

Durham E-Theses

Study of extensive air showers at sea level

Darjazi, Soltanzadeh Mohammad Mahdi

How to cite:

Darjazi, Soltanzadeh Mohammad Mahdi (1983) Study of extensive air showers at sea level, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7133/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

sTudy of extensive air showers at sea level

by
Mohammad Mahdi_Soltanzadeh Darjazi, B.Sc. (Mashhad)

The copyright of this thesis rests with the author No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

A thesis submitted to the University of Durham for the degree of Doctor of Philosophy

Department of Physics,
Duriam University, U.K.
December, 1983.

Prese:
1983 som
Page
ABSTRACT i
PREFACE ii
ACKNOWLEDGEMENTS ii
CHAPTER 1 : INTRODUCTION 1
1.1 Discovery of Cosmic Rays 1
1.2 Origin of the cosmic radiation 2
1.3 The significance of cosmic ray studies 4
1.4 Propagation of cosmic rays through the atmosphere - Extensive Air showers 5
1.5 The absorption of cosmic rays in the armosphere. 6
1.6 Intensity of primary cosmic rays 6.2
1.7 The nature of the cosmic radiation 7
1.8 Scintillation counters 8.1
1.9 Tachyon; particle moving with velocity greater than the speed of light 8.3
1.10 Possible observation of tachyons associated with extensive air showers 8.4
1.11 Summary 8.5
CHAPTER 2 : THE DURHAM EXTENSIVE AIR SHOWER ARRAY 9
2.1 Introduction 9
2.2 The plastic scintillator detectors 9
2.3 Photomultiplier tubes 12
2.4 E.H.T supply units 12
2.5 The head amplifiers 12
2.6 Calibration telescope 13
2.7 Calibration of the detectors 13
2.7.2 Method of calculating the calibration pulse height 14.1
2.7.3 Timing information 14.3

CHAPTER 3 : THE ZENITH ANGLE DISTRIBUTION OF EAS AND ITS
 MEASUREMENT AS A FUNCTION OF SHOWER SIZE

3.1 Determining the arrival direction of extension
air showers from fast timing measurements 16
3.1.1 Introduction 16
3.1.2 Design of a fast timing array 16
3.1.3 The inverse problem 3.1.4 Conclusion 18
3.2 The size dependence of the zenith angle distribution of extensive air showers at sea level 22
3.2.1 Introduction 22
3.2.2 Results 22
3.2.3 Conclusion 26
CHAPTER 4 : DESIGN AND PERFORMANCE OF MORE EFFICIENT PLASTIC
SCINTILLATORS FOR USE IN THE EAS ARRAY 27
4.1 Introduction 27
4.2 Determining the relative sensitivities of photomultipliers 27
4.3 Supplying the photomultiplier operating voltages and the counter head units 29
4.4 Calibration of the pulse height analyser and its use to study the counter response to the global cosmic ray flux 29
4.5 Response of the counter measured with an amplifier and discriminator 30
4.6 Discussion 31
4.7 Conclusion 33
CHAPTER 5 TACHYON THEORY AND PREVIOUS TACHYON SEARCHES
5.1 Introduction 33.1
5.2 The special theory of relativity 33.2
5.3 The tachyon and its basic properties 33.3
5.4 Causality and the reinterpretation principle. 33.4
5.5 The energy of a tachyon 33.9
5.6 Previous searches for tachyons 33.9
5.7 Conclusion 33.22
CHAPTER 6 : EXPERIMENTAL ARRANGEMENT USED FOR THE TACHYON EXPERIMENT 33.23
6.1 Introduction 33.23
6.2 Experimental arrangement 33.24
6.3 EAS selection 35
6.4 The tachyon detector scintillator (scintillator C). 36
CHAPTER 7 : RESULTS OF THE TACHYON EXPERIMENT 38
7.1 Introduction 38
7.2 Time distribution of recorded pulse heights selected by the EAS trigger 39
7.3 Distribution in height of the shower front pulses 40
7.4 Distribution in height of pulses occurring in the $265 \mu s$ time domain before and $235 \mu s$ after the arrival of the EAS shower front 41
7.5 Random trigger data 42
7.6 Multiple pulse events 43
7.7 Time separation distribution of successive EAS triggers 44
7.8 Conclusion 45
CHAPTER 8 : SUMMARY AND CONCLUSION 46
Appendix A : Modification to the Flash tube chamber
Appendix B : Databin program 48
Appendix C : Light emitting diodes 50
Appendix D : Correction of the time distribution of recorded pulse heights in the tachyon experiment for experimental bias 51
References

ABSTRACT

The zenith angle distribution of EAS over the size range $10^{4}-1.4 .10^{6}$ particles at sea level has been studied. Representing the zenith angle distribution by $I(\theta)=I(0) \cos ^{n_{\theta}}$ it is found that $\mathrm{n}=8.4 \pm 0.3$ over the size range $5.10^{4}-1.4 .10^{6}$ particles. For the smallest sizes studied $10^{4}<\mathrm{N}<5.10^{4}$ the measurements suggest n decreases to 5.1 ± 1.3.

The design and performance of a prototype plastic scintillation counter of area $80 \mathrm{~cm} \times 50 \mathrm{~cm}=0.4 \mathrm{~m}^{2}$ is described. The response of the counter is such that it gives a single particle peak well resolved from the noise when its response to the global cosmic ray flux is displayed on a pulse height analyser. Two such counters of this type were used as local electron density detectors to register the arrival of extensive air showers in a tachyon search experiment.

The tachyon search experiment showed evidence that tachyons may be associated with extensive air showers of local electron density $\geqslant 25 \mathrm{~m}^{-2}$. The evidence is based on the observation of an excess of ionising events (4.4 standard deviations above the background) occurring in the 85-95 $\mu \mathrm{s}$ time domain before the arrival of the main shower front at sea level.

This thesis describes the work performed by the author at Durham University, while under the supervision of Dr. F. Ashton during the period 1979 to 1983.

Initially the author carried out work on the analysis of data obtained using the original Durham Air Shower Array. Subsequently he developed a prototype plastic scintillation counter of area $80 \mathrm{cmx} 50 \mathrm{~cm}=0.4 \mathrm{~cm}^{2}$ of high efficiency. Later nine such counters were constructed with the intention of eventually using them in an improved Durham Air Shower Array.

The main work carried out by the author was the experiment to search for evidence for tachyons associated with extensive air showers observed at sea level. This work used two scintillation counters of the type developed by the author as a local electron density trigger plus a further scintillation counter of high efficiency as the tachyon detector.

ACKNOWLEDGEMENTS

I would like to thank Professor A.W. Wolfendale F.R.S. for the privilege of working in his laboratories and for his interest and support.

It is a pleasure to record a deep gratitude to my supervisor Dr. F. Ashton, for his advice, guidance and invaluable suggestions throughout this work.

I would like to thank my colleagues, Dr. H. Najabat and Mr. H.F. Masjed for much helpful assistance and the technical staff of the physics Department, in particular the late Nir. W. Leslie and Mr. K. Tindale and H. Davison.

Thanks are due to Mrs. M. Bell for her careful typing of this thesis.

I wish to express my sincere thanks to my sister and brother-in-law, Mrs. Maleha Sedaght and Faraydon Tahare for their moral and financial support.

Finally, I am indebted to my wife for her continuous encouragement, endurance and patience.

CHAPTER 1

INTRODUCTION

1.1 DISCOVERY OF COSMIC RAYS

Early experiments on the discovery of cosmic rays were carried out by Elster and Geitel. In the year 1900, during experiments to study the conductivity of air, they noticed the existence of a penetrating radiation which continuously ionized the air in an electroscope. Wilson used an ionization chamber and noticed the penetrability of this radiation, even under "many feet of rock" and this led him to agree with Geitel that it seemed to be a property of the air itself. It was also thought that it could be due to some radioactive materials in the earth, so that a measurement of the change of ionization with height was necessary to confirm it. Hess $(1911,1912)$ flew a balloon to 5 km and observed a slight decrease up to 1 km but above this the ionization increased rapidly up to an altitude of 5 km . From these experiments he concluded that the radiation was of extraterrestrial origin with no significant changes between day and night indicating that the ionization produced did not emanate from the sun. Kolhorster (1913) who extended the data to 9 Km confirmed Hess's work. Millikan (1923, 1926) extended the data up to 15 Km , and some meters under the surface of lakes and measured the absorption of the radiation in water and found an equivalent mass of air and water had the same absorption. In both air and water the results showed a decrease with depth indicating a radiation travelling downwards in the air. The overall results showed this radiation came from above the atmosphere and he called it 'Cosmic. radiation'. Subsequently, different detectors such as cloud chambers and Geiger-Muller Counters were used for more investigations showing that in the lower atmospheric levels a large proportion of
the cosmic radiation consisted of charged particles.

The east-west effect shows that more particles arrive from the west than the east, Clay (1927). Johnson and Street (1933) concluded that a significant proportion of primary cosmic rays were positively charged and in 1948 using a high altitude balloon, protons were observed in the primary flux (about 90%). Later, heavy nuclei were also discovered. Progress of cosmic ray radiation studies led to the discovery of many new particles such as the positron (Anderson 1932), which had been predicted by Dirac and muons by Anderson (1937). Pariicle discoveries continued and in 1947 Rochester and Butler identified in a cloud chamber a neutral particle (\AA). In 1962 cosmic x rays and discrete x ray sources were discovered, and subsequently cosmic γ rays and discrete γ ray sources.

1.2 ORIGIN OF THE COSMIC RADIATION

Since the discovery of the cosmic radiation, the origin and acceleration mechanism of very high energy particles coming down continuously were questioned. Three major suggestions for the source of cosmic rays were investigated as follows:
a. Solar origin : It had been believed for a long time that some cosmic rays are of solar origin. The sun can accelerate particles especially at the time of solar flare activity. The results during periods of solar flare activity indicate that there is an acceleration mechanism available on the sun which can produce pariicles with energies up to ~10 Gev.

One of the obvious arguments against the sun producing all the observed cosmic rays is the comparatively weak interplanetary magnetic fields ($\sim 10^{-5}$ Gauss) which can not confine a proton of $10^{14} \mathrm{ev}$ to the

Solar system. This would result in an anisotropy of the radiation and it is not observed. So, a powerful mechanism of particle acceleration is required. Fermi (1949) postulated that cosmic rays are repeatedly scattered against the clouds of magnetic plasma that move at about 30 Km per sec in interstellar space. This theory does not agree with more recently observed properties.
b. Galactic origin : It was reasonable to assume that other stars like the sun in the galaxy (containing $\sim 10^{11}$ stars) emitted cosmic rays. But it would not be possible for them to produce such an observed flux, so, we have to look for additional sources in other types of star. Several suggestions have been made, for example stars such as niagnetic variable stars as well as novae and supernovae seem to be capable of supplying the necessary energies. It seems that, after an initial supernova explosion a shock wave from the core would go out with extreme relativistic velocity and would accelerate particles to energies ranging from 10^{18} to $10^{21} \mathrm{ev}$. Because supernova are rich in heavy elements this is consistent with the measured cosmic ray composition. However, the energies reached by particles accelerated at their source of origin is likely to be less than the highest energy particles observed. So, an additional acceleration would be necessary. This may be from the collision of cosmic ray particles with randomly moving magnetised gas clouds as they stream through the arms of the galaxy as suggested by Fermi.
c. Universe : At very high energies (above $10^{18} \mathrm{ev}$) cosmic ray particles producing extensive air showers (E A S) of size $>10^{8}$ particles at sea level have too much energy to be stored in our galaxy, but are coming from outside it. Therefore, they leak from one galaxy to another and contribute an extra galactic component to the cosmic ray
flux:Morrison (1961) mentioned the presence of unusual galaxies which contain a most unusual bright area, that could possibly produce cosmic rays of energy at least as high as 10^{19} ev and perhaps very much higher. This is the most satisfactory composite model at the present time.

1.3 THE SIGNIFICANCE OF COSMIC RAY STUDIES

The study of cosmic rays with individual particles of energy ranging from about $10^{8} \mathrm{ev}$ to $10^{20} \mathrm{ev}$ makes it of interest in the fields of elementary particle physics, as well as astrophysics. Its interactions with the earth's atmosphere has been studied for several decades,and although the gross features are understood, it is likely that new phenomena exist (e.g. quark production in high energy interactions) which have yet to be observed.

Recently cosmic ray studies have expanded to study the current fundamental problems in particle physics as to whether quarks, magnetic monopoles or tachyons exist or not. If they do then it is likely that they are produced in the atmosphere in very high energy cosmic ray interactions or are incident on the earth in the primary cosmic ray flux. Recently Fegan (1981) has produced evidence that a finite flux of tachyons may be produced in high energy cosmic ray interactions. A search for tachyons in the sea level cosmic ray flux is described by the author in Chapter 6 .

1.4 PROPAGATION OF COSMIC RAYS THROUGH THE ATMOSPHERE - EXTENSIVE AIR SHOWERS

The primary radiation which is known to be mainiy protons and a particles, interacts strongly with the nuclei of the atmosphere and produces a variety of secondary particles. On average, protons travel $70-80 \mathrm{~g} \mathrm{~cm}^{-2}$ of air about $10-30 \mathrm{Km}$ above sea level before making their first interaction with an air nucleus. In this interaction they lose $\sim 50 \%$ of their energy and continue a further $70-80 \mathrm{~g} \mathrm{~cm}^{-2}$ before making a second interaction and so on. The secondary particles produced in these interactions are mainly composed of pions with three charge modes ($\pi^{+}{ }_{9} \pi^{\circ}$ and π°) which are produced on average in equal numbers as well as kaons, hyperons and nucleon, anti-nucleon pairs. The neutral pions decay almost instantaneously (mean life time $\simeq 10^{-16} \mathrm{sec}$) into two gamma-rays which produce electron-positron pairs by means of the pair production process. The relativistic electronsfrom pair production produce further gamma rays by bremsstrahlung and the shower of particles resulting is known as an electromagnetic cascade. A primary cosmic ray energy of around $10^{13} \mathrm{ev}$ is sufficient to produce a small extensive air shower (E A.S) at sea level containing $\sim 10^{3}$ electrons.

The produced charged pions can either intract with an air nucleus to produce more pions or can decay to produce midons

with a relative probability that depends on their energy and zenith angle. As the energy of the primary cosmic ray particle increases, the number of particles that reach sea level increases and the lateral extent of the shower increases. By measuring the number of particles in the shower an estimate of the primary energy can be

FIGURE 1.1 : Development of an extensive air shower
made. The most important processes for the propagation of cosmic rays through the atmosphere are those shown in Fig. 1.1. The length of the track of π° mesons is infinitesimal in practice and the angles between the various tracks are much sfialler than shown. Further the subsequent interactions produced in the nucleon cascade are not shown.

1.5 THE ABSORPTION OF COSMIC RAYS IN THE ATMOSPHERE

It has been remarked already that high energy primary particles mainly consist of protons and \mathbb{Q}-particles coming from outer space. These primary cosmic ray particles penetrate into the atmosphere and on colliding against oxygen and nitrogen nuclei of the air, lose energy and are gradually absorbed. At the same time secondary rays of lower average energy and of a different nature are produced. This situation is shown in Fig.l.1 which is relevant to primary cosmic rays with energy of a few tens of Gev. The relative intensities of the various components has been measured as a function of altitude in the near vertical direction at 50° geomagnetic latitude by Rossi (1952) as shown in Figure 1.1.2. At the top of the atmosphere $(t=0)$ for protons of energy $\geqslant 1 \mathrm{Gev}$ the intensity is $\sim 10^{-1} \mathrm{~cm}^{-2} \mathrm{Sec}^{-1} \mathrm{st}^{-1}$. With decreasing altitude the intensity of the proton component falls rapidly corresponding to an almost exponential absorption given by $R=$ Ro $\exp -\frac{\not x}{L}\left(L\right.$, the absorption length is $\left.=120 \mathrm{~g} / \mathrm{cm}^{2}\right)$. In contrast the number of electrons and protons increases rapidly and goes through a maximum between (13-20) km and then falls off rapidly with decreasing altitude. The intensity of the meson component (denoted μ) rises rapidly with depth and goes through a maximum in the range $(100-200) \mathrm{g} . \mathrm{cm}^{-2}$ and then decrease much less rapidly compared with the electron-photon component. This is because μ mesons do not
undergo radiation losses comparable to electrons so with decreasing altitude the number of μ mesons relatively increases until near sea level more than half of the total number of charged cosmic ray particles are μ mesons. Pi-mesons because of their short mean life time ($\sim 2.65 \times 10^{-8} \mathrm{sec}$) are very scarce in the atmosphere. It is noted that for the electron component the peak intensity is much higher than the maximum intensity of the proton or μ-meson components. This is because a high energy π^{θ} meson can lead to many electrons, via the photon electron cascade compared with a fast charged meson which can produce only one μ via $\pi-\mu$ decay. The more rapid fall off in intensity of electrons is due to the additional source of energy loss in the form of bremsstrahlung over and above that due to ionisation loss. At the comparatively low primary energies (l Gev to a few tens of Gev) that produce the main secondary radiation in the atmosphere secondary interactions of the surviving primary nucleon and also of the charged pions that it produces in its first interaction with an air nucleus are comparatively unimportant. However as the primary energy increases (and the rate of arrival of such primaries decreases) secondary and further interactions become more and more important and the effects produced by a primary cosmic ray proton penetrate deeper and deeper into the atmosphere. Ultimately instead of a primary cosmic ray proton producing one or two particles that reach sea level a whole shower of particles arrives simultaneously consisting mainly of electrons but also with significant numbers of muons and hadrons. Roughly speaking a primary proton of energy Eev produces a shower at sea level of size $N=E / 10^{10}$ particles. Thus for $E=10^{15} \mathrm{ev}, \mathrm{N}=10^{5}$. Such an event (extensive air shower or EAS) has been exploited to signal the arrival of a high energy primary particle as described in later sections of this thesis.

Fig. 1.l.2 Variation of the vertical intensity with altitude. (μ and e after Rossi (1952), pestimated).

1.6 INTENSITY OF PRIMARY COSMIC RAYS

The wide range of energy and intensities of cosmic rays is one of the most important parameters. Wolfendale (1973) surimarised measurements of the primary cosmic ray spectrum as shown in Fig.1.2. The overall primary energy can be characterised over a wide range of energies by $I(>E)=K E^{-\gamma}$ where K is a constant and E is the primary energy, γ is the slope of the spectrum and I is the intensity. Greisen (1965) expressed the variation of the integral spectrum intensitieswith particle energy in ev as

$$
I(>E)=K E^{-\gamma}
$$

$$
10^{10} \mathrm{ev}<E<10^{15} \mathrm{eV} \quad I(>E)=2.5 \times 10^{18} E^{-1.6}
$$

$$
10^{15} \mathrm{ev}<E<10^{18} \mathrm{ev} \quad I(>E)=5.0 \times 10^{27} E^{-2.2} \mathrm{~m}^{-2} \mathrm{sec}^{-1} \mathrm{st}^{-1}
$$

$$
10^{18} \mathrm{ev}<\mathrm{E}
$$

$$
I(>E)=4.0 \times 10^{16} E^{-1.6}
$$

Four different regions of the spectrum have been considered below. In the energy range from a few hundred Mev to $\sim 10^{3} \mathrm{Gev}$ all measurement information comes mainly from satellite and balloon experiments. Between 10^{10} up to 10^{15} ev the slope is -1.6 . In this region, the highest direct energy measurements have been done and reported by Grigorov et al (1971). Above 10^{24} ev all information is provided from E.A.S studies where the atmosphere is a part of the detector system. Around $3 \times 10^{15} \mathrm{ev}$ the slope changes from

Figure 1.2 : Sumary of masurements of the primary spectrum of protons and nuclei in the cosmic raciation (After Wolfendak 1973).
-1.6 to -2.2 . It is believed that this change is due to the inability of the galactis magnetic fields to contain various types of particles as their containment rigidities are exceeded. At around $3.10^{18} \mathrm{ev}$ the slope changes to -1.6 again. This change may be produced by extragalactic sources of radiation but more recent data from air shower experiments has increased doubts about this "kink" in the spectrum.

Greisen (1966) suggested a cut off in the cosmic ray spectrum at about $6 \times 10^{19} \mathrm{ev}$, this has not been confirmed. Fig. 1.3 by Hillas (1981) shows the recently accepted form of the integral energy spectrum. Between 10^{10} ev till 10^{15} ev $\gamma \simeq 1.6$ and around $3 \times 10^{15} \mathrm{ev}$. it changes to $\gamma \simeq 2$.

1.7 THE NATURE OF THE COSMIC RADIATION

At the present time considerable effort is being made to study the nature of cosmic rays. The primary cosmic ray composition contains nuclear (i.e. nuclei), electronic (i.e. electrons and positrons) and electro-magnetic (i.e. x-rays and γ-rays) components. The measurement of nuclei in primary cosmic rays now extends up to $10^{20} \mathrm{ev}$. For low energies ($<10^{13} \mathrm{ev}$) direct measurements have been made by using balloons and satellites. In the energy region $10^{10}-10^{13}$ ev the composition of the primary flux is shown in table 1.1 (after Juliussen 1975) and normalized to a percentage of the total.

Figure 1.4 compares the solar system abundance and the abundance of elements in cosmic rays in the range of a few hundred Mev per nucleon to about 1 Gev per nucleon fram hydrogen up to iron as given by Meyer et al (1974). A comparison between the two abundances shows an excess of light (L) nuclei (Li, Be, B), in the primary cosmic rays (about 10^{6} times more) which is believed to be due to the fragmentation of heavier nuclei in penetrating the small amount of matter ($\sim 4 \mathrm{~g} \mathrm{~cm}^{-2}$)

FIGURE 1.3 : Integral Energy Spectrum of the Primary Radiation (after Hillas 1981)

Z Elements	Kinetic energy per nucleus (eV)			
	10^{10}	10^{11}	10^{12}	10^{13}
1 Hydrogen	58 ± 5	47 ± 4	42 ± 6	24 ± 6
2 Helium	28 ± 3	25 ± 3	20 ± 3	15 ± 5
3-5 Lightnuclei	1.2 ± 0.1	1.1 ± 0.1	0.6 ± 0.2	-
6-8 Medium nuclei	7.1 ± 0.4	12.2 ± 0.8	14 ± 2	-
10-14 Heavy nuclei	2.8 ± 0.2	6.7 ± 0.5	10 ± 1	-
16-24 Very heavy nuclei	1.2 ± 0.2	3.6 ± 0.4	$4 . \pm 1$	-
26-28 Iron group nuclei	1.2 ± 0.2	4.5 ± 0.5	10 ± 2	24 ± 7
$\geqslant 30$ Very very heavy		$0.007 \pm$		
nuclei		0.004		

TABLE 1.1 : Composition of the cosmic rays at different primary energies (after Julliusson et al, 1975)
Relative abundance

Figure 1.4 : Relative abundance of the elements fron hydrogen to the iron group normilized to that of carbon ($c=100$) (After Meyer et al: 1974).

Nuclear chärge number Z
between their source and the earth in space which contains $\sim 1 \mathrm{H}$ atom cm^{-3}. Another point is an increase in the relative abundance of heavy nuclei with increasing primary energy. The increase in abundence, especially for iron with an energy of $10^{13} \mathrm{ev}$ is probably due to the production mechanism of iron at the source.

However, other observations of the relative abundance of L nuclei suggests that cosmic rays have traversed $\sim 2.5 \mathrm{~g} \mathrm{~cm}^{-2}$ of interstellar hydrogen which means the average travelling time of cosmic ray nuclei is a few million years in the energy range where relative abundances have been measured.

1.8 SCINTILLATION COUNTERS

One of the most common detectors used in the detection of ionizing radiation is the scintillation counter and this technique has been used by the author in subsequent work. Basically the detector consists of a phosphor which is viewed by photomultipliers using a suitable light guide.

When an ionizing particle impinges on a phosphor which possesses the property of luminescence, part of its energy which is dissipated in molecular excitation and ionization is re-emitted as visible or ultra-violet photons. Some of these photons fall on the photo cathodes of the viewing photomultiplier tubes and produce a number of photo-electrons. These electrons are then accelerated through the dynode structure of the tube and at each dynode electron multiplication takes place. Finally an electron avalanche arrives at the collector plate and produces a voltage pulse which may be used for detection and measurement. Figure (1.5) show s schematically the operation of a scintillation counter.

Fig. 1.5 : Diagram illustrating the principle of operation of a scintillation counter

The ideal scintillation counter should be able, when exposed . a pulse height to the global cosmic ray flux yield/distribution (produced by the passage of relativistic cosmic ray particles through the phosphor) whose peak is well resolved from the distribution produced by single thermal electrons leaving the photocathodes of the photomultipliers used to view the phosphor. The thermal emisfion of electrons from the photo cathodesprovides the main background of "noise" pulses which are not uniform in amplitude but form a distribution with a peak at very small pulse heights (which is not normally observable) with a long tail to the distribution extending to the region of much larger pulse heights produced by cosmic ray particles. The rate of noise pulses depends on the work function of the photocathodes used, their area and temperature. In a good scintillation counter used for cosmic ray work it is required that the pulse height distribution produced by the passage of the global cosmic ray flux through the phosphor is well resolved from the thermal electron noise distribution. The design of a large area counter $(80 \mathrm{~cm} \times 50 \mathrm{~cm})$ satisfying this requirement is described in Chapter 4 . The response of one counter constructed (scintillator C) is shown for illustration in Figure 1.6.

Figure 1.6: Typical single particle cosmic ray peak as displayed on the pulse height analyser for scintillator C.

1.9 TACHYONS; PARTICLES MOVING WITH VELOCITIES GREATER THAN THE SPEED OF THE LIGHT

It has generally been believed that no particles can exceed the speed of light in vaccum, $c=3 \times 10^{8} \mathrm{~m} \mathrm{sec}^{-1}$. This limitation is a direct consequence of the special theory of relativity. The relation between the total energy E and momentum P and velocity ν that must be satisfied by any object obeying the special theory of relativity is given by:

$$
\begin{equation*}
P=\frac{m 0 \psi}{\sqrt{\left(1-\frac{v^{2}}{\epsilon^{2}}\right)}} \tag{1.1}
\end{equation*}
$$

where mo is the rest mass. The relation between energy and velocity implied by relativity is such that as the velocity of a particle approaches c its energy becomes infinite. Since this energy must be supplied by whatever is accelerating the particle, an infinite source of energy would be needed to increase the velocity of a particle to the be value c or greater and such an infinite energy source cannot/available. However, it is noted that photons or neutrinos (zero rest mass particles) when they are created in atomic or nuclear processes take off right away with the velocity of light and have not been speeded up to c from a lower speed. The next question is can there exist in nature particles that move with velocities exceeding the velocity of light in vaccum? Particles with such velocities $v>c$ have come to be known as "tachyons". Feinberg (1967) points out that since the advent of relativistic quantum field theory, it is no longer necessary to accelerate a particle through the "light barrier" in order to obtain a tachyon. Tachyons can be created in pairs without contradicting special relativity just as the photon or neutrino is produced and absorbed, always having a velocity $v=c$. This restriction implies that $1-\frac{\nu^{2}}{c^{2}}$ takes negative values, so all physically observable and experimentally measurable characteristics
of particles, whose expressions contain the relativistic factor $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ become imaginary. In order to make E a real number mo must be an imaginary number, say mo $=\mu 0 \sqrt{-1}$ and consequently equation 1.1, 1.2 may be rewritten as

$$
E=\frac{\mu_{0} c^{2}}{\sqrt{\frac{\nu^{2}}{c^{2}}-1}} \quad 1.3 \quad P=\frac{\mu_{0} \nu}{\sqrt{\frac{v^{2}}{c^{2}}} 11}
$$

Since the tachyon could not cross a lower limit value of c then the rest mass being imaginary would not necessarily create a problem but its energy and momentum would remain real. It is seen for ordinary particles, as their speed increases, their energy also increases. For tachyons in contrast, an increase in speed results in a decrease in energy. Hence a tachyon which loses energy by interacting with matter or by radiating light would speed up and in the limiting case of infinite speed its total energy would be zero, although its momentum would remain finite.

1. T0 POSSIBLE OBSERVATION OF TACHYONS ASSOCIATED WITH EXTENSIVE AIR SHOWERS

One of the recent searches has been conducted in extensive air showers with three assumptions based on the Clay and Crouch experiment (1974). First, it is assumed that tachyons are produced as particleantiparticle pairs in interactions when high energy primary cosmic ray protons with energies of $10^{15} \mathrm{ev}$. or greater collide with a nucleus at an atmospheric depth of $80 \mathrm{~g} \mathrm{~cm}^{-2}$ the surviving nucleon subsequently generating an air shower $P+N \rightarrow N+N+t+\bar{t}+$ mesons......

Tachyons, due to their superluminal speeds would arrive at sea level earlier than the main shower front (consisting predominantly of relativistic electrons) which propagates down through the atmosphere
with a velocity very close to the velocity of light. The second assumption is that at least some of the produced tachyons survive for long enough to reach sea level. Any tachyon produced would reach sea level at some time in the $59 \mu \mathrm{~s}$ (this time corresponding to tachyons moving with infinite velocity) time period before the arrival of the main electron photon shower front. For showers incident at a zenith angle of 60° the relevant time interval is $150 \mu \mathrm{~s}$. The third assumption is that a tachyon itselif will iouse energy in a scintillator or will be detected by the production of secondary particles which traverse the scintillator and can be detected. A search for tachyons associated with extensive air showers produced by primary cosmic rays of energy $>10^{15} \mathrm{ev}$. has been carried out by the author along these lines and his work is described in Chapter 6.
1.11. SUMMARY

Although many elaborate and well designed accelerator experiments are in operation or under construction, which enable controlled experinents to be made at collision energies up to $\approx 10^{14} \mathrm{ev}$, cosmic rays will be in use for many years to come simply because it is a cheap high energy beam of particles. Also, because the primary cosmic rays themselves originate from violent events in the universe it is quite possible that the lower energy primary radiation itself may contain a significant flux of new types of particle (tachyons,quarks etc.). The study of the primary and secondary radiations provides a good opportunity for nuclear physicists to investigate the characteristics of particles and the nature of high energy interactions.

EAS provide the only means of investigating the properties of what occurs at energies in excess of $10^{14} \mathrm{ev}$. and it appears as though
they will be the main contributor to this sector for a long time. Also such studies provide a valuable tool for investigating the condition of the galaxy and beyond and it is to these two ends that the extensive air shower needs to be pursued.

CHAPTER 2

THE DURHAM EXTENSIVE AIR SHOWER ARRAY

2.1 INTRODUCTION

The Durham extensive air shower array with a radius of 60 m has been set up around the physics department. The array consists of 14 plastic scintillators in a geometric pattern and detectors with the same area have been placed at the equivalent positions within the array to enhance the symmetry. Figure 2.1 shows the location of the detectors in the array and Table 2.1 gives the exact areas and coordinates of all the detectors.

Each scintillator is housed in a wooden box and for prevention of electrical interference the head amplifier is located in an aluminium box and the E.H.T distibutor unit is recessed into the scintillator box. The detector box rests on an angle iron bed to prevent damp, the whole detector being covered by a weather proofed wooden hut as shown in Figure 2.2. Four cables have been supplied from the laboratory to each detector; the first for the photomultiplier tube E.H.T; the second carrying 24 volts $D C$ for the head amplifier; the third cable for carrying the photomultiplier tube output to the laboratory, and the last is kept as a spare. Figure 2.3 snows the arrangement of the detector supply cables.

2.2 THE PLASTIC SCINTILLATOR DETECTORS

The 14 detectors with four different areas are identified as $2 \mathrm{~m}^{2}(11,31,51,13,33,53), 1.6 \mathrm{~m}^{2}(12,42,61,62), 1 \mathrm{~m}^{2}(32,41,52)$ and $0.75 \mathrm{~m}^{2}(\mathrm{C})$. According to the purpose, each detector has been designed to perform either shower density and timing measurements or shower density only.

 $\square 33$

842

DETECTOR	AREA $\left(\mathrm{m}^{2}\right)$	COORDINATES (metres)		
				Z
C	0.75	0	0	0
11	2.0	-12.30	- 5.64	- 4.83
31	2.0	14.80	3.10	0.16
51	2.0	0.30	-26.80	0.18
13	2.0	-45.0	29.5	-13.5
33	2.0	45.0	14.0	0.2
53	2.0	- 5.0	-58.5	- 8.7
12	1.6	-24.0	7.5	-12.8
42	1.6	39.5	-36.5	- 8.3
61	1.6	- 7.9	- 5.1	- 4.9
62	1.6	-41.0	-18.2	-11.1
32	1.0	25.5	8.5	0.7
41	1.0	22.0	-17.0	-11.4
52	1.0	- 0.5	-17.0	0.67

TABLE 2.1 : Areas and coordinates of detectors

FIGURE 2.3 : Layout of calles supplying detectors

Showers of size between 10^{4} to 5×10^{6} particles are detected by the array. In general each of the detectors has four photomultiplier tubes (P.M.T), observing the plastic scintillator except the central and $2 \mathrm{~m}^{2}$ ones which have one extra photomultiplier for fast timing measurements. Figure 2.4 shows the detector features.
a) The central detector c

The central detector c is located at the centre of the array and is situated on the roof of the physics department. It consists of two separate rectangular slabs of 5 cm thick NE 102 A plastic scintillator of total area $0.75 \mathrm{~m}^{2}$. Each slab is viewed by two Phillips 53 AVP P.M.T for density measurement and these are attached to the perspex light guides (using NE 580 optical cement) at each end. A single fast timing tube, Phillips 56 AVP, is attached to a light guide at one end giving the zero time pulse comparison with the fast timing pulses from other detectors.
b) The $2.0 \mathrm{~m}^{2}$ detectors

These six detectors individually consist of $2 \mathrm{~m} x / \mathrm{m} \approx 2.5 \mathrm{~cm}$ slabs of NE 110 plastic scintillator. Each is observed by a total of five P.M.Ts, four EMI $9579 \mathrm{~B}, . \mathbf{5}^{\text {" }}$ diameter tubes for particle density measurements and a single Phillips 56 AVP $2^{\prime \prime}$ diameter tube for fast timing measurements as shown in Figure 2.4. The $2 \mathrm{~m}^{2}$ detectors are used as triggers to select E.A.S. that are recorded by the array. For preserving symmetry and uniformity two triangular arrays are formed with detectors placed at each corner of an approximately equilateral triangle. Three detectors (13, 33, 53) forming an outer equilateral triangle and another three detectors (11, 31, 51) forming an inner triangular arrangement. A coincidence

(ii) $9.0 \mathrm{~m}^{2}$ detector

(iv) $1.6 \mathrm{~m}^{2}$ detector
(all dimensions in cm)
between the central detector and $(13,33,53)$ is called the outer ring trigger and a coincidence between the central detector and $(11,31,51)$ is called the inner ring trigger.Coaxial cables are used to transfer all the pulses to the laboratory and by using the appropriate lengths of cable the fast timing signal from the central detector always arrives at the recording equipment before the other fast timing pulses.
C) $1.6 \mathrm{~m}^{2}$ detectors

Each detector with this area consists of four identical individually light proofed quarters each with area $0.4 \mathrm{~m}^{2}$. The slabs are 2.5 cm thick and of area $0.4 \mathrm{~m}^{2}$ and consist of NE 102 A plastic scintillator. A Phillips 53 AVP P.M.T by way of perspex light guide is attached to each quarter. Each quarter operates independently of the other three and a single output pulse is achieved from all quarters by using a mixer amplifier.
d) $1.0 \mathrm{~m}^{2}$ detector

The detectors with $1.0 \mathrm{~m}^{2}$ area, again, consist of four individually light proofed slabs. The slabs are 5 cm thick and each is of area $0.25 \mathrm{~m}^{2}$. They are viewed on their broad face by a single E.M.I 9579 B P.M.T - see Figure 2.4. Pulses from independent quarters are added in a mixer amplifier at the detector and transferred by 50Ω cable to the laboratory.

2.3 PHOTOMULTIPLIER TUBES

Three types of photomultiplier tubes have been used in the array detectors. E.M.I 9579 B with five inch diameter photo-cathode, Phillips 53 AVP and Phillips 56 AVP both with two inch diameter photo cathodes. The type 56 AVP is used for fast timing, and the other two for density measurements. The tubes are supplied with negative E.H.T. and the outputs of the density tubes are negative with an exponential decay time constant of $20 \mu \mathrm{sec}$. The outputs of the fast tubes are negative pulses of time duration 5 nsec (a full width at half maximum). Investigation of the tube linearity and temperature dependence stability has been carried out by Smith (1976) and found to be good. Figure 2.5 shows the values of the resistors and capacitors used in the dynode chains of the different tubes.

2.4 E.H.T SUPPLY UNITS

Two E.H.T. units supply the negative high volage for the P.M.Ts. One supplies the voltage for the electron density measuring P.M.Ts and is set at 2.4 Kv . The other is used for the fast timing P.M.Ts and is set at 2.7 Kv . Since none of the tubes work at exactly the same voltage, a chain of resistors and an adjustable potentiometer (see Figure 2.6) is used at each P.M.T to adjust the tube E.H.T to the appropriate value.

2.5 THE HEAD AMPLIFIERS

Each detector has a mixer amplifier which adds and amplifies the output pulses of the four density P.M.Ts as shown in Figure 2.7. It consists of an emitter-follower for each channel and then all four outputs are added and amplified by a μ A702c operational amplifier

Base: 14 pin Mullard FE 1001
EMI B14A
Viewed from beneath

Base circuit for PHILIPS 53 AVP P.M.T.

Base circuis for PHHIPS 56 AVP PM.T.

Base: 20 pin Mullard fe 1003
Viewed from beneath

Figure 2.5 : Base circuit for differen photomultiplier tubes.

FITURE 2.7 : Four input head amplifier
and then fed into another emitter follower circuit. The output positive signal is transferred to the laboratory by 50Ω cable. The response of the amplifier is shown in Figure 2.8. The amplifier is operated by a $24 \mathrm{v}, 3 \mathrm{~A}$ power supply stabilised in the laboratory.

2.6 CALIBRATION TELESCOPE

For calibrating the electron density measuring detectors a subsidiary telescope is used. The telescope consists of a single $23 \mathrm{~cm} \times 23 \mathrm{~cm} \times 5 \mathrm{~cm}$ slab of NE 102A plastic scinti llator. At one edge two Phillips 53 AVP photomultiplier tubes are used to view the phosphor and are supplied with 1.9 kv from the laboratory via a charge sensitive amplifier (C.S.A). Using a C.S.A enables the use of only one cable for each P.M.T because the same cable which takes the E.H.T to the tubes also carries back the output pulses to the laboratory. Tubes and plastic phosphor are positioned in a light tight aluminium box as Figure 2.9 shows.

2.7 CALIBRATION OF THE DETECTORS

As each detector has a different design geometry and consequently different response towards cosmic ray particles, hence each has to be calibrated separately. The number of photons collected by P.M.T depends on the energy loss of the particle in the phosphor and the point and angle which it passes through. Contour maps of each type of detector response have been obtained טy Smith(1976). Figure 2.10 shows these maps and also the point on the scintillator where the centre of the calibration telescope should be placed. The pulse height obtained at this point is then used to determine the E.H.T adjustment required to obtain a mean pulse height of 100 mv per particle for the detector.

Figure 2.9 :The calibration telescope

Figure 2.10: Pulse height contour map of the array's scintillators where C represents the calibration points.

2.7.1 Calibration procedure

In practice, when the detector output is connected directly to a pulse height analyser (P.H.A), the single particie peak does not appear as it is masked by noise. The noise pulses are produced by thermal electrons emitted by the photomultiplier photocathodes. In order to detect only pulses produced by cosmic ray particles, a subsidiary telescope is used as described in Section ${ }_{\mathbf{a}}^{2.6 \text {. The output }}$ pulses from the two tubes of the telescope go through NE 4675 charge sensitive amplifier (C.S.A). Figure 2.11 shows the circuit diagram of it. The signals from the C.S.A are then passed through to a dual discriminator (Figs. 2.12, 2.13), set at a level of 100 mv to remove a large proportion of the noise and then into a two fold coincidence unit between detector and telescope which produce a $2 \mu \mathrm{~s}, 5 \mathrm{v}$ rectangular pulse. For gating the 100 channe 1 Laben P.H.A, a 50Ω termination is applied to the input P.H.A.

To calibrate a given photomultiplier tube, the remaining tubes must be disconnected from the head amplifier and the calibration telescope placed with the centre of its scintillator cver the appropriate calibration point and the P.H.A started. After some ten minutes a sufficiently accurate distribution is obtained. The E.H.T is then adjusted by using the resistor chain in series with the specified P.M.T so as to fix the position of the peak near enough to the desired calibration value. When the peak is within $\pm 2 \%$ of the calibration value, the P.H.A is run overnight to obtain a more accurate distribution. A typical single particle peak and mode determined is shown in Figure 2.14.

FIGURE 2.12 : Circuit diagram of dual discriminator used in detector calibration

FIGURE 2. 13 : Characterisitc of circuit shown in figure 2.12

Figure 2.14 : Typical single particle peak as displayed on pulse height analyser.

2.7.2 Method of calculating the calibration pulse height

The aim of calibration is to set all the photomultiplier tubes of each detector to have an identical response such that a summed pulse from them when divided by 100 mv gives the number of particles per square metre at the detector, i.e. the density at the detector. Let A be the total area of a detector (m^{2}) and n be the number of photomultiplier tubes viewing the same single piece of phosphor. The mean pulse height produced by a single relativistic muon traversing a density detector is adjusted to be $S=\frac{100}{\text { A. } n} \quad m *$ per m^{2} per photomultiplier tube. In practice the most easily measured quantity that can be related to the average pulse height is the maximum, or mode, of the distribution obtained rather than the mean when measurements are recorded on a pulse height analyser. So, to still retain the desired 100 m m_{ν} particle. m^{2} the ratio mean mode was accurately determined at the calibration point by Smith (1976) and found that this ratio didn't vary more than $\pm 4 \%$ over the total scintillator area of any detector, the use of this ratio, R, modified the calibration pulse height to $S=\frac{100}{\text { A.n.R. }} \quad \frac{\mathrm{m} \nu}{\mathrm{m}^{2}}$. Fhotomultiplier tubes.particle for the mode of single particle distribution.

A number of detectors have a calibration point which is not at the same spot where the mean pulse height occurs and this is because of the phosphor's non-linear response. The ratio of the pulse height at the calibration point to the pulse height at the mean pulse height coordinate, g, becomes another term which has to be applied to the calibration pulse height and has been determined by Smith (1976). Including this correction in the pulse height calibration the equation gives $\quad S=\frac{100}{A \cdot n \cdot R} \cdot g \quad m \quad$ per particle。 per photomultiplier per m^{2}. The values for R and g are given in table (2.2).

DETECTOR	A	N	n	R	g	S
C	0.75	4	2	1.53 ± 0.01	0.89	38.3
$11,31,51$,	2.0	4	4	1.83 ± 0.01	1.41	9.6
$13,33,53$						
$12,42,61,62$	1.6	4	1	1.60 ± 0.01	1.00	39.1
$32,41,52$	1.0	4	1	1.40 ± 0.01	1.00	71.4

```
A = Total area of detector (m
N = Total number of photomultiplier tubes in detector
n = Number of photomultiplier tubes viewing each piece of
        scintillator
R = Mean of pulse height distribution divided by its mode
g = Pulse height at calibration point divided by mean pulse
        height
S = Calibration pulse height (mV)
```

TABLE 2.2 : Calibration parameters for density measurement

In the work described in this thesis (Chapter 3), extensive air showers selected by an inner ring trigger coincidence requirement of $\Delta_{c}\left(\geqslant 4 m^{-2}\right) . \Delta_{11}\left(\geqslant 2 m^{-2}\right) \cdot \Delta_{31}\left(\geqslant 2 m^{-2}\right) \cdot \Delta_{51}\left(\geqslant 2 m^{-2}\right)$ and an outer ring trigger coincidence requirement of $\Delta_{e}\left(\geqslant 4 m^{-2}\right) \cdot \Delta_{13}\left(\geqslant 2 m^{-2}\right) \cdot \Delta_{33}\left(\geqslant 2 m^{-2}\right) \cdot \Delta_{53}\left(\geqslant 2 m^{-2}\right)$ have been investigated. Figures 2.14, 2.15, 2.16,2.17 show the differential and integral distribution of recorded density in different detectors for both the inner ring and outer ring triggers. Table 2.3 shows the modian density recorded by each detector for both the inner ring trigger and outer ring trigger master coincidence requirement. These results indicate that the detectors were in good calibration relative to one another during the period that the basic data was collected. Figure 2.18 shows a diagram of the Durham Air Shower Array with the median particle density recorded by each detector indicated for both outer ring and inner ring trigger data. The minimum shower size detected by the inner ring trigger is 10^{4} particles and by the outer ring trigger 10^{5} particles respectively. Figure 2.19 shows the shower size distribution recorded by both the inner ring and outer ring triggers respectively. Using the calculation of Kempa (1976) relating the number of particles to primary energy these figures correspond to threshold energies of $10^{14} \mathrm{ev}$ and 8.10^{14} ev respectively.

Detectos	Median density for outer ring trigger	Median density for inner ring trigger
	No. of showers = 632	No. of showers = 726
C	$17.10 \mathrm{~m}^{-2}$	8.25 m $^{-2}$
11	$19.12 \mathrm{~m}^{-2}$	$9.25 \mathrm{~m}^{-2}$.
31	$25.80 \mathrm{~m}^{-2}$	$9.29 \mathrm{~m}^{-2}$
51	$16.95 \mathrm{~m}^{-2}$	$6.81 \mathrm{~m}^{-2}$
13	$8.08 \mathrm{~m}^{-2}$	$2.39 \mathrm{~m}^{-2}$
33	$8.17 \mathrm{~m}^{-2}$	$2.01 \mathrm{~m}^{-2}$
53	$9.05 \mathrm{~m}^{-2}$	$4.50 \mathrm{~m}^{-2}$
12	$9.58 \mathrm{~m}^{-2}$	$2.21 \mathrm{~m}^{-2}$
32	$11.10 \mathrm{~m}^{-2}$	$2.07 \mathrm{~m}^{-2}$
61	$14.40 \mathrm{~m}^{-2}$	$7.16 \mathrm{~m}^{-2}$
62	$7.90 \mathrm{~m}^{-2}$	$1.97 \mathrm{~m}^{-2}$
52	$11.82 \mathrm{~m}^{-2}$	$5.25 \mathrm{~m}^{-2}$
41	$13.25 \mathrm{~m}^{-2}$	$2.10 \mathrm{~m}^{-2}$
42	$7.91 \mathrm{~m}^{-2}$	$1.94 \mathrm{~m}^{-2}$

Array Diagram

$\begin{aligned} & -20 \\ & \left(9.25 \mathrm{~m}^{-2}\right) \end{aligned}$	$\left\{\begin{array}{llll} 0 & 20 & 40 & x(n) \end{array}\right.$
田62(1.97m $\left.{ }^{-2}\right)$	
	$\left(1.5 m^{-2}\right)$

Fig.2.18 Durham EAS Array with median particle density recorded for each detector for outer ring and inner ring triggers

2.7.3 Timing information

Each pulse from the Phillips 56 AVP P.M.T is first amplified by a NE 4634 fast amplifier and then is passed to a NE 4635 fast discriminator. It is essential that the pulse from C arrives first and for detectors 11, 31, 51 a large coil of coaxial cable is used in the line to delay the arrival of pulses relative to the arrival of the pulse from C. For the other three detectors $13,33,53$ their distance from the laboratory is enough to ensure this. The time signal from detector C is used to trigger each of six NE 4645 (time to amplitude convertors (TACs)). The TACs generate a rectangular output pulse of height proportional to the time difference between the start and stop pulses with width $5 \mu \mathrm{~s}$. The output pulses from the individual timing detectors stop the TACs so the the output of /TAC is proportional to the time difference that a shower front passes through the detector relative to the time it passes through C plus electronic delays and differences in the cable delays. In analysing the basic data the fast timing information is first used to find the zenith angle and azimuthal angle of the shower axis direction. Subsequently the core position of the shower is found and then the shower size determined (Smith and Thompson 1977, Ashton et al 1977). All these calculations are carried out by computer.

3.1 DETERMINING THE ARRIVAL DIRECTION OF EXTENSIVE

AIR SHOWERS FROM FAST TIMING MEASUREMENTS

3.1.1 Introduction

Fast timing between scintillation counter detectors was first used by Bassi et a1. (1953) to determine the zenith angle and azimuthal angle of arrival of EAS. These authors also showed that the thickness of the electron shower front is $\sim 1.5 \mathrm{~m}$ with a radius of curvature of $\sim 2.6 \mathrm{Km}$ for showers of size $10^{5}-10^{6}$ particles at sea level. The problem of determining the exact shower front thickness and curvature for electrons, muons and hadrons as a function of core distance and shower size is a problem of continuing study, although some progress has been made by Linsley and Scarsi (1962), Waidneck and Bohm (1975). Crouch et al (1977) have briefly discussed a procedure for determining the error in the measured zenith angle obtained from fast timing measurements for the special case of all the detectors being situated in one plane.

3.1.2 Design of a fast timing array

Consider a central timing detector C placed at the origin of a right hand set of cartesian co-ordinates and a single detector X placed at point (α, β, γ) as shown in-Figure 3.1. In the following analysis it will be assumed that the fast timing detectors are all at distance < 50 m from the shower axis so that the shower front can be considered plane to a good approximation. If the normal to the shower front has zenith angle θ and azimuthal angle ϕ then as the shower front passes through X it is defined by a plane containing XS which is normal to CS. To calculate the time at which the shower front sweeps through C

Figure 3.1 : Diagram. showing a shower whose axis has zenith angle θ and azimuthal angle ϕ The shower front is a plane containing XS which is normal to the shower axis direction $C S . \quad C S=\ell, S X=R$ and $C X=r$.
after being at $X S$ it is necessary to calculate the distance $C S=\ell$. For any position of the point S on the line $C S$

$$
\begin{aligned}
R & =\left[\left(x_{\ell}-\alpha\right)^{2}+\left(y_{\ell}-\beta\right)^{2}+\left(z_{\ell}-\gamma\right)^{2}\right]^{\frac{1}{2}} \\
& =\left[(\ell \sin \theta \cos \phi-\alpha)^{2}+(\ell \sin \theta \sin \phi-\beta)^{2}+(\ell \cos \theta-\gamma)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

As \& varies in magnitude XS will be orthogonal to CS when R is a minimum. Evaluating $\frac{d R}{d \ell}$ and equating to zero shows that R is a minimum when

$$
\begin{equation*}
\ell=\alpha \sin \theta \cos \phi+\beta \sin \theta \sin \phi+\gamma \cos \theta \tag{3.1}
\end{equation*}
$$

in which case

$$
\begin{equation*}
R=\left[\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-(\alpha \sin \theta \cos \phi+\beta \sin \theta \sin \phi+\gamma \cos \theta)^{2}\right]^{\frac{\lambda}{2}} \tag{3.2}
\end{equation*}
$$

Equation 3.2 is useful in determining the orthogonal shower axis distance from a subsidiary detector (e.g. a muon detector in an EAS array). Suppose a shower axis having zenith angle θ and azimuthal angle ϕ crosses the XY plane of the array co-ordinate system at the point ($x_{1}, y_{1}, 0$) and that a muon detector is located at the point $\left(x_{2}, y_{2}, z_{2}\right)$. The orthogonal core distance R from the muon detector to the shower axis is given by

$$
\begin{gathered}
R^{2}=\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+z^{2}\right]-\left[\left(x_{2}-x_{1}\right) \sin \theta \cos \phi\left(y_{2}-y_{1}\right)\right. \\
\left.\sin \theta \sin \phi+z_{2} \cos \theta\right]^{2}
\end{gathered}
$$

The co-ordinates of the fast timing detectors of the Durham EAS array are shown in Table 3.1.

Detector	C	13	33	53	11	31	51
X	0	-41.8	45.1	-3.6	-12.1	13.2	1.0
Y	0	26.3	14.9	-57.3	-6.1	4.0	-27.1
Z	0	-13.3	0.2	-9.3	-4.9	0.2	0.2

Table 3.1 : Co-ordinates (in metres) of the centres of the fast timing detectors in the Durham EAS array.

Using equation 3.1 the time difference t between an EAS shower front traversing a given detector and detector C is given by

$$
c t=\alpha \sin \theta \cos \phi+\beta \sin \theta \sin \phi+\gamma \cos \theta
$$

where $c=3 \cdot 0 \cdot 10^{8} \mathrm{~ms}^{-1}$ is the velocity of light. How t depends on θ and ϕ for detectors C and 13 is shown in Figure 3.2. It is seen that the maximum value of $t=+180 \mathrm{~ns}$ (corresponding to a shower with $\theta=90^{\circ}, \phi=330^{\circ}$ which sweeps through C before 13) and the minimum value of $t=-180 \mathrm{~ns}$ (corresponding to a shower with $\theta=90^{\circ}, \phi=150^{\circ}$ which sweeps through 13 before C). Curves similar to those shown in Figure 3.2 have been evaluated for detector C and each timing detector. In each case it is found that the maximum and minimum values of t occur for $\theta=90^{\circ}$ and that if the maximum occurs for an azimuthal angle ϕ then the minimum value occurs for $\phi+180^{\circ}$. In the Durham array fast timing is achieved using time to amplitude converters which are started when a pulse arrives from detector C and stopped when pulses arrive from the 6 surrounding timing detectors. For this to work, known cable delays must be inserted in the timing channels 13, $33,53,11,31,51$ to ensure that the pulse from C always arrives at the time to amplitude converters before the pulses from the 6 outer timing detectors. The cable delays used in the different channels as well as the maximum time differences at which shower fronts can traverse a given detector before C are shown in Table 3.2. It is seen that in all cases the cable delays used are ample to efficiently record all showers with zenith angles in the range 0 to 90°.

3.1.3 The inverse problem.

In practice the values of t are measured and the problem is to find θ and ϕ. Suppose the shower front passes through two timing detectors D1 and D2 located at (x_{1}, y_{1}, z_{1}) at time differences t_{1} and

Figure 3.2 : Time difference $t(n s)$ between a shower front traversing detectors C \& 13 as a function of the azimuthal angle ϕ for different zenith angles θ of the E.A.S. t is counted $+\mathbf{t}$ if the shower front traverses C before 13 and -t if it traverses 13 before C.

Detector	Cable delay	Cable delay relative to C	Maximum value of time difference \| t \| for a shower front which traverses the indicated detector before C
C	210 ns	0	-
13	520	310	180ns
33	511	30	155
53	575	365	195
11	517	307	46
31	512	302	47
51	589	379	90

Table 3.2 Cable delays used for pulses between the detector indicated and the recording electronics. Maximum values of the time difference $|t|$ for a shower front which traverses the indicated detector before C are also shown. Maximum values of |it correspond to showers with $\theta=90^{\circ}$ (but different azimuthal angles ϕ) in all cases.
t_{2} relative to the time it passes through C which is situated at the origin. t_{1} and t_{2} are counted positive if the shower front traverses C first and negative if it traverses them before it traverses C. Using equation (3.1)

$$
\begin{align*}
& c t_{1}=x_{1} \sin \theta \cos \phi+y_{1} \sin \theta \sin \phi+z_{1} \cos \theta \tag{3.3a}\\
& c t_{2}=x_{2} \sin \theta \cos \phi+y_{2} \sin \theta \sin \phi+z_{2} \cos \theta \tag{3.3b}
\end{align*}
$$

Writing $\ell=\sin \theta \cos \phi, m=\sin \theta \sin \phi, n=\cos \theta, c t_{1}=T_{1}, c t_{2}=T_{2}$ these equations become

$$
\begin{align*}
& T_{1}=\ell x_{1}+m y_{1}+n z_{1} \tag{3.4a}\\
& T_{2}=\ell x_{2}+m y_{2}+n z_{2} \tag{3.4b}
\end{align*}
$$

Multiplying (3.4a) by y_{2} and (3.4b) by y_{1}

$$
\begin{align*}
& y_{2} T_{1}=y_{2} \ell x_{1}+y_{2} m y_{1}+y_{2} n z_{1} \tag{3.5a}\\
& y_{1} T_{2}=y_{1} \ell x_{2}+y_{2} m y_{2}+y_{1} n z_{2} \tag{3.5b}
\end{align*}
$$

Subtracting gives

$$
\begin{gather*}
y_{2} T_{1}-y_{1} T_{2}=\ell\left(y_{2} x_{1}-y_{1} x_{2}\right)+n\left(y_{2} z_{1}-y_{1} z_{2}\right) \\
\ell=\frac{y_{2} T_{1}-y_{1} T_{2}}{y_{2} x_{1}-y_{1} x_{2}}+\frac{y_{1} z_{2}-y_{2} z_{1}}{y_{2} x_{1}-y_{1} x_{2}} n \\
=A+B n \tag{3.6a}
\end{gather*}
$$

where $\quad A=\frac{y_{2} T_{1}-y_{1} T_{2}}{y_{2} x_{1}-y_{1} x_{2}}$
and $\quad B=\frac{y_{1} z_{2}-y_{2} z_{1}}{y_{2} x_{1}-y_{1} x_{2}}$

Similarly by multiplying (3.4a) by x_{2} and (3.4b) by x_{1} and eliminating ℓ one finds

$$
\begin{align*}
& \begin{aligned}
m & =C+D n \\
\text { where } & C
\end{aligned} \tag{3.7a}\\
& \text { and } \tag{3.7b}\\
& D \tag{3.7c}\\
& x_{1} y_{2}-x_{2} y_{1} \\
& x_{1}-x_{2} T_{1} \\
& x_{1} y_{2}-x_{2} y_{1}
\end{align*}
$$

Since ℓ, m, n are the components of a unit vector in polar co-ordinates

$$
\begin{equation*}
\ell^{2}+m^{2}+n^{2}=1 \tag{3.8}
\end{equation*}
$$

Substituting for $\&$ and m in 3.8 from 3.6 a and 3.7 a

$$
\begin{gather*}
A^{2}+B^{2} n^{2}+2 A B n+C^{2}+D^{2}+2 C D n+n^{2}=1 \\
n=\cos \theta=\frac{-(A B+C D) \pm \sqrt{(A B+C D)^{2}-\left(B^{2}+D^{2}+1\right)\left(A^{2}+C^{2}-1\right)}}{\left(B^{2}+D^{2}+1\right)}
\end{gather*}
$$

Recalling that A, B, C, D are given in terms of detector co-ordinates, time differences and the velocity of light, equation (3.9) enables the zenith angle of the shower axis to be calculated. The required solution requires $\cos \theta$ to be positive as θ must lie in the range $0-90^{\circ}$. Using (3.6a) and (3.7a) the azimuthal angle of the shower axis is given by

$$
\begin{equation*}
\frac{m}{\ell}=\frac{\sin \theta \sin \phi}{\sin \theta \cos \phi}=\tan \phi=\frac{C+D n}{A+B n} \tag{3.10}
\end{equation*}
$$

Thus, in principle, the arrival direction of an air shower can be determined with a minimum of 3 timing detectors. In practice at least 4 detectors are required so that the extra information can be used to check that the result obtained from all possible pairs are consistent.

If a large number of timing detectors are used then a numerical minimising procedure can be used to find θ and ϕ. To solve (3.3a) and (3.3b) numerically suppose arbitrary values of θ, ϕ are assumed. Substituting in (3.3a) and (3.3b) gives predicted values of the time differences t_{1} and t_{2}. Calculating (3.3b)

$$
x^{2}=\left(t_{1} \text { measured }-t_{1} \text { predicted }\right)^{2}+\left(t_{2} \text { measured }-t_{2} \text { predicted }\right)^{2}
$$

gives a measure of the goodness of fit. Using a lattice of points in θ, ϕ space it is possible to zero in on the best θ, ϕ (corresponding to minimum X^{2}) using the information available from how the gradient of X^{2} varies at four or more points surrounding the assumed θ, ϕ. Computer programmes (eg. MINUIT) are available for carrying out such a procedure.

3.1.4 Conclusion

Using a central timing detector surrounded by outer timing detectors, the problem of how much cable delay must be introduced into the outer channels, so that the pulse from the central detector always arrives at the recording station before the pulses from the other detectors, is solved. Two methods for determining the zenith and azimuthal angles of EAS from fast timing measurements are described.

3.2 THE SIZE DEPENDENCE OF THE ZENITH ANGLE DISTRIBUTION OF EXTENSIVE AIR SHOWERSAT SEA LEVEL

3.2.1 Introduction

The size dependence of the zenith angle distribution of extensive air showers at sea level is a fundamental constant of the cosmic radiation. Also the exact form of the zenith angle distribution is sensitive to the characteristics of high energy interactions (Kalmykov et al, 1973). Previous measurements see Galbraith (1958)pg.129, Hayakawa (1969) pgs. 459 and 466, Ashton et al (1975) related to a wide range of shower size and no systematic studies using a single EAS array have been made.

In the present work preliminary measurements obtained using the Durham EAS array covering the size range 10^{4} - 1.4. 10^{6} particles at sea level are described.

3.2.2 Results

Using both an inner ring trigger $\Delta_{c}\left(\not \Delta m^{-2}\right) \cdot \Delta_{11}\left(\geqslant 2 \mathrm{~m}^{-2}\right)$. $\Delta_{31}\left(\geqslant 2 \mathrm{~m}^{-2}\right) \cdot \Delta_{51}\left(\geqslant 2 \mathrm{~m}^{-2}\right)$ and an outer ring trigger $\Delta \mathrm{c}\left(\geqslant 4 \mathrm{~m}^{-2}\right)$. $\Delta_{13}\left(\geqslant 2 \mathrm{~m}^{-2}\right) \cdot \Delta_{33}\left(\geqslant 2 \mathrm{~m}^{-2}\right) \cdot \Delta_{53}\left(\geqslant 2 \mathrm{~m}^{-2}\right)$ of the Durham EAS array the zenith angle θ and azimuthal angle ϕ of each EAS trigger has been determined using fast timing. Also, a flash tube chamber was operational at the time that the measurements were made and a large fraction of the triggers showed at least one muon with $\mathrm{E}>1$ Gev traversing the chamber. A comparison of the measured projected zenith angle of the muon track in the front view of the chamber with the value expected from the fast timing measurements provides a useful check on the fast timing measurements. As the height of origin of 1 Gev muons in EAS at smal] core distances ($<100 \mathrm{~m}$) is $\sim 2 \mathrm{Km}$ above sea level (Earnshaw et al,1973;
and
Turver, 1973) ${ }_{j}$ a 1 Gev muon track observed at 100 m from the core should be parallel to the shower axis direction to a precision of $\pm 3^{\circ}$. On the average, the core distances involved in the present work are $<100 \mathrm{~m} . \mathrm{so}$ the precision should be better than this. As all the flash tubes in the flash tube chamber were mounted parallel to one another only the projected zenith angle that the muon track makes in the front plane of the chamber could be measured. The front plane of the chamber is parallel to the X axis of the cartesian coordinate system used to locate the detectors in the EAS array, so the expected muon projected zenith angle can be readily calculated, knowing the spatial zenith angle and azimuthal angle from the fast timing measurements as shown in Figure 3.3. It is found that $\tan \alpha=\tan \theta \cos \phi$ where α is the muon track projected zenith angle and θ, ϕ are the spatial zenith angle and azimuthal angle determined from the fast timing measurements. Figure 3.4 shows the frequency distribution of α (measured) $-\alpha$ (calculated) where α (measured) is the measured projected zenith angle of the muon tracks in the flash tube chamber and α (calculated) is their calculated value for showers in two different size ranges. In the small size range $\left(10^{4}-5.10^{5}\right)$ the standard deviation of the distribution is (9.1 ± 0.4) degrees and in the larger size range (5.10 $-\sim 4.10^{6}$) the standard deviation is (7.6 ± 0.5) degrees. The distribution in shower size to which these data refer is also shown in Figure 3.4. The data presented in Figure 3.4 gives confidence in the reliability of the zenith and azimuthal angle results obtained from the fast timing measurements. In obtaining θ and ϕ for the EAS shown in Figures 3.4.a and 3.4.b a total of 6 fast timing detectors were functioning (detectors $C, 11,13,31,33,53$ of the Durham EAS array). Similar plots to Figures 3.4 a and 3.4b covering the same size ranges where only 4 fast timing detectors were functioning ($C, 13,33,53$) showed the standard deviations of the

$$
\begin{align*}
& \begin{array}{l}
D b=\ell \\
D P=\ell_{1}
\end{array} \\
& \tan \alpha=\frac{?}{2} \tag{1}\\
& \tan \theta: P_{1} \text { where } P N \text { cose } \phi \\
& \text { = PM } \\
& =\frac{l_{2}}{Q_{0}} \cdot \frac{1}{\cos \phi} \\
& =\frac{\tan \cdot 1}{\cos \phi} \text { using (1) } \\
& \text { i.e. } \tan \alpha=\tan f, \cos \phi
\end{align*}
$$

Figure 3.3 : $A B C D$ is the front plane of the flash tube chamber and all the flash tubes are mounted with their axes perpendicular to it. Pa is the spatial direction of a muon track and Pb is its projected spatial direction as measured from the flash tube photograph.

Figs. $3.4 \mathrm{a}, 3.4 \mathrm{~b}, 3.4 \mathrm{c}$.

3.2 a and 3.2 b show the frequency distributions of α measured $-\alpha c a l c u l a t e d$ where α measured is the measured projected zenith angle of a muon track in the flash tube chamber and/acalculated is the calculated muon projected zenith angle. α calculated is determined from the zenith and azimuthal angles of the EAS as found from fast timing measurements. The dash histograms are fitted Gaussian distributions.
3.4.c shows the size distribution of the showers used in 3.4 a and 3.4 b .

distributions were (12.3 ± 0.8) degrees and (8.0 ± 0.6) degrees. This shows that the precision of determining θ and ϕ increases as the number of fast timing detectors used increases as expected.

To find the best value of n that describes the zenith angle distribution of showers in $I(\theta)=I(0) \cos ^{n} \theta /$ unit area/unit time/unit solid angle two different methods have been used.
(a) Log $I(\theta)-\log \cos \theta$ plot If $I(\theta)=I(0) \cos ^{n^{\theta}}$ then a plot of $\log I(\theta)$ versus $\log \cos \theta$ will be a straight line of slope n. To find $I(\theta)$ from a set of experimental data suppose N showers with zenith angles between θ and $\theta+d \theta$ are observed to cross a horizontal area A in time t. Suppose the θ range is from θ_{1} to θ_{2} i.e. $d \theta=\theta_{2}-\theta_{1}$ and $\dot{\theta}=\frac{\theta_{1}+\theta_{2}}{2}$. The intensity of showers is given by

$$
\begin{aligned}
I(\bar{\theta}) & =\frac{N}{t \cdot A \cos \bar{\theta} \cdot \int_{\theta_{1}}^{\theta_{2} 2 \pi \sin \theta d \theta}} \\
& =\frac{N}{t \cdot A \cos \bar{\theta} \cdot 2 \pi\left(\cos \theta_{1}-\cos \theta_{2}\right)}
\end{aligned}
$$

Assuming that it can be verified experimentally that A is not θ dependent (or A can be determined for each range of θ), $I(\bar{\theta})$ can be calculated and n found in the above way. Figure 3.5 shows the distribution in core distance (measured in the horizontal plane) from the central detector C of the Durham EAS array for different ranges of zenith angle for a sample of 452 showers with sizes in the range $3.10^{5}-7.10^{5}$ particles. It is seen that all showers have a core distance $<80 \mathrm{~m}$ from C and accordingly the collecting area A is taken to be of constant area irrespective of zenith angle in evaluating $I(\bar{\theta})$. Figure 3.6 shows a plot of $\log I(\bar{\theta})$ versus $\log \cos \bar{\theta}$ for this size range which gives $n=8.9 \pm 1.1$. Similar plots have heen made

$$
\theta=10-20^{\circ}
$$

$$
\theta=50-60^{\circ}
$$

Figure 3.5 : The distributions of core distance (measured in the horizontal plame) from the central detector C of the Durham EAS array, for different ranges of zenith angle,, 5^{5} for a sample of 452 showers with N in the range $3.10^{5}-7.10^{5}$.
for other size ranges and the results are summarised in Table 3.3.
(b) $x^{2}-n$ plot If $I(\theta)=I(0) \cos ^{n} \theta$ then the number of showers observed to cross a horizontal collecting area A in time t with zenith angle in the range θ to $\theta+d \theta$ is given by

$$
N(\theta) d \theta=I(0) \cos ^{n} \theta \cdot \quad A \cos \theta \cdot t .2 \pi \sin \theta d \theta
$$

For A and t fixed the proability that a given shower has zenith angle in the range θ to $\theta+d \theta$ is given by

$$
\begin{aligned}
& P(\theta) d \theta \propto \cos ^{n+1} \theta \cdot \sin \theta d \theta \\
& =(n+2) \cos ^{n+1} \theta \sin \theta d \theta
\end{aligned}
$$

using the fact that $\int_{0}^{\pi / 2} P(\theta) d \theta=1$. Thus for a sample of N_{0} showers the expected number with zenith angle in the range θ, to θ_{2} is

$$
\begin{aligned}
N\left(\theta_{1} \rightarrow \theta_{2}\right) & =N_{0}(n+2) \int_{\theta_{1}}^{\theta_{2}} \cos ^{n+1} \theta_{0} \cdot \sin \theta d \theta \\
& =N_{0}\left[\cos ^{n+2} \theta_{1}-\cos ^{n+2} \theta_{2}\right]
\end{aligned}
$$

To find the best n that fits a set of measurements by this approach, a trial and error procedure is adopted. A value of n is assumed and the expected number of showers in the zenith angle ranges $0^{\circ}-10^{\circ}, 10^{\circ}-20^{\circ}$, etc. is calculated. The goodness of fit is found using a χ^{2} test and when χ^{2} is available for a range of values of n, the value of n that gives the minimum χ^{2} can be found from a $\chi^{2}-n$ plot. This procedure has been used to find the best n for the ranges of shower size used in the present analysis, and the results are given in Table 3.3 where they are also compared with the values of n found by $\log I(\bar{\theta})-\log \cos \bar{\theta}$ plots.

Size range	No. of showers	Median shower size	n from $\log 1$ ($\bar{\theta})_{-}-\log$ $\cos \bar{\theta}$ plot	$\begin{aligned} & n \underset{\text { from }}{ } x^{2}-n \\ & \text { plot } \end{aligned}$
$10^{4}<N<5.10^{4}$	326	$3.2 .10^{4}$	5.1 ± 1.3	5.4 ± 1.0
$5.10^{4}<N<10^{5}$	325	7.1.10 ${ }^{4}$	8.4 ± 1.1	8.2 ± 0.6
$10^{5}<\mathrm{N}<3.10^{5}$	602	1.9.10 ${ }^{5}$	8.6 ± 1.3	8.7 ± 0.7
$3.10^{5}<N<7.10^{5}$	452	4.3.10 ${ }^{5}$	8.9 ± 1.1	8.7 ± 1.2
$N<7.10^{5}$	512	1.4. 10^{6}	7.6 ± 1.1	8.6 ± 1.1

Table 3.3 Comparison of the best values of n in $I(\theta)=I(0) \cos ^{n} \theta$ found from $\log I(\bar{\theta})-\log \cos \bar{\theta}$ plots and the $\chi^{2}-n$ method. The measurements are consistent with a constant value of $n=8.4 \pm 0.3$ over the size range $5.10^{4}-1.4 .10^{6}$ particles

3.2.3 CONCLUSION

Using the expression $I(\theta)=I(0) \cos ^{n} \theta$ to fit the measured zenith angle distribution of EAS it is found that over the size range 5.10^{4} to $1.4 .10^{6}$ the measurements are consistent with a constant value of $n=8.4 \pm 0.3$ for the smallest size range studied $\left(10^{4}-5.10^{4}\right)$ the present results suggest a smaller value of $n=5.3 \pm 0.8$

CHAPTER 4

DESIGN AND PERFORMANCE OF MORE EFFICIENT PLASTIC
SCINTILLATORS FOR USE IN THE EAS ARRAY

4.1 INTRODUCTION

None of the scintillation counters originally used in the EAS array (see Chapter 2) gave a single particle peak due to the passage of the global cosmic ray flux when their outputs were fed into a pulse height analyser. The reason for this is that only relatively few of the scintillation photons produced by the passage of single relativistic charged particles were collected by the photomultipliers observing the phosphor. The result of this was that the position of the single particle peak was lost in the noise of pulses generated by single thermionic electrons leaving the cathodes of the photomultipliers. Accordingly, the average pulse height produced by single particles traversing the phosphor at normal incidence had to be found using a subsidiary cosmic ray telescope. As the detectors in the array are situated outside the physics department building in small weatherproof containers the calibration of the detectors was a time consuming and awkward job to carry out. It was therefore decided to construct detectors with a more efficient light collection efficiency, such that their outputs would show a clearly resolved cosmic ray peak when displayed on a pulse height analyser. The design of detector investigated is shown in Figure 4.1 and subsequently 9 such detectors have been constructed.

4.2 DETERMINING THE RELATIVE SENSITIVITIES OF PHOTOMULTIPLIERS

If the output from a single photomultiplier shown in Figure 4.1 is displayed on a pulse height analyser (PHA) then a clearly resolved peak on the PHA is not observed. However, if both photomultipliers

Figure 4.1 : Design of plastic scintillation counter. All dimensions are in centimetres.
are adjusted to have the same sensitivity and the pulses added clearly resolved peak is observed. The problem in constructing such a detector is thus to determine the operating voltages of both photomultipliers such that they have the same sensitivity. This was achieved in a subsidiary experiment using the arrangement shown in Figure 4.2 . The variation of output pulse height with applied voltage for a large number of photomultipliers was measured using standard light pulses from a light emitting diode. A typical result is shown in Figure 4.3 and Table 4.1 summarises the results obtained for the relative sensitivities of 18 photomultipliers studied in this way. Table 4.2 shows the pairs of photo tubes that have been used in the 9 scintillation counters that have been constructed. Figure 4.4 shows the values of the resistors used in the Mullard 53 AVP Photomultipliers employed.

Some properties of the light emitting diode which was driven with voltage pulses from a pulse generator via a $1 \mathrm{~K} \Omega$ series resistor are shown in Figures 4.5a and 4.5b. Figure 4.5a shows the dependence of photomultiplier output pulse height on the width in microseconds of the driving pulse. Figure 4.5 b shows the variation of photomultiplier output pulse height with the voltage applied to the

LED for pulses of width $1 \mu s, 2 \mu s$ and $5 \mu s$ applied to the light emitting diode. In the measurements previously described and shown in Figure 4.3 and Table 4.1 pulses of width $1 \mu s$ were applied to the light emitting diode.

Figure 4.2 : Arrangement used for measuring the relative sensitivities of photomultipliers as a function of the voltage applied to the photomultiplier. All dimensions are in centimetres.

Phototube No.	Equation
1	$v=3.63 \times 10^{-28} \mathrm{~V}^{8.49} \pm 0.3$
2	$v=2.45 \times 10^{-28} \mathrm{~V}^{8.3} \pm 0.1$
3	$v=9.6 \times 10^{-29} V^{8.37} \pm 0.06$
4	$v=5.69 \times 10^{-29} V^{8.4} \pm 0.06$
5	$v=1.1 \times 10^{-30} V^{9.07} \pm 0.06$
6	$v=5.56 \times 10^{-35} \mathrm{~V}^{10.34} \pm 0.1$
7	$v=5.9: \times 10^{-29} V^{9.0 \pm 0.05}$
8	$\mathrm{v}=5.6 \times 10^{-31} \mathrm{~V} 9.27 \pm 0.24$
9	$v=5.09 \times 10^{-29} V^{8.76} \pm 0.09$
10	$v=1.51 \times 10^{-29} \mathrm{~V}^{8.73} \pm 0.04$
11	$v=1.04 \times 10^{-28} \mathrm{~V}^{8.4} \pm 0.04$
12	$v=1.64 \times 10^{-27} V^{8.7} \pm 0.06$
13	$v=8.72 \times 10^{-29} V^{8.48} \pm 0.04$
14	$v=10^{-27} \mathrm{~V}^{8.1} \pm 0.06$
15	$v=3.08 \times 10^{-28} V^{8.25} \pm 0.12$
16	$v=2.84 \times 10^{-28} \mathrm{~V} .22 \pm 0.05$
17	$v=3.2 \times 10^{-27 V 8.11} \pm 0.01$
18	$v=5.59 \times 10^{-30} \mathrm{~V}^{8.7} \pm 0.05$

Table 4.1 : Variation of output pulse height (v in volts) with the EHT voltage. (V in volts) applied to a sample of 18 photomultiplier tubes. The same standard light pulse from a pulsed light emitting diode was applied to all the tubes.

Number of scintillation counter	Phototube numbers (see Table 4.1) used
1	6 and 15
2	9 and 5
3	8 and 17
4	13 and 10
5	14 and 3
6	1 and 4
7	11 and 2
8	18 and 16
9	7 and 12

Tatile 4.2 : The pairs of phototubes that have been used in the 9 scintillation counters that have been constructed.

Figure 4.3 : Variation of output pulse height with applied EHT voltage for phototube number 1. Standard light pulses from a light emitting diode were applied to the tube.

Figure 4.4b : Base circuit for Philips 53AVP photomultiplier

Figure 4.5a : Dependence of photo tube output pulse height v on the width T of the voltage pulse applied to the light emitting diode. The phototube EHT was held constant at -1.5 kv . The measurements are fitted by $v=22 T 0.97$ with v in volts anci T in $u s$.

Figure 4.5b: Variation of output pulse height v from phototube with voltage V applied to the light emitting diode for different pulse widths, T. The data is represented by the expressions indicated with both \forall and V in volts. The phototube EHT was fixed at -1.5ky.

4.3 SUPPLYING THE PHOTOMULTIPLIER OPERATING VOLTAGES AND THE COUNTER HEAD UNITS

The correct operating voltage for each photomultiplier was obtained using a distribution box as shown in Figure 4.6, the main E.H.T power supply being set at -2.0 KV . The head unit used with each counter was a simple emitter follower, the circuit diagram being shown in Figure 4.7. The outputs from the two photomultipliers (see Figure 4.4b) were connected to the same emitter follower input using short lengths of coaxial cable so that the arrangement acted both as a charge pulse adder and a device with a low output impedence for driving the resulting pulse to the main electronics.

To test the performance of the photomultipliers when glued in position in a counter, two matched light emitting diodes were mounted close to one side of the light guide at either end of the counter (see Figure 4.1). Figure 4.8 shows the variation of phototube output pulse height with EHT when the two photomultiplier tubes in a counter were individually excited with matched light pulses from the LED situated on the opposite side of the phosphor to them.

4.4 CALIBRATION OF THE PULSE HEIGHT ANALYSER AND ITS USE TO STUDY THE COUNTER RESPONSE TO THE GLOBAL COSMIC RAY FLUX

Using the pulse height analyser (PHA) $1 \mu \mathrm{~s}$ wide pulses from a pulse generator were applied at its input and the relation between input pulses height and the channel number in which the pulses were recorded was measured. This was done for different available values for the gain of the internal PHA amplifier and the result is shown in Figure 4.9. Also the relationship between the vertical displacement per channel in terms of the number of pulsesinjected into a channel was studied and the result is shown in Figure 4.10.

Figure 4.6 : The EHT distribution box used with each scintillation counter. Dimensions indicated are in cemtimetres.

- VOLT D.C

Figure 4.7 : Circuit diagram and response of emitter follower.

Figure 4.8 : Variation of phototube output pulse height with EHT when the two photomultipliers in a counter were individually excited with matched LED light pulses from the LED situated on the opposite side of the phosphor to them (see figure 4.1). The outputs from the tubes are shown by - (tube number 12) and x (tube number 7).

Figure 4.9 : Calibration of the pulse height analyser using $1 \mu \mathrm{~s}$ width input pulses.

Height in cm on PHA
Figure 4.10 : Calibration of the pulse height analyser vertical displacement per channel in terms of the number of pulses injected into that channel.

Figure 4.11 shows the response of scintillator number 9 to the global cosmic ray flux as recorded by the pulse height analyser. It is seen that a well resolved peak due to the passage of single relativistic cosmic ray particles through the counter is observed. Using the calibration data shown in Figures 4.9 and 4.10 the number of counts in a given channel was found and then the rate of pulses of size $>V$ as a function of V was calculated, the result being shown in Figure 4.12. Figure 4.13 shows the variation of the pulse height of the cosmic ray peak as a function of the EHT voltage applied to the photomultipliers. This observed variation is consistent with the dependence found using LED light pulses to excite the photomultipliers.

4.5 RESPONSE OF THE COUNTER MEASURED WITH AN AMPLIFIER AND DISCRIMINATOR

The pulse height analyser gives detailed information concerning the response of the counter in the region of pulse heights close to the cosmic ray peak. To study the response over a much larger range of pulse heights it is more convenient to use an amplifier and scaler to make the measurements. The results of such a study are shown in Figure 4.14a. The position of the cosmic ray peak can be found by differentiating this curve and the result is indicated by the arrow in the figure. Figure 4.14 b is the same as Figure 4.14 a except that the units of the abscissa have been changed to equivalent particles per square metre. A comparison of this plot with what is known about the density spectrum of electrons over the range 3-100 particles $/ \mathrm{m}^{2}$ shows that the large pulses generated from a single detector are not due to the passage of several electrons but are more likely caused by nuclear interactions of neutrons in the phosphor.

Channel number

Figure 4.11 : Typical single particle cosmic ray peak as displayed on the pulse height analyser. Gain=256

Figure 4.12 : Rate of pulses of height $>v$ versus pulse height v as calculated from the pulse height analyser display shown in figure 4.11. for scintillator number 9. The position of the cosmic ray single particle peak is shown by the arrow.

Figure 4.13 : Variation of the peak pulse height produced by the global cosmic ray flux traversing the counter as a function of the voltage applied to the photomultiplier tube. The measurements are fitted by $V=9.95 .10^{-32} \cdot V^{9.26}$ This result is consistent with the results obtained when individual phototubes are excited with light pulses from an LED.

Figure 4.14a. Integral rate of pulses of height $>v$ versus pulse height as measured at the output of the head unit. When the counter is exposed to the global cosmic ray flux the most probable pulse height produced by single relativistic cosmic ray particles traversing the counter is indicated by the arrow.

Figure 4.14b : Same as figure 4.14a except that the abscissa is plotted in terms of. the apparent density of particles traversing the scintillation which has area $0.4 \mathrm{~m}^{2}$. Single relativistic particles traversing the scintillator correspond to a density of $2.5 \mathrm{~m}^{\circ 2}$

4.6 DISCUSSION

When used in an experiment as a proportional detector it is useful to be able to determine the average height produced by relativistic particles traversing the phosphor at normal incidence from the measured response to the global cosmic ray flux as it is not always convenient or possible to use a subsidiary narrow angle vertical telescope for calibration purposes.

At sea level the cosmic radiation consists predominantly of muons and electrons, the rate at zenith angle $\theta, I(\theta)$ being well represented by $I(\theta)=I(0) \cos ^{n} \theta$. For muons $I(0)=0.8 \cdot 10^{-2} \mathrm{~cm}^{-2}$ $\mathrm{sec}^{-1} \mathrm{st}^{-1}, n=2.1$ and for electrons $I(0)=0.3 .10^{-2} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \mathrm{st}^{-1}$, $\mathrm{n}=3.6$ (Aquilar-Benitez et al. 1982; Greisen, 1942; Pathak et.al.1981). For radiation with the above zenith angle distribution the track length distribution $P(\ell) d \ell$ in traversing a thin phosphor of vertical thickness Z can be found by noting that $P(\ell) d \ell=P(\theta) d \theta$ where $\ell=Z / \cos \theta$. For a detector of area A with an "on time" t the number of cosmic rays traversing it with zenith angle in the range θ to $\theta+d \theta$ is given by $N(\theta) d \theta=I(0) \cos ^{\eta} \theta \cdot A \cos \theta \cdot 2 \pi \sin \theta d \theta$.t. which is propor
-nal to $\cos ^{n+1} \theta, \sin \theta d \theta$. Thus the probability of a particle traversing the phosphor with θ in the range θ to $\theta+d \theta$ is given by $P(\theta) d \theta=B \cos ^{n+1} \theta$. $\sin \theta d \theta=(n+2) \cos ^{n+1} \theta \cdot \sin \theta d \theta$ where B is found using $B \int_{0}^{1} \cos ^{n+1} \theta d(\cos \theta)=1$. Thus the probability that a cosmic ray particle has a track length in the phosphor in the range ℓ to $\ell+d \ell$ is given by $P(\ell) d \ell=-(n+2)$ $\cos ^{n+1} \theta d(\cos \theta)$ where $\ell=Z / \cos \theta$.

$$
=-(n+2)\left(\frac{Z}{l}\right)^{n+1} \cdot\left(-\frac{Z \cdot d l}{l^{2}}\right)=(n+2) \cdot \frac{z^{n+2}}{l^{n+3}} \cdot d l
$$

For a counter of uniform response over its area and with an output pulse height directly proportional to particle track length (i.e. sufficient light produced along the track that fluctuations in the average number of photons collected by and photoelectrons produced by the photomultiplier photocathodes is negligible) then the expected output pulse height distribution is $N(v) d v=c / v^{n+3} d v$ for $v>v o$ where vo is the pulse height produced by particles traversing the counter at normal incidence. It is seen from Figure 4.11 that the response of the present counter is not precisely of this form even after subtracting off the contribution of thermal electrons in the channels at the left hand side of the peak. Different processes that convert the expected distribution to the observed distribution are Landau ionisation loss fluctuations that are reflected ir, the number of scintillation photons that arrive at the photomultiplier photocathodes, fluctuations in the number of photoelectrons produced and the non uniformity of response of the phosphor over its area.

For a perfect counter the expected most probable value of the observed distribution corresponds to particles traversing the counter at normal incidence. The effect of photon fluctuations is to broaden this distribution but the most probable value of the observed distribution (Figure 4.11) is expected to correspond closely to the average pulse height produced by cosmic ray particles traversing the phosphor at normal incidence. Thus this latter quantity can be determined from the response of the detector to the global cosmic ray flux without resorting to the use of a narrow angle vertical calibration telescope. The relative height of voltage pulses produced by muons traversing the phosphor (which produce scintillation light) compared to muons traversing the perspex light guide (which produce Cerenkov radiation) can be estimated by calculating the number of primary photons produced
by each process which are detected by photomultipliers with a typical CS-Sb photocathode response. Assume relativistic charge e particles lose $2 \mathrm{Mev} / \mathrm{g} \mathrm{cm}^{-2}$ and that on the average an energy loss of 212 ev is required to produce a scintillation photon (Ashton et al. 1965)then the number of scintillation photons produced by a particle traversing the phosphor at normal incidence is $\frac{2.10^{6} \cdot 5}{212}=4.7 \times 10^{4}$. For the same thickness of perspex the comparable number of Cerenkov photons produced is 1.3×10^{3} (Jelley, 1958, p. 279). Thus the ratio of the number of produced scintillation photons to Cerenkov photons is $36 / 1$. Allowing for the absorption of scintillation light in the phosphor (estimated to be a factor of 2.2 at the worst position of particle passage) and assuming that the fraction of produced photons that arrive at a photocathode is the area of the photocathode divided by the cross sectional area of the light guide to which the photomultiplier is attached for both scintillation and Cerenkov light, then the ratio of the number of produced photons that are collected is estimated to be $36 / 2.2: 1 \bumpeq 16 / 1$. Thus on the average, pulses produced by Cerenkov radiation in the perspex light guides of the present detector are estimated to be at least sixteen times smaller than pulses produced by particles traversing the phosphor.

4.7 CONCLUSION

A plastic scintillation counter detector of area $0.4 \mathrm{~m}^{2}$ and 5 cm thick that is suitable for making electron density samples in extensive air showers has been developed, The counter is relatively light and can be transported from place to place by two people. In all, 9 such counters have been constructed and eventually it is intended to use them in the EAS array described in Chapter 2. In the present work 2 of the counters have been used to obtain a local electron density EAS trigger and this work is described in Chapter 6.

CHAPTER 5

TACHYON THEORY AND PREVIOUS TACHYON SEARCHES

5.1 INTRODUCTION

In recent years, there has been some discussion of particles (tachyons) that move with velocities greater than the speed of light, particularly in relation to the special theory of relativity. The first point in any account of tachyon theory is that of its acceptability in the framework of relativity. Since the publication in 1905 of Einstein's original paper, objections to superluminal particles have been based on the fact that particles cannot be accelerate:i to velocities greater than c, the velocity of the light in a vacuum $c=3 \times 10^{8} \mathrm{mSec}^{-1}$. However, several workers have investigated the possibility that the velocity of light does not represent a barrier but a limit approachable from below and above. Bilaniuk and Sudarshan (1962) point out that, although the theory disallowed acceleration of subluminal particles to superluminal velocities, in principle it permits the existence of particles that have velocities always greater than the velocity of light. Such particles would seepd up as they lose energy and would never be observed with velocity equal to or less than c. More recently, Feinberg (1967) has proposed a quantum field theory of non interacting, spinless, faster than light particles. Many experiments were carried out to detect such particles not only through their ionization in conventional particle detectors, but also through their production of cerenkov radiation in vacuum.

The existence of superluminal velocities would therefore introduce a new class of particle to physics in addition to "normal" subluminal particles and luminal particles, e.g. photons and neutrinos. Particles of these groups can only exist in their respective domains.

5 .2 THE SPECIAL THEORY OF RELATIVITY

The special theory of relativity is founded on two distinct postulates:
(i) Any law of physics which holds in one coordinate system also holds in identical form in any other coordinate system moving uniformly with respect to the first and (ii) the velocity of electromagnetic radiation is independent of the velocity of the source.

The basic relations between energy, momentum and speed that must be satisfied by any object obeying the special theory of relativity is given by the following equations:

$$
E=\frac{\text { moc }^{2}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}=\text { imoc }^{2}
$$

$$
|P|=\frac{\text { mov }}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}=\mathcal{V}_{\text {mov }}
$$

where $\quad \beta=\frac{\nu}{c}, \mathcal{V}=\left(1-\frac{\nu^{2}}{c^{2}}\right)^{-\frac{1}{2}} \quad$ and mo is the rest mass.

For v less than c as γ is real and positive the energy would be real and it also holds for v equal to c, provided mo is set to zero which is shown to be true by the existence of photons and neutrinos. It is obvious from the equations 5.1 and 5.2 that the energy and momentum of such particle becomes infinite when its velocity approaches the velocity of light, $v \rightarrow c$. Since the energy must be supplied by whatever is accelerating the particle, an infinite source of energy would be needed to speed up a particle to the speed of light from any lower speed. Surely no such infinite energy source is available, and so it is impossible to make a particle go from less than c to $\geqslant \mathrm{c}$.

5.3 THE TACHYON AND ITS BASIC PROPERTIES

As mentioned before there is no possibility to accelerate a particle to go from less than c to $\geqslant c$, but it doesn't mean that particles that always travel faster than light do not exist (called tachyons). Tachyons avoid the need for being accelerated through the light barrier with the attendant expenditure of infinite energy. For tachyons $\frac{\nu}{c}=\beta>1$ and in order for the energy E to be given by a real number, because $\sqrt{1-\frac{v^{2}}{c^{2}}}$ becomes negative, the expression for proper mass m_{0} must be imaginary; so it is expressed as some real number μ_{0} times the square root of minus one, $m_{0}=\sqrt{-1} \mu_{0}$. Thus equation 5.1 and 5.2 would be rewritten as follows

$$
\begin{align*}
& E=\frac{\mu_{0} c^{2}}{\sqrt{\left(\frac{v^{2}}{\left.c^{2}-1\right)}\right.}} \\
& P=\frac{\mu_{0}^{\nu}}{\sqrt{\left(\frac{v^{2}}{c^{2}}-1\right)}}
\end{align*}
$$

To deal with the imaginary mass, it is noted that the quantity m, or the rest mass, that appears in equations $5.1,5.2$ is not a directly measurable quantity, unless the particle can be brought to rest. We are therefore free to hypothesize a particle for which $v>c$ always, and m is an imaginary quantity.

From the energy and momentum equations, one can write

$$
c^{2} p^{2}-E^{2}=\mu_{0}^{2} c^{4}
$$

and the range of the energy and momentum are given by

$$
0 \leqslant E \leqslant \infty, \mu_{0} c \leqslant p \leqslant \infty
$$

Also these equations imply that both the energy and momentum are monotonic decreasing junctions of the velocity, so that tachyons would speed up as they lose energy. A tachyon with $v \rightarrow \infty$ carries no energy, $E \rightarrow 0$ and $p \rightarrow \mu_{0} c$ but with reference to the usual velocity transformation law tachyons with infinite speed in one frame have almost a finite velocity in another frame and in both frames the velocity is greater than the velocity of light

Figure 5.1 shows the solutions of the energy momentum vector ($E^{2}=P^{2} c^{2}+m_{0}^{2} c^{4}$) in $E-P$ space. The upper branch only describes the particles with $\nu<c$ (known as bradyons) and $v_{r!}$ is given by $\mathcal{V}_{x}=\frac{d E}{d p_{x}}$ It is noted that the velocity of bradyons never reaches c even when the energy is very large.

For the particles with $\mathrm{m}_{0}=0$ (luxons) there are straight lines above the X axis, which shows that everywhere on this line the velocity is C

The left and right branches, above the \mathbb{X} - axis for particles with $\nu>c$ describe tachyons and show that their existence would complete the symmetry of the solutions.

The branches below the X-axis (of all three types) can be associated with anti-particles which have "negative energy".

5.4 CAUSALITY AND THE REINTERPRETATION PRINCIPLE

The existence of tachyons with $\nu>c$ leads to a number of different problems. The first is that tachyons cannot be reduced in velocity to $\nu<\mathbb{C}$ since an infinite amount of energy would be required to traverse the light barrier. The second is that the sign of the energy can be changed by an ordinary Lorentz transformation. Hence, a particle which is seen by one observer to have positive energy will have negative energy to another observer.

FIGURE 5.1 : Plot of the energy-momentum vector invariant, showing the solutions for particles in each of the three velocity domains

Before any further discussion, consider the Minkowski-time-space diagram, in one dimension, figures 5.2a, 5.2b.

Suppose a reference frame A is moving with uniform velocity parameter β in the x-direction with respect to a reference frame B, then

$$
\begin{align*}
& x^{\prime}=\gamma(x-\beta c t) \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=\gamma(t-\beta x / c)
\end{align*}
$$

($\left.x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$ is the four-vector of an event as measured in A, (x, y, z, t) is the four-vector of the same event measured from the same origin in B. Figure $5.2 a$ shows the x, t axes of reference frame A are rotated into the positive quadrant of reference frame B by θ degrees where $\theta=\tan ^{-1}(\beta)$,

If two events in reference frame A have $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$ and ($\left.x_{2}^{\prime}, t_{2}^{\prime}\right)$, and all quantities in reference from B are similarly represented by unprimed parameters then we have

$$
\begin{array}{ll}
t_{2}-t_{1}=\left(t_{2}^{\prime}-t_{1}^{\prime}\right) \gamma & 5.8 \\
x_{2}-x_{1}=\left(x_{2}^{\prime}-x_{1}^{\prime}\right) y & 5.9
\end{array}
$$

$$
\text { For } \beta<1 \text {, equation } 5.8 \text { implies that the time interval in }
$$ a moving reference frame is always smaller than in a stationary reference frame. This phenomenon is called "time dilation"

Similarly equation 5.9 implies that the spatial extent in the direction of the moving reference frame is always smaller in the

Minkowski space - time diagram (subluminal)

Figure $5 \cdot 2$ a

Minkowski space - time diagram (superluminal)

Figure 5.2b
moving reference frame than in a stationary reference frame. This phenomenon is the Lorentz-Fitzgerald Contraction, It is obvious that no reference frame could travel at the speed of light, $\theta=45^{\circ}$ in the Minkowski diagram.

It is possible to replace the four vector $\left(P_{x}, P_{y}, P_{z}, E\right)$ in momentum-energy space in place of the four vectors of position-time space and these imply that the expressions for momenter p and energy E in a stationary reference frame of an object moving with velocity
parameter β in the direction in which momentum is being measured are:

$$
\begin{align*}
& P=\ddot{\gamma} M_{0} \beta c \\
& E=\gamma M o c^{2}
\end{align*}
$$

where Mo is the rest mass of an object in the reference frame in which the object is stationary. The above synopsis of subluminal special relativity rests on two postulates which were first introduced by Einstein (1905) which were mentioned before.

For superluminal particles Figure 5.2 b shows the Minkowski space-time diagram for $\theta>45^{\circ}$ which corresponds to a velocity parameter $\beta>1$ in all reference frames. This suggests that tachyons which travel faster than light are a new class of particles. With the introduction of imaginary mass and considering the case $\beta>1$ the energy and momentum of a tachyon would be

$$
P=\frac{\mu_{0} \beta C}{\sqrt{\beta^{2}-1}}, \quad E=\frac{\mu 0 c^{2}}{\sqrt{\beta^{2}-1}}
$$

With consideration of transformation equation 5.7 in momentumenergy space these have the form

$$
\begin{align*}
& P_{x}^{\prime}=\gamma\left(P x-\frac{\beta_{1} E}{c}\right) ; \quad P_{y}^{\prime}=P_{y} \\
& P_{z}^{\prime}=P_{z} \\
& E^{\prime}=\gamma\left(E-\beta_{1} P_{x} c\right)
\end{align*}
$$

where E and P are the energy and momentum of a tachyon in its rest frame. $\cdot \beta_{1}$ is the velocity parameter in the x-direction which the primed cuantitierefer to measurements made in. Since the velocity parameter $\beta=\frac{P C}{E}$ of tachyons is greater than unity one can always choose β_{1} so that the energy of the tachyon is negative which is one of the more serious objections to the existence of tachyons.

The occurrence of negative energy implies the existence of reference frames in which tachyons could be copiously produced, since the system could not be stable against their spontaneous emission.

However, it is useful to cite another objection, as the two are really part of the same problem. When the velocity of an object is greater than c, it is possible to change the sense of the propogation in time by an ordinary Lorentz transformation. Suppose that for one observer, a particle moves through two points x_{1}, x_{2} at times t_{1}, t_{2}

$$
\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}>c \text { and } t_{2}-t_{1}=\Delta t>0
$$

For the second observer moving along the x direction with velocity parameter β_{1} where $\beta_{1}=\frac{\Delta x}{\Delta t} \times \frac{1}{c} \quad$ is the velocity parameter of
a tachyon
$\Delta x^{\prime}=\gamma\left(\Delta x-\beta_{1} c \Delta t\right) ; \Delta y^{\prime}=\Delta y ; \quad \Delta z^{\prime}=\Delta z ;$

$$
\Delta t^{\prime}=\gamma\left(\Delta t-\beta_{1} \frac{\Delta \mathbf{x}}{c}\right)=\gamma \cdot \Delta t \cdot\left(1-\beta_{1} \beta\right)
$$

The value for β_{1} can be chosen such that Δt^{\prime} is negative when Δt is positive. This implies that we can find reference frames in which the time ordering of events is reversed, which contradicts intuitive notions of causality.

From (5.13) and (5.14) we have

$$
\frac{E^{\prime}}{E}=\frac{t^{\prime}}{t}=\gamma\left(1-\beta \beta_{1}\right)
$$

When $\beta_{1} \beta>1, E^{\prime}$ and Δt^{\prime} are negative for positive value of E and Δt. This is, apparently, an untenable state of affairs. Bilanuk and Sudarshan have noted that this time reversal also occurs at the point where the energy becomes negative and they produced a principle which allowed a consistent theory of tachyons to be developed which is known as the reinterpretation principle (R.I.P). The RIP assumes that a negative energy particle which is observed first and later emitted is equivalent to a positive energy particle which is absorbed after emission. It is related to the ideas of Dirac on positrons as electrons going backwards in time. However, the idea of the RIP is similar to the idea of anti-particles and the Stuckelberg-Feynman interpretation of positrons as negative energy electrons running backwards in time (Feynman, 1949).

5.5 THE ENERGY OF A TACHYON

Plotting energy as a function of $\beta\left(=\frac{v}{c}\right)$ as shown in Figure 5.3 clearly illustrates the following points:
a) As velocities are increased the behaviour of the energy and momentum of particles obey the special theory of relativity. Since the $E-\beta$ and $P-\beta$ relationships are asympototic in the region $\beta=1$, a particle moving slower than light, and the faster than light can never travel with/speed of light. It means that the speed of light c acts as a limiting speed, which a for/tachyon is a lower limit, just as it is an upper limit for ordinary objects.
b) For ordinary particles (bradyons) as their speed increases, their also increases. However for tachyons, in contrast both the energy energy and momentum are monotonic decreasing functions of the velocity. Therefore the minimum energy for a tachyon will be zero when its velocity is infinite but its momentum would remain finite. For an ordinary particle with non zero rest mass the total energy can never vanish. Also from the figure it is concluded that the energy of a tachyon is always less than its momentum multiplied by c. This ambivalence does not apply to ordinary particles.

5.6 PREVIOUS SEARCHES FOR TACHYONS

As far as there is no consensus on the properties of tachyons, the question is how to conduct the search. It is apparent that the most 'reliable' method is to measure time of flight between detectors of known separation as this is fundamental to the particle's definition. More contentious methods are the search for Cerenkov radiation produced by tachyons traversing a vacuum and the observation

[^0]of particle production in bubble chambers. The most popular method, though, has been to search for tachyons produced by Cosmic ray interactions in the upper atmosphere. In what follows the experiments that have previously been carried out will be briefly reviewed.

A search for Cerenkov radiation enitted by a tachyon traversing a vacuum has been carried out by Alvager and Kreisler (1968). The experiment attempted to detect tachyons travelling through an evacuated chamber in which an electrostatic field of $3 \mathrm{kv} / \mathrm{cm}$ was maintained. In this experiment tachyons were hoped to be produced by pair production from γ-photons in a cylindrical lead shield surrounding a 5-mci ceasium-134 source. The tachyons would pass into the detector which consisted of two parallel plates between which an electric field was maintained. A photomultiplier was located to view the area between the plates which were in a vacuum of $\sim 10^{-6}$ torr. It was expected that the tachyons would produce a peak in the pulse height spectrum obtained from the photomultiplier. No peak was observed. The authors thus estimated an upper limit to the cross-section for the production of tachyons by 0.8 kev photons in lead as $3.10^{-30} \mathrm{~cm}^{2}$.

A similar experiment to that described above but using a 129 mci cobalt 60 source of energy $\sim 1.2 \mathrm{Mev}$ and two detection photomultipliers in coincidence was conducted by Davis et al (1969). The result again was negative. Bartlett and Lahara (1972) changed the electric field to a magnetic field on the supposition that a tachyon should act as a magnetic monopole. Again the result was negative and it was found that the upper limit to the cross-section for tachyon production by $1 \mathrm{mev} \gamma$-rays in lead and water were $0.610^{-36} \mathrm{~cm}^{2}$ and $2.10^{-36} \mathrm{~cm}^{2}$ respectively.

Baltay et al (1970) searched for (neutral) tachyons produced by
negative kaons and anti-protons interacting with protons in a bubble chamber. The reactions searched for were as follows:

$$
\begin{array}{ll}
k^{0}+p \rightarrow \Lambda^{0}+t^{0} \rightarrow p+\pi^{-}+t^{0} & \text { I } \\
\mathrm{k}^{0}+\mathrm{p} \rightarrow \Lambda^{0}+\mathrm{t}^{0}+\overline{\mathrm{t}}^{0} \rightarrow \mathrm{p}+\pi^{0}+\mathrm{t}^{0}+\bar{t}^{0} & \text { II } \\
\overline{\mathrm{p}}+\mathrm{p} \rightarrow \pi^{+}+\pi^{0}+\mathrm{t}^{0} & \text { III } \\
\overline{\mathrm{p}}+\mathrm{p} \rightarrow \pi^{+}+\pi^{-}+\mathrm{t}^{0}+\mathrm{t}^{0} & \text { IV }
\end{array}
$$

(t^{0} and \bar{t}^{0} are a neutral tachyon and antitachyon)

In reaction I and III the missing mass technique was used. The four momenta of the charged particles involved in these reactions can be measured. Both the k° and the \bar{p} were captured at rest in hydrogen. The incoming energy and momentum (zero) were known, the energy and momentum of the resultant ordinary particles ($\Lambda^{\circ}, \pi^{\ddagger}$ pairs) were measured. The energy E and momentum p of the remaining neutrals can be calculated using energy and momentum conservation. $E^{2}-p^{2}>0$ if these neutrals were made up of ordinary particles with velocity less than c.

The presence of a tachyon or tachyon pair would have been indicated by $E^{2}-p^{2}<0$ a negative missing mass squared, where $m^{2}=E^{2}-p^{2}$. Since the rest mass of a tachyon is imaginary these measurements of missing mass squared would show up as a spike in the frequency histogram of observed missing mass squared. From theoretical considerations (Feinberg 1972) pair production of tachyons seems more likely (reactions II and IV).

Out of 2348 events where the products were produced from
k^{-}and \bar{p} at rest no events with a negative missing mass squared were found. The resulting production rates are given as:

$$
\begin{aligned}
& \frac{\dot{k}^{0}+p \rightarrow \Lambda^{0}+t^{0}}{\bar{k}+p \rightarrow \Lambda^{0}+\pi^{0}} \leqslant 2.10^{-3} \\
& \frac{k^{0}+p \rightarrow \Lambda^{0}+t^{0}+\bar{t}^{0}}{k^{-}+p \rightarrow \Lambda^{0}+\pi^{0}} \leqslant 2.510^{-3} \\
& \bar{p}+p \rightarrow \pi^{+}+\pi^{0}+t^{0} \\
& \overline{\vec{p}+p \longrightarrow 3 \pi} \leqslant 2.10^{-3} \\
& \frac{\bar{p}+p \rightarrow \pi^{+}+\pi^{-0}+t^{0}+\bar{t}^{0}}{\bar{p}+p \rightarrow 4 \pi} \leqslant 1.10^{-3}
\end{aligned}
$$

It is concluded that if tachyons exist then they must be very weakly interacting with ordinary matter.

The advantage of a search such as this is that no assumption regarding the behaviour and/or properties of the tachyons need to be made. But the main experimental problem is a background of events in which the missing neutral is one or more $\pi^{\text {©'s }}$.

Another type of experiment to detect tachyons was performed by Murth y (1971) using cosmic ray extensive air showers. This type of search assumes three properties of tachyons to be true:
a) they travel faster than light
b) they are detectable (i.e. they should give up energy to a scintillator)
c) they are produced in the interaction of very high energy cosmic ray primary particles at the top of the atmosphere,
and are not absorbed by the atmosphere - the "shower front" travels through the atmosphere nearly at the speed of light. Tachyons on the other hand, would precede this shower front since they travel faster than light.

Ramana Murthy (1971) conducted his tachyon search at mountain altitude such that the average height of initiation of air shower above the apparatus is $\sim 2 \mathrm{~km}$ and he estimated $\frac{v_{t}}{c} \sim 1.4$. These assumptions give an estimated $20 \mu \mathrm{~s}$ interval between the arrival of the tachyon and the extensive air shower. Murthy used two types of tachyon detector. The first was a liquid scintillator ($75 \times 75 \times 22 \mathrm{~cm}$) which could detect either charged or neutral tachyons from the secondary electrons produced by a tachyon interaction with the material of the scintillator (mode I).

The second detector was based on the same principle as that used by Alvager and Kreisler (1968) (mode II). Two photomultipliers viewed an air gap normal to the direction of an electrostatic field of $2.1 \mathrm{kv} / \mathrm{cm}$. Under these conditions the Cerenkov light produced by an ordinary charged particle, would be negligible. The idea of using an electric field was to supply energy to any charged tachyon entering the detector so that it could emit Cerenkov light even if it lost afl of its energy in the first fraction of a centimeter of the detector region. Any coincidence between pulses from both photomultipliers were expected to be due to chance or to Cerenkov light produced by a charged tachyon traversing the near vacuum of the detector region. The equilibrium energy of a singly charged tachyon emitting Cerenkov radiation in such an electric field was calculated to be 3.4 ev . The photomultipliers were sensitive to photons in the range 2.3 ev . to 3.4 ev . To detect the associated extensive air
shower, Murthy used $4 \times 0.26 \mathrm{~m}^{2}$ scintillators arranged in a square array of side 10 m and placed symmetrically about the tachyon detector. A coincidence of >1 particle $\mathrm{m}^{\boldsymbol{- 2}}$ in each scintillator provided the trigger. Each coincidence triggered an oscilloscope on which the times of occurrence of the potential tachyon signal and the extensive air shower were recorded. The experiment was run for 5079 hr in mode I and 2597 hr in mode II with a trigger rate of $20 \mathrm{~min}^{-1}$. In bothlcases the number of observed coincidences fell within one standard deviation of the expected number of chance coincidences. The frequency distribution of the time separation showed that they were randomiy distributed in the region $0-20 \mu \mathrm{~s}$. He concluded that the frequency of occurrence of tachyons ($\mathrm{T}^{0}, \mathrm{~T}^{+}, \mathrm{T}^{-}$) in extensive air shower was less than 3.10^{-4} to 10^{-5} relative to that of electrons.

Ashton et. al (1970) searched for tachyons by measuring time of flight overaknown distance and looked for values exceeding the speed of light. Two large scintillators ($1 \mathrm{~m}^{2}$) viewed by single photomultiplier tubes and separated by 5.3 m were used. No evidence for the presence of particles travelling with velocity $>1.6 \mathrm{c}$ in cosmic rays at sea level were found. They were able to place an upper limit of less than $2.2 \times 10^{-5} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. st^{-1} at the 90% confidence level on the flux of tachyons in the incoherent sea level cosmic radiation.

Clay and Crouch(1974) set up an experiment similar in many ways to that of Murthy. A plastic scintillator was used as a tachyon detector ($1 \mathrm{~m}^{2} \times 5 \mathrm{~cm}$) andfed the pulses recorded by this into a digital transient recorder which at any instant held a record of pulses occurring in the previous $128 \mu \mathrm{~s}$. This was then output to a chart recorder which reduced the effective delay to $114 \mu \mathrm{~s}$.

The extensive air shower trigger was obtained from five ($1 \times 1 \times 0.005)^{3}{ }^{3}$ plastic scintillators, arranged in a square array of side 30 m , one at each corner and one at the centre. A coincidence between the central detector and any three of the others produced a trigger which was then used to trigger the transient recorder. The trigger rate of showers of $7.2 \mathrm{hr}^{-1}$ corresponded to showers of energy $>2 \times 10^{15} \mathrm{ev}$. The method of analysis was to record the time of arrival of pulses in the $97.5 \mu \mathrm{~s}$. time interval preceding the arrival of the air shower front. Comparison of the time of the "largest pulse" in the $97.5 \mu \mathrm{~s}$ previous to the arrival of 1307 air showers with a randomly generated set of arrival times gave a χ^{2} probability of 10^{-4} that the test data and extensive air shower data were from the same distribution. They concluded that they had observed non-random events preceding the arrival of an extensive air shower, and it was suggested that this was a result of particles travelling with an apparent velocity greater than c.

After Clay and Crouch's article was published several similar experiments have been performed. Prescott (1975) pointed out two criticisms of the Clay and Crouch results which raise doubts as to their validity.

Prescott (1975) essentially repeated the Clay and Crouch experiments with the original apparatus. His re-analysis consisted of comparing the number of pulses in the 0 to $105 \mu \mathrm{~s}$. previous time to the shower front with that in the 105 to $210 \mu \mathrm{~s}$. region after the arrival of the shower front. No excess of pulses appears in the former interval, thus contradicting the previous results. He also discussed what might have been the reason for the non random distribution initially found by Clay and Crouch. Apparently any pulses in the first and second bins
would be substantially lowered if a large pulse arrived just prior to them. This led to a deficiency in 'largest pulse' counts in these bins and hence an erroneous \mathcal{X}^{2}. In fact Prescott found such a systematic effect because of the method of analysis used by Clay and Crouch i.e. selecting the largest pulse in the 105μ s previous to the arrival of an air shower. The pulses observed by Clay and Crouch were $\sim 10 \%$ the height of the pulse produced by a relativistic (subluminal) muon traversing the tachyon detector.

Also an independent search for tachyons was devised by Prescot. Using a $(50 \times 50 \times 10) \mathrm{cm}^{3}$ plastic scintillator, viewed by a two inch photomultiplier, located 17.5 m from the centre of the Buckland Park array. The output signal was amplified and delivered to a transient recorder with output to a chart recorder. Signal to noise was improved by two orders of magnitude, from ~ 0.1 of the mean single particle energy release in the scintillator to 5×10^{-4}. Overshoot was reduced andi he to less than 0.5% /compared the distribution in time of arrival of pulses preceding 4315 showers of size greater than 10^{5} particles with the time of arrival of 5715 randomly triggered events. In both sets of events the time distribution of signals has a uniform distribution. Moreover, the frequency of events in which zero, one, two, etc. pulses were recorded had a poisson distribution, indicating no tendency for pulses to be associated in time. An upper limit on the tachyon/electron flux, at the 90% confidence limit, was determined as 5×10^{-5}.

Fegan (1975) used a $2.5 \mathrm{~m}^{2} \times 5 \mathrm{~cm}$ plastic scintillator as a tachyon detector which was placed at the centre of a triangular array of three plastic detectors which provided the air shower trigger. The output of the two, five inch, photomultipliers, viewing the detector in coincidence, was fed to a 200 bit static shift register which
produced an $800 \mu \mathrm{~s}$ record of the time distribution of detector events. Two sets of data were obtained. The first, mode A, demanded coincidence between the two photomultipliers and corresponded to an energy deposit in the scintillator of $\geqslant 1 \mathrm{mev}$. The second, mode B, demanded a single pulse from a single photomultiplier corresponding to a deposit of $\geqslant 0.5$ Mev. A master pulse inhibited the register $380 \mu \mathrm{~s}$ after an air shower arrival was obtained. The register now contains the profile in time of detected events for the interval $420 \mu \mathrm{~s}$ before the shower front.

A statistical analysis based on a x^{2} test of the interval $12 \mu \mathrm{~s}$ to 408μ s before the air shower front arrival produced no evidence for a deviation from a random distribution. Mean calculated shower energies are $2 \times 10^{15} \mathrm{ev}$. Comparing the observed number of pulses in the $108 \mu s$ to $12 \mu \mathrm{~s}$ before the air shower arrival with the number expected in a random 96μ s time interval, the upper limits for the tachyon flux, at the 3σ leve1, were determined as 2.06×10^{-2} per shower per m^{2} in mode A and 6.58×10^{-2} per shower per m^{2} in mode B, at the mean shower energy.

Another group conducted two searches for tachyons associated with air showers were workers at the University of Tasmania (Emery et al, 1975). They used the same technique as used by Clay and Crouch but using Geiger Muller ($G-M$) counters and liquid scintillators. The first search demanded that a tachyon produce a pulse in one of 96 G-M tubes in four $1 \mathrm{~m} \times 1 \mathrm{~m}$ trays evenly spaced around a circle of radius 21.2 m in the 108μ s before the arrival of an air shower as detected by these trays of G-M tubes. The air shower trigger was such as to produce a rate of 357 per day with energy of about $10^{15} \mathrm{ev}$.

After analysing 27449 showers and observing 3512 pulses which preceded these showers by up to 108μ s they found a 0.9 probability
that the time distribution was flat, based on a χ^{2} test. They conducted a second search using a 75 cm diameter, 2.5 cm deep, liquid scintillator at the centre of the array as a tachyon detector. The system could register pulses greater than 0.1 times the pulse height due to a single muon. 3766 precursor pulses were seen in the $108 \mu \mathrm{~s}$ before 9521 showers. The probability of the distribution being uniform was 0.15 . They concluded from their results that there was no positive evidence for tachyons in association with air showers.

Smith and Standil (1977) used a cosmic ray telescope, consisting of 5 scintillators of area $0.7 \mathrm{~m}^{2}$ as elements. Each element of the telescope registered the occurrence of events depositing more energy than $\frac{E 0}{5}$ where Eo is the energy corresponding to the 'through peak' of the muon pulse height distribution and the detector registered charged particles at a rate of $27.5 \mathrm{~s}^{-1}$. Air showers were detected by an array of three detectors which was sensitive to showers of energy greater than $6 \times 10^{14} \mathrm{ev}$ at a rate of $10^{-2} \mathrm{sec}^{-1}$. Tachyon detection by the large telescope initiated a data readout cycle by starting a TAC time scan and caused three independent measurements of the ionization of the initiating event to be digitized and stored. If an air shower arrived within $290 \mu \mathrm{~s}$ of this event, the data, along with the pulse heights from the array detectors and the time, would be saved and stored. They carried out numerous checks on the stability of the detecting system and 204702 showers were recorded, along with 1519 ± 39 tachyon candidates. When the number of expected coincidences were subtracted, an excess of 46 ± 40 events were found. It was concluded that these could be as random coincidences between the start and stop signals at the time to amplitude converter.

Ashton et al (1977) used the air shower triggers provided by
the Durham array outer ring trigger (Detectors 13, 33, 53 and c in operation) (see Chapter II). With a minimum shower size of about 8×10^{4} particles and a rate of $(8.53 \pm 0.46) \mathrm{hr}^{-1}$ the equipment used consisted of, from top to bottom, 15 cm . of lead, 8 layers of neon flash tubes, 15 cm . of iron, the tachyon detector with total sensitive area of $2.1 \mathrm{~m}^{2}$ and thickness 5 cm . and 108 layers of flash tubes. The summed outputs from the 6 photomultipliers viewing the scintillator passed through a $240 \mu \mathrm{~s}$ delay line and were displayed on an oscilloscope, the screen of which was photographed. The flash tubes allowed the track of tachyon candidates to be recorded. In 341 showers, six precursors were observed with pulse heights greater than three times the height of that due to a relativistic muon which all occurred in the time interval of $0-120 \mu \mathrm{~s}$ preceding the shower front. A χ^{2} test gave a probability of 4.5×10^{-6} that 6 events would occur in this region and none in the 120 to $220 \mu \mathrm{~s}$ region. The expected number of chance events has been estimated as 0.81 . It was concluded that the possibility of a tachyon flux existed but that better statistics were required.

Later Ashton et al (1979) devised another search for tachyons. They used an unshielded plastic scintillator of area $2 \mathrm{~m}^{2}$ as a tachyon detector. The Durham array outer ring trigger gave a shower arrival at
signal/sea level senerated by primary cosmic rays of energy $\geqslant 2.5 \times 10^{15} \mathrm{ev}$. with a rate of $4.3 \mathrm{hr}^{-1}$ corresponding to a minimum shower size of 2.5×10^{5} particles. The electronic system used to display pre-shower front pulses consisted of a delay line giving an overall delay of $264 \mu \mathrm{~s}$. Tachyon pulses were expected to occur in the $120 \mu \mathrm{~s}$ time domain preceding the extensive air shower front pulse. Results for the time distribution of pulses corresponding to different threshold energy losses in the tachyon detector obtained from a sample of 1107 shower
triggers were obtained. The distributions are expected to be flat over the range 20-260 $\mu \mathrm{s}$. Using a χ^{2} test to determine whether the measured time distributions are really flat it was concluded that in all cases there is no evidence for a significant number of events being produced by tachyons.

Bhat, P.N. et al (1979) conducted a search for tachyons using a tachyon detector consisting of two plastic scintillators each $(80 \times 80 \times 1) \mathrm{cm}^{3}$, located in a stack of $14 \mathrm{~g} \mathrm{~cm}^{-2}$ iron plates which form the multi-plate assembly of a large cloud chamber. The chamber was shielded by a $48 \mathrm{~g} \mathrm{~cm}^{-2}$ layer of lead from low energy particles. The output of the detector was discriminated at the three muon leve1. The tachyon detector is located about 10 m fron the centre of an array of 24 detectors. The apparatus was operated in two modes. In the mode A two scintillators were operated in coincidence and following each potential tachyon signal a time interval of 1-401 s after a tachyon candidate was scanned for the arrival of an air shower. If any air shower arrived in this time interval then the delay time and the air shower data were recorded. The rate of air shower triggers was observed to be $12 \mathrm{hr}^{-1}$ and the estimated minimum size of the shower, was 2×10^{5}, corresponding to a primary energy of about $6 \times 10^{14} \mathrm{ev}$. In 1749 hr 20988 showers were observed and only four duc to bactiground events have been observed. Since the number expected/was seven, there was no excess of events. In the second mede only one detector was used. The trigger was adjusted and gave a rate of $42 \mathrm{hr}^{-1}$ with a minimum shower size of around 10^{5} and primary energy of about $3 \times 10^{14} \mathrm{ev}$. In 1872 hours 78624 showers were detected and 27 events observed. The expected number of chance events in this period is 31, the events being also uniformly distributed over the time interval.

They concluded there is no evidence for any finite flux of tachyons from this experiment. The upper limit on the tachyon flux, at the 95% confidence level, is $2.3 \times 10^{-1} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \cdot \mathrm{st}^{-1}$.

A recent experiment searching for tachyons associated with extensive air showers at energies $\mathrm{E}>3 \times 10^{16} \mathrm{ev}$. is D.J. Fegan 1981. He used an $0.5 \mathrm{~m}^{2}$ area plastic scintillator of thickness 0.025 m as a tachyon detector, the top surface of the plastic scintillator being viewed by two photomultiplier tubes of 12.5 cm diameter. The detector was located at the centre of an equilateral triangle with sides of length 20 m and three circular plastic scintillators of $0.05 \mathrm{~m}^{2}$ area located at the vertices constituted the air shower selector, the minimum shower energy which could produce a trigger was $10^{16} \mathrm{ev}$. which corresponded to a rate of $0.17 \mathrm{hr}^{-1}$. The tachyon detector was shielded by 25 cm of con/rete and by an additional 15 cm of lead over burden. The signal from both photomultiplier tubes of/tachyon detector were linearly surmed and fed to a transient recorder. This allowed a period of $480 \mu \mathrm{~s}$ before the shower front and $24 \mu \mathrm{~s}$ after to be recorded.

Fegan in his experiment used two different approaches. (a) The trigger threshold energy was increased above that previously used so as to reduce the dilution effect of a large number of background pulses. (b) The exposure time was made longer than previous experiments which gives a reasonably large statistical sample at the higher threshold. Amplitude integrated histograms were produced, both for the real data and the random data, which was from triggers injected throughout the experiment as a system check. The resulting histogram showed "an excess of events in the 48 to $60 \mu \mathrm{~s}$ region prior to the arrival of the air shower front." Fegan suggested that the excess is not inconsistent with tachyons, but the observed deviation of 5.33σ from the mean at
$57 \mu \mathrm{~s}$ could be caused by the disintegration of cosmic ray nuclei in the field of solar photons leading to the production of correlated showers in the earth's atmosphere, (Gerasimova et al 1960). However, Gerasimova et al determine the cores of associated showers to be separated by a distance of about 1 km which makes this explanation unlikely.

5.7 Conclusion

Although only the results of Fegan (1981) have yielded a possible tachyon signal it is realised that there are considerable experimental difficulties in searching for particles that precede an extensive air shower in the time domain $0-150 \mu \mathrm{~s}$ preceding the arrival of the air shower front. This is particularly true of digitised detectors and for this reason the experiment described by the author in the next chapter used $1 \mu \mathrm{~s} /$ foot delay lines to store information which was then displayed on a dual beam oscilloscope. In this way a clear picture of what is happening in the time domain of interest to detecting a possible tachyon flux is obtained.

CHAPTER 6

EXPERIMENTAL ARRANGEMENT USED FOR THE TACHYON EXPERIMENT

6.1 INTRODUCTION

The principle of the experiment which is now described is to search for tachyons associated with cosmic ray showers of primary energy of $\approx 10^{15} \mathrm{ev}$. The method used for the search is that first used by Ramana Murthy (1971) and since used by others.

Consider a primary cosmic ray proton incident from the zenith and making its first interaction at an atmospheric depth of $80 \mathrm{~g}, / \mathrm{cm}^{2}$ of air corresponding to an altitude of 17.7 km above sea level etal (van Allen/1950) as shown in figures 6.1 a and 6.1 b . It is assumed that tachyons are produced as particle antiparticle pairs in interactions of the sort that occur when a high energy cosmic ray primary proton collides with a nucleus in the upper atmosphere, i.e. a reaction of the type: $P+N \rightarrow N+N+t+\bar{t}+$ pions etc., Another assumption held is that at least some of any produced tachyons with $v>c$ should survive for long enough to reach sea level and then either loose energy in a scintillator and give rise to photons or be detectable by the production of secondary particles which can be detected.

A primary proton if it has sufficiently high energy ($\geqslant 10^{6} \mathrm{Gev}$) will then produce an extensive air shower. At such high energies the main electron photon shower front velocity is approximately the speed of light. The most likely kinetic energy of a tachyon is approaching zero if it is created at the production threshold
energy and its velocity will then approach infinity. Also if the initial kinetic energy is greater than zero, any interaction with the atmosphere will lower its kinetic energy and its velocity will increase. Hence, a tachyon will reach sea level at sometime in the $59 \mu \mathrm{~s}$ time period before the arrival of the main electron-photon shower front for a vertically incident shower. Such a situation is illustrated schematically in figure 6.1b. For a shower incident at a zenith angle of 60° the relevant time interval is $150 \mu \mathrm{~s}$. As $<1 \%$ of showers have zenith angle $>60^{\circ}$ it is necessary for a tachyon detector to be able to record the occurrence of preshower front pulses in at most the $150 \mu \mathrm{~s}$ time domain preceding the shower front arrival time.

For finite velocity tachyons or for tachyons produced in secondary hadron interactions, low in the atmosphere, the delay time would be smaller. Any heavy particles produced in the extensive air shower hadron cascade are expected to trail the shower front.

One major difference between the present search and previous searches is the fact that the tachyon detection scintillator is shielded by 20 cm of lead and 20 cm of iron. This allows the possibility that the experiment is sensitive to both penetrating tachyons and also to tachyons that interact in the absorber with their secondaries being detected by the tachyon detection scintillation counter.

6.2 EXPERIMENTAL ARRANGEMENT

A scale diagram of the experimental arrangement used is shown in figure 6.2. Briefly a twofold coincidence between scintillators A and B is used to detect the arrival of an air shower front and in such an occurrence the pulses detected by scintillator C (the tachyon detector) are recorded in the $265 \mu \mathrm{~s}$ time domain preceding the shower front and also in the 235us time domain after the arrival

Figure 6.la Variation of counting rate of single Geiger

Figure 6.1b: Diagram illustrating the possible production of $t \bar{t}$ pairs in the interactions of a primary proton with an air nucleus at an atmospheric depth of $80 \mathrm{gcm}^{-2}$ (1 mean free path) corresponding to an altitude of 17.7 km above sea level.
of the shower front. The equipment is mounted as an integral part of a large flash tube chamber (see Appendix A for details) but the chamber was not operated in the present work. It is noted that tachyons could be detected either by their direct interaction with the phosphor material of scintillator C or via their production of normal secondary particles by their interaction in the lead or iron shielding layers each of which is 20 cm thick.

6.3 EAS SELECTION

A block diagram of all the electronics used in the experiment is shown in figure 6.3. EAS were selected by a twofold coincidence between scintillators A and B each of area $0.4 \mathrm{~m}^{2}$. Both scintillators and the head units used are of the type described in chapter 4. Figure 6.4 shows the integral response of each scintillator to the global cosmic ray flux where pulse heights are measured at the output of each scintillator head unit. Both scintillators were adjusted so that the average pulse height produced by relativistic muons traversing their areas at normal incidence produced an average pulse height of 20 mv at the head unit outputs. Also shown in figure 6.4 is the coincidence rate between A and B as a function of the minimum selected head unit output pulse height imposed separately on the A and B outputs. In figure 6.5 these coincidence rate measurements have been converted to an electron density spectrum and it is seen that the results obtained are in reasonable agreement with the summary of such measurements made by Greisen (1960).

To select EAS for the tachyon experiment the threshold electron densities required to be recorded by both scintillators A and B was set to $25 \mathrm{~m}^{-2}$. During a running time of 114 hr 21 min 56 sec a total of 1443 EAS triggers were recorded. During this time a record was

Figure 6.4 : The integral rate of pulses $R(>V)$ measured at the output of the head units of scintillators A and B measured as a function of the threshold pulse height v. Also shown is the measured coincidence rate between A and B as a function of v. For both A and B the average pulse height produced by relativistic particles traversing their area at normal incidence is 20 mv . The areas of both A and B are $0.4 \mathrm{~m}^{2}$.

Figure 6.5 : The measured integral density spectrum of electrons at sea level compared with the result given by Greisen(1960)
made of the barometric pressure and figure 6.6 shows how the twofold coincidence rate $\Delta_{A}\left(\geqslant 25 m^{-2}\right) . \quad \Delta_{B}\left(\geqslant 25 m^{-2}\right)$ was found to vary with atmospheric pressure. The straight line shows the best least squares fit to the data assuming it can be represented by $R=R_{0} \exp -\beta P$. The mean pressure at which events were recorded was 75.4 cmHg and the best fit line shows that the pressure variation of the rate due to pressure changes from the mean value is (11 ± 1)\% per cm Hg .

6.4 THE TACHYON DETECTOR SCINTILLATOR (SCINTILLATOR C)

The design of the tachyon detector scintillator with phosphor dimensions $140 \times 75 \times 5 \mathrm{~cm}$ (area $1.05 \mathrm{~m}^{2}$) is shown in figure 6.7 . In order to achieve a large signal to noise ratio (noise pulses being produced by single thermionic electrons emitted by the photomultiplier photocathodes) the phosphor was viewed through rectangular perspex light guides by a total of 6 photomultipliers. To adjust each photomultiplier operating voltage so that the photomultipliers all had equal sensitivity a pulsed light emitting diode was used which was mounted successively at the points α and β shown in figure 6.7 in order to illuminate the photomultipliers on the opposite side of the counter. To keep the electronics as simple as possible the outputs from all 6 photomultipliers were connected together using short lengths of coaxial cable and the common connection was used as the input to a simple emitter follower of exactly the same type already described in chapter 4 . Figure 6.8 shows the response of the counter to the global cosmic ray flux and it is seen that the single particle peak is well resolved from the noise. Figures $6.9,6.10,5.11,6.12$ and 6.13 display various other measurements relevant to the performance of scintillator C and the relevant details are apparent from the figure captions.

Figure 6.6 : The variation of trigger rate of observed showers with atmospheric pressure.
53 AVP

Figure 6.8: Typical single particle cosmic raj peak as displayed on the pulse height analyser for scintillator C.
P.H.A.Gain $=\mathbf{2 0 0}$

Figure 6.9 : Variation of the peak pulse height from each side of scintillator C (3 matched phototuives operational, $C_{1}+C_{2}+C_{3} \& C_{4}+C+C$) separately produced by the global cosmic ray flux traversing the scintillator as a function of the voltage applied to the phototu'ses

Figure 6.10 : Variation of the peak pulse height produced oy the global cosmic ray flux traversing scintillator C as a function of the voltage applied to tine maiched photcmultiplier tubes. The measurements are fitted by $V=1.5 \times 10^{394} \mathbf{v} 9.79$ This result is consistent with the results obtained when individual phototubes are excited with lignt pulses from an LED

Figure 6.11 : Rate of the pulses $>v$ versus fulses neight v as calculated from the pulse height analyser cisplay shown in fig.6.8 The position of tine cosmic ray single particle peak is shown by the arrow.

Figure 6.12 : The integral pulse heignt distribution produced by the global cosmic ray flux measured using an amplifier and discriminator for scintillator C. The corresponding pulse neight analyser display shows that the most probable pulse height produced by cosmic ray particles corresponds to a pulse height of 30 mv .

Figure 5.13 : The integral response of scintillator C expressed in terms of the density of particles traversing the phosphor wilich has area $1.05 \mathrm{~m}^{2}$. Single relativistic particles traversing the phosphor at normal incidence correspond to a density of $0.95 \mathrm{~m}^{-2}$.

In order to measure the occurrence of ionising events occurring in scintillator C before the arrival of the main air shower front some method must be used to store the relevant information. In the present work lengths of Hackethall delay cable (delay $1 \mu \mathrm{~s}$ per foot) are used. Figure 6.14 shows that the attenuation suffered by $2 \mu \mathrm{~s}$ square pulses in traversing an $80 \mu \mathrm{~s}$ length of this cable is a factor of 5 . In the actual experimental arrangement used (see figure 6.3) three successive lengths of cable, each followed by an amplifier and giving a total delay of $265 \mu \mathrm{~s}$ was used. The final output was displayed on a dual beam oscilloscope with a total sweep time of $500 \mu \mathrm{~s}$ so that both the 265 us time domain before the arrival of the shower front pulse and the $235 \mu \mathrm{~s}$ afterwards could be investigated. To achieve as large a dynamic range as possible for pulse height measurement one channel of the oscilloscope was operated on a sensitivity of $5 \mathrm{mv} / \mathrm{cm}$ with a maximum possible deflection of 7 cm and the other channel was operated on a sensitivity of $200 \mathrm{mv} / \mathrm{cm}$ with a maximum possible deflection of 8 cm . Figure 6.15 shows the relation between the pulse height at the output of the head unit and the pulse height recorded on the oscilloscope. In practice the oscilloscope was viewed by a camera with an open shutter and on the occurrence of an EAS event the time base was triggered and the details recorded on 35 mrn film. Also recorded on the same film was the time of occurrence of the event. This was achieved using a pulsed display digital clock. Figure 5.16 shows the appearance of an idealised event as photgraphed on the dual beam oscilloscope in one of its sensitivity channels. Figures 6.17, 6.18, 6.19, 6.20 and 6.21 give details of the amplifier, discriminator, coincidence unit, fan out and cycling system trigger units shown in the block diagram of the electronics used (figure B.3).

Figure 6.14 : The attenuation of a $2 \mu \mathrm{~s}$ square pulse after transmission down 30μ s of Hackethall HH 1600 delay line.

Figure 6.15 : Input/output calibration curve used in the

Figure 6.16 : The appearance of an idealised event as photographed on the dual beam oscilloscope in one of its sensitivity channels.

Circuit diagrams for the electronics units used for the experiments described are shown. Unless otherwise stated all values of resistance are quoted in $K \Omega\left(10^{3} \Omega\right)$, all values of capacitance are quoted in $\mu \mathrm{f}\left(10^{-6} \mathrm{~F}\right)$, and all transistors used were of the type 0C171.

Figure 6.17 : The voltage amplifier and its characteristics for various values of feedback resistance R. Measurement made using 1 usecond wide-ve input pulses, from a pulse generator.

Minimum input pulse height in volts to trigger
Figure 6.18 : The discriminator circuit and the relationship hetween the d.c. level on the base of the first transister and the minimum infut pulse height required to trigger the circuit and also the relationship between knoi setting and minimuri input rulse height. Weasurements made using 1μ second wide - ve input pulses from a pulse generator. For input pulse heigits above threshold the output pulse neight has the constant value of 5.2 volts independent of input pulse reigit.

	input fron pulse generator	outrut at A		output at B		
		1 fold	2 foid	1 fold	2 fols	pulse width
Channel i	-3 volts	$\begin{array}{r} 0.0044 \\ \text { volts } \end{array}$	+6 volts	$\begin{aligned} & -0.03 \\ & \text { volts } \end{aligned}$	-4 voits	1 μ second
Channel 2	-3 volts	$\begin{aligned} & 0.008 \\ & \text { volts } \end{aligned}$		$\begin{array}{r} -0.61 \% \\ \text { volts } \end{array}$		$1 \mu \mathrm{~second}$

Figure 6.!9 : A two-fold coincidence unit Taíle produced by testslising $1 \mu \mathrm{~s}$ wide -3 volts input pulses using the pulse generator.

Figure 6.20: The fan out and its input-output characteristics. Test using 1 usecond wide - ve input pulses from a pulse generator.

Figure 6.21 : The cycling system trigger.
A -5 volt, 1μ second, pulse at the input will close the relay and start the cycling system. Test using lus wide -3 volt pulses from a pulse generator.
A single short pulse causes x, y to be connected for about 1 second

CHAPTER 7

RESULTS OF THE TACHYON EXPERIMENTS

7.1 INTRODUCTION

As explained in the last chapter any tachyons produced in the interactions of primary cosmic ray protons are expected to arrive at sea level in the $59 \mu \mathrm{~s}$ time domain before the arrival of the main shower front for showers incident from the zenith and some time in the preceding $150 \mu \mathrm{~s}$ for showers incident at an angle of 60° to the zenith. Unfortunately pulses can also be observed in these time domains due to (a) random thermal noise pulses originating from thermionic emission from the photomultiplier photocathodes (b) background radioactivity (presumably mainly γ rays) from the environment (c) the chance passage of cosmic raysthrough the detector which are not associated with the detected air shower trigger. The thickness of the tachyon detector phosphor used in the present work is 5 cm so that a relativistic muon traversing the detector at normal incidence will deposit $\sim 10 \mathrm{MeV}$ energy in the phosphor. In general (a) and (b) are expected to produce very much smaller detected pulse heights than (c).

The types of detected pulse expected from the present detector are shown in figures 7.1a and 7.1b. In all a sample of 1,443 EAS triggers were recorded. Analysis of the oscilloscope photographs showed a significant number of background pulses so a sample of 1,010 photographs were taken in which the oscilloscope time base was triggered at random rather than by the arrival of an EAS so as to have a sample of data from which the true random background could be established. A summary of the basic data used in the present work is shown in table 7.1.

Figure 7.1a: Types of pulse expected to be observed in the present experiment

Figure 7.7b

a) Trace showing two precursor pulses, occurring at $50 \mu \mathrm{~s}$ and $140 \mu \mathrm{~s}$ prior to the shower front, and one after shower front occurring at $325 \mu \mathrm{~s}$. Times are measured from the start of the oscilloscope sweep, the shower front pulse occurring at $265 \mu \mathrm{~s}$ as shown in figure 7.la.
b) Trace showing two precursor pulses, occurring at 25μ s and $180 \mu \mathrm{~s}$ prior to the shower front.

The time between the start of the time base and the arrival of the shower front is $265 \mu \mathrm{~s}$. The vertical scale is $1 \mathrm{~cm}: 5 \mathrm{mv}$.

- - - ---- -- -- - - --- - - -

Total number of EAS triggers $\Delta_{A}\left(\geqslant 25 \mathrm{~m}^{-2}\right)$.	1,443
Running time	
EAS trigger rate	114 hr 21 min 56 sec
(12.62 $\pm 0.33) \mathrm{hr}^{-1}$	

Table 7.1 : Summary of basic experimental data

7.2 TIME DISTRIBUTION OF RECORDED PULSE HEIGHTS SELECTED BY THE EAS TRIGGER

The measured time distribution (time measured from the start of the oscilloscope time base) of pulses occurring in different ranges of pulse height measured on the oscilloscope are shown in table 7.2 and figure 7.2. Also shown is the corresponding range of energy deposition in the scintillator in terms of 'e' where 'e' is the energy loss (10 MeV) produced by a relativistic muon traversing the scintillator at normal incidence. The amplifiers used in conjunction with the delay lines had a non linear response (figure 6.15) so the range of pulse height is not linearly related to the range of energy loss. In making the conversion from oscilloscope pulse height to pulse height at the output of the head unit the calibration curve shown in figure 6.15 was used. To write the pulse height at the output of the head unit in terms of ' e ' the average pulse height at the output of the head unit produced by relativistic particles traversing the phosphor at normal incidence was taken to be 30 mv . The way in which the figure of 30 mv was established is described

Time range micro sec- onds$\|$	Number of pulses					
	. $5 \mathrm{mv} \leqslant \mathrm{v} \leqslant 2 \mathrm{mv}$	$2 m v<v \leqslant 4 m v$	$4 m v<v \leqslant 30 m v$	$30 \mathrm{mv}<\mathrm{v} \leqslant 120$	$\checkmark 120 \mathrm{mv}$	$v \geqslant 700 \mathrm{mv}$
0-10	5	1	0	0	0	0
10-20	13	8	3	2	0	0
20-30	3	5	2	0	1	0
30-40	10	3	0	3	0	0
$40-50$	8	3	0	0	0	0
50-60	16	5	0	0	1	0
60-70	5	5	1	0	0	0
70-80	13	7	3	1	1	0
80-90	9	9	2	0	3	0
90-100	8	3	1	2	0	0
100-110	7	3	3	0	0	0
110-120	8	2	1	1	1	0
120-130	9	5	0	1	1	0
130-140	7	6	1	5	0	0
140-150	10	3	0	1	1	0
150-160	10	3	1	1	0	0
160-170	10	2	2	1	0	0
170-180	14	4	0	1	1	0
180-190	32	5	0	0	0	0
190-200	9	6	0	0	0	0
200-2i0	8	3	0	0	1	0
210-220	4	4	2	0	0	0
220-230	14	4	2	1	2	0
230-240	3	2	0	0	0	0
240-250	5	3	0	0	0	0
250-260	2	1	0	0	0	0
260-270	260	166	250	145	465	172
270-280	5	2	2		0	0
280-290	5	7	- 2	1	0	0
290-300	8	3	3	2	0	0
300-310	4	4	1	1	0	0
310-320	4	6	4	1	0	0
320-330	13	5	5	3	1	0
330-340	4	1	3	1	1	0
340-350	6.	6	2	1	0	0
350-360	5	7	2	5	2	0
360-370	7	2	3	2	1	0
370-380	12	1	6		2	0
380-390	3	6	2	6		0
390-400	3	6	2	0	0	0
400-410	16	5	3	0	0	0
410-420	8	8	4	1	0	0
420-430	7	4	4	2	3	0
430-440	10	3	1	1	3	1
440-450	10	7	5	1	1	1
450-460	13	4	3	0	2	0
460-470	8	6	5	0	1	0
470-480	12	7	1	1	1	0
$480-490$ $490-500$	10	4	0	0	1	0
490-500	3	4	1	0	0	0
	418	212	88	51	33	2

Table 7.2 : Tachyon data. Time distribution of events in different ranges of pulse height (measured on the oscilloscope) from a sample of 1443 shower triggers. The data was analysed using the DATABIN program.

in section 7.3. It is shown from figure 7.2 that an excess of events (4.4 standard deviations above the general background level) is observed in the $180-190 \mu \mathrm{~s}$ time bin (corresponding to particles that traverse the scintillator in the time domain $75-85 \mu$ s before the arrival of the shower front) for the smallest range of energy depositions in the tachyon detector investigated. The range of energy deposition of .07e-. 14e corresponds to . $7-1.4 \mathrm{MeV}$. No other anomalous effects are present in the data. The dip in the general background distribution in the $\sim 30 \mu$ s time range before the occurrence of the shower front pulse for the .07e-. 14e energy loss range is due to an oscillation which precedes the occurrence of large shower front pulses in the tachyon detector. The effect is associated with the properties of the delay lines used in the experiment and has been described previously (Abdullah et al, 1979).

7.3 DISTRIBUTION IN HEIGHT OF THE SHOWER FRONT PULSES

The measured distribution in height of the shower front pulses is shown in table 7.3 and table 7.4 shows how the differential and integral pulse height distributions at the output of the head unit were determined. Plots of the differential and integral pulse height distributions where pulse heights are measured at the output of the head unit are shown in figures 7.3 a and 7.3 brespectively. It is seen from figure 7.3a that the differential distribution shows a well resolved peak at a pulse height of 30 mv and this feature is interpreted as being due to the passage of single muons through the tachyon detector, the muons being part of the air shower front. The value of 30 mv established in this way was used in the previous section to obtain an absolute energy calibration in MeV for pulse heights measured in the tachyon detector.

Pulse ht. range on oscillos- cope millivolts	Pulse ht.range at output of head unit millivolts	Frequency
$0.5-2$	$2.06-4.08$	260
$2-4$	$4.08-5.75$	166
$4-6$	$5.75-7.02$	72
$6-8$	$7.02-8.08$	37
$8-10$	$8.08-9.02$	31
$10-12$	$9.02-9.87$	25
$12-14$	$9.87-10.65$	12
$14-16$	$10.65-11.37$	8
$16-18$	$11.37-12.05$	7
$18-20$	$12.05-12.69$	12
$20-22$	$12.69-13.3$	8
$22-24$	$13.3-13.89$	11
$24-26$	$13.89-14.45$	10
$26-28$	$14.45-14.98$	2
$28-30$	$14.98-15.5$	15
$30-32$	$15.5-16.0$	1
$32-34$	$16.0-16.49$	0
$34-36$	$16.49-16.96$	2
$36-38$	$16.96-17.42$	0
$38-40$	$17.42-17.86$	9
$40-42$	$17.86-18.3$	0
$42-44$	$18.3-18.72$	0
$44-46$	$18.72-19.13$	0
$46-48$	$19.13-19.54$	0
$48-50$	$19.54-19.94$	1
$50-100$	$19.94-28.05$	101
$100-150$	$28.05-34.25$	56
$150-200$	$34.25-39.47$	50
$200-300$	$39.47-48.19$	63
$300-400$	$48.19-61.56$	55
$400-500$	$61-56-72.45$	34
$500-600$	$72.45-82.76$	43
$600-700$	$82.76-92.61$	23
$700-800$	$92.61-102.09$	12
$800-900$	$102.09-111.26$	18
$900-1000$	$111.26-120.15$	15
$1000-1100$	$120.15-128.81$	17
$1100-1200$	$128.81-146.26$	17
$1200-1400$	$146.26-170$	51
>1400	>170	42
		1286

"Data bin" is used with	Maximum time No. of time bins Maximum height No. ht. bin	$\begin{aligned} & =530 \mu \mathrm{~s} \\ & =2 \\ & =31.5 \\ & =15 \end{aligned}$	Maximum time No. ồ time bins Maximum height No. of ht. bin	$\begin{aligned} & =530 \mu \mathrm{~s} \\ & =2 \\ & =1455 \\ & =29 . \end{aligned}$

Table 7.3 : Tachyon data. The distribution in size of the shower front pulse height measured from a sample of 1443 EAS triggers. The DATABIN program was used to analyse the data. The total number of measured pulse heights is shown at the bottom of the column.

	Pulse ht． range $\left(v_{1} \rightarrow v_{2}\right)$ at output of head unit （millivolts）	$\begin{gathered} \Delta \nu \\ =v_{2}-v_{1} \\ \text { (millivolts) } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Mean } \\ v_{2}+v_{1} \end{array} \\ 2 \\ \text { (millivolts) } \end{gathered}$	No．of events $N\left(v_{1} \rightarrow v_{2}\right)$ with pulse ht．in range $v_{1} \rightarrow v_{2}$	$\begin{aligned} & \begin{array}{l} \text { Differential } \\ \text { frequency } \\ N\left(v_{1} \rightarrow v_{2}\right) \end{array} \\ & \frac{\Delta v}{\text { (millivolts) }} \end{aligned}$	$N\left(>v_{1}\right)$
． 5 － 4	2．06－5．75	3.69	3.91	$(4.26 \pm .21) .10^{2}$	（1．15 $\pm .06) .10^{2}$	1286
4－6	5．75－7．02	1.27	6.39	（7．20 $\pm .85) .10^{1}$	$(5.67 \pm .67) .10^{1}$	860
6－8	7．02－8．08	1.06	7.55	（3．70 $\pm .61) .10^{1}$	（3．49 $\pm .57) .10^{1}$	788
$8-12$	8．08－9．87	1.79	8.98	（5．60 $\pm .75) .10^{1}$	（3．13 $\pm .42) .10^{1}$	751
12－30	9．87－15．50	5.63	12.68	（8．50士．92）． 10^{1}	（1．51 $\pm .16) .10^{1}$	695
30－50	15．50－19．94	4.45	17.72	（1．30士． 36$) .10^{1}$	（2．92 $\pm .79)$	610
50－70	19．94－23．53	3.59	21.74	（3．80士．61）．10 ${ }^{1}$	（1．06 $\pm .18) .10^{1}$	597
70－90	23．53－26．63	3.10	25.08	（3．80 $\pm .61) .10^{1}$	（1．22 $\pm .20) \cdot 10^{1}$	559
90－140	26．63－33．11	6.48	29.87	（8．10 $\pm .90) .10^{\text {！}}$	（1．25 $\pm .14) .10^{1}$	521
140－200	$33.11-39.47$	6.36	36.28	（5．00士．71）．10 ${ }^{1}$	（7．86 $\pm 1.11)$	440
200－300	39．47－48．19	8.73	43.83	（6．30 $\pm .79) .10^{1}$	（7．22 $\pm .91)$	390
300－400	48．19－61．56	13.37	54.88	（5．50 $\pm .74) .10^{1}$	$(4.11 \pm .55)$	327
400－500	61．56－72．45	10.89	67.01	$(3.40 \pm .58) .10^{1}$	（3．12 $\pm .53)$	272
500－800	72．45－102．09	29.64	87.27	（7．80 $\pm .88) .10^{1}$	（2．63 $\pm .29)$	238
$800-1400$	102．09－170	6\％．91	136.05	$(1.18 \pm .11) .10^{2}$	（1．73 ${ }^{ \pm .16)}$	160
>1400	>170					42

Pulse ht. at output of head unit in millivolts
Figure 7.3a Differential distribution of shower front pulse height as measured at the output of the head unit No. of EAS triggers $=1443$, total no. of measurable shower front pulse heights $=1286$.

Figure 7. 3b : Integral distribution of shower front pulse ht. as measured at the output of head unit. No. of EAS triggers $=1443$, no. of measurable shower front pulse ht. $=1286$.

7.4 DISTRIBUTION IN HEIGHT OF PULSES OCCURRING IN THE $265 \mu \mathrm{~S}$ TIME DOMAIN BEFORE AND THE $235 \mu \mathrm{~S}$ AFTER THE ARRIVAL OF THE EAS SHOWER FRONT

The measured distribution in height of pulses occurring in the $265 \mu s$ time period before the arrival of the shower front and the $235 \mu s$ time period after the arrival of the shower front are shown in table 7.5. Using the data in table 7.5 the differential and integral pulse height distributions for the two time domains separately and for both of them lumped together are evaluated in tables 7.6, 7.7 and 7.8. These results are plotted in figures 7.4, 7.5 and 7.6 and it is seen that in each case there is a well resolved peak cccurring at a pulse height of 30 mv at the output of the head unit. This is consistent with the events in the peak being produced by cosmic ray muons which are not correlated with the EAS trigger traversing the detector in the relevant time periods. Figures 7.7 and 7.8 show similar plots for the integral distributions in the time domains indicated on the figures. It is noted that if n pulses of size >v at the output of the head unit are observed to occur in the time domain. Δt in a sample of N time base triggers then the absolute rate of pulses from the detector of size $\geqslant \nu$ is given by $R(>\nu)=\frac{n}{N . \Delta t} \sec ^{-1}$. In this way the integral pulse height distribution at the output of the head unit found using the background measurements can be compared directly with that found using an amplifier, discriminator and scaler. Such a comparicon is shown in figure 7.8 and the two methods of obtaining the absolute integral pulse height distribution at the output of the head unit are seen to be in good agreement.

$\begin{aligned} & \text { Pulse ht. range } \\ & \text { on oscillos- } \\ & \text { cope } \\ & \text { millivolts } \\ & \hline \end{aligned}$	Pulse ht. range at output of head unit millivolts	$N(1)$	$N(>265 \mu s)$	$N(0-500 \mu \mathrm{~s})$
0.5-2	2.06-4.08	243	175	418
2-4	4.08-5.75	104	108	212
4-6	5.75-7.02	12	22	34
6-8	7.02-8.08	6	11	17
8-10	8.08-9.02	1	9	10
10-12	9.02-9.87	1	8	9
12-14	9.87-10.65	0	3	3
14-16	10.65-11.37	1	1	2
16-18	11.37-12.05	1	0	1
18-20	12.05-12.69	0	3	3
20-22	12.69-13.3	1	2	3
22-24	13.3-13.89	1	0	1
24-26	13.89-14.45	0	3	3
26-28	14.45-14.98	0	2	2
28-30	14.98-15.5	1	3	4
30-32	15.5-16.0	0	1	1
32-34	16.0-16.49	0	1	1
34-36	16.49-16.96	0	0	0
36-38	16.96-17.42	0	0	0
38-40	17.42-17.86	1	2	3
40-42	17.86-18.3	0	1	1
42-44	18.3-18.72	0	0	0
44-46	18.72-19.13	0	0	0
46-48	19.13-19.54	0	0	0
48-50	19.54-19.94	0	0	0
50-100	19.94-28.05	16	25	41
100-150	28.05-34.25	2	3	5
150-200	$34.25-39.47$	1	10	11
200-300	39.47-48.19	3	1	4
300-400	48.19-61.56	3	1	3
400-500	61-56-72.45	0	3	3
$500-600$ $600-700$	$72.45-82.76$ $82.76-92.61$	0	1	1
$600-700$ $700-800$	$82.76-92.61$ $92.61-102.09$	0	0	0
800-900	102.09-111.26	0	1	1
900-1000	111.26-120.15	0	0	0
1000-1100	120.15-128.81	0	0	0
$1100-1200$	128.81-146.26	0	0	0
1200-1400	$\xrightarrow[\substack{146.26-170 \\>170}]{ }$	0	0	0
>1400	>170	0	0	0

"Data bin" is used with Maximum time	$=530 \mu \mathrm{~s}$		Maximum time	$=530 \mu \mathrm{~s}$	
No. of time bins	$=2$		No. of time bins	$=2$	
Maximum height	$=31.5$		Maximum height	$=1455$	
	No. ht. bin	$=15$		No. of ht. bin	$=29$.

Table 7.5 : Tachyon data. Pulse height distribution obtained from a sample of 1443 EAS triggers, $N(<265 \mu s)$ is the number of events observed in the first $265 \mu \mathrm{~s}$ of the oscilloscope sweep of $500 \mu \mathrm{~s}$ and $N(>265 \mu \mathrm{~s})$ is the number observed in the final $235 \mu \mathrm{~s} . N(0-500 \mu \mathrm{~s})=N(<265 \mu \mathrm{~s})+N(>265 \mu \mathrm{~s})$. The total number of measured pulse heights is shown at the bottom of each column. The data was analysed using the DATABIN program. Shower front pulse heights (whose leading edge starts at $265 \mu \mathrm{~s}$ from the start of the trace) are not included in the data presented in the table.

Pulse ht． range on oscillos－ cope （millivolts）	Pulse ht． range $\left(v_{1} \rightarrow v_{2}\right)$ at oistput of head unit （millivolts）	$\begin{gathered} \Delta v \\ =v_{2}-v_{1} \\ \text { (millivolts) } \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & =\frac{v_{2+} v_{1}}{2} \\ & \text { (millivolts) } \end{aligned}$	No．of events $N\left(v_{1} \rightarrow v_{2}\right)$ with pulse ht．in range $v_{1} \rightarrow v_{2}$	$\begin{aligned} & \text { Differential } \\ & \text { frequency } \\ & =\frac{N\left(v_{1} \rightarrow v_{2}\right)}{\text { per } \Delta v} \\ & \text { millivolt } \end{aligned}$	$N\left(>v_{1}\right)$	Integral rate $>v_{1}$ per sec．
． $5-4$	2．06－5．75	3.69	3.91	347 ± 18.62	$(9.40 \pm .50) .10$	400	$(1.05 \pm .05) \cdot 10^{3}$
4－6	5．75－7．02	1.27	6.39	12 ± 3.46	（9．45 $\pm 2.72)$	53	$(1.39 \pm .02) .10^{2}$
6－8	7．02－8．08	1.06	7.55	6 ± 2.44	（5．66 $\pm 2.31)$	41	$(1.07 \pm .16) .10^{2}$
8－12	8．08－9．87	1.78	8.98	2 ± 1.41	（1．12土．7．9）	35	（9．15 +7.53$) .10^{1}$
12－20	9．87－12．69	2.83	11.28	2 ± 1.41	$(7.07 \pm 4.98) .10^{1}$	33	$(8.61 \pm 1.50) .10^{1}$
20－50	12．69－19．94	7.25	16.32	4 ± 2.00	$(5.52 \pm 2.76) .10^{-1}$	31	$(8.11 \pm 1.46) .10^{1}$
50－90	19．94－26．63	6.69	23.29	14 ± 3.74	（2．09 $\pm .56)$	27	$(7.06 \pm 1.36) .10^{1}$
90－100	26．63－28．05	1.42	27.34	2 ± 1.41	（1．41 $\pm .99)$	13	$(3.41 \pm .94) .10^{1}$
100－200	28．05－39．47	11.42	33.76	3 ± 1.73	（2．63土7．51）．101	11	$(2.88 \pm .86) .10^{1}$
$200-300$	39．47－48．19	8.7 ？	43.83	3 ± 1.73	（3．44土1．98）．101	8	$(2.09 \pm .74) .10^{1}$
300－400	48．19－61．56	13.38	54.87	3 ± 1.73	（2．24土1．29）．101	5	$(1.31 \pm .58) .10^{1}$
400－800	61．56－102．09	40.53	81.83	2 ± 1.41	（4．93土3．48）．102	2	(5.23 ± 3.70)
$800-1400$	102．09－170	44.17	724.18	0			
＞ 1400	>170			0			
Table 7.6 ：	The measured shower front distribution	e height dis e and determ	bution of pul tion fo the	observed i ifferential	the $265 \mu \mathrm{~s}$ peri distribution	d befor and the	the arrival of integral rate

Pulse ht． range on oscillos－ cope （millivolts）	Pulse ht． range $\left(v_{1} \rightarrow v_{2}\right)$ at output of head unit （millivolts）	$\begin{gathered} \Delta v \\ =v_{2}-v_{1} \\ \text { (millivolts) } \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & =\frac{v_{2+}+v_{1}}{2} \\ & \text { (millivolts) } \end{aligned}$	No．of events $N\left(v_{1} \rightarrow v_{2}\right)$ with pulse ht．in range $v_{1}+v_{2}$	$\begin{aligned} & \text { Differential } \\ & \text { frequency } \\ & =\frac{N\left(v_{1} \rightarrow v_{2}\right)}{\Delta \Delta v} \\ & \text { per } \\ & \text { millivolt } \end{aligned}$	$N\left(>v_{1}\right)$	Integral rate $>_{1}$ per sec．
．5－4	2．06－5．75	3.69	3.91	283 ± 16.83	（7．67士．46）．10 ${ }^{1}$	402	（1．19土．06）．10 ${ }^{3}$
4－6	5．75－7．02	1.27	6.39	22 ± 4.69	（1．73土．37）．10 ${ }^{1}$	119	（3．51 $\pm .32) .10^{2}$
6－8	7．02－8．08	1.06	7.55	11 ± 3.31	（1．04 $\pm .31) .10^{1}$	97	（2．86 $\pm .29) .10^{2}$
8－12	8．08－9．87	1.78	8.98	17 ± 4.12	（ 9.55 ± 2.3 ）	86	（2．54土．27）．10 ${ }^{2}$
12－20	9．87－12．69	2.83	11.28	7 ± 2.64	（2．47 $\pm .90)$	69	（2．03 $\pm .08) .10^{2}$
20－50	12．69－19．94	7.25	16.32	15 ± 3.87	（2．07 $\pm .53)$	62	（1．83土．23）．10 ${ }^{2}$
50－90	19．94－26．63	6.69	23.29	18 ± 4.24	（2．69 $\pm .63)$	47	（1．39土．20）．10 ${ }^{2}$
90－100	26．63－28．05	1.42	27.34	7 ± 2.64	（ 4.93 ± 1.86 ）	29	（8．55 ± 1.59 ）． 10^{1}
100－150	28．05－34．25	6.20	31.15	3 ± 1.73	（4．84 ± 2.79 ） 10^{-1}	22	$(6.49 \pm 1.38) .10^{1}$
150－200	34．25－39．47	5.22	36.85	10 ± 3.16	（1．92土．61）	19	（ 5.60 ± 1.29 ）． 10^{1}
200－400	39．47－61．56	22.09	50.51	2 ± 1.41	（9．05 $\pm 6.38) .10^{2}$	9	（2．65 $\pm .88$ ）． 10^{1}
400－800	61．56－102．09	40.53	81.83	6 ± 2.45	（1．48土．59）．1010	7	（2．06 $\pm .78) .10^{T}$
800－1400	102．09－170	44.17	124.18	1 ± 1.00	（2．26 $\pm 2.26) .10^{2}$	1	（2．95 2.95 ）
＞1400	＞170			0			
Table 7．7：	The measured shower front rate distribu	Ise height di lse and deter n．	ibution of ation of th	ses observed differential	the $235 \mu \mathrm{~s}$ per ze distributio	iod aft n and	the arrival of integral

Pulse ht． range on oscillos－ cope （millivolts）	Pulse ht． range $\left(v_{1} \rightarrow v_{2}\right)$ at output of head unit （millivolts）	$\begin{gathered} \Delta v \\ =v_{2}-v_{1} \\ \text { (millivolts) } \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & =\frac{v_{2+}+v_{1}}{2} \\ & \text { (millivolts) } \end{aligned}$	No．of events $N\left(V_{1} \rightarrow V_{2}\right)$ with pulse ht．in． range $v_{1} \rightarrow v_{2}$	Differential frequency $=\frac{N\left(v_{1} \rightarrow v_{2}\right)}{\substack{\Delta v \\ \text { per } \\ \text { millivolt }}}$	$N\left(>\nu_{1}\right)$	Integral rate $>v_{3}$ per sec．
． $5-4$	2．06－5．75	3.69	3.91	630 ± 25.10	（1．71 $\pm .07) .10^{2}$	802	$(1.11 \pm .04) .10^{3}$
4－6	5．75－7．02	1.27	6.39	34 ± 5.83	（2．68 $\pm .46) .10^{1}$	172	（2．38 $\pm .18) .10^{2}$
6－8	7．02－8．08	1.06	7.55	17 ± 4.12	（1．60土．39）．101	138	（1．91土．16）．10 ${ }^{2}$
8－12	8．08－9．87	1.78	8.98	19 ± 4.35	$(1.07 \pm .24) .10^{1}$	121	（1．68 $\pm .15) .10^{2}$
12－20	9．87－12．69	2.83	11.28	9 ± 3	（3．18 $\pm .06)$	102	（1．41 $\pm .14) .10^{2}$
20－50	12．69－19．94	7.25	16.32	19 ± 4.36	（2．62土．60）	93	（1．29 $\pm .13) .10^{2}$
50－90	19．94－26．63	6.69	23.29	32 ± 5.65	（4．78土．84）	74	（1．03土．12）．10 ${ }^{2}$
90－100	26．63－28．05	1.42	27.34	9 ± 3	（6．33土2．11）	42	$(5.82 \pm .89) .10^{1}$
100－150	28．05－34．25	6.20	31.15	5 ± 2.24	（8．06 $\pm 3.61) .1 \overline{0}^{2}$	33	（4．57 $\pm .79) .10^{1}$
150－200	34．25－39．47	5.22	36.85	11＋3．31	（2．11 $\pm .63)$	28	（3．88 $\pm .73) .10^{1}$
200－300	39．47－48．19	8.72	43.83	4 ± 2	$(4.58 \pm 2.29) .10^{-1}$	17	$(2.36 \pm 57) .10^{1}$
300－400	48．19－61．56	13.38	54.87	4 ± 2	（2．99 ${ }^{\left(1.49 \text { ）} 10^{-1}\right.}$	13	$(1.80 \pm 50) .10^{1}$
400－800	61．56－102．09	40.53	81.83	8 ± 2.82	（1．97 $\pm 0.69) .10^{-1}$	9	（1．25 $\pm .41) .10^{1}$
800－1400	102．09－170	44.17	124.18	1 ± 1	（2．26 $\pm 2.26) .10^{-2}$	1	（1．39 ± 1.39 ）
>1400	>170			（1）			
Table 7.8 ：	The measured period after distribution	e height dis arrival of their integral	bution of puls shower front rate distrib	es observed in pulse and deter ion．	the $265 \mu \mathrm{~s}$ peri mination of thei	od befor r differ	and the $235 \mu \mathrm{~s}$ tial size

 period before the arrival of the shower front pulse at the output of head unit.

Figure 7.5 : The differential distribution pulsedoccurring in the 235 us period after the arrival of the shower front pulse at the output of head unit.

Figure 7.6 : The differential distribution of pulsefoccurring in the $265 \mu \mathrm{~s}$ period before ${ }_{A}^{\text {rhe }}$ shower front and ${ }_{2}^{\text {采 } 2} 235 \mu \mathrm{~s}$ after the arrival of the shower front at the output of head unit.

Pulse ht.pat output of head unit in millivolts
Figure 7.7 The integral rate of pulses of size $>v$, at the output of the head unit as a function of v_{p} determined from (a) pulses observed in the 265 us period before the arrival of the shower front and (b) in the $235 \mu \mathrm{~s}$ period after the arrival of the shower front pulse for a sample of 1443 shower triggers. The two distributions should in principle agree exactly (they do for the smallest threshold pulse height of 2mv) and the difference between them is attributed to sampling fluctuations. The pulse height produced by relativistic muons traversing the phosphor at normal incidence is indicated by the arrow.

Figure $\mathbf{7 . 8}$: Response of the tachyon detector to the total cosmic ray flux. Integral rate of pulse of height $>v$ millivolts (measured at the output of head unit) versus pulse height v. The average pulse height produced by relativistic muonstraversing the detector at normal incidence is 30 mv and is indicated on the graph with e.

As mentioned previously a sample of 1,010 oscillograph photographs were taken in which the oscilloscope time base was triggered at random rather than by using the EAS master coincidence pulse. This work was done to establish the true background and the data has been analysed in exactly the same way as for the EAS trigger data. The time distribution (time measured from the start of the oscilloscope time base) of pulses occurring in different ranges of pulse height measured on the oscilloscope are shown in table 7.9 and figure 7.9. Figure 7.9 also shows the corresponding range of energy deposition in the scintillator in terms of 'e' where ' e ' is the energy loss (10 MeV) produced by a relativistic muon traversing the scintillator at normal incidence. It is seen from figure 7.9 that a slight excess above background is observed in the 170-180 $\mu \mathrm{s}$ time bin (corresponding to particles that traverse the scintillator in the time domain $85-95 \mu s$ before the arrival of the shower front) for the smallest range of energy depositions in the tachyon detector investigated. However the excess is of considerably less significance compared to the anomalous peak shown in figure 7.2 for the EAS trigger data Wable 7.10 shows the distribution in pulse height of the observed background pulses over the whole $500 \mu \mathrm{~s}$ time range of the oscilloscope sweep, as well as the distribution in the first $265 \mu s$ and the final 235 us shown separately. The latter distributions were measured so as to give a direct comparison with the tachyon data. Table 7.11 shows details of how the differential and integral pulse height distributions were determined. Figures 7.10 and 7.11 show plots of the measured differential pulse height distribution which shows a well resolved peak produced by the passage of single relativistic particles through the scintillator. It is

Time range micro seconds	Number of pulses					
	$5 \mathrm{mv} \leqslant \mathrm{v} \leqslant 2 \mathrm{mv}$	$2 \mathrm{mv}<\mathrm{v} \leqslant 4 \mathrm{mv}$	$4 \mathrm{mv} \mathrm{k} \leqslant 30 \mathrm{mv}$	$\begin{array}{r} \hline 30 k \leqslant 120 \\ \mathrm{mv} \\ \hline \end{array}$	¢ 120 mv	$\mathrm{v} \geqslant 700 \mathrm{mv}$
0-10	1	5	0	T	0	0
10-20	5	13	4	2	0	0
20-30	11	11	2	0	1	0
30-40	9	4	2	2	0	0
40-50	12	9	2	1	1	0
50-60	14	9	5	0	1	0
60-70	10	12	5	3	0	0
70-80	11	8	5	4	0	0
80-90	14	16	3	2	1	0
90-100	9	7	5	2	3	0
100-110	11	13	1	1	0	0
110-120	13	9	2	0	1	0
120-130	13	14	3	4	2	0
130-140	17	14	3	1	3	0
140-150	9	10	1	2	0	0
150-160	13	8	5	2	2	0
160-170	16	12	1	0	0	0
170-180	22	17	4	3	0	0
180-190	9	13	0	0	0	0
190-200	11	8	1	0	1	0
200-210	17	10	6	2	1	0
210-220	12	4	2	2	4	0
220-230	9	14	2	2	1	0
230-240	9	9	3	3	0	0
240-250	7	12	0	4	0	0
250-260	12	13	5	0	1	0
260-270	42	17	3	2	4	0
270-280	10	5	3	1	2	0
280-290	10	14	2	1	1	0
290-300	10	11	1	2	1	0
300-310	13	16	2	0	0	0
310-320	16	14	2	4	3	0
320-330	14	16	3	1	1	0
330-240	7	8	2	1	2	1
340-350	11	8	1	3	0	0
350-360	19	17	1	6	2	0
360-370	19	11	1	1	2	0
$370-380$	20	13	6	2	1	0
380-390	16	7	4	1	2	0
390-400	14	7	1	5	1	0
400-410	14	14	1	4	2	1
410-420	15	10	2	4	1	0
420-430	17	14	3	4	3	0
430-440	9	17	1	2	0	0
440-450	10	12	1	3	1	0
450-460	17	8	4	3	2	0
460-470	15	15	1	1	1	1
470-480	16	14	1	1	3	0
480-490	9	7	2	1	1	0
490-500	3	6	1	2	0	0
	655	555	117	98	59	3

Table 7.9 : Random trigger data. Time distribution of events in different ranges of pulse ht. (measured on the oscilloscope) from a sample of 1010 random triggers. The data was analysed using the DATABIN program with the following program requirements

Maximum time $=550$
Maximum pulse ht. $=37.5$

No. of time bins $=15^{5}$
No. of pulse ht. $=15^{2}$

$$
\begin{aligned}
& \text { Figure } 7.9: \text { Time distrib- } \\
& \text { ution for pulse height between } \\
& \text { two limits threshold energy } \\
& \text { losses in the tachyon } \\
& \text { detector. }
\end{aligned}
$$

Table 7.10:Random trigger data. Pulse height distribution obtained from a sampl of 1,010 random triggers. $N(<265 \mu \mathrm{~s})$ is the number of events observed in the first $265 \mu \mathrm{~s}$ of the oscilloscope sweep of $500 \mu \mathrm{~s}$ and $N(>265 \mu \mathrm{~s})$ is the number observed in the final $235 \mu \mathrm{~s}$. $N(0-500 \mu \mathrm{~s})=N(<265 \mu \mathrm{~s})+N(>265 \mu \mathrm{~s})$.

Pulse ht． range on oscillos－ cope （millivolts）	Pulse ht． range $\left(v_{1}+v_{2}\right)$ at output of head unit （millivolts）	$\begin{gathered} \Delta v \\ =v_{2}-v_{1} \\ \text { (millivolts) } \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & =\frac{v_{2}+v_{1}}{2} \\ & \text { (millivolts) } \end{aligned}$	No．of events $N\left(\nu_{1} \rightarrow \nu_{2}\right)$ with pulse ht．in range $v_{1} \rightarrow v_{2}$	Differential frequency $=\frac{N\left(v_{1} \rightarrow v_{2}\right)}{\substack{\Delta v \\ \text { per } \\ \text { millivolt }}}$	$N\left(>\nu_{1}\right)$	Integral rate $>v_{1}$ per sec．
25－4	2．06－5．75	3.69	3.91	（1．21土．03）．103	（3．28土．09）．100	1484	（2．94土．08）．103
4－6	5．75－7．02	1.27	6.39	（7．30土．85）．10 ${ }^{1}$	（5．75土．67）．10 ${ }^{1}$	274	$(5.43 \pm .321) .10^{2}$
6－8	7．02－8．08	1.06	7.55	（2．20士．47）．10 ${ }^{1}$	（2．08 $\pm .44) .10^{1}$	201	（3．98土．28）．10 ${ }^{2}$
8－12	8．08－9．86	1.78	8.98	（7．50土．38）．10 ${ }^{1}$	（8．38 $\pm 2.16)$	179	（3．54土．46）．10 ${ }^{2}$
12－20	9．86－12．69	2.83	11.28	（ 5 ± 2.24 ）	（1．77 $\pm .79)$	164	（3．25士．25）．10 ${ }^{2}$
20－50	12．69－19．94	7.25	16.32	（1．10土．36）．10 ${ }^{1}$	（1．79土．50）	159	（3．15土．25）．10 ${ }^{2}$
50－90	19．94－26．63	6.69	23.29	（4．60土．68）．10 ${ }^{1}$	（6．88 $\pm 1.02)$	146	（2．89 $\pm .24) .10^{2}$
90－100	26．63－28．05	1.42	27.34	（2．10土．46）．10 ${ }^{1}$	（1．48土．32）．101	100	（1．98土．19）．10 ${ }^{2}$
100－150	28．05－34．25	6.20	31.15	（3．10土．56）．10 ${ }^{1}$	（ $5 \pm .90$ ）	79	（1．56 $\pm .17) .10^{2}$
150－200	34．25－39．47	5.22	36.85	（2．00 $\pm .47) .10^{1}$	（4．21土．90）	48	（9．50士1．37）．10 ${ }^{1}$
200－300	39．47－48．19	8.72	43.83	（8さ2．83）	$(9.17 \pm 3.25) .1 \bar{\theta}^{-1}$	26	（5．15 51.07 ） 10^{1}
300－400	48．19－61．56	13.38	54.87	（7士 2．65）	$(5.23 \pm 1.98) .10^{1}$	18	（3．56 $\pm .84) .10^{1}$
400－800	61．56－102．09	40.53	81.83	(9 ± 3)	（2．22土．74）．10 ${ }^{-1}$	11	$(2.18 \pm .65) .10^{1}$
800－1400	102．09－170	44.17	124.18	（2 ± 1.41 ）	$(4.53 \pm 3.19) .10^{-2}$	2	（3．96 2.79 ）
＞1400	＞170			0			
Table 7．11：Random trigger data．Bassie data obtained from a sample of 1010 random oscilloscope time base of length $500 \mu \mathrm{~s}$ and calculation of the differen of the measured pulse heights．							

Pulse height at output of head units in millivolts

Figure 7.10: The differential distribution of background pulses determined fromi a sample of 1010 random iriggers of the oscilloscope time'bases.

Pulse height at output of head unit(mv)
Figure 7.11 : Comparison of the differential pulse height distribution at the output of the head unit as determined from (a) measureiients on the photographs of 1010 random triggers and (b) by difierentiating the integral rate distribution determined using an amplifier discriminator and scaler.
noted that the peak occurs at a pulse height of 30 mv measured at the output of the head unit which agrees with the value found from the analysis of the tachyon data film for pulses occurring in the time range before and after the shower front. Figures 7.12, 7.13 and 7.14 give pulse height distributions which are relevant in comparing the tachyon data and random trigger data. The differences between the two sets of data are believed to be due to (a) they are integral plots so all the points are not statistically independent (b) sampling fluctuations (c) meteorological changes which affect the low energy cosmic ray flux at sea level.

7.6 MULTIPLE PULSE EVENTS

In both the tachyon data (1,443 EAS triggers) and the random trigger data (1,010 random triggers) multiple pulse events were observed. The multiple pulse events observed in the time domain before the arrival of the shower front in the tachyon data are of particular interest as they could in principle provide evidence for or against a significant tachyon flux. In table 7.12 the frequency distribution of observed multiple pulses are compared with the expected number for different threshold values of energy loss in the tachyon detector. If multiple pulses have a significant non random a hackground pulse plus a origin (this would be/single tachyon pulses occurring in the $150 \mu \mathrm{~s}$ preceding the shower front pulse in the present context) then a difference between the expected and observed numbers should be apparent. The expected number of multiple pulse events is expected to obey the Poisson distribution if they are all randomly related.

If z is the mean number of pulses then the probability of observing r is $P(r)=\frac{e^{-z} z^{r}}{r!}$. It is seen from table 7.12 and

Pulse ht. at output of head unit in millivolts
Figure 7.12: The integral rate of pulses occurring in the $265 \mu \mathrm{~s}$ period before the arrival of the shower front pulse in the tachyon experiment and comparison with the integral rate of background pulses determined from a sample of 1,010 random triggers of the oscilloscope time bases.

Figure 7.13 The integral rate of pulses occurring in the $235 \mu \mathrm{~s}$ period after the arrival of the shower front pulse in the tachyon experiment and comparison with the integral rate of background pulses determined from a sample of 1,010 random triggers of the oscilloscope time bases.

Pulse ht. at output of head unit in millivolts
Figure 7.14: The integral rate pf pulses occurring in the $265 \mu \mathrm{~s}$ period beforek the $235 \mu s$ period after the arrival of the shower frunt pulse and comparison with the integral rate of background pulses determined from a sample of 1,010 random triggers of the oscilloscope time bases.

$t<265 \mu \mathrm{~s}$				$t>265$ 山			
Threshold > . 5 mv (.07e)				Threshoid > . 5mv (.07e)			
n	no	ne	no-ne	n	no	ne	no-ne
0	1073	1079.7	-6.7	0	1093	1091.3	$+1.7$
1	325	313.2	+11.8	1	305	304.8	+0.2
2	42	45.4	-3.4	2	37	4.9.6	-5.6
3	j	4.4	-1.4	3	8	4.0	+4.0
4	0	0.3	- . 3	4	0	. 3	-. 3
	1443				1443		

$\mathrm{t}<265 \mu \mathrm{~s}$				$t>265 \mu s$			
Threshold >2mv (.14e)				Threshold > 2mv (.14e)			
n	no	ne	no-ne	n	no	ne	no-ne
0	1239	1243.3	- 4.3	0	1206	1195.9	+10.1
1	193	185.2	+ 7.8	1	209	224.6	-15.6
2	11	13.8	- 2.8	2	22	21.1	$+.9$
3	0	0.7	- . 7	3	6	1.3	4.7
4	0	0	0	4	0	. 1	- . 1
	1443				1443		

Table 7.12 : (Tachyon data)
Number of triggers showing n pulses in the tachyon detector in the $265 \mu \mathrm{~s}$ time domain (indicated by $t<265 \mu \mathrm{~s}$ in the table) prior to the arrival of an EAS shower front pulse and the $235 \mu \mathrm{~s}$ time domain (indicated by $\mathrm{t}>265 \mu \mathrm{~s}$ in the table) after the shower front pulse.
The number of events with $n=0$ increases with threshold energy loss because the rate of the background pulses decreases rapidly with increasing threshold energy loss. no is the observed number of events and ne is the expected number for a Poisson distribution.

$t<265 \mu \mathrm{~s}$				$t>265 \mu \mathrm{~s}$			
Threshold $>4 \mathrm{mv}(.19 \mathrm{e})$	Threshold>4 mv (.19e)						
n	no	ne	no-ne	n	$n 0$	ne	no-ne
0	1386	1386.2	-.2	0	1335	1330.6	+4.4
1	56	55.7	+0.3	1	99	107.9	-8.9
2	1	1.1	-.1	2	9	4.4	+4.6
3	0	0	0	3	0	.1	-.1
4	0	0	0	4	0	0	0

$t<265$			$t>265$				
Threshold > 30mv (.52e)	Threshold > 30mv (.52e)						
n	no	ne	no-ne	n	no	ne	no-ne
0	1414	1413.3	+.7	0	1394	1391.1	+2.1
1	28	29.4	-7.4	1	46	50.2	-4.2
2	1	.3	+.7	2	3	.9	+2.1
3	0	0	0	3	0	0	0
4	0	0	0	4	0	0	0

table 7.13 that there is no significant difference between the observed numbers and expected numbers for the time domains and threshold energy loss requirements investigated.

7.7 TIME SEPARATION DISTRIBUTION OF SUCCESSIVE EAS TRIGGERS

As a check on the correct functioning of the EAS selection trigser the differential and integral time separation distribution of successively recorded events has been measured. If a sample of N events are observed in a time T then the mean time separation of events is $\langle T\rangle=N / T$ and assuming successive events are unrelated then the number expected with time separation in the range t to $t+d t$ is $n(t) d t=N e^{-t /\langle T\rangle d t}\langle T\rangle$ and the number e..pected with time separation $>t$ is $n(>t)=\mathrm{Ne}^{-\mathrm{t} /\langle\mathrm{T}\rangle}$. In figures 7.15 and 7.16 the measured differential and integral time separation distributions are shown together with the best fit lines representing the above expressions. The results obtained for $\langle T\rangle$ are summarised in the following table

	Mean time separation $\langle T\rangle$	Trigger rate $/\langle T\rangle$
Differential time separation distribution	$(4.56 \pm 0.21) \mathrm{min}$	$(13.16 \pm .61) \mathrm{hr}^{-1}$
Integral time separation distribution	$(3.96 \pm 0.09) \mathrm{min}$	$(15.15 \pm .35) \mathrm{hr}^{-1}$

$\mathrm{t}<265$			$2>265$				
Threshold >.5mv (.07e)	Threshold > 5 mv (.07e)						
n	no	ne	no-ne	n	no	ne	no-ne
0	461	464.2	-3.2	0	490	493.7	-3.7
1	357	361.1	-4.1	1	360	353.5	+6.5
2	142	140.7	+1.3	2	138	125.5	+11.1
3	47	36.8	+10.2	3	22	30.4	-8.4
4	3	7.2	-4.2	4	0	5.5	-5.5
	1010				1010		

$\mathrm{t}<265$				$\mathrm{t}>265$			
Threshold $>2 \mathrm{mv}(.14 \mathrm{e})$	Threshold $>2 \mathrm{mv}(.14 \mathrm{e})$						
n	no	ne	no-ne	n	no	ne	no-ne
0	607	619.3	-12.3	0	620	629.8	-9.8
1	314	302.9	11.1	1	290	297.6	-7.6
2	79	74.1	4.9	2	88	70.2	17.8
3	10	12.2	-2.2	3	12	11.1	.9
4	0	1.5	-1.5	4	0	1.3	-1.3

Table 7.13 (Background data)

Similar table to table 6.12 except that this table refers to the background data measurements (1,010 random triggers of the oscilloscope time base)

$t<265$			$t>265$				
Threshold > 4mv (.19e)		Threshold>4mv (.19e)					
n	no	ne	no-ne	n	no	ne	no-ne
0	875	879.3	-4.3	0	881	888.0	-7.0
1	130	121.9	+8.1	1	128	114.3	+13.7
2	5	8.4	-3.4	2	1	7.4	-6.4
3	0	.4	-.4	3	0	.3	-.3
4	0	0	0	4	0	0	0

$t<265$			$t>265$				
Threshold $>$ 30mv (.52e)		Threshold $>30 \mathrm{mv}$ (.52e)					
n	no	ne	no-ne	n	no	日e	no-ne
0	947	946.0	-1.0	0	938	940.5	-2.5
1	62	60.1	+1.9	1	72	67.1	+4.9
2	1	1.9	-.9	2	0	2.4	-2.4
3	0	0	0	3	0	0	0
4	0	0	0	4	0	0	0
	1010				1010		

Table 7.13 (continued)

Figure 7.15 : Differential distribution of time separation of 1443 EAS triggers observed in a running tifie of 114.3 hrs currespondine to a mean time separation $T=(4.75 \pm .12)$ mins. The fitted straight line is of the formi $n(t)=n(0) e^{-t / T}$ where $T=(4.56 \pm .21)$ mins

Figure 7.16 : Integral plot of time separation of 1443 EAS triggers observedin a running time 114.3 hrs corresponding to a mean time separation $T=(4.75 \pm .12) \mathrm{min}$. The fitted straight line is of the form $n(> \pm)=n(>0) e^{-t / T}$ where $T=\left(3.96^{ \pm} .09\right) n$ in

The results obtained for the trigger rate obtained in this way should be consistent with the trigger rate determined directly using the fact that 1,443 EAS triggers were observed in 114 hr 21 min 56 sec . This gives a trigger rate of $(12.62 \pm 0.37) \mathrm{hr}^{-1}$ (see table $7 \cdot 1$). It is seen that the differential time separation distribution gives a closer agreement with this figure than the integral distribution. The reason for this is presumably connected with the fact that in experimental data plotted as a differential distribution all the experimental points are statistically independent whereas this is not the case for an integral distribution.

7.8 CONCLUSION

The main conclusion of this work is based on the data shown in figure 7.2 which suggests evidence for a finite flux of tachyons associated with regions of EAS with local electron density $325 \mathrm{~m}^{-2}$. Such showers are generated by primary cosmic ray protons or nuclei of energy $\approx 10^{15} \mathrm{ev}$ although it is possible that tachyonic objects are present in the primary cosmic rays and generate the showers themselves. It is noted that the evidence refers to energy deposits in the 5 cm thick scintillation detector of $.07-.14 \mathrm{e}$ (.7-1.4 MeV). Obviously further experimental data is required to finally establish whether the observed effect is a real phenomenon or not.

CHAPTER 8

SUMMARY AND CONCLUSION

The work described in this thesis has been concerned with several distinct but related topics. The achievements attained and the conclusions reached will be discussed in turn.

Zenith angle distribution of EAS

The study of the size dependence of the zenith angle distribution of EAS described in Chapter 3 showed that representing the zenith angle distribution by $I(\theta)=I(0) \cos ^{n} \theta$ then $n=8.4 \pm 0.3$ for the size range $5.10^{4}-1.4 .10^{6}$. For the size range $10^{4}-5.10^{4}$ the measurements suggest the smaller value of $n=5.1 \pm 1.3$.

Scintillation counter development

The type of scintillation counter described in Chapter 4 . (of which 9 were subsequently constructed) was found to be convenient to use from the point of view that it gives a single particle peak, well resolved from the noise, when its response to the global cosmic ray flux is recorded on a pulse height analyser. This is a considerable improvement on the detectors originally used as all these had to be calibrated using a subsidiary cosmic ray telescope.

Tachyon experiment
Two of the scintillation counters just described were used in twofold concidence to select EAS with local electron density $\geqslant 25 \mathrm{~m}^{-2}$ in the tachyon experiment. The result of the tachyon experiment suggests that there may be a significant flux of tachyons associated with regions of EAS of local electron density $\geqslant 25 \mathrm{~m}^{-2}$. This conclusion is based on an excess of events (4.4 standard deviations above back ground) observed in the $85-95 \mu \mathrm{~s}$ time domain preceding the arrival of an air shower at sea level. Further experimental data is required to decide whether the effect is real or not.

APPENDIX A

Modifications to the flash tube chamber

As described in chapter 6 the two EAS selection scintillators A and B used in the tachyon experiment were mounted above the flash tube chamber while the tachyon detection scintillator C was mounted inside the chamber (see figure 5.2 and figure Al). Before commencing the tachyon experiment the chamber design was improved upon. Previously all flash tubes (each 2 m long, 1.8 cm external diameter, 1.6 cm internal diameter and filled with neon gas to a pressure of 60 cm of mercury) were mounted with their axes parallel to one another. With this geometry only projected spatial information in one view is available and no visual information is available concerning the spatial position of tracks in the "back plane". The improvement made was to stack the flash tubes in successive double layers of tubes such that the tube axes in successive double layers were orthogonal to one another. Thus a penetrating particle traversing the chamber is expected to produce tracks as illustrated in figure A.l. Figure A2 shows the mirror system used to simultaneously photograph the front and side views of the chamber so that the views appear side by side on 35 mm film and figure $A 3$ shows a photograph taken in this way. Because of high voltage pick up problems the chamber was not operated during the exploratory tachyon experiment described in Chapter 5. To operate it the chamber has to be pulsed with a high voltage pulse ($\sim 10 \mathrm{kv}$ lasting 10 us) while in the tachyon experiment pulses as small as 0.5 mv were measured. If the pick up problem can be solved then an obvious improvement to the tachyon experiment would be to operate in conjunction with the chamber.
EAS
Selection
scintillators

side view
Front view
Scale diagram of the improved flashtube chamber. A and B are the scintillation counters
used to select EAS and C is the tachyon detector scintillator. Tie track of a single !enetrating
charged particle througin the changer is added to clarify the positions of tine flash tubes.

Figure A. 2 : The mirror system used to simultaneously photograph the front and side views of the flash tube chamber shown in figure A.1. The points marked x, y and z in this figure (which is a plan view) correspond to the points marked x, y and z in figure A.l.

Figure A. 3 : Photograph of the front and side views of the flash tube chamber photographed through the mirror system shown in figure A. 2.

APPENDIX B

DATABIN program

The 35 mm photographic film obtained in the tachycn experiment was analysed using a photographic enlarger. The enlarged oscilloscope easily accessible record of each event was traced so as to obtain anpermanent record and the occurrence time (measured from the start of the $500 \mu \mathrm{~s}$ oscilloscope sweep) and pulse height of each pulse occurring on the trace was measured. The basic information for each event was 1. The time that the event occurred and 2. pairs of values of occurrence time and pulse height. The problem in analysing the data was to determine the occurrence time distribution for pulses in a given size range in a given range of occurrence time t (pre shower fromspulses, $t<255 \mu s ;$ shower front pulses, $t=265 \mu s$, post shower front pulses, $t>265 \mu \mathrm{~s})$. To obtain this information the DATABIN program in conjunction with a Commodore PET computer was used. The program serves a dual purpose as it will (a) store information that is input on tapo magnetic type in a series of files to be specified by the user, and (b) read data from the files, histogram it as requested and display the result. The data from the tachyon experiment was stored in files on magnetic tape as a series of occurrence time, pulse height pairs. The histograms and tables presented in Chapter 7 were then obtained using the program analysis routine. Details of the information obtained using the program are shown in tables $B 1$ and $B 2$.

To obtain the pulse height distribution of the pre and post shower front pulses the DATABIN program was run twice and requirements were set to

Maximum time $=530 \mu \mathrm{~s} \quad$ Maximum time $=530 \mu \mathrm{~s}$
No. of time bins $=2$
No. of time bins $=2$
Maximum pulse height $=31.5$
Maximum pulse height $=1455$
No. of pulse height bins $=15$
No. of pulse height bins $=29$

To obtain the pulse height distribution of the shower front pulses (1443 shower triggers) all occurring at the same time of 265μ s the DATABIN program was run twice and the requirements were set to Maximum time $=265 \mu \mathrm{~s} \quad$ Maximum time $=265 \mu \mathrm{~s}$

No. of time bins $=1$
Maximum height $=31.5$
Maximum height $=1455$
No. of height bins $=15$
No. of height bins $=29$

```
10
2ᄅ INPUT"MAK HEIGHT";MH
23 INPUT"# OF TIME BINS (MAX IS 10O)" &NT
24 INPUT"# OF HEIGHT BINS (MAK IS 50):%NH
25 IFNT>IQOORNH>10OTHENGOTOE3
30 FRINT"シNHAT OPTION IS REQUIRED?*
40 PRINT:PRINT" 1 DATA FROM TAPE@
```



```
60 PRINT:INFUT"OPTION #";OP
70 IF OP<1 OR OP>2 THENGQ
\XiO INPUT"FILENAME FOR DATA INPUT/OUTPUT`&FS
90 IF OP=1 THEN 120
100 GOSUB300
110 GOTO130
120 GOSUB500
130 GOSUBS00
140 STOP
15D ERD
3\rhoص REM KEYBOARD INPUT ROUTINE
310 PRINT"#NIND TAPE TO A CLEAR AREA FOR LOAD8NG`
SこG PRINT"DATA":PRINT
330 K=1:E末=F疌+STR故K)
G4Q FRINT"INPUT TIME(MICROSECONDS),PULSE HEIGHT(MILLIYOLTS)*
350 PRINT"UPTO 256 UALUES PEF FILE ALLOLNED"
3EO PRINT"IF THIS IS EXCEEDED A NEW FILE WILL BE STARTED`
37g PRINT"AT THE END OF DATA INPUT, ENTER O,O
330 FORI=0TO255
330 INPUTT(I),H(I)
400 IF T(I)> MT OR H(I)< 0 THEN 410
405 IFT( I)<GORH( I ) >MHTHEN41Q
406 GOTO420
41D PRINT"ERROR - REDO ENTRY":GOTO 398
420 IF HKI)=0 THEN 44Q
4 3 0 ~ N E X T ~
440 NO=1
450 GOSUB7OO
451 UPEN1,1,1,E$
45? FORI=0TOND
453 PRINT#1,T<I)
454 PRINT#1,HKI%
455 NEXT
456 CLOSE1
460 IFI<255THEN490
40 PRINT"NEWJ FILE BEING STARTED, WAIT FOR PROMPTO
475 PRINT"REFORE ENTERING FURTHER DATA*
480 K=K+1:E手=F手+STR和K)
4GO RETURN
5@O PEM TAPE INPUT ROUTINE
510 PRINT"OWIND TAPE TO START OF OATA
S20 PRINT
540 PRINT:INPUT"HOW MANY FILES ARE REQUIRED` IN
5EG FORK=1TON
570 E$=F$+STR$(K)
580 PRINT"LOADING*"ES
590 OPEN1,1,0,E$
800 FORI=0TO255
G10 INPUT#1,T(I)
615 INPUT#1,H(1)
G2D IFH( I )=0GOTOG4B
S30 NEXT
549 NO=1
650 GOSUB700
```

```
    TOD REM BINNING ROUTINE
    710 FORI = OTONO-1
    720 x=INT(T(I)<<MT/NT))
    730 Y=INT(H(I)<<MH,NH))
    735 IFX< OORY< OTHENPRINT"ERROR":STOP
    749 IFK\NT THENX=NT
    750 IFY>NHTHENY =NH+1
    760 C(K,Y)=c(X,Y)+1
    70 NEXT
    730 RETURN
    EQO REM OUTPUT ROUTINE
    810 FORI=OTONT-1
    S15 KX=MT/NT:YY=MH/NH
    B20 PRINT"#TIME RANGE IS"I*XK"-"I*XX+XX
    330 PRINT:PRINT"HEIGHT RANGE":PRINT
    840 FORJ=0TONH
    845 IFJ\NH+1THEN850
    346 FRINT">"J*YY TAB(20)C(I,J)
    847 GOTO860
    850 PRINTJ*YY "-"(J+1)*YY TAB(20)C(I,J)
    351 IFJ=0THENS60
    SEE IFJ/14<>INT(J/14)THENB60
    8 5 3 ~ P R I N T " F R E S S ~ A N Y ~ K E Y ~ T O ~ C O N T I N U E * '
    S54 GETA手:IFA$=""THEN854
    860 NEXTJ
    870 PRINT"PRESS ANY KEY TO CONTINUE"
    830 GETA末: IF A末="nTHEN880
    890 NEXTI
    900 RETURN
READY.
```

Pulse ht. range on oscilloscope millivolts	Pulse ht. range at output of head unit millivolts	$N(<265 \mu s)$	$N(>265 \mu \mathrm{~S})$	$N(0-500 \mu \mathrm{~s})$
0.5-2	$2.06-4.08$	243	175	418
2-4	$4.08-5.75$	104	108	212
4-6	5.75-7.02	12	22	34
6-8	7.02-8.08	6	11	17
8-10	8.08 - 9.02	1	9	10
10-12	$9.02-9.87$	1	8	9
12-14	$9.87-10.65$	0	3	3
14-16	10.65-11.37	1	1	2
16-18	11.37-12.05	1	0	1
18-20	12.05-12.69	0	3	3
20-22	12.69-13.3	1	2	3
22-24	13.3-13.89	1	0	1
24-26	13.89-14.45	0	3	3
26-28	14.45-14.98	0	2	2
28-30	14.98-15.5	1	3	4
30-32	15.5-16.0	0	1	1
32-34	16.0-16.49	0	1	1
34-36	16.49-16.96	0	0	0
36-38	16.96-17.42	0	0	0
38-40	17.42-17.86	1	2	3
40-42	17.86-18.3	0]	1
42-44	18.3-18.72	0	0	0
44-46	18.72-19.13	0	0	0
46-48	19.13-19.54	0	0	0
48-50	19.54-19.94	0	0	0
50-100	19.94-28.05	16	25	41
100-150	28.05-34.25	2	3	5
150-200	$34.25-39.47$	1	10	11
200-300	$39.47-48.19$	3	1	4
300-400	48.19-61.56	3	1	4
400-500	61.56-72.45	0	3	3
500-600	72.45-82.76	2	2	4
600-700	$82.76-92.61$	0	1	1
700-800	92.61-102.09	0	0	0
800-900	102.09-111.26	0	1	1
900-1000	111.26-120.15	0	0	0
1000-1100	120.15-128.81	0	0	0
1100-1200	128.81-146.26	0	0	0
1200-1400	146.26-170	0	0	0
		400	402	802
"Data bin" is used with $\begin{aligned} & \text { Maximum } t \\ & \text { No.of tim } \\ & \text { Maximum h } \\ & \text { No.of hei }\end{aligned}$		e $=530$	Maximum t	$=530 \mu \mathrm{~s}$
		bins $=2$	No.of tim	ins $=2$
		ght $=31.5$	Maximum h	ht $=1455$
			No. of he	
		${ }_{5}=15$		ns $=29$

Table B. 1 : Tachyon data. Pulse height distribution obtained from a sample of 1443 EAS triggers, $N(<265 \mu s)$ is the number of events observed in the first $265 \mu \mathrm{~s}$ of the oscilloscope sweep of $500 \mu \mathrm{~s}$ and $N(>265 \mu \mathrm{~s})$ is the number observed in the final $235 \mu \mathrm{~s}$. $\mathrm{N}(0-500 \mu \mathrm{~s})=$ $N(<265 \mu \mathrm{~s})+N(>265 \mu \mathrm{~s})$. The total number of measured pulse heights is shown at the bottom of each column. The data was analysed using the DATABIN program. Shower front pulse heights whose leading edge starts at $265 \mu \mathrm{~s}$ from the start of the trace are not included in the data presented in the table.

Pulse ht. range on oscilloscope millivolts	Pulse ht. range at output of head unit (millivolts)	Frequency
$0.5-2$	$2.06-4.08$	260
$2-44$	$4.08-5.75$	166
$4-6$	$5.75-7.02$	72
$6-8$	$7.02-8.08$	37
$8-10$	$8.08-9.02$	31
$10-12$	$9.02-9.87$	25
$12-14$	$9.87-10.65$	12
$14-16$	$10.65-11.37$	8
$16-18$	$11.37-12.05$	7
$18-20$	$12.05-12.69$	12
$20-22$	$12.69-13.3$	8
$22-24$	$13.3-13.89$	11
$24-26$	$13.89-14.45$	10
$26-28$	$14.45-14.95$	2
$28-30$	$14.98-15.5$	15
$30-32$	$15.5-16.0$	1
$32-34$	$16.0-16.49$	0
$34-36$	$16.49-16.46$	2
$36-38$	$16.96-17.42$	0
$38-40$	$17.42-17.86$	9
$40-42$	$17.86-18.3$	0
$42-44$	$18.3-18.72$	0
$44-46$	$18.72-19.13$	0
$46-48$	$19.13-19.54$	0
$48-50$	$19.54-19.94$	1
$50-100$	$19.94-28.05$	101
$100-150$	$28.05-34.25$	56
$150-200$	$34.25-39.47$	50
$200-300$	$39.47-48.19$	63
$300-400$	$48.19-61.56$	55
$400-500$	$61.56-72.45$	34
$500-600$	$72.45-82.76$	43
$700-700$	$82.76-92.61$	23
$700-800$	$92.61-102.09$	12
$800-900$	$102.09-111.26$	18
$1000-1000$	$111.26-120.15$	15
$1100-1100$	$120.15-128.81$	17
$1200-1400$	$128.81-146.26$	17
>1400	$146.26-170.0$	51
	>170	42

"Data bin"
Program used with

Maximum time bin $=550 \quad$ Maximum time bin $=530$
No. of time bin $=1$
Max imum height $=31.5$
No.of ht.bin $=15$

No.of time bin $=1$
Maximum height $=1455$
No. of ht. bin $=29$

Table B. 2 : Tachyon data. The distribution in size of the shower front pulse heights measured from a sample of 1443 EAS triggers. The DATABIN program was used to analyse the data. The total number of measured pulse heights is shown at the bottom of the column.

APPENDIX C

Light emitting diodes

The use of pulsed light emitting diodes (LED) is the most convenient way of testing photomultiplier tubes. Using a light tight box containing the LED and tube to be studied the variation of photomultiplier output pulse height with the voltage applied to the tube can be rapidly measured. Also using the same LED light source the relative sensitivities of a number of tubes can be found and hence the voltage at which each should be operated to have the same sensitivity determined. Small light-emitting diodes based on GaAs that produce yellow, green and red light are now readily available commercially. From a practical point of view one needs to know how large and how wide the voltage and current pulse applied to the diode must be in order to generate a sufficient amount of light to be readily detected. These problems have been investigated and the results are shown in figures $\mathrm{Cl}, \mathrm{C} 2$, C3, C4 and C5. All the measurements refer to the use of a Phillips 53 AVP photomultiplier tube used as a detector. It is concluded that for photomultipliers of this type (i.e. with an S11 photocathode response) light emitting diodes producing yellow light are the most satisfactory to use.

Figure C. 1 : Comparison of variation of phototube output pulse height with voltage applied in volts. Different colour LEDs used as light source.

Figure C. 2 : Comparison of variation of phototube pulse height with pulse width applied to yellow, green and red light emitting diodes.

Figure C. 3 : Comparison of variation of phototube output pulse height with voltage applied to LEDs of different colours. (yellow, green and red).

Figure C. 4 : Comparison of the variation of phototube pulse height with current applied to the LEDS of different colours. (yellow, green and red).

Voltage across LED in volts (v)
Figure C. 5 : Comparison of the variations of the resistance of the LED with voltage applied across the LEDs of different colours. (yellow, green and red)

Appendix D

Correction of the time distribution of recorded pulse heights in the tachyon experiment for experimental bias

In the analysis of the results of the tachyon experiment described in Chapter 7 (Table 7.2 and Figure 7.2) no account was taken of experimental bias as this was believed to be a small effect. Bias arises because large shower front pulses saturate the recording electronics and time domains occur in which small pulses would not be recorded even if present. Figure $\mathrm{DI}(\mathrm{a})$ shows a recorded event in which no bias is present. The output of the delay line used in was the tachyon experiment (Figure 6.3) Lonnected to both beams of a dual beam oscilloscope of sweep time $500 \mu \mathrm{~s}$. The lower beam of the oscilloscope was operated at a sensitivity of $5 \mathrm{mv} / \mathrm{cm}$ with a maximum measurable pulse height of 30 mv and the upper beam at a sensitivity of $200 \mathrm{mv} / \mathrm{cm}$ with a maximum measurable pulse height of 1400 mv . Figure Dl(b) shows a large shower front pulse which saturates the oscilloscope electronics on the lower time base but which is accurately recorded on the upper time base. The shower front pulse on the lower time base is preceded by an oscillation which occupies the $\sim 90 \mu \mathrm{~s}$ time domain preceding the shower front pulse. It is estimated from scanning the film that input pulses in the smallest size range measurable ($0.5-2 \mathrm{mv}$) would not be detectable in this type of event in the $\sim 90 \mu \mathrm{~s}$ time domain before the shower front pulse although larger input pulse heights would be. Figure $\mathrm{Dl}(\mathrm{c})$ shows that small pulse heights can be recorded after the shower front pulse even if the oscilloscope amplifiers overswing. If the overswing goes off scale as shown in Figure $\mathrm{Dl}(\mathrm{d})$ then no input pulses are recorded by the lower time base but they will be measurable on the upper time base if their height is $>30 \mathrm{mv}$. A correction factor to apply to the
measured number of events in a given size range and a given time range has been found in the following way. Let N be the total number of triggers and X be the number of triggers in which the time range $t_{1} \rightarrow t_{2}$ is not sensitive so $N-X$ is the number of triggers in which the time range $t_{1} \rightarrow t_{2}$ is sensitive. The required correction factor f to give the number of events that should have been recorded if the time domain $t_{1} \rightarrow t_{2}$ was sensitive for all N triggers is $f=\frac{N}{N-X} . \quad X$ has been found from scanning the film and figure D2 shows the variation of f with time which is measured from the start of the oscilloscope time base. The correction factor f shown in figure D2 shows the variation of f with time which is measured from the start of the oscilloscope time base. The correction factor f shown in figure D2 is to be applied to pulse heights in the size range 0.5-2 mv recorded before the shower front pulse and to pulses in the size range $0.5-30 \mathrm{mv}$ after the occurrence of the shower front pulse. Table Dl shows the measured and corrected number of events in different time ranges for different ranges of pulse height. Figure D3 shows the observed and corrected number of events presented in histogram form. It is noted that no correction to the observed number of events is required for input pulse heights $>30 \mathrm{mv}$ as these could all be measured on the low sensitivity recording channel where bias effects were zero.

It is seen from figure D3 and table D1 that for the smallest measurable size range of ($0.5-2$) mv the number of events in the time range $180-190 \mu \mathrm{~s}$ (corresponding to the time domain $75-85 \mu \mathrm{~s}$ preceding the shower front pulse) is increased from 32 ± 5.7 to 37.8 ± 6.7. This is the only cell that gives an anomolously large number of events in the whole of the data and after correction for
bias the excess above the background level expected (10.1 events) if no tachyons are associated with the showers is 4.1 standard deviations which is slightly less than the 4.4 standard deviation excess previously found in Chapter 6. The energy deposit in the tachyons detection scintillator corresponding to pulse height range 0.5 - 2 mv is $0.7-1.4$ Mev. Again it is concluded that more experimental data is required to determine whether the observed effect is real or merely due to a large statistical fluctuation.

Apart from a search for tachyons associated with extensive air showers the present data can also be used to assess whether there are a significant number of ionising events produced in the tachyon detection scintillator that occur after the arrival of the shower front. Table D2 and D3 give the values of the ratios $\frac{N(120-260 \mu s)}{N(270-410 \mu s)}$ and $\frac{N(0-260 \mu \mathrm{~s})}{N(270-500 \mu \mathrm{~s})}$ as a function of the energy deposited in the tachyon detection scintillator. The times quoted in the above ratios are measured from the start of the oscilloscope time base with the shower front occurring at a time of $265 \mu \mathrm{~s}$ after the start of the oscilloscope time base. Assuming no significant tachyon flux and that no particles arrive at long time delays ($>5 \mu \mathrm{~s}$) after the arrival of the shower front the expected values of the above ratios are $\frac{260-120}{410-270}=\frac{140}{140}=1.00$ and $\frac{260-0}{500-270}=\frac{260}{230}=1.13$. It is seen from tables D2 and D3 that all the measured ratios are consistently less than the above values except the one that refers to the smallest range of pulse heights ($0.5-2 \mathrm{mv}$) measured. The smallest measured ratio is for pulse heịghts measured on the recording oscilloscope of (4-30 mv) corresponding to a range of energy deposition in the scintillator of 1.9 Mev-5.2 Mev. Such delayed pulses could be produced by photons in the EAS electromagnetic cascade which have undergone diffusive scattering or by low energy evaporation neutrons from air nuclei produced in the EAS hadron cascade which subsequently interact in the detection scintillator.

(b) Oscillation that produces bias before the shower front pulse

Fig. DI : Classification of different types of event

(d) No event measurable after shower front pulse in the time domain 370-500 us

Fig. DI : Continued

Time range micro seconds	Correction factor	. $5 \leqslant v \leqslant 2 m v$		$2<v \leqslant 4 m v$		$4<v \leqslant 30 \mathrm{mv}$	
		No.of ev. before correc.	No. of ev. after correc.	No.of.ev. before correc.	No.of ev. after correc.	No.of ev. before correc.	No.of ev. after correc.
0-10	1.00	5	5	1	1	0	0
10-20	1.00	13	13	8	8	3	3
20-30	1.00	3	3	5	5	2	2
30-40	1.00	10	10	3		0	0
40-50	1.00	8	8	3	3	0	0
50-60	1.00	16	16	5	5	0	0
60-70	1.00	5	5	5	5	1	1
70-80	1.00	13	13	7	7	3	3
80-90	1.00	9	9	9	9	2	2
90-100	1.07	8	8.1	3	3	1	1
100-110	1.01	7	7.1	3	3	3	3
110-120	1.01	8	8.1	2	2		1
120-130	1.01	9	9.1	5	5	0	0
130-140	1.01	7	7.1	6	6		1
140-150	1.01	10	10.1	3	3	0	0
150-160	1.02	10	10.2	3	3	1	I
160-170	1.12	10	11.2	2	2	2	2
170-180	1.17	14	16.4	4	4	0	0
180-190	1.18	32	37.8	5	5	0	0
190-200	1.20	9	10.8	6	6	0	0
200-210	1.23	8	9.8	3	3	0	0
210-220	1.29	4	5.2	4	4	2	
220-230	1.42	14	19.9	4	4	2	2
230-240	1.53	3	4.6	2	2	0	0
240-250	1.63	5	8.2	3	3	0	0
250-260	1.69	2	3.4	1	1	0	0
260-270							
270-280	2.04	5	10.2	2	4.1	2	4.1
280-290	1.33	5	6.7	7	9.3	2	2.7
290-300	1.32	8	10.6	3	4.0	3	4.0
300-310	1.32	4	5.3	4	5.3	1	1.3
310-320	1.33	4	5.3	6	8.0	4	5.3
320-330	1.32	13	17.2	5	6.6	5	6.6
330-340	1.32	4	5.3	1	1.3	3	4.0
340-350	1.32	6	7.9	6	7.9	2	2.6
350-360	1.31	5	6.6	7	9.2	2	2.6
360-370	1.30	7	9.1	2	2.6	3	3.9
370-380	1.30	12	15.6	1	1.3	6	7.8
380-390	1.28	3	3.8	6	7.7	2	2.6
390-400	1.28	3	3.8	6	7.7	2	2.6
400-410	1.26	16	20.2	5	6.3	3	3.8
410-420	1.25	8	10.0	8	10.0	4	5.0
420-430	1.25	7	8.8	4	5	4	5.0
430-440	1.24	10	12.4	3	3.7	1	1.2
440-450	1.22	10	12.2	7	8.5	5	6.1
450-460	1.22	13	15.9	4	4.9	3	3.7
460-470	1.21	8	9.7	6	7.3	5	6.1
470-480	1.21	12	14.5	7	8.5	1	1.2
480-490	1.20	10	12.0	4	4.8	0	0
490-500	1.20	3	3.6	4	4.8	1	1.2
Total		418	495.8	212	243.8	88	107.4

Table D1 : Tachyon data based on a sample of 1443 air shower triggers. Time distribution of events in three different ranges of pulse height (measured on the oscilloscope) before and after correction for experimental bias. Time is measured from the start of the oscilloscope time base and the shower front pulse occurs at $265 \mu \mathrm{~s}$. The bias correction shown in Fig.D2 applies to only the pulse height range . 5-2mv for times $\langle 260 \mu \mathrm{~s}$ and for times $>270 \mu \mathrm{~s}$ it applies to the pulse height range . 5-30 mv. For large pulse heights there is no bias correction.

ח No of shower front pulses $2 m v<$

$v \leqslant 4 m v$

Pulse height range	$N(120-260 \mu s)$		$N(270-410)$		$\frac{N(120-260 \mu \mathrm{~S})}{N(270-410 \mu \mathrm{~s})}$	
	Before correction	After correction	Before correction	After correction	Before correction	After correction
$\begin{aligned} & .5 \leqslant u \leqslant 2 m v \\ & .07 e \leqslant u \leqslant .14 e \end{aligned}$	137	163.8	95	127.6	$1.44 \pm .19$	$7.28 \pm .15$
$\begin{aligned} & 2<v \leqslant 4 m v \\ & .14 \mathrm{e}<v \leqslant .19 \mathrm{e} \end{aligned}$	51	51	61	81.3	. $84 \pm .15$. $63 \pm .11$
$\begin{aligned} & 4<v \leqslant 30 \\ & .19 e<v \leqslant .52 e \end{aligned}$	8	8	40	53.9	. $20 \pm .08$. $15 \pm .06$
$30<v \leqslant 120 \mathrm{mv}$ $.52<v \leqslant e$	11	11	25	25	. $44 \pm .16$. $44 \pm .16$
$v>120 \mathrm{mv}$ $v>e$	6	6	8	8	. $75 \pm .41$. $75 \pm .41$
$v \geqslant 700 \mathrm{mv}$ $v \geqslant 3 e$	0	0	0	0	0	0

Table D2. The ratio of the number of events $\frac{N(120-260 \mu s)}{N(270-410 \mu s)}$ occurring in time regions 120-260 $\mu \mathrm{s}$ and $270-410 \mathrm{ps}$ with the times measured from the start of the oscilloscope time base. The shower front pulse occurs at $265 \mu \mathrm{~s}$ from the start of the oscilloscope time base.

Pulse Height	N(0-260~s)		$N(270-500 \mathrm{ss})$		$\frac{N(0-260 \mu \mathrm{~s})}{N(270-500 \mu \mathrm{~s})}$	
range	Before correction	After correction	Before correction	After correction	Before co\|rection	After correction
$\begin{aligned} & .5 \leqslant v \leqslant 2 m v \\ & .07 e \leqslant v \leqslant .14 e \end{aligned}$	242	269.1	176	226.7	$1.38 \pm .14$	$1.19 \pm .11$
$\begin{aligned} & 2<v \leqslant 4 m v \\ & .14 \mathrm{e}<v \leqslant .19 \mathrm{e} \end{aligned}$	105	105	107	138.8	. $98 \pm .13$. $76 \pm .10$
$\begin{aligned} & 4<v \leqslant 30 m v \\ & .19<v \leqslant .52 e \end{aligned}$	24	24	64	83.4	. $38 \pm .09$. $29 \pm .07$
$30<v \leqslant 120 \mathrm{mv}$ $.52<v<e$	20	20	31	31	.65士. 19	.65士. 19
$v>120 \mathrm{mv}$ $u>e$	13	13	20	20	. $65 \pm .23$. $65 \pm .23$
$v>700 \mathrm{mv}$ $v<3 e$	0	0	2	2	0	0

Table D3. The ratio of the number of evens $\frac{N(0-260 \mu s)}{N(270-500 \mu s)}$ occurring in the time regions $00-260$, 4 s and $670-500, \mu$ with the times measured from the start of the oscilloscope time base. The shower front pulse occurs at $265 \mu \mathrm{~s}$ from the start of the oscilloscope time base.

REFERENCES

```
Abdullah, M.M. et al., (1979), PICCR, Kyoto, 13, }254
Alvager, T. and Kreisler, M.N.(1968). Phys.ReV., 171, 1357
Anderson, C.D., (1932), Science, 76, 238.
```

Anderson, C.D., et al., (1938), Phys. Rev., 54, 88.
Aquilar-Benitez, M., et al., (1982), Phys. Letter 111B, (April)
Ashton, F., Coats, R.B., and Simpson, D.A., (1965), Proc. Int.
Cosmic Ray Conf. (London), 2, 1079-1081.
Ashton, F., et.al (1970), Acta.Phys.Hung., 29, Suppl., 3, 29
Ashton, F., Parvaresh, A., and Salleh, A.J., 1975, Proc. Int. Conf.
Cosmic Rays (Munich), 8, 2831-2836.

Ashton, F., et al., (1977), Proc. 15th Int. Conf. Cosmic Rays, Provdiv 7, 370.
Ashton, F., et al., (1979), PICCR, Kyoto, 13, 238
Baltay, C., et al)1970), Phys. Rev., Dl, 759
Bassi, P., Clark, G., and Rossi, B., 1953, Phys.,Rev., 92, 441-451.
Bartlett, D.F. and Lahang, M.D. (1972) Phys.Rev., D6, 1817
Birk, J.B. "The theory and practice of scintillation counting" Pergamon Press, Ox-
Bhat, P.N., Gopolakrishnan, N.V., Gupta, S.K. and Tonwar, S.C., 1979, ford,1964
J.Phys. G., 5, L13 - L18.

Bilaniuk, 0.M.P. and Sudarshan, E.C.G. (1962), Am.J.Phys., 30, 718.

Clay, J. (1927), Proc. Roy. Acad. Amsterdam, 30., 1115.
Clay, R.W. and Crouch, P.C. 1974, Nature, 248, 28.

Crouch, P.C., Kahlmann, J.D., Clay, R.W., Gregory, A.G., Patterson, J.R., and Thorton, G.J., (1977), Proc.

Int. Conf. Cosmic Rays (Plovdiv), 12, 166-171.
Davis, M.B., et al (1969), Phys. Rev., 183, 1132.

Earnshaw, J.C., Machin, A.C., Pickersgill, D.R., and Turver, K.E., (1973), J.Phys. A., 6, 1244-1261.

Einstein,Ann.Phys. 17, 891 (1905)
Elster, J. and Geitel, H. (1899), Phys.Z., 1, 11.
Emery, M.W., et al (1975), PICCR, Munich, 7.2486.
Fegan, D.J., et al (1975), PICCR, Munich, 7, 2480
Fegan, D.J., (1981), PICCR, Paris, 5, 55.

Fermi, E. (1949), Phys., Rev., 75, 1169.
Feinberg, G. (1967), Phys. Rev., 159, 1089
Feynman, R.P. (1949), Phys. Rev., 76, 749
Galliraith, W., 1958, "Extensive Air Showers", Published by Butterworths.
Gerasimova, N.M. and Zatsepin, G.T. (1960), Sov.Phys. JETP, 11, 899

Greisen, K., (1942), Phys. Rev., 61, 212-221.

Greisen, K., (1960), Ann. Rev. Nucl., Sci. 10, 63.

Greisen, K., (1965), PICCR, London, 609.

Greisen, K., (1966), Phys., Rev., Lett., 16, 748.

Grigorov, N.L., et al. (1971), Sov. J. Nucl. Phys., 11, 58\&.

Hayakawa, S., 1969, "Cosmic Ray Physics", Published by Wiley - Int. Science.

Hess, V.F., (1912). Phys., Zeitschr, 13, 1084.

Hillas, A.M., (1981), PICCR, Paris, 6, 244.

Jelley, J.V., "Cerenkov Radiation", Published by Pergamon Press 1958.

Johnson, H.T., (1932), Phys. Rev., 41, 545.

Julliusson, E. (1975), PICCR, Munish, 8, 2689.

Kalmykov, N.N., Fomin, Yu, A., and Khristiansen, G.B., 1973, Proc.
Int. Conf. Cosmic Rays (Denver), 4, 2633-2638.
Kempa, J. 1976, Nuovo Cimento, 31A, 568-580

Kolhorster, W. (1913), Phys. Zeits., 14, 1153.

Linsley, J., and Scarsi, L., 1962, Phys. Rev., 128, 2384-2392.

Meyer, P., Ramaty, R., and Webber, W.R., (1974), Phys. Today, 27, 23.

Millikan, R.A., and Camerson, G.H., (1926), Phys. Rev., 28, 851.
Morrison, P., Ullert, S., and Rossi, B., (1954), Phys.Rev. ,94, 440
Morrison, P, 1961, Handuch der Physik, XLvi/1, 1-87.
Pathak, K.M., and Subba, L.N., 1981, Proc. Int. Cosmic Ray Conf.
(Paris), 7, 11-14.
Prescott, J.R. (1975), PICCR, Munich, 7, 2474
Ramana Murty, P.V. (1971) Lett. Nuov. Cim., 1, 908
Rochester, G.D. and Butler, C.C., (1947), Nature, 160, 855.
Rossi, B. (1952) "High energy particles" published by Prentice-Hall.
Smith, A.C., (1976), Ph.D. Thesis, University of Durham.
Smith, A.C., and Thompson, M.G., 1977, Nuc-Inst and Meth.,145, 289-293
Smith, G.R., and Standil, S., 1976, Canadian Journal of Physics, 54, 176-185.

Street, J.C. and Steven, E.C., (1937), Phys. Rev., 52, 1003.

Turyer, K.E., 1973, "Cosmic Rays at Ground Level", Published by the Institute of Phys. (London). Van Allen, J.A. and Singer,S.F.(1950) Phys. Rev. 78,819; Correction, 80,116

Wo.idneck, C.P., and Bohm, E., 1975, J. Phys. A., 8, 997-1004.

Wolfendale, A.W., (1973), "Cosmic Rays at Ground Level, published by the Institute of Phys. (London).

Wilson, C.T.R. (1901), Proc. Roy. Soc., 68, 151.

[^0]: Figure 5.3 : Energy-momentum derendence as a function of velocity $\beta(v / c)$ for three classes of particles, where v is the velocity of the particle and c is the velocity of light.

