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The Design and Implementation of a Microprocessor 

Controlled Adaptive Filter 

Kadrya l-ilhanmed Ali AhnEd 

ABSTRAcr 

This thesis describes the construction and implementation of a 
microprocessor controlled recursive adaptive filter applied as a 
noise canceller. It describes the concept of the adaptive noise 
canceller, a method of estimating the recieved signal corrupted 
with additive interference (noise). This canceller has two inputs, 
the primary input containing the corrupted signal and the reference 
input consisting of the additive noise correlated in some unknown 
way to the primary noise. The reference input is filtered and 
subtracted from the primary input without degrading the desired 
components of the signal. This filtering process is adaptive and 
based on Widrow-Hoff Least-Mean-Square algorithm. Adaptive filters 
are programmable and have the capability to adjust their own 
parameters in situations where minimum a piori knowledge is 
available about the inputs. For recursive filters, these 
parameters include feed-forward (non-recursive) as well as feed­
back (recursive) coefficients. A new design and implementation of 
the adaptive filter is suggested which uses a high speed 68000 
microprocessor to accomplish the coefficients updating operation. 
Many practical problems arising in the hardware implementation are 
investigated. Simulation results illustrate the ability of the 
adaptive noise canceller to have an acceptable performance when the 
coefficients updating operation is carried out once every N 
sampling periods. Both simulation and hardware experimental 
results are in agreement. 
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CliAPTER -1-

Backgrotmd 

1.1 Introduction 

In any communications system, the transmission of signals from 

the transmitter to the receiver involves their contamination with 

noise. This is the basic problem of communication and limits the 

capability of the system. 

By noise we mean unwanted or unpredictable signals that corrupt 

the message. Noise can be classified according to the source into 

two categories: 

(a) internal noise, which is generated by components within the 

communication system. 

(b) external noise, which includes man-made noise and 

extraterrestrial natural sources (1 ,2). 

To suppress this noise, signal processors such as filters can 

be used. 

In the decade 1960-1970 high speed digital computers were 

developed and became widely available for serious research and 

development work. Consequently it became possible to use the 

theoretical basis of digital signal processing, such as Fourier 

analysis, waveform sampling, Z-transform, etc., in digital signal 

design (3,4). 

This background provided the impetus for the introduction of 

digital signal processors as a means for implementing digital 

filters. 
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The term digital signal processing (DSP) implies the 

description of a complete set of operations such as arithmetic 

calculation and numerical manipulations. These represent the 

processing of the signal considered as a sequence of numbers or 

symbols in order to produce a form which is in some sense more 

desirable. Many different functions can be accomplished in this 

way; spectral analysis, filtering (which is of particular interest) 

transcoding, modulation, detection, and estimation and extraction 

of parameters by using a sui table digital computer (5 ,6 ). 

DSP is concerned with signals or systems that are the discrete­

time counterpart of the more familiar continuous-time systems. DSP 

has many applications in a very wide range of fields such as the 

analysis of biomedical signals, vibration-analysis, picture 

processing, analysis of seismic signals and speech analysis. 

However, telecommunication forms a very important field of 

applications which provides a major stimulus for research and 

development (4,5). 

DSP has become an established method of filtering electrical 

waveforms, and the associated theory of discrete-time systems can 

often be employed in a number of disciplines (4 ). 

The term 'filter' implies any frequency selective device or 

processor which passes certain ranges of frequencies and rejects 

others. Filters can be classified according to the frequency 

ranges they pass or reject into; low-pass, high-pass, pass-band, 

and stop-band filters. For example, a low-pass filter passes a low 

frequency input signals below a certain value, and attenuates the 

signals of frequency above this value (7). 
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Filters can also be classified according to their signal type 

into: 

analogue (or continuous filters). 

and digital filters. 

1.2 Comparison of Digital and Continuous Filters 

Digital and continuous filters have exactly the same aim of 

suppressing a noisy signal and producing one with less distortion, 

but the physical realization is different, since continuous filters 

are constructed from linear electrical components, such as 

resistors, capacitors and inductors, and linear continuous filter 

theory is based on linear differential equations and the Laplace 

transform. Digital filters however are based on linear difference 

equations and the Z-transform (which is a special form of the 

Laplace transform, which will be described in detail in the next 

chapter). It can be shown that digital filters are mathematically 

equivalent to continuous filters with sampled data inputs and 

outputs. 

Digital filters have several advantages over continuous filters 

and some of these are given below: 

·(1) the absence of impedance-matching problems. 

(2) the frequency response characteristics can be made to be 

relatively close to the ideal and can be changed by varying the 

stored coefficients. 

(3) the possibility of implementing any type of filter with 

the same hardware by using multiplexing and frequency 

transformation. 

(4) adaptive filtering is relatively simple to achieve. 
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{5) there are no drift problems as a result of realizing 

stable filters with very high 'Q's'. 

{6) low cost. 

However, in spite of all these advantages, digital filters also 

have limitations. The limited word length available on the digital 

computer leads to quantization errors, which will be investigated 

in some detail in chapter 2. Much work has been carried out to 

overcome these errors (4,7 ,9). 

Because of the availability of the digital computer as a 

research tool in all branches of science and technology, and the 

existance of analogue-to-digital converter (ADC) and digital-to­

analogue converter (DAC), digital filters became widely used. Many 

established continuous-time filter systems have been replaced by 

equivalent digital filter systems because of their advantages. 

A digital filter is defined (7,9) as the computational process 

or algorithm by which a sampled signal or sequence of numbers, 

acting as an input, is transformed into a second sequence of 

numbers, termed the output, using digital components as the basic 

elements for implementation. The process can be any arbitrary 

filtering operation, such as low-pass filtering, high-pass 

filtering, pass-band filtering or stop-band filtering etc •• 

The digital filter may be represented by a linear difference 

equation which defines the output signal as a function of the 

present input sample and any number of previous input and output 

samples (4,7). 

Digital filters can be fixed or adaptive. The optimal design 
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of fixed filters is based on a complete a priori knowledge of both 

the signal and the interference (noise). Adaptive filters, on the 

other hand, require much less prior knowledge in their design and 

have the ability to adjust their own parameters during operation to 

optimize their performanc~ The adjustable parameters of adaptive 

filters are called the weights (impulse response). These weights 

are usualy updated by a least mean square (LMS) algorithm which 

adjusts the filter weights so that the filter output is an estimate 

of the signal ( 10,11 ). 

In this project an adaptive filter is used as a noise canceller 

in which a corrupted signal passes through a filter that tends to 

supress the noise while leaving the signal relatively unchanged 

( 11 ) • 

Fig. 1.1 illustrates the block diagram of a basic adaptive 

noise canceller (ANC). It has two inputs, the des ired response 

input dj (primary input) containing the corrupted signal and the 

input signal x j (reference input) containing noise correlated in 

some unknown way with the primary noise. The reference input is 

adaptively filtered and subtracted from the primary input to obtain 

the_signal with less destortio~ The objective of the system is to 

minimize the error ej between the filter output Yj and dj in the 

LMS manner by iteratively updating the filter weights in accordance 

with the LMS algorithm (11,12), this is discussed in detail in 

chapter 3. 

To realize an adaptive filter in real time, the digital 

technique must be fast enough to complete the computational process 

within the available time. 
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Adaptive filters are versatile signal processing elements which 

have a wide range of applications where only a limited a priori 

knowledge of the expected signal and noise is available. These 

applications include: 

(a) Noise canceller 

In noise cancelling system the additive noise or interference 

will be rejected from a waveform containinig a signal of interest. 

Noise cancelling is a variation of optimal filtering that is highly 

advantageous in many applications. These applications include for 

intance the cancelling of 60-Hz interference in 

electrocardiography, the donor electrodiogram in heart transplant 

electrocardiography and cancelling noise in speech signals which 

plays an important roll in our communications-oriented society. 

Much work has been carried out to remove the unwanted noise 

components from the speech signals (11, 13,14, 15, 16). 

(b) Channel equalizer 

The main problem in digital communications is the recovery of 

the message which, when sent over the channel, is distorted with 

noise and intersymbol interference due to the nonlinear phase and 

amplitude characteristics of the channel. To overcome these 

effects the channel equalizer is used. Many methods have been 

investigated for the optimal implementation of digital channel 

equalizers ( 17, 18, 19,20). 

(c) Adaptive line enhancer (ALE) 

The ALE is considered as an adaptive digital filter which is 

designed to remove uncorrelated components (broad-band noise) from 

its input, while passing any narrow-band signals or components with 
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little attenuation (21 ,22,23). 

(d) Adaptive l~ear prediction (ALP) 

The ALP signal proeessing has been applied with great success 

for many problems such as spectral analysis, system modeling and 

speech encoding. The conventional approach for implementing ALP 

involves computing and updating the sample covariance matrix for a 

block of data and then obtaining the predictor coefficients. 

Morgan and Craie have published an alternative approach which uses 

the LMS algorithm, to compute the predictor coefficients (24,25). 

Adaptive filters can be implemented by a software program on a 

digital computer with a special interface and by digital hardware. 

In this project, an IC implemented as a digital filter which is 

designed as a general purpose device suitable for filtering noisy 

signals in the audio frequency band is used to implement a 16th 

order recursive LMS adaptive filter. The adaptive filter is used 

as a noise canceller, in which a corrupted signal passes through 

the filter and this coherently supresses the noise while leaving 

the desired signal relatively unchanged. 

In the next chapter, the basic principles of digital filtering 

will be described. The first part presents the relationship 

between input&output of the discrete-time system. The second part 

dicusses the various methods of realizing the recursive and non­

recursive digital filters, and quantization errors due to the 

limited-word length available on a digital computer. 

In chapter 3, the basic concept of adaptive noise cancelling, 

and the so-called Wiener solution to the statistical noise 

cancelling problems are considered. The LMS adaptive algorithm for 
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updating the feed-forward (non-recursive) and feed-back (recursive) 

coefficients will be described and the quantization effects due to 

the limited-word length and finite precision arithmetic of a 

digital processor, will be investigated. 

In chapter 4, a flexible computer simulation program has been 

developed to investigate the behaviour of the recursive LMS 

adaptive filter, employed as an ANC, under different conditions and 

various parameters. The performance of the filter has been 

discussed in both fixed point and floating point arithmetic 

repre sen tat ions 

Chapter 5 is concerned with describing step by step approach 

to the design and construction of a 16th order recursive LMS 

adaptive filter exposing a brief introduction to the 68000 

microprocessor and the digital filter IC used in the design. The 

interfacing considerations and problems arising in the 

implementation of the filter have also been investigated. 

Chapter 6 discusses extensively how the single board 68000 

microcomputer can be applied to update the adaptive filter 

coefficients in order to write one bit of each recursive and non­

recursive coefficient into the filter IC every clock cycle. 

Chapter 7 describes the implementation of the filter to be 

used as an ANC and presents the results of cancelling undesirable 

interference. This chapter also reflects some light on the effect 

of the implication of the feed-back in recursive (IIR) filter on 

its stability. 
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1.3 History and Development of Adaptive Filters 

The earliest work on adaptive noise cancelling was performed by 

Howells and Applebaum and their colleagues at the General Electric 

Company between 1957 and 1960. They designed and built a system 

for antenna sidelobe cancelling that used a reference input derived 

from an auxillary antenna and a simple two-weight adaptive filter 

(26). 

At the time of this work, only a handful of people were 

interested in adaptive systems, and development of mult iweight 

adaptive filters was only just begining. Much of this early 

efforts were proceeding by independent studies in different 

research organizations. A notable early development occured at 

Stanford University when Widrow and Hoff devised the LMS adaptive 

algorithm and the pattern recognition scheme in 1959 (27,28). 

Further relevant work being conducted simultaneously at the 

Institute of Automatics and Telemechanics in Moscow. In Great 

Britain, in 1961 Gabor and his associates were developing adaptive 

filters (29 ). 

In the early and middle 1960.s, work on adaptive systems 

intensified. Many papers on adaptation, adaptive controls, 

adaptive filtering, and adaptive signal processing appeared in the 

literature (4,30,31). 

The first applicable adaptive filter is credited to Lucky at 

the Bell Laboratories for his design in 1966 of an equalizer which 

compansated for distortion in data transmission systems. The first 

adaptive noise cancelling system at Stanford University was 

designed and built in 1965 by two students. The purpose was to 
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cancel 60-Hz interference at the output of an electrocardiographic 

amplifier and recorder. 

Since 1965, adaptive noise cancelling has been successfully 

applied to a number of additional problems as shown in (11). 

In 1967 Widrow, et al. (11) proposed a technique for an 

adaptive digital filter based on the LMS algorithm (or gradient 

search technique) which has come from the Stanford University 

pattern recognition work. The main advantage of this algorithm is 

its computational simplicity for real time processing with little 

storage which converges toward the optimum solution much more 

efficiently than do other algorithms. 

Various implementations have been discussed and published in 

the literature. In general, adaptive filters can be implemented in 

the time domain or the frequency domain. Reed and Feintuch (32) 

have described the behaviour of a frequency domain adaptive filter 

configured as a broad-band canceller with white Gaussian inputs. 

Bershad and Feintuch (23) have presented a mathematical model for 

predicting the mean weight behaviour of the recursive adaptive 

filter when used as an ALE in the frequency domain. 

Most practical adaptive filters have been realized by computer 

programs. In recent years Feintuch (33) implemented an adaptive 

recursive LMS filter in the time domain using two transversal 

adaptive filters using simulation results to demonstrate its 

capability (34). Mikhael, et al. (35) has proposed using 

individual convergence factors to adapt the individual recursive 

adaptive filter parameters, and then to adjust them in real time, 
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so that their values are kept optimal for each new set of input 

variables, rather than using the conventional technique, which uses 

a fixed time constant convergence factor, which is chosen to be the 

same for all the filter parameters. He has presented computer 

simulation results which indicate that the individual adaptation 

approach gives much better results than the conventional approach. 

Paul (13) has investigated and published two adaptive digital 

techniques for audio noise cancellation. The first technique, 

adaptive predictive deconvolution, used an ALP to estimate and 

cancel correlated noise components of the audio signal. The second 

technique, adaptive filtering, employs two audio signal inputs. 

However, the realization of adaptive filters in hardware has 

also developed rapidly. The growth of large scale integrated 

circuits (LSI) decreases the cost and increases the speed of 

components. Cowan et al. (36) have published a technique for 

implementing a digital adaptive filter which used no digital 

multiplication, but instead relies on the use of the operations of 

memory access, addition and scaling by integer powers of 2. The 

technique is based on the distributed arithmetic (alternatively 

read-only memory (ROM)/accumulator) filter architecture originally 

proposed for a fixed frequency filter implemented by Peled and Liu 

(37). This technique has the advantage that only standard TTL type 

logic circuits need to be used without recource to specialised 

signal processing functions (such as hardware multipliers). Cowan 

and Grant also published another digital adaptive filter design 

based on the LMS algorithm which relies heavily on the use of 

linear digital multipliers (38). 

In 1983 Holt and Mullholand ( 12) published a technique for a 
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high speed micoprogrammed adaptive filter implementation using the 

AM2900 bit slice device and a hardware multiplier-accumulator. The 

implementation was based upon a clipped LMS algorithm. 

With the continuing advances in digital technology and the 

availability of LSI components, the adaptive filter is now 

available on a single chip. South (39) has developed a digital 

adaptive filter in LSI form for use in the audio band which makes 

it ideal for solving problems of cancelling unwanted signals in 

telephony and other fields at low cost. 

1.4 Conclusion 

The advantages of the adaptive digital filters over the fixed 

coefficients digital filters, are that they are programmable, so 

their coefficients (weights) are updated and adjusted in accordance 

with the incoming signals. They are versatile signal processing 

elements which can be applied in situations where an absolute 

minimum knowledge is available about the incoming signals. 

The robustness and the simplicity of implementation of the LMS 

algorithm, make the LMS adaptive filter attractive for many 

applications. These applications include, noise cancelling, 

channel equalization, line enhancing and adaptive linear 

prediction. The rapid advance in LSI and VLSI technology and the 

desire to provide improved speech communications, make 

telecommunications a fertile field for the application of adaptive 

filters. 
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CHAPTER -2-

Digital Filtering 

2.1 Introduction 

The early 1970s marked the beginning of a revolution in the 

electronics world, and computer technology has developed rapidly. 

With the advent of relatively cheap digital computers and 

availability of the A/D and D/A converters, powerful digital 

filters have now become an attractive subject and commonly used. 

Consequently, the number of practical applications significantly 

increased. 

Some digital filters have found important uses in an 

increasing number of fields in science and engineering and the 

required techniques have been developed to achieve the desired 

filter characteristics. 

Many digital filters are fabricated as a single IC making the 

use of such filter components in commercial systems economically 

feasible and technically desirable. 

Many programmable LSI digital filters have been designed and 

have been used in many applications (40). British Telecom Research 

Laboratories ( 41) have designed an LSI digital filter and detect 

(FAD) chip as a general purpose device suitable for filtering noisy 

signals and detecting tones in the audio frequency band. 

This chapter describes the basic principles of digital 

filtering. Two methods of describing the discrete-time systems, 

namely the Z-transform and state variables technique, will be 
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investigated. The mathematical concept of the Z-Transform, which 

is the basic mathematical tool of digital filtering, is described 

in the first section. The linear difference equation, the central 

element in the concept of the digital filter, is then investigated. 

Different realisations of recursive digital filters and the 

considerations that should be taken into account in choosing 

between them are also presented. Due to the limited word length 

available on the digital computer, quantization noise occurs, the 

last section introduces some aspects of these errors. 

2.2 Sampled Data Signals 

2.2. 1 Introduction 

The sampling process represents the signal x(t) by its value 

x(nT) at integral time increments T (called the sampling period) so 

that the sampled data signal defines values only at certain 

instants of time. Since it is not possible to feed continuous data 

into a digital computer, any signal or data input must be 

represented as a set of samples. A simple model of the sampling 

process is one which considers that the samples can be acquired by 

closing a switch at interval times every T seconds for a short time 

7 seconds as shown in fig.2.1. Referring to fig. 2.1 it is obvious 

that the switch output is a set of pulses separated by period T 

with finite width. However, if the pulse width,7, is negligible 

compared with interval between successive samples,T, the output of 

the sampler x*(t) may be described as a set of impulses with their 

heights proportional to the values of x(t) at the sampling instants 

(4,5). 

2.2.2 Mathematical Description Using the Dirac " 0 " Flmction 

The Dirac function, which is usually referred to as the unit 
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impulse function, is a pulse of extremely small width and unit 

area. In other words, the product of its width and its mean height 

is unity, even though its precise shape is undefined. 

As shown in fig. 2.2, the ideal sampling function can be 

represented as a train of unit impulses, and is defined by the 

equation 
co 

oT(t)=I: o(t-nT), 
n:-co 

2.2.1-

where o(t) represents a Dirac pulse (unit impulse) occuring at t=O, 

and o(t-nT) is a Dirac function shifted by integral number ofT 

occuring at t=nT. Therefore 

*c co x t) = x(t)I: o(t-nT) , 2.2.2 
n:-co 

where x(t) is the original continuous signal and x*(t) is the 

sampled signal. 

Since the value of x(t) is only known for t=nT, and for a 

physical system x(t)=O for t<O, then 

* co x (t) =I: x(n)T o(t-nT) 
n=O 

2.2.3 

It is obvious that x*(t) is a weighted sum of shifted unit 

impulses, so that x(n)T is the weighting factor of the impulse 

function o(t-nT), as indicated by the value in fig. 2.2.c (4). 

Referring to eqn. 2.2.1, oT(t) can be expanded as a Fourier 

series, that is 

where 

Cn = (1/T)]foT(t) e-jnust dt 

0 
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and Ws is the sampling frequency equal to 27r/T rad/sec. 

Since the area of the Dirac pulse is unity, then 

and therefore, en = 1 IT, hence 

oT(t) = (1/T)i: ejnust 
n=-co 

and we have seen in fig. 2.2 that for the impulse modulator 

* X (t) = oft) x(t) , therfore 

x*(t) = 1/T f. x(t) ejnust 2.2.4 
n=-co 

By taking Laplace transforms and stating the associated 

shifting theorem, we obtain 

x*(s) =J[x*(t)] 
co 

= c 1/T)L: xcs-jnus) 
n=-co 

therefore 
co 

x* (jw) = (1/T)L X[jCw-nus)J 2.2.5 
n=-cc 

It is observed from eqn. 2.2.5 that, as a result of impulse­

sampling, the frequency spectrum of the signal x*(t).is the same 

as the spectrum of the original signal x( t) but is periodic with 

period Ws (27r/T), that is to say, the sampling has introduced a 

periodicity into the frequency space, which constitutes a 

fundamental characteristic of the sampled signal shown in fig. 2.3. 

Referring to fig. 2.3 if the highest frequency component is greater 

than Ws/2 (see fig. 2.3.c), a fold-over distortion or aliasing of 

the frequency response function is introduced, which may be avoided 

by increasing the sampling frequency. Consequently the original 
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Fig. 2.3 (a) Frequency spectrum of the signal 
(b) Frequency spectrum of the sampled signal 
(c) Aliasing of frequency specrta 
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g(i)T x(n-i)T 
I= ~ 

X(Z) 
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Y(Z) = G(Z).X(Z) 

Fig. 2. 4 Digital convolution-summation property 



signal cannot be reclaimed from the sampled-data signal. From 

this, the sampling or Shannon's theorem is derived, in which it 

specifies the minimum sampling rate for adequate representation of 

a continuous signal. If the frequency f=W/211", and to avoid the 

folding condition, it has been already shown that 

w<11"1T 

or 

f = w 12 7r < 1 /2T 

and hence 

T < 71" /w = 1/2f 

Formally, the sampling theorem may therefore be stated as follows: 

"A continuous signal which does not contain any component with 

frequency greater than f Hertz may in principle be recovered from 

its sampled version, if the sampling interval T is less than 1/2f 

seconds". 

The interval 1/2f is called Nyquist interval and 2f is known as the 

Nyquist frequency (4,5,7). 

2.3 The Z-Transform 

In general the analysis and design of linear systems may be 

carried out by one of two major approaches which relies: 

(a) on the use of a transform, such as Laplace and Z-transform and 

block diagrams. 

(b) the state variable technique, which will be discribed in the 

next section. 

As we mentioned before, filters can be classified into 

analogue filters (continuous-time systems) and digital filters 
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(discrete-time systems). 

In continuous-time systems, (42) Laplace transformation is 

used (a) to solve the differential equations, in which the output 

signal and its derivatives are related to the input signal and its 

derivatives and also (b) to express the behaviour of a filter in 

terms of a transfer function which describe a signal in terms of a 

set of poles and zeros in S-plane (S-domain). The Z-transform, on 

the other hand, is used to describe the properties of a discrete-

time systems (sampled data signals) and leads to a useful method 

of representing the discrete-time systems by either a finite set of 

poles and zeros in Z-plane (frequency domain representation) or by 

a linear difference equation (time domain representation). 

The Z-transform (4) can be considered as a rule that converts 

a sequence of numbers into a function of the complex variable Z. 

The Z-transform of a sampled-data signal may be directly determined 

from its Laplace transform. Referring to eqn. 2.2.3 we find that 

* x = x(O)To(t)+x(1 )To(t-T)+x(2)To(t-2T)+ .•. 

The Laplace transform of x*(t) is given by 

where S is a complex frequency variable. 

We now define the new variable Z = eST and denote the Z-transform 

of the signal by X(Z ). Hence 

that is 
CXI 

X(Z) =L x(n)T z-n 2.3.1 
n=o 
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Z is a new complex frequency variable. Thus if S =a +jw 

The term z-n implies a time delay of n sampling periods. 

Murankami et al. (43) have presented a new complex number-

theoretic Z-transform (CNT Z-transform) over a finite ring. It was 

shown that a digital filter with any desired impulse response can 

be expressed in terms of the CNT Z-transform. They have foond that 

filters designed on a finite ring have some advantages over the 

usual Z-transform, i.e. they are errorless and information 

lossless. 

2.4 Z-Transform Properties 

1 • Lin ear i ty : 

co 
X(Z) = L: (Ax 1 (n)T+Bx2(n)T)z-n 

n=O 

where A and B are constants. 

2. Right-Shifting "delay" : 

Y(Z) = f x(n-k)Tz-n= [f x(n)Tz-n z-kJ 
n=O n=O 

= X(Z) z-k 

3. Left-Shifting : 

co 
Y(Z) =l: x(n+k)Tz-n 

n=o 
1<-1 

= zkx(Z)-L x(n)Tz-Cn-k) 
n:o 
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4. Convolution-Summation : 

The input and output signals of a digital filter are related to 

each other through the convolution-summation property. Referring 

to fig. 2.4 and using this property, we have 

y(n)T = g(O)Tx(n)T+g(1 )Tx(n-1 )T+g(2)Tx(n-2)T+ ••• 

where g( i)T is the weighting sequence of the filter. Using eqn. 

2.3.1, we obtain 

therefore 

therefore 

CD 

Y(Z) =L [g(O)Tx(n)T+g(1)Tx(n-1)T 
n=O 

+g(2)Tx(n-2)T+ ••• J z-n 

Y( Z) = g( 0 )TX( Z )+ g( 1 )Tz-1 X(Z)+g(2)Tz-2X(Z )+ ••• 

= [ g(O)T+g(1 )TZ- 1+g(2)TZ-2+ ••• ] X(Z) 

Y(Z) = G(Z) X(Z) 

G(Z) = Y(Z)/X(Z) 

The ratio Y(Z)/X(Z) (equal to G(Z)), is commonly referred to as the 

pulse transfer function of the digital filter. 

5. Summation : 

Suppose that 

n 
g(n)T = L: x( i)T 

i= 0 

and using eqn. 2.3.1 we obtain 

CD 

for n = 0, 1, 2, ••• 

X(Z) = L [g(n)T-g(n-1)]T z-n 
n=O 

= G(Z)-z-1G(Z) 
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therefore 
= G(Z) _[iZ-1)/Z_L 

G(Z) = L Z/(Z-1) 1 X(Z) 

for further detailes of the Z-transform refer to references (4,6). 

2.5 Relation Between the Z-Domain and S-Domain 

In order to gain some insight into the relation between S-plane 

and Z-plane poles and zeros, it is important to investigate what 

happens to the complex variable Z when S has certain typical 

values. The process by which a point in one plane is transfered to 

the other plane is called mapping, and that mapping process is 

governed by the law : 

S = a+jw and z = eST = e(a+jw)T 

where T is the period of the sampling process. 

It is obvious that for any constant value of a, Z is a 

function ofw and is repetitive in form with a period equals 2W'T 

radians/sec. The previous value of Z is represented by a vector of 

length eaT which makes an anglewT radians with the positive real 

axis. As shown in fig. 2.5 any point Sx in the S-plane corresponds 

to just one point Zx in the Z-plane. Now referring to table 2.1, 

it is seen that the imaginary axis in the S-plane transforms (maps) 

to the circumference of the unit circle in the Z-plane. 

From fig. 2.5, it can be seen that if : 

(1) a< o-j Z j<1, the left-hand half of the S-plane transforms 

into the inside the unit circle in the Z-plane. 

(2) a =D-IZI=1, every point on the imaginary axis (jw) in the 
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Fig. 2.5 S-plane to Z-plane transformation 
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y(n) 
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Fig. 2.6 Block diagram representation for the state variable description 
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a=O• Ws = 2 TT/T 

jw Z=1 LwT 

0 1 L0° 

c..Js/8 1 L45° 

c..Js.4 1 L90° 

3c..Js/8 1 !.135° 

w5 ;2 1 L180° 

5w5 /8 I L225° 

3<..>s/4 1 L270° 

1c..Jsl8 1 L315° 

ws 1 L360° 

Table 2.1 



S-plane is mapped into a point on the unit circle in the Z-plane. 

(3) a >O~IZI>1, the right-hand half of the S-plane can be 

mapped onto the outside of the unit circle in the Z-plane (4 ,44 ). 

2.6 The Inverse Z-Transform 

The inversion of the Z-transform is conducted to determine the 

time-domain description of the digita filter from the corresponding 

frequency-domain description (4 ). 

The inverse Z-transform relation is expressed as 

x(n)T = ( 112 ..- j) f X(Z )zn-1 dZ 2.6. 1 

where c is the counterclockwise contour that encircles the origin. 

For rational Z-transform contours, integrals of the form of eqn. 

2.6.1 are often conveniently evaluated using the residue theorem, 

i.e. 

x(n)T =L:residue of[X(Z)zn-1]at the poles incide c 2.6.2 

where 

for a pole of order m at z=~ 

Another technique for recovering the sampled time function 

corresponding to a given Z-transform is simply to expand the Z-

transform into a power_series by ordinary long divisio~ 

A third method of determining the inverse Z-transform is to 

expand X(Z) into partial fractions, and then refer directly to a 

table of Z-transform pairs to obtain the corresponding Z-inverse, 

x(n)T, of each partial fraction (4,6). 
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2.7 The Difference Equation and the Digital Transfer Function 

It has been established in section 2.3, that a digital filter 

may be represented by a linear difference equation, which is the 

counterpart of the differential equation in the linear continuous 

system. Furthermore, it has been established that the pulse 

transfer function of the filter is a ratio function of Z expressed 

as Y(Z)/X(Z), where Y(Z) and X(Z) are the Z-transforms of the set 

y(n)T and x(n)T respectively. 

In general, the pulse transfer function of the digital filter 

G(Z) is given by 

N 
z-i G(Z) = 1-~i I 

b·Z-1 1+ 1 
i=1 

2.7 .2 

where ai and bi represent the filter coefficients. 

The pulse transfer function representation of eqn. 2.7 .2 leads 

to a useful method for determining the filter~ response to various 

input signals. This can be achieved by obtaining X(Z) and G(Z) and 

multiplying them together to give the Z-transform of the filter 

output response Y(Z ). Finally the inverse Z-transform of Y(Z) is 

obtained to yield y(n)T. So it is obvious that the first stage in 

the design of a digital filter is to find the coefficients of the 

transfer function. 

Now from eqn. 2.7 .1, we obtain 

X(Z) [ a0+a1z- 1+a2z-2+ •.• +aNz-N 1 = 

Y(Z) [ 1+b1z-1+b2z-2+ ••. bMz-MJ 
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and since z-k represents a time delay of k sampling periods, then 

it follows that the input and output sampled-data signals are 

related by a linear difference equation which can be expressed as 

f: ai x(n-i)T= :E biy(n-i )T 
i=O i=1 

since bo = 1, therefore 

y(n)T = aox(n)T+a1x(n-1)T+ ••. +~x(n-N)T 

-(b1Y(n-1)T+b2y(n-2)T+ .•• +~y(n-M)T} 

N M 
=2: ai x(n-i)T -2: biy(n-i)T 

i=O i=1 

2.7.3 

2.7.4 

The linear difference equation is the basic element in the 

concept of the digital filter, so the implementation of any digital 

filter should satisfy its difference equation. For further details 

refer to (4,42,45). 

2.8 State Variable Analysis 

2.8. 1 Introduction 

In the previous sections we investigated a way of describing 

the input-output relation of a system by a linear difference 

equation and transform domain description (Z-transform of the 

linear system in a discrete time system). This section discusses 

another method of describing the input-output relation of systems, 

namely the state space or state variable description. Generally, 

the state of a system at time t is that set of variables required 

at timet so that, given the inputs to the system forT>t, one can 

exactly specify the future behaviour of the system for7>t. So the 

state of a system may be represented by the values of a number of 

variables representing the state variables. A system might have an 

infinite or only a finite number of states and it can be applied to 
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both continuous and discrete time systems. In this section we will 

discuss the state space description of the behaviour of discrete 

time system. Many textbooks and articles grant general insight to 

this powerful technique for system analysis and design 

(46,47,48,49,50,51). 

2.8.2 State Space Description for Discrete Time System 

Let the variables q1(n), q2(n), •.• , qr(n) represent the 

state variables of a discrete system. At any instant n, the value 

of the output of the system, y(n), can be computed from the values 

of the state variables at that instant and the values of the inputs 

x(n), x(n+1 ), •• • For the discrete time system, the normal form 

of the difference equation may be expressed in matrix form as: 

q(n+1) =! q(n) + ~ ~(n) 2.8.1 

and the corresponding state output equation is 

y(n) = f q(n) + Q ~(n) 2.8.2 

where q(n) is the state vector of the system of n state variables 

2£(n) is the input vector. 

_y(n) is the output vector. 

A is the matrix of coefficients of the state variables. 

~ is the input signals coefficients matrix. 

f is the matrix of the output signals coefficients. 

D is the matrix of the input signals terms contained in the output 

equation. 

Eqns. 2.8.1 and 2.8.2 are referred to as the state equations, 

and a description of a system behaviour by these equations is 

called the state space descriptio~ 
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Consider, for example, a discrete time system represented by 

the difference equation 

2.8.3 

This equation could be represented by a block diagram as 

illustrated in fig. 2.6. Because eqn. 2.8.3 is an nth order 

difference eqution, therefore, n state variables should be 

specified to describe the system (47). Defining the state 

variables as the outputs of delay elements, we obtain 

q1 (n) = y(n-k) 

q2(n) = y(n-k+1) 

2.8.4 

referring to fig. 2.6, each state variable at time (n+1) could be 

written in terms of those at time n as 

q1 (n+ 1) = q2(n) 

q2(n+1) = q3(n) 

qk-1(n+1) = qk(n) 

qk(n+1) = y(n) = a0x(n)- bkq1(n)- ••. - b1qk(n) 

2.8.5 

To obtain the state variable representation in matrix form. eqn. 

2.8.5 is rewritten as 
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q1(nr1) 0 1 0 0 q1 (n) 0 

q2(nr1) 0 0 1 0 q2(n) 0 

= + x(n) 

0 0 0 1 0 

qk(n+-1) -bk -~-1 -bk-2 -b1 qk(n) aa 

and _ 

q1 (n) 

q2(n) 

y(n) = [ -bk -bk-1 0 0 0 -b1 ] + [ aa ] x(n) 

qk(n) 

The state equation can be solved at any time n by solving for 

the succeeding values of the state variables in terms of the 

preceeding values and the input sequence. Starting with the state 

at time zero, the q(n) can be computed in a step-by-step manner as 

follows ( 48) : 

q(1) = !q(O) + ~x(O) 

q(2) = !q(1) + Bx(1) 

=! (Aq(O) + ~x(O) ]+ Bx(1) 

= !2q(O) + AB~(O) + ~x(1) 

q(3) = !q(2) + ~x(2) 

= !3q(O) + !2~x(O) + ABx(1) + Bx(2) 

by continuing this procedure we get a general expression as 

follows: 
n-1 

q(n) = !nq(o) + L !n-1-m Bx(m) 
- m=o 

It is obvious from the previous equation that the behaviour of such 
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a state system depends on successive powers of the matrix !· This 

equation is referred to as a discrete-transition equation of the 

system. The system output in that case can be written as 

n-1 
_r(n) = CAnq(O) + fL !n-1-m Bx(m) + Dx(n) 

m=O 

The matrix An is referred to as the discrete state-transition 

matrix. 

2.9 Frequency Response of Digital Filters 

The frequency response can be determined geometrically from 

values of the transfer function of the filters. However, for 

discrete-time systems, the frequency response is usually determined 

by evaluating the transfer function G(z) around the unit circle in 

the Z-plane, where for continuous-time systems, the frequency 

response is obtained by evaluating the transfer function along the 

imaginary axis j"' (4). 

To determine the amplitude and phase characteristics, the 

poles and zeros of the digital transfer function are plotted in the 

Z-plane, as shown in fig. 2.7. The amplitude response !G(ej~)l may 

be expressed as 

I G( ejc.>T) I = fr vector magnitudes from the i th zero to the point 
i='1 on the (.)-axis nr vector magnitudes from the kth pole to the point 
k=1 on the '->-axis 

and the phase response ~G(ejwT) may be obtained as 

r 
=~ a~les from the i~h zero to the point on thew 

. ax1s .-. .:._L a~gles from the kth pole to the point on theQ 
k='1 ax1s 

For example, let v2 , v3 be the zero vectors and 
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+ 

-t 
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_x_(n_)_T_--~~~ k ... _Y_(n_)_T~.-.~ 

Fig. 2.8 The recommended terminology used in digital filtering 



v1 9 v4 the pole vectors 

therefore 

I G ( ej t.>T ) I = r v 21 ° I v 31 
lv1j·jv4/ 

let o2 9 o3 be the zero angles and 

01 D 04 be the pole angles 

therefor 

The above relationships for ·lacejt..>T) I and,lG(ej~) are point 

by point relationships only9 in other words9 vectors must be drawn 

on the Z-plane from the zeros and poles to every point on the axis 

as shown in fig. 2.79 for which the amplitude and phase response is 

required. 

The frequency response can also be determined by substituting 

ejwT for Z in G(Z) 9 and computing directly jacekT)Iand ,lG(ejt.JT) 

(4). 

2.10 Digital Filter Design Techniques 

Digital filters can be classified into two categories; finite 

impulse response (FIR) or non-recursive digital filters and 

infinite impulse response (IIR) or recursive digital filters. The 

term non-recursive means that the output of the filter is computed 

using the present and previous inputs only9 i.e. bi=O. On the 

other hand9 the term recursive means that the output of the digital 

filter is computed using the present input and the previous inputs 

and outputs 9 i.e. bi =F 0 (4 9 45). 

It has been mentioned before that the main problem in digital 

filter design is the determination of the coefficients to obtain 
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its difference equation. These coefficients can be determined by 

suitable approximation or truncation of the impulse response 

functions in either the time or frequency domain. 

There are at least two different frequency domain approaches 

in designing the IIR filters ( 4 ,52): 

( 1) the direct approach which is concerned with the Z-plane 

representation of the digital filter, where the coefficients can be 

determined using some computational algorithm directly from the 

filter specifications. This direct approach may be used in the 

designing of frequency sampling filters and those based on squared 

magnitude functions. 

(2) the indirect approach in which the coefficients of the digital 

filter are determined by transfering the frequency response of the 

analogue filter G(S) via an appropriate S-plane mapping to a 

corresponding digital filter transfer function G(Z). The mapping 

process can be one of the following processes: 

(a) Z-transform (impulse-invariant design method). 

(b) Bilinear Z-transform. 

(c) Matched Z-transform. 

FIR filters (52) have linear phase characteristics and may be 

designed by a number of methods, of which the following are 

considered: 

(1) frequency sampling, where the coefficients may be 

determined using the discrete Fourier transform (DFT) which is 

equivalent to a least-square approximation. 

(2) the window methods (weighting functions), used for 
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functions containing discontinuities. Much work has been devoted to 

developing suitable window methods. There are many useful window 

functions which may used in the design of non-recursive digital 

filters (52) such as: 

(a) Hamming window. 

(b) Blackman window. 

(c) Hanning window, for detail refer to (4,7). 

(3) Optimal design methods, these are the most accurate (and 

complex) ways of designing FIR filters. 

Forsythe (53) has developed a new method for computing the 

coefficients of a digital filter, in which the poles of the 

transfer function G(S) in the S-plane are mapped directly into the 

corresponding Z-plane, but the positions of the Z-plane zeros are 

derived by a more complex process using a Taylor series expansion. 

This method has the capability of approaching the filter response's 

theoritical limit unlike any other. 

2.11 Realization of Digital Filters 

2.11.1 The Realization of Recursive Digital Filters 

The terminology shown in fig. 2.8 is suggested by Rabiner (54) 

for digital filtering. Referring to the linear difference equation 

(eqn.2.7 .4) given in section (2.7). It is obvious that the digital 

filters are com}X)sed of circuits which perform three fundamental 

operations of storage, multiplication and addition (5). There are 

many network realizations (45) of IIR filters. One consideration 

that should be taken into account in the choice between these 

different realizations is the number of operations to be performed 

and their precision. That is, networks with the fewest constant 
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multipliers and the fewest delay branches are often the most 

desirable. The recursive difference equation may be realized in 

the following forms~ 

2o 11o 1 o 1 Direct Form I 

Since the difference equation (eqn. 2.7.4) can be written 

directly by inspection of the transfer function (in the form of 

eqn.2.7. 1) 9 the network corresponding to eqn. 2.7 .4 is called _the 

direct form of the system by (eqn. 2.7. 1). 

The realization structure shown in fig. 2.9 represents a direct 

form implementation of eqn. 2.7.4 9 and it is seen that a kth order 

filter requires 2k delay operations. The polynomial coefficients 

are the multiplier values in the feed-forward and feed-back paths 

(496945). 

2o 11o 1o2 The DiJreCt Form II or Camonic Form 

In the canonic form9 the feed=forward and feed=back paths share 

the same delays. In that case the filter is realized more 

concisely saving a number of delays so k delay operations are 

required as shown in fig. 2.10 (44 945). 

As an example Hwang (55) has presented a new method of digital 

network realization. A total of 14 regular canonic forms have been 

obtained. 

Hence the total filtering operation is often subdivided into 

many different processes which are combined to give the required 

overall transfer function. This subdivision may be achieved in two 

basic forms (45). 
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Fig. 2.9 Block diagram representation of the direct form X 



z-1 I I ~I z-1 

Fig. 2.10 Block diagram representation of direct form II for an nth order filter 



2.11.2.3 Parallel Form 

To realize a digital filter in parallel form the pulse transfer 

function G(Z) is expressed as a sum using a partial fraction 

expansion. 

k 

G(Z) = c + L Gi(Z) 
i=1 

where each Gi(Z) is a first or second order transfer function. 

The filter can then be realized via a parallel connection of lower 

order fi 1 ters in either of the direct forms as depicted in fig.2.11 

(8,55). 

2. 11.2.4 Cascade Form 

To realize a digital filter in a cascade form, the pulse 

transfer function G(Z) is factorised to the form 

In this form the output y(n)T is the product of the outputs of 

several subfilters. Similarly it can be realized via the cascaded 

connection of lower order filters in either of the direct forms as 

depicted in fig. 2.12 (8,55). 

2.11.2 Realization of Non-Recursive Digital Filters 

For a non-recursive digital filter, the constant coefficients 

bi=O, and the transfer function reduces to the polynomial z-1. 

Therefore, the current output only depends on the present and 

previous input samples, and the filter can be realized as in fig. 

2.13 (8). 

2.12 Frequency transformation for digital filters 

Frequency transformation is a method of implementing a desired 
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Fig. 2.11 Block diagram representation of the parallel form 

Fig. 2.12 Block diagram representation of the cascade form 
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filter from a given normalized filter. A normalized low pass 

digital filter is one in which the cutoff frequency is a quarter of 

the sampling frequency. The transformation may be accomplished by 

changing the transfer function of a given filter to the desired 

filter. These transformations generally preserve the normalized 

filter magnitude response (attenuation); other characteristics of 

it are often retained (8 ). 

Constantinides (56,57) has developed a theory of transforming a 

given low-pass pulse transfer function into (a) high pass, (b) 

band-pass and band-stop on the Z-plane without reference to the 

frequency transformations for an analogue filter. 

Table ~.2 below lists the frequency transformation from a 

normalized low-pass filter to other types of filters at any cutoff 

frequency : 

Filter Substitute for z-1 Cutoff frequency Center frequency 

highpass -z-1 wcl=ws-wch ws/2 

bandpass -z-1 cz-1 -w 
wcl=ws-wch wo 

1- z-1 

bandstop 2-1 c z-1 -a? 
wcl = s-C w2- w1) c.>o 

1- z-1 

Table 2.2 

where 

wcl is the cutoff frequency of the normalized low-pass filter. 

wch is the cutoff frequency of high-pass filter. 

wq is the center frequency. 
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w1 and w2 are the lower and upper cutoff frequencies respectively. 

2.13 Quantization Effects 

When a digital filter is implemented on a general or special 

purpose computer, errors due to the limit of the word length 

available, which represents the number in the digital computer, 

become critical and may lead to a filter that does not satisfy its 

original specifications (58). Here the quantization has been 

defined as the approximation or the replacement of the signal value 

by the nearest of a set of quantization levels differing by steps 

of the size Q = 1/2w-1, where w is the word length. The effect of 

that quantization is to superimpose an error signal e(t), called 

the quantization noise, on the original signal. So the input to the 

digital filter is considered to be the sum of two signals, namely, 

a noiseless input x(n)T and a noise input e(n)T. That is, the 

quantized input signal is expressed as: 

x(n)T I q = x(n)T + e(n)T 

and the amplitude of the error signal is extended for -Q/2 to Q/2 

(4,58). 

The quantization errors normally take the form : 

(I) quantization errors due to round-off and truncation in 

arithmetic operations. 

(II) quantization errors due to the inaccuracy of the input signal 

since it is represented by a set of discrete values. 

(III) quantization errors due to representing the coefficeints by 

a finite number of bits. 

(IV) limit cycle oscillations; and 

(V) overflow oscillations. 
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2.13.1 Round-Off Noise 

To implement a digital filter, the signal must be multiplied 

by a constant coefficients. The result of this multiplication 

must, in general, be approximated to a number of bits that can be 

stored properly. This approximation (round-off) can be rounding or 

truncation (59). The effect of truncation or rounding depends on 

whether fixed-point or floating-point arithmetic operations are 

used and how negative numbers are represented. If the quantization 

step is assumed to be constant for all signal amplitudes, in the 

other words if noise samples are assumed to be uniformly 

distributed, then the variance of the input noise is simply Q2/12, 

Q2 /3 for rounding and truncation respectively ( 60 ). 

Mitra et al. (60) have developed a simple method of calculating 

a steady state value for the output noise variance of a digital 

filter as a result of the input quantization noise. 

Liu (61) has analysed the round-off noise for each form of 

digital filter realization showing that the accuracy of a digital 

filter depends on two important factors; the form of realization 

and the type of arithmetic used. For fixed point arithmetic, the 

mean square value of the output noise variance is expressed as 

(112 7r j) f cpee(Z) dZ/Z 

where cpee(Z) is the power spectral density of the round-off noise 

for each form of realization. 

According to the studies in (61) for a fixed-point word 

length, realizing the high-order filter with either parallel or 

cascade form is considerably more accurate than the direct 
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realization of the same filter. Thus first and second order 

filters should be used as basic building blocks for higher order 

filters. 

It has been shown that the accuracy of a digital filter design 

depends on the implementation method, but to achieve still better 

accuracy, some other advantages need to be sacrified. Barnes has 

(62) shown that the direct form structures are computationally 

efficient, but they have high round-off noise gain for narrow-band 

filters, high coefficient quantization sensitivity, and show some 

overflow noise. On the other hand optimal state space structures 

have low round-off gain noise, possess near-minimal coefficient 

sensitivity, and are free from the overflow or limit cycles 

independent of the arithmetic convergence. However, the last 

structure requires three more multipliers per second order section 

than the direct form. For further details about these structures 

refer to (62,63). 

2.13.2 Input Quantization Noise 

In the implementation of a practical digital filter system 

when a signal is converted from a continuous to a discrete form by 

an ADC, which normally produces a fixed-point binary number 

representation of the _input samples (4), the digital output has a 

finite word length which implies a difference between the actual 

value and the fixed-point representation. This is commonly 

referred to as white noise (44). 

The mean square value used in assessing this noise in the ADC 

is a2= Q2/12 and the mean square value of the error at the output 

due to input quantization is expressed as 
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= (lf/12)(1/27rj) f G(Z) G*(11Z) dZ 

2.13.3 Coefficients Rounding Effect 

Since the coefficients of the difference equation represent 

the digital filter, inaccuracy of the coefficients can cause 

degeneration in the frequency response of the filter. 

Specifically, changes in the coefficients values give rise to 

migration of the poles and zeros of the filter, and if any of the 

poles happen to migrate outside the unit circle in the Z-plane, 

then the filter, which with accurate coefficients would have been 

stable, becomes unstable (64 ). 

Knowled and Olcayto (65) have shown that the quantization of a 

digital filter's coefficients can be represented by a (stray) 

transfer function in parallel with a corresponding ideal filter. 

They have also given a measure of the degeneration in filter 

performance due to coefficient errors by the following statistical 

mean-squre convergence criterion 

zn/T 

a~ = (T/27r) J I G* (j<.)) -G(X)* (j~) J 2 d(.,l 
0 

where G*(j(.)) and G:(j~) represent the frequency response of the 

actual and ideal filter, and T is the sampling period. 

It is contended that loss of stability in a realization will occur 

only after the deviation between the actual and ideal frequency 

response has become intolerable. 

To select the minimum word-length, the expression 

- /2 < I Acceptable Gain Fluctuation I 3./a'w 
must be satisfied, provided that the output noise due to data 
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quantization and multiplicative round off errors is also acceptable 

with this word length. 

Liu (61) has indicated that the effect of coefficients 

inaccuracy is more pronounced for a high order filter when it is 

realized in the direct form than when it is realized in the 

parallel or cascade form. 

2.13.4 Limit Cycle Oscillations 

Limit cycles are defined to be the autonomous de or periodic 

behaviour of a digital filter under zero input conditions, so that 

with zero input, the output of a recursive digital filter may be 

non-zero due to the arithmetic rounding or truncation (66). 

Munson et al. (67) have used an algorithm to find maximum 

amplitude limit cycles for many different filters using sign­

magnitude and two's complement rounding and truncation with either 

one or two quantizers. 

2.13.5 Overflow Oscillations 

The fact that overflow oscillations can exist in digital 

filters is due to the nonlinearity associated with overflow which 

occurs due to the fixed point arithmetic additio~ 

The necessary and sufficient condition for the absence of 

overflow oscillation "nonlinearity" for digital filter with two's 

complement arithmetic is that: 

I The Total Input to the Adder j_ <. (68). 

2.14 Conclusion 

This chapter has presented some methods of describing the 
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input-output relation of the system such as linear difference 

equation, z-transform and the state space description. The basic 

concepts of sampled-data signals has also been discussed. We have 

seen in this chapter that the standard Z-transform is fundamental 

to a basic understanding of digital filter concepts and its 

convolution-summation property provides the relationship between 

the filter's input and output signals. Methods of realizing FIR 

and IIR digital filters have also been investigated. In fact, IIR 

filters are generally more economical in execution and computation 

time and storage requirements compared with FIR filters, but have 

less stability. 

The practical implementation of digital filters is affected by 

quantization errors due to the finite word length of the input and 

coefficients. Errors in the coefficients will obviously cause the 

frequency response of the filter to depart to some extent from that 

desired, more serious difficulties arise with the IIR filters which 

may become unstable as a result of its Z-plane poles movement 

outside the unit circle- in the case of a small change in one or 

more of its recursive coefficients (or if its recursive multipliers 

are inaccuratly specified). 
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rnAPrER -3-

Adaptive Filtering 

3.1 Introduction 

The basic concepts involved in FIR adaptive filters have been 

known for many years. They are versatile signal processing 

elements which have found numerous applications in situations where 

only a limited knowledge about the signal and the interference is 

available. 

Current real-time adaptive filters are based on Widrow~s LMS 

algorithm, a practical solution to the Widrow-Hoff or (LMS) 

algorithm. The main advantage of this algorithm is its simple 

structure which makes it easy to be computed in real time (69). 

Adaptive filters can be implemented in the time or frequency 

domain. Ferrara (70) has shown that the frequency domain 

implementation of adaptive filters requires less computational time 

than the time domain implementation. But this is only true for 

very high order filters, for example the ratio of the number of 

multipliers required for frequency domain implementation to the 

time domain implementation is 1.2 for a 32nd order, while it is 

0.69 for a 54th order LMS adaptive filter. So for n>64, where n is 

the order of the filter, there is some computational saving gained 

by implementing an LMS adaptive filter in the frequency domain. 

Moschner (11,71) and Deivasigamani (72) have proposed the 

Clipped-LMS algorithm which operates on clipped input data and has 

convergence properties somewhat inferior to the conventional LMS 

algorithm and gives a small loss in the performance of the adaptive 
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filter but is significantly simpler to implement and operates 

faster. 

In this chapter, the basic concept of an adaptive noise 

canceller that selectively rejects an undesired signal from a 

composite of signal and noise, and the Wiener solution to the 

statistical noise cancelling problem are discussed. The LMS 

algorithm for updating the recursive and non-recursive 

coefficients will also be described. Quantization noise effects of 

the variables in the adaptive filter, which minimize the mean 

square error (MSE) of the filter response, due to the limited-word 

length and finite precision arithmetic of the digital processor and 

in particular the coefficient's error due to the value they take 

when finite precision arithmetic is used, will be investigated. 

3.2 The Concept of the ANC 

Characteristically an adaptive filter has three main components 

as shown in fig.3. 1: 

(a) The processor, a single input multiple output device, which 

provides memory for the system. The outputs of the processor are 

distinct linear functions of present as well as past values of the 

input. 

(b) A set of adjustable weights which multiply the processor 

outputs. The sum of the weighted processor outputs is the output 

of the adaptive filter. 

(c) Some means to compute new weight values according to the 

adaptive algorithm in use and means by which the weights can be 

updated ( 1 0). 
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Fig. 3.2 illustrates the basic priciples of adaptive noise 

cancelling. The input to the adaptive filter is a noise signal n1 

that is highly correlated in some unknown way with the additive 

noise (interference) n0, but is uncorrelated with the clean signal 

s. The noise n1 forms the reference input to the canceller. The 

combined signal and interference s+no form the primary input to the 

canceller. The noise n1 is filtered to produce an output y that is 

subtracted from the primary input to produce the system output z 

(11,14,73). 

The adaptive filter has the ability to automatically adjust its 

own impulse response (weights) using an algorithm that responds to 

an error signal dependent on the filter's output. Thus using a 

proper adjustment algorithm, the filter can be operated in systems 

whose characteristics develop with time. In noise cancelling 

systems, the objective is to produce a system output z that is an 

estimate of the signal s. This objective is accomplished by 

feeding the system output back to the adaptive filter and adjusting 

the filter through an algorithm such as the (LMS) adaptive 

algorithm, (which will be described in detail in the next sections) 

to minimize the system output power, this will be explained later 

(11 '12,74). 

Assuming that the signal s is uncorrelated with both no and n1 

and that s, n0, n1 and y are statistically stationary and have zero 

means, then the system output z is given as: 

z = s+no-Y 

Squaring eqn. 3.2.1 we obtain 
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Taking the expectation of both sides of eqn. 3.2.2, yields: 

E[z2] = E[s2]+E[(n0-y)2] 

+2E [s(n0-y) J 
3.2.3 

since the signals is assumed to be uncorrelated with n0 andy. 

Since the signal power E[s2 ] is a fixed quantity, minimizing the 

output power yields: 

3.2.4 

Thus, when the noise cancelling filter is adjusted so that E(z2] is 

minimized, E[ (n0-y) 2 ] is also minimized. The filter output y is 

then a best square estimate of the primary noise n0• Moreover, 

when E [ (n0-y) 2 ] is minimized, E[ (z-s) 2 ] is also minimized, since 

from eqn. 3.2.1 

(z-s) = (n0-y) 3.2.5 

Thus, z is a best least-square estimate of the signal s since 

minimizing the total output power causes the output z to be a best 

least-square estimate of the signal s. The output z will contain 

the signal plus noise. From eqn. 3.2.1, the output noise is given 

by (n0-y). Minimizing the total output power, E[z2], .allows one to 

minimize the output noise power,E[<no-y)2]. Minimizing the total 

output power maximizes the output signal-to-noise (SNR) ratio as 

long as the output signal remains constant. 

It is seen from eqn. 3.2.3 that the smallest possible output 

power is 

When this is achieved, 
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Therefore, 

and Z:S 

In this case, minimizing the output power causes the output signal 

to be perfectly noise free (11, 15). 

3-3 The LMS Adaptive Filter 

The LMS adaptive filter is the basic element of the adaptive 

noise cancelling system. 

3.3.1 Adaptive Linear Combiner 

The adaptive linear combiner is the basic component, or the 

most significant portion, of most adaptive filtering and signal 

processing systems. A set of input signals are weighted and summed 

to form an output signal as shown in fig 3.3. The input signal 

vector ~j is defined as 

x. 
-J 3. 3.1 

The input signal components are assumed to occur simultaneously 

on all input lines discretely in time indexed by the subscript j. 

The weighting coefficients or multiplying factors are not fixed and 

are adjustable depending on the system. The weight vector !{ is 

defined by 
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w = 3.3.2 

Thus at the jth instant, the output Y· is equal to the inner 
J 

product of !j and W 

where the superscript T denotes matrix transposition. 

The estimation error output at jth time interval ej is 

eJ· = d·-X·TW = d·-WTx. J -J- J- -J 

3.3.3 

3.3.4 

where dj is the desired response input of the adaptive filter 

(11 '12). 

3.3.2 The LMS Adaptive Algori tbm 

The purpose of the adaptive algorithm designated in fig. 3.3 is 

to adjust the weights of the adaptive linear combiner to minimize 

the MSE. Squaring eqn. 3.3.4 one obtains 

2_ 2 T T T e. - d · -2d ·X· W+W X· X· W J J Y..:J - - -J -J - 3.3.5 

Taking the expected value of both sides and assuming that xj and dj 

are zero-mean processes yields 

3.3.6 

Taking the vector f as the crosscorrelation function between dj and 

the !j vector then yields 
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P = E r d -X· ] = E - L Y.:J 3.3.7 

Defining B as the input autocorrelation function matrix of the 

input signal, we obtain: 

XQjXQj XQjX1j XQjX2j • 

x1jx0j x1jx1j x1jx2j • 

The MSE can then be expressed as 

E[e -2] = Eld .2]-2PTW+WTRW J J ----

3.3.8 

3.3.9 

Note that the error is a quadratic function of the weights which 

can be represented as a concave hyperparaboloidal surface. The 

gradient methods widely used to minimize the error by optimally 

adjusting the weights by descending along this surface to seek its 

minimum (the bottom of the bowl) (11,69). The optimal weight 

vector~*, generally called the Wiener vector, which yields the 

minimum MSE (MMSE), is obtained by setting the gradient of the MSE 

function to zero. 

The gradient of the MSE function is determined by 

differentiating eqn. 3.3.9 with respect to wT 
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= -2P+2R w 3.3.10 

thus 

3.3.11 

This equation is the Weiner-Hopf equation in the matrix form 

( 11 '75 '7 6). 

In practice, it is difficult to obtain w* because we do not 

know the exact statistics of Band_!:, but an estimate of!!* could 

be found, by estimating B and P for the given input and given 

des ired response. 

Many methods are used to adjust adaptive parameters, the most 

common method used is the stochastic gradient search technique by 

steepest descent which converges towards the optimum solutio~ In 

this method the weight vector is changed along the direction of the 

negative gradient. 

Since the LMS algorithm is an implementation of the method of 

steepest descent, the next weight vector ~j+ 1 is equal to the 

present weight vector !!j plus the negative gradient vector 

multiplied by a constant proportional to the negative gradient: 

w. 1=W·- IIVI· -J+ -J r J 3.3.12 

The parameter Jl is the convergence factor which determines the 

rate of convergence, accuracy of the weight vector and stability. 

The LMS algorithm estimates an instantaneous gradient by 
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assumming that ej2 , representing a single squared error sample, is 

an estimate of the mean-square error and by differentiating ej2 

with respect to ~· The relationship between the true and estimated 

gradients are expressed as follows (11 ,69): 

oE[elJ/Owo 2 aej /owo 

V'= " ' V'= 

-iE [e lJ!own 2 aej /(jwn 

}i=~j 

= 

W:W· - -J 

2ej 3.3.13 

W:W· - -J 

The gradient estimate used by the LMS algorithm takes the 

gradient of the square of a single error sample thus: 

Replacing the true gradient in eqn.3.3.12 by this estimate yields 

the so called Widrow-Hoff algorithm 

3.3.14 

By using any arbitrary value for the weight vector as an initial 

value, the algorithm will converge in the mean and will remain 

stable as long as the parameter J1 is greater than 0 and less than 

the reciprocal of the largest eigenvalue Amax of the matrix R 

( 11 '75). 

1/A.max>Jl >0. 3. 3.15 

3.3.3 The Convergence Factor " Jl " 

It has been mentioned in the previous section that J1 controls 

the rate of convergence, stability and the accuracy of the adaptive 
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filter. 

Stability, and the relation between the speed of adaptation 

and performance of the adaptive system have been extensively 

studied by a number of authors, (23) and there is no general 

agreement on conditions for the filter stability. However, in 

general, the large values lead to faster convergence or adaptation, 

but add significant noise to the weight values producing a more 

noisy adaptive process. It has been observed from many studies 

(11 ,23,77) that the filter stability or convergence is guaranteed 

within the range of values 

1/>.max > J.t > 0 

Tanik et al. (78) have investigated the convergence behaviour 

of the LMS algorithm with regard to the assumption that the filter 

inputs xj and dj are Gaussian and independent over time. They have 

shown that the sufficient convergence condition for that case is: 

0 < J.t < 1/3 (2/k>.i) 

Conventional adaptive filters use a fixed "/.t" so it is the 

same for all parameters of the filter. Recently a few studies have 

been published about using a variable J.t for the filter parameters 

(79). Mikhael et al. (35,80) have proposed using and adjusting 

individual convergence factors in real time for different filter 

parameters, so that their values are kept optimum for a new set of 

input variables. They have also shown from computer simulation 

results that the individual adaptation approach gives a much better 

performance than the conventional fixed group adaptation approac~ 

The convergence factor values for the non-recursive and recursive 
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coefficients are given as: 

= o.5/ ~ x2cn-i) 
i=O 

and 
M 

Pb(n) = 0.5/ 2: y2(n-i) 
i=1 

respectively. 

3.3.4 The LMS Adaptive Filter 

The adaptive filter may be formed by implementing the adaptive 

linear combiner in conjunction with a tapped delay line as shown in 

fig. 3.4.a. Because of the structure of the delay line, the input 

signal vector is 

X·= -J 

It is obvious that the components of this vector are delayed 

versions of the input signal xj. Fig. 3.4.b represents a 

simplification of the adaptive tapped-delay line filter. This kind 

of filter permits the adjustment of gain and phase at many 

different frequencies simultaneously ( 11,76 ). 

3.11 Wiener Solution to the Statistical Noise Cancelling Problem 

This section presents the derivation of the optimal 

unconstrained Wiener solution to certain statistical noise 

cancelling problems. The purpose of this is to demonstrate 

analytically some advantages of the noise cancelling techniques 

such as the increase in signal-to-noise (SNR) ratio. 
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Fig 3.5 illustrates a classic single-input, single-output 

Wiener filter where xj represents the input signal and Yj the 

output signal, which are assumed to be discrete in time and dj is 

the desired response input. The input signal and the desired 

response input are assumed to be statistically stationary. The 

filter is linear, discrete and designed to be optimal in the 

minimum mean-square-error sense. The optimal impulse response R*(k) 

of this filter can be obtained from the discrete Wiener-Hopf 

convolution summation equation: 

Cl) 

L }i* (l~x(k-1) =~d(k) 3.4. 1 
1 =- Cl) 

where 

¢xx(k) = E[x(j)x(j+k)] and 

¢xd(k) = E[x(j)d(j+k)] 

In this form the impulse response }i*(k) may be causal or 

noncausal and extendable finitely and infinitely to the left or 

right of the time origin, i.~ this is the unconstrained form. 

The transfer function of the Wiener filter is 

3.4.2 

Taking the Z-transform of egn. 3.4.1, then yields the optimal 

unconstrained Wiener transfer function: 

3.4.3 

where Dxx(Z) is the power-density spectrum of the input signal, 

which is the Z-transform of ¢xx(k) ,and Oxd(Z) is the cross power 

spectrum between the input signal and the desired response input, 
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which is the Z-transform of <Pxd( k) ( 11 ,81 ). 

We now show the application of Wiener filter theory to adaptive 

noise cancelling. Fig. 3.6 shows a single channel adaptive noise 

canceller including an adaptive filter whose primary input consists 

of a signal sj plus a sum of two noises moj and nj. The reference 

input is a sum of two other noises m1j and nj*g(j), where g(j) is 

the impulse response of the channel whose transfer function is 

G(Z). The noises nj and nj*g(j) are correlated with each other and 

uncorrelated with the signal sj and they are assumed to have a 

finite power spectrum at all frequencies, while m0j and m1 j are 

uncorrelated with each other, with sj and with nj and n/g(j). If 

one assumes that the adaptive process has converged and the minimum 

MSE solution has been found, then the adaptive filter is equivalent 

to a Wiener filter. 

The optimal unconstrained transfer function of the adaptive 

filter is thus given by eqn. 3.4.3 and can be expressed as follows: 

The filter$ input spectrum is 

bxx(Z) = Dm1m1(Z)+onn(Z) IG(Z) 12 3.4.4 

where Om1m1(Z) is the spectrum of the noise m1 and onn(Z)I G(Z)\ 2 

is the spectrum of the noise n arriving via G(Z), and the cross 

power spectrum between the filter~ input and the desired response 

input is 

3.4.5 

The Wiener transfer function is thus 

3.4.6 
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From eqn 3.4.6, it would appear that r.lJ* (Z) is independent of the 

primary signal spectrumoss(Z) and of the primary uncorrelated noise 

spectrum omomo(Z) (11 ,77 ,82). 

An interesting special case is when m1 in the reference input 

is zero. Then om1m1Cz) is zero and the optimal transfer fUnction 

3.4.6 becomes. 

w*cz) = 1/G(Z) 3.4.7 

The performance of the single-channel noise canceller can be 

evaluated more generally by obtaining the ratio of the signal-to­

noise density at the output Paut(Z) to the signal-to noise density 

ratio at the primary input 't>ri (Z), so that 

Pout (Z) = Primary noise power epectrum 
Ppri(Z) Output noise power spectrum 

and as seen from fig. 3.6 

= Onn(Z)+OmomoCZ) 
Ooutput noise(Z) 

Ooutput noiseCZ) = omomoCZ)+om1m1 (Z) I *cz) 12 

+ onnCz)I[1-G(Z) *cz)] 1
2 

3.4.8 

If A(Z) and B(Z) are defined as the ratios of the spectra of the 

uncorrelated to the spectra of the correlated noises at the primary 

and the reference inputs, then 

A(Z) = Srnomo(Z) 
8nn(Z) 

respectively, then the transfer function 3.4.6 can be written as 
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19 * = __ _;,1 __ _ 

G(Z )[B(Z)+ 1] 

Substituting the value of * in equation 3.4.8, it yields: 

f6ut (Z )=[A (Z )+ 1] [B (Z )+ 1] 
Ppri(Z) A(Z)+A(Z)B(Z)+B(Z) 

3.4.9 

3.4.10 

This equation represents the ideal noise canceller performance 

which has single primary and reference inputs and stationary 

signals and noises. This expression is a good method for estimating 

the level of noise reduction to be expected in the case of using an 

ideal noise cancelling system. 

It is obvious from 3.4.10 that the ability of a noise 

cancelling system to reduce noise is limited by the uncorrelated-

to-correlated noise density ratios at the primary and reference 

inputs. 

1) small A(Z) 

2) small B(Z) 

Paut(Z) = 
,cpri (Z) 

1+B(Z) 
B(Z) 

1+A(Z) 
A(Z) 

3) small A(Z) and B(Z) 

fbut(Z) = 1 
fPri(Z) A(Z)+B(Z) 

When A(Z) and B(Z) approach zero, RJut(Z);~ri(Z) oo , 

and in this case there will be a complete removal of the noise at 

the system output. When A(Z) and B(Z) are small, however, other 

factors limit the performance of the system. These factors include 
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the finite length of the adaptive filter in practical systems, and 

misadjustment caused by gradient estimation noise in the adaptive 

process, discussed in section 3.7 ( 11 ). 

3.5 The Recursive LMS Adaptive Filter 

The IIR adaptive filtering problem has been studied for many 

years. In 1975 White (83) developed the MMSE gradient algorithm 

for application to a speech analyzer and synthesizer and to an 

equalizer in data transmission. Stearn and Elliot (84) have 

suggested an approach using the method of steepest descent. 

However, these algorithms involved a reasonably large amount of 

computations per iteration. In 1976 Fentuch (33) proposed a 

simplified algorithm similar to that of the FIR filter. 

Since the non-recursive (transversal) adaptive filter has a 

finite impulse response, i.~, they can produce only zeros with no 

poles in the transfer function, this limits the capability of the 

transversal adaptive filter in many applications. To overcome this 

limitation, a recursive adaptive filter, which has the capability 

of producing poles as well as zeros in the filter transfer 

function, is described and is easily implemented using two LMS 

transversal adaptive filters as shown in fig. 3.7 (23 ,33). 

Assuming that the filter, under static conditions, is described 

by its transfer function then (81): 
N 

G ( z ) = Y( Z ) = _2:"~-·-...... a -na'"'""'i Z;;;_-f_· ---.-

X(Z) 
1

1+f biz-i 
i =1 

In the time domain, the input-output relation is: 

N M 
y(n)T = L: aix(n-i)T -::[ biy(n-i)T 

i =0 i = 1 

56 



OUTPUT 

+ 

Yj 

AF2 

Fig. 3. 7 Adaptive recursive filter constructed using two LMS transversal adaptive filters 

x· J 

d· J 

Yj-1 

Xj-2 

Yj-2 
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Fig. 3.8 shows the block diagram of a recursive adaptive noise 

canceller where the set {ai} is referred to as the set of feed­

forward coefficients and the set {bi\ represents the feed-back 

coefficients. The LMS algorirthm is an implementation of the 

method of steepest descent and according to this method the next 

feed-forward and feed-back coefficients are: 

and 

respectively (33,73). 

b. 1 = b ·+2 n 2e .y · -J+ -J r FJ 

3.6 Quantization Effects 

3.5. 1 

3.5.2 

The steady state output error of the LMS adaptive algorithm due 

to the limited word-length and the finite precision arithmetic of a 

digital processor consists of three terms (85): 

{I) errors due to quantizing the input data. 

{II) errors as a result of rounding the arithmetic operations used 

to calculate the fi 1 ter 's output; and 

{III) the error due to the deviation of the filter's coefficients 

from the values they take when finite precision arithmetic is used. 

This last term is of particular interest. 

It has been pointed out that in a digital adaptive filter, the 

weighting factors are riontrolled using the method of steepest 

descent employing gradient estimates. 

As a result of the random nature of the input signal and the 

quantization noises arise due to the limited word-length used in 

the filtering operation and the coefficients updating, which 
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consists essentially of additions and multiplications. The measured 

estimates of the gradient vector Vj differs from the true value of 

the gradient ~j and contains an additive noise component ~j· These 

differences are referred to as gradient measurement noise, with 

zero mathematical expectation (75,77): 

A 

~- = J 3.6. 1 

where ~j is the true gradient, ~j is a zero mean-gradient 

estimation noise vector, and ~j is the input signal vector as 

mentioned befor~ 

The adaptation process will be affected with gradient noise 

during both the initial transients and in steady state adaptation, 

the latter term is of particular interest. The gradient noise for 

steady state adaptation is: 

n 
~j = -2 [ e j+17d-17y -17wL~ij)!j 

i=1 

3.6.2 

where 17d, 11y and 17w are the quantization noises for d, y and w 

respectively. They are stationary and independent of the 

adaptation stage i.e. of j (86,87). 

* According to the Wiener theory, when .!ij = .!ij , ~j and e j are 

uncorrelated under steady state adaptation conditions, taking into 

account that the noises 17d' 11y and 17w are stationary and 

uncorrelated with each other and with X· and e ·· -J J Thus the 

covariance of function of the gradient noise ~j' if all the 

components of eqn. 3.6.2 have zero mathematical expectations, is 

given by: 
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where Tis the sign of transposition, ~min= E[ej2] is the MSE at 

the output of the adaptive filter when ~j = ~*; 02 = E [if J is the 

variance (expected value) of the quantization noise, ~ = E[~j ~jTJ 

is the input correlation matrix, and for a Gaussian process X : 

n 

<PCB) = 3 ~ E[~ij ~j]* 
k,l=1 

The input correlation matrix ~' may be reexpressed as: 

3.6.4 

where g is the orthomodal matrix of R and 

• • • I ;>..] is the diagonal matrix of R's 

eigenvalues, we obtain for the gradient noise 

3.6.5 

and correspondingly from eqn. 3.6.5 considering eqns. 3.6.3 and 

3.6.4. Its covariance becomes 

The components of .!ij are uncorrelated with each other since the 

matrix~ is diagonal and they can be handled easily, while those 

for .!ij are correlated. 

This gradient noise causes noise in the weight vector and according 

to this noise, the LMS algorithm for updating the coefficients can 

be written as: 
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, 
This equation can be expressed in term of !j as 

I I I I 

V · 1 = (I-2 Jl. A)V ·-U_N .+~ -J+ q -J I q-J •-w 

3.6.7 

3.6.8 

where V is defined as the difference between ~j and the Wiener 

solution w* 

, T 
V·-QV·· -J - - -J' 

* V = (W ·-W ) - -J-

llq = ll+'YJJ.L ; 'YJJ.L is the quantization noise of 11, 

For the steady state adaptation conditions, when the input 
, 

signal !j is stationary, the process ! is stationary and, 

consequently, 

and taking eqn. 3.6.6 into account, the covariance of the weight-

vector noise is 

cov[fj] = [~min+oi+oy2+6w2q,(R)}/l(1+~) 
(I-/l~)-1+ow2< 114 )~-1(I_11~-1 , 3.6.9 

where!lg = OJ.L I p, , the components of the weight-vector have equal 
, 
!j variance and are matually uncorrelated. It has been found, 

however, that in this case the quantization noise of 11 has the 

most effect on the gradient noise (77 ,87). 

In the steady state adaptation, due to the quantization, 

random noise occurs in the weight vector and causes an excess MSE. 
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The excess between the MSE and the minimum MSE is the sum of 

variance of the weights calculated by the respective eigenvalues. 

The mathematical expectation of the excess MSE of the adaptive 
n 

filter may be written as E [.&~(m)J =L:, Xj E{vi 2(m)]+oy2 where 
i=, 

vij2 is the variance of the weighting vector Qij· 

The average excess MSE of the adaptive filter is an important 

quantity and can be obtained by assuming that Xi = Xmed = n- 1 tr~, 

for the matrix R where 

is the trace of the matrix R. In this case 

diagonal (~) = 3 tr~ and 

3.6.9 

Hence, for slow convergence of the minimum MSE algorithm tr~ )>)>1, 

we then have: 

3.6.10 

and for the rapid convergence, trR = 1 we have: 
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E(~~(j)] = (~min+6d2 )(1+1Lg2L.!L 
n-1 

+ sY2[1+(1+JLg21_£_ 
n-1 

+ ow2 tr_!! [3(1+1Lg2)+(n/4)k 
n-1 

3.6.11 

It follows from eqn.s 3.6.10 and 3.6.11 that the contribution 

to the output effect of filtering the quantization noise y, the 

value of which cannot be less than 6y 2 , increases with increased 

rate of convergence, i.e., asj.ttr_!! increases, and in the mode where 

tr_!!=1 it approaches a value of 2~2 . The contribution of the 

quantization noise of the weighting factors is proportional to the 

input power and to the number of weighting units in the adaptive 

filter, and consists of two components, one of which acts through 

the gradient noise, and the second by direct formation of y (87). 

Caraiscos and Liu (85) have derived expressions for the steady 

state mean square quantization error when fixed and floating point 

arithmetic are used, and found them to be similar. 

3. 7 Misa.djustment Due to Gradient Noise 

It is obvious that the purpose of adaptation is the 

minimization of the MSE. However, according to the gradient noise, 

an excess between the measured estimate MSE and the MMSE exists. 

This excess MSE governs the quality and the performance of the 

adaptive filter and it is a very important factor. The 

dimensionless ratio of the average excess MSE in an adaptive 

solution to the minimum possible MSE is referred as the 

misadjustment, thus: 

M = average excess MSE 

>-min 
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For the LMS algorithm 

M = p, trB_ 3. 7.1 

As can be seen, the misadjustment depends on the rate of 

convergence, so it is related to the speed of adaptation and it is 

also related to the number of weights, because it depends on trB_. 

Since trR is the sum of eigenvalues, then: 

n 

M = ~-t'l: A.i = p,nA.ave 
i = 1 

where A-ave represents the average value of the eigenvalues 

If A. ave = 114 P, ( 1 I 'iMSE ) 

where 'i is the adaptation time constant. 

Substituting value of A. ave into the eqn. (3.7 .2) yields: 

M = nl 4 ( 1 I i H·1SE ) 

3. 7.2 

3.7.4 

The important special case is when all eigenvalues are 

similar, so in other words, all time constants are equal. Thus the 

misadjustment is given by: 

M = nl 'MSE -3.7.5 

From eqn. 3.7.5 it is seen that M increases linearly with 

number of weights and is inversely proportional to the time 

constant of the adaptation, i.e. decreases with the decrease of Jl 

(75,77,88). 

3.8 Conclusion 

Adaptive filters generally consist of two distinct parts: a 

filter, whose structure is designed to perform a desired processing 
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function, and an algorithm for adjusting the coefficients of that 

filter. The LMS algorithm, as one of the simplest and easiest 

algorithm to implement, is used to update these coefficients. It 

has been shown that this algorithm is based on the gradient 

technique and that its convergence or divergence is governed by the 

proper choice of ~· It is noticed that the LMS algorithm presented 

for the IIR filter is similar to that for the FIR LMS adaptive 

filter. The quantization effects due to the limited word length 

available on the digital computer and the effect of the 

misadjustment by the rate of convergence has also been 

investigated. 
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CHAPTER -4-

Computer Simulation 

4.1 Intoduction 

The principal motivation in the study of adaptive IIR filters 

is the significant computational and therefore hardware saving 

possible versus FIR filters. The structure of that filter in the 

time domain may be described, as has been pointed out, by the 

input-output relation 

N M 

y(n)T = 2: ai x(n-i)T-2: biy(n-i)T 4.1.1 
i=O i=l 

The sets {ail and {bil can be updated using the LMS algorithm. 

This algorithm has gained considerable popularity since the early 

1960s. Its simplicity and ease of implementation make it an 

attractive solution for many practical problems. 

As has been established in chapter 3, the LMS algorithm for 

updating the feed-forward and feed-back coefficients are given by 

the expressions 

4. 1. 2 

respectively. 

In this chapter, a number of computer simulation programs were 

developed to investigate the behaviour of the IIR adaptive filter, 

implemented as an ANC, under different conditions and with various 

parameters. So to be compatible with the hardware implementation 

of the algorithm, computer simulations for both floating point and 
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fixed point arithmetic representations of the IIR adaptive filter 

were also discussed. 

4.2 Computing IIR Filter Transfer Ftmction 

It has been mentioned in chapter 2 that the frequency response 

(transfer function) of an IIR filter may be expressed as 

G(Z) 4 .1. 3 

It can be easily obtained by substituting ejwT for Z in G(Z), 

and computing directly \GCejwT) I, by considering the parameter (wT) 

varies from 0 to ~. A computer simulation was developed to satisfy 

this requirement and is listed in appendix A-1. 

4.3 IIR Adaptive Filter Performance with Different N and p, 

In the hardware implementation of the IIR adaptive filter, the 

speed of the processor used become a hindrance limiting the 

execution of the coefficients updating operation for each sampling 

instant. Various simulation programs, listed in appendix A-2 

through A-5, were developed to investigate the performance of the 

filter when the coefficients updating process takes place only once 

for N sampling points. Four different types of implementing the 

IIR adaptive filter including the conventional type have been 

discussed. The last three types vary in the time interval between 

the input samples as well as the output samples involved in the 

coefficients updating operation, but for all these types one new 

input and ouput sample is applied whenever this operation is 

accomplished. 

In these programs, two different types of signals are applied 

to the IIR adaptive filter. 
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(a) White noise (or random numbers) was supplied to the desired 

response input dj, and the filter input xj was dj waveform passed 

through a system with transfer function G(Z) = 1+Z-2 as illustrated 

in fig. 4.1.a 

(b) x j and d j were supplied from two different sources. The d j 

was obtained by summing two equal amplitude sine waves, the 

required fundamental and interference second harmonic. The filter 

input was the interference second harmonic signal passed through 

the filter with G(Z) = 1+Z-2 as depicted in fig. 4.1.b. This simple 

second order filter produces a zero at~/2 in its steady state 

transfer function. 

Both the filter input and the desired response input are 

simulated in both previous systems. A common flowchart of the 

computer simulation program for implementing the filter is shown in 

fig. 4.2. The performance of the filter is evaluated by plotting 

its transfer function (magnitude of the transfer function) with 16 

feed-forward and 15 feed-back coefficients and the types of 

implementation are as follows: 

4.3.1 Conventional Type 

The simulation program ( appendix A-2) of this type is very 

straightforward, so referring to the flowchart in fig. 4.2, there 

is no need for C, K, S and H parameters and N=1 since the 

coefficients are updated every sampling instant. In this type the 

input and output samples are expressed as xj, xj_1, ... , xj_15, Yj-

1, Yj_2, Yj_ 15. Fig. 4.3 illustrates the steady- state transfer 

function of the IIR adaptive filter implemented according to this 

type, the filter inputs follow the system (a) (fig.4.1.a). While 
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define one dimentional arrays of m elements: 
a, b, X, Y, d, e, p, q,z 

define N, K, MaxCount, ~1 and ~2 

initialize the previous arrays at 0 
e = 0, Count = C = H = S = 1 

K = m= 16 

generate the input signal Xj and 
the desired response input dj 

read Xj, Yj and dj 

NO 

compute filter output 

Yfj] = f": [j]*X[j]- f-b[j]*Y[j] 
J=r j=l 

Fig. 4.2 The IIR LMS adaptive filter flowchart 

read p[j], q[j] and z[j] 

compute e error output 
e = z[j]- qUJ 

update the filter coefficients 
a[j+1] = a[j] + 2 ~1 *e*p[j] 
b[j+1] = bfj] + 2 ~*e*q[j] 

YES 
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fig. 4.4 shows the filter transfer function by supplying inputs of 

system (b) to the filter. The convergence factors p,1 and p,2 are 

set to the values 7.2x1o-6 and = 3.6x1o-6 respectively. 

4.3.2 N Time Interval Type 

In this type the inputs applied to the ANC follow the system 

(b) and the times between the input as well as the output samples 

involved in the updating operation are N. The sampled data are 

expressed in the form xj, xj-N' xj-2N' ... , xj-15N' Yj-1' Yj-1-N' 

Yj-1-2N' •.. , Yj-1-14N· In this program, listed in appendix A-3, 

there is no need for K ,C and H has only one value, two parameters 

are varied individually, and N. Fig. 4.5 illustrates the steady­

state transfer function of the filter for a constantp,F 7.2x1o-4 

and~ 3.4x1o-4, while N takes different values, for example 16, 32 

and 128. Fig. 4.6 displays the corresponding diagrams at different 

convergence factors Jl1 =7.2x1 o-6 and Jl2 =3.6x1 o-6. 

4.3.3 Successive Input & Output Samples Type 

In this type the input and output samples are expressed as xj, 

xj-1' xj-2' •.. , xj- 15, Yj-1' Yj_2, Yj_3, ..• , Yj_ 15. Referring to 

the flowchart in fig. 4.2, the computer simulation of this program 

follows the flowchart with the assumption that K and C are always 

16, H is extended from 1 to 16. So the 16-input and the 16-output 

samples (only 15 output samples are used) are completely changed 

and replaced by a new group of successive samples whenever the 

coefficients updating operation takes place. Fig. 4.7 illustrates 

the steady-state transfer function of the filter for the 

convergence factors p,1 = 7 .2x1o-4 and p,2 = 3.4x1o-4 at different 

values of N (16, 32 and 128), while fig. 4.8 shows the transfer 

function diagrams at the same values of N, but the filter 
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convergers with different values, J.L1 = 7 .2x1 o-6 and J.L2 = 3.6x1 o-6. 

4.3.4 Blocks Type 

Two blocks (groups) of C (16) successive samples with time 

interval N*16 between the blocks are defined in this program, 

listed in appendix A-5. In this case, one new sample of the second 

block is applied to the first block, in which the samples are 

shifted one location and ripple through the first block for every 

coefficients updating operation, this process will be discussed in 

detail in chapter 6. The input and output samples are represented 

in the form Xj, Xj-1' Xj-2' •.• , Xj-15' Xj-(N*16)' Xj-(N*16)-1' 

••• , xj-(N*16)-15' Yj-1' Yj-2, •.• , Yj-15' Yj-(N*16)-1' Yj-(N*16)-

2, ••• , y j-(N* 16)-15• The simulation program follows the flowchart 

in fig. 4.2, with K:16, and the maximum value of C is 16. The 

transfer function of the filter following this process is shown in 

fig. 4.9 and fig. 4.1 0, for N= 16, 32 and 128 at two different 

values of the convegence factors ~ 1 = 7.2x1o-4, J.L2 = 3.4x1o-4 and 

J.!1 = 7 .2x1 o-6' ll2 = 3.6x1 o-6 respectively 

4.4 Comparisons of the Filter Implementation Types 

The aim of previous simulations is to gain the optimal 

performance in the adaptive filter implementation. As a first step 

in evaluating the performance, various types of implementation have 

been simulated. The simulations helped to determine the optimal 

implementation of processor function and parameters as well as to 

expose certain methods of implementing the algorithm. On the other 

hand, it is better to avoid methods which could significantly 

degrade the IIR adaptive filter performance. 

Gaining some insights into the previous results (figures), the 
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following aspects can be observed. 

(a) There is no doubt that the LMS IIR adaptive filter can be 

efficiently employed as an ANC (fig.4.3&4.4 9N=1 ). 

(b) When the filter inputs are statistically stationary9 the best 

steady-state performance results from slow adaptation. In other 

words9 small convergence factors lead to a better performance 

(c) At small convergence factors (for example ~1 = 7.2x1o-6 and ~2 
= 3.6x1o-6) in the last three types of implementation 9 the IIR 

adaptive filter developed a sharp peak or a pole at the correct 

frequency 9 which is ~/2 9 and its transfer function is the inverse 

of the input transfer function 9 which produces a zero at this 

position (~/2) 9 at various values of N. 

These results illustrate and prove the ability and efficiency 

of the IIR adaptive filter to produce the desired performance when 

the coefficients updating operation takes place only once in N 

sampling points. It is obvious that the steady-state transfer 

function of the filter is improved and refined (lower side lobes) 

by increasing the value of N. So this operation is equivalent to 

the convergence of the filter using small ~s 9 which leads to a 

more stable system. 

(d) Comparing the performance of the filter in the last three 

types 9 there is no doubt that the IIR LMS adaptive filter exhibits 

better performance utilizing the type discussed in section 4.3.4. 

This type of implementation is suitable for a wide range of 

convergence factors and for various values of N. Thus 9 for these 

reasons 9 in addition to the fact that in this type the input and 

output samples represent the periodic signal more efficiently9 the 

microprocessor software is developed to update the coefficients of 
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the filter implemented in hardware according to this type, as will 

be investigated in the next two chapters. 

4.5 The ANC Performance 

A sine wave was used as a test signal to enable any distortion 

due to noise contamination to be measured. This type of signal has 

been used to illustrate the efficiency and the ability of the IIR 

adaptive filter to cancel the interference corrupting the desired 

signal. A simulation program was developed to implement a 16th 

order LMS IIR adaptive filter in accordance with section 4.3.4. 

Most adaptive filter simulations produce a set of floating­

point coefficients and the input and output samples .are also 

represented in floating-point arithmetic. For hardware 

implementation, all these data are represented by a number of bits 

depending on the ADC and DAC resolutions and the register length of 

the microprocessor used to perform the algorithm that updates the 

coefficients. So the simulation programs were executed using 

either floating-point arithmetic or fixed-point arithmetic 

representations of the data involved in the filter implementatio~ 

The desired response signal was generated by adding two equal 

amplitude sine waves, a desired fundamental of f 1 and the second 

harmonic of f 2 (where f 2 = 2f1) representing the interference 

(noise). The filter input signal was the interference at f 2 

altered in phase and amplitude in both modes of representation. 

The canceller comprised an IIR filter with 16 non-recursive (feed­

forward) and 16 recursive (feed-back) coefficients taking into 

account that a[1] = 1 (a0 = 1 ,eqn. 4.1), and N was chosen to be 

128. 
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4.5.1 Floating-Point Simulation 

This simulation program, listed in appendix A-6, followed the 

flowchart illustrated in fig.4.2, with some modification as regards 

the type discussed in section 4.3.4. So K and the maximum value 

of C were set to 16 and the updating operation accomplished once 

for every 128 input and output samples involved in the operatic~ 

An example of the performance of the filter is depicted in fig. 

4.11. It shows typical desired response and the interference 

inputs and the corresponding noise canceller outputs. The 

adaptation constants p,1 = 7.2e-06 andJl2 = 7.2e-06. 

4.5.2 Fixed Point Simulation 

This section concerns the implementation of the IIR adaptive 

filter with fixed-length input-output and coefficients. The 

simulation program followes the flowchart in fig.4.2, as listed in 

appendix A-7 but with an important consideration taken into account 

ie. that the x j, d j, y j, and e j took the values between 2n-1-1 and 

-2n- 1 according to the ADC and DAC resolutions (12-bits (n=12)) 

used in the hardware implementation of the ANC. 

The coefficients were considered as a fractions of 12-bit 

size. This could be achieved by scaling down the filter output Yj 

by 2-12 at the end of the filtering operation for each sampling 

instant (period). The ANC system used was identical to the one 

employed in the floating point representation. An example of the 

behaviour of the ANC in fixed point representation is illustrated· 

in fig. 4.12. It shows the typical primary and reference inputs and 

the ANC outputs at the end of the convergence (adaptation) with 

convergence factors p,1 = 1020033 ( 2-19) and 112 = 1020033 ( 2- 19 ). 
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4.6 Conclusion 

Several computer simulation programs with different 

characteristics have been successfully developed verifying the 

optimality and efficiency of the ANC when the coefficients updating 

operation is achieved only once in N sampling instants yielding a 

more stable system. These simulation results greatly demonstrate 

the competency of the noise canceller to adaptively filter the 

additive periodic noise in both floating point and fixed point 

representations of data involved in the design of the ANC. 
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CHAPTER-5-

DESIGN ANALYSIS 

5.1 Introduction 

In recent years, attention has been focused on digital 

hardware in communications equipment. As progress has continued in 

the digital environment, a whole new range of signal processing 

problems have required digital solutions; many of them can be 

expressed in their simple form as either filtering or a level 

detection function. 

The advent of LSI made it convenient to carry out many 

filtering operations digitally rather than with analogue circuits, 

so that it is possible to perform all the arithmetic processing and 

shifting operations on one chip. 

The FAD IC was designed at the British Telecom Research 

Laboratories to perform the role of a general purpose programmable 

digital filter and detector suitable for the flexible processing of 

signals in the audio frequency band. 

It has been mentioned in the introductory chapter that the aim 

of this work is the design and implementation of a high order 

adaptive filter using the FAD IC acting as a noise cancelling 

system with the aid of a fast microprocessor. 

This chapter presents the analysis and design, in hardware, of 

the noise cancelling system which is controlled by a 68000 

microprocessor as illustrated by the block diagram in fig 5.1. 
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It introduces the hardware configuration of the 68000 

microprocessor and also the FAD IC which represents the heart of 

the noise cancelling system. Interfacing considerations and 

problems associated with the efficient hardware implementation of 

the filtering algorithms are also discussed. Fig. 5.2 shows the 

ANC system interfaced with the 68000 microcomputer board, while 

fig. 5.3 (a) and (b) show the top and bottom views of the ANC 

system. 

5.2 Structure of the FAD Chip 

The FAD chip is realized in 5~-tNMOS and can be clocked in the 

range of 0.5-3.00 MHz. It is assembled in a 24 pin DIL package and 

has serial I/0 in order to minimize the number of pins. There are 

two independent sections of the FAD IC, the filter section and the 

level detection section. The first one is of particular interest 

(41). 

The filter section is realized as a second order recursive 

canonic form (which uses a minimum number of delays, multipliers 

and adders) which consists of four 16*13 serial/parallel 

multipliers, shift registers as delay elements and a number of 

adders as shown in fig. 5.4. 

The transfer function of such a filter is governed by 

G(Z) = S 1+AZ-1+Bz-2 
1-aZ-1-bz-2 

where the multiplier coefficients A and B define a pair of complex 

zeros, while a and b define a pair of complex poles, and S is the 

input scaling factor. 
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The components of the second order digital filter are 

illustrated in fig. 5.4 and the definition of some useful terms are 

briefly described below. 

5.2.1 The FAD IC Components 

5.2.1.1 Coefficient MUltipliers 

The multipliers form the heart of the filter and govern the 

stability and accuracy of the FAD chip. They have a 

serial/parallel structure and provide a 12-bit accuracy for the 

fractional part of the coefficients. The range of coefficients are 

chosen so that the poles and zeros can be implemented inside or on 

the unit circle in the Z-plane and are as follows: 

2 > A ~ -2 

2 > a ~-2 

1 ~ B ~-1 

1 > b ~-1 

In principle, the coefficients A and a are separated into an 

integer and a fractional part of 13-bit (including the sign bit) 
I 

accuracy, namely A and a', where the multipliers handle the 

fractionional part of the coefficients only. For the A and a 

coefficients an extra bit is required, namely As and as 

respectively and are used to control an adder/subtracter following 

the multipliers. A and a can be separated into the form: 

and 

(-1)As +A 

<-n~ +a 
respectively. 

Multiplier coefficients enter the FAD chip in serial form to 

keep the pin count to a reasonable number and are converted to 
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parallel form for the multiplier with the least significant bit 

(LSB) first. They are entered in one computation cycle (timeslot) 

-32 clock cycles- and used in the next one (41 ,89,90). 

5.2.1.2 The Quantizer 

As a result of multiplying a 16-bit data word with a 13-bit 

coefficient, a 29-bit output word is produced. A quantizer is then 

used to restrict the word length of the data, resulting from the 

multiplication process, to 16 bits. Quantization can be performed 

in various ways (e.g. truncation and rounding), as has been 

mentioned in section 2.13. The FAD uses rounding because the 

errors introduced then have zero mean and the smallest variance 

(thus minimizing the mean-square value of the quantization noise). 

Rounding is achieved by adding 2-16 to the data entering the 

quantizer and truncating the result to 16 bits before further 

operations can be performed (41 ,89). 

5.2.1.3 The Input Scaler and Overflow Circuit 

As a result of two's complement number additions, overflow may 

occur. In order to avoid it, the input data words should be scaled 

down or attenuated by a factor such that even the most unfavourable 

sequence of inputs cannot cause overflow at either the internal 

node or the output node of the second-order section. In the FAD 

this input scaler factor, S, performs multiplication of each input 

data word by S=2-i by delaying the input data by (13-i) bits where 

i is an integer in the range 13 > i > 0 which is controlled by four 

bits S4, S3, S2, s 1, where S4 is the LSB, s 1 is the most 

significant bit (MSB), encoded in binary form. Within the overflow 

circuit there is a detection circuit which sets all multiplier 

inputs to zero for one complete sample period, Ts, whenever 
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overflow is detected. This part of the circuit is not necessary 

for a correctly scaled filter. 

5.2. 1.4 Data Selectors (Multiplexers) 

DS 1 Selects the filter order, so that the data enters the second 

order section from the input pin or is recycled for higher order. 

The selection is determined by the data bit C1 which controls DS1, 

when C1 is 0 data is recycled. 

DS2 Depends on the value of the B coefficient, when B is unity 

C2=0, otherwise C2=1. 

DS3 Delay selector. Certain delay units, notably a delay of 8T 

(which will be defined in the next section) are provided. 

For a second order section or 16th order section no extra 

delay is required. For a 16th order section an internal delay of 

7T is provided on the chip by applying a logical 1 to the DELAY 

SELECT pin, which causes DS3 to transmit the output from the 

internal delay to the coefficient multipliers (41 ,89). 

5.2.2 Timing 

The various time parameters of the FAD are listed and defined 

below. 

(a) Clock period tc: is defined as the reciprocal of the clock 

frequency f c· The range of values which the FAD is guaranteed to 

operate at is 

500 KHz < f c < 3.000 MHz 

and the typical value is 2.048 MHz, and consequently, the 

corresponding range of tc for this range of frequencies is 

0.333 p,sec < tc < 2 P, sec 
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and the typical value is 0.448 J.tsec. 

(b) Computation cycle T (Timeslot). This is defined as the time 

required for the serial/parallel coefficient multipliers to operate 

on their input words and is 32 tc. However input data is only 

applied at the first half of this period (16 tc). 

(c) Sampling Period Ts: this corresponds to the unit delay of the 

input and output samples and is represented by z-1 in the block 

diagram of the filter. The value of Ts must be an integer number y 

of computation cycles, y represents the number of second order 

digital filters used. 

For a 16th order filter 

Ts = y * T 

= 8 * 32 tc 

= 256 tc 

The other consideration to be taken into account is the 

synchronization pulse on the FAD IC, which should coincide with the 

first bit of the coefficient and signal word entering the FAD. 

Fig. 5.5 illustrates the relative positions in time of the 

input sample data, coefficients and control data, and the output 

data. It is important to realize that the input samples enter the 

FAD during the first half of timeslot 1 with LSB first and in two's 

complement form. In principle, in a practical application the 

coefficients should be applied for all timeslots. The coefficients 

enter the FAD during one computation cycle and are used during the 

next one. The output data will be available after the filter 

operation is completed (i.e. after y computation cycles, which 

coincides with the first half of the next timeslot). The layout of 

the individual bits within the stream of the coefficient and 
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control data is also indicated in the timing diagram. Table 5.1 

gives the coefficient and control data bit definitions and clock 

pulse positions corresponding to them, for further details about 

the FAD IC refer to (41 ,89). 

5.3 68000 Microprocessor 

5.3.1 Introduction 

In the last thirty years, computer technology has progressed 

from colossal mainframe computers to the microprocessors. 

A microprocessor is the central processing unit (CPU) of a 

microcomputer and consists of one or more LSI circuits designed to 

perform most of digital processing tasks by an appropriate choice 

of a set of instructions 'software' defined by the user. The 

microprocessor works as a sequential computational or control unit 

by executing these sets of instructions. 

The early 1970's marked the beginning of a revolution in the 

world of electronics: the microprocessor was realized and more 

powerful 8, 16, and 32-bit units were developed. In recent years, 

the MC68000 has emerged as one of the most significant products of 

a family of very-large-scale- integra ted (VLSI) circuit 

rn icroprocessors. It represents a generation of rna ture 

microprocessors because of its powerful facilities, its 

computational throughput, simplicity to program and ease of 

interfacing to other components in a microcomputer system. 

5.3.2 MC68000 Architicture 

The MC68000 is a 16-bit microprocessor designed for high speed 

processing applications. It runs with a TTL compatible external 

clock generator. The current versions of the 68000 have maximum 
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Filter Section: Coefficient and Control Data Definitions 

Oock 
Pulses 

Bits 

R Coefficient Input Data 

1 to 12 

13 ao 

14 as 

15 to 26 b12 to b1 

27 bo. 

28 to 31 s4 to s1 

32 cl 

NR Coefficient Input Data 

1 to 12 A 12 to A 1 

13 Ao 

14 As 

15 to 26 B 12 to B1 

27 Bo 

28 c2 

Definition 

The numerical bits of a', i.e. the bits of the fractional part 
of the a coefficient, in two's complement form; a 12 is the 
least significant bit (LSB). * 

The sign bit of a': a0 = 0 for 2>a~l or 0>a>-l;.a0 = 1 
for 1>a>:O or -1>a~-2. 

The addfsubtract control bit: as = 0 for 2>a > 0; as = 1 
for O>a ~ -2. ·· 

The numerical bits of the b coefficient, in two's comple· 
ment form; b12 is the LSB. 

The sign bit of the b coefficient: b0 = 0 for 1 > b ~ 0; 
b0 = 1 for 0 > b ~ - 1. 

The input scaling coefficient; s4 is the LSB. 

Input selector control: if C 1 = 1, FILTER IN is selected; 
if C 1 = 0 then FILTER OUT is selected. 

The numerical bits of A'; i.e. the bits of the fractional part 
of the A coefficient, in two's complement form; A 12 is the 
LSB.* 

The sign bit of A': A 0 = 0 for 2>A ~ 1 or O>A ~ -1; 
A 0 = 1 for 1 >A~ 0 or -1 >A >:- 2. 

The add/subtract control bit: As = 0 for 2>A~ 0; As = 1 
for O>A ~ -2. 

The numerical bits of the B coefficient, in two's comple· 
ment form; B12 is the LSB. 

The sign bit of the B coefficient: B0 = 0 for 1 > B ~ 0; 
B0 = 1 for 0 > B ~ - 1. · 

B input selector: if C2 = , 1, B INPUT is selected; if 
C2 = 0, B is unity. 

•The 14 o lor AI data bits can be determined by expressin~ of2 10r Al21 in two\ complement form. and inverting the sccnnd hi!. 



clock rates between 4MHz and 16 MHz. It is assembled in a 64 pin 

package. The MC68000 contains 24 address connections permitting 

223 16-bit words to be uniquely addressed. The external data bus 

is 16-bits wide and transfers data between the CPU and its memory 

and peripherals (interfacing). It is a bidirectional bus 

controlled by the Read/Write (R/~ control signal which selects the 

direction of data flow on the data bus. The data bus acts as an 

input during a CPU read cycle and as an output during a CPU write 

cycle. Basic read or write access requires four clock cycles, so 

one byte of data can be transfered every 500 nsec for an 8 MHz 

MC68000. The MC68000 has a register oriented architecture 

containing eight 32-bit data registers (DO-D7), seven address 

registers, a 32-bit program counter and a 16-bit status register. 

The MC68000 is also capable of stack operations, two 32-bit stack 

pointer registers are available on the chip (91 ,92,93,94). 

(1) Data Registers 

Each data register is 32 bits wide. Byte operands occupy the 

low order 8 bits, word operands the low order 16 bits, and long 

word operands the entire 32 bits. 

All of the data registers are general purpose accumulators and 

can be used as index registers or counters (93). 

(2) Address Registers 

There are seven general purpose address registers (AO-A6), 

these registers do not support byte sized operands but can be used 

for 16-bi t or 32-bi t long words only. The address registers are 

used to handle addresses for indexed memory addressing. 
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(3) MC68000 Meliiiilory 

The memory of the MC68000 is organized~ the same as the 

registers~ into bytes~ words and long words. Each byte has an 

address consisting of 24 bits. Byte address as may have any value 

while the word and long word addresses must be even numbers (93). 

5.~ FRC 68000 PROF! KIT 

The FRC 68000 PROFI KIT board is designed as a 16-bi t/32-bi t 

single board microcomputer as illustrated in the photograph in fig. 

5.6. It has a 16-bit data bus and a 24-bit address bus. The 

address bus provides a memory addressing range of greater than 16 

Megabytes. A functional diagram of the system is shown in fig. 5.7 

and the system features are as follows: 

(I) Central Prreessing Unit CPU 

The 68000 microprocessor chip is the CPU of the FRC 68000 

PROFI KIT and interfaces with the rest of the components on the 

board. It has a clock rate of 8 MHz. 

(II) Meliiii!Ory and Address Jlrecode lf..ogic 

The FRC KIT has two types of memory; random access memory (or 

read write memory (RAM)) and read only memory (ROM). 

(a) RAM 

The on board RAM consists of either 16KW or 64KW. It is used 

for the temporary storage of user program and data. The first 64 

KW are located from hex address $000000 to $01FFFF~ where$ denotes 

the hex number~ as illustrated in table 5.2. 

(b) ROM 

The FRC 68000 PROFI KIT monitor (FORCEMON) is contained in a 
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Memory-Map: 64kW RAM Version 

FFFFFF 
unused 

05FF36 

05FF35 
P I I T 

05FF01 

05FFOO 
unused 

05CEF8 

05CEF7 
P I A 

05CEF1 

05CEFO 
unused 

050044 

050043 
A C I A < HOST > 

050041 

050042 
A C I A ( TERMINAL ) 

050040 

05003F 
unused 

04CF50 

04CF4F 
P T 1'1 

04CF41 

04CF40 
unused 

030000 

02FFFF 
USER-<E>PROM 

028000 



027FFF 
SYSTEM-EPROM 

020000 

OlFFFF 
USER-RAM 

000800 

0007FF 
WORK AREA FOR FORCEMON 

000400 

0003FF 
EXCEPTION-VECTORS 

000008 

000007 
INITIALIZATION MPU 

000000 

Table s .. 2 



16-KB of system ROM/EPROM (eraseable programmable ROM) expandable 

to 32KB. ROM can be addressed from $20000 to $27FFF. 

(c) User EPROM/ROM Area 

The 16kB user ROM/EPROM can be addressed as 2K*16, 4K*16 or 

8K*16, and may be expanded to 32KB. That area allows one to 

integrate user EPROM/ROM into the PROFI KIT environment (95). 

(III) I/0 

Combination of some of these decoded outputs with some of the 

address lines or with some of other decode lines generate the 

peripheral I/0 address range. The decoded address lines are also 

capable of decoding RAM and ROM. Each one of these ports has a 

different function. Ports 1,2,3 are of particular interest. 

( 1 ) Port 1 and 2 

These are serial communication ports, port 1 is used for a 

terminal and port 2 is used to save programs. Both are RS232-

compatible and have different selectable baud rates. 

(2) Port 3 

Port 3 is connected to a 6821 parallel interface adapter (PIA) 

which contains two 8-bi t ports (A&B). 

5.5 Practical Implementation Problems 

5.5. 1 Coefficients Timing 

The FAD IC is required in some way to store the coefficients. 

One way to do this would be to use semiconductor memories. For 

fixed values coefficients ROM could be used. In this project, the 

coefficients are variable (time-variant) and temporary storage, 

namely RAM is used. 

83 



The problem of feeding the coefficients into the FAD chip from 

the memory is of major concern in the design and implementation of 

the ANC, because the time required for achieving this feeding 

process becomes the limiting factor and leads to a more complex 

implementation. 

As has been pointed out previously, these coefficients are not 

fixed and are updated according to the eqns. 3.5.1 and 3.5.2 by use 

of the LMS algorithm. In order to achieve this, a significant 

amount of hardware logic is required which makes the system 

complex. 

An alternative would be to develop a 68000 assembly language 

program to execute the updating operation and to write the data 

into RAM. 

As has been mentioned before, the FAD IC requires one bit of 

recursive and non-recursive coefficient every clock cycle (in 

serial form) with the LSB first. In the case of the 16th order 

filter 2*256 clock cycles are needed for feeding all the 

coefficients bits (2*256 bits) into the FAD IC. In other words, 

the memory must be capable of writing one new bit of each 

coefficient every clock cycle into the FAD IC. 

This must be achieved in the minimum time which inevitably 

requires high speed digital circuitry. However, since the required 

speed cannot be obtained by interfacing the MC68000 to a simple 

memory circuit, it is achieved by interfacing the MC68000 

microcomputer to the circuit as shown in fig.5.8. Writing one bit 

of each coefficient in this period of time (one clock cycle) 

exceeds the capability of the MC68000, so the MC68000 is interfaced 
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to two sets of high speed RAMs, namely RAM1 and RAM2, with 

multiplexed address lines between the MC68000 and a counter,. in 

conjunction with other auxiliary components. Each set of RAMs 

consists of two 74S200 TIL devices (96) (tristate) with a maximum 

access time of 50 nsec, organized as 256 words by one bit per word 

with separate input-output pins and with eight address lines as 

illustrated in fig.5.8. 

In principle, the writing function is generally separated into 

two phases: 

(1) writing the data into RAM1 with the aid of the MC68000. 

(2) transfering the data from RAM1 to RAM2. 

5.5. 1.1 Writing Data into RAM1 

A software routine is executed to write one bit of each of the 

coefficients in serial form into RAM1, this will be described in 

detail in the next chapter. Eight address lines are connected to 

port A of the PIA to identify 256 locations. The MC68000 addresses 

the desired word of RAM1, beginning at word 0 and going 

sequentially through to the last word. 

To synchronise the MC68000 and RAM1 so that write control 

inputs are activated simultaneously, the R/W control pulse of the 

MC68000 is connected to the WE control input of RAM1 during the 

write operation. 

When the write operation is performed by the MC68000, the 

information is serially transfered from the output port of the PIA 

to the RAM1's locations that have already been addressed by the 

MC68000. The data is written into RAM1 whenever the WE pulse goes 

LOW. In regard to the fact that the coefficients bits should be 
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available, one of each every clock cycle and this speed is not 

sufficient for achieving this function. Therefore RAM1 is disabled 

whenever R/W pulse goes HIGH. This could be done by connecting the 

MEMORY ENABLE control inpts (ME1,2,3) to R/W pulse as well, as 

illustrated in the timing diagram in fig. 5.9. In that case the 

data are stored in RAM1 and cannot be fetched by the rest of the 

circuit. 

One important consideration should be borne in mind, that 

during write process the FAD IC requires its coefficients to be fed 

into it. In order to accomplish this operation the control inputs 

of RAM2 have to satisfy the following conditions: 

{a) The RAM2 address lines are connected directly to the outputs of 

a counter as shown in fig. 5.8, operating at the clock frequency of 

the FAD IC. So the address is incremented by one every clock 

cycle. 

Two 741S163 synchronous 4-bit counters (96,97), cascaded 

together by connecting the ripple carry output (R.C. OUT) of the 

first one with count enable inputs (ENP,ENT) of the second one, are 

used to generate the addresses for RAM2. The first ENP & ENT are 

wired HIGH to enable counting. This counter is cleared and 

reinitialized starting with address 000 at each computation period 

(8 timeslots for a 16th order filter), this will be described in 

more detail in the next chapter. 

{b) The WE is activated (HIGH) during a write operation by RAM1, 

so RAM2 is in the READ mode and the data are fetched from the 

addressed locations, which come from the previous write operation 

(old data) and are fed into the FAD IC every clock cycle. 
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The write process progresses until all 256 bits are allocated 

in the appropriate addressed positions in RAM1 with the aid of the 

MC68000. 

5.5. 1.2 Transfering Data from RAM1 to RAM2 

As mentioned previously implementing the writing process using 

only one RAM is impossible. A transfer process, from RAM1 to 

another RAM, namely RAM2, overcomes this drawback and feeds the 

data into the FAD IC within the time available within the adequate 

speed (time). RAM2 is identical to RAM1 in its performance. 

To accomplish the interfacing process, so that one bit is read 

from RAM1 and written into the corresponding memory location in 

RAM2 (and simultaneously into the FAD every one clock cycle), the 

address lines of RAM1 are driven from the same counter that was 

used to address RAM2 as mentioned in the previous sectio~ 

During this process, the state of the control inputs of both 

RAMs are changed. For RAM1, the WE control input is held HIGH to 

activate the read operation, ME1 ,2 ,3 are set to logic 0 enabling 

the memory, while the second RAM operates inversly , i.e. in write 

mode instead of read mode, WE control input is held LOW, ME1 ,2 ,3 

remain as before, as illustrated in the timing diagram in fig 5.9. 

During the transfer process no new or old data could be 

written from RAM2 to the FAD IC since the read mode from RAM2 is 

disabled. At this time the FAD IC is swapped from RAM2 to RAM1 in 

order to make the new coefficients on recursive and non-recursive 

inputs available every clock cycle, with the aid of a multiplexer. 
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552 Writing Data into the MC68000 

Referring to eqns.3.5. 1 and 3.5.2 in chapter 3 9 to update the 

coefficients with the aid of the MC68000 9 the input 9 desired 

response input and output samples must be available at its input 

port whenever the updating operation takes place. One difficult 

problem associated·with using FRC PROFI KIT is the limited 

input/output ports (pins) available 9 which hinders direct 

connection between these data lines and the MC68000 and makes the 

hardware design more complex. 

Unfortunately the number of input pins are limited to 6 while 

there are 36 bits (requiring 36 pins) of data required. 

A particularly convenient method for overcoming this 

limitation involves using 3 sets of multiplexers 9 refer to appendix 

B9 (96 997 998) with the aid of a software routine carried out by the 

MC680009 listed in appendix E. 

5.6 Interfac~ Considerations 

5.6. 1 Input Samples to the FiiD 

Most real world quantities are analogue and need some way of 

communicating with the digital systems or vice versa. In this 

project the ANC inputs (input signal and desired response input) 

are required to be converted to digital form. Conversely the ANC 

outputs (filter output and error output) should be converted from a 

digital form into an analogue form. 

The ADC represents the connection between the analogue and 

digital systems and generates a digital estimate of the analogue 

signals. 
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One method of A/D conversion is successive approximation which 

is characterized by high speed processing, and uses a DAC to 

compare an analogue signal with an internally generated signal 

(99, 100). 

In this project an RS574 12-bit resolution successive 

approximation ADC (101) was used with a maximum conversion time of 

32~-tsec for 12-bi ts, as shown in fig. C-1. It has been mentioned 

before that the FAD input is serial and since the binary numbers 

representing the ADC output are in parallel form. A 12-bit 

parallel to serial shift register (97) is employed in the hardware 

design. 

5.62 FAD to Output Samples 

To convert the digital output of the FAD IC to analogue form, 

a DAC is required. But since the FAD output is serial, a 12-bit 

serial-in parallel-out shift register, consisting of two 74LS164 8-

bit parallel-out serial-in shift registers, is used as illustrated 

in figs. D-1 and D-2. The output lines of the shift register are 

latched by means of two SN74LS373 Octal D-Type Transparent Latches 

(96, 102). This eliminates any possible race conditions that could 

be occur while new data is being loaded into the shift register. 

The output data is available on the FAD IC on the rising edge of 

the clock with LSB first. 

An RS7545 12-bit DAC (103) is used to get the analogue output. 

It is a monolthic 12-bit CMOS multiplying DAC. Data are loaded 

using the CHIP SELECT (CS) and WRITE ENABLE (WR) control pulses 

which may be held low allowing direct unbuffered operation. 

89 



5.6.3 Producing the Error Output 

An essential parameter of the ANC system is the error output 

signal ej as has been discussed in chapter 3. One new sample of ej 

must be obtained every computation period (8 timeslots). With 

regard to the speed of the MC68000 (section 5.5.1) and the 

impossibility of forcing the MC68000 to update the 32 coefficients 

(16 non-recursive and 16 recursive) of the filter in time. It is 

not prefered to interrupt the software program every computation 

period to compute the error output from the desired response input 

and the filter output. So it is difficult and awkward to obtain ej 

in time with the aid of the MC68000. A solution to this is an 

Arithmetic Logic Unit (ALU) (97) which is incorporated into the 

hardware design of the ANC system. A set of ALU's formed from 3 

74LS181 ALU/Function Generator are cascaded together by connecting 

the CARRY-OUT (Cout) of a stage to the CARRY-IN (Cin) of the 

succeeding stage as shown in fig.5.10. 

The advantage of the 74LS181 (96) is that it can perform any 

of 16 binary operations and 16 logic functions without the use of 

external circuitry, just by changing the states of its control 

inputs. There are five control inputs (MODE and four SELECT inputs 

(SO ,S 1 ,S2 ,S3,) that determine the operation performed on the 

inputs. 

In order to obtain ej the filter output samples are subtracted 

from the latched desired response input samples. To accomplish the 

subtraction, the MODE control input (M) is set to logic 0 to define 

the arithmetic function. The SELECT control inputs are set to 

logical 6 to select the subtraction function. The CARRY-IN is set 

LOW. The output of the 74LS181 is encoded into four bits, so that 
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ej is represented in 12 bits. The hardware for converting ej into 

its analogue represetation is similar to that used for the filter 

output. The 12-bit DAC is used as in the case of the filter output 

Yj as shown in fig.5.10. 

5. 7 Conclusion 

This chapter is concerned with the description of the single 

board 68000 microcomputer and the digital filter IC (FAD) as the 

most two significant elements in the hardware design of the ANC. 

It is emphasised how successfully the limitation of the speed and 

interfacing connections of the 68000 microcomputer were overcome 

and how it is possible to write one bit of each coefficient every 

clock cycle, employing two sets of high speed RAMs, simultaneously. 

It has been shown that the system is capable of operating in real 

time, so one input sample fed to the FAD IC and a corresponding one 

output and error output sample are produced every computation 

period. 

91 



CHAPrER-6-

ADAPTIVE NOISE CANcm.LER IMPI.»1Fm'ATION 

6.1 Introduction 

Many kinds of problems are encountered realizing a filter in 

hard ware, ·for instance, design problems, where the theoretical 

basis for the desired system is translated into a hardware design; 

implementation problems, where the hardware design is translated 

into physical components, etc.. The previous chapter dealt with 

these kind of problems and ways of solving them. Another kind of 

problem is one associa t_ed with the components involved in the 

design. Unfortunately, in our case, the FAD IC, which is the 

heart of the adaptive noise cancelling system in the project failed 

to produce the expected result. The first section of this chapter 

is concerned with this problem and the test circuit employed for 

the purpose of detecting it. The rest of the chapter emphasizes 

how a 68000 software routine has been applied to update the 

coefficients as well as manipulating the sampled data required for 

this operation. 

6.2 Solving the FAD IC Problem 

It is well known that, in general, electronic components 

throughly tested before they are sold. A circuit of a real-time 

second order digital filter with variable coefficients, utilizing 

the FAD IC, was constructed as a first step in developing the 

design of the 16th order LMS adaptive filter. Two streams of data 

(32bits each) comprising the coefficients and the control bits were 

entered (serially) into the NRCOEFF and RCOEFF inputs of the FAD 
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IC. One bit of each stream of these data were read by the FAD IC 

every clock cycle in order and at an appropriate time with respect 

to the SYNC pulse as illustrated in the photograph in fig.6.1.a. 

These data were written and stored in two sets of RAMs with the aid 

of a 68000 software routine as mentioned before and described in 

detail later in this chapter. The filter input was a sinusoid 

below the sampling frequency (for example below 32KHz at-clock 

frequency 2MHz) converted to its digital form by means of a 12-bi t 

ADC. One input sample was applied to the filter input every 

computation period (32 tc). Consequently, one output sample was 

available every computation period, and it was converted into 

analogue form with the aid of a 12-bit DAC. 

After the construction of the FAD circuit was completed, 

extensive continuity checkes verified that the circuit was correct, 

as far as could be determined. Unfortunately, functional tests of 

the system showed that the hardware was not performing as expected, 

as shown in fig. 6.1.b. Manipulation of the FAD clock frequency 

and the values of the coefficients was also carried out in order to 

see if some improvement in the filter behaviour resulted, but the 

output remained incorrect. 

As a first stage in solving this problem the ADC, DAC and 

associated shift registers were omitted from the design to avoid 

any quantization noise which could degrade the filter performanc~ 

In this case the fi 1 ter input was connected to ground. The pulse 

transfer function of such a filter, is expressed as 

G(Z) = 1+AZ~ +BZ~ 
1-aZ-1-bz-2 
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Fig. 6.1.a Coefficients timing configuration for second order recursive digital filter at 
clock frequency of 1 MHz 
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CLOCK 
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Fig. 6.l.b Second order recursive digital filter output of the faulty chip at clock 
frequency of 2.051 MHz with respect to the clock and SYNC pulse. 



in the frequency domain and represented by the linear difference 

equation 

y(n)T = x(n)T+ Ax(n-1)T+ Bx(n-2)T 

+ ay(n-1)T+ by(n-2)T 

in the time domain. It is therefore obvious that y(n)T = 0 

whenever the input samples are set to 0. Unfortunately the limit 

cycle oscillations occured at the filter output even with the 

fi 1 ter input set to zero (with non-zero coefficients), and 

therefore all coefficients were set to zero. In spite of all these 

modifications the filter was still unable to produce a zero output. 

We realized that we were facing a significant problem, which 

could be either due to the FAD IC or the coefficients and the 

control bits timing. So the second stage was to contact Plessey 

(the manufacturer of the FAD IC) and ask them for· further 

information and discuss the problem with them. Unfortunately no 

further information had been published. 

Assuming that the problem might arise from the coefficients 

timing, a simple second order digital filter, employing the FAD IC, 

was constructed (as described in the data sheet supplied with the 

chip). The circuit diagram of such a filter is depicted in fig. 

6.2. 

Only five ICs were required, the FAD IC, a 2*32 PROM, 2 LS163 

forming the counter and a TTL quadruple 2-input positive OR gate 

(92) to generate the SYNC pulse. Zero external delay was required, 

so DELAY IN 1 was connected to DELAY OUT 1, and the inherent delay 

of 1T was selected by connecting the DELAY SELECT control input to 

0. Hence the case of non-unity B coefficient was used, the B 
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multiplier was employed by connecting R OUT to MULT IN and MULT OUT 

to B INPUT and c2 was set to 1. The control bit c1=1 so that the 

data applied to the FILTER IN is input to the filter section. The 

input scaling factor had no effect on the result in the case of 

zero input, so it could be set to any arbitrary value. 

Coefficients and control data were applied one bit each clock 

cycle as before and they are tabulated in table 6.1 according to 

table 5.1. 

More tests were carried out, but the problem still persisted 

(fig6.1. b). 

In light of previous attempts, a fault in the FAD IC itself 

was suspected. It is well known that using CMOS devices is 

somewhat risky because of their sensitivity to electrostatic 

charges which can cause damage to the chip. However, a couple of 

new chips were ordered, and were used in the design, but 

unfortunately no further progress was achieved with the filter. 

The next stage was to contact Plessey again and they confirmed 

that the chip was in good condition, so we contact the people who 

contributed the design of the FAD chip. Dr. Patrick Hughes, one of 

the research staff concerned with the chip design at British 

Telecom Research Laboratories kindly helped and examined the chip, 

but no fault could be detected in it with their test machine. 

However, a number of photographs for the timing of the coefficients 

with respect to the clock pulse and SYNC pulse control input and 

for the output were sent to him. 

Finally the situation became clearer and Dr. Hughes detected 
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Table 6.1 

Coeffecient and Control Data 

Coeff Decimal 2's Complement Binary Form 

value 
12 (LSB) 1 (MSB) Sign bit 

a 0 000000000000 ao = 1 

as 0 

b 0 000000000000 bo =O 

s xxxx xxxx 

C1 1 

A 0 000000000000 Ao = 1 

as 

B 0 000000000000 B0 =0 

c2 - 1 

x denotes 'don't care' 



an error in the multipliers, which represent the heart of the chip, 

and kindly sent us a couple of new versions that operated 

correctly. It appeared that, unknown to either ourselves, British 

Telecom or Plessey we had been supplied with a very early version 

of the FAD IC which, while fully functional according to their 

tester, suffered from errors in the multiplier section which caused 

the observed faults. 

The new chip was then used and the output observed under the 

same conditions and was found to be operating correctly. Another 

test was carried out on the new FAD IC by setting all non-recursive 

coefficients of the 16th order filter to the same fixed value, and 

the recursive coefficients to zero. The frequency response of such 

a filter is illustrated in fig. 6.3. 

6.3 The FAD IC as a 16th Order Filter 

The FAD IC is designed to operate from a single +5v power 

supply and has a single TTL compatible clock input with 50% duty 

cycle. For the 16th order filter, a delay of 7T (224 clock cycles) 

is provided on chip, as well as the inherent delay T, so that the 

delay time necessary for the implementation is 8T. To select the 

7T internal delay the DELAY SELECT input is wired high. It has 

been mentioned before that the coefficients are chosen to be less 

than unity to gain a better stability. To select the case of non­

unity B coefficient the same procedures as in the second order 

filter are followed. 

6.4 The Input & Output Sampled Data 

It has been discussed earlier in chapter 3 that the adaptive 

noise canceller has two inputs, the filter input and the desired 
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response input and two outputs, the filter output and the error 

output. These sampled data are essential components in the 

updating operation of the filter coefficients which is achieved 

with the aid of the MC68000. These sampled data communicate with 

the processor through the PIA. 

This section is concerned with describing the method of 

expressing the input sampled data in two:s (2's) complement binary 

form, loading the data into the MC68000 and saving the input& 

output sampled data in the MC68000. 

6.4.1 Expressing The Input Samples in Two's Complement 

Any number expressed in binary form must be represented in 1's 

and O's. Positive numbers cause no problem, but a decision must be 

made as to how to represent negative binary numbers. The most 

common method is the 2's complement representation. Here positive 

numbers are represented as a simple binary numbers, with the 

restriction that the MSB is 0. Negative numbers are represented as 

simple positive binary numbers which are then complemented and 

logic 1 added to the LSB (ignore any carries out of the MSB 

(MSB: 1)). 

In this project, the successive samples of the filter and 

desired response inputs are obtained from a 12-bit ADC operating in 

bipolar manner. This sampled data is expressed in binary offset 

form which cannot be directly processed by the CPU, in which a 2 s 

complement representation of binary numbers is normally used. 

Fortunately, however, the difference between these two forms of 

representation is that the sign bit value (MSB) of one is the 

inverse of the other. So to achieve a conversion, the sign bit 
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(MSB) of the ADC binary output is inverted using a TTL 74LS04 

inverter gate before accessing the data. 

6.llll.2 Wri tmg Data i:nto the MC68000 

It has been evolved from the simulation results 9 that the best 

performance of the filter could be achieved by employing blocks 

type (section 4.3.4) in· the hardware implementation of the LMS ANC. 

In this case a block of 16 successive samples of the input as well 

as the output and the desired response input are read by the 

MC68000 every 128* 16 computation period (sampling instants). 

The PIA provides efficient communication between the input­

output sampled data and the MC68000 CPU. As has been mentioned 

before the number of input pins that can be used for this task is 

limited to 6 (port B). This limitation could be surmounted by 

applying proper control pulses to two of the control lines of the 

PIA 9 in our case CA2 and CB 1 9 as shown in fig 6.4. They should be 

square pulses of 50 % duty cycle and will act as INPUT READY 

signal genera ted by the components in the hard ware des ign 9 of 32 

and 64 clock cycles width respectively in order to govern the 

timing of data entering the MC68000. 

This operation implys the following procedures~ 

(1) Initializing the PIA 9 this can be achieved by setting the data 

direction9 data and control registers of the PIA as shown in 

appendix E. 

Since the data is entered into the MC68000 every 128*16 (N*16) 

computation periods (sampling instants) 9 another control pulse 9 

namely CB2 is required. So the status bit of the control register B 

is set to 1 every 128* 16 computation periods to load a new blocks 
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of data ( 16 successive filter input, desired response input, 

filter output samples). It is also set to 1 every 128 computation 

periods to start the coefficients updating operation and write the 

coefficients into the external RAMs. So this pulse goes low for 

one sampling period and high for the rest 127 sampling periods as 

illustrated in fig. 6.4. 

(2) Testing the status bits and reading the data. After the PIA 

is initialized, the MC68000 tests bit 6 on LOW-to-HIGH transition 

of CB2 to see whether it is set to 1 or not. Once the bit is set, 

it informs the CPU that the INPUT READY and the 6MSBs of the filter 

input sample could be loaded into the processor via the data 

register. These 6MSBs are stored in a data register of the CPU, in 

our case DO. The 6LSBs are loaded whenever the status bit of 

control register A is set on LOW-to-HIGH transition of CA2 and are 

stored in the data register D1, for further processing. The 

desired response input and the filter output samples are read by 

testing the transition state on CB1 and CA2 as illustrated in fig. 

6.4. Since the data is transfered to the CPU over port B, an 

important factor should be considered when the status bit 6 is 

tested. Since, the only way to clear the status bit 6 is to read 

the data register A, a dummy read is necessary because the data 

register A is not involved in this reading operation. 

6.4.3 Adjusting Bits Locations 

It is seen that after read instructions are terminated, the 

data word is split in two data registers which is an awkward 

situation. In order to get them in the desired locations, the 

6MSBs are shifted 6 bit positions to the left to occupy the second 
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byte of DO, (DO is 32-bit). Then the 6LSBs transfered to take a 

place in the first byte of DO. The bits could be set in the 

correct order by shifting the contents of DO 2 bits to the right, 

so that the input sample occupies bit 0 through bit 11 of the DO 

word ( 16 bits). The same set of instructions is carried out for 

the desired response input and filter output samples. 

6.4.4 Extending the 12 Bits to 16 Bits 

Since arithmetic operations are only performed on bytes, words 

or long words, the 12-bi t data should be extended to a word. One 

should be careful in extending this data and take into account 

that it might be negative as well as positive. So one way to 

achieve this extension is by examining (testing) the sign bit of 

each binary number sample, whether it is zero (indicates positive 

number) or one (indicates negative number) and setting bits 12 to 

15 to the detected sign bit value. 

The same sequence of instructions will be involved in the case 

of reading the desired response input and filter output, but 

instead different data registers are used. 

The error output may be computed by subtracting the filter 

output from the desired response samples fed to the MC68000. 

6.4.5 Circular List Process and Saving Input & Output Data 

Referring to the coefficients updating eqns. 3.5. 1 and 3.5.2, 

updating 16 recursive and 16 non-recursive coefficients requires 

the existence of the present input and output samples as well as 

the previous 15 input and 15 output samples. In other words, these 

previous input-output samples must be saved somewhere and invoked 

whenever called by the CPU in order to implement the coefficients 
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updating operation. 

One way of storing the data is using a circular list process. 

The filter input and filter output samples are stored in the memory 

locations addressed by the address registers A4 and A6 in the 

MC68000 respectively. The memory holds a record of the current and 

previous input and output samples represented in two blocks each in 

which the time interval between the two blocks is N* 16 sampling 

periods. The first one contains the previous samples and the 

second one contains the new samples. These samples are expressed 

as xj, xj-1' ••• , xj-15' Xj-(N*16)' Xj-(N*16)-1' ••. , xj-(N*16)-15 

and Yj-1' Yj-2, .•• , Yj-16' Yj-(N*16)-1' Yj-(N*16)-2, ..• , Yj­

(N*16)-16, where N equals 128 sampling periods. 

By applying the address register indirect with post increment 

addressing mode, the CPU increments the address registers A4 and A6 

to allow the sequential addressing of the sampled data, starting 

with the most recent input and output samples xj and Yj_1• After 

the last samples xj-n+ 1 and Yj-n are individually addressed, a new 

input and output sample are then transfered from the first block 

into the second block and written into the memory locations 

addressed by these addresses replacing the last samples. Therefore 

whenever the coefficients updating operation takes place, A4 and A6 

address the latest sampled data record and the previous samples are 

rippled through the memory locations addressed by the contents of 

A4 and A6 in the first block. That is to say, in each updating 

period (N sampling periods) one new input and output sample are 

transfered from the second block to the first one replacing the 

latest input and output samples Xj-n+1, Yj-n· This operation is 
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continued until all new samples in the second block replace the old 

samples in the first block, one by one every updating period, so at 

the end a new block of 16 successive input and output samples, as 

mentioned before, are read by the MC68000. So after N*16 sampling 

periods, 16 new successive samples are loaded into the second block 

and so on. 

An example of the circular list operation is shown in table 

6.2, where a sampled data record of five samples is addressed. The 

addressing of sampled data is shown for the first three updating 

periods in the first block. x1, x2, x3, x4, x5 represent the 

successive samples in the first block, z1, z2, z3, z4, z5 represent 

the successive samples in the second block, where x1 and z1 are the 

most recent samples. 

first updating period 

address 

0 

2 

3 

4 

second updating period 

address 

4 

0 

1 

2 

3 
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sampled data 

x1 

x2 

x3 

x4 

x5 

sampled data 

z5 

x1 

x2 

x3 

x4 



third updating period 

Table 6.2 

address 

3 

4 

0 

1 

2 

6.5 The Filter Coefficients 

sampled data 

z4 

z5 

x1 

x2 

x3 

The coefficients play an important role in the design and 

implementation of the ANC system and govern the stability of the 

system. This section investigates how the MC68000 can be applied 

to update these coefficients in the LMS algorithm and how the data, 

comprising the FAD multiplier coefficients, scaling factor and 

control bits can be represented according to table 5.1 (described 

in section 5.2 ). Finally it discusses the software routine that 

combines two recursive coefficients in one location of a data 

register (and the same for non-recursive coefficients and how they 

can be seriall written into an external RAM used as the 

coefficients storag~ 

6.5.1 Updating the Coefficients 

In the view of the LMS algorithm, the next non-recursive and 

recursive coefficients may be computed according to the following 

equations 

and -bJ·+1 = bJ· + 21l2 Y · eJ· - -J 
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respectively. 

Thus the updating operation involves time shifting, 

multiplication, division (since 0<=~1), and addition. It has been 

pointed out earlier in chapter 5, that the 16th order filter is 

implemented by cascading 8 second order sections each one with an 

individual transfer function. A 68000 assembler software routine, 

listed in appendix E, is carried out to accomplish this task as 

follows. 

(1) The updating operation is first established by loading a data 

register, for instance D6, with the number of second order filters 

cascaded together (8). 

(2) The CPU fetches the input sample from the memory location 

addressed by the contents of the address register A4, as has been 

mentioned previously, and multiplies it by the previous error 

output (ej). Fortunately the signed multiply instruction (MULS) is 

provided in the 68000 which makes the task simpler and easier to 

understand. 

(3) The multipilcation result is scaled down by a proper 

convergence factor, J.L , to approach the state in which the desired 

signal could be separated from the noise contaminated with. 

(4) The data extracted from the former step is added to the 

previous non-recursive coefficient, of the same order, and written · 

back into the same location addressed by the contents of A5. and 

is therefore saved for use in the updating operation of the next 

updating period. 

The recursive coefficient can be updated following rather the 

same steps. However the filter output vector (l.j) is involved in 

the multiplication rather than Kj and a different convergence 
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factor is used to scale down the resultant data obtained. 

An identical sequence of instructions is carried out to 

complete the updating of the 8 second order sections by 

incrementing the contents of D6 by one after the completion of each 

section updating operatic~ 

Car-e must be taken when the input or output samples are 

fetched from their storage in the MC68000 memory. The address of 

their locations should be examined while fetching every sample and 

compared with the last address (which is $XX1F since the contents 

of A4 and A6 are incremented by two on word operand operations). 

If the last addresses have been reached, A4 and A6 should be 

reloaded with their first addresses immediatly to avoid the 

overflow. 

6.5.2 The Coefficients and Control Bits Representation 

One problem that arises in implementing recursive digital 

filter (fixed coefficient and adaptive), is the possibility of 

instability when the poles take values outside the unit circle in 

the Z-plane (the unstable region). Because of this instability 

problem the recursive coefficients are considered to be less than 1. 

In fact there is no restriction on the locations of zeros, so they 

could be on any side of the unit circle. But for the sake of 

simplicity, and because the updating process is carried out in 

fixed point arithmetic (finite precision representation), the 

resultant coefficients are considered as a fractions less than 1 as 

well. 

Referring to table 5.1, it is observed that the first bit of 

the second non-recursive and recursive coefficient entering the FAD 
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chip coincides with clock pulse number 15. It is more convenient 

to join both of them in one data register. Both of recursive 

coefficients ,a, and ,b, are transfered to a data register, for 

instance D3, so the first one is located in the least significant 

word ( 16 bits) while the second one occupies the most significant 

word of D3 (16 bits) in the MC68000. The non-recursive 

coefficients A and B occupy the data register D7 in the MC68000. 

In the view of table 5.1 the negative and positive values are 

distinguished by the sign control bits a0, b0 and A0, B0 for 

recursive and non-recursive coefficients respectively. (1) A 

test instruction is used to examine the sign bit of each 

coefficient individually, a0 and Ao are set to 1 if the 

coefficients are positive and to 0 if negative. (2) The 

ADD/SUBTRACT control bits as and As are set to zero in the case of 

positive values and to 1 for the negative values. Since b and B 

are already equal to or less than 1 this control bit is eliminated. 

(3) The test command is employed to examine the sign of A and a 

individually. It has been emphasised earlier that the FAD accepts 

12 bits of the fractional part of each coefficient. Since A and a 

are 16 bits including the sign bit, the coefficient.s bits are 

truncated to 13 bits (the MSB is the sign bit) by shifting them to 

the right 3 bits. Then bits 13 (A0,a0) are set to if the 

coefficient is positive or to zero if it is negative. Bits 14 

(As,as) are set to zero in the case of positive values and to one 

for the negative values. 

Steps (1) and (3) are repeated for b and B coefficients. 

Notice that the ADD/SUBTRACT bit is omitted in these coefficients 

since they are equal to or less than tmi ty. 
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In order to allocate the LSB of B and b in the bit positions 

14 (coincides with clock pulse number 15) in the data register D3 

and D7 respectively, the least significant word (LSW) of each is 

shifted 2 bit positions to the left and then the entire 32 bits of 

D3 and D7 (long word) are shifted to the right 2 bits to join or 

combine each set of the coefficients in one data register. 

In addition to the coefficient bits, 4 bits (s4,s3,s2,s1) 

representing the input scaler factor are allocated into bits 27 to 

30 ( coincides with clock pulse number 28-31) of D3 in order to 

prevent the overflow at all nodes of the FAD IC, it is applied, in 

our case, to the FAD in each second order filter sectio~ 

The input data selector·C1 is set to 0 for the first 7 

timeslots. In this case the data emerging from the filter output 

is fed back internally to the filter section at the begining of 

next timeslot. C1 is set to zero in the last second order to 

indicate that the output of the 16th order filter is valid at the 

filter output (pin 15) and the data applied to the FILTER IN (pin9) 

is input to the filter section in the next sampling period. C2= 1 

for all second order sections since the non-unity B coefficient 

case is chosen. 

6.5.3 Coefficients Entry 

Because the limited output pins used to write the coefficients 

into the FAD IC, and since it has been emphasised that the FAD IC 

requires its coefficients in serial, bit by bit, simultaneously, a 

software routine is carried out by the MC68000 for this purpose to 

overcome the limitation of the output ports. 

Once the coefficients and the control bits are located in 
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their desirable positions, the MC68000 starts executing the 

software routine by loading a data register, for instance D1, with 

the number of each set of coefficient in each second order section 

(2) and D3 for instance, with the hex number (OF) (number of bits 

in each coefficient). 

In the last section the updated non-recursive and recursive 

coefficients, including the control bits, are saved in D3 and D7 

respectively. In order to write them into RAM in the serial form, 

half of the recursive (16 bits) and half of the reversed order bits 

non-recursive coefficients (16 bits) are bit by bit joined in DO. 

The reversing process of the non-recursive coefficients is 

accomplished in the following steps: 

(1) D2 is loaded with the number of bits-1 (15 bits). 

(2) The coefficient is loaded into DO and saved in the memory 

location addressed by the contents of A, refer to appendix E. 

(3) DO is shifted as a word number of bits contained in D2 to the 

left. 

(4) DO is shifted as a long word to the left one position and the 

MSB is placed in the LSB position in the MSW of DO. 

(5) D2 is decremented by one each time and this routine is 

continued until all the 15 bits are completely reversed in order. 

To reverse the order of the MSB, the contents of DO are shifted one 

bit position to the left (as a long word) allocating the MSB in the 

LSB position in DO. 

(6) recursive coefficient word occupies the LSW of DO. An example 

of reversing a 6-bit non-recursive coefficient assuming it as a 

word is illustrated in fig. 6.5. 
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LONG WORD 

WORD 2 WORD 1 

11 10 9 8 7 6 5 4 3 2 1 0 

D2 = 5 {2) X X X X X X a5 a4 a3 a2 a1 ao 

{3) X X X X X X aO 0 0 0 0 0 

{4) X X X X X aO 0 0 0 0 0 0 

D2 = 4 (2) X X X X X aO a5 a4 a3 a2 a1 aO 

{3) X X X X X aO a1 aO 0 0 0 0 

{4) X X X X aO a1 aO 0 0 0 0 0 

D2 = 3 {2) X X X X aO a1 a5 a4 a3 a2 a1 ao 

{3) X X X X aO a1 a2 a1 aO 0 0 0 

{4) X X X aO a1 a2 a1 aO 0 0 0 0 

D2 = 2 (2) X X X aO a1 a2 a5 a4 a3 a2 a1 aO 

{3) X X X aO a1 a2 a3 a2 a1 aO 0 0 

{4) X X aO a1 a2 a3 a2 a1 aO 0 0 0 

D2 = 1 {2) X X aO a1 a2 a3 a5 a4 a3 a2 a1 aO 

(3) X X aO a1 a2 a3 a4 a3 a2 a1 aO 0 

{4) X aO a1 a2 a3 a4 a3 a2 a1 aO 0 0 

TheMSB (2) X ao a1 a2 a3 a4 a5 a4 a3 a2 a1 aO 

{3) aO a1 a2 a3 a4 a5 a4 a3 a2 a1 aO 0 

Fig. 6.5 Reversing the order of the NRcoeff bits 



A precaution should be taken before executing word shifting 

instruction. The data register DO must be reloaded with the data 

in D3 which is stored in the memory location addressed by the 

contents of A before the shift operation takes place. 

As soon as the last process is terminated, the write operation 

takes place in the software routine. The basic idea of this 

operation is to transfer ( or transmit) data from the CPU to RAM1 

controlled by the R/W pulse of the CPU (or the PIA). There are two 

types of data which should be transfered, the external memory 

addresses and the coefficients. First the MC68000 addresses RAM1 

by sending the starting address 0, defined by the contents of D5, 

over the 8 data lines of the PIA control register A, in order to 

write one bit of each coefficient simultaneously in that locatio~ 

The long word DO is rotated one bit to the left setting the LSB of 

each coefficient in bit locations 0 and 1 as exemplified for a 6-

bi t non-recursive and recursive coefficient in fig. 6.6. These 

locations coincide with the first 2 data lines of the PIA control 

register B which are used to write the coefficient.s bits into 

RAM1. Once these 2 bits are transmitted, there is no point in 

keeping them in the CPU so they are eliminated by executing LSR.W 

#02,DO (logical shift right word) instruction, which shifts the 

contents of DO right two bits and clears bits 14 and 15. The next 

address of the RAM1 is generated by incrementing the contents of D5 

by one; and so on. 

By following an identical sequence of instructions and taking 

into account that the data register DO should be loaded with new 

coefficients (stored in D3 and D7) after the transfering of the 

previous one is completed, the complete 2*256 bits of the 
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(1) 

(2) 

(3) 

(2) 

(3) 

(2) 

(3) 

(2) 

(3) 

(2) 

(3) 

The MSBs 

LONG WORD 

WORD2 (NRcoeff) 

11 10 9 8 7 6 

aO a 1 a2 a3 a4 a5 

a 1 a2 a3 a4 a5 b5 

a1 a2 a3 a4 a5 b5 

a2 a3 a4 a5 b5 0 

a2 a3 a4 a5 b5 0 

a3 a4 a5 b5 0 0 

a3 a4 a5 b5 0 0 

a4 a5 b5 0 0 0 

a4 a5 b5 0 0 0 

a5 b5 0 0 0 0 

a5 b5 0 0 0 0 

0 0 0 0 0 0 

WORD1 (Rcoeff) 

5 4 3 2 1 0 

b5 b4 b3 b2 b1 bO 

b4 b3 b2 b1 bO aO 

0 0 b4 b3 b2 b1 

0 b4 b3 b2 b1 a1 

0 0 0 b4 b3 b2 

0 0 b4 b3 b2 a2 

0 0 0 0 b4 b3 

0 0 0 b4 b3 a3 

0 0 0 0 0 b4 

0 0 0 0 b4 a4 

0 0 0 0 0 0 

0 0 0 Ob5 X 

Fig. 6.6 The coefficients writing operation 
(1): Contents of DO 
(2): Rotate the contents of DO left one bit 
(3): Shift WORD1 right two bits 

x denotes 'don't care' 



coefficients are located in the proper RAM1 locations addressed by 

the CPU. 

Attention must be paid to the situation when the transfer of 

the last bit (MSB) of each coefficient takes place, since after 

the bit 14th of each is transmited, these 2 MSBs occupies the last 

2 bit positions (30 and 31). Fortunately the non-recursive MSB 

could either be 0 or 1 (refer to table 5.1 ). So to allocate the 

recursive MSB in bit position 1, the contents of 00 (long word) are 

rotated left three bits. 

There are some points which should be remembered when 

executing this routine: 

(1) the contents of the control registers A&B should be cleared 

since both are used in a write operation, in order to address the 

data direction registers. 

{2) selecting the 8 data lines of A (port A) and the first 2 lines 

of B as outputs by the loading data direction register A with $FF 

and B with $03. 

(3) addressing the data (peripheral) register by setting bit 2 of 

each control register to 1, refer to appendix E. 

6.6 System Implementation 

In this project the realization of the adaptive filter, 

applied as a noise cancelling system, implies hardware design 

supported by a 68000 assembly language program, listed in appendix 

E. When the software program is first run, the CPU sets up the PIA 

and organizes its ports (A & B) in the desirable directions. Since 

the sampled input-output data must be saved, the CPU loads the 

address registers A4, A6 and A5 with the starting address of the 
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memory locations used as a storage of input samples, output samples 

and the updated coefficients respectively. When the PIA is first 

initialized and the address registers are loaded, the CPU executes 

the coefficients updating program. This execution is initialized 

by means of a control pulse produced by the system circuit and sent 

to the MC68000 through the control input line CB2. The positive 

edge of this pulse coincides with the existence of the sampled data 

entering the MC68000, see fig. 6.4. It has been mentioned before 

that the complexity of the system hardware arises from the 

limitation of the input-output ports available on the MC68000. 

Another effect of this limitation is multiplexing the ADC analogue 

input between xj and dj. A DG211 analogue switch is used to switch 

between xj and dj fed into the ADC as illustrated in figs. 6.7 (a) 

and (b). Since the data should be written into the MC68000 within 

one computation period (8 timeslots), the control input N1 of the 

analogue switch is held LOW for 4 timeslots passing xj and then is 

held HIGH for the other 4 timeslots allowing dj to pass to the ADC 

as shown in the timing diagram in fig.6.7. Once the data has 

entered the MC68000 the updating process takes place and is 

executed using eqns. 3.5.1 and 3.5.2 according to the LMS 

algorithm. As soon as this process is terminated, a stream of the 

coefficients comprising control bits and scaling factor bits is 

written into RAM1 and consequently into the RAM2 and the FAD IC. 

The new set of coefficients are written into the FAD every 128 

computation periods and remain constant for that length of time. 

The input samples enter the FAD every computation period occupying 

the first half of the first timeslot (16 bits). The filter output 

is valid after a delay of 8 timeslots, so it appears in the first 

half of timeslot number 9, the next output is valid in timeslot 17 
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and so on. This output is then converted to analogue form by the 

DAC and simultaneously applied to the ALU to be subtracted from dj 

producing the error output ej, which is also converted to the 

analogue form ,as illustrated in fig. 5.10. 

6.7 Conclusion 

The 68000 microcprocessor was chosen because of its ability to 

effeciently implement the LMS equations for updating the 

coefficients. It has a comprehensive set of instructions, a wide 

number of addressing modes and its most convenient feature is its 

ability to operate with any of the instructions on more than one 

data size (byte, word, or long word). We also successfully 

detected an obscure fault in the FAD IC after much careful 

analysis. 

This chapter has demonstrated the reduction and saving in 

hardware that can be achieved by developing many 68000 software 

routines that are compatible with the hardware implementation of 

the ANC. These software routines include, reading blocks of 16 

samples of the filter input, desired response input and the output 

every 128* 16 computation periods (one set of samples every 

computation period), saving the previous input and output samples, 

updating the coefficients, writing non-recursive and recursive 

coefficients simultaneously, bit by bit into the external RAMs. 

Finally, the general function of the complete hardware 

implementation of the ANC has been investigated. 
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CHAPTER 7 

Experimental Results 

7.1 Introduction 

In recent years, there has been considerable interest among 

researchers to extend the FIR adaptive filter to more general feed­

back or IIR configurations. The computational cost of FIR filters 

was a great encouragement to the development of the IIR filters. 

An advantage of such an extension is the substantial decrease in 

filtering hardware (and/or software) that the IIR design presents 

over an FIR design with equivalent performanc~ 

The first part of this chapter explores the hardware 

implementation results of the 16th order adaptive filter based upon 

the LMS algorithm, performed as an ANC. The second part is devoted 

to a discussion of the stability of the IIR adaptive filter. 

7 .2. The .ANC System Performance and the Results 

The ANC system was constructed employing the FAD IC as a real 

time 16th order digital filter operating at a clock frequency of 

2MHz. So to apply one new input sample every computation period (8 

time-slot), the input signal was sampled at 4 KHz with 12 bits 

resolution (including the sign bit). To avoid the overflow at the 

ANC outputs, the input data vector !j was scaled down by the 

scaling factor S=2-2. 

Referring to the computer simulation results obtained in 

chapter 4, a 68000 software program was developed to update 16 

feed-forward and 16 feed-back coefficients following the type 

discussed in section 4.3.4 of representing the input samples as 
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well as the output samples involved in this operation. These 

coefficients were updated in the LMS manner according to the eqns. 

3.5.1 and 3.5.2. 

Because of the limited speed available for the updating 

operation, it was accomplished once every 128 sampling instants 

(computation periods). Using two sets of RAMs (as has been 

emphasised earlier in chapter 5 and 6), one bit of each coefficient 

was applied to the NRCOEFF and RCOEFF inputs of the FAD IC every 

500nsec. 

The results shown in fig. 7.1 demonstrate the use of the 

experimental system as an ANC. The dj input signal was a composite 

signal made up of two equal amplitude sinusoidal inputs, the 

fundamental signal at 300 Hz and the second harmonic representing 

the interference at 600 Hz. The xj input signal was the second 

harmonic interference at 600Hz altered in phase and magnitude. 

The second harmonic sinusoid was generated by doubling the 

frequency of the fundamental signal via an analogue multiplier. 

The resultant output signal was added to its input signal using an 

analogue adder circuit. Fig. 7.2 shows the photograph of the 

inputs signals circuit. 

After the adaptation, the filter reproduce the 600 Hz signal 

at the filter output and cancelled from dj to produce the desired 

signal at 300Hz at the error output of the ANC. This result was 

obtained with convergence factors ~1 = 2-19 an~ = 2- 19. 

7.3 Further Results 

The ANC was inefficient at any frequency (below the sampling 

frequency) other than the one illustrated in the experimental 
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Fig. 7.2 Hardware experiment result illustrating the perfomnance of the LMS recursive 
adaptive filter 
(a) filter input (2v/div) 
(b) filter output (1 v/div) 
(c) desired response input (2v/div) 
(d) error output (2v/div) 
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result in the previous section. So any small change in the 

frequency had a significant effect and degraded the performance of 

the ANC. In this test all other parameters were kept constant and 

the relation between the filter input and the signals comprising dj 

were fixed. 

In the light of these tests, the computer simulation program 

developed in chapter 4, was run for N =-128 and N = 1 at two 

frequencies of the input signals. The frequencies were then 

changed after half number of iterations. Fig. 7.3 shows the 

typical signals that were used while figs. 7.4 and 7.6 demonstrate 

the performance of the ANC when the change in the frequencies has 

taken place (for N= 128 and N: 1 respectively). Figs. 7.5 and 7.7 

show the corresponding outputs Yj and ej at the end of the same 

number of iterations computed at the first frequency (for N:128 and 

N= 1 respectively). The convergence factors were set to p.1 = 2- 19 

and p.2 = 2-19, which are equal to their values in the hardware 

implementation. 

It is obvious that both the computer simulation and the 

hardware implementation results, evaluated for the identical values 

of the parameters and under similar conditions, were in agreement. 

In fact, the values of p.s used in that test were relatively small 

and were not capable of readjusting the performance of the ANC due 

to any modification associated the system. So the ANC was not 

able to track these changes, and the filter was inefficient in 

adapting itself fast enough to track these changes too. 

7.4 IIR Adaptive Filter Stability 

Many attempts were carried out to study the behaviour of the 
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ANC at larger values of the convergence factors 111 and 112• 

However a major problem that arose was the instability of the 

filter for 111 and 112 >2-19. Two sources of the instability were 

noteable in that case, the overflow oscillations at the filter 

output due to the 2's complement addition and the variation in the 

filter coefficients. It is well known that (69), unlike FIR 

filters, the IIR filter stability may not be guaranteed for all 

choices of coefficients. So they are generally more sensitive to 

any change in the coefficients than are FIR filters. In fact the 

frequency response of these types of filters depends on the 

accurate placement of the few poles. Due to implementing the 

filter and updating the coefficients in fixed point arithmetic and 

the quantization employed, all these effects taken together then 

will lead to change in the filter's poles and might move into an 

unstable region. 

7.5 Conclusion 

This chapter has demonstrated that the ANC is effective in 

cancelling the additive noise contaminating the desired signal for 

a single frequency. The results have shown the impotence of the 

ANC to produce the expected performance at different frequencies 

with the constant parameters of the ANC at relatively small values 

of /lS, and the adaptation is very slow and the filter does not 

track the variation in the frequencies of the input signals. 

Indeed these results agree closely with those from the simulation. 

For the case of larger values of /ls , the instability problem arose 

and degraded the performance of the ANC. 
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CliAPTER 8 

Conclusion 

This work has emphasised the application of the recursive LMS 

adaptive filter as a microprocessor controlled ANC. Simulation 

studies have provided proof of the possibility of extending the FIR 

ANC to the more economical IIR one. It shows the opportunity of 

implementing the filter with fewer weights, offering a significant 

decrease in the software and hardware complexity of the IIR filters 

over an FIR filter design with equivalent performance. The 

hardware implementation of the ANC was extended from an extensive 

FIR with a significant computational load to a simple and flexible 

design with lower cost and memory saving using IIR filters with all 

digital techniques. 

IIR LMS adaptive filters, which are concerned with the use of 

a programmable filter, in which their frequency response is adapted 

to suppress or attenuate the undesired signal leaving the desired 

components of the input signals without degradation, can also be 

applied in situations where an absolute minimum of information is 

available about the incoming signal such as in adaptive equalizers 

for telecommunications, data transmission systems and echo 

cancelation. 

Although the theory of adaptive systems has been well 

understood for many years, it is only very recently that adaptive 

filters have been designed in hardware as progress in the 

technology advances. Many hardware implementations of FIR filters 

depend predominantly on the use of sampled-data analogue structures 
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(i.e. based on charge-coupled-device (CCD) and surface acoustic 

wave (SAW) device). However, the performance of these analogue 

filters is restricted by the limitation in dynamic range, caused by 

effects such as nonlineari ties and noise effects. Digital signal 

processing has many advantages over analogue techniques. These 

advantages include higher reliability, insensitivity to temperature 

changes and component tolerances, greater accuracy and 

repeatability, and a higher level of flexibility because they are 

programmable. Almost all IIR research publications are concerned 

with computer simulations. 

The recent development in VLSI and LSI devices and, in 

particular microprocessors, have enabled substantial reductions to 

be made in both the size and the cost of high speed digital signal 

processing techniques. This allows adaptive filters to be designed 

in small, powerful single chip devices with realistic sampling 

rates which enable them to act as real-time processors. Recently 

microprocessors have been found to be efficient at implementing the 

LMS algorithm used to adjust the filter's coefficients with regard 

to the incoming signals. 

The implementation described in this thesis demonstrates some 

of the advantages obtained by the use of these techniques. These 

advantages include introducing a high degree of flexibility 

allowing the realization of the adaptive filter with any order and 

the wide range of sampling rates which could be achieved by 

altering the clock frequency and the order of the FAD. 

Computer simulation investigations demonstrate the desired 

performance of the adaptive filter as an ANC for stationary 

118 



periodic and random signals. The effect of the inefficiency 

associated with updating the coefficients for every sampling period 

has been analyzed and it is shown that the ANC can achieve an 

acceptable performance when the updating operation takes place only 

once every 128 sampling periods, in particular, at relatively small 

values of the convegence factors ~1 and ~2 . The experimental 

result has been illustrated to agree closely with the result of 

computer simulations in the case of the fixed-point as well as 

floating-point representations of the data involved in the design. 

Both experimental and simulation results demonstrate the 

inefficiency of the ANC performance in tracking any variation in 

the input signals frequency. In the light of the experimental 

attempts to operate the system at large values of ~' which might 

lead to faster convergence and better adaptation, the stability 

problem has been discussed as a result of the feed-back in the IIR 

filter performanc~ 

We hope that this thesis has provided a coherent and 

comprehensive investigation of the application of the adaptive 

filter to noise cancelling systems. Due to the limited literature 

currently available concerning the convergence of the IIR adaptive 

filter, further work is required to investigate this property of 

the IIR LMS filter. Such future work should take adaventages of 

advances in VLSI and LSI technology and high speed digital signal 

processors, such as the DSP microprocessor TMS320 and the recent 

Fujitsu MB8764, to achieve real time implementations of adaptive 

filter algorithms with a minimum of hardware and a more flexible 

software controlled system. Further work may be carried out into 

developing the existing system using variable coefficients 
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(variable step-size algorithm) which provide a better response to 

the change in the frequency or statistics of the input signals. 

Furthermore this system could be applied to different broad band 

signals9 for example 9 white noise. 
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APPENDIX A-1 

************************************************************************* 

* 
* 
* 
* 
* 

PASCAL program for computing the transfer function magnitude 
of the recursive LMS adaptive filter, with 16 non­

recursive and 15 recursive coefficients 

* 
* 
* 
* 
* 

************************************************************************* 

program transfer (nrcoeff2,rcoeff2,output) 

const 

type 

var 

begin 

count = 128 
n = 16 

nrcoeff1 
rcoeff1 

array[1 .. n] of real 
array[1 .. n] of real 

i,j,m: integer; 
x : real ; 
nrcoeff2,rcoeff2 
zeros 
poles 
response 

real 
real 
real 

text 

* number of angles * 
*number of recursive (including,b0 ,) 

and non-recursive coefficients * 

* angle's value * 
* input files contained coefficients * 
*the numerator (X(ej t),refer to section 2.9' 
*the denomirator (Y(ejwt) * 

* transfer function magnitude, IG(ej t) I 

reset (nrcoeff2, 'unit=scards') * open input files nrcoeff2 and rcoeff2 * 
reset (rcoeff2, 'unit=O') 

for i:=1 to count do 

************************************************************************* 

* 
* 
* 
* 

compute the transfer function magnitude for 
points (angles) in range of o to n 

* 
* 
* 
* 

************************************************************************* 

begin 
m := n-1 ; 
zeros :=0.0 
poles :=0.0 
response :=0.0 

* initialize accumulators * 

end. 

x := (3.141592*i)/count 
for j : =1 to n do 

begin 
read (nrcoeff2,a[j]) 
read (rcoeff2,b[j]) 
zeros 
poles 

end ; 

:= zeros+(a[j]*cos(m*x)) 
poles+(b[j]*cos(m*x)) 

m : = m-1 ; 

response ·= zeros/poles 
response ·= abs(response) 
writeln (x,response) 

end 

* read non-recursive 
coefficients one by 

* compute X(ej t) * 
* compute Y(ej t) * 

* compute G(ej t) * 

*compute IG(ej t) I * 

and recursive 
one * 



APPENDIX A-2 

************************************************************************* 

* 
* 
* 
* 
* 

PASCAL program for implementing the recursive LMS adaptive filter, 
with 16 non-recursive and 15 recursive coefficients, in 

accordance with the type discussed in section 4.3.1 

* 
* 
* 
* 
* 

************************************************************************* 

program filter (datal,data2,output) 

const kl 7.2e-06 

type 

var 

k2 3.6e-06 
p 17 
q 16 

r 15 

signal 
filterout 

nrcoeff 
rcoeff 

atot, 
btot, 
e,u,w, 

array 

array 
array 
array 

xe,de : real 
i,j,k,f,m, 
count : integer 

x signal ; 
y filterout 

a nrcoeff ; 
b rcoeff ; 

datal, 
data2: text ; 

begin 

[1. .p] 

[1. .p] 
[1. .q] 

[1. .r] 

reset (datal, 'unit=scards') 
reset (data2,'unit=0') 

of real 
of real 

of real 

of real 

* convergence factors ~l and ~2 * 

* filter input samples * 
* filter output samples * 
* non-recursive coefficients array * 
* recursive coefficients array * 

* filter's linear difference equation 
accumulators * 

* filter error output * 
*filter input and desired response input samples* 
* time indices * 
* number of iterations * 

* input files contained the filter input and the 
desired response input samples respectively * 

* open input files datal and data2 * 

************************************************************************* 

* * 
* initialize the previous arrays to prevent the overflow * 
* * 
************************************************************************* 

for i :=1 to p do 
begin 

x[i] := 0.0 
y[i] ·= 0.0 

end ; 

for i :=1 to q do 
begin 

a[i] ·= 0.0 
end ; 

for i :=1 to r dO 

begin 



b[i] := 0.0 
end ; 

j := p ; 

e ·= o.o 
u ·= 0.0 
w ·= 0.0 
count := 20000 
for i :=1 

begin 
to count do 

read (datal,xe) 
read (data2,de) 
x [ j] := xe ; 

y[j-1] := y[j] 

w ·= 2*kl*e 

u := 2*k2*e 

* read filter input and desired response 
input samples contained in datal and data2 * 

* the newest sample is the most 

recent sample has been read * 

* 2 Ill e * 
* 2 112 e * 

************************************************************************* 

* 
* 
* 
* 
* 

update 16 non-recursive and 15 recursive coefficients every 
sampling period and write them back in their previous 

locations in nrcoeff and rcoeff arrays 

* 
* 
* 
* 
* 

************************************************************************* 

for k:=l to q do 
begin 

a[k] := (a[k]+w*x[j-k]) 
writeln (a[k] :10) 

end ; 
for f:=l to r do 

begin 

b[f] ·= (b[f]+u*y[j-1-f]) 
writeln (b[f] :10) 

end ; 

atot ·= 0.0 

btot := 0. 0 
* clear accumulators * 

**************************************************************************************************** 

for k :=1 to q do 

begin 

atot := atot+(a[k]+x[j+l-k]) 
end ; 

q 

atot =I ak xj+l-k 
k=l 

**************************************************************************************************** 

for f :=1 to r do 

begin 

btot := btot +(b[f]+y[j-f]) 
end ; 

r 

btot = I bfYj-f 
f=l 

**************************************************************************************************** 

y[j] := (atot-btot)/8 

e : = de-y [ j] ; 

* compute the present filter output * 

* compute filter error output * 



************************************************************************* 

* 
* 
* 
* 
* 

shift the previous filter input and output samples one location 
and save them in signal and filterout arrays for the next 

filtering and coefficients updating operations 

* 
* 
* 
* 
* 

************************************************************************* 

for m:=l to p 
begin 

x[m] ·= x [m+ll 
end ; 

for m :=1 to r 
begin 

y[m] ·= y[m+ll 
end ; 

end 
end. 

do 

do 
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************************************************************************* 

* 
* 
* 
* 
* 

PASCAL program for implementing the LMS adaptive filter, with 
16 non-recursive and 15 recursive coefficients, according 

to the type discussed in section 4.3.2 

* 
* 
* 
* 
* 

************************************************************************* 

program filter (datal,data2,output) 

const kl 7.2e-06 ; 

k2 3. 6e-06; 

type 

var 

n = 129 
t 16 
r = 15 
z = 17 

signal 
filterout 
nrcoeff 
rcoeff 
save in 
saveout 

atot,btot, 
u,w,e, 
xe,de,des 
i, j, f,k,m, 

s, h, 

; 

array 
array 
array 
array 
array 
array 

real 

count: integer 

x: signal ; 

y: out ; 

a: nrcoeff ; 

b: rcoeff ; 

p: save in ; 

q: save out ; 

datal, 
data2 :text ; 

begin 

[l .. t] of real 
[1. .t] of real 
[l .. t] of real 
[1. .r] of real 

[1 .. z] of real 

[1 .. z] of real 

* convergence factors ~1 and ~2 * 

* coefficients updating operation is 
accomplished every n sampling periods * 

* filter input samples * 
* filter output samples * 
* array of 16 updated non-recursive coefficients 

* array of 15 updated recursive coefficients * 
* filter input and output 

samples delayed by n * 

* 

* filter's linear difference equation accumulators * 
* filter error output * 
* filter input and desired response input samples * 
* time indices * 

* number of iterations * 

* filter input and desired response 
input samples input files * 

************************************************************************* 

* * 
* initialize the previous arrays at zero to avoid the overflow * 
* * 
************************************************************************* 

for i:=l to t do 

begin 

x[i] ·= 0.0 
y[i] ·= 0.0 

a [i] := 0.0 

end ; 

for i:=l to r do 

begin 



b[i] 
end ; 

for 

e 

u 
w 

begin 

p[i] 

q[i] 

end ; 

: 
: 

: 

= 
= 

= 

0.0 
0.0 

0.0 
s := 1 

h := t 

j .- t 

:= 0.0 

i:=l 

:=0.0 

:=0.0 

count ·= 520000 ; 

to z 

reset 

reset 

for 

(datal, 'unit=scards') 

(data2, 'unit=O') 
i:=l to 

begin 

if s<>n 
begin 

then 

if 

read (datal,xe) 

read (data2,de) 
X[ j] := xe ; 

y [ j-1] := y [ j l 
p[h] ·= xe ; 

q[h-1] ·= y [ j] 

h:=t then 

de := des ; 

atot ·= 0.0 
btot := 0.0 

count 

do 

do 

* set e and the associated parameters 
u & w to zero for the first 

updating period * 

* open input file datal * 
* open input file data2 * 

* read one filter input and desired 
response input every sampling period * 

* save one filter input and filter output sample every n 

sampling period for the coefficients updating operation * 

* clear accumulators * 

*************************************************************************************************** 

for k :=1 to t do 

begin 

atot : = a tot+ (a [k] *x [ j+l-k]) 

end ; 

t 

atot = L ak xj+l-k 
k=l 

**************************************************************************************************** 

for 

begin 

btot 
end ; 

f:=l to r do 

:= btot+(b[f]*y[j-f]) 

r 

btot = L bf Yj-f 
f=l 

************************************************************************* 

* 
* 
* 
* 
* 
* 

shift filter input and filter output samples one location, 

and save them in their previous locations, occupying 

the most recent samples in locations 16 and 15 

of arrays signal and filterout respectively 

* 
* 
* 
* 
* 
* 

************************************************************************* 

for m:=l to 

begin 

x[m] := x[m+l] ; 

end ; 

r do 



for m :=1 to 
begin 

y[m] := y[m+1] 
end ; 

y[j] := (atot-btot)/8 

s := s+1 

h := z ; 

end 
else 

begin 

.- t ; 

e :=des - g[j-1] 
w := 2*k1*e 

u := 2*k2*e 

r-1 do 

* compute filter output * 

* next sampling point * 
* one new input and output samples are applied to 

the updating operation every n sampling points * 

* compute filter error output * 

* 2 J.L1 e * 
* 2 J.L2 e * 

************************************************************************* 

* 
* 
* 
* 
* 

update 16 non-recursive and 15 recursive coefficients every n 
sampling periods and write them back in their previous 

locations in nrcoeff and rcoeff arrays 

* 
* 
* 
* 
* 

************************************************************************* 

for k:=1 to t do 
begin 

a[k] := a[k]+(w*p[j+1-k]) 
end ; 

for f : =1 to r 
begin 

b[f] := b[f]+(u*q[j-f]) 
end ; 

do 

************************************************************************* 

* 
* 
* 
* 
* 

shift filter input and filter output samples delayed by n, 
used in the coefficients updating operation, and save 

them in arrays savein and saveout respectively 

* 
* 
* 
* 
* 

************************************************************************* 

end 

end. 

for m 
begin 

p[m] 
end ; 

:=1 to 

:= p[m+1] 

for m :=1 to 
begin 

q[m] ·= q[m+1] 
end ; 

s := 1 

h ·= t ; 

end 

r do 

r-1 do 
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************************************************************************* 

* 
* 
* 
* 
* 

PASCAL program for implementing a recursive LMS adaptive filter 
with 16 non-recursive and 15 recursive coefficients 

according to the type discussed in section 4.3.3 

* 
* 
* 
* 
* 

************************************************************************* 

program filter (datal,data2,output) 

const 

kl 7.2e-06 * convergence factors ~l and ~2 * 
k2 3.6e-06 
n ·= 129 ; 

t ·= 16 
r := 15 * update the coefficients every n sampling periods * 

type 

signal array [1. .t] 
filterout array [1. .t] 
save in array [1.. 40] 
saveout array [1.. 40] 
nrcoeff array [1. .t] 
rcoeff array [1. .r] 

var 
atot, 
btot, 
u,w,e, 
xe,de: real ; 

i,j,k,f,m, 

h,s: integer 

X signal ; 
y filterout 
p save in ; 

q saveout ; 

a nrcoeff ; 

b rcoeff ; 

datal, data2 : text ; 
begin 

reset (datal, •unit=scards') 
reset (data2, 'unit=O') 

of real * 
of real * 
of real * 
of real 
of real * 
of real * 

filter input samples array * 
filter output samples array * 
filter input and output samples, 
used to update the coefficients * 
updated non-recursive coefficients array * 
updated recursive coefficients array * 

* storages for the implemented linear difference 
equation of the adaptive filter * 

* filter error output * 
* filter and desired response inputs samples * 
* time indicies * 

* input files * 

* open the input files datal and data2 * 

************************************************************************* 

* * 
* initialize the previous arrays at zero to prevent the overflow * 
* * 
************************************************************************* 

for i :=1 to t do 

begin 

a [i] := 0.0 
x[i] := 0.0 
y[i] ·= 0.0 

for i :=1 to r do 



begin 

b[i] :=0.0 ; 
end ; 

for i :=1 to 40 do 
begin 

p[i] ·= 0.0; 
q[i] ·= 0.0 

end ; 

e ·= 0.0 

u := 0.0 
w := 0.0 

s := 1 

.- t 

h .- t 
count := 192000 

for i :=1 to count do 
begin 

if s<>n then 

begin 

read (data1,xe) 
read (data2,de) 

x [ j] := xe ; 

y[j-1] := y[j] 

p[h] := xe ; 

if h =1 then 

h := 40 
q[h-1] ·= y[j] 

atot := 0.0 

btot := 0. 0 

* initialize the number of sampling period at one * 

* location of the most recent filter input and 

filter output samples * 

* read the filter input and the desired 
response input samples one by one * 

* to avoid the case of zero or minus elements 

orders in arrays savein and saveout * 

* clear accumulators * 

**************************************************************************************************** 

for k :=1 to t do 

begin 

atot := atot+(a[k]*x[j+1-k]) 

end ; 

t 

atot = L ak xj+l-k 
k=l 

**************************************************************************************************** 

for f :=1 

begin 

btot := 

end ; 

to r do 

btot+(b[f]*y[j-f]) 

r 

btot = L bf Yj-f 
f=l 

************************************************************************* 

* 
* 
* 
* 
* 

shift filter input and filter output samples and 

save them in the one dimensional arrays 

signal and filterout respectively 

* 
* 
* 
* 
* 

************************************************************************* 

for m :=1 to r do 

begin 

x[m] := x [m+1] 

end ; 

for m :=1 to r-1 do 

begin 



y[m] := y[m+l] 
end ; 

y[j] ·= (atot-btot)/8 
e := de-y[j] 
s ·= s+1 
h ·= h-1 

end 
else 

begin 

h := t ; 
·= t ; 

w ·= 2*k1*e 

u ·= 2*k2*e 

* compute filter output and scale it down by 8 * 
* compute filter error output * 
* get the next input sample * 
* get the next input sample used in the 

coefficients updating operation * 

* reset (h) to get the first 16 successive samples, every 

n sampling periods, used in the coefficients 

updating opration * 

************************************************************************* 

* 
* 
* 
* 
* 

update 16 non-recursive and 15 recursive coefficients 
and write them back in their previous locations 

in arrays nrcoeff and rcoeff respectively 

* 
* 
* 
* 
* 

************************************************************************* 

end 

end. 

for k :=1 to t do 
begin 

a[k] := a[k]+(w*p[h+1-k]) 

(a [k]: 10) writeln 
end ; 

for f :=1 to r do 
begin 

b[f] ·= b[f]+(u*q[h-f]) 
writeln (b[f]:10) ; 

end ; 
s ·= 1 

h := t ; 
end 
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************************************************************************* 

* 
* 
* 
* 
* 

PASCAL program for implementing recursive LMS 
adaptive filter in accordance with the 

type discussed in section 4.3.4 

* 
* 
* 
* 
* 

************************************************************************* 

program filter (datal,data2,output) 

const 

type 

var 

begin 

kl 7.2e-06 

k2 3.6e-06 
n = 12 9 ; 

t 16 ; 

r 15 ; 
tr = 18 ; 

signal 

filterout 
nrcoeff 
rcoeff 
iport 
oport 

save in 
saveout 
desired 

atot, 
btot, 
e,u,w, 
xe,de: real 
i, j,k, f,m, 

count, 

array 

array 
array 
array 
array 

array 
array 
array 
array 

n,c,h,s: integer 

x: signal ; 

y: filterout 

a: nrcoeff ; 

b: rcoeff ; 

z: iport ; 

g: oport ; 

p: save in ; 

q: save out ; 

d: desired ; 

datal,data2: text 

[1. .t] of 
[1. .t] of 

[1. .t] of 
[1 •• r] of 
[1. .tr] of 

[1. .tr] of 
[1. .t] of 
[1. .r] of 
[1. .tr] of 

; 

reset (datal, •unit=scards') 
reset (data2, 'unit=O') 

real 

real 
real 
real 
real 

real 
real 
real 
real 

* convergence factors ~1 and ~2 * 

* update the coefficients every 128 sampling periods * 

* filter input signal samples * 
* filter output samples * 
* updated non-recursive coefficients * 
* updated recursive coefficients * 

* save the 16 input samples and 15 output samples, 
used in the coefficients updating operation * 

* the desired response input samples * 

* the accumulated non-recursive and 
recursive parts of the filter * 

* filter error output * 
* filter input and desired response input samples * 
* time indices * 
* number of iterations * 

* open the input files contained the filter input 
and desired response input samples * 



************************************************************************* 

* * 
* initialize the previous arrays to prevent the overflow * 
* * 
************************************************************************* 

for i :=1 to t 

begin 
a [i) ·= 0.0 
X (i) := 0.0 
y(i] := 0.0 
p[i) := 0.0 

end ; 

for i :=1 to r 
begin 

b[i) :=0.0 
q(i] :=0.0 

end ; 

for i :=1 to tr 
begin 

g[i) :=0.0 
z [i) :=0.0 

d[i) :=0.0 

end ; 

e := 0.0 

u := 0.0 

w := 0.0 

s := 1 

h ·= 2 
j ·= t 

c := 1 

count := 192000 

for i :=1 to count 
begin 

if s<>n then 
begin 

read (data1,xe) 

read (data2,de) 
x [ j) := xe ; 

y[j-1) := y[j) 

z[h) := xe ; 

g[h-1) := y[j) 

d [h) := de ; 

atot := 0.0 
btot := 0.0 

do 

do 

do 

do 

* set e and the associated 

parameters u & w to zero * 

* initialize the number of the sampling periods at one * 

* read the filter input and the 

desired response input samples * 
* the most recent sample is the newest sample * 

* clear accumulators * 

**************************************************************************************************** 

for k :=1 

begin 

atot := 
end ; 

to t do 

atot = 
atot+(a[k]*x[j+1-k]) 

**************************************************************************************************** 

for f :=1 

begin 

btot ·= 

to r do 

btot+(b[f)*y[j-f)) 

r 

btot = L bf Yj-f 
f=l 



end ; 

************************************************************************* 

* 
* 
* 
* 
* 

shift the previous filter input and filter output 
samples and save them in the one dimensional 

arrays signal and filterout respectively 

* 
* 
* 
* 
* 

************************************************************************* 

for m :=1 to 
begin 

x[m] := x [m+1] 
end ; 

for m :=1 to 
begin 

y[m] := y[m+1] 

end ; 

y[j] := (atot-btot) /8 
s ·= s+1 
h := h+1 

end 
else 

begin 
j := t ; 

c := c+1 
p[j] := z[c] 

q[j-1] := g[c-1] 
e := d[c]-q[c-1] 
w := 2*k1*e 
u := 2*k2*e 

r do 

r-1 do 

* compute filter output and scale it down by 8 * 
* next sampling period * 
* get the next filter input, desired input, filter output 

samples involved in the coefficients updating operation* 

* save filter input and output samples employed in 
updating operation in savein and saveout * 

* compute filter error output * 

************************************************************************* 

* 
* 
* 
* 
* 

update 16 non-recursive and 15 recursive coefficients 

and write them back into the one dimensional 
arrays nrcoeff and rcoeff respectively 

* 
* 
* 
* 
* 

************************************************************************* 

for k :=1 to t do 
begin 

a[k] ·= a[k]+(w*p[j+1-k]) 
writeln (a[k]:10) 

end ; 

for f :=1 to r do 
begin 

b[f] := b[f]+(u*q[j-f]) 

writeln (b[f]:10) 

end; 

************************************************************************* 

* 
* 
* 
* 
* 

shift and save the filter input, the filter output samples, 

used in the coefficients updating operation in 
the arrays savein and saveout respectively 

* 
* 
* 
* 
* 

************************************************************************* 

for m :=1 to r do 



end. 

begin 
p[m) := p [m+1) 

end ; 
for m :=1 to r-1 

begin 
q[m) ·= q[m+l) 

end ; 

do 

h := tr * save only the first 16 input and 15 output 
s := 1 samples for every n*16 sampling period * 

end 
if c=17 then * is it the last sampled data? if yes 

initialize h and c to get the 

end 

begin 
h ·= 2 
c := 1 

end 

new sampled data * 
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************************************************************************* 

* 
* 
* 
* 
* 

PASCAL program for illustrating the performance of the 16th order 

recursive LMS adaptive filter at two different frequencies, 
representing the data in floating point arithmetic 

* 
* 
* 
* 
* 

************************************************************************* 

program filter (output) 

const kl 1.96e-06 

k2 1.96e-06 
n 129 ; 

t 17 ; 

r = 16 ; 

tr = 18 ; 

type 

signal array [1. .t] of real 
filterout array [1. .t] of real 
nrcoeff array [1. .t] of real 
rcoeff array [1. .r] of real 
iport array [1. .tr] of real 
oport array [1. .tr] of real 
save in array [1.. t] of real 
saveout array [1.. r] of real 
desired array [1. .tr] of real 

var 

atot,btot,u,w,e,xe,de, 

angle,angl,ang2,wavel,wave2: real 
i,j,f,k,m,s,h,c,count: integer; 

x: signal ; 
y: filterout 

a: nrcoeff ; 

b: rcoeff ; 

z: iport ; 
g : oport ; 

p: savein ; 

q: saveout 
d: desired ; 

begin 

* covergence factors ~l and ~2 * 

* adaptive filter input samples * 
* adaptive filter output samples * 
* updated non-recursive coefficients array * 
* updated recursive coefficients array * 

* filter input and output samples used in 
the coefficients updating operation * 

* desired response input samples * 

* sinusoids angles and the corresponding input samples * 

************************************************************************* 

* * 
* initialize the previous arrays at zero * 
* * 
************************************************************************* 

for i:=l to t do 

begin 

x[i] := 0.0 
y[i] := 0.0 

a [i] ·= 0.0 



b[i] := 0.0 
p[i] := o.o 
q[i] := o.o 

end ; 

for i:=1 to tr do 
begin 

g[i] ·= 0.0 
d[i] := 0.0 
z [i] ·= 0.0 

end ; 

e ·= 0.0 

u ·= 0.0 
w ·= 0.0 
s ·= 1 
h := 2 

·= t 
c := 1 
count := 1900000 ; 
for i:=1 to count do 

begin 
if s<>n then 

begin 

**************************************************************************************************** 

if (i<950000) and (i>=1) then 
begin 

angle := 11.25*i ; 
xe := sin((angle*3.141592)/180) 
xe : = xe * 1. 5 ; 
ang1 := 11.25*i 
wave1 := sin((ang1*3.141592)/180) 
ang2 := 5.625*i ; 
wave2 := sin((ang2*3.141592)/180) 
de := wave1+wave2 ; 

end ; 
if (i<1900000) and (i>=950000) then 

begin 
angle := 5.625*i 
xe := sin((angle*3.141592)/180) 
xe := l.S*xe ; 
ang1 := 5.625*i ; 
wave1 := sin((ang1*3.141592)/180) 
ang2 := 2.8125*i ; 
wave2 := sin((ang2*3.141592)/180) 
de := wave1+wave2 ; 

end ; 

generate the filter input and the desired response 
input sinusoidal signals in accordance with 

the system discussed in section 4.3.b 
at f1 for the first count/2 

iterations and at f2 for 
the last count/2 

iterations 

**************************************************************************************************** 

x [ j] := xe ; 
y[j-1] := y[j] 
z [h] := xe ; 
g[h-1] := y[j] 
d[h] := de ; 
atot ·= 0.0 

btot := 0.0 

* read the newest filter input, the desired 
response input and filter output 
floating point samples * 

* clear the accumulators atot and btot * 



**************************************************************************************************** 

for k :=1 

begin 

a[1] := 

atot ·= 
end ; 

to t do 

1. 0 ; 

atot+((a[k]/8)*x[j+1-k]) 

t 

atot = L ak xj+l-k 
k=l 

**************************************************************************************************** 

for 

begin 

btot 
end ; 

f:=1 to r do 

:= btot+((b[f]/8)*y[j-f]) 

r 

btot = L bf Yj-f 
f=l 

************************************************************************* 

* 
* 
* 
* 
* 

shift the previous input and output samples, used to 
compute the present filter output one location 

and save them in savein and saveout arrays 

* 
* 
* 
* 
* 

************************************************************************* 

for m :=1 to 
begin 

x[m] :=x [m+1] 
end ; 

for m 
begin 

y[m] 
end ; 

:=1 to 

:=y[m+1] 

y[j] :=(atot-btot)/2 
e :=de-y[j] 

r do 

r-1 do 

writeln (i:l2,y[j] :12,e:12) 
s :=s+1 
h :=h+1 

end 
else 
begin 

c := c+1 
j := t 

p[ j-1] 
q[ j-1] 

:= z [c) 

:= g[c-1] 
e := d[c]-q[c-1] 
w .- 2*k1*e 

u .- 2*k2*e 

* compute filter output and scale it down by 2 * 
* compute filter error output * 

* next sampling period * 
* get the next sampled data used in the 

coefficients updating operation * 

* get the next sampled data used in 
the updating operation * 

* compute 2 ~1 e and 2 ~2 e * 

************************************************************************* 

* 
* 
* 
* 
* 

update 16 non-recursive and 16 recursive coefficients 
and save them back in their previous locations in 

nrcoeff and rcoeff arrays respectively 

* 
* 
* 
* 
* 

************************************************************************* 

for k :=2 
begin 

to t do 



a[k] :=a[k]+(w*p[j+1-k]) 
end ; 

for f :=1 to r do 
begin 

b[f] := b[f]+(u*q[j-f]) 
end ; 

************************************************************************* 

* 
* 
* 
* 
* 

shift the filter input and output samples, used in the 
coefficients updating operation, one location and 

save them in arrays savein and saveout 

* 
* 
* 
* 
* 

************************************************************************* 

for m :=1 to 
begin 

p[m] ·= p[m+1] 

end ; 

for m :=1 to 
begin 

q[m] ·= q[m+1] 
end ; 

s := 1 ; 

h := tr 
end 

if c=1 7 then 
begin 

end 
end. 

h := 2 
c := 1 

end 

r do 

r-1 do 

* reset hand c and read only the first 17 filter 

input and 16 filter output samples for 
every (n*16) sampling periods * 



APPENDIX A-7 

************************************************************************* 

* 
* 
* 
* 
* 

PASCAL program for illustrating the recursive LMS adaptive 

filter performance at two different frequencies 

in fixed point arithmetic 

* 
* 
* 
* 
* 

************************************************************************* 

program filter (output) 

canst k1 1020033 * k1 2/111 & k2 

k2 1020033 

n = 129 ; 

t 17 ; 

r = 16 ; 

tr = 18 ; 

type 

signal array [1. .t) of integer 

filterout array [1. .t) of integer 

nrcoeff array [1. .t) of integer 

rcoeff array [1. .r) of integer 

iport array [1.. tr) of integer 

aport array [1. .tr) of integer 

sa vein array [1. .t) of integer 

save out array [1. .r) of int.eger 

desired array [1. .tr) of integer 

var 
sig,dis,angle,ang1,ang2,wave1,wave2: real ; 

atot,btot,u,e,w,xe,de,i,j,f,k,m,s,h,c,count: integer 

savein ; p: 
q: saveout ; 

x: signal ; 

y: filterout 

a: nrcoeff ; 

b: rcoeff ; 

z: iport ; 

g: aport ; 

p: savein ; 

q: saveout 

d: desired 

begin 

for 
begin 

x[i) 

y[i) 

a [i) 

b[i) 
p[i) 

q[i) 

end ; 

for 

begin 

z [i) 

g(i] 

i:=1 

:= 0 
·= 0 

·= 0 

:= 0 

:= 0 
·= 0 

i:=1 

:= 0 

:= 0 

to t do 

to tr do 



d[i) := 0 
end ; 

e := 0 
u := 0 
w ·= 0 
s := 1 
h ·= 2 

j ·= t 
c ·= 1 
count := 1900000 ; 

for i:=1 to 
begin 

if s<>n 
begin 

then 

count do 

**************************************************************************************************** 

if (i<950000) and (i>=1) then 
begin 

angle := 11.25*i ; 
sig := sin((angle*3.141592)/180) 
sig := sig*l.S ; 
sig := sig*1164 ; 
xe := trunc(sig) ; 
ang1 := 11.25*i ; 
wave1 := sin((ang1*3.141592)/180) 
ang2 := 5.625*i ; 
wave2 := sin((ang2*3.141592)/180) 
dis := wave1+wave2 
dis := dis*1164 ; 
de := trunc(dis) 

end ; 
if (i<1900000) and (i>=950000) then 

begin 
angle := 5.625*i 
sig := sin((angle*3.141592)/180) 
sig ·= l.S*sig ; 
sig := sig*1164 ; 

generate the filter input and the desired 
response input samples represented 

in fixed point arithmetic in 
accordance with the system 

discussed in section 
4. 3. b at f1 and 

f2 (f2=fl/2) 

xe := trunc(sig) ; * get the integer part of the input samples 

ang1 := 5.625*i ; 
wave1 := sin((ang1*3.141592)/180) 

ang2 := 2.8125*i ; 

wave2 := sin((ang2*3.141592)/180) 

dis := wave1+wave2 
dis := dis*1164 ; 

de := trunc(dis) ; 
end ; 

* get the integer part of the desired response samples* 

**************************************************************************************************** 

x [ j) := xe ; 

y[j-1) := y[j) 

z[h) := xe ; 
g[h-1) := y[j) 
d [h) := de ; 

a tot := 0 ; 

btot := 0 ; 

for k :=1 

begin 
a[1) ·= 1 

to t do 

atot ·= atot+((a[k) div 8)*x[j+1-k)) 



end ; 

for f:=l to r do 

begin 
btot := btot+((b[f) div B)*y[j-f)) 

end ; 

for m:=l to 

begin 

x[m) := x[m+l) 
end ; 

for m :=1 to 

begin 

y[m) := y[m+l) 

end ; 

r 

r-1 

y[j) :=(atot-btot) div 8192 
e : = de-y [ j J ; 
writeln (i:l2,y[j) :12,e:12) 

s := s+l 

h := h+l ; 

end 
else 
begin 

j := t ; 

c := c+l 

p[j-1) := z[c) 

q[j-1) := g[c-1) 

e := d[c)-q[c-1) 
for k :=2 to 

begin 

w ·= e*p [ j+l-k) 

w := w div kl 

a[k) :=a[k)+w 

end ; 

for f :=1 to 

begin 
u :=e*q[ j-f) ; 

u :=u div k2 ; 

b[f) :=b [f) +u 

end ; 

t do 

r do 

for m:=l to r do 

begin 

p[m) :=p[m+l) 

end ; 

for m :=1 to r-1 

begin 

q[m) :=q[m+ll 

end ; 

s ·= 1 ; 

h • = tr ; 
end 

if c=t then 

begin 

end 

end. 

h ·= 2 

c := 1 

end 

do 

do 

do 

* compute filter output and scale it down by 2, 

and express the coefficients as a fraction of 
12 bits by dividing the output by 212 * 

* ak+l = ak + 2*1lt *xk *ek * 
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PROGRAM 
PIAA 
CTRLA 
PIAB 
CTRLB 
IN SAMPLE 
WEIGHT 

INPUT 
OUTPUT 
IN SAM 
OUTS AM 
c 
z 
CONSTl 
CONST2 
STBl 

STB2 
K 

APPENDIX E 

******************************************************* 

* * 
* 68000 ASSEMBLY LANGUAGE PROGRAM FOR UPDATING THE * 
* COEFFICIENTS OF THE 16th ORDER RECURSIVE LMS * 
* ADAPTIVE FILTER * 
* * 
******************************************************* 

EQU $4000 ; 
EQU $05CEF1 
EQU $05CEF3 
EQU $05CEF5 
EQU $05CEF7 
EQU $5000 
EQU $5300 

EQU $5400 
EQU $5500 
EQU $53 FE 
EQU $54 FE 
EQU @$5608 
EQU @$560C 
EQU @$5610 
EQU @$5614 
EQU @$5618 

EQU @$561C 
EQU @$5620 

* ADDRESS OF PIA DATA DIRECTION AND DATA REGISTERS A * 
* ADDRESS OF PIA CONTROL REGISTER A * 
* ADDRESS OF PIA DATA DIRECTION AND DATA REGISTERS B * 
* ADDRESS OF PIA CONTROL REGISTER B * 
* STARTING ADDRESS OF ADDRESS REGISTER A7 * 
* STARTING ADDRESS OF MEMORY LOCATIONS USED AS A STORAGE 

OF THE UPDATED COEFFICIENTS ADDRESSED BY AS * 
* STARTING ADDRESS OF ADDRESS REGISTER A4 * 
* STARTING ADDRESS OF ADDRESS REGISTER A6 * 

* TEMPORARY STORAGE OF NRCOEFFS * 
* TEMPORARY STORAGE OF RCOEFFS 
* STORE ~l AND ~2 IN MEMORY LOCATIONS 

$5618 & $561C RESPECTIVELY * 

******************************************************* 

* 
* 
* 
* 

SET UP DATA DIRECTION, DATA AND CONTROL 
REGISTERS OF THE PIA 

* 
* 
* 
* 

******************************************************* 

ORG PROGRAM ; * SPECIFY THE STARTING ADDRESS OF MAIN PROGRAM * 

********************************************************************************* 

MOVEA.L PIAA,AO ; 
MOVEA.L CTRLA,Al ; 
MOVEA.L PIAB,A2 ; 
MOVEA.L CTRLB,A3; 

* GET PIA BASE ADDRESS * 
* GET PIA CONTROL REGISTER A ADDRESS * 
* GET PIA DATA DIRECTION AND DATA REGISTERS B ADDRESS * 
* GET PIA CONTROL REGISTER B ADDRESS * 

********************************************************************************* 

MOVEA.L INSAMPLE,A7; * POINTER TO SAMPLED DATA (INPUT, DESIRED 
RESPONSE, OUTPUT) BLOCKS START * 

MOVEA.L WEIGHT,AS ; * POINTER TO COEFFICIENTS STORAGE START * 
MOVEA.L INPUT, A4 ; * POINTER TO INPUT SAMPLES START * 
MOVEA.L OUTPUT, A6 ; * POINTER TO OUTPUT SAMPLES START * 



LOOP 

HIGH 

LOW 

DATA 

INPUTM 

INPUTL 

DESIREDM 

****************************************************** 

* 
* 
* 
* 

INITIALIZE AND SET A & B SIDES TO 
INPUT-OUTPUT 

* 
* 
* 
* 

****************************************************** 

CLR.B $0 (A1) ; 

MOVE.B #$FF, (AO) 
CLR.B $0 (A3) ; 

MOVE.B #$03, (A2) 
CLR.L DO 
CLR.L D1 
CLR.L D2 
CLR.L D3 
CLR.L D4 
CLR.L DS 
CLR.L D6 
CLR.L D7 

* CLEAR PIA CONTROL REGISTER (A SIDE) * 
* MAKE ALL DATA LINES OUTPUT (A SIDE) * 
* INTIALIZE B SIDE * 
* DATA LINES 1 & 2 OUTPUTS, 3-8 INPUTS (B SIDE) * 

******************************************************************************** 

MOVE.B #$14, (A1) 

MOVE.B #$14, (A3) 

MOVE.B (AO),Z 
MOVE.B (A2),Z 

* SELECT DATA REGISTER A; CA2 IS TRIGGERED ON LOW TO 
HIGH TRANSITION * 

*SELECT DATA REGISTER B;CB1 IS TRIGGERED ON HIGH TO LOW 
TRANSITION,CB2 IS TRIGGERED ON LOW TO HIGH TRANSITION* 

* DUMMY READ-CLEARS STATUS BIT IN CONTROL REGISTER A * 
* DUMMY READ-CLEARS STATUS BITS IN CONTROL REGISTER B * 

******************************************************************************** 

MOVE.W #$10,D4 ; * NUMBER OF SUCCESSIVE SAMPLES IN EACH BLOCK * 

******************************************************* 

* READ A BLOCK OF SUCCESSIVE SAMPLES OF THE FILTER * 
* INPUT, DESIRED RESPONSE INPUT AND THE FILTER * 
* OUTPUT FROM THE A/D CONVERTER; 6MSBS * 
* FIRST AND THEN THE 6LSBS AND * 
* STORE THEM IN THE MEMORY * 
* LOCATIONS ADDRESSED BY A7 * 
******************************************************* 

BTST.B #$06, (A3) 
BEQ HIGH ; 
MOVE.B (AO),Z 
MOVE.B (A2),Z 
BTST.B #$07,(A3) 
BEQ LOW 
MOVE.B (A2),Z 

* TEST THE STATE OF THE INPUT READY 
PULSE ON CB2;IF READY DELAY 

UNTIL THE NEXT FILTER 
INPUT IS AVAILABLE * 

******************************************************************************** 

MOVE.B (AO),Z; 
MOVE.B #$14, (A3) 
BTST.B #$07,(A3) 
BEQ INPUTM ; 
MOVE.B (A2), (A7) +; 

BTST.B #$06, (A1) ; 
BEQ INPUTL ; 
MOVE.B (A2),$20(A7) 
BTST.B #$07,(A3); 

* CB1 IS TRIGGERED ON HIGH TO LOW TRANSITION * 
* TEST STATUS BIT 7 IN CONTROL REGISTER B * 
* BIT 7=1, GET 6MSBS 

OF THE INPUT SAMPLE * 
* TEST STATUS BIT 6 IN CONTROL REGISTER A * 
* IF BIT 6=1, THEN GET 6LSBS 

OF THE INPUT SAMPLE * 
* IF THE STATUS BIT 7 IS SET ON THE HIGH TO LOW 



DESIREDL 

OUTPUTM 

OUTPUTL 

TOP 

LIST 

RET! 

BEQ DESIREDM ; 
MOVE.B (A2),$40(A7) 
MOVE.B (AO),Z; 
BTST.B #$06, (All ; 
BEQ DESIREDL ; 
MOVE.B (A2),$60(A7) 
MOVE.B #$06, (A3) 
BTST.B #$07,(A3); 
BEQ OUTPUTM ; 
MOVE.B (A2),$80(A7); 
MOVE.B (AO),Z; 
BTST. B #$06, (Al) ; 
BEQ OUTPUTL ; 
MOVE.B (A2),$AO(A7); 
SUBQ.W #$01,D4 ; 
BNE.L DATA ; 
MOVEA.L INSAMPLE,A7 

MOVE.W #$10,D4 ; 
MOVE.W #$10,K ; 

TRANSITION OF THE CB1, THEN GET THE 6MSBS 
OF THE DESIRED RESPONSE SAMPLE * 

* CLEAR THE STATUS BITS IN CONTROL REGISTER A * 
* IF THE STATUS BIT 6 IS SET ON LOW TO HIGH 

TRANSITION OF CA2, THEN GET THE 6LSBS 
OF THE DESIRED RESPONSE SAMPLE * 

* CB1 IS TRIGGERED ON LOW TO HIGH TRANSITION * 
* GET THE 6MSBS OF THE FILTER OUTPUT SAMPLE * 

* GET THE 6LSBS OF THE FILTER OUTPUT SAMPLE * 

* READ THE NEXT FILTER INPUT, DESIRED 
RESPONSE AND FILTER OUTPUT SAMPLES * 

* HAS THE LAST SAMPLED DATA BEEN READ, IF YES THEN 
RELOAD THE ADDRESS REGISTER A7 WITH THE FIRST 6MSBS 
INPUT SAMPLE'S ADDRESS * 

* NUMBER OF SAMPLES IN EACH BLOCK * 

******************************************************************************** 

MOVE.B (A2),Z; 
MOVE.B #$14, (A3) 
BTST.B #$06, (A3) 
BEQ LIST ; 

* THE UPDATING OPERATION IS ACCOMPLISHED EVERY 128 
COMPUTATION PERIOD IN ACCORDANCE 

WITH THE INPUT PULSE ON CB2 * 

******************************************************************************** 

MOVE.W D4,K ; 
MOVE.W #$0F,D4; 

* SAVE THE NUMBER OF SUCCESSIVE SAMPLES * 

******************************************************** 

* * 
* SET THE SAMPLED DATA IN THE CORRECT POSITIONS * 
* * 
******************************************************** 

MOVE.B (A7)+,DO ; 

LSL.W #$06,DO ; 

MOVE.B $20(A7),DO 
LSR.W #$02,DO 

LSL.W #$04,DO 

EXT.L DO ; 

LSR.L #$04,DO 

* LOAD THE DATA REGISTER DO WITH THE 6MSBS OF THE 
INPUT SAMPLE * 

* ALLOCATE IT IN THE MS BYTE OF DO * 
* GET THE 6LSBS OF THE INPUT SAMPLE * 
* SET THE LSB OF THE INPUT SAMPLE IN BIT POSITION 0 IN 

DO * 
* ALLOCATE THE MSB OF THE INPUT SAMPLE IN BIT 

POSITION 15 * 
* EXTEND THE SIGN BIT TO BIT 31 IN DO * 
* SET THE INPUT SAMPLE IN BIT POSITION 0 

THROUGH 11 WITH THE EXTENDED SIGN BIT 
OCCUPYING BIT 12 THROUGH BIT 15 * 

******************************************************************************** 

MOVE.B $40(A7),Dl 
LSL.W #$06,Dl ; 
MOVE.B $60(A7), 
LSR.W #$02,Dl 
LSL.W #$04,Dl ; 

* EXECUTE THE SAME SEQUENCE 
OF INSTRUCTIONS FOR THE 

DESIRED RESPONSE 
INPUT SAMPLE * 



RET2 

RET3 

START 

INCURRENT 
SAMPLES ? 

NONRECUR 

EXT.L Dl ; 
LSR.L #$04,Dl 

********************************************************************************* 

MOVE.B $80(A7),D2 * EXECUTE THE IDENTICAL SEQUENCE 
TST.B D2 ; OF INSTRUCTIONS FOR THE 
BMI.L NEG3 FILTER OUTPUT 
LSL.W #$06,D2 SAMPLE * 
MOVE.B $AO(A7),D2; 
LSR.W #$02,D2 ; 

********************************************************************************* 

MOVE.W DO,-(M) 
MOVE.W D2,- (A6) 
SUB.W D2,Dl ; 

* SAVE THE INPUT AND OUTPUT SAMPLES IN THE MEMORY 
LOCATIONS ADDRESSED BY A4 AND A6 RESPECTIVELY * 

* COMPUTE THE ERROR OUTPUT OF THE FILTER BY SUBTRACTING 
THE FILTER OUTPUT FROM THE DESIRED RESPONSE INPUT * 

******************************************************* 
* * 
* UPDAT 16-NON-RECURSIVE AND 16-RECURSIVE * 
* COEFFICIENTS AND STORE THEM IN MEMORY * 
* LOCATIONS ADDRESSED BY THE ADDRESS * 
* REGISTER AS ACCORDING * 
* TO THE EQUATIONS * 
* * 
* il.j+l il.j + 2*111 *Xj*ej * 

* * 
* Qj+l = Qj + 2*112*Xj*ej * 

* * 
******************************************************* 

MOVE.W #$08,D6 

CLR.L DS 
NOP ; 
NOP ; 
CMPA.L #$S41F,A6 

BGE.L COMPl ; 
MOVE.W (A4+,D3 
MULS.W Dl,D3 ; 
DIVS.W STB1,D3 
EXT.L D3 ; 
DIVS.W STB2,D3 
ADD.W (AS),D3; 

MOVE.W D3, (AS)+ ; 
MOVE.W D3,CONST1 ; 

* LOAD D6 WITH THE NUMBER OF THE SECOND ORDER SECTIONS 
CASCADED TO FORM THE 16th ORDER FILTER * 

* STARTING ADDRESS OF THE FIRST SET OF THE RAMS * 

* IS IT THE LAST LOCATION OF THE INPUT OR OUTPUT 

IF YES, THEN COMPl * 
* GET THE NEXT INPUT SAMPLE * 
*MULTIPLY ej BY xj-n+l* 
* SCALE THE RESULT BY 111 * 

* ADD 2 111ej xj-n+l TO THE PREVIOUS UPDATED COEFFICIENT 
OF THE SAME ORDER * 

* SAVE THE NRCOEFF BACK INTO THE SAME MEMORY LOCATION* 
* SAVE THE NRCOEFF IN THE TEMPORARY LOCATION ADDRESSED 

BY CONSTl * 

******************************************************************************** 

MOVE.W (A6)+,D7 
MULS.W Dl,D7 ; 
DIVS.W STB1,D7 
EXT.L D7 ; 

DIVS.W STB2,D7 ; 

* EXECUTE SIMILAR SEQUENCE 

OF INSTRUCTIONS 

FOR Yj-n * 



RECUR 

FIRST 

ADD.W (AS),D7 ; 
MOVE.W D7, (AS)+ 
MOVE.W D7,CONST2 ; 

******************************************************************************** 

******************************************************** 

* 
* 
* 
* 
* 
* 

UPDATE THE NEXT NON-RECURSIVE AND RECURSIVE 
COEFFICIENTS FOLLOWING SIMILAR SEQUENCE 

OF INSTRUCTIONS AS IN THE PREVIOUS ONE 

* 
* 
* 
* 
* 
* 

******************************************************** 

CMPA.L #$S41F,A6 
BGE.L COMP2 ; 
MOVE.W (A4)+,D3 
MULS.W D1,D3 ; 
DIVS.W STB1,D3 
EXT.L D3 ; 
DIVS.W STB2,D3 
ADD.W (AS),D3; 
MOVE.W D3, (AS)+ 
MOVE.W (A6)+,D7 
MULS.W D1,D7 ; 
DIVS.W STB1,D7 
EXT.L D7 ; 
DIVS.W STB2,D7 
ADD.W (AS),D7 ; 
MOVE.W D7, (AS)+ ; 
SWAP.L D3 ; 
MOVE.W CONST1,D3 
SWAP.L D7 ; 
MOVE.W CONST2,D7 

* SWAP THE LSW AND MSW CONTENTS OF D3 * 
* OCCUPY THE NRCOEFF IN THE LSW AND IN THE MSW OF D3 * 
* DO THE SAME FOR THE RCOEFF * 

******************************************************* 

* * 
* SET THE NON-RECURSIVE AND RECURSIVE COEFFICIENTS * 
* CONTROL BITS IN ACCORDANCE WITH TABLE S.1 * 

* * 
******************************************************* 

TST.W D3 ; 

BMI.L THA ; 

LSR.W #$03,D3 
BSET.B #$0C,D3 
BCLR.B #$0D,D3 
MOVE.W D3,CONST1 
SWAP.L D3 ; 

TST.W D3 ; 

BMI.L TWSEVB 

LSR.W #$03,D3 

BCLR.B #$0C,D3 

BSET.B #$0D,D3 

; 

; 

; 

* TEST THE SIGN BIT OF (A) 
IF NEGATIVE THEN THA, 

IF POSITIVE, THEN THE SIGN BIT OF (A0=1, BIT 13) 
AND THE ADD/SUBTRACT CONTROL BIT (As=O, BIT 14) * 

* SAVE (A) IN THE MEMORY LOCATION ADDRESSED BY CONST1 * 
* GET THE NEXT COEFFICIENT (B) IN THE LSW OF D3 * 
*TEST THE SIGN BIT OF (B), 

IF NEGATIVE, THEN TWSEVB, 

IF POSITIVE, THEN BIT 13=0 AND 

c 2 =1 FOR THE CASE OF NON-UNITY * 



SECOND 

THIRD 

FOURTH 

OUT 

BEGIN 
TRANSFER 

SWAP.L D3 ; 

MOVE.W CONST1,D3 
LSL.W #$02,D3 
LSR.L #$02,D3 
TST.W D7 ; 

BMI.L THa ; 
LSR.W #$03,D7 
BSET.B #$0C,D7 ; 

BCLR.B #$0D,D7 ; 

MOVE.W D7,CONST2 

SWAP.L D7 ; 

TST.W D7 ; 

BMI.L TWSEVb 
LSR.W #$03,D7 
BCLR.B #$0C,D7 
BSET.B #$0D,D7 
BCLR.B #$0E,D7 
BCLR.B #$0F,D7 
SWAP.L D7 ; 

MOVE.W CONST2,D7 
LSL.W #$02,D7 ; 

LSR.L #$02,D7 ; 

BCLR.L #$1D,D7 ; 

CMP.B #$01,D6 ; 

BEQ.L TEST ; 

BCLR.L #$1E,D7 
BCLR.L #$1F,D7 

* JOIN THE CURRENT AND THE PREVIOUS 
UPDATED NRCOEFFS TOGETHER IN D3 * 

* IF THE RCOEFF (A) NEGATIVE, THEN THa * 

*IF (a~ 0), THEN THE SIGN BIT (a0=1, BIT 13) AND 
THE ADD/SUBTRACT BIT (as=O, BIT 14) 

* GET THE NEXT RCOEFF * 
IF(b < 0), THEN TWSEVb * 

* IF ~ 0, THEN THE SIGN BIT (bo= 0, BIT 14) * 
* SET s 1 TO 1, s 2 , s 3 TO 0 

(REFER TO TABLE 5.1) * 

* ALLOCATE THE RCOEFF'S BITS ACCORDING TO TABLE 5.1 * 

* JOIN a AND b TOGETHERED IN D7 * 

* RESET s 4 OF THE INPUT SCALING COEFFECIENT * 
* IS IT THE LAST SECOND ORDER SECTION? 

IF YES THEN TEST, 

IF NO, THEN THE INPUT SELECTOR CONTROL BIT c1 ,MSB=O)* 

******************************************************* 

* 
* 
* 
* 
* 

OUTPUT NONRECURSIVE AND RECURSIVE 
COEFFICIENTS BIT BY BIT TO THE EXTERNAL RAM 

SIMULTANEOUSLY 

* 
* 
* 
* 
* 

******************************************************* 

MOVE.W D1,C ; 

MOVE.W #$02,D1 

* SAVE THE ERROR OUTPUT IN THE MEMORY LOCATION 
ADDRESSED BY C * 

* NUMBER OF NRCOEFFS AND (OR) RCOEFFS IN EACH SECOND 
ORDER SECTION* 

******************************************************* 

* * 
* REVERSE THE ORDER OF THE NONRECURSIVE COEFFICIENT, * 
* BIT BY BIT, AND STORE IT AS A MOST SIGNIFICANT * 
* WORD IN THE DATA REGISTER DO * 

* * 
******************************************************* 

MOVE.W #$0F,D2 
MOVE.W D3,DO ; 

LSL.W D2,DO ; 

LSL.L #$01,DO 

SUBQ.W #$01,D2 

BNE TRANSFER ; 

* NUMBER OF THE NRCOEFF'S BITS-1 * 
* TRANSFER THE NRCOEFF INTO DO * 
* SHIFT THE COEFFICIENT NUMBER OF BITS CONTAINED IN D2* 
* SHIFT THE BITS ONE BIT POSITION TO THE LEFT AND 

OCCUPY IT IN THE MSW OF DO * 
* NEXT BIT TO BE REVERSED IN ORDER * 



WRITE 

THA 

TWSEVB 

MOVE.W D3,DO ; 
LSL.L #$01,DO 
MOVE.W D7,DO ; 

* REVERSE THE MSB OF THE NRCOEFF * 
* MAKE THE RCOEFF LOCATED IN THE LSW OF DO * 

****************************************************** 

* 
* 
* 
* 
* 
* 

WRITE THE COEFFICIENTS BIT BY BIT, ONE BIT OF 
NON-RECURSIVE AND ONE BIT OF RECURSIVE 

SIMULTANEOUSLY THROUGH THE OUTPUT 
PINS (1&2) OF PORT B 

* 
* 
* 
* 
* 
* 

****************************************************** 

MOVE.W #$0F,D4 ; 

MOVE.B DS, (AO) ; 

ADDQ.W #$01,D5 ; 

ROL.L #$01,DO ; 

MOVE.B DO, (A2) ; 

LSR.W #$02,DO ; 

SUBQ.W #$01,D4 ; 

BNE WRITE ; 
ROL.L #$03,DO 
MOVE.B DS, (AO) 
MOVE.B DO, (A2) ., 

ADDQ.W #$01,D5 

SWAP.L D3 ; 

SWAP.L D7 ; 

SUBQ.W #$01,D1 
BNE BEGIN ; 
MOVE.W C,D1 
SUBQ.W #$01,D6 
BNE.L START ; 

MOVEA.L WEIGHT,AS 

* NUMBER OF BITS-1 FOR EACH COEFFICIENT * 
* ADDRESS OF THE FIRST SET OF RAMS * 
* ADDRESS OF THE NEXT LOCATION IN RAMS * 
* ROTATE TO THE LEFT ONE BIT POSITION TO GET ONE BIT OF 

EACH COEFFICIENT TO COINCIDE WITH THE FIRST TWO PINS 

OF PORT B * 
* WRITE THE BITS INTO THE FIRST SET OF RAMS * 
* GET READY FOR THE NEXT SET OF BITS * 
* NEXT SET OF BITS * 
* IS IT THE LAST SET? NO, THEN CONTINUE * 
* WRITE THE NON-RECURSIVE AND 

THE RECURSIVE LSB INTO THE 
FIRST SET OF RAMS * 

* NEXT ADDRESS OF RAMS * 
*GET THE NEXT NRCOEFF (B)* 
* GET THE NEXT RCOEFF (b) * 

* HAS THE LAST SECOND ORDER SECTION BEEN WRITTEN? 
IF NOT GO TO START * 

* IF THE WRITE OPERATION HAS COMPLETED FOR 16 NRCOEFFS 
AND 16 RCOEFFS, THEN RELOAD AS WITH THE STARTING 
ADDRESS TO PREVENT THE OVERFLOW * 

******************************************************************************** 

MOVE.W K,D4 ; 
SUBQ.W #$01,D4 
BNE.L TOP ; 
MOVEA.L INSAMPLE,A4 
BRA.L LOOP ; 

* IS IT THE LAST SAMPLED DATA SET, IF NOT 
CONTINUE THE UPDATING OPERATION, 

OTHERWISE GET NEW BLOCKS 
OF THE SAMPLED DATA * 

******************************************************************************** 

LSR.W #$03,D3 ; * IF THE NRCOEFF (A < 0) THEN THE 
BCLR.B #$0C,D3 SIGN BIT (Ao=O, BIT 13) AND THE 

BSET.B #$0D,D3 ADD/SUBTRACT CONTROL 
JMP.L FIRST ; BIT (As=1, BIT 14) * 

LSR.W #$03,D3 * IF THE NRCOEFF (B < 0)' 
BSET.B #$0C,D3 THEN BIT 13=0 AND 
BSET.B #$0D,D3 IF # 1 THEN 
JMP.L SECOND ; BIT 14=1 * 



\ 
I 

i . \ 

l 

THa 

TWSEVb 

TEST 

COMPl 

COMP2 

LSR.W #$03,D7 ; 

BCLR.B #$0C,D7 

BSET.B #$0D,D7 
JMP.L THIRD ; 
LSR.W #$03,D7 ~ 

BSET.B #$0C,D7 
JMP FOURTH ; 
BCLR.L #$1E,D7 
BSET.L #$1F,D7 

JMP OUT 

*IF (a< 0), THEN THE SIGN BIT (a0=0) AND 

THE ADD/SUBTRACT BIT (as=l) * 

*IF (b < 0), THE SIGN BIT (bo=l) * 

* IF IT IS THE LAST SECOND ORDER SECTION, THEN 
THE INPUT SELECTOR CONTROL BIT (C2=l, MSB) * 

******************************************************************************** 

MOVEA.L INSAM,A4 ; 
MOVEA.L OUTSAM,A6 
JMP NONRECUR ; 
MOVEA.L INSAM,A4; 
MOVEA.L OUTSAM,A6 
JMP RECUR ; 

* IF IT IS THE LAST SET OF COEFFICIENTS 
THEN RELOAD A4 AND A6 

WITH THE STARTING 
ADDRESS-2 * 

( ~' . .. 
. 


