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"NUMERICAL METHODS FOR THE SOLUTION OF ILL CONDITIONED LINEAR BOUNDARY 
VALUE PROBLEMS" 

H.W.Locksley 

This thesis deals with the numerical solution of linear boundary value 

problems i n ordinary d i f f e r e n t i a l equations, and i t concentrates p a r t i c u l a r l y 

on the p r a c t i c a l numerical d i f f i c u l t i e s encountered i n the solution of i l l 

conditioned such problems. 

The chief methods available f o r the numerical solution of well 

conditioned problems are described followed by a discussion of the nature 

of i l l conditioning. The main section of the thesis i s then concerned with 

the techniques proposed fox tackling i l l conditioned problems. These methods 

are i l l u s t r a t e d by the numerical solution of chosen test problems by means 

of microcomputer programs, wr i t t e n especially by the author for that 

purpose, and the f i n a l section contains his conclusions based on t h i s numerical 

experience. 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 
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( i ) 

INTRODUCTION 

In recent years, the numerical solution of i n i t i a l value problems has 

been extensively researched, but the corresponding treatment of boundary value 

problems, p a r t i c u l a r l y as regards p r a c t i c a l implementation, has to date been 

comparatively sparse. I n t h i s thesis, we concentrate on the numerical 

solution of one class of boundary value problems v i z . those which are linear 

and f o r which the system d i f f e r e n t i a l equations are ordinary, and we focus 

i n p a r t i c u l a r on the numerical d i f f i c u l t i e s created by i l l conditioned such 

problems. 

The contents are divided into f i v e sections ( I - V ) , followed by an 

Appendix (VI) and a reference l i s t . I n I we outline the chief methods 

applicable f o r the numerical solution of well conditioned problems, followed 

i n I I by a discussion of the nature of i l l conditioning as i t applies to such 

problems. Then i n I I I , we develop the techniques proposed to deal with i l l 

conditioned problems, these methods being sophistications of those described 

i n I f o r w e l l conditioned problems. Section IV i s devoted to p r a c t i c a l 

numerical experience i n solving selected test problems by means of programs 

w r i t t e n f o r and run on a microcomputer. Obviously, the degree of d i f f i c u l t y 

of the problems tackled here and the accuracy of the numerical results 

obtained were l i m i t e d by the numerical accuracy of the computer i t s e l f . 

However, the p r a c t i c a l d i f f i c u l t i e s encountered would be similar to those 

which would have to be faced i f attempting to solve more i l l conditioned 

problems using a much more accurate main-frame computer. In t h i s respect, 

therefore, i t i s hoped that the p r a c t i c a l work of thi s section, and the 

conclusions drawn i n the following section V, w i l l be useful i n a wider f i e l d . 

No attempt has been made i n the text to distinguish typographically 

between matrices and vectors and scalars, but whenever a matrix or vector 

i s introduced i t s dimensions are given. Also, references such as (6) 

refer to the reference l i s t at the end, whereas ones l i k e (3.2) ref e r to 

the relevant subsection of the Appendix ( V I ) . Finally, equations are 
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numbered from ( i ) i n each subsection. An equation reference number thus 
refers to the one i n the current subsection, unless otherwise indicated. 



(1) 

STATEMENT OF THE PROBLEM 
We r e s t r i c t ourselves throughout to the consideration of linear two 

point boundary value problems for which the system of ordinary d i f f e r e n t i a l 

equations can be w r i t t e n i n the form y = A ( t ) . y + f ( t ) , 0 $ t $ 1, where t 

i s the indep*n<knb variable, A i s (|nxi^ and y and f are both x 1^. (There i s 

no loss of generality i n s t i p u l a t i n g therange (p,l) because any system can 

be transformed to t h i s i n t e r v a l by a change of variable.) Also we shall 

seek a solution vector y ( t ) of t h i s system which sa t i s f i e s linear "separated" 

boundary conditions i . e . where r components are known at t = 0 and n-r 

components are known at t = 1, but where some components may be known at 

both ends and some at neither. For convenience, we shall number the 

components known at t = 0 as y , y 0,....y so the boundary conditions could 

be w r i t t e n 

y.(o) = ( i = 1,.....r) 

y.U) = 
J-r 

( j = -r + 1, n) 

where J5 taKeS {^-fy Valu.eS eack Lr\ (rke fa^j-e O £ p s. r ̂  ewd n,-r ^ I 

These could be more concisely expressed as °0 L e ^ j ( o ) - 4 " (') = C, where 

L q and are each (n x nj, C i s (n x ^ and CT = ("C^,.... o^^, ^ ,.. „ .jg^ ). 

The matrices L and L would then have the forms: o 1 

n-r 

o 
1 o 

n-r 

http://Valu.eS


(2) 

o 
n-r 

V 

Thus our linear two point boundary value problem can be stated as; 

y = A(t)y + f ( t ) ( i ) } 
4 i o ^ t i 

L q y(o) + L y ( l ) = C ( i i ) J 

and we w i l l assume throughout that t h i s problem possessaa unique solution 

vector y ( t ) . (This assumption i s essential here since any given boundary 

value problem may possess no solution or an i n f i n i t y of solutions.) Note 

that system I ( i ) above includes as a special case any n"*1 order linear 

d i f f e r e n t i a l equation, since such an equation can always be expressed as 

an equivalent system of n simultaneous linear f i r s t order d i f f e r e n t i a l 

equations(1.2). F i n a l l y , we may point out that although we are r e s t r i c t i n g 

ourselves to the solution of linear problems, the methods which follow are 

applicable to non-linear problems i n so far as any such problem can be 

reduced to a sequence of linear problems by adopting the process of quasi-

l i n e a r i s a t i o n (1.3)„ 

Applicable methods of solution 

The chief methods that are available f o r the numerical solution of 

our linear two point boundary value problem I can be divided into three 

categories v i z . 

A) the method of linear adjoints, otherwise known as the Goodman-Lance 

method. 
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B) the superposition methods 

C) The Riccati Transformation method or the method of invariant 

imbedding. 

We now b r i e f l y outline the application of each of these methods: 

A) Linear adjoints method 

Corresponding to the system I ( i ) : y = Ay + f, we define the adjoint 

system x = —A x ( i x i ) , where x i s (n x V. I t can now be shown (1.4) that 

these two systems are connected by the fundamental adjoint i d e n t i t y : 

.1 
x T ( l ) . y ( l ) - x T (o).y (o) 

J 0 
f . dt ( i v ) , 

is 

which s a t i s f i e d by any consistent y(o) , y ( l ) pair and any consistent x(o), 

x ( l ) p a i r . We now proceed to f i n d the n-r missing i n i t i a l values (at t = o 

v i z . V
r +-L (°) yn(°)» necessary f o r the solution of the problem, as 

follows. 

Integrate the adjoint system ( i i i ) backwards from t = 1 to t = o, n-r 

times, taking the s t a r t i n g vector x ( l ) each time to be a Kronecker delta 
vector of the form (000100. 0) , where the position of the 1 corresponds 

successively to the position of the known end values v i z . ̂ r +^> f^r+2'"0°° 
T 

so that the vector product x (1) y ( l ) i n ( i v ) successively takes the values 
Pr+1' ^r+2 Pn° F o r e a c n integration, the vector x ( t ) i s stored at 

discre t e points over the range £o,l3, so that i n each case the value of the 
f 1 . 

in t e g r a l terra \ x ( t ) . f ( t ) . d t i n ( i v ) can be obtained approximately by 
Jo 

numerical integration by using, say, Simpson's Rule„ Also each time the 
term x (o)„ y(o) i n ( i v ) can be s p l i t i n t o two terms thus; 

t x ( o ) y x(o) 

y r ( o ) 

x£+* •° ° ..... x n ( o ) 
IT 

W 0 ) 

L 
y n(o) 
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i n which the only unknowns w i l l be y ^ + 1 ( o ) . . . . . . y ^ ( o ) . Therefore, from 

each backward integration of the adjoint set ( i i i ) , we can obtain from 

the fundamental i d e n t i t y ( i v ) , an equation of the form: 

[ x (o) (o) (o) X r+1 r+1 n 

where 
I 

P (K - 1, o. o., n-r) i s known i.e. one linear equation involving the n-r K 
unknowns y r + ^ ( o ) . . . . . y n ( o ) . Thus, i n t o t a l , the n-r backward integrations 

w i l l supply us with n-r such linear equations which can be w r i t t e n i n 

matrix form as : E.Z = P, where B i s (n-r) x ( n - r ) , p i s (n-r) x 1 and 
T 

both are known, and Z = ( v
r + ; j / 0 ) ••••• y n ( 0 ) ) 0 

Hence Z can be found provided matrix B i s non singular, which w i l l be so 

( i n theory) i f we assume that our problem I possess^a unique solution. 

The vector y(o) i s now known and so t h e o r e t i c a l l y i t can be used to integrate 

the system y = Ay + f ( I i ) forwards from t = o to t = 1, so obtaining the 

solutio n vector y ( t ) of our problem over the complete range, as required. 

I n practice, however, i f problem I i s " i l l conditioned", i n the manner 

described l a t e r i n section I I , then t h i s l a s t mentioned integration may not 

be possible over fo , l 3 and alternative techniques may have to be adopted. 

Another p r a c t i c a l numerical d i f f i c u l t y which may arise i n such cases i s 

that the r e s u l t i n g solution matrix B may be i l l conditioned i . e . although 

t h e o r e t i c a l l y non-singular, the value of the normalised determinant of B 

may be so nearly zero as to make the accurate computation of B * (and 

therefore of Z) very d i f f i c u l t . The fact that the (n-r) i n i t i a l Kronecker 
T 

delta vectors x (1) are orthogonal and therefore l i n e a r l y independent at 



T 
t = 1 guarantees, i n theory, that the resulting vectors x ( t ) , obtained by 
backward integration, w i l l be independent for any other value of t , and i n 

T 
p a r t i c u l a r that the set x (o) w i l l be independent. This i n turn should 

guarantee the independence of the row vectors of matrix B. But, i n practice, 

due to round o f f errors i n the calculation process, t h i s may not be so and B 

may turn out to be almost singular. In sections I I and I I I we therefore 

discuss i n d e t a i l the possible numerical d i f f i c u l t i e s which may be 

encountered i n practice and some of the techniques we can adopt to overcome 

them. 

F i n a l l y , we may note that i n the adjoint method any set of l i n e a r l y 

independent vectors x ( l ) could be used to s t a r t the backward integrations 

of system ( i i i ) , but t h i s would require n integrations r e s u l t i n g i n n 

linear equations to be solved f o r n unknowns : the (n-r) missing i n i t i a l 

values at t = o plus also the r unknown values at t = 1. By taking the 

x ( l ) vectors to be the Kronecker delta vectors we reduce the number of 

equations to be solved to n-r, a considerable saving i n computational e f f o r t 

i f n i s large. 

B) Superposition methods 

The underlying idea of a l l of these methods i s that we seek to express 

the general solution vector y ( t ) of .system y = Ay + f ( I i ) i n the form: 

y ( t ) = b R y K ( t ) , f o r o S t i T l , 
K=l 

where the ^ y ^ * ) ^ a r e a constructed set of n l i n e a r l y independent vectors. 

The n constants £b^ are then determined by applying the given boundary 

conditions: 

L q „ y(o) + L . y ( l ) = C , so as to determine the required solution 

vector y ( t ) of our problem over £o,lj0 Several alternatives exist for 

generating the set ^ y ^ * ) ^ but we shall concentrate on two of the most 

popular methods v i z . 
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(a) the v a r i a t i o n of parameters method 

and (b) the complementary function method, 

the details of each of which now follow, 

a) Variation of parameters method 

Here we express the general solution vector y ( t ) of the system 

y = Ay + f as a linear combination of n l i n e a r l y independent solution 

vectors of the corresponding homogeneous system y = Ay plus one p a r t i c u l a r 

solution vector of the given inhomogeneouS system y = Ay + f. F i r s t we 

integrate the system y = Ay forwards over f o , l ^ n times s t a r t i n g each time 

at t = o from a d i f f e r e n t Kronecker delta vector, and storing the r e s u l t i n g 

solution vectors u ^ ( t ) , i = 1 „..„ n, i n the columns of the fundamental 

matrix N ( t ) , for o$t£l, so that N(o) = I , the (n x n) i d e n t i t y matrix. 

Then we integrate the inhomogeneous system forwards over C°>l) once s t a r t i n g 

at t = o from the n u l l vector, and storing the re s u l t i n g solution i n 

vec t o r W ( t ) , 1̂ x l), where W(o) - o. Hence the general solution y ( t ) of 

system y = Ay + f can be w r i t t e n : 

N(o) = I , W(o) r o and B(nxl) i s the vector of combination constants 

to be determined so as to s a t i s f y the given boundary conditions of the 

problem v i z . L q . y(o) + L^. y ( l ) = C ( i i ) . Note that putting t = o i n 

( i ) gives us B s y ( o ) , so that ( i ) becomes : y ( t ) = N ( t ) . y(o) + W ( t ) . 

Also putting t = 1 i n t h i s l a s t equation now gives; y ( l ) = N(l).y(o) + W(l), and 

substituting t h i s i n t o ( i i ) we obtain: 

y ( t ) = N ( t ) . B + W(t), o £ t S 1 ( i ) , where 

L q . y(o) + L X f N ( l ) . y(o) + W(l) 

3 N ( l L, oW(l) y (o) 

or M.B = T where M L N ( l ) , ̂ acn) 

T = C «=L W(l), (hx3) 

and B = y(o) 



Since M and T are now known, vector B can be found from B = M T and 

th i s can then be substituted back int o ( i ) to give us the solution 

vector y ( t ) , required f o r our problem I , at each stored point i n fco,l}. 

I n practice, however, i f the solution matrix M is i l l conditioned, 

as i s l i k e l y to be the case i f our o r i g i n a l problem I was sensitive (see 

I I ) , then the accurate solution of the set of linear equations M8 = T 

may prove d i f f i c u l t , and so to improve the condition number of matrix M 

we may have to resort to multiple shooting (see I I I ) , based on t h i s 

v a r i a t i o n of parameters method. F i n a l l y , we may note that t h i s method 

requires, i n t o t a l , n + 1 integrations of the homogen€ouS and inhoraogen-««»*5' 

systems of equations, 

b) Complementary function method 

This i s essentially a s i m p l i f i c a t i o n of (a) whereby the t o t a l number 

of integrations required i s reduced to (n-r+1), a considerable saving i f 

n i s large. We f i r s t integrate the homogeneous system y = Ay forwards 

over £°ilO» n-r times s t a r t i n g each time at t = o from a d i f f e r e n t special 

KronEcker delta vector, these being vectors whose components are a l l zero 

except fo r a 1 i n the ( r + l ) t h , ( r + 2 ) t h n t h
J ! position successively 

e.g. f o r n = 6, r = 3 these i n i t i a l vectors would be: 

0 

0 

0 

1 

0 

IL 0 J 

o 
0 

0 

0 
1 

1 ° 

and 

0 

0 

0 

0 

0 

The calculated values of these homogentow£ solution vectors are stored at 

discrete points over { p . l j i n the l a s t (n-r) columns of the fundamental 

matrix N ( t ) , which i s (n x n) of which the f i r s t r columns are zero fo r a l l 
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t . The inhomogen-co^ system i s integrated forwards once over £o,l) s t a r t i n g 

at t = o from vector W where 
o 

o _ L 1* 2" 0 *• 

where i — 1 r, are the given i n i t i a l values. This inhomogen-eovjLS 

solution i s stored i n vector W(t), 0 £ t •£ 1, so that W(o) = W . Now, as 

i n (a) above, the general solution vector y ( t ) of the system y = Ay + f can 

be w r i t t e n : 

y ( t ) = N ( t ) . y(o) + \A#t), o i t < 1, 

or i n expanded form: 

t ) 

* r + l ( t ) 

y n ( t ) 

r 

A 

n-r 

o 

o 

n-r 

yr +l (° 

y n ( o ) 

+ 

w x(t) 

W ( t ) r 

Vi ( t> 

W » U ) J 

where 

N(o) =V 

r 
• o 
I 

— ^ < ^ _ 

and 

W(o) = 
0 
0 

0 
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As i n (a) we now determine the combination vector y(o) by applying the 

boundary conditions given i n the problem, leading us again to the solution 

of a matrix equation of the form MB = T, f o r B = y(o). The working is 

id e n t i c a l t o that i n (a) except that now we have d i f f e r e n t d e f i n i t i o n s 

fo r our fundamental matrix N(t) and the inhomogentouS i n i t i a l vector W(o)„ 

Also analagous to ( a ) , i f the re s u l t i n g solution matrix M i s i l l 

conditioned then we can adopt a more sophisticated technique, based onthis 

complementary function method, known as Conte's Re-orthonormalisation 

method (see I I I ) . 

Note that i n both superposition method (a) and (b) the f i n a l calculation 

of y ( o ) depends only on the terminal values N^l) and W(l) of the homogeneous 

matrix and the inhomogen«ou£ vector respectively. Thus, the required memory 

capacity could be reduced by storing the values of the homogen€o^ and 

inhomogen«ou5 vectors of integration only at the terminal point t = 1, and 

then obtaining the solution vector y ( t ) of the problem by integrating 

the system y = Ay + f forwards over ^o,i^, s t a r t i n g at t = o from the 

calculated vector B = y(o ) . The drawback of t h i s approach i s that for 

sensitive problems t h i s l a s t mentioned integ r a t i o n i s unlikely to be possible 

over the f u l l i n t e r v a l , i n which case we are compelled to save the values 

of the calculated homogeneous and InhomogeneonS vectors at discrete points 

throughout £p,l^ and then use these to construct y ( t ) from y ( t ) = N(t).y(o) + 

W(t), at these storage points. 

F i n a l l y , we may note that these superposition methods are closely 

related to the adjoint method (A). In f a c t , s t a r t i n g from the variation 

of parameters formula f o r the general solution of the system y = Ay + f, 

i t i s possible ( 1 . 5 ) to derive the fundamental adjoint i d e n t i t y by an 

alternative proof to that given i n ( 1 . 4 ) . 

c) The Riccati Transformation method 

This method i s also known as the method of invariant imbedding because 

we imbed our given problem I i n a family of related problems. In order 

to do t h i s , we must f i r s t re-write our given system of equations y = Ay + f 
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( I i ) i n what i s known as characteristic form, as follows. 

Consider the n order system of d i f f e r e n t i a l equations: 

y ( t ) = E ( t ) . y + h ( t ) ( i ) 

where E i s (g\ x and y and h are^n x 1̂ . This system can now be expressed 

as an (m + !p) order system by arbitrarily s p l i t t i n g the components of y 

m 

i n t o two characteristic vectors of dimensions (m x 1) and x 1) where 

+ ^ = n. 

Thus, f o r example, i f we choose 

u. = y. ( i = l , _ ^ . m ) and 

x. = y . ( i = l _ _ . , p ) then: l ra + l 1 

j j ^ . . . . . y ^ J T = .... o .... c~j T + ^o.,, o X j . . . . x ^ j T , 

where u = u u i s then called the surface characteristic vector I r mJ 
and x - fx x ~] T i s the base characteristic vector. System ( i ) >• 1 * ^ i 

above can now be w r i t t e n i n characteristic form as: 

u ( t ) = A(t)u + B(t ) x + F ( t ) ^ ( i i ) (m x l ) 

x ( t ) = C(t)u + D(t)x + G(t) J ( i i i ) x lj , 
where A (m x m), B (m x j * ) , C (j) x m) and D (|> x j> ) are the characteristic 

matrices, and F ( m x l ) and G x 1) are the source vectors, a l l of which 

w i l l depend on the o r i g i n a l choice of surface and base vectors. (Do not 

confuse characteristic matrix A with the problem matrix A (rv x n) of our 

o r i g i n a l problem I „ ). An example of t h i s re-casting of a system of equations 

i n t o characteristic form is to be found i n the solved test problems i n 

section IV, example 3• More concisely, equations ( i i ) and ( i i i ) could be 

expressed i n giant matrix form as; 



-11-

u 
X 

B 

D 

r 1 
u F 

G 

We can new show (1.6) that, for any t ^ o, the characteristic vectors 

u ( t ) and x ( t ) are connected by the transformation: 

u ( t ) U ( t ) . x ( t ) + v ( t ) ( i v ) , 

where the matrix U (m x p ) s a t i s f i e s the matrix Riccati equation: 

h ( t ) = B ( t ) + A(t)U - UD(t) - UC(t)U ( v ) , 

where U(o) = o, and the vector v(m x 1) s a t i s f i e s the vector equation! 

v( t ) =r [ A ( t ) - U ( t ) . C(t ) J.v(t) - U(t)G(t) + F ( t ) ( v i ) , 

where v(o) = u(o)„ Note that equation (v) i s (m x p ) and equation 
,_,x ,-f. -\ KV±J J.!i |iU X i | . 

I f we now wish to solve our problem I , l e t i t s order be n, where 

m values are known at t = o and p values at t = 1, so that m + p = n. 

Let these i n i t i a l and terminal known vectors be denoted by a (m x 1) and 

b ( p x 1) respectively. Choose the m components of y which are known at 1 

to be the surface vector u so that the remaining p components w i l l be the 

base vector X . We can now state our problem with the system equations 

w r i t t e n i n characteristic form and with the boundary conditions separated: 

u = A(t)u + B(t ) x + F ( t ) 

x = C(t)u + D(t)x + G(t) 
( v i i ) where 

u(o) = a and g l u ( l ) + g 2 x ( l ) - b, wktrt ^ is «»n<j cj £ 

a ^ i Wki's U ^ { r « r c.oi-xlition i s A ^ v A . i V a U f x f c t© L ( ' ( f ) •==• [o^ °j ft 
•fre^ o\f e>r-\^^o.\ •koM.^orj o>»\tUWo»\ L-o y(oS + L., - C „ ^ 
To solve the problem now requires three integrations over £o,l}, two 

forwards and one backwards. F i r s t we integrate the matrix Riccati equation 

(v) forwards s t a r t i n g at t = o from U(o) = o, and store the values of U(t) 

at discrete points. We then use these stored values to integrate forwards 

the v equation ( v i ) s t a r t i n g from v(o) = a, and again store the values 

of v ( t ) 0 Now put t i n g t = 1 i n the transformation equation ( i v ) gives; 
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u ( l ) = U ( l ) x ( l ) + v ( l ) , and by substituting t h i s i n t o the terminal 

boundary equation g u ( l ) + g x ( l ) = b we obtain: 

g x.[_ U (l) x ( l ) + v ( l ) j + g 2 - x ( l ) = b and 

hence: ^ u ( l ) + g j . x ( l ) = b - ^ v ( l ) 

or x ( l ) = [ g ; L U ( l ) + g ^ j . [ b - S l v(l ) J ( v i i i ) . 

This i s o. (p x 1) equation i n which the only unknown i s x ( l ) , which 

therefore can be found. I f we now substitute equation ( i v ) : 

u ( t ) = U(t) x ( t ) + v ( t ) in t o the base equation ( v i i ) : 

x = C(t)u + D(t)x + G(t) we obtain: 

x - ' LC(t).U(t) -t- D ( t ) j , x ( t ) + C(t) v ( t ) + G(t) ( i x ) 

which i s x 1̂ . 

The stored values of U(t) and v ( t ) are now used to integrate t h i s 

equation ( i x ) backwards over C°»l}> s t a r t i n g at t = 1 from the vector x ( l ) 

j u s t obtained, and the values of x ( t ) are also stored at the discrete points. 

We thus now have obtained the base vector values x ( t ) over the complete 

i n t e r v a l f o , l J , from which we can compute the corresponding surface vector 

values u ( t ) by employing the transformation equation ( i v ) : 

u ( t ) - U ( t ) ^ x ( t ) + v ( t ) , using the stored values of U ( t ) , x ( t ) and 

v(t)„ F i n a l l y , the solution vector y ( t ) of our given problem i s now 

obtained at any stored value t i n { o , l } by simply compounding the 

corresponding surface and base vector components. 

Note that f o r well conditioned problems i t may be possible to reduce 

the amount of memory storage capacity required by adopting an alternative 

strategy. After f i n d i n g vector x ( l ) from equation ( v i i i ) , instead of 

in t e g r a t i n g equation ( i x ) we could integrate the pair of characteristic 
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equations ( v i i ) backwards simultaneously over (o,l3, s t a r t i n g at t = 1 
from the vectors x ( l ) and u ( l ) , where u ( l ) = U(l) ( x ( l ) + v ( l ) , and so 
obtain the surface and base vectors, u ( t ) and x ( t ) ^ a t once. However, as i n 
the case of the superposition methods, i f the given problem i s at a l l 
s e n s i t i v e , then t h i s simultaneous integration of ( v i i ) may not be numerically 
possible over the complete i n t e r v a l £o,l}. Indeed, for such a problem, 
the forward integration of the R i c c a t i equation (v) i s also unlikely to 
be possible and t h i s i s the chief drawback of the R i c c a t i method. In I I I , 
we discuss a refinement of t h i s method, known as the R i c c a t i Inverse (or 
continuation) method, which can be used for i l l conditioned problems. 

F i n a l l y , we may note that the R i c c a t i equation (v) does not depend 

on the boundary conditions but only on the c h a r a c t e r i s t i c matrices A,B,C 

and D; and so, assuming that the equation can be integrated forwards over 

(o,l3, t h i s one integration w i l l serve to solve several related problems 

a l l possessing the same system matrix but subject to varying boundary 

conditions. 

Numerical integration 

In a l l three of the above methods (A,BandC) for solving our problem 

I , i t i s necessary to integrate a system of linear simultaneous f i r s t 

order d i f f e r e n t i a l equations over Co,lJ from a given s t a r t i n g vector. 

Indeed, each method requires several such integrations, either forwards or 

backwards. Many integration schemes e x i s t to solve these i n i t i a l value 

problems numerically but we can b r i e f l y categorise them under the headings 

of: 

( i ) l i n e a r multi-step methods, either i m p l i c i t or e x p l i c i t 

( i i ) predictor-corrector pairs 

a n d ( i i i ) Runge-Kutta methods 

A detailed discussion of these i s not relevant here as we are 

concentrating on the solution of boundary value problems (but see ( 1 . 8 ) ) . 
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Suffice to say that i n section IV, where we have solved some t e s t 
problems, the integration schemes used i n the programs were: 

a) a Runge-Kutta six stage method of order 5 (Lawson's method) and 

b) a linear e x p l i c i t 4 step method of order 4, for which the s t a r t e r 

values were provided by the Runge-Kutta method i n ( a ) . 
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I I NUMERICAL DIFFICULTIES ENCOUNTERED IN THE SOLUTION OF ILL CONDITIONED 
PROBLEMS 

The success of a l l of the methods outlined i n I for solving our problem 

I depends very much on our being able to integrate either the inhomogenfcovAS 

system y = Ay + f, or the homogeneous system y = Ay, or the adjoint system 
T 

x = -A 4 % or the R i c c a t i equation, either backwards or forwards over the 

complete interVal C°il} st a r t i n g from various i n i t i a l vectors. In a l l 

of these integrations the system matrix i s e i t h e r the problem matrix A(t) 

i t s e l f or i s d i r e c t l y dependent on A, as if\ the case of the adjoint system 

and the R i c c a t i equation. I f the problem matrix A i s what i s known as 

" i l l conditioned", "unstable" or " s e n s i t i v e " (see below) then there i s a 

danger that the method w i l l f a i l for either of the following reasons: 

(a) 'blow up' ° one of the integration} may blow up before the end 

point of the i n t e r v a l i s reached i . e . the numbers involved i n the calculation 

w i l l for some value of t < 1 become so large as to be beyond the capacity 

of the computer to handle causing a ,^jf-eakdown i n the ca l c u l a t i o n process. 
Most present microcomputers, for example, can store numbers only up to the 

38 

order of 10 approximately. A l l three methods outlined i n I (A,B and C) 

are prone to t h i s r i s k of 'blow up'. 

(b) 'poor conditioning' ° i n the case of the superposition methods 

(but not the R i c c a t i method), although a l l of the integrations may be 

achieved without blow up occurring, the r e s u l t i n g fundamental matrix N(l) 

of homogenVoitf vectors at t = 1 may i t s e l f be badly conditioned which i n 

turn can mean that the solution matrix M = L q + L^N(l) i s also so badly 

conditioned that i t i s impossible to obtain a reasonably accurate solution 

vector B from the l i n e a r simultaneous set of equations MB = T, as i s 

required (see I B ) . 

As stated e a r l i e r , any matrix A i s said to be i l l conditioned i f i t i s 

almost singular i . e . i f the value of i t s normalised determinant i s almost 
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zero. I l l conditioning i s a consequence of the matrix having two or more 
row (or column) vectors which are almost p a r a l l e l i„e„ l i n e a r l y dependent, 
and t h i s i n turn stems from the fac t that the eigenvalues of the matrix are 
widely separated i n r e a l part. The degree of i l l conditioning of a matrix 
can be measured by i t s condition number; the greater the condition number 
the more i l l conditioned i s the matrix and vice versa. Two of the most 
frequently used condition numbers are; 

^ max ( i ) P(A) = 7 min where \ \ and \ \ . \ max | | mm I 

are the greatest and l e a s t eigenvalues respectively of A i n mod value. 

I f P(A) ̂  1 then the matrix A i s well conditioned since the eigenvalues 

are i n t h i s case not widely spread. ( U s* A ^ W K < ^ A U «^V/AWS W< Ue\ 
. Sftw,t S 13 es. m J 

( i i ) ^ L ( A ) = || A . - x l t 
A |j where 

n _ n 
max I a:. „ I or max «£CT l a . . I . 

From a p r a c t i c a l point of view, i f we are trying to solve the matrix equation 

MB = T for B, then the fact that M i s i l l conditioned means that r e l a t i v e l y 

small errors i n the calculated values of M and/or T may r e s u l t i n a large 

error i n the computed value of vector B. This i s because the relationship 

between the percentage error i n B corresponding to those i n M and T i s 

given approximately by; e r r o r ^ ©<L(M) , ̂  error^ + e r r o r , provided 

the actual error i n M i s small (2.1). Thus i f ©<(M) i s high ( i . e . i f M 

i s badly conditioned) then the upper bound for the error i n B w i l l be high 

also. To return now to problem (b) of poor conditioning, i n order to see 

how the condition of the fundamental matrix N(l) can influence the condition 

of the solution matrix M = L + L_ N(l) we can employ a r e s u l t of Gunderson 
o 1 

(2.2) v i z . that under certain conditions: 

<&£ ( M ) ^ K. <&C(N(1)) where we may usually assume that K i s small compared 



to *(.(N(1)). This indicates that i f N(l) i s poorly conditioned then M 

may also be or, to be more d e f i n i t e , only by ensuring that N(l) i s well 

conditioned can we be sure that M w i l l also be. 

Although the two problems (a) and (b) of blow up and poor conditioning 

both stem from a poorly conditioned problem matrix A, we can draw a d i s t i n c t i o n 

between them. The danger of blow up i s inherent i n the problem i t s e l f 

i . e . i t i s r e a l l y e n t i r e l y due to the bad condition of matrix A and w i l l 

occur sooner or l a t e r for a s u f f i c i e n t l y large value of t, regardless of 

how accurate i s the calculating process. However, i f , for any given problem, 

blowup i s to be avoided before t = 1 i s reached, then the step length )r\ must 

l i e i n a certain range determined by the accuracy of the computer and of the 

integration scheme. 

The poor condition of matrix N^ l ) , on the other hand, i s b a s i c a l l y due to 

'round o f f error at the various stages of the calculation. In the super­

position methods, the i n i t i a l vectors for the forward integrations of y = Ay 

are either the Kronecker delta vectors or (for the complementary function 

method) the special Kronecker delta vectors. In both cases, these are 

orthogonal and therefore l i n e a r l y independent sets. Thus, i n theory, these 

vectors should remain independent for a l l t . But i n practice as the 

integration process proceeds from t = o, due to round off error, there i s 

a danger that some of the vectors may gradually become almost p a r a l l e l 

by the time t = 1 i s reached. Although t h i s problem i s b a s i c a l l y due to 

the lack of accuracy of the computer, i t i s s t i l l more l i a b l e to become 

serious i n a problem where the problem matrix A i s badly conditioned. 

We may note here one advantage which the R i c c a t i method has over the 

superposition methods v i z . the R i c c a t i method i s not prone to poor matrix 

conditioning i n the sense described above since the solution vector y ( t ) 

i s obtained d i r e c t l y by combining the surface and base vectors without 

Co 
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the need to invert a solution matrix. 

We now consider pre c i s e l y why an i l l conditioned problem matrix A 

can cause blowup or make the danger of loss of independence more l i k e l y . 

The condition of a matrix i s determined by the nature and di s t r i b u t i o n of 

i t s eigenvalues i . e . we say that A(t) i s i l l conditioned i f for any value 

of t i n £o,l3 i t possesses either: 

( i ) an eigenvalue with a positive r e a l part, p a r t i c u l a r l y i f t h i s i s large, or 

( i i ) an eigenvalue which greatly exceeds a l l the other «->J«nvalues i n r e a l 

part i . e . one which i s well separated from the remainder. 

For the moment l e t us assume that A i s a constant matrix with n d i s t i n c t 

eigenvalues. 

I t can be shown (2.3) that the solution vector y ( t ) of the i n i t i a l value 

problem (I.V.P) : y = Ay + f, ") - °^ can be written: 

^ ) ^ ( t - t o ) 
y ( t ) = <C K . e C + 0(t) < ^ s s 

s=l 

where (s = 1 ^ n) are the eigenvalues of the system matrix A, C (s = 1 * n) 
s s 

are the corresponding eigenvectors, 0(t) i s a p a r t i c u l a r solution vector of 

y = Ay + f ( i . e . 0 = A0+f for a l l t ) , and the constants K g (s = 1 n) 

are uniquely determined by: 
n 

oC - 0(t ) = K C 
O S S S o 

s=l 
Likewise for the homogeneonJ I.V.P. 

y = Ay, y ( t ^ ) = (>C the solution vector i s 

n \ 
y ( t ) = ^ K s e

/ s ° ( t - J o ) where 

n 
= "2, K . C because now 0(t) = o„ 

n s s , s=l ) 
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In order to solve our problem I by either the superposition or R i c c a t i 
s 

method, we must f i r s t solve several I.V.P. such as those above st a r t i n g at 
t (=o) or t . (= 1) from various i n i t i a l vectors. I f A i s i l l conditioned, o f ' 
then i n any one of these forward or backward integrations blow up may occur, 

or i n any pair of homogeneous integrations the solution vectors may gradually 

lose t h e i r independence for the following reasons; 

( i ) blow up: I f A possesses an eigenvalue (say with a (large) positive 

r e a l part and i f the corresponding constant i s non zero so that the term 
Xi"(t-to) 

K. e appears i n the solution y ( t ) , then as the homogeneous or 
x 

inhomogen-wug integration proceeds i . e . as t increases from o, a value of t 

w i l l eventually be reached at which the components of t h i s vector term, and 

therefore those of the solution y ( t ) , w i l l become unraanageaM^ large. Whether 

th i s blow up occurs hfifore the end point t = 1 i s reached w i l l depend on j u s t 

how large ^ i s . 

( i i ) l oss of independence: Suppose instead that matrix A possesses an 

eigenvalue ( ) which dominates a l l the other eigenvalues i n the sense that 

R e ( X ) i s much greater than the r e a l part of any of the other eigenvalues. 

Consider two forward integrations of the homogeneous system from t (=o) starting 
o 

respectively with i n i t i a l vectors y ( t Q ) = and y("t o) = w n e r 5 2 a n c i 

n n «4„ are uniquely determined by = K C and = <^ £ C 2 - 1 '-, s s 2 ' . s s ° s=l s=l 

Denote the respective solution vectors obtained by y ( t ) and y _ ( t ) . Now i f 

the constants and I L , corresponding to ^ , are both non zero then the 

term containing i g ^ * w i l l appear i n both solution vectors y ^ ( t ) and 

y ( t ) , and as the integration progresses ( t > o ) , t h i s term w i l l gradually 

dominate both solutions. In theory, the other terms should ensure that 

y-iCt)*^ y„(t) remain independent for a l l t . But i n practice, due to round 

off error, as t increases: y ( t ) K. e ^ x<t-to^ y ( t ) ^ £ e * « t - t o ) 
1 ' i i 2i i C i 

i 

as these terms increasingly dominate each solution. Thus the vectors y ^ ( t ) 

y 2 ( t ) w i l l both gradually approach the direction of eigenvector C ^ How 
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quickly the angle between y, ( t ) and y _ ( t ) approaches zero w i l l depend on 

how dominant i s the eigenvalue ,X i . e . on how badly conditioned i s matrix 

A„ Note that t h i s d i f f i c u l t y can occur, (for t 7 o), even i f a l l the 

eigenvalues have negative r e a l parts e.g. suppose Re ( A . ) = -0.1 and 
x 

Re(yX .X" -50, ( j = 1 f n, j ^ i ) , then /X. would s t i l l dominate the 
3 ^* 

solution vectors for forward integration, but more slowly. 

Although both these numerical d i f f i c u l t i e s ( i ) and ( i i ) stem from the 

poor condition of matrix A, they w i l l be more evident for some choices of 

i n i t i a l vector K than for others. I f the choice of y(o) = «< i s such 

that the constant K^, corresponding to the offending eigenvalue ^ , i s 

zero then the term containing »̂ w i l l not appear i n y ( t ) and so, i n theory, 

w i l l cause no trouble. S i m i l a r l y , i f K i s s u f f i c i e n t l y small the rate of 

increase of the offending term may be so reduced as to prevent i t from 

blowing up before t = 1 i s reached,, For example, i f A i s a r e a l symmetric 

matrix than i t s n eigenvectors C ( i = 1 > n) w i l l be orthogonal. Thus 

i f ^ i s so chosen that *f -0(o) i s orthogonal (or nearly orthogonal) to 

eigenvector C., corresponding to the offending eigenvalue }\ ., i . e . i f l 
so that \eC -0(o)3 .C ftj 0, then ^ K c l .C. 0 ^ K. 0, 1 I s=l s

 S J 1 1 

the offending vector term i n y ( t ) w i l l be (almost) eliminated. However, 

i n practice, even i f = 0 for the choice of the i n i t i a l vector <=C of 

integration, because of 'round o f f error i n the ca l c u l a t i n g process, as 

the integration proceeds the term causing the blow up i s l i a b l e to be 

gradually re-introduced. The more dominant i s and the more inaccurate 

i s the computer the more quickly t h i s w i l l happen, but i t s effect can be 

delayed by adopting an integration scheme of higher order of l o c a l accuracy 

or by varying the step length h so as to minimise the upper bound on the 

t o t a l error e, i n y , at any value of t . 
c 

Since the superposition methods require several integrations starting 
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frora d i f f e r e n t i n i t i a l vectors, then i f A i s i l l conditioned there i s a 

good chance that some of the integrations w i l l run into one of these 

d i f f i c u l t i e s and i t needs only one integration to blow up to cause the 

method to f a i l . Indeed, i f the problem matrix A i s very sensitive then 

although the system may be integrable over ( p , l } without blow up for, say, 

y(o) = <>C , even the smallest v a r i a t i o n i n can cause blow up. This 

explains why although y = Ay + f may i n theory be integrable from the 

exact i n i t i a l vector y(o) without blow up, t h i s may occur i f we integrate 

from y(o) using the calculated values of the missing i n i t i a l values, even 

though these may have been found to a high degree of accuracy. Hence i n 

the superposition methods, as mentioned e a r l i e r , i t i s unlikely that we 

w i l l be able to save memory storage space by finding y ( t ) by forward 

integration of the system y = Ay + f. Instead we w i l l have to store values 

at intermediate points and re-construct y ( t ) from these using y ( t ) -

N(t), y(o) + \ / ( t ) . 

To demonstrate t h i s l a s t point about s e n s i t i v i t y with respect to choice 
2 

of i n i t i a l vector of integration, l e t us consider the I.V.P. : °y = K y , 

y(o) = 1, y (o) = S whei£ K = 50 and S i s to be chosen. For any choice 

of §, the solution curve for y i s given by: y ( t ) = • 2 ^ - | ^ K + s + (K~2»)e 

for t ^ o ^ a s obtained by a n a l y t i c a l solution. I f we choose S — -50 i . e . 

i f we integrate forwards from t = o s t a r t i n g from [ l , -5o) T , then y ( t ) 
1 —Kt — H»ot simply reduces to y ( t ) = — (K-S)e = e and there i s no d i f f i c u l t y , 
2K 

because y ( t ) s : o for a l l t7o„ But now suppose that instead we try to 

integrate numerically forwards from |l,-49.5^ T , choosing S •= -49.5. Now 

y ( t ) = - ~ T o.Se^ 0 t + 991.He ^°^J i n which the f i r s t term completely 
<- Sot 

dominates the second for t ^ o , so that i n effect y ^73777 . Thus when t = 2, 
41 

y 1,34 x 10 , a number beyond the range of most microcomputers, so the 

calculation would breakdown before t = 2 was reached. Hence i n this example 

only a 1% error i n the estimation of one of the components of vector y(o) 

causes an otherwise straightforward integration to blow up. This i s because 
E> I n 

here the system matrix A i s K 2 o for which the eigenvalues are +K 
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i.e„ + 50, so that A i s very badly conditioned. 

In a l l of the preceding, we have assumed that the problem matrix 

A i s constant. I f A(t) varies then the s i t u a t i o n i s more complicated 

because now the eigenvalues ^\ ( i = 1 n), the eigenvectors C ^ ( i = 1-J>n) 

and the constants K . ( i •= 1-^n) w i l l a l l also vary with t, and the solution 

constant. Whether blow up occurs w i l l now depend not only on the condition 

of the i n i t i a l matrix A(o) but also on how rapidly the condition deteriorates 

or improves as t increases from t c o i . e , on the s e n s i t i v i t y of the 

eigenroots of A to changes i n the values of the elements of A, which 

depend on t . 

I n section I I I we consider the techniques which have been proposed 

to modify the superposition methods and the R i c c a t i method so as to attempt 

to overcome the numerical d i f f i c u l t i e s explained above which can Occur i n 

practice when dealing with s e n s i t i v e problems. We w i l l also discuss^ i n 

connection with the re-orthonormalisation method, another d i f f i c u l t y which 

may cause loss of accuracy i n the solution vector y ( t ) v i z . 'build up' 

error or 'loss of significance', and how t h i s method helps to minimise 

t h i s error. 

x 
vector y ( t ) , as given by y ( t ) ^s«(t-td) n 

w i l l only be 

approximately true over a small i n t e r v a l A t i n which Aft) may be assumed 
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I I I PROPOSED TECHNIQUES FOR DEALING WITH SENSITIVE PROBLEMS 

a) Reversal [ We can reverse the statement of our problem I by assuming 

that t = 1 i s the ' i n i t i a l ' point and t = o i s the 'terminal' point, the 
T 

dir e c t i o n of the integration now being from t = 1 to t = o and C = 
j l n ^ ̂ ^ f — ^ r j with t n e boundary matrices L q and L ^ altered accordingly. 

We can thus use either of the superposition methods outlined i n IB to solve 

the reverse problem, the ' i n i t i a l ' missing conditions now being those at 

t = 1, For well conditioned problems there i s l i t t l e advantage to be 

gained from doing t h i s , the compw.t-4^ solution vector y ( t ) being v i r t u a l l y 

i d e n t i c a l to that obtained by forward solution. But for a sensitive 

problem i n which one of the forward integrations blows up at t = t , where 

t ^ < l , i t may be possible to avoid t h i s by reversing the problem. 

Since the solution vector y ( t ) of the I.V.P. y = Ay + f, y(T) = 

can be written 
3" ^ s ( t - T ) 

S C 

s=l s 

i f a l l of thefeigenvalues ( s = 1-9 n) have (large) positive r e a l parts 

and we take T = 0 and integrate forwards ( i . e . t > o) then the computed 

solution vector y ( t ) w i l l , due to round off error, stray very rapidly 

from the exact solution because as the integration proceeds the cumulative 

errors i n the exponential terms w i l l build up, u n t i l blow up occurs. 

Indeed t h i s i s s t i l l l i k e l y to occur with„forward integration even i f there 

i s j u s t one large positive dominant eigenvalue. But i f i n such a case 

we reverse the dir e c t i o n of integration i . e . s t a r t at t = 1, then, putting 

T = 1 : 
n "V 

A s ( + - i ) 
y ( t ) = K e c + ^ ( t ^ w n e r e t <1, the previously 

s=l s 
large positiveexponent(s) w i l l n o w b e n e S a t i v e s o these term(s) w i l l be 
very small and there w i l l be no danger of blow up. But t h i s device w i l l 
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r e a l l y only be e f f e c t i v e i n a case where the problem system matrix A i s 
such that a l l i t s negative eigenvalues are small since these w i l l become 
positive for reverse integration. In general, matrix A i s l i a b l e to have 
a mixture of positive and negative eigenvalues with a dominant positive 
eigenvalue for forward integration and an equally dominant negative 
eigenvalue which w i l l become positive when integration i s reversed, so 
that reversal w i l l be of no a v a i l . Thus we cannot regard reversing the 
direction of integration as a general technique for dealing with s e n s i t i v e 
problems. 

b) Re-orthonormalisation (using the GranuSchmidt process) 
05) 

This technique was f i r s t proposed by Godunov and then followed up by 
03) 

Conte and others. I t attempts to overcome both the numerical d i f f i c u l t i e s 

encountered with s e n s i t i v e problems v i z . blow up and loss of independence 

of calculated vectors obtained from the homogeneous and inhomogeneouS 

integrations. Repeated use i s made of the Gram„ Schmidt process which 

converts any given set Y of N l i n e a r l y independent vectors (each n x 1) 

into a corresponding set 2 of N crthonormal (n x 1) vectors i . e . mutually 

orthogonal vectors each of unit length. The transformation (as described 

i n ( 3 . 1 ) ) i s effected by the orthonorraalisation matrix P which i s lower 

triangular whose elements p depend on the input set Y. The output set 

0 of orthonormal vectors i s thus given by: 

T T 

2 = YP where P i s upper triangular (N x N) 

and 2 i s 1 x N =V Y i£ 1 x N, both being vectors with vector components. 

We now describe Conte's method of re-orthonormalisation based on the 

complementary function method (see IBb) and u t i l i s i n g the Gram^Schmidt 

process above. We f i r s t divide the t o t a l range of integration C°»-0 

into m subintervals with nodes at t Q ( = ° ) P .„... t^( = 1 ) 

determined according to one of the re-orthonormalisation tests outlined 

l a t e r . I n the f i r s t subinterval £t Q f t ^ W e integrate forwards the 
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(n - r ) homogeneous u vectors, s t a r t i n g each time at t = t from one of 

the special Kronecker delta vectors, and the inhoraogeneouS V vector s t a r t i n g 

from °r/° ^ a s '*'n » ̂  w e s * o r e these vector values at 

int e r v a l s o f ^ h , where h i s the step length employed, and ^ i s as small 

a multiple as the memory capacity w i l l allow. At t = t , we use the 

Gram Schmidt process to convert the (n - r ) l i n e a r l y independent homogeneous 

tu vectors J u 1 ( t ) , i = l-> n - r j into the corresponding set of 
o l d A ' \ 

tu , i = l - ^ n - r j by using the orthonormal 
\ new / 

matrix P , obtained from u 1 ( t ) i . e . i n matrix form: 
old 1 ; 

Unew = U o l d ' P 1 T w h e r e P l T i s ( n " r ) x ( n _ r ) ; 

U and U , . are 1 x ( n - r i and U i s the orthonormal set of vectors new old V / new 
i T u ( t , ) . The elements of the matrix P, are stored. Also at t = t , , new 1 1 1 

we convert the inhomogeneouS vector V(t^) obtained by forward integration 

( i e V „ ,) into i t s orthogonal complement (V ( t )) by subtracting from old new 1 
V , J a cer t a i n l i n e a r combination of the orthonormal u 1 ( t , ) vectors i . e old new 1 

V = V , - U . Wn , where new old new 1 

the components of the projection vector W^(n-r x 1) are given by: 

W. = V . . . u j , j = 1 — ? n-r . j old new 

Note that t h i s ensures that V . u J = o for j = I - T * n-r i . e . V i s 
new new ' new 

orthogonal to each of the new orthornormal vectors. The components of 

vector \V are also saved. 

In the second sub i n t e r v a l ft , t 3 we now integrate forwards the 

(n-r) homogeneous U vectors s t a r t i n g at t = t from the u 1 ( t , ) vector 
1 new 1 

values j u s t found by the Gram Schmidt process. Also we integrate forwards 
the inhoraogen<tou5 system s t a r t i n g from V ( t , ) and store t h i s vector and 

new 1 
the homogenous vectors at the intermediate points. At t = t , the 

2 
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re-orthonormalisation process i s repeated i . e . we convert the old 

independent u 1 vectors into the new orthonormal set u ^ e w ( t 2 ^ b y using 

the orthonormalisation matrix P (obtained from the u 1 ( t ) ) . Likewise 

the inhomogeneouS vector V , ,(t„) i s converted into i t s orthegonal 
old 2 

complement V ( t ) , and the projection vector W and r^atrix P are both 

again stored. Then i n the next sub i n t e r v a l we integrate forwards over 

^ t ^ , t ^ s t a r t i n g the homogen*oitf integration* at t0 from ^ ^ ( t ^ ) a n d t n e new 2 

inhomogen'toHj from v
nev;(%p a n d store the r e s u l t i n g vectors. 

The process i s repeated, re-orthonormalising the u and v vectors at 

the end of each sub i n t e r v a l and then using these vectors each time as the 

s t a r t i n g vectors for the homogenous and inhomogeneows integrations i n the 

next i n t e r v a l and storing the orthonormalisation matrix P and the projection 

vector V used at each node and the u and V vectors obtained for each 

i n t e r v a l . When t = t i s reached the f i n a l re-orthonormalisation gives 
us u 1 ( t ) and V ( t ) together with the values of Wi and P^ used, new f new f & t r 

As i n IBb we now solve a matrix equation of the form MB = T at the 

terminal point t . by selecting from the f i n a l u 1 ( t ^ ) and V (t„) f new f new f 
vectors the ( n - r ) components which correspond to the position of known 

terminal values ( j = 1 $ n-r) i n the given problem, and then using 

them to solve for ^ f - [ V ^ - ^n-rj t h e m a t r i x equation: 

U 
n-r n-r 

n-r -1 

i 
n-r n-r n-r 
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where a l l vector values are at t = t . Unlike IBb, however, in t h i s 

case the vector i s not y i ( o ) , ( i = r+1 — ^ n), the vector of missing 

i n i t i a l v/Q I VA£§ for the problem. In order to find t h i s , we must now 

work backwards through the sub intervals from t to t Q , using the stored 

projection vectors and orthonormalisation matrices ( i = 1 ^ m) at 

each node to obtain the V vector corresponding to each sub i n t e r v a l , 

from the i t e r a t i o n : 

u x 1+1 i+1 i+1 i = (m - 1) o 
) 

where V = , P T = pT/ & Wm = W. . , om f m fc^ ni 

This f i n a l l y gives us ^ , the vector corresponding to the f i r s t 

sub irxterval £t Q, t j , and t h i s i s i n fact the vector of missing i n i t i a l 

values for the problem. 

We now construct the solution vector y ( t ) , o ^ t ^ l , for the given 

problem i n a piece-wiS"« continuous fashion, interval by i n t e r v a l . In 

each i n t e r v a l separately, the solution vector y ( t ) i s equal to the 

inhomogento*S vector V ( t ) plus a c e r t a i n l i n e a r combination of the 

homogeneous vectors u 1 ( t ) , these being the calculated vectors that were 

stored for that i n t e r v a l . The l i n e a r combination vector required i s the 

X vector corresponding to that i n t e r v a l i . e . for each i n t e r v a l : 

y ( t ) = V(t) + U ( t ) . ^ where U(t) 

i s the homogeneous set of vectors (n x n - r ) . 

Note that only i n the f i r s t sub i n t e r v a l f t »t̂ "} do the calculated 

homogeneous and inhomogenfcouS vectors correspond to the sp e c i a l i n i t i a l 

vectors J$b„ In a l l of the other i n t e r v a l s , they are obtained by forward 

integration s t a r t i n g from the orthonormal u 1 vectors and the orthogonal 
new 

complement V obtained by the Gram Schmidt process. Yet i t can be new 
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shown (3.2) that the piecewise solution vector y ( t ) , defined above for 
each i n t e r v a l separately, does provide a continuous solution vector which 
i s the true solution of the given problem over the complete i n t e r v a l 

Memory storage space can be saved by storing only the vector and P 

matrix at the end of each i n t e r v a l and the f i n a l u 1 and V vectors at t = t , 
f 

These w i l l be s u f f i c i e n t to obtain ^ and hence ^ q = £ v
r + 1 ( ° ) '^n^°^ 

The solution vector y ( t ) for the problem could now t h e o r e t i c a l l y be found 

by integrating the set y = Ay + f forwards from t = o since a l l the i n i t i a l 

values are known. In practice, however, i f the given problem i s s e n s i t i v e 

i n that i t cannot be solved by "single" shooting, i t i s unlikely that t h i s 

integration can be performed without blow-up either. 

The success of t h i s method i s very much dependent on the choice of the 

re-orthonormalisation nodes i . e . on the p a r t i t i o n of the t o t a l i n t e r v a l 

Co,l} into sub i n t e r v a l s . Various tests have been proposed to determine 

when re-orthonormalisation should take place so as to obtain the optimum 

overall computed solution vector y ( t ) i . e . the solution vector for which 

the norm of the overall error vector i s least for a given step length h 

of integration. The common objective of a l l of the t e s t s i s to check at 

frequent intervals on the norms and directionf of the computed homogen-eo-̂ s 

vectors u 1 ( t ) and to re-orthonormalise whenever blow up or loss of 

independence i s imminent. The big drawback of most of the t e s t s , however, 

i s that although they are straightforward i n theory, they create p r a c t i c a l 

d i f f i c u l t i e s i n programming and are very time consuming and therefore 

expensive. Some of the chief tests for optimum re-orthonormalisation 

are: 

( i ) Godunov o r i g i n a l l y proposed that the eigenvalues of the problem system 

matrix A(t) should be frequently calculated (every few steps) and the 

difference between the r e a l parts of A and \ . computed each time. 
' max f mxn 
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I f i t i s noted that t h i s difference has increased since the previous 

calculation then the length of the following sub i n t e r v a l i s proportionately 

decreased as compared with the present sub i n t e r v a l , and vice versa. Thus 

re-orthonormalisation w i l l occur most frequently during periods when A(t) 

i s most i l l conditioned. This test i s only applicable when A(t) i s 

variable and i n any case i s highly impractical, even fo r a small system, 

on account of the formidable amount of calculation required. 

( i i ) Conte proposes that re-orthonormalisation should occur whenever the 

norm of any of the calculated homogeneous vectors u 1 or that of the 

inhomogeneouS vector V exceeds a pre-assigned value M. This i s comparatively 

simple to operate but the d i f f i c u l t y l i e s i n being able to f i x a suitable 

value f o r M for any given problem. One p o s s i b i l i t y i s to run the program 

with several d i f f e r e n t values of M which avoid blow up and then to average 

the solution vectors obtained. 
(13) 

( i i i ) Another suggestion of Conte i s to compute the angle between each pair 

of homogeneous u X ( t ) vectors at regular i n t e r v a l s . Re-orthonormalisation 

then takes place whenever the computed angle i s noted to be less than a 

pre-assxgned value ©L . 

Again the main d i f f i c u l t y i s to f i x ct f o r a given problem and so we 

must resort to averaging over several t r i a l values of . Also f o r a 

large system the amount of calculation involved here would be considerable 

and i n any case the t e s t does not guard against the p o s s i b i l i t y of more 

than two vectors becoming dependent. 

( i v ) Another alternative i s to incorporate tests ( i i ) and ( i i i ) i.e. to 

re=orthonormalise i f either test f a i l s i . e . i f 

II " i > M for any i or 

or i f arcos 
u u 

Ii Ml • II for any pair 
i , 3 , i ^ j . 
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This would require several runs with d i f f e r e n t choices for the values of 

M and each time and there i s no guarantee that the average computed 

so l u t i o n vector so obtained would be better than that obtained by using 

either ( i i ) or ( i i i ) separately. 

(v) At regular i n t e r v a l s , calculate the value of D, the determinant of 

the normalised matrix formed by the calculated homogene°i£ vectors u M t ) . 

Re-orthonormalisation takes place i f /D/<K where K i s a pre-assigned 

small positive f r a c t i o n . Again we would have to run with several 

d i f f e r e n t values of K and average the solutions, and for a large system 

the frequent operations of matrix normalisation and determinant calculation 

would be very time consuming. 

Generally speaking, the best results w i l l be obtained when the re-

orthonormalisations ars d i s t r i b u t e d throughout the whole i n t e r v a l . 

Obviously the more i l l conditioned i s the problem matrix A, the more re-

orthonormalisations w i l l be needed, but too frequent re-orthonormalisation 

w i l l be s e l f defeating because the 'round o f f error introduced by the 

extensive matrix and vector m u l t i p l i c a t i o n required, i n order to work backwards 

the benefits achieved by re-orthonormalisation. 

I n the programs of solution of the test problems i n IV we have, confined 

ourselves throughout to re-orthonormalisation with equal sub intervals and 

have investigated the v a r i a t i o n i n the accuracy of the computed solution 

vector y ( t ) with changes i n m, the number of re-orthonormalisations, and i n c 
V̂- step length employed. 

As mentioned i n I I , the re-orthonormalisation method possesses another 

advantage which may make i t desirable when using a superposition method 

v i z . reduction i n 'build up' error or 'loss of significance'. Suppose 

that the "single shooting" complementary function method (IBb) i s being 

used and that a l l integrations have been achieved over §p,l) without blow 

through the sub intervals to f i n d from o i s l i a b l e to cancel out 
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up occurring. Suppose also that the f i n a l matrix M i s s u f f i c i e n t l y 

w e l l conditioned to solve f a i r l y accurately f o r V = V....^ I T 

o L l n-r J , 
the combination vector of the homogeneous vectors u ( t ) , i = 1-9 n-r, i n the 

solution y (t)„ There s t i l l remains a further d i f f i c u l t y which may c 
render the computed solution y ( t ) hopelessly inaccurate v i z . the d i f f i c u l t y 

c 
of recombination. The solution y ( t ) i s given by: 

c 

y ( t ) = K u r t ) + >£_u_(t)-fr HJ: / u ( t ) + V ( t ) 
c 1 1 2 2. n-r n-r 

|?or o£t,£l. Now i f the norms of the calculated u ^ ( t ) vectors are very 

large r e l a t i v e to //y ( t ) / / , f o r any value of t . so that the values 

V^. ^ n - r a r e v e r y s m a H » then even a small error i n the calculation 
of these components w i l l be grossly magnified when multiplied by the 

components of the u ^ ( t ) vectors, with a consequent error i n the value of 

y ( t ) . I f further, the majority of the errors i n the calculated values of 

^...... 6 are a l l i n the same dir e c t i o n (eg a l l rounded down) then 
1 n-r b 

the cumulative effe c t on the calculated components of y ( t ) could be very 
c 

large indeed. Thus, i d e a l l y , i t i s desirable, i f possible, to ensure that 
the components of the u . ( t ) 

l vectors are of approxxmately the same order 

as those of y ( t ) , f o r any value of t . To t h i s end, re-orthonormalisation 

can be employed, the re-orthonormalisations being performed before the norms 

of the u ^ ( t ) vectors become too large, thereby reducing the danger of loss 

of significance as described above. We must, however, be careful not to 

go to the opposite extreme which can occur i f too many re-orthonormalisations 

are employed, r e s u l t i n g i n the norms of the u . ( t ) vectors being very small 

compared t o that of y ( t ) , i n some sub interv a l s . 
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c) Multiple (or p a r a l l e l ) shooting 

This method i s similar to re-orthonormalisation i n that we divide the 

t o t a l range t°»l3 of the problem in t o sub intervals according to some c r i t e r i o n 

(see l a t e r ) and then i n each sub i n t e r v a l separately we use "single" shooting 

to f i n d the general solution vector which s a t i s f i e s the system y = Ay + f of our 

problem I , f o r a l l t i n that sub i n t e r v a l . These vectors must then be "matched 

up" at each of the i n t e r n a l nodes and with the given i n i t i a l and terminal values 

at t = o and t = 1 respectively, so as to achieve an overall solution vector 

y ( t ) which i s continuous over Co,l} and which s a t i s f i e s the system y = Ay + f 

subject to the given boundary conditions L Qy(o) + L^ y ( l ) = C, as i s required. 

Any superposition method can be used for the "single" shootings i n the sub intervals 

but we w i l l assume that method 2Ba i s adopted so that the description which follows 

refers to multiple shooting based on the varia t i o n of parameters method. 

Suppose that the t o t a l i n t e r v a l C t
0,t f3 i s divided i n t o N sub intervals 

with nodes at t (=0), t , . t . . . . t ^ ( = 1 ) . As described i n TBa. i n each of these o 1 2 f 
sub intervals separately we must integrate the homogene©^ system y = Ay forwards 

n times s t a r t i n g from the Kronecker delta vectors and the inhomogen€.o**S system 

y = Ay + f forwards once s t a r t i n g from the n u l l vector. This gives us i n 

each sub i n t e r v a l n homogen^o^ vectors and one inhomogene.oi£ vector (requiring 

i n t o t a l N(n+1) integrations) from which we obtain the general solution vector 

for each sub i n t e r v a l . Now i n practice this could be done by integrating 

the same set of d i f f e r e n t i a l equations, (y = Ay for the homogeneous and y = Ay + f 

for the inhomogen«LO<£) successively over d i f f e r e n t sub intervals viz, {tQ„t^f 

^ 1 ' ' " ° ° ° ̂ N - l ' * H o w e v e r i > i s m o r e convenient f o r our explanation i f we 

adopt the equivalent notation (due to K e l l e r ^ 1 1 ^ ) i n which instead we integrate 

successively d i f f e r e n t sets of d i f f e r e n t i a l equations over the same i n t e r v a l [p,l) 

each time. To achieve t h i s we define a new independent variable s on each 
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sub i n t e r v a l 
t - t 

by s = where ^\ = t . - t . , 

( i = 1 f N) so that t . , ^ t ^ t . rS* 0 ^ s ^ 1. We can 
l - l l ' 

now show (3.3) that under t h i s change of variable the system of d i f f e r e n t i a l 

equations for each sub i n t e r v a l i s given by: 

y'(s) = A(s)] .y(s) + [ A . f ( s ) ] , where 

o ̂  s 1 and i = 1 - . — a n d " denotes T . 
ds 

Keller s notation reduces the given problem to a sequence of similar problems 

a l l defined on the same i n t e r v a l (o,l}„ The advantage of t h i s approach 

i s that the f i n a l matrix equation to be solved can be w r i t t e n i n a form 

d i r e c t l y analagous to that f o r single shooting given i n IBa, the only 

difference being that now the vectors are giant vectors ( i . e . with vector 

components) and the matrices are giant matrices ( i . e . with matrix elements), 

as we see l a t e r . Each in t e r v a l separately ( i = 1-_N) now has i t s own 

system matrix =. A ^ i t s own forcing vector f = &^f, i t s own homogeneous 

fundamental matrix N., i t s own particular solution vector and hence i t s 

own general solution vector y . For each i n t e r v a l separately: from Â^ 

we obtain N^(s) by integrating y" = A^y forwards n times from the Kronecker 

delta i n i t i a l vectors from s = o to s- = 1, Then from A. and f. we obtain 
l l 

w. (s) by integrating the inhomogen'eo^ set y^ = A.y + f. forwards once 

fromW(o) = o, o <: s < 1. Finall y fromi N..(s) and VACs.) we-obtain 

y i ( s ) from: y ^ s ) = N ^ s ) . + W ( s ) , i = 1 N, o < s s£ 1, where 
N.(o) = I andW. (o) = o. and B. = y.(o) are the combination vectors to be l l ' I J i 
found by matching at the internal nodes and at the end points. This l a s t 

set of general solution vectors i s analogous to y ( t ) =M(t)y(o) +W(t) 
i , i . 

o <. t ̂  l s obtained i n IBa f o r single shooting. 
We can now show (3„4) that, as mentioned e a r l i e r , the matrix equation 
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to be solved i n order to match up these i n t e r v a l general solution vectors 
at the in t e r n a l nodes t t , so as to obtain an o v e r a l l 

3. N-l 

solution vector y ( t ) which i s continuous over C * Q J a n c* also s a t i s f i e s 

the given i n i t i a l and f i n a l conditions, can be w r i t t e n i n a form analogous 

to that found i n IBa f o r single shooting v i z . 

M . B = T where M = L + L, . N (1) 
o 1 

and T = C - L W (1 ) . 

Here, as shown i n (3.4), the boundary condition matrices L q and are now 

giant matrices of size W x N where each element i s n x n. The matrix N(l) 

i s the overall homogeneous fundamental matrix and i s also a giant (Nn x Nn) 

matrix. C and W (1) are giant (Nn x 1) vectors as also i s B = £_B B^ 

the combination vector of i n i t i a l values f o r which we must solve. Having 

found the combination vectors B ^ ( i = 1 N) from B = (M) . T , these 

can then be used to compute the solution vector y ( t ) f o r each sub i n t e r v a l 

from: 

V.(s) = N.(s). B. + W.(s) , o < s ^ l . 
X X I X 

These piecewise i n t e r v a l solution vectors, which can be w r i t t e n i n giant 

vector form as Y (s) = ( y , ( s ) , y_(s) _ , y ( s ) ) , w i l l now be 

continuous at the nodes and w i l l s a t i s f y the given i n i t i a l and terminal 

boundary conditions. Therefore Y(s) i s the overall f^ntr^iJ solution 

vector of our problem. 

The success of the multiple shooting method depends very largely on 

how well conditioned i s the matrix equation M . B = T i . e . on the condition 

number of matrix M. As for re-orthonormalisation, t h i s i n turn depends on 

the choice of p a r t i t i o n i . e . on the positions of the i n t e r n a l nodes. We 

mentioned i n I I that, f o r single shooting, only by ensuring that the 

homogenous fundamental matrix N ( l ) i s well conditioned can we be sure that 
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the solution matrix M w i l l be. To t h i s end, we can employ any of the 

re-orthonormalisation tests described i n (b) to check on the condition 

of N(t) at regular intervals and to insert a node whenever i t i s found 

to be deteriorating. This, i n theory, would give us the optimum p a r t i t i o n 

and hence the optimum solution vector y ( t ) overall, f o r any given step 
, Qi) 

length \\. However, Gunderson has shown (3.5) that any p a r t i t i o n f o r 

multiple shooting should always produce a better conditioned solution matrix 

M ^ c i \ the solution matrix M employed i n single shooting, which implies 

that the solution vector y ( t ) obtained by any multiple shooting p a r t i t i o n 

should be more accurate o v e r a l l than the solution vector obtained by 

single shooting. But t h i s theoretical result takes no account of the 

round o f f error inevitably encountered i n practice and so, as f o r re-

orthonormalisation, i f too many sub intervals are taken then the benefits 
of multiple shooting are l i a b l e to be cancelled out. 

(11) 
Keller explained the theoretical advantage of multiple shooting 

over single shooting by comparing the respective bounds on the error vectors, 

He showed that f o r single shooting: 
//y (1) " y ( 1 ) / / $ K. ML . exp (K, ) where y (1) and y (1) are c e 1 1 c e respectively the computed and exact solution vectors at t = 1, fa i s the step 

length, p the order of the integration scheme, and and constants, 

assuming t Q = 0 and t = 1. This means that the bound on the error 

vector at the terminal point t - 1 i s proportional to exp (K^). By 

comparison, f o r multiple shooting with N-sub intervals he obtained the 

corresponding r e s u l t : 

/ / Y c ( l ) - Y e ( l ) / / - ^ V\\ M2 exp where 

M i s constant and Y (1) and Y (1) are respectively the overall computed and 

exact solution vectors at the end of each sub i n t e r v a l ie Y ( l ) = £y (1),y (1), 

.°y (l)j>- Thus the bound on the overall error vector i s proportional to 
e xP \ j j which means that, i n theory, the accuracy of the computed solution 
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vector, taken ov e r a l l , w i l l increase with N, which implies that the more 
subdivisions taken the better. But again, i n practice, t h i s i s only true 
up to a point, because the above resul t takes no account of round o f f 
error. In the multiple shooting programs i n IV we have confined ourselves, 
as i n the case of re-orthonormalisation^to equal sub intervals and obtained 
a comparison between the two methods for the same number of sub inte r v a l s 
and step length f o r a given problem. 

Multiple shooting i s very similar to re-orthonormalisation i n the way 

i n which the t o t a l i n t e r v a l £0,1^ i s partitioned into sub intervals and 

the overall solution vector y ( t ) i s formed by piecing together the separate 

solution vectors i n the sub intervals so as to obtain a continuous solution 

vector which s a t i s f i e s the given end conditions. But they d i f f e r i n two 

essential respects. I n multiple shooting we integrate forwards i n each 

sub i n t e r v a l from the same i n i t i a l vectors each time to obtain the 

homogeneous and inhomogentoiaS vectors, whereas i n re-orthonormalisation we 

obtain at the beginning of each sub i n t e r v a l a d i f f e r e n t set of i n i t i a l 

orthonormal vectors by using the Gram- Schmidt process to convert the 

l i n e a r l y independent vectors at the end of the previous i n t e r v a l . Also, 

i n re-orthonorraalisation the combination vectors required i n each 

sub i n t e r v a l to obtain the corresponding solution vectors, are found 

i t e r a t i v e l y by working backwards through the sub intervals and solving 

a sequence of matrix equations each only of size (n-r) and involving the 

stored values of the re-orthonormalisation matrices P and the projection 

vectors W. But i n multiple shooting the sub i n t e r v a l combination 

vectors are a l l found at once by the solution of one giant matrix 

equation M . B = T of size Nn. For thi s reason, i f the problem size n 

i s large or i f a large number of sub intervals N i s required, re-orthonormalisation 

may be preferable to multiple shooting as less memory capacity w i l l be 

required and fewer calculations w i l l be needed so that the program running 
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time w i l l be shorter. This was v e r i f i e d by the pr a c t i c a l experience i n 
IV i n which the running times f o r the re-orthonormalisation programs were 
invariably found to be much shorter than f o r multiple shooting with the 
same number of sub in t e r v a l s . 

There are several methods available i n practice f o r the numerical 

solution of a large set of simultaneous l i n e a r equations such as M . B = T 

(see ( 9 ) ) , but one which does not e n t a i l the finding of the inverse (M) ̂  

i s preferable as t h i s i s not d i r e c t l y required. I n the multiple shooting 

programs i n IV we employed the method of Gaussian elimination. 

The multiple shooting method described above i s the 'forward shooting' 

type i.e. we shoot forwards over each sub i n t e r v a l from the i n i t i a l node: 

y,(t> "2<« y 3 < t ) 

2L 
PI - / 

t t t t„ t t 
o 1 2 3 N-l N 

i n i t i a l f i n a l 

But, as explained i n I l i a , i f the problem matrix A possesses several large 

positive dominant eignvalues but no negative ones (or at any rate^ones 

with only very small negative real parts) i t may be advantageous to reverse 

the d i r e c t i o n of shooting i n each sub i n t e r v a l , t r e a t i n g the given ' i n i t i a l ' 

conditions at t = o as the terminal conditions and those at t = 1 as the 

i n i t i a l conditions. This v a r i a t i o n i s known as backward shooting: 

y N ( t L y N - l ( t ) yN-2 ( t ) y 2 ( t ) y i ( t ) 

, ^ S — ^ — - — ^ — ^ — 
o t l t2 *3 V l *N 

f i n a l i n i t i a l 

By reversing such a problem the cumulative errors i n the exponential terms 

due to round o f f w i l l be greatly reduced and t h i s means that i t may be 

possible to obtain a more accurate overall solution vector with fewer sub 
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i n t e r v a l s . 
I f , as i s more l i k e l y , the real parts of the eigenvalues of the 

problem matrix are mixed positive and negative of roughly equal size so 

that the error growth i s approximately equal i n both directions of 

integration, then another v a r i a t i o n that can be employed i s to use an 

even number N of sub intervals and to shoot backwards and forwards from 

each odd numbered node thus: 

( t ) y„(t) N-l N 

N-2 N-l N 

I n t h i s case the continuity equations at the int e r n a l nodes become; 
r. \ 

(odd nos) 
y ( t ) = y , ( t ) B B , for r = 1 „ iN-1) 
r r 'r+1 r / r r+1 . J . . v / 

and y ( t ) = y _ ( t ) ̂  N ( t ). B + W ( t ) s s s+1 s ' s s s s s 

= N ( t ) . B , + W , ( t ) s+1 s s+1 s+1 s 

for s = 2 (^1-2) 
(even nos) 

(making n(N-l) linear equations. I n addition we have r equations at t 

and (n-r) equations at t giving nN equations i n t o t a l . 

Another possible v a r i a t i o n i s (again f o r N even) to shoot i n both 

directions from each even node, forwards from t and backwards from t 
o f 

thus: 

_ V ? , 
*<> h K % \ * ^ T \ 

For the case N = 2, t h i s method reduces to what i s known as "matching 
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i n the middle". 

Instead of calculating the eigenvalues of the problem matrix A i n 

order to decide which variation to employ, i t i s possibly better to solve 

the problem by several variations and then to take the average of the 

solution vectors obtained. I f A(t) i s variable, then averaging i s 

ce r t a i n l y preferable. 

d) The Riccati Inverse for continuation) method 

With reference to the Riccati Transformation method described i n IC, 

consider the case where the transformation matrix U i s square p x p i.e. 

where both base and surface vectors are |> x 1. As explained i n (1.6), i f 

we integrate the set of characteristic equations: 

forwards from u(o) = a (fixed) and x(o) = s ( a r b i t r a r y ) then we obtain 

the surface vector u ( t , x ) i n terms of the base vector x ( t ) from the 

transformation! 

s a t i s f i e s equation ( v i ) , both of IC. Now consider the system obtained by 

reversing the d e f i n i t i o n of surface and"base vectors i.e. by interchanging 

x and u: 

U B \ / U \ / A 

u ( t ) = U(t) x ( t ) + v ( t ) for t > o, 

where the matrix U(t) s a t i s f i e s the Riccati equation (v) and vector v ( t ) 

D 
+ 

u B F u 
I f now we integrate t h i s system forwards from x(o) = a (fixed) and u(o) = s 

( a r b i t r a r y ) then we obtain the surface vector x ( t , u ) i n terms of the base 

vector u ( t ) from the inverse transformation; 
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x ( t ) = \V(t) u ( t ) + 2 ( t ) f o r t ̂ . o 

where \V(t) = U 1 ( t ) , provided i t exists. 

Now: u ( t ) U(t) x ( t ) + v ( t ) 

9 U ( t ) u ( t ) x ( t ) + U -1 ( t ) v ( t ) 

x ( t ) U _ 1 ( t ) u ( t ) U 1 ( t ) v ( t ) 
-1 Hence 2 ( t ) = -U ( t ) . v ( t ) . 

Thus, i f over any i n t e r v a l both U(t) and U * ( t ) exist and are bounded 

then we have the option of obtaining the solution vector y ( t ) either by 

using the normal transformation: 

u ( t ) = U ( t ) . x ( t ) + v ( t ) (as described i n IC) 

or instead by employing the inverse transformation: 

x ( t ) = U "''(t) u ( t ) + 8 ( t ) , where now u i s the base vector and 

x the surface vector. I f using the inverse method of solution we must 

make the following adjustments to the normal imbedding equations ( i i ) - ^ ( v i ) 

of IC: 

interchange matrices A<£*»D, B̂ -3»C, G 

replace U by W(=U - 1) 

interchange u<s-?>x 

replace y by 2 

Thus i f we were solving a problem over sub i n t e r v a l [t t~), i n &>,!} using 

U 1 instead of U throughout, then the inverse imbedding equations required 

would be as follows, where u now denotes the base vector and x the surface 

vector; 

( i ) W = C + DW - WA - WBW ( R i c c a t i ) . Integrate t h i s equation 

forwards s t a r t i n g from W(t^) = u 1 ( t 1 ) . This i s the equivalent of equation 

IC(v) f o r the normal transformation. 
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( i i ) Z = (D - WB) 2 -WF + G. Integrate t h i s equation forwards 

s t a r t i n g from 2 ^ ) = - u ' 1 ^ ) . v C ^ ) . 

This corresponds to equation I C ( v i ) . 

( i i i ) Solve f o r u ( t ) the matrix equation: 

^ g 1 W ( t 2 ) - f - J u ( t 2 ) = b - g x „ 2(t2)„ This corresponds to equation 

I C ( v i i i ) . 

( i v ) u = (BW + A)u + B2 + F. Integrate this equation backwards 

s t a r t i n g from u ( t 2 > . This corresponds to equation I C ( i x ) . 

(v) Obtain the corresponding surface vector x ( t ) from the base vector 

u ( t ) at any value of t i n [ t t j from x ( t ) = U _ 1 ( t ) . u ( t ) + 2 ( t ) . 

This corresponds to equation I C ( i v ) . 

For any given problem there exists a c r i t i c a l length t at which the 

solution U(t) of the Riccati equation w i l l become unbounded. I n fact , 

i t can be shown that; 
r 

* 1 
t = . I n 

K+d 
1 + where / / A ( t ) / / ^ a , 

/ / B ( t ) / / < b, / / C ( t ) / / < c, / / D ( t ) / / $ d and 

K = max 

d i f f i c u l t y i s c h i e f l y , but not solely, due to the quadratic term U.C(t).U 

^ a + b , c + d^ over the i n t e r v a l ( o , l ^ , (see 3.7). This 

i n t h i s equation. Thus as t - ^ t the numbers involved i n the calculation 

w i l l eventually become unmanageably large and w i l l cause blow up before t 

i s reached. Therefore i f t i s near the terminal point 1 (or i f t < l ) 

we must adopt one of the following approaches i n order to overcome the 

c r i t i c a l point; 

1. inverse method: i f U i s a square matrix i.e. i f we are given the same 

number of i n i t i a l and f i n a l values i n the problem, then we may be able to 
-1 A 

make use of the inverse transformation U ( t ) to get by t . Although U(t) 
may be becoming unbounded as t = ^ t , U ( t ) may exist and be bounded i n 

A 
the neighbourhood of t . I f t h i s i s so, then we can switch the solution 
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raethod from U(t) to U ''"(t), the switch over point being some point t = t 
before t , at which U(t^) i s s t i l l manageable, and continuing with U ( t ) 

A 

to some point t beyond t . At t c t we may then invert back and 

continue the solution with U(t) again, thus; 

U U ^inverse U normal 
6
 n o r m a l

 ± ^ . 6 
t = o r ? r t i i 

1 2 

This procedure can be repeated each time a c r i t i c a l point of U(t) or 

U * ( t ) i s encountered. I f a switch i s made from U transformation to U 1 

at t j then, as shown i n (3.6), the U 1 integration of the inverse Riccati 

equation w i l l s t a r t from U ''" ( t ^ ) , obtained simply by inverting U(t ). 

Likewise at t when we switch back from U 1 to U, the U integration w i l l 

r e s t a r t from U ( t 2 ) i.e. from ( u 1 ( t
2 ) ) ~ 1 • B u t s i n c e Z ( t ) = - i T ^ t ) . v ( t ) , 

0 -1 the s t a r t i n g vector for the integration of the 2 equation w i l l be -U ( t ) 0V 
o at t , and -U(t ). B(t ) at t f o r the v equation, x 2 ^ 2i 

To i l l u s t r a t e how the inverse method i s used i n practice, suppose 

that i n our problem we are given the values of y ,y and y at t = o and, 
JL Zt %j 

say, those of y ,y and y at t = 1. Then for the normal U transformation 
T T (y^ y'2-^ i s t h e s u r f a c e vector u and (y^y & yQ ) i s the base vector x, but 

-1 T for U these are reversed, i.e. base u = (y y y ) ct surface x = JL £i o 
T -1 (y^ y g ) • Suppose also that we decide to switch twice, from U to U 

at t and then back from U 1 to U at t , as shown above. We f i r s t 
o 

integrate the normal Riccati and v equation forwards from t = o as i n IC. 
At t ^ we switch to the inverse imbedding equations ( i ) and ( i i ) above, 

-1 ° -1 r e s t a r t i n g the Riccati equation from U ( t ^ ) and the 2 equation from -U ( t ^ ) 

and integrating both forwards to t . At t , we switch back to the 
2 2 

normal equations again r e s t a r t i n g at U(t ) for the Riccati and at -u('t ). 5(fc. 
O 

f o r the v equation and continue these integrations forward to the 

end point t Thus we now have the values of U(l) and v ( l ) from which 
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we can obtain x ( l ) , the normal base vector, by using I C ( v i i i ) . Also 

as i n IC, we can now integrate equation ( i x ) backwards over {t^,l} to 

obtain the normal base vector x ( t ) i n t h i s sub i n t e r v a l . At t we use 

the transformation: 

u ( t ) = U(t ) x ( t ) + v ( t ) to obtain the normal surface vector 

u ( t ) which w i l l be the base vector for the U 1 transformation. We must 

therefore now integrate backwards the inverse base equation ( i v ) , given 

above, s t a r t i n g from u ( t 2 ^ o v e r t n e range This gives us the 
T inverse base vector (yny„yq) i n this sub i n t e r v a l . At t we use the inverse 1 2 *J i~ 

transformation (v) above: 

x ( t ^ ) = U '' " ( t ^ ) . u ( t ^ ) + Z ( t ^ ) to obtain x ( t ^ ) which i s the 

inverse surface vector i.e. the base vector f o r U. This i s now the 

st a r t i n g vector for the backward integration of equation ( i x ) of IC over 

( p , t l which gives us the normal base vector f o r t h i s sub i n t e r v a l . In 

the ranges C 0f^) a n d j t ^ l j we now have the normal base vector x = Cy^y^yg) 
T 

from which we can f i n d the corresponding surface vector u = (y1y0y„) , at 
any storage point t , by using: u ( t ) = U ( t ) . x ( t ) + v ( t ) . Similarly i n 

c T the range £t t } we have the inverse base vector u = (y.y 0yo) from which 
X £j X & o 

T 
we can f i n d the corresponding surface vector x = (y„y_y_) at any storage 

4 5 6 
point t from: 

x ( t ) = i T ^ t ) u ( t ) + Z ( t ) . 

Thus we have found the surface and base vectors at each storage point t 

and hence the solution vector y ( t ) of the problem over the complete range 

£o,l). The procedure can be summarised thus: 
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^ 
y_ 
° < 

o 

Obviously, the above procedure can be extended to cater for any number 

of switching points, the underlying idea being that we always work backwards 

through the subintervals s t a r t i n g from t = 1, finding the base vector i n 

each sub i n t e r v a l and then obtaining the surface vector at the switching 

point which w i l l be the s t a r t i n g base vector for the backward integration 

i n the next sub i n t e r v a l . I n t h i s respect of working backwards through 

the sub i n t e r v a l s , the Riccati Inverse method closely resembles the re-

orthonormalisation method. 

However, i f matrix U i s not square then obviously the above method is 

not applicable, since U * i s not defined, and so to overcome a c r i t i c a l 

point we resort to . 5rV»e.; ̂ j c c u t i fW«.r.fe. r*\«_Hve<l ° 
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2 ) R e v e r s a l : As mentioned i n c o n n e c t i o n w i t h t h e m u l t i p l e s h o o t i n g 
method i n 111(a) and ( c ) , sometimes 'blow up' can be avoided by r e v e r s i n g 
t h e d i r e c t i o n o f i n t e g r a t i o n o f an e q u a t i o n . I n t h i s case, however, i f 
we r e v e r s e t h e d i r e c t i o n o f i n t e g r a t i o n o f t h e R i c c a t i e q u a t i o n I C ( v ) t h i s 
w i l l a l s o n e c e s s i t a t e t h e r e v e r s a l o f t h e v e q u a t i o n ( v i ) and t h e x 
e q u a t i o n ( i x ) . Moreover, we must i n t e r c h a n g e t h e dimensions o f u and x 
so t h a t m^3>jp t h r o u g h o u t and t h i s causes a l t e r a t i o n s i n t h e c h a r a c t e r i s t i c 
m a t r i c e s A, B, C, D and i n t h e v e c t o r s F and G. To be s p e c i f i c we would 
p r o c e e d as f o l l o w s : 

D e f i n e t h e s u r f a c e v e c t o r u t o be t h o s e components o f y w h i c h are known 

a t t =1 and t h e base v e c t o r x t o be t h e r e m a i n i n g components. Thus t h e 

boundary c o n d i t i o n s now become: 

v-/ - b and g u ( o ) + g x ( o ) = a ( i ) 

where g^ i s (m x ^ j ) and g^ i s (m x m), assuming t h a t m v a l u e s are known 

a t t = o and p v a l u e s a t t = 1 . The c o r r e s p o n d i n g c h a r a c t e r i s t i c e q u a t i o n s 

w x l l now be: 

where 

a ( t ) , b ( t ) e t c . w i l l be d i f f e r e n t f r o m A ( t ) , B ( t ) e t c . The t r a n s f o r m a t i o n 

u ( t ) = U ( t ) x ( t ) + v ( t ) ( i i ) s t i l l h o l d s and so U ( l ) - o c o r r e s p o n d s t o 

v ( l ) = u ( l ) = b . We now i n t e g r a t e backwards t h e R i c c a t i e q u a t i o n : 

U = b ( t ) + a ( t ) U - U d ( t ) - U c ( t ) U j r p m t = 1 t o t = o s t a r t i n g 

f r o m U ( l ) = o and save t h e v a l u e s . 

A l s o i n t e g r a t e backwards o v e r [p,l) t h e e q u a t i o n : y = £a(t) - U ( t ) c ( t ) .V 

- U ( t ) g ( t ) + f ( t ) s t a r t i n g f r o m v ( l ) = b and save t h e v a l u e s . 

Now f r o m ( i i ) : u ( o ) = U ( o ) x ( o ) + v(o)„ 

S u b s t i t u t i n g i n ( i ) we g e t ; 

^ g x U ( o ) + g J „ x ( o ) = a - g x v ( o ) , 
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where U ( o ) and v ( o ) are known, so t h a t t h i s m a t r i x e q u a t i o n can be s o l v e d 

f o r x(o)„ 

Now i n t e g r a t e f o r w a r d s t h e e q u a t i o n : 

x = £c(t)U(t) + d ( t / j . x + c ( t ) v ( t ) + g ( t ) , 

s t a r t i n g f r o m x ( o ) , o v e r ^ o . l j ^ a n d save t h e v a l u e s . F i n a l l y , f i n d t h e s u r f a c e 

v e c t o r u ( t ) a t each saved p o i n t t by u s i n g : 

u ( t ) = U ( t ) x ( t ) + v ( t ) , and hence o b t a i n t h e s o l u t i o n v e c t o r y ( t ) 

f r o m x ( t ) and u(t)„ 
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I V PRACTICAL NUMERICAL EXPERIENCE 

A l l t h e programs used i n t h i s s e c t i o n t o s o l v e t h e t e s t problems were • 

w r i t t e n i n Spectrum B a s i c programming language and a r e i n t e n d e d t o be r u n 

on a SpectrumZX microcomputer w i t h 48K Ram. I n t h i s machine, numbers 

are s t o r e d i n f l o a t i n g p o i n t b i n a r y a r i t h m e t i c , t o an accura c y o f 9 o r 

10 d i g i t s , i n t h e f o r m mx 2 e where m, t h e m a n t i s s a , g i v e s us t h e d i g i t s 

i n t h e number and e, t h e exponent, f i x e s t h e p o s i t i o n o f t h e d e c i m a l 

p o i n t , where % < mS 1 and 1 ̂  e ^ 2 5 5 . Thus t h e l a r g e s t number s t o r e d 
38 127 —39 i s a bout 10 ( x 2 ) and t h e s m a l l e s t p o s i t i v e number about 4 x 10 

-127 
2 ) , b u t t h e l a r g e s t i n t e g e r w h i c h can be h e l d c o m p l e t e l y 

32 9 
a c c u r a t e l y i s o n l y 2 - 1 (»• 4 x 10 ) • T h i s means t h a t t h e r e s u l t s o f 
any c a l c u l a t i o n p r o c e s s i n v o l v i n g numbers g r e a t e r t h a n , say, 10"^ must be 

15 

s u s p e c t and i f numbers o f t h e o r d e r 10 a r e p r e s e n t t h e n t h e r e s u l t s may 

be so i n a c c u r a t e as t o be v i r t u a l l y u s e l e s s . For t h i s reason we have 

r e s t r i c t e d o u r s e l v e s t o t h e s o l u t i o n o f problems f o r w h i c h t h e mo& o f By*, -^xoctr 

SolufcYor\ components do n o t exceed 10 , so t h a t some r e l i a n c e can be p l a c e d 

on t h e ac c u r a c y o f t h e r e s u l t s a c h i e v e d . 

We have c o n c e n t r a t e d m a i n l y on t h e s o l u t i o n o f two t e s t p roblems, A 

and B. For each, t h e problem m a t r i x i s o f s i z e n = 6 and c o n t a i n s a v a r i a b l e 

element L w h i c h can be used t o a l t e r t h e c o n d i t i o n o f t h e m a t r i x so t h a t 

i n e f f e c t each problem i s r e a l l y a f a m i l y o f problems. For a chosen v a l u e 

o f L, t h e e i g e n v a l u e s X and c o r r e s p o n d i n g e i g e n v e c t o r s C (s = 1 - - 6) 
s s 

o f t h e pr o b l e m m a t r i x were c a l c u l a t e d . A p a r t i c u l a r s o l u t i o n v e c t o r 0 ( t ) 
was t h e n assumed and t h e c o n s t a n t s K ( s = 1 - - 6) d e f i n e d so t h a t t h e 

s 

c o n s t a n t t^ . , c o r r e s p o n d i n g t o t h e maximum p o s i t i v e o'^g,nvalueiX , , was z e r o . 

Thus t h e e x a c t s o l u t i o n v e c t o r y g ( t ) , Q ^ t ^ l , was g i v e n by: 

> > . t 
y g ( t ) = p > K s e S C g + 0 ( t ) , where, 

s = l 

t h e o r e t i c a l l y , t h e t e r m i n v o l v i n g t h e e i g e n v a l u e V was c o m p l e t e l y e x c l u d e d . 

However, i n p r a c t i c e , as e x p l a i n e d i n s e c t i o n I I , i f \ i s s u f f i c i e n t l y 
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l a r g e , t h e n as t h e i n t e g r a t i o n proceeds f o r w a r d s f r o m t = © t o t = 1 

t h i s t e r m w i l l g r a d u a l l y be r e - i n t r o d u c e d i n t o t h e c a l c u l a t e d s o l u t i o n 

v e c t o r due t o r o u n d o f f e r r o r , w i t h a consequent l o s s i n accu r a c y 

w h i c h w i l l " s n o w b a l l " t h e f u r t h e r t h e i n t e g r a t i o n goes. 

I n example 3, we a l s o s o l v e d a khifd p r o b l e m , C, d e t a i l s o f which 

a r e g i v e n l a t e r . 

I n o r d e r t o o b t a i n a boundary v a l u e p r o b l e m , i n each case we 

assumed t h a t o n l y t h r e e components ( y ^ , a n d v g ) were known a t 

t = © and t h r e e a t t = 1 (y„, y y f o r problem A and y.. , y„, y f o r 
o 4 b 1 c. b 

problems B and C). From t h e s e we a t t e m p t e d t o o b t a i n a compv*-t-ci s o l u t i o n 

v e c t o r y c ( t ) , s t o r e d a t i n t e r m e d i a t e p o i n t s i n C°il] • whi c h c o u l d t h e n be 

compared w i t h t h e e x a c t s o l u t i o n y ( t ) a t t h e c o r r e s p o n d i n g t p o i n t s . 

The a c c u r a c y o f y ( t ) , a t any s t o r e d p o i n t t , was measured by computing 
t h e norm o f t h e e r r o r v e c t o r v i z : \ ^ > iMft-^ - y. ( t ) | \ . An o v e r a l l 4 } -
measure o f t h e a c c u r a c y o f y ( t ) , t a k e n o v e r t h e f u l l i n t e r v a l C°»l} 

c o u l d t h e n be f o u n d by computing t h e p e r c e n t a g e e r r o r norms a t a number 

o f chosen t e s t p o i n t s : 

t = 0, t = 0.5, t = 1 , o r t = 0, t = 0.25, t = 0.5, t = 0.75, t = 1. 

(The p e r c e n t a g e e r r o r norm a t any p o i n t t i s t h e r a t i o o f t h e norm o f 
fck«. < i - m r V t t t s r fco fcr\orr*\ o f tK< -«.K»tb Solu.b->'o-y v-ect-or- at 

tVvo.\r |=otKt^ ; I n t h i s way, by comparing t h e 

p e r c e n t a g e e r r o r v a l u e s o b t a i n e d , we were a b l e t o measure, f o r any g i v e n 

p r o b l e m , t h e r e l a t i v e e f f e c t i v e n e s s o f e i t h e r : 

( a ) d i f f e r e n t s o l u t i o n methods e m p l o y i n g t h e same s t e p l e n g t h h each 

t i m e , o r 

( b ) t h e same s o l u t i o n method w i t h d i f f e r e n t v a l u e s o f h, o r 

( c ) t h e r e - o r t h o n o r m a l i s a t i o n method ( o r m u l t i p l e s h o o t i n g method) w i t h 

v a r y i n g number o f s u b i n t e r v a l s (m) and v a r y i n g v a l u e s o f h. 
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As s t a t e d e a r l i e r , i n t h e case o f t h e r e - o r t h o n o r m a l i s a t i o n method 

and m u l t i p l e s h o o t i n g method we c o n f i n e d o u r s e l v e s t o e q u a l s u b i n t e r v a l s 

o n l y . A l s o i n examples 1 t o 4 a l l o f t h e i n t e g r a t i o n s o f t h e system 

e q u a t i o n s i n a l l o f t h e programs were p e r f o r m e d by e m p l o y i n g a Runge 

K u t t a method. I n example 5, we o b t a i n e d a comparison o f t h e a c c u r a c y 

o f t h i s i n t e g r a t i o n scheme w i t h t h a t o f a l i n e a r m u l t i s t e p method ( e m p l o y i n g 

t h e above Runge K u t t a as s t a r t e r ) , by comparing t h e a c c u r a c y o f t h e r e s u l t s 

o b t a i n e d i n s o l v i n g a g i v e n problem u s i n g a g i v e n s t e p l e n g t h h and g i v e n 

method o f s o l u t i o n , b u t e m p l o y i n g f i r s t one i n t e g r a t i o n method and t h e n 

t h e o t h e r . The d e t a i l s o f t h e s e i n t e g r a t i o n schemes are as f o l l o w s : 

Runge K u t t a Method: T h i s was a s i x s t a g e method w i t h a l o c a l 

o r d e r o f a c c u r a c y p = 5, known as Lawson's method, d e f i n e d by: 

y n + l - y n = lo L 7 K 1 + 3 2 K 3 + 1 2 K 4 + 3 2 K 5 + 7 K 6 J 

where: 

K i = f ( v y
n > 

K 2 = f U n + 1 / a h' y n + Y i h K 1 } 

K 3 = f ( x n + Xh, y n + Y M \ + K 2 ) ) 

K 4 = f ( x n + Y2h, y n + Y2hK3) 

K 5 = f ( x n + * h , y n + 3h..(-K 2 + 2 K 3 + 3 ^ ) ) 

K 6 = f U n + h > y n + I ( K 1 + 4 K 2 + 6 K 3 " 1 2 K 4 + 8 K 5 ) } 

L i n e a r m u l t i s t e p method: T h i s was an e x p l i c i t 4 s t e p Adams-Bashforth 

method o f l o c a l o r d e r o f acc u r a c y p = 4, d e f i n e d by: 

y . „ > r 

j y n + j P j f n + j where 

J=e> j = o 
K = 4, «C = 1, ^ = _ i , = = ^ @ = 0 . 
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= o, 
55 
24 

-59 
24' 

37 
24* 

-9 
24 

The d e t a i l s o f t h e s o l v e d t e s t problems, each w i t h system e q u a t i o n s 

Problem A: 

and over t h e i n t e r v a l ( P , i ) , were as f o l l o w s 

n = 6 

L 1 0 0 0 0 

0 10 1 0 0 0 

0 0 5 1 0 0 

0 0 0 3 1 0 

0 0 0 0 2 1 

0 0 0 0 1 J 
The e i g e n v a l u e s o f A are : L, 10, 5, 3, 2.6180339, 0.3819661, and t h e 

c o r r e s p o n d i n g K c o n s t a n t s were d e f i n e d as: Q, 1,1, 1 , 1 , 1. The 

p a r t i c u l a r s o l u t i o n v e c t o r 0 ( t ) was t a k e n as: 0 ( t ) = [ t , 6 , ©, Q, 6, o j 

w hich meant t h a t v e c t o r f ( t ) was g i v e n by: 

f ( t ) = [ l - L t , 0, ©, ©, 0, © 3> s i n c e 

f = 0 - A 0 , 

L was now chosen t o be a l a r g e p o s i t i v e v a l u e ( e . g . % 5 ) and t h e 

c o r r e s p o n d i n g e i g e n v e c t o r s and t h e e x a c t s o l u t i o n v e c t o r o b t a i n e d , f r o m 

which we assumed t o be g i v e n : y^©),- y 2 ( Q ) , v
3 ( © ) and V^1)' v 4 ^ 1 ) > 

Problem B: n = 6 

3 1 0 0 0 0 

0 10 1 0 0 0 

0 0 5 1 0 0 

0 0 0 L 1 0 

0 0 0 0 2 1 

0 0 0 . 0 1 1 
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The e i g e n v a l u e s o f A a r e : 3,10,5,L, 2.6180339, 0.3819661 and t h e 

c o r r e s p o n d i n g K c o n s t a n t s were d e f i n e d as: 1, 1, 1, 0, 1, 1. The 
T 

p a r t i c u l a r s o l u t i o n v e c t o r was t a k e n t o be : 0 ( t ) = ( 0 , 0 , 0 , t , 0 , 0 ) 

w h i c h meant t h a t v e c t o r f ( t ) was g i v e n by: 
f ( t ) = ( 0 , 0 , - t , 1 - L t , 0, 0 ) T 

As f o r problem A, c o r r e s p o n d i n g t o each chosen l a r g e p o s i t i v e v a l u e o f 

L t h e e i g e n v e c t o r s and e x a c t s o l u t i o n v e c t o r were o b t a i n e d , from w h i c h 

i t was assumed t h a t we were g i v e n y, (©), y„(©), y 0(©) and y . ( l ) , y 0 ( D , y c U ) 

Problem C : n = 6 

A 

9.11 5.32 1.97 2.12 1.44 7.65 

5.32 8.11 -4.24 3.21 2.34 1.46 

1.97 -4.24 7.64 1.03 5.02 -4.58 

2.12 3.21 1.03 9.33 3.72 1.26 

1.44 2.34 5.02 3.72 9.98 -5.04 

7.65 1.46 -4.58 1.26 -5.04 8.33 

The e i g e n v a l u e s o f A a r e -3.2676, 1.1056, 6<•2342, 9.3012, 18.358, 20.7686. 

The p a r t i c u l a r s o l u t i o n v e c t o r 0 ( t ) was t a k e n t o be: 0 ( t ) =£cost, 
2 ->T 

©,t,6,t , ©J and t h e K c o n s t a n t s t h i s t i m e were chosen so t h a t t h e 

i n i t i a l v e c t o r y(Q) =0, and t h e e x a c t s o l u t i o n v e c t o r y ( t ) , © i t 5-1, 

was t h e n o b t a i n e d . The e x a c t v a l u e o f v e c t o r y ( l ) was: 

-3.0699764e8 

-2.3760237e8 

1.7249322e8 

-1.1540849e8 

98125236 

-3.3069843e8 

We assumed t h a t we were g i v e n y - ^ d ) , y 2 (£>), y 3 (&) and V l ( 1 ) , y 2 ( 1 ) y g ( 1 ) 
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The programs o f t h e s o l u t i o n methods used t o t a c k l e t h e above 

problems were as f o l l o w s : 

Program 1: M u l t i p l e s h o o t i n g based on t h e v a r i a t i o n o f p a r a m e t e r s 

method ( I I I c ) i n c l u d i n g s i n g l e s h o o t i n g . 

2: Reverse s i n g l e and m u l t i p l e s h o o t i n g ( I l i a and c ) . 

3: Conte's R e o r t h o n o r m a l i s a t i o n Method ( I l l b ) 

4: R i c c a t i T r a n s f o r m a t i o n Method ( I c ) . 

I n examples 1 t o 4, a l l o f t h e s e programs employed t h e Runge K u t t a 

i n t e g r a t i o n scheme. I n example 5 we a l s o used program 3 w i t h t h e 

l i n e a r 4 s t e p i n t e g r a t o r . 

R e s u l t s : A l l n u m e r i c a l r e s u l t s are g i v e n t o an accuracy o f two d e c i m a l 

p l a c e s , e x c e p t where o t h e r w i s e s t a t e d . 

Example 1 : R e o r t h o n o r m a l i s a t i o n (program 3 ) : 

Here we c o n c e n t r a t e d on t h e s o l u t i o n o f v a r i a t i o n s o f Problem B 

( o b t a i n e d by a s s i g n i n g d i f f e r e n t v a l u e s t o L) u s i n g v a r y i n g numbers o f 

e q u a l s u b i n t e r v a l s , m. 

F i r s t we a t t e m p t e d a s o l u t i o n o f t h e p r o b l em f o r w h i c h L = 85, 

u s i n g a s t e p l e n g t h h = 1/48. W i t h m =2, t h e c a l c u l a t i o n f a i l e d due 

t o a blow up i n t h e r e o t h o n o r m a l i s a t i o n s u b r o u t i n e . When m was 

i n c r e a s e d t o 4, a s o l u t i o n was o b t a i n e d b u t was d i s c a r d e d as b e i n g 

t o t a l l y meaningless s i n c e a l l t h e c a l c u l a t e d components a t t = 1 
?0 - -

exceeded \q i n mod v a l u e . W i t h m = 8^however, a s o l u t i o n was o b t a i n e d 

f o r w h i c h t h e norms o f t h e e r r o r v e c t o r s a t t = © ( I | e I I ) , t = 0.25 
o 

( l l e ^ U ) , t = 0.5 ( l l e ^ M ) , t = 0.75 ( | | e ^ | | ) and t = 1 ( | | e , | | ) were 

computed t o g e t h e r w i t h t h e p e r c e n t a g e e r r o r s a t t h e s e p o i n t s . The 

r e s u l t s were as f o l l o w s : 
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Problem B : L = 85 : h = 1/48 : m = 8 

% e r r o r 

l i e II o 191.46 1.02 

I I | | 216.86 1.05 

I I e, || 258.36 1.13 
2-

I I e l l 342.88 1.21 

I I e , I I 148,364.00 93,48 

The above s o l u t i o n i s a c c e p t a b l y a c c u r a t e o v e r t h e range t = 0 t o 

t = 0.75 b u t between t = 0.75 and t = l t h e t e r m i n v o l v i n g t h e e i g e n v a l u e X 

= L = 85 i s i n t r o d u c e d i n t o t h e c a l c u l a t e d s o l u t i o n by t h e r o u n d o f f e r r o r , 

r e s u l t i n g i n a massive e r r o r i n t h e f o u r t h component y a t t = 1, t h i s 

b e i n g t h e component c h i e f l y a f f e c t e d by L. However, t h i s example does 

demonstrate t h e e f f e c t i v e n e s s o f i n c r e a s i n g t h e number m o f r e o r t h o n o r m a l i s a t i o n s 

when t a c k l i n g a problem w i t h a l a r g e p o s i t i v e dominant e i g e n v a l u e . A 

f u r t h e r i n c r e a s e i n m was t r i e d b u t t h e c a l c u l a t e d s o l u t i o n s f o r m = 16, 

m = 32 and m = 48 p r o v e d t o be v i r t u a l l y i d e n t i c a l t o t h a t g i v e n above f o r 

m = 8, t h e s t e p l e n g t h h b e i n g k e p t a t 1/48. When, however, t h e v a l u e o f h 

was reduced t o 1/192 w i t h m = 8 t h e p e r c e n t a g e e r r o r norm a t t = 1 was 

r educed t o 9.92%, b u t a g a i n f u r t h e r i n c r e a s e s i n m produced i d e n t i c a l 

s o l u t i o n s t o t h a t o b t a i n f o r m = 8. (see a l s o example 5 ) . 

I n an a t t e m p t t o assess t h e e f f e c t i v e n e s s o f t h e r e o r t h o n o r m a l i s a t i o n 

method i n s o l v i n g . - p r o g r e s s i v e l y more i l l c o n d i t i o n e d p roblems, we now s o l v e d 

Problem. B t a k i n g L = 15, 25, 35, 45, 55, 70 and 85 s u c c e s s i v e l y , u s i n g a 

s t e p l e n g t h o f h = 1/48 and m = 8 each t i m e . For each computed s o l u t i o n 

we o b t a i n e d t h e e r r o r norms and p e r c e n t a g e e r r o r norms a t t = 0 , t = 0 . 5 , 

t = 1 and t h e s e r e s u l t s a r e r e c o r d e d below: 
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Problem B : L = 1/48 : m = 8 

t = 0 t = 0.5 t = 1 
L I I e o l | % 1 1 e j . | | % I I e t || % 

15 33.15 1.02 44.95 1.10 2845.00 1.82 
25 55.37 1.02 74.82 1.11 10098.00 6.46 
35 77.84 1.02 98.31 1.04 21882.00 13.98 
45 100.58 1.02 135.84 1.13 38166.00 24.34 
55 123.35 1.02 166.64 1.13 58952.00 37.50 
70 157.07 1.02 212.40 1.13 98599.00 62.46 
85 191.46 1.02 258.36 1.13 148,364.00 93.48 

We see t h a t t h e p e r c e n t a g e e r r o r s a t t = 0 and t = 0.5 r e m a i n v i r t u a l l y 

c o n s t a n t as L i s i n c r e a s e d i . e . as t h e problem becomes more i l l c o n d i t i o n e d , 

i n d i c a t i n g t h a t t h e a c c u r a c y o f t h e c a l c u l a t e d s o l u t i o n s over t h i s range i s 

n o t much a f f e c t e d by t h e i n c r e a s i n g l y dominant l a r g e p o s i t i v e e i g e n v a l u e L. 

But t h e e x t e n t t o w h i c h t h e t e r m c o n t a i n i n g L i s i n t r o d u c e d i n t o t h e 

c a l c u l a t e d s o l u t i o n i s o b v i o u s f r o m t h e p e r c e n t a g e e r r o r s a t t = 1 . Only 

f o r L = 15 i s t h e c a l c u l a t e d s o l u t i o n a c c e p t a b l y a c c u r a t e over t h e f u l l 

range [0,l} . 

I n o u r p r o b l e m B t h e components known a t t = 1 are y, , y 0 and y_ whereas 
1 d. o 

t h e component most a f f e c t e d by t h e e i g e n v a l u e L i s y . Thus t h e c a l c u l a t e d 

v a l u e o f ^ w o u l d be f a i r l y a c c u r a t e because t h i s i s f o u n d (see s e c t i o n I l l b ) 

by u s i n g t h e components o f t h e f i n a l homogeneous and inhomogenous v e c t o r s a t 

t = 1 w h i c h c o r r e s p o n d t o t h e p o s i t i o n s o f t h e known t e r m i n a l v a l u e s i . e . t h e 

f i r s t , t h e second and t h e s i x t h . 

T h i s i n t u r n meant t h a t t h e accu r a c y o f t h e c a l c u l a t e d v a l u e s o f t h e 

o t h e r ^ v e c t o r s w o u l d n o t be s e r i o u s l y a f f e c t e d s i n c e t h e s e are d e r i v e d 

by backward i t e r a t i o n fro«^"^.. T h i s e x p l a i n s t h e a c c e p t a b l e a c c u r a c y o f 

t h e s o l u t i o n s o v e r t h e range t = 0 t o t = 0.5. The i n a c c u r a c y o f t h e 

s o l u t i o n t o w a r d s t = 1 a r i s e s m a i n l y from t h e e r r o r i n t h e f o u r t h component 

o f t h e c a l c u l a t e d homogeneous and inhomogeneous v e c t o r s as t h e y a r e i n t e g r a t e d 
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f o r w a r d s and t h e t e r m i n v o l v i n g e i g e n v a l u e L i s i n t r o d u c e d . By i n c r e a s i n g 

t h e number m o f r e o r t h o n o r m a l i s a t i o n s f r o m 2 t o 8 we d i d reduce t h e r a t e o f 

g r o w t h o f t h i s e r r o r s u f f i c i e n t l y t o g i v e ( f o r t h e case L = 85) an a c c e p t a b l e 

s o l u t i o n as f a r as t- 0;75. 

Since t h e e r r o r a t t = 1 i s due t o t h e i n t r o d u c t i o n i n t o t h e c a l c u l a t e d 

s o l u t i o n o f a t e r m c o n t a i n i n g e \ i f we denote ||e^ || by E we may w r i t e : 

E = f . e L where E and f b o t h depend on L. T h i s g i v e s us: 

InE = l n f + L o r l n f = InE - L. From our r e s u l t s above f o r L = 15, 

25, 35, 45, 55, 70 and 85 we o b t a i n e d a l i n e a r graph o f l n f a g a i n s t L as 

shown below. From t h e graph we see, f o r example, t h a t when L = 100, l n f 

= -86 so t h a t InE = 14 i . e . E = e 1,202000. T h i s i s t h e v a l u e o f 

||e^|| we would e x p e c t f o r t h e s o l u t i o n o f Problem B w i t h L = 100. I n f a c t 

when we s o l v e d t h i s p roblem u s i n g h = 1/48 and m = 8 t h e e r r o r ||e^|| t u r n e d 

o u t t o be 1,110,000, a p p r o x i m a t e l y . I f we r e s t r i c t our c o n s i d e r a t i o n t o 

t h e range 3 5 ^ L 6 7 0 t h e n t h e e r r o r E a t t = 1 can be w r i t t e n E = f , e L 

where f * exp J -0.956L + 8.48J so t h a t E ^ exp f 0.044L + 8.48 1 . 

Example 2 : Forward and r e v e r s e s h o o t i n g 
(Programs 1 and 2) 

I n t h i s example we showed t h e advantage o f r e v e r s e s h o o t i n g o v e r f o r w a r d 

s h o o t i n g i n t h e s o l u t i o n o f — a problem p o s s e s s i n g p o s i t i v e e i g e n v a l u e s 

p a r t i c u l a r l y where one i s l a r g e and w e l l s e p a r a t e d from t h e o t h e r s i . e . 

where t h e problem m a t r i x i s v e r y i l l - c o n d i t i o n e d . 

A s o l u t i o n o f Problem A w i t h L = 100 was a t t e m p t e d u s i n g t h e m u l t i p l e 

s h o o t i n g method w i t h a s t e p l e n g t h o f h = 1/24. Forward s h o o t i n g w i t h 
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m = 1 , m = 2 and m = 4 a l l f a i l e d t o produce a s o l u t i o n due t o a blow up 

e i t h e r i n one o f t h e homogeneous i n t e g r a t i o n s o r i n t h e m a t r i x s o l u t i o n 

s u b r o u t i n e . But when t h e d i r e c t i o n o f s h o o t i n g was r e v e r s e d a s o l u t i o n 

was o b t a i n e d each t i m e . These t h r e e s o l u t i o n s were v i r t u a l l y i d e n t i c a l 

and a c c e p t a b l y a c c u r a t e as t h e p e r c e n t a g e e r r o r v a l u e s a t t = 0, t = 0.5 

and t = 1 show below: 

Problem A : L = 100 : h = 1/24 : m = 1 , 2, 4 

Reverse s h o o t i n g 

% e r r o r 

t = 0 0.32 

t = 0.5 0.50 

t = 1 2.28 

Moreover, f u r t h e r a t t e m p t s t o o b t a i n a s o l u t i o n by f o r w a r d s h o o t i n g 

u s i n g m = 5 and h = 1/50 and t h e n h = 1/100 a l s o f a i l e d due t o blowup i n 

t h e m a t r i x c a l c u l a t i o n . 

As mentioned i n s e c t i o n I I I , t h e e x p l a n a t i o n f o r t h i s i s t h e r e - i n t r o d u c t i o n 

i n t o t h e c a l c u l a t e d s o l u t i o n o f t h e t e r m c o n t a i n i n g t h e l a r g e p o s i t i v e e i g e n v a l u e 

L = 100. When t h e i n t e g r a t i o n s t a r t s a t t = 0 t h e K c o n s t a n t s have been chosen 

so as t o e x c l u d e t h i s t e r m c o m p l e t e l y . I f t h e c a l c u l a t i o n p r o c e s s were 100% 

a c c u r a t e t h e n t h i s would s t i l l be t h e case a t t = 1. But i n p r a c t i c e as 

t h e i n t e g r a t i o n proceeds f o r w a r d s f r o m t = 0 t h e c a l c u l a t e d s o l u t i o n (y ) 

s t r a y s f r o m t h e e x a c t s o l u t i o n (y ) due t o r o u n d o f f e r r o r a t each s t e p 

so t h a t by t h e t i m e t = t j ( s a y ) i s r e a c h e d y ^ t ^ ) = y ( t ^ ) + @. I f we 

now imagine t h e i n t e g r a t i o n t o be s t o p p e d and t h e n r e s t a r t e d a t t = t j 

t h e s t a r t i n g v e c t o r w i l l be y c ( t ] _ ) a n d n o t y ^ t - ^ ) a s i t s h o u l d be. 

Now t h e s t a r t i n g v e c t o r determines the K c o n s t a n t s w h i c h means t h e s e must 
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be d i f f e r e n t i f y ( t , ) i s used i n s t e a d o f y ( t , ) . W i t h y ( t , ) t h e K c 1 e l e l 
c o n s t a n t s would be such t h a t t h e c o r r e s p o n d i n g t o t h e term c o n t a i n i n g 

L would be e x a c t l y z e r o . But w i t h y ( t , ) t h i s w i l l n o t be so and K. 
c 1 1 

w i l l now have a s m a l l non-zero v a l u e w h i c h means t h a t t h e term K.e^C. 
l I 

has been i n t r o d u c e d i n t o t h e s o l u t i o n y c ( t ) f o r t > t ^ . Once t h i s t e r m 

has g a i n e d a f o o t h o l d i n t h e s o l u t i o n , no m a t t e r how s m a l l , i t s v a l u e 

r a p i d l y s n o w b a l l s as t i n c r e a s e s because o f t h e v e r y r a p i d g r o w t h o f t h e 

f a c t o r e L ^ ( t > ©) and w i l l e v e n t u a l l y cause y ( t ) "to blowup i f L i s 

l a r g e enough and i f t h e i n t e g r a t i o n proceeds l o n g enough. For r e v e r s e 

i n t e g r a t i o n , on t h e o t h e r hand, t h e e f f e c t o f i n t r o d u c i n g t h i s t e r m i s 

n e g l i g i b l e s i n c e i n t h i s case i t c o n t a i n s a f a c t o r e where t < 1. 

Thus t h e g r e a t e r i s t h e p o s i t i v e v a l u e L t h e more marked w i l l be t h e 

d i f f e r e n c e i n a c c u r a c y between f o r w a r d and r e v e r s e s h o o t i n g and i f L i s 

s u f f i c i e n t l y l a r g e (100 i n o u r example) q u i t e a c c u r a t e s o l u t i o n s 

may be o b t a i n e d by r e v e r s e s h o o t i n g w h i l s t f o r w a r d s h o o t i n g may r e s u l t 

i n blowup. 

Example 3 : Comparison o f R i c c a t i method w i t h s i r > j l e s h o o t i n g (Programs 
4 and 1 r e s p e c t i v e l y ) 

F i r s t we s o l v e d Problem C, Problem A w i t h L = 6, Problem B w i t h L = 15 

and Problem B w i t h L = 20 by b o t h t h e f o r w a r d s i n g l e s h o o t i n g v a r i a t i o n o f 

p a r a m e t e r s method (program 1) and t h e R i c c a t i method (program 4) w i t h a 

s t e p l e n g t h o f h = 1/100 each t i m e . For t h e s o l u t i o n s o f Problem C we 

c a l c u l a t e d t h e e r r o r norms l l e j l , ||e^|| and H e J I t o g e t h e r w i t h t h e 

o v e r a l l e r r o r norm ||e || and t h e s e a r e l i s t e d below: 
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Problem C : h = 1/100 

S i n g l e s h o o t i n g R i c c a t i 

l l e j l 1.11 1.05 

M e J I 86.66 95.18 

l l e j l 4450.34 4452.14 

I I e|| 4451.18 4453.16 

For t h e o t h e r s o l v e d problems we c a l c u l a t e d t h e p e r c e n t a g e e r r o r norms 

i n t h e r e s p e c t i v e s o l u t i o n v e c t o r s and t h e r e s u l t s were as f o l l o w s : 

Problem A : L = 6 : h = 1/100 

% e r r o r a t S i n g ] e s h o o t i n g R i c c a t i 

t = 0 0.04 0.06 

t = 0.5 0.04 0.06 

t = 1 0.09 0.13 

Problem B : L = 15 : h = 1/100 

% e r r o r a t S i n g l e s h o o t i n g R i c c a t i 

t = 0 0.24 0.25 

t = 0.5 0.26 0.27 

t =" 1 0.49 0.51 

Problem B : L = 20 : h = 1/100 

% e r r o r a t S i n g l e s h o o t i n g R i c c a t i 

t = 0 0.23 0.24 

t = 0.5 0.28 0.28 

t = 1 1.05 1.05 
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We see t h a t f o r t h e above problems t h e s o l u t i o n s o b t a i n e d by t h e 

R i c c a t i method a r e v e r y n e a r l y as a c c u r a t e o v e r a l l as t h o s e o b t a i n e d by 

s i n g l e s h o o t i n g . However, a d i f f e r e n c e i n acc u r a c y between t h e two 

methods was r e v e a l e d when we s o l v e d cases o f Problem A. For example, 

t h e t a b l e below shows t h e p e r c e n t a g e e r r o r r e s u l t s f o r t h e s o l u t i o n s o f 

Problem A w i t h L = 15 u s i n g a s t e p l e n g t h o f h = 1/100: 

Problem A ; L = ig K = - j i oo 

% e r r o r a t S i n g l e s h o o t i n g R i c c a t i 

t = 0 0.01 0.01 

t = 0.5 0.02 0.20 

t = 1 0.11 17.10 

I n t h i s case, t h e s o l u t i o n o b t a i n e d by s i n g l e s h o o t i n g i s o v e r a l l 

v e r y a c c u r a t e , b u t t h e R i c c a t i s o l u t i o n , a l t h o u g h a c c e p t a b l e a t t = 0 

and t = 0.5 i s h i g h l y i n a c c u r a t e a t t = 1 . T h i s l a t t e r f a c t i s e n t i r e l y 

due t o t h e e r r o r i n t h e f i r s t c a l c u l a t e d component y ^ ( l ) : t h e o t h e r m i s s i n g 

components a t t = 1 (y„(l) and y _ ( l ) ) were f o u n d a l m o s t e x a c t l y . I n f a c t 
d. o 

t h e c a l c u l a t e d v a l u e o f y ^ ( l ) was 41859 as compared t o t h e e x a c t v a l u e 

o f 22,211. iVoiO £or t h e R i c c a t i program t h e s u r f a c e v e c t o r was u^ = y^, 

U 2 = ^2' U 3 = ^3 s :"- n c e ^ o r o u r P r ° b l e m A th e s e a r e t h e t h r e e components 
g i v e n a t t = 0, and t h e base v e c t o r x was t a k e n t o be x, = y„. = y_, 

1 4 2 5 
X 3 = ^6' ^ e •'•nit-*-3-'- boundary c o n d i t i o n was: 

u ( o ) = a= j ^ O ) , y 2 ( © ) , y3(©)j T w h i l s t a t t = 1 we had: 

u ( l ) + g 2 x ( l ) = b and s i n c e we a r e g i v e n y 3 ( l ) . y 4 ( D a n d J ^ 1 ) 

t h i s became: 
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The c h a r a c t e r i s t i c equations were: 
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\ y 6 0 0 0 
.y.3-

0 1 1 0 

For Problem i s the component a f f e c t e d by the l a r g e s t eigenvalue 

L = 15 and since t h i s element i s i n c h a r a c t e r i s t i c matrix A (see above) 

i t appears i n both o f the forward i n t e g r a t i o n s (5 and v) o f the 

R i c c a t i method (see s e c t i o n I c ) . The surface vector u ( t ) , a t any 

storage p o i n t t , i s then obtained from the equation. 

u ( t ) = U ( t ) . x ( t ) + v ( t ) , which i s dependent on the saved 

values o f U ( t ) and v ( t ) from these forward i n t e g r a t i o n s , so t h a t any 

inaccuracies i n these c a l c u l a t e d values w i l l obviously be r e f l e c t e d 

i n the computed value o f u ( t ) . I f we evaluate the above equation 

a t t = 1 , then the c a l c u l a t e d value o f y ^ ( l ) i . e . o f the f i r s t surface 

component u ^ ( l ) i s given by: 

U l " "11*1 * U 1 2* 2 + U 1 3 x 3 + v x CO 
where a l l values are a t t = 1 and v = jv^» v^, v,^j T . Now t o 

determine p r e c i s e l y how the c a l c u l a t e d value o f y^ (1) was a r r i v e d a t 

we obtained from the program the c a l c u l a t e d values of U1 , U 1 Q, U and 
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at t = 1 and these were as f o l l o w s : 

Problem A : L = 15 : h = 1/100: Calculated Values a t t = 1: 
( c o r r e c t t o 5 decimal places) 

U 11 

12 

13 
v. 

265.56232 

-500.50947 

336.34299 

4 919 309.90000 

The exact values o f x^, and x^ f o r t h i s problem were: 

-7310.3319 

-3325.1946 

3630.5784 

We now see from equation (1) above j u s t how c r i t i c a l i s the 

accuracy of the c a l c u l a t e d values of U^, 0"12, and i n the 

f i n a l c a l c u l a t i o n of u^. For example, an e r r o r of only 1 i n 265 

( ^ 0.4%) i n the c a l c u l a t e d value o f U would cause a corresponding 

e r r o r of more than 7000 i n the c a l c u l a t e d value of u, S i m i l a r l y 

i f the c a l c u l a t e d value o f v.̂  i S i n e r r o r by only 0.5% t h i s causes a 

r e s u l t a n t e r r o r i n u of almost 25,000. I n f a c t , we r e - c a l c u l a t e d 

the values of U.^, l)^, U and v f o r t h i s problem by using the 

reduced step le n g t h o f h = 1/300. t o perform the i n t e g r a t i o n s and 

we obtained the f o l l o w i n g s l i g h t l y d i f f e r e n t values: 

Problem A ; L = 15 : h = 1/300: Calculated Values a t t = 1 
( c o r r e c t ' t o 5"~decimal places) 

U 11 

12 

13 

265.11648 

-499.13561 

335.17387 

4892857.60000 

S u b s t i t u t i n g these values i n t o equation (1) above, and again assuming 

the exact values f o r x^, x 2 and x g gives the value u ^ 28098 which i s 
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a considerable improvement on our c a l c u l a t e d value of 41859 f o r y ^ ( l ) but 

s t i l l nearly 6000 i n e r r o r compared t o the exact value o f 22211. 

To discover why t h i s combination e r r o r t h a t we have j u s t discussed 

d i d not a f f e c t the accuracy o f our R i c c a t i s o l u t i o n s t o the other 

problems solved i n t h i s s e c t i o n , we obtained the c a l c u l a t e d values of 

a l l the elements of ma t r i x U and vec t o r v a t t = 1 f o r Problem C (which 

has a maximum p o s i t i v e eigenvalue o f 20.7), Problem B w i t h L = 15 and 

Problem A w i t h L = 15, each solved by the R i c c a t i method w i t h h = 1/100. 

The r e s u l t s are summarised below f o r comparison: 

R i c c a t i method : h 1/100 : Calculated Values a t t = 1 
( c o r r e c t t o 5 decimal places) 

Problem C Problem B(L=15) Problem"A "(L=15) 

u l l -0.50459 0.00162 265.56232 

U12 1.19204 -1.15484 -500.50947 

U13 1.45812 1.09883 336.34299 

U 2 1 1.45284 0.01973 30.67662 

U22 -0.58717 -8.32769 - 52.11025 

U23 0.03725 7.89736 33.39030 

U 3 1 -1.57826 0.09999 3.19456 

U32 1.81358 -0.64403 - 3.71904 

U33 0.56730 0.51605 2.07486 

V l 
-34.49757 30082.28300 4919309.90000 

V 2 247.00414 211148.6000 412500.90000 

V 3 -246.77351 267J. 69000 54326.60000 

The d i f f e r e n c e between the nature o f Problems C and B and t h a t of A, 

from the p o i n t o f view o f the R i c c a t i method, i s evident from the above 

t a b l e . For Problems C and B, a l l the elements o f the U matrix are very 



-63-

small ($o«\C i n modulus less than 1) so even a large percentage e r r o r 
i n the c a l c u l a t i o n o f these values would not have a serious a f f e c t on 
the c a l c u l a t i o n o f the surface vector u. t\ortov<.r • the components 
of v ector v are much less i n the case o f Problems C and B than f o r A. 

Thus we would conclude t h a t f o r the s o l u t i o n o f some problems the 

accuracy of the s o l u t i o n c a l c u l a t e d by the R i c c a t i method may be 

impaired due t o the e f f e c t of the combination (or loss of s i g n i f i c a n c e ) 

e r r o r described above. This d i f f i c u l t y i s inherent i n the problem 

i t s e l f and i t i s not immediately obvious as t o whether a given problem 

i s l i a b l e t o be s u s c e p t i b l e t o t h i s source o f e r r o r as our considerations 

of Problems A and B (both w i t h a maximum p o s i t i v e eigenvalue o f 15) 

have shown. I t would be advisable, t h e r e f o r e , when using the R i c c a t i 

method, t o f i r s t check on t h e - c a l c u l a t e d values~of the U matrix at 

t = 1. I f any o f these i s large i n mod value then the accuracy of the 

c a l c u l a t e d components of the surface vector might be suspect. 

Since f o r both our Problems A and B above the c h a r a c t e r i s t i c m a t r i x 

C was zero t h i s meant t h a t the quadratic term UCU was missing from the 

R i c c a t i equation and so we were able t o express t h i s equation as a set 

of nine l i n e a r simultaneous d i f f e r e n t i a l equations o f the form 0 = H U + 

where now U i s (9 x l ) and H (9 x 9 ) . We then c a l c u l a t e d the eigenvalues 

of system m a t r i x H f o r each of our problems A and B w i t h the f o l l o w i n g 

r e s u l t s : 
Eigenvalues of, m a t r i x H. ( c o r r e c t t o 3-decimal places)-

Problem A ( L = 15) 
4.618 
2.382 
9.618 
7.382 
2.000 
7.000 
12.000 
14.618 
12.382 

Problem B (L=s 15) 
4.618 
2.382 
9.618 
7.382 

-10.000 
- 5.000 
-12.000 

2.618 
0.382 
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The f i r s t f o u r eigenvaluesare common t o the two cases but examination 
of the remaining f i v e explains why the components of the U m a t r i x increase 
much more r a p i d l y i n mod value i n Problem A compared t o those i n Problem 
B, f o r forward i n t e g r a t i o n . 

F i n a l l y , as a f u r t h e r check on the accuracy o f our R i c c a t i equation 

i n t e g r a t i o n we obtained the eigenvectors corresponding t o the above 

eigenvalues, f o r case A, and then, a f t e r f i n d i n g a p a r t i c u l a r s o l u t i o n 

vector we c a l c u l a t e d the K constants and so determined the exact s o l u t i o n 

of t h i s i n i t i a l value problem. The exact values of U-Q' U12' ^13 

at t = 1 are given below along w i t h our prev i o u s l y c a l c u l a t e d values 

(obtained w i t h a step l e n g t h o f h = 1/300) t o 5 decimal places accuracy: 

Exact Calculated ( k = 1/300) 

u l l 265.05947 265.11648 

U12 -497.82992 -499.13561 

U13 332.91292 335.17387 

H.̂ . I t must be remembered t h a t the c a l c u l a t e d U values from the R i c c a t i 

i n t e g r a t i o n are used i n the forward i n t e g r a t i o n o f the v ( t ) equation 

so t h a t any e r r o r s i n the former w i l l be t r a n s m i t t e d t o the l a t t e r , 

at each step, and t h e r e f o r e a f f e c t the accuracy of the computed vX-t) 

values, and, i n p a r t i c u l a r , t h a t of v ^ ( l ) which appears i n equation 

(1) above f o r the c a l c u l a t i o n of u (1) ( = y , ( 1 ) ) . 
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Example 4: Comparison o f forward m u l t i p l e shooting (program!) w i t h 
reothonormalisation (program 3) 

These two s o l u t i o n methods are very s i m i l a r i n t h a t i n both we 

o b t a i n the s o l u t i o n vector ( t ) o f the problem by " p i e c i n g together" 

the i n d i v i d u a l s u b i n t e r v a l s o l u t i o n v e c t o r s . I n r e o t h o n o r m a l i s a t i o n 

the s u b i n t e r v a l combination vectors ( $ ^ ) ^ r e found by backward i t e r a t i o n 

from /̂ (see s e c t i o n I l l b ) whereas i n m u l t i p l e shooting (see I I I c ) 

the equivalent vectors (B^) are a l l found simultaneously by the s o l u t i o n 

of one m a t r i x equation. 

I n order t o assess the r e l a t i v e e f f e c t i v e n e s s o f these two methods 

we used each i n t u r n t o solve Problem B w i t h L = 20, t a k i n g the number 

of s u b i n t e r v a l s (m) t o be 4 and using a s t e p l e n g t h o f f i r s t h = 1/100 

and then h = 1-/200. I t was found t h a t f o r each" value of h the two 

c a l c u l a t e d s o l u t i o n vectors obtained by the d i f f e r e n t methods were 

v i r t u a l l y i d e n t i c a l a t a l l s t o r e d p o i n t s i n ( 0 , l ) . The percentage 

e r r o r s a t t = 0, t = 0.5 and t = 1 are given below: 

Problem B : L = 20 : M u l t i p l e shooting and reothornomalisation:m = 4 

% e r r o r s 
h = 1/100 h = 1/200 

t = 0 0.24 0.06 

t = ©°5 0.27 0.07 

t = l 1.02 0.38 

The s o l u t i o n provided by the methods t o t h i s problem i s very accurate 

at h = 1/200. 

As a f u r t h e r check, we also solved Problem A w i t h L = 20 by both 

methods, again t a k i n g m = 4 and using a steplength of h = 1/100 i n 

each case. The e r r o r norms a t t = 0, t = 0.5 and t = 1 are l i s t e d below: 
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Problem A ; L = 20 : m = 4 : h = 1/100 

M u l t i p l e Shooting Reorthonormalisation 

II 6 o II 0.69 0.69 

1 1 e I I I 1.39 1.39 
1 1 "X 1 1 

M e l I I 
12626.00 13391.00 

I n t h i s case the m u l t i p l e shooting method i s marginally more 

accurate than the r e o r t h o n o r m a l i s a t i o n a t t = 1. For both methods, 

|| e^|| was e n t i r e l y due t o the inaccuracy i n the calculated value o f 

y , ( 1 ) , the values o f y„(l) and y _ ( l ) being found almost e x a c t l y , l d o 
F i n a l l y ,- we solved Problem A"with L=22 using, h = 1/100 and m = 4. 

The two c a l c u l a t e d s o l u t i o n s were v i r t u a l l y i d e n t i c a l t h i s time w i t h 

the f o l l o w i n g percentage e r r o r s : 

Problem A ; L = 22 : h = 1/100 : m = 4 
M u l t i p l e Shooting and r e o r t h o n o r m a l i s a t i o n 

% e r r o r 

t = 0 0.02 

t = 0.5 0.03 

t = 1 28.81 
. . . 

The e r r o r a t t = 1 was again e n t i r e l y due t o the inaccuracy i n the 

c a l c u l a t e d value o f Co^poi'vi.^fc 

We would conclude from the above r e s u l t s t h a t there i s no s i g n i f i c a n t 

d i f f e r e n c e between the accuracy o f the m u l t i p l e shooting and the r e -

othonormalisation method f o r the s o l u t i o n o f problems of t h i s type. 

However, although we could not d i s t i n g u i s h between the two methods as 

regards accuracy, i t was found t h a t the program running time f o r the 



-67-

m u l t i p l e shooting method was about 20% longer than f o r the r e o r t h o n o r m a l i s a t i o n 
method w i t h the same step l e n g t h . Part o f t h i s time d i f f e r e n c e might 
be a t t r i b u t e d t o the lack of s o p h i s t i c a t i o n of the programs themselves 
o p e r a t i n g t o the disadvantage o f the m u l t i p l e shooting, but i t seems c l e a r 
t h a t r e o r t h o n o r m a l i s a t i o n i s the quicker o f the two methods. 

Example 5 : Comparison o f i n t e g r a t i o n schemes 

I n examples 1 t o 4, a l l o f the i n t e g r a t i o n s of the system equations 

i n a l l o f the programs were performed by the Lawson Runge Kutt a method. 

We now compared the r e l a t i v e e f f e c t i v e n e s s o f t h i s i n t e g r a t o r w i t h the 

l i n e a r 4 step method, d e t a i l s o f both o f which were given e a r l i e r i n t h i s 

s e c t i o n . I n order t o do t h i s , we again solved Problem B w i t h L = 20 

by the r e o r t h o n o r m a l i s a t i o n method (program 3) w i t h m = 4 and h = 1/100, 

but now employing the l i n e a r i n t e g r a t o r i n s t e a d of the Runge Kutta t o 

perform the homogeneous and inhomogeneous i n t e g r a t i o n s . The accuracy 

o f the calculated s o l u t i o n vector obtained was then compared w i t h those 

from example 4, as shown below: 

Problem B : L = 20 : m = 4 : Percentage errors:Reorthonormalisation 

Runge Kutta Linear 4 step 
K- 1/100 h = 1/200 h = 1/100 

t = 0 0.24 0.06 0.01. 

t = 0.5 0.27 0.07 0.02 

t = 1.0 1.02 0.38 0.11 

We see t h a t f o r t h i s problem the l i n e a r 4 step method produces a 

s o l u t i o n vector w i t h h = 1/100 which i s o v e r a l l more accurate than t h a t 

obtained by using the Runge Kutta method w i t h h = 1/200. 
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As a follow-up t o example 1, we r«-solved Problem B w i t h L = 85 
by the r e o r t h o n o r m a l i s a t i o r i method employing the l i n e a r 4 step i n t e g r a t o r 
w i t h h = 1/192 and m = 8. Comparison o f t h i s c a l c u l a t e d s o l u t i o n vector 
w i t h the corresponding one obtained using the Runge Kutta i n t e g r a t o r 
gave the f o l l o w i n g percentage e r r o r r e s u l t s a t t = 0, t = 0.5, t = 1: 

Problem B : L = 85 : h = 1/192 : m = 8. 
Percentage e r r o r s : Reorthonormalisation 

Runge Kutta Linear 4 step 

t = 0 0.07 0.01 

t = 0.5 0.08 0.01 

t = 1 9.92 4.67 

Again the s o l u t i o n vector obtained by employing the l i n e a r 4 step 

i n t e g r a t o r i s o v e r a l l the more accurate o f the two. 

The Lawson Runge Kutta has got a higher l o c a l order of accuracy 

than the l i n e a r 4 step method (5 as compared t o 4) but here we are concerned 

w i t h the t o t a l accumulated t r u n c a t i o n e r r o r i n c u r r e d by each method. 

As regards s t a b i l i t y , both methods have i n t e r v a l s o f absolute s t a b i l i t y 

which are negative : (-5.7, 0) f o r the Lawson Runge Kutt a and (-0.3,0) 

f o r the Adams-Bashforth e x p l i c i t 4 step method (see Lambert ..(..7_).-)But 

f o r the problems being considered here, a l l the eigenvalues are p o s i t i v e , 

i . e . h = h \ > 0 f o r a l l ̂  , which means t h a t both methods are absolutely 

unstable. 

However, the l i n e a r 4 step method i s r e l a t i v e l y s t a b l e f o r any 

h ^ -0.214 (see Stroud 12(a)) so t h a t the i n t e g r a t i o n s performed by 

t h i s method were r e l a t i v e l y s t a b l e . This meant t h a t although the modulus 
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of the accumulated t r u n c a t i o n e r r o r o f the method d i d not decay as 

the i n t e g r a t i o n proceeded forward from t = 0, i t s r a t e o f growth was 

l i m i t e d t o a r a t e s i m i l a r t o the r a t e of increase o f the modulus o f 

the exact s o l u t i o n . For the Runge Kutta method, however, there i s no 

comparable d e f i n i t i o n o f r e l a t i v e s t a b i l i t y a p p l i c a b l e as t h i s i s a one-

step method (see Lambert ( 7 ) , Chapter 4 ) . This explains the marginally 

superior accuracy o f the s o l u t i o n obtained by using the l i n e a r 4 step 

i n t e g r a t o r over t h a t obtained by the Runge Kutta method, i n the s o l u t i o n 

of the above problems. 
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V CONCLUSIONS 

The conclusions which can be drawn from the p r a c t i c a l numerical 

experience, gained i n s o l v i n g the problems o f the previous s e c t i o n , 

can be summarised as f o l l o w s : 

(1) The r e s u l t s show t h a t microcomputer programs can be used t o 

implement the t h e o r e t i c a l methods described i n the l i t e r a t u r e f o r the 

numerical s o l u t i o n o f both w e l l and i l l - c o n d i t i o n e d l i n e a r boundary 

value problems. With e x t r a add-on memory i n the form o f micro-drives 

(up t o 700K) now a v a i l a b l e , storage capacity w i l l no longer be a 

serious problem but the c h i e f drawbacks s t i l l remaining w i l l be:-

(a) l i m i t e d numerical accuracy. A l l present microcomputers 

st o r e numbers t o an accuracy o f only 9 or 10 s i g n i f i c a n t 

d i g i t s 

(b) speed o f c a l c u l a t i o n . I f using a small step l e n g t h h, 

program running times can be sever a l hours. This i s 

p a r t i c u l a r l y t r u e o f the Spectrum. 

Both of the above l i m i t the range o f problems t h a t can be t a c k l e d . 

(2) The choice of i n t e g r a t i o n method t o be used i s obviously 

important since a l l the methods f o r s o l v i n g l i n e a r boundary value 

problems i n v o l v e several i n t e g r a t i o n s o f the system equations, so 

t h a t any e r r o r s i n c u r r e d here w i l l a f f e c t the accuracy o f the 

c a l c u l a t e d s o l u t i o n vector obtained. The type of boundary value 

problem t h a t we have considered throughout i s one where a t l e a s t one 

of the eigenvalues of the problem matrix w i l l be p o s i t i v e i n r e a l 

p a r t , whereas a l l i n t e r v a l s o f absolute s t a b i l i t y f o r both l i n e a r m u l t i -

step and Runge Kutta methods are s t r i c t l y negative. Therefore^assuming 

the programs possess no f a c i l i t y f o r step c o n t r o l , when choosing an 

i n t e g r a t i o n method we should ignore absolute s t a b i l i t y c h a r a c t e r i s t i c s 

and i n s t e a d opt f o r a method which has: 
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(a) as l a r g e as possible l o c a l order of accuracy 

(b) as l a r g e as possible i n t e r v a l o f r e l a t i v e s t a b i l i t y 

extending on both sides of t = 0, so as t o cat e r f o r both 

p o s i t i v e and negative eigenvalues. 

(3) No s i g n i f i c a n t d i f f e r e n c e was found between the m u l t i p l e shooting 

and r e o r t h o n o r m a l i s a t i o n methods as regards accuracy of s o l u t i o n s obtained, 

but the r e o r t h o n o r m a l i s a t i o n method c e r t a i n l y proved t o be the quicker 

of the two i n terms of program running time and t h i s l a t t e r f a c t could be 

important commercially where cost has t o be taken i n t o c o n s i d e r a t i o n . 

For the s o l u t i o n o f an i l l c o n d itioned problem^ w i t h a l a r g e p o s i t i v e 

dominant eigenvalue^reverse m u l t i p l e shooting was found t o be p a r t i c u l a r l y 

e f f e c t i v e , t h o u g h some success was .also-achieved- w i t h the reorthonormalisation" 

method by i n c r e a s i n g the number o f r e o r t h o n o r m a l i s a t i o n s employed. 

The R i c c a t i Transformation method produced acceptably accurate 

s o l u t i o n s t o some o f the t e s t problems but i t was found t h a t f o r other 

problems the method compared unfavourably w i t h s i n g l e shooting due t o a 

loss of accuracy caused by combination e r r o r s i n c u r r e d i n o b t a i n i n g 

the surface vector u ( t ) from the equation: 

u ( t ) = U ( t ) . x ( t ) + v ( t ) , using the s t o r e d values o f U(t ) and 

v ( t ) from the forward i n t e g r a t i o n s and those o f x ( t ) from the backward 

i n t e g r a t i o n . The greater the absolute r a t e o f increase o f the elements 

o f m a t r i x U ( t ) the more-serious was the a f f e c t o f t h i s source of e r r o r ^ 

on the computed s o l u t i o n . 

(4) Although our r e s u l t s show t h a t reasonably accurate s o l u t i o n s can 

sometimes be obtained from the m u l t i p l e shooting and r e - o r t h o n o r m a l i s a t i o n 

methods by employing equal s u b i n t e r v a l s , i t would obviously be p r e f e r a b l e 

t o be able t o vary the lengths of the s u b i n t e r v a l s . Indeed, f o r the 

s o l u t i o n of more i l l c o nditioned problems t h i s would be e s s e n t i a l . I t 
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would c e r t a i n l y be po s s i b l e t o incorporate some of the r e - o r t h o n o r m a l i s a t i o n 
t e s t s i n t o the programs used i n IV, so as t o determine a b e t t e r p a r t i t i o n 
of the range, but t h i s would i n e v i t a b l y g r e a t l y extend running times and 
so f o r the Spectrum, a t any r a t e , would be i m p r a c t i c a l . Looking t o the 
near f u t u r e , however, when operation speeds o f a l l microcomputers w i l l 
no doubt be g r e a t l y increased, t h i s would then c e r t a i n l y be a p r a c t i c a l 
p o s s i b i l i t y and be worth i n v e s t i g a t i n g . 

(5) As regards the longer term f u t u r e s o l u t i o n of l i n e a r boundary value 

problems, one p o s s i b l e way i n which s o l u t i o n times could be g r e a t l y reduced 

would be t o employ p a r a l l e l (as opposed t o s e r i a l ) computers, so enabling 

us t o c a r r y out several p a r t s o f a program simultaneously and then combine 

the r e s u l t s from each. 

The m u l t i p l e shooting method ( i n which, f o r N s u b i n t e r v a l s , the N 

s i m i l a r i n i t i a l value problems could be solved simultaneously) and the 

R i c c a t i Transformation method ( i n which the R i c c a t i equation and the 

associated v equation could be i n t e g r a t e d forwards simultaneously) lend 

themselves i d e a l l y t o t h i s concept of p a r a l l e l computation. P a r a l l e l 

computers are already a v a i l a b l e i n mainframe form (e.g. the Control Data 

Cyber 205). I f and when t h i s concept can be extended t o micro-computers, 

s o l u t i o n times f o r l i n e a r boundary value problems w i l l be g r e a t l y reduced, 

so t h a t even w i t h present o p e r a t i o n speeds more s o p h i s t i c a t e d programs, 

such as those u t i l i s i n g r e - o r t h o n o r m a l i s a t i o n t e s t s and v a r i a b l e step 

lengths, w i l l become f e a s i b l e . 

(6) F i n a l l y , i f designing a 'package' t o be used as an automatic s o l v e r 

of l i n e a r boundary value problems i t would be inadvisable t o r e l y s o l e l y 

on one s o l u t i o n method. I d e a l l y , the program should incorporate two 

methods such as a v a r i a n t o f m u l t i p l e shooting and r e - o r t h o n o r m a l i s a t i o n , 

each method t o be used t o solve the problem w i t h several d i f f e r e n t step 

lengths and the vect o r of i n i t i a l missing values computed by each method 



-71-

f o r each step l e n g t h . Only when these two vectors showed acceptable 
agreement could the user be s a t i s f i e d t h a t the average of the 
corresponding c a l c u l a t e d s o l u t i o n vectors, obtained from the two methods, 
would provide an acceptably accurate s o l u t i o n t o the given problem, 
a t l e a s t over p a r t o f the range. However, i f the problem i s very i l l -
c o n ditioned then the accuracy o f the c a l c u l a t e d s o l u t i o n vector towards 
the end o f the range might s t i l l be suspect. 
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VI APPENDIX 

1.2 Consider the n order d i f f e r e n t i a l equation 

y = FCt, y, y, y, n-1, , _ . . . o« n ,y ) where F i s l i n e a r xn y, y, y^ y 

Let yx = y, y 2 = y, y g = y" 

y i = y = y
2 

y n = y n - l Then 

2 = y y 3 e t c 
n 

t h 
y = y = F, which i s l i n e a r i n y , y y . Hence the given 
n x £ *- n 

n order d i f f e r e n t i a l equation can be w r i t t e n i n the form: 
— — ~ 

,— — 
o 

y l 0 l 0 . 0 y i 0 

0 
y 2 0 0 1 0, 0 y 2 0 

a 
y 3 0 0 0 0 0 o _ y 3 i i 

n 

< 

o 
y n 

_ — 

V i 
i 

< 

o 
y n 

_ — 

o 
W 

l 

o 
v< 
2 

o 
< 
3 

o J 
K 
n 

y n 

where ( i = 1 n) are constants, 

i . e . i t can be w r i t t e n i n the form: y = Ay + f of our problem I ( i ) , 

1.3 See Roberts and Shipman ( 6 ) , Chapter 5. 

1.4 We have: y = Ay + f ( I i ) and x = —A Tx ( i i i ) 
Now: — (x . y ) = x . y + x .y 

T T T = x A ( A y + f ) - ( A x ) . y 

T T = x Ay + x f 
T 

= x f 

T A 
x Ay 

t = 1 

t = o 

d/ T 
dfc 

d t 
t = I 

t = o 

x . f d t 
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1 

^ _T d < x T - y ) - = 

T 
x. .f.dt 

T 
x „f d t 

1 
z^? x T ( l ) . y ( l ) - x T ( o ) . y ( o ) = J " X

T„f.dt 
o 

as r e q u i r e d . 

1.5 Consider the inhomo<je.t\€oi£ system of e q u a t i o n y = Ay + f . The general 

s o l u t i o n vector y ( t ) of the system i s given by the v a r i a t i o n of parameters 

formula as: 

j N - 1 ( s ) . : y ( t ) = N(t)„y(tQ) + N ( t ) | N ( s ) . f ( s ) ds (1) 
t o 

where t = t i s the i n i t i a l time. Likewise, the general s o l u t i o n vector of the o 
corresponding homogenfouf system, f o r which f ( t ) = o i s given by : y ( t ) = N ( t ) . y ( t o ) , 

N ( t ) , the fundamental m a t r i x of horaogen«oyS v e c t o r s , s a t i s f i e s the mat r i x 

equation: N - AN, N ( t Q ) = I , since N ( t ) i s obtained by i n t e g r a t i n g the 

system y = Ay forwards s t a r t i n g from the Kronecker d e l t a vectors at t i t , 

From t h i s we can deduce (see jPemma) t h a t the general s o l u t i o n vector of the 
T —T (2} a d j o i n t system x = -A x i s given by: x ( t ) =• N ( t ) . X ^ Q ^ » where 

-T - I T T -1 C 1 -T N = (N ) or (N ) and N ( t ) = 1 . 
T 

Now m u l t i p l y ( 1 ) by x ( t ) : 
t 

x T ( t ) . y ( t ) = x T ( t ) N ( t ) y ( t ) + J x T ( t ) . N ( t ) N _ 1 ( s ) f ( s ) d s (3) 
t o 

From ( 2 ) : x T ( t ) = x T ( t 0 ) ^ N _ 1 ( t ) 

x T ( t ) 0 N ( t ) = 3 t T ( t o ) (4) 
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Substitute i n (3): 

x T ( t ) . y ( t ) = x T ( t J y ( t J + J" x T ( t ) N(t). N - 1(s) .f (s) „ds (5) o o 
to 

From (2), putting t = s; 
x(s) = N(s)" T. x ( t ) 

But from (4) : x ( t ) = N T ( t ) . x ( t ) . 
o 

. . x(s) = N~ T(s). N T ( t ) . x ( t ) 

x T(s) = xT(t)„ N(t). N _ 1(s) 

Substitute i n (5); 
t 
r xT(t)„y(t) = x T ( t ).y(t ) + j x A ( s ) . f ( s ) ds 

o o 1 

t 
o 

i.e. x T ( t ) . y ( t ) - x T ( t o ) . y ( t o ) = J " x T ( s ) . f ( s ) ds t 
o 

which reduces to the basic adjoint identity i f we l e t t = t . 

Lemma: Let the general solution vector of the adjoint homogen-eowS system 
T 

x = -A x be given by x( t ) = M(t). x ( t Q ) wherfc M(t) satisfies the equation; 
T 

M = -A M (6). where M(t ) = I . 
o 

Now M = ( N _ 1 ) T ^ L M T = N - 1 .7$t M-T- -= (N _ 1) o T -1 " -1 -1 •s^ «n = ~N .N „N , using N.N = I 

=7» MT = -N_:Lo A C* N = AN) 
^ T -1 T #> M = - A (N ) 

-1 T 
Thus M = (N ) satisfies equation (6). 
Also N(t ) = I ̂  N~ T(t ) = I M(t ) s I o r o f o 
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,° „ The general solution vector of the adjoint system can be written 
x ( t ) = N ^ t ) . x(t ) where N~ T(t ) = I . 

1.6 Consider the system of diff e r e n t i a l characteristic equations: 
u(-t) = A(t)u + B(t)x + F(t) 1 (1) 
x( t ) = C(t).u + D(t)x + G(t) J (2) 

Suppose this system is integrated forwards from t = o starting from u(o) = a 
(fixed) and x(o) = s (variable). For each choice of s, we obtain u(t,s) 
and x ( t , s ) , for any t > o. By eliminating s between these two we can 
obtain, for any value of t , a connection between u(t) and x ( t ) . Suppose 
this connection is given by: 

u(t) = U(t) x ( t ) - { - v ( t ) (3)^-for some matrix U and some vector 

Now from (3): u = Ux + Ux + v 
Substitute from (1) and (2): 
Au + Bx + F = Ux + U £cu + Dx + GJ + v 

Substitute from (3): 
A(Ux + v) + Bx + F = Ux + UC(Ux + V) + UDx + UG + v 

ÂU + B - U - UCU - UDJ. x = UCv + UG + v - Av - F 
This equation must be true for a l l x ( t ) . 
' ." . AU + B - U ~UCU - UD = o 
and UCv + U G + v - A v - F = o 
i.e.U=B+AU=UD- UCU (4) (Riccati) 
and v = (A-UC)v - UG + F (5) 

From (3): u(6) ss U(o)x(o) + v(o) where u(o) = a 
» 0 » v(o) = a corresponds to U(o) = o „ 
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Thus, corresponding values of U(t) and v( t ) w i l l be obtained by integrating 
equation (4) forwards from U^o) = o and equation (5) forwards from v(o) = a. 

108 For a detailed discussion of i n i t i a l value problems consult J.D.Lambert 
(7). 

2.1 For a proof of this result consult Noble (12). 

2.2 I f Ms L + L,N(1) is non singular and i f rank (L . L,) = n and rank 
o 1 ° o' 1 

( L q + L^) = m<n, where n is the dimension of the problem^ then <*C (V) $ K0 < 
where i n general we may assume that K is small compared with 

«^\^(0j . The above result holds for (L + L ) singular or non singular -̂ o 1 

and i t may be found i n George and Gunderson's paper (18). 

2.3 For a discussion of this result consult Lambert (7), Chapter 1, 

3.1 Gram Schmidt process; In order to convert the linearly independent 
k J k vector set y (l\=. 1 N) into the corresponding set 2 (k-s 1 N) we 

must define the auxiliary vector set °<_ and a scalar set w, , . In 
kk 

practice, the transformation is then effected by applying the following 
set of equations recursively (k=- 1.—N) i 
^ k = yk ( y \ B S) g S ( i ) 

s=l 

k c<_ 2 = ( i i i ) w kk 
1 1 1 2 1 Thus from y we obtain and w and hence 2 . Then from y and S we 

^ 1 1 2 2 k k obtain <^ and w,̂  and hence 2 etc. Each 2 (k -=s 1_.JN) depends on y and 
1 k - l s s on 2 „ Z , where each 2 (s = 1 — k-l) depends on y , so that in 

k l k effect 2 depends on y __, y . This is why the transformation matrix 
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P(N x N) which converts the set Y = (y y J into the set 2 = 
is lower triangular i.e. 

11 
1 P 21 r22 

31 P P 32 33 

"Nl P P N2 N3 NN 

1 
y 

r 
'N 
y 

o 

or 2 = PY where 2 and Y are each (N x 1) with components (n x 1). 
For the operation of Conte's method of re-orthonormalisation i t is more 
convenient to have the transpose of the above equation 

i.e. 2T T T where now 
X e i r 

T T T P is upper triangular and 2 and Y are both (1 x N) 

3.2 Justification of Conte's Re-orthonormalisation method 

y D ( t ) y l ( t ) y k ( t ) y m _ l ( t ) 

, *o V, . „ , >W , , /m-1 
i » • o 1 } 1 « f-
t t n t n t, t, , t „ t , tm o 1 2 k k+1 m-2 m-1 _ 

In each sub interval |t,^ % t , A 1 | , k = o m-1, the solution vector 
y. ( t ) was given by: k 

v*> = \<v + V t J - ^ k f o r \ - t * * k + r ;'^here 

V ( t ) and U ( t ) were the inhomogen^o^s and homogeneous vectors respectively, K k 
obtained and stored for that sub interval. 
Let us denote the solution vectors immediately before and after the f i n a l 
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re-orthonormalisation at t = t by y ( t -) and y ( t +) respectively. 
m ra m 

Then y ( t +) = V ( t ) + U ( t ) V m new m new m » m 0) 

where = Y' was the vector whose components were determined by 

matching with the given terminal values of the problem, and the s u f f i x 

'new' denotes the vectors obtained after the re-orthonormalisation. Now 

from the re-orthonormalisation process we have: 

V ( t ) = V ( t ) - U ( t ). \J (2) new m old m new m m 

and U ( t ) new m U . ,(t ). P old m m (3) 

where P and were the orthonormalisation matrix and projection vector 

respectively used at t = t . 

Substituting (2) into (1)-gives-us: 

y ( t m + ) = V o l d ( t m ) - U _ ( t J , V / + U _ ( t J . tff m new m m new ra m 

V f t ) + U ( t ) old m new m m mj 

And substituting (3) into the above gives; 

y ( t +) = V _ _<t ) + U f t ).P T (V - W m old m old m m • |_ m (4) 

Now i f we define ^ , by 
m-1 

m-1 m • 1 v m ml 
becomes; 

then equation (4) 

y ( t m + ) = v . . ( t ) + u . , ( t ) y 
m old ra old m m-1 m 

But for any t i n t „ t . m-1 ml we have: 

y ( t ) = V _ ( t ) + U f t ) _ , Jm~l m-1 m-1 ' m-1 

(5) 

y ( V > = W V + U o l d ( V ° ^ m ~ 1 (6) 9 

ŝ k«.r«. 'old' ĉ t'vc b̂ 5 Victors •bg.̂ t.r-e re or^kv ̂  or^eJ Irion, ab fcr=- t 
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Thus by comparing equations (5) and (6) we see that the definition of 

in terms of T 1 and P as given i n equation (4 ), ensures 
that at t = t : y(t +) = y(t -) i.e„ that y(t) i s continuous just m m m 
before and just after re-orthonormalisation at t ?= t . Also since 

m 
y , ( t ) is continuous i n m-l in t , , t I m-l' m j the combination vector as 
found for continuity at t , must be constant throughout this sub interval 

m 
so that: 

y ( t •+*) = V ( t .) +U ( t . ) V -.'wl̂ nz. Vcw4 cU-*v0fc<LS m-l new m-l new m-l » m-l > ^ ^ w o t ^ 
v a - c b e r S « - f t < . r nto«-fc-ka n o r ^ f t \ a b t s t"„ • 

The above argument can now be repeated at the nodes t = t m-l' m-2 
successively, and we see that at each node the §. vector Qs obtained from 
the iteration equation: ^ = p T \)f «=\,v/ 1, i = (m-i) o, and as 

/
 1 1 + 1 L l-r\ j " 

employed in Contes method, ensures the continuity of the y ( t ) vector just 
before and just after each re-orthonormalisation, and V. must be constant 
throughout i t s sub interval. In particular^ i n the f i r s t sub interval 
it , t , l the vector Y Qs obtained from V V and P, at t„ is applicable o 1 o ̂  1 1 1 1. 
at t and so we have: o 

M ( t ) = V ( t ) + ' U ( t ) V where o o o o o • o 
V o ( V = [ S - - - ̂  O 

Kronecker delta vectors i.e. 
r 1 

'r+1 

n 
where ^ = 

r 

I " ' 

- — o J T and\J ( t ) are the special o o 

r 

n-rl 
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Hence ~~~ y n } ' t h e v e c t o r o f missing i n i t i a l values for the 
problem. 

Thus, the fact that the original ^ vector, V^, is found by matching 
with the given terminal values of the problem and that the subsequent ^. 
vectors (obtained from ̂  by backward iteration using the stored P. matrices 

X x 
and vectors) ensure the continuity of the individual sub interval 
solution vectors y i ( t ) from ^ t ^ . ^ , t ^ J through to | t Q , t ^ , means that 
these solution vectors form a continuous solution vector y ( t ) which is the 
required solution of the problem over the complete interval ^ t f J . 
(A detailed discussion of the above may be found i n Conte's paper (13)). 

3.3 Let s = t - t . , (1) where A. = t . - t . - - i - l - i — i " 1-1 
Ai. th 

= length of I sub interval 
( i = 1__ 

and l e t y ( t ) = A(t)y + f = F(t), 

In any sub interval, from (1); 

dt ~ A 
t 

Also for any function F(t) : dF = dF . ds 
dt ds dt 

dF 
AL ds 

~ S — . — dt A. ds 

In any sub interval; dy_(t) = F(t) 
dt 

1 d o y(s) = F(s) where t = &.s + t. 
A± ds 1 1 - 1 

/ ( s ) = ^ F ( s ) 

i.e. y a(s) = A ^ A ( s ) y ( s ) + f ( s ) J (2) 
where ̂  denotes d , and o$ s g la ds 
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Thus to find the successive general solution vectors for the N 
sub intervals we can integrate the different sets of equations (2) ( i = 1. 
over the same interval fco,l} each time. For example, i n the f i r s t sub 
interval £t Q > t^jj, ,i = 1 so t = A^s + tQ, where = t ^ - t Q is known. 
We transform the differential equations from t variable to s variable by 
using this substitution and then integrate forwards the set y^"(s) = 

A^.[A(s).y(s) + f(s)J over £o,l}. 

3.4 For each sub interval separately ( i = 1__N) we have the fundamental 
matrix N^(s), the particular solution vector V/(s), the general solution 
vector y^(s), and the combination vector IL = y^(°), o ̂" s 1. 
The solution interval vectors to be matched up are given by: 

y i(S) = N i(a)B i + V ( s ) (1) 
where N.(©) = I , W.(O) =0 ( i = 1—N) 

X X (o < s < 1) 

At the internal nodes t , . t , we have for continuity: 
1 " N-l 

N.(1)B. + \J. (1) = B. , x 1 1 x+1 

or W. (1) = -N.(l) B. + B. , (2) , i = 1_JN-1) x x x x+1 ' V / 

Also the given boundary conditions of our problem 
viz. L Qy(o) + L^yCl) = C now become 
Lo y i ( 0 ) + VN(1) = C 

^ Lo B i + L i [ NN ( 1 ) B
N
 + V 1 ' ] * C ; Wo^~- ® ; 

=*> L o B l + L 1 N N ( 1 ) B N = C " L 1 W N U ) ( 3 ) 

Equation (3) plus the set of equations (2) can be written together as; 



- A l l -

-N I 
-N, 

-N3 I 

L B, 

N 

1 
C - L W 1 N 

W N-l 
(4) 

where a l l N. matrices and W vectors are evaluated at the end point (s=l) i i 
of their respective sub intervals and are (n x n) and W are (n x 1). 
Now i f we denote the matrix on the L„H.S„ of the above equation (4) by E(N x N) 

and we dofrirve the- matrices L Q (N X- N), (N x N) and N (1) (N x N), as 
follows: 

X 

O 

each element 
(nxn) 

If 
1 

0 
- I 0 

- I 0 
- I 0, 

\ 
\ 

\ \ 

each element 
(nxn) 
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N (1) — 
^ ( 1 ) 

N 2 ( l ) 
Ng(l) 

N N(D 

each element 
(nxn) 

and we also define the vectors C (N x 1), and W(l), (N x 1), as shown: 
C 
0 W (1) 

0 
w 2(D 

w N(D 

where each element is (n x 1), then i t can be seen that; 
E = L + L . N (1), o 1 

Further, i f we denote the vector on the R.H.S. of equation (4) by T then: 

T = C - L x .W(j) 

Therefore equation (4) becomes: 
B =- C - L" [ L + L . N (1) 

o 1 
W (1) (5) 

[BX, where B = I B„ , B 2 _ _ B„| is (N x 1) 
with each element (n x 1) 0 

Finally (5) can be reduced to the form given i n the text viz: M 

where M = L + L, N (1), T = C - L, W (1), o 1 1 

Thus for multiple shooting, with N sub intervals, our linear boundary value 
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problem ( I ) could be restated as follows: 

Solve Ŷ  = A(s) Y(s) + F (s) over £o,l} 
subject to L q „Y(o) + L Y (1) = C 

where L , L are the giant (Nn x Nn) matrices previously defined and 

Y(s) y„(s) y,(s), y„(s), N 
F(s) N 

A (s) A,(s) 86 o A„(s) 

o A (s) 
N 

where Y (o) = B. 

3.5. Corresponding to the vector norms //x// 1 = ^ / X l / and //x// 
i = l 

= max | x^| where x is (n x 1) we have the associated matrix norms: 
1 n n 

= max /a. ./ and //A// = max 
1 J ~0 J 

(n x n̂ „ 

when? A 1$ 
i=J j = 1 

We can now define the measure function yu[A) of matrix A corresponding 
to these norms as: f* 

max 
j 

n 
a. . + and 
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i 
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n 

a. . + 11 

In the following, either norm is applicable, 
Gunderson (18), now obtains the results: 

1 

/ / N ( l ) / / <T exp Jyu[A(s)J. ds and 

N_1(t) IB exp 
1 

J yu [ -A(s)j ds, 
where N(t) is the fundamental 

matrix of homogen-̂ ouj vectors i n single shooting. Using the condition 
number definition 

(VJ = //A//. //A V/ we thus get: 

^ _ 1 >j. < exn C JYy*. [A( s )j • +- [ -A( s )] ds ? 
J ( I ) 

Now from (2.2): 

«<_£LO + LX N(1)J <T K 
compared to «<L£N(1)Jo 

From (1) and (2) k̂&<-«|©r-< . 

c£ [N(1)J (2), where K is assumed small 

[ L o + L 1 N ( 1 ) <: K exp 
1 . 

[ A ( 8 ) ] + fk [ - A ( S ) ] J ds > (3 

Thus the exponential ^rm on the R.H.S. of (3) provides an upper bound for 
c ^ _ j j j Q + L j N ( l ) j } which is the condition number of the solution matrix M in 

single shooting. 
Now to consider multiple shooting with N sub intervals we have from 

(3.4): 



N (1) 

_ -1 
N (1) 
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N 2 ( l ) 

o 
o 

N N(1) 
r - i 
N 

i ( i ) N -1 ( 1 ) o 
o N"1 ( 1 ) 

Thus //N ( 1 ) / / = max //N. ( 1 ) / / , K = 1 _ N 
k k 

- _ 1 -1 and //N ( 1 ) / / = max //N „ ( 1 ) / / , j = 1_„.N 
j J 

f _ ^ „ .... ... -
.'. ̂ l N ( l ) j = max / / N k ( l ) / / . max //N A ( 1 ) / / 

But ^ exp y ^ U > [ A ( S ) ] . ds and 

k-l 
-1 

//N. (1)// ̂  exp / A [ " M s ) ] ds since the sub 

> 1 

interval of integration for N (s) is 
k 

and likewise for N.(s)„ 
3 

[ - 1 
1 N (1) exp } max 

k 
J [A(S)1. ds + max J" /U f -A(s)1. ds ( (4) 
t, , J j t . . J 

Also^ analogous to result (2„2)̂ we have for multiple shooting: 
where is small compared to ^ L L o + L-

[ i d ) ] 
Thus: < | _ L O + L X . N 

in upper 
K̂o'clk i S the Sell uki cm matrix ?^ -for t^ulWipk. sWooti. 

E^(5)^where E, the exponential terra on the 
R„H„S„ of (4), provides an upper bound for the condition number of L q + N(l) 
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Now in considering the size of E, i f eithery^. C A ( S )3 o r £ -A(s)) is 
negative over C°»l} then i t can be ignored since i t s contribution w i l l be 
very small. Thus we need only consider the case where both measure 
functions are positive, as shown. The total areas under the graphs of 

/A^[(A(s))]and ^A^-A(s)) , from t = t to t = t are denoted by «»̂ , and 

P respectively. 

K t J Kt„) 

Suppose that the maximum sub interval areas are °^ a n d &4 respectively as 
shown. 
Then we have, from equation (3): 

for single shooting oC^ M̂ j K. exp («<! + p), 
whereas for multiple shooting, from equation (5): 

<̂ [M] ̂  Kx . exp + < 2 ) . 

Therefore, i t is very l i k e l y that 

since * + < < °C + 1 2 
for any partition. 

This means that, theoretically, any partition for multiple shooting 
should produce a better conditioned solution matrix M than the solution 

matrix M used in single shooting. To ensure that *( M is the least possible 
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for fixed N i.e. to obtain the best possible conditioning with a given 
number of sub intervals, we require the partition such that ("^ +°^2) is 
a minimum. Thus i f i t were known thatyU^V(s)J and ^A.|-A(s)j both 
monotonically increased over the f u l l interval £tQ, t ^ then, i n order 
to minimise {"C + " O , as t increased towards t the lengths of the 
sub intervals would have to be progressively decreased. 

3.6 Suppose that we have started the solution of the problem by using the 
normal transformation U(t) over sub interval ( o . t ^ } , and at t = t we wish 
to switch to U " L ( t ) . Let U(t ) = K, so that at t = t : 

(1) 
K = B + AK - KD - KCK , since K satisfies the normal Riccati 

equation (ICV). Now assume that Wf.^) = J, then: 
0 

J = C + DJ - JA - JBJ (2), since J w i l l satisfy the inverse 
Riccati equation ( I l l d i ) . 
From (2): 
-1 ' -1 -1 -1 -1 -1 J J J = J C J + J D - A J - B 

^ - J _ 1 J j " 1 = B + AJ _ 1 - J - 1 D - j " 1 C j " 1 (3) 

But _d (J. j " 1 ) = _d (1) = 0 
dt dt 

-==^ J. (J + J^ . J = 0 where ̂  denotes d 
dt 

Jo ( J " 1 ) ' = - j ' . J _ 1 

, -1 0 -1 H -1 (J ) = - J . J . J 

„ „ From (3): 
( J ~ V = B + A J = 1 - j " 1 D - j " 1 . C j " 1 

By comparing this equation with equation (1) we see that K = J 1 or J = K _ 1 

i.e. at t = tx% WCt^ = i T 1 ( t j ) . 



Thus when we switch from U transformation to u" 1 transformation at t 
1 

the integration of the inverse Riccati equation starts from W = U^Xt^), 
3.7 See Meyer (4) Chapter 1.3. 
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