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Abstract 

We consider completely integrable classical field theory 

models tnth a vie~ to identifying the properties tlhich 

characterize their integrabili tyo In part:!.cular0 we study 

the infinite sets of 0hidden° symmetries 9 and the corresponding 

transformations carrying representations of infinite dimensional 

loop algebraap of the following models: the chiral=field 

equations in t't'!O dimensions 9 the self=dual sector of pure 

gauge theories in 4 dimensions 0 the functional (loop=space) 

formulation of 3=dimensional gauge theoriesp and some sectors 

of the extended supersymmetric gauge theorieso We also 

construct an infinite number of conserved spinor currents for 

the latter theorieso The (non=) integrability of the full 

four dimensional Yang=Mills equations is studied; and a 

local approximation for the non=integrable phase factor of 

gauge theories on an arbitrar.yp infinitesimally small 0 straight= 

line path is presentedo Finally 0 we study classical gauge theories 

in dimensions greater than fourjj and obtainp in analogy to 

the self=duality equations 0 algebraic equations for the field= 

strength which automatically imply the higher dimensional 

Yang=Mills equations as a consequence of the Bianchi identitieso 

The most interesting sets of equations found are those in 

eight dimensions which have a structure related to the algebra 

of the octonionso 



"If thought discovered in the shimmering mirrors 

of phenomena eternal relations capable of summing 

them up and summing themsel vas up in a single 

principla 0 then ~ould be seen an intellectual 

joy of ~ch the myth of the blessed ~ould be 

but a ridiculous imitationo~ 

= Albert Camusp 0The J.Vlyth of Sisyphus 0 o 
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Chapter l~ Introductiono 

Non=abeli&n gauge theories [1] have yielded the most promising 

description of the empirically observed properties of elementary particleso 

The \1eak and electromagnetic interactions 9 particularly in vie\1 of the 

recent (tentative) discovery of thew± and Z0 particles 9 receive a natural 

explanation if one assumes that they are descibed by a gauge=invariant 

theoryo There also exists much motivation for the current interest in 

QCD as the theory underlying the strong interactions [2] o Ho~ever 9 non= 

abelian gauge theories have not hitherto yielded themselves to an 

acceptable quantization schemeo Particularly for the strong=coupling 

limit of QCDv this has resulted in the impossibility of making quantitative 

predictions of the theory ~hich could be compared ~ith experimento Even 

the observed confinement of colour has not been established as a mathematical 

property of the QCD lagrangiano This intractability of the theory reflects 

itself in the hiatus bet~een what we fancy we kno~ and understand (theo= 

retically) about particle interactions and ~hat we actually do kno~ (ex= 

perimentally)o Clearlyv if this gulf which separates us from an understand= 

ing of elementary particle interactions is to be bridgedv reliable methods 

of quantizing the theory need to be developedo 

Pure non=abelian gauge theory is described by the Yang=Mills action 

9 where the integral is over (Minkowski) 

spacetime 9 g is the coupling constant of the Yang=Mills field 9 and 
c... ~~, a. ttlo 1\ f. A. c.. foe 

f"'" n ~PA" - ~vtc\1" ~ 5 ~~"~"" ~"~,. 11 are components of the Lie algebra= 

valued curvature ~~ a t='"":Tc... :;:: (i:>Jo, Dv] 9 ~here the gauge=covariant 

derivative X>,..= d"" ~5 ~T(\. 9 and T ... are the generators of the Lie algebra 

~ith structure constants f~~ o The equations of motion for the potential Ar 
derived from this actionp i)l\" rp'tl ~ 0 v are nonlinear in A,..; and it is 

primarily this nonlinear nature which gives rise to the intractability of 

the theoryo Recent (coupling=constant=based) perturbative schemes for 

quantizing the theory are not very attractive because in trying to mimic 

the successful canonical quantization of electrodynamicsp where the LSZ 
~ ' I •"'::,., 



formalism may be used to relate asymptotic physical states to the field 

variablesp the nonlinear nature of the theory is effectively ignoredo It 

seems that the notion of quanta 9 uhich appears in a non=interacting theory 

as a property of the Fock space quantization of the free field and in a 

conventional interacting theory (like QED) through the Feynrnan=Dyson 

expansion of green functions and S=matrix elements and the associated idea 

of the completeness of the asymptotic scattering states 9 is not appropriate 

for QCD, since quarks and gluons do not appear as asymptotic particlese 

There is thus much motivation for attempting to develop non=perturbative 

(or even non-coupling constant based perturbative) schemes of quantizing 

Yang-Mills theory. One recognised method is to use the saddle point 

approximation of the functional integral in order to covariantly quantize 

the theory. This method relies heavily on an understanding of the classical 

field equations , since explicit solutions are a pre-requisite for develop= 

ing the quantum theorye Although this program motivated much of the early 

work on instanton solutions to the self=duality equations, it has hitherto 

been found technically impossible to execute (a] o HoweverD the instanton 

solutions were found to have a structure remarkably similar to the soliton 

solutions of two-dimensional theoriese Indeed, Polyakov, Belavin and Zakharov, 

Ward, Yang, and others found many similarities between the self-duality 

equations and the equations of motion of completely integrable two dirnen= 

sional theories. This work has raised the possibility of further similarities 

between nonabelian gauge theories and completely integrable model field 

theories. The most outstanding result for the latter theories is the 

quantum spectral transform developed by Faddeev and his collaborators [3=6]. 
This yields an exact canonical quantization of the theory in an intrinsic= 

ally nonlinear fashion, incorporating a nonlinear superposition principle 

in order to build a nonperturbative Fock space. Since this method uses 

soliton=like structures as the asymptotic physical states, it raises the 

intriguing possibility that quantum integrability and exact quantizability 

are inextricably linkedo 



Although the quantum spectral transform is an intrinsically quantum 

method (in that it does not depend on a 'background' classical structure) 0 

there are many structural similarities between tho classical and quantum 

versions of n1o dimensional integrable modelao It is therefore useful to 

study classical gauge theorieso Not only uould classical solutions be useful 

for a possible covariant quantization scheme 0 but any structural similarities 

with 2d completely integrable models would increase the chances of construct= 

ing tractable quantum gauge models which take the nonlinear nature of the 

theory seriously~ Many of the two dimensional integrable equations describe 

actual physical systems (5,6] ; for instance, the Korteweg=de Vries (K=dV) 

equation, first derived in the study of long water waves in a shallow channel 9 

describes many phenomena in plasma physics; and if there is any lesson to 

be learnt from the physics of one and two dimensional systems, it is surely 

that nature seldom forgoes the use of available nonlinearities. 

Further 0 apart from matters concerning quantization, the classical 

description has a mathematical appeal which in itself justifies further 

consideration of classical gauge theorieso It is the primary motivation of 

this thesis to investigate the extent to which the classical field equations 

of non=abelian gauge theories are integrable and to study the integrable 

sectors of the theorye In particular, we aim to identify and study the 

properties of these equations which characterize their (possible) integrabilitye 

Foremost amongst these properties is the possibility of writing the equations 

of motion in the La.x fonn [ 7] : 
~0 1 = (L,A) (1) 

(where L,A are linear differential operators) P which we may rewrite as 

(~0 +A,L) = 0 (2) 

which is just the compatibility condition for the set of equations: 

(lo+A)\&1 :!0 (3a) 

L 4- = o (3b) 

If the dimension of space=time is two 9 and if L = ~.+ B 9 for some B, 

eqo (2) is then just the condition for the vanishing of the curvature of the 



4o 

connection form c~ ~th components Co = A D Cn = B ioeo (2) is 

equivalent to 

3~-'" :;;;: ~~"c~ =~Veil" .!!- [«:P", c~~] g <9 (4) 

If A and B are tt10 components of a Lorentz vector 0 then the differential 

equation implied by (4) ~ill be relativisticp but in general this need not 

be the caseo We may remark that (4) is just a manifestation of the Poincare 

lemmag d(dw) ~ 0 (for a differential form ~)P a statement of the equality 

of mixed second partial derivatives 9 which is the source of most integrability 

conditione for partial differential equationsQ 

Once the equation of motion has been cast into the form of (4) 9 something 

important is guaranteede For the corresponding linear system not only 

guarantees (formally) the existance of an infinity of conserved quanti ties 

[7a] , but also makes the equation of motion amenable to an algebraic 

method of solution. That it leads to an infinite number of conservation laws 

may be demonstrated, albeit only for a restricted class of models, using 

an argument due to Polyakov (see [9,10] ) which is particularly instructive 

for gauge theory type modelse This considers a scattering problem 

(~,.. • c,..) 4- = o 

with tj. (+oo, i:) =- 0 • 

(5) 

This problem exists (in any dimension) if (4) is satisfied. Now (4) need 

not necessarily be equivalent to the equations of motion. It could, for 

instance, be some identity in the problem= like a Bianchi identitye To 

proceed we need to invent a new combination of C~'s depending on a parameter 

A in such a way that a zero-curvature condition for c: (A) !l! F(C,.. ,~) now 

implies the equations of motion in addition to the previous identity& Now 9 

identifying c;(~) with the potential of the scattering problem, it is clear 

that 

(6) 

Expanding the path=ordered exponential in a power series in yields an 

infinity of conserved charges. Thus (6) is a compact representation for the 

generator of these chargeso The crucial point to note about Polyakov's 
argument is that the integrability condition is precisely a statement of 



the path=independence (ioeo integrability) of the phase factor of parallel 

transport (12] 

(7) 

Indeed 0 it is clear that the conservation law (6) stems from the boundary 

conditions of the scattering problem (5) for lihich ~-~.n is clearly a formal 

solutiono We may directly check the path=independence of (7) by considering 

its variation due 

L ~· 
,~.,.(t.) i!,,)(~ 

u 

to a variation of the path 0 xP(t) 0 

c.~(~.) "S-u .. = 4-11 )! c~ Ora) 4 ~u •. 
11"'a u a e;·v 

parametrized by t [ nJ ~ 

t.'loae~ ']"'~("a) l\D-~tt • 
Ci!.Q- ..- • a 

The first two terms are contributions of the end-points of the path; and 

we see that any path dependence (ioeo non=integrability) of the phase factor 

would be entirely encoded in the curvature 3PtJ of the connection C~ (which 

in the present case is flat)o 

Infinitely many conservation laws are important because they suggest the 

possibility that the equations of motion are completely integrable (or perfect) 

in the sense that the phase space for the system can be reduced to a completely 

separable one by a canonical transformation to action=angle variables (25]a 

We recall [14] 0 that for a hamiltonian system with a finite number0 N0 of 

degrees of freedom 0 the existence of N commuting integrals of motion means 0 

by virtue of Liouville 9 s theorem 0 that the system is fully integrable 0 ioeo 

that it is possible to separate the variables and introduce action-angle 

variableso Integrable systems are also not completely randomized 0 since there 

is no exchange of energy between the degrees of freedomo For infinite= 

dimensional hamiltonian systems 0 the existence of an infinity of commuting 

integrals is only a necessary (but not sufficient) condition of integrabilityo 

We note 0 however 9 that a canonical transformation to action=angle variables 

is implicit in the Inverse Scattering transform for such systems [5) 0 since 

this incorporates what is effectively a nonlinear mapping to a free=field 

theoryo Similar nonlinear mappings are also the basis of methods which have 

been found to be useful for the solution of gauge theory=type systems 0 namely 

the twistor methods eogo[l7] and the Riemann=Hilbert method [26 0 27]o Moreover0 

just as the representation of nonlinear evolution equatj_.pns 0 like the Kd.V 



equation0 as integrability conditions for a system of linear equations made 

it possible to develop the inverse scattering method [7] 0 these other solution 

generating techniques also depend on a linear system of the form (5)~ 

(8) 

where d denotes a partial differential operator 9 possibly depending on 

The procedure of eogo[26) begins with two kno~ solutions (C6 ~~o) and 

- p.J 

0 

(C09 ~0 ) of (8) 9 where ~o and ~a are respectively analytic inside and outside 

an annular region r of the complex ~ plane; and an arbitrary function of 

A 0 g0 (~) 9 satisfying dgo(A) ~ 0 in the annuluse One then defines 

s(~.x) ~ ~-· 5o(i\) 4-o = q:~· 'f' (9) 

' i}:' ti"=l II. IL
0
-I 

~ ~ eo SO ~ To 't" T T. 

Now, since (\1-0 , ~pCo) satisfies (8), from (9) one may write ~(dg(A,x))'l--1 

in two equivalent forms: the right and left=hand side of 

~c( ~~a = \1= ~-I Co ~~=I = lf.c:Pt .,., = '1- 'to =I Co 4-o 4-~1 
(10) 

Writing , (10) may be written: 

(11) 

The righ t=hand side is analytic inside r p whereas the term on the 1 eft 

is analytic in the rest of the complex ~ planee We therefore have (by 

Liouville's theorem), a ~=independent matrix 

A(x) = \4:'' d ~~-• = = d 4-' ~~-• 

satisfying ( d + A )4-' = 0 

= 0 0 

So, the splitting of B'o (~) in ( 9) has yielded a new solution ( 4-', 4:'', A) to 

eq.(8) from the given one (~0 ,G:,C0 )o The new solution, however, is not 

completely independent of the old one. For instance, the singularities 

of A coincide with those of C0 o Some technical details of this method may 

be found in [27] o 

The role of a linear system like (5) has also been emphasized by 

Zakharov et al (26,27,44] 9 in their attempts to classify all models 

solvable by the Riemann=Hilbert methodo Considering the system 

I 
(12) 

with U,V being, for example 9 rational functions of a complex parameter~ : 



rJ ct~ • 

u(~;n.~) ::I~ (~~~tltrl!. ~l~(~I"J) 
tao Leo 

"" (].~:, 
V (~;!!,~t) ~ to~~~ {>. ~fb'-~·St Vi~z, (r,~) 

and observing that the form of (12) is left invariant by transformations 

analogous to gauge transformations g 

V o g $1 =G V ~ ? ~ ~o ()~ <5J 
(13) 

they conjectured that all integrable models fall into ( 0gauge 1 )equivalence 

classeso The transformations (13) form a group 9 the 'gauge' group, enabling 

one to classify all possible linear systems and to confine consideration to 

only one representative from each class, which may be chosen, using the 

gauge freedom, to be of the most convenient form. 

These authors have also considered the possibility of generalizing the 

linear system (12) to obtain integrable systems in higher dimensionse They 

have suggested two fundamentally different ways of generalizing (12). The 

first invol vee the formal change ~ -=) i.. :t in (12), where tis the third 

variable. This is clearly most easily achieved if U,V are polynomials in A • 

The system (12) is then replaced by the system of equations for the matrix= 

valued function \f-(x 9 y,t)g 

[ dJt +- L.t(lC,'f,t,i.~e)]'+ =-0 

This scheme incorporates the equation of Kadomtsev=Petviashvili and also 

the "three=wave problem" of nonlinear optics [26J ; both three dimensional 

equations. However, somewhat more interesting for gauge theories is their 

second method of generalizing (12) to higher dimensions. This replaces (12) 

by the first order system: 
N 

D, 4- ::: L ~lc. 
( ~1:. d!( + Ltk.) 4- =0 

k.=o 
M 

( c<IC ~1:: + v't..) '+ .!)a'+ :.. r_ i)!c. :::. 0 
) 

~ .. o 

where 'die.,~ denote differentiation with respect to generally independent 
~ 

variables ')(1<. 9 X1c. P of which there are (N+M+2) here; -<rt , (31t are scalar functions 

\'lhich may be constant; and uk, v" are matrix functions of the (N+M+2)variables. 

As we shall see, the self=duality equations of pure gauge theories fall into 

this scheme. 



In the next chapter we consider the theory of the principal chiral field 

in two dimensions 0 which has been found to be a useful model for gauge 

theorieso Not only does this model mimic quantum properties of gauge theories 

(such as asymptotic freedom)v but the structure of the classical theo~y is 

very similar to the self=dual sector of gauge theoriesp and this hasv in 

recent years 0 motivated much work on self=dual fieldso Our discussion will 

mainly be concerned with the infinite set of symmetries of the chiral fieldv 

whichv as we shall demonstrate 0 has much to do with the existence of a Lax 

representation. We then demonstrate ~in chapter 3) the similarity of this 

hidden symmetry structure of chiral fields to that of self=dual gauge fields. 

Remarkablyp our discussion of self=dual fields can be generalized to the 

case of extended supersymmetric gauge theories; and we explicitly obtain, in 

chapter 4, an infinite set of continuity equations for these theoriese 

Some years ago, Polyakov pointed out that the loop space (functional) 

equations of three dimensional gauge theories were similar to a three 

dimensional chiral model 0 and based on this similarity he suggested the 

existence of an infinite set of symmetries of the loop space equationse In 

chapter 3 we show that loop space fields do indeed have a symmetry structure 

very similar to that of two dimensional chiral fields. Our discussion is 

based on the remarkable similarity of the loop space fields to chiral fields 

over a three dimensional space=time with one Killing vector. We also consider 

the equations for such chiral fields; and find them to be integrable. 

As we have already emphasized, the 'zero curvature' integrability condition 

is a statement of the path independence of a phase factor ~ = p es~.dx 

where A is the 'flat connection°e Motivated by this correspondence, we 

study (in chapter 5) the (non=)integrability ofthe full four dimensional 

Yang=Mills equations by considering the path=ordered phase factor of gauge 

theories [12] on a fixedp straight=line patho We attempt to determine the 

conditions under which this phase factor can be written as a product of local 

(path=independent) objects at the end=points of the pathe Apart from the 

well=known case (15] where the path is restricted to lie on a null plane in 



complexified euclidean space (in ~hich case the phase factor is integrable 

if the curvature is (anti=) self=dual) 9 ~e fail to identify any further 

integrable sectors of the pure gauge theoryo Ho~ever 9 for the most general 

case 9 ~e obtain a remarkable approximate representation of the path=dependent 

phase factor 0 in ~ich the non=integrability of the gauge connection manifests 

itself in a single local matrix at the mid=point of the straight=line patho 

If the phase factors around a lattice plaquette are thus approximated 0 ~e 

sho~ that"the correct continuum action results. Thus our representation of 

the phase factor effectively yields a formulation of the lattice action 

equivalent to Wilson's, in which the four link variables are replaced by a 

collection of eight localp path=independent oneso 

The discovery of the integrability of the self-duality equations (15,16) , 

which resulted in their remakable solution [17,18] 9 was stimulated by the 

realization of BPST [19) that interesting solutions of the second=order 

Yang=Mills equations could be obtained by solving a set of algebraic equations 

for the field strength; i.e. the self=duality equations. In chapter 6, 

motivated by the example of self=duality in four dimensions 9 we search for 

first-order nonlinear equations for the potential which imply the second= 

order equations of higher dimensional gauge theories in the hope of finding 

integrable sectors of such theories. We show that in dimensions 4<d,8 9 an 

insistence upon the familiar sight of an algebraic equation for the components 

of the field strength yields interesting results. The most interesting are 

the sets of equations in eight dimensions which have a structure related to 

the algebra of the octonions. 



Chapter 2~ Hidden s~t~ of the t~o dimension~ chiral modelo 

(i) We consider the chiral model defined by the lagrangian 

lOo 

(l) 

(~here g(x) takes values in a compact lie group) 0 Nhich has 0 in terms of 

the pure=gauge lie algebra valued connection 

' (2) 

the equation of motion: 

(3) 

For all models with equations of motion of the form (2,3), Brezin et al ~0] 0 

following Luscher and Pohlmeyer ~2p23] , wrote down an algorithm for the 

construction of an infinite set of nonlocal conserved charges. Noting that 

any member of a hierarchy of conserved currents can be written in the form 

(4) 

they noticed that such a hierarchy of currents can be generated iteratively 

by defining the (n ~ l)th current: 

J"~V\+,) = D...,. ill\) = ( a,.... "'- A,...') "X. Ck) , (5) 

which is conserved if (3) is satisfied and if X"'' satisfies the equation: 

(6) 
0 

From (4)~ we see that 

D,.... d,... ··/"') ::: »~~-- f /IAV '::J\)(11\) = using (5); 

which is clearly zero because Ar is pure-gauge. Thus~ provided (2,3) are 

satisfied, the sufficient condition for the conservation of J;:·•) is clearly 

that ~) should be conserved. As Brezin et al noticed, this hierarchy of 

currents clearly exists, since the equation of motion (3) has the form of 

a continuity equation, allowing us to iteratively construct all the currents 

starting from J~) = Ap and t'~ lo This inductive proof of the conservation 

of an infinite hierarchy of currents, mey be replaced [21] by considering a 

functional Q of the fields which is also a function of space-time satisfying 

(7) 

Then t ... '::: f;JWI ~v Q is clearly conserved; and generates infinitely many 

currents if Q has a power series expansion: Q :: ! ?<.&I> )5"'' 
11\::C) 



llo 

uhere the coefficients X~ satisfy the recurrence relation implicit in (4) 

and (5)o We note that (7) is in fact a pair of linear equations 

(<11- ~ Do)Q ::0 

( do + ~ D, ) Q :: 0 

uhich are consistent if 

) 

(8) 

(9) 

(10) 

for all ~ o In other ~ords 0 ~e have a Lax representation for the system of 

equations (2 0 3) 9 which is the key to Brezin et al 0 s algorithm for the infinite 

series of conserved currents. This explicitly demonstrates the link between 

the linear system and an infinite set of conserved currents implied by Polyakov's 

contour argument. Writing ( 8, 9) in the form 

= - ~A Q ,... (11) 

and multiplying both sides by 

= I ( _.1 Sf ... + f,_,JA ) 
A'Z.-I r r 

we obtain 

::.0 (12) 

which is the form of the linear system first obtained by Pohlmeyer [24] 

(.in light-cone coordinates) and used by Zakharov and Mikhailov [21] in 

their development of the Riemann=Hilbert method for this modele We note that 

(12) is a statement of Polyakov 0 s dual transformation mapping ~ to another 

pure=gauge A,...(::\), a linear combination of A,._ _and its dual f,_..vAv, in such 

a way that insisting on the zero curvature of A~(A) is equivalent to the 

the equation of motion; (a situation reminiscent of four~imensional self= 

dua.lity)o We may formally solve the J= 1 component of (12) by writing 
x ::.\ 

Q(~ ,x 11 8 x 1 ) = P exp J dy ~~-I (.:lA 1 = AtJ 
-"() 

Q(~ 9 X 0 p-CO) = 1 o 

(13) 

Now, Q(~ 9 x 11 0+Cl0 ) is clearly time-independent if we assume the boundary 

conditions lim A,.._(x 0 vx 1 ) = 0 ; and expanding the exponential in a 
x, -'I>:!: a, 

power series in i\ yields 

1 +A j dx A0 (t,x) + ~~ j dx' [A,(t 0 x 0
) + A0 (t,x 0

) f~x" A0 (t,x") + 0(~1) 
-<¢ -"0 _.,., (14) 

The coefficients of AvA~ correspond to the first two nonlocal currents 



of [22] o In fact ue may write 
t(;\) 

QOvxo v+CO) = e 
then yields the charges of ~2] v ~ere t~ are the 

l2o 

generators of the Lis algebrao Following [21] v t1'e also note that fros axzy 

given solution A,,.(x) ~ f 1 d~" ~ 

depending on ;:\ 

v ue may constructv from (ll)v a neu one 

RP- (~; x) :. (11') 

It is clearv using (12) 9 that a,... A,.... (~i){) = o o This transformation is 

just the 'dual transformation' [29] which induces the symmetry responsible 

for the above conserved charges. 

(ii) We have seen that the matrix Q(;\,x 0 ,+co), known as the monodromy matrix [3] v 

which connects solutions of the linear system at plus and minus (spatial) 

infinity 9 is entirely time independent; ~its matrix elements are conserved 

charges [22] • This is not a very desirable feature, since it is uncharacter~ 

istic of the usual completely integrable modelsa In the usual case [4] P of 

the KdV or sine-Gordon equations for instance, the action=angle variables 

are obtained directly from the monodromy matrix of the associated linear 

system. Action=angle variables are not known for the chiral field theorieso 

Howeverp the monodromy matrix, as we have seen, serves as a generating 

functional of an infinite number of nonlocal conserved charges, which do 

not commute amongst themselves. Now, just as the infinite-dimensional 

abelian symmetry algebra (generated by the angle variables) is related 

to integrability in the usual case, these nonlocal charges raise the 

possibility that complete integrability of such field theories can be 

related to the existence of an infinite dimensional non~abelian symmetry 

algebra. It is known 9 however 9 that these nonlocal charges do !!Q1 form 

a Lie algebra (30 9 31] o However9 there does exist an infinite dimensional 

Lie algebra of symmetry transformations acting on the space of solutions 

of the field equation 

(15) 

We suppose that the infinitesimal transformation: 
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3' ::. 3-1- $:J ~ j - 3 SCI{) (16) 

is a symmetry of (15)p where the infinitesimal S(x) is a Lie algebra= 

valued matrixo For this to be the case 0 to first ord0r0 S must satisfy 

+ [ ~. s] :::. 0 (17) 

We note that (17) is automatically satisfied if 

(18) 

for any £~) o This equation0 and hence (17) 0 imposes no extra restrictions 

on g(x) if S and "l depend on a parameter /) in such a 1:1a;y that their 

power series expansions satisfy the relation 

Then (18) is precisely the linear system for the Lie algebra valued 

functionS having the field equations as compatibility conditions 41 

and corresponding to eqo(ll) for the group-valued function Qo Thus every 

solution of 

[ (-a~"- - .:1 e ,._..J D v ) ) S J = o (19) 

yields a symmetry of the equations of motiono 

We note that the transformation (16) generates a new solution to the 

field equations from an old one if S satisfies (19)o From (16) we have that 

s-' j, = 11. - s 
and the change in A is given by 

3 I -I d"" 5 I - .j -I d,.._ ~ = [ D,.. ' s] 

0 from (19) o 

Therefore 0 

3'-' 'd,....j' q - 1 ""~ q I ,. '"'\ (_ a - I ql ) v Cl,_ .J :: X -=,._..v ou v v 

This is precisely the Backlund transformation of [39] linking tt-ro solutions 

g and g 0 o We remark that just as g and g 0 are related 0 t1:1o solutions Q0 Q' 

The function S0 like Q 0 depends on the parameter ~ and we m8i}' expand 

S in a po~r series: 

s : (20) 
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yielding9 through eqso(l6=19) 0 infinitely many nonlocal symmetries of (15)o 

We note that this 0hidden symmetry 0 has been derived 0 just as the nonlocal 

continuity equations ~ere previously derived 0 using the linear system; and 

in ~hat follo~s 9 ~e draw attention to the importance of the linear system for 

this hidden symmetry. In particular0 we shall sho~ that it is the symmetry 

of the linear system which is the source of this hidden symmetry of the 

field equations. In order to emphasize the role of the linear system, we 

initially consider functions Q and S satisfying just one of the equations 

in (11) and (19) respectively; namely 9 we impose 

(21) 

and 

( 22) 

Analogously to (13) 9 (21) has the formal solution 

(23) 

Further0 ~e may clearly write 

Q(~ 9 x) = exp Z(~ ,x) 

where the power series expansion of the Lie algebra valued function 
0() 

[ yields 

By insisting on the consistency of equations (21) and (22), we shall now 

find a remarkable expression for S in terms of Q ; and in the process 9 we 

shall relate all the X6-l) 1 s recursively to Ao 9 thus obtaining through (24) 0 

an explicit representation for the path=ordered object in (23). Inserting 

the expansion (20) into (22) 0 we obtain the recurrence relation ~2] 

dl /\("") = do f\(1'\-•) + [ Ao , l-11\-1) J (25) 
(ol 

Now 0 assuming the transformation corresponding to ~ to be just a global 

gauge transformation 9 i.eo J.o), ,,_ T 0 a constant element of the Lie algebr&0 

we obtain from (25) for n = 1 

'd, /\(J) = [ Ao 
1 
T] 

We also note 9 from (21) & (24) 0 that 
(26) 

' 



so 

(In what follmrs t1e denote xl•) by X ) o For n "" 2 9 ~1e find 

d 1\(J) = 'd f\(•) + [t> X A{•lJ 
I 0 I 1 

= [d0 )(, T] + ['a, X 1 [X, T]] ~ from (26) o 

= [;)oX,T] {- 1[['a,)(,X),T] .e- ~ d,[X,[X,T)j 
which 'tfe may l1Ti te as 

"d,t\(J.) =- ~ d' [x.[x, T]J ~ d, [X('.t\ T] 

yielding 

if X~) is defined by 

'd, tl.) = 

15o 

(27) 

(28) 

(29) 

Equations (26=29) reproduce the results of [32 0 33] o However0 these expressions 

do not provide sufficiently many terms of the series in (20) to precisely 

determine the structure of s. We note 0 however 0 that (29) is indeed the 

form.of xc~ given by (2lo24)o confirming the validity of the representation 

for Q(,\,x) given by (24). Using (26L t1e rewrite (21) as 

(30) 

where 

( 31) 

This equation0 as demonstraed by (29)P clearly provides an expression for 

i-~ in terms of all the X(""), m<N; and thus ultimately in terms of A.,(by (26)). 

Nowp expanding the Lh.s. of (30) up to terms of O(AJ.S.), we find 

Q4-(.;~.-Ado)Q;' = -~d.x + ~'l(-~[x,a,x]- d1 X(~>+JoX) 
+A 3 {-t [x [><,a,x]] ~ [xfJ.), d,X]- a,x(~)+ ~[x,~ox] 

+ do x(:l.) 

+A* ( i-i! [x [X['d1x,x]]] -![)({l>. d,Xca']-i[ll.),[X,;;
1
x]] 

- [xC~\ d1 X] - 'd1 XQJ.) + t [ x [x, doX]) . 
( 32) 

Now, comparing l'fith (30) we see that only the O(A) term on the right is 



necessary; so for (30) to be true for all A P ~e need to set the 

coefficients of all the higher powers of ~ to zero individuallyo This 

yields (29) and 

'd
1

X(3.) ~ ~ t [){ [x, d1 x]]- [xc.a\ d1 X] o~-f[)(?doX] + dol.a) , 

G,.)(cll-) = - ~! [x [x [x, d
1
X]]]- f[xc'"l, dlx(;l>]- ~ [xo.)~[x~ :d,X]] 

= [ )((g\ ;), X] + ~ [X [x, do X]] 
We proceed to determine l?.) : 

d. /\(5) :: do 1\(z) + [(;)I)(' l'-)] 

:; ~ [ do X,[ X, i J] + f [X,[ do ')( , T J] + [ do X \ I] 

+ k [()I X,[ X, ( )(, T ]] j + ( d1 X , [ X(a\ T]] P using ( 28) ; 

= t dl [x,[x,[x, •]JJ + ;), [xJx~~ T]] + ['doX~', T] 
- [ [X~\ d1 X ] ~ T] + ~ [ [ X} do X 1 T] - t [ [ X, [ )(, ';)I X J], T] 

(33) 

(34) 

using ( 29) and the Jacobi identity o Now P since d1 X('!) is given by ( 3 3) we 

clearly have 

"(l) = ~ [xJxJ)(,T]]J + [x(,.\ [X, r]J +[XC!.>, r] (35) 

and we similarly find 

"l'+) : ~, [ x ,[ x, [ x ,[ x , r]]]] + ~ [ x [~; [ x ,[ x, r]}] + i [ x c~), [ xc~ Y]c 36) 

+ [xc3 >9[x, 1]] + [xc~~-J, r] 
We are now in a position to write the generating function (20) of the 

(I\) 
N. 's in terms of a x,... and A =dependent similar! ty transformation of 

the constant matrix T [35] 
-I sO ox) :::; ~(i\ oX) T Q Oox) 

'•. 

a form which clearly makes (22) consistent with (21); and which may 

(37) 

explicitly be checked with (27p28 0 35P36) by using the Campbell=Hausdorff 

formula: 

e.-AA 6 e~A ~ 8 -lt[A,B] + f, [A.(A,IB]] -( [A,[J:1,[A, B]]j-} ··· 

~ 8 +A [B,A] + ~~ [lB,A],A] + f)f[[B,A],A],A] + · ·· 

We now use the form (37) of the function S to define the field transformations 

(16). We first consider the change in the lagrangian d'ensi ty due to the 

infinitesimal transformation (16) where S is defined by (37) and Q satisfies 

just (2l)o 
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::: t +r A""d"" S 
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:: i+r(A0%$+i)A,aos +.A[A,~~o]S) P using (22) & the cyclic property of the trace9 

~ t -h-- [Ao(~S+A?J.s) -~-~['da("l,S)~d,(~os)n p using Fe, = 0 li 

= i+r-f-t Q(a,-~o0)Q-1 (d0 +Ad1 )S+A[do(t\ 1 S)-J,(AoS)]J o using (21);; 

-= i+r [- 1 ~>.'t['d,Q-1 ;}t>Gl =doGJ-';).Q]T + €)1-\v Adj1A(A 11 S)f 

= t 'd"" ~~'-'" +r f AA"S + ("+f-)~-';.>vQ TJ , (38) 

a total divergenceo 

The usual argument (33o 42 J P has been that the infini tesima.l transform= 

a.tion is a. symmetry of the action since one may ignore the surface terms 

~ich result from the integration of (38) over spa.ce=time 0 by choosing 

appropriate boundary conditionso Indeed 9 (38) vanishes at spatial infinity 

if lim Ar = 0 0 since then lim Q = 0 alsoo However9 as has 
JC~too X-7:t.., 

been recently pointed out [31] 0 it is these usually ignored surface terms 

which vitiate this argument; since one may not impose consistent boundary 

conditions on A,.. and Q which are themselves invariant under the transformationo 

We note that if the equations of motion are imposed 0 then the action is 

indeed invariant since then 

and the usual boundary conditions lim A~= 0 sufficeo The resulting 
)( -:'J:!;CIO 

(on~shell) conserved charges are those of [22] o Thus in the general case 

of a non=compact space=timep the original belief [22] P that these censer= 

vation laws are dynamic rather than algebraic statements in the sense that 

they are not associated with a Noether symmetry of the original Lagrangianp 

but come directly from the solution space of the systemp still holds goodo 

That care needs to be taken with surface terms in the Noether construction 

when dealing with dynamical conservation laws has also been emphasized by 

Chodos (40] o 

We have seen that the conservation laws of [22] are related to a set 

of symmetry transformations on the solution space of the modelo We now 



eho~ that these symmetry transformations close under an infinite dimensional 

Lie algebrao We ~ite the infinitesimal transformation (16) in the form 

aQ. 3 ~ - 3 s~ 

tlhere the SQ. 8 Q T~Q- 1 
? a~ lpooooooopN D form a basis of the Lie 

algebra G o We define 0 follo~ing [34] 0 the infinitesimal operators of 

the symmetry group~ 

' 

(39) 

(40) 

't1hich clearly have the structure of Killing fields in a local functional 

basiso The composition of two such symmetry operations is clearly given 

by the Lie bracketg 

[MQ.(t), Mro(r)] ::. i.Ma..(i)Mb(r) 

= J d 'l.'l [ M (!:) .9 C '1) S 1o (r) }- ] 
Cl. ' oj('t) 

(41) 

The commutator on the right clearly contains two piecesg one involving 

the functional variation of g 

<:~.ud Lhe oilier due to the change induced in :::~... = :::~ ... [g J P a functional of 

g(x) 0 by the transformation (39)o We may therefore write 

[Mo. (t) I Mb (r) J = J d 
2

'1 j ('1) [ SGl (t) I sb (r)] ~ ('1) 

- J d,_'1 !J(") f o~ Sb(r) - ~"- Set Et) J %~ C'1) 

=-jd2
'1 1('1) f o"- Sblr)- ob.SCl(t) ~ [s"-Ct), s.,(r)]} ~('1) ~ 

which is clearly equal to 

0 from (39)o 

Here 0 the change induced in S6 (r) by the infinitesimal transformation 

~"" ~ '= - ~ S~~.. (t) is given by 

(42) 

o4lSb(r):: SCl(t)Sb[r;~] = Sb[r., 9-5Sq_(-t)]- Sb[rj~]. (43) 

We also note that 

b"(). Sb ::. oct l Q T"' Q-
1

) == 6o.. Q Tao Q- 1 + Q T1o &'Q. Q 

= [o~Q. Q_,, s~o] (44) 

No'tl 
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is given byg 

S" d~ ( Ao (S ~&a.s) - A&(~)) 
Thereforep using (22)P we obtain 

b"" (t) X C•) ~ ~ s<L u) (45) 
t 

i-Je may therefore m-ite ~a. Cl} in terms of S 0 since all the coefficients 

in the power series expansion of Q(A) depend recursively on xC•) o Using 

:; -t [So..&:\ T] 
bCl (t) 1\ e) :;: 

bD.. (t) 1\ (?.) ::: 

Therefore 0 

-~a [sClCt:),, T] - ~ [sCla), [x(•~ -r]] 

[Sa__Ct\ T] - .p [ sCl(t), [xc'', r]J -t [sCl(t), [x~~ 1]] 
[So..{!)} [ X{l), [ )<CJ >, T ]]] 

c() 

o~(t' s cr) = I 6~8:) /\c~~~> .,.~ 
to third order in r is just : 

(46) 

- ( f + l~Y + ~y) ( [ So.li\ T] + v- [ S~tt), [xc'\ T ]] + r~[ SCl(t), [X(~~ Tjj 
I \ 

Now 0 since 
CD 

L = 
-I 

(1- ~) -~ 
"" l 

we may make the identification g 

= t 
t-r 

- 1 = 
r 

c-r ' 

oo..l!:) S~a(r) = - ;_r [ [S,~JD, sbfr')] - c.a..bc. .Sc.(r)] pfor all t 9 r ; (47) 

1.1here CcU.e. are the structure constants of the Lie algebra Go We may 

1.1rite (47) in the form : 

Sa-&) S~Cr) = - ;_ r [ ( ~ (i) - SD..C_r)), Sb (r) J 
1.1hich allows us 0 using (44) 9 to identify the change in Q g 

= - r 
( 

So_(!:) - Sa. (r)) (\) (r) 
f.-r 

We are no1.1 in a position to observe that this hidden symmetry is a 

(48) 

(49) 
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symmetry of the linear aystemo We note that up to first order in the 

variation Oo..~ =- 3 S"-(!:) 9 the lohoBo of eqo (21) is 

( d1 - r d0 - r (Ao + Dc..(t) Ao )J( Q (r) -+ tSoJf) Q (r)) 

= ("d 1 - rd0 - r A0J eSc:~.(!:) Q(r) - rc5c..&:)A0 Q(_r) 9 if Q satisfies (2l)p 

-::: (a1 - f""d0 - r Ao) oc..(t)Q(r) - ~ 'd1 Sc..C!J Q(r) 
t 

(since ~(!:) Ao :::: -Do S<t.(.-t:) =- - t d 1 Sc.. G:) 

tJhich vanishes if ~til has the form given by (49) 9 confirming that the linear 

equation (21) is invariant under the transformation {16) o Similarly0 one 

may also sho't! that 8e~.Sb given by (48) satisfies the equation 

d1 8o..S~a = r d0 oc..Sb + r 8c..([A 0 , s,J) 
obtained by varying equation (22)o This proves that the infinitesimal 

hidden symmetry of the equations of motion is due to an infinitesimal 

symmetry of the linear systemo 

We notJ return to (42) 0 tJhich on insertion of (47) gives 

(51) 

Nowp if we write 

(52) 

a comparison of the coefficients of t~r" on both sides of (51) immediately 

yields the commutation relations: 

The matrices 

Me.. Cit )I 
A=D 

therefore realize a !i:epresentation of the loop algebra G ® IR [~ 1 P where 

IR ~1 is the algebra of the formal po\1er series in A o This derivation of 

the loop algebra clarifies and simplifies that originally presented by 

Dolan [34] ;; and since we have emphasized the role of the linear systemp 

our discussion may easily be generalized to other models with similar 

linear systemso This is demonstrated by the work of Eichenherr @3] 0 

't!ho has discussed the hidden symmetry algebra of the Heisenberg modelp 
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i s :l = 1 ) s ~ 4Lt(.;2) j (54) 

(a model tlhich is similar to the chiral model in the sense that it has 

a global group=invaxiancc tJhich may be generaliz®d to an infinite 

paramoter nonloc.el inv&riam.ce) o Eicheii!herr h@.a sho~ that tho hidden 

SJIYilmetry algebra of (54) is directly carried over·to the non=linear 

Schrodinger equation 

LdiU.. + dx:tiA. + ~fuld.LL::: 0 9 (u(x 0 t) a complex field)o(55) 

No~0 (54) is 'gauge equivalent' to (55) ~4] in the sense that the flat 

connections in the t~o linear systems m~ be mapped to each other by 

a 0gauge 0 transformationo That the hidden symmetry structure of (55) can 

be seen to have its origins in that of (54) further emphasizes that it is 

the symmetry of the linear system which is responsible for the symmetry of 

the equations of motiono Further0 it suggests that this feature is common 

to all the models which are classified under the scheme of ~6 0 27] o 

The loop algebra G ® IR [;\] has also been identified by Ueno and 

Nakamura [37 0 38] in the context of the Riemarm=Hilbert problem 'tiDich yields 

as a by=product 0 a formulation of the symmetries in terms of contour integralso 

Using these 0 the verification of the commutation relations (53) is 

particularly simple [38] o We also note that much of the structure that we 

have displayed in this chapter has been duplicated in the literature [36] a 

In an interesting further development 0 Wu [45] has extended the symmetry 

algebra to G ® IR [A,~-~ ; a factor algebra of the Kac-=Moody algebra over 

a one=dimensional centreo WU 0 s approachp translated to our notation0 is 

as followso 

Above we have considered S to be a aeries in positive powers of A 
co 

S (x) ; l AI\ /\(") = f ;\ -~ 1\ (-1'\-1) 

n:o 1'\.:o 

We may also have additional symmetry transformations 

S ~ = - ~ R (x, /1) 

( L) :f ""' 1\(-1-\-1) R ( )( I .A) = s ){ J It = ~~ 0 /1 

.::: \N (t.) T W ().) _, 



uhexoe 
c::6 

W = exp I .A., X(-~-·) satisfies 
t'l::ll 

("d, =X bo) W ::.:. 0 

and 

P>o + t D,) 'vJ :: 0 

Now 0 just as we obtained equation (49)o 

't1e may obtain0 follo~ring [45] o 

""' r ( ~(t) - Ra.Cr)) W~oCr) 6A. w~J!"") = ~-r 

6~~~. wb Lr) I (S~~~.(t) - t:<_o.Cr)) W~of.!) = 
1-tr 

"-

~~ Qb r1 ::: f:r ( RD.. U: ) - s~ en) Q b t ) . --
1-tr 

Using thesep one may define the components of a Laurent expandable 

generator of infinitesimal transformations 
+eO 

Mtt. (,.\) := L i) ""' fvl (~) 
_.., 

-· ...... 
in the following fashion : 

M(D) = - J c{ '1.'1 ( ~~) + f~') j ~ Ill 

"1 (VI) 
= Jot'l.~ (_~"') ) .I a.. 

A. j ~j 

M~"') = - Jct').'1 ( 'i:-"') ) ~ ...__ j ~ 
j 

V\ ~ ( 

These generators satisfy the commutation relations: 

j 
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To conclude this discussion0 we note that although the above infinitesimal 

field transformations form a Lie algebra0 they are surprisingly not 

canonical transformations [31] o Conversely0 the transformations generated 

by the non=local charges are obviously (by definition) canonical; but 

these do not form a Lie algebra (?1 0 30] P contrary to the conjecture of [106) o 

This situation is a consequence of the same problem which prevents the 
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construction of action=angle variables for this model in the routine 

fashiono Faddeev [3) has noted that this difficulty (of constructing 

action=angle variables) stems from the 0non=ultra=locality 0 of the linear 

systemp ioeo the linear system contains derivatives of the canonical 

variableso This results in the impossibility of consistently defining 

the Poisson bracket of wo monodromy matrices f)o] · 0 which in turn implies 

that the algebra of the non=local charges is not a Lie algebrao 

Although action=angle variables have not been found for the chiral 

models 0 it is certain that these are hamiltonian integrable systems since 

they display the lack of complete randomization l!rhich characterizes such 

systems (t)o For the O(N) sigma=model 0 Luscher and Pohlmeyer ~2] have 

explicitly demonstrated that classical spinwaves do not decay into a 

superposition of abelian waves for large times 9 and that in fact 0 a 

generic solution decomposes into a set of massless lumpso They considered 

energy=momentum conservation in Minkowski=space light=cone coordinates: 

where 

are the only t1=ro independent components of the energy=momentum tensor 

T "" T - T. 114 = 0 ) .... \) - v,.... 
They argued that energy=momentum conservation means that 0 for instance 0 

T+ depends on x+ only 9 so that energy flowing from right to left runs 

with exactly the speed of light without dispersiono This absence of 

dispersion definitely points to the existence of implicit integrals of 

motion 0 and possibly to integrability as well 0 since in general 9 dispersion 

of acy finite amount of energy is required by statistical mechanics; a 

general initial condition should display a tendency towards the equipartition 

of energy with respect to the degrees of freedom (ioeo a tendency towards 

stochastizatfon.L. Further 0 just as the non=integra.bili ty of a system is 

indicated by the inelasticity of collisions [46] 0 the results of the 

(t) Recently 0 moreover 0 Dikii~o~ has made some progress on the construction 

of the integrals of motion for the chiral field equationso 



24o 

Zamolodchikovs [2s] on collisions of soli tons soem to be sufficienly 

strong conditions for the complete integrability of the chiral fieldo 

Indeed 0 they used the nonlocal charges of the theory to obtain the exact 

S=mstrix of the 0(3) modelo This obeys the factorizatiom equations of 

Yang and Baxter &1] !) demonstrating that the 111onloca.l charges play the 

role of action=angle variables in that they constrain and even deteEmine 

the scattering of particleso 

To conclude 0 ~e note that ~hereas the classical nonlocal charges do 

not form a Lie algebra0 the corresponding quantum charges do f)oJ o This 

suggests that the quantum theory might actually be more tractable than 

the classical one considered hereo 

(iii) We append this discussion of hidden symmetries ~th the observation that 

energy=momentum conservation also yields an infinite set of (on=shell) 

non=local conserved currentso 

We note that 

T""\) =- +r ['a"""~ d11 j _, - ~ ~"""~~ 'dp ~d.! 5 -'] 

under a first=erder variation : 

T~>J = ·h· ['d~~' dv ~-I + d~Cj dv ~ ,_, - i ~M\1 ( ~f' 5' df 5 -I + dfj ~ j ,-~] 

- Tll"-\1 + ETM\l 

is also conserved provided both g and g 0 are solutionso 

Writing0 as before 0 g v = g + ~ g = g = gS 0 ~e find 

Then 

a,...(el;...v) = +r t A,.. 'd,.._ ~~~ S + 'd,.... Av 'C>"" s + Av d'l.S - dv (tlp ?J1 s) S 
Now the third term 

; ~+r AI)[Ar,9.-S] (using (17)) 

:: +r [Ar-Avl a""' S 

and using the identity F;.." = 0 0 it is clear that C>"" ( 0 T~v) =- 0 • 

The implications of these continuity equations are not clear0 apart from 

the implication that the non=local symmetry transformations ~e have discussed 

commute l1i th conformal transformations a We remark that these ne~ conservation 
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la':'JB bear a striking resemblance to similar infinite sets of conservation 

la"tJS in free field theories and electrodynamics (see eogo [49] ) o 



The hiddsn symmetry structlll'e of the chiraJ. modal discussed in the 

previous chapt6r is essentially carried over to both the self=duality 

equations and Polyakovus loop=Bp&c® (functional) equ&tions for thr0e 

dimensional gauge theorieso 

)ol g Self=dual g&uge fieldso 

The self=duality equations 

in complexified euclidean space ~ith coordinates 

(where the bar denotes complex conjugation if x is real)p take the 

form [_5o] 

E=""'r =- 0 = ~Y"l" 

1="'1'1 + r:!:~ = 0 

(1) 

(2ap b) 

(2c) 

Eqo(2bpc) may be incorporated into (2a) by a 0duality transformation' of 

the coordinate system, analogous to Polyakov's transformation for the 

chiral model "'---v ('1-A~) 
rJ I+.>."!.. 

r ~~~~~"1-- (~+A'ti) 
(3) 

This is just an S0(4 0 C) rotation of cllr P where A is a complex dimension= 

leas parametero Under this transforrnationp the zero=curvature equation 

0 = f=4 ~ -=---¥ ( 
1

1
+).'J.) ~~ -)~)(i:"~A\1):;: I:).'L (~='~ :c -1- ~ ( t="'1q- + ~i~)+ ;\,_ r:::'1i) (

4
) 

= 0 
yielding the linear system g5pl6] with (2) as integrability conditions: 

(At>~ D.r)H()I) =o 

( >. lJ~ -t D 4 ) H (t\) :: o 

( 5) 

(6) 

The (y =A z)=(z +A y) planes on cllich the curvature (4) vanishes are 

just the ~=planes of twister geometryo 

Equations (2apb) may be integrated immediately by writing [5op 51] 

A'1 = D-1 d D ~-1- - J)-l d~ b (7) l.f -

Aii 15 _,<1'1 D A- :::: b-l d~}) 
=- l (a) ) 
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1.1here DvD are elements of th0 ( complexified) gauge groupo Gauge 

transformations correspond to 

D~DG (9) 

so that the matrix 

J :0:: D D~1 (10) 

ifl gauge=imrarianto In terms of this gauge invariant matrixp (2c) takes 

the form [51] 

(11) 

w.hich displ~s the important similarity 1.1ith the t1.1o dimensional chiral 

model field equationo By analogy ~th the chiral modelv 1.1e may write 

do1.1n a linear system for 1.1hich (11) is the integrability condition ~ 

("A d'i - d~ + ~ :r-'a~ :r) Q = o 

C A ~ -t + d '1 +- ) J -' az J) Q = o 
This linear system is related to (7p8) by the gauge transformation 

Aa.. _,.., i5 Aa. D -I +- ] dtt b- 1 . a.='-1,'1 t~ 
) I I£.. ) 

H ---7 DH -Q 

which gauges a'day Aq and A l o 
, =<>I 

We note that the gauge function in (14) D = H(l=O) o 

(12) 

(13) 

(14) 

Equations lll=l3) providep in direct analogy with the chiral modelp the 

non=local currents and non=local symmetries of self=dual gauge fieldso 

The nonloca.l currents mey- be derived [52P 53] using a direct generalization 

of the algorithm of &oJ since (11) has the form of a continuity equationp 

tJhich m9\Y be solved in terms of a function xM defined by 

d= X (•) 
e 

d- X 0) 
'1 

= 

Thenv writing Q as a power series 
00 

Q = I ~6\xtn) 

(15) 

(16) 

which we may do if H is analytic around the origin of the complex il=planev 

we clearly obtain the n=th current with components: 

a~) = \J, lVI) - (()'1 -t "J _, d~.j J) xc_r~~) = ()~ )((Ill -I) 
'1 -

(17) 
d~) \lt xfYI> = (_ ~ + J-1 di;J)i"') = d- /""-•) =- '1 



satisfying the continuity equation 
6-l) (V\ ) 

"dG" d '1 + d ~ ~ r = o (18) 

Along ~th these nonlocal continuity equations 0 ~e have non=local 

symmetries of (11) o The first three infini teaimal transformations were 

explicitly l1ritten dotln by Pohl~eyer B2] o As beforeg they have a 

structure consistent with the general form ~5 0 54] 

6J ~ - J s (rlJ 

~here s = Q T Q-1 = I At']/\("') 

satisfies the equations 

( ~ d~ - d~) s 
A l2: + J\1 

111=0 

- t1 

(19) 

(20) 

(21) 

The proof that the transformations (19) are symmetries of the linear 

system (12 013) (or equivalently (21)) is a direct generalization of that 

given for the chiral. model in the previous chapter [54 0 57] o 

Equation (11) is equivalent to (2c) because 

Nowp we also have the relation 

~ o..a: = b- 1 ot:l ( :r dii J-') D 
So (11) has the equivalent form Bl] 

d'1 (J d\fJ-') + dol: (J di J-1
) = 0 

which is the integrability condition for the system 

( d~ - ~ df - t J df J _,) w = 0 

( dt +- * d\1 + * J di; J" -I) w ~ 0 

(22) 

(22 i) 

(23) 

(24) 

(25) 

Because of (22 1
) 0 these equations are clearly gauge equivalent to the 

pair of equations 0 which in addition to (7 0 8) give the linear system 

of Atiyah and 1tlard 1}. 7] : 

(AD" - b~) K (A) ::: o 

( ~ .D~ + b if) k (A) ~ o 

where K(~) is analytic at 

Now K{A::::l!O) = D-1 gand 

0 

(26) 

(27) 
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W ~ D K (28) 

Equations (23 0 25) together with the expansion (28) and the identification 

~~) ;;:. I dli I_, == d-z- xc-·' 
di) ;;:. :r ;j- J-1 :;:. d~ xr:•) 

~ 

clearly yields another infinite set of continuity equations 

"'I 1\&;_) + .., f\~) 
a'q <1 '1 o ~ (] t ::. 0 (29) 

This may be combined with (18) to give an S0(4 0 C)=invariant form of the 

infinite set of continuity equationso However 0 the set (29) is not 

independent of (18) 0 since the 'patching matrix~ 

which determines the vector potential at any point of the null plane [15] 0 

satisfies the identity : 

( 30) 

Analogous to ( 18) 0 we have another set of infinitesimal symmetry transform= 

ations [55] corresponding to (29) : 
,.... 
~J = -R:r 

1.111- A 
... -u 

(31) 

The generators of these symmetry transformations 0 together l1i th those of 

(19) 0 carry a representation of the infinite dimensional Lie algebra 

G ® ~(~ 0 A-1 ) 0 whose elements are Laurent polynomials in A with coefficients 

in the Lie algebra G of the complexified gauge groupo The proof of this 

statement closely follows the analogous one for the chiral model 0 and has 

been mitten down in the literature by Chau et al [55] 0 who have also 

considered symmetry transformations corresponding to real gauge potentials 0 

as has Dolan [?8] a The latter transformations take the form 

~:r:: - (J"S + RJ) 0 where J is restricted to be hermitian 

(for real potentials) and R is the hermitian conjugate of So We note that 

the former complex transformations are effectively-transformations on 

just ~o of the four components of the gauge potential 0 effected by the 

transformations: 

or ' 

for ( 31); 

for (19)a 
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Conversely0 the transformations for real gauge potentials correspond to 

transfm::mations of all four components of At"- derived from the transform= 

ations~ 

d D ~ S f5 

l'le note that all these hidden BJ1Elmetry transformations correspond to a 

left=action on DvD v whereas gauge transformations (10) correspond to 

a right actiono 

We conclude with the remark that just as for the chiral model case 0 

the transformations (19) may be expressed recursively in terms of just 

(J-1 J'4J) by using only (12) to define the Q in (20)o Then0 as before 0 

one may construct an exponential fonn of the function Q (a.na.logoua to 

(2=31) ) o Similarly0 W mey- be expressed as an exponential series in 

inverse powers of ) by integrating just equation (24)o We also note 

that the similarity to the chiral model extends to the fact that the 

lagrangian for eqo(ll) 

J... = +r- [ d'1 J" -I dq- J + d~ .:r-l dl J ] (32) 

is left invariant up to a total divergence under the transformations (19) 

-v.ri th Q satisfying just ( 12) [35] o 

Proof: 

fii;fr[J- 1J~tJd~S +J-'J~JJ.rS +4.c.] 

= +r f J -I a'f J dr; S + /1 J -I ()rJ d'1 S -+.A[ 'd~t (J-'JlJ)- 'di (J-~~~]~ +;.tusing( 2la); 

: ·k f(:-'d"J)(ai:fS +i).)-ls) +- ,)[J~ (J"-';)t-J· s) -di(;r'J~J.s)J+~.c.J 

= +r t- X ~ ("d~ - ~ d'1 ) Q (_ d'i S +A Jl- S) 

+ ~['d4 (.r-' CJ-e::f.S) - J.r (J-'J'1J.S}]Jt~.c.. o using(l2); 

=+{'A[ d'1 (GJ-' a~ ~) T - d-2: (Q_, a'1 Q )T + a'1 (J-'J~J. s) -d.t (J-'a'1J. s)] 

+ x [ &q- ( Q _, C>i Q) T - df Car' d~ Q) T J 
+ [ 'di (_Q-1 di ~ ') T - 'dl (Q- 1 ;)~ cQ) T + d~ (6[1 diiQ) T - 'd'f (Q- 1 d~ a;)fl] +~.c. 

The implications of this for self=dual gauge theories are not clearp 

since (32) describes a non=ga.uge=inva.ria.nt. theory g the gauge freedom 

having been used up in going to the manifestly gauge=invariant description 



in terms of the J=fieldo HoNeverv we m&y elsa note that the Yang=MillG 

lagrangian is itself a total divergence for self=dual fields 0 since it 

is equal to the topological density [51] g 

£ ~ 1-r- F,...v r. 
fAV 

I :: 3 +r f-"" v ra- rftAV rrG" 
-= 4 }-r ( !=' 2- r r ~ '1 t- r: q- 2- r:~~ ) 
= 4- +r ( d~ [ (aqA'1)A:c - l "dlj Al) A't] 

where we denote 

+ ~'i u~l fl,-) 11~ -[alA~) 4~J) 

Aet = J-' do.. J" . 
' 

Therefore under our infinitesimal hidden symmetry transformations 0 the 

full Yang=Mills lagrangian is also a total divergenceo However0 since 

3lo 

the topological number and Yang-Mills action cannot change infinitesimally 0 

both would remain unchanged under the above infinitesimal transformations 0 

unless these transformations gave rise to singular gauge potentials [see 
alao~l 0 56 0 80]}o 



32o 

The path=ordsred phase factor is a useful obj~ci for the elegant 

description of many features of gauge fieldso In fact it is a natural 

object to consider since 0 unlike the field strength0 it completely encodes 

the physical content of gauge theories in the sense that it contains ell 

the gaugs=invariant informationo There have therefore been many attempts 

to ~ite the theory solely in terms of these objects ~9=61 0 69] o It 

"tma Polyakov [59] l:rho introduced the remarkable idea that every gauge 

potential ~(x) with values in the Lie algebra of a compact Lie group 0 

corresponds to a chiral field "1-{C) on the space of curves (loop space) 0 

taking values in the holonomy group;; and defined by means of the path= 

ordered integral 

~(c) = (1) 

where C is a continuously differentiable oriented closed curveo He sho~ed 

that if the gauge field satisfies the full Yang=Mills equations 9 l:>,.c.-~v =o 9 

the chiral field ~(C) satisfies 
,.. - , ' 
bt-l"'lL,SJ 

S ?L,.. Ls) 
1:1here 

=- 0 

S'\t-(c) '\t--l(c) 
6 x/"'(_s) 

is the loop space connection form with zero curvature: 

~(s•) l="\} [3) - Dv (s) },._ (s') + [ F~(s), ~ (s')] ::. o 

( 2) 

(3) 

(4) 

where o,Js) denotes s 1 tJ'Jt .. ;.-.ts) 9 the functional derivative t~i th respect 

to the curve x~(s)o This identity corresponds to the usual Bianchi 

identity ~ [D,. f='~]:::oo The remarkable similarity between tt10 
~~r r·l v 1 - . 

dimensional chiral fields and gauge fields for d ~ 2 that these equations 

reveal was exploited by Polyakov to obtain interesting information on 

the structure of both classical and quantum gauge fieldso In particular0 

he shot~ed that in the case of 2 + 1 dimensions 0 there exist an infinity of 

functionally conserved currents 0 reinforcing the similarity with tt!O= 

dimensional completely integrable modelso 



Y!s shall first discuss the possibility of obtaining Polyakov 9 s 

functionally conserved currents from an action principleo The formal 

apparatus for the study of functional (path=dependent) fiolds uas 

developed some time ego by r.'larshall and Rrnnolil.d [66] 0 t1ho proved a 

suitable generalization of Noother 0s theorem for functional fieldso 

33o 

In the context of loop space fields 0 Dolan ~4a] ahotled that transformations 

of the path dependent field induced by transformations of the coordinates 

of the path change the lagrangian by a total functional divergence and 

the fifteen corresponding path=dependent Noether currents were constructedo 

Further 0 the existence of a higher symmetry of the loop space lagrangian 

was alluded too Hare we shall show that the reparametrization invariant 

lagrangian 1§4a] giving the loop space field equations (2) : 

( 5) 

is indeed unchanged up to a total functional derivative under an 

infini tesima.l transformation of the form n '1- = \l{ C.+b"C)-'4-Lc) = - '+ S[tj )t.J 
Ni thtmt thl'! n~e ryf' the eq_1_!~ti0!!.8 0f !!!OtiC!!. (2) p if s['lf;::::] ::::~::;ti::::fic:;; 

the functional differential equation 

) 

where ol. denotes 6/ox..Js)'P and ti.= x'i.. (s):. dxt_(s)/ds o 

Here S(~) is defined to be a power series in negative powers of the 

parameter 'If ; and is the generating functional of an infinite set of 

infinitesimal transformationso We assume that s(¥) may be written in 

the familiar form 
-I s('O = Q(11') T Q((() 

where T is a generator of a constant Lie algebra valued infinitesimal 

transformationo 

Then0 from (6) 0 Q( ) satisfies 

( [)~ + [:"d. + {) to d I - {) t, bD) ~ 0 

Now under an infinitesimal transformation l\ '\I- = -4 S 0 the change 

in the lagrangian density (5) is given by 

(6) 

(7) 

(8) 



6i ~ +r J j~s)~ ~~"" S"" S('6') 

Consider from (8) 

tr F~ o~ S = tr- f~ "lf' (to 61 S - t, b"o s) 
and 

+r ~oDo S = -f-r{~o ~0 ~ 1 S + (od.(l=o.S)~oo(I=J.S))~{: 1 + ;t
1 

ra..DoS] 
I 
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(9) 

(10) 

= +r \- F.& 1S- ~ ~"-&, s + ;t [ oL(S s) t-iij +-~~of) s) /_ (n) l t
1 

I J 
where ~e have used tLFt ~ 0 ~ an identity which is easily obtained by 

considering the variation of 'lJ- by an infinitesimal vector field §o=63] 

O~,,Js) '+ LS1 (_) ::: ~(f" ~ 1} l S 1 L) 
where a trace over the base point of the contour is implicit in our 

notationo Thus 

o'\.1-(s,C-) '\}-1(s,C) = ~\lt<r = ~ ; (12) 
6 X...v- (_s) 

l'lhich immediately gives ~F ...... = 0 because of the antisymmetry of the 

field strength tensor F,~Aif o Equivalently0 parametrization invariance 

yields 0= #;"1-(s,c.) = 
~~S 

c1 a;.... (s) .£ '\1-- [ s 1 C..) . 
d_S 6~LS) 

Now from (10 911) we obtain 

j o\..S ~-f). $ :::. h- r~ fr::. f v c- S Yt ~ t / ) JX•a(;) t t J"x•'fs) .;t I._IJ l:o o, - u 1 o0 S - t~ E1 S +"Crt, 60 S 

+ L 8· (j:. s) E .. ] ((t, t. J I 'J 

= tr u~s''(s) [ ~ ( "~ + 1(1;, o, - n,o.) Q _, ( (!' t,.- t~ ).5, s + { ;t,-n,)o. ~ 
+ ; t: b i.. ( F j S) E: 1 L j 1 D using ( 8) ; 

I 

= -\-r LFx~i($) 1 Cftj E:jl.tc_Oi. (b"rc.Q-1.Q) +k, f 1i.j 6j_ (5"jel2-1.Q) 

+ "}t; St_ ( ~J· S) f 1i.j +- fit_ l ~~ ~\p. oj Gl-
1
• Q - !~ €otj Oj Gf~ CQ ]J T , 

uei:ng (7) 11 the cyclic property of the trace, and the fact that in the 

integrand 

Now the antisymmetry of the integrand allows us to finally 'tlri te 
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\-!e may t-rri te the defining relation ( 8) for Q ( (() as 

(14) 

No~0 analogously ~th the case of the chiral model 0 if Be set 

&.;~. ~. '\i- _, = E .. &· x~\. (15) 
;}.LJ J (.. 

-N e x6)¥ _, x~)(J-l X(_N) 1) 
and Q = lim QN QN ~ e . . ~ . . . . . .. e (16) 

N-~ 00 

the coefficient of "'6° automatically satisfies (14) 9 a.llowi:ng0 recursively0 

an explicit construction of the coefficients of ~ ~ 11 
o v!e have thus shown 

that a power series solution of (6) existso Now we note that when (2) is 

satisfied9 the integrand in (9) is also a total functional divergence; 

o£ = 1-r S&..s 0;.-. (slw r: .... S(lf)1 
x.'(s);)., ') 

(17) 

From(l3,17) we may deduce that an infinite number of functionally 

conserved Noether currents existp since the integral over the pararnetriza= 

tion is over a compact domain for closed loopso We note that all this is 

valid as long as the path is regular and has no crossing points; this 

guarantees that end=point terms do not contributeo 

We note that (6) is just one component of the system of equations 

(oi.+crtjf.:jiC.S"tc.)s = -[~j_,s] J i::o,,IJ.) (18) 

first suggested by Polyakov [!9] as the linear system for (2=4)o The 

integrability conditions for these equations were checked in detail 

by Dolan @4b] o Sirnilarly0 (8) is a component of the equivalent linear 

system 

which has a form Which immediately yields itself to the algorithm of 

(19) 

~o] 

for the construction of the infinity of continuity equations ~9»65] o 

The parametrization invariance of '\t(s 9 C) implies that ti ~i Q ::. o 

(since Q("( = 0) = 't--1 
) in addition to t.:Fi. = 0 o T.herefore 9 the 



component of (19) in the direction of tL is ~ identityp le~ving only 

the t~o orthogonal components as linearly independent equationso The 

integrability conditions for (19) may therefore be considered to bs the 

conditions for the vanishing of the curvature on the t~o dimensional 

surface orthogonal to ti o This is the clue to the integrability of 

three dimensional loop space fieldsg since the equations of motion are 

seen to be those of an effectively wo dimensional theory o vle shall disclll.aa 

this in further detail in the next sectiono 

We may proceed to show that the symmetry transfomation ll \I- = -'4-s 

leaves the linear system invarianto Analogously with the wo dimensional 

ca.seg 11e take the variation of Q due to the infinitesimal transformation 

6(lf) 1t -::: - '4-S(l>) to be ~ 

tj(~) G (t) ~ ~~({ L S(~j- ~(~)) Q (¥) 

Using this it ie eaay to sho't1 that the linear system (19) is symmetric 

under the transformation "4- -:::> 1+ + 6 't- P proving that this parametric 

symmetry is a ayiiUiletry of the equations of motiono We raccy 0 in a similar 

fashion 0 obtain another set of infinitely many symmetries; genera ted by 

the transformation ll Crs) "4- = -"+ R.(o) 't1here R ia a po't1er series in 

positive po11ers of '5 v satisfying the system of equations 

The generators of these two infinite sets of SYIIUiletries form the loop 

algebra G ® 1R [X 0 '6-~o as may be demonstrated follo't'"!ing the analogous 

discussion of chapter 2o 

We remark that if we denote v then under the 

symmetry transformation v the change in Ft is 

~r:l =- s~.s + [~t_,s] 

= - lf t j ~ L j 1c, b K $ v using ( 18) p 

/. "') = .,.-1~ = ()' tj E:i.jlr.. 51( L"'--'"1-- g since S = .,.. r 

Thus t-re have the equations 

6i. ~. -\}- 1 - eSt. 11--. 11-_, =- <l tj f i.j k b"t< ( '\1-- _, "f:) 
relating t"tTO solutions "t and ~ of (2)o These equations are analogous 
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to the Backlund transformation for the chiral model exhibited in ~9] o 

To conclude this sectionv ~e note that the loop space symmetry described 

here does not seem to have any direct implication for the existence of 

higher symmetries of ordinary three dimensional gauge fieldso This 

is not su.rprising since the lagrangian ( 5) is not GqUal to the o:rdinary 

Yang~4ills lagrangian; there exist loop space fields ~ich do not 

correspond to gauge fieldso (The topological criteria ~hich distinguish 

loop space fields ~ich do not correspond to usual gauge fields are 

discussed in [67] v ~here it is shown that the loop space fields corres= 

pending to usual gauge fields are 'more continuous' than the othersv 

in the sense that if ~e have a sequence of curves ~ (parametrized by 

x~(s)) tending to the curve C(x~(s))v then x:(s) converges uniformly 

to xM{s) and the sequence t:;- :s dx~s)/ds is uniformly boundedo The 

authors of [61] claim that a field 1f-(c) corresponding to a usual gauge 

field is continuous in this topology of the space of curves; ioeo if 

C"' tends to C then "'{C"') tends to '\f{C) o) Ho~everv functionally 

conserved currents do impose (via higher Ward identities) strong 

constraints on the interaction bet~een closed gauge strings ~9] v 

~hich afterall are the objects expected to play the role of elementary 

excitations in the confining phase of the theory [6s] o 



~pome integrable chiral fields in three dimensionso 

(i) We have seen that the clue to the integrability of the functional 

formulation of three dimensional gauge theories i~ the fact that paramet= 

rization invarianco conotrains the theory to a two dimensional sub~pace 

of space=timeo In order to understand this 8ffective dimonoional reduction 

we Chooso to simulate the loop space linear system 

(6( t- ri + rt.j etj~tS~<.)Q =o 

by the ordinary space linear equations 

1- .:! I 1 :l., 3 J 

where the constraint 

V· A. ::: 0 
I. l 

implies that Vj_ 'd.: '\f- =- o o \'!e choose Vt to be a unit vector: vl= 1 o 

Eqo(l) 0 where At satisfies (2) 0 has the equivalent form 

[ "'\ + _!.._ ( 6 - '\ ~ · V .... ) ,(\- J 'H ;: 0 at I + ~ 'l. f.t II e_l'lo-\. L • ..,. l '1" 

since 
(o;_k. + ~ f:t.jk..Yj)L5k.t -A Erc.""'-e. v~ + A2.VtVe.J = 6u_ (t+~:l.). 

The consistency conditions for (3) are 

FtfM 

and 

or equivalently0 

9 a pure=gauge 0 and 

(1) 

(2) 

( 3) 

(4a) 

(4b) 

d;_ ( Vj At_ -Vi. Aj J =- o (5) 

\ole note that the linear system (3) alludes to a 0 duality transformation°: 

(6) 

mapping pure=gauge fields to solutions of (5)o 

(ii) The linear system (1) allows the construction of an infinite set of 

conserved currentso To ·explicitly demonstrate this 0 we first solve (4) by 

writing 

AI( = ~ ~ 0) 
- c-1< I'Y\ II\ v""' o"' cp 

which we take to be the first current: 
' 

J:(J) = 
I<. 

(7) 



Th , "f"(J) 
en0 ot< v I< :::. 0 if 
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(8) 

We note that unlike the case of the t~o dimensional chiral model 0 this 

first continuity equation is not the field equationo No~ 0 if ~e assume 

that in ( 1) ue mey lf.!':'.i te 

~ ~ f A-"' c.pCU\) 
) 

Cf( (o) 1 

then (7) is clearly the A =independent piece of (1); and 
(If\) 
~ satisfies 

the recurrence relation 

= 
The n=th conserved current is then obtained from ~(Vi) g 

J"(t11) 
~ 

= 

( 9) 

(10) 

.,..c .. ) t lie observe that '"'"- no only satisfies dl( T~"''= 0 0 but is also a solution 

of the equations of motion since d{ ( V'L J"lf"') - VIc.. :ri"')) ::. 0 

uhich may be verified by repeated use of (9)o This 0 houever 0 is not the 

only solution generating method available to these equations 0 since the 

linear system (1) clearly has a form which allows the construction of 

solutions using the Riemann=Hilbert transform (cofo eq.(l=B))o 

(iii) The consistency conditions (4) superficially represent the vanishing 

of the curvature of the connection in (3) on a 3=planeo However 0 because 

of the condition (2) 0 the system (3) only contains two independent 

equations for "!' ; the component of (3) in the direction of v, being 

trivially satisfiedo The consistency conditions therefore have the 

conventional interpretation of the vanishing of a curvature on a 2=plane9 

which in the present case is the two dimensional surface orthogonal to 

vt o Our theory is thus effectively a two dimensional oneo We note that 

if AL satisfies (2~5) 0 it also satisfies 

and 

V· 'd · (_v· A · - V· A · \ = J L. t. .) J L,~ 

V· F .. = 0 
~ l.J implies that 

V· d' "'. t L rtJ 

V V ""' . A . ~ 'cll· 1'\ t' = o j i. O'l J 

'd·v· A· J L · l 

So equation (5) may be rewritten as an algebraic equation for Ai 

(11) 

(12) 
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0 = d' V· A. ~ { <1· V· + ~. V· \ .q. - v. d. tf1 • 
l (. J L J l L J J L J l ,, L 

(all VI<. bl.j - ldjVi. + di.YjJ + Vj de_ vi VQ_) Ai. using (11) 9 

explicitly demonstrating that the components of Ai are not linearly 

independento The matrix acting on At may clearly be v~itten as & symmetric 

matrixg 

and as a trac®less matrix: 

{"dtvl< (6i.j -Vt,vj) -(';}jVi.. +di.VjJ + 'de(vjYiJVt)A.: = 0. (l3) 

Nm:rv if dtt vtt * 0 v ~e obtain a linear relation between the three 

components of Ai. 

AJ· == I r c d. v . + d. v . \ - dn ( y. v. \ Vn ?. 14 . (a,c vK) L J t L J J '<- J t J ~ J (. ) (14) 

~ich is completely equivalent to the equations of motion. We now observe 

that (11) may be ~itten 

(5·· --v·v·) d.rll. =o 
lj L J L 1'"\J 

~ere the projection tensor 

p .. 
LJ ::: 

Which has the properties 

) 
P .. V· ':::: 0 

Lj J ) 

may be used to decompose every tensor into its components parallel or 

(15) 

normal to v~ o Pij is clearly the degenerate metric on the 2=surface 

orthogonal to vt o We have alrGady e.lluded two the fact that this theory 

is actually two dimensionalo If this is true 0 vi needs to be interpreted 

as a Killing vector field generating an isometry of the orthogonal 

2=surface. In other words 9 we need to interpret translations in the 

direction of vl as either mappings of the 2=space onto itselfv or as a 

motion (like a rotation) of the space which does not alter the metric Pt.j • 

We consider infinitesimal transformations x\ --7 xl. + Vt o 

The condition for vi(x) itself to be invariant under this transformation 

is clearly 

::: v· "0· v. 
j :.J L 

:::.o (16) 



The Lie derivative of the metricp ~hich ~e multiply by a conformal scale f 0 

is given by 

VI( dl< ( ~ l 6ij ·- Vc.Vj J) + t di VI( ( 0 rcj --VIc VJJ 

+ fr 'dj v1< (15il{ -- V;_ vrc) 

The last term vanishes by (16)o Moreover0 if the conformal factor f satisfies 

drt. ( v1e. & ) =- o 

~ = E-k.t~M VIc de_ LLIM 

which implies that 

v,._ dtt ~ f 
then (17) vanishes if vi satisfies 

0 for some ul'4 0 

"d~vJ + dj vi. = ! 9i.j dl( Vrc_ j JSiJ = G (vi.vJ -<f,_·j) 
1 

(18) 

ioeo the conformal Killing equation (see eogo {]33])o 

1-le also have 

8A l. ::: iv Al. = VJ· dj A,:+ Aj ';)ivJ· ~ 0 p since v·A-= Op Fi.j = 0 o 

Since the pure=gauge At. is left invariant 0 the transformation x~ ~ Xc~ vi. 

is clearly a gauge=covariant conformal transformation (cofo '1fj3] )o 

We note that (16) together with v•A ~ 0 0 implies that (15) is equivalent 

to 

'd· A· -::: o I. t 

' 
(19) 

the chiral field equationo The condition (16) 0 ~ich is necessary for 

(19) to be the equation of motion 0 is precisely analogous to the condition 

implied by parametrization invariance in the case of the loop=space 

chiral equationso 

We no~ consider the action 

(20) 

~here Tij is an antisymmetric tensor field satisfying AtT(j = 0 o 

Varying At gives the equation of motion ) 

and varying T~ yields F~ = 0 ; equations similar to those under 

consideration (4a0 5)o We note that if ue choose a particular solution 
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v~ = x"/r P (a choice which is similar to the loop tangent 

vector tt = dxt(s)/ds ) 9 then (20) may be identified with the chiral= 
OD 

if TtJ· (K) = J, ct~ ~ (Ki. Aj (~lt) ~XJ Ai(~x)). 

The proof follotls [84) o The condition voA ~ 0 is clearly just the 

coordinate gauge condition xoA n 0 9 which implies that 

Now [84] 

Sol\ A;A[ = s c.( ~X s~ &0( 0( Xt: ~='rc l (o< x) A i (x) 

-=- i ol ~ )( ~ & ~ ~ J: d. 0( '11( {:!( i ('1) b ( ~ -~X) A i (X) 

JJ3 '1 lft(.ri<...:C'f) S'ota( 0(-
1 Ai_['1/o<.) 

D 

=- ~ Jol~'f f~ tt~ ~ !:ij L'1) L~ll\i (~'t)- ~ 1.\i (f3~)) j 

::::.. f ct 3 '1 ~LjC~) T.:j L't) ioeo (20)o 

(iv) To conclude 9 we note that the Ernst equation for stationary axisymmetric 

gravitational fields m8i}' be retJri tten in terms of the type of chiral fields 

we have considered in this section (cofo [82 9 85) )o We may immediately 

obtain equations for such cylindrically symmetric chiral fields by making 

the choice g 

Moreover 9 our discussion may be extended to an n=dimensional space 9 as long 

as we reduce the effective dimensionality of the problem to two by intre= 

ducing (n = 2) commuting Killing=vector fieldso For example 9 in four 

dimensions we may start with the linear system 

(oLIN\ +A f-.:jtc..IM Vj l...t~t..J diM lp =- -A i.. '+' ; \1
1

-: l ::. Lt ,_.I v ·U.. = 0,) V·A = 0 ':: u-A . 
The consistency conditions for this system correspond to equations for 

chiral fields ovsr a 4=dimensional space=time admitting two Killing vectorso 



Supersymmetric gauge theories have a natural formulation in superspaceD 

o The gauge=covariani derivaiivea 

may be 1.1ritten 

\)c<s = ~s + A; 
Dc{s = ... ~ct +- i.e ~s oc.(o. ) J5:..t = - ~. -i.e; c)....,. 

ovs ,.. ,... a e ,at (il 

realise the supersymmetry algebra 

f 1)3 J i'\~ 7. :=. 0 - [ 'i\. " 2 ... u,... j - Ups.~ u.;_,t S .J 

.s 
and ~P P A~ D A13 t are the Lie algebra valued Yang=Mills euperfield 

potentialso The above gauge=covariant derivatives yield the superfield 

curvatures of the theory (1o] 

fv.s vtl = j:st l 'V~s \7 lit 1 :: r:o(s, ~t: (1) 
c( J ~ o<r-> " 

[vpA,v:] s 
[ \7 I" J v fot ] r-,.._ ~~~ (: 1 [ V ,_ 

1 
V v] ::. ~v (2) = ~=r~ = 

) 

and 

l \Jots, V ~t } [ J)~ J b~t 1 s ~ s 
~ fA~ I A~tl - + l)ctl A~t + :b;.t A<>( -

= f:~J ~t: - Ji. \!<><~ b st (3) 

since J::,~t = JJ! A(3t +- 1)!3t A-! + t A: , A ~t 1 + ~ ;_ A<>< f. (4) 

The latter relation determines the vector potential A~~ in terms of the 

spinor onesD so the theory in texms of the above six curvature forms 

is highly redund.ant 9 allowing the imposition of extra constraints amongst 

the curvaturesp ~hich do not put the theory on=shello For N o 1 9 2 9 the 

usual l]o] constraint equations are 

l='st + ~-ts 
el~ C(_~ 

:::: 0 

rs . -- o 
r r:t:' ~t 

(5) 

It is knom1 [71 D 72] that for the maximally extended cases of U ::-. 3D4 (these 

being equivalent)P these equations put the theory on=shell (~thoutphowever 0 

trivializing the theory)o ThereforeD for N ~ 3D4 0 the equations (5) are 

analogous to the self=duality equations of ordinary gauge theories9 they 

provide a non=trivial on=shell sector of the theory in terms of algebraic 
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~elations amongst the components of the gauge curvature foxmo 

Recently 0 Volovich ~3] wrote dot~ a set of linear eqmationa for the 

spino~ connection A! v A~~o uhich have equations (5) as consistency 

conditionso In this chapter 0 ue first intogr~te a subset of the equations 

in ( 5) by introducing ttro independent gauge functionao The remaining 

equations are then reuritten in a. manifestly ga.uge=invariant fashion 

in terms of these functions 0 Bnd follo'tring the approach of Volovich0 a 

linear system for them is 't1ri tten douno This reformulated linear system 

may be used to construct an infinity of continuity equations for super= 

symmetric gauge theories 0 since it yields itself to a modified version 

of the algorithm of ~OJ P which t1e discussed in chapter 2. The formulation 

given here is very similar top and is suggested byp the manifestly gauge= 

invariant formulation of self=dual gauge fields [?ov 51] ;; the so=called 

J=formulation of chapter 3o We also shcm that in the sector of ( 5) 

describing self=dual gauge fields [j4] 0 our formulation is equivalent 

top and is thus a consistent generalization of 0 the J=formulation. 

\'le choose to solve the following subset of equations in (5) . . 
!=" s~ 

II 
~ 0 = r= .s t 

;12. 

~s . = 0 = F; .ie 1, It J 

by writing As ~-I ]) ~ j A;t: - j-1 b;t 3 ::: -
I ) 

As = ""-1 j)~ h. A,H = k-1 ]).it k 
J. ) ' 

where the superfields g and h are arbitrary elements of the gauge group;; 

and they may be expressed in terms of Lie algebra valued prepotentials 

conventionally used to solve constraint equations by relations of the 

form 

v, - D, - + j-1 b, ~ :;:: e-l.tD,t 4 

\7J. -::.. D, +- "'-~' b ~ - e-v Dl. e.V v etco 0 2. -
trhere U and V are ttro independsnt prspotentialso 

We note that because of the definition (4) 0 the relations (7=9) imply 

a pure=gauge form for t'tTO of the vector potentialsg 

(6) 

(7) 

(8) 

(9) 
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) 

leaving the other tt-ro 0 A1i and A_,i 0 undete::rminedo The remaining constraint 

equations are~ 

r::st 
ll + f:' "t s ,., =o (10) 

C:;s,:lt + ~ .. f_ 1 ;is ==o (11) 

r: jt =- 0 = ~s . 
(12) I :J' II; 

We no~ note that since gauge tr&nsformetions correspond to a right action 

of the gauge group on g and h 0 the matrix B s g h=l is manifestly gauge= 

invariantp and in tenus of i t 0 tre mczy t-n:i te 

F s~ 
ll :: ~-I f D~ ( 8 D./!?> -•)} ~ 

~=",.s, ~f: ::: ~-I f D; s ( B i5 j t B- ') ] j 

F,s, at = ~-~ f D~ ( B D~t: 8-1
) + ,;H o~ ~~~} j 

F;_,it :. S- 1 f D;t: (BD~ 8-
1
) ~ ~i o~ '\J:Ji} ,3 

We may therefora rotete (10=12) by the transformation l"J'hich takes the 

(13) 

(14) 

(15a) 

(15b) 

pure=gauga potentials A~ 0 Ait: and. A1j to zero; obtaining a. set of equations 

for the gauge=invariant field Bp equivalent to equations (10=12): 

n;c l3bi s-•) + n;(e.D;s-•) = o 

Dis (13 )).it B-') i- D;t l B bls B-0 = o 

j)~ ( 8 D.lt B-1
) + ost: ~i ;] Vd j-1 = o 

5fs ( B j).:t B _,) +- at d2.i j \/.J.; 3-1 = o 

We observe that equations (16=19) are consistency conditions for the 

system of equations: 

(16) 

(17) 

(18) 

(19) 

= (b~ +- ~ D~ + ~ B])~ B-
1
) ~ = o (20) 

= (D;it + S.Dj., 8- 1 + A-.l iiuJ 'f -= o (21) 

= f (dr:i + ~ v, i ~ -•) +.A ('d~i + 8 d~i s-I)+A-:a J.; +A_, (dai + j v::li j-J] 'l=D(22) 

since (20=22) result immediately from the algebra~ 

[ Ls L-t. 1 -= o ~ [ M M 1 . 
1 J S .J t .} 

(23) 

The linear system (20=22) may be obtained from the one given by Volovich 0 

~lhich ~s choose to ~trite as: 

X3 '-l- :. ( v,s +- .A Vz.s) \y =- o 

'1~ '4 -= ( Vit + A- 2 Vit)'} :: D 

(24) 

(25) 



I\/ ' ' n + ,-1" +- ,-," .. ,·) "+' = o L I i "7 .A v li /1 v d A v"'" 

if the constraints (5) are satisfied) 0 by performing the above gauge 

transformationp since the tuo systems ar~ related thus: 

) 

l"Jhere [ -::.. ~ \} and the ga.uge .function is given by 
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(26) 

.9-•;;: '4--(.:1=-o), (27) 

uhich is consistent uith the normalization: ~(~= o) =a 0 

We note that if instead of (27) we choose to rotate (10=12) by the 

tihere ~(~) also satisfies (24=26) 0 then0 since we have relations of 

the form 

j:St 
ll 

j 

corresponding to (13=15) 0 eqso(l6=19) have the equivalent form 

})~ ( B _, Dt B) + nclt: C s-• o,s s) =0 

1):- (g-• j). 8) 
.;IS d: + n.l! (_g-• fi;s s) = 0 

Djs ( s-• D,t: B) + 5t 
s :J.i. k \!·k-1 

/;! =o 
ns ( g-• O;t B) + 8~ o2 l. 4.. '\} ' 4. _, =o .:1 :ll _I 

for t1hich 1:re have the linear system 

(28) 

(29) 

(16°) 

(17') 

(18 1
) 

(19°) 

L' s d) ::: (8>; + 1\-1 
]),

5 + A_, s-· 1),5 8) ~ = 0 (20 1 ) 

M~ ~ =- ("A). D~t + D;t: +- B-'i5,-tB)~ =o (21') 

N'p ~ [~(J,i+LtVdLt~')+ i 1
c?;).:i +;)-'(J,i +lr'J,iB)+(;).);+L..v:tit;9}~=-o,(22°) 

where q; = h.<.f> , ~().-::ad)= .1l. 9 and 1° 0 M' 0 N° also realise the algebra 

(23) as a consequence of (16°=l9°)o 

We now proceed to construct an infinite set of continuity equationso 

For explicitness 1:re choose to do this for theN= 3 theoryo Our discussion 0 

however9 is valid for aQy N0 since in what follo1:rs one may delete all 

terms uith the index s 0 t = 3 and then those with s 0 t = 2 to successively 
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reduce the theory to N ~ 2 and then to N 8 1 o Furtherv the generalization 

to the manifestly N ~ 4 theory is obviouso We note that (16~17) may be 

solved in terms of tt1o functions of the superspace variablea 9 X(l) and J!.~) 0 

dofined by the relatiol1ls 

so; s~' -· l)s X (1) (29) I 

!?>iS"· g-1 =- 5· xcl.) (30) J.t Jt: 

~ similarly9 (16'vl7°) may be solved in terms of t~o further superfields 

Y{l) and yet) defined by 

s-• n.t s = J)~t yO) 

s-' D;~:: B = '15;t lj(2) 

We no~ define functions s 
u<( o 

s v<( v u<tt o V.t-t by the relations: 

v~ =- u! - JJ: t 0) 

v; ::. v./· - ~' t{j) 

u' c( = Ll; - 4e3 llJ) 

v~, - Uc(?. - 1) . r_£1.) 
#(;]. 

v-< l ::. Vc<3 - D l 0 ) <iU 

Ljc( I = ~ol.l "f) :z_C~) - c(3 

s ( s - ) ~ere ~ llA ::. Do( .~ D~t J 

D~ ::z.(l'l) = r! ·1"') · 
, L V~ l\ for t\ .=. I 1 I 

= !)As '1(111
) for A = J., i 

The first continuity equation immediately follo~ since ~ = U + V 

is a conserved spinor current satisfying 

( 31) 

( 32) 

(33) 

~ ( n,s ~; + )) i a ~ + ]); s ~; s +- ]) £1 s J ;is ) ::. 0 ( 34) 
s 

It is now clear that an infinity of currents ~(Ill} 0 n = 1 0 o o o o o o o 0 ad v 

may be iteratively constructed using the functions d-~59 ~~ 9 i-~P vi~) 

defined by relations of the form (33) with superfields ~> 9 y(~)satisfying 

the recursion relations 

D s XC"') 
I 

.:: [ D{ +- ( ~ D} ~-~ )] x(!o\-•) (35) 

Dis >f~) :. [fiis + ( 8 D.is 8 -')) X(P\-.a) (36) 



1). \./C<-1) = 
.;IS I 

[D; + ( g-r D,s B)] \lVI-•) 

[ Di ~ + (g-r D;s B)] "1 ("'-a) 

(37) 

(38) 

r!e nou denote d D u p v by t')D uil)p f!)respactivelyo Setting .f'>:::: :11 :':! y_{O) 

in (35=38) yields the previous relations (29=32); BThd it is eaBy to Bhou 

follo~ng the above procedure and using the equations of motion (l6°=l9°v 

16=19) 9 that relations (35=38) provide a continuity equation of the 

form of (34) for each no 

The recursion relations (35=38) may be obtained from (20 9 21 9 20° 9 21°) 

by performing the power series expansions 
co 

= l ~"' xc.,> 
111::.0 

00 i' _., 'f(n) = L 
"'~O 

( 39) 

(40) 

It is therefore clear that a complete set of functions £~~ye.,~(n= l 9 ooo•o~) 

will exist as long as Y: is analytic around the origin of the complex 

plane, and ~ is analytic in a region containing /l=DC~ o We n.ote that 

in addition to (36 0 38) 0 the linear equations (21 0 21'), with~ and ~ 

given by (:~9s-40) also imply that the original functions xC•> and' f') sFLti rsfy: 

---j). xC•) = 0 - D. uu) 
IS - .;IS -, (41) 

Further~ the relations (29-32) solve all the equations (16=190 16'=19') 

as long as ,9? and ?f 0 represented by the expansions (39 0 40) 9 satisfy 

(22,22')o We explicitly check this claim for the case of eqo(l8) by 

inserting ( 30) : 

D/~ ( BD.:it. a-•) = - D,5 Dit xCa) 

= cs .., . "' . X~) ]) D s X (J.) 0 -t O(L 0 11 + it I 

= o~ Ji.(adxa)+ a~;x 0 )) +D;t("6b]lr~xc'JJ 

where we have used (35)and (41); and using (29) we obtain 

D~(Bb.it~-') =&~.Ji. (d,iX(!l.) + :?Jdli'Xl') -ddXc').XOJ) 

= o~ d.i. ( drf x<1-' + :iJ.i xM + 8 vdi 3-'.x(J>), 
where use has been made of the coefficient of ~-·in the expansion of (22)a 

Now using the A=independent piece of (22) 9 viza 9 

<J,ix(a) + ( d.li .,.. 5 v.l( ~-') x(l) + ~ vd 9-' = o 
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110 o b ta.i.n 

D~ (B Di-t B -1
) -

"l"t r;S n l 
ot. Ot_jVt:i.j- p ioeo eqo(l8)o 

verifyilr'!g that the e:Kpressions (29p30) solve (18)o 

We have oeon that the expressions (29=32) tihich solve the constraint 

equations are just the ~=independent parts of the linear equations 

(20 0 2lp20° 0 21°)o We m~ generalize (29=32) by tlriting a ~=dependent 

solution of (16=19 916'=19 9 ) ~ 

(Bo;s-•) = A- I ~ ( b( + A D1) ~-I 
( B D5t B-') = ~ (~t + A- 2 ~·t )l.r-' 
( 8-1 D~ B) = ~ ~ ( D~ + ~ _, D~) ~ _, 

( B-' D;t B) = ~ ( :2- )a>-' A D.2t + .D it 

where fF 0 ~ satisfy (20=22 0 20'=22 1 )o 

(42) 

(43) 

(44) 

(45) 

Transformations from one ·order in A to another on the right of (42=45) 

correspond to Backlund transformations since they relate two solutions 

of the equations (16=19 916'=19')o The infinitesimal forms of these 

transformations are the symmetry transformations responsible for the 

above infinite set of nonlocal conserved currentso The situation here 0 

as in all the cases we've considered in previous chapters 0 is very 

reminiscent of a common feature of all the two=dimensional integrable 

soliton theories: the transformations which generate the conservation laws 

provide the key to the transformations which generate exact solutionso 

Under these (infinitely many) infinitesimal transformations we may 

define the variation of the gauge=invariant superfield B to be of the 

form 

p n €. 71:
0 

S(.-.) = 0 for n<0 9 

RC~>= 0 for n)O; 
(46) 

were S111\,R(ra) are Lie algebra valued nonlocal functions6 

In terms of the generating functions for $-"'>and If"'): 
coo 

il"' s ("') "<< 
~ _., R (n) s = E R :;; > ~'~:::o ) 

1'\=0 

we mccy ttri te (46) as 
00 

?/VI) 8 BR) 6B r - - ( S B + (47) -
II\:. -c() 



We shall notl shou that these transformatiofl~ are eymmetries of equations 

{16=19 9 16°=19°) if S and R have the familiar structureg 

S ~ ~(i') T g;(A)- 1 
(48) 

R = ~('IA)T ~{~)~ 1 

a constant Lie algebra valued matrixo We first consider transformations 

(46) for n~O o The generating functionS given by (48a) for these 

infinitesimal transformations satisfies the equations 

(49a) 

(49b) 

(49c) 

by virtue of eqs{20~22)o Now9 under the transformation 68 = -sB v the 

variation of eqo(l6) is given by 

D;s ~ ( B b;) B-' ) = D~s Dlt:) S + 'D,(s [ 8 {);) g _,, S] 

-- D~t-D~)S - [ Bb}t s-•, D~)S} o using (16)9 

= 0 9 as a result of the consistency of eqso(49a)o 

Similarly9 (17) is invariant under these transformations as a consequence 

of the consistency of (49b); and the invariance of (18 9 19) follows from 

(49a=c)o For instance 0 we consider the variation of (18) : 

'D~ ~ ( 8 D.lt IS_,) = D; Dj t S + :D~ [ B D2t: B_, , s] 
= - ~ l b '\ ( d d s + r ~ v-,2 ~r· , s J) 

- (n~t o,s s + f BD.;t s-•, .D,s sJ) 
= - ,} L ~ ~ ( d I i s + [ ~ V,i ~ _, 9 s J) , 

o using (18)9 

(50) 

since the remaining terms vanish as a consequence of the consistency of 

(49) o Now0 since the transformation o B =- S B is effected by the 

infinitesimal transformations: Of! =- S3 , f) I., = 0 ; 't"!e note that 

b(<jVd.~-·) = ;;>,aS+ [~V,l~-·?sJ 
Eqo(50) therefore implies the invariance of (18)o 

We ma;y now consider transformations (46) for n~ 0 given by 8f3 ::-BR 0 

resulting from the tranformations b~ = o , ~ "'- =- R h. ; with R given 
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by (48) satisfying 

[L's, S] .:: o :: [ M ~ , S ] = [ N ', S J (51) 

as a consequence of (20 1 =22 1 )o It is clear that these infinitesim&l 

tramBformations ~ill leave (16°=19°) inv&riant as a consequence of (5l)o 

Above 9 ue have used the fact that under the transformation (46) 0 

&( Bb~ 13-1
) = "b~ S{~t') 4 [Bb~ B-', S(),)] + BDl R(>.) &-1 

(52) 

Using (52) tle may notl evaluate the variation due to (46) of the functionals 

lf and ~ 0 -which are formally path=ordered exponential functions of 0 for 

instance 0 BD~ B-1 
and B-1 D~ B 9 from ( 20) and ( 20 1

) 0 respect! velyo We choose 

to split (46) 0 denoting transformations corresponding to n~O by 

and those corresponding to n ~ 0 by ~/(/!) B = - S[;..) e, 

o-C>t) 8 = - B R.C~) o The change in \[ and f ma;y notl be determined 

iteratively (follotling the procedure of [33o34] ) starting from 

6 + ( y..) x c d ::: - JA-' s ( ,.,._) S -(r) .._,c,) = r R. {,.. ) ) 

~ich may be obtained directly from (29 0 31) (the first terms in the potler 

series expansions of (20 0 20°) )o Explicitly 9 

l>~ f>+ X Ct) = b"+ (& D1 B - 1) :;: - JA-
1 D~ S (/'1-) 

9 from (52); 

and similarly 9 

b1 c;- '-1(1) = 8- ( g- 1 b,s B) = ~A D~ R (~A) 

We may similarly evaluate the change in every coefficient i~"~~ i"'> using 

the recursion relations (35 0 37); and summing these variations tle may 

obtain 

8 + (r-) 'f (;.) = ~ A ~ S" ( r-) XC"' ) : ~ [;\ i IS + 8 + ( r-) B] - \f [ ~ i S] 
.,:o 

= -J=>. ( S(~) - S(A)) If ()I) 

6- (tv-) Q2 (A) - ~~A ( rz (r-) - R (X) J ~ ().) 
s -( r-) 'I' (A) =- -1'- A c 8-' R c~"-') B - s c~)) q::, CA) 

b-t-(r--) ~LAJ::: =-L ( B .S(r-)B- 1 -RO)) ~[)I) 
fA->. 

(53a) 

(53b) 

(53c) 

(53d) 

The proof of these expressions follotlB that for the analogous expressions 

in the models of chapters 2 & 3o We now observe that because of the form 



of the vari~tions (53) 0 the infinitesimal transform~tion (47) is a 

symmetry of the linear system (20=22 0 20°=22')P and this symmetry of 

the linear system is the source of the hidden symmetry of tho con~traint 

equations (16=19 0 16°=l9')o We Gxpliciily d~~onatrate the invariance of 

the linear equations in tuo specific casesp the invarianco of the other 

equations being verifiable in a similar fashiono We first consider the 

first=order change in (20) due to the transformation E/(r-) B = -S(f.) B g 

~-t ( r.) t Ls(>.') tf (,~) 1 = (D; +;.) D~) 6-t(~) ~(A)+ ~ o+(M){ 6 D~ g-'). 9:~) 
+ ,t) ( ~ b~ g,- ') ot !A) ~ (A) 

:: f~:~ (D~+;) o~)s(tA)- ~ D:s(f--) +j_: [sn~s-•, S(r-)] J ~c~;, 
using (49a) 0 (53a) and (20)P 

"' /"'~;=;.) r ( D', + rJl~) S (/-'-) + t- [ B D~ 1!, -•, S (r-) J } 
= 0 0 by (49a)o 

= 

Similarly 0 

o-(r--) lL3(.A)~(A)1 = (D,s~~D})5-{~)\J()) +~ 6-(f'-)(Bb~ES-') q:(tl) 
_,_~(so; s-') o-{JA) !I(A) 

,.. " - ~ . - . ' -::: l JAr~;\ ( D-, t-,A D; )( 8-'R(fl"-)8- S(A)) -;._; [Cs-' R(J-..)13 -5~)), BD~s-J 

+ A 8 [) ~ R ( ~) B -I ] ~ (A) J 

from (53c) 0 (52) and (20); 

f 8-' (o; q D~)R(r-) l3 + ,;JB D; R s-' 
- [ ( 8 _, D

1
s 8 + ~ g _, D:~.s B), 8 -r R B] 

- .A [ B -I R(f'A) B , 8 o; B -r] } 'f p using (49b) p 

f B- ' ( D~ + r- iJ~) R (JA) B + 8 -I [ s -I o ~ 8 , R (r) J B ~ 
P by the expression for R analogous to (49a)o 

The structure of the symmetry transformations displayed by (53) is 

almost identical to that discussed in chapter 3 for the case of the 

self=duality equations 855] o It is therefore clear that ~e may define 

the infinitesimal generators of these symmetries: 
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= ~ d 4- x o ~N & d ~I\;) e 

r 
D"o.. B 613 

(_ s~ B t- B Ro.. ) Jf6 

53o 

1:1here \:!e have expanded the transformations in a basis of the Lie rugebra 

Gp and considering the composition of tuo such symmetry operations 

(clearly given by the Lie bracket)g 

;:: iM~()) M.b (JA.) 

= J d'~-xd2.r-.l&-d~I\Je [~ (>.), (S 1,.(r-)B+-BRb(r)fsJ4) 

we ma.y9 using (53) and follouing the arguments of chapters 2 0 3ol [45 0 55] 0 

show that the coefficients of A~~ on both sides of (54) realize the 

loop algebra G® (C I) 0 ~-'] 9 ( "tThose elements are Laurent polynomials in /I 

~th coefficients in the simple lie algebra G ) 9 ~th commutation relations 

-~ <~,11'1. < ~ 
J (55) 

1:1here CIA.bc. 
0\. 

are the structure constants of G;and the Mo.. are 

coefficients in the Laurent expansion of MIA. 0 the infinitesimal operators 

of the symmetry group: 
0() 

) 

The remarkable similarity to the self=dual pure gauge theory displayed 

by the features described in this chapter suggests that a solution on 

the lines of [17] is possibleo With this tantalizing prospect in mind 0 

we note that the matrix 

is an integrable phase factor9 and identically satisfies 

( D ,5 + .:1 b~ ) G- = o 

( D.i ~::- + ;) _, D;t )0- =- o 

(;),i ~ ~d~i +.A-'d.J.i +~- 1 d,i)& =-o 

(56) 

(57) 

as a consequence of eqs(20=22 0 20°=22 9 )o However 9 the geometrical signifi= 

cance of (57) is not clearo In particular0 whether or not gauge potentials 

constructed from the factors of G in (56) would correspond to vector 

bundles over some supersymmetric twistor space [e1] is not immediately 



apparento Hot1ever 0 1n a previous paper [74] 0 Volovich has suggested a 

supersymmetric version of the ADHM construction [18] 0 where the spinor 

connection0 in addition to (5) 0 satisfies the equation: 
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(58) 

~hich 0 taken together ~ith (5) 0 implies that the vector superfield curvature 

is automatically self=dualg F...._,., = * F,AA.v o In [73] Volovich also indicated 

how the linear system (24=26) could be modified so as to incorporate (58)o 

In our formulation 0 this modified system m~ be ~itten: 

(D,s -t '). bds + il & })] s-•) i =- o = (n.it + B Djt- ~-·) 'f , ])it If =a , 

[ ~d + 3 "•i 3-1 + .A ( d;).j_ + ~ V.ai ~-·)] 'f = o 

[ dii + /\ (;>a i + j v .1 i ~-I) ] ~ =- D 

(59) 

(60) 

We note that ( 22) has been split into ~o equations ( 59 0 60) o NOWp compa= 

tibility of 

A,~ ;::: 

yielding 

all these equations clearly requires that 

~-· dd. ~ / 9 "•:t 5_, =-o ) 
A.;t; 

[ d1i + A (d;,.i + BJ.;J.l. e,-•)J ~ =- o 

[ ;},i + .A (dJ.i + ~ dl.i fS-')] lJ = o 

; !, _, d.li 1.. 

j 

) 

(59') 

(60 ') 

a form which clearly implies that the superfield F~~ is self=dual;(cofo 

section 3ol)o Using (59'v60°) we may generate 0 following the procedure of 

section 3olv an infinity of vector supercurrents ~"'"(satisfying 'd..,..~""'" ::: o ) 0 

in addition to the spinorial currents which may be deduced from those 

displayed aboveo All these form a supermultiplet satisfying the conservation 

la't1 : 

To conclude 0 we recall that the constraint equations ( 5) only imply the 

YangbMills equations for the maximally extended (N = 30 4) caseo For this 

case 0 therefore~ the conservation laws we have displayed are analogous to 

tho conserved currents to be found in two dimensional completely integrable 

supersymmetric models [75=79] v and we may expect them to be of relevance 

for the quantum theoryp particularly for the finiteness of the maximally 

extended theoryo However0 the implications of the features displayed in this 

chapter for the N = 1 and N = 2 theories remain obscureo 



Ch~pter 5~ Gauge theories on a straight=line_JLa~o 

We consider the non=integrable phase factor of gauge theories ~2] 

on a line connecting points x and y in (complexified) euclidecu1 sp&ce~ 
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'il.. p 5 '* A. cbt JL,·rM.. lL \ L " ;;: ell = lY. '+- Y.. ..... 1': ,.. 
lC,'1 N4~ )f,}l, Jll')(.l )(.?.,x3 · · · 1tt>J .. ,,Xrv )(N,'i 

::. titM eA{}!).()(,-')() A()(,).(Xa-X,) A(XN).('-1-XAJ) 
1\)~00 e . ___ ..... _ . e_ 

~~ f c' + A a)- (xI -x))l I+ A6<,). (xL -x,»- . -.. ( l+t\(xru)· ('f-KN~l~l) 
with a vie\1 to studying its path dependance (ioeo non=integrability)o 

We recall that for (anti=)self=dual fields 0 with the gauge connection 

taking the form [j.e] 

Ar (_x) ::: v(x) "t d,...._ v (x) ., v+v = 1 

the path=ordered phase=factor has the manifestly path=independent 

representation [?6] 

4-)(' '1 

where the path between x and y is restricted to lie on a null=plane 

in complexified spaceo This is just a consequence of the fact fJ.5] 

~:iu:d .. the self=duali i;y equaiiions are just a statement of tne vanishing 

of the gauge curvature on anti=dual null planes in elf. o The form ( 2) for 

local gauge potentials is valid in the general case (ioeo it is not 

specific to self=dual connections) (aee [87] and references therein) 0 

and we shall use it in ~at followso Here v(x) is a complex Nxp matrix 

satisfying vtv = lip ; and a right action on v by an element of the 

gauge group corresponds to a local gauge transformation of (2)o We 

shall also use the manifestly gauge=invariant N x N 0 rank p projection 

operator P(x) = v vf 0 which projects onto the N-dimensional subspace 

of q;N+P spanned by the column vectors of Vo P(x) =- P(l(yt-. 

(2) 

( 3) 

We begin by considering (1) with y = x Y 2a 0 where a is an infinitesi= 

mally small distanceo Then0 

A~ ) .(.1c..) -t 
= v ex) e v ( )( +:le..) 

\ie l:JZ'i te A(x) = v'tv' P v = v(x) P vlc...:: v(x+2a) 0 

~hera the prime denotes differentiation along the line from x to x+2&o 



Theng performing a Taylor expension about x g and expanding tho exponential 

in a power series in a 0 we obtaing to O(aa) ~ 

7 I 

,.... v e :t~ v v (. v t -}- ~ tt. v t' + e1c:~t l. v+- ") 

- v ( 1 r- :J.o..vrv' +JOt a. vrv'vfv')(vr+-'J..o...vt-'+ d"-t.vt'') 

P + J~ p p I + .;t_a._ '2.. p p II _ q_).. p j'J t/ p 

+ Cl '!. ( V V t II p - p V II v t-) 
t'Jhere P = P(x) ,. v vt" 0 and P4 = P implies P P1 P :a Oo 

\"le note that since (4) is hermi tianp we have 

v vtu p P v '' vt J pr = p 0 

Also 0 since ,tp a vt 0 we may 0 at will 0 multiply (4) on the right by 

P.:te... = P(x+2a) o 

We now observe that 

PIc " nn1. _, 0011 )/ D, "- n1. '"l-:Lnll ~ P 
' l_ I +- r::JJA .. ,- r -r '-'1... I I .Jl ' I o<-"'LI T 0'-q I ./ '.14. 

(4) 

p c p r J_ &:._ p p I r J_ ~ 2.. p p II -f- ~<:\_ 2.. p pIp +- t::l 'L P p II p) ~ "t 

P(P t-Jo...PP'r-J.~l.PP 11 -4..'-PP"1P.)~f!.. I ~ s~nce P P P = Oo 

Comparing the latter relation with (4)v we make the identification~ 

v[x) t.r><,X+)A. v+(x+:la..) ~ P(x) (~ P(xt--et.) -I) P(Xt:J.e..) (5) 

=- - PCx j ~ F (lIT PCx+~)) P (x+ .le..) • 

Nm10 to order aa v we note several eqill.valent forms of the right=hand 

side of (5) : 

P [ x) (:t P( 1t +"'-J -I) P(x t-.;2t.t.) =: PCx) ( i - -h PC X r.la..) P(x) +- P(x) P(xt:2<i» P{'x+~ 

- (i P(x) PCxt ~a..) - ~ P(x) P(x+:lct.) P(x) P{_x.+~"t)) 

= p [X) ( I t- -!i- [ P ( 1<) 1 P (__X+ :le.. )] ) P( X 1- ~~) 1 

which may be checked by explicitly expanding about x up to O(a~) o 

We remark that the form of (5) is consistent with the representation 

of the phase factor in terms of the projection operators P @a] ; 
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(6) 

since 1 

P(x) t l~[P(x)~ P(_x)] P(x-tl~) 

~ P(_x) (r t ~tt [P(.)()~ P'Q!)] +~ttl. (CPCK)) P'C>t)])') P(xt-;lc__) 

-::. P(x) { P(x) + .;}tl P(x) P'cx.) ~ t:dA.'- P 1 [x) P'(_x.J)(P(K)+~c..P'&J+d.e..,.P{kyf&,_~ 
= p ( l\) ( ~ P (.X+~) - I ) p {_x + :La..) 

We note that in the self=dual sectorv ~hen the path is restricted to 

lie on a null=plane~ t1e have {i36] g 

0 for any X 0 YpZ on the patho 

Equation (5) therefore reduces to the known form (3) for the case of 

self=dual fieldso However 0 there do not seem to be any other (non=trivial) 

situations in ~hich the phase=factor takes the form 

'+ x' '1 = ~='x' '1 = ( F (c) _,) x' -oo ~ ( c I))- ao' '1 

~here the tl:To paths C P C0 only necessarily coincide bett1een x and Yo 

If such a factorizable F )t/l could be foundv then the potential 

,::-1') c 
V_,v.. ' 

~ould clearly be pure=gauge since the phase factors along the t~o paths 

C 0 C 0 from = ao to x in ( 7) ~ould have to cancel o We ~ould then have an 

(7) 

integrable sector of the theoryo In this context 0 it would be interesting 

to consider the supersymmetric generalization of this formulation in 

view of Witten°a discussion [72] of the constraint equations of the 

N = 3 theory in terms of integrability on lineso 

We remark that in the general casev the full Yang=Mills equations 

have been numerically sho~ to be non=integrable by Nikolaevsk! and 

Shur /jo J o They have considered a particular one dimensional reduction 

of the SU(2) theory and have sho~ that the equations of motion have 

no integrals of motion apart from the hamil toniano 

We shall not1 show that the approximation for the phase factor given 

by (5) yields the correct continuum action to O(a4) when inserted into 

Wilson°s formula [?a] o After this work was completed 0 t1e noticed that 



Frohlich [89] had also attempte-d to m:-i te dotm a lattice motion in t0mo 

of these projection opo~torso Houever 0 the &ction he suggests doos 

not have the correct continuum limit [91] ) o '\:Je consider the trace of 

the pEOduct of all the objectiD around the elementmr.y plaquetteg 

P(x'l "'t~~) ( ;;H"(lC-K,'irlb)-1) P(X+l~, \ft:lb) 
~----------~~~------------~ 

(d.P()(J~+Io)- I) 

P(X,'1) (~f'(x+o.., \f) -1) {J ( Xt-d-IA/1) 

Then0 m-iting 

P. - Cl d)( p P, - ct. 2. dx dx P p.l - b d'1 p ' 
'j 

Pa~ - b 2.. d\.f d'1 p P,2 

and using the identities implied by P ::a :a P 

p pe.. = P~ c I - p) 

p~ p =- 0 

ppe..A p - :1. P Pe.. PeL P 

- OLio dx d..., P - ; - (ct ~ b)' 

p PI, ~ ~ p + J. p p 2. pI I l + ;:). p pI pI 2 l ~ J p P, I 2 p .l + ;)_ p P, ll P, 

:: - ( 4- p pI 'l pI J. + p p II p 2. 2. f- p p2 l.. p II ) ( 8 ) 

and also using hermiticity and the cyclic property of the trace 9 ~ich 

yield for instance from (8) 0 the relation 

+r- (PPII:l:l + 4-PP,'l.l. p/ +4- PP,'l. P2.) ==~+r-('+PP,'l.PI2.. +J. PPII~.t), 

it is staightfo:!::t!ardp though tediou.s 0 to verify that 
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tr t P(l{,'-f)(lP(x+-4-,'1) -l)PC)(tJ"-,'1)(~P(xf-..1t:.,'i+-6)- 1) · 
· P ( x t cl~ , \.f + J.. b ) ( ~ P ( x + ~ , '1 t- J. b ) ~ I ) P ( x ) '1 +- J. b) 

· (c}P(x,~+b) =I) P(x,'i) J 

+r f p ( ;t p + J r, .$- p II => I ) ( p + J P, + J p II ) 

· ( :l P +- u.. r, + ;z P &. +- '+ P, 1 + P .12.. + 4- P, 1 +- 4 P.,:t + J ~2..1. + .:2 ~ •v.. ~ 1) · 
· ( P -r ..tP, +~Pl.+ J f',, + :J. P:~.z. + '+ Pn .. + 4-B,.::~ + 4- P,u. + 4- P"H) · 

• ( ;). f> + 4- p :L + ;.1. pI +- lJ.... p 2..Z... + r.. + 4- pl:t +- 4- pl7_1.. 1- 2. P, 12. -} .2 p11.2l. - I) . 
· ( P + ;t P 2.. + .1 f\2.. J ( J P + ::2. P 2..- + P22. .. - I ) }; (P =- P(x,~)) 

when expanded to order a~ba P yields terms proportional to: 

+r ( ;t P 1 P .l P, P2 P - ~ Pl. P1 P, P a. P ) 

::. +r ( P, '1\. P, P,_ p + P2.. P, Pl. P, P - Pl. P, P, P, P - f, P~ P2.. P, p) 
7 

= +r p [ PI ' ? :J l p [ p 1 ? p .l J p 

ioea the continuum action; (since FJ-." = vt-[P,...,Pv]\1 )a 



Chaptor 6 g Gauge th~ories in dimensions ~te~ th~ fouro 

In thim chapter tle obtain equations for euclidean gamgs theories 

in higheE dimen~Siono 'l1hich are cm&logt~.es of th0 self=duali ty eq'Ul&tiona 

in tho se~Bo that they are line~ &lgebreic relations amongst the 

compo100nis of the field strength tensor ~:micll put thG pure g&l.ilge theoey 

on=ehell (ioeo they imply the eource=free Yang~·lills equations as a 

consequence of the Bianchi identity)o 

(i) We first recall some facts about the self=duality equations in 

order to obtain some clues as to their possible generalizationo We 

note that since the Levi=Civita tensor f~vr~ is S0(4) invariant 0 

the self=duality relations have the maximal space=time symmetr,yo NO'l1p 

S0(4) is locally equivalent to S0(3)®S0(3) D and the antisymmetric 
c, 

tensors in S0(4) (having 6 components) fom a 3 -c- } representation of 

S0(3) ® S0(3) ; the (anti=) self=dual tensors transforming as a 3=vector 

of one of the S0(3) groupso One may therefore consider three self=dl!&l 

generators of S0(4) 

one S0(3) and three 

'l1hich generate the other S0(3) 0 defined by 

= lpoooo4) 

( (t) 0.. 

( J.AV 

[93] g 

't1hich generate 
(!)t.t. 

= :!"~,.,._vr<~ 7 Pff" ) 

as tensors which map antisymmetric representations of S0(4) onto 

vectors of one of its two invariant S0(3) subgroups. The tensors (1) 0 

regarded as 4 x 4 matrices realize the quaternion algebra 

60o 

(l) 

lo.. [ lo ::: - bo..r.. ~ + fo..loc ~c (2) 

The definition (1) implies that the (anti) self=duality equations may 

be written 

::. 0 (3) 

'IIJ(i) 0.. We note that l foxm complete sets of real mutually a.nticonnnu.ting 

antisymmetric matrices with square =1 o From (1) we have 

(4) 

) 
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®ore the lf 0s are the Pauli matrices~ 

6"; ::. ( ~ ~) <).). = (.~ -:) ()3 = c ~I) 
satisfying the ~gebra (j. <J. ::: ~ .. - t E .. '- <j-1( L J LJ I..J 

One may thezofore ~r.rito a Dirac equationg 

(t;/AV bl!- -} l(t) :v !)"-) cbv =- o ( 5) 

for a four=component spinor ~v o 

Notrp as Bela.vin Md Zakha.rov [j.6] rea.lized 9 the (anti) self=dua.li ty 

equations follo~ as integrability conditions for (5) if we seek solutions 

of the foiJ'il 

trhere '+()I pX) is a. matrix in the group spaceo 

(ii) We note that representations of gamma matrices satisfying 

f ~ ...... ) ~v} = - ;J. & ...... v P and having the above properties of reality 

and antisymmetry 9 recur only for the eight=dimensional gamma matrices 

of S0(7)a (Apart from the trivial ttro dimensional case of ~~a 9 t1hen the 

analogue of (3) (<Sl.) .. f:" .. - o is equivalent to the zero=curvature 
' I..J I..J - J 

condition Fij"" 0 ) a One set of seven real antisymmetric anticommuting 

8)! 8 matrices with the negative of the identity matrix as the square 

is given by g 

~· =- a-. @ i_ <r2 ® ~ 
).')... = l~@ a-. (19 \1"'5 

~~ = .: <Sl Q9 I (6l <fl 

t1«t = l cr-.2@ <'3 @ <S~ r~~JAb1 = - .l oc....b 
)s- = a-3 ® i..tr'l ® cr-. A~ = 

(6) 
- 11. 

~(, ~ IQ9 l <rl ® <.r3 

.A':} 
= I® I. ® i.~ 

We now observe that the analogue of (3) 9 vizo 

= 0 
(7) 
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is a set of seven equations (for the seven unknot·.rn gauge potentials) 

~hich imply the full eight dimensional Y&ng=Mills equations as a consequence 

of the Bianchi identities 0 ao may be checked directly by uriting out 

the seven equations (7) using the e~~licit representation (6): 

r,:l +- 1=34- +- F~, + ~ =/-<j =- 0 

~~~ -+ F4-:t +- r=-+-5 -1- r::-,g = 0 

1=',4- -+ I= ..L!, +- Fs~ -1- ~b~ =- 0 

~=",c, + l=".l.5 + ~=n + F4-1- ::: 0 

!=,5 + I={,J + {:3~ + ~=~'*- =- 0 

!=,+ + F'Zl. + r:$3, + F4-b .:: 0 

F,8 + ~1- + F-3b ~ F4-s .:: 0 

As these equations demonstrate 0 all eight indices appear on an equal 

(8) 

footing 0 since each index appears once in each equation and each of the 

28 components of the curvature t~o=form F~~ appears in only one of the 

seven relationso 

The above ~ matrices may be constructed out of the structure constants 

of the octonions in the following fashion: 

(9) 

The totally antisymmetric C~be's determine the algebra of the octonions 

or Cayley numbers (see eogo [94,100] ) 

e.o.. e 'o = - Oo..b + Lo__r,c ec. 

where e~ are the imaginary octonions ( e8 = 1 ) o 

For the explicit realization (6) we obtain 

1 == c,~':1- = c.,'+-s = c. 1?>(, = C l.ss 

(all others zero)o 

a. ::. I).-- .. I=! . 

Eqo(9) yields the alternative form for these seven equations& 

F~Q.. ::: i ~.Joe. (:'be. (10) 

(from ( 7)); a relation very similar to the four dimensional Fl.f.c.. ::. ;i ~o..be l=,.t. o 

We note that these equations (8) set seven of the 28 pieces of the 

curvature to zero 9 leaving 21 pieces undeterminedo In other wordsp the 

field strengths belong to a 2l=dimensional representation of some subgroup 



H of 80(8) 0 contained in the decomposition of the adjoint of 80(8) under 

the brcakilllg to the subgroup Ho It is a.lreooy clear that these equations 

do not possess the full S0(8) sjflDllletry of the spa.ce=time;; and that the only 

thing tJhich aJ.loua the self=due.li ty eqootions to preserve the full S0(4) 

symmetry is the fact that 80(4) is not aimpleo (All other SO(d) groups 

are aimple)o The subgroup of relevance for the seven equations hare is 

clearly either 8pin(7) (the covering group of 80(7) 0 ~8] ) or 80(7)v 

whose isomorphic tie algebras are generated by the 21 bilinear combina= 

tiona of the ) 0 s g 

1\ ()..b 

These 9 together ~ith the seven ~~ 0 s (the basis elements of the Clifford 

algebra c-1-L form the Lie algebra of 80(8); Leo f.Ac..
1 
[~~~"]] is a 

complete set of 8 }( 8 antisymmetric matrices {J5v 97] 9 and decomposing 

any antisymmetric 8 X 8 matrix A""v in the form 

clearly yields the decomposition 9 28 = 7 + 21 - - - 9 of the adjoint represent= 

ation of 80(8) under its breaking to 80(7)o 

In order to understand the equations (7 0 8 0 10) we now go over to a 

manifestly eight (spatial) dimensional notationo We consider the gamma 

matrices acting on 80(8) spinors given in a chiral representation by 

() 0... = a.. .: I . . . . ":/-
' I 

are eight 16x 16 matrices satisfying [t,...,¥11J = J~.Mv. 

Noting that 

({"~ = (- ~ ~~ v:~) = ( !· -~J ) 

and that ~/>AV ': ± [ 11~. cr\1] has components 

~:, c:~yJ) o'ilc.. =- ( -~~ :) ({""b = ( - l: [_~: .:1 b J 
) 

) 

we see that k (I (:;r) projects the top left (bottom right)=hand block of 



S©(8) generators ~ io®o the left and right=hand0d spinora transform 

independently 0 and together ~th the vector representation form the 

three 8 dioensional ~spresentations of S0(8)o The ttle oight dimensional 

(oach the negntivo of tho other) are just the 

wo inoqlrivruent irreducible faithful ~eprescnta.tions of the gMlllla 

matrices of S0(7) (denoted by ~ here) ~ch provide two inequivalent 

embeddings of Spin(7) into S0(8) g corresponding to the little groups 

of constant left or right handed spinorao 

Now we consider a Dirac equation in analogy to (5)g 

20 TT ~ - { O;j bg + A~ ot<..}rrj ~ = 0 v ( IT a constant spinor) (11) 

Then 0 

tlhich is satisfied if 

(12) 

a set of 28 equations 0 ~ich clearly implies that FMv = 0 o 

Indeed 0 (11) itself implies that .b.,...~ = o v since 

lT~ -4?j ( l>j~.: bg + ;11t Db)rr~ ~ = o 

implies 9 by the antisymrnetry of ,::~~t- that 

T 0.. b 'h 
"IT~ A.:s ~jk 111( -Ub ~ - o ) 

which 0 by the antisymmetry of ... r~-"=- 0 directly yields l)b~ = o o 

Howeverp we may note that the 8 )( 8 antisymrnetric matrix (;}A.~Lj in 

(12) is a matrix with each row 0 and each column 0 providing a representation 

of the .A' So In other \10rds 0 if we fix j v by writing 

(M~jl ( [ a constant 8=spinor) (13) 

in addition to the ( A i.j )c.. form complete bases of the 

Clifford algebra c1 o The dual role of the two eight dimensional spaces 

is clear herep and is a consequence of the famous triality amongst the 

three eight dimensional representations of so(a) [101] 0 

In terms of the 80(8) gamma matrices 0 we clearly have 

LJ·I"'v-l o ) I I - 1 ••• • 
1 

0 

(14) 



~here 1L is a constant left=ha~ded unit spinor of S0(8) 0 {T~ c 1 o 

(We use the fact that the spinorsv just like the yusv may be chosen 

to be real for S0(8) ) o Not-1 0 since these seven 8 }t 8 matrices (14) form 

a...'l al temativo X'Elpresentation of the AMs 0 'I:Je mey use them in place of 

the )G\.u s in (7) v obtaining 

"l( {lAV F 
U ·( L IJ-V = 0 (15) 

an equivalent ~ay of writing those seven equationao 

Eqo(l5) has seven components since the component in the direction of[~ 

"7_ 1 (/ ""v '7_ ~Mv P clearly vanishes identically because of the 

y/'A~ T ~v 
antiaymmetry of Q IllS P 1:1hich implies that {_ o4 "7. = o o 

. 111 @, e. 

No~0 (15) implies that 

0 -

= 
ioeo 

where 

is given byp 

~here a 0 b0 c 0 d are all different 0 and take values l 0 ooooooo7 

and since *?fJA.vptr = ~! Et.~<vptr<e(!olf6"¥«1'>lf6 = ((q((,.,._vrr 

ioeo the lsft=and right=handed pieces in (17) are dual to each other0 

we may equally consider a right=handed spinor t~ : l = crq? in the 

above equations (14=16)o Equation (16) is in fact equivalent to (14) 0 

tihich ~may prove by SQO~ing that it in turn implies (14)o We use the 

/-,rM.V'... a completeness relation for the 28 antisymmetric matrices ~ /~~ 

which yields the identity 

~ t>..b T a..b 
A8 fp, 7c.. AC.i) = 

(16) 

(17) 

(18) 



Eqo(l6) m~ be ~itten 

( 
'1/1 j (} MV (( f6" 

lC. C.E ED '7.o 
ioeo =- 0 

r-1W. tiplying on tho left by C>;; "ZGf v u~ obtain 

(fM>J T """ !a-
~Gr l_,. 1e- (jc.rz OED lo l=f<r 

uhich yields (J/,; ~ 
0 

~f rr =- o on using (18)o 

Therefore 

1= _ 1 r (f"""f" f 
f.Av - 'J_ '1_L fL f 0 (19) 

We therefore have the completely antisymmetric object 

= (20) 

tmich mimics the four=dimensional duality operator in the sense that it 

maps the space of tuo=forms to itselfo It is clear that since i in (20) 

m~ be chosen to be either left= or right=handedv corresponding to the 

self or anti=self=dua.l part of T ioeo v T trans= 

forms as one of the tuo 35 dimensional antisymmetric tensor representations 

of S0(8)o Under a breaking to Spin(7) 0 one of the 22's is reduced to 

l + ll + 1 v clearly allouing a Spin(7)=invariant tensor T v since the 

decomposition contains a singlet; confirming that Spin(7) is the stability 

group of our equationso We observe that the form (20) explicitly demonstrates 

that the 12, is the one contained in .§.5 ® .§.5 = 1 + ~ + 22_ v where the 

22 is the symrnetric 9 traceless part of the tensor product 9 and s denotes 

a spinor representationo Under Spin(7) one of the spinor .§. 0 s of S0(8) 

decomposes into !!.s = ! + 1 v yielding a decomposition of the correa= 

ponding 2,2 with a singlet; whereas under SO( 7) both the 8 dimensional 

spinor representations of S0(8) remain irreducible 9 (only the vector 

!!.v~ ! + 1 ) o 

Thus far ue have identified the components of F~~ in the 21 dimensional 

orbit into W-hich the~ of S0(8) splits under the action of Spin(7)o We 

identify the orthogonal 7 components of F~~ by noting that (19) m~ be 

generalized thusg 

= (21) 



(uhere ~ c 1 for the seven equations a.bove) 0 since for l'i'.ll possible 

eigenvalues of T 0 the antisymmetry of T means that the Yang=Mills 

equationo are satisfied as a. consequence of the Bianchi identities in 

a. non=trivial fa.shiono (For .A not an eigenvalue of T0 the relation (21) 

We no'tf note that 

( ~ r 0 pA" r~ { ) ( { 1 ?f r a-0( ~ { ) 

= ( r 'd"'" Q P< { - {5"1 {) ,.._ ~v•d "')) (7 T 'o pc ff ~!' 7 - (6 ""'J (I'- tj "~'tj 1)) 

= ?1 -:zr "'6~",J ( '7_ {T _ 1) (fct~ { +- 4- ·~( ~p..v~ot.f:-7 + 2{6'"'-td''~-fJv<l/'r..)o using (18) ii 

= -4-1T CJ"'V~c(r--1 + J (S""O(o"f?>-ov<tof'A~) osince ~rf!""v(_ = o ii 

-= - 4- l T () ~v o( ~ { - b ( 0 v et 0 fA (!!. - b r- 0( ~ v (!>) 

Therefore? 

.!. 
J.. 

and the other value of il l::l'hich yields non=tri vial relations among the 

(22) 

F~ 9 s may be deduced to be =3 0 since writing (16) as 

l::l'here Jl. denotes U/""ovr = 6 Mf 6 v") p tJe obtain 

(T - A 11 ). F = o .J 

0 ~ ( !T:~. -ilT). F ::: ((-1-~)T+ 3lL) -F 

= [- .l-A)~ + 3 ) 11. F 

l::l'hich yields ,1 = 1 0 =3 o 

using ( 22) ; 

Using the octonion structure constants given above 0 T may be written 

T.._...vf~ = L E""-'"'f'o--cc~'lrcS" 
("<f.>Y&) 

l::l'here the ( c(~ 'lfo ) runs over the set 

l I :1 34-
1 

I 2. S G ,~ I :2 1- 'i? 1 I 3 S =1- J I 3 If{, 1 I 4 1- {, 1 Ill-iS 1 

5~::rg, 34-1-g, ~4-Sb; elf+.(.~,~ c24-7-~,~ :l~'i76"_. 231'} 

l::l'hich is clearly the self=dual part of 

T~vr<> =- -f; e-,.,...vpcr~~ "tr() v li c<(~ v 

v, = ( I } 0 J • • • • •• I 0) ' 

The duality properties of T now imply that if '1::1'6 pick out a preferred 

direction 0 say r= Sp we may write =-

(23) 

(24) 

(25) 



(iii a) 

clearly yielding the previously obtained foxm (10); and also a remarkable 

representation for the octonion stucture constants: 

c"rcr = l T ({vp<J { 

Inserting A = =3 in ( 21) tre obtain the equality of each tem in ea.ch 

rotr of eqo(8)~ io0o 21 equations of the form 

t=, a = ~ ?> 4- = != 6 (;, = F ~ og 

tJhich transform as the 1 of Spin(7)o 

etcop (26) 

We note that the Spin(7) invariant 4=form (23) has also recently been 

discussed in the mathematical literature [99] o 

We have now clearly identified the essential features which allot! 

one to write dotJ:n non=trivial algebraic relations of the generic form 

.!. T f:: 
J_ />A-Vf(f Plf" = (27) 

which clearly imply 9 via the Bianchi identities 9 that the Yang=Mills 

equations are satisfiedo For d = 4 9 T is essentially unique g 

9 which has eigenvalues +1 P yielding the usual 

(anti) self=duality equationso For other values of A 9 it is obvious 

that F ,...." = 0 o For any d) 4 9 as we have already emphasized 9 T cannot 

be invariant under SO(d)p since the only invariant totally antisymmetric 

object is the d=dimensional duality operatoro Hotrever9 as tJe have seen9 

T trill be invariant under some subgroup H,of SO(d)a It is this trhich 

gives us a handle with which to attempt to classify interesting relations 

of the form (27)o Except for the already discussed (and exceptional) 

eight dimensional case 9 T belongs to an irreducible representation of 

SO(d) of dimension (g) 9 since the set of all 4=forms in d=dimensional 

space is a vector space of this dimensionalityo We need to investigate 

the breaking of the (~) representation into representations of Ho If 

the decomposition does not contain a singlet9 it is clear that an H= 

invariant set of equations of the form (27) does not existo (Apart 

from the trivial G=invariant equations Fl"\.., === 0) o On the other hand 9 

if the decomposition contains a singlet 9 it is clear that tJe may 

construct an H=invariant T and find its eigenvalues ;I o Then9 according 



(iii b) 

to (27) 0 gi~en a non=trivial ~ v the pieces of the field strength 

corresponding to the other A's veniaho As a result 0 the adjoint 

representation of SO(d) according to uhich F~v transforms splits into 

orbits under tho action of H 0 the curvatures in each orbit correspo~ding 

to the same eigenvaluoo To illustrate this 0 ue proceed to give further 

oxaaploo of H=invariant sets of equationso We shall consider all moo~imal 

subgroups H for dimensions 5 to 8 0 and ue shall construct invariant T0 s 

in those cases ~here this is possibleo A list of maximal subgroups of 

80(d) and the decompositions under them of the relevant representations 

of SO(d) [96] is given in the appendixo 

In five dimensions 0 H is clearly the 80(4) leaving a constant vector 0 

n,.. say0 invariant; and if n,... is a. unit vector 0 

:: (28) 

~ith A~ +1 o This case just yields the usual self=duality equations 

in the 4=dimensional subspace orthogonal ton 0 together ~ith n~F~v = 0 o 

These equationsv rotated to Minkouski 5=space 0 for particular choices of 

n v yield the Bogomolny equations for a uniformly moving set of monopoles 0 

or the equations for the Julia=Zee dyono 

Analogously tiith (28L for any dimension d 0 we may clearly have an 

H=invariant T which yields the self=duality equations in some four 

dimensional subspace w.hich is projected out of the d=dimensional 

Euclidean space by an orthonormal set of (d=4) unit vectors 0 along 

each of which the curvature vanishes 0 and with H = 80(4)® SO(d=4)o 

For instance 0 for d = 6 0 

T,....vf«"" ~ f:.Mvrro<~ Me:: II'\<'> v mvn orthonormal; (29) 

is clearly 80(4) ®80(2) invariant 0 yielding with ~ = '±1 o the (anti) 

self=duality equations in the 4=space orthogonal to m and n 0 together 

with 

Similarly0 for d = 1 0 

T .. VP"" ~ 6 11\A ... L ~ I" - ,t.\.\Jf~ ct.(?> If ,.,<>( ••e. "-'lJ' 0 mvn 0k orthonormal; (30) 
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is an obvious S0(4)® S0(3)=invariant 0 and the analogou.o S0(4)® S0(4)= 

invariant object ford ~ 8 m~ clearly be ~itten 

(31) 

(choosing an obvious compl0to orthonormal set of vectora) 0 1-rith .A :.::tot1~v 

reducing to self= and anti=self=duality in the appropriate variableso 

is precisely the one considered by 

Witten [72] in his discussion of the full Yang=Mills equationso We may 

remark that since all cases of the type (28=30)u for arbitrary dimensionu 

are just (anti) self=duality relations in the four dimensional subspaces 

orthogonal to the orthonormal set of (d=4) vectors 0 and zero curvatures 

elseuhere 0 all these cases are clearly integrable; and the linear 

systems are just staightforuard generalizations of the four dimensional 

caseo The case (31) is also clearly integrable 0 since it corresponds 

to a direct product of tNo sets of (anti) self=duality relationso The 

integrability of Witten°s case(~= lu ~~ =1 ) has been discussed by 

Forgacs et al [102] o Since all these cases (28=31) are effectively 

four dimensional 0 they are not very interestingo More interesting and 

nontrivial are the cases displ~ing an octonionic stru.cture 0 W1ich 

for d < 8 may be obtained by dimensional reduction from the eight-

dimensional equationso We shall see that such cases exhaust all further 

relations invariant under maximal subgroups of SO( d) a 

First we consider the d = 7 case 0 uhere apart from the already= 

discussed S0(4)®S0(3) case 0 Ga is the only other maximal subgroup 

under which T ( a 22 of S0(7) ) contains a singlet (see appendix)o 

From (10) 0 deleting the index 8 9 we see that 

co...loc J='bc.. ::: 0 

are manifestly G1 =invariant equations 0 since Ga is the automorphism 

group of the octonionso We clearly have the Ga invariant : 

T,.....vfG"' ::: ..L 
€/l"-v(rr"(f!>6 CC/.~6 3! 

with A= 1 9 =3 as before 0 as maJr nou be deduced from the identity 

Gt~~.be C.c.&e Ce~ o... = 3 c,.,&~ 

(32) 

(33) 

[lOo] 

( 34) 



as a consequence of the further identities: 

( 35) 

and 
c~~tr = -t! Gq~1Tcr~vf c..ofA-t:c"Pc;. 

~hich correspond to (22)o Equation (27) with T given by (33) is clearly 

equivalent to (32) since 

FfA\) -= :} J! f-/Avrrr ot'f.>o cot.~lf (:ftJ"" 

may be tn'i tten 

o = (oP--rova- - o"'a-6vr- ~~ E:-"''"'f<r-<(!>o ~r->~) ~p<r 

= - c""" v 'a' c P a- (( !=" r o- p by ( 3 5) ; 

~hich impliesv by (36) 9 that 

CpiT"<r f='pos- = o 

As before 9 the relations orthogonal to (32) 9 of which there are 14 here 9 

may be obtained by insisting on the equality of the three terms in each 

of the seven components of Co..loc. F be. o 

We no~ return to d = 6 9 ~here apart from the above considered 

S0(4) ® S0(2)o the only maximal subgroup leaving T inv;:n··i ;:~nt i~ STJ( 3)®U(l)/Z.:s 9 

under which the adjoint of S0(6) (according to ~hich both T and F 

transform in 6 dimensions) 9 has the decomposition: 

ll = (,I :l. + i -l) (37) 

~here in ,g to 9 a is the SU( 3) dimension9 and b the U(l) quantum numbero 

(We use the notation of (?6] )o Noting that the SU(3) subgroup can be 

imbedded in GJP and that it is in fact the subgroup of Gl ~hich leaves 

any one of the imaginary basis elements of the octonions invariant {j4] 

(ioeo it is the automorphism group of the multiplication rules among 

six of the seven imaginary octonion units) 9 we may make the identification 

T,..._vp<r = £ GMV('<f" c(~ Cctp..":J- J o<:,f3 = I.J ••••• ,6. (38) 

We note that since we are considering the SU(3) here as a subgroup of 

GJ 9 which contains only real representations 9 the pair (,i
2 

+ i-~in (37) 

need to be considered together for our purposes 9 as a real six dimensional 

representationo From the explicit representation for the octonion 
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structure constants displayed above (9v) 0 11e see that (38) has the 

alternative representation 

( 39) 

where we introduce complex variables 

and their complex 

dy dY -1- d~ dz -1- dt dt o (We use the convention ~'1'1~"ltt :::. I ) o 

No~p the octet in (37)P corresponding to a set of seven equations 0 may 

be obtained by trivial dimensional reduction from (32) (just by deleting 

terms ~ith the index 7)o This setp as before 0 corresponds to A= 1 o 

We now note that because of the decomposition (37) 0 the orthogonal 

pieces of the curvature no longer live in the same orbit 9 a degeneracy 

in the eigenvalue equation has been split by the dimensional reductiono 

The 21 equations (26) in eight dimensions ~ould yield 8 equations if 

the indices 7 & 8 were deleted 0 whereas the decomposition (37) means that 

we have sets of 14 and 9 equations corresponding to the singlet and (~l) 

pieces respectivelyo Indeed 0 it is easy to check that the eight equations 

obtained by dimensional reduction of (26) do not even satisfy the 

six dimensional YangcMills equationso (This sitmationp of on=shell 

constraints dimensionally reducing to off=shell relations 0 is familiar 

in supersymmetric gauge theories)o Corresponding to the 1 and l -1- l 0 

T has eigenvalues =2 and =1 respectively 0 and the corresponding relations 

are 

l r:'1 G' =- t=-t- ~ = I= t-r J 
all other (twelve) curvatures zero 

14 equations 

F'" '1 c;::: F r-i = ~=" tt =- 0 

~=" '1 f = ~"' t = f=' e- f = 0 J 9 equations 

(iiid) We now return to d = 8 0 t-Ihere S0(8) has four maximal subgroups 

leaving T M.vf'" invariant a They are S0(4)0 S0(4) and Spin(7) 0 which 

(40) 

(41) 

1:1e have already considered9 and (SU(4) ® U(l) )/Z~ and (Sp(4) OP SU(2) )/Za o 



~hich ~0 no~ discusso We first consider the SU(4)®U(1)/Z~ invariant 

caseo The decomposition of the relevant representations of 80(8) are 

73o 

@ 0 lo + 15., + (.§;J -t 2-J) (42) 

35(self=dual) "" ],0 + (!,"" + L~) + (§a + 9-.:t) -t 200 

35(a.nti=dual) ""' 15
0 

+ (!.9a + lO_.l.) 

in the notation of (37)o 

We noli note the similar form of the decomposition of the adjoints in 

the ttlO cases (42) and (37) 9 and analogously to the explicitly 

SU(3)®U(l)/Z~=invariant (39) 0 we may9 introducing a fourth complex 

variable tl = x~+ iX1o ~ite down the SU(4)®U(l)/Z~=invariantp the 

singlet piece of the self=dual 22 : 

-r:.vplj" : E:~"'-"'Pcr("'G' ~'f +"1'1 t:t + '1'iwi:\i + rftE + c~t.v~ + t~wi;J) 

o;:; ("(~6) e-1"'-up11"<~1r6 
where ( o<~Yo) runs over the set: 

[ 1234 9 1256 9 1278 9 34560 3478o 56781 

which is clearly self=dualo 

In a more covariant notation 9 (43) may be expressed in terms of the 

octonion structure constants: 

(43) 

(44) 

where v 9 u are constant orthonormal vectors 9 and the indices on c~~~ 9 

c;6£ span different 1 dimensional subspaces 9 eogo taking the non=zero 

components of c~~~ to be those given in (9') 9 we may choose 

(45) 

Then0 an appropriate choice of the vectors u and v 9 vizo 9 

vlt: = 1 for K = 1 llt. = 1 for £ = 2 

G; 0 othenrise = 0 otherwise 

yields the previous form (43)o 

Further9 we may recall that the self=dual j2 is the symmetric 0 traceless 

part of ~®~s (see appendix) 9 and since the S0(8) spinor decomposes into 



am SU(4) vector under the breaking to SU(4)® U(l)/Z * 0 vizo P 

§. :::;: l.:t + l-.1 Y. Qo o 

~e may choose the spinor in (20) to be 

~here a 8 1 0 oooooo 0 8p 
.A::; looooooo6p 
i""' 1o8o 

and tthere E~ is a constant 6=vectoro Choosing this to be of the form 

fA= (1 0 0 0 ooooo 0 0) 0 and inserting in (20) (using the representation of 

gamma matrices used there)o ~e again obtain (43)o The eigenvalues of 

(43) are A= =3 0 1 0 =1 corresponding0 respective1y 0 to the 1o !2 and 

74o 

~ pieces of the g§ o (Note that since T is traceless 0 1(=3)-:-15(1)+12(=1) 

a 0. )o For these eigenvalues 0 (21) reduces to 

! 27 equations : f e:-4Lj = (: 'l-~ = ft~ = ~LV~ 
the other 24 curvatures vanisho 

[ F~'i + r:l-[ + r: H: +- r: I.V Q = 0 

j:'~b = J:ttb = 0 ., ~.b ; '-f, t) t)"" 
12 : 13 equations 

!l 16 equations F~~ = 0 c.. I&;, = "1, t J t) w . 

\</e finally turn to the Sp(4) ®SU(2)/Z.l case 103 0 ~here the decom~ 

positions of the relevant S0(8) representations are [104] : 

35(se1f=dual) = (14 0 1) + (,2o ]) + (lo ,d) + (lo l) --
35(anti=dual) = (l.,Oo ,l) + (.2,o 1) 

~= (!Qo ,!) + (~D ]) + O:P l) 
8 = (2o .!) + (!o 2) 

Noting that Sp(4)C.SU(4) 9 we ma,y obtain the invariant T by generalizing 

the U(1) invariance of (44) (corresponding to rotations in the (v0u) 

subspace) to an SU(2) 9 and projecting out the Sp(4)~SU(2)/Z~ =invariant 

object by using another constant vector w o We consider 

(46) 

't!i th the three=form 

trhere the indices on If~ span a fixed 3=dimensional subspaceo 
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The invari8JX!t T is the Gelf=du;ll part of (46) o Choosing cbc.~ and c~e.:J 

as above ( 9 ° P45) o €c..~~ :::o E-,+;;\ -; 1 

tle obtaim 

( Wr fkVf~c<f>YO Arvp +- w[<>< A ?>1ro]) 

= L ) E-JIA-"P" "{(!>1f5 
(47) 

(p.....vpcr-

where ( rvflr) runs over the set g 

fl265p 1287 0 1243P 1674P 1537P 3487p 3465 0 5687p 5238p 4268 l 
This has eigenvalues ~ = lp =3p 5 corresponding to the decomposition 

of the adjoint into its 15 9 10 and 3 dimensional pieces respectivelyp 

and yielding sets of l3p 18 and 25 equations amongst the 28 components 

of F [105] o 

(iv) We conclude with some comments concerning the integrability of the 

originalp and most interesting9 set of 7 equations in 8 dimensions (8)o 

We consider [106) the pair of quaternionic vector fields: 

v,-: 'j 1 J'f +- ;_'d~ +j Gl"" +k dt + J {-j- 2
ci'i-LJl -jdi:J -lc d~) 

V1 = 'J 1 d"! - i- ()~ - j d1._. - k. ;:)~ + 'J (_ J -:2 d'T - i. ;)I -j dCJ - "- df) 

'\"!here i 9 j 9 k are the imaginary units of the quaternions and J is a 

complex parameter o 

Thenp the curvature 2=form evaluated on these vectors is given by 

f: ( v,, VJ.) =- J ( 1="'1i1 + F r~ +- FLViJ +- F tf ) 

-·r-[ c c ~='1 c - r=0 f) + j c F'1 LV + t:~f) +- k ( F"t = FlW ~ 
+ i-(r-iif -l="Vt) + j (r:i;Q + F,tt:) +- k (~c;r- ~~IV) 

The coefficients of j pi 9 jpkp ~l.i 9 Yjp j 1k are just the seven curvatures 

set to zero in (8)o One may therefore think of v, and v~ as vectors 

spanning a quaternionic plane on l"!hich the curvature vanisheso 

Equ.i valently 0 defining 

q, d> = ( D1,.'1- :r-q:r -t- l l>t -:r r + J Dw- '! w +- k. D~- :r ~) ¢ 

V,_¢ = ( D'{1.'1 +j"'~i1 t D2:+)"i - J J)""+'Jw - k. ht:+'{f) <b 
(~ a quaternionic matrix) 

the seven equations result from the vanishing of 

( v, A VJ.) cP 
l"!here A denotes noncommutative antisymmetrized outer multiplicationo 



We may also observe that defining t~o complex quaternionic one=formsg 

ol vI :: Cr :>. d ~ - 1-l cl \1 ) -}- l l cl ~ - j d ~) of- j (a ltJ - )> ol w) + k ( oH: - 'j d f) 

d v J. ~ ( 1l o1 '1 + -r-• d '1) ~- l (_ c1 e- .c- 'r d ~) - j ( d \.0 ~ ) d ~) - ~z ( d.t: + 1 a_ r) , 

the coefficients of )'vivjvkv j2(ivj 0k) in dv1 A dv1 are precisely 

a basis for T=dual 2=forms (ioeo 2=forms satisfying F,.._v = i T,.._vrcrFf<r) P 

and one may think of dVjA dvl. as a. T=dual 2=form with values in the 

Lie algebra of the complexified group of all quaternionso Thuep any 

connection form 11i th curvature F ,...., dV. 1\ dvl. will automatically be a 

solution to the 7 equations (8) for this gauge groupo This is to be 

compared with the BPST 1}9] casev where 

A = l""' 
?Ld.'L 

?L :: 7e' + L-:1l,_ +j?t.~ +- k ~'+ 
I + I "'!LI2. 

) ) 

yields 

r = (_I+ lttJz_ )-1- clxAcl't 
) 

where the coefficients of i 0 j 9 k in dxA di provide a basis for self= 

dual 2=forms 0 thus giving an SU(2) instantono However 9 for the present 

case 9 it is not clear ho~ one is to integrate d~ A dva o 

We now note that if we dimensionally reduce from 8 to 4 dimensions 

by deleting the 50 60 7 0 8=subscripted termsp the seven equations (8) 

yield just anti=self dualityo This ~ to be expectedv however the 

construction for the 4=form T (20) 9 remarkablyp reduces to 

(since ()' Mvp o- = (f 5 E ""vf(J ) o Since the (anti) self =duality equa tiona 

are embedded in these 7 equations 0 it is clear that we may find 

integrability conditions for a sector of the theory described by 

these equations as long as sufficiently many additional constraints 

are imposed on the curvatures so as to effectively reduce the theory 

to four dimensionso We explicitly demonstrate this for the seven equations 

in six dimensions obtained by deleting terms with indices 79 8 in (8); 

ioeo the case corresponding to (38 0 39) 

J="'1i1 + ~=c-~ + ~ Jri = 0 

r=x'1 =- o =- l=><r == r='fr 

We impose the extra constraintsg 

V;;;_ t=' ~ i;; = 0 
' 

(45) 

(46) 
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uhere vis a constant vectoro Then0 on using (46)p it is eaay to sho~ 

that equations (45) are implied by the integrability conditions for 

the linear system g 

VI~ (D~ ~ V-- liJ D-~ + ~ v~ Dq-) cP :;;;=.o 

v,~ - ( Dl[ +- ,A Vjt D~ ) v"i D;- )4> :::..o 

'\} ~ cfJ - (De t- ~ Vq D}( /1 v5f D\i) cP =-o 

~hich is comparable to the linear system of section 3o3 o Indeedp v here 

may be taken to be a space=time dependent complex Killing=vector fieldp 

in ~hich casep the effective four=dimensional space would be curvedo 

The latter remark also applies to the orthonormal unit vectors of 

section (iiib) aboveo Indeedp if for instance 0 the vector ~ in (28) 

is taken to be the radial vector x~/~ 0 ~e obtain the self=duality 

equations on S~ alternatively0 if ~e choose n~= (xi/}i1 0 0 0 0) 0 

0 the corresponding equations are 

easily seen to be self=duality relations over the four dimensional 

space Rax Sa o This suggests the existence of non=trivial generalizations 

of the equations ~e have discussed in this chapter 0 corresponding to 
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i) Properties of SO(n) representations. ~6] • 

a. Tensor products. 

1 <} L = 

35.:. + 350 + 567· 1.. 

8x8 = 1 y 7A -t 21 y 35 

35 X 21 = 7 + 21 + 35 + 105 y 189 y 378 

S0(6): 

4 )( 4 = 6 y 10 

4x4 = 1 + 15 

6X6 = 1 + 15 y 20 

bo Branching rules to representations of all maximal subgroups. 

§Q(§0 :J Spin(ll SO( 8) .::> SO( 1) 

8v"" 8 8v = l + 7 

8.s = l + 7 8s = 8 

8c = 8 8e. = 8 

28 = 7 + 21 28 ::: 7 + 21 

35s = 1 + 7 + 27 35. = 35 i= s, c .. j 

35e = 35 

(For S0(8) representationsp the v 0 s & c indexing the ~'s denote 

vector 0 spinor and second spinor; s & c indexing the 22's denote 

se1f=dual and anti=se1f=dual 4=formsp the third 22 : 35v is a 

symmetric traceless t~o=tensor.) 

so( 8) :::> su( 3lfl., 
-
t =- v~ c, s . 

28 = 8 y 10 + 10 

35. = 35 
I. 



so~®U(lla,~;-

Bv = 4, -} if_, 

Bs :::: 1,_ + 1_2. + 6o 

Be -~ 4_. + 4. 
2B "" lo + 6::\ + 6_;!. + 150 

35s ""' 1~ + 1_1{. + 6). + 6_l + 200 + 16 

35e "" 150 + 10:a. + !Q..l 

so( B)=> so(6)Q9 soW_ 

Bs "" 41 + if_ 1 

2B = 10 + 6~+ 6_'l.+ 150 

355 = 150 + 10J. + 10_~ 

SO(B} ::> si!W ®SU(2)Lz~ 

Bv = (4o 2) 

Bs = (5o 1) + (1o 3) 

Be = (4o 2) 

2B = (1o 3) + (10 0 1) + (5o 3) 

35.s = (14o 1) + (5o 3) + (lo 5) + 

35c = (10 0 3) + (5o 1) 

SO( B} .:> S0(5)® SO( 3) 

Bv = (5o 1) + (1 0 3) 

Bi.. "" (4 0 2) J i =- .S , c. 

2B ~ (1 0 3) + (10 0 1) + (5o 3) 

35. = (10o 3) + (5 0 l) i. = S, l: 
c.. 

SO( B).:::> S0(4) ® SO(Al 

Bv = (2o 2· v 1o 1) + (1o l; 2, 2) 

Bs = (lo 2; 1o 2) + (2o 1; 2o 1) 

Be. = (1o 2; 2p 1) + (2o 11) lo 2) 

28 = (1o 1; 1o3 ) + ( 191 ; 3ol) + 

(1 0 1) 

( lo3 ; 

355 = (1 01;1 01) + (2 0 2112 0 2) + (3oli13o1) + 

35 ;; e. (1ol;lol) + (2 0 2;2 0 2) + (3o1i~1o3) + 

79o 

lol ) + ( 3o1 1o1) 
+ ( 20 2 211 2) 

(1o3;1o3) 

(lo3;3o1) 



so~ 

1 8 1 + 6 

8 c 4 + 4 

21 :::;; 6 + 15 

35 :::;; 15 + 4 + 6 + 6 

.s__\Q(]_) :J G a 

1 ::0: 1 

8 :;;: 1 + 1 

21 = 1 + 14 

35 = 1 + 27 + 1 

so(7) ::> so(4)~ so( 3) 

1 = (1o1;;3) + (2 0 2;1) 

8 = (1 0 2;2) + (2 0 1;;2) 

21 "" (1o1;3) + (1 0 3;1) 

35 "" (1 0 1;;1) + (1o3;3) 

S0(6) .::> SU(3) ® U(1)/Z?. 

4 :::: 1~ + ,_, 
6 = 3:). + 3_J. 

15 = 1o + ~.,. + 34- + 80 

S0(6):::> S];!(Al 

4 = 4 

6 = 1 + 5 

15 = 5 + 10 

SO( 5) ..::>S0~~2 

4 = (2 0 1) + (1D 2) 

5 "" (1 01) + (2 0 2) 

so ( 5) :::> so ( 3) ® so ( 2) 

4 = 2 1 + 2_1 

+ 

+ 

+ 

so(7).:> so(SJ ® so(tl 

1 :::: 1l. -} Ll+ 5o 

8 :;;: 4, + 4_, 

21 = 10 + 5,a + 5_1 -} 

4 35 = 10.,_ + 10_2. -} 100 

(3 0 1;;1) + (2 0 2;3) 

(3ol;;3) + (2o2;3) + (2o2;1} 

so ( 6) .:> so ( 4) ® so ( 2 ) 

4 = (2 0 1)
1 + (1D 2)_, 

lQD 

+ 

6 = (1 0 1).,_ + (1 0 1L:t + 

80o 

50 

(2 D 2)0 

15 = (1 0 1) + (3o1)
0 

+ (1o3)
0 

+ (2 0 2)2. 
0 

(2 0 2)_l. + 

so( 6).':) SO(Al, 

4 = (2 0 2) 

6 "" (1o3) + (3o1) 

15 = (1 0 3) + (3o1) + (3o3) 

SQL52 ..::>so( 3) 

4 = 4 

5 = 5 



ii) Som0 useful properti®s of th0 octonionso ~ooJ 

The real octonion algebra is an 8=dimensional division algebra ~hos® 

elements may be decomposed~ 

e~ are the seven imaginary units obeying the multiplication rule 

eo.. e'o '= ~ 0<0\..b + C.Cl.bC. eC. I 

~here c~e is totally antisymmetric ~ith nonvanishing components given 

The associator ( 011 OJ., 03) of any three octonionsg 

( 0, J 0). ) 0~) - ( o, 0.2) 03 - 0, { 02 03) 
is fully antisymmetric 9 ioeo 

( 0, 1 al J 0~) - ( 0~ I (), O:z_) = - ( ()1 1 rJ, J {)3) - I 

and this implieSp eogo from ( e i. D ej 9 eJ ) = 0 (sum over j)p that 

It also implies the Moufang identity: 

co, o;). ) ( o"!:l o, ) 
"Which implies 

Cris Csjt C-tf<r :: 3 c.tjlt: 

The associator of any three imaginary units yields: 

:: 

where the 4=fo:rm W0·kr is given by 

<7J.:jkrr = ~! f.~ j"'= r ~~ Ce__,.._ 

The latter relation impliesg 

= 

) 

j 

8lo 
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