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Abstract

We consider completely integrable classical field theory

models with a view to idemtifying the properties which
cheracterize theixr integrability. In particular, we study

the infinite sets of 'hidden' symmetries, and the corresponding
transformations carrying representations of infinite dimensional
loop algebras, of the following models: the chiral=field
equations in two dimensions, the self=dual sector of pure

gauge theories in 4 dimensions,the functional (loop-space)
formulation of 3=dimensional gauge theories, and some sectors

of the extended supersymmetric gauge theories., We also

construct an infinite number of conserved spinor currents for
the latter theories. The (non-) integrability of the full

four dimensional Yang=Mills equations is studied; and a

local approximation for the non-integrable phase factor of
gauge theories on an arbitrary, infinitesimally small, straight-
line path is presented. Finally, we study classical gauge theories
in dimensions greater than four; and obtain, in analogy to

the self=duality equations, algebraic equations for the field-
strength which automatically imply the higher dimensional
Yang-Mills equations as a consequence of the Bianchi identities,
The most interesting sets of equations found are those in

eight dimensions which have a structure related to the algebra

of the octonions,



"If thought discovered in the shimmering mirrors
of phencmena eternal relations capable of summing
them up and summing themselves up in a single
principle, then would be seen an intellectual
joy of which the myth of the blessed would be
but a ridiculous imitation,™

= Albert Camus, 'The Myth of Sisyphus®
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Chapter 1: Introduction.

Non-—abelian gauge theories [l] have yielded the most promising
description of the empirically observed properties of elementary particles.
The weak and electromagnetic interactions, particularly in view of the
recent (tentative) discovery of the W* and Z° particles, receive a natural
explanation if one assumes that they are descibed by a gauge-invariant
theory. There also exists much motivation for the current interest in
QCD as the theory underlying the strong interactions [2] - However, non=
abelian gauge theories have not hitherto yielded themselves to an
acceptable quantization scheme, Particularly for the strong-coupling
limit of QCD, this has resulted in the impossibility of making quantitative
predictions of the theory which could be compared with experiment. Even
the observed confinement of colour has not been established as a mathematical
property of the QCD lagrangian, This intractability of the theory reflects
itself in the hiatus between what we fancy we know and understand (theo-
retically) about particle interactions and what we actually do know (ex-
perimentally). Clearly, if this gulf which separates us from an understand-
ing of elementary particle interactions is to be bridged, reliable methods
of quantizing the theory need to be developed.

Pure non-abelian gauge theory is described by the Yang=Mills action
S= = E‘%‘* gd“n € phoe , where the integral is over (Minkowski)
spacetime, g is the coupling constant of the Yang-Mills field, and
FP: i} 2,,?\3 =3,02 ¢ § A: R;— 6&& are components of the Lie algebra-
valued curvature F,=FEsT% = [d,, Dv] , where the gauge-covariant
derivative D, = 3.+4A.T" | and T are the generators of the Lie algebra
with structure constants £*** , The equations of motion for the potential A,
derived from this action, DpaF%U =0 , are nonlinear in A.; and it is
primarily this nonlinear nature which gives rise to the intractability of
the theory. Recent (coupling-constant-based) perturbative schemes for

quantizing the theory are not very atiractive because in trying to mimic

the successful canonical quantization of electrodynamics, where the LSZ
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formalism may be used to relate asymptotic physical states to the field
variables, the nonlinear nature of the theory is effectively ignored, It
seems that the notion of guanta, which appears in a non-interacting theory
as & property of the Fock space quantization of the free field and in a
conventional interacting theory (like QED) through the Feynman-Dyson
expansion of green functions and S-matrix elements and the associated idea
of the completeness of the asymptotic scattering states, is not appropriate
for QCD, since quarks and gluons do not appear as asymptotic particles.

There is thus much motivation for attempting to develop non%perturbative
(or even non-coupling constant based perturbative) schemes of quantizing
Yang=Mills theory. One recognised method is to use the saddle point
approximation of the functional iﬁtegral in order to covariantly quantize
the theory. This method relies heavily on an understanding of the classical
field,equations , since explicit solutions are a pre-requisite for develop-
ing the quantum theory. Although this program motivated much of the early
work on instanton solutions to the self-duality equations, it has hitherto
been found technically impossible to execute [8] - However, the instanton
sqlutions were found to have a structure remarkably similar to the soliton
solutions of two-dimensional theories. Indeed, Polyakov, Belavin and Zakharov,
Ward, Yang, and others found many similarities between the self-duality
equations and the equations of motion of completely integrable two dimen-
sional theories. This work has raised the possibility of further similarities
between nonabelian gauge theories and completely integrable model field
theories. The most outstanding result for the latter theories is the
quantum spectral transform developed by Faddeev and his collaborators [3=6]°
This yields an exact canonical quantization of the theory in an intrinsic-
ally nonlinear fashion, incorporating a nonlinear superposition principle
in order to build a nonperturbative Fock space. Since this method uses
soliton=like structures as the asymptotic physical states, it raises the
intriguing possibility that quantum integrability and exact quantizability

are inextricably linked.



Al though the quantum spectral transform is an intrinsically quantum
method (in that it does not depend on a 'background’ classical structure),
there are many structural similarities between the classical and quaﬁtum
versions of two dimensional integrable models. It is therefore useful to
study classical gauge theories. Not only would classical solutions be useful
for a possible covariant quantization scheme, but any structural similarities
with 2d completely integrable models would increase the chances of construct-
ing tractable quantum gauge models which take the nonlinear nature of the
theory seriously. Many of the two dimensional integrable equations describe
actual physical systems [5,61 3 for instance, fhe Kbrtewegade Vries (K-dV)
equation, first derived in the study of long water waves in a shallow channel,
describes many phenomena in. plasma physics; and if there is any lesson to
be learnt from the physics of one and two dimensional systems, it is surely
that nature seldom forgoes the use of available nonlinearities.

Further, apart from matters concerning quantization, the classical
description has a mathematical appeal which in itself justifies further
consideration of classical gauge theories., It is the primary motivation of
this thesis to investigate the extent to which the classical field equations
of non-abelian gauge theories are integrable and to study the integrable
sectors of the theory. In particular, we aim to identify and study the
properties of these equations which characterize their (possible) integrability.
Foremost amongst these properties is the possibility of writing the equations
of motion in the Lax form [7] s

3L = [1,4] ) (1)

(vhere L,A are linear differential operators), which we may rewrite as

B, #4,1] =0 (2)

which is just the compatibility condition for the set of equations:
(3 +A)w =0 (3a)
L% =0 (3b)

If the dimension of space-time is two, and if L = 3, + B , for some B,

eqo (2) is then just the condition for the vanishing of the curvature of the
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connection form Cu with components Co = A, C, = B 3 i.e. (2) is
equivalent to

3;;9 = BPCU =3VCM ¥ C;‘»uCV] =0 . (4)
If A and B are two components of a Lorentz vector, then the differential
equation implied by (4) will be relativisticy but in general this need not
be the case. We may remark that (4) is just a manifestation of the Poincare
lemma: d(dw) = 0 (for a differential form v), a statement of the equality
of mixed second partial derivatives, which is the source of most integrability
conditions for partial differential equations.

Once the equation of motion has been cast into the form of (4), something
important is guaranteed. For the corresponding linear system not only
guarantees (formally) the existance of an infinity of conserved quantities
[73] , but also makes the equation of motion amenable to an algebraic
method of solution. That it leads to an infinite number of conservation laws
may be demonstrated, albeit only for a restricted class of models, using
an argument due to Polyakov (see [9,10] ) which is particularly instructive
for gauge theory type models. This considers a scattering problem

(d.+C)w =0 (5)

with W (-e,t) = | , 4 (+00,t) =0 ,
This problem exists (in any dimension) if (4) is satisfied. Now (4) need
not necessarily be equivalent to the equations of motion. It could, for
instance, be some identity in the problem = like a Bianchi identity. To
proceed we need to invent a new combination of C.'s depending on a parameter
A in such a way that a zero-curvature condition for C; (A) = F(C.,d) now
implies the equations of motion in addition to t he previous identity. Now,
identifying C/(2) with the potential of the scattering problem, it is clear
that 6. , Q- Pe‘C €, (a) dx

at (6)
Expanding the path-ordered exponential in a power series in yields an

infinity of conserved charges. Thus (6) is a compact representation for the

generator of these charges. The crucial point to note about Polyakov's
argument is that the integrability condition is precisely a statement of
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the path-independence (i.e. integrability) of the phase factor of parallel
transport [12] H .
i 6L o,

(7)

Indeed, it is clear that the conservation law (6) stems from the boundary

= P

Q}Jxﬂ ) 51& e
conditions of the scattering problem (5) for which‘iwm is clearly a formal
solution. We may directly check the path-independence of (7) by comsidering

its variation due to a variation of the path, ;k(t), parametrized by t [ll]s
o Yo © GRO% Y 00 ¢ b 2 D0 Y,

The first two terms are contributions of the end-points of the path; and

we see that any path dependence (i.e. non-integrability) of the phase factor
would be entirely encoded in the curvature §iﬂ of the connection C; (which

in the present case is flat),

Infinitely many conservation laws are important because they suggest the
possibility that the equations of motion are completely integrable (or perfect)
in the sense that the phase space for the system can be reduced to a completely
separable one by a canonical transformation to action-angle variables [?520
We recall [14] , that for a hamiltonian system with a finite number, N, of
degrees of freedom, the existence of N commuting integrals of motion means,
by virtue of Liouville’s theorem, that the system is fully integrable, i.e.
that it is possible to separate the variables and intfoduce action-angle
variables. Integrable systems are also not completely randomized, since there
is no exchange of energy between the degrees of freedom. For infinite-
dimensional hamiltonian systems, the existence of an infinity of commuting
integrals is only a necessary (but not sufficient) condition of integrability.
We note, however, that a canonical transformation to action-angle variables
is implicit in the Inverse Scattering transform for such systems [5] » Since
this incorporates what is effectively a nonlinear mapping to a free-field -
theory. Similar nonlinear mappings are also the basis of methods which have
been found to be useful for the solution of gauge theory-type systems, namely

the twistor methods eogo[l7] and the Riemann-Hilbert method [?6,2770 Moreover,

Jjust as the representation of nonlinear evolution equations, like the KdV
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equation, as integrability conditions for a system of linear equations made
it possible to develop the inverse scattering method [7] , these other solution
generating techniques also depend on a linear system of the form (5):

(d+cax) =0 , (8)
vhere d denctes a partial differential operator, possibly depending on
The procedure of e.go [26] begins with two known solutions (C,,g‘#‘.,) and
(C”%) of (8), where Y, and ¥, are respectively analytic inside and outside
an annular region " of the complex A plane; and an arbitrary function of
A, 8,(2), satisfying dg,(A) = 0 in the annulus. One then defines
¥ (9)
i.eo 9, = ?P:\Ta' Yy q’:l .

Now, since (\!'.,,?P;pco) satisfies (8), from (9) one may write de(ﬂsx))\k-'

oot |

S(A,X) g ¢;~l 30(3) Y = ¥

in two equivalent forms: the right and left-hand side of

¥ - TR ETF" = wdy™ —vyTg e (10)
Writing ¥ = E‘{E , ¥ q”q” , (10) may be written:

ey = -
T'd¥'” = yldy’t (11)
The right-hand side is analytic inside r o, Whereas the term on the left
is analytic in the rest of the complex A plane. We therefore have (by

Liouville's theorem), a A-independent matrix

Ax) = Ta¥ T - awet
satisfying (d+A)¥' =0,
¥{a-4) =0.

So, the splitting of g (A) in (9) has yielded a new solution (¥, % 1) to
eq.(8) from the given one (V,,G;,C,,), The new solution, however, is not
completely independent of the old one. For instance, the singularities
of A coincide with those of Cp. Some technical details of this method may
be found in [27] .

The role of a linear system like (5) has also been emphasized by
Zakharov et al [26,27,44] » in their attempts to classify all models

solvable by the Riemann-Hilbert method. Considering the system
(ax + u(x,q,a))q» g0 (3,' + V(x,q,;))t}o =0 (12)

with U,V being, for example, rational functions of a complex parameter A :



[ A 70
« =t
ulaznyg) = F & (A=2) Uy (1)
=0 (co
M By ot
VO = 55 o) Vi b))
=0 fnp
and observing that the form of (12) is left invariant by transformations
analogous to gauge transformations:
- - gt -
W= givg ¢ g73%q , W=gug ¢ g7y,
W= g7

(13)

they conjectured that all integrable models fall into (°gauge’)equivalence
classes. The transformations (13) form a group, the 'gauge' group, enabling
one to classify all possiblé linear systems and to confine consideration to
only one representative from each class, which may be chosen, using the
gauge freedom, to be of the most convenient form.

These'authors have also considered the possibility of generalizing the
linear system (12) to obtain integrable systems in higher dimensions. They
have suggested two fundamentally different ways of generalizing (12). The
first involves the formal change 2 —> ng in (12), where t is the third
variable. This is clearly most easily achieved if U,V are polynomials in & .
The system (12) is then replaced by the system of equations for the matrix-
valued function Y (x,y,t):

[3,, + u(x,w,t,agt)]w =0 [9\, + V(xnr,‘t,c'g;ﬂ\# =0
This scheme incorporates the equation of Kadomtsev-Petviashvili and also
the "three=wave problem" of nonlinear optics [?6] ; both three dimensional
equations. However, somewhat more interesting for gauge theories is their
second method of generalizing (12) to higher dimensions. This replaces (12)

by the first order system:

Y = Zo 2 (B3 uk) 4 =0
A % -
.Da\} = I{Zo Ak <°<K Qk +VK)\P =0 )

where 3k,'5Q denote differentiation with respect to generally independent
variables ¥Xg p;L , of which there are (N+M+2) here; «x, 8¢ are scalar functions
which may be constant; and WUy,Vx are matrix functions of the (N+M+2)variables.

As we shall see, the self-duality equations of pure gauge theories fall into

this scheme,
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In the next chapter we consider the theory of the principal chiral field
in two dimensions, which has been found to be a useful model for gauge
theories, Not only does this model mimic guantum properties of gauge theories
(such as asymptotic freedom), but the structure of the classical theoxy is
very similar to the self-dual sector of gauge theories; and this has, in
recent years, motivated much work on self-=dual fields, Our discussion will
mainly be concerned with the infinite set of symmetries of the chiral field,
which, as we shall demonstrate, has much to do with the existence of a Lax
representation. We then demonstrate (in chapter 3) the similarity of this
hidden symmetry structure of chiral fields to that of ée1f=dual gauge fields.
Remarkably, our discussion of self-=dual fields can be generalized to the
case of extended supersymmetric gauge theories; and we explicitly obtain, in
chapter 4, an infinite set of continuity equations for these theories.

Some years ago, Polyakov pointed out that the loop space (functional)
equations of three dimensional gauge theories were similar to a three
dimensional chiral model, and based on this similarity he suggested the
existence of an infinite set of symmetries of the loop space equations. In
chapter 3 we show that loop space fields do indeed have a symmetry structure
very similar to that of two dimensional chiral fields. Qur discussion is
based on the remarkable similarity of the loop space fields to chiral fields
over a three dimensional space-time with one Killing vector. We also consider
the equations for such chiral fields; and find them to be integrable.

As we have already emphasized, the 'zero curvature' integrability condition .
is a statement of the path independencé of a phase factor ¢ = P-Eﬁr*'dx 9
where & is the 'flat connection'. Motivated by this correspondence, we
study (in chapter 5) the (non-)integrability ofthe full four dimensional
Yang-Mills equations by considering the path-ordered phase factor of gauge
theories Elé] on a fixed, straight-line path. We attempt to determine the
conditions under which this phase factor can be written as a product of local

(path-independent) objects at the end-points of the path. Apart from the

well-known case [lﬁl vhere the path is restricted to lie on a null plane in
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complexified euclidean space (in vhich case the phase factor is integrable
if the curvature is (anti-) self-dual), we fail to identify any further
integrable sectors of the pure gauge theory. However, for the most general
case, we obtain a remarkable approximate representation of the path-dependent
phase factor, in which the non-integrability of the gauge connection menifests
itself in a single local matrix at the mid-point of the straight-line path.
If the phase factors around & lattice plaquette are thus approximated, we
showv that -the correct continuum action results. Thus our representation of
the phase factor effectively yields a formulation of the lattice action
equivalent to Wilson's, in which the four link variables are replaced by a
collection of eight local, path-independent ones.

The discovery of the integrability of the self-duality equations [15,16] 0
which resulted in their remakable solution [17,151 ,» was stimulated by the
realization of BPST [1?] that interesting solutions of the second-order
Yang-Mills equations could be obtained by solving a set of algebraic equations
for the field strength; i.e. the self-=duality equations. In chapter 6,
motivated by the example of self=duality in four dimensions, we search for
first-order nonlinear equations for the potential which imply the second-
order equations of higher dimensional gauge theories in the hope of finding
integrable sectors of such theories. We show that in dimensions 4€d<8, an
insistence upon the familiar sight of an algebraic equation for the components
of the field strength yields interesting results. The most interesting are
the sets of equations in eight dimensions which have a structure related to

the algebra of the octonions.
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Chapter 2:; Hidden symmetry of the two dimensional chiral model.

(1) We consider the chiral model defined by the lagrangian
1= it .96 (1)
(where g(x) tekes values in a compact lie group),which has, in terms of
the pure-gauge lie algebra valued connection
A = 97'3%9 (2)
the equation of motion:
3 A =6 (3)
For all models with equations of motion of the form (2,3), Brezin et al 20],
following Luscher and Pohlmeyer [?2,23] , wrote down an algorithm for the
construction of an infinite set of nonlocal conserved charges. Noting that
any member of a hierarchy of conserved currents can be written in the form

¢
3;:9\) - GM\’ gg X ™

y "2l (4)
they noticed that such a hierarchy of currents can be generated iteratively

by defining the (n + 1)th current:

tned ") ™)
IO = 0. XY = (4RI (5)
which is conserved if (3) is satisfied and if X satisfies the equation:
¢
g”"gl‘“.xhx = O ° (6)

From (4), we see that

(n) (n)
D,,. a,, X = \D/u €pv :Tu = é,.\v

D, B, X*" | using (5);
which is clearly zero because A, i‘s‘purengauge° Thus, provided (2,3) are
satisfied, the sufficient condition for the conservation of qﬁ#ois clearly
that.ﬁ:) should be conserved. As Brezin et al noticed, this hierarchy of
currents clearly exists, since the equation of motion (3) has the form of
a continuity equation, allowing us to iteratively construct all the currents
starting from 43) = A, and AL 1. Thie inductive proof of the conservation
of an infinite hierarchy of currents, may be replaced [?l] by considering a
functional Q of the fields which is also a function of space-time satisfying
2D.Q = € 9, R (1)
Then gptz ewvath is clearly conserved; and generates infinitely many

currents if Q has a power series expansion: R = ? 7(“’ A(“\
3
14871
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¢
where the coefficients A" satisfy the recurrence relation implicit in (4)

and (5). We note that (7) is in fact a pair of linear equations

(2= 2d)q =0 (8)
(%+2D)a =0 (9)

which are consistent if
[9,-2D,, 3 +2 D’] = 2 %R - MXE =o0 (10)

for all A . In other words, we have a Lax representation for the system of
equations (2,3), which is the key to Brezin et al's algorithm for the infinite
series of conserved currents. This explicitly demonstrates the link between

the linear system and an infinite set of conserved currents implied by Polyakov's

contour argument. Writing (8,9) in the form

(? —€u)@ = -2A.Q | (11)
and multiplying both sides by
~1 i
&9(5’\\,> - e,»\u) = P (Aéff* + GP"“>
we obtain

(3 *+ 5 (s ef’*)ﬂ’*) @ =°

which is the form of the linear system first obtained by Pohlmeyer [24]

, (12)
(in light-cone coordinates) and used by Zakharov and Mikhailov [é?] in
their development of the Riemann-Hilbert method for this model. We note that
(12) is a statement of Polyakov's dual transformation mapping A. to another
pure-gauge A.(3), a linear combination of A, and its dual ¢,,4,, in such
a way that insisting on the zero curvaﬁure of Ar(k) is equivalent to the
the equation of motion; (a situation reminiscent of four-dimensional self-
duality). We may formally solve the ¢= 1 component of (12)”by writing

QO xex,) = P oxp [ ay 25 O - k) (13)

QApxg,=e ) =1 o

Now, Q(agx,g+® ) 1is clearly time-independent if we assume the boundary
conditions %éﬂ:w A.(x,5%,) = 0 ; and expanding the exponential in a

pover series in A yields

o0 < ]
1+2 j dx A, (t,x) +A° \f dx' [A‘(tgx°) + Ag(t,x") |dx" A,(t,x") + o
—t0 -5 —c (14)

The coefficients of AQAz correspond to the first two nonlocal currents
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of [22] o In fact we may write
W, 20 ew\ .40 é' 2"g®
then QS?S tr taq?) yields the charges of @2} , where t, are the
generators of the Lie algebra., Following [?I] o we also note that from any
given solution A.(x) = 3"%,3 » We may comstruct, from (11), a new one
depending on A :
qp(A’,x) = Q) (a,u - % €pnv av) Q—’Cx) . (11%)
It is clear, using (12), that 3. A_(»,x) =0 . This transformation is
just the 'dual transformation'f [29] which induces the symmgtry responsible
for the above conserved phax‘gese
(ii) We have seen that the matrix Q(),X,,+0 ), known as the monodromy matrixﬁﬂg
which cennects solutions of the linear system at plus and minus (spatial)
infinity, is entirely time independent; all its matrix elements are conserved
charges [?2] - This is not a very desirable feature, since it is uncharacter-
istic of the usual completely integrable models. In the usual case [A] s of
the KdV or sine-Gordon equations for instance; the action-angle variables
are obtained directly from the monodromy matrix of the associated linear
system. Action-angle variables are not known for the chiral field theories.
However, the monodromy matrix, as we have seen, serves as a generating
functional of an infinite number of nonlocal conserved charges, which do
not commute amongst themselves. Now, just as the infinite-dimensional
abelian symmetry algebra (generated by the angle variables) is related
to integrability in the usual case, these nonlocal charges raise the
possibility that complete integrability of such field theories can be
related to the existence of an infinite dimensional non-abelian symmetry
algebra. It is known, however, that these nonlocal charges do not form
a Lie algebra [30931] . However, there does exist an infinite dimensional
Lie algebra of symmetry transformations acting on the space of solutions
of the field equation
XA. = %(9'3%g) =0 . (15)

We suppose that the infinitesimal transformation:
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g’ = g+dy = g - 9SSt (16)
iz a symmetry of (15); where the infinitesimal S(x) is a Lie algebra-

valued matrix, For this to be the case, to first order, S must satisfy

a[0,s] = 2% + [a.,5] =0 (17)
We note that (17) is automatically satisfied if
[DM,S] S vafz(x) (18)

for any ") o This equation, and hence (17), imposes no extra restrictions
on g(x) if S and 7 depend on a parameter ) in such a way that their
pover series expansions satisfy the relation
75
Then (18) is precisely the linear system for the Lie algebra valued
function S5 having the field equations as compatibility conditions 41 ;
and corresponding to eq.(11) for the group-valued function Q. Thus every
solution of
[(EP-AGMD\;),S] =0 (19)

yields a symmetry of the equations of motion.

We note that the transformation (16) generates a new solution to the
field equations from an old one if S satisfies (19). From (16) we have that

g3 = 1-5

and the change in A is given by

97 %3 - 3%

[, s]
= % 3, S e, » from (19).
Therefore,

3"' %y - 97'%9q = .;_ € (3"3’)
This is precisely the Backlund transformation of [32] linking two solutions
g and g', We remark that just as g and g' are related, two solutions Q, Q°

of (11,11°) are related by
(0 - dewd)(Q'Q) =o .

The function S, like Q , depends on the parameter ) ; and we may expand

S in a power series: w0

S = /\m A“ (20)

n:o
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yielding, through egs.(16-19), infinitely many nonlocal symmetries of (15).
We note that this °hidden symmetry' has been derived, just as the nonlocal
continuity equations were previously derived, using the linear system; and
in what follows, we draw attentipn to the importance of the lineaxr system for
this hidden symmetry. In particular, we shall show that it is the symmetry
of the linear system which is the source of this hidden symmetry of the
field equations. In order to emphasize the role of the linear system, we
initially consider functions Q and S satisfying just one of the equations
in (11) and (19) respectively; namely, we impose

200 @ (3, -22)Q = 2AR (21)

and

(3,-23%)S = 2[A,S] . (22)
Analogously to (13), (21) has the formal solution
Qa0 = Pexp [ 4% 24, . (23)
Further, we may clearly write
QA,x) = exp 2(2,x)
where the power series expansion of the Lie algebra valued function

a0
ZQx) = 2 X' yields
N =t INED )y 2 )
KON xN=DA x@Ar x®)

QRlAx) = Yo au=Ym € e e el Tl (e

By insisting on the consistency of equations (21) and (22), we shall now
find a remarkable expression for S in terms of Q.; and in the process, we
shall relate all the X“o's recursively to A,, thus obtaining through (24),
an explicit representation for the path-ordered object in (23)° Ingserting
the expansion (20) into (22), we obtain the recurrence relation [32]

A = 3, 4 [a,, A7) (25)
Now, agsuming the transformation corresponding to Km to be Jjust a global
gauge transformation, i.e. O 1 » & constant element of the Lie algebra,
we obtain from (25) for n =1 3

E.AO) = [ Ao,‘T]

We also note, from (21) & (24), that

B,Xa) = A, (26)

3
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80 = o7 e (0 T] (27)
(In what follows we denote X' by X ), Forn = 2 , we find :
AN = 9,a" [é,x,A"’]
= [ %7] + [ax, [*7] , from (26);
= o]+ 4{[a6x),7) = 43 [x, [ 1]
vhich we may vrite as

2, l\(ﬂ = 3 % [X,[X)T]] + al [X@)) TJ 9

yielding
A@) -

v)-

[)(,[)(,T]] + [Xcz)’ T] (28)

if K('.’n is defined by

2@ = 9% + Lfax,x] . (29)
Equations (26=29) reproduce the results of [32933] o Howevexr, these expressions
do not provide sufficiently many terms of the series in (20) to precisely
determine the structure of S. We note, however, that (29) is indeed the
form of X@) given by (21924)v.confirming the validity of the representation
for Q(A,x) given by (24). Using (26), we reurite (21) as
R(?3, —2%)a" = =) X (30)

where

N _ X3 =X _x YN
Q) = tim @yt =tw 7T e Y

N->0
This equation, as demonstraded by (29), clearly provides an expression for

()

® in terms of all the X , m<N ; and thus ultimately in terms of A,(by (26)).

Now, expanding the l.h.s. of (30) up to terms of 0(X*), we find

Ry(2,-23) &' = -a9x + 27 (-5 [x,3X] - 3,%® + 3X)
2 (- [xDx,ax]) - [x®,2x] = 2X®+ L[x, ax]
+ a,,x(”)

+ 2t (+ %; [X [X [B,X, X]” ‘T';[Xm, 9:’((2)]'% [Xms [X3 an]]

- [y® - @)
[, 30] = 3x®+ £ [x [x, 0] . (52

Now, comparing with (30) we see that only the 0(A) term on the right is
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necessary; so for (30) to be true for all A , we need to set the
coefficients of all the higher powers of A to zero individually. This
yields (29) and

3x® o -4 D[ )] = [k, 0] +4[x,00] + 267 (33)
2 = =i e[ [x, 9] = 413, 36 = 4 [x®, [, ] (34)
= [x® 3X] + L [x[x,2.x]]

We proceed to determine A
ar® = A® 4 [ax, ]

3 [ax[xT] + & DGLax, 70] + [205, 7]

w $[ax[x, [, 7] +[axX,[x®,T]] , using (28);

=t DGR T+ 2 [ [X® T]] + [%X®, T]
-[[x®,ax0,7] + 4 [[x, 20, 7] - £([x[62x]7]

using (29) and the Jacobi identity. Now, since 3 X® is given by (33) we

u

clearly have

3 ®
A= L [yT]]] o+ DT+ [ T] (35)
and we similarly find
W) = P S - -.1-] w4 i \’v-x l-x T\11 +_i_ PX(;) l:-xé.‘;._p_;"l
A v [X,[X,[X,LX-T“J ,. XL, j” 21X ’H(%)
+ [x®x,7]] + [x¥ 1]
We are now in a position to write the generating function (20) of the
&M's in terms of a x,. and ) -dependent similarity transformation of
the constant matrix T [35] s
S(ex) = Q%) T @ (Ax) (37)
a form which clearl& makes (22) consistent with (21); and which may
explicitly be checked with (27928535,36) by using the Campbell-Hausdorff
formulas
-2AR 2A _ A _)3
e 8e’ = 8 -ara,8] + 2 [A[A B -2 [A[A[A 8]+
= B+ ) [B‘ﬁ] + A [[B A],A] + 3[[[5,A],A],H] +o.
We now use the form (37) of the functlon S to define the field transformations

(16). We first consider the change in the lagrangian density due to the

infinitesimal transformation (16) where S is defined by (37) and Q satisfies

just (21).
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52 = 4 [o(q7 + 5970 (9-95) ~3%q 0 q ]
= 34 4,.9,S
= g (Aoabsn\ﬂ,%s +A[ﬁ-,ﬂo]$) , using (22) & the cyclic property of the trace;
s 34 [ A (35+23S) + [ (4S) -3, (%S)H , using K, =0 ;
= gt i+ Q(3-23)07(3,+43,) S+ A[%(4,5)-3, (AOS)]} » using (21)3
S §- B2 06730 ~ 2,072,817 + e 23 (4,9) ]
o Gt [ 2AS + (Avd)eTQ T

a total divergence,

The usual argument [339 42]9 has been that the infinitesimal transform-

fl

(38)

ation is a symmetry of the action since one may ignore the surface terms

vhich result from the integration of (38) over space-time, by choosing

appropriate boundary conditions., Indeed, (38) vanishes at spatial infinity

if lim Ay, =0 , since them lim Q = 0 also. However, as has
Xt® XSzes

been recently pointed out [31] o it is these usually ignored surface terms

which vitiate this argument; since one may not impose consistent boundary

conditions on A, and Q which are themselves invariant under the transformation.

We note that if the equations of motion are imposed, then the action is

indeed invariant since then

S8 = L4 2% (A.S)

and the usual boundary conditions 1lim
X—dkes

(on-shell) conserved charges are those of [22] o Thus in the general case

AL = 0 suffice, The resulting

of a non-compact space-time, the original belief [22] s that these conser-
vation laws are dynamic rather than algebraic statements in the sense that
they are not associated with a Noether symmetry of the original Lagrangian,
but come directly from the solution space of the system, still holds good.
That care needs to be taken with suxrface terms in the Noether comstruction
vhen dealing with dynamical conservation laws has also been emphasized by

Chodos [40] °

We have seen that the conservation laws of [22] are related to a set

of symmetry transformations on the solution space of the model. We now
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show that these symmetry transformations close under an infinite dimensional
Lie algebra. We write the infinitesimal transformation (16) in the form

8g = 9 Sa (39)
vhere the S, = Q QLQ“' o @ 5 Licoooeeo,N , foxm a basis of the Lie
algebra G . We define, following [34] s the infinitesimal operators of
the symmetry group:

M, () = - [d™ 5“3% = szw 9 S () 8_85&) , (40)

which clearly have the structure of Killing fields in a local functional
basis. The composition of two such symmetry operations is clearly given

by the Lie bracket:

[M.), MO] = £, 6 MO
- (o S (r) & (41)
fa [Mat), 900 * )53(‘1\] '
The commutator on the right clearly contains two pieces: one involving
the functional variation of g :
) = 5()(“‘1
[.5560 » §8 ] )
and the other due to the change induced in b, £ 5,[g] ,a functional of
g(x), by the transformation (39). We may therefore write
: Y
[M.), M,O)] = [d* 400 [Sa®, S, (r)]gﬁ-m
2 B §
= [a™ g0 [ 80540y -8, Sa®) ] 55 0
:cjdzﬂ 3(‘1){6A Sb(!) —ngQ(j:) “[SQG:), Sb(r)]} %(‘1) 3

which is clearly equal to

= Sd1‘1 [5q(lt>’ Sb(r)] 3(")%00 , from (39),

Here, the change induced in S_(r) by the infinitesimal transformation

(42)

8.9 = - 9 Sa(t) is given by
S (7)) 2 &S, [r,9] = Suln 9- 35 W] = Sulr;s] . (@3)
We also note that
5. = &(8T.@™") = £QTu@™ + QTS @
= [6a@.0", s, ]
B ® XY = XO(3+84) - XO)

(44)

Now
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ig given by: ;
jxdﬁ (Ro(§+8a3) = Re(ﬂ)) s = j DDSa@’-) dy .

Therefore, using (22), we obtain

0)
S (D)X = - Sal8) | (45)
t
We may therefore write & @ in terms of S , since all the coefficients

in the power series expansion of Q(}) depend recursively on x® , Using

eqs. (29=36,45), we find that
s )N = -1 [s,6),T]
5.6 1 = - & [5,0,7] -L [s©,[x%T]
G ] 2)
80 N = -8 (50,7 -4 [s.0, [0 1)]-L [0, e
e [s0, [ [x@, 7]]]

]

Therefore,

20
w
) S(r) = ) s ATr
AZ0
to third order in r is just :

- (F @ EP) 80,71 + v (5.0, [x 7]+ 2[5, [ 7]
FO s, [XO, [, TI]] 5 ret

Now, since

S s (1-E) - s - s

n:s|

we may make the identification :
BB S0 =~ [[5.6, S0 = Case S.e>] - ofor all tor s (41

" where Caue 8re the structure constants of the Lie algebra G. We may

write (47) in the form :

0o £) S = - f_—; [-(Sk({) —sq(r))) Sb(r)] 7 (48)
which allows us, using (44), to identify the change in Q :
W) QD) = @[r, 9- §S.®] =@ [r;9]
= —r ( S -sa(r)) Q) (49)

We are now in a position to observe that this hidden symmetry is a
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symmetry of the linear system. We note that up to first order in the

variation &.q=- gS.&) , the l.h.s. of eq. (21) is

(3 =% = (A + BB A) Q) + 8l R(Y)
= (al —rd = L\o) 5,,_({:)@(‘“\ - r &0 A, Q) » if Q satisfies (21);
= (3,- % =7 A) 6 k)&) - £ Sa ) &(r)
(since &()A, = -DoSalt) = —L 3, Salt) )o
vhich vanishes if § @& has the form given by (49), confirming that the linear
equation (21) is invariant under the transformation (16), Similarly, one
may also show that §&,S, giveh by (48) satisfies the equation

9 8aS, = 5.8, + PSQ([A,,,S.,]) ;
obtained by varying equation (22). This proves that the infinitesimal
hidden symmetry of the equations of motion is due to an infinitesimal

symmetry of the linear system.

We now return to (42), which on insertion of (47) gives

[Mm@), Mh(r)] = Cane _Ydi‘-l 3[ tSc%)_; rS.(r) 6%(\1) (51)

Now, if we write
-}
M.() = 2 M2 (52)
Nnzo

a comparison of the coefficients of t'r™ on both sides of (51) immediately

yields the commutation relations:
N+

(M, M ] = Cawe Me » Mom 20 . (53)
The matrices
Mmoo xS 4™ _
Mo ml da MQCA)/A:O

therefore realize a wepresentation of the loop algebra G ® R[2] , where
R[}] is the algebra of the formal power series in X , This derivation of
the loop a.lgebra clarifies and simplifies that originally presented by
Dolan [34] ; and since we have emphaaizéd the role of the linear system,
our discussion may easily be generalized to other models with similar

linear systems. This is demonstrated by the work of Eichenherr [43] 0
who has discussed the hidden symmetry algebra of the Heisenberg model,
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%S = é’{ax[sag"s.] j $*=1 ) Se ou@, (54)
(2 model which is similar to the chiral model in the sense that it has
a global group-invariance which may be generalized to an infinite
paramoter nonlocal invariance), Eichenherr has shown that the hidden
symmeotry algebra of (54) is directly carried over to the non-=lineaxr
Schrodinger equation @
tu + %u + aluPu =0 o (u(x,t) a complex field).(55)
Now, (54) is 'gauge equivalent' to (55) [44] in the sense that the flat
connections in the two linear systems may be mapped to each other by
a 'gauge’ transformation. That the hidden symmetry structure of (55) can
be seen to have its origins in that of (54) further emphasizes that it is
the symmetry of the linear system which is responsible for the symmetry of
the equations of motion. Further, it suggests that this feature is common
to all the models which are classified under the scheme of [26927] °
The loop algebra G® lR[—;\] has also been identified by Ueno and
Nakamura [37,38] in the context of the Riemann-Hilbert problem which yields
as a by-product, a formulation of the symmetries in terms of contour integrals.
Using these, the verification of the commutation relations (53) is
particularly simple [38] » We also note that much of the structure that we
have displayed in this chapter has been duplicated in the literature [36] o
In an interesting further development, Wu [45] has extended the symmetry
algebra to G ® lR[) ,A"] ; a factor algebra of the Kac-Moody algebra over
a one-dimensional centre. Wu's approach, translated to our notation, is
as follows,

Above we have considered S to be a series in positive powers of A 3

Sy = 3 AN - §oamaen
We may also have adnd:iotiona.l symmetry. transformations
33 = -9 R(x,?)
with R(x))) = s(x, &) - f 3" /\(-h-')

noo

= WO TWO™
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vhere

(-0 satisfies

Weemp ) A7)

(alc’%bo)w =0
and

(%++ D)W =0

Now, just as we obtained equation (49),
5,8, = o= (Sf) ~ Sa))Q, ¢

we may obtain, following [45] 0

W) = T (Ralt) = Ra(®) Wil)
8¢ VJb(r).z Téi;‘ ('Sa(t) - F{q(f)) bdb(r)

b, Q.6) = b (Ral) = 320) Qi)

| —
Using these, one may define the components of a Laurent expandable
generator of infinitesimal transformations
+0
nq
Mo (2) = ) AT m®)

in the following fashion

M = - fay (824 809 £
() )
" - 9L ") by

Ma' = Jd 1 (Siﬁ )gg
) 1, [ )

Mq - - Jd 9 (5Q j)g% ) n > |

These generators satisfy the commutation relations:

[ME‘M ’ M‘::(M)] = Ca!ac_ ’VICGHM) o me Z |

To conclude this discussion, we note that although the above infinitesimal
field transformations form a Lie algebra, they are surprisingly not
canonical transformations [31] - Conversely, the transformations generated
by the non=local charges are obviously (by definition) canonical; but
these do not form a Lie algebra [31,30] , contrary to the conjecture of [IOL]O

This situation is a consequence of the same problem which prevents the



23,
construction of action-angle variables for this model in the routine
fashion. Faddeev [3] has noted that this difficulty (of constructing
action-angle variables) stems from the °non=ultraplbcality" of the linear
system; i.e. the linear system contains derivatives of the canonical
variables, This results in the impossibility of consistently defining
the Poisson bracket of two monodromy matrices [3Q]'9 which in turn implies
that the algebra of the non-local charges is not a Lie algebra,

Although action-angle variables have not been found for the chiral
models, it is certain that these are hamiltonian integrable systems since
they displey the lack of complete randomization which characterizes such
systems (). For the O(N) sigme-model, Luscher and Pohlmeyer [22] have
explicitly demonstrated that classical spinwaves do not decay into a
superposition of abelian waves for large times, and that in fact, a
generic solution decomposes into a set of massless lumps, They considered
energy-momentum conservation in Minkowski-space light-=cone coordinates:

3, . =0 , 2. T, =0
vhere T. =4 (Too + Ty, ) T, = 5 (T, "To,>

are the only two independent components of the energy-momentum tensor :

J

_CW = a/"‘?,“gvigL _?.\1. N 3/\ ia aAi&‘) ’T";;o) 7;«0 :7:’,%
They argued that energy-momentum conservation means that, for instance,
T+ depends on x, only, so that energy flowing from right to left runs
with exactly the speed of light without dispersion. This absence of
dispersion definitely points to the existence of implicit integrals of
motion, and possibly to integrébility as well, since in general, dispersion
of any finite amount of energy is.required by statistical mechanics; a
general initial condition should display.a'tendency towards the equipartition
of energy with respect to the degrees of ffeedom (i.e. a tendency towards
stochastizatifor_i)@‘FurtherD Jjust as the non-integrability of a system is

indicated by the inelasticity of collisions [}6] , the results of the

(%) Recently, moreover, Dikii [10] has made some progress on the construction

of the integrals of motion for the chiral field equations.
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Zamolodchikovs [2@] on collisions of solitons seem to be sufficienly
strong conditions for the complete integrability of the chiral field,
Indeed, they used the nonlocal charges of the theoxry to obtain the exact
S-matrix of the 0(3) model. This obeys the factorization equations of
Yang and Baxter @j} o demonstrating that the nonlocal charges play the
role of action-angle variables in that they constrain and even determine
the scattering of particles.

To conclude, we note that whereas the classical nonlocal charges do
not form a Lie algebra, the corresponding quantum charges do [3q] o This
suggests that the quantum theory might actually be more tractable than
the classical one considered here.

(iii) We append this discussion of hidden symmetries with the observation that
energy-momentum conservation also yields an infinite set of (on-shell)
non=local conserved currents.

We note that

T = %{Bﬂj odvgq™ -19,., 'af,aaj,g*’}
under a first-order variation :

Tow = +r{%9'3,97 + %5909 = 1 g, (%5957 + 2339 7]

T T + 8T

is also conserved provided both g and g° are solutions.
Writing, as before, g' =g +%g8=g - g5 , we find

Ty = tr { % gy (55") - %(33)9\)3—' = Jmv Afafs} .
Then

2(ETw) = b [ ALRS ¢ RALS LA DS —3,(43 )]
Now the third term

b A S = —tr A[RAS] (using (17) )
= 4 [A.8,]3.5

and using the identity FE = 0 , it is clear that 2%.(51;N) =0,
The implications of these continuity equations are not clear, apart from
the implication that the non-local symmetry transformations we have discussed

commute with conformal transformations. We remark that these new conservation
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lawys bear a siriking resemblance to similarx infinite sets of comservation

lays in free field theories and electrodynamics (see e.g. [49] ).
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Chapter 3: Hidden symmetry of the integrable gectors of pure gawge theories.
The hidden symmetry structure of the chiral model discussed in the
previous ehapter is essentially carried over to both the self-duality
equations and Polyakov's loop-space (functional) equations for three
dimensional gauge theories.

3.1 : Self-=dual gauge fields,

1%

The self-duality equations Fo = Fuv 2 3 €uipeFer (1)
in complexified euclidean space with coordinates
K= RetiXeS = [ X+l FatiX, | = ( Y
“a +iX Ay -tXy z M

(vhere the bar denotes complex conjugation if x is real), take the

form [50]
Fu =0 = Fgg (2a,b)
£

+ Fes = 0, | (2¢)
Eg.(2b,c) may be incorporated into (2a) by a ‘duality transformation' of

4

the coordinate system, analogous to Polyakov's transformation for the

chiral model :
y — L= (4-2E)
I +A (3)

2 >,J’|_L—',\T (2 +A%)

This is just an SO(4,C) rotation of c* , where A is a complex dimension=

less parameter., Under this transformation, the zero-curvature equation

= ! = A - MWLYol
0= Fiz — 7 Fuom)eia) ot (Fuet APy + Pzl A" )

(4)
=0
yielding the linear system [15916] with (2) as integrability conditions:
(A Dy —Dg)H(A\ =0 (5)
(ADp +DF) H() =0 . (6)

The (y =)Z)=(z +37F) planes on which the curvature (4) vanishes are
just the PB-planes of twistor geometry.
Equations (2a.gb) may be integrated immediately by writing [50,,51]
A, = D', D |, Ay =070 (7)
Ay = D 9gD Az = 57'%Dd

)

(8)
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vhere D9§ are elements of the (complexified) gauge group. Gauge

transformations correspond to

D—>DG , D-—>DG ) (9)
so that the matrix
J = D~ (10)

is gange-invariant. In terms of this gauge invariant matrix, (2c) takes
the form [51]

9% (T73,T) + 35(379,J) =0, (11)
vhich displays the important similarity with the two dimensional chiral
model field equation. By analogy with thé chiral model;, we may write

down a linear system for which (ll) is the integrability condition

(M3, =35y + AT, T7)Q =o (12)
(33, +25 + 2 T JT)e =0 . (13)
This linear system is related to (7,8) by the gauge transformation :
na,":-;’ BAQB" + BQQB—l
H—> DH =@

a.:\“pq,’z,{ 3 (14)

which gauges awvay Ag and A7y -

We note that the gauge function in (14) D = H(1=0) .

Equations (11-13) provide, in direct analogy with the chiral model, the
non=local currents and non-local symmetries of self-dual gauge fields.

The nonlocal currents may be derived [529551 using a direct generalization
of the algorithm of [?Q] since (11) has the form of a continuity equation,

which may be solved in terms of a function Xa) defined by

o _ -1 _ 4
(%X = Ty T =9

Zz
Then, writing Q as a power series

Q = S fAu\ x(ﬂ\ ) XCo): ﬂ_ (16)

)

which we may do if H ie analytic around the origin of the complex A=plane,
we clearly cobtain the n=th current with components:
() ) _ n-1)
3‘4 = V\1X = (3\1 +3J 'qu)X@‘) = aé X

. (17)
19 = Vs (3, 4 70D = g K



28,
satisfying the continuity equation
tr) )
%y * 939 T O . (18)
Along with these nonlocal continuity equations, we have non=local
gymmetries of (11), The first three infinitesimal transformations were

explicitly written down by Pohlmeyer [52] - As before, they have a

structure consistent with the general form [:35954;] 8

8 = ~JTS() (19)
vhere S = QTQ = % 2" A (20)
satisfies the equations " '

(7‘3"_35>S = =2 (3757, 8] (21)
23, + % [379,7,8]) -

The proof that the transformations (19) are symmetries of the linear
system (12,13) (or equivalently (21)) is a direct generalization of that
given for the chiral model in the previous chapter [54957] o

BEquation (11) is equivalent to (2c) because

e = D' 3z (T7'3.3)D L a= T, (22)
Now, we also have the relation
Fax = D704 (T2277)D a=veE. (22')
So (11) has the equivalent form [51] s
9 (T3577") + % (32T =0 (23)
which is the integrability condition for the system :
(3 ~%3% —3Jx5T7)W-=o (24)
(3a + 535 +4 JogTlwW=0 . (25)

Because of (22'), these equations are clearly gauge equivalent to the
pair of equations, which in addition to (7,‘8) give the linear system
of Atiyah and Ward [17]
(D, -Dg) K() =0 (26)
(30, +Dg) k() =0 (27)
where K(A) is analytic at Jd=e0

Now K(i=e) = D', and
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W= 0K = ¥ ?\Sh)(("n) ) X@):ﬂ ] (28)

n=o

Equations (23,25) together with the expansion (28) and the identification
o) -1 _ &)
= JogJ = KX

{

]
0y R -1
clearly yields another infinite set of continuity equations
) G}
dQdy * Rdz =0 . (29)

This may be combined with (18) to give an SO0(4,C)-invariant form of the
infinite set of continuity equations. However, the set (29) is not
independent of (18), since the 'patching matrix®

g=k"H= (w'D)(D'q) = wligq )
which determines the vector potential at any point of the null plame [15],
satisfies the identity :

()ab,-a%-)g = 0 = (AQ%-F()\:)j . (30)
Analogous to (18), we have another set of infinitesimal symmetry transform-
ations [55] corresponding to (29) : .

3T = -RT R = WTW '= Z A= A (31)

) n=d

The generators of these symmetry transformations, together with those of
(19), carry a representation of the infinite dimensional Lie algebra
G ® C(2,1"), whose elements are Laurent polynomials in ) with coefficients
in the Lie algebra G of the complexified gauge group. The proof of this
statement closely follows the analogous one for the chiral model, and has
been written down in the literature by Chau et al [55] » who have also
considered symmetry transformations corresponding to real gauge potentials,
as has Dolan [53] o The latter transformations take the form
§7 = - (IS + RJT) ,» vhere J is restricted to be hermitian
(for real potentials) and R is the hermitian conjugate of S, We note that
the former complex transformations are effectively transformations on
just two of the four components of the gauge potential, effected by the
transformations:

§d = ~RD , 8D =0 for (31);
or oD (o} 5 55 = SO for (19).

"

I
1
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Conversely, the transformations for real gauge potentials correspond to
transformations of all four components of A. derived from the transform-
ations:
&) = -RD , &b = sD , rR=§
We note that all these hidden symmetry transformations correspond to a
left-action on D,D , whereas gauge transformations (10) correspond to
a right action.
We conclude with the remark that just as for the chiral model case,
the transformations (19) may be expressed recursively in terms of just
(37'9,J) by using only (12) to define the Q in (20). Then, as before,
one may construct an exponential form of the function Q (analogous to
(2-31) ). Similarly, W may be expressed as an exponential series in
inverse powers of A by integrating just equation (24), We also note
that the similarity to the chiral model extends to the fact that the
lagrangian for eq.(1l) :
L=+ {3,377 + 3,379; 7 ] (32)
is left invariant up to a total divergence under the tramsformations (19)
with Q satisfying just (12) [35] .
Proof:
6=t 779,795 +T7%T5 S + he. ]
= 4r { 379,795 S + AJ”! 9%3'9‘15"“)[3\,(3-'9&)'92 (J—Dﬁb]s}+:'cﬁsing(2la)g
=4 T T)5S +A%S) + AL, (7713,7.5) - %(773,7.5)]+he ]
=t {-L @ (3-23,)Q(375+23,5)
+ A[QH (37713 T7.5) - 9, (_J"JHJ.SD}H\.C. ; using(12);
=4[ 9, (@712: R)T = 9, (R4 Q)T + 3, (379,7.5) -, (379,3.5)]
+§[9q(Q"3;Q)T - o5 (@"aq Q)T] |
+[9 (@7%a)T - %3(@719,®@)T +3, @' %@)T -35(4'9, @)Tj}ﬂ-t‘-

The implications of this for self-dual gauge theories are not clear,
since (32) describes a non-gauge-invariamt .theory : the gauge freedom

having been used up in going to the manifestly gauge-invariant description
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in terms of the J-field. However, we may also note that the Yang=Mills
lagrangian is itself a total divergence for self-=dual fields, since it

is equal to the topological density [51] g

d = H ¥ Fv

Foid

3 4y Guvpg Faw F

bobe (ng Fyg + Fae FVE)

b (03 [afy)Ay — (35 A) A ]
+ 3\}' [(9.2 ﬂi)ﬂ\, ‘Cazﬂ\.’)q_}]>

where we denote A = T7'20. T

P

it

Therefore under our infinitesimal hidden symmetry transformations, the
full Yang-Mills lagrangian is also a total divergence., However, since -
the topological number and Yang-Mills action cannot change infinitesimally,
both would remain unchanged under the above infinitesimal transformations,

unless these transformations gave rise to singular gauge potentials [see

also 1:519569801]0
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3.2 ¢ The functional formulation of 3 dimensional gauge theories,

The path-ordered phase factor is a useful object for the elegant
description of meny features of gauge fields, In fact it is a natural
object to consider since, unlike the field stremgth, it completely encodes
the physical content of gauge theories in the sense that it comtains all
the gavge-invariant information. There have therefore been many attempts
to write the theory solely in terms of these objects [59a61963] o It
was Polyakov [59? who introduced the remarkable idea that every gauge
potential A.(x) with values in the Lie algebra of a compact Lie group,
corresponds to a chiral field "H{C) on the space of curves (loop space),
teking values in the holonomy group; and defined by means of the path-
ordered integral

() = Poexp £ A dx* (1)
vhere C is a continuously differentiable oriented closed curve. He showed
that if the gauge field satisfies the full Yang-Mills equationsgl)hf\)=o 9

Ar

the chiral field Y(C) satisfies

86“((”3) - O (2)
X MO
vhere
fo(c,s) = BMA w( ()
Sx*(9
is the loop space connection form with zero curvature:
B.(DR (9 — 8,F () + [0, 5(s0] =0 “

vhere &,(s) denotes 5//5;%M@» » the functional derivative with respect
to the curve x,(s). This identity corresponds to the usual Bianchi
identity €»4¢ [DuA’F%?}EOo The remarkable similarity between two
dimensional chiral fields and gauge fields for d 2 2 that these equations
reveal was exploited by Polyakov to obtain interesting informetion on

the siructure of both classical and quantum gauge fields. In particular,
he showed that in the case of 2 + 1 dimensions, there exist an infinity of
functionally conserved currents, reinforcing the gimilarity with two-

dimensional completely integrable models.
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Ve shall first discuss the possibility of obiaining Polyakov's
functionally conserved cuxrents from awn action principle. The formal
apparatus for the study of functional (path-dependent) fiolds was
developéd gome time ago by Marshall and Ramond [56] » Who proved a
suitable generalization of Noother's theorem foxr functional fields,
In the context of loop space fields, Dolan l§4aJ showed that transformations
of the path dependent field induced by transformations of the cooxrdinates
of the path change the lagrangian by a total functional divergence and
the fifteen corresponding path-dependent Noether currents were comstructed.
Further, the existence of a higher symmetry of the loop space lagrangian
was alluded to., Here we shall show that the reparametrization invariant

lagrangian [54&] giving the loop space field equations (2) :

i = 4r ols 8\!’ 6-“’“ , M:O,I,l, (5)
TN 8B 5% (9)
is indeed unchanged up to a total functional derivative under an
infinitesimal transformation of the form AW = \L(C+SC) 4= -4 SIU,- k]
if shrsz] 5

withant the use of the eguations of motion (2},

the functional differential equation s
(5, +¥ 5, —¥8)S() = -[f,s(M] (6)
where § denotes 6%51193 and t;= x', (s) = dx;(s)/ds .
Here S(X) is defined to be & power series in negative powers of the
parameter ¥ ; and is the generating functional of an infinite set of
infinitesimal transformations. We assume that S(Y) may be written in
the familiar form
() = o) Ta™ (7)
vhere T is a generator of a constant Lie algebra valuwed infinitesimal
transformation.
Then, from (6), Q( ) satisfies
(5,+F, + ¥t§ —¥t&)Q =0 . (8)

Now under an infinitesimal transformation QW =-US | the change

in the lagrangian density (5) is given by
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6L = 4r j% Fos.S(¥) . (9)
Consider from (8)

tr £,5,S = tr BV (t5S —t&S) (10)
and

Y Fy5,S = -;-r{ £,5,8 + (8, (R9- ao(s:s)) tl&Sos}

=4 {- R~ ’%wg.s+ (H“) jrRad]

where we have used +;F; = 0 § an identity which is easily obtained by

congidering the variation of % by an infinitesimal vector field [60=63] H

s¢) = [ Y (s,C
81 CS) ‘1}’ ( ) AT t“- ( ! ) )
where a trace over the base point of the contour is implicit in our

notation. Thus

V(D) (50 = Fte = 12)
6 %,.(s)

which immediately gives t.F, = O because of the antisymmetry of the

field strength tensor F, . . Equivalently, parametrization invariance

yields 0 = ’\p(g ¢) = dxzlbs) & Y (s,0)
s As S x.(8)
Now from (10,11) we obtain

| o Fifis =t [Fms (A less -veas - 85,5+4£ 8:5)

“L%LE 6((38)6,9}

§J=,i—) {Q (5, + Y65 -t so)w((mx 6,5 + (5, ~ V45, 3)

\ s (f
t 3E 5 (F;5) €y } , using (8);

S,ﬁ‘) Ezt € 5 (8e@7Q) +5r €y 6 (§@7.Q)

: (*] 0" - !
8 (p S>elLJ 1’-8‘45% eljanQ '.Q %ebij SJQQ}}T

using (7), the cyclic property of the trace, and the fact that in the
. -
integrand & ©) =0  (c.f. L66:{ )o

Now the antisymmetry of the integrand allows us to finally write
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64 = 4r Jd’ssé_— {Aﬁ'ﬁ——) [Xt ea,kﬁkQ Q "*“ |LJ(6Q_,Q+ JS)

€ ~1 ¢ -1
+t° €ija 6@ QR %3— €oi; &; @ -Q]TE . (13)

We may write the defining relation (8) for Q (V) es
=1 - -1
QUE + ¥ ey ty & )R = Fy = Buw. v (14)
Now, analogously with the case of the chiral model, if we set
S - @
V. W = ey 85Xy (15)

Xo¥ _‘e Xayd * N X ¥ )

A
and Q=1lim Qy 5 Qy =€ e (16)

the coefficient of ¥° automatically satisfies (14), allowing, recursively,
an explicit construction of the coefficients of ¥~" . We have thus shown
that a power series solution of (6) exists. Now we note that when (2) is

satisfied, the integrand in (9) is also a total functional divergence:

5 = e [as b (s B s(@) . (17)

From(13,17) we may deduce that an infinite number of functionally
conserved Noether currents exist, since the integral over the parametriza-
tion is over a compact domain for closed loops. We note that all this is
valid as long as the path is regular and has no crossing points; this
guarantees that end-=point terms do not contribute,
We note that (6) is just one component of the system of equations
(5'L+7ff)- GL-)-KSK)S = E[FE)SJ ; ( =0,1,2 3 (18)
first suggested by Polyakov [52] as the linear system for (2-4). The
integrability conditions for these equations were checked in detail
by Dolan [64b] . Similarly, (8) is a component of the equivalent linear
system
(5L + Fo+ th €k 5!4) R =0 ) (19)
which has a form which immediately yields itself to the algorithm of @Q]
for the construction of the infinity of continuity equations [599651 o

The parametrization invariance of W(s,C) implies that 46, @ =0

(since Q(¥=0) = ¥+~' ) in addition to t;F, = 0 . Therefore, the
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component of (19) in the direction of +; is am identity; leaving omly
the two orthogonal components as linearly independent equations. The
integrability comditions for (19) may therefore be considered to be the
conditions for the vanishing of the curvature on the two dimensional
gurface orthogonal to t; . This is the clue to the integrability of
three dimensional loop space fields, since the equations of motion are
seen to be those of an effectively two dimensional theory. We shall discuss
this in further detail in the next section,

We may proceed to show that the symmetry transfoxmation 4VY =-Yyg
leaves the linear system invariant. Analogously with the two dimensional

case, we take the variation of Q due to the infinitesimal transformation

B = -4S() to be :

AR A = F5 (e —sM) &) |
Using this it is easy to show that the linear system (19) is symmetric
under the transformation Y+ > U+ AY s proving that this parametric
symmetry is a symmetry of the equations of motion. We may, in a similar
faghion, obtain another sét of infinitely many symmeiries; generated by
the tramsformation Q(¥)y = -WR(‘G) wvhere R is a power series in
positive powers of ¥ , satisfying the system of equations :

o+ S eepa)r = -[f,R]

The generators of these two infinite sets of symmetries form the loop
algebra G & B[X 9 K"']g as may be demonstrated following the analogous

discussion of chapter 2,

-~
We remark that if we denote Y= Y AY » then under the
symmetry transformation DY = -4S , the change in F, is
DF; o S +[FL)S_J
= ”‘XtJ ei,jk SKS » using (18)3

("

I Ay

- . e kN i = =%
= tJ etjk S ('\', '“,) , since S v
Thus we have the equations

YT s v v = Y e s (VTF)

relating two solutions Y and ‘\T of (2). These equations are analogous
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to the Backlund transformation for the chiral model exhibited in CBQ] o

To conclude this section, we note that the loop space symmetxry described
here does not seem to have any direct implication for the existence of
higher symmetrics of ordinary three dimensional gauvge fields., This
is not surprising since the lagrangian (5) is net equal to the ordinary
Yang-Mills lagrangian; there exist loop space fields which do not
correspond to gauge fields, (The topological criteria which distinguish
loop space fields which do not correspond to usual gauge fields are
discussed in [Bf] , wvhere it is shown that the loop space fields corres-
ponding to usual gauge fields are ‘'‘more continuous' than the others,
in the semse that if we have a sequence of curves C, (parametrized by
x*(s)) tending to the curve C(x*(s)), then x/(s) converges uniformly
to x*(s) and the sequence t, = dx'(s)/ds is uniformly bounded. The
anthors of [57] claim that a field W(C) corresponding to a usual gauge
field is continuous in this topology of the space of curves; i.e., if
Cn tends to C then WC,) tends to WC) .) However, functionally
conserved currents do impose (via higher Ward identities) strong
constraints on the interaction between closed gauge strings {55] 9
which afterall are the objects expected to play the role of elementary

excitations in the confining phase of the theory [b&] o



38,

3,3 : Some integrable chiral fields in three dimensions.

(i) Ve have scen that the clue to the integrability of the functional
formulation of three dimensional gauge theories is the fact that paremet-
rization invarianecc constrains the theory to a two dimensiocnal subspace
of space-time., In order to understand this offective dimengional reduction
we choose to simulate the loop space linear system

(60 + € + ¥t eud )@ =o
by the ordinary space linear equations
(8 + degeyy) AW = —A% | ie1,33 (1)
vhere the constraint
V' H' =0 (2)
implies that V;9;%t=0 o We choose v; to be a unit vector: v*= 1 ,

Eq.(1), where A; satisfies (2), has the equivalent form
I . -
[ Xt T (6 =4 Eomi Ym ) AL]”’ =0 - (3

since

(&k+Aemyﬁ(&¢—A&Mew‘+»wa = Gz (142%)

The consistency conditiona for (3) are

F&M = aL F]W‘ —Bw‘ AE, + EAG_,APM—] =0 (48.)
and
or equivalently,
AL = 97'9c§ , a pure-gauge; and
B‘L (\/J AL — Vi ﬁj) =0 . (5)
We note that the linear system (3) alludes to a 'duality transformation':
|
Ai = T (A = A €ije Vi Ak) (6)

mapping pure-gauge fields to solutions of (5).

(ii) The linear system (1) allows the construction of an infinite set of
conserved currents. To explicitly demonstrate this, we first solve (4) by
writing

A = = €y Vi 90 @ (1)

)
vhich we take to be the first current: :];m = Ay
3

o
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Then, Jy 5?3 =0 if Crmn ¢V =0 | (8)
We note that unlike the case of the two dimensional chirel model, this
first continuity eguation is not the field equation, Now, if we assume

that in (1) we may write
;\{/ - Z 2-—"\ (-p(l?\.) CPCD) = l
A0

) b
. . , (i7)
then (7) is clearly the )-independent piece of (1); and @ satisfies

the recurrence relation

) _ (=)
Elcww\ V. 9, @ = (ak + Ak) CP (9)
The n=th conserved current is then obtained from Q@):
) _ ()
T = G Vi 2 O (10)
We observe that iﬂf)not only satisfies Bkjf”: , but is also a solution
of the equations of motion since Be (VQ IKC“) — Vi :)_ECM) = 0 9

vhich may be verified by repeated use of (9). This, however, is not the
only solution generating method available to these equations, since the
linear system (1) clearly has a form which allows the comstruction of
solutions using thé Riemann-Hilbert transform (c.f. eq.(1-8)).

(iii) The consistency conditions (4) superficially represent the vanishing
of the curvature of the connection in (3) om a 3-plane, However, because
of the condition (2), the system (3) only contains two independent
equations for ¥ ; the component of (3) in the direction of v, being
trivially satisfied. The consistency conditions therefore have the
conventional interpretation of the vanishing of a curvature on a 2-plane;
wvhich in the present case is the two dimensional surface orthogonal to
V; o Our theory is thus effectively a two dimensional one. We note that

if A satisfies (2,5), it also satisfies

Vi (% Ry =V A ) = vV R0R) A =0 (11)
and
VLFQ =0 implies that
VidiA; = =3 v A (12)

So equation (5) may be rewritten as an algebraic equation for A; s
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(@]
\

9 Ve ﬂj - (aj Vi +B,_'\/J'\) a, — Vi 9, A;
(BKVK 5% — (BJ‘Vi + BL\/JB + Vj 9 v; \/Q> A, , using (11):

explicitly demonsirating that the components of A; are not linearly

]

independent. The matrix acting on A; may clearly be written as a symmetric
matrix:

(v 8 — (Ve 3v) + 3 (yvidv, ) Ay = o

€
and as a traceless matrix:
(3 v (6; ~vevy) — (v +2v) + % (%) VQ) Ac=0. 3

Now, if 9J,v, #0 + we obtain a linear relation between the three

components of A; :

Aj = (-a—lc'——\;s {(BJ'VL' "’BLVJ) - 34_ (\{;'VLBV!L} AL‘ ) (14)

which is completely equivalent to the equations of motion. We now observe
that (11) may be written
where the projection tensor

Py = & -wivy

- -

which has the properties
P i p,‘ e = Pix

may be used to decompose every tengor into its components parallel or

V. =0
) PLJ Vi )

normal to v; o PU is clearly the degenerate metric on the 2-surface
orthogonal to v; . We have already alluded two the fact that this theory
is actually two dimensional. If this is true, v; needs to be interpreted
as a Killing vector field generating an isometry of the orthogonal
2-gurface, In other words, we need to interpret translations in the
direction of v, as either mappings of the 2-space onto itself, or as a
motion (like a rotation) of the space which does not alter the metric Pq 0
We consider infinitesimal transformations x, — =x; + v; o

The condition for v;(x) itself to be invariant under this transformation
is clearly

dy Vi = V9 Vvy =o ) (16)
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The Lie derivative of the metric, which we multiply by a conformal scele £,

is given by

dy (£ (5 "VCVJ) = Vi d (§(8; “chﬂ> + 8 vi (8 Ve Vi)
by vie (S Vi Vi)

= Ve DK% (60 - Vi_\/\h +§(aivj + BJ Vi) - ﬁvmbk(vi\ﬁ-)'(n)
The last term vanishes by (16). Moreover, if the conformal factor f satisfies
A (Ve g) =0
i.eo é = €y Vic QQ T , for some u, ,
which implies that
Ve O n & = — Ay Vi
then (17) vanishes if v, satisfies
AVt vy =4 g Ve 5 39y = f (v -dg); @8
i.e. the conformal Killing equation (see e.go. @3})9
We also have
SR, = Ly Ay = ViR +Aj3Y =0, since veh=0, Fy=0.
Since the pure-gauge A; is left invariant, the transformation x;-=>x:+ v;
ig clearly a gauge-covariant conformal transformation (c.f. Eﬂ )o
We note that (16) together with veA = 0 , implies that (15) is equivalent
to
A, = O 5 (19)
the chiral field equation, The condition (16), vhich is necessary for
(19) to be the equation of motion, is precisely analogous to the condition
implied by parametrization invariance in the case of the loop-=space
chiral equations,
We now consider the action
S = [ax Ry Ty (20)
where T,-j is an antisymmetric tensor field satisfying ALch =0,
Varying A; gives the eguation of motion R TCJ’ =0
and varying Tij yields F; = 0 ¢ equations similaxr to those under

)
consideration (4ag 5). We note that if we choose a particular solution
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to (16,18): v, = x;/r , (& choice which is similar to the loop tangent

L
vector ti = dx;(s)/ds ), then (20) may be identified with the chiral-
Qg
field lagrangian fd3x A;8; if le (x) = J'ﬂifi B(Ki A, (ex) =Xy AL((%X)) .
The proof follows [84] o The condition veA = 0 is clearly just the
coordinate gauge condition x°A = 0 , which implies that
X(F;j = ( I+—Xibi> ﬂj
Rescalings x; —> e« x; , we find that
. F.. - 4 r
oKy FLJ (“X)' -~ I LO( AJ (MX)]
AJ (x) = Jo det ot X F'LJ- (e¢ x)
Now [84]
I
{d3 A;A; {a fdu o xe Fee () Ap (1)
|
= (a3 §ddy § de My B 8 (u—eex) A (x)
! -
= [ By M Rl § A« A (/)

it

= 4 (d ]Tdﬁ o B0 (1 A5 (RY) - A, ((5‘1))j B=X

J
= [4%y CoOTHG) 4. (20,
(iv) To conclude, we note that the Ernst equation for stationary axisymmetric
gravitational fields may be rewritten in terms of the type of chiral fields
we have considered in this section (c.f, [82985] ). We may immediately
obtain equations for such cylindrically symmetric chiral fields by making
the choice : ¥ = -]r;- (x,, =%, , O) , P = X+ R2 ) <’Q€R3,i=bl,3> .
Moreover; our discussion may be extended to an n-dimensional space, as long
as we reduce the effective dimensionality of the problem to two by intro-
ducing (n - 2) commuting Killing-vector fields., For example, in four
dimensions we may start with the linear system
(5cw\ + € im vJuO b = -A: W% , Vi=| =u*,viwzo, vihzozud,
The consistency conditions for this system correspond to equations for

chiral fields over a 4-dimensional space-time admitting two Killing vectors.
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Chaptexr 4: Completely intesrable sectoxrs of supexgymmetric gauge theories.

Supersymmetric gauge theories have a natural formulation in superspace,

which we take to be paramctrized by y = ( x“é96§595539 o, & =1,2 3

3

8,t = lyoocoooopoN; where o x“’a;“é o The gauge=covariant derivatives
may be written
S s s T  _ = ) - .
Vq. T DQ + Aw{ ) vﬂt = DB't + gﬁt ) V«ﬁf = aeqé + A%fb » Where

DS:a +(l§é"s . D. - — 9 R .a_é_.
4 a—é; aa(g ) Dﬁ = a___é.,ét—(.e_t a"(ﬁ ) Dqﬁ 3x<h

realise the supersymmetiry algebra
s N ~ ~ - )
{qubgg =0 :{DéSIDQtz J [bﬁ(sJDﬁf}’_‘ngé aﬂé
and Ay Ai 0 Aét are the Lie algebra valued Yang-Mills superfield

j

potentials, The above gauge-covariant derivatives yield the superfield

curvatures of the theoxry [}0]

L0, Vﬁtg N '::rf ) £ U , Ve § = Fas, it (1)
[’V,,,Vj] = FMZ , [, Ve ] = Fu pe [V. v, ]):=6.
and
P00, Vae b = 35, Dget + O Age + Dae Ad + FAL, Aed
TR ae — 0 Ve 8% (3)
since '::,ﬁt = Dy Ape + Dge AS + SAS, Afpt} +2i A . (4)

The latter relation determines the vector potemtial A.,; in terms of the
spinor ones, sc the theory in terms of the above six curvature forms

is highly redundant, allowing the imposition of extra constraints amongst
the curvatures, which do not put the theory on-shell, For N = 1,2 ; the

usual [70] constraint equations are

}

F:g + 9:;; = 0 = F&s,ét + Féee,;és (5)
Fi,fat =0

It is known [71972] that for the maximally extended cases of N = 3,4 (these

being equivalent), these equations put the theory on-shell (wd thout,however,

trivializing the theory). Therefore, for N = 3,4 , the equations (5) axe

analogous to the self-duality equations of ordinary gauge theories; they

provide a non=trivial on-shell sector of the theoxy in terms of algebraic
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relations amongst the components of the gauge curvature form,

Recently, Volovich [:7 3] wrote down a set of linear equations for the
spinor connection A2 , Ageo vhich have equations (5) as consistency
conditions, In this chapter, we first integrate a subset of the equations
in (5) by introducing two independent gauge functions, The remaining
squations are then rewvritten in a manifestly gauvge-invariant fashion
in terms of these functions; and following the approach of Volovich, a
linear system for them is written down., This reformulated linear system
may be used to construct an infinity of continmuity equations for super-

symmetric gauge theories, since it yields itself to a modified version

(o)

of the algorithm of [20] , which we discussed in chapter 2. The formulation

given here is very similar to; and is suggested by, the manifestly gauge-
invariant fommulation of self-dual gauge fields [50,,51] ;s the so=called
J=formulation of chapter 3. We also show that in the sector of (5)
describing self-dual gauge fields [74] , our formulation is equivalent
to; and is thus a consistent generalization of, the J=formulation.

We choose to solve the folloéring subset of equations in (5) =

FYY =0 = Fji
Flie = 0 = Fi ¢
by writing AS = 97 DVg , Aje = g7 D¢ 9
A = W'Dk, Az 7 W'Di ko

where the superfields g and h are arbitrary elements of the gauge group;
and they may be expressed in terms of Lie algebra valued prepotentials
conventionally used to solve constraint equations by relations of the

form

"
0y
{
<
<
e

V, = D + 5"5,3

!

§
™
i
<
(4
=
o)
<

V, =D, + LC"DZL\ » etco,
where U end V are two independent prepotentials,
We note that because of the definition (4), the relations (7=9) imply

a pure-gauge form for two of the vector potentials:

(6)
(1)
(8)
(9)
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. - R -1
Ai = 9739 , Aai =k 35h
leaving the other two, A; and A,; , undetermined. The remaining constraint

equations ares:

st s _
Fa o+ Fly =o (10)
Fis, ¢ + Fip, 15 =0 (11)
s s
Fu,ét =0 = Taje . (12)

We now note that since gauge transformations correspond %o a right action
of the gauge group on g and h , the matrix B= g h is manifestly gauge=

invariant; and in terms of it, we may write

Fa = 97 { D} (BDFR™) g (13)
isit = g7 f Big (BB5e 87D} (14)
Flae = 97§ b3 (BD;B™) + 2183 Vi | § (15a)
Fiie = 97§ D; (BDF 87) +2i8% U3}y . (15b)

We may therefore rotate (10=12) by the transformation which takes the
pure=gauge potentvials Afg Ajcand A to zero; obtaining a set of equations

for the gauge-invariant field B, eguivalent to equations (10-12):

DF(BDdLB") + D (BDSB™) =o (16)
D (835, 87) + Die(8B;8™) =0 (17)
Dy (8B; 87') + &% 2i gVi39™" =0 (18)
D (BOfB™) +6% acgVy 9 =0 . (19)

We observe that equations (16-19) are comsistency conditions for the
system of equations:
¢ = (dP+ aDS +2BDBNE =0 (20)
MG = (Dj + BDs B + 272D, )¥ =0 (21)
NG = 5(33+9%597) +2 (2,5 + 823 87)0 7% +27 (3, +5%9 g 0)

since (20-22) result immediately from the algebras
s gt _ - s = -2: 83
e, tf=0= MM, [, mT]=-2i6IN . (23)
The linear system (20-22) may be obtained from the one given by Volovich,

which we choose to write as:
KW = (AT =0 (20
4 = (T +277 T =0 (25)
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. -7 -
ZW = (V54 2 Uy #2270 #2700 2o (26)
(vhere X*,Y, ,2 satisfy the algebra
s _ S
6T =0 = T, DX 43 = -aisi 2
if the comstraints (5) are satisfied), by performing the above gamge
transformation; since the two systems are related thuss
Xw = g7LE | MY =g"'ME | 2y =g 'NY
vere & =4V and the gauge function is given by
-1 _
57 = W(r=o) | (27)
vhich is consistent with the normalization: ¥ (3= 0) =1 .
We note that if instead of (27) we choose to rotate (10-12) by the
function which transforms A, A;,A,; to zero, i.eo
-1
K o= () =) (28)

vhere @()) also satisfies (24-26), then, since we have relations of

the form
By = W IDMRIDER PR (29)
corresponding to (13-15), eqs.(16=19) have the equivalent form
D;(B'DB) + D¥(B'DSB) =o (16°)
D (875, 8) + B;,(B'DisB) =0 (177)
Dis (B DtB) + &t ai hvsk™ =0 (18')
Dy (875, 8) + & 2c L VL™ =0 | (19%)
for which we have the linear system
L% = (DF+ 27'DF+ 2" B8'DFB)P =0 (20°)
M E = (X>Dy, + Dy + 8715;,B)B =0 (21')

N'@ = {)(Qu--q- LWV, k")+ Algg.i +A-'(9|i 48_'9,38) +(9.;i+l‘vll'l‘.9}é:°,(22°)

vhere & = LY, §(r<~)=1 ; and L°,M',N' also realise the algebra
(23) as a consequence of (16°=19°%),

We now proceed to construct an infinite set of continuity equations,
For explicitness we choose to do this for the N = 3 theory, Our discussion,
however, is valid for any N, since in what follows one may delete all

terms with the index s;t = 3 and then those with s8,t = 2 to successively



47
reduce the theoxry to W = 2 and then to N = 1 , Further, the generalization
to the manifestly N = 4 theory is obvious. We note that (16,17) may be
solved in terms of two functioms of the superspace variables, X(') and 3@ 0

defined by the relations
N
< -1
8 Dj, &

s x ¥ (29)

= @)
Die 77 (30)

A

and similarly, (16',17°') may be solved in terms of two further superfields
1" and Y® defined by
B'DIB = Dfy® (31)
B D;B = Dy YO (32)

We now define functions U, V), U, , Vy¢ by the relations:

Vi o= V.G o= o) 20
Ug = ur = p2z%
Vor = Ugy = 5,(; Zm (33)
Viy = Vgs = Das ZQ)
Uy = YUy = 3&3 Z@)
where 4o Dh = (D5, i‘ee) )
z(h) )s X gor A =,
= DAVM for A =a,3
The first continuity equation immediately follows since } =0+ 7V
is a conserved spinor current satisfying
g (D'sg's + 3333 + E’sgis + 5:5532’5) =0 (34)
It is now clear that an infinity of currents }(")o A= lyoocooossg®y
may be iteratively conmstructed using the functions UL'D UL:i 0 V("’s, (")

defined by relations of the form (33) with superfields X, Y()satisfying

the recursion relations :
DA™ = [0 + (aDR)]XV (35)
Bis X = [ D5 + (80387 X (36)
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BN = 0%+ (g'DSE)] N (37)
Dij Y® = [D;¢ + (87'D;B)] 4y ¥ (38)

Wo now denote 99 U,V vy 20)9 Um,, Va)respectivelyo Setting K= ﬂ = Y®
in (35-38) yields the previous relations (29-32); and it is easy to show
following the above procedure and using the equations of motion (16°-19°,
16-19), that relations (35-38) provide a continuity equation of the
form of (34) for each n.

The recursion relations (35-=38) may be obtained from (20,21,20°,21°)

by performing the power series expansions

g = f anxe (39)
g = §F avye (40)

It is therefoxre clear that a complete set of functions f")gY@g(n.—. lyoocoss™)
will exist as long as ¢ is analytic around the origin of the complex
plane, and § is analytic in a region containing J=«. We note that
in addition to (36,38), the linear equations (21,21'), with F and &
given by (39,40) also imply that the original functions X& and’ YO sati afy:
Fis X =0 = 3és 4o . (41)
Further, the relations (29-32) solve all the equations (16-19,16'<19')
as long as ¥ and § , represented by the expansions (39,40), satisfy
(22,22%), We explicitly check this claim for the case of eq.(18) by
inserting (30) :
D (BDy B™) = - D Djpx®

= 8 ai i X® 4+ Dy DS X

= 8% 2 (3% + 95, x®) + Dy (a1
where we have used (35)and (41); and using (29) we obtain

D; (BDs4 37 = 5‘1 20 ( 3,;)((“) + aJ;X(') - 9,,')((').)(0))
=85 2 (2 A® ¢ %X 4+ gVhigx?)

where use has been made of the coefficient of )" in the expansion of (22),
Now using the J-independent piece of (22), viz.,

2“-Xm + (9 +5v«1fﬁ-')x0) + 9V 9°" =0

9
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we obtain
DISCBDi{: B_') = =i 5i jv/i fj-l o loo €q.(18),
verifying that the expressions (29,30) solve (18).
We have seom that the expressions (29-32) which solve the constraint
equations are Jjust the A-independent parts of the linear equations
(20,21,20',21'), Ve may generalize (29-32) by writing a A-dependent

solution of (16-=19,16'<19%) :

(BpgB™) = AT E(dF+AD})E” (42)
(BD;e 8D = & (D +22D, )0 (43)
(8'ps8) = 2 ® (s +27p5)B” (44)
(87D B) = & (FDs + Dp)d | (45)

vhere T, § satisfy (20-22,20'-227),

Transformations from one order inm A to another on the right of (42=45)
correspond to Backlund transformations since they relate two solutions
of the equations (16-19,16°=19'), The infinitesimal forms of these
transformations are the symmetry transformations responsible for the
above infinite set of monlocal conserved currents, The situation here,
ag in all the cases we've considered in previous chapters, is very
reminiscent of a common feature of all the two-dimensional integrable
soliton theories: the transformations which generate the conservation laws
provide the key to the transformations which generate exact solutions,
Under these (infinitely many) infinitesimal transformations we may
define the variation of the gauge-invariant superfield B to be of the

form

5(“)8 = - (S(“)B + BRCM> , neZ, s¥=0 for new, (46)
R®™= 0 for ny0s

where éngﬁﬂ are Lie algebra valued nonlocal functionsg.

In terms of the generating functions for & and K" :

S = Fas™ gz 5 AR

=0 J

we may write (46) as

§B8 = f s B = -(SB+B‘?). (47)
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We shall mow show that these transformations are symmetries of equations
(16-=19,16'=19*) if S and R have the familiar structure:

S= EMTEM™ (48)

R = ST &)™
vhere € and @ satisfy (20-22)and (20'-22') respectively; and T is
a constant Lie algebra valued matrix., We first consider transformations
(46) for m2 0 . The generating function S given by (48a) for these

infinitesimal transformations gatisfies the equations

(df + aD3)S = -»a [epie™,s] (49a)
(B + 7 D;)S = - [ 85,87, 5] (49v)

(9‘5 A s ¥ A"E)a; #X° 3,;) S =- [(3?,53‘"+) 83353"+A-'3 Va,'g")’ S:I (49¢)

by virtue of eqs(20-22). Now, under the transformation &B=-SB | the
variation of eq.(16) is given by

ps(ePe™) = »f0s + b [BDYR™, S]

= —DgeD,S)S -1 8D, B™, D,S)S} » using (16);

= O , as a result of the consistency of eqs.(49a),
Similarly, (17‘) is invariant under these transformations as a consequence
of the consistency of (49b); and the invariance of (18,19) follows from

(49a=c), For instance, we consider the variation of (18) :

DS 5 (B0;8") = D0 S + O [BI8",Ss]
= -2 (035 +[9%:97,5])
- (D DFS + {805 8™, D¥S?) » using (18);
= —2i55% (9,58 +[39V,39™ ,SJ) ’ (50)

since the remaining terms vanish as a consequence of the consistency of
(49) . Now, since the transformation §B =-3SB is effected by the
infinitesimal transformations: 89 =- Sq , th =0 ; we note that
6(3Vl5 j") = 935S + [V 7' SJ
Eq.(50) therefore implies the invariance of (18).
We may now consider transformations (46) for n<O given by 38:=-8BR 9

resulting from the tranformations 83 =0 , th = Rh ; with R given
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by (48) satisfying
[L%,s] =0 =[m,,s] =[N,s] (51)
as & consequence of (20°=22')o It is clear that thesge infinitesimal
trangformations will leave (16'-19°') imvariant as a consequence of (51),
Above, we have used the fact that uwnder the transformation (46)9
§(8D,8") = Dy S(A)+ [BDIB7, S(N] + BOIR(Y &
= ~4 DISO) + BDIR(AYBRT (52)
Using (52) we may now evaluate the variation due to (46) of the functionals
¥ and @—9 which are formally path-ordered exponential functions of, for
instance, BD;B” and B'D{B , from (20) and (20'), respectively. We choose
to split (46), denoting transformations corresponding to n2 0 by
5 NB = -SHNB ; and those corresponding to n£0 by
ST(WHB = —RR(R) o The change in ¢ and & may now be determined
iteratively (following the procedure of [33954] ) starting from
8 X = —pTS(W) , ETIMY = mR(G)
which may be obtained directly from (29,31) (the first texms in the power

series expansions of (20,20') ). Explicitly,

Dietx® = gt(anpiR) = -4 D S(W) , from (52);
and similarly,
D 6740 = §7(g'psB) = m DI R(W

We may similarly evaluate the change in every coefficient K%g Y@)using

the recursion relations (35,37); and summing these variations we may

obtain
8% (W) E(») :f s x® = Bla; Beat(we] - 18]

=" A (09 - S BB (53)
5 (W (A) = %__%;_ (R(p) - R(A)}@(A) (53b)
ST(WE () = 525 (BTR(DB - SO)) R (53¢)
TG &N = 2 (B S(mB NIDOIIOW (534)

The proof of these expressions follows that for the analogous expressions

in the models of chapters 2 & 3. We now observe that because of the fomm
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of the variations (53), the infinitesimal transformation (47) is a
symmetry of the linear system (20-22,20'=22'); and this symmetry of
the linear system is the source of the hidden symmetry of the constraint
equations (16=19,16°<19%), Ve explicitly demonstrate the invariamce of
the linear equations in two specific cases; the invariance of the other
equations being verifiable in a similexr fashion. We first consider the
first-order change in (20) due to the transformation 5+(,w)5 = -S$(4) B,
§T(0) JEOYVE O = (07 +203) 87(W M) + A 848D, &™) F)
FARDER™) 8%1) B
= E—A— (0542 ) S(m) = A B s() + A= [825B7, S(] | B,
M2 mt M2
. using (492),(53a) and (20);
= /\:?f,:;) %(D‘,mbi)s(}k) + p[BD5R7, (T ]

= 0 , by (498).
Similarly,
§7(w) S\ f(;}@@}i = (D,SMD;’) SUDE0) +) 6 (m(BYR™) E()
) (BT S EW
= Z;t; (D, + 203 )(B7R(W)B —S(A)) MF)‘S [(5" R()8 ~S(3), BD;B™

+ ) B R(DB™ | T0),

from (53c),(52) and (20);

= 5 { B™ (0 +AD,)R(WB +)BDRE™

~[(8"'D’8 + 28705 B), B'R B]

, -2 [R'R(mB, BDIBT'] } 2 » using (49b);
pre i B™' (D} +mD)R(\B + BT'[R™'DB , R(x)] B g
0 , by the expression for R analogous to (49a),

The structure of the symmetry transformations displayed by (53) is
almost identical to that discussed in chapter 3 for the case of the
self=duality equations [55] » 1t is therefore clear that we may define

the infinitesimel generators of these symmetries:
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- 5
Mo = = [a%d*0 ™8 @B gy
- Sd“xdmedmg (5‘431—8({&>gg’g p

where we have expanded the transformations in a basis of the Lie algebra
G; and congsidexring the composition of two such symmetry operations

(cleaxrly given by the Lie bracket):

[ M), Mo(W] = Loy Mo ()
= Jandeang [ 0), (S WBrBRMWEL

we may, using (53) and following the arguments of chapters 2 , 31 [&505519
showv that the coefficients of Ajuﬁ on both sides of (54) realize the
loop algebra G® @D,,)"j ,(whose elements are Laurent polynomials in i

with coefficients in the simple lie algebra G ), with commutation relations

M+h

\ wy n
LMk ) Mb] = M Cabe , Ty (55)
vhere Capc are the structure constants of Gj;and the M:} are

coefficients in the Laurent expansion of M,, the infinitesimal operators

of the symmetry group:

00
n n
'\/]q - “_§~°o ;] Mu
The remarkable similarity to the self-dual pure gauge theory displayed
by the features described in this chapter suggests that a solution on
the lines of [i]] is possible., With this tantalizing prospect in mind,
we note that the matrix
G= B =(8Y)(n') =" (56)
is an integrable phase factor; and identically satisfies
(D3+) Df)Cx =0
(D3¢ +27 Dy )& =0 (57)
(2 + 224 ¢27 3y +a7H20)G =0

as a consequence of eqs(20-22,20'-22'), However, the geometrical signifi-
cance of (57) is not clear, In particular, whether or not gauge potentials
constructed from the factors of G in (56) would correspond to vector

bundles over some supersymmetric twistor space [bl] is not immediately
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apparent., However, in a previous paper Eﬁd] » Volovich has suggested a
supersymmetric version of the ADHM construction [}é} » where the spinor
connection, in addition to (5)9 satisfies the equation:
Fnpe = 0 (58)
which, taken together with (5)9 implies that the vector superfield curvature
is automatically self-=dual: ﬁﬂv = *_EM» o In [73] Volovich also indicated

how the linear system (24-=26) could be modified so as to incorporate (58).

In our formulation, this modified system may be written:
(bf+2b§+)%b§%v')§ :O‘:‘(Dée-r%bie%“)@ , Die¥=0 ,

[3: + 3Viag" + 2 (35 +9%s 3")]@ =0 (59)
[+ 2o + §9,,9)]¢ =0 . (60)
We note that (22) has been split into two equations (59,60). Now, compa-

tibility of all these equations clearly requires that
Ais = 97939 , 9%387" =0 , As= kT dh
yielding  [2,5 + 2 (9,3 + 82,58 % =0 | (59')
[ + 200, +8a,8)]E=0 | (60*)

a form which clearly implies that the superfield F., is self-dual;(c.f.
section 3-1). Using (59',60') we may generate, following the procedure of
section 3°1, an infinity of vector supercurrents }.(satisfying th*“=:o),
in addition to the spinorial currents which may be deduced from those
displayed above, All these form a supermultiplet satisfying the conservation
lav s DJ4 o+ Dy 4%+ )T =0

To conclude, we recall that the constraint equations (5) only imply the
Yang-Mills equations for the maximally extended (N = 3,4) case. For this
case, therefore, the conservation laws we have displayed are analogous to
the conserved currents to be found in two dimensional completely integrable
supersymmetric models [75=79] , and we may expect them to be of relevance
for the quantum theory; particularly for the finiteness of the maximally
extended theory. However, the implications of the features displayed in this

chapter for the N =1 and N = 2 theories remain obscure.
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Chapter H: Gauge theories on a straight-line path,

We consider the non-integrable phase factor of gauge theories [iz]

on a line connecting points x and y in (complexified) euclidean spaces

Yoo = PRt gy Yy
X,M - e - N=>ed XXy TR s Xa LPX31X3 R Ryasfn Ky
. ACX) Cxl—x) A (xl) . (X Z’X')
Livma A ) TN
U o e — e Otw) - (1~

= o {00 A0y () (186G - - (118 Gx)fa)
with a view to studying its path depemdence (i.e. non-integrability),
We recall that for (anti-)self-dual fields, with the gauge connection
taking the form [18]

AL = voot vy , Vviv =1 | (2)
the path-ordered phase-factor has the manifestly path-independent
representation @6]

\”/x,*i = Vf(x) V(%) ) (3)

where the path between x and y is restricted to lie on a null-plane
in complexified space. This is just a consequence of the fact [ijj
wuat the seli=duaiity equations are jusi a statement of the vamisnhing
of the gauge curvature on anti-dual null planes in C*, The form (2) for
local gauge potentials is valid in the general case (i.e. it is not
specific to self-dual connections) (see [87] and references therein),
and we shall use it in what follows, Here v(x) is a complex Nxp matrix
satisfying viv = ﬁp ; and a right action on v by an element of the
gauge group corresponds to a local gauge transformation of (2). We
shall also use the manifestly gauge-invariant Nx N , rank p projection
operator P(x) = v v', which projects onto the N-dimensional subspace
of C"*? gpanned by the column vectors of v. P(x) = P(xyf.

We begin by considering (1) with y = x + 22 , where a is an infinitesi-
mally small distance. Then,

Ag) (aa)

V(x) q’x,x-y;m V(X+9~‘~)+ vix) € V(x +9A>T .

1}

We write A(x) = viv/ , v=v(x), v, = v(x2a) ,
2o

where the prime denotes differentiation along the line from x to x+2a.
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Then, performing a Taylor expansion about x , and expanding the exponential
in a power series in a , we obtain, to 0(a®) :

v ¥ o~ eg@v*v'(\ﬁ vavt’ ¢ a lvf”)
¢, %+2a Yaa = V = aa @

= v {1+ aaviv'+ 2ar vivivty!)(vTy 2Vt s 22" v17)
= P+2aPP’ + 2a*PP" =a*PpP’P

+ 2 + 4/ - 7\t
a* (ywt”"pP - Py V) (4)

where P ¥ P(x) = vvl, and P* =P implies P P’P = O.
We note that since (4) is hermitian, we have
vwt'e = pyryt . PT=p

Mlso, since v'P = v | we may, at will, multiply (4) on the right by
P,, = P(x+2a).
We now observe that

P& (QP(XT%) —I>P(X+aq) = P(aR —1)Faa

X P(af-i + QaP’ +a2P")( P +2aP’ +2a2P7)R,

P

|

> N/

) Vs , e N
’ ‘:L>I:O’O )(p o’ PR Ny Py

/ 0O . ~ Nn 3

! T tail T i oA T
PP+ dapp’+ 2a*PP7+ §a*> PP'P + a* PP7P) B .
PP +2aPP! +2a PP — a*PP"P)le

, 8ince P PP =0,

[¢

1

Comparing the latter relation with (4), we make the identification:
VIR ¥y, ypaa VI (x+22) = Plx) (2 P(x+a) =1) P(x +24) (5)
= — Pexy exp (i PCX+Q)> P(x+da) ,

Now, to order a® , we note several equivalent forms of the right-hand
side of (5) :

Pex)(2p(xta) 1) P(x+as) = P&x) (3 —4 P(xradPle) + PG p(x+;z<DP(X+Ja)
= (2 P(x)PCriaa) = %5 P(x) P(x+2a) P(x) PCHA«))

= P (1 + L [ P09, PCx+as)]) Plxvaa) |
which may be checked by explicitly expanding about x up to 0(a*).
We remark that the form of (5) is consistent with the representation

of the phase factor in terms of the projection operators P E)BJ g
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S L’[P, . PJdx=
Vi) Yy vityy =  P(x) € * J P(Y) (6)

since 1 [PCX), P1x)]
Py e Plx+2<)

pex) (1+ 2« [P0, P&)] + 24> (CPEO, P’oo])z') P(x +24)
= Pl (P + 24 PO Px) = s PI(x) F”(x))(P(x)+&aP'0<)+24"p®) B
= P (2P (x+a) = 1) P(x+2s) .

We note that in the self-=dual sector, when the path is restricted to

\?

lie on a null-plane, we have [86] :

P(x) PMYP() = P(x) p@) , for any x,y,z on the path.
Equation (5) therefore reduces to the known form (3) for the case of
self-dual fields. However, there do not seem to be any other (non-trivial)
situations in which the phase-factor takes the form

Wou = Ry o= (F(C)-,)x,—ao <F (CI)>_ao,»: (1)
where the two paths C , C' only necessarily coincide between x and y.
If such a factorizable F,,'\1 could be found, then the potential
4 = F'a ¢
v T 1

would clearly be pure=gauge since the phase factors along the two paths
C, C' from -00to x in (7) would have to cancel., We would then have an
integrable sector of the theory. In this context, it would be interesting
to consider the supersymmetric generalization of this formulation in
view of Witten's discussion [72] of the constraint equations of the
N = 3 theory in terms of integrability on lines,

We remark that in the general case, the full Yang-Mills equations
have been numerically shown to be non-integrable by Nikolaevski and
Shur [90] o They have considered a particular one dimensional reduction
of the SU(2) theory and have shown that the eguations of motion have
no integrals of motion apart from the hamiltonian.

We shall now show that the approximation for the phase factor given

by (5) yields the correct continuum action to O(a“) when inserted into

Wilson's formula [@8] o After this work was completed, we noticed that
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Frdohlich [89] had also attempted to write down a lattice action in temis
of these projection operators, However, the action he suggests docs
not have the correet continumm limit [91] )o Ve consider the trace of

the product of all the objects axound the elementary plaguettes

P(x,waa)v (as"(xm,wab)nl) P(x+2z Y+2h)

i T

(3e0448) ~1) 4  (P(x+ 2s, wrb) —1)

73
L¥3

BTN 3t —¢
Px,4) (QP(X-%A,H)—O P(x+3a,4)
Then, vriting
Fe adP | P, = a*%hoP , P, 2 bdyP,
Fas b*,0,P , Pa = ab d9,P ;(a=b),

and using the identities implied by P> =P ;

8o8o

PPA = P,L(I-P> ) a = 1,2,
PE P =0
PR, P = —2PR PP (no sum over a)

= —2PPR P,

PPIIA&P + APP, P”_A + 2 ppyplaz + ‘Qppnz P.:l +"2pp|12pl
== PP P, + PP,Py + PPy P,,) (8)
and also using hermmiticity and the cyclic property of the trace, which

yield for instance from (8), the relation

te (PP, + 4PRy, P +4 PR, P, =tr (4 PPy Py +2 PEIBL),

12y

it is staightfoxwaxrd, though tedious, to verify that
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Tr i Pex, ) (AP(x+a,4) "OP(”%,H)(QPU +da,4+b) = l) -
Plxraa,q+an)(2P(x+a, 1+ab) -l) P(x,4+ab) -

(2Pcxus) = 1) Play) |

=4r§ P(aPsar s e, =1)(P+af +ar,) -
'(&Pq—u,f’,%— 2P, + 4P+ Py, +4P, +0P, ""1‘312,1+‘QF)|12_;“'>°
-(P+gp'+;.P;+QP,,+&P;;+"“PIL+4'E|A*l*PlzL+LFP:1zL>‘
(2P + 4P, + 2P, LGP, +P e, £U P, FIR, 2Ry, ~1).
(P4 2P, +2 Py, ) (2P +2P, + Py “l)}; (P= Px,4))

when expanded to order a’b* s yields terms proportional to:

tr (2P, PP 0P -2 P, PPP P)
tr (PP AP P +PPPFRPP P PIP:PAP"ﬁPz%P,P>,

P[R,P] P[P P]P

-

i.e. the continuum action; ( since F,w V?[P#PP‘,]\I )o
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Chaptor 6 ; Geuge theories in dimensions greatexr than foux,

In this chapter we obtain equations for euclidean gauge theories
in higher dimensions vhich are analogues of the self-duality equations
in the semsc that they are lineax algebraic relations amongst the
components of the field strength tensor which put the pure gauge theory
on-shell (i.e. they imply the source-free YangMills equations as a
consequence of the Bianchi identity).

(1) Ve first recall some facts about the self-duality equations in
oxrder to obtain some clues as to their possible generalization. We
note that since the Levi-Civita temsor €mvpe 18 SO(4) invariant,
the self-duality relations have the maximal space-time symmetry. Now,
SO(4) is locally equivalent to SO(3)® S0(3) , and the antisymmetric
tensors in S0(4) (having 6 components) form a 3 ¢ §’ representation of
S0(3)®S0(3) ; the (anti-) self-dual tensoxrs transforming as a 3=vector
of one of the SO(3) groups. One may therefore consider three self=dual

G (a=1,2,3; = 1,.0.,4) which generate

MV
. ~a +ya a
one SO(3) and three anti-dual ones 7»w ( ‘7(*)‘” =3GMUfr 7&)”. )

generators of S0(4) 7

vhich generate the other SO(3), defined by [93] :

(— a
7 +) = + eh—af.«\) + EaIM Sv‘_'_ - Sa_‘; gpq- 5 (1)
MV

as tensors which map antisymmetric representations of SO(4) onto
vectors of one of its two invariant SO(3) subgroups. The tensors (1),
regarded as 4 x4 matrices realize the gquaternion algebra
"Za"z&’ = =0 1 + €. AN (2)
The definition (1) implies that the (anti) self-duality equations may
be written (2=
1 e F;N =0 . (3)

We note that 76)¢ foxm complete sets of real mutually anticommuting

antisymmetric matrices with square =1 . From (1) we have

7@)1 = L{d‘a®6', , — @0 1®°‘;§
o a . (4)
7 = ' { G &5, |, °:1®I ) -63®03'}
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whore the ¢ '8 are the Pauli matrices:

GT:(OI>,G‘;: 0 -t IG'"S:IO |
o +1 0 o -

atisfyi the algebra a6 = 5. =
savisiying g : o‘J 5LJ { eLJ'k q~k
One may therefore write a Dirac equations
Ha -
(EM b, + 7@)M D), =0 , &=h23, (5)

for a four-compoment spinor ¢, o
Now, as Belavin and Zakharov @.6} realized, the (anti) self-duelity

equations follow as integrability conditions for (5) if we seek solutions

¢ - {A’)@)(i’)wo,x) ,

where Y4(),x) is a matrix in the group space.

of the fomm

(i) Ve note that representations of gamma matrices satisfying
i T )D’\,} = -26,, » and having the above properties of reality
and antisymmetry, recur only for the eight-dimensional gamma matrices
of 50(7). (Apart from the trivial two dimensional case of i6, , when the
analogue of (3), @‘1) i g =0, is equivalent to the zero-curvature
condition F,!J-s 0 ). One set of seven real antisymmetric anticommuting
8 ¥ 8 matrices with the negative of the identity matrix as the squarxe

is given by :

A= 0B ic, @
XYooz gk g &9
P iqe T o9
2t - L6, o, ® T {)k))bz - a8k
s 6y ®is 00, ¥ - oo (6)
)(’ = I® 5, ®0

-4
+
i}

I® I®.is

We now observe that the analogue of (3), viz.

)& F. =0 (c‘,j:l)....,?)- (7)
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is a get of seven equations (for the seven unknown gauge potentials)
which imply the full eight dimensional Yang-lMills equations as a consequence
of the Bianchi identities, as may be checked directly by writing out

the seven equations (7) using the explicit representation (6):

Fo v Fau + Fe +F3¢g =0
Fia + F#; + F}s + Feg =0
Fm + By o+ Fgy 4 Fq = 0 (8)
ﬂe + Fig + F23 + F4? = 0
Fs + o v Fix * Ry =0
Fla + Fy + Fgy + R, =0
Flg + Ry + Py, + Fug =0

As these equations demonstrate, all eight indices appear on an equal
footing, since each index appears once in each equation and each of the
28 components of the curvature two-form F,, appears in only one of the
seven relations.

The above A matrices may be constructed out of the structure constants
of the octonions in the following fashion:

P = %

IRy

- g&\) 5/"\3 J(C€ (l)) . (9)
The totally antisymmetric C,..'s determine the algebra of the octonions

MV + 5&;4\ 5\)3

or Cayley numbers (see e.g. [94,100] ) :

€y = '6ab + Cawe e e
where e, are the imaginary octonions ( e =1 )o
For the explicit realization (6) we obtain

lzcll}:C = C =

14s 13¢ Cazs = Capy = C3yq=Cseq  (99)
(all others zero).
Eq.(9) yields the alternative form for these seven equations:

Fga, = é Cawe Foe (10)
(from (7)); a relation very similar to the four dimensional Fy, = 1é&,,.F..

We note that these equations (8) set seven of the 28 pieces of the

curvature to zero, leaving 21 pieces undetermined. In other words, the

field strengths belong to a 2l-dimensional representation of some subgroup
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H of S0(8), contained in the decomposition of the adjoint of SO(8) under
the breaking to the subgroup H. It is already clear that these equations
do not possess the full 50(8) symmetry of the space-time; and that the only
thing which allows the self-duality equations to preserve the full S0(4)
symmetry is the fact that SO(4) is not simple. (All other SO(d) groups
are simple). The subgroup of relevance for the seven equations heore is
clearly either Spin(7) (the covering group of S0(7), [98] ) or so(7),

whose isomorphic lie algebras are generated by the 21 bilinear combina=
tions of the A 's :

)o.b _5[')«,)«,] ‘

These, together with the seven )*'s (the basis elements of the Clifford

n

algebra C;), form the Lie algebra of SO0(8); i.e. {2“) [',')"‘,,)5]} is a
complete set of 8x 8 antisymmetric matrices [95997] , and decomposing
any antisymmetric 8x 8 matrix A,, in the form :
Afw = ba A::\) + 'ﬁ Car ):i
clearly yields the decomposition, 28 = 7 + 21 , of the adjoint represent-
ation of SO(8) under its breaking to S0(7).
In order to understand the equations (7,8,10) we now go over to a

manifestly eight (spatial) dimensional notation, We consider the gamme

matrices acting on SO(8) spinors given in a chiral representation by

. [0 L), oy ﬁ%ﬁ a7
13 0 ":AQ 0

3" R R A are eight 16x 16 matrices satisfying {D;“‘o’\,} = by,
Noting that
a
- 0]
qu = I}) 30 = 18 J
0 m* 0 ~ls

and that ™ f_l:[ﬂh. ?5"] has components

it

N R R ¥ - -1 [a%a0] 0
0 Au J o g{i[)Q,AbJ )

we see that é(l(ﬁ)ﬁ) projects the top left (bottom right)-hand block of
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S0(8) generators ; i.c. the left and right-handed spinors transform
independently, and togethexr with the vector representation foxm the
three 8 dinensional representations of SO(8), The two cight dimensional
blocks in ¥ abeve (cach the negative of the other) are just the
two inequivalent irreducible faithful representations of the gemma
matrices of SO(7) (denoted by 1 here) which provide two inequivalent
embeddings of Spin(7) into SO(8) : corresponding to the little groups
of congtant left or right handed spinors.
Now we consider a Dirac equation in amalogy to (5):
Inp = (5ij Dy + )?J. Da_)-njd) - o » (TTa constant spinor) (11)
Then,
bbrrcb = (Dl + L [A?)*J ng + 3 [Aa\lAb] Cqb>1T¢ =0,

which is satisfied if

)MU P/u\) = (ATJ CQ? * [AA;)!)]!:J pa._b) =0 , = 2,58 (12)

[
]
a set of 28 equations, which clearly implies that F,, = 0 .

Indeed, (11) itself implies that b.d -0 , since
T\ Y

implies, by the antisymmetry of )* that

Qa

T b
T'i, f\l) AJk -nk bb¢ = 0O
which, by the antisymmetry of )*° , directly yields Dd =0

J

However, we may note that the B8x8 antisymmetric matrix @M\)g in
(12) is & matrix with each row, and each column, providing a representation
of the A's., In other words, if we fix j , by writing

()Mu)gj ,,Zj - (M N?L . ('Z’ a constant 8-spinor) (13)
then the ( M™). in addition to the ()-U- )* form complete bases of the
Clifford algebra C,; . The dual role of the two eight dimensional spaces
is clear here; and is a consequence of the famous triality amongst the
three eight dimensional representations of S0(8) [101] .

In terms of the S0(8) gamma matrices, we clearly have

R T T 2 W S IO

(14)
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vhere 9, is a constant left-handed unit spinor of so(8), 97 =1
(We use the fact that the spinors, just like the ¥ 's, may be chosen
to be real for SO(8) ). Now, since these seven 8x 8 matrices (14) fomm
an alternative representation of the )*'s, we may use them in place of
the )*'s in (7), obtaining
MmNV
"y P =0 (15)
an equivalent way of writing those seven equations,
Eq.(15) has seven components since the component in the direction of 73
T AN . . :
i v i FM\, , clearly vanishes identically because of the
antisymmetry of Y,% s which mplles that 7:4 Ae '7 0

Now, (15) implies that

0= U0 o ¥au 7a F

AB ’?B /MmN

(77 w27, + (576 5"6) F

(4

ioeo 4 ,77 zpo‘,uuﬁz E«u - chr ) (16)
where
¥ gyl (17)
is given by,
g iobe (A“A"’A° o\ oyt [t e
0 SN0 o AWANN

where a;b;c,d are all different, and take values l,cccc0o0ey? 3

and since _—

o emvp® _ MVPT<AYE |, xpTE q \, pmVp T
¥ e Y = ¥y ,

i.e, the left-and right-handed pieces in (17) are dual to each other,

we may equally consider a right-handed spinor 7% R 27 ° b"'?v in the

above equations (14<16), Equation (16) is in fact equivalent to (14),

which we may prove by showing that it in turn implies (_l4)° We use the

completeness relation for the 28 antisymmetric matrices @’M‘QAE, [95_) H
U:; Ioo = 8 (5Ac Sao = Sab Bac)

which yields the identity

ab

2::757;-Acn = 3(707:"&b>

(18)
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Eq.(16) may be written
T my 6 ~
('ylcl ‘Kce \Q’EFD s ~ [6\’?5»(-5 Pgur)) FF‘T = 2 FM“

. T MV O =
i.eo e UCE Yen 7 i:f" =0
Multiplying on the left by 3¥g, %, o we obtain

MV T o MY P _

BCCT 7q ch ¥oe b/en 1o Ff’ﬁ' =0,
.1 3 q _ -
vhich yields yf¢ 7o F?f - 0 on using (18),
Therefore

FAN :é 7: XMVFT?L rff & k4 71. FF“‘ o . (19)

1

We therefore have the completely antisymmetric object

tvrf = 7 XM(T’Z ’ (20)
vhich mimics the four-dimensional duality operator in the sense that it
maps the space of two-forms to itself. It is clear that since 7 in (20)
may be chosen to be either left-= or right-handed, corresponding to the
self or anti-self-=dual part of T i.e. i (1;vfr b v’f;g(f) » T trans-
forms as one of the two 35 dimensional antisymmetric tensor representations
of 50(8). Under a breaking to Spin(7), ome of the 35's is reduced to
1+ 27+ 1 , clearly allowing a Spin(7)-invariant temsor T , since the
decomposition contains a singlet; confirming that Spin(7) is the stability
group of our equations. We observe that the form (20) explicitly demonstrates
that the 35 is the one contained in 8. ®8, =1+ 28 + 35 , where the
35 ie the symmetric, traceless part of the tensor product, and s denotes
a spinor representation. Under Spin(7) one of the spinor 8°'s of SO(8)
decomposes into 8, = 1 + ] , yielding a decomposition of the corres-
ponding 35 with a singlet; whereas under SO(7) both the 8 dimensional
spinor representations of SO(8) remain irreducible, (only the vector
8=1+1)

Thus far we have identified the components of F,, in the 21 dimensional
orbit into which the 28 of SO(8) splits under the action of Spin(7). We
identify the orthogonal 7 components of F., by noting that (19) may be
generalized thuss

Af = 2T F (21)

mupe T )
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(vhere 2= 1 for the seven equations .abovca)D since for all possible
eigenvalues of T , the antisymmetry of T means that the Yang-Mills
equations are satisfied as a consequence of the Bianchi identities in
a non-trivial fashion. (For ) not an eigenvalue of T, the relation (21)
trivializes the theory, i.e. F,, = 0 ),

We nov note that

('7T UM"I"T,Z ) (77 Kfr"‘(é’,,z)

(47 vty -5 ““‘ua"'ﬁ‘g"@( 7YYy - (57 8"’*5”“))
g 9T 75“(42'7T_ 1) - <P v+ 14-'7TJMJ°( 7+;2(6MJVF—5W6”'3),, using (18);
- L 077‘ wb\\) B«e(ﬁ ,7 + 2 (5/‘*“6 Wg_ 5\)"(6?"‘[3> ,8ince 77’)’”07 =0 3

= —4‘77‘6’“””‘97 - é(é"d6}"|3__5/‘“°‘5\ﬂ3> )

Therefore,

1T

EN Mmype

)

fl

Trowp *+ 2 Toveg = 3(6uubie = Suplon) =0,  (22)
and the other value of J which yields non-trivial relations among the
F., 's may be deduced to be <=3 , since writing (16) as G-)1)F = o,
where 1 denotes (887 = §*76'F), we obtain
0= (éTl—AT)-F = ((—2—A)T+ SIL)-F , using (22);
= (Fa-Na+3)UF
which yields A=1, =3 ,

Using the octonion structure constants given above, T may be written

T,vwfs‘ = Z C-MUFO"R@'G'S (23)
(xpYé&)
where the (<xA¥8 ) runs over the set
§ 1ase 1256, 1278, 1357, 138¢, 1676, 143§, (o0
S¢38, 3w38, duSe, Awed, 2435, 23%95, 233¢ |
vhich is clearly the self-dual part of
TMUf@ = Jl; Epups<prE Vg Ce(fgr j (25)

Viz o (t,o,. .. ...,0), xp¥ = 2,8

The duality properties of T now imply that if we pick out a preferred

direction, say pm= 8, we may write Tsvpcr = Cope
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clearly yielding the previously obtained foxm (10); and also a remarkable
representation for the octonion stucture constants:

Cope = '7—"3,\;?6‘ 7
Inserting A= =3 in (21) ve obtain the equality of each term in each
rouw of eq.(8); i.e. 21 equations of the form
Fla = Fay = FSG = Fqg etco, (26)
wvhich transform as the 7 of Spin(7).
We note that the Spin(7) invariant 4-form (23) has also recently been
discussed in the mathematical literature [99] .
We have now clearly identified the essential features which allow
one to write down non=trivial algebraic relations of the generic form
3 T,vwr« Foe =2 Fas ) (27)
which clearly imply, via the Bianchi identities, that the Yang-Mills
equations are satisfied. For d = 4 , T is essentially unique :

T z €

Mv(@"

mope o which has eigenvalues %1 ; yielding the usual
(anti) self-duality equations. For other values of 1 , it is obvious
that va =0 ., For any d>4 , a8 we have already emphasized, T cannot
be invariant under SO(d), since the only invariant totally antisymmetric
object is the d-dimensional duality operator, However, as we have seen,
T will be invariant under some subgroup H:of SO(d). It is this which
gives us a handle with which to attempt to classify interesting relations
of the form (27). Except for the already discussed (and exceptional)
eight dimensional case, T belongs to an irreducible representation of
S0(d) of dimension (ﬁ)g since the set of all 4=forms in d-dimensional
space is a vector space of this dimensionality. We need to investigate
the breaking of the (g) representation into representations of H, If
the decomposition does not contain a singlet, it is cleaxr that an H-
inveriant set of equations of the form (27) does not exist. (Apart

from the trivial G-invariant equations : F., = 0). On the other hand,

if the decomposition contains a singlet, it is clear that we may

construct an H-invariant T and find its eigenvalues A . Then, according




69,
to (27), given & non-trivial ) , the pieces of the field strength
corresponding to the other }'s vanish. As a result, the adjoint
representation of S0(d) according to which F,, transforms splits into
orbits under tho action of H ; the curvatures in each orbit coxresponding
to the same eigenvalue, To illustrate this,we proceed to give fuxther
examplos of H-invariant sets of equations. We shall consider all maximal
subgroups H for dimensions 5 to 8 ;, and we shall construct invariant T's
in those cases where this is possible, A list of maximal subgroups of
SO0(d) and the decompositions under them of the relevant representations
of s0(d) [96] is given in the appendix.

(iiib) In five dimensions, H is clearly the S0(4) leaving a constant vector,
n, say, invariant; and if n, is a unit vector,

TMupr = e’;.wfuwz n, (28)

with )= F1 . This case just yields the usual self-duality equations
in the 4-dimensional subspace orthogonal to n , together with n, FE., =0,
These equations, rotated to Minkowski S-space, for particular choices of
n , yield the Bogomolny equations for a uniformly moving set of monopoles,
or the equations for the Julia-Zee dyon.

Analogously with (28), for any dimension d, we may clearly have an
H=invariant T which yields the self-duality equations in some four
dimensional subspace which is projected out of the d-=dimensional
Buclidean space by an orthonormal set of (d-4) unit vectors, along
each of which the curvature vanishes, and with H = S0(4)® s0(d=4).

For instance, ford = 6 ,
T;va = euvff“P

is clearly SO(4) ®S0(2) invariant, yielding with )= %1 , the (anti)

M Ny , Mmyn orthonormal; (29)

self=duality equations in the 4-space orthogonal tom and n , together

with

H»FM\, = O = m, F

Similarly, for d = T ,

Tuurq~ z éﬂwrﬁ“"(ﬁ& Mo Mgl » myn,k orthonormal; (30)
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is an obvious S0(4)® S0(3)-invariant, and the analogous SO(4)® S0(4)-
invariant object for d = 8 may clearly be writtem

waf‘f” = % é;vwrc‘lzsu + (‘)’ éMufﬂ”Sé?-g (31)
(choosing an obvious complete orthonormal set of vectors), with ) mhecsfy
reducing to self- and anti-gelf-duality in the appropriate variables,

The case with «=+1 , P= <1 1is precisely the one considered by
Witten [72] in his discussion of the full Yang-Mills equations. We may
remark that since all cases of the type (28-30), for arbitrary dimension,
are just (anti) self-duality relations in the four dimensional subspaces
orthogonal to the orthonormal set of (d=4) vectors, and zero curvatures
elsevhere, all these cases are clearly integrable; and the linear
systems are just staightforward generalizations of the four dimensional
case., The case (31) is also clearly integrable, since it corresponds
to a direct product of two sets of (anti) self-duality relations., The
integrability of Witten's case («¢= 1, P= <1 ) has been discussed by
Forgacs et al [iOé] o Since all these cases (28-31) are effectively
four dimensional, they are not very interesting. More interesting and
nontrivial are the cases displaying an octonionic structure, which
for d<8 may be obtained by dimensional reduction from the eight-
dimensional equations. We shall see that such cases exhaust all further
relations invariant under maximal subgroups of S0(d).
(iiic) First we consider the 4@ = 7 case, where apart from the already-
discussed SO0(4)® SO(3) case, G, is the only other maximal subgroup
under which T ( a 35 of SO(7) ) contains a singlet (see appendix),
From (10), deleting the index 8, we see that
Cove Foe = O o 80 = Looosaap 3 (32)
are manifestly G,-invariant equations, since G, is the automorphism

group of the octonions., We clearly have the G, invariant :

T;vwfc' = ‘é‘- e,;,w(ern(pa’ C«@S y (53)

with )= 1, =3 as before, as may now be deduced from the identity [100]

Cawe Ccde Cepa = 3 Cugp (34)
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as a consequence of the further identities:
(35)
(36)

]
and
Cq@v = 't! eq(ﬁvgﬁw\’f C‘E'P\e C'\’PG )
which correspond to (22). Equation (27) with T given by (33) is clearly
equivalent to (32) since

F, = 4

My 3 3‘-, C-vaq‘ LY) Cu@s 2

fﬁ“
may be written

0 = (5'“‘,6\,0- '6;&0'8\;‘9 - 3“._ e,wp«-quo’ Cﬂ((SS) U:pr

= = Cuuy Cpev Fro s by (35);
which implies, by (36), that
Coow Fos =0
As before, the relations orthogonal to (32), of which there are 14 here,
may be obtained by insisting on the equality of the three terms in each
of the seven components of (,, . Fu. o
We now return to d = 6 , where apart from the above considered

S0(4)® s0(2), the only maximal subgroup leaving T invariant ie STU(3)@U(2}/2.,
under which the adjoint of S0(6) (according to which both T and F
transform in 6 dimensions)D has the decomposition:

15=(3,+3,) +1,+8, (37)
where in a, , a is the SU(3) dimension, and b the U(1) quantum number.
(We use the notation of [96] ). Noting that the SU(3) subgroup can be
imbedded in G,; and that it is in fact the subgroup of G, which leaves
any one of the imaginary basis elements of the octonions invariant [94]
(ice. it is the automorphism group of the multiplication rules among
six of the seven imaginary octonion units), we may make the identification

Tavpe = & Covprup Cxpt 5 B = 1,0 .. 6. (38)

We note that since we are considering the SU(3) here as a subgroup of
. G4 , which contains only real representations, the pair (32 + 3.)in (37)

need to be considered together for our purposes, as a real six dimensional

representation. From the explicit representation for the octonion
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structure constants displayed above (9'), we see that (38) has the
alternative representation

Tuvpe = Euupa(u + 27 4 ¢8) (39)

vhere we introduce ccomplex variables

V= X+ ix, , 2 = X4+ ix%, , t = x4+ ix, and their complex
conjugates (¥,3,%), in terms of which the euclidean metric is
dy dF + dz dZ + dt dt . (We use the convention €yz,zez = | )o
Now, the octet in (37), corresponding to a set of seven equations, may
be obtained by trivial dimensional reduction from (32) (just by deleting
terms with the index 7). This set, as before, corresponds to =1 o
We now note that because of the decomposition (37), the orthogonal
pieces of the curvature no longer live in the same orbit ; a degeneracy
in the eigenvalue equation has been split by the dimensional reduction.
The 21 equations (26) in eight dimensions would yield 8 equations if
the indices 7 & 8 were deleted, whereas the decomposition (37) means that
we have sets of 14 and 9 equations corresponding to the singlet and (3+3)
pieces respectively. Indeed, it is easy to check that the eight equations
obtained by dimensional reduction of (26) do not even satisfy the
six dimensional Yang-Mills equations., (This situation, of on-shell
constrainté dimensionally reducing to off-=ghell relations, is familiar
in supersymmetric gauge theories), Corresponding to the 1l and 3 + z 0

T has eigenvalues =2 and =1 respectively, and the corresponding relations

are :
1: F. = F,~ = F _
1 22 e } 14 equations (40)
all other (twelve) curvatures zero
2d Fug=Faz = Fg = ©

.j 9 equations (41)

(iiid) We now return to d = 8 , where SO(8) has four maximal subgroups
leaving Ty invariant. They are S0(4)® s0(4) and Spin(7), which

we have already considereds and (SU(4)® U(1))/2Z, and (Sp(4)® SU(2))/z, ,
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vhich we nov discuss, We first consider the SU(4)® U(1)/Z, invariant

case., The decomposition of the relevant representations of SO(8) are :

?.‘.8; = l‘o + %_5,0 + (éa + ,6.-3) (42)
35(self-qual) = 1, + (L,+ 1,) + (6,+ 6.,) + 20,
35(anti=dual) = 15, + (10, + 10.,)

in the notation of (37).

We now note the similar form of the decomposition of the adjoints in
the two cases (42) and (37) , and analogously to the explicitly
SU(3)@U(1)/2y-invariant (39), we may, introducing a fourth complex
variable w = x,4 ixg, write down the SU(4)® U(1)/Z,-invariant; the

singlet piece of the self-dual 35 3

T';“’PV = eﬁ*“?“‘(ﬂ‘?%‘i +UTEE + 4G Wl + 2TEE + 2w + tEwi)
= 5 e (43)
«GrEy MUPTRRYE
where («®¥é ) runs over the set:
{1234, 1256, 1278, 3456, 3478, 56781
which is clearly self=dual.
In a more covariant notation, (43) may be expressed in terms of the
octonion structure constants:
- 1 /
Tope = Cavpe apvs Cxpx Vo Clyge Ug (44)

vhere v ,u are constant orthonormal vectors, and the indices on Cugic o

cI

sse Span different 7 dimensional subspaces, e.g. taking the non-zero

components of c.p. to be those given in (9'), we may choose
oje =1 for  YSe =782, 763, 154, 853, 846, 342, 562,  (45)
Then, an appropriate choice of the vectors u and v , viz.,

1 for E= 2

Ve =1l for k=17 9 u,

0 otherwise 0 otherwise

7
fl

yields the previous form (43).
Further, we may recall that the self-dual 35 is the symmetric,traceless

part of 8®8 (see appendix), and since the SO(8) spinor decomposes into
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an SU(4) vector under the breaking to SU(4)® U(1)/Z¢ , vizo,
8 = L+ 1l,+ 6o,
we may choose the spinor in (20) to be :

7@ = Eqe = ém('> ) vhere a

lpooooooosg
190000096;
758,

l A
i

nnoao

and vhere €, is a constant 6-vector. Choosing this to be of the form

€a= (1,0500000,0), and inserting in (20) (using the representation of
gamma matrices used there), we again obtain (43). The eigenvalues of

(43) are X = =3, 1, =1 corresponding, respectively, to the 1, 15 and

12 pieces of the 28 . (Note that since T is traceless, 1(=3)+15(1)+12(-1)
= 0 ). For these eigenvalues, (21) reduces to

{Fw = Faz = Fp = Fum
the other 24 curvatures vanish,

[

27 equationg :

15 ¢ 13 equations :

gjgwq + F%é + FkE + ﬂ}JQ = 0
€

ab = ‘:ag -0 3 a,b —“":2,&,\‘\)-

12 : 16 equations ah, =0 ; &,

b o=, 2,t,W.
We finally turn to the Sp(4)®SU(2)/Z, case 103 , where the decom-

positions of the relevant SO(8) representations are. [104] 3
35(self-dual) = (14, 1) + (5 3) + (L 3) + (1, 1)
35(anti=dual) = (10, 3) + (5, 1)

(20, 1) + (3 3) + (L 3)

(%, 1) + 1, 3

Noting that Sp(4)<CSU(4), we may obtain the invariant T by generalizing

28

il

8

the U(1) inveriance of (44) (corresponding to rotations in the (v,u)
subspace) to an SU(2), and projecting out the Sp(4)@su(2)/2, -invariant
object by using another constant vector v . We consider

Wr €mvpraprs Amup (46)

with the three=form

-

Apvp = % Guavpabede Cucg Cueg €agq

where the indices on éa@ﬁ span a fixed 3-dimensional subspace.
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The invariant T is the self-dual paxrt of (46). Choosing Cipey and q&a
as above (9°,45), €gg = €32 =1 o, amd w = (190500000,0),
ve obtains

T

KXLBYTE = (Wo' épw((rec(-s?fb’ A

pvp W[« Aﬁmﬂ)
_ 2; (47)

T e T
where (jvpr) runs over the set :

f12659 1287, 1243, 1674, 1537, 3487, 3465, 5687, 5238, 4268}

This has eigenvalues A =1, =3, 5 corresponding to the decomposition
of the adjoint into its 15, 10 and 3 dimensional pieces respectively,
and yielding sets of 13, 18 and 25 equations amongst the 28 components
of F f105] .

(iv){ We conclude with some comments concerning the integrability of the
original, and most interesting, set of 7 equations in 8 dimensions (8).
We consider [106] the pair of quaternionic vector fields:

V= Y3, b 1Dy +)% +k 3 + Y (Y20 -1 -jd% ~k %)

Vo = YR, i3 -id —kd +Y [T Tor -1 nidg -k %)
where i,j,k are the imaginary units of the quaternions and Y is a
complex parameter,

Then, the curvature 2-form evaluated on these vectors is given by

F(V.,"z) = 7 (qu + Pz + Fug + Feg)

_TLEL(’:H% -Fog)+ (Fyw + Fé%f)* k(F‘lL- QFEQ)]

+ L(Fqg -F\«H:) + ) ('qu + F&t) + k (F%’ = Féw)
The coefficients of Y,i;Jj.k, Yi, T4, I’k are just the seven curvatures
set to zero in (8). One may therefore think of v, and v, as vectors
spanning a quaternionic plane on which the curvature vanishes.

Eguivalently, defining
v,d’ = (DXL\"’Z_"T + Dé"j; +J DW—'TW + k Dé'?@) ¢
V3‘¢ = (D‘f""*jqq -t D?:-ﬂ-}? -J ‘Dw-ﬁlﬁ -k Dt+§(€)¢

(¢ a quaternionic matrix)
the seven equations result from the vanishing of

(7, A V13 ¢

vhere A denotes noncommutative antisymmetrized outer multiplication,
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We may also observe that defining two complex gquatermionic one-foxrms:
dv, = (Ydu-Y"dT) + ¢(da-Ya3)+) (4w -YaAR) + k(dt-TdE)
clv, (V2o +37d7) = i (d2+Yaz) —J (dw+YdD) —k (de+TdE)

the coefficients of Tgipjgko‘jxipjok) in dv, A dv, are precisely

"

1

a basis for T-dual 2-forms (i.e. 2-forms satisfying F,, = % prrrF}f);
and one may think of dyadv, as a T=dual 2=form with values in the
Lie algebra of the complexified group of all quaternions. Thus, any
connection form with curvature F ~ dvadv, will automatically be a
solution to the 7 equations (8) for this gauge group. This is to be
compared with the BPST [19) case, where

Az Ta —X8%_ % = 24 it judekat

I 4 [el? g /
yields

F o= (14 1?)  dxads |
where the coefficients of i,jysk in dxAdX provide a basis for self-
dual 2=forms, thus giving an SU(2) instanton. However, for the present
case, it is not clear how one is to integrate dv, A dv, o

We now note that if we dimensionally reduce from 8 to 4 dimensions
by deleting the 5,6,7,8-subscripted terms, the seven equations (8)
yield just anti-self duality. This was to be expected, however the
construction for the 4-form T (20)9 remarkably, reduces to
(since Y “VPT - y%¢4vPT ), Since the (anti) self-duality equations
are embedded in these 7 equations, it is clear that we may find
integrability conditions for a sector of the theory described by
these equations as long as sufficiently many additional constraints
are imposed on the curvatures so as to effectively reduce the theory
to four dimensions. We explicitly demonstrate this for the seven equations

in six dimensions obtained by deleting terms with indices 7,8 in (8);

i.e. the case corresponding to (38,39) :
Fug + Fog + Fax =0 (45)
4
We impose the extra constraints:

Vg Fak =0 a,b =X,M2 (46)
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where v is a constant vector. Them, on using (46), it is easy to show
that equations (45) are implied by the integrability comditions for
the linear gystem 3

Vb = (D -2Ve Dy + AvgDg)d =o
\ZXC (DV+AV§D§ _)Vsz—yéaO
Vid (b%*‘AVqDy "AV;'(‘DqBCi) o

which is comparable to the linear system of section 3.3 ., Indeed, v here

AL
1

1K

N
I

may be taken to be a space-time dependent complex Killing=vector field,
in which case, the effective four-dimensional space would be curved.
The latter remark also applies to the oxrthonormal unit vectors of

section (iiib) above. Indeed, if for instance, the vector n. in (28)
is taken to be the radial vector =x,./Jx* , we obtain the self-duality
equations on S% ; alternatively, if we choose n. = (x;/Jx*, 0, 0),

M= LlooooocopD » i=1,2,3 » the corresponding equations are
easily seen to be self-dualiily relations over the four dimensional
space R*x s* , This suggests the existence of non-trivial generalizations
of the equations we have discussed in this chapter, corresponding to

space=time dependent T,wrr"so




Appendix

i) Properties of SO(n) representationso(§6] o
2. Tensor productis.

50(8):

813(8;'

i

1 & 28n+ 35': . L= V,S)CS iq:MHS:IMMC,

)

8,x 8; 8 + 56, , (4ik eyelic)

V)

35%28 = 28 + 35 + 350 + 56T,

S0(7)s

8x8 = 1 + Ta+ 21 + 35

3Hx2l = T + 21 + 35 + 105 <+ 189 <+ 378
50(6):

4x4 = 6 + 10

4xF = 1 + 15

6X6 = 1 + 15 + 20

b. Branching rules to representations of all maximal subgroups.

50(8) 2 Spin(7) 50(8) 2 S0(7)
8y= 8 8,= 1 + 1T
8y = 1 + 7 8y = 8
8, = 8 Bo= 8
28 = T + 21 28 = 7 + 21
3= 1 + T + 27 35, = 35 , iS¢,
35, = 35

(For SO(8) representations, the v,s & c indexing the 8's denote
vector,spinor and second spinor; s & ¢ indexing the 35's denote
self-dual and anti-self-dual 4-forms; the third 35 : 35, is a
symmetric traceless two-tensor.)

50(8)2 SU(3)/Z.

8;_:8 jt:VJC,S_

28 = 8 + 10 + 10

35

It
N
W

78,



50(8) 2 SU(4)® U(1)/Zs
8y = 4, + 4
8= 1, + 1.+ 6,
8 = 4,+ &
28 = 1, + 6, + 6,4+ 15,
35 = 1, + L.+ 6, + 6,4+ 20, + 1,

35 = 15 + 10, + 10,

S0(8)> 50(6)® s0(2)

8y

1, + 1,+ 6

8g = 4, + I—I

28 = 1, + 65+ 6.+ 15,

35 = 15 + 10, + 10,
S0(8) > Sp(4) ®SU(2) /2

8y = (4, 2)

8 = (5, 1) + (1, 3)

8 = (4, 2)

28 = (1, 3) + (10, 1) + (5, 3)
35 = (14, 1) + (5 3) + (1, 5) + (1, 1)
3% = (10, 3) + (5, 1)

S0(8) 2 50(5)® 50(3)

8y = (5 1) + (1, 3)

8{_ (4\7 2) $ ':=SIC'

]

28 = (1, 3) + (10, 1) <+ (5, 3)
35, = (10, 3) + (5, 1) , ¢=s,¢.
s0(8) > 50(4)® so(4)

8y= (2, 2;1,1) + (1, 1; 2, 2)
8. = (1, 251, 2) + (2, 15 2, 1)

8. = (1,23 2,1) + (2,151, 2)

28 = (1, 1; 1,3 ) + (1,15 31) + (1,35;21,1) + (

+
35 = (1,151,1) + (2,252,2) + (3,133,1) + (1,3:1,3)
35 = (1,131,1) + (2,2;2,2) + (3,1;1,3) =+

(1933391)

79.
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50(7) 2 50(6) | 50(7)2 50(5) @ 50(2)

T =1+ 6 T = 1L+ 15+ 5,

8 = 4 + 4 8 = 4,+ 4,

21 = 6 + 15 2 = 1,4+ 5, + 5+ 10,

3% = 15 + 4+ 6 4 6 4+ 4 35 = 10, + 10,+ 10, + 5,
SO(7)2 Ga

7 = 1

8 = 1 + 1

21 = 7 <+ 14

3 = 1 + 27 + 1
S0(7) 2 50(4)® S0(3)

7 = (1,133) + (2,251)

8 = (1,2;2) + (2,1;2)

21 = (1,133) + (3,331) + (3,151) + (2,2;53)

35 = (1,131) + (1,3353) + (3,153) + (2,253) + (2,251)
S0(6)>SU(3)® U(1)/23 S0(6) > S0(4)®s0(2)

4 = 1, + 3, 4 = (2,1) + (1,2)

6 = 3 + 3, 6 = (1,1), + (1,1), + (2,2),
15 = 1, + 3+ 3.+ 8 15 = (1,1) + (3,1),+ (1,3) + (2,2),

+ (2,2),

50(6) > sp(4) 50(6)> s0(4),

4 = 4 4 = (2,2)

6 =1 + 5 6 = (1,3) + (3,1)

15 = 5 + 10 15 = (1,3) + (3,1) + (3,3)
S0(5) >50(4) s0(5) >80

4 = (2,1) + (1,2) 4 = 4

5 = (1,1) + (2,2) 5 = 5

S0(5)2 s0(3) @850(2)

4
5

il

2|+ 2_|

1, + 1-=1+ e



ii) Some useful properties of the octonions. [1:003
The real octonion algebra is an 8-dimensional division algebra whose
elements may be decomposed:
?
o g Rl Z A o
a=!
where a, and a, are real numbers, e, is the identity element and

e

o, @re the seven imaginary units obeying the multiplication rule

€oy = —0,, =+ Cowe €c

wvhere c,,, is totally antisymmetric with nonvanishing components given
by eogo (699!)0

The associator ( 0,,0,, 03) of any three octonionss

is fully antisymmetric, i.e.

(01;02103) = (05/0: /Ol) - _(02/0"03>}

and this implies, e.g. from (e,-_pejgej) =0 (sum over j), that

C(.rs ers = 6 XLJ
It also implies the Moufang identity:

(60,0,)(0,0) = 0,(0,0,)0

vhich implies

s

CrisCsje Cexr = 3 Cyjic
The associator of any three imaginary units yields:

_ e ez
(e‘: )] e’J ) ek) = 2 Cgijk\" e’r = 2 C [EJ' C‘lg r er
where the 4-form ng-kr is given by

:
.. = — €. —
(p‘J"" 31 Tijkrtmn Comn = (5jn< bi ~ Ok &r) + Cijs Cirs

The latter relation implies:

Cvwe = -L e = -1
i‘)k ] GLJkeMM.r wew\.wr 4! él:jke,w\ur C{ms Cﬁrs
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