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"NUMERICAL METHODS FOR THE SOLUTION OF ILL CONDITIONED LINEAR BOUNDARY
VALUE PROBLEMS"

H.W.Locksley

This thesis deals with the numerical solution of linear boundary value
problems in ordinary differential equations, and it concentrates particularly
on the practical numerical difficulties encountered in the solution 6f ill
conditioned such problems.

The chief methods available for the numerical solution of well
conditioned problems are described followed by a discussion of the nature
of ill conditioning. The main section of the thesis is then concerned with
the techniques proposed for lackling ill conditioned problems, hese methods
are illustrated by the numerical solution of chosen test problems by means
of microcomputer programs, written especially by the author for that
purpose, and the final section contains his conclusions based on this numerical

experience,

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derijved

from it should be acknowledged.
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INTRODUCTION

In recent years, the numerical solution of initial value problems has
been extensively researched, but the corresponding treatment of boundary value
problems, particularly as regards practical implementation, has to date been
comparatively sparse. In this thesis, we concentrate on the numerical
solution of one class of boundary value problems viz. those which are linear
and for which the system differential equations are ordinary, and we focus
in particular on the numerical difficulties created by ill conditioned such
problems,

The contents are divided into five sections (I-V), followed by an
Appendix (VI) and a reference list. In I we outline the chief methods
applicable for the numerical solution of well conditioned problems, followed
in II by a discussion of the nature of ill conditioning as it applies to such
problems, Then in I1I, we develop the techniques proposed to deal with ill
conditioned problems, these methods being sophistications of those described
in I for well conditioned problems, Section 1V is devoted to practical
numerical experience in solving selected test problems by means of programs
written for and run on a microcomputer, Obviously, the degree of difficulty
of the problems tackled here and the accuracy of the numerical results
obtained were limited by the numerical accuracy of the computer itself.
However, the practical difficulties encountered would be similar to those
which would have to be faced if attempting to solve more ill conditioned
problems using a much more accurate main-frame computer, In this respect,
therefore, it is hoped that the practical work of this section, and the
conclusions drawn in the following section V, will be useful in a wider field,

No attempt has been made in the text to distinguish typographically
between matrices and vectors and scalars, but whenever a matrix oxr vector
is introduced its dimensions are given., Also, references such as (6)
refer to the reference list at the end, whereas ones like (3.2) refer to

the relevant subsection of the Appendix (VI). Finally, equations are



(ii)

numbered from (i) in each subsection, An equation reference number thus

refers to the one in the current subsection, unless otherwise indicated.
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I, STATEMENT OF THE PROBLEM

We restrict ourselves throughout to the consideration of linear two
point boundary value problems for which the system of ordinary differential
equations can be written in the form ¥ = A(t). y + £(t), 0<€ t £ 1, wheré t
is the independt variable, A is (nxr}) and y and f are both@ x 1). (There is
no loss of generality in stipulating therange (o,l) because any system can
be transformed to this interval by a change of variable,) Also we shall
seek a solution vector y(t) of this system which satisfies linear 'separated"
boundary conditions i,e., where r components are known at t = O and n-r
components are known at t = 1, but where some components may be known at
both ends and some at neither. For convenience, we shall number the

components .known at t = 0 as Yyr YgsoeesVy so the boundary conditior§ could

be written

1l

y;(0) = & (1 = 1,.....7)

y.(1)
J-p

1l

ﬁ@j (j =T+ 1,0000. D)

where F takes Q\_Q values each (n bhe fanje O S Psr and N-r <
These could be more concisely expressed as ., Lcj(o)'%’ L’f)(l) = C, where

. T
L, and L, are each(n x 19, C :l.s(n x %and c = ("(1,,,.. O(r, ﬁ(+:..o.§n Yo

The matrices Lo and L1 would then have the forms:

AN | ]
| |
O
r \\\ I'
O

L, = X________*___“'__,__._,
l

1 o 1o
| —
//S x \1/< n-r ?
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Thus our linear two point boundary value problem can be stated as:

$ = A(tdy + £(t) (i)}
C (ii))

I

Lo y(o) + Lly(l)

and we will assume throughout that this problem possessga unique solution
vector y(t). (This assumption is essential here since any given boundary
vélue problem may possess no solution or an infinity of solutions,) Note
that system I(i) above includes as a special case any nth order linear
differential equation, since such an equation can always be expressed as
an equivalent system of n simultaneous linear first order differential
equationS(1l.2). Finally, we may point out that although we are restricting
ourselves to the solution of linear problems, the methods which follow are
applicable to non-linear problems in so far as any such problem can be
reduced to a sequence of linear problems by adopting the process of quasi-
linearisation (1.3).

Applicable methods of solution

The chief methods that are available for the numerical solution of
our linear two point boundary value problem I can be divided into three
categories viz.

A) the method of linear adjoints, otherwise known as the Goodman-Lance

method.
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B) the superposition methods

C) The Riccati Transformation method or the method of .invariant
imbedding.
We now briefly outline the application of each of these methods:

A) Linear adjoints method

Corresponding to the system I(i) : ¥ = Ay + £, we define the adjoint
system & = —-AT x (iii), where x is (n x J} It can now be shown (1.4) that

these two systems are connected by the fundamental adjoint identity:

xT(l) . y(1) - x* (0),y (0) = j xT. £. dt (iv),
0

15
whichkéatisfied by any consistent y(o), y(l) pair and any consistent x(o),

x(1) pair. We now proceed to find the n-r missing initial values (at t = o)

viz, y (0), conuso yn(o), necessary for the solution of the problem, as

r+1

follows,

Integrate the adjoint system (iii) backwards from t =1 to t = o, n-r
times, taking the starting vector x(l) each time to be a Kronecker delta
vector of the form (000100..... O)T, where the position of the 1 corresponds

i t iti iz, eooan
successively to the position of the known end values viz Pr+l’ Pr+2 ﬁn'
so that the vector product xT(l)ay(l) in (iv) successively takes the values
ﬁr+l’ ﬁr+2 cses0an0 ?n. For each integration, the vector x(t) is stored at
discrete points over the range [o0,1), so that in each case the value of the

1
integral term S xT(t)w f(t).dt in (iv) can be obtained approximately by

o

numerical integration by using, say, Simpson's Rule, Also each time the
T

term x (o). y(o) in (iv) can be split into two terms thus:

[xl(o) socoss X (Oi], ylfO) ﬁ:xg?inooo..,oo xn(Oi] o Yrsr(®)
I

-+ .




in which the only unknowns will be yr+1(o).....,yn(o). Therefore, from
each backward integration of the adjoint set (iii), we can obtain from

the fundamental identity (iv), an equation of the form:

—

[er_ (0) o..... xn(o)J . [-yr_j (o)

. = pe) , Where

[
Y (o) J

L

Dk (K =1, 6000, N-r) is known i.e. one linear equation involving the n-r
unknowns yr+l(o)...°.yn(o). Thus, in total, the n-r backward integrations

will supply us with n-r such linear equations which can be written in

matrix form as :; RB,Z

ey - -

H - Fa L PR R ~
15 (an_r) P9 (JL .l.), ;5 id (AL'_.I.') P S 1 all

T

°

D, where B

[<}

both are known, and Z = (yr+l(°) coeos yn(O) )

Hence Z can be found provided matrix B is non singular, which will be so
(in theory) if we assume that our problem I possessga unique solution,
The vector y(o) is now known and so theoretically it can be used to integrate
the system y = Ay + £ (I i) forwards from t = o to t = 1, so obtaining the
solution vector y(t) of our problem over the complete range, as required.
In practice, however, if problem I is "ill conditioned", in the manner
described later in section II; then this last mentioned integration may not
be possible over {o0,1) and alternative techniques may have to be adopted.
Another practical numerical difficulty which may arise in such cases is
that the resulting solution matrix B may be ill conditioned i.e, although
theoretically non-singular, the value of the normalised determinant of B
may be so nearly zero as to make the accurate computation of B-l (and
therefore of Z) very difficult, The fact that the (n-r) initial Kronecker

delta vectors xT(l) are orthogonal and therefore linearly independent at
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t = 1 guarantees, in theory, that the resulting vectors xT(t), obtained by
backward integration, will be independent for any other value of t, and in
particular that the set xT(o) will be independent,. This in turn should
guarantee the independence of the row vectors of matrix B. But, in practice,
due to round off errors in the calculation process, this may not be so and B
may turn out to be almost singular, In sections II and III we therefore
discuss in detail the possible numerical difficulties which may be
encountered in practice and some of the techniques we can adopt to overcome
them.

Finally, we may note that in the adjoint method any set of linearly
independent vectors x(1l) could be used to start the backward integrations
of system (iii), but this would require n integrations resulting in n
linear equations to be solved for n unknowns : the (n-r) missing initial
values at t = o plus also the r unknown values at t = 1, - By taking the
x(1) vectors to be the Kronecker delta vectors we reduce the number of
equations to be solved to n-r, a considerable saving in computational effort
if n is large,

B) Superposition methods

The underlying idea of all of these methods is that we seek to express

the general solution vector y(t) of system ¥ = Ay + £ (I i) in the form:
n
X .
y(t) = é b ¥ (t) , for oS t€1,
K=

where the %yK(t;g are a constructed set of n linearly independent vectors,
The n constants ibks are then determined by applying the given boundary

conditions:

L . y(o) + L

o 1° y(l1) = C , so as to determine the required solution

vector y(t) of our problem over [o,l)u Several alternatives exist for
generating the set {yK(t)g but we shall concentrate on two of the most

popular methods viz.



(a) the variation of parameters method
and (b) the complementary function method,
the details of each of which now follow.

a) Variation of parameters method

Here we express the general solution vector y(t) of the system
¥ = Ay + £ as a linear combination of n linearly independent solution
vectors of the correSponding homogeneous system y = Ay plus one particular
solution vector of the given inhomogeneouS system ¥ = Ay + f. First we
integrate the system y = Ay forwards over Eo,lj n times starting each time
at t = o from a different Kronecker delta vector, and storing the resulting
solution vectors ui(t), i=1,.., n, in the columms of the fundamental
matrix N(t), for o$t<€1l, so that N(o) = I, the Q’A X n)identity matrix.
Then we integrate the inhomogeneous system forwards over {o,1)} once starting
at t = o from the null veptor, and storing the resulting solution in
vector\ﬂ(t), @ X Q, where W(o) = 0. Hence the general solution y(t) of

system y = Ay + £ can be written:

y(t) = N(t), B+ W(t), oL ts1 (i), where

N(o) = I, W(o) = o and B(nxl) is the vector of combination constants
to be determined so as to satisfy the given boundary conditions of the
problem viz. Lo . y(o) + L1
(i) gives us B = y(0), so that (i) becomes : y(t) = N(t). y(o) + W(t).

. y(1) = C (ii). Note that putting t = o in

Also putting t = 1 in this last equation now gives: y(1) = N(1).y(o) + W(1),

substituting this into (ii) we obtain:

L . y(o) + Ll[ N(1) . y(o) + W(l)] =C

o]
= £Lo + Ly N(l{]. y (0) = C - L1,W(l)
or M.B = Twhere M =L_ + L, N(1), (un)
T =C=L, W(1), [x)
and B = y(o) ,

and



Since M and T are now known, vector B can be found from B = M—l T and

this can then be substituted back into (i) to give us the solution

vector y(t), required for our problem I, at each stored point in Eb,lj.
In practice, however, if the solution matrix M is ill conditioned,

as is likely to be the case if our original problem I was sensitive (see

I1), then the accurate solution of the set of linear equations MB =T

may prove difficult, and so to improve the condition number of matrix M

we may have to resort to multiple shooting (see II1), based on this

variation of parameters method. Finally, we may note that this method

requires, in total, n + 1 inteérations of the homogene€ouS and inhomogen<€ows

systems of equations,

b) Complementary function method

his is essentially a simplification of (a) whereby the total number

of integrations required is reduced to (n-r+l), a considerable saving if

n is large, We first integrate the homogeneouS system y = Ay forwards

over (o,l), n-r times starting each time at t = o from a different special
KronCcker delta vector, these being vectors whose components are all zero
except for a 1 in the (r+l)th, (r+2)th....... nthp position successively

e.g. for n = 6, r = 3 these initial vectors would be;

— 7 7
o] o ] [
0 ) 0
o} 0 0 .
’ and
1 o} 0
0 1 0
LO, L o | Ll'

The calculated values of these homogeneow solution vectors are stored at
discrete points over (b,l] in the last(h-r) columns of the fundamental

matrix N(t), which is (n X x»o;f which the first r columns are zero for all
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t. The inhomogen<ouw§ system is integrated forwards once over Eo,lj starting

at t = o from vector WO where

T
WO =[dll dziaooaon &rl O)O°'°°""'.O] '

where °<i, i=1l,....r, are the given initial values, This inhomogeneous$

solution is stored in vector W(t), 0 £ t € 1, so that W(o) = W.. Now, as
in (a) above, the general solution vector y(t) of the system ¥ = Ay + f can

be written:

y(t) = Nt y(0) +W1t), 0o £t <1,
or in expanded form: . =1 = -
ey - | - - o
Fyl(t) T SR | FACS LASS
Vo - -
v
O
AN e "/_- - _:_:__“ e _w}_‘(.t)_-
Ypen (B 0 [P | A PR A
| - - - -
n-r ( > | — - - -
I - - -
. I : _
g yL () v P - - — yn(O)& w ()
€ —> < n-r ———>
where and
— i ] —e(q
I 1
O] O
N(o) =L ______ ] W(o) = _ffr.
0
B 0
!
l e O
o O -
~
) (i) ) . (0]
\Ls__ [ g I
< =




As in (a) we now determine the combination vector y(o) by applying the
boundary conditions given in the problem, leading us again to the solution
of a matrix equation of the form MB = T, for B = y(o), The working is
identical Eo that in (a) except that now we have different definitions

for our fundamental matrix N(t) and the inhomogen<ou$ initial vector W(o).
Also analagous to (a), if the resulting solution matrix M is ill
conditioned then we can adopt a moresophisticated technique, based onthis
complementary function method, known as Conte's Re-orthonormalisation
method (see I11),

Note that in both superposition method (a) and (b) the final calculation
of y(o) depends only on the terminal values N(i) and W(1) of the homogeneous
matrix and the inhomogeneoW vector respectively. Thus, the required memory
capacity could be reduced by storing the values of the homogeneouwS and
inhomogen®ovS vectors of integration only at the terminal point t = 1, and
then obtaining the solution vector y(t) of the problem by integrating
the system y = Ay + £ forwards over Kb,Ij, starting at t = o from the
calculated vector B = y(o0), The drawback of this approach is that for
sensitive problems this last mentioned integration is unlikely to be possible
over the full interval, in which case we are compelled to save the values
of the calculated homogenewvuS and inhomogeneouS vectors at discrete points
throughout {o0,1) and then use these to construct y(t) from y(t) = N(t).y(o) +
W(t), at these storage points.

Finally, we may note that these superposition methods are closely
related to the adjoint method (A). In fact, starting from the variation
of parameters formula for the general solution of the system y = Ay + £,
it is possible (1.5) to derive the fundamental adjoint identity by an
alternative proof to that given in (1.4).

c) The Riccati Transformation method

This method is also known as the method of invariant imbedding because
we imbed our given problem I in a family of related problems. In order

to do this, we must first re-write our given system of equations § = Ay + f
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(I i) in what is known as characteristic form, as follows,

. t
Consider the n h order system of differential equations:

y (t) = E(£). y + h(t) (i)

wherc E is (r\ b4 n) and y and h are(n x l\)_ This system can now be expressed
t

as an (m + 1)) h order system by arbitarily splitting the components of y

into two characteristic vectors of dimensions (m x 1) and@ x 1) where

m + ‘D =n.
Thus, for example, if we choose
u, = y. (i =1_.--.m) and
X, =y . (i = 1_--?) then:

[ T [U. u o O] T + o o X X T
ylca--u yn 1na-c 'm o ¢0 0 L) 1aouo ? ’

T
where u = [ul - um] is then called the surface characteristic vector

1

and x

[Xl“' . x?‘] T is the base characteristic vector, System (i)

above can now be written in characteristic form as:

d (t)

ACt)u + B(t)x + F(t) (ii) (h x i>

i

% (t) C(t)u + D(£)x + G(t) (iii) (? x ;),

where A (m x m), B (m x?), C (? x m) and D (? X ’r) are the characteristic
matrices, and F (mx1) and G (? X 1) are the source vectors, all of which
will depend on the original choice of surface and base vectors. (Do not
confuse characteristic matrix A with the problem matrix A (nx n) of our
original problem Io),ﬂn example of this re-casting of a system of equation$
into characteristic form 15 to be found in the solved test problems in
section IV, example 3. More concisely, equations (ii) and (iii) could be

expressed in giant matrix form as:



_llu

o
>
o5}
c

)

o
Q
o
”
o]
°

We can now show (1.6) that, for any t 3 o, the characteristic vectors

u(t) and x(t) are connected by the transformation:
u(t) = U(t). x(t) + v(t) (iv),

where the matrix U (m x P) satisfies the matrix Riccati equation:

¥ ()

"

B{(t) + A(t)U - UD(t) - UC(t)U (v),

where U(o0)

o, and the vector v(m x 1) satisfies the vector equation?
V(t) = [A(t) - U(t). C(t):), v(t) = U(t)G(t) + F(t) (vi),

where v(o) = u(o), Note that equation (v) is (m x P) and equation

A

{vi ::wnx 7.

If we now wish to solve our problem I, let its order be n, where
m values are known at t = o and P values at t = 1, so that m + P =N,
Let these initial and terminal known vectors be denoted by a (m x 1) and
b (P X 1) respectively. Choose the m components of y which are known at t = o
to be the surface vector u so that the remaining P components will be the
base vector ¥ . We can now state our problem with the system egquations
written in characteristic form and with the boundary conditions separated:

1 A(t)u + B(t)x + F(t)

(vii) where

% C(t)u + D(t)x + G(t)

]

u(o) = & and g, u(1) + g, x(1) = b, where 3, 'S @xw\j and 3, CP“@
a~d khis lakber comdikion is eguivalent Lo 3(0 = [0 ----0 ———— ]
‘Frow\ ouv el";j;,r\q\ &o\.\l\dq'rj CDV\AL‘\Oﬂ Lo y(o + L.| y(‘) C (L3 /3"\ b
To solve the problem now requires three integrations over Eb,i),
forwards and one backwards. First we integrate the matrix Riccati equation
(v) forwards starting at t = o from U(o) = o, and store the values of U(t)
at discrete points, We then use these stored values to integrate forwards

the ¥ equation (vi) starting from v(o) = a, and again store the values

of v(t). Now putting t = 1 in the transformation equation (iv) gives:
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u(l) = U(1l) x(1) + v(1), and by substituting this into the terminal

boundary equation gl u(l) + gz x(1) = b we obtain:

gl-[’U(l) x(1) + v(li] + gy x(1) = b and
hence: (gl Uu(l) + gz]. x(1) = b - gy v(1l)
-1
or x(1) = [gl U(l) + gZ] . [b -8 v(li} (viii).

This is @ (F %X 1) equation in which the only unknown is x(1), which

therefore can be found, If we now substitute equation (iv):

u(t) = U(t) x(t) + v(t) into the base equation (vii):

YR

= C(t)u + D(t)x + G(t) we obtain:

o
<r
P

(
- L

C{L). Uty + D(ti}. x(t) + C(t) v(t) + G(t) (ix)
which is(fn x 1}

The stored values of U(t) and v(t) are now used to integrate this
equation (ix) backwards over (o,l), starting at t = 1 from the vector x(1)
Jjust obtained, and the values of x(t) are also stored at the discrete points,
We thus now have obtained the base vector values x(t) over the complete
interval (o,l}, from which we can compute the corresponding surface vector
values u(t) by employing the transformation equation (iv):

u(t) = U(t) x(t) + v(t), using'the stored values of U(t), x(t) and
v(t). Finally, the solution vector y(t) of our given problem is now
obtained at any stored value t in (O,I} by simply compounding the
corresponding surface and base vector components.

Note that for well conditioned problems it may be possible to reduce
the amount of memory storage capacity required by adopting an alternative
strategy. After finding vector x(1) from equation (viii), instead of

integr ating equation (ix) we could integrate the pair of characteristic
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equations (vii) backwards simultaneously over (0,13, starting at t = 1

from the vectors x(1) and u(l), where u(l) = U(1) x(1) + v(1), and so

obtain the surface and base vectors, u(t) and x(tl}at once. However, as in

the case of the superposition methods, if the given problem is at all

sensitive, then this simultaneous integration of (vii) may not be numerically

possible over the complete interval [o,Ij. Indeed, for such a problen,

the forward integration of the Riccati equation (v) is also unlikely to

be possible and this is the chief drawback of the Riccati method, In III,

we discuss a refinement of this method, known as the Riccati Inverse (or

continuation) method, which can be used for ill conditioned problems.
Finally, we may note that the Riccati equation (v) does not depend

on the boundary conditions but only on the characteristic matrices A,B,C

n ~

and D, and so, assumin he cguation can be integrated forwards over

and so, uming th

fo,lj, this one integration will serve to solve several related problenms

all possessing the same system matrix but subject to varying boundary
conditions,

Numerical integration

In all three of the above methods (A,BandC) for solving our problem
I, it is necessary to integrate asystem of linear simultaneous first
order differential equations over [o,l) from a given starting vector.
Indeed, each method requires severai such integrations, either forwards or
backwards. Many integration schemes exist to solve these initial value

problems numerically but we can briefly categorise them under the headings

of:
(i) linear multi-step methods, either implicit or explicit
(ii) predictor-corrector pairs
and(iii) Runge-Kutta methods

A detailed discussion of these is not relevant here as we are

concentrating on the solution of boundary value problems (but see (1.8)),
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Suffice to say that in section IV, where we have solved some test:
problems, the integration schemes used in the programs were:
a) a Runge-Kutta six stage method of order 5 (Lawson's method) and
b) a linear explicit 4 step method of order 4, for which the starter

values were provided by the Runge-Kutta method in (a).
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I1 NUMERICAL DIFFICULTIES ENCOUNTERED IN THE SOLUTION OF ILL CONDITIONED
PROBLEMS

The success of all of the methods outlined in I for solving our problem
I depends very much on our being able to integrate either the inhomogeneéouS
system y = Ay + £, or the homogeneow§ system y = Ay, or the adjoint system
b —A? % or the Riccati equation, either backwards or forwards over the
complete interval fb,l) starting from various initial vectors. In zall
of these integrations the system matrix is either the problem matrix A(t)
itself or is directly dependent on A, as if\ the case of the adjoint system
and the Riccati equation. If the problem matrix A is what is known as
“ill conditioned", "unstable” or "sensitive" (see below) then there is a
danger that the method will fail for either of the following reasons:

'blow up

{a} ' . one of the integrationsmay blow up before the end
point of the interval is reached i.e. the numbers involved in the calculation
will for some value of t<{1 become so large as to be beyond the capacity

of the computer to handle causing a {Lﬁaxkdown in the calculation process.
Most present microcomputers, for example, can store numbers only up to the
order of 1038 approximately. All three methods outlined inl (A,B and C)

are prone to this risk of 'blow up'.

(b) ‘'poor conditioning' ., in the case of the superposition methods

(but not the Riccati method), althouéh all of the integrations may be
achieved without blow up occurring, the resulting fundamental matrix N(1)
turn can mean that the solution matrix M = Lo + LlN(l) is also so badly
conditioned that it is impossible to obtain a reasonably accurate solution
vector B from the linear simultaneous set of equations MB = T, as is
required (see IB).

As stated earlier, any matrix A is said to be ill conditioned if it is

almost singular i.e. if the value of its normalised determinant is almost
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Zero, Ill conditioning is a consequen(e of the matrix having two or more
row (or column}) vectors which are almost parallel i.e. linearly dependent,
and this in turn stems from the fact that the eigenvalues of the matrix are
widely separated in real part. The degree of ill conditioning of a matrix
can be measured by its condition number: the greater the condition number
the more ill conditioned is the matrix and vice versa. Two of the most

frequently used condition numbers are:

(i) PA) = %%ﬁ%% where

py

max

and \ )\ R \
min
are the greatest and least eigenvalues respectively of A in mod value.

If P(A)%; 1 then the matrix A is well conditioned since the eigenvalues

are in this case not widely spread. (u“d only whire all 2 nva lues _1‘“"“ H‘?
Same Si§A ,

(ii) ol (ay = H A ‘l} . H A'lu where
n n
” AH = m?x % atj or max % \a i-j .

From a prac¢tical point of view, if we are trying to solve the matrix equation
MB = T for B, then the fact that M is ill conditioned means that relatively
small errors in the calculated values of M and/oxr T may result in a large
error in the computed value of vector B, This is because the relationship
between the percentage error in B corresponding to those in M and T is

given approximately by: errorgg el (M) . { error_ + errorT:} , provided

M
the actual error in M is small (2.1). Thus if (M) is high (i.e. if M

is badly conditioned) then the upper bound for the error in B will be high
also, To return now to problem (b) of poor conditioning, in order to see
how the condition of the fundamental matrix N(1l) can influence the condition

of the solution matrix M = L0 + L. N(1) we can employ a result of Gunderson

1

(2.2) viz, that under certain conditions:

el (M £ K. e (N(1)) where we may usually assume that K is small compared




to 6((N(1)). This indicates that if N(1) is poorly conditioned then M
may also be or, to be more definite, only by ensuring that N(1) is well
conditioned can we be sure that M will also be.

Although the two problems (a) and (b) of blow up and poor conditioning
both stem from a poorly conditioned problem matrix A, we can draw a distinction
between them. The danger of blow up is inherent in the problem itself
i,e, it is really entirely due to the bad condition of matrix A and will
occur sooner or later for a sufficiently large value of t, regardless of
how accurate is the calculating process, However, if, for any given problem,
blowup is to be avoided before t = 1 is reached, then the step length P\must
lie in a certain range determined by the accuracy of the computer and of the

integration §c§eme,
The poor condition of matrix N(i), on the other hand, is basically due to
“round off' error at the various stages of the calculation. In the super-
position methods, the initial vectors for the forward integrations of ¥ = Ay
are either the Kronecker delta vectors or (for the complementary function
method) the special Kronecker delta vectors, In both cases, these are
orthogenal and therefore linearly independent sets, Thus, in theory, these
vectors should remain independent fog all t. But in practice as the
integration process proceeds from t = o, dve to round off error, there is
a danger that some of the vectors may gradually become almost parallel
by the time t =71 is reaéhed° Although this problém is basically due to
the lack of accuracy of the computer, it is still more liable to become
serious in a problem where the problem matrix A is badly conditioned,

We may note here one advantage which the Riccati method has over the
superposition methods viz., the Riccati method is not prone to poor matrix
conditioning in the sense described above since the solution vector y(t)

is obtained directly by combining the surface and hase vectors without
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the need to invert a solution matrix,
We now consider precisely why an ill conditioned problem matrix A
can cause blowup or make the danger of loss of independence more likely,
The condition of a matrix is determined by the nature and distribution of
;&S eigenvalues i.e. we say that A(t) is 111 conditioned if for any value
of t in (0,1} it possesses either:
(i) an eigenvalue with a positive real part, particularly if this is large, or
(ii) an eigenvalue which greatly exceeds all the other Qjenvalues in real
part i.e. one which is well separated from the remainder.
For the moment let us assume that A is a constant matrix with n distinct
eigenvalues,
It can be shown (2.3) that the solution vector y(t) of the initial value

LIEY <y

problem (I.V.P) : § = Ay + 1, y(t)) = = can be written:

7“§(t—to)
y(t) = K .e C +  B(t)

s s
where )x;(s = 1 9 n) are the eigenvalues of the system matrix A, Cs(s =1l % n)
are the corresponding eigenvectors, @(t) is a particular solution vector of
¥ =Ay + £ (i.e. @ = A@+f for all t), and the constants KS (s =1 2 n)

are uniquely determined by:

0( - g(tO) = : KS CS [

s=1

Likewise for the homogeneouS I.V.P,

¥ = Ay, y(ty) =¢{ the solution vector is

y(t) = é KS e>50(t—to) where

Cc
S
s=1

n
ol = fég: K . @S because now @(t) = o.

s=1 )
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In order to solve our problem I by either the superposition or Riccati
method, we must first solve several I.V.P.,S such as those above starting at
to (=0) or tf (= 1) from various initial vectors, If A is ill conditioned,
then in any one of these forward or backward integrations blow up may occur,
or in any pair of homogeneewS integrations the solution vectors may gradually
lose their independence for the following reasons:

(i) blow up : If A possesses an eigenvalue (say )\i) with a (large) positive

real part and if the corresponding constant Ki is non zero so that the term

Ni(t-to)
e

K
i C

appears in the solution y(t), then as the homogeneou§ or
inhomogen&oziintegration proceeds i.,e, as t increases from o, a value of t
will eventually be reached at which the components of this vector term, and
therefore those of the solution y(t), will become unmanageagw large. Whether
this blow up occurs hefore the end peint t = 1 is reached will depend on just

how large )\i is,

(ii) loss of independence: Suppose instead that matrix A possesses an

eigenvalue (;Ki) which dominates all the other eigenvalues in the sense that
Re()Ni) is much greater than the real part of any of the other eigenvalues,
Consider two forward integrations of the homogeneovS system from to (=0) starting
respectively with initial vectors y(t ) =:°ﬂ, and y(t ) = sz where e(l and

n

n
i i = d p=4
d<2 are uniquely determined by «4& Ks Cs and 2 E%% Qs (is .

s=1

Denote the respective solution vectors obtained by yl(t) and yz(t). Now if
the constants Ki and Qi’ corresponding to }ki’ are both non zero then the

e7\1._(1:-1:0)

term containing will appear in both solution vectors yl(t) and
yz(t), and as the integration progresses (t ? o), this term will gradually
dominate both solutions, In theory, the other terms should ensure that
yl(t)<¢ yz(t) remain independent for all t. But in practice, due to round

. > it~to Mift-to)
off error, as t increases: yl(t)-€> K, e 8i and yz(t)s%; Qi e c,

as these terms increasingly dominate each solution. Thus the vectors yl(t)

Yo(t) will both gradually approach the direction of eigenvector Ci“ How
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quickly the angle between yl(t) and yz(t) approaches zero will depend on
how dominant is the eigenvalue )\i i.e. on how badly conditioned is matrix
A, Note that this difficulty can occur, (for t 7 o), even if all the
eigenvalues have negative real parts e.g. suppose Re ()\i) = -0,1 and
Re()j)( =50, (j=1%n, j#4i), then )\i would still dominate the
solution vectors for forward integration, but more slowly.

Although both these numerical difficulties (i) and (ii) stem from the
poor condition of matrix A, they will be more evident for some choices of
initial vector &« than for others, If the choice of y(o) = «€ is such
that the constant Ki’ corresponding to the offending eigenvalue )‘i, is
zero then the term containing >\i will not appear in y(t) and so, in theory,
will cause no trouble, Similarly, if Ki is sufficiently small the rate of
increase of the offending term may be so reduced as to prevent it from
blowing up before t = 1 is reached, For example, if A is a real symmetric
matrix than its n eigenvectors Ci (i =1 » n) will be orthogonal, Thus
if «{ is so chosen that ¢ -p(o) is orthogonal (or nearly orthogonal) to
eligenvector Ci’ corresponding to the offending eigenvalue )\., i.e. if

{04 -ﬂ(o)] .C; & 0, then {.% K cs] .C, = 0 => K, = 0, so that

s=1

the offending vector term in y(t) will be (almost) eliminated. However,
in practice, even if X, = O for the choice of the initial vector «{ of
integration, because of 'round off’ erfor in the calculating process, as
the integration proceeds the term causing the blow up is liable to be
gradually re-introduced. The more dominant is ;ki and the more inaccurate
is the computer the more quickly this will happen, but its effect can be
" delayed by adopting an integration scheme of higher order of local accuracy
or by varying the step length h s0 as to minimise the upper bound on the
total error e, in yc, at any value of t,

Since the superposition methods require several integrations starting
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from different initial vectors, then if A is ill conditioned there is a
good chance that some of the integratior§ will run into one of these
difficulties and it needs only one integration to blow up to cause the
method to fail, Indeed, if the problem matrix A is very sensitive then
although the system may be integrable over (o,l} without blow up for, say,
y(0) = £, even the smallest variation in & can cause blow up. This
explains why although § = Ay + £ may in theory be integrable from the
exact initial vector y(o) without blow up, this may occur if we integrate
from y(o) using the calculated values of the missing initial values, even
though these may have been found to a high degree of accuracy. Hence in
the superposition methods, as mentioned earlier, it is unlikely that we
will be able to save memory storage space by finding y(t) by forward
integration of the system y = Ay + £.  Instead we will have to store values
at intermediate points and re-construct y(t) from these using y(t) =
N(t), y(o) + W(t).

To demonstrate this last point about sensitivity with respect to choice
of initial vector of integration, let us consider the I.V.P, : %Y = K%y ,
y(o) =1, § (0) =8 whee K = 50 and S is to be chosen, For any choice

2K

for tZ'o)as obtained by analytical solution, If we choose S = -30 i.e.

of S, the solution curve for y is given by: y(t) = -1—{(K+S)eKt + (K-S)e—mj

if we integrate forwards from t = o starting from [1, -&g T, then y(t)

simply reduces to y(t) = %E (K-S)e_Kt = e_S'Ot and there is no difficulty,

because y(t)=~o for all t7 o, But now suppose that instead we try to

integrate numerically forwards from [i,-49,é3 T, choosing S = -49.5. Now
t -§ot
E%S o,Seso + 99.5e So:l in which the first term completely

Sot
&

200 °

y(t) =

dominates the second for t o, so that in effect y &

ye 1.34 x 1041, a number beyond the range of most microcomputers, so the

Thus when t = 2,

calculation would breakdown before t = 2 was reached. Hence in this example
only a 1% error in the estimation of one of the components of vector y(o)

causes an otherwise straightforward integration to blow up. This is because

@ 1

here the system matrix A is k2 o foxr which the eigenvalues are +K



_.22_

i.e. + 50, so that A is very badly conditioned.

In all of the preceding, we have assumed that the problem matrix
A is constant, If A(t) varies then the situation is more complicated
because now the eigenvalues ;ki (i = 1< n), the eigenvectors Ci(i = 1-n)
and the constants Ki(i =: 1% n) will all also vary with t, and the solution
vector y(t), as given by y(t) = f%: KS e %S&t—td) CS, will only be
approximately true over a small inteizil At in which A(t) may be assumed
cOnstanf. Whether blow up occurs will nowdepend not only on the condition
of the initial matrix A(o) but also on how rapidly the condition deteriorates
or improves as t increases from t = o0 i.e. on the sensitivity of the
eigenroots of A to changes in the values of the elements of A, which
depend on t.

in section 111 we consider the techniques which have been proposed
to modify the superposition methods and the Riccati method so as to attempt
to overcome the numerical difficulties explained above which can dccur in
practice when dealing with sensitive problems, We will also discuss_in
connection with the re-orthonormalisation method, another difficulty which
may cause loss of accuracy in the solution vector y(t) viz. 'build up’
error or 'loss of significance', and how this method helps to minimise

this error,
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II1I PROPOSED TECHNIQUES FOR DEALING WITH SENSITIVE PROBLEMS

a) Reversal . We can reverse the statement of our problem I by assuming
that t = 1 is the 'initial' point and t = o is the 'terminal' point, the
direction of the integration now being from t = 1 to t = o and CT = [?i-~~-

g e °¢€] with the boundary matrices L and L

ner) 11 altered accordingly.

1
We can thus use either of the superposition methods outlined in IB to solve
the reverse problem, the 'initial' missing conditions now being those at

t =1, For well conditioned problems there is little advantage to be
gained from doing this, the compubeﬁ solution vector y(t) being virtually
identical to that obtained by forward solution. But for a sensitive
problem in which one of the forward integrations blows up at t = tl, where
t1<3q it may be possible to avoid this by reversing the problem.l

Since the solution vector y(t) of the I.V.P., ¥ = Ay + £, y(T) = £

can be written

n >
y(t) = :E; Ks e SXt‘Tg + @(t) for any t,

s=1 s
if all of thetigenvalues >\5(S = 1 n) have (large) positive real parts
and we take T = O and integrate forwards (i.e, t 7 o) then the computed
solution vector y(t) will, due to round off error, stray very rapidly
from the exact solution because as the integration proceeds the cuﬁulative
errors in the exponential terms will build up, until blow up occurs.
Indeed this is still likely to occur with forward integration even if there
is just one large positive dominant eigenvalue. But if in such a case

we reverse the direction of integration i.e, start at t = 1, then, putting

n

7\s('t—l)
y(t) = K e e c + @(t) where t €1, and the previously
s=1 s

large positiveexponent(s) will now benegative and so these term(s) will be

very small and there will be no danger of blow up. But this device will
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really only be effective in a case where the problem system matrix A is
such that all its negative eigenvalues are small since these will become
positive for reverse integration., In general, matrix A is liable to have
a mixture of positive and negative eigenvalues with a dominant positive
eigenvalue for forward integration and an equally dominant negative
eigenvalue which will become positive when integration is reversed, so
that reversal will be of no avail, Thus we cannot regard reversing the
direction of integration as a general technique for dealing with sensitive
problenms,

b) Re-orthonormalisation (using the Gram.Schmidt process)

This technique was first proposed by Godunofigulthen followed up by
Conte‘znd others. It attempts to overcome both the numerical difficulties
ered with sensiilive probiems viz., blow up and loss of independence
of calculated vectors obtained from the homogen<ou§ and inhomogeneou$
integrations, Repeated use is made of the Gram.. Schmidt process which
converts any given set Y of N linearly independent vectors (each n x 1)
into a corresponding set & of Nerthonormal (n x 1) vectors i.e, mutually
~orthogonal vectors each of unit length. The transformation (as described
in (3.1))is effected by the orthonormalisation matrix P which is lower

triangular whose elements pij depend on the input set Y. The output set

% of orthonormal vectors is thus given by:

3 = YPT where PT is upper triangular (N x N)
and & is 1 x N <% Y i§ 1 x N, both being vectors with vector components.
We now describe Conte's methogstf re-orthonormalisation based on the
complementary function method (see IBb) and utilising the Gram.Schmidt
process abhove, We first divide the total range of integration (b,;)
into m subintervals with nodes at to(= o), tl, tz cooas tf( =1)

determined according to one of the re-orthonormalisation tests outlined

later, In the first subinterval (t_, t)) we integrate forwards the
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(n - r) homogeneous u vectors, starting each time at t = to from one of
the special Kronecker delta vectors, and the inhomogeneous V vector starting
ol T .
from i-—-°§)o..--o , (as in IBb), =¥ we store these vector values at
intervals 0f>&h where h is the step length employed, and ) is as small
a multiple as the memory capacity will allow. At t = tl’ we use the
Gram Schmidt process to convert the (n - r) linearly independent homogen<eous

i
w vectors (j u (tl) , 1 =1»n-r into the corresponding set of
old
orthonormal vectors <%l (tl) , i=1 3% n —i) by using the orthonormal
new

matrix Pl’ obtained from ul (tl))i.e° in matrix form:
old

T T .
Unew = Uold° Pl where P1 is (n-r) x (n r))

U and U
o

are 1 x(?-£>and U is the orthonormal set of vectors
new new

1a

u;ew(t ). The elements of the matrix PlT are stored. Also at t = tl’

we convert the inhomogeneeuw§ vector VKtl) obtained by forward integration

i into it th i
(ie Vold) nto its orthogonal complement (Vnew(tl)) by subtracting from
Y a certain linear combination of the orthonormal ul (t.) vectors i.e
old new 1
VneW = vold - Unew R wl, where

the components of the projection vector Wl(n—r X 1) are given by:

3 : '
w = R = -r .
J Vold Ynew ! 1 = n-x
Note that this ensures that V., u’ =o for j = 1-> n-r i.e. V___ is
new Dew new
orthogonal to each of the new orthornormal vectors, The components of

vector Wl are also saved.,

In the second sub interval Et té} we now integrate forwards the

117
(n=r) homogeneewS W vectors starting at t = tl from the u;ew (tl) vector
values just found by the Gram Schmidt process. Also we integrate forwards

the inhomogen<ew system starting from Vnew (tl) and store this vector and

the homogentus vectors at the intermediate points, At t = tz, the
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re-orthonormalisation process is repeated i.e. we convert the old

independent u1 vectors into the new orthonormal set u;ew(tz) by using

the orthonormalisation matrix P2 (obtained from the ugld(tz))' Likewise

the inhomogeneou$ vector V

(

old tz) is converted into its orthegonal

complement Vnew(tz)' and the projection vector W2 and matrix P2 are both

again stored. Then in the next sub interval we integrate forwards over

. . : i
Etz,ts} starting the homogen<ou integrationf at t_ from unew(tz) and the

2

inhomogen<eywS from Vnewﬂé) and store the resulting vectors.

The process is repeated, re-orthonormalising the u and v vectors at
the end of each sub interval and then using these vectors each time as the
starting vectors for the homogen<esS and inhomogeneswS integrations in the
next interval and storing the orthonormalisation matrix P and the projection

vector W used at each node and the u and ¥ vectors obtained for each

interval, When t = tf is reached the final re-orthonormalisation gives

i .
us unew(tf) and Vnew(tf) together with the values of Wy and Pt; used.

As in IBb we now solve a matrix equation of the form MB = T at the

’ i
t inal point t i t i
erminal poin by selecting from the final unew(tf) and Vnew(t )

£

vectors the (n - r) components which correspond to the position of known

f'

1-—3 n-r) in the given problem, and then using

-

[-b’ ____-X ] the matrix equation:
1 n-r ’

: [

=3 [a - v |
f:} u2 U? ? Pl v,

terminal values Pj (j

them to solve for Xf

o X

'
{

-~ .-

.-

- ~ -
. e =
I

n-r n-=r

| ) )
u .‘Ué~---,.uﬂf’ L@n_rav Lbj
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where all vector values are at t = tf. Unlike IBb, however, in this
case the vector ‘Xf is not yi(o),(i = r+l1 --» n), the vector of missing
initial values for the problenm. In order to find this, we must now
work backwards througﬁ the sub intervals from tf to to’ using the stored
projection vectors\ng and orthonormalisation matrices Pi (i =1 9 m) at
each node to obtain the 2{ vector corresponding to each sub interval,
from the iteration:

T
Y. P, - X - W i =—(m-1)-> o

i i+l i+l i+l )

i
o
o
L]
i
el
Rz
?
=
I
=

where xm

This finally gives us 2{0, the vector corresponding to the first
srval e tlg’ and this is in fact the vector of missing initial
values for the problem.

We now construct the solution vector y(t), o£t <1, for the given
problem in a piece-wiS® continuous fashion, interval by interval, In
each interval separately, the solution vector y(t) is equal to the
inhomogenens vector VY(t) plus a certain linear combination of the
homogenes vectors ui(t), these being the calculated vectors that were
stored for that interval, The linear combination vector required .is the

2{ vector corresponding to that interval i.e. for each interval:

y(t) = W(t) + U(t).){ where U(t)
is the homogeneeu§ set of vectors (n x n-r).

Note that only in the first sub interval (to,tlj do the calculated
homogen<tu$ and inhomogenteuwS vectors correspond to the special initial
vectors @@ 18b. In all of the other intervals, they are obtained by forward
integration starting from the orthonormal uiew vectors and the orthogonal

complement\/ obtained by the Gram Schmidt process. Yet it can be
new




_28_

shown (3.2) that the piecewise solution vector y(t), defined above for
each interval separately, does provide a continuous solution vector which
is the true solution of the given problem over the complete interval
Kto’tf}'

Memory storage space can be saved by storing only the W vector and PT
matrix at the end of each interval and the final ui and V vectors at t = tf.
These will be sufficient to obtain E(f and hence X’o = (yr+1(o)_,,__.yn(oi3,
The solution vector y(t) for the problem could now theoretically be found
by integrating the set § = Ay + £ forwards from t = o since all the initial
values are known, In practice, however, if the given problem is sensitive
in that it cannot be solved by "single' shooting, it is unlikely that this
integration can be performed without blow-up either,

The success of this method is very much dependent on th

(0]
[¢)
2

re-orthonormalisation nodes i.e. on the partition of the total interval
(p,l) into sub intervals. Various tests have been proposed to determine
when re-orthonormalisation should take place so as to obtain the optimum
overall computed solution vector y(t) i.e. the solution vector for which
the norm of the overall error vector is least for a given step length h
of integration. The common objective of all of the tests is to check at
frequent intervals on the norms and directiorf of the computed homogenecus
vectors ui(t) and to re-orthonormalise whenever blow up or loss of
independence is imminent. The big drawback of most of the tests, however,
is that although they are straightforward in theory, they create practical
difficulties in programming and are very time consuming and therefore
expensive. Some of the chief tests for optimum re-orthonormalisation
are:

Gs)
(i) Godunov originally proposed that the eigenvalues of the problem system

matrix A(t) should be frequently calculated (every few steps) and the

difference between the real parts of >\max and >\min computed each time.
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If it is noted that this difference has increased since the previous
calculation then the length of the following sub interval is proportionately
decreased as compared with the present sub interval, and vice versa, Thus
re-orthonormalisation will occur most frequently during periods when A(t)
is most ill conditioned. This test is only applieable when A(t) is
variable and in any case is highly impractical, even for a small system,
on account of the formidable amount of calculation required.
(ii) ContgﬂprOposes that re-orthonormalisation should occur whenever the
norm of any of the calculated homogen®ou$ vectors ui or that of the
inhomogentous vector V exceeds a pre-assigned value M. This is comparatively
simple to operate but the difficulty lies in being able to fix a suitable
value for M for any given problem. One possibility is to run the program
with several different values of M which avoid blow up and then to average
the solution vectors obtained.
(iii)Another suggestion of Contgjgs to compute the angle between each pair
of homogenecous ui(t) vectors at regular intervals, Re-orthonormalisation
then takes place whenever the computed angle is noted to be less than a

o
pre—-assigned value e{ ~,

Again the main difficulty is to fix ¢ for a given problem and so we
must resort to averaging over several trial values of &, Also for a
large system the amount of calculatién involved here would be considerable
and in any case the test does not guard against the possibility of more
than two vectors becoming dependent. .
(iv) Another alternative is to incorporate tests (ii) and (iii) i.e. to
re-orthonormalise if either test fails i.e, if

“ uin > M  for any i or u \/H > M

u N u,
or if arcos i ik <@<. for any pair
gl = 1wyl

i, § , 1#37.
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This would require several runs with different choices for the values of
M and o each time and there is no guarantee that the average computed
solution vector so obtained would be better than that obtained by using
either (ii) or (iii) separately,

(v) At regular intervals, calculate the value of D, the determinant of
the normalised matrix formed by the calculated homogeneouS vectors ul(t).
Re-orthonormalisation takes place if /D/ <K where K is a pre-assigned
small positive fraction, Again we would have to run with several
different values of K and average the solutions, and for a large system
the frequent operations of matrix normalisation and determinant calculation
would be very time consuming.

Generally speaking, the best results will be obtained when the re-
_____________________ ributed throughout the whole interval.

Obviously the more ill conditioned is the problem matrix A, the more re-
orthonormalisations will be needed, but too frequent re-orthonormalisation
will be self defeating because the 'round off' error introduced by the
extensive matrix and vector multiplication required, in order to work backwards
through the sub intervals to f£ind \(0 from B/f, is liable to cancel out

the benefits achieved by re-orthonormalisation.

In the programs of solution of the test problems in IV we have confined
ourselves throughout to re-orthonormélisation with equal sub intervals and
have investigated the variation in the accuracy of the computed solution
vector y (t) with changes in m, the number of re-orthonormalisations, and in
h, the step length employed.

As mentioned in iI, the re-orthonormalisation method possesses another
advantage which may make it desirable when using a superposition method
viz, reduction in 'build up' error or 'loss of significance', Suppose
that the '"single shooting' complementary function method (IBb) is being

used and that all integrations have been achieved over (p,l) without blow
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up occurring, Suppose also that the final matrix M is sufficiently

well conditioned to solve fairly accurately for }{; = [Eﬁ,...hﬁ_r T

the combination vector of the homogenceeu§ vectors ui(t), i =19n7r, in the
solution yc(t), There still remains a further difficulty which may
render the computed solution yc(t) hopelessly inaccurate viz. the difficulty

of recombination. The solution yc(t) is given by:

7 = Bu) + bu®F ...t B/n_r u _ () + V(t)

?or ogtgl. Now if the norms of the calculated ui(t) vectors are very
large relative to //yeﬁig//’ for any value of t, so that the values
>(i°""'>/;—r are very small, then even a small error in the calculation
of these components will bc grossly magnified when multiplied by the
components of the ui(t) vectors, with a consequent error in the value of
yc(t). If further, the majority of the errors in the calculated values of
2‘1...., B/n-r are all in the same direction (eg all rounded down) then
the cumulative effect on the calculated components of yc(t) could be very

large indeed. Thus, ideally, it is desirable, if possible, to ensure that

t ts o
he components of the ui(t) vectors are of approximately the same order

as those of ye(ﬁg, for any value of t. To this end, re-orthonormalisation
Xag :
can be employed, the re-orthonormalisations being performed before the norms

of the ui(t) vectors become too large, thereby reducing the danger of loss

of'significanée as described above. We must, however, be careful not to
go to the opposite extreme which can occur if too many re-orthonormalisations
are employed, resulting in the norms of the ui(t) vectors being very small

compared to that of yeit),in some sub intervals,
({84
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¢) Multiple (or parallel) shooting

This method is similar to re-orthonormalisation in that we divide the
total range {0,1) of the problem into sub intervals according to some criterion
(see later) and then in each sub interval separately we use 'single' shooting
to find the general solution vector which satisfies the system § = Ay + £ of our
problem I, for all t in that sub interval. These vectors must then be "matched
up" at each of the internal nodes and with the given initial and terminal values
at t = o and t = 1 respectively, so as to achieve an overall solution vector
y(t) which is continuous over {o,1) and which satisfies the system § = Ay + f
subject to the given boundary conditions Loy(o) + Lly(l) = C, as is required.
Any superposition method can be used for the '"single" shootings in the sub intervals
but we will assume that method IBa is adopted so that the description which follows
refers to multiple shooting based on the variation of parameters method.

Suppose that the total interval [to,tfj is divided into N sub intervals

with nodes at to(=0), t °.”tf(=l). As described in TBa, in each of these

1’t2
sub intervals separately we must integrate the homogenecs system y = Ay forwards
n times starting from the Kronecker delta vectors and the inhomogeneouw§ system

¥y = Ay + £ forwards once starting from the null vector. This gives us in

each sub interval n homogen<sw vectors and one inhomogenéouwS vector (requiring

in total N(n+l) integrations) from which we obtain the general solution vector
for each sub interval. Now in practice this could be done by integrating

the same set of differential equations (y = Ay for the-homogeneosS and -y = Ay + £
for the inhomogensow5) successively over different sub intervals viz.(to,t j,
(ﬁl,té),.,.,(tN_lpté), However, it is more convenient for our explanation if we

adopt the equivalent notation (due to Keller(ll)

) in which instead we integrate
successively different sets of differential equations over the same interval {o,1)

each time. To achieve this we define a new independent variable s on each
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sub interval
Yt
by s = T where Ai = ti - ti"l
i=1— N)sothatti_lStSti-:}oSssl. We can

now show (3.3) that under this change of variable the system of differential

equations for each sub interval is given by:

yp(s) = [Ai A(s)] y(8) 4 {Ai f(s)] , where
< s & i 4 d
oS s&1 and 1 = 1~ ——3 N, and ° denotes s
(n

Keller's notation reduces the given problem to a sequence of similar problems
all defined on the same interval (O,I), The advantage of this approach
is that the final matrix equation to be solved can be written in a form
directly analagous to that for“singlg shooting given in IBa, the only
difference being that now the vectors are giant vectors (i.e. with vector
components) and the matrices are giant matrices (i.e. with matrix elements),
as we see later, Each interval separately (i = 1 -.-—N) now has its own
system matrix Ai :ﬁ%ﬁ)its own forcing vector fi = lkif, its own homogen<ou$
fundamental matrix Ni' its own particular solution vector\M; and hence its
own general solution vector yi. For each interYal separately: f£from Ai

we obtain Ni(s) by integrating ya = Aiy forwards n times from the Kronecker
delta initial vectors from s = o to s = 1, Then from Ai and fi we-obtain
\N;(s) by integrating the inhomogeneey set yﬂ = Aiy + fi forwards once
from\ﬁé(o) =0, 0£s £ 1, Finally from NiLs) and\J;(s),wemobtain

yi(s) from: yi(s)

N,(s). By +\N;(s), i=1---N, o< s <1, where

Ni(o) =1 mui¥4}o) o, and Bi = yi(o) are the combination vectors to be
found by matching at the internal nodes and at the end points, This last
set of general solution vectors is analogous to y(t) =ﬁV(tly(o) +\NQt)

0 < t <1, obtained in IBa for single shooting.

We can now show (3.4) that, as mentioned earlier, the matrix equation
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to be solved in order to match up these interval general solution vectors
at the internal nodes th""tN—l so as to obtain an overall

solution vector y(t) which is continuous over (to, tf) and also satisfies

the given initial and final conditions, can be written in a form analogous

to that found in IBa for single shooting viz,

= T where M = L0 + Ll . N (1)

w]

ﬁ L]

and T = C - El wo(1).

Here, as shown in (3.4), the boqndary condition matrices Eo and El are now
giant matrices of size N x N where each element is n x n. The matrix ﬁ(l)
is the overall homogeneow fundamental matrix and is also a giant (Nn x Nn)
matrix, C and W (1) are giant (Nn x 1) vectors as also is B = {Bl----ngT,
the combination vector of initial values for which we must solve. Having
iound the combination vectors Bi(i =1___N) from B = (R/I-)—1 . T , these

can then be used to compute the solution vector y(t) for each sub interval

from:

Jis) = N(s). B, + W.A(s) , 0€ s< 1.

These piecewise interval solution vectors, which can be written in giant
vector form as Y (s) = (yl(s), yz(s) _—— - — v yN(s)), will now be
continuous at the nodes and will satisfy the given initial and terminal
boundary conditions, Therefore ?(s) is the overallrl‘dﬁ&a solution
vector of our problem.

The success of the multiple shooting method depends very largely on
how well conditioned is the matrix equation M.B=T i.e. on the condition
nunber of matrix M. As for re-orthonormalisation, this in turn depends on
the choice of partition i,e., on the positions of the internal nodes. We

h

mentioned in II that, forléingle shooting, only by ensuring that the

homogengouwS fundamental matrix N(1) is well conditioned can we be sure that
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the solution matrix M will be, To this end, we can employ any of the
re-orthonormalisation tests described in (b) to check on the condition
of N(t) at regular intervals and to insert a node whenever it is found
to be deteriorating. This, in theory, would give us the optimum partition
and hence the optimum solution vector y(t) overall, for any given step

Ge)
length}\. However, Gunderson has shown (3.5) that any partition for
multiple shooting should always produce a better conditioned solution matrix
M thcn the solution matrix M employed in single shooting, which implies
that the solﬁtion vector y(t) obtained by any multiple shooting partition
.should be more accurate overall than the solution vector obtained by

single shooting. But this theoretical result takes no account of the

round off error inevitably encountered in practice and so, as for re-

0]
[od
3
)]
Fb

orthonormalisation, if too many sub intervals are taken then th

of multiple shooting are liable to be cancelled out.

(11)

Keller explained the theoretical advantage of multiple shooting
over single shooting by comparing the respectiv€ bounds on the error vectors,

He showed that for single shooting:

//yc(l) - ye(l)// < l’\P, Ml. exp (Kl) where yc(l) and ye(l) are

respectively the computed and exact solution vectors at t = l,.& is the step

length, p the order of the integration scheme, and Ml and K1 constants,

assuming to = © and tf =1, This means that the bound on the error

vector at the terminal point t = 1 is proportional to exp (Kl)' By

comparison, for multiple shooting with N-sub intervals he obtained the =~

corresponding result:

i€

//§c(l) - ?e(l)//’ig ¥€i M,  exp —% where

M2 is constant and‘§c(1) and‘§e(1) are respectively the overall computed and

exact solution vectors at the end of each sub interval ie ?(1) = Eyl(l),yz(l),,

ooyN(li), Thus the bound on the overall error vector is proportional to

K
exp <:ﬁl

which means that, in theory, the accuracy of the computed solution
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vector, taken overall, will increase with N, which implies that the more
subdivisions taken the better, But again, in practice, this is only true
up to a point, because the above result takes no account of round off
error., In the multiple shooting programs in IV we have confined ourselves,
as in the case of re-orthonormalisation)to equal sub intervals and obtained
a comparison between the two methods for the same number of sub intervals
and step length for a given problem,

Multiple shooting is very similar to re-orthonormalisation in the way
in which the total interval Eo,lj is partitioned into sub intervals and
the overall solution vector y(t) is formed by piecing together the separate
solution vectors in the sub intervals so as to obtain a continuous solution

vector which satisfies the given end conditions. But they differ in two

essentia

ia

bt
H
[0}
n

ts. In muitipile shooting we integrate forwards in each
sub interval from the same initial vectors each time to obtain the
homogeneow§ and inhomogeneowS vectors, whereas in re-orthonormalisation we
obtain at the beginning of each sub interval a different set of initial
orthonormal vectors by using the Gram- Schmidt process to convert the
linearly independent vectors at the end of the previous interval. Also,
in re-orthonormalisation the combination vectors 751' required in each
sub interval to obtain the correSpdnding solution vectors, are found
iteratively by working 5ackwards throﬁgh the sub intervals and solving

a sequence of matrix equations each only of size (n-r) and involving the
-stored values of the re-orthonormalisation matrices P; and the projeé&ion
vectors Vﬁ, ) But in multiple shooting the sub interval combination
vectors Bi are all found at once by the solution of one giant matrix
equation M.B=T of size Nn. For this reason, if the problem size n
is large or if a large number of sub intexrvals N is requiréd, re-orthonormalisation

may be preferable to multiple shooting as less memory capacity will be

required and fewer calculations will be needed so that the program running
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time will be shorter. This was verified by the practical experience in
IV in which the running times for the re-orthonormalisation programs were
invariably found to be much shorter than for multiple shooting with the
same number of sub intervals,

There are several methods available in practice for the numerical
solution of a large set of simultaneous linear equations such as M.B=T
(see (9)), but one which does not entail the finding of the inverse (ﬁ)_1
is preferable as this is not directly required. In the multiple shooting
programs in IV we employed the method of Gaussian elimination.

The multiple shooting method described above is the 'forward shooting'

type i.e. we shoot forwards over each sub interval from the initial node:

¥,(t) .
y, (t) Yol S Y (6
A /7 /7 { 7 B
i Y ty ts tN-1 ty
initial final

But, as explained in IIIa, if the problem matrix A possesses several large

positive dominant eignvalues but no negative ones (or at any rat?,ones

with only very small negative real parts) it may be advantageous to reverse
the direction of shooting in each sub interval, treating the given 'initial'

conditions at t = o as the terminal conditions and those at t = 1 as the

initial conditions, This variation is known as backward shooting:

' y t t t
yN(t)?\ ‘._VN_l(t) Y-of ) Y (t) ¥, ¢ )
t

o 1 t2 3 N-1 tN
final initial

By reversing such a problem the cumulative errors in the exponential terms
due to round off will be greatly reduced and this means that it may be

possible to obtain a more accurate overall solution vector with fewer sub
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intervals.

If, as is more 1iké1y, the real parts of the eigenvalues of the
problem matrix are mixed positive and negative of roughly equal size so
that the error growth is approximately equal in both directions of
integration, then another variation that can be employed is to use an
even number N of sub intervals and to shoot backwards and forwards from

each odd numbered node thus:

Y, () gzg_t) -ﬁ%y‘l(t) Yn-1 (¥ y(t)
%o Y t2 ‘3 tq Yoz w1

In this case the continuity equations at the internal nodes become:

£\
v(t) = vy (t.) = B = B for r =1 -—..(01)
r r r+1 r / r r+l1 (odd nos)
and y_ (t)) = y . (ts)'-$ N (t ). B+ W_ (t))
= t .
Ns+1 ¢ s) Bs+1 M ws+1 (ts)

for s = 2-_,__@’(-2)

(even nos)

making n(N-1) linear equations, In addition we have r equations at to

and (n-r) equations at t_ giving nN equations in total,

N

Another possible variation is (again for N even) to shoot in both

directions from each even node, forwards from to and backwards from tf

thus:

ol
e

7 7 7 AN
4

to 1 1:2 3 tN—2 N-1 N

For the case N = 2, this method reduces to what is known as 'matching
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in the middle",

Instead of calculating the eigenvalues of the problem matrix A in
order to decide which variation to employ, it is possibly better to solve
the problem by several variations and then to take the average of the
solution vectors obtained, If A(t) is variable, then averaging is
certainly preferable,

d) The Riccati Inverse (or continuatioa)method
7

With reference to the Riccati Transformation method described in IC,
consider the case where the transformation matrix U is square F X P i.e.
where both base and surface vectors are F x 1. As explained in (1.6), if

we integrate the set of characteristic equations:

/1'1\ /A B\ /u\ /w\

x C D x G

I
+

forwards from u(o) = a (fixed) and x(o) = s (arbitrary) then we obtain
the surface vector u(t,x) in terms of the base vector x(t) from the

transformation:

u(t) = U(t) x(t) + v(t) for t ¥ o,

where the matrix U(t) satisfies the Riccati equation (v) and vector v(t)
satisfies equation (vi), both of IC. Now consider the system obtained by
reversing the definition of surface and base vectors i.e. by interchanging

x and u:

Mo
o
Q
HJ

G

e
[se}
>
=

F
If now we integrate this system forwards from x(0) = a (fixed) and u(o) = s
(arbitrary) then we obtain the surface vector x(t,u) in terms of the base

vector u(t) from the inverse transformation:
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x(t) = W(t) u(t) + B(t) for t > o )

where W(t) = U 1(t), provided it exists.

Now u(t) = U(t) x(t) + v(t)

1

= UTNE) uwe) = x(t) + UY(t) v(t)

= x(t) = vHey we) - uTHe) vt

Hence B(t) v ey, vee).

Thus, if over any interval both U(t) and U—l(t) exist and are bounded
then we have the option of obtaining the solution vector y(t) either by

using the normal transformation:

u(t) = U(t). x(t) + v(t) (as described in IC)

or instead by employing the inverse transformation:

x(t) = U_l(t) u(t) + %8(t), where now u is the base vector and
x the surface vector, If using the inverse method of solution we must
make the following adjustments to the normal imbedding equations (ii)~(vi)
of IC:
interchange matrices A<®>D, Be>C, F<> G
replace U by W(:U_l)
interchange u«<y x
replace v by % .
Thus if we were solving a problem over sub interval (ﬁl,té), in (b,I} using

U instead of U throughout, then the inverse imbedding equations required

would be as follows, where u now denotes the base vector and x the surface

vector:
() W = C+ DW - WA - WBW (Riccati). Integrate this equation
forwards starting from W(tl) = U—l(tl), This is the equivalent of equation

IC(v) for the normal transformation,
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(ii) % = (D -WB) % -WF + G. Integrate this equation forwards
starting from E(tl) = —U_l(tl). v(tl),

This corresponds to equation IC(vi).

(iii) Solve for u(tz) the matrix equation:

[élVJ(tz)%i%Jp(tz) = b I B(tz). This corresponds to eguation
IC(viii),
(iv) 4 = (BW + A)u + B% + F. Integrate this equation backwards

starting from u(tz)° This corresponds to equation IC(ix).

(v) Obtain the corresponding surface vector x(t) from the base vector

-1

u(t) at any value of t in (ﬁ tzj from x(t) = U “(t). u(t) + &(t).

1)

This corresponds to equation IC(iv).

A
For any given problem there exists a critical length t at which the
solution U(t) of the Riccati equation will become unbounded. In fact,

it can be shown that:

cin L 14 BESS wnere s/act)//€a

o+7
[

//BCtY)// £, [/UtY// Sc, //D(t)// S d and

= max i , C + d] over the interval (o,l}, (see 3.7). This
difficulty is chiefly, but not solely, due to the quadratic term U.C(t).U
in this equation. Thus as t-?‘; the numbers involved in the calculation
will eventually become unmanageably large and will cause blow up beforelz
is reached. Therefore if/; is near the terminal point 1 (or if ?'<1)
we must adopt one of the following approaches in order to overcome the
critical point:

1. inverse method: if U is a square matrix i.e., if we are given the same

nunber of initial and final values in the problem, then we may be able to
- o .
make use of the inverse transformation U 1(t) to get by t. Although U(t)
o -
may be becoming unbounded as t =¥ t, U 1(t) may exist and be bounded in

"~
the neighbourhood of t. If this is so, then we can switch the solution
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-1
method from U(t) to U "(t), the switch over point being some point t = ty
~ -
before t, at which U(tl) is still manageable, and continuing with U 1(t)

~
to some point t2 beyond t. At t = t2 we may then invert back and

continue the solution with U(t) again, thus:

U U—linverse U normal
. normal . . \ .
t = o t < ] t=
1 t2 1

This procedure can be repeated each time a critical point of U(t) or
U_l(t) is encountered, If a switch is made from U transformation to U—1
at tﬂ then, as shown in (3.6), the U_1 integration of the inverse Riccati
equation will start from U_l(tl), obtained simply by inverting U(tl).
Likewise at tz, when we switch back from U—l to U, the U integration will
restart from U(tz) i.e. from (b—l(tzﬁ_l. But since &(t) = —U—l(t).v(t),

-] -
the starting vector for the integration of the Z equation will be -U 1(t1)oV(tD

at t,, and -U(t,). B(t,) at t, for the v equation.

2

To illustrate how the inverse method is used in practice, suppose
that in our problem we are given the values of yl,yz and Y3 at t = o and,
say, those of Yy0Yq and Vs at t = 1. Then for the normal U transformation
(y1 yz_ngis the surface vector u and (y4y5 Ve )T is the base vector x, but

for U-'l these are reversed, i.e. base u = (yl y2 ys)T o surface x =

T -1
(y4 y5 y6) Suppose also that we decide to switch twice, from U to U

at t and then back from U“1 to U at ¢t

1 as shown above, We first

21
integrate'muanormal Riccati and v equation forwards from t = o as in IC.
At t

1 we switch to the inverse imbedding equations (i) and (ii) above,

. . . . - s -1
restarting the Riccati equation from U 1(tl) and the & equation from -U (t1)°V(£D)
and integrating both forwards to tz. At tzy we switch back to the
normal equations again restarting at U(tz) for the Riccati and at —U(tz)oﬁlﬁ;>

for the v equation and continue these integrations forward to the

end point t =1. Thus we now have the values of U(l) and v(l) from which
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we can obtain x(1), the normal base vector, by using IC(viii). Also
as in IC, we can now integrate equation (ix) backwards over (tz,lj to
obtain the normal base vector x(t) in this sub interval, At tz, we use
the transformation:

u(tz) = U(tz) x(tz) + v(tz) to obtain the normal surface vector
u(tz) which will be the base vector for the U_1 transformation, We must
therefore now integrate backwards the inverse base equation (iv), given

above, starting from u(tz) over the range ftl,té). This gives us the

inverse base vector (ylyzys)T in thi§ sub interval. At tl we use the inverse
transformation (v) above:

x(t)) = U'l(tl). u(t;) + ®(t)) to obtain x(t ) which is the
inverse surface vector i.e. the base vector for U, This is now the

starting vector for the backward inte tion of equation (ix) of IC over
(b,ﬁ? which gives us the normal base vector for this sub interval. In

the ranges Co,ﬁ) and(fz,i} we now have the normal base vector x = (y4y5y6)T
from which we can find the corresponding surface vector u = (ylyzyS)T, at
any storage point t, by using: u(t) = U(t).x(t) + v(t). Similarly in
the range [tl,tz) we have the inverse base vector u = (ylyzyS)Tfrom which

we can find the corresponding surface vector x = (y4y5y6)T at any storage

point t from:
x(t) = U Y(t) ut) + B(L).

Thus we have found the surface and base vectors at each storage point t
and hence the solution vector y(t) of the problem over the complete range

{p,l). The procedure can be summarised thus:
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Obviously, the above procedure can be extended to cater for any number
of switching points, the unde;lying idea being that we always work backwards
through the subintervals starting from t = 1, finding the base vector in
each sub interval and then obtaining the surface vector at the switching
point which will be the starting base vector for the backward integration
in the next sub interval. In this reSpecf ofuﬁorking backwards through
the sub intervals, the Riccati Invefse method closely resembles the re-
orthonormalisation method,

However, if matrix U is not sguare then obviously the above method is
not applicable, since U—1

is not defined, and so to overcome a critical

point we resort to . the. 'P\iccql:‘i Feverse W\L‘H»\ad_‘;
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2) Reversal: As mentioned in connection with the multiple shooting
method in I1I(a) and (c), sometimes 'blow up' can be avoided by reversing
the direction of integration of an equation, In this case, however, if
we reverse the direction of integration of the Riccati equation IC(v) this
will also necessitate the reversal of the ; equation (vi) and the ;
equation (ix), Moreover, we must interchange the dimensions of u and x
s0 that:m&%? throughout and this causes alterations in the characteristic
matrices A, B, C, D and in the vectors F and G. To be specific we would
proceed as follows:

Define the surface vec?or u to be those components of y which are known
at t =1 and the base vector x to be the remaining components, Thus the

boundary conditions now become:

u(l) = b and gl u{o) + g2 x(0) = a (i)

where gl is (m x F) and g2 is (m x m), assuming that m values are known

at t = o and ? values at t = 1. The corresponding characteristic equations
will now be:

u a(t) b(t) u £(t)
= + where

x c(t) a(t) X g(t)
a(t), b(t) etc., will be different from A(t), B(t) etc, The transformation
u(t) = U(t) x(t) + v(t) (ii) still holds and so U(l) = o corresponds to
v(1l) = u(l) = b. We now integrate backwards the Riccati equation:

ﬁ = b(t) + a(t) U - Ud(t) ~ Uc(t)U from t =1 to t.= o starting
from U(l) = o and save the values,

Also integrate backwards over (p,f} the equation; ¢ = [?(t) - U(t) C(tiuv

- U(t)g(t) + £(t) starting from v(l) = b and save the values.

Now from (ii): u(o) = U(o) x (0) + v(o),

Substituting in (i) we get:

gy .[U(o)x(o) + v(oﬂ + g, x(0) = a
(%1 u(o) + gé]v x(0) = a- g v(o),

—%
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where U(o) and v(o) are known, so that this matrix equation can be solved
for x(o).
Now integrate forwards the equation:

X = [c(t)U(t) + d(t)] o X + ¢(t) v(t) + g(t),
starting from x(o), over (;,1))and save the values, Finally, find the surface
vector u(t) at each saved point t by using:

u(t) = U(t) x(t) + v(t), and hence obtain the solution vector y(t)

from x(t) and u(t).
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v PRACTICAL NUMERICAL EXPERIENCE

All the programs used in this section to solve the test problems were -
written in Spectrum Basic programming language and are intended to be run
on a SpectrumZX microcomputer with 48K Ram. In this machine, numbers
are stored in floating point binary arithmetic, to an accuracy of 9 or

A . e-128 . . .
10 digits, in the form mx 2 where m, the mantissa, gives us the digits

in the number and e, the exponent, fixes the position of the decimal

point, where % £ ms 1l and 1 £ e £255, Thus the largest number stored

8 127 39

is about lO3 (= 2 ) and the smallest positive number about 4 x 10

(=% . 2_127), but the largest integer which can be held completely

32

accurately is only 2 -1 ( 4 x 109). This means that the results of

any calculation process involving numbers greater than, say, lOlo must be
suspect and if numbers of theborder ‘015 are present then the results may
be so inaccurate as to be virtually useless. For this reason we have
restrictedourselves to the solution of problems for which the mod of Fhe wxack
Solution components do not exceed qu, so that some reliance can be placed
on the accuracy of the results achievsd.

We have concentrated mainly on the solution of two test problems, A
and B. For each, the problem matrix is of size n = 6 and contains a variable
element L which can be used to alter the condition of the matrix so that
in effect each problem is really a famil& of problems. For a chosen value
of L, the eiéenvalues)\s and corresponding eigenvectors Cs (s =1 - -6)

of the problem matrix were calculated. A particular solution vector @(t)

was then assumed and the constants KS (s =1 - - 6) defined so that the

constant Ki’ corresponding to the maximum positive*@ggnvalue)\i, was zero.

Thus the exact solution vector ye(t), 6<t€l, was given by:

theoretically, the term involving the eigenvalue )i was completely excluded.

However, in practice, as explained in section II, if >i is sufficiently
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large, then as the integration proceeds forwards from t =0 to t =1
this term will gradually be re-introduced into the calculated solution
vector due to round off error, with a consequent loss in accuracy
which will "snowball' the further the integration goes.

In example 3, we also solved a Ehied problem, C, details of which
are given later.

In order to obtain a boundary value problem, in each case we
assumed that only three components (yl, Yo and ys) were known at

= @ and three at t =1 (ys, Yq Vs for problem A and Yi+ Yor Yg for
problems B and C). From these we attempted to obtain a compnkea solution
vector yc(t), stored at intermediate points in (0,1} , which could then be
compared with the exact solution ye(t) at the corresponding t points.
The accuracy c¢f Yo (£}, at any stiored p01nt t, was méasured by computing
the L2 norm of the error vector viz: i(j(") _ y )2 i An overall
measure of the accuracy of yc(t), taken over the full interval f{o, l]
could then be found by computing the percentage error norms at a number
of chosen test points:
t=0, t=05,t=1, ort=0, t=0.25 t=0.5 t=0.75 t=1.
(The percentage error norm at’any point t is the ratio of the norm of
the <rror Veckor ko khe norm of Ehe <exack Solubiom veckor at

et ro»nt) o . In this way, by comparing the
percentage error values obtained, we'were able to measure, for any given
problem, the relative effectiveness of either:
(a) different solution methods employing the same step length h each

time, or
(b) the same solution method with different values of h, or
(c) the re-orthonormalisation method (or multiple shooting method) with

varying number of subintervals (m) and varying values of h.
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As stated earlier, in the case of the re-orthonormalisation method
and multiple shooting method we confined ourselves to equal subintervals
only. Also in examples 1 to 4 all of the integrations of the system
equations in all of the programs were performed by employing a Runge
Kutta method. In example 5, we obtained a comparison of the accuracy
of this integration scheme with that of a linear multiétep method (employing
the above Runge Kutta as starter), by comparing the accuracy of the results
obtained in solving a given problem using a given step length h and given
method of solution, but employing first one integration method and then
the other. The details of these integration schemes are as follows:

Runge Kutta Method: This was a six stage method with a local

order of accuracy p = 5, known as Lawson's method, defined by:

n [ 7
Yool Vo = go L 7R+ 32y 12K, 4+ 32K+ 7K6J
where:

Kl = f(xny yn)
K2 = f(xn + ¥%h, Y, * ¥hK l)

— 1 1
K3 = f(xn + %h, v, * /eh(K1 + KZ»
K4 = f(xn + %h, v, * %hKS)

= 3 Bh (-
K5 f(xn + %h, Yo * -ﬂ;'( K2 +2K3 + 3K4))

h )

K6 — f(xn + h, Y, *t 5 (K1 + 4K2 + 6K3 - 12K4 + 8K5))
Linear multistep method: This was an explicit 4 step Adams-Bashforth

method of local order of accuracy p = 4, defined by:

P K

g"ﬁ yn+j = h é @jfmuj where

J=0 Jj=0
K=4, £ =1, £ -1, o« . o -« -
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55 -59 37 -9
Bs = O By = 23+ By = 24’ ﬁl = 5 B, = =

The details of the solved test problems, each with system equations

y = Ay + f and over the interval (Q,I], were as follows:

Problem A: n==~6

[1 1 0 0 ) o—_1
0 10 1 0 0 0
A = 0 0 5 1 0 0
0 0 0 3 1 0
0 0 0 0 2 1
Lo 0 0 0 1 1

The eigenvalues of A are : L, 10, 5, 3, 2.6180339, 0.3819661, and the
corresponding K constants were defined as: o, 1,1, 1, 1, 1. The
T
particular solution vector @(t) was taken as: B(t) = [F,e, e, o, 0, @ﬂ
which meant that vector f(t) was given by:
T
f(t) = [l -Lt, 6, ¢, 0, 6, © 1 since
o

f = ¢ -AQ,
L was now chosen to be a large positive value (e.g. 35 ) and the
corresponding eigenvectors and the exact solution vector obtained, from

which we assumed to be given: yl(G); y2(@), y3(6) and y3(l), y4(l), y5(l).

Problem B: n==~6

o | )
3 1 0 0 0 0
0 10 1 0 0 0
0 0 5 1 o) 0
A = 0 0 o) L 1 0
0 0] 0 0 2 1
L§ 0 0 0 0 1 1
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The eigenvalues of A are: 3,10,5,L, 2.6180339, 0.3819661 and the
corresponding K constants were defined as: 1, 1, 1, O, 1, 1. The
particular solution vector was taken to be : $#(t) = (O,O,O,t,O,O)T

which meant that vector f(t) was given by:
T
f(t) = (0,0, -t, 1 -Lt, 0, O)

As for problem A, corresponding to each chosen large positive value of
L the eigenvectors and exact solution vector were obtained, from which

it was assumed that we were given yl(a), y.(®), y3(@) and yl(l), yz(l), y6(l)-

2

Problem C : n = 6

[9.11 5.32 1.97 2.12 1.44 7.65-j
5.32 8.11 -4,24 3.21 2.34 1.46
1.97 -4.24 7.64 1.03 5.02  -4.58
A= 2.12 3.21 1.03 9.33 3.72 1.26
1.44 2.34 5.02 3.72 9.98  -5.04
L-7.65 1.46 -4.58 1.26 -5.04 8.33 |

The eigenvalues of A are -3,2676, 1.1056, 6.2342, 9,3012, 18.358, 20.7686.
The particular solution vector @(t) was taken to be: @(t) =[post,
6,t,6,t2, @DT and the K constants this time were chosen so that the
initial vector y(0) =0, and the exact solution vector y(t), @ £t<1],
was then obtained. The exact value of vector y(l) was:
[ -3.0699764e8 W
-2.3760237e8
1.7249322e8
-1.1540849e8
98125236

-3.3069843e8
L W,

We assumed that we were given yl(o)y Yo (@), y3 (o) and yl (1), y2 (1) y6 (1).
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The programs of the solution methods used to tackle the above
problems were as follows:
Program 1: Multiple shooting based on the variation of parameters

method (IIIc) including single shooting.

2: Reverse single and multiple shooting (IIIa and c).
3: Conte's Reorthonormalisation Method (ITIIb)
4: Riccati Transformation Method (Ic).

In examples 1 to 4, all of these programs employed the Runge Kutta
integration scheme. In example 5 we also used program 3 with the
linear)step integrator.

Results: All numerical results are given to an accuracy of two decimal
places, except where otherwise statcd.

Example 1 : Reorthonormalisation (program 3):

Here we concentrated on the solution of variations of Problem B
(obtained by assigning different values to L) using varying numbers of
equal subintervals, m.

First we attempted a solution of the problem for which L = 85,
using a step length h = 1/48. With m =2, the calculation failed due
to a blow up in the reothonormalisation subroutine. When m was
increased to 4, a solution was obtained but was discarded as being
totally meaningless since all the calculated components at t = 1
exceeded 1@20 in mod value. With m = 8)however, a gblution was obtained
for which the norms of the error vectors at t = © (Ileoll), t = 0.25
(Heyl 1), €= 0.5 (lleyf1), £ =0.75 (Heg 1) ana t =1 (lle, |]) were
computed together with the percentage errors atthese points. The

results were as follows:
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Problem B : L =85 : h=1/48 : m = 8

% error

| e, I 191.46 1.02
ey | 216.86 1.05

l’.
ey |l 258.36 1.13

2
I eE’II 342.88 1.21

L’—
|| e, | 148,364.00 93,48 R

The above solution is acceptably accurate over the range t = 06 to
t = 0.75 but between t = 0.75 and t=1 the term involving the eigenvalue )
= L = 85 is introduced into the calculated solution by the round off error,
resulting in a massive error in the fourth comenent Ya at t = 1, this
being the component chiefly affected by L. However
demonstrate the effectiveness of increasing the number m of reorthonormalisations
when tackling a problem with a large positive dominant eigenvalue. A
further increase in m was tried but the calculated solutions for m = 16,

m

1]

32 and m = 48 proved to be virtually identical to that given above for

m

8,‘the steplength h being kept at 1/48. When, however, the value of h
was reduced to 1/192 with m = 8 the percentage error norm at t = 1 was
reduced to 9.92%, but again further increases in m produced identical
solutions to that obtain for m = 8. (see also example 5).

In an attempt to assess the effectiveness of the reorthonormalisation
method in solving. progressively more ill conditioned problems, we now solved
Problem B taking L = 15, 25, 35, 45, 55, 70 and 85 successively, using a
steplength of h = 1/48 and m = 8 each time. For each computed solution
we obtained the error norms and percentage error norms at t = 0, t = 0.5,

t = 1 and these results are recorded below:
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Problem B : L =1/48 : m = 8

t =0 t = 0.5 t=1

? T e, ] % T, T % e, TI %
15 33.15 1.02 44,95 1.10 2845.00 1.82
25 55,37 1.02 74,82 1.11 10098.00 6.46
35 77.84 1.02 98.31 1.04 21882.00 13.98
45 100.58 1.02 135.84 1.13 38166.00 24.34
55 123.35 1.02 166.64 1.13 58952.00 37.50
70 157.07 1.02 212.40 1.13 98599.00 62.46
85 191.486 1.02 258.36 1.13 148,364.00 93.48

We see that the percentage errors at t = 0 and t = 0.5 remain virtually
constant as L is increased i.e. as the problem becomes more ill conditioned,
indicating that the accuracy. of the calculated solutions over this range is
not much affected by the increasingly dominant large positive eigenvalue L.
But the extent to which the term containing L is introduced into the
calculated solution is obvious from the percentage errors at t = 1. Only
for L = 15 is the calculated solution acceptably accurate over the full
range (0,1}.

In our problem B the components known at t = 1 are yl, y2 and y6 whereas
the compqnent most affected by the eigenvalue L is Yy Thus the calculated
value of X £ would be fairly accurate because this is found (see section IIIb)
by using the components of the final homogeneous and inhomogenous vectors at
t = 1 which correspond to the positions of the known terminal values i.e. the
first, the second and the sixth.

This in turn meant that the accuracy of the calculated values of the
other 2{ vectors would not be seriously affected since these are derived
by backward iteration.f¥bw\¥;. This explains the acceptable accuracy of
the solutions over the range t =@ to t = 0.5. The inaccuracy of the
solution towards t = 1 arises mainly from the error in the fourth component

of the calculated homogeneous and inhomogeneous vectors as they are integrated
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forwards and the term involving eigenvalue L is introduced. By increasing
the number m of reorthonormalisations from 2 to 8 we did reduce the rate of
growth of this error sufficiently to give (for the case L = 85) an acceptable
solution as far as t= 0.75.

Since the error at t = 1 is due to the introduction into the calculated

solution of a term containing eL, if we denote ||e by E we may write:

al
E = f.eL where E and f both depend on L. This gives us:

InE = Inf + L or 1Inf = 1nE - L, From our results above for L 15,

25, 35, 45, 55, 70 and 85 we obtained a linear graph of 1lnf against L as
shown below. From the graph we see, for example, that when L = 100, 1nf

= -86 so that 1nE = 14 i.e., E = e“+.€3 IIZO%pOO. This is the value of
||el|| we would expect for the solution of Problem R with L = 100. In fact
when we solved this problem using h = 1/48 and m = 8 the error ||el|| turned
out to be 1,110,000, approximately. If we restrict our consideration to

the range 35<€ L €70 then the error E at t = 1 can be written E = f,eL

where f = exp [ -0.956L + 8.4é) so that E=x exp { 0.044L + 8.48} .

Example 2 : Forward and reverse shooting
{Programs 1 and 2)

In this example we showed the advantage of reverse shooting over forward
shooting in the solution of-a problem possessing positive eigenvaiues
particularly where one is large and well separated from the others i.e.
where the problem matrix is very ill-conditioned.

A solution of Problem A with L = 100 was attempted using the multiple

shooting method with a steplength of h = 1/24. Forward shooting with
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m=1, m=2and m = 4 all failed to produce a solution due to a blow up
either in one of the homogeneous integrations or in the matrix solution

subroutine, But when the direction of shooting was reversed a solution
was obtained each time. These three solutions were virtually identical
and acceptably accurate as the percentage error values at t = 0, t = 0.5

and t = 1 show below:

Problem A : L=100 : h=1/24 : m=1, 2, 4

Reverse shooting

% error
t=0 0.32
t = 0.5 0.50
t =1 2.28

Moreover, further attempts to obtain a solution by forward shooting
using m = 5 and h = 1/50 and then h = 1/100 also failed due to blowup 'in
the matrix calculation.
As mentioned in section III, the explanation for this is the re-introduction

into the calculated solution of the term containing the large positive eigenvalue

L = 100. When the integration starts at t = 0 the K constants have been chosen
so as to exclude this term completely. If the calculation process were 100%
accurate then this would still be the case at t = 1. But in practice as

the integration proceeds forwards from t = O the calculated solution (yc)
strays from the exact solution (ye) due to round off error at each step

so that by the time t = ty (say) is reached yc(tl) = ye(tl) + @. If we
now imagine the integration to be stopped and then restarted at t = t,

the starting vector will be y {(t,) and not y (t.) as it should be.
c 1 e 1

Now the starting vector determires the K constants which means these must
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be different if-yc(tl) is used instead of ye(tl). With ye(tl) the K
constants would be such that the Ki corresponding to the term containing
L would be exactly zero. But with yc(tl) this will not be so and Ki
will now have a small non-zero value which means that the term KieLtCi
has been introduced into the solution yc(t) for t 5 tl' Once this term
has gained a foothold in the solution, no matter how small, its value
rapidly snowballs as t increases because of the very rapid growth of the
factor eLt (t» ©®) and will eventually cause yc(t) to blowup if L is
large enough and if the integration proceeds long enough. For reverse
integration, on the other hand, the effect of introducing this term is
negligible since in this case it contains a factor e L{t-1)
Thus the greater is the positive value L the more marked will pe the
difference in édéuracy betweé; forward an;”r;Qerse shooting and if L is
sufficiently large (100 in our example) quite accurate solutions

may be obtained by reverse shooting whilst forward shooting may result

in blowup.

Example 3 : Comparison of Riccati method with single shooting (Programs
4 and 1 respectively)

First we solved Problem C, Problem A with L = 6, Problem B with L =

where t < 1.

15

and Problem B with L = 20 by both the forward single shooting variation of

parameters method (program 1) and the Riccati method (program 4) with a
step length of h = 1/100 each time, For the solutions of Problem C we

calculated the error norms ||eo|’, lle%|[ and ||e together with the

A

overall error norm {|e || and these are listed below:
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Problem C : h = 1/100

Single shooting Riccati

|le || 1.11 1.05
o

| e, ] 86.66 95.18
%

IIelII 4450.34 4452,14

] ell 4451.,18 4453.16

For the other solved problems we calculated the percentage error norms

in the respective solution vectors and the results were as follows:

Problem A : L = 6 : h = 1/100

% error at Single shooting Riccati
t=0 0.04 0.06
t = 0.5 0.04 0.06
t =1 0.09 0.13

Problem B : L = 15 : h = 1/100

% error at Single shooting Riccati
t=0 0.24 0.25
t = 0.5 0.26 0.27
t=1 0.49 0.51 ! '

Problem B : L = 20 : h = 1/100

i

% error at Single shooting Riccati
t=20 0.23 0.24
t = 0.5 0.28 0.28
t =1 1.05 1.05
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We see that for the above problems the solutions obtained by the
Riccati method are very nearly as accurate overall as those obtained by
single shooting. However, a difference in accuracy between the two
methods was revealed when we solved cases of Problem A. For example,
the table below shows the percentage error results for the solutions of

Problem A with L = 15 using a steplength of h = 1/100:

Problem A ; L=18 2 h= 16

% error at Single shooting Riccati
t =0 0.01 0.01
t = 0.5 0.02 0.20

k t=1 | O.llk- l%.lO'

In this case, the solution obtained by single shooting is overall
very accurate, but the Riccati solution, although acceptable at t = 0
and t = 0.5 is highly inaccurate at t = 1. This latter fact is entirely
due to the error in the first calculated component yl(l): the other missing
components at t = 1 (y2(1) and y6(l)) were found almost exactly. In fact
the calculated value of yl(l) was 4%859-as compared to the exact value
of 22,2ll.hkuigu’the Riccati program the surface vector was Uy = ¥y

u

5 = Y1 Ug = ¥g since for our problem A these are the three components

given at t = 0, and the base vector x was taken to be X =Yg X5 = Ve

Xy =Yg The initial boundary condition was:

u(o) = a= [yl(e), y,(0), ys(ea T whilst at t = 1 we had:
g u(l) + g5 x(1l) = b and since we are given ys(l), ya(l) and y5(1)

this became;:
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r s
0 0 0 yl(l) 1 0 0 ya(l{} y4(1)W
0 0 0 y2(l) . o 1 0 ys(l) _ y5(l)
0 0 1 ys(Q 0 o© 0 36(1)J Lys(l)

- r‘ ‘
vy L 1 0 Yy 0O 0 © \ 1 - 15t
2 = 0 10 1 Yy + 0O © 0 Vg + 0]
Vg 0O 0 5 Yq t\l 0 O Ve 0
\
y o 0 O Fé 1 O 0
Ya Y1 Y
Vg = 0 0 O s + O 2 1 Yg i + 0
v 0O O Ojfly 0 1 1 y 0
178) ) 3 L 6 | o

—

For Problem ﬁ}yl is the component affected by the largest eigenvalue
L = 15 and since this element is in characteristic matrix A (see above)
it appears in both of the forward integrations (0 and ¥) of the
Riccati method (see section Ic). The surface vector u(t), at any
storage point t, is then obtained from the equation.

u(t) = U{t). x(£) + v(t), which is dependent on the saved
values of U(t) and v(t) from these forward integrations, so that any
inaccuracies in these calculated values will obviously be reflected

in the computed value of u(t). If we evaluate the aboye qggation

at t = 1 , then the calculated value of yl(l) i.e. of the first surface
component ul(l) is given by:

u = U
11% + U12X2 + Ul3x3 + vy (n

where all values are at t =1 and v ={%1’ Vo vé] T . Now to
determine precisely how the calculated value of Yy (1) was arrived at

we obtained from the program the calculated values of U U 4] and

11’ "12’ T13
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vl at t = 1 and these were as follows:

Problem A : L = 15 : h = 1/100: Calculated Values at t = 1:
(correct to 5 decimal places)

u = 265.56232
11

U = -500.50947
12

u = 336.34299
13,

vy = 4 919, 309.90000

The exact values of xl, x2 and x3 for this problem were:

x
n

-7310.3319 X = 3630.5784

~-3325.1946

»
]

We now see from equation (1) above just how critical is the

11° U12, U13 and vl in the

final calculation of u, . For example, an error of only 1 in 265

accuracy of the calculated values of U

(= 0.4%) in the calculated value of Ull would cause a corresponding

error of more than 7000 in the calculated value of uy - Similarly

if the calculated value of vy i8 in error by only 0.5% this causes a

resultant error in uy of almost 25,000. In fact, we re-calculated

the values of Ull' U12’ U and v, for this problem by using the

13 1
reduced step length of h = 1/300. to perform the integrations and

we obtained the following slightly different values:

Problem A ; L = 15 : h = 1/300: Calculated Values at t = 1 -
(correct to 5 decimal places)
U11 = 265.11648
U12 = -499,13561
U13 = 335.17387
v = 4892857 .60000
1 2T

Substituting these values into equation (1) above, and again assuming

the exact values for Xy X, and Xq gives the value u; = 28098 which is
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a considerable improvement on our calculatedvalue of 4%859 for yl(l) but
still nearly 6000 in error compared to the exact value of 2%211.

To discover why this combination error that we have just discussed
did not affect the accuracy of our Riccati solutions to the other
problems solved in this section, we obtained the calculated values of
all the elements of matrix U and vector v at t = 1 for Problem C (which
has a maximum positive eigenvalue.of 20.7), Problem B with L = 15 and
Problem A with L = 15, each solved by the Riccati method with h = 1/100.
The results are summarised below for comparison:

Riccati method : h 1/100 : Calculated Values at t =1
{(correct to 5 decimal places)

Proviem C Probiem B(L:lS)'—“‘frbblem’A‘(E=15)

Uyq -0.50459 0.00162 265.56232
Uy, 1.19204 -1.15484 ~500.50947
Uy, 1.45812 1.09883 336.34299
Uy 1.45284 0.01973 30.67662
Uy, -0.58717 -8.32769 - 52.11025
Upq 0.03725 7.89736 33.39030
Ugy -1.57826 0.09999 3.19456
YUso 1.81358 -0.64403 - 3.71904
U3s 0.56730 0.51605 2.07486

vy -34.49757 30082, 28300 491930990000
v, 247.00414 211148.6000 412500 . 90000
vy -246,77351 2671, 69000 54326 . 60000

The difference between the nature of Problems C and B and that of A,

from the point of view of the Riccati method, is evident from the above

table. For Problems C and B, all the elements of the U matrix are very
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small (Some in modulus less than 1) so even a large percentage error
Iin the calculation of these values would not have a serious affect on
the calculation of the surface vector u. Meorcover the components
of vector v are much less in the case of Problems C and B than for A.

Thus we would conclude that for the solution of some problems the
accuracy of the solution calculated by the Riccati method may be
impaired due to the effect of the combination (or loss of significance)
error described above. This difficulty is inherent in the problem
itself and it is not immediately obvious as to whether a given problem
is liable to be susceptible to this source of error as our considerations
of Problems A and B (both with a maximum positive eigenvalue of 15)
have shown. It would be advisable, therefore, when using the Riccati
method, to first check on the calculated values of the U matrix at
t =1. If any of these is large in mod value then the accuracy of the
calculated components of the surface vector might be suspect.

Since for both our Problems A and B above the characteristic matrix
C was zero this meant that the quadratic term UCU was missing from the
Riccati equation and so we were able to express this equation as a set
of nine linear simultaneous differential equations of the form D=HU+E
where now U is (9 x1) and H (9 x 9). We then calculated the eigenvalues

of system matrix H for each of our problems A and B with the following

results:
_Eigenvalues of matrix H. (correct to 3-decimal places)
Problem A ( L = 15) Problem B (L= 15)

4.618 4.618
2.382 2.382
9.618 9.618
7.382 7.382
2,000 -10.000
7.000 -~ 5.000
12,000 -12.000
14.618 2.618
12.382 0.382
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The first four eigenvaluesare common to the two cases but examination
of the remaining five explains why the qomponents of the U matrix increase
much more rapidly in mod value ié é;oﬁiéﬁ A compared to those in Problem
B, for forward integration.

Finally, as a further check on the accuracy of our Riccati equation
integration we obtained the eigenvectors corresponding to the above
eigenvalues, for case A, and then, after:fihding a particular solution
vector we calculated the K constants and so determined the exact solution

U

of this initial value problem. The exact values of Ull’ U12’ 13

at t = 1 are given below along with our previously calculated values

(obtained with a step length of h = 1/300) to 5 decimal places accuracy:

i

Exact Calculated (k = 1/300)
Uy 265.05947 265,11648
U, -497.82992 -499,13561
Uiq 332.91292 335.17387

N.B. It must be remembered that the calculated U values from the Riccati
integration are used in the forward integration of the v(t) equation
so that any errors in the former will be transmitted to the latter,

at each step, and therefore affect the accuracy of the computed v(t) -

values, and, in particular, that of v_ (1) which appears in equation

1
(1) above for the calculation of ul(l) (=y1(l)).
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Example 4: Comparison of forward multiple shooting (programi) with
reothonormalisation (program 3)

These two solution methods are very similar in that in both we
obtain the solution vector :j(t) of the problem by 'piecing together"
the individual subinterval solution vectors. In reothonormalisation
the subinterval combination vectors (Xj) are found by backward iteration
from ‘X £ (see section IIIb) whereas in multiple shooting (see IIIc)
the equivalent vectors (Bi) are all found simultaneously by the solution
of one matrix equation.

In order to assess the relative effectiveness of these two methods
we used each in turn to solve Problem B with L = 20, taking the number
of subintervals (m) to be 4 and using a steplength of first h = 1/100
and. then h = /200, It was found that for €ach Value of h the two
calculated solution vectors obtained by the different methods were
virtually identical at all stored points in (0,1). The percentage

errors at t = 0, t = 0.5 and t = 1 are given below:

Problem B : L = 20 : Multiple shooting and reothornomalisation:m = 4
% errors
h = 1/100 h = 1/200
t=0 0.24 0.06
t = ﬂ;{s | 0.27 0.07
t=1 1.02 0.38

The solution provided by the methods to this problem is very accurate

at h = 1/200.
As a further check, we also solved Problem A with L = 20 by both

methods, again taking m = 4 and using a steplength of h = 1/100 in

each case. The error norms at t = 0, t = 0.5 and t = 1 are listed below:
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Problem A ; L. =20 : m=4 : h = 1/100
Multiple Shooting Reorthonormalisation
e 0.69 0.69
Il "o |
He‘ || 1.39 1.39
=z
‘lel ll 12626.00 13391.00

In this case the multiple.shooting method is marginally more
accurate than the reorthonormalisation at t = 1. For both methods,
H el|| was entirely due to the inaccuracy in the calculated value of
yl(l), the values of yz(l) and y6(l) being found almost exactly.
Finally, we solved Problem A with L=22 using h = 17100 and m = 4.
The two calculated solutions were virtually identical this time with

the following percentage errors:

Problem A ; L =22 : h=1/100 : m = 4

Multiple Shooting and reorthonormalisation

% error
t=20 0.02
t = 0.5 0.03
t=1 28.81

The error at t = 1 was again entirely due to the inaccuracy in the

calculated value of~Co~\Y°n&ak 31.0).

We would conclude from the above results that there is no significant

difference between the accuracy of the multiple shooting and the re-
othonormalisation method for the solution of problems of this type.
However, although we could not distinguish between the two methods as

regards accuracy, it was found that the program running time for the
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multiple shooting method was about 20% longer than for the reorthonormalisation
method with the same step length. Part of this time difference might

be attributed to the laék of sophistication of the programs themselves
operating to the disadvantage of the multiple shooting, but it seems clear

that reorthonormalisation is the quicker of the two methods.

Example 5 : Comparison of integration schemes

In examples 1 to 4, all of the integrations of the system equation$
in all of the programs were performed by the Lawson Runge Kutta method.
We now compared the relative effectiveness of this integrator with the

linear 4 step method, details of both of which were given earlier in this

seckign. In 6faer to do this, we again solved Problem B with L = 20
by the reorthonormalisation method (program 3) with m = 4 and h =A1/lOO,
but now employing the linear integrator instead of the Runge Kutta to
perform the homogeneous and inhomogeneous integrations. The accuracy
of the calculated solution vector obtained was then compared with those
from example 4, as shown below:

Problem B : L = 20 : m = 4 : Percentage errors:Reorthonormalisation

Runge Kutta Linear 4 step

h=1/100 | h = 1/200 h = 1/100
[t=0] o.24 0.06 0.01.
t = 0.5| 0.27 0.07 g 0.02
t = 1.0| 1.02 0.38 | 0.11

We see that for this problem the linear 4 step method produces a
solution vector with h = 1/100 which is overall more accurate than that

obtained by using the Runge Kutta method with h = 1/200.
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As a follow-up to .example 1, we ®®-solved Problem B with L = 85
by the reorthonormalisation method employing the linear 4 step integrator
with h = 1/192 and m = 8. Comparison of this calculated solution vector
with the corresponding one obtained using the Runge Kutta integrator
gave the following percentage error results at t =0, t = 0.5, t = 1:

Problem B : L. =85 : h = 1/192 : m = 8.
Percentage errors : Reorthonormalisation

Runge Kutta Linear 4 step
t =20 0.07 0.01
t = 0.5 0.08 : 0.01
t=1 9.92 4.67

Again the solution vector obtained by employing the linear 4 step
integrator is overall the more accurate of the two.

The Lawson Runge Kutta has got a higher local order of accuracy
than the linear 4 step method (5 as compared to 4) but here we are concerned
with the total accumulated truncation error incurred by each method.

As regards stability, both methods have intervals of absolute stability
which are negative : (~5.7, 0} for the Lawson Runge Kutta and (-0.3,0)

for the Adams—Baégforth explicit 4 step method {(see Lambert (7)). But
”for the problems being considered here, all the eigenvalues are positive,
i.e. h = hA >0 for all >\, which means that both methods are absolutely
unstable.

However, the linear 4 step method is relatively stable for any
h 77 -0.214 (see Stroud 12(a)) so that the integrations performed by

this method were relatively stable. This meant that although the modulus
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of the accumulated truncation error of the method did not decay as

the integration proceeded forward from t = 0, its rate of growth was
limited to a rate similar to the rate of increase of the modulus of

the exact solution. For the Runge Kutta method, however, there is no
comparabledefinition of relative stability applicable as this is a one-
step method (see Lambert (7), Chapter 4).  This explains the marginally
superior accuracy of the solution obtained by using the linear 4 steﬁ
integrator over that obtained by the Runge Kutta method, in the solution

of the above problems.
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Vv CONCLUSIONS

The conclusions which can be drawn from the practical numerical
experience, gained in solving the problems of the previous section,
can be summarised as follows:
(1) The results show that microcomputer programs can be used to
implement the theoretical methods described in the literature for the
numerical solution of both well and ill-conditioned linear boundary
value problems. With extra add-on memory in the form of micro-drives
(up to 700K) now available, storage capacity will no longer be a
serious problem but the chief drawbacks still remaining will be:-

(2) limited numerical accuracy. All present microcomputers

store numbers to an accuracy of only 9 or 10 significant ) o

digits
(b) speed of calculation. If using a small step length h,
program running times can be several hours. This is
particularly trge of the Spectrum.
Both of the above limit the range of problems that can be tackled.
(2) The choice of integration method to be used is obviously
important since all the methods for solving linear boundary value
problems involve several integrations of the system equations, so
that any errors incurred here will éffect the accuracy of the

calculated solution vector obtained. The type of boundary value _

problem that we have considered throughout is one where at least one

of the eigenvalues of the problem matrix will be positive in real

part, whereas all intervals of absolute stability for both linear multi-
step and Runge Kutta methods are strictly negative. Therefore)assuming
the programs possess no facility for step control, when choosing an
integration method we should ignore absolute stability characteristics

and instead opt for a method which has:
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(a) as large as possible local order of accuracy
(b) as large as possible interval of relative stability
.extending on both sides of t = O, so as to cater for both
positive and negative eigenvalues.
(3) No significant difference was found between the multiple shooting
and reorthonormalisation method as regards accuracy of solutions obtained,
but the reorthonormalisation method certainly proved to be the quicker
of the two in terms of program running time and this latter fact could be
important commercially where cost has to be taken into consideration.
For the solution of an ill conditioned problem) with a large positive

dominant eigenvalue reverse multiple shooting was found to be particularly

)
ef{gctive;thqggh_spmg,succeés was also_achieved with the reorthonorimalisation
method by increasing the number of reorthonormalisations employed.

The Riccati Transformation method produced acceptably accurate
solutions to some of the test problems but it was found that for other
problems the method compared unfavourably with single shooting due to a

loss of accuracy caused by combination errors incurred in obtaining
the surface vector u(t) from the equation:

u(t) = U(t). x(t) + v(t), using the stored values of U(t) and
v(t) from the forward integrations and those of x(t) from the backward
integration. The greater the absolute rate of increase of the elements
of matrix U(t) the more-serious was the affect of this source of error
on the computed solution.
(4) Although our results show that reasonably accurate solutions can
sometimes be obtained from the multiple shooting and re-orthonormalisation
methods by employing equal subintervals, it would obviously be preferable
to be able to vary the lengths of the subintervals. Indeed, for the

soiution of more ill conditioned problems this would be essential. It
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would certainly be possible to incorporate some of the re—orthénormalisation
tests into the programs used in IV, so as to determine a better partition
of the range, but this would inevitably greatly extend running times and
so for the Spectrum, at any rate, would be impractical. Looking to the
near future, however, when operation speeds of all microcomputers will
no doubt be greatly increased, this would then certainly be a practical
possibility and be worth investigating.
(5) As regards the longer term future solution of linear boundary value
problems, one possible way in which solution times could be greatly reduced
would be to employ parallel (as opposed to serial) computers, so enabling
us to carry out several parts of a program simultaneously and then combine
the results from each.

The multiple shooting method (in which,ifér”N suﬁihtervals;r£he N
similar initial value problems could be solved simultaneously) and the
Riccati Transformation method (in which the Riccati equation and the
associated v equation could be integrated forwards simultaneously) lend
themselves ideally to this concept of parallel computation. Parallel
computers are already available in mainframe form (e.g. the Control Data
Cyber 205). If and when this concept éan be extended to micro-computers,
solution times for linear boundary valqe problems will be greatly reduced,
so that even with present operation speeds more sophisticated programs,

such as those utilising re-orthonormalisation tests and variable step

Vléngths, wiilrgecome feasible;

(6) Finally, if designing a 'package' to be used as an automatic solver
of linear boundary value problems it would be inadvisable to rely solely
on one solution method. Ideally, the program should incorporate two
methods such as a variant of mul{iple shooting and re-orthonormalisation,
each method to be used to solve the problem with several different step

lengths and the vector of initial missing values computed by each method
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for each step length. Only when these two vectors showed acceptable
agreement could the user be satisfied that the average of the
corresponding calculated solution vectors, obtained from the two methods,
would provide an acceptably accurate solution to the given problem,
at least over part of the range. However, if the problem is very ill-
conditioned then the accuracy of the calculated solution vector towérds

-the end of the range might still be suspect.
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VI APPENDIX
. th . . .
1.2 Consider the n order differential equation
y© o= F(t, v, ¥, ?,-__,,, __/ynﬂl) where F is linear in y, 9,'31__”yn-1.
Let = = 3 =y = y* 1 Then
yl - yl yz - y: y3 - y, - —— n - y °
L6 T AR £
Ya= ¥ =y ete
?n = yn = F, which is linear in Yyr ¥y - Vpe Hence the given
?
t
n h order differential equation can be written in the form:
— — r - r - ]
y 0 (O — (o)
71 1 m T 0 1
y O oo\ - O
y2 0O 0 1 - 0 yz
Y3|= Jo oo | O0....0[]7Y3 + - 0
: “s ; ;
[ = ! i
1{ ~ [
‘ ~. B '
: © ©o O ._... — O ' ’
Ya K K. K Ya g(¥)
1 2 3 n L
- — — -

where k% (i = 1....n) are constants,

i.e, it can be written in the form: § = Ay + £ of our problem I(i).

1.3 See Roberts and Shipman (6), Chapter 5.
1.4 We have: ¥ = Ay + £ (Ii) and % =—A'x (iii)
Now: d (xT. y) = xT. y o+ ﬁT,y
dt
- T - T ) o
- x(Ay +2 ) - (AT . y
= xTAy + fo - xT Ay
= fo
t =1 t=1
xT° f dat

J‘ _q«/xT ). at =
ag*™ Y

t=o0 t=o0




1 1
% 5 d (xT.y). = ‘( X.T,f.dt
(] [s)
1
- il
:£;> X y;] = ~§‘ X .f dt
(o] (o)
L
:%;> xT(l). y(1) - xT(o). y(o) = ~[h xT.f.dt
o]

as required.

1.5 Consider the inhom?jengmﬁsystem of equatiorf y = Ay + f. The general
solution vector y(t) of the system is given by the variation of parameters

formula as:

t
y(t) = N(t).y(to) + N(t) ‘{- N_l(s).f(s) ds (1)

to
where t = t0 is the initial time, Likewise, the general solution vector of the
corresponding homogeneouS system, for which £(t) = o is given by : y(t) = N(t).y(to)°
N(t), the fundamental matrix of homogeneoW vectors, satisfies the matrix
equation: § = AN,.N(to) = I, since N(t) is obtained by integrating the
system y = Ay forwards starting from the Kronecker delta vectors at t = to.

From this we can deduce (see Qemma) that the general solution vector of the

adjoint system X = —A?xi}E‘gjvqn by: x(t):;iN(t)-T.,x(to) (2), where
NT o o HT or )7 and [N(to)] T oL
Now multiply (1) by x(t)T :
t
XL () .y(t) = X (BIN(E) y(t ) + f XL(£).N(E) N (s)£(s)ds (3)
o
to
From (2): xT(t) = xT(to). N_l(t)
= XT(E), N(E) = x (b (4)
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Substitute in (3):

t
T T T -1
x (B).y(t) = x (to)y(to) + Jf x (t) N(t). N "(s).f(s).ds (5)
to
From (2), putting t = s:
~T
x(s) = N(s) . x(to)
T
But from (4) : x(to) = N (t). x(t).
c e x(s) = N (s). N(t).x(t)
= xT(s) = x(t). N(t). N Y(s)
Substitute in (5):
T, . . P |
X (t).y(t) = x(t).y(t) + J x (s).£(s) ds
to
t
i.e. xT(t).y(t) - xT(tO),y(to) = _f' xT(s).f(s) ds
t
o
which reduces to the basic adjoint identity if we let t = tf.
Lemma: Let the general solution vector of the adjoint homogen€eu§ system

% = —ATx be given by x(t) = M(t). x(to) when M{t) satisfies the equation:

= -A y (6), where M(t ) = I,

= e

-— - * d -
Nowm =N D u =nt > wl - Sah

o - 4 - -
% m = -N 1.N N l, using N.N 1 =1
o 4
2 M= -NL.A (.0 N = AN
D M o= -aAEhHt

=1
Thus M = (N )T satisfies equation (6).

=, T —
Also N(to) =1 —> N (to) =1 —._? M(to) = I
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. o The general solution vector of the adjoint system can be written

x(t) = N—T(t)° x(to) where N—T(to) =1,

1.6 Consider the system of differential characteristic equations:

a(t) A(tlu ¥ B(t)x + F(t) (L

%(t) C(t).u + D(t)x + G(t) (2)

Il

Suppose this system is integrated forwards from t = o starting from u(o) = a
(fixed) and x(o) = s (variable), For each choice of s, we obtain u(t,s)
and x(t,s), for any t 7 o, By eliminating s between these two we can
obtain, for any value of t, a connection between u(t) and x(t). Suppose

this connection is given by:

(1) + vty ~(3):for some matrix U and some vecdtor

/7
v, of dimenSions (M.x f) and Q\x\) nur-u_l:iva‘\j_

,n(t) - ,N(t)

u =

b‘l

Now from (3): U = Ux + UX + v
Substitute from (1) and (2):

Au+Bx+F=Ux+U[Cu+Dx+(ﬂ + v

Substitute from (3):

A(UX + v) + BX + F =Ux + UC(Ux +V¥) + UDx + UG + Vv

= [AU+B—U—UCU-UDJ,x:UCv+UG+<‘/-Av—F
This equation must be true for all x(t).

"e’s AU+ B =-U-=UCU-UD =o0
and UCv + UG + VvV - Av - F = o
i.e, U =B + AU = UD - UCU (4) (Riccati)

and Vv = (A-UC)v - UG + F (5)
From (3): u(o)==U(o)x(0) + v(0) where u(o) = a

°

o o v(0o) = a corresponds to U(o) = o ,
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Thus, corresponding values of U(t) and v(t) will be obtained by integrating

equation (4) forwards from U(o) = o0 and equation (5) forwards from v(o) = a,

1,8 For a detailed discussion of initial value problems consult J.D,Lambert

(7)0
2.1 TFor a proof of this result consult Noble (12).

2.2 If M= Lo + LlN(l) is non singular and if rank (Lo, Ll) = n and rank
(L0 + Ll) = m<n, where n is the dimension of the problem} then @([M] < Ko %[N(lﬂ
where in general we may assume that K is small compared with

&{M{&)] . The above result holds for (Lo + L 1) singular or non singular

and it may be found in George and Gunderson's paper (18).
2,3 For a discussion of this result consult Lambert (7), Chapter 1,

3.1 Gram Schmidt process: In order to convert the linearly independent

vector set yk (b<= 1..._.N) into the corresponding set Zk (k = 1_.N) we
must define the auxiliary vector set Otk and a scalar set wkk’ In
practice, the transformation is then effected by applying the following

set of equations recursively (k= 1.-N):

k-1
k s s .
<5 yk_’ Z(y.z)z | (i)
s=1 N
Kk k\< ..
Wkk = (0(_ . o() (ii)
k
ac - =< (iii)
Yk

Thus from yl we obtain e.('l and wll and hence Zl, Then from yz and ‘Zl we

obtain c<,2 and w and hence 52 etc, Each %k (k = 1__N) depends on yk and

k- : s
o Z 1, where each Es) (s = 1-...k-1) depends on y , so that in

22

on %

effect Zk depends on yl..._..._ yk., This is why the transformation matrix
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N
P(N x N) which converts the set Y = (yl---_ y )} into the set & = [Zl,_., zNj
is lower triangular i.e. —
~ A - ] 8
1 1
%
) P11 v
C Por Paa .
A P31 Pz Pa3 :
] ! “\ '
/ J . ‘
¢ f . f
! ~.
N A N
\_Z ] Lle Pne Pna_ ... . .. Pw y
J o L |

or 3 = PY where % and Y are each (N x 1) with components (n x 1).
For the operation of Conte's method of re-orthonormalisation it is more

convenient to have the transpose of the above equation

i.e. ZT = YT. PT where now

T
PT is upper triangular and ZT and Y are both (1 x N)

3.2 Justification of Conte's Re-orthonormalisation method

Yt ) 7, () Ypog (B
L 0 x| . A YK L, N N b/IIl—l
4 ¥ — A ¥ LI v ¥
* 1 t, Yy Yes1 L

‘ =tf
In each sub intexrval [tk )t k+}}f<g =7§--fwm—l, the solution veg?grr

yk(t) was given by:

- <t < ‘.
3k(t) Vk(t) + Uk(t),‘}{k for tkl_ t t er1? i where

Vk(t) and Uk(t) were the inhomogen<sys and homogentow vectors respectively,

obtained and stored for that sub intexrval,

Let us denote the solution vectors immediately before and after the final
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re-orthonormalisation at t = t by y(t -) and y(tm+) respectively.

Then y(t +) = Vnew (t) + 0 (t), Xm Q)

where é{m = 5/ £ was the vector whose components were determined by
matching with the given terminal values of the problem, and the suffix
'new' denotes the vectors obtained after the re-orthonormalisation, Now

from the re-orthonormalisation process we have:

G ) = Vo - ). W (2)

new  m

T

and U (t) (t ). P (3)

new m = old

where PmT and\)\é were the orthOmnormalisation matrix and projection vector
respectively used at t = tm‘

_Substituting (2) intc (1)-gives us:

yes) =V ) v )W +u (6.

vold(tm) + Unew(tm)[ 2(m - v '
And substituting (3) into the above gives:

- T - W
y(t+) = Vo (8) + U | (t )P " [Ym m] (4)

Now if we define Xm—l by

m-)

¥ = PmT -{Xm -\-{n} (41), then equation (4)

becomes:

y(t‘m-") - \/old(tm) * Uold(tm) «Xm—l ° (5)
But for any t in [t . 1:] we have:
_ m-1° ‘m

Ypp () =V () + Ums_l(t),}{m_l

% y(t =) = (t)+U (t>,}>/

old m old  m m-~~= 1 (6)

\

where old denokes veckors {ff_-_‘E"_fﬁ re orthonormalisabion abt b= é:"ﬂ
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Thus by comparing equations (5) and (6) we see that the definition of

. T R . . 1
b/m_l in terms of b/m’ Wm and Pm )as given in equation (47), ensures

that at t 2 ¢
m

before and just after re-orthonormalisation at t = t .,

y m-1

y(tm+) = y(tm—) i.e, that y(t) is continuous just

Also since

. . . t 1 1
(t) is continuous in {tm-l’tm] he combination vector ym-l’ as

found for continuity at tm, must be constant throughout this sub interval

so that:
4y = | Y
y(tm-l) Vnew( 1:m—l) + Unew( 1:m-1> .
Veckers after rgorbhonormaliSakion at te b,

The above argument can now be repeated at the nodes t =t

[aa S |

m~1

1
>‘\«IL&re 'new denokes

t

m-1’

successively, and we see that at each node the X vector gqs obtained from
i

the (teration equation: 23/ =

T
i __I,)i+1[%+i'=

W.

TLF)

]? i =(Ifl'é;)-...q,_ and as_

employed in Conte’s method, ensures the continuity of the y(t) vector just

before and just after each re~oxrthonormalisation, and Xi must be constant

throughout its sub interval,

In particular/ in the first sub interval

f_t 7 ) the vector ¥ Qs obtained from Y ,\“/ and P T at. t. is applicable
o’ "l °, 11 1 1/
at to and so we have:
30(130) = \é(to) + Ue(to)' \ﬁlo where
= °< —- - °( R - - T i
\é(to) { 1 r O . —~0 andUo(to) are the special

Kronecker delta vectors i.e.
<

¢
.
+
1

t

2

-

b —y - =
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T
Hence yg-' [yr+1 - yn] , the vector of missing initial values for the

problem,

Thus, the fact that the original X vector,?’/, is found by matching
with the given terminal values of the problem and that the subsequent yi
vectors (obtained fromz(f by backward iteration using the stored Pi matrices
and \«/i vectors) ensure the continuity of the indbividual sub interval
solution vectors yi(t) from (tm—l’ ‘tm] through to [to’ t]j] , means that
these solution vectors form a continuous solution vector y(t) which is the

required solution of the problem over the complete interval [to, t f] .
(A detailed discussion of the above may be found in Conte's paper (13)).

3.3 Let s =1t - ¢, (1) where Aﬁ. =t,. -t S

- i-1 . = I i i-i

= length of ith sub interval

(L =1-_N)
and let §(t) = A(t)y + £ = ¥F(t),
In any sub interval, from (1):
gﬁ - -—n'a-c
dt Ai
Also for any function F(t) dF = dF . ds
dt ds dt
= 1 gF
AL ds
T T -
dt Ai ds
In any sub interval: ay(t) = F(t)
dt
1 d . y(s) =F(s) where t = B,s + t,
= — = i i-1
A, ds
i
@ yﬂ'(s) = A::LF(S)
. I
i.e. y(s) = éi EA(S) y(s) + f(s)] (2)

where  denotes d , and o s § 1,
ds
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Thus to find the successive general solution vectors for the N

sub intervals we can integrate the different sets of equations (2) (i = 1.~ N)

over the same interval Eb,i} each time. For example, in the first sub

interval Kto’ tlj,,i =1 sot =4dus + t_, where Al = t, - t_ is known.

We transform the differential equations from t variable to s variable by
' 1

using this substitution and then integrate forwards the set y (s) =

A - |A(s).y(s) + f(s{] over fo,1].
L

3.4 For each sub interval separately (i = 1__.N) we have the fundamental
matrix Ni(s), the particular solution vector ké(s), the general solution
vector yi(s), and the combination vector B, = yi(o), oS s< 1.

The solution interval vectors to be matched up are given by:

(O = NEm e @

where Ni(@) =1, wi(o) =0 (i =1—-—N)
(og<s=5 1)

At the internal nodes tl . tN—l we have for continuity:
yi(l) = yi+l(0) 1 = l,.-.-.@—?
\%) =
=> Ni(l)Bi + W (1) B, 1
or \A/i(l) = -N,(1) By +B, ,(2), 1= 1_,__@—@

Also the given boundary conditions of our problem
viz, Loy(o) + Lly(l) = C now become

L, yl(o) + LlyN(l) = C

——>,__ L, By + 1y [NN(l) BN + wN(l)jg;_ c ) ‘gl"om"" o )

; LOB1 + L1 NN(l) BN =C = Lle(l) (3)

Equation (3) plus the set of equations (2) can be written together as:
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— e
T -
c-L
1 ¥
W,
WN-1
(4
- .

'T ——
LAMN !
N I By
N-)
i N

where all Ni matrices and W _ vectors are evaluated at the end point (s=1)
1

of their respective sub intervals and Ni are (n x n) and Wi are

Now if we denote the matrix on the L.H.S. of the above equation

and we defin<€

follows:

|

the matrices

L

=

XN}, L

o |

.

(N x N) and N (1) (N x"N),

pe
N\
N
N
\\‘
N
\\
x|
" Emas
==
L
b
o N -
-I O
-1 0
. \
N
N N
N \‘
.\‘ \‘\
DI'O

(n x 1).
(4) by E(N x N)

as

each element
(nxn)

each element
(nxn)
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N, (1)

N (1)

}

N, (1)

N5 (1)

~ each element
N (nxn)

N

~

NN(l)

L B

and we also define the vectors C (N x 1), and W(l), (N x 1), as shown:

(¢ ] 8 )
c W, (1)
c = 0 , W) = W, (1)
o .
— [ » e
L 0 W(1)
- L J

where each element is (n x 1), then it can be seen that:

E = Lo + L1 . N (1).

Further, if we denote the vector on the R.H.S. of equation (4) by T then:
T = C-L W@

Therefore equation (4) becomes:

~-[f +L) . N (l-)jc B = C-Ip W () (5) S

o
_ T
where B = [ B, B2 ________ Bélls (N x 1)
with each element (n x 1).
Finally (5) can be reduced to the form given in the text viz: M.B =T

where M = L, + Ll N(L, T =¢C - L1 w (1),

Thus for multiple shooting, with N sub intervals, our linear boundary value
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problem (I) could be restated as follows:

Solve ?’ = A(s) Y(s) + F (s) over {o,1)

subject to i'-o Y(0o) +L, Y(@) = C

1

where Eo’ L are the giant (Nn x Nn) matrices previously defined and

1
Y(s) = ( >] !
(s) = yl(s); yz(s): PR yN s )
F(s) = [fl<s>. £, g T
-
& A (s)= i A, (s)
Ay(s) Q

_ o

where Y (o) = B,

n
3.5. Corresponding to the vector norms //x//l = é /x.i/ and //x//ao
i=1
= m?x ;xi] where x is (n x 1) we have the associated matrix norms:
i
n n
//A//1 = max i /aij/ and //A/-{O = max é_l_mij“ where A i§
sy L i=1

@ X %‘, We can now define the measure function /M[A] of matrix A corresponding

to these norms as:

ALY |y el |

-
oo l
=9

———
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n
/uaa [A] = max aj; o+ g /aij/
i R
J#L
J=1

In the following, either norm is applicable.

Gunderson (18), now obtains the results:

1
/N L exp j/u[A(s)]. ds and
(o]

N ’

1
< exp f /u[ -A(s)] ds, where N(t) is the fundamental
0 .

matrix of homogen®ou§ vectors in single shooting. Using the condition

nunber definition

OL{A] = //A/. //A_l// we thus get:
1
« {3} < GV W S 19 N
N(1 (2\ s /"Y_\]) dSJ (1)

Now from (2.2):

"([Lo + Ly N(l)] < x . o{[N(l)J (2), where K is assumed small

compared to N(l)] o

From (1) and (2) ékmﬁm .

o({LO + LlN(lﬂ < Kexp f(/u\ {A(s):] + /M [—A(s)]) ds (3)

Thus the exponential éerm on the R.H.S, of (3) provides an upper bound for

e Lo + LlN(l)] ; which is the condition number of the solution matrix M in

single shooting.

Now to consider multiple shooting with N sub intexvals we have from

(3.4):
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_
_ Nl(l)
N () = (::i:)

No(1) R
L NN(l)‘J
= A
1 (1)
!
— -1
o | e O
,
<:ji:> Nt (1)
N
\ _J
Thus //N (1)// = max /IN )/, K=1 N
K
and //N (1)// = max //Nj v/ , j=1....N
J
max /N (1)// . max (/N )/ -

- affman =
SRR G Il = I

tk
But //Nk(l)// \< exp S /M(A(s)‘) , ds and
t

k-1
-1 t.
exp JJ /4 [—A(s)] . ds since the sub
| 6

//NJ /<

~

interval of integration for Nk(s) is [tK-l’ tk‘} and likewise for Nj(s),

k

t
0({ N (13 < exp max j’
k t

k-1 J

Also analdgous to result (2.2) we have for multiple shooting:

7
"L[—L_o + i—l . T\I_(l)] < X, . &(—ﬁ(la where ‘(.I. is small compared to

oLiﬁ(lé) .
Thus; eg{jfo + El . N (li’]g K
L

E)(S) where E, the exponential term on the
R.H.S. of (4), provides an upper bound for the condition number of -1—'0 +

which is the selubion makrix M for mulkiple shooking:
wikip Y

(4)

. £
J
[A(s;—]. ds + max j- S [ -A(sﬂ. ds
__ - J t'—l -

N(1)
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Now in considering the size of E, if either/w {(a(s)) or /u [ -A(sﬂ is
negative over [0,1) then it can be ignored since its contribution will be
very small, Thus we need only consider the case where both measure

functions are positive, as shown. The total areas under the graphs of

/\A(:(A(s)ﬁand /U\(r-A(sﬂ , from t = to to t = tf are denoted by °C and

/
ﬁ respectively. A M E’A(S)]
A N
#a6)
(t) ((t)o)

Suppose that the maximum sub interval areas are °<l and‘{z respectively as

shown,

Then we have, from equation (3):

for single shooting o([ M] s K. exp (o + ﬁ),

whereas for multiple shooting, from equation (5):

e([m < K, . exp (°<1 + °<2>.

Therefore, it is very likely that
&ﬁﬁ] < %[Mj since &1 + “(2 < 0({%[3
/
for any partition,

This means that, theoretically, any partition for multiple shooting
should produce a better conditioned solution matrix M than the solution

matrix M used in single shooting. To ensure that st[@ is the least possible
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for fixed N i.e. to obtain the best possible conditioning with a given
number of sub intervals, we require the partition such that (°<1 +°< ) is
a minimum, Thus if it were known that/A(A(s)] and /M[_A(Sﬂ both
monotonically increased over the full interval Kto, t£3 then, in order

to minimise (a<l + *%), as t increased towards t_ the lengths of the

£

sub intervals would have to be progressively decreased.

3.6 Suppose that we have started the solution of the problem by using the

normal transformation U(t) over sub interval (o,tl}, and at t = tl we wish

to switch to U (t). Let UCt,) = K, so that at t = t:
K = B + AK - KD - KCK (l), since K satisfies the normal Riccati

equation (ICV), Now assume that W(tl) = J, then;

J = C + DJ - JA - JBJ (2), since J will satisfy the inverse

Riccati equation (IIldi),

From (2):
e e T Sl St W e S
= - S IR TS R SY S e TR B R S )
-1
But d (J,J ) = d (I) = O
dt dt
11 - ,
:é;b J. (J 1) + J& o J Yoo where b denotes_d
) dat
[} | -
> .owh - ST
-3 f - -
= @™ e A L
e o« From (3):
-1/ - - - -
@™ = B+ oad™t -5y - 5 e S
By comparing this equation with equation (1) we see that K = J_l or J = K—'l
i.e, at t =tz W(t,) = U T (t)
o L] - lﬂ 1 - l ©
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Thus when we switch from U transformation to U_1 transformation at t

the integration of the inverse Riccati equation starts from W = U—l(tl).

3.7 See Meyer (4) Chapter 1.3,
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