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ABSTRACT 

A new biaxial test procedure, known as the 'plate bending method' is 

investigated for thin multilayered generally orthotropic laminated plate 

structures. The method is evaluated with reference to the four criteria 

for a satisfactory biaxial test. A number of experiments have been 

performed to determine the applicability of the criteria to the new 

method. Surface strains, transverse displacements and visual observations 

have been recorded, from which the bending behaviour and failure 

mechanisms in the experiments are examined. 

A classical 2-dimensional thin plate finite element analysis has been 

developed to predict the stresses generated in the small (linear) and large 

(non-linear) deformation domains. To minimise computing effort in the 

analyse of non-linear bending, the formulation omitted the effects of shear 

deformation, shear stresses, material non-linearities and the exact position 

of the neutral axis. The omission of these factors has been examined and 

it is shown that the individual errors are small. Analytical solutions 

for simple isotropic, and, where available, laminated plate bending 

examples, have been used to establish the limitations of the finite element 

analysis. Numerical results have been compared with the measured surface 

strains and transverse displacements. From the comparison it is shown 

that the plate bending method can be accurately modelled by the linear 

analysis. However, the non-linear analysis is shown to be inaccurate when 

predicting the measured bending for reasons which are discussed. 
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SYMBOLS 

Numerical techiques 

a finite element side length in X-direction m 

b finite element side length in Y-direction re 

c centre of plate 

h plate thickness m 

i 

j 
index counters 

k 

m 

n 

plate side 

plate side 

isotropic 

isotropic 

Gl2, Gl3, G23 

length in X-direction 

length in Y-direction 

stiffness coefficient 
I 2 

Youngsmodulus N/m 

2 shear modulus N/m 

m 

m 

Nm 

Kw, Kx,Ky summation terms . transverse displacement , stress in X-direction, 

stress in Y-direction 

Kj constants in High Order analytical plate bending analysis 

Mxx , Myy finite element moment loading about Y-axis, X-axis Nm 

P transverse load N 

S ~ ~r B] span to thickness ratio 



s.s simply supported edge 

CL. clamped edge 

u strain energy J 

W,Wp potential energy J 

X,Y,Z plate global axis system 

1,2,3 lamina principal axis system 

~Pi finite element D.O.F. 

o< non-dimensional central displacement for a uniform loaded isotropic 

plate 

~ factor 0~ ~~1 for assumed displacements in determining the finite 

element displacement corrections 

E )Ep1,Er0t,Ewerror quantity, in-plane, rotational, transverse displacement 

8° orientation of principal directions of a lamina with respect to the 

global axis system 

TT total potential energy 

~ 1 Vl2 Poissons ratio, principal 

~~J~X slope about the X-axis 

~~ ~y slope about the Y-axis 

)x, §"Y, sz, ~x, ~y, ~z, u0 , v 0 , w0 , ~x, ~y High Order generalised 

co-ordinates specifying the plate configuration 

~ = ~. ) "" 1• normalised distances in X-direction, Y-direction 
A B 

E,E,~ strain, normalised , shear 

o- iT stress, normalised N;J 
TT shear stress, normalised N/m2 

Matrices for the finite element formulation 

[A) , [Q 1 defined by (B]=[QJ~ ~ with[A]defined in terms of the element 

side lengths, and[Q) relating the displacement functions to 

the strains 

[Dl plate stiffness coefficients 

[G) matrix defined in terms of the co-ordinates of the element 

[H] = [vflmatrix defining non-linear displacements 

[K] stiffness matrix 

[Q~:}[Q:;} matrices relating the bending displacement function to 

the rotational terms in matrix [H) 



{Qgl transformed stiffnesses of a lamina at orientation so 
{¢) vector relating rotations and displacements 

fEJ vector of strains 

f crJ vector of stresses 

[Rl vector of external forces 

fv1 vector sum of the internal and external forces 

fer} vector of nodal displacements 

Subscripts for the above matrices 

b bending 

pl in-plane 

0 linear 

L non-linear 

T tangential 

cr initial stress 

large displacements 

k I/~ayer in laminate 

Further matrices for other numerical techniques 

[A]1 [D]1 [H],[L] High Order theory plate stiffnesses 

[B) plate stiffness coefficients relating bending to stretching 

Experiments 

As span distance in X-direction m 

Ap patch load side length in X-direction m 

Bs span distance in Y-direction m 

Bp patch load side length in Y-direction m 

A axial strain measurement 

B bending strain measurement 

L lower plate surface 

T upper plate surface 



'CHAPTER ~ INTRODUCTICN 

The development of advanced fibre reinforced materials having high 

Bpecific strength and stiffness has provided the designer with 

coneiderable potential for ~eight savingo The advent of theee 

composites has also allo~ed greater flexibility in the design of such 

light weight structures (1p2). No longer is it necessary to commence 

~ith a kno~ material of specific properties. :By the selection of 

fibre and matrix in appropriate proportions the properties of a 

material can be controlled. Combining laminae of such material at 

differing orientations then allows the production of laminates h.a.ving 

the desired strengthp stiffness and degree of anisotropy • 

A necessary precursor to the effective design of composite 

structures is reliable kno~ledge of the strength properties of the 

lami~ated material. At present, only uniaxial loading conditions have 

been inve~tigated in depth. Little relevant data has been collect~d 

for biaxial cr more complex forms of loadingo 

The aim of this work is to present a biaxial test method which will 

enable accurate strength data to be obtained from laminated specimens 

representingp say, a section of an aeroplane wing or fusel9.88. British 

Aerospace have proposed that such structures be manufactured from 

generally symmetrical orthotropic laminated composite thin plates, with 

the composite consisting of carbon fibres embedded in an epoxy resin. 

Hence the test method ~as chosen to handle thin laminated plate 

specimens. For a revie~ of the terminology used in the ~ork refer to 

the 'Primer on Composite Materials g Analysis', by Ashton et al (3). 



A typical section of a specimen is illustrated in Fig. 1.1. Following 

from the sign convention applied in the Primer 9 the figure indicates the 

definitions for the global axes 9 the lamina principal axes and the 

lamina material properties. When lay=up arrangements are stated 9 the 

0°direction means that direction in which the principal load ~as tn be 

imposed. 

When choosing the test procedure it ~as also required that stren&~h 

data could be obtained after the specimen had been subjected to low 

energy impact producing damage. This implied that the specimen t~d to 

have sufficient dimensions so that impact damage did not subseq~ently 

alter the inherent edge effects. In addition 9 the method should enabl~ 

strength data to be ~cquir~d when the material has suffered deterioration 

due to prolonged environmental 0xposure. Hence 9 if loaded specimens are 

to be exposed to an active environment most of the surface area should 

be free from external contact. 

Several contrasting biaxial test methods have been used ~ith 

laminated specimens 9 but none were deemed suitable when the above test 

requirements were considered. A new test procedure has been proposed 

to determine the biaxial strength of generally symmetrical laminated 

plates. In this thesis it will be referred to as the 0Plate Bending 

Method'. In the method a thin rectangular plate is symmetrically 

supported at four points 9 not the corners 9 and subjected to a centrally 

placed transverse rectangular patch load. The test section is a small 

area directly below the centre and first fibre failure should start in 

an out~r layer subjected to biaxial tensile stresses. 

z 



The required strength has been taken as the maximum stresses 

experienced in the lamina Bhere first fibre failure occurs. The 

design and rationale behind such a procedure is discussed in the thesis. 

Four criteria have been prese~ted (by Pipes and Coles (4)) 9 

concerning the feasibility of a biaxial test ~ethod. These areg-

(a) The state of stress throughout the test section should be 

uniform and determinate. 

(b) Failure of the specimen should initiate in the test section 

so that static strength will be obtained. 

(c) The test section over Bhich the stress Bill be uniform 

should provide a volume of material large enough to 

eliminate the effects of point defects 9 and hP.nce make 

the data significant. 

(d) The test should be capable of providing a varied combination 

of stress states in the material. 

The limitations of these criteria pertaining to the plate bending 

method have been examined by the application of experimental and 

numerical techniques. A classical t~o-dimensional (2=D) thin plate 

bending finite element analysis has been developed to solve both the 

small (linear) and large (non-linear) deformation of laminates in the 

plate bending method. To keep the computing effort at a minimum the 

formulation omits the effects of shear deformation 9 shear stresses 9 

material noniinearities and the exact position of the neutral axis. 

Hence 0 care has been taken in choosing sensible experimental 

parameters to minimise the inherent shear effects in the tests. 

3 



It should be noted that the laminated specimens uere fabricated 

some time prior to testing and may have incurred some 0nvironmental 

degradation. As a result~ the data shoun is not necessarily 

representative of that uhicb can be obtained uith good quality 

T300/Code 69 carbon epo~r material. 

To 0stabliab the limitations of criteria (a) and (d) relevant 

numerical models 9 together uith 0xperimental measurements 9 have been 

investigated. As a consequence of the comparison betueen the 

numerical and experimental results the assumptions applied in the finite 

element approach have been studied. To test the applicability of the 

other tuo criteria it uas only necessary to study the experimental 

results. 

4 



CHAPTER 2 BIAXIAL TEST METHODS 

2.0 Introduction 

Composite structures are often subjected to biaxial stress or 

combined f;iitress or comple:rr stress loadings. At present a substantial 

amount of data is available for uniaxial conditions 9 but little reliable 

data is available for biaxial or more complex forms of loading. 

Bitl.Xial strength predictions for laminates are commonly based on 

classical lamination theory and a ply wise application of various failure 

criteria (5 9 6). A multitude of interaction curves (~0+) based on such 

analytic predictions are available 9 but to date fe'ol e:rrperil!lental 

programmes have tried to verify the information (4 9 7). Simply put 9 the 

biaxial characteristjcs of composites have not yet been defined and 

investigated to a sufficient depth to allow the same confidence level in 

design as is possible with metals. The lack of confidence in design is a 

major factor preventing more widespread use of composite hardware today. 

To provide a valid assessment of the biaxial strength and elastic 

properties 9 it is necessary that an appropriate test specimen should 

meet the four criteria presented in Chapter 1. In the choice of the test 

specimen used in this research it was required that the specimen should 

represent a section of an aircraft wing or fuselage which was subjected 

to damage 9 this damage being in the form of an area of low energy impact 

damage (8) 9 or the study of the effects of altering the environment 

surrounding the plate (9). A simple test was sought so that e:rrperiments 

could be repeated readily. 

To date the deficiency in biaxial data is partly due to the lack in 

5 



understanding biaxial test technologyp ~d of the four previously 

explored techniquesp only the tubular and off=axis specimens have been 

found ~uitable ~hen applied io laminated composites (4). Specimen 

geometry and loading of 'these methods axe shown in Fig. 2.1. 

It is relevant to describe these four tesisp to indicate their 

relative merits 9 and then explain why none of them are suitable for the 

aims of this ~ork. 

2.1 Previous Biaxial Test Methods 

2.1.1 Tubular 

The tubular (filament wound) method has been found to fit all the 

above criteria for an acceptable biaxial test 9 a~d is better than other 

previous methods in respect of criteria (c) and (d). Cylindrical 

specimens are subjected to the combination of axial oompression 9 torque 9 

and surface pressu~s to induce a uniform state of biaxial stress in the 

test section, Fig. 2.1.1o To maintain a constant ratio of principal 

stresses fine control on the increase in loads 1s imperative. Several 

researchers (4,10,11 0 12) have shown that a wide range of biaxial stress 

ratios can be obtained and that information recorded can be verified 

utilising numerical techniques. 

The primary problem with the method is that unwanted stress 

concentrations are induced by the introduction of axial force through end 

grips. These nonhomogeneous stress fields often result in premature 

failure. Sophisticated loading rigs were developed by Pipes and Coles 

(4) and later by Nahas (10) which in theory should totally eliminate the 

end remtrainta. In Pipes and Coles' arrangement the axial and 
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circumf~roniial stresses ~ere applied to ihe specimen sol~ly through 

the use of hydraulic pressure. Torsion ~as applied oechanically through 

an end spline arrangement ~hich Qllo~s !ndepend0nt ezpansion or 

contraction of the end tabs. 

However 0 ~ven ~ith the advances in the technology of tubular 

opscimens several disadvantages make the test method unsuitable for 

this research:= 

(i) Fabrication of the tubes restricts the number of lay=up 

arrangements 0 and !t is difficult to obtain filament ~ound 

laminates ~hich are characteristic of plate material. 

(ii) Specimens are required to have both uniform and precise 

geometry to help prevent the ocourence of premature induced 

fracture. Manufacturing costs are therefore high. 

(iii) Since the loadB are imposed through a combination of 

compreesiong torque and wall pressure 0 the rig for 

experjments is both complicated and expensive. 

(iv) The introduction of the pressure of fluid to the 3urface~ 

prevents the inclusion of a typical environment. 

(v) The addition of low energy impact damage will not be 

characteristic of the same impact damage in a plate 

specimen due to the inherent material differences between 

filament wound and flat plate construction. 

For the other three biaxial teat methods point {v) is of less 

significance since they are based on a plate construction. 

2.1.2 Off=Axim Coupon 

The off=axiD coupon te~t as shown in Fig. 2.1.2 can provide vQlid 
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atrength properties ~hen properly designed (4 9 i3). A long ~bin plat® 

io 8Xially loaded through ~nd tabs made usually of glass fibre or 

oJ.uminium. The plate can be unidireciion0.1 or lQlllinated uith the 

principal direction of ~he fibreo aligned ~t some angle to the vertical. 

The uniaxial loading induces ~ bimxial strain state ~ithin the test 

~action due to the anisotropic nature of composite materials. 

The coupon test satisfied criteria (a) and (c) 9 but can only 

provide a limited combination of stress conditions. Criterion (b) 

causes severe handicaps and 9 as hafl already been mentioned in the 

previouo section 9 rigid grips create edge constraints nnd hence ~ 

nonhomogeneous stress field. To initiate failure in the test section 

and remote from the end regions the design of the coupon ~e~uireo 

special attention. lt has been shown that a length/width ratio greater 

than 25 is necessary (4). The geometry of the specimen may cause odge 

delamine.tion when low energy impact damage is q>plied. Some 

lamination arrangements induce high shear coupling in the test region 

~hich may create delamination at the free edges prior to ultimate 

failure and invalidate the data. 

Due to the limited variation in biaxial stress states, ( 4:1:1 l 

the restriction on test geometry 9 ~d the difficulties in transferring 

the load to the sample 9 this type of test is not acceptable. 

Cross beam 

Test gpecimens of e. cruciform geometry 9 consisting of a o~IDdwich 

of ~o laminated beams ~ith a honeycomb centre 9 have been investigated by 

Kamanski (14) 9 Bert (15) end Coles end Pipes (4). The object 
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of the test is to produce a known state of biaxial stress in the 

specimen at a point of intersection of the centre lines of the beamsg 

Fig. 2.1.3. 

The beams are subjected to four point bending ~hich induces pure 

b~nding in the test section. Simple beam theory and elastic material 

behavio~r·means that the stress state at the centre is readily soluble. 

Ho~everg the stress at the intersection is not truly statically 

determinate since the principal axes of stress are not parallel to the 

beam axes throughout the intersection region even ~hen the beamaxes 

of the material orthotropy coincide. Furthermore 9 the sharp corner 

sections produce indeterminate stress concentrations ~hich then cause 

first fibre failure under most test conditions. 

Several modifications to the specimen geometry have been tried 

to overcome the inherent stress concentration problems. Curved corners 

~e~e included 9 but finite element results showed that this ~~s not 

adequate 9 while the stresses in the test region ~ere still indeterminate 

and failure still started in the corners (4). 

To force fibre failure in the test section Bert et al (15) created 

an elliptical area of reduced thickness in the test section 9 but the 

stress state is again uncertain. Other configurations were tried by 

Pipes and Coles ( 4) 9 who oame to the final conclusion that the crossbeam 

sho~ed less promise than either of the tubular or off=axis specimen. 

The ~bove reasons (the complex nature of the test sample 9 and the 

formidable task of maintaining uniform loads across the specimen width) 9 

9 



suggest that this type of biaxial stress test ia not suitable for this 

research. 

2.1.4 Bulge Plate 

The last method is called ihe bulge plaie test. The a :pe c imen 

utilises an ®lliptic sample ~hicb has the edge clamped to prevent 

displacement and rotationsp and is then subjected to a uniforru lateral 

pressure on one surface Fig. 2.1A(4). The biaxial tension due to high 

membrane strains is varied by altering the aspect ratio of the ellipse9 

giving results 't1ith i'xy=O ('t1ith unidirectional laminates aligned 

relative to the axes of the ellipse~ or by using off=axis laminate 

alignment relative to the axes of the ellipse 9 biaxial tension and 

shear T)(y. 

A major handicap 't1ith this test is that first fibre fail\~e usually 

occurs remote from the test section 9 around the periphery of the platep 

making the results invalid. 

Creation of a uniform strain is difficult and elastic theory can 

show that an enormous major diameter/thickness ratio is required (~300) 9 

i.e. the bending strains are insignificant to the membrane strain. 

Difficulties in describing the true stress oonditon in the test region 

have been noted by Cho~ et al (16) 9 where tests on brass plates have 

indicated that the biaxial ratio tends to change ~ith deformation. For 

these reasons the method has been rejected as a possible biaxial test 

for laminates. 

2.2 Plate Bending Method - Rationale and Davelopment 

10 



The revie~ of the previously developed biaxial test methods 

indicate that a neB procedure is desirable so that strength data for 

laminated plates containing externally induced degradation can be 

analysed. Any method accepted must be found not to deviate from the 

criteria stated earlier, must utilise a plate 'structural 0 specimen 9 and 

has to be sui table for a loading machine available. An Ins tron 1195 

(tension+ compression) screw thread machine was available and would 

provide the expected load range and speed of cross head movement that 

would be required. The test method and apparatus were therefore 

developed to be compatible with this machine. 

To eliminate the obstacles in transferring load to the material 

through rigid grips, (found to be a major disaev~~tage of other methods), 

the following plate bending procedure was investigated. Simply 

supported 11 rectangular plate specimens were subjected to patch 

transverse loads. Deformation induces bending and a unique biaxial 

stress state,(Txy=O l at the centre. 

Fig. 2.2 shows the arrangement of the test. 

experiment, symmetry about the axes 0-0 and o'-o' 

In designing the 

was maintained • The 

plate is supported on four 'corner' points (some distance in from the 

corners), in preference to edge supports (e.g. totally simply supported) 

so as to prevent lift-off {17). This sustains a uniform distribution 

of reactions, while, at the same time, permitting relative motion without 

the plate slipping off the support system. The latter will aid 

longitudinal relaxation as deformation grows and helps supress the 

inherent axial strain. Transverse loads are employed through a 

rectangular patch area 0 being centred about the centre of the plate and 

11 



hamngsufficient dimensions to ensure that the surface pressure does not 

exceed that required to punch a hole. 

Special attention has been spent on evaluating the correct 

geometry of the plate to minimise the detrimental effects of shear 

deformation and shear stresses 9 as these effects have not been 

quantified in the numerical modelling. Careful design should also 

mean that as the deformation increases bending dominates the axial 

component so that support restraints are minimised. Small axial 

components and a linear variation of bending strains with deformation 

will help to maintain a constant biaxial stress ratio within the test 

o~-· sec .. l.on. 

Bending which is characteristic in most plate structures (e.g. 

aircraft wings and fuselages) does however violate criteria (a) by not 

providing c. uniform state of str·ain through the thickness. 

First fibre failure will occur in the teet section (under the loading 

area) as the strain experienced within the plate diminishes dramatically 

away from the centre 9 and as long as shear coupling does not induce 

excessive shear and tensile transverse normal stresses 9 edge delamination 

should not exist prior to fibre failure. The actual test section is 

minute 9 theoretically the centre of the plate 9 but due to the distribution 

Ut strains surrounding the test area 9 it is taken to be that on which 

the load is applied. 

This test method produces two combinationB of stress states in every 

case 9 tension-tension in the lower half and compression=compression in 

12 



the upper section. The magnitude of the biaxial stress ratios depends 

on both the experimental geometry Md plate lay-up arrangement. From 

the analytical ~ork of Timoshenko and Boino~sky=Kreiger (i8) the sort of 

range of biaxial stresses possible becomes apparent. Taking the 

example of a simply supported isotropic rectangular plate ~ith a 

central ~cta.ngular patch load the change in stress ratio 

with alteration in AJ8 (for con~tant A% and then 
p 

Ap./ 
/Bp 

crx 
r:ry 

(constant 

~)are evident in Fig. 2.3 9 2.4. These results are for small 

displacements and take no account of any further variation as the 

deformation beco~es large. 

For the laminated plate bending method fo'xr parameters can be 

altered which can contribute to varying the magnitude of the biaAiel 

stress ratio, Fig. 2.2. These are:= 

1) 

2) 

3) 

the plate aspect ratio A;8 

the point support aspect ratio A_;ts 

the central patch load aspect ratio Ani and 
YBp. 

4) since all laminates have changing directional properties, 

then the orientation of the principal direction of the 

plate to that of the apparatus has a profound outcome on 

the biaxial stress state experienced, even vi th the other 

three parameters constant. 

It is not expensive or complex to study this method as no further 

technical equipment is required other than the compression machine~ with 

controlled displacement to apply the load. Unlike the previous biaxial 

test methods no problem is incurred with the introduction of the surface 
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damage • Specimens having sufficient dimension when subjected ~ith low 

energy impact will produce internal damage remote from the free edges. 

This test also allows most of the material 9 except under the patch loadp 

to be exposed to any environment for which strength data is required. 
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CHAPTER 3 FINITE ELEMENT ANALYSIS 

).0 Introduction 

From the discussion on the techniques of biaxial stress testing 

~ith composite materials 9 it ~&a imperative thai the test method chosen 

has a test section tlithin ~hich the true state of the stress could be 

evaluated. For this 'lr:ork a plate bending method 9 as introduced in 

section 2.2, uas studied. 

For any particular experimental arrangement a numerical procedure 

uas required to give some insight into the range of central biaxial 

stress ratios possible 9 the ratio being varied as the result of geometric 

changes. Also 9 unlike isotropic materials 9 a numerical prediction tlas 

required to determine the distribution of stress through the thickness 

of the plate, since under certain conditions first fibre failure can 

occur ~ithin the body of the plate. The most suitable numerical method 

to evaluate the small (linear) and large (geometric noDainear) 

deformation in the plate bending test is the Finite Element Method (F.E.M.) 

It has prOved a convenient and powerful technique for the analysia of 

problems in all types of continuum mechanics. Since its original 

development in the early 50s 9 the method has been applied to a ~ide range 

of problems with noreworthy success. One of the great virtues of the 

method is its versatility. The same general techniques a1~ employed in 

analysing the stresses and deflections in any type of elastic continuum 

~ith arbitrary loading and boundary conditions. The general features 

of the finite element analysis are ~ell known 9 snd so ~ill not be 

presented here in detail (19 9 20). 
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This thesis is concerned ~ith ihe development of a displacement 

finite element analysis for the non-linear bending of generally 

symmetrical orthotropic laminated ihin structures. It is ~orth noting 

at this point that the bending is deemed non=linear once the maximum 

transverse deflection is greater ihan 0.4.of the plate thickness (21) 0 

and that ihe linear analysis is ihe initial part of the non~linear 

solution. 

An overall picture of the deformation was obtained from this 

displacement finite element analysis through the displacements and 

rotations at discrete nodal points. Strains and stresses were then 

computed at the nodes. The following factors were taken into account 

in choosing an appropriate method of solution. 

A primary object of the work ~as to compare the dioplacements and 

strains from the experimental snd the numerical analyses in the linear 

and non~linear regions. Hence it ~as necessary to establish the 

limitations of the constructed F.E.M., in modelling the plate banding 

experiment. If the method was found to be accurate the results could 

then be used in understanding the observed failure. 

Finite element procedures obviously have inherent numerical errors, 

(e.g. lack of exact displacement representation an~ round off errors) 0 

which must be minimised if an acceptable comparison is to be made. 

Thus, to prevent further errors due to excessive element distortion 

(aspect ratio ~3:1 ) in modelling the experiment and at the same t~e 

providing nodes at corresponding positions where strains were measurad 

experimentally0 it ~as found thai one quarter of the plate required at 
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least 36 alementso 

The non=linear finite element an&lysis ~as limited by th® 

computing resource~ available (IBM 370/167). 

limited to a maximum array storage per COMMON block of ~ megabytQ and 

a maximum single job run time of 1000 C.P.U. second~ (Central 

Processing Unit Time). 

?he plates used in the experiments were composed of orthotropic 

laminae of carbon fibre reinforced plastic arranged in generally 

symmetrical manner about the mid=plane. Although a plate can be 

represented with a mesh consisting of 36 elements the number of layers 

in half the plate could be as high as 20. Therefore the element 

stiffness matrices are the sum of several ply contributions. The time 

taken to compute all the stiffness matrices could thus become important 9 

especially when a non-linear analysis requires several iterations. 

Most of the computing effort in all analyses ~ill be used by the 

routine solving the finite element set of equations. If an efficient 

storage method is applied then the time limitation ~ill not be a problem 

for the linear analysis. Basically9 if sufficient stor8ge space is 

available then very refined meshes can be employed. Although the time 
C/y . . -: i 

to solve the equations ~ill be proportional to the square of the stiffness 

matrix si~e (total number of degrees of freedom 9 D.O.F.) 9 the procecs 

is performed only once. However 9 in the non-linear analysis (total 

number of D.O.F. have increased by 1.6) several matrix solutions are 

required. The total time then required to solve the non-linear 

equations can easily exceed the 1000 second limit. A very efficient and 
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fast solution routine is ihus required. The above points suggest the 

following conditions for the finite Qlement analysis. 

Since at least 36 ~laments are needed the number of nodes ~hould 

be & miniumm. A minimum of 5 D.O.F. are required to define the non-

linear response (three bending w 
1 
!hi, dYL ood two in plane u 

1 
v L as long 

dx dY 
as the effect of shear deformation is neglected. To ensure that the 

iotal number of D.O.F. are minimised a rectangular element with corner 

nodes only must be used. The element then has a total of 20 D.O.F. 

making the governing non-linear stiffness matrix of the ~6 element mesh 

245 x 245v (which underlines the importance of time considerations). 

Next 9 to avoid the utilisation of numerical integration for the 

evaluation of ihe element stiffness matrices 9 the element should heve 

simple displacement functions to describe both the bending and in~plane 

deformations. These together with several assumptions concerning the 

non-linear behav·iour enable all element stiffness matrices to be 

determined explicitly. 

With the above restrictions on the finite element analysis the 

computing limitations make it quite obvious that a 3-D model (to include 

shear stresses) ~as totally impractical. Section 4.2 illustrates that 

for the test under scrutiny the omission of shear stresses from the 

numerical analysis does not seriously detract from an accurate prediction 

of overall response. Fortunately existing methods allowed the plates 

to be .represented as a lumped system, (in the 2-D X=Y plane) positioned 

at its mid=plane uith a fundamental assumption defining the variation 

of displacement in the Z=direction. A further simplification may be 
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made by imposing a state of plane stress. 

A geometric non-linear finite element set of equilibrium 

equations for the general case of plate bending are developed in 

section 3o2. With these equations the following enabled a solution. 

Firstp the deforooation shape about the mid=plane is defined by 

the most simple approxima. tion (22) 

u = Uo+ z. lJx 

v = Vo+ z IJ y ( 3•1) 

w::. wo 

where uo vo w 0 
I I are weight€d averages. ltlxJ lJ y are tbe two rotational 

terms and 9 since classical thin plate theory (c.P.T.) is applied, they 
<:; (' '' ,, 

are equated to the cur:vat~s dw I ..!lli respectivelyp (this being a 
-- dx d y 

statement of ICirchoffs fundamental assumption, that normals remain 

straight and normal (23)). 

The limitations of Kirchoffs assumption will be examined in 

section 4.2 for laminates, where it will be shown that shear deformation 

(where ~xi !hi and yy# ddw ) does not have to be incorporated in the 
cl X Y 

analysis providing the span to thickness ratio S is greater than 30. 

A linear solution then follows, providing all C.P.T. ~sumptions 

and specific assumptions pertaining to the laminate material are applied. 

For a geometric non=linear analysis~ one further fundamental 

assumption is necessary. The large displacement behaviour will be 

defined as follows. Following Von-Karman (2 4) it is assumed that 
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although ihe defl0ctione 9 w from the initial X- Y plane ~re rsuffici3nt 

io induce ~iz0able ~embrane mtresses (therefore invalidating linear 

plate theory) 9 the !Slopes ~ 1 ~ X'emain 0uch l~ss ihan unity. This 

lQads io the formulation of the Von-Karman ~train equations. 

Finally ihe iterative procedure must be carefully chosen. If 

the iime taken ~o construct end aolve the non=linear eq~ations is 

large 9 the nwnber of 'Umes ihat this must be performed should be 

restricted. 

The element used ~ill no~ be briefly described. Fig. 3.1.1 shows 

the four noded ~ciangular element ~d Fig. 3.1.2 indicates the 

transverse loadings ~hich can be mpplied to each node. In~plane loading 

has been omitted in the fomulation s;_nce the experiement experiences 

vertical loads only. 

The in=plane deformation requires eight D.O.F. 9 Fig. 3.1.3, which 

can be represented by the following two simple polynomial expressions: 

In~plane displacement function 

( 3·2) 

V = e><S + oc6x + e<7y + O<aXY 

The element is known as the constant strain element (25). The 

corresponding bending element has twelve D.O.F.P Fig. 3.1.4 9 and the 

Bimple polynomial ~xpression representing ih~ displacement ~ere 

formulated independently by Adini and Clough (26) and Melosh (27). 

The bending displacement function is& 

20 



2 2 3 W = 0<..9 + 0<10x +0<11Y"'"~12)( o¢-0<13)(J*C<14 Y '¢- c.c15x 
( 3·3 ) 

vo<16iy-~-0<'17xyL ... ,B Y 3 -~- o-.19 x~ '¢- o<zoxy 3 

This linear 0 pure 0 bending element 0 describing the linear xesponse 0 

l:1ill be known as the ACM element. 

Inter=element compatability is satisfied by the function but the 

inter element normal slope is not oontinuous 0 (the element is non= 

conformal 0 Co ) ( 28). Hol:1ever 0 it does not exhibit all the rigid body 

displacements and const&lt strain terms. 

Combining the bending and the in=plane element provides an element 

capable of modelling the non=linear reeponse of plates (29 9 30). The 

element l:1ill be referreu to as ACMBC (20 D.O.F.) 0 after Brebbia and Connor 

l:1ho firs~ applied it to the geometric non-linear finite element analysis 

of isotropic structures. 
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).~ LITERATURE SURVEY 

}.1.1. Small (Linear) D2formation=Isotropic 

Hers the term small or linear implies that the maximum transverse 

displacement for ~hich the analyses hold is 0.4 of the plate thickness 9 

and ihat 9 at no time do in~pla.ne displacements exist. 1;/e are therefore 

concerned ~ith pure bending. Unless specified 9 the m€thods do not 

incorporate the effects of shear deformation and shear stresses and so 

the plates can be termed as 0 thin'. The plates are always represented 

as 2-D l'umped systems 9 and 9 because of symmetry 9 {and providing correct 

boundary conditions are applied) only or;e q·aarter of the plate needs to 

be modelled. 

In the early Sixties the first rectangular and triangular elements 

use~ had simple non-conforming polynomials(T 9ACMl(31 926). Even though 

the elements were non-conforming convergence to the exact solution 

occurred (32) 9 providing sufficient elements were used. Both elements 

used in the non~linear programme are members from the simple family. 

For all the element types the examples used to characterise the 

accuracy of the elements were simply or clamped supported square plates 

having either a uniform pressure or a concentrated load. In general only 

the central displacement vas compared to its analytical solution. 

Occasionally stresses vere also involved. 

Since the simple triangular element T appeared to be limited due to 

its lack of compatibility a refined triangular ®lement HCT ~as formulated 

from three of these simple elements. This slement uas reviewed in a 
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report by Clough and Tocher (33) and found to be much more accurate 

than the simple elements. Taking four of these refined triangular 

elements {HCT)Clough and Fellipa (34) developed a conformal 

quadrilateral element (Q=19) uhich gave quicker convergence than 

previous elements. Improved convergence uas measured by how feu 

elements uere needed to attain a correct solution. Later in 1968 9 

Bell (35) proposed a further conformal triangular element (B) using a 

full quintic polynomial. and 9 like Clough 0 a condensation roethod to 

remove unwanted D.O.F. from the formulation of the stiffness matrix. 

The basic element has a central and mid~side nodes which introduce the 

unnecessary D.O.F.. Convergence again was quicker than with the simple 

elements. 

Quadrilateral elements with full compatibility were also derived. 

Several improved f&~ilies of elements were produced to provide compatibility 

ar1d most of these elements possess more D.O.F. than the simple counterpart. 

The benefit of compatibility meant that as often as not converge~ce was 

possible with coarser meshes. The expense for this was that the 

displacement functions were more involved and a solution required numerical 

integration to evaluate the stiffness matrix. 

Schmit et al (36) developed a series of rectangular elements (S) based 

on Hermitian (linear) interpolation polynomials. These elements were 

found to be very accurate and converged quickly; but the algebraic 

complexity means that the method is extremely difficult to apply. 

Another group of elements uas formulated around the assumed stress= 

hybrid method. Pian and Tong (37 0 38) derived this method.for a series 
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of quadrilateral elements due to its versatility and ease of operation. 

Their base element has 20 D.O.F. 

~o further types of elements have been very popular 9 the Lagrangian 

~d Serendipity famili®s (28). These t~o types of displacement 

functions have been applied to both triangular and rectangular elements 

(39). Serendipity elements have functions derived by inspection ~hereas 

Lagrangian ~ere formed from generating displacement shapes of 2ny order 

from simple products of appropriate polynomials in the 2~D co=ardinate 

system. All shape functions ~ere normalised so thai translation into 

actual co=ordinates,or transformation of the various expressions occur!'ing 

for instance in stiffness derivation 9 ~ere trivial. 

The Lagrange family ~as found to be limited not only due to the 

large number of internal nodes needed but also due to the poor curvature­

fitting properties of the higher order polynomials. On the basis of 

computational efficiency Serendipity elements should be preferred because 

of fewer total D.O.F. 9 but because of locking (40) 9 Lagrangian elements 

have been the preferred family. Together 9 these interpolation elements 

are known as iso=parametric and have been exclusively used in the general 

purpose finite element package 9 PAFEC 75 9 which is available on the NUMAC 

systems. Elements from both families can be formed as linear 9 quadratic 9 

cubic and 9 for extreme refinement 9 quartic. 

The accumulation of results obtained from applying the above elements 

in the modelling of isotropic plate problems ~ere presented by Spilker 

and Munir in 1980 (41). Since Lagrangian elements contained spurious 

zero energy modes not associated ~ith rigid body movement and Serendipity 
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elements caused locking ~hen representing certain thin plate examples 

they developed a new element type 9 referred to as Heterosis. The 

~lement !s based on an 8-noded Serendipity element ~ith a abe~ 

deformation hybrid=stress method of solution. Numerical studies 

indicated that this ne~ element had 'safe 9 characteristics tlith 

comparable accuracy to its Qarlier counterparts. 

When increasing the complexity of the element to provide 

compatibility the question should be asked as to tlhether any economic 

or other advantage. \:!as actually being gained. An ans~er here is not 

si.Tnple 9 a.1 tho'hgh it can be stated as a general rule that as the order of 

an element increases so the total number of unknowns in a problem can be 

reduced for a given accuracy of representation. The only proviso is thai 

the elements do not become too distorted. Economic advantage requires 

a reduction of total computation and data preparation effort. This does 

not follow automatically for a reduced number of total variables as 9 

although equation solving time may be reduced 9 the time required for 

element formulation increases. ~For this work the most important factor 

was that at least 36 elements were necessary in a quarter plate model of 

the experiment. 

Thus 9 with the knowledge that the simple element ACM gives accurate 

results, providing sufficient elements are used 9 and that for identical 

models with all higher order elements more computing effort will be needed, 

the choice of ACM for the non-linear analysis \:!as practical. ACM along 

l:!ith the follol:!ing bending elements, Spilker and Munir (SM), Schmit 

et al (s), Bell (B) 9 Tocher (T) and Clough end Tocher (HCT) is compared 

l:!ith exact solutions for several isotropic examples in Section 3.4.1. 
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From this comparison further reasons for the choice of ACM instead of 

a compatible el~ment tlill become apparent. 

Small (Linear) D3formation=Laminated 

Progress tlith analytical solutions for laminated plates during the 

Seventies auggested that shear deformation effects on the behaviour of 

the plates tlere much more pronounced than for isotropic plates (42 0 43). 

Hence 9 it ~as not surprising that the majority of F.E.M. used a refined 

element in a shear .deformation analysis. They were therefore concerned 

~ith pure bending of vthick' laminated plates. A review and discussion 

on the accuracy of these shear flexible elements is_made in Section 4.2. 

Reddy (44) in 1980 gave a full appraisal of the development in linear 

F.E.M. for laminates. The overall picture showed that the refined 

elements only gave improved accuracy when shear deformation was important. 

Contributions to the art were made by Pryor and Barker (45)P ~~Up Tong 

and Pian (38) 0 Mawenya and Davies (46)P Panda and Natarajan (47) 9 Noor 

et al (48 9 49) and finally Reddy. In all pi'Qcedures time consuming 

numerical integration schemes were needed for the evaluation of the 

stiffness terms. 

From the previous approaches element ACM has been used by Pryor and 

Barker. It was- oombined with the constant strain and ehear rotation 

elements to enable the determination of shear deformation. The element 

has a total number of 28 D.O.F. and like ACM is only accurate when the 

mesh has a lot of elements. By ignoring shear deformation in ACMBC the 

number of D.O.F. per node were reduced by 2 0 so greatly reducing the effort 
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in formulating the governing stiffness matrix. 

Section 4.2 explains ~hy it was acceptable for the finite element 

analysis of the plate bending method not to include shear deformation. 

The investigation sho~s that providing ihe f¥>an to thickness ratio 9 S > 30 

the shear deformation in multilayered generally symmetrical orthotropic 

laminates can be assumed small compared to the bending response. With 

this proposal in mind 0 the element ACM in a linear thin plate theory 

has been taken as suitable for analysing the experiments. 

Large (Non~Linear) Deformation~Isotropic 

Geometric non-linearity ~ill be considered only to the extent required 

to account for effects ~r membrane forces on effective flexural stiffness. 

For an introduction to the ideology of non~linear problems the paper by 

Gallagher (50) is very informative. 

The introduction to the review states that at the time a disproportionate 

amount of attention had been given to non-linear analyses, involving both 

geometric and material non-linearities. There were two reasons for this 

statement. First, not all the fundamental concepts ~,d theoretical a~pects 

had been explained or agreed upon. Second 9 in those portions of the 

problem where the theory was in good agreement (e.g. the procedure 

developed in this work) the cost of numerical solution was vastly greater 

than for the equivalent linear solution. The latter point has ensured 

that a great deal of effort has been devoted on the minimization of 

computing cost 9 while at the same time preventing significant loss in 

accuracy. 
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Several successful geometric non=linear analyses applying the 

elements already discussed will no~ be introduced. In all cases the 

accuracy of these methods ~as measured against analytical reported 

solutions on simple isotropic plate problems. Notable contributions ~ere 

made by Levy (51) 9 Wang (52) 0 Berger (53) and Rushton (54). 

Since the analytical problems ~ere relatively simple (e.g. a simply 

supported square isotr~pic thin plate ~ith a uniform pressure load and 

constrained with Levy 0 s in=plane boundary conditions). only a few elements 

16, were required in a quarter plate mesh for accurate modelling. It 

is open to question whether any of the methods presented would be capable 

of coping with a 36 element mesh ~hen implemented on the most powerful 

computer. 

This does not mean that these analyses are misleading since they 

achieve their objectives. From the numerical techniques used in these 

F.E.M. several time saving op~rations have been extracted and involved in 

the non-linear programme (Am1Bc). Without these techniques the solution 

of the geometric non-linear displacement F.E.M. of the experiment ~ould 

have been more difficult. 

Before embarking on the discussion of previous proceduresp it is 

worthwhile introducing the methods for solving the potential energy 

expressions. No one alogorithmn has gained universal preferencep mainly 

because each is suited for particular situationsp but becomes inefficient 

or invalid for different situations. The solution procedure will 

generally be the most expensivev both in terms of computing time ~d 

storage. This is the reason why so much attention has been spent on 
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improving this area. 

Methods attacking the solution of the simultaneous algebraic 

equations directly are overwhelmingly the most popular. Many different 

basic forms are possible 9 including the direct iteration (55), Newton= 

Raphson (56) 9 incremental (57) 9 and initial value metho~s (58). Several 

of these techniques will be mentioned in this section. It must be 

remembered that these techniques tra~e a load displ~~ement response 

through a significant range of non-linear behaviour. Essentially they 

operate with intervals of loading, the solution for one being the starting 

data for the next. Numerical experience has indicated that it is generally 

imp~actical to proceed from the initial to the final state in a eingle step 

due to numerical instabilities. 

Earlier work on the non-linear response of structures by Turner et al 

(59) 9 Oden and Sato (60), and Martin (61), paved the way for the finite 

element plate bending methods. To reduce the very complicated approaches 

required 9 certain assumptions had to be made 9 and some restrictions were 

placed on the displacement field. Fortunately no significant loss in 

accuracy was incurred. Simplification of this type lead for instance 

to the Von-Karman strain expressionsfor plates. 

Incorporating these strain equations with the C.P.T. assumptions bas 

proved to yield excellent analytical results for large deflection plate 

problems, Levy (51), and successfully applied in a displacement F.E.M. 

by Brebbia and Connor (29). They developed a consistent formulation 

for arbitrary plates and shallow shell elements. Strains and products 

of rotations were negligible with respect to unity, and this restriction 
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could only be removed 8t great computational expense (62 9 63). To make 

a linear buckling analysis possible (64 0 61) the governing equations 

for Ne~ion=Raphson iterative procedure ~ere follo~ed. 

In this thesis Brebbia and Connor 0 s basic finite element isotxopic 

formulation has been developed to analyse plates consisting of generally 

orthotropic laminae in a symmetrical arrangement. 'l'he element ACMBC 

has been retained and 9 ~hereas the original analysis terminated after 

the evaluation of nodal displacements 9 the new programme also evaluates 

nodal straL~s and stesses. 

Hcwever 0 there is one major difference bet~een the t~o approaches. 

To eliminate the need for numerical integration schemes in ACMBC 0 the 

substitution of the full bending displacement polynomial, (Equ. 3.3) into 

matrix: [ H Je {Equ. 3.44){ [ w* 1 Brebbia and Connor 9 Equ. 2Tc} vas dropped. 

:nstead the rotational terms in matrix[ H )~ave been assigr.ed values using 

a new technique 0 section 3.4. Consequently 0 when results from p:r:ogramme 

l.l.CMBC are studied in section 3.4 a thorough examination for a new 

definition of [ H ]\•ill be made. 

Unless otherwise stated 9 the following methods are based on thin plate 

theory, i.e. no shear deformation, with Von~Karman strain equations for 

flat plates and Marguerre (65) theory for shallow shells. 

In 1971 element ACMBC ~as built into an analysis by Roberts and 

Ashwell (30) to solve structural post buckling. They applied a method 

of incrementing displ~cement with a linearised mid~increment stiffness 

matrix for each increment of displacement. To aid convergence they 
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employed sparingly the Ne~ton-Raphson iter&tive method. As in Brebbia 

and Connor 9 s ~ork all the element stiffness matrices ~ere evaluated by 

numerical integrationp (Gaussian quadrature formulae (28)) with the full 

bending displacement function. 

ln 19679 Schmit et al (63) tackled finite deflection structural 

analysis with their family of plate and cylindrical sl~ll discrete 

elements. They applied an oscillatory Hermitian linear interpolation 

bending element with 4 nodes and 48 D.O.F. in a new plate formulation 

and solutions were obtained by direct minimization of the potential energy 

formulation. Without the application of complicated boundary conditions 

the total number of D.O.F. would have been unwieldy for an accurate 

solution of even a simple problem. This method cannot be used to model 

structures requiring a lo& of elements since it is one of the most involved 

proced'lires. 

Two years later 9 Kawia and Yoshimura (66) presented an accurate 

analysis with the Lagrangian bending displacement function proposed by 

Greene (67). This rectangular element possesses 4 nodes and 3 bending 

D.O.F. eachp and was combined with the constant strain element (Equ. 3.2) 

in the non=linear analysis. The element stiffness matrices were large 

and required evaluation by a numerical integration scheme. Solution 

of the equilibrium equations was made possible by the procedure devised 

by Yoshki 9 Kawia and Yoshimura (68). 

iterative method was often unstable. 

However 9 they demonstrated that the 

If.1l[aJn was calculated using only 

{ rf} 
1 

(Equ. 3.31) 9 the solution sometimes failed to converge. n- To avoid 

such a difficulty they introduced the numerical technique with which 

Fujino and Ohsaka (69) analysed the large displacement of suspension 
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bridges. The technique trill be outlined since it tJas included in ACMBC. 

Yhen choosing the masumed displacement ~alues to be substituted 

into the @Xpression of additional nodal forces to calculate ibe 

corr~&eiionsA{rf}n not only {cf}n_1 but also {oJ
0

_ 2 trere considered. 

The follo~ing tJeighted mean of the ttJo approximated diEplaoement ~alues 

[ a}{n-1) and fclj(n-2 1 Bere used tAB the assumed displacement values 

{dJ(n-1)= i1- ~l[cf}(n-2) + ~[cfJ(n-1) 
in trhich 0 :;;;; f3 ~ 1 • 

(3·4) 

In KaBie. 0 s vork 0 ~=G·3 for b.rge deflection problems, and a larger 

~alue 0 say ~=0.5 '!:!as found permissible trhen a system 1:1as linear. !n 

section 3·4 the relevant walue for ~ used in ACMBC trill be given for the 

problems investigated. 

Bergan and Clough (70) developed a large displacement analysis for 

thin plates and ahalloB shells and placed a great deal of emphasis on a 

specific ~atrix formulation 9 thereby producing a highly efficient method 

that uas suited to modern electronic computers. The bending element uas 

a doubly curv~d quadrilateral based on the Q=19 ~xpression of Clough and 

Fell~pa (:54). The element Bas formed from four HCT elements and bas 

19 D.O.F. When combined tJith ihe !nplane Zienkiewicz=Irons isoparametric 

~lsment (28) uith 2 D.O.F. per corner node 9 the non=linear element bas 

29 D.o.r. The 9 internal nodes tJere eliminated by static condensation 

leaving a 4 noded 0lement trith 20 D.O.F. Initiel deformation uas 

provided for in the malysis by using the rectangular linear 01ement 

of Bogner 0 Schmit and Fox (s)(36). 
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Accurate modelling ~as ~so obtained after ihe bending displacement 

polynomial ~as shortened in the evaluation of the nori=linear stiffness 

terms (matrix [ H I ) • The coefficients t~ere evaluated by a 2 )(2 or a 

3)(3 Gaussian quadrature numerical integration scheme. The equilibrium 

equations ~e~e formed by the 0direct stiffness method 0 and the direct 

solution called for a form of numerical iteration. Since the object 

of a non~linear analysis ~as to detemine more than just a single point 

on the load deformation curve acceptable results ~ere found by the 

combination of the Newton=Raphson method and load incrementation. 

One feature of the analysis has been implemented in ACMBC. This 

procedure reduces the number of iterations when establishing convergent 

non=linear displacements. In order to determine convergence 9 the 

following vector was defined, 
T 

En= ( Acf1 , t.cfz , flOO.O.f ) 13·5 l 
d1ref dzrefdo.o.Fref n 

where Aakn is the change of displacement component k during the iteration 

cycle n • Every component was then scaled by a reference displacement. 

For the plate problems all in=plane displacements were scaled by the largest 

in=plane component, all transverse deflections were scaled by the largest 

transverse deflection and similarly for rotations. A non=dimensional 

measure of the change of the displacement vector during a cycle was 

obtained using the 

6 = m:x I 
maximum norm. 

The following convergence criterion could then be used 

1£1 < E 

·2 
The range of I e 1 used by Bergan +Clough was approximately 10 to 10"5 

depending on the problem. For ACMBC relevant values for IE I t1ill be 

given in section ~o4• 
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During the Seventies more programmes (including the large general 

packages) started to solve non=linear deformation of structures. These 

analyses involved some of the techniques already outlined 9 but generally 

tended to be much more intricate. 

Thomas and Gallagher (71) formulated a geometric non=linear {small 

strain 9 finite displacements) analysis ~ith a consistent triangular 

element, (Lagrangian 9 30 D.O.F. 9 4-noded (one centre)). The procedure 

was numerically sound but the cost of evaluating the non-linear stiffness 

coefficients by numerical integration ~ith the full cubic displacement 

polynomial meant that models were very limited. To combat this 9 an 

inconsistent quadrilateral element comprising 4 triangles was constructed. 

Internal D.O.Fs ~ere eliminated in the usual manner and the introduction 

of a special matrix took account of the lack in compatibility bet~een 

adjoining sides. 

A large amount of effort was then spent minimising solution time. 

The approach finally chosen combined two schemes 9 the Newton=Raphson and 

incremental methods. The alogrithmn was termed the 0modified incremental 

method 0
9 and oan be thought of as a single cycle of the Newton=Bgphson 

procedure. Bence 9 by the application of this method only one inversion 

per load was necessary. 

Further notable contributions 9 which were later developed for 

generally orthotropic layers were made by Noor (72 9 73) and Reddy (74o75). 

These finite element packages solved·non=linear bending using an analysis 

based on Von=Karman strain equations arid a shear deformation plate 

formulation. 
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The latest analysis used a Mindlin plate formulation. Pica 9 Hood 

and Hinton 0 (76) 9 centred their investigation around the Heterosis 

element 9 (Spilker(S~ 9 to discover if it ~as still superior to ita 

Serendipity and Lagrangian counterparts. They used the geometric non= 

linear formulation developed by Noor 9 Mathers and Anderson (77) ~hich 

has identical matrix notation to that of ACMBC. The stiffness coefficients 

~ere evaluated by several orders of Gaussian quadrature numerical 

integration. Examination of simple bending problems were performed ~ith 

a 4-noded linear Serendipity element 0 a 8-noded quadratic Serendipity 9 

a 9-noded Lagragian and the 9-noded Heterosis element. A Newton=Raphson 

procedure was the primary alogrithmn solving the equilibrium equations 9 

but to save computing effort another modified Newton~Raphson method was 

later introduced. In this latter method the tangential stiffness matrix 

vas constructed once only during the second iteration of each load 

increment. Results were presented for standard isotropic square plate 

examples 9 together with a skew 9 a circular and an elliptic plate example. 

All cases were modelled with a 16 element quarter plate representation 

and both transverse displacements and stresses were determined. 

A thorough comparison was made between the four elements and those of 

Schmit 9 ~ogner and Fox (63) and Iron-Razzaque (78). They had hoped to 

find a discernable pattern of element behaviour emerging from the 

investigation 9 but this proved not to be the case. The study demonstrated 

that it was advisable to use the Heterosis element in rectangular meshes 

due to its safe characteristics. However 9 the presence of curved 

boundaries in the models led to inconsistent behaviour of all elements 9 

0specially with respect to stresses. 
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The analyses outlined substantiate the uncertainty already stated 

concerning the best choice of alogrithmn to solve the non=linear 

equilibrium equations. Gallagher (50) and ~hen ~ith Thomas (70) revie~ed 

the problem and suggested that the most appropriate method seemed to be 

a 0modified 0 Ne~ton=Raphson. The ~ord 0modified 1 means that the basic 

Ne~ton=Raphson ~as altered (i.e. compare Gallagher and Thomas (70) ~ith 

Picaet al (76)). This observation made the choice of an alogrithmn for 

ACMBC difficult. The programme ~as formulated ~ith the basic Ne~ton­

Raphson procedure for ease of computation. If this ~as then to be found 

inaccurate and/or time consuming, a modification could be included 

providing time allowed. 

).'! .4 LarH (No!l=Linear) Defprmation Laminated 

The first geometric non-linear F.E.M. for laminated materials ~as 

presented by Noor and co=~orkers (72 9 73 9 79,80) in 1975. Over several years 

the team had developed a ~ide renging plate beliding package, including the 

non=linear analysis of gene=ally orthotropic laminated (symmetric and 

antisymmetrio) plates and shells. The formulation was a form of the 

geometric non=linear Von=Karman type plate theory ~ith the effects of 

transverse shear deformation, anisotropic material behaviour and bend~g 

extension coupling. The general nature of the programme allowed for 

modelling ~ith Serendipity, Lagrangian and Hermitian rectangular and 

triangular elements. 

To demonstrate the po~er of their F.E.M., normalised results, 

published in 1975 for & 16 noded rectangular Lagrangian bending element 

(80 D.O.F.)P ~ere used to study ihe effects of geometry, lamination 
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parameters and boundary conditions on the significance of transvers~ 

shear deformation and the degree of anisotropy (non-orthotropy) of 

statically load3d composite plates. Squar3 plates uere consideTGd 

having both symmetric and antisymmetric laminations with respect to the 

mid-plane. These examples ~ere subjected to uniform tr~~sverse loading, 

and uere either simply or clamped supported. Results demonstrating 

the effect.of shear deformation and anisotropy were presented as non= 

dimensional energy parameters. A full _grid contained 36 elements making 

a total number of bending D.O.F. of 1805. A considerable reduction in 

unknowns was possible by the utilisation of symmetry (49). 

On the basis of the numerical study it was shown that C.P.T. was 

adequate for the non=linear analysis of uniformly loaded square plates 

when S > 20and that orthotropic plate theory (when anisotropic terms 

016 , 0 26 are neglected) was acceptable if angle-ply plates consisted of 

more than 4 layers. In general if the effect of tran~verse shear 

deforruation and/or anisotropy on the linear response was not significant, 

they were not important in the non=linear analysis. This conclusion is 

very encouraging when the nature of the formulation of A~mc is 

scrutinised. 

The introduction by Reddy and Chao (74) gave a review to the present 

standing on non-linear laminated plate analysis. Nearly all previous 

approximate solutions of the large deflection theory (in Von=Karman sense, 

and without. shear deformation) were analytical and solved either the 

vibration behaviour (81i82) or the evaluation of central displacement in 

unsymmetric laminates (83,84). Noor et als F.E.M. was the only one of 

its type to date. Unfortunately this analysis involved a very complex 

37 



bending alement (eo D.O.F.) which limited its application. Reddy 

stated that the use of such an alement inevitably lead to ~~ enormous 

storage requirement and computational cost. 

Reddy and Chao presented a large deflection and large amplitud® 

free vibration analysis for composite plates. The F.E.M. ~as based 

on an extended Yang=Norris=Stavsky (YNS) theory (85) 9 which is the 

transverse shear deformation principle of Mindlin for laminates 9 that 

includes the effects of large deflections 9 in the Von=Karman sense. 

Two Serendipity rectangular elements with 5 D.O.F. per node (3 

displacemeni;s u, v and w plus 2 shear rotations Yx and ~ y ) res1.ll. ted 

in a 20 x 20 element stiffness matrix for the linear element and a 

40 x 40 matrix quadrature element. Their new alogrithmn solved the 

equilibrium equations by a penalty function method and involved the use 

of the so called 0 reduced 0 integration technique to evaluate the stiffness 

coefficients. In the reduced integration technique 9 the 4-noded element 

required the 1 x 1 Gaussian rule instead of the standard 2 x 2. The 

technique enabled some saving of computational effort. 

Accurate results were presented for deflections, stresses and natural 

frequencies (74) for rectangular plates with several loading and edge 

conditionse As expected the results ~ere more accurate with the 8-noded 

element 9 than for the 4-noded element. Unfortunately other than a little 

relevant information on element and mesh sizes, no mention of the actual 

computing effort was given. It has therefore been impossible to say how 

large a saving in storage and computing time was gained over that 

necessary with Noor 0s F.E.M. 9 and further to compare with that found 

with ACI1BC. 
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Ai the same time as Reddy and Chao 0 Chang and Sa~amiphakdi (86) 

reported their non=linear analysis for laminated shells. The object 

of ~he ~ork ~as to ®xtend the application of a degenerated 3=D solid 

element family io the large displacement analysis of laminated shelll8. 

This isoparametrio group of solid elements has independent rotations 

and translational D.O.F. and ~as originally proposed by Ahmad 9 Irons 

and Zienkie~kz (87). After some assessment an 8-noded Serendipity 

and a 9-noded Lagrangian rectangular element (5 D.O.F. per node) ~ere 

selected for the present work. 

The approach was based on an up to date Lagrangian formulation by 

McMeeking and Rice (88) following on from Hill's (89) virtual work 

equation. From the study of the numerical characteristics (Programme 

NFAP (90)) the 8-noded element showed locking (too stiff) vhen modelling 

thin plate structures. The element was too stiff due to the presence 

of unnecessary shear stresses. This locking phenomenon ~as probably not 

seen by Reddy since thin plates were not studied in his work. 

Accuracy of the elements was determined through the use of the 

analytical solutions of standard isotropic examples. To display the 

modelling of laminated systems, the following flat plate example was 

examined. A square sandwich plate 9 consisting of two identical aluminium 

facings and an aluminium honeycomb core,was subjected to a uniform load 

and had all its edges cdamped. Excellent agreement was obtained between 

the F.E.M. with a 4 alement quarter plate mesh and the central displacement 

from the analysis by Schmit and Monforton (91). As usual 9 this example 

did not stretch the limits of the method 9 since the problem required 

only a few elements in the model 9 and the plate consisted of a few layers 
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in an orthot:ropic arrangement. A more realistic test ~ould have 

involved more elements and generally orthotropic plies. 

Chang and Sawamiphakdi concluded that the Lagrangian element 

provided a much better numerical behaviour than the Serendipity 

element. 

It is interesting to find that none of the previous non=linear 

deformation finite element analyses for laminated plates appiied the 

element ACMBC. It is ~orih noting also that the formulations and 

solution techniques differ considerably 9 ~ith the Von-Karman strain 

equations and the shear deformation assumption of Mindlin being most 

generally used (Section 3.1.3). The solution procedure ~as often 

centred on the Newton=Raphson iterative technique. 

In every method the full bending displacement function ~as applied 

e in the definition of matrix I H I and numerical integration evaluated 

the stiffness coefficients. The methods all involved elements from the 

Serendipity and L~.gra.ngian famHies 9 since their refined elements were 

known to be very accurate (especially for coarse meshes) and the 

polynomial representations lend themselves to numerical integration. 

Taking the above observations together 9 it appears that none of the 

F.E.Ms to date would be capable of dealing with large mesh problems since 

the requirement for stor~ge space and computing time would be too high 

for modern electronic computers. An upper limit on the number of 

elemen'l!ll each procedure can handle ~as obviously not ascertainable due to 

the fact that the following factors differ. First 9 the programming 
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techniques for storage and solution are not reported. Second 9 the po~er 

of the computers on ~hich they ~ere built is not given. Third 9 the 

time taken to formulate ihe stiffness matrix 0 and then io ~olve the 

equilibrium equation are not present~d 9 and fourth 0 ihe number of 

!tsrations for a particular type of solution are also unavailable. 

If the cautionary ~ords in the papers concerning their individual 

difficulties in computation are also noted 9 it appears extremely likely 

that none of the previous F.E.Ms could be used to model our plate bending 

experiment. Not only does the modei of our experiment require at least 

36 elements in a quarter plate 9 but the number of individual element 

stiffness matrices is large 9 since a plate can consist of up to 40 layers. 

This latter consideration means that the time to construct the stiffness 

terms can be high (even comparable with that to solve the equilibrium 

equations). 

Taking all the factors outlined in this section it was reasonable to 

apply element ACMBC in a non~linear displacement finite element 

formulation based on Von-Ka:rma.n' s strain equations and the classical thin 

plate theory to analyse the plate bending experiment. To reduce 

computational effort further several material assumptions were introduced 

and numerical integration was eliminated by the new definition of the 

e terms in matrix [ H 1 • After the equilibrium equations had been 

evaluated the Newton-Raphson method solved the flexural problem. 
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).2 FINITE ELEMSNT FORMULATION 

The precise details of the FORTRAN IV programmes have been omitted 

fz-om the thesis. Houeverp flou diagrams expb.ining the analysis are 

presented in Appendi~ ~. 

Principle of Minimum Potantial Energr 

The total potential 9 or potential energyp of an elastic body is 

defined as (92) 

TT = U + Wp (3-6) 

uhere U is the strain energy, and Wp is the potential of the applied loads. 

'Because i:he forces are assumed to remain constant during a variation of 

the displacements 9 c•ne can relate the variations of the ttork done by the 

loads 9 W 9 and the potential of the loads as follows (93). 

J W = d Wp ( 3·7 l 

The variation in W = W (x) is defined as an infinitesimal arbitrary change 

in W for a fixed value of the independent variable x ) that is for dx = Q. 

The principle of 1-iinimum Potential Energy is 

dTT = c1 u + a w = au -a w = o (3·8) 

The principle and its accompanying conditions can be states as follows: 

Of all possible displacement configurations a body can assume 9 which 

satisfy compatibility and the constraints or kinematic boundary conditions9 

the configu~tion satisfying equilibrium makes the potential energy assume 

a mini!num. 

Here it is important to note that variations of displacement ars 
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taken '1;1hile forces and stresses are essumed cons tent. Moreover 9 the 

resulting equations a.re equilibrium equations. 

The potential energy for a linear ®lastic body '1;1hich has no 

distributed loads acting tliihin the material 9 or along ~he boundary 9 and 

has no initb.l stresses or strains is obtained by the sum of the i.!1ternal 

'1;10rk (the strain energy due to internal stresses) and the potential of 

the external forces. Following the terminology used by Zienkiewicz {28) 

the potential energy functional is 

j {E}T fv-}d!voll falfR} = 1i 
v 

(3·9) 

Thus ~qu. 3.8 can be ~itten as 

jd{E}Tfcr}d!vol) d{cft{RJ= 0 (3·10) 

The above statement means that for equilibrium to be ensured the 

total potential energy must be stationary for variations of admissible 

displacements. A finite element method is simply the statement of this 

variation witb respect to displacements constrained to a number of 

parameters (cf} and can be m'itten as 

= 0 (3·11 ) 

It can be shown that in elastic situations the total potential energy 

is not only stationary but is a minimum. Thus the displacement finite 

element process seeks a minimum within the constraint of an assumed 

displacement pattern. 

In the finite displacement method the plate is subdivided into a 
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number of discrete elements t1hich are interconnected e.t specific nodal 

points 9 a solution to the complex numerical problem being made by the 

use of matrix alegbra. The grenter the number of D.O.F. ihe more closely 

t1ill ihe 9olution approximate to the true one 9 providing the true 

displacement can in the limit be approximated. 

).2.2 Geometric Non=Linear Plate Bending 

Whether ihe displacements (or strains) are large or small 

equilibrium conditions between internal and external forces have to be 

satisfied. If' f ~ } represents the vector sum of the internal and 

external forces, equ. 3.10 becomes 

d(cf}Tf~} =1 d{EJT[o-J dfvoll- d[cf}1 [R} = 0 (3·12) 
v 

~here {R} represents all the external forces due to imposed loads. 

Using the displacement method the variation of strains can be ~ritten as 

rifE}= fBld{a} (3·13) 

Tile bar siffix indicates that as displacements are large 9 th.e strains 

depend on non-linearity in the induced displacement, and the matrix(BJ 

is therefore~dependent on [cfJ Equ. 3.12, the governing equilibrium 

equation for the body becomes 

f~}({cf}) = fr"P}[o-ldV- [R} = 0 (3·14) 
v 

The actual stresses { o-} are dependent on the strain level obtained • 

.As r tT] is dependent on strain and hence on displacements one has 9 

therefore 9 to solv~ the non-linear equation 

(3·15) 

This them summarises the basic problem. 



Matrix [ 8 1 can al'days be conveniently tiritten as 

(3·16) 

in tihich [ 80 1 is that governing linear infinitesimal a train ~malysis 

tmd only [ BL1 depends on the cll.isplacements. For the displacement 

model constructed r BL 1 !s a linear function of the displacements. It 

the strains are reasonably small (in elastic range) the general elastic 

relation 9 ~ith no initial stresses or atr~ins 0 is 

(cr}=[D1{E} (3·17) 

in which 101 is the usual set of elastic constants. In equ. 3· 12 9 

the stress components are those corresponding to the strain components 

used. In so:ne gross displacement pro"olems such strain components are 

subjected to considerable change of direction from the global axes. 

3.2.2.1 Iterative Solution 

Clearly the solution of equ. 3o14 ~ill be approached iteratively. 

The Newton-Raphson (94) process is adopted herev to establish the 

relationship between d { cf} and d {y}. 

Thus by taking the appropriate variations of equ. 3.14 ~ith respect 

d{~} =1 d!B1T{v-]dV + 1 !BIT d(cr}dv 
v v 

and applyir1g equ. 3· 17 and equ. 3· 13v 

dfcr)=!Dld(Ej = !DliBld[cf} 

From equ. 3· 16 

d!Bl=diBLI 

due to the non=linear effects. 
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Therefore 

(3·21) 

r R 1 = j r 8 Jr r o )[ 8 1 d v = r K o 1 <} r K L 1 (3·22) 

in ~hich [K 0 ] ~presents the linear stiffness matrix. This is the 

governing matrix fTOm ~hich the linear programme ~as based. 

[K 0l= i [ 80 { lDliB 0 ld V (3·23) 

The watrix [KLI is due to the large displacements and is 

fKLI=/{IBoiT!D][B~+[BLfiO][BLl +fBtJ'fDHBol) dV (3·24) 
v 

~d is knoun as the large displacement matrixG It can also be aho\::ltl 

that this matrix can be derived by using an infinitesimal strain approach 

by adjusting element co=ordinates in the cQmputaticn of the stiffness. 

The first tem in equ. ~ G 21 generally becomes 

fv d[BLJT {cr}dV = [ Ka-ld(a} (3·2 5) 

l1here [ Ka I is a symmetric matrix dependent on the stress level 9 and 

kno\1D as the initial stress matrix or geometric matrix (95). 

Thus 

(3·26) 

l1i th [ Kr I the total 9 tangential stiffness matrix governing the non~ 

linear response. 

The Ne\1ton type iterative procedure can be applied in the manner 

summarised. 

(a) The elastic linear solution is determined as a first npproximation 

(3·27) 

(b) ~{a}1 is obtained fzom equ. 3.149 ~ith approximate definition of 
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[ 8 ] and the ~:rtresses 9 

(3·28) 

{u-}i = lDl[EJ =I 0 l(Bl(a}1 
(3·29) 

'tfhich givers 

~{cfj, = j [Bf !Ol!Bl(a}1 dV - {R} (3·30) 

tmd :reduces to 

~t~{d')1 = ! R 1{a)
1 

- [R} (3·31) 

where the large displacement stiffness matrix has been defined 

as above. 

(3·32) 

is establiehed 9 and 

(d) The correction is calculated as 

(3·33) 

making the new displacements equal to 

{a}n = [aJ~-11 * li.[cf}(n-11 13·34) 

This procgss is then repeated until yf~n becomes sufficiently 

small. 

).2.2.2 Geometric Non-Linear Finite Element Plate Bending Representation 

For Generally Symmetrical Orthotropic Laminates 

Having formulated a general set of equilibrium equations, with a 

Newton~Raphson iterative·solution procedure 9 plate bending assUmptions 

must be SPecified so that the finite element representation can be solved. 

For the non~linear behaviour under consideration Von-Karmans 
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assumption is applicable (24).As has already been mentioned a 3=D was 

impractical, so a lumped 2=D representation (Equ. 3.1) has been chosen, 

being based on the classical thin plate assumption attributed to Kirchoff 0 

(normals remain straight and normal) (23). 

In most practical applications of thin plates the magnitude of the 

stresses noting on the surface parallel to the middle plane are small 

compared to the bending the membrane stresses. Since the plate is ihin 9 

this.implies that the traction on any surface parallel to the mid=plane 

is relatively small. 

exists. 

In particular, an approximate state of plane stress 

A standard X, Y1 Z co~ordinate system 9 Fig. 3.1.1. 0 has been taken. 

The displacements in the X> Y and Z directions are denoted by u ( x 1 y l 

v (x, y l and w (x 1 y l respectively. A list of the plate bending and material 

assumptions follows. 

1) The plate is constructed of an arbitrary number of layers of 

orthotropio sheets bonded together 0 with the restriction that 

the configuration must be symmetrical about the mid-plane. 

However 0 the orthotropio axes ~f material symmetry need not 

coincide with the X, Y axes of the plate. 

2) Perfect bonding exists between the fibres and surrounding 

matrix, and between each lamination. The fibres are assumed 

continuous along the length of a lamina and all aligned in the 

principal direction. 

3) There are no initial displaoements 0 the plate is flat 0 and no 

initial stresses are present. 

4) The plate is thin 0 i.e. the thickness 1 h 1 is smaller than the 



other physical dimensions. 

5) The in=pla.ne strains Ex, E y and E xy are small compared 

to unity 0 and zero for the linear solution. 

6) The displacements u and v due. to plate curvatures are 

linear functions of the z direction, equ. 3.~, i.e. they 

are zero along the mid=pla.ne. 

7) Transverse shear strains Exz and Eyz are negligible and 

the corresponding shear stresses 'lxz 1 Tyz ignored. 

8) The transverse normal stress is .negligible. a:z 

9) E~ch ply obeys Hookes law9 all the material properties 

being linearly dependent on the respective strain up to 

failure. 

~0) The plate has uniform thickness. 

11) The location of the neutral axis coincides with the mid= 

plane in the linear deformation. 

12) Rotary inertia terms are assumed very small. 

13) There are no body forces. 

It is no~ed that assumption 7 is a direct consequence of plane stress. 

Together, assumptions 6 and 7 constitute Kirchoffs assumption, and 0 with 

assumption 8,allows 0 the problem to be simplified to the 2=D about the mid­

plane. 

The 2=D representation of the displacement F.E.M. can now be 

constructed. For.mulation of the stiffness matrices will now follow by 

applying the basic rectangular element, Fig. 3.~ and its simple 

displacement functions 0 Equ. 3.2 and 3.3. 
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The plates in the experiments tlill be subjected to transverse 

loading only eo the analysis does not include in=plane loading. 

For ths non=linear solution the displacements are not minute 0 but 

also not excessively large. It is ~ell kno~ that in such situations 

the lateral displacements will be responsiple for developing membrane 

strains ~~d the ttlo problems of in=plane and lateral deformation can no 

longer be dealt with separately 0 but are coupled. 

In Fig. ~.2.1, plate strains are defined in terms of the mid=plane 

displacements~ i.e. if the X- Y global plane coincides ui th the mid=plane, 

then 
Ex 

Ey 

Exy i Ept } [E} = = (3·35) 
2 

-z~ Eb 
d X 

-z~ 
d y j 

·2Z~ 
dxdY 

If the deformed shape is considered as in Fig. ~.2.2., then applying 

Von-Karmans assumption the lateral deformation , w 1 induces some additional 

extension in the X and Y directions of the mid=surface and the length 

dx stretches to 
...... ----

d X: 1 + (~ :)2 = ( 3·36) 

ioe. defining the x elongation to the second approximation 

E x = &!!. + 1 ( d w )
2 

d X 2 d X 
(3·37) 

Considering in a similar uay the other components 9 the strains are 
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defined by Greene 9a strain vector 9 (96). 

(E} = 

du 1(~2 
d X 2 \Cfi} 

.Q_y_ l (J!.JL' 2 

dY 2\d yj 

J1.JL + .Q_y_ 
d Y d X 

2 
-z d w 

dx2 
2 

-z Q__ji 
a Y 2 

2 
-2zU 

dxdy 

+ 

1/Jlli. k) 
2\d X d Y 

(3·3 8) 

in ~hich the first term is the linear expression and the second is the 

non=linear components. ln the above expression u 1 v and w stand for 

appropriate displacements of the middle surface. 

As the behaviour is considered linear elastic, the [ D 1 matrix is 

composed of a plane stress and a bending component 

[ 
[oPt] 0 l ID I = (3·39) 

0 [o b] 
Finally the displacements are defined iil terms of nod-al parameters using 

the appropriate shape functions 9 Equ. ~.2 and 3.3. 

Thus for instance INJ fcrt (3·40) 

where a typical set of nodal parameters is conveniently divided into 

those ~hich influence in=plane and bending deformation, respectively. 
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{ 
aPt 

} I 

{ai} = 
0~ 

I 

Wj 
(3·411 

1 
u· } [dflJ = 

I 

[a~ J with and = dw 

Vj 
d )( i 

d w 
d Yj 

and is the node number. The noda possesses 5 D.O.F. to describe 

the deformation at the location. Thus the shape function can also be 

subdivided as 

[ 

(NOi]Pl 
IN; 1 = (3·42) 

and indeed the a3sumption that the final assembled displacement vector 

is also subdivided in the same way as Equ. ;.41, will be used. 

To continue the formulation it will be necessary to form expressions 

for ( B 1 e From Equ. 3.16 

(3·43) 

and the s~bdivision gives 

e [ Bol = 

where 

are the well defined 0 standard matrices for the linear in=plane and 

bending elements. b e · { L Je [ BL 1 is obtained by taking a variation of tPl 

uith respect to the parameters [abr 

Thus the non=linear 0 strain components of Equ. 3o38 can be urittan 

conveniently as 0 
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~ 0 
e 

d X 

i 
ll 

f rtrlr= 1 ti d )( 1 r Hle f$r (3·44} 0 = 2 d y .d...i'L 2 

dw dw d y 
d y d)( 

't!here the derivatives (slopes) of w can be related to the nodal 

para.neters as 0 

f~}e = l Gf[crb}e (3·45} 

't!ith 

IG 1e = [ o.~t]LAb ]~ 

Thus [G le is a matrix defined purely in terms of the co...ardinates 

of the element. Taking the variation of Equ• 3.44. 

d[E~rt=~d!Hle{~}e + ~IH1d[ID}e = (Hled[$}e 

= (H]e[G ]ed[cf'e 

and hence immediately by definition 

With all the necessary components the element matrix 

(3·46} 

(3·4 7} 

e 
lKrl can be 

evaluated. The linear small deformation matrices are written as 

[ 

[Kg~e o ~ [hs~lifoPll!sgtldV. o 1e 
= (3·48} 

0 [ K~e 0 ~~ B ~ 11 Db][ B~ J d V 

From which the following expression solves the linear displacements. 
e 

(R} =;:: [1Abl!-0~a~l1n~l a~ 1 dV lAb 1~1] fa} = IKNo} (3·49} 

This is the matrix representation of Equ. 3.28 and the matrix [Kg I is 

the total contribution due to 8.11 the elements. 

Taking Equ. ~.24 the large ~lement displacement matrix can be defined 
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on substituting Equ. 3.39 and 3.43. Thus after some manipulationp 

e 

IKLf = (3·50) 

Finallyp IKe- Je has to be constructed using the definition of 

taking a variation 

r (3·51) 

the substitution into 3.25 and 4.47 gives, 

~Pl 
e 

1 [IG;IHJ 
0 r 

crYPt 

(Ku led [cf} = 
vxypl dV (3·52) 

0 crx b 

v vyb 

crxyb 

1:1hereinthe x =direction C:Xpt is average membrane stress in the element. 

By a special property of matrix manipulation, (28). 

!Kcr le = 0 0 l e 

0 [Kg) (3·53) 
trith 

1:1hich is 

j [crxp1 crxyp1]e 
(K~le = [GJre .· r G le dV 

v CTXYP! O"'yp[ 
the symmetrical element geometric stress plate matrix. Putting 

all the element stiffness matrices together the element tangential-matrix 

is 
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(3-54) 

e 

It is thenonly a matter of correctly summing up the appropriate 

element stiffness terms and placing the values into the specific locationu 

~ithin the governing plate stiffness matrix, for a solution. After the 

stiffness matrix has been evaluated the boundary conditions are imposed 

and the nodal displac~ments are determined following the solution 

technique Equ. 3.27 ~ 3.34. 

After the nodal displacements have been calculated at each load 

increment a further programme evaluates the nodal strains and stresses. 

The follo~ing equations define the Cormulation of the stress programme. 

Taking the nodal displacements (D.O.F.) for each element in turn 

the strains are given by Equ. 3.38 9 and with appropriate substitutions 
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and 

{t3tr = (Q~lJerAPlJ~1fa}~a 

{~~t}e = 1£HJro.~/rAbl:[cr}e 

{Ebt = -z ra.~J,Able1 {a]e 

{Ep[t = {E8tY + { E~l}e 

(3-5 5) 

Stresses are then evaluated from Equ. 3.17 by taking the definition 

for the stiffness matrix [OJ Equ. 3.39 

{ :1 f = [(~I( 0 I {::I (3-56) 

[~bl 

For nodes surrounded by several elements the strains and stresses at that 

node are determined by that number of elements. To calculate a 

representative value the average was determined. 
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~3 LINEAR COMPARISON 

The modelling ability of the linear finite element analysis ACM 

~ill now be compared against several analytical solutions and further 

finite element approximations. The various mesh constr~ctions used 

are presented in Table 3.1. Plate symmetry in the isotropic and 

orthptropic examples meant that ~~ accurate model was obtained with 

only a quarter plate mesh 9 and Fig. 3.8.1 shows a typical mesh construction. 

Results for displacements and st~esses are studied for isotropic 9 

orthotropic and laminated examples. Where possible PJ.l the values are 

presented normalised. The exception being the stresses for problems with 

a central point load. When uniform loading is being considered the load 

vector can either be constructed as vertical loads only {V .L.O.) or as a 

consistent nature (C.L.V.) (28). 

Isotropic examples - ACM - With Several Oth~r Rectangular And 

Triangular Elements 

The ability of six elements to provide convergent results to the 

exact Eelutions of three thin plate bending problems ~re now examined. 

The elements comprise three rectangular (including AC1>1) and three 

triangular. Table 3.2 gives the definitions for the type of element 

approximation and the procedure ~o a solution. Also given are the 

important factors t!hich should be taken into consideration if any of the 

elements were to be chosen for a non=linear analysis. It must be 

remembered that if a non=linear analysis wa.S considered there mUst exist 

an in-plane element compatible with the bending element. 
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All slementsp except SMP have bean employed in programmes applying 

classical thin plate theory. SN has been built in an analysis based 

on the shear deformation theory of Mindlin. 

Exact solutions for the central displace~~nt in the three examples 

have been reported by Timoshenko (18). In addition he presented the 

value for the central stresses iu the uniform loaded examples. In the 

case of a point load the theoretical stress is infinite due to a 

singularity 9 so no exact solution is available. 

Figures 3.3 and 3.4 present the non=dimensional central displacement 

oc,~ or stress ~for the six elements 9 against the total number of D.O.F. 

The number of D.O.F. modelling one qUarter of the pla·te being given on a 

Logr i thmic scale. Table 3.1 defines the square meshes and Figure 3.8.2 

shows the boundary conditions imposed. The test cases t.rere: 

Fig 3·3 Squa:r.e simply supported isotropic plate with a uniform 

distributed load (V.L.O.) 

Fig 3. 3.1 9>< is the non-dimensional central d-is-placement 

with 

and 

o< = ~ell 
qA2 

D: E h3 
(1 -v2} 

Fig 3.3.2 v-is the non-dimensional central stress. 

Q- p ·-rr 

(3·57) 

(3-58) 

The value for the central stress w-e (i.e. w-x since by symmetry 

o-x= r::ry) was taken to be that experience~ on the tensile surface. 

Fig 3.4."i Square simply supported isotropic p.ate 9 with a concentrated 

central loaq. 



Fig. 3.4.2 Square clamped isotropic plaieil t1ith a concentrated 

central load. 

~is the non=dimensional central displ~cement 

~ = ~ (3·59) 
PA4 

The exact values attributed to Timoshenko are presented as Bolid straight 

lines on the figures. 

Referring to the figures the following observations t1ere made. 

For the three problems the element ACM is found to converge to the 

exact solution as long as sufficient elements 9 ~36 9 are applied. The 

errors are in the order of 1% and the~nds suggest that the exact 

values will be reached. The largest errors are found for the point load 

examples 9 t1hich are known to impose severe limitations on the accuracy 

of the displacement method (28). 

Compared with the results of the equivalent triangular element 

T ,_ACM is seen 1ro be far superior. Accuracy of the same order was 

established when modifications t1ere made to T, but there is no advantage 

since the element HCT needs a more involved procedure for-- solution-

than ACM. 

Accuracy is improved with sparse meshes when the elements were more 

refined 'l1i th ACM. Elements S,SN and B are compatible 9 require numerical 

integration for evaluation of stiffness matrices and possess 24,24 and 

18 D.O.F./~lement respectively. The latter element B is triangular 

uhich obviously requires tt1o elements to produce a rectangUlar element 9 

a1ld hence the equivalent number of n.o.F. is 24. Hence· for the 

i.l!lp_rovement in modelling the stiffness matrix is larger than t1i th element 



ACM. This ~ould be detrimental to an analysis since computing time is 

approximately proportional to the square of the size of the governing 

stiffness matrix. It has previously been statedthata model of the plate 

bending method requires at least 36 elements (with ibis number of 

element accuracy is comparable) 9 and so none of the more refined elements 

appear practical for the non-linear analysis. 
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Isotropic Examples Approximating to the Experiment ;:ACM. 

Examined now are two isotropic examples to observe the modelling 
\ 

ability of the element ACM for more stringent problems approximating to 

the experiment. It has already been mentioned that point loads provide 

a severe limitation on accuracy 9 and was one of the :ceasons for the 

choice of a patch loading in the experiment. However, the reactions 

are taken through four symmetrical located point supports, since this 

prevents lift off. It is possible that these point supports will 

contribute to limiting the accuracy of the numerical a.Tlalysis. This 

will now be investigated using the examples. 

An identical procedure to the previous subsection was followed. 

Where possible approximate known solutions are given. Both test cases 

have a uniform pressure loading so a nondimensional expression can be used. 

0( = weD with (3-60) 
qA4 

and tT = ere 
q 

with q = 
p for the patch loading. P is the total load. 

Ap )( Sp 

The first example was a square thin isotropic plate with corner 

supports and a uniformly distributed load, (V.L.O.), Fig. 3.5. 

Approximate analytical solutions for the problem were separately 

presented by Marcus (97) and Lee and Ballesteros (98). These have ·oeen 

shown as eolia straight lines on the diagrams. 

In Fig. 3. 5. 1 the results for 0(' using ACM are a boll. t 13% on the 
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analytical lo~ side 9 and do not approach the average of the two analytical 

values as the meshes become finer 9 ( 6SQU and 7SQU ) • Central stress 

crp Fig. 3. 5.2 9 results are all ~ithin 4% of the analytical and the trend 

suggests that the final value ~ill be on the high side. A very 

reasonable agreement for both displacement and stresses has been obtained 

if account is taken of the nature of the approximate formulation and 

that the corner supports ~ill cause numerical difficulties. 

To involve nearly all the experimental parameter and at the same 

time have an analytical solution 9 the second case ~as a square thin 

isotropic plate with corner supports and. a ceJ1tral square patch load 

(V.L.O.). The results are given in Fig. ;.6 for a patch area having 

sides 0.1 of the respective plate sides. Unfort~•ately there is no 

exact solution to the central displacement, but Marcus (97) reported 

an approximate value for the central stress. 

When modelling this example it was possible to employ a different 

number of elements in the patch loading while maintaining the same number 

of elements in the mesh. In the investigation one mesh had 4 nodes, 

( 3S QG (A ) ) and one had -9 nodes, ( 3S Q G ( B l ) for the loading 9 with the 

same number of D.O.F. 

Fig. ;.6 shows that for all meshes with more D.O.F. than mesh 1SQG 

the central displacement o< and stress 0: deviate by no more than 5%. It 

can also be observed that the two nU¥Jeric~l trends due to the different 

patch models do not suggest identical final results. Fortunately, the 

central stress calculated by a.ll models is vithin 3% of the analysis 

which is certainly acceptable. 
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The t~o examples demonstrate that element ACM is a suitable choice 

for modelling the experiment ~ith further improvement expected once the 

point supports are no longer at the cornerso 
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Orthotropic Example~ ACM.= PAFEC 72· 

Available on the IBM 370/167 NUP~C system is a general finite 

element package known as PAFEC 75. Since one of its options can solve 

generally orthotropic laminated thin plates (no shear deformation) 

it ~as appropriate to compare with ACM. 

Test Example 

A numerical comparison ~as performed using a square 9 simply 

supported 9 four layered orthotropic cross-ply plate ·with a central 

concentrated load 9 Fig. 3.7.1. Fig. ;.7.2 shows the Sl~etrical 

.lamination configuration ( 0~ 90°) 90°, o) of the laminate. 

It was possible for this example to derive analytical values for 

tr~~sverse displacements and stresses,(except for the stresses at the 

centre). The actual calculations a.re presented since thfl stresses for 

point load prdblems cannot be non~dimensionalised. 

The material properties chosen are those for the carbon fibre/Gil.poxy 

resin combination T300/Code 69. 

Fig. 3.7.1 defines the test parameters and symbols 

A = 0·2 m 

t = 0·508 E-03m 

E11 = 0·1351E+12 Njm2 

G12= 0·5771E+10 fo/m2 
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P= 500 N 

hz=2h1 = 2 t 

E 22= 0·1096 E+11 N/m2 

\)12 = 0·3 



Analytical Solution 

The standard solution to the governing equation for the deflection 

(3) of an orihotropic 9 cross-ply 9 square thin plate 9 simply ~upported 

along all its free edges 9 end vertically loaded only 9 is given in the 

form of a Fourier series by Lekhnitskii (99) 

where 

and 

siniT'TfX sjnnT1Y 
A4 oc: o.e. A A (3·61 l 

w(x,yl = ::4~ ~ amn ? 2 4 
1T m=1 n=1 . 011m4+21012+2066)m-n + D22n 

for a single point load is 

= .!L£ sinru sin nrl 
f,.2 A A 

are the transformed stiffnesses 

nl the number of layers in half the plate P and 

hk's are the distances of the unde!' surface of the 

kth lamina from the mid-plane. 

(3·621 

For the example under consideration there is a single central point 

load 9 i.e. "l\ = ~ = 1 9 Fig. 3. 7 o 1 ~ and the solution for the displacements 

in the problem becomes 

i.e o 

4 
sin rmr sin!ll1' sin mrrx sinnTI'Y 

w(x,yl =4.Pli. f!:_f_ 2 2 A A "(3'63) 
Tf4 m=1 n= 1 011m4 + 21012 + 2 06 6 lm2n2~ 0 22 rft 

w(x,y)= ~ Kw 
11'4 
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~here Kw is the summation expression. A FORTRAN prograrr®e ~as 

developed to determine Kw at any position on the plate, ~ith relevant 

combination of values for 011,012 1 066 and 022. It ~as found that the 

value for Kw converged rapidly ~ith increasing number of summations 9 a 

very accurate result being obtained ~ith all the terms up to m=n=1,23 

_(odd l i e 144 • 

The stresses in each layer are given by the expressions 

e• [ 2 + ))21 d ~ J OX(X, yl = -+ z Q-- d w IJ - dY2 dx2 (3·64) 

cry(x y) = + z Q-. !1.w. a• [ 2 
IJ dY2 

.. ))12d~J 
ctx2 

where z is the distance from the mid~plane to the plane of stress 

calculation, (Kirchoff's assumption and displacement functions, Equ. 3.1) 

in the lamina vi th the orientation a~ 

From the Fourier solution of the displacements, E~u. 3.63 ~ 

(3·65) 

substituting these expressions into the bracket terms of the stress 

equations produce tvo more summations. 

Kx : d~ .. \121 d~ 
dx2 d y2 

and (3·66) 

Ky = d~ .. \)12d~ 
d"Y2 d x2 

A further programme \:18.8 constructed to calculate Kx and Ky • The 

66 



convergence of Kx and Ky was much slower than Kw and for locations 

other than the centre 9 terms up to M~N~l 9 201(odd)9 40000 were required. 

At the centre 9 where the stress is theoretically infinite 9 the 

summations did not converge and so for a comparison 9 values with 

M=N=l 9 801(odd) 9 64000 were taken. 

~yj.). Finite Element Modelling 

The two finite element programmes were run to predict the bending 

displacements and stresses for the orthotropic example. Ini tia.lly the 

comparison l-!a.s made lfi th the 49 element gr~ded mesh, 3SQGIA )(Fig. 3. 8.!.) 9 

using AC1>1 and the PAFEC 75 isoparametric Lagrangian 4 node (44205) 

element. Programme ACM is a pure small displacement bending analysis 9 

whereas PAFEC 75 includes in=plane components, but not coupled for 

symmetrical laminates. To improve a.ccuraoy with ACM a 100 element mesh 9 

5 S O.G , vas also studied, and 9 because of 1 ts wide options 9 an 8 ( 44215) 

a."ld a 12 :rtodeci (44220) element, with the 49 element mesh in PAI'EC 75·· 

These latter two elements possess mid~side nodes and so have refined 

d-isplacement functions to dei'-ine their deformation behaviour. The 

refinement should mean improved accuracy. 

Results 

A selection of typical nodal values, displacements (Table ;.3), and 

stresses (Table 3.4) for the following models are given. 

(i) ACM = 49 element mesh 

(li) ACM ~ 100 element mesh 

(i.ii) PA,fEC 75 = 4 noded 9 49 element mesh 
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(iv) PAFEC 75 = 8 nodedv 49 element mesh 

~ith ~elevant gnalytical ~alues. 

The 49 element mesh as displayed in Fig. ~.8.1 marks the nodal 

positions used in the comparison. Boundary conditions for the ACM models 

are sho~ in Fig. 3.8.2(A) and for the PAFEC 75 models in Fig. ;.8.2(B). 

The analytical ~alues for stre-sses 'l:!ere made alon·g the mid=plane 

of the outer lamina ( 0°) under tension 9 Fig. 3. 7 .2. The stresses have 

been presented as an average of the values determined from the elements 

surrounding the node under consideration 0 together 'l:!ith the percentage 

variatior. bet~een the highest and lo~est of these values. The latter tfas 

not necessary for the models using ACM since the .·calculated difference in 

stresses 'l:!ere never more than :1: 1~:. 

From the ~esults presented the following observations '~:!ere made: 

Table 3.3 demonstrates that the modele 'l:!ith ACM provided deflections to 

within 1% of those determined analytically. Whereas 9 those deflections 

eval~~ted by ~AFEC 75 exceed_ the analytical by 2~, in the case of the 

4 noded element 0 and 6% for the 8 noded elcmeni 9 ~ith all other parameters 

identical to those applied in the ACM models. 

The evaluation of stresses derived from the nodal displacements and 

rotations are found to have la~gex: deviations from the approximate 

analytical values than 'l:!as anticipated. PAFEC 75 gives comparable 

results ~o ACM when the 8 noded element 't"fas _used 0 but then 0 like ita 4 

noded el~ment 0 the variB:~ion in the sir~se calcUlated by the eurroundirig 
. . 

elements is large; ResUlts from PAFEC 75 \;Ji th the 8 Xlo.tied dement tBhould 
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have been more accurate than ACM because the displacement function is 

more refined. In fact the t~o models gave same order of accuracy. 

!i'or all models the greatest errors are encountered in the vicinity of the 

point load. It is kno~ ihat point loadings do induce a singularity 

so this observation ~as to be expected. 

The computing time (C.P.U.) for the various models are sho'l:!!l in 

Table 3.5. It is immediately obvious that the time taken for a similar 

problem ~i th P.AFEC 75 far exceeds that of ACM. 

The time difference bet~e.en ACM- and PAFEC 75 is partly due to 

increase in the total number of D.O.F. with PAFEC 75, but mostly because 

of the excessive amount of housekeeping in this programme. From the 

comparisons it appears reasonable to utilise ACM in favour of the more 

elaborate PAFEC 75 for the ~ork undertaken here. 

Laminated P1ates = ACM. 

have all been sho~ to be modelled accurately ~ith element ACM. Results 

were however required for laminatedplates 9 which may coritain.some fraction 

of plies orientated at 9° to the global axes. These plates are ryferred 

to as generally orthotropic laminates. In these laminates the t~isting 
I ? 
q· 

stiffness 012 and 026 ( 3 l 
I 

are !'}.':m..,.zerc fo't' the 

orientated plies, providing 9 ° is not 0° or 9 0° • Plates ~hich were 

investigated in this \:lark consist of laminae at the four nrhmtaticr.s 

-o?+t.:5°
1 

-45° and 90° 9 being m_ultilayered and e.rranged symmetrically. 

As an example of the tjpe of lay=up 9 an sight layey-ed quasi"":'isot.ropic 
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laminate could have the construction ( 0';+4S:9(f,-4S';-4S', 9d;+4S',d'l. 

If thee~ ge~erally symmetric orihot~opic laminated plates are placed 

into pure bending the coupling stiffnesses induce uarping into the response. 

Fortunately the behaviour ie not further complicated since 9 if the lay=up 

is symmetrical 9 there will be no coupling between the bending and 

stretching components. The extent of the warping will depend on the 

relative magnitude of the plate coupling stiffnesses {016, 026 l to the 

principal stiffnesses ( 011, 0 2 2 . 012 l • A test example will display that 

if the tuisting is prevented 9 by imposing non~existent moments through 

incorrectly fixing nodal D.O.F. 9 then very large discrepancies bet1;1een 

what appear similar models 1;1ill be found. Noor et a.l (49) are the 

only researchers ~ho have examined symmetry in laminated plates with the 

vieu of reducing the size of the finite element model. Their finite 

element package allowed for more complex boundary conditions than ACM 

thus reducing the size of meshes but increasing the complexity of the 

programme. 

·-Results £rom previous work were f-irst necessary to demonstrate the 

modelling ability of the element ACM for generally symmetrical orthotropic 

laminates. Unfortunately 9 1 t has been difficult to uncover appropriate 

ex_amples. In fact 9 no plots displaying convergence 9 like those discussed 

in 3.4.1 and 3.4.2 are available. 

The ohly example discovered that can be applied to evaluate ACM 1;1as 

preseri_ted by Weober (loo). He firstly measured the transverse 
- . -

cii~pl,~celil_entEtfor a four layered, t:~J'!llDle,trical angle~ply 1+4S,1.-'4S~ls 
~ctangu].,~ c~tilever ~i th a concentrated load on the tree ed~. Then 
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he achieved an excellent agreement 1:1ith a finite element analysis using 

element ACM 9 so it only remained a matter of producing ~ exact correlation 

~ith Webber to sho1:1 that the linear pro~~e 1:1as operating correctly. 

The mesh utilised by Webberv 1RFU is sho1:1n in Fig. 3.9.1. It has ~6 

uniformly sized rectangular elements 9 and a total of 75 D.O.F (25 nodes). 

Nodes 1=5 1:1ere clamped 9 the remainder being free. Given are- arl 

dimensions 0 material properties 9 the lay=up and the magnitude of the point 

load. All units have been changed from Imperial to Metric to be 

consistent with the rest of the work. Fig. 3.9.2 shows the displacements 

for nodes 11=25 from AC11 and the corresponding experimental measurements 

when a concentrated load had been applied at node 25. Together with 

Webber the fit is very good 9 especially when experimental and numerical 

errors are taken into account. This example confirms that our linear 

programme is identical to Webber's. Webber did not extend the analysis 

to involve stresses and did no work concerning improvement in accuracy 

by refinlng the mesh, so further comparisons were not possible. 

Attention now returns to the problem of imposing correct boundary 

condl tiori wlien- ~presenting laminated prate~9. -Four distinct models- of 

the plate are feasible with programme ACM and Fig. 3.10 shows these models 

for the plate bending experiment. Due to symmetry the perpendicular 

rotations along the quarter plate boundaries are zero for isotropic and 

orthotropic pla.tes 0 Section 3.3.1-3 9 so a quarter plate mesh was suff.ic.fent 

to represent the whole structure. But in the case of generally orthotropie 

laiD.J.nates the twisting 016 and, 0 2 6 induce warping into the response 

wh~ch s}lifts the_ location of zero perpendicular :rot~tion away from the 

Q.~arter. plat~ bou.hdarH~s. 
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In Sections 3.1 and 3.0, when discussing the limiting factors for 

the success of the non=linear analysis9 it ~as explained thai a minimum 

number of elements ~as necessary because of the restrictions imposed on 

storage space and central processing time. Thereforeg some knowledge 

of the effect of tuisting on the :results for the various meshes uill be of 

interestg since it might be sho~ that a laminate containing a 

large proportion of :45° plies uill only be correctly modelled ~ith a 

full plate 9 Fig. 3.10.4. If this is the case then the mesh ~ill have 

four times the number of elements as the equivalent quarter plate model 

and the overall size of the stiffness matrix will be much greater. Simplyo 

if it is demonstrated that a full plate model is the only correct 

representation 9 a non=linear analysis is impractical on the h~AC system. 

To demonstrate the limitations on modelling due to warping, the 

following severe case was examined. 
0 . 

A pure ~45 square laminated plate 9 

arranged as in the plate bending experiment 9 was represented by the four 

meshes. All parameters are presented in Table 3.6 togother-· with the 

central displacements and strains (as determined on the tensile surface) 

from each model-. Fig-. 3. 10.5 illus-trates the shift in--position cf the 

perpendicular zero rotations away from the quarter plate boundar-ies as 

determined wi ih mesh 1 SFG E114. 

For t.h~s problem the unrestrained full plate .model is tl:ie. only co:r:rect 

representation. A tremendous difference in the val:ues of central 

displacement and. . strains is found bet\'Jeen the four mesh types. ~s an 

example 0. 'the ililposition of quarter plate boundary conditions on the f\Ul 

plate- mesh produces a reductioq<of ~12'% in the. central' displacement~ and. 
- .' --. - • - • ·,. 0 ••• :· • • • - • - ' -

over. 350% !~ the c~ntral s~raln. 
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By taking the ply orientation as 0 0 
~45 or -45 in the programme no 

resultant effect on the results uith the full and half plate models is 

obtained. Bot1everp considerable difference is found with othe quarter plate 

model. 

Fig. 3.10.5 illustrates that the shift of the zero perpendicular 

rotations away from quarter plate boundaries is large. The maximum distance 

for the example is • 025M ( x' l. The shift reduces as the observer proceeds 

from the free edge to the centre 9 where it becomes zero. 

The above points indicate that there is a severe restriction on 

employing quarter or half plate meshes when plates are generally orthoti'opic 9 

depending on the lamination configuration. 
0 

Examining the pure + 4 5 

laminate uas the worse case 9 so the extent to vhich commercial laminates 

are affected uill be less. 

A measure of the degree of the tvisting contribution in general 

orthotropic laminates can be gained tt;hrough the size of the ratios D1J-[j"16 and 

D2Yo 26 . For the .. ex~ple jus.t studieal-Gl11 = 0-2~2 and the ra-tios equal 1·17 

(being the minimum for the lamina material prop~rtiesl. By calculating 

the values of and 022/ 
7 026 for a laminate ratios higl;ler than the 

minipium might ind-icate that all li!eshes vill model the problem. Later the 

ratios for tlie plates te~ted uill be given ~d used to try and give a rough 

gliide line to when all mesh types are acceptable. If all mpdels are found 

to 'be accu.rate uith certain 011/_ · _ end 02.2/ 
/016 /016 ratios 1tlien providing 

. . 

the m~t~I'ial properties remain the' same calc\llating the ratios ·tor further 

laminations_ \1ill indicatE!. if-, the varp:i.ng can be ignored or riot. 

o-· • = ,·. ,.·. -. • 
. - "~---- --~-

;;,._ -" ~ . 
-· -·· 
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_3.4 NON~LINEAR (ACMBC) =COMPARISON 

There now follows a similar investigation on the non=linear thin 

plate bending programme AcMBC as ~as perfonned ~i th ACM. Of special 

interest is the procedure in ACMBC by ~h:i.ch it ~as made possible to 

eval'l.late all the stiffness terms e:u:plicitlyp through the new definition 

of the rotations in matrix [Hie, Equ. ;.44. To date 9 all previous non= 

linear analyses have defined the two rotation terms with the bending 

displacement function 9 in either a truncated fortn 9 Gallagher et al (101) 9 

Bergan 8lld Clough ( 70), or more usually 'in i is full form (29,68). 

With this procedure the explicit formulation of the element non~linear 

stiffness matrices were impractical and required numerical integration 

schemes. 

For this work the two terms J!..Jt and U in matrix [H )e have been 
d )(e d Ye 

thought of as the respective average rotations in the element {at the 

present deformation) in the X and Y global directions. New definition& 

have been given to the rotation terms enabling all th~ stiffness terms to 

formulated which, t'1hen incorporated into the programme 9 give only 1% 

variation in results. 

Taking the basic element as defined in Fig. ;.1 9 the first equalities 

are: 

_d_hl_ - 1 J. .d.JL 
d3ce- 4t1dxie 

(6'6 7) 

' , 

· ~here; i is th~ nodal position and 
·d·w 
·dx ie is the rotatlon in the X"-direc.tion 

at the<i1odal position i 9 in elem'ept e • 
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Mathematically the above is not very sound 9 so the terms have also 

been defined as the ueighted means over the area of the element. 

a b 
dw = a:b £ Ia du d }( d y 
d Xe d }( 

1 !Xb 
(6·6B) 

d.1L d w d XdY = 
d Ye a~b o o d y 

d w !!...rL '!;!here d x d y are given in terms of the bending displacement function 

and the present element D.O.F 9 (cf}e • The above simplil~ies. to thE: 

following matrix notation 

~~e = [n~~][d}\Abl-1 

~;e = [a.~~]fatrAbr1 
(6·69) 

Since only a small difference was found between the two sets of 

definitions the latter uere chose~ 0 because they are mathematically more 

sound. 

The modelling ability of ACMBC was studied with tuo simple isotropic 

examples. The plate was square with uniform (C.L.V.) loading and the 

bending boundary conditions· uere either all edges simply su.pported or 

clamped. The inplane boundary conditions could also ta,.ke tuo .forms 9 but 

only Levy 9s (51) restraints "t:Jere treated. In this case 0 t}le parallel 

nodal inplane di,splaoemerrt to the direction of the edges ~re .free.0 whilst 

the corresponding perpendicu1ar D.O.F. to the edges are fixed. ·Wfillg (5?) 

is attributed with the second type 0 where all the inplane D.O.F. along the 

edges ·a~ fixed. These lEltter bO,uridai:'y .condi.tions make the pon=-linear 

behavfour stiffer than Le\ry 0 s·and the.si~e of the central transverse 

lS. 
-·._-· 
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Analytical solutions 't!ere readily available for the ~xa:mples. The 

results given by Levy (who solved VOn "-Karman ° s equa'Uons using a double 

Fourier series) have been quoted as having a possibl~ error of less than 

2%. 

All results t1ill be presented normalised and for clarity the 

following parameters in ACMBC are given. 

Load increment q and the number of iteration steps to convergence 

at each load increment. 

The value of 13 Equ. ;.4, 11hich was used to establish the next 

displacement set in the Newton~Raphson iterative procedure. 

The value taken for the reference errors 181 used to determine 

convergence with Equ. 3.5. It can be noted that for ACMBC the inplane 

16lp1 , the rotational te I rot and transverse displacement I €lw terms 

have been defined separately. 1€lw 11as taken to be the smallest, 

f()_lJowed_ by • The reason for-this -was that a 

small change in lclp1 caused a greater change in the number of iterations 

than if I Ej w or I € I rot were changed, with no consequential improvement in 

accuracy. 

3.4.1. _Isotropic ,Examples-= ACMBC 

The t.lio ex-amples which \iere modelled are: 

A squal'e_,simply s\lpported :tsot~()pic plate, Levy 0 s i~,:pla.n_e &.-~straints, 

'.-.- . 
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A square clamped suppo~ted ~sotrop~c plate 0 Levy 0s in~lane restraints 0 

uniform pressure load (C.L.V.) 1(t-Ihich in this case t-Jas equivalent to the 

V.L.O.). 

A study t-Jas made in the flexural response as the pressure increased in 

ipcrements. Results for the central transverse displacement 9 central 

surface tensile stresses (bending and inplal'Je) and mid=side edge surface 

stresses have been noted. The two cases were mode~led t-Jith the quarter 

plate mesh 4SQ.U t-Jhich has 16 elements (125 D.O.F.)v being the standard 

mesh with all previous finite element analyses. To possibly improve 

accuracy a refiner mesh 6SQU containing 36 elements (245 D.O.F.) was used 

for the simply supported example. 

The normalised values are: 

transverse displacement 

surface stress 

w=~ 
h 

- A2 
o-=~h2 

(3-70) 

which were evaluated at the load increments given by the load factor 

q - g..A_4 
- E h4 

-N-.B. Resul-ts from the f-inite el-ement work of Brebbia and -connor - (29) 

Thomas and Gallagher (71), pl:us the analytical analysis of Berger (53) were 

given for the load factor 

-q_nA4 where 
? - .>1~ 

'7'\ ~£" oh -. 
..}../ . / 

I D = E h
3 

12(1-l>?) 
(3-71) 

and A' is ha.lf the plate length. 

This means that tnere is a. load. fa~ctor difference of 1·4 8 between 

ACNBC and thes~e analy~es. 

In both ~Jt:ampl~s the~followin'g- parallleters~ere appli~d: 

77 
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~ = 0·5 

l£1p, = 0·05 

l81rot = 0· 025 

181 w = 0·01 

Convergence was only accepted once all the appropriate displacements 

provided error quantities lower than those stated above. 

Table ;. 7 gives the load increments q 1 the number of iterations 

at each load level and the total C.P.U. time for the solution. 

" 
Numerical trends with ACMBC are displayed as dotted lines in 

Fig. 3.11 and ;.12. The solid lines show the analytical solutions of 

Levy (51). Table ;.s summarises the values which were available for the 

comparison. The subscripts are: 

B = bending pi= in-plane 

x = X -direction Y = Y- direction 

The locations AtoD are shown in Fig. 3.13.1 together with the boundary 

conditions. 

To _compare with further finite element procedures the percentage 

errors at the load factor Cj = 20 0 have been presented for the s_~mply 

supported and clamped examples in Table 3.9 and 3.10p respectively. 

Percentage errors w~re determined py: 

Analytical value = Finite element value X 100% 
Ana1ytical value 



The followirlg observations uere made: 

AC11BC gives similar cha,racteristics for both simple isotropic examples 

The value of w0 is aluays less than the corresponding analytical and 

the deviation increased uith load, Fig. ;.11.1 9 ;.12.1. 

The values fer the extreme tensile surface stress at the centre 9 

0:0 .. = crPI 0 .. -> treoJt and at the m~d~side of the edges 0(:11 are "l:!ithin 1% 

of the analytical 9 Fig. 3.11.2 9 3.12.2. 

The ir1plane stress at the centre 9 o="'vx is ~"l:!ays greater than the 

analytical 9 Fig. ;.11.3 9 ;.12.3 9 and vice versa for the bendirig component 9 

Again 9 as the load increases so does the 

error. 

The illi>lane stresses at the midc..side nodes for the simply supported case 9 

Fig. 3. 11 • 3 9 are found to be much lower than the analytical • 

The warping stress in the corner cr8 R .... .r Fig. ;.11.4 9 ia below its 

analytical for Q<120 9 above which it diverges a"l:!ay at greater value. 

Comparing ACMBC "l:!ith the selection of results from other analyses 9 

Table 3. 9 and 3. 10 9 it can _E,e s~en that · ~1;}le :!}ew litlal~l:l is ~!3 the utOJit 

inaccurate. The greatest difference from the analytical are found with 

the 4 noded element meshes. A large reduction in the error is obtained 

"l:!ith higher order elements 9 but at a mlich higher computing cost. 

The J!la.j9r cost is the inv~rsion needed to solve the finite element 

equil-ibriUJil eq~tions. It is knoun that t~e time to perform the 

inversion approximates to the squ,are of the t~~nlial stiffness matrix 

sfze. Hende 9 as_suming ~1 .-~~~ D.O.F. i/~re c:;oequi;r~d t~e ratio of timE-

ljeeded for ~he various elements wfth- mesh 4~0.U uere: 
, .. -· ,-
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4 node ACMBC Bnode (Serendipity) 9 node(Lagran gi an) 

6·76 11·53 

F.:!\:1 publica tiona gave the toia.l C. Po Uo time 0 and ~ven t:then reported 

the computers t:Jere diffe~nt so a comparison t:Jas not practical o 

It has also net been possibla:l io establish if any of the other 

analyses provide the correct st:ress distribution. Only Bergan and 

Clough (70) ~Separated Oiix into its components. 0 'Put eid not :report 

them. Looking ra.t the results t-Ii th the refined celeme~ts 0 it does not look 

likely that the components trflll"' and CBIIx behaved as observed t1Hh ACMBC 0 

raince Wp and tr'Dx are near to the analytical. 

The :results have demonstrated that g;he non-linear finite element 

formulation applied in ACMBC does not represent the response of isotropic 

plates. Bowever 0 the Principle of Minimum Potential Energy may still bold 

mince the total rstress is correct. It is therefore probable that, 

throughout the plate 0 the true stress exists but that the distribution 

between the components is urong. Values from ACMBC suggest that the 

bendi:ng component is too stiff relative t~ the _inpl~.~~ coJ!lpQn_ent ~1; the 

centre 0 and that the situation reverses near the free edges. This implies 

that the overall deformation for the examples det~rmined by ACJ-:BC is as 

aho\:!n in Fig. 3.'13.2. The true deformation ira shown as a solid l:ine. 

1'he ~sul,ts ~lao indicate that reasonable Qccura:cy ttill only ·~ 

m.ch.i~v~d ~1 th the high order talements 0 This me;ans that a 4 :!!> 4 element 

·rnod~:l-. contairis a lot of D.Q.ll., end·· for a precise comparison an 0q~f'tral~n't 

nfunber of D~Q.F • m~h()uld bave;l!_ee~ t!s~d o .A~c-,.~}spl~ys little. irclproy~m~n.t 
~hen_the g>frisrlilesh.ti·B:s ~;pH.~d9·(.6sa.i.r 36 ~&hments 0 245 n.OoF.). ~re?M.a· 

"80. 
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and Connor (29) 0 Bergen and Clough (70~ and Reddy and Chao (74) did not 

axamine further meshes so the difference betueen the t~o orders of 

elements on similar terms co~d not be ascertained. 

Obviously9 the computing effort with 8 and 9 noded element meshes 

1:1as much higher that'l for 4 noded element meshes. Since it ta,kee >50 

C.P.l.ls for ACMBC to solvs the s:imply supported exam}ile 0 the ti.me 1:1,ith high 

order elementsmust have been enoT.mous. If accurate results c~ only be 

obtained l:lith high order eleinentsv computing restrictions t:Jill ensure 

that only simiJle problems can be solved. This may mean tha.t it .. t:Jill bP 

extremely difficult to use a finite element geometric non-linear procedure 

to model the plate bending experiment. 

Isotropic Examples CO' :Mod-ifying ACMBC 

To proceed 1:1ith the investigation the work of Brebbia and Connor (29) 

,(who used element ACl•ffiC) will be involved. They reported w11 for the 

clamped example 0 which was aluays greater than the analytical. The 

difference between ACMBC and their analy~~s !f3 V'e!_y large 0 jll'ld at fi= 200 

is ~ 2 3 % of the ,analytical 0 Table 3.10. Now the most drastic change 

betueen the tt:Jo procedures t:Jas through the definHion of the rotation 

terms in !Wle, ( c.f [Wr I Breboia and Connor ~ Therefore this area 

of the analysis must be the most likely sotirce for the differences. 

Th h i f d w an· d ,~ w in ACMB. C 1 . ' t.. . and it .. e c o ce o - .1:1..!!. .· · . ... t:Jere 011 y approxl.Dla e 
d Xe · d-Ye 

1:1ill be reasonfi.b;Le to ~mplqy a,ny·, fraction of these valu~s in, the 

pfogr9mm~~ Eig. 3o-14 d}spl~ys' il}.e ~hange' in:th~ t~~~~s fa;~ t,h~ _simply 
__ -o 'c~'"-' ./"- "P,_: •.- ·,; "'-, ~ >, ·-;-- ·-.-:-,_ ' ~o- ·- ,-· • •• '• • • __ 

;· .-, ... - .- -- . . 

· aupl'or~ed a:xample obseri~d;',by, e_qually al.tering ~-e aild ~e bet\1een 
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3 and 5 of that n-1· uen by· Eq· u 6 69 4 . 6 1;:1 V' 0 0 0 

At each load :incX'ement 0 the values have been marked and an a.rrowed 

line shows the change as the scale factor increased. Comparing 'td th 

Figo 3.11 shows the changes from the basic analysis. From the results 

in Fig. 3.14 the following observations 'l-.'ere made. 

By decreasing the size of the rotation terms for all elements in 

the evaluation of the stiffness matrices the ensuing displacements and 

Gtresses are increased. Thi.s increas_e grows t-!ith lo~d 0 shot-1ing that the 

plate is now less stiff than calculated with the initial ACMBC. The 

ext.ent to which the values ihcrease is dependent on the location in the 

plate 9 compare crpt'D~< with CTptC..x in Fig. 3.14.3. 

The value of ET'or 0 'l-.'h,_ch ttas originally within 1% of the analyJical 

now diverges away on the high side 0 being a 'result of the increase in both 

.A,ccUI'ate modelling has not been attained by just altering the two 

rcftation terms equalli wid 0 in the case of cro.IC 9 trptu and trpt ox 

the reduction makes matters worse. It is therefore proposed that two 

further_ approaches Jpay result in acceptable J;Dod~llin~. 

In,stea,d of redud.ng 

a variation over the mesh 

co~ct flexurai respolj.se 0 

!ill 
d Xe 

(i.e. 

and ~~-e by eqwH a.mount,s on ~_!il--eh i:teratJon_ 0 

from element to el'e\Jlerit) may,pi'Oduce the 

To accoll:IJ?lish this a lengthy trial and error 

technique would be needed and time has prevented thie. 
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Altering the two rotation terms has emphasized the original deformation 

b~haviour 9 that the combination of the bending and in=plane stiffnesses 

are not in th~ correct ratio for an accurate model. In all examplesp the 

ma,gni tude of O''"ptDJt has always exceeded its analytical 0 while 0:8 D( has 

always bsen below. Therefore 0 if either of the linear stiffnesa 

coeff-icients are scaled 9 a correction to the mismatch might be wade. 

Fig. ;.15 displays the effect on the simply supported example due to 

increasing the linear inplane stiffness coefficients by a .fac:tor .from 

1.3 to 1.5. 

From the results in Fig o 3.15 the following o bserva tiona were made o 

The overall effect on the results is smaller than that due 'to changing 

the rotation terms in [H] e In fact 9 for both w and iTox the changes 

were not easily recorded. 

Of mo13t ~levE!J}ce is that the vah1e of crux is below the analytical 

has gre13,tly decreased (cof. 3.15.3 with 3.11.3) an~ i'T8 Dx has only slightly 

increased (c.fo ;.15.4 with ;.11.4)o 

Qbviotisly the results show that an accurate model will never be 

&ohie~ed.by juat altering the size of the linear inplane stiffness 

coeffiC_ien~s. 

. - . -

lQwerifi,g thtL rotatio:n terms ~0, ihcrea~?llig the iJli>la,tie st'iffness te~s 

·"· . 
. ' ' 
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does suggest that a good model ~ill rest+lt. By application of a trial 

and error procedure a good model ~as obtained when ~ ~e and ~~e ~ere 

scaled by t and the inplane stiffnesses ~ere scaled by 1 .;. Ftg. ;. ~6 

and 3·17 illustrate the improvement for the two isotropic examples. 

Comparing 'l;!ith the results presented in Table ;.9 and ;.10 9 at (j=200 

it can be seen that a similar level of accuracy has now been optained- to 

that ~ith the high order elements. 

The new model does pose certain questions ~hich should be ans~ered. 

Does the two scale factors in the modified ACltlBC make the formulaticn 

mathematically incorrect? 

To start wi1;h there was nothing wrong in altering the values cf 

~ and d w since the original definitions are known to be approxil!late. 
dxe dYe 

However 0 the original definitions 9 Equ. 6.69 9 could be misleading and the 

only correct definition for the terms will be when the full (or tru.'1cated) 

bending displacement is employed in [Hle. 

Incree1.sJ.ng the 1~1~~ !:t'tUfm~ss \tOl.lld appear to destroy the consistent 

formulation of the analysis. It may have been better to have introduced a 

reduction in the integration of the linear bending stH'fnesses as has been 

used else~here. 

Does the two scale factors gi:ving the good models here remain 

constant for all types of ~:Rrdbleuis~ especially ~hen the plates are thin 

generally S,y1nmetrical corthotropic laininates? 

This question could not be a.s-se~se-d 0 since of the three available 
- . . ' : -~ .•. ·- . 
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laminate analyses which provide results no generally symmetrical 

orthotropic laminated thin plate examples were reported. Chang and 

Sawa.miphakdi (86) only studied a single cross=ply problemp uhil·e both 

R~ddy et al. (74) and Noor et al. (73) favoured cross~ply and 

antisymmetrical problems. 

Nocr did study tuo quasi-isotropic l~inates but was concerned 

with shear deformation in thick specimens and so omitted a thin pla.te 

analysis. Because of the lack of suitable test cases to establish if the 

scale factors wer~ universal or not, further development of ACMBC was 

hal ted. 

:. 85 -. 
~ :~ 
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CHAPTER 4 ,EXPERIMENTS 

4.0 Introduction 

Having proposed a new iectlllique for evaluating the behaviour of 

carbon fibre re.infcrced plMtic plates under biaxial stresses 9 several 

preliminary experiments were necessary to determine whether the test 

would provide rel~vant data. If relevartt 9 the information will enable 

researchers to ~alyae the. complicated modes of comp~site failure 9 and 

provide bi~ial strength data. 

The aim of the experiments was to verify (or otherwise) the four 

criter~a as laid down in Chapter 1. Since no similar experinnmts have 

been performed else"'here 9 certain parameters "'ere unavailable before the 

tests. These included the extent of deformation, the position of the 

supports on the plates at failure 9 the maximum load and strains, and the 

mechanism of failure. Hence collectively, the experiments presented here 

are just fact finding for the future refinement of the plate bending method. 

where a thorough numerical comparison b'ill help to establish the limHe of 

criteria (a) and (d). 

4.1 .S}?ecimens For .The Plate Bending. ExPeriment 

The specim~ns testedc were ml,ll til~:~.ye_red general~y symmetrical orthotropic 

laminated composHe thin plates_. 

the ·material T369/code 69 at 'tii~ ·o::;iervtations Ji) 90~-+45 o and .;.45° · ·:to·th~ 
".3 ' o • - • .; • ~ ·o ~· 

global X=Y qirection~ 9 J~'ig. 1 .1: The • s~il}e ·was fairly random sitlce tn'e: 

. '~. . 
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plates came from excess material at British Aerospace (Woodford). 

4 .1.1 Material Properties And Ph~ical Parameters Of The Specimens 

Table 4.1 gives the material properties used by British Aerospace in 

des~ign and those typically measured for th'J uni-directional cured compgs-i te 

material T300/Code 69. The symbols given to the pro~rties appear 

throughout the text. 

The values were measured for a constant lamina thickness of 0·127E-03 M 

and a fibre volume fraction of 60%. T300 is a Toray high tensile strength 

fibre produced. in Japanp and Code 69 is an epo::cy resin manufactured by 

Fothergill and Harvey. 

The dashed lines indicate \'!hich typically measured strains were not 

reported. This ~as probably due to a very wide variance in their 

measu_"'"emer.te. 

I-t has been kno.wn--for a j:ong time that the shear mo:dulus, G12 0 is 

dependent on both temperature and strain. All experiments \'Jere performed 

at room temperature, (15=20 °C) and hence on].y strain would have had an 

e.ffe'ct •. Fig. 4.1 illustrates the secant shear modulus against the warping 

st?e~s-' 'T12 (wlifch is itself -~ f~o:ti.on of the sh~ar strain. ~12). The 

tra,rlsvel'se modl.ilus 0 E2-2 li ~s also dependent on strain~ 

sugges~ed thM -the d~peng~nce is sniall but nottceaole. 

Correspondence has 

~~se '.t\,;6 .proper-ti~s are also fol.mq. to change t1heri the fndi:V~~Ual 

].amina:. ~are placed ·~oge_ther in the inanufa6t\ire of ·gen~r~},y o~thot_l.'Opio 
'- •. -l.'- . ' -, ,:' \ > :~'.t :-' ' -. " 
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plates. Large thermal strains develop in the plates to~hen they are cooled 

down at the end of the curing process 0 due to the enonnous difference in 

the principal coefficients of thermal expansion 0 Table. 4.1. The size 

of the thermal strains varies from layer to layer depending on the relative 

orientations of the facing plies. Internal plies may th~n experience 

s,train in their transverse di):ec;:ti,on in excess of the matrix tensile failure 

strain (aO · 7%1 so inducing moderate crazing. ~he cracking ~ill be 

parellel to the fibre direction and causes a reduction in the transverse 

and shear moduli. To allow for this in the numerical ~ork the most 

realistic assumption to date has been taken. 

Resin cracking is ignored - a reduction in the tr~"lsverse ~odu.li of 

of elasticity of the unidirectional material is taken 9 and the non-linear 

stress/strain curve in shear is uGed. 

All specimens contained some entrapped gases 9 known as voids 9 whose 

presence also reduce the shear modulus. From the work of H3rlCOX ( 102) a 

1% void content causes a 10% drop in shear modulus. For the pl~tes tested 

_little" background--information was -available -concerning vc id content so this 

reduction in shear modulus could not be taken into account. 

In the manufa·cture of the laminates 0 the pressure subjected during 

curing tends to squeeze out some of the resin, ~ith the outc9me that ply 

thickriess is often bel.ow the norm. This inturn· causes an increase in fibre 

volume f:raction and hence an increa.se in the lo:hgi tud'inal m6dUlu~ E 11 • 

The follbw'irig relat'iom;hip ailcws fgr, the increase in ntmierlc.al analyseso 

(El1b . .am E11 It 0.·127>fc03 ... 

!tYCa1n.-
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Material properties e.xamined so far have been for 0 freshly 0 cured 

material 'tthich has not yet b_een exposed to the degradation o.f the 

environment. A _lot of research has shown that all resins areattacked to 

a varying extent by long periods of high humidity and/ or high temperature. 

Again the result shows up as a reduction ln the transverse and shear 

moc1~li ( 103). 

Specimens had not been kept in a controlled environment 0 a.••d bad 

spent a varying length of time in ambient room condi tiona. For this 

reason the effect on the material could not be assessed and it has been 

assumed that there has been minimal de-gradation. 

Several laminates were tested to determine the feasibility of the 

proposed plate bending experiment. Table 4.2 gives the physical 

parameters and remarks for each experiment. Symbols for the physical 

parameters are defined in Fig. 2.2. 

It should be noted that the sami>le had been ma11:ufactured over a period 

in excess of thtee-years. The-:exa:ct d·ates of manlifacfture for tlie specimens 

used in Experiments 1 0 ~and 4 are UIL~own. Unlike the ref!t 0 these two 

laminates possessed a single protective layer comprising of another soft 

epoxy ;resin. T}"Jis. l_ayer had been c:pplied to the upp_er s'lirfa,ce ,arid was 

nOmiilally t\-1o s_tandard pli~s . .tnfck. Syinm$try had therefore been lost 0 

but to ma:ipt~_ih siinplicity of the numerical ana:):ys~s tpe layer was ignored 0 

but not forgotten. 

Froiil· porresporfdtmce<wi:ih-:_~-~i tis_li·· lierosp:rce it was esta,'olfshed that 

ali the spehilli~ns_ had been .s"i'~je"pted to t"~~ same cur~ng .cyc.les •. 
~; ~ 
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Shear Daformat:ion And Shear Stresses 
. I. 

!Jt the previous chapter the pl£~.te bending finite <alement analysis 

was introduced. Due to the allocation of storage space and the C.P.U. 

time allowod 9 restrictions had to be imposed on the complexity of the 

model. For the purpose of keeping tpese t'ti'o quantities "t:Tithin limits 9 

several thin plate bending assumptions 't:ferc preserved. 

Because of the relatively low interlaminar shear modulus G12 in fibre 

composites 9 classlcal laminated plate theoryCC.P.T.)becomes inaccurate in 

determining gross plate respense and internal stresses in 9 thick 9 plateS;. 

Under these conditions several characteristics of C.P.T. limit its 

general! ty ip. the description of laminated behaviot:.r ( 1o4). These are: 

(i) the assumption that uniform in-plane displacements through 

the th1ck:ness 9 

(ii) the presence of only two boundary conditions per free edge 

in the classical bending theory precludes the precise 

calculation of boundary layer effects 9 such as stress 

(iii) the neglect of shea.r deformation 9 implied by the hypothesis 

(normals remain straight and normal) .. 

(iv) 
.(:;_ 

the assumption of a; state of plane stress in the constructive 

rela.tionsp which eli.J:ri.triat~Ei the possibility or exact calc:ulation 

of inter laminar stresses. 

- - . . . 

thepry,. w~ere the, shear mod~us in ,terms associ'atea witn the ·transver~e 
. """· . - : , .-. . " ~~ .. "":- . ~ "'- ,._,. -· ~"'- .- : .. : ' 
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-~he'ar ,QaformdfOrl ·~·s ~B.l(err:to-~b~·.:-ye~y; .1~~ge_,P StiCh thS_~ shear defoi;~.tion 
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can be neglected. The finite element method developed ignores s}lear 

defornation and shear stresses in.~both the large and small displacement 

analyses. I~ ~ould be of value to be able to predict ~he extent of shear 

deformation and shear stresses in our plates. Steps can then be taken 

in the design of the ~xperiment to minimise these inhe·rent responses. 

The remainder of this section ia divided into two; shear deformation 

being s:tudies first 9 followed by shear stresses. Each study indi1ates 

that certain l~its on experimental parameters must be made to reduce the 

unwanted responses to an acceptable level. 

Ll.2.1 .Shear·Deformation 

The treatment of trensverse shear deformation effects in plates made 

of isotropic materials stems from the classical papers of Reissner ( 105) 

and Mindlin (106). Both of these theorieswere based on the displacement 

form 
U = Uo ~ 2 ~X 

V = Y0 + Z ~ y (3·1) 

W = Wo 

where Uo, Y0 and W0 are weighted averages. The classical theory assumes 

the same dis:place_ment fleld but with the two rotation term.s y x a.n,d y y 

In ReissnerVs approxittfate me:thod a 

special va:dationEtJ. t~egrem W?-S used to dete~;~e. both :the equations of 

eq~ilibri\liil in te:rms (lf resy1tants and the ·stress-s,~r~:i,n reJ,atipl'ls 

~~~~ed' to vary as a f\UlQ~~on Of _z • .. ,' ,. . - . . . . 
Reissrier's meth6d~as extended to 

'· ·~- • '. •• ·• •: • .~ ~- ~. - • o''\._ • ' 

. -·- _,.?;:·.::-,. ..,_. 'l . 
;,: . 

c):rthotro:PJc plat~s.;:by·G~X:kin~.· and-.,B~~r (107~ ~ti later t<?,' ~~et7.'io~ 
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cross=ply plates by Ambartsumyan (108). Whitney (109) then broadened 

this latter analysis to generally symmetrical laminated plates ~ith 

orthotropic laminae of arbitrary orientations. 

Mindlin employed kinematic assumptions of the form Equ. 3.1 and 

~i thout introduci:1g corresponding stress distribution assumptions, 

obtained the governing equations from a direct method. A correction 

factor ~as introduced to account for the fact th&t the displacement 

relations predict a uniform shear stress through the thickness of the 

plate 9 which was incorrect and in general would voilate surface conditions. 

This factor was evaluated by comparison ~ith an exact elasticity solution. 

A generalisation of Mindlin ° s theory was developed by Yang 9 Norris and 

Stavsky (110) including shear deformation and rotary inertia to obtain 

frequency responses for arbitrary laminated composites. A review of 

further papers was given by Bert (111) from which other researchers have 

stated that the YNS theory is adequate in predicting the behaviour. of 

laminated plates. Although all tpese procedures are approximate 9 the 

algebra is complex and comprehensive results for multilayered generally 

symmetric lamina-ted- plates are very involved-.-

In parallel with the approximate methods 9 Pagano and his associates 

(104 9 112 9 113 9 114) were solving exact solutions of certain cylindrical bending 

examples. The manipulation of the ensuing theory is intricate and was 

developed to cope with simple composites containing arbitrarily orientated 

laminae. From the examples reported 9 the overall response of the specimen 

as the span to thickness ratio S is altered was demonstrated. 

Fig. 4.2 shows the behaviour found in a symmetrical 3-ply 
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(equal thickness), cross=ply strip 0 which is simply. supported at each end 

and has a transverse sinusiodal load (104). \vi th low span to thickness 

ratios 9 the figures emphasise that the deviation of the exact solution 

from the approximate C.P.T. is quite substantial. 

Fig. 4.2.2 shows the normalised transverse central displacement,wc 

plotted versus S and even at S=20 where C.P.T. would be accurate for 

isotropic materials 9 the deviation is about 2~6. The normalised stress 

ux is plotted through the thickness for values of S of 4 and 10 0 

Fig. 4.2.3, 4.2.4 respectively. Deviation of the classical lamination 

solution from Paganovs exact elasticity solution is drastic for 8=4 

but not over large when 8=10. Transverse shear stress, '~xz for S=/.,10 

are shown in Fig. 4.2.5 9 4.2.6 and the theories are not significantly 

different. Inplane normalised displacement, ux 0 is plotted through the 

thickness for S=4 and 8=10 9 Fig. 4.2.7, 4.2.8 •• Obviously, the displacement 

varies almost linearly in each layer, but definitely not through the 

laminate when 8=4 9 when S=10 the deviation is not as great. Thus the 

Kirchoff hypothesis of non=deformable normals is not appropriate for low 

values of S. 

For a particular value of S the C.P.T. stresses converge to the 

exact solution of Pagano much more rapidly than do the displacements. 

With S=20 stresses are in the order of 10% in ex·ror. 

Displacements are severely underestimated for S less than 25 in this 

example. If this set=up was tested. experimentally, and S was less than 

25 9 then the effects of shear deformation must be included in the numerical 

analysis. 
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The theories for shear deformation described above and the classical 

theory use the same order of approximation~ Equ. 3.19 in a power 

series expansion in z • There have been several theories proposed which 

are of higher order than those of Reissner and Mindlin. These 

sophisticated models of plate behaviour are more applicable to laminated 

plates than isotropic 9 because strain transverse to the pJ.ane of the 

laminate strongly influences the behaviour. High=order theories uere 

derived to solve the full elastic problems 9 to provide description of 

transverse normal strain 9 shear stresses 9 and vibration responses 9 rather 

th~~ just shear deformation. 

The next high-order theory from that embodied in Equ. 3.1 involves 

displacement forms of the type: 

u = uo + z Yx 

0 
v = v + zyy (4·2) 

'vi = 'vlo <> Z ~ z + z 2 52 

which includes the effect of transverse normal strain. Whitney and Sun 

(115) developed Equ. 4.2 for laminated cylindrical shells. The approach 

.. was- -incorrect 9 a shear- correction factor-was employed to derive stres·s 

resultants. Whereas a factor was appropriate to Mindlin 1 s derivation 

since it assumed uniform shear stress across the thickness 9 the above 

displacement terms imply a non=uniform shear stress 9 so the correction 

factor was not required. 

A step-up from Equ. 4.2 is the assumed displacement forms 

0 

z ~ y z 2Jy (4·3i v ;;; v <). + 

w = wo + z ~z <). z2~z 
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Nelson and Lorch (116) applied Equ. 4.3 to laminates 0 but made the mistake 

of still operating ~ith a shear correction factor. Hildebrand 1 Reissner 

and Thomas (117) briefly examine the theory for the level of Equ. 4.3 

and concluded that the inclusion of the quadratic terms in the inplane 

displacements did not provide extra advantages over low level theory 0 for 

problems ~hioh were of interest to them. 

Reissner (118) bas presented a theory ~hich involves 

u = z t.lx + z 3 ~X 

v = z ~y +- z3~y (4·4) 

w = w" ~ z2jz 

He sho~ed that the plate theory corresponding to Equ. 4.4 gave excellent 

results with the corresponding elasticity solution for the bending of a 

plate with a circular hole. Though the results obtained~ere impressive 

Equ. 4.4 represents the lowest order correction for out-of-plane deformation 

and inplane deformation was neglected 9 which was acceptable for the problem 

studied. 

Lo, Christensen and Wu (119) formulated most of the up to date studies 

in high~order theories. Their 3~dimensional solution was based on the 

displacement forms 

u = uo + Z ~X + z 2s x + Z 3 ~X 

v : vo + z ~y + z2 ~ y + z 3 ~ y (4·5) 

'vi = wo + z~z + 
2 

z s z 

which are on the same level as the Reissner theory but now take account 

of both in= and out- plane modes. DiF.placements and stresses were 

obtained by substituting Fourier series approximations (for displacement 

forms and loading) into the governing equilibrium equation which has 
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been derived from the principle of stationary potential energy. Finding 

a favourable comparison ~ith isotropic plate test examples the theory 

~as extended to cover laminated strips (120). 

Further development of this method is discussed in Section 4.2.3 

~ith special attention to its applicability to the behaviour of our 

generally symmetric orthotropic laminated plates. 

However, the solutions obtained from the above theories are limited 

to simple geometry~ load and boundary conditions. The finite element 

method of analysis can be adopted for difficult but practical structural 

confi5~ation, as a general model. With the ever increasing development 

of elegant finite ele~ent procedures considerable effort from the early 

Seventies has been spent on investigating shear deformation in laminated 

plates. These finite element methods were generally based on the simple 

displacement form of Equ. 3.1. The first of the 2-dimensional, small 

displacement finite element methods to analyse 'thick' plates utilised the 

conventional displacement procedure. Pryor and Barker's (45) element has 

7 D.O.F. (three displacement, two rotations and two shear rotations) per 

node, Subsection 3.1 .2, but unless the mesh was very fine little success 

with the results was found. Mau, Tong and P~an (38) have employed the 

so-called hybrid stress FE method to analyse composite plates including 

shear deformation. Normals are assumed linear within each layer, but can 

vary from lamina to lamina. Mawenya and Davies (46) applied the same 

assumption as Mau et alv with a refined element and utilised the 

displacement method of solution. More recently, Panda and Natarajan (47) 

usedv following Ma ... ,enya and Davies, the quadratic Serendipity shell element 

of Ahmad, Irons and Zienkiewicz (87) with the same normal rotation through 
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the thickness to claim improved accuracy. The thickness concept mentioned 

in these methods is essentially the same as that in the YNS theory. 

Noor and Colleag.1es (48P49) developed a package of programmes to solve 

bending in laminated plates 0 uhich incorporates several shear flexible 

mod.ele. The analytic formulat:l.on was based on Reissner 1 s theory with tne 

effect of anistropic material behaviour indluded. 

element was the most successful 0 with 80 D.O.F. 

A 16 node Lagrangian 

The most recent study by Reddy (44) used the YNS theory with the 

inclusion of a penalty function concept to take account of the shear 

deform~tion.As already mentioned in Sub2ection 3.1.4. large diP-placement 

analysis is a facility included in the latter two programmes!72,79,74,75J. 

4.2.2 Comparison Of Classical Linear Finite Element Analysis (ACM) 

With Shear Flexible Elementn 

Considering the present understanding the magnitude of shear 

deformation in 'thick' laminated composite plates, it might bP. thought 

advisable to include shear deformation in the Finite Element Analysis (A~ffiC). 

Table 4.3 presented here, briefly describes four shear flexible 

elements which have been developed and verified against Pagano's exact 

solutions. Pagano employed the full 3-D stress-strain relations in the 

examples, whereas all the 2=D shear flexible elements account for the 

assumption ~z=O by altering the appropriate 3=D stress=strain terms. 

This means that each ply has slightly lower stiffness coefficients th~~ 

the corresponding 2=D classical plate theory (which totally neglects any 
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e~fects in the z direction)~ and considerably lower than those of the 

exact solution. 

With the shear flexible elements~ quarter plate representations were 

applied to derive results for the cross=ply example~ All meshes, except 

Mau et al. (38) have an equal number of unifo~ly sized elements per side. 

Together with the linear FE analysis (ACM)p as described in Chapter 3, 

the accuracy of the shsar flexible elements ~re measured against the 

third test case considered in Pagano's paper, 'Exact Solution for Rectangular 

Bi-directional Composites and Sandwich Plates' (112). Test parameters for 

this 3 layered symmetrical cross=ply example are defined in Fig. 4.3. 

Two plots 9 Fig. 4·4~4·5 show the non-dimensional nentral transverse 

displacement 9 Wc 9 and the non-dimensional maximum stress, crx9 in the 

X-direction 9 for increasing span to thickness ratio, S. Labels on the 

finite elements indicate the dimensions of the quarter plate meshes and 

their total number of D.O.F. 

From the results the following observations were made for the particular 

example chosen: 

1. Shear flexible models are only required in determining 

displacements when the value of S is less than 40, 

2. Shear flexible elements do not provide an improvement in 

the prediction of stresses, over the whole range of S, and, 

in fact, the stresses deviate further from the exact 

solution than the element ACM. 

3. It is to be recalled that the major reason for the adoption 

of the finite element approach was to evaluate the strains 

and stresses 9 ·and hence explain the behaviour found in the 
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plate bending experiments. The number of D.O.F. is a 

measure of the computing time required. It is evident 

that the solution using the element ACM takes a similar 

time as the shear flexible elements 0 and generally gives 

superior results. This being s~cially so providing S >30 

A shear flexible element was also rejected for the folJowing reasons: 

(i) to repres~nt the experimen't 0 Section 3. Ot at leact 36 

elemAnts are necessary. If one of the shear .flexible 

models was now used in the non-linear analysis 0 the total 

number of degr~es of freedom would make the size of the 

governing stiffness matrix too large for the capacity of 

the computer 

(ii) and the extra complexity to account for a shear flexible 

model in the programming would inevitably increase the 

computing time. 

Eence no further progress as to the magnitude of shear deformation effects 

in the tested generally symmetrical orthotropic laminated plates has been 

made. ~do further pieces of information present more factors which will 

effect the size of shear deformation in the experiment. Whitney ( 121 ) 

reported that the higher the ratio E11/E22 of the material 0 the more 

drastic was the deviation of the C.P.T. solution at low values of S from 

his approximate results. The carbon fibre reinforced plastic ply material 

used in this work has a E11/E22 ratio of about 13 which is less than the 

material employed in Pagano's exact solutions 0 25 • However 9 when 

the plies are distributed in a laminated plate 9 with orientations of 

0~90~±45° ) thermal strains produced in the curing process reduce the 

transverse modulus considerably. From a private communication the value 

can decrease to 25% of its original value. Therefore it is possible that 
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the ratio E11/E22 could be about 40 for our laminated plates 9 and this 

implies that shear deformation ~ill be higher than found in Pagano 9s 

examples. 

The second point ~as given by Pagano and Hatfield (114), ~ho found 

that the exact solution conver{s-es to the C.P.To solution at lo1:1er values 

of S as the number of layers in the cross= ply example were increased. 

Their analysis concerned specimens with 3 to 9 layers, so a substantial 

gain should be found in the plates to be tested 9 which consist of 16 to 

40 layers. 

4.2.3 High Order Plate Deformation Theory For Laminated Plates 

The distinct methods forecasting the size of shear deformation (aee 

previous Section) all suggest that 9 providing S > 30 there will be a close 

agxeement bet1:1een the exact solution and classical theory for laminated 

composite plates. However 9 as has already been p.,inted out, there is no 

idea of the extent of shear deformation in the plates tested, so the value 

of S stated above could be significantly different. If the magnitude 

of shear deformation was known progress in developing the plate bending 

biaxial test method could be made. It would allow a value of S to be 

fixed for each plate construction 9 below which incorporation of shear 

deformation into a numerical method is imperative. The experimenter 

would then have at his disposal a minimum span to thickness ratio for the 

design of the experiment parameters. 

From the wide range of analytical solutions discuased 9 the high order 

plate deformation theory developed by Lo, Christensen and Wu (119 9 120 9·122) 
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appeared suitable for numerical programming. Construction of a 3=D small 

displacement analysis ~auld predict shear deformation 0 and then possibly 

shear stresses in our laminated plates. 

The high order displacement assumptions are given by Equ. 4.5. In 

(120) 9 Lo et W.. outlined the eq~ations and relationships requir~d to 

solve the displacement fields in general laminated plates. Governing 

equations pt:!rtinent to this theory were derived using the prL"lciple of 

stationary potential energy. Eleven second order equilibrium equations 

[4} were obtained for the determination of the 11 generalised displacement 

coefficients in Equ. 4.5. Terms in the equilibrium along with the 

boundary conditions necessary were defined in Equ. fs-7}.These 

relationships were independent of the properties of the material of the 

plate and hence hold true for homogeneous isotropic as well as laminated 

plates. Expressions for the equilibrium equations were given next in 

terms of the eleven displacement ooefficientsf:b,sing equations 4·5,{5 -7} a-TJ.d 

the strain displacement relations. The coefficients in the relations 

were defined by {10}. 

Formulation of certain classes of problems could then progress, 

providing the disple.cement coefficients 9 and distribution of load could be 

described by Fourier series. The ensuing displacement forms must then 

satisfy the boundary conditions. The high order method is now developed 

to solve the standard cross-ply example of Pagano, which has been compared 

with shear flexible elements in the last Section. It will be shown that 

the high=order theory is accurate for this test case 0 allowing further 

f ] brackets indica'te that the equation number refers to paper under 

discussion. 



development to include laminates with arbitrary oriented plies. An 

important restriction was imposedp in that the analysis was only 

applicable to generally symmetrical orthotropic laminated plates. 

Bowevero the introduction of the coupling compliances 16p26 and 36 causes 

matrix equation to be dependent on the X-Y co~ordinaiea. This in 

turn meant that the problem was indeterminate. 

Numerical Procedure = Stress~Strain Relations 

The composite material has 3 mutal elastic axes which means that 

the governing 3-D principal stress-strain relations for layer K are: 

crz 
= 

k 

where 

r 
Q11 

Q21 

031 

0 

r 0.44 
I 

l 0 

Q12 013 0 

Q.22 Q23 

Cl32 033 

0 0 

{4·6) 

0 

0.5 5 

The material properties imply that the Poissons ratios )}13 and V 23 

( uhich assume that the 2-3 plane is basically all matrix) are equal to 

the major Poissons ratio V12 ie V12 =V13= V23= V 

Fig. 4.6 below displays the principal axis system related to the 

unidirectional ply. A further material property relationship is seen 

to exist. E22=E33. 
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Figure 4·6 3-0 Composite Properties 

2 

Table 4.4 indicates the 3=D stiffness terms with the corresponding 

2-D stiffness coefficients • 

Table 4·4 

STIFFNESS I 

COEFFICIENTS 
3~0 2-0 

Q11 [I 1- 'V2 l E 11 2 

J E 11 
K' (1- ))2 E2YEJ1) 

.0.12 = 0.21 = [vI 1 + 'Y~,E22 E11 ] 'VE2 2 
0.13= Q31 (1 - V2 E 2VE11} 

0.2 2 = 0.33 [1Ei1-~~2ll2 l E22] E22 
(1 - 'J2 E 2¥'1- 11 ) 

Q44 G 23 

0. 55 G 12 

.. '] Q23=Q..32 l!E11+E22l :i 
K' 

0. 66 G12 

where 
I 

K = E11!1- v2 l - 2 E 2 2 'V 2 ( 1 ~ \)) 

Stress=strain relations in the XJY directions at the angle 9°to the 

principal axes of 

i e 

the ply are given by: 

= IT J 
1 
I 0 ij )[ T I k f E i J k 

,.._ -1 . 
I 0 ij ~ I T1 [ 0 ij ][ T l k 

y = 1-o6 (4·7) 

The 3~D transformation matrix ITJ for fibre reinforced composites with 

the principal direction 1 being parallel to the direction of the fibres 0 
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making the angle 8°~ith the x-axis P and ~ith direction 3 remaining 

parellel to the z-axis is: 

Cos2 9° Sin28° 0 0 0 2S in Efcos 

S in 2tf Cos28° 0 0 -2CossCSin 

0 0 0 0 0 
IT 1 = (4·6) 

0 0 0 0 (OS 8° -Sin 9° 

0 0 0 0 -sin 8° C os9° 

-5inef(osEf CosEfSin9° 0 0 0 Cos2e'-si 

4.2.3.2 Equilibrium Equations 

The governing set of relations {83 are greatly simplified as the 

laminated plates under investigation are all symmetrical. 

the coefficients ~hich are functions of J (z, z~z 5 )Qjj dz 

Therefore 

bec:ome zero 

and the governing 11 equilibrium equations can be separated into a set of 

five second order differential equations describing the inplane 

displacement components and a set of six second order differential 

equations governing flexural displacement components of the laminates. 

Symmetry splits the displacement assumptions into the inplane and 

flexural components 

FLexural 

u:·z~x + z 3 ~x 

v = z~y + z 3 ~y (4·91 
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In-p lone 

u = uo -} z 2 s )( 
v = vo + z2 J y 

w = z IJ z 

The right hand side of {8} is also simplified as the problems studied 

have only transverse load distribution on the upper surface of the 

specime:Ll. 

With the reduction in complexity the two sets of differential 

equations are shown in Appendix II . Parameters for Pagano's exact 

cross=ply solution are shown in Fig. 4.3. The following assumed 

displacement forms are the simplest: 

Flexural 
u = (zK1 + z3K2J Cos,. x SinnY 

A B 
v ::: (z K3 -1- z3K4 J Sinnx Cosnl 

A B 

w ::: I Ks .. z2K6 J S inll'x Cosn Y 

In-plane A B 
(4·10i 

u .,. ( K7 + z2 K8l Cosnx SinwY 
A B 

v = IK9 + z 2 K 1 0 l S i n IJ~ Cos n Y 
A B 

w = K11 Sini!.X Sinll.Y 
A B 

where Kj i i = 1)11 are constants. Loading distribution is described by 

a similar Fourier approximation as 

q Sinnx SinTI'Y 
0 - -

A B 
q = ( 4·11) 

where q
0 

is the maximum pressure imposed. 

I 
To determine the Ks the assumed displacement fields were substituted 

into the governing relationships 9 which on rearrangement for the flexural 

response are shown in Appendix I I. 

For the 2=D example oase 9 having similar displacement forms as in the 
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exact solution (112) 9 the values of the K's are independent of the 

co=ordinates. A solution for the cross=ply example was readily available 

as all the coupling terms (12 9 26 and 36) are zero 9 ~hich eliminates these 

Fourier products. However 9 symmetrically laminated plates with 

arbitrary orientations do not possess a general solution because these 

coupling terms are present. If the particular values of ~ and y 

chosen make either Cos 8(1 or Sin 9° zero 9 then the determinant of the 

matrix is also zero 0 and a solution is impossible. 

When the set~ equations are solved the K constants can be 

substituted into the displacement forms describing the behaviour of the 

plate. Substitution of the displacement forms into the strain= 

displacement relation 0 and then the strains into the stress=strain 

relations 9 allows the magnitude of the displacements 0 strains and stresses 

to be evaluated at any x, y ,z position in the specimen. 

Although the high order theory is unable to aid in the prediction of 

shear deformation and possibly shear stresses in our laminated plates 9 it 

does produce a fairly accurate picture for the exact solution attributed 

to Pagano 9 Table 4.5. 

Table 4.5 shows that the high order theory 9 contrary to the finite 

element analysis 9 is weaker in establishing the displacements than the 

stresses. The fit between these analyses should be better than the 

finite elements as they both rely on the same 3-D stiffness coefficients. 

Further information is obtained becat~e the flexural and in~lane components 

are separate 0 and a comparison for a range of S are shown in Table 4.6. 
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For all values of S the inplane components can be neglected unless S is 

small and ~z is required. However 0 transverse stresses are found to be 

more accurate when the stress equilibrium equations are applied rather 

than the displacement forms are substituted into the strain displacement 

x-elations (122). Doubt is therefore 0 cast on the validity of the 

transverse normal stress calculated. The magnitude of crz for this example 

suggests that as long as S>10 then it will be in the order of 100 times 

less tha~ the maximum normal stress and transverse normal fail~re will not 

precipitate prior to fibre failure. 

In this Se9tion a very thorough attempt was made to predict the 

effect of shear deformation in the bending response of generally 

symmetrical orthotropic laminate plates. Obviously for the plates in 

question 0 a solution is complex and an approximate representation 0 even 

with a shear flexible finite element 0 would be difficult. It was also 

shown that a promising high order plate theory had its limitations. 

Together the observations suegest that shear deformation effects can be 

assumed insignificant in the laminated plates tested, being ignort!d in 

the finite element analysis providing the span to thickness ratio S >30. 

4. 2 •. 4 Shear Stresses 

In classical lamination theory 0 no account is taken of inte~laminar 

stresses, and so it is incapable of providing predictions of some of the 

stresses that actually cause failure of a laminated material. Since the 

plies in a general orthotropic laminate have different stiffnesses in 

any given direction, they tend to slide over one another during extension. 

If the laminae are connected at their interface 0 inte~laminar shear 
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stresses uill develop because of this tendency. Moreover 0 classical 

lamination theory implies values of ~xy uhere it cannot possibly exist 9 

namely at the edge of a lami.'"late. Physical grounds have shown that: 

(a) At the free edges of a laminate 0 the interlaminar shearing 

stress is very high (even singular) and would therefore 

cause the del~ination observed in such region& (123), 

(b) the alteration in the layer sequence in a lamir.ate can 

produca differences in the tens.ile strength 9 even though 

the proportion of each type of oriented plies do not change 

(124). This sequence alteration changes the interlaminar 

normal stress 9 ~z 9 near the boundaries and is believed to 

provide the answer to such strength differencer. (125). 

The problems associated with interlaminar stresses near free edges 

have been recognised for some time and the literature contains voluminous 

results of stress cal~ulation for a 2-D section of a laminate in either 

uniform extension or cylindrical bending. The earliest investigations of 

the interlaminar stress problem was apparently carried out in Japan by 

Hayashi (126) and Hayashi and Sando (127) who reported that the maximum 

interlaminar shear stress occurred at the free edge of a laminate in 

tension. Hayashi used a plane stress model for the layers and approximated 

the interlaminar shears by a strain averaging technique. Using a similar 

model, Puppo and Eversen (128) similarly discovered a sharp rise in the 

interlaminar stresses near a free edge. Notably, the use of the above 

models ignored the interlaminar normal stress. This was addressed by 

Pipes and Pagano (123) who presented a finite difference solution to the 

exact elasticity equa tiona for a laminate in uni.axial tens ion. In their 

development 9 the stresses uere assumed independent of the axial co=ordinate 
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and include all six components. The results for the example of a 
0 0 

(+45,-45 )5 laminate are shown in Fig. 4.7.1,a sharp rise occurs in both 

the interlaminar shear stresses andp to a lesser extent 9 the normal stress 

near the free edge. These discoveries were later to serve in making 

strength predicitions of laminates based upon the layer stacking sequence 

(124) and tf,en as a comparison with experimental observations (129). 

Pipes and Pagano 1 s finite difference procedure is b1own to be only 

approximate and requires a vast amount of computing time to be of ger~eral 

application. To analyse multilayered laminates ( 125) they developed the 

high order method with the approximation of Whitney and Sun (115) but it 

was only sui table for symmetrical ±8° composites. Oplinger (130) also 

carried out an analysis of angle ply laminates io tension similar to Puppo 

and Eversen. The approach allowed a large number of layers to be considered 

and, like Pipes and Pagano (123,125) demonstrated that a singularity in the 

interlaminar shear occurred at the free edge of a laminate for one 

pa.rticul a!' type of laye!' construction. 

An alternative approach to the above was employed by Rybicki (131) and 

Wang (132) who studied a 3-D finite element formulation. Computing time 

limits the degree of modelling possible with this numerical approach. 

Taking advantage of the stress independence in the length directiono 

Wang and Crossman (133) developed a 2~D finite element solution. The 

limitation of this numerical solution was that, in order to achieve a 

realistic prediction of the stress, field 9 sixteen elements in the thickness 

direction were required within each layer in the region of steep strait1 

gradient. A total of 196 elements per layer were employed. Hence 9 like 

Pipes and Pagano (123) the computing time was enormous to achieve a 

satisfactory solution for a two layer free edge boundary valu·e problem. 
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Recently Pagano (134) 9 who was extremely critical of the above 

numerical approximations for the solution of the uniaxial extension 

example 9 cited three criteria by which a self consistent theory must 

be based. He stated that the assumed displacement forms used in most 

of the above methods leads to a lack of credibility. The paper described 

the simplest theory based upon the variational theox~m derived by Reis~ner 

(135) which permits the treatment of discontinuous interfaces. 

Assumptions for the stress fields were the same as the shear deformation 

analysis attributed to Reissner. The ensuing numerical values compared 

favourably with Wang and Crossman for simple laminates. For the most 

satisfactory correlation 9 each layer was subdivided into several sections. 

Computing time was again lar.gl:!as the solution had 13N field equations 

and 7N edge conditions (where N is the total number of sublayers). 

Free edge effects in laminates under bending have received least 

attention. Tang (136) reported for a uniformly loaded rectangular plate 

(4 layers, (+8~-9°) 5 )that 1 the interlaminar shear and normal stresses may be 

as high as 30% and 5% respectively of the maximum bending stress in the 

laminate'. An assumed displacement field was used in the analytical 

solution which separated the interior of the plate from the free edge 

and solved the interior by the classical theory while the boundary layer 

region was studied by a combination of a modified torsion problem and 

a modified plane strain problem. Salamon (137) looked at the same 

laminates as Tangp solving the governing displacement equations by finite 

difference. These bending cases along with the inplane solutions provide 

the same picture for the distrib,Jtion and magnitude of the shear 

components. The following observations were drawn from the literature: 
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There are three classes of interlaminar stress problem -

(a) !9°laminates exhibit only shear coupling (no Poisson 

mismatch between layers) 0 so Txz is the only non-zero 

interlaminar stress 0 Fig. 4.7.1 

(b) 0~90° laminates exhibit only a Poisson mismatch between 

layers (no shear coupling) eo 'T yz and CT'~ are the only 

non-zero interlaminar stresses 0 Fig. 4.7.2 

(c) 0 0 a combination of the above, for example :t81J :t8 2 laminates 9 

exhibit both shear coupling and Poisson 8 s mismatch between 

layers, so have 'Txz 'Tyz and o-2 interlaminar stresses. 

Looking at the example of the ( +45?-45°) 5 laminate in uniaxial strain, with 

b=Bt(width four times the thiokness), the inplane stresses o-x ,i'xy 

the shear stresses Txz • Tyz and the normal stress o-2 at the interface 

between layers ( z = t) are shown in Fig. 4. 7 .1. The stresses predicted 

with classical lamination theory were obtained in the centre of the cross= 

section by the method including shear. However as the free edge is 

approached, o-x decreases, lxy goes to zero, and most sigbificantly, 

~~z increases from zero to infinity (a singularity exists at y = :tb J. 

The presence of a singularity was the main reason for the more thorough 

analyses~ The dotted line, Fig. 4.7.1, shows the prediction of 'Txz 

as obtained by Pagano's most recent solution (134). The singularity is 

still in evidence and grows with increasing subdivision of the two layers 

and the final limit that would be obtained is questionable. By changing 

the laminate geometry, the configuation, the total number of laminae, the 

width of the region in which the stresses differ from those of classical 

lamination theory has been shown to be about the thickness of the 

laminate. Thus the deviation from classical lamination theory can be 

regarded as a boundary layer or edge effect one laminate thickness away 
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from the edge and 9 in the rest of the specimen 9 expected to be valid. 

As stated at the beginning of this section 9 layer stacking sequence 

can change the tensile strength of a laminate. Observing the distribution 

of o:-z along the centre 1 ine and the interface (z = 0 l 9 Fig. 4, 7. 2 9 4. 7. 3 9 

of the two examples ( 0~ 90°) s and it can be seen that if the 0° 

layer is outermost then oz is tensile ~~d can induce debond~g between 

the layers. When the 0° layer is innermost r::rz i.s compressive. 

This is probably the answer to strength variations found between 

specimens comprisingoftwolay=up arrangements. Similar influence 9 due 

to the stacking sequence 9 was found by Pagano and Pipes (124) with 

(±15")!45°) 5 laminates and Reifsnider et al. (138) with quasi=isotropic 

( 90°, 0~-45f4S0ls and ( 0~-4St45;90°ls laminates. 

In the laminates tested all types of layer sequence exist 9 i.e. 

rotating the specimen through 90° changes the lay=up observed. When 

these generally symmetrical orthotrop.:tc laminated plates were tested the 

distribution and magnitude of shear stress 1Xz ,Tyz and the transverse 

normal strass r::r2 were unknown. Obviously 9 none of the analytical 

solutions discussed could possibly model these multilayered laminates 

which were subjected to complex strain distributions near the free edges. 

To minimise the inherent shear strains 9 the experiment must induce 9 

relative to the test section 9 small strains in the free boundary regions. 

This will ensure that the delamination stresses ~xz and r::r1 will not cause 

premature damage • To achieve this? the preferential bending about 

a centreline ~ust not be excessive. Basically 9 the combination of the 

global plate bending stiffness D11 1 022and the aspect ratio A51 8 5 must 

not enable the specimen to behave as a pure beam. It is still possible 

that 9 even if preferential bending is minimised 9 shear stresses become 
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large. To defuse their detrimental effects the geometry of the plate 9 

with S > 30 means that the free edges are remote from the central test 

section. If delamination is induced during the experiment ic failu~e 9 

it will be hoped that this area of delamination will not have spread far 

enough into the bcdy of the plate to effect the test section 9 in which 

u1 tima·~e fibre faHure is to occur. 

4:) Experiment Procedure 

4.3.1 Apparatus 

The apparatus for the plate bending test was designed to fit the 

Rpecifications of an Instron 1195 machine. The rig h'3.d tc- fit onto the 

.144m diameter loading platform of a 25KN compression load cell. A. base 

plate was therefore needed to support the specimens. Onto this plate 

four support columnshad to be positioned to provide the various support 

distances. These positions had to be centred about the centre of the b2~e 

plate 9 which was to be placed directly in line with the centre of the load 

cell. Fig. 4.8.1 illw:;trates the design for the mild steel base plate 

and Fig. 4.8.2 shnws one of the four identical mild steel supporting 

columns. To support the specimens ball bearings were placed into the 

sloped recess of the columns. Two sizes were used, 0.317SE·01 and 

0.444SE-Ol m diameter. 

Columns were introduced to increase the distance from the laminates 

to the base plate 9 eo that when loading commenced the centre of the 

specimens did not touch the base plate before fibre failure. The columns 

were designed to be extremely robust, and fit tightly into the holes 

machined on the base plate. This ensured that when the supports were 
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subjected io loading negligible sideways deformation resulted. 

For the following reasons the larger of the ball bearings were 

generally used: 

i) To add extra distance between the specimen and base plate 

ii) To provide a large enough area of contact preventing 

local yielding. (The area was, however 9 small enough 

to be clasBified as a point when compared to the surface 

area of a specimen. If local yieldingftad been allowed, 

it could have cavsed unwanted bending deformation and made 

the numerical comparison. more difficult). 

iii) To provide a cvntinuous curved surface which the specimen 

could easily slide over. The benefit of this was that; 

the sliding reduced inherent axial strains. 

Plate 4.1 shows a typical specimen supported by the larger ball bearing 

awaiting testing. Plate 4.2 shows one of the tw0 loading heads (.02 x .02)m 

and the observed gross deformation of Experiment 5. Fig. 4.&.3 gives the 

dimensions for the loading heads. Care had been taken when machining 

the indenters 9 since if the ends had not been squared the load would have 

been unevenly applied. 

Specimen Preparation 

~efore the experiments could be set=up several parameters had to be 

defined and a choice made for the locations of strain and dial gauges. 

Table 4. 7 contains the distances of the supports As and 8 5 and the patch 

loading Ap and B p chosen for the nine experiments. It can be noted with 
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reference to Fig. 2.2 that the distances 'A' are measured in the global 

X-direction. 

The choice for the supports were made by taking the largest sensible 

length above the limiting values. A limiting value was equal to that 

length which made the span to thickness ratio, S, equal to 30. Providing 

this value of S was exceeded 9 the effects of shear deformation and shear 

stresses could be neglected. 

given in Table 4.7. 

The values of S for each experiment are 

The valu~ of the principal bending stiffnesses force a maximum 

limit on the relative lengths of As and 85 9 for the following reason. 

lf 0 for example 9 A5 is greater than 8 5 and the corresponding stiffness 

D11 is smaller than D22, considerable preferential bending will coeur 

about the Y-axis 9 ( o'- o' in Fig. 2.2) when the plate is loaded. This 

makes the response of the specimen approach a 'pure' beam. Large strains 

will then be induced near free edges providing high shear stresses which 

may cause delamination and invalidate the results. Because of this 

condition the practical range of supporting distances will be limited. 

Patch load dimensions Ap and Bp were then chosen to be reasonably 

large and equal, but not greater than 0.1 of the plates minimum length. 

This ensured that the distribution of load was uniform over sufficient 

areaalleviating spots of high concentration. With this choice of parameters 

the two indenters 9 l<'ig. 4.8.3, were designed. 

The positions and orientations for the strain gauges were then chosen. 

The principal orientationsdepended on the orientations of the two outer 
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laminae and the positions were taken to match nodal points in finite 

element meshes. The majority of the gauges were located in the proximity 

of the platesv centrep with just the occasional one near an edge. These 

latter gauges were used to give some insight into the strains inducing 

shear stresses. 

3mm cross-ply and single-ply gauges were used throughout. These 

were the smallest available which would not overheat when excited with the 

minimum supply voltage of 1·5 V • Measurements were always made individually 

so a heat sink problem with the cross-ply gauges was adverted. The 

centre of each gauge was positioned at the nodal points. It has been 

assumed that a linear vari<:tt.i.on in strain existedover the entire length of 

the gauge. With this assumption the strain measured could be directly 

taken as that which acted at the nodal point. 

Gauges were generally placed in p&irs on the upper and lower surfaces, 

except directly below the loading head, and were 

Cross-ply FCA-3-11 3mm l TOKYO SUKKI 

Single-ply FLA-3-11 3mm KENKYUJO Co Ltd. 

The gauges had a resistance of 12 0 ±·5 ..fl , a gauge factor of 2.10 and a yield 

strain of approximately 2 .()9{. The adhesive was M-Bond 200 (Welwyn) which 

has a shelf life of only 6 months. This short shelf life was the reason 

for the difficulties experienced in Experiment 2. Gauges were attached 

to specimens by following the procedure laid down in the Instruction 

Bulletin B=276 M= lin.e Accessories, "Strain gauge installation with M-Bond 

200 adhesive". 

After gauging the plates, the type of strain to be measured was chosen. 
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It was a simple matter to change the wiring connections of a pair of 

opposing gauges to enable either the bending 9 or the axial 0 or simply 

a surface strain 0 to be recorded. Fig. 4.9.1 illustrates the exaggerated 

bending stretching behaviour expected in laminates due to classical thin 

plate theory 0 and Fig. 4.9.2 shows the wiring connections for the varicue 

strain measurements. Twice the actual reading was recorded when 

measur5ng the axial and bending component since a pair of gauges were 

employed. The true values are given by the following expressions: 

tb = + I Etop +2 EbottQJ!L_ I 
where +ve lower surface 

- ve upper surface 

Ep[ = ttop - Ebottom 

2 

(4·12) 

For the axial strains dummy gauges were required in the full bridge. 

Experiments were always performed at room temperature, so temperature 

compensation was not important. Therefore it did not matter that the 

dummy gauges were attached to aluminium. 

After several experiments had been analysed it became apparent that 

further information was obtainable if all the gauges were separately 

recorded. Then by the application of the two simple relationships above, 

the bending and axial components could be determined. 
4 c:. 

Unfortuantely the 

relationships only hold for classical thin plate bending and so, once 

large deformation has been introduced, they become invalid. 

Finally 9 two points were chosen where dial gauges could be located 

for a comparison with the calculated finite element transverse displacements. 

A diagram showing the arrangement of strain gauges, the dimensions of the 

supports and patch loading for each experiment is presented with the results. 
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.4_.) 0 3 Experimental Arrangement 

After ihe specimen had been prepared the rig was arranged on the 

compression load cell 9 as depicted in Plate 4.2. The cell has a maximum 

capacity of 25KNv and is electrically calibrated. Loads uere accurately 

recorded on a variable speed pen chart recorder. 

Connections were then made from the strain gauges to appropriate 

instrumentation. To cope with up to 25 individual strain measurements 

several units were needed 9 as shown in Fig. 4.10. Since the only 

available instruments were static balance devices all measurements were 

made with constar~t central displacement. Strains were measured with two 

Peekel devices 9 a B105 battery operated 9 minimum excitation voltage 1.25V9 

and a 581DHN mains operated minimum excitation voltage of 1.5V. Both 

instruments tended to slightly drift with time and accuracy was dependent 

on the full scale taken. For all experiments full scale deflection was 

300 }J e providing an inherent error to the measurements of ± 2 )J e. 

After the strain gauges were connected a simple check discovered if 

a gap existed between specimen and any of the ball bearing. The existance 

of a gap was due entirely to the laminate not being exactly flat. The 

gap was removed by placing shims under the base of the lowest column. 

When this had been accomplished further inspection generally showed 

that the specimen was not horizontal. Fortunately 9 further checks revealed 

that the load cells platform and the crosshead uere also on a slight slant 9 

and that as a complete unit all components uere within reason parallel to 

each other. 
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Test Procedure 

The following procedure uas carried out uith each experiment to 

gather as much relevant information as possible, With the specimen 

unloaded all strain gauges ~ere electrically balanced. On occasions a 

bal2~ce uas unobtainable due to poor electrical contact. ReQaking the 

suspect connection was the usual course of action necessary to produce 

the balance. 

To discover if any of the gauges uere insecure the plate was then 

subjected to a simple load cycle. The maximum load for the cycle was 

taken eo that either the greatest surface strain did not exceed 100C~E 

(0. 1%) or that the central transverse displacement did not exceed the 

plates' thickness 9 whichever came sooner. Table 4.8 gives the embedding 

cycles for the nine experiments and the time period at which the load 

increments uere maintained. The cycle was repeated th!'ee times to make 

absolutely sure that all gauges were correctly attached. 

By noting the strain at the maximum load 9 a quick comparison with a 

finite element model, (ACM) 9 showed up the faulty gauges. Providing that 

these gauges were not in the test section they uere ignored in subsequent 

loadings. 

Measurements had to be made with a constant crosshead position since 

the Instron does not have a constant load facility. This meant that uith 

up to 25 separate strain measurements, the operation of balancing and 

recording took about 5 mimltes. During this period of time a small amount 

of load relaxation uas generally inherent. Therefore 0 it was standard 
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practice to start the measurements at the centre of the plate and record 

any changes in these gauges at the end. This enabled a..."ly changes due to 

load relaxation &ld material deterioration to be noted. 

A set of measurements were then taken for the evaluation of the linear 

bending by the finite element method~ ACM. Load uas imposed in several 

equal increments up to the maximum of the embedding cycle, by makL"lg the 

central transverse displaoeme:nt i.ncrea.se at a uniform xat.e. After each 

load level uas reached crosshead movement was stopped and the readings taken. 

Once readings were taken at the maximum load, the specimen was ~loaded by 

the same increments and the measurements remade. It soon became apparent 

from Experiments 1 and 5 that there was virtually no differen(!e 'between the 

two sets of values, and so a good approximation to the linear strains in 

the remaining experiments was found by the ::r.esu~ ts during the embedding load 

range in the test to failure. 

Applying the same procedure as for linear evaluaticm the specimen· was 

finally loaded to first fibre faHure. Unfortunately thi~ was not the case 

with Experiments 3 and 5 because of unforseen difficulties, and meant that 

these specimens were retested. Table 4.9 gives the load increments applied 

in each experiment, the speed of the crosshead and the final load. The 

strains and transverse displacements and any visual observations were recorded 

at each load increment. 

4.4 Experimental Results Fig. 4.11 ~ 4.53 

Selected strains and trru1sverse displacements have been presented in 

graphical form. To make the presentation comprehensive the follouing 
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information has also been given. Prior to each set of results there is 

a section entitled VNotes and Observaiionsv. All features specific to 

the experiment ~hich affect its behaviour and the visual observations made 

during loading ~ere recorded here. Also noted are the final strains 

measured 9 (generally at the load increment below failure) for those gnuge~ 

not sho~1 in the gTaphs. 

Eefore the graphs displaying the measurements a diagram shows the 

plan for the experiment indicating the locations and orientations of the 

strain gauges. 

There are several reasons why measured strains, and not the stresses 

have been presented. 

The stresses were in fact indeterminate, since the strain field at 

most locations was not fully recorded. Even if it had been, (i.e. centre 

where 1Xy= 0 ) a prediction of the stresses would have meant applying the 

principle of linear elasticity and the material moduli are not precisely 

known. To complicate the problem further, if the lamina 's transverse 

strain exceedso.7%the matrix will fail and prevent stress transfer in that 

direction. It was found impractical to determine the area suffering 

matrix failure. 

All the measurements have been presented from Experiment 2 since it 

was chosen as representative. Its load/displacement trace, recorda~ on 

the Instron chart recorder, can be found between the linear and failure 

strain plots, &ld is characte~istic of the remaining experiments. For this 

reason no further load/displacement traces have been given. 
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A diagram to illustrate surfacefibre failure has been placed after 

the Tesults of Experiments 1 9 2 and 4. It was not necessary to provide 

such diagrams for Experiments 6 and 7 since there was only a small amount 

of visible damage. Instead the surface damage characteristics were 

included in the 1Notes and Observations~. Since no visible damage occurred 

in Experiments 3p5 08 and 9 no such diagram was neoessary. 

To aid exam:f.nation of the results presented 9 the format employee: wnl 

now be explained. The plots were formed using the measurements at each 

load increment. The curves created by ~hese points were not joined 0 since 

individual measurements would have been obscured, making inspection 

1
(especially in the linear load range) difficult. 

At the iDp of each set of values a label indicates the measurement and 

its position on the plate. Directly beneath the label the final value has 

been noted. The labels take the following notation: 

1 0° L B+A means gauge 1 0 orientation 0 o (tensile unless stated 

negative) 1ower surface and the strain consists of the components duc:o to 

bending and axial. 

If subscript L happens to be T then the gauge was on the top surface 

{compressive). 

To enable a quick comparison between a pair of gauges on the top and 

lower surfaces 0 i.e. 6 Q0 L and 6 0°T B+Aboth were presented as positive. It 

will therefore be important to remember that 0 where subscript T appears o 

the strain recorded 1.1as compressive • 2 90° B or A means gauge 2, 

orientation 90° 9 and the strain was either the bending or axial 

122 



component. 

4.5 Discussion On Results 

It ~ill be found convenient when discussing the results for the 

various aspects to be split intv two parts. The bending of the laminates 

throughout loading will be discussed first 9 followed by an examination of 

the failure mechanisms. The latter section will also be concerned with 

the problem of determining the GQverning biaxial stresses. 

It was stated in the introduction to this Chapter that certain 

experimental parameters were unknown before the tests. These parametero 

included the magnitude of deformation 9 maximum load and strains and the 

failure mechanisms. The analysis of the results reveals some of the 

parameters for the lamination configurations tested, which can be used at 

a later date for further development. 

Measurements t~~en in the embedding load range will be analysed in 

Section 5.1, where numerical comparisons will be made. All that needs to 

be noted now is that the results from Experiment 2 (Fig. 4.16 ~ 4.19) are 

typical. Errors inherent in the measurements are also discussed in 

Section 5.1, since they are more relevant to the numerical comparison. 

In fact 9 since the total error in the measurements cannot be assessed 9 it 

has been assumed small in comparison with the measurements at high loads. 

It has been assumed that loading was uniform over the patch area 

and that the reactions at the su~ports remained identical. To state 

categorically that all the plates were loaded uniformly would be incorrect 9 

123 



since observations made in Experiments 2 and 5 suggest otherwise. The 

reactions ~ere not al~ays identical too 0 since ihe i~isting stiunesses 

caused ~arping. Only Experiment 9 (Fig. 4.50 = 4.53) showed considerable 

twisting so the variation in reactions for the remaining experiments has 

been assumed £mall. 

Plate Bending 

The load/displacement trace for Experiment 2 (Fig. 4.20) shows 

typical behaviour 9 ~ith a virtually linear increase in load ~ith transverse 

displacement. Small flutters can be seen which were most likely cause~ by 

spontaneous movement between the specimen and supports. The trace also 

shows a small amount of load relaxation at each increment during the time 

interval needed to take the measurements. It was thought that the 

relaxation was a result of the laminate settling to a state of equilibrium. 

However, this is not substantiated since the c.entral str.ains did not change 

(except at high loads) during the time interval. 

The plots of transverse displacement are always continuous and the 

trends generally indicate that there was a slight increase in central 

displacement for load, (Experiment 29 Fig. 4.21 9 Ex~eriment 3 and 4 9 

Fig. 4.29 9 Experiment 7," Fig. 4.42 and Experiment 8 9 Fig. 4.47). The 

exception to the above were Experiments 5 (Fig. 4.33) and 9 (Fig. 4.51) 

because of the experimental difficulties experienced. 

Generally the plots for the strains are smooth 0 continuous and of 

simi;l.ar trends up to catastrophic fibre failure. The lack of any sudden 

change indicates that 1i t tle or no local delamination damage occurred 
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until fibre failure. Experiments 5 and 9 did ptoduce a variation in the 

trends 9 but this was due to uncharacteristic deformation. 

The other gauges which also recorded a different trend were the 

central gauges in Experiment 7 (Fig. 4.43) and 8 (Fig. 4.48)P and 9 to a 

much lesser extent 9 in Experiment 2 (Fig. 4.22) and 4 (Fig. 4.30). These 

gauges recorded a strain increase at hieh loads during the time to take 

measurements. It can be seen that the gauges measuring trans·,rerse to the 

fibre direction in Experiments 7 and 8 recorded massive increases. In 

fact 9 growth became so rapid that jus~ prior to fibre failure it was not 

measurable. This behaviour has been termed strain runaway. ~~en strain 

runaway became prominent the surrounding gauges kept constant readings 9 

showing that the effect was localised. The behaviour will be examined 

further in the Section concerning failure mechanisms. 

Strain measurements and visual observations show that the laminates 

stiffened with load 9 as predicted by geometric non-linear considerations. 

When the geometric non-linear behaviour 9 as defined. in programme ACJ.:BC 9 

is no longer valid could not be established for the reasons given in 

Section 3.4. This was quite disappointing since it would have been 

valuable to the understanding of the test to know when Kirchoffs and 

Von~Karmans assumptions and material non=linearity no longer existed. 

Except in Experiment 6 (F~g. 4.37 4.40) 9 (the specimen had previously 

been tested in Experiment 5 (Fig. 4.33 = 4.36)) the maximum strain meastired 

was at the centre 9 but not necessarily in the direction of the fibres. 

Taking this a step further 9 the largest strain in all the major directions 

( 0° 9 90° 9 ~ 4 5° ) probably existed at the centre. This cannot be proven 
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since not all strain components were recorded. 

Where convenient a pair of gaugesp which were recorded separatelyp 

have been presented on the same diagram (i.e. Experiment 2 9 6 0° T and 

6 0° L (Fig. 4.23)). It is noted that the trends show that the bending 

strain was usually much greater than the axial and that the axial was 

tensile. 

In terms of the expected deformation a desirable distribution of strain 

in all the experiments but 59 was measured. It is of particular interest 

that the maximum ifrplane strains were at the centre 9 and that they decreased 

rapidly towards the free edge. ~lis is a necessary condition for the plate 

bending method since small inplane strains near the free edges mean 

negligible edge effects. Section 4.2 has shown that if shear stresses are 

allowed to become large then edge delamination may start before fibre 

failure. This would be extremely undesirable since it could invalidate the 

d~ta and break criterion (b)? Chapter 1p for reliable biaxial strength ~~d 

elastic properties assessment. 

Experiments 5 (Fig. 4.33 = 4.37) and 7 (Fig. 4.41 = 4.45) on the same 

lamination 9 can be taken to illustrate the above point; even though 

delamination in Experiment 5 did not occur before the load was removed. 

The deformation in Experiment 5 at high loads can be likened to a pure beam 

wher~ the strain near the edge 12 9cfL .B+A was nearly equal to that at 

the centre 1 90° L B+A (Fig. 4.35). Experiment 7 illustrates a desirable 

response with relatively low edge strains (gauges 99 10 9 11 (Fig. 4.44 and 

4.45)) and a bending response which did not dominate about an axis. The 

largest measured edge strain 9 11 0°L B+A 9 always remained below 50% of that 
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measured by 5 C1'L B+A (Fig. 4.43). This comparison of the bending in the 

two experiments suggests thatp providing geometric parameters are carefQlly 

chosen to prevent the response found in Experiment 59 shear stresses will 

remain low enough for edge delamination to be neglected. 

The measurements plotted in Fig. 4.13 from Experiment 10 indicate 

th2t the supports provided no restraints to the complicated free bending 

deformation. The two gauge pairs 9 13 +45° B 
0 

and 14 ·45 A wtich were 

placed on the diagonals near the supports, also show that the axial 

strain became proportionally less than the bending (response stiffened) as 

the transverse deformation increased. The exact opposite would have been 

expected had the suppo...-ts restrained the deformation. Although not 

checked 9 this conclusion has been assumed to hold for all remaining 

experiments. 

The most interesting discovery concerning the bending is that each 

plate not only stiffened, but exhibited preferential bending about a 

centreline. The dominating deformation was found to increase with load at 

expense of bending about the other centreline. Table 4.10 was constructed 

to collate the extent of preferential bending in the nine experiments. 

The behaviour was even apparent with the symmetrical experiment 

arrangements. The deformation in Experiments 1 and 2 was dominated by 

the difference between the principal stiffnesses D11 and D22. In this 

lamination D22 is much smaller than D11 so the plates deformed in the less 

stiff direction 9 i.e. about the X=axis. The only plate to show a small 

amount of preferential bending was tested in Experiments 3 and 4 which has 

similar princi-pal stiffnesses. 
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From this it can be seen that 9 by altering the spans As and Bs 

with or without changing the plate dimensions A and B, the magnitude and 

axis of the preferential bending is controllable. Experiments 5 and 6 

are good examples to illustrate this point. In Experiment 5 poor choice 

of span distances caused excessive bending about a centreline making the 

experiment unsuccessful. 

In those laminations which prod··lced oonsiderable preferential bending 

it can be noted that the strains measured pr-..rallel to the axis of dominant 

bending attained a maximum at a load below failure 9 and decreased 

gradually thereafter (Experiments 19 2 and almost in 6, 7). 

It would broaden the understanding of the method to know why 

preferential bending increased at the expense of unbending about the other 

centreline. Especially, since as deformation increased the points of 

coJltact moved down the ball bearings, Fig. 4.54.1 9 making bending about 

the preferential axis stiffer. 

the dominant deformation. 

This should have in principle reduced 

The most probable reason to date to explain the behaviour is that 

the response is anticlastic. Unfortunately 9 little relevant information 

concerning anticlastic bending is available, and Timoshenko (18) only 

discussed the problem for isotropic plates. In fact, there are no 

solutions for the anticlastic bending in generally orthotropic laminates. 

It had been hoped that the non-linear analysis ACMBC would have provided 

the necessary information to dispel or otherwise the proposed oause of 

the bending behaviour. 
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Another possible factor which may contribute to the deformation comes 

from work by British Aerospace. They found that as composites deformed 

the nonlinearity of the material caused the twisting stiffnesses D16 and 

D26 to increase in importance. For the experiments here it is felt that 

the change to these stiffnesses was small 0 except near the centre at high 

loads. It is therefore concluded that this was only a minor contributor 

to the bending behaviour. 

It should have become apparent that the central biaxial stresses 

were not constant due to the nature of specimen deformation. In all 

experiments the change in central stress ratio was gradual (only becoming 

prominent at large loads due to material non3.inearities)P suggesting that 

the stress state remained constant in the linear load range. 

Failure Mechanisms 

Vis:i.ble edge delamination was found in Experiments 1 and 2 (Fig. 4.14 

and 4.26) as a result of central fibre failure and not because of edge 

effects. Together with several other experiments they provided 

considerable delamination in the central region as a result of central 

fibre failure, Fig. 4.32. This central area of delamination was not 

present prior to catastrophic failure since the measurements about the centre 

were continuous. Hencep the experiments show that delamination will not 

present a problem in the collection of data and that the method satisfies 

part of criterion (b)p Chapter 1. 

Fibre failure cUd not occur in Experiments 3 and 9 and only in the non 

trimmed edges in Experiment 5. In each case the absence of fibre failure 
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was due to experimental difficulties. Table 4.11and the respective 0Notes 

and Observations 0 present relevant information for the specimens which 

:failed. 

Fibre failure was always spontaneous and except in Experiments 2 and 

8 occurred after approximately 1 minute of constant displacement. On 

occasions a load crack was heard just before the u1 timate failure and 9 

sir1ce all gauge measurements were continuous 9 it is suggested the.t the 

noise was due to adhesive failure in the tabs and not fibre failure. 

The characteristics of the sustained surface damage indicate that 

failure must have started in the vicinity cf the ceHtre. T!1is is a very 

L~portant observation since it means that criterion (b) does hold for the 

plate bending method. The area a.Ild depth of failure (fibre and delamination) 

depended largely on the extent of preferential bending since the path 

followed the easiest route. 

The resultant fibre and delamination failure was often extensive as 

can be visualised from the diagrams of surface damage in Experiments 1 

(Fig. 4.14) 1 2 (Fig. 4.26) 9 4 (Fig. 4.32) 6 and 7 ('Notes and Observations'). 

Only experiments 1 and 2 were identical and their fracture patterns arev 

as expectedp very similar. All the plates attained a final equilibrium 

positionp at a,load less than at fracture. 

damage to render them non load bearing. 

But none suffered sufficient 

Tension-tension was the predominant mode of fibre failure. There are 

two reasons for the compressive failure found in Experiment 6. Firstp the 

experiment w~s the only one performed without a rubber pad beneath the 
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loading head. It is therefore likely that the metal indenter induced 

stress concentrations at its corners which prevented the outer laminae 

from deforming freely causing the compressive failure. To hopefully 

eliminate such a failure in future the rubber pad was always inserted. 

Second 9 the plate had. already undergone gross bending in 

Experiment 5 which had caused permanent but not visible damage to the 

laminate. This is backed by the fact that there is a large difference 

between corresponding measurements in similar Experiments 6 and 7 (Fig. 

4.37 = 4.45). 

Because of the factors concerning the compressive failurep 

Experiment 6 is not representative of the behaviour expected in the plate 

bending test. 

For those specimens which failed initially in the outer la.wina 0 the 

fibre strain varied from 1.1% to 1.5%, Experiments 1 (Fig. 4.12), 2 (Fig. 

4.22)p 4 (Fig. 4.30), 7 (Fig. 4.43). These surface strains were recorded 

by the central gauge and are expected- to have been within 3mm of the point 

of initiation of fibre failure. 

The two following factors unfortunately lower their relevance as 

fibre strains for strength predictions. Although failure started in the 

outer lamina there is no way of demonstrating if it started in the extreme 

fibres or not. It may have started at the boundary with the second_ layer 

and then progressed to the surface. Although the strain variation across 
b 

the plate is known not to the linear 9 there must be a large strain drop 

across each ply and so the strain causing failure could be below that 
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measured. However since it is most likely that fibres experiencing 

the largest strains fail first it has been assumed that the central surface 

strains represent failure. Also it is known that criterion (c) 9 

Chapter 1p is only loosely held by the plate bending method since the 

actual volume of material experiencing the failure stress is small. 

Hencep the effect of point defe~ts should not be ignored. 

It is encouraging to find that the magnitude for the flexural fibre 

strain at failure is near the tensile values previously reported (139p140). 

No visible damage was found after unloading Experiment 8 9 even though 

'"" an extremely l'}ad snap just prior to 1mloading su.ggest.ed fibre damage. 

To explain this 9 it is proposed that first fibre failure occurred in the 

second layer. The problem now is how to determL~e the central stresses 

when the strains causing failure cannot be determined. It is for this 

re.?bson that laminates which produce internal fre.cturing will be very 

difficult to analyse 9 and pose a severe limitation on the method. 

The experiments have not only demonstrated that providing parameters 

are sensible failure will start in the test section but that strain 

runaway is very important to the effectiveness of the method. 

For the calculation of central biaxial stresses it is important that 

in a small area around the centre the transverse strain in the outer 

lamina exceeded its tensile failure of 0. 7%. In fact 9 this strain was 

extremely large in Experiments 4 (Fig. 4.30) 9 7 (Fig. 4.43) and 8 (Fig. 

4.48) and mean·t that the!'e was extensive matrix breakdown along the fibre 

length and through the thickness. This suggests that at the point of 
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first fibre failure no material was present to transmit the transverse 

stressp thus offering a uniaxial state and stress. 

The 16 l~yered cross=ply laminate in Experiment 8 (Fig. 4.46 = 4.49) 

can be taken to illustrate the effect strain runaway had on the 

deterioration of the outer layer. In the experiment the deformation made 

the central strain in the 0° direction 1(outer ply orientation) much lower 

than in the 90° direction. The latter surface strain increased steadily 

with load to 1.3% at 1300N 9 and then ranaway (Table 4.11 and Fig. 4.47 and 

4.49). Just prior to fibre failure in the second layer the 90° strain 

exceeded the capability of the foil gauge, and the last instantaneous 

reading was 2.5;: at 1650N. 

It is of interest to note the relative values of the principal stra.ins 

at failure since it leads to a new proposal for lamina breakdo~n under 

bending. In the experiment it was fortunate that after the 90° g~uge 

had failed its 0° partner still operated. This was because the 0° gauge 

of the cross=ply had been placed nearest the surface when preparing the 

specimen, and shows that the breakdown of the 90° gauge was by the foil 

fracturing and not adhesive weakening. 

v.'hen the 90° gauge broke its strain was 2.5% and the 0° gauge 

recorded only 0.6%. From strength tests the composite material has a 

matrix tensile strain at failure of O.TI[ and a fibre flexural tensile 

strain in the region 1.3-1.5%. It is therefore apparent that the outer 

lamina (0°) was not going to fail first since the central fibre strain 

must have been much higher than 0.6% in the second Jayer. Failure occurred 

when the load was 2140N and the surface 90° strain was much> 2.5%. 

133 



Npw immediately before fibre failure the maximum fibre strain in the 

second lamina must have been below 1. 5%. or ! i \rould have already 

fractured. From which it is concluded thai there must have been a strain 

drop across the outer~ply in excess of 1.0%. 

failure mechanism. 

This suggests a new 

Fig. 4.54 illustrates the proposed strain distribution in the outer­

layers of Experiment 8. With this strain distribution the surface strain 

could be greater than 2.5% while at the same instance the fibre strain 

in the second lamina did not exceed 1.5%. 

The emergence of the strain runaway also provided two further releva."lt 

factors to the work. 

If linear strain distribution was applicable the matrix breakdown 

would have been present several layeiB deep in the tensile region about the 

centre 9 making the localised transverse modulus E22=zero. This should then 

be taken into account when modelling the experiments by the F.E.M., but 

since the area of damage is known to be small the result of making E22=0 

has not been assessed. 

Deformation following the strain runaway indicates that the overall 

response has not been affected by the local matrix failure 9 since as a 

whole the laminate remained intact. 

Attention now focuses on the major problem of determining the 

central biaxial stress { 'lxy= 0) ratio in the plate bending method. Before 

outlining the two procedures which can predict the stresSE!Sp a definition 
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will be made for the directions in which the governing stresses act. 

The choice is between either the global directions of the plate or 9 if 

different9 the principal directions of the lamina a 

because this characterises first fibre failure. 

The latter was chosen 

The first procedure is the application of the C.P.T. and linear 

elasticit~' (but with reduced moduli to account for non~lineari ty) in the 

geometric non=linear finite elemer.t programme ACMBC. 

This method would be the most suitable had it not been found 

unacceptable for the reasons given in Section 3.4. If the analysis had 

mGdelled the experimer.t 9 only the final load for any arrang9ment would 

have been needed to predict the governing biaxial stresses. 

The second procedure is to take the measured strains in linear 

elastic formulae, which also allows for material non=linearity. 

Eowever 9 the observations made from the experiments have provided 

a number of factors which mean that either procedure will be inaccurate9 

notably: 

The strain does not vary linearly through the thickness and the precise 

distribution is indeterminate. 

If first fibre failure occurred in an internal ply the strains at the 

centre are unavailable. 

The central surface strains are non=linear with load and on occasions 

difficult to measure. 

The material moduli change during the leading a.nd are indeterminate. 
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Under certain circumstances the central strain transverse to the 

fibres in the outer. layer is likely to cause matrix breakdown 9 so 

providing a uni~irectional stress state. 

Collectively these factors mean that the evaluation of the central 

biaxial stresses in the plate bending metho~ will be difficult. Hence 9 

the work has demonstrated that criterion (a)P Chapter 1 does not apply 

9 and so presentsthe most sifnificant disadvantage to th~ method 

providing relevant strength data. 
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CF..APTER 5 COMPARISON OF EXPERIW;NT AND COMPUTER ANALYSIS 

5.0 Introduction 

In Chapter 3 it was demonstrated that the linear progr~~e ACM is 

capable of accurately representing the plate bending test. Results from 

the programme will now be compared against experimental measurements, from 

which several important modelling conditions will be established. 

To make comparison simple~ the gradients (strain ,UE I unit load N ) 

were determined from the measurements in the linear region of deformation. 

The initial gradients were also taken from the test to failure a.s these 

gave another good approximation. All values have been pr2sented as the 

transverse displacements or strains due to a patch load of 100N 9 with the 

strain being that which acted in the extreme fibres of the tensile 

surfa6:e. It can also be noted that the measured strains were generally 

the sum of the bending and a much smaller axial component. Inherent 

errors in the analyses meant it was sensible to give the strains to the 

nearest whole number. 

The source of experimental error was the variability of the plate 

thickness, causing the gauge to be out of position compared with the 

finite element model; the slight misalignment of the strain gauges; the 

drift in measuring devices whilst t~king readings; and an inaccuracy in 

loading of some ±SN • These are all thought to have a small influence 

on the results. 

The source of numerical error was the response due to shear 

137 



deformation9 (subsection 3.3.2.2. 9 assumptions 4 9 597 and 8) 9 ~hich was 

minimised through the sensible choice of experimental parameters; 

manufacturing defects,(assumptions 2 9 3 and 10); material properties; 

material non=lineari ties 1 (assumption 9) i and that, due to the difference 

in the Young moduli in tension and compression 9 the neutral axis and mid= 

plane did not coincide ,(assumption 11). The latter 't~o factors which 

could be included in the analysis
1
(but with increasing computing effort) 

provided the largest source of concern and will be examined later. 

Table 5.1 defines the various mesh constructions used in the comparisons. 

5.1 Linear Displacement : Experimental=Numerical Comnarison (ACM) 

5.1.1 Standard Definitions For The Material Properties 

In Section 4.1 it was stated that the precise values for lamina 

material properties in a laminate were not always available. To reduce 

the number of numerical models needed to discover if the experiments could 

be analysed with ACM a set of standard definitions for the m2.terial 

properties was beneficiR.l. To achieve this with speed., it was decided to 

consider just one mesh 9 1SHGE50, (Fig. 5.1.3). 

To begin with the fundamental properties E11 9"822,G12,\l12 and t 

were taken as the typical measured values for the material system T300/ 

Code 69, Table 4.1. 

The numerical results are compared with Experiments 1 and 2 in Table 5.2 

The nominal ply thiclrness t = 0 ·127 E-03 m was used in models 1-6. There­

after it we.s taken to be equal to the average ply thickness in Specimen 2. 
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An average for the two specimens would have been preferred 9 but due to 

its protective layer the average lamina thickness in specimen 1 ~as· 

inde::i:erminate. 

In models 1=4 the longitudinal Youngs modulus 9 E11 9 was taken as the 

mean of the lamina tensile E11t 0 and compressive E22c • Thereafter 9 the 

ply thickness effect was involved through equation 4.1. 

The transverse modulus, E22 9 was taken to be one quarter of its mean 

tensile, E22t 9 and compressive, E22c 9 except in models 1 9 11 and 12. For 

these remaining models it was taken to be some other portion of the mean. 

The rationale for choosing a quarter of the mean was that it had preYiously 

been applied in analytical solutions to fit the experimental data. 

case of the transverse modulus the thickness effect does not apply. 

In the 

The shear modulus, G12 9 was expected to remain constant in the linear 

deformation domain. Since it was not possible to determine the reduction 

known to occur in laminate manufacturing, the typic.ally measured lamina 

value was generally taken. 

The major Poissons ratio ~12 was taken as 0.3, except in model 10, 

where itwas 0.25. Tt.is model showed that a reduction produced a slight 

increase in plate stiffness. 

The comparison in Table 5.2 indicates that modelling the patch load 

with a vertical load only vector (V.L.O.) predicts values which are lower 

than those with a consistent load vel.ctor (C.L.V.) and that the latter are 

below the measured. In future all numerical models will employ a 
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consistent vectoro 

Since it was not a difficult task to produce a series of models with 

varying parameters that accurately representeathe experiments 0 a set of 

standard definitions for the material properties was chosen from the 12 

models. Model 7 allows for all material factorsp except the known reduction 

in G12, and provides the best fit with the measured values. Therefore 

the definitions for the material properties used in model 7 have been taken 

as the standard and will be used eocclusively in all future numerical models. 

The set of standard definitions for the material properties are: 

5.1. 2 

t The ply thickness is the average plate thickness divided 

by the number of layers 

E11 The longitudinal Youngs modulus is. the mean of its 

tensile and compressive values scaled to take account 

of the reduction in ply thickness 

E11 = [ E11t ; E11c] x 0·12;E-03 

E22 The tr~~sverse Youngs modulus is one quarter of its 

mean tensile and compressive values 

E22 ::; ( E22t; E22c]x 0·25::; 0·2889E+10 N/m2 

G12 The shear modulus is the typical measured value 

G12 ::; 0·5771 E+10 rnf 
~12 The major Poissons ratio is the typical measured value 

~12 :: 0·3 

Plate Modelling of Experiments 1 and 2 

Once a standard set of material properties h"u1 been established P it 

was possible to investigate the accuracy of the different mesh types9 as 
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introduced in subsection 3.3o4. The numerical results from four quarter 

platep two half and a full plate mesh as defined in Table 5.1 are compared 

with Experiments 1 and 2 in Table 5o3• 

The range in the calculated values are from model 2 ( ·336E=03mo 

145)JEo 183}JE) to model 7 ( ·340E=03mP 160)Jtp201)Jt:) with the exact 

representation model 11 (full plate mesh with no quarter plate boundary 

conditions) in the middle. 

With the quarter plate models it was possible to simply reverse the 

orientations of all the + and -45° laminae to produce the two distinct 

modelling cases shown below. 

Fig 5·1 

y~ 
y~ 

X 

Case 1 

Case 2 

X 

Case 1 which has been generally taken gives values which are always 

higher than those with case 2 and shows the detrimental effect of 

imposing quarter plate boundary conditions. However it was found that 

the mean of the two models provides similar results to the exact modelo 

This indicates that the detrimental responses cancelled and that for this 

particular lamination configuration the contribution of the twisting 

components to bending were small. 

If the ± 45° orientated laminae were reversed in the half plate models 
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no difference in the values was found. 

made with the full plate models. 

A similar observation can be 

As the variation between the models is less than 9% the inclusion 

of quarter plate boundary conditions are not important with this 

lamination configuration, Any of the mesh types could be chosen to 

predict the linear behaviour with good accuracy. But, it would appear 

sensible to take the avera~ of several different models for the most 

realistic analysis. 

Overall Hodelling Of Experiments 1 And 2 

To provide further relevant modelling information nearly all the 

strain and transverse displacement measurements will now be compared with 

the equivalent numerical. To enable this comparison meshes constructed 

with a lot of elements were needed. 

Num•=rical results (applying the data presented in Table 5.3) from the 

four meshes illustrated in Fig. 5.1.1-4 are compared with Experiments 1 

and 2 in Table 5.4. The four meshes have been drawn so that with 

Fig, 4.11 and 4.15 the nodal positions corresponding to the strain and 

dial gauges can be readily found. Except where noted the measured strains 

are the surface values which were the result or bending and in-plane 

(much smaller) components. 

For the quarter plate models the average numerical values from the 

two quarter plate representations (cases 1 and 2) have been presented in 

the middle. Upderneath the mean is the value due to modelling case 2 
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and above the value due to modelling c~se 1. If two strain values at a 

node have been written next to each other, it was because the calculation 

of that strain by surrounding elements differed 1 and the mean has been 

taken. 

Collectively 1 the four models predict the measured response with 

good accuracy. The calculated transverse displacements and strains are 

always below that measured, with a maximum difference of 12%. 

Mesh 1SQE100 which is the most refined does not give improved 

accuracy over the coarser meshes and was only included because it has 

sufficient elements to enable all the measurements to be compared. 

The good accuracy does not depend on the position in the plate which 

implies that the numerical modelling for the patch load and the supports 

are not critical to the solution, as was noted for point loading examples 

in subsection 3.3.1. The comparison also shows that the difference between 

the numerical and experimental results are very similar in both principal 

directions of the outer lamina. This suggests that the true ratio of 

E11/E22 must be similar to that obtained from the standard material 

properties. 

Central Biaxial Stresses 

The experiments illustrated a number of difficulties which prevented 

the accurate evaluation of the governing central biaxial stresses in the 

lamina providing first fibre failure, and hence the required strength data. 

For ~his reason the stresses reported from the linear and non=linear 
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analyses are known to be unrealistic. The relative change between 

linear numerical models (ACM) will however give some idea to the change 

in central biaxial stresses possible with the plate bending method. To 

illustrate the range of stress ratios with the lamination used in 

Experiments 1 and 2 the following examples were examined: 

Fig. 5.2 Altering the position of the point supports (but 

maintaining symmetry) with a constant patch load 

area, and plate dimensions !l = 1 , 
B 

Fig. 5.3 Altering the dimensions of the plate A and B ~~d 

hence the span distances As and Bs with a constant 

load area ~P = 1 
Bp . 

For both examples the quarter plate mesh 1SQGE100 was used. In Fig. 5.2 

the support positions chosen can be seen with reference to Fig. 5.1.4. 

The valuesgiven in Fig. 5.3 weredetermined by altering the distances 

illustrated on the plan. A limit was imposed on the maxim<~ side lengths 

A and B above which it was felt the plate may just slip through the supports, 

as found in Experiment 5. 

The numerical models employed the standard material properties and 

so E22 was reduced due to thermal cracking caused in manufacturing. 

Therefore the calculated surface central biaxial stress ratio crU:x was 

always high. 

The plots indicate that by altering these particular geometric 

parameters the ratio is altered by over 4 times. This factor will be 

increased once the two effects are combined and other practical changes 

as defined in Section 2.2 are included. 
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This simple investigation suggests that the maximum range in the 

tensile biaxial stress ratio %)( 9 with 'l'xy = 0 g for this particula.r 

lamination will be about 10;1 • \-!hat effect on the central stresses the 

nonlinear deformation has could be considerable and requires either 

numerous experiments or an accurate no~linear numerical analysis to 

answer. 

Comparing with the biaxial methods studied by Pipes and Coles(4) 

( 1~ .~y=1 ) the plate bending method should provide a similar range in 

biaxial stress ratios. However unlike the tubular method no compression 

-tension results are available. 

From this investigation it ~uld appear that criteria (d), Chapter 1 

will be satisfied by the plate bending method. 

Plate Modelling 

Subsection 5.1.2 showed that the four mesh types accurately predicted 

the bending measured in Experiments 1 and 2. By involving the other 

experiments in an identical analysis those lamination configurations .• ,hen 

quarter plate boundary conditions are unacceptable will be established. 

Then a full plate model (Fig. 3.10.4) will be the single model that 

represents the linear deformation and a nonlinear solution will not be 

possible due to computing limitations. 

Tables 5.5 ~ 5.9 have been constructed along the same lines as 

Table 5.2. The standard set of material properties follow the 

definitions in subsection 5.1.1. and the meshes are defined in Table 5.1. 
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As before 0 central surface strains and transverse displacements ~ere 

determined from measurements made in the linear (embedding) load range 9 

and an approximation due to the initial gradient of the test to failure. 

When the values differed considerably both have been reported 9 otherwise 

the mean is given. 

In Experiments 3o4o5~6,7 and 9 the outer lamina was orientated at 

+45° to the global axes and the prograT~e (ACM) only predicts the strains 

in the global directions. To predict the strain parallel and perpendicular 

to the fibres Mohrs strain circle technique was used to evaluate the ±45° 

strains. This was justifiable because the strain and stress variation 

with rotation are defined by second order Tensor vectors (3). 

values are given by: 

E±45 = 

where Oxy= 0 at the centre. 

Ex + Ey :!: ~ xy 
2 

The strain 

5·1 

The following observations were made from the comparisons in Tables 

Quarter plate models are not accurate for Experiments 5,6,7 and 9 nor 

are half plate models for Experiment 9. Good accuracy is possible for 

Experiments 59 6,7 by taking the average of the two distinct quarter plate 

models (cases 1 and 2). These Experiments also show that the number 

of nodes used in the patch loading has little effect on the accuracy. 

Only Experiment 9v whose lamination is very anisotropic requires a 

full plate model for accuracy. 

Except for Experiments 3 and 4 all numerical values are lower than 
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measured and the relevant models from the rest illustrate that the 

differences are generally less than 1~·~. Hence, the comparisons show 

emphatically that the experiments are modelled by the linear analysis ACM 

to sufficient accuracy. 

Furthermore 0 fue values predicted for Experiments 3 and 4 (Table 5.5) 

can be brought into agreement with the other experiments if the protective 

layer is included in the average ply thickness. The comparisons also 

show that Mohrs strain circle technique will determine the strain at any 

orientation. 

In subsection 3.3.4 the idea of taking the relative size of the 

stiffness ratios 01y016 

behaviour was introduced. 

and D2Yo 26 as a measure of the twisting 

Table 5.10 presents the ratios, together with 01y0 66 for the five 

laminations tested. ·vli th reference to the corresponding tables it can 

be seen that when D1Vo16 and D2Voz6 are above 50 a11 models are 

accurate, and that when the r8.tios are below 20 they are not. However 

there are not sufficient lamination configurations to be more precise. 

5.1.6 Overall Modelling of Experiment 7. 

It has already been shown that the bending in Experiments 1 and 2 

can be accurately predicted by the programme. The ability of ACM to 

accurately predict the deformations throughout the specimens can be 

enhanced by repeating the modelling of the remaining experimen~ M0 dels 

for Experiment 7 will now be presented since the results provide several 
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new observations. Table 5.11 presents the comparison 9 Table 5.1 defines 

the mesh constructions and Diagram 4.41displays the gauge positions. 

The comparison shows that the numerical values are distributed evenly 

on either side of those measured 9 as a consequence of the fact that plate 

modelling is now important. 

ratios D1Yo16 and D2y026 

This observation was anticipated since the 

are relatively small implying that the 

distinct meshes would provide a greater sp~ead in results than for the 

lamination in Experiments 1 and 2. Fortunately 9 the twisting components 

are not too large and the average of the two quarter plate models are within 

10% of those measuredp except at a few points. 

Again Mohrs circle technique provides a good prediction of the ±45° 

strains 9 but the differences between these and the measured are greater 

than in the global directions. 

The results also show through gauges 9 and 11 that the nu:nerical 

analysis accurately determines the bending near the free edges. The 

numerical values had to be determined using linear interpolation since 

there were no nodes at the gauge positions. This approximation was 

acceptable in the free edge region since the strain gradients are nearly 

linear. It is also of interest to note that both analyses established 

that the lower surface strains near the free edges were compressive. 

Large Displacement Experimental-Computation Comparison 

(ACKBC=modified) 

It is of interest to this work to examine the modelling ability of 
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the geometric no~linear finite element programme ACMBC for one of the 

experiments 9 even though it is inaccurate. Experiments 1 and 2 were again 

analysed using the modified version of ACMBC. Table 5.12 presents the 

numerical central displacements and strains with the corresponding 

measurements at several loads. In establishing the five convergent 

solutions 970s of C.P.U. time were required with the quarter plate mesh 

1SQGE 36 (Fig. 5.3.2). 

Obviously a critical comparison is out of the question since the scale 

factors introduced into the ACMBC analysis 9 Section 3.4 9 have not yet been 

shown to be universal. 

observations. 

However 9 the results do permit several important 

As with the isotropic test examples analysed in Section 3.4 with the 

unmodified ACHBC analysis the laminate appears stiffer than that recorded 

experimentally. In fact 9 at 3600N the central transverse displacement 

is orlly half that measured. The modelling suggests t!'..at a careful 

inspection of the deformation throughout the plate would demonstrate that 

the bending is characteristic of that found in the simple isotropic 

examples (Fig. 3.13.2) with the unmodified ACMBC analysis. 

The comparison also shows that the difference between strains are 

much lower than for displacements and that if numerical trends are extended 

there will be no evidence of preferential bending. 

If the reasons for the inaccuracy are found to be the same as for the 

isotropic examples then axial strains presented in Table 5.12 will be lower 

relative to the bending. This leads to the important conclusion that the 
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linear bending programme ACl\1 will be accurate when modelling the 

experiments for a maximum central transverse displacement equal to the 

plate thickness. 

Although the geometric non~inear finite element analysis constructed 

cannot be shown to model the experimentp the above does indicate that 

computing limits are critical to further development. Here a simple 

constructionp with efficient storage and solution techniques, needed most 

of the 1000s C.P.U. time to determine the bending up to half the failure 

load. Thereforep further development should concentrate on reducing 

the computing effort withp at the same timep improved accuracy. 

5.3 Numerical Assumptions 

The assumptions applied in the formation of ACMBC were introduced in 
'7 L-

subsection 3 .,f. 2. 2. 
J 

Y.'hen designing the experiment care had ensured thc.t 

assumptions 49 5,7 and 8 held and so the effects of shear deformation and 

shear stresses could be eliminated from the numerical analysis. 

Other assumptionsp notably 2,3 and 10 were dependent on the quality 

of the manufactured laminates. Obviously the specimens were not perfect 

but it has been assumed that the errors thus introduced were negligible. 

Two of the remaining assumptionsp namely 9 and 11 9 could have been 

involved in the programme and the errors thus omitted from the numerical 

analysis may reduce the relevance of the numerical comparison • 
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Material Non~inearities ~Assumption 9. 

It has already been stated in Chapter 4 that the moduli E22 and G12 

are nonlinear with strain. The experiments demonstrated that certain 

laminates contained considerable tensile matrix breakdown around the centrev 

thus causing E22 to become zero. Due to the complex deformation 

experienced by the laminates in the plate bending test it would be difficult 

to assess the instantaneous changes in these moduli so their involvement 

in the numerical analysis is not sought. 

It is therefore fortunate that the following factor means that the 

changes in E22,(except when E22 =0) can be neglected. 

The nature of the bending means that the strain in the plies about the 

mid~plane are relatively small compared to the surface. Together with the 

experimental observation that the surface strain decreases rapidly from the 

centre to the free edges a change in the modulus will only occur in the 

outer plies around the centre. Hence except at the centre where complete 

matrix failure at high loads can occur 9 the analysis does not have to 

include the small non~inearity of E22. 

The noDainearity of the shear modulus, G12, with warping strain 9 ~12 

is much more severe. Fig. 4.1 shows that G12 decreases substantially with 

warping stress 112 . The above factor also applies in the determination of 

the variation throughout the specimen. But the situation is made more 

difficult since there is no other way of predicting values of t12 9 than 

via the programme 0 and the analysis is known to be less accurate in 

determining warping strains than p~incipal strains. 
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Had A~~C analysed the experiment accurately the results could have 

been applied to discover if the shear modulus nonainearity required 

involvement. If inclusion was found to be necessary a correction procedure 

would be needed and the work of Petit and ~addoups (141) 9 Hahn and Tsai 

(142L Hahn (143), Jones and Morgan (144) and Ditcher 0 Rhodes and Webb.er 

(145) will be of benefit. There would be a drawback if this non~inearity 

requires involvement in the numerical work 0 since it would increase 

computing time and storage requirements. Further iterations would be 

necessary for the geometric and material no~inear solution 9 so less 

information would be obtained in the time limit imposed. 

Position Of The Neutral Axis= Assumption 11. 

Throughout the numerical work presented here 0 the laminates have been 

taken as exactly symmetrical, with the layers below the mid=plane possessing 

geometric and material properties identical to those of corresponding layers 

above. This assumption means that the tems in matrix IBJ= 0 (3 l and 

that there is no coupling between bending and extension in deformation. 

If the moduli are different in tension and compression the laminate 

properties are not symmetrical about the mid-plane and coupling between 

bending the extension will exist. Table 4.1 shows that the composite 

material T300/Code 69 has compressive Young moduli which are 7% and 10% 

higher than the respective longitudinal and transverse tensile moduli. 

These differences mean that the neutral axis and the mid-plane do not 

coincide in the laminates tested, even before the onset of bending 

deformation. For this reason assumption 11 may not hold. In principle 

the shift in the neutral axis will be seen as making the terms in IBll 0 
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forcing the linear response to differ from that assumed. 

To predict the distance by which the neutral axis was shifted in 

the specimens from the mid=plane the simple strip ~1alysis constructed 

by Jones and Ho:c·gan (146) was applied. They formulated an iterative 

procedure which determined the exact location of the neutral axis of a 

simply supported cross=ply strip with a uniform load. Development of the 

1=D analysis enabled generally orthotropic laminates to be solved and a 

Fortran IV programme was written to solve the equations. 

A 2~D analysis was unfortunately not possible due to the complexity 

of the problem; the basic difficulty being that the differences in the 

moduli lea~to two neutral axes (in the global directions) instead of a 

single neutral surface of conventional plate theory. Hence, the strip 

analysis was performed in both the X=Z and Y-Z planes to give an 

indication of the movement in the global directions. 

Table 5.13 gives the shift of the neutral axis in the specimens as a 

percentage of the average plate thickness. The movement is always into 

the upper (compressive) portion and is approximately 1~~ of the average 

plate thickness. The ensuing terms in [B] provide minute coupling terms 

which can be ignored. The shift does however slightly alter the values 

of the surface strains from those calculated by classical theory. 

movement into the upper half causes the surface compressive strains to be 

29{ lower and vice versa for the surface tensile strains. This is very 

encouraging since it s.uggests that the error introduced in the numerical 

comparison can be neglected. 
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CHAPTER 6.0 CONCLUSIONS 

A new biaxial test procedure~ the 0plate bending method 0 
0 has been 

investigated for thin multi=layered generally symmetrical laminated plate 

structures. Four criteria for a satisfactory biaxial stress test 0 

identified in Chapter 1 0 have been investigated with respect to the method. 

A number of experiments have been performed to determine the applicability 

of the criteria. A classical 2=D finite element thin plate analysis has 

been developed to predict the stresses generated. The following 

conclusions may be drawn from the experimental observations and subsequent 

numerical comparison. 

6.1 The Feasibility Of The 'Plate Bending J:!ethod 0 • 

(i) From this work criterion (a) 0 which states 'The state of stress 

throughout the test section should be uniform ?J1d determinate' 0 

carillot be shown to hold for the method. Although the stress 

state is approximately constant within the volume of the test 

section the stresses are indeterminate at large deformations. 

This indeterminacy stems from experimental observations that 

the lamina providing first fibre failure 9 and its neighbours 9 

experience complex deformation in the region of the test 

section. This is a severe obstacle to accurate calculation 

of stress since it is difficult to evaluate the material 

properties with sufficient accuracy. 

(ii) Criterion (b), which states 'Failure of the specimen should 

initiate in the test section so that static strength will be 

be obtained 0 is applicable. It was noted that with certain 
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experimental parameters the criterion may be broken as edge 

effects could become large and cause damage. 

(iii) Criterion (c) 9 which states 0The test section over which 

the stresses will be uniform should p1·ovide a volume of 

material large enough to eliminate the effects of point 

defects and hence make the data significant' was assumed 

to hold for the method since the volume required to eliminate 

the effects of point defects is unknown. 

(iv) Criterion (d) 9 which states 'The test should be capable of 

providing a varied combination of stress states in the 

material' was the hardest to assess. l<,irs t 7 too few 

experiments were performed to be able to provide a guide to 

the range of biaxial stress ratios obtainable. Second, the 

non~inear numerical analysis was inaccurate 9 so different 

arrangements oould not be evaluated. From reliable linP.ar 

results the test method will provide a range of biaxial 

stress ratios of the order (max ~=10, Txy= 0). 

6.2 Observed Failure Nechanisms 

(i) All the specimens deformed with preferential bending about 

a centreline. In certain cases there was a continuous growth 

in the tensile surface strain transverse to the fibres in a 

small area about the centre. The localised effect measured 

under constant transverse displacement is known as 1strain 

runaway 1
• The severe matrix failure that this implies means 

there was a uniaxial state of stress in the fibre direction 

where the governing biaxial stresses are determined. 
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(ii) Occurrence of strain runaway in the 16=layered crossQply 

plaie 0 in conjunction with first fibre failure in the 

second layer 0 has lead to the proposal of a new failure 

mechanism (Fig.4.54.2). At large deformations the strain 

runaway ( \"fhich was in the direction of first fibre failure) 

exceeded the capacity of the foil gauge 0 with a last 

instantaneous reading of 2. 5% 0 some time before fibre 

failure. Since the extreme fibre strain in the second layer 

could not have been greater than 1.6%0 without fibre failure 9 

there must have been a 1% drop in strain across the outer 

lamina. The figure shows that there was severe matrix 

cracking through the outer ply 0 which became wedge shaped to 

accommodate the high surface strain. 

§.3 The Validity Of The Finite Element Analysis To Nodel The Plate 

Bending Method 

6.3.1 Linear Analysiss ACM 

{i) Numerical comparison 1emonstrated that the linear analysis 

accurately predicts deformation 0 strains and stresses in the 

experiments to within ±10%. Accuracy was restricted to 

those cases when the standard values for lamina material 

properties 0 (E11,E22 0 G12p~12 andt) were used, the affect of 

the twisting stiffnesses D16 and D26 were allowed for in the 

modelling and the central transverse displacement 0 we 0 did 

not exceed the plate thickness. 

(ii) Effects of shear stresses 0 nonlinearity of material properties 
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and exact position of the neutral axis \-Jere examined. Their 

individual effects on the accuracy \-Jere small. 

(iii) Greater concern \-!as felt over the error introduced by the 

omission of shear deformation. A literature research revealed 

only one promising analytical technique which could be 

developed to analyse the laminates tested. This high order 

method broke down for generally orthotropic plates so shear 

deformation could not be evaluated. Comparison between ACMv 

several shear flexible elements and exact solution suggested 

that shear deformation in the experiments will be insignificant 

providing the span to thickness ratio S is greater than 30. 

6.3.2 Non~inear An2.lysis 9 ACNBC 

(i) The basic non~inear analysis was inaccurate when modelling 

simple isotropic test examples for the following: 

To omit numerical integration techniques in the evaluation 

of the stiffness coefficients a new definition for the 

e 
terms in matrioc [HJ (Equ.3.44) was applied. As yet 

limitation of this definition are not fully realised. 

Comparing the numerical results with exact analytical 

solutions has suggested the relative magnitudes of 

bending and in~plane stiffness terms were incorrect. 

Numerical models predicted transverse displacements 9 W 9 

and bending stresses (~b>v to be too small 9 and in~plane(~~) 

stresses to be too large near the centrep with the 

reversed situation near the free edges. 

(ii) Accuracy was improved after introducing scaling factors to 
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12 
the terms in [HI and in evaluating in-plane stiffness 

coefficients a This modified version of programme ACl:BC 

was inaccurate when analysing the experiments and so scaling 

factors are thought not to be universally applicable. 

(iii) The importance of persisting with this numerical approach is 

that the computing effort, although largep was reasonable for 

the size of the problem undertakeno This appears not to be 

the case for other non~inear finite element analyses. This 

indicated that further de-relopment will always be restricted by 

the computing power available. This limitation may become 

more pronounced if the approach in A~ffiC needs the involvement 

of shear deformation, material nofrlinearities, the exact 

position of the neutral axisp and the extent of matrix failure 

prior to first fibre failure for the accurate determination of 

stresses generated. 
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CHAPTER 7 FU~ WORK 

The work done in this thesis has laid the foundations for further 

research on the application of the plate bending method and the analysis 

of carbon fibre reinforced plastic plates subjected to load. In particular 

the following areas require more examination. 

(i) The stress in the test section must be established accurately. 

This is the only way in which the method will be shown to be 

reliable and accurate in the determination of biaxial strength 

data. The calculation of the stress field will certainly 
(j b ·J; /-

involve a numerical analysis so the true laminations of ACMBC 

to analyse laminated structures must be realised. 

(ii) If the ideology of the analysis used in A~ffiC is found to be 

incorrect a critical comparison with other finite element 

methods should be made. This will be of great benefit to 

the development of composite structures since it would 

establish the limits of numerical methods to the solution of 

structural problems. 

(iii) If the indeterminacy of stresses of the plate bending method 

can be resolved, then work should be done to discover if the 

test can provide reliable strength data after the laminates have 

been subjected to damage. Since~ if these results are found to 

be acceptable 9 the test will present the aerospace designer with 

an extremely useful tool. 

(iv) The experiments showed that all the laminates deformed with 

preferential bending about a centrelinep and that in several 

cases there was a large dynamic growth in strain perpendicular 

to the fibres near the tensile surface in the test section. 
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These two observations require further examination so that 

they can be quantified for the plate bending method. 

(v) A series of experiments should be performed ~ith specimens 

having different lamination confieurations (but the same 

composite material) to establish the limiting values for 

the ratios D11/o16 and D22/o26 Which.. indicate when the 

finite element models c~~ apply quarter plate boundary 

conditions without loss in accuracy. With these limiting 

ratios only the lay-up arrangement of laminates would be 

required to ascertain if the plate can be modelled with 

quarter and half plate models~ thus saving time. 
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APPENDIX I ACMBC Displacements Programme Flow Chart 

INPUT DATA 
list of data is given 
on followig page 

WRITE OUT PARAMETERS 

'~ 

A seperate programme to determine 
linear displacements was constructed 
for convenience (ACM) 

LINEAR ANALYSIS 
' Matrix [Kg] is evaluated 

(ACM) through Equ.3·23and the linear 
displacements through Equ. 3.49 

I TER = 1 Linear bendin~ stiffness t 
'· 

coefficients[K0 l are stored PRINT OUT {d'b1 
and faJ. is divided by 2 linear displacements 
since non-linear displace-
ments have been greatly 
over estimated 

NON-LINEAR ANALYSIS 
./ 

check on iteration counter and ' 
pass programme to appropriate ' 
subroutine 

l;TER "" 1 \~ ITER> 1 

Construct [Kg~nd store I Construct I Kl= [Kol + [Kl) 
where[KJ is defined by 
Equ. 3. 24 
The residual ('out of balance') force 
vectortJ{cf]nEqu. 3.31 due t('l non-linear 
bending behaviour can now beevaluated 

For first aproximation to construct [Kr J=[K ]+[Ktr~ 
" the non-linear solution where[Kr~is defined by 

[Kp=[K l=fK0 J+fKrl Equ. 3.54 

t t New nodal 
Corrections~o)nare determined displacements for 
throunh Equ. 3.31 next set of correc 

A[cf =-fKrf1 1,J[cf}n are evaluated by 
ion: 

Equ. 3.4 

ITER = ITER + 1 
Convergence is tested for the 

NO nodal displacements using Equ. 3.5 . ., 
then new set of nodal displacements 
are evaluated by Equ. 3.34 

t YES 
PRINT OUT nodal (D.O.F) transverse 

displacements,w,rotations ~.dw Gnd in-plane 
displacements u,v d:x dy 

112 



APPENDIX I ACM and ACMBC Strains and Stresses Programme Flow Chart 

- ~ 

INPUT DATA 
see below 

plus load and nodal 
displacements evaluated by 

ACM and ACMBC 
WRITE OUT PARAMETERS 

\ t 
IN~UT NODE NUMBERS 

where strains and stresses 
are to be evaluated 

't 
NODAL STRAINS 
calculated using Equ. 3.55 
Each element in turn and 
the average at the specified 
nodes are PRINTED (}J E') 
The bending strains are calculated 
at the surfaces 

+ 
NODAL STRESSES 

calculated through plate thickness 
using Equ. 3.56 
The stresses are evaluated at the 
extreme surface of each layer in the 
laminate. Stresses are evaluated for 
each element in turn and the 
at the specified node~are 

PRINTED (N/ 

INPUT DATA FOR FINITE ELEMENT ANALYSIS 

Title 
No. of Nodes , No. of Elements 
Boundary Conditions {Bending 

In-plane 
No of layers in half the plate 

average 

Orientations of each layer 
Topology of each finite ~lement 
Material Properties and Dimensions 
Load vector (Transverse) 

{
repeated for th. e number 
of Elements in the mesh 

Node No. where Exy = 0 along the Quarter Plate Boundaries 
No. of Load Increments 
~ Factor applied in reducing the number of iterations to a 

convergent solution through Equ 3.4 
No. of Elements along each side of the Finite Element Mesh 
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High Order. Differential Equations Governing Flexural Displacement Components of a Symmetrical Laminated Plate 

_~2 2 ·z . 1 2 2 ...tth.,. 
-ASS ~-2A4S. dw0 -;-A44 ~-ASS ~ -A4S dlJx -A4S diJx -A44 ~ -DSS dsz -2D4S dsz -D44 d$z -3DSS ~ -3D4S d@x 

dx2 dxdy dy2 dx dy dy dy dx2 dxdy dyl dx dy 

-3D4S .~ -3D44 ·~ :CTJ!!_) 
dx · dy \2 

-ASS dw0 -A4S. 3+DlldQZ +2Dl6 .d3x +D66 dQx -ASS Wx +D16 ~ +(D12 + D66) dQy +D26 dt.lu -A4SlJy +(2Dl3 - DSS) .!!1!. 
dx dy dx dxdy dyZ dx dxdy ~ dx 

+(2D36 -· D45) dsz +Hll dffix +2Hl6 dfx +H66 d~2 -3D5S ~x +Hl6 dt .. +H26 dt .. +(Hl2 + H66) ~ -3D45!py = 0 
dy dx.2' dxdy dy · ~ ~ dxdy 

2' 2 ~ 4 2 ~ -A4S ~ -A44 ~0+D16 dl)x +(Dl2 + D66) ~ +D2.6 d -A4S lj)x +D66:d +2D26 ~ +D22 d -A441fi +(2D36 - D4S) dsz 
dx dy ~ dxdy dy dx dxdy dy dx 

+(2D23 - D44) dfz +H16 d~ +(Hl2 + H66) d~x. +H66 4 +2H29 ~ +H22 ·~ -3D44 ~ y + H26 d~x = 0 
dy · dxZ dxdy diT dxdy dy · dy2 

2 2 2 . 2 
-D55 dw,11 -2D4S ~0 -D44_ dw~+(2Dl3 - D55) ~ +(2D36 - D4S) ~ +(2D36 - D4S) ~ +(2D2·3 - D44) ~ -HSS d5z 

dxl dxdy dy . dx dy dx dy dx:Z 
2 2 _, 2 

-2H4s .ili :-H44 lli +4D33~ z +( 2Hl3 - 3HSS) dmx +( 2H36 - 3H4s) ~ +< 2H36 - 3H4s )· ~ +< 2H23 - 3H44) ~ = CT:.:~) J( !l. 
dxdy dxZ dx dy dx dy 2 4 

-3DS5 ·d~0 -3D4S ~o.+Hll d~~ -+2Hl6 d~ +H66 dQx -3D5; yx +Hl6 dt'"; +(Hl2 + H66) ~ +H26 dtv -3D45 ~y +(2Hl3 - 3HSS) d3z 
dx dy dx2 dxdy · dy2 ~ dxdy cryT dx 

+(2H36 - 3H4S) dfz +Lll ~ +2L16 d~x +L66 d~x -9H55 ~x +L16 d~ .. +(Ll2 + L66) .ili +L26 d~ .. -9H45 ~y = 0 
dy dx dxdy dy2 ~ · dxdy ~ 

-3D45 dw0 -3D44 ~+Hl6 ~ +,(Hl2 + H66) 4 +H26 df"' -3D45 4Jx +H66 db,, +2H26 dQy +H22 dt.,., -3D44 lly +(2H36 - SH45) d~:e 
· dx dy dx dxdy ~ ~ dxdy ~ dx 

+(2H23,- 3H44) dsz +L16 d~x +(Ll2 + L66). d~x +L26 d~z -9H45 ~x +L66 d~ .. +2L26 d~y +L22 ili ..:9H44 ~y = 0 
dy dxl dxdy dy ~ dxdy dy2 

> 
"d 

~ 
5 
~ 
1-1 
H 



~ 
l.n 

High Second Order Differential Equations Governing In-plan<ll Displacement Components of a Symmetricall. Laminated Plate 

2 2 2 2 2 2 . ·2 . 2 2 2 
All duo+2Al6 du 0 +A66 duo+Al6 ~o+(Al2 + Al6) dv0 +A26 dv +Al3 d(Jz +A36 ~ +Dll d~.x +2Dl6 d3x + D66 d~x +Dl6 d.5~ 

dx2 dxdy dy2 dx2 dxdy dy2 dx dy dxZ dxdy dy2 dx 

+(D12 + D66) d~y +D26 d r~ = 0 
dxdy dy 

Al6 d~0+(A12 + A66) d60 +A26 dJ0 +A66 dJ0 +2A26 d~0+A22 d~0 +A36 d~z +A23 ~ +Dl6 d?x +(Dl2 + D66). d~x +D26 d~ 
dx2 dxdy dy2 dx2 dxdy dy2 ~ dy dxZ dxdy dy2 

+D66 dJf~ +2D26 d}y +D22 ds; = O-
dx dxdy dy2 

I • ~ 2 2 
A13 du0 +A36 dUo+A36 dv0 +A23 dv0 -D55 d z -2045 dlJz -044 d lJz +A33 lJ:;:: +(Dl3 - 2055) dJx +(036 -2 D45) dSx 

dx dy dx dy dx dxdy dY7 ~ dy 

+(DJ6 - 2D45) d5y +(D23 - D44) fu = crz(ll}xh 
dx dy 2 2 

011 d3a+2016 d~+066 d30 +D16 d~~+(Dl2 + 066) dJ0 +D26 dt+(Dl3 - 2D55) ~ +(036 
dx2 dxdy dy2 dx dxdy dy2 dx 

- 2045) dWz +Hll dfx +2Hl6 ~x 
dy dx z dxdy 

+H66 Jx -4D55 5 x +Hl6 dfz +(Hl2 + H66) ili +H26 dg~ -4D45 S y = 0 
dy2 dx . dxdy dy 

2 . 2 2 2 2 2 
Dl6 du0 +(D12 + D66)d~+D26 du0 +D66 dv0 +2026 £y0 +D22 dv

2
+(036 - 2045) dlJz +(D23 

dx 2 . dxdy d'Y2 dx2 dxdy dy 'd';{ 
- 2D44) dWz +Hl6 d!x 

dy dx2 

+(Hl2 + H66) dfx +H26 dfx -4045 §"X +H66 ~l .. +2H26 dly +H22 dt;- -4044 SY = 0 
dxdy dyZ ~ dxdy dy 

Coefficients which are non zero 11 12 13 - - 16 
21 22 23 - - 26 
31 32 33 - - 36 

44 

and 16, 26, 36 exist only for e 
to the global axes of the plate 

orientated layers 

55 -

61 62 63 - - 66 

Aij ,Dij 1 Hjj 1 Lij =! (1, i; z~ z~ Qij dz 
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Matrix Governing Flexural Displacements for a General Symmetrical Laminated Rectangular Plate, Simply Supported 
along its edges and Subjected to the Transverse Loading q c: q0sin Tfx sin '!!Z 

A 

rfcs[Dll+D66+ASS +2D16l rfcs[ Hll+H66+3D55 +2H16] Jcs[D12+D66 + Dl6+D26l 
. AT '"82 TiT ABJ "AT BL TIT Air"" A B A' BZJ 

Jcs[ H12+H66 + H16+H26l TrcsASS nts[nss~2Dl3 -2D~6] 
A B "'AT BL A 

Jcs[~+L66 +9HSS· +2Ll6J.Jcs[Hl2+H66 + Hl6+H26] 
A ""B7 -;7 AB A B 77 BL 

THESE TERMS ARE SYMMETRICAL .Jcs[D66+D22+Al~4 +2D26] 
""'AT BZ iTT A'B 

rrssASS 
A 

1TSs3DSS 
A 

-rrssA/~4 

B 

.lcs[Ll2+L66 + L16+L26] lYcs3D55 wcs [ 3H55~2Hl3 -2H~,~ 
A B "AT HZ T 

Jcs[ H66+H22+3Dl•4 +2H26j 
A7 B"Z fiT Air 

wcs~ 'ilea[ D44-2D23 ~2036] 
B B A 

n~s[L6f+L22+9H44+2L2.6] -:rcs3D44 nca[ 3H44-2Hl3 -2~6 
. A B£ -;t'2 AB B B A 

nss3D44 
B 

nssfA~S+A:4j ms [o~S+D:4j 

TfBS [ D15~2Dl3] -cs2D!6] lf£ s [3H55~2Hl3j -cs2:36 J nss[D44-2D?.3l-sc2~J ittiS bH44-2H12l-~c2H36] ms rnsS+D44l. -r&s IHsS+H44+4D33l 
B 1 A l B J A r A B J L7 sr :;r_ 

-" 
-.I 
o-

where s = sin:n!, and c ·= COS!l:t, 

A B 
The above can be solved when the terms 16p 26. mnd 36 l!l1r<2 zerGp 
but when there are lamina at9°to the global a~es the mmtri~ 
coefficients are dependent on the x-y co-ordin!!ltes. 
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Figure 2.1 BIAXIAL TEST METHODS FOR COMPOSITES 

Figure 2 .1.1 
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Figqre 2.1.3 
·CROSS BEAM SPECIMEN 

at corhers 
if curved 

Honeycomb . core 

Test Section 

Lamin.ated 
PN'ates · 
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Figure 2. 2 PLAN OF PLATE IlENDING METHOD 
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Figure 3.1 b\CMBC ELEMENTS 
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Figure 3. 2 PLATE GEOMETRY 
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Table 3.1 Mesh Constructions 

Subscripts 

Q QuartP.r plate model H = Half plate F = Full plate 

U = Uniform sized elements in mesh G = Graded mesh 

S = Square mesh R = Rectangular mesh 

E = Experiment(mesh constructed to model plate bending experiment) 

Graded meshes have the smaller elements around the centre of the plate 

that they are representing. Unless otherwise stated the meshes have 

non-dimensional lengths. 

Mesh Plate No. of elements Size of elements along sides 
. Label Dimension (along each side) 

A J (1) 1SQU .2 1 .1 * 1 
2SQU .2 .2 4 (2) .05 * 2 
3SQU .2 .2 9 (3) .G333 *3 
4SQU .2 .2 16 (4) .025 * 4 
5SQU .'2 .2 25 (5) .02 * 5 
6SQU .2 .2 36 (6) .01667 * 6 
7SQU .2 .2 64 (8) .0125 * 8 
8SQU .2 .2 100 (10) .01 * 10 
9SQU .2 .2 144 (12) ,00833 * 12 

lSQG .2 .2 9 (3) .05* 1, .04 * 1, .61 * 1 
2SQG .2 .2 36 (6) .03 * 1, .015 * 4, .01 * 1 
3SQG(A) .2 .2 49 (7) .02 * 3, .015 * 2, .005 * 2 
3SQG (B) .2 .2 49 ( 7) .016 * 5, .01 * 2 
4SQG .2 .2 64 (8) .02 * 3, . 01 * 3' .005 * 2 
5SQG .2 .2 100 (10) .02 * 2, . 01 * 4' .005 * 4 
6SQG .2 .2 144 (12) .02 * 1, .015 * 2, .01 * 1, .005 * 8 

lRFU 3-81 em 2·25 16 I ('4} .9525x4 and 0;5625 x 4 

1SFGE144 • 26m. 26 144 (12) ___!>_03___:*. _1_,_ • 02_1\:_-1-,. -.03 -*- 2, ~01--* -4 
- ---- --

-· - - -- .03 * 2, .02 * 1, .03 * 1 -- --· --·- -- --

1SHGE50 .26m.26 50 . IS) .03 * 4, .01 * 1 . (10) .03 * 4, .01 * 2, .03 * 4 
1SHGE72 • 26m. 26 72 (6) :03 * 3, .02 * 1, ,01 * 2 

(12) .03 * 3, •. 02 * 1, .01 * 4' .02 * 1 
.03 * 3 

1SQGE100 .26m.26 100 (10) .015 * 6, .01 * 4 

-



Table 3 2 Finite elements for linear evaluation 

ACM (26,27) 

4 noded non-conformal 
12 D.O.F. 

simple polynomial (Equ. 3.3,) 

8 noded 
48 O.O.F 

s (36) 

conformal Hermitian. Displacement method 

Based on complex Hermitian interpolation functions. A high order plate 
bending element using a hyperoscfllatory po~nomial. 

2 2 ~ (2) (2) (2) (2) (2) 2) (2) ~) 
w(x,y)=_t:: ~ H0 ; (x) H0 j(y) w;j + H 1;(x)H 0/ylwxij + Ho 1 ~) ;jly)wyij + H2 (x)HofYh'xxij + 

·=1 J=1 2 .1?) 0 (21 2 -~ 
H 0;<x)H2;(y)wy y rj + H1 ;(X) H ;/Y) wxy IJJ 

where Wjj 1 Wxjj,Wy~·Wxxij,WyyijJand wxyij are the. D.O.F. and 

Hb~6<) = 2; (a 5 ~ 1 o a'S<3-+ 15ax4-6xs) 1 ~~~xJ =--!5( 10ix3_ 1Sa x4+ 6x~, J~x) =~r41x3+7ax4- 3 x 5) 

HW(x):: ~(a4x- 6ix3+-Bax4= 3x 5), H~(x)=j_".l (a~a2_ 3tx3+3ax4- xS)) Hi2(x)=1../cl}-2ax4 + x5) 
a , 2a-- · , 2 a \ 

where for y the xs become y~ and the a~ become bs 
For compatibility 
(i) all four elements at a node must have identicalw;j1Wxij 1Wyjj andwxyijat 

common corners 
(ii) the elements joining along edge x =· const. must have identicalwY'Yij. 
(iii) similarily y = const. identicahlxxi' 
Tables are required for stiffness coeff~cients. The element has also 
been incorporated into a non-linear ~nalysis,(6S). 

8 noded 
24 D.O.!: 

conformal 

SM (41) 

Hybrid-stress. Shear deformation model 

Hybrid-stress representation of a serendipity element. Stiffness 
coefficients were evaluated using 3x3 Gaussian numerical integration 
The hybrid-stress approach was applied to prevent locking found with 
Serendipity elements and prevent the spurious eero energy modes found 
with Lagrangian- ·e I-erne n ts . - - -
Stress distributions are given by the following:-

rrx=P1+X/2•yf33+xyf~+tj5 +y 2ft6•xy 2ft7 + iyfte 
rry = /9-tx/10+ Yft11 +xyP12+ lp13+ Y2f314 + xy2/1s •x

2
y P16 

rrxy=P,7+x~1a+~19+xy~2o•x2~21"'f/22 1 rrz=2@s+f14+/zo)+2xPJs + 2#>a 
rrxz=~2+P19 +x~ 5 +F2o) + Y{P4+2f22) +:ZxyPa +y 2f7 
vyz=~11+~1a+x( 12 +2P22) +y 2f{i)4 •hoJ + 2P1sxy +x 2P16 
The paper gives an explanation for the formulation of the above equs. 

~; ~i:11a•c;:; :J1:
3
n:t; ~:4 :;L :h:J?~:·:; f~~y+ ¢;:: nt are, -

t¥ = ex 9 + )cx10 fcx 11 + SJZ<><12 + 5 0<13 +.f(oc14 + S 71~ 5 + S!"?Oc16 

w = c:x17+ J~1a+f0<'19 + j"{o.:zo +§'o.:2t ·~cx.22+ 51.:fxz3+ 5¥cx24 

where ) = 1 "Z = t 



Table 3.2 Finite elements for linear evaluation (contd.) 

3 noded non-conformal 
9 D.O.F. 

T (31) 

simple polynomial. Displacement method 

Tocher tried to improve the simple function applied by Adini 
The proposed displacement function is ~-

w = 0<.1+X0<2+Y0<:3+X20<4+XY0<5 +y2e><6 + X30<7+(/y+x t) 0<8 + y3o<9 

HCT (33) 

7 noded based on simple polynomials 
9 D.OJ Displacement method 

Although the element T describes triangular displacement compatability 
between adjacent elements, it does not provide normal slope 
compatability in a triangular plate bending system, (c.f. ACM). 
A correct element can be achieved by dividing the element into three 
subsections. The stiffness analysis is then based on assuming an 
independent polynomial displacement function for each sub-element. 
The displacement function is:- · 

2 2 1 2 3 
w = 0(1 +J(D<:2 +yc<3+X o<4 + XYO<:s +y 0<6 +){0<.'7 + xy Oc'e + y ~9 

where x,y are the co-ordinate system for each sub-element. 
The complete element involves a total· of 27 D. 0. F., .- 18 are employed 
in satisfying internal compatability between adjacent sub-elements 
while the remaining 9 D.O.F. are bending D.O.F of the element. A 
reduction technique then reduces the unknowns to leave just the 
governing D.O.F .. 

B (35) 

3 noded conformal Refined polynomial. Displacement method 
18 D. 0. F 

This refined e l~men.t~is_ -~a se~ J:)!l_ ~n_as sumed--d-i-splacement Tun-ct ion which 
fo_rms_a-complete- -s"broer polynomial expression in x and y. 
The expression contians 21 terms and requires an element with mid-side 

nodes· ~ corner no file D.O.F. {~x l -
6 5 ~~)( 

· · f-.-__ wxy 

1 
~;-- rnide side nodes DOF fwnn1 wyy 

4 
These mid-side nodes where undesirable in the analysis and were 
eliminated using a condensation process to leave the 18 bending D.O.F .. 
The stiffness coefficients were evaluated by numerical integration. 



Figure 3. 3 SIM!='LY SUPPORTED SQUl>.RE ISOTROPIC PLATE Ul\DER 
U~IFO~Y DISTRIBUTED LOAD (V.L.O.) 
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Figure 3.4 SQUARE ISOTROPIC PLATE WITH A CONCENTRA'I'EL LOAD 

AT THI. CENTRE 
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Figure 3.5 SQUARE ISOTROPIC PLATE WITH CORNER POINT SUPPORTS 
UNDER UNIFORMLY DISTRIBUTED LOAD {V.L.O.) 
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Figure 3.6 SQUARE ISOTROPIC PLATE WITH CORNER POINT SUPPORTS 
UNDER CENTRAL PATCH LOAD. (V.L.O.) 
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Figure 3.7 ORTHOTROPIC CROSS-PLY TEST EXA}WLE 
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Figure 3. 8 FINITE ELEMENT MODELS 

Figure 3.8.1 MESH 3SQG(A) 
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Table 3.3 Deflectjo~ 

All transverse displacements are * E-03m 
Exc.ept when otherwise stated results were calculated using mesh 3SQG(A) 

Position in PAFEC 75 ACM Analytical 
plate 4~noded 8-noded · element m=-n=l,23(odd) 

' Node number 

64 We 9.239 8.050 7.605 7.562 

7.584* 

63 9.081 7.975 7.553 7.508 
56 9.046 7.942 7.520 7.481 
55 8.995 7.896 7.481 7.440 
28 4.940 4.397 4.203 4.169 
10 0.0637 0.0570 0.0543 0.0539 

Table 3.4 Stresses 

Stresses at the mid-plane of the outer lamina (0°) * E+08 ~ N/m2 

Position in PAFEC 75 ACM Analytical 

plate 4-noded 8-noded element m=n=l,2ol(odd) 

Node number 

64 o-x 3.83 5.75 5.46(5.50*) 7.38 [~n=n: ~ o-y 0. 701 0.942 0.864(0.869*) 0.887 11801odd 

63 crx. 3.17 :!: 20% 3.16±24% 2.88 3.11 
o-y o. 57:!: 3% 0.63±3% 0.62 0.40 

56 o-x 3.15 ! 2% 3.91± 1% 3.36 3.48 o-y 0. 51 :!: 34% 0.38±21% 0.35 0.38 
-- --- -- --- - - -- - -

55 ---~- -2.-92- --!---7%-- --- -3 . 3 5-:n-4%- -3-.28- 3.18 -- --
o-y 0.49 :!:15% 0.47±14% 0.43 0.36 

28 crx 0.99 :tl5% 1.10 .t 7% 1.09 1.07 
cry 0.095:!: 33%' 0.082:!:16% 0.076 0.101 

10 o-x 0.13±49% 0.15:!:22% 0.150 0.144 
cry .0089:!: 59% .0046:!:58% .0027 .0012 

* Results using mesh 5SQG 



Table 3.5 C.P.U Time 

Model Mesh D.O.F C.P.U sec. 

(IBM 370/167) 

ACM 3SQG(A) 192 <10 * 
ACM 5SQG 363 <15 

PAFEC 75 
4-node 3SQG(A) 320 70 * 
8-node 3SQG(A) 880 320 

12-node 3SQG(A) 1446 >900 
' 

* Identical models 
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Figure 3.9 WEBBER'S ANGLE PLY CANTILEVER EXAMPLE 

I Figure 3 • 9 .1 MESH lRFU • TEST PARAMETERS 
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Figure 3.10 QUARTER PLATE BOUNDARY LIMITATIONS 
45°LAMINATE TEST EXAMPLE 
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Table 3.6 Modelling a 45°laminate plate in the plate bending test. 
I 

Plate dimensions 

A = 0,26m B 0.26m 

h 0, 2E-02m 

As= 0,2m Bs= 0.2m 

Ap= 0.02m Bp= o.om 

Central patch load P = lOON (C.L.V) 

Material properties 

Ell = 0. 25E+l2 N/m 

E22 = O.lOE+ll N/m 

Gl2 = 0.58E+l0 N/M 

))12 = o. 3 

Model Orientation Central transverse 

displacement 

* E-02m 

lSFGEl44 ±45° 0.270 
(Fig·. 3.10.4) 

1SFGE144 ±45° 0.240 
(Fig. 3.10.3) 

lSHGE50 .:!:45°. .0.324 
-(F-ig. ~3-.-10.--2~- - ~ ---- -~- -- - -~ -

- ~-

1SHGE72 :!:45° 0.324 
(Fig. 3.10.2) 

lSQGE100 •45° 0.433 
(Fig. 3.10.1) (Case 1) 

1SQGE100 -45° 0.379 
(Fig. 3.10.1) (Case 2) 

I 

Tensile surface strains 

at the.centre 

x<o'1 )JE Y(9d') 

1017 1017 

449 449 

637 - 1~&1_ 
---

o37 189 

620 2098 
620 182 

3291 3291• 

-28 ~28 



Table 3.7 Geometric non~linear examples- Load increments 

SIMPLY SUPPORTED CLAMPED 

q No. of -q No. of 
iterations iterations 

32.8 6 31.3 12 

98.3 4 93.8 10 

163.8 6 156.2 11 

229.4 6 218.8 12 

294.4 6 281.3 12 

Approximate C.P.U. Approximat.e C.P.U. 
time Time 

So + sec. 140+ sec. 
I 

' 

TablU! 3.8 ACMBC -Analytical comparison(Levy) 

.Parameters Simply Clamped 
non-dimensional Supported 

Wo yes yes 

crox yes yes 

OBDJt yes yes 

crPI.lh yes yes 

o-Pt BJC yes no 

crpl CJt yes no 

o= (J( no yes 
---- - --

- ·- -- -- ----

0:8 Rlfy yes no 

See Figures 3.11 to 3.17 



Figure 3.11 SIMPLY SUPPORTED SQUARE PLATE UNIFORM :PRESSURE LOAD 
(C. L. V.) • LEVY IN PLANE RESTRAINTS 

Figure 3.11.1 CENTRAL TRANSVERSE 
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Figure 3.12 CLAMPED SQUARE ISOTROPIC PLATE UNIFORM PRESSURE LOAD 
(C.L.V.), LEVY IN-PLANE RESTRAINTS 

Figure 3.12.1 CENTRAL TRANSVERSE 
DISPLACEMENT 

D 
.3oor==:====~~2-5---:-:~r====;J • c II 

( ~ 
y 

fA X a, 
v ', '7 -

C.L 

-LEVY 

o Wo 
[ACMBc) 

o-s 

I 

I 

I 
I 

1·0 

I. 

I 

I 
I 

I 
I 

I 

I 

Figure 3.12.3 IN-PLANE SURFACE TENSILE 
STRESS I 

0 
30 I 

I 
0 
I 

I 
I 

I 
__ I 
I 

I 
I 

0 
I 

I 
I 

I 
I 

I 
I 

I 
I 

q • I 
I 

I -LEVY 
I 

0 6p!Dx I 
I 

I 

5 10 15 

Figure 3·:-12. 2 CENTRALSUR,FACE TE·Nsn:;-E 
STRESS 

300~------------~0~====~ 

20 
c 

q 

25 

Figure 3.12.4 BENDING SURFACE TENSILE 
STRESS 

300 
0 

' I 
__ j ---

I 
I 
I • I 

I 
I 
I 
I 
I 

q 0 

I 
I 
I 

-LEVY 

100 oiij D..,., 

10 15 

-- ·-



Table 3. 9 Percentage errors for tl:l,e non-linear isotropic simply supported plate, with a load factor q = 200 
(Fis_. 3.11) i 

' 

_l_r...e_U Author Element 
I Wo o/o trDtt o/c CT"s'l>x o/o CT"ptl>Jr o/o i Analysis Mesh 

simply polynomials '1 laminated 4:~t4 ~20.0L :;::l.OL 32.51 2 7. 011 
ACMBC (4 noded) I 

' ( 125) 

Bergan + Q-19 (bending) 1

1 
isotropic 4:~t4 ~ 1.11 ~15.3L l0.3L 5.0L 

Clough (70) lagrangian( in-plane 025) 
(4-noded) 

Pica + Heterosis QH '
1 
isotropic 4 )t 4' 0.3L 0. 7H 

(9-noded) (425) 
I 

Wood+ Serendipity QS !isotropic 41(4 0.31 LOH 
(8-noded) \ (325) 

Hinton (76) Lagrangian Q1 ~sotropic 4x4 0.31 0.9H 
(9-noded) I (40 5) I,. 

I 
Reddy + Serendipity laminated 4 )t 4 8.4H R;] 0 31 

linear I (125) 
(4-noded) 

Chao C74) Serendipity laminated 4x4 1. 51 ~7.31 
quartic I (325) i 

(8-noded) 

Chang + Serendipity I 
4x4 ~l.OL la

1
minated 

(8-noded) I (325) - ' 
Sawamiphakdi 

(86) 
Lagrangian laminated 4:~t4 ~ l.OL 

(9.-noded) I (405) ' 
I -

L =- lower than analytical H = hig,her than analytical 



Table 3.10 Percentage errors for the non-linear isotropic clamped plate, with a load factor q,. 200 (Fig. 3.12) 

Aut~~tl Element A~alysis Mesh WJ) 0/o o=-oJt o;o trC>t 0/o 
' simply polynomials l~rninated 4)t4 16.0L ~l.OL 5.0H 

ACMBC (4-noded) I 025) .. 
' 

Brebbia + simply polymonials i~otropic 4~4 7.5H 
Connor(29l ACMBC (4-noded) (125) 

Thomas + inconsistent quad. I 4)t4 4.4H isotropic 
Gallagher '4 triangles' ! ? 

171) (4-noded) ' 
! 

I 

Pica + Heterosis QH. I 
i~.otropic 4)t4 ~1.8L ~2.0H :::::1.4L 

(9-noded) (425) 
I 

Wood+ Serendipity QS isotropic 4x4 ~1.8L ~3.0R -:::.4.0L 
(8-noded) I (325) 

I 
Hinton(76 Lagrangian QL I 4x4 ~1. 7L ~3.5H -:::::1. 3L isotropic 

(9-noded) I (405) I 

Bogner + Hermitian 
I 

isotropic ? ~ 2.0L ,.3,0H :::::4.0L 
Fox + (4-noded) ? 
Schmit (63) 24 D.O.F. 

i 

Reddy + Serendipity lkminated 4):(4 18.5H 
I (125) linear (4-noded J ' 

Chao (74) Serendipity lkminated 4)t4 4.0H 
quartic(8-noded) I (325) 

- -

I. = lower than analytical H I ,. higher than analytical 
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Figure ~.15 ~IMPLY SUPPORTED SQUARE ISOTROPIC PLATE UNIFORM 
PRESSURE LOAD (C.L.V), LEVY IN-PLANE RESTRAINTS 
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~ Figure 3.16. SIMPLY SUPPORTED SQUARE ISOTROPIC PLATE UNIFDRI-1 
11 PRESSURE LOAD (C .L. V.) , LEVY IN-PLANE RESTRAINTS 
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Table 4.1 T300/Code69 lamina material properties 

The properties are for a un~directional laminate with nominal ply 
thickness (O.l27E-03m) and 60% fibre volume. 

Material property 
(Symboi) 

Longitudinal tensile 
strength 

Loqgitudinal tensile 
Youngs modulus.(Ellt) 

Longitudinal tensile 
strain to failure 

Transverse tensile 
strength 

Transverse tensile 
Youngs modulus (E22t) 

Transverse tensile 
strain to failure 

Longitudinal compressive 
strength 

Longitudinal compressive 
Youngs modulus (Ellc) 

Design permissible 

0.117E+l0 Nim2 

0. 123E+l2 N/m2 

1.1% 

0. 494E+08 N/m 2 

o. 748E+l0 r:,tm2 

0. 7% 

0. 707E+09 N/m2 

0.123E+l2 N/m 2 

Typical value 
measured 

0. 177E+l0 N/rra2 

0. 13SE+l2 N/m2 

0. SSOE+08 N/m 2 

0. l096E+ll N/m 2 

0. 139E+l0 N/m2 

0.144E+l2 N/m2 

Transverse compressive 
strength 

0.100E+09 N/m2 
I 

0. 253E+09 N/m2 ! 

Transverse compressive 
Voungs modulus (E22c) 

Interlaminar shear 
strength 

Shear modulus (Gl2) 

Poissons ratio (~12) 

Longitudinal coefficient 
of ~hermal expansion 

Transverse coefficient 
of thermal expansion 

0. S49E+l0 N/m2 

0. 706E+08 N/m2 

0. 440E+l0 N/m2 

0.3 

-o. 32E -o6 ;e 

o. 23E-04 /C 

0. 121E+ll N/m2 

0. 122E+09 N/m2 

0. 577E+l0 N/m 2 

0.3 

-0.32E-06 /C 

o. 23E-04 (c 



\ 

N 

r-
U) 
U) <'4 

~ ~ 
U) 

tV\ Z 
0:: 
F:( "'o ILl 
;::;:: r-
U) tl 

~ tE H 
::s: 
'-' 
cu 

"' N 
rl 
0 

U) 
:::> N 
H 
:::> 
Q 

~ 
0:: 

~ 
::t: 
Ul 

rl . 
<:1' 

<lJ 
l-1 
::.1 
tJ'I 

-.-t 
IL. 



... 

Table 4.2 Specimens 

Exp. Lay-up (T3oo/Code69) A B h E-03 h( norm )E-03 Remarks 
m m _m m 

1 ( 90~ 0~ 90~ +4. 5~ 0~ -45~ 0~ 0°, . 258 .258 4.40 4.318 The lower surface had a p~otective layer 
-45~0~+45~0~0~+45~0~ which was approx. two ply thick (0.254E-03m) I 

I -45~0J5 (Reference B-A H6/2) Cured 1978-9 i 

2 II .253 .251 4.66 4.318 Void content =:::o. 6% 
(Reference B-A CF-1074) Cured 1982 

3 ( o o ooo o o .258 .258 5.49 5.08 The upper surface had a protective layer +45,90,-45,0,0,-45,90, 
+45)s which was approx. two ply thick (0.254E-03m) 

I The plate was tested twice because adhesive 
4 II caused the gauges to peel off during Exp. 3 

(Reference B-A H5/2) Cured 1978-9 

5 (+45°0°-45°90° 90°-45° 0° .205 .273 

I 
1. 91::!:1% 2.032 The specimen was not failed in Exp. 5 ' , ' ' ' 

+45') s because poor choice of supporting distances 
allowed it to just slip through the supports 

6 II I Support distances were changed for Exp 6. 
(Reference B-A CF-1050) Cured 22/12/81 

7 II .204 . 272 1. 91±1% 2.032 (Reference B-A CF-1051) Cured 5/1/82 

8 ( 0 0 09 0 0 0 0 ~ 0,90,0, 0,0,90,0,90 s .204 .202 1. 88±1% 2.032 Void content<l.2% 
(Reference B-A CF-1075) Cured 4/82 

9 ( 0~+45°, 0~ +45: 0~ -45~ 0 ~. .202 .200 1. 91±2% 2.032 Void content<1.2% 
-45Js (Reference B-A CF-1076) Cured 4/82 

.. I 



Figure 4. 2 PAGANO'S 3-CROSS-PLY STRIP BENDING EXAMPLE 
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Figure 4.2 contd. PAGANO'S 3-CROSS-PLY STRIP BENDING EXAMPLE 
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Table 4.3 Shear flexible finite elements 

Author Element type F.E.M No. of nodes Displacement Remarks I (ret) D.O. F. Function 

Mau+ Hybrid-stress 4 Quartic The rotations of normals for different 
Tong+ layerswere considered to be different. 
Pian (38) ( ( n+l) x2+l)x4 

Mawenya + I so- Displacement 8 Quartic The normal rotations, though assumed 
Davies parametric uniform for any layer, vary from layer 

(46) ( ( n+ 1 ) x4+ 1) x8 Numerical to layer and are independent of the I 

integ. (2x2) transverse displacement. 
Gaussian 

Panda + Super- Displacement 8 Quartic Assumed normal rotations to be the same 
Nata raj an parametric Numerical for all layers, and the elasticity 

(47) 40 integ. (2 x2) at different layers \.las taken into account 
Gaussian by applying a "thickness" concept in the 

numerical integration. This analysis 
showed that Mawenya's analysis did not 
necessarily give improved accuracy 

Reddy Serendipity Disp~acement 8 Quartic Used a Lagrange penalty function to take 
(44) Numerical into account that normsla did not r~main 

40 integ. (2x2) normal. The analysis also included shear 
Gaussian correction factors in the 3-D stress-

strain relationships. 

n = No. of layers 



Figure 4. 3 PAGANO'S CROSS-PLY RECTANGULAR PLATE BENDING EXAMPLE 
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Table 4.5 Comparison of High order plate deformation theory with the 
exact elasticity solution of a rectangular simply supported 
bi-directional plate with a sinusiodal load (Fig. 4.3) 

s Pagano · Lo · Pagano Lo Pagano Lo 

i7x(~,~t~) o=x(~.~~) cry(~~:tf) o=y(~.~~) -{(~ B) i(A B_) wt.''[ w7'T 

4 1.14 1.07 0.109 ±0.123 2.82 3.98 
-1.1 -0. 119 

10 ± 0. 725 0. 725 0.0418 .:!:0. 0492 0. 919 1.083 
-0.727 ;,0,0435 

20 :!:: 0.650 0.655 0.0294 ±0.0327 0.610 0.649 
-0.652 -0.0435 

100 ±0.624 ±0.627 ±0.0253 !0. 0277 0. 508 0.509 .. 
. 

ACM ±0.631 ±0. 0260 0.507 

CPT ±0.623 ±0.0252 0.503 

Table 4.6 Bending and in-plane components using the High Order plate 
deformation theor to solve the rectangular simply supported 
bi-directional plate with a sinusiodal load, Fig 4.3,~ 

s Component w (A,~) crx(~~~~)~ oy~,~-~) rr.( A fi ~) 
2 2 m Ll2 1 2'2 

10 Bending O.l300E-03 -. 7266E+02 -.4923E+Ol -. 1498E+Ol 
10 In-plane 0. 2816E-06 0. 2966E+oo 0.1434E+OO 0. 5044E+OO 

20 Bending 0. 623 7E-03 -.2619E+03 - .1309E+02 -.6940E+Ol 
20 In-plane O.l408E-06 0.3529E+OO o, 1462E+OO 0. 5052E+OO 

100 Bending 0.6111E-Ol -. 6300E+04 -. 2712E+03 . -. 1809E+03 
100 In-plane 0. 2816E-07 0. 3729E+OO 0.1470E+OO 0. 5050E+00 

All parameters for the test example are given with Fig. 4.3. 

References.Pagano (112): Lo, Christensen, Wti (119,120,122) 



Figure 4. 7 INTERLAMINAR STRESSES IN LAMmATES UNDER AXIAL 
EXTENSION (123) 
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Figure 4.8 APPARATUS FOR PLA1~ BENDING EXPERIMENT 

Figure 4. 8. 1 .BASF PL.~'TE (:HLD STEEL) 
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Figure 4.9 STRAIN MEASUREMENTS 

Figure 4. 9.1 NONLINEAR BENDING STRAIN DISTRIBUTION 
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Figure 4.10 EXPERIMENTAL ARRANGEHENT 

PLATE 4.3 EXPERIMENT 

Figure 4 -10.1 STRAIN INSTRUMEfiTATION 
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Table 4.7 Plate bending test parameters 

-
Exp. Lay-up A B h E-03 As Bs S~in) Ap Bp. 

m m m m m ·m Rl 

1 (9 0 0 9 0 4 0 0 4 0 0 0,0, 0,+ 5,0,- 5,0, 0.258 0.258 4.40 0.2 0.2 46 0.02 0.02 
0~-45~0~+45~0~0~+45~ 
o:-45~0., s 

2 0.253 0,251 4.06 0.2 0.2 49 0.02 0.02 
-

3 ( 4 09 0 4 ~ 0 0 450 0.258 0.258 5.49 0.2 0.2 36 0.02 0.02 + 5, 0~- 5,0,0,- ' 
90~+45 5 

I 

4 I 
I 
I 

5 ( +45~ 0~ -45~ 90~ 90~ -45 ~ 0.205 0.273 1. 91:!:1% 0.15 0.2 ~s 79 0.02 0.02 
0~+45~ 5 h 

6 0.15 0.12 ~s 63 0.01 0.01 I 

~s 
I 

7 0.204 0.272 1. 91 !.1/o 0.15 0.12 63 0.01 0.01 ' 

h 
8 ( 0° 90° 0° 90° 0° 90° 0° 90J 0.204 0. 202 1.88±1% 0.13 0.13 69 0.01 0.01 

' ' ' ' ' ' ' s 
I 

9 (o. oo 4 oo 4 oo 0.202 0.200 L 91:!:2% 0. 13 0.13 68 0.01 0.01 

I 

0,+45,0,+ 5,0,- 5,0, 
-45i_S_ 



Table 4.8 Linear (embedding) load cycles 

Exp. Max. load Increment Period of time load 
N N was maintained (min) 

1 300 100 s 

2 300 100 s 

3 400 100 4 

4 400 100 4 

s 100 20 3 

6 100 20 3 

7 100 20 3 

8 too 20 3 

9 100 20 3 

Table 4.9 Load increments for test to failure 

Exp. Linear deform. Test to failure 
N N 

max. increment increment 

1 300 so 200 to fibre failure at 8200 

2 400 100 400 to 7200 then 300 to fibre 
failure at 7960 

3 - - 400 to 11200 (adhesive failure) 
-- -

4 400 50 400 to 2000 then 800 to fibre 
failure at 13750 

5 80 20 50 to 1200 then plate just 
slipped through the supports 

6 so 10 100 to fibre failure at 2SOO 

7 so 10 100 to fibre failure at 2600 

8 100 20 100 to fibre failure at 2100 

9 100 20 100 to 400 then 50 to 500 and 
then had to be stopped due 
to plate rotation 



EXPERIMENT 1 .NOTES AND OBSERVATION? 

Date of test : July 81 

Plate dimensions 

A 0.258 m B = 0.258m 

h 0.44E-02m(Includes protective layer) 

Bs= 0.2m As= 0.2m 

Ap= 0.02m Bp= 0.02m (Rubber pad 0.178E-02m) 

Lay-up (90°0t>90° 45o,p 45°0°0°45° o ·>o"oo 4ra,p-4 °0" , , ,+ ,u;- , , ~ ,0,+45,, ,+ =>,u, 51 ls 

Ball bearings 0.4445E-Olm 

The plate was arranged with the protective layer as the lower surface. 

Central transverse displacement was increased at 0.5E-03rn/min in increments 

of 200 N. 

No transverse displacement measurements vlere made. 

Strain gauge measurements not plotted 

3 90° B was always less th<ln 4 9 0 ° B , the trt:nd was the same 

and at 8200N strain=l0825~E 

max~ mum value 700 )J e 

max~mum value 500 }J f 

at 

at 

5200N, 

4400N, 

and at 8200N strain:668~e 

decreasing to OfEat 8200N. 

5 90° B and 9 90°A · were connected to a ultrav~olet recorder. 

The information was loss due to electrical noise when the deformation 

was still small . 

Sudden catastophic first fibre failure occurred after approx. lmin 

\vi th the load equal to 8400N. Failure started near the centre ~n the 

outer tensile layer. There had been no previous sign of visible 

failure ,and the occasional loud crack heard suggested adhesive 

breakdown. The final load after failure was not recorded. 



Figure 4.11 EXPERIMENT 1. STRAIN GAUGE ARRANGEMENT 

34 LAYERS (90,0,90,+45,0,-45,0,0,-45,0,+45,0,0,+45,0,-45,0).s 

SCALE 1:4 

STRAIN GAUGES -11 CROSS-PLY TYPE FCA3-ll 3MM TOKYO SUKKI 

SINGLE TYPE FLA3-ll 3Ml-1 KENKYUJO Co Ltd. 
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Figure 4.12 EXPERIMENT 1. STRAIN MEASUREMENTS 'ID FIRST FmRE FAILURE 
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Figure 4.13 EX?ERIME~ l. STRAIN MEASUREMENTS TO ;FIRST FIBRE FAILURE 
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Figure 4 .14 VISIBLE FAILURE ON TENSILE SURJ:,ACE 

SCALE 1:1 
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EXPERIMENT 2. NOTES AND OBSERVATIONS 

Date of test : June 82 

Plate dimensions 

A = 0.253m 

h 0.406E-02m 

As= 0.2m 

A= p 0.02m 

B 0.25lm 

Bs = 0.2m 

Bp = 0.02m 
La o o o cO 0 o o o o o ,..o 0o(JJ.4 r:::o~4 c>0o y-up (90,0,90,~~0.~5,0,0,=-itS,0,-+4::>, , , .,. , ~ , l s 

Ball bearings 0.4445E-Olm 

Central transverse displacement was increased at 0.5E-03m/min 1n increments 

of 400N. 

All strains and displacements recoroed have been pre sen ted m the plots. 

Approximate deformation observed 

At 4000N 

At 6000N 

When load exceeded 6400N the occasional snap was heard,(adhesive breakdo~1). 

First fibre failure occurred as the transverse displacement was increasing 

at 7960N. Failure started near the centre in the outer tensile lamina. 

The resultant failure caused sufficient weakening that final equilibrium 

was attained at 1250N. 

On inspecting the area where th~ patch load-was -subj~cted the chalk 

impress ion left indica ted that load had been applied fairly evenly 9 

with a heavy line along one side. 



Figure 4.15 EXPERIMENT 2. STRAIN GAUGE ARRANGEMENT 
34 layers (90,0,90,+45,0,-45,0,0,-45,0,+45,0,0,+45,0,-45,0)s 

SCALE 1:4 

STRAIN GAUGES {- CROSS-ply TYPE fCAJ-11 3MM 

- SINGLE-PLY TYPE FLAJ-l.E 3MM 

VIEW : FROM BELOW 
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Figure 4.16 EXPERIMENT 2. DISPLACE~illNT MEASUREMENTS DURING LINEAR DEFORMATION 
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Figure 4.17 EXPERIMENT 2. STRAIN MEASUREMEN'I'S DURING LINEAR DEFORMATION 
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Figure 4.18 EXPERIMENT 2. STRAIN MEASUREMENTS DURING LINEAR DEFORMATION 
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Figure 4.19 EXPERIMENT 2. STRAIN MEASUREMENTS DURING LINEAR DEFORMATION 
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Figure 4.20 EXPERH1ENT 2. LOAD / TRANSVERSE DISPLACE]'1ENT RECO .RDED 

ON THE CHART RECORDER OF THE INSTRON 
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Figure. 4.21 EXPERIMENT 2. TRANSVERSE DISPLACEMENTS 'ro FIHST FIBRE FAILURE 
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Figure 4. 23 EXPERIMENT 2. STRAIN .MEASUREMENTS TO FIRST FIBRE FAILURE 
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Figure 4. 25 EXPERIMENT 2 .• S1'RAIN MEASURENENTS TO FIRST FIBRE FAILURE 
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Figure 4.26 EXPERLMENT 2. VISIBLE FAILURE ON TENSILE SURFACE 
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EXPERIMENT 3 and 4. NOTES AND OBSREVATIONS 

Date of test : Exp. 3 Oct 81 . Exp. 4 May 82 

Plate dimensions 

A 0 .258m B = 0.258m 

h 0.549E-02m (includes protective layer) 

As= 0.2m B5 = 0.2m 

Ap= 0.02m Bp= 0.02m(rubber pad 0.178E-02m) 

Lay-up (4~90~-4~(f,0~4~90~+45\ 
Ball bearings 0.4445-0lm (Exp 3) • 0.3175E-Olm (Exp 4) 

Experiment 3 

The plate was arranged with the protective layer as the top surface. 

Central transverse displacement was applied at O.lE-02m/min in increments 

of 400N. 

At 400N a small amount of load relaxation(25N) was recorded, but the 

size of load relaxation did not increase with load. 

At 6000N a small amount of strain increase was measured at the centre 

during the time required to take the readings. 

At 8000N the bending deformation was: 
----+ y 90° 

~ 
At 9600N there was no visible damage along the edges, a loud snap was 

0 
heard and gauge 1 90 L suddenly recorded an increase~ 

At 10800N the central strains decreased rapidly as adhesive failure 

due to poor quality M-bond 200 caused the gauges to peel off. 

sJ:rllin_gauge_measurements. not plotted 

!he values below were recorded at 8000N when the adhesive failure had 

not appeared. 

)J E· )JE: 
2 90°8 3139 4 0° A 21~ 9 7 90° L 8+A 
2 0° B 3147 6 90° L 8-rA 5 903 7 -45° L 

3 90° A 577 6 0° L 4905 8 00 

3 0° A 319 6 45°'L 6142 8 90° 

4 90° A -23(1400 NJ 80 7 0° L " 7150 8 +45 

All B and B+A graduallyincreased and showed stiffening. 

All A were smallandpratically linear above 4000N. 

L 

L 

L 
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" 
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" 

)JE 

5 812 
6475 

26 71 

4769 

457 7 



EXPERIMENT 3 and 4. NOTES AND OBSERVATIONS (contd.) 

Expe ri men t 4 

The plate had been C-scanned by British Aerospace (Woodford) after 

Experiment 3 ,which showed that there was no internal damage. 

A similar procedure as that for Exp. 3 was followed ,but with BOON increments 

of load. Observations up to 13750N were also similar to Exp. 3. No damage 

was obser\red until ultimate first fibre failure ,which occurred at 13750N 

after 1 minute of constant central transvErse displacement. Like Exp. 2 

a chalk impression indic:ated that the load had been uniformly distribv.ted. 

The resultant fibre failure which initiated at the centre was not as 

extensive as in Exp. 1 and 2 .The final load after failure was 9600N. 

Strain gauge measurements not plotted 

The value below were recorded at 13000N since failure prevented the 

full set of readings to be made at 13750 N. 

fH: )JE 
6 0° L B+A 5276 9 90°L B+A 6103 
6 0° T " 2829 9 90 T B+A 5629 

7 90° L " 4564 10 0° L 6 866 

7 90°T " 2248 10 0°T 6360 



Figure 4.27 EXPERIMENT 3. STRAIN GAUGE ARRANGEJV!ENT 
40 LAYERS (45,90,-45,0,0,-45,90,+45)5 

SCALE 1:4 

STRAIN GAUGES ~ CROSS-PLY TYPE FCAJ-11 3MM 

- SINGLE- PLY TYPE FLAJ-11 3MM 

VIEW:FROM ABOVE 
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Figure 4. 28 EXPERIMENT 4. STRAIN AND DAIL GAUGE ARRZiNGEMENT 

40 LAYERS (+45,90,-45,0,0,-45,90,+45)s 
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Figure 4. 29 E~\PERIMEN'I'S 3 AND 4 • TRANSVERSE DISPLACEMENT MEASUREMENTS 
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Figure 4. 30 EXPERIMENTS 3 AND 4. STRAIN MEASUREMENTS 
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Figure 4. 31 EXPERIMENTS 3 AND 4. STRAIN MEASURE.MENTS 
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Figure 4. 32 EXPERIMEN'r -4. VISIBLE FAILURE ON 'I'ENSILE SURFACE 
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EXPERIMENT 5. NOTES AND OBSERVATIONS 

Date of test: Feb 82 

Plate dimensions 

A= 0.205m 

h = 0.191E-02m 

A5 = 0 .15m 

Ap= 0.02m 

B 0.273m 

B5 = 0. 2m 

Ap= 0.02m 

Lay-up (+45° 0°-45° 90°90°-4.1' 0°+45°) 
J J I ) ) ~~ J S 

Ball bearings 0.4445E-Olm 

'central transverse displacement was increased at O.SE-03m/min ~n increments 

of lOON-. 

LOAD N 

400 

550 

650 

750 

950 

1000 

1050 

1100 

1150 

1200 

REMARKS 

The plate star ted to behave like a pure 

beam, with a very small amount of bending 

about the Y~centreline 

No load relaxation 

Ho visible edge delamination 

Load relaxation(lON) 

The laminate was bending as a beam. 

Load relaxation(lON) 

It was noted that the point o.f support 

had moved down the surface of the ball 

bearings. 
actual pos~t~rina! position 
of suppcr~of support 

This change was only observed in the 

Y-di re c tion. 

No sign of edge delamination. 

There was noticeable .flutter in the load 

recorded. 

Load crack- which resulted in minor fibre 

failure ~n the non trimmed edges. 

Further fibre failure. Load relaxation(lON) 



EXPERIMENT 5. NOTES AND OBSERVATIONS (contd.) 

LOAD N 

1250 and above 

REMARKS 

Continuing to increase central transverse 

displacement did not increase load and there 

was immediate load relaxation. This was due 

to poor choice of experimental parameters 

which allowed the plate to just slip through 

the supports, Plate 4.2. 

The experiment 'vas stopped stv~i thou t central 

fibre failure)when the central transverse 

displacement was 0.66E-Olm. It was then 

noted that a little amount of delamination 

had occurred along the highly strain edges. 

But, as with the fibre failure appeared to 

have happened in the waste material of the 

edges. 

The laminate ';laS subjected to the maximum displacement for 1 hr, 

and the final load was still above 1200N. 

It was then decided to take readings on unloading to measure 

recovery. Unfortunately the displacement was released too 

quickly and the unbending caused two diagonally opposite 

ball bearings to come out of their sockets. 

0 

0 

No further gauge measurements than those plotted will be 

given since the experiment was notsuccessful. 
Inspection of the chalk impression left on the plate where the patch 

loading was imposed indicated that load was uniformly distributed , 
except at one corner where it was slightly higher. 



Figure 4. 33 EXPERIMENT 5. STRAIN GAUGE ARR~GEMENT 

16 LAYERS (+45,0,-45,90,90,-45,0,+45)s 

SCALE 1:4 
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Figure 4. :!4 EXPERIMENT 5. CENTRAL 'l'RANSVERSE DISPLACEMENT 
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Figure 4. 35 EXPERIMENT 5. STRAIN MEASUREMENTS 
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Figure 4.36 EXPERIMENT.S.STRAIN MEASUREMENTS 
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EXPERIMENT 6. NOTES AND OBSERVATIONS 

Date of test : March 82 

Plate dimensions 

Same as Experiment 5 

B5 = 0.12m A5 = 0.15m 

Ap= O.Olm Bp= O.Olm (rubber pad not inserted) 

Lay-up (~4s~o~-45:'9(f,90~-4~0~+45~ s 

Ball bearings 0.3175E-Olm 

The plate was that used in the unsuccessful Exp. 5. Changes were made 

to the supporting distances As and Bs and the patch load dimensions 

A~ and Bp , so that the dominant preferential bending found in Exp.5 

did not occur. The other important difference was that the load was 

imposed without the rubber pad. 

There was no check to find out if Exp.5 had caused permanent damag~. 

Central transverse displacement was increased at 0.5E-03m/min in 

increments of lOON. 

FIBRE FAILURE 
Compressive surface 

y 90° 

LOAD N 

800 

1900 

2500 

patch load 
(test sec tio 

lAx a" 

REHAR.KS 

Small jump ~n load 

~oud crack probably as the result of 

adhesive failure in the tabs 

The bending behaviour was now 

preferential about theY-centreline. 

Huch louder crack , fibre failure 

occurred around patch load in the 

compressive outer layers.Thecentr<d 

sTrafn gauge readings reduced dramatically 

asload fell to 2375N. This happened 

about 0.5 minute after the load had 

reached 2500N. Ther.e was no sign of any 

further damage at the edges than that 

introduced by Exp.5. 

actual scale 

~fibre failure and a 
.--~ little splitting .____._7/-

1 



EXPERIMENT 6. NOTES AND OBSERVATIONS (contd.) 

The strains and displacements plotted correspond to those presented 

from Exp. 5. 

Strain gauge measurements not plotted 

The values below were recorded at 2400N. 

trend jH trend 

4 0°L B+A(also B 0°8) 10985 6 90°18(maximum 1400at 900Nl 

5+45°8 {simi tar to 1 9560 9+45°6 similar togauge 5 

5-45° B gauges 2+ 3 8000 9-45°8 

6 0° 6 (also60°Bl 11540 

j.JE 
401 

6346 

5886 

The gauge1290\rhich was used in E>..-p. 5 to measure edge strains could not 

be used since this experiment had caused adhesive failuYe. 



Figure'4.37 EXPERIMENT 6. STRAIN GAUGE ARRANGE~NT 

16 LAYERS (+45,0,90,90,-45,0,+45)s 

SCALE 1:4 

STRAIN GAUGES + CROSS-PLY TYPE FCAJ-11 3MM 

SINGLE-PLY TYPE FLA3-ll 

VIEW : FROM ABOVE 
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F'igure 4. 38 EXPERIMENT 6. CENTRAL TRANSVERSE DISl?LACEMENT TO ,FIRST FIBRE FAILURE 
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Figure 4.39 EXPERIMENT 6. STRAIN MEA$UREMENTS TO fiRST FIBRE FAILURE 
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Figure 4.40 EXPERIMENT 6. STRAIN MEASUREl~NTS TO FIRST FIBRE FAILURE 
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EXPERIMENT 7. NOTES AND OBSERVATIONS 

Date of test : March 82 

Plate dimensions 

A 0.204m 

h 0.191E-02m 

As= O.lSm 

Ap= O.Olm 

B 0 .272m 

Bs = 0.12m 

Bp= O.Olm (rubber pad 0.178E-02ill) 

Lay-up ( +4S: 0~.:.4~90~90~-4~ 0~+45°) 5 
Ball bearings 0.3175E-Dlm 

Central transverse displacement was increased at O.Sm/min in increments 

of 200N. 

LOAD N 

300 

600 

700 

1400 

1600 

1700 

1800 

2100 

2200 

2300 

2600 

REMARKS 
I 

Small load relaxation (lON) 

Jerky load increase was recorded on Instron 

chatt recorder. 

Preferential bending about X centreline 

Load relaxation (lON) 

No visible sign of edge delamination 

Load relaxation (20N).There was a crack 

which indicated adhesive failure in the 

strain gauge tabs. A definite increase 

in strain was measured by gauge 1-45'1.. B+A 

during the time to take the set of 

readings. 

Load relaxation (lON) 

Further indication of adhesive failure 

Load increase was more jerky than usual. 

There was a dramatic increase in the central 

displacement needed for next increment of 

load. Load relaxation (30N) 

There was signs of the some shift 1n the 

positions of support. 

Tensile first fibre failure occurred at the 

centre after a period of 1 to 1.5 minutes 

of constant central displacement. There was 

an immediate reduction in load to 2420N. 



EXPERIMENT 7. NOTES AND OBSERVATIONS (contd .) 

Just before the onset of failure the deformed shape was 

FIBRE FAILURE 
Tensile surface 

actual scale 

1 fibre failure and splitting down 
patch load ~fibre lenqth 

y 90° (test ~dio~ ~ _ _ 

T / centre . 

~X0° 

The laminate did not possess any edge damage as a result cf the test. 

Strain gauge measurements not plotted 

The values below were recorded at 2500N. 

trends 

3+45°Bfvery similar toJ 6243 
0 0' 

3-45 B gauges 2±45 B 5718 

5 9a:'L B+A (maK 1044)JEat600N) 46 3 

5 +4 5° B { t r e n d s t he } 
7 +4 5° B sa m e as g au g e s 

7·45°8 2±45°6 

)JE 
6387 

607 2 

6443 



Figure 4. 41 EXPERIMENT 7. STRAIN GAUGE ARRANGEMENT 

16 LAYERS (+45,0,-45,90,90,-45,0,+45)s 

SCALE 1:4 

STRAIN GAUGES -} CROSS-PLY TYPE FCA3-ll 3MM 

- SINGLE-PLY TYPE FLA3-11 3MM 

VIEW FROM BELOW 
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Figure 4. 42 EXPERIMENT 7. CENTRAL TRANSVERSE DISPLACEMENT 'ro FIRST .l-~IBRE FAILURE 
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Figure 4. 4 3 EXPERIMENT 7. STAAIN MEASUREMENTS 'IQ FIRST FIBRE FAILURE 
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Figure 4.44 EXPERIMENT 7. S1RAIN MEASUREMENTS TQ FIRST fiBRE FAILURE 
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Figure 4. 45 EXPERIMENT 7. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE I 
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.EXPERIMENT 8. NOTES AND OBSERVATIONS 

Date of test : May 82 

Plate dimensions 

A 0. 204m B 0.202m 

h 0. 2032E-02m 

As= 0.13m Bs= 0.13m 

Ap= O.Olm Bp= O.Olm (rubber pad 0.178e:·-02m) 

Lay-up ( 0°90°0°90° ,p90°0°90°) 
I I J J V, J I $ 

Ball bearings 0.3175E-Dlm 

Central transverse displacement was increased at 0.5m/min 1n increments 

of lOON. 

LOAD N 

400 

800 

1500 

1600 

2140 

REMARKS 

Load relaxation (SN) it was no t&!d 

that there was preferential bending about 

the X-cen tre line. 

Load relaxation (lON) 

Adhesive failure 

Load relaxation (lON). The preferential 

bending about the X-centreline was becoming 

more dominant . 

As the central transverse displacement was 

being increased a very loud snap associated 

with first fibre failure was heard, and the 

plate was unloaded. There was a small 

reduction in load to 2060N. 

Inspecting the surfaces around the highly strained centre region no visible 

damage was found. It has been suggested that first fibre failure occurred 

in the second tensile layer 



Figure 4.46 EXPERIMENT 8. STRAIN GAUGE ARRANGEMENT 

16 LAYERS 0 0 6 O(j, cj 0 ~ (0,90,0,90, ,9 ,0,90 s 

SCALE 1:4 

STRAIN GAUGES <¢- CROSS-PLY TYPE FCAJ-11 JMM 

- SINGLE-PLY TYPE FLAJ-11 3MM 
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VIEW : FROM BELOW 
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Figure 4.47 EXPERIMENT 8. TRANSVERSE DISPLACEMENTS TO FIRST FIBRE FAILURE 
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Figure 4. 48 EXPERIMENT 8. STRAIN MEASUREMENTS 'IQ FIRST FIBRE FAILURE 
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Figure 4.49 EXPERIMENT 8. STRAIN MEASUREMENTS TO FIRST FIBRE F~ILURE 
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EXPERIMENT 9. NOTES AND OBSERVATIONS 

Date of test : May 82 

Plate dimensions 

A = 0.202m B 0.200m 

h 0.2032E-02m 

A = s 0.13m B5 = 0.13m 

Ap= O.Olm Bp= O.Olm 

Central transverse displacement was increased:at O.Sm/min in increments 

of lOON. 

LOAD N 

up to 400 

500 

RENARK.S 

At each increment of load there was a 

small amount of load relaxation (SN). 

Large amount of load relaxation (45N) 

as the plate started to rotate ~n 

supports. This is illustrated in the 

~iagram below and was the result of 

the large twisting stiffnesses. 

0 0 

y 90° 
i u 
~0° 

0 0 



Figure 4. 50 EXPERIMENT 9. STRAIN AND DIAL GAUGE ARRANGEMENT 
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Figure 4. 51 EXPERIMENT 9. TRANSVERSE DISPLACEMENTS 
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Figure 4.52 EXPERIMENT 9. STRAIN MEASUREMENTS 
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Figure 5. 53 EXPERIMEN'r 9. STRAIN MEASUREMENTS 
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Table 4.10 Pr~ferential bending 

Exp. (Figs. ) 

1 ( 4 ~ 11-4. 12 

2 (4.13-4.26) 

3 and 4 
(4.27-4.32) 

5 (4.33-4.36) 

6 (4.37-4.40) 

7 (4.41-4.45) 

8 (4.46-4.49) 

9 (4.50-4.53 

Measured response by strain gauges during test to failure 
0° X I 90° Y 1 ±45° !central transverse displ. 

considerable stiffening! nearly linear 

II " 
little stiffening little stiffening 

approx. linear after 
initial stiffening 

II 

stiffens 

linear 

0 0 

slight stiffening 

The responses noted'only applied until the specitnen just slipped through the supports 
--------------- • nearly linear 1 nearly linP.ar I linear 

linear-weakens 
high load 

nearly linear 

slight stiffening 

at stiffens 

stiffens 

linear-weakens ~t 
high loads 

nearly linear 

nearly linear 

linear 

nearly linear-weakens 
at high loads 

linear 

The responses noted only appli~n until the specimen started to rotate about the supports 
large stiffening l nearly linear I varied I linear 

C~antreline of 

preferential 
bending 

X 

Small amount 
y 

Very large 
X 

Small amount 
y 

Small amount 
y 

X 

Large amount 
X 



Table 4.11 Relevant information from those specimens which had first fibre failure in the test section ~ 
Exp. Lay-up Figure showing Final Final load max 

Transverse S f max • ur ace stra1ns Orien. of 
visible damage load after fibre central !!fibres ...Lfibres failed lamina 

N failure N displ.E-03 at the centre 

cooo oo 0 
m 

15534 }J E 1 90,0,90,+45,0,-45, 4.14 8200 ------ ------ 7844 outer tensile 
0°0°-45°0°+45°0°0° 

' ' ' ' ' ' ' 90° 
+45~ 0~ -45~ O~s 

2 4.26 7960 1250 22 14426 6061 outer tensile 
90° 

4 ( 0 0 ooo 0 4.32 13750 9000 16.9 11196 11573 outer tensile +45,90,-45,0,0,-45, 
9o~+45~ 5 +45° 

6 ( 0 0 0 0 0 Notes and 2500 2375 22 7619 9084 compressive .+45,0,-45;90,90, 
0 0 

Observations outer layer -45 ,0,+45 s 

7 Notes and 2600 2420 17.5 13953 17624 outer tensile 
Observations +45° 

8 ( 0~ 90~ 0~ 90~ 0~ 90~ 0° No visible 2140 2060 16.5 7075 >25000 2 rd tensile 
90's fibre failure 90° 

I ------------

~ 



Figure 4.54 BENDING DEFORMATION IN PLATE BENDING METHOD 

Figure 4.54.1 SHORTENING OF SPAN DUE TO PREFERENTIAL BENDING 

ORIGINAL SPAN 

Figure 4.54.2 PROPOSED MATRIX FAILURE OF THE OUTER LAMINA 
AROUND THE CENTRE IN EXPERIMENT 8 

CURVATURE HAS BEEN EXAGGERATED FOR CLARITY 

STRAIN >2. 5 % 

% 



Table 5.1 Mesh constructions to analysGs the experiments 

Subscripts Q = Quarter plate model H = Half plate F = Full plate 
G =- Graded mesh 
S = Square plate R = Rectangular 
E :. Experiment 

Mesh label . The first number refers to the order in which the meshes 
were employed in modelling the experiments. The last 
number gives the number of elements in the mesh. 

Mesh label Plate ~xps. No. of eles.. Size of elements along sides 
dimensione (along each 

Am B side) 

1SQGE36 .26 .26 1-4 36 (6) 0.03 *1, 0.025 *2, 0.02 *2, 0.01 * 1 

1SQGE49 .26 .26 1-4 49 (7) 0.03 *2, 0.015 *4. 0.01 *1 

lSQGE81 .26 .26 1-4 81 (9) 0.03 *1, 0.02 *1, 0.015 *2, 0. 01 *5 

1SQGE100 .26 .26 1-4 100 (10) 0.015 *6, 0.01 *4 

lSHGE50 .26 .26 1-4 50 (5) 0.03 *4, 0.01 *1 
(10) 0.03 *4, 0.01 *2, 0.03 *4 

1SHGE72 1.26 .26 1-4 72 (6) 0.03 *3, 0.02 *1' 0.01 *2 
(12) 0.03 *3, 0.02 *1, 0.01 *4, 0.02 *1, 

0.03 *3 

1SFGE144 .26 .26 1-4 144 (12) 0.03 *1, 0.025 *2, 0.02 *2, 0.01 "':2, 
0.02 *2, 0.025 *'"' ""• 0.03 *1 

2RQGE100 .205 .275 5-7 100 (10) 0.014 *2, 0.015 *1, 0.01 *'· 0.005 *2 
(10) 0.01875 *2, 0.02 *2, 0.015 *2, 

0.01 *2, 0.005 *2 

2RHG'E 126 .205 .275 5-7 126 (9) 0.035 *1., 0.02 *2, 0.015 *2, 0.01 *2 
0.005 *2 

(14) 0.0275 *1, 0.02 *1, 0.025 *1, 0.01 *2, 
0.005 *4, 0.01 *2, 0.025 *1, 0.02 *1, 

2RFGE144 .205 .275 5 144 (12) 0.0275 *1, 0.018 *3, 0.01 *4, 
0.018 *3, 0.0275 *1 

(12) 0.0375 *1, 0.027 *3, 0.01 *4, 
0.027 *3, 0.0375 *1 

3RFGE144 .205 .275 6+7 144 (12) 0.0275 *1, 0.0217 *3, 0.005 *4, 
0.0217 *3, 0.0275 *1 

(12) 0.0525 *1, 0.025 *3, 0.005 *4, 
0.025 *3, 0.0525 *1 

4SQGE100 .205 .205 8+9 100 (lo) 0.0175 *2, 0.015 *1, 0.01 *3, 0.005 *4 

4SHGE72 .205 205 8~9 72 (6) 0.035 *1, 0.0183 *3, 0.005 *2 
(12) 0.03!) *1, 0.0183 *3, 0.005 *4, 

0.0183 *3, 0.035 *1 

4SFGE144 .205 .205 8t9 144 (12) 0.035 *1, 0.0183 *3, 0.005 *4, 
0.0183 *3, 0.035 *1 



Table 5.2 Linear deformation experimental v numerical using Exps. 1 and 2 to provide a standard set of definitions 
for the material properties (Ell, E22, Gl2, t, \)12) 

Model Mesh Load t Ell 2 E22 Gl2 ., ))12 Central transverse Central tensile surface 2 E+lON/~ Vector E-o3 .E+l2N/m E+lON/m displacement We srains 
m E-03m/100N X(o') }J E /lOON Y( go') 

1 lSHGE50 C.L.V 0.127 0.1396 l.ll.55 0. 5771 .3 0.272 140 168 

2 " V.L.O " " " " II· 0.270 124 143 

3 " C.L.V " " 0. 2889 " " 0.297 137 179 

4 " V.L.O " " II " " 0.295 135 168 

5 " C.L.V " 0.1485 " " II 0.281 138 170 

6 II V.L.O II " " II " 0.279 122 158 

7 II C,L.V 0.1194 " II " " 0.338 158 187 

8 II V.L.O " II " " " 0.335 134 169 

9 II C.L.V " II " 0.6300 " 0.337 146 182 

10 II C.L.V II II II 0. 5771 .25 0.338 145 187 

11 " C.L.V " II 0.0 II .3 0.348 152 189 

12 II C.L.V II II 0. 5778 II II 0.329 139 174 

EXPERIMENTS 1 and 2 (average values measured in linear (0.33- 0.4) 160 200 
(embedding) load range) 

l!..-...-.- ------



Table 5.3 Linear displacement experimental-numerical (ACM)comparison, 
modelling Exps. 1 and 2 with different mesh constructions 

Plate dimensions used in the numerical models 

A = 0.26m B = 0. 26m 

h = 0.406E-02m (average thickness of the specimen tested in Exp. 2) 

As= 0. 2m B5 = 0. 2m 

Ap= 0.02m Bp-= 0. 02m 

Central patch load lOON (C.L.V) 

(9 0 09 0 4 0 0 4 0 0 0 4 0 0 4 0 0 0 4 0 0 4 0 ~ Lay-up 0,0, 0,+ 5,0,- 5,0,0,- 5,0,+ 5,0,0,+ 5,0,- 5,0Js 

Material properties (applying the set of standard definitions) 

Ell :. 0.1485E+l2 N/m2 E22 = 0. 2889E+l0 N/m2 

Gl2 :. 0. 5771E+l0 N/m2 "\112 =- 0. 3 

t :!:: 0. ll94E-03 m 

Model Mesh Central transverse Central 
displacement E-03m bending 

we !1ooN X (0~ 

1 1SQGE36 0.339 157 

2 1SQGE36 0.336 145 

3 1SQGE49 0.339 159 

4 1SQGE49 0.337 146 

5 1SQGE81 0.339 160 

6 1SQGE81 0.338 148 

7 1SQGE100 0.340 160 

tensile surface 
strain J.IE/tOO N 

Y (9oj 

197 

183 

199 

185 

201 

186 

201 

Modelling 
cases for 
± 45°1ayers 

case 1 

case 2 

case 1 

case 2 

case 1 

case 2 

case 1 
0.339 154 192 av. cases1+2 

8 1SQGE100 0.337 148 186 case 2 

9 1SHGE50 0.338 158 187 cases 1 + 2 

10 1SHGE72 0.338 158 193 cases 1 + 2 

11 1SFGE144 0.338 152 191 cases 1 + 2 

EXPERIMENTS 1 and 2 (average values measured in linear(embedding) load 
range) 

0.33 - 0.4 160 200 



... 

Figure 5.1 MESH CONSTRUCTIONS rQR EXPERIMENTS l TO 4 
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Figure 5.1 MESH CONSTRUCTIONS FOR EX.PERI.MENTS 1 TO 4 

SCALE 1:2 

Figure 5 .1.3 MESH lSI'iiGESiO 
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Table 5.'4 Linear displacement experiment-numerica.l comparison: Overall modelling of Exp. 1 and 2 

All data for the ~umerical models is given in Table 5.3 

Mesh Transverse displacements Tensile Surface strains Modelling 
E-03m/100N centre )UE /lOON cases 

Node· - We Node 
' 

w . Node w Node Ex 0° f y 90° Node -Ex 0° E y 90° 

49 0.339. 28 0.26. 28 0.26 49 157 197 48 126 104 172 case 1 
1SQGE36 0.338 0.26 0.26 151 197 115 176 aver. 1 + 2 

' 
Fig 5.1.2 49 0.336 28. 0.2'6 28 0.26 49 145 183 48 103 125 173 case 2 

121 0.340 66 0.25 0.25 121 161 201 120 129 108 181 case 1 
lSQGElOO o:339 0.255 0.255 155 194 118 178 aver. 1 + 2 
Fig 5.1.4 121 0.337 66 0 .. 26, 0.26 121 148 186 120 128 106 175 case 2 

1SHGE50 36 0.338 36 158 1.87 35 106 163 cases 1 + 2 
Fig 5.1. 3 

105 127 176 175 
1SFGE144 
Fig 5.1.1 

8,5 0.338 124 0.26 88 0.279 85 152 191 84 116 176 cases 1 + 2 

EXP. Pos. Pos. · Pos. Gauge centre 
Ey90° 

Gauge Notes 
""c w w ExOo EyJO 

1 cen. p.44 1 156 162 0-300n linear load 
Fig 4·11 range 

1 1 166 202 Initial gradient of 
failure test ( lOOON) 

2 ce,n 0.33 A 0.31 B . 0.275 1 160 203 184 0-300N linear load 
Fig 4·15 range 

2 cen o.t~o A 0.31 B 0.27 1 156 206 2 183 Initial gradient of ' 
failur~ test ( lOOON) 

' --



Table 5.4 (contd) 

Mesh Tensile Surface strains Modelling 
I ).JEJ100 N cases 

Node ExOo Ey90° Node Ex oo Ey 90° No.de E 0° Ey 90° Node 0 
Ey90° X Ex 0 

'42' 137 161 133 41 109 106 140 151 . case 1 
lSQGE36 135 147 109 142 aver. 1 + 2 

'42 133 132 160 41 105 112 136 132 case 2 

110 140 165 136 109 119 110 142 154 97 81 106 119 71 151 case 1 
lSQGElOO 138 150 113 146 80 lOS 71 150 aver. 1 + 2 

110 136 164 135 109 115 106 137 150 97 79 104 119 70 149 case 2 

lSHGE36 42 132 141 29 108 146 Ca!S!BS 1 + 2 

162 133 106 114 13 7 149 
lSFGE144 98 135 148 110 143 cases 1 + 2 

- --- --- ------------ '- --

EXP. Gauge Gauge 
Ex 0° E y 90° 

Gauge 
E y 90° 

Gauge 
ExOo Ey 90° 

Notes 
Ex Oo Ex Oo 

1 0-300N linear load 
range 

1 2+6 75B lOOB 5+9 67B Initial gradient of 
failure test 

2 3 155 4 126 154 5+9 124 6 72 155 0-300N linear load 
range 

2 3 143 4 118 156 5+9 I 114 6 70 150 Initial gradient of 
failure test 

---



Table 5.4 (contd.) 

Mesh Tensile Surf;ce strains Modelling 
)Jf. 100N ce~ses 

Node ExOo E y 90° Node E)( 0° E y90c Node ExOo Ey 90° 

28 75 40 case 1 
1SQGE36 76 40 aver. 1 + 2 

28 76 40 case 2 

99 112 94 97 81 106 case 1 
lSQGElOO ·ul. 94 80 105 aver. l + 2 

99 110 93 97 79 104 case 2 

1SHGE50 

76 74 40 38 
lSFGElOO 124 75 39 cases 1 + 2 

EXP. Gauge 
Ex 0° Ey 90° 

Gauge 
Ex 0° Ey9d 

Gauge 
fx 0° Notes 

1 3+7 99B 90B . 11 71B 0-300N linear lo~d 
renge 

1 3+7 98B 90B 4+8 75 100 Initial gradient of 
failure test 

2 8 116 112 7+10 78 0~300N linear load 
range 

2 8 117 113 7+10 78 Initial gradient of 
failure test 
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Table 5.5 Linear displacement experimentonumerical (ACM) comparison: 
modelling Exps. 3 and 4 with different mesh constructions 

Plate dimensions used in numerical models 

A = 0.26m B = 0. 26m 

h = 0.552E-02m(includes protective layer) 

As-= 0.2m Bs= 0.2m 

Ap= 0.02m Bp= 0.02m 

Central patch load P = lOON (C.L.V) 

Material properties 

t : 0.127E-03m.(the protective layer has not been taken into account) 

~11 = 0.1396E+l2 N/J 

Gl2 : 0.5771E+l0 N/J 

'1!:22 = o. 2889E+lo:·'N/m2 

\'112 0.3 

( 
0 0 ..0 0 0 0 0 ~ Lay-up +45,90,-4~,o,o,-45,90,+45Js 

Model Mesh Central transverse Central surface tensile Modelling 
Displacement We strains JJE/100 N case 

E-03m/100N X ( 0' y ( 90" t.45° 

1 lSQGElOO 0.189 123 121 122 case 1 

2 lSQGElOO 0.188 115 112 114 case 2 

3 lSHGESO 0.188 125 114 120 cases 1 + 

4 lSHGE72 0.188 118 115 117 cases 1 + 

5 lSFGE144 0.188 117 115 116 cases 1 + 

6 1SHGE56* 0.159 lOS 103 104 cases 1 + 

EXPERIMENTS 3and 4 (.average values from measurements in the linear 
(embedding)load range) 

0.21 . 106 107 112 

* this model was performed to allow for the protective layer 
Ell= 0.1258E+12 N/m t = O.l38E-03m 

2 

2 

2 

2 



Table 5.6 Linear displacement experiment-numerical (ACM) comparison: 
modelling Exp. 5 with different mesh constructions 

Plate dimensions used in numerical models 

A 0.205m B"" 0.275m 

h = 0.191E-02m 

As: 0.15m Bs= 0.2Gm 

Ap; 0.02m Bp= 0.02m 

Central patch load P = lOON (C.L.V) 

Material prop,erties 

t = 0.1191E-03m 

Ell= 0.1489E+l2 N/m2 

Gl2 = 0.5771E+l0 N/J 

E22 = 0.2889E+l0 N/i 

\)12 0. 3 

Lay-up ( +45~ if, -45', 90°, 90~ -45', 0~ +45J5 

Model Mesh Central transverse Central 
displacement We 

E-03m/10 0 N 

"* 
1 II 2RQGE100 3.16 

average of Models 1 

* 2 2RQGE100 
+ 

3 2RHGE126 

4 2RFGE144 

EXPERIMENT 5 

* 9 node patch load 
+15 node patch load 

3.06 

3.12 

3.2 

3.1 

and 2 

strains 
x (o") 

: 769 

(547) 

325 

530 

i 553 

-

surface tensile 
}JE/100N 

y ( 9cf) ±45° 

1220 995 

(983) (764) 

746 532 

960 710 

1020 785 

936 887 

ll20 682 

1100 750 

Moddling 
case 

case 1 

case 2 

cases 1 + 2 

cases 1 + 2 

From linear load 
range with then 
without rubber 
pad 
Failure test 



Table 5.7 Linear displacement experiment-numerical (ACM) comparison: 

modelling Exps. 6 and 7 with different mesh constructions 

Plate dimensions used in the numerical models 

A 0.205m B = 0.275m 

h O.l91E-02m 

As= O.l5m B5 = 0.12m 

Ap= O,Olm Bp= O.Olm 

Central patch load P =lOON (C.L.V.) 

Material properties 

t = 0. 1191E-03m 

'El:i.. = 0.1489E+12 N/m2 

Gl2 = 0.5771E+l0 N/J 

E22 = 0. 2889E+l0 N/J 

'\>12 = 0.3 

( 
,J:l 0 ..0 0 0 0 0 <1,. 

Lay-up +4~,0,-4~,90,90,-45,0,+45Js 

Model Mesh Central transverse Central surface tensile Modelling 
displacement We strains )J E/100 N 

E-03m/100 N x (oj y (90) 

* 1 2RQGE100 1. 37 1022 1065 

average of Models 1 and 2 (82.4) (855) 

* 2 2RQGE100 1.28 626 645 

+ 
3 2RHGE126 1.32 805 803 

4 3RFGE144 1. 27 778 826 

EXPERIMENT 6 (the plate that was tested in Exp. · 5) 
1.5 

.EXPERIMENT 7 1.39 

* 4 node patch load 
+ 6 node patch load 

900 

816 

841 

820 

case 
±45° 

1045 case 1 

(840) 

635 case 2 

804 cases 1 + 

802 cases 1 + 

74s4so 

61445 
0 

0 .-o-45 
load 1050 Linear 

_
45

o range 
810 Failure test 

2 

2 



Table 5.8 Linear displacement experiment~numerical (ACM) comparison: 
modelling Exp. 8 with different mesh constructions 

Plate dimensionsused in numerical models 

A = 0.2m B = 0.2m 

h = O.l88E-02m 

As= 0.13m Bs= 0.13m 

Ap= O.Olm Bp= O.Olm 

Central patch load P = lOON (C.L,V.) 

Material properties 

t = O.ll8E-03m 

Ell = O.l509E+12 N/m2 E22 = 0. 2889E+l0 N/J 

Gl2 -· 0. 5771E+l0 N/J. '\712 ,. 0.3 

( 
0 0 0 0 0 0 0 <\ Lay-up 0,90,0,90,0,90,0,90Js 

-

Model Mesh Central transverse Central surface tensile 
displacement We strains 

E~03m/100 N X (0~ 
)J E/100 N 
y (90~ 

1 4SQGE100 1.27 774 972 

2 4SHGE72 1. 27 759 956 

3 4SFGE144 1.27 760 956 

EXPE~IMENT 8 1. 53 880 1040 Linear 
range 

load 



~.Table 5.9 Linear displacement experiment-numerical (ACM) comparison: 

modelling Exp. 9 with different mesh constructions 

Plate dimensions used in numerical models 

A = 0. 2m B = 0. 2m 

h 0.191E-02m 

As= 0.13m Bs= 0.13m 

Ap= O,Olm Bp= O.Olm 

Central patch load P =lOON (C.L.V.) 

Material properties 

t =- 0 .1191E-03m 

Ell = O.l487E+l2 N/m2 

Gl2 = 0.5771E+l0 N/J. 

E22 = 0.2889E+l0 N/m2 

~12 = 0.3 

(
,.Po o 0 oo oo) Lay-up +4J,0,+45,0,-45,0,-45,0 s 

-

Model Mesh Central transverse Central surface tensile 
displacement We strains )J E /100 N 

E-03m 100 N X (0, y (9cf> ±45° 

1 4SQGE100 2.30 1975 3908 

average of Models 1 +2 (1004) (2239) (1621) 

2 4SQGE100 1. 82 13 570 

3 4SRGE72 1. 78 589 1453 1021 

4 4SFGE144 1.86 648 1684 1166 

5 4SFGE144 0.999 381 1724 

0 

iXPERIMENT 9 2.3 605 1925 n6s
45 

Modelling / 

case 

case 1 

case 2 

cases 1 + 2 

cases 1 + 2 

with quarter 
plate B.C. 

Failure test 
(linear load 
range) 



Table 5.10 Twisting stiffnesses for the specimens tested 

Experiments Dll D22 D66 
D16 D26 Di6 -

1 + 2 115.9 85.6 21.5 

3 + 4 86.5 88.9 32.3 

5 + 6 + 7 14.9 12.5 5.4 

8 0<' a.c c.c 

9 8.9 1.6 1.6 



Table 5.11 Linear displacement experiment-numerical comparison: Overall modelling of Exp. 7 

All data for the numerical models is given in Table 5.7 

- uy 100 N I Mesh Transverse Tensile Surface strains Modelling 
displacement centre cases· 
E-03m/lOON Node ExOo Ey90° f:!45° Node ,... oo E 90° E.:!4 5° Node Ex0° E y9if E'!:45° . ex y 

Node . we 

'121 1.27 121 626 646 636 119 402 62:0 511 99 593 396 495 case 2 
2RQGE100 1. 32 825 856 840 423 654 539 625 414 520 aver. lL + 2 

121 1. 37 121 1023 1065 1044 119 443 688 566 99 657 432 544 case 1 
" 

100 
2RHGE100 80 1.32 80 805 859 832 60 438 605 523 78 650 421 535 cases 1 + 2 

.. 
83 59 I 3RFGE144 85 1.27 85 778 826 802 .87 395 641 520 U1 595 397 496 cases lL + 2 

EXP. Pos. we Gauge E 90°E'!:45° Gauge Ex0° f.y90° Et4~ Gauge Ex 0° Ey9rf H45° Notes y 

7 cen. 1. 39 1 854 1054 2+4 .450B 620B 630B 3+5 600 370 500B 0-50N linear load 
Fig4"41 

810 480B 
range 

660 -4rf direction 

7 cen. ---- 1 820 1000 2+4 390B ,.-.~- 550B 3+5 -~- --~ --- Initial gradient of 
test to failur~a 

750 480B --- -45° direction 



Table 5.11 :(contd.) 

Mesh Tensile Surface strains )J ~j100N Modell.ling I Node ExOo Ey90° E:!4~ Node Ex0° Ey90° Node tJl Ey90° Node ExOo Ey90° cases 

118 268 499 359 88 480 250 111-112 -82 300 11-12 205 -73 case 2 
2RQGE100 272 502 375 485 250 -72 267 183 -65 aver. 1 + 2 

118 276 505 391 88 491 250 111-112 -62 234 11-12 162 -57 I case 1 

2RHGE126 140-150 -70 320 8-23 193 -62 cases 1 + 2 

3RFGE144 90-91 -64 281 50-163 170 -50 cases ·;!, + 2 

EXP. Gauge ExOo E 90° f±45° Gauge ~00 E 90° Gauge E 0° Eyif Gauge ( oo E 90° N®tes y y X X y 

7 6+7 210B 440B 380B 8 406B 248B 9 -60 260 11 180 -52 0-SON linear load I 

range I 
I 

7 6+7 4loBI 8 Initial gradient of 
failure teat 



Table 5.12 Large (non-linear) displacement_experimental 
Experiments 1 and ~ 

numerical (ACMBC) comparison using results from 

Modelling data is defined in Table 5.3 . Mesh 1SQGE36 was employed and the comparison was made at the centre. 

-

Load (N) Central transverse displacement, Central tensile surface strains 
Exps. We ACMBC Exps. ACMBC Exps. 

E-03m X (0~ X (OJ..U ~ Y( 90j 

400 1. 32 - 1. 6 1. 36(ACM) 640 572(ACM) 800 

Exp. 2 Av. 1+2 Av. 1+2 

400 1.72 1. 25 642 630 826 
{B 618 , A 12) 

1200 4.20 2.86 

2000 6.69 3.89 2880 2628 3850 

2800 8.70 4.68 
~2480 , Al48) 

3600 10.70 5.34 4405 4266 6543 
(B3962 , A304] 

All results given are the combination of tending and axial components. 
Strain measurements were made with Gauges 1 0°L B +A and 1 90°L B +A. 

ACMBC 
y (90~ 

757(ACM) 

868 
[B Bl9 , A 49) 

3509 
(B3012 , A497] 

5819 
(B4832 , A996] 

Remarks 

Numerical results from ACM 

No. of iterations 

7 

6 

8 

9 

9 

Total C.P.U. time used 
was 970 s. 

' 

' 
I 



Table 5.13 Position of Neutral-axis 

Experiments Plane t E-03m Ellt Ellc E22t ~ E22c Gl2 'Vl2 Movement of the Neutral-axis into 
' E+l2N/nt E+l2N/m E+lON/nf E+lON/nf E+lON/nf upper half of the plate as a % 

X - Z 0.1194 0.1437 0.1533 0.2740 
of the plate thickness 

0.3035 0. 5771 0.3 0. 72 
1 + 2 

y - z " " II " II II II 1.1 

X - Z 0.127 0. 1351 0.1444 II " II " 0. 78 
3 + 4 

y - z " If. " " " II " 0. 77 

X - Z o. 1191 0.1440 0.1537 " " II " 0. 78 
5 + 6 + 7 

i ."1 ~.f: 
y - z II II II II II II " 0. 78 

X - Z 0.1175 0.1460 0.1559 II II " II 0.93 
8 

y - z " " II II II II " 0. 74 

X - Z 0.1194 0.1437 0.1533 II " II " 0.87 
9 

y - z II II " II " II " 0. 70 


