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'OCD and spectroscopy beyond the quark model:

the search for the lightest scalar glueball'

K.L.Au

ABSTRACT

The naive quark model has been remarkably successful in
classifying the many hadron states so far discovered. The underlying
theory for these successes is QCD. This theory, however, not only
suggests states made purely of quarks, but also those containing glue.
Whether these pure glue states are observable depends on the validity
of the notion of valence gluons which has been explored in the earlier
part of this thesis. My studies show that the hard and soft gluon
components can be distinguished and behave as valence and sea
constituents in glueballs. These glueballs, and especially the ground
state, must be found in order to establish QCD as a successful theory
of strong interactions. Because of the inevitability of mixing,
particularly for low mass states, simple parton configurations cannot
be expected in practice, so supposedly characteristic decay patterns
may not serve as a guide to the existence of new states., The only
reliable way to establish the intrusion of extra dynamics is to count
the number of states with given quantum numbers. An extensive coupled
channel analysis of results on 7 and KK final states interactions
with 1=0 o'* quantum numbers below 1,7 GeV has been performed
incorporating new data on pp + pp nn(KK). Though no poles are imposed
on these data, we find that 3 distinct resonances emerge in the 1 GeV
region, when the naive quark model requires but two. This clearly
indicates for.the first time definite evidence for dynamics beyond the
quark model in the ott channel. Our results are consistent with the

presence of the ground state glueball 51(993) together with ideally

mixed quark model states 82(988) and €(900).
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QCD_AND GLUEBALLS

1.1 INTRODUCTION TO OCD

The role of particle physics is to understand the fundamental laws of
nature and to unify them into one theory. Any Grand Unification
candidate must embed in it the four known fundamental forces ----
Electromagnetism, Weak and Strong interactions plus Gravity. Internal
symmetry and gauge invariance are believed to be the underlying

principle of physics.

The idea of internal symmetry first appeared when it was realised
that the nucleon-nucleon force is charge-independent by observing that
nn, pn and pp forces are equal apart from small Coulomb corrections.
Therefore the proton and neutron appear to be identical in nuclear
reactions and the small difference in their mass is attributable to
their different behaviour with respect to electromagnetic interactions
because of their charge difference. This internal symmetry is expressed
by labelling the proton and neutron as two possible internal ‘'isospin'
states of a 'nucleon’'. In analogy with the spin of an electron this
isospin symmetry corresponds to the Lie Group SU(2). All strongly
interacting particles form multiplets using Heisenberg's concept of
isospin [1]. Extending this internal symmetry idea to describe the

proliferation of nucleons, Murray Gell-Mann and Y. Ne'eman independently




discovered the higher Lie Algebra SU(3) of flavour [2]). The basic
entity in this SU(3) is called a quark [3])[4] with spin-1/2 and has
three different flavours u, d and s. These quarks carry fractional
charges and belong to the fundamental representation of SU(3). The
classification of baryons being made up of three quarks into decuplet
octet and singlet, and mesons made up of a quark and an antiquark into
nonets is called the Eightfold way. The u and 4 quarks that are
degenerate in mass form an isospin multiplet. The heavier s quark
carries the quantum number called strangeness which is conserved in
strong interactions, but not in weak, and is required to explain the

long lifetime of A and K particles.

This simple quark model suffers from the following difficulties;
1. It does not explain the absence of fractional charged particles,
2. The wavefunctions for the JP = %+ baryon decuplet are in conflict
with Fermi-Dirac spin statistics.
The solution to these difficulties is to give each quark flavour a
hidden colour symmetry with Lie Algebra SU(3) of colour [5). The quarks
are in the fundamental representation and only colour singlet states are
allowed to exist as asymptotic states (this is the colour confinement
hypothesis). From the products of such representation we see that the
simplest singlet configurations are g and qgq, since
3x3=1+8and3x3x3=1+8+8+10.
However there are other colour singlet configurations notably the

four-quark qgqq states which have been studied elsewhere [6). While the

badly broken flavour symmetry SU(N) depends on N the number of quark



flavours discovered, the SU(3), is taken to be exact such that the
singlet configurations of quarks are independent of the number of
flavours. The three degrees of colour freedom are supported by
experimental evidence e.g. the R ratio of Ccross sections of
ete”™ -> hadrons over e*e” -> yutu. It is therefore reasonable to

postulate that SU(3), is responsible for the strong interaction. This

is accomplished by making SU(3)c a gauge symmetry.

The idea of gauge symmetry originates from the invariance of the

classical Maxwell equations under
A (x) > a’(x) = A (x) - 3 (x) (1.1)
H u 31 H

which is known as a gauge transformation. The vector potential or gauge
field Au appears linearly with the space-time derivative in quantum
electrodynamics, QED [7]. Requiring the same gaﬁge freedom on AU as in
the classical theory leads to an accompanying local phase transformation

for the wavefunction
wx) = P’ (x) = explieg(x)]y(x) (1.2)

where e is the electric charge and 6(x) is a local phase factor.

This is equivalent to saying that QED has a local U(l) gauge symmetry
and the electromagnetic interaction 1is mediated by the corresponding
gauge field. The generalization of this concept to non-abelian gdauge
symmetries was made by Yang and Mills [8]. The interactions
corresponding to these symmetries are mediated by a set of gauge fields,

the analogue of Au in QED, which carry internal symmetry labels. The



strong interactions can be thought of as an internal SU(3), gauge field
theory known as Quantum Chromo-Dynamics or QCD [9][10]. The Lagrangian
of OCD with Ng flavours of quark is

N
f . . Ty o
L = -(1/4)62 ¢& + 1(iy p*J - m )q? (1.3
QCD UV v Eo9 Yo K’ T )

where the quarks fields qi being in the fundamental representation of
Su(3)¢ have i =1, 2, 3, while the gauge fields are in the adjoint
representation soa = 1,....,8 .

The covariant derivative is

H

D .
ij

= éija“ - igT® A%H, [T2,7P] = 1£3PCqC (1.4)
ij

a th
T is the a generator of SU(3), and g is the bare coupling.

The field strength tensor is

62 =9 a% -3 %+ griPht (1.5)
uv uv VvV u uv
where fabc are the structure constants of SU(3)., . The QCD Lagrangian

must be invariant under the local gauge transformation,
- | a
qi(x) -> exp(if (x)T )qi(x) (1.6)

o . a
which, for infinitesimal 8 (x) lead to the following requirements,

22(x) -> 2%(x) - £2P%P(x1aC1x) - (1/9)3 8%(x) (1.7)
u u u u

This implies that the covariant derivative is a singlet. The gauge

a >
fields Au are in the adjoint representation so that they form a singlet

in tensor products with the generators of the group Ta, which are also
aa
A

vPu is not allowed

L . . 2
adjoint. Because of gauge invariance, a mass term m A



in the Lagrangian. For the same reason a massive photon field is

forbidden in QED.

It seems at first sight that both QCD and QED are long range
interactions because their gauge fields or vector bosons are massless.
However the work of Politzer, Gross and Wilczek, showed that the
coupling of QCD has a different energy behaviour from QED and offers a
possible resolution to the observed confinement of quarks and gluons in
hadrons [11]. The difference is attributed to their different quantum
corrections in the two theories. Equipped with Feynman rules [7][12]
quantum loop corrections to the bare quantities in the theory can Dbe
calculated perturbatively. The ultra-violet divergences in 1loop
momentum integrals are removed by mass renormalization [13] {the
infinite bare mass is made finite by cancelling with quadratic
divergences) and rescaling of the fields (the 1logarithmic divergences
can Dbe written as a multiplicative factor) [14]. Because Green's
functions are obtained from the time ordered product of the field
operators, renormalized (finite) one particle irreducible (1PI) Green's
functions are related to the bare 1PI Green's functions by
multiplicative factors. As the bare Green's functions are independent
of the momentum cut off in loop integrals, one obtains the familiar
Stueckelberg-Peterman renormalization group equation RGE [15] for the
renormalized Green's functions. The multiplicative renormalizability
implies that divergences can be removed order by order by adding
counterterms to the original Lagrangian. All these are wvalid only in

the perturbative region where 1loop corrections are small. A natural



renormalization scheme is to impose that the effective mass and coupling
at energy scale u? be the same as those measured experimentally. The
coupling ag at a different energy Q is then given by

] 2 2 0, 2,95 _
ag(?) = aglu?) - #asm’)’ln%; + (%}) ag(u?)’1n (%;) ceees (1.8)

providing ag(u?)in(Q?/u?) << 1 , where
2,2 2N
o (02) = () , Bo = 11 - —&  for su(3)
s 4m 3

and is the 1 lcocop contribution to the B-function in the RGE.
The leading logarithm terms B,ag(u?)1n(Q?/u?) are resummed to give
the running coupling constant

4n
a.(02) = ———— (1.9)
S 1n(Q2/A%)

where A is to be determined experimentally. Thereéfore for Nf < 17

dag(0?)
B = 4m -—a-l—-QT- (1.10)
n
- _Bous(gz)z <0 (1.11)

This leads to the phenomenon of asymptotic freedom; the coupling
decreases as the momentum Q increases. OCD is therefore a
renormalizable gquantum theory [16] with asymptotic freedom. The
asymptotically free nature of QCD is believed to be the theoretical

justification for the success of the parton model.



1.2 INTRODUCTION TO THE PARTON MODEL

Deep inelastic scattering reveals that at large momentum (Q > 3 GeV)
the charge of the target proton is concentrated in ‘parton-like' free
constituents [17]. These structureless particles, called
partons [4][18], have the electromagnetic and weak interaction
properties of the flavour quarks in the quark model. Each parton of
flavour i carries a fraction x of the hadron momentum with probability
qi(x). Measurement of the differential cross-section for deep inelastic
electron scattering allows two structure functions to be determined in
the standard way [4][10]. 1In terms of the charged parton distribution

functions, these structure functions are simply

1
F1(X) 22 eiqi(x) (1.12)

F,(x) = xg e g (x) (1.13)
1

1

where e  is the charge of the parton of flavour i and the Callan-Gross
relation F (x) = 2xF (x) [19] is a consequence of the spin-1/2 nature of

quarks.

If this simple parton picture were the whole story, structure
functions determined from experiment would be independent of the
momentum Q of the probing virtual photon. For once the wavelength is
short enough (Q > 3 GeV) to resolve the individual partons inside the
hadron, making the wavelength still shorter would not reveal more

structure. This is known as Bjorken scaling [20]. However, it is not



what experiment reveals. As Q increases we observe:

4

Fz(x,Qz)

X
QCD naturally explains such deviations from Bjorken scaling, for gluons
and gq§ pairs are created with ever increasing probability as the
momentum of the probe increases, finding partons within partons.
Because of the asymptotically free nature of QCD, perturbation theory
can be used to compute the way in which this happens. This leads to the

Altarelli-~Parisi (A-P) evolution equations (see Section 2.2).

Intuitively,
2 - 2
qi(x,Q ) qi(x) + dqi(x,Q ) (1.14)
g(x,02) = g(x) + dg(x,02?) (1.15)

where g(x,Qz) is the probability that a gluon carries a fraction X of
the hadron momentum defined analogously to the quark probability

distributions, qi(x,Qz). The Q2 dependence can be expressed in terms of

- 8 -



a set of splitting functions Pba(z) , 2 = X/y , which are related to the
probability of finding a daughter parton of type b with momentum
fraction X in a parent parton of type a which has momentum fraction Y.
These splitting functions can be computed from the appropriate QCD

Feynman diagrams which are the origin of the Q2

dependence. The
explicit form of these splitting functions will be discussed in
Chapter 2 where we consider deep inelastic scattering on a glueball

state.

1.3 GLUONTUM

1.3.1 Introduction

The non-Abelian nature of SU(3) of colour leads to the existence of

terms gf3bCy p apbi,cv and (1/4)g2fabcgadcy by cpdiheV jp ¢pe
H v u Vv

pure gauge sector from the TrG:G term of the QCD Lagrangian which
involves self-coupling of the gauge bosons. The colour singlet
exXcitations of these self-coupling gauge bosons form a particle spectrum
called GLUEBALLS {21]. At first sight it seems that glueballs are
simpler objects for study than quark mesons because they are present in
pure QCD. If glueballs exist then it should be possible to generalize
the constituent quark idea of hadrons to constituent gluons of
glueballs. The glueball spectrum survives only if perturbations from
‘ the sea sector are small at modestly low energy. Perturbations from the
sea dquarks come as vacuum loops and are believed to be small in the

perturbative regime because the quark loop coefficient is smaller than

-9 -



that of gluon loop in Bo for small Ng . This alone does not justify the
notion of a constituent gluon and it is the object of Chapter 2 to study

its viablity with a simple model.

Since glueballs are colourless objects the minimum number of
constituent gluons is two. As gluons are neutral, charge conjugation is
@ good quantum number and is useful in classifying glueball decays. The

photon field in QED is odd under charge conjugation C and this is

i .
generalised to gluon fields in QCD; Auj S —Auz

ai.a

with Al.=Z(T).A
uj a ju

For a 2 gluon colour singlet, the colour configuration is

Tr(AlAz) and has even C parity.

For a 3 gluon colour singlet there are 2 possible colour configurations;

abc .
D state : Tr(AlAzAa) + Tr(AxAsAz) Vo4 AlAzA3 is _odd under C and,

b

abe .
F state : Tr(AlAzAs) Tr(ALAaAz) Nf AlAzA3 is even under C

where fabc and dabc are the antisymmetric and symmetric structure
constants of SU(3). As gluons are vector particles the wavefunctions of
élueballs must obey Bose symmetry and their quantum numbers can be
worked out accordingly. Some eXcited gluonium states are called

pe not accessible to g mesons. A neutral g3 meson has

pc

oddballs with J

1+s

parity P = (-1)”1 and C = (-1) . The J° of allowed and exotic quark

mesons are listed in Table 1.

- 10 -




J
qq Exotic
J

-4 .

even even
§=0 +- -+

odd odd
++ --

even even

s =1

-- +4

odd odd

Table 1

These exotic mesons would be a strong indication of the existence of

glueballs but they have not yet been found.

Assuming the validity of constituent gluons, the gluonium spectrum
has been obtained in many different models. There is much disagreement
between the glueball spectra of various models but the one common
feature is that the lightest glueball is a scalar and has mass in the
1 GeV region [22]. The following is an overview of the mass predictions

of these models:

I. Bag Models:

Glueballs are constructed by putting massless gluon fields in a
static spherical bag [23], with the confining boundary condition that no
gluon flux passes through the surface. There are two families of gluon
modes, transverse electric (T(}) with parity —(—1)1 and transverse

magnetic (TM) with parity (-1)2. The lowest state is the § = 1 TE mode

_11_




+ -
with Jp = 1 . The corresponding TM mode Jp =1 is rather higher 1in

energy.

The lowest mass glueballs are formed from two TE gluons with
pPc ++ ++ . - pc -+ -+
J =0 ,2 . The first excited states have J =0 ,2 . The
-+
exotic 1 is absent Dbecause two massless transverse gluons cannot
combine to give such quantum numbers because of Yang's theorem [24]. It
-+
has been shown that this corresponds to the absence of a 1 gauge

invariant and Lorentz invariant interpolating glueball field formed from

linear combinations of G2 G2 [23)[33]. The lowest three gluon bound

UV UV
+ ++
states are formed by three 1 TE gluons which give a 0 state with the
b +- +- )
colour factor fa c' while with dabc 1 and 3 are formed. The exotic
-+
1 is among the first excited states and is believed to be heavy.

Interactions split the glueball spectra. The QCD interactions between
the valence gluons have been included perturbatively at the tree
level [25]). The unknown self-energies of TE and TM can shift the
overall mass scale and have been treated differently by different groups

which is the major source of discrepancies. The resulting spectrum, in

++ -+ - ++

++ ++ +
order of increasing mass, are Jpc =0 <0 <0 <2 <2 vl N2

II. Massive Constituent Gluons:

Glueballs in this model are thought to be bound states of massive

gluons [26] interacting through a breakable string of the form
v(r) = 2m[1 - exp(-r/ry)] (1.16)

where m is the effective gluon mass, taken to be 500 MeV; with

- 12 -




ry, = 0.6 fm. Although gluons appear as massless fields in the QCD
Lagrangian, a gluon string breaks when sufficient energy (the potential
energy at infinite distance) has been stored in it to materialize a
gluon pair. The mass is generated dynamically through the strong
gluon-binding forces. The bound states of massive gluons are
investigated with a non-relativistic Schrodinger equation [26] ana the
calculated mass spectrum gives the following ordering of states:
++ -+ -+

++ . +4 .
0 <0 s1 s 2 with O v 1.5 GeV. The relatively light exotic

-+
1 state in this model is formed by two massive gluons.

II1. Lattice Gauge Theories:

Lattice gauge theories [27][28] offer the possibility of a
non-perturbative QCD calculation of the glueball spectrum and gives
potentially the most reliable results. Glueball masses are extracted by
evaluating numerically two point correlation functions of operators, ¢,
with glueball quantum numbers. This idea is based on the observation

that
-iHt

wlo(t)d(o)|v> «v|d(0)e $(0)|v>

(t -> -it) => <v|¢(0)e-ﬂt o(0)|v>

z «v|$(0)|n><n|e™B|n>cnfd(0)|v>

L et cwloo)|n>|*

~

(t -> @)  -> |cv|¢(0)]|o>|2e Eot
V is the vacuum and ¢ is assumed to have zero vacuum expectation.
The correlation function is dominated by the lowest excitation of the

vacuum with energy E, . In lattice gauge theories, correlation

functions are evaluated by doing Feynman Path Integrals [29] on a finite

- 13 -



lattice with Monte Carlo [30] simulation. The glueball mass is obtained
from the decay of the correlation over several temporal lattice
spacings. An important problem is to find a sufficiently small lattice
spacing so that the glueball mass calculated is that of the continuum
limit. This requires that the lattice spacing (v inverse of momentum)
is sufficiently small that perturbation theory {(up to 2 loops) is
valid [28]. The QCD scale parameter A is then related to the 1lattice
spacing through the RGE. Since glueball masses are expressed in terms
of lattice spacing, a reference scale is needed to convert these masses
into physical units. This would be a straightforward normalization if a
glueball was experimentally established. In practice, glueball masses
are expressed in units of A which is measured by comparing known

guantities, such as m string tension, the gluon condensate (GSTFG'G>

p 1
and the chiral condensate <gd>, with lattice calculations. The physical
value of glueball masses are determined by what value of A is chosen.
++ . . +4
The value of m(0 ) is the most reliable [28] because 0  shows good
continuum behaviour (i.e. independent of coupling and satisfies
Ez = p2 + mz) and has small finite size effects. Masses of heavier
glueballs are more difficult to extract Dbecause their correlation
functions fall more steeply and disappear into statistical noise at
A ++ h le of
smaller t than for the 0 . In any case, the mass ¢ sets the sca
++ ]
the glueball spectrum. A 1 GeV o will put the low-1lying glueball
exXcitations in the 2-3 GeV range and a 800 MeV one will lower this range
to 1-2 GeVv. The above calculations are performed in the quenched
approximation in which quark loops are ignored , the predicted spectrum

++ -+ ++ -+ --
is ordered as follows: 0 <0 <¢2 <1 <0
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IV. Flux Tube Model:

This model is based on the strong coupling flux tube 1limit of
ocp [31]. In strong coupling lattice QCD, quarks on lattice sites are
connected by colour flux, the degrees of freedom are quark and gluon
flux tubes rather than quarks and 4gluons. Glueballs are formed as
glueloops by removing the quarks and joining the ends of the flux tube.
The flux tube is assigned a constant mass per unit length and treated as
a quantum string. The ground state O++ has a mass of about 1.5 GeV.
The spectrum is formed by rotational, vibrational and radial

++ +- ++
excitations. The resulting spectrum is ordered as: 0 <1 < 2 .

V. OCD Sum Rules:

Apart from lattice calculations, the QCD sum rules [32][33)] have a
better theoretical Jjustification than other models. The basic idea of
the sum rules is to extrapolate the two-point function, associated with
a current Ju carrying the same quantum numbers as the resonance being
studied, from the asymptotic regime to large distances where resonances
dominate and non-perturbative effects are at work. The non-perturbative
effects arise as power corrections in 1/Q2 to the asymptotic freedom
regime and are introduced through various vacuum expectation values such
as the gluon condensate <usTrG-G> and the light quark condensate <q@>
which are phenomenoclogical parameters. The time-ordered product
T(Ju(X)Jv(O)) is expressed in terms of the operator product expansion
(oPE) [34], which in some sense separates short and large distance
effects. The short distance effects are contained in the Wilson

coefficients of the various operators which can be calculated
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perturbatively. The non perturbative effects are parameterized in the
vacuum expectation values of the various operators in the OPE through
dispersion relations (e.g. the Borel transfo?mation) which relate the
two point function to experimental measurements [32]. It is then
speculated that the formation of resonances is a phenomenological
manifestation of the interaction of the current quarks and/or gluons
with fluctuations of vacuum fields. One phenomenological manifestation
of non-perturbative fluctuations is the gluon vacuum condensate. The
gluon vacuum fields, in turn, induce quark vacuum fields and the
corresponding quark condensate is responsible for spontaneous breaking

of chiral symmetry (see next section) [33].

The notion of current gluons is used instead of constituent gluons in
sum rules. Unlike constituent gluons, current gluons are well defined
objects which can be derived from the QCD Lagrangian. The 1lowest

. . +4+ -+ ++ .
dimension currents for the 2 ', O and 0 gluonia are:

3= -G Go + (1/4)g, GanGo (1.17)
uwv - TPuvuv v aB’af .

3 ~
J = —=TrG.G , G = i G (1.18)
- an w2 uvag B

Boa
3 = -8 6.6 (1.19)
+ an

There are a set of low-energy theorems [33] which facilitate the
2

evaluation of the current gluon two point functions at 1low Q where

non-perturbative effects are most essential. There is much disagreement

on the mass spectrum according to whether it is believed that small size
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instanton effects [35] should be included or not (see next section).
The results without the these effects [36] agree with other estimates
from Lattice and Bag models. With instanton effects [33][37] the scalar
O++ ~ 1.5 GeV, and pseudoscalar O—+ i 2 GeV are heavier than other

predictions.

1.3.2 More on the QCD Lagrangian

This section serves as a brief introduction to some theoretical ideas
that are relevant in previous and later discussions. It is profitable
to hypothesize an ideal Lagrangian with perfect symmetries, some of
which may be broken in the real world. A Lagrangian has a global
internal symmetry G if it is invariant under the corresponding constant
phase transformations. There always exists a charge conservation law
for G by Noether's Theorem [38]. These charges are generators of G and
obey the Lie Algebra of G even in the presence of symmetry breaking
terms. One application of this is the current algebra in the SU(3)
fiavour quark model and is briefly discussed in Chapter 4. Although it
is not physically interesting for field theories to have exact scale
invariance since they cannot have finite mass particles, nevertheless
the quark masses in the QCD lagrangian are free parameters and have
particular values in physics, while QCD is assumed to be self-consistent
for any values of these parameters. Putting all the masses to 2zero
corresponds to the chiral limit and the resulting energy-momentum tensor
is:

N

a __a a_a f
= - G G+ i D q (1.20)
euv Gquuv * (1/4)911\) af af E quu V' k
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Classically euv is a traceless symmetric tensor and Dbelongs to an
irreducible representation of the Lorentz group. The generators of

scale transformations and Lorentz transformations are:

D = fxDo(X) (1.21)
where D =X8 is the conserved dilation current

U vV uv
and Juv = fx[Xuevo(x) - Xveuo(x)], respectively.

Given that euv is traceless, symmetric, and conserved, these generators
are also conserved. The massless QCD lagrangian also has a U(l) chiral

symmetry with a conserved current

Ne
s - -
Ju = E qkyuysqk (1.22)

Both the classical U(l) chiral and scale invariance are broken at
quantum level by the axial [39] and trace [40] anomalies,

u(l) axial:

2N Ng

3 5 = —gﬂ ‘~ i aq

ey 7 Os TrG*G (+ 2xi mquqk) (1.23)
Scale :

N
Bo . £
9D =0 = S TrreF  { -[1 + yplag)) Z m g q. ) (1.24)
U u uu Tm'®s?d % M
where Ym(as) = mass anomalous dimension. For non-zero quark masses

these anomalies are modified by adding explicit chiral symmetry breaking
terms given in the brackets. Incidentally the gluon currents used in
QCD sum rules are just the pure gauge part of Ouv, the U(1l) axial and
scale anomalies. Apart from these anomalies, the QCD vacuum also has

field configurations called instantons [41] which correspond to
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nontrivial minima of the Euclidean QCD action and are characterized by

the topological quantum number,

2
n = _9_ IxTrG"E (1-25)

in Euclidean space.
3272

These non-perturbative effects are expected to contribute to the vacuum
condensates and are the source of disagreement mentioned earlier in QCD

sum rules calculations.

For nearby glueballs and quark mesons with the same quantum numbers,
mixing Dbetween them is inevitable. It 1is therefore particularly
interesting to investigate the 1low 1lying isoscalar states where
glueballs and/or mixed states are 1likely to be found. There are no
definite predictions on the effects of including 1light quarks in
glueball mass calculations and in the decay properties of glueballs.
Meson-gluonium mixings have been studied in QCD sum rules by calculating
the two-point correlation function of T(an(x). ng(o)) and in other
phenomenological approaches like potential models (see chapter 3 for a
brief discussion). An alternative approach is to use the effective
Lagrangian of QCD. Because of confinement the fundamental fields,
quarks and gluons, in the QCD Lagrangian do not appear as free
particles. It is therefore useful to construct aﬁ effective Lagrangian
for describing the properties of the observed particles, which at the
same time possesses all the symmetry properties of the QCD Lagrangian
(i.e. chiral symmetry in the massless limit). Such a low energy

effective QCD lagrangian is a non-linear sigma model [42]) and its
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applications to glueball physics will be discussed in Chapter 3.

1.3.3 Hybrids

Apart from forming colour singlet hadrons from quarks and glueballs
from gluons, there also exist other possible colourless systems called
hybrids or meiktons or hermaphrodites [43]. These hybrid states contain
both constituent quarks and gluons in the form of qdg and qqqg. The
existence of constituent gluons can also be confirmed by establishing
these hybrid states. In the framework of the Bag Hodel, the lightest
hybrid states that can be formed are:

(qq)l_oo_ X9 o ,1 ,2 ,1
The exotic 1-% state can be as light as ~ 1.5 GeV in both the QCD sum
rules [44]) and the Bag Hodel [45])[46] calculations. However, the mass
spectrum can be shifted b§ an overall energy scale by the self-energies
of gluons and quarks in the Bag Model [43][45). These hybrids have

their own characteristic decays and these will be discussed in the

relevant context.

Finally, QCD has been remarkably successful in classifying the many
hadron states so far discovered and has proved invaluable in studying
hadron spectroscopy. However QCD could not be regarded as a complete
theory for the strong interaction of hadronic matter if its predictions
for the gluonic sector are not borne out by experiment. What follows in
this thesis is an account of my efforgs to validate QCD by establishing

the existence of the ground state scalar glueball.
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CHAPTER THWO

HE VALIDIT F 1 OF Vv GLUONS IN L LL

2.1  HOTIVATION

Using the language of a constituent model, the simplest configuration
of an even spin, even charge configuration and even parity glueball is a
state composed of two hard gluons carrying most of the glueball's
momentum. Of course, these gluons can, and will, continually emit
gluons degrading their momenta so that the idea of valence gluons may
became lost in a sea of soft gluons and qJ pairs. The aim of this
chapter is to check if, and how, this happens by considering a simple

computation.

Let us begin with a prototype calculation. If we consider the static
properties of a nucleon, it is essentially made of just three
constituent quarks, which carry all the properties of the nucleon
including all its momentum. However, when the nucleon is probed more
closely, for example in deep inelastic scattering, this simple picture
rapidly evolves to a situation where the three valence quarks carry 1less
than 50% of the nucleon's momentum and gluons most of the
remainder [4])[47). Probing still closer, these distributions evolve
perturbatively till eventually at truly asymptotic energies, quarks and
antiquarks in the nucleon equally share the momentum carried by charged

partons. The rapid variation at loy  momentum is really
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non-perturbative. Hovever, this can be crudely mimicked by the lovest
order Altarelli-Parisi cquations [10](48] wvith A reasonably large =
500 HeV (see Section 2.3). This then suggests a simple model, in which
at Q@ v 1 GeV, all the nucleon's momentum is carried by just three

quarks. So at Q = Qg » the parton distribution functions satisfy:

1
f ax q(z,0%) = 3 ;
, 4

C Sy e

ax xq(x,gg) =1 (2.1)

vhere q(x,Qz) is the sum over quark distributions, while at Q = Qo the
sum over antiquark probabilities, i(x,Qz), and the gluon distribution,
g(x,Qz), vanish. Horeover, we naively expect the momentum distribution
xq(x,Qg) to peak close to X = 1/3 corresponding to each quark carrying
1/3 of the total momentum. HWe can then wuse the lovest-order
Altarelli-Parisi equations to evolve these probabilities to Q@ "~V 10 GeV
and see that the valence distribution, 4, , (9, = q - §, while
qZ = g + g) then peaks dovn at x V¥ 0.18 and that the gluon's momentum
fraction has grown from 2ero to 40% with a sea-quark component is
generated at small x [Fig. 2.3], simply starting from a form for

q(x,QZ) n x H(1-%)? potivated by Regge behaviour [49] at spall x and

constituent interchange as x -> 1, as explained in the next section.

Armed with this simplified model of parton evolution, assumed
governed by the equations of perturbation theory at all momenta, We go
on in Section 2.4 to see how such distributions evolve for a state vwhich
is purely gluonic at Q =1 GeV. There tvo g@luons are pictured as

Ccarrying all its momentum, SO that xg(x,Qg) peaks near % = 1/2 and
1 2 1 a
£ ax g(%,Q.) = 2 ; [ dx x9(x,Qy) =1 (2.2)
- 0
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with q(x.Q:) = i(x,Q:) = 0. A form for g(x,Q:) satisfying these

conditions is v x(1-x) which we will again explain in Section 2.4.

With these initial conditions we will discuss in Section 2.4 whether
there is still a sense in which a hard gluon contribution can be
separated, as soft gluon and sea quark components develop with
increasing momentum of the probe. For a hadron whose ‘'static'
constituents are quarks, the separation of hard and soft quark
components is quite natural. The quark distribution is the sum of
valence and sea contributions. Since baryon number conservation ensures
the total number of quarks (i.e. quarks minus antiquarks) in the hadron
remains unchanged, the sea distribution can be fixed by its equality
with the antiquark distribution. For a glueball, the separation of hard
and soft glue, not being aided by such a basic conservation rule, may
appear more problematic. We therefore make the operational definition
that all the glue with x » xo(Qz) is hard, where X, is fixed by:

1

J ax g(x,0%) =2 (2.3)

Xq
the analogue of baryon number conservation, but where X is expected to
grow steadily from Xo =0 at Q= Q° . Of course, the fraction of
momentum carried by this hard component is expected to decrease steadily
as Q increases. However, the question is whether xg(x,Qz) for x > X, is
really distinguishable in shape from that with x ¢ xo , Or is there just
a totally smooth distribution? The results, shown in Figqure 2.8, as

described in the Section 2.4, show that hard and soft components can be

separated upto Q N 10 GeV, even though the gluon distribution is
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monotonic.

As discussed in Section 1.2, the momentum dependence of the structure
functions measured in deep inelastic scattering can be computed in
perturbative QCD in terms of corrections to the naive parton model with

its natural Bjorken scaling.

Thus to O(GS) and keeping only leading logs of momentum Q:

F(x,0%)

N
" /o

N
2 3=

1ol the(Q?) 2
B i:ef {dy {dz qi(y'Qg)[d(l‘Z) + m;'ﬁ—“?qq(z)ln% ](5(x-zy)
1 1 (0?) )
+§eiz Jo'dy {dz a(y,0%) 0{9217 qu(z)ln% $(x-zy)
u
= §ei qi(x,Qz) (2.4)

The splitting function qu(z) [48][10] depicted as
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can be computed from the appropriate Feynman diagrams:
.Yl
Yia!

p

with s and t channel quark exchanges. With pT the transverse momentum

of the outgoing quark, the differential cross-section for Y*q -> qg is

a

do 2 4ma , 1 . s (2.5)
de s P 2
2
: . % :
with 2z 3peq - FOF Pysmall (i.e. s » lt])
B (2) = C.(F) ( 2 (2.6)
qq 2 =

where C,(F) is the usual colour Casimir associated with quarks being in
the fundamental representation of SU(3)¢ . Pqqlz) is singular at
2 -> 1, This infrared divergence is associated with the emission of
soft or collinear massless 9luons. This divergence is cancelled by the

addition of wvirtual gluon contributions of the same order in G. ¢ SO

that we replace
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These virtual gluon contributions are of the form &(1-z) and are

absorbed into Pgq(z) by the '+ prescription’ [10] regularization in

1
which 1 -> defined in terms of a non-singular weight function
1-2 (1'2)+
&(z) by
1 o(z) - 1} (z)-¢(1)
{ dz (1-2)+ { dz 1-z (2.7)

Calculation of the virtual contribution modifies qu(z) to

(148 . 3 ] (2.8)
= + = 6 1' )
qu(z) Cz(F) [(l-z)+ > (1-2z

or equivalently

1422
Pgql2z) = Ca2(F) [I:;f]+ (2.9)

remembering that f(z)4 = £f(2z) for z < 1. The regularized form of qu(z)
ensures baryon number conservation as we will describe shortly.

The other splitting function ng(z) in Egn, 2.4 is depicted by
and can be similarily computed. It is obviously symmetric under

2 => 1 - 2 and is explicitly
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Pqg(z) = T2(F) [2? + (1-2)%] (2.10)

where Tz(F) is the trace factor of the fermion representation, which is
1/2 with the conventional normalization of Qg . Differentiating
Eqn. 2.4 with respect to Q2 we have the lowest order Altarelli-Parisi

equation for the evolution of the quark distribution of flavour i:

3q; (x,Q%) ) ag(9?) }g!

2 X 2 X
31ng? 2 ¥ [qi(Y'Q )qu(y) + g(y,Q >qu(y)] (2.11)

As seen in Egn. 2.11 the evolution of each quark distribution depends on

xnowledge of the gluon probability too, any difference

2y = 2y - 2 (2.12)
qNs(x,Q ) qi(x,Q ) qj(x,Q )

which is a non-singlet (NS) under flavour transformation, does not
involve g(y;0?), for we simply have

anS(quz) a_(0%) 1
S .‘21 2 X 13
31ng? LTy Ws(¥1@7)PggD) (2.13)

Since clearly the number of quarks of any flavour must Dbe conservedq,

since quarks and antiquarks can only be created in pairs,
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(2.14)

1
: 2 - 24y o
e ﬁdx {qi(x,Q ) - qi(x,Q )} =0

1
This is ensured by [ dz P_ (z) = 0 , see Eqn 2.9.
0

qq

The evolution of the gluon distribution is described in a similar way

to Eqn. 2.11 by

3g(x,0%) agl(e?) 1 2N¢ x r x
aln;Z = 821[ £g§ f Qi(Y,Qz)qu(;) + g(YOQ )ng(y) (2.15)
2Nf

[}
u ™M
+

where the new splitting probabilities are given by:
pqq(z) = —m—@ z = % 1-2 = qu(l-z)
+ (1-2)2
= C,(F) {——————1 i 2 ] (2.16)

Since there 1is explicitly a gluon in the final state, this function 1is
finite as z -> 1.

The dluon splitting function is clearly symmetric under 2z -> 1 - 2
and has virtual contributions at z = 1 which regqularizes it under an

integral, c¢f. Egqn. 2.15 to be:
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P (2) = 2C,(A) [ 2 ,1iz. z(l-z)] + Bo 501-2) (2.17)
ag (1-2)4 z 2

Since we have seen any non-singlet quark distribution evolves

independently of the gluon distribution, it can only be the singlet

function

2Ng

N
f
2L q.(x,0%) =1 |q (x,0% + 3. (x,0%) (2.18)
i=1 1 i=1 |? 1

that couples to g(x,Qz) to give

2 2 X X 2
d1lnQ g(x,0%) 2T x y | Pgq(y)  Pgg(y) g(y,0?)

All other quark distributions evolve according to Eqn. 2.13

Since in QCD all the momentum of the parent hadron must be shared by

quarks, antiquarks and gluons:

1 2Nf 2 2
{dx x{.Zlqi(x,Q ) + g(x,Q0%)} = 1 (2.20)
1=

1
oY { ax x(qz(x,Q’) + 9(x,Qz)) =0
nQ

at all momentum Q. This clearly requires

(2.21)

]
o

1
{dz z{qu(z) + qu(z)}

and

(2.22)

"
o

1
{dz 2{2NgPg(2) + Pyg(2)}

The forms given above for the splitting functions ensure these momentum

conservation conditions are automatically satisfied. To see how the
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momentum is shared between the partons in the hadron, consider the n

moments, Eqn 2.20 of the distribution functions. With
MZ(Qz) = }dx xqs (x,0%) 3 Mg(Oz) = }dx xq(x,0?) (2.23)
2 ) Gz *- 2 ) L xe

momentum conservation means uf(Q’) + Hg(Q’) = 1.

Taking moments of the coupled evolution equations, Eqn. 2.19 gives

z L 2
5 M, (Q%) ag(Q?) |-16/9  Ng/3 || My(@) (2.28)
a1nQ* | wd(o?) 2T 1 16/9  -Ng/3 || MI(Q)
having used the forms of the splitting functions to deduce
1 1
{dz quq(z) = -(4/3)C2(F) = -{dz ngq(z) (2.29)
; ; ) (2.26)
2N, {dz qug(z) = (2/3)NfT2(F) = -{dz ngg(z .
We can readily see that
3 2 g 2
{M (0% + MI(0H)} =0 (2.27)
aanz 2 2
2
3 _ ag(Q%) 16 N¢
. I .2 g, .2 . .
where Mgym = (16M,(Q%) - 3NgM (Q%)) from which we deduce:
z ) 3Ng a @) 1% ang
%) = 2y o L ' 2.29
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9,2y - | wBea2y
ul(g?) = [ 4, (Q?)

d+
3N ag(02) 172 16
£ ][ A ] (2.30)

b ——
16+3Ng || @g(Q3) 16+3N;

Unere ot 2(16 + 3Ng)
2" 3(33 - 2wg)

thile for any non-singlet component, like that of valence quarks,

e (0?) ay’
NS, 2, _ NS, 5 |%s 2
M,0(9?) = u, (Q°)Li3225] (2.31)
with avs o 32

2 3(33 - ZNf)

In order to study the significance of non-perturbative dynamics, ve
naively extrapolate the lowest order evolution equations to lov Q/A and
compare the simulated proton structure function with experimental data
and use this to dauge <the reliability of the sinulated glueball
structurg function. As a first step let us look at the behaviour of m§
and mg for a proton amd for a glueball using BEgn. (2.29,30) wvith the

folloving initial. conditions at Q, = 1 Gev vith Nf s 33

9
PRe%on rfed =1, wded =o

Glueball, mgg@

o ., ule? =1

The results with A = 0.5 GeV are shown in Figure 2.1.
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Figure 2.1 The evolutions of nf and ng in
(a) a proton,

(b) a gg Glueball.
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Having seen that 4in this simple model of wholly perturbative
evolution the momentum fraction of the proton is shared in rough
agreement With experiment, we turn to the detailed evolution of the
structure functionslthemselves. As a prototype ve consider the flavour

singlet component of a proton constrained to satisfy

1
J ax qz(x,Qz) = 3 ; the number constraint (2.32)
0
1 2
f ax xqz(x,go) = 1 ; the momentum constraint (2.33)
0

xqz(x,Qg) ----- peaks roughly at x = 1/3 (2.34)

at Q4 = 1 Gev. Before searching for suitable forms for qz(x,Qg) there
are a couple of points about the regularizing of the splitting functions

ve must first discuss.

In the previous section wWe only considered the regularization of
integrals from 2z = 0 to 1 as that is vwhat is involved in baryon number
and momentum conservation. However, the evolution equations, Egns 2.19,

involve integrals from z = X to 1. The '+ prescription' requires

1 i
Jaz o) [e(=)], = o) [-faz £(z)] _ ¢ édz[@(z)-@(l)]f(z) (2.35)

vhere once again &(z) is a non-singlular function and £(z) is singular

at 2 = 1. Then for instance
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dy X 2
" ng(y) g(y.Q*)

W

fl
E e Y

d z
S L) |75
+

= 82 q(x,Qz) + 2C2(A)9(x,Q2)ln(1-x)

1 {g(%,0%) - g(x,01)}
+ 2C,(A) £dz EAPLA 97%.Q

1 -2

1
dz
+2C2(A) { 7F (1-2)(1+2%)g(3,0")

X 2 2
( Q ) - (x' )
where gv EAPL 1 9'x,Q = x-%— g(x,Qz)
z+1 z x

In an analogous way
X 2
Paq(y) aly.Q")

1422 X
Cz(F)[I:;—]+ q(;,Qz)

= Ca(F) {g q(x,9%) + 2 q(x,9%)1n(1-x)

1 4z [1422 x 2 2
_dz X - 2q(x,
+ { T-a [ " q(Z:Q%) q(x,Q")| }

9
where the integrand just becomes 2X 3— g(x,Q02%) when z -> 1.
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To begin our calculation we need to guess starting forms for qz in
the case of a proton and g in the case of a glueball. This we do with

the guidance of the dimensional counting rules of the parton model.
2.2.2 counting rules

It is well-known that the electric and magnetic form factors of the
proton determined by elastic e p scattering using the Rosenbluth formula
are empirically given by dipole forms ~ 1/(Q2 + 0.71)2. If one
understands how such a Q2 dependence arises for these elastic
form-factors, one can hopefully generalize the idea to the structure

functions of deep inelastic scattering.

A meson in the parton model has two valence quarks which are resolved
by a virtual photon if Q % 3 GeV. The valence quark, knocked off-shell
by the probing Y* , is called the active quark; the other is the

spectator.

YQ

spectator

A‘§‘~\Si\ meson final state

After having been struck, the active gquark must recombine Wwith the
unperturbed valence quark to form an exclusive meson final state. To do
this, they must exchange a gluon with momentum Q. This gluon propagator
behaves like l/Q2 and so the meson form-factor must behave like l/Q’ for
Q >> 1 GeV. Similar arguments, when applied to Dbaryons, give

2
form-factors a (l/Qz) dependence because at least two hard gluons must
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be exchanged between the active quark and the two spectators.

Thus the momentum dependence of the form-factors, f(Qz), can be

summarized as
i
£(Q?) v (—5)"'s

where Ng is the number spectators.

To see what such relations mean for parton structure functions, we
need to express Q2 in terms of x. When X -> 1, the hadron final state
of mass W is no 1longer a continuum but passes a discrete set of

exclusive states for which the above analysis applies. With

»_ (W3- M¥)x

(2.38)
1 - x

we see that the prediction of parton interchange becomes
£(x) ~ (1-x)"s for x -> 1.
Writing the structure functions in the parton model in terms of these
form-factors, we have for ep -> ep
Fo(x,0%) = w v o?e(0%)% & (1-x)"s7! as x -> 1.

For an active valence quark in a proton ng = 2 is the minimum number of
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spectators, while for an active sea quark we have a minimum of 4
spectators, the 3 valence quarks and the brother antiquark in the sea,
so that the valence quark distribution qv(x) ~ (1-x)3,

while a sea quark distribution qs(x) A (1-x)7 in this model.

The contribution from the sea is then only important as X -> 0. This
is hardly surprising if we view the sea of Qg pairs as being created by
gluons from Bremstrahlung radiation, they naturally occur with degraded
momentum. The limit of X -> 0 with Q large is recognised to be a regime
in which Y*p scattering may be thought to be controlled by Regge pole
exchange, the scattering off a valence quark being a non-diffractive
process, while that of a sea quark is diffractive. Regge asymptotics
then predicts for X -> 0 that the structure function

F,(x) = E ezxqi(x) A ximalo)
where a{0) 1is the intercept of the appropriate Regge exchange. For a
sea quark, this is the exchange of vacuum quantum numbers, i.e. the
pomeron, for which qp(O) = 1, while for a valence quark, the exchange is
that of a typical meson trajectory, for which d@(0) = 1/2. Thus we

expect for x -> 0,

1/2 1

q,(x) vx” P agx) vxT
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2.3 RQOTON

As already explained in Section 2.1, we use the lowest order
Altarelli-Parisi equations to evolve an initial proton structure
function which satisfies Eqns. 2.32-34. The simplest form of q(x,Q:) is
~ xa(l-x)b but this does not satisfy simultaneously Eqns. 2.32-34. A
more complicated form is “~ xa(l-x)b(l+Cx) with the ranges of a and b
close to the values suggested by the counting rules i.e. -1/2 and 3.
Although there are solutions of this form that satisfy the constraints
but q(x,Qg) has negative values between 0 $ X §1 in all these cases.
Instead of adding more correction terms to this, we turn to counting

rules for suggestion.

Let us first write down the general form
-1

a(x,0%) = ax % (1-x)°[1+B(1-x) 24C(1-x) *+D(1-x) +E(1-x)¢] (2.39)

The simplest case with B =C=D=E =0 does not satisfy all the
initial constraints so it is ruled out and correction terms are needed.
The correction terms in EqQn. 2.39 can be interpreted as hard exchanged
gluons which contribute powers of (l-x)2 to the structure function. The
coefficients A,B and C are needed to satisfy the constraints but again
q(x,Q:) has a negative region between 0 S X S 1. The D term is required
to make q(x,Q:) positive with the constraint 1 + B + C + D > 0. The
solution to Egn. 2.32-33 is

A = 33.96 B=-1.55 C =0.091 D = 0.45

and xq(x,Qﬁ) peaks at X = 0.38 which is close to 1/3.
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The evolutions of q_ , g and qNS are governed by Egns. 2.13 ,19 with

z

initial values q(x,Q:) =q.= qNS and g = 0. These structure functions

L
are all evoluted from Qo = 1 GeV upto Q = 10 GeV with A = 0.5 GeV. The
structure functions of quarks q(x,Qz) and antiquark &(X,Qz) are

separated as

) (2.40)

o]
1]

L q,
g 3,
i

1]
N = =
Q
™
L
Z
(7]

£
1

(qz -q. ) (2.41)

The results of Xxq and xX§ are shown together with experimental data [s50]

in Figure 2.2 for comparision.

The large discrepancy between the data and the predicted xq in
Figure 2.2 indicates that the momentum fraction carried by the sea
gluons has been underestimated. The naive starting form of q(x,Q:) can
be improved by imposing that xq(x,Q:) must peak at x = 1/3. To achieve
this we must use all the terms in Egn. 2.39. The solution that
satisfies all the constraints and the positivity condition
1+B+C+D+E>O0is

A = 68.81 B = -5.15 C = 12.0 D = -12.82 E = -4.98
The xq and xJ distributions are evolved upto 10 GeV as before and the
results are plotted in Figure 2.3. Experimentally the gluons are
found to carry about 50% of the proton's momentum and the deficiency of
our crude model is indicated by the low gluon momentum fraction of 36%.
We extend this approach to test the validity of valence gluons in a

glueball in the next section.
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2.4 THE STRUCTURE FUNCTIONS OF A GLUEBALL

For simplicity, we consider only a glueball made up of two 'harad’
gluons. The initial conditions for the gluon structure function are

(similar to those of the proton):

1

{ ax g(x,Q:) = 2 ; the number constraint (2.42)

1

{ ax xg(x,Q:) = 1 ; the momentum constraint (2.43)
xg(x.Q:) ----- peaks roughly at x = 1/2 (2.44)

a b
The simplest form is A X (1-x) and EqQn. 2.42-43 require a = b. The
counting rules this time do not offer much hint so0 we first test the

rate of evolution by using 4 different sets of a = b.

1. g(x,Q;) = 5.10 i%(l-xf% ; xg(x,Q:) peaks at x = 0.75
2. g(x,Qz) = 12.0 x (1-x) ; xg(x,Q:) peaks at X = 0.67
3. g(x,Qﬁ) = 60.0 x%(1-x)? ; xg(x,Qz) peaks at X = 0.60
4. g(x,Qi) = 280.0 x’(l-x)3 : xg(x.Q:) peaks at x = 0.57

The results of the evolution of these g(x,Q:) up to 3 GevV with A = 0.5
are shown in Figures 2.4-7. These graphs indicate that the momentum
contribution from small X increases rapidly with increasing Q. The
approximate valence gluon distribution functions are obtained by
requaring that the area under each gv(x,Q?) be equal to the number of
valence gluons which is two. We have learnt from this exercise that the
evolution of the small X region is so rapid that the initial value of a

in X is irrelevant. Furthermore, we observe in Figure 2.7 that
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Figures 2.4-7 Simulations of the (g9) Glueball structure functions.
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g(x,Q:) = 280x ¥(1-x)? has a distinct peak at Q = 3 GeV and this means an
obvious separation of gv(x,Q:). To study the validity of the valence
gluon idea we chose the extreme case A x(1-x), which does not have a
distinct peak at sz 3 Giv' as the basic form in our next discussion.

We Adidn't choose x‘[(l--x)—2 because it would mean overestimating the large

X behaviour of xg(x,Qz) as it is indicated in Figure 2.4.

As in the case of the proton, correction terms are added to the basic
form x(1-x) to satisfy the initial constraints and the positivity

condition. The form of g(x,Q:) required is

g(x,0%) Ax(1-x) [1+B(1-x)2+C(1-x) *+D(1-x) S +E(1-x) 8] (2.45)

with
A = 10.90 B = -3.79 C = 40.0 E = -91.01 E = 57.0

The shapes of various momentum distribution functions at Q = 10 GeV with
A = 0.5 GeV are depicted in Figure 2.8. The momentum distribution
xqv(x,Qz) for so-called valence gluons is separable down to about
X = 0.09. Hence the idea of valence gluons in 1light mass glueballs
appears to be a valid one, at least as far as a perturbative treatment
of the problem is concerned. The implication is that such 1low mass
states would retain their glueball nature with an essential hard gluon
content even when probed closely and would not dissolve into a sea of qg

pairs and soft gluons until much higher momenta.

Finally, the evolution of the momentum distributions for the proton
and the glueball are summarized in Figure 2.9, which are in good

agreement with Figure 2.1. We next describe the experimental searches
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for glueballs and our analyses of the data on the ground state scalar

glueball.
Q = 10 GeV A= 05 GeV
9 g(x. Q) = Ax(1-x) {1+B(1-x12* Cl1-x*+ D(1-x)* + E(1-x)")
s i
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Figure 2.8 The structure functions of a (gg) Glueball with an initial

form of g(x,Qz) given by Egn. 2.4S5.
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CHAPTER THREE

EXPERIMENTAL SEARCHES FOR GLUEBALLS

3.1 INTRODUCTION

This chapter serves as a brief review of the current status of
theoretical and experimental aspects of glueball spectroscopy. The
current theoretical criteria for identifying glueballs are exémined and
applied to the possible candidates found up till now [51][52]. The
discovery in 1980 of a large signal in J/¢ -> Y(KKm), at 1440 MeV (see
Section 3.4.1), sparked off the current interest in the search for
gluonic degrees of freedom in the hadron spectrum. This is because for
J/w to decay into non-charm quarks, gluon intermediate states must be
involved. However, the search is made difficult by the problem of
gluonic states having no uniquely clear signatures [53]; they must be
disentangled from a complex, densely spaced spectrum of qg mesons. This
is hindered further by our poor understanding of the radially excited
meson spectra. Because of this no definite conclusions have been
reached on the glueball candidates that have emerged since 1980. The
situation can only be improved by high quality data with largely
increased statistics such that the necessary partial wave analyses can

be performed with greater confidence.

The potential glueball candidates have been identified using a number

of different criteria. Some of these are not stringent enough to be

- 47 -



taken literally. Moreover alternative explanations to the gluonium
interpretation have Dbeen suggested for all these potential candidates.
There are already many reviews [54][55][56] on glueballs with emphasis
on comparing predictions from various models of explanation with
experimental data. However, the creditability of these models depends
very much on the assumptions involved. The selection criteria and

ingredients of individual models are examined in the following sections.

3.2 GLUONIUM SELECTION CRITERIA

Although we have not yet fully understood the properties of
glueballs, largely because of the lack of any convincing glueball
candidates, there are some general features of glueballs which can be
used as pointers in glueball searches. The followings are criteria

based on such features for identifying potential glueball candidates.

3.2.1 Flavour symmetric couplings

Pure glueball states are by nature SU(3) flavour singlets and in
principle will have no preferential coupling to particular gquark
flavours or charges. according to this, glueballs must decay to

isospin, flavour singlets.

Another useful selection mechanism is to use the conservation of
charge conjugation together with SU(3) symmetry. The isospin, flavour

singlet is just the 1s in the tensor products of two octets,
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8x8=1s+85+8a+1oa+ﬁa+27s

and is a linear combination of charge conjugated pairs like KK [57].
The selection rules are (without kinematics):
1. Dby SU(3)

g #> non flavour singlets i.e. £> KiKg, nn'
2. by SU(3) and conservation of charge conjugation wit~ C=x1

g* 4> vp, VT etc ie. £ KK, KKqg

g~ > PP, W, TP etc i.e. > KR, KR, , KK

where V, P and T stand for vector, pseudoscalar and tensor

respectively.
For octets in the tensor product both even and odd C can be constructed
depending on the symmetry of the combination. As a quarkonium g3 can
decay into flavour non singlets hence

(gg) -» PP, PV, PT, VV, VT etc.

Therefore a glueball can be identified by checking the decay channels.

The 1last two selection rules are stable against SU(3)f symmetry
breaking, as guark masses only create splittings between different
iso-multiplets within flavour multiplets. Nevertheless, such breaking
will change the relative decay rates between allowed states. They are
also expected to hold even if by some mechanism some particular flavour
channels are prefered as this again will only change relative decay

rates. Su(3) symmetry breaking effects of Dboth dynamical and

f
kinematical origin are discussed in the context of 1(1440) and 6(1690)

decays. The first selection rule may be broken by mixing between

isoscalars. There is an alternative derivation of the above selection
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rules which generalizes the GI—parity of isospin to G, and G, parities

of U, V spin that relate s, d and u, s quarks [58],

3.2.2 Suppression of radiative decays

since photons do not couple directly to gluons, glueballs can only
decay radiatively via a virtual quark 1loop. From Figure 3.1 , the
amplitude is suppressed by a factor Qg compared to the two photon decays
of quark mesons. The suppfession breaks down if there is substantial
mixing between quark and gluon states. Such mixing can happen if the
states are almost degenerate. However, the suppression can still Dbe
broken for the scalar and pseudoscalar channels without mixings. This
is because of the trace and axial anomalies, which afflict the scalar
and pseudoscalar channels respectively [33]. The total anomalies in

chiral limit which include QED contributions are:

N
tot B(as) f 2 B(Us)
3] = ———— TrGe*G + N.( Z ©) ———— FoF (3.1)
Ul 4as [o] i 1
2N Ne
£ Y a ~
3y = —— TIG'G + Nl z ed) o F°F (3.2)

1

where B(0) = QED beta function

2

20 a
= == + 5 + .....
37 21

1

and e. electric charge of ith quark.

1

From these anomaly equations, the 1low energy theorems [33] for two

photon matrix elements can be derived.

| B(ag)

N
v} f
o TEG*G Yl Y(k,)> = oo Nod z eh)r!F?+ o[(k k2] (3.3)

S
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Figure 3.1 The lowest order QCD diagram for gg -> YY

_51_



o] 2= 1ea.§ vk vk> = 2 5 eH)P'F? + of(x k,)?] (3.4)
4T rs. Y lY 2 T[Nf i i 12 °
where F* = klel - klel (i =1, 2)

Hv v VU

The important feature of these equations is that the right hand sides do
not have the expected suppression factor Gg . Thus the scalar and
pseudoscalar glueballs may well have substantial two photon widths.
Furthermore the photon widths can be converted into radiative decay
widths using vector dominance [59] arguments. Hence their radiative

widths may also be significant.

3.2.3 Exotic quantum numbers and state counting

There are gluonic states with quantum numbers not accessible to gg
mesons in the quark model such as JP° = 177 in the spectrum of pure
glueballs and hybrids. The discovery of such a state would provide
strong evidence for the existence of gluonic states. However, even this
would not be definitive, since such exotic quantum numbers might also be
carried by quark states not describable in the non-relativistic quark
model. As there will be no mixing for odd glueballs, radiative decay
modes can be used to distinguish odd glueballs from exotic quark states.
Other glueballs that do not have exotic quantum numbers are difficult to
separate from singlets of meson nonets. A clear signature of these
glueballs is the presence of an extra singlet, one more than required by
the non-relativistic gquark mode. The counting of the number of states
(I = 0) with given quantum numbers is the only reliable way to establish

the intrusion of extra dynamics regardless of the strong possibility of

mixing or hybrids. This is the solid criterion that we use in our
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search for the ground state glueball to be described in Chapter 4.

3.2.4 0Z1 selection rule

0ZI rule [60] applies to ideally mixed quarkonium decays in‘whicn
final states without the initial quarks are suppressed. Together with
the criteria in Section 3.2.1 the following selection rules can be
obtained (without kinematics):
(ui, ad) 7> ¢, ¢n
(s8)  #> ww, wn, pp, PW, TW

9+ -> ww, ¢, PP, T

g~ -> wn, ¢on, PW
Potential glueball candidates would decay into both 0Z1 allowed and
forbidden channels. However these rules may not Dbe exact because of
symmetry breakings in which some particular flavour channels are
favoured. A glueball may then be misidentified as an ideally mixed
meson as a result. In any case, the breakdown of the 0Z1 rule has been
used as an indication for glueball formation [61] and examples of such
identification will be discussed in the next Section. It is generally
taken that the glueball widths should Dbe the geometric mean of O0ZI
allowed and forbidden decays [62]. This is based on the observation
that in perturbative QCD, OZI suppressed amplitudes are mediated Dy
intermediate gluons. Figure 3.2 shows that initial state quarks in the
process annihilate into gluons which then create the final state quarks.

Only the R.H.S of the diagram occurs in glueball decay so we expect a

suppression which is the square-root of full OZI suppression given by
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Figure 3.3 (a) The 021 quark line diagram for the reaction ¢ - ptn-,
which is disconnected and 021 forbidden.

(b)&(c) The OZI allowed diagrams for $ -> KK and KK -> pm,
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2

02I forbidden® However this estimate ignores the distinction Dbetween

the two and three gluon channels which depends on the quantum numbers of
the initial state. BAs is well known the light pseudoscalars show large
deviations from ideal mixing (see Section 3.4.1.5) which implies that
the phenomenological OZI rule exhibited by the vector nonet is not

P -+
honoured in the J ¢ =0 two gluon channel at ~ 1 GeV.

The width of a glueball FG is usually estimated on the assumption
that 0Z1 suppressed amplitude like Fig. 3.2 are dominated by glueballs
as intermediate state. A simple .example of this assumption is the
reaction ¢ -> G -> pm in which a glueball G appears as the dominant
pole, such that the width T of ¢ -> pm is roughly equal to the square of

r ' is obtained by giving the 0ZI al;owed width T

. a
G 0ZI allowed
suppression factor T , ieldin the estimate

ppressi 021 forbidden yieiding *
T V¢ T + T . . .
G~ ( 021 allowed 071 forbidden). This assumption rests entirely

on the empirical 0ZI rule which is not of itself consistent with
unitarity (see Section 4.2). This can be illustrated by the unitarity

equation for ¢ -> pm,
In<d|PT> = «d|KK>KR|PT> + 0ZI forbidden terms (3.5)

¢ -> KK and KK -> pm are both 0ZI allowed as shown in Figure 3.3. The
L.H.S of the unitarity equation is OZI suppressed, though the term with
KK intermediate state is 0Z1 allowed. There should be no cancellation
between the allowed and disallowed terms so <K?|pn> must be small even
though it is 0ZI allowed. The glueball couplings in this case depend on

the contribution from the O0ZI allowed channel KK to the real part of
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<ol pm>. FG would be smaller than the simple estimate if Re<d|pm> is
saturated by the KK contribution or much bigger if there are Dbig
cancellations. This discussion becomes complicated if quark resonances
occur close to the relevant glueball poles. In genéral, the widths of
glueballs may not be simply characteristized by hadronic widths through

simple estimates based on OZI rule.

3.2.5 Production in hard gluon channels

If the gluonic states are made of valence gluons then they will De
copiously produced in hard gluon channels. A good example is the
radiative decays of vector mesons, in particular the radiative decays of
J/V [63][64)]. There are four main energetically allowed decay modes of
the J/¥ -> Y + X that require c and C quarks to annihilate. They are
those in Figure 3.4. This 'classic' method is attractive because the
estimate T(asp -> vg9)/ (3/y -> 999) = 16a/5a gives
B(J/V -> Ygg) = 10% [65]. In perturbation theory J/¥ -> Ygg is the
dominant radiative decay mode of J/U -> y + X where the two gluons are
in a net colour singlet. Hence this is an excellent channel to search
for glueballs with positive C-parity. The 1(1440), the B6(1690) and
possibly the £(2200) were found as glueball candidates in the study of
this channel [64]. The validity of these claims will be discussed later

in the Chapter.
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3.2.6 Double diffractive processes

An attractive possibility available at very high energies for
glueball searches is the special nature of double diffractive
processes [66]. Just as single diffraction can be viewed as gluons
surrounding one proton being transferred in the glancing interaction to
the other through a gluonic intermediate state, known as the pomeron,
double diffraction can be pictured as gluons from each proton fusing to
make new meson states [Fig. 3.5]. This double pomeron exchange process
yields final states with the quantum numbers of glueballs. Such was the
motivation for a series of experiments at the ISR [67][68]1[69]. The
first showed double pomeron events could be isolated, while the
Axial Field Spectrometer (AFS) Collaboration experiment [69] on
exclusive central meson production in pp -> ppTT, pp4T, PPKK, etc.,
allowed for better resolution and increased statistics. In such a
process, the quantum numbers are restricted to I = Y =0, C=P=+1 and
even spins. The studies of meson states produced in such diffractive
reactions constitute the main core of this thesis and the details of

their analysis are presented in the following Chapters.
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3.3 THE TENSOR GLUEBALL CANDIDATES FROM BNL

Three tensor glueball candidates gT(2050), g%(2300) and g&'(2350)
were found in the BNL/CCNY T p experiment [61] through the 0ZI forbidden
&dn channel shown in Figure 3.6. The background to the experiment are
the two 0OZI allowed transitions
(a) mp = ktk k*'k'n and (b) TTp -> ®k*K™n, shown in Figure 3.7. The
breakdown of 0OZI rule is indicated by the enormous enhancement in the od
production cross section. It is found that after corrections the
enhancement is many times the density of the Dbackgrounds. The three
resonances with JPC = 2++ correspond to the three K-matrix poles (see
AppendixX A.III & Section 7.1) in the best fit to the data found in a
partial wave analysis. According to BNL the mixing of S- and D-waves is
substantial in these three tensor states. Nevertheless, the
interpretation of K-matrix poles as being the actual resonances requires
more thought. The topic of pole interpretation will be discussed in

Chapters 6 and 7.

3.3.1 Two poles model

In terms of a fit with Breit-Wigner poles, the BNL first reported a
two resonance solutions to their ¢¢ enhancement [70]. Let us first look
at this. Figure 3.p can be re-expressed in terms of particle exchanges
as shown in Figure 3.8 . With the aid of Figure 3.8 , the amplitude for
Tp -> ¢én can be written as a product of three terms summing over the

number of glueball states [71],
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Figure 3.6 The OZ1 disconnected diagram for the reaction T p -> ¢én.

For the g,s, aFC = 2+, only two intermediate gluons are

required.
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bocmood
A

Y
2

Figure 3.8 The reaction 77p -> ¢dn with a T exchange and two possible

glueballs G, , s resonance propagators.
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2
i.e. A(Tp-> ¢dn) = L R(Tp -> Gjn)‘l)jT(Gj -> ¢9).

=1
where R is the production amplitude given by a standard Reggeized

expression,
o is the usual resonance propagator,
T represents the decay amplitude for Gj -> ¢d.

The glueball pole G1 is the average of gT and g% while 62 is identical

to g%’. These are the positions of the 2 resonances first reported by
BNL [70]. The glueballs are treated as ordinary hadrons in that their
couplings to ¢ are comparable to other hadronic couplings. This

assumption is the simplest explanation for the OZI violation in glueball
production channels. With the flavour independent decays of glueballs
as a further assumption this model is able to explain the main features
of the BNL data. The same may not be true for a three pole analysis as
there are no obvious cancellations in this model. The success of this

analysis raises the question of where the glueball Regge trajectory is.

3.3.2 OQuarkonium Explanation

Having briefy discussed the glueball option of the gTs. We now
consider the possibility of quarkonium. A tensor isoscalar resonance €
has been seen in partial wave analysis of pp -> TT at 2150 Mev [72]. If
the tensor nonet is ideally mixed as it is Dbelieved to
be (c.f. Section 3.4) , then € can be thought of as a second radial
excitation of the nonstrange f(1270). The isoscalar partner of the €
would then be entirely made up of strange quarks and decay strongly to

¢d as the ggs do in 7 p. However, this does not match the number of
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resonances observed, even if a glueball is included. Either this simple
minded picture is completely wrong or the BNL interpretation is at risk.
Since the radially excited tensor nonet is not well understood, this
makes the discussion of quarkonium-glueball mixing impossible. In any
case it is important to look for other decay channels as an s§ meson at

2160 MeV would decay to ¢¢, KxKx and KK in the ratios 1 : 4 : 0.37 [73].

3.3.3 Hybrids

The ¢¢ enhancement can also be a hybrid ggg. These hybrid states are
likely to decay by formation of a qJ colour-octet pair from the gluon,
g -> (qi)e, followed by disassociation of the resultant ggqg state into
two qg mesons [Fig. 3.9], qd,9-> (93),(a3), > (13),(aF), -
As will be discussed later in Section 3.4.1.1, the TM mode of gluons in
the Bag Model has strong s-channel coupling to s§ while the TE mode has
flavour symmetric coupling. A ¢-like hybrid with a TM mode gluon,
s§gTM , therefore decays to final states with four kaons including dd.
The mass of such hybrid has been estimated to lie within the enhancement
region and can be identified with one of the dd candidates {54].
Another ¢¢ candidate might also be identified with a 2++ TM-TM glueball
which, 1like the s§gTM nybrid, decays chiefly to the ¢¢ in a relative
S-wave. However the gTs are known to have both S- and D-waves. The
last candidate would have to Dbe either a 2++ TE-TE glueball or its
radial excitation. Because of parity conservationA arguments, the TE

- ++
gluon does not couple to an S-wave pair (q@)g , these 2 TE glueballs

decay to two vector mesons with two units of angular momentum. If this
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Figure 3.9 The dominant two-body decay diagram for a qgg hybriad.

Figure 3.10 Drell-Yan type mechanism for the production of two vector

mesons with a four-quark intermediate state.
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is the case then other final states such as PP and K=xK* should also have

been seen, because of the flavour symmetric couplings of the TE gluon.

3.3.4 Four-Quark scenario

An attempt to identify the enhancement in ¢d as a four-quark state
resonance has been made [74]. BAn S-wave four-quark state in bag and
potential models has the following salient features:

I.

The wavefunctions of q3dgd states consist of two parts; in one, the gg
pairs are in the colour singlet representations and in the other part,
the qJ pairs are in the colour octet representations.

II.

Their decays obey the 0OZI rule; most of the gdqd can be split into
two constituent colour singlet g mesons, making them difficult to
distinguish from a continuum. However, there are qqqg states which
mainly decay through a pair of vector mesons (vv). They have widths
narrow enough to be observed as resonances [75]. What is attractive is
that a 2++ s§s5 four quark state at 2.25 GeV has been predicted to exist

in the Bag Model [76]. This predominantly decays to ¢¢ with a width of

360 MeVv.

The production of narrow four quark states is by a Drell-Yan [77]
type process in which the glue partons originating from the colliding
hadrons couple to the colour octet (VC) of the gggqg states which in turn

decay into two vector mesons. This mechanism is depicted in
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Figure 3.10 . The coupling between gluon and colour octet vector g is
evaluated using the QCD version of the Vector Dominance Model in QED.
The calculated $¢ production cross section for a 2++ state at 2160 MeV
is in agreement with experiment, when a K factor correction is taken
into account. One of the remaining ¢¢ resonances seen at BNL could Dbe
assigned as an excited s5s§ four quark state with an orbital angular
momentum L = 2 which decays to ¢¢ through a D-wave. Another possibility
for JPC = 2++ is an exXcited s8s§ with S = 2, L = 2, which should be much
heavier than the S = 0, L = 2 state at 2160 MeV. A tensor glueball can
be included to make up the required number. However, it is believed
that only the O++ sector of the four-quark states can exist as

observable bound states [78]. Nevertheless this approach provides an

alternative explanation of the data.

3.3.5 Sequential Pair model

The identification of the gTs as glueballs at BNL soley rests on the
validity of 021 rule. However, it is possible that the gluons which
convert into di-mesons do themselves favour some particular mass value
through the semi-classical sequential pair creat%on mechanism [79]. The
mesons are produced in the following sequence:’

o= 2 99 —> 4,9, —> 9,(9,8,)q, = (9,9,)(q,9,)
The gluon system is supposed to convert rapidly to a light qlal which
then breaks apart, maintaining a gluonic field ('string') between them.

Eventually a second pair qzﬁz is produced along the ‘'string' and this

jeads to the two vector mesons ¢ in this particular case. The decay
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rate of q,q, -> (qlqz)(aqu) is proportional to the square of the
overlap integral of the radial wavefunctions of Elql and two mesons.
The integral is an oscillating function of the mass of the system and
leads to broad mass bumps which are not resonances but an interference
effect reflecting the sequential mechanism of pair creation. The
oscillations are governed by the zeros of the spherical Bessel function
in the partial waves of qul . Successive mass bumps are generated by
this mechanism in the region of the BNL enhancement. Although there is
no prohibition for a genuine resonance to occur on top of such a bump.
It is unlikely that this should happen several times as is implied Dby

the three resonance claim.

3.3.6 Phenomenological argument

apart from the above argument, the threshold enhancement can also be
explained with phenomenlogical reasoning [80]. 1Instead of going through
the process in Figure 3.6, the reaction 7 p -> ¢¢n can proceed by the
emission of two hard gluons as depicted in Figure 3.11 . The two hard
gluons are supposed to be collinear and independent. They also behave
like the gluons in Drell-Yan and other hard-scattering processes. Since
hard gluons in these processes decay into lepton pairs with
<py> = 0.6 GeV [81] thus for the S-wave, the threshold enhancement is

ey = /[(2m¢)2 + 2 x (0.6 Gev)?] = 2.2 GevV.

The angular momentum barrier for the D-wave is approximately given by

28 + 1

T = 1 GeVv
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Figure 3.12 K'p =-> ¢dA as an OZ1 forbidden process.
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for { = 2andr =1 fnm.
Thus for D-wave

6" V [(2m,)%2 + 2 x (0.6 Gev)2 + (1 GeV)?] = 2.4 GeV.

o 0
This is in general agreement with the data. The same reasoning does not
apply to K'p -> ¢dA in which two of the gquarks created hadronize with
the fragments of the original particles and these tend to move in
opposite directions [Fig. 3.12]. It is therefore crucial to search for
gTs in K7p scattering to consolidate the glueball claim. However, the
K'p -> ¢dA channel is viewed as an 0ZI allowed process [Fig. 3.13} by

some fraction of the physics community [61]. To them the absence of 948

in K p is not a problem.

3.4 GLUONIUM CANDIDATES IN J/Y RADIATIVE DECAYS

As already mentioned in Section 3.2.5 that J/Y-> Y+ X is a hard
gluon process which is thought to be an ideal place for glueball
hunting [82]. Two more glueball candidates 9(1690) [83] and
£(2200) [84] have been found in this channel after the discovery of the
first candidate, the 1(1440) [85]. The radiative J/Vy decays have been
studied in experiments DM2 [86], MARK II [87], MARK III [88] and
CRYSTAL BALL [89] operating at the storage rings DCI and SPEAR.
Although 1lots of data have been assembled no definite conclusions about
their glueball status can be made. What follows is an attempt to give a

concise review of the various interpretations of the 1, 6 and &.
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Figure 3.14 Radiative decay of the J/¥ into mesons or glueballs.
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3.4.1 The Pseudoscalar Glueball Candidate Iota(1440)

The Iota was seen in J/¥ -> YKKm [85]. The KK system was produced
preferentially with low mass as though the decay 1 —> &n ' § -> KK were
the dominant decay mode of Iota. These data overwhelmingly favours the
0t channel in a partial wave analysis allowing both the 0~ and 1t

partial waves [90]. The possibility of spin 2 has yet to be tested.

The suppression of JP = l+ is thought to be due to Yang's
theorem [24] and its p-wave decay to &m. There are four low lying o~ *
isoscalars namely the established N(548), N'(958) and 1(1440) together
with a possible N(1275). It is not clear whether the 1 is a radial
excitation of nN°'. The situation is made worse by the presence of a
nearby isoscalar E(1420) observed in hadronic reactions. The E itself
is a mystery. It was first seen in pp annihilations at rest [91] and in
the more recent T p [92] experiments as a 0™t resonance in 6m, just as
found for the Iota. This E can be identified with the Iota. However,

PC _ ,++

the E has also been observed as a J =1 with dominant decay mode K*K

and KK= [93].

The gluonium interpretation of 1(1440) is based on the following
arguments:
I.

The Iota is produced in a hard gluon channel with the largest
branching ratio of its kind for reasons transparent from Figure 3.14 ,
and its mass is consistent with Bag model [94][95] and lattice [96][97]

-+
calculations for a 0O glueball.
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II.

The B(J/¢ -> Y1) 1is too large for the 1 to be a member of radially
excited 0”1 nonet with the n,n' and n(1275) [98]). This is based on two
observations
1. n(1275) -> nUm is strongly present in 7~ p scattering and there is no

significant signal for 1 -> NOmT.

2. In J/V -> vl , is strongly present in KEq and indicated in nmm
but there is no n(127%) , signal in both channels,
ice. T(IN - yu) » T3/ -> ym(1275)).

If the N(1275) and 1 are radially excitations of N and N' with the same

singlet mixing then

o(mp => n1) _ o(n’p -> nn')
o(n7p -> nn(1275)) o(mp -> nN )
This is badly violated by experimental observations,

i.e. R.H.S >> L.H.Ss [99]. 1If U and N(1275) are ideally mixed with
1 = s§ then TI(J/¥ -> yn(1275) -> ynmm) >> I(I/¥ -> yr -> ynmm), since
N would be a 0ZI suppressed decay of 1. But this is violated by (2)
therefore 1 is unlikely to be the I = 0 partner of N(1275). This naive
argument is sensitive to how the SU(3) flavour symmetry is broken so it
can only serve as a guide. To consolidate the glueball claim one must
confirm the N(1275) and find an acceptable I = 0 radial excitation, n*,
for n(1275) to exclude 1 from the nonet. The members of radially
excited pseudoscalar nonet, 2180 , seen so far are the I =1 w(1300),
I = (1/2) K(1400) and I = 0 n(1275). Phenomenologically the approximate

degeneracy of W(1300) and N{1275) suggests ideal mixing between T* and

N(1275), as in the ideally mixed vector nonet where P and W are almost
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degenerate in mass. Generalising the rough equality m¢ x> 2mK* - mp to
the radially excited pseudoscalar gives m(N¥) = 1600 MeV. However
mixing between glueball and isoscalars may shift the masses of n(127s5)
and n*, making the mass degeneracy of m(1300) and n(1275) accidental.
Hence again high statistics data are needed té allow a partial wave
analysis in channels 1like Tp => (KRT)n, (NmM)n and (N'TM)n, and
pp -> (KEm)wm, (nmw)mwm, (n'ww)Am to search for n*. This is the way in
which n(1275) was discovered.
I11

The width of the 1 is more than an order of magnitude dgreater than

the N' so the 1 decays too fast to be a radial excitation of the n* or a

qguarkonium state.

There are also objections to the gluonium interpretation of the Iota.

The criterion of flavour symmetric decays is the strongest argument
against the glueball interpretation as B(1 -> NTM)/B(l -> KKT) < 0.26

according to MARK III [100].

However as already mentioned in Section 3.2.1 there -are flavour
symmetry breaking mechanisms which may produce non-flavour symmetric
decays and such mechanisms are discussed in the next section.

IT.

The Iota may have been seen in the Yp° channel, but the experimental
results are confusing. With the present statistics, it is not possible
to unambiguously identify the enhancement in YOO as being due to the 1 .

Assuming the 1 to decay mainly into KKT then this corresponds to a
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sizable radiative decay width of 2 MeV which looks surprisingly large

for a glueball and seems to rule out the pure gluonium claim [98].

Although glueballs are not normally expected to have large radiative
decay widths, a hybrid or a mixed state may have radiative widths
comparable to ordinary dquark mesons. As in the case of the gTs, the
properties of the 1(1440) can be explained by various models and these

models are examined in the following sections.

3.4.1.1 Models for a pure 1 glueball

In this section we discuss ways of producing non-flavour symmetric
decays for a glueball which may then overcome the strongest objection to
the glueball identification of the iota.

I.

There are ways of breaking SU(3) flavour symmetry. The lowest order
diagrams for the decay of a two gluon glueball are shown in Figure 3.15.
The flavour symmetry is broken kinematically in Figure 3.15(a) because
for a JP = 0 initial state the corresponding amplitude is proportional
to mg [101][102]. The situation is the same as that of the helicity
argument responsible for the leptonic decays of pion having
F(m -> puv) >>T'(m -> eV) despite the existence of l-e universality.
This then produces an enhancement of the final states containing strange
quarks or kaons. Another breaking mechanism is due to Bag Model
dynamics [94] which enhances final states rich in kaons and is

applicable to both diagrams in Figure 3.15 . 1In cavity perturbation
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Figure 3.15 The lowest order diagrams which contribute to a 2-gluon

glueball decay.
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Figure 3.16 Pole diagrams for the decay i1 => N,

- 74 -



theory the vertices are proportional to the overlap integrals of the
cavity mode eigenfunctions. When the self -energies of a quark and
gluon, determined empirically, are included, the TE gluon mode is found
to have flavour symmetric s—channel couplings, while on the other hand
the TM mode couples strongly to s§ [94]. A pseudoscalar glueball made
of TE-TM modes therefore decays predominantly to final states with kaons
just as the Iota does. Although these counter arguments are based on
perturbation theory, they highlight the point that it is perilous to use
flavour symmetry as a criterion for glueball spotting.

IT.

The dominance of 6m , & -> KK and the absence of NTT in 1 decays can
also be explained with a simple pole model {103] with the 1 taken as a
glueball pole. The suppression of 1 -> nmm is due to the cancellation
of the two diagrams in Figure 3.16 . Furthermore, an estimate of the
radiative decay width I'(t -> vY) for a gluonium Iota which makes use of

the matrix element of Egn. 3.4 is as large as 1 MeV [104].

3.4.1.2 Iota as a KR molecule

The dominance of 1 -> & , § -> KK can also be explained if the 1 is
not a gg meson but rather a KK molecule [105]. It has been claimed that
contrary to the findings in both potential and bag models, four-quark
bound states «can only exist in the form of a weakly bound state of two
colour singlet mesons [78]. The Hamiltonian used in this analysis is of
the simplest form in which only the harmonic confinement potential and

the colour hyperfine interaction are included. For three flavours, the
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qgq pair may reside in a 3 or 6 of SU(B)f and vice versa for Qq. Two
scalar nonets can be obtained from combining qg and Jg pairs together
using spin assignments consistent with the exclusion principle. The low
mass scalar nonet is the cryptoexotic sector [6]. Four-quark bound
states can be searched for by solving the four-particle Schrodinger
equation. It was found that with the phenomenological SU(3) constituent
quark masses only the cryptoexotic sector with KK quantum numbers can
exist [78]. In this model, the §(980) is a KK molecule bound via the
residual colour interaction analogous to those binding two nucleons into
the deuteron. The existence of such KK four-quark bound state also
affects the interpretation of the well known scalar S*, a topic to which

we will return later on (see Chapter 7).

There are two ways in which the KK residual interaction, VKK , can
create the § produced in 1 decay. The first is a direct decay of the 1
to KKT, as shown in Figure 3.17 The observed § is simply an effect of

the enhanced KK wave function at the "origin and is derived by

approximating VKK with a square well.

The second case involves the isobar decay of the t[Fig. 3.18]. The
presence of VKK smears the KK* + KK* into a much weaker and wider signal
and causes an enhancement at low KK ‘mass. Since a C = +1 glueball
cannot decay to KK* + EKx. If this KK molecule scenario is correct for
the § then a detailed analysis of the effective mass distributions will

give a definite answer to the glueball interpretation of the 1.
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Figure 3.19 The lowest order diagram for JA -> Yqdg.
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3.4.1.3 Iota as a Hybrid

The 1 may also be a hybrid meson [45][106] because QCD predicts that
the branching ratio of J/Yy -> yqdg [Fig. 3.19] is the same order as that
of J/Y -> Ygg. For low lying hybrid mesons the gqg pair is a 381 colour
‘ o+t

octet. The quantum numbers of hybrids with a TM mode gluon are

’

++ ++ ) -+ -+ -+ .
1 , 2 and with a TE mode are 0 y 1 , 2 where spin one states

may be produced with off shell gluons. A hybrid state decays into two
ordinary mesons with an amplitude proportional to the overlap integral
of the wave functions of the mesons [106]. An estimate for the decay
width of a O_+ hybrid of the mass of the Iota can be made using
non-relativistic wavefunctions given Dby the harmonic oscillator
potential model. Such a non-relativistic calculation gives a width of
15 MeV which is much smaller than the experimental value of 70t§g MeV.
Unfortunately the magnitude of relativistic corrections is not known and
the possibility of a hybrid Iota remains. It is possible to identify

the 1! as the 07

wg. But this would mean a 0~ ' ¢g state at 1650 MeV
with half the production rate of the 1 in J/{y radiative decays, which is
inconsistent with observation [45]. Since the 0—+ glueball is predicted
to have a mass within the mass region of the 1low-lying 0_+ hybrids,

mixing between them is also a possibility which may change the above

picture.
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3.4.1.4 Iota as a Mixed state

The sizable width of the magnetic dipole transition 1 -> YO° remains
an obstacle to identifying the 1 as a pure glueball even though the
simple pole model offers an explanation of this. Fine tuning is needed
to achieve the required cancellation in the mogdel. There are other
alternative explanations in which the 1 is treated as a mixed state,

such alternative models are discussed below.

I. Mixing in the Bag Model:

To explain the radiative decay width of the 1, mixings between a 0—+
glueball and qd isosinglet pseudoscalars (poth the ground state and the
first radial excitation) are found to Dbe large in the Bag
model [107][108]. The photon couplings of a glueball are generated by
mixing g components into its wavefunction. A large electromagnetic
width of the 1 (taken to be a mixed glueball) can be obtained in this
framework for two reasons:

1. Phase space increases strongly with the mass of the 1.

2. Mixings with the ground states are sizable.

Apart from these, contributions from higher order diagrams are also
significant. These features enable mixed glueballs to have a larger
magnetic dipole radiative width than radially excited gg mesons.
However, the above model relies on the assumption that all particles
have the same radius, and that mixing amplitudes was very sensitive to
shifts in quark masses and other parameters in the model. Another

approach in the Bag model [109] with n-n'-glueball mixing gives similar
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qualitative conclusions.

II. Mixing in the Non-Relativistic Quark model:

An alternative way of estimating the mixing is the non relativistic
quark model in which constituent quark masses, harmonic-oscillator
confining potential and the hyperfine (Fermi-Breit) spin-spin
interaction are used. The hyperfine interaction is responsible for the
mass splittings of the pseudoscalar and vector meson masses. In the
following, different approaches will be discussed in order of increasing
complexity.

(i)

The simplest model is to consider mixings between the N, T' and 1.
Physical states are expressed as a linear combination of non-strange,
strange and gg wavefunctions [110]). The content of a state is simply
given by the corresponding coefficients of the base states. A constant
mass matrix with orthogonal mixing and linear mass formulae are used in
this. Using this simple idea, an investigation of J/V decays to
pseudoscalar-vector final states suggests that a sizable gluon
component ( ™ 30%) may be present in the n0'. Indeed, 1long ago
N.Isgur [111] proposed that the mass splitting between the N and N' may
be due to a sizable mixing with glueballs.

(ii)

A more sophisticated model [112] involves n, n', n(1275), 1 and a new
hypothetical high mass pseudoscalar state between 1600 and 1900 MeV,
labelled NS. In this model either 1 or NS could be a mixed gquarkonium

s§ or a mixXed glueball. Mixings only occurs between the glueball and
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isoscalars, there is no direct mixing between ground and radial
excitations. Data on production and decays like 1 -> YDO, n' - YQ° are
needed to distinguish between the two possibilities. Physical masses
are taken as constraints. Bare masses and glueball-isoscalar mixings
are free parameters. The quark or gluon content of the physical states
are determined by the eigenvectors of the mass matrix using the MARK III
results on J/V radiative decays [82]. The solution with 1 = 68%
glueball and NS(% 1700) = s§ is strongly preferred.

(1ii)

In a more complicated version [113}, the physical states are a
mixture of harmonic-oscillator basis states with mixing generated by the
hyperfine interaction. The ground state, the first two radially excited
states and a glueball with basis state |gg> mixX together in this model.
Known radiative decay widths are needed to constrain the parameters in
this approach. The 1 is taken as the mixed glueball and the calculated
'(r - Ypo) is about 4 MeV. Apart from giving a reasonable T(1 -> yp°)
width, this also gives an explanation for the suppression of 1 -> NI in
terms of its composition. An unsatisfactory point is that masses of the
radially excited n' are heavy. But these states have not been seen and
this disadvantage may later turn in its favour.

(iv)

Another model that mixes the ground state with the first two radial
excitations, but without a glueball, is called the giant resonance
model [114]. The  mass splittings in this model are fixed
phenomenologically by comparing the charmonium and low lying hadron

spectra. The Iota is not interpreted as a mixXed glueball but a mixture
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of different degrees of radial excitation with collective coherent
effects analogous to the giant resonant states observed in nuclear and
condensed matter physics. The predictive power of this model is very
limited as it is very sensitive to details of the radial wave functions
and exact values of some of the parameters. This and the previous model
both suffer from the fact that if radial excitations are allowed to mix
with ground states then this should not Jjust be confined to the
isoscalars. The consequences of such mixings to occur at low energies

would spell disaster for conventional meson spectroscopy.

A final comment on mixXing models is that genuine radially excited
states will have a reduced magnetic dipole transition amplitude. In a
non-relativistic model, the excited state wavefunction is orthogonal to
the ground state wave function. If the magnetic dipole transition was a
simple spin flip, as in non-relativistic model, the overall amplitude
would vanish because of the wavefunction orthogonality. Although this
orthogonality is not exact in:relativistic cases, at least an order of
magnitude suppression for the radiative decay rates of radially excited
mesons compared to the ground state is eXxpected [108]. Judging from the
present data, the Iota is therefore unlikely to be a radial excitation

of the 1'.

IIJ. Mixing through the Axial Anomaly:

2 completely different approach is to mix the pseudoscalar glueball
with the n and n' through their anomalous couplings [Fig. 3.20]. These

gluonic or anomalous couplings of the n and ]’]' are given by
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a ny
<0|g% TrG+G |n, nv (3.6)

Identifying TrG-E as the interpolating pseudoscalar glueball field, the
n-n'-glueball mixing [115] is  determined through the Partial
Conservation of the U(l) current hypothesis [116]. Experimental data on
electromagnetic decays of the isoscalars are used to relate the
parameters in the model. The mixing between the 1 and n' is found to be
much Dbigger than that of the 1 with the n because the amount of mixing
depends on the square of the masses. The results on the decays of the 1
agree gualitatively with experiments and favour the 1 as a mixed

glueball.

The above strong anomaly plays a more important role in the
pseudoscalar nonet then just mixing n-n'-glueball. It has Dbeen shown
that the n—n' mass splitting and the deviation from ideal mixing can be
understood if there exists a substantial annihilation amplitude of
positive sign [111]. Such a contribution is small in the vector and
tensor nonets, where ideal mixing is a consequence of the SU(3)f
breaking induced by quark masses. The perturbative contribution to the
annihilation amplitude in the pseudoscalar nonet is dominated by the
'diamond' diagram of Figure 3.21 through this anomalous coupling. Such
a gg annihilation diagram is relatively suppressed in the scalar nonet
because the two gluons are in a P-wave. The isoscalar scalar will be
discussed later in Chapter Seven. Incorporating the positivity of the
g-d annihilation amplitude in the previous mixing model, R.Sinha [117]
finds solutions for the N-N'-l1 mixing that are consistent with present

experimental data. Although the 1 in these solutions has a substantial
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Figure 3.21 Quark diamond diagram for isosclar pseudoscalar qJ mesons

(N,N') with only two gluons exchanged.
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amount of gluonium content, the overall picture of mixing is different
from all previous mixing models. The anomalous coupling has to be put
in by hand in this mixing approach and a better alternative is to use

the effective QCD Lagrangian which we now discuss.

3.4.1.5 Effective Lagrangian approach to the Iota

Because of confinement the fundamental fields (quarks and gluons) in
the QCD Lagrangian do not appear as free particles. It is therefore
useful to construct an effective Lagrangian for describing the
properties of the observed particles and at the same time possesses all
the symmetry properties of the QCD Lagrangian (i.e. chiral symmetry in
the massless 1limit). The old U(l) or the n-mass problem can be solved
by including a pseudoscalar field in an effective chiral
Lagrangian [118] which autoﬁatically gives the correct anomalous
conservation law for the axial ‘U(1l) current. The required effective
Lagrangian which reproduces the axial anomaly has been written down some
time ago [119] and the mixing of n-n'-0"% glueball is discussed within
such a Lagrangian with the massless axial anomaly term [Eqn. 1.23]
identified as the pseudoscalar glueball field [120][121]. The
Lagrangian contains a kinetic energy term and an interaction term with

matter fields for the 0”7

gluonic field. The anomaly term can be split
into two distinct glueball fields. One of these is responsible for the

annihilation contribution in the n' as in Figure 3.2} while the other

could correspond to the physical glueball state. This already implies
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mixing between N' and O—+ glueball. The amount of mixXing between the n,
n' and 1 is obtained by fitting experimental data on the production and
decays of the particles. It turns out in this picture [120] that the 1
is almost a pure gluonium with 92% glue content and the TN is &

guarkonium. The overall result is in qualitative agreement with data.

3.4.1.6 Remarks on the Jota

There are signs of the 1 in other radiative decay channels of the
J/Y . At least three pseudoscalar states below 2 GeV have Dbeen seen in
J/p -> Y{KRm , yo® , pp , ww } [122]. In addition, a large radiative
rate to NWT suggests the existence of at least one other state in the
region but its spin-parity has not been determined. It is difficult to
say whether all these enhancements are due to the 1 or there are more
new states to Dbe discovered. The data on pp and ww mass distribution
can be explained if a new resonance X(1800) is allowed to interfere with
the 1 [122]. However such a scheme does not agree with the yp®
spectrum. The N(1275) has now been confirmed and it may have some

contribution to the above processes.

As a concluding remark, the 1 is the oldest of the glueball
candidates and yet both the present experimental and theoretical
situation is still confusing. If both n(1275) and 1 are radially
excited pseudoscalars then their mass pattern and production rates in
J/V radiative decays are hard to understand. It seems that the 1 must

have a substantial gluon content even if it is not pure gluonium. The
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next glueball candidate to be considered is the 6.

3.4.2 The Tensor Glueball Candidate §(1690)

The 6 was first observed in the channel J/V -> ynn and later in
J/¥ -> Y8, 8 -> k&, mm [64]. No other decay modes have been found and

overall ratios of the decays is
KK :mqn :nm =23 : 1 : 0.8 (3.7)

since the © does not seem to have %g decay channels this makes it

more acceptable as a pure gluonium candidate.

The gluonium interpretation of the 6(1690) is based on arguments
similar to those of the 1
I.

The production rate of the © in radiative J/{ decay, along with its
mass and width agreeing with calculations [46][95][97], qualify the B as
a glueball candidate.

IT.

The B is not likely to be a member of the radially excited tensor
nonet because;

1. The mass splitting between the § and £'(1525) is far too small for
the quarkonium scenario to be tenable.

2. The production rate of the 6 in J/{ decay is too large.

£(1270) and f'(1525) are the two established isoscalars of the ideally

mixed tensor nonets. The §(1690) does not seem to fit into this tensor
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nonet and its preferred decay to KK would point to an s§ content, so it
would have to be the radial excitation of f' for a quarkonium
assignment. Indeed, a study of the 8 as an excited nonstrange meson
fails to explain the obéerved decay rates completely [73]. The
B(J/¥ -> YB) is about two times larger than B(J/V -> Yf') which is in

contradiction with what is expected of a radial excitation.

If T(YY -> £') >> T(YY -> 6) then the § would almost definitely be a
glueball but the present experimental limit is not yet sensitive enough
for the comparision to be made. The main problem for the gluonium
hypothesis is again the decay pattern. The decay rates for a tensor
flavour singlet should be related by SU(3) to

KK : np: ™ =~ 3 : 0.5 ¢ 6
after taking into account the D-wave phase space effects [73]. There
are again models to explain this observation and we now discuss these

models in turn.

3.4.2.7 Models for a pure 6 glueball

It is possible to argue that the suppression of the § -> TN decay
mode (cf. Egn. 3.7) is due to competition of phase space. A flavour
symmetric qg pair, given Dy (ﬁﬁ + 4dd + s§)//§} would be created by a
gluon or flavour symmetric annihilation of gluons. The quark pairs then
subsequently hadronize to form the observed final states. The ul + d4d
pairs can form the following final states with pions:

T, PP -> AT ww -> 6T etc.
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However because of the mass of the 6, the sS pairs can only materialize
to one KK pair, other heavier strange states like nn are penalized by
phase space. But the multi-pion channels can proceed without inhibition
through the quasi two body S-wave channels PP and ww. Therefore a much
larger fraction of the s decays to KK than uu + dd to 7m simply because
of phase space effects. Although the initial decays of the gluons are
flavour symmetric, the symmetry is broken in the observed final states.
This is to be compared with the flavour symmetry breaking mechanisms
mentioned for Iota decays (Section 3.4.1.1). Hence the g with its mass
at 1690 MeV can be identified as the 2% TE-TE glueball in a Bag Model

where the Iota is taken as a gluonium [46][54].

The possiblity of a mixed state can not be ruled out with the present

experimental data and we consider such a possiblity in the next section.

3.4.2.8 0 as a Mixed state

A mixed @ offers an alternative to the flavour symmetry breaking
mechanisms used in the previous discussion in explaining the large decay
rates of the 6 to final states with strange quarks with the 0 taken to

be a gluon rich state.

I. Mixing in Non-Relativistic Quark Model:

An analysis of the mixing of the f, f' and 6 in the simplest
approach (see Section 3.4.1.4) can explain the decay characteristics of

the particles if and only if [73][123]
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\O

f = 90% (ud + ad)//2 + 10% glue

f' =~ 99% s§ + 1% glue

12
o
\o

) 90% glue + 10% (ud + ad)/v/2.

This is good phenomenologically but the ad hoc requirement that f'
should be left out of the mixing is not understood. Other versions
requiring larger amount of mixings have not been very successful [124].

It may simply be that the 6 is almost pure gluonium and mixes very

little with g states.

II. Mixing in Effective Lagrangian:

The effective Lagrangian approach described earlier can be
generalised to encompass the tensor glueball. This is to be compared
with the strong gravity model which describes the gravitational, scalar
and electromagnetic fields. In such a model an ad hoc dilaton field is
required to make the theory conformal invariant. In the effective QCD
Lagrangian the scalar glueball field naturally acts like the dilaton.
The QCD trace anomaly (in the massless 1limit) is identified as the
scalar glueball field since the term TrGeG has quantum numbers of a
scalar. A conformal invariant Lagrangian describing a massive spin 2
field, the tensor glueball, has been derived [125]. The main feature of
the Lagrangian is that there exists multi-gluebail interaction
terms [126]. The decay of an unmixed tensor glueball 60 -> nn then has
contributions from the diagrams of Figure 3.22 . These contributions
have Dbeen neglected in the previous mixing models but are important in
this approach. The eo is assumed to mixX only with the f'(= s%) and the

above contributions are required to explain the large 8 - nn decay
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Figure 3.22 (a) 60 decays into NN through the SU(3) singlet.

(b) A possible unitarity correction to (a).
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rate. Although the effective Lagrangian approach works reasonably well
for the 1, it fails to explain the total width of the e . This makes
the previous mixing in which § and f are mixed more difficult to
understand as the f' and @ are closer in terms of mass. Having
discussed the possiblities of a pure and mixed glueball we now turn to

other alternatives.

3.4.2.9 f§ as a Hybrid

The possibility of the ® being a hybrid is small as the lowest 1lying
2** are predicted to be in the mass range of 1.9 - 2.3 GeV [54][94]
which are too heavy for 6(1690). In radiative J/ decays the gqg pairs
in 1low 1lying hybrids are in the 3S1 state. Hence tensor hybrids are
made of q@gTM and because of the s-channel coupling of gTM they are
expected to decay predominantly into two vector mesons containing
strange quarks. Furthermore constituent quark masses are usually used
in the calculation of decays to include some of the final state
interactions associated with confinement. As a consequence of this
approximation tensor hybrids are forbidden by the spin operator g,
responsible for the transition, to decay into two meson final states

with a pseudoscalar. The hybrid interpretation therefore fails to

explain the decay pattern of the §(1690) [106].
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3.4.2.10 8 as a Four Quark State

Alternatively the 8 could be a four quark state. These states are
generally expected to be very broad, except may be for the 0%*. But the
tensor (ull + dd)sf state would have a mass below the fall apart
threshold and might be observed as a narrow resonance. However, it is
expected that [(§ -> KK) ~ T(§ -> nn) and this is in slight disagreement
with the data. It is puzzling that given the large production rate of
the 8 , no other potential four quark candidates especially the Sx(975)

have been seen in J/y radiative decays (see Section 5.4.1).

3.4.2.11 Remarks on the 6

Nothing definite can be said about the 6 at present, but it is most
likely to be a gluon rich or four-quark state. Data on other decay
channels are much needed, especially the radiative decays which may

provide us with a firm footing for assigning 8 as a gluonic state.

3.4.3 A possible Glueball Candidate £(2200)

This is the last glueball candidate observed in radiative J/y decays.
It has been seen in K'K~ and ngg channels in the ratio  of
1.3 * 0.9 [127]. This is consistent with the value 2 expected for an
isoscalar meson. Although it is known from observation that the § has a
narrow width, partial wave analysis has failed to determine its spin.

Since the & decays to KgKg its spin, parity, and charge conjugation must
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be JP

= (2n)¥*, n=0,1, 2, 3....... Even though the spin of the §
is not known, one can still speculate on its nature with its known

properties.

I. £ as a Quarkonium:

If the £ is a quarkonium then the observed KK decay requires it to be
made of strange quarks. Such a candidate in the relativistic potential
model is the L = 3 5F2 sS meson, an excitation of the f£'(1525) [128].
It is expected to decay to K*K + KxK with a branching ratio
approximately equal to KK. This is an important decay mode as it is
forbidden to-a C = +1 glueball. The absence of such a decay is hard to

explain even when mixing with other states is allowed.

II. £ as a Gluonium:

Although the £ is too heavy for the low lying 0** ana 2¥% two gluon
glueballs in Bag models with massless constituent gluons, it is possible
to identify them with the ¢ if mass is given to the gluons. The gluon
mass is supposed to represent a large distance effect and is taken to be
0.8 Gev [129]. The £ is taken as a TM-TM glueball in this approach.
According to the production rate both scalar and tensor glueballs are
possible candidates, but they are predicted to decay substantially into
final states of KK + ms. Although the suppression of the TT mode is a
direct consequence of this scenaric the failure to observe other

predicted decay modes [129] is a serious problem.
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I1I. £ as_a Hybrid:

The preferential decays of the £ to final states with strange quarks
qualify it as a possible s§gTM hybrid. However only a 2 _ =2, 2++
hybrid meson at the mass of the £ would be narrow enough to be
compatible with the observed width [106][130]. The calculation of its
decay rates is basically the same as those described in previous hybrid
models. It turns out that the production rate to KK is too small in
comparison with experiment. Other decay channels like ¢ and o¢n are

also expected to Dbe seen. The hybrid interpretation seems to be

unlikely with the present experimental information.

IV. £ as_a Four Quark state:

For a four quark interpretation, the £ mass seems too high for it to
be observable. As mentioned earlier [131], only light four quark states

are expected to survive as observable resonances.

Finally, it seems that £ does not fit into any of the above scenarios
as they all predict other decay channels that are not seen in present
experiments. Searching for other decay modes of the £ is therefore

important in identifying the §&.

3.4.4 The Lightest Scalar Glueball Eg

The existence of the scalar glueball is very important in
- establishing the valence gluon hypothesis,

- calibrating the glueball mass spectrum, which is crucial in glueball
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physics,

- and to provide hints for better model construction.

The resonance G(1590) seen in n’p -> G+n [132] has been considered as
a candidate for the scalar glueball [133] or as it's radial
excitation [134]. Its dominant decay mode is nn' which is possible for
a scalar glueball if flavour symmetry breaking is taken into account.
The nn' decay is thought to go via a gluon analogue of the ordinary
planar diagrams in the quark sector [Fig. 3.23p] which is also assumed
to be the dominant contribution to Nn. This is motivated by the success
of Ref. 135‘ in explaining the large decay rate of the n' in the
radiative decays of the J/V, which assumes a strong coupling of the n'
to gluons. The assumption that the process of Figure 3.23(b) dominates
those with an intermediate g pair of Figure 3.23(a) in scalar glueball
decays is questionable. A naive counter argument is that the valence
gluons must first be stretched out far enough for a virtual gluon pair
to be created to screen the colour, and there is no a priori reason to
favour such a process. A complete breakdown of the flavour selection
rule is also more than expected. Furthermore, if the G(1590) is the
scalar glueball then the Iota cannot be a pseudoscalar glueball
candidate as it is lighter than the G(1590) and 6 would be too light for
a tensor glueball. If this is the case then why have both the non
gluonium states, the lighter 1(1440) and the heavier 8(1690), been seen
in the gluonic J/Y radiative decays but not the G(1590). G(1590) is
also not likely to be a four-guark state (uu+dad)ss/y2 as the ratio

BR(G -> KK)/BR(G -> nn) is too small for such an interpretation.
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Figure 3.23 (a) Diagram for the (gg) glueball decay through an

intermediate. g§ pair.

(b) Diagram for the (gg) glueball decay to nn (Nn‘) without

an intermediate g pair (i.e. through anomalous couplings).
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Phenomenologically, the G(1590) is more likely to be the first radial
excitation of the isosinglet in the scalar octet. The G(1590) is not

generally regarded as a scalar glueball candidate.

+ and 2++ glueballs, the

Having found candidates for the lowest 0
absence of any plausible candidate for the scalar glueball subsequently
prompts a lot of speculations. There are mainly two schools of thought.
One advocates a broad scalar gluonium [136], its width so wide that it
ceases to be an observable resonance. Others prefer the opposite
extreme for a very narrow scalar glueball [137] which escapes detection.
As the mass of the scalar gluonium is predicted to Dbe in the

neighbourhood of 1 Gev [138], its properties depend on whether it is

above, below or on top of the KK threshold.

If m(Eg) < m(KK), Eg can decay into two or four pions. But from
previous studies on TW scattering, the four pion channel is found to
open only well above 1 GeV. Thus a Eg resonance is hard to hide in TW
scattering below KK threshold, which is virtually elastic. As a
Breit-Wigner resonance usually occurs with a phase shift § at 900 (see
Section 4.2.1), one hopes to understand more about Eg by studying the TN
phase shift. There are several measurements on the isosinglet S-wave 1T
phase shift § which do not agree on details, but the general features
are quite well established [Fig. 5.3]. The phase shift shows no rapid
energy variation below KE threshold, it rises slowly from 7T threshold
and passes through 90° on its way up to the KK threshold where it is

rapidly rising. Although S passes through 900, it clearly is not the

result of a traditional resonance described by a Breit-Wigner form. The
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generally accepted explanation is for a narrow resonance S=x(975) near KK
threshold to sit on a rising background of a very broad €(1300). There
are alternative explanations of the structure either in terms of a very
proad S-matrix pole € at 700 MeV with a 1 Gev width [139]), or a qgqg
state at 650 MeV [140], or in terms of the unitarized quark model [141].
If the widths of glueballs are believed not to be much broader than
ordinary hadronic states than it is unlikely to associate the entire
phase structure below 1 GeV with a scalar glueball. It has been pointed
out by the authors of Ref. 137 that there are two possible ways of
hiding a glueball. The most obvious sclution is to assign a very narrow
width to €g so as to escape detection due to binning of the data and the
finite experimental resolution. Such a narrow state can only have local
effects on the data and it is found that after smearing the local
effects, a glueball with a width less than 1-2 MeV can be hidden in the
data. The <second scenario is for a glueball to mixX via unitarity
effects with a q3qg state at 650 MeV. Both states can have widths of
the order of 100 MeV providing their masses and widths are fine tunned
to reproduce the global behaviour of § and a very narrow structure which

again is hidden in the data.

if m(sg) > m(KK), KE channel then becomes available and since S-wave
data can be confidently separated up to 1.5 GeV a glueball with mass
less than 1.5 GeV can be investigated with a coupled channel analysis.
For a heavier scalar glueball, multichannel analyses are needed and the
experimental situation becomes more complicated. The possiblity of a
narrow € heavier than 1 GeV has been examined in the framework of the

g
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effective QCD Lagrangian [136]. The QOCD trace anomaly is reproduced by
introducing a scalar field in the effective Lagrangian which is
identified as the scalar glueball field. The couplings of this pure
gluonium to quark states and two photons can be estimated using the
appropriate 1low energy theorems. It is concluded that the width of a
scalar gluonium with mass greater than 1 GeV is unobservably wide, and a
gluonium with mass between 400 to 1000 MeV would have detectable widths
put are ruled out by the TT scattering data. Such a result comes as a
surprise, as already pointed out in Section 3.2.2. The scalar glueball
can have a substantial two photon width through the trace anomaly.
Indeed using the matrix element in Section 3.2.2, the estimated two
photon width of a scalar glueball with mass greater than 1 GeV is

comparable to that of conventional gJ resonances [22]{104].

Apart from mixing the scalar gluonium with a four-quark state, €g can
also Dbe miéed with the isosinglet of the scalar quark multiplet [138].
The apparent solution to this mixing is the 8Sx + £ scenario which
explains the mm phase shift. This scenario has been studied in QCD sum
rules which make use of the low-energy theorem [142] derived from the

trace anomaly (in chiral limit):
<o} 6 mr> = g2 + o(g*) (3.8)
|6, | q q

where q is the 7T invariant mass.
Again the disappearance of the ag factor on the right hand side indicate
that a scalar glueball can have a strong mm coupling, much stronger than

the meson one. The scalar glueball may therefore have a broad width
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with or without mixing. The € is thought to be such a broad mixed state
with a large gluon component and the Sx is mainly a uu+dd like quark
state with a small amount of gluon mixture [134]. It is then argued
that the S* should be absent [134] in the double pomeron exchange
pp -> pp T process. However the AFS group has found evidence for the
Sx in their data [69] which contradicts this expectation. Others who
favour a mixing scenario with a significant gluonic content in
sx [137]1[138] receive support from such a finding. However, the lack of
evidence for the S* in J/) radiative decays (see Section 5.4.1) [43]
seems to favour the scheme with small mixing. The whole picture seems
confusing as our uhderstanding of the scalar multiplet is poor. To make
the situation more bizarre the Sx has been nominated as the most
probable candidate for both a four quark state [6] and a KK
molecule [78][143]. The mysterious nature of S* qualifies us to call it

the S* puzzle.

Clearly a detailed study of the isosinglet scalar channel below 2 GeV
is urgently needed both in glueball physics and in hadron spectroscopy.
The rest of this thesis describes such an endeavour made in

collaboration with Michael Pennington and David Morgan. [144])
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CHAPTER FOUR

QUEST FOR THE LIGHTEST SCALAR GLUONIUM

4.1 INTRODUCTION

The dilemma faced in the search for the scalar glueball is that it is
either very narrow or very wide compared with normal gq hadrons. In
either case a systematic study of ‘hard gluon' channels like J/Y -> ymm,
J/W -> ¢um, ¢ -> gsbmm, T -> Trm and in particular the AFS double
pomeron exchange experiment is needed. The AFS experiment
PP -> PP TN ,(KR) are specially designed to search for the scalar
glueball and provides the highest statistics data on the TTW spectrum at
low TT masses which is quite different from that of TTW scattering
itself. However, any scalar meson in the 1 GeV mass region can only
decay to TN and/or KK channels, and the fact that strong interaction
processes must conserve probability tightly correlates these processes
to the elastic reactions W -> ww and W -> KK and so severely limits
the scope for new effects. As we shall see, the difference between the
T mass spectra is caused by final state interactions that can shape and
colour the actual spectra we observe. Nevertheless, SO tight 1is the
relationship required by unitarity between channels with essentially
just mwm and KK final states, that any new experimental information can
add greatly to our understanding of the 1 = 0 J = O sector. Another way
of expressing the unitarity constraint is that any extra low mass state

should already have been seen in 77 scattering without any need for a
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special production mechanism. Though the AFS experiment can of itself
provide no new excitations, it can shed valuable light on states already
there. For this it is ideally suited, because unlike classiC processes
like TP -> W m'n, the S-wave qn final state in pp -> pp 7w is not
swamped by a dominant I =1 (P) signal. Thus the AFS data is a major
addition, supplementing experimental information on meson-meson
scattering. This allows us to perform a new coupled channel analysis of
essentially all 7m, KK information and obtain more detailed conclusions
than previously possible. Such analysis relies crucially on our
understanding of the interplay of production mechanisms and final state
interactions, which form the basis for the extraction of meson

scattering information.

4.1.1 Production mechanisms and final state interactions

The nature of glueballs suggests the way to ook for them is to
consider processes with an initial state rich in glue. We then look at
the meson final state of such reactions, for example the TT mass
spectrum. From this we learn about a process we like to regard as
'‘gluon' -> mmW, It is natural then to compare and contrast this with the
TT mass spectrum from a reaction initiated by quarks. Let us recall how
we learn about meson states in such channels as this will introduce many

ideas relevant to gluonium searches.

In contrast to our very detailed access to baryons, essentially the

only states of 2zero baryon number we can form in the laboratory are
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those found in ete” anninilation. Consequently, our knowledge of the

spectroscopy of mesons comes about almost entirely from production
processes. There in pN or NN scattering, we analyse some sub-channel of
the final state. For example, we learn about the p from studying the mn
final state in m p -> m n*n. Such processes are often thought of in a
factorised way, wherein we regard the p as being first produced by the
particular mechanism involved and then decaying in a universal fashion.

This is the basis of the isobar picture.

In general, the production process 1is complex, depending on a
multitude of kinematic variables and sub-reactions. Consequently, the 2
or multi-body final states may have a quite different appearance in
differing kinematic situations and, in particular, a ‘'resonance' may
appear to have a variable shape. An example is the S*x puzzie, the S
production is believed by some group to be suppressed in the pp -> pp TW
double pomeron exchange process due to the absence of the Sx peak in the
data [134]). But a partial wave analysis of the data has shown a strong
presence of S* in this process [69]. Thus unless we have a detailed
understanding of the production mechanism and the properties it must
satisfy we may not know whether a short-lived state appearing in one
channel is the same or different from that in some other. It is
therefore essential to have an accurate description of production to be
able to distinguish new from old effects. Thus in the investigation of
final states interactions to be described later, it will be necessary to
outline for each reaction what the production mechanism is and how we

are to describe it.
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In general, production mechanisms cannot be accurately modelled. We
therefore seek situations where these mechanisms simplify: at high
energies and small momentum transfers, for example. There processes
become dominated by exchanges in the t-channel, which carry well-defined
quantum numbers and for which the Regge model provides an excellent
phenomenological description. Thus the high energy production of the p
in ®p - Tty may be factorised in the t-channel to give information
about W"W" -> P -> TW, where the "initial" state 7 is off-shell with a
negative mass-scuared. As recognised long ago by Chew and Low [145],
and independently by Goebel [146], the pion has such a tiny mass that
its pole at t=0.02 (GeV)2 is appreciably felt in the scattering region
of t<0. In reactions like T p -> mn*n or 7m7p -> K'kK*n, which are
controlled by the exchange of pion quantum numbers in the t-channel, we
can therefore factor off the nucleon vertex and extrapolate the residual
meson vertex to the pion pole. We thus obtain information on physical
v -> A°m, = KK scattering. For the channels in question these have
hitherto been the only purely mesonic processes, for which there has
been sufficient experimental information to allow the extraction of
amplitudes, thus our only source of information on what in the naive
parton description we may regard as quark interactions initiated Dby

meson.

It is possible that information on what we may think to be gluon
interactions can be extracted by special mechanisms in a similar way.
Such a mechanism is believed to be the 'hard gluon' double pomeron

exchange which yields final states with quantum number accessible to
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glueballs. Experiments on both 'quark' and ‘'gluon' channels reveal that
up to roughly 1.4-1.5 GeV in mass, 4m, 6m etc, production are small
enough (in a sense to be quantified later) to be neglected in comparison
with the dominant 7T and KK channels. What is more, below " 1 GeV, wm
scattering is purely elastic and unitarity is a particularly powerful
constraint [147]). When the KK channel opens up, it is known to couple
strongly, so that a coupled channel analysis is essential and with
detailed experimental information on both channels, this becomes
feasible. The formalism which allows us to take into account the
constraint of two channel unitarity so important for such an analysis is
explained in Section 4.2. wWith this apparatus, we will be able to
investigate simultaneously the way the I = 0 S-wave appears in the
seemingly quark initiated 7m -> W (KK) channels (Section 4.2.2) and as
well as the supposedly glue-rich reactions pp -> pp W (KK) of

Section 5.2 and ¥° -> J/¥mm, J/¥ -> MM of Section 5.4.1 .

4.2 MULTI-CHANNEL UNITARITY AND FINAL STATE INTERACTIONS
4.2.1 Unitarity

The conservation of probability requires that the scattering matrix
S(s,t,u) be unitary: S*'s = I. 1In terms of the transition matrix j and
n VI VY

the phase space matrix p, S = I+i20§00§: the unitarity condition becomes
AN v R AN

;»' ,E* = 2ip ty (4.1)

NN

This is the most powerful condition in hadronic physics and provides a
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number of useful constraints on any model of hadronic interactions. A
brief introduction to the usefuless of unitarity is first given here
with a simple one channel elastic process a + b -> a + b as an example,
then follows by its application to coupled channel. The threshold
factor or the density of final states p takes the form p = /Tg:ﬁ7773
where m2 = (ma+mb)2. Since a resonance has definite spin and parity, it
is therefore natural to expand the transition amplitude j in terms of

partial waves

N(s,t) = g (22+1)52(S)P1(cose) (4.2)
1=0

where 12(5) is the ch partial wave amplitude and Pl(cose) are the

Legendre polynomial. The unitarity condition of Egn. 4.1 implies that
Im Uz(s) = p|Jy ()] (4.3)

For simplicity and later relevance we only consider the 1low energy
domain where interactions are purely S-wave. This reduces to
Yis,t) =%

condition are equivalently:

Q—O(S) and a parametrization that satisfies the wunitarity

S

J(s) = sind el /p (4.4)
= 0 L 1y 21p (4.5)
= 1/[p(cot§ - i)] (4.6)

Cross sections are proportional to |Dﬁ|2. The energy dependence of p

can be obtained with a simple radioactive decay argument [148] which
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gives the well known Breit-wigner form

['/2
h

= (4.7)
(Eg - E) - iT/2

where [' is the total width of the resonance at ER . But from Egn. 4.4,
|PY] attains its maximum value when § ='% . A simple Breit-Wigner
resonance with mass ER therefore has a 90° phase shift. We can now go
back to the conventional understanding of the low energy 7T phase shift
in which the Sx(975) sits on a rising background from €(1300). This 1is
illustrated in Figure 4.1 as the superposition of phase shifts from a
narrow and a very wide Breit-Wigner resonances. The shape of the |pj|2
or cross section corresponds to the solid line in Figure 4.1 is drawn in

Figure 4.2 which shows the characteristic dip of Sx near 1 GeV. We now

turn to the next section for coupled unitarity.

4.2.2 Coupled channel unitarity and its generalization

As we are only concerned with the scalar sector, all the formalism in
this section are for the I = 0 S-wave. When the KK channel becomes
accessible there are three different transition amplitudes 3ij which are
the elements of the coupled hadronic:3—matrix. The i and 3 of 3ij
denotes the initial and final state of the transition. The elements Uij

are
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Figure 4.1 The dotted 1lines (1) and (2) are the phase shifts of two

Figure 4.2

pure Breit-Wigner resonances S» and €. The solid 1line is
the combined effect of these two pure resonances (one narrow
and one wide) that produces the classic S» signal (see

Figure 4.2).
A

e’

3- » t
S*(975)

The shape of the cross;section corresponds to the so0lid line

in Figure 4.1.
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J 1n -'J(n + um) (4.8)
1, = 7+ KK) (4.9)

1, = J(KK + KK) (4.10)

and 312 = 321 by the CPT invariance of strong interactions. Inelastic
effects can be accounted for by introducing the elastic factor n

(0« N <1) into Eqn. 4.5 which becomes
2i6
Y. = (e - 1)/2ip, (4.11)

Py stands for the effective threshold factor for the .m channel with

effective pion mass m; defined by

am* = (4(my)* + 8(n)2)/3 (4.12)

0.076132 Gev™

where n and c denote neutral and charged respectively. We also define

an effective threshold factor P, for the KK channel as

p, = (p; +P; )/2 (4.13)

with p: /[s -4(m§)"]/s', k = nand ¢
These threshold factors P, and P, form the elements of the digonal

matrix withp.. = p. , 1 =1, 2.
2 Pii =Py !

The single channel elastic unitarity for WW -> WN in the language of

bubble diagrams is
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'y = pY?

The coupled channel unitarity can be written as generalization of the

single channel unitarity bubble diagram:

n LK K n K
n K
= +
14 - K -
n tk n K T K

kK

T -> Im 311 =0, 13,17 + 0,19, 17
o T - T *
™ - KK In g, =0, ,3%,, + 0,938,
*
I -
m3ij E pk:lik jkj (4.14)

Having obtained the coupled channel unitarity we can analyse the
™ -> 7w, KK data and in principle find all the possible resonances in
these channels. However all existing data have relatively poor
statistics in the crucial 1 GeV mass region where the scalar glueball is
predicted to be and may have a very narrow width. The reason for this
can be seen in Figure 4.2 where the S-wave is at a minimum in the 1 GeV
region. In order to make use of data from other processes with the same
final states, such as the AFS data, we need to relate the amplitudes 5i-

B )
to the amplitudes of these processes.
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We use the term 'production processes' to denote any mechanisms, like
YY -> hadrons or |PIP -> hadrons, where the incoming particles do not

participate as intermediate states in the unitarity bubble diagram.

K A A

o o

where A and B are not pions nor kaons

AB -> T Im §§°) = 3(‘:)

(c)*
pzz.", ¥

(c)* (c)*
0%, 08,°°%

11 21

BB -> KK Im ZZ‘C)

12 22

The production amplitudes are denoted by ng). The unitarity condition
1

for the coupled production channel is

In 3§c) - § Py §§c)* jj Z Py 3“)3 (4.15)

which is a generalization of Egqn. 4.14. Note that Eqn. 4.15 in contrast
to Eqn. 4.14 is a 1linear constraint, a consequence of the assumed
non-strongly interacting character of the incoming particles. Where
just one final state is available, Eqns. 4.14-15 require that
{modulo f's) the phase of the hadronic and all production processes
should be the same - the familiar Watson's final interaction
theorem [149]. We are concerned with its multi~-channel
generalization [150]. To this end, we can immediately write down an

(c)
expression for 31 , which embodies the above constraints,

() . ~(¢)
3 § Gj j_‘]i (4.16)

3{c)
J .

with the real. Such a form obviously satisfies Eqn, 4.15 given
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c
Egqn 4.14. Finally, the production amplitudes }f ) are related to the
1
corresponding cross section ofC) by
i

(c)
9 = £() °1|}§c)|2 (4.17)

where f(C) is the initial flux

and p. 1is the appropriate density of final states.
1

4.2.3 Analyticity and Adler zero condition

To give a sensible parametrization of our formalism we must take into
account all the properties of the amplitudes. We consider the Tm
scattering as an example to illustrate analyticity and to derive the
Adler zero condition [151){152),The right hand side of the unitarity sum
of Eqgqn. 4.14 for TT scattering, 311 =L Ok I;:kl , Sums over all the
kinematically accessible channels. The opening of a new channel may
therefore change the sum drastically and there must be a singularity in
511 at each reaction threshold s » 4m; . Furthermore, the s-plane is
complex with resonances as poles on the complex s-plane i.e. a s;mple
Breit-Wigner resonance with mass mk and width [ corresponds to a pole
s = m; - imRF in the complex s-plane. The complex s-plane can be
divided into different sheets, known as Riemann sheets, according to the
signs of Im pk . In perturbation theory the singularities in 311 take
the form of cuts with branch points at the thresholds on the real s-axis
and extending to s = ®, known as Right hand cuts, with possible values

of s extending over many Riemann sheets. The sheet containing the real

axis below the branch point is called the physical sheet. As s and u
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are directly related Dby the expression s = fm? - t - u with t fixed,
Cod
1
then branch points in the u-channel reaction must appear on the negative
real s-axis, with cuts extending to s = - _ These are the Left hand

cuts of the complex s-plane.

Furthermore, if there exists a particle with mass m_ < 2my and the

0
quantum number of T + T, then there is a corresponding pole on the real
axis at s =s = m: - The contribution of such pole at Ullis called
the Born term. In 711w scatterings there is no Born term (no particle

exists with mass ¢ 280 MeV that can couple to two pions). Moreover, low

enerqgy scattering is known to be suppressed as a consequence of the soft

pion theorems we now describe.

As already pointed out in Section 1.3 the symmetry of the Lagrangian
is always reflected in the algebra of currents. The QCD Lagrangian with
three quark flavours has the chiral symmetry SU(B)L X SU(3)R in the
massless quark 1limit but the symmetry is spontaneously broken down to
SU(3)v required by the observation that the vector nonet is heavier than
the pseudoscalar nonet. The light masses of the pions indicate that the
SU(Z)L X SU(Z)R Cchiral symmetry is only softly broken by the u and 4
quark masses and the breaking of the symmetry is reflected in the
non-conservation of the axial current. The partially conserved axial
current (PCAC) hypothesis [152][153) then assumes that the divergence of

this non-conserved axial current is dominated by the pion field.

+ _ 2.+
e.g. auAu(x) = fﬂm"¢n(x) (4.18)

where ¢; creates a w' and f, is the pion decay constant, with
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+
A = A+ ia?.
u u 1]
To investigate 1low energy TN scattering we consider on-shell
scattering
22 )+ B - 1) + S,
1 2 3 4

with amplitude

<y, 818180

- -+
Assuming one of the Ts is off shell, say @, as in T p -> T 7 n then from

PCAC we have

for, 6 13 a0 (y)| B2eiPaY ay = £ m2 <y, 8 |o7] B oeiPe¥ gy

« —FT- <y ,8|%|a,B8> (4.19)
2 _ 2
P m
a
a a a
But < , 8 |9 A > = - < , 6 |a >
Y |quB i< Y IulB

Hence <Y , 8 |% a , B>« (pz - m;)pﬁ f <y .68 |al8 >eipéy ay

Thus in the limit pu ->0 or s=t=u-= mTr the amplitude vanishes
because the matrix element of the axial current between a single-pion
and a two-pion state has no pole in this limit. This is known as the
Adler zero. Indeed experiment shows that S-wave TT scattering is
suppressed at threshold for on-shell pions. This is to be congtrasted

with a process 1like YY -> "mor P P -> Tw for which there is a pion

exchange Born term and the Adler condition implies no zero [Fig. 4.3].

Having briefy discussed the theoretical background for our formalism
to describe the final state interactions for both meson scatterings and
production processes, Wwe now turn to the parametrization of the

amplitudes.
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Figure 4.3 Born Diagrams for P P (YY) -> wwW,
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4.2.4 PAnalyticity and unitarity

We Dbelieve, the coupled channel unitarity of Eqn. 4.14 and its
generalization Eqn. 4.15 with the particular form of 3£C) in Eqn. 4.16,
provide a full description for all the S-wave T and KK final state
interactions below 1.7 GeV. Before describing the specific
parametrizations used in our formalism. We first consider some general

features.

The assumed real and smooth forms of the &'s in Egn. 4.16 is implied
by all the right hand cut structure of %{C) being explicitly included in
the sum over xji . Moreover, in the case of interest with 7T final
states, we must allow appropriately for the occurrence of Adler zeros
near threshold. The actual position of the zero is process-dependent;
in particular, the zero for the elastic amplitude 311 is shifted, or in
some cases removed, when one turns to the associated production process.
We can cater for this in the above formalism by dividing through by the

zero of the elastic channel at s = s, . Thus defining

_Ju

Tll © g-s
o

(4.20)

we can allow for zeros in the production process in question by

(c)
requiring them to enter in the Q 's. PFor simplicity of discussion, we

set the closely related zeros in 312 and 322 at the same position, since
the data are only sensitive to the zero of ;11 . Thus
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1y ~ -8 (4.21)

enabling us to write

(e)
31‘: B § °§c) Ty (4.22)

with the tilde over the Qa's removed to signify that they are

c
coefficients of the 'reduced' T's. The a{ ) may Dbe viewed as
J

intrinsic couplings, which control the propensity of process (c) to

initiate production in channel j, the final outcome being determined by

the final state interactions supplied by the Tji factors [154].

It is interesting to compare the resulting expression for ?ifC) with
i
that resulting from a one-channel analysis [147], where an application

of unitarity and analyticity yields the form

§§C) = p{e) q(e) (4.23)

P(c)

Here is, in general, slowly varying, incorporating any zero

(c) \ . . .
factors, and § , the Omnes function [155]), is given by

® (),
Q(c) = exp [ —:- [ ds' ’—c (s7) ]

) (4.28)

] L .
4mu s'(s'-s)

. (c) (c) . .
with ¢ the phase of '81 . the corresponding expression for the
reduced elastic amplitude T11 takes the form
(el)
'1‘11 =nQ (4.25)

(el) . . (el)
where § is the analogue of Egqn. 4.24 with the appropriate phase ¢
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c
substituted for ¢( )o Below the second threshold (s=4m§), all the

phases in question are equal by Watson's theorem. This has the
consequence, for the actual phases that pertain in practice, that the
Qs are effectively universal bglow the vicinity of the KK threshold.
As previously discussed, this virtually eliminates any possibility of
new processes uncovering new effects in the single channel region [147].
However, very close to KR threshold the signal may be individual to that

reaction.

To see how this translates into the two-channel formalism, we need

only compare the rival formulae for §§C):

§§C) - ple) g(e)

= aic) T,, + agc) T

11 21
(&), (&) T21 (el)
=(a,”" +a =—)aaQ (4.26)
1 2 T
11
The quantity to compare with P(C) is S(C) defined by
s(e) | () (¢) (e?) 4.27
P (a.1 '1‘11 + a, TZI)/Q (4.27)
which is real over the region of interest, since
( 1
arg(Tyy ) = arg(Tn) = arg (%’,IC)) = ¢(e )by Watson's theoren. For the

M
practical analysis to be described in Chapter 5, the resulting P( )

compares well with the corresponding P(C)[Fig. 5.11], 4indicating the

near universality of the §I's below KK threshold.
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A simple reaction which illustrates this intimate relationship
between processes with the same final state imposed by unitarity and
analyticity is e+e' -> ﬂ*ﬂ'. Here the production mechanism is
explicitly controlled by one virtual photon to a high degree of accuracy
and consequently the quantum numbers of the TW final state are forced to
be those of the photon and have isospin one. Through Eqns 4.14-17 &
4.23-25, the O signal in the elastic process is closely related to that
in e"e”, the omnés function being almost identical. The small
difference in the line shape of the P in these two channels is a result

of the difference between n (recall Eqn.k25) and P(ee) expected form

their differing 1left hand cut structures - P(ee) in particular, having
no cut, is just a simple polynomial. This relationship has Dbeen

extensively investigated in studies of the pion's electromagnetic

form-factor [156].

As we shall see the situation in the I = 0 J = 0 channel with
strongly overlapping resonances and a nearby threshold greatly
complicates this simplicity. Indeed, the I = 0 S-wave constitutes the
most significant non-trivial mesonic example of coupled channel

unitarity amenable to detailed analysis. It is to this we now turn.
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4.3  PARBMETRIZATIONS QF THE K- AND M-MATRICES

After outlining the formalism for relating production and scattering
information on the I = 0 7w and KK S-waves. We need a parametrization
to describe the energy behaviour of the J-matrix and at the same time
account for the unitarity properties and threshold singularities of the
Jmatrix. A form of such parametrization is suggested by Eqn. 4. from

which we can write the single-channel amplitude in the form

3.7 3 (4.28)

where K11 is a real function of s. The generalization of this to

sikustian
multi-cnannelkis known as the K-matrix formalism and that

3 - k[1-1pk]? (4.29)

= [M-1p]! (4.30)

Here, R 1is the diagonal matrix with diagonal elements PeP, - Kisa

real symmetric matrix and n its inverse. The associated S-matrix is

defined by
$ = 1+ 212* ] gi (4.31)
- [ 1+t ol 1 - 19} g g}t (4.32)

In the fits reported in Section 5.3, we take &, which is now 2x2, of the

form [157) with s = K2
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(S'So) z . £PgP

13 4al P (s,-5)(s ~3) BEO °13 ["—“’ﬁ 1] (4.33)
- A
z (s-so)l(ij

Our ‘'reduced' T-matrix elements (éf. EQns .».20-22) are then given by

T = g [ 1-1pk]! (4.34)

A
Note, importantly, the single appearance of K in this formula.
"

Alternatively, we parametrize the E—matrix, Egn. 4.30, as

a flp f'p
M, = 4§ L1 47 n Rl (4.35)
13 7% s' - s n=0 1 4m2
p p e

In Egns. 4.33,35, s = so represents the Adler zero of the T-matrix,
Eqns. 4.20-21. The number of poles and order of the polynomial in

Eqns. 4.33,35 required to fit the data will be detailed in Chapter 5.

Finally, for the ai's we take the simple power expression

@, = nzo a: [%]n (4.36)
(Note that we have now ceased to label the initiating reaction and use
the superfix 1label to identify terms in this Taylor expansion). The
number of terms we take in such an expansion will depend upon the range
of energies over which we are fitting data. For example for the
¥” -> Ymm decay, for which phase sp;ce is limited to 279 ¢ M ¢ 589 MeV,
a linear form 1is adequate, while for the P P reaction, we fit S-wave

information up to 1700 MeV and use quadratic forms.
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In order to determine the parameters in our K- and M-matrix
expressions, we need to fit data on the classic hadronic phase-shift
data on 311 and 5&2 . We shall see later that in fact a combined fit to
the [P P production results is even more constraining, since we can
profit from the additional statistical weight and the distinct and
efficient partial wave separation these new data allow. As is
customary, the KK channel is assumed to dominate the inelasticity from
nm, rendering a two channel analysis a good approximation. We will
comment in detail later when and where this assumption breaks down and

the likely effect of this.
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CHAPTER FIVE

DATA ANALYSIS

5.1 DATA SELECTION

Given the framework described in Chapter 4, one is looking for
information on just 3 parameters at each energy 611 ’ ”11 and ¢12.
These fiXx 311 and 512 , through the usual relations {(cf. Appendix B)

216

I, = [y e M-l (5.1)

16
I, = (20t e 22000} (5.2)

The quantities ”11 and 611 have been determined in numerous analyses of
di-pion production experiments. Of these, we select as input to the
present fit, the classic energy independent analysis by the CERN-Munich
group of their high statistics expeiment on mTp => mtrTn  at
17 Gev/c [158][159]. These results are strongly supported by earlier
exXperiments, in particular by the LBL mwtnm~ experiment of
Protopopescu et al [160]. Above KK threshold, we supplement this wtn”
information with the phase shifts derived by Cason et al from an
analysis of their 8 GeV/c experiment on m™p -> A**n%n® [161].  However,
below 1 GeV, the S-wave solutions of Cason et al are controversial being
in total disagreement with the 7'm~ results of LBL and CERN-Munich. We
therefore exclude their results at lower TT masses. Above 1 GeV, when

many waves become important particularly in m¥n~ scattering, a multitude
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of partial wave solutions is possible. These are constrained by fixed
t-dispersion relations to essentially two solutions [162]. Of the ntnT
solutions found in the energy independent analysis of Martin and
Pennington, the T 'm results of Cason et al [161] and the polarized
target data of the ACCMOR collaboration [163] favour the so-called B'
solution. We therefore input this solution together with the phase
shift solutions.of ochs [159] and of Cason et al [161]. The reason for
including as independent data sets the results of both the Ochs and the
Martin and Pennington analyses of the same 7nm data is that these
analyses have differing constraints and the resulting S-wave, being the
lowest wave in data dominated by higher waves up to spin 3, 1is poorly
determined, and has sizeable error ellipses (shown on representative

data points in Fig. 5.6). Our aim is to pick out a smooth track through

this error corrigor.

Under the two-channel assumptions, additional and perhaps more
reliable information on Ny, [Egns. 5.1-2], comes from the analogous KK
production experiments with incoming pion beams. There have been a
number of experiments poth on KK~ and K%Kg

production [164][165][166]. Besides fixing the magnitude of 312 , these

also provide information on its phase, ¢12 , relative to one of the
other participating waves, in practice the D-wave. On the magnitude,
|:E2], the various experiments concur fairly well; however, there is a
significant disagreement as to the phase behaviour of ¢, = |¢12 - ¢D|

below 1150 MeV. According to the KK~ experiments of Ref. 164, ¢SD is

other_
flat over this energy domain whilst theAKK experiments find a steep rise

- 125 -



[Fig. 5.8], at the lowest energy, the discrepancy is some 70° [167].

Since ‘'a priori' we do not know which, if either, is correct, we input

the results of the amplitude analyses of two representative high

statistics experiments:

1. by Cohen et al [164] of their T p -> Ktk ™n and mtn -> KK p 6 Gev/c
data, and

2. by Etkin et al [165] of their m™p —> KgKgn 23 GeV/c data.

These appear to span the range of experimenta#l possibilities.

In order to extract ¢12 from the published information on ¢SD , we
need to know the behaviour of the D-wave phase in 7um —> KK. Below
roughly 1.4 GeV, this is dominated by the f-resonance and accordingly

assumed to be given by

i1
§ mfFfBZ(s) G(s-si)
tan ¢ = (5.3)
2_
mf s
where i runs over all contributing channels 7m, nn, KK, «.... each with
threshold at s = s, . We input the barrier factor 82 suggested Dby

1

duality [168)] from the nearest crossed-channel singularity to be

- 2 2.
s-s 3 P2(1+2mp/(mf Si))

a2 ~s 92(1+2mg/(s-si)) (5-4)

where we take the standard PDG values for the f-resonance mass and
width, and their uncertainties [169].

Such a form for ¢D we believe more plausible than that modelled Dby

Etkin et al [166) below 1.2 GeV and this is the form we take to extract
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¢12 , appropriately folding in the uncertainties in ¢D given by those on
0

me and F; , which are typically 19 - 4°. Since the D-wave phase given
py Eqn. 5.3 accords well with D-wave modelled by Cohen et al [164] below
1.4 GeV, where it is f-dominated, we take their plotted values of ¢12
directly as input. The resulting phases are shown in Figure 5.8, while

the magnitude of |§gzl is plotted Figure. 5.7.

A priori we have no reason to favour one experiment over the other
(and in fact the analysis Dby Gorlich et al [170] of their polarized
target results disagrees with all of them). It is however worth .noting
that other experiments on KK production from Wetzel et al, Costa et al,
Polychronakos et al [165], while all agreeing on the magnitude of the
cross-section, tend to support the phase of Etkin et al, Figure 5.8. On
the other hand, Cohen et al would justifiably argue that their analysis
is the only one amenable to the necessary I = 0, 1 separation. 1In face
of this, we shall henceforth assume that the results of Cohen et al and
of Etkin et al span the range of current knowledge of ¢12 . Their
sizeable disagreement means that our input on the 7T -> KK channel is
far from homogeneous and we will describe in Section 5.3 the effect this
has. Lastly, the uncertainties in ¢12 within each experiment are very
similar, reflecting their comparable statistics. Only the second data
point of Etkin et al with a quoted 6% on ¢SD is acutely out of line and
its error has Dbeen increased to +20°% in our global fit to all these

data, see Figure 5.8.

A guide to where our two channel saturation of unitarity breaks down

can be seen by comparing the S-wave inelastic cross-section, viz
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(1 - nil)/4, as determined from the analyses of the CERN-Hunich W
scattering data [158] and the better defined KK contribution to this
given by the actual 77w -> KK cross-sction on which essentially all
experiments agree [164][165][166]. We see in Figure 5.7 this comparison
suggests the importance of other final states above 1.4 GeV. There
already exists experimental evidence of a by no means negligible nn
S-wave signal in the f-region [171] and 47 production is beginning to
take off [172]. Rather than attempt to fit obviously inconsistent data,
in which the better determined KK cross-—section would dominate this
aspect of the fit, when clearly the total inelastic cross-section is
more likely to be that of the CERN-Munich results of Figure 5.7, if
other channels were incliuded, we have determined solutions in which the
im -> KK data above 1.4 GeV are switched in and out. The results we
describe in Section 5.3 will for the most part be those with it out and
we will discuss later the rather small effect that neglecting other

inelastic channels has on our results.

5.2 DOUBLE POMERON MECHANISM

The AFS experiment [69] was designed to study central dimeson
production in pp -> pp(MM). The triggering is such that though this
experiment was performed at the CERN ISR, where the square of the
c.m. energy, stot , 1s almost 4000 Gevz, most of this momentum continues
along the direction of the two beams. The protons scatter at tiny

angles and only a small amount of momentum is transferred from each:

-0.015 » t » -0.045 (GeV/c)?. Importantly, this is a far smaller range
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than any other experiment [67)[68]. Moreover, the two mesons produced
are well-separated in rapidity from the on-going protons, so that the
mechanism for their production is naturally factorised from the
scattering of the  protons. The Regge  model provides a
phenomenologically well-tested description for  this [173]. The
satisfactory factorisation of the dimeson production from the forward
going protons means that this reaction can be regarded as (pp)(pp) -> 7w

and the formalism of Section 4.2.2 is applicable to its analysis.

The quantum numbers of the ‘reggeons’ coupling to the
protons [Fig, 5.1] are those appropriate to pp elastic scattering. At
such high energies, these exXchanges are dominated by vacuum quanum
numbers carried by the 'pomeron'. Though the motivation for this
experiment, as discussed in Section 3.2.6, is predicated on the specific
idea that the pomeron is a colour singlet configuration of glue, so that
the central production of mesons is generated by the fusing of glue,
rather than quarks [66], knowledge of the exact nature of the production
mechanism is inessential for our analysis which only needs an accurate

phenomenological description.

The pomeron, having vacuum quantum numbers, fixes the quantum numbers
of the dimeson final state to have I = 0 and ®ven spin. Contamination
from lower 1lying Regge exchanges 1like the p shows up in the dimeson
angular distribution having odd angular momentum components in addition
to a P peak in the 7w mass spectrum. This signal allows such extraneous
effects from non-vacuum quantum numbers to be removed, as discussed

extensively in Refs. 69 and 176. With such a tiny range of t in this
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particular experiment, such contamination f¢@m non-pomeron exchanges is

believed to be under control and readily separated.

The Mueller-Regge approach gives us a description for the

contribution for the pp -> pp(MM) process. With stot the total c.m.

enerqgy squared, M the mass of the meson pair, t 6 and t2 the square of

1
the momentum transferred at each pp vertex [Fig. 5.1] and y the
rapidity, such a Regge analysis allows us to factorise off the pp
vertices and pomeron propagators to give what we may regard as a
pomeron-pomeron cross-section {much 1like the 7YY process studied in

ete™ -> ete™X - see Section 5.4.2) defined by

d*o
= a'28 (£)2 8 o(t,)2 |&,,(e)]| 26 5 (t,) ]2
2 ppiP 71 ppiP* "2 P71 P2
dt dt,dydM?/s
a(s, ) @ pleg)*e p(ty) 2
s~ ™ (5.5
a(M?) tot

where gp(t) is the 'signature' factor for the reggeon, normalised soO
that Imf = 1, and @' is the Regge slope of 0.9 GeV™? introduced to make
all the couplings B dimensionless. With such a normalization the
pomeron contribution to the pp total cross-section is then

tot _ .

0)2 (5.6)
opp BpplP( )

The explicit Mz/

Stot in Egn. 5.5 is a flux factor, which is to be

distinguished form the a(stot)/a(Mz) factor. Though when
2 2 . 2

Stot 7> M° >> 1 Gev?, this also becomes stot/M . In general
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a(M?) = 1/2 + a'M? is expected from the f-dominance of the pomeron; such

a form provides an extrapolation to low dimeson masses of this Regge

behaviour [174]. As s is so enormous, afs ) can be replaced by
tot tot
alstot , leading to the expression
a a's
(Stot) tot stot
= i = (5.7)
a(M?) 7+ a'™? Mi + M2

In the AFS experiment, t1 and t2 cover such a tiny range near the

forward direction that we can take t1 = t2 = 0.03 GevZ = t and

ap(t) = 1. Then we simply have

d%o

12 Ly 3
2a BPP'P(t) M dtldt

2
(m2442)
™M = 0

" (5.8)
1P IP
2dydM

5.2.1 Overall mass dependence of the cross-section

Though this is inessential to our spectroscopic analysis of these
data, it is interesting to see if we can understand the mass dependence
of this corss-section over the whole region studied. Expressing the
cross-section in terms of the P I[P amplitude §(M2,z) where 2z is the
cosine of the scattering angle of the mesons in the pomeron-pomeron C.m.
for dipion production, this amplitude can be crudely modelled by one
pion exchange. That the P P —-> MM process has such a one meson exchange
Born term means that the Adler condition requires no vanishing of such
amplitudes close to threshold [182]}, in contrast to T scattering
itself. This will be important later on. This [P P reaction is in many

ways similar to the YY process [175]. Though both have such one meson
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exchange Born terms (whether reggeised or not is almost irrelevant),
their phenomenology requires this contribution to have low partial wave
components that are strongly absorbed. Exactly how is not well
understood [175]. Nevertheless, we can use such a model to illustrate
the overall trend of the dipion mass spectrum. To confront the data we
have to fold in the experimental angular acceptance function. From
Cecil's thesis [176] we learn that this is

A(M,z) = ) (2L+1) H (M) P (2) (5.9)

L even

with 2z the cosine of the scattering angle in dimeson rest frame and
where the coefficients HL(M) are given by Cecil for L ¢ 8 up to
2.5 GeV - the acceptance function is roughly like (1 - z2)2. With a
free overall normalization, we see from Figure 5.2, where (M“) times the
experimental cross-section is plotted, such a model can crudely describe
the fall of the data. Of course, this amplitude, has no explicit
M? - channel dynamics. From o0ld ideas on the duality, we may expect
pion exchange to average this in some sense, which it approximately
does. However, such duality was never a well-defined concept for
pomeron processes [177], as discussed again in Section 5.2.3, so perhaps
we should not expect any Dbetter agreement. We would expect such an
approximation to model the trend of the earlier data of
waddi et al [67], if we Kknew the relative acceptance and included the

effects of the larger range in t1 ,t2 in Egn. 5.5.
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5.2.2 S-wave dimeson production

Let us now turn to our main purpose which is to analyse S-wave
dimeson production. Decomposing this [P [P cross-section into components
for which the dimeson final state has definite spin J, the contribution

a partial wave :J(M) makes is

3 M2-4 42
OPIP(M) = l6n —

' (2J+1) rSJ(M)|2 (5.10)

M3

where U is the mass of each of the final state mesons, 7w or K as
appropriate. Detailed analysis of the dimeson angular distribution
shows that the cross-section is overwhelmingly S-wave to well beyond
1 Gev. The AFS collaboration have separated out this S-wave component
up to 2.3 GeV and it is this we shall study in both the T and KK
channels. From the tables of Ref. 69, we can deduce these S-wave
cross-sections in 50 MeV bins by folding in £he appropriate acceptance
function, or more readily we can read off the full-corrected S-wave
corss-section from Cecil's thesis [176] Figqure 7.11, our Figqure 5.9, in
25 MeV Dbins. The corresponding S-wave amplitudes are then given by

combining Eqns. 5.8,10 to give

(m24M2)2 J=0
J=0 do
M2-4 2 de, dt,dydM

where
-1

= 12 4
N [32n a Bpp'P(t) ]
The circumstance that the 7w and KK channels both couple strongly must

be allowed for in the formalism. From Section 4.2.2 we have for

- 133 -



PP -> mhn”

$RP /?[a'P'P r o+ aP® g

1 11 2 21] (5.12)

where the v2/3 is the appropriate isospin Clebsch-Gordon coefficient,

and for PP -> K*K~

3IP|P - 1 [G‘P‘P

) 7 (5.13)

T +u|PlP

1 127 % T

22:I
where again l//§ is an isospin factor. The functions ay and a, contain
the left hand cut singularities of the IP [P amplitude which differ from
those of 7 W scattering being in principle complicated by additional
singularities of the six point function pp -> ppTT as studied by
Halliday [178]. Nevertheless, with such a small range in ti , the major
difference along the right hand cut is, as we have already remarked, the
fact that the Adler condition requries no near threshold zero in the
P P channel, in contrast to most other pion processes we consider. So
though we parametrize @, , @, by simple polynomials in M? suitable to
describe their smooth behaviour along the right hand cut, they are not

expected to vanish close to threshold.

In principle, knowing j&l ' 312 and ﬁ;z from fitting the #mWm -> 7w,
and -> KK channels, the ISR data just determine al , a2 . However, the
AFS results provide significant extra information on the hadronic 3ij in
the 1 GeV region to add to the traditional meson scattering processes,
largely because the 7m S-wave is small there and the angular

distribution in TmW -> WM scattering controlled by S-P interference
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effects. In contrast, the [P IP reaction is overwhelmingly S-wave even
at 1 GeV and a more accurate signal is obtained. Thus the AFS data acts
as a severe constraint on the determination of even Sll and 532 ’
partiuclarly through the crucial KK threshold region. In Section 5.3 we

describe fits to the data selected in Section 5.1, together with the AFS

S-wave dimeson results [69][176].

5.2.3 Note on the D-wave cross section

Using notions of duality one can also estimate the expected
cross—-section for f-resonance production in this double pomeron process.
Assuming the triple Regge coupling of the f to two pomerons determined
in pp -> pX with the f-exchange having zero mass extrapolates on shell
in the same way as the f coupling to MM does, one predicts from the
triple Regge analysis of Inami and Roberts [179] that the f-signal in
the reaction pp -> ppTT in the kinematic regime of the AFS experiment
should be at 1least 5 ub GevV ™% for d“o/dtldtzdy dM¥ integrated over the
f-width [180]. The partial wave analysis [69][176] gives the 'observed'
cross-section to Dbe merely (0.5 % 0.3) W Gev 4. This discrepancy,
discussed in more detail in Ref. 180, could Dbe ascribed either to a
failure of simplistic duality ideas for pomeron couplings or an
incorrect modelling of the relative D-wave acceptance in this experiment
or Dboth. Even if the experimental D-wave acceptance is at fault, this
has little bearing on the predominantly S-wave Cross-section we use,

since such correction factors will inevitably be smooth functions of

dimeson mass and so, as discussed in the previous section, absorbable in
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the coupling functions ai(s). It is for this reason that the previous
simpler analysis [147] using earlier data with no acceptance corrections
or partial wave separation at all is quite consistent with the present

treatment Section 5.3.1.

Neverthless, the fact that the f-signal is so small in the AFS
results, while clearly seen in other ISR experiments with larger t1 P t2
ranges [Fig. 5.1] may indicate that the f |[P/P coupling has a more
complicated t-dependence than we have naively assumed. Oonly by
comparing the relative t-dependence of the S- and D-waves at both 1large
and small momentum transfers will we understand this dramatic difference

between the 3% D-wave in the AFS experiment in the f-region and 47% in

that with the SFM.
5.3 THE FITS

In Section 4.2 we introduced a formalism to implement two channel
unitarity. This is readily expressed in terms of either the K-matrix,
or its inverse the M-matrix, Egns. 4.29-30. Their real matrix elements
we parametrize by sums of poles plus simple polynomials in s, the square
of the dimeson mass, Egns. 4.33,35. These forms determine the 3—matrix
elements ‘Jij , Egns. 4.29-30 and, through the channel dependent
functions ai , the amplitudes for each production process, Egn. 4.22.
In this section we describe the outcome of an extensive global fit of
these forms to the I = 0 S-wave data on TW -> TW, U7 -> KK selected in

Section 5.1 and the cross-section for TW, KK production in the AFS
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experiment discussed above.

To summarize Section 5.1, the data sets used in our global analysis
are:

T -> T ; Cern-Munich [158][159], cason et al [161] and the B'
solution of Martin and Pennington [162].

T -> KK ; Etkin [166] and Cohen [164]

PP -> mm, KR ; AFS [69]

We observe from Figure 5.8 that Etkin and Cohen provide two
conflicting data sets for ¢l2 (cf. Section 5.1). To obtain a good
starting point for our global analysis we first ignored the data of
Cohen et al in our initial fits. As explained in Section 5.1, the
S-wave ¢12 has only been separated up to 1.4 GeV, we therefore fit Etkin
from KK threshold up to 1.4 GeV. All data on 7w -> 7T are fitted from
the 7T threshold up to 1.7 GeV. Our initial strategy is to avoid all
fine tuning and unnecessary complications, so effective pion and kaon
masses given by 4m> = 0.07613 Gev* and 4m? = 0.98277 Gev? have been used

in P, and P, (cf. Appendix A.V) to obtain the fits we now describe.

We first employed the K-matrix formalism with just one pole {cf.
Eqn. 4.33 and Appendix A.III & IV). As a starting point, we tried out
an illuminating exercise leaving out the AFS data. The outcome of this
is that we obtained numerous good fits all with Xz/d.f. N1 for the rest
of the data. When the AFS data was included the parameter space was
found to be greatly constrained and tightly restricting the U—matrix
amplitudes. These restrictions mean that only by painstaking work were

the best fits (to be described later) obtained. The best way I found of
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fitting data with rapid variations, like the sharp rise in
62 [Fig. 5.3] and the shoulder of the AFS data [Fig. 5.9], is to fit
the data point by point (or in small groups) in the region of rich
structures. To see how best to deal with this we performed an exercise,
in which the data in the region of rapid variation (0.9 ¢ E ¢ 1.1 GeV)
were switched off and we were able to find solutions without a K-matrix
pole. However, when the 0.9 - 1.1 GeV region was switched back on we
found that the polynomial alone (with a reasonable number of terms
i.e. < 10) could not do the job and the total number of parameters was
dramatically reduced with the introduction of a K-matrix pole (see
Appendix A.III). In fact one does not need to go very far with the
polynomial to find out that it alone is not adequate. When one
introduces an extra parameter to a fit one expects a decrease in X2 by a
sensible amount. We illustrate this technical aside by introducing the

2
concept of X /d.f. used for measuring the quality of fits. Let's denote

the number of data points by Nd t and the number of parameters Dby
ata
N .  The degree of freedom d.f. is defined to be N - N . When
par data par
one increases N to N! one expects the quality of the fit to
par par

improve, i.e.

2
(—X—) > (=X’
a.f. a.t.

From this we can justify the number of parameters required in our fits.
Furthermore, one can also 1look at the correlations between the
parameters to find out if any of them is redundant, i.e. with tiny
correlation coefficients. (The minimizer employed in our analysis 1is

the MINUIT (Cern) programme which has the facility for working out
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correlation coefficients). Based on the above reasoning we only use one

common Adler zero in all our fits [157].

Having briefly explained the philosophy of our fitting approach we
now describe the various fitting procedures that lead to the final
représentative fits given in Table 5.1 (with K and M for K- and M-
matrix fits; the subscripts are for the number of poles in the
parameterizations). We shall leave all the fine details like resonance
assignments to Chapter SixX and only concentrate on giving an account of

the fitting procedures here.

A representative one K-matrix pole global fit without Cohen et al
described earlier has a xz/d.f. of 1.24 for 224 data and 24 parameters.
when we searched for the 5—matrix poles (Appendix A.VI) of all the one
K-pole solutions we always found among other poles one (to be explained
later) on sheet II at 0.988 GeV which we call the B pole (See Chapter 6
for details). The pole pattern of all the solutions were extremely
similar and deserved more investigation. Here, I would 1like to point
oﬁt that the K-matrix pole in this parametrization must be near 1 GeV as
required by the rise of 58 in the region (see AppendiXx A.I11).
Therefore to make sure that the B pole is not an artefact of the
K-matrix parameterization we look for variations in the nearby K-matrix
pole by performing multi-pole K-matrix fits, an example being the 3-pole
K-matrix fit. A typical three pole fit has a Xz/d.f. of 223/196. With
two additional ©peles in the K-matrix the polynomial background is
consequently simpler (cf. Egqn. 4.33). The main feature of the three

pole fits is that one of the K-matrix pole is always near 1 GeV as
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expected, Wwhile the other two are dispersed, so that compared with the
one pole solutions the effect of these extra poles is just to
reparametrize the smooth background - one pole occurs below 7T threshold
reparametrizing left hand cut effects and the other above the region we
fit reparametrizing the high energy continuum (cf. see K3 in Table 5.1).
The quality of the one pole and three poles K-matrix fits is remarkably
similar, as is the pole pattern of these different amplitudes. While
the position of the Vv 1 GeV K-matrix pole varies slightly from fits to
fits, the position of the B pole remains unchanged. To confirm our
believe that the B pole is not an artefact of the parameterization and
the pole pattern in general, we have obtained distinct solutions with an

M-matrix parameterization, Eqn. 4.35.

The first M-matrix parametrization we used had one M-matrix pole
(excluding the Adler zero pole, Appendix A.IV). A typical fit has a
Xz/d.f. of 217/196 = 1.11. We found again the B pole at exactly the
same position as in all the previous K-matrix fits. An interesing
observation is that the M-matrix pole is always close to 1 GeV which I
believe is the reflection of its companion the v 1 GeV K-matrix pole
(cf. Ky and M in Table 5.1 and Egn. A.19). To convince myself that
this is indeed the case, I have tried a two poles M-matrix fit and the
Xz/d.f. is 213/193 = 1.10. One of the two M-matrix pole is again near
1 GeV and the other one turns out to be above 2 GeV which is just the
reflection of the far distance K-matrix pole in our previous three pole
K-matrix fits (cf. K3 in Table 5.1). The 3-mmtrix pole pattern is

again found to Dbe unchanged and proves the existence of the B pole
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beyond doubt (see Section 6.1). However, the nature of B is not clear
from these fits and we will study the role of B in more details later

(see Section 6.2).

Having understood the nature of the poles in the parameterizations
and established the pattern of the J—matrix poles, we went on to
complete our global analysis by including Cohen et al up to 1.4 GeV (cf.
Section 5.1). Furthermore, in obtaining the final representative fits
[Table 5.1] we have used the p, defined in Eqn. 4.13 (Appendix A.V).
This is Jjust a fine tuning procedure because we had reproduced all the
trial fits wusing this averaged 02 instead of the old pz (with
4m§ = 0.98277). In general, we have not concerned ourselves with the
fact that the experimental results are binned. In fitting, we have
treated each datum as though it represented the value of the experiment
at the bin's mean energy value. This is appropriate for smoothly
varying amplitudes. However, from our trial fits described earlier we
know that the B pole is on the real energy axis and is close to 1 GeV.
Hence in the case of the AFS results in the neighbourhood of 1 GeV, for
both TN and KK channels [69], we have actually averaged the
parametrizations over the bin widths, using Simpson's rule, when
comparing with these data. This correctly allows for any rapid
variation in the 3—, and consequently 5—, matrix elements in this region
caused by the B pole. We have found that the K- and M- matrix
parametrizations we have discussed give equally good fits to all the
258 data in the mass range from Tm threshold up to 1.7 GeV, their

parameters are listed in Table 5.1. A typical one pole solution, Kl '
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is shown in Figures 5.3-10. Apart from the revised error on one datum
discussed in Section 5.1, no attempt has been made to weight particular
sets of data in tﬁeir contribution to x2 by anything other than the
errors quoted in the relevant analysis of each data set [181]. The
xz/d.f. is then roughly 1.3. As seen from Figures 5.3-10 the major
contribution to X2 comes from the conflicting data sets on ¢12 '
Figure 5.8 . Leaving out either of these, i.e. exercising a prejudice
as to which is correct, decreases the xz/d.f. in our otherwise global
fit. (The strategy employed in the trial fits described earlier). This
exercise favours Etkin et al over Cohen et al with a Xz/d.f. of only
1.09 compared with 1.23. The parameters of the solution, Kl(Etkin),
fitting the 7m -> KK results of just Etkin et al are listed in table 5.1
too (i.e. one of the previous one pole trial fits). However, we find
our amplitudes change so little between such alternatives that for the
most part we quote those of the compromise global fit [181],
Figures 5.3-10. We will comment later on this stability. Apart from
the troublesome TT -> KR results, the data are very well fitted as
illustrated in Figures 5.3-10, even, for example, the 3 data set on the

T phase, 611 , above 1 GeV from CERN-Munich as analysed by Ochs [159]

and by Martin and Pennington [162] and from the moy0

results of
cason et al [163]. Though these are not exactly consistent, the fit has

found a very satisfactory smooth track through these data, see

Figures 5.4,6.

As already remarked in Section 5.2, the input of the AFS double

pomeron results is a severe constraint on the solution, not just on the
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couplings @; , for which quadratic forms have been used (Egns. 4.22,36),
but on the strong interaction amplitudes 311 and 312 . As pointed out
earlier in the philosophy of our fitting, the tight constraint imposed
by the AFS on the amplitudes is borne out by the fact that the dafa set
in the 1 GeV region could only be fitted with patient and delicate
variation in the parameters. The AFS data tightly restrict how the
amplitudes develop through the KK threshold region. This is reflected
in the much more striking and stringent conclusions we will be able to
deduce from this analysis than was previously possible using just
elastic hadronic reactions. Notice in Figure 5.9 , the shoulder at
M vV 0.9 GeV before the steep fall. This is an important feature of both
the AFS data [69] and all our fits as will be discussed in Chapter SiX.

Such a structure is also seen in the yy data discussed in Section 5.4.2.

It is important to note that the rapid variations in Y-matrix
elements required by experiment in the crucial KK threshold region,
Figures 5.3-10, are not wholly generated by the nearby K-matrix pole.
Rather they are due to the interplay between this pole and the
‘packground' polynomial. Because of the structures required near KK
threshold, we have not been able to find solutions without a K-matrix
pole with less than 40 parameters, though with more parameters we
believe this may be possible {see earlier discussion and
Appendix A.III). We have on the other hand been able to find further
solutions with additional poles in the K-matrix and a consequently
simpler polynomial background (cf. Egn. 4.33). The parameters of a

typical three pole solution, K3 , are tabulated in table 5.1 . As
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expected from the similarity of the previous one pole and three poles
K-matrix trial fits, the introduction of more poles does out not change
the global description of the data and the fits are almost
indistinguishable from Kl of Figure 5.3-10. We shall describe the

detailed features of these different amplitudes in Chapter SiX.

We have also obtained fits with a one-pole M-matrix parameterization.
The parameters of a typical M-fit are listed in Table 5.1. Again the
quality of the fit is excellent and the resulting physical amplitude is
almost identical to solutions K1 and K3 - see Chapter Six. The small

differences between these amplitudes is highlighted by looking at the

Argand plot of the Tm -> TN S-wave, p1511 . In Figure 5.5 the solutions

K1 ' Kl(Etkin), K3 and M are compared. They are essentially identical

except for the energy range of 960 to 1100 MeV, and then only Kl(Etkin)
differs above 1040 MeV. 1In this region of KK threshold, the amplitudes
are varying most répidly and so differences become exaggerated.
Focussing on KYK~ tnreshold where each solution leaves the circle and
remembering that unitarity requires ¢11 = ¢12 up to this energy, we see
how changes in this point can bring a sizable difference in ¢12 with
only a small change in the corresponding amplitudes and their consequent
pole structure (See Chapter 6). From Figure 5.5 ,the phase ¢ll
{¢11 = 611 + tan‘l((1—n)/(1+n)tan611)] is seen to fall quickly above
K+K— threshold by almost 900 pbefore rising again. It seems rather
natural that ¢ll and ¢12 having been equal up to KtK~ threshold should
tend to keep together in the 8 MeV upto k%% threshold (the reason for

using the average 02 in the global fits 1is for such purpose - to
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distinguish the difference between Etkin et al, Cohen et al and AFS, cf.
Appendix A.V). It is a feature of all our solutions that ¢12 does
indeed fall initially just as implied by the T7W -> KK results of

Etkin et al.

Oour fitting procedure is predicated on the assumption that the 7T and
KE channels exhaust the content of unitarity in the energy range for
which we fit, namely up to 1.7 GeV. We know, of course, that this is a
far too strong an assumption even above 1.2 GeV. Results on the TN
final state [171] suggest that this may contribute 2% to the inelastic
cross-section even in the f-region [Fig. 5.7]. Such an additional
channel would in fact have only a §mall effect on our amplitudes. More
serious is the appreciable onset of 4T channels near p-p threshold [172]
as mentioned in Section 5.1. Furthermore, we do not have precise
information on the amplitude 512 above 1.4 GeV (see Figure 5.7). 1In all
the fits reported éo far (including the trial fits), the KK data are
only fitted up to 1.4 GeV and beyond that 312 is determined Dby the
inelastic TN cross-section as determined from the elastic channel by
CERN-Munich [158] (tne magnitude (1 - Nj;)/4 of 312 is obtained by
measuring ”11 ). Another way to obtain information on 512 is to follow
the KR contribution of Cohen et al [164] and Etkin et al [166]. We have
obtained such a fit, Ki , in which the inelastic cross-section is
required ‘to resemble more the above KK contribution (i.e. the
Etkin et al and Cohen et al are fitted up to 1.7 GeV but the 7T

inelastic data are only included up to 1.4 GeV). The truth presumably

lies somewhere between the two extreme, Figure 5.7. 1In obtaining the Ki
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solution no phase input on ¢12 has been imposed above 1.4 GeV, just its
magnitude. This is because the strict imposition of the KK phase (as
determined by Cohen et al, for example) is surely over-restrictive in
the presence of other appreciable open channels. Nevertheless, by
introducing more parameters a satisfactory fit to the phase information
on ¢12 (form Cohen et al) can be obtained giving a solution with a
similar pole content to Ki . As expected, the differences between Kl
and K! only occur above 1.4 GeV and then largely in their couplings to

1

KK. In Chapter Six we will exhibit these differences, which are again

5.3.1 Consistency checks

Here we perform two consistency checks on our solution and how they
fit the AFS double pomeron results. The first is to consider how this
much more sophisticated and complete treatment is related to the earlier
singie channel Omnes analysis by D.Morgan and M.R.Pennington [147] using
40% of the AFS statistics with their preliminary treatment of their
acceptance. As detailed in Section 4.2.4, this can be done by comparing
the two channel function ; of Egn. 4.27 with the single channel
p [Eqns. 4.23,26], which in Ref. [147] was taken to be a constant. The
g from our fits is plotted in Figure 5.11 and 1is seen to remain
remarkably flat, emphasising the universality of the Omnés function
below KE threshold and indicating no dramatic difference in the way the
T final state couples to [P [P than to 7w itself. This is to Dbe

contrasted with our discussions of the Yy process in Sections 5.4.2 and

- 146 -



In fitting the AFS data we have only considered the S-wave
cross-section, Eqn. 5.11, with no reference to its phase. However,
there does exist phase information on this channel as analysed by
Ccecil [176]. Our second check is therefore to compare the prediction
for the S-D wave interference predicted by our solutions with that given
by experiment. With the D-wave phase assumed dominated Dy just the
f-contribution and so given again by Eqgn. 5.3 and its normalisation
chosen to reproduce the reported height of the D-wave cross-section, we
obtain the prediction shown in Fig. 5.12 in excellent agreement with
AFS's experimental interference [69]. Deviations at higher 7T masses
are to be expected as the D-wave phase is no longer f-dominated. The
ability of our solutions to predict results not fitted make this a very

satisfactory test of our amplitudes.

Apart from the elastic and inelastic channels of TT scatterings which
we have used to obtain our amplitudes, there are other sources of
dimeson final states like heavy flavour decays and the two photon
channe;. These are all related through wunitarity to the 7w and KK
hadronic amplitudes, uij (cf. Eqn. 4.16), we have determined up to
1.7 GeV. In the next section, we have used one of our fits, K, , to
represent these amplitudes and consequently determined the 77 and KK

couplings (the O;) of these other processes.
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5.4 OTHER SQURCES OF DIMESON FINAL STATES

5.4.1 Heavy flavour decays

The dipion mass spectrum observed in the decay of Yr -> J/UTT is seen
to peak at high 7w masses (v 600 MeV). This is often spoken of as
reflecting some low mass epsilon-like structure in the I = 0 S-wave TT
system. This is to forget that TT and KK decays of the states of hidden
charm and hidden beauty are subject to exactly the same constraints as
all other hadronic decays by virtue of their common final states. The

amplitudes for these S-wave decays are also given by the formulae of

Sections 4.2,3. [182].

Let us first consider the decays ' -> J/ymm and T' ->Tum
(generically V' - Vim). The phase space for the 7m final state is
limi£ed by the V' - V mass differences of less than 600 MeV. The
experimental spectrum for the decay A -> B(MM) can be expresssed in

terms of the appropriate S-wave amplitude X(M) by

ar _ w2 e 22 2421 [M2-4y2 113 2
M o3 o, ) 202 ] [, -M ) 242 ] [w2-4u2]}2 | F |2 (5.14)
A

whére M is the dimeson mass and once again Y 1is the mass of the
individual mesons in this pair. The amplitude 3’will be given by an
equation of the form of Eqgn. 4.22. In the following fits we now
describe, the 'reduced' amplitudes Tij are obtained from the :Iij

amplitudes of the K. fit through Eqgn. 4.20. The functions al and d2 are

1

exXpected to contain an Adler zero, as PCAC requires such a zero close to
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threshold for these ' and T' decays, there being no Born term.
Otherwise we expect these functions a, and az to be simple as these
channels have a suppressed left hand cut, since the 0ZI rule 'forbids'
J/UT  and Tr intermediate states, Figure 5.13. We therefore parametrize
them by a linear function of Mz. The position of the on-shell 2zero is
to be determined by the data. It turns out that the experimental
results are well-described by such forms which incorporate the crucial
twin ingredients of PCAC and final state interactions required by
unitarity [183]. Others [184] have fitted these, and earlier data on
the same channels [185][186]1[187][188][189][190] with  just the
constraint of PCAC and a single channel analysis, i.e. in our 1language
setting 'I'll in Egn. 4.22 to be>a constant and @, to zero. 1In the small
mass region explored in these decays, it happens to be true that T11 is
slowly varying. However, the advantages of this fuller treatment are:
1. no such fortuitous accidents are needed; nevertheless, a peaking at
larger Tt masses is generated by the low mass suppression provided
by the Adler zero rather than a localized € enhancement.
2. by performing a coupled channel analysis we can determine the

relative couplings to 7T and KK.

In Table 5.2 we give the position 6f the zero, So * and the ratio of
al to a2 for the fit to each data set shown in Figures 5.14-15. Note
from Figure 5.15 that the quality of the fits to the T' data, whether of
the ARGUS group at DORIS [187] with over 5000 acceptance-corrected
events or the CESR groups [188][189] with over 4000 such events, is

excellent. 1In contrast, the ' data, Figure 5.14 , with merely a
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thousand acceptance-corrected events from each of Mark II [185] and
Crystal Ball [190] are considerably poorer. This suggests that the
statistical errors on the Crystal Ball 7om°% resuilts [190] in particular,
which are all that are shown in Ref. 186, are far from the total

uncertainties on these data.

The one surprise among these decays is when we turn to T -> Tum,
which with a larger mass difference allows 7T masses up to 900 MeV.
Even though the statistics are poor with only fifty or so events from
poth CLEO [191] and cuUSB [192], Figure 5.16 , we see the data are
consistent with unadorned phase space. In our terminology, al and a2
appear constant and show no sign of vanishing near threshold. why the
Adler zero does not occur in this channel is a mystery. No Born term in
the T'* -> Tnm channel is known, but these data do suggest some

unexpected dynamics, which more data would hopefully illuminate.

A particularly fortunate situation would arise if one of these narrow
states, below heavy flavour threshold, would allow TT masses peyond KK
threshold. This, together with explicit information on the KK channel,
would allow another look into the Sx region, which at present only the
AFS data explores fully. Several such channels are possible but all
have complications. First, there is J/¢ -> ¢(MM), where the ¢ is
isolated by its KK decay mode. This channel allows dimson masses up to
2 GeV, again has suppressed left hand cut effects (we know of no J/ymor
J/YK states in keeping with the 0ZI rule, Fig. 5.17) and can have quite
different couplings to Tm and KK from any of the channels previously

discussed. Unlike the AFS data, the 'S*' shows as a peak near KK

- 150 -



threshold [Fig$.5.18-19]. This is a sign that the KK couplings are
dominant, as the presumed sS structure of the 0 would
imply [Fig. 5.17(b)]}. The only published data from Mark II  at
Spear [193] are far too poor to be very precise. However, a dramatic
improvement is expected in the near future with results from Mark 111 at
PEP and DM2 at DCI on both the T and KK channels. Preliminary
results have been presented at the 1986 Rencontre de Moriand [194]{195]
to which we apply our analysis. Knowing Ull and 351, these data can be
fitted to determine the coupling functions O, and a, . These each
contain the Adler =zero for this channel, but with the present
uncertainties we merely put s, , Egns. 4.33-35, equal to its T
position, Table 5.1. As an indication of what can be achieved, we have
fitted quadratic forms for the ai's simultaneously to the published
Mark II [193] and preliminary Mark III data [194]. The barameters are
listed in Table 5.2 and the fits shown in Figures 5.18-20. Though the
fits are shown as continuous curves they are in fact averaged over the
same bins as the data shown, just as for the AFS results [Section 5.3].
This is essential in the KR threshold region, where our amplitudes have
local structure, caused by the B pole (See Section 6.1), resulting in
the shoulder and fall in the P P -> 7T spectrum [Fig. 5.9], while giving
a peak in the present J/y -> ¢nm distributions [Figs.®.8-20]. Data with
sufficient statistics to allow finer binning may usefully check our
amplitudes in the 1 GeV region. Indeed, we eagerly await the final
Mark III and DM2 [196] results, which, once acceptance corrected, the
dimeson mass accurately calibrated and the S-wave separated, could be

added to the data sets of Section 5.1 to constrain the determination of
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our basic hadronic amplitudes 313 of Section 5.3.

Another reaction with far higher statistics, for which data have been
available for a number of years is J/¥ -> wnm [197]. This channel
exposes a large TT mass region and is known to have a sizable D-wave
signal as the f-resonance is clearly seen. However, an analysis of this
decay is complicated by crossed channel effects [198]. The 7w spectrum,
even if it were angular separated, could not be discussed without regard
to strong reflections from the wrm channel which, again because of final
state interaction effects, has a sizable B-signal. To arrive at any
conclusions from this channel, a full Dalitz plot analysis is necessary
together with a complete treatment of the Wwnm as well as coupled W

channel.

5.4.2 Two photon channel

We have already drawn an analogy in Section 5.2 between the P [P -> MM
and the two photon process accessible in e+e_ -> e+e-(MM).
Unfortunately only relatively poor statistics results exist for this in
principle cleaner channel [175]. Data on dipion production have been
published by PLUTO at Petra [199] and DMl at DCI [200], Figure 5.19, the
shape of which has Dbeen recently corraborated by preliminary results
from DM2 at DCI [201]. 1In the absence of angular separation, we naively
assume that all the data below 1 GeV is S-wave. Having determined :ll

and 312 from our global fits (K, is used), we <can fit these YY data

1

using the analogue of the IP I[P scattering formula Eqgn. 5.10:
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J=0 M2-412

J=0
oo (M) = —— |% (M)|2 (5.15)
YY M.3
and so determine al ’ a2 for the YY process. Just as for the P IP

reaction, there is a non-zero pion exchange Born contribution [Fig. 4.3]
and the 0s are not expected to have an Adler zero. The results of a fit
to the PLUTO [199] and DM1 [200] data are shown in Figure 5.21, with the
corresponding parameters listed in Table 5.2. We would predict that the

pM2 [201] data when finalised should have the same form as this.

To investigate the intrinsic difference between the YY and P P
processes, we compare their couplings by plotting the relevant funtion Q
of Egn. 4.27 in Figure 5.2% to Dbe contrasted with Figure 5.11l. The
effective coupling to the PP channel is flat showing no mass
dependence compared with 7T itself, but the YY couplings increase
towards 1 GeV. Such sharp contrast between the two couplings can have a
significant implication which we will discuss in Chapter Seven. A crude
extrapolation of the S-wave couplings of Figure 5.22 up to
1.4 GeV (unconstrained by any data in that region!) does suggest however
that there is a 1large S-wave signal under the f and emphasises the
importance of a partial wave separation before results on the size of
the f signal can be Dbelieved. Moreover, after this analysis was
completed, new results from the TPC YY collaboration have been
published [202], which do not agree with the PLUTO data of
Figure. 5.21 (and hence Fig. 5.22) and so no firm conclusions can be
drawn until this discrepancy is resolved. Nevertheless, the formalism

outlined in Section 4.2-3 should apply as previously discussed for

instance by Lyth [203] and by Mennessier [204].
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M* d*o/dt, dt,dy dM
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5.4.3 Diagrams_and Tables
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Figure 5.1
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The double Pomeron exchange graph controlling central
dimeson production in PP -> PP(MN). Its analogue

ete” -> ete (MM) is shown in brackets.

&
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Figure 5.2

l [ I 1

05 10 1S 20 25
M (GeV)

The general trend of the double Pomeron exchange
cross-~section for dipion production may be attributed to
pion exchange. Normalised to the AFS data [69) and folding
in their acceptance, this ‘'duality average' is plotted
together with the AFS results on K x d"O/dt1 dt, dy aM as a
function of dipion mass M. For ease of plotting, the factor
M* has been included as this conveniently reduces the scale

of the M-dependence.
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Figure 5.3 The I = 0 S-wave phase shift, 5: , for TN scattering

(denoted §, . in the text) from the CERN-Munich group [158].
The hatched band represents the continuation down to
threshold provided by the Roy equations [162]. The curve

shows a fit typical of all the solutions.
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The ™ I = 0 S-wave phase-shift, Gg , and inelasticity ng
(denoted by 611 » N,, in the text) above KR threshold
showing the CERN-Munich results as analysed by Ochs [159)
and the preferred B solution of Cason et al [161). Again

the curves show a typical fit given by the solutions.
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Pigure 5.5 The W I = 0 S-vave amplitude O, 311 shovn in am Argand plot
conparing the solutions Kl(o)’ Kl(Ettzin)(V)o K3(A) and (o).
The last three are only shovn Uhere they dJiffer f£ron

solution Ri °
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L.
Figure 5.6 The I = 0 S-wave amplitude 01‘311 shown in an Argand plot
with solution K compared With the CERN-Hunich results from

the  energy-independent  analysis of  Martin  and

Pennington [162] from 1.15 to 1.69 GeV in 20 MeV bins.

Error ellipses have been drawn at representative energies.

- 158 -



0.3

0.2

0.1—

(1 -m,2)
1

] T I - I ' !
0, MN—>NN . xonNnN—>KK

t—?-‘

—

1.0

1.4
M (GeV)

Figure 5.7 The cross-section for inelastic I = 0 S-wave WW scattering.

This cross-section is proportional to (1/4)(1-n;1), where
nll is the uw inelasticity, and it is this that is plotted
from the analyses of the CERN-Munich wn results by
ochs {159](e) and by Martin and Pennington [162])(A). The
I =0 S-wave WX -> KR contribution to this inelastic
cross-section is plotted from the results of
Cohen et al [164])(x) and Etkin et al [166](o). Some of the
data points have been displaced for easier presentation.
The full curve corresponds to solution K., and the dotted one

1
to xi as described in the text.
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Figure 5.8 The phase of I =0 S-wave 1n => KK scattering from

Wetzel et al (A),

Cohen et al [164>](o), Etkin et al [166)(e), and from

Polychronakos et al (V) and

Costa et al (A)[165). Experiment determines the phase of

this S-wave relative to the D-wave. Modelling that by

resqnance dominated forms gives the S-wave phase, ¢12 v

shown.
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Figure 5.9 Mass spectrum of centrally produced S-wave T events in
PP -> ppmm from the AFS Collaboration [69] are shown above
1 GeV. These data have been corrected for acceptance [176].

The curves show a typical fit given by solution K
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Figure 5.10 Mass spectrum of centrally produced S-wave Tm and KK events
in pp -> pp(MM) from the AFS Collobration [69] are shown
above 1 GeV. These data have been corrected for
acceptance [176]. The curves show a typical fit given by
solution K

1 o
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Figure 5.11 A plot of the effective two-channel coefficient function of
the Omnes representation, Eqn. 4.27, for the production
process pp -> ppTnh as a function of dipion mass, M for a
representative solution, Kl . The flatness indicates the

near equality of the Omnes function for this process and 7T

scattering itself, Eqns. 4.26-27.
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Figure 5.12 The APFS results on S-D wave interference in pp -> ppmm [69]
are compared to the prediction from the analysis with the
solutions determining the S-wave and the D-wave assumed
dominated by the f-resonance below 1.4 GeV. (At higher

masses, this simple model of the D-wave becomes inadequate).
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TT:#

Figure 5.13 Parton diagram of the decay V' -> VT, with V made of heavy
quarks v, so that v = ¢, b means V = ¥ or T, emphasising the
gluonic nature of the intermediate state expected in this

picture.
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Figure 5.14 The mm mass spectrum for the decay ' -> J/im*n~ as a
function of M? for
(a) 7*7” from Marx II [185],
(p) 7°n° from Crystal Ball [186].
The curves show the results of a combined fit typically

given by the S-wave solutions.
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Figure 5.15 The 7n mass spectrum for the decay T' -> Twm as a function
of M for:
(a) m*n~ from Arqus [187],
(p) 7¥n~ from CLEO ([188],
(c) wtn~ from cuse [189],
(a) 7°1° from crystal Ball [190].
The curves show the results of a combined fit typically

given by the S-wave solutions.
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Figure 5.16 The 7N mass spectrum for T'' -> Tmm as a function of N
from
(a) cLEO [191],
(b) cusB [192].
The curves show the data are essentially consistent with

phase space with no low mass Adler suppression.
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Figure 5.17 Parton line diagrams of the processed

(a) 3/¥ -> ¢mm, (b) I/¥ -> ¢KR.
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Figure 5.18 The T and KR mass spectra for the decays JAp -> ¢(MM) from

Mark II [193]. Our solutions typically give the curves
shown which in fact represent the average over each bin

width, assuming pure S-wave.
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Figure 5.19 The preliminary Wi and xRk mass spectra for the decays
JA -> 6(MM) from Mark 1II presented by Mallik [194]. Our
solutions are exemplified Dby the curves shown; these
represent the average over each bin width, assuming pure

S-wave.
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Figure 5.20 As for Figure 5.19 with the mn data above 600 MeV in 30 MeV

bins.
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Figure 5.21 The 7w mass spectrum for the process YY => wtn~ from
(a) the PLUTO Collaboration [199],
(b) pm [200].
Note that in plot (b) the purely leptonic contribution to
the detected final state has been folded in to allow
comparision with the DMl results [200]. Assuming the
data is S-wave dominated, the solutions readily accord with

these spectra as shown by the curves.
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Figure 5.22 Effective two channel coefficient function for an Omnes
representation of the process Yy -> mn. The data are from
PLUTO [199] and the curve corresponds to the fit shown in
Fiqure 5.20. This is to be contrasted with the flat
function of Figure 5.11 for ® @ -> 7T indicating that the
S-wave states have from 0.3 to 1 GeV an increasing coupling
to Yy with increasing mass compared to ©wnm and P P.
However, these conclusions are not definitive without
partial wave separation, information on the KK channel and a
resolution of the experimental inconsistency between

different yy data sets.
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Parameter H ll(!tkin) x{ K3 M

s, -0.0110 =0.0162 =0.0141 0.0220 -0.0074

s 0.9247 0.938)3 0.9226 0.0544 0.9828

s, 0.9547

s 2,2815

f{ -0.2242 ~0.1659 ~0.2334 0.0870 0.1968

f; 0.5829 0.5852 0.5969 0.3800 ~0.0154

fi -0.1298

'fg 0.6011 0.1131 a,,

£ -2.1130 0.0150 a,,

fg 4.1900 =0.3216 a),

cgl 0.7347 0.4247 0.7871 -0.9527 0.0337

c{l -0.5266 -0.5822 -0.5610 -0.6893 -0.318%

c{l 2.6151 2.5478 1.6987 1.1313 -0.0942

cil -1.7747 -1.7387 -2.0451 -2.1052 -0.5927

cil 0.8031 0.8308 0.6361 0.1957

cgz -3.2762 -3.1401 -3.3270 0.6619 -0.2826

c{z ~0.6662 -0.1359 -0.4788 1.9239 0.0918

c§2 0.8778 1.0286 1.1362 0.3866 0.1669

c{z -2.1190 -2.3029 -1.0623 1.5638 -0.2082

°;2 0.2319 0.1944 0.6290 -0.1386

cgz -2.678S -2.8447 -2.7914 -3.4567 0.3010

c%z 7.9951 6.9164 7.5952 -1.8117 -0.5140

c§2 5.5763 $.2846 4.5612 2.4379 0.1176

cgz -1.4956 ~0.9646 -0.93%6 -2.7982 0.5204

c;z ~0.3977

ag ~0.4012 -0.5711 ~0.4700 -0.2368 0.1393

,{ 0.5468 0.7800 0.6593 0.3183 -0.0278

,: 0.2440 0.1622 0.2036 0.3131 0.3952

cg 3.273 3.310 3.542 3.328 3.281

c; -3.483 3,833 -3.824 -3.763 -3.432

a? 1.183 1.193 1.284 1.340 1.147

Noaca 258 224 244 258 258

¥oera 24 24 24 28 26

x? 303 219 307 305 303

x2/df 1.29 1.09 1.40 1.31 1.29
Table 5.1 Parameters of global fits. The four significant figures are

to, allow an accurate reproduction of the fit rather than an

indication of their accuracy. All dimensional parameters in

appropriate powers of GeV.
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Process Experiment solmg al(s) °2(s) x2/data
[AR2" §.4 Mark II 5.4 -0.176 1.0 28/23
Crystal Ball 97/26
Argus 9/13
T'+Tan CLEO 3.4 -0.176 1.0 7/11
CUSB 10/14
Crystal Ball 5/10
CLEO 13/11
T"+Tux ® =0.176 1.0
CUSB (fixed) 1/6
1223 8] Mark II 39/18
P+ ¢KK Mark II -0.5 af = 0.53 o) = 0.08 1/4
Yy+oRT Mark III (fixed) a{ = -1.58 a; = 3.64 50/38
¥+ KK Mark III u% = 1,23 ag = -2,72 1/5
PLUTO ag = =0.44 ag = 1,11 12/17
YY*nu @ ai = ~2.46 a% = 7.99
DM1 a% 0 a% = -8,10 4/6
Table 5.2 Parameters of fits to heavy decays and Yy => TW with Sy the
position of the process-dependent Adler zero and the
the

coupling functions ai(S) of Eqn. 4.36 normalised SO

2 =
“2“‘x) 1.
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CHAPTER SIX

RESULTS AND SUMMARY

6.1 POLES OF THE S-MATRIX

In this Chapter, we resume our main theme addressing the question:
what I = 0 scalar dynamics is entailed by our global fit? When people
discuss the pseudoscalars or tensors, there is no duestion that the

2%t states

1(1440) or B8(1690) are resonances or what the other 0™t ana
are; speculative interpretation starts from that point (cf. Chapter 3).
For the scalars, especially in the I = 0 sector, it is a major and
subtle enterprise to establish what the resonances are, still more to
assign meaningful parameters. The difficulty stems from all the classic
complications of the resonance concept occurring simultaneously:
resonances are variously broad and overlapping with substantial coupling
to strongly opening channels (see the S* puzzle in Section 3.4.4). We
are going to proceed in rather slow careful stages in the following

discussions and this is inevitable given the compleXxity of the

phenomena.

In the present section, we list and discuss the pole content of our
solutions pointing out how our rather elaborate pole scenario is tied to
the phenomena it explains and to general requirements on possible
structures of the S-matrix. The ensuing list of poles and residues is

the objective outcome of our analysis. As we shall show in this
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chapter, in all our solutions, we always find seven poles of the
S-matrix Dbelow 1.7 GeV. In Section 6.2 , we attribute these to four
resonances, two broad objects €(900) and £€'(1420) [205] and two narrow
resonances Sl(993) and 82(988), which together reproduce the S=
phenomenon. Couplings to mm and KK reveal the g£(900) and €'(1420) to be
consistent with a (ul + 4d) composition within an ideally mixed nonet;
likewise the 82(988) could have an (s5) composition and the 81(993)

appears like an SU(3) singlet, compatible with a glueball make-up.

Having sketched our destination, we now proceed to detail and justify
this pole content of our solutions. This entails specifying not only
positions and residues (couplings), but also on which sheet of the
energy plane (see Appendix A.VI) poles are located [Fig. 6.1]. This
latter is only an issue when dynamical activity coincides with the
opening of a new threshold - precisely, the present case. Normally, all
but one of the unphysical sheets of the energy plane is remote and
resonances are unambiguously identified with poles on ‘the adjacent
sheet, e.g. for P(770) sheet II and £f(1270) sheet III. A new threshold
temporarily multiplies possibilities (see Appendix A.VI), since three
unphysical sheets adjoin the physical region and can Dbe the seat of
physically significant resonance poles. The resulting structure is
conveniently displayed in a kz-plane [Fig. 6.2a)], which explicitly
distinguishes the two alternatives kz = iVE2/4 - mg corresponding to a
given complex energy E. In fact, k2 is the c.m. 3-momenta of the KK in

mr -> KK.
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As mentioned in Section 4.2.3, reaction thresholds appear as
singularities in Q which take the form of cuts with branching points at
the thresholds and extending to s = , Furthermore, there is no
fundamental difference between a resonance and a stable hadron besides
the mass (assuming all other quantum numbers to be the same). One
therefore expects the exchange of a resonance to result in a pole in the
complex s plane near the real axis, but above the first branch point.
For a simple Breit-Wigner resonance, the pole can neither be on the real
axis nor on the physical sheet, so hermitian analyticity demands that
there be in fact two poles, placed symmetrically on opposite sides of
the real axis and on an unphysical sheet. Only the one which is below
the real axis is close to the physical sheet, since the unphysical sheet
is reached from the physical sheet by crossing the real axis from
above (i.e. from I to II as in Figure 6.1). Hence, resonance poles
usually have images on related sheets, for example, the physical f-pole
has a counterpart on sheet II and that of the p on sheet 1II1I. In the
K,-plane, these images occur at approximately the mirror position
kiI = -kiII (we will return to this for more details in Section 6.2), as
follows directly from the Breit-Wigner description of these resonances.
Normally, this phenomenon of pairing is of no physical importance. It
is only where resonances occur close to the corresponding threshold that
both members of such a duo get the chance to affect the physics. As we

shall see, the present solutions illustrate this possibility in rather a

complex fashion.
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We first amplify the statement that resonance poles usually have

images and to explain how exceptions come about. The general idea is as
I1 _. . . II1 .

follows: let % denote the scattering matrix on Sheet II and % its

counterpart on Sheet III. The analytic continuation from one to the

other is specified by the relation [206]
[IIII]—I = [ZII]-I + 2122 (6.1)

and resonances are associated with zeros of det ({'1). Normally, the
variation with energy that produces such zeros is already present in the
corresponding inverse K-matrix elements (cf. Egn. 4.30). A resonance
pole in T'' then readily induces an image pole in T''! and vice versa;
this is what usually occurs. However, it can happen that the K-matrix
elements are essentially constant. Then, it is the phase space factors,
in particular the rapidly varying 02 , Wwhich feeds the resonant
variation. In this case, the image pole does not occur (or has 'moved
off to infinity') and one has the situation referred to as a virtual
bound state (an odd pole in the sense that it does not have a mirror
image). The pole configuration that our solutions generate combine both

possibilities. Despite appearances this corresponds to quite a simple

structure of the K-matrix.

As already described in Section 5.3, we have performed fits using
both K-matrix and M-matrix forms. The former yielded solutions for 1
explicit K-matrix pole, denoted Kl , 4 variant Ki , and a solution for 3

explicit K-matrix poles, labelled K3 ; corresponding to the latter we

obtained a single fit which we term M (we have not extended the 2-pole
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M-matrix trial fit reported in Section 5.3 to a global fit because the
number of poles in the K- and M- matrix do not affect the pole content
of the U—matrix'and we only use the 1-pole M-matrix global fit here to
study the stability of the poles). The pole pattern that emerges from
each of these types of solution is remarkably stable. The details are
displayed in Tables 6.1-2, and Figures 6.2-3. Each solution is seen to
have seven 'nearby' poles, denoted A - G. Though S-matrix poles are not
demanded by the forms with which we fit, they are the most important
outcome of our solutions. Table 6.1 gives their positions for our
representative solutions Kl ' Ki ' K3 and M, while Figure 6.2a, Db
displays these in the k, and energy planes respectively, the latter
illustrating how sheet II and sheet III poles form pairs, viz D - E and

G - F. In Figure 6.3 are plotted the complex residues of these

poles (Appendix A.VI), defined by:

YiY

j = Lim (sR - 8) Iij (6.2)

s*s
R

In fact, to make the plot intelligible we show Yl and 7; = —Yz . The
average value of these couplings for each of our seven poles are
tabulated in Table 6.2. Such residues are a important ingredient in our
parton (spectral) assignments of the associated resonances as discussed

in Section 6.2.1.

We must remark that the foregoing are not the only structures in our
amplitudes. Forms which fit data along a limited region of the real
axis in the energy plane inevitably also have distant poles which are

mere artefacts of the parametrization and consequently are unstable.
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Such poles occur for all our solutions on the physical sheet I. Though
such poles violate causality, they always occur at least 500 MeV into
the complex plane and so have no effect on the nearby structures

reliably determined by the data.

To gain a mental picture of the complex pole scheme that has emerged,
it is helpful to flip between the plot in terms of the
k ,-plane [Fig. 6.2a) and that in the energy plane [Fig. 6.2b]. Read
together, these display a short range system comprising the triplet A,
B, C governing the KE threshold region, and 1long randge structure
dominated by the pole-pairs D - E and G - F (long range because they are
far away from the real energy axis, Figure 6.2a). It is the former that
constitutes the principal novelty of our solutions. The poles revealed
by many previous analyses (using subsets of the data we consider) are
illustrated in Figure 6.4 [207]. As will be seen [207], analyses of the
S* have quite a long history [208] with one pole [209][210] and two pole
scenarios [158][159][211][212] having early exemplars. For discussions
in a similar spirit to the present one (although 1leading to quite
different conclusions owing to different input) see especially Fujii and
Fukugita [212); Martin, Ozmultu and E.J.Squires [212],[213]; and Irving,
Martin and Done[214]. (The last of these focusses very much on the KK
data of Cohen et al [164] and only uses TT information over the very
resticted mass range 0.91 to 1.05 GeV). The PDG average [169] (in our
terms for the position of pole A) is dominated by the result of fitting
the low statistics data on J/Y -> ¢ntn” of Gidal et al [193]. This we

pelieve to be quite unjustified as evidenced by the ease with which we
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fit the same data [Fig. 5.1 ] using our own .ﬁlmatrix solutions with
their appreciably different pole positions (see Figure 6.4b). These
various analyses [207] have commonly reported just one pole (similar to
A), or sometimes two, to describe the Sx effect whilst we find three.
What are the differences between these fits and what is the role of all

our poles in achieving the reported fits?

As a step to answering the above questions, we examine what types of
energy variation alternative pole configurations can achieve. Suppose
just one pole controlled the KK threshold region, say at a position
K, = KA . There will in general be a background phase, 6b . Allowing
for this, a minimal representation (see Appendix C.II for derivation)
for the 77 S-matrix element s11 is simply:

- *

s = (6.3)

11 (k2 - kA)
This illustrates the rule that a pole at k2 = kA automatically entails
an associated zero of S11 at the mirror point k2 = —k;‘. This is a
general result and follows from analytically continuing unitarity to the
pole. The pole A of our fit (on sheet II) together with the background
(D-E) produces the familiar sharp rise of the TW phase shift just below
KK threshold seen in Figure 5.3 (cf. Section 4.2.1). This is the
classic signal for the Sx resonance and, for that reason, some version
of A has featured in all analyses of the past 13 vyears [207], (cf.

Figure 6.4). The associated zero of S required by unitarity of itself

11
produces a deep dip in the inelasticity, ”11 , Jjust above threshold,
Figure 5.4. Such a feature is qualitatively in agreement with
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experiment. It is for achieving quantitative agreement that other poles

come into play [215].

It has 1long been noted [158][159][211][212]{152] that a one-pole
description of the Sx-effect gives too blunt a signal in g{mm -> KK)
(or, equivalently in the behaviour of ”11) as compared to the data. The
qualitative effect is easily understood, eitnér in terms of the poles
and zeros picture sketched above, or by remarking that having just a
sheet II pole with no corresponding sheet III image is, in a sense, to
have half a resonance. Away from the resonance, the corresponding

for fitting the CERN-Munich TT phase-shift data [158] (part of the input

-1
2

amplitude falls like lE - Er , rather than as |E - Er I_l. Already

es es

to the present fit), two-pole ansatzes yield much better fits to the S»
region than do one pole formulae, such as arise from the complex
scattering length descritpion. The contrast is very clearly exposed in
Fujii and Fukugita [212] (see especially their Fig. 2) wherein a
two-pole description is seen to be far superior for following the 1long
range trends of Dboth 611 and ”11 . How does our 3-poles solution
compares with this? It turns out that the phase shift prediction hardly
differs, but the inelasticity profile has a less pronounced and broader
minimum [Fig. 5.4], consonant with the actual 7T -> KK cross-section
information used in the present fit and the assumption that the KK
channel saturates inelasticity. The way our fit has responded to this
requirment is to move pole C upwards towards the real axis [Fig. 6.4] as
compared to Fujii and Fukugita [212]'5 version of this feature. We

shall demonstrate this in the next Section. Finally, all this readily
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provides an excellent fit to the P IP -> TT production spectrum including

the shoulder just below 1 GeV.

The primary role of the pole B in a x2 sense is to enable the
locations for A and C, required by the data, to co-exist within the
general constraints of unitarity. As we shall see in the next Section,
removal of pole B dramatically worsens the global fits (of course, all
the classic T data could be reproduced by a 2 pole fit). There are, of
course, potentially, much more direct signals for B. The expected sharp
peak in o P P -> KK) just above threshold is to an extent borne out by
the data [Fig. 5.10]. (As it stands this is not a convincing statement
because the strong opening of the KK channel in Figure 5.7 could be
described by the conventional 2-pole scenario [Fig. 6.6]- However, as
we shall see, the peak in O( P P -> KK) can only be fitted with a 3-pole
solution). With the pole B so close to threshold very striking
differences should appear between spectra for K+K- and KgK: . The
latter channel should also register a very sharp peak (uncontaminated by
a ¢(1020) signal) in K'p -» A(Z)KgKg . BRnother consequence of B should
be a very sharp downward blip in ¢12 = arg 312 just above threshold and
indeed there are hints of such behaviour in the data [Fig. 5.8]. We
have previously [144] suggested that this feature of the input plays a
significant role in selecting the 3-pole option. We now know this not

to be the case (see the following section).

Our 1long range pole pairs D - E and G - F are certainly the most
economic solution for describing the presently available data. An

important goal for future experiments is to establish whether it is also
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sufficient. Already, there are claims for additional structure from
Etkin et al [216] on the basis of 7T -> KK information and an amplitude
analysis of NN production [171]. As always, it will be difficult to tie
down detailed pole parameters closely; indeed their very existence is
deduced from long rang phase movements (cf. discussion of the analogous
but much less complicated K(1350) effect in Km scattering [217]).
Nevertheless, the pairing D - E successfully unites the source of the
slow rise of 611 from T threshold (the old £(900) effect) principally
given by D with the description of phase movements above 1 GeV via E.
(We shall return to this in Section 7.2). This forms the background on
which the pair A-C sits to give rise the classic Sx signal. Our
resonance assignments (Section 6.2) are based on the foregoing pattern

of short range and long distance poles.

6.1.1 The role of pole B

The principal new feature of our analysis is that we find 3 poles, A,
B, C in the region of KE threshold rather than the one or two of
previous treatments, which only considered subsets of the data we have
used. Remember that our parametrizations do not 'a priori' have any
particular number of poles of the S-matrix, yet all our solutions have
this same A, B, C structure. OQur extensive analysis with fits of
different forms {i.e. K1 ' K3 and M) illustrates the well-known fact

that resonances are given by the poles of the S-matrix and not by the

poles in the parametrizations -(cf. the gTs in BNL and see Chapter 7).
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when resonances are narrow and non-overlapping and a single channel
predominates, it is relatively easy to investigate the effect of adding
in or taking out particular resonances. In the present situation with
strongly coupled channels, this is non-trivial to implement because of
the over-riding need to ensure that unitarity remains satisfied.
Nevertheless, we present here a way to discuss why our analysis finds 3
poles in the neighbourhood of KK threshold whilst previous treatments

did not.

To allow the number of S-matrix poles to Dbe fixed 'a priori',
consider the Jost function (or determinant [218] , see Appendix C),
which up to some real function d(Kg) is the denominator of the S-matrix,

so that
= 2 - - -
¢(k2) d(kz) 1 ip, Kyy ie, K22 PPy det K] (6.4)

The zeros of ¢, which correspond to poles of 2 or g and thus to
resonances, are its sole source of variation apart from distant effects
from the TT threshold and from left hand cuts. The function ¢(k§) thus
provides a highly useful method for exploring possible pole scernarios
for the KK threshold region. 1Indeed, it enables one to parametrize
amplitudes explicitly in terms of poles by representing the Jost
function by a simple product of zeros (one for each pole) and an entire

function (see Appendix C.II). Thus, we write for example

k k k
$(ky) =1 - Eg— 1- Ea- 1 - EZ_' exp [ 1 Y, k; (6.5)
2A 2B 2C n=0

where the Yn are complex numbers and k2 = kz' ( = A, B, C) are the
J
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three poles A, B and C. Comparing Eqns. 6.4-5 above TT threshold, we
can read off K11 ' K22 and det K, and consequently relate the s-matrix
elements to the parameters of Egn. 6.5. Unitarity, of course, requires
K1, real (Appendix A.l and II), i.e. npp € 1. \Unfortunately, here this
condition is not automatic requiring K11K22 >, det K [Eqn. C.8] which,
though trivially fulfilled by a K- or M- matrix parametrization, is
easily 1lost writing ¢(k§) as a product of =zeros. The positivity
condition, K11K22 - det & > 0, must be checked at every stage and is

found in practice to greatly restrict the acceptable region of the Yn

parameter.

As shown in Appendix C.I, the arbitrary function d(kg) cancels out in
physical quantities, viz the 3ij , as does any arbitrary real function

in Egn. 6.5. Thus we can set Re Y2 = 0 for all n Dbecause
n

k20,
2

kzn = [(1/4)E2—m§]n is real, so are the products ReY, Such a form
as Egn. 6.5 with only 3 poles (and not the 7 of Fig. 6.2) can only be
expected to represent experiment in a limited region of the kz-plane.
Specifically, from Figure 6.2a, we see that we can expect the poles
D- G to provide just a smooth Dbackground for |k2| ¢ 0.24, say,
i.e. 0.87 ¢ E ¢ 1.10 GeV. Qur aim is first to show that a fit of all
the data in this limited energy regime with a 3 zero form like Egn. 6.5
is possible and then to compare this with a similar fit using a two zero
form (i.e. to remove the B pole). Because of the condensed ranges of
the parameters that allow unitarity to be fulfilled, we must choose the

starting parameters with care. In the case of the 3 pole scenario,

these are readily found by first fitting the form Eqn. 6.5 , to any of
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the amplitudes we already found with 3 poles. (We use the effective
kaon mass in p2 and again Simpson's rule in the AFS fit in the 1 GeV
region to allow for the rapid variation caused by the B pole). We then
refit the experimental data within a |[k,| < 0.24 Gev radius of kK
threshold. The parameters and result for all the classic 7w, KK and AFS
double pomeron data are listed in Table 6.3b. In this narrow energy
range, the discrepané results on ¢12 , Figure 5.8 , play a dominant
role. Hence, the compromise fit has a xz/d.f. of 2.2, while selecting
Etkin et al [166] very satisfactorily reduces this to 1.1 for the 3-pole
fit. The parameters of these fits are also displayed in Table 6.3Db.
The success of such a fit illustrates that a parametrization in which
poles of the S-matrix simply enter as a product of 2zeros in the Jost
function is wviable (confirming the factorization of the Jost function
described in Appendix C.II). The limited 3-pole global fits to the
inelastic TT -> 7MW, 7T -> KK channels and the AFS data are illustrated

in Figures 6.5-7 (so0lid lines).

OQur next step is to compare the above 3-pole fit with one with only
two poles. To obtain good starting parameters without the B-pole, we
choose a form with the positions of A anc C as found by Fujii and
Fukugita [212] fitted Jjust to the CERN-Munich 7T data [158]. A
perfectly adequate fit can be retained not only when the TT results of
Cason et al [161] are added, but when we include one of the mm -> KK
data sets. This shows that a two pole scenario is equally possible for
all the classic dimeson channels, Figures 6.5-6 (dotted lines). It is

when the AFS results on 7mw and KK channels [639] are introduced that the
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2-pole form fails dramatically even in this limited enerqgy regime as
illustrated in Figure 6.7 (dotted lines). With many random starts, the
best Xz‘s we have achieved, together with the correspecnding parameters,
are listed in Table 6.3a. All these 2-pole fits are considerably worse
than the corresponding 3-pole solutions. The fits are no longer able to
reconcile the AFS data with any of the results on TW -> KK.
Furthermore, the 2-pole fit to the inelastic Gll[Figure 6.5] is also
worse than that of the 3-pole fit. Even to achieve these 1limited
successes, the poles A, C both move very close to the axis from the
Fujii-Fukugita positions [212] (Figures. 6.2b, 6.4 and the pole

positions in Table 6.2a) to compensate for the lack of the B pole.

This analysis unambiguously favours our solutions with 3 poles in the
neighbourhood of KK threshold. The confidence level for this is some
30%, while that for just 2 poles, when the AFS information is includeqd,
is less than 0.01%! This has demonstrated directly the tight constraint

provided by the AFS data through unitarity (Section 4.2).

6.2 RESONANCE ASSIGNMENTS AND INTERPRETATION

Here we summarize the pole structure reported in the previous section
and convert them to a resonance spectrum. As already emphasized at the
beginning of this chapter, most resonance poles have replicas on
associated sheets. This is usually true but not so here in our
solutions. I shall use here a crude scheme for pairing up the

associated resonances. A much more rigorous and systematic scheme is
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the 'Atracking' method of David Morgan which is presented in Ref.[219].
As it turns out the conclusions of these two schemes are almost exactly
identical. This further strengthens our claim that there are three
poles in the S* region. In any case, no matter how the poles are paired
we have extra dynamics responsible for the intrusion of a third pole,

the B, in our solutions.

We now consider the convention for our resonance assignments. The
convention for extracting couplings has already introduced earlier,
Eqn 6.2, and we simply follow the same recipe for extracting masses and
widths. To be more precise, we assume that each resonance Dbe
describable in the neighbourhood of the pole by a factorisable form:

b
R =_gi_q.j_ei“5ri> + 6 (6.6)

. - s - 5
1] R

This will have complex residues at the pole -owing principally to the
background phases; however one conventionally -uses the corresponding
moduli, |Yi|' as effective coupling consténts (cf. Egn. 6.2 and
Appendix A.VI). For the resonance position or mass one normally takes

the real part of the complex pole position

m_ = Re(E_) (6.7)

£
=
®
I
o
<]
N
1

Re(sR). The corresponding width is given by

—
]

2 Im(ER) (6.8)

where ERF —Im(sR). The crude resonance assignments given in this

section adhere closely to this simple recipe.
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We now consider the pairing procedure. As already argued in
Section 6.1 that the respective pole pairs (D,E) and (G.F) should be
associated simply from their nearness in the energy plane (Table 6.2 and
Fig. 6.2b). To put this on a firm basis we need to understand (at least
crudely) how sheet II and sheet III poles might De associated. As
explained in Appendix A.I the j—matrix elements have a common

denominator which in terms of M-matrix can be written in the form
= - - - (6.9)
A det M 1le22 192 Mll plp2

The poles of qlcorrespond to zeros of &; the relevant sheet structure
arises from the factors of pz(E 2k2/E) in Eqn. 6.9 (see Appendix A.VI).
The fact that there exist pole pairs (X - Y) with X on sheet II and Y on
sheet III means that switching p2 to -p2 in Eqn. 6.9 only slightly
disturbs the zeros of A. To assign the resonance position to the pole
pairs (X - Y) we simply take the average of their values. This naive
assignment can be justified if the above statement on the stability of
the zeros under the switch P, * -0, is true (i.e., the zeros of A for 02
and -p2 are very similar). The 'A-tracking' method of David Morgan
[219] addresses this problem in much more details and the
conclusion agrees with the above naive approach for the resonance
assignments. This then justifies the crude pairing of poles (D,E) and
(G,F) on the ground that they are close to their partners in the energy
plane (Table 6.2). Furthermore, this simple scheme also implies that A
and C should be paired and B as the odd man out - B does not have a

5

imaginary part (it is in fact very tiny -~ 107° GeV) but that of A and C

are very close. The supporting evidence comes from the previous 2- and
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3- pole Jost function fits in the S* region. There we observe that the
positions of the poles in the 2-pole Jost fit are always close to those
of A and C in the kz—plane (compare Tables 6.3a and Db). This again
leaves the B pole out and suggests that in the absence of B, A and C
combine together to reproduce the classic Sx effects, i.e A and C should
be paired up. A more theoretical argument follows from the stability of
zeros of A. We know from Table 6.2 that the (untwinned) B almost sits
on top of the KR threshold giving [p,| -> 0.  Therefore changing
02 -> —Oz in Eqn. 6.9 does not disturb the zero (the position of B) of A
at all, leaving B without a mirror image. The zero imaginary part of B
is crucial in such a phenomenon as even a small imaginary component
would mean two distinct solutions to the quadratic (in energy)
expression of Egn. 6.9, the pole pair (A-C) being the best example. The
pole B has all the features of a a virtual KK bound state, having no

mirror image and sitting close to KK threshold. The above assignments

are confirmed by the more rigorous 'A-tracking' approach [219].

Finally, we summarize the pole positions of our
sclutions (Table 6.1-2) with the above assignments in Table 6.4. The
variations of the pole positions from solution to solution are small
except for the D-pole parameters according to solution M (given in
brackets in Table 6.1) which are not included in the average values in
Table 6.1. We next look for particle identifications of the resonances

in Table 6.4
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6.2.1 Parton composition of our states

In this section we consider the quark model assignments of our
spectrum and the types of new dynamics responsible for the presence of

our odd B pole.

Conven£ional quark model classification looks to find meson families
arranged in ideally mixXed nonets, generically [s(1 = 0), V(I = 1),
K(I = 1/2), S'(I = 0)][220] with a standard pattern of masses and decay
couplings given by the presumed quark content and the OZI rule. This is
the benchmark against which we have to  discern novelties and
abberations. This idealized pattern is not always realized in practice
and various mechanisms are invoked to explain the departures (eg. see
Section 3.4.1.4(11I1) for the non-ideal mixing of the 0 nonet). 1In
principle, the I = 0 sector should consist of two standard ground-state
gg compounds which will Dbe ideally mixed if no special mechanism
operates. Additions can come either from radial excitations or from
non-standard configurations such as glueballs, hybrids and multiquark
compounds. Examples of these are the various interpretations of the
1(1440) and 6(1690) described in Chapter 3. As we will explain in
Chapter 7, the most likely candidate among non-standard configurations
for the B pole is the ground state scalar glueball Eg(o++) which
according to various models (Section 1.3) is the lightest glueball. If
1(1440) is identified with the pseudoscalar glueball Ng , than €g should
lie well within our energy range (Section 3.4.4). In the absence of

mixing it should be a pure SU(3) singlet (Section 1.3). The other
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non-standard configqurations, like hybrids, etc, all entail the existence
of 1 # 0 companions (extra 8's and K's). We shall provisionally ignore
these other possibilities because the existing information on the
relevant decay channels (which could be improved) does not provide any
clear signals for such additions (see Section 7.4 for more discussions).
Another possible type of intrusion is from what we shall call
'molecular' or ‘'bootstrap' resonances such as can occur in multihadron

systems from explicit hadron exchanges (see Section 3.4.1.2).

In our case, very broad states are involved making precise mass
values of the resonances ambiguous. The only information available for
spectroscopic assignments is the pattern of branching ratios and that
only'as between TT and KK. The empirically determined Ign/gK| ratios
are 1listed in Table 6.4 (these values are similar to those obtained by
the ')-tracking' method in Ref. 219). We now compare these empirical
ratios with those of the simple idealized Su(3)
configurations (Table 6.5 and Appendix D). We use the 1labels g, for
SuU(3) flavour singlet, gg for nonet isosinglet, €nhs for non-strange
meson and €g for strange meson in Table 6.5 and the following
discussions. On this basis, S2(988) is a natural candidate for the
regular s ground state. Direct confirmation for this assignment could
be sought in precision data on radiative ¢ decay: ¢ -> YS2 . This
process would provide Y rays of some 20 MeV (the mass difference between
¢ ana SZ) with a spread of only a few MeV from the ¢ width. This should
yield a clear signal readily distinguishable from the continuum. With

82 as the 1lowest sS state in the quark model then it is natural to
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identify €(900) as its non-strange counterpart on the basis of |g"/gK|.
However, there is a problem with this ideal mixing assignment Dbecause
naively one expects a mass-splitting of several hundred MeV (cf.
M; - Mi ~ 0.43 GeV?). This descrepancy may be caused by additional

mechanisms which shift the sS 1level down in mass and weaken its

coupling [219].

Having identified the 82(988) and €(900) as the candidates for the
two ideally mixed quark model states, we now consider the roles of our
remaining states. From Tables 6.4-5 we see that 51(993) is compatible
with an SU(3) singlet identification. It is thus a prime candidate
within our spectrum for the I = 0 scalar glueball (see Section 7.4). To
check this significant assignment we need additional and more refined
data of the kind we have already discussed in Section 5.1, This could be
usefully supplemented by new high precision experiments on d4imeson
production reactions 1like K p -> KKA. 1In principle, one can seek for
specific evidence that Sl is a glueball by looking at the YY excitations
of Sl which is supposed to be suppressed in the framework of parton
model (Section 3.2.2). However, there are complications such as
enhancements through anomalous couplings (Section 3.2.2) and final state

interactions (cf. YY -> 79%m°% in the f-region). We will return to the

gluonium interpretation of Sl later.

The last state to be identified is the g'(1420) [205] of Table 6.4.
Its parameters could well undergo revision since it OCCUrs at the upper
end of our energy range where unconsidered channels start to play an

appreciable role (note also that there have been claims for additional
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structure [216][171], cf. Section 6.1). Again from the ratio of
couplings we assign €' to the Ens in Table 6.5. It is perhaps the first
q§ radial excitation of € _. Etkin et al's $(1730) [166] could be the

corresponding ES if it is confirmed.

We summarize the outcome of the above discussion as follows: The
resonance content of the I = 0 S-wave below 1.5 GeV primarily couples to
mm and KK. It comprises
(a) A narrow resonance $,(993) very close to KK threshold

ER ~ 0.993 - 0.0231 (gTT ~ 0.23, gK ~ 0.28)

which manifests itself via sheet II and sheet III poles A and C (details

in Tables 6.1-2).

(b) A KK bound state 82(988) yielding pole B (91T =0 v Iy ~ 0.35)
(c) An €(900)
= - = a37' = - ’ = .
ER 0.905 0 i (g1T 0.48 I 0.28)

which corresponds to sheet II and sheet III poles D and E (cf.
Tables 6.1-2)
(d) An g'(1420)

Eg ~ 1.42 - 0.23i (g, = 0.56, gx = 0.10)

corresponding to poles F and G. (cf. Tables 6.1-2)

The way our spectral assignments for the I = 0 scalars would fit into
the overall pattern for the 1lower meson families is displayed in
Table 6.6. (Note that these numbers differ from those in Ref. 219 by an

insignificant amount.)
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6.3 DIAGRAMS AND TABLES
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Figure 6.1 Sheet structure of the energy plane.
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Figure 6.2 Positions of the 7 poles A-G for representative solutions

(cf. Table 6.1):

(a) plotted in kz-plane (corresponding real energies shown
in brackets),

(b) plotted in E-plane with insert showing KK threshold

region enlarged: X for shéet 11, © for sheet I111. The

curved patches indicate spread among solutions.
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ochs [159] and the preferred B solution of
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Figure 5.4).
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Figure 6.7 Mass spectrum of centrally produced S-wave T7 and k¥ events

in pp -> pp(MM) from the AFS Collaboration [69] in the
region of 0.87 to 1.1 GeV are shown. The 2-pole and
3-pole Jost function fits are shown in dotted and solid

lines respectively (cf. Pigures 5.9-10).
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Solution
Pole Sheet KL 13 M Ki average
A 11 1.002-0.0264 1.005-0.025¢ 0.997-0.0254  1.000-0.0261 | 1.001-0.0264
B | 11 0.986 0.990 0.990 0.987 0.988
c I11 0.984-0.0214 0.988-0.018f 0.983-0.0184 0.984-0.0211 | 0.985-0.0201
D I1 0.88-0.404 0.91-0,.311 (1.42-0.461) 0.83-0.421 0.87-0.384
B 111 0.95-0.374 0.96-0.301 (0.99-0.501) 0.90-0.391 0.94-0.354
P . 111 1.48-0.264 1.40-0.184 1.37-0.261 1.42-0.201 1.42-0.234
G II 1.52-0.261 1.40-0.174 1.36-0.261 1.40-0.184 1,42-0.221
x2 /NDF 1.3 1.3 1.3 1.4
|
Table 6.1 Pole positions, ER(GeV), for various solutions described in
the text.
Pole BR(GeV) Yl(GeV) (|11 ) YZ(GeV) ( |12 | Sp e
A ©1.001-0.0264 | 0.02-0.261 (0.27) 0.2540.251 (0.35) 0.9
B 0.988 0.011-00614 (0.01) 0.35-.011 (0.35) 1.0
C 0.985-.0201 0.07+0.184 (0.19) 0.094+0.184 (0.20) 0.6
D 0.87-0.384 0.44-0.2114  (0.49) 0.27-0.131 (0.30) 0.7
E 0.94-0.354 0.39-0.2614 (0.47) 0.21-0.1414 (0.25) 0.6
F 1.42-0.234 0.4340.361 (0.56) 0.08-0.011 (0.08) 0.9
(G) 1.42-0.22% 0,4540.321 (0.55) 0.10-0.034 (0.10) 1.0
Table 6.2 Average pole positions, residues and P P couplings, a ’

for the specimen solutions (ubp = IulYl + a2Y2|),
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2-pole

Parameters {1,2) 1 2
Re k. -0.0211 -0.0224 -0.0266
mx 0.0366 0.0358 0.0260
Re X28
Iak,,
Re X 0.1411 0.1381 0.1611
Im X, . -0.2371 -0.2338 -0.2723
Im Y, -0.9737 -0.9799 -0.6364
Re Y, 1.0700 1.0250 0.7283
Im v, 5.5240 5.2790 8.2110
Im v, 4.9580 3.0600 5.0820
Re v, 43.680 40.300 45.670
Im Y, ~39.640 -54.540 -51.050
Im Y, 286.700 287.200 258.100
Re Y, ~665.500 -686.800 -620.800
Im Yy, ~689.100 -1046.000 -989.200
Im Y, -2814.00C ~2373.000 -3496.000
a: -0.2217 -0.2191 -0.2442
a; -1.6815 -1.6743 -1.6345
al 1.0207 1.0061 1.1154
ug 0.2173 0.2176 0.2465
a; -0.1963 -0.1941 -0.1793
a; -0.1847 -0.1926 -0.1966
¥ pata 47 39 37
N Parm 20 20 20
x? 96 70 49
x/a.t1. 3.6 3.7 2.9
Table 6.3a

- 205 -




Table 6.3

J-pole

Parameters (1,2) 1 2
Re X, -0.0723 -0.0692 -0.0798
Im K, 0.0729 0.0706 0.0615
Re k. -0.0029 -0.0028 -0.0037
I X, ~0.0023 0.0025 0.0027
Re ke 0.0439 0.0452 0.0549
Im K, -0.0754 -0.0752 -0.0660
Im Y, 0.7803 0.6982 1.1160
Re Y, 0.2202 0.2186 0.2708
Iy, -0.4832 -1.2600 2.1840
In Y, -0.7452 -0.6004 -0.3509
Re Y, -2.0200 -2.4940 -1.8500
Im Y, -13.3000 -29.8100 -18.7100
Im Y,
ReYs
Imy‘
Im Y,
a} 5.3557 0.3573 0.3554
a} 0.2566 0.3776 0.0453
ot
a; 3.4158 3.3619 3.1684
a) -3.7337 -3.7229 ~3.5495
al 1.2077 1.2503 1.2409
N ata 47 39 3
L. 17 17 17
x? 66 37 22
x*/a.f. 2.2 1.7 1.1
Table 6.3b
The four significant

Parameters of the Jost function fits.

figures are to allow an accurate reproduction of the fit.

The 1, 2 for the mm -> KR aata

sets refer to
Cohen et al [164] and Etkin et al [166] respectively.
(a) 2-pole Jost function fits,

(b) 3-pole Jost function fits.

- 206 -



Resonance Poles 2, (CeV) g, (CeV) gy(CeV) |3'/gk|
31(993) A,C 0.993-0.0211 0.23 0.28 0.8
82(988) B 0.988 0.01 0.35 0.03
€(900) D,E 0.905-0.37i 0.48 0.28 1.7
€°(1420) G,F 1.42 -0.23i 0.56 0.09 6.2
Table 6.4 I = 0 S-wave resonances below 1.6 GeV froa the global fits.
Scalar Simple constituent Final Dimeson State - Ple
designation mode190 realization ] KK NgNg
< (uutdd+ss) /73 0.87 1 -0.5
or gg
g (uutdd-238)/76 -1.73 1 -1
€.y (uurdd) /72 1.73 1 0.33
c, ss 0 1 -0.67
Table 6.5 Relative branching amplitudes for S => Ple in SU(3)

according to various idealized composition possibilities.
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Table 6.6

low-1lying meson spectrum.
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CHAPTER SEVEN

DICUSSION AND CONCLUSIONS

7.1 DISCUSSION

We have seen from the naive simulations in Chapter 2 that the idea of
valence gluons seems to be valid. The mass spectra of glueballs and
hybrids described in Section 1.3.3 are based on this valence gluon
concept. We therefore use the term 'simple constituent model' to extend
the concept of quark model states (cf. Section 1.2) to include systems
with constituent gluons. The spectral assignments presented in
Chapter Six is within the framework of this simple constituent model and
soley depends on how we interpret and identify resonances in our
solutions. We have already emphasized in Section 5.3 and AppendiXx A.III
that tﬁe poles in the K- and M- matrix parametrizations are not the same
as physical resonances. We have also pointed out in Section 5.3 (see
also Appendix A.III) that the K- and M- matrix pole near 1 GeV is needed
for the rapid structures in the region. Before this analysis the rapid
structures were thought to be caused by the Sx on a broad rising
background (Section 4.2.1) and leads to the speculation that there is a
one-to-one correspondence between the number of poles in parametrization
and the number of physical resonances in amplitudes. We have proved
beyond doubt that this is not the case by obtaining solutions with one,
two and three poles in our parametrizations. The role of these multi K-

and M- matrix poles are explained in Section 5.3. According to this

- 209 -



discussion we have to question the validity of the BNL resonance
assignments (Section 3.3) where the three K-matrix poles are taken to be
distinct physical'resonances. Furthermore, if our view is correct (i.e.
the BNL resonances may have been misidentified) then some of the
proposed explanations for the BNL resonances (Section 3.3) would become
highly speculative as they have accepted the BNL's interpretation.
Indeed the ¢d enhancement in BNL is similar to the case we study in that
the situation is complicated by overlapping resonances in the region of
interest. (The 3 close by K-matrix poles in the BNL analysis is an
indication of rich structures). In fact that complexity in our case 1is
greater because of the presence of the strongly coupled KK channel.
This brings us back to the spectral assignments and the Sx
puzzle (Section 3.4.4). We have identified the 82(988) as the KK
molecule on the ground that it does not have an associated pole or a
mirror image. A familiar example of such situation is the A(1405) pole

which also sits on top of the threshold in KN and 7% scattering [221].

In connection with this is the interesting suggestion from Weinstein
and Isgur [78] that a bootstrap effect would operate in the I =0 and
I = 1 KK systems. However, this idea has been invoked mainly to explain

anomalous features of 1(1440) decay to 8T (Section 3.4.1.2).

Before returning to the Sx phenomenon, one further suggestion on the
interpretation of resonances is the P-matrix [222] concept of Jaffe and
Low. Although motivated at the parton level (the underlying idea is
that constituent model states sometimes have unphysical boundary

conditions) this again involves a transmutation of the physical
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scattering amplitudes at the hadron level so as to derive quantities
directly comparable with constituent model states (see Appendix E). We
have searched for the poles of the P-matrix with our solutions as input
and the pole positions are listed in Table 7.1 for the Kl and K3 fits.
This does not appear to clarify the dynamics in the present situation as
the P-matrix poles are not similar to our resonances. However, it is
interesting to note that there are two close by P-matrix poles in the

1 GeV region indicating perhaps some rich structure.

7.2 THE S* PHENOMENON

We have, by considering a number of reactions leading to 7T and KK
final states, performed a new amplitude analysis of I = 0 scalar dimeson
production from T threshold to beyond 1.6 GeV. The resonance spectrum
that emerges comprises two broad objects £€(900) and €'(1420) similar to
those found in previous analyses and two narrow resonances Sl(993) and
82(988) corresponding to the S* phenomenon. Attributing the S* effect
to two resonances rather than, as previously, to single object is the
principal novelty of our solution. As discussed in Chapter Six, the
Sl(993) forms a very plausible candidate for the 1long sought ground
state scalar glueball which we will discuss in more detail later. The
82(988) which we assign as the s§ ground state is an almost stable
particle with very tiny width (though the coupling to 7m that we find
for this pole is very small, corresponding to a width of some 10 keV, a
determination of its exact width would require much more precise data)

therefore can only cause local effects in the amplitudes. Its effect on
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the phase shift would therefore not be noticable in experimental data
because of binning. Consequently, the previous explanation for the
classic S* phenomenon in which a narrow resonance sits on top of a
rising background is in some sense still valid. This time the narrow
resonance is not the classic Sx*(975) quoted in the latest PDG [169] but
is the 51(993) scalar glueball. The rising background is provided by
the broad £(900) and £'(1420). 1In making these identifications for the
background, we have in effect married two of the scenarios for the S=x
discussed in Section 3.4.4, i.e. the background is either comprised of a
very broad £€(1300) or a broad S-matrix pole € at 700 MeV. This is in a
way rather satisfactory because the two scenarios were obtained from
analysing subsets of our data and that they are contained in our
solutions is an expected consequence rather than a  surprise.
Furthermore, our extensive investigation of the dynamics in the Sx
region using the Jost function in Section 6.1.1 has revealed that among
the present input, it is predominantly the new DPE data on
PP -> 7%, KK and its interplay with traditional TT processes that
require the additonal B pole, the 52(988). This 81(993) has been
mistaken as the s§ 82(988) in all the previous analyses because they did
not have the necessary constraints provided by the AFS data (see
Chapter 4 for our formalism). We now consider the nature of 82(998) in

more details.
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7.3 THE S2(988) AS A KK MOLECULE

We have already explained the ideas behind our spectral assignment of
the 82(988) in Chapter Six. Here we summarize the phenomenological
implications of such assignment. We have mentioned earlier the idea of
Weinstein and Isgur (explained in Section 3.4.1.2) that there is a KK
residual interaction, VKK , binding the KK together to form a molecule.
Furthermore, their idea is based on the study of the stability of
four-quark bound states which turns out that they only exist as light KK
bound states [78]. This immediately brings to mind the Sx
puzzle (Section 3.4.4) in which the 0ld classic S* is singled out as the
most probable four-quark bound state or a KK molecule. 1In fact it is
rather difficult to say whether the parton content of a KE molecule is
sS or s5st as we do not have a reliable scheme to distinguish such
different types of resonances (see Ref. 219 for a useful discussion).
Our s% assignment of the 82(988) is based on the simple quark model in
which S2 is taken as the ideally mixed partner of the non-strange €(900)
because of its coupling ratio (Section 6.2.1). It is the lack of a
mirror pole image that gqualifies 82 as a KR molecule. Having identified
the two isoscalars required by the simple quark model, we are left with
the 81(993) which is identified as the scalar glueball (a SU(3) singlet)

because of its couplings. We next elaborate on this important finding

of our analysis.
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7.4 THE S3(993) AS THE GRQUND STATE SCALAR GLUEBALL

As we have stressed, the 51(993) offers a potential solution to an
outstanding problem of spectroscopy - the identity of the hypothesized
scalar glueball. For this, the 81(993) forms a very plausible
candidate. Of course (as discussed in Section 6.2.1), further
experimental evidence is needed to confirm this assignment. If the
Sl(993) does prove to.be the lowest mass glueball, not only will this
vindicate the prediction of bag modellers, gluon condensate calculations
and lattice computers of the pure gauge sector, but will serve as a
calibration fixing the crucial missing parameter needed to normalize
their whole glueball spectrum (see Section 1.3). We consider below how
the gluonium identification of 51(993) compares with other gluonium

candidates discussed in Chapter 3.

As mentioned in Chapter 3, hard gluon channels like the radiative J/v
decays and DPE processes are thought to Dbe ideal for gluonium production
because according to the 0ZI rule (Section 3.2.4) only gluon rich states
occur as resonances in these 0ZI forbidden channels. Such is the prime
motivation for the AFS experiment in which the DPE mechanism is presumed
to favour glueball production. If Sl(993) is indeed a glueball, the
P P couplings that we find (Table 6.2 end column), provide no support
for this notion. This may be a problem for 0OZI systematists but does
not detract from DPE as an exploratory tool. The empirical OZI rule may
even be inconsistent with unitarity (cf. Egn. 3.5). We have ignored any

intrinsic difference between gluon and quark channels in our
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formalism (Chapter 4) as they will automatically show up in their
respective couplings. Furthermore, we believe that so tight is the
relationship required by unitarity on the 77T and KK final state
interactions (Egn. 4.14-15) that there is nothing new which has not been
seen in the classic ww data. Though the high statistics AFS data do not
provide scope for new effects (contrary to the belief of the O0ZI
systematists), they can supplement the classic meson-meson écattering
results. Our philosophy is amply verified by the I[P coupling listed
in Table 6.2 [Figure 5.11]. The glueball identification of 51(993) is
solely based on the couplings obtained from our global analysis subject
to unitarity constraints. This is the only justificable way of
indentifying resonances in multi-channel situations and not by 1looking
for peaks in cross-sections. As explained in Chapter 4, final state
interactions can distort the appearance of a resonance and we could De
misguided by the shape of its cross-section. The fundamental difference
between our 81(993) and the gTs, 1{(1440) and 8(1690) glueball
candidates (Chapter 3) is the way in which they are identified. The
$1(993) is an ideal SU(3) singlet and there is no need to invoke flavour
symmetry breaking schemes to justify its gluonium status as has been

done for other glueball candidates (cf. Section 3.4.1.1).

While we are still on the subject of couplings, let us consider the
YY coupling of Sl obtained from fitting YY -> TW (Figure 5.22).
Glueballs are usually thought to have suppressed photon
couplings (Section 3.2.2) but these can be changed either through

mixing (Section 3.4.1.4) or anomalous couplings (Section 3.2.2 and
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3.4.4). Since we have already assigned the 82 and € as the ideally
mixed partners there is no scope for mixing between the gluonium S1 and
the 82 and € quark mesons. It is interesting to note that the
deviation from ideal mixing in the 0~ channel could be understood in
terms of mixing through the axial anomaly (section 3.4.1.4(III)). 1In
the scalar channel, there is the trace anomaly [Eqn. 1.24] which in

principle can induce a mixing of this kind but this does not seem to

happen in our spectrum. If our assignments are correct then it would be

a problem for those who advocate the Effective
Lagrangian (Section 1.3.2) approach in which such mixing is
inevitable (Section 3.4.1.5 and 3.4.2.8(11)). Furthermore, the

deviation from ideal mixing in the pseudoscalar channel would be more
difficult to understand as the anomaly mixing idea could not be
generalized to the scalar channel. Nevertheless, the scalar glueball
can acquire a substantial YY coupling through the trace anomaly (see
Section 3.2.2 and Ref. 22). The rise of the YY coupling in Figure 5.22
seems to suggest this is indeed what happens. Naively, one would expect
the curves of the yy and [P [P couplings [Figures 5.11,5.22] to be very
similar as is suggested Dby the similarity of their mechanisms,
Figure 5.1. The trace anomaly therefore seems only to enhance the YY
coupling of the scalar glueball 51(993) and not to induce mixing.
However, as we remarked in Section 5.4.2, the present yy -> TW data 4o
not agree with each other so the argument presented here is just a
speculation. Finally, our 81(993) does not suffer, like other gluonium
candidates, from being possibly a radial excitation, some kind of giant

resonance state or hybrid (See Chapter 3 for examples). It is simply
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too 1light for all of these. Furthermore, as explained in
Section 3.4.1.2, the 1lightest four-quark bound state is believed to
appear in the form of a KK molecule. The 51(993) is clearly not a
four-quark bound state. The 51(993) in our solution is therefore a very
strong candidate for the ground state scalar glueball. As remarked
earlier, the Sl(993) has previously been misidentified as a gqg state,
the Sx(975), leading to speculations that the ground state glueball
would either be very narrow or very broad (see Section 3.4.4). We now
understand why it has been missing for so 1long: The hidden glueball

scenario advocated in Ref. 137 turns out to be our 82(988) - a KK

molecule.
7.5  CONCLUSIONS

As we explained, the novel features of our amplitude are the presence
of twOo narrow resonances Sl(993) and 52(988). The discovery of the
extra S2(988) has freed the Sl(993), which used to be known as the Sx,
to be jdentified as a plausible candidate for the ground state glueball.
The additional B pole of 82 is predominantly required by the consistency
of the AFS data with the <classic meson scattering reactions {(cf.
Chapter 6). As we discussed, much more direct signatures of the extra
resonance would show in various reactions producing KK final state if
only the precision were sufficient. Even with existing data, 7T -> KK
information are an important ingredient to our fit and, as mentioned,
very significant discrepancies remain among the published results,

notably regarding the relative phase of the Tm -> KK amplitude below
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1200 MeV. our overall solution, which fits the highly structured
[P P -> TT information so well, disfavours the flat phase alternative
for 3(Tm -> KK). Only experiment can decide which is correct.
Unfortunately, the large effort needed to repeat existing experiments is
unlikely to be forthcoming quickly. In the short term, resources would
probably Dbe Dbetter directed to studying new reactions like

K'p => A(Z)Kgxg or in accumulating better statistics on P IP -> KK.

We have seen from our analysis the power of the DPE approach to meson
spectroscopy. The AFS experiment has provided us invaluable data on the
DPE processes. An unanticipated benefit of the DPE approach to meson
production is its emphasis on low partial waves in contrast to
traditional OPE reactions like TN -> 7mN in which the higher waves
dominate (eg. the p ). It is to be hoped that more and better data of

this kind will come from the SPS and/or Tevatron colliders in the

future.

Other ‘'production reactions' (in our terminoiogy this includes
various heavy flavour decays) are beginning to provide useful
information on scalar final states. At present, the data are restricted
pboth statistically and in the mass range explored and partial wave
separation is usually lacking. 1t was not therefore appropriate to
proceed as we did with the AFS results and let the production data help
select the strong interaction amplitudes. Instead, we merely sought to
demonstrate consistency, only allowing the characteristic reaction
)

couplings (a(c of Eqn. 4.22 above) to vary. The reactions we have

studied are, Yy -> mm, Y' -> J/ymm, T (T't) -> Tnm and J/U -> O7T.
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Information on this latter process and its companion decay J/V¥ -> KR
will shortly be greatly enhanced. It may then be appropriate to emulate
the treatment of the AFS data and I hope this can be done in the near

future.

For the higher mass range that we explore, information is needed on
other coupled channels like 4m and nn. The latter has Dbeen quite
extensively explored in a recent experiment at CERN [171]. According to
the accompaning (somewhat restdicted) amplitude analysis, the partial
wave structure is very different from that reported in this thesis, in
particular the S-wave cross-section peaks at 1200 and 1600 MeV with a
sharp dip in-between. The difference of this spectrum from that found
for 7T and KK final states, although formally possible, seems unlikely

and merits further investigation.

I have reported in this thesis the complex features of our global
fits (namely the 7 U—matrix poles for 4 resonances), and have gone to
some length to justify the number of Y-matrix poles required and explain
our resonance assignments. Ancther way of identifying resonances in
this complicated situation, which arrives at the same conclusions, 1is
the 'Mtracking' method of David Morgan presented in Ref. 219. Finally,
our extensive analysis does reveal definite evidence for dynamics beyond
the naive gquark model with three states in the 1 GeV region. This

richness may prove a key signature of non-perturbative 0CD.
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7.6 Table

- f*
Kl K3
0.648 0.638
0.993 0.997
1.069 1.063
1.295 1.297
1.629 1.655

Table 7.1 Poles (in units of GeV) of the P-matrix (see Ref. 222 and

Appendix E) for the Kl and K3 solutions.
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The idea of these formalisms is to express the constraints implied by
coupled channel unitarity in a transparent way. The M-matrix formalism
is first introduced in A.I as a trivial generalization of fulfilling
single channel wunitarity. The conversion to the K-matrix formalism is
explained in A.lI. The details of our parametrizations are given in
A.III and A.IV. In A.V we discuss a simplified version of the three
channel formalism. The last Section A.VI deals with the derivations of

couplings.
. ntroducti o -ma

Recall the Eqn. 4.6 for the single channel 7w ~> wW amplitude :hl can
be expressed in terms of a real function nll (= l/xll) as in Eqn. 4.28,

i.e.
1 1

:’11 Dl(coté - i) M- P {A.1)

where e, is the threshold factor introduced 1in Section 4.2. These
equivalent expressions for 311 obviously satisfy the single channel
elastic unitarity constraint Im 3&1 = px|311|2' The discontinuity in
311 implied by this relation for s » 4mf is explicitly exhibited in the
p1 factor in Eqn. A.l with M__ a real analytic function of s. We next

11

generalise Eqn. A.l to the coupled channel case. For the two channels 1
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and 2 (eg. 77 and KK) there are two threshold factors pl and pz ’
pi = v(1 - 4m;/s). We do not concern ourselves with the distinction
between charged (i.e. K*K”) and neutral (i.e. K°K®) channels for the
moment . Though the !11 in Eqn. A.l has no cut at channel 1 threshold,
it must have a discontinuity corresponding to channel 2 which because of
cut plane analyticity will occur through explicit factors of Oz . To
exhibit these right hand cut structures in ﬁ&l we need to express :!1 in
terms of real functions of s, pl and p2 . This can be achieved by

re-parametrizing the single channel case by

(s)

D
= 11
311 Nu(s) - iplbll(sY (A.2)

and generalising this to the two channel situation by

Y., - et >

We can further expand Dll and Nll as:

Dll‘s'p2) = a(s) + ipzb(s)
Nll(s'p2) = c(g) + ipzd(s)

where a, Db, ¢ and d are real functions of s, since below channel 2

threshold 192 is real and so Nll ' D11 are. Egn. A.3 then becomes

a(s) + ipzb(s)
3 = ; - i + b(s) (A.4)
11 c(s) + 1ozd(s) 1pla(s) plp2 s

Now let's examine what happens in each energy regime. When s < 4mi '

the j are real having no discontinuities. There the p1 , are
1] ’
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imaginary, and 311 guaranteed real provided a, b, ¢ and 4 are all real

functions.

When 4m) ¢ s < 4m) , elastic unitarity requires Im 311 = C>‘|Jn|2 .
This is assured by the form Eqn. A.3. Of the four real functions a, b,
€, d, one is arbitrary since we can clearly divide the numerator and
denominator of Eqn. A.4 by any real function. It is now convenient to

express Eqn. A.4 in terms of three other real functions Hij (i,3 = 1,2)

defined by:
M =i
11 b
¥Ybc - ad
M =M T —
12 21 b
-a
= — A.S5
u22 b ( )
We then have
g, - e i BN .6
11 (Hll - 101)(5122 - ‘pz) - le .

Because of the symmetry property of the 1labels 1 and 2, we can

immediately write down 322 , 1.e.

M-
32 = 11 Py - (A.7)
2 (M11 - 101)(M22 - xpz) - le

To obtain a similar expression for 312 we consider the energy region of
s > 4m§ + Where P, and P, are real. The coupled channel unitarity then

[Eqn. 4.14] requires that
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Im :11 = ptlulllz + pzljlzlz (A.8)

= * + *
and In3, =P 53,00 90,0, (A.9)
Substituting Eqns. A.6-7 into Eqns. A.8-9 we obtain
2
.. = - . . 3 (a.10)
- - - M
21 312 (n11 101)(H22 ip,) 12
Note that the sign in front of H12 is ambiguous Dbecause of the

non-linearity of EQn.A8 and the linearity of Eqn.AS. We have chosen the
negative sign as our convention. All the unitarity constraints in
Eqn. 4.14 are trivially satisfied with the forms of dij given in
Eqns. A.6-7 and Eqn. A.10. Furthermore, all the ‘:’ij elements have the
same denominator as required by unitarity. Summarizing the Eqns. A.6-7

and Egqn. A.10 in matrix form we have the M-matrix formalism,
- -1
3 = [1- 1)

Here, P is the diagonal matix with diagonal elements p1 ' p2 . n is a
"\

real symmetrix matrix with elements "ij , 1 =1,2.

. e K-matrij ormali

From Eqn. 4.28 or EqQn. A.l we have for single channel

:! 1
= (A.11)
R W
11 !
which suggests that we can express 311 as a function of M or its

inverse l/K11 and vice versa. Instead of going through all the previous
procedures in A.I we immediately write down the K-matrix formalism for

coupled channel with K = n“ ;
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and shovy hov the K- and [- patrix formalism are related.

In terms of the K-natrist elements

R, = ip (R R__ - &2
Y ool 03 K13%99 7 Byp!
11 D@ﬂ (Aolz)
%12
J12 ° Ten (2.13)
K., - ip (K K _ - K2
y .22 10, (K% T X)) ,
22 Den A.14)

- v _ _ _yp 2 . :
where Den = 1 101K11 192K22 pxpz[K11K22 Klz] is the common denominator.

Equating Eqns A.6-7 and Eqn A.10 with Egns. A.12-14 we obtain the

folloving equalities between the K- and M- matrix elements;y

X2

Qi T —

11 det K
R

M2 " et 1

R
=11 (A.15)
22 det K

with det K = The K-matrix formalism obviously satisfies

2
K11%22 = K-
the coupled channel unitarity constraints of Egn. 4.14. He next

consider the K-matrix parametrization in more details.

A.1]1 More on the K-matrix formalism

As discussed in Section 4.2.1 a simple Breit-Wigner resonance vith

mass Ep has a 90° phase shift, i.e. & = 90°, on resonance.
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For a single channel

1 1
pli&l (l/Dzﬁll) - i cotb - i (n.18)

therefore K,, must have a pole at s = Es because cot (W/2) is =zero at
the resonance. This is the reason why the positions of the K-matrix
poles are sometimes interpreted as resonances. However, this is only
true vwhen the resonance occurs with no nearby resonance or threshold.
The S= is the best known example in which the phase shift 8 reaches /2
at a position which cannot be identified with that of the resonance

because of a rising background (cf. Sections 3.4.4 and 4.2.1).

To illustrate the complications arising in the coupled channel case
we consider 5&1 as an example. For 4mi <s <4m§ ¢ p1 is real and p2 is

imaginary or p, = i|92|° From Eqn. A.12 ve have

1 1
o @ = =
P 1 'pészz ) oo cot - i
- 19
ok + o]0, laet x (3.17)

This time cot § does not necessary go o 2zero at the position of
K-matrix pole. This scheme of identifying resonance becomes more
complicate if the resonance occurs above the KX threshold with p1 and p2
both real. As is well-known the proper process-independent criterion is
to identify the masses and widths of resonances with the complex
positions of the poles of the 3(or S)- matrix. To be more precise, we

rewrite Eqn. 4.7 for a simple Breit-YWigner resonance as
ET
R

- s - 1iE
= i RF
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The 2zero of 5 occurs at s = E; - iERF. Since we have seen in A.l that
all sij elements in the coupled channel S-matrix have the same
denominator, the poles of the 3-matrix are universal as resonances ought

to be.

A.IV pParametrizations

Here we describe first the K-matrix parametrization given in
Eqn. 4.33 and then explain how one goes from the K-matrix to the
M-matrix parametrization. Since the phase shift rises sharply near a
resonance (see Section 4.2.1) or an openning of a new threshold, it is
helpful in fitting data to introduce a pole in the K-matrix to denerate
such structure. This pole of course does not necessary correspond to
any physical entity. Indeed, the number of K-matrix poles is not
necessarily the same as the number of physical resonances as discussed
in Section 5.3 where we perform one- and three- pole fits and obtain
the same resonance structures. Here we only address the technicalities

of the parametrizations.

To illustrate the essential ingredients of the K-matrix
parametrization we rewrite Eqn. 4.33 in a simplified form with only one

K-matrix pole,

f_fj )
= - + 1 (Acla
Kij (s so)[pij (s, - 8)(s, -~ s,)

where Ss is the Adler zero [157] and sl is the position of the K-matrix

pole. The P,  polynomials characterise 'backgrounds' and are smooth
1)
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functions of s. The form of Eqn. 4.29 suggests that the Adler zero of
the 3—matrix can be parametrized by a simply factor (s - so) in the
K-matrix. The extra factor (s - So) in the denominator of the pole term
is to ensure that the coefficients are the same as the residues at the

pole, i.e. s = S, -

From Eqns A.12-14 we observe that the determinant of the K-matrix
(det &) appears in both the numerators and denominators of the 3—matrix
elements. Since det 5 is quadratic it therefore contains products of
the pole terms, i.e. double poles. To achieve the cancellation of the
double poles we demand the pole terms in Egn. A.18 be factorizable (i.e.
with the coefficients (or residues) given in Eqn. 4.33 or Eqgn. A.18).

The double pole cancellation goes as follows:

£t

K, K__ = (s - 2 +
11522 7 18 7 87 P Py + Py (s, - s)(s; - s)
2¢2
fxgx fxfz
+ P + 3 3
22 (g, - 8)(s, - 85) (s, - 8) (s, - 8g)
£ f £2£2
2 - 2|42 12 12
K. = (s s ) [; + 2P + ]
12 0 12 12 - - - ‘ - ¢
(sl s)(s, 8,) (s, s) (s, 8,)
and the double pole term disappears in det &. The essence of the

cancellation lies in the factorizability of the pole and the
generalization of the cancellation to K-matrix with multi-poles are most
straight forward. Of course, terms like l/(s1 - s)(sz- s) etc do not

count as double poles.
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Having explained the philosophy behind the K-matrix parametrization,
we now explain how the form of the K- and M- matrix parametrizations

given in Egns. 4.33,35, are related. Since X = g-‘ this implies that

K -K
=__1 22 12

M=
Voo det K
AV

K
21 11

As the det 5 is quadratic and contains the factor (s - so)z, the
M-matrix elements must have a pole to account for the Adler zero of the
5—matrix. Furthermore, if det K = 0 then one also needs to introduce an
extra pole in the M-matrix parametrization. Apart from these, the
M-matrix elements can have as many poles as there are in the K-matrix
elements. Again, we simplify the parametrization of Eqn. 4.35 to

illustrate its essence;

a, 3
=2l 4 jpt + 11 (A.19)
ij s-s; "|'ijJ s, -8

This time there is no need for a (s - So) factor in the denominator of
the (s1 - s) pole term as the coefficients are guaranteed to Dbe the
residues of the poles. The M-matrix poles are given in factorizable
forms hence there will be no double poles in the S—matrix elements.
From Egns. A.6-7 and Eqn. A.10 we see that there is no double counting

for the Adler zero pole term as well.

A.V Three channel -> Two channel formalism

Recall in Section 4.2.2, Eqn, 4.13, we have introduced an averaged

n c
P, = (1/2)(p, + P

2). The reason for this is to separate the Etkin
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mr -> K°K° [166] (p, = p;), Conen mm -> k'K [164] (p, = p;) and AFs
PP - KK (o, = p;) from the rest of the data [158][159](161](162]
(with the averaged 92). We have only done this for the KR channel
because we know from experiment [Figure 5.7] that the KK channel has a
strong coupling in WW scattering. Data in the KX threshold region may
therefore be sensitive to the small mass difference between the K'K~ ana
K°K°. The separation of K+K- and K%° are fine tuning exercises and the
results reported in Chapters Five and Six are not very different from

our previous analysis [144] in which we used the effective kaon mass

4m: = 0.98277 Gev* in 0,

In carrying out the separation of the K K and K°%K° channel we have
in effect performed a simplified 3 coupled channel 1w, K'K~, K%°
analysis. To illustrate the connection between the simplified 3 coupled
channel and coupled chénnel formalism, we consider the K-matrix

formalism as an example, in particular jll .

Putting the averaged P, into Eqn. A.12 we get in the coupled channel

case,
K . -i0.5(pS+p" K2
. 11 1030040, ) (K (K KT Y)
N -ipx ~10.5(pS+pT)K__-p 0.5(pS+p™) (k. K -K? ) (h+20)
1711 2 727722 M1t T M2 M M 12 12

+- -
To obtain ;11 in the 3 coupled channel we denote MW, K K and K°K° by 1,
2 and 3 respectively; and use the letter L for the 3x3 K-matrix while
keeping the symbol K for the 2x2 K-matrix. The three coupled channel

amplitudes (denoted by %') is given by

X =L - igp
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where the diagonal matrix g has elements px . p: and p: . Based on the
assumption that the K+K- and K%° channels are identical dynamically,
apart from the difference in their thresholds, is accounted for by p:
and p: . making the following identifications

L =L and L =L

L=t 22 33 7 Loy

12 ¢ b23

We then have for uil

. c,..n 2
L .- +0 (L. L__- )
N - PR M M T TR
= = I I (A.21)

To connect the 3 and 2 coupled channel K-matrix formalism we equate

Egqns. A.20 and A.21 to obtain the following identities;

L = K » L

11 = K 12 = (V20K 5 0 Ly = (1/2)K,,

i.e. L

Liaba 7Ly,

(1/2)det ¥
Hence by making the separation of p: and p: we have performed a

simplified 3 coupled channel analysis.

c n
We need to make sure that after separating p2 and p2 , the j-matrix

amplitudes in the coupled channel formalism still satisfy unitarity.

C
The region where unitarity may be violated is 4m2+ <5 < 4m2o i.e. p,

K K
is real and p: is imaginary. We again use the WW -> TN channel as an
example. In the 3 coupled channel formalism, the unitarity equation for

T -> 7™M in the region of 4m2+ <5 < 4m2° is simply

K K
’ - ’ 2 (o} Y 2
=0 1912+ 013, (A.22)
: L
. PN =R ¢ c,.n 2
- - + - + -
1 l01L11 1(p2 pz)Lzz pl(p2 pz)(Lllez le)
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In terms of the coupled channel Egn. A.22 becomes
1 2 ¢ 2
my, ey, 0% pl /D)3 |
2 c 2
= 0,13, + °-5°z|5}2| (A.23)

n n
where the l//5 factor comes from le = (l//f)l(l2 . Putting P, = i|02|

in Eqn. A.20 one obtains the following equality;

The numerator of - 2, - _ c c
(Im 311 DIIUHI ) 0.5p, det K + 0.5p, LS SN

2
12
Hence the coupled channel K-matrix formalism still satisfies the

= o,sp‘: K

C n
necessary unitarity conditions after the separation of p2 and p2 in p2 .
As a final comment, the converstion of all the K-matrix formalism in
this section to the M-matrix formalism is straight forward with the help

of Eqn. A.15.

A.VI Couplings and Pole Searchings

In Section 6.1 we use the idea of a k,-plane to separate the sheet
structures of the complex energy plane. For a single channel there is
only one threshold factor p1 which gives rise to two energy sheets I and
I1, see Figure A.l. For two channels there are two threshold factors P,
and P, which then give rise to four energy sheets I, II, III and IV, see

Figure A.2.

In defining the sheet structures we have used the effective masses
for the pions and kaons in pl and p2 to avoid introducing extra sheet
strucutres (which would not lead to any new physics not already included

in the Kk,-plane, Figure 6.2a). Sheet I is known as the physical sheet
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Sign of Im P,
( +)

II

(=)

Figure A.l1 Sheet structures for single channel,

Signs of
(+, +)

(+o‘)

(-p"')

Figure A.2 Sheet structures for two channels (single channel in

brackets).
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because it contains the real energy axis below the branch point (cf.
Section 4.2.3) and does not have poles. The poles on the unphysical
sheets are found by searching the zeros of the common denominator of the
3-matrix with the appropriate signs of Im pl and Im p2 . The pole

positions reported in Chapter Six were obtained in this fashion.

Finally, we come to the couplings or residues, Y, of the poles in our
3—matrix amplitudes. In the proximity of poles, Sp ¢ the sij elements

can be written as

Y.Y.
N =21
ij sp s
= Lim - .
YiYy T s (sp SﬁJLJ (A.24)

To obtain Y.Y. Wwe need analytic expressions for Lim (s_ - s) 3.. .
1] s +s R 1]

Since the denominator, Den (cf. Egns. A.12-14), of the 3ij elements

vanishes at the pole position Sg + we can expand Den in a Talyor series

about s = SR , 1.e.

Den(s) = (s - sR)Denl(s) + (1/2)(s - sR)ZDenz(s) +oeennn (A.25)
n an
where Den (s) = 3 +-Den(s) . Substituting Eqn. A.25 into Eqn. A.24 one
s
obtains for the K-matrix formalism the following expressions;
- + ip,(x K__ - K2
A UM S O YR T
Yy 1
Den”(s)
12
YY D ——
12 pen'(s)
- + ip (K _K__ - K2
2, Kpp PR (K Ky TR

Denl(s)
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The effective kaon mass 4m; = 0.98277 is used in p2 for consistency
(same as the 02 in pole searching).

In the case of the M-matrix formalism we get

- + i
y? ,._____."22 02
1 Al(s)
M
12
Y.Y, =
172 Alg)
v Myt ey
2 A
s)

where A(s)

(M - . B - M2
11 o) 22 1pz) 12

3
< A(s),

1
and A (s) 3s

- 235 -



APPENDIX B

Ihe j12 amplitude

In this short appendix we derive the expression for 312 + Egn. 5.2,
from the first principle. The expression for 3&1 ., Eqn. 5.1, is derived
in Section 4.2.2 and we are going to use jil and the unitarity equation,

Eqn. 4.14 to obtain Eqn. 5.2. The coupled channel unitarity equation

for mm -> MW reads:

Inljll - plwn}2 ¥ p2|312Iz

> oIy, 1= mY -0y I

with

2

|3 |2 = 1+ny, - 2n11C°826u
Pyivpl = 40,
and
Y - 1 - n“cos2611
11 20l
1 -n?
_ 2 _ 11
= pzl:&zl TN
a2
=> Iul l2 =______.1 nl‘
2 40,0,
y et
=D =
12 2/p,P,
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The Jost Function

c oductio
Let's consider the diagonal S-matrix elements in the K-matrix

formalism which are given by

S, = 1+ Zipljll
1+ Ap Ky 7 3P Ky PR KKy T k1, c.1)
T ApK T K, - 0,0, (K Ky K),) °
and . . 2
s = - f°1K11 * fpzx.zz * PP, (K Ky - K%rz) c.2)
227 1 - 1pK | - 1PK,) - PP, (K Koy ~ KT,) .

One observes from Egqns. C.1 and C.2 that the signs of p1 and pz in the
numerators are opposite to those of the p1 and 92 in the denominators.

One can therefore express S11 and 822 as ratios of a function of D1 and

P, - Such function is known as the Jost function, ¢, which is defined

as (cf. Eqn. 6.4)

- _ _ 3 _ _y2
¢(pl,pz) = da(s)[1 1p1K11 ip plpz(K K Klz)]

K
2 22 11 22

where d(s) is some arbitrary real function. Hence
@('p P )
S =.__A___2 (Co3)
11 ®( Dlapz)
and
_ ¢(D!p-pz)

s =
22 6(p,, P, (C.d)
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The d(s) function has to be real because the imaginary signs in the S-
or 23- matrix are attached only to the threshold factors p1 and p2 vhich
are physical quantities. Furthermore, d(s) is an arbitrary function
because it is alvays cancelled in the S- and J- matrix elements. We
next demonstrate that this is indeed the case. e proceed with the

proof by defining

v, = [66p,,0,) + 0(p .-p )] /2

+

and d(s){(1 - 101K11)

<
It

[6c0,0p,) - &(p,,-p,2]/(20,)

d(s)('ikzz - pldet K)

- Im w+
K o= —t (C.5)
11~ p,Re ¢+

-Im w_

22 Re W+

(C06)

-~ Re ¥_

_— (C.7)
P,Re ¢¢

det K

and

K = - (Coa)
12 T R Ry, - det K

Since Re ¢+ = d(s) and the denominators of the S- or ﬁ# matrix elements
are given by ®(pl.pz)/d(s), we see immediately that the S- or Y- matrix
can be written as functions of @(ipl,tpz)/d(s), Hence the function d(s)

never enters any physical quantities and is therefore arbitrary.
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o Separation sQna a (o ound in S-matrj

The prime virtue of the ¢-representation is that the numerator of the
S-matrix elements are related to their common denominator. it is
natural to maintain this property in separating resonance and background

effects by expressing ¢ as a product;

o = ¢r¢b (C.9)

Egqns. C.3-4 imply that the diagonal S§S-matrix elements will also be

factorized. We illustrate this below Dy considering a single pole

situation, say at k2 = kA s 1.€.
-i6
-— - b o
¢ = (X, kple (C.10)
where k, = 0,(E/2). Substituting Eqns. C.10 into C.3 we get
-(k_, + k%) .
s < —2 A 28 (C.11)

L oo e
11 (k2 - kA)

Note that the identity
0(-p,.p,) = $*(p%,-p3)

has been used to obtain the above expression. We can deneralise
Egn. C.10 to multi-pole situations and express ® as product of zeros and
an exponential function as background. Eqn. 6.5 in Section 6.1.1 is
therefore a generalization of Eqn. C.10 with three S-matrix poles.
There is no problem in writing the 2zero terms as (1 - kz/kzg)' etc
instead of kz - kA as in Eqn. C.10. The complex k, factor 1in

k2(1 - kz/RZA) can be absorbed into the exponential background leading

to the simple form of Egn. 6.5.
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Derivation of SU(3) couplings

To obtain the SU(3) couplings in Table 6.5 we use the SU(3) isoscalar

factors given in Ref. 169 by making the following identifications;

1+8x8 (NK - EK)/2 + (KR)/V2
/378)(Zm) =+ (/3/8)(7m)

-(An)//8 + -(n,n,)/V8

8, *8x8 (NK - SK)/V10 + (KR)/V5

-(/3/5)(Zm) + -(¥3/5)(7W)

- (A /Y5 + -(ngna)/@ (D.1)
€, = (/2/3)e + ea//i
= (ud + dd)/V2
ey = el//? - (/2/3)e,
= s8 (D.2)
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Let the amplitude for 51 <> P_Pj beq, Ea <+
1

pseudoscalar} we then have from (D.1)

amplitudes;
€pg > TW (v2/3)(/3/8)a -
€ns * KE (V2/3)(1//2)a +
€as * NN, ~(/273)(1/¥8)a -
€g + W (1/V3)(¥3/8)a +
€y + KR (1//3)(1//2)a -
€s * NgN, -(1/¥/3)(1/¥/B)a +
By 0ZI rule €g # mm
=> a//8 + (/2/5)8 = 0
=> @ = -4B/vV5

PP be B (P stands for
1]

and (D.2) the

(1/¥3)(/3/5)8

(1/¥/3)(1/¥/5)8

(1//3)(1/¥5)8

(v2/3)(V/3/5)8

(¥2/3)(1/¥/5)8

(¥273)(1/¥5)B

The coupling ratios given in Table 6.5 can then be

substituting (D.4) into (D.3), i.e.

€ps > T -(3//5)8
€ns * KR -(3/Y15)8
€ns * Ny, (1/¥15)R
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APPENDIX E
The P-matrix

The P-matrix was first introduced by Jaffe and Low [140] as a 1link
between the discrete states of the gquark model and physical scattering
states. In a simple potential model, the poles of the P-matrix
correspond to the bound states of the system i.e. their wavefunctions
vanish at the boundary. In general, the P-matrix is simply related to
the S-matrix (cf. Eqn. 2.3 in Ref. 140) given by Egn. E.1. To search
for the P-matrix poles in our amplitudes we need to express the P-matrix
denominator, Ap , in terms of our parametrizations, the K-matrix in

particular. Let us first express Ap in terms of the S-matrix. From

Egn. 2.3 in Ref. 104 we have

S = - -ikb.l_:_iiiéglﬁLxggiL -ikb o
¢ 1+ (i//R)p(1/7R) © (E.1)

i.e,
-1+ olfP g QiRB) [y - gikb g iRB]-1 o (1/vEIR(1/VR) (E.2)
For 2 coupled channel, e1%P j5 3 2x2 diagonal matrix with elements oikiP

(Ri =/E%/4 - mi , i=1, 2). The denominator Ap depends only on the

determinant of the inverse matrix (1 - eikbseikb).1 in Egn. E.2 which is

given by
2ik b 2ik b 2ik b 2ik.b 2
- 1 - 2 2 -
811 e s22 v e 1l e (SMS22 512) (E.3)
In general, the S-matrix can be written as
21 ) +§ )
netS, /Tt 8179
s 2l
—a1 3 & 1
i/1nnyet (6178, neids (E.4)
using § = § ¢ ZifOBT/S»
AN AA A
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Substituting the S-matrix elements in Eqn. E.4 into Egn. E.3 we obtain

2ik b 2i 2ik,b 2i 2ik,b 2ik,b 2i6, 2i
Apxl‘ellne lsl_elzne 162¢ellelze le 162
itk b+6,) -i(k b+) L1k D¥6,) -i(k, beS,)

<

-i(k1b+51)ei(k2b+62) . ei(k1b+51)ei(k2b+52)

x cos(klb¢6!¢k2b+62) - ncos(klb+6l-k2b-62) (E.5)
which is just Eqn. 4.5 in Ref. 104.
From 2i6 2ié

= 1 = 2
S;y 7 e Sy T N

s )
. 11 e21(61¢62)

- =
522
Using the K-matrix expressions for S11 & 822 given by Egns. C.1-2 in

Appendix C we have for s > 4mé {(i.e. ki ¢ p. s i =1, 2 are all real)
i

S1p L ¥ P K, ¢ iP,K ) - ppydet K o23(6,%6,)
° -3 -1 -
sy, 1 -ipk., - ipK , - 9,p,det K

Either directly from Egqn. E.3 or by substituting Egns. C.1-2 and

Egqn. E.6 into Egn. E.5 we obtain

2ik b 1+ 1p!K11 - xpzkzz + plpzdet K
Apxl—e 1
Den
- i + + det K
ik T P T 0P,
Den
+ 1ip.K + ip. K - det K
2ik b 2ik b 1 T PRy T 20K, T P10,
+ e le 2
Den
where Den = 1~101K11-102K22-px02det K is the common S-matrix

denominator. Since from Egqn. E.2 we observe that the numerator of the
P-matrix depends also on the S-matrix elements, we can therefore factor

out the common S—-matrix denominator Den to obtain
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Ap e-iklbe-ikzb (1 - ilell - ipzx22 - plpzdet K)
. Jikb mikb ip,K | - ip,K . + p,p,det K)
- e’ikxbeikzb (1 - ip K, + iozK22 + p,p,det K)
. eiklbeikzb (1 +ip K, * 102K22 - p,p,det K) (E.7)

Grouping the coefficients in front of 1, 91K11 ' p2K22 and plpzdet K

together we arrive at the expression

Ap o« sin(klb)sin(kzb) + COS(k1b)Sin(kzb)p1K11

+ cos(klb)sin(kzb)pzx22 + cos(klb)cos(kzb)plozdet K (E.8)

2
In the case of 4m1 ¢ s« 4m§ ' kl and p, are real but k, and p, are

imaginary (i.e. k, = i|k,| and p, = i|p,|) we then nave

By = N R LA ok + lp, IR, - ip, o, ldet K)

- eMaPRP (1 ip K, # |pz|K22 + ip |p,|det x)

- e HRBTRD () L R |02|K22 + ip |p,ldet ©)
eik1be°kzb (1 + Pk - |ple22 - iolloz|det K) (E.9)

Grouping the coefficients in front of 1, p,K . , |p,|K,, and 0, |0, |det K
we obtain
Ap ® sin(k b)sinh(|k,|b) + cos(k,b)sinh(|k,[b)0 K |

+ cosh(|k_|b)sin(k b)|p_ |k
2 1 2 22

+ cos(k b)cosh(|k,|b)0, [, |det k (£.10)
The pole positions given in Table 7.1 .correspond to the 2zeros of

Eqns. E.8,10 with b = 7 Gev ',
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