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ABS'l'rLC'.l' 

The possible involvement of c.~-trbon cc;,te.boli te repression in control 

of synthesis of the polyether antibiotic I:il39603 Hc.s exar;;ined b~1 

culturing the producin;· orgc:mism §_. lonp;is.-~orofL-.vus in a variety 

of media containine a ran:;e of different carbon sources a/.; different 

concentr:-:Ltions. From the results it h.s been tentatively con.cluded 

that c·;.rbon catabolite re~)ression is not medin.ted b,y e.ny of the 

carbon sourc2s tested. 



Introduction 

The Actinomycetes c:.re Gram-positive bacterig be1one;in:::; to the 

Order .'-i.ctinoi11Jrcetales. Typicc:1.lly the A.ctinomycetes form br.:mcl1.ing 

hyphal filaments (usually 0.5 tc 1.0 p in d_ic:1.n:eter) resul tinf.!; in 

colonies 1-1i t!~ <~ fung~:.l appe<:.rance. Indeed, ;·Ihen first d.i~;covered, 

their morphological ch<'-racteristics led to the belief that they were 

related to both fungi c.nd bacteria. (".~ilJ.iams ano. Aellington, 1982), 

though the issue has been decided in fa.vour of the bacteria. 

Lechevalier <:;.nd Lechevalier, 1967}. 

ri.ctino.rrwcetes reproduce either by almost total fra.gment;;~tion of the 

hyphae or by the procluction of spores on speci~:.li:sed hypae. J.V!ost 

species are cher1<o-orgc.uotrophic, aerobic, mesophilic and grow 

optimaJ.ly at pH's approc".cl1.in,r:; neutral (~hllisms and •~ellington, 1982). 

The ActinolllYcetes may be separated into families and genera on the 

basis of their physioloe;y (oxidative versus fermeYttc:.tive metabolism); 

morphology (type and. number of spores, form,ttion of specialised bodies 

such as sclerotia and spora~:,i.a); physical properties (e.g. heat 

resistance) and chemistry (cell wall composition and type of lipid), 

Lechevalier and Lechevalier, 1981. S8e tables 1 to 4· 

Actinomycetes can be found in e. hride variety of habitats. Ivlany 

are oblig2.te or faculative pa.rasites of plants and animals, including 

Man. Others may be found in aquatic and ma.rine environments, but 

it is the soil which is their most important habitat (Hilliams 

and :·-/ellington, 1982), vJhere numbers m;;.y be an;y-where bet1·1een 7 and 10
6 

to 46 x 106 per gram dry weight of soil (dependant on the proximity 

of plcmt roots), Gray and \·Iilliams, 1971. Numbers in anaerobic, 

water logr:ed, and acidic soils are usu;:l.lly far reduced. 

Hi thin the Order Actinomycetales there are a number of families 

(divided on the cri teri2. mentioned above), including Streptomycetaceae; 

i-\.ctinomycetaceae and Nocardiaceae. It is wi tl~ a member of the 

2. 



_T~a~b_l_e~~l~· ____ M_a~.~i~o~r~Constituents of Cell Walls of Actinomycetes 

Cell Wall 
T e 

I 

II 

III 

IV 

v 
VI 

VII 

VIII 

IX 

Major Constituentsa) 

L-DAPc, Glycine 

meso-DAP, Glycine 

meso-DAP 

meso-OAP, arabinose, 
galactose. 

Lysine, ornithine 

Lysine (aspa§tic acid; 
galactose) 

DABe glycine (lysine) 

Ornithine 

meso-DAP, numerous 
amino acids 

Example 

Streptomyces 

Micromonospora 

Actinomadura 

Nocardia 

b) 
Total Number 

11 

5 

13 

8 

Actinomyces israelii 1 

Oerskovia 4 

Agromyces 1 

Bifidobacterium 2 

Mycoplana 1 

a) All cell wall preparations contain major amounts of alinine, 
glutamic acid, glucosamine, and muramic acid. 

b) Total number of actinomycete genera known to have this cell wall type. 

c) DAP = 2,6-diaminopimelic acid. 

d) Bracketed constituents are variable. 

e) DAB = 2,4-diaminobutyric acid. 

(After Lechevalier and Lechevalier, 1981) 



Table 2. Genera of Actinomycetales with a Type 1 Cell Wall. 

Generic Name 

Streptomyces 

Morphological Characteristics 

Aerial mycelium with chains (usually long) 
of non motile conidia 

Streptoverticillium Same as Streptomyces, but the aerial mycelium bears 
verticils consisting of at least three side 
branches, which may be chains of conidia or hold 
sporulating terminal umbels. 

Nocardioides Both substrate and aerial mycelia fragment into 
rod and coccus-shaped elements. 

Chainia Same as Streptomyces, but sclerotia are also 
formed. 

Actinopyonidium Same as Streptomyces, but pyonidia-like structures 
are also formed. 

Actinosporangium Same as Streptomyces, but spores accumulate in drops. 

Elytrosporangium Same as Streptomyces, but merosporangia are also 
formed. 

Microellobosporia No chains of conidia; merosporangia with nonmotile 
spores are formed. 

Sporichthya No substrate mycelium is formed; aerial chains of 
motile, flagellated conidia are held to the surface 
of the substratum by holdfasts. 

Intrasporangium No aerial mycelium; substrate mycelium forms 
terminal and subterminal vesicles. 

Arachnia No aerial mycelium; substrate mycelium is branched 
and may fragment. 

(After Lechevalier and Lechevalier, 1981) 



Table 3. Morpholoqi~al ~rjteria of Gene~a of Streptomycetaceae and Some Other Actinomycetales. 

t ...JUU.J ""'"'·..,. ... .._ 1' '" _ _]_ ............... -......... 1 . .... ~ ..... ,_ .... • .. J ................... ._., .. 

< (f) 3:: 
ro -o 0 

Fragmenting Pod-shaped Chains of arthrospores (/) 0 rl-
(f) rl->-1 ..... 

into rod or Chains of spore vesicles: (") within a thin fibrous Fibrous sheath ..... Q.) ...... ...... (") :J ..... 
coccoid Spores mere-sporangia ro sheath ...... lD rl-,., ro ...,. '< 
Elements few spores 0 Smooth Hairy (/) Q.) 

rl- 0 ..... Verticillate arrangement ~ ...... ...., 
Q.) or ...., ..... 

Spiny ro A" (f) 
:;;: ro ""CI 

No Yes 0 
(/) ,., 

""CI ro 
0 (/) 

Genus '1 
ro 
(/) 

~ 

Streptomycetaceae 
Stre~tom~ces - ( +) - - + - + + - -
Stre~toverticillium - - - - - + + - - -
Chainia - - - + + - + - - -
Microellobos~oria - - + - - - NO a NO + -
Kitasatoa - - + ( + ) + - + - + + 

Actinomycetaceae 
Arachnia + - - - no aerial mycelium 

Nocardiaceae 
Nocardia + - - - + - + - - -
Micro~ol~s~ora -I+ + - - + - + + - -

Thermomonosporaceae 
Actinomadura - - - - + - + + - -
Nocardiopsis ( +) - - - + - + - - -

Genera without a family 
Nocardia ides + - - - Fragmenting aerial hyphae - -
S~orichth~a No substrate mycelium Aerial hyphae become chains of spores - + 

Intras~orangium - - - - No aerial mycelium NO 

a) no data (After Kutzner, 1981) 



Table 4. Biochemical markers of Streptomycetaceae and Some Other Actinomycete Genera 

Family and Genus 

G+C Glycine 
(mol%) DAP in 

IPDa 

Streptomycetaceae 
Streptomyces 69-73 LL + 

Streptoverticillium 69-73 LL + 
Chainia 71 LL + 

Mi~roellobosporia 67-70 LL + 
Kitasatoa LL + 

Actinomycetaceae 
Arachnia 70-72 LL +b 

Nocardiaceae 
Nocardia 67-69 DL -
Micropolyspora 
brevicatena 66-69 DL -

Thermomonsporacceae 
c 

Actinornadura 77 DL -
Nocardiopsis DL -

Genera without a family 
Nocardioides 67 LL + 
Sporichthya LL + 

Intrasporanqium LL + 

a IPB Interpeptide bridge: b Together with 
(After Kutzner 1981) 

Sugars in Whole Cell 
Hydrolate 

Ara+ 
Gal Mad Xyl Fucose 

- - - -
- - - -
- - - + 
- - -
-· - -

- - -

+ - -

+ - -

- + -
- - -

- - -
- - -
- - -

Felty Acid Spectrum 

Satur. !so- and Unsatur-
Straight anteiso a ted 

branched 

+ 
+ + 
+ + 
+ + 
+ + 

+ + 

+ - + 

+ - + 

+ + + 
+ + + 

+ + + 
+ + + 
+ - + 

aspartic acid: c Often additional small quantities of LL-'DAP 

10-Methyl Mycolic 
branched acids 

+ + 

+ + 

+ 
+ 

+ 
+ 



Streptomycetaceae thi<.t this study is concerned. 

Streptomycetes (members of the Streptom.ycetace:".e) are common 

gram-positive sporo;:o~ctinomycetes, >vi th a.~·hit;hly oxidative 

metabolism, and -vrhich form non-fra.gmentine;, extensively branched aerial 

and. substrate hyphae. Chc:~racteristically their cell walls contain 

LL-Diaminopimellic acid (DAP) <:md diamino acid, possess glycine as 

the crosslinking amino c;,cid and hc.ve no clk1racteristic vlall sugars. 

This is knmm as Hall chemotype I, Goodfellow cond Cross, 1933. 

Streptomycetes are further ch:~racterised by a high G C content 

of their DiJA (see table 4), the su,:;;:~r pattern of v:h.ole cell 

hydrolysates and fatty acid S!)ectrwn of cell lipids, Kutzner, 1981. 

The streptomycetes are ~dvided into a number of .o;·enera, for example 

Stredomyces (:·:aksmd.n and &nricic, 1943); Streutoverticillium 

(Baldacci, 1958;; Chainia ( Tnirume<.lachc:.r, 1955); l~Iicroellobosporia 

(Cross, Lechevalier aml Lechevalier, 1963) a.nd Kitasatoa (Matsume et al 

1968); of Hhich Streptomyces, Streptoverticilliurn and Chainia are 

very clo~3ely related. 

The genus Streptomyces is by far the most important genus of the 

family, in terms of economic value (due to the prod.uction of 

2.ntibiotics and othr!r secondar;y metabolites) and in terms of 

environmental abundance. Streptomyces species i:.re so common in 

soil th';,t many investigations into soil actinornycetes have been, in 

effect, studies on Streutomyces (;-Iillia.ms and i~ellin_r::ton 1982). 

This is well illustrated by the Hork Lechevalier a.nd Lechevalier 

(1967) Nho found tha.t of 5,000 isolates (from 16 soils) Streptomyces 

h;c..d a. frer;_uency of occurrence of 95 .34~~ 

A.l though Bergey's manw1l of Determinative B.-.cteriology (Buc{l..a.nan 

and Gibbons, 1974) lists :mly 463 species of Streptomyces (which 

includes E~ number of species of Chainia, vrhich the authors consider 

-, 
.:;. 



' synonymous with Streptomyces, Kutzner, 1981) many more 'species' 

have been described. 

During the period 1940-1957, over 1,000 sp2cies of Streptom.yces had 

been described (PridhEl.m et al., 1958), i·rhilst by 1970 the number had 

risen to 3,000 (Trejo, 1970). 

ThL> lar.;;e number of species had come about clut=~ to the use of such 

che.racters as aeriitl mycelium colour; spore chain morpholo.gy; 

spore ornament<?.tion; soluble melanoid pigment production (on media 

containin~ tyrosine); co-1rbohydrate utilisation S!lectra .. md proteolytic 

activities. Using these clkracters in their m;_~.ny permutations, 

hundreds of 1 neN' species were identifif:~d, many of them solely for 

the pur:;1ose of patenting (due to the seccmcLo.ry metabolite procl.uc:i.ng 

capabilities of 'species'). 

In the 1960'::; it became clea.r th;tt the genus vm.s over cb.ssifit'd and 

so in 1964 the Interna.tional Strentom,yces Project ivas set up in order 

to resolve some· of the problems encountered in correctly cl:o'.ssify~mg 

the genus. 

Over 450 species \·Jere rediscri bed ..-md much of this inform:ttion Nas used 

in the prcsent volume of .d::rgey's Rmual (Buchamm a.nd Gibbons, 

1974). Eo·,·ever, .:3ilvestri et_ ;~.1 (1962), using numerica.l ta:x:onomic 

technic;ues concluded th:·~.t the c;enus 1·:as still o JercLcssified and tho.t 

there mi.':;ht be a.s fe;,v as 25 centres of variation. In the more recent 

phenetic study, by ~hlliams et al ( 1983) it is suggested th.•.t there 

are rel2.ti vely feH cluster groups or species Hi thin the genus, and 

that th:c3 heavy Heie;htinc; given to morpholot;ic::-tl ch;:lracters, in the 

past, is no longer justified. 

As stated above, the cenus StrePtomyces is of great economic value due 

to the wide ran.:;e of corrunercially useful secondary metabolities 

(Metabopic products ~vhic!1 appear to pla.;;r no pa.rt in cell ,:;roHth, 

and v.;hj_ch c.re formed ma.ximally uncler conditions of restricted or zero 



). 

ero;·rth, ::hn.:;leton ?.n•~ :)a.insbury, 197':3), including antibiotics, it 

prociUC';S. 'Che economic import;::.nce of Streptom;yces c:.:.n ec-,sily be 

demonstr~:.ted if one considers th;·J.t of 5,000 J.ntibiotics identified 

in 1917, 3,000 h'ere produced b;y ccctinom;ycetes (the mcc~jori ty by 

Strentornyc'"s). :•.1so of the 5,000 only 100 h;we been m~;.rketed, :.:1nd 

of these 69 v.rere products of streptom;ycete:3, (fir:;ures from .. LID:lnowi tz 

and Cohen, 13·31). 

The folloNing report is concerned. ':ii th the production of a. polyether 

a.nti biotic ( termGd 1.:0.39603) by an industri:.tl stro.i11 of Streptomyces 

lo!bai.sporofl2:vus, ,fC1Bll426 (see icl.::'l.teric•.ls :'.nd I•1ethod.s). 

:lt pr.;sent the process involves :-::-rm-I:'.:'<S 2· 1on:c;isporoflavus on a 

complex meclimn in fed b2.tch culture. The protocol used in the current 

inclus-tri;_~l proce~~s differs from th<.:<.t used in the follovJin;· e~~!)e::oiments 

(see :.Ls.teri::•.ls ~.nd Hethor.'.s), in tildt, at thr3 tin~e of iEocul.::·;i;ion the 

production l!lE~dium contc-:.ins lCj., H/V Starch (see l•Ja.te:c-i<:;.h: c:r.~~ r::ethods) and 

thc1.t after ::~n ar:propria.te time; as determined by the state of the culture, 

/iorsvreet, (a mixture of glucose, m2.ltose c:cnd ma.l totriose, supplied by 

C .Po C. UK Ltd) is fed D.t an a.ppropri<:de r;:;te. 

'rhe maximum level of I·ll396G3 procl.uction a.chieved. so fc:;.r by this method 

-1 
is in the re:t~ion of 15 gl o B:O·uever, in order to achieve [;;reEO.ter 

economic vie.bili ty for the pr-ocess, it hi.tS been decided to tr;y to 

-1 
incre<).se the ~;ield to 20 :;1 • 

There c1.re tvro 1~1etho:is by ·.-,hicL t":lt3 maxirrmm yield of c:.n c-.nti biotic 

fern~ent<,.tion (or a..ny ferrneY"ltcttion ~rocef;s) ma;;r be incre.::·.sed. Firstl;y-

th(':Y'e is r;enetic m::1nirmlation of tl:e prorlucin-:.:; organism, vrhether by 'cL·.ssical' 

rnutc,.tion and selection fl.i.'OcEdures; ':enetic recombimttion; or more re.cently 

by utilisirv_s t!-,e techniques of .-;enetic en,,;ineerine; to circtwvent ma!)Jr 

t:y-pes of barrier to increc:osecl. procluction. 0econdly by al terin·:; the 

culture condi tj_ons of tte fermeYrti'ttion process, and hP.nce by-passinc; such 

physiolog'ical re;:,uL:;toiJr control::: ~~"s cat<:•.boli te repression (see belov-1) o 



6. 

Indu~trial microbiology or biotr~clmoloe;y is not a new field of 

entrepreneurial activity; its development ce:-o.n be traced ba.ck to the 

production of c:.lcohol a.nd vinegar by the sumerians before the yec:..r 

5000 B.C. 'l'oday biotechnology is an established factor in the \-.orld 

economy vTith an annual value of hundreds of billions of dollr-,.rs 

(Old c:nd Primrose, 1985). 

How)ver, despite its lol'l€ histor;y the first steps tovmrds controlling 

and improvint; microbiolo~ical processes v1ere taken little rr:ore than 

100 yea.rs ago, \·Then the ba.cteri<-•. e.ml. fun:;i th;,;,t mc.de C:.esirablE: COi!imodi ties 

were isolated ::;.nd g·ro'<'m in ~Ju::._ne culture, e-nd it b::;cc.me possible to ,,.elect 

strains particulD.rly suited to a given task (Eopwood, 1981). 

The purposeful breedin;~· of specic::-1 industrid strains only becc.me 

possible rrruch lc:ter, a.s our basic knO\vled.o;e of microbial genetics 

improved. 

The first deliberate attempts c:.t cha.ngin:::; th<~ genetic composition of 

microbial cultures c::::.me about a.s earl;y- as 1927 1--1hen it \-i2.S discovered 

th<'Jt x-ri:!.ys could induce rrrutations. After 194-5 a vride ra.nge of other 

potent rrrute.genic radiations and chemical mutagens l•rere discovered and this 

gave microbiologists a pO\verful set of tools for changing the genetic 

composition of their cultures. 

Probably the best kno-vm example of the efficacy of mutation and selection 

procedures is thc:!.t of the Penicillin fermentation, where the productivity 

of the producing organism Penicillium chr;ysor;enum has been increased 

over 55 times. Coupled with current fermentation practices the yield 

is no\v in excess of 20 gl-l (Hopwood 1981; Aharonowi tz and Cohen 1981). 

In the sc:,.me viay the yield. of tetracycline from Streptomyces aureofaciens 

has been increased fror.1 a. few milligrams to over 20 gl-
1

• 

It if.; probably true to say tha.t, to de.te, most if not all, industrial 

strains of micro-organisms used in the productionjccmomically useful 

microbial metabolites, have undergone strain development via a mutation 



anLi_ selection :pro8'rr:Li'Jme. 

The mid. 1940's e.lso Sc:.\·J aclv;,:.r:.cen in micr·obic:.l ;-enetics tha.t made 

it possible to modify the genot~rpe of the proo_ucing organism via 

genetic recombinCJ.tion. 

1Ahilst nmtation <;,l ters a, micro-orcanisms ::;enes, recombin;~.tion 

(the other h:,sic a.:ppro."ch to genetic :progTarnming), re2.rran,:;es genes 

7. 

or parts of 3;enes c=:.mi brin 'S toe;ether in e-m imlividuc:·.l orccmisr:: genetic 

infornc::.tion from two or more org·,;.nisms. Th<?. techn:i.c.'.ues involved in 

'iii thin the l;:.st 15 z.re~~.rs the technic ues of ·;enetic eneineerin,:;: hc:ve 

.'J.ssumed incre::>,sin;r, imi>ort<:mce in the clevelopm,~nt of ferment<:,tion 

yrocesses. 

subch vid.ec1 2.s follm·rs: :proclnc~:i.on of cells; production of proteins; 

destruction of toxic compoun~·.s; .~.nd. the proetuction of si,,O:;_ll ,r.olecuh:s 

including anti-biotics. Genetic engineerin~; technic.:,ues hcwe been used 

in the development of ea.ch of the ;.'.bo·.'e cc..tegories (see Old and Primrose 

1935), ho,;.rever, it is Hi th the procl.uctjon of c:,nti biotics that this 

re:·)ort is concerneci. 'I'h'' current state of ::;ene clonin: of antibiotic 

proc1.ucinr.; or(','C:'-!'li::;ms h;:;,s been most recently revie'l'ied by Fayeri:':<.\::, 1986. 

The second method used to increase the productivity of a Fermentation 

process is to manipulate the physio-chemic~~-1 environment such th:.it the 

producing orc2.nism is cultured under optimum peysical conditions with all 

its nutritional requirements fulfilled uithout inhibiting biosynthesis 

of the desired product. 

It is also important to develop inoculum and medium sterilization 

procedures, so a,s to introd.uce the producing organism into the culture 

broth, in the optimum (for product formation) physiolozical state, and 

to ensure medium sterilization \·ri thout altering the nutritional quality 

of the rnedium. 



The protocol used in medium sterilization and inoculum development for 

the follm'finc; ex~1eriments idll be discu.,sed in the donch:sion of this 

8. 

report. For general revim·:s see ~-lang e~ al, 1979; Cruee;er and Crueger, 1982 

The factors v-.'hich compri~3e the physical environment of c.. fermeYJ.tation iYJ.clude 

temperature, pH, aeration and acitation. 'l'he optirmun level for each of 

these p::trameters c2.n be determined experimente.l1;y by cill turing the 

producing org-cmism under a r::m,:;;e of clifferent levels of each of the 

parameters. The optimum level~: for tllese p<,.re.meters have been determined 

previously by I.C.I vmrkers c.ncl ::-.. ~e those used in i\hterials c;,nd 

f·1ethods. 

-'~s with the pbysica.l environment the chernical environment cc:;,n also be 

determined experiment::.lly. This is often done ,:.t an empirical 

lE:vel, Hi t:n a viid.e raYJ..::;e of ca.rbon and ni troE;en sources beins tested at 

various concentr;:;.tions • 

. A.s 1vell as the source c:~'1d concentration of carbon and nitrogen in the 

medium, the concentr;::.tion of inorganic phosphate c:,nd minor elements 

are· also of importance, es~)ecic:ll;y phosphate • 

• ~_gain previous i·IOrk by I .C;.I personnel have determined vihat 1·1ould appear 

to be the optimum concentrations and source of nitrogen, phosphate and 

minor elements in the medium for ii.Q.39603 production (see l•l2.terials and 

Methods) • 

This repor-t is concerned Hi th the development of an optimum source and 

concen·crTet:i_on of cJrbon for the production of Tiil39603. 

It should be noted at this point that genetic manipulation of the 

producing strain and development of the culture environment occur 

sinmltaneously. This is because a higher producing strain obtained 

by nmt2.tion may only express its true potential und.er different optimum 

condi ticns to the previous strain. 



Data published by large ra ·.nufe.cturers of microbi,:.l products indicate 

that the increases in pro.:l.uctivi ty of industri<:~l microbic•.l processes 

are due almost equally to genetic me::.nipulc:.tion of the producing· organism 

and to the development of the technologica.l process itself. Hence 

data on the productivity of industrial strains anci the methods used to 

increase productivity are closely guarded secrets (Sikyta, 1983). 

The question must nov-1 be asked hou do the source and concentration of 

nutrients affect the production of rnicrobii-1.1 rr.etabolism and I·U396o3 in 

particular. It is knovm that the source and concentr::•.tion of carbon, 

nitrogen and phosphate have a definite effect on the biosynthesis of Ml396o3 

production (P. \·Iillis, personal corrununication). These effects are due 

to one or n:ore of the regulc:ttory controls of metabolism corning into effect. 

These mechanisms hEwe been reviev-red by a number of viOrkers: Demain, 1972; 

Drew and Demain, 1917; Demain et al., 1979; Aharonowitz, 1980; 

.Martin and Demain, 1980. 

As stated above this re;ort is concerned Hith the development of an 

optimum carbon regime, by tr,ying to investigate the possible role of 

one of the abO\re regulatory mechanisms, carbon catabolite repression, 

in the bio;::ynthesis of liil.396o3. 

Epps and Gale (1942) first discovered that the synthesis of· en~es 

involved in prirna.ry metabolism (metabolic processes needed and directly 

involved in cellular gro~th) is influenced by glucose and raised the 

question of the biolo,:;'ical signific2nce of this observation. It \vas 

M;og-asanik (1961) Hho saw a survival advantage in this phenomenon and 

termed it 'ca.tabolite repression', i.e. the inhibition of synthesis of 

inducible enzymes by intermediates procluced by the rapid catabolism of 

glucose (Demain et al., 1979). 

Probably the best known example of catabolite repression involves an 

organism gror,~·n on a mixture of lc:.ctose and glucose. In s~ch a case 

glucose is metabolized preferentic1.lly by the organism since the sue;ar is 

capable of maintainin~ a higher grc>Hth rate than lc .. ctose. Since there is no 
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advantage in synthesizing the enzymes necessG.ry fc·r lc.,ctose metabolism 

whilst the giucose is in a plentiful supply, glucose, tnxough a catabolic 

intermediate represses (i.e. prevents transcription of) the genes 

responsible for lactose metabolism (Demain et al., 1979) 

Readily metabolized carbon sources, such e.s glucose can suppress antibiotic 

production by preventing the synthesis of a key enzyme in the biosynthetic 

pathv;ay (Chatterjee and Vining, 1981). Because of parallels 1r1i th the 

v1ell k.l'lovm suppression by glucose of catabolic enzymes for using less 

prefered substrates, Demain (1972) referred to the above as 'catabolite 

repression', (Chatterjee and Vining, 1982). Consequently although 

glucose is often an excellent carbon and energy source for microbial 

gro~..;th, it is infrequently used as the major carbon and energy source 

in seconda.r-J metabolite fermentations (.Drew and Demain, 1972). 

During studies on fermentation medium development, polysacch:"J.rides o.nd 

oligosaccharides are often found to be b8tter than glucose as a carbon 

source for antibiotic production. For example the current production 

process for I\fi39603 involves a fermentation medium containin_; starch 

as the primary carbon source, Hi th morsweet being used as a carbon 

feed (P. ~'lillis, personal communica.tion). 
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Materials and Methods 

1. Strain 

The micro-<>rg;'.:.nism used in all the folloV!irt::; experiments was 

Streptomyces longisporoflavus NClB 11426 strain 83jE6. This w~s 

supplied as second generation slope cultures by I.C.I. Ph,Jrmaceutical 

Division. 

2. Shake Flask Experiments 

i) InoculUm development 

Production of lVI139603 was based on initial growth in an inoculum 

medium consisting of; 

The minor 

4~b (w;v) 
0 •47~ ( Vv/V) 
0 -4~';, ( wjv) 
O.ljo (vjv) 

elements 

1.00 gl -1 

1.00 gl 
-1 

0.15 gl 
-1 

0.10 gl -1 

0.10 gl -1 

r.filou Pro Bio (Supplied by: f.'Iilouot Iii. P. .ish Hat Israel) 
Chalk ( " " Brito Mayo, Violet label). 
Minor Elements 
Polypropylene glycol, antifoam (Diamond Shamrock, EBA 142) 

present Here: 

Feso
4 1 H 0 

2 
ZnOO 

4 1 H
2
0 

CuS04 5 H
2
0 

!>1n.SO 
4 1 H

2
0 

K IvloSO 
2 4 

The inoculum flasks vrere 1 litre non-baffled conical containing 200 mls 

of medium, >vhich ;.rere sterilized for 30 minutes at 121° C. The sterile 

fla'sks vrere inoculated from slope cultures. Using aseptic technique 

10 mls of the sterile mediwa -v;as transferred from thE: fli.:i.sk and. added 

to the slope culture, usinr; a >.;ide bore 10 mls plastic pipette (Sterilin). 

The scraping of the slope, vnth the pipette, caused a release of spores. 

The spore suspension was tr.en 1,-:i thdra>m, by means of the pipette, and 

used to inoculate the flask. 

In all the experiments, duplicate inoculum fl;:~sks vJere prepared in 

c-J.se of contamination. The inoculum flasks >·1ere incubated at 28° C on 

an orbital sh.2.ker at 220 rpm (L.H. orbital sh;-:.ker) for 48 hours. 

After 24 hours of the 48 hour incubation period, purity tests Nere 
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performed on the inoculum. Firstly, a Gram stain 1t1as perform-2d on 

the culture broth to ensure no contar!<inants Nere present. Secmdly, 

check the broth using the streak plate method on nutrient agar (Oxoid). 

0 
Duplica.te plates uere used, Hi th one being incub&.ted at 28 C CLnd the 

0 

other at 37 C. 

ilf'ter 48 hours, the fh<.sks are used to inocuL.te production. flasks by 

transferring 10 mls of' inoculum to each procl_uction flr:1.sk. 

ii) r/[)_39603 Production Flasks 

The production fle.sks vmre 500 mls non-baffled conical fla.sks cont2.ining 

lUC mls of the production medium. This medium VIas bn .. s-;d on the 

inoculum medium (mentioned &bove) except that r.lilou Pro 1·1as present 

as a z;j~ ( v.rjv) concentr<:~tion. ti.lso a c.::"rbon source of choice vras 

prPsent. These flasks Here sterilized at 121° C for 30 minutes. 

The inoculated production fl;;~~>ks v1ere incubated on a.n orbital shaker 

(as above) :-1t 28° C and 220 rpm. 'Ehese flasks were tbe~1. sa.mpled 

periodically for H0..39603 production (see belmv) until maximum production 

\vas achieved. 

In chese eXl)criment.s various cv.rbl)n sources v.rere tested., these \'lere: 

Glucose 
Starch 
Cellobiose 
~hl tose hydrate 
Alpha-Lactose 
Fructose 
Sucrose 

(Supplied 
( 
( 
( 
( 
( 
( 

II 

II 

II 

II 

II 

by: f•1eri tose, Tu..'Ulel Refineri·~s) 
Lain~ National, Trafford Park) 
BDH Biochemicals) 
Sigma) 
Sioaa) 
::.lie;ma) 
Tate .:md. Lyle, "Silver Spoon") 

These carbon sources ~·Jere tested ~-<..t three different initial concentrations, 

Ex:cept in th.:; Ci:l.ses of ce.:.lobiose and 

maltose \·rhcre only the l(f;o ( v-1/v) concentr::,.tions \•Jere tes ;;ed. In all 

the experiments du~llicc:.te flc;;sks uere tested. 

3. Ferrnenter L0::Deriment 

i) Inoculum devel2nme4i· 

The production of i·T 139603 in the.~ fermenter \·Jas bc:~sed on a tl·m-step inoculum 

procedure, developed bJ \hllis a.nd Hood (unpublished date.). 
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Inocultun fla.sks were prepared as above, hOi.·:ever incubation proceeds for 

72 hours, after Hhich the vrhole fb.sk is used to inocula.te a laboratOI"J 

scale fermenter containinG 2.5 litres of inoculum medium. The same 

inoculum medium as abo,re. 

The culture concli tions of the inoculum fermenter ltJere as follmvs: 

Temperature 
Aeration 
Agi t.:ttion 
pH Has maintained 
and 2f.T rr

2
;;;o

4 

(;.5 v;v/m 
500 rpm 

a.t 7.0, via the addition of 5CT;a i.JE 10H (vjv) 
T 

Dissolved Oxygen Tension \·ras not controlled. 

The inoculum fermenter vias a L .H. EI4:,oi.neerine 51 gl<.:J.Ss vessel of the 

stirred tank desizn, -vri th a double bladed impellor. In this fermenter 

grovrth W<J.s monitored via Co
2 

production >vhich Has mea.sured by a V .G. 

i'Ticromass M3.ss S:pRctrometer. 

Inoculum production continuros for a:;J~1ro~..::ima.tely 24 hours, a.fter vlhich a 

10/:; ( v;v) sample is used to inocu.L•te the production fennenter. T'nis 

occurs -A hen the CPR (Carbon dioxide production rate) reached a level of 

-1 -1 approximately 8.0 mi•U h • It should be noted tha.t prior to inoculation 

of the production fermenter, puri t2r tests >vere performed (as above). 

ii) Production Fermenter 

The production fermenter vias a modifiad Braun biostat 41 gl':.l.ss vessel 

stirred tank. ~nis fermenter contained 2.5:1itre of the production medium. 

a) Medium Composition 

The medium constituents were ·- lCJ;b (w/v) Glucose 
3j'c ( N/ v) Milou Pro Bio 
G.4)o (w/v) Chalk 
0.47~· (w/v) f•linor Elements 
O.l~o ( v/v) Polypropylene Glycol. 

b) Medium Sterilization 

Both inoculum fermenter and production fermenter media are produced 

in 101 aliquots contained in 20 litre aspirators and. sterilized at 121° C 

for 60 minutes via a norm<:Ll cooling cycle of a British Sterilizer l1lotorclave 
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S.F.A. - VJ .J. (the temperature probe being placed at the base of a 

similar aspirator containine 20 litre inoculum medium). 

Ho,.Tever, clue to heat lability of glucose, a solution of glucose is 

-1 
prepared at a..oproximately 500 gl in 10 litre aliquots (in a 

10 litre aspirator) and sterilized at 121 C for 30 minutes. 

In the production fermenter sufficient glucose solution is added to the 

eeneral medium to give a concentration of lO';o (w/v). This solution was 

also used to feed glucose into the culture broth at periods after inoculation 

(see table 5 ) . 

c) Culture Conditions 

The production fermenter culture conditions were: 

Temperature 
).eration 
Agitation 
pH VIas ma.intained 
and 2M H

2
so

4 

28°C 
0.5 v;v/m 
500 rpm. 

at 7.0 via the addition of 507c. ~E40H (v;v) 

Dissolved Oxygen Tension v1as not controlled. 

Daily samples of the production broth (about 30 mls) vmre removed and 

analysed. (see belm·,r). 

The fermentation proceeded unhl ma.xinnun production of t.U39603 

was achieved. 

4. Analysis of Culture Broth 

It should be noted that pH analysis and purity checks Here only 

performed for the fermenter run. 

i) pH Analysis 

The pH of the broth vras measured (using a Corni11c'S pH meter) as a check 

of the pH monitoring system in the fermenter. 

ii) Residual Glucose 

1 ml aliquots of the culture broth were centrifu,ged (using a ;iD_cro 

Centaur). ':!:'he supernatant vras removed and 1·1hen appropriate diluted 

(to bring the glucose concentr<:>.tion Ni thin the range of the analyser) 

with double de-ionised Hater. The resultant solution was measured for 
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gluc:ose usin,:,· ::ot Beckm<.:m glucose analyser. 

iii) Purity checks 

A Gram stra,in of the culture broth 1-1;:• .. s TJre-;_x1.red. This ::J.llm;ed a rapid. 

exar.1ination of the broth for contarnirumts c.=md a.lso allm-red the morphology 

of the culture to be determined. The prepa .. red slides i·Jere also 

photographed (see results: Cul ti1re n;orpholoc.:r). 

Strec:.k plates were also prep;~ .. red from the cnl ture broth one beinf:,' 

0 0 

incube..ted at 28 C a.ncl the other at 37 G. 

of l·JPLC gra.de· methanol, (the dilution fa.ctor beinc.; chosen to brine the 

sc-.. m~)le concentl';; .. tion into the ran,=,:;e cove :··ed by the stancl2.rd solut:.ons) 

contc;j_ned in a. 30 mls Sterilin ci_is:'OS<:.ble universal. The methanol;culture 

broth mix VJC:cS then agitated for 30 minutes usinz ~~ Griffin flask shc.ker. 

After_ agitation the sc:~m:rJle. lf<=•.s filtered (using a 0 ·45 p iLcrodisc disposable 

filte~ asser:1bly, .;croclisc C.R. Gelrn..-m Sciences), and 1 ml of the 

fil tra.te i·ia.S pln .. ced in e:m ;;,utosc..m~)ler vial \vas measured CJ. :ainst three 

standard concentrat.ions of r.c.r. 139603 (in metha .. nol). The standard 

. -1 
concentr<1.tions were: 0.110: 0.250 and 0.505 gl • Standards of each 

concentrc:•.tion were run before <::.rid after each batch of unknovm samples 

were measureJ_. 

Measurement of !~I 139603 1-va.s by means of a Kontron HPLC system, which 

consisted of the follo1~ing: Uvikon 740 L C detector 
LC pump 410 
dPLC autosampler· ;;;Sl660 
Reocl.;ne 7010 injection valve pneumc:,tio 
actuator, 6 port. 
Servoscri be ch:? .. rt recorc.ter. 
Column: Spherisorb 5 OD52 - 125 x 5 mm 

The chromatogra .. phic conditions employed i·Tere: 

Eluent: RPLC Methanol (907~,). and 0.0 H1 
Potassium dihycirogen orthophospha,te (in H2o, buffered to pH 7)(107o) 
Have length: Uj l absorption 2,t 254 nm 
Fl(m ra.te : 2 ml/ min . 
Pressure: about 50 b2.r Sample loop: 20 Jll 

i·T 139603 retention time: about 3 minutes. 



•rable 5 Glu<?.2_::.e Utilization in Fed-batch Fermenter Run 

Fermentation Residual 
Time Glucose Before 

(Days) ).ddi tion 

(gl-1) 

6 Ool2 

10 Oo40 

ll s.3o 

12 OoOO 

l3 4o00 

_, 
Total Glucose 2.dded = H3 o48 gl -

Ini tis.l Glucose concentration (at inoculation) 

Total Glucose used = 2 !-lo48 
-1 

{;1 

Residual 
Glucose After 

Addition 

(gl-1) 

40 

28 

20 

27 

38o3 

-1 = 98 c;l 



Results 

a) Graphs of lill39603 production (fif,Ures 1 to 8) 
(For shEJ.ke flask results, points represent 

an average fit~re from duplicate flasks) 

b) '.re.ble 6, 'I'able of !ifaximum Yield of m396o3 

c) Colony !·.'Jorphology (plates l to 12) 

cl) Description of Plates 

16. 



Fig.1 Graph of M139603 Production Versus Time. 
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Fig. 2 Graph of M139603 Production Versus Time. 
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Fig. 3 Graph of M139603 Production Versus Time. 
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Fig. 4 Graph of M139603 Production Versus Time. 
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Fig. 5 Graph of M139603 Production Versus Time. 

Carbon Source Sucrose 

10 

8 

·----. 
6 

4 

-~· 
2 

0 ·- -· 0 .. • • ... 
2 4 6 8 10 12 14 

Fermentation Time (Days) 

16 



Fig. 6 Graph of M139603 Production Versus Time. 
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Fig. 7 Graph of M139603 Production Versus Time. 
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Table 6 Table of £,1aximwn Yield of :r.1 139603 

Carbon Source 

Cellobiose 

Glucose 

~1..?.1 tose 

Starch 

Sucrose 

L2.ctose 

Fructose 

Fed-batch 

Concentration of 
C2.rbon Source 

1~ vv/v gl =-1 

10 

1 
5 

10 

10 

"1 
5 

10 

1 
5 

10 

1 
5 

10 

1 
5 

10 

Fermentation (Glucose) 10 

Concentration of 
Richest Yield of 

Ml396o3 g1 -l 

9·13 

0.55 
3-75 
9-65 

7.83 

0.62 
1.88 
7.25 

0.08 
0.63 
7-13 

0.10 
0.18 
0.29 

o.sc~ 
1.23 
0-99 

8.00 



Plate 1 

Plate 2 



,. 

Plate 3 

Plate4 



Plate 5 

Plate 6 



Plate 7 

Plate 8 



Plate 9 

Plate 10 



Plate 11 

Plate 12 
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d) Description of Pl:'ttes 

Plates.l and 2 (examined, under oil usin.::.; a. X 100 objective lens). 

The plates shoVT the culture morphology with a fermentation 

ruiLDing time of 4 days. The culture forms dense mycelial pellets 

\-Ti th the hyphae staining {r.r:c1.m positive. 

Plates 3 <:'.nd·4·(examined under oil, X 100 objective lens). 

After 5 days as Hith plates 1 and 2, the mycelium is in the form of 

dense pellets, stainin::; gram positive. 

Plates 5 and 6 (examin~d ~der oil, X 100 objective lens). 

After 8 days the mycelial pellets are becomin!s dispersed. Hyphae are 

stained gram positive. 

Plat~s 7 and 8 (examined under oil, X 100 objective lens). 

After 10 days the culture irzy-celium has become even more dispersed. 

F.yphae are stained gram positive. 

Plates 9 and lO (examin3d usinp.; X 40 objective lens). 

After ll days the cul tu:re mycelium h<.:..s become very dispersed. The 

plate hcr.s been taken 3.t lo\·Ter magnification in order to shori a \·lider 

field of view. The mycelium is sta:i..ned gram positive. 

Plates 11 J..nd 12 (examined under oil, X 100 objective lens). 

After 12 days the mycelimn has becomt3 very dispersed, and has also 

become _ gram variable in staining characteristics with some hyphae 

stai:iling gram positive (X) and some gram negative (Y). 
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Discussion 

From the sh2ke fh!,Sk results it c:1n be seeYJ. that the hi::;hest 

yields of i•'l39603 Here obtained from fle.sks containin·;; an initial 

carbon content of 10'}'" Glucose, 105·;, Celli biose a.nd lO';·o Maltose; with 

-1 
figures of 9.65, 9.13 and 7.83 gl respectively. It can 2.lso be seen 

that the flEtsks contc-.inin,; lC},:C• Starch a.nd 10'}{, Sucrose also gave 

reasorr:cble _yields of I·TI.39603 (7.25 F1.nd 7.13 ~1-l respectively), >·rhilst 

Fructose gave a m?..ximum yield of 1.23 Gl-l (5~;, initial carbon 

concentration) a.nd Lactose (lO?o) 
-1 

gave 2- very poor yield of 0. 29 gl • 

It shoulc3. be noted th;:;.t in all cases, except Fructose, the hi~~hest; 

yields "\\!ere obt2.ined from fl?;.sks containin:~· an initial c<~rbon content 

of 107c•, and tha.t yields of i-ll39603 decrease with decrec-.sing initial 

carbon concentration. 

It vmuld appear fror.t these results th;'!.t carbon catabolite repression, 

mediated by an excess of glucose in the nedium, is not e. factor 

involved in the re,c;ulc:.tion of enzymes responsible for f•'il39603 

synthesis. 

This conclusion may be dravn1 since the hir;hest yield of IvU396o3 

vras obtained when the medium used conta.ined 2. high concentration of 

glucose, a carbon source knoHn to inhibit the production of a 1·1id.e 

ran~7e of antibiotics and other c3econcl'·.F.f metabolites, whilst much 

lower yields vlere obtained on carbon sources \;hich ha>re corrunonly 

been used to circumvent ccLrbon catabolite repression, for example, 

Lactose, Sucrose, :B'ructose and_ Starc!l (Demain et al, 1979; Martin 

and Demain, 1980). 

It should. be noted that glucose may not elicit a repressive response 

because it is not t£1e c;:;,rbon source prefered by ~· lon,o;isooroflavus 

for gro~fth. Citrate (s. niveus, Kominek, 1972) and glycerol 

(~. Clavuligerus, Aharonowitz and Demain, 1978) have both been 

reported as bei~ the favoured carbon source, whilst Chatterjee and 
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Vining (1981) report repression ofCJ- glucosidase qy Krebs 

cycle acids in .§.. venezuelae, despite the ineffecti v·eness of 

glucose, mannose, and other carbon sr)urces knovm to support a 

fast rate of grcn.:rth. 

Hovrever, care shoul~l be td<en vihen drawin::o; comparisons bet-v1een the 

repression of an inducible cats.bolic enzyme and control of antibiotics 

synthesis, since Chatterjee and Vining (1982, b) shovJed that vlhilst 

glucose depr<]ssed induction of B glucosidase b;)r cellobiose, cultures 

of .§.. venezuelae usj_nG glucose, cellobiose or a mixture of the two 

sacch:;.:C'ides, ;:~.s their cc:.rbon source produced chloramphenicol during groHth. 

Therefore in contrast vJith its re~Ycessive effect on J3 - c.;lucosidase 

induction, glucose did not suppress chloramphenicol production, 

indicating that the control mecho.nisms thd.t establish C· 'rbon source 

preferences are not linked to those that re:;ulate Emtibiotic biosynthesis 

in .§_. venezueLte, Chatterjee rJ.nd Vinine-, 1982 b. 

Further evidence in sup~"Jort of the conclusion dra:t-m from the mc..ximum 

yields of i'U39603, comes frrJm examination of the g;raphs for 

l>U39603 production (F'igures l to 7). 

Firstly if one considers the cur<:es for fl<:l..sks containin:; a.n initial 

carbon concentr.::.tion of 10;:.., 2.n indication of the rate of J.u:,.9603 

production can be obtained by ;neasur1.n,'S· the slopes of each curve 

between tvm sta<1d.2.rd poin·cs. Thus the slopes for llYjc· Glucose, 

Cellobiose, I•hltose a.nd Starch (bet\·Ieen 2 and 7 gl-l, ;,u39603 

· ' d -, (' , 7 1-l -n~a6"'' 0 7··5 C 7-.5 concentratlon) .:.ct i:.:lucrose .) 2.nu. g J·•uj,~ U.) are • :: , ' • .) , 

0.746, 0.751 and 0.666 respectively (calcul;.tions not shmm). 

ii.S can be seen these values are very close, inclicating th.:lt the rate 

-1 ( -1 of production of i'-1139603 betvJeen 2 .·.nd 7 r:;l 3 ;md 7 gl , for Sucrose) 

is similc:.r for each carbon source. Differences in the maximum yield 

come about due to differences in the r2.te, and duration of antibiotic 
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synthesis before ;:;,nrl after th'~ period of examination. If carbon 

catabolite repression v;ras involved in the control of I.J.39603 

biosynthesis, then the rate of pr><Xbl.Ction of l<Ll.39603 in media 

conta.inine; uore complex carbon sources (for example, Starch and 

Cellobiose) uould. be hig:her thr:m tha.t for Glucose. This evidently 

is not the case since not only did the l07c· glucose flasks produce 

the highest titre of antibiotic, but they also reached their 

maximum yield 48 hours before the lO'i~ Cellobiose fl:'.sks, Hhich \·Jere 

responsible for the second hic;he st titre of i·.l39603. 

It should be noted hm-vever th~:J.t the differences bet·.:een the ti tres 

obtained from the lC'jc glucose, l(f,;: Cellobiose, 2ind possibly the 

10'1.:· i.'Jal tose fl.>.sks coulcl_ be accounted for by differences in the 

inoculum used to inoculate ef,.ch batch of fl;:;.sks. Since gro1rth 

of 0. lon<isporofl<wus in sh;:.ke flc:.s}:s is based on a sin.,:;le stage 

sha.ke flask inoculum procedure using a corr:plex medium (see Illaterials 

and Methods), stande.rdisation of the inoculum in terms of 

physioloc~·ic;;~l sta,te, ,:;rovt!l rate and dry ':Jeight is impossible. 

This problem is lc•.rgely overcome in the inoculum development procedure 

used in fermentor studies (see I•hteri<J,ls ~~ncl ii.fethods) since it is 

possible to me<:csure growth rate by analysine co2 evolution from the 

seed fermentor, and hence tra~sfer ar. inoculum to the production 

fermentor, Hhen tl'.e optirrrum g'I'Ovlth re"te is achieved. 

The rational behind .using three concentr .. tions of es.ch c::;.rbon source 

(except Cellobiose <:mel fi"Jaltose, which could not be tested d.t the lo.-.er 

concentr'-'tions at the time of experiment<1-tion) is that if carbon 

catabolite repression is involved in the regulation of IU39603 

synthesis then lovrer concentr<;,tions of the repressive substrate(s) 

t•rould result in hic·her yields and faster proc1.uction rates, as is 

the case 'I'Ji th chloramphenical production by .§_. clavulip;erus, 
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Hhen grovm on a r.>n.:;e of media conta.inin;;; 0, 0.2, 0.4, 0.6 and l.C)i, 

v;v c;lycerol and 0.47~ L a~:;para·:;J.ne, 0.4j~ v/v glycerol g<we the best 

volumetric titre of chloramphenicol b~r <:l.chieving a baL-?..nce betv1een 

grm·rth r"'-te (to oota.in a critic::::.l level of biomass) and specific 

rate of chloram~henicol production. Hi:;her concentr,,.tions of 

glycerol, yielded a. hich:·r level of biomass but much reduced 

specific 'J.ntibiotic production and hence lm·Jer volumetric titre 

(actual concentration of :mtibiotic) vJhc>.reas the converse was true 

for lm·Jer concentration~; of c;lycerol (Demain et al 1979). 

From fi,c;ures l t·J 7 it can be seen t:t·Lt the only sugar to produce 

higher levels of JV1139603 production in fl csks cont::>.inin;o,· loHer 

initial carbon concentrz·.tions, >·.Jas Fructose \·Ji tll figures of 

( •') -1 ' 1. 23 5~" .:.>.nc.l 0 ·99 gl ( l()j'o). 

HoHever, other observ:.:;.tions on the state of the culture broth 

(data not shovm), in th<-'.t the nwcelium cuickly formed large 

pellets (in excess of 2 :nm di-.:>.meter, commonly an indication of 

stress in Streotonwces, P. Aillis personal cornrnunic<oction), 1·1hilst 

the milou pro component of the medium became solublised <~·.nd 

chan,~ed colour (inclicating thc;.t this latter component vJas being 

degraded), coupled vJi th the vPry low titre in all three sets of 

Fructose flasks l•<:ds me to believe tho:"t the figures obtained 

are not as ::1 result of carbon cc::.taboli te repression, merely a 

reflection of the inherent variability of shake fL~sk culture. 

The l2.rge v::;.riation in ~roductivi ty, in respect to fiil::J9603 synthesis 

bet1·reen the different carbons sources, cannot 2.t thL:; point be 

explainecL, beyond S:i.;J'ing th'•.t the differences come 2-b:mt due to 

varic::.tions in the a.bili ty of .!2_. ).on'"i~orofla.vus to utilize each 

c;:.Lrbon source for '3TO'"th. Houew;r, no information is o:wailable on 

the .e;ro\·Jth rate of .§.. lonr::isoorofLW1l~ durine; any of the a.bove 

experiments, due to the inc.tbili ty to meo.sure mycelial dr'tJ v:eight 
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throughout th-8 exneriments bec:~use of the high 1\~~.rc;ls of suspended 

solids in the Gi•;dium. Conse;:uently this is -~n are::?. of HorL >·Ihich needs to 

be studied in r:1ore detz.il. :,:easnrement of grm·<th r~:.te coul:l be ;;.chieved 

by me '-surement of total Dr.:~ .'.n the culture broth. l.Jnfortunately 

such ::malysis 1·1a.s not possible ·='.t the tirc.e of experim<?.nta.tion. 

LikcHise, nutrient utilisa.ticn 'tri·i:;f',in tlce culture brotil rec1uires more 

detailed <:mE.lysis' in order to mor-e fully underst2.ncl the control of 

n39603 synthesis. -':.::;<.tin analysis of E'll ca.rbor:. source utilis2.tion 

for a.ll the ce:;.r-bon sou:..~ces other th:-J.n glucose rec;;.uired detailed 

bioc:1emici:;l anc-;.l;ysis, hence thr~ h•ck of d:~ta o::-! residu<:·.l cc:.rbon in 

the medium except in the: case of glucose. 

~- point of p~;.rticuL.r interest from the ::cbo·re shelce fLcsk experiments 

-vraD the very poo:(' sho·.-Iin ,· of l)oth Lactose .:-.nci l:'ruc!;ose ;;,s a sole c:~rbon 

1.::-,cto~-:;e metc.bolisr:·: in Streptom;yce_!?. h;:_;.s been studied b;y a. nw:wer of 

l ( '· h · •• , · 1079 .·, Ch~·-·.te.rJ·ee ,··.' .. "'c',_ •r.;n;nP_..· 19.o''2 "-)· • v;or..o:ers ;:;,anc .. cz 2.n•:~. ric..ra~sson, / . . c• v ...... __ _ ~-

in those Streptorn,'[CE!_ species studied is 7 l.D inducible enzyme, hm·Tever 

differences occu_r in the n1ode of incluction. For example, in ~· ~iseus 

J- gc;.lactosida.se is induced by lactose but not D. galactose or some 

other gc.la,ctosides, Dan o.n.cl Szabo, 1973; Vita.lis ;;mel S:0abo, 1978. 

Sanchez and Hardisson (1979) report th<;.t in ~· y_iolaceus galactose, in 

concentrations hiisher than ci;,. 1-J/v, forms the best inducer for J3·r:;c.lacto-

sida.se. For La.ctGse to act as .:m efficient inclucer of ,P-gal2.ctosidase 

in .Q_. vio1aceus, requires pre cul turin; in h,,ctose con.tainin~; medium. 

If like .§_. viola~, .§.. lone;isnorof1:c,_vus requires pre-culturing on 

l:ccctose before synthesis of J3 ga.lactosidase cc:·.n occur, then this v1ould 

exph;in the poor results obtained. from glucose. 

The apparent irw.bili ty of .§.. lon ;isnor_:s>flovus to metabolise fructose 
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;.'iet.c-·,bolism of glucose •,!let fructose in .e.. c:mreofaciens 

hc",s been studied by i.fr:votna ::•,nc-1_ Host,~le}: (19·35). :::iugar p!J.osph:_ites, 

intermediates of C ,rbor.!,yir:cte met,e;tboliS1';, c.rise in micro ore--~l1iSr:1S 

either b. the ,::.cti•!n o~ hexokin?"ses cci'ter the entry of the sugar 

into th?.) cells or durin•'; tr<:mc3'·:ort -oy :ct:i.on of the Phosphoenolpyruvate: 

su,:;a,r :: .. hosphotr.:·lYisfer: .. sc systc. (l-· [';;. 

Ho\.'ever, P'l'S h<-'.S been renorteci. .:\s missin::; i::1 ;:). aureofa.cicns (Novotna 

;-md liosL;.lek, 1935) 2-nd ;J. viol?,ceoruber (s2.bater et al, lS72) 

Consec:uently, en:tr~r of /ructose into r1et:::cboli;:;m rec~uires th,; :::.ction 

of C'.S 

It seems possible th .t i;he 

<epp:,rent inability of 2_. )._q_n.:;J.,i?,2C?""~_(JfL:~ to grcn-J on fructose is ::1.ue 

to tr"is or,~;',,nism l;•ckin·~· '" specific fructokin'tse, hence fructose C?"nnot 

.. ~n,;,lysi'' of the hypothesd.s coulC:_ be c&.rriec1_ out by utilising the 

r:mt hoL~.s of i:Jovot!'la ;:-,ncl Ho ~Jt:.1le~: ( 1985) to prepccre cell free e::tre:Lct s of 

.:i· lop.r;i s·':iorofl:-,.vus c .. cc.c1 cJ.eterr:!ine their ~"'biJi t;y to pr;duce fructose - 6 

phosphate, the; proO.uct of fructokina.se-phoSO:!=•hoenol p~·ruvate 

phosphoryL:·ttion systeu. 

Thi~ ;.:,bo1.ro conclusions dr,=:Hn from i;he sh;:~ke fl:.sk e~cperimel"lts, \·lith 

rer::n:':'d to the ",)pe,;:-ent L•.ck of i ~tvolvement of c-:crb:m c2~to bali te 

repression in ,:0.39603 biosynthesis ·""re tentative conclusions bc1sed upon 

the results obt.~~.inecl from thc; D,(jove sxperim•:,n·[~s. Positi·v-e proof of the 

involvement of c:c'.rbon c:::.~;::!,boli te relJression c~o.n onJ.y be determined by 

further eX!);_ r·ir:ient.:·.tion, such that, it cc··.n l)e shO\m thc:.t .. cl.di tion of the 

repressive substra.te to a medium pr·e:·vents bios:inthesis of ~·~139603 until 

the concentr::dion of t:Cut su\Jstra,te is no lon,:;er inhibitive, and th:;;,t 

secondly, adcli tion of the substrate to a, cd ture al:~'e<:cd;'! producing :·'1139603 

prevents further li~l39603 procbc"Jion b,;· preventing the de f!..£Y2.. synthesis 
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of thG key enzyme(s) o;:' 1'·1139603 biosynthesis. 

From the l;::.b scslP- fen:,,mter eX}'>e:r·j_n;ents it c.::;.n ·oe seen th.-~.t the 

-l maxinnun ;yi '·ld of Iiil39603 v:a.s 8 gl • T'nis result is dise.ppointing 

when one cor;siders the :rield obta.j_ned fror.1 th8 same r;edium in sh<?.ke 

fh.sk culture ::.:,nd if one comp '.res the ~rield to tha.t obtained by the 

stand<:..rd ICI production medium, of 15 -l 
~l • 

N'o conclusions m;c.y be d.n"':vm from thi:o~ ex:=·eriment d.ue to c:;. l:~.ck of 

dc.ta to comp::"re 2.::;;::.inst this result. 

F ... m·;ever, one c<-:m try a.ncl. drm·l cor-,pc:criso.r;s behleen the :rields obtained 

from medium conta.inin,::: lCJ;,, glucose in shccb; fl:- sl: and lc1.b scale 

fermenter culture. .:~s. stated ,;.bove, 1-Ji t}:. the r.1ethoo.s used, (see 

II'Iaterio>,ls and i·Iethocl.s) experiments at the le.b scale fermenter level 

should involve less varic:.tion due to the inoculum used, Hhen compared 

to experiments usinr:; shake flc.sk cul tu:·e. ~I'his is becc..use the 

inoculum development procedure used in l2,b scale fermenter experiments 

ensures, asUJT,ing a standard volume of inoct~lum is tr<=msfered, that the 

inoculum used is a.s reprocluctable a.s possible since inoculum transfer 

c""n occur Hi th, the inoculum cultures possessing the same (or very sirr.ilar) 

grow-th ra.te as me2.sured by volumetric C02 production rate. Conversely 

sh':J,ke flask experiments utilize a sin~;-le st,:.t:e, sh?.ke fl2,sl: inoculum 

procedure, Hi tl:_ no control over inoculum transfer timing other than the 

48 hour deadline. 

As a c:msequence of the above comments it must be assumed that the factors 

affectint; the yield of I/1139603 in the fermenter experiment occur once the 

fermentor has been inoculated and that Given the same fermentation 

conditions the yield vx::mld he of the same order as that achieved, i.e. 

8 -1 
gl • 

.achieve 

However the shake fle.sk experiments if repeated could yet 

2. hif:;her yield of r.U.39603 if the condition of the inoculum used 

is clo~::er to the (as yet unknovm) optinrurn. 

Therefore it must be assumed t:rLa.t the failure to achieve the same level 
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of prorl1J.ction in the lRb scale ferrnenter a.s in the shake flc>-sk 

results, comes a-bout due to differences in culture condi t:!.ons betvleen 

the fermenter and sh:;Jce flc:.sks. 

Such differences include, different concentr::1.tions of l'tilou pro in the 

media, (21o .. Milou pro in shake flaSk medico~, and. 3% in the fermenter 

medium, see me.:terials and methods), different Sterilisation procedures, and 

differences in the pr.yr::ical environment. (for exarnple optimum pH is 

m.:1intained in the fermenter, and differences occur in agi t;::.tion and 

aeration). 

The concentrations of rr:ilou pro used. in sh.:;.ke flc-sk and ferme!lter lli.we 

previously been determined a.s op~cilTlllrrl b,y ICI -,:orkers (un published data). 

Hot-rever, the carbon sources used i·~ere different to those used above c-.nd 

so it is possible th,o..t the concentr.-1tion of milou pro may i'l:'ve to be 

altered in order to achieve hi ·:;her yields ;-;i th r;lucose as a c~rbon 

source • 

. <~s can be seen from ma·cerials 2.nd 1net!:..od.s, the sterilisation :t)l'Ocedure 

are completel~r different, ':;i th tl1e shaLe fL·.sks ·oeinr.o, autoclaved for 

h:df an hour, '.vhereas medium for fermenters is autoclaved fer 1 hour. 

Also because the production medium is sterilised in 10 L aliquots and 

so hi?;h tempera.tures are ma.inta.ined for lon~~er in the fermenter medi urn tha.n 

the shake flasks. Consequently heat l<~.bile components of milou pro 

ma-y be broken dOI'in under the fermenter medium s·cerilisation condi t:i.ons • 

. :tr:;ain the sterilisation procedures t,;,we been determined previously. 

Hm:ever, ar;ain the previous \·JOrk m:.~y need tn be re examined <1S the 

standard ICI production medium also contc'l-ins lO;c starch, 'rJhcreas 

the fermenter medium used in the 2.bove eX!)eriment rw.d its carbon 

content sterilised sepera.tely. It could i·iell be th;i.t the presence 

of st<"-rch in the medium absorbs a proportion of the hec;t used to sterilise 

the medium, 8.nd th;;.t in the i?.bsence of starch this heat e;o~;s to the~ 

milou pro, hence the com}JOSi tion of the milou pro after sterilisation 
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in the ICI standa.rd production medium the fermenter medium used above, 

and the shr.;,ke fh.sk mecJium is chemic<:clly different, hence the differences 

in yield between the sh'3ke flask ~md fermenter experiments. 

Differences in the physical environment bet>·leen the sh<:-.Jce fl=.~sk and 

fermenter experiments for t>vo reasons. li'i.rstly no control of 

medium pH was used in shake fL:1sks, vrhil st the fermenter maintair.ed 

medium pR at 7.00. Secondly differences in the physical geometries 

bet>·~een the shake fl;:,"sks anci ferme?J.ter pot, coupled 1.\i th different 

modes of agitation and aeration me<e•.n th:o"t no comp;:;.rison me.:;)' be drawn. 

Fin£•.lly, if the conclusions dr&.vm ~;.bove a.re helr.t to be true then one 

must ask Nhe.t mechanism does con·;:.rol I.U39603 bios.ynthesis. To consider 

this one must drav1 comp.·~risons Hi th the control mechanisms knovm to regulate 

the production of oth•'~r polyether and mo.crolide antibiotics. 

This would seem to be a reasonco.ble compa.rison since it is knovm thc.t 

ma.crolide and polyether antibiotics are both manufactured by assembly 

of c
2 

c:md c
4 

acids using biochemical pathi·rays that are analog'Ous to the 

fermenb.tion of fatty acids, Hutchinson, 1983. 

In batch culture the fac.or that controls the onset of antibiotic 

biosynthesis is probably the deficiency of one or more nutritional 

groNth limiting components, Ilfartin and Demain 1980. 

Control of ini ti2~tion of anti biotic production often occurs a.t the level 

of transcription of a.nti biotic s;ynttetase genes or by interference >-Ii th 

transhotion of messenger ffiLc, l\Iartin and Demain, 1930. 

In the c~<.se of ca.ndicidin (whose production chc:~racteristics closely 

p&.rallel Iv1139603, P. Hillis personal communics.tion) there is some evidence 

tha.t repression is exerted at the level of transcription (Lirass et al 

1977, fihrtin and Demain 19d0) Ho-.·:ever, not all of the regulatory 

mechanisms controllinJ; c;mtibiotic bios,ynthesis are exerted at a single 

level (repression or inhibition). 1~gain in the case of candicidin 

production, phosphate exerts a control at two l•wels, since cancLicidin 
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productio;1 is repressed until phosphcte in the medium is depleted and 

secondly candicidin synthesis is inhibited b~r phosphate after the 

synthetase he'-S been formed, I·Tartin and Dem.o~in, 1976. To determine 

1·1hetl1er :·.u39603 is under simib.r control it is first necessary to 

estEl,blish a ci:lfined medium VIhich \>Jould m'.'.intain Al39603 yroductio.1, and 

then v~~r.y the concentrc,_tion of phosphate in the medium. HO·.Iever, r;iven 

the nutri tiom.l complexity of Iiil396o3 production medium, coupled \·lith 

a l3.ck of knm·rledc;e a.s to the biochemist!"J of S. longisnoroflavus the 

above -vmuld seem a difficult task. 

i:;_S to Ccirbon cata.bolite re;"U.le.tion, given the conclusions dr~:tvm above, 

carbon c:1:t;;;.boli te regulation could still be a f;;;,ctor in the regulation of 

i',U39603 production, e.nd much more t'l'ork is required before a decision can 

finally be m::;,de. i<,ain usin.,::; candicidin p:c'Oduction as an example, e;lucose 

exerts carbon ca.taboli te regu.L.ition on candicidin production, '··rhich is 

alevi?..ted b:r feeding glucose into the fermente,tion broth :~.t a sloH rate. 

This method of byp<:'.ssing carbon C<:l.taboli te re,::;uLdion since the molecular 

mech;:mis~n of cc.J.rbon C<:l.taboli te reQlla.tion 'dould. seem to be associ:,l,ted 

Hi th c;rovrth rc;,te coc1trol of :::.nti-oiotic SJnthesis. lienee feeding glucose 

at a rate Hhich m.>.intaiCJ.s a gro·,rt!l r:J.te non inhibitive to antibiotic 

production m2.,y yet prove to be a method for incre :'.sing r:Il39603 production 

a.s is the cP.se Hi th Candicidin -?.nd CC:tndihexin, Martin and Demain, 1980. 

The ni troc;en content of r.D.39603 production medium is also knoun to 

h-owe 2.n effect on yield. FevJ studies he .ve dea.l t solely -.-;i th nitrogen 

metabolite reguls.tion of anti biotic synthesis v~.:crtin :J.ncl De~,1ain, 1980) 

but, several reT,orts in tl1e li terz<.ture indic.octe th<J..t a.ntibiotic bio­

synthesis m.<,w be reguh;,ted by a:n:wnia .. ':.nd other readily utilised nitrogen 

sou·rces, f.hrtin and Demain 198U; Brana et al 1986. Again because of 

the nutritional comph::xi ty of milou pro, determination of the exact 

method of control of JYU39603 synthesis by nitrogen Hill require further 

detailed stu~y. 
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Finally, one oth,"!r mode of re•;ul'·.tion of antibiotic synthesis, feed 

back· regul:J.tion, v10uld ""lso seem a likely control mecnanism for 

Ml39603 production. 

Feed ba.ck reguLdion comr~s about due to the antibiotic molecules themselves 

interacting allosterica.lly vri th key enzymes in antibiotic synthesis • 

·· Ex:amples of <:mtibiotics controlled in this mc.umer, include cycloheximide, 
.. 

Nystc,tin antl Candihexin (i-iartin and Dem2.in, 1980). 

It vmuld seem most likely ho.tever, th::•.t control of I•U39603 production 

is not mediated by "· sinele example of the above mech,;;.nisms, but more 

likely b<r "'- complex interaction of severc:,l of the ?.bove. 
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