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ABSTRACT 

The properties of nonlinear devices, semiconductor diodes, were 

determined at high frequencies using the method of spectral characterisa­

tion. Such characterisation was carried out employing a specially developed 

technique where the components of the harmonic spectrum generated within 

these diodes at radio and microwave frequencies were measured. 

The theory of spectral analysis, based on Fourier principles, 

was reviewed. It was applied to the periodic gate function, which plays 

a fundamental role in signal analysis, in order to lay the foundation for 

the theoretical investigation carried out between pulses of known shapes 

and their corresponding spectra. Some useful relationships were established 

and applied in the evaluation of devices. Based on the fundamental properties 

of the periodic gate function, two new sampling procedures were introduced. 

The harmonic generating properties of practical diodes, where the 

nonlinearity in the element is an inherent condition, were examined. It 

was established that the spectrum generated within the device, at a particular 

drive level, gives the "fingerprint" of the diode, i.e. represents fully its 

nonlinearity. Measurement methods, both at low and high frequencies, were 

also discussed. 

The new technique, called the Multiple Reflections Resonant Line 

(MRRL) method was developed and described in the thesis to measure a complete 

spectrum. The method employed a coaxial slotted line system terminated by the 

device under test. The basic transmission line theory was extended to include 

the phenomena of multiple reflections along and resonance of, the line. The 

properties of the standing waves were then related to the device parameters. 

The twelve microwave diodes were successfully modelled which included parasitics 

using the new spectral technique. An attempt was made to evaluate these 

devices for particular applications. 
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CHAPTER t 

1. INTRODUCTION 

Nonlinearity, a subject of great mathematical and physical 

interest is on the whole multidisciplinary, i.e. it includes electronics, 

optics and astronomy. Nonlinearity of devices, especially forms an 

extensive topic within this branch of technology. Many high frequency 

components and systems use nonlinear solid state devices as passive or 

active elements. The design of such components requires a knowledge of 

the behaviour of the semiconductor devices under varying d.c. bias and 

microwave operating conditions. Many modern applications in electrical 

technology are based in a fundamental way on this nonlinear phenomenon. 

It is particularly important in the field of communication wher·e the 

essential circuits like harmonic generators and fr~quency converters 

operate only if a nonlinear element is present. It is therefore ad-

vantageous to know the full extent of their harmonic generating 

capabilities for the efficient performance. 

At the present time, the extent and the method of characterisation 

of these devices, especially at high frequencies is grossly inadequate. 

The data sheets provided by most manufacturers are generally incomplete. 

Normally, the device parameters available are the static characteristics 

and those obtained from low frequency measurements. If the dynamic 

characteristics are given, they are generally at one particular test 

frequency and drive level. It is important to note that the behaviour 

of a nonlinear device is critically dependent on the drive level. For 

most high frequency applications, it is not adequate to rely on the low 

frequency measurement of the device, because some of its parameters, even 

parasitics, inherent and due to encapsulation, may be frequency dependent. 

Besides, measurement of the series resistance at low frequencies is difficult 
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and inaccurate. High frequency measurements are therefore necessary 

for the complete device characterisation. 

The efficiency of frequency conversion depends on the amplitudes 

of the harmonic voltages and currents generated within the nonlinear 

element. In order to describe fully a device by means of its harmonic 

spectrum, there is a need to know the amplitude of each component as well 

as its relative phase. At present there are no single instruments 

available that can measure the complete spectrum of amplitudes and phases. 

Existing spectrum analysers cover a wide range of frequencies right up to 

about 40 GHz but can only measure the amplitudes of the input frequencies. 

If the phase spectrum is not known, a great deal of information is lost 

especially about the imaginary, usually frequent-dependent, terms of the 

physical or electrical parameters. However, if the response waveform of 

the element is known then the complete spectrum may be found by the usual 

Fourier analysis methods. There are however, three main constraints with 

such an approach. Firstly, it is difficult to derive a precise law for 

the practical device. Secondly, the analysis which is normally lengthy 

requires a lot of approximation and consequently further assumptions. 

Thirdly, the method is restricted to lower frequencies because of the 

sampling rate difficulties. 

In order to determine the properties of a nonlinear device at high 

frequencies, there is a need to measure the spectral content generated 

within it. It is further justified by the fact that such spectra are the 

unique representations of the device nonlinearity which provides the 

constants (harmonic coefficients) inherently associated with a particular 

behaviour. The complete spectrum thus gives the "fingerprint" of the 

device at a specific drive level. On achieving this, there is no need lo 

rely on the inaccurate I-V or C-V laws. 
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The main objective of this work was to characterise a family of 

devices at high frequencies by means of the spectral components generated 

within their nonlinearities. This resulted in the development of the 

technique called the Multiple Reflections Resonant Line (MRRL) method. 

In Chapter 2, the thoery of spectral analysis based on the 

Fourier principles are reviewed. A periodic gate function, which often 

plays a fundamental role in signal analysis is Fourier analysed and its 

properties reviewed. This will form a basis in the theoretical investi­

gation, where relations are established, of the spectral behaviour of 

pulses of different shapes. 

Chapter 3 outlines the harmonic generating properties of nonlinear 

devices. It begins with the classification of high frequency practi~al 

diodes which are solid state and nonlinear in behaviour. The phenom8non 

of nonlinearity and the historical development of its analysis are 

described. The proposed device characterisation and evaluation by the method 

of spectral representation are considered and the display of the unique 

dynamic characteristics constitutes the "fingerprint" of the device. 

Measurement methods at high and low frequencies are also indicated. 

Finally, general applications of nonlinear devices are given. 

The theory of the new technique of spectrum measurements called 

the Multiple Reflections Resonant Line method is described in Chapter 4. 

The method employs the coaxial slotted line system. The operating Jlrinciples 

consist of the setting up of multiple reflections, the creation of harmonic 

standing waves and establishing the conditions of resonance under known 

conditions. The nonlinear device, terminating the line acts as the 

harmonic generator, is driven by a single frequency source. The expressions 

for the generated harmonic voltage and the complex impedance at harmonics, 

are also derived. 
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In Chapter 5, measurement and experimental procedures are covered. 

The equipments and experimental arrangements are first described followed 

by the calibration procedures. The setting of the resistive multiple 

termination which forms an important component in the experimental set-up 

is discussed. The spectrum analyser, which is a selective voltmeter, 

plays a key role in the measurements for it is used to measure the stand-

ing waves at harmonics and ·the fundamental drive current. Other dis-

cussion includes the d.c. measurements and some detailed aspects related 

to the technique described. Finally, the experimental procedures are listed 

to avoid ambiguity. 

The results of both the d.c. and the harmonic measurements are 

presented in Chapter 6. The static characteristics of the twelve diodes 

chosen for the project are tabulated and their properties examined. The 

results of harmonic measurements are presented in the form of graphs for 

the following spectral quantities,the generated voltage, relative phase, 

impedance magnitude and the parasitic capacitance plotted against the 

fundamental drive current. Discussion on the harmonic generating properties 

of each diode will then be made in terms of these new spectral representations. 

This includes the examination of the behaviour of one spectral quantity, for 

example the harmonic amplitude, in relation to other quantities like relative 

phases and impedance, within the given drive level range. 

Finally, in Chapter 7, an assessment of the method covering the 

accuracy and errors, significance and possible improvements are given. 

Evaluations of devices will be made on the basis of the experimental 

results of the spectral characterisation presented in Chapter 6. This 

includes the explanation and interpretation of the results which will 

ultimately provide the basis for device classification. Suggestions for 

future work arising from this research are also offered. 
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CHAPTER 2 

THEORY OF SPECTRAL ANALYSIS 

2.1 INTRODUCTION 

The ultimate aim of employing any analytical method in the experi­

mental investigation of device behaviour is generally to obtain, if possible, 

a closed form expression for its response. The devices used are the non­

linear microwave diodes. However, in normal experimental work only the method 

of piecewise analysis may be possible. As the energising function will 

normally be periodic, i.e. of sinusoidal or periodic waveform, the resulting 

response will be a harmonic frequency spectrum. Consequently, the procedure 

adopted in the determination of the components in the frequency spectrum may 

be referred to as spectral analysis. The resultant Fourier series may be 

obtained, at low frequencies, from a time function di.splu_y on t.he oscilloscr,r,r: 

using numerical methods and computer facilitieB. In a few .lucky c:;1sr::; i I. '"''.Y 

be possible to obtain a formula for such a time function. The direct numerical 

method from a time display is restricted however by the bandwidth limitation 

of the oscilloscope, with the upper cut-off of about 70 MHz. The frequency 

spectrum of the response can be measured directly using a wave or spectrum 

analyser. Normally wave analysers can be used up to 500 MHz and spectrum 

analysers up to 220 GHz. 

The fundamentals of Fourier analysis for periodic signals and the 

required mathematical constraints in its applications are first reviewed. 

This is followed by a brief treatment of the concept of the F'our·.i er in Lcp,r<:1l 

as used in the analysis of aperiodic signals. A detailed illustration of 

Fourier analysis using the well-known periodic gate function is also presented 

in this Chapter. In addition, applications of a periodic gate function in the 

analyses of arbitrary waveforms are given. Generated spectra of both 
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periodic and aperiodic waveforms are theoretically determined and 

examined. 

2.2 FUNDAMENTAL RELATIONS IN FOURIER ANALYSIS 

A 1 t
. t. F . . (l) f . d. f t· genera r1gonome r1c our1er ser1es or a per1o 1c unc 1on may 

be written as, 

00 

f(t) a + L a cos(nw t) 
0 n o 

n=l 

or simplified to, 

where 

f(t) 

c 
n 

00 

C cos(nw t + ~ ) 
n o n 

n=o 

2 2 1/2 
(a +b)/' 

n n 

-1 
tan (­

b 
n 

a 
n 

00 

+ L b sin(nw t) 
n o 

n=l 

The coefficient C represents the amplitude while ¢ is the phase 
n n 

shift for the nth harmonic and w is the fundamental frequency. 
0 

(2.2.1) 

(2.2.3) 

(2.2.4) 
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The Fourier coefficients are given by: 

a 
0 

a 
n 

b n 

l 
T 

2 
T 

2 
T 

T 

r 
T -
2 

T 

r 
T 
2 

f(t)dt 

f(t)cos(nw t)dt 
0 

f(t)sin(nw t)dt 
0 

The function can also be represented by an exponential form, 

f(t) 

where Fn 

co 

n= - co 

l 

F 
n 

jnw t 
0 

e t < t< t 
l 2 

-jnw t 
0 f(t)e dt 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

( 2. 2. 9) 

All the above equations are valid subject to certain requirements. These 

are summarised by the well known weak or strong Dirichlet conditions ( 
2

) 
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which involve singularities, uniqueness, orthogonality and convergence 

criteria (outlined in the Appendix A) and are based on the finite energy 

concept. 

The Fourier series as represented by eqn. 2.2.8 is applicable to 

a periodic signal. The transition to an aperiodic signal representation 

is obtained by making the period approach infinity. This can be achieved 

by considering initially the exponential form of the Fourier series of a 

periodic function. The derivation (given in Appendix B) leads eventually 

to the final expression for Fourier transforms, i.e. 

+co 

F( w) } [f(t~ L f(t)e-jwt dt ( 2.2. 10) 

(\.~'\d. 
~e 

r J -1 [F(w)] l . t 
f(t) 

2n 
F( w) eJW dw (2.2.11) 

-CO 

There are two types of spectra, discrete and continuous, which are 

obtained from periodic and aperiodic signals respectively. In the discrete 

or line spectrum the components are harmonically-related. With successive 

increase in the period the signal tends to become aperiodic, resulting in an 

increase in the density of harmonic components. In the Jirnit:, as tl1t: IJ(~r'-i(,d T 

tends to infinity, the spectrum no longer r-emuins dil:lcr-eLc buL hecOfll(::; 

continuous. Hence an aperiodic signal represents the limiting behaviour 

of the Fourier series. However, pulses of similar waveform whether periodic 

or aperiodic will produce similar envelopes of their amplitude spectra. 
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2.3 PROPERTIES OF THE PERIODIC GATE FUNCTION 

One of the most important functions, (which plays a fundamental role 

( 3 ) 
in signal analysis), is the train of pulses shown in Fig.2.l. Its 

importance lies in the fact that it is often utilised as a gating waveform 

in the analysis of various functions. This periodic gate function is a 

single polarity rectangular wave whose height and markspace ratio can be 

varied according to the needs. Its Fourier coefficients may be obtained 

using eqn. 2.2.9, i.e. 

F = n 

f(t) 

X 

The ratio 
sin x 

X 

l 
T 

T 
m 

T 

0 

l 

T 

r T 
2 

sin x 
X 

T 
m 
2 

nw T /2 
o m 

-jnw t 
f(t)e 

0 

< ltl < 
T 
2 

dt 

( 4) 
is called the Fourier kernel and is sometimes 

(2.3.1) 

symbolised (or denoted) as sinc(x). Its spectrum is identical to that 

of the familiar optical diffraction pattern, illustrated in Fig.2.2. As this 

important function occurs very often in communication theory, a brief review 

of its properties may be useful. The main features are that the peak vnlue of 

the main lobe is unity occurring ul~ Lhe origir1, i .£!. x 

the nonzero multiples of n and the sidelobes are relatively slowly decnying. 
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The frequency spectrum which may be deduced from eqn. 2.3.1 is a line or 

discrete spectrum with components located at the multiples of the fundamental 

frequency w , which is given by 2n , as shown in Fig.2.3. 
o T 

As the period T 

2'11 
becomes larger and larger, the fundamental frequency r- becomes smaller and 

smaller and hence there are more and more frequency components in a given 

range of frequency. On simplifying equation 2.3.1 the Fourier coefficient 

F is given by 
n 

F 
n 

= (2.3.?) 
n'IT 

Thus, on increasing the period T, the amplitude of the frequency components 

will decrease as ~. sin [ (nnm) ,f J for particular values of n and T • 
m 

Rewriting eqn. 2.3.1 in terms of fundamental frequency, the Fourier coefficient 

F is given by 
n 

F 
n = 

sin (nw 
0 

T 
m 
2 

Thus the zeros will occur at integral multiples of n and the sine term 

will correspond to 

T 
m 

nwo 2 n,k 

Hence the frequencies corresponding to zero amplitude are: 

4n 2kn 
w = T ' • • • • • 1: 

m m 

(2.3.3) 

(2.3.4) 

(2.3.5) 

Therefore the envelope of the spectrum depends upon the pulse shape, given 

by T • m When, on the other hand, T is kept constant and T is 
m 
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increased ( t < T), the amplitude of the frequency components will 
m 

will increase according to eqn. 2.3.1. 

l 
sin l G') 'm J 

and the frequencies corresponding to zeros will fall. However, the 

frequency spacings between adjacent harmonics remain the same. The 

pulse width t determines the frequency of the first zero of the amplitude 
m 

function, as given by eqn. 2.3.5. This helps as a first approximation to 

establish the range of frequencies required to reconstruct the pulse from 

Fourier components. 

The Fourier series for a train of pulses of unit height which are 

symmetrical may now be written as, 

00 

S( t) 
t 2t L sin m m X cos(nw t) 
T + T X 0 

(2.:3.6) 

n=l 

X = cW~'m) 
It is ·called the switching or the periodic gate function. It may be 

written as : 

f(t) AoS(t) 

where A is the amplitude. By varying different parameters involved in 

this kind of periodic train of pulses, the extreme conditions may be deduced. 

As T tends to l"nfl.nl·ty( 3 th f t· f(t) · t 1 f t· t· , e unc 10n cons1s s on y o non-repe 1 ·1ve 

pulse, and the spectrum then represents a non-periodic function over the whole 
t 
m interval (-oo,oo), The term 

T in eqn. 2.3.6 is defined as d.c. level for a 
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unit pulse height. Other periodic trains of pulses of different shapes 

and symmetries may also be considered and their corresponding periodic 

gate functions found. In general, the function S(t) can be multiplied by 

an arbitrary waveform f(t) to give a sampled function f (t) i.e. 
s 

f (t) = f(t)o S(t) 
s 

whose properties may be easier to examine. 

2.4 ANALYSIS AND SPECTRA OF PERIODIC WAVEFORMS 

2.4.1 Introduction 

The relationship between pulse shapes and their frequency spec tr~ ~' (,) 

will be examined next. A detailed analysis was carried out for the 

periodic waveforms which then were categorised as (a) symmetrical and 

(b) asymmetrical types. Next, within each group the geometrical shapes 

were chosen to be representative of the types normally met in practice. 

In every case the behaviour of such pulses was also chosen to be mathe-

matically definable. 

In the symmetrical case, the pulse is defined as the shape that has 

a vertical line of symmetry. The analysis was carried out by considering 

two positions of the origin, i.e. the one that lies on the vertjcal oxJs of 

symmetry and the other at the leading edge. In the former case the waveform 

may be considered to be in even-function symmetry while in the latter in odd-

function symmetry. The selected shapes were rectangular, trapezoidal, sinu-

soidal, sinusoidal squared, and triangular as shown in Tables 2.1 and 2.2. 

The asymmetrical pulses however are defined as the shapes that do not have 

a vertical line of symmetry. The choice made was as shown in Table 2.3. 

The start of the pulse was taken as the origin in the analysis of each 
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asymmetrical waveform. Every pulse was first Fourier analysed to obtain 

the expressions for its coefficients ; from these the relative amplitudes 

and phases of the harmonics were determined and examined. Finally, the 

amplitude and phase spectra were plotted for each pulse waveform under 

consideration. The knowledge of symmetry of the function f(t) is 

important because this very often helps to simplify the analysis and 

hence reduce the computing time. 

2.4.2 The Methods of Analysis and Computation 

A rectangular, single polarity train of pulses, repeated periodically, 

was chosen as the reference waveform within which other pulse configurations 

were introduced. This provided an easy comparison between different pulse 

shapes. It also reduced the choice of the shapes needed to cover as wide a 

range of variations as possible. The reference pulse was made to have its 

origin at the leading edge or the central line of symmetry, be of unity height 

and have the ratio of its duration (<) to the pulse repetition period (T) equal 

T 
to 0.1, i.e. T = 0.1. The well-known spectrum of this type of pulse, often 

called the periodic gate function, has a sin x distribution of amplitudes and 
X 

its envelope consists of a number of lobes. For this particular case, i.e. 

T 
10, each lobe will contain nine harmonic components, whilst every tenth 

harmonic will be zero. 

If a periodic waveform is completely described by a known time function, 

then its Fourier coefficients can be obtained using eqns. 2.2.5, 2.2.6 and 2.2.7. 

However, for the case where this is not possible separate expressions must be 

derived. Thus, it is obvious that the Fourier coefficients can be determined 

provided that the pulse waveform can be completely described and the integral 

equations solvable. A summary of all expressions for the FourJer coafficl~nts 

of the pulses considered is presented in Tables 2.1, 2.2 and 2.3. 
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2.4.3 Symmetrical Pulses 

In the case of even-function symmetrical waveforms (types chosen are 

shown in Table 2.1) only cosine terms are present and the amplitude spectrum 

is given by the coefficient an' where 'n' is an integer. Since the coefficient 

b is equal to zero for all 'n', the phase within each lobe remains constant 
n 

Waveforms with odd-function symmetry do have both cosine and 

sine terms, resulting in the existence of phase in addition to amplitude 

spectra. However, for the square pulse with odd-function symmetry, the series 

comprised only the sine terms. For convenience, the amplitude spectra may be 

represented by 'spectrum envelope'. Attempts were made to establish any 

relationships between the areas of different pulse waveforms and other para-

meters. It was found from the spectrum envelopes, that the fundamental ampli-

tudes are approximately proportional to the areas of the pulses (shown in 

Table 2.4). 

From the expressions for the Fourier coefficients (Table 2.1), it can 

be seen that they are either positive or negative, depending on the harmonic 

number 'n'. As the Fourier coefficient expression for the rectangular pulse 

is a sine function, the Fourier coefficients do have both positive and negative 

values. However, in the case of triangular pulses whose Fourier coefficient 

expression is given by the square of the sine function, all the coefficients 

will have positive values. If the area of the pulse under consideration is 

greater than one half that of the reference pulse, the amplitude spectra h~ve 

both positive and negative values. On the other hand if this area is less 

than one half that for the reference pulse, the amplitude spectra are always 

positive. 

Theoretically, pulses of identical shapes produce the same amplitude 

spectrum envelope, irrespective of where the origin lies. This can be verified 

for even function symmetry by considering Table 2.1 and the corresponding 



TABLE 2. 4: The Values of Pulse Area and their Corresponding Phase Variation 

and the Amplitude at the Fundamental 

PULSE PHASE VARIATION 
I I IN 

I ! 

- -

Waveform 
Area Major First Minor Second Minor 

(square units Lobe Lobe Lobe 
c

1
x 10-2 

Rectangular 200 0°-180c 0°-180° 0°-180° 19.8 

Trapezoidal 150 0°-234° 54°-306° 126°-306° l4.n 

Sinusoidal 133 0°-270° U0° -~'70° I)(){)_;-)'/() () 13.~ 

Sinusoidal 
106 0°-342° 162°-340° 162°-340° 

Squared 10.6 

Triangular 100 0°-360° 0°-360° - 9.9 
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Figs 2.4(a) and 2.4(b). Data for odd function symmetry is given in 

Table 2.2 and Figs 2.5 here Fig.2.5(a) shows symmetrical pulses of 

different shapes while Fig 2.5(b) gives their respective amplitude 

spectra ; Fig 2.5(c) to 2.5(g) gives amplitude and phase spectra for the 

pulses listed in Table 2.2. Phases are computed from the Fourier co-

efficients a and b , and the phase angles fall to the quadrant correspond-
n n 

ing to the signs of these coefficients. The observations on the phase 

variations between harmonics up to the thirty sixth harmonic for different 

pulse waveforms are summarised in Table 2.4. The upper limiting values 

of the phases in the major lobes appear to have some relationship with the 

areas of the pulse waveform. This is illustrated in Fig 2.7 plotted from 

data obtained in Table 2.4. Another significant observation here is that 

the phase variations are linear within each lobe ; furthermore the range of 

variation depends on pulse shapes. 

2.4.4 Asymmetrical Pulses 

The pulses considered here are those of triangular and trapezoidal 

of varying shapes,exponential and sinusoidal. However, those of symmetrical 

shapes are the special cases of the general pulses. The origin is 

chosen to be at the leading edge. All appropriate expressions are summarised 

in Table 2.3. Figs 2.6(a) and 2.6(b) refer to pulses of triangular and 

trapezoidal shapes. Figs. 2.6(c) to 2.6(f) detail the amplitude and phase 

spectra for different triangular pulses. Figs.2.6(g) to 2.6(k) refer to 

trapezoidal pulses and Figs 2.6(1) to 2.6(p) refer to exponential and sinu-

soidal pulses. As each of the pulses considered had to be fitted into the 

reference pulse, the basic equations for some pulses require modification. 

In general phase variations for asymmetrical pulses are nonlinear. 

A lobe in an amplitude spectral envelope is said to exist if the curve 

crosses a zero-point. In all cases except for those of triangular cases of 
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C and D, all asymmetrical waveforms considered do not have any lobe. 

However, these amplitude spectral envelopes do have crests and troughs. 

2.5 ANALYSIS AND SPECTRA OF APERIODIC WAVEFORMS 

An aperiodic waveform may be defined as that where the period of 

its oscillation is undefined. The period can either be infinite or varying 

randomly. Generally aperiodic signals are generated by a cluster of non-

harmonically related sinusoidal frequencies around some centre frequency 

which is closely associated with some characteristic peculiar to device 

producing the signal. In this analysis it is more instructive to consider 

cases where the period is infinite. 

The Fourier analysis of aperiodic signals will lead to the existence 

of Fourier transform, as given in the Appendix B. The Fourier coefficient 

of a rectangular train of periodic pulses is given by, (as in eqn. 2.2.9). 

F 
n 

1 
T 

T 
m 

T 

T 

r -jnw t 
f(t)e 0 

T 
2 

sin x 
X 

where X 

dt 

nw T 
o m 

2 

F is discrete dependent upon the integral values of n. 
n The Fourier 

transform for the corresponding same aperiodic pulse is given by (in 

the Appendix) 

F(w) r -jwt 
f(t)e dt 

(2.5.1) 
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As the pulse repetition period tends to infinity, hence 

correspondingly the fundamental frequency will tend to zero. So the 

harmonic spectrum will comprise components of 'zero fundamental frequency' 

and hence become infinitely close together. Thus w and F(w) become 

continuous. Comparing eqns. 2.5.1 and 2.5.2, it will be seen that a single 

'universal' envelope curve may be plotted for a given pulse shape independ­

ent of its repetition period. 

2.6 APPLICATION OF PERIODIC GATE FUNCTION 

In applying the periodic gate function two new me thud::; or UWIIf! I i.nJ'. 

are presented. Both are involved with the analysis of an arbitrary waveforrn. 

In the analysis of an arbitrary periodic waveform, sampling is normally done 

and often carried out horizontally. This is because the waveform is sampled 

into time intervals over the entire period. The first method, to be known 

as the pulse width method, involves with the vertical sampling. In the 

second method the waveform under consideration is divided into pulses of 

standard shapes with known spectra. Each of the pulses then constitutes a 

periodic gate function. 

The Pulse Width Method 

A periodic pulse of arbitrary shape is first considered. Sun1pling 

is carried out by breaking the waveform into pulses. The pulses are of 

equal height but of varying widths, as shown in Fig 2.8(a). Effectively, 

the vertical axis of the waveform is divided into intervals of equal height. 

This type of apprpach leads finally to a summation of trains of pulses of 

various widths and hence the method may be referred to as the pulse width 

method. The resulting waveform after sampling will be a step approximation 

as shown in Fig 2.8(b). 

The phase shift may be considered by rn~1ki.nr. the lowc~s 1. puls<' t.hc 

reference whose midpoint. is clioncn to be :t.ero. A vr:rU.c;JI :~xi:; muy l.l1r:t1 
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be drawn through the point. The centre points for other pulses are now 

found and the differences between these and the chosen point give the 

relative phase shifts. Rewriting eqn. 2.3.2 to include the phase shift 

term, the Fourier series may now be written as, 

f(t) 

m=l 

T 
m 

T 
+ 

2< 
m 

T 

where M is the number of sampling pulses, 

X 

and the Fourier 

a 
0 

a = n 

b 
n 

T 
where 

m 
T 

T m 

nw < o m 
2 

coefficients 

M 

A L T 

m=l 

M 

2AL T 

m=l 

M 

L + 2A T 
-

m=l 

are given by 

m 

I 

sin(mn 
m 

I m (mn m) 

I 
sin(n1TT 

m 
I m (n1TT m) 

is the duty cycle. 

Standard Pulse Sampling Method 

cos nw (t + t ) 
o m 

) 

cos (nw t ) 
o m 

) 

sin(nw t ) 
o m 

The second method of sampling concerns with the division of an 

arbitrary periodic waveform into pulses of identifiable shapes. The 

common shapes are trapezoidal, rectangular and triangular. Pulses of 

(2.6.1) 

{;-'.f).?) 

(2 .6.3) 

(2.6.4) 
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these standard shapes have their own spectra. As an example, the wave-

form as shown in Fig 2.9(a) may be approximated to comprise pulses of 

trapezoidal (pulses A and B) and triangular (pulse C) shapes, as in 

Fig 2.9(b). The behaviour of the whole waveform may then be approximated 
()r i\111 

to the sum'behaviour of the sampled pulses. This is justified because the , ...... 

concern is essentially in the area under the curve. Hence, the Fourier 

coefficients for the whole waveform become the sum of Fourier coefficients 

of individual pulses. The general behaviour of the spectra due to pulses 

of these standard shapes can be easily obtained, as discussed in section 2.4. 

2.7 SUMMARY 

As the concepts of amplitude and phase spectra are derived from 

Fourier analysis, the basi.c ideas of Fourier analysis wertc: r·ev i •)wed ;,rHl 

the conditions governing the validity of its appJ.;.cation w•Tc di:,;cll:;::f:d. 

Fourier series and transforms are the mathematical representation or Lhe 

periodic and aperiodic phenomena, respectively. It is well-known that 

the analytical relationship between time and frequency domains may be 

established by using Fourier series and integrals. Representation of Fourier 

series may be made in terms of trigonometric or complex functions. It is 

widely applied in studies related to electrical circuits and mechanical 

vibrating systems which involve periodic potentials and forces, respectiveLy. 

The Fourier transform pair is in fact one of the integral trcmsforrn:-: Lh<~L ;,r·c 

commonly used in operational analysis. The frequency distribul.ion "'. l•:trrfl!,r,ir::; 

in Fourier series is a line spectrum whereas that in a Fourier integral is a 

continuous spectrum. For convenience the line spectra are represented by 

the spectrum envelopes. It is significant to note that a given pulse whether 

periodic or aperiodic gives identical spectrum envelope, hence amplitude spectra. 

The response of the element may be examined for the steady state or 

transient behaviour. Depending which behaviour is of interest it may be 
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advantageous to use different types of excitation signals. From the 

harmonic components computed, the physical properties of the element may 

be determined and if possible expressed in terms of electrical analogues. 

It will be very important initially to establish whether the element is 

linear or nonlinear. From the inductive and capacitative analogues and 

the behaviour of the response, the characteristics of the element may be 

derived. 

The behaviour of spectra due to periodic g8tc fun1:tion under 

different conditions was discussed. The periodic gaLe ( ~;w i l.ch i nJ•J f'unc L i or1 

as represented by the Fourier series can be applied in the analysis of an 

arbitrary waveform. In this application two new sampling procedures are 

introduced whereby a waveform under consideration is sampled into pulses 

vertically or divided into pulses of standard shapes. This is in contrast 

to the conventional mode of sampling where sampling is carried out horizontally. 

Spectra of mathematically defined waveforms of different shapes, fixed 

height and duty cycle were theoretically examined. Each of the waveforms was 

Fourier analysed and the Fourier coefficient expressions are summarised in 

Tables 2.1, 2.2 and 2.3. The relationship between the pulse shapes and the 

frequency spectra investigated are presented in Figs 2.4(b), 2.5(b) to 2.5(g) 

and 2.6(c) to 2.6(p). Such information based on the analysis of pulse shapes 

and hence spectra generated within, can help in the characterisation of 

devices. Apart from obvious "fingerprinting", the approach may help in 

obtaining the equivalent circuits, i.e. physical modelling of devices. The 

properties of such equivalent circuits may then be examined using the spectra 

over a wider range of frequencies. The effects of parasitic components may 

be deduced from the shapes of the spectrum envelope"; and Lhe rclcttiVP ;11upl i LJ1dr~ 

nnJ phases of Lhe hnr·rnonj c cornpunun tf;. 
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CHAPTER 3 

HARMONIC GENERATING PROPERTIES OF NONLINEAR DEVICES 

3.1 CLASSIFICATION OF PRACTICAL DEVICES 

The practical devices to be considered here are solid-state diodes 

which are nonlinear in behaviour and which operate at high frequencies. 

The amount of work concerned with high frequency applications now constitutes 

a significant area of the electronics industry. It is comparatively recent 

in origin and its growth has been as phenomenal as that of semiconductor 

technologies. The growth of the latter has been due to the ever increasing 

demand for specific devices. This demand has led to the creation of more 

varieties and families of semiconductor devices, which in turn have resulted 

from improved fabrication techniques and advances in technical lmowJedge. 

Systematic studies on these devices requ·ire Lhi.lt su.i tablr~ cri l.r:r·i;_t !Jr: 

established for their classification. 

( 7 ) 
According to Watson these devices may be divided into two groups 

based, with some overlapping, on the device behaviour and the device 

structure. Their behaviour may further classify them as (a) variable 

resistances (varistors), (b) variable reactances (varactors), (c) controllable 

impedance diodes and (d) negative resistance elements. All these devices 

display nonlinear behaviour. The varistor is predominantly a nonlinear 

resistive element with a small reactive component whereus the var~wl.or 

behaves as a nonlinear reactive element w.ith a small resint.ivr: cOIIlfHHH:nt·. 

the reactance in the former case and resistance in the latter ure norrna.Lly 

described as parasitics. The varactors may have planar p-n junction 

structures or point-contact structures which can operate as metal-semi-

conductor Schottky barriers. The controllable impedance diodes are wide-

spaced p-i-n diodes where the conductance is very nearly proportional to 

the minority carrier population stored within them. As the carrier mobility 



22 

is low within the space-charge layer at microwave frequencies, such diodes 

have a quasi-linear impedance, whose value depends upon the direct current 

or low frequency bias. Negative resistance diodes form an important 

separate class. They exhibit a terminal impedance which has a negative 

real part over a finite bandwidth and dynamic range. This property is 

often exploited in circuits where low power oscillations are involved. 

Devices may also be classified on the basis of their structural 

features, as is evident by considering the structures of planar p-n 

junctions, metal-semiconductor (Schottky bar·r·ier) diode::, m"i<:r'<Jwavr:;_ 

bipolar transistors, field eff'ccl: Lr·ansistors (1'1·:'1':.;), Jli!:l.:li-ill::ul;tl.cw­

semiconductor (MIS) and metal-oxide-semiconductor (MOS) devices and point 

contact diodes. Planar p-n junction diodes are extensively used in 

electronic circuitry. When heavily doped to give a very thin depletion 

layer these can be used as tunnel or backward diodes. Gunn and IMPATT 

diodes are also examples of devices having a planar p~n structure ; here 

however the space-charge region is sufficiently large to give a finite 

transit time, resulting in the negative resistance effe~L which in turn 

allows oscillation to tal{e place. Schottky bar'dr:r' diodr::; c:orr:;ist ol" 

metal-semiconductor' conl.;rcl:s, with r·ecti f'yirrJ'. IH'CJfH:r·l.i.c::; IJ:r::r:d ''" r11:r.jcwi l.y 

carrier conduction ; in normal operation they exhibit v .i.r Luu 11.Y no s Lor-age 

of minority carriers, a problem in early p-n junctions. Microwave tran-

sistors behave in a similar way to normal transistors but require that the 

transit-time is reduced. Field effect transistors (FETs) are unipolar 

devices. They are constructed from either p or n type material with the 

field existing between the source and the drain the flow of current is 

controlled by the bias at the gates. They have the following characteristic 

features : (a) voltage in addition to current: gain (b) efficirmcy hir~twr 

than that of bipolar (c) low no.ise figure (d) oper:.1 Ling fn:quc.;ncy or ur, 

to X-band and (e) high input impedance. Point contact diodes are made by 
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placing a sharp pointed wire in contact with the surface of a suitable 

semiconductor ; the main feature is the low parasitic capacitance. 

There are other classifications, based on different criteria which however 

do not contribute towards any further simplification in the studies of 

devices. 

The devices chosen for the project were of different semiconductor 

material, structure and mechanism of operation. They comprised silicon 

point contact diodes, Schottky barrier diodes made from silicon and 

gallium arsenide and germanium backward diodes. 

3. 2 THE PHENO!I'IENON OF NONLINEARITY 

When a device is excited by a signal and the output is proportional 

to the input the device is referred to as linear. If this is not so the 

device is nonlinear. The nonlinearity in a device may be examined hy 

considering the basic elements whi thin it, the resistance 11, Lhe indue Lonr~c 

L and the capacitance C, which may contribute to the storage and diss.ipa ti ve 

effects. In an electrical network the circuit element capable of storing 

electromagnetic energy is defined as reactance, whereas that which dissipates 

it is resistance. If the stored energy is predominantly in the electric 

field, the reactance is said to be capacitive and if the stored energy is 

predominantly in the magnetic field, the reactance is said to be inductive. 

However, it is more convenient to deal in terms of currents and voltages 

rather than electromagnetic fields. Hence in general, nonlinearity in 

devices may be due to any or all of these elements where e:1ch rr~<Jy ex i :; L 

with varying degree. In many device applications the nonlinearily of one 

of these elements is utilised, while the others (which are considered as 

parasitics) are suppressed. 

When a nonlinear element is energised by a sinusoid of single 

frequency generation of new frequencies will result in addition to the 
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direct current. These new frequencies are inter-related and are integral 

multiples of the fundamental frequency. However, if two or more 

sinusoidal inputs are used to drive the nonlinear element, intermodulation 

will be produced ; this comprises the sum and difference frequencies of the 

individual inputs. 

However, for the purpose of this work nonlinearity in electrical 

networks and systems will be highlighted. The significance of the need 

for a deeper understanding of nonlinear electrical system is obvious. It 

is remarkable to note that almost the entire modern elect.ric~1l. techn,Jlogy 

is essentially based on nonLinear phenomena, for cxarnpl1:, Lb l.; 1 procr ;: ::; i rl/.'. 

and work related to microprocessors involve non-1 inear nc LwLwki;. 

Communication systems employ non-linear devices for processes such as 

modulation, frequency conversion, detection, signal processing, decision 

processes and even linear amplification. The operation of control systems 

where optimisation is essential also involves non-linear elements. 

. ( 8 ) 
The development of the work related to non-linear analysis 

occurred during the eighteenth century. The effort included acquiring the 

solution in closed and in an approximate form. Eminent worker·~; dur i nl!, th' · 

period from H\80 to l920 included Poincur·c, l.i.nstc;dt, Li:1upourJ"fT <1111l 

Bendixsen. The general development during Lhis period Lended l.owanJ:: 

covering specialised cases of nonlinear mechanics. During the period 

between 1920 to 1940 the theory and methods of analysis received the 

greatest attention. This was due to the interest concentrated upon the 

rapid development of nonlinear electric-circuit behaviour. Vander Pol(g 

(1920) started the work on the analysis of triode oscillation and this was 

followed by a number of other papers on electron-tube devices. With growing 

interest in military applications, intense development on this Lopic took 
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ment of non-linear control systems. Since then contemporary interests, 

related to modern applications like communication systems, have received 

wide support. 

Higgins( 8 ) listed twenty four general methods of solving non-

linear problems. As the methods are wide ranging, depending upon various 

applications and constraints, it is not necessary to describe them. One 

of the central themes of this thesis is spectral measurements and analysis 

is involved in the manipulation of spectra. The spectral measurements give 

the impedance of the device under particular operational conditions. From 

the amplitude and phase spectra, the general behaviour of the system may 

be predicted. In addition, equivalent circuits may also be proposed. 

It is interesting to note that the development of classical and 

modern theory of non-linear differential equations is closely linked to the 

(10 ,·.u) 
development of non-linear mechanics and electrical circuits As the 

(11) 
non-linear analysis methods employed often have serious limitations Jr1 

terms of accuracy, length of calculation and area of application, t.h(~r'c s•:•:111:: 

to be always a need to improve existing methods in addition to employing 

methods used in other fields. 
( 12 ) 

With the approximate approach to 

procedures and the analysis of results, it becomes essential to monitor 

continually the physical significance and the precise mathematics involved. 

A precise and complete insight(
13

) of the behaviour of non-linear systems 

can be achieved through an intensive investigation and analysis of the actual 

system together with the associated solution of the corresponding differential 

equations of performance. Approximating to linear systems may be useful only 

within limited conditions of operation. Studying a particular branch of 

non-linear analysis is quite a challenge because of the few references 

available. It becomes complex because of the absence of a unified theory 

and the imperfections in the results. . ' ( 14) 
In add1t1on , the theory has 

been developed by people with differing interests and background such as, 
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astronomers, pure and applied mathematicians, mechanical, electronic, 

control and acoustical engineers, etc. and they use different approaches. 

3.3 PROPERTIES OF GENERATED HARMONIC SPECTRA 

One way of representing the responses of devices or circuits 

excited by sources of different frequencies is by their spectra. The 

spectral representation is a plot showing the relative output of harmonic 

components as a function of frequency for the non-linear device, circuit 

or system. Two types of spectra amplitude and phase are normally 

distinguished. They are given by equations 2.2.3 and 2.2.4 respectively. 

The frequency content of the response of a non-linear device is given in 

terms of harmonic frequencies 

harmonics are generated. 

for a linear device, of course no 

The frequency spectrum is a unique represenLation of l.he dcv.i.ce 

behaviour, dependent upon the drive level and the device parameters. The 

impedance is the most important electrical parameter which is dependent 

upon the drive level. So, anything that causes variation in complex 

impedance will correspondingly cause variation in both the amplitude and 

phase spectra. These spectra provide a graphical method of representing 

the device or its impedance. From the behaviour of these spectra at 

different levels, the behaviour at the intervening or extrapolated levels 

may be easily predicted provided that the dev.i.ce Law docs not chnrw.c. F'r'(Htr 

the device behaviour as represented by the frequency spec \.r·um, .i I; ru;Jy be 

possible to propose and hence verify an a.c. equivalent circuit for the 

device. 

In the design, fabrication, operation and application of any device 

or circuit, it is essential to know both its static and dynamic characteristics 

and parameters. The device or circuit behaviour is normally found under 

different operational conditions for the purposes of assessing its suitability 
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for various functions and performance requirements. As an example, under 

certain optimum conditions, a varactor can be used as an amplifier and because 

of its low loss property may satisfy one of the important performance 

requirements for amplifiers. 

In low frequency work the two spectra, amplitude and phase, are 

usually obtained from Fourier analysis carried out on the distorted wave-

form (generated by the non-linear device) which can easily be displayed. 

At high frequencies this technique is not sui table becauBr~ of the li111i ted 

bandwidth of the oscilloscope used to display the output and only the arnpliLude 

spectra are obtainable, generally through the use of spectrum analysers. 

Consequently, a technique which is central to this thesis called the Multiple 

Reflections Resonance Line method was developed with which both amplitude and 

phase can be obtained at different harmonics. 

3.4 MODELLING AND 'FINGERPRINTING' OF DEVICES 

In solving nonlinear problems(l
5

) any attempt to generalise the 

formulation of their solutions often leads to unwieldy results. Hence, 

non-linear analysis depends on different types of charactcri~-;ation pr'IJcc!dur-c:: 

where there are preferred methods for a particular set of prob.lemc. M<lii.Y 

nonlinear problems can naturally be solved through the use of nonlinear 

differential equations. However, as their solutions cannot often be 

written in a closed form, development of other methods becomes necessary. 

A new technique central to the thesis is presented in the next Chapter. It 

involves the harmonic spectrum of a nonlinear device leading towards the 

'fingerprinting'. 

Modelling is a procedure where the behaviour of a physical system 

is approximated. In recent years tho concept of phys"i.caJ mode I I i np; h:•~• 

been widely developed and proved successful. It :is one of Lhe rnoBL l.><lSl.c 

. . l ( 16 ) . . t. f. 1 . b pr1nc1p es 1n sc1en 1 1c ana ys1s ecause a physical system is seldom 
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analysed in its original form. The main reason for the need for modelling 

is that the actual physical system is too complex to have a simple analysis. 

The complexity may arise from nonessential factors. However, the basic 

principle in modelling is to extract the essentials. The main aim is to 

establish a relationship between physical device parameters and the device 

characteristics. The device is normally characterised in its simplest 

form and with an acceptable accuracy so that the performance of a particular 

circuit using this device, operating within specific conditions can be 

predicted. A given device is first properly formulated in terms of certain 

physical variables and explicit expressions derived meeting all the require-

ments of the device designs and circuits. This abstracted problem can then 

be solved by a suitable technique and the results of the analysis can be 

expressed in terms of appropriate parameters. As these parameters represent 

the device characteristics they can be related to and interpreted in terms 

of the original problem. This general approach facilitates access to the 

fundamental problems and highlights the special cases from a wide variety 

of problems using the same gSneral ideas. 

In dealing with physical modelling(l
7

) it is essential initially to 

know the objective of the work in order to have an overall picture. The 

ranges of variables involved ought to be known so as to ensure that the 

extent and limitation of the operation and the applications are known. The 

choice of mathematical technique must be known too because this will determine 

how complex the analysis will be. It is important to know the physical 

mechanism of operation of the device or system as modelling is the rcalisatjori 

of such a device or system. 

'Fingerprinting' of a device is a modelling process where the device 

behaviour can be uniq~ely described. The harmonic frequency spectrum generated 

by a nonlinear device is a unique representation of the actual device behaviour. 
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Therefore 'fingerpriting' of a device can be made using the harmonic 

frequency spectrum. At present there is no satisfactory way of 'finger­

printing' a nonlinear device. The dynamic characteristics are not presented 

over defined ranges of frequency and drive level. Hence, for simple, 

reliable and accurate 'fingerprinting' of a device certain criteria must 

be established and conditions defined. One of the most important criteria 

is that the device must remain stable throughout the measurement and this 

represents non-destructive testing. A single frequency source is another 

criterion, for this ensures the production of a unique harmonic frequency 

spectrum. Other criteria include (a) drive level, this is because the 

frequency spectrum is level dependent and (b) stability of conditions, they 

are the physical system and environment. 

The basic difference between 'fingerprinting' and modelling is that 

the former gives the true representation of the device under the actual 

working conditions. The quantities chosen or adopted in the 'fingerprinting' 

may then be related to the real behaviour of the devices. In this work the 

spectral representation of the device constitutes the mode: of 'f"ingr:r·prinL.irtJ•.'. 

The behaviour of the amplitude and phase spectra may be used in the assess­

ment. At present, in most manufacturers' data sheets for devices, only 

static characteristics are supplied ; if dynamic characteristics are given 

they are generally incomplete. As an example, quantities like noise figure, 

conversion loss and r.f. impedance are given at a particular test frequency 

without any specification of the operating level. Taking the mixer applica-

tion as an example of device assessment a matched pair of particular devices 

is required ; on carrying out the spectral characterisation for both the 

devlces the device behaviour at hRrmonicn may be compared or· rn~t Lched. 
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3.5 
( l 2) 

NUMERICAL FOURIER ANALYSIS 1 
' AT LOW FREQUENCIES 

This method involves the examination of a distorted waveform due 

to a response from a nonlinear device. Suppose this waveform is as shown 

in Fig.3.1. It is subdivided equally into M sections over a period T 

along the time-axis. If each section be Lit, then T = MLlt. Let t 
m 

be the time at the end of the mth time interval. It may be written as, 

t 
m 

mllt, for l~m ~M. So at t , there exists a corresponding ordinate 
m 

f(t ). Therefore, the approximate Fourier coefficients for a periodic 
m 

case may be written as, 

1 a ....... 
o M 

a 
n 

2 
M 

2 
b """" n- M 

M 

m=l 

M 

L 
m=l 

M 

L 
m=l 

(mllt) 

(mllt) cos(nmllt) 

(mflt) sin(nmllt) 

So from the above equations it can be seen that the variables involved 

are: M, m, Lit, nand f(t ). 
m 

Hence, for a certain fixed value of M and 

at particular values of harmonic nand f(t ) obtained for all values of 
m 

m from one toM, the Fourier coefficients can be numerically dcLermincd. 

Thus, the amplitude and phase spectra can be obtained. 

It is obvious that the higher the value of M, the closer is the 

approximation to the actual value of the coefficients. In the limit as 

( 3. 5.1) 

( 3. 5.2) 

(3.5.3) 

Lit tends to zero, the Fourier coefficient equations 3.5.1, 3.5.2 and 3.5.3 

tend to integrals as given by equations 2.2.5, 2.2.6 and 2.2.7 respectively. 

The numerical evaluation of the Fourier coefficients may be easily carried 
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out using a computer or a programmable calculator, where the subroutines 

are available. As the number of sections M and the harmonic order n to 

be considered will be relatively small, it may not be necessary to use the 

fast Fourier transform method. The accuracy of the result depends greatly 

upon the technique by which the ordinates are obtained. They are obtained 

either by direct measurement from the time function displayed on the 

oscilloscope or from the manual or photographic reproduction. 

Next, an experiment is described where the method of numerical 

Fourier analysis is applied. The circuit diagrams are shown in Figs 3.2 

and 3.3. Throughout the experiment, the open-circuit voltage of the 

oscillator is taken as a reference and this is calibrated using a high 

impedance valve voltmeter. At any particular reference voltage, the 

fundamental current is first noted using the wave analyser as illust;ruted 

in Fig 3.2. Next, with the device connected in the circuit shown in 

Fig 3.3, the source oscillator level is adjusted to give the same funda­

mental current as before, using the wave analyser. Then the distorted 

waveform generated by the device is displayed on the oscilloscope. The 

harmonic content of the distorted waveform is analysed by numerical Fourier 

analysis, and the amplitude and phase spectra are obtained. This method is 

suitable for low frequency work because there is sufficient bandwidth in 

available oscilloscopes. However, the bandwidth may be increaHed 

with the use of accessories like sampling ad~ptors connected to 

the oscilloscope to extend measurements up to lGHz. The amplitude spectra aL 

this particular reference voltage may also be found using the wave analyser. 

This is done by tuning the wave analyser to any desired harmonic frequency 

and the current obtained. 
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3.6 APPLICATION OF NONLINEAR DEVICES 

The nonlinear devices form basic units in a variety of systems 

applications. Traditionally, they are often referred to in terms of 

crystal rectifiers, used as detectors, frequency converters, noise and 

harmonic generators. 
. . . ( 18 ) 

In early works on rad1o commun1cat1on , the 

crystal rectifiers were almost universally used as low level detectors in 

radio receivers. The point contact diode for example was used because 

of its low impedance rectification. 
(19 ) 

In the past nonlinear devices 

were found to be useful in certain applications, after whict1 p~rLlcul~r 

methods of character is a t..i on and analysis were d1!ve Loped. In rr~< H II! rn ;.1pp I i c; 1-

( 20) 
tions, variable impedance devices became significant . Their development 

was stimulated by the advent of microwave radar during the Second World War. 

In modern terms, these devices are referred to as mixer diodes used for 

frequency conversion in heterodyne receivers and detector diodes used in 

video receivers. 

These nonlinear devices~'~have wide ranging applications from 

communication systems, radio astronomy, space navigation, radar systems 

to missile electronic systems. A communication system is involved wiLt1 

transmitting and receiving speech, data or TV pictur·es. The IT<~nsrnil.l.l!r' 

and the receiver may be separated by a large distance. A radar system will 

be concerned with the transmission and detection of high frequency signals. 

The subsystems like transmitters and receivers will be involved with 

processes like mixing, detecting and amplification of signals. Each process 

must satisfy certain specific requirements within the overall performance of 

the subsystems and systems. Thus, there is a need to know the characteristics 

not only of the subsystems and systems but also of the devices to be used. 
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So, the choice of a nonlinear device in any application will 

normally depend upon (a) its behaviour and (b) the performance require-

ment with some overlap between them. Taking as an example of device 

( 7 
behaviour its nonlinear reactive properties can be seen that the 

varactor can be applied in frequency converters, frequency multipliers, 

dividers, mixers, modulators, parametric amplifiers ; high frequency power 

sources ; power conversion from one frequency to another. The useful 

frequency range is limited by parasitic series resistance and in some 

cases parasitic lead inductance. 

The performance requirements of the device are dictated by the 

system in which it is to be used. In the case of a receiver for example, 

the overall performance requirements are: sensitivity, bandwidth and 

powerhandling capability. If, for instance, a high gain amplifier is 

required one might consider using a negative resistance device where the 

narrow band width and high gain characteristics are advantageous. 

3.7 MEASUREMENT METHODS AT HIGH FREQUENCIES 

(23,24) 
Progress in high frequency applications goes hand in hand with 

the development of the measurement techniques at these frequencies. Whatever 

measurement method is developed, it has to be adapted for use.~ither in the 

laboratory, factory or field,keeping in view its precision and convenience. 

At low frequencies where the physical dimensions of the circuits are very 

much smaller than those of the associated wavelengths, the circuit elements 

can be characterised by four dimensions, viz ; mass, length, time and charge. 

Consequently, the technique of lumped circuit analysis works very well. 

However, as the operating frequencies get higher, the dimensions of the 

circuits required get smaller to the extent that they become comparable to 

the associated wavelengths. Thus, the passive elements in a microwave frequency 

system may take the form of hollow-pipe waveguide transmission lines or striplines. 
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In these the waves are characterised by their power, and frequency their 

analysis requires the adoption of a distributed circuit approach. The 

measurements are made on the basis of the effects of disturbances of the 

electromagnetic field due to discontinuities in the propagation of guided 

(21,25) 
waves .As there are no simple methods of measuring these fields, 

circuit and device parameters are indirectly measured. 

( 22 ) 
Prior to 1965, almost all high frequency measurement systems 

employed coaxial, waveguide or stripline circuits. With the improvement in 

integrated circuit technology microstrip lines have recently been widely used. 

As the demand for operation at ever higher frequencies is increasing, there 

( 2l ) 
is a continuing effort towards working with smaller circuits . 

3.8 CONCLUSION AND COMMENTS 

The Chapter started with the classification of solid-stnte nonlinear 

devices as applied in high frequency work. A systematic approach becomes 

essential because of the rapid rate of growth of the types of devices. The 

proliferation of devices is due to advancement in device technology initiated 

by their applications each of which carried varying sets of performance 

requirements. It is interesting to note that modelling has become an essential 

part of the characterisation and analysis of different types of devices. 

In the discussion of the phenomenon of nonlinearity, it is indicated 

how the phenomenon and its associated problems originated. 1\ brief hisLoric;d 

perspective is also given, emphasising the period together with the workers 

and their contributions. The application and significance of nonlinear 

devices are also given. Initially nonlinearity is discussed in a broad sense 

and is followed by more specific examples. The analytical methods developed 

tend to be related to particular problems rather than covering the general 

cases. It can also be seen that the subject of nonlinearity is niuJ::·ti·disciplinary 

within the confines of physical sciences. 
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The idea of spectral representation is introduced because finger­

printing of devices may be made using these spectra. This represents a new 

approach towards device assessment and characterisation. This is because 

the spectra give the dynamic characteristics of the device and hence the 

operational conditions may be specified. The spectra obtained may be related 

to the established device parameters. Thus the spectra provide a way of 

characterising a device whereby an equivalent circuit may be proposed and 

assessed. Spectral representations give a new high frequency technique 

where both amplitude and phase spectra may be obtained. 

Numerical Fourier analysis suitable for low frequency work is 

presented in some detail. The idea of spectral representation at high 

frequency is in fact developed from this low frequency work. Various 

applications of nonlinear devices are discussed because their wide range 

of application has significant scientific interests which revolutionise 

systems like communication and computers where there are vital commercial 

and military implications. The development of measurement methods plays a 

key role in device application, since the device can then be specially adap!.cJ 

for any desired application. In the upper range of high frequency applications, 

the sizes of circuits and systems become very small thereby increasing the 

difficulties of precision fabrication of every component. 
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CHAPTER 4 

THE MULTIPLE REFLECTIONS RESONANT LINE (M.R.R.L.) 

METHOD FOR SPECTRUM MEASUREMENTS 

4.1 INTRODUCTION 

A novel high frequency spectrum measurement technique has been 

developed called the Multiple Reflections Resonant Line Method. This 

method offers a means of measuring a complete spectrum generated within 

a nonlinear device. A complete spectrum refers to both the amplitude 

and phase spectra. The method employs a slotted line system with 

accessories such as a probe and carriage assembly, adjustable trans-

mission line, precision attenuators and instruments like a power-meter 

and an r.f. valve voltmeter. In addition a spectrum analyser, a key 

component in the measurement, is used to measure standing waves at the 

harmonics and the fundamental. 
(26,27,28) 

A number of important transmission line properties are. employed 

in the mathematical formulation of the method. The effects of the 

(29,30 ) ( ?l) 
multiple reflections along the line and the line resonance 

form the foundations in the theory of the method. This accounts for the 

behaviour of the standing waves at the harmonics and the fundamental when 

a nonlinear device is used to terminate the line. The creation of resonance 

conditions is made possible with the incorporation of an adjustable length 

of line. However, the idea of matching or mismatching at the ends of the 

line still forms the operational basis in the measurement technique. The 

most important aspect of the method is the creation of standing waves at 

the harmonics and the fundamental under standard conditions when the 

mismatched termination is known. The standing waves a L different hur·mou i c~~ 

are measured using a spectrum nnalyser which net::; ns n n(!.l.ecl..ive d(•t.(:cLor·. 
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The nonlinear device terminating the line is energised by the 

fundamental frequency incident wave. This causes generation of 

harmonics which are then transmitted towards the excitation source end. 

A deliberate mismatch of the generator impedance is made so that standing 

waves at the harmonics can be obtained. This is because the standing 

waves will only be created if there is a mismatched load. The behaviour 

of the standing waves is dependent upon that termination. As both ends 

of the line are mismatched, multiple reflections occur. By varying the 

length of the line, the amplitude of the standing waves peaks and the line 

then is at a resonant condition. From the standing wave measurements the 

device impedance Z , phase 4> and open circuit voltage V at the nth 
n n n 

harmonic may be obtained. 

At the present time only thu rnar•,ni tude of the h;Jr'IJI()[J i I; V().] l.:t) 1,(!!o 

or currents produced by the nonlinear devices at high frequer1cles c~n he 

measured using the existing instruments. No single instrument is available 

for the direct measurement of relative phases of the harmonics. The 

Multiple Reflections Resonant Line Method discussed here represents a way 

of measuring a complete spectrum. It also provides a means of collecting 

the necessary data for spectral characterisation and evaluation and hence 

device fingerprinting. 

4.2 THE THEORY OF MULTIPLE REFLECTIONS 

Whenever there is a matched termi.nati.on at the load enu of '' 

transmission line system, all the incident waves will be ahuod>cd and 

none will be reflected. If however there is a mismatch, then standing 

waves will be created. In general, whatever the value of the source 

impedance, the behaviour of the waves will only be affected by the 

terminating impedance of the line. Further, there will be multiple 

reflections of waves when the excitation and the load ends of the line 
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are mismatched. The incident wave at the fundamental frequency is first 

reflected at the load end and then reflected at the excitation end. These 

continued reflections back and forth will create standing waves when 

equilibrium is achieved. The stationary wave pattern is governed solely 

by the reflection coefficient at the receiving end. The effect of multiple 

reflections is merely to alter all values by a constant factor. The 

importance of the standing wave measurements lies in the fact that properties 

like voltage standing wave ratio (VSWR), phase shift and wavelength can be 

related to the device impedance. 

Fig. 4.1 is an equivalent circuit for a slotted line with its ends 

connected to a generator and load respectively. The right-hand side of LL' 

refers to the load end and that of the left of EE' refers to the excitation 

source end. The subscripts 'g', 'L' and '0' of the impedance Z represent 

signal generator, load and the line, respectively. The length •Q• is the 

total length of the line and 'x' .is a point measured from the load end. 

The phasor voltage, V(x,l), at a point 'x' and for the line of length •a• 

will now be derived when Zg and ZL are not equal to the characteristic 

impedance Z of the line. 
0 

When the excitation source is connected to the line, the initial 

steady state wave will see the apparent impedance of the line as Z . 
0 

Therefore, the initial voltage at the generator end of the line is 

v. 
1 

v 
g 

z 
0 

z + z 
g 0 

(4.2.1) 

This term represents a voltage divider at the excitation end. On traversing 

f -y~ a distnnce ·~· to reach the load, the voltage may be writ;ton ~n V.o 
1 
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As the load impedance is mismatched, the incident wave on reaching the 

load produces a reflected voltage, 

where p is the coefficient of reflection defined as 

p 

z - z 
0 

z + z 
0 

The complex wave propagation constant y is given by 

y 

where cx and B are the attenuation and phase constants 

respectively. The voltage VLl signifies the first reflection at the 

(4.2.2) 

(4.2.3) 

load end. This reflected wave will undergo further reflection on reaching 

the signal generator and because of introduced mismatch. The magnitude of 

the reflected voltage now is 

which may be.designated as Vgl implying the first reflection at the signal 

generator end. This may now be written on substitution for VLl as 

-2yR. 
p pLV.e g l 

- -------------------------------
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Similarly, it can be shown that for second reflections 

= 

th or in general for the n reflections, 

v gn 

p 
g 

(n-1) 
V.e 

1 

-(2n-l)y.fl. 

(4.2.4) 

(4.2.5) 

(4.2.6) 

(4.2.7) 

In conclusion, the voltage at any point x from the load end and for the 

line of length •:Q,• V(x,.fl.) is the sum of all the voltages due to the 

initial incident wave at x and the multiple reflections that follow. 

Hence, 

V(x,&.) 

Rewriting gives, 

...;y(R,-x) = V.e 
1 

00 

+ 

n=l 

00 

n=l 

e-yx [ 

-y(R,-x) 
V e gn 

00 

n=l l 
.-JJ 

(4.?.B) 
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which, on substitutiuon for VLn and Vgn' results in 

V(x,J!.) -4yJ!. i e + ... 

Now, by extracting a common factor in the second term of eqn. 4.2.9 and 

rearranging the expression, we get 

leading finally to, 

1 
-2yll. 

l- P Pre 
g ' 

-4yll. J e + ... 

since the infinite series in the second factor may be written in a closed 

form. The expression for the voltage can further be written as, 

V(x,J!.) (4.2.10) 

which finally represents a general equation for the phasor voltage V(x,ll,). 

If the load impedance ZL is equal to the chnr~cteristic ilnped<-uJce 
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Z
0

, then the reflection coefficient of the load PL becomes zero, and 

eqn. 4.2.10 reduces to 

V(x, R..) 
-Y(.t-x) 

e 

where there is only the incident wave. On the other hand, if the 

generator impedance Z is made equal to Z , P will be equal to zero, 
g 0 g 

and eqn. 4.2.10 is simplified to 

V(x) = 
yx 

e + 

(4.2.11) 

(4.2.12) 

The above equation for the phasor voltage is valid in conven ti.onul <Jppl.icu Li ems 

of the slotted line (with no multiple reflections) and is independent of the 

line length 'ft'. This kind of equation(
3
l) is generally written as 

V(x) = A e yx + 
-YX Be (4.2.13) 

YX -YX where Ae and Be represent the waves travelling towards and away from 

the load, respectively. 

Normally, the slotted line used is loss1ess, i.e. a 0 giving 

·c 
~ = jS and eqn. 4.2.10 may then be written DR 

V(:i<,JI,) 
-j 8( .t-x) 

e (4.2.14) 
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resulting in the magnitude 

I V(x,~) I c )1 ::: 
-j2ax

1 - p pLe 
v g (4.2.15) 

g 2 -j2B~ I 
pLpge 

Eqn. 4.2.15 is one of the key equations in the theory of this measurement 

method. 

4.3 RESONANCE ALONG THE LINE 

Standing waves can be created along a transmission line of nny 

particular length. However, with multiple reflections, variation of the 

line length will change the magnitude of the standing waves, though the 

pattern remains the same. The typical standing wave pattern is as shown 

in Fig.4.2.a. If the length of the slotted line is continuously increased, 

the magnitude of the standing wave will undergo a series of alternating 

maxima and minima. This is illustrated in Fig.4.2b where at a point x, the 

magnitudes vary between points A and B. The incidence of maxima and minima 

of the waves suggests the resonance and anti-resonance behaviour of the line. 

Thus the length of the line that corresponds to the magnitude at itf3 II~<Ixi.rnUJn 

may be referred to as ~ and that for the minimum as ~ . . This is as 
max m1n 

shown in Fig.4.2C. As the resonance or extreme value of the magnitude occurs 

at a particular length of the slotted line, the behaviour may be referred to 

as the line resonance. 

This resonance behaviour may also be seen mathematically in eqn.4.2.15 

by examining the denominator more closely. The definition of reflection 
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coefficient shows that if the generator impedance 

z o' zg will be negative. If the load impedance 

reflection coefficient may be written as 

Consequently, eqn. 4.2.15 may be modified to 

IV(x, Jl.) I 

where 

and further simplified to 

IV(x, Jl.) I= 
I 

IV 
g 

z is real and less than 
g 

is complex, then the load 

(4.3.1) 

(4.3.2) 

(4.3.3) 

The only variable in the denominator of eqn. 4.3.3 is the line length 

1 Jl. 1 , which in turn contributes towards the variation of IV(x, Jl.) I 

The value of V(x,JI.) as the line length 1 J/, 1 is varied reaches a maximum 

when 

cos ( 2 8' max - t!J L) = c~l (11.3.11) 

and a minimum when 

cos (28JI. min 
- 1jJ ) 

L 
l (4.3.5) 
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So 1 V(x,~) 1 now designated as 1 V(x, ~m~x·) I 
m1.n 

substitution of the above conditions as 

v(x, ~ ) max 
min 

may be written on 

2 

(4.3.6) 

The conditions under which IV(x,~) 1 reaches maximum i.e. 1 V ( x , ~ ) 1 may max 

be aptly referred to as that of resonance and when IV(x,~ . )I is minimum m1.n 

as anti-resonance. 

Using these resonant conditions, the phase ~L of the complex 

reflection coefficient of the load may be determined either from eqn.4.3.4, 

giving 

26~ - 1j!L max = (2k + 1)11 (4.3.7) 

or eqn. 4.3.5, giving 

2S~ - 1j!L (2k11 ) (4.3.8) min 

where 

a w 211 
0, l, -- = k 2 •...• 

\) .A ph 

and 

26~ -(2k + 1)11 
max (4.3.9) 
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It is to be noted that k is zero or an integral value in the expression 

for phase ~L under resonant or anti-resonant condition. 

In conclusion it should be emphasised that the extreme values of 

the magnitudes of the standing wave IV(x,~ ) I are dependent upon the 

resonant conditions of the line at any point x the existence of resonance 

depends critically on multiple reflections .and the key variable is the line 

length. 

4.4 STANDING WAVE PROPERTIES 

4.4.1 Complex Reflection Coefficient 

Whenever two identical waves of the same frequency travel in opposite 

directions along a slotted line system standing waves will be created. This 

fundamental phenomenon of interference in an electrical network is caused 

by a discontinuity, for example a mismatched termination. Under normal 

measurement techniques standing waves are obtained for only one frequency. 

The circuit for this kind of measurement was shown in Fig.4.1. In rnost 

cases, the generator or the source impedance, Z , is equal to the charact.cr·isLi r: 
g 

impedance Z of the line. Thus standing waves created will be solely due to 
0 

the reflection at the load end. If however, in addition to the mismatch 

at the load end, there is one at the generator end, multiple reflections 

will result. 

Whenever there are multiple reflections standing wave properties may 

be deduced from the stationary wave measurements based on eqn. 4.3.3. It 

will be seen that the numerator depends upon the value of x, i.e. the 

distance from the load end. As discussed in the last section, the de-

nominator depends upon the line lenRth '&'. At a particular length '&' 

of this transmission line, the extreme value of IV(x,&) 1 can either be 

maximum or minimum, with the corresponding values of x as xmax or xmin' 
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respectively. The magnitude of the standing wave is maximum, 

i.e. IV ( x , ll..) I when 
max 

cos (28x - ~L) max 
1 

and minimum, i.e. IV ( x . , R.) I when 
m1.n 

cos (28x . - ~L) m1.n 
-1 

This implies that 

and 

where 

giving 

28x - ~L max 

28x . - ~L m1.n 

m 0, 1, 2 ..... 

2m 'IT 

= (2m+ l)'IT 

~L (2f3x - 2m'IT) 
max 

2f3x . - (2m +l)'IT 
m1.n 

It is again to be noted that m is zero or an integral value in the 

expression for phase ~L at x or x . max m1.n 

Therefore,in summary, the magnitude of the standing waves at maximum 

and minimum for a particular length of the line is given by 

I 

IV I g 

(4.4.1) 

(4.4.2) 

(4.4.3) 

(4.4.11) 

(4.4.5) 

(4.4.6) 
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The extreme values for the standing wave magnitude under the conditions 

as given by eqns. 4.3.6 and 4.4.6 may be summarised as, 

V(x R. 
max' max 

(4.4.7) 

min min 

The phase of the complex reflection coefficient of the load 

~L may be computed from eqn. 4.4.5. It is to be emphasised that this 

is applicable for the case of the complex load impedance, at a particular 

frequency. The eqn. 4.4.7 sugests that under two extreme conditions of x, 

i . e. x and x . and those for 1 R. 1 
, i.e. 9. and II, . , the r·e arc four 

max m1n max rn.J n 

combinations IV(x,R.) I that can be measured, Lhoy ~ru 

(4.4.8) 

(4.4.9 

IV (X . , II, ) 
mln max 

(4 .4.10) 

~V(x . ,t . ) I ::::: ! m1n mln 
(4.4.11") 

These equations may be manipulated to give an expression for 

= 
l 

~ 
IV(x ,t )I- IV(x ,J!,. ll max max max m1n 

(4.4.12) 
IV(x ,9., )I+ IV(x ,9,. )I max max max m1n 
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This is an important equation derived in order to compute the value for 

the magnitude of the complex reflection coefficient of the load, IPLI . 

Basically two measurements under conditions of resonance (at 11,. ) and 
max 

anti-resonance (at II,. • ) are required to obtain 
m1n 

and they are, 

IV(x 11,. ) I max' max 
and IV(x , II,. • ) I max m1n 

The quantity lp I is known, because it is fixed. The most interesting 
g 

points demonstrated by eqn. 4.4.12 are that it is simple, the quantities 

involved are easily measurable and only relative measurements are required. 

The phase angle ~L may be computed using either eqn. 4.3.9 or 4.4.5. 

Hence the complex reflection coefficient for the load pL may be computed. 

The eqn. 4.4.12 may also be written as, 

[I v ( X 1/, ) I /1 v ( X II,. • ) 1] max' max max' m1n 

( 4 . t1 • J.:l) = 
1 

TP;i 
[I V(x II,. ) I /lv(x II,. • ) I~ max' max max' m1n ~ - 1 

+ ] 

where the ratio 

IV(x , II,. ) I I IV(x , II. • ) I max max max m1n 

is an important quantity. This ratio may be examined by referring 

back to the expression for lv(x,ll..) I as given by eqn. 4.3.3. It can be 

shown that, 

:::: ~~L.~I 
l - I P I I P I L g 

(4.4.1.4) 
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This means that the ratio has a constant value, at every point x along 

the line provided that the load impedance does not change. However, 

for purposes of measurements, the point x is chosen in order to work 
max 

with bigger voltages. 

4.4.2 Input Impedance of the Line 

The expression for the current II(x,~)l at a point x along a 

transmission line of length 'JI,' may be obtained based on the same ideas 

as that for the voltage IV(x,J~,) 1 • 

v 
g 

z + z 
g 0 

It can be shown that, 

(4.4.15) 

On substituting the complex reflection coefficient pL for !;he Jo<.ld in Lo 

eqn. 4.4.13 gives, on simplification 

v 
g 

z + z 
g 0 1 + 21PgiiPLicos(2BJI,-1)!LfriPgi

2
1PLI

2 I~ 

(4.4.16) 

From eqns. 4.3.3 and 4.4.16 for IV(x,JI,) 1 and II(x,JI,) I , respectively, 

an expression for the input impedance IZ(x,JI,) 1 

= 

= 

_lv(x, J~,) I 

II(x, t) 1 

may be found, i.e. 

(4.4.17) 
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4.4.3 Load Impedance - General Relationships 

Suppose a load terminating the line has a complex impedance ZL 

which may be written in the usual way as 

(4.4.18) v 

"L 

On normalising with the characteristic impedance, it becomes, 

= + j (II.IJ.I'J) 

But, from the definition of the complex reflection coefficient, it can be 

shown that, 

(4.4.20) 

. (JO) 
Substituting pL from eqn, 4.3.1 into that of 4.4.20 leads to the express1on 

for the normalised real and imaginary parts of the impedance, which arc ; 

2 
( 1 - I PL I ) 

(4.4.21) 

(4.4.22) 
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Thus the magnitude of the complex load impedance is given by, 

and that for the phase 

!)!L = 

+ 
~ 

X 2 ) 
L 

4.5 THE NON~LINEAR DEVICE AS THE LOAD 

4. 5. l Equivalent Circuit of ~he _Q_~vic:_5~ 

The behaviour of a nonlinear device is level dependent. In most 

cases current through the device may be expressed as a power series of the 

voltage applied, i.e. 

i(t) 

0 

and for a sinusoidal drive, 

v( t) V cos(·w t) 
0 0 

the current i(t) may be written as, 

co 

i(t) = V cos(nw t + !)ln) n o 
0 

which is the summation of components of the harmonic spectrum. This leads 

(4.4.23) 

(4.4.24) 

(4.5.1) 

(4.5.2) 

to tho idea of the equivalent circuit for the non-linear device terminating 

the line. 
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At the fundamental frequency, reflection of the excilation signal 

occurs at the device end and there will be reflections at the energising 

source end if Z is not equal to Z . So far in the case where there are 
g 0 

multiple reflections, the circuit may be represented as shown in Fig 4.3. 

However, the approximate equivalent circuit for the nonlinear device at the 

fundamental may be represented as shown in Fig 4.4. 

th At the n harmonic, the nonlinear device might be looked upon as 

a generator comprising its own harmonic impedance Z and an open-circuit 
n 

voltage V , as shown in Fig.4.5. 
n 

Therefore to the nonlinear device the 

excitation end becomes the load of Z impedance where x is the distance of 
g 

that load to the probe, as shown in Fig. 4. 6. ne taln:Lng Lht; UljU.i vu] en L 

circuit for the nonlinear device which includes all harmonics it may be 

drawn as in Fig.4.7. The measurements will lead towards the computations 

of the complex reflection coefficient, Pn• the complex impedance, Zn' and 

the amplitude and relative phases of the nonlinear device at the nth harmonic. 

4.5.2 Standing Waves at Harffionics 

When a load terminating the slotted line is a nonlinear device, then 

on excitation harmonics will be generated. This nonlinear device becomes 

the harmonic genera tor. The harmonics genera ted will be transmi. t ted toward::; 

the excitation end. In order, however, for the standing w;:~ve:l t·.o lw cn~;JI.r!d 

at harmonics, there must be a mismatch at the energising source. Thus it is 

essential that a deliberate mismatch be devised. This mismatch of the slotted 

line at both ends will create multiple reflections at the harmonic frequencies. 

Next, by varying the length of the line a resonant condition is obtained which 

will be indicated by achieving a maximum amplitude of the standing wave pattern. 

Comparing the circuits of Figs 4.1 and 4.6, it is clear that they are 

similar in form. Fig.4.l shows the circuit working at the fundamental while 

th that of Fig.4.6 indicates that the circuJL is valid ;Jt then harmonic. 
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Therefore, the equation for the magnitude of voltage IV(x,~)l 
th 

at the n 

harmonic will also be similar in form to that at the fundamental. The 

standing wave magnitude at the fundamental frequency is given by eqn.4.2.15, 

i.e. 

-j2sx 

IV(x, ~) I 

Hence, at a particular nth harmonic, the voltage IV(x,~)l , now denoted 

as IV (x,~) I , may be written as, 
n 

IV (x,~) I n 

--j2B X 

11 + P e n I 
g 

I 
-j2B R. 

l - p p e n 
n g 

The generator voltage V and its reflection coefficient p are r·epl:v;cd by 
g g 

the open circuit voltage V and the reflection coefficient. p of' Uw 
n n 

harmonic generator, respectively. Similarly, the reflection coefficient 

of the load pL is replaced by that of the generator, i.e. Pg· This is 

(4.5.3) 

so because the generator impedance now becomes the load. As p is complex, 
n 

it may be written as 

The generator impedance Z can be made resistive and fixed Bt a 
g 

definite value in terms of a fraci:.:ion of the characterisUc iHI!ll'danct· '!. 

(4.5.4) 

t) 
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This will make the reflection coefficient Pg real and negative. 

equation 4.5.3. may now be written as, 

= 

which may be simplified to 

~ 

lv (x, R-) I lv I 
ll - 2 1 P 1 cos ( 2 a x) + I Pg 12~ g n 

n n 

ll 

2 
+ 2 I P II P cos(2a R-- \II ) + IPgl I n g n n 

where, 
I 

(l - p ) 

lvn I v 
n 

n 2 

~ 

I IV~ I 2 
or lvn I 

1 - 2 I P I cos IIi + I P I n n n 

w 21T 
and a 

n 
n vph >. 

n 

4.5.3 Complex Reflection Coefficients at the Harmonics 

The 

2 ~~ p I n 

th 
The complex reflection coefficient at the n harmonic, Pn• may 

(4.5.5) 

(4.5.6) 

(4.5.7) 

be derived by methods similar to those used in the case of the fundamental 

frequency. Initially (by considering the standing waves at the nth harmonic 

the expression for the voltage at a point x for the line length~~~) IV (x,R,) 
n 

is as given by eqn. 4.5.5. The extreme conditions (maxima and minima for 

the line lengths R.max and R. and distances x , and x . respectively) min max m1n 

in eqn. 4.5.5. for the harmonic cases can be examined in a similar way as 
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for the fundamental (eqn. 4.3.3.). Consequently, the expression for 

I v (x, !!.) I under the conditons of maxima and minima can be obtained 
n 

and this is 

I
V (X , I!, ) 

n m~x m~x 
m1n m1n 

It is important to note that IV(x,l!,)l as given by eqn.4.3.3. 

is derived for the case of fundamental frequency when the load impedance 

(4.5.8) 

is complex. As a result the phase angle term ~L for the complex reflection 

coefficient of the load appears in both the numerator and the denominator 

of that equation. This results in two expressions for the phase angle ~L 

and they are given by eqns. 4.3.9 and 4.4.5. However, the vuJ tnge 

I V ( ) I f th th h · . b 4 5 5 . Lh L J x, 1!. or e n armon1c, as g1ven y eqn. - .. , conL~1nH c . oar 
n 

impedance which is real. This results in the phase angle, ~ , for the 
n 

complex reflection coefficient, pn' of the device at the nth harmonic 

appearing only in the denominator. By considering the maximum and minimum 

values of IV (x, 1!.) 1 , it can be shown that, 
n 

l.JJn == 2 R 1!. - ( 2k + l hr 
11 max = 2 a 1!. . - 2kn n m1n 

(L1.5.9) 

where 

k 0, l, 2 ...... 

The variable k as defined above appears in the expression for the phase 

angle ~ at the conditions of resonance and anti-resonance. The eqn.4.5.8 
n 

allows four combinations of extreme voltage values of I v (X ,I!.) I 
n 

With 
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the quantity IP 1 known and the term IV 1 eliminated, the magnitude 
g n 

th 
of reflection coefficient of the nonlinear device at the n harmonic 

can then be written as, 

l I
V (x , .Q, ) 1 

n max max - IV (x '.Q, . ) I n max m1n (4.5.10) 

IV (X .Q, ) I n max' max + lv (x 'i . ) I n max m1n 

or 

= 
IV(x. Q, )I n m1n' max - lv (x . ,.Q, • ) I n m1n rn1n 

(4.5.11) l 

4.5.4 Input Impedance of the Line at Harmonics P ·:Z,l;d) 

The expression for the input impedance of the line at the harmonics 

may be obtained using the general eqn. 4.4.17. This equation is applicable 

for any frequency for which the load is complex whose reflection coefficient 

The circuit diagram is the same as that already shown in Fig.~.l. 

However at the harmonics, the load is made deliberately resistive, hence 

its reflection coefficient is real and may be written as 1 p 1 • The g 

circuit is shown in Fig.4.6. The expression for the input impedance ~zt1 

th 
at the n harmonic may finally be written as 

= 12 I 0 
(4.5.12) 

The relationship between the input impedance of the line and the 

condi U.ons of resoni:\nce and An L i -~resonanc(~ w i l I now hn !!r; t.nh I i ~>h<!d. 
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From eqn. 4.5.9 it can be shown that, 

and 

~ . m1n 

>..n 
(2k + l) 4 

k>.. 
2 

+ 

+ 

where ~max and ~min are the resonant and anti-resonant line lengths, 

(4.5.13) 

(4.5.14) 

respectively. This is illustrated in Figs.4.8a and b. At the point 
1jJn 

along the line (Fig.4.8a) where x ~ the voltage is maximum. 
max 28 

n 
The term cos(28 x) in eqn. 4.5.12 then becomes 

n 

cos(28 x) 
n 

cos(28 ~ · 
n max 

-1 

under resonant conditions, giving 

IZ n IZ I 
0 

By definition, the voltage standing wave ratio (VSWR) is 

lvswRj 

giving in conclusion 

I ( 1jJn ) z ( ·~-) 
n ~max 2a ' ~max 

n 

(4.5.15) 
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This shows that at resonance, the point at which the voltage is maximum 

corresponds to that of the maximum input impedance. This then represents 

the parallel resonance circuit of the line at xmax' where it now becomes 

\fin 
(!~,max 213 ). 

n 

On the other hand, at a point (Fig. 4.8b) where x 

the term cos(213 x) in eqn. 4.5.12 becomes 
n 

cos(213 x) 
n 

cos(213 R. • - If! ) n m1n n 

1 

under the anti-resonant condition, giving 

lz (< ll. • -n m1n 

l·z (< R. • -n m1n ) • R, . ) I m1n 

r l -

ll + 

I z I 
0 

lvswR I 

ljJn 
(51, . - /2sn), m1n 

(4.5.16) 

Thus, it is seen that, under anti-resonant conditions of the line, the 

voltage minimum occurs at a point where the input impedance of the line 

is minimum. This implies that at this particular point, the equivalent 

circuit of the line is of a series resonance type. 

In considering the impedance of a diode, its equivalent circuit 

must first be examined. The approximate equivalent circuits for the non-

linear device at the fundamental and the harmonic frequencies are shown 

in Figs. 4.4 and 4.7, respectively. Let the apparent value of the complex 
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impedance of the diode at the nth harmonic be z 
n 

For a series 

equivalent circuit, Z may be written in the normal complex form as 
n 

where 

z 
n 

z 
n 

Z + R 
n o 

== R + n 
·x J n 

The resistive component of the diode impedance is R and that of the 
n 

reactive part is X . 
n 

The reactance is basically capacitive. The 

(4.5.17) 

apparent impedance comes about because the device jB tc~r·rnirwl.<~d wi Ut I.IH' 

characteristic impedance R . 
0 

On normalising with the characteristic 

impedance, eqn. 4.5.17 becomes 

z 
n 

R 
0 

== 

R' 
n 

R 
0 

+ 
X 

n 
j R 

0 

(4.5.18) 

But, from the definition of the coefficient of reflection for the device 

at a particular harmonic n, it can be shown that, 

z 
n 

R 
0 

:::: 

(l + p ) 
n 

(l - p ) 
n 

(II. 5. 19) 

Substituting p from eqn. 4.5.4 into eqn. 4.5.19 leads to the expression 
n 

for the normalised real and imaginary parts of the complex impedance of 

the device which are, respectively 

R 
n 

R 
0 

== 
(4.5.20) 
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and 

X 
n (4.5.21) 

R 
0 

These quantities can be calculated from the complex value of the 

reflectio~ coefficient p • 
n 

From the value of the apparent resistiv~ component R ' of the n 

diode impedance, the true value of the component R may be deduced. In 
n 

the same way from the value of the reactance X , the capacitance C at n n 

th the n harmonic can be obtained. Finally, the magnitude of the impedance 

i.e. 

z 
n 

(R 2 + (4.5.22) 
n 

and that of its phase 4>n• i.e. 

4>n 
(4.5.23) 

may be found. 

4.5.6 Amplitude and Relative Phases 

Basically, the whole aim of the measurements is to produce the 

amplitude and relative phase spectra. The amplitude spectrum is the 

variation of the magnitude of the open-circuit voltage 1vn1 of the device 

with harmonic frequency. The relative phase spectrum is a plot of (tj>n-tj>l) 

versus harmonic frequency where 4> is the phase of the complex impedance 

of the device. The subscript of ~ refers to the harmonic number. The 

relative phases are represented with respect to that of the fundamental. 

An expression for IV 1 may be derived by first considering any of the 
n 

combinations of I v (X Jl, ) 
n rnax' max 

as given by eqn. 4.~.1A. Suppose 

min min 
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Vn(xmax'~max) is considered, i.e. 

IV n ( xmax' ~max) I = IV n 
1 

I 
(l + I Pg I 

(4.5.24 

hence, 

(4.5.25) 

But from Equation 4.5.7, lvn' I is given by: 

lv ' I n 
21 p 1cos 1jJ n n 

(4.5.26) 

Equating lvn' I from Equations 4.5.25 and 4.5.26, an expression for lvnl 

can be derived, i.e. 

( 4. 1.l. 2'1) = 
2lvcx .~)I n max max 

All the quantities in the denominator can be found and the absolute 

value of V (x ~ ) 
n max' max 

may be computed by considering the coupling 

coefficient between the probe and the slotted line at the respective 

harmonics. Hence the magnitude of open circuit voltage of the diode 

at harmonics can be computed. In the case of the phase spectrum, the 

phases at a particular harmonic can be found by using EquuLion 4.5.~1. 

Relative phat->es of harruonlcs are found by cons.l.dcr.i ng Ull! r,har;e uf <1 

particular harmonic with respect to that of the fundamental. 
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4.6 CONCLUSION 

One of the basic aims of the work is to develop a method of measure-

ment of a complete spectrum generated within a nonlinear device at high 

frequencies. This involved the derivation of mathematical expressions 

(based on multiple reflections and line resonance) and the establishment 

of measurement procedures. As the basic equipment employed was a slotted 

line system with mismatched termination , the procedures involved measurement 

of the standing waves. There was a need to create standing waves at the 

harmonics under known conditions and to relate the measurements of a particular 

frequency component in the spectrum under investigation. 

The measurement technique developed is called the Multiple Reflections 

Resonant Line method. The idea of resonant line comes about because the 

voltage ~(x,&) j along the line reaches a maximum (resonance) and a minimum 

value (anti-resonance) for particular lengths of the transmission line, i.e. 

1 ! 1 and '! . 1
, respectively. In order to arrive at these conditions of 

max m1n 

resonance or anti-resonance, an expression for the voltage IV(x,!)l , based 

on the multiple reflections was derived. Multiple reflections were achieved 

when the ends of the transmission line were mismatched. 

A deliberate mismatch of the driving source end leads to a new type 

of measurement of the diode impedances at the harmonic frequencies. Making 

the load impedance at the harmonics resistive contributes towards a major 

simplification in the expression for the voltage IV(x,!) I , given by eqn.4.5.5. 

This impedance was kept at a known (resistive) value throughout the measuren1ent, 

thereby making the standing waves at the harmonics identical. This was possible 

because the standing wave pattern of any reflection is decided only by the load 

impedance. 

In addition to the derivation of the expression for the voltage 1 V(x,,)l 

an expression for that of the current II(x,!)l was similarly obtained. Thus, 



64 

the ratio of the two gives the input impedance IZ(x,~) I . Under the 

conditions of resonance(~ ) and anti-resonance(~ . ), the resultant 
max m1n 

equations for the voltage IV(x.~) I and the input impedance IZ(x,~) I now 

may be compared. This was discussed in section 4.5.4. It was shown that 

under resonant conditions and at a point along the transmission line where 

the voltage is maximum, the input impedance is also maximum. On the other 

hand, under the condition of anti-resonance, at a point along the line when 

the voltage is minimum, the input impedance is minimum. These observations 

are explained in terms of the resonant equivalent circuits. The parallel 

and series resonant circuits are referred to the former and the latter cases, 

respectively. 

The method is initially involved with the measurement of the complex 

reflection coefficient of the nonlinear diode at the nth harmonic. This 

requires the setting of both the resonant and anti-resonant conditions from 

which the following quantities may be measured, i.e. IVn(xmax'~max) I, 

IVn(xmax'~min) I, IVn(xmin''max) I, IVn(xmin'~min) I ' ~max and 'min' 

From these, the diode impedance Z , open circuit voltage IV I and phase angle 
n n 

~ at the nth harmonic may be calculated. Hence the amplitude and the 
n 

relative phase spectra at different drive levels can now be plotted. In 

addition, from the approximate equivalent circuit and the impedance of the 

diode at a particular harmonic, the nature of the parasitics involved may 

be established and values estimated. 
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CHAPTER 5 

MEASUREMENTS AND EXPERIMENTAL PROCEDURES 

5.1 INTRODUCTION 

Basically, the measurement technique and the experimental procedures 

were connected with the Multiple Reflections Resonant Line method. In 

addition, any test or evaluation of a microwave diode by any technique rnusL 

also include the measurements of the static characteristics as r·eference. 

It provides an initial assessment of the diode and its rectification 

properties. For example, the values of the reverse saturation current I 
s 

and the series resistance r obtained are considered to be important diode 
s 

parameters. The experimental arrangements and the initial calibrations 

necessary in any measurement are first discussed. Next, discussions of the 

diode static characteristics and the spectrum measurements are made. Finally, 

a general assessment is made of the measurement methods. 

5.2 EQUIPMENT AND INITIAL CALIBRATIONS 

5.2.1 General Arrangements 

The circuit for the d.c. measurements of the diodes is shown in 

Fig. 5.1. It comprised the d.c. supply source and the potentiometer of 

lK Q The diode in series with a known resistor of 50 Q was connected 

across the potentiometer and the lM n resistor. The 50 Q resistor was 

introduced in order to measure the current through the diode while that of 

lM Q to reduce the current drain on the voltage source. The d.c. valve 

voltmeter was used in the measurements of voltages as shown in Fig.5.l. 

The experimental arrangement for the spectrum measurements is shown 

in the block diagram of Fig.5.2. It comprif;ed four pact8, (u) l:he (~xci l:JLi.un 

end, (b) the slotted-line system, (c) the load end and (d) the spectrum 
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analyser. The excitation end lay to the left of the terminals EE' as 

shown in Fig.5.2. It consisted of the signal generator followed by a 

fixed attenuator, variable attenuator, low pass filter and another fixed 

attenuator. The fixed attenuator was used to reduce the level in order 

to protect the components that followed in addition to isolating the 

source from the line. The variable attenuator provided a means of 

adjusting the input level of the signal. The low pass filter was used 

to prevent any harmonics and spurious signal from the source reaching the 

line. Finally, a resistive termination of known impedance was deliberately 

introduced to provide the mismatch at the excitatjon end. 

The slotted-line was a coaxial type, comprising accessories like 

the probe and carriage assembly, an adjustable transmission line, a T-junction 

and a stub tuner. The ends of the line were connected to the generator and 

the load, respectively. The load end (Fig. 5.2) was on the right-hand side 

of the terminals DD', and included the diode, placed in the holder. The 

diode was then terminated with the characteristic impedance, Z . The component 
0 

used for this termination was the precision attenuator, which allowed connections 

to be made to the spectrum analyser. Finally, the spectrum analyser, an i1nportunt 

component in the arrangement, was used to measure, (i) standing waves at the 

harmonic and fundamental frequencies through the probe and carriage assembly, 

and (ii) the current at the fundamental frequency through the diode. 

5.2.2 Diode Holder 

As the project involved the investigation of diode properties, the 

construction of a proper diode holder was essential. The holder (shown in 

Fig 5.3) was manufactured in a coaxial form and adapted for use with the 

General Radio (GR) system having the characteristic impedance of 50 ohm. 

The main requirement for a properly designed holder was thnt it should match 

the line. It had to meet the test: that when the dlode !Jo!der· wn~) nhod.-
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circuited (with a dummy made of brass, identical in shape to the diode 

encapsulation) and terminated with the characteristic impedance it 

produced no standing waves ; under these conditions the dimensions of 

both the inner and outer conductors of the diode holder would then meet 

the specifications required for matching purposes. It can be shown that 

(32,33,34) 
for a coaxial lossless transmission line, the characteristic impedance 

at high frequencies is given by 

z 
0 

1 
2n 

a 
b 

where ~ and £ are the permeability and permittivity of the medium, 

respectively ; 'a' is the internal diameter of the outer conductor and 'b' 

is the diameter of the inner conductor. The encapsulated diodes used were 

of the shapes shown in Fig.5.4. 

The calibration of the diode holder was made by first placing a 

dummy in the holder. The whole unit (diode holder) was then used to 

terminate the transmission line. The unit was in turn connected to a 

matched termination, Z . 
0 

With the modulated waves incident onto the diode 

holder, standing waves were measured using a sensitive SWR-meter. In 

practice, the occurrence of small reflections could be tolerated and the 

diode holder used had a very satisfactory VSWR of 1.02. 

5.2.3 Resistive Multiple Terminati~ 

An important element that contributed towards simplification of 

the measurement method was the introduction of the resistive multiple 

termination at the energising source end. This was done to create a 

mismatch with a known value of impedance. The components making up the 

termination were the precision attenuators ; each was resistive over a 

wide range of frequencies having the characteristic impedance of R . 
0 
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Thus a parallel connection with two of them constituted a double termination 

giving an impedance of R /2. Similarly, three of these components when 
0 

connected in parallel formed a triple termination having an impedance of 

R /3. As these resistive terminations were independent of frequency and 
0 

level when acting as a load, they always produced the same VSWRs at 

harmonics although not necessarily of the same magnitudes. 

The reflection coefficient of the diode at the nth harmonic IP nl , 

given by eqn. 4.5.10 or 4.5.11, is a function of the reflection coefficient, 

at the excitation end. Since therefore, 1 Pg 1 was required :i.n all the 

harmonic measurements, its value was made fixed and known by making the 

impedance at the excitation end, and hence the voltage standing wave ratio 

(VSWR) on the line, constant. 

Tables 5.la and 5.lb give the results of the line calibrations for 

the double and triple termination at the fundamental drive frequencies of 

1.560 GHz and 450 MHz, respectively. Greater sensitivity in measurement 

was achieved when the termination with higher VSWR value is chosen. The 

triple termination was preferred to the double because the resulting VSWR 

value for the former was higher than that for the latter. For this reason, 

the triple termination was chosen for the case of the fundamental drive 

frequency of 1.560 GHz (Table 5.1~). However, this was not the only criterion 

in deciding which type of termination was preferable in the measurements. Its 

VSWR values should also be relatively constant over a range of harmonic 

frequencies. Hence, because of this requirement the double termination was 

chosen for the fundamental drive of 450 MHz (Table 5.lb). 

5.2.4 Coaxial Slotted Line 

The coaxial slotted line is a device where normally standing waves 

are created and measured. The output from the slotted line was obtained vir• 

a probe coupled into the field inside the transmission line. As tho probe 



TABLE 5.l(a): Line Calibrations for the double and triple terminations 

at f
1 

equal to 1.560 GHz 

VSWR VSWR 
Harmonic 

double termination triple termination 

n 
dB ratio dB ratio 

l 6 2.0 9 2.8 

2 6 2.0 9 2.8 

3 4 1.6 9 2.8 

4 6 2.0 lO 3.2 

5 6 2.0 ll 3.6 

6 6 2.0 10 3.2 

TABLE 5.l(b): Line Calibrations for the double and triple terminations 

at f
1 

equal to 450 MHz. 

Harmonic 
VSWR VSWR 

double termination triple termination 
n 

dB ratio dB ratio 

1 6 2.0 7 2.2 

2 6 2.0 4 1.6 

3 5 1.8 6 2.0 

4 6 2.0 8 2.5 
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(21) 
coupling was of the capacitive type ,the voltage induced in the probe 

circuit was proportional to that existing between the inner and the outer 

conductors of the line at any probe position. The main advantage of this 

kind of coupling were the ease and convenience of adjustment of the coupling 

with only one variable (i.e. the penetration depth of the probe) and the 

relative insensitivity to small frequency changes. 

It was essential that the calibration of the slotted line included 

the loading effect. This was carried out by determining the coupling 

coefficient between the line and the probe for different penetration depths 

of the latter. A large coupling coefficient would eliminate the lo8dir1g 

effect however, this would reduce the sensitivity of the measuremenLs. 

The main aim of the calibration was to establish an optimum depth for the 

probe penetration. This would give a sufficiently high coupling coefficient 

and an adequate sensitivity in the measurements at different frequencies. 

Once this depth was found, it was held fixed throughout the entire measure-

ments at the fundamental and harmonic frequencies for different drive levels. 

Any further variation in the depth would significantly affect the measurements 

at different harmonics because the properties of the device at different 

frequencies were inter-related. The measurement of the coupling coefficient. 

for each harmonic was then carried out. 

The calibrating procedure was performed by generating the harmonics 

in the diode from the excitation end with a matched line as the load. The 

ratio of the level measured at the end of the termination to that on the line 

gives the coupling coefficient between the line and probe. This calibration 

was carried out at different harmonic frequencies. 

The results of the calibrations of the probe coupling with the slotted 

line are presented in Tables 5.2a and 5.2b for the fundamental drive frequencies 

(fl) of 450 MHz and 1.560 GHz, respectively. It is important to note Lhat 



TABLE 5.2(a): Calibration of the Probe Coupling for f 1 equal to 450 MHz 

Voltage measured at Voltage measured 
Coupling 

Harmonic 
the end of the on the line Coefficient 

termination n 

(dB) (dB) dB ratio 

l 66.0 53.5 13 4.5 

2 60.0 42.0 18 7.9 

3 56.0 42.0 14 5.0 

4 60.0 38.0 22 12.6 

Table 5.2(b): Calibration of the Probe Coupling for f
1 

equal to L.~60 GHz 

Voltage measured Voltage measured Coupling 

Harmonic at the end of the on the line Cc::fficient 

termination 
n 

V(dB) vI (dB) dB ratio 

l 56.0 37.0 19 8.9 

2 71.0 48.0 23 14. l 

3 56.0 38.0 18 7.D 

4 54.0 36.0 18 7.9 

5 50.0 39.0 ll 3.5 

6 35.0 29.0 6 2.0 

~-
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different probe penetrations on the slotted line were used at different 

fundamental frequencies because of differences in the measured levels. 

The coupling coefficients at the harmonic frequencies were recorded and 

used in determining the actual values of the voltages on the line measured 

with the probe. 

5.2.5 Spectrum Analyser 

Firstly, the frequency scale was calibrated. This was done by 

measuring the frequency accurately using the slotted line. The frequency 

scale was then adjusted to coincide with the correct value. For level 

measurements, a reference height was established against which all other 

readings were taken. This was done with all other controls beJng in 

calibrated positions. The calibrations of attenuators in the spectrum 

analyser were compared to the known values of precision attenuators. For 

proper operation and protection of the spectrum analyser, the input level 

had to be adequately attenuated. This was because the maximum allowable 

input level specified was l J.M. 

5.3 MEASUREMENT OF DIODE STATIC CHARACTERISTICS 

(19,35) 
In the static d.c. characterisation, the diode exponential law 

was assumed to be 

i = 
o.V -ar i 

I (e a s - l) 
s ( 5 .l) 

where i, is the current, I , the saturation current, V , the applied voltage, s a 

the series resistance and 

0. 
_q_ 

n kT 

a is defined as, 

with n the ideality factor. The main purpose of the d.c. measurements was 
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to determine the above parameters for the practical diodes. The circuit 

employed was as shown in Fig 5.1. 

The forward current If was calculated from the voltage across 

a known load resistance in series with diode. The applied voltage V a 

was measured across the diode and the load resistance. For the low current 

range, the term ar i in the exponent of eqn. 5.1 is very small compared to 
s 

that of aV , and hence may be neglected. The eqn. 5.1 may then be written 
a 

as 

giving 

I 
s 

e 
aV 

a 

o.V + Q.n I 
a s 

(5.2) 

However, as the measurable forward current If values were generally 

a few orders of magnitude higher than that for the saturalion current 1
0

, 
.~ 

eqn. 5.2 can be written as, 

(J. v + 
a 

Q.DI 
s 

From the graph of (Q.n If) against V , the parameters I and a can be 
a s 

( 5. 3) 

obtained. The value of a was then used to plot another graph in order 

to get the parameters r and again I . 
s s 

The eqn. 5.1 may be written in the form 

where 

:;: 

R = R 
L 

+ r 
s 

and R
1 

is the load resistance. 

·-1) ( I) • I] ) 



Rearranging the terms gives, 

+ I ) 
s 

I 
s 
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( 5. 5) 

When working at higher current levels the term aRif becomes significant 

and hence cannot be neglected. However, the saturation current I may s 

again be neglected because it is a few orders of magnitude lower than that 

for the forward current If. The eqn. 5.5 can be written as 

If -aRI_. 
.l 

aV 
I e 

s 
a 

e 

giving 

~( If ) I aRif (5.6) 
aV 

.Q,n 
s 

a 
e 

Therefore, from the graph of versus If, the parameters R and 

I may be found. 
s 

The capacitances of the diodes were measured directly using the 

l MHz capacitance-meter. 

5.4 SPECTRUM MEASUREMENTS 

5.4.1 Introduction 

In general this specially developed technique of spectrum measure-

ments is involved with the standing waves both at the fundamental and 

harmonic frequencies. The load is a microwave diode. Such a method can 

also be applied at any suitable frequency for any load. As the standing 

waves reflect the behaviour of the load, the result of the standing wave 

measurements can be related to the diode behaviour under its normal 

operational condition. As an example, a diode working under a certain 
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drive level will have a different impedance at different frequencies. The 

expression for the complex impedance of the diode is derived from the basic 

properties of the standing waves. 

As the aim of the work is to assess the harmonic generating 

properties of a diode, the method of spectral characterisation becomes 

appropriate. The spectra of interest will be those of the amplitude and 

relative phases. The quantities that can be determined are, the magnitude 

of the open circuit voltage, lv I 
n 

th 
, and the complex impedance at the n 

harmonic. In addition, the diode parasitics may be estimated from the 

proposed equivalent circuit of the diode. 

In developing this new measurement ruethod, one of' L11c fir's!. l.u:-lkH 

was to design and construct a diode holder suitable for use with the 

slotted line (discussed in section 5.2.2). Next, the aim was to create 

standing waves at the harmonic frequency components of the diode spectrum. 

It is significant to note that even with adequate filtering to prevent 

harmonics from the source, low level standing waves at the harmonics are 

still produced due to a slight mismatch at the excitation end. However, 

this is unimportant, because in order to create standing waves at the 

harmonics generated within the diode, the excitation generator ir~edance 

must be mismatched. From the standing wave measurements diode irnpednnc(!:-; 

at different harmonics may be computed. 

The above ideas lead to the concept of multiple-reflections along 

the line when the ends are mismatched, and their characterisation may need 

nonconventional experimental techniques. From the mathematical formulation 

for the magnitude of the standing waves at any frequency, the variables 

involved are the distance from the load end and the total length of the 

transmission lines as given by eqn. 4.2.15. Variation of the line length 

contributes towards the idea of resonance along the line. 
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Manipulation of eqn. 4.5.3 for IV (x,.Q,) I , (to solve for the amplitude 
n 

of reflection coefficient 
th at then harmonic), shows that it may be 

computed if the reflection coefficient of the generator p is known. Further­
g 

more, if pg is real, this contributes towards a major simplification in the 

expression for IV (x' .Q,) I . n 
Consequently, in order to solve for I p I I 

n 

p should be known and real. Fortunately, this can be achieved by introducing 
g 

'double' or 'triple' terminations using the characteristic impedances which 

are resistive (R //R , R //R //R ) at the energising end. 
0 0 0 0 0 

In conventional slotted line measurements, the waves are modulated 

normally with an a.f. signal. The standing waves are measured using the 

VSWR-meter which normally contains a sensitive, narrow-band a.f. amplifier. 

In this project, however, standing waves at harmonics were measured directly 

via the probe and carriage assembly using the spectrum analyser. As the 

spectrum analyser is a high frequency, frequency-selective and very sensitive 

voltmeter, the harmonic waves need not be modulated. Without the spectrum 

analyser, other suitable methods of detection would have to be devised. 

The proper spectrum measurements were carried out once all the 

necessary calibrations of the equipments and components were made. Basically, 

these were concerned with the harmonic components of a spectrum -·enerated 

within a diode. At each harmonic and for a particular fundamental drive 

frequency, measurements were carried out over a suitable range of drive 

levels, after which these were repeated for all the measurable harmonics. 

At this stage, there was a need to decide on the fundamental drive frequency, 

the choice of reference drive level and its operational range. The measure-

ment method will then be discussed based on the theory developed in Chapter~. 

The spectrum measurements were carried out on six types of diodes (two for 

each) which were, gallium arsenide and silicon (two types) Schottky barrier, 

germanium backward and silicon point contact (two types) diodes. 
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5.4.2 Choice of Reference Drive Level 

Generally the characteristics of the diodes are level dependent and 

therefore the actual drive conditions must be established. This is 

important because it must form the right basis for reference and comparison. 

Whatever quantity is selected to fix the drive level, it must be reliably 

repeatable. This means that any measurements made on the device under 

similar operating conditions will give identical results. An important 

parameter is the diode impedance, for it will remain the same for a particular 

drive level. The quantities that have been considered were power, applied 

voltage, current at the fundamental and the d.c. rectified current. 

Power was not a suitable quantity to monitor the drive level on 

the diode because the power-meter employed a thermistor which measured only 

the real part of the complex current. Voltage could not be used either· 

because no voltmeter of sufficiently high impedance was av~1 i.l<tb l c ; in 

addition, measurement of voltage poses a problem caused by Lhe uncerLuinLy 

in the measurement of the applied voltage at the end of the line for it will 

change on varying the length of the line. The d. c. rectified current( 
18 

was not suitable because of its complex dependence on frequency and the 

voltage. At low voltage levels the decrease in the d.c. rectified current 

with increasing frequency was much smaller than at higher voltage levels. 

It was decided that the true representation of the drive level was the 

current 1
1 

at the fundamental frequency measured through the diode. This 

was justified because the complex impedance of the diode at a particuLar 

1
1 

level would always be the same. Therefore, as the generated hc.~rlllon.i.c 

spectra are critically dependent on the fundamental drive current, the 

measurements at the harmonics can then be correctly monitored with reference 

to this level. 
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5.4.3 Fundamental Drive - Choice of Frequencies and Levels 

and Calibrations 

Firstly, the choice of frequency to drive the diode was made. 

This depended on the signal generator satisfying the following require-

ments, viz, that the frequency lay within the operating limits of the 

slotted line and that simultaneously the generator had adequate output 

level. There is a need for high outputs so that the devices are driven 

sufficiently hard to allow measurement of low level higher har1nunics. 

In addition, there was a need to have more atLenuation Lo provide a good 

termination. 

Next, the range of the required fundamental frequency drive levels 

(I
1

) was considered. It was important that the fundamental current drive 

was properly chosen so that the measurements at all the harmonic frequencies 

could be carried out. This was to allow for comparison to be made of the 

diode behaviour at different frequencies for specific drive levels. The 

upper limit of the drive current, which depends on the maximum output of 

the signal generator, is restricted by the high attenuation required for a 

good termination at the excitation source end. Furthermore, as there is a 

need to change the line length for the conditions of resonance (•t ') and 
max 

anti-resonance('~. '), the drive level will vary. This is because at m1n 

resonance and anti-resonance, the input impedances of the line become maximum 

and minimum respectively. The highest value of the fundamental drive current 

under anti-resonant condition will then be its upper limit. The lower limit 

of the drive was then determined by first obtaining the highest harmonic 

standing wave under anti·-resonant condition after which the level was decreased 

until the proper measurement at the harmonic could be made. This then gave 

the lower limit for the fundamental drive. Further reducing the fundament8l 

drive will restrict the measurements to fewer harmonics. It must be emphasised 
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that throughout this procedure the drive level must not exceed that of 

the burnout for the device. 

The spectrum analyser was next calibrated for the fundamental 

frequency current. This was done by measuring the r.f. voltage across 

the characteristic impedance Z in series with the diode. The value of 
0 

the current computed was then related to the reading on the spectrum 

analyser. Throughout the experiment the spectrum analyser was used to 

measure the harmonic standing waves along the slotted line and the funda-

mental frequency current through the diode. 

5.4.4 Harmonic Measurement Procedures 

The equipment, working at a particular harmonic and drive level 

is shown in Fig.5.2. The measurement procedure consisted of two parts 

which were, the setting up of the condition of resonance and the condition 

of anti-resonance. In both cases (resonant and anti-resonant) the magnitudes 

of the standing waves at the anti-nodes and the nodes were measured while 

maintaining the same drive level. The measurements were carried out according 

to the following steps: 

(i) The probe was tuned to the desired harmonic frequency, using a 

variable matching stub, as indicated by the spectrum analyser. The frequency 

was also verified by measuring the wavelength along the slotted line. 

(ii) The condition of resonance of the line was first obtained. This 

was done by varying the total length of the line until the standing wave 

(magnitude) peaked. IJJi th this resonant length of the line ' Q. ' and at any 
rnnx 

probe position 1 X 1 the magnitude of the standing wave is IV I (X' Q, ) I . 
n rnax 

The value of 1 Q. 1 between the terminals EE' and DO' (Fig.5.2) was then 
rnax 

measured and recorded. 

(iii) While retaining the line under the resonant condition, the 

spectrum analyser was reset to measure the fundamental drive current. The 

drive level was then set to the required value. 
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(iv) Next, the spectrum analyser was retuned to read the voltage 

at the nth harmonic (still under the resonant condition). The probe was 

moved to the anti-node ( 1 X 1
) and the node ( 1 X . 1

) positions of the 
max m1n 

standing waves. The corresponding magnitudes of the standing wave 

and IV 1 (x. Q. )J n m1n' ·1nax 

were then measured. 

(v) The condition of anti-resonance of the line was next obtAined. 

This was done by varying the length of the lj nc until the m;Jgn i l.udc of' 

the standing wave reached a minimum. 

then measured. 

The length of the line 'p, . ' was 
rn1n 

(vi) Keeping the anti-resonant condition of the line, the spectrum 

analyser was reset to measure the drive level. This level had to be adjusted 

to the value set earlier in order to maintain the same drive level under both 

the conditions of resonance and anti-resonance. 

(vii) Finally, the spectrum analyser was retuned to measure the 

maximum and minimum values of the standing wave under the anti-resonHnt 

condition. This was done by moving the probe to the poni tion:-1 of t:IH! ;H1Li-

node( 1 x 1
) and the node ( 1 X . ')of the standing wave. The corresponding 

max m1n 

magnitudes of the standing wave at these points 

IV 1 (x R..)J n max' m1n and JV 1 (x.,R..)J n m1n m1n 

were then measured. 
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In summary, the four quantities measured at a particular harmonic 

frequency and the drive level were the magnitudes of the standing wave 

at the anti-node and the node under the resonant condition, i.e. 

IV I (X g, ) I 
n max' max 

and I V 1 
( x . , g, ) I n m1n max 

and those under the anti-resonant condition, i.e. 

IV I (X g, . ) I 
n max' m1n 

and I V 1 
( x . , g, . ) I n m1n m1n 

Other variables involved in the measurements were the line lengths 

( 1 g, 1 and 1 g, . 1 ) and the probe positions ( 1 x 1 and 'x . 1 
) • 

max m1n max m1n 

Finally, using the measured quantities mentioned above (i.e. 

voltages, lengths of the transmission line and the probe positions), 

the following diode parameters 

z 
n 

I v I n 

complex reflection coefficient 

complex impedance 

generator voltage 

at the nth harmonic and a specific drive level can be determined by the 

methods shown in the theory. At each harmonic frequency, the process 

was repeated for different drive levels within the fundamental frequency 

current range chosen. 
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5.5 CONCLUSION AND COMMENTS 

The theory and the measurement of the diode static characteristics 

have been outlined. In the measurement it was essential that the bias should 

not exceed the burn out level. In addition, while taking the measurement, 

a precaution was taken where the d.c. supply on the diode was for only short 

time intervals. This was to prevent the diode from getting over heated 

thereby causing changes in the diode characteristics. 

A presentation of the spectrum measurement technique by the Multiple 

Reflections Resonant Line (MRRL) method was given. This has been specially 

developed for measurements where the load is a nonlinear diode. Relevant 

ideas related to the operation and application of the conxial r: I oU.nd LinE~ 

have been outlined. In the conventional slotted line meaF:urcmcn b;, mu I Lip I~~ 

reflections are rarely considered because the source impedance is normally 

taken to be the characteristic impedance ; hence no reflection of waves 

would result at the source end. The idea of multiple reflections, leading 

to that of line resonance, provides another useful application of the slotted 

line. 

With the creation of standing waves at harmonics under well-defined 

conditions, meaningful measurements at different harmonic frequencies could 

be made. From the measurement point of view an interesting aspect of this 

technique is that there are two conditions Lhat have to be satisfier!. Thu 

first condition is that the VSWR obtained at harmonics should be constant 

(fixed by the type of termination chosen). The second condition is that 

the difference in lengths of the transmission line under the conditions of 

resonance and anti-resonance at a particular harmonic (frequency) should 

correspond to a quarter wavelength. Checking the extent to which these two 

conditions are fulfilled helps to confirm whether the measurements taken are 

reliable. 
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A discussion on the equipment and the experimental bench was given. 

One interesting aspect in the experimental arrangement was the key role 

played by the spectrum analyser. The use of the multiple termination at 

the energising end represented another unique feature of the method. As 

the measurements involved the variation in the length of the transmission 

line, the use of an adjustable line became essential. This line was well 

lubricated in order that the conditions of resonance and anti-resonance be 

more precisely established. The connections between the components along 

the transmission line had to be rigidly made to prevent mismatches. The 

diode was placed at the end of the line rather than the beginning because 

of the need for a proper monitoring of the fundamental current drive level 

If it was placed at the beginning of the line a reliable drive level could 

not be measured because of variations in the input impedance along the line. 

A coaxial diode holder was constructed to be compatible with the shapes of 

the test diodes and the slotted line system. As the nonlinear device 

behaviour is level dependent, a quantity which measured the level reliably 

was established, and that was the current at the fundamental frequency. 

Indications on the procedures adopted in the calibration of various equipments 

and components were also given. Detailed measurement procedures were finally 

outlined. 

The novelty of the method lies in the fact that a complete spectrum 

generated within a nonlinear device at high frequencies can be obtained. 

At the present time only the amplitude spectra can be measured and no high 

frequency method is available to obtain both the amplitude and the phase 

spectra. These spectra provide the means of device 'fingerprinting'. From 

the complex impedance and the equivalent circuit proposed, device characterisa­

tion under specific operating conditions can be found, Hence, this rnight tJf! 

looked upon as the device characterisation. This technique too provided 
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a means of comparing the device behaviour under different drive levels. 

In essence this was device matching at harmonics and it constituted a 

further application of the method in device assessment. Therefore the 

technique provided a better way of characterising a device for definite 

drive levels and frequencies, thus giving a more complete ~icture of the 

diodes used as nonlinear elements. 

At present, the characterisation of such devices is inadequate 

because of insufficient information about their capabilities in frequency 

converting applications. In the data sheet for devices for example, the 

parameters given are usually vague with no reference to the critical 

quantities like the drive levels and frequencies. Very often some of these 

given parameters are based on one point measurements, and others on measure­

ments made at low frequencies. In addition, the quantities obtained are 

also approximate. 

The measurements involved in this high frequency Ler;hnique ;we 

simple once relevant components and instruments are calibrated. In the 

computation of the device impedance, only relative measurements of the 

standing waves are required. However, the actual value for the generator 

voltage of the device at the harmonics can be easily obtained by considering 

the coupling coefficients between the line and the probe. The sensitivity 

of measurement may be improved by increasing the precision of the attenuator 

scale on the spectrum analyser used. The lowest scale available jn the 

spectrum analyser used was ldB. Another factor is increasing l;he rcsuJ Lin~ 

VSWR value of the multiple termination adapted to the tram:rni BH i.on 1 .i rw. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

6.1 INTRODUCTION 

The results of the experimental d.c. and the harmonic spectrum 

measurements carried out on the diodes are presented. In the case of 

the former, they take the form of the graphs from which the diode para-

meters were found ; for the latter, the amplitude and phase spectra are 

given in addition to the diode impedance at different hat~monics and the 

effect of parasitics. The experimental methods and pro~cdures were alrea~y 

discussed in Chapter 5. Two sets of measurements were c;;r·r~iud out. for 

each diode. The fundamental drive frequency chosen was 450 MHz for one 

set and that 1.560 GHz for the other. The first was chosen to suit the 

measurements for the lower range of frequencies of the slotted line avail-

able and the second for the higher range. The 450 MHz source had a maximum 

available output of 50mW while that for 1.560 GHz source had a constant 

output of l. 5W. 

From the static characteristics and the results of the hqrmonic 

spectrum measurements, the six types of diodes (two diodes for r 1ch Ly(Je) 

were characterised and assessed. The amplitude and phase spectra provided 

the means for the device 'fingerprinting' and comparison against other 

devices of the same type. In addition, it provided the required information 

about the component values of the equivalent circuit. 

6.2 STATIC CHARACTERISTICS 

Typical results of the d.c. measurements are presented in Figs 

6.2.1 and 6.2.2. 

V , and ~n (~ \ 
a eo.vaj 

For each diode, two graphs were drawn, the ~n(if) versus 

versus if' The values of the parameters I , r , a and n, 
s s 

for the static characteristics are summarised in Table 6.1. The acb1al diode 
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parameters given by the manufacturer (on special request) are also 

included in the table. It was not possible to obtain the parameters of 

the static characteristics for the germanium backward diode. This may 

have been due to the fact that they had unacceptable wide variations. 

In other cases, the measured values of the constant a _q_ 
n kT 

were in very good agreement with those supplied by the manufacturer. On 

examining the measured values of the ideality factor n , those for the 

silicon Schottky barrier diodes (types DC1504F and DC1515) were about 1.11 

and were smaller than those for the gallium arsenide Schottky barrier, 

silicon point contact and germanium backward diodes. This implied that the 

I-V characteristics for the silicon diodes were closer to ideal. It is 

interesting to note that the ideality factor is very close to unity at low 

dopings and high temperatures. However, it can substantially depart from 

unity when the doping is increased or the temperature lowered. The value 

of the ideality factor indicates also the type of mechanism of conduction 

in devices. In the case of an abrupt p-n junction, when the ideality factor' 

is one, the diffusion current becomes dominant and when the value is two,iL 

is the recombination current·that is significant. In general the ideality 

factor values vary from one to two. 

The performance of devices such as rectifiers, mixers anu detectors 

. (5 'u '36 ) depends greatly on the product of the paras1tic components i.e. 

series resistance and junction capacitance whose effect should ideally be 

minimised. There is then a need to minimise the values of this product for 

the sensitivity property of a diode. From the results in Table 6.1, the 

series resistance of gallium arsenide Schottky barrier diodes is smaller 

compared to other diodeR, thus may give better detector and rn.ixer porforrnancef:>. 

(19) 
The cut-off frequency at zero bias is given by 

f 
co 

l 
2nr C. 

SO JO 
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(where r is the series resistance and C. is the junction capacitance 
SO JO 

at zero bias). This again shows that the gallium arsenide Schottky 

barrier diodes will have higher cut-off frequency potential if the 

junction capacitances of the diodes are of the same order of magnitude. 

Further, the diode noise temperature ratio depends also on the series 

resistance. 

In the case of the saturation current, no comparison can be made 

between the measured values and those supplied by the manufacturer because 

of the differences in the measurement units used. However, in both cases 

the trends of the values were agreeable. Comparing the values of the 

saturation current for different diodes, the gallium arsenide Schottky 

l ') 
barrier type has the lowest which for the two diodes were 1.9 x LO- '- and 

-12 
3.1 x 10 amperes. The values of the saturation currents for olher diod8s 

were, of the order of 1.0 x 10-
10 

ampere for the silicon Schottky barrier, 

-6 -4 
1.0 x 10 ampere for the silicon point contact and 1.0 x 10 ampere for 

the germanium backward. These results are consistent with the fact that 

lower saturation is due to larger energy band gap for the semiconductor. 

For a Schottky barrier diode the saturation current is given by, 

* 2 ~ -kqTVB~ I = aA T exp 
s 

where a is the diode area ; A* is the Richardson's constant and v
8 

is the 

barrier height. As the saturation current is due mainly to the thermally 

generated carriers, it has a strong dependence on temperature. So as the 

saturation current for gallium arsenide Schottky barrier diodes are smaller 

than those of the silicon type, the former may operate better at high 

temperatures than that of the latter. 

It is hoped that in very many applications that the diodes normally 

behave as var~tors, i.e. pure current dependent resistance. Consequently, 
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capacitance and the series loss resistance of the p-n junction are the 

parasitic components. The values of the capacitances measured are given 

in Table 6.1. The total capacitance for most of the diodes given by the 

manufacturer was of the order of 0.30 pF. The capacitance measured for 

the silicon Schottky barrier diode was close to that given by the manufacturer, 

while that for the gallium arsenide Schottky barrier, the value was 0.60pF 

(this was twice that given by the manufacturer). However, for the silicon 

point contact diodes, the values obtained were, 2.00, 1.60, 1.40 and l.60pF. 

6.3 HARMONIC SPECTRA 

In presenting the results of the harmonic measurements, the widely 

d h d f h h · d. t t u, 2 •37 ) f. t ·d d employe met o o t e armon1c 1scre e spec ra was 1rs cons1 ere . 

Such spectra (amplitude and phase) for the gallium arsenide Schottky barrier 

diodes a specific fundamental frequency drive level is shown in Figs 6.3.1 

and 6.3.2. Each is the 'fingerprint' of the devices at a particular drive 

level. Unfortunately, this type of representation does not appear to be 

useful as the number of measurements that may be displayed is limited. 

In order to overcome the need for a large number of plots, an 

alternative method, the continuous amplitude and phase representation of 

harmonics against the drive level, was introduced. This was done by in-

corporating the harmonic discrete spectra of a diode at all the drive levels 

into continuous plots. Each complete display contains therefore the 'finger-

print' at every energised level which can be extracted at willo In addition, 

the dynamic behaviour of the devices may be compared for different levels at 

particular harmonics. This was especially suitable because the different 

types of diodes were tested in pairs. 

One of the biggest limitations on the experimental side was lack of 

sensitivity in the instrument used. Consequently, the sixth and higher 

harmonics could not be measured. Although the obtained 'fingerprint' of 
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a(V -1 ) n r ohm I Ctota1 (pF) s s 

Diode 
measured manu-·· measured measured measured 

manu- measured manu- manu- facturer 
manu-

facturer facturer facturer (amp) (A/ err? ) facturer 

I 
I GaAs Schottky barrier 

1.9x10-12 

l DC 1322(1) 32 + 1 1.25+0.04 6 + 1 
5 X 10-7 0.30+0.02 - - -34.8 1.15 6 

3.1x10-12 
0.15 

DC 1322(2) 32 + 1 1.25+0.04 8 + 1 0.31+0.02 
: - - - -

Si Schottky barrier 
9.0x10-10 

DC 1504F(:!.) 36 + 1 1.11+0.03 34 + 1 
10-4 

1.00+0.02 
36.4 1.1 15 

-9 
0.33 

DC 1504F(2) 37 + 1 1.08+0.03 32 + 1 1.1x10 0.36+0.02 - - - -

Ge back\'Jard 
-5 I 

DC 3021(1) 20 + 1 2.0 +0.1 23 + 1 7.4x10 --- - - - -
DC 3021(2) 20 + 1 2.0 +0.1 10 + 1 -4 1.0x10 -- -

Si Schottky barrier 

I DC 1515(1) - - - - -
36.4 1.1 20 10-4 

0.31 ' 
DC 151{2) 36 + 1 -

1.11+0 .03 47 + 1 8.0x10-10 0.35+0.02 - - - -
Si point contact -6 

CS l2BR(1) I 30 + 1 1.33+0.04 12 + 1 2.3x10 2.00:!:_0.0!: - - -
30.8 1.3 30 

I -6 - 0.3 
CS 12BR(2) 32 + 1 1.25+0.04 26 + 1 j 1.2x10 1.60:!:_0.0!: - - -

I 

Si point contact 
I 
I 

I -6 

I 
cs 93\1) 29 + 1 1. 38+0 .04 19 + 1 1.9x10 1.40+0.0!: - I 30.8 1.3 30 - 0.3 

I -6 
1.60+0 .0"' 

I cs 93(2) 32 + 1 2..25-'-0.04 12 + 1 i 1.6x10 J I - - - -
!. 

7~3L~ 6.1: The DC Characteristics 
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the device is still valid, it may not be adequate in some cases. 

Presentation of the results on each type of diodes will be made 

in separate sections (of the Chapter) that follow. Each section comprises 

two parts and they are the results of measurements at the fundamental 

frequency of 1.560 GHz and that of 450 MHz. The description of the harmonic 

spectra and impedances will be made here. However, the explanation and 

interpretation of different features are to be dealt with in the final 

Chapter. 

6.4 GaAs SCHOTTKY BARRIER DIODE - (X BAND DETECTOR DIODE) 

- Types DC1322/l and DCl322/2 - l.560GHz 

Comparing the two amplitude spectra, it can be seen that the 

second harmonic amplitude for one diode has an unusual drop between 3.5 

and 5.0 rnA. The pattern for the third, fourth and fifth harmonics appears 

to be similar for the two devices. It shows that the fourth harmonic is 

greater than the third above 6.2 rnA for one diode and 4.7 rnA for the second. 

There exists also a peak at 1.7 rnA for the first diode in Fig 6.4.l(a). 

The corresponding phase spectra are shown in Figs 6.4.l(b) and 

6.4.2(b). Large variations in phases are observed in all the harmonics 

for the first diode and that the third and the fifth harmonics for the 

second diode. On the other hand, the phases for the second and ~hird 

harmonics of the first diode (for levels above 3.5mA) and that fvr the second 

and fourth harmonics of the second diode have relatively small changes. There 

is a phase discontinuity for the fourth harmonic at 2.5 rnA. 

The impedance (at different harmonics) plots are given in Figs 

6.4.l(c) and 6.4.2(c). The values of the impedance at the second, third 

and the fourth harmonics of the second diode fall with an increase in the 

drive level. Similar trends occur for the sncond, Lhird and Lhe flrt.h 

hormonico at levels above 3. b rnA for the fir·Bt diode. However, t;he i mpE~d<triC!' 
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curves at the fifth harmonic for both diodes show large variations. 

The plots for the capacitance at the harmonics are shown in Figs 

6.4.l(d) and 6.4.2(d). There were less variations in values for the 

second diode than that for the first. It is apparent in Fig 6.4.2(d) 

that the average value of the capacitance for all the harmonics lay 

between 0.6 and 1.0 pF. 

There was a trend shown by the first diode to increase the second 

and fourth harmonic amplitudes with the increase in drive (Fig 6.4.l(a)) 

and at the same time there was a corresponding decrease in the phases 

(Fig 6.4.l(b)). Similar behaviour is observed for the fourth harmonic 

of the second diode. However, the fifth harmonic amplitudes which are 

generally of low levels (of the second diode) decrease, while that for the 

corresponding phases increase, with the drive. There exists an inflexion 

point for each of the impedance curves of the second and third harmonics 

of the first diode and that of the fifth harmonic for the second diode. 

At this point there is a corresponding discontinuity in the phases. At a 

particular drive level, a nonlinear curve between phase and harmonic number 

is generally obtained. The relative variations in phase and capacitance 

correspond with those of the impedance. This may be noted in the case of 

the second harmonic for the first diode (Figs 6.4.l(b), 6.4.l(c; 3nd 6.4.l(d)) 

where small changes in the impedance contribute towards the simi' !rly small 

variations in phases and capacitances. All occur at relatively high harmonic 

amplitudes except in the case of the fifth harmonic. 

450 MHz 

The amplitude spectra for the pair of diodes are given in Figs 

6.4.3(a) and 6.4.4(a). The amplitudes for the second harmonic of both 

diodes increase with the increase in drive. However, the fourth harmonic 

amplitude (for the first diode) appears to have a peak and a dip. The third 

harmonic amplitude for the second diode remains constant when the drive is 

increased. 
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The phase spectra for the diodes are given in Figs. 6.4.3(b) and 

6.4.4(b). The second harmonic phases for the first diode seem to decrease 

with the increase in the drive level. There are small variations in 

phases for the second and third harmonics of the second diode. On the 

other hand, all the other harmonics for both the diodes had big variations 

in values. 

The impedance (at different harmonics) plots are given in Figs. 

6.4.3(c) and 6.4.4(c). The values of the impedance at the second harmonic 

for the first diode seem to increase with the increase in the drive while 

those for the second diode remain constant, As for the third harmonic the 

impedance for the first diode tends to increase with drive, however, the 

reverse is true for the second diode. 

Comparing the capacitance plots in Figs 6.4.3(b) and 6.4.4(b), 

the variations in the values were the same. The average value of the 

capacitance for the first diode was 0.6 pF and that for the second was 

1.0 pF. 

In the case of the first diode, the second harmonic phase decreases 

and the second harmonic voltage, of relatively high value, increases with 

the increase in the drive. Large changes in the third and fourt.1 harmonic 

phases correspond to ~imilar variations in the impedance while 1e harmonic 

generator voltage is relatively low. The impedance at the secor harmonic 

for the second diode (Fig. 6.4.4(c)) has a constant value over almost a 

complete range of levels which is also reflected in small variations in 

the values of the phases and capacitances. In addition, the corresponding 

harmonic generator voltage, of relatively high value, increases with increase 

in drive. 
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6.5 Si SCHOTTKY BARRIER DIODE - (X BAND MIXER DIODE) 

(Types DC1504F/l and DC1504F/2. - 1.560GHz 

The behaviour and the order of magnitude of the harmonic 

amplitudes (Figs 6.5.l(a) and 6.5.2(a)) for both diodes are almost 

identical except those of the fourth. Generally, the open circuit 

voltages increase with those of the drive levels. The fourth harmonic 

amplitudes are higher than those of the third in the case of the first 

diode. The fifth harmonic amplitudes for both diodes have little 

variations in values within the given drive range in addition to having 

low peaks. 

The fourth and fifth harmonic phases decrease more with the 

increae in level, compared against those of the second and third, for 

the first diode (Figs 6.5.l(b) and 6.5.2(b)). The behaviour of the 

third and fifth harmonic phases for both diodes is similar. Furthermore, 

the value of the third harmonic phases are almost constant. 

The behaviour of the impedance at the third harmonic for both 

diodes are almost similar with magnitudes fairly constant (Figs 6.5.l(c) 

and 6 .. 5.2(c)). There are peaks for the impedance curve for the fifth 

harmonic at 1.6 rnA for the first diode and that of the second harmonic at 

1.5 rnA for the second diode. 

The capacitance at the third harmonic for both diodes is almost 

constant and of similar values (Figs 6.5.l(d) and 6.5.2(d)). ~o~ever, 

the second, fourth and the fifth harmonics of the first diode and those 

of the fourth and fifth for the second diode have bigger variations in 

values. 

At the drive level corresponding to the peak of the fifth harmonic 

voltage (for both diodes), there is an inflexion point on the curve of 

the same harmonic phase. For the first diode, there is a clear case of the 
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decrease in the fourth harmonic phases and an increase in the correspond­

ing amplitude with the increase in the drive level. Another interesting 

behaviour is that for the third harmonic, values of the amplitude, 

impedance, phase and the capacitance are fairly constant. 

450 MHz 

The second and third harmonic voltages of the second diode generally 

increase with the drive level (Fig 6.5.4(a)). In the case of the first 

diode, the second harmonic voltage has a peak (Fig 6.5.3(3)) and the curve 

for the third harmonic is wave-like. 

The second harmonic phase of the first diode (Fig 6.b.3(b)) has ~r1 

abrupt change at 0.9 rnA drive. As for the second diode, there are small 

variations in the values of the second and third harmonic phases (Fig 6.5.4(b)). 

The behaviour of the impedance at the second, third and the fourth 

harmonics of the first diode is wave-like and their values vary substantially 

(Fig 6.5.3(c)). However, the values of the impedance at the second and third 

harmonics for the second diode have small variations within the drive level 

range (Fig 6.5.4(c)). 

Similar pattern in the behaviour of the capacitance for the correspond­

ing second and third harmonics for each of the diodes is again observed 

(Figs 6.5.3(d) and 6.5.4(d)). 

There is a distinct difference in the spectral behaviour oetween 

the two diodes. In the first diode the har~onic voltages and ihs impedance 

at harmonics fluctuate, and consequently showing similar variations for the 

corresponding phases and capacitances. In contrast to the second diode, 

there are small variations at each harmonic for the amplitude and impedance 

and hence the phase and capacitance. 
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6.6 Si SCHOTTKY BARRIER DIODE (S BAND DETECTOR DIODE) 

- Types DC1515/l and DC1515/2 

1.560 GHz 

In this section only diode of type DC1515/2 is discussed. 

When the drive level is increased above 1.8 rnA, the second 

harmonic amplitudes are constant and those of the third appear to 

increase (Fig 6.6.l(a)). There is a peak and a dip for the fourth 

harmonic amplitude and while that for the fifth harmonic the behaviour 

is wave-like. 

The behaviour of the phases for the fourth and fifth harmonics 

(Fig 6.6.l(b)) is seen to decrease with level whereas that for the 

third harmonic, there is only a small decrease. Discontinuity in phases 

appears to occur for the second harmonic when the drive levels are between 

1.8 and 2.1 rnA. In addition, the discontinuity in the fourth harmonic is 

at a level of about 1.4 rnA. 

A peak exists for the impedance curve at the fourth harmonic 

(Fig 6.6.l(c)) at the drive levels between 1.7 and 2.0 rnA. The impedances 

at the third and fourth harmonics are about constant within the given drive 

range. 

The values of capacitance at the third harmonic are almost constant 

whose average value is 0.7 pF (Fig 6.6.l(d)). However, there are big 

variations iri values for the second and fifth harmonics. 

Taking into account the third harmonic (within the range of the 

drive level) it is seen that the impedance and capacitance are about 

constant, while the amplitude increases and the phase decreases with the 

drive. At the drive level between 1.8 and 2.0 rnA, there exists a peak 

for the values of the impedance at the second harmonic and a discontinuity 
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in the corresponding harmonic phase. 

450 MHz 

The second and third harmonic amplitudes increase with the drive 

level for both diodes (Figs 6.6.2(a) and 6.6.3(a)). In the case of the 

fourth harmonic voltages the behaviour is wave-like (for both diodes). 

As the drive level is increased the phases, of the fourth 

harmonic for both diodes (Figs 6.6.2(b) and 6.6.3(b)) and those of the 

third harmonic for the second diode, decrease. In the case of other 

harmonics, there are moderate variations in the values of the phases 

for both diodes. 

In general, there are fairly small variations in the values of 

the impedance at harmonics for the second diode within the given drive 

range. The values of the impedance at the third harmonic is almost 

constant. However, bigger variations are observed in the case of the 

first diode (Fig 6.6.2(c)). 

The behaviour of the capacitance at harmonics for the two diodes 

(Figs 6.6.2(d) and 6.6.3(d)) is that, the first has bigger variations with 

an average value of 0.6 pf. On the other hand the second diode has smaller 

variations with an average value of 1.2 pF. 

In general, the first diode shows bigger variations in the values 

of the harmonic amplitude and the impedance at harmonics and hence the 

corresponding capacitance. However, there are small variations in the 

value of the phases. In the case of the second diode, there are moderate 

variations in the values of the harmonic amplitude and the impedance at 

harmonics and hence the corresponding phase and capacitance. 

6.7 Ge BACKWARD DIODE (X BAND DETECTOR DIODE) 

- Types DC302l/l and DC302l/2 

1.560 GHz 

The third, fourth and fifth harmonic amplitudes of the first 

diode (Fig 6.7.l(a)) and those of the fifth for the second diode 
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(Fig 6.7.2(a)) increase with the drive 1evel. However, the fourth 

harmonic voltages of the second diode are fairly constant. The 

behaviour of the second and fifth harmonic amplitudes for both the 

diodes is almost similar. 

The phases for the third, fourth and the fifth harmonics of 

the first diode (Fig 6.7.l(b)) and those of the fifth for the second 

diode (Fig 6.7.2(b)) decrease with the drive level. In contrast, the 

second harmonic phases of the second diode increase with the drive. 

The values of the impedance at the fifth harmonic of the first 

diode (Fig 6.7.l(c)) decrease with level whereas those of the third and 

fourth increase. In the case of the second diode (Fig 6.7.2(c)), there 

are fluctuations in the values of the impedance for the second, fourth 

and the fifth harmonics within the given drive level range. 

The values of the capacitance at the fifth harmonic for the first 

diode (Fig 6.7.l(d)) are almost constant (within the drive level range), 

which on the average is 0.4 pF. There are small variations for the second 

and third harmonics. However, there are big variations in the values of 

the capacitance at the fourth harmonic for the first diode and those at 

the second, fourth and the fifth harmonics for the second diode (Fig 6.7.2(d)). 

For the first diode, the third, fourth and the fifth harmonic 

amplitude increase with the drive level and the corresponding harmonic 

phases decrease. In the case of the fifth harmonic of the first diode, 

as the level is increased the amplitudes increase, the phases and the 

impedances decrease and the capacitance remains constant. 

450 MHz 

Generally, the generated harmonic voltages increase with the drive 

level for both diodes (Figs 6.7.3(a) and 6.'l.~(a)) and the rntes of incre~sc 

are greater for the third and fourth harmonics. 

As for the phases, there are small variations with the drive for the 
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third harmonic of the first diode (Fig 6.7.3(b)) and those for the 

fourth of the second diode (Fig 6.7.4(b)). In the case of other 

harmonics for both diodes, however, there are moderate variations. 

The values of the impedance at the second and third harmonics 

of the first diode (Fig 6.7.3(c)) and those of the third for the second 

diode (Fig 6.7.4(c)) decrease with the drive level. However, the values 

of the impedance at the fourth harmonic for the second diode are almost 

constant. Furthermore, the values of the impedance at the fourth harmonic 

of the first diode and that of the second harmonic for the second diode, 

increase slightly with the increase in the drive level. 

The values of the capacitance at harmonics for the second diode 

(Fig 6.7.4(d)) have small variations and range from 0.7 to 1.2pF. In the 

case of the first diode (Fig 6.7.3(d)), the values of the capacitance at 

the second and fourth harmonics have bigger variations from 0.03 to about 

0.90 pF. Only the values of the capacitance at the third harmonic of the 

first diode and those of the second for the other diode have moderaLe 

variations. 

As the drive level is increased (for both diodes) the values of the 

impedance at the third harmonic decrease and those of the corresponding 

amplitudes increase. However, in the case of the second diode, the values 

of the impedance at the fourth harmonic and those of the corresponding 

capacitance are fairly constant. There is a low peak for the curve of the 

second harmonic amplitude at 2.1 rnA (for the first diode) and at this drive 

level there is a discontinuity in the corresponding phase. 

6. 8 Si POINT CONTACT DIODE ( S BAND MIXER DIQp_~) 

- Types CS12BR/l and CS12BR/2 

1.560 GHz 

For both the diodes, the amplitudes for the fourth and fifth 

harmonics increase with the drive level (Figs 6.8.l(a) and 6.8.2.(a)). 
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However, the values of the second and third harmonic voltages are almost 

constant. 

The variation in the phases at the harmonics are generally small 

for both diodes (Figs 6.8.l(a) and 6.8.2(b)). It is seen that there is 

no apparent trend in teh behaviour of the harmonic phases. 

The impedance at the harmonics again have small variations in 

values for both diodes (Figs 6.8.l(c) and 6.8.2(c)). The impedance at 

lower harmonics seems to have higher values. In the case of the first 

diode, the values of the impedance at the third and fifth harmonics are 

fairly constant. 

As for the capacitance, it is seen that the values at the fourth 

harmonic for the first diode (Fig 6.8.l(d) and those at the second and 

third harmonics for the second diode (Fig 6.8.2(d)) have small vari8liuns. 

The average value is about 0.4 pF. However, there are bigger variations 

for cases of the fifth harmonic for the first diode and those of the fourth 

and fifth harmonics for the second diode. 

Generally, there are small variations in the values of the harmonic 

amplitude and those of impedance at harmonics and hence the corresponding 

phases. However, for the capacitance at certain harmonics, there are bigger 

variations in values. 

6.9 Si POINT CONTACT DIODE (X BAND MIXER DIODE) 

- Types CS9B/l and CS9B/2 

1.560 GHz 

All the harmonic amplitudes for both diodes (Figs 6.9.l(a) and 

6.9.2(a)) increase with the drive level. The values of the second and 

fifth harmonic voltages are about the same for both diodes. In the case 

of the third harmonic, the values of the second diode are higher than those 

of the first. 
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The values of the third and fifth harmonic phases for the second 

diode (Fig 6.9.2(b)) decrease with levels. However, in the case of the 

fourth harmonic, the values are almost constant. There is even a dip 

for the second harmonic phases at the level of 2.7 mA. In the case of 

the first diode, there is no apparent trend in the behaviour of the 

harmonic phases (Fig 6.9.l(b)). 

For the first diode, the values of the impedance at the fourth 

harmonic (Fig 6.9.l(c)) decrease with level although there is a peak and 

a dip. The curve for the impedance at second harmonic has a low peak and 

the values of those for the third and fifth harmonic increase with levels. 

The values of the impedance at the fifth harmonic of the second diode 

increase with the drive, however, there is no apparent trend in the 

behaviour of that of the second, third and fourth harmonics (Fig 6.9.2(c)). 

There are wider variations in the values of the capacitance at 

harmonics for the first diode than those of the second (Figs b.9.l(d) and 

6.9.2(d)). The values of the capacitance for the first diode range from 

0.05 to 0.50 pF whereas those for the second diode were from 0.1 to 0.5 pF. 

Generally, for both diodes there are only small variations in the 

values of the harmonic amplitudes and hence the corresponding phases. It 

is obvious that the values of the second harmonic amplitude, which are 

relatively high for both diodes, have small variation over the given range 

of the drive level. Furthermore, similar behaviour is seen for the impedance 

and hence phases and capacitances. At an inflexion point for the curve of 

impedance at the fourth harmonic (first diode), where the drive is 2.7 mA, 

a discontinuity in the corresponding harmonic phase is observed. In the 

case of the second diode, at the drive level of 2.7 mA where there is a low 

peak in the impedance of the second harmonic, there is a dip in the correspond­

ing phase. 
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6.10 COMMENTS AND DISCUSSION 

Basic diode parameters were first obtained from the result of 

the d.c. measurements. This static characterisation forms an integral 

part of the harmonic spectrum measurements at high frequencies because 

it provides an initial assessment of the device. 

The results of harmonic spectrum measurements are presented in 

terms of the parameters amplitude, phase, impedance and capacitance 

plotted against the drive level. The relationship between these parameters 

may be established. It is observed that at lower harmonics, generally as 

the drive level is increased, the harmonic amplitude increases, phase and 

impedance decrease and the capacitance remains constant. If within the 

given drive range, there are small variations in the harmonic amplitude 

and impedance, there will be small variations in the corresponding phase 

and capacitance. This is associated with the lower harmonics where the 

amplitude levels are relatively high. On the other hand the reverse is also 

true. 

Within the drive level range and for certain harmonics the diode 

parameters may be constant, increasing or decreasing ; have a peak, dip, 

an inflexion point or a discontinuity. Knowing the behaviour of any one 

of these parameters, it is possible to predict that of others. Moreover, 

the behaviour of the parameters at different harmonics is useful informa­

tion, especially in the device application. 
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CHAPTER 7 

COMMENTS, CONCLUSIONS AND FUTURE WORK 

7.1 GENERAL 

Spectral Analysis (Chapter 2) 

The fundamental theory of spectral analysis based on Fourier 

principles was reviewed in Chapter 2. These were then used in the 

examination of semiconductor devices, the response of which may be re­

presented by a periodic time function. The theoretical investigations 

into the analytical relationships between time and frequency domains had 

produced a number of useful conclusions and provided the foundation for 

the spectral characterisation of a nonlinear device. Two new forms of 

sampling procedures, one based on dividing the waveform into vertical 

pulses and the other approximating the waveform by the pulses uf well 

known shapes were also discussed in this Chapter. 

Harmonic Generating Properties (Chapter 3) 

The discussion of the harmonic generating properties of nonlinear 

devices in Chapter 3, began with the emphasis on the need for classification 

of practical high frequency diodes. Consequently, a brief review of major 

devices and the scope of their application and significance were included. 

The high frequency application of these devices is an expanding branch of 

electronics. The aims in device manufacture have always been to accentuate 

the nonlinearity and suppress any parasitic components that may affec L j t:. 

In the investigation into the behaviour of nonlinear devices iL is usually 

difficult to obtain a closed form solution for the response and therefore 

there is no satisfactory way of characterisation. However, the concept of 

spectral characterisation should represent a true and unique behaviour of 

the device, a "fingerprint", under normal working conditions. 
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The MRRL Method - Theory (Chapter 4) 

The theory of the MRRL method of harmonic spectrum measurement 

was presented in Chapter 4. The application of the basic transmission 

line theory was extended to deal with the complexity of the standing 

waves of all the harmonics generated within a nonlinear device. This 

resulted in the establishment of relationships between the standing 

wave properties and the device parameters. From the proposed equivalent 

circuit, a nonlinear device was characterised at a particular harmonic 

frequency and drive level by the generated harmonic voltage and the 

complex impedance. This had led to the derivation of expressions for 

the device parameters. 

MRRL - Measurement Method (Chapter 5) 

The measurement and experimental procedure were dealt with in 

Chapter 5. The novelty of this specially developed coaxial slotted line 

technique lies in the capability of determining the properties of a non­

linear device from the measurements carried out on the harmonic standing 

waves produced under the set conditions. The necessary changes made on 

the normal slotted line systems were, the addition of an adjustable line, 

introduction of a known mismatch termination (resistive multiple termination) 

at the excitation source end and the direct use of the spectrum analyser. 

The usual precautions, as applied to normal slotted line systems, in 

addition to those related to the newly adapted components were taken. 

The design and construction of the diode holder were made compatible with 

the line and shapes of the diode encapsulations and calibrated accordingly. 

Finally, the choices of reference drive level, the value of the impedance 

of the resistive termination, fundamental frequency and the drive level 

were decided. 
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Experimental Results (Chapter 6) 

In Chapter 6, experimental results were presented. The amplitude 

and the phase of the generated spectrum and the impedance and capacitance 

of the equivalent circuit were produced for every diode at each fundamental 

drive frequency. Discussion of the harmonics produced by each diode was 

made on the basis of the four spectral "fingerprints" with appropriate 

cross-references between them. Since there is a relationship between 

amplitude, phase, impedance and capacitance, some general observations were 

made. As the measurements were made for two different diodes of the same 

type, it was convenient to compare their individual properties. The static 

characteristics of the diodes obtained were the series resistance, saturation 

current, ideality factor and the low frequency measurements of the capacitance. 

These were useful items of information about the devices, which however, did 

not convey anything about their harmonic generating and frequency converting 

capabilities. 

7.2 ASSESSMENT OF THE MRRL METHOD 

General 

The MRRL technique of harmonic measurement developed is theoretically 

sound since it was supported by the facts that the harmonic standing waves, 

under the conditions of resonance (including the corresponding line impedances), 

could be accounted for and related to the device parameters. Experimentally, 

the validity of the technique was confirmed from the measurements, at a 

particular harmonic and drive level, where the difference in the length of 

the line, under the resonant and anti-resonant conditions, was a quarter of 

a wavelength. Besides, the VSWR measured could be verified to be equal to 

that of the value, created by the known resistive multiple termination. An 

outstanding feature of the experimental technique is that, in the computation 

of the reflection coefficient p , only relative measurements were needed. 
n 
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However, the actual generated harmonic voltage can be determined when the 

coupling coefficient between the probe and the line is included in the 

computation. The application covers a wide frequency range from L to 

X-bands, when the 50-cm slotted line is used. If the levels of the 

higher harmonics are too low to measure then different fundamental 

frequency drives may be chosen. Moreover, the highest order of the 

measurable harmonic is restricted by the "burnout" point of the device. 

The use of the spectrum analyser was an added advantage because of its 

versatility where the harmonic standing waves could be measured directly. 

This was not possible with other detectorslike the VSWR-meter where wave 

modulation was necessary. 

Accuracy and Errors 

Generally, the errors in the harmonic measurements were lower for 

cases when the fundamental frequency was 1.560GHz than those of 450MHz. 

This was because in the latter case the drive levels of available sources 

were low and the measurements were more affected by the noise Level of 

the spectrum analyser. Typical error estimated for the amplitude, when 

the fundamental frequency was 1.560GHz, was about 20% and that when the 

fundamental frequency was 450MHz, it was about 25%, for all the measured 

harmonics. In the case of the relative phases the error was about 10%. 

As for the impedance and capacitance the errors were much smaller and of 

the order of 5%. The basic quantities measured, using the spectrum analyser, 

were the standing wave voltages, the reflection coefficient of the resistive 

termination and the fundamental drive current. The accuracy then depended 

on the precision of the spectrum analyser, where the error in a sj.ngle 

measurement was O.!..JdB. OLher basic quantities measured, from, Lhe r-;c;1lf~ 

of the slotted line in conjunction with the spectrum analyser, were the 

total length of the line (at resonance and anti-resonance), the wavelength 

and the phase angle ~n The error in a single measurement was 0.5mm. 
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Improvement 

In order to improve the accuracy and the range of measurements a 

number of steps is recommended. As the spectrum analyser played a key 

role in the measurement so was its effect on the accuracy of the technique. 

Therefore, it is necessary to improve the precision of this equipment. 

Further, lowering the impedance of the resistive multiple termination will 

result in the increase of its VSWR value and hence improve the sensitivity 

of the standing wave measurements. This is demonstrated in the Appendix C. 

Other areas of improvement include increasing the measurements to higher 

harmonics and wider range of drive levels. Consequently, an excitation 

source of higher output is required. Besides satisfying the above require­

ments, there is a need to offset the effect of a big coupling loss between 

the line and the probe. In addition, compensation for the heavy attenuation, 

required for a good termination, must also be considered. 

Significance 

This new measurement method offers a means of determining a complete 

spectrum generated within a nonlinear element over a wide frequency range. 

The resultant spectra, which are the "fingerprints", represent new forms of 

device characterisation. The pattern may show a regular trend consistent 

with the normal behaviour of the device. It may also display an anomalous 

trend which signifies the peculiarity of the device under certain defined 

conditions. This provides the information about the harmonic generating 

and frequency converting properties of the device. Regarding the accuracy, 

there is no mathematical approximation involved except for the experimental 

errors. The behaviour of the diodes of the same type may be examined 

under identical conditions. From the spectra, which can be prominently 

displayed, the degree of matching between devices at harmonics can be easily 

detected. Hence, it may be suggested that this method of spectral character­

isation be employed in the matching of devices using generated spectra. 
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In addition, devices may even be graded in terms of the degree of matching. 

7.3 DEVICE EVALUATION 

General 

(7' 38 ) 
There are many types of device evaluation depending on its 

application and the range of operating conditions to be encountered. 

But testing is time consuming and test equipment is expensive, so manufacturing 

tests are usually boiled down to a few basic ones and are often performed 

only on samples. Nevertheless, having the capability for testing diodes 

is highly valuable for providing feedback to process control and for 

diagnosing what is wrong with a diode that does not work properly. This 

work was mainly concerned with performance testing at high frequencies. 

The method of spectral characterisation introduced provides a number of 

parameters (amplitude, relative phase, impedance and capacitance) wi Lh whjd, 

a nonlinear device may be evaluated over particular ran1-'.<:~• of' l~<1t'mon i r; 

frequencies and drive levels. From the behaviour of the frequency specLra 

of these quantities, it may be possible to ascertain whether the device is ~. 

Cov'\vt.-\1 '"'J 
working normally or not and to assess its harmonic generating and frequency/-

prop!=Jrtieq. As an :!=Jxample,. for _.the- :case. of. the amplitude spectra, it is 

desirable to have high level harmonics and to know the corresponding drive 

levels. In addition, probably at a suitable harmonic, the amplitude with 

constant level is required over a range of drive levels. In some cases, it 

may be that the levels for a certain harmonic is too low or having a dip or 

a peak. In the case of the phase spectra much useful in0Jrrn~tion mRy Hlsr> 

be extracted. The extent of variations of the phases for different harmonic:O 

over a range of drive levels may give an indication of the behaviour of the 

complex impedance of the device. Furthermore, any discontinuity in phases 

may reflect a change in phase. The magnitude of impedance at harmonics 

will invariably be very important for matching purposes. The value of 

parasitic capacitance may be deduced from the phase measurements. 



105 

The unexpected behaviour of some spectra reflects the peculiarity of the 

device. This information may be useful in the design, fabrication and 

application of the device. 

Explanation and Interpretation 

An attempt will now be made to explain and interpret the behaviour 

of the harmonic spectra presented in Chapter 6. It is expected that on 

increasing the drive level, when the generated harmonic voltage increases, 

there will be a decrease in the corresponding impedance and the relative 

phase while the capacitance will remain constant. This may be seen for the 

second and fourth harmonics of the gallium arsenide Schottky barrier diode 

(type DC1322/l) in Figs 6.4.l(a), 6.4.l(b), 6.4.l{c) and 6.4.l(d). Generally, 

this was true for the cases of lower harmonics where the associated amplitudes 

were relatively higher. It is understood that the generated harmonic voltage 

will increase with the drive level. On increasing the drive level the device 

impedance decreases and becomes more resistive and hence reducing the phase 

value. This is because the magnitude of the reactive component will normally 

fall and that of the resistive component will drop to a constant value, when 

the drive level approaches the switching condition. The parasitic capacitance 

however, will be relatively constant if the device is working normally. ln 

principle, if the device behaviour agrees with the observation discus~;ed, 

then it is working as it should. If however, there is an anomalous trend 

for particular harmonics, then it reflects the peculiarity of the device or 

that the measurement of low level higher harmonics may be affected by the 

noise of the spectrum analyser. This may be shown in Figs 6.4.2(a), 6.4.2(b), 

6.4.2 (c), and 6.4.2(d) for gallium arsenide Schottky barrier diode, for the 

fifth harmonic. 

In order to make a general prediction on the behaviour of the device 

from the spectra further discussion on the experimental results may be useful. 

The results had shown th:_'t over a cerLain drive level ran~;~E~ nnd aL ;j p<~r'Li<:ul;,r· 



106 

harmonic, whenever there were drastic variations in the amplitude, there 

would similarly be big variations in the corresponding phase, impedance 

and capacitance. This is illustrated, for the case of silicon Schottky 

barrier diode (type DCl504F/l), in Figs 6.5.3(a), 6.5.3(b), 6.5.3(c) and 

6.5.3(d). In the same way, at particular harmonics, whenever the ampli­

tudes were fairly constant or had small variations, again the impedance, 

phase and capacitance would show similar behaviour. An example is as 

given, for the case of the third harmonic of the silicon Schottky barrier 

diode (type DC1515/2), in Figs 6.6.l(a), 6.6.l(b), 6.6.l(c) and 6.6.l(d). 

An interesting feature was an apparent relationship between the inflexion 

point on the impedance curve, at a particular drive level, and the correspond-

ing discontinuity in phases. This is illustrated in the case of the second 

and the third harmonics of the gallium arsenide Schottky barrier diode 

(type DC1322/l, shown in Figs 6.4.l(b) and 6.4.l(c). Another interesting 

observation is that at the drive level corresponding to the peak of the 

fifth harmonic voltage for silicon Schottky barrier diode (type:> DCJ',OI!I"/1 

and DC1504F/2) shown in F'igs.6.5.l(a), 6.5.l(b), G.S.2(o) and fL~J.:.C'(h) l.hct·r~ 

was an inflexion point on the curve of the same harmonic phase. 

The curves of the relative phase against the harmonic frequency, 

at a particular drive level, were generally found to be nonlinear. From 

the result of the theoretical investigation discussed in Chapter 2, the 

nonlinear phase spectral envelope corresponded to the asymmetrical type of 

the response waveform, due to the device. This implies that the device 

comprised both the nonlinear resistive component and that of the reactive 

which could either be linear or nonlinear. The presence of the rea~Live 

component sup,ges ted a s torug1~ capnbj ·1 i ty wh i (;h w i I .I n~nu I I. in ;,n 1 -V 

characteristic having an hysteresis. If theoretically, within a lobe, the 

phase is constant or has a linear variation (when the origin of the waveform 
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analysed was at the leading edge) then the response waveform is 

symmetrical, thus implying that the device is purely resistive. 

Experimentally however, it implied that the device would consist of both 

the nonlinear resistive and nonlinear reactive components. In addition 

the components would have identical level dependence. 

Recalling the plots in Figs.6.4.l(a) and 6.6.l(a), it is noted 

that the harmonic generator voltage was higher for the fourth harmonic 

than for the third. This may be explained in terms of the sin x 
X 

distribution of the amplitude spectrum, where the fourth harmonic amplitude 

would appear in the new lobe. A typical example of the distribution is 

given in Fig.2.5(b). On the other hand, when the amplitudes of the 

fourth harmonic were lower than those for the third, it was because both 

appeared in the same lobe. 

Classification of Devices 

Devices may also be classified from the result of the ~pectral 

analysis. Apparently, there are two criteria that can be adopted and 

they are in terms of the linearity in phases and the value of the second 

harmonic amplitude. Firstly, from the nature of the variation in the 

relative phases, whether linear or nonlinear, it is possible to identify 

the type of symmetry of the response waveform, due to a device. This 

finally leads to the qualitative deduction on the type and behaviour of the 

components present in a device. In the case of all the diodes used in the 

project, the phase spectral envelope were nonlinear, indicating that they 

(diodes) contained both the nonlinear resistive and reactive components. 

Next, there is a need to justify the second criterion. The second 

harmonic amplitude is directly related to the size of the waveform shown 

in Figs 2.4(b) and 2.5(b). It was pointed out in Chapter 2 that the bigger 

the amplitude (implying the corresponding size of the pulse waveform), the 

smaller would be the range of the phase angle (illustrated in Fig.2.7) and 
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each lobe would contain lesser number of harmonics (again illustrated 

in Figs. 2.4(b) and 2.5(b) ). A summary of the values of the second 

harmonic amplitudes, at the drive levels of 2.0 and 3.5mA, and the 

saturation current for all the diodes is given in the Table in 

Appendix D. It is apparent that there is a kind of an inverse relation-

ship between the second harmonic amplitude and the saturation current 

of each diode. However, the general behaviour of the saturation current 

for all the devices, as indicated in Chapter 6, was explained in terms 

of the energy band gap of the semiconductors. In the case of the second 

harmonic amplitude, the trend may be explained in terms of the electron 

mobility of the semiconductor device. This is because gallium arsenide 

semiconductor has electron mobility greater than those for ger1o::mium :-md 

silicon. It can be concluded that a diode whose material has h i~',hf:r 

electron mobility may have greater value of the second harmonic voltuge. 

Therefore, it is feasible to classify high frequency diodes on the basis 

of their second harmonic amplitude. 

7.4 APPLICATIONS OF "FINGERPRINTING" SPECTRA 

In general, one envisages three basic areas of applications of the 

"fingerprinting" spectrum. Firstly, the "fingerprinting" spectra of non-

linear elements, which also include parasitic effects, may be employed in 

the prediction of performance of devices. The power-handling capabiJity 

. (36,19). 
and conversion effLciency of a frequency multiplier ckpu,<J on \h(~ maP.n i l,udr: 

of the harmonic coefficient generated. The efficiency of a rectifier, the 

current sensitivity of a detector and the conversion loss of a mixer are 

strongly dependent, in different ways, on the product of the parasitic 

. t d th f th . . t ( 7 ' 10 ' 19 ) capacL ance an at o e serLes resLs ance . The nature of 

variations and the value of the parasitic capacitance, at a particular level, 

may be determined from the graph of capacitance at harmonics against the 
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drive level. In the case of a mixer, both the R.F. and I.F. impedances, 

required for matching, may also be found from the spectra. 

Secondly, these spectra may be employed in the general evaluation 

of nonlinear devices. It may be possible to assess and carry out a quality 

control test on a diode from the obtained spectrum pattern. If the pattern 

satisfies prescribed conditions it may be inferred that the device would 

work normally. However, if there is any anomalous trend in the spectrum 

this could represent a peculiarity of the diode, which may arise from the 

defects in the material (e.g. nonhomogeneity). This may provide useful 

feedback information and help in the design and fabrication of devices. 

The spectral parameters, such as second harmonic amplitude, the relative 

phase, etc., may provide a basis for the classification of non I inear devicr!:-;. 

The values of impedance at different harmonics can g:i ve i nformu Lion r·egurcJ i ng 

the matching conditions whereas those of the capacitance about the noise 

temperature and conversion loss. 

Finally, the "fingerprinting" spectra may be utilised in device 

physics. The spectrum generated within a device, measured using the high 

frequency technique, may provide a means of assessing the result of the d.c. 

or low frequency measurements. It was found that there was an apparent 

inverse relationship between the reverse saturation current (d.c. measure­

ment), for different diodes, and the generated voltage of the scconcl hurrnoni~ 

(high frequency measurement). The behaviour of each was consistent witt1 t.h~ 

energy band gap of the semiconductor material. In addition, from the rel a l:i ve 

values of the second harmonic voltage (for different devices), it may be 

possible to relate them to the comparative magnitude of the mobility of 

charges and the effective potential barrier. It is known that for a Schottky 

barrier diode( 19
•
40

) made from reasonably high mobility semiconductor, the 

conduction mechanism should conform to the thermionic emission theory, for 
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moderate voltages. On examining the linearity of the spectra for the 

relative phases, it may be possible to predict the nature of the reactive 

components of a nonlinear device. 

7.5 FUTURE WORK 

With regard to the future work, there are two areas that can be 

~ 
considered and thee€ are further aspects related to the spectral representa-

tion and those concerned with the technique itself. As for the former 

there is a need to establish this new form of device characterisation on 

a firmer basis so that a more comprehensive system of device evaluation 

be achieved. This may be done through extensive tests on more varieties 

of devices. In addition, the laws derived in the theoretical investi-

gation, in Chapter 2, may further be investigated in order to examine more 

of the device behaviour in terms of the frequency domain from that of the 

time and vice-versa. 

There are three main proposals, on the future work, related either 

wholly or partly to the M.R.R.L. technique. The first main part is concerned 

with the method as a whole where there are two areas of interests. In the 

first case, it is believed tobefeasible to automate the M.R.R.L. method. 

It is based on the Fourier analysis of the response waveform due to a 

device. Suitable sweeping mechanism needs to be devised, in order to 

automatically sample the ordinates of the resultant waveform, to interface 

with a microprocessor. The ultimate aim of this project will be to display 

the spectra (amplitude and phase) on the V.D.U. Once this is ~chievcd, thr: 

technique will prove to be versatile because the spectra can he readily 

acquired and displayed for different level and fundamental frequency. The 

next project is the development of a complete spectrum analyser. This 

involves the adaptation and incorporation of the M.R.R.L. method in a 

spectrum analyser. It is hoped that this project will arouse industrial 

interest because of its additional facility of phase measurement, not available 

in any spectrum analyser. 
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Secondly, the work may be aimed at devising means of measuring 

the harmonic standing waves in place of the high frequency spectrum 

analyser, which is an expensive piece of equipment. Within this context, 

two suggestions are put forward. It is proposed to adopt a mixer method 

where the L.O. is tuned closed to the desired harmonic frequency, so that 

an I.F. of 30MHz results. Then using the commonly available 30MHz 

amplifier, the harmonic measurement may be carried out with a wave analyser 

or a low frequency range spectrum analyser. Another proposal is to measure 

the harmonic standing waves using a VSWR-meter. As the VSWR-meter is an a.f. 

detector, the desired high frequency harmonic components must first be 

modulated. Consequently, the work will deal with an investigution un ttow 

the harmonic waves may be modulated. 

Another area of investigation is to develop a mixer method of 

measuring relative phases at harmonics. The L.O. frequency is first set 

to be equal to that of the desired harmonic frequency. The mixer will then 

operate as a product detector giving a series of harmonic components including 

a d.c. term. The resultant d.c. component can be shown to be dependent upon 

the phase angle between the L.O. frequency and that of the harmonic. Finally 

a method may then be established where the phase angle may be deduced from 

a simple d.c. measurement. 
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APPENDIX A: SUMMARY OF CONDITIONS GOVERNING THE VALIDITY OF THE 

USE OF FOURIER ANALYSIS 

A.l: Diri6hlet:.conditions- Convergence Criteria. 

There are two Dirichlet conditions that govern the rate of 

convergence of a Fourier series, namely, the weak and the strong 

conditions. The weak Dirichlet condition requires that the function 

f(t) be single valued over a time interval and if periodic the Fourier 

coefficients a and b are obtainable. 
n n 

The strong Dirichlet condition 

specifies the requirements for the Fourier series to be convergent 

everywhere. The requirements are: the functions f(t) must be finite 

and must have a finite number of discontinuities. Consequently, under 

both conditions, the function f(t) may be represented over a complete 

period and hence from t = - w to t = + oo , except at discontinuities, 

by a series of simple harmonic functions, the frequencies of which are 

integral multiples of the fundamental frequency. 

A.2: Singularities 

A point at which a function f(t) ceases to be analytic, i.e. the 

function does not have a unique derivative, is called a singular point 

of f(t). At such a point the function is said to have a singularity. 

A.3: Uniqueness Condition 

A vectorial or a signal representation is said to be unique if it 

can be specified in space by a given set of co-ordinate axes and each 

dimension is specified by only one co-ordinate. 

A.4: Orthogonality 

Two functions whose product integrates to zero are said to be 

orthogonal over a specific time interval. Many sets of pair-wise orthogonal 

functions exist and are used for approximating signals. 
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A.5: Finite Energy Concept of a Signal 

An energy signal is a pulse-like signal that usually exists for 

only a finite interval of time or, even if present for an infinite amount 

of time, at least has a major portion of its energy concentrated in a finite 

time interval. 
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APPENDIX B: THE FOURIER SPECTRUM DUE TO AN APERIODIC SIGNAL 

The expression for the frequency spectrum generated by an 

aperiodic signal can be derived by first taking the case of a 

periodic signal, whose function is taken as, fT(t). The Fourier 

series of such a pulse of period T may be represented in an exponential 

form as, 

where F 
n 

00 

L 
n = - oo 

1 r T 

-T ,_ 

jnw t 
F e 

0 ( 1) 
n 

-jnw t 
F(t)e 

0 dt ( 2) 

In order that IF I n 
is convergent when T is increased, the following 

conditions must be satisfied, i.e., 

I 

r (w ) ~ TF 
n n 

The eqns.l and 2 may now be written as, 

and 

F ( w ) 
n 

00 

L 
n= _oo 

r ~ 
..J T 

2 

-jw t 
n 

fT(t)e dt 

( 3) 

(4) 

( 5) 

( 6) 
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As the line width in the line spectrum of fT(t) is given by 

2n 
6w = T 

then eqn. 5 becomes, 

00 j w t 
F( w ) e n 6w 

n 2n 

When the period T is increased, correspondingly 6w becomes 

smaller and hence the line spectrum becomes denser. In the limit as 

T tends to infinity, the discrete frequency spectrum of fT(t) becomes 

continuous. The infinite sum in eqn. 8 may be written as, 

00 

lim fT(t) = lim 
1 L F( w ) e 
2n n 

T ~ oo T-- 00 n -oo 

and therefore becomes the Riemann integral so that 

f(t) 
l 
2,. r jwt 

F(w)e dw 

Similarly, eqn.6 may be written as, 

F(w) f(t)e-jwt dt 

j(l) t 
n 

6u1 

and is called the direct Fourier transform, which may be written as, 

F( w) 

and that for eqn.9 as the inverse Fourier transform, represented as 

I' j 
= t'-j -l ! F(w): 

,.-1 I l 
f( t) 

Both eqns.ll and 12 are known as the Fourier transform pair. 

(7) 

(8) 

( 9) 

( 10) 

( 11) 

(12) 



(VSWR = 2) (VSWR = 4) 

0·1 

12 

APPfNIDm C. SENSil!V!TV OF HARMONIC STANDING 

WAVE MEASUREMrENIS 
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APPENDIX D THE VALUES OF THE REVERSE SATURATION CURRENT AND 

THE SECOND HARMONIC AMPLITUDE FOR DIFFERENT TYPES OF DIODES 

I V
2

(mV) 
s 

Diode measured -

in Amps at I 1= 2.0 rnA at I 1= 3.5 rnA 

GaAs Schottky 
barrier 

10-12 X 10
2 

102 DC 1322/1 1.9 X 2.1 8.0 X 

DC 1322/2 3.1 X 10-12 2.8 X 10
2 

II.G x 10
2 

Si Schottky 
barrier 

10-10 10
2 

DC 1504F/1 9.0 X 2.0 X -
DC 1504F/2 l.1x 10-9 l.9x 10

2 -

Ge Backward 
10-5 10° DC 3021/1 7.4 X 6.6 X 3.2 X 10° 

DC 3021/2 l.Ox 10-4 4.2 X 10
1 

2.4 X 10
1 

Si Schottky 
barrier 

DC 1515/1 

DC 1515/2 8.0 X 10-10 2 2.5 X 10 -

Si point contact 
10-6 102 CS 12BR/1 2.3 X - l.Jx 

CS 12BR/2 l.2x 10-6 - 5.0 X 101 

Si point contact 
10-6 101 

101 CS 9B/1 l.7x 2.7 X 7.4 X 

CS 9B/2 1.6x 10-6 2.9 X 101 
6.5 X 101 

,,., '\ 


