacitance for the correspond-
ing second and third harmonics for each of the diodes is again observed
(Figs 6.5.3(d) and 6.5.4(d)).

There is a distinct difference in the spectral behaviour oetween
the two diodes. 1In the first diode the harmonic voltages and +thz impedance
at harmonics fluctuate, and consequently showing similar variations for the
cofresponding phases and capacitances. In contrast to the second diode,
there are small variations at each harmonic for the amplitude and impedance

and hence the phase and capacitance.
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6.6 Si SCHOTTKY BARRIER DIODE (S BAND DETECTOR DIODE)

- Types DC1515/1 and DC1515/2

1.560 GHz

In this section only diode of type DC1515/2 is discussed.

When the drive level is increased above 1.8 mA, the second
harmonic amplitudes are constant and those of the third appear to
increase (Fig 6.6.1(a)). There is a peak and a dip for the fourth
harmonic amplitude and while that for the fifth harmonic the behaviour
is wave-like.

The behaviour of the phases for the fourth and fifth harmonics
(Fig 6.6.1(b)) is seen to decrease with level whereas that for the
third harmonic, there is only a small decrease. Discontinuity in phases
appears to occur for the second harmonic when the drive levels are between
1.8 and 2.1 mA. In addition, the discontinuity in the fourth harmonic is
at a level of about 1.4 mA.

A peak exists for the impedance curve at the fourth harmonic
(Fig 6.6.1(c)) at the drive levels between 1.7 and 2.0 mA. The impedances
at the third and fourth harmonics are about constant within the given drive
range.

The values of capacitance at the third harmonic are almost constant
whose average value is 0.7 pF (Fig 6.6.1(d)). However, there are big
variations in values for the second and fifth harmonics.

Taking into acéount the third harmonic (within the range of the
drive level) it is seen that the impedance and capacitance are about
constant, while the amplitude increases and the phase decreases with the
drive. At the drive level between 1.8 and 2.0 mA, there exists a peak

for the values of the impedance at the second harmonic and a discontinuity
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in the corresponding harmonic phase.

450 MHz

The second and third harmonic amplitudes increase with the drive
level for both diodes (Figs 6.6.2(a) and 6.6.3(a)). In the case of the
fourth harmonic voltages the behaviour is wave-like (for both diodes).

As the drive level is increased the phases, of the fourth
harmonic for both diodes (Figs 6.6.2(b) and 6.6.3(b)) and those of the
third harmonic for the second diode, decrease. In the case of other
harmonics, there are moderate variations in the values of the phases
for both diodes.

In general, there are fairly small variations in the values of
the impedance at harmonics for the second diode within the given drive
range. The values of the impedance at the third harmonic is almost
constant. However, bigger variations are observed in the case of the
first diode (Fig 6.6.2(c)).

The behaviour of the capacitance at harmonics for the two diodes
(Figs 6.6.2(d) and 6.6.3(d)) is that, the first has bigger variations with
an average valueiof 0.6 pf. On the other hand the second diode has smaller
variations with an average value of 1.2 pF.

 In general, the first diode shows bigger variations in the values
of the harmonic amplitude and the impedance at harmonics and hence the
corresponding capacitance. However, there are small variations in the
value of the phases. In the case of the second diode, there are moderate
variations in the values of the harmonic amplitude and the impedance at
harmonics and hence the corresponding phase and capacitance.

6.7 Ge BACKWARD DIODE (X BAND DETECTOR DIODE)

~ Types DC3021/1 and DC3021/2

1.560 GHz
The third, fourth and fifth harmonic amplitudes of the first

diode (Fig 6.7.1{(a)) and those of the fifth for the second diode
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(Fig 6.7.2(a)) increase with the drive ievel. However, the fourth
harmonic voltages of the second diode are fairly constant. The
behaviour of the second and fifth harmonic amplitudes for both the
diodes is almost similar.

The phases for the third, fourth and the fifth harmonics of
the first diode (Fig 6.7.1(b)) and those of the fifth for the second
diode (Fig 6.7.2(b)) decrease with the drive level. 1In contrast, the
second harmonic phases of the second diode increase with the drive.

The values of the impedance at the fifth harmonic of the first
diode (Fig 6.7.1(c)) decrease with level whereas those of the third and
fourth increase. In the case of the second diode (Fig 6.7.2(c)), there
are fluctuations in the values of the impedance for the second, fourth
and the fifth harmonics within the given drive level range.

The values of the capacitance at the fifth harmonic for the first
diode (Fig 6.7.1(d)) are almost constant (within the drive level range),
which on the average is 0.4 pF. There are small variations for the second
and third harmonics. However, there are big variations in the values of
the capacitance at the fourth harmonic for the first diode and those at
the second, fourth and the fifth harmonics for the second diode (Fig 6.7.2(d)).

For the first diode, the third, fourth and the fifth harmonic
amplitude increase with the drive level and the corresponding harmonic
phases decrease. In the case of the fifth harmonic of the first diode,
as the level is increased the amplitudes increase, the phases and the
impedances decrease and the capacitance remains constant.

450 MHz

Generally, the generated harmonic voltages incraease with the drive
level for both diodes (Figs 6.7.3(a) and 6.7.4(a)) and the rates of increase
are greater for the third and fourth harmonics.

As for the phases, there are small variations with the drive for the
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third harmonic of the first diode (Fig 6.7.3(b)) and those for the
fourth of the second diode (Fig 6.7.4(b)). In the case of other
harmonics for both diodes, however, there are moderate variations.

The values of the impedance at the second and third harmonics
of the first diode (Fig 6.7.3(c)) and those of the third for the second
diode (Fig 6.7.4(c)) decrease with the drive level. However, the values
of the impedance at the fourth harmonic for the second diode are almost
constant. Furthermore, the values of the impedance at the fourth harmonic
of the first diode and that of the second harmonic for the second diode,
increase slightly with the increase in the drive level.

The values of the capacitance at harmonics for the second diode
(Fig 6.7.4(d)) have small variations and range from 0.7 to 1.2pF. In the
case of the first diode (Fig 6.7.3(d)), the values of the capacitance at
the second and fourth harmonics have bigger variations from 0.03 to about
0.90 pF. Only the values of the capacitance at the third harmonic of the
first diode and those of the second for the other diode havc moderale
variations.

As the drive level is increased (for both diodes) the values of the
impedance at the third harmonic decrease and those of the corresponding
amplitudes increase. However, in the case of the second diode, the values
of the impedance at the fourth harmonic and those of the corresponding
capacitance are fairly constant. There is a low peak for the curve of the
second harmonic amplitude at 2.1 mA (for the first diode) and at this drive

level there is a discontinuity in the corresponding phase.

6.8 Si POINT CONTACT DIODE (S BAND MIXER DIODE)

- Types CS12BR/1 and CS12BR/2

1.560 GHz
For both the diodes, the amplitudes for the fourth and fifth

harmonics increase with the drive level (Figs 6.8.1(a) and 6.8.2.(a)).
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However, the values of the second and third harmonic voltages are almost
constant.

The variation in the phases at the harmonics are generally small
for both diodes (Figs 6.8.1(a) and 6.8.2{(b)). It is seen that there is
no apparent trend in teh behaviour of the harmonic phases.

The impedance at the harmonics again have small variations in
values for both diodes (Figs 6.8.1(c) and 6.8.2(c)). The impedance at
lower harmonics seems to have higher values. 1In the case of the first
diode, the values of the impedance at the third and fifth harmonics are
fairly constant.

As for the capacitance, it is seen that the values at the fourth
harmonic for the first diode (Fig 6.8.1(d) and those at the second and
third harmonics for the second diode (Fig 6.8.2(d)) have small variations.
The average value is about 0.4 pF. However, there are bigger variations
for cases of the fifth harmonic for the first diode and those of the fourth
and fifth harmonics for the second diode.

Generally, there are small variations in the values of the harmonic
amplitude and those of impedance at harmonics and hence the corresponding
phases. However, for the capacitance at certain harmonics, there are bigger
variations in values.

6.9 Si POINT CONTACT DIODE (X BAND MIXER DIODE)

- Types CS9B/1 and CS9B/2

1.560 GHz

All the harmonic amplitudes for both diodes (Figs 6.9.1(a) and
6.9.2(a)) increase with the drive level. The values of the second and
fifth harmonic voltages are about the same for both diodes. In the case
of the third harmonic, the values of the second diode are higher than those

of the first.
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The values of the third and fifth harmonic phases for the second
diode (Fig 6.9.2(b)) decrease with levels. However, in the case of the
fourth harmonic, the values are almost constant. There is even a dip
for the second harmonic phases at the level of 2.7 mA. In the case of
the first diode, there is no apparent trend in the behaviour of the
harmonic phases (Fig 6.9.1(b)).

For the first diode, the values of the impedance at the fourth
harmonic (Fig 6.9.1(c)) decrease with level although there is a peak and
a dip. The curve for the impedance at second harmonic has a low peak and
the values of those for the third and fifth harmonic increase with levels.
The values of the impedance at the fifth harmonic of the second diode
increase with the drive, however, there is no apparent trend in the
behaviour of that of the second, third and fourth harmonics (Fig 6.9.2(c)).

There are wider variations in the values of the capacitance at
harmonics for the first diode than those of the second (Figs 6.9.1(d) and
6.9.2(d)). The values of the capacitance for the first diode range from
0.05 to 0.50 pF whereas those for the second diode were from 0.1 to 0.5 pF.

Generally, for both diodes there are dnly small variations in the
values of the harmonic amplitudes and hence the corresponding phases. It
is obvious that the values of the second harmonic amplitude, which are
relatively high for both diodes, have small variation over the given range
of the drive level. Furthermore, similar behaviour is seen for the impedance
and hence phases and capacitances. At an inflexion point for the curve of
impedance at the fourth harmonic (first diode), where the drive is 2.7 mA,
a discontinuity in the corresponding harmonic phase is observed. In the
case of the second diode, at the drive level of 2.7 mA where there is a law
peak in the impedance of the second harmonic, there is a dip in the correspond-

ing phase.
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6.10 COMMENTS AND DISCUSSION

Basic diode parameters were first obtained from the result of
the d.c. measurements. This static characterisation forms an integral
part of the harmonic spectrum measurements at high frequencies because
it provides an initial assessment of the device.

The results of harmonic spectrum measurements are presented in
terms of the parameters amplitude, phase, impedance and capacitance
plotted against the drive level. The relationship between these parameters
may be established. It is observed that at lower harmonics, generally as
the drive level is increased, the harmonic amplitude increases, phase and
impedance decrease and the capacitance remains constant. If within the
given drive range, there are small variations in the harmonic amplitude
and impedance, there will be small variations in the corresponding phase
and capacitance. This is associated with the lower harmonics where the
amplitude levels are relatively high. On the other hand the reverse is also
true.

Within the drive level range and for certain harmonics the diode
parameters may be constant, increasing or decreasing ; have a peak, dip,
an inflexion point or a discontinuity. Knowing the behaviour of any one
of these parameters, it is possible to predict that of others. Moreover,
the behaviour of the parameters at different harmonics is useful informa-

tion, especially in the device application.
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CHAPTER 7

COMMENTS, CONCLUSIONS AND FUTURE WORK

7.1 GENERAL

Spectral Analysis (Chapter 2)

The fundamental theory of spectral analysis based on Fourier
principles was reviewed in Chapter 2. These were then used in the
examination of semiconductor devices, the response of which may be re-
presented by a periodic time function. The theoretical investigations
into the analytical relationships between time and frequency domains had
produced a number of useful conclusions and provided the foundation for
the spectral characterisation of a nonlinear device. Two new forms of
sampling procedures, one based on dividing the waveform into vertical
pulses and the other approximating the waveform by the pulses of well
known shapes were also discussed in this Chapter.

Harmonic Generating Properties (Chapter 3)

The discussion of the harmonic generating properties of nonlinear
devices in Chapter 3, began with the emphasis on the need for classification
of practical high frequency diodes. Consequently, a brief review of major
devices and the scope of their application and significance were included.
The high frequency application of these devices is an expanding branch of
electronics. The aims in device manufacture have always been to accentuate
the nonlinearity and suppress any parasitic components that may affect it.
In the investigation into the behaviour of nonlinear devices 1t is usually
difficult to obtain a closed form solution for the response and therefore
there is no satisfactory way of characterisation. However, the concept of
spectral characterisation should represent a true and unique behaviour of

the device, a "fingerprint", under normal working conditions.
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The MRRL Method — Theory (Chapter 4)

The theory of the MRRL method of harmonic spectrum measurement
was presented in Chapter 4. The application of the basic transmission
line theory was extended to deal with the complexity of the standing
waves of all the harmonics generated within a nonlinear device. This
resulted in the establishment of relationships between the standing
wave properties and the device parameters. From the proposed equivalent
circuit, a nonlinear device was characterised at a particular harmonic
frequency and drive level by the generated harmonic voltage and the
complex impedance. This had led to the derivation of expressions for
the device parameters.

MRRL - Measurement Method (Chapter 5)

The measurement and experimental procedure were dealt with in
Chapter 5. The novelty of this specially developed coaxial slotted line
technique lies in the capability of determining the properties of a non-
linear device from the measurements carried out on the harmonic standing
waves produced under the set conditions. The necessary changes made on
the normal slotted line systems were, the addition of an adjustable line,
introduction of a known mismatch tefmination (resistive multiple tgrmination)
at the excitation source end and the direct use of the spectrum analyser.
The usual precautions, as applied to normal slotted line systems, in
addition to those related to the newly adapted components were taken.
The design and construction of the diode holder were made compatible with
the line and shapes of the diode encapsulations and calibrated accordingly.
Finally, the choices of reference drive level, the value of the impedance
of the resistive termination, fundamental frequency and the drive level

were decided.
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Experimental Results (Chapter 6)

In Chapter 6, experimental results were presented. The amplitude
and the phase of the generated spectrum and the impedance and capacitance
of the equivalent circuit were produced for every diode at each fundamental
drive frequency. Discussion of the harmonics produced by each diode was
made on the basis of the four spectral "fingerprints" with appropriate
cross-references between them. Since there is a relationship between
amplitude, phase, impedance and capacitance, some general observations were
made. As the measurements were made for two different diodes of the same
type, it was convenient to compare their individual properties. The static
characteristics of the diodes obtained were the series resistance, saturatioﬁ
current, ideality factor and the low frequency measurements of the capacitance.
These were useful items of information about the devices, which however, did
not convey anything about their harmonic generating and frequency converting
capabilities.

7.2 ASSESSMENT OF THE MRRL METHOD

General

The MRRL technique of harmonic measurement developed is theoretically
sound since it was supported by the facts that the harmonic standing waves,
under the conditions of resonance (including the corresponding line impedances),
could be accounted for and related to the device parameters. Experimentally,
the validity of the technique was confirmed from the measurements, at a
particular harmonic and drive level, where the difference in the length of
the line, under the resonant and anti-resonant conditions, was a quarter of
a wavelength. Besides, the VSWR measured could be verified to be eqgual to
that of the value, created by the known resistive multiple termination. An
outstanding feature of the experimental téchnique is that, in the computation

of the reflection coefficient P only relative measurements were needed.
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However, the actual generated harmonic voltage can be determined when the
coupling coefficient between the probe and the line is included in the
computation. The application covers a wide frequency range from L to
X~bands, when the 50-cm slotted line is used. If the levels of the
higher harmonics are too low to measure then different fundamental
frequency drives may be chosen. Moreover, the highest order of the
measurable harmonic is restricted by the "burnout" point of the device.
The use of the spectrum analyser was an added advantage because of its
versatility where the harmonic standing waves could be measured directly.
This was not possible with other detectors like the VSWR-meter where wave
modulation was necessary.

Accuracy and Errors

Generally, the errors in the harmonic measurements were lower for
cases when the fundamental frequency was 1.560GHz than those of 450MHz.
This was because in the latter case the drive levels of available sources
were low and the measurements were more affected by the noise ltevel of
the spectrum analyser. Typical error estimated for the amplitude, when
the fundamental frequency was 1.560GHz, was about 20% and that when the
fundamental frequency was 450MHz, it was about 25%, for all the measured
harmonics. In the case of the relative phases the errér was about 10%.
As for the impedance and capacitance the errors were much smaller and of
the order of 5%. The basic quantities measured, using the spectrum analyser,
were the standing wave voltages, the reflection coefficient of the resistive
termination and the fundamental drive current. The accuracy then depended
on the precision of the spectrum analyser, where the error in a single
measurement was 0.5dB, Other basic quantities measured, from, tLhe scale
of the slotted line in conjunction with the spectrum analyser, were the
total length of the line (at resonance and anti-resonance), the wavelength

and the phase angle wn . The error in a single measurement was O.5mm.
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Improvement

In order to improve the accuracy and the range of measurements a
number of steps is recommended. As the spectrum analyser played a key
role in the measurement so was its effect on the accuracy of the technique.
Therefore, it is necessary to improve the precision of this equipment.
Further, lowering the impedance of the resistive multiple termination will
result in the increase of its VSWR value and hence improve the sensitivity
of the standing wave measurements. This is demonstrated in the Appendix C.
Other areas of improvement include increasing the measurements to higher
harmonics and wider range of drive levels. Consequently, an excitation
source of higher output is required. Besides satisfying the above require-
ments, there is a need to offset the effect of a big coupling loss between
the line and the probe. 1In addition, compensation for the heavy attenuation,
required for a good termination, must also be considered.
Significance

This new measurement method offers a means of determining a complcte
spectrum generated within a nonlinear element over a wide frequency range.
The resultant spectra, which are the '"fingerprints'", represent new forms of
device characterisation. The pattern may show a regular trend consistent
with the normal behaviour of the device. It may also display an anomalous
trend which signifies the peculiarity of the device under certain defined
conditions. This provides the information about the harmonic generating
and frequency converting properties of the device. Regarding the accuracy,
there is no mathematical approximation involved except for the experimental
errors. The behaviour of the diodes of the same type may be examined
under identical conditions. From the spectra, which can be prominently
displayed, the degree of matching between devices at harmonics can be easily
detected. Hence, it may be suggested that this method of spectral character-

isation be employed in the matching of devices using generated spectra.
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In addition, devices may even be graded in terms of the degree of matching.

7.3 DEVICE EVALUATION

General

There are many types of device evaluation(7' 38 ) depending on its
application and the range of operating conditions to be encountered.
But testing is time consuming and test equipment is expensive, so manufacturing
tests are usually boiled down to a few basic ones and are often performed
only on samples. Nevertheless, having the capability for testing diodes
is highly valuable for providing feedback to process control and for
diagnosing what is wrong with a diode that does not work properly. This
work was mainly concerned with performance testing at high frequencies.
The method of spectral characterisation introduced provides a number of
parameters (amplitude, relative phase, impedance and capacitance) wilh which
a nonlinear device may be evaluated over particular rangcs of harmonic
frequencies and drive levels. From the behaviour of the frequency spectra
of these quantities, it may be possible to ascertain whether the device is L

Cunuerhjj

working normally or not and to assess its harmonic generating and frequency/\
properties. As an .example, for .the case of the amplitude spectra, it is
desirable to have high level harmonics and to know the corresponding drive
levels. 1In addition, probably at a suitable harmonic, the amplitude with
constant level is required over a range of drive levels. In some cases, it
may be that the levels for a certain harmonic is too low or having a dip or
a peak. In the case of the phase spectra much useful information may also
be extracted. The extent of variations of the phases for different harmonics
over a range of drive levels may give an indication of the behaviour of the
complex impedance of the device. Furthermore, any discontinuity in phases
may reflect a change in phase. The magnitude of impedance at harmonics

will invariably be very important for matching purposes. The value of

parasitic capacitance may be deduced from the phase measurements.
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The unexpected behaviour of some spectra reflects the peculiarity of the
device. This information may be useful in the design, fabrication and
application of the device.

Explanation and Interpretation

An attempt will now be made to explain and interpret the behaviour
of the harmonic spectra presented in Chapter 6. It is expected that on
increasing tﬁe drive level, when the generated harmonic voltage increases,
there will be a decrease in the corresponding impedance and the relative
phase while the capacitance will remain constant. This may be seen for the
second and fourth harmonics of the gallium arsenide Schottky barrier diode
(type.DCl322/l) in Figs 6.4.1(a), 6.4.1(b), 6.4.1(c) and 6.4.1(d). Generally,
this was true for the cases of lower harmonics where the associated amplitudes
were relatively higher. It is understood that the generated harmonic voltage
will increase with the drive level. On increasing the drive level the device
impedance decreases and becomes more resistive and hence reducing the phase
value. This is because the magnitude of the reactive component will normally
fall and that of the resistive component will drop to a constant value, when
the drive level approaches the switching condition. The parasitic capacitance
however, will be relatively constant if the device is working normally. 1In
principle, if the device behaviour agrees with the observation discussed,
then it is working as it should. If however, there is an anomalous trend
for particular harmonics, then it reflects the peculiarity of the device or
that the measurement of low level higher harmonics may be affected by the
noise of the spectrum analyser. This may be shown in Figs 6.4.2(a), 6.4.2(b),
6.4.2 (c), and 6.4.2(d) for gallium arsenide Schottky barrier diode, for the
fifth harmonic.

In order to make a general prediction on the behaviour of the device
from the spectra further discussion on the experimental results may be useful.

The results had shown that over a cerlain drive level range and at o particular
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harmonic, whenever there were drastic variations in the amplitude, there
would similarly be big variations in the corresponding phase, impedance
and capacitance. This is illustrated, for the case of silicon Schottky
barrier diode (type DC1504F/1), in Figs 6.5.3(a), 6.5.3(b), 6.5.3(c) and
6.5.3(d). In the same way, at particular harmonics, whenever the ampli-
tudes were fairly constant or had small variations, again the impedance,
phase and capacitance would show similar behaviour. An example is as
given, for the case of the third harmonic of the silicon Schottky barrier
diode (type DC1515/2), in Figs 6.6.1(a), 6.6.1(b), 6.6.1(c) and 6.6.1(4d).
An interesting feature was an apparent relationship between the inflexion
point on the impedance curve, at a particular drive level, and the correspond-
ing discontinuity in phases. This is illustrated in the case of the second
and the third harmonics of the gallium arsenide Schottky barrier diode
(type DC1322/1, shown in Figs 6.4.1(b) and 6.4.1(c). Another interesting
observation is that at the drive level corresponding to the peak of the
fifth harmonic voltage for silicon Schottky barrier diode (types DCLW04F/]
and DC1504F/2) shown in Figs.6.5.1(a), 6.5.1(b), 6.5.2(a) and 6.5.2(b) Lhere
was an inflexion point on the curve of the same harmonic phase.

The curves of the relative phase against the harmonic frequency,
at a particular drive level, were generally found to be nonlinear. From
the result of the theoretical investigation discussed in Chapter 2, the
nonlinear phase spectral envelope corresponded to the asymmetrical type of
the response waveform, due to the device. This implies that the device
comprised both the nonlinear resistive component and that of the reactive
which could either be linear or nonlinear. The presence of the reactive
component suggested a storage capability which will result in an I-V
characteristic having an hysteresis. If theoretically, within a lobe, the

phase is constant or has a linear variation (when the origin of the waveform
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analysed was at the leading edge) then the response waveform is
symmetrical, thus implying that the device is purely resistive.
Experimentally however, it implied that the device would consist of both
the nonlinear resistive and nonlinear reactive components. In addition
the components would have identicél level dependence.

Recalling the plots in Figs.6.4.1{(a) and 6.6.1(a), it is noted
that the harmonic generator voltage was higher for the fourth harmonic
than for the third. This may be explained in terms of the sin x
distribution of the amplitude spectrum, where the fourth harmonic amplitude
would appear in the new lobe. A typical example of the distribution is
given in Fig.2.5(b). On the other hand, when the amplitudes of the
fourth harmonic were lower than those for the third, it was because both

appeared in the same lobe.

Classification of Devices

Devices may also be classified from the result of the spectral
analysis., Apparently, there are two criteria that can be adopted and
they are in terms of the linearity in phases and the value of the second
harmonic amplitude. Firstly, from the nature of the variation in the
relative phases, whether linear or nonlinear, it is possible to identify
the type of symmetry of the response waveform, due to a device. This
finally leads to the qualitative deduction on the type and behaviour of the
components present in a device. In the case of all the diodes used in the
project, the phase spectral envelope were nonlinear, indicating that they
(diodes) contained both the nonlinear resistive and reactive components.

Next, there is a need to justify the second criterion. The second
harmonic amplitude is directly related to the size of the waveform shown
in Figs 2.4(b) and 2.5(b). It was pointed out in Chapter 2 that the bigger
the amplitude (implying the corresponding size of the pulse waveform), the

smaller would be the range of the phase angle (illustrated in Fig.2.7) and
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each lobe would contain lesser number of harmonics (again illustrated

in Figs. 2.4(b) and 2.5(b) ). A summary of the values of the second
harmonic amplitudes, at the drive levels of 2.0 and 3.5mA, and the
saturation current for all the diodes is given in the Table in |
Appendix D. It is apparent that there is a kind of an inverse relation-
ship between the second harmonic amplitude and the saturation current

of each diode. However, the general behaviour of the saturation current
for all the devices, as indicated in Chapter 6, was explained in terms
of the energy band gap of the semiconductors. In the case of the second
harmonic amplitude, the trend may be explained in terms of the electron
mobility of the semiconductor device. This is because gallium arsenide
semiconductor has electron mobility greater than those for germanium and
silicon. It can be concluded that a diode whose material has higher
electron mobility may have greater value of the second harmonic voltage.
Therefore, it is feasible to classify high frequency diodes on the basis
of their second harmonic amplitude.

7.4 APPLICATIONS OF "FINGERPRINTING' SPECTRA

In general, one envisages three basic areas of applications of the
"fingerprinting" spectrum. Firstly, the '"fingerprinting'" spectra of non-
linear elements, which also include parasitic effects, may be employed in
the prediction of performance of devices. The power-handling capability

(36,39)

and conversion efficiency of a frequency multiplier depend on the mapni bude:

of the harmonic coefficient generated. The efficiency of a rectifier, the
current sensitivity of a detector and the conversion loss of a mixer are
strongly dependent, in different ways, on the product of the parasitic

. ) . (7,10,19)
capacitance and that of the series resistance . The nature of

variations and the value of the parasitic capacitance, at a particular level,

may be determined from the graph of capacitance at harmonics against the
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drive level. In the case of a mixer, both the R.F. and I.F. impedances,
required for matching, may also be found from the spectra.

Secondly, these spectra may be employed in the general evaluation
of nonlinear devices. It may be possible to assess and carry out a quality
control test on a diode from the obtained spectrum pattern. If the pattern
satisfies prescribed conditions it may be inferred that the device would
work normally. However, if there is any anomalous trend in the spectrum
this could repreéent a peculiarity of the diode, which may arise from the
defects in the material (e.g. nonhomogeneity). This may provide useful
feedback information and help in the design and fabrication of devices.

The spectral parameters, such as second harmonic amplitude, the relative
phase, etc., may provide a basis for the classification of nonlinear devices.
The values of impedance at different harmonics can give informabtion regarding
the matching conditions whereas those of the capacitance about the noise
temperature and conversion loss.

Finally, the "fingerprinting" spectra may be utilised in device
physics. The spectrum generated within a device, measured using the high
frequency technique, may provide a means of assessing the result of the d.c.
or low frequency measurements. It was found that there was an apparent
inverse relationship between the reverse saturation current (d.c. measure-
ment), for different diodes, and the generated voltage of the sccond harmonic
(high frequency measurement). The behaviour of each was consislent with the
energy band gap of the semiconductor material. In addition, from the relaltive
values of the second harmonic voltage (for different devices), it may be
possible to relate them to the comparative magnitude of the mobility of
charges and the effective potential barrier. It is known that for a Schottky

(19,40)

barrier diode made from reasonably high mobility semiconductor, the

conduction mechanism should conform to the thermionic emission theory, for
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moderate voltages. On examining the linearity of the spectra for the
relative phases, it may be possible to predict the nature of the reactive
components of a nonlinear device.

7.5 FUTURE WORK

With regard to the future work, there are two areas that can be
considered and theé% are further aspects related to the spectral representa-
tion and those concerned with the technique itself. As for the former
there is a need to establish this new form of device characterisation on
a firmer basis so that a more comprehensive system of device evaluation
be achieved. This may be done through extensive tests on more varieties
of devices. In addition, the laws derived in the theoretical investi-
gation, in Chapter 2, may further be investigated in order to examine more
of the device behaviour in terms of the frequency domain from that of the
time and vice-versa.

There are three main proposals, on the future work, related either
wholly or partly to the M.R.R.L. technique. The first main part is concerned
with the method as a whole where there are two areas of interests. In the
first case, it is believed tobe feasible to automate the M.R.R.L. method.

It is based on the Fourier analysis of the response waveform due to a
device. Suitable sweeping mechanism needs to be devised, in order to
automatically sample the ordinates of the resultant waveform, to interface
with a microprocessor. The ultimate aim of this project will be to display
the spectra (amplitude and phase) on the V.D.U. Once this is achieved, the
technique will prove to be versatile because the spectra can be readily
acquired and displayed for different level and fundamental frequency. The
next project is the development of a complete spectrum analyser. This
involves the adaptation and incorporation of the M.R.R.L. method in a
spectrum analyser. It is hoped that this project will arouse industrial
interest because of its additional facility of phase measurement, not available

in any spectrum analyser.
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Secondly, the work may be aimed at devising means of measuring
the harmonic standing waves in place of the high frequency spectrum
analyser, which is an expensive piece of equipment. Within this context,
two suggestions are put forward. It is proposed to adopt a mixer method
where the L.0. is tuned closed to the desired harmonic frequency, so that
an I.F. of 30MHz results. Then using the commonly available 30MHz
amplifier, the harmonic measurement may be carried out with a wave analyser
or a low frequency range spectrum analyser. Another proposal is to measure
the harmonic standing waves using a VSWR-meter. As the VSWR-meter is an a.f.
detector, the desired high frequency harmonic components must first be
modulated. Consequently, the work will deal with an investigation on how
the harmonic waves may bc modulated.

Another area of investigation is to develop a mixer method of
measuring relative phases at harmonics. The L.0O. frequency is first set
to be equal to that of the desired harmonic frequency. The mixer will then
operate as a product detector giving a series of harmonic components including
a d.c. term. The resultant d.c. component can be shown to be dependent upon
the phase angle between the L.O. frequency and that of the harmonic. Finally
a method may then be established where the phase angle may be deduced from

a simple d.c. measurement.
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APPENDIX A: SUMMARY OF CONDITIONS GOVERNING THE VALIDITY OF THE

USE OF FOURIER ANALYSIS

A.1l: Dirichlet Conditions -~ Convergence Criteria.

There are two Dirichlet conditions that govern the rate of
convergence of a Fourier series, namely, the weak and the strong
conditions. The weak Dirichlet condition requires that the function
f(t) be single valued over a time interval and if periodic the Fourier
coefficients a and bn are obtainable. The strong Dirichlet condition
specifies the requirements for the Fourier series to be convergent
everywhere. The requirements are: the functions f(t) must be finite
and must have a finite number of discontinuities. lConsequently, under
both conditions, the function f(t) may be represented over a complete
period and hence from t = - = to t = + = , except at discontinuities,
by a series of simple harmonic functions, the frequencies of which are
integral multiples of the fundamental frequency.

A.2: Singularities

A point at which a function f(t) ceases to be analytic, i.e. the
function does not have a unique derivative, is called a singular point
of f(t). At such a point the function is said to have a singularity.

A.3: Uniqueness Condition

A vectorial or a signal representation is said to be unique if it
can be specified in space by a given set of co-ordinate axes and each
dimension is specified by only one co-ordinate.

A.4: Orthogonality

Two functions whose product integrates to zero are said to be
orthogonal over a specific time interval. Many sets of pair-wise orthogonal

functions exist and are used for approximating signals.
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A.5: Finite Energy Concept of a Signal

An energy signal is a pulse-like signal that usually exists for
only a finite interval of time or, even if present for an infinite amount
of time, at least has a major portion of its energy concentrated in a finite

time interval.
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APPENDIX B: THE FOURIER SPECTRUM DUE TO AN APERIODIC SIGNAL

The expression for the frequency spectrum generated by an
aperiodic signal can be derived by first taking the case of a
periodic signal, whose function is taken as, fT(t). The Fourier

series of such a pulse of period T may be represented in an exponential

form as,
' jnmot
fT(t) = Fne (1)
n=-—-®
T
1 2 -jnw t
where Fn = T F(t)e dt (2)
-T
X
In order that |Fn| is convergent when T is increased, the following
conditions must be satisfied, i.e.,
o o= Moug \ (3)
1w )= TF (4)

The egns.l and 2 may now be written as,

N t 1 jwnt
£.(8) = ) 7 Flu e (5)
T
and 5 —jmnt
F(wn) = fT(t)e dt (6)

N3
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As the line width in the line spectrum of fT(t) is given by

\¥]
=
~

Aw =

=

then eqn. 5 becomes,

t
j;““’ n Aw
fT(t) = F(wn)e '2—" (8)

When the period T is increased, correspondingly Aw becomes
smaller and hence the line spectrum becomes denser. In the limit as
T tends to infinity, the discrete frequency spectrum of fT(t) becomes

continuous. The infinite sum in eqn. 8 may be written as,

1 - jmnt
lim fT(t) = lim — F(mn)e Aw

and therefore becomes the Riemann integral so that

~
o0

Jwt

f(t) = Flw)e dw (9)

i

Similarly, eqn.6 may be written as,

Flw) = £lt)e It gt (10)

-~
-—00

and is called the direct Fourier transform, which may be written as,

Flu) = tj\/if(t)l (11)
and that for egn.9 as the inverse Fourier transform, represented as

ey = 37 Fw) (12)
Both egns.ll and 12 are known as the Fourier transform pair.

e
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APPENDIX C. SENSITIVITY OF HARMONIC STANDING
WAVE MEASUREMENTS




121 o

APPENDIX D : THE VALUES OF THE REVERSE SATURATION CURRENT AND

THE SECOND HARMONIC AMPLITUDE FOR DIFFERENT TYPES OF DIODES

I V2(mV)
Diode measured .
in Amps at Il= 2.0 mA at Il= 3.5 mA

GaAs Schottky

barrier _12 5 2
DC 1322/1 1.9 x 10 2.1 x 10 8.0 x 10
DC 1322/2 3.1 x 10712 2.8 x 10° 2.6 x 10°

Si Schottky

barrier ~10 5
DC 1504F/1 9.0 x 10 2.0 x 10 -

DC 1504F/2 1.1 x 1072 1.9 x 102 -

Ge Backward _5 0 o
DC 3021/1 7.4 x 10 6.6 x 10 3.2 x 10
DC 3021/2 1.0 x 1072 4.2 x 10° 2.4 x 10"

Si Schottky

barrier
DC 1515/1

-10 2
DC 1515/2 8.0 x 10 2.5 x 10 -

S5i point contact 6 o
CS 12BR/1 2.3 x 10 - 1.3 x 107
CS 12BR/2 1.2 x 1078 - 5.0 x 10

Si point contact 6 1 1
CS 9B/1 1.7 x 10 2.7 x 10 7.4 x 10
CS 9B/2 1.6 x 10°° 2.9 x 10" 6.5 x 10"




