
Durham E-Theses

The expression of plant vicilin DNA in yeast

Briggs, Leslie

How to cite:

Briggs, Leslie (1986) The expression of plant vicilin DNA in yeast, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7071/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7071/
 http://etheses.dur.ac.uk/7071/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


108 

0 

C> 



109 

FlGfJRE 3.2.Z 

(i) The idealised vicilin c~l!~-A message shmring a:, f), and )J subunits, the 

leader sequence (1), and the 3' untranslated region. The numbers represent the 

size scale in bp. 

(ii) The vicilin eDNA <restriction map) used in the project - no leader 

sequence. This corresponds to that in plasmid pDUB9, i.e. 50K typeC vicilin. 

A = BamHI, B = Bglii, C = Acci, D = Hincii, H = Hindiii, I = Hinfi, I~ = BstNI, 

P = Psti, and X = Xbai. 
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vector was cloned as a partial EcoRI fragment from the plasmid YEp213-12 which 

was derived from the standard vector YEp213 by filling-in of the Hindiii site 

in the 2).1m DNA. The bacterial sequences CSali-EcoRD were from pBR328 Ci.e. Ap"', 

Tet8
, and Cm8 ). The CYCl terminator DNA was derived from a Haeiii··Hindiii 

fragment with the Hindiii end filled-in. The Haeiii end is proximal to the 

polylinker Hindiii sites of the vector. Except for EcoRI, the polylinker sites 

labelled are unque in the plasmid. Therefore this Yeast secretion vector is 

based on JlFal. 

It was envisaged the eDNA vicilin <Figure 3.2 .7 (ii)- Type C, 50K, no 

glycoslyation sites, but has two proteolytic cleavage signals at the a-~ and ~-~ 

subunit junctions and hence gives rise to the Mr 12,500, 13,500, and 19,000 

subunits <Figure 3.2.7Ci)), would be inserted downstream of the HFal gene prepro 

sequence allowing expression and secretion of the functional vicilin protein. 

The prepro sequence being removed proteolytically by the yeast. This would 

obviously depend on the extent of base pair deletion, and therefore the frame 

shift imposed in the recombinant plasmids p12 to 6. The plasmid pLl having no 

deletion imposed, so that a comparison could be made to the t. plasmids. 

The expression would therefore be under the control of the a mating 

factor, and the sequences in the eDNA. A transcription termination sequence is 

down stream of the vicilin eDNA, the 280 bp CYC1 terminator. So the expression 

is dependant on a number of factors in the vector and eDNA, the only ones not 

constant in all the plasmids p11~6 is the amount of deletion, and therefore the 

frame shift imposed. 



The mating type of the cell controls the secretion of the a mating factor 

protein produced by the NFal gene which is only expressed in either a or a or 

a/a diploid cells. Mackay and Manny <1974) 95 proposed that the mating type loci 

code fur regulatory proteins that control expression of other genes coding for 

mating- _and sporulation-specific processes. This locus has at least two 

complementation groups, called NATal and NATa2. Each haploid cell type secretes 

into the culture medium a specific oligopeptide pheromone, or mating factor. 

These extracellular signals trigger biochemical changes reciprocally in their 

respective target cells: haploids of the opposite mating type. The responses 

elicited include, in order of their appearance, Cl) cell-surface alterations that 

enhance the strength and selectivity of cell-cell contacts; C2) transient arrest 

of cell growth, specifically in G1 phase of the cell cycle, that stays nuclear 

DNA synthesis and, effectively, synchronises the growth stages of the mating 

partners; and (3) new wall and membrane synthesis that is appropriate to cell 

fusion rather than to normal budding. Heterozygous diploids <ala cells> neither 

produce pheromones nor do they respond to them. 

The most attractive current picture for the function of the NATa and NATa 

loci is that their specific transcripts encode separate sets of regulatory 

proteins 96 
•50 ,.30 ;:r;;.:. The regulatory proteins encoded by a particular HAT locus 

are essential for controlling the expression of other genes elsewhere in the 

yeast genome, which determine many of the cell's characteristics <its mating 

ability, its budding pattern, its capacity for sporulation, etc.). Such a model 

would predict that a and a haploids differ detectably in the types of poly(A)

containing mRNA sequences that they express, althoughg this has not yet been 



demonstrated directly, except for the transcripts from the NAT regions 

themselves. Of special interest here is that particular genes at NAT direct 

whether or not a cell will elaborate a mating pheromone (and if it does so, 

which pheromone will it produce). 

The vicilin cDN A used in this experiment (figure 3 .2. 7) has no leader 

sequences, but contains the a, ~. and ~ subunits and the 3' untranslated CUT) 

region. By using a full length vicilin eDNA with a leader sequence the vicilin 

would be expressed and secreted into the vacuole, this can be compared to the 

secretion of the enzyme carboxypeptidase Y, which is secreted into the vacuole; 

whereas the a mating factor or the enzyme invertase is secreted into the plasma 

membrane and cell wall. The secretory pathway, :!.n yeast, is well documented 

·:=.:.<:,so ·"·8 ·'"''3 ,c-7 •95 ·"' 
1 

•26 ,:2s <see section 1.6), and the process of vicilin through 

this pathway could be further elucidated using the sec mutants, obtainable from 

Dr. Randy Schekman, who determined, using these mutants, the yeast secretory 

pathway. The pathway is shown in figure 3.4.6, this can be compared to that 

found in higher eukaryotes <figure 3.4 .7). 

Although not all of this part of the project was ach~ved, the recombinant 

plasmids pLl to 6 were made, but the time span of the project was not enough to 

finish the rest of the project. 
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;1,_:1_ YEAST IRANSFQR11AT IDL 

~ ~ ~ Strategy. 

The aim of this part of the project was to study the various types of 

Yeast transformations systems used in section 3.1 and 3.2, comparing the yields 

and ease of manipulations, in S. cerevisiae. 

~ ~ transformation. 

3.3.2.1 ~transformation. 

Section 2.2.14.1 shows the method used to transform the yeast. The results 

are shown below in table 3.3.1. The number of cells/ml were determined from a 

graph obtained from growth curve experiments (figure 3 .3 .1>, for all 

transformation experiments <O.D.8oo). 

TABLE 3.3.1 Results of tha ~transformation. 

~ strain 

MT302/lc 

MD40/4c 

plasmid~ 

pMA257 

pDUB2017/2018 

pMA257 

Transfqrmants/.ug llliA. 

3 .4 ± 0 .5 X 1 05 

3.9 ± 0.6 X 104 

1.6 ± 0 .4 X 1 0'-'-• 
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The growth curves of S. cerevisiae (a), and S. pombe (o). The numbers 

Ccells/rnl) given are only fox- S. cerevisiae - early and late log. phase. This 

allows an estimate of the number of cells/ml in a particular culture. 
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3 .3 .2 .2 Protoplast Transformation. 

Section 2.2.14.2 shows the method used to transform the yeast. The results 

are shown in table 3.3.2 

TABLE 3 .3 .2 Results oi :t..hft protoplast transformation. 

Enzyme ~ strain plasmid~ Transformants/ug ~ 

Novozyme SP234 MT302/lc pMA257 6.6 ± 0.6 X 10'"' 

pDUB2017/2018 5.0 ± 0.5 X 10'3 

Lyticase MD40/4c pMA257 1.9 ± 0.6 X 104 

Glusulase MT302/lc pMA257 3.0 ± 0.8 X 10-"'' 

pDUB2017/2018 1.4 ± 0.4 X 10"-' 

------------------------------

~ Discussion. 

These results show that the transformation rates Ctransformants/pg DNA) 

are quite favourable, in the order of 1o:a-s, and only tend to vary due to the 

plasmid or enzyme used. 

The LiAc transformation system shows the rates vary only due to the type 

of plasmid used, i.e. the plasmid pMA257 = 3.4 ± 0.5 x 105 and plasmid 

pDUB2017/2018 = 3.9 ± 0.6 x 104 <the results for both pDUB2017 and 2018 are 
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summated and the mean figure is shown, as they are the same plasmid - see 

below), this shows a difference of the order 10' for the S. cen·isiae-NT302/lc 

strain. The strain type does not seem to determine to a great extent the rate 

of transformation, i.e. the strain MD40/4c = 1.6 ± 0.4 x 105 for the plasmid 

pNA257, compared to the same plasmid transforming the strain MT302/1c (3.4 ± 

0.5 x 105
), the later therefore is transformed approximately two x greater than 

the MD40/lc strain for the same plasmid. The differences observed between the 

plasmids pMA257 and pDUB2017 may be explained due to the difference in size. 

The plasmid pDUB2017/2018 is the product of the pMA257 plus a eDNA vicilin 

fragment of 1.43 Kb (2017 has the eDNA in the wrong oriention, 2018 the correct 

oriention). The stearic hinderence involved may account far the phenomenon, the 

smaller the DNA the greater the ease of entering the cell, and therefore the 

greater chance that the cell will be transformed to a greater extent. 

These results are quite encouraging as the results obtained by Ito et al. 

(1983) 4~ shaw that plas~ids YRp7 and YRp6 transformed into S. cerevisiae 

strain AH-22 give 4 x 102 transformants/J,Lg DNA. <Compared with 3.7 ± 1.6 x 103 

transformants/J,Lg DNA for the plasmid YRp7 in the strain MD40/4c - this result 

is not shown) . 

The protoplasting results show a similar phenomenon to that shown above 

between the sizes of the plasmids, but further to this the results show 

differences in transformation rate due to the type of protoplasting enzyme used. 

For the plasmid pMA257 the rates show a clear series for the enzymes used, i.e. 

GLUSULASE > LYTICASE > NOVOZYME SP234 
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This seems to be true when viewing the results of plasmid pDUB2017 in these 

enzyme. In all cases the differences shows an order of 10' between each 

consecutive enzyme. This may be due a number of reasons; (i) the results may be 
I 

a good observation, Cii) the results may be due the time span to which the cell 

where given in the enzymes - this sould not be the case as the time span were 

approximately the same in all cases, (iii) the amount of enzyme added to the 

reaction mixture - the experiment attempted to keep the same working 

concentration in each case, so this should not be a problem, Civ) it more likely 

that the differences may be due to the efficiency of each enzyme. Although the 

extent of protoplast formation was about the same with each enzyme. 

Table 3.3.3 below shows the estimated transformation rates for particular 

types of plasmid transformed via protoplasting 72~'741106 

IAaLK ~ Properties ~ transformation ~ fQL ~ vectors. 

vector 

Yip 

YEp 

YRp 

YCp 

TransformatiQI!. 
:rn.:t.eL 
Transf0rmates/Mg ~ 

1-10 

1illili in. 
n0 n-selectiye 

medium 

<< 1% per generation 

1% per generation 

>> 1% per generation, but 
can not get chromosomal 
integration 

·< 1% per generation 
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Table 3.3.4 shows the advantages and disadvantages for each type of vector 

7:2,741106 

IAIDJi UA ~ Qf ~ vectors. 

Vector 

Yip 

YEp 

YRp 

Disadvantages 

(i) low transformation frequency 
(ii) can only be recovered from 
yeast by cutting chromosomal DNA 
with restriction endonuclease which 
does not cleave original vector 
containg cloned gene 

<i) novel recombinants generated 
in vivo by recombination with 
endogenous 2Mm plasmid. 

<i) instability of transformants 

Advantages 

Ci) of all vectors this 
kind give most stable 
maintenance of cloned 
genes.Cii) an integrated 
Yip plasmid behaves as 
an ordinary genetic 
marker, e.g. a diploid 
segregates the plasmid in 
a Mendelian fashion. 
<iii) most useful for 
surrogate genetics of 
yeast, e.g. can be used to 
introduce deletions, 
inversions and 
transpositions. 

Ci) readily recoved from 
(ii) high copy number 
(iii) high transformaion 
frequency. <iv) very 
useful for 
complementation studies. 

Ci) readily recove~d 
from yeast. Cii) high 
copy number - this is 
usually less than that of 
YEp vectors, but this may 
be useful if cloning gene 
whose product is 
deleterious to the cell 
if produced in excess. 
Ciii) high transformation 
frequency. Civ) very 
useful for 
complementation studies. 
(v) can integrate into 



YCp Ci) low copy number makes recovery 
from yeast more difficult than that 
YEp or YRp vectors. 
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the chromosome. 

(i) low copy number is 
useful if product of 
cloned gene is 
deleterious•to cell. (ii) 
high transformation 
frequency. (iii) very 
useful for 
complementation studies. 
Civ) at meiosis generally 
shows Mendelian 
segregation. 

These tables above show that the transformation rates results are 

approximately in the same order <i.e. the YEp plasmids), so the results compare 

favourably. 

The yeast S. pombe could be not successfully transformed, although the 

transformation procedures are similar for both S. pombe and S. cerevisia.e, the 

former is more difficult to transform successfully <Dr. P. Nurse - personal 

communication). This procedure would require further time to acheive a working 

system. 

Transformation of yeast with cloned yeast DNA containing a selectable 

marker was first accomplished by Hinnen et al. (1978) 45 and then Beggs 

<1978) 6 •7 • The LEU2 gene was used, which had already been isolated on the basis 

of its ability to function in E.coli, as a marker readily selectable in yeast. 

Having such a selectable marker is essential, since DNA transformation is Cnot 

surprisingly) a rare event. Two fundamentally different types of transformation 
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have been described by Struhl et al. (1979) 72 
•
74 

,I ca;; •• These all described a 

variation on a theme, transformation with protoplasts prepared by lytic enzyme 

treatment. Recently a variety of attempts have been made to 'simplify' the 

' procedure producing the required transformed cell, to get away from the 

necessity of protoplast transformation. But the transformation efficiences have 

not yet reached those of the best protoplast systems s·.=-. (See method for 

procedure). 

An easy method of yeast <S.cerevisiae) transformation without the need of 

making protaplasts has been developed by Ito et al. <1983) 48
• Previously I 

Triton X-100, a nan-ionic detergent, was shown to alter yeast cell membranes sa 

that various extracellular manonucleotides were incorporated into cells. This 

detergent had no effect on the viability of yeast cells. These observations 

suggested that yeast cells treated with Triton X-100 or other detergents might 

take up plasmid DNA like E.coli cells treated with CaCh. Therefore Ito et al. 

Cl983) 48 studied the uptake of plasmid DNAs by intact yeast cells treated with 

various agents such as detergents and metal ions. They found that the alkali 

metal ions .such as Li~, Na ... I K .. , Cs"·, and Rb··: are effective for inducing 

competence in yeast cells. But the detergents used were not as effective in 

inducing competence. The technique is based on the finding that yeast cells 

treated with alkali cations particularily lithium chloride or acetate are able to 

uptake plasmid DNA such as YRp7 in the presence of polyethylene glycol CPEG). 

Transformation efficiency by this method is at the level of one tenth that of a 

conventional protoplast method. PEG is indispensable for the DNA uptake, and 

alkali cations appear to increase the transformation frequency 43 
•
4

"'. The yeast 
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transformation method developed by Ito et al. <1983,1984) 43 ·""'-E' has the 

following advantages over the current protoplast method; 

(i) It is simple, easy, and time saving. 

Cii) Transformsation efficiency is comparable with that of the protoplast 

method for YRp7 <ars1>, although it is much less efficient for plasmids with a 

2J.1m origin of replication. 

<iii) Replica plating of colonies is possible because no regeneration agar is 

necessary. 

Civ) The method is applicable to yeast cells that are resistant or sensitive to 

lytic enzymes. 

(v) LiAc transformed cells do not rearrange recombinant plasmids so readily as 

protoplasts. 

Neumann et al. <1982) 32 •4 ~'·7 ·5 reported that uptake of plasmid DNA into 
) 

mouse lyoma cells was increased by electric field impluses <electroinjection or 
' / 

electroporation). Shivarova et al. Cl983) 75 also reported that transformation 

frequency of Bacillus cereus protoplasts with plasmid DNA was increased by 

pulses in the presence of PEG. Recently, Hashimoto et al. C1985) 43
, succeeded 

in the introduction of plasmid DNA into intact yeast cells by elecric field 

pulses and optimised electrical conditions. Interestingly, the maximum number of 

transformants (90±20/}.lg DNA) was obtained by three successive pulses with an 

initial intensity of 5 KV/cm and with a capacitance of 1 J.lF. 

By the electroinjection method developed by Hashimoto et al. C1985) 4
'
3 as 

it know stands, the transformation frequency of intact yeast cells is somewhat 



lower than that by the biochemical methods with alkali cations or thiol 

compounds 43
AE•. Ito et al. <1983, 1984) 4 ~"·4 '=' reported that the number of 

transformants per ~g DNA of yeast cells with the aid of lithium is as high as 

500-1300. The frequency of transformation by electroinjection may be improved 

by optimising non-electical experimental conditions such as concentrations of 

PEG or the presence of mono- and di-valent cations. Electroinjection is anovel 

method for transforming intact prokaryotic and eukaryotic cells with foriegn 

DNA. 

In recent years, liposomes have been successfully used as vehicles for 

introducing genetic materials into cells. After encapuslation of RNA, 

chromosomes, and viruses into liposomes, the phospholipid membranes of the 

vesicles were induced to fuse with membranes of mammalian cells resulting in 

transfer of the liposome contents into the recipient cells 1 
•
9

'
3

• With similar 

procedures tranfers of bacterial plasmids and plant viruses into plant cells; 

plasmids, chromosomal DNA, and phage DNA into bacterial cells have been 

demonstrated 1 
•
93

• Ahn and Pack <1985) 1 extended the use of li posomes in 

transforming yeast cells. Although encapsulation of plasmids into liposomes did 

not increase the transformation efficiency, the liposomes protected plasmids 

from DNase action effectively. Further, as their data showed, once plasmids were 

encapsulated they could be transferred into yeast cells more efficiently 

compared to the naked plasmids. 



~ E1[GIRQRMICROSCOPY QE YEAST. 

The aim of this part of the project was to study and analyse, using 

electronmicroscopic techniques, the expression of the vicilin gene in yeast. The 

recombinant vectors from the previous sections, 3.1 and 3.2, were used and 

compared against the expression of the plasmid pDUB2018. 

~ Electrqnmicroscopy. 

The yeast S. cerevisiae was transformed, using the LiAc method <section 

2.2.1.J'.l), with the plasmid pDUB2018. Figure 3.2.~. shows a colony 

hybridisation, with a eDNA vicilin probe as used in section 3.2, to the pDUB2018 

containing yeast cells. The transformed cells were then subjected to preparation 

<section 2.2 .1.4.1) and immunogold gold labelling <section 2.2 .1.4.2), prior to 

sectioning and examination of the labelled sections using a Transition Electron 

Microscope <TEl'D; the photographs taken are shown in figures 3.4 .1 to 3.4 .5. 

These results are discussed below <section 3.4.3). The transformants were not 

available from sections 3.1 and 3.2 due to the limited time span given to the 

project, and therefore this part of the project can not be acheived, but some 

predictions are possible from the results obtained using the plasmid pDUB2018. 

~ Discussion. 
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These figures show micrographs of plasmid pDUB2018 transformed yeast at a 

variety of magnifications, using a 5 and 15nm G:l .4 .5 only) vicilin antibody 

label. (see text for details) 
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FIG.3.4.5 



131 

The plasmid pDUB2018 contains the eDNA vicilin insert (correct 

orientation) discussed in section 3.2. The plasmid itself is constructed from 

the plasmid pMA257 CA. J. Kingsman- unpublished), with a LEU 2 region, which 

is defective; 2p; pBR322; and a Phosphoglycerate Kinase CPGK) promoter, this 

contains only the 3' and 5' ends with a 14 amino acid region of the PGK N-

terminus, and a single BamHI site between the 3' and 5' ends. This allows high 

copy number in the yeast, and therefore a large amount of the vicilin is 

produced - this can be observed in all the micrographs ·recorded (figures 3.4 .1 

to 3.4 .5 using both the 5 and 15nm gold label). ;.-

The aim of this part of the project was to compare the results obtained 

from the other parts - sections 3.1 and 3.2, with the plasmid pDUB2018 results, 

this was not possible due to the time span of the project, and therefore only 

the pDUB2018 results can be discussed. It was hoped that the secretion pathway 

to the yeast vacuole could be shown <section 1.6 - figure 3.4.6 and 3.4.7), 

Figure 3.4.1 A shows a budding cell of S. cerevisiae at the magnification 

xl9,500. Various organelles and membrane structures can be seen, but at this 

magnification the gold labelling <black dots) are not easily discernable. 

Although this figure shows the overall view. Figure 3.4.1 B shows a more 

/) 

magnified view of this yeast, x43,000. The labeld:-/ <5nm) can mostly be observed 

in the cytoplasm (c), but can also be seen in the nucleus Cn), and can be seen 

associated with the endoplasmic reticulum <er) and golgi apparatus Cg). 
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Figure 3.4.2 A shows a greater magnified section of figure 3.4.1 Cx70,000), 

this gives a clearer view of the nuclear region; showing black dots associated 

with the nuclear membrane <nm), the er, and the g. Moving up the section, figure 

3.4.2 B <x70,000), shows the dots clearly membrane associated Cg>, and their 

association, in the daughter cell, with a possible golgi complex Cgc> derived 

from the paternal cell. 

Figure 3.4.3 A and B show daughter cells, B akin to the ones above 

<x90,000), and A with a magnification x70,000 akin to those in figure 3.4.4. B 

shows most of the cell; a variety of membrane structures with vicilin can be 

discerned, corresponding to er, gc and g. A shows putative membrane structures 

(~), with possible associated vicilin. The vicilin dots seem to be associated 

with the darker staining cytoplasm, possibly vesicular. 

Figure 3.4.4 A shows a similar situation to figure 3.4.1 B, n, nm, and er. 

But figure 3.4.4 B shows a highly vicilin associated region, this is possibly 

vesicular (v) or gc in nature. This very important as the gc <Dr. G. Warren -

personal communication), which have been reported in higher eukaryotes, may be 

present in yeast. Warren has proposed that these structures are an intermediate 

when the cell is duplicating itself. The golgi apparatus is disbanded into this 

intermediate, allowing movement throughout the cytoplasm, and reforming into 

the golgi again were required by the cell. It is possible that this structure, 

found on figure 3.4.4 B, is in the process of disbanding, possibly reappearing 

in such as the daughter cell. This could possibly show a unproposed form of 

transport in the yeast cell. Recently Dunphy et al. C1986) 25 have stated that 
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FIGURE. 3.4.6 

Secretory and Vacuolar protein transport pathways in yeast. The particular 

sec mutants are shown in each step of the pathway. 

N = nucleus, NH = nuclear membrane, ER = endoplasmic reticulum, G = golgi 

apparatus, Vac ::: vacuole, BB = Berkley body, V = vesicles, PH = plasma membrane, 

and C'·l = cell wall. 
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yeast and mammals utilise similar cytosolic components to drive protein 

transport through the golgi apparatus, so it is therefore quite possible this 

intermediate complex well be found in yeast. Also the vicilin can be seen 

associated with a double membrane stucture, possibly er or g. 

Figure 3.4 .5 simply shows the difference between the 5nm, seen above, to 

the 15nm gold labelling. Although the section does not show organelle structure 

to any degree, it does show that the 5nm labelling is more specific and one is 

capable to discern a higher degree of compartmentalisation within the cells. 

These micrographs clearly show that the yeast cells were transformed with 

the plasmid pDUB2018, and the eDNA vicilin was expressed to a high degree. The 

background labelling was very light, showing good hybridisation of vicilin with 

label. The label was particularly associated with cytoplasmic regions, as 

expected, of particular interest was its association with membrane structure 

expected to be involved with the secretory pathway of the vicilin. The secretory 

pathway in yeast has been discussed at great length in earlier section, and 

therefore requires no further elaboration in this discussion, but the putative 

structure observed in this section do require some discussion. 

The pathway of secretion is shown in figure 3.4.6 <yeast) and 3.4.7 Chigher 

eukaryotes), the process involves a number of organelles, flowing one to 

another, until the particular protein is deposited in its ' niche '; i.e. 

cytoplasm to er to g to vacuole or vesicle or secretion from the cell. The 

budding cells were selected as they show greater activity, and therefore, 
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FIGURE M...Z 

Secretory and Vacuolar protein transport pathways in higher eukaryotes. 

Nuclear envelope <NE), nuclear pore <NP), Rough and Smooth endoplasmic reticulum 

<RER,SER), mitochondria GD 1 golgi apparatus <GA), lyzosome (L) I secretory 

vesicle <SV) I plasma membrane <PM). 
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greater movement in the secretory pathway, particularly secretory vesicles to 

the daughter cell. It was hoped that this would facilitate the study of 

expression of the vicilin protein, this was realised. 

The cDNA-vicilin used in the plasmid pDUB2018 <figure 3.2.5), does not 

contain a leader sequence, which in the ideal situation is required for early 

movement in the pathway. The leader sequence is required for positive 

association and entry into the lumen of the er. So therefore, if this leader 

sequence is not present, why is the functional protein associated with membrane 

structures. This may not be the case, as a large proportion of the label is 

cytoplasmic. However, the micrographs have shown the vicilin to be membrane 

associated, particularly figure 3.4 .4 B. The protein may be translated on ' Free v 

ribosomes and then recognised as ' foreign ' and subsequently engulfed by 

vesicular bodies, which may then move to the vacuole to degrade the protein. 

Alternatively, the presence of the signal sequence in yeast may not be a 

prequisite, or may not be as specific in its reqirements as higher eukaryotes. 

This is considered highly unlikely as there is a wealth of evidence showing the 

necessity of a signal peptide. Another possibility is that hydrophobic regions 

in the protein cause it to be associated with membranes. 

Many questions arise from the speculation above, these require further 

study, and particularly, comparison with vicilin having a signal peptide. The 

sequential movement of this vicilin through the secretory pathway may be 

further elucidated using such as the sec mutants (figure 3.4.6) obtained by 
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Schekman and his co-workers. The molecular signals that direct vicilin to the 

vacuole may then be determined. 



CHJlPTER 4 

GEDERilL DISCUSSIOIJ. 
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~GENERAL DISCUSSION. 

Due to the time span of this project various uims were not realised. The 

original aims and strategies can be seen in the particular sections 3.1 to 3.4, 

but these involved the production of (i) a recombinant genomic vicilin plasmid, 

<ii) a recombinant vicilin eDNA plasmid, and the analysis of their expression, 

<iii) a study of transformation efficiencies of these and other plasmids, and 

<iv) the analysis of expression using electronmicroscopic techniques . 

. Although this project was ambitious for the alloted time span, it was necessary 

to gain a understanding of the requirements of research, and in doing so the 

understanding of what may or may not be acheived. 

The project itself provided some answers, but more to the point new 

questions are realised because of these answers. These involve the question of 

the movement of the vicilin in the cell, from one organelle to another; the role 

of the leader sequences; the nature of the molecular signals in recognition and 

translocation of the vicilin, and so on. These answers may be provided by 

further studies by transforming these recombinant plasmids into the sec mutants 

(figure 3.4.6), which stop the secretory process at various stages in movement 

of proteins throughout the cell, and viewing with the electronmicroscope. 

Another way to study this problem may the involvement of pulse-chase 

experiments, following the vicilin through its sequential movements. The study 

of clathrin may be very exciting as this may hold the key to specific and non

specific movement in the eukaryotic cell. Clathrin forms ' cage ' structures, in 

a variety of orientations, and is composed of light and heavy chain regions -
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forming polyhedral structures with pentagonal and hexagonal faces. R. Schekman 

<personal communication) has shown that his cla1 mutants do nat have the heavy 

chain of clathrin, and supposes it is nat necessary far transport, but may 

allow stabilitian of such as the vesicular bodies, dicating its size and shape. 

Clathrin may stop such as nan-specific fusion, and organise certain reactions 

in the galgi, i.e. a factor precursors. Another approach may be to do a 

reciprocal study of yeast genes far vacuolar proteins in plant tissue to 

ascertain if the secretary pathways share same homology ? 

The project itself has allowed an understanding of molecular biological 

techniques used, to study and analyse the recombinant DNA plasmids, and in that 

sense has been a great success. But the project itself was not finished due to 

the alocated time. 

Recombinant DNA research shows great promise in furthering understanding 

of yeast and plant biology by making possible the analysis and manipulation of 

yeast and plant genes nat only in the test tube but also in yeast cells. The 

technological advances have combined to make feasible truly molecular as well 

as classical genetic manipulation and analysis in yeast. It is hoped that the 

experimental methologies and approaches given in this study will stimulate 

further development and exploitation of yeast to answer questions in eukaryotic 

molecular biology. The opportunity that the yeast system provides for the 

blending of ideas and methods of classical genetic analysis and modern 

~ I 
biochemical and biophysical ideas and methods. Cloning of genes can be ach~yed , 

in almost any organism and, by itself, is only of limited valve. It is the 
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ability to return cloned genes <intact or suitably altered) to yeast or higher 

eukaryotes, either as extra copies or as replacements for the normal form in 

the normal position in the genome, which makes yeast uniquely suited to this 

blending of ideas and methods that has been so successful in prokaryotic 

molecular biology. 
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The plasmid pDUB2018 contains the eDNA vicilin insert <correct 

orientation) discussed in section 3.2. The plasmid itself is constructed from 

the plasmid pMA257 <A. J. Kingsman - unpublished), with a LRU 2 region, which 

is defective; 2p; pBR322; and a Phosphoglycerate Kinase <PGK) promoter, this 

contains only the 3' and 5' ends with a 14 amino acid region of the PGK N~ 

terminus, and a single BamHI site between the 3' and 5' ends. This allows high 

copy number in the yeast, and therefore a large amount of the vicilin is 

produced - this can be observed in all the micrographs ·recorded <figures 3.4.1 

to 3.4.5 using bath the 5 and 15nm gold label). ;. 

The aim of this part of the project was to comp~re the results obtained 

from the other parts - sections 3.1 and 3.2, with the plasmid pDUB2018 results, 

this was not possible due to the time span of the project, and therefore only 

the pDUB2018 results can be discussed. It was hoped that the secretion pathway 

to the yeast vacuole could be shown <section 1.6 - figure 3.4 .o and 3 .4. 7). 

Figure 3.4.1 A shows a budding cell of S. cerevisiae at the magnification 

x19,500. Various organelles and membrane structures can be seen, but at this 

magnification the gold labelling <black dots) are not easily discernable. 

Although this figure shows the overall view. Figure 3.4.1 B shows a more 

magnified view of this yeast, x43,000. The labell <5nm) can mostly be observed 

in the cytoplasm (c), but can also be seen in the nucleus (n), and can be seen 

associated with the endoplasmic reticulum <er) and golgi apparatus <g>. 
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Figure 3.4 .2 A shows a greater magnified section of figure 3.4 .1 (:~70 ,000), 

this gives a clearer view of the nuclear region; showing black dots associated 

with the nuclear membrane <nm), the er, and tho g. Moving up the section, figure 

3.4.2 B <x70,000), shows the dots clearly membrane associated Cg), and their 

association, in the daughter cell, with a possible golgi comnlex <gc) derived 

from the paternal cell. 

Figure 3.4.3 A and B show daughter cells, B akin to the ones above 

(x90,000), and A with a magnification x'?O,OOO akin to those in figure 3.4.4. B 

shows most of the cell; a variety of membrane structures with vicilin can be 

discerned, corresponding to er, gc and g. A shows .putative membrane structures 

(J.), with possible associated vicilin. The vicilin dots seem to be associated 

with the darker staining cytoplasm, possibly vesicular. 

Figure 3.4.4 A shows a similar situation to figure 3.4.1 B, n, nm, and er. 

But figure 3.4.4 B shows a highly vicilin associated region, this is possibly 

vesicular Cv) or gc in nature. This very important as the gc <Dr. G. Warren -

personal communication), which have been reported in higher eukaryotes, may be 

present in yeast. Warren has proposed that these structures are an intermediate 

when the cell is duplicating itself. The golgi apparatus is disbanded into this 

intermediate, allowing movement throughout the cytoplasm, and reforming into 

the golgi again were required by the cell. It is possible that this structure, 

found on figure 3.4 .4 B, is in the process of disbanding, possibly reappearing 

in such as the daughter cell. This could possibly show a unproposed form of 

transport in the yeast cell. Recently Dunphy et al. <1986) ~s have stated that 
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Secretary and Vacuolar protein transport pathways in yeast. The particular 
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N = nucleus., N"H. = nucle~r ;membrane, ER = endoplasmic retiCulum,, .G = golgi 
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and CW = cell wall. 



< 0 
0 

134 



135 

yeast and mammals utilise similar cytosolic components to drive protein 

transport through the golgi apparatus, so it is therefore quite possible this 

intermediate complex well be found in yeast. Also the vicilin can be seen 

associated with a double membrane stucture, possibly er or g. 

Figure 3.4.5 simply shows the difference behreen the 5nm, seen above, to 

the 15nm gold labelling. Although the section does not show organelle structure 

to any degree, it does show that the 5nm labelling is more specific and one is 

capable to discern a higher degree of compartmentalisation within the cells. 

These micrographs clearly show that the yeast cells were transformed with 

the plasmid pDUB2018, and the eDNA vicilin was expressed to a high degree. The 

background labelling was very light, showing good hybridisation of vicilin with 

label. The label was particularly associated with cytoplasmic regions, as 

expected, of particular interest was its association with membrane structure 

expected to be involved with the secretory pathway of the vicilin. The secretory 

pathway in yeast has been discussed at great length in earlier section, and 

therefore requires no further elaboration in this discussion, but the putative 

structure observed in this section do require some discussion. 

The pathway of secretion is shown in figure 3.4.6 <yeast) and 3.4.7 <higher 

eukaryotes), the process involves a number of organelles, flowing one to 

another, until the particular protein is deposited in its ' niche '; i.e. 

cytoplasm to er to g to vacuole or vesicle or secretion from the cell. The 

budding cells were selected as they show greater acti?ity, and therefore, 
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greater movement in the secretory pathway, particularly secretory vesicles to 

the daughter cell. It was hoped that this would facilitate the study of 

expression of the vicilin protein, this was realised. 

The eDNA vicilin used in the plasmid pDUB2018 (figure 3.2 .5), does not 

contain a leader sequence, which in the ideal situation is required for early 

movement in the pathway. The leader sequence is required for positive 

association and entry into the lumen of the er. So therefore, if this leader 

sequence is not present, why is the functional protein associated with membrane 

structures. This may not be the case, as a large proportion of the label is 

cytoplasmic. However, the micrographs have shown the vicilin.to be membrane 

associated, particularly figure 3.4.4 B. The protein may be translated on ' Free v 

ribosomes and then recognised as 1 foreign 1 and subsequently engulfed by 

vesicular bodies·, which may then move to the vacuole to degrade the protein. 

Alternatively, the presence of ·the signal sequence in yeast may not be a 

prequisite, or may not be as specific in its reqirements as higher eukaryotes. 

This is considered highly unlikely as there is a wealth of evidence showing the 

necessity of a signal peptide. Another possibility is that hydrophobic regions 

in the protein cause it to be associated with membranes. 

Many questions arise from the speculation above, these require further 

study, and particularly, comparison with vicilin having a signal peptide. The 

sequential movement of this vicilin through the secretory pathway may be 

further elucidated using such as the sec mutants (figure 3.4.6) obtained by 
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Schekman and his ca-·,.,orkers. The molecular signals that direct vicilin to the 

vacuole may then be determined. 
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1..._ GE1rEP.AL DTSCUSSI01I, 

Due to the time span of this project various aims were not realised. The 

original aims and strategtes can be seen in the particular sections 3.1 ta 3.4, 

but these involved the production of Ci) a recombinant genomic vicilin plasmid, 

Cii) a recombinant vicilin eDNA plasmid, and the analysis of their expression, 

Ciii) a study of transformation efficiencies of these and ather plasmids, and 

Civ) the analysis of expression using electranmicrascapic techniques . 

. Although this project was ambitious far the alloted time span, it was necessary 

to gain a understanding of the requirements of research, and in doing so the 

understanding of what may or may not be acheived. 

The project itself provided some answers, but more to the point new 

questions are realised because of these answers. These involve the question of 

the movement of the vicilin in the cell, from one organelle to another; the role 

of the leader sequences; the nature of the molecular signals in recognition and 

translocation of the vicilin, and so an. These answers may be provided by 

further studies by transforming these recombinant pla:smids into the sec mutants 

(figure 3.4.6), which stop the secretory process at various stages in movement 

of proteins throughout the cell, and viewing with the electronmicroscope. 

Another way to study this problem may the involvement of pulse-chase 

experiments, following the vicilin through its sequential movements. The study 

of clathrin may be very exciting as this may hold the key to specific and non

specific movement in the eukaryotic cell. Clathrin forms ' cage ' structures, in 

a variety of orientations, and is composed of light and heavy chain regions -
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forming polyhedral structures with pentagonal and hexagonal faces. R. Schekman 

<personal communication) has shown that his clal mutants do not have the heavy 

chain of clathrin, and supposes it is not necessary for tra~sport, but may 

allow stabilition of such as the vesicular bodies, dicating its size and shape. 

Clathrin may stop such as non-specific fusion, and organise certain reactions 

in the golgi, i.e. o: factor precursors. Another approach may be to do a 

reciprocal study of yeast genes for vacuolar proteins in plant tissue to 

ascertain if the secretory pathways share some homology ? 

The project itself has allowed an understanding- of molecular biological 

techniques used, to study .and a~alyse the recombinant DlfA. plasmids, and in that 

sense has_ been a great success. But the project itself was not finished due to 

the alocated time. 

Recombinant DNA research shows great promise in furthering understanding 

of yeast and plant biology by making possible the analysis and manipulation of 

yeast and plant genes not- only in the test tube but also in yeast cells. The 

technological advances have combined to make feasible truly molecular as well 

as classical genetic manipulation and analysis in yeast. It is hoped that the 

experimental methologies and approaches given in this study will stimulate 

further development and exploitation of yeast to answer questions in eukaryotic 

molecular biology. The opportunity that the yeast system provides for the 

blending of ideas and methods of classical genetic analysis and modern 

biochemical and biophysical ideas and methods. Cloning of genes can be acheived 

in almost any organism and, by itself, is only of limited valve. It is the 
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ability to return cloned genes <intact or suitably altered) to yeast or higher 

eukaryotes, either as extra copies or as replacements for the normal form in 

the normal position in the genome, which makes yeast uniquely suited to this 

blending of ideas and methods that has been so successful in prokaryotic 

molecular biology. 
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APPElfDICES 



A.EcoRI 

9.5 
6.6 
4.3 
2.1 
1.9 
0.59 
0.15 

FRAG11EliT S.lZE.S.. .DU22._;_ 

p.YSY9_ fu:QlU 
4.2 
3.355 
2.0 

>-.Hindi I 
11.25 

4.9 
4.5 
4.2 
2.8 
2.7 
2.55 
2.25 
2.1 
1.65 
1.11 
1.05 
0.705 
0.45 
0.435 

A 

B 

1.032 <this fragment is further cut with Hindiii to give a 1.0 and 0.032 Kb 
fragments) 
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