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"The transformations of particles are the vibrations
and wanderings which occur while the signs of creation are being
written in the book of being. They are not games of chance and
jumbled meaningless motion like the Materialists and Naturalists
fancy. Because a particle raises loads infinitely exceeding
its strength, like a seed a size of a grain of wheat shouldering

a load 1ike a huge pinetree ---

If every particle is not an official of God acting with

‘His permission and under His authority, and if it is not
undergoing change within His Knowledge and Power, then every
particle must have infinite knowledge and limitless power, it
must have eyes that see everything, a face that looks to all
things, and authority over all things --- Indeed, a particle
despite being powerless and 1ifeless by carrying out its
important duties consciously and by raising mighty loads

it bears decisive witness to the existence of the Necessarily

existent One.

Bediu'zzaman, Treatise on the Transformation
of Particles .
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ABSTRACT

This thesis consists oﬁ two parts:

The first part deals w#th lattice approach to field theories.
The fermion doubling problems are described. This doubling can be
removed if a dual lattice is introduced, as first pointed out by
Stacey. His method is deve]qped and in the process a formalism
for the construction of a covariant difference lattice operator and
thus of a gauge invariant act{on, is exhibited. It is shown how this
formalism relates to the work of Wilson. Problems of gauge invariance
can be traced back to the absence of the Leibnitz rule on the lattice.
To circumvent this failure the usual notion of the product is replaced
by a convolution. The solutions display a complementarity : the more
localised the product the more extended is the approximation to the
derivative and vice-versa. It is found that the form of the difference
operator in the continuous limit dictates the formulation of the
full two-dimensional supersymmetric algebra. The construction of the
fields necessary to form the Wess-Zumino model follows from the

requirement of anticommutativity of the supersymmetric charges.

In the second part, the Skyrme model is reviewed and Bogomolnyi
conditions are defined and discussed. It appears that while the
Skyrme model has many satisfactory features, it fails to describe
the interactions between nucleons correctly. These problems are

brought out and the available solutions reviewed.
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CHAPTER I

INTRODUCTION

As we all know and apparently as it always has been known,
matter is made of basic constituents. And it is these constituents
combined in varying proportions that give rise to the variety of

observed matter.

Now, the human mind naturally seeks simple and economic theo-
ries and it is remarkable that simplicity and elegance have indeed
proved to be the best way to understand the physical world; indeed
this shows a relation between the workings of human mind and the
structure of the world. Thus any overabundance of fundamental objects
is unsatisfying. It tells us that it is time to revise our ideas
about the nature of the basic constituents. And indeed,this is the
way things are in nature; any spectral distributions of masses, charges

or energy levels is a manifestation of a compound physical system.

Very long ago it was realised that matter which consists of
different proportions of chemical elements was made of atoms. As
the number of elements was 92 there were therefore 92 kinds of atoms.
However, with Mendeleef periodic table it was clear that atoms were
not fundamental particles. In the early 1920's Rutherford showed
that at the centre of the atom there is a nucleus. Later on, it
was realised that in fact atoms consist of nuclei and electrons.
Further, nuclei themselves are built up from simpler constituents

|

the protons and neutrons. |
|

Now, particles behave:as if they were spinning systems and
the amount of spin they possess is measured by the angular momentum.
Quantum mechanics allows the angular momentum to take integral and

half-odd-integral values only (the Planck constant Fi is taken to beone).



The electron, the proton, the neutron and the photon all have
j
non-zero spin; the three first ones have spin-} and the latter has

spin.l.

Another property of particles is statistics. This is intimately
tied up with the spin of particles. All particles with integral
spin (0, 1, etc...) obey Bose statistics and are called bosons and
all particles with half-pdd-integral spin obey Fermi statistics and

are called fermions.

At that time, except for the photon, the corpuscule of light,
all fundamental entitieswere fermions. Indeed a system of an odd
(even) number of fermions is a fermion (Boson), This situation did
not change when in 1968 electron scattering experiments (SLAC) gave
the first hint that point-like objects existed inside the protons,
“the partons". Hence confirming the proposition of Gell-Mann and
Zwerg (1964) that proton and other "elementary" particles were made
from more basic entities, the quarks. Indeed, quarks which are the
constituents of ha drons, possess spin-3. Therefore baryons are made
of three quarks whereas mesons are made of two quarks.

Hence fermion fields are basically the fundamental constituents of

matter.

Non-abelian gauge theorie584 provide the best description of
the empirically observed properties of elementary particles. Indeed,
the weak and electromagnetic fnteractions when unified in a gauge
invariant theory (SU(2) x (U(i)), known as the Salam-Weinberg model,
are compatible with all known facts and experimental results of
particle physics (reutral currents, W and 2° particles, ...). The

success of the unification of weak and electromagnetic interactions

le d to a further unification with strong interactions at the level of
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quarks. As quarks are not seeq in nature, it is believed that they
are confined by a non-abelian éauge theory, the most popular

).63 This is an

candidate being SU(3) Quantum Chromodynamics (QCD
SU(3) colour analogue of charge. Here quarks of spin-1 carry a

quantum number colour. They interact with spin.1 coloured particles
called gluons which are somehow the analogues of photons. They are

gauge particle of spin 1 but they are different in that the non-abelian

gauge groups SU(3) forces them to interact with themselves.

However, whereas QED shows up in the experiments as written in
the Lagrangrian, QCD does not. In QED for instance the magnetic
moments of the electron, positron and muon are predicted from the
theory with such an accuracy that they are in agreement with
experimental results up to g decima1s73 (including QED + weak
and QCD corrections). But QCD does not provide a simple description
of hadron physics. Particularly for the strong-coupling limit of
QCD, this has resulted in the impossibility of making quantitative
predictions of the theory which could be compared with experiment.
Even the observed confinement of colour has not been established as
a property of the QCD Lagrangian. Iﬁ order to understand confinement,
models have been developed which mimic the effect without producing
it from a fundamental theory. In such models quarks experience a long-
range attractive force, sufficiently strong to keep them confined

in hadrons.

If such a force is to arise, it can only be from non-perturbative
effects because a perturbative expansion of QCD gives free quarks as
for electrons in QED. Thus,techniques which are not based on

perturbation theory are needed.
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The lattice approximation is the only known gauge invariant
regularization which allows the:treatment of non-perturbative effects
in QCD. Thus to avoid perturbafion theory the lattice is introduced.
However, the description of quarks on the lattice is plagued with
severe difficulties which can be traced back to those with free
fermion fie]ds.33 The most straightforward fermion formulation
produces too many fermions. Various procedures to avoid this
multiplicity of fermions have been proposed. But none of them
succeeded in consistently solving the problem without abandoning
some property such as chiral symmetry or locality of gradient
operators.2 One of these methods3 (SLAC fermions) has manifest chiral
invariance, but does not preserve locality. The SLAC derivative
couples all Tattice sites along the direction of each component of the
gradient instead of coupling only nearest-neighbour sites. In another
method, Kogut and Susskind5 put the upper (lower) components of Dirac
spinors on even (odd) lattice sites. The gradient operator is local
but there is no explicit continuous chiral symmetry on the lattice
either. An alternate projection operator technique introduced by
Wi1son34 in his lattice action formulation also destroys Ys-invariance.
Chiral symmetry, realised in the Nambu-Goldstone mode,86 is an important
approximate symmetry of the strong interaction, one of the consequences
of which is the smallness of the pion mass. Indeed, strong coupling

calculations with Susskind's fermions give a high ratio m"/mN.80

However, a low pion mass does not seem a problem with Wilson's fermions.gl
A Tack of chiral invariance also implies the non-existence of a neutrino
lattice theory. It is therefore crucial to preserve chiral symmetry.
Stacey] solves the fermion doubling by defining the fermionic wave

functions and their derivatives on points of a new dual lattice with

sites at the centre of the hypercubes of the first one. Later on,



Bender et a16 proposed a finite element approach which basically
amount to averaging the fermi fields on points of the dual lattice

as well.

In these last two schemes however,it is not evident how to
implement gauge invariance. Bender et a18 attempted to formulate
an abelian gauge invariant theory where the operator Dirac equation

is solved by means of finite element method.

Although being the underlying theory of strong interactions,
QCD does not provide a simple description of low energy hadron
physics. A more appropriate description is given by an effective
field theory of mesons and baryons. The pion field behaviour for
instance is satisfactorily described by the non-linear chiral sigma
model .

46 and witten47 showed separately that in the large.N

t' Hooft
limit QCD is equivalent to a theory of mesons fields only. In this
theory, the meson coupling 1/y 1is weak and the tree approximation
is valid. As for the baryons, they would arise as solitons. If
this were to be realised we would have topological particles in a

realistic field theory. This idea is very attractive and indeed it

has recently attracted much interest.

In fact this remarkable conjecture was made by Skyrme35
some twenty years ago. He showed that an additional stabilizing
term to the chiral Lagrangian supports non-trivial topological

solutions.
In this case there exists a hierarchy in hadron physics : mesons

are composed of quarks of the underlying theory (QCD) and baryons

(fermions) are formed as solitons of the meson-fields theory. Very



recently, Sato82 suggested that this type of hierarchy may not be
peculiar to hadron physicsoMﬁHe then proposesa model in which solitons

|
behave 1ike leptons and quarks.
This work is organised into five sections.

In the second chapter we describe the fermion doubling problem
which occurs when fermions are put on the Tattice. Then following a
suggestion of Stacey] that fermion doubling may be intimately related
to the transcription of the gradient operator on the lattice, we
analyse the Dirac equation on the lattice and establish that a naive
transcription is inconsistent in the sense that it does not yield a
box operator. This inconsistency is removed if the fermion fields are
defined on the dual Tattice sites i.e. at the centre of the hypercubes
of the ordinary lattice. To proceed further we construct a difference
operator on the lattice. The resulting theory has no fermion doubling
and preserves chiral invariance (m = o). This operator saves us
lengthy and tedious calculations and moreover allows us to draw a

clear parallel between the lattice and the continuum.

In formulating gauge theories of fermions on the lattice we
are faced with problems. One of these problems is the question of
how one introduces gauge fields on the lattice so that the theory is
gauge invariant. In the third chapter we note that this problem
is directly related to the absence of Leibnitz ru]e7 on the lattice.
To circumvent this failure of the product rule for differentiation
we redefine the usual notion of product. The solution displays a
compiementarity : the more localised the product is the more extended
is the approximation to the derivative and vice-versa. Then we
observe that the form of the difference operator-defined in the

first chapter - in the continuous limit suggests two ways of
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introducing the gauge field 6“' The first way is reminiscent to that
of Bender et a18; it only wor%s in the Abelian case. The second

way is in agreement with the Wilson precription.4 Then, in order to
define a gauge action we construct a lattice analogue of the two-
form curvature Fuv . The resulting action turns out to be exactly

the "revised" Wilson action.

Currently there is intense theoretical interest in supersymmetric
theories.83 These are theories possessing a symmetry between fermions
and bosons. For several reasons it would be interesting to put
supersymmetry on the lattice. However, this is not an easy task
because the supersymmetry transformations involve the momentum operator
and translation operators none of which survive on the lattice. Thus

only very tentative steps have been taken.

In the fourth chapter we propose a formulation of the full
two-dimensional supersymmetric algebra. This is again dictated by
the form of the difference operator in the continuous 1Timit. We also
construct the fields necessary to form the two-dimensional Wess-
Zumino model. This formulation offers some hope of leading to a
realistic lattice approximation to a continuum model and we think that

it is worthy of further study.

In the fifth chapter, the Skyrme model is reviewed and
Bogomolnyi-1ike conditions are defined and discussed. It appears that
while the Skyrme model have many satisfactory features it fails to
describe nucleon-nucleon interactions correctly. Indeed at
intermediate range repulsion persists and there is no sign of attraction.
Two solutions of this problem have been suggested. 43,77
In the last and sixth chapter, the Skyrmion-Skyrmion interactions as well

as nucleon-nucleon interactions within the predictions of the Skyrme model

are studied and the problems brought out. And finally the available

solutions are reviewed.
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: The solid line denotes the central potential Vc(r)

deduced from the Skyrme model. The crosses
indicate the corresponding component of the Paris
potential. The break in the curves indicates a

tenfold scale change.
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Fig. 2 : The nucleon-nucleon spin-spin potential VOT(r).
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Fig. 3 : The nucleon-nucleon tensor potential VTT(r).
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APPENDI X

In order to evaluate the Dirac action to second order in h,

we expand b, Y, UL 11)'“ B, and D, inII1.40, to third

U+V
order in h and apply the Baker-Hausdorff formula. This yields

the following,

2 [W» QMA)ZYr - Exﬁjwﬁ

: “'l[‘?xr(iﬂl«A’”.E‘A”“-a%’_’A*’)(Wm,m";—,zbl\rn»‘%}!b}v)
(Yi—‘f\) Y‘!‘ /“Lri-k\} 33 \{J)Xr.(/l-IBLAA_E A}*:_ iEA}"}> Ly]
{2‘ \T&*A \f *\\'XI‘”I"\P r\ﬂsr»\'{’ +/‘&\{'XFA“ALP -M& *KFAM‘{/ +,g;: \FJ/*?/;\Y

ww-—w Kl o ms,»f‘\ kv+'—*rxr~f\”b7~
AT R R AR AR R Sl

+ﬂ“

Note that we are considering A" and not A" as we should. This is
because we choose to work in a Lorentz gauge, i.e. BUAU =0

and therefore

'E\/&:% (AMTA);) = %(Aﬁﬁ-A +BlD,uA 4+ .- )
=AY

when h goes to zero.

. v "
- ihA™ L\A),, - “L‘A/" ~ihA
l-x‘ (.YX;* ¢ \{//uv - /4+N’X/*Q < )

W
DL (ARpR Y TR T g2 AT Fp o 2T 1Y)
%( A Y- TUAIAT K T2y Y AT ORI

4 BT g (RR)Y 4G g (48 Y £ BT Y (AR Y)
ALY (L3y +L ¥y 2]+ (SF L0 20 g (R +
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L P (KR DO £ L (3T W TNy, (1K)
=YY (AN ‘*%_AHA“%-!;,A”?V L AR “;;DrAAA#)W

“ Y Y (- RAR LA L A*”“A’“_ Lo AR tfﬁé AT )Y
v A YXI" ’b A Y - "'“ Yyr(f‘)**’»‘ﬂ Y *—\*XP(P*B )\'V

31, (3. +W)F Y @

and finally

- _ihA K" _ihA™ N
H/”Xn 3 \l’ "*/‘X/“Q’ e A&fv)

3

= L (20F 4 (-R)Y + 2858 - FEd0 g+ T2 3Ty
A R R N R 2 S S RN

TAF Yo (K-8) 0y« F Y (A=A Dy + 100 G B-AT)Y
TAYY G (R°-A)Y - Py [ A"i\w+3«‘v%sz« R PR RN

H"(&‘Wr ~\ +3\3 YUY -5 A Y (A=A ¢ 'DNJ;AW*A")
-y (LA"A"’--A"’A’“)YTALTXP(A'A NMWMA - ANy
- (LAIN) %y« A (A R) T - LR LAY
+ LT ym 1—/‘\"1)‘1/ EATY Yo (=AY 4 AT Y (A= A) DY

L EY (AP Ty )Y L L= R et
‘%;w}r\i‘;?fr\v>

A1l together, the action II1.40 contributes,

RN Y. AR SETEAE
flems inh (B) + ferms in W (8.)

Y AYATY YR - 3 br@blr\f’) * B,(\«)«ﬁz(‘;}.
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Hence to lowest order in h'and up to a total divergence, the
continuum action ¥ 8; (au + iAY ) ¥ is recovered. The

remaining terms are gauge invariant. Indeed,

I B () = 4 F0ATRY £ 44 RE YA Y+ 24 DTG ATY

20 Y ATWY -2 Y (KA A 20 gAY
P EBARY WY YRR SR Y NN R
2§y 9y - T ET)

4% (YR A W) - 4AY Y RATY + 2% (Y IYANY)
S G HATY 2R (AN AT Y £ 21 R8O ATY
+ 0 (F PY) - (T XY + 20Ty
"L YY)

- &FX/"AFJA Y - Af.‘\-FX/“QrA”K}' + tokal OQ'\Ve,\’Sehces.

where the first term is gauge invariant, it is a Pauli term
(analoguous to the anomaloys magnetic moment) and the second term

vanishes in the Lorentz gauge.

IWUB (W) = % (g3 - ) B A i A T
R Ay - 2P L AT e 29 K
T Y (RN + AT A (AT AT Y
SR (AR KR - Gy K YA
Y Y (AMAT - QATAT) Y x YR AT
+ DY APAY 4 g AT Y i (WA LY
+ Y { Ay (A= AT) WY
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3WEB.(h) = B4 WA Y —6F AL ALY
% fokal ok‘nler:)e,v\ces + terms that vanish
in He \ore,mfs 3Uu3e_ .

In order to estimate B,(h?) we also made use of the Dirac
equations Yu(au + iAu) Yv=0= ¢ g;(au - iAu),which hold on the
mass shell.

T4 m2 p w08 T u .
But the term ({1 yua Au ¥ ZavW1'YuA o ,¥ ) is also gauge

invariant up to a total divergence:

(Aﬁ)l: 9 A" 3—| + A (Brgy) 9“
Therefore,
- W 4 - -t Ins P - . ="\
(Fign ) = Faxn[ 509 A A 59219 0y
A9 hgNgy « TA 2 G A0
T2 5‘<)v3 A’Aévb“ﬁ 4 2y A»bvj‘o‘j + 2 5‘9903135}*
Since 994,

A -\ -\

3“):',3 = - g 9 - 299 Y,
G0y g gy = -3 59— % kg -223599
= 2%,4'%39 - 29992999 .
Then

(F 0 VAY) = FAY T AY « Tiyalgogh Ag' oy
- 1/\/9,,0"913]% + AR [4309 g Mbﬂ;ﬁlgr‘?]kf
TR (A3 109 909 +19 92y )Y
+ 21, [ 5290 £2:5 94D, 5 - 522,925 9 )Y

T2 i (% AT HG9)
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(F 4NN FagdA™y T e (§EgIRY T 50

STY R (GRGY 2T R 500

12T agn [ K 0G g 49 (g 209) 745 253329)Y
t 244 g,{ 3" é«géfﬂrb -9, P‘r\é‘;Vﬁ ’f)fg ?Aﬁb“‘)”ﬁ
=g Ry WG 914

= J Y WATY « % (T (5 Ty)Y)

S 2P [ ARG Ny 4 A5 g2 ey 432N

- WK g Jvy %99 A" 9 vy - ‘5‘ 9@“2')"5“)] t

- 2 ()Ngr;\");\»)l = 21 (WY 4 +T)\JO)X,A(3A +\3f99)‘3 YrigY)
= =23 YYYANY ¥ 25 ] ngA 94439299 %:]"f
N 7'3*'?‘3/4 }}3"%3 CAG Py g Ay
K 2C\:"Xr[“3755%/"#*/“3*'5‘%539”*
BRSR R A

and these two terms added, give, up to total divergences,

EEMACLE S T XA

This quantity is therefore gauge invariant.
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