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ABSTRACT

A new biaxial test procedure, known as the 'plate bending method' is
investigated for thin multilayered generally orthotropic laminated plate
structures. The method is evaluated with reference to the four criteria
for a satisfactory biaxial test. A number of experiments have been
performed to determine the applicability of the criteria to the new
method. Surface strains, transverse displacements and visual observations
have been recorded, from which the bending behaviour and failure

mechanisms in the experiments are examined.

A classical 2-dimensional thin plate finite element analysis has been
developed to predict the stresses generated in the small (linear) and large
(non-linear) deformation domains. To minimise computing effort in the
analyse of non-linear bending, the formulation omitted the effects of shear
deformation, shear stresses, material non-linearities and the exact position
of the neutral axis. The omission of these factors has been examined and
it is shown that the individual errors are small. Analytical solutions
for simple isotropic, and, where available, laminated plate bending
examples, have been used to establish the limitations of the finite element
analysis. Numerical results have been compared with the measured surface
strains and transverse displacements. From the comparison it is shown
that the plate bending method can be accurately modelled by the linear
analysis. However, the non-linear analysis is shown to be inaccurate when

predicting the measured bending for reasons which are discussed.
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SYMBOLS

Numerical techiques

a finite element side length in X-direction m
b finite element side length in Y-direction m
¢ centre of plate
h  plate thickness m
P
i
3
L index counters
k
m
n

nl number of layers in half the plate
q uniform pressure load N/l
q, maximum uniform pressure load N/n?

normalised uniform pressure load N/n?

q
lamina thickness
u  in-plane displacement in X-direction, ulx,y), u, weigthed average
v in-plane displacement in Y-direction, vix,y), v, weigthed average
w  transverse displacement in -ve Z-direction, w(x,y), wo weigthed average
x in the global X-direction
y in the global Y-direction
z in the global Z-direction
A plate side length in X-direction m
B plate side length in Y-direction m
D isotropic stiffness coefficient Nm

E isotropic Youngsmodulus N/

E1l, E11;, E11l, longitudinal Youngs modulus, tensile, compressive N/rf

E22, E224, E22 transverse Youngs modulus, tensile, compressive N/l

E33 equal to E22 N/nd

G12, G13, G23 shear modulus N/

Ky, Kx,Ky summation terms . transverse displacement , stress in X-direction,
stress in Y-direction

K; constants in High Order analytical plate bending analysis

Mxx , Myy finite element moment loading about Y-axis, X-axis Nm

P transverse load N

S [A or BJ span to thickness ratio
h



S.5 simply supported edge

CL., clamped edge

U strain energy J

W,Wp potential energy J

X,Y,Z plate global axis system

1,2,3 lamina principal axis system

o4 B finite element D.O.F,

o¢ non-dimensional central displacement for a uniform loaded isotropic
plate

B factor O<B<1 for assumed displacements in determining the finite
element displacement corrections

E,Emﬁrohaerror quantity, in-plane, rotational, transverse displacement

8° orientation of principal directions of a lamina with respect to the
global axis system

TT  total potential energy

V,V12 Poissons ratio, principal

aw
ax
%¥IWy slope about the Y-axis

§x, £y, gz, Yx, Wy, Yz, us, vo, W, 0x, Qy High Order generalised
co-ordinates specifying the plate configuration

,¥x slope about the X-axis

M= X, §= Y, normalised distances in X-direction, Y-direction
A B

€,E,§ strain, normalised , shear
oo stress, normalised ng

TT shear stress, normalised Mhz

Matrices for the finite element formulation

[A] , [Q] defined by [B]=[‘Q]{A1'1 with[A)ldefined in terms of the element

side lengths, and[Q ] relating the displacement functions to
the strains

(D] plafe stiffness coefficients

[G] matrix defined in terms of the co-ordinates of the element

[H)=(w'Imatrix defining non-linear displacements

[K] stiffness matrix
[9§g]4?§3] matrices relating the bending displacement function to
dx || dy

the rotational terms in matrix [H]



(Q°) transformed stiffnesses of a lamfina at orientation 6°
{¢) vector relating rotations and displacements

{e} vector of strains

{c]  vector of stresses

{Rl  vector of external forces

{V§  vector sum of the internal and external forces

{d} vector of nodal displacements

Subscripts for the above matrices

b bending
pl in-plane
o linear

L non-linear

T tangential

o initial stress
large displacements

k thayer in laminate

Further matrices for other numerical techniques

(A],[D],[H])IL] High Order theory plate stiffnesses

[B) plate stiffness coefficients relating bending to stretching
Experiments

Ag span distance in X-direction m

Ap patch load side length in X-direction m
Bg span distance in Y-direction m

Bp patch load side length in Y-direction m
A axial strain measurement

B bending strain measurement

L lower plate surface
T

upper plate surface




‘\CHAPTER 1 INTRODUCTICN

The development of advanced fibre reinforced materials having high
specific strength and stiffness has provided the designer with
coneiderable potential for weight saving. The advent of these
composites has also allowed greater flexibility im the design of such
light weight structures (192)° No longer is it necessary to commence
with 2 kmown material of specific properties. By the selection of
fibre and matrix in appropriate proportions the properties of a
material can be controlled. Combining laminae of such material at
differing orientations then allows the production of laminates raving

the desired strength, stiffness and degree of anisotropy.,

A necessary precursor to the effective design of composite
structureé is reliable knowledge of the strength properties of the
laminated material, At present; only uniaxial loading conditions have
been investigated in depth. Little relevant data has been collected

for biaxial cr more complex forms of loading.

The aim of this work is to present a biaxial test method which will
enable accurate strength data to be obtained from laminated specimens
representing, say, a section of an seroplane wing or fuselage. British
Aerospace have proposed that such structures be manufactured from
generally symmetrical orthotropic laminated composite thin plates, with
the composite consisting of carbon fibres embedded in an epoxy resin.
Hence the test method was chosen to handle thin laminated plate
specimens., For a review of the terminology used in the work refer to

the "Primer on Composite Materials s Analysis', by Ashton et al (3).




A typical section of a specimen is illustrated in Fig. 1.1. Following
from the sign convention applied in the Primer, the figure indicates the
definitions for the global axes, the lamina principal axes and <the
lamina material properties, When lay-up arrangements are stated, the
0° direction means that direction in which the principal load was in be

imposed.

When choosing the test procedure it was glso required that strength
data could be obtained after the specimen had been subjected to low
enexgy impact producing damage. This implied that the specimen had %o
have sufficient dimensions so that impact damage did not subsequently
alter the inherent edge effects. In addition, the method should enable
strength data to be acquired when the material has suffered deterioration
due to prolonged environmental exposure. Hence, if loaded specimens are
to be exposed to an active environment most of the surface area should

be free from external contact.

Several contrasting biaxial test methods have been used with
laminated specimens, but none were deemed suitable when the above test
requirements were considered. A nev test procedure has been proposed
to determine the biaxial strength of generally symmetrical laminated
plates. In this thesis it will be referred to as the ‘Plate Bending
Method' . In the method a thin rectangular plate is symmetrically
supported at four points, not the corners, and subjected to a centrally
placed transverse rectangular patch load. The test section is a small
area directly below the centre and first fibre failure should start in

an outer layer subjected to hiaxial tensile stresses.




The required strength has been teken as the maximum stiresses
experienced in the lamina where first fibre failure occure. The

design and rationale behind such a procedure is discussed in the thesis.

Four criteria have been presented {by Pipes and Coles (4)),
concerning the feasibility of a biaxial test method. These are:-
{(a) The state of siress throughout the test section should be

uniform and determinate.

(b) Pailure of the specimen should initiate in the test section
80 that static strength will be obtained.

(¢) The test section over which the stress will be uniform
should provide a volume of material large enough <o
eliminate the effects of point defects, and hence make
the data significant.

(d) The test should be capable of providing a varied combination

of stress states in the material.

The limitations of these criteria pertaining to the plate bending
method have been examined by the application of experimental and
numerical techniques. A classical two-dimensional (2-D) thin plate
bending finite element analysis has been developed to solve both the
small (;inear) and large (non-linear) deformation of laminates in the
plate bending method. To keep the computing effort at a minimum the
formulation omits the effecis of shear deformation, shear siresses,
material nomlinearities and the exact position of the neutral axis.
Hence, care has been taken in choosing sensible experimental

parameters to minimise the inherent shear effects in the tests.



It should be noted that the laminated specimens were fabricated
some time prior to testing and may have incurred some environmental
degradation. As a result, the data shown is not necessarily
representative of that which can be obtained with good quality

P300/Code 69 carbon epoxy material.

To establish the limitations of criteria (a) and (d) relevant
numerical models, together with experimental measurementis, have been
investigated. As a consequence of the comparison between the
nunerical and experimental results the assumptions applied in the finite
element approach have been studied. To test the applicability of the
other two criteria it was only mecessary to study the experimental

resulis,



CHAPTER 2  BIAXJAL TEST MHETHODS

2.0 Introduction

Composite structures ave often subjected to biaxial siress or
combined stress or eomplex stress loadings. A% present & substantial
amount of data is available for uniaxial conditions, dbut 1little reliable
data is available for biaxial or more complex forms of loading.

Biaxial strength predictions for laminates ere commonly based on

classical lamination theory and a ply wise application of wvarious failure
criteria (5,6). A multitude of interaction curves (30+) based on such
analytic predictions are available, but t¢ date few experimental
programmes have tried to verify the information (4,7). Simply put, the
biaxial characteristics of composites have not yet been defined and
investigated to a sufficient depth to allow the same confidence level in
design as is possible with metals. The lack of confidence in design is a

major factor preventing more widespread use of composite hardware today.

To provide a valid assessment of the biaxial strength and elastic
properties, it is necessary that an appropriate test specimen should
meet the four criteria presented in Chapter 9. In the choice of the test
specimen used in this research it was required that the specimen should
represent a section of an aircraft wing or fuselage which was subjected
to damage, this damage being in the form of an area of low energy impact
damage (8), or the study of the effects of altering the environment
surrounding the plate (9). A simple test was sought so that experiments

could be repeated readily.

To date the deficiency in biaxial data is partly due to the lack in



understanding biaxial test technology, and of the four previously
explored techniques, only the tubular and off-axis specimens have been
found suitable when applied %o laminated composites (4). Specimen

geometyry and loading of these methods are shown in Pig. 2.1,

It is relevant to descridbe these four tests, to indicate their
relative merits, and then explain why none of them are suitable for the

aims of this work,

2.1 Previous Biaxial Test Methods

2.9.1 Tubular

The tubular (filament wound) method has been found to fit 21l the
above criteria for an acceptable biaxial test, and is better than other
previous methods in respect of criteria (c) and (d). Cylindrical
specimens are subjected to the combination of axial compression, torgue,
and surface pressuvres to induce a uniform state of biaxial stress in the
test section, Fig. 2.1.1, To maintain a constant ratio of principal
stresses fine control on the increase in loads 1is imperative. Several
researchers (4,10,11,12) have shown that a wide range of biaxial siress
ratios éan be obtained and that information recorded can be verified

utilising numerical techniques.

The primary problem with the method is that unwanted stress
concentrations are induced by the introduction of aximl force through end
grips. These nonhomcgenzous stress fields often result in premature
failure. Sophisticated loading rigs were developed by Pipes and Coles
(4) and later by Nahas (10) which in theory should totally eliminate the

end restraints. In Pipes and Coles' arrangement the axial and



circumferential stresses were applied to the specimen solely through
the use of hydraulic pressure. Torsion was applied mechanically through
on end spline arrangement which allows independent expansion or

contraction of ¢the end tabs.

However, oven with the advances in the technology of tubulax
specimens several disadvantages male the test method unsuitable foxr
this research:-

(i) Fabrication of the tubes restricts the number of lay-up
arrangements, and it is difficult to obtain filament wound
laminates which axe characteristic of plate material.

(ii) Specimens are required to have both uniform and precise
geonetry to help prevent the occurence of premature induced
fracturs. Manufacturing costs are therefore high.

(1ii) Since the loads are imposed through a combination of
compression, torque and wall pressure, the rig for
experiments is both complicated and expensive.

(iv) The introduction of the pressure of fluid to the surfaces
prevents the inclusion of a typical environment.

(v) The addition of lov energy impact damage will not be
characteristic of the same impact damage in a plate
specimen due to the inherent material diffexrences between
filament wound and flat plate construction.

For the other three biaxial test methods point (v) is of less

significance since they are based on a plate construction.

2.1.2 Off-Axis Coupon

The off-axis coupon test as shown in Fig. 2.1.2 can provide valid



strength properties when properly designed (4,13). A long thin plate
io axielly loaded through end tabs made usuelly of glass fibxre or
pluminium., The plate can be unidirectionel or laminated with the
principal direction of the fibreg aligned ot some angle to the vertical.
The uniaxial loading induces a biaxial strain state within the test

gection due to the anisotropic nature of compositie materials.

The coupon test satisfied criteria (a) and (c), but can only
provideca limited combination of stress conditions. Criterion (b)
causes severe handicaps and, a5 has already been mentioned in the
previous section, rigid grips create edge comsiraints and hence a
nonhomogeneous stress field. To initiate failure in the test section
and remote from the end regions the design of the coupon requires
special attention. I% has been shown that a length/width ratio greater
than 25 is necessary (4). The geometry of the specimen may cause ¢dge
delamination when low energy impact demage is gplied. Some
lamination arrangementg induce high shear coupling in the test region
vhich may create delamination at the free edges prior to ultimate

failure and invalidate the data.

Due to the limited variation in biaxial stress states, (&:1:1)
the restriction on test geomeiry, and the difficulties in transferring

the load to the sample, this type of test is not acceptable.

2.3 Crossbeam

Test specimens of a cruciform geometry, consisting of a sandwich
of two laminated beams with & honeycomb centre, have been investigated by

Kamanski (14), Bert (15) and Coles and Pipes (4). The object




of the test is to produce a known state of blaxial stress jn the
specimen at a point of intersection of the centre lines of the beams,

Pig. 2.1.3.

The beams are subjected to four point bending which induces pure
banding in the test-section° Simple beam theory and elastic material
behavkmxvmeahs that the stress state at the centre is readily soluble.
However, the stress at the intersection is not truly statically
determinate since the principal axes of stress are not parallel to the
beam axes throughout the intersection region even when the beam axes
of the material orthotropy coincide. Furthermore, the sharp corner
sections produce indeterminate stress concentrations which then cause

firét fibre failure under most test conditions.

Several modifications to the specimen geometry have been tried
to overcome the inherent stress concentration problems. Curved corners
weve included, but finite element results showed that this wes not
adequate, while the stresses in the test region were still indeterminate

and failure still started in the corners (4).

To force fibre failure in the test section Bert et al (15) created
an elliptical area of reduced thickness in the test section, but the
stress state is again uncertain., Other configurations were tried by
Pipes and Coles ( 4), who came to the final conclusion that the crossbeam

showed less promise than either of the tubular or off-axis specimen.

The above reasons (the complex nature of the test sample, ard the

formidable task of maintaining uniform loads across the specimen width),



suggest that this type of biaxial stress test is not suitable for this

research.

2.9.k Bulge Plate

The last method is called the bulge plate test. The specimen
utilises an elliptic sample which has the edge clamped to prevent
displacement and rotations, and is ¢hen subjected to a uniform iateral
pressure on one surface Fig. 2.14(4). The biaxial tensiom due to high
membrane strains is varied by altering the aspect ratio of the ellipse,
giving results with 7§y=0 (with unidirectional laminates aligned
relative to the axes of the ellipéeL or by using off-axis laminate
alignment relative to the axes of the ellipse, biaxial tension and

shear 'Txy R

A major handicap with this test is that first fibre failure usually
occurs remote from the test sectidn, around the periphery of the plate,

making the results invalid.

Creation of a uniform strain is difficult and elastic theory can
show that an enormous major diameter/thickness ratio is required (=300),
i.e. the bending strains are insignificant to the membrane strain,
Difficulties in describing the true stress conditon in the test region
have been noted by Chow et al (16), where tests on brass plates have
indicated that the biaxial ratio tends to change with deformation. For
these reasons the method has been rejected as a possible biaxial test

for laminates.

2.2 Plate Bending Method - Rationale and Development

10



The review of the previously developed biaxial test methods
indicate that e nev procedure is desirable so that strength deta for
laminated plates containing externally induced degradation can be
analysed. Any method accepted must be found not to deviate from the
criteria stated earlier, must utilise a plate ‘sitructural’ specimen, and
has to be suitable for a loading machine available. An Instron 1195
(tension + compression) screw thread machine was available and would
provide the expected load range and speed of cross head movement that
would be required. The test method and apparatus were therefore

developed to be compatible with this machine.

To eliminate the obstacles in transferring load to the material
through rigid grips, (found to be a major disédvantage of other methods),
the following plate bending procedure was investigated. Simply
supported, rectangular plate specimens were subjected to patch
transverse loads. Deformation induces bending and a unique biaxial

stress state,(Txy=0) at the centre.

Fig. 2.2 shows the arrangement of the test. In designing the
experiment, symmetry about the axes 0-0 and 0-0' was maintained. The
plate is supported on four 'corner' points (some distance in from the
corners), in preference to edge supports (e.g. totally simply supported)
so as to prevent lift-off (17). This sustains a uniform distribution
of reactions, while, at the same time, permitting relative motion without
the plate slipping off the support system. The latter will aid
longitudinal relaxation as deformation grows and helps supress the
inherent axial strain. Transverse loads are employed through a

rectangular patch area, being centred about the centre of the plate and

1



havingsufficient dimensions to ensure that the surface pressure does not

exceed that required to punch a hole.

Special attention has been spent on evaluating the correct
geometry of the plate to minimise the detrimental effects of shear
deformation and shear stresses, as these effects have not been
quantified in the numerical modelling. Careful design should also
mean that as the deformation increases bending dominates the axial
component 80 that support restraints are minimised. Small axial
components and a linear variation of bending strains with deformation
will kelp to maintain a constant biaxial stress ratio within the test

section.

Bending which is characteristic in most plate stiructures (e.g.
aircraft wings and fuselages) does however violate criteria (a) by not

providing & uniform state of strain through the thiclkmess.

First fibre failure will occur in the test section (under the loading
area) as the strain experienced within the plate diminishes dramatically
away from the centre, and as long as shear coupling does not induce
excessive shear and tensile transverse normal stresses, edge delamination
should not exist prior to fibre failure. The actual test section is
minute, theoretiéally the centre of the plate, but dvue to the distributiocn
in strains surrounding the test area, it is taken to be that on which

the load is applied.

This test method produces two cocmbinations of stress states in every

case, tension-tension in the lower half and compression-compression in

12



the upper section, The magnitude of the biaxial siress ratios depends

on both the experimental geometry and plate lay-up arrangement. From
the analytical work of Timoshenko and Woinowsky-Kreiger (18) the sort of

range of biaxial stresses possible becomes apparent. Taking the

example of a simply supported isotropic rectangular plate with a

central rectangular patch load the change in stress ratio '%?%

with alteration in 5@ (for constant Aﬁép and then Ajgﬁ (constant
eﬁyare evident in Fig. 2.3, 2.4. These results are for small

displacements and take no account of any further variation as the

deformation becomes large.

For the laminated plate bending method four parameters can be
altered which can contribute to varying the magnitude of the biaxiel

stress ratio, Fig. 2.2, These are:-

i)  the plate aspect ratio A/B

2) the point support aspect ratio Ajés

3)  the central patch load aspect ratio Ayép . and

4) since all laminates have changing directional properties,
then the orientation of the principal direction of the
plate to that of the apparatus has a profound outcome on
the biaxial stress state experienced, even with the other

three parameters constant.

It is not expensive or complex to study this method as no further
technical equipment is required other tham the compression machine, with
controlled displacement to apply the load. Unlike the previous biaxial

test methods no problem is incurred with the introduction of the surface

13



damage . Specimens having sufficient dimension when subjected with low
energy impact will produce internal damage remote from the free edges.
This test also allows most of the material, except undexr the pateh load,

to be exposed to any environment for which strength data is required.

11



CHAPTER 3 FINITE ELEMENT ANALYSIS

3,0 Introduction

From the discussion on the techniques of biaxial stress testing
with composite materials, it was imperative that the test method chosen
has a %tes? section within which the true state of the stress could be
evaluated. For this work a plate bending method, as introduced in

section 2.2, was etudied.

For any particular experimental arrangement a numerical procedure
was required to give some insight into the range of central biaxial
stress ratios possible, the ratio being varied as the result of geometric
changes. Also, unlike isotropic materials, a numerical prediction was
reguired to detexmine the distribution of stiress through the thickness
of the plate, since under certain conditions first fibre failure can
occur within the body of the plate. The most suitable numerical method
to evaluate the small (linear) and large (geometric nonlinear)
deformation in the plate bending test is the Finite Element Method (FOE,M;)
It has proved a convenient and powerful technique for the analysis of
problems in all types of continuum mechanics. Since its original
development in the early 50s, the method has been applied to a wide range
of probiems with noteworthy success. One of the great virtues of the
pethod is its versatility. The same general techniques are employed in
analysing the stresses and deflections in any type of elastic continuum
with arbitrary loading and boundary conditions. The general features
of the fiﬁite element analysis are well known, and so will not be

presented here in detail (19,20).

15



This thesis is concerned with the development of a displacement
finite element analysis for the non-linear bending of generally
symme trical oithotropic laminated ¢hin structufeso It is worth mnoting
at this point that the bending is deemed non-linear once the maximum
transverse deflection is greater tham O..4. of the plate thickness (21),
and that the linear analysis is the initial part of the non-linear

solution.

An overall picture of the deformation was obtained from this
displacement finite element analysis through the displacements and
rotations at discrete nodal points. Strains and stresses were then
computed at the nodes. The following factors were taken into account

in chooeing an appropriate method of solution.

A primary object of the work was to compare the displacements and
strains from the experimental end the numerical enalyses in the linear
and non-linear regions. Hence it was necessary to establish the
limitations of the constructed F.E.M., in modelling the plate bending
experiment. If the method was found to be accurate the results could

then be used in understanding the observed failure.

Finite element procedures obviously have inherent numerical errors,
(e.g. lack of exact displacement representation and round off errors),
which must be minimised if an acceptable comparison is to be made.

Thug, to prevent further errors due tq excessive element distortion
(aspect ratio <3:1 ) in modelling the experiment and at the same time
providing nodes at corresponding positions where strains were measursd

experimentally, it was found that one quarter of the plate required at
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lecast 36 elements,

The non=linear finite element analysis was limited by the
computing resources available (IBM 370/167). fThe programme wag
limited %o a maximum array storage pexr COMMON block of 1 megabyte and
a maximum single job run time of 1000 C.P.U. seconds (Central

Processing Unit Time).

The plates used in the experiments were composed of orthotropic
laminae of carbon fibre reinforced plastic arranged in generally
symmetrical manner about the mid-plane. Although a plate can be
represented with a mesh consisting of 36 elements the number of layers
in half the plate could be as high as 20, Therefore the element
stiffness matrices are the sum of several ply contributions. The time
taken to compute all the stiffness matrices could thus become important,

especially when a non-linear analysis requires several iterations.

Most of the computing effort in all analyses will be used by the
routine solving the finite element set of equations; If an efficient
storage method is applied then the time limitation will not be a problem
for the linear analysis. Basically, if sufficient storage space is
available then very refined meshes can be employed. Although the time
to solve the equations will be proportional %o the sQuare of éié(;éiffness
matrix size (total number of degrees of freedom, D.OOF,), the procecs
is performed only once. However, in the non-linear analysis (total
number of D.0.F. have increased by 1.6) several matrix solutions are

required. The total time then required to solve the non-linear

equations can easily exceed the 1000 second limit. A very efficient and
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fast solution routine is thus required. The above points suggest the

following conditions for the finite clement analysis.

Since at least 36 clements are needed the number of modes should
be & minimam. A minimum of 5 D.0.F, are required to define the non-
linear response (three bending w,g¥,%§ and two implane u,v ), as long
a8 the effect of shear deformation is neglected. To ensure that the
total number of D.0.F., are minimised a rectangular element with cornerxr
nodes only must be used. The element then has a total of 20 D.0O.F,
making the governing non-linear stiffness métriz of the 36 element wesh

245 x 245, (vwhich underlines the importance of time considerations).

Next, to avoid the utilisation of numerical integration for the
evaluation of the element stiffness matrices, the element should have
simple displacement functions to describe both the bending and in-plane
deformations. These together with several assumptions concerning the
non-linear behaviour enable all element stiffness matrices to be

determined explicitly.

With the above restrictions on the finite element analysis the
computing limitations make it quite obvious that a 3-D model (to include
shear stresses) was totally impractical. Section 4.2 illustrates that
for the test under scrutiny the omission of shear stresses from the
numerical analysis does not seriously detract from an accurate prediction
of overall response. Fortunately existing methods allowed the plates
to be represented as a lumped system, (in the 2-D X-Y plane) positioned
at its mid-plane with a fundamental assumption defining the variation

of displacement in the Z-direction. A further simplification may be
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made by imposing a state of plane stress.

A geometric non-linear finite element set of equilibrium
equations for the general case of plate bending axre developed in

section 3.2. With these equations the following enabled a solution.

First, the deformation shape about the mid-plane is defined by

the most simple approximation (22)

U= U+ 2y
V= Vo 2y (31)
w= W’

where U? vf»v° are weighted averages. U, Y y are the two rotational
terms and, since classical thin plate theory (C.P.T.) is applied, they
cf s
are equated to the curvatures %f,.gﬂ respectively, (this being a
’ y

statement of Kirchoffs fundamental assumption, that normals remain

straight and normal (23)).

The limitations of Kirchoffs assumption will be examined in
sectiocn 4.2 for laminates, where it will be shown that shear deformation
(where ,# %ﬂ and Yyf %%- ) does not have to be inccrporated in the
X

analysis providing the span to thickness ratio S is greater than 30,

4 linear solution then follows, providing all C.P.T. assumptions

and specific assumptions pertaining to the laminate material are applied.
For a geometric non=linear analysis, one further fundamental
assumption is necessary. The large displacement behaviour will be

defined as follows., Following Von-Karman (2 4) it is assumed that
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although the deflections, w from the initial X-Y plane gre sufficient
to induce sizeable membrane siresses (therefore imvalidating linear
plate theoxry), the slopes %&, %? remain much less than uwnity. This

leads to the formulation of the Von-Karman strain equations.

Pinally the iterative procedure must be carefully chosen. If
the time teken %o comstruct and solve the non-linear equations is
large, the number of times that this must be performed should bde

restricted.

The element used will nov be briefly described. Pig. 3.1.1 shows
the four noded xeciangular element,gnd\Fig. 3.1.2 indicates the
transverse loadings which can be applied to each mnode. In-plane loading
has been omitted in the formulation since the experiement experiences

vertiecal loads omnly.

The in=plane deformation reguires eight D.0.F., Fig. 3.%.3, which

can be represented by the following two simple polynomial expressions:

Inéplane displacement function

U= ot ¢ oxXgx + O3y + St xy (3.2)
V= otg ¢ oqgx « oy ¢ Sgxy

The element is known as the constant strain element (25). The

corresponding bending element has twelve D.0.F., Fig. 3.3.4, and the

simple polynomial expression representing the displacement were

formulated independently by Adini and Clough (26) and Melosh (27).

The bending displacement function is:
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W = oug v oqoxeoqyrougxhoygapecyy o eqgx®
(33)

2
+X6X Y*°‘17XYZ°‘1B )’3* 19 X% * °‘20XY3

This linear "pure’ bending element, describing the limear response,

will be known as the ACM element.

Inter-element compatability is satisfied by the function but the
inter element normal slope ie mot continuous, (the element is non-
conformal, (o) (28). However, it does not exhibit all the rigid body

displacements and constant strain texms.

Combining the bending and the in-plane element provides an element
capable of modelling the non-linear response of plates (29,30). The
element will be referred to as ACMBC (20 D.O.F.), after Brebbia and Connor
vho first applied it to the geometric non-linear finite element analysis

of isctropic structures.
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5.1  LITERATURE SURVEY

3.9.7.  Small (Linear) Deformation-Isotropic

Here the term small or lineayx implies that the maximum jransverse
displacement for which the analyses hold is 0.4 of the plate thickness,
and that, at no time do in-plane displacements exist. Ve are therefore
concerned with pure bending. Unless specified, the methods do not
incorporate the effects of shear deformation and shear stresses and so

the plates can be termed as "thin’. The plates are always represented
as 2-D lumped systems, and, because of symmetry, (and providing correct
boundary conditions are applied) only ore quarter of the plate needs %o

be modelled.

In the early Sixties the first rectangular and triangular elements
used had simple non-conforming polynomials (T,ACM)(31,26). Even though
the elehents were non-conforming convergence to the exact solution
occurred (32), providing sufficient elements were used. Both elements

used in the non-=linear programme are members from the simple family,

For all the element types the examples used to characterise the
accuracy of the elements were simply or clamped supported square plates
having either a uniform pressure or a concentrated load. In general only
the centiral displacement was compared to its analytical solution.

Occasionally stresses were also involved.
Since the simple triangular element T appeared to be limited due to

its lack of compatibility a refined triangular element HCT was formulated

from three of these simple elements. This element was xeviewed in a
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report by Clough and Tocher (33) and found to be much more accurate
than the simple elements. Taking four of these refined triangular
elements (BCT)(lough and Fellipa (34) developed a conformal
quadrilateral element (Qs19) vhich gave quicker convergence than
previous elements, Improved convergence was measured by how few
elements were needed to gttain a correct solution. Later in 1968,
Bell (35) proposed a furtﬁer conformal triangular element (B) using a
full quintic polynomial and, like Clough, a condensation method to
remove unwanted D.d.F° from the formulation of the stiffness matrix.
The basic element has a central and mid-side nodes which intreduce the
unnecessary D.0.F. Convergence again was quicker than with the simple

elements.

Quadrilateral elements with full compatibility were also derived.
Several improved families of elements were produced to provide compatibility
ard most of these elements possess more D.CG.F. than the simple counterpart.
The benefit of compatibility meant that as often as not convergence was
possible with coarser meshes. The expense for this was that the
displacement functions were more involved and a solution required numerical

integration to evaluate the stiffness matrix.

Schmit et al (36) developed a series of rectangular elements (5) based
on Hermitian (linear) interpolation polynomials. These elements were
found to be very accurate and converged quickly; but the algebraic

complexity means that the method is extremely difficult to apply.

Another group of elements was formulated around the assumed stress-

hybrid method. Pian and Tong (37938) derived this method- for a series-
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of quadrilateral elements due to its versatility and ease of operation.

Their base element has 20 D.0O.F.

Two further types of elements have been very popular, the Lagrangisn
and Serendipity families (28). These %wo types of displacement
functions have been applied to both triangular and rectangular elements
(39)° Serendipity elements have functions derived by inspection whereas
Lagrangian were formed from generating displacement shapes of any order
from simple products of appropriate polynomials in the 2=D co-ordinate
system, All shape functions were normalised so that translation into
actual co-ordinatesor transformation of the various expressions occurring

for instance in stiffness derivation, were trivial.

The Lagrange family was found to be limited not only due to the
large number of internal nodes needed but also due to the poor curvature-
fitting properties of the higher order polynomials. On the basis of
computational efficiency Serendipity elements should be preferred because
of fewer total D.C.F., but because of locking (40), Lagrangian elements
have been the preferred family. Together, these interpolation elements
are known as iso-parametric and have been exclusively used in the general
purpose fiﬁite element package, PAFEC 75, which is available on the NUMAC
systems. Elements from both families can be formed as linear, quadratic,

cubic and, for extreme refinement, quartic.

The accumulation of results obtained from applying the above elements
in the modelling of isotropic plate problems were presented by Spilker
and Munir in 1980 (41), Since Lagrangian elements contained spurious

zero energy modes not associated with rigid body movement and Serendipity .

24



elements caused locking when representing certain thin plate examples
they developed a new element type, referred to as Heterosis. The
element is based on an 8-noded Serendipity element with & shear
deformation hybrid-stress method of solution. Numerical studies
indicated that this new element had ‘safe'’ characteristics with

comparable accuracy to its carlier counterparts.

When increasing the complexity of the element to provide
compatibility the question should be asked as to vhether any economic
or other advantage was actually being gained. An answer here is not
simple, although it can be stated as a general rule that as the order of
an element increases so the total number of unknowns im a problem can be
reduced for a given accuracy of representation. The only proviso is that
the elements do not become too distorted. Economic advantage rquires
a reduction of total computation and data preparation effort. This does
not follow automatically for a reduced number of total variables as,
although equation sclving time may be reduced, the time required for
element formulation increases. = For this work the most important factor
was that at least 36 elements were nedessary in a quarter plate model of

the experiment.

Thus, with the knowledge that the simple element ACM gives accurate
results, providing sufficient elements are used, and that for identical
models with all higher order elements more computing effort will be needed,
the choice of ACM for the non-linear analysis was practical. ACM along
with the follouiné bending elements, Spilker and Munir (SM), Schmit
et al (S), Bell (B), Tocher (T) end Clough end Tocher (HCT) is compared

wvith exact solutions for several isotiropic examples in Section 3.4.1.
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From thls comparison further reasons for the choice of ACM instead of

a2 compatible element will become apparent.

3,9.2,  Small (Linear) Deformation-Laminated

Progress with analytical solutions for laminated plates during the
Seventies suggested that shear deformation effects on the behaviour of
the plates were much more pronounced than for isotropic plates (42, 43).
HBence, it was not surprising that the majority of F.E.M. used a refined
element in a shear deformation analysis. They were therefore concerned
with pure bending of ‘thick’ laminated plates. A review and discussion

on the accuracy of these shear flexible elements is made in Section 4.2.

Reddy (44) in 1980 gave a full appraisal of the development in linear
F.E.M. for laminates. The overall picture showed that the refined
eléﬁents only gave improved accuracy when shear deformation was impoftant,
Contributions to the art were made by Pryor and Barker (45), Mau, Tong
end Pian (38), Mawenya and Davies (46), Panda and Natarajan (47), Noor
et 21 (48, 49) and finally Reddy., In all procedures time consuming
numerical integration schemes were needed for the evaluation of the

stiffness terms.

From the previous approaches element ACM has been used by'Pryor and
Barker. It was oombined with the constant strain and shear rotation
elements to enable the determination of shear deformation. Thé element
has & total number of 28 D.O.F. and like ACM is only accurate vhen the
mesh has a lot of elements. By ignoring shear deformation in ACMBC the

number of D.0O.F. per node were reduced by 2, so greatly reducing the effort
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in formulating the governing stiffness matrix.

Section 4.2 explains why it was acceptable for the finite element
analysis of the plate bending method not to include shear deformation.
The investigation shows that providing the span to thickness ratio, S>30
the shear deformation in multilayered generally symmetrical orthotropic
laminztes can be assumed small compared to the bending response. With
this proposal in mind, the element ACM in a linear thin plate theory

has been taken as suitable for analysing the experiments.

3,9.3. Large (Non-Linear) Deformation-Isotropic

Geometric non-=linearity will be considered only %o the extent required
to account for effects of membrane forces on effective flexural stiffness,
For an introduction to the ideology of non-=linear problems the paper by

Gallagher (50) is very informative.

The introduction to the review states that at the time a disproportionate
amount of attention had veen given to non-linear analyses, involving both
geometric and material non-=linearities. There were two reasons for this
statement. First, not all the fundemental concepts and theoretical asgpects
had been explained or agreed upon. Second, in those portions of the
pfoblem vhere the theory was in good agreement (e.gz. the procedure
developed in this work) the cost of numerical solution was vastly greater
than for the equivalent linear solution. The latter point has ensured
that a great deal of efforf has been devoted on the minimization of
computing cost, while at the same time preventing significant loss in

accuracy.
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Several successful geometric non-linear analyses applying the
elements already discussed will now be introduced. In all cases the
accuracy of these methods was measured against analytical reported
solutions on simple isotropic plate problems. Notable contributions were

made by Levy (51), Wang (52), Berger (53) and Rushton (54).

Since the analytical problems were relatively simple (2.g. a simply
supported square isotrcpic thin plate with a uniform pressure load and
constrained with Levy's in-plane boundary conditions), only a few elements

1€, were required in a quérter plate mesh for accurate mondeliing., It
is open to question whether any of the methods presented wouid be capadle
of coping with a 36 element mesh when implemented on the most powerful

computer.

This does not mean that these analyses are misleading since they
achieve their objectives. From the numerical techniques used in these
F.E.M. several time saving operations hzve been extracted and involved in
the non-linear programme (ACMBC). Without these technigues the solution
of the geometric non-linear displacement F.E.M. of the experiment would

have been more difficult.

Before embarking on the discussion of previous procedures, it is
worthwhile introducing the methods for solving the potential energy
expressions. No one alogorithmn has gained universal preference, mainly
because each is suited for particular situations, but becomes inefficient
or invalid for different situations. The solution procedure will
generally be the most expensive, both in texrms of computing time and

storage. This is the reason why so much attention has been spent on
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improving this axea.

Methods attacking the solution of the simultaneous algebraic
equations directly are overvhelmingly the most popular. Many different
basic forms are possible, including the direect iteration (55)9 Newton-=
Raphson (56), incremental (57), and initial value methods {58). Seversl
of these techniques will be mentioned in this section. It must be
remembered that these techniques trace a load displacement response
through a significant range of non-linear behaviour. Essentially they
operate with intervals of loading, the solution for one being the starting
data for the next. Numerical experience has indicated that it is generally
impractical to proceed from the initial to the final state irn a single step

due t0 numerical instabilities,

Earlier work on the non-linear response of structures by Turner et al
(59), Oden and Sato (60), and Martin (61), paved the way for the finite
element plate bending methods, To reduce the very complicated approaches
required, certain assumptions had to be made, and some resitrictions were
placed on the displacement field. Fortunately nc significant loss in
accuracy was incurred. Simplification of this type lead for instance

to the Von-Karman strain expressionsfor plates.

Incorporating these strain equations with the C.P.T. assumptions has
proved to yield excellent analytical results for large deflection plate
problems, Levy (51), and successfully applied in a displacement F.E.M,
by Brebbia and Comnor (29). They developed a consistent formulation
for arbitrary plates and shallow shell elements. Strains and products

of rotations were negligible with respect to unity, and this restriction
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could only be removed at great computational expense (62,63). To make
a linear buckling analysis possible (64,61) the governing equations

for Newton-Raphson iterative procedure were followed.

In this thesis Brebbia and Connor's basic finite element isotropic
formulation has been developed to analyse plates consisting of generally
orthotropic laminae in a symmetrical arrangement. The element ACMBC
has been retained and, vwhereas the original analysis terminated after
the evaluation of nodal displacements, the new programme also evaluates

nodal strains and stesses,

Hcwever; there is ore majer difference between the two approaches.
To eliminate the need for numerical integration schemes in ACMBC, the
substitution of the full bending displacement polynomial, (Equ. 3.3) into
matrix [H]e (Equ° 3»44){ (w®] Brebbia and Connor s Equ. 27b} was dropped.
Instead the rotational terms in metrix [ H fhave been assigrned values using
a new tzchnique, section 3.4. Consequenflyp when results from programme
ACMBC are studied in section 3.4 a thorough examination for a new

definition of [H 'will be made.

Unless otherwise stated, the following methods are based on thin plate
theory, i.e. no shear deformation, with Von-Karman strain equations for

flat plates and Marguerre (65) theory for shallow shells.

In 1971 element ACMBC was built into an analysis by Roberts and
Ashwell (30) to solve structural post buckling. They applied a method
of incrementing displacement with a linearised mid-increment stiffness

matrix for each increment of displacement. To aid convergence they
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employed sparingly the Newton-Raphson iterative method. Ag in Brebbia
and Connor‘'s work all the element stiffness matrices wexe evaluated by
numerical integration, (Baussian quadrature formulae (28)) with the full

bending displacement funciion,

1n 1967, Schmit et al (63) tackled finite deflection structural
analysis with their family of plate-and cylindrical sheil discrete
elements. They applied an oscillatory Hermitian linear interpolation
bending element with 4 nodes and 48 D.O0.F. in a new plate formulation
and solutions were obtained by direct minimization of {the potential energy
formulation. Witnout the application of complicated boundary conditions
the total number of D.O.F. would have been unwieldy for an accurate
solution of even a simpie problem. This methcd cannot be used to model
etructures requiring a loz of elements since it is one of the most involved

procedures.

Two years later, Kawia and Yoshimura (66) presented an accurate
analysis with the Lagrangian bending displacement function proposed by
Greene (67). This rectangular element possesses 4 nodes and 3 bending
D.0.F. each, and was combined with the constant strain element (Equ. 3.2)
in the non-linear analysis. The element stiffness matrices were large
and required evaluation by a numerical integration scheme. Solution
of the equilibrium equations was made possible by the procedure devised
by Yoshki, Kawia and Yoshimura (68). However, they demonstrated that the
iterative method was often unstable. Iﬂﬁ“ﬁh] was calculated using only

(d7n4 (Equ. 3.31), the solution sometimes failed to converge. To avoid
such a difficulty they introduced the numerical technique with vhich

Fujino and Ohsaka (69) analysed the large displacement of suspension
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bridges. The technique will be outlined since it was included in ACMBC.

then choosing the sssumed displacement values o be substituted
into the expression of additional nodal forces to calculate the
correetionsA{H}n not only {d}n_1 but also {d]n-z wvere considered.
The following weighted mean of the ¢wo approximated displacement values
{d}(n-ﬂ and {d}(n-Z) vere used as the assumed displacement values

ﬁﬂn4)=“"pdyhn-2)" ?ﬁﬂm-” (3:4)
in vhich 0< B<i.

In Kavia's work, B=0.3 for large deflection problems, and a larger
value, say B=0.5 vas found permissible when a system was linear. In
section 3.4 the relevant value for B used im ACMBC will be given for the

problems investigated.

Bergan and Clough (70) developed a large displacement analyéis for
¢hin plates and shallov shells and placed a great deal of émphasis on a
specific matrix formulation, thereby producing & highly efficient method
that was suited to moderm electronic computers. The bending element was
a'doubly curved quadrilateral based on the Q=19 expression of Clough and
Fellipa (34)o The element vas formed from four HCT elements and has
1% D.0.F, Vhen combined with the inplane Zienklewicz—Irons isoparametric
element (28) with 2 D.O.F. per cormer node, the mon-linear element has
29 D.0.F. The 9 internal nodes vere eliminated by static condensation
leaving a2 4 noded element with 20 D.O.F. Initiel deformation was
provided for in the analysis by using the rectangular linear element

of Bogner, Sehmit and Fox (S)(36).



Accurate modelling was also obtained after the bending displacement
polynomial was shortened in the evaluvation of the non-=linear stiffuess
terms (matrix [H]). The coefficients were evaluated by & 2x2 or a

3x3 Gaussisn guadrature numerical integration scheme. The equilibrium
equations were formed by the ‘direct stiffness method’ and the direct
solution called for a form of numerical iteration. Since the object

of a non-linear analysis was 1o determine more than Jjust a single point
on the load deformation curve acceptable results were found by the

combination of the Nevton-Raphson method and load incrementation.

One feature of the analysis has been implemented in ACMBC. This
procedure reduces the number of iterations when establishing convergent
non-linear displacements, In order to determine convergence, the

following vector was defined,
T
- (Aiﬁ ,AQ2 adnoe > (3:5)
diref dorefdpgeref /, '
where Ad) is the change of displacement component k during the iteration
cycle n. Every component was then scaled by a reference displacement.
For the plate problems all in-plane displacements were scaled by the largest
in-plane component, &ll transverse deflections were scaled by the largest
transverse deflection and similarly for rotations., A non-dimensional

measure of the change of the displacement vector during a cycle was

obtained using the maximum norm.

€ =max' Ady
k Adres

The following convergence criterion could then be used

lel < €

The range of |E( used by Bergan +Clough was approximately 162 to 165
depending on the problem. For ACMBC relevant values for |E|l will be

given in sectvion 3.4.
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During the Seventies more programmes (including the large general
packages) started to solve non-linear deformation of structures. These
analyses involved some of the technigues already outlined, but generally

tended ¢o be much more intricate.

Thomas and Gallagher (71) formulated a geometric non-linear (small
strain, finite displacements) analysis with a consistent triangular
element, (Lagrangian, 30 DOO.F‘,‘9 4-noded (one centre)). The procedure
was numerically sound but the cost of evaluating the non-linear stiffness
coefficients by numerical integration with the full cubic displacement
polynomial meant that models were very limited. To combat this, an
inconsistent quadrilateral element comprising 4 triangles was constructed.
Internal D.0.Fs were eliminated in the usual manner and the introduction
of a special matrix took account of the lack in compatibility between

adjoining sides.

A large amount of effort was then spent minimising solution time.
The approach finally chosen combined two schemes, the Newton-Raphson and
incremental methods. The alogrithmn was termed the 'modified incremental
method’;, and can be thought of as a single cycle of the Newton-R,phson
procedure. Hence, by the application of this method only one inversion

per load was necessary.

Eurther notable contributions, which were later developed for
generally orthotropic layers were made by Foor (72,73) and Reddy (74,75)-
These finite element packages solved‘pqn=linear bending using an analysis
based on Von-Karman strain equations and a shear deformation plate

formulation.
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The latest analysis used a Mindlin plate formulation. Pica, Yood
and Hinton, (76), centred their investigation around the Heterosis
element, (Spilker (SM), to discover if it wae still superior to its
Serendipity end Lagrangian counterparis. They used the geometric non-
linear formulation developed by Noor, Mathers and Anderson (77) which
has identical matrix notation to that of ACMBC. The stiffness coefficients
vere evaluated by several orders of Gaussian gquadrature numerical
integration. Examination of éimple bending problems were performed with
a 4-noded linear Serendipity element, a B8-noded quadratic Serendipity,
a 9-noded Lagragian and the 9-noded Beterosis element. A Newton-Raphson
prccedure was the primary alogrithmn solving the equilibrium equations,
but to save computing effort another modified Newton-Raphson method was
later introduced. In this latter method the tangential stiffness matrix
was constructed once only during the second iteration of each load
increment, Results were presented for standard isotropic square plate
examples, together with a skew, a circular and an elliptic plate example.
A1]1 cases were modelled with a 16 element quarter plate representation

and both transverse displacements and stresses were determined.

A thorough comparison was made between the four elements and those of
Schmit, Bogner and Fox (63) and Iron-Razzaque (78). They had hoped to
find a discernable pattern of element behaviour emerging from the
investigation, but this proved not to be the case. The study demonstrated
that it was advisable to use the Heterosis element in rectangular meshes
due to its sa.fe.characteristics° However, the presence of curved
boundaries in the models led to inconsistent behaviour of all elements,

especially with respect to stresses.
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The analyses outlined substantiate the uncertainty already stated
concerning the bes? choice of alogrithmn to solve the non-linear
equilibrium equations. Gallagher (50) and then with Thomas (70) reviewed
the problem and suggested that the most appropriate method seemed to be
a "'modified’ Newton-Raphson, The word 'modified’ means that the basic
Newton-Raphson was altered (i.e. compare Gallagher and Thomas (70) with
Picaet al (76)). This observation made the choice of an alogrithmn for
ACMBC difficult. The programme was formulated with the basic Newton-
Raphson procedure for ease of computation. If this was then to be found
inaccurate and/or time consuming, a modification could be included

providing time allowed.

3.,49.,4 Large (Non-Linear)Deformation Laminated

The first geometric non-linear F.E.M. for laminated materials was
presented by Noor and co=workers (72975,79,80) in 1975, Over several years
the team had developed a wide ranging plate bernding package, including the
non-linear analysis of generally orthotropic lamihated (symmetric and
antisymmetric) plates and shells. The formulation was a form of the
geometric non-linear Von-Karman type plate theory with the effects of
transverse shear deformation, anisotropic material behaviour and bending
extension coupling. The general nature of the programme allowed for
modelling with Serendipity, Lagrangian and Hermitian rectangular and

triangular elements.

To demonsirate the power of their F.E.M., normalised results,
published in 1975 for a 16 noded rectangular Lagrangian bending element

(80 DOOQFD)D vere used to study the effects of geometry, lamination
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parameters and boundary conditions on the significance of transverse
shear deformation and the degree of anisotropy (non-orthotropy) of
statically loaded composite plates. Square plates vere considexred
having both symmetric and antisymmetric laminations with respect %o the
mid-plane. These examples were subjected to uniform transverse loading,
and vere elither simply or clamped supporied. Results demonstrating

~the effect of shear deformation and anisotropy were presented as non-
dimensional energy parameiers. A full grid contained 36 elements making
a total number of bending D.O.F. of 1805, A considerable reduction in

unknowns was possible by the utilisation of symmetry (49).

On the basis of the numerical study it was shown that C.P.T. was
adequate for the non=linear analysis of uniformly loaded square plates
when S > 20and that orthotropic plate theory (when enisotropic terms
D16 ,026 are neglected) was acceptable if angle-ply plates consisted of
more than 4 layers. In general if the effect of transverse shear
deformation and/or anisotropy on the linear response was not significant;
they Qere not important in the non<linear analysis. This conclusion is
very encouraging when the nature of the formulation of ACMBC is

scrutinised.

The introduction by Reddy and Chao (74) gave a review to the present
standing on non-linear laminated plate analysis. Nearly all previéus
approximate solutions of the large deflection theory (in Von-Karman sense,
and without shear deformation) were analytical aﬁd solved either the
vibration behaviour (81,82) or the evaluation of central displacement in
unsymmetric laminates (83984)° Noor et als F.E.M. was the only one of

its type to date. Unfortunately this analysis involved a very complex
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bending element (80 D.0.F.) which limited its application. Reddy
stated that the use of such an element inevitably lead to an enormous

storage wequirement and computational cost.

Reddy and Chao presented a large deflection and large amplitude
free vibration analysis for composite plates. The F.E.M. was based
on an extended Yang-Norris-Stavsky (YNS) theory (85), which is the
transverse shear deformation principle of Mindlin for iaminates, that
includes thé effects of large deflections, in the Von-Karman sense.
Two Serendipity rectangular elements with 5 D.O.F. per node (3
displacementis u,v and w plus 2 shear rotations |y and Yy ) resulted
in a 20 x 20 element stiffness matrix for the linear element and a
40 % 40 matrix quadrature element. Their new alogrithmn solved the
equilibrium equations by a penalty function method and involved the use
of the so called °‘reduced’ integration technique to evaluate the stiffness
coefficients. In the reduced integration technique, the 4~noded element
required the 1 x 1 Gaussian rule instead of the standard 2 x 2. The

technique enabled some saving of computational effort.

Accurate results were presented for defiections, stresses and natural
frequencies (74) for rectangular plates with several loading and edge
conditions., As expected the resulfs vere more accurate with the 8-noded
element, than for the 4-noded element. Unfortunately other than a little
relevant information on element and mesh sizes, no mention of the actual
computing effort was given. It has therefore been impossible to say how
large a saving in storage and computing time was gained over that
necessary with Noor's FP.E.M., and further to compare with that found

with ACMBC.
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At the same time as Reddy and Chao, Chang and Sawamiphakdi (86)
reported their non-lineayr analysis for laminated shells. The object
of the work was to extend the application of a degenérated 3-D solid
element family to the large displacement analysis of laminated shells.
This isoparametric group of solid elements has independent rotations
and translational D.0.F. and was originally proposed by Ahmad, Irons
and Zienkievkz (87). After some assessment an 8-noded Serendipity
end a 9-noded Lagrangian rectangulér element (5 D.O.F. per node) were

selected for the present work.

The approach was based on an up to date Lagrangian formulation by
McMeeking and Rice (88) following cn from Hill's (89) virtual work
equation. From the study of the numerical characteristics (Programme
NFAP (90)) the 8-noded element showed locking (too etiff) when modelling
thin plate structures. The element was too stiff due to the presence
of unnecessary shear stresses. This locking phenomenorn was probably not

seen by Reddy since thin plaies were not studied in his work,

Accuracy of the slements was determined through the use of the
analytical solutions of standard isotropic examples. To display the
modelling of laminated systems, the following flat plate example was
examined. A square sandwich plate, consisting of two identical aluminium
facings and an aluminium honeycomb core,was subjected to a uniform load
and had all its edgescdamped. Excellent agreement was obtained between
the F.E.M. with a 4 element quartér plate mesh and the central displacement
from the enalysis by Schmit and Monforton (91). As usual, this example
did not stretoh the limits of the method, since the problem required

only e few elements in the model;, and the plate consisted of a few layers
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in an orthotropic arrangement. A more realistic test would have

involved more elements and generally orthotropic plies.

Chang and Sawamiphakdi concluded that the Lagrangian element
provided a much betier numerical behaviour than the Serendipity

element.

It is interesting to find that none of the previous non-linear
deformation finite element analyses for laminated plates applied the
element ACMBC. It is worth noting also that the formulations and
solution techniques differ considerably, with the Von-Karman strain
equations and the shear deformation assumption of Mindiin being most
generally used {Section 3.1.3). The solution procedure was often

centred on the Newton-Raphson iterative technique.

In every method the full bending displacemént function was applied
in the definition of matrix [H 1° and numerical integration evaluated
the stiffness coefficients. The methods all involved elements from the
Serendipity and Lagrangian families, since their refined elements were
known to be very accurate (especially for coarse meshes) and the

polynomial representations lend themselves %o numerical integration.

Taking the above observations together, it appears that none of the
F.E.Ms to date would be capable of dealing with large mesh problems since
the requirement for storage space and computing time would be too high
for modern electronic computers. An upper limit on the number of
elemen®® each procedure can handle was obviously not ascexrtainable due to

the fect that the following factors differ. First, the programming
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techniques for storage and solution are not reported. Second, the power
of the computers on which they were built is not given. Third, <he

time taken to formulate the stiffness matrix, and then to solwve the
equilibrium equation axe not presented, and fourth, the number of

iterations for a particular type of solution are also unavailable,

If the cautionary words in the papers concerning their individual
difficulties in computation are also noted, it appears extremely likely
that none of the previous F.E.Ms could be used to model our plate bending
experiment. Not only does the model of our experiment require at least
36 elements in a quarter plate, but the number of individual element
stiffness matrices is large, since a plate can consist of up to 40 layers.
This latter consideration means that the time to construct the stiffness
terms can be high (even comparable with that to solve the equilibrium

equations).

Teking 211 the factors outlined in this section it was reasonable to
apply element ACMBC in a non-=linear displacement finite element
formulation based on Von-Karman's strain equations and the classical thin
plate theory to analyse the plate bending experiment. To reduce
computational effort further several material assumptions were introduced
and numerical integration was eliminated by the new definition of the
terms in matrix [H ]e° After the equilibrium equations had been

evaluated the Newton-Raphson method solved the flexural problem.
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3,2 FINITE ELEMENT FORMULATION

The precise details of the FORTRAN IV progresmmes have been omitted
from the thesis. Hovever, flow diagrams explaining the analysis are

presented in Appendix ¥.

3.2, Principle of Minimum Poténtial Energy

The total potential, or potential enexrgy, of an elastic body is

defined as (92)

T=U + Wp (36)
wvhere U is the strain energy, and Wp is the potential of the applied loads.
Because the forces are assumed to remain constant during a variaticn of
the displacements, cne can relate the variations of the work done by the
loads, W, and the potential of the loads as follows (93).

dw = dwp (37)
The variation in W= W(x) is defined as an infinitesimal arbitrary change

in W for a fixed wvalue of the independent variable x )that is fordx=0.

The principle of Minimum Potential Enexrgy is
d7T =du + dw =dU -dwW = 0 ' (3-8)
The principle and its accompanying conditions can be states as follows:
Of all possible displacement configurations a body can assume, which
satis{y compatibility and the constraints or kinematic boundary conditions,
the configumtion satisfying equilibrium makes the potential energy assume

a minimum,

Bere it is important to note that variations of displacement are
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taken while forces and stresses are assumed constant. Moreover, the

resulting equations are equilibrium equetions.

The potential energy for a linear elastic body which has no
distributed loads acting within the material, or along the boundary, and
has no initial stresses or strains is obiained by the sum of the internal
work (the strain energy due to internal stresses) and the potential of
the external forces. Following the terminology used by Zienkiewicz(28)

the potential enexrgy functional is

| /{E}T{o—}d(vol) - [dJ'{R} = (3:9)
v.
Thus equ. 3.8 can be written as
/d{E}T{o'}d(vol) - ofd'®] = o (310)
v

The above statement means that.for equilibrium to be ensured the
total potential energy must be stationéry for variations of admissible
displacements. A finite element method is simply the statement of this
variation witb respect to displacements constrained to a number of

parameters {d} and can be written as
r 1

A=h

a
Ny
N
"

0 (311)

= <

F; -

a
an

Qr 4

It can be shown that in elastic situations the total potential energy
is not only stationary but is a minimum. Thus the displacement finite
element process seeks a minimum within the constraint of an assumed

displacement pattern.

In the finite displacement method the plate is subdivided into a
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number of discrete elements vhich are interconnected at specific nodal
points, a solution to the complex numerical problem being made by the

use of matrix alegbra. The greater the number of D.0.F. the more clesely
will the solution approximate to the true one, providing the true

displacement can in the limit be approximated.

3.2,2 Geometric Non-Linear Plate Bending

Whether the displacements (or strains) are large or small
equilibrium conditions between internal and externmal forces have to be
satisfied. If {Y} represents the vector sum of the intermal and
external forces, equ. 3.70 becomes

o [ (] =f o{e] ] avob) - ofd] (R} = o (312)
vhere {R} represe;ts all the external forces due to imposed loads.
Using the displacement method the variation of strains can be written as

i€} = (B1a{d} (313)

Tne bar siffix indicates that as displacements are large, the strains
depend on non-linearity in the induced displacement, and the matrix(B]
is thereforéidepenaent on {d} Egu. 3.12, the governing equilibrium
equation for the body beqomes

{U}({d}) =/[§]T[c-]dv - {rR}= o (314)

The actual stresses ¥}r} are dependent on the strain level obtained.
As {-U} is dependent on strain and hence on displacements one has,

therefore, to solve the non-linear equation
{Wi({a])=0 (315)

This them summarises the basic problem.
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Matrix [B ] can always be conveniently written as

[ Bl=[Bg)+[B([d}) (316)
in which [B,] is that governing linear infinitesimal strain analysis
and only [BL) depends on the displacements. For the displacement
model comstructed [BL] is a linear function of the displacements. If
the strains are reasonably small (in elastic range) the general elastic
relation, with no initial siresses or strains, is

{o}=101e} (317)
in which [D] is the usual set of elastic constants. In equ. 3.12,
the stress components are those correspcnding to the strain componénts

used. In some gross displacement pronlems such strain components are

subjected to considerable change of direction from the global axes.

3,2.201 Iterative Solution

Clearly the solution of equ. 3.14 will be approached iteratively.
The Newton-Raphson {94) process is adopted here, %o estsblish the

relationship between de} and d(w}.

Thus by taking the appropriate variations of equ. 3.714 with respect

to d(d]

d{y] =/d[§]T(G']dV < f (81" d{o}dv (318)
v v
and applying equ. 3.17 and equ. 3.13,
dfo} =(D1dfe} = (DNB1d[d} (3+19)

From equ. 3.16
d{B1=d(B] (3-20)

due %o the non=linear effects.
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Therefore

d{U}=/d[B|_]T{u-}dV + [K1d{d} (3:21)
v ‘ '

where

/[Bl [D)BIAV = [KolelK] (3-22)

in which [Ky] xepresents the linear stiffness ma.tri:z° This is the

governing matrix fyxom which the linear programme vas based.

[KJ=J/—IBOF[DHBo]dV (3-23)
v
The matrix [K ] is due %o the large displacements and is
(K] =/([Bo 101+ (8,1 01igy 1 + B0 11861 0V (3:24)
v

and is known as the large displacement matrix. It can also be shown
that this matrix can be derived by using an infinitesimal strain approach

by adjusting element co-ordinates in the cemputation of the stiffness.

The first texrm in equ. 3.21 generally becomes
/d(BL]T{cr}dV = [Kgld{d} (3-25)
v
vhere (Ko ] is a symmetrioc matrix dependent on the stress level, and

lnown as the initial stress matrix or geometric matrix (95).

Thus
dfv} = [ Kol + i)+ 1K) ) dfd] = Kyl dfd] (3:26)
" with [Ky] the total, tangential stiffness matrix governing the non-

linear response.

The Rewton type iterative procedure can be applied in the manner
summarised.
(a) The elastic liﬁear solution is determined a@s a first spproximation
[Ko){d}, = {R} (3:27)

(v) U(d}1 is obtained from equ. 3.14, with approximate definition of
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[B] and the stresses,

w(dh = (81 {c}qav - (R} (3-28)
vith v .

{o}q= 101fe} =t ouBI{d], (329)
which gives

wigh - - [l widifghav - {r} (3-30)

and reduces to
wfdh= 1Rafd), - s} (3:31)
where the large displacement stiffness matrix has been defined
as above.
(¢) HMatrix [Kyl=1K] ¢ [KJ] . (3-32)
is established; and

(d) The correction is calculated as

Al = -tk y{d (333)
meking the new displacements equal to
{eh = {dn-1) + a{do (3:34)

This process is then repeated until wﬂﬂn becomes sufficiently

small.

2.2.2.2 Geometric Non-Linear Finite Element Plate Bending Bepresentation“

For Generally Symmetrical Orthotropic Laminates

Having formulated a general set of equilibrium equations, with a
Newton=Raphson iterative'solution-procedure9 plate bending assumptions

must be specified so that the finite element representation can be solved.

For the non-linear behaviour under consideratiocn Von-—Karmans
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assumption is applicable (24). As has already been mentioned a 3-D was
impractical, so a lumped 2-D representation (Equ. 3.1) has been chosen,
being based on the classical thin plate assumption attributed to Kirchoff,

(normals remain straight and normal) (23).

In most practical applications of thin plates the magnitude of the
stresses acting on the surface parallel to the middle plane are small
compared to the bending the membrane stresses. Since the plate is thin,
this implies that the traction on any surface parallel to the mid-plane
is relatively small. In particular, an app:oximate state of plane stress

exists.

A standard X,Y,Z co-ordinate system, Fig. 3.1.1., has been taken,

The displacements in the X,Y and 7 directions are denoted by u (x,y)

vix,y) and wi(x,y) vrespectively. A list of the plate bending and material

assumptions follows,

1) The plate is constructed of an arbitrary number of layers of
orthotropic sheets bonded together, with the restriction that
the configuration must be symmetrical about the mid-plane.
However, the orthotropic axes of material symmetry need not
coincide with the X,Y axes of the plate.

2) Perfect bonding exists between the fibres and surrounding
matrix, and between each lamination. The fibres are assumed
‘continuous along the length of a lamina and all aligned in the
principal direction. A

3) The:é are no initial displacements, the plate is flat, and no
initial stresses are_pxjesent°

4) The plate is thin, i.e. the thickness yh, is smaller than the
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other physical dimensions,

5) The in-plane strains €y,€y, and €,y are small compared
to uwnity, end zero for the linear solution.

6) The displacements u and v due to plate curvatures are
linear functions of the z direction, equ. 3.1, i.e. they
are zero along the mid-plane.,

7) Transverse shear strains €,, and Eyz are negligible and
the corresponding shear stresses T;Z ,1}2 ignored.

8) The transverse normal stress is.negligible. «,

9) Each ply obeys Hookes law; all the material properties
being linearly dependent on the respective strain up to
failure.

10) The plate has uniform thickness.

11) The location of the neutral axis coincides with the mid-
plane in the linear deformation.

12) Rotary inertia terms are assumed very small.

13)  There are no body forces.

It is noted that assumption 7 is a direct consequence of plane stress.
Together, assumptions 6 and 7 constitute Kirchoffs assumption, and, with
assumption B, allows, the problem to be simplified to the 2=D about the mid-

plane,

The 2-D representation of the displacement F.E,M. can nov be
constructed. Formulation of the stiffness matrices will now follow by
epplying the basic rectangular element, Fig. 3.1 and its simple

displacement functions, Equ. 3.2 and 3.3.
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The plates in the experiments will be subjected to transverse

loading only so the analysis does not include in-plane loading.

For the non-linear solution the displacements are not minute, but
also pot excessively large. It is well known that in such situations
the lateral displacements will be responsible for developing membrane
strains and the two problems of in-plane and lateral deformation can no

longer be dealt with separately, but are coupled.

In Fig. 3.2.1, plate strains are defined in terms of the mid-plane
displacements, i.e. if the X-Y global plane coinci&es vith the mid-plane,

then ( €y )

Exy Epy

5 > = {3-35)
00y
Zd X

4

Fdy
d2
-ZZ_H_
\ dxdy J

{¢]

n
AN

If the deformed shape is considered as in Fig. 3.2.2., then apply;ng
Yon=Karmans assumption the lateral deformation , w, induces some additional
extension in the X and Y directions of the mid-surface and the length

dx stretches to

dxe [1 (g"f)z - dx{‘i +%%g2 . } (3-36)

i.e. defining the x elongation to the second approximation

=

2
: du L1 (337)
€ x ax " 2( )

[=%

X

Considering in a similar way the other components, the strains are
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defined by Greene's strain vector, (96).
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. dedy J - 4 :

in which the first term is the linear expression and the second is the
non=linear components. In the above expression v, v and w stand for

appropriate displacements of the middle surface.

As the behaviour is considered linear elastic, the (D) matrix is

composed of a plane stress and a bending component
bPT o
D) = {3-39)
o P
Finally the displacements are defined in téerms of nodal parameters using

the appropriate shape functions, Equ. 3.2 and 3.3.

ule

e
Thus for instance v = [N] {d} (340)
"

where a typical set of nodal parameters is conveniently divided into

those which influence in-plane and bending deformation, respectively.
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{&} =

@}
( Wi ] (341)
uj
with [&??z and {d?} = < dw >
. d %
Vi
dw
L d Y
and i is the node number. The node possesses 5 D.0.F. to describe

the deformation at the location, Thus the shape function can also be
subdivided as
[N;] = {3:42)

b
0 ]
and indeed the azssumption that the final assembled displacement vector

is also subdivided in the same way as Equ. 3.41, will be used.

To continue the formulation it will be necessary to form expressions

for [B1° and [KTle From Equ. 3.16
(B1%= (By)°+ (B1° (343)
and the subdivision gives |
I
0 [BE]e ] o 0

were o8]~ ][] ano  [sefalf]"

{gde’=

are the well defined, standard matrices for the linear in-plane and
: e
bending elements, [BE]e is obtained by taking a variation of {EéJ

: : ble
with respect to the parameters{g-}.

Thus the non-linear, strain components of Equ. 3.38 can be written

conveniently as,
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r dw 0 qe
e d x dw e e
{Efl}= I o du dx U _ 1wy {of (3:44)
dw  dw dy
- dVYy dx -

vhere the derivatives (slopes) of w can be related %o the nodal

parameters as,

{off
61° = [0 JTa0 ]

Thus lG]E is a matrix defined purely in terms of the co-=ordinates

16 {a") (3-45)
with

of the element. Taking the variation of Equ. 3.44.

d(ﬁlﬁl}e:%d[H]e{w}e « 118 = (Hi®afg)®

{346)
= 615 (¢ ‘
and hence -ismmediately by definition
[801° = thife1® (347)

With all the necessary components the element matrix [KT]e can be

evaluated., The linear small deformation matrices are written as

[BJ° o /JBE,‘EDPIM 8P idv 0 ¢

(K = (3-48)

) o Jiebitotusgiav

From which the following expression solves the linear displacements.
e
LR T
{R} =5 _tA"lZﬁaEnn%'gl v (a2 [a} = 1k§ifd} (349)
” :

This is the matrix representation of'Equ° 3.28 and the matrix [Kg ] is

the total contribution due to all the elements.

Taking Equ. 3.24 the largé elément displacement matrix can be defined
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on substituting Equ. 3.39 and 3.43. Thus after some manipulation,

0 ﬁaglfmplne'ﬂl dv
(K = v (3:50)

|symmeTRicaL  [18f1T0®)8P 1oV

Finally, (Kc-]e has to be constructed using the definition of

Equ. 3.25. From Equ. 3.16 on taking a variation
e

oo 0 |
e
diB ) = (3:51)

.
dasbl 0

the substitution into 3.25 and 4.47 gives,

xpy
o
0 0 yPL

o
K14 (d} = QP
G 0 xb

N~

dv (3-52)

U'xyb

J

whereinthe x =direction TXpy is average membrane stress in the element.

By a special property of matrix manipulation, (28).
e

0 0
K18 =
b
0 (Kol | (3-53)
with o
' Txp| Txypy
R e
«k2® = | G [ 16 1%qv
xypi  %ypl

vhich is the symmé&rical element geometiric stress plate matrix. Putting
all the element stiffmess matrices together the element tangential -matrix

is




(354)
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v

It is then only a matter of correctly summing up the appropriate
element stiffness terms and placing the values into the specific locatiﬁnu
within the governing plate stiffness matrix, for a solution. After the
stiffness matrix has been evaluated the boundary conditions are imposed
and the nodal displacements are determined following the solution

technique Equ. 3.27 = 3.34.

After the nodal displacements have been calculated at each load
increment a further programme evaluates the nodal strains and stresses.

The following equations define the formulation of the stress programme,

Taking the nodal displacements (D.0.F,) for each element in turn

the strains are given by Equ. 3.38, and with gppropriate substitutions
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[ p% AP J°
%[Hﬁa‘bllemb]éme (355)
{ep)* = -z tab1labsl{a}®
{ea = {8 * {en)

Stresses are then evaluated from Equ. 3.17 by taking the definition

ea )
k)

i

and

for the stiffness matrix (D} Egqu. 3.39
2 -2 e e
[Pty o E¢
Pl Pl (356)
-8
o 0 (B Ep
b k k k
For nodes surrounded by several elements the strains and stresses at that

node are determined by that number of elements. To calculate a

representative value the average was determined.
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3.3 LINEAR COMPARISON

The modelling ability of the linear finite element analysis ACM
will now be compared against several analytical solutions and further
finite element approximations. The various mesh constructions used
are presented in Table 3.1. Plate symmetry in the isotrcpic and
orthotropic examples meant that an accurate model was obtained with

only a quarter platc mesh, and Fig. 3.8 shows a typical mesh construction.

Results for displacements and stresses are studied for isotropic,
orthotropic and laminatéd examples, Yhere possible 2ll the values are
presehted normalised. The exception being the stresses for problems with
2 central point load. VWhen uniform loading is being considered the load
vector can either be constructed as vertical loads only (V.L.0.) or as a

consistent mature (C.L.V.) (28).

3.3, 4Isotropic examples = ACM = With Several Other Rectangular And

Triangular Elements

The ability of six elements to provide convergent results to the
exact lutions of three thin plate bending problems are now examined.
The elements comprise three rectangular (including ACM) and three
triangular. Table 3.2 gives the definitions for the type of element
approxiﬁation and the procédure to a solutiomn. Also given are the
imfoitant factors which should be taken into consideration if any of the
eléﬁéhts vere to be chosen for a non-linear analysis. It must be |
remémbéred that if a ndnélinegr analysis was considere§ there must exist

~an*1h=plane element compatible with the bending element.
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All elements, except SM, have been employed in programmes applying
classical thin plate theory. SM has been built in an analysis based

on the shear deformation theoxy of Mingdlin,

Exact soluticns for the central displiacement in the three examples
have been reported by Timoshenko (18). In addition he presented the
value for the central stresses in the uniform lcaded examples. In the
case of a point load the theoretical stress is infinite due to a

singularity, so no exact solution is avzilable.

Figures 3.3 and 3.4 present the non-dimensional central displacement
o<, B or stress & for the six elements, against the total number of D.O.F.
The number of D.O,F. modelling one quarter of the plate teing given on a
Logrithmic scale. Table 3.1 defines the square meshes and Figure 3.8.2

shows the boundary conditions imposed. The test cases were:

Fig 3.3 Square simply supported isoiropic plate with z uniform
distridbuted load (V.L.0.)

Fig 3.3.1 o< is the non-dimensional central displacement

¥elD ~ (3-57)
SLY:

o<

and

Fig 3.3.2 T is the non-dimensional central stress.

G %—L q (358 )

-_P
TAZ
The value for the central stress o (i.e. oy since by symmetry
oy = c?).was taken to be that experience? on the tensile surface.
Fig 3.4.9 Square simply sﬁpportéd‘isdtropic;iate, with a concentrated

central load.



Fig. 3.4.2 Square clamped isotropic plate, with a concentrated

central load.
p is the non-dimensional central displacement
B- ¥ (359)
P Ak
The exact values attributed to Timoshenko are presented as solid straight

lines on ¢he figures.
Referring to the figures the following observations were made.

For the three problems the element ACM is found to converge to the
exact solution as long as sufficient elements, =36, are applied. The
errors are in the order of 1% and the trends suggest that the exact
values will be reached. The largest errors are found for the point load
examples, which are lmown to impose severe limitations on the accuracy

of the displacement method (28).

Compared with the results of the equivalent triangular element
T,ACM is seen to be far superior. Accuracy of the same order was
g¢stablished when modifications were made to T, but there is no advantage
since the element HCT needs a more involved procedure for-solution -

than ACM,

Accuracy is improved with sparse meshes when the elements were more
refined with ACM. [Elements S,SM and B are compatible, require numerical
integration for evaluation of stiffness matrices and possess 24,24 and
18 D.0.F./element respectively. The latter element B is’triangﬁlar
which obviously requires two elements %o produce a rectangular element,
and hence the equivalent numbe of{D@O.F,*is 24, Hence for the

iﬁpfbvémént in modelling ihe’étiffnéss'maﬁ:ix is 1arger-than wvith Qlegent
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ACHM., This would be detrimental to an analysis since computing time is
approximately proportional to the square of the size of the governing
stiffness matrix. It has previously been stated thata model of the plate
bending method requires at least 36 elements (with this number of
element accuracy is comparable), and so none of the more refined elements

appear practical for the non-linear analysis.
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3,3.2 Isotropic Examples Approximating to the Experiment;ACM.

Examined now are two isotropic examples to observe the modelling
ability of the element ACM for more stringent problems approximéting to
the experiment. It has already been mentioned tha:t peint loads provide
a severe limitation on accuracy, and was one of the weasons for the
choice of a patch loading in the experiment. Bowever, the reactions
are taken through four symmetrical located point supports, since this
prevents 1ift off. It is péssible that these point supports will
contribute to limiting the accuracy of the numerical analysis. This

will now be investigated using the examples.

An identical procedure to the previous subisection was followed.
Where possible approximate known solutions are given. Both test cases

have a uniform pressure loading so a nondimensional expression can be used.
3

o o WD with D =_CEnh {3-60)
QAL 12(-v2)
a-r)d o = Vc
T
with qQ = —F for the patch loading. P is the total load.
Ap x Bp '

The first example was a square thin isotropic plate with corner
supports and a uniformly distributed load, (v.L.0.), Fig. 3.5.
Approximate analytical solutions for the problem were separately
presented by Marcus (97) and Lee and Ballesteros (98). These have been

shown as solid straight lines on the diagrams.,

In Fig. 3.5.7 the results foro< using ACM are about 13% on the
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analytical low side, and do not approach the average of the two analytical
values as the meshes become finer, ( 6SQU and 7SQU )° Central stréss

&y Fig. 3.5.2, results are all within 4% of the analytical and the trend
suggests that the final walue will be on the high side. A very
reasonable agreement for both displacement and stresses has been obtained
if account is taken of the nature of the approximate formulation and

that the corner supports will cause numerical difficulties.

To involve nearly all the experimental parameter and at the same
time have an analytical solution, the second case was a square thin
igsotropic plate with corner supports and a central square patch load
(V.L.0.). The results are given in Fig. 3.6 for a patch area having
sides 0.1 of the respective plate sides., Unfortunately there is no
exact solution to the central displacement, but Marcus (97) reported

an approximate value for the central stress.

When modelling this example it was possible to employ a different
number of elements in the patch loading while maintaining the same number
of elements in the mesh, In the investigation one mesh had 4 nodes,
(35QG{A)) and one had 9 nodes, (3SQG (B) ) for the loading9 with the

same number of D,0.F.

Fig. 3.6 shows that for all meshes with more D.0.F. than mesh 1SQG
the central diaplace‘ment < and stress o deviate by no more than 5%. It
can also be observed that the two numerical trends due to the different
patch models do not suggest identical final results° Fortune_vtelyvg the
central stress calculated by all models is within 3% of the analysis.

vhich is certainly acceptable:
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The two examples demonstrate that element ACM is a suitable choice
for modelling the experiment with further improvement expected once the

point supports are no longer at the cormers.
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3,3,3, Orthotropic Example = ACM - PAFEC 715,

Available on the IBM 370/167 NUMAC system is a general finite
element package known as PAFEC 75, Since one of its options can solve
generally orthotropic laminated thin plates (no shear deformation)

it was appropriate to compare with ACM.

30303, 70 Test Example

A numerical comparison was performed using a square, simply
supported, four layered orthotropic croas-ply plate with a central
concentrated load, Fig. 3.7.1. Fig. 3.7.2 shows the symmetrical

lamination configuration ( 05 90°,90°, ) of the laminate.

It was possible for this example to derive analytical values for
transverse displacements and stresses,(except>for the stresses at the
centre). The actual calculations are presented since the stresses for

point load prcblems carinot be non-dimensionalised.

The material properties chosen are those for the carbon fibre/cpoxy

resin combination T300/Code 69.

Fig., 3.7.1 defineé the test parameters and symbols

A= 02m | P=500N

t = 0-508 E-03m hy=2hq= 2t

E11= 01351E12 N/nZ E22= 04096 E+11 N/m2
Giz=0$771équ/m2 V12 = 0-3
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3.3.3.2. Analytical Solution

The standaxrd solution to the governing equation for the deflection
(3) of an orthotropic, cross-ply, square thin plate, simply supported
along all its free edges, and vertically loaded only, is given in the
form of a Fourier series by Lekhnitskii  (99)

sinMMX sinnTy

b oc oo A 361)
T—TLmZ:‘anﬂ D1+ 20012+ 2D66)nf? + D22

where 3mn for a single point loadis
apn = 4P sinmm\ sinpw$ (3-62)
A? A A
and

-0 3 3
k=1

('1?; are the transformed stiffnesses
nl the number of layexrs in half the plzte, and
hyy are the distances of the under surface of the

kth lamina from the mid-plane.

For the example under consideration there is a single central point
load, i"e"’\:S:% , Fig. 3.7.1, and the solution for the displacements

in the problem becomes

ssanTsmnIfsmmnx sinnmy ‘
wixy) = lLEAz 2 2 A A (3:63)
b £S5 Dk + 20012 +2D6 6 )ménde D22f

i.e, -
wixy) = APA* K,
TTL
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vhere Ky is the summation expression. A FORTRAN programnme was
developed to determine K, at any position on the plate, with relevant
combination of walues for D11,012,066 and D22 . It was found that the
value for K,, converged rapidly with increasing number of summations, a

very accurate result being obtained with all the terms up to m=n=1,23

lodd}ie 164 .

The stresses in each layer are given by the expressions

2
Ox(x,y) = +2 Q [dw +\)21dw]
X a2 av2

L mzd_zv_:]
qy? dx2

{364)
U'y(xy) =+2 QU [

vhere z is the distance from the mid-plane to the plane of stress
calculation, (Kirchoff's assumption and displacement functions, Equ. 2.1)

in the lamina with the orientation »B‘.’

From the Fourier solution of the displacements, Equ. 3.63

db n | -

dx2 S!nrnTrsinrr‘r sinMmTix sinnm
=__P§‘i°—_i 2z 2 A A (3:65)

na M2ndnat 2 DTit + 2(012 + 2066 menZ + D22r*

2

dx

substituting these expressions into the bracket terms of the stiress

equations produce two more summations.

Ky = gi’ + V21.f12£
: dx? dy?
and (3:66)
Ky = d& . vizdk
de dx?

A further programme vas constructed to calculate Ky and Ky . The
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convergence of Kx and Ky was much slower than K, and for locations
other than the centre, terms up to M=N=1,201(odd), 40000 were required.
At the centre, where the stress is theoretically infinite, the
summations did not converge and sc for a comparison, values with

M=N=1,801(0dd), 64000 were taken.

3:3%3.3.3, Finite Element Modelling

The two finite element programmes were run to predict the bending
displacements and sfresses for the orthotropic example. Initially the
comparison was made with the 49 element graded mesh, 3SQG(A)(Fig. 3.8.%1.),
using ACM and the PAFEC 75 isoparametric Lagrangian 4 node (44205)
element. Programme ACM is a pure small displacement bending analysis,
whereas PAFEC 75 includes in-plane components, but not coupled for
symmetrical laminates. To improve accuracy with ACM a 100 element mesh,
550G ,was also studied, and, because of its wide options, an 8 (44215)
and a 12 noded (44220) element, with the 49 eleiment mesh in PAFEC 75.
These latter two eléments possess mid=side nodes and so have refined
displacerent functiona to define -their -deformation behaviour. The

refinement should mean improved accuracy.

3:3.3.4. ,Results

A selectiop of typical nodal values, displacements (Table 3.3), and
stresses (Table 3.4)'for the following modeis are given.

(1) ACM = 49 element mesh

(ii) ACM - 100 element mesh

(1i1) PKFEC 75 < 4 ﬁdded9:49 element mesh

e




(iv) PAFEC 75 - 8 noded, 49 element mesh

vith relevant analytical wvalues.,

The 49 element mesh as displayed in Fig, 3.8.1 marks the nodal
positions used in the compariscn, Boundary conditions for the ACM models

are shown in Fig. 3.8.2(A) and for the PAFEC 75 models in Fig. 3.8.2(B).

The analytical values for stresses were made along the mid-plane
of the outer laﬁina' (O°) under tension, Fig. 3.7.2. The stresses have
been presented as an average of the values determined from the elements
surrounding the node under consideration, together with the percentage
variation between <the highest and lowest of these values. The latter was
not necessary for ¢he models using ACM sincethe :calculated difference in

stiresses vere never more than 1%,

From the resultis presented the following observations were made:
Table 3.3 demonstrates that the models with ACM provided deflections to
within 1% of those determined analytically. Whereas, those deflections
evaluated by PAFEC 75 exaeedAtheAanalytical by 20°, in the case of the
4 noded element, and 6% for the 8 noded elcment, with all ofher parameters

identical to those applied in the ACM models.

The evaluation of stresses derived from the nodal displacements and
rotations are found to have }argér deviations from the approximate
analytical values than was enticipated.  PAFEC 75~giveé comparable
resultS'io AéM when the 8 nqded,eleient vas nsea,'but then, like ite 4
hddédlelgmento the var;q}ion ig}%ﬁé siress calcuiated-by_the,surionndihg

. elements is large. quhitB’ffqm}PAfEC 75 with thé 8 noded eiement ghould



have been more accurate than ACM because the displacement function is
more refined. In fact the two models gave same order of accuracy.

Por all models the greatest errors are encountered in the vicinity of the
point load. I? is known that point loadings do induce a singularity

so this observation was to be expected.

The computing time (C.P.U.) for the various models are showm in
Table 3.5, It is immediately obvious that the time taken for a similar

problem with PAFEC 75 far exceeds that of ACM.

The time difference between ACM and PAFEC 75 is partly due tp
increase in the tofal number of D.O.F. with PAFEC 75, but mostly because
of the excessive amount of housekeeping in this programme. From the
comparisons it appears reasonable to utilise ACM in favour of the more

elaborate PAFEC 75 for the work undertaken here.

3.3.,4. Laminated Plates - ACM.

Up to now éxamples concerned with 1so$ro§1c and orthotropic plates
have all been shown to be modelled accurately with element ACM. Results
vere however required for laminated plates, which may contain some fraction
of plies orientated at 6° to the global axes. These plates are referred
to as general}y?orthotropic laminates, In these laminates the twisting
stiffness D}é énd. p26 (3) o are non?zefé for the
oriéntated plies, providing 6° is not 0% or 90° . Plates which were
in?éétigated in this work consist of laminae at the four orientaticns
0%445°, -45° ‘and 90° , being multilayered and arréngédfsyamgtgiqa11y,

As an example of the type of lay=up3 gn,éightvlaye;eq‘qqagifiéotgppic
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laminate could have the construction (0%+45°9(-45545,90%45,F) .

If these generally symmetric orthotropic laminated plates are placed
into pure bending the coupling stiffnesses induce warping inte the response.
Fortunately the behavicur is not further complicated since, if the lay-up
is symmetrical, thexre will Ye no coupling between the bending and
stretching components. The extent of the warping will depend on the
relative magnitude of the plate coupling stiffnesses (D16,D26) to the
principal stiffnesses (D11,D022 .012 ) . A test example will display that
if the twisting is prevented; by imposing non-existent moments through
incorrectly fixing nodal D.O.F,, then very large discrepancies between
what eppear similar models will be found. Koor et al (49) are the
only researchers who have examined symmetry in laminated plates with the
view of reducing the size of the finite element model. Their finite
element package allowed for more complex boundary conditions than ACM
thus reducing the size of meshes but increasing the complexity of the

programme .

--Results from previous work were first necessary to demonstrate the
modelling ability of the element ACM for generally symmetrical orthotropic
laminates. Unfortunately, it has been difficult to uncover appropriate
examples. In fact, no plots displaying convergence, like those discussed

in 3.4.1 and 3.4.2 are available.

The only example discovered that can be applied tc evaluate ACM was
pxeg?ﬁﬁeéﬂby Webber (loo). He firstly measured the transverse
digplacements:for a four layered symmetrical angle-ply (+455-45)

rgctangglér cantilever with a concentrated load on the free edge. Then

.70




he achieved an excellent agreement with a finite element analysis using
element ACM, so it only remained a matter of producing an esxact correlation
with Vebber to show that the linear programme was operating correctly.

The mesh utiliéed by Webber, 1RFU is shown in Fig. 3.9.1%. It has 16
uniformly sized rectangular elements, and a total of 75 D.0.F (25 nodes).
Nodes 1=5 were clamped, the remainder being free. Given are all
dimensions, material properties, the lay=up and the magnitude of the point
load. All units have been changed from Imperial to Metric to be
consistent with the rest of the work. Fig. 3.9.2 shows the displacements
for nodes 11-29% from ACM and the corresponding experimental measurements
when a concentrated load had been applied at node .25. Together with
Webber the fit is very good, especially when experimental and numerical
errcrs ar;’faken into account. This example confirms that our linear
programme is identical to Wgbber's. Webber did not extend the analysis
to involve stresses and did no work concerning improvement in accuracy

by refining the mesh, so further comparisons were not possible.

Attention now returns to the prodblem of imposing correct boundary
condition when representing laminated plates. Four distinct models of
the plate are feasible with programme ACM and Fig. 3.910 shows these models
for the plate bending experiment. Due to symmetry the perpendicular
rotatiqns along the quarter plate boundaries are zero for isotropic and
orthotrqpic plates, Section 3.3.1-3, so a quartér plate mesh was sufficient
fo represent the whole structure. But in the case of generally orthotropiec
lam;nétes the twisting 016 and D26 induce warping into the response
wh;chfébifxs=t§g{lpcation of zero perpendicular rotation away from the

‘quarter plateboundaries.




In Sections 3.1 and 3.0, when discussing the limiting factors for
the success of the non-=linear analysis, it was explained that o minimum
number of elements was necessary because of the restrictions imposed on
storage space and central processing time. Therefore, some knowledge
of the effect of twisting on the resulis for the various meshes will be of
interest, since it might be . shown that a laminate containing a
large proportion of 2 45° plies will only be correctly modelled with a
full plate, Fig. 3.10.4. If this is the case then the mesh will have
four times the number of elements as the equivalent quarter plate model
and the overall size of the stiffness matrix will be much greater. Simply,
if it is demonstrated that a full plate model is the only correct

representation, a nen-linear analysis is impractical on the KUMAC system.

To demonstrate the limitations on modelling due to warping, the
following severe case was examined. A pure +4,5° square laminated plate,
arranged as in the plate bending experiment, was represented by the four
meshes. All parameters are presented in Table 3.6 together with the
central displacements and strains (as determined on the tensile surface)
from each model. Fig. 3.10.5 illustrates the shift in-position cf the
perpendicular zexro rotations away from the quartgr plate boundaries as

determined with mesh 1SFGET4,

For this problem the unrestrained full plate model is the only correct
representation. A tremendous difference in the values of central
displadement and strains is found between the fdur:mesh'tyieso‘ Ag an
example, the imposition of quarter plate bowndary conditions on the £ull

pl@ﬁé~mééh produces g-reaué%ignfbf ~12°% in %ﬁa‘qéntralidigpIaCement, and

oyei.ﬁsd% in the dgnt;al strginn




By taking the ply orientation as +45% or -45% in the programme no
resultant effect on the resultis with the full and half plate models is
obtained. However, considerable difference is found with the quarter plate

model.,

Fig. 3.10.5 1llustrates that the shift of the zero perpendicular
rotations away from quarter plate boundaries is large. The maximum digtance
for the example is *025M (x'). The shift reduces as the observer proceeds

from the free edge to the centre, where it becomes zero.

The above points indicate that there is a severe restriction on
employing quarter or half plate meshes when plates are generally orthotropic,
depending on the lamination configuration. Examining the pure +4S
laminate was the worse case, so the extent to which commercial laminates

are affected will be less.

A measure of the degree of the twisting contribution in general

orthotropic laminates can be gained ghrough the size of the ratios Dvle and

DZ'Z/D,,Zé . For the example just studied-D11=D022 and the ratios equal 417
(veing the minimum for the lamina material propertiesl By calculating
ﬁhe values of 01}616 and 02%/526 for a laminate ratios higher than the
minifum might indicate that all meshes will model the problem. Later the
ratios for tﬁe plates tested will be given and used to try and give a rough
guide line to when all mesh types are acceptabié9 If all mpdeis are found
to be accurate with certain 01}616 and 02%4326 ratioégtﬁen providing
the material properties remain the' same calculating the ratios for further

_.léiinaﬁiOns,QillAindiqatg;if%fhé wafping qan~be~ign9red;orfﬁqto




3.4 NON-LINEAR (ACMBC) - COMPARISON

There now follows a similar investigation on the non-linear thin
plate bending programme ACMBC as was performed with ACM. Of special
interest is the procedure in ACMBC ®y which it was made possidle to
evaluate all the stiffness terms explicitly, through the new definition
of the rotations in matrix [H]e, Equ. 3.44. To date, all previous non-
liniear arialyses have defined the two xotation terms with the bending
displacement function, in either a truncated form, Gallagher et al (101),
Bergan and Clough (70), or more usually in its full form (29,68).

With this procedure the explicit formulation of the element non-linear
stiffness matrices were impractical and required numerical integration

schemes.

For this work the two terms g_\:_ and .dQJ;l_e in matrix (H ] have been
thought of as the respective averageerotations in the element (at the
preéent deformation) in the X and Y global directions. New definitions
have been given to the rotation terms enrabling all the stiffness terms to
Ye determined explicitly. Two expressions defining the terms have "béen
formulated which, when incorporated into the programme, give only 1%

variation in results.

Taking the basic element as defined in Fig. 3.1, the first equalities

dw . 1ghdu dw. 1stdw (667)
dxe 4 i1 dxie dye 45707V
'uheyggi is the nodal position and E%&é is the rotéﬁignﬁin the X*d;rgctigg

ai'théghodél position i, in element e.

J?‘f T




Mathematically the above is not very sound, so the terms have also

been defined as the weighted means over the area of the element.
a,b
dw _1_[[ dy dxdy
d %e axb Jo Jo dx
arb
_-1.// dw dxdy

vhere g{f gy axe given in terms of the bending displacement function

(666)

a
~
m
1

3

and the present element D.O.F, ﬁf}e . The above simplifies to the
following matrix notation
. € by
dw . [Q.QJ&J [¢) 1A%
d xg d x
{6:69)
e

dw - [o~gjq [o] Wy

dYy

[=8

Ye

Since only a small difference was found between the two sets of
definitions the latter wexre chosen, because they are mathematically morxe

sound .

The modelling ability of ACMBC was studied with two simple isotropic
examples. The plate was square with wniform (C.L,V.) loading and the
g;nding boundary conditgons‘ were either all edges simply supported or
clamped. The inplane boundary conditions could also take two forms, but
only Levy's (51) restraints were treated. In this case, the parallel
nodal inplane displacement to the direction of the edges are free, whilst
the correépbn&ihé,perpéndicula;-D,O,Fo to the eéges are fixéd. Wang (52)
ie attributed with the second type, where all fhe inplane D.0.F, aioné’the
edges~argvfixed@ These latter bqﬁﬁdary.CQﬁdiiian*ﬁéke the non=linear

_beﬁandﬁr'stifferrthan LéVy‘s:énd'tﬁe:sige of the central transverse

4isplacement is lover.




Analytical solutions were readily available for the examples. The
results given by Levy (who solved Von-Karman's equations using a double
Fourier series) have been quoted as having a possible error of less than

296 °

A1l results will be presented normalised and for clarity the

following parameters in ACMBC are given.

Load increment § and the number of iteration steps to convergence

at each load increment.

The value of PB Equ. 3.4, which was used to establish the next

displacement set in the Newton-Raphson iterative procedure.

The value taken for the reference errors |E| used to determine
convergence with Equ. 3.5. It can be noted that for ACMBC the inplane
Ielpl s the rotational |€l,4 and transverse displacement IEIW terms
have been defined separately. |€Ely was taken to be the smallest,
followed by ]Eipatagd“lasxly ,Lelpt . The reason for this was that a
small change in EIP[ caused a greater change in the number of iterations
than if | €|w or lelrof vwere changed, with no consequential improvement in

accuracy.

3»4,1. _Isotrépiqukamplés»= ACMBC

'Thg tﬁo«exémples which wére_modelled‘are:

A,sﬁﬁaiéﬁsimplylsgpiorted~}spt§9biq piéte, Levy's in-plane zestraints,

uniform pressure load (C.L,V), and .




A square clamped supported isotropic plate, Levy’s inplane restraints,
uniform pressure load (C°L°V°),(wh~ich in ¢his case was equivalent to the

¥.L.0.).

A study was made in the flexural response as the pressure increased in
increments. Results for the central transverse displacement, central
surface tensile stresses (bending and inplane) and mid-side edge surface
stresses have been noted. The two cases were modelled with the quarter
plate mesh 4SQU which has 16 elements (125 D.0.F.), being the standard
mesh with all previous finite element analyses. To possibly improve
abcuracy a refiner mesh 6SQU containing 36 elements (245 D.O.F.) was used

for the simply supported example.

The normalised values are:

transverse displacement v NF (370)
surface stress T EA%
Eh
which were evaluated at the load increments given by the load factor
q . gAb
E h%

N.B. Rgsults from the finite element work of Brebbia and Connor - (29)
Thomas and Gallagher (71), plus the analytical analysis of Berger (53) were

given for the load factor

q .:.Q,;_f“':.l" where D = _E h:\3 : (371)

! e 12(1-v2)
and A'is half the plate léngth.

This means that there is a load factor difference of 1-4 8 between

ACMBC and these andlyses.

In ‘both examples thefollowing parameters were applied:




B = 05

lelp, = 0-05
lelot = 0-025
lel, = o001

Convergence was only accepted once all the appropriate displacements

provided error quantities lower than those stated above.

Table 3.7 gives the load increments § , the humber of iterations

at each load level and the total C.P.U. ti%f for the solution.

Numerical trends with ACMBC are displayed as dotted lines in

Fig. 3,11 and 3.12. The solid lines show the analytical solutions of

Levy (51). Table 3.8 sumﬁarises the values which were available for the

comparison. The subscripts are:

B = bending pl inrplane

x= X-direction oy

Y - direction

The locations AteD are shown in Fig. 3.13.1 togeiher with the boundary

conditions.,

To compare with further finite element procedures the percentage
errors at the load factor § =200 have begn presented. for the s%pply

supported and clamped examples in Table 3.9 and 3.10, respectively.

Percentage errors were determined,by:

Analytical value. - Fiﬁite‘elemehi,valﬁg x 100%

_The subseript (L) means that the value was lower than the' analytical

““and " (H)- higher,




The following observations wvere made:

ACMBC gives similar characteristics for both simple isotropic examples
es illustrated in Fig. 3.11, 3.12 and Table 3.9, 3.10.
The value of ¥, is always less than the corresponding analytical and
the deviation increased with load, Fig. 3.11.1, 3.12.1.
The valuves fer the extreme tensile surface stres§ at the centre,

Tox = Onpx ¢+ Oppy &nd at the mid-side of the edges Trx are within 19
of the analytical, Fig. 3.11.2, 3.12.2.

The inplane stress at the centre, &uDx is @lways greater than the
analytical, Fig. 3.%11.3;, 3.12.3, and vice versa for the bending component,
Tapx Fig. 3.11.4, 3.,12'.'4° Again, as the load increases so does the

error. |

The inplane stfesses at the mid-side nodes for the simply supported case,
Fig. 3.11.3, are found to be much lower than the analytical.

The warping stress in the corner Ay Fig. 3.11.4, is below its

analytical for G<120 , above which it diverges away at greater value.

Comparing ACMBC with the selection of results from other analyses,
Tab;ev}39 and 5€1Q, it can be seen that the new analysis is the most
inaccurate. The greatest difference from the analytical are found with
the 4 noded element meshes. A large reduction in the error is obtained

with higher order elements, but at a miuch higher computing cost.

The‘major cost is the invgrsion needed to solve the finite element
equilibrium equations. It is known that the time to perform the
inversion approximates tO‘theuggqafe of the tangential stiffness matrix

size. Hence, assuming all the D.0.F. vere gequired the ratio of time

@éédédgfbf the various g}@@éﬁté'ﬁiihimesh 4SQU were:




4 node ACMBC 8node Berendipity) 9 nodelLagrangian)
] : 6-76 : 153

Fev publications gave the total C.P.U, time, and even when reporied

the computers wexe different so a comparison was not practical,

It has also noct been possible %o establish if any of the cther
analyses provide the correct stress distribution. Only Bergan and
Clough (70) separsted &, dinto its components, tut &id mot report
them, Looking at the resultis with the wrefined elements, it does not look
likely ¢hat the components Trdr and Tzdx  behaved as observed with ACMBC,

gince % and & are near to the analytical.

The results have demonstrated that the non-linear finite element
formuleticn épplied'in ACMBC does not represent the response of isotropic
plates. However, fhe Principle of Minimum Potential Energy may still hold
since the total stress is correct. It is therefore probable that,
throughout the plate, the true stress exists but that the distribution
between the components is wrong. Values from ACMBC suggest that the
bending §°m£’9’?9’?t, is too stiff relative to the inplene component at the
centre, and that the situation reverseS‘near_the free-édges, This implies
that the overall deformation for the examples determined by ACMBC is as

shovn 4n Fig. 3.93.2. The true deformation is shown as a soiid iine.

The yesults slso indicate that reasonsble accuracy will only be
achisved uith the high order clements.  This means thatxa 4 x4 element
model containe a lot of D. O,F, and- for a precise comparison an @quivalent

_number of D. 0 Fo @hould have been used° ACMBC displays litt‘e improvement‘

when the finer mesh uas applied‘i(6S&U 36 elementso 245 D.O.F. ) B;gpbiaa




and Connor (29), Bergen and Clough (70) and Reddy and Chao (74) did not
examine further meshes so the difference between the two orders of

elements on similar terms could not be ascertained.

Obviously, the computing effort with 8 and 9 noded element meshes
was much higher than for 4 noded element meshes. Since it tg}é_es.>v§0
C.P.Us for YACIVBC to solve the simply supported example, the time with high
order elementsmust have been enormous. If accurate results can only be
obtained with high order elements, computing reétrict'ions wﬂi‘;e’risure
that only simple problems can be solved. This may mean that it will be
extremely difficult to use a finite element geomeiric non-linear procedure

to model the plate bending experiment.

3.4.2.  Isotropic Examples - Modifying ACMBC

To proceed with the investigation the work of Brebbia and Connor (29)
(vho used element ACHMBC) will be involved. They reported W» for the
clamped example, which was always greater than the analytical. The

difference between ACMBC and their analysis is very large, and at §=200

is =23 % of the -analytical, Table 3.10. Now the moét drastic cliange'
between the two procedures was through the definition of the lrota‘fion
terms in (H1®%, (cf wf* | Brebbia and Connor ). Therefore this area

of the analysis must be the most likely source for the differences.

The choice of g—;—’ and -g——;’- in ACMBC were only approximate and it
Ae e : ' ST

will be reasonable to employ any.fraction of these values in.the

programmes  Fig. 3.14 displays-the change in the trends for the simply

‘supported exanple’ observe end 4¥  betveen

Y equally sltering 44




and .2. of that given by Equ. 6.69.

~Tw

At each load increment , the values have been marked and an arroved
line shows the change as the scale factor increased. Comparing with
Fig, 3.11 shows the changes from the basic analysis. From the results

In Pig. 3.14 the following observations were made.

By decreasing the size of the rotation terms for all elements in
the evaluation of the stiffness matrices the ensuing-disglacements and
stresses are increased. Thié increase grows with load, showing that the
plate is now less stiff than calculated with the initial ACMBC. The
extent to which the values increase is dependent on the IOCation in the

Plate, compare TpuD« with Tpcx in Fig. 3.14.3.

The value of Tpr , which was originally within 1% of the analyftical
now diverges away on the high side, being a result of the increase in beth

OuDr and oDy .

.Accu:gté modelling has not been attained by just altering the two
rotation terms equally and, in the case of Tox , Opcx and  GTpobx
the reduction makes matters worse. It is therefore proposed that two

further approaches may result in aoceptable.ﬁodelling°

(i

Instead of reducing %% and 'F%- by equal amounts on each iteration,
- € e . ' ‘
a variation over the mesh (i.e. from element to element) may:produce the

cbr;éét flexural response. To accomplish this a lengthy trial and error

technique would be needed and time has prevented this.




Altering the two rotation terms has émphasiZed the original deformation
behaviour, that the combination of the bending and in=p1ane stiffnesses
are not in the correct ratio for an accurate model. In all examples, the
magnitude of Ty« has always exceeded its analytical, while ogbDx has
always been below. Therefore, if either of the linear stiffness

coefficients are scaled, a correction to the mismatch might be made.

Fig. 3.15 displays the effect on the simply supported example dioe to
increasing the linear inplane stiffness coefficients by a factor from

1.3 to 1.5,
Frem the resulis in Fig. 3.15 the following observations were made{w

The overall effect on the results is smaller than that due to changing
the rotation terms in [H1® . In fact, for both W and &or the changes

were not easily recorded.

Of most relevance is that the value of Tox is below the analytical
éﬂd‘fhéx“fﬁéfﬁffféféﬁCé”iﬂéiéébéb‘ﬁifﬁ'Ibad. . This occurs because UTpDx
has greatly decreased (c.f. 3.15.3 with 3,11.3) and Gybx has only slightly

increased (c.f. 3.15.4 with 3.11.4).

Obviously the results show that ‘an accurate model will never be
dchieved by just altering the size of the linear inplane stiffness

coefficients.

vﬁﬁbﬁeyegafﬁﬁe«ngbingtionhoiiiartiduiar~non=¥inea: responses due to

:2vl§Q9iiﬁg gﬁéfféﬁafibhriéfms,égiiiﬁg?gésihg~the inplane stiffness terms




does suggest that a good model will result. By application of a trial
and errox pxoceﬁure a good model was obtained vhen gﬁé and %%; wvere
scaled by .% and the inplane stiffnesses were scaled by 1.3. Fig. 3.16
and 3,17 illustrate the improvement for the two isotropic examples.
Comparing with the results presented in Table 3.9 and 3.10, at §=200

it can be seen that a similar level of accuracy has now been obtained %o

that with the high order elements.

The  new model does pose certain questions which should be answered.
Does the two scale factors in the modified ACMBC make the formulaticn

mathematically incorrect?

To start with there was nothing wrong in altering the values cof

dw and dw since the original definitions are known to be approximate.

d)(e ¢ Ve
However, the original definitioné, Bqu. 6.69, could be misleading and the
only correct definition for the terms will be when the full (or truncated)

bending displacement is employed in [H1°.

Increasing the inplane stiffness would appear to destiroy the consistent

formulation of the analysis. It may have been better to have introduced a
reduction in the integration of the linear bending stiffnesses as has been

used elsevwhere.

Does the two scale factors giving the good models here remain
constant for all types of p;dblemsv especially when the platés are thin

generally symmetrical orthotropic laminates?

This_guéstién cpuid,nox;be assessed, since of the three available




laminate analyses which provide results no generally symmetrical
orthotropic laminated thin plate examples were reported. Chang and
Sawamiphakdi (86) only studied a single cross-ply problem, while both
Reddy et al. (74) and Noor et al. (73) favoured cross=ply and

antisymmetrical problems.

Nocr did study two quasi~isctropic laminates but was concerned
with sheer deformation in thick specimens and so omitted a thin plate
analysis., Because of the lack of suitable test cases to establish if the
scale factors were universal or not, further development of ACMBC was

halted.




CHAPTER 4 _EXPERIMENTS

4.0  Introduction

Having proposed a new technique for evaluating the behaviour of
carben fibre reinfgrced plastic plates under biaxial stresses, several
vreliminary experiments were necessary tc determine whether thé test
would provide relevant data. If relevant, the information will enable
researchers to analyse the complicated modes of composite failure, and

provide biaxial strength data.

The aim of the experiments was to verify (of otherwise) the four
criteria as laid down in Chapter 1. Since no similar experiments have
been performed elsewhere, certain parameters were unavailable before the
tests. These included the extent of deformation, the position of the
supports on the plates at failure, the meximum load and strains, and the
mechanism of failure. Bence collectively, the experiments presented here
are just fact finding for the future refinement of the plate bending method.
Discussion of the small displacement measurements will be made .in Chapter 5.

where & thorough numerical comparison will help to establish the limits of

criteria (a) and (4).

4,1 ;Spécimens~For}The»Plate,Béhding_Experiment

The specimens teéiedsﬁere;multilayeréd generally symmetrical orthotropic

lgminétéd'cqijosite thin'pléﬁééf iﬁéi?gqngisted of1f6f§iﬁhdrejla@inaegfbf

“thematerial 1300/Code €9 at ‘the orientations 05905+45° and =45° ‘o the

global X-Y directions, Fig. 1.1, - The sample was fairly random sincé the




plates came from excess material at British Aerospace (Woodford).

4.1.1  Material Properties And Physical Parameters Of The Specimens

Table 4.1 gives the material properties used by British Aerospace in
design and those typically measured for ths unidirectional cured composite
material T300/Code 69. The symbols given to the properties appear

throughout the text.

The values were measured for a constant lamina thickness of 0127E-03M
and a fibre volume fraction of 60%. T300 is a Toray high tensile strength
fibre produced in Japan, and Code 69 is an epoxy resin manufactured by

Fothergill and Harvey.

The dashed lines indicate which typically measured strains were not
reported. This was probably due %o a very wide variance in their

measurements.

It has been known-for a long time that the shear modulus, G12, is
dependent on both temperature and strain. All experiments were performed
at room temperature, (15=20‘b) and hence.ogly strain would have had an

Veff{gt, Fig. 4.1 iIlustrefes the secant shear moduiuS’agaihst the warping
.sfx}ﬂeﬂéa}; T12 ~(w1iféh is itself a function of the shear strain $12).  The
transverse moduluso E22; is also dependent on straln. Corréepondence has

suggested tnat the dependence is amall but notlceableo

mhese two propertiea are also found to change when the . indlvidual

er 1n the manufacture of generally orthotroplc




rlates. Large thermal strains develop in the plates when they are cooled
down at the end of the curing process, due to the enormous difference in

the principal coefficients of thermal expansion, Table. 4.1. The size

of the thermal strains varies from layer to layer depending on the relative
orientations of the facing plies. Internmal plies may then experience
strain in their transverse direction in excess of the matrix tensile failure
strain (¢0 - 7%) so inducing moderate crazing. The cracking will be
parellel to the fibre direction and causes a reduction in the iransverse
and shear moduli. To allow for this in the numerical work the most

realistic assumption to date has been taken.

Resin cracking is ignored - 2 reduction in the transverse moduvli of
of elasticity of the unidirectional material is taken, and the non-linear

stress/strain curve in shear is used.

4All speéimena contained some entrapped gases, known as voids, whose
presence als§ reduce the shear modulus. From the work of Hancox (102) a
1% void content causes a 10% drop in shear modulus. For the plates tested
_little. background information was-available-concerning veid content so this .

reduction in shear modulus could not be teken into account.

In the ménuﬁabtﬁfe-of the laminates, the pressure subjected during
curing tends to squeeze out ‘some of the resin, with the outcome that ply
thickness is often below the norm. This inturn causes an increase in fibre
volume fraction and hence anﬂingféage in the lohgitudihél modilus, E 11.

Thie following relationship allows for the increase in numerical analyses,

By = (11




Material properties examined so far have been for 'freshly’ cured
material which has not yet been exposed tc the degradation of the
environment. A lot of research has shown that all resins areattacked %o
a varying extent by long periods of high humidity and//or high temperature.
Again the result shows up as a reduction in the transverse and shear

modgli (103)a

Specimens had not been kept in a controlled environment, and had
spent a varying length of time in ambient room conditions. For this
reason the effect on the material could not be assessed and it has been

assumed that there has been minimal degradation.

Several laminates were tested to determine the feasibility of the
proposed plate bending experiment. Table 4.2 gives the physical
parameters and remarks for each experiment. Symbols for the physical

rerameters are defined in Fig. 2.2,

It should be noted that the sample had been manufactured over a period
in excess of three years. The~exact dates of manufacture for the specimens
used in Experiments i, 3 and 4 are unknown. Unlike the rest, these two
laminates possessed a single protective layer comprising of another sof¢
epoxy resin. This layer had been pplied to the upper surface and was
ﬂéﬁibaily fgo:standafd plies thick. V,S}mmetry had therefore beéﬁ lost,
but to‘maih;g;h simplicity of the nﬁmeriCal_anaIyées'the Iéyéf was ignored,

but not forgotten.

,Egomfggrgquoﬁaenceﬁyiih4$rit;sﬁaaefospa¢e,it was established that

a1l the specimens had béen subjected to the same curing cycles.




4.2 Shear,Defo:mation And Shear Stresses

In the previous chapter the plate bending finite element analysis
was introduced. Due to the allocation of storage space and the C.P.U.
time é,llowed,v restrictions had to be imposed on the complexity of the
model. For the purpose of keeping these two guantities within limits,

several thin plate bending assumptions werc preserxrved.

Because of the relatively lov interlaminar shear modulus Gi12 in fibre
composites, classical laminated plate theoxy(C.P.T.)becomes inaccurate irn
detexmining gross plate response and internal stresses in ‘thick® plates.
Under these conditions several characteristics of C.P.T. limit its
generality in the description of laminated behaviour (1o4). These are:
(i) the assumption that uniform inplane displacements through

the thickness,
(ii) the presence of only two boundary conditions per free edge

ir the classical bending theory precludes the precise

éalculation of boundary layer effects, such as stress

concentration factors, , -
(iii) the neglect of shear defprmation, implied by the hypothesis»

(normals remain straight and normal),
(iv) the assumptibn of a state of plane stress in the cqnst%igtive

relations, which eliminates the possibility of exact calculation

of interlaminar stresies.

Classical. theory is merely a special cage of the shear deformation

ftheory, wher9 the_shear, odulus in terms associated with the transverse

»shear deformation;ismtake

e ve*y‘largeD Buch that shear deformation




can be negie.ct,e’d° The finite element method developed ignores shear
deformation end shear stresses in_both the large and small displacement
gnalyses. I would be of value to be able to predict the extent of shear
deformation and shear stresses in our plates. Steps can then be taken

in the design of the experiment to minimise these inherent responses.

The remainder of this section iz divided into two; shear deformation
being studies first, followed by shear stresses. Each study indicates
that certain limiis on experimental parameters must be made to reduce the

unwanied responses to an acceptable level.

4.2.1 .Shéar‘39£ormatiqn

The treatment of trensverse shear deformation effects in plates made
of isotropic materials stems from the classical papers of Reissner (105)
and Mindlin (106). Both of these theorieswere based on the displucement

form
u = u° L4 wa

v = Vo *+ 2 wy (3'1)
W < w° V

where u, ,v, and w, are weighted averages. The classical theory assumes

the same displacement field but with the two rotation terms Yx and,yy

dx

equal tgld%L gpdlﬁ%ﬁ':éspectivélyo In ReisSﬁer’s epproximate method a
»speciél véfiafionéiwthegrép was used to dexe:gipeiboth the equations of
eguiiibriqm-in térms of résuliants and theﬂstress—Si?éin relations
fnvolving Bqu. 3:1. The stress fields, along with the displacements,are

assumed {5 vary @s a function of 2 . Reissner's methiod was extended to

“ofthotropic plates by Girkman-and Beer (107) end later to symmetrical




cross-ply plates by Ambartsumyan (108). Whitney (109) then broadened
this latter analysis to generally symmetrical laminated plates with

orthotropic laminae of arbitrary orientations.

Mindlin employed kinematic assumptions of the form Equ. 3.1 and
without introduciug corresponding stress distribution assumptions,
obtained the governing equations from a direct method. A correction
factor was introduced to account for the fact that the displacement
relations predict a uniform shear stress through the thickness of the
plate, which was incorrect and in general would voilate surface conditions.
This factor was evaluated by comparison with an exact elasticity molution.
A generadlisation of Mindlin's theory was developed by Yang, Norris and

Stavsky (110) including shear deformation and rotary inertia to obtain
freguency responses for arbitrary laminated composites. A review of
further papers was given by Bert (111) from which other researchers have
etated that the ?§§ theory is adequate in predicting the behaviour of
laminated plates. Although all these procedures are approximate, the
algebra is complex and comprehensive results for multilayered generally

symme tric laminated plates are very involved:.

In parallel with the approximate methods, Pagano and his associates
(104,112,113,114) were solving exact solutions of certain cylindrical bending
examples. The manipulation of the ensuing theory is intricate and was
developed to cope with simple composites containing arbitrarily orientated
laminze., From the examples reported, the overall response of the specimen

es the span to thickness ratio S is altered was demonstrated.

Fig. 4.2 shows the behaviour found in a symmetrical 3-ply
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(equal thickness), cross-ply strip, which is simply supported at each end
and has a transverse sinusiodal load (104). With low span to thickness
ratios, the figures emphasise that the deviation of the exact solution

from the approximate C.P,T. is quite substantial.

Fig. 4.2.2 shows the normalised transverse central displacement,w.
plotted versus S and even at S=20 where C.P.T., would be accurate for
isotropic materials, the deviation is about 20%. The normalised stress

&% is plotted through the thickness for values of S of 4 and 10,
Pig. 4.2.3, 4.2.4 respectively. Deviation of the classical lamination
solution from Pagano's exact elasticity solution is drastic for S=4
but not over large when S=10. Transverse shear stress, ;kz for S=410
are shown in Fig. 4.2.5, 4.2.6 and the theories are not significantly
different. Inplane normalised displacement, Uy , is plotted through the
thickness for S=4 and S=10, Fig. 4.2.7, 4.2.8.. Obviously, the displacement
varies almost linearly in each layer, but definitely not through the
laminate when S=4, when S=10 the deviaticn is not ag great. Thus the
Kirchoff hypothesis of non-deformable normals is not appropriate for low

~values of S.

For a particular value of S the C.P.T. stresses converge to the
exact solution of Pagano much more rapidly than do the displacements.

With S=20 stresses are in the order of 10% in error.

Displacements are severely underestimated for S less than 25 in this
example. If this set-up was tested experimentally, and S was less than
25, then the effects of shear deformation must be included in the numerical

analysis,
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The theories for shear deformation described above and the classical
theory use the same order of approximationy; Equ. 3.1, in a power
series expansion in z . There have been several theories proposed which
are of higher order than those of Reissner and Mindlin. These
sophisticated models of plate behaviour are more applicable to laminated
plates than isotropic, because strain transverse to the plane of the
laminate strongly influences the behaviour. High-order theories wers
derived to sclve fhe full elastic problems, to provide description of
transverse normal strain, shear stresses, and vibration responses, rather

than just shear deformation.

The next high-order theory from that embodied in Equ. 3.1 involves
displacement forms of the type:
u = o+ Zlx
v+ ozly {4-2)

o 22
Wie zlY; + 27§

v

W

1t

which includes the effect of transverse normal strain., Whitney and Sun
(115) developed Equ. 4.2 for laminated cylindrical shells. The approach
--was--incorrect, a shear-correction factor was employed to derive stress
resultants. Whereas a factor was appropriate to Mindlin's derivation
since it assumed uniform shear stress across the thickness, the above
displacement terms imply a non-uniform shear stress, so the correction

factor was not required.

A step-up from Bqu. 4.2 is the assumed displacement forms

U = U+ zly =« ZZSX

vz vie zly + zzﬁy {43
o C .2

W:W"‘zw242§z
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Nelson and Lorch (116) applied Equ. 4.3 to laminates, but made the mistake
of still operating with a shear correction factor. Hildebrand  Reissner
and Thomas (117) briefly examine the theory for the level of Equ. 4.3

and concluded that the inclusion of the quadratic terms in the inplane
displacements did not provide extra advantages over low level theory, for

problems which were of interest to them.,

Reissner (118) has presented a theory which involves
wa + ZB¢X
zyy + 230y (het)

u

v

W Wwe + 2252

He showed that the plate theory corresponding to Equ. 4.4 gave excellent
results with the corresponding elasticity solution for the bending of a
plate with a circular hole. Though the results obtainedwere impressive
Equ. 4.4 represents the lowest order correction for out-of- plane deformation
and inplane deformation was neglected, which was acceptable for the problem

studied.

Lo, Christensen and Wu (119) formulated most of the up to date studies
in high-order theories. Their 3-dimensional solution was based on the

displacement forms

U= U ez + 226, + 23y
v = v o4 Zwy + Zzgy + Z3 ¢y (4-5)
v W+ zl:z * 2252

which are on the same level as the Reiscsner theoiy but now take account
of both in- and out- plane modes. Displacements and stresses were
obtained by substituting Fourier series approximations (for displacement

forms and loading) into the governing equilibrium equation which has
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been derived from the principle of stationary potential energy. Finding
a favourable comparison with isotropic plate test examples the theory

was extended to cover laminated strips (120).

Further development of this method is discussed in Section 4.2.3
with special attention to its applicability to the behaviour of our

generally symmetric orthotropic lamirnated piates.

However, the solutions obtained from the above theories are limited
to gimple geometry, load and boundary conditions. The finite element
method of analysis cah be adopted for difficult but practical structural
configuration, as a general model. With the ever increasing development
of elegant finite element procedures considerable effort from the early
Seventies has been spent on investigating shear deformation in laminated
plates. These finite element methods were generally based on the simple
displacement form of Equ. 3.1. The first of the 2-dimensional, small
displacement finite element methods to analyse 'thick'® plates utilised the
conventional displacement procedure. Pryor and Barker's (45) element has
7 D.0.F. (three displacement, two rotations and two shear rotations) per
node, Subsection 3.1.2, but unless the mesh was very fine little success
with the results was found. Mau, Tong and Pian (38) have employed the
so=-called hybrid stress FE method to analyse composite plates including
shear deformation. Normals are assumed linear within each layer, but can
vary from lamina to lamina. Mawenya and Davies (46) applied the same
assumption as Mau et al, with a refined element and utilised the
displacement method of solution. More recently, Panda and Natarajan (47)
used, fcllowing Mawenya and Davies, the quadratic Serendipity shell element

of Ahmad, Irons and Zienkiewicz (87) with the same normal rotation through
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the thickness to c¢laim improved accuracy. The thickness concept mentioned

in these methods is essentially the same as that in the YNS theory.

Noor and Colleagues (48,49) developed a package of programmes to solve
bending in laminated pletes, which incorporates severzl shear flexible
modele. The analytic formulation was based on Reissner's theory with the
effect of anistropic material behaviour indluded., A 16 necde lagrangian

element was the most successful, with 80 D,0.F.

The most recent study by Reddy (44) used the YNS theory with the
inclusion of a penalty function concept to take account of the shear
deformntion.As already mentioned in Subsection 3.1.4. 1arge displacement

analysis is a facility included in the latter two programmes(72,79,7475).

4.2.2 Comparison Of Classical Linear Finite Element Analysis (ACM)

With Shear Flexible Elements

Considering the present undersiahding the magnitude of shear
deformation in 'thick' laminated composite plates, it might be thought

advisable to include shear deformation in the Finite Element Analysis (ACMBC).

Table 4.3 presented here, briefly describes four shear flexiﬁle
elements which have been developed and verified against Pagano's exact
solutions. Pagano employed the full 3-D stress-strain relations in the
examples, whe;eas all the 2-D shear flexible elements account for the
assumption oy=0 by altering the appropriate 3-D stress-sirain terms.
This means that each ply has slightly lower stiffness coefficients than

the corresponding 2-D classical plate theory (which totally neglects any
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effects in the z direction), and considerably lower than those of the

exact solution.

With the shear flexible elements, quarter plate representations were
applied to derive results for the cross-=ply examples All meshes, excent
Mau et al. (38) have an equal number of uniformly sized elements per side.
Together with the linear FE analysis (ACM)p as described in Chapter 3%,
the accuracy of the shzar flexible elements sre measured against the
third test case considered in Pagano's paper, 'Exact Solution for Rectangular
Bi-directional Composites and Sandwich Piates' (112). Test parameters for
this 3 layered symmetrical cross-ply example are defined in Fig. 4.3.

Two plots, Fig. 4.4,4.5 show the non-dimensional central transverses
displacement; W, and the non-dimensional maximum stress,ﬁa, in the
X-direction, for increasing span to thickness ratio, S. Labels on the
finite elements indicate the dimensions of the gquarter plate meshes and

their total number of D.O.F.

From the results the following observations were made for the particular
example chosen:
1. Shear flexible models are only required in determining
displacements when the value of S is less than 40,
2. Shear flexible elements do not provide an improvement in
the prediction of stresses, over the whole range of S, and,
in fact, the stresses deviate further from the exact
solution than the element ACM.
3. It is to be recalled that the major reason for the adoption
of the finite eleﬁent approach was to evaluate the strains

and stresses, and hence explain the behaviour found in the
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plate bending experiments. The number of D.0.F, is a

measure of the computing time required. It is evident

that the solution using the element ACM takes a similar

time as the shear flexible elements, and generally gives

guperior resulis. This being specially so providing S>30
A shear flexible element was also rejected for the following reasons:
(i) ‘o represent the experiment, Section 3,0, at least 36

elements are necessary. If one of the shear flexible

models was now used in the non-linear analysis, the total

number of degrees of freedom would make the size of the

governing stiffness matrix too large for the capacity of

the computer
(ii) and the extra complexity to account for a shear flexible

model in the programming would inevitably increase the

computing time.
Eence no further progress as to the magnitude of shear deformation effects
in the tested generally symmetrical orthotropic laminated plates has been
made. Two further pieces of information present more factors which will
effect the size of shear deformation in the experiment. Whitney (121)
reported that the higher the ratio E11/E22 of the material, the more
drastic was the deviation of the C.P.T. solution at low values of S from
his approximate results. The carbon fibre reinforced plastic ply material
used in this work has a E11/E22 ratio of about 13 which is less than the
material employed in Pagano's exact solutions, 25 ., However, when
the plies are distributed in a laminzted plate, with orientations of

019011h5° ; thermal strains produced in the curing process reduce the

transverse modulus considerably. From a private communication the value

can decrease to 25% of its original value. Therefore it is possible that
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the ratio E11/E22 could be about 40 for our laminated plates, and this
implies that shear deformation will be higher than found in Pagano's

examples.

The second point was given by Pagano and Hatfield (114), who found
that the exact solution converges to the C.P.T. solution at lower values
of 5 as the number of layers in the cross-ply examplewere increased.
Their analysis concerned specimens with 3 to 9 layers, so a substantial
gain should be found in the plates to be tested, which consist of 16 to

40 layers,

4.2.3 High Order Plate Deformation Theery For Laminsted Flates

The distinct methods forecasting the size of shear deformation (see
previous Section) all suggest that, providing S> 30 there will be a close
agreement between the exact solution and classical theory for laminated
composite plates. Howevér, as has already been pointed out, there is nc
idea of the extent of shear deformation in the plates tested, so the value
of S stated above could be significantly different., If the magnitude
of shear deformation was known progress in developing the plate bending
biaxial test method could be made. It would allow a value of S to be
fixed for each plate construction, below which incorporation of shear
deformation into a numerical method is imperative. The experimenter
would then have at his disposal a minimum span to thickness ratio for the

design of the experiment parameters.

From the wide range of anslytical solutions discussed, thez high order

plate deformation tﬁeory developed by Lo, Christensen and Wu (119,120,122)
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appeared suitable for numerical programming. Construction of a 3=D small
displacement analysis would predict shear deformation, and then possibly

shear stresses in our laminated plates.

The high order displacement assumptions are given by Bqu. 4.5. In
(120), Lo et ul. outlined the equations and relationships reauired to
solve the displacement fields in general laminated plates. Governing
equations pertinent to this theory were derived using the principle of
stationary potential energy. Eleven second order equilibrium equations
{4} were obtained for the determination of the 11 generalised displacement
coefficients in Equ. 4.5. Terms in the equilibrium along with the
boundary conditions necessary were defined in Equ. {5-7}.These
relationships were independent of the properties of the materisl of the
vlate and hence hold true for homogeneous isotropic as well as laminated
plates. Expressions for the equilibrium equations were given next in
terms of the eleven displacement coefficientsﬁusing equations#SJB-?} and
the strain displacement relations. Tre coefficients in the relations

were defined by ﬁO}.

Formulation of certain classes of problems could then progress,
providing the displacement coefficients, and distribution of load could be
described by Fourier series. The ensuing displacement forms must then
satisfy the boundary conditions. The high order method is now developed
to solve the standard cross~ply example of Pagano, which has been compared
with shear flexible elements in the last Section. It will be shown that

the high-order theory is accurate for this test case, allowing further

f] brackets indicate that the equation number refers to paper under

discussion,




development to include laminates with arbitrary oriented plies. An
important restiriction was imposed; in that the analysis was only
applicable to generally symmetrical orthotropic Laminated plates.
However, the introduction of the coupling compliances 16,26 and 36 causes
matrix equation to be dependent on the X-Y co-ordinates. This in

turn meant that the problem was indeterminate.

4.2.3.1 Numerical Procedure - Stress-Strain Relations

The composite material has 3 mutal elastic axes which means that

the governing 3-D principal stress-strain relations for layer X are:

o1 | Qi @2 @3 o [ 3
J o2 | Q21 @22 Q23 0 £,
= /
oy Q31 032 033 0 3
T4 0 0 0 Q66 ¢
R K g
o | fows 0 €y
4 4 =
| @ 0 ass € f
] 5 Jg i K 5 K
where
op =Ty3 » og=T13, og=Ti2 and €4 = ¥23 etc.

The material properties imply that the Poissons ratios V13 and V23
(which assume that the 2-3 plane is basically all matrix) are equal to

the major Poissons ratio V12 ie V12 = V13= V23= V

Fig. 4.6 below displays the principal axis system related to the
unidirectional ply. A further material property relationship is seen

to exist. E22=E33.
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Figure 46 3-D Composite Properties
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Table 4.4 indicates the 3-D stiffness terms with the corresponding

2-D stiffness coefficients .

Table k&
STIFENESS
COEFFICIENTS 3-D 2-D
— -
an (1-v4) EN E11
LK 1 (1-v2E224y)
012=021= | [V(1+vIE22EM | VE22
013= Q31 K 1| 0 -v? E224y)
Ea1-E 2992 F99) £22
022 =033 (E11-E22971E22 —tle
! K’ J (1-V2 E22/p.4)
QLh G23 -
Q55 G12 -
Q23-032 {MJ
K
Q66 G612
where K = EM(1- V3 - 282241+ )

Stress—strain relations in the X4Y directions at the angle 8°to the
principal axes of the ply are given by:

(E'.i}k = 1T i1mijllT I {Ei]k j = 146 (4-7)

e Bkt T 01T,
The 3-D transformation matrix (7] for fibre reinforced composites with

the principal direction 1 being parallel to the direction of the fibres,
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making the angle 8°with the x-axis, and with direction 3 remaining

parellel to the z-axis is:

Cos2e®  sin’e® 0 0 0 2Sin€CosH

.2 2.0
Sin‘d®  Cos® 0 0 : -2Cos8%in6|

0 0 1 0 0 0

[T] = {L-8)

0 0 0 0 Cos6 -Sing°

0 0 0 0 -Sing°® (osg°

:Sin 8°Cost® CosBSin®” 0 0 0 Cosze"-ssnzé

4.2.3.2 Equilibrium Equations

The governing set of relations {8] are greatly simplified as the
laminated plates under investigation are 211 symmetrical. Therefore
the coefficients which are functions of j(h,z?zs)au dz become zero
and the governing 11 equilibrium equations car be separzted into a set of
five second order differential equations describing the inplane
displacement components and a set of six second order differential
equations governing flexural displacement components of the laminates.
Symmetxry splits the displacement assumptions into the inplane and

flexural components

FlLexural

U = zlx ¢ 23¢x

veozly « 230y (4:9)
Wz W® e 2252
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Inplane

U = u® ¢ 12§x

ve= v°a 22§y

W = zUz

The right hand side of {8} is also simplified as the problems studied
have only transverse load distribution on the upper surface of the

specimen.,

With the reduction in comgplexity the two sets of differential
equations are shown in Appendix II . Parameters for Pagano's exact
cross=ply solution are shown in Fig. 4.3. The following assumed

displacement forms are the simplest:

Flexural
u = (zKq + 23Kp) Cosmx SinmY
A B
v = (zK3+ 2 Khl Sinmx CosmY
A B
Ww = (Kg + 22K6) Sintx CosmY
Inplane y A 8 (419)
u s (Kg +« z°Kg) Cosmix SinwY
A B
v = (K9 + 22K10)S|n_1 Cosny
A B
wo= K11 SinTx Sin1IB-y
where Kj;i= 1,11 are constants. Loading distribution is described by
a similar Fourier approximation as
@ = g5inmx SinmY (&-11)

A B
vhere q, is the maximum pressure imposed.

To determine the Kg the assumed displacement fields were substituted
into the governing relationships, which on rearrangement for the fleiural

response are shown in Appendix II.

For the 2=D exemple case, having similar displacement forms as in the
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exact solution (112), the values of the K's are independent of the
co-oxrdinates., A solution for the cross-ply example was readily available
as all the coupling terms (12,26 and 36) are zéro, which eliminates these
Fourier products. However, symmetrically laminazted plates with
arbitrary orientations do not possess 2 general solution because these
coupling terms are present. If the particular values of x and y

chosen make either (os8° or Sin 6° zero, then the determinant of the

matrix is also zero, and a solution is impossible.

When the set I’ equations are solved the K constante can be
substituted into the displacement forms describing the behaviour of the
plate. Substitution of the displacement forms intoc the strain-
displacement relation, and then the strains into'the stress=strain
relations, allows the magnitude of the displacements, strains and stresses

to be evaluated at any x,y,z position in the specimen.

Although the high order theory is unable to aid in the prediction of
shear deformation and possibly shear stresses in our laminated plates, it
does produce a fairly accurate picture for the exact solution attributed

to Pagano, Table 4.5.

Table 4.5 shows that the high order theory, contrary to the finite
element analysis, is weaker in establishing the displacements than the
stresses. The fit between these analyses should be betier than the
finite elements as they both rely on the same 3-D stiffness coefficients.
Further information is obtained because the flexural and inplane components

are separate, and a comparison for a range of S are shown in Table 4.6.
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For all values of 5 the inplane components can be neglected unless S is
small and o; is required. However, transverse stresses are found to be
more accurate when the stress equilibrium equations are applied rather

than the displacement forms are substituted into the strain displacement
relations (122). Doubt is therefore, cast on the validity of the
transverse normal stress calculated. The magnitude of v, for this exampie
suggests that as long as S>10 then it will be in the order of 100 times

less than the maximum normal stress and transverse normal failurs will not

precipitate prior to fibre failure.

In this Section a very thorough attempt was made to predict the
effect of shear deformation in the bending response of generally
symmetrical orthotropic laminate plates, Obviously for the plates in
question, a solution is complex and an approximate representation, even
with a shear flexible finite element, would be difficult. It was also
shown that a promising high order plate theory had its limitations.
Together the observations suggest that shear deformation effects can be
assumed insignificant in the laminated plates tested, being ignored in

the finite element analysis providing the span to thickness ratio §>30.

4,2,4 Shear Stresses

In classical lamination theory, no account is taken of interlaminar
stresses, and so it is incgpable of providing predictions of some of the
stresses that actually cause failure of a laminated material, Since the
plies in a geAeral orthotropic laminate have different stiffnesses in
any given direction, they tend to slide over one another during extension.

If the laminae are connected at their interface, interlaminar shear
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stresses will develop because of this tendency. Moreover, classical
lamination theory implies values of Txy where it cannot possibly exist,
namely at the edge of a laminate. Physical grounds have shown that:
(a) At the free edges of a laminate, the interlaminar shearing
stress is very high (even singular) and would therefore
cause the delamination observed in such regions (125),
(b)  the alteration in the layer sequence in a laminate can
produce differences in the tensile strength, even though
the proportion of each type of oriented plies do not change
(124). This sequence alteration changes the interlaminar
normal stress, o, , near the boundaries and is believed to

provide the answer to such strength differences (125).

The problems associated with interlaminar stresses near free edges
have been recognised for some time and the literature contains voluminous
results of stress calculation for a 2-D section of a laminate in either
uniform extension or cylindrical bending. The earliest investigations of
the interlaminar stress problem was apparenily carried out in Japan by
Eayashi (126) and Hayashi and Sando (127) who reported that the maximum
interlaminar shear stress occurred at the free edge of a laminate in
tension, Bayashi used a plane stress model for the layers and approximated
the interlaminar shears by a strain averaging technique. Using a similar
model, Puppc and Eversen (128) similarly discovered a sharp rise in the
interlaminar stresses near a free edge. Notably, the use of the above
models ignored the interlaminar normal stress. This was addressed by
Pipes and Pagaﬂo (123) who presented a finite difference solution to the
exact elasticity equations for a laminate in uniaxial tension. In their

development, the stresses were assumed independent of the axial co=ordinate
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and include all six components, The results for the example of a
(+453-h5%5 laminate are shown in Fig. 4.7.l,2 sharp rise occurs in both
the interlaminar shear stresses and, to a lesser extent, the normal stress
near the free edge. These discoveries were later to serve in making
strength predicitions of laminates based upon the layer stacking sequence
(124) and then as a comparison with experimental observations (129).
Pipes and Pagano's finite difference procedure is knéwn fo be only
approximate and requires a vast amount of computing time to be of gereral
application. To analyse multilayered laminates (125) they developed the
high order method with the approximation of Whitney and sun (115) dbut it
vas only suitable for symmetrical +8° composites. Oplinger (130) also
carried out an analysis of angle ply laminates in tension similar to Puppo
and Eversen. The approach allowed a large number of layers to be considered
and, like Pipes and Pagano (123,125) demonstrated that a singularity in the
interlaminar shear occurred at the free edge of a laminate for one

particular type of layer construction.

An alternative approach to the above was employed by Eybicki (131) and
Wang (132) who studied a 3-D finite eiement fdrmulation, Computing time
limits the degree of modelling possible with this numerical approach.
Taking advantage of the stress independence in the length direction,

Wang and Crossman (133) developed a 2-D finite element solution. The
limitation of this numerical solution was that, in order to achieve a
realistic prediction of the siress field, sixteen elements in the thickness
direction were required within each layer in the region of steep strain
gradient. A total of 196 elements per layer were employed. Hence, like
Pipes and Pagano (123) the computing time was enormous to achieve a

satisfactory solution for a two layer free edge boundary value problem.
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Recently Pagano (134), who was extremely critical of the above
numerical approximations for the solution of the uniaxial extension
example, cited three criteria by which a self consistent theory must
be based. He stated that the assumed displacement forms used in most
of the above methods leads to a lack of credibility. The paper described
the simplest theory based upon the variational theoyem derived by Keissner
(135) which permits the treatment of discontinuous interfaces.

Assumptions for the stress fields were the same as the shear deformation
analysis attributed tc KReissner. The ensuing numerical values compared
favourably with Wang and Crossman for simvle laminates. For the most
satisfactory correlation; each layer was subdivided into several sections.
Computing time was again largeas the solution had 13N field equations

and 7N edge conditions (where N is the total number of sublayers).

Free edge effects in laminates under bending have received least
attention. Tang (136) reported for a uniformly loaded rectangular plate
(4 layers,(+ef—éﬁs)that "the interlaminar shear and normal stresses may be
as high as 308! and 5% respectively of the maximum bending stress in the
laminate'. An assumed displacement field was used in the analytical
golution which separated the interior of the plate from the free»edge
and solved the interior by the classical theory while the boundary layer
region was studied by a combination of a modified tofsion problem and
a modified plene strain problem. Salamon (137) looked at the same
laminates as Tang, solving_the governing displacement equations by finite
difference. These bending cases along with the inplane solutions provide
the same piotﬁre for the distribution and magnitude of the shear

components. The following observations were drawn from the literature:

110




There are three classes of interlaminar stress problem -
(a) +0° 1laminates exhibit only shear coupling (no Poisson

mismatch btetween layers), so Tyx; is the only non-zero

interlaminar stress, Fig. 4.7.1
(®)  0590° laminates exhibit only a Poisson mismatch between

layers (no shear coupling) so Ty; and o, are the only

non=zero interlaminar stresses, Fig. 4.7.2
(e) a combination of the above, for example:aﬁzez laminates,

exhibit both shear coupling and Poisson's mismatch between

layers, so have Ty, Tyz and o, interlaminar stresses,
Looking at the example of the (+h5ﬁ45°k laminate in uniaxial strain, with
b=8t (width four times the thickness), the inplane stresses oy ,T}y
the shear stresses 1&2‘132 and the normal stress o, at the interface
beiween layers(z =t} are shown in Fig. 4.7.1. The stresses predicted
with classical lamination theory were obtained in the centre of the cross-=
section by the method including shear. Eowever as the free edge is
approached, o, decreases, T}Y goes to zero, and most sigbificantly,
T;Z increases from zero to infinity {(a singularity exists at y= b},
The presence of a singularity was the main reason for the more thorough
analyses. The dotted line, Fig. 4.7.1, shows the prediction of Ty,
as obtained by Pagano's most recent solution (134). The singularity is
still in evidence and grows with increasing subdivision of the two layers
and the final limit that would be obtained is questionable. By changing
the laminate geometry, the configuation, the total number of laminae, the
width of the region in which the stresses differ from those of classical
lamination theory has been shown to be about the thickness of the
laminate. Thus the deviation from classical lamination theory can be

regarded as a boundary layer or edge effect one laminate thickness away
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from the edge and; in the rest of the specimen, expected to be valid.
As stated at the beginning of this section, layer stacking sequence
can change the tensile strength of a laminate. Opserving the distribution
of oy along the centre line and the interface(z=0), Fig. 4.7.2,4.7.3,
of the two examples (0,90)¢ and (961035 it can be seen that if the 0°
layer is outermost then o, is tensile and can induce debonding between
the layers. VWhen the 0° layer is innermost o, is compressive.
This is probably the answer to strength variations found between
specimens comprising of twolay-up arrangements. Similar influence, due
to the stacking sequence, was found by Pagano and Pipes (124) with

(215° 245’} ¢ laminates and Reifsnider et al. (138) with quasi-isotropic

(90, 45345 and (0745:+45/90°) ¢ laminates .

In the laminates tested all types of layer sequence exist, i.e.
rotating the specimen through 90° changes the lay-up observed. When
these generally symmetrical orthotropic laminated plates were itested the
distribution and magnitude of shear stress 1}2,132 and the trangverse
normal stress o, were unknown. Qbviously, none of the analytical
solutions discussed could possibly model these multilayered laminates
which were subjected to complex strain distributions near the free edges.
To minimise the inherent shear strains, the experimept must induce,
relative to the test section, small strains in the free boundary regions.
This will ensure that the delamination stresses Ty, and v, will not cause
premature damage. To achieve this, the preferential bvending about
a centreline must not be excessive, Basically, the combination of the
global plate bending stiffness D11,D22and the aspect ratio Ag, B¢ must
not enable the specimen ¢o behave as a pure bveam, It is still pessible

that, even if preferential bending is minimised, shear stresses become
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large. To defuse their detrimental effects the geometry of the plate,
with S > 30 means that the free edges are remote from the central test
section. If delamination is induced during the experiment tc failure,
it will be hoped that this area of delamination will not have spread far
enough into the bedy cof the plate to effect the test section, in which

ultimate fibre failure is to occur.

4.3 Experiment Procedure

4.3.,1 Apparatus

The apparatus for the plate bending test was designed to fit the
specifications of an Instron 1195 machine. The rig had to fit onto the
.144m diameter loading platform of a 25KN compression load cell. A base
plate was therefore needed to support the specimens. Onto this plate
four support columns had to be positioned to provide the various support
distances. These positions had tc be centred sbout the centre of the base
plate, which was to be placed directly in line with the centre of the load
cell. Fig. 4.8.1 illustrates the design for the mild steel base plate
and Fig. 4.8.2 shows one of the four identical mild steel supporting
columns. To support the specimens ball bearings were placted into the
sloped recess of the columns, Two sizes were used, 0.3175E-01 and

0.44L4S5E-0)m diameter.

Columns were introduced to increase the distance from the laminates
to the base plate, so that when loading commenced the centre of the
specimens did not touch the base plate before fibre failure. The columns
were designed to be extremely robust, and fit tightly into the holes

machined on the base plate. This ensured that when the supports were
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subjected to loading negligible sideways deformation resulted.

FPor the following reasons the larger of the ball bearings were

generally used:

i) To add extra distance between the specimen and base plate
ii) To provide a large enough area of contact preventing
local yielding. (The area was, however, small enough

to be classified as a point when compared ito the surface
area of a specimen, If local yielding had been allowed,
it could have cauvsed unwanted bending deformation and made
the numerical comparison more difficult).

iii) To provide a continuous curved surface which the specimen
could easily slide over. The benefit of this was that

the sliding reduced inherent axial strains.

Plate 4.1 shows a typical dpecimen supported by the larger ball dearing
awaiting testing. Plate 4.2 shows one of the two loading heads (.02 x .02)m
and the observed gross deformation of Experiment 5. Fig, 4.56.3 gives the
dimensions for the loading heads. Care had been taken when machining
the indenters, since if the ends had not been squared the load would have

been unevenly applied.

4.%.2 Specimen Preparation

Before the experiments could be set-up several parameters had to be
defined and a choice made for the locations of strain and dial gauges.
Table 4.7 contains the distances of the supports A and Bg and the patch

loading Ap and Bp chosen for the nine experiments. It can be noted with
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reference to Fig. 2.2 that the distances 'A" are measured in the global

X-direction.

The choice for the supports were made by taking the largest sensible
length above the limiting values. A limiting value was equal to that
length which made the span'to thickness ratio;, S, equal to 30, Providing
this value of S was exceeded, the effects of shear deformation and shear
stresses could be neglected. The values of S for each experiment are

given in Tgble 4.7.

The value of the principal bending stiffnesses force a maximum
limit on the relative lengths of Ag and By , for the following reason.
If, for example, A, is greater than By and the corresponding stiffness
D11 is smaller than D22, considerable preferential bending will ccour
about the Y—axié, ( 0-0 in Fig. 2.2) when the plate is loaded. This
makes the response of the specimen approach a ‘pure'! beam. Large strains
will then be induced near free edges providing high shear stresses which
may cause delamination and invalidate the results. Because of this

condition the practical range of supporting distances will be limited.

Patch load dimensions Ap and Bp were then chosen to be reasonably
large znd equal, but not greater than 0.1 of the plates minimum length.
This ensured that the distribution of load was uniform over sufficient
areaalleviating spots of high concentration. With this choice of parémeters

the two indenters, Fig. 4.8.3, were designed.

The positions and orientations for the strain gauges wers then chosen.

The principal orientationsdepended on the orientations of the two outer
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laminae and the positions were taken to match nodal points in finite
element meshes. The majority of the gauges were located in the proximity
of the plates® centre, with just the occasional one near an edge. These
latter gauges were used to give some insight into the strains inducing

shear stresses.

3mm cross-ply and single-ply gauges were used throughout. These
were the smallest available which would not overheat when excited with the
minimum supply voltage of 15V . Measurements were always made individually
80 a heat sink problem with the cross-ply gauges was adverted. The
centre of each gauge was positioned at the nodal points. It has been
assumed that a linear variation in strain existedover the entire length of
the gauge. With this assumption the strain measured could be dirxectly

taken as that which acted at the nodél point.

Gauges were generally placed in pairs on the upper and lower surfaces,

except directly below the loading head, and were

Cross=ply FCA=3~11 3mm TOKYO SUKKI

Single-ply FLA=3=11 3mm KENKYUJO Co tLtd.
The gauges had a resistance of 1205 <2 |, a gauge factor of 2.10 and a yield
strain of approximately 2.0%, The adhesive was M-Bond 200 (Welwyn) which
has a shelf life of only 6 months, This short shelf life was the reason
for the difficulties experienced in Experiment 2. Gauges were attached
to specimens by following the procedure laid down in the Instruction
Bulletin B=276 M- line Accessories, "Strain gauge installation with M-Bond

200 adhesive".

After gauging the plates, the type of strain to be measured was chosen.
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It was a simple matter to change the wiring connections of a pair of
opposing gauges to enable either the bending, or the axial, or simply

a surface strain, to be recorded. Fig. 4.9.1 illusirates the exaggerated
bending stretching behaviour expected in laminates due to classical thin
plate theory, and Fig. 4.9.2 shows the wiring connections for the varicus
strain measurements. Twice the actual reading was recorded when
measuring the axial and bending component since a pair of gauges were

employed. The true values are given by the following expressions:

Ep = + Etop + Epottom
yi
where +ve lower surface {412)
-ve upper surface
Ep| = €top = Ebottom

2
For the axial strains dummy gauges were required in the full bridge.
Experiments were always performed at room temperature, so temperature
compensation was not important. Therefore it did not matter that the

dummy gauges were attached to aluminium.

After several experiments had been analysed it became apparent that
further information was obtainable if all the gauges were separately
recorded. Then by the application of the two simple relationships above,
the bending and axial components could be determined. Unfortégitely the
relationships only hold for classical thin plate bending and so, once

large deformation has been introduced, they become invalid.

Finally, two points were chosen where dial gauges could be located
for a comparison with the calculated finite element transverse displacements.
A diagram showing the arrangement of strain gauges, the dimensions of the

supports and patch loading for each experiment is presented with the resultis,
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4.3.3 Experimental Arrangement

After the specimen had been prepared the rig was arranged on the
compression load cell, as depicted in Plate 4.2. The cell has a maximum
capacity of 25KN, and is electrically calibrated. Loads were accurately

recorded on a variable speed pen chart recorder.

Connections were then made from the strain gauges to appropriate
instrumentation. To cope with up to 25 individual strain measurements
several units were needed, as shown in Fig. 4.10. Since the only
available instruments were étatic balance devices all measurements were
made with constant central displacement. Strains were measured with two
Peekel devices, a B105 battery operated, minimum excitation wvoltage 1.25V,
and a2 5610HN mains operated minimum excitation voltage of 1.5V, Both
instruments tended to slightly drift with time and accuracy was dependent
on the full scale taken. For all experiments full scale deflection was

300pe providing an inherent error to the measurements of * ZPE.

After the strain gauges were connected a simple check discovered if
a gap existed between specimen and any of the ball bearing. The existance
of a gap was due entirely to the laminate not being exactly flat. The
gap was removed by placing shims under the base of the lowest column.
When this had been accomplished further inspection generally showed
that the specimen was not horizontal. Fortunately, further checks revealed
that the load cells platform and the crosshead were alsoc on a slight slant,
and that as a complete unit all components were within reason parallel %o

each other,
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4.3.4 Test Procedure

The following procedure was carrvied out with each experiment to
gather as much relevant information as possible. With the specimen
unloaded all strain gauges were electrically balanced. On occasions a
balance was unobtainable due to poor electrical contact. Remaking the
suspect connection was the usual course of action necessary %o produce

the balance.

To discover if any of the gauges were insecure the plate was then
subjected to a simple load cycle. The maximum load for the cycle was
taken so that either the greatest surface strain did not exceed 100Cpe
(0. 1%) or that the central transverse displacement did not exceed the
plates' thickness, whichever came sooner, Table 4.8 gives the embedding
cycles for the nine experiments and the time period at which the load
increments were maintained. The cycle was repeated three times to make

absolutely sure that all gauges were correctly attached.

By noting the strain at the maximum load, a quick comparison with a
finite element model, (ACM), showed up the faulty gauges. Providing that
these gauges were not in the test section they were ignored in subsequent

loadings.,

Measurements had to be made with a constant crosshead position since
the Instron does not have a constant load facility. This meant that with
up to 25 separate sirain measurements, the operation of balancing and
recording took about 5 minutes. During this period of time a small amount

of load relaxation was generally inherent. Therefore, it was standard
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practice to start the measurements at the centre of the plate and record
any changes in these gauges at the end. This enabled any changes due to

load xrelaxation and material deterioration to be noted.

A set of measurements were then taken for the evaluation of the linear
bending by the finite element method, ACM. Load was imposed in several
equal increments up to the maximum of the embedding cycle, by making the
central_transverse displacement increase at a wniform rate. After each
load level was reached crosshead movement was stopped and the readings tzken.
Once readings were taken at the maximum load, the specimen wasz unloaded by
~the same increments and the measurements remade. It soon became apparent
frem Experiments 1 and 5 that there was virtually no difference tetwesn the
two sets of values, and so a good approximation to the linear strains in
the remaining experiments was found by the resvlts during the embedding load

range in the test to failure.

Applying the same procedure as for linear evaluation the specimen was
finally loaded to first fibre failure, Unfortunately thie was not the case
with Experiments 3 and 5 because of unforseen difficulties, and meant that
these specimens were retested. Table 4.9 gives the load increments applied
in each experiment, the speed of the crosshead and the final load. The
strains and transverse displacements and any visual observations were recorded

at each load increment.

4.4 Experimental Results Fig. 4.11 = 4.5%

Selected strains and transverse displacements have been presented in

graphical form. To make the presentation comprehensive the following

120



information has also been given. Prior to each set of results there is
a section entitled 'Notes and Observations'. All features specific to
the experiment which affect its behaviour and the visual observations made
during loading were recorded here., Also noted are the final strains
measured, (generally at the load increment below failure) for those gauges

not shown in the graphs.

Before the graphs displaying the measurements a diagram shows the
rlan for the experiment indicating the locations and orientations of the

strain gauges.

There are several reasons why measured strains, and not the stresses

have been presented.

The stresses were in fact indeterminate, since the strain field at
most locations was not fully recorded. Even if it had been, (i.e. centre
where 1§y= 0 ) a prediction of the stresses would have meant applying the
principle of linear elasticity and the material moduli are not precisely
known, To complicate the problem further, if the lamina 's transverse
strain exceedso.7%the matrix will fail and prevent stress transfer in that
direction. It was found impractical to determine the area suffering

matrix failure,

All the measurements have been presented from Experiment 2 since it
was chosen as representative, Its load/displacement trace, recorded on
the Instron chart recorder, can be found between the linear and failure
strain plots, and is characteristic of the remaining experiments. For this

reason no further load/displacement traces have been given.
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A diagram to illustrate surface fibre failure has been placed after
the results of Experiments 1,2 and 4. It was not necessary to provide
such diagrams for Experiments 6 and 7 since there was only a small amount
of visible damage. Instead the surface damage characteristics were
included in the 'Notes and Observations?. Since no visible damage occurred

in Experiments 3,5,8 and 9 no such diagram was necessary.

To aid examination of the results presented, the format employed will
now be expiained. The plots were formed using the measurements at each
load increment. The curves created by zhese points were not Jjoined,; since
individual measurements would have been obscured, making inspection

(especially in the linear load range) difficult.

At the bp of each set of values a label indicates the measurement and
its position on the plate. Directly beneath the label the final value has
been noted. The lsbels take the following notation:

1 0° L B+A means gauge 1, orientation 0° (tensile unless stated
negative) lower surface and the strain consists of the components due to

bending and axial,

If subscript L happens to be 7 then the gauge was on the top surface

(compressive).

To enable a quick comparison between a pair of gauges on the top and
lower surfaces, i.e. 6 0°Land6 0T BtAboth were presented as positive. It
will therefore be important to remember that, where subscript T appears,
the strain recorded was compressive. 2 90° R or A means gauge 2,

orientation 90°, and the strain was either the bending or axial
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component,

4.5 Discussion On Results

It will be found convenient when discussing the results for the
various aspects 10 be split into two paris. The bending of the laminates
throughout loading will be discussed first, followed by an examination of
the failure mechanisms. The latter section will also be concerned with

the problem of determining the governing biaxial stresses.

It was stated in the introduction to this Chapter that certain
experimental parameters were unknown before the tests. These parameters
included the magnitude of deformation, maximum load and strains and the
failure mechanisms. The analysis of the results reveals some of the
parameters for the laminztion configurations tested, which can be used at

a later datve for further development.

Measurements taken in the embedding load range will be analysed in
Section 5.1, where numerical comparisons will be made. All that needs to
be noted now is that the results from Experiment 2 (Fig. 4.16 - 4.19) are
typical., Errors inherent in the measurements are also discussed in
Section 5.1, since they are more relevant to the numerical comparison.

In fact, since the total error in the measurements cannot be assessed, it

has been assumed small in comparison with the measurements at high loads.
It has been assumed that loading was uniform over the patch area
and that the reactions at the supporte remained identical. To state

categorically that all the plates were loaded uniformly would be incorrect,
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since observations made in Experiments 2 and 5 suggest otherwise. The
reactions were not always identical too, since the twisting stiffnesses
caused warping. Only Experiment 9 (Fig. 4.50 = 4.53) showed considerable
twisting so the variation in reactions for the remaining experiments has

been assumed emall,

4.5.1 Plate Bending

The load/displacement trace for Experiment 2 (Fig. 4.20) shows
typical behaviour, with a virtually linear increase in load with traﬁsverse
displacement. Small flutters can be seen which were most likeiy caused by
spontaneous movement between the specimen and supports. The trace also
shows a small amount of load relgxation at each increment during the>time
interval needed to take the measurements. It was thought that the
relaxation was a result of the laminate settling to a state of equilibrium.
Fowever, this is not substantiezted since the central strains did not change

(except at high loads) during the time interval,

The plots of transverse displacement are always continuous znd the
trends generally indicate that there was a slight increase in central
displacement for load, (Experiment 2, Fig. 4.21, Experiment 3% and 4,
Fig. 4.29, Experiment 7, Fig. 4.42 and Experiment 8, Fig. 4.47). The
exception to the above were Experiments 5 (Fig. 4.33) and 9 (Fig. 4.51)

because of the experimental difficulties experienced.
Generally the plots for the strains are smooth, continuous and of
similar trends up to catastrophic fibre failure. The lack of any sudden

change indicates that little or no 1local delamination damage occurred
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until fibre failure, Experiments 5 and 9 did produce a variation in the

trends, but this was due to uncharacteristic deformation.

The other gauges which also recorded a different trend were the
central gauges in Experiment 7 (Fig. 4.43) and 8 (Fig. 4.48), and, to a
nmuch lesser extent, in Experiment 2 {Fig. 4.22) and 4 (Fig. 4.30). These
gauges recorded a strain incresse at high loads during the time to take
measurenents, It can be seen that.the gauges measuring transverse to the
fibre direction in Experiments 7 and B recorded massive increases. In
fact, growth became so rapid that jus: prior to fibre failure it was not
measurable, This behaviour has been termed sirain runaway. When strain
runaway became prominent the surrounding gauges kepit constant readings,
showing that the effect was localised. The behaviour will be examined

further in the Section concerning failure mechanisms.

Strain measurements and visual observations show that the laminates
stiffened with load, as predicted by geometric non-linear considerations.
When the geometric non-linear behaviour, as defined in programme 4CFBC,
is no longer valid could not be established for the reasons given in
Section 3.4. This was quite disappointing since it would havé been
valuable to the understanding of the test to know when Kirchoffs and

Von-Karmans assumptions and material non-=linearity no longer existed.

Except in Experiment 6 (Fig. 4.37 - 4.40), (the specimen had previously
been tested in Experiment 5 (Fig. 4.33 = 4.36)) the maximum strain measured
was at the centre, but not necessarily in the direction of the fibres.
Taking this a step further, the largest strain in all the major directions

(0°90°, = 45°) probably existed at the centre. This cannot be proven

125




since not all strain components were recorded.

Where convenient a pair of gauges, which were recorded separately,
have been presented on the same diagram (i.e. Experiment 2,6 0° T and
6 0°L (Fig. 4.23)). It is noted that the trends show that the bending
strain was usually much greater than the axial and that the axial was

tensile.

" In terms of the expected deformation a desirable distribution of strain
in all the experiments but 5, was measured. It is of particular interest
that the maximum inplane strains were at the centre, and that they decreased
rapidly towards the free edge. This is a necessary condition for the plate
bending method since small inplane strains near the free edges mean
negligible edge effects. Section 4.2 has shown that if shear stresses zare
allowed tc become large then edge delamination may start before fibre
failure. This would be extremely undesirable since ii{ could invalidate the
data and break criterion {b), Chapter 1, for reliable biaxial strength and

elastic properties assessment.

Experiments 5 (Fig. 4.3% - 4.37) and 7 (Fig. 4.41 = 4.45) on the same
lamination, can be taken to illustrate the above point; even though
delamination in Experiment 5 did not occur before the load was removed.

The deformation in Experiment 5 at high loads can be likened to a pure beam
where the strain near the edge 12 9L B+A was nearly equal to that at

the centre 1 90° L B+A (Fig. 4,35). Experiment T illustrates a desirable
response with relatively low edge strains (gauges 9,10,11 (Fig. 4.44 and
4.45)) ard a bending response which did not dominate about an axis, The

largest measured edge strain, 11 0°L B+A , always remained below 509 of that
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measured by 5 ®L B+A (Fig. 4.43). This comparison of the bending in the
two experiments suggests that, providing geometric parameters are carefully
chosen to prevent the response found in Experiment 5, shear stresses will

remain low enough for edge delamination to be neglected.

The measurements plotted in Fig. 4.13 from Experiment 1, indicate
that the supports provided no restrainis to the complicated {ree bending
deformation. The two gauge pairs, 13+5°B and % -45A  which were
placed on the diagonals-near the supports, also show that the axial
strain became proportionzlly less than the bending (response stiffencd) as
the transverse deformation increased. The exact opposite would have been
expected had the supports restrained the deformation. £lihough not
checked, this conclusion has been assumed to hold for all remaining

experiments.

The most interesting discovery concerning the bending is that each
plate not only stiffened, but exhibited preferentizl bending about a
centreline. The deminating deformation was found o increase with load at
expense of bending about the other centreline. Table 4.10 was constructed

to collate the extent of preferential bending in the nine experiments.

The behaviour was even apparent with the symmetrical experiment
arrangements. The deformation in Experiments 1 and 2 was dominated by
the difference between the principal stiffnesses D11 and D22. In this
lamination D22 is much smaller than D11 so the plates deformed in the less
stiff direction; i.e. about the X-axis. The only plgte to show a small
amount of preferentizl bending was tested in Experimentis 3 and 4 which has

similar principal stiffnesses.
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From this it can be seen that, by altering the spans As and Bs
with or without changing the plate dimensions A and B, the magnitude and
axis of the preferential bending is controllable. Experiments 5 and 6
are good examples to illustrate this point. In Experiment 5 poor choice
of span distances caused excessive bending about a centreline making the

experiment unsuccessful.

In those laminations which produced considerable preferential beﬁding
it can be noted that the strains measured parallel to the axis of dominant
bending attained a meximum at a load below failure,‘and decreased

gradually thereafter (Experiments 1,2 and almost in 6, 7).

It would broaden the understanding of the method to know why
preferential bending increased at the expense of unbending about the other
centreline. Especially, since as deformation increased the points of
contact moved down the ball bearings, Fig. 4.54.1, making bending about
the preferential axis stiffer. This should have in principle reduced

the dominant deformation.

The most probable reason to date to explain the behaviour is that
the response is anticlastic. Unfortunately, little relevant information
concerning anticlastic behding is available, and Timoshenko (18) only
discussed the problem for isotropic plates, In fact, there are no
solutions for the anticlastic bending in generally orthotropic laminates.
It had teen hoped that the non-linear analysis ACMBC would have provided
the necessary information to dispel or otherwise the proposed cause of

the bending behaviour.
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Another possible factor which may contribute to the deformation comes
from work by British Aerospace. They found that as composites deformed
the nonlinearity of the material caused the twisting stiffnesses D16 and
D26 to increase in importance. For the experiments here it is felt that
the change to these stiffnesses was small, except near the centre at high
loads. It is therefore conciuded that this was only a minor contributor

to the bending behaviour.

It should have become apparent that the central biaxial stresses
were not constant due to the nature of specimen deformation. In all
experiments the change in central stress ratio was gradual (only becoming
prominent at large loads due to material noniinearities), suggesting that

the stress stzte remained constant in the linear load range.

4.5.2 Failure Mechanisms

Visible edge delamination was found in FEyperiments 1 and 2 {Fig. 4.14
and 4.26) as a result of central fibre failure and not because of edge
effects. Together with severzl other experiments they provided
considerable delamination in the central region as a result of central
fibre failure, Fig. 4.32. This central area of delamination was not
present prior to catastrophic failure since the measurements about the centre
vere continuous. Hence, the experiments show that delamination will not
present a problem in the ccllection of data and that the method satisfies

part of criterion (b), Chapter 1.

Fibre failure did not occur in Experiments 3 and 9 and only in the non

trimmed edges in Experiment 5, In each case the absence of fibre failure
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was due to experimental difficulties. Table 4.91and the respective ‘Notes
and QObservations® present relevant information for the specimens which

failed.

Fibre failure was always spontaneous and except in Experiments 2 and
8 occurred after approximately i minute of constant displacement. On
occasions a load crack was heard just before the ultimate failure and,
since all gauge measurements were continuous, it is suggesied that ithe

ndise was due to adhesive failure in the tabs and not fibre failure.

The characteristics of the sustained surface damage indicate that
failure must have started in the vicinity of the ceutre. Thie is a very
important observation since it means that criterion (b) does hold for the
plate bending method. The area and depth of failure (fibre and delamination)
depended largely on the extent of preferential bending since the path

followed the easiest route.

The resultant fibre and delamination failure was often extensive as
can be visuslised from the diagrams of surface damage in Experiments 9
(Fig. 4.14) , 2 (Fig. 4.26), 4 (Fig. 4.32) 6 and 7 ('Notes and Observations').
Only experiments 1 and 2 were identical and their fracture patterns are,
as expected, very similar, All the plates attained a final equilibrium
position, at m .load less than at fracture. But none suffered sufficient

damage to render them non load bearing.
Tension-tension was the predominant mode of fibre failure. There are

two reasons for the compressive failure found in Experiment 6. First, the

experiment was the only one performed without a rubber pad beneath the
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loading head. It is therefore likely that the metal indenter induced
stress concentrations at its corners vwhich prevented the outer laminae
from deforming freely causing the compressive failure. To hopefully

eliminate such a failure in future the rubber pad was always inserted.

Second, the plate had already undergone gross bending in
Experiment 5 which had caused permanent but not visible damage to the
laminate. This is backed by the fact that there is a large difference
between corresponding measurements in similar Experiments 6 and 7 (Fig.

4.37 = 4.45).

Because of the factors concerning the compressive failure,
Experiment 6 is not representative of the behaviour expected in the plate

bending test.

For those specimens which failed initially in the outer lamina, the
fibre strain varied from 1.1% to 1.5%, Experiments 1 (Fig. 4.12), 2 (Fig.
4.22), 4 (Fig. 4.30), 7 (Fig. 4.43). These surface strains were recorded
by the central gauge and are expected to have been within 3mm of the point

of initiation of fibre failure.

The two following factors unfortunately lower their relevance as
fibre strains for strength predictions. Although failure started in the
outer lamina there is no way of demonstrating if it started in the extreme
fibres or not. It may have started at the boundary with the second layer
and then progressed to the surface. Although the strain variation across
the plate is known not to the linezr, there must be a large strain drop

across each ply and so the strain causing failure could be below that
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measured. However since it is most likely that fibres experiencing

the largest strains fail first it has been assumed that the central surface
strains represent failure. Also it is known that criterion (c),

Chapter 1, is only loosely held by the plate bending method since the
actual volume of material experiencing the failure stress is small.

Hence, the effect of point defects should not be ignored.

It is encouraging tc find that the magnitude for the flexural fibre

strain at failure is near the tensile values previously reported (139,140),

No visible damage was found after unloading Experiment 8, even thcugh
an extremely lggé snap just prior to unloading suggested fibre damage.
To explain this, it is proposed that first fibre failure occurred in the
second layer. The problem now iz how to determine the central stresses
when the strains causing failure cannot be determined. It is for this
rezson that laminates which produce internal fracturing will be very

difficult tc analyse, and pose a severe limitation on the method.

The experiments have not only demonstrated that providing parameters
are sensible failure will start in the test section but that strain

runaway is very important to the effectiveness of the method.

For the calculation of central biaxial stresses it is important that
in a small area around the centre the itransverse strain in the outer
lamina exceeded its tensile failure of 0.T¢. In fact, this strain was
extremely large in Experiments 4 (Fig. 4.30), 7 (Fig. 4.43) and 8 (Fig.
4.48) and meant that there was extensive matrix breakdown along the fibre

length and through the thickness, This suggests that at the point of
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first fibre failure no material was present to transmit the transverse

stress, thus offering a uniaxial state and stress.

The 16 layered cross-ply laminate in Experiment 8 (Fig. 4.46 - 4.49)
can be taken to illustrate the effect strain runaway had on the
deterioration of the outer layer. In the experiment the deformation made
the central strain in the 0° direction,(outer ply orientation) much lower
fhan in the 90° direction. The latter surface strain increased steadily
with load to 1.3% at 1300N, and then ranaway (Table 4.11 and Fig. 4.47 and
4.49). Just prior to fibre failure in the second layer the 90° strain
exceeded the capability of the foil gauge, and the last instantaneous

reading was 2.5 at 1650N,

It is of interest to note the relative values of the principal sirains
at failure since it leads to a new proposal for lamina bYreakdown under
bending. In the experiment it was fortunate that after the 90° gauge
had failed its 0° partner still operated. This was because the 0° gauge
of the cross-=ply had been placed neazrest the surface when preparing the
specimen, and shows that the breakdown of the 90°'gauge was by the foil

fracturing and not adhesive weakening.

When the 90° gauge broke its strain was 2.5% and the 0° gauge
recorded only 0.6%.. From strength tests the composite material has a
matrix tensile strain at failure of 0.7% and a fibre flexural tensile
strain in the region 1.3=1.5%, It is therefore apparent that'the outer
lamina (Oo) was not going to fail first since the central fibre strain
must have been much higher than 0.6% in the second layer. Faiiure occurred

when the load was 2140N and the surface 90° strain was much > 2.5
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Now immediately before fibre failure the mdximum fibre strain in the
second lamina must have been below 1.5%. or it would have already
fractured. From which it is concluded thzt there musti have been a stirain
drop across the outer-ply in excess of 1.0%. This suggests a new

failure mechanism.

Fig. 4.54 1llustrates the proposed strain distribution in the outer
layers of Experiment 8. With this strain distribution the surface strain
could be greater than 2.5% while at the same instance the fibre strain

in the second lamina did not exceed 1.5,

The emergence of the strain runaway aiso provided two further relevant

factors to the work,

If linear strain distribution was applicable the matrix breakdown
would have been present several layersdeep in the tensile region about the
centre, making the localised transverse modulus E22=zero. This should then
be taken into account when modelling the experiments by the F.E.M., but
since the area of damage is known to be small the result of making E22=0

has not been assessed.

Deformation following the strain runaway indicates that the overall
response has not been affected by the local matrix failure, since as a

whole the laminate remained intact.
Attention now focuses on the major problem of determining the
central biaxial stress ( 7}y=0) ratio in the plate bending method. Before

outlining the two procedures which can predict the stresses, a definition
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will be made for the directions in which the governing stresses act.
The choice is between either the global directions of the plate or, if
different, the principal directions of the lamina . The latier was chosen

because this characterises first fibre failure.

The first procedure is the application of the C,P.T. and lineaxr
elasticity (but with reduced moduli to account for non-linearity) in the

geometric non=linear finite element programme ACMBC.

This method would be the most suitable had it not been found
unacceptable for the reasons given in Section 3.4. If the analysis had

modelled the experimert, only the final load for any arrangement would

have been needed to predict the governing biaxial stresses.

The second procedure is to take the measured strains in linear

elastic formulae, which also allows for material nonelinearity.

Fowever, the observations made from the experiments have provided
a number of factors which mean that either procedure will be inaccurate,
notably:s
The strain does not vary linearly through the thickness and the precise
distribution is indeterminate.
If first fibre failure occurred in an internal ply the strains at the
centre are unavailable,
The central surface strains are non-linear with load and on occasions
difficult to measuréo

The material moduli change during the lcading and are indeterminate.
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Under certain circumstances the central strain transverse to the
fibres in the outer layer is likely to cause matrix breakdown, so

providing a unidirectional stress state.

Collectively these factors mean that the evaluation of the central
biaxial stresses in the plate bending method will be difficult. Hence,
the work has demonstrated that critferion (a)9 Chapter 1 does not apply

, and so presents the most sifnificant disadvantage tc thz method

providing relevant strength data.
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CHAPTER 5 COMPARISON OF EXPERIMTNT AND COMFUTER ANALYSIS

5.0 Introduction

In Chapter 3 it was demonstrated that the linear programme ACM is
capable of accurately representing the plate bending test. Hesults from
the programme will now be compared against experimental measurements, from

which several important modelling conditions will be established.

To make comparison simple, the gradients (strain UJE/unit load N )
were determined from the measurements in the linear region of deformation.
The initial gradients were also taken from the test to failure as these
gave another good approximation. All values have been prssented zs the
transverse displacements or strains due to a patch load of 5OON, with the
strain being that which acted in the extreme fibres of the tensile
surfage. It can also be noted that the measured strains were generally
the sum of the bending and a much smaller axial component. Inherent
errors in the analyses meant it was sensible to give the strains to the

nearest whole number.

The source of experimental error was the variability of the plate
thickness, causing the gauge to be out of position compared with the
finite element model; the slight misalignment of the strain gauges; the
drift in measuring devices whilst teking readings; and an inaccuracy in
loading of some *5N . These are all thought to have a small influence

on the results.

The source of numerical error wsas the response due to shear
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deformation, (subsection 3.3.2.2., assumptions 4,5,7 and 8), which was
minimised through the sensible choice of experimental parameters;
manufacturing defects,(assumptions 2,3 and 10); material properties;
material non=linearities,(assumption 9); and that,due to the difference
in the Young moduli in tension and compression, the neutral axis and mid-
plane did not coincide ,(assumption 11). The latter two factors which
could be included in the analysis,(but with increasing computing effort)

provided the largest source of concexrn and will be examined later.
Table 5.1 defines the various mesh constructions used in the comparisons.

5.1 Linear Displacement : Experimental-Numerical Comparison {(ACH)

5.1.1 Standard Definitions For The Material Properties

In Section 4.1 it was stated that the precise values for lamina
materizl properties in a laminate were not always available. To reduce
the number of numerical models needed to discover if the experiments could
be analysed with ACM a set of standard definitions for the mzterial
properties was beneficial, To achieve this with speed, it was decided to

consider just one mesh, 1SHGES0, (Fig. 5.1.3).

To begin with the fundamental properties E11,822,G12,V12 and t
were taken as the typical measured values for the material system T300/

Code 69, Table 4.1,
The numerical results are compared with Experiments 1 and 2 in Table 5.2

The nominal ply thickness t = 0127E-03m was used in models 1-6. There-

after it was taken to be equal to the average ply thickness in Specimen 2.
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An average for the two specimens would have been preferred, but due to
its protective layer the average lamina thickness in specimen 1 was-

indeterminate.

In models 1-4 the longitudinal Youngs modulus, E11, was taken as the
mean of the lamina tensile E114, and compressive E22¢ . Thereafter, the

ply thickness effect was involved through equation 4.1.

The transverse modulus, E22, was taken to be one guarter of its mean
tensile, E22¢, and compressive, E22., except in models 1, 11 and 12. For
these remaining models it was taken to be some other portion of the mean.
The rationale for choosing a quarter of the mean was that it had previously
been applied in analytical solutions to fit the experimental data. In the

case of the itransverse modulus the thickness effect does not apply.

The shear modulus, G12, was expected to remain constant in the linear
deformation domain. Since it was not possible to determine the reduction
known tc occur in lamirnate manufacturing, the typically measured lamina

value was generally taken.

The major Poissons ratio V12 was taken as 0.3, except in model 10,
where itwas 0.25. Tris model showed that a reduction produced a slight

increase in plate stiffness.

The comparison in Table 5.2 indicates that modelling the patch load
with a vertical load only vector (V.L.0.) predicts values which are lower
than those with a consistent load vector (C.L.V.) and that the latter are

below the measured. In future all numerical models will employ a
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censistent vector,

Since it was not a difficult task to produce a series of models with
varying parameters that accurately represented the experiments, a set of
standard definitions for the material properties was chosen from the 12
models. Model 7 allows for all material factors, except the known reduction
in G12, and provides the best fit with the measured values. Therefore
the definitions for the material properties used in model 7 have been taken
as the standard and will be used exclusively in all future numerical models.
The set of standard definitions for the material properties are:

t The ply thickness is the average plate thickness divided
by the number of layers

E11  The longitudinal Youngs modulus is. the mean of its

tensile and compressive values scaled to take account
of the reduction in ply thickness

E11 = [Eﬂt + E11ch 0:127€-03
2 t

B22 The transverse Youngs modulus is one quarter of its

mean tensile and compressive values
E22 = [E22t+ E22c]x 025 = 02889E«10 N/rn2
2

G12  The shear modulus is the typical measured value

612 = 05771640 54/m2

V12 The major Poissons ratio is the typical measured value
V12 = 03

5.1.,2 Plate Modelling of Experiments 1 and 2

Once a standard set of material properties had been established, it

was possible to investigate the accuracy of the different mesh types, as
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introduced in subsection 3.3.4. The numerical resultis from four gquarter
plate, two half and a full plate mesh as defined in Table 5.1 are compared

with Experiments 1 and 2 in Table 5.3.

The range in the calculated values are from model 2 ( -336E-03m,
145€,183UE) to model 7 ( -340E=03m, 160UE,201E) with the exact
representation model 11 (full plate mesh with no quarter plate boundary

conditions) in the middle.

With the quarter plate models it was possible to simply reverse the
orientations of all the + and -45° laminae to produce the two distinct

modelling cases shown below.

Fig 51

Case2

Case 1 which has been generally taken gives values which are always
higher than those with case 2 and shows the detrimental effect of
imposing quarter plate boundary conditions, However it was found that
the mean of the two models provides similar results to the exact model.
This indicates that the deirimental responses cancelled and that for this
particular lamination configurationithe contribution of the twisting

components to bending were small.

If the *45° orientated laminae were reversed in the half plate models

141



no difference in the values was found. A similar observation can be

made with the full plate models.

As the variation between the models is less than 9% the inclusion
of quarter plate boundary conditions are not important with this
lamination configuration. Any of the mesh types could be chosen to
predict the linear behaviour with good accuracy. But, it would appear
sensible to take the average of severazl different models for the most

realistic analysis.,

5.1.3 Overall Modelling Of Experiments 1 And 2

To provide further relevant modelling information nearly all the
strain and transverse displacement measurements will now be compared with
the equivalent numerical. To enable this comparison meshes constructed

with a lot of elements were needed.

Numerical results (applying the data presented in Table 5.3) from the
four meshes illustrated in Fig. 5.1.1=4 are compared with Experiments 1
and 2 in Table 5.4. The four meshes have been drawn so that with

Fig. 4.11 and 4.15 the nodal positions corresponding to the strain and

dial gauges can be readily found. Except where noted the measured strains

are the surface values which were the result of bending and in-plane

(much smaller) components.
For the quarter plate models the average numerical values from the

two quarter plate representations (cases 1 and 2) have been presented in

the middle. Unmderneath the mean is the value due to modelling case 2
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and above the value due %o modelling case 1. If two strain values at a
node have been written next to each other, it was because the calculation
of that strain by surrounding elements differed, and the mean has been

taken,

Collectively, the four models predict the measured response with
good accuracy. The calculated transverse displacements and strains are

always below that measured, with a maximum difference of 12%).

Mesh 1SQE100 which is the most refined does not give improved
accuracy over the coarser meshes and was only included beczuse it has

sufficient elements to enable all the measurements to be compared.

The good accuracy does not depend on the position in the plate which
implies that the numerical modelling for the patch load and the supports
are not critical to the solution, as was noted for point lcading examples
in subsection 3.%.1, The comparison also shows that the difference between
the numerical and experimental results are very similar in both principal
directions of the outer lamina. This suggests that the true ratio of
E11/E22 must be similar to that obtained from the standard material

properties.

5.1.4 Central Biaxial Stresses

The experiments illustrated a number of difficulties which prevented
the accurate evaluation of the governing central biaxial stresses in the
lamina providing first fibre failure, and hence the required strength data.

For this reason the stresses reported from the linear and non-=linear
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analyses are known %0 be unrealistic. The relative change between
linear numerical models (ACM) will however give some idea to the change
in central biaxial stresses possible with the plate bending method. To
illustrate the range of stress ratios with the lamination used in
Experiments 1 and 2 the following examples were examined:
Fig. 5.2 Altering the position of the point supports (but
maintaining symmetry) with a constant patch load
area, —g§=1 end plate dimensions %:1 ,
Fig. 5.3 Altering the dimensions of the plate A and B and
hence the span distances As and Bs with a constant
load area AP 1
Bp~ .
For both examples the gquarter plate mesh 1SQGE100 was used. In Pig. 5.2
the support positions chosen can be seen with reference teo Fig. 5.%1.4.
The valuesgiven in Fig. 5.3 weredetermined by altering the distances
illustrated on the plan. A limit was imposed on the maximum side lengths

A and B above which it was felt the plate may just slip through the supports,

as found in Experiment 5.

The numerical models employed the standard meterial properties and
so E22 was reduced due to thermal cracking caused in manufacturing.
Therefore the calculated surface central biaxial stress ratio ?;ék was

always high.

The plots indicate that by altering these particular geometric
parameters the ratio is altered by over 4 times. This factor will be
increased once the two effects are combined and other practical changes

as defined in Section 2,2 are included.
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This simple investigation suggests that the maximum range in the
tensile biaxial stress ratio UEék , with ﬁ&y= 0 , for this particular
lamination will be about 194 . What effect on the central stresses the
non%ineér deformation has could be considerable and requires either
numerous experiments or an accurate nomlinear numerical analysis to

answer.

Comparing with the biaxial methods studied by Pipes and Coles(4)
(19/ ,7;y=1 ) the plate bending method should provide a similar range in
biaxial stress ratios. However unlike the tubular method no compression

-tension results are available,

From this investigation it would appear that criteria (d), Chapter 1

will be satisfied by the plate bending method.

5.1.5 Plate Modelling

Subsection 5.1.2 showed that the four mesh types accurately predicted
the bending measured in Experiments 1 and 2. By involving the other
experiments in an identical analysis those lamination configurations when
quarter plate boundary conditions are unacceptable will be established.
Then a full plate model (Fig. 3.10.4) will be the single model that
represents the linear deformationandanonlinear solution will not be

possible due to computing limitations.
Tables 5.5 = 5.9 have been constructed along the same lines as

Table 5.2. The standard set of material properties follow the

definitions in subsection 5.1.1. and the meshes are defined in Table 5.1,
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As before, central surfgce strains and transverse displacements were
determined from measurements made in the linear (embedding) load range,
and an approximation due to the initial gradient of the test to failure.
When the values differed considerably both have bteen reported, otherwise

the mean is given.

In Experiments 3,4,5,6,7 and 9 the outer lamina was orientated at
+45° to the global axes and the programme (ACM) only predicts the strains
in the global directions. To predict the strain parallel and perpendicular
to the fibres Mohrs strain circle technique was used to evaluate the #45°
strains, This was justifiable because the strain and stress variation
with rotation are defined bj second order Tensor vectors(B)° The strain
values aré given by:

Etlfs = Ex <+ Ey + Xxy 5‘1

where dxy=0 at the centre.

"The following observations were made from the comparisons in Tables

505 - 509.

Quarter plate models are not accurate for Experiments 5,6,7 and 9 nor
are half plate models for Experiment 9. Good accuracy is possible for
Experiments 5,6,7 by taking the average of the two distinct quarter plate
' models (cases 1 and 2). These Experiments also show that the number
of nodes used in the patch loading has 1little effect on the accuracy.

Only Experiment 9, whose lamination is very anisotropic requires a

full plate model for accuracy.

Except for Experiments 3 and 4 all numerical values are lower than
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measured and the relevant models from the rest illustrate that the
differences are generally less than 10%, Hence, the comparisons show
emphatically that the experiments are modelled by the linear analysis ACM

to sufficient accuracy.

Furthermore, the values predicted for Experiments 3 and 4 (Table 505)
can be brought into agreement with the other experiments if the protective
layer is included in the average ply thickness. The comparisons also
show that Mohrs strain circle technigue will detefmine the strain at any

orientation.

In subsection 3.3.4 the idea of taking the relative size of the
stiffness ratios Dtyb16 and Dg;/azé as a measure of the twisting

behaviour was introduced. e

Table 5.10 presents the ratios, together with DTV666 for the five
laminations tested. With reference to the corresponding tables it can
be seen that when 011/616 and Dz;/626 are above 50 all models are
accurate, and that when the ratios are below 20 they are not. However

there are not sufficient lamination configurations to be more precise.

5.1.6 Overall Modelling of Experiment 7.

It has already been shown that the bending in Experiments 1 and 2
can be accurately predicted by the programme. The ability of ACM to
accurately predict the deformations throughout the specimens can be
enhanced by repeating the modelling of the remaining experiments  Mpdels

for Experiment 7 will now be presented since the results provide several
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new observations. Table 5.11 presents the comparison, Table 5.1 defines

the mesh constructions and Diagram 4.41displays the gauge positions.

The comparison shows that the numerical values are distributed evenly
on either side of those measured, as a consequence of the fact that plate
modelling is now important. This observation was anticipated since the
ratios 01}616 and 02}626 are relatively small implying that the
distinct meshes would provide a greater spread in results than for the
lamination in Experiments 1 and 2. Fortunately, the twisting components
are not too large and the average of the two quarter plate models are within

10% of those measured, except at a few points.

Again Mohrs circle technique provides a good prediction of the $45°
strains, but the differences between these and the measured are greater

than in the global directions.

The results also show through gauges 9 and 11 that the numerical
analysis accurately determines the bending near the free edges. The
numerical values had to Be determined using linear interpolation since
there were no nodes 2t the gauge positions. This approximation was
acceptable in the free edge region since the strain gradients are nearly
linear. It is also of interest to note that both analyses established

that the lower surface strains near the free edges were compressive.

5.2 Large Displacement : Experimental-Computation Comparison

(ACYBC-modified)

It is of interest to this work to examine the modelling ability of
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the geometric nonlinear finite element programme ACMBC for one of the
experiments, even though it is inaccurate. Experiments 1 and 2 were again
analysed using the modified version of ACMBC. Table 5.12 presents the
numerical central displacements and strains with the corresponding
measurements at several loads. In establishing the five convergent

solutions 970s of C.P.U. time were required with the quarter plate mesh

150G6E36  (Fig. 5.3.2).

-Obviously a critical comparison is out of the question since the scale
factors introduced into the ACMBC analysis, Section 3.4, have not yet been
shown to be universal, However, the results do permit several important

observations.

As with the isotropic test examples analysed in Section 3.4 with the
unmodified ACHMBC analysis the laminate appears stiffer than that recorded
experimentally. In fact, at 3600N the central transverse displacement
is only half that measured. The modelling suggests that a careful
inspection of the deformation throughout the plate would demonstrate thzat
the bending is characteristic of that found in the simple isotropic

examples (Fig. 3.13.2) with the unmodified ACMBC analysis.

The comparison also shows that the difference between strains are
much lower than for displacements and that if numerical trends are extended

there will be no evidence of preferential bending.
If the reasons for the inaccuracy are found to be the same as for the

isotropic examples then axial strains presented in Table 5.12 will be lower

relative to the bending, This leads to the important conclusion that the
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linear bending programme ACM will be accurate when modelling the
experiments for a maximum central transverse displacement equal to the

plate <thickness.

Although the geometric nonlinear finite element analysis constructed
cannot be shown to model the experiment, the above does indicate that
computing limits are critical to further development. Here a simple
construction, with efficient storage and solution techniques,; needed most
of the 1000s C.P.U. time to determine the bending up to half the failure
load. Therefore, further development should concentrate on reducing

the computing effort with, at the same time, improved accuracy.

5.3 Numerical Assumptions

The assumptions applied in the formation of ACMBC were introduced in
2
subzection 32312.2. When designing the experiment care had ensured thst
assuiptions 4,5,7 and 8 held and so the effects of shear deformation angd

shear stresses could be eliminated from the numerical analysis,

Other assumptions, notably 2,3 and 10 were dependent on the guality
of the manufactured laminates. Obviously the specimens were not perfect

but it has been assumed that the errors thus introduced were negligibdle.
Two of the remaining assumptions, namely 9 and 11, could have been

involved in the programme and the errors thus omitted from the numerical

analysis may reduce the relevance of the numerical comparison .
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5031 Material Nondinearities = Assumption 9.

It has already been stated in Chapter 4 that the moduli E22 and G12
are nordinear with strain. The experiments demonstrated that certain
laminates contained considerable tensile matrix breakdown around the centre,
thus causing E22 to become zero. Due to the complex deformation
experienced by the laminates in the plate bending test it would be difficult
to assess the instantaneous changes in these moduli so their involvement

in the numerical analysis is not sought.

It is therefore fortunate that the following factor means that the

changes in E225(except when E22 =0) can be neglected.

The nature of the bending means that the strain in the plies about the
mid=plane are relatively small compared to the surface. Together with the
experimental observation that the surface strain decreases rapidly from the
centre‘to the free edges a change in the modulus will only occur in the
outer plies around the centre. Hence except at the centre where complete
matrix failure at high loads can occur, the analysis does not have to

include the small nonlinearity of E22.

The nordinearity of the shear modulus, G12, with warping strain, §12
is much more severe. Pig. 4.1 shows that G12 decreases substantially with
warping stress Ty . The above factor also applies in the determination of
the variation throughout the specimen. But the situation is made more
difficult since there is no other way of predicting valuesof ¥12, than
via the programme, and the analysis is known to be less accurate in

determining warping strains than principal strains,
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Had ACM=C analysed the experiment accurately the results could have
been applied to discover if the shear modulus nordinearity required
involvement. If inclusion was found to be necessary a correction procedure
would be needed and the work of Petit and Waddoups (941), Hahn and Tsai
(1842), Hahn (143), Jones and Morgan (144) and Ditcher, Rhodes and Webher
(145) will be of benefit. There would be a drawback if this nonlinearity
requires involvement in the numerical work, since it would increase
computing time and storage requirements. Further iterations would be
necessary for the geomeiric and material normlinear solution, so less

information would be obtained in the time limit imposed.

5.%.2 Position Of The Neutral Axis - Assumption 11,

Throughout the numerical work presented here, the laminafes have been
taken as exactly symmetrical, with the layers below the mid=plane possessing
geometric and material properties identical to those of corresponding layers
above. This assumption means that the terms in matrix [Bl=0 (3) and

that there is no coupling between bending and extension in deformation.

If the moduli are different in tension and compression the laminate
properties are not symmetrical about the mid-plane and coupling between
bending the extension will exist. Table 4.1 shows that the composite
material T300/Code 69 has compressive Young moduli which are 9 and 10%
higher than the respective longitudinal and transverse tensile moduli.
These differences mean that the neutral axis and the mid-plane do mnot
coincide in the laminates tested, even before the onset of bending
deformation., For this reason assumption 11 may not hold. In principle

the shift in the neutral axis will be seen as making the terms in (Bl # 0
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forcing the linear response to differ from that assumed.

To predict the distance by which the neutral axis was shifted in
the specimens from the mid-plane the simple strip analysis constructed
by Jones and Morgan (146) was applied. They formulated an iterative
procedure which determined the exact location of the neutral axis of a
simply supported dross=ply'strip with a uniform load. Development of the
1=D analysis enabled generally orthotropic laminates to be solved and a

Fortran IV programme was written to solve the equations.

4 2-D analysis was unfortunately not possible due to the complexity
of the problem; the basic difficulty being that the differences in the
moduli leads to two neutral axes (in the global directions) instead of a
single neutral surface of conventional plate theory. Hence,'the strip
analysis was performed in both the X=Z and Y-Z planes to give an

indication of the movement in the global directions.

Table 5.13 gives the shift of the neutral axis in the specimens as a
percentage of the average plate thickness. The movement is always into
the upper (compressive) portion and is approximately 1% of the average
plate thickness. The ensuing terms in [B) provide minute coupling terms
which can be ignored. The shift does however slightly alter the values
of the surface strains from those calculated by classical theory. A 1%
movement into the upper half causes the surface compressive stirains to be
2% lower and vice versa for the surface tensile strains, This is very
encouraging since it suggests that the error introduced in the numerical

comparison can be neglected.
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CEAPTER 6.0 CONCLUSIONS

A new biaxial test procedure, the ‘plate bending method', has been
investigated for thin multi-layered generally symmetrical laminated plate
structures, Four criteria for a satisfactory biaxial stress tesg,
jdentified in Chapter 1, have been investigated with respect to the method.
A number of experiments have been performed to determine the applicability
of the criteria. A classical 2-D finite element thin plate analysis has
been developed to predict the stresses generated. The following
conclusions may be drewn from the experimental observations and subsequent

numerical comparison.

6.1 The Feasibility Of The *Plate Bending Method'.

(1) From this work criterion (a), which states 'The state of stress
throughout the test section should be uniform and determinate',
carnnot be shown to hold for the method. Although the stress
state is approximately constant within the volume of the test
section the stresses are indeterminate at large deformations.
This indeterminacy stems from experimental observations that
the lamina providing first fibre failure, and its neighbours,
experience complex deformation in the region of the test
section, This is a severe obstacle to accurate calculation
of stress since it is difficult to evaluate the material
properties with sufficient accuracy.

(1i) Criterion (b), which states 'Failure of the specimen should
initiate in the test section so that static strength will be

be obtained' is applicabdle. It was noted that with certain
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experimental parameters the criterion may be broken as edge
effects could become large and cause damage.

(iii) Criterion (c), which states 'The test section over which
the stresses will be uniform should provide a volume of
material large enough to eliminate the effects of point
defects and hence make the data significant' was assumed
to hold for the mefhod since the volume required to eliminate
the effects of point defects is unknown.

(iv) Criterion (d), which states 'The test should be capable of
providing a varied combination of stress states in the
material' was the hardest to assess. First, too few
experiments were performed to be able to provide a guide to
the range of biaxial étress ratios obtainable. Second, the
nomnlinear numerical aenalysis was inaccurate, so different
arrangements could not be evaluated. From relisble linear
results the test method will provide a range of biaxial

stress ratios of the order (max g:‘z=10,'rxy=0).

6.2 Onserved Failure Mechanisms

(1) All the specimens deformed with preferential bending about
a centreline, In certain cases there was a continuous growth
in the tensile surface strain transverse to the fibres in a
small area about the centre. The localised effect measured
under constant transverse displacement is known as ‘strain
runavay'®. The severe matrix failure that this implies means
there was a uniaxial state of stress in the fibre direction

where the governing biaxial stresses are determ_fmed°
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(i1)

Occurrence of strain runaway in the 16-layered cross=ply
plate, in conjunction with first fibre failure in the
second layer, has lead %o the froposal of a new failure
mechanism (Fig.4.54.2). At large deformations the strain
runaway (which was in the direction of first fibre failure)
exceeded the capacity of the foil gauge, with a last
instantaneous reading of 2.5%, some time before fibre
failure. Since the extreme fibre strain in the second layer
could not have been greater than 1.6%, without fibre failure,
there must have been a 1% drop in strain across the outer
lamina. The figure shows that there was severe matrix
cracking through the outer ply, which became wedge shaped to

accommodate the high surface strain.

603 The Validity Of The Finite Element Analysis To Model The Plate
Bending Method
6.3.1 Linear Analysis, ACM

(1)

(14)

Numerical comparison demonstrated that the linear analysis
accurately predicts deformation, strains and stresses in the
experiments to within +10%. Accuracy was restricted to
those cases when the standard values for lamina material
properties, (E11,E22,G12,V12 andt ) were used, the sffect of
the twisting stiffnesses D16 and D26 were allowed for in the
modelling and the central transverse displacement, w¢ , did
not exceed the plate thickness.

Effects of shear stresses, nonlinearity of material properties
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(iii)

6.3.2

and exact position of the neutral axis were examined. Their
individual effects on the accuracy were small.

Greater concern was felt over the error introduced by the
omission of shear deformation. A literature research revealed
only one promising analytical technique which ecould be
developed to analyse the laminates tested. This high order
method broke down for generally orthotropic plates so shear
deformation could not be evaluated. Comparisoﬁ between ACM,
several shear flexible elements and exact solution suggested
that shear deformation in the experiments will be insignificant

providing the span to thickness ratio S is greater than 30,

Nond inear Anslysis, ACMBC

(1)

(i1)

The basic nonlinear analysis was inaccurate when modelling

simple isotropic test examples for the following:
To omit numerical integration techniques in the evaluation
of the stiffness coefficients a new definition for the
terms in matrix (H1® (Equ.3.44) was applied. As yet
limitation of this definition are not fully realised.
Comparing the numerical results with exact analytical
solutions has suggested the relative magnitudes of
bending and in-plane stiffness terms were incorrect.
Numerical models predicted transverse displacements,w ,
and bending stresses (o,), to be too small, and in-plane(op)
stresses to be too large near the centre, with the
reversed situation near the free edges.

Accuracy was improved after introducing scaling factors to
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(iii)

the terms "in [Hle and in evaluating in-plane stiffness
coefficients. This modified version of programme ACHBC

was inaccurate when analysing the experiments and so scaling
factors are thought not to be universally applicable;

The importance of persisting with this numerical approach is
that the computing effort, although large, was reasonable for
the size of the problem undertzken. Thisvappears not to be
the case for other nondinear finite element analyses, This
indicated that further development will always be réstricted.by
the computing power available, This limitation may become
more pronounced if thé approach in ACMBC needs the involvement
of shear deformation, materiszl nomlinearities, the exact
@osition of the neutral axis, and the extent of matrix failure
prior to first fibre failure for the accurate determination of

stresses generated.
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CHAPTER 7  FUTURE WORK

The work done in this thesis has 1laid the foundations for further

research on the application of the plate bending method and the analysis

of carbon fibre reinforced plastic plates subjected to load. In particular

the following areas require more examination.

(1)

(i1)

(1i1)

(iv)

The stress in the test section must be established accurately.
This is the only way in which the method will be shown to be
reliable and accurate in the determination of biaxial strength
data. The calculation of the stress field will certainly
involve a numerical analysis so the true lé;iggysons of ACMBC

to analyse laminated structures must be realised.

If the ideology of the‘analysis used in ACMBC is found te be
incorrect a critical comparison with other finite element
methods should be made. This will be of great benefit to

the development of composite structures since it would
establish the limits of numerical methods to the solution of
structural problems.

If the indeterminacy of stresses of the plate bending method

can be resolved, then work should be done to discover if the
test can provide reliable strength data after the laminates have
been subjected to damage. Since, if these results are found to
be acceptable, the test will present the aerospace designer with
an extremely useful tool.

The experiments showed that all the laminates deformed with
preferential bending about a centreline, and that in several

cases there was a large dynamic growth in strain perpendicular

to the fibres near the tensile surface in the test section.
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(v)

These two observations require further examination so that
they can be quantified for the plate bending method.

A series of experiments should be performed with specimens
having different lamination configurations (but the same
composite materinl) to establish the limiting values for
the ratios D1figq and D22/fj,¢ which indicate when the
finite element models can apply quarter plate boundary
conditions without loss in accuracy. With these limiting
ratios only the lay-up arrangement of laminates would be
required to ascertain if the platé can be modelled with

quarter and half plate models, thus saving time,
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APPENDIX 1  ACMBC Displacements

: Programme Flow Chart

INPUT DATA
list of data is given
on followig page
WRITE OUT PARAMETERS

A seperate programme to determine

linear displacements was constructed

for convenience (ACM)

LINEAR ANALYSIS - Matriz [KD] is evaluated
(ACM) o through Equ.3'23and the linear
displacements through Equ. 3.49
ITER = 1 Linear bending stiffness [
' coefficients(K3] are stored [ PRINT OUT{d}}
Y and{d}.is divided by 2 linear displacements

since non-linear displace-
ments have been greatly
over estimated

NON-LINEAR ANALYSIS
check on iteration counter and
pass programme to appropriate
subroutine

™

o

ITER = 1 Y

Construct[KBknd store

ITER> 1

Construct [K]=[Kpl+ [K{]

where [K{J is defined by

Equ. 3.24

The residual ('out of balance') force
vectorU@?Equ. 3.31 due to non-linear
bending behaviour can now beevaluated

Y

For first aproximetion to
the non-linear solution

[Kg=IK 1= [Kol* (K]

construct [Ky =K ]+[Ko
where [Kylis defined by
Equ. 3.54

* New nodal

a{d

CorrectionsJﬁ}nare determined
throu% Equ. 3.31

K yid]

Equ. 3.4

N

ITER = ITER + 1

Convergence is tested for the
nodal displacements using Equ. 3.5 >
then new set of nodal displacements
are evaluated by Equ. 3.34

NO

displacements for
next set of correction:
_ are evaluated by

Y YES

displacements u,v

PRINT OUT nodal (D.0.F) transverse
displacements,w,rotations dw,dw and in-plane

dx dy
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APPENDIX I ACM and ACMBC Strains and Stresses : Programme Flow Chart

INPUT DATA
see below
plus load and nodal
displacements evaluated by
ACM and ACMBC
WRITE OUT PARAMETERS

)

Y
INPUT NODE NUMEBERS
where strains and stresses
are to be evaluated.

NODAL STRAIgé

calculated using Equ. 3.55

Each element in turn and

the average at the specified

nodes are PRINTED (JE)

The bending strains are calculated
at the surfaces

NODAL STRé%gﬁs

calculated through plate thickness

using Equ. 3.56 .

The stresses are evaluated at the

extreme surface of each layer in the
- laminate. Stresses are evaluated for

each element in turn and the average

at the specified nodes_ are

PRINTED  (N/uf)

INPUT DATA FOR FINITE ELEMENT ANALYSIS

Title
No. of Nodes. , No. of Elements
Boundary Conditions [ Bending
In-plane
No of layers in half the plate
Orientations of each layer
Topology of each finite element [repeated for the number
Material Properties and Dimensions {of Elements in the mesh

Load vector (Transverse)
Node No. where Exy = O along the Quarter Plate Boundaries

No. of Load Increments
B Factor applied in reducing thé number of iterations to a

convergent solution through Equ 3.4
No. of Elements along each side of the Finite Element Mesh
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High Order_ Differential Equations Governing Flexural Displacement Components of a Symmetrical Laminated Plate

| 2 |
-A55 4R 2A45 dk, -ALs df, -A5S dyx -ALS dyx -A4S dik -A44 dyx -DS5 dfe -2D45 déz -Dik dbp -3D55 dfx -3D45 dfx

Gt ddy 2 x dy dy dy axZ dxdy dy? dx dy
-3D45 dby -3D44 dy =T p_)
dx dy 2

2 2 2
-A55 dwg ~A45 d_w_o+1)11'dﬁx +2D16 dix +D66 dﬁx -A55 Yx +D16 dl_g% +(D12 + D66) diy +D26 di%r -A45Uy +(2D13 - D55) dS§=z
dx dy dx dxdy dyZ dx dxdy dy dx

+(2D36 - D45) dSz +H11 d%x +2H16 déi +H66 . déx -3D55 fx +H16 dﬁ% +H26’d£% +(H12 + H66) ﬂél -3D45Qy =
dy dxz dxdy dyZ~ dx<4 dy dxdy

ﬁ 2
-A45 dw, -A44 dug dw +D16 dg§ +(D12 + D66) d QE +D26 dix -A45 Yx +D66, dﬁ% +2D26 dily +D22 dﬁ% -A44\Yy +(2D36 - D45) dS=z
dx dxdy dy "dx dxdy dy dx

+(2D23 - D44) dfz +H16 d%x +(H12 + H66) d%»+ﬂ66 d%%: +2H26 _d_éz +H22 dfy -3D44 Gy 4 H26 dfx =0
dx

dy - dxZ dxdy dxdy ‘dy 'dyz
2 2
-D55 d% =-2D45 dwo-D44 g35+(2D13 - D55) dix +(2D36 -~ D45) dux +(2D36 - D45) diy +(2D23 - D44) dyy -H55 dS=
dx2 dxdy dy , dx dy dx dy dxn?
v ' 2
~2H45 dég —H44Jd% +4D335z +(2H13 - 3H55) d0x +(2H36 - 3H45)._Q5 +(2H36 -~ 3H45) d Qx +(2H23 - 3H44) diy = @)xﬂ
dxdy o dax dy dy 2 &
a0 g : e
-3D55 dw,~3D45 dw,+H11l dUx +2H16 de +H66 d{x -3D55 vx +H16 diy +(H12 + H66) dUy +H26 diy -3D45 Yy +(2H13 - 3H55) dS=
dx dy dx dxdy E;Z dxt dxdy dy dx

+(2H36 - 3H45) dfz +L11 g&; 42116 dbx +L66 dx ~9HSS hx +L16 gﬁ% +(L12 + 166) aby +126 _gﬁ% -OH45 Qy =
- dy dxdy dy? dx. dxdy - dy

-3D45 dw, -3D%4 dw,+H16 d +(H12 + H66) dix +H26 dﬁ% -3D45 Yx +H66 gﬁ% +2H26'd6z +H22 dQy -3D44 Uy +(2H36 - 3H45) dS=
dx dy dx dxdy dy dx: dxdy dy - dx

+(2H23 - 3H44) d§z +L16 déx +(L12 + L66), gj_ +126 d x -9H45 (x +166 gi% +2126 d!%z +122 dfy -9H44 fy = O
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High“Second Order Differential Equations Governing In-plane Displacement Components of a Symmetrical Laminated Plate

2

All d&i+2A16 d£°+A66 d§°+A16 dv°+(A12 + A16) dv°+A26 &g +A13 dyz +A36 diz +D11 de +2016 de + D66 de +D16 gg%
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Matrix Governing Flexural Displacements for a General Symmetrical Laminated Rectangular Plate

, Simply Supported ~
along its edges and Subjected to the Transverse Loading q = qbsin'gi sin iy =
: : B a.
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where 8 = sinix and ¢ = cosmy
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The above can be solved when the terms 16, 26, and 36 are zero,
but when there are lamina at 8°to the global axes the matrix
coefficients are dependent on the x-y co-ordinates.




Figure 1.1 PLATT GEOMETRY
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Figure 2.1 BIAXIAL TEST METHODS
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Figure 2.2 PLAN OF PLATE BENDING METHOD
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Figure 2.4 'BIAXIAL STRESS RATIO (& FOR A SIMPLY SUPPORTED. SQUARE
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Figure 3.1 ACMSC ELEMEN‘I‘S

RECTANGULAR FOUR NODED PLATE BENDING ELEMENT
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Figure 3.2 PLATE GEOMETRY

Figure 3.2.1 CO-QRDINATE SYSTEM FOR FINITE ELEMENT ANALYSIS
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Table 3.1 Mesh Constructions

Graded mesh

Subscripts

Q = Quarter plate model H = Half plate F = Full plate
U = Uniform sized elements in mesh G =

S = Square mesh R = Rectangular mesh

E =

Experiment(mesh constructed to model plate bending experiment)

Graded meshes have the smaller elements around the centre of the plate

that they are representing. Unless otherwise stated the meshes have

non-dimensional lengths.

Mesh Plate No. of elements Size of elements along sides

- Label Dimension| (along each side)

1sQu .é .g 1 (1) 1 * 1

2SQU 20 .2 4 (2) .05 * 2

3sQU 2.2 9 (3) .0333 *3

4SQU 2.2 16 (4) 025 * 4

55QU 2.2 25 (5) ] .02 * 5

6SQU 2.2 36 (6) - .01667 * 6

75QU 2 .2 64 (8) .0125 * 8

8SQU 20 .2 100 (10) .01 * 10

9SQU 20 .2 144 (12) .00833 * 12

15QG 2.2 9 (3) L05% 1, 04 * 1, .81 * 1

25QG 2.2 36 (6) .03 %1, ,015* 4, .01 * 1

3SQG(A) 2.2 49 (7 .02 % 3, ,015 * 2, ,005 * 2

35QG (B) L2002 49 (7 .0l6 * 5, ,01 * 2
1 45QG 2.2 64 (8) .02 * 3, .01 * 3, .005 * 2

55QG 2.2 100 (10) .02 % 2, 0L %4, ,005* 4
{ 6SQG 2.2 144 (12) .02 * 1, ,015 % 2, .01 * 1, ,005 * 8

1RFU 381cm 2:25 16 C(4Y .9525x%4 and 0.5625x &

1SFGE144| ,26m.26 144 (12)  |.03 * 1, .02* 1,03 %2, ;01 *4
I T ,03 % 2, ,02 %1, .03 *1

1SHGE50 | .26m.26 50 (5) .03 * 4, 01 * 1

. - (10) .03 * 4, 01 %2, ,03 %
1SHGE72 | .26m.26 72 (6) .03 * 3, ,02 %1, ,01 % 2
(12) .03 %3, ,02*1, .01 *4, ,02*1
.03 * 3
1SQGE100| .26m.26 100 (10) 015 * 6, .01 * &4




Table 3.2 Finite elements for linear evaluation

ACM (26,27)
4 noded non-conformal simple polynomial  (Equ. 3.3)
12 DOF
S (36)
8 noded conformal Hermitian. Displacement method
48 DOF

Based on complex Hermitian interpolation functions. A high order plate
bending element using a hyperoscillatory polynomial.

2
wlky)= 5 ;2‘_‘,1[H0.(x) H(g}(y WU H(12') )H(Z)(y)w,(,-| %)10() Sly)wyij + H(g)‘(x)H(gj)(y) Wxxij *

=1i= ]
= OI(X) 2i (Y)Wyyl_j + H%ZI{X)HZ(y)wxyij
where Wijs Wxij Wyij uxHPwyyUJand vyyij are the DO.F and :
6<) JS(a5 10a%x 3, 15a,k 6x ) l-p) x)—is(103 x L 152,k 6x), !-{ =;,&4ax+7ax - 3x5)
Q)(x) A(al*x 655 Baxte 3x ) 1(X) ( 2 33 3ax -xS) H %12; -2ax +x)

s become bs

where for y the xs become y% and the a

For compatibility

(1) all four elements at a node must have identicalwjjwyjjpyjj andwyy;at
commen corners

(ii) the elements joining along edge x = const. must have identicalw; .
; . - 'y

(1ii) similarily y = const. identicalwyy;

Tables are required for stiffness coefffcients The element has also

been incorporated into a non-linear analysis,(65).

SM (41)

8 noded conformal Hybrid-stress. Shear deformation model
24 DOF
Hybrid-stress representation of a serendipity element. Stiffness
coefficients were evaluated using 3x3 Gaussian numerical integration
The hybrid-stress approach was applied to prevent locking found with
Serendipity elements and prevent the spurious gero energy modes found
with Laprangian elements. -~ - - - -

Stress distributions are given by the following:-

Oy = ﬁ1+xﬂ2+y/33+xy/g[‘+f5 y2ﬁ6+xy2ﬂ7 + xyﬂe
oy=BoxBigt yB1xyB12 #B13+ y2By +xyLBis Xy By
oxy=Br7+xBra+ P19 +xyBa0+xBar+Phoz \ oa= UesfrusBaol + s + 2B
VXZ‘BZ*IQW *Xé S *FZO * yﬂgl,"zfzz) +\2xyﬂs 72F7

2= P11+Brg+x(F12 « 2P 22) +y 2] o + 2B15xy +x2B1s
Tne paper gives an explanation é%r the Egggulation of the above equs.

The displacement functions for the Serendipity element are:-
g_;_’ 0‘1 4'§°(2 »/ZO(B + JZO(4+§O<5 ‘)7°<6 5]80(7 %8
dy = oxg + §exig gy + §esigr oty ey § g §714
W= eyt Jooyg ey 50 oegy <y g+ § g3t 5?7"‘24
where 5l,5 J? X
a b

]

W




Table 3.2 Finite elements for linear evaluation (contd.)

T (31)
3 noded non-conformal simple polynomial. Displacement method

9 DOF

Tocher tried to improve the simple function applied by Adini
The proposed displacement function is :-

W= °<1+ x0<2+ya<3+x2°<4+xy0(5 +y2¢><6 4 x30<7+(x2y+x )/2) 0(8 + y3°<9

HCT (33)
7 noded _ based on simple polynomials
9 DOF Displacement method

Although the element T describes triangular displacement compatability
between adjacent clements, it does not provide normal slope
compatability in a triangular plate bending system, (c.f. ACM).

A correct element can be achieved by dividing the element into three
subsections. The stiffness analysis is then based on assuming an
independent polynomial displacement function for each sub-element.

The displacement function is:-

W= °<1 +¥X 0(2 4‘y°.<3+ x2°<l§ + XYOCS ¢y2°<6+x3°(7 + Xyzo(e + y3°(9

where x,y are the co-ordinate system for each sub-element.
The complete element involves a total of 27 D.O.F., '18 are employed
in satisfying internal compatability between adjacent sub-elements
while the remaining 9 D.O.F. are bending D.0.F of the element. A
reduction technique then reduces the unknowns to leave just the
governing D.O.F.. :

B (35)

3 noded conformal Refined polynomial. Displacement method
18 D.O.F '
forms .a_complete 5 'fﬁé&?}ﬁﬁ&nomiéiwexpression in x and y.
The expression contians 21 terms and requires an element with mid-side
nodes.

This refined elemegﬁ is basenggwan<assumedxdisplaceméﬁfﬂfﬁﬁbfiéhﬁthch

W
corner node DOF Wy

3 w
6 2 WXy
o mide side nodes DOF {wpp) "y

1 '2
A
These mid-side nodes where undesirable in the analysis and were
eliminated using a condensation process to leave the 18 bending D.O.F..
The stiffness coefficients were evaluated by numerical integration.




Figure 3.3

SIMFLY SUPPORTED SQUARE ISOTROPIC PLATE UKLDER
UNIFORMLY DISTRIBUTED LOAD (V.L.O.)
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Figure 3.4 SQUARE ISOTROPIC PLATE WITH A CONCENTRATEL LOAD
AT THE CENTRE
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Figure 3.5 SQUARE ISOTROPIC PLATE WITH CORNER POINT SUPPORTS
UNDER UNIFORMLY DISTRIBUTED LOAD (V.L.O.)
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Figure 3.6 SQUARE ISOTROPIC PLATE WITH CORNER POINT SUPPORTS

UNDER CENTRAL PATCH LOAD. (V.L.O.)
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Figure 3.7 ORTHOTROPIC CROSS-PLY TEST EXAMPLE
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Figure 3.8 FINITE ELEMENT MODELS

Figure 3.8.1 MESH 3SQG(A)
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Table 3.3 Deflections

All transverse displacements are * E-03m B
Except when otherwise stated results were calculated using mesh 3SQG(A)

Position in PAFEC 75 ACM Analytical
plate 4-noded 8-noded | element m=n=1,23(odd)
+ Node number ‘ :
64 Y| 9.239 8.050 7.605 7,562
7.584%

63 9.081 7.975 7.553 7.508

56 9.046 7.942 7.520 7.481

55 8.995 7.896 7.481 7.440

28 4.940 4,397 4.203 4.169

1o 0.0637 0.0570 0.0543 0.0539

Table 3.4 Stresses

Stresses at the mid-plane of the cuter lamina (0°) * E+08 % N/m?

Position in PAFEC 75 - ACM Analytical
plate 4-noded 8-noded | element m=n=1,201(o0dd)
Node number ]
64 99X | 3.83 5.75 5.46(5.50%) 7.38 [m:n:
%y | 0.701 0.942 0.864(0.869*)  0.887[1,8010dd
63 99X | 3.17 *20% 3.16%24% | 2.88 3.11
“y | 0.57¢ 3% 0.63%3%| 0.62 0.40
56 9% | 3.152 2% 3.91¢ 1% | 3.36 3.48
oY | 0.51 2349 0.38%21% | 0.35 0.38
.55 9% | 2,92+ 7% | — -3,35¢14%°13.28 ~ |~ 3.18 |
Oy | 0.49 215% 0.47+14% | 0.43 0.36
28 9% | 0.99 £15% 1.10£ 7% | 1.09 1.07
9y 10.095 ¢ 33%" 0.082¢16% | 0.076 0.101
10 9% | 0.13 249% 0.15%22% | 0.150 0.144
9% 1.0089¢ 59% .0046£58% | .0027 .0012

* Results using mesh 55QG




Table 3.5 C.P.U Time

Model Mesh D.O.F C.P.U sec.
(IBM 370/167)
ACM 3SQG(A) 192 <10 *
AcM 58QG 363 <15
PAFECTS
4-node 35QG(A) 320 70 *
8-node 3SQG(A) 880 320
12-node 35QG(A) | 1440 >900

* Identical models




Figure 3.9 WEBBER'S ANGLE PLY CANTILEVER EXAMPLE
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Figure 3.10 QUARTER PLATE BOUNDARY LIMITATIONS
45° LAMINATE TEST EXAMPLE

 FINITE ELEMENT BOUNDARY CONDITIONS (ACM,ACMBC)
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Table 3.6 Modelling a 45° laminate plate in the plate bending test.
3

Plate dimensions
A = 0,26m

h = 0,2E-02m
As= 0.2m

Ap= 0.02m

LI}

B =0.26m

Bs= 0.2m
Bp= 0.0m

Central patch load P = 100N (C.L.V)

Material properties
E1ll = 0.25E+12 N/m

E22 = 0.10E+11 N/m

G12 = 0.58E+10 N/M

Y12 = 0.3

quel Orientation | Central transverse Tensile surface strains
displacement at the centre
* E-02m X(0)  NE YD

1SFGE144 £45° 0.270 1017 1017
(Fig. 3.10.4)

1SFGE 144 : $45° 0.240 449 449
(Fig. 3.10.3)

1SHGE 50 +4,5° 0.324 637 1961
(Fig. 3.10-2) - - - -1 - = - 637 189

1SHGE 72 245° 0.324 620 2098
(Fig. 3.10.2) . 620 182

1SQGE 100 +45° 0.433 3291 3291"
(Fig. 3.10.1) (Case 1) .

1SQGE 100 -45° 0.379 -28 -28
(Fig. 3.10.1) (Case 2)




Table 3,7 Geometric non-linear examples- Load increments

SIMPLY SUPPORTED

q No. of
iterations

32.8 6

98.3 4

163.8 6

229.4 6

294.4 6
Approximate C.P.U.

time
50 + sec.

CLAMPED
q No. of
iterations
31.3 12
93.8 10
156.2 11
218.8 12
281.3 12
Approximate C,P.U,
Time
140+ sec.

Table 3.8 ACMBC -Analytical comparison(Levy)

"Parameters Simply Clamped
‘non-dimensional Supported
Wo " yes yes
T Dx yes yes
Tgo« yes yes
Op, Px yes yes
Tp Bx yes " no
Op Cx yes no
T Cx no yes
- Tgaxy | ygs- “no

See Figures 3.11 to 3.17




Figure 3.11 SIMPLY SUPPORTED SQUARE PLATE UNIFORM PRESSURE LOAD
(C.L.V.), LEVY INPLANE RESTRAINTS

Figure 3.11.1 CENTRAL TRANSVERSE
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Figure 3.12 CLAMPED SQUARE "ISOTROPIC PLATE UNIFORM PRESSURE LOAD

(C.L.V.), LEVY IN-PLANE RESTRAINTS
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Table 3.9 Percentage errors for tﬁe non-linear isotropic simply supported plate, with a load factor g = 200

(Fig. 3.11) |
\\‘» . ‘71 ) _'D °/ E‘Dx%' F'Dko/o
ref) Author ; Element | [Analysis Mesh o % I 0x /e 8 i3
simply polynomials||laminated 44 x20.0L =1.0L 32.5L 27.0L
ACMBC (4 noded) | { (125)
Bergan + | Q-19 (bending) | tsotropic 4x4 | *1.1L |R15.3L 10.3L 5.0L
Clough (70){ lagrangfan(in-plane (125)
(4-noded)
Pica + Heterosis QH \1sotropic 4 x4~ 0.3L 0.7H
(9-noded) 1 (425)
Wood + Serendipity QS xisotropic 4x4 0.3L 1.0H
(8-noded) x (325)
Hinton (7¢)] Lagrangian QL isotropic A 0.3L 0.9H
(9-noded) P (405)
Reddy + Serendipity laminated Lx b4 8.4H =7.3L
linear \ (125)
(4-noded) '
Chao (74) | Serendipity laminated Lxb 1.5L ~7.3L
quartie 2 (325)
(8-noded) 2
Chang + Serendipity lﬁminated bxot 21.0L
- (8-noded) & (325)
Sawamiphakdi i
86 Lagrangian laminated hxnd &1.0L
(86) (9-noded) | (405) _

I

L = lower than analytical H = higher than analytical



clamped plate, with a load factor § = 200 (Fig. 3.12)

Table 3.10 Percentage errors for the non-linear isotropic

Autho

Element

Mésh

T Dx 9,

Aﬁalysis

[ref. ¥o % Tex%
simply polynomials| laminated 4x 4 16.0L | x1.0L | 5.0H
ACMBC (4-noded) | (125)
Brebbia + simply polymonials isotropic 4x 4 7.5H
Connor(29) ACMBC (4-noded) ‘ (125)
Thomas + inconsistent quad. 1%otropic 4 x4 4 .4H
Gallagher '4 triangles'’ ; ?
{11 (4-noded)
I
Pica + Heterosis QH. i$otropic 4x4 =1.8L | £2.0H |=1.4L
(9-noded) (425)
| j
Wood + Serendipity QS isotropic 4x4 *1.8L | =3.0H =4.0L
(8-noded) 1 (325)
|
Hinton(76] Lagrangian QL isotropic 4t *1.7L | 3.5 |=1.3L
(9-noded) | (405)
Bogner + Hermitian igotrop1C' =2.0L | =3.08 |=4.0L
Fox + (4-noded)
Schmit (63) 24 D,O.F. ‘
Reddy + Serendipity l%minated 4 %4 18.5H
linear (4-noded) ; (125)
]
Chao (74) Serendipity laminated 4x4 4.0H
quartic(8-noded) ! (325)

I. = lower than analytical H = highe% than analytical



Figure 3.13
ACMB(C FINITE ELEMENT ANALYSIS
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Figure 3.15 SIMPLY SUPPORTED SQUARE ISOTROPIC PLATE UNIFORM
PRESSURE LOAD (C.L.V), LEVY IN-PLANE RESTRAINTS
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Table 4.1 T300/Code69 lamina material properties

The properties are for a unidirectional laminate with nominal ply
thickness (0,127E-03m) and 60% fibre volume.

Material property
(Symbol)

Design permissible

Typilcal value
measured

Longitudinal tensile
strength

Longitudinail tensile
Youngs modulus (E114)

Longitudinal tensile
strain to failure

Transverse tensile
strength

Transverse tensile
Youngs modulus (E224)

Transverse tensile
strain to faillure

Longitudinal compressive
strength

Longitudinal compfessive
Youngs modulus (E11.)

Transverse compressive
strength

Transverse compressive
Youngs modulus (E22()

Interlaminar shear
strength

Shear modulus (G12)
Poissons ratio (V12)

Longitudinal coefficient
of thermal expansion

Transverse coefficient
of thermal expansion

0.117E410 N/m?2
0.123E+12 N/m2

1.1 %

0.494E+08 N/m?
0. 748E+10 ¥/m2
0.7%

0.707E+09 N/m2
0.123E+12 N/m2
0.100E+09 N/m2
0.549E+10 N/m2
0.706E+08 N/n;2

0.440E+10 N/m2
0.3

-0.32E-06 /&

0.177E+10 N/mZ

0.135E+12 N/m?2

0.550E+08 N/m?

0.1096E+11 N/mZ

0.139E+10 N/m2
0.144E+12 N/m?
0.253E+09 N/mZ
0.121E+11 N/mZ
0.122E+09 N/m2

0.577E+10 N/m 2
0.3

-0.32E-06 /C

0.23E-04 /C
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Table 4.2 Specimens
Exp.| Lay-up (T300/Code69) A B E-03 |h(norm)E-03 Remarks
m m m
1 | (9050%5905+4550% -45°%0°%0° .258 .258 .40 4.318 The lower surface had a protective layer
-45203+45?o:o$+45302 which was approx. two ply thick (0.254E-03m)
-45,0) (Reference B-A H6/2) Cured 1978-9
2 n .253 .251 .86 4.318 Void content <0.6%
(Reference B-A CF-1074) Cured 1982
3 | (+45590%-4550%0° 45,905 | .258 .258 .49 5.08 The upper surface had a protective layer
+45)5 which was approx. two ply thick (0.254E-03m)
The plate was tested twice because adhesive
4 " caused the gauges to peel off during Exp. 3
(Reference B-A H5/2) Cured 1978-9
5 | (+45%09-45°90° 90° -45°0° | .205 .273 .91£1% | 2.032 The specimen was not failed in Exp. 5
+4§5s because poor choice of supporting distances
allowed it to just slip through the supports
6 ' Support distances were changed for Exp 6.
(Reference B-A CF-1050) Cured 22/12/81
7 i L2041 272 .9121% | 2.032 (Reference B-A CF-1051) Cured 5/1/82
8 | (0590305 90059050590) .204 .202 .88:1% | 2.032 ¥oid content<l.2%
(Reference B-A CF-1075) Cured 4/82
9 | (09+455,0%+45°50% -45°0°. .202 .200 .91£2% | 2.032 Void content<l.2%
_4535 (Reference B-A CF-1076) Cured 4/82




Figure 4.2 PAGANO'S 3-CROSS-PLY STRIP BENDING EXAMPLE
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Figure 4.2 contd. PAGANO'S 3-CROSS-PLY STRIP BENDING EXAMPLE
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Table 4.3 Shear flexible finite elements

Author Element type F;E.M No. of nodes { Displacement Remarks
(ref) D.O.F. Function
Mau + Hybrid-stress 4 Quartic The rotations of normals for different
Tong + layerswere considered to be different.
Pian (38) ((n+1)x2+1) x4
Mawenya + | Iso- Displacement 8 Quartic The normal rotations, though assumed
Davies parametric uniform for any layer, vary from layer
(46) ((n+1)x4+1)x8 | Numerical to layer and are independent of the
integ. (2x2) | transverse displacement.
Gaussian
Panda + Super- Displacement 8  Quartic Assumed normal rotations to be the same
Natarajan parametric Numerical for all layers, and the elasticity
(47) 40 integ. (2x2) | at different layers was taken into accoun
Gaussian by applying a "thickness" concept in the
numerical Iintegration. This analysis
showed that Mawenya's analysis did not
necessarily give improved accuracy
Reddy Serendipity }Displacement 8 Quartic Used a Lagrange penalty function to take
(44) ‘ Numerical into account that normals di{d not remain
40 integ. (2x2) normal. The analysis also included shear
Gaussian correction factors in the 3-D stress-
strain relationships.
n = No. of layers




Figure 4. 3 PAGANO'S CROSS-PLY RECTANGULAR PLATE BENDING EXAMPLE
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Figure 4.4 CENTRAL DISPLACEMENT W(i"i ) WITH SPAN TO THICKNESS S
FOR SHEAR FLEXIBLE FINITE ELEMENTS, ACM, C.P.T.,
AND PAGANO'S EXACT SOLUTION
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Table 4.5 Comparison of High order plate deformation theory with the
exact elasticity solution of a rectangular simply supported
bi-directional plate with a sinusiodal load (Fig. 4.3)

S Pagano Lo Pagano Lo Pagano Lo
— =[AB = (A B.h = (A B /A B (A B
"xf%'?f?) Vx(i'z-i%’) Vv(frf*r) “”Y(é'?'f'%) "’(7’7) 77

4 1.14 1.07 0.109 [0 123 2.82 3.98
-1.1 -0.119

10 | x0.725 0.725 0.0418 |[20.0492 0.919 1.083
-0.727 |. '=0.0435
20 | *0.650 0.655 0.0294 !%0.0327 0.610 0. 649
-0.652 -0.0435
100 | £0.624 | $0.627 £0.0253 |£0.0277 0.508 0.509
ACM £0.631 +0.0260 0.507
CPT £0.623 $0.0252 0.503

Table 4.6 Bending and in-plane components using the High Order plate
deformation theoryto solve the rectangular simply supported
bi-directional plate with a sinusiodal lozd,(Fig 4.3).

S |Component N(A,E) o—x(AIE,g) Vrry(A,_B,.b) U}(A,ﬂb_)
22 m 22 222 222

10 Bending (0.1300E-03 | -.7266E+02 | -.4923E+01 | ~.1498E+01
10 | In-plane ]0.2816E-06 | 0.2966E+00 | 0.1434E+00 | 0. 5044E+00
20 Bending |0.6237E-03 { =.2619E+03 | -.1309E+02 | -.6940E+01
20 | In-plane [0.1408E-06 | 0.3529E+00 | O: 1462E+00| 0. 5052E+00

100 | Bending |0.6111E-01
100 | In-plane [0.2816E-07

. 6300E+04 .2712E+03 |. -. 1809E+03
.3729E+00 | 0.1470E4+00 | O.5050E+00

o

All parameters for the test example are given with Fig. 4.3.
References.Pagano (112): Lo, Christensen, Wu (119,120,122)



Figure 4.7 INTERLAMINAR STRESSES IN LAMENATES UNDER AXIAL

EXTENSION
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Figure 4.8 APPARATUS FOR PLATE BENDING EXPERIMENT

Figure 4.8.1 BASE PLATE (MILD STEEL)
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Figure 4.9 STRAIN MEASUREMENTS

Figure 4.9.1 NONLINEAR BENDING STRAIN DISTRIBUTION
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Table 4.7 Plate bending test parameters

Exp. Lay-up A B h E-03 Ag Bs Sfnin) p Bp
m m m m - m

1 | (90°0%90°+450°%-45,0°, (0.258 | 0.258 | 4.40 0.2 |o0.2 46 0.02 {0.02
07-45505+4550505+45]
07-45709

2 .253 | 0.251 | 4.06 0.2 0.2 49 0.02 | 0.02

3 | (+45%9095-45%050%-45, |0.258 | 0.258 | 5.49 0.2 {0.2 36 0.02 |0.02
905+45) g

4

5 | (+45509-45990%90°-45°10.205 | 0.273 | 1.9121% 0.15(0.2 |As 79 0.02 { 0.02
0%+459¢ R

6 0.15(0.12 |Bs 63 0.01 [ 0.01

7 .204 1 0.272 | 1.91%17% 0.15{0.12 %s 63 0.01 |0.01

8 (03902029010390101962 .204 | 0.202 | 1.88%1% 0.130.13 69 0.01}0.01

9 | (03+45%0%+45°0°-45°0°]0.202 | 0.200 | 1.91%2% 0.13]0.13 68 0.01 | 0.01

-45)e




Table 4.8 Linear (embedding) 1load cycles

Exp. | Max. load Increment | Period of time load
N N was maintained (min)
1 300 100 5
2 300 100 5
3 400 100 4
4 400 100 4
5 100 20 3
6 100 20 3
7 100 . 20 3
8 100 20 3
9 100 20 3

Table 4.9 Load increments for test to failure

Exp.| Linear deform. Test to failure
N. N
max. increment increment
1 300 50 200 to fibre failure at 8200
2 400 100 400 to 7200 then 300 to fibre
failure at 7960
3 — —_ 400 to 11200 (adhesive failure)
4 400 50 400 to 2000 then 800 to fibre
failure at 13750
5 80 20 50 to 1200 then plate just
slipped through the supports
6 50 10 100 to fibre failure at 2500
7 50 10 100 to fibre failure at 2600
8 100 20 100 to fibre failure at 2100
9 100 20 100 to 400 then 50 to 500 and
then had to be stopped due
"to plate rotation




EXPERIMENT 1 .NOTES AND OBSERVATIONS

Date of test : July 81

Plate dimensions

A =0.258m B = 0.258m

h = 0.44E-02m(Includes protective layer)

Ag= 0.2m Bg= 0.2m

Ap= 0.02m Bp= 0.02m (Rubber pad 0.178E-02m)

Lay=up (900,90 + 5 0-45, 00024 5 0 520 0+4 54 5°0%)

Ball bearings 0.4445E-Olm

The plate was arranged with the protective layer as the lower surface.
Central transverse displacement was increased at O.5E-03m/min in increments
of 200 N.

No transverse displacement measurements were made.

Strain gauge measurements nct plotted
3 90°B was always less than 4 90°B ,the trend was the same
and at 8200N strain=10825 pe
7 0°A maximum value 700 pe at 5200N, and at 8200N strain=668ps
12 90°A maximum value 500 ye at 4400N, decreasing to Opeat 8200N.
5 90°B and 9 90°A were connected to a ultraviolet recorder.
The information was loss due to electrical noise when the deformation
was still small.
Sudden catastophic first fibre failure occurred after approx. lmin
with the load equal to 8400N. Failure started near the centre in the
outer tensile layer.. There had been no previous sign of visible
failure ,and the occasional loud crack heard suggested adhesive

breékdown. Thé final ioéé éffer faiiuférwas not recorded.




Figure 4.11 EXPERIMENT 1. STRAIN GAUGE ARRANGEMENT
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Figure 4.12

EXPERIMENT 1. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE
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Figure 4.13 EXPERIMENT 1. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE
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Figure 4.14 VISIBLE‘FAILURE ON TENSILE SURFACE
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EXPERIMENT 2. NOTES AND OBSERVATIONS

Date of test : June 82

Plate dimensions

A = 0.253m B = 0.251m
h = 0.406E-02m

Ag= 0.2m Bg= 0.2m
Ap= 0.02m Bp= 0.02m

Lay=up (9070790, 57024 570702 5;,0%4 50,084 504 507 )

Ball bearings 0.4445E-Olm

Central transverse displacement was increased at 0.5E-03m/min in increments
of 400N.

All strainsand displacements recorded have been presented in the plots.
Approximate deformation observed

At 4000N
) So—
O —T O O
Z (<]
I Y 90 ‘ 0°
At 6000N ‘__ls

O—— T it

When load exceeded 6400N the occasional snap was heard, (adhesive breakdown).

First fibre failure occurred as the transverse displacement was increasing
at 7960N. Failure started near the centre in the outer tensile lamina.

The resultant failure caused sufficient weakening that final equilibrium
was attained at 1250N.

On inspecting the area where the patch load was -subjected the chalk
impression left indicated that load had been applied fairly evenly,

with a2 heavy line along one side.



Figure 4.15 EXPERIMENT 2. STRAIN GAUGE ARRANGEMENT
34 layers (D0,0,90,+45,0,—45,0,0,—45,0,+45,0,0,+45,0,—45,0)S

SCALE 1:4

STRAIN GAUGES ¢  CROSS-ply TYPE FCA3-11 3MM

-~ SINGLE-PLY TYPE FLA3-1E 3MM

VIEW : FROM BELOW

" R
LA
A - B
3
Saz -
6 B
~5 10
) L #
S° ("o
X 90
LT 60 h
20
i 100
" X125

s POINT SUPPORT

[] eatcH LoAD




Figure 4.16 EXPERIMENT 2. DISPLACEMENT MEASUREMENTS DURING LINEAR DEFORMATION
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Figure 4.17 EXPERIMENT 2. STRAIN MEASUREMENTS DURING LINEAR DEFORMATION
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Figure 4.18 EXPERIMENT 2. 'STRAIN MEASUREMENTS DURING LINEAR DEFORMATION
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Figure 4.19 EXFERIMENT 2. STRAIN MEASUREMENTS DURING LINEAR DEFORMATION
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Figure 4.20 EXPERIMENT 2. LOAD / TRANSVERSE DISPLACEMENT RECC RDED
ON THE CHART RECORDER OF THE INSTRON
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Figure 4.21 EXPERIMENT 2. TRANSVERSE DISPLACEMENTS TO FIRST FIBRE

FAILURE
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Figure

4.22 EXPERIMENT, 2. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE
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Figure 4.23 EXPERIMENT 2. STRAIN MEASUREMENTS TO FIRST FIERRE FAILURE
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Figure 4.24 EXPERIMENT 2. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE
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Figure 4.25 EXPERIMENT 2. STRAIN MEASUREMENTS TO FIRST FI1BRE FAILURE
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Figure 4.26 EXPERIMENT 2. VISIBLE FAILURE ON TENSILE SURFACE
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EXPERIMENT 3 and 4. NOTES AND OBSREVATIONS
Date of test : Exp. 3 Oct 81 . Exp. 4 May 82

Plate dimensions

A =0.258m B = 0.258m

h = 0.549E-02m (includes protective laygr)

Ag= 0.2m Bg= 0.2m

Ap= 0.0Zm Bp= 0.0gm(rubber pad 0.178E-02m)

Lay-up  (4590%450,024590+5)
Ball bearings 0.4445-0lm (Exp 3) ; 0.3175E-Olm (Exp 4)

Experiment 3

The plate was arranged with the protective layer as the top surface.
Central transverse displacement was applied at 0.1E-02m/min in increments
of 400N.

At 400N a small amount of load relaxation(25N) was recorded, but the

size of load relaxation did mot increase with load.

At 6000N a small amount of strain increase was measured at the centre
during the time required to take the readings.

At 8000N the bending deformation was:
— Y 9¢° —X 0°

>—~—0 T o——-—T
At 9600N there was no visible damage along the edges, a loud snap was
heard and gauge 1 90" L suddenly recorded an increase.

At 10800N the central strains decreased rapidly as adhesive failure

due to poor quality M-bond 200 caused the gauges to peel off.

Strain_gauge measurements not plotted

The values bélow were recorded at 8000N when the adhesive failure had

not appeared.

ME MNE JE
2 90°8 3139 b 0°A 249 7 90°L B+A 5812
2 0° 8B 3147 6 90°L B+A 5903 7-45°L 6475
3 90°A 577 6 0° L - 4905 g 0° L 2671
3 0°A 319 6 L5%L - 6142 g 90° L 4769
Lk 90° A -23(1L00 N) 80 70 L - 7150 8 +45 L - 4577

All B and B+A graduallyincreased and showed stiffening.

M1 A were smallandpratically linear above 4000N.



EXPERIMENT 3 and 4. NOTES AND OBSERVATIONS (contd.)

Experiment 4

The plate had been C-scanned by British Aerospace(Woodford) after

Experiment 3 ,which showed that there was no internal damage.

A similar procedure as that for Exp. 3 was followed ,but with 800N increments
of load. Observations up to 13750N were also similar to Exp. 3. No damage
was observed until ultimate first fibre failure ,which occurred at 13750N
after 1 minute of constant centralltransverse displacement. Like Exp. 2

a chalk impression indicated that the load had been uniformly distributed.
The resultant fibre failure which initiated at the centré was not as

extensive as in Exp. 1 and 2 .The final load after failure was 9600N.

Strain gauge measurements not plotted

The value below were recorded at 13000N since failure prevented the

full set of readings to be made at 13750 N.

ME ME

6 0° L B+A 5276 9 90°L B+A 6103
6 0°T 2829 9 90T B+A 5629
790°L 4564 10 0°L " 6866

7 90°T 2266 10 0°T 6360



Figure 4.27 EXPERIMENT 3. STRAIN GAUGE ARRANGEMENT
40 LAYERS (45,90,—45,0,0,—45,9O,+45)5

SCALE 1:4

STRAIN GAUGES *¥ CROSS-PLY TYPE FCA3-11 3MM
- SINGLE- PLY TYPE FLA3-11 3MM

VIEW:FROM ABOVE
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Figure 4.28 EXPERIMENT 4. STRAIN AND DATIL GAUGE ARRANGEMENT
40 LAYERS (+45,90,-45,0,0,-45,90,+45) ¢

SCALE 1:4
STRAIN GAUGES ¢ CROSS-PLY TYPE FCA3-11 3MM
= SINGLE-PLY TYPE FLA3-11 3MM
VIEW : FROM ABOVE
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| Figure 4.29 EXPERIMENTS 3 AND 4 . TRANSVERSE DISPLACEMENT MEASUREMENTS
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Figure 4.30 EXPERIMENTS 3 AND 4. STRAIN MEASUREMENTS
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Figure 4.31 EXPERIMENTS 3 AND 4. STRAIN MEASUREMENTS
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Figure 4.32 EXPERIMENT .4. VISIBLE FAILUREQON TENSILE SURFACE
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EXPERIMENT 5. NOTES AND OBSERVATIONS

Date of test: Feb 82

Plate dimensions

A = 0.205m

h = 0.191E-02m
Ag= 0.15m

Ap= 0.02m

B =0.273m
BS= 0.2m
Ap= 0.02m

Lay-up  (eh5° (P-4 909024 (%45
Ball bearings 0.4445E-Olm

Central transverse displacement was increased at 0.5E-03m/min in increments

of 100N.
LOAD N
400

550
650
750
950

1000

1050
1100

1150

1200

REMARKS
The plate started‘to behave like a pure
beam, with a very small amount of bending
about the Y-centreline
No load relaxation
lio visible edge delamination
Load relaxation(10N)
The laminate was bending as a beam.
Load relaxation(10N)
It was noted that the point of support

had moved down the surface of the balil

actual position grinal posifion
of suppcrf?//of support

This change was only observed in the

bearings.

Y-direction.

No sign of edge delamination.

There was noticeable flutter in the load
recorded.

Load crack - which resulted in minor fibre
failure in the non trimmed edges.

Further fibre fajlure. Load relaxation(10N)



EXPERIMENT 5. NOTES AND OBSERVATIONS (contd.)

v

LOAD N REMARKS
1250 and above Continuing to increase central transverse

displacement did not increase load and there
was immediate load relaxation. This was due
to poor choice of experimental parameters
which allowed the plate to just slip through
the supports, Plate 4.2,
The experiment was stopped Jwithout central
fibre failure) when the central transverse
displacement was 0.66E-Olm. It was then
noted that a little amount of delamination
had occurred along the highly strain edges.
But, as with the fibre failure appeared to
have happened in the waste material of the
edges.

The laminate was subjected tothemaximum displacement for 1 hr,

and the final load was still above 1200N.

It was then decided to take readings on unloading to measure

recovery. Unfortunately the displacement was released too

quickly and the unbending caused two diagonally opposite

ball bearings to come out of their sockets.

o ol

t

0O [¢)
&

No further gauge measurements than those plotted will be

given since the experiment was not successful.
Inspection of the chalk impression left on the plate where the patch

loading was 1imposed indicated that load was uniformly distributed ,
except at one corner where it was slightly higher.



Figure 4.33 EXPERIMENT 5. STRAIN GAUGE ARRANGEMENT
16 LAYERS (+45,0,-45,90,90,-45,0,445)s

SCALE 1:4
STRAIN GAUGES* CROSS-PLY type fca3-11 3MM
- SINGLE-PLY TYPE FLA3-11 3MM
VIEW : FROM ABOVE
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Figure 4.24 EXPERIMENT 5. CENTRAL TRANSVERSE DISPLACEMENT
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Figure 4.35 EXPERIMENT 5. STRAIN MEASUREMENTS
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Figure 4.36 EXPERIMENT 5.STRAIN MEASUREMENTS
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EXPERIMENT 6. NOTES AND OBSERVATIONS
Date of test : March 82

Plate dimensions

Same as Experiment 5

A= 0.15m Bg= 012m

Ap= 0.0lm Bp= 0.0lm (rubber pad not inserted)

Lay-up (+4520°45°90790°-4 5 00+45)
Ball bearings 0.3175E-Olm

The plate was that used in the unsuccessful Exp. 5. Changes were made
to the supporting distances As and Bg and the patch load dimensions
Ap and Bp , so that the dominant preferential bending found in Exp.5
did not occur. The other important difference was that the load was
imposed without the rubber pad.

There was no check to find out if Exp.5 had caused permanent damage.
Central transverse displacement was increased at 0.5E-03m/min in

increments of 100N.

LOAD N REMARKS
800 Small jump in load
1900 Loud crack probably as the result of

adhesive failure in the tabs

2500 The bending behaviour was now
preferential about the Y-centreline.
Much louder crack , fibre failure
occurred around patch load in the
compressive outer layers.Thecentral
strain gauge readings reduced dramatically
asload fell to 2375N. This . happened
about 0.5 minute after the load had
reached 2500N. There was no sign of any
further damage at the edges than that
introduced by Exp.5.

|
FIBRE FAILURE actualscale

Compressive surface |
patch load «— fibre failure and a
(test sectio - Little splitting
° o

centre 4;1///

X 0° |

45



EXPERIMENT 6. NOTES AND OBSERVATIONS (contd.)

The strains and displacements plotted correspond to those presented

from Exp. 5.

Strain gauge measurements not plotted

The values below were recorded at 2400N.

trend }JE frend HE
L0°L B+Afalso 8 0°B) 10985 6 90°B(maximum 14002t 90CN) 101
5+45°8B {similar to } 9560 9+45°B similar togauge 5 6346
5-45°B lgauges 2+3 8000 9-45°8 5886
6 0°B (also80°B) 1540

The gaugei290°which was used in Exp. 5 to measure edge strains could not

be used since this experiment had caused adhesive failure.



Figureu4.37 EXPERIMENT 6. STRAIN GAUGE ARRANGEMENT
16 LAYERS (+45,0,90,90,-45,0,+45)s
SCALE 1:4

STRAIN GAUGES + CROSS-PLY TYPE FCA3-11 3MM
- SINGLE-PLY TYPE PFLA3-11 3MM

VIEW : FROM ABOVE
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Figure 4.38 EXPERIMENT €. CENTRAL TRANSVERSE DISPLACEMENT TO FIRST FIBRE FAILURE
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Figure 4.39 EXPERIMENT 6. STRAIN MEASUREMENTS TQ FIRST FIBRE FAILURE
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Figure 4.40 EXPERIMENT 6. STRAIN MEASUREMENTS TO FIRST FIBRE

FAILURE
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EXPERIMENT 7. NOTES AND OBSERVATIONS

Date of test : March 82

Plate dimensions

A = 0.204m
h = 0.191E-02m
Ag= 0.15m
Ap= 0.0lm

Lay-up (+45° 00:4590°9 0% 45 §+45)
Ball bearings 0.3175E-Olm

B =0.272m

Bs= 0.12m
Bp= 0.0lm (rubber pad 0.178E-02m)

Central transverse displacement was increased at 0.5m/min in increments

of 200N.

LOAD N
300
600

700

1400
1600

1700
1800
2100
2200

2300

2600

REMARKS
Small load relaxat&on (10N)
Jerky load increase was recorded on Instron
chart recorder.
Preferential bending about X centreline
Load relaxation (10N)
No visible sign of edge delamination
Load relaxation (20N).There was a crack
which indicated adhesive failure in the
strain gauge tabs. A definite iacrease
in strain was measured by gauge 1-45% B+A
during the time to take the set of
readings.
Load relaxation (10N)
Further indication of adhesive failure
Load increase was more jerky than usual.
There was a dramatic increase in the central
displacemeng needed for next increment of
load. Load relaxation (30N)
There was signs of the some shift in the
positions of support.
Tensile first fibre failure occurred at the
centre after a period of 1 to 1.5 minutes
of constant central displacement. There was

an immediate reduction in load to 2420N.




EXPERIMENT 7. NOTES AND OBSERVATIONS (contd.)

Just before the onset of failure the deformed shape was :

___>Y 90° — X 0°

O ~—— T~ o0

FIBRE FAILURE

Tensile surface I actual scate
| fibre failure andsplitting down

patch load—_ fibre length
y 90° (test section) o

centre

-]

45 X 0°

The laminate did not possess any edge damage as a result cf the test.

Strain gauge measurements not plotted

The values below were recorded at 2500N.

trends }JE /U £

345°8 [very similarto] 6243 5+45 B [ trands the 6387
3-45°8| gauges 2#45°B [ 5718 7+45° B { same as gauges 6072
S 90°L B+A [max 10&LpeatsOON} 463 7-45°8 2£45° B 6443



Figure 4.41 EXPERIMENT 7. STRAIN GAUGE ARRANGEMENT
16 LAYERS (+45,0,-45,90,90,-45,0,+45)s
SCALE 1:4

STRAIN GAUGES + CROSS-PLY TYPE FCA3-11 3MM
— SINGLE-PLY TYPE FLA3-11 3MM

VIEW : FROM BELOW
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Figure 4.42 EXPERIMENT 7. CENTRAL TRANSVERSE DISPLACEMENT TQ FIRST FIBRE FAILURE
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Figure 4.43 EXPERIMENT 7.

STRAIN MEASUREMENTS TQ FIRST FIBRE FAILURE
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Figure 4.44 EXPERIMENT 7. STRAIN MEASUREMENTS TQ FIRST FIBRE FAILURE
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Figure 4.45 EXPERIMENT 7. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE
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.EXPERIMENT 8. NOTES AND OBSERVATIONS

Date of test : May 82

Plate dimensions

A = 0.204m
h = 0,2032E-02m
Ag= 0.13m
Ap= 0.0lm

Lay-up (0590707907 (°900;90")
Ball bearings 0.3175E-Olm

B = 0.202m

B5= 0.13m
Bp= 0.01lm (rubber pad 0.178E-02m)

Central transverse displacement was increased at 0.5m/min in increments

of 100N.

LOAD N
400

800
1500
1600

2140

REMARKS
Load relaxation (5N) , it was noted
that there was preferential bending about
the X-centreline.
Load relaxation (10ON)
Adhesive failure
Load relaxation (10N). The preferential
bending about the X-centreline was beccming
more dominant.
As the central transverse displacement was
being increased a very loud snap associated
with first fibre failure was heard, and the
plate was unloaded. There was a small

reduction in load to 2060N.

Inspecting the surfaces around the highly strained centre region no visible

damage was found. It has been suggested that first fibre failure occurred

in the second tensile layer



Figure 4.46 EXPERIMENT 8. STRAIN GAUGE ARRANGEMENT
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Figure 4.47 EXPERIMENT 8. TRANSVERSE DISPLACEMENTS TO FIRST FIBRE FAILURE
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Figure 4.48 EXPERIMENT 8. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE
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Figure 4.49 EXPERIMENT 8. STRAIN MEASUREMENTS TO FIRST FIBRE FAILURE
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EXPERTMENT 9. NOTES AND OBSERVATIONS
Date of test : May 82

Plate dimensions

A = 0.202m B = 0.200m
h = 0.2032E-02m

Ag= 0.13m Bs= 0.13m
Ap= 0.0lm Bp= 0.01lm

Lay=up (+45 0+45, 045 0;-45; 0)
Ball bearings 0.3175E-0Olm

Central transverse displacement was increased ’at 0.5m/min in increments

of 100N.

LOAD N REMARKS
up to 400 At each increment of load there was a
small amount of load relaxation {5N).
500 Large amount of load relaxation (45N)
as the plate started to rotate in
supports. This is illustrated in the
diagram below and was the result of

the large twisting stiffrnesses.




Figure 4.50 EXPERIMENT 9. STRAIN AND DIAL GAUGE ARRANGEMENT
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Figure 4.51 EXPERIMENT S. TRANSVERSE DISPLACEMENTS
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Figure 4.52 EXPERIMENT 9. STRAIN MEASUREMENTS
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Figure 5.53 EXPERIMENT 2. STRAIN MEASUREMENTS
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Table 4.10

Preferential bending

Exp. (Figs.) Measured response by strain gauges during test to failure Centreline of
0° X 90° Y 145° Central transverse displ. preferential
~ - bending
1 (4:11-4.12 considerable stiffening| nearly linear approx. linear after linear
initial stiffening
‘ X
2 (4.13-4.26) " T " 00
3 and 4 little stiffening little stiffening stiffens slight stiffening Small amount
(4.27-4.32) Y
5 (4.33-4.36) The responses noted only applied until the specimen just slipped through the supports
............... nearly linear nearly linear linear Very large
X
6 (4.37-4.40) linear-weakens at stiffens nearly linear linear Small amount
high load Y
7 (4.41-4.45) nearly linear stiffens nearly linear nearly linear-weakens Small amount
' at high loads Y
8 (4.46-4.49) slight stiffening linear-weakens at|  —-eceecaeeao-- linear X
high loads
9 (4.50-4.53 The responses noted only applied until the specimen started to rotate about the supports Large amount

large stiffening

nearly linear

varied

linear

X




Table 4.11 Relevant information from those specimens which had first fibre failure in the test section

Exp. Lay-up Figure showing| Final | Final load Tré%%éerse Surfacgqgtrains Orien. of
visible damage| load after fibre |central |ifibres _| fibres failed lamina
N failure N displ.E-03 at the centre
0 O o .o o m /JE .
1 | (9050,90°+45,0,-45, 4.14 8200 | @ mememe | emeeen 15534 7844 outer tensile
0%02-4550%+45%050° 90°
+45509-4550%
2 4.26 7960 1250 22 14426 6061 outer tensile
90°
4 | (+45°90%-45%0°0°-45° 4.32 13750 9000 16.9 11196 11573 outer tensile
905+45)g +45°
6 | (+4550%-45°90590; Notes and 2500 2375 22 7619 9084 compressive
-45°05+45)¢ Observations outer layer
7 Notes and 2600 2420 17.5 13953 17624 outer tensile
Observations +45°
8 | (0590%0%90%5099050° | No visible 2140 2060 16.5 7075 >25000 2 rd tensile

909

fibre failure

90°




Figure 4.54 BENDING DEFORMATION IN PLATE BENDING METHQOD

Figure 4.54.1 SHORTENING OF SPAN DUE TO PREFERENTIAL BENDING

ORIGINAL SPAN

INSTANTANEOUS SPAN

Figure 4.54.2 PROPOSED MATRIX FAILURE OF THE OUTER LAMINA
AROUND THE CENTRE IN EXPERIMENT 8

Y

o CURVATURE HAS BEEN EXAGGERATED FOR CLARITY

FIBRE BUNDLES
MATRIX CRACKING

SEVERE MATRIX CRACKING
STRAIN >2.5 &




Table 5.1 Mesh constructions to analyses the experiments

Subscripts Q = Quarter plate model H = Half plate F = Full plate
G = Graded mesh
S = Square plate R = Rectangular
E = Experiment
Mesh label . The first number refers to the order in which the meshes
were employed in modelling the experiments. The last
number gives the number of elements in the mesh.
Mesh label] Plate ?&ps. No. of eles, Size of elements along sides
dimensionsg (along each
A m B SidE)
1SQGE36 .26 .26 |1-4 | 36 (6) 0.03 *1, 0.025 *2, 0.02 *2, 0.01 * 1
1SQGE49 .26 .26 {1-4 | 49 (7) 0.03 *2, 0.015 *4, 0.01 *1
1SQGES1 .26 .26 [1-4 | 81 (9) 0.03 *1, 0.02 *1, 0.015 *2, 0.01 *5
1SQGE100 |.26 .26 |1-4 100 (10) 0.015 *6, 0.01 *4
1SHGE50 |.26 .26 [1-4 50 (5) 0.03 *4, 0,01 *1
(10) [0.03 *4, 0.01 *2, 0.03 *4
18HGE 72 .26 .26 |1-4 72 (6) 0.03 *3, 0.02 *1, 0.01 *2
(12) ]0.03 *3, 0.02 *1, 0.01 *4, 0.02 *1,
0.03 *3 T
1SFGE144 .26 .26 |1-4 144 (12) 1}0.03 *1, 0.025 %2, 0.02 *2, 0.01 *2,
0.02 *2, 0.025 *2, 0,03 *1
2RQGE100 |.205 .275 |5-7 100 (10) 0.014 *2, 0,015 *1, 0,01 *#3, G.005 *2
- (10) |0.01875 *2, 0.02 *2, 0.015 *2,
0.01 *2, 0.005 *2
2RHGE126 |.205 .275 [5-7 126 (9) 0.035 *1, 0.02 *2, 0.015 *2, 0.01 *2
' ' 0.005 *2
(14) 0.0275 *1, 0.02 *1, 0,025 *1, 0.01 *2,
' 0.005 *4, 0.01 *2, 0,025 *1, 0.02 *1,
2RFGE144 |.205 .275| 5 144 (12) 0.0275 *1, 0.018 *3, 0.01 %4,
0.018 *3, 0.0275 *1
(12) ]0.0375 *1, 0.027 *3, 0.01 *4,
0.027 *3, 0,0375 *1
3RFGEB144 (.205 .275| 6+7| 144 (12) 0.0275 *1, 0.0217 *3, 0,005 *4,
0.0217 *3, 0.0275 *1
(12) 0.0525 *1, 0.025 *3, 0.005 *4,
0.025 *3, 0,0525 *1
4S5QGE100 |.205 .205 {849 100 (10) 0.0175 *2, 0,015 *1, 0.01 *3, 0.005 *4
4SHGE72 .205 205|829 72 (6) 0.035 *1, 0.0183 *3, 0.005 *2
(12) 0.035 *1, 0.0183 *3, 0,005 *4,
0.0183 *3, 0.035 *1
4LSFGE144 |.205 ,205 [B+9 144 (12) 0.035 *1, 0.0183 *3, 0.005 *4,
0.0183 *3, 0.035 *1




Table 5.2 Linear deformation experimentalv numerical using Exps. 1 and 2 to provide a standard set of definitions
for the material properties (E1ll, E22, Gl2, t, V12)

Model| Mesh Load t Ell 2 E22 2 G12 V. V12 |Central transverse | Central tensile surface
Vector| E-03| E+12N/m}E+10N/m | E+10N/m displacement w( srains
m E-03m/ 100N X(0) NE/100N Y(90)
1 1SHGE50 | C.L.V |0.127 ]0.1396 1.155 0.5771 | .3 0.272 140 168
2 " V.L.O " " " " " 0.270 124 143
3 " C.L.v " " 0.2889 " " 0.297 137 179
4 " V.L.O " " " " " 0.295 135 168
5 " C.L.vV " 0.1485 " " " 0.281 138 170
6 " V.L.O " " " " " 0.279 122 158
7 " C.L.V |0.1194 " " " " 0.338 158 187
8 " V.L.O " " " " " 0.335 134 169
9 " C.L.vV " " " 0.6300 " 0.337 146 _ 182
10 " C.L.V " " " 0;5771 .25 0.338 145 187
11 " C.L.v " " 0.0 " .3 0. 348 152 | 189
12 " C.L.V " " 0.5778 " " 0. 329 139 174
EXPERIMENTS 1 and 2 (average values measured in linear (0.33 -~ 0.4) 160 200
(embedding) load range)




Table 5.3 Linear displacement experimental-numerical (ACM)comparison,

modelling Exps. 1 and 2 with different mesh constructions

Plate dimensions used in the numerical models

A = 0,26m

B =

0.26m

h = 0.406E-02m (average thickness of the specimen tested in Exp. 2)

Ag= 0.2m

Ap: 0.02m

Central patch load 100N (C.L.V)

B;= 0.2m

Lay-up (9030390}+45503-4550505-45505+4550503+45505-4550)

Material properties (applying the set of standard definitions)

E1l = 0.1485E+12

G12 = 0.5771E+10

m

t = 0.1194E-03 m

N/m?2

N/m?2

E22 = 0.2889E+10 N/mZ

Vi2 = 0.3

Model| Mesh Central transverse Central tensile surface | Modelling
displacement E-03m bending strain pﬁ/ﬁooN cases for
W /100N X (09 ¥ (909 +45°1ayers
1 1SGGE36 0.339 157 197 case 1
2 1SQGE36 0.336 145 183 case 2
3 |1SQGE49 0.339 159 199 case 1
4 |1SQGE49 0. 337 146 185 case 2
5 1SQGES81 0.339 160 201 case 1
6 |1SQGES81 0.338 148 186 case 2
7 |1SQGE100 0.340 160 201 case 1
0.339 154 192 av. casesl+2
8 |1SQGE100 0.337 148 186 case 2
9 1SHGE 50 0.338 158 187 cases 1 + 2
10 1SHGE72 0.338 158 193 cases 1 + 2
11 |1SFGE144 0.338 152 191 cases 1 + 2

EXPERIMENTS 1 and 2 (average values measured in linear(embedding) load

0.33 - 0.4

range)

160 200




Figure 5.1 MESH CONSTRUCTIONS FOR EXPERIMENTS 1 TO 4
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Figure 5.1 MESH CONSTRUCTIONS FOR EXPERIMENTS 1 TQ 4
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Table 5.4 Linear displacement experiment-numerical comparison: Overall modelling of Exp. 1 and 2

All data for the numerical models is given in Table 5.3

Mesh Transverse displacements Tensile Surface strains Modelling
E-03m/ 100N centre MNE /100N ' cases
Node' w. [Node w | Node w Node €,0° = Ey90°Node .E, 0° Ey 90°
49 0.3397| 28 0.26. 28 0.26 49 157 197 48 126 104 172 case 1
1SQGE36 0.338 0.26 0.26 151 197 115 176 aver. 1 + 2 .
Fig 5.2 49 0.336 | 28. 0.26 | 28 0.26 | 49 145 183 | 48 103 125 173 case 2
121 0.340.| 66 0.25 0.25 { 121 161 201 |120 129 108 181 case 1
1SQGE100 | 0.339 10.255 0.255 155 194 ' 118 178 aver. 1 + 2
Fig51.4 121 0.337 | 66 0.26. 0.26 | 121 148 186 (120 128 106 175 case 2
1SHGE 50 36 0.338 36 158 187 35 106 163 cases 1 + 2
Fig 51.3 ‘
' B ) 105 127 176 175
%SF%EI&& 85 0.338 1124 0.26 88 0.279f 85 152 191 84 116 176 cases 1 + 2
ig 51.1 ! ) ~
: ‘ ' centre N
EXP. Pos. we ?os. y Pos. w Gauge €, 0° £,90° Gauge €90 otes
1 cen, 0.44 1 156 162 0-300n linear load
Fig 411 range
1 1 166 202 Initiel gradient of
failure test ( 1OOON)
2 cen 0.33 | A 0.31 | B '0.275{ 1 160 203 184 | 0-300N linear load
Fig 415 range
2 cen 0.40 A 0.31 B 0.27 1 156 206 2 183 Initial gradient of
failure test ( 1000N)




Table 5.4 (contd)

Mesh Tensile Surface strains Modelling
ME/100 N cases
o ] o (]
Node  g,0°  ¢y90° |Node ¢ g° €y 90° |Nade ¢ 0° g, 90° | Node ¢ 0" €90
142! 137 161 133| 41 109 106 140 151}° case 1
1SQGE 36 135 147 109 142 aver. 1 + 2
42 133 132 160 41 105 112 136 132 case 2
110 140 165 136|109 119 110 142 154| 97 81 106 119 71 151 case 1
1SQGE 100 138 150 113 146 80 105 71 150 aver. 1 + 2
110 13¢ 164 135{109 115 106 137 150| 97 79 104 119 70 149 case 2
1SHGE 36 42 132 141 29 108 146 cases 1 + 2
162 133 106 114 137 149
1SFGE144 98 135 148 110 143 cases 1 + 2
EXP. Gauge Gauge Gauge Gauge Notes
Ex 0° Ex0° £y90° x0° €y90° x0°  Ey90
1 - 0-300N 1linear load
— rangé
1 246 75B 1008 5+9 678 Initial gradient of
failure test
2 3 155 4 126 154 |5+9 124 6 72 155 0-300N linear load
range
2 3 143 4 118 156  |5+9 | 114 6 70 150 Initial gradient of

failure test




Table 5.4 (contd.}

Mesh Tensile Surface strains Modelling
JE/00N cases
Node Ex0° Ey90° Node Ex0° Ey90° Node Ex0° Ey90°
28 75 40 case 1
1SQGE 36 76 40 aver, 1 + 2
28 76 40 case 2
99 112 94 97 81 106 case 1
1SQGE 100 “111 94 80 105 aver. 1 + 2
99 110 93 97 79 104 case 2
1SHGE 50
76 74 40 38
1SFGE100 124 75 39 cases 1 + 2
EXP. Gauge €, 0° Ey90° Gauge €, 0° Ey9& Gauge €, 0° Notes
1 3+7 99B 90B 11 71B 0-300N linear load
range
1 3+7 98B 90B | 448 75 100 Initial gradient of
failure test
2 8 116 112 7+10 78 0-300N linear load
range
2 8 117 113 7+10 78 Initial gradient of

failure test




Figure 5.2 CHANGE IN CENTRAL BIAXIAL STRESS RATIQ %)Y~ WITH ALTERING POSITION OF SUPPORTS (MESH 1SQGE10O)

UNDER A CONSTANT PATCH LOAD AERA

A EEFOR THE LAMINATION TESTED IN EXPERIMENTS 1 AND 2
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Figure 5.3 CHANGE IN CENTRAL BIAXIAL STRESS RATIO Fﬁy' WITH ALTERING THE SIDE DIMENSIQONS QF THE PLATE, XSYS
(MESH 1SQGE10O) UNDER A CONSTANT PATCH LOAD B/B Z{FOR THE LAMINATION TESTED IN EXPERIMENTS 1 AND 2
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Table 5.5 Linear displacement experimentonumerical (ACM) comparison:

modelling Exps. 3 and 4 with different mesh constructions

Plate dimensions used in numerical models

A

1

h

AS= 0.2m

0.26m

Ap= 0.02m

B = 0.26m

B¢= 0.2m

Bp= 0.02m

Central patch load P = 100N (C.L.V)

Material properties

~
U}

=

[a

—
L}

[

[a)

o
]

0.1396E+12 N/n? £22

0.5771E+10 N/n? V12

0.3

Lay-up (+4590°-45,0°,0%-455907+45)

0.552E-02m(includes protective layer)

0.2889E-+10-"N/of

0.127E-03m. (the protective layer has not been taken into account)

Model Mesh Central transverse Central surface tensile|Modelling
Displacement W strains pgﬁ00N case
E-03m/100N X (09 Y (90%  #45°
1 1SQGE 100 0.189 123 121 122 case 1
2 1SQGE100 0.188 115 112 114 case 2
3 |1SHGES50 0.188 125 114 120 cages1 + 2
4 1SHGE 72 0.188 118 115 117 casesi + 2
5 1SFGE144 0.188 117 115 116 casesl + 2
6 1SHGE 50* 0.159 105 103 104 casesl + 2
EXPERIMENTS 3and 4 (average values from measurements in the linear
(embedding)load range)
0.21 -106 107 112

* this model was performed to allow for the protective layer

E1ll = 0.1258E+12 N/m

(

t = 0.138E-03m




Table 5.6 Linear displacement experiment-numerical (ACM) comparison:

modelling

Exp. 5 with different mesh constructions

Plate dimensions use

A = 0.205m

h = 0.191E-02m
AS='- 0. 15m

Ap= 0.02m

Central patch load P
Material properties
t = 0.1191E-03m

Ell

G112

0.1489E+12 N/m2 £22

0.5771E+10 N/of V12

d in numerical models

B = 0.275m
Bs': 0.2@[[1

Bp= 0,02m

= 100N (C.L.V)

0.2889E+10 N/’

0.3

Lay-up (+4550°-45,90,905-45,0,+45),

Model] Mesh | Central transverse] Central surface tensile |Modelling
displacement W¢ strains ME/100N case
 E-03m/100N X (0 ¥ () 45
1 | 2RQGE100 3.16 © 769 1220 995 case 1
average of Models 1 and 2 (547) (983) (764)
2 | 2RqGE1007|  3.06 325 746 532 | case 2
+
3 2RHGE126 3.12 530 960 710 casesl + 2
4 2RFGE 144 3.2 553 1020 785 casesl + 2
EXPERIMENT 5 3.1 936 887 From linear load
range with then
1120 682 without rubber
pad
1100 750 Failure test

* 9 node patch load
+15 node patch load




Table 5.7 Linear displacement experiment-numerical (ACM) comparison:

Plate dimensions used in the numerical models

A

h

]

modelling Exps. 6 and 7 with different mesh constructions

O.éOSm

0.191E-02m

As= 0.15m

Ap= 0.0lm

Central patch load P = 100N (C.L.V.)

B=0.275m

Bg= 0.12m

Bp= 0.01lm

Material properties

t = 0.1191E-03m

Eli

G12

0.5771E+10 N/¥ V12 = 0.3

Lay-up (+45103—45290ﬂ903'4§idz+4535

0.1489E+12 N/nf  E22 = 0.2889E+10 N/nf

Model Mesh Central transverse| Central surface tensile| Modelling
-displacement W strains UE/100N case
E-03m/100N X (0 Y (90)  #45
* .
1 2RQGE 100 1.37 1022 1065 1045 case 1
average of Models 1 and 2 (824)  (855) (840)
*
2 2RQGE 100 1.28 626 645 635 case 2
+ .
3 2RHGE 126 1.32 805 803 804 cases 1 + 2
4 | 3RFGE144 1.27 778 826 802 cases 1 + 2
EXPERIMENT 6 (the plate that was tested in Exp. ' 5) 45°
1.5 900 748
{+]
816 614>
50
EXPERIMENT 7 1.39 841 1050 ~ Linear 1load
-, 5° range
820 810 "~ Failure test

* 4 node patch load
+ 6 node patch load




Table 5.8 Linear displacement experiment-numerical (ACM) comparison:

modelling Exp. 8 with different mesh constructions

Plate dimensionsused in numerical models

A = 0.2m

h

L[}

0.188E-02m

Ag= 0.13m

Ap= 0.01m

Central patch load P
Material properties
t = 0.118E-03m

E1ll

G12

1t

Lay-up (0°90°0°90°0',

0.15098+12 N/n? B22

B = 0.2m

BS= O.iBm
Bp= 0.01lm

= 100N (C.L,V.)

]

0.5771E+10 N/% Vi2 = 0.3

90°,0°,90)

0.2889E+10 N/g

Central surface tensile

Model Mesh Central fransverse
displacement w( strains UE/100N
E-03m /100 N X (0) Y (90
1 |4SQGE100 1.27 774 972
2 |4SHGE72 1.27 759 956
3 |4SFGE144 1.27 760 956
EXPERIMENT 8 1.53 880 1040 Linear load

range




~. Table 5.9 Linear displacement experiment-numerical (ACM) comparison:

modelling Exp. 9 with different mesh constructions

Plate dimensions used in numerical models

A = 0.2m
h = 0.191E-02m
Ag= 0.13m
Ap= 0.0lm

B =0.2m

Bg= 0.13m

Bp= 0.01lm

Central patch load P = 100N (C.L.V.)

Material properties

t = 0.1191E-03m
B11 = 0.1487E+12 N/af  E22 = 0.288
G12 = 0.5771E+10 N/r¢ V12 = 0.3

Lay-up (+45,0°,+45°,0° =45, 0, -450, 6)5

9E+10 N/nf

Central surface tensile

Model Mesh | Central transverse Modelling -
: displacement wc strains MU E/100N case
E-03m 100N X (0) Y (90D £45°
1 4SQGE100 2.30 1975 3908 case 1
average of Models 1 +2 (1004) (2239) (1621)
2 4SQGE100 A1.82 13 570 case 2
3 4SHGE72 1.78 589 1453 1021 casesl + 2
4 4SFGE144 1.86 648 1684 1166 casesl + 2
5 4SYGE 144 0.999 381 1724 with quarter
plate B.C.
. +45°
EXPERIMENT 9 2.3 605 1925 1165 Failure test

(1inear load
range)




Table 5.10 Twisting stiffnesses for the specimens tested

Experiments D11 D22 D66
D16 D26 D16
1+ 2 115.9 85.6 21.5
344 86.5 88.9 32.3
5+ 6+ 7 14.9 12.5 5.4
8 oe oc oc
9 8.9 1.6 | 1.6




Table 5.11 Linear displacement experiment-numerical comparison: Overall modelling of Exp. 7

All data for the numerical models is given in Table 5.7

‘Mesh | Transverse Tensile Surface strains U9/100N Modelling
displacement centre o cases
E-03m/100N | Node 07 E€y90° €45° Node &0° €,90° €45°| Node E,0° £,90° €4S
Node  w, :
-121 1.27 121 626 646 636 | 119 402 620 511 99 593 396 495 case 2
2RQGE100 1.32 825 856 840 423 654 539 625 414 520 aver. 1 + 2
121 1.37 121 1023 1065 1044 | 119 443 688 566 99 657 432 544 case 1
100 |
2RHGE 100 80 1.32 80 805 859 832 60 438 605 523 78 650 421 535 cases 1 + 2
] : 83 59
3RFGE144 85 1.27 85 778 826 802 87 395 641 520 111 595 397 496 cagses 1 + 2
EXP, Pos. w¢ Gauge Ey90°Eﬂ+5° Gauge g,0° €y90° €4,5°| Gauge €y 0° Ey90° €4,5° Notes
7 cen. 1.39 1 854 1054 | 2+4 450B 620B 630B| 3+5 600 370 500B 0-50N linear loed
Fin 4 range
1g it 810 4808 660 -45 direction
7 cen, =--- 1 820 1000 | 2+4 390B --- 550B| 345 === === -== Initial gradient of
’ test to failure
750 480B - -45 direction




Table 5.11 (contd.)

Mesh Tensile Surface strains }JE/éOON Modelling
Node E,0° €90° €245°| Node £,0°  €90° Node g0 EpP(°| Nade £,0° €,90° cases
118 268 499 359 88 480 250 111-112 -82 300 | 11-12 205 -73 case 2
2RQGE100 272 502 375 485 250 =72 267 : 183 =65 aver, 1 + 2
118 276 505 391 88 491 - 250 111-112 -62 234 | 11-12 162 -57 cage 1
2RHGE126 140-150 -70 320 | 8-23 193 =62 cases 1 + 2
3RFGE144 90-91 -64 281 | 50-163 170 -50 cases 1 + 2
EXP. Gauge £.0° €y90° €+4,5° Gauge %00 Ey90° Gauge £,0° Ey90° Gauge £,0° Ey90° Notes
7 6+7 210B 440B 380B} 8 406B 248B 9 -60 260 11 180 =52 0-50N linear load
range
7 6+7 410B; 8 Initial gradient of

failure test




Modelling data is defined in Table 5.3 .

Table 5.12 Large (non-linear) displacement experimental - numerical (ACMBC) comparison using results from

Experiments 1 and 2

Mesh 1SGGE36 was employed and the comparison was made at the centre.

Load (N)| Central transverse displacement Central tensile surface strains Remarks
Exps. W ACMBC Exps. ACMBC Exps. ACMBC
E-03m X () X (o"zU Y(90) Y (993
400 1.32 - 1.6 1.36(ACM) | 640 572 (ACM)| 800 757(ACM) | Numerical results from ACM
Exp. 2 Av. 142 Av. 1+2 No. of iterations
400 1.72 1.25 642 630 826 . 868 7
B 618 , a 12) B 819 , A 49
1200 4.20 2.86 6
2000 6.69 3.89 2380 2628 3850 3509 8
[B2480 , Al4g] [B3012 , A497)
2800 8.70 4.68 9
3600 10.70 5.34 4405 4266 6543 5819 9

83962 , A304
L )

[Bs832 , A499¢]

Total C.P.U. time used
was 970 s.

A1l results given are the combination of bending and axial components.
Strain measurements were made with Gauges 1 6°LB+Aand 1 90L B+ A,




Table 5.13 Position of Neutral-axis

Experiments | Plane t E-O3m Ell¢ Ell, 2* E22¢ 2 E22c2 G12 2 y12 Movement of the Neutral-axis into
E+12N/of{2+12N/ o E+ 10N/ o E+ 10N/ | E+ 10N/ upper half of the plate as a %
of the plate thickness
X -2 ] 0.1194 ]0.1437 [0.1533 |0.2740 [0.3035 |0.5771 | 0.3 0.72
1+2
Y - Z " n n ) " " " n 1.1
X -2 70,127 10.1351 |0.1444 " " " " 0.78
3+ 4
Y - Z 1] 1. " " " n " 0.77
X - Z | 0,1191 | 0.1440 |0.1537 " " " " 0.78
54+ 6+ 7
Y - Z " 1" " " " 1" " 0'78
X -2 }0.1175 | 0.1460 |0.1559 " " " " 0.93
8
Y - z n 1" 11} " ) 1" " 1] 0‘ 74
X -~ Z |0.1194 | 0.1437 |0.1533 " " " " ' 0.87
9
Y - Z " 1" " " 1" 1" 1" O‘ 70




