
Durham E-Theses

The design and implementation of a microprocessor

controlled adaptive �lter

Ahmed, Kadrya Mohammed

How to cite:

Ahmed, Kadrya Mohammed (1986) The design and implementation of a microprocessor controlled

adaptive �lter, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7092/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7092/
 http://etheses.dur.ac.uk/7092/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

'lBE DESIGN AND IHPI.EMEID'ATICW OF A

MICROPROCESSOR CONTROL.I..ED

ADAPTIVE FTI..TER

by

Kadrya Mohan:lled Ali Ahmed , B.Sc.

A thesis submitted in accordance with the regulat ions for the
degree of Doctor of Philosophy in the University of Durham

Department of Applied Physics & Electronics

1986

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

-r~

~~.~~~~HM

The Design and Implementation of a Microprocessor

Controlled Adaptive Filter

Kadrya l-ilhanmed Ali AhnEd

ABSTRAcr

This thesis describes the construction and implementation of a
microprocessor controlled recursive adaptive filter applied as a
noise canceller. It describes the concept of the adaptive noise
canceller, a method of estimating the recieved signal corrupted
with additive interference (noise). This canceller has two inputs,
the primary input containing the corrupted signal and the reference
input consisting of the additive noise correlated in some unknown
way to the primary noise. The reference input is filtered and
subtracted from the primary input without degrading the desired
components of the signal. This filtering process is adaptive and
based on Widrow-Hoff Least-Mean-Square algorithm. Adaptive filters
are programmable and have the capability to adjust their own
parameters in situations where minimum a piori knowledge is
available about the inputs. For recursive filters, these
parameters include feed-forward (non-recursive) as well as feed­
back (recursive) coefficients. A new design and implementation of
the adaptive filter is suggested which uses a high speed 68000
microprocessor to accomplish the coefficients updating operation.
Many practical problems arising in the hardware implementation are
investigated. Simulation results illustrate the ability of the
adaptive noise canceller to have an acceptable performance when the
coefficients updating operation is carried out once every N
sampling periods. Both simulation and hardware experimental
results are in agreement.

A~

I wish to express my gratitude to Prof. C.T. Spracklen, at

Engineering Department, Aberdeen University, for his supervision,

encouragement and securing the required facilities. I am indebted

to Dr. B.J. Stanier at Durham University for his guidance,

constructive suggestions, invaluable advice and kindly help

throughout the period of this work.

I would also like to thank Prof. G.G. Roberts who made

available to me the facilities of the Applied Phyisics and

Electronics Department at Durham University. I like to give my

thanks to the members of the workshop at Durham and Aberdeen

University for providing their advice and technical assistance.

I greatfully acknowledge with thanks the valuable discussions

and help of my colleagues in the Digital Electronics Group during

the past years. I am grateful to the staff of the Computer Unit

and the Science Library at Durham and Aberdeen Universities for

their co-operation and friendly help. I also give my deepest thanks

to Dr. Patrick Hughes at British Telecom Research Laboratories, Dr.

Colin Cowan and Bernard Mulgrew at Edinburgh University who gave me

the opportunity for interesting and helpful discussions.

I would also like to express my sincerest thanks to the State

of Qatar and the University of Qatar for the award of a research

studentship and financial support.

Finally, a special note of appreciation and gratitude to my

parents, brothers and sisters for their encouragement, motivation,

moral and intuitive support which provided me with a relaxed and

secure life.

ii

I DEDICATE THIS WORK TO MY BELOVED PARENTS, WHO

HAVE INSTILLED IN ME A LOVE OF THE PURSUIT OF

EXCELLENCE. BY THEIR CONSTANT SUPPORT AND GUIDANCE

THEY HAVE ENCOORAGED ME TO PERSEVERE IN MY GOALS,

BROTHERS AND SISTERS.

iii

ADC

ALE

ALP

ALU

ANC

CCD

CPU

DAC

DFT

DSP

EPRCM

FAD chip

FIR

IC

IIR

LMS

LSB

LSI

LSW

M

MMSE

MSB

MSE

MSW

MUX

NRCOEFF

PIA

Glossary of Terms

Analogue to Digital Converter

Adaptive Line Enhancer

Adaptive Linear Prediction

Arithmetic Logic Unit

Adaptive Noise Canceller

Charge Coupled Device

Central Processing Unit

Digital to Analogue Converter

Discrete Fourier Transform

Digital Signal Processing

Eraseable Programmable Read Only Merrory

Digital Filter~and Detect chip

Finite Impulse Response

Integrated Circuit

Infinite Impulse Response

Least Mean Square

Least Significant Bit

Large Scale Integration

Least Significant Word

Misadjutment

Minimum Mean Square Error

Most Significant Bit

Mean Square Error

Most Significant Word

Multiplexer

Non-Recursive Coefficient

Peripheral Interface Adapter

iv

PRCl-1 Programmable Read Only Memory

RAM Random Access Memory

RCOEFF Recursive Coefficiet

RC11 Read Only Memory

SAW Surface Acoustic Wave

SNR Signal to Noise Ratio

SYNC pulse Synchronisation pulse

VLSI Very Large Scale Integration

v

AffiTRACT

Glossary of Terms

CHAPTER 1 Background

1.1 Introduction
1.2 Digital and analogue filters
1.3 History and development of adaptive filters
1.4 Conclusion

CHAPTER 2 Digital Filtering

2.1 Introduction
2.2 Sampled data signals

2.2.1 Introduction
2.2.2 Mathematical description using the Dirac nSn function

2.3 The Z-transform
2.4 Z-transform properties
2.5 Relation between the Z-domain and S-domain
2.6 The inverse Z-transform
2.7 The difference equation and the digital transfer function
2.8 State variable analysis

2.8.1 Introduction
2.8.2 State space description for discrete systems

2.9 Frequency response of digital filters
2.10 Digital filter design techniques
2.11 Realization of digital filters

2.11.1 The realization of recursive digital filters
2.11.1.1 Direct form I
2.11.1.2 The direct form II or canonic form
2.11.1.3 Prallel form
2.11.1.4 Cascade form

2.11.2 The realization of non-recursive digital filters
2.12 frequency transformation for digital filters
2.13 Quantization effects

2.13.1 Round-off noise
2.13.2 Input quantization noise
2.13.3 Coefficients rounding effect
2.13.4 Limit cycle oscillations
2.13.5 Overflow oscillations

2. 14 Conclusion

CHAPTER 3 Adaptive Filtering

3.1 Introduction

Vj

3.2 The concept of adaptive noise cancelling
3.3 The LMS adaptive filter

3.3.1 Adaptive linear combiner
3.3.2 The LMS adaptive algorithm
3.3.3 The convergence factor "Jl"

3.4 Wiener solution to the statistical noise cancelling problem
3.5 The recursive LMS adaptive filter
3.6 Quantization effects
3.7 Misadjustment due to gradient noise
3 • 8 Conclusion

CHAPTER 4 Computer Simulation

4.1 Intoduction
4.2 Computing IIR filter transfer function
4.3 IIR adaptive filter performance with different Nand~

4.3.1 Conventional type
4.3.2 N Time interval
4.3.3 Successive input&output samples
4.3.4 Blocks type

4.4 Comparisons of the filter implementation types
4.5 The ANC performance

4.5.1 Floating point simulation
4.5.2 Fixed point simulation

4.6 Conclusion

CHAPTER 5 Design Analysis

5.1 Introduction
5.2 Structure of the FAD chip

5 • 2. 1 The FAD IC components
5.2.1.1 Coefficient multipliers
5.2.1.2 The quantizer
5.2.1.3 The input scaler and overflow circuit
5.2.1.4 Data selectors (multiplexers)

5.2.2 Timing
5.3 68000 Microprocessor

5.3.1 Introduction
5.3.2 MC68000 architecture

5.4 FRC 68000 PROFI KIT
5.5 Practical implementation problems

5.5.1 Coefficients timing
5.5.1.1 Writing data into RAM1
5.5.1.2 Transfering data from RAM1 to RAM2

5.5.2 Writing data into the MC68000
5.6 Interfacing considerations

5.6.1 Input samples to the FAD
5.6.2 FAD to output samples
5.6.3 Producing the error output

5.7 Conclusion

CHAPrER 6 Adaptive Noise Canceller Implementation

6.1 Introduction

Vii

6.2 Solving the FAD t£ problem
6.3 The FAD IC as 16 order filter
6.4 The input-output sampled data

6.4.1 Expressing the input samples in two.s complement
6.4.2 Writing data into the MC68000
6.4.3 Adjusting bits locations
6.4.4 Extending the 12 bits to 16 bits
6.4.5 Circular list process and saving input&output data

6.5 The filter coefficients
6.5.1 Updating the coefficients
6.5.2 The coefficients and control bits representation
6.5.3 Coefficients entry

6.6 The system implementation
6 • 7 Conclusion

CHAPI'ER 7 Experinental Results

7.1 Introduction
7.2 The ANC system performance and the results
7.3 Further results
7.4 IIR adaptive filter stability
4.5 Conclusion

CHAP'I'ER 8 Conclusion

REf'EHI~GES

APPENDIX A Pascal programs for implementing the LMS adaptive filter

APPENDIX B Circuit and timing diagrams of the data multiplexer

APPENDIX C Parallel to serial conversion circuit and timing
diagrams of the filter input

APPENDIX D Circuit and timing diagrams for producing the analogue
fi 1 ter output

APPENDIX E 68000 assembly language program for implementing 16th
order adaptive filter

Viii

CliAPTER -1-

Backgrotmd

1.1 Introduction

In any communications system, the transmission of signals from

the transmitter to the receiver involves their contamination with

noise. This is the basic problem of communication and limits the

capability of the system.

By noise we mean unwanted or unpredictable signals that corrupt

the message. Noise can be classified according to the source into

two categories:

(a) internal noise, which is generated by components within the

communication system.

(b) external noise, which includes man-made noise and

extraterrestrial natural sources (1 ,2).

To suppress this noise, signal processors such as filters can

be used.

In the decade 1960-1970 high speed digital computers were

developed and became widely available for serious research and

development work. Consequently it became possible to use the

theoretical basis of digital signal processing, such as Fourier

analysis, waveform sampling, Z-transform, etc., in digital signal

design (3,4).

This background provided the impetus for the introduction of

digital signal processors as a means for implementing digital

filters.

1~

The term digital signal processing (DSP) implies the

description of a complete set of operations such as arithmetic

calculation and numerical manipulations. These represent the

processing of the signal considered as a sequence of numbers or

symbols in order to produce a form which is in some sense more

desirable. Many different functions can be accomplished in this

way; spectral analysis, filtering (which is of particular interest)

transcoding, modulation, detection, and estimation and extraction

of parameters by using a sui table digital computer (5 ,6).

DSP is concerned with signals or systems that are the discrete­

time counterpart of the more familiar continuous-time systems. DSP

has many applications in a very wide range of fields such as the

analysis of biomedical signals, vibration-analysis, picture

processing, analysis of seismic signals and speech analysis.

However, telecommunication forms a very important field of

applications which provides a major stimulus for research and

development (4,5).

DSP has become an established method of filtering electrical

waveforms, and the associated theory of discrete-time systems can

often be employed in a number of disciplines (4).

The term 'filter' implies any frequency selective device or

processor which passes certain ranges of frequencies and rejects

others. Filters can be classified according to the frequency

ranges they pass or reject into; low-pass, high-pass, pass-band,

and stop-band filters. For example, a low-pass filter passes a low

frequency input signals below a certain value, and attenuates the

signals of frequency above this value (7).

2

Filters can also be classified according to their signal type

into:

analogue (or continuous filters).

and digital filters.

1.2 Comparison of Digital and Continuous Filters

Digital and continuous filters have exactly the same aim of

suppressing a noisy signal and producing one with less distortion,

but the physical realization is different, since continuous filters

are constructed from linear electrical components, such as

resistors, capacitors and inductors, and linear continuous filter

theory is based on linear differential equations and the Laplace

transform. Digital filters however are based on linear difference

equations and the Z-transform (which is a special form of the

Laplace transform, which will be described in detail in the next

chapter). It can be shown that digital filters are mathematically

equivalent to continuous filters with sampled data inputs and

outputs.

Digital filters have several advantages over continuous filters

and some of these are given below:

·(1) the absence of impedance-matching problems.

(2) the frequency response characteristics can be made to be

relatively close to the ideal and can be changed by varying the

stored coefficients.

(3) the possibility of implementing any type of filter with

the same hardware by using multiplexing and frequency

transformation.

(4) adaptive filtering is relatively simple to achieve.

3

{5) there are no drift problems as a result of realizing

stable filters with very high 'Q's'.

{6) low cost.

However, in spite of all these advantages, digital filters also

have limitations. The limited word length available on the digital

computer leads to quantization errors, which will be investigated

in some detail in chapter 2. Much work has been carried out to

overcome these errors (4,7 ,9).

Because of the availability of the digital computer as a

research tool in all branches of science and technology, and the

existance of analogue-to-digital converter (ADC) and digital-to­

analogue converter (DAC), digital filters became widely used. Many

established continuous-time filter systems have been replaced by

equivalent digital filter systems because of their advantages.

A digital filter is defined (7,9) as the computational process

or algorithm by which a sampled signal or sequence of numbers,

acting as an input, is transformed into a second sequence of

numbers, termed the output, using digital components as the basic

elements for implementation. The process can be any arbitrary

filtering operation, such as low-pass filtering, high-pass

filtering, pass-band filtering or stop-band filtering etc ••

The digital filter may be represented by a linear difference

equation which defines the output signal as a function of the

present input sample and any number of previous input and output

samples (4,7).

Digital filters can be fixed or adaptive. The optimal design

4

of fixed filters is based on a complete a priori knowledge of both

the signal and the interference (noise). Adaptive filters, on the

other hand, require much less prior knowledge in their design and

have the ability to adjust their own parameters during operation to

optimize their performanc~ The adjustable parameters of adaptive

filters are called the weights (impulse response). These weights

are usualy updated by a least mean square (LMS) algorithm which

adjusts the filter weights so that the filter output is an estimate

of the signal (10,11).

In this project an adaptive filter is used as a noise canceller

in which a corrupted signal passes through a filter that tends to

supress the noise while leaving the signal relatively unchanged

(11) •

Fig. 1.1 illustrates the block diagram of a basic adaptive

noise canceller (ANC). It has two inputs, the des ired response

input dj (primary input) containing the corrupted signal and the

input signal x j (reference input) containing noise correlated in

some unknown way with the primary noise. The reference input is

adaptively filtered and subtracted from the primary input to obtain

the_signal with less destortio~ The objective of the system is to

minimize the error ej between the filter output Yj and dj in the

LMS manner by iteratively updating the filter weights in accordance

with the LMS algorithm (11,12), this is discussed in detail in

chapter 3.

To realize an adaptive filter in real time, the digital

technique must be fast enough to complete the computational process

within the available time.

5

desired response input

input signal
x· J

dj

Fig .1.1 Basic adaptive filter

ADAPTIVE
FILTER

filter output

Y· J

ADAPTIVE
ALGORITHM

error output
e· J

Adaptive filters are versatile signal processing elements which

have a wide range of applications where only a limited a priori

knowledge of the expected signal and noise is available. These

applications include:

(a) Noise canceller

In noise cancelling system the additive noise or interference

will be rejected from a waveform containinig a signal of interest.

Noise cancelling is a variation of optimal filtering that is highly

advantageous in many applications. These applications include for

intance the cancelling of 60-Hz interference in

electrocardiography, the donor electrodiogram in heart transplant

electrocardiography and cancelling noise in speech signals which

plays an important roll in our communications-oriented society.

Much work has been carried out to remove the unwanted noise

components from the speech signals (11, 13,14, 15, 16).

(b) Channel equalizer

The main problem in digital communications is the recovery of

the message which, when sent over the channel, is distorted with

noise and intersymbol interference due to the nonlinear phase and

amplitude characteristics of the channel. To overcome these

effects the channel equalizer is used. Many methods have been

investigated for the optimal implementation of digital channel

equalizers (17, 18, 19,20).

(c) Adaptive line enhancer (ALE)

The ALE is considered as an adaptive digital filter which is

designed to remove uncorrelated components (broad-band noise) from

its input, while passing any narrow-band signals or components with

6

little attenuation (21 ,22,23).

(d) Adaptive l~ear prediction (ALP)

The ALP signal proeessing has been applied with great success

for many problems such as spectral analysis, system modeling and

speech encoding. The conventional approach for implementing ALP

involves computing and updating the sample covariance matrix for a

block of data and then obtaining the predictor coefficients.

Morgan and Craie have published an alternative approach which uses

the LMS algorithm, to compute the predictor coefficients (24,25).

Adaptive filters can be implemented by a software program on a

digital computer with a special interface and by digital hardware.

In this project, an IC implemented as a digital filter which is

designed as a general purpose device suitable for filtering noisy

signals in the audio frequency band is used to implement a 16th

order recursive LMS adaptive filter. The adaptive filter is used

as a noise canceller, in which a corrupted signal passes through

the filter and this coherently supresses the noise while leaving

the desired signal relatively unchanged.

In the next chapter, the basic principles of digital filtering

will be described. The first part presents the relationship

between input&output of the discrete-time system. The second part

dicusses the various methods of realizing the recursive and non­

recursive digital filters, and quantization errors due to the

limited-word length available on a digital computer.

In chapter 3, the basic concept of adaptive noise cancelling,

and the so-called Wiener solution to the statistical noise

cancelling problems are considered. The LMS adaptive algorithm for

7

updating the feed-forward (non-recursive) and feed-back (recursive)

coefficients will be described and the quantization effects due to

the limited-word length and finite precision arithmetic of a

digital processor, will be investigated.

In chapter 4, a flexible computer simulation program has been

developed to investigate the behaviour of the recursive LMS

adaptive filter, employed as an ANC, under different conditions and

various parameters. The performance of the filter has been

discussed in both fixed point and floating point arithmetic

repre sen tat ions

Chapter 5 is concerned with describing step by step approach

to the design and construction of a 16th order recursive LMS

adaptive filter exposing a brief introduction to the 68000

microprocessor and the digital filter IC used in the design. The

interfacing considerations and problems arising in the

implementation of the filter have also been investigated.

Chapter 6 discusses extensively how the single board 68000

microcomputer can be applied to update the adaptive filter

coefficients in order to write one bit of each recursive and non­

recursive coefficient into the filter IC every clock cycle.

Chapter 7 describes the implementation of the filter to be

used as an ANC and presents the results of cancelling undesirable

interference. This chapter also reflects some light on the effect

of the implication of the feed-back in recursive (IIR) filter on

its stability.

8

1.3 History and Development of Adaptive Filters

The earliest work on adaptive noise cancelling was performed by

Howells and Applebaum and their colleagues at the General Electric

Company between 1957 and 1960. They designed and built a system

for antenna sidelobe cancelling that used a reference input derived

from an auxillary antenna and a simple two-weight adaptive filter

(26).

At the time of this work, only a handful of people were

interested in adaptive systems, and development of mult iweight

adaptive filters was only just begining. Much of this early

efforts were proceeding by independent studies in different

research organizations. A notable early development occured at

Stanford University when Widrow and Hoff devised the LMS adaptive

algorithm and the pattern recognition scheme in 1959 (27,28).

Further relevant work being conducted simultaneously at the

Institute of Automatics and Telemechanics in Moscow. In Great

Britain, in 1961 Gabor and his associates were developing adaptive

filters (29).

In the early and middle 1960.s, work on adaptive systems

intensified. Many papers on adaptation, adaptive controls,

adaptive filtering, and adaptive signal processing appeared in the

literature (4,30,31).

The first applicable adaptive filter is credited to Lucky at

the Bell Laboratories for his design in 1966 of an equalizer which

compansated for distortion in data transmission systems. The first

adaptive noise cancelling system at Stanford University was

designed and built in 1965 by two students. The purpose was to

9

cancel 60-Hz interference at the output of an electrocardiographic

amplifier and recorder.

Since 1965, adaptive noise cancelling has been successfully

applied to a number of additional problems as shown in (11).

In 1967 Widrow, et al. (11) proposed a technique for an

adaptive digital filter based on the LMS algorithm (or gradient

search technique) which has come from the Stanford University

pattern recognition work. The main advantage of this algorithm is

its computational simplicity for real time processing with little

storage which converges toward the optimum solution much more

efficiently than do other algorithms.

Various implementations have been discussed and published in

the literature. In general, adaptive filters can be implemented in

the time domain or the frequency domain. Reed and Feintuch (32)

have described the behaviour of a frequency domain adaptive filter

configured as a broad-band canceller with white Gaussian inputs.

Bershad and Feintuch (23) have presented a mathematical model for

predicting the mean weight behaviour of the recursive adaptive

filter when used as an ALE in the frequency domain.

Most practical adaptive filters have been realized by computer

programs. In recent years Feintuch (33) implemented an adaptive

recursive LMS filter in the time domain using two transversal

adaptive filters using simulation results to demonstrate its

capability (34). Mikhael, et al. (35) has proposed using

individual convergence factors to adapt the individual recursive

adaptive filter parameters, and then to adjust them in real time,

10

so that their values are kept optimal for each new set of input

variables, rather than using the conventional technique, which uses

a fixed time constant convergence factor, which is chosen to be the

same for all the filter parameters. He has presented computer

simulation results which indicate that the individual adaptation

approach gives much better results than the conventional approach.

Paul (13) has investigated and published two adaptive digital

techniques for audio noise cancellation. The first technique,

adaptive predictive deconvolution, used an ALP to estimate and

cancel correlated noise components of the audio signal. The second

technique, adaptive filtering, employs two audio signal inputs.

However, the realization of adaptive filters in hardware has

also developed rapidly. The growth of large scale integrated

circuits (LSI) decreases the cost and increases the speed of

components. Cowan et al. (36) have published a technique for

implementing a digital adaptive filter which used no digital

multiplication, but instead relies on the use of the operations of

memory access, addition and scaling by integer powers of 2. The

technique is based on the distributed arithmetic (alternatively

read-only memory (ROM)/accumulator) filter architecture originally

proposed for a fixed frequency filter implemented by Peled and Liu

(37). This technique has the advantage that only standard TTL type

logic circuits need to be used without recource to specialised

signal processing functions (such as hardware multipliers). Cowan

and Grant also published another digital adaptive filter design

based on the LMS algorithm which relies heavily on the use of

linear digital multipliers (38).

In 1983 Holt and Mullholand (12) published a technique for a

11

high speed micoprogrammed adaptive filter implementation using the

AM2900 bit slice device and a hardware multiplier-accumulator. The

implementation was based upon a clipped LMS algorithm.

With the continuing advances in digital technology and the

availability of LSI components, the adaptive filter is now

available on a single chip. South (39) has developed a digital

adaptive filter in LSI form for use in the audio band which makes

it ideal for solving problems of cancelling unwanted signals in

telephony and other fields at low cost.

1.4 Conclusion

The advantages of the adaptive digital filters over the fixed

coefficients digital filters, are that they are programmable, so

their coefficients (weights) are updated and adjusted in accordance

with the incoming signals. They are versatile signal processing

elements which can be applied in situations where an absolute

minimum knowledge is available about the incoming signals.

The robustness and the simplicity of implementation of the LMS

algorithm, make the LMS adaptive filter attractive for many

applications. These applications include, noise cancelling,

channel equalization, line enhancing and adaptive linear

prediction. The rapid advance in LSI and VLSI technology and the

desire to provide improved speech communications, make

telecommunications a fertile field for the application of adaptive

filters.

12

CHAPTER -2-

Digital Filtering

2.1 Introduction

The early 1970s marked the beginning of a revolution in the

electronics world, and computer technology has developed rapidly.

With the advent of relatively cheap digital computers and

availability of the A/D and D/A converters, powerful digital

filters have now become an attractive subject and commonly used.

Consequently, the number of practical applications significantly

increased.

Some digital filters have found important uses in an

increasing number of fields in science and engineering and the

required techniques have been developed to achieve the desired

filter characteristics.

Many digital filters are fabricated as a single IC making the

use of such filter components in commercial systems economically

feasible and technically desirable.

Many programmable LSI digital filters have been designed and

have been used in many applications (40). British Telecom Research

Laboratories (41) have designed an LSI digital filter and detect

(FAD) chip as a general purpose device suitable for filtering noisy

signals and detecting tones in the audio frequency band.

This chapter describes the basic principles of digital

filtering. Two methods of describing the discrete-time systems,

namely the Z-transform and state variables technique, will be

13

investigated. The mathematical concept of the Z-Transform, which

is the basic mathematical tool of digital filtering, is described

in the first section. The linear difference equation, the central

element in the concept of the digital filter, is then investigated.

Different realisations of recursive digital filters and the

considerations that should be taken into account in choosing

between them are also presented. Due to the limited word length

available on the digital computer, quantization noise occurs, the

last section introduces some aspects of these errors.

2.2 Sampled Data Signals

2.2. 1 Introduction

The sampling process represents the signal x(t) by its value

x(nT) at integral time increments T (called the sampling period) so

that the sampled data signal defines values only at certain

instants of time. Since it is not possible to feed continuous data

into a digital computer, any signal or data input must be

represented as a set of samples. A simple model of the sampling

process is one which considers that the samples can be acquired by

closing a switch at interval times every T seconds for a short time

7 seconds as shown in fig.2.1. Referring to fig. 2.1 it is obvious

that the switch output is a set of pulses separated by period T

with finite width. However, if the pulse width,7, is negligible

compared with interval between successive samples,T, the output of

the sampler x*(t) may be described as a set of impulses with their

heights proportional to the values of x(t) at the sampling instants

(4,5).

2.2.2 Mathematical Description Using the Dirac " 0 " Flmction

The Dirac function, which is usually referred to as the unit

14

x(t)

x(t)--------.J~
T

x*(t)

t

Fig. 2.1 Model of the sampling process

~(t)

x(t)

x(t) t ····· ...
' ' ' ' ' '

' '

area =x(t)
c=a*b

a

t

b

t

' ' '
c

Fig. 2.2 The sampling process regarded as a modulation process
(a) Train of unit Dirac impulses
(b) Continuous signal
(c) Sampled signal

t

impulse function, is a pulse of extremely small width and unit

area. In other words, the product of its width and its mean height

is unity, even though its precise shape is undefined.

As shown in fig. 2.2, the ideal sampling function can be

represented as a train of unit impulses, and is defined by the

equation
co

oT(t)=I: o(t-nT),
n:-co

2.2.1-

where o(t) represents a Dirac pulse (unit impulse) occuring at t=O,

and o(t-nT) is a Dirac function shifted by integral number ofT

occuring at t=nT. Therefore

*c co x t) = x(t)I: o(t-nT) , 2.2.2
n:-co

where x(t) is the original continuous signal and x*(t) is the

sampled signal.

Since the value of x(t) is only known for t=nT, and for a

physical system x(t)=O for t<O, then

* co x (t) =I: x(n)T o(t-nT)
n=O

2.2.3

It is obvious that x*(t) is a weighted sum of shifted unit

impulses, so that x(n)T is the weighting factor of the impulse

function o(t-nT), as indicated by the value in fig. 2.2.c (4).

Referring to eqn. 2.2.1, oT(t) can be expanded as a Fourier

series, that is

where

Cn = (1/T)]foT(t) e-jnust dt

0

15

and Ws is the sampling frequency equal to 27r/T rad/sec.

Since the area of the Dirac pulse is unity, then

and therefore, en = 1 IT, hence

oT(t) = (1/T)i: ejnust
n=-co

and we have seen in fig. 2.2 that for the impulse modulator

* X (t) = oft) x(t) , therfore

x*(t) = 1/T f. x(t) ejnust 2.2.4
n=-co

By taking Laplace transforms and stating the associated

shifting theorem, we obtain

x*(s) =J[x*(t)]
co

= c 1/T)L: xcs-jnus)
n=-co

therefore
co

x* (jw) = (1/T)L X[jCw-nus)J 2.2.5
n=-cc

It is observed from eqn. 2.2.5 that, as a result of impulse­

sampling, the frequency spectrum of the signal x*(t).is the same

as the spectrum of the original signal x(t) but is periodic with

period Ws (27r/T), that is to say, the sampling has introduced a

periodicity into the frequency space, which constitutes a

fundamental characteristic of the sampled signal shown in fig. 2.3.

Referring to fig. 2.3 if the highest frequency component is greater

than Ws/2 (see fig. 2.3.c), a fold-over distortion or aliasing of

the frequency response function is introduced, which may be avoided

by increasing the sampling frequency. Consequently the original

16

Fig. 2.3 (a) Frequency spectrum of the signal
(b) Frequency spectrum of the sampled signal
(c) Aliasing of frequency specrta

a

w

c

w

00

x(n)T ... g(i)T

G(Z)

y(n)T = I
0

g(i)T x(n-i)T
I= ~

X(Z)
...

Y(Z) = G(Z).X(Z)

Fig. 2. 4 Digital convolution-summation property

signal cannot be reclaimed from the sampled-data signal. From

this, the sampling or Shannon's theorem is derived, in which it

specifies the minimum sampling rate for adequate representation of

a continuous signal. If the frequency f=W/211", and to avoid the

folding condition, it has been already shown that

w<11"1T

or

f = w 12 7r < 1 /2T

and hence

T < 71" /w = 1/2f

Formally, the sampling theorem may therefore be stated as follows:

"A continuous signal which does not contain any component with

frequency greater than f Hertz may in principle be recovered from

its sampled version, if the sampling interval T is less than 1/2f

seconds".

The interval 1/2f is called Nyquist interval and 2f is known as the

Nyquist frequency (4,5,7).

2.3 The Z-Transform

In general the analysis and design of linear systems may be

carried out by one of two major approaches which relies:

(a) on the use of a transform, such as Laplace and Z-transform and

block diagrams.

(b) the state variable technique, which will be discribed in the

next section.

As we mentioned before, filters can be classified into

analogue filters (continuous-time systems) and digital filters

17

(discrete-time systems).

In continuous-time systems, (42) Laplace transformation is

used (a) to solve the differential equations, in which the output

signal and its derivatives are related to the input signal and its

derivatives and also (b) to express the behaviour of a filter in

terms of a transfer function which describe a signal in terms of a

set of poles and zeros in S-plane (S-domain). The Z-transform, on

the other hand, is used to describe the properties of a discrete-

time systems (sampled data signals) and leads to a useful method

of representing the discrete-time systems by either a finite set of

poles and zeros in Z-plane (frequency domain representation) or by

a linear difference equation (time domain representation).

The Z-transform (4) can be considered as a rule that converts

a sequence of numbers into a function of the complex variable Z.

The Z-transform of a sampled-data signal may be directly determined

from its Laplace transform. Referring to eqn. 2.2.3 we find that

* x = x(O)To(t)+x(1)To(t-T)+x(2)To(t-2T)+ .•.

The Laplace transform of x*(t) is given by

where S is a complex frequency variable.

We now define the new variable Z = eST and denote the Z-transform

of the signal by X(Z). Hence

that is
CXI

X(Z) =L x(n)T z-n 2.3.1
n=o

18

Z is a new complex frequency variable. Thus if S =a +jw

The term z-n implies a time delay of n sampling periods.

Murankami et al. (43) have presented a new complex number-

theoretic Z-transform (CNT Z-transform) over a finite ring. It was

shown that a digital filter with any desired impulse response can

be expressed in terms of the CNT Z-transform. They have foond that

filters designed on a finite ring have some advantages over the

usual Z-transform, i.e. they are errorless and information

lossless.

2.4 Z-Transform Properties

1 • Lin ear i ty :

co
X(Z) = L: (Ax 1 (n)T+Bx2(n)T)z-n

n=O

where A and B are constants.

2. Right-Shifting "delay" :

Y(Z) = f x(n-k)Tz-n= [f x(n)Tz-n z-kJ
n=O n=O

= X(Z) z-k

3. Left-Shifting :

co
Y(Z) =l: x(n+k)Tz-n

n=o
1<-1

= zkx(Z)-L x(n)Tz-Cn-k)
n:o

19

4. Convolution-Summation :

The input and output signals of a digital filter are related to

each other through the convolution-summation property. Referring

to fig. 2.4 and using this property, we have

y(n)T = g(O)Tx(n)T+g(1)Tx(n-1)T+g(2)Tx(n-2)T+ •••

where g(i)T is the weighting sequence of the filter. Using eqn.

2.3.1, we obtain

therefore

therefore

CD

Y(Z) =L [g(O)Tx(n)T+g(1)Tx(n-1)T
n=O

+g(2)Tx(n-2)T+ ••• J z-n

Y(Z) = g(0)TX(Z)+ g(1)Tz-1 X(Z)+g(2)Tz-2X(Z)+ •••

= [g(O)T+g(1)TZ- 1+g(2)TZ-2+ •••] X(Z)

Y(Z) = G(Z) X(Z)

G(Z) = Y(Z)/X(Z)

The ratio Y(Z)/X(Z) (equal to G(Z)), is commonly referred to as the

pulse transfer function of the digital filter.

5. Summation :

Suppose that

n
g(n)T = L: x(i)T

i= 0

and using eqn. 2.3.1 we obtain

CD

for n = 0, 1, 2, •••

X(Z) = L [g(n)T-g(n-1)]T z-n
n=O

= G(Z)-z-1G(Z)

20

therefore
= G(Z) _[iZ-1)/Z_L

G(Z) = L Z/(Z-1) 1 X(Z)

for further detailes of the Z-transform refer to references (4,6).

2.5 Relation Between the Z-Domain and S-Domain

In order to gain some insight into the relation between S-plane

and Z-plane poles and zeros, it is important to investigate what

happens to the complex variable Z when S has certain typical

values. The process by which a point in one plane is transfered to

the other plane is called mapping, and that mapping process is

governed by the law :

S = a+jw and z = eST = e(a+jw)T

where T is the period of the sampling process.

It is obvious that for any constant value of a, Z is a

function ofw and is repetitive in form with a period equals 2W'T

radians/sec. The previous value of Z is represented by a vector of

length eaT which makes an anglewT radians with the positive real

axis. As shown in fig. 2.5 any point Sx in the S-plane corresponds

to just one point Zx in the Z-plane. Now referring to table 2.1,

it is seen that the imaginary axis in the S-plane transforms (maps)

to the circumference of the unit circle in the Z-plane.

From fig. 2.5, it can be seen that if :

(1) a< o-j Z j<1, the left-hand half of the S-plane transforms

into the inside the unit circle in the Z-plane.

(2) a =D-IZI=1, every point on the imaginary axis (jw) in the

21

-------+-------w /2

Sx.------1

cr -ve----._ ______ ~----------~:cr+ve W/2

S-plane Z-plane

-jw.

Fig. 2.5 S-plane to Z-plane transformation

r-------------Cbk~------------------~

y(n)

unit
delay y(n-2)

unit
delay

Fig. 2.6 Block diagram representation for the state variable description

y(n-k)

a=O• Ws = 2 TT/T

jw Z=1 LwT

0 1 L0°

c..Js/8 1 L45°

c..Js.4 1 L90°

3c..Js/8 1 !.135°

w5 ;2 1 L180°

5w5 /8 I L225°

3<..>s/4 1 L270°

1c..Jsl8 1 L315°

ws 1 L360°

Table 2.1

S-plane is mapped into a point on the unit circle in the Z-plane.

(3) a >O~IZI>1, the right-hand half of the S-plane can be

mapped onto the outside of the unit circle in the Z-plane (4 ,44).

2.6 The Inverse Z-Transform

The inversion of the Z-transform is conducted to determine the

time-domain description of the digita filter from the corresponding

frequency-domain description (4).

The inverse Z-transform relation is expressed as

x(n)T = (112 ..- j) f X(Z)zn-1 dZ 2.6. 1

where c is the counterclockwise contour that encircles the origin.

For rational Z-transform contours, integrals of the form of eqn.

2.6.1 are often conveniently evaluated using the residue theorem,

i.e.

x(n)T =L:residue of[X(Z)zn-1]at the poles incide c 2.6.2

where

for a pole of order m at z=~

Another technique for recovering the sampled time function

corresponding to a given Z-transform is simply to expand the Z-

transform into a power_series by ordinary long divisio~

A third method of determining the inverse Z-transform is to

expand X(Z) into partial fractions, and then refer directly to a

table of Z-transform pairs to obtain the corresponding Z-inverse,

x(n)T, of each partial fraction (4,6).

22

2.7 The Difference Equation and the Digital Transfer Function

It has been established in section 2.3, that a digital filter

may be represented by a linear difference equation, which is the

counterpart of the differential equation in the linear continuous

system. Furthermore, it has been established that the pulse

transfer function of the filter is a ratio function of Z expressed

as Y(Z)/X(Z), where Y(Z) and X(Z) are the Z-transforms of the set

y(n)T and x(n)T respectively.

In general, the pulse transfer function of the digital filter

G(Z) is given by

N
z-i G(Z) = 1-~i I

b·Z-1 1+ 1
i=1

2.7 .2

where ai and bi represent the filter coefficients.

The pulse transfer function representation of eqn. 2.7 .2 leads

to a useful method for determining the filter~ response to various

input signals. This can be achieved by obtaining X(Z) and G(Z) and

multiplying them together to give the Z-transform of the filter

output response Y(Z). Finally the inverse Z-transform of Y(Z) is

obtained to yield y(n)T. So it is obvious that the first stage in

the design of a digital filter is to find the coefficients of the

transfer function.

Now from eqn. 2.7 .1, we obtain

X(Z) [a0+a1z- 1+a2z-2+ •.• +aNz-N 1 =

Y(Z) [1+b1z-1+b2z-2+ ••. bMz-MJ

23

and since z-k represents a time delay of k sampling periods, then

it follows that the input and output sampled-data signals are

related by a linear difference equation which can be expressed as

f: ai x(n-i)T= :E biy(n-i)T
i=O i=1

since bo = 1, therefore

y(n)T = aox(n)T+a1x(n-1)T+ ••. +~x(n-N)T

-(b1Y(n-1)T+b2y(n-2)T+ .•• +~y(n-M)T}

N M
=2: ai x(n-i)T -2: biy(n-i)T

i=O i=1

2.7.3

2.7.4

The linear difference equation is the basic element in the

concept of the digital filter, so the implementation of any digital

filter should satisfy its difference equation. For further details

refer to (4,42,45).

2.8 State Variable Analysis

2.8. 1 Introduction

In the previous sections we investigated a way of describing

the input-output relation of a system by a linear difference

equation and transform domain description (Z-transform of the

linear system in a discrete time system). This section discusses

another method of describing the input-output relation of systems,

namely the state space or state variable description. Generally,

the state of a system at time t is that set of variables required

at timet so that, given the inputs to the system forT>t, one can

exactly specify the future behaviour of the system for7>t. So the

state of a system may be represented by the values of a number of

variables representing the state variables. A system might have an

infinite or only a finite number of states and it can be applied to

24

both continuous and discrete time systems. In this section we will

discuss the state space description of the behaviour of discrete

time system. Many textbooks and articles grant general insight to

this powerful technique for system analysis and design

(46,47,48,49,50,51).

2.8.2 State Space Description for Discrete Time System

Let the variables q1(n), q2(n), •.• , qr(n) represent the

state variables of a discrete system. At any instant n, the value

of the output of the system, y(n), can be computed from the values

of the state variables at that instant and the values of the inputs

x(n), x(n+1), •• • For the discrete time system, the normal form

of the difference equation may be expressed in matrix form as:

q(n+1) =! q(n) + ~ ~(n) 2.8.1

and the corresponding state output equation is

y(n) = f q(n) + Q ~(n) 2.8.2

where q(n) is the state vector of the system of n state variables

2£(n) is the input vector.

_y(n) is the output vector.

A is the matrix of coefficients of the state variables.

~ is the input signals coefficients matrix.

f is the matrix of the output signals coefficients.

D is the matrix of the input signals terms contained in the output

equation.

Eqns. 2.8.1 and 2.8.2 are referred to as the state equations,

and a description of a system behaviour by these equations is

called the state space descriptio~

25

Consider, for example, a discrete time system represented by

the difference equation

2.8.3

This equation could be represented by a block diagram as

illustrated in fig. 2.6. Because eqn. 2.8.3 is an nth order

difference eqution, therefore, n state variables should be

specified to describe the system (47). Defining the state

variables as the outputs of delay elements, we obtain

q1 (n) = y(n-k)

q2(n) = y(n-k+1)

2.8.4

referring to fig. 2.6, each state variable at time (n+1) could be

written in terms of those at time n as

q1 (n+ 1) = q2(n)

q2(n+1) = q3(n)

qk-1(n+1) = qk(n)

qk(n+1) = y(n) = a0x(n)- bkq1(n)- ••. - b1qk(n)

2.8.5

To obtain the state variable representation in matrix form. eqn.

2.8.5 is rewritten as

26

q1(nr1) 0 1 0 0 q1 (n) 0

q2(nr1) 0 0 1 0 q2(n) 0

= + x(n)

0 0 0 1 0

qk(n+-1) -bk -~-1 -bk-2 -b1 qk(n) aa

and _

q1 (n)

q2(n)

y(n) = [-bk -bk-1 0 0 0 -b1] + [aa] x(n)

qk(n)

The state equation can be solved at any time n by solving for

the succeeding values of the state variables in terms of the

preceeding values and the input sequence. Starting with the state

at time zero, the q(n) can be computed in a step-by-step manner as

follows (48) :

q(1) = !q(O) + ~x(O)

q(2) = !q(1) + Bx(1)

=! (Aq(O) + ~x(O)]+ Bx(1)

= !2q(O) + AB~(O) + ~x(1)

q(3) = !q(2) + ~x(2)

= !3q(O) + !2~x(O) + ABx(1) + Bx(2)

by continuing this procedure we get a general expression as

follows:
n-1

q(n) = !nq(o) + L !n-1-m Bx(m)
- m=o

It is obvious from the previous equation that the behaviour of such

27

a state system depends on successive powers of the matrix !· This

equation is referred to as a discrete-transition equation of the

system. The system output in that case can be written as

n-1
_r(n) = CAnq(O) + fL !n-1-m Bx(m) + Dx(n)

m=O

The matrix An is referred to as the discrete state-transition

matrix.

2.9 Frequency Response of Digital Filters

The frequency response can be determined geometrically from

values of the transfer function of the filters. However, for

discrete-time systems, the frequency response is usually determined

by evaluating the transfer function G(z) around the unit circle in

the Z-plane, where for continuous-time systems, the frequency

response is obtained by evaluating the transfer function along the

imaginary axis j"' (4).

To determine the amplitude and phase characteristics, the

poles and zeros of the digital transfer function are plotted in the

Z-plane, as shown in fig. 2.7. The amplitude response !G(ej~)l may

be expressed as

I G(ejc.>T) I = fr vector magnitudes from the i th zero to the point
i='1 on the (.)-axis nr vector magnitudes from the kth pole to the point
k=1 on the '->-axis

and the phase response ~G(ejwT) may be obtained as

r
=~ a~les from the i~h zero to the point on thew

. ax1s .-. .:._L a~gles from the kth pole to the point on theQ
k='1 ax1s

For example, let v2 , v3 be the zero vectors and

28

w 12

3w/4

Fig. 2.7 Z-Plane pole-zero configuration

unit delay
y(n)T = x(n-l)T

adder I subtracter
U(n)T = x(n)T -t y(n)T

constant multiplier
y(n)T = kx(n)T

branch operation

O,w,2w,

Z-plane

x(n)T ..j z-1 y(n)T •

x(n)T U(n)T
+

-t

y(n)T

x(n_)_T_--~~~ k ... _Y_(n_)_T~.-.~

Fig. 2.8 The recommended terminology used in digital filtering

v1 9 v4 the pole vectors

therefore

I G (ej t.>T) I = r v 21 ° I v 31
lv1j·jv4/

let o2 9 o3 be the zero angles and

01 D 04 be the pole angles

therefor

The above relationships for ·lacejt..>T) I and,lG(ej~) are point

by point relationships only9 in other words9 vectors must be drawn

on the Z-plane from the zeros and poles to every point on the axis

as shown in fig. 2.79 for which the amplitude and phase response is

required.

The frequency response can also be determined by substituting

ejwT for Z in G(Z) 9 and computing directly jacekT)Iand ,lG(ejt.JT)

(4).

2.10 Digital Filter Design Techniques

Digital filters can be classified into two categories; finite

impulse response (FIR) or non-recursive digital filters and

infinite impulse response (IIR) or recursive digital filters. The

term non-recursive means that the output of the filter is computed

using the present and previous inputs only9 i.e. bi=O. On the

other hand9 the term recursive means that the output of the digital

filter is computed using the present input and the previous inputs

and outputs 9 i.e. bi =F 0 (4 9 45).

It has been mentioned before that the main problem in digital

filter design is the determination of the coefficients to obtain

29

its difference equation. These coefficients can be determined by

suitable approximation or truncation of the impulse response

functions in either the time or frequency domain.

There are at least two different frequency domain approaches

in designing the IIR filters (4 ,52):

(1) the direct approach which is concerned with the Z-plane

representation of the digital filter, where the coefficients can be

determined using some computational algorithm directly from the

filter specifications. This direct approach may be used in the

designing of frequency sampling filters and those based on squared

magnitude functions.

(2) the indirect approach in which the coefficients of the digital

filter are determined by transfering the frequency response of the

analogue filter G(S) via an appropriate S-plane mapping to a

corresponding digital filter transfer function G(Z). The mapping

process can be one of the following processes:

(a) Z-transform (impulse-invariant design method).

(b) Bilinear Z-transform.

(c) Matched Z-transform.

FIR filters (52) have linear phase characteristics and may be

designed by a number of methods, of which the following are

considered:

(1) frequency sampling, where the coefficients may be

determined using the discrete Fourier transform (DFT) which is

equivalent to a least-square approximation.

(2) the window methods (weighting functions), used for

30

functions containing discontinuities. Much work has been devoted to

developing suitable window methods. There are many useful window

functions which may used in the design of non-recursive digital

filters (52) such as:

(a) Hamming window.

(b) Blackman window.

(c) Hanning window, for detail refer to (4,7).

(3) Optimal design methods, these are the most accurate (and

complex) ways of designing FIR filters.

Forsythe (53) has developed a new method for computing the

coefficients of a digital filter, in which the poles of the

transfer function G(S) in the S-plane are mapped directly into the

corresponding Z-plane, but the positions of the Z-plane zeros are

derived by a more complex process using a Taylor series expansion.

This method has the capability of approaching the filter response's

theoritical limit unlike any other.

2.11 Realization of Digital Filters

2.11.1 The Realization of Recursive Digital Filters

The terminology shown in fig. 2.8 is suggested by Rabiner (54)

for digital filtering. Referring to the linear difference equation

(eqn.2.7 .4) given in section (2.7). It is obvious that the digital

filters are com}X)sed of circuits which perform three fundamental

operations of storage, multiplication and addition (5). There are

many network realizations (45) of IIR filters. One consideration

that should be taken into account in the choice between these

different realizations is the number of operations to be performed

and their precision. That is, networks with the fewest constant

31

multipliers and the fewest delay branches are often the most

desirable. The recursive difference equation may be realized in

the following forms~

2o 11o 1 o 1 Direct Form I

Since the difference equation (eqn. 2.7.4) can be written

directly by inspection of the transfer function (in the form of

eqn.2.7. 1) 9 the network corresponding to eqn. 2.7 .4 is called _the

direct form of the system by (eqn. 2.7. 1).

The realization structure shown in fig. 2.9 represents a direct

form implementation of eqn. 2.7.4 9 and it is seen that a kth order

filter requires 2k delay operations. The polynomial coefficients

are the multiplier values in the feed-forward and feed-back paths

(496945).

2o 11o 1o2 The DiJreCt Form II or Camonic Form

In the canonic form9 the feed=forward and feed=back paths share

the same delays. In that case the filter is realized more

concisely saving a number of delays so k delay operations are

required as shown in fig. 2.10 (44 945).

As an example Hwang (55) has presented a new method of digital

network realization. A total of 14 regular canonic forms have been

obtained.

Hence the total filtering operation is often subdivided into

many different processes which are combined to give the required

overall transfer function. This subdivision may be achieved in two

basic forms (45).

32

Fig. 2.9 Block diagram representation of the direct form X

z-1 I I ~I z-1

Fig. 2.10 Block diagram representation of direct form II for an nth order filter

2.11.2.3 Parallel Form

To realize a digital filter in parallel form the pulse transfer

function G(Z) is expressed as a sum using a partial fraction

expansion.

k

G(Z) = c + L Gi(Z)
i=1

where each Gi(Z) is a first or second order transfer function.

The filter can then be realized via a parallel connection of lower

order fi 1 ters in either of the direct forms as depicted in fig.2.11

(8,55).

2. 11.2.4 Cascade Form

To realize a digital filter in a cascade form, the pulse

transfer function G(Z) is factorised to the form

In this form the output y(n)T is the product of the outputs of

several subfilters. Similarly it can be realized via the cascaded

connection of lower order filters in either of the direct forms as

depicted in fig. 2.12 (8,55).

2.11.2 Realization of Non-Recursive Digital Filters

For a non-recursive digital filter, the constant coefficients

bi=O, and the transfer function reduces to the polynomial z-1.

Therefore, the current output only depends on the present and

previous input samples, and the filter can be realized as in fig.

2.13 (8).

2.12 Frequency transformation for digital filters

Frequency transformation is a method of implementing a desired

33

G1(Z)

x(n)T

...__-~•L-I __ Gk(_Z) _ _:---.@pt L y(n))..,.

Fig. 2.11 Block diagram representation of the parallel form

Fig. 2.12 Block diagram representation of the cascade form

x(n)T ~ z-1 I I I z-1 1--l --· -I z-11 1 I z-1 , 1

-- --~ ~-- =-- --- --- --- --- --- --- .

Fig. 2.13 Block diagram representation of non-recursive digital filter

filter from a given normalized filter. A normalized low pass

digital filter is one in which the cutoff frequency is a quarter of

the sampling frequency. The transformation may be accomplished by

changing the transfer function of a given filter to the desired

filter. These transformations generally preserve the normalized

filter magnitude response (attenuation); other characteristics of

it are often retained (8).

Constantinides (56,57) has developed a theory of transforming a

given low-pass pulse transfer function into (a) high pass, (b)

band-pass and band-stop on the Z-plane without reference to the

frequency transformations for an analogue filter.

Table ~.2 below lists the frequency transformation from a

normalized low-pass filter to other types of filters at any cutoff

frequency :

Filter Substitute for z-1 Cutoff frequency Center frequency

highpass -z-1 wcl=ws-wch ws/2

bandpass -z-1 cz-1 -w
wcl=ws-wch wo

1- z-1

bandstop 2-1 c z-1 -a?
wcl = s-C w2- w1) c.>o

1- z-1

Table 2.2

where

wcl is the cutoff frequency of the normalized low-pass filter.

wch is the cutoff frequency of high-pass filter.

wq is the center frequency.

34

w1 and w2 are the lower and upper cutoff frequencies respectively.

2.13 Quantization Effects

When a digital filter is implemented on a general or special

purpose computer, errors due to the limit of the word length

available, which represents the number in the digital computer,

become critical and may lead to a filter that does not satisfy its

original specifications (58). Here the quantization has been

defined as the approximation or the replacement of the signal value

by the nearest of a set of quantization levels differing by steps

of the size Q = 1/2w-1, where w is the word length. The effect of

that quantization is to superimpose an error signal e(t), called

the quantization noise, on the original signal. So the input to the

digital filter is considered to be the sum of two signals, namely,

a noiseless input x(n)T and a noise input e(n)T. That is, the

quantized input signal is expressed as:

x(n)T I q = x(n)T + e(n)T

and the amplitude of the error signal is extended for -Q/2 to Q/2

(4,58).

The quantization errors normally take the form :

(I) quantization errors due to round-off and truncation in

arithmetic operations.

(II) quantization errors due to the inaccuracy of the input signal

since it is represented by a set of discrete values.

(III) quantization errors due to representing the coefficeints by

a finite number of bits.

(IV) limit cycle oscillations; and

(V) overflow oscillations.

35

2.13.1 Round-Off Noise

To implement a digital filter, the signal must be multiplied

by a constant coefficients. The result of this multiplication

must, in general, be approximated to a number of bits that can be

stored properly. This approximation (round-off) can be rounding or

truncation (59). The effect of truncation or rounding depends on

whether fixed-point or floating-point arithmetic operations are

used and how negative numbers are represented. If the quantization

step is assumed to be constant for all signal amplitudes, in the

other words if noise samples are assumed to be uniformly

distributed, then the variance of the input noise is simply Q2/12,

Q2 /3 for rounding and truncation respectively (60).

Mitra et al. (60) have developed a simple method of calculating

a steady state value for the output noise variance of a digital

filter as a result of the input quantization noise.

Liu (61) has analysed the round-off noise for each form of

digital filter realization showing that the accuracy of a digital

filter depends on two important factors; the form of realization

and the type of arithmetic used. For fixed point arithmetic, the

mean square value of the output noise variance is expressed as

(112 7r j) f cpee(Z) dZ/Z

where cpee(Z) is the power spectral density of the round-off noise

for each form of realization.

According to the studies in (61) for a fixed-point word

length, realizing the high-order filter with either parallel or

cascade form is considerably more accurate than the direct

36

realization of the same filter. Thus first and second order

filters should be used as basic building blocks for higher order

filters.

It has been shown that the accuracy of a digital filter design

depends on the implementation method, but to achieve still better

accuracy, some other advantages need to be sacrified. Barnes has

(62) shown that the direct form structures are computationally

efficient, but they have high round-off noise gain for narrow-band

filters, high coefficient quantization sensitivity, and show some

overflow noise. On the other hand optimal state space structures

have low round-off gain noise, possess near-minimal coefficient

sensitivity, and are free from the overflow or limit cycles

independent of the arithmetic convergence. However, the last

structure requires three more multipliers per second order section

than the direct form. For further details about these structures

refer to (62,63).

2.13.2 Input Quantization Noise

In the implementation of a practical digital filter system

when a signal is converted from a continuous to a discrete form by

an ADC, which normally produces a fixed-point binary number

representation of the _input samples (4), the digital output has a

finite word length which implies a difference between the actual

value and the fixed-point representation. This is commonly

referred to as white noise (44).

The mean square value used in assessing this noise in the ADC

is a2= Q2/12 and the mean square value of the error at the output

due to input quantization is expressed as

37

= (lf/12)(1/27rj) f G(Z) G*(11Z) dZ

2.13.3 Coefficients Rounding Effect

Since the coefficients of the difference equation represent

the digital filter, inaccuracy of the coefficients can cause

degeneration in the frequency response of the filter.

Specifically, changes in the coefficients values give rise to

migration of the poles and zeros of the filter, and if any of the

poles happen to migrate outside the unit circle in the Z-plane,

then the filter, which with accurate coefficients would have been

stable, becomes unstable (64).

Knowled and Olcayto (65) have shown that the quantization of a

digital filter's coefficients can be represented by a (stray)

transfer function in parallel with a corresponding ideal filter.

They have also given a measure of the degeneration in filter

performance due to coefficient errors by the following statistical

mean-squre convergence criterion

zn/T

a~ = (T/27r) J I G* (j<.)) -G(X)* (j~) J 2 d(.,l
0

where G*(j(.)) and G:(j~) represent the frequency response of the

actual and ideal filter, and T is the sampling period.

It is contended that loss of stability in a realization will occur

only after the deviation between the actual and ideal frequency

response has become intolerable.

To select the minimum word-length, the expression

- /2 < I Acceptable Gain Fluctuation I 3./a'w
must be satisfied, provided that the output noise due to data

38

quantization and multiplicative round off errors is also acceptable

with this word length.

Liu (61) has indicated that the effect of coefficients

inaccuracy is more pronounced for a high order filter when it is

realized in the direct form than when it is realized in the

parallel or cascade form.

2.13.4 Limit Cycle Oscillations

Limit cycles are defined to be the autonomous de or periodic

behaviour of a digital filter under zero input conditions, so that

with zero input, the output of a recursive digital filter may be

non-zero due to the arithmetic rounding or truncation (66).

Munson et al. (67) have used an algorithm to find maximum

amplitude limit cycles for many different filters using sign­

magnitude and two's complement rounding and truncation with either

one or two quantizers.

2.13.5 Overflow Oscillations

The fact that overflow oscillations can exist in digital

filters is due to the nonlinearity associated with overflow which

occurs due to the fixed point arithmetic additio~

The necessary and sufficient condition for the absence of

overflow oscillation "nonlinearity" for digital filter with two's

complement arithmetic is that:

I The Total Input to the Adder j_ <. (68).

2.14 Conclusion

This chapter has presented some methods of describing the

39

input-output relation of the system such as linear difference

equation, z-transform and the state space description. The basic

concepts of sampled-data signals has also been discussed. We have

seen in this chapter that the standard Z-transform is fundamental

to a basic understanding of digital filter concepts and its

convolution-summation property provides the relationship between

the filter's input and output signals. Methods of realizing FIR

and IIR digital filters have also been investigated. In fact, IIR

filters are generally more economical in execution and computation

time and storage requirements compared with FIR filters, but have

less stability.

The practical implementation of digital filters is affected by

quantization errors due to the finite word length of the input and

coefficients. Errors in the coefficients will obviously cause the

frequency response of the filter to depart to some extent from that

desired, more serious difficulties arise with the IIR filters which

may become unstable as a result of its Z-plane poles movement

outside the unit circle- in the case of a small change in one or

more of its recursive coefficients (or if its recursive multipliers

are inaccuratly specified).

40

rnAPrER -3-

Adaptive Filtering

3.1 Introduction

The basic concepts involved in FIR adaptive filters have been

known for many years. They are versatile signal processing

elements which have found numerous applications in situations where

only a limited knowledge about the signal and the interference is

available.

Current real-time adaptive filters are based on Widrow~s LMS

algorithm, a practical solution to the Widrow-Hoff or (LMS)

algorithm. The main advantage of this algorithm is its simple

structure which makes it easy to be computed in real time (69).

Adaptive filters can be implemented in the time or frequency

domain. Ferrara (70) has shown that the frequency domain

implementation of adaptive filters requires less computational time

than the time domain implementation. But this is only true for

very high order filters, for example the ratio of the number of

multipliers required for frequency domain implementation to the

time domain implementation is 1.2 for a 32nd order, while it is

0.69 for a 54th order LMS adaptive filter. So for n>64, where n is

the order of the filter, there is some computational saving gained

by implementing an LMS adaptive filter in the frequency domain.

Moschner (11,71) and Deivasigamani (72) have proposed the

Clipped-LMS algorithm which operates on clipped input data and has

convergence properties somewhat inferior to the conventional LMS

algorithm and gives a small loss in the performance of the adaptive

41

filter but is significantly simpler to implement and operates

faster.

In this chapter, the basic concept of an adaptive noise

canceller that selectively rejects an undesired signal from a

composite of signal and noise, and the Wiener solution to the

statistical noise cancelling problem are discussed. The LMS

algorithm for updating the recursive and non-recursive

coefficients will also be described. Quantization noise effects of

the variables in the adaptive filter, which minimize the mean

square error (MSE) of the filter response, due to the limited-word

length and finite precision arithmetic of the digital processor and

in particular the coefficient's error due to the value they take

when finite precision arithmetic is used, will be investigated.

3.2 The Concept of the ANC

Characteristically an adaptive filter has three main components

as shown in fig.3. 1:

(a) The processor, a single input multiple output device, which

provides memory for the system. The outputs of the processor are

distinct linear functions of present as well as past values of the

input.

(b) A set of adjustable weights which multiply the processor

outputs. The sum of the weighted processor outputs is the output

of the adaptive filter.

(c) Some means to compute new weight values according to the

adaptive algorithm in use and means by which the weights can be

updated (1 0).

42

ANALOGUE
INPUT x(t)

DIGITAL
PROCESSOR

Fig. 3.1 Digital adaptive filter

SIGNAL
SOURCE

NOISE
SOURCE

PRJMARY
INPUT

r--------• • • • • • •

\\j Yj

ADAPTIVE NOISE CANCELlER

Fig. 3.2 The adaptive noise cancelling concept

DESIRED
RESPONSE d(t)

Fig. 3.2 illustrates the basic priciples of adaptive noise

cancelling. The input to the adaptive filter is a noise signal n1

that is highly correlated in some unknown way with the additive

noise (interference) n0, but is uncorrelated with the clean signal

s. The noise n1 forms the reference input to the canceller. The

combined signal and interference s+no form the primary input to the

canceller. The noise n1 is filtered to produce an output y that is

subtracted from the primary input to produce the system output z

(11,14,73).

The adaptive filter has the ability to automatically adjust its

own impulse response (weights) using an algorithm that responds to

an error signal dependent on the filter's output. Thus using a

proper adjustment algorithm, the filter can be operated in systems

whose characteristics develop with time. In noise cancelling

systems, the objective is to produce a system output z that is an

estimate of the signal s. This objective is accomplished by

feeding the system output back to the adaptive filter and adjusting

the filter through an algorithm such as the (LMS) adaptive

algorithm, (which will be described in detail in the next sections)

to minimize the system output power, this will be explained later

(11 '12,74).

Assuming that the signal s is uncorrelated with both no and n1

and that s, n0, n1 and y are statistically stationary and have zero

means, then the system output z is given as:

z = s+no-Y

Squaring eqn. 3.2.1 we obtain

43

3.2. 1

3.2.2

Taking the expectation of both sides of eqn. 3.2.2, yields:

E[z2] = E[s2]+E[(n0-y)2]

+2E [s(n0-y) J
3.2.3

since the signals is assumed to be uncorrelated with n0 andy.

Since the signal power E[s2] is a fixed quantity, minimizing the

output power yields:

3.2.4

Thus, when the noise cancelling filter is adjusted so that E(z2] is

minimized, E[(n0-y) 2] is also minimized. The filter output y is

then a best square estimate of the primary noise n0• Moreover,

when E [(n0-y) 2] is minimized, E[(z-s) 2] is also minimized, since

from eqn. 3.2.1

(z-s) = (n0-y) 3.2.5

Thus, z is a best least-square estimate of the signal s since

minimizing the total output power causes the output z to be a best

least-square estimate of the signal s. The output z will contain

the signal plus noise. From eqn. 3.2.1, the output noise is given

by (n0-y). Minimizing the total output power, E[z2], .allows one to

minimize the output noise power,E[<no-y)2]. Minimizing the total

output power maximizes the output signal-to-noise (SNR) ratio as

long as the output signal remains constant.

It is seen from eqn. 3.2.3 that the smallest possible output

power is

When this is achieved,

44

Therefore,

and Z:S

In this case, minimizing the output power causes the output signal

to be perfectly noise free (11, 15).

3-3 The LMS Adaptive Filter

The LMS adaptive filter is the basic element of the adaptive

noise cancelling system.

3.3.1 Adaptive Linear Combiner

The adaptive linear combiner is the basic component, or the

most significant portion, of most adaptive filtering and signal

processing systems. A set of input signals are weighted and summed

to form an output signal as shown in fig 3.3. The input signal

vector ~j is defined as

x.
-J 3. 3.1

The input signal components are assumed to occur simultaneously

on all input lines discretely in time indexed by the subscript j.

The weighting coefficients or multiplying factors are not fixed and

are adjustable depending on the system. The weight vector !{ is

defined by

45

XQj

Xlj

Xj X2j I

Xnj

I I I

wo

wl

I v

ADAPTIVE
ALGORITHM

Figo 3 0 3 The adaptive linear combiner

w2

ej

Yj

+ . d·
J

w = 3.3.2

Thus at the jth instant, the output Y· is equal to the inner
J

product of !j and W

where the superscript T denotes matrix transposition.

The estimation error output at jth time interval ej is

eJ· = d·-X·TW = d·-WTx. J -J- J- -J

3.3.3

3.3.4

where dj is the desired response input of the adaptive filter

(11 '12).

3.3.2 The LMS Adaptive Algori tbm

The purpose of the adaptive algorithm designated in fig. 3.3 is

to adjust the weights of the adaptive linear combiner to minimize

the MSE. Squaring eqn. 3.3.4 one obtains

2_ 2 T T T e. - d · -2d ·X· W+W X· X· W J J Y..:J - - -J -J - 3.3.5

Taking the expected value of both sides and assuming that xj and dj

are zero-mean processes yields

3.3.6

Taking the vector f as the crosscorrelation function between dj and

the !j vector then yields

46

P = E r d -X·] = E - L Y.:J 3.3.7

Defining B as the input autocorrelation function matrix of the

input signal, we obtain:

XQjXQj XQjX1j XQjX2j •

x1jx0j x1jx1j x1jx2j •

The MSE can then be expressed as

E[e -2] = Eld .2]-2PTW+WTRW J J ----

3.3.8

3.3.9

Note that the error is a quadratic function of the weights which

can be represented as a concave hyperparaboloidal surface. The

gradient methods widely used to minimize the error by optimally

adjusting the weights by descending along this surface to seek its

minimum (the bottom of the bowl) (11,69). The optimal weight

vector~*, generally called the Wiener vector, which yields the

minimum MSE (MMSE), is obtained by setting the gradient of the MSE

function to zero.

The gradient of the MSE function is determined by

differentiating eqn. 3.3.9 with respect to wT

47

= -2P+2R w 3.3.10

thus

3.3.11

This equation is the Weiner-Hopf equation in the matrix form

(11 '75 '7 6).

In practice, it is difficult to obtain w* because we do not

know the exact statistics of Band_!:, but an estimate of!!* could

be found, by estimating B and P for the given input and given

des ired response.

Many methods are used to adjust adaptive parameters, the most

common method used is the stochastic gradient search technique by

steepest descent which converges towards the optimum solutio~ In

this method the weight vector is changed along the direction of the

negative gradient.

Since the LMS algorithm is an implementation of the method of

steepest descent, the next weight vector ~j+ 1 is equal to the

present weight vector !!j plus the negative gradient vector

multiplied by a constant proportional to the negative gradient:

w. 1=W·- IIVI· -J+ -J r J 3.3.12

The parameter Jl is the convergence factor which determines the

rate of convergence, accuracy of the weight vector and stability.

The LMS algorithm estimates an instantaneous gradient by

48

assumming that ej2 , representing a single squared error sample, is

an estimate of the mean-square error and by differentiating ej2

with respect to ~· The relationship between the true and estimated

gradients are expressed as follows (11 ,69):

oE[elJ/Owo 2 aej /owo

V'= " ' V'=

-iE [e lJ!own 2 aej /(jwn

}i=~j

=

W:W· - -J

2ej 3.3.13

W:W· - -J

The gradient estimate used by the LMS algorithm takes the

gradient of the square of a single error sample thus:

Replacing the true gradient in eqn.3.3.12 by this estimate yields

the so called Widrow-Hoff algorithm

3.3.14

By using any arbitrary value for the weight vector as an initial

value, the algorithm will converge in the mean and will remain

stable as long as the parameter J1 is greater than 0 and less than

the reciprocal of the largest eigenvalue Amax of the matrix R

(11 '75).

1/A.max>Jl >0. 3. 3.15

3.3.3 The Convergence Factor " Jl "

It has been mentioned in the previous section that J1 controls

the rate of convergence, stability and the accuracy of the adaptive

49

filter.

Stability, and the relation between the speed of adaptation

and performance of the adaptive system have been extensively

studied by a number of authors, (23) and there is no general

agreement on conditions for the filter stability. However, in

general, the large values lead to faster convergence or adaptation,

but add significant noise to the weight values producing a more

noisy adaptive process. It has been observed from many studies

(11 ,23,77) that the filter stability or convergence is guaranteed

within the range of values

1/>.max > J.t > 0

Tanik et al. (78) have investigated the convergence behaviour

of the LMS algorithm with regard to the assumption that the filter

inputs xj and dj are Gaussian and independent over time. They have

shown that the sufficient convergence condition for that case is:

0 < J.t < 1/3 (2/k>.i)

Conventional adaptive filters use a fixed "/.t" so it is the

same for all parameters of the filter. Recently a few studies have

been published about using a variable J.t for the filter parameters

(79). Mikhael et al. (35,80) have proposed using and adjusting

individual convergence factors in real time for different filter

parameters, so that their values are kept optimum for a new set of

input variables. They have also shown from computer simulation

results that the individual adaptation approach gives a much better

performance than the conventional fixed group adaptation approac~

The convergence factor values for the non-recursive and recursive

50

coefficients are given as:

= o.5/ ~ x2cn-i)
i=O

and
M

Pb(n) = 0.5/ 2: y2(n-i)
i=1

respectively.

3.3.4 The LMS Adaptive Filter

The adaptive filter may be formed by implementing the adaptive

linear combiner in conjunction with a tapped delay line as shown in

fig. 3.4.a. Because of the structure of the delay line, the input

signal vector is

X·= -J

It is obvious that the components of this vector are delayed

versions of the input signal xj. Fig. 3.4.b represents a

simplification of the adaptive tapped-delay line filter. This kind

of filter permits the adjustment of gain and phase at many

different frequencies simultaneously (11,76).

3.11 Wiener Solution to the Statistical Noise Cancelling Problem

This section presents the derivation of the optimal

unconstrained Wiener solution to certain statistical noise

cancelling problems. The purpose of this is to demonstrate

analytically some advantages of the noise cancelling techniques

such as the increase in signal-to-noise (SNR) ratio.

51

z-1

x· J

y·

z-1

Xj-1

LMS ALGORITHM
Wj+ 1 = Wj + 2JlejXj

x· J

(a)

ADAPTIVE
FILTER

(b)

Fig. 3.4 The LMS adaptive filter
(a) Block diagram
(b) Symbolic representation

e· J

Xj-2 Xj-n+1

Yj

Fig 3.5 illustrates a classic single-input, single-output

Wiener filter where xj represents the input signal and Yj the

output signal, which are assumed to be discrete in time and dj is

the desired response input. The input signal and the desired

response input are assumed to be statistically stationary. The

filter is linear, discrete and designed to be optimal in the

minimum mean-square-error sense. The optimal impulse response R*(k)

of this filter can be obtained from the discrete Wiener-Hopf

convolution summation equation:

Cl)

L }i* (l~x(k-1) =~d(k) 3.4. 1
1 =- Cl)

where

¢xx(k) = E[x(j)x(j+k)] and

¢xd(k) = E[x(j)d(j+k)]

In this form the impulse response }i*(k) may be causal or

noncausal and extendable finitely and infinitely to the left or

right of the time origin, i.~ this is the unconstrained form.

The transfer function of the Wiener filter is

3.4.2

Taking the Z-transform of egn. 3.4.1, then yields the optimal

unconstrained Wiener transfer function:

3.4.3

where Dxx(Z) is the power-density spectrum of the input signal,

which is the Z-transform of ¢xx(k) ,and Oxd(Z) is the cross power

spectrum between the input signal and the desired response input,

52

x· J

+

Yj

dj

Fig. 3.5 Single channel Wiener filter

ffiOj

r••• ' .
: primary input ~ ou

: ~ + l
' . ' . • • ' . ' . ' . ' . • • ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' .
! reference in t::t(z) Yj j

Xj .. :
• • • • • • • •

~------~---------J: • • ' .
~--~ ADAPTIVE NOISE CANCEl J .ER

Fig. 3.6 Single channel adaptive noise caceller with correlated and uncorrelated noises in the
primary and reference inputs

which is the Z-transform of <Pxd(k) (11 ,81).

We now show the application of Wiener filter theory to adaptive

noise cancelling. Fig. 3.6 shows a single channel adaptive noise

canceller including an adaptive filter whose primary input consists

of a signal sj plus a sum of two noises moj and nj. The reference

input is a sum of two other noises m1j and nj*g(j), where g(j) is

the impulse response of the channel whose transfer function is

G(Z). The noises nj and nj*g(j) are correlated with each other and

uncorrelated with the signal sj and they are assumed to have a

finite power spectrum at all frequencies, while m0j and m1 j are

uncorrelated with each other, with sj and with nj and n/g(j). If

one assumes that the adaptive process has converged and the minimum

MSE solution has been found, then the adaptive filter is equivalent

to a Wiener filter.

The optimal unconstrained transfer function of the adaptive

filter is thus given by eqn. 3.4.3 and can be expressed as follows:

The filter$ input spectrum is

bxx(Z) = Dm1m1(Z)+onn(Z) IG(Z) 12 3.4.4

where Om1m1(Z) is the spectrum of the noise m1 and onn(Z)I G(Z)\ 2

is the spectrum of the noise n arriving via G(Z), and the cross

power spectrum between the filter~ input and the desired response

input is

3.4.5

The Wiener transfer function is thus

3.4.6

53

From eqn 3.4.6, it would appear that r.lJ* (Z) is independent of the

primary signal spectrumoss(Z) and of the primary uncorrelated noise

spectrum omomo(Z) (11 ,77 ,82).

An interesting special case is when m1 in the reference input

is zero. Then om1m1Cz) is zero and the optimal transfer fUnction

3.4.6 becomes.

w*cz) = 1/G(Z) 3.4.7

The performance of the single-channel noise canceller can be

evaluated more generally by obtaining the ratio of the signal-to­

noise density at the output Paut(Z) to the signal-to noise density

ratio at the primary input 't>ri (Z), so that

Pout (Z) = Primary noise power epectrum
Ppri(Z) Output noise power spectrum

and as seen from fig. 3.6

= Onn(Z)+OmomoCZ)
Ooutput noise(Z)

Ooutput noiseCZ) = omomoCZ)+om1m1 (Z) I *cz) 12

+ onnCz)I[1-G(Z) *cz)] 1
2

3.4.8

If A(Z) and B(Z) are defined as the ratios of the spectra of the

uncorrelated to the spectra of the correlated noises at the primary

and the reference inputs, then

A(Z) = Srnomo(Z)
8nn(Z)

respectively, then the transfer function 3.4.6 can be written as

54

19 * = __ _;,1 __ _

G(Z)[B(Z)+ 1]

Substituting the value of * in equation 3.4.8, it yields:

f6ut (Z)=[A (Z)+ 1] [B (Z)+ 1]
Ppri(Z) A(Z)+A(Z)B(Z)+B(Z)

3.4.9

3.4.10

This equation represents the ideal noise canceller performance

which has single primary and reference inputs and stationary

signals and noises. This expression is a good method for estimating

the level of noise reduction to be expected in the case of using an

ideal noise cancelling system.

It is obvious from 3.4.10 that the ability of a noise

cancelling system to reduce noise is limited by the uncorrelated-

to-correlated noise density ratios at the primary and reference

inputs.

1) small A(Z)

2) small B(Z)

Paut(Z) =
,cpri (Z)

1+B(Z)
B(Z)

1+A(Z)
A(Z)

3) small A(Z) and B(Z)

fbut(Z) = 1
fPri(Z) A(Z)+B(Z)

When A(Z) and B(Z) approach zero, RJut(Z);~ri(Z) oo ,

and in this case there will be a complete removal of the noise at

the system output. When A(Z) and B(Z) are small, however, other

factors limit the performance of the system. These factors include

55

the finite length of the adaptive filter in practical systems, and

misadjustment caused by gradient estimation noise in the adaptive

process, discussed in section 3.7 (11).

3.5 The Recursive LMS Adaptive Filter

The IIR adaptive filtering problem has been studied for many

years. In 1975 White (83) developed the MMSE gradient algorithm

for application to a speech analyzer and synthesizer and to an

equalizer in data transmission. Stearn and Elliot (84) have

suggested an approach using the method of steepest descent.

However, these algorithms involved a reasonably large amount of

computations per iteration. In 1976 Fentuch (33) proposed a

simplified algorithm similar to that of the FIR filter.

Since the non-recursive (transversal) adaptive filter has a

finite impulse response, i.~, they can produce only zeros with no

poles in the transfer function, this limits the capability of the

transversal adaptive filter in many applications. To overcome this

limitation, a recursive adaptive filter, which has the capability

of producing poles as well as zeros in the filter transfer

function, is described and is easily implemented using two LMS

transversal adaptive filters as shown in fig. 3.7 (23 ,33).

Assuming that the filter, under static conditions, is described

by its transfer function then (81):
N

G (z) = Y(Z) = _2:"~-·-...... a -na'"'""'i Z;;;_-f_· ---.-

X(Z)
1

1+f biz-i
i =1

In the time domain, the input-output relation is:

N M
y(n)T = L: aix(n-i)T -::[biy(n-i)T

i =0 i = 1

56

OUTPUT

+

Yj

AF2

Fig. 3. 7 Adaptive recursive filter constructed using two LMS transversal adaptive filters

x· J

d· J

Yj-1

Xj-2

Yj-2

Fig. 3.8 The recursive adaptive noise canceller

+

Yj

Yj-n

Fig. 3.8 shows the block diagram of a recursive adaptive noise

canceller where the set {ai} is referred to as the set of feed­

forward coefficients and the set {bi\ represents the feed-back

coefficients. The LMS algorirthm is an implementation of the

method of steepest descent and according to this method the next

feed-forward and feed-back coefficients are:

and

respectively (33,73).

b. 1 = b ·+2 n 2e .y · -J+ -J r FJ

3.6 Quantization Effects

3.5. 1

3.5.2

The steady state output error of the LMS adaptive algorithm due

to the limited word-length and the finite precision arithmetic of a

digital processor consists of three terms (85):

{I) errors due to quantizing the input data.

{II) errors as a result of rounding the arithmetic operations used

to calculate the fi 1 ter 's output; and

{III) the error due to the deviation of the filter's coefficients

from the values they take when finite precision arithmetic is used.

This last term is of particular interest.

It has been pointed out that in a digital adaptive filter, the

weighting factors are riontrolled using the method of steepest

descent employing gradient estimates.

As a result of the random nature of the input signal and the

quantization noises arise due to the limited word-length used in

the filtering operation and the coefficients updating, which

57

consists essentially of additions and multiplications. The measured

estimates of the gradient vector Vj differs from the true value of

the gradient ~j and contains an additive noise component ~j· These

differences are referred to as gradient measurement noise, with

zero mathematical expectation (75,77):

A

~- = J 3.6. 1

where ~j is the true gradient, ~j is a zero mean-gradient

estimation noise vector, and ~j is the input signal vector as

mentioned befor~

The adaptation process will be affected with gradient noise

during both the initial transients and in steady state adaptation,

the latter term is of particular interest. The gradient noise for

steady state adaptation is:

n
~j = -2 [e j+17d-17y -17wL~ij)!j

i=1

3.6.2

where 17d, 11y and 17w are the quantization noises for d, y and w

respectively. They are stationary and independent of the

adaptation stage i.e. of j (86,87).

* According to the Wiener theory, when .!ij = .!ij , ~j and e j are

uncorrelated under steady state adaptation conditions, taking into

account that the noises 17d' 11y and 17w are stationary and

uncorrelated with each other and with X· and e ·· -J J Thus the

covariance of function of the gradient noise ~j' if all the

components of eqn. 3.6.2 have zero mathematical expectations, is

given by:

58

where Tis the sign of transposition, ~min= E[ej2] is the MSE at

the output of the adaptive filter when ~j = ~*; 02 = E [if J is the

variance (expected value) of the quantization noise, ~ = E[~j ~jTJ

is the input correlation matrix, and for a Gaussian process X :

n

<PCB) = 3 ~ E[~ij ~j]*
k,l=1

The input correlation matrix ~' may be reexpressed as:

3.6.4

where g is the orthomodal matrix of R and

• • • I ;>..] is the diagonal matrix of R's

eigenvalues, we obtain for the gradient noise

3.6.5

and correspondingly from eqn. 3.6.5 considering eqns. 3.6.3 and

3.6.4. Its covariance becomes

The components of .!ij are uncorrelated with each other since the

matrix~ is diagonal and they can be handled easily, while those

for .!ij are correlated.

This gradient noise causes noise in the weight vector and according

to this noise, the LMS algorithm for updating the coefficients can

be written as:

59

,
This equation can be expressed in term of !j as

I I I I

V · 1 = (I-2 Jl. A)V ·-U_N .+~ -J+ q -J I q-J •-w

3.6.7

3.6.8

where V is defined as the difference between ~j and the Wiener

solution w*

, T
V·-QV·· -J - - -J'

* V = (W ·-W) - -J-

llq = ll+'YJJ.L ; 'YJJ.L is the quantization noise of 11,

For the steady state adaptation conditions, when the input
,

signal !j is stationary, the process ! is stationary and,

consequently,

and taking eqn. 3.6.6 into account, the covariance of the weight-

vector noise is

cov[fj] = [~min+oi+oy2+6w2q,(R)}/l(1+~)
(I-/l~)-1+ow2< 114)~-1(I_11~-1 , 3.6.9

where!lg = OJ.L I p, , the components of the weight-vector have equal
,
!j variance and are matually uncorrelated. It has been found,

however, that in this case the quantization noise of 11 has the

most effect on the gradient noise (77 ,87).

In the steady state adaptation, due to the quantization,

random noise occurs in the weight vector and causes an excess MSE.

60

The excess between the MSE and the minimum MSE is the sum of

variance of the weights calculated by the respective eigenvalues.

The mathematical expectation of the excess MSE of the adaptive
n

filter may be written as E [.&~(m)J =L:, Xj E{vi 2(m)]+oy2 where
i=,

vij2 is the variance of the weighting vector Qij·

The average excess MSE of the adaptive filter is an important

quantity and can be obtained by assuming that Xi = Xmed = n- 1 tr~,

for the matrix R where

is the trace of the matrix R. In this case

diagonal (~) = 3 tr~ and

3.6.9

Hence, for slow convergence of the minimum MSE algorithm tr~)>)>1,

we then have:

3.6.10

and for the rapid convergence, trR = 1 we have:

61

E(~~(j)] = (~min+6d2)(1+1Lg2L.!L
n-1

+ sY2[1+(1+JLg21_£_
n-1

+ ow2 tr_!! [3(1+1Lg2)+(n/4)k
n-1

3.6.11

It follows from eqn.s 3.6.10 and 3.6.11 that the contribution

to the output effect of filtering the quantization noise y, the

value of which cannot be less than 6y 2 , increases with increased

rate of convergence, i.e., asj.ttr_!! increases, and in the mode where

tr_!!=1 it approaches a value of 2~2 . The contribution of the

quantization noise of the weighting factors is proportional to the

input power and to the number of weighting units in the adaptive

filter, and consists of two components, one of which acts through

the gradient noise, and the second by direct formation of y (87).

Caraiscos and Liu (85) have derived expressions for the steady

state mean square quantization error when fixed and floating point

arithmetic are used, and found them to be similar.

3. 7 Misa.djustment Due to Gradient Noise

It is obvious that the purpose of adaptation is the

minimization of the MSE. However, according to the gradient noise,

an excess between the measured estimate MSE and the MMSE exists.

This excess MSE governs the quality and the performance of the

adaptive filter and it is a very important factor. The

dimensionless ratio of the average excess MSE in an adaptive

solution to the minimum possible MSE is referred as the

misadjustment, thus:

M = average excess MSE

>-min

62

For the LMS algorithm

M = p, trB_ 3. 7.1

As can be seen, the misadjustment depends on the rate of

convergence, so it is related to the speed of adaptation and it is

also related to the number of weights, because it depends on trB_.

Since trR is the sum of eigenvalues, then:

n

M = ~-t'l: A.i = p,nA.ave
i = 1

where A-ave represents the average value of the eigenvalues

If A. ave = 114 P, (1 I 'iMSE)

where 'i is the adaptation time constant.

Substituting value of A. ave into the eqn. (3.7 .2) yields:

M = nl 4 (1 I i H·1SE)

3. 7.2

3.7.4

The important special case is when all eigenvalues are

similar, so in other words, all time constants are equal. Thus the

misadjustment is given by:

M = nl 'MSE -3.7.5

From eqn. 3.7.5 it is seen that M increases linearly with

number of weights and is inversely proportional to the time

constant of the adaptation, i.e. decreases with the decrease of Jl

(75,77,88).

3.8 Conclusion

Adaptive filters generally consist of two distinct parts: a

filter, whose structure is designed to perform a desired processing

63

function, and an algorithm for adjusting the coefficients of that

filter. The LMS algorithm, as one of the simplest and easiest

algorithm to implement, is used to update these coefficients. It

has been shown that this algorithm is based on the gradient

technique and that its convergence or divergence is governed by the

proper choice of ~· It is noticed that the LMS algorithm presented

for the IIR filter is similar to that for the FIR LMS adaptive

filter. The quantization effects due to the limited word length

available on the digital computer and the effect of the

misadjustment by the rate of convergence has also been

investigated.

64

CHAPTER -4-

Computer Simulation

4.1 Intoduction

The principal motivation in the study of adaptive IIR filters

is the significant computational and therefore hardware saving

possible versus FIR filters. The structure of that filter in the

time domain may be described, as has been pointed out, by the

input-output relation

N M

y(n)T = 2: ai x(n-i)T-2: biy(n-i)T 4.1.1
i=O i=l

The sets {ail and {bil can be updated using the LMS algorithm.

This algorithm has gained considerable popularity since the early

1960s. Its simplicity and ease of implementation make it an

attractive solution for many practical problems.

As has been established in chapter 3, the LMS algorithm for

updating the feed-forward and feed-back coefficients are given by

the expressions

4. 1. 2

respectively.

In this chapter, a number of computer simulation programs were

developed to investigate the behaviour of the IIR adaptive filter,

implemented as an ANC, under different conditions and with various

parameters. So to be compatible with the hardware implementation

of the algorithm, computer simulations for both floating point and

65

fixed point arithmetic representations of the IIR adaptive filter

were also discussed.

4.2 Computing IIR Filter Transfer Ftmction

It has been mentioned in chapter 2 that the frequency response

(transfer function) of an IIR filter may be expressed as

G(Z) 4 .1. 3

It can be easily obtained by substituting ejwT for Z in G(Z),

and computing directly \GCejwT) I, by considering the parameter (wT)

varies from 0 to ~. A computer simulation was developed to satisfy

this requirement and is listed in appendix A-1.

4.3 IIR Adaptive Filter Performance with Different N and p,

In the hardware implementation of the IIR adaptive filter, the

speed of the processor used become a hindrance limiting the

execution of the coefficients updating operation for each sampling

instant. Various simulation programs, listed in appendix A-2

through A-5, were developed to investigate the performance of the

filter when the coefficients updating process takes place only once

for N sampling points. Four different types of implementing the

IIR adaptive filter including the conventional type have been

discussed. The last three types vary in the time interval between

the input samples as well as the output samples involved in the

coefficients updating operation, but for all these types one new

input and ouput sample is applied whenever this operation is

accomplished.

In these programs, two different types of signals are applied

to the IIR adaptive filter.

66

(a) White noise (or random numbers) was supplied to the desired

response input dj, and the filter input xj was dj waveform passed

through a system with transfer function G(Z) = 1+Z-2 as illustrated

in fig. 4.1.a

(b) x j and d j were supplied from two different sources. The d j

was obtained by summing two equal amplitude sine waves, the

required fundamental and interference second harmonic. The filter

input was the interference second harmonic signal passed through

the filter with G(Z) = 1+Z-2 as depicted in fig. 4.1.b. This simple

second order filter produces a zero at~/2 in its steady state

transfer function.

Both the filter input and the desired response input are

simulated in both previous systems. A common flowchart of the

computer simulation program for implementing the filter is shown in

fig. 4.2. The performance of the filter is evaluated by plotting

its transfer function (magnitude of the transfer function) with 16

feed-forward and 15 feed-back coefficients and the types of

implementation are as follows:

4.3.1 Conventional Type

The simulation program (appendix A-2) of this type is very

straightforward, so referring to the flowchart in fig. 4.2, there

is no need for C, K, S and H parameters and N=1 since the

coefficients are updated every sampling instant. In this type the

input and output samples are expressed as xj, xj_1, ... , xj_15, Yj-

1, Yj_2, Yj_ 15. Fig. 4.3 illustrates the steady- state transfer

function of the IIR adaptive filter implemented according to this

type, the filter inputs follow the system (a) (fig.4.1.a). While

67

~ - j
I d

,,
- -,

I G (Z)
- J Xj I

~ • I IFREQUENC_, I~
DUBLER

Fig. 4.1

(a)

(b)

-

IIR
ADAPTIVE

FILTER
~

J

IIR
ADAPTIVE

FILTER

e· J ..
~

Yi

e·

Yj

define one dimentional arrays of m elements:
a, b, X, Y, d, e, p, q,z

define N, K, MaxCount, ~1 and ~2

initialize the previous arrays at 0
e = 0, Count = C = H = S = 1

K = m= 16

generate the input signal Xj and
the desired response input dj

read Xj, Yj and dj

NO

compute filter output

Yfj] = f": [j]*X[j]- f-b[j]*Y[j]
J=r j=l

Fig. 4.2 The IIR LMS adaptive filter flowchart

read p[j], q[j] and z[j]

compute e error output
e = z[j]- qUJ

update the filter coefficients
a[j+1] = a[j] + 2 ~1 *e*p[j]
b[j+1] = bfj] + 2 ~*e*q[j]

YES

IG(J~T)I
dB

Fig. 4.3

X I C') -l

J~r-~r--,--~--~---r---r--~--,---~--~--r---r--.--~--~--1

25

21:l

15

1C

(a)

:~~-A-~~~2~~~~~6~~1J~~~~1~~1~2~~~~~~~1~6--~1~B--*.20~-2~2~~2~4--~2~6--~:~8--~30?-~32 wT

x'J ~1
5

J
-5 ~

-H!l. \ I
-l!i I
-2<J. I

I
-::zs

0 2 1 6 8 10 12

The Adaptive filter transfer function
~1 = 7.2x10-6, ~2 = 3.6x10-6
(a) and (b) N = 1

x1c-1

)
(b)

wT 16 IB 2t'l 22 2~ 26 2fl 3~ ~-11 ~·

)(10"1

:25 .

20.

15
(a)

H!

s
I

0~-\~J'-~~~~~J\~~~~~~~~~~~-~~--~~~~~~~~~~-e~~A~ e 2 'I 6 s 10 12 ,,. 16 1 a :::>t:~ 22 2"1 2& 2s 30 :>::> w T
X10- 1

.)(10 1

5,~~~~--~--~--~--~--~~--~--~--~--~----~------~

!G(~w:r)j,
0

dB
-5.

-10.

-15

-2fl

...

-zsi I ' ' ' ' ' ~ 2 <f 6 8 111 12.

Fig. 4.4 The Adaptive filter transfer function
Jll = 7.2xlo-6, Jl2 = 3.6xlo-6
(a) and (b) N = 1

rJ
f

I
I
I

I
,'2f I I ' ' ' ' 16 18 20 :12 2"\ 26 26 3£. 3Z

x1 e-1

(b)

wT

fig. 4.4 shows the filter transfer function by supplying inputs of

system (b) to the filter. The convergence factors p,1 and p,2 are

set to the values 7.2x1o-6 and = 3.6x1o-6 respectively.

4.3.2 N Time Interval Type

In this type the inputs applied to the ANC follow the system

(b) and the times between the input as well as the output samples

involved in the updating operation are N. The sampled data are

expressed in the form xj, xj-N' xj-2N' ... , xj-15N' Yj-1' Yj-1-N'

Yj-1-2N' •.. , Yj-1-14N· In this program, listed in appendix A-3,

there is no need for K ,C and H has only one value, two parameters

are varied individually, and N. Fig. 4.5 illustrates the steady­

state transfer function of the filter for a constantp,F 7.2x1o-4

and~ 3.4x1o-4, while N takes different values, for example 16, 32

and 128. Fig. 4.6 displays the corresponding diagrams at different

convergence factors Jl1 =7.2x1 o-6 and Jl2 =3.6x1 o-6.

4.3.3 Successive Input & Output Samples Type

In this type the input and output samples are expressed as xj,

xj-1' xj-2' •.. , xj- 15, Yj-1' Yj_2, Yj_3, ..• , Yj_ 15. Referring to

the flowchart in fig. 4.2, the computer simulation of this program

follows the flowchart with the assumption that K and C are always

16, H is extended from 1 to 16. So the 16-input and the 16-output

samples (only 15 output samples are used) are completely changed

and replaced by a new group of successive samples whenever the

coefficients updating operation takes place. Fig. 4.7 illustrates

the steady-state transfer function of the filter for the

convergence factors p,1 = 7 .2x1o-4 and p,2 = 3.4x1o-4 at different

values of N (16, 32 and 128), while fig. 4.8 shows the transfer

function diagrams at the same values of N, but the filter

68

Fig. 4.5

(a)

-e-..a__/j~ T
10 1 2 1 1 1 G 1 B 20 22 21 26 2B 311 32 W

?ll.

The Adaptive fJ.lter transfer function
Jl1 = 7.2x1o-4 , Jl2 = 3.4x1o-4

(a) N = 16, (b) N = 32, (c) N = 128

x,o- 1

(b)

wT

iG(eiwT)I

iG(eiw'J)I

iG(eiwT)I

Fig. 4.6

X 1113
lr.

t 1 .

17.

1n. (a)

%.

2e Jo 32 wT ll.
0 2 e 10 I 2 11 21 <:6

..x.JJJ::-2

25

20

IS

(b)

1n

s

0 A
0 2 6 I! Ill 12 H 16 10 20 22 2, 26 2e 3[) 3Z wT

XI0-1

OA-t
17

1n

n

r; (c)

j
~\ -·J.-1 --·t;·l!·lii--l~z ~~-1-' 1 76-~, ec-"*ze::---:2~2-*'21,-~2"'"6-z*"e,--..,.,.Je::-- 3; wT

xte-t

The Adaptive filter transfer fungtion
Ill= 7.2xlo-6 , ll2 = 3.6xlo-
(a) N = 16, (b) N = 32, (c) N = 128

!G(eiw'J")I

!G(eiwT)I

Fig. 4.7

xtn'Z
r.

!i

1.

:l.

7.

1.

;not
25~~--,-~~-r--~~--~--~~--~--~~--~~----~

1:l.

10.

:i.

"1 ·-"I 1z t.
11 z G ll 10 1' 16 16 20 Z2 21 26 26 30 32

xto-t

30

25

21:l

15

\l:l

5.

ill/~ r--
}_ .A ~ ~ A .A I\ .I\.

e 2 1 6 B \0 12 \1 \6 \B 20 22 21 26 28 30 32
x1e-1

The Adaptive filter transfer function
Ill= 7.2x1o-4, 112 = 3.4x10-4

(a) N = 16, (b) N = 32, (c) N = 128

(a)

(b)

wT

(c)

wT

convergers with different values, J.L1 = 7 .2x1 o-6 and J.L2 = 3.6x1 o-6.

4.3.4 Blocks Type

Two blocks (groups) of C (16) successive samples with time

interval N*16 between the blocks are defined in this program,

listed in appendix A-5. In this case, one new sample of the second

block is applied to the first block, in which the samples are

shifted one location and ripple through the first block for every

coefficients updating operation, this process will be discussed in

detail in chapter 6. The input and output samples are represented

in the form Xj, Xj-1' Xj-2' •.• , Xj-15' Xj-(N*16)' Xj-(N*16)-1'

••• , xj-(N*16)-15' Yj-1' Yj-2, •.• , Yj-15' Yj-(N*16)-1' Yj-(N*16)-

2, ••• , y j-(N* 16)-15• The simulation program follows the flowchart

in fig. 4.2, with K:16, and the maximum value of C is 16. The

transfer function of the filter following this process is shown in

fig. 4.9 and fig. 4.1 0, for N= 16, 32 and 128 at two different

values of the convegence factors ~ 1 = 7.2x1o-4, J.L2 = 3.4x1o-4 and

J.!1 = 7 .2x1 o-6' ll2 = 3.6x1 o-6 respectively

4.4 Comparisons of the Filter Implementation Types

The aim of previous simulations is to gain the optimal

performance in the adaptive filter implementation. As a first step

in evaluating the performance, various types of implementation have

been simulated. The simulations helped to determine the optimal

implementation of processor function and parameters as well as to

expose certain methods of implementing the algorithm. On the other

hand, it is better to avoid methods which could significantly

degrade the IIR adaptive filter performance.

Gaining some insights into the previous results (figures), the

69

XI 0 1 -

25 ----~--.-.--.--r--.-~--.--~-.--~--.--.--~-

15

(a)

10

5.

x1n 1
t 1,--,.-.,-,-r-----.·-----,-~-....-~.---,.--~-..-~-~--~

I

(a)

·1.

·/. -~, -~ii··tz-11- -,~q-7.n ZZ 7.1 ZG ZR ::o 32 WT
X10_,

X tr1 1

;,n . --r··--,.--,-,-,-,--,-~~

1!;.

IG(eiwT)I
10.

:J!l

3A.

z~. (b)
7.0.

15.

10.

!i .

.,
0 z G u 1 o 1 z 11 16 1 e 20 22 21 z~ ze :•<J :1::: w T

Xlo- 1

X 1f1-1
1~.

10.

3:>.

IG(eiwT)I
311.

2~.

7.0

1!1

11•

S.

11 . .,6,..~_. _ _,.._.,.,_~-~----.,.---~-'-1 J
II 7. 1 1; U 111 12 11 16 I 0 2U 22 21 26 28 31l 32

Fig. 4.10 The Adaptive filter transfer function
111 = 7.2xlo-6, 112 = 3.6xlo-6

(a) N = 16, (b) N = 32, (c) N = 128

x1e··1

(c)

wT

following aspects can be observed.

(a) There is no doubt that the LMS IIR adaptive filter can be

efficiently employed as an ANC (fig.4.3&4.4 9N=1).

(b) When the filter inputs are statistically stationary9 the best

steady-state performance results from slow adaptation. In other

words9 small convergence factors lead to a better performance

(c) At small convergence factors (for example ~1 = 7.2x1o-6 and ~2
= 3.6x1o-6) in the last three types of implementation 9 the IIR

adaptive filter developed a sharp peak or a pole at the correct

frequency 9 which is ~/2 9 and its transfer function is the inverse

of the input transfer function 9 which produces a zero at this

position (~/2) 9 at various values of N.

These results illustrate and prove the ability and efficiency

of the IIR adaptive filter to produce the desired performance when

the coefficients updating operation takes place only once in N

sampling points. It is obvious that the steady-state transfer

function of the filter is improved and refined (lower side lobes)

by increasing the value of N. So this operation is equivalent to

the convergence of the filter using small ~s 9 which leads to a

more stable system.

(d) Comparing the performance of the filter in the last three

types 9 there is no doubt that the IIR LMS adaptive filter exhibits

better performance utilizing the type discussed in section 4.3.4.

This type of implementation is suitable for a wide range of

convergence factors and for various values of N. Thus 9 for these

reasons 9 in addition to the fact that in this type the input and

output samples represent the periodic signal more efficiently9 the

microprocessor software is developed to update the coefficients of

70

the filter implemented in hardware according to this type, as will

be investigated in the next two chapters.

4.5 The ANC Performance

A sine wave was used as a test signal to enable any distortion

due to noise contamination to be measured. This type of signal has

been used to illustrate the efficiency and the ability of the IIR

adaptive filter to cancel the interference corrupting the desired

signal. A simulation program was developed to implement a 16th

order LMS IIR adaptive filter in accordance with section 4.3.4.

Most adaptive filter simulations produce a set of floating­

point coefficients and the input and output samples .are also

represented in floating-point arithmetic. For hardware

implementation, all these data are represented by a number of bits

depending on the ADC and DAC resolutions and the register length of

the microprocessor used to perform the algorithm that updates the

coefficients. So the simulation programs were executed using

either floating-point arithmetic or fixed-point arithmetic

representations of the data involved in the filter implementatio~

The desired response signal was generated by adding two equal

amplitude sine waves, a desired fundamental of f 1 and the second

harmonic of f 2 (where f 2 = 2f1) representing the interference

(noise). The filter input signal was the interference at f 2

altered in phase and amplitude in both modes of representation.

The canceller comprised an IIR filter with 16 non-recursive (feed­

forward) and 16 recursive (feed-back) coefficients taking into

account that a[1] = 1 (a0 = 1 ,eqn. 4.1), and N was chosen to be

128.

71

4.5.1 Floating-Point Simulation

This simulation program, listed in appendix A-6, followed the

flowchart illustrated in fig.4.2, with some modification as regards

the type discussed in section 4.3.4. So K and the maximum value

of C were set to 16 and the updating operation accomplished once

for every 128 input and output samples involved in the operatic~

An example of the performance of the filter is depicted in fig.

4.11. It shows typical desired response and the interference

inputs and the corresponding noise canceller outputs. The

adaptation constants p,1 = 7.2e-06 andJl2 = 7.2e-06.

4.5.2 Fixed Point Simulation

This section concerns the implementation of the IIR adaptive

filter with fixed-length input-output and coefficients. The

simulation program followes the flowchart in fig.4.2, as listed in

appendix A-7 but with an important consideration taken into account

ie. that the x j, d j, y j, and e j took the values between 2n-1-1 and

-2n- 1 according to the ADC and DAC resolutions (12-bits (n=12))

used in the hardware implementation of the ANC.

The coefficients were considered as a fractions of 12-bit

size. This could be achieved by scaling down the filter output Yj

by 2-12 at the end of the filtering operation for each sampling

instant (period). The ANC system used was identical to the one

employed in the floating point representation. An example of the

behaviour of the ANC in fixed point representation is illustrated·

in fig. 4.12. It shows the typical primary and reference inputs and

the ANC outputs at the end of the convergence (adaptation) with

convergence factors p,1 = 1020033 (2-19) and 112 = 1020033 (2- 19).

72

w-1
11r1 1r---~--~---.----.---r----r---

15.----~~~~~~-.r-T-T~-,~~nrr

10
1e

5

A

e _ _ _ . _ r-. 1- f-- --~-~~--~-~H--1--1· --I-

13 - - - f- f- - --14-f-Hi-1 +-+4-HH-~-1--1-

~

- ... J.

_, 0

I .,-1

H1 15 :ZB 25 :m

Time Index

(a)

35 X10

15~--~--~~~--r---r---r---r---~

5

-5

\
I

-s

•lll

-15.

-~a
13

x11r 1
15

HJ

5

-s

v v

5 HI 15 20 25 30 X10

Time Index

(b)

11 n fl

I
i

r
i

I

\1 \1 v v I \1

- 1 '5L/l-f/--I-LJ~-"-Jo..-l'/_,_,-J ------'-:--:1 u~J""'G~0 ·-----;u Iiu~-~i -:i~ x 10

Time Index

-l(j
/0/'H-l -' . -

/~J/. •0 I 11.- (,IJ . -/ll//11 xlO

Time Index

(c) (d)

Fig. 4.11 Simulation result showing the cancellation performance of the adaptive filter
(a) signal input
(b) desired response input
(c) filter output
(d) error output

X10- 1

20

Hl.
1!1

5
11'1

5.

(t

-5 -5.

-1n.

-10

-15

-21'1
96105 XlQ 0 5

-15L-~~--~~~~--~~~--~~~
96075 96085 96095

Time Index
10 15 71'1 25 30 X!Q

T1me lnoex

(a) (b)

~I 1"1;.:
1 5 ·-r·---..---

111

10_

5.

(1--

-1Cl.

Time Index
'---L---t__t___ •

!lGnl!!) !1!;0!15

Time Index

. -'--
9Gl rJ5 X10

(c) (d)

Fig. 4.12 Simulation result showing the cancellation performance of the LMS adaptive filter
(a) signal input
(b) desired response input
(c) filter output
(d) error output

4.6 Conclusion

Several computer simulation programs with different

characteristics have been successfully developed verifying the

optimality and efficiency of the ANC when the coefficients updating

operation is achieved only once in N sampling instants yielding a

more stable system. These simulation results greatly demonstrate

the competency of the noise canceller to adaptively filter the

additive periodic noise in both floating point and fixed point

representations of data involved in the design of the ANC.

73

CHAPTER-5-

DESIGN ANALYSIS

5.1 Introduction

In recent years, attention has been focused on digital

hardware in communications equipment. As progress has continued in

the digital environment, a whole new range of signal processing

problems have required digital solutions; many of them can be

expressed in their simple form as either filtering or a level

detection function.

The advent of LSI made it convenient to carry out many

filtering operations digitally rather than with analogue circuits,

so that it is possible to perform all the arithmetic processing and

shifting operations on one chip.

The FAD IC was designed at the British Telecom Research

Laboratories to perform the role of a general purpose programmable

digital filter and detector suitable for the flexible processing of

signals in the audio frequency band.

It has been mentioned in the introductory chapter that the aim

of this work is the design and implementation of a high order

adaptive filter using the FAD IC acting as a noise cancelling

system with the aid of a fast microprocessor.

This chapter presents the analysis and design, in hardware, of

the noise cancelling system which is controlled by a 68000

microprocessor as illustrated by the block diagram in fig 5.1.

74

xi t~~ .. ~

ANALOG SWITCH DAC
LATCH RS7545 DG211 DESIRED RESPONSE INPUT SAMPLES / 74LS373 1--

XJ &. dJ ~~

,)
ADC HUX HUX r

SUBTRACTOR "' 74LS257 74LS257
74LS181

..... RS574 ...J
a..

J A B
~
< h Lfl "' 1e

R/WIXI J ,..
l t-

"' ::I 1'-'
z: z:

a.. ...J
PORT B

- RAM 1 -~!j!
t- a.. ::I ~

68000 I-
r+- A "-

a <
74S200 ~ Ul f- ~ "' IX

Mlcropr- !2~ t- t- r+- xC\J I-

5 AO-A7 5 ::I (/) y ::I ocessor +- ~_j
a..

0 r----- B v f- r--= PORT A ..
~ "-

' "'"' z: RAM ~ z: PARALLEL -SERIAL I- COUNTER ~ - - v ::I
..... CONVERTER ~ ~ 74LS163 t- 74S200 t- "-J

t:l~ 74LS165 (/) QC

"- 5 AO-A7 5 _j au L> < Ul v u

I z:
X (\J L L f- "- Ill ~ - ::I (/)
~ _j r-- CICI QC

lXI v .---J t HUX I-
...J y "-i:

u 74LS257 :s: r .lNES u z: r-.. f-. >-r 6MSBs /~LSBs I Annl~r"~~ _IN£:S - "' c::::l(")
~

Fl l SERIAL -PARALLEL [fiLTER <tv YJ DAC LATCH K OUTPUT SAMPLES CONVERTER OUT u..t- r. r---..
RS7545 74LS373 74LS164 a:~

OUTPUT SAMPLES

Fig.5·1 The Adaptive Noise Canceller Block Diagram

It introduces the hardware configuration of the 68000

microprocessor and also the FAD IC which represents the heart of

the noise cancelling system. Interfacing considerations and

problems associated with the efficient hardware implementation of

the filtering algorithms are also discussed. Fig. 5.2 shows the

ANC system interfaced with the 68000 microcomputer board, while

fig. 5.3 (a) and (b) show the top and bottom views of the ANC

system.

5.2 Structure of the FAD Chip

The FAD chip is realized in 5~-tNMOS and can be clocked in the

range of 0.5-3.00 MHz. It is assembled in a 24 pin DIL package and

has serial I/0 in order to minimize the number of pins. There are

two independent sections of the FAD IC, the filter section and the

level detection section. The first one is of particular interest

(41).

The filter section is realized as a second order recursive

canonic form (which uses a minimum number of delays, multipliers

and adders) which consists of four 16*13 serial/parallel

multipliers, shift registers as delay elements and a number of

adders as shown in fig. 5.4.

The transfer function of such a filter is governed by

G(Z) = S 1+AZ-1+Bz-2
1-aZ-1-bz-2

where the multiplier coefficients A and B define a pair of complex

zeros, while a and b define a pair of complex poles, and S is the

input scaling factor.

75

Q)

E5
..0 .
Cf') .

r

DELAY 14 I
OUT I~

DELAY I
IN I ll

DELAY 2]' t=u
SELECT

NllCOEFF ~

a I
RCOEff~

SYNC=...!!_~

L

Cl.OCK1

b

ROUT

IDE"U" n IN

FOLTER OUT ICOMI' G IN

15 Ill

A.

&-[>
A'

ft ~>-8

[c>-EJ~ - -----u---
5 10 II

ULT MUll U 0 INI'UT

6

IN ou-r

f W 5-4Complcte functional diagram of the n-= AD !C

fWR OUT DET 2 IN

20 \119

~wj

~

' !
i
I
!

)(· liB~ COMI' 21N

In
..____----~----- ~ OELA'If IN 2

!

121
-----~1 ~ OELA'If OUT 2

~lttrcoHF

-- - _j
2

PET 2 OUT

The components of the second order digital filter are

illustrated in fig. 5.4 and the definition of some useful terms are

briefly described below.

5.2.1 The FAD IC Components

5.2.1.1 Coefficient MUltipliers

The multipliers form the heart of the filter and govern the

stability and accuracy of the FAD chip. They have a

serial/parallel structure and provide a 12-bit accuracy for the

fractional part of the coefficients. The range of coefficients are

chosen so that the poles and zeros can be implemented inside or on

the unit circle in the Z-plane and are as follows:

2 > A ~ -2

2 > a ~-2

1 ~ B ~-1

1 > b ~-1

In principle, the coefficients A and a are separated into an

integer and a fractional part of 13-bit (including the sign bit)
I

accuracy, namely A and a', where the multipliers handle the

fractionional part of the coefficients only. For the A and a

coefficients an extra bit is required, namely As and as

respectively and are used to control an adder/subtracter following

the multipliers. A and a can be separated into the form:

and

(-1)As +A

<-n~ +a
respectively.

Multiplier coefficients enter the FAD chip in serial form to

keep the pin count to a reasonable number and are converted to

76

parallel form for the multiplier with the least significant bit

(LSB) first. They are entered in one computation cycle (timeslot)

-32 clock cycles- and used in the next one (41 ,89,90).

5.2.1.2 The Quantizer

As a result of multiplying a 16-bit data word with a 13-bit

coefficient, a 29-bit output word is produced. A quantizer is then

used to restrict the word length of the data, resulting from the

multiplication process, to 16 bits. Quantization can be performed

in various ways (e.g. truncation and rounding), as has been

mentioned in section 2.13. The FAD uses rounding because the

errors introduced then have zero mean and the smallest variance

(thus minimizing the mean-square value of the quantization noise).

Rounding is achieved by adding 2-16 to the data entering the

quantizer and truncating the result to 16 bits before further

operations can be performed (41 ,89).

5.2.1.3 The Input Scaler and Overflow Circuit

As a result of two's complement number additions, overflow may

occur. In order to avoid it, the input data words should be scaled

down or attenuated by a factor such that even the most unfavourable

sequence of inputs cannot cause overflow at either the internal

node or the output node of the second-order section. In the FAD

this input scaler factor, S, performs multiplication of each input

data word by S=2-i by delaying the input data by (13-i) bits where

i is an integer in the range 13 > i > 0 which is controlled by four

bits S4, S3, S2, s 1, where S4 is the LSB, s 1 is the most

significant bit (MSB), encoded in binary form. Within the overflow

circuit there is a detection circuit which sets all multiplier

inputs to zero for one complete sample period, Ts, whenever

77

overflow is detected. This part of the circuit is not necessary

for a correctly scaled filter.

5.2. 1.4 Data Selectors (Multiplexers)

DS 1 Selects the filter order, so that the data enters the second

order section from the input pin or is recycled for higher order.

The selection is determined by the data bit C1 which controls DS1,

when C1 is 0 data is recycled.

DS2 Depends on the value of the B coefficient, when B is unity

C2=0, otherwise C2=1.

DS3 Delay selector. Certain delay units, notably a delay of 8T

(which will be defined in the next section) are provided.

For a second order section or 16th order section no extra

delay is required. For a 16th order section an internal delay of

7T is provided on the chip by applying a logical 1 to the DELAY

SELECT pin, which causes DS3 to transmit the output from the

internal delay to the coefficient multipliers (41 ,89).

5.2.2 Timing

The various time parameters of the FAD are listed and defined

below.

(a) Clock period tc: is defined as the reciprocal of the clock

frequency f c· The range of values which the FAD is guaranteed to

operate at is

500 KHz < f c < 3.000 MHz

and the typical value is 2.048 MHz, and consequently, the

corresponding range of tc for this range of frequencies is

0.333 p,sec < tc < 2 P, sec

78

and the typical value is 0.448 J.tsec.

(b) Computation cycle T (Timeslot). This is defined as the time

required for the serial/parallel coefficient multipliers to operate

on their input words and is 32 tc. However input data is only

applied at the first half of this period (16 tc).

(c) Sampling Period Ts: this corresponds to the unit delay of the

input and output samples and is represented by z-1 in the block

diagram of the filter. The value of Ts must be an integer number y

of computation cycles, y represents the number of second order

digital filters used.

For a 16th order filter

Ts = y * T

= 8 * 32 tc

= 256 tc

The other consideration to be taken into account is the

synchronization pulse on the FAD IC, which should coincide with the

first bit of the coefficient and signal word entering the FAD.

Fig. 5.5 illustrates the relative positions in time of the

input sample data, coefficients and control data, and the output

data. It is important to realize that the input samples enter the

FAD during the first half of timeslot 1 with LSB first and in two's

complement form. In principle, in a practical application the

coefficients should be applied for all timeslots. The coefficients

enter the FAD during one computation cycle and are used during the

next one. The output data will be available after the filter

operation is completed (i.e. after y computation cycles, which

coincides with the first half of the next timeslot). The layout of

the individual bits within the stream of the coefficient and

79

i HSW i HSW
u u

+'
,...

+'
,...

\1) \1)

l \1)
...

\1)
....

v "' ... -
~ ~

-~~~

j~ l S:Sl S:Sl L.
~

l ~:J
u

~ - - X X X)< +'
-c;

11S ... lS 1- - - 0

2:J J'
\1) t- a:sw - 1- - - Ul ... HSH Ql
1- u \0 \0 -t>
c+' ...-1 ...-1

0
c.

..J(\1 _Q o:'l Ql

tlM S:Sl S:Sl
"0

:J: f-- - I- - -- a:sw HSW X. 1-

1
\0 \0
...-1 ...-1 u
d <l: ~

S:Sl S:Sl
Q
<1:.
u....

u

r
r- l:J QJ

+' - X X X X .£
\1) 11S .. . IS 1- - - +>
10 2:J N r- - - 1- - -

N a:sw a:sw 4-
1- u (\J (\J 0
c+' _Q o:'l _JN
tlM f- S:Sl _ f- HSl _ E
:J: . 0 - a:sw a:sw L 1-

1
(\J (\J 0)
d <l: 0 -S:Sl S:Sl Q

l
l:J

1- - - X X X X 0)

17S lS I- - - c
2:J E

I- a:sw - 1- - -... a:sw -r
1- u
0+' ...-1 ...-1

..J _Q o:'l t t (I) (\I HSW a:sw
~M S:Sl 1- HS1 _ Lf)
:J: u - f-- - u -
1- a:sw HSW +' ,... +' ,... Lf)

1
\1) \1)

...-1 ...-1
\1) \1) - "' v

su d <l: - -
l ! 0)

HSl S:S1 S:Sl S:Sl u...
LL..

LL.. LL.. ~ ~ :y:: LL.. w w wr u u w D rz: r::::J
D z: D u _.J- _.JD
_.J)- u ~ -
u (/) ~ z: LL.. LL..

control data is also indicated in the timing diagram. Table 5.1

gives the coefficient and control data bit definitions and clock

pulse positions corresponding to them, for further details about

the FAD IC refer to (41 ,89).

5.3 68000 Microprocessor

5.3.1 Introduction

In the last thirty years, computer technology has progressed

from colossal mainframe computers to the microprocessors.

A microprocessor is the central processing unit (CPU) of a

microcomputer and consists of one or more LSI circuits designed to

perform most of digital processing tasks by an appropriate choice

of a set of instructions 'software' defined by the user. The

microprocessor works as a sequential computational or control unit

by executing these sets of instructions.

The early 1970's marked the beginning of a revolution in the

world of electronics: the microprocessor was realized and more

powerful 8, 16, and 32-bit units were developed. In recent years,

the MC68000 has emerged as one of the most significant products of

a family of very-large-scale- integra ted (VLSI) circuit

rn icroprocessors. It represents a generation of rna ture

microprocessors because of its powerful facilities, its

computational throughput, simplicity to program and ease of

interfacing to other components in a microcomputer system.

5.3.2 MC68000 Architicture

The MC68000 is a 16-bit microprocessor designed for high speed

processing applications. It runs with a TTL compatible external

clock generator. The current versions of the 68000 have maximum

80

Filter Section: Coefficient and Control Data Definitions

Oock
Pulses

Bits

R Coefficient Input Data

1 to 12

13 ao

14 as

15 to 26 b12 to b1

27 bo.

28 to 31 s4 to s1

32 cl

NR Coefficient Input Data

1 to 12 A 12 to A 1

13 Ao

14 As

15 to 26 B 12 to B1

27 Bo

28 c2

Definition

The numerical bits of a', i.e. the bits of the fractional part
of the a coefficient, in two's complement form; a 12 is the
least significant bit (LSB). *

The sign bit of a': a0 = 0 for 2>a~l or 0>a>-l;.a0 = 1
for 1>a>:O or -1>a~-2.

The addfsubtract control bit: as = 0 for 2>a > 0; as = 1
for O>a ~ -2. ··

The numerical bits of the b coefficient, in two's comple·
ment form; b12 is the LSB.

The sign bit of the b coefficient: b0 = 0 for 1 > b ~ 0;
b0 = 1 for 0 > b ~ - 1.

The input scaling coefficient; s4 is the LSB.

Input selector control: if C 1 = 1, FILTER IN is selected;
if C 1 = 0 then FILTER OUT is selected.

The numerical bits of A'; i.e. the bits of the fractional part
of the A coefficient, in two's complement form; A 12 is the
LSB.*

The sign bit of A': A 0 = 0 for 2>A ~ 1 or O>A ~ -1;
A 0 = 1 for 1 >A~ 0 or -1 >A >:- 2.

The add/subtract control bit: As = 0 for 2>A~ 0; As = 1
for O>A ~ -2.

The numerical bits of the B coefficient, in two's comple·
ment form; B12 is the LSB.

The sign bit of the B coefficient: B0 = 0 for 1 > B ~ 0;
B0 = 1 for 0 > B ~ - 1. ·

B input selector: if C2 = , 1, B INPUT is selected; if
C2 = 0, B is unity.

•The 14 o lor AI data bits can be determined by expressin~ of2 10r Al21 in two\ complement form. and inverting the sccnnd hi!.

clock rates between 4MHz and 16 MHz. It is assembled in a 64 pin

package. The MC68000 contains 24 address connections permitting

223 16-bit words to be uniquely addressed. The external data bus

is 16-bits wide and transfers data between the CPU and its memory

and peripherals (interfacing). It is a bidirectional bus

controlled by the Read/Write (R/~ control signal which selects the

direction of data flow on the data bus. The data bus acts as an

input during a CPU read cycle and as an output during a CPU write

cycle. Basic read or write access requires four clock cycles, so

one byte of data can be transfered every 500 nsec for an 8 MHz

MC68000. The MC68000 has a register oriented architecture

containing eight 32-bit data registers (DO-D7), seven address

registers, a 32-bit program counter and a 16-bit status register.

The MC68000 is also capable of stack operations, two 32-bit stack

pointer registers are available on the chip (91 ,92,93,94).

(1) Data Registers

Each data register is 32 bits wide. Byte operands occupy the

low order 8 bits, word operands the low order 16 bits, and long

word operands the entire 32 bits.

All of the data registers are general purpose accumulators and

can be used as index registers or counters (93).

(2) Address Registers

There are seven general purpose address registers (AO-A6),

these registers do not support byte sized operands but can be used

for 16-bi t or 32-bi t long words only. The address registers are

used to handle addresses for indexed memory addressing.

81

(3) MC68000 Meliiiilory

The memory of the MC68000 is organized~ the same as the

registers~ into bytes~ words and long words. Each byte has an

address consisting of 24 bits. Byte address as may have any value

while the word and long word addresses must be even numbers (93).

5.~ FRC 68000 PROF! KIT

The FRC 68000 PROFI KIT board is designed as a 16-bi t/32-bi t

single board microcomputer as illustrated in the photograph in fig.

5.6. It has a 16-bit data bus and a 24-bit address bus. The

address bus provides a memory addressing range of greater than 16

Megabytes. A functional diagram of the system is shown in fig. 5.7

and the system features are as follows:

(I) Central Prreessing Unit CPU

The 68000 microprocessor chip is the CPU of the FRC 68000

PROFI KIT and interfaces with the rest of the components on the

board. It has a clock rate of 8 MHz.

(II) Meliiii!Ory and Address Jlrecode lf..ogic

The FRC KIT has two types of memory; random access memory (or

read write memory (RAM)) and read only memory (ROM).

(a) RAM

The on board RAM consists of either 16KW or 64KW. It is used

for the temporary storage of user program and data. The first 64

KW are located from hex address $000000 to $01FFFF~ where$ denotes

the hex number~ as illustrated in table 5.2.

(b) ROM

The FRC 68000 PROFI KIT monitor (FORCEMON) is contained in a

82

liMER CAS.
Pl.~~ --r-3-___,~

USER
(E) PROM / r-=k') I

r-4 BkW

lrH PlM I u 'PIA
681.0 ll682~

MPU ~
68000Ls~ l ~

N ADDRESS­
DECODER

1~-~-11 CONTROl-

~-'11-~-

SIGNAlS

(
INlERRUPT­
CONTROLER

~I!-

lf...-jf-

/

~ !../

"\. ADDRESSBUS

(16 kW)

v
v

/

/

SYSTEM
EPROM

~ SkW
~ 1Q kW~

_/

/

RAM
16kW (6l.kW)

/

TERMINAl
rr--

/ II . RS2312 II ~P~

.r-

/

BAUD
RATE
SElECTION

1!..-

HOST
r-

I P2
IL...-

'-----i DATABUS i---..c__-------"------'

POWERH

POWERIPII

Eomlsw2 ~~~
~sw~ lF J fill 5 .. 7 [8) ~ o cc lluJJ I IZD9Jir Gl U1J1l

Memory-Map: 64kW RAM Version

FFFFFF
unused

05FF36

05FF35
P I I T

05FF01

05FFOO
unused

05CEF8

05CEF7
P I A

05CEF1

05CEFO
unused

050044

050043
A C I A < HOST >

050041

050042
A C I A (TERMINAL)

050040

05003F
unused

04CF50

04CF4F
P T 1'1

04CF41

04CF40
unused

030000

02FFFF
USER-<E>PROM

028000

027FFF
SYSTEM-EPROM

020000

OlFFFF
USER-RAM

000800

0007FF
WORK AREA FOR FORCEMON

000400

0003FF
EXCEPTION-VECTORS

000008

000007
INITIALIZATION MPU

000000

Table s .. 2

16-KB of system ROM/EPROM (eraseable programmable ROM) expandable

to 32KB. ROM can be addressed from $20000 to $27FFF.

(c) User EPROM/ROM Area

The 16kB user ROM/EPROM can be addressed as 2K*16, 4K*16 or

8K*16, and may be expanded to 32KB. That area allows one to

integrate user EPROM/ROM into the PROFI KIT environment (95).

(III) I/0

Combination of some of these decoded outputs with some of the

address lines or with some of other decode lines generate the

peripheral I/0 address range. The decoded address lines are also

capable of decoding RAM and ROM. Each one of these ports has a

different function. Ports 1,2,3 are of particular interest.

(1) Port 1 and 2

These are serial communication ports, port 1 is used for a

terminal and port 2 is used to save programs. Both are RS232-

compatible and have different selectable baud rates.

(2) Port 3

Port 3 is connected to a 6821 parallel interface adapter (PIA)

which contains two 8-bi t ports (A&B).

5.5 Practical Implementation Problems

5.5. 1 Coefficients Timing

The FAD IC is required in some way to store the coefficients.

One way to do this would be to use semiconductor memories. For

fixed values coefficients ROM could be used. In this project, the

coefficients are variable (time-variant) and temporary storage,

namely RAM is used.

83

The problem of feeding the coefficients into the FAD chip from

the memory is of major concern in the design and implementation of

the ANC, because the time required for achieving this feeding

process becomes the limiting factor and leads to a more complex

implementation.

As has been pointed out previously, these coefficients are not

fixed and are updated according to the eqns. 3.5.1 and 3.5.2 by use

of the LMS algorithm. In order to achieve this, a significant

amount of hardware logic is required which makes the system

complex.

An alternative would be to develop a 68000 assembly language

program to execute the updating operation and to write the data

into RAM.

As has been mentioned before, the FAD IC requires one bit of

recursive and non-recursive coefficient every clock cycle (in

serial form) with the LSB first. In the case of the 16th order

filter 2*256 clock cycles are needed for feeding all the

coefficients bits (2*256 bits) into the FAD IC. In other words,

the memory must be capable of writing one new bit of each

coefficient every clock cycle into the FAD IC.

This must be achieved in the minimum time which inevitably

requires high speed digital circuitry. However, since the required

speed cannot be obtained by interfacing the MC68000 to a simple

memory circuit, it is achieved by interfacing the MC68000

microcomputer to the circuit as shown in fig.5.8. Writing one bit

of each coefficient in this period of time (one clock cycle)

exceeds the capability of the MC68000, so the MC68000 is interfaced

84

to two sets of high speed RAMs, namely RAM1 and RAM2, with

multiplexed address lines between the MC68000 and a counter,. in

conjunction with other auxiliary components. Each set of RAMs

consists of two 74S200 TIL devices (96) (tristate) with a maximum

access time of 50 nsec, organized as 256 words by one bit per word

with separate input-output pins and with eight address lines as

illustrated in fig.5.8.

In principle, the writing function is generally separated into

two phases:

(1) writing the data into RAM1 with the aid of the MC68000.

(2) transfering the data from RAM1 to RAM2.

5.5. 1.1 Writing Data into RAM1

A software routine is executed to write one bit of each of the

coefficients in serial form into RAM1, this will be described in

detail in the next chapter. Eight address lines are connected to

port A of the PIA to identify 256 locations. The MC68000 addresses

the desired word of RAM1, beginning at word 0 and going

sequentially through to the last word.

To synchronise the MC68000 and RAM1 so that write control

inputs are activated simultaneously, the R/W control pulse of the

MC68000 is connected to the WE control input of RAM1 during the

write operation.

When the write operation is performed by the MC68000, the

information is serially transfered from the output port of the PIA

to the RAM1's locations that have already been addressed by the

MC68000. The data is written into RAM1 whenever the WE pulse goes

LOW. In regard to the fact that the coefficients bits should be

85

DBU
f(~

(")
ae (7\

V)

~~ w _J

AS---, _j I•
I (")

<~iiQ~ :le (7\ IWI
<a> '--

V) l w ~

L£2Sl17L _J

s
~

> N
>-

..

lH ~ § z: - J
~ c - (1) (l) '--

~ 002S17L
'--

~002S17L
c "' 0 "' ~ Q Q Q

c c c

I
II ... ,.

[
... ,.

>- >- >- >-
(l) m

L£2Sl17L L£2Sl17L
s s ... ,. ... ,. ... : ~ lii c c IIQ IIQ c

II'

~lltl
'II U:llld

~ ~DSS3:J
-~dD~:JIW I

I UJild 00089 n

.V I

£9171H)l"'t)

a 'V j
... u

~8 ~8 ~
J J + t

> ~ Cl Q

(£.)

L£2Sl17L 17LSl17L
)f"'1J

""N ""N CCIIQIIQ

I
z: § ...

~IN
a
a@
(\J"
V)

DIN
I~ I ~
L

l.a; §
a
0"
(\J('J
V)

DIN
I~ I~

~/1
~

ae d J.tlO':)'lf

Wl~ £91Sl JJJ]

_a ciO

d J.nD'J'lf ae £91Sl JJJ] wa cia

(~

t--

1-

r--

.,

E
ro
L
0"1
ro

0
+-
:J
u
L

LJ

0"1
c
u
ro
~
L
Q) -c: -t/)

L
<(
0:::
co
L{')

0"1

ll..

available, one of each every clock cycle and this speed is not

sufficient for achieving this function. Therefore RAM1 is disabled

whenever R/W pulse goes HIGH. This could be done by connecting the

MEMORY ENABLE control inpts (ME1,2,3) to R/W pulse as well, as

illustrated in the timing diagram in fig. 5.9. In that case the

data are stored in RAM1 and cannot be fetched by the rest of the

circuit.

One important consideration should be borne in mind, that

during write process the FAD IC requires its coefficients to be fed

into it. In order to accomplish this operation the control inputs

of RAM2 have to satisfy the following conditions:

{a) The RAM2 address lines are connected directly to the outputs of

a counter as shown in fig. 5.8, operating at the clock frequency of

the FAD IC. So the address is incremented by one every clock

cycle.

Two 741S163 synchronous 4-bit counters (96,97), cascaded

together by connecting the ripple carry output (R.C. OUT) of the

first one with count enable inputs (ENP,ENT) of the second one, are

used to generate the addresses for RAM2. The first ENP & ENT are

wired HIGH to enable counting. This counter is cleared and

reinitialized starting with address 000 at each computation period

(8 timeslots for a 16th order filter), this will be described in

more detail in the next chapter.

{b) The WE is activated (HIGH) during a write operation by RAM1,

so RAM2 is in the READ mode and the data are fetched from the

addressed locations, which come from the previous write operation

(old data) and are fed into the FAD IC every clock cycle.

86

CLOCK

SYNC

S200 1
MEt2~3

S200 1
WE

S200 2
MEt2~3

S200 2
WE

LS257 1
SELECT

LS257 2
SELECT

LS257 3
SELECT

~
c

0
0

-4 10 4--

•

...
.. - 256 1: c.;._ - .=.+-________ _

_____ 256 1:c

+-----· ---- 256 1:c -

. ' 32512 ... r~ ---------- 256 1: ~c • c "I

I• ---- 256 1:c----

--- 256 1:c-----------• J

---- 256 1:c---------------~L_ ______________ __

Fig. 5.9 RAMs Interfo.clng TIMing Dlo.gro.M

The write process progresses until all 256 bits are allocated

in the appropriate addressed positions in RAM1 with the aid of the

MC68000.

5.5. 1.2 Transfering Data from RAM1 to RAM2

As mentioned previously implementing the writing process using

only one RAM is impossible. A transfer process, from RAM1 to

another RAM, namely RAM2, overcomes this drawback and feeds the

data into the FAD IC within the time available within the adequate

speed (time). RAM2 is identical to RAM1 in its performance.

To accomplish the interfacing process, so that one bit is read

from RAM1 and written into the corresponding memory location in

RAM2 (and simultaneously into the FAD every one clock cycle), the

address lines of RAM1 are driven from the same counter that was

used to address RAM2 as mentioned in the previous sectio~

During this process, the state of the control inputs of both

RAMs are changed. For RAM1, the WE control input is held HIGH to

activate the read operation, ME1 ,2 ,3 are set to logic 0 enabling

the memory, while the second RAM operates inversly , i.e. in write

mode instead of read mode, WE control input is held LOW, ME1 ,2 ,3

remain as before, as illustrated in the timing diagram in fig 5.9.

During the transfer process no new or old data could be

written from RAM2 to the FAD IC since the read mode from RAM2 is

disabled. At this time the FAD IC is swapped from RAM2 to RAM1 in

order to make the new coefficients on recursive and non-recursive

inputs available every clock cycle, with the aid of a multiplexer.

87

552 Writing Data into the MC68000

Referring to eqns.3.5. 1 and 3.5.2 in chapter 3 9 to update the

coefficients with the aid of the MC68000 9 the input 9 desired

response input and output samples must be available at its input

port whenever the updating operation takes place. One difficult

problem associated·with using FRC PROFI KIT is the limited

input/output ports (pins) available 9 which hinders direct

connection between these data lines and the MC68000 and makes the

hardware design more complex.

Unfortunately the number of input pins are limited to 6 while

there are 36 bits (requiring 36 pins) of data required.

A particularly convenient method for overcoming this

limitation involves using 3 sets of multiplexers 9 refer to appendix

B9 (96 997 998) with the aid of a software routine carried out by the

MC680009 listed in appendix E.

5.6 Interfac~ Considerations

5.6. 1 Input Samples to the FiiD

Most real world quantities are analogue and need some way of

communicating with the digital systems or vice versa. In this

project the ANC inputs (input signal and desired response input)

are required to be converted to digital form. Conversely the ANC

outputs (filter output and error output) should be converted from a

digital form into an analogue form.

The ADC represents the connection between the analogue and

digital systems and generates a digital estimate of the analogue

signals.

88

One method of A/D conversion is successive approximation which

is characterized by high speed processing, and uses a DAC to

compare an analogue signal with an internally generated signal

(99, 100).

In this project an RS574 12-bit resolution successive

approximation ADC (101) was used with a maximum conversion time of

32~-tsec for 12-bi ts, as shown in fig. C-1. It has been mentioned

before that the FAD input is serial and since the binary numbers

representing the ADC output are in parallel form. A 12-bit

parallel to serial shift register (97) is employed in the hardware

design.

5.62 FAD to Output Samples

To convert the digital output of the FAD IC to analogue form,

a DAC is required. But since the FAD output is serial, a 12-bit

serial-in parallel-out shift register, consisting of two 74LS164 8-

bit parallel-out serial-in shift registers, is used as illustrated

in figs. D-1 and D-2. The output lines of the shift register are

latched by means of two SN74LS373 Octal D-Type Transparent Latches

(96, 102). This eliminates any possible race conditions that could

be occur while new data is being loaded into the shift register.

The output data is available on the FAD IC on the rising edge of

the clock with LSB first.

An RS7545 12-bit DAC (103) is used to get the analogue output.

It is a monolthic 12-bit CMOS multiplying DAC. Data are loaded

using the CHIP SELECT (CS) and WRITE ENABLE (WR) control pulses

which may be held low allowing direct unbuffered operation.

89

5.6.3 Producing the Error Output

An essential parameter of the ANC system is the error output

signal ej as has been discussed in chapter 3. One new sample of ej

must be obtained every computation period (8 timeslots). With

regard to the speed of the MC68000 (section 5.5.1) and the

impossibility of forcing the MC68000 to update the 32 coefficients

(16 non-recursive and 16 recursive) of the filter in time. It is

not prefered to interrupt the software program every computation

period to compute the error output from the desired response input

and the filter output. So it is difficult and awkward to obtain ej

in time with the aid of the MC68000. A solution to this is an

Arithmetic Logic Unit (ALU) (97) which is incorporated into the

hardware design of the ANC system. A set of ALU's formed from 3

74LS181 ALU/Function Generator are cascaded together by connecting

the CARRY-OUT (Cout) of a stage to the CARRY-IN (Cin) of the

succeeding stage as shown in fig.5.10.

The advantage of the 74LS181 (96) is that it can perform any

of 16 binary operations and 16 logic functions without the use of

external circuitry, just by changing the states of its control

inputs. There are five control inputs (MODE and four SELECT inputs

(SO ,S 1 ,S2 ,S3,) that determine the operation performed on the

inputs.

In order to obtain ej the filter output samples are subtracted

from the latched desired response input samples. To accomplish the

subtraction, the MODE control input (M) is set to logic 0 to define

the arithmetic function. The SELECT control inputs are set to

logical 6 to select the subtraction function. The CARRY-IN is set

LOW. The output of the 74LS181 is encoded into four bits, so that

90

~
t­
:::J
ll.
z: -
~
~
<[
z: -~
I.&.J
~
z:
D
ll.
~
I.&.J
~

~
I.&.J
~ -~
I.&.J
~

-
--

b.

I II
CUT CTRL 0 "'t 0 M 0 M 0 M 0 M 0 M

< < Ill Ill < < Ill Ill < < Ill Ill
Dt Ql ~ so ,..... so r- so
D2 r-- ~

(Y)
74LS181 ~~ ;= J?v~ Cn 74LS181 ~~ ~~v

,.....
Cn 7 4 L S 181 Sl =~v 03 I'-.

~
S2

(Y) r Cn+4 S3 1- r Cn+4 S3 r- S3 f-e ~ ~~ e ~ """-~ 0 M
V1 "- "- 1-::.E=-
_J QS I II DB '¢ I' I'-.

I!J

I

I r-CUT CTRL - Sk 0 -Ill Ill
Dl (Y) Ql Q Q

ft>-- ERROR I'-. CUT ... -(Y) RS5745 GND OUTPUT D4 V1 Q4 ,.
"-

_J t..J I

~ tl ~
flQ I 20k I!J t...

(\/\
01: I

I I 9 ~ "- I -'- ~ . JC <
'-~ T M

i 9 <
JJ l I \

i N

c:L.J(/4
c:L.J(/8
c:L.J(/16 ----
B:~~l~
Cl.l</128
CLI</C!S.,

Fig. 5.10 Circuit Dlo.gro.M for Producing the Ano.logue Error Output

~
t­
:::J
ll.
t­
:::J
D

~
~
<[
z: -~
~
I.&.J
t­
...J -u...

ej is represented in 12 bits. The hardware for converting ej into

its analogue represetation is similar to that used for the filter

output. The 12-bit DAC is used as in the case of the filter output

Yj as shown in fig.5.10.

5. 7 Conclusion

This chapter is concerned with the description of the single

board 68000 microcomputer and the digital filter IC (FAD) as the

most two significant elements in the hardware design of the ANC.

It is emphasised how successfully the limitation of the speed and

interfacing connections of the 68000 microcomputer were overcome

and how it is possible to write one bit of each coefficient every

clock cycle, employing two sets of high speed RAMs, simultaneously.

It has been shown that the system is capable of operating in real

time, so one input sample fed to the FAD IC and a corresponding one

output and error output sample are produced every computation

period.

91

CHAPrER-6-

ADAPTIVE NOISE CANcm.LER IMPI.»1Fm'ATION

6.1 Introduction

Many kinds of problems are encountered realizing a filter in

hard ware, ·for instance, design problems, where the theoretical

basis for the desired system is translated into a hardware design;

implementation problems, where the hardware design is translated

into physical components, etc.. The previous chapter dealt with

these kind of problems and ways of solving them. Another kind of

problem is one associa t_ed with the components involved in the

design. Unfortunately, in our case, the FAD IC, which is the

heart of the adaptive noise cancelling system in the project failed

to produce the expected result. The first section of this chapter

is concerned with this problem and the test circuit employed for

the purpose of detecting it. The rest of the chapter emphasizes

how a 68000 software routine has been applied to update the

coefficients as well as manipulating the sampled data required for

this operation.

6.2 Solving the FAD IC Problem

It is well known that, in general, electronic components

throughly tested before they are sold. A circuit of a real-time

second order digital filter with variable coefficients, utilizing

the FAD IC, was constructed as a first step in developing the

design of the 16th order LMS adaptive filter. Two streams of data

(32bits each) comprising the coefficients and the control bits were

entered (serially) into the NRCOEFF and RCOEFF inputs of the FAD

92

IC. One bit of each stream of these data were read by the FAD IC

every clock cycle in order and at an appropriate time with respect

to the SYNC pulse as illustrated in the photograph in fig.6.1.a.

These data were written and stored in two sets of RAMs with the aid

of a 68000 software routine as mentioned before and described in

detail later in this chapter. The filter input was a sinusoid

below the sampling frequency (for example below 32KHz at-clock

frequency 2MHz) converted to its digital form by means of a 12-bi t

ADC. One input sample was applied to the filter input every

computation period (32 tc). Consequently, one output sample was

available every computation period, and it was converted into

analogue form with the aid of a 12-bit DAC.

After the construction of the FAD circuit was completed,

extensive continuity checkes verified that the circuit was correct,

as far as could be determined. Unfortunately, functional tests of

the system showed that the hardware was not performing as expected,

as shown in fig. 6.1.b. Manipulation of the FAD clock frequency

and the values of the coefficients was also carried out in order to

see if some improvement in the filter behaviour resulted, but the

output remained incorrect.

As a first stage in solving this problem the ADC, DAC and

associated shift registers were omitted from the design to avoid

any quantization noise which could degrade the filter performanc~

In this case the fi 1 ter input was connected to ground. The pulse

transfer function of such a filter, is expressed as

G(Z) = 1+AZ~ +BZ~
1-aZ-1-bz-2

93

SYNC PULSE

CLOCK

NRCOEFF

RCOEFF

Fig. 6.1.a Coefficients timing configuration for second order recursive digital filter at
clock frequency of 1 MHz

SYNC PULSE

CLOCK

FILTER OUTPUT

RCOEFF

Fig. 6.l.b Second order recursive digital filter output of the faulty chip at clock
frequency of 2.051 MHz with respect to the clock and SYNC pulse.

in the frequency domain and represented by the linear difference

equation

y(n)T = x(n)T+ Ax(n-1)T+ Bx(n-2)T

+ ay(n-1)T+ by(n-2)T

in the time domain. It is therefore obvious that y(n)T = 0

whenever the input samples are set to 0. Unfortunately the limit

cycle oscillations occured at the filter output even with the

fi 1 ter input set to zero (with non-zero coefficients), and

therefore all coefficients were set to zero. In spite of all these

modifications the filter was still unable to produce a zero output.

We realized that we were facing a significant problem, which

could be either due to the FAD IC or the coefficients and the

control bits timing. So the second stage was to contact Plessey

(the manufacturer of the FAD IC) and ask them for· further

information and discuss the problem with them. Unfortunately no

further information had been published.

Assuming that the problem might arise from the coefficients

timing, a simple second order digital filter, employing the FAD IC,

was constructed (as described in the data sheet supplied with the

chip). The circuit diagram of such a filter is depicted in fig.

6.2.

Only five ICs were required, the FAD IC, a 2*32 PROM, 2 LS163

forming the counter and a TTL quadruple 2-input positive OR gate

(92) to generate the SYNC pulse. Zero external delay was required,

so DELAY IN 1 was connected to DELAY OUT 1, and the inherent delay

of 1T was selected by connecting the DELAY SELECT control input to

0. Hence the case of non-unity B coefficient was used, the B

94

Sv r ENP (Y)
00 ENT \()

ADA 00 DOl
r I 4 QA

(\J -(/)
QD (/) f"ILTER IN DELAY _J ADE ~ DC2 SELECT NR ~

" '-
CCEF'F' U MULT " R.C.

t-4 (Y) IN D
CUT ~

R \()
CLK

L--
CCEF'F' ~ ~ R.CUT J

MULT
SYNC <! I- CUT D lL p:j B.IN

a:: D.INl D
ENP (Y) (\J w

~!;
._ ENT \()

QA '-- At (Y)
CLK i:c D.CUTt

(/) y (/)
_J _J

AS ~ ~

" "
CLK
J ... ,

C)

~
_J
u

"
Fig. 6.2 Second Order Recurs ive Diglto.l Fll ter

multiplier was employed by connecting R OUT to MULT IN and MULT OUT

to B INPUT and c2 was set to 1. The control bit c1=1 so that the

data applied to the FILTER IN is input to the filter section. The

input scaling factor had no effect on the result in the case of

zero input, so it could be set to any arbitrary value.

Coefficients and control data were applied one bit each clock

cycle as before and they are tabulated in table 6.1 according to

table 5.1.

More tests were carried out, but the problem still persisted

(fig6.1. b).

In light of previous attempts, a fault in the FAD IC itself

was suspected. It is well known that using CMOS devices is

somewhat risky because of their sensitivity to electrostatic

charges which can cause damage to the chip. However, a couple of

new chips were ordered, and were used in the design, but

unfortunately no further progress was achieved with the filter.

The next stage was to contact Plessey again and they confirmed

that the chip was in good condition, so we contact the people who

contributed the design of the FAD chip. Dr. Patrick Hughes, one of

the research staff concerned with the chip design at British

Telecom Research Laboratories kindly helped and examined the chip,

but no fault could be detected in it with their test machine.

However, a number of photographs for the timing of the coefficients

with respect to the clock pulse and SYNC pulse control input and

for the output were sent to him.

Finally the situation became clearer and Dr. Hughes detected

95

Table 6.1

Coeffecient and Control Data

Coeff Decimal 2's Complement Binary Form

value
12 (LSB) 1 (MSB) Sign bit

a 0 000000000000 ao = 1

as 0

b 0 000000000000 bo =O

s xxxx xxxx

C1 1

A 0 000000000000 Ao = 1

as

B 0 000000000000 B0 =0

c2 - 1

x denotes 'don't care'

an error in the multipliers, which represent the heart of the chip,

and kindly sent us a couple of new versions that operated

correctly. It appeared that, unknown to either ourselves, British

Telecom or Plessey we had been supplied with a very early version

of the FAD IC which, while fully functional according to their

tester, suffered from errors in the multiplier section which caused

the observed faults.

The new chip was then used and the output observed under the

same conditions and was found to be operating correctly. Another

test was carried out on the new FAD IC by setting all non-recursive

coefficients of the 16th order filter to the same fixed value, and

the recursive coefficients to zero. The frequency response of such

a filter is illustrated in fig. 6.3.

6.3 The FAD IC as a 16th Order Filter

The FAD IC is designed to operate from a single +5v power

supply and has a single TTL compatible clock input with 50% duty

cycle. For the 16th order filter, a delay of 7T (224 clock cycles)

is provided on chip, as well as the inherent delay T, so that the

delay time necessary for the implementation is 8T. To select the

7T internal delay the DELAY SELECT input is wired high. It has

been mentioned before that the coefficients are chosen to be less

than unity to gain a better stability. To select the case of non­

unity B coefficient the same procedures as in the second order

filter are followed.

6.4 The Input & Output Sampled Data

It has been discussed earlier in chapter 3 that the adaptive

noise canceller has two inputs, the filter input and the desired

96

7.8
,-...
c:o
'"C) ._
Q) 7.4 '"C)
;:s ·-~
0..0 7.0 ro
a
Q)
CIJ
~
0 6.6 0..
CIJ
Q)
!-=<

>.
u 6.2 ~
Q)
;:s
0"'
Q)

~ 5.8

5.4~--~--~--_.----~--~--~--_.----~
0 1 2 3 4 5 6

frequency (Hz)

Fig. 6.3 Amplitude/Frequency Response of the FAD IC

response input and two outputs, the filter output and the error

output. These sampled data are essential components in the

updating operation of the filter coefficients which is achieved

with the aid of the MC68000. These sampled data communicate with

the processor through the PIA.

This section is concerned with describing the method of

expressing the input sampled data in two:s (2's) complement binary

form, loading the data into the MC68000 and saving the input&

output sampled data in the MC68000.

6.4.1 Expressing The Input Samples in Two's Complement

Any number expressed in binary form must be represented in 1's

and O's. Positive numbers cause no problem, but a decision must be

made as to how to represent negative binary numbers. The most

common method is the 2's complement representation. Here positive

numbers are represented as a simple binary numbers, with the

restriction that the MSB is 0. Negative numbers are represented as

simple positive binary numbers which are then complemented and

logic 1 added to the LSB (ignore any carries out of the MSB

(MSB: 1)).

In this project, the successive samples of the filter and

desired response inputs are obtained from a 12-bit ADC operating in

bipolar manner. This sampled data is expressed in binary offset

form which cannot be directly processed by the CPU, in which a 2 s

complement representation of binary numbers is normally used.

Fortunately, however, the difference between these two forms of

representation is that the sign bit value (MSB) of one is the

inverse of the other. So to achieve a conversion, the sign bit

97

(MSB) of the ADC binary output is inverted using a TTL 74LS04

inverter gate before accessing the data.

6.llll.2 Wri tmg Data i:nto the MC68000

It has been evolved from the simulation results 9 that the best

performance of the filter could be achieved by employing blocks

type (section 4.3.4) in· the hardware implementation of the LMS ANC.

In this case a block of 16 successive samples of the input as well

as the output and the desired response input are read by the

MC68000 every 128* 16 computation period (sampling instants).

The PIA provides efficient communication between the input­

output sampled data and the MC68000 CPU. As has been mentioned

before the number of input pins that can be used for this task is

limited to 6 (port B). This limitation could be surmounted by

applying proper control pulses to two of the control lines of the

PIA 9 in our case CA2 and CB 1 9 as shown in fig 6.4. They should be

square pulses of 50 % duty cycle and will act as INPUT READY

signal genera ted by the components in the hard ware des ign 9 of 32

and 64 clock cycles width respectively in order to govern the

timing of data entering the MC68000.

This operation implys the following procedures~

(1) Initializing the PIA 9 this can be achieved by setting the data

direction9 data and control registers of the PIA as shown in

appendix E.

Since the data is entered into the MC68000 every 128*16 (N*16)

computation periods (sampling instants) 9 another control pulse 9

namely CB2 is required. So the status bit of the control register B

is set to 1 every 128* 16 computation periods to load a new blocks

98

CLOCK

SYNC u- -- -- - ---u

CA2 .1' I L . ____r--J 1+- ~ ---+!+= ..Y =;[_ L (U

C"''

C B 1 I 14--6
:J -tc -=1• 64 -tc -=41• d J ~~ 4 Y J -~·~-----

CB2 +- 32512 -tc 256 -tc----------------------~~------------

Fig. 6.4 The PIA•s Control Inputs TIMing Dlo.gro.M

of data (16 successive filter input, desired response input,

filter output samples). It is also set to 1 every 128 computation

periods to start the coefficients updating operation and write the

coefficients into the external RAMs. So this pulse goes low for

one sampling period and high for the rest 127 sampling periods as

illustrated in fig. 6.4.

(2) Testing the status bits and reading the data. After the PIA

is initialized, the MC68000 tests bit 6 on LOW-to-HIGH transition

of CB2 to see whether it is set to 1 or not. Once the bit is set,

it informs the CPU that the INPUT READY and the 6MSBs of the filter

input sample could be loaded into the processor via the data

register. These 6MSBs are stored in a data register of the CPU, in

our case DO. The 6LSBs are loaded whenever the status bit of

control register A is set on LOW-to-HIGH transition of CA2 and are

stored in the data register D1, for further processing. The

desired response input and the filter output samples are read by

testing the transition state on CB1 and CA2 as illustrated in fig.

6.4. Since the data is transfered to the CPU over port B, an

important factor should be considered when the status bit 6 is

tested. Since, the only way to clear the status bit 6 is to read

the data register A, a dummy read is necessary because the data

register A is not involved in this reading operation.

6.4.3 Adjusting Bits Locations

It is seen that after read instructions are terminated, the

data word is split in two data registers which is an awkward

situation. In order to get them in the desired locations, the

6MSBs are shifted 6 bit positions to the left to occupy the second

99

byte of DO, (DO is 32-bit). Then the 6LSBs transfered to take a

place in the first byte of DO. The bits could be set in the

correct order by shifting the contents of DO 2 bits to the right,

so that the input sample occupies bit 0 through bit 11 of the DO

word (16 bits). The same set of instructions is carried out for

the desired response input and filter output samples.

6.4.4 Extending the 12 Bits to 16 Bits

Since arithmetic operations are only performed on bytes, words

or long words, the 12-bi t data should be extended to a word. One

should be careful in extending this data and take into account

that it might be negative as well as positive. So one way to

achieve this extension is by examining (testing) the sign bit of

each binary number sample, whether it is zero (indicates positive

number) or one (indicates negative number) and setting bits 12 to

15 to the detected sign bit value.

The same sequence of instructions will be involved in the case

of reading the desired response input and filter output, but

instead different data registers are used.

The error output may be computed by subtracting the filter

output from the desired response samples fed to the MC68000.

6.4.5 Circular List Process and Saving Input & Output Data

Referring to the coefficients updating eqns. 3.5. 1 and 3.5.2,

updating 16 recursive and 16 non-recursive coefficients requires

the existence of the present input and output samples as well as

the previous 15 input and 15 output samples. In other words, these

previous input-output samples must be saved somewhere and invoked

whenever called by the CPU in order to implement the coefficients

100

updating operation.

One way of storing the data is using a circular list process.

The filter input and filter output samples are stored in the memory

locations addressed by the address registers A4 and A6 in the

MC68000 respectively. The memory holds a record of the current and

previous input and output samples represented in two blocks each in

which the time interval between the two blocks is N* 16 sampling

periods. The first one contains the previous samples and the

second one contains the new samples. These samples are expressed

as xj, xj-1' ••• , xj-15' Xj-(N*16)' Xj-(N*16)-1' ••. , xj-(N*16)-15

and Yj-1' Yj-2, .•• , Yj-16' Yj-(N*16)-1' Yj-(N*16)-2, ..• , Yj­

(N*16)-16, where N equals 128 sampling periods.

By applying the address register indirect with post increment

addressing mode, the CPU increments the address registers A4 and A6

to allow the sequential addressing of the sampled data, starting

with the most recent input and output samples xj and Yj_1• After

the last samples xj-n+ 1 and Yj-n are individually addressed, a new

input and output sample are then transfered from the first block

into the second block and written into the memory locations

addressed by these addresses replacing the last samples. Therefore

whenever the coefficients updating operation takes place, A4 and A6

address the latest sampled data record and the previous samples are

rippled through the memory locations addressed by the contents of

A4 and A6 in the first block. That is to say, in each updating

period (N sampling periods) one new input and output sample are

transfered from the second block to the first one replacing the

latest input and output samples Xj-n+1, Yj-n· This operation is

101 ~

continued until all new samples in the second block replace the old

samples in the first block, one by one every updating period, so at

the end a new block of 16 successive input and output samples, as

mentioned before, are read by the MC68000. So after N*16 sampling

periods, 16 new successive samples are loaded into the second block

and so on.

An example of the circular list operation is shown in table

6.2, where a sampled data record of five samples is addressed. The

addressing of sampled data is shown for the first three updating

periods in the first block. x1, x2, x3, x4, x5 represent the

successive samples in the first block, z1, z2, z3, z4, z5 represent

the successive samples in the second block, where x1 and z1 are the

most recent samples.

first updating period

address

0

2

3

4

second updating period

address

4

0

1

2

3

102

sampled data

x1

x2

x3

x4

x5

sampled data

z5

x1

x2

x3

x4

third updating period

Table 6.2

address

3

4

0

1

2

6.5 The Filter Coefficients

sampled data

z4

z5

x1

x2

x3

The coefficients play an important role in the design and

implementation of the ANC system and govern the stability of the

system. This section investigates how the MC68000 can be applied

to update these coefficients in the LMS algorithm and how the data,

comprising the FAD multiplier coefficients, scaling factor and

control bits can be represented according to table 5.1 (described

in section 5.2). Finally it discusses the software routine that

combines two recursive coefficients in one location of a data

register (and the same for non-recursive coefficients and how they

can be seriall written into an external RAM used as the

coefficients storag~

6.5.1 Updating the Coefficients

In the view of the LMS algorithm, the next non-recursive and

recursive coefficients may be computed according to the following

equations

and -bJ·+1 = bJ· + 21l2 Y · eJ· - -J

103

respectively.

Thus the updating operation involves time shifting,

multiplication, division (since 0<=~1), and addition. It has been

pointed out earlier in chapter 5, that the 16th order filter is

implemented by cascading 8 second order sections each one with an

individual transfer function. A 68000 assembler software routine,

listed in appendix E, is carried out to accomplish this task as

follows.

(1) The updating operation is first established by loading a data

register, for instance D6, with the number of second order filters

cascaded together (8).

(2) The CPU fetches the input sample from the memory location

addressed by the contents of the address register A4, as has been

mentioned previously, and multiplies it by the previous error

output (ej). Fortunately the signed multiply instruction (MULS) is

provided in the 68000 which makes the task simpler and easier to

understand.

(3) The multipilcation result is scaled down by a proper

convergence factor, J.L , to approach the state in which the desired

signal could be separated from the noise contaminated with.

(4) The data extracted from the former step is added to the

previous non-recursive coefficient, of the same order, and written ·

back into the same location addressed by the contents of A5. and

is therefore saved for use in the updating operation of the next

updating period.

The recursive coefficient can be updated following rather the

same steps. However the filter output vector (l.j) is involved in

the multiplication rather than Kj and a different convergence

104

factor is used to scale down the resultant data obtained.

An identical sequence of instructions is carried out to

complete the updating of the 8 second order sections by

incrementing the contents of D6 by one after the completion of each

section updating operatic~

Car-e must be taken when the input or output samples are

fetched from their storage in the MC68000 memory. The address of

their locations should be examined while fetching every sample and

compared with the last address (which is $XX1F since the contents

of A4 and A6 are incremented by two on word operand operations).

If the last addresses have been reached, A4 and A6 should be

reloaded with their first addresses immediatly to avoid the

overflow.

6.5.2 The Coefficients and Control Bits Representation

One problem that arises in implementing recursive digital

filter (fixed coefficient and adaptive), is the possibility of

instability when the poles take values outside the unit circle in

the Z-plane (the unstable region). Because of this instability

problem the recursive coefficients are considered to be less than 1.

In fact there is no restriction on the locations of zeros, so they

could be on any side of the unit circle. But for the sake of

simplicity, and because the updating process is carried out in

fixed point arithmetic (finite precision representation), the

resultant coefficients are considered as a fractions less than 1 as

well.

Referring to table 5.1, it is observed that the first bit of

the second non-recursive and recursive coefficient entering the FAD

105

chip coincides with clock pulse number 15. It is more convenient

to join both of them in one data register. Both of recursive

coefficients ,a, and ,b, are transfered to a data register, for

instance D3, so the first one is located in the least significant

word (16 bits) while the second one occupies the most significant

word of D3 (16 bits) in the MC68000. The non-recursive

coefficients A and B occupy the data register D7 in the MC68000.

In the view of table 5.1 the negative and positive values are

distinguished by the sign control bits a0, b0 and A0, B0 for

recursive and non-recursive coefficients respectively. (1) A

test instruction is used to examine the sign bit of each

coefficient individually, a0 and Ao are set to 1 if the

coefficients are positive and to 0 if negative. (2) The

ADD/SUBTRACT control bits as and As are set to zero in the case of

positive values and to 1 for the negative values. Since b and B

are already equal to or less than 1 this control bit is eliminated.

(3) The test command is employed to examine the sign of A and a

individually. It has been emphasised earlier that the FAD accepts

12 bits of the fractional part of each coefficient. Since A and a

are 16 bits including the sign bit, the coefficient.s bits are

truncated to 13 bits (the MSB is the sign bit) by shifting them to

the right 3 bits. Then bits 13 (A0,a0) are set to if the

coefficient is positive or to zero if it is negative. Bits 14

(As,as) are set to zero in the case of positive values and to one

for the negative values.

Steps (1) and (3) are repeated for b and B coefficients.

Notice that the ADD/SUBTRACT bit is omitted in these coefficients

since they are equal to or less than tmi ty.

106

In order to allocate the LSB of B and b in the bit positions

14 (coincides with clock pulse number 15) in the data register D3

and D7 respectively, the least significant word (LSW) of each is

shifted 2 bit positions to the left and then the entire 32 bits of

D3 and D7 (long word) are shifted to the right 2 bits to join or

combine each set of the coefficients in one data register.

In addition to the coefficient bits, 4 bits (s4,s3,s2,s1)

representing the input scaler factor are allocated into bits 27 to

30 (coincides with clock pulse number 28-31) of D3 in order to

prevent the overflow at all nodes of the FAD IC, it is applied, in

our case, to the FAD in each second order filter sectio~

The input data selector·C1 is set to 0 for the first 7

timeslots. In this case the data emerging from the filter output

is fed back internally to the filter section at the begining of

next timeslot. C1 is set to zero in the last second order to

indicate that the output of the 16th order filter is valid at the

filter output (pin 15) and the data applied to the FILTER IN (pin9)

is input to the filter section in the next sampling period. C2= 1

for all second order sections since the non-unity B coefficient

case is chosen.

6.5.3 Coefficients Entry

Because the limited output pins used to write the coefficients

into the FAD IC, and since it has been emphasised that the FAD IC

requires its coefficients in serial, bit by bit, simultaneously, a

software routine is carried out by the MC68000 for this purpose to

overcome the limitation of the output ports.

Once the coefficients and the control bits are located in

107

their desirable positions, the MC68000 starts executing the

software routine by loading a data register, for instance D1, with

the number of each set of coefficient in each second order section

(2) and D3 for instance, with the hex number (OF) (number of bits

in each coefficient).

In the last section the updated non-recursive and recursive

coefficients, including the control bits, are saved in D3 and D7

respectively. In order to write them into RAM in the serial form,

half of the recursive (16 bits) and half of the reversed order bits

non-recursive coefficients (16 bits) are bit by bit joined in DO.

The reversing process of the non-recursive coefficients is

accomplished in the following steps:

(1) D2 is loaded with the number of bits-1 (15 bits).

(2) The coefficient is loaded into DO and saved in the memory

location addressed by the contents of A, refer to appendix E.

(3) DO is shifted as a word number of bits contained in D2 to the

left.

(4) DO is shifted as a long word to the left one position and the

MSB is placed in the LSB position in the MSW of DO.

(5) D2 is decremented by one each time and this routine is

continued until all the 15 bits are completely reversed in order.

To reverse the order of the MSB, the contents of DO are shifted one

bit position to the left (as a long word) allocating the MSB in the

LSB position in DO.

(6) recursive coefficient word occupies the LSW of DO. An example

of reversing a 6-bit non-recursive coefficient assuming it as a

word is illustrated in fig. 6.5.

108

LONG WORD

WORD 2 WORD 1

11 10 9 8 7 6 5 4 3 2 1 0

D2 = 5 {2) X X X X X X a5 a4 a3 a2 a1 ao

{3) X X X X X X aO 0 0 0 0 0

{4) X X X X X aO 0 0 0 0 0 0

D2 = 4 (2) X X X X X aO a5 a4 a3 a2 a1 aO

{3) X X X X X aO a1 aO 0 0 0 0

{4) X X X X aO a1 aO 0 0 0 0 0

D2 = 3 {2) X X X X aO a1 a5 a4 a3 a2 a1 ao

{3) X X X X aO a1 a2 a1 aO 0 0 0

{4) X X X aO a1 a2 a1 aO 0 0 0 0

D2 = 2 (2) X X X aO a1 a2 a5 a4 a3 a2 a1 aO

{3) X X X aO a1 a2 a3 a2 a1 aO 0 0

{4) X X aO a1 a2 a3 a2 a1 aO 0 0 0

D2 = 1 {2) X X aO a1 a2 a3 a5 a4 a3 a2 a1 aO

(3) X X aO a1 a2 a3 a4 a3 a2 a1 aO 0

{4) X aO a1 a2 a3 a4 a3 a2 a1 aO 0 0

TheMSB (2) X ao a1 a2 a3 a4 a5 a4 a3 a2 a1 aO

{3) aO a1 a2 a3 a4 a5 a4 a3 a2 a1 aO 0

Fig. 6.5 Reversing the order of the NRcoeff bits

A precaution should be taken before executing word shifting

instruction. The data register DO must be reloaded with the data

in D3 which is stored in the memory location addressed by the

contents of A before the shift operation takes place.

As soon as the last process is terminated, the write operation

takes place in the software routine. The basic idea of this

operation is to transfer (or transmit) data from the CPU to RAM1

controlled by the R/W pulse of the CPU (or the PIA). There are two

types of data which should be transfered, the external memory

addresses and the coefficients. First the MC68000 addresses RAM1

by sending the starting address 0, defined by the contents of D5,

over the 8 data lines of the PIA control register A, in order to

write one bit of each coefficient simultaneously in that locatio~

The long word DO is rotated one bit to the left setting the LSB of

each coefficient in bit locations 0 and 1 as exemplified for a 6-

bi t non-recursive and recursive coefficient in fig. 6.6. These

locations coincide with the first 2 data lines of the PIA control

register B which are used to write the coefficient.s bits into

RAM1. Once these 2 bits are transmitted, there is no point in

keeping them in the CPU so they are eliminated by executing LSR.W

#02,DO (logical shift right word) instruction, which shifts the

contents of DO right two bits and clears bits 14 and 15. The next

address of the RAM1 is generated by incrementing the contents of D5

by one; and so on.

By following an identical sequence of instructions and taking

into account that the data register DO should be loaded with new

coefficients (stored in D3 and D7) after the transfering of the

previous one is completed, the complete 2*256 bits of the

109

(1)

(2)

(3)

(2)

(3)

(2)

(3)

(2)

(3)

(2)

(3)

The MSBs

LONG WORD

WORD2 (NRcoeff)

11 10 9 8 7 6

aO a 1 a2 a3 a4 a5

a 1 a2 a3 a4 a5 b5

a1 a2 a3 a4 a5 b5

a2 a3 a4 a5 b5 0

a2 a3 a4 a5 b5 0

a3 a4 a5 b5 0 0

a3 a4 a5 b5 0 0

a4 a5 b5 0 0 0

a4 a5 b5 0 0 0

a5 b5 0 0 0 0

a5 b5 0 0 0 0

0 0 0 0 0 0

WORD1 (Rcoeff)

5 4 3 2 1 0

b5 b4 b3 b2 b1 bO

b4 b3 b2 b1 bO aO

0 0 b4 b3 b2 b1

0 b4 b3 b2 b1 a1

0 0 0 b4 b3 b2

0 0 b4 b3 b2 a2

0 0 0 0 b4 b3

0 0 0 b4 b3 a3

0 0 0 0 0 b4

0 0 0 0 b4 a4

0 0 0 0 0 0

0 0 0 Ob5 X

Fig. 6.6 The coefficients writing operation
(1): Contents of DO
(2): Rotate the contents of DO left one bit
(3): Shift WORD1 right two bits

x denotes 'don't care'

coefficients are located in the proper RAM1 locations addressed by

the CPU.

Attention must be paid to the situation when the transfer of

the last bit (MSB) of each coefficient takes place, since after

the bit 14th of each is transmited, these 2 MSBs occupies the last

2 bit positions (30 and 31). Fortunately the non-recursive MSB

could either be 0 or 1 (refer to table 5.1). So to allocate the

recursive MSB in bit position 1, the contents of 00 (long word) are

rotated left three bits.

There are some points which should be remembered when

executing this routine:

(1) the contents of the control registers A&B should be cleared

since both are used in a write operation, in order to address the

data direction registers.

{2) selecting the 8 data lines of A (port A) and the first 2 lines

of B as outputs by the loading data direction register A with $FF

and B with $03.

(3) addressing the data (peripheral) register by setting bit 2 of

each control register to 1, refer to appendix E.

6.6 System Implementation

In this project the realization of the adaptive filter,

applied as a noise cancelling system, implies hardware design

supported by a 68000 assembly language program, listed in appendix

E. When the software program is first run, the CPU sets up the PIA

and organizes its ports (A & B) in the desirable directions. Since

the sampled input-output data must be saved, the CPU loads the

address registers A4, A6 and A5 with the starting address of the

110

memory locations used as a storage of input samples, output samples

and the updated coefficients respectively. When the PIA is first

initialized and the address registers are loaded, the CPU executes

the coefficients updating program. This execution is initialized

by means of a control pulse produced by the system circuit and sent

to the MC68000 through the control input line CB2. The positive

edge of this pulse coincides with the existence of the sampled data

entering the MC68000, see fig. 6.4. It has been mentioned before

that the complexity of the system hardware arises from the

limitation of the input-output ports available on the MC68000.

Another effect of this limitation is multiplexing the ADC analogue

input between xj and dj. A DG211 analogue switch is used to switch

between xj and dj fed into the ADC as illustrated in figs. 6.7 (a)

and (b). Since the data should be written into the MC68000 within

one computation period (8 timeslots), the control input N1 of the

analogue switch is held LOW for 4 timeslots passing xj and then is

held HIGH for the other 4 timeslots allowing dj to pass to the ADC

as shown in the timing diagram in fig.6.7. Once the data has

entered the MC68000 the updating process takes place and is

executed using eqns. 3.5.1 and 3.5.2 according to the LMS

algorithm. As soon as this process is terminated, a stream of the

coefficients comprising control bits and scaling factor bits is

written into RAM1 and consequently into the RAM2 and the FAD IC.

The new set of coefficients are written into the FAD every 128

computation periods and remain constant for that length of time.

The input samples enter the FAD every computation period occupying

the first half of the first timeslot (16 bits). The filter output

is valid after a delay of 8 timeslots, so it appears in the first

half of timeslot number 9, the next output is valid in timeslot 17

1 1 1

CLK/256

SIGNAL INPUT

DESIRED RESPCNS
INPUT

SYNC

DG211
Nl

RS574
RIC

E

N1 N2
.....-4

S1-4
(\J

D1

L'J
~

S2

00 LOGIC
0' IN

::JI- (") CJ::J
CQ. u.... CUT ..Jz:
~- _j
<

(a.)

RIC v
"-

..... lf)
::J (/) Cit-
C::J 0:::: ..JQ.
<Z:
z:-
< BIT

..JOI: :s
Oi:t­
Lo.IC, "' ,e~
..JLo.l X
..... 01: ::J
::i 1- ::E
<"'-ell 01:
<:r:: n."'

u
256-tc +" +-

U U

4 12B"tc 12Btc

+--------- 12Btc

1 I -
(b) . LJ

Fig. 6.7 <o.~b) Fll ter Inputs Mul tlplexer Circuit o.nd TIMing Dlo.gro.Ms

and so on. This output is then converted to analogue form by the

DAC and simultaneously applied to the ALU to be subtracted from dj

producing the error output ej, which is also converted to the

analogue form ,as illustrated in fig. 5.10.

6.7 Conclusion

The 68000 microcprocessor was chosen because of its ability to

effeciently implement the LMS equations for updating the

coefficients. It has a comprehensive set of instructions, a wide

number of addressing modes and its most convenient feature is its

ability to operate with any of the instructions on more than one

data size (byte, word, or long word). We also successfully

detected an obscure fault in the FAD IC after much careful

analysis.

This chapter has demonstrated the reduction and saving in

hardware that can be achieved by developing many 68000 software

routines that are compatible with the hardware implementation of

the ANC. These software routines include, reading blocks of 16

samples of the filter input, desired response input and the output

every 128* 16 computation periods (one set of samples every

computation period), saving the previous input and output samples,

updating the coefficients, writing non-recursive and recursive

coefficients simultaneously, bit by bit into the external RAMs.

Finally, the general function of the complete hardware

implementation of the ANC has been investigated.

112

CHAPTER 7

Experimental Results

7.1 Introduction

In recent years, there has been considerable interest among

researchers to extend the FIR adaptive filter to more general feed­

back or IIR configurations. The computational cost of FIR filters

was a great encouragement to the development of the IIR filters.

An advantage of such an extension is the substantial decrease in

filtering hardware (and/or software) that the IIR design presents

over an FIR design with equivalent performanc~

The first part of this chapter explores the hardware

implementation results of the 16th order adaptive filter based upon

the LMS algorithm, performed as an ANC. The second part is devoted

to a discussion of the stability of the IIR adaptive filter.

7 .2. The .ANC System Performance and the Results

The ANC system was constructed employing the FAD IC as a real

time 16th order digital filter operating at a clock frequency of

2MHz. So to apply one new input sample every computation period (8

time-slot), the input signal was sampled at 4 KHz with 12 bits

resolution (including the sign bit). To avoid the overflow at the

ANC outputs, the input data vector !j was scaled down by the

scaling factor S=2-2.

Referring to the computer simulation results obtained in

chapter 4, a 68000 software program was developed to update 16

feed-forward and 16 feed-back coefficients following the type

discussed in section 4.3.4 of representing the input samples as

113

well as the output samples involved in this operation. These

coefficients were updated in the LMS manner according to the eqns.

3.5.1 and 3.5.2.

Because of the limited speed available for the updating

operation, it was accomplished once every 128 sampling instants

(computation periods). Using two sets of RAMs (as has been

emphasised earlier in chapter 5 and 6), one bit of each coefficient

was applied to the NRCOEFF and RCOEFF inputs of the FAD IC every

500nsec.

The results shown in fig. 7.1 demonstrate the use of the

experimental system as an ANC. The dj input signal was a composite

signal made up of two equal amplitude sinusoidal inputs, the

fundamental signal at 300 Hz and the second harmonic representing

the interference at 600 Hz. The xj input signal was the second

harmonic interference at 600Hz altered in phase and magnitude.

The second harmonic sinusoid was generated by doubling the

frequency of the fundamental signal via an analogue multiplier.

The resultant output signal was added to its input signal using an

analogue adder circuit. Fig. 7.2 shows the photograph of the

inputs signals circuit.

After the adaptation, the filter reproduce the 600 Hz signal

at the filter output and cancelled from dj to produce the desired

signal at 300Hz at the error output of the ANC. This result was

obtained with convergence factors ~1 = 2-19 an~ = 2- 19.

7.3 Further Results

The ANC was inefficient at any frequency (below the sampling

frequency) other than the one illustrated in the experimental

114

(a)

(b)

(c)

(d)

Fig. 7.2 Hardware experiment result illustrating the perfomnance of the LMS recursive
adaptive filter
(a) filter input (2v/div)
(b) filter output (1 v/div)
(c) desired response input (2v/div)
(d) error output (2v/div)

~
'JQ .

result in the previous section. So any small change in the

frequency had a significant effect and degraded the performance of

the ANC. In this test all other parameters were kept constant and

the relation between the filter input and the signals comprising dj

were fixed.

In the light of these tests, the computer simulation program

developed in chapter 4, was run for N =-128 and N = 1 at two

frequencies of the input signals. The frequencies were then

changed after half number of iterations. Fig. 7.3 shows the

typical signals that were used while figs. 7.4 and 7.6 demonstrate

the performance of the ANC when the change in the frequencies has

taken place (for N= 128 and N: 1 respectively). Figs. 7.5 and 7.7

show the corresponding outputs Yj and ej at the end of the same

number of iterations computed at the first frequency (for N:128 and

N= 1 respectively). The convergence factors were set to p.1 = 2- 19

and p.2 = 2-19, which are equal to their values in the hardware

implementation.

It is obvious that both the computer simulation and the

hardware implementation results, evaluated for the identical values

of the parameters and under similar conditions, were in agreement.

In fact, the values of p.s used in that test were relatively small

and were not capable of readjusting the performance of the ANC due

to any modification associated the system. So the ANC was not

able to track these changes, and the filter was inefficient in

adapting itself fast enough to track these changes too.

7.4 IIR Adaptive Filter Stability

Many attempts were carried out to study the behaviour of the

115

x1e- 1
15

Hl

5

-5

-10

·15
13

15

-

-5

·15

1

v

{I

5

A

. :-I-

5

{I ·~ n f1

v
113 15 20 25

h

10 15 20

Fig. 7.3 The LMS adaptive filter inputs
(a) signal input
(b) desired response input

v

25

fl fl ~

(a)

u
313 35 10 15 513 55 60 65 70 X10

Time Index

I

A A

--- ---- --r--- (b)
v v v v

..
313 35 15 5(1 55 Gl1 G~ X10

Time Index

l

i

l

1.

-1C 1.

i __ ,__,_ __ -'----'-:-.--' -1 ~
<Jr;R7!"i

'.-T

1:-' 1

(\

~
(\

~
~

l 1(

5

r. ~ ~

- . -- .. ------1-

9G1B~ ~Gl 15 %125

Time Index

(VI A

~~

n - I-A- - i-1\.
I -- ··- -- - -· -·- -- - --- - -- --· --

:v -)(v v v v v v v v
-IC" l \j

, __ --: '----'-:----.:..1-- -'--.--;-=-·'---l-:----l-___.1.-
! 1(,()! J .l !JG11l5 !Hi 115

Tme Index

Fig. 7.4 The Adaptive filter performance at changing the frequency
(a) filter output
(b) error output

v
v

9G17.5

f f

(a)

~ \

96135 9G115X10

r. A

II (b)

\ \
v

~
v

96135 9G115 X10

X\;:,2

I 5.----r:---.,-. t\---,.,.'t\----....{1-----rfl-~---:-r~,--.,.-(\ ,--7\-,----,-,-71-r-----:-'----n---

5.

"' .. ---- ----------------------1------------------- (a)

-5

.-15
I ·HOflU

v

I·HIBG
v v ~ v \J ,_.!____._}!_~_

li"1110 1'\'1120 1'1"1130 1'\'11'1(1 1'!'\1511X1Q

Time Inde'X

Tme Index

Fig. 7.5 Simulation result illustrating the LMS adaptive filter performance for the second frequency
(a) filter output
(b) erroroutput

(b)

X11'l2
Hl
r---------~----.---~-----,------r----~------~-----r----~----~

8_

6

1.

2

0

-2

-1

-6

-8

..:,n
570

20

15

Hl

5

-5

-10

-15 v '
-20

-25
570

575

\
v

575

580 585

Time Index

\ \ \ \

v v v v

580 585 590 595 600 605 610 615

Tmelndex

Fig. 7.6 The Adaptive Filter Performance at Changing the Frequency for N=l
(a) filter output
(b) error output

620 625

(a)

b)

X1C2 8·.-----,----.-----.---...----y----.---.-----r--··-·----r----.

1

2

-2

-1

-6

5

13

5

-5

-113

-15

-213

-25
300+670 675 680

·-- 1-

Time Index

I L_
-

685 690 695 7130 705 7Hl 715 720

Tmelndex

(a)

(b)

72SxlO

Fig. 7.7 Simulation result showing the adaptive filter performance for the second frequency for N=l
(a) filter output
(b) error output

ANC at larger values of the convergence factors 111 and 112•

However a major problem that arose was the instability of the

filter for 111 and 112 >2-19. Two sources of the instability were

noteable in that case, the overflow oscillations at the filter

output due to the 2's complement addition and the variation in the

filter coefficients. It is well known that (69), unlike FIR

filters, the IIR filter stability may not be guaranteed for all

choices of coefficients. So they are generally more sensitive to

any change in the coefficients than are FIR filters. In fact the

frequency response of these types of filters depends on the

accurate placement of the few poles. Due to implementing the

filter and updating the coefficients in fixed point arithmetic and

the quantization employed, all these effects taken together then

will lead to change in the filter's poles and might move into an

unstable region.

7.5 Conclusion

This chapter has demonstrated that the ANC is effective in

cancelling the additive noise contaminating the desired signal for

a single frequency. The results have shown the impotence of the

ANC to produce the expected performance at different frequencies

with the constant parameters of the ANC at relatively small values

of /lS, and the adaptation is very slow and the filter does not

track the variation in the frequencies of the input signals.

Indeed these results agree closely with those from the simulation.

For the case of larger values of /ls , the instability problem arose

and degraded the performance of the ANC.

116

CliAPTER 8

Conclusion

This work has emphasised the application of the recursive LMS

adaptive filter as a microprocessor controlled ANC. Simulation

studies have provided proof of the possibility of extending the FIR

ANC to the more economical IIR one. It shows the opportunity of

implementing the filter with fewer weights, offering a significant

decrease in the software and hardware complexity of the IIR filters

over an FIR filter design with equivalent performance. The

hardware implementation of the ANC was extended from an extensive

FIR with a significant computational load to a simple and flexible

design with lower cost and memory saving using IIR filters with all

digital techniques.

IIR LMS adaptive filters, which are concerned with the use of

a programmable filter, in which their frequency response is adapted

to suppress or attenuate the undesired signal leaving the desired

components of the input signals without degradation, can also be

applied in situations where an absolute minimum of information is

available about the incoming signal such as in adaptive equalizers

for telecommunications, data transmission systems and echo

cancelation.

Although the theory of adaptive systems has been well

understood for many years, it is only very recently that adaptive

filters have been designed in hardware as progress in the

technology advances. Many hardware implementations of FIR filters

depend predominantly on the use of sampled-data analogue structures

117

(i.e. based on charge-coupled-device (CCD) and surface acoustic

wave (SAW) device). However, the performance of these analogue

filters is restricted by the limitation in dynamic range, caused by

effects such as nonlineari ties and noise effects. Digital signal

processing has many advantages over analogue techniques. These

advantages include higher reliability, insensitivity to temperature

changes and component tolerances, greater accuracy and

repeatability, and a higher level of flexibility because they are

programmable. Almost all IIR research publications are concerned

with computer simulations.

The recent development in VLSI and LSI devices and, in

particular microprocessors, have enabled substantial reductions to

be made in both the size and the cost of high speed digital signal

processing techniques. This allows adaptive filters to be designed

in small, powerful single chip devices with realistic sampling

rates which enable them to act as real-time processors. Recently

microprocessors have been found to be efficient at implementing the

LMS algorithm used to adjust the filter's coefficients with regard

to the incoming signals.

The implementation described in this thesis demonstrates some

of the advantages obtained by the use of these techniques. These

advantages include introducing a high degree of flexibility

allowing the realization of the adaptive filter with any order and

the wide range of sampling rates which could be achieved by

altering the clock frequency and the order of the FAD.

Computer simulation investigations demonstrate the desired

performance of the adaptive filter as an ANC for stationary

118

periodic and random signals. The effect of the inefficiency

associated with updating the coefficients for every sampling period

has been analyzed and it is shown that the ANC can achieve an

acceptable performance when the updating operation takes place only

once every 128 sampling periods, in particular, at relatively small

values of the convegence factors ~1 and ~2 . The experimental

result has been illustrated to agree closely with the result of

computer simulations in the case of the fixed-point as well as

floating-point representations of the data involved in the design.

Both experimental and simulation results demonstrate the

inefficiency of the ANC performance in tracking any variation in

the input signals frequency. In the light of the experimental

attempts to operate the system at large values of ~' which might

lead to faster convergence and better adaptation, the stability

problem has been discussed as a result of the feed-back in the IIR

filter performanc~

We hope that this thesis has provided a coherent and

comprehensive investigation of the application of the adaptive

filter to noise cancelling systems. Due to the limited literature

currently available concerning the convergence of the IIR adaptive

filter, further work is required to investigate this property of

the IIR LMS filter. Such future work should take adaventages of

advances in VLSI and LSI technology and high speed digital signal

processors, such as the DSP microprocessor TMS320 and the recent

Fujitsu MB8764, to achieve real time implementations of adaptive

filter algorithms with a minimum of hardware and a more flexible

software controlled system. Further work may be carried out into

developing the existing system using variable coefficients

119

(variable step-size algorithm) which provide a better response to

the change in the frequency or statistics of the input signals.

Furthermore this system could be applied to different broad band

signals9 for example 9 white noise.

120

(1) Carlson, A.B.,"Communication Systems, An Introduction to

Signals and Noise in Electrical Communication", McGraw-Hill

Book Company, Second Edition, 1975.

(2) Shanmugam, K.S., "Digital and Analog Communication Systems",

John Wiley & Sons, 1979.

(3) Peled, A. and Liu, B.,"Digital Signal Processing Theory,

Design and Implementation", John Wiley & Sons, 1976.

(4) Terrel, T.J.,"Introduction to Digital Filters", The Macmillan

Press LTD, London and Basingtoke, First Edition, Reprinted

1983.

(5) Bellanger, M. 9 "Digital Processing of Signals, Theory and

Practice, John Wiley & Sons, 1984.

(6) Oppenheim, A.V. and Schafer, R.W."Digital Signal Processing",

Prentice-Hall, Inc., 1975.

(7) Lynn, P.A.,"An Introduction to the Analysis and Processing of

Signals", The Macmillan Press LTD, London and Basingtoke,

Second Edition, 1983.

(8) Visuwan, S.,"Design of a Programmable Digital Filter", M.Sc.

Thesis, 1973.

(9) Kuo, F.F. and Kaiser, J.F.,"System Analysis by Digital

Computer", Wiley, 1967.

(10) Kaunitz, J.,"Adaptive Filtering of Broadband Signals as

Applied to Noise Cancelling", Stanford Electronics Lab.,

Stanford Univ., August 1972, Ph.D. Dissertation.

(11) Widrow, B., Glover, JR., McCool, J.M., Kaunitz, J., Williams,

C.S., Hearn, R.H., Zeider, J.R., Dong, E. and Goodline,

R.C.,"Adaptive Noise Cancelling: Principles and Applications",

Proceedings of the IEEE, Vol.63, No.12, December 1975, PP.

1692-1716.

(12) Holt, A.G. and Mulholland, P.J.,"A Microprogrammed Adaptive

Filter Implementation", The Radio and Electronic Engineer,

Vol.53, No.5, May 1983.

(13) Paul, J.E.,"Adaptive Digital Techniques for Audio Noise

Cancellation", IEEE, Circuits and Systems Magazine, Vol.1,

No.4, 1979, PP.2-7.

(14) Sambur, M.R., ''LMS Adpati ve Filtering for Enhancing the Quality

of Noisy Speech", Proceedings of the 1978, IEEE International

Conference on Acoustics, Speech and Signal Processing, PP.610-

613.

(15) Sambur, M.R.,"Adptive Noise Cancelling for Speech Signals",

IEEE Transactions on Acoustics, Speech and Signal Processing,

Vol.ASSP-26, No.5, October 1978, PP.419-423.

(16) Harrison, W.A., Lim, J.S. and Singer, E.,"A New Application

of Adaptive Noise Can cella ti on", IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol.ASSP-34, No.1,

February 1986, PP.21-27.

(17) Lawrence, R.E. and Kaufman, H.,"The Kalman Filter for the

Equalization of a Digital Communications Channel", IEEE

Transactions on Communication Technology, Vol.Com-19, No.6,

December 1971, PP.137-41.

(18) Nissen, C. W. and William, D.K., "Adaptive Equalizer for Pulse

Transmission", IEEE Transactions on Communication Technology,

Vol.Com-18, No.4, August 1970, PP.379-395.

(19) Storius, E.H. and Alexander, S.T.,"Channel Equalization Using

adaptive Lattice Algorithm", IEEE Transactions on

Communication, Vol.COM-27, No.6, June 1979, PP .899-905.

(20) Gersho, A.,"Adaptive Equalization of Highly Dispersive

Channels for Data Transmission", The Bell System Technical

Journal, January 1969, PP.55-70.

(21) Ghang, Y.H. and Bershad, N.J.,"Weight Modulation Effects in

the Adaptive Line Enhancer", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol.ASSP-32, No.5, October

1984,PP. 1078-1081.

(22) Rickard, J.T. and Zeidler, J.R.,"Second-Order Output

Statistics of the Adaptive Line Enhancer", IEEE Transactions

on Acoustics, Speech and Signal Processing, Vol.ASSP-27, No.1,

February 1979, PP .31-39.

(23) Bershad, N.J. and Feintuch P .L., "The Recursive Adaptive LMS

Filter-Aline Enhancer Application and Analytical Model for the

Mean Weight Behaviour", IEEE Transactions on Acoustics, Speech

and Signal Processing, Vol.ASSP-28, No.6, December 1980,

PP.652-660.

(24) Maragos, P.A., Schafer, R.W. and Mersereau, R.M.,"Two­

Dimensional Linear Prediction and its Application to Adpative

Predictive Coding Images", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol.ASSp-32, No.6, December

1984, PP.1213-1229.

(25) Morgan, D.R. and Craie, S.E.,"Real-Time Adpative Linear

Prediction Using the Least Mean Square Gradient Algorithm",

IEEE Transactions on acoustics, Speech and Signal Processing,

Vol.ASSP-24, No.6, December 1976, PP.495-507.

(26) Howells, P.,"Intermediate Frequency Side-Lobe Canceller", U.S.

Patent 3 202 990, August 24, 1965.

(27) Wid row, B. and Hoff, M.Jr., "Adaptive Switching Circuits", in

IRE WESCON COnv. Rec., Pt.4, 1960, PP.96-104.

(28) Koford 1 J. and Groner1 G. 1 "The Use of an Adpati ve Threshold

Element to Design a Linear Optimal Pattern Classifier"1 IEEE

Transactions on Information Theory1 Vol.IT~12 1January 1966 1

PP.42~50.

(29) Gabor1 D. Wilby1 P.L. and Woodcock1 R. 111A Universal Nonlinear

Filter Predictor and Simulator Which Optimizes Itself by a

Learning Process"1 Proceedings of the IEEE 1 Vol.108B 1 July

1960.

(30) Lucky1 R. 111Automatic equalization for Digital Communication"1

Bell System Technical Journal1 Vol.44 9 April 1965 9 PP.547-88.

(31) Lucky9 R.W. 9 Salez 9 J. 9 and Weldon1 J.R. 111Principles of Data

Communication11
9 New York9 McGraw~Hill 1 1968.

(32) Reed 1 F.A. and Feintuch9 P.L. 9 "A Comparison of LMS Adaptive

Cancellers Implementated in the Frequency Domain and the Time

Domain11
9 IEEE Transactions on Acoustics1 Speech and Signal

Processing 9 VoLASSP-29 9 No.31 June 1981 9 PP.770-775.

(33) Feintuch9 PJ.... 9
11An Adaptive Recursive LMS Filter"1 Proceedings

of the IEEE 9 Vol.64 9 No.11 1 November 1976 9 PP.1622-1624.

(34) Johnson9 C. and Larimore1 M., 11Comments on and Addition to "An

adaptive LMS Filter"" 9 Proceedings of the IEEE 1 Vol.65 1 No.9 9

September 19771 PP.1399-1404.

(35) Mikhael 9 W.B. 1 Wu 9 F.H. and Kazovsky 1 L.G. 111Adaptive Filters

With Individual Adaptation of Parameters" 1 1984 IEEE

International Symposium on Circuits and Systems9 Proceeding9

Vol.2 1 7~10 May 1984 9 PP.763-7.

(36) Cowan9 C.F.N. 1 Smith 9 S.G. 1 and Elliott1 J.H. 111A Digital

Adaptive Filter Using A Memory~ Accumulator Architecture:

Theory and Realization 11
9 IEEE Transactions on Acoustics1

Speech and Signal Processing 9 Vol.ASSP~31 1 No.3 9 June 19831

pp .541-549 0

(37) Peled 9 A. and Liu 9 B. 9
11Monolithic Adaptive Equalizer" 9 in

Proc. ESSCIRC 9 September 1982.

(38) Cowan 9 C.F .N. and Grant 9 P.M. 9 "Hardware Architectures for

Adaptive Processors" 9 The Instituation of Electrical

Engineers9 Colloquiam on "Adaptive Processing and Biomedical

Applications"9 24-0ctober 1984 9 PP.3/1-3/8.

(39) South 9 C.R. 9 "An Adaptive Filter in LSI" 9 British Telecom

Technol. Journal 9 Vol.3 9 Part No. 19 Jaruary 1985 9 PP .30-46.

(40) Schmidt 9 L.A. 9
11Designing Programmable Digital Filters for LSI

Implementation"9 Hewelt Packard J. (USA) 9 Vol.29 9 Part No. 13,

September 1978 9 PP. 15-23.

(41) LSI Digital Filter and Detect Circuit, British Telecom

Research Laboratories9 March 1982.

(42) Angelo 9 E.J.,"Digital Signal Processor; A Tutorial

Introduction to Digital Filtering"9 the Bell System Technical

Journal, Vol.60 9 No.7 9 September 1981 9 PP. 1499-1547.

(43) Murakami, H. 9 Reed 9 I.S. and Arcese 9 A.,"Recursive FIR Digital

Filter Design Using a Z-Transform on a Finite Ring", IEEE

Transactions on Acoustics 9 Speech And Signal Processing,

Vol.ASSP-31 9 No.5 9 October 1983, PP.1155-1164.

(44) McWilliam, A. J.,"Roundoff Error Sequence in Fixed-Point

arithmetic Digital Processors"9 Ph.D. Thesis9 1976.

(45) Blichikoff 9 H.J. and Zevereu 9 A.I. 9 v'Filtering in the Time and

Frequency Domainsvr9 John-Wiley & Sons 9 1976.

(46) Kuo,"Discrete-Data Control Systemsvr.

(47) Liu 9 C.L. and Liu, J.W.S. 9"Linear Systems Analysis" 9 McGraw­

Hill, Inc., 1975.

(48) McGillem 9 C.D. and Cooper 9 G.R.,"Continuous and Discrete

Signal and System analysis", Holt, Rinehart and Winston, Inc.

1974.

(49) Kailath, T.,''Linear Systems", Prentic-Hall, Inc., 1980.

(50) Robert, A.G. and Richard, A.R."Signals and Linear Systems",

John Wiley and Sons Inc., 1973.

(51) Papoulis, A.,"Circuits and Systems, A Modern Approach", Holt,

Rinehart and Winston, Inc., 1980.

(52) Gorgui-Nagui b, R.N. and Henein, K.M., "Digital Filter Design

Techniques", Electronic and Wireless World, Vol.89, Part

No.1574, November 1984, PP.67-9.

(53) Forsythe, W.,"A New Method for the Computation of Digital

Filter Coefficients-Part I", Simulation, Vol.44, Part 1,

January 1985, PP.23-31.

(54) Rabiner, L .R. et al., "Terminology in Digital Signal

Processing", IEEE Transactions on Audio and Electroac, Vol.AU-

20, December 1972, PP.322-37.

(55) Hwang, S.Y.,"Realizion of Canonical Digital Networks", IEEE

Transactions on Acoustics, Speech and Signal Processing,

Vol.ASSP-22, No.1, February 1974, PP .27-38.

(56) Constantinides, A.G., "Frequency Transformations for Digital

Filters", Electrnics Letters, Vol.3, No.11, November 1967,

PP.487-489.

(57) Constantinides, A.G., "Frequency Transformations for Digital

Filters", Electronics Letters, Vol.4, April 1968, PP. 115-116.

(58) Kwan, H.K.,"On the Problem of Designing IIR Digital Filters

with Short Coefficient Word Lengths", IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol.ASSP-27, No.6,

December 1979, PP.620-624.

(59) Abu-El-Haija, A.I. and Peterson, A.M.,"An Approach to

Eliminate Roundoff Errors in Digital Filters", IEEE

transactions on Acoustics, Speech and Signal Processing,

Vol.ASSP-27, No.2, April 1979, PP.195-198.

(60) Mitra, S., Hirano, K. and Sakaguchi, H., "a Simple Method of

Computing the Input Quantization and Multiplication Roundoff

Errors in a Digital Filter", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol.ASSP-22, No.5, October 1974,

pp. 326-329.

(61) Liu, B.,"Effect of Finite Word-Length on the Accuracy of

Digital Filters- A Review", IEEE transactions on Circuit

Theory, Vol.CT-18, No.6, November 1971, PP.670-677.

(62) Barnes, C.W.,"Computationally Efficient Second-Order Digital

Filter Sections with Low Roundoff Noise Gain", IEEE

Transactions on Circuits and Systems, Vol.CAS-31, No.10,

October 1984, PP.841-847.

(63) Bamor, B. W. and Hung, J.C., "Minimum Roundoff Noise Digital

Fi 1 ters with Some Power-of-Two Coefficients", IEEE

Transactions on Circuits and Systems, Vol.CAS-31, No.10,

October 1984, PP .833-840.

(64) Meron, P ., Sekey, A.A. and Zeheb, E., ''Design Method for Stable

Second-Order Digital Filters", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol.ASSP-22, No.3, June 1974,

PP. 196-202.

(65) Knowles, J. B. and Olcayto, E.M.,"Coefficient Accuracy and

Digital Filter Response", IEEE Transactions on Circuit Theory,

Vol.CT-15, No.1, March 1968, PP.31-41.

(66) Kieburtz, R.B., "Rounding and Truncation Limit Cycles in a

Recursive Digital Fi 1 ter", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol.ASSP-22, No.1, February

1974, PP.73.

(67) Munson, D.C., Mullis, C.T. and Roberts, R.A.,"Maximum

Amplitude Zero-Limit Cycles in Digital Filters", IEEE

Transactions on Circuits and Systems, Vol. CAS-31, No.3, March

1984, PP.266-275.

(68) Mills, W.L. et al.,"Digital Filter Realizations without

Overflow Oscillations", IEEE Transactions on Acoustics, Speech

and Signal Processing, Vol.ASSP-26, No.4, August 1978, PP.334-

338.

(69) Cowan, C.F.N, and Grant, P.M.,"Adaptive Filters", Prentice­

Hall, Inc., Englewood Cliffs, New Jersey, 1985.

(70) Ferrara, E.R., "Fast Implementation of LMS Adaptive Filters",

IEEE Transactions on Acoustics, Speech and Signal Processing,

Vol.ASSP-28, No.4, August 1980, PP.475.

(71) Moscner, J.L.,"Adaptive Filter with Clipped Input Data", SEL-

70-053 (TR, No.6796-1), Stanford Electronics Labor~tories,

Stanfo rd, Calif., June 1970.

(72) Dei vasigamani, L., "A Fast Clipped-Data LMS Algorithm", IEEE

Transactions on Acoustics, Speech and Signal Processing,

Vol.ASSP-30, No.4, August 1982, PP.648-649.

(73) Fridlander, B.,"System Identification Techniques for Adaptive

Noise Cancelling", IEEE Transactions on Acoustics, Speech and

Signal Processing, Vol.ASSP-30, No.5, October 1982, PP.699-

708.

(74) Widrow, B.,"Adaptive Filters I: Fundamentals", Stanford

Electrnics Lab, Stanford Univ., Rep. SU-SEL-66-126, December

1966.

(75) Wei, C.H. and Lou, J .J ., "Mul timemory block structure for

implementing a digital adaptive filter using distributed

arithmetic", IEE Proceedings-G, Electronics Circuits and

Systems, Vol.133, Part G, February 1986, PP.19-26.

(76) McCool, J.M. and Widrow, B.,"Principles and Applications of

Adaptive Filters: A Tutorial Review", IEEE International

Symposium on Circuits and Systems, 80CH1564-4, Vol.3 of 3,

1980, PP.1143-1157.

(77) Widrow, B., McCool, J.M., Larimore, M.G. and Johnson,

C.R.,"Stationary and Non-Stationary Learning Characteristics

of the LMS Adaptive Filter", Proceedings of the IEEE, Vol.64,

No.8, August 1976, PP.1151-1162.

(78) Tanik, N.T. and Yucel, M.D.,"Conditions for the Convergence of

the LMS Algorithm with Gaussian Inputs".

(79) Harris, R.W., Chabries, D.M. and Bishop, F.A.,"A Variable Step

(VS) Adaptive Filter Algorithm", IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol.ASSP-34, No.2,

April 1986, PP.309-316.

(80) Kikuchi, A., Sigeru, 0. and Soeda, T."Applications of Adaptive

Digital Filtering to the Data processing for the Environmental

System", IEEE Transactions on Acoustics, Speech and Signal

Processing, Vol.ASSP-27, No.6, December 1979, PP.790-803.

(81) Chen, Ch.T.,"On Digital Wiener Filters", Proceedings of the

IEEE, December 1976, PP.1736-1737.

(82) Hill, P.D. and Mikhael, W.B.,"Real Implementation of a

Variable Stepsize Adaptive Algorithm", Proceedings of the

twenty-seventh Mid west Symposi urn on Circuits and Systems,

Vol.1, 11-12 June 1984, PP.181-184.

(83) White, S.A.,"An Adaptive Recursive Digital Filter", Proceeding

9th Annual Asilomar Conference on Circuits, Systems and

Computers, Nov. 1975, PP.21-25.

(84) Stearns, S.D. and Elliot, G.R.,"On Adaptive Recursive

Filtering", Proceedings 10th Asilomar Conference on Circuits,

Systems and Computers, Nov. 1976, PP.5-11.

(85) Caraiscos, Ch. and Liu, B.,"A Roundoff Error Analysis of the

LMS Adpative Algorithm", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol.ASSP-32, No.1, February

1984, PP.34-41.

(86) Boland, F .H. and Normile, J.P., "Quantization and Truncation

Effects in the Design of Adaptive Digital Filters",

Proceedings of ICASSP 82, IEEE International Conference on

Acoustics, Speech and Signal Processing, Vol.1, 3-5 May 1982,

PP.64-68.

(87) Konstantinous, Ki; et al., "Calculation of the Quantization

Noise in an Adaptive Filter which Minimize the Mean Square

Error", Izvestya VUZ. Radioelektronika, Vol.25, No.1, 1982,

pp .31-37.

(88) Widrow, B. and Walach, E.,"On the Statistical Efficiency of

the LMS Algorithm with Non-Stationary Inputs", IEEE

Transactions on Information Theory, Vol.IT-30, No.2, March

1984, PP.211-221.

(89) Digital Signal Processing with the FAD, Application Notes",

British Telecom Research Laboratories.

(90) Challener, P., "(FAD)- Flexibility in Digital Signal

Processing", Micropcessors and Microsystems, Vol.7, no.10,

December 1983.

(91) Gaonkar, R.S., "Microprocessor Architecture, Programming and

Applications with the 8085/8080A", Charls E. Merrill

Publishing Company, Bell & Howell Company, 1984.

(92) Brey, B .B., "Microprocessor/Hardware Interfacing and

Applications", Charls E. Merrill Company, Bell & Howell

Company, 1984.

(93) Kane, G., Hawkins, D. and Leventhal, L., "68000 assembly

Language Programming", Osborne/McGraw-Hill, 1981.

(94) Clements, A., "The 68000 and its Interface", Microprocessors

and Microsystems, Vol.8, No.7, September 1984, PP .324-337.

(95) 68000 PROFI KIT Manual, First Edition, April 1982.

(96) The TTL Data Book for Design Engineers, The Engineering Staff

of Texas Instruments Components Group, Vol.1, 1980 and 1982.

(97) Greenfield, J.D.,"Practical Digital Design Using ICs",John

Wiley & Sons, Second Edition 1983.

(98) Dempsey,''Basic Digital Electronics with MSI Applications".

(99) Holt, C.A.,"Electronic Circuits", Digital and Analogue",

(100) Clayton, G.B.,"Data Converters", The MacMillan Press LTD,

1983.

(101) ADC Data Sheet.

(102) Horouitz, P. and Hill, W.,''The Art of Electronics", Cambridge

University Press, 1983.

(103) DAC Data Sheet.

APPENDIX A-1

*
*
*
*
*

PASCAL program for computing the transfer function magnitude
of the recursive LMS adaptive filter, with 16 non­

recursive and 15 recursive coefficients

*
*
*
*
*

program transfer (nrcoeff2,rcoeff2,output)

const

type

var

begin

count = 128
n = 16

nrcoeff1
rcoeff1

array[1 .. n] of real
array[1 .. n] of real

i,j,m: integer;
x : real ;
nrcoeff2,rcoeff2
zeros
poles
response

real
real
real

text

* number of angles *
*number of recursive (including,b0 ,)

and non-recursive coefficients *

* angle's value *
* input files contained coefficients *
*the numerator (X(ej t),refer to section 2.9'
*the denomirator (Y(ejwt) *

* transfer function magnitude, IG(ej t) I

reset (nrcoeff2, 'unit=scards') * open input files nrcoeff2 and rcoeff2 *
reset (rcoeff2, 'unit=O')

for i:=1 to count do

*
*
*
*

compute the transfer function magnitude for
points (angles) in range of o to n

*
*
*
*

begin
m := n-1 ;
zeros :=0.0
poles :=0.0
response :=0.0

* initialize accumulators *

end.

x := (3.141592*i)/count
for j : =1 to n do

begin
read (nrcoeff2,a[j])
read (rcoeff2,b[j])
zeros
poles

end ;

:= zeros+(a[j]*cos(m*x))
poles+(b[j]*cos(m*x))

m : = m-1 ;

response ·= zeros/poles
response ·= abs(response)
writeln (x,response)

end

* read non-recursive
coefficients one by

* compute X(ej t) *
* compute Y(ej t) *

* compute G(ej t) *

*compute IG(ej t) I *

and recursive
one *

APPENDIX A-2

*
*
*
*
*

PASCAL program for implementing the recursive LMS adaptive filter,
with 16 non-recursive and 15 recursive coefficients, in

accordance with the type discussed in section 4.3.1

*
*
*
*
*

program filter (datal,data2,output)

const kl 7.2e-06

type

var

k2 3.6e-06
p 17
q 16

r 15

signal
filterout

nrcoeff
rcoeff

atot,
btot,
e,u,w,

array

array
array
array

xe,de : real
i,j,k,f,m,
count : integer

x signal ;
y filterout

a nrcoeff ;
b rcoeff ;

datal,
data2: text ;

begin

[1. .p]

[1. .p]
[1. .q]

[1. .r]

reset (datal, 'unit=scards')
reset (data2,'unit=0')

of real
of real

of real

of real

* convergence factors ~l and ~2 *

* filter input samples *
* filter output samples *
* non-recursive coefficients array *
* recursive coefficients array *

* filter's linear difference equation
accumulators *

* filter error output *
filter input and desired response input samples
* time indices *
* number of iterations *

* input files contained the filter input and the
desired response input samples respectively *

* open input files datal and data2 *

* *
* initialize the previous arrays to prevent the overflow *
* *

for i :=1 to p do
begin

x[i] := 0.0
y[i] ·= 0.0

end ;

for i :=1 to q do
begin

a[i] ·= 0.0
end ;

for i :=1 to r dO

begin

b[i] := 0.0
end ;

j := p ;

e ·= o.o
u ·= 0.0
w ·= 0.0
count := 20000
for i :=1

begin
to count do

read (datal,xe)
read (data2,de)
x [j] := xe ;

y[j-1] := y[j]

w ·= 2*kl*e

u := 2*k2*e

* read filter input and desired response
input samples contained in datal and data2 *

* the newest sample is the most

recent sample has been read *

* 2 Ill e *
* 2 112 e *

*
*
*
*
*

update 16 non-recursive and 15 recursive coefficients every
sampling period and write them back in their previous

locations in nrcoeff and rcoeff arrays

*
*
*
*
*

for k:=l to q do
begin

a[k] := (a[k]+w*x[j-k])
writeln (a[k] :10)

end ;
for f:=l to r do

begin

b[f] ·= (b[f]+u*y[j-1-f])
writeln (b[f] :10)

end ;

atot ·= 0.0

btot := 0. 0
* clear accumulators *

**

for k :=1 to q do

begin

atot := atot+(a[k]+x[j+l-k])
end ;

q

atot =I ak xj+l-k
k=l

**

for f :=1 to r do

begin

btot := btot +(b[f]+y[j-f])
end ;

r

btot = I bfYj-f
f=l

**

y[j] := (atot-btot)/8

e : = de-y [j] ;

* compute the present filter output *

* compute filter error output *

*
*
*
*
*

shift the previous filter input and output samples one location
and save them in signal and filterout arrays for the next

filtering and coefficients updating operations

*
*
*
*
*

for m:=l to p
begin

x[m] ·= x [m+ll
end ;

for m :=1 to r
begin

y[m] ·= y[m+ll
end ;

end
end.

do

do

APPENDIX A-3

*
*
*
*
*

PASCAL program for implementing the LMS adaptive filter, with
16 non-recursive and 15 recursive coefficients, according

to the type discussed in section 4.3.2

*
*
*
*
*

program filter (datal,data2,output)

const kl 7.2e-06 ;

k2 3. 6e-06;

type

var

n = 129
t 16
r = 15
z = 17

signal
filterout
nrcoeff
rcoeff
save in
saveout

atot,btot,
u,w,e,
xe,de,des
i, j, f,k,m,

s, h,

;

array
array
array
array
array
array

real

count: integer

x: signal ;

y: out ;

a: nrcoeff ;

b: rcoeff ;

p: save in ;

q: save out ;

datal,
data2 :text ;

begin

[l .. t] of real
[1. .t] of real
[l .. t] of real
[1. .r] of real

[1 .. z] of real

[1 .. z] of real

* convergence factors ~1 and ~2 *

* coefficients updating operation is
accomplished every n sampling periods *

* filter input samples *
* filter output samples *
* array of 16 updated non-recursive coefficients

* array of 15 updated recursive coefficients *
* filter input and output

samples delayed by n *

*

* filter's linear difference equation accumulators *
* filter error output *
* filter input and desired response input samples *
* time indices *

* number of iterations *

* filter input and desired response
input samples input files *

* *
* initialize the previous arrays at zero to avoid the overflow *
* *

for i:=l to t do

begin

x[i] ·= 0.0
y[i] ·= 0.0

a [i] := 0.0

end ;

for i:=l to r do

begin

b[i]
end ;

for

e

u
w

begin

p[i]

q[i]

end ;

:
:

:

=
=

=

0.0
0.0

0.0
s := 1

h := t

j .- t

:= 0.0

i:=l

:=0.0

:=0.0

count ·= 520000 ;

to z

reset

reset

for

(datal, 'unit=scards')

(data2, 'unit=O')
i:=l to

begin

if s<>n
begin

then

if

read (datal,xe)

read (data2,de)
X[j] := xe ;

y [j-1] := y [j l
p[h] ·= xe ;

q[h-1] ·= y [j]

h:=t then

de := des ;

atot ·= 0.0
btot := 0.0

count

do

do

* set e and the associated parameters
u & w to zero for the first

updating period *

* open input file datal *
* open input file data2 *

* read one filter input and desired
response input every sampling period *

* save one filter input and filter output sample every n

sampling period for the coefficients updating operation *

* clear accumulators *

for k :=1 to t do

begin

atot : = a tot+ (a [k] *x [j+l-k])

end ;

t

atot = L ak xj+l-k
k=l

**

for

begin

btot
end ;

f:=l to r do

:= btot+(b[f]*y[j-f])

r

btot = L bf Yj-f
f=l

*
*
*
*
*
*

shift filter input and filter output samples one location,

and save them in their previous locations, occupying

the most recent samples in locations 16 and 15

of arrays signal and filterout respectively

*
*
*
*
*
*

for m:=l to

begin

x[m] := x[m+l] ;

end ;

r do

for m :=1 to
begin

y[m] := y[m+1]
end ;

y[j] := (atot-btot)/8

s := s+1

h := z ;

end
else

begin

.- t ;

e :=des - g[j-1]
w := 2*k1*e

u := 2*k2*e

r-1 do

* compute filter output *

* next sampling point *
* one new input and output samples are applied to

the updating operation every n sampling points *

* compute filter error output *

* 2 J.L1 e *
* 2 J.L2 e *

*
*
*
*
*

update 16 non-recursive and 15 recursive coefficients every n
sampling periods and write them back in their previous

locations in nrcoeff and rcoeff arrays

*
*
*
*
*

for k:=1 to t do
begin

a[k] := a[k]+(w*p[j+1-k])
end ;

for f : =1 to r
begin

b[f] := b[f]+(u*q[j-f])
end ;

do

*
*
*
*
*

shift filter input and filter output samples delayed by n,
used in the coefficients updating operation, and save

them in arrays savein and saveout respectively

*
*
*
*
*

end

end.

for m
begin

p[m]
end ;

:=1 to

:= p[m+1]

for m :=1 to
begin

q[m] ·= q[m+1]
end ;

s := 1

h ·= t ;

end

r do

r-1 do

APPENDIX A-4

*
*
*
*
*

PASCAL program for implementing a recursive LMS adaptive filter
with 16 non-recursive and 15 recursive coefficients

according to the type discussed in section 4.3.3

*
*
*
*
*

program filter (datal,data2,output)

const

kl 7.2e-06 * convergence factors ~l and ~2 *
k2 3.6e-06
n ·= 129 ;

t ·= 16
r := 15 * update the coefficients every n sampling periods *

type

signal array [1. .t]
filterout array [1. .t]
save in array [1.. 40]
saveout array [1.. 40]
nrcoeff array [1. .t]
rcoeff array [1. .r]

var
atot,
btot,
u,w,e,
xe,de: real ;

i,j,k,f,m,

h,s: integer

X signal ;
y filterout
p save in ;

q saveout ;

a nrcoeff ;

b rcoeff ;

datal, data2 : text ;
begin

reset (datal, •unit=scards')
reset (data2, 'unit=O')

of real *
of real *
of real *
of real
of real *
of real *

filter input samples array *
filter output samples array *
filter input and output samples,
used to update the coefficients *
updated non-recursive coefficients array *
updated recursive coefficients array *

* storages for the implemented linear difference
equation of the adaptive filter *

* filter error output *
* filter and desired response inputs samples *
* time indicies *

* input files *

* open the input files datal and data2 *

* *
* initialize the previous arrays at zero to prevent the overflow *
* *

for i :=1 to t do

begin

a [i] := 0.0
x[i] := 0.0
y[i] ·= 0.0

for i :=1 to r do

begin

b[i] :=0.0 ;
end ;

for i :=1 to 40 do
begin

p[i] ·= 0.0;
q[i] ·= 0.0

end ;

e ·= 0.0

u := 0.0
w := 0.0

s := 1

.- t

h .- t
count := 192000

for i :=1 to count do
begin

if s<>n then

begin

read (data1,xe)
read (data2,de)

x [j] := xe ;

y[j-1] := y[j]

p[h] := xe ;

if h =1 then

h := 40
q[h-1] ·= y[j]

atot := 0.0

btot := 0. 0

* initialize the number of sampling period at one *

* location of the most recent filter input and

filter output samples *

* read the filter input and the desired
response input samples one by one *

* to avoid the case of zero or minus elements

orders in arrays savein and saveout *

* clear accumulators *

**

for k :=1 to t do

begin

atot := atot+(a[k]*x[j+1-k])

end ;

t

atot = L ak xj+l-k
k=l

**

for f :=1

begin

btot :=

end ;

to r do

btot+(b[f]*y[j-f])

r

btot = L bf Yj-f
f=l

*
*
*
*
*

shift filter input and filter output samples and

save them in the one dimensional arrays

signal and filterout respectively

*
*
*
*
*

for m :=1 to r do

begin

x[m] := x [m+1]

end ;

for m :=1 to r-1 do

begin

y[m] := y[m+l]
end ;

y[j] ·= (atot-btot)/8
e := de-y[j]
s ·= s+1
h ·= h-1

end
else

begin

h := t ;
·= t ;

w ·= 2*k1*e

u ·= 2*k2*e

* compute filter output and scale it down by 8 *
* compute filter error output *
* get the next input sample *
* get the next input sample used in the

coefficients updating operation *

* reset (h) to get the first 16 successive samples, every

n sampling periods, used in the coefficients

updating opration *

*
*
*
*
*

update 16 non-recursive and 15 recursive coefficients
and write them back in their previous locations

in arrays nrcoeff and rcoeff respectively

*
*
*
*
*

end

end.

for k :=1 to t do
begin

a[k] := a[k]+(w*p[h+1-k])

(a [k]: 10) writeln
end ;

for f :=1 to r do
begin

b[f] ·= b[f]+(u*q[h-f])
writeln (b[f]:10) ;

end ;
s ·= 1

h := t ;
end

APPENDIX A-5

*
*
*
*
*

PASCAL program for implementing recursive LMS
adaptive filter in accordance with the

type discussed in section 4.3.4

*
*
*
*
*

program filter (datal,data2,output)

const

type

var

begin

kl 7.2e-06

k2 3.6e-06
n = 12 9 ;

t 16 ;

r 15 ;
tr = 18 ;

signal

filterout
nrcoeff
rcoeff
iport
oport

save in
saveout
desired

atot,
btot,
e,u,w,
xe,de: real
i, j,k, f,m,

count,

array

array
array
array
array

array
array
array
array

n,c,h,s: integer

x: signal ;

y: filterout

a: nrcoeff ;

b: rcoeff ;

z: iport ;

g: oport ;

p: save in ;

q: save out ;

d: desired ;

datal,data2: text

[1. .t] of
[1. .t] of

[1. .t] of
[1 •• r] of
[1. .tr] of

[1. .tr] of
[1. .t] of
[1. .r] of
[1. .tr] of

;

reset (datal, •unit=scards')
reset (data2, 'unit=O')

real

real
real
real
real

real
real
real
real

* convergence factors ~1 and ~2 *

* update the coefficients every 128 sampling periods *

* filter input signal samples *
* filter output samples *
* updated non-recursive coefficients *
* updated recursive coefficients *

* save the 16 input samples and 15 output samples,
used in the coefficients updating operation *

* the desired response input samples *

* the accumulated non-recursive and
recursive parts of the filter *

* filter error output *
* filter input and desired response input samples *
* time indices *
* number of iterations *

* open the input files contained the filter input
and desired response input samples *

* *
* initialize the previous arrays to prevent the overflow *
* *

for i :=1 to t

begin
a [i) ·= 0.0
X (i) := 0.0
y(i] := 0.0
p[i) := 0.0

end ;

for i :=1 to r
begin

b[i) :=0.0
q(i] :=0.0

end ;

for i :=1 to tr
begin

g[i) :=0.0
z [i) :=0.0

d[i) :=0.0

end ;

e := 0.0

u := 0.0

w := 0.0

s := 1

h ·= 2
j ·= t

c := 1

count := 192000

for i :=1 to count
begin

if s<>n then
begin

read (data1,xe)

read (data2,de)
x [j) := xe ;

y[j-1) := y[j)

z[h) := xe ;

g[h-1) := y[j)

d [h) := de ;

atot := 0.0
btot := 0.0

do

do

do

do

* set e and the associated

parameters u & w to zero *

* initialize the number of the sampling periods at one *

* read the filter input and the

desired response input samples *
* the most recent sample is the newest sample *

* clear accumulators *

**

for k :=1

begin

atot :=
end ;

to t do

atot =
atot+(a[k]*x[j+1-k])

**

for f :=1

begin

btot ·=

to r do

btot+(b[f)*y[j-f))

r

btot = L bf Yj-f
f=l

end ;

*
*
*
*
*

shift the previous filter input and filter output
samples and save them in the one dimensional

arrays signal and filterout respectively

*
*
*
*
*

for m :=1 to
begin

x[m] := x [m+1]
end ;

for m :=1 to
begin

y[m] := y[m+1]

end ;

y[j] := (atot-btot) /8
s ·= s+1
h := h+1

end
else

begin
j := t ;

c := c+1
p[j] := z[c]

q[j-1] := g[c-1]
e := d[c]-q[c-1]
w := 2*k1*e
u := 2*k2*e

r do

r-1 do

* compute filter output and scale it down by 8 *
* next sampling period *
* get the next filter input, desired input, filter output

samples involved in the coefficients updating operation*

* save filter input and output samples employed in
updating operation in savein and saveout *

* compute filter error output *

*
*
*
*
*

update 16 non-recursive and 15 recursive coefficients

and write them back into the one dimensional
arrays nrcoeff and rcoeff respectively

*
*
*
*
*

for k :=1 to t do
begin

a[k] ·= a[k]+(w*p[j+1-k])
writeln (a[k]:10)

end ;

for f :=1 to r do
begin

b[f] := b[f]+(u*q[j-f])

writeln (b[f]:10)

end;

*
*
*
*
*

shift and save the filter input, the filter output samples,

used in the coefficients updating operation in
the arrays savein and saveout respectively

*
*
*
*
*

for m :=1 to r do

end.

begin
p[m) := p [m+1)

end ;
for m :=1 to r-1

begin
q[m) ·= q[m+l)

end ;

do

h := tr * save only the first 16 input and 15 output
s := 1 samples for every n*16 sampling period *

end
if c=17 then * is it the last sampled data? if yes

initialize h and c to get the

end

begin
h ·= 2
c := 1

end

new sampled data *

APPENDIX A-6

*
*
*
*
*

PASCAL program for illustrating the performance of the 16th order

recursive LMS adaptive filter at two different frequencies,
representing the data in floating point arithmetic

*
*
*
*
*

program filter (output)

const kl 1.96e-06

k2 1.96e-06
n 129 ;

t 17 ;

r = 16 ;

tr = 18 ;

type

signal array [1. .t] of real
filterout array [1. .t] of real
nrcoeff array [1. .t] of real
rcoeff array [1. .r] of real
iport array [1. .tr] of real
oport array [1. .tr] of real
save in array [1.. t] of real
saveout array [1.. r] of real
desired array [1. .tr] of real

var

atot,btot,u,w,e,xe,de,

angle,angl,ang2,wavel,wave2: real
i,j,f,k,m,s,h,c,count: integer;

x: signal ;
y: filterout

a: nrcoeff ;

b: rcoeff ;

z: iport ;
g : oport ;

p: savein ;

q: saveout
d: desired ;

begin

* covergence factors ~l and ~2 *

* adaptive filter input samples *
* adaptive filter output samples *
* updated non-recursive coefficients array *
* updated recursive coefficients array *

* filter input and output samples used in
the coefficients updating operation *

* desired response input samples *

* sinusoids angles and the corresponding input samples *

* *
* initialize the previous arrays at zero *
* *

for i:=l to t do

begin

x[i] := 0.0
y[i] := 0.0

a [i] ·= 0.0

b[i] := 0.0
p[i] := o.o
q[i] := o.o

end ;

for i:=1 to tr do
begin

g[i] ·= 0.0
d[i] := 0.0
z [i] ·= 0.0

end ;

e ·= 0.0

u ·= 0.0
w ·= 0.0
s ·= 1
h := 2

·= t
c := 1
count := 1900000 ;
for i:=1 to count do

begin
if s<>n then

begin

**

if (i<950000) and (i>=1) then
begin

angle := 11.25*i ;
xe := sin((angle*3.141592)/180)
xe : = xe * 1. 5 ;
ang1 := 11.25*i
wave1 := sin((ang1*3.141592)/180)
ang2 := 5.625*i ;
wave2 := sin((ang2*3.141592)/180)
de := wave1+wave2 ;

end ;
if (i<1900000) and (i>=950000) then

begin
angle := 5.625*i
xe := sin((angle*3.141592)/180)
xe := l.S*xe ;
ang1 := 5.625*i ;
wave1 := sin((ang1*3.141592)/180)
ang2 := 2.8125*i ;
wave2 := sin((ang2*3.141592)/180)
de := wave1+wave2 ;

end ;

generate the filter input and the desired response
input sinusoidal signals in accordance with

the system discussed in section 4.3.b
at f1 for the first count/2

iterations and at f2 for
the last count/2

iterations

**

x [j] := xe ;
y[j-1] := y[j]
z [h] := xe ;
g[h-1] := y[j]
d[h] := de ;
atot ·= 0.0

btot := 0.0

* read the newest filter input, the desired
response input and filter output
floating point samples *

* clear the accumulators atot and btot *

**

for k :=1

begin

a[1] :=

atot ·=
end ;

to t do

1. 0 ;

atot+((a[k]/8)*x[j+1-k])

t

atot = L ak xj+l-k
k=l

**

for

begin

btot
end ;

f:=1 to r do

:= btot+((b[f]/8)*y[j-f])

r

btot = L bf Yj-f
f=l

*
*
*
*
*

shift the previous input and output samples, used to
compute the present filter output one location

and save them in savein and saveout arrays

*
*
*
*
*

for m :=1 to
begin

x[m] :=x [m+1]
end ;

for m
begin

y[m]
end ;

:=1 to

:=y[m+1]

y[j] :=(atot-btot)/2
e :=de-y[j]

r do

r-1 do

writeln (i:l2,y[j] :12,e:12)
s :=s+1
h :=h+1

end
else
begin

c := c+1
j := t

p[j-1]
q[j-1]

:= z [c)

:= g[c-1]
e := d[c]-q[c-1]
w .- 2*k1*e

u .- 2*k2*e

* compute filter output and scale it down by 2 *
* compute filter error output *

* next sampling period *
* get the next sampled data used in the

coefficients updating operation *

* get the next sampled data used in
the updating operation *

* compute 2 ~1 e and 2 ~2 e *

*
*
*
*
*

update 16 non-recursive and 16 recursive coefficients
and save them back in their previous locations in

nrcoeff and rcoeff arrays respectively

*
*
*
*
*

for k :=2
begin

to t do

a[k] :=a[k]+(w*p[j+1-k])
end ;

for f :=1 to r do
begin

b[f] := b[f]+(u*q[j-f])
end ;

*
*
*
*
*

shift the filter input and output samples, used in the
coefficients updating operation, one location and

save them in arrays savein and saveout

*
*
*
*
*

for m :=1 to
begin

p[m] ·= p[m+1]

end ;

for m :=1 to
begin

q[m] ·= q[m+1]
end ;

s := 1 ;

h := tr
end

if c=1 7 then
begin

end
end.

h := 2
c := 1

end

r do

r-1 do

* reset hand c and read only the first 17 filter

input and 16 filter output samples for
every (n*16) sampling periods *

APPENDIX A-7

*
*
*
*
*

PASCAL program for illustrating the recursive LMS adaptive

filter performance at two different frequencies

in fixed point arithmetic

*
*
*
*
*

program filter (output)

canst k1 1020033 * k1 2/111 & k2

k2 1020033

n = 129 ;

t 17 ;

r = 16 ;

tr = 18 ;

type

signal array [1. .t) of integer

filterout array [1. .t) of integer

nrcoeff array [1. .t) of integer

rcoeff array [1. .r) of integer

iport array [1.. tr) of integer

aport array [1. .tr) of integer

sa vein array [1. .t) of integer

save out array [1. .r) of int.eger

desired array [1. .tr) of integer

var
sig,dis,angle,ang1,ang2,wave1,wave2: real ;

atot,btot,u,e,w,xe,de,i,j,f,k,m,s,h,c,count: integer

savein ; p:
q: saveout ;

x: signal ;

y: filterout

a: nrcoeff ;

b: rcoeff ;

z: iport ;

g: aport ;

p: savein ;

q: saveout

d: desired

begin

for
begin

x[i)

y[i)

a [i)

b[i)
p[i)

q[i)

end ;

for

begin

z [i)

g(i]

i:=1

:= 0
·= 0

·= 0

:= 0

:= 0
·= 0

i:=1

:= 0

:= 0

to t do

to tr do

d[i) := 0
end ;

e := 0
u := 0
w ·= 0
s := 1
h ·= 2

j ·= t
c ·= 1
count := 1900000 ;

for i:=1 to
begin

if s<>n
begin

then

count do

**

if (i<950000) and (i>=1) then
begin

angle := 11.25*i ;
sig := sin((angle*3.141592)/180)
sig := sig*l.S ;
sig := sig*1164 ;
xe := trunc(sig) ;
ang1 := 11.25*i ;
wave1 := sin((ang1*3.141592)/180)
ang2 := 5.625*i ;
wave2 := sin((ang2*3.141592)/180)
dis := wave1+wave2
dis := dis*1164 ;
de := trunc(dis)

end ;
if (i<1900000) and (i>=950000) then

begin
angle := 5.625*i
sig := sin((angle*3.141592)/180)
sig ·= l.S*sig ;
sig := sig*1164 ;

generate the filter input and the desired
response input samples represented

in fixed point arithmetic in
accordance with the system

discussed in section
4. 3. b at f1 and

f2 (f2=fl/2)

xe := trunc(sig) ; * get the integer part of the input samples

ang1 := 5.625*i ;
wave1 := sin((ang1*3.141592)/180)

ang2 := 2.8125*i ;

wave2 := sin((ang2*3.141592)/180)

dis := wave1+wave2
dis := dis*1164 ;

de := trunc(dis) ;
end ;

* get the integer part of the desired response samples*

**

x [j) := xe ;

y[j-1) := y[j)

z[h) := xe ;
g[h-1) := y[j)
d [h) := de ;

a tot := 0 ;

btot := 0 ;

for k :=1

begin
a[1) ·= 1

to t do

atot ·= atot+((a[k) div 8)*x[j+1-k))

end ;

for f:=l to r do

begin
btot := btot+((b[f) div B)*y[j-f))

end ;

for m:=l to

begin

x[m) := x[m+l)
end ;

for m :=1 to

begin

y[m) := y[m+l)

end ;

r

r-1

y[j) :=(atot-btot) div 8192
e : = de-y [j J ;
writeln (i:l2,y[j) :12,e:12)

s := s+l

h := h+l ;

end
else
begin

j := t ;

c := c+l

p[j-1) := z[c)

q[j-1) := g[c-1)

e := d[c)-q[c-1)
for k :=2 to

begin

w ·= e*p [j+l-k)

w := w div kl

a[k) :=a[k)+w

end ;

for f :=1 to

begin
u :=e*q[j-f) ;

u :=u div k2 ;

b[f) :=b [f) +u

end ;

t do

r do

for m:=l to r do

begin

p[m) :=p[m+l)

end ;

for m :=1 to r-1

begin

q[m) :=q[m+ll

end ;

s ·= 1 ;

h • = tr ;
end

if c=t then

begin

end

end.

h ·= 2

c := 1

end

do

do

do

* compute filter output and scale it down by 2,

and express the coefficients as a fraction of
12 bits by dividing the output by 212 *

* ak+l = ak + 2*1lt *xk *ek *

.,
(0

td
I
~

-{

:J
fO

Cj
p
<+
p

~
c
,..--

<+
D
,..--

fO
X
fO
)

n
)

n
c
<+
Cj

p
(0
)
p
3

CLK/1~2~8--~---------------------------------r-------.

n

CTRL CTRL
OUT ~ At I AD c I At ~ OUT

vt r 1 BINARY 1 A3 r vt r-
v3t ~ I OUTPUTS I Bl e ~ v3t:l

U1 B3 B3 U1
~(I) I I (I)~

I

p r

" "\,.
(1\
~

I

DAC BINARY INPUTS

111 Ill I Ill Ill
tD tD]>]>
w- w-

74LS257
, I I I I (I) (5)

-< -< w-

~~

en
c:~
~;;o r

r-f (l)

tJ:I tJ:I J>]>
w- w-

74LS257
(5) e ~

-< -< c: ;;o
' w- ~ r ,

:=J~
r
" --~~~----+------+~+---------------~----~~~-------------+~~
"\,.
(1\
~

L------t----++-t--, ll Ill Ill I

,..

c

(I)

tD tD]>]>
w- w-

I I

- (I)

tDtrJl>J> w- w-

74LS257 74LS257
(6)

-< -< w-

en
c:~
~;;o

r

(6) e n 1-
c:~

-< -< ~ ;;o w- r

Ill-

l I I d II II ~
256tc PORT B

T 68000 MICRCA
2

DPRDCESSDR

1,

,

nn rr
;;o;;o
"\,."\,.
ru­
UIN
0\m

-+ - k B2 (p I A) CBt ~----------~

J>
-u
-u
r1
:z
tJ
X

td

CLOCK

SYNC

LS257 4
SELECT

APPENDIX B

256 tc

Ef~C7 O~T L--14 __ 6_4 _t _c _ __.~I I I

k~C~tT 5 I I I I l I I I l I I

LS257 5
CTRL OUT 1 I

k~[~tT6 4 XJ 4 dJ '~ ~J ---+· IIL__ ___ __jl

LS257 6
CTRL OUT--

Fig. B-2 The Do. to. Multiplexer TIMing Dlo.gro.M

> """"' .,
v

f.-- DHS
cs

~ L BIT 11 ~
AO t---

v ~_ CE Lf1
~ "-

(/)
~

BIT 0 ANALOG IU
INPUT " tt:

APPENDIX c

MUX
I

QH
A Lf1 SH/LD

IJ)
~

(/) CLR
_j...J

H V :!;
tt:

"- 1&.1 z: c,,...

~
~

QH

A Lf1 SH/LD
IJ)

D ~
(/) CLR

~
E _j ~
v-

-!:- HI'- ~!i
-

1

,

f.--

~

.. ,
~

~
...J
u

SYNC

<l-'- ~
CLK (Y)

,....-
fiLTER<[~
INPUT t-

t_,_CQ

..

rC~
L(1 ~~3

Ct..l</16

&~
Ct..l</11!8

Fig, C-1 Po.ro.llel to Serlo.l Conversion Dlo.gro.l"'l of' the Fll ter Input

LS165
CLOCK

LS165
SH/LD

RS754
R/C

RS754
CE

RS754
cs

_____ __,+----------- 256 tc -----------+

u u

~ ,._ 128 t c ----+

~ LJ LJ

~--------------------

Ov ---

Fig. C-2 Po.ro.llel to Serlo.l Conversion TIMing Dlo.gro.M of the Fll ter Input

APPENDIX D
CLK/2
CLK/4
CLK/8
CLK/16 p CLI</32
CLK/64 ... L/ CLI</128 .,....
CLI</25~

I* Dl G~ ~ QA ... Q1 ...
r- INA '-.!)

.-4 (Y)
(/) (/)

1 I ~
_J _J -

--+-- SYNC INB ~~QH ~ .,.. Sk ANALOGUE
DB Q8

"'- ~ ~ ~lLTER

~ flLTER u CUT CTRL " " DUT ~ DU1
I CUT 1---- RS5745 GND t- + -

<l:

l l

u_ G(Y)
La. 20k

INA~
LoJ ~ r--/'~

"'-
LaJ ~ ~ Lo..

CLK f-- '-.!) QA D1 Q1 3 u > ~
.-4 (Y) ,_ oj Lo..

(/) QD D4 (/) Q4
~ 0. .X

T~ ~ ·
JNB _J~ _J 9

11
47

..J
~

u CUT CTRL
I I

--

' .,~

CLK/4

~
...

> CLI</8
In CLK/16

CLK/32
CLK/64 LJ l CLI</12~
CLI</25 ... \

I

~I\ I I
....,

u
Fig. D-1 Circui-t Dlo.gro.M for Producing -the Ano.logue FIL-ter Ou-tpu-t

CLOCK

SYNC
~ 256 tc =======---------------

u

LS164
CLOCK

LS164
INB 5v

u
~

LS164 ~(1·• ----------------­CLEAR u
LS373
G

+--- 16 tc 256 tc --------------.

RS7545 256 t c ----------

WE&cCS ~

Fig. D-2 TIMing Dlo.gro.M for Producing the Ano.logue Fll ter Output

PROGRAM
PIAA
CTRLA
PIAB
CTRLB
IN SAMPLE
WEIGHT

INPUT
OUTPUT
IN SAM
OUTS AM
c
z
CONSTl
CONST2
STBl

STB2
K

APPENDIX E

* *
* 68000 ASSEMBLY LANGUAGE PROGRAM FOR UPDATING THE *
* COEFFICIENTS OF THE 16th ORDER RECURSIVE LMS *
* ADAPTIVE FILTER *
* *

EQU $4000 ;
EQU $05CEF1
EQU $05CEF3
EQU $05CEF5
EQU $05CEF7
EQU $5000
EQU $5300

EQU $5400
EQU $5500
EQU $53 FE
EQU $54 FE
EQU @$5608
EQU @$560C
EQU @$5610
EQU @$5614
EQU @$5618

EQU @$561C
EQU @$5620

* ADDRESS OF PIA DATA DIRECTION AND DATA REGISTERS A *
* ADDRESS OF PIA CONTROL REGISTER A *
* ADDRESS OF PIA DATA DIRECTION AND DATA REGISTERS B *
* ADDRESS OF PIA CONTROL REGISTER B *
* STARTING ADDRESS OF ADDRESS REGISTER A7 *
* STARTING ADDRESS OF MEMORY LOCATIONS USED AS A STORAGE

OF THE UPDATED COEFFICIENTS ADDRESSED BY AS *
* STARTING ADDRESS OF ADDRESS REGISTER A4 *
* STARTING ADDRESS OF ADDRESS REGISTER A6 *

* TEMPORARY STORAGE OF NRCOEFFS *
* TEMPORARY STORAGE OF RCOEFFS
* STORE ~l AND ~2 IN MEMORY LOCATIONS

$5618 & $561C RESPECTIVELY *

*
*
*
*

SET UP DATA DIRECTION, DATA AND CONTROL
REGISTERS OF THE PIA

*
*
*
*

ORG PROGRAM ; * SPECIFY THE STARTING ADDRESS OF MAIN PROGRAM *

MOVEA.L PIAA,AO ;
MOVEA.L CTRLA,Al ;
MOVEA.L PIAB,A2 ;
MOVEA.L CTRLB,A3;

* GET PIA BASE ADDRESS *
* GET PIA CONTROL REGISTER A ADDRESS *
* GET PIA DATA DIRECTION AND DATA REGISTERS B ADDRESS *
* GET PIA CONTROL REGISTER B ADDRESS *

MOVEA.L INSAMPLE,A7; * POINTER TO SAMPLED DATA (INPUT, DESIRED
RESPONSE, OUTPUT) BLOCKS START *

MOVEA.L WEIGHT,AS ; * POINTER TO COEFFICIENTS STORAGE START *
MOVEA.L INPUT, A4 ; * POINTER TO INPUT SAMPLES START *
MOVEA.L OUTPUT, A6 ; * POINTER TO OUTPUT SAMPLES START *

LOOP

HIGH

LOW

DATA

INPUTM

INPUTL

DESIREDM

**

*
*
*
*

INITIALIZE AND SET A & B SIDES TO
INPUT-OUTPUT

*
*
*
*

**

CLR.B $0 (A1) ;

MOVE.B #$FF, (AO)
CLR.B $0 (A3) ;

MOVE.B #$03, (A2)
CLR.L DO
CLR.L D1
CLR.L D2
CLR.L D3
CLR.L D4
CLR.L DS
CLR.L D6
CLR.L D7

* CLEAR PIA CONTROL REGISTER (A SIDE) *
* MAKE ALL DATA LINES OUTPUT (A SIDE) *
* INTIALIZE B SIDE *
* DATA LINES 1 & 2 OUTPUTS, 3-8 INPUTS (B SIDE) *

**

MOVE.B #$14, (A1)

MOVE.B #$14, (A3)

MOVE.B (AO),Z
MOVE.B (A2),Z

* SELECT DATA REGISTER A; CA2 IS TRIGGERED ON LOW TO
HIGH TRANSITION *

*SELECT DATA REGISTER B;CB1 IS TRIGGERED ON HIGH TO LOW
TRANSITION,CB2 IS TRIGGERED ON LOW TO HIGH TRANSITION*

* DUMMY READ-CLEARS STATUS BIT IN CONTROL REGISTER A *
* DUMMY READ-CLEARS STATUS BITS IN CONTROL REGISTER B *

**

MOVE.W #$10,D4 ; * NUMBER OF SUCCESSIVE SAMPLES IN EACH BLOCK *

* READ A BLOCK OF SUCCESSIVE SAMPLES OF THE FILTER *
* INPUT, DESIRED RESPONSE INPUT AND THE FILTER *
* OUTPUT FROM THE A/D CONVERTER; 6MSBS *
* FIRST AND THEN THE 6LSBS AND *
* STORE THEM IN THE MEMORY *
* LOCATIONS ADDRESSED BY A7 *

BTST.B #$06, (A3)
BEQ HIGH ;
MOVE.B (AO),Z
MOVE.B (A2),Z
BTST.B #$07,(A3)
BEQ LOW
MOVE.B (A2),Z

* TEST THE STATE OF THE INPUT READY
PULSE ON CB2;IF READY DELAY

UNTIL THE NEXT FILTER
INPUT IS AVAILABLE *

**

MOVE.B (AO),Z;
MOVE.B #$14, (A3)
BTST.B #$07,(A3)
BEQ INPUTM ;
MOVE.B (A2), (A7) +;

BTST.B #$06, (A1) ;
BEQ INPUTL ;
MOVE.B (A2),$20(A7)
BTST.B #$07,(A3);

* CB1 IS TRIGGERED ON HIGH TO LOW TRANSITION *
* TEST STATUS BIT 7 IN CONTROL REGISTER B *
* BIT 7=1, GET 6MSBS

OF THE INPUT SAMPLE *
* TEST STATUS BIT 6 IN CONTROL REGISTER A *
* IF BIT 6=1, THEN GET 6LSBS

OF THE INPUT SAMPLE *
* IF THE STATUS BIT 7 IS SET ON THE HIGH TO LOW

DESIREDL

OUTPUTM

OUTPUTL

TOP

LIST

RET!

BEQ DESIREDM ;
MOVE.B (A2),$40(A7)
MOVE.B (AO),Z;
BTST.B #$06, (All ;
BEQ DESIREDL ;
MOVE.B (A2),$60(A7)
MOVE.B #$06, (A3)
BTST.B #$07,(A3);
BEQ OUTPUTM ;
MOVE.B (A2),$80(A7);
MOVE.B (AO),Z;
BTST. B #$06, (Al) ;
BEQ OUTPUTL ;
MOVE.B (A2),$AO(A7);
SUBQ.W #$01,D4 ;
BNE.L DATA ;
MOVEA.L INSAMPLE,A7

MOVE.W #$10,D4 ;
MOVE.W #$10,K ;

TRANSITION OF THE CB1, THEN GET THE 6MSBS
OF THE DESIRED RESPONSE SAMPLE *

* CLEAR THE STATUS BITS IN CONTROL REGISTER A *
* IF THE STATUS BIT 6 IS SET ON LOW TO HIGH

TRANSITION OF CA2, THEN GET THE 6LSBS
OF THE DESIRED RESPONSE SAMPLE *

* CB1 IS TRIGGERED ON LOW TO HIGH TRANSITION *
* GET THE 6MSBS OF THE FILTER OUTPUT SAMPLE *

* GET THE 6LSBS OF THE FILTER OUTPUT SAMPLE *

* READ THE NEXT FILTER INPUT, DESIRED
RESPONSE AND FILTER OUTPUT SAMPLES *

* HAS THE LAST SAMPLED DATA BEEN READ, IF YES THEN
RELOAD THE ADDRESS REGISTER A7 WITH THE FIRST 6MSBS
INPUT SAMPLE'S ADDRESS *

* NUMBER OF SAMPLES IN EACH BLOCK *

**

MOVE.B (A2),Z;
MOVE.B #$14, (A3)
BTST.B #$06, (A3)
BEQ LIST ;

* THE UPDATING OPERATION IS ACCOMPLISHED EVERY 128
COMPUTATION PERIOD IN ACCORDANCE

WITH THE INPUT PULSE ON CB2 *

**

MOVE.W D4,K ;
MOVE.W #$0F,D4;

* SAVE THE NUMBER OF SUCCESSIVE SAMPLES *

**

* *
* SET THE SAMPLED DATA IN THE CORRECT POSITIONS *
* *
**

MOVE.B (A7)+,DO ;

LSL.W #$06,DO ;

MOVE.B $20(A7),DO
LSR.W #$02,DO

LSL.W #$04,DO

EXT.L DO ;

LSR.L #$04,DO

* LOAD THE DATA REGISTER DO WITH THE 6MSBS OF THE
INPUT SAMPLE *

* ALLOCATE IT IN THE MS BYTE OF DO *
* GET THE 6LSBS OF THE INPUT SAMPLE *
* SET THE LSB OF THE INPUT SAMPLE IN BIT POSITION 0 IN

DO *
* ALLOCATE THE MSB OF THE INPUT SAMPLE IN BIT

POSITION 15 *
* EXTEND THE SIGN BIT TO BIT 31 IN DO *
* SET THE INPUT SAMPLE IN BIT POSITION 0

THROUGH 11 WITH THE EXTENDED SIGN BIT
OCCUPYING BIT 12 THROUGH BIT 15 *

**

MOVE.B $40(A7),Dl
LSL.W #$06,Dl ;
MOVE.B $60(A7),
LSR.W #$02,Dl
LSL.W #$04,Dl ;

* EXECUTE THE SAME SEQUENCE
OF INSTRUCTIONS FOR THE

DESIRED RESPONSE
INPUT SAMPLE *

RET2

RET3

START

INCURRENT
SAMPLES ?

NONRECUR

EXT.L Dl ;
LSR.L #$04,Dl

MOVE.B $80(A7),D2 * EXECUTE THE IDENTICAL SEQUENCE
TST.B D2 ; OF INSTRUCTIONS FOR THE
BMI.L NEG3 FILTER OUTPUT
LSL.W #$06,D2 SAMPLE *
MOVE.B $AO(A7),D2;
LSR.W #$02,D2 ;

MOVE.W DO,-(M)
MOVE.W D2,- (A6)
SUB.W D2,Dl ;

* SAVE THE INPUT AND OUTPUT SAMPLES IN THE MEMORY
LOCATIONS ADDRESSED BY A4 AND A6 RESPECTIVELY *

* COMPUTE THE ERROR OUTPUT OF THE FILTER BY SUBTRACTING
THE FILTER OUTPUT FROM THE DESIRED RESPONSE INPUT *

* *
* UPDAT 16-NON-RECURSIVE AND 16-RECURSIVE *
* COEFFICIENTS AND STORE THEM IN MEMORY *
* LOCATIONS ADDRESSED BY THE ADDRESS *
* REGISTER AS ACCORDING *
* TO THE EQUATIONS *
* *
* il.j+l il.j + 2*111 *Xj*ej *

* *
* Qj+l = Qj + 2*112*Xj*ej *

* *

MOVE.W #$08,D6

CLR.L DS
NOP ;
NOP ;
CMPA.L #$S41F,A6

BGE.L COMPl ;
MOVE.W (A4+,D3
MULS.W Dl,D3 ;
DIVS.W STB1,D3
EXT.L D3 ;
DIVS.W STB2,D3
ADD.W (AS),D3;

MOVE.W D3, (AS)+ ;
MOVE.W D3,CONST1 ;

* LOAD D6 WITH THE NUMBER OF THE SECOND ORDER SECTIONS
CASCADED TO FORM THE 16th ORDER FILTER *

* STARTING ADDRESS OF THE FIRST SET OF THE RAMS *

* IS IT THE LAST LOCATION OF THE INPUT OR OUTPUT

IF YES, THEN COMPl *
* GET THE NEXT INPUT SAMPLE *
MULTIPLY ej BY xj-n+l
* SCALE THE RESULT BY 111 *

* ADD 2 111ej xj-n+l TO THE PREVIOUS UPDATED COEFFICIENT
OF THE SAME ORDER *

* SAVE THE NRCOEFF BACK INTO THE SAME MEMORY LOCATION*
* SAVE THE NRCOEFF IN THE TEMPORARY LOCATION ADDRESSED

BY CONSTl *

**

MOVE.W (A6)+,D7
MULS.W Dl,D7 ;
DIVS.W STB1,D7
EXT.L D7 ;

DIVS.W STB2,D7 ;

* EXECUTE SIMILAR SEQUENCE

OF INSTRUCTIONS

FOR Yj-n *

RECUR

FIRST

ADD.W (AS),D7 ;
MOVE.W D7, (AS)+
MOVE.W D7,CONST2 ;

**

**

*
*
*
*
*
*

UPDATE THE NEXT NON-RECURSIVE AND RECURSIVE
COEFFICIENTS FOLLOWING SIMILAR SEQUENCE

OF INSTRUCTIONS AS IN THE PREVIOUS ONE

*
*
*
*
*
*

**

CMPA.L #$S41F,A6
BGE.L COMP2 ;
MOVE.W (A4)+,D3
MULS.W D1,D3 ;
DIVS.W STB1,D3
EXT.L D3 ;
DIVS.W STB2,D3
ADD.W (AS),D3;
MOVE.W D3, (AS)+
MOVE.W (A6)+,D7
MULS.W D1,D7 ;
DIVS.W STB1,D7
EXT.L D7 ;
DIVS.W STB2,D7
ADD.W (AS),D7 ;
MOVE.W D7, (AS)+ ;
SWAP.L D3 ;
MOVE.W CONST1,D3
SWAP.L D7 ;
MOVE.W CONST2,D7

* SWAP THE LSW AND MSW CONTENTS OF D3 *
* OCCUPY THE NRCOEFF IN THE LSW AND IN THE MSW OF D3 *
* DO THE SAME FOR THE RCOEFF *

* *
* SET THE NON-RECURSIVE AND RECURSIVE COEFFICIENTS *
* CONTROL BITS IN ACCORDANCE WITH TABLE S.1 *

* *

TST.W D3 ;

BMI.L THA ;

LSR.W #$03,D3
BSET.B #$0C,D3
BCLR.B #$0D,D3
MOVE.W D3,CONST1
SWAP.L D3 ;

TST.W D3 ;

BMI.L TWSEVB

LSR.W #$03,D3

BCLR.B #$0C,D3

BSET.B #$0D,D3

;

;

;

* TEST THE SIGN BIT OF (A)
IF NEGATIVE THEN THA,

IF POSITIVE, THEN THE SIGN BIT OF (A0=1, BIT 13)
AND THE ADD/SUBTRACT CONTROL BIT (As=O, BIT 14) *

* SAVE (A) IN THE MEMORY LOCATION ADDRESSED BY CONST1 *
* GET THE NEXT COEFFICIENT (B) IN THE LSW OF D3 *
*TEST THE SIGN BIT OF (B),

IF NEGATIVE, THEN TWSEVB,

IF POSITIVE, THEN BIT 13=0 AND

c 2 =1 FOR THE CASE OF NON-UNITY *

SECOND

THIRD

FOURTH

OUT

BEGIN
TRANSFER

SWAP.L D3 ;

MOVE.W CONST1,D3
LSL.W #$02,D3
LSR.L #$02,D3
TST.W D7 ;

BMI.L THa ;
LSR.W #$03,D7
BSET.B #$0C,D7 ;

BCLR.B #$0D,D7 ;

MOVE.W D7,CONST2

SWAP.L D7 ;

TST.W D7 ;

BMI.L TWSEVb
LSR.W #$03,D7
BCLR.B #$0C,D7
BSET.B #$0D,D7
BCLR.B #$0E,D7
BCLR.B #$0F,D7
SWAP.L D7 ;

MOVE.W CONST2,D7
LSL.W #$02,D7 ;

LSR.L #$02,D7 ;

BCLR.L #$1D,D7 ;

CMP.B #$01,D6 ;

BEQ.L TEST ;

BCLR.L #$1E,D7
BCLR.L #$1F,D7

* JOIN THE CURRENT AND THE PREVIOUS
UPDATED NRCOEFFS TOGETHER IN D3 *

* IF THE RCOEFF (A) NEGATIVE, THEN THa *

*IF (a~ 0), THEN THE SIGN BIT (a0=1, BIT 13) AND
THE ADD/SUBTRACT BIT (as=O, BIT 14)

* GET THE NEXT RCOEFF *
IF(b < 0), THEN TWSEVb *

* IF ~ 0, THEN THE SIGN BIT (bo= 0, BIT 14) *
* SET s 1 TO 1, s 2 , s 3 TO 0

(REFER TO TABLE 5.1) *

* ALLOCATE THE RCOEFF'S BITS ACCORDING TO TABLE 5.1 *

* JOIN a AND b TOGETHERED IN D7 *

* RESET s 4 OF THE INPUT SCALING COEFFECIENT *
* IS IT THE LAST SECOND ORDER SECTION?

IF YES THEN TEST,

IF NO, THEN THE INPUT SELECTOR CONTROL BIT c1 ,MSB=O)*

*
*
*
*
*

OUTPUT NONRECURSIVE AND RECURSIVE
COEFFICIENTS BIT BY BIT TO THE EXTERNAL RAM

SIMULTANEOUSLY

*
*
*
*
*

MOVE.W D1,C ;

MOVE.W #$02,D1

* SAVE THE ERROR OUTPUT IN THE MEMORY LOCATION
ADDRESSED BY C *

* NUMBER OF NRCOEFFS AND (OR) RCOEFFS IN EACH SECOND
ORDER SECTION*

* *
* REVERSE THE ORDER OF THE NONRECURSIVE COEFFICIENT, *
* BIT BY BIT, AND STORE IT AS A MOST SIGNIFICANT *
* WORD IN THE DATA REGISTER DO *

* *

MOVE.W #$0F,D2
MOVE.W D3,DO ;

LSL.W D2,DO ;

LSL.L #$01,DO

SUBQ.W #$01,D2

BNE TRANSFER ;

* NUMBER OF THE NRCOEFF'S BITS-1 *
* TRANSFER THE NRCOEFF INTO DO *
* SHIFT THE COEFFICIENT NUMBER OF BITS CONTAINED IN D2*
* SHIFT THE BITS ONE BIT POSITION TO THE LEFT AND

OCCUPY IT IN THE MSW OF DO *
* NEXT BIT TO BE REVERSED IN ORDER *

WRITE

THA

TWSEVB

MOVE.W D3,DO ;
LSL.L #$01,DO
MOVE.W D7,DO ;

* REVERSE THE MSB OF THE NRCOEFF *
* MAKE THE RCOEFF LOCATED IN THE LSW OF DO *

**

*
*
*
*
*
*

WRITE THE COEFFICIENTS BIT BY BIT, ONE BIT OF
NON-RECURSIVE AND ONE BIT OF RECURSIVE

SIMULTANEOUSLY THROUGH THE OUTPUT
PINS (1&2) OF PORT B

*
*
*
*
*
*

**

MOVE.W #$0F,D4 ;

MOVE.B DS, (AO) ;

ADDQ.W #$01,D5 ;

ROL.L #$01,DO ;

MOVE.B DO, (A2) ;

LSR.W #$02,DO ;

SUBQ.W #$01,D4 ;

BNE WRITE ;
ROL.L #$03,DO
MOVE.B DS, (AO)
MOVE.B DO, (A2) .,

ADDQ.W #$01,D5

SWAP.L D3 ;

SWAP.L D7 ;

SUBQ.W #$01,D1
BNE BEGIN ;
MOVE.W C,D1
SUBQ.W #$01,D6
BNE.L START ;

MOVEA.L WEIGHT,AS

* NUMBER OF BITS-1 FOR EACH COEFFICIENT *
* ADDRESS OF THE FIRST SET OF RAMS *
* ADDRESS OF THE NEXT LOCATION IN RAMS *
* ROTATE TO THE LEFT ONE BIT POSITION TO GET ONE BIT OF

EACH COEFFICIENT TO COINCIDE WITH THE FIRST TWO PINS

OF PORT B *
* WRITE THE BITS INTO THE FIRST SET OF RAMS *
* GET READY FOR THE NEXT SET OF BITS *
* NEXT SET OF BITS *
* IS IT THE LAST SET? NO, THEN CONTINUE *
* WRITE THE NON-RECURSIVE AND

THE RECURSIVE LSB INTO THE
FIRST SET OF RAMS *

* NEXT ADDRESS OF RAMS *
GET THE NEXT NRCOEFF (B)
* GET THE NEXT RCOEFF (b) *

* HAS THE LAST SECOND ORDER SECTION BEEN WRITTEN?
IF NOT GO TO START *

* IF THE WRITE OPERATION HAS COMPLETED FOR 16 NRCOEFFS
AND 16 RCOEFFS, THEN RELOAD AS WITH THE STARTING
ADDRESS TO PREVENT THE OVERFLOW *

**

MOVE.W K,D4 ;
SUBQ.W #$01,D4
BNE.L TOP ;
MOVEA.L INSAMPLE,A4
BRA.L LOOP ;

* IS IT THE LAST SAMPLED DATA SET, IF NOT
CONTINUE THE UPDATING OPERATION,

OTHERWISE GET NEW BLOCKS
OF THE SAMPLED DATA *

**

LSR.W #$03,D3 ; * IF THE NRCOEFF (A < 0) THEN THE
BCLR.B #$0C,D3 SIGN BIT (Ao=O, BIT 13) AND THE

BSET.B #$0D,D3 ADD/SUBTRACT CONTROL
JMP.L FIRST ; BIT (As=1, BIT 14) *

LSR.W #$03,D3 * IF THE NRCOEFF (B < 0)'
BSET.B #$0C,D3 THEN BIT 13=0 AND
BSET.B #$0D,D3 IF # 1 THEN
JMP.L SECOND ; BIT 14=1 *

\
I

i . \

l

THa

TWSEVb

TEST

COMPl

COMP2

LSR.W #$03,D7 ;

BCLR.B #$0C,D7

BSET.B #$0D,D7
JMP.L THIRD ;
LSR.W #$03,D7 ~

BSET.B #$0C,D7
JMP FOURTH ;
BCLR.L #$1E,D7
BSET.L #$1F,D7

JMP OUT

*IF (a< 0), THEN THE SIGN BIT (a0=0) AND

THE ADD/SUBTRACT BIT (as=l) *

*IF (b < 0), THE SIGN BIT (bo=l) *

* IF IT IS THE LAST SECOND ORDER SECTION, THEN
THE INPUT SELECTOR CONTROL BIT (C2=l, MSB) *

**

MOVEA.L INSAM,A4 ;
MOVEA.L OUTSAM,A6
JMP NONRECUR ;
MOVEA.L INSAM,A4;
MOVEA.L OUTSAM,A6
JMP RECUR ;

* IF IT IS THE LAST SET OF COEFFICIENTS
THEN RELOAD A4 AND A6

WITH THE STARTING
ADDRESS-2 *

(~' . ..
.

