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ABSTRACT

Electronic processes in two different electroluminescent device structures, the
forward biassed metal/thick insulator/semiconductor (MIS) diode and the high

field metal/insulator/metal (MIM) panel, are investigated.

Models are produced to explain the behaviour of two particular MIS systems which
have been studied experimentally. One of these systems is the Au/cadmium
stearate/n-GaP structure, where the insulator is deposited using
Langmuir-Blodgett (LB) technology. The other is the Au/i-ZnS/n-%ZnS structure.
In the MIS devices electroluminescence occurs as a result of the recombination
of electrons and holes in the semiconductor and so it is necessary to have an
efficient minority carrier (hole) injection mechanism. Attention is paid to the -
impact excitation of the electron gas in the metal by the electrons injected
from the semiconductor because this has been proposed by other workers as a
process for producing holes in the metal that are enerxrgetically capable of
entering the semiconductor valence band, provided they can traverse the
insulator. The characteristics of the LR film devices are found to be best
described by assuming the minority carrier injection to be limited by the hole
transport through the insulator. Hopping between interface states on the
successive LB layers is proposed as the transport mechanism. However, the
device incorporating a II-VI semi-insulator is shown to be more characteristic
of hole transport in the insulator valence band and a minority carrier injection

which is limited by the supply of holes from the metal.

In high field MIM panels the mechanism of electroluminescence is quite different
with impurity centres being impact excited or impact ionised by injected
electrons and subsequently luminescing. Such devices driven by a dc signal are
susceptible to the formation of high current filaments which burn out and result
in device failure. A model is developed which predicts that there is a voltage
range over which the device can exist in either a low current state or two
higher current states and the resultant instability is expected to be
destructive. Current-voltage characteristics are produced using this model and
their general features are found to be relatively insensitive to material and
device parameters. In order to understand the evolution of the electrical state
of the MIM device after switch-on, a time dependent theory of system behaviour
is also developed. This is particularly important as the devices are usually
driven by a pulsed signal. For an homogeneous system the current is found to

converge to the lower current state of the steady state characteristic.
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CHAPTER ONE

INTRODUCTION

This thesis deals with electronic processes in two electroluminescent
device structures; the forward biased metal/thick insulator/semiconductor
{MIS) diode and the high field metal/insulator/metal {(MIM) panel. The
electroluminescent mechanism is differeni in the two cases. The MIS
diode relies on the recombination of minority carriers injected into the
semiconductor while the MIM structure yses electroluminescent centres
which are excited by the majority (electron) current and subsequently

ce-excite radiatively.

The MIS device has been considered as a possible alternative to the

light emitting p-n diode. Like the MIS diode the p-n homojunction relies
on minority carrier injection for electroluminescence, and at this it is very
efficient. However it is not possible to produce p-n homojunctions using
the wide, direct bandgap |I-VI materials, ZnS and ZnSe, becausé they
are not amphoteric. This is unfortunate as they are efficient phosphors
with light emission in the visible range. A number of workers have
investigated the possibility of producing an LED based on a metal/thin
insulator /semiconductor structure, the idea being that under forward bias
some of the potential would be dropped across the insulating layer and as
a result the valence band edge of the semiconductor would rise with respect
to the metal Fermi level. The number of holes with sufficient energy to
enter the valence band of the n type semiconductor would then increase

rapidly with the rise in the valence band edge leading to an enhanced




minority carrier injection ratio. This assumes that the insulator is

thin enough to allow tunnelling with little attenuation. Figure 1.1
illustrates the re-alignment of bands under forward bias. However
experimental devices fabricated using |I-VI semi-insulators have been
reported as giving maximum radiative efficiency at insulator thicknesses
well in excess of tunnellable dimensions, and this suggests that hole
transport is by some other mechanism. For example the hole transport
could occur via the valence band of the semi-insulator. In this mode of
transport the barrier to holes passing from the metal into the semiconductor
remains unchanged with applied voltage and the minority carrier injection
rate would be expected to remain negligibly small. However it was
proposed by some workers that electrons injected into the metal (majority
carrier current) would impact excite the electron gas in the metal, in a
process similar to impact ionisation in a semiconductor, to produce a
steady state hole population.energetically capable of crossing the insulator.
In this thesis, the process will be referred to as impact ionisation as is

conventional when referring to carrier excitation in semiconductors.

MIS diodes have also been fabricated using Langmuir-Blodgett film tech-
nology to create insulating layers of highly controlled thicknesses in the
range of ~25R to~5008. Using materials such as cadmium stearate as the
insulator it has been found that thicknesses for optimum radiative efficiency

are well in excess of tunnellable dimensions.

The aim of this work has been to make a theoretical investigation of the
various electronic processes that could occur in these thick insulator
MIS structures. In particular two types of device fabricated in the

Department of Applied Physics and Electronics at the Univeristy of Durham are¢
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considered. These two systems were Au/cadmium stearate/n-GaP and

Au/i-ZnS/n-ZnS.

The basic physics of Schottky barriers and MIS diodes is reviewed in
Chapter Two and Chapter Three. In Chapter Four, the impact ionisation
process in the metal is considered in some detail. Calculations are reported
which are intended to determine the probability of an energetic electron
interacting toproduce a hole in the metal with a given wavevector. In ‘
particular, the distribution in energy of holes arriving at the metal-insulator

interface is found and the significance of the impact ionisation process

relative to normal thermal generation is assessed. In Chapter Five and
Chapter Six the behaviour, under forward bias, of the "lI-V!| semi-insulator"
and "Langmuir-Blodgett film" systems are considered. In particular a model

is produced to explain the current-voltage characteristics of the Langmuir-
Blodgett film device and to predict the band alignment under bias. With
the framework of this model the possible hole transport mechanisms through
the insulator are studied. The same model is then applied.to the 11-VI
device and used to explain the experimentally observed results for the

efficiency of these structures.

The remainder of the thesis deals with the second electroluminescent
structure; the high field MIM panel. Such devices when driven by a
dc signal are prone to the occurence of high current filaments, which
quickly burn out and eventually lead to the destruction of the device.
Theoretical research on this device was carried out whilst the author
worked at Plessey Research (Caswell) Limited, during the spring of
1984. A simple model of the device was developed which predicts the
existence, over a certain voltage range of three current states at any

given voltage and hence a susceptibility to filament formation.



Current-voltage characteristics for the device are calculated for a
range of possible materials parameters and the implications for real
devices are discussed. Todevelopan understanding of the evolution of
the device after switch-on, the time dependent behaviour is also con-
sidered. This is particularly relevant as such devices are usually

driven by a pulsed signal.



CHAPTER TWO

THE PHYSICS OF SCHOTTKY BARRIERS AND

METAL-INSULATOR-SEMICONDUCTOR DEVICES

2.1 INTRODUCTION

The purpose of this section is to fill in the ‘basic background to the
theory of MIS devices. This is intended to form a solid basis from
which the particular devices of interest in this work (which will be
reviewed in Chapter Three) can be investigated in more detail. It is
also intended to refer back to this chapter, later in this work, to
explain aspects of the theory which have already been coverec by

previous authors.

2.2 ELECTROLUMINESCENT STRUCTURES

The aim of this section is to give a brief introduction to the light
emitting devices considered in the thesis. Althought the p-n
junction is not a subject of the research reported here, it is the
logical starting point for a discussion of electroluminescence and

provides some useful background for the overall picture.

2.2.1 The p-n Homojunction

The p-n junction is the most widely used light emitting ciode at



present and as such it is informative to briefly review the mechanism

of its electroluminescence.

There is a movement of carriers between the n and p type regions of
a homojunction to enable the Fermi levels to equalise and this leads to
a depletion region where there is space charge due to uncompensated
donor and acceptor impurities. By assuming a band edge density of
states and using Boltzmannstatistics it is relatively straightforward to
show that the diffusion potential (or the barrier) produced by the

carrier exchange is

n
n
n

p (2.1)

Vg = kT In

el

with N and np representing the bulk electron concentrations in the

n type and p type semiconductors respectively. The band diagram is
shown in Figure 2.1(a), where there is an effective:barrier to minority
carrier injection across the junction. In forward bias the bands of

the n typé semiconductor are raised with respect to those of the p

type material and minority carrier injection occurs with the reduced
barrier. As a result there is current flow (see Figure 2.1(b)). Almost
all the applied voltage is dropped across the depletion region and in
the bulk, where the electric field is small, diffusion is the dominant

current mechanism. The current is given by the Schockley equation

3= qel{Pnlp 4 Dpp_n) exp
L
n p

1_6_1_)-1

kT

-

(2.2)

where D and L are the diffusion constant and diffusion length of



Je
>
EC el (Vd”\l]ﬁ = =
Ein THQHV c
fp
E —
Vv
<
Jh
(b)
Fic. 2.1 : Schematic diagram of a p-n homojunction

a) at zero bias:; b) under forward bias.



the doped semiconductor and their subscripts follow the normal
nomenclature. There can also be another component to the current
due to recombination in the vicinity of the depletion region which will
lead to a deviation from the ideal characteristics given by equation (2.2).
Recombination through impurities is an undesirable effect as it causes
loss of minority carriers with no light output. It can be minimised by
avoiding the occurance of the defects which are good recombination
centres. The recombination current usually represents the major part
of any deviation from the ideal current-voltage characteristic, but

other mechanisms may contribute. For example, interband tunnelling,
where carriers in the conduction band of a degenerately doped n type
semiconductor tunnel across the depletion region into empty states in
the valence band of a degenerately doped p type material ; or the "high
injection condition" where fields in the bulk mean that drift must also
be taken into account; or image charge effects due to ionic charge in
the vicinity of the semiconductor surface. However these effects are
usually much smaller than those due to recombination current unless

the specified special conditions prevail.

With the injection of minority carriers into a semiconductor, electro-
luminescence will be produced through radiative recombination. For
direct bandgap semiconductors there is a high probability of an inter-
band transition. However for indirect bandgap material, such as

GaP, recombination centres need to be incorporated to improve radiative

efficiency.



2.2.2 Schottky Barriers

Unfortunately it is not possible to produce p-n junctions with the

wide bandgap I!-VI compounds such as ZnS and ZnSe because low
resistivity p type materials cannot be made. The Schottky barrier

has therefore received a good deal of attention as an alternative method
of incorporating I1-VI| materials into an efficient light emitting diode

based on minority carrier injection.

In the ideal case a Schottky barrier will consist of an abrupt junction
between a metal and semiconductor with the boundary free of interface
states. If the situation in Figure 2,2(a) is first considered, with the
metal and semiconductor separated, the difference in energy between
the metal Fermi level and the semiconductor conduction band edge

can be seen to be equalto the difference between the respective work
function 10 and electron affinity Xs' On bringing the metal ‘and

the semiconductor together there is a transfer of electrons from the
semiconductor into the metal until Fermi level alignment is achieved.
the band diagram becomes that shown in Figure 2.2(b) with negative
charge at the metal surface being compensated for by the ionised donors
in the depletion region. A fuller treatment of the barrier formation,

including the effects of interface states, will be given in Section 2.3

Electroluminescence can be produced with the device in either forward
or reverse bias. The reverse bias case is shown in Figure 2.3(a).
Here light emission can be produced as a result of avalanche
multiplication after field emission of electrons from the metal into the

semiconductor conduction band and the excitation of luminescent
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centres by the electron current. Figure 2.3(b) shows a Schottky

barrier in forward bias. The important electronic process here is the
injection of holes from the metal into the valence band.of the semiconductor,
where they can recombine radiatively. Unfortunately the ratio of the

hole current to the electron current is very low with typical values

given by y~10—u compared with p-n junction values close to unity.

This is a direct result of the relatively large barrier presented to

the holes at the interface which is indicated in Figure 2.3(b). However

in the next section it is shown how the inclusion of a thin insulating

layer between the metal and the semiconductor can increase the value

of Y.

2.2.3 The MIS Diode

If an insulator is incorporated between the metal and semiconductor

in a Schottky barrier it is expected that some of the applied bias will

be dropped across the insulator itself. Figure 2.4(a) shows an idealised
band diagram of an MIS device under zero bias while Figure 2.4(b)
shows the same device under forward bias. At zero bias it is expected
that the semiconductor barrier height N (the energy difference between
the metal Fermi level and the semiconductor conductance band edge

at the MI! interface - see Figure 2.4(a)) will be smaller than it is in

the simple Schottky barrier. |f we consider the ideal case of no inter-
face states then the field in the insulator is related to that at the

surface of the semiconductor by the expression

EiFi = ESE (2.3)
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where €, and g are the relative permittivities of the insulator and
semiconductor respectively. A potential is developed across the

insulator and hence the semiconductor barrier height is reduced to

satisfy equation (2.3). When a forward bias is applied, as shown in
Figure 2.4(b), some of the applied voltage is dropped across the insulator
and the semiconductor barrier height increases as a result. Part of the
bias will also be dropped across the semiconductor depletion region
leading to less band bending. The result is that with increasing

bias the valence band of the semiconductor is allowed to rise relative

to the metal Fermi level. Assuming the insulator to be thin enough

to allow significant tunnelling current or current by some other mechanism
the rise in the valence band means that the electrons in that band will
have more opportunity to tunnel into the metal's unoccupied states

above or just below the metal Fermf level. With increasing bias the
number of unoccupied states in the metal at the energy corresponding

to the valence band -edge increases rapidly until the point at which

the valence band edge is close to the metal Fermi level. Then the rise

in unoccupied electron states decreased becoming approximately linear
with energy because virtually all the states above the metal Fermi level

are unoccupied.

For a thin insulator that allows a large tunnelling current, whilst still
supporting a potential difference, the increase in the number of elecrons
able to enter the metal from the valence band (or equivalently, holes
able to tunnel into the semiconductor) will increase the minority carrier
injection ratio y compared to the Schottky barrier. The theory of

MIS devices incorporating thin, perfect insulators will be developed

later in this chapter.

_10_



2.2.4 Panel Devices

Another form of electroluminescent device is the large area panel

which uses a I1-VI compound phosphor. Both ac and dc current
devices have been produced with the difference being that in the ac
structure the phosphor is enclosed between insulating layers and
therefore capacitively coupled to the alternating applied bias. The

dc device is directly connected to the voltage supply. The structures
work under high fields, typically 108 Vm_l, with the electroluminescence
usually due to either impact ionisation or impact excitation of luminescent
centres, normally transition metal ions, In the case of impact ionisation
the centre is actually ionised with subsequent light emission on the
capture of an electron, while in impact excitation a bound electron is
excited to a higher bound state withlight emission on the de-excitation.
It has generally been found that the ac devices are the more stable
because the insulating layers protect the phosphor from high current
filament formation, which is responsible for the occurrence of "hot

spots" in the dc devices.

These 'hot spots' quickly burn out and lead to the eventual failure of
the whole device. Initially most of the work on these devices uged
phosphor powders interspersedin a dielectric medium as the electro-
luminescent layer3. Recently more attention has been paidto thin film
devices and these are reviewed by Howardu, Mach and Muller5 and more
generally by Vecht6. Figure 2.5(a) shows a schematic diagram of a
typical ac device. The phosphor is nearly always ZnS as various
wavelengths for the electroluminescence can be produced by suitable
doping with luminescent impurities. The top electrode is typically

aluminium while the transparent electrode is a material such as

_]1_
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Fic. 2.5 : Various forms of electroluminescent panel devices
a) ac device; b) composite thin film-powder dc device
and c¢) dc thin film device.



cadmium stannate. The insulator may be silicon nitride or aluminium

oxide,

In an effort to reduce high current filament formation in the dc
structures composite devices incorporating both thin films and powders
have been fabricated6’7. Figure 2.5(b) illustrates one of these. Being
more resistive the powder layer takes most of the applied voltage and

the electric field across the thin film is relatively small so avoiding

filament formation. The film acts as the active electroluminescent component.
Until recently it had proved difficult to provide dc panel devices with

just thin films because of filament formation. Attempts to include

some sort of control layer to limit filaments had produced little successs.
However stable devices are now being produced9 and such a structure is
illustrated in Figure 2.5(c). The control layer acts to inhibit the spread

of filaments but does not completely eliminate them. This particular device

and some of the characteristics affects its stability, will be discussed in

more detail in Chapter Seven and Chapter Eight.

In conclusion, it should be mentioned that, due to the high electric
fields required, a bias of typically 100V to 200V is needed to drive these

displays and this obviously is a limitation on their general applicability.

2.3 SCHOTTKY BARRIER FORMATION

2.3.1 Schottky-Mott Theory

It is clear from Figure 2.2(b) that the barrier height of an ideal

Schottky barrier can be written as:
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lelo, = lel o - lelX, (2.4)

where |e|¢m is the work function of the metal and |e|X_ is the
electron affinity of the semiconductor. In achieving this result
several assumptions have been made. One of the most important of
these has been mentioned in Section 2.2.2, that there is an absence
of surface states. A second important assumption is that the surface
dipole contributionsto¢ m and 'XS do not change when the metal and

semiconductor are brought together.

In the simplest model of the Schottky barrier, the semiconductor is
assumed to be homogeneous right up to the interface and this makes
the application of the depletion approximation quite straightforward.
Ignoring the effect of the "transition reéion' at the edge of the
depletion region, where the electron concentrationis still within one
order of magnitude of the donor.concentration, the charge distribution
is illustrated in Figure 2.6(a). The electric field and potential for

this distribution are shown in Figures 2.6(b) and 2.6(c) respectively.

No matter what the shape of the barrier, the central result of Schottky-
Mott theory is that the barrier height is given by equation (2.4).
Measurement of ¢’b12 shows that this is not the case and that often there
is little change in the barrier height for different metals with different

work functions.

2.3.2 The Bardeen Model

In an attempt to explain the weak dependence of the barrier height by
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Bardeen13 suggested that the discrepancy may be due to the effect of

interface states.

Supposing that the metal and semiconductor were separated by a thin
insulating layer, Bardeen suggested that there was a distribution of
surface states across the semiconductor energy gap and defined a

so called neutral level of ¢,. When states were filled up to this level
it was proposed that the net surface charge was zero. The effect of
a high surface ;state density is then to pin b close to the value
corresponding to the situation in which % is at the same energy as
the Fermi level Ef. This can be explained if we analyse the Bardeen
model using Figure 2.7. The insulating layer is considered thin enough
to allow unimpeded electron flow but capable of withstanding a field.
The surface state density Dss is assumed constant across the energy
gap. The value of %m will be dependent on the particular metal used.

The fields at the insulator-semiconductor interface are related by:

i 0 i S0 S SS (2.5)

Where st is the net surface charge. As electrons can readily tunnel
through the thin insulator their surface states will be in strong
communication with the metal.. Communication with the semiconductor

is weaker because activated transitions are required for carrier

transfer. Taking this into account it can be stated (using the zero
temperature approximation) that all the surface states below Efm are
occupied while those above are empty. This is important when the device

is under bias and the Fermi levels misaligned.
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Fig. 2.7 : A Schottky barrier incorporating a thin interfacial
layer.
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Referring to Figure 2.7 we can write the relationships:

Qgs = Dgglel (o - (Eg " 9))
el
and: Fi = (o, X = eglls (2.6)

Substituting these expressions into equation (2.5) and rearranging,

it is now possible to write

[

0 = @O v s SR (1 -e)(Bg - 4y)
i le| (2.7)
where a = &%

GEo + leloDgg

In the limiting case of DSS—>oO, atends to zero and ¢>b tends to the

Bardeen limit of Eg- ""o’ or the neutral level 4’0 aligns with E-fm' In

this limit % is independent of the properties of the metal. This analysis
In

was first carried out by Crowell and Sze1 except that these authors

took the flat band condition with FS in equation (2.7) set to zero.

2.4 SCHOTTKY BARRIER CURRENT MECHANISMS

2.4.1 Possible Mechanisms

For an n type Schottky barrier in forward bias (by convention that
is with the semiconductor at a higher potential energy) the majority

carriers travelling from the semiconductor bulk into the metal must
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cross the potential barrier formed by the depletion region.

In heavily doped materials at low temperatures tunnelling has been
observed in the forms of both field emission and thermionic field
emissionsm. However at higher temperatures and with "normally" doped
semiconductors the barrier region is too wide for an appreciable tunnel-

ling current and thermionic emission over the barrier is favoured.

To explain current emissions over the barrier, two main theories have
been put forward. First Wagner17 and then Schottky and Spenk18
proposed that the diffusion of carriers through the depletion region
would be the limiting factor to the current, while Bethe19 suggested
that it would in fact be the thermionic emission over the barrier which
was dominant in controlling the current. Figure 2.8 illustrates the
difference between the two mechanisms in terms of the effect it has on
the quasi Fermi level for electrons in the system. With the diffusion
theory the Fermi level must fall off as it approaches the interface, in
order that there is some diffusion current. However, in the thermionic
emission theory, where the barrier height is the limiting factor, the-

Fermi level will be at a constant energy right up; to the interface.
These two mechanisms will now be considered separately in more details.

2.4.2 The Diffusion Theory

The Diffusion Theory's main assumption is that the current from the
semiconductor into the metal is limited by the normal processes of

drift and diffusion and is given by the standard transport equation:
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Jn(x): |e|n(x)peFS(x) + |e| De@ (x)
dx (2.8)

where De is the diffusion constant for electrons, n(x) is their
concentration and the other symbols are as previously defined in the

chapter.

In his treatment of this theory, Rhoder‘ick20 points out that, as the
top of the barrier is reached, the value of the field Fs(x) is high
(~-107Vm-1). Under such fields the concept of a mobility and diffusion
constant independent of the field is dubious. Taking account of these
effects means that the analysis becomes much more complicated so no
correction is made although there is some reservation about the

ultimate accuracy of the method.

Introducing the quasi-Fermi level £€(x), defined by

n(x) = N_exp [ -|e| (E.(x) -¢(x))
kT (2.9)

Where NC is the effective density of states for the conduction band,
Ec(x) is the energy of the band edge and Boltzmann statistics have

been used. Equation (2.8) can be re-arranged into the form:

_an;): kTueNC exp (—|e|Ec(x) d_ exp( le] £ (x)
' X

KT d kT

(2.10)

Making use of the depletion approximation the variation of Ec(x) in
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the depletion region is given by:

Ec(x) = ¢b + ‘elND (%2 - 2wx)

2 ege, (2.11)

where ND is the donor concentration and w is the depletion region
length. Substituting equation (2.11) into equation(2.10) and integrating
over the depletion region, an expression for the current is found,

given by:

Jn = ‘|e|NcueFS(0] S exp —|e|¢b exp(]el )—1

2aw I(aw)“ KT kT

(2.12)

1
= 2 2
where a le|?Np
2e e KT
S0
and l(aw) is:Dawson!s integral. For almost all cases of physical interest

aw 2 and l(aw)is close to its assymtotic value of (2aw)_1. Hence

—
1l

n |e|N u F (0) exp -lel¢y exp(|e| )— 1

KT kT

(2.13)

or

kT

3=y exp(]e]V)— 1
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2.4.3 Thermionic Emission Theory

The basis of this theory is that the major impediment to current is the
probability that a carrier will have sufficient energy to get over the
electron barrier. It is assumed that drift and diffusion are negligible.
In his treatment, Henisch21 sets an imaginery boundary a distance

'\B inside the semiconductor, where AB is the barrier width. This is

to avoid the effect of high fields near the MS interface. By assuming
that the electron mean free path is equivilent to, or greater than this
distance, it is argued that electrons crossing this barrier will also cross

the depletion region into the metal.

Using standard kinetic gas theory with Boltzman statistics, the number
of electrons impinging on the imaginary boundary at x = ?\B'with their

x component of velocity in the range v, to vt dv>< is given by:

1

— 2 2
dRe = nlag) v [ m, exp(_myVy dv,
2 TkT kT

(2.14)

The potential barrier just impedes transport in the x direction, so it
is the energy associated with motion in the x direction that must be
larger than the potential barrier in the depletion region. For an

applied voltage of V and a barrier height of ¢b the minimum value

of v for emission over the barrier is given by:
X
. F 2 (le] (6r - V - aE O g))
v = e - - - oyl
Xmin — b f ~ vYp
e
e

(2.15)
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where AEf and V(x) are defined by Figure 2.7. To determine the

curent crossing the interface from the semiconductor into the metal, it

is necessary to find the rate at which electrons impinge on the boundary

X = g with velocities greater than Ve - Integrating equation (2.14)
min

between the limits of v, and 00 and multiplying by |e]:
min

Jsm = n(AB) le|l[ kT Z  exp —|e| (¢,b— vV - AEf - 1{1[)\8)

(2.16)

The subscript sm indicates that the current is from the semiconductor

to the metal.

There will be a current in the opposite direction independent of bias
- because the barrier to electrons in the metal ¢m remains unchanged by

applied bias. At zero bias there is no net current so:

Joo = - Jsm(V'=o) (2.17)

The electron concentration ne( )‘B) can be written using the effective

density of states::

kT

n(ag) = N_ exp —|e|(AEf + xJ;[)\B))

e (2.18)

Combining equations (2_.16), (2.17) and (2.18) to give the total

current:
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J, = A*T? exp(—|e|¢b exp(|e| )— 1

KT kT (2.19)

where A* is the Richardson constant defined as

A* = Lm;|e|mek2

h3 (2.20)

Further refinements can be introduced with the inclusion of an

ideality factor n from the following argument.

In Section 2.3.2 the idea of a thin insulating layer between the metal
and the semiconductor was introduced and with it the possibility that
¢.D can rise with applied voltage. Assuming this change with bias is

linear we can write the bias dependent barrier height as:

opV) = ¢b(0l,k]»1_)v

n (2.21)
Substituting for ¢b in equation (2.19) using equation (2.21) the

revised expression for the current is::

(2.22)

Jn N AT exp<—|e|¢b(0)> exp(|e|V>—1

KT nkT
Obviously the value of n will depend onthe method of preparation of

the device, but it is possible to fabricate structures with values of

n very close to unity.
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2.4.4 Thermionic Emission - Diffusion Theory

Although thermionic emission theory, on its own, accurately describes
most Schottky barriers, Crowell and Sze22 combined the theories
related in the last two sections to produce an expression for the current

density given by:

I, = leINV, exp [ -lely,, exp(lelv -1
1+ Vr/vd kT kT

(2.24)
where v, is an effective recombination velocity at the potential barrier
maximum and Yy is an effective diffusion velocity for electrons in the

depletion region.

2.5 SCHOTTKY BARRIER BEHAVIOUR

2.5.1 Image Charge Effects

The requirements that an electric field must be perpendicular to a

metal surface23 leads to an effect in Schottky barriers known as the
Schottky Effect. In approaching the metal from the semiconductor, an
electron a distance x from the interface will induce a charge distribution
at the metal surface equivalent in effect to placing a single charge of
|e] the same distance x inside the metal?>, Due to this induced charge
the electron experiences an additional force of mangitude
'elZ/Ll'n'gSeo(ZX)2, attracting it towards the surface of the metal, The

field due to the image charge is of opposite sign to the field across
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the depletion region created in the barrier formation. Including the

effects of image charge therefore leads to a revised electric field

F(x) = F_(x) + le]

2
Qﬂsseo (2x)

(2.25)

where FS(x) is the field due to the Schottky barrier and is negative.
Integrating equation (2.25) fromoeo to x will give the revised diffusion

potential at x as

P'x) = Y(x) - le]

16me e X (2.26)

The inclusion of image charge can therefore be seen to reduce the
barrier height. Figure 2.9 shows the profile of the resultant barrier
when the Schottky effect is included. It can be seen, both from this
figure and equation (2.26) that the effect is most significant near the
MS interface. It is a reasonable approximation, therefore, to set the
value of F(x) equal to its maximum value, which occurs at the

interface.

Assuming F(x) to be constant at the value of F(0), the maximum
height of the.revised barrier profile will occur when the fields are equal

and opposite:

|F(0)| = e ]

2
167E € X hax (2.27)

which gives the position of the potential maximum as
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16me_e_ |F (o)

s o (2.28)
The reduction in barrier height is given by:

Bop, = V(o) - ¥ (xm) (2.29)
We can also write

vix ) = wlo) - xF(o) (2.30)

so substituting for u’;'(xm) in equation (2.29) using equations (2.28)
and (2.26) then substituting for y (o) using equation (2.30), yields a

final expression for the barrier lowering

I ( |e|F(o))%

Uneseo (2.31)
Care must be taken on the value of € used. As the electrons are
moving at thermal velocities ( 105ms_1) & should be the appropriate

dynamic value of the relative perrhittivity rather than the static value.

For typical values of the parameters in equation (2.31) the barrier
lowering is quite small ( 0.01 to 0.05eV). However, even a small effect
like_that can affect the Schottky barrier characteristics, especially the
current emission mechanisms, with their exponential dependence on barrier
height. The Schottky effect can be incorporated into the theory of |

thermionic emission by simply replacing cbb by ¢b— A%i’ The problem
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that O is also dependent on the applied bias can be incorporated into

the theory by a suitable choice of ideality factor n.

It should also be pointed out that holes in the semiconductor will

experience a similar effect. However, in this case the image charge will
be negative and its field will be of the same sign as the Schottky barrier
field leading to an additional rise in.the valence band edge. This effect

is illustrated in Figure 2.10.

2.5.2 Effect of Potential Step

When an electron crosses the interface from the semiconductor into the
metal, the energy associated with its motion in the x direction, that is
normal to the boundary, is increased by amount equivalent to the barrier

height |e[¢ . This sets a minimum value for the x component of velocity

in the metal given by:

Vo = 2|e|¢b

m (2.32)

The component of velocity parallel to the interface will not be affected
in moving from the semiconductor into the metal. The angle at which

the injected electron will travel to the normal is simply defined by:

X (2.33)
so if an elelctron of a:.particular energy is considered, there is a

maximum value of § , corresponding to the case where the velocity is
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initially parallel to the interface, given by:

emax = tan |v|

min (2.34)

Assuming a Maxwellian distribution of electrons crossing the interface
and using typical values for a Schottky barrier, equation (2.34) can be
used to obtain a value of emax = 59, Therefore it can be expected

that electrons injected from the semiconductor into the metal will be

funnelled into a cone, 5° to the interface normal.

2.5.3 Minority Carrier Injection

In considering the minority carrier current in a Schottky barrier, we
must look at the process by which holes will be able to travel from the
metal into the semiconductor valence band. Assuming that the diffusion
length for holes in the semiconductor is larger than the depletion region,
and that as a result the hole quasi Fermi level is constant there
(Rhoderickzs), it is possible to calculate the hole injection rate using
standard p-n junction theory. This can be understood by virtue of the
fact that, with the constant quasi Fermi level, the actual shape of the
depletion region is irrelevant and it is the magnitude of the potential
bar rier to holes that is important.. Figure 2.8 illustrates the behaviour
of the hole quasi Fermi level believed to occur in the Schottky barrier.

Comparison to a p-n junction can be made using Figure2.1(b).

With reference to equation (2.2) the hole injection current can be

written as:
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J = D F ex |e| -1
L kT
P

(2.35)

where Dp is the hole diffusion constant, Lp is the hole diffusion length,

and Pn the bulk hole concentration in the n type semiconductor.

The contribution of the hole injection to the total current can be

readily found by introducing the minority carrier injection ratio defined

by:

Y = J
p
J + )
p n
Y ~ J— if Jn > Jp (2.36)
n

Using thermionic emission theory to describe the majority carrier

current, Jn is given by equation (2.19). Substituting for Jn and J

p
in equation (2.36) and writing pn= niz/ND, we obtain:
_ le]D n .?
Y = p_ i
NDLpA*TZ exp(—|e|¢b
kT (2.37)

where A* is the Richardson Constant (defined in equation (2.19)),

T is the temperature and n, is the intrinsic electron concentration of

the semiconductor.
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At low current densities Yu and Snow26 found that equation (2.37)

described well the minority carrier injection ratio in Au/Si devices.

However they also noticed that, at higher currents, y began to rise

with the total current J. This followed to some degree, the prediction

of Scharfetter27 that, due to the drift componentinthe hole current,

Y would rise with J once it approached a critical value defined by:
Jo = |e|DyNy

Ln (2.38)

However, they did not go to sufficiently high currents to see whether
Scharfetter'527 further prediction that Yy would vary linearly with J

was  experimentally verifiable. In elaborating on Scharfetter's 27 theory,
Green and Schewchum28 deduced that that there would be a limit to the
growth of y due to partly to high level injection effects and partly to

a limit in the supply of holes at the interface. Unfortunately the results
of Yu and Snow26 were in the wrong range to test the validity of this

theory as well.

However, the effects described by Scharfetter27 and Green and Schewchum
are unlikely to be observed in the majority of devices as the value of
JC is very high, being of the order of 106Am_2. It is therefore to be
expected that the minority carrier injection ratio will be of the form of

equation (2.37)

2.6 METAL-INSULATOR-SEMICONDUCTOR DEVICE THEORY

In introducing the MIS diode in Section 2.2.3 it was mentioned that
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with the inclusion of an insulator between the metal and the semi-
conductor, part of the applied bias would be dropped across the insulator,
leading to a rise in the semiconductor barrier height ¢+ Figure 2.11
illustrates the band diagram expected for an MIS device under forward
bias, with the applied voltage Ieadi.ng to a reduction in both the diffusion
potential VD and the potential across the insulator A. A consequence of
having an appreciable insulating layer is that any semiconductor surface
states will not be able to communicate so easily with the metal and any
pinning of the surface neutral point ¢0 (see Section 2.3.2) will not be

as strong. The value of % will vary more freely with the applied bias.
At the other extreme if all the interface states communicate solely with
the semiconductor then it is to be expected that R will follow the semi-

conductor Fermi level and vary linearly with the applied voltage V.

The analysis of the MIS diode will, therefore, differ from that of the
Bardeen model for the Schottky barrier in a number of respects. Compared
to the Schottky barrier, the insulating layer of the MIS diode will be
thicker. This will necessitate the inclusion of carrier transport through-
the insulator in the theory as well as considering the behaviour of the
surface states. Also, even if there is good communication between the
surface states and the metal, the larger insulator thickness will lead to

values of A which are not negligible in contrast to the Schottky barrier

case.

The behaviour of an ideal MIS diode has been considered by a number

29, 31,32,35

of authors , whose work will be reviewed in the following

sections. The term "ideal" is used to indicate that current transport

through the insulators is by quantum mechanical tunnelling and that in
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all respects the insulator is perfect. This naturally means that the
insulator, although being thick enough to affect the system and in
particular the band alignment, must also be thin enough to allow a
significant tunnelling current. This last point will restrict insulator

thicknesses to values less than approximately 1008

2.6.1 Current-Voltage Characteristics

When an insulator is present, the transmission coefficient of carriers
through the insulator must be also included in any theory of current-
voltage characteristics. Card and Rhoderick29 considered this problem
and, by using the approximation of a rectangular insulator barrier,
produced an expression for the current, which is in effect a modification

of the thermionic emission equation for a Schottky barrier (equation (2.22)).

1 —
Jn = A*T?2 exp(-X°§) exp ‘e|¢b exp [|e|]V}-1
kT nkT (2.39)

where X is the average height of the insulator barrier to electrons

(measured in eV) given by

— 1 _ <,
X - 2((¢m ¢b) + XS) (2.40)
and § is the insulator thickness (measured in Angstoms). The use of
these units is essential as there is a constant (of dimensions eV—1R—1)

in the relevant exponential term, which has been omitted as it is

approximately unity in these units.
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It is of interest here to point out that the approximation to a rectangular
barrier used above is not completely necessary. Using the WKB approx-
imation, as Card and Rhoderick29 did in their argument, the tunnelling

transmission coefficient can be written as:

T = exp -2 2m|e X‘(x)> dx
h? (2.41)

where X'(x) is the height of the barrier to electrons at a distance x
from the semiconductor-insulator interface. The integral in equation (2.41)

is straightforward and gives:

1 - 3 3/2
T = exp| -2 <2m|e|> ¢ 2 (¢m ¢b) 2 - Xs s
2 — -
h 3 ®m ¢b X
(2.42)
If § is expressed in Angstroms, this can be re-written as
_ 3 3/2
T ~ exp| =2 omop) "2 - Xs 5
3 - -
¢m ¢b Xs (2.43)

It would seem, therefore, thatrather than use equation (2.40) to

define X, it would be more accurate to write:

(6 - 4,02 - x32

Nj
|

X
w [N

m " % X (2.44)

As mentioned in the introduction to this section, it is to be expected
that the dependence of the barrier height ¢p oOn voltage will be
affected by the inclusion of the insulating layer. Card and Rhoderick??
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also addressed this problem. To account for the fact that the communi-
cation of surface states wi-th the semiconductor Fermi level would now.be
relatively more important (due to the insulator impeding transport to

and from the metal) they d_ivided the interface states into two species.

The first, of density DS , communicated only with the metal, and the

a

second, of density Dsb' only with the semiconductor. Using the

differential form of equation (2.21)

d (¢b(\/) ~¢b(0)) = 1 <1
dv n (2.45)

Card and Rhoderick29 found the theoretical ideality factor for electrons

to be of the form:

ng = 1+ (sleye ilege/w + je|Dgy)

1+ (8/e;e,)lelDg, (2.45)

where W is the width of the depletion region. Two limiting cases for

this expression are Dsb >> Dsa for thick insulators. In the first case

the ideality factor reduces to:

n 1 + e ¢

e s 0
w (eieo + 6|e|Dsa) (2.47)
while for the thick insulating layer
Ny ~ T+ 8 (eseo + el Dsb (2.48)
€ E w
1 O
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2.6.2 Minority Carrier Injection

Minority carrier injection was also considered, in some detail, by Card
and Rhoder‘ick35 who found that their theory corresponded well with

their experimental results from Au/SiOZISi MIS diodes. Their analysis
covered two cases. The first was concerned with very thin insulators
and the second with thicker oxide layers. We will deal with these two

cases separtely.

a) Thin Insulating Layer

The term "thin" is used to denote insulators through which
holes (and electrons) can readily tunnel. This being the case,
the minority carrier injection current islimited by the diffusion
rate of holes into the semiconductor bulk.. The situation is
therefore very similar to minority carrier injection in a simple
Schottky barrier (see Section 2.5.3). The major difference
in this case is that a significant change in the value of the
quasi hole Fermi level can be expected across the insulator.
This is depicted in Figure 2.11. For very thin insulators, the
difference Agp will be small because of the high tunnelling
transmission constant (~1). However if the insulator thickness

§ is increased, the value of Agp will become significant.

Taking account of the change in the hole quasi Fermi level across

the insulator a revised form of equation (2.35) is found:

Iy = 1eIDpp, | exp (fefV - og ) -1

L kT (2.49)
p

- 33 -



By assuming that Agp varies linearly with V, Card and Rhoderick35

re-wrote this in the form:

Jp = Ielepn exp( |e|V> -1
L

b (2.50)

where now an ideality factor for holes, Np» has been introduced.
For thin insulators, therefore,. the MIS diode acts very much
like an imperfect Schottky diode, the minority carrier injection

ratio for which has already been given in Section 2.5.3.

b) Thick Insulating Layers

For thicker insulators the tunnelling rate through the insulating
layer will be the limiting factor for hole injection into the semi-
conductor assuming no other transport mechanism exists. Stratton’s

equation for the tunnelling current through an MIM. barrier gives:
o0 €

1= llﬂmh|e|> [f,(E) -f_(E)] | T(E,) dE_dE
h> /-, o | (2.51)
where fm(E] and fS(E) are the occupancy functions in the metal
and semiconductor respectively, T(Ex) is the tunnelling
transmission coefficient and EX is the energy associated with
motion in the x direction. The x direction is defined as being

normal to the barrier interface. FoIIowing the procedure used

to analyse the majority carrier current?? (reviewed here in

Section 2.6.1) Card and Rhoderi'c'k35 approximated the insulator

barrier to a rectangular barrier by using an average barrier

height to holes )% Using this approximation the hole current
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density can be written as :

8

p =

, <lhrmh|e| exp (% %6) | E (f_(-E) -f_(-E)) dE
h3

° (2.52)

As was pointed out in Section 2.6.1, the use of the average

value Xh is unnecessary. Using a WKB approximation for the
sloping barrier, illustrated in Figure 2.11, and following the

same procedure as Section 2.6.1, an effective value for Xh

can be ' found:

(2.53)

where Egi is the band gap of the insulator in units of eV.

25

Card and Rhoderick™" observed that eguation (2.52} cannot be
solved in closed form and considered equation (2.52) in three
separate cases. With Vh being defined as the bias required
to raise the semiconductor valence band edge to the same
energy as the metal Fermi level, expressions for the hole
current density were obtained for the conditions 1) V < Vh;

2) V.=V, and 3) V>V, . Using equations (2.39) to give the

electron current, equation (2.36) was used to give the majority

carrier injection ratio as:
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1) Yy = IeleNv exp (-x% 5) exp( |10 ~ Vh)>
kT

h e
(v < Vh)
3 3
2) y = My &xP (X - X *)s) exp<1e|¢b
m kT
e
xR lel V- Vi)
KT
-]
where Fj(x) = 1 yj dy
r(j+1) 1 + exp (y - x)
Q
(V= Vh)
3) = Mh lel 2 ex (X%G - X %5 )
Y — ( > P e h “h
2m kT
e
el V- v, )
x exp(__b) h) (2.54)
KT
(v > Vh)

Effective barrier thicknesses for holes and electons (Gh and 6e]
were introduced in Case 3 as it was argued that under high

biases the electron would not have to tunnel across the whole

barrier. For ¢b > o m the electrons would just tunnel across

part of the barrier and then enter the insulator conduction band.

- 36 -



The analysis of Card and Rhoderick35 must be treated with

some caution as it assumes that the insulator is perfect and

the only carrier tranport process through it is quantum mechanical
tunnelling. For a less than perfect insulator, this will not be

the case. There will be the possibility of other current
mechanisms due to, for example, defect states. it is also likely
that the alternative current mechanisms will not be as sensitive
to insulator thickness. In testing their theory by experiment,
Card and Rhoderick35 found that Au/sputtered SiOz/Si diodes
underwent a forming process, leading to an irreversible rise

in current at a threshold voltage of around 1.5eV. The largest
value of Y for such devices was obtained at insulator thicknesses
of around 808 compared with 308 for similar devices35 where
the oxide layer was produced thermally. The efficiency of the
sputtered devices was also observed to be less dependent on
insulator thickness than those with thermally grown oxides.

Card and Rhoderick's theory for the MIS diodezg‘35 must,
therefore, be treated with some degree of caution, when applying
it to particular devices, as tunnelling might not be the

dominant transport process across the insulator.

SUMMARY

Chapter Two forms a basic introduction to the Schottky barrier and MIS

After a brief introduction to the various forms of electrolumin-

escent device, the Schottky barrier was reviewed in some detail and, in

particular, the Bardeen model and thermionic emission were discussed.

This theory was then extended to take into account the inclusion of an
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insulating layer to produce an MIS diode. It was shown that the MIS
structure could be used to obtain an enhanced minority carrier injection
ratio and hence a greater electroluminescent efficiency. It was observed,
however, that this part of the theory would not be accurate if a less
than ideal insulator were used. This point will be raised again later

in the work, particularly in Chapters Five and Six.
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CHAPTER THREE

A BRIEF REVIEW OF MIS LIGHT EMITTING DIODES

3.1 INTRODUCTION

In Chapter Two the theory developed by Card and Rhoderick1, to model
the behaviour of an MIS diode, and in particular to describe the minority
carrier injection ratio, was discussed. However, the idea of using a
thin insulating layer between the metal and the semiconductor of a
Schottky barrier had been used well before the work of Card and
Rhoderick1 ’2. Electroluminescence was first reported in MIS devices

by Fischer and Moss3, and Jaklevic et alq.. These devices, which both
used CdS as the semiconductor, incorporated insulators of tunnellable
dimensions. It was Jaklevic et alq who proposed tunnel-injection of

minority carriers to explain their results.

In fabricating their Au/SiOZ/Si devices Card and Rhoderick1 employed

two different methods of producing the insulator. The tunnelling injection
theory of the authors was successful in explaining the behaviour of their
diodes when the insulator was produced thermally, by making the sample ...
in dry oxygen. An optimum minority carrier injection ratio was found at
an insulator thickness of ~ 408. In contrast, for r.f. sputtered films,
they found that the effect of changing the insulator thickness has much
less effect on the minority carrier injection ratio and that an optimum
insulator thickness was then found to be~80R. This behaviour was

attributed to an alternative hole transport mechanism, which was
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associated with a 'forming' process taking place in the insulating film.

Since the work of Fischer and l\/loss3 and Jaklevic et alu there have
been numerous reports of the fabrication of MIS diodess_m, the
characteristics of which have all been explained in terms of an enhanced
minority carrier injection due to the ability of the semiconductor valence
band to move with respect to the metal Fermi level. However, it has
been found,. that it is possible to produce diodes with optimum insulator
thickness:much in excess of those allowing significant direct

11-18, 22-25

tunnelling These devices are of particular interest to this

work and are dealt with here in more detail.

3.2 'THICK INSULATOR' MIS DIODES

3.2.1 MIS Devices Incorporating |1-V1 Semiconductors

Diodes incorporating !1-VI semiconductors have been fabricated which
seem to behave accor;ding to Card and Rhoderick's theory of tunnel
injection. However, there have been a number of devices produced
using |1-VI materials whose behaviour cannot be explained using the
same model. Livingstone et al” produced an Au/Zn0/ZInS device which
had an enhanced quantum efficiency at insulator thicknesses in éxcess
of 500 B (Figure 3.1) Driving their device at a constant current of
20mA (a current density of approximately 500Am_2), they found the
quantum efficiency rose sharply as the insulator thickness was increased
to ~500 R. After this point however, the efficiency stayed on a plateau

with any further increase in insulator thickness appearing to have little

effect.
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Following Livingstone et aln, similar observations were made by
different groupslz_w. working with 11-VI materials. For constant
current a plateau or broad peak in the efficiency of the devices was
found for insulator thicknesses of the order of several hundred
Angstroms. An explanation for this idea was first put put forward by
Fischer17 and later by Watanabe et a|12. The argument rested on the
fact that the insulators used in the fabrication of these devices had
bandgaps which were not much . larger than the semiconductor bandgaps.

16
In some cases,

, the same material was used for both the semiconductor
and the insulator by suitable doping. Such a device, under forward
bias is illustrated in Figure 3.2. The basic mechanisms proposed
concerned the ability of electrons (semiconductor majority carriers),
injected from the semiconductor into the metal, to excite electrons from
below the metal Fermi level - essentially an impact ionisation process.
It was suggested that this mechanism would lead to a relatively large
hole population below the metal Fermi level some of which could pass
via the insulator valence band into the semiconductor valence -band. In
the semiconductor valence band, the holes would recombine radiatively
with majority carrier electrons. The idea of holes travelling unimpeded

through the insulator valence band explained the relative. insensitivity

of the efficiency with insulator thickness after a certain threshold.

Further support for this model was given by the observation16 that

the efficiency of devices was dependent on the height of the metal-
insulator barrier. With this in mind, the novel material polymeric
sulphur nitride ((SN)X) has been used as the metal18, (SNX), which
acts as a quasi 1D metalw, produces barrier heights ~ 0.75eV

greater than conventional diodes incorporating gold or ZnS. Experiments
have shown that a 102 increase in the electroluminescent efficiency
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accompanies the use of (SNX]. Even with this improvement, however,
the quantum efficiencies obtained have only been of the order of 10'-4.
The reason for this being attributed to the basic inefficiency of the

hole creation mechanism.

It appears that, in the |1-VI MIS diodes discussed in this section, the
main limitation to a good majority carrier injection ratio is the hole
creation mechanism itself. Despite the fact that impact ionisation has
been proposed as the hole creation mechanism, nobody has actually
attempted to calculate the hole creation rate by this process. In the
next chapter this impact ionisation process is examined in some detail.

In particular the probability of an injected elelctron creating a hole below

a certain energy (say the insulator valence band edge) is calculated.

3.2.2 MIS Devices Incorporating Lan.gmuir—BIodgétt Films

Langmuir-Blodgett films20 can be utilised to produced high quality thin

insulating layers of uniform thickness. There are a number of applications:

of these films, which have been reviewed by Vincett and Robert521.

However, of particular relevance to this work is the use of Langmuir-

Blodgett films as the insulator in an electroluminescent MIS diodezz—zs.

MIS diodes incorporating a number of different materials, in the form

22-25 2

of Langmuir-Blodgett films, have been produced The initial work2

was carried out using cadmium stearate and w-tricosenoic acid in an
Au/Langmuir-Blodgett film/n-GaP device.

‘The..idea behind this methodwas that, with good insulating film
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uniformity, tunnelling MIS diodes (described by the theory of Card

and Rhoderick'l'.z) of high quality would be produced. However,
measurements of the d.c. power conversion ratio, indicate that this was
not the case. Figure 3.3 is taken from reference 23 and shows the
relative efficiency of a device, incorporating cadmium stearate monolayers,
driven at a constant current of 200mA. It is clear that the optimum
insulator thickness occurs at about 8 monoloayers, or approximately

2008 , a value too. large for direct tunnelling. Figure 3.4 shows the
power conversion efficiency for a similar device reported in reference 24,
Again, the optimum thickness is too large to consider direct tunnelling

as a viable transport mechanism through the insulator. Batey et aI23
suggested that their results might be due to the impact ionisation process

preposad in the iast section for 11-VI devices12'17,

They also suggestedzq
that the minority carrier transport through the insulator could instead
be via traps which are known to dominate bulk transport properties of

Langmuir -Blodgett films21 .

Although for both 11-VI and Langmuir-Blodgett film insulators the
thicknesses are greater than those allowing direct tunnelling, it should

be stressed that there is little similarity in the insulators used in the

two cases. The [lI-VI insulators have a well defined sefﬁiconductor

type band structure with a relatively small bandgap. This makes minority
carrier transport viathe insulator valence band a distinct possibility.

The band structures of Langmuir-Blodgett films are, on the otherhand,
unknown. Even if some valence band does exist, the bandgap may be

too large to allow its use in the hole transport mechanisms. For this
reason, the minority carrier mechanism could be very different from

that in I1-VI insulators. In Chapter Six, possible hole transport
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mechanisms, for both the Langmuir-Blodgett film and [1-VI device will
be investigated. Models for minority carrier injection in the respective

MIS diodes will then be proposed.
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CHAPTER FOUR

HOLE CREATION IN THE METAL CONTACT

OF AN MIS DIODE BY IMPACT IONISATION

4.1 INTRCDUCTION

“he purpose of this chapter is to investigate impact icnisatior Fetween
the electrons of the metal anc the electrons [semiconcuctor mzjority
carriersj injected into the metai ahen the MIS structure is uncer
forward bies. As alreacy mentionecd in Chapter Three the impact
ionisetion process has been proposed by 'v‘»/atanabe1 anc Lawther and
Woods2 as a2 pocssiovle hole creation process with the injectec elecirons
exciting some of the electrons nf the metal to unoccupied states above
the Fermi level and in the process leaving holes in states belovi the

Fermi level. The energy of the incident electron relative to the Fermi-

-y

level gives a limit to the range of possible hole states as energy must

be conserved and the incident particle can only be scattered to a state
which is initially unoccupied (ie above the Fermi level). This consic-
eration sets a maximum possible energy transfer between the electrons
and in the particular cavice we are consigering with the majority of
the electrons injected from the semiconductor into the metal, having just
encugh energy to surmount the barrier, holes can only be created in this
fashion at a maximum energy below the Fermi level equivalent to the
barrier heicht. In this chapter the created hole distribution over the

allowed energy rance is calculated using perturbation theory. A
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particular result obtained is the probability of hole production within
a certain energy range and direction. The interaction of a hot electron
in a Fermi gas has been investigated before by Ritchie3, Quinnu, and
Ashley and RitchieS. However none of these authors have looked
specifically at the bole creation process and its dependence on hole
energy and wavevector. This knowledge facilitated the calculation
of the probability of an electron injected into the metal producing a
hole in a particular energy range which is able to travel back to the
injection interface. It turns out that the hole flux due to this impact
ionisation mechanism is significant in the system which we are looking
at for states more than 0.5eV below the Fermi level, but for smalier

energies the holes created thermally will dominate.

4.2 FREE :ELECTRON GAS MODEL

b.2.1 Gold as a Free Electron Gas

CGold is used extensively in the fabrication of Schottky barriers and the
MIS devices reviewed in Chapter Three, and in particular is the metal

incorporated into the devices considered in this work.

Being a monovalent metal, gold has one of the simpler Fermi surfaces
enclosing a volume of k space which contains just one electron per
atom. Distinguishing between the noble and the alkali metals it is
the latter which have the less complex surfaces and they can be
described very accurately using the Sommerfeld free electron model.
The noble metals are more complex, but again the Fermi surface is

essentially spherical with a distortion in the 111 direction where
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the Fermi surface makes contact with the Briliouin zone face. The
important point is that the Fermi surface is sufficiently spherical to
make it possible, at least in the first approximation, to model its

electronic behaviour using free electron theory.

4.2.2 Electron-Electron Interactions

The electronsiin the Fermi gas of a metal will have Coulombic inter-
actions with each other and with electrons injected into the metal. |If
we consider the interaction between two particular electrons, immersed
in a background sea of other electrons, the interaction between the
two can be thought of as a small perturbation v(r) to the overall
potential. Using standard perturbation theory it is possible to show
that given the electrons are in aparticular state described by the
wavefunction y(r) at time zero, the probability that they occupy the

states represented by y'(r) after a time t is given by:

2T 1) | v(r)| w(r)>]2 §(E - E')
+ (4.1)

Prob =

where E and E' in the Dirac delta function represent the initial and
final energies of the two particle system. The transition rate for this
particular interaction can now be found by differentiating equation

(4.1) with respect to time to yield:

TR = 2T 1¢yr(r)] wr)| e (r)>]2 6(E - E")

=)

(4.2)

which is known as Fermi's Golden Rule Number 2.
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In the next section the matrix element <y '(r)| v(r}y(r)> is
consideredin more detail for the two electron systems. we are

investigating.

4.3 MATRIX ELEMENTS

4.3.1 Initial and Final Wavefunctions

Before the transition takes place consider the two interacting electrons
at positions L and r,.to bein electron states 1 and 2 with associated
spins O¢, and o, - The initial wavefunction for the system must be

expressed as an antisymmetrical combination of the two possible states.

Hence

y = 1 -
Vo= G (r) g (108 (r )o (2) =6 (r ) (28, (£ ) o (1))

(4.3)

where ¢1(£1) represents the spatial wavefunction of an electron
in state 1 at position r and 051(1) describes its z component of spin

[s1 = 4or+). An identical convention holds for the rest of the terms.

Using a similar argument for the scattered electrons the final wave-

function for the system is:

o= Lo r)e (Me (r)o (2) =0 (r)o (2)¢(r) o (1)
22 Y ! 2 T2 52 T2 st 271 s?

S 2

(4.4)
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4.3.2 Evaluation of the Matrix Element

By using equations (4.3) and (4.,4) in the matrix element the expression

obtained is

M= lj(cb*(i Yox(r o (1)o (2) —¢x(r Jg(r g (2)g  (1))*
2 Y71 272 st s2! T2 271 s sz

x vir) (¢(r) ¢(rJo (Mo (2) -9 (r ¢ (r)o (2} (1))
1 1 2 2 sl S2 1 2 2 1 S1 S2
x d3r d3r
1 T2
{(4.5)

where the nature of the perturbing potential v(r) has not yet been specified.

Using the orthogonality of the spin functions

M = MD - Mex (4.6)
where
Mp ={e *(r Jo*(r )vir)e (r)e (rls 3 ddr dr
11 2t T2 171 272 sis1 s2's2 1 2
(4.7)
and
M =|e*(r)e*(r)vir)e (r)e (r)s , &, d3r dir
ex 12 2 172 271 slg2 s2s) 1 2
(4.8)

The subscripts D and ex standing for direct and exchange. The

reason for this nomenclature is that Mg is identical to the expression
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for the matrix element that would be obtained if the electrons were
treated as distinguishable particles and we could completely specify
the properties of each particle, whilst Mex can be seen as an extra
term resulting from the inclusion of exchange effects. We are now

in a position to integrate equation (4.6) over space.

4.3.3 The Direct Matrix Element Term

As the evaluation of the MD is a distinct part of the overall calculation

of M, it is treated separately in this section.

The wavefunction of an electron in a free electron gas is simply a
travelling wave given by:

p(r) = exp (ik. r) (4.9)

1
1
0z

where k is its wavevector and £ is the normalisation volume, so by
using this form in equation (4.7) and introducing a Coulombic

perturbing potential it becomes

My = *(r )¢ *,(r) le]? o(r)o(r)
D PE e, -1 *2t g
baee [r - r |
O0l— —2
3, a3
631'51652'52d le r 2

(4.10)

The perturbing potential can be expressed in terms of its Fourier
integral and the expression then integrated overr ., and r,to

produce

_50_



My = _lel?2 5 8 Am Sk -~k - g)(2n) ek, k4 g)dig
5 S1's] s2'sp 1 T = -
LhreOQ" e(q) g2

(4.11)

In this system the Coulombic potential varies slowly with respect to
the electron wavelength and also the transition energies (of about 2eV)
are much less than the plasmon energy (~10eV) so the electron gas
can respond to the perturbation and the frequency dependent part
of any screening is negligible. It is therefore adequate , in this case,
to represent the screening in the form of the zero frequency Thomas-

Fermidielectric constant8'9

e(q) = 1 + ¥
q? (4.12)

where A is the Thomas-Fermi screening length which is defined as

, E_O_( i )1/3 -
A 4 3In (4.13)

with a, being the Bohr radius and n the electron concentration. So

by substituting equation {4.12) into equation (4.11) and integrating

over g we obtain our final expression for the direct matrix element

_ (2m3 |e|? -k -
Mp = el U slkgkgkitkds s
) 2 ) S1°'S1 S2'S2
€ & Clkirky 17+2%)

(4.14)
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4.3.4 The Matrix Element Including Exchange

The term Mex in equation (4.6) and defined by equation (4.8) can
be evaluated in an identical manner to that for MD in the last section

and to avoid repetition the result will simply be quoted here as:

woo- 2mile]? 1 § (K tk-k -kJ)s ¢
ex 1 2 1 2 s2'sl sllis2

€ Qz k',-k 2 452
o (krk 17 +3%)

(4.15)

This can be immediately combined with equation (4.14) to give the

total matrix element as:

2 3 K -
= le]? (2m) $s11s1%s2s 2 __.(.S_.S'_l,'_ASZG,Sz.'.Sl 6(51'+52'5 k
2 _ 2..2 _ 2 2
o 97 |lkk P00 Tk, k,12ea
(4.16)
4.4 HOLE CREATION

4.4.1 Direct Transitions

The square of the modulus of the matrix element is actually needed

to calculate the transition rate.

IM|2 = M 2+ M__ 2 - 2M_M (4.17)

It can be seen that, with MD 2 as the first term, the direct

transition rate is produced as a distinct part of the overall rate and
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so in this section it will be treated separately. There are in fact two
reasons for this, apart fromit being an integral part of the overall
procedure it will enable the effects of exchange in the overall process
to be observed and also let us compare results obtained in this method
to previously published work by Ouinnu which only considers direct

transitions.

It is now possible to produce an expression for the probability of an
incident electron on the metal producing a hole of particular energy
and direction by finding the probability of an electron being excited

from that state in the Fermi sphere.

Substituting the direct transition matrix element, given by equation

(4.14) into equation (4.2) the transition rate is written as

2
2 L -k -
TR = le] (2m) 85115 1020 1en 5(51’+—k-2’511—(2)

e | AL (|k_,-k_ |? +\2)?
o -1 —1

xﬁ[‘Eii (51'2+52'2_512‘522)] (4.18)
2m

This expression gives the transition rate between specified states.
To find the total transition rate for an electron of wavevector 51

we need to sum over all possible k o ,52 and 51, states and all

spin states, taking into account the occupancy of the states. We are
concerned with finding the probability of a definite incident electron

undergoing some interaction so its spin s1 is fixed, and by taking

other spins into account equation (4.17) is simply multiplied by two
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as states 2 and 2' can be either both up or both dewn, while 1" must
be the same as 1. The Dirac delta function in k ensures that one
summation over wavevector is trivial and then by converting the
remaining wavevector summations to integrals and dividing by the
incident electrons velocity, given by ‘h/kllm, we have an expression

for the inverse mean free path of that electron

Apyp = 2\ 2mm [le]2\? 1 } 1 .
ky \heg [k, - k|2 + )2
KLk,
x a[/ﬁ_z (k)2 + Kp? = kp? = (y+ Ko- hl.quzldshz
2m

(4.19)
Where the subscript to Arefers to direct impact ionisation interactions.

If D is used to denote the term in the curly brackets and the

substitutions

made the differential inverse mean free path with respect to k, is

Vo 20 1 s|f2 n.g| dax

—_— = 1

d’k (g2 + 3232 |m (4.20)

Because of the delta functions, it can be seen that the integral is

only non-zero when the scalar product h.g is zero, or in other words
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when h and g are orthogonal. This means that, in k space, k, , k,

and k., all lie on the surface of a sphere of diameter |k, - k, |
centred at }|k 1t 52|° This has been illustrated in Figure 4.1. |If
k_is kept constant initially, it is reasonable to exploit the symmetry

2
of the situation by moving the origin of the integration from the centre

of the Fermi sphere to ¥|k ,+ kK as shown in Figure 4.1, so with

2l

we can produce the identities

hg = o - K
y
9? = q* + k2+ g.k
y
and
d3k = dig (4.21)
where
E = 52—51

To express g in terms of spherical polar co-ordinates we set a z

axis in the direction 51 + 52 then

9.k = agky
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Fig.

4,

1

The final (1' and 2') and initial (1 and 2) states of

the impact ionisation process in relation to the
Fermi sphere. ‘



where
Y = cos6cos® + sinbsing cos(¢ - ¢ )

and the angles are defined in Figures 4.2 and 4.3. Combining these

with equations (4.21), equation (4.20) becomes

d3azl

2D 1 G[ﬁ(qz—k_z)] q?sinpdededg
m 4 '
d3k, (q2+k2+gk +22)? '
i}

a
(4.22)

Again the delta function requires that g must be on the small sphere

of Figure 4.1. Integrating over q gives
-1
d3')DII - Dmk sineded¢
3 2 2 2 2 1 i - 2
d 52 pad [I;_-F)\ + %_(cosecosek+smesmekcos(¢ dk))]
6, ¢

(4.23)

In this expression 1' and 2' states must be above the Fermi surface

(see Figure 4.1). If either, or both of them, are beneath the surface
then they will be already filled and no transition to them will be possible,
The upper limit to 6 will exist at the condition shown in Figure 4.4(a)

when k , lies on the Fermi surface or when
-1

o 2k? - kg2 - kp? |
cos g = =-L

|k + kol |ky - kil

while the lower limit, illustrated by Figure 4.4(b), will correspond to
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tn 51, lying on the Fermi surface.
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52, lying on the surface or when

k,‘2 + k?2 - 2kf
cos 6 = - = L

k1 + kol |ky - kil

Integrating over ¢ (using standard integral A1.1) gives

3,71 (k2+ 22 + k2cosecose) dcos®
d AD“ _ Dnmk T 2— K
d3k, 2 (k2+22+k?coseécosg)2-(k2sindsin e )2| 3/,
2 2 < 2 K
-L
(4.2u)
The denominator can be arranged into the form
3/. 3/
R'™ = (A + Bcos8 + Ccos?2g ) ‘2
where
A = A%+ kA% & KYcos?6
—_— k
Iy
B = ()\zkz + 5’: )cosek
2
and
c =k
4 (4.25)

Integrating over cos ¢ (using standard integrals A1.2 and A1.3) gives

71
d*rpy) Drmk | 2 (k2+A2) [ 2CL+B + 2CL-B
d’k, uk
- kz.cosek 2A+BL - 2A-BL
Y\ R /Ry

(4.26)



where

A= axkMtzek2)r - cos?e, )
R1 = A +BL+CLZ

and
R, = A-BL+ cL?

We require information about the energy and wavevector of state 2

(the state in which a hole is created). It is convenient to express
k, in terms of spherical polar co-ordinates using B_laé the z direction,
then

d3k,

-2mm d(cos@s)kodE;y
A2

and substituting this into equation (4.26) gives

-t
3 2m? 2
d* g _ ZDnmkkz[k cose, (2A+BL i 2A_BL)
dE,dcosd, Al A Ry 'Rz
- 2 {k#+ a2 (2CL + B + 2CL - B

(4.27)

Finally we can define cos@k using the relationship

kzz‘k12 = |£1+52| |k —51| cos6,

2
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to give

zl “ﬁz—_ll (4.28)

Equation (4.27) now gives the information required about the probability
of an electron being excited from a particular state as it gives the
inverse mean free path, or a number of transitions per unit length,
for interactions in which the incident electron excites another from

the range E2 to E2+dE2 and cos, to cose, + dcos & to a state above

the Fermi surface.

4.4.2 Transitions Inclucing Exchange Effects

By using the full expression, in equation (4.16), for the matrix element

in equation (4.2), the transition rate is given as

2\ 2 Y - .
- :(|e|) (2m* | 8. Ve, 86 s, S5 85p sy .]2

£ HR3 |k .-k 12+ 22 [bp=k |2+ ;\ZJ

X 5(51, + 52, - 51 - 52)5[‘% (khZ + k2'2 - klz - kzz)]

(4.29)

and summing over the spin states s1', s2 and s2', the expression can

be split into three parts

TR = 1, + 1, = | (4.30)
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where

— 2\ 2¢ b ' v 2() 2 2.1, 2_1t 2>
} Z(Je!) L) SR RO glzz)é[ﬁ_(xl'%- 4 sz]
)n". 1 - [} 2\2
€, 9% (koK 2T 2m
= tel2\ 2 (2034 o 24 24k 2-K2_K2°
B 2(,e| ) (2n) 1 Sk vk ok 52)6[@__{<1,+ ik
e | N9 ([K,k ) 2ea)? 2m
and
o= 2flejz\2r2my 1
e [ T (K Lk PR (R -k ]2+ A2)

[ P - 2 2 2_ 2_ 2
x 8Lk rk K 52)6[?—“‘1'”‘2' kyiok, ‘]
m

To find the inverse mean free path we divide by the incigent electron

velgeity and sum over &ll possible 52,, 52 and 51, states. So, by

converting the summations to integrals we have

A= A7l oot
0 + 3 (4.31)

1 2
Q3 ), d% d3% L%k, + Q3 I &3k &3k ,d%k_,
-2 T2 —1 2 —2 —2 -1
(2m)? ' (2m)°
- g3 le% d’k . d%k , .
(2m) 9

As already menticned 2t the keginning cf the last section, the

H

expression for >\1 ! is identical to the direct transition case (shown

in equation (4.18))so we can move directly to the result that

3y 1 35 -1

a _ 9y

dk a3k (4.32)
-2 -2
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The integral of A 2_1 is similar to )‘_D1II' the difference being that 1!
and 2' are interchanged. 7This make no difference to the calculation

other than changing the order of integration, as the limits for 52,

are the sames as for 51,, therefore we can write:
-1 -1
3 3
d=x, _ 9y
a3k, d3k, (4.33)

So now by differentiating equation (4.31) with respect to 52 and

using equations (4,32) and (4.33)

3y 1 331 37 -1

ry o 29 9y

d 3k dk a3k (4.34)
- 2 -2 -2

with

-1

d3)\ 3 3 3
3 i} Q ly &'k d%k .

d352 (2m) 3 (4.35)

Following the procedure in Section 4.4.1 and integrating over k2, gives:

1

3,7 v, 3 B
d;' 2D 1 6[2—3'-9] d*k . -
- 1
d3k (92+ AZ)(h2+)\2)
-2
(4.386)
where
Q:EI'—_I 4 D:Ef-l—('Z
and
D = 27m( |el? 2
k) fe (2m)®



As explained previously the delta function imposes the condition that
51,, 51 and 52 must lie on the surface of a sphere of diameter

|51 - 521' so, following the method used in the direct transition case,
a variable g is introduced from the centre of the sphere to 51 in order
to exploit the symmetry of the sphere. This isillustrated in Figure
4.1. Using the co-ordinate system used in Fgures 4.2 and 4.3,
originally developed for the preceding section and employing the

relationships

h.g = -K
Tl
h® = g + k?-9.k
and 4
g’ = q* + kI + g.Kk
1] (4.37)
where
k = 52- 51

equation (4.36) can be rewritten as

3,1

d >\3 ) 2D 1

a3k (q2+k2 -gky+2?)(q2+k2+gky +)2)

2 q q
‘_(.]_l
x &2 (g?-k?)| g?sinéded¢dq (4.38)
m b
where
Y = c059cosek + sinesinekcos(¢—¢k)

Integrating over g and assuming at present, that both _151, and 52. are

above the Fermi surface, equation (4.38) becomes
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d®x3 _  Dmk sin 6dod ¢ _
d°k 2 k2 o+ A2+ kIy) (K2 422 - kly
2 6 \2 2 2 2

(4.39)

Both states 1' and 2' must initially be empty and this leads to a

maximum value of 6, corresponding to 51' lying on the Fermi surface

(illustrated by Figure 4.4(a)) and given by

2k2 - k? - k2
cos 6 = f ) 2 = -L

[k +k ||k -k |

-1 72 7271

and a minimum value, corresponding to 52 lying on the Fermi surface

(Figure 4.4(b)) defined by

k12+k22—2k§

C0s 9 = = L
|k.+k ||k —k]
-1 T2 —T271

Factorising equation (4.39), and using the standard integral A1.1, we

integrate over ¢ to obtain:

_ Dmmk 1 1

d3k H? (K2+222) YA + Bcosd + Ccos?p
-2
6,
1 d(cosep)
+
VYA - Bcosé€ + Ccos?6 (4.40)
where

A = A+ k2x2 + Khcos?e

1
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B = kZ(A2+k2)cosek
7

and

K
q

The final integral is performed using A1l1.4 and yields

A3 Drmk . qn (2/CR +2CL+B)(2/CR,-2CL-B)
da_lgz Y VC (i 2+2A2) (2/CR,-2CL+B)(2/CR; +2CL-B)
(4.41)
where
R, = A +BL +CL?
and
R, = A - BL+CL?

This is the final term of the equation (4.34). Taking equation (4.34),
expressing 52 in spherical polar co-ordinates with the direction of the

incident electron as the z axis and integrating over ¢2 gives

-1 -1 3
d2x 2tmk., d3x
1 _ 5 DIl . 2 3

dE,dcos6, dE »dcos 6, A2 d 3k (4.42)

SEDY -

Combining equations (4.27), (4.41) and (4.42) we can then write the
full expression for the transition rate/unit length of the incident
electron exciting an electron from a state in the range E2 to Ez+dE2

and cosezto Ccos 62+ dcos 62.
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2,-1
d2x . 2m?m?kk, D| 2k?cos8 (ZA + BL - 2A -BL

I
n

dEzdcose2 $ A »/R1 v R2
- A(Lx)(zc_t_ﬁ . _zgt__;__B_)
A\ 2 /R1 /R2
+ 1 In (ZVCR1+2CL+B)(2¢ CR2+2CL'—B)

2 2
/C(k2+2 ) (2/CR,-2CL+B) (2€R,-2CL-B)

(4.43)

where
A = A2k (A2+ kK2) (i - cos’@é*)

and

2 _ 2
Ccoso = k2 k1

I51 + 52' Ihz"}ﬁ |

q.4.3 Distribution of Created Holes

When an electron is excited to a state above the Fermi level its original
state is ieft occupied by a hole, which means that when we find the
probability of an electron, of particular energy and direction, beihg
excited to above the Fermi surface we are also finding the probability
of creating a hole with the same velocity as that electron. It should
be pointed out here that we use. the convention of labelling hole states
by the energy of the replaced electron, therefore equations (4.27) and
(4.43) give that transition rate per unit length that a hole is produced,
to cese

in the range Ejyto EiLdEz and cos® + dcosez, for direct transitions

2 2

alone and for the complete direct and exchange transition respectively.
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Figures 4.5 and 4.6 illustrate tiie angular distribution of holes for an
incident electron 1.4eV above the Fermi energy. The value 1.4eV is
intended to be close to the barrier height of a n-GaP/Au Schottky
barrier and is regarded as typical of the barrier heights of the MIS
devices in which we are chiefly interested. Figure 4.5 shows the hole
distribution at the surface of the Fermi sphere while Figure 4.6 is for
holes at 4.45eV, that is 1.05eV below the Fermi level. |t can be seen
that the curves are similar for both direct and exchange expressions
with difference being more pronounced in the range /2 tor. Both
graphs show that the hole is more likely to be created travelling in the
opposite direction to the incident electron. This preference is stronger
at energies nearer the Fermi level as illustrated in Figure 4.7. This

trend can be explained diagrammatically.

If we first consider the hole at the Fermi surface, Figure 4.8 shows

the case where the hole travels in the same direction as the incident
electron, while Figure 4.9 shows the opposite case. Due to energy and
momentum conservation the only allowed staies for the scattered electrons
lie on the sphere represented by the solid line. It can be seen that the
much larger sphere in Figures 4.9 will provide more possible final states
enhancing the chances of this particular interaction. Figures 4.10 and
4.11 show the same interactions for a hole created well below the Fermi
surface. We now have an additional constraint to acceptable 51, and

52, states because the sphere has part of its surface inside the Fermi
sphere and these states are therefore already filled. This means that
the only available states will be on the thickly drawn part of the sphere.
It is evident that the increasein available states between Figures 4.10

and 4.11 is not as great as between Figures 4.8 and 4.9, hence the
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less pronounced preference to a scattering angle of ™, This tendency
is further underlined by Figure 4.12. The two curves are for the
differential probability at 62: 0 and® over thc whole range of E2. The
largest difference between the rates is, as expected, at the Fermi
surface and the ratio between them then decreases as we move towards
lower energies. These graphs seem to show that in 2ll impact ionisation
processes the preferred direction of the hole will be in the opposite

direction to that of the incident electron.

4.5 TRANSPORT OF CREATED HOLE TO MI INTERFACE

4.5.1 Hole Recombination by an Auger Process

Once a hole has been produced at some level below the Fermi surface
there is always the possibility that an electron from a higher level

will be scattered into the hole state by an Auger process. This is
simply the reverse of impact ionisation and if we use the same labelling
of states to describe the situation we have two electrons initially in

states 1' and2' being scattered to states 1 and 2 (see Figure 4.13).
Drawing parallels between this process and the impact ionisation process

in the previous sections we can write an expression for the inverse

mean free path of the hole:
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al = 2(2m flejr) e ' 1
ky, \fie, (2m) 8 ((Kyk)? + A2)2

1.(2l }El
! 1
((kymkq)2 + 2202 ((kyrk,)? +A2)((kymk )2+ 2 2)

2 2 - 2 - 2
xa[’ﬁ_ (K2 + k3 = kyf = (K +kyoKo,) )] d3k,,d?K,
2m

(4.44)
With the subscript 'hA' referring to holes and Auger.
The method used to carry out the integration is identical to that used

in Sections 4.4.1 and 4.4.2 and to avoid repetition we move directly

to the result equivalent to equation (4.43).

A2y _amPmPkk DUy fya, 2\ (2CL+B 4+ 2CL-B
dE,dcos ¢, ) A" X(T )K_/_R;— /R2 )
- Zkcosfy 2A + BL - 2A-BL

A ( /R, /R, )
: In (2/6‘21+2CL+B)(2/'C‘F€2+2CL—B)
) /C(k2+212) ((2/@‘?2-2CL+B)(2/'C—R1-2CL-B))
(4.45)
where
R, = A + BL + CL?
R, = A - BL + CL?
A = At o+ k22 4 KYcos®
T K
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B = kZ(kZ2 + )2 ]cosek
T

c o=k

I
- 2 2 - 2

L k1 + k2 2kf
|51 + Ezl IE] - 52'

A = A2KZ (A2 + k2)(1 - coszek]

and

— 2 _ 2

c:osek k2 k1

|51 + Ezl l51 - 52|

This is the probability that an electron will be scattered above the

Fermi surface in the range E1 to E1+dE1 and cosg, to cos e1+dcose

1

Information on the final

'Il
where 8, is the angle between 51and 52.
state of the scattered electron is not required but we do need the

crobabiiity of a hole in a given state being involved in the interaction.

The right hand side of equation (4.45) is therefore integrated over

-1

all E1 and cos6, to find )‘hA' This integration has to be done

1

numerically and will be considered in Section 4.5.4,

4.5.2 Calculation of the Probability of a Hole Reaching the

Ml Interface

As explained in Chapter Two it is expected that an electron which
has been injected into the metal from the semiconductor will be
travelling in a narrow cone, perpendicular to the metal-insulator
interface. This means that if the direction of a created hole relative

to the incident electron is known, its direction relative to the interface

normal is also known to reasonable accuracy. To find the probability
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of a hole reaching the interface it is necessary to know the distance
from the interface at which it was created. If Pec(x) is the

probability of an event within distance x then the probability of the

event occuring in the interval x to x+dx is
dPeC(x) = (1 - Pec(x)) adx (4.47)

where a is the transition rate per unit length.

Solving this differential equation gives us

In(1 - Pec[x)) = - ax (4.48)
or
1 - Pec (x) = e % (4.49)

Equation (4.49) gives the result that the probability of an electron
not being scattered falls off exponentially with distance and is
described by a mean free path give by 1/a. We obtain the probability
of the interaction being in the range x to x+dx by combining |

equations (4.47) and (4.49) and substituting the mean free path )‘e

for 1/a

dPeC(x] = 1 e dx (4.50)
So far we have assumed that impact ionisation transitions are the only
interactions possible. This is obviously not the case and there will

be scattering due to other mechanisms such as phonon interaction and

impurities. Equations (4.47) and (4.49) are still valid for any
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scattering event, however, provided that it is realised that they deal
with all interactions and not just impact ionisation. In this case )‘e

will be a general mean free path covering all interactions expressed

by

where A” AP and A1M are the mean free paths for impact ionisation,
phonon and impurity scattering respectively, and are various functions
of energy. In calculating the probability that the incident electron

will travel a distance x without undergoing an interaction, all possible
scattering mechanisms must be taken into account, but then to find the
probability of an impact ionisation transition, in which a hole is produced,
in a further cﬁétance dx we should only use the mean free path for
impact ionisation events. By using the revised mean free path given
by equation (4.51) in equation (4.49), then using Allin equation (4.47)
and combining these two equations, the probability of impact ionisation
in the range x to x+dx is given by:

_X/A

_ e
dPec(x) = 1 e dx

n (4.52)
The probability per unit length that a hole is produced at x to x+dx,

of energy E2 to E2+dE2 and of direction c0562 to cos(5+dcosez,ts

hence
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- e doE 8
dPec(x) _ d I e 2dcos 2dx

dEzdcose (4.53)

2
Having the probability of producing a hole at a particular position,
the next step is to find the probability of this hole reaching the metal-
insulator interface. As can be seen from Figure 4.14 the distance the
hole has to travel is x/cos(n- 62). The probability of the hole not

undergoing an interaction before it reaches the interface is therefore

x/cosezkh
1 - Phc(x/cos(ﬂ—ez)] = e (4.54)

where Phc(x/cos(n—ez)) is the probability of an interaction and }\h

is the mean free path for the hole which will be dependent on the hole
energy and the scattering processes present, eg Auger, phonons,
impurities etc. So, the probability that a hole created at xto x+dx

reached the interface is

2, -1
_ d"
(1-Pp (x/cos(n-8))dB _(x) = T "I QXP{_ 'x - x >]d52dcosezdx
dE,dcoss, A those2
(4.55)
Integrating over all x gives:
2,-1
dx -1
= 1 - 1 ~
dP(EZ'ez) 1 - r dEzdcose2
dEzdcose2 Ae  ARCOSH,
(4.56)
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Thus the probability that an injected electron will produce a hole in
the range E, to E2+dE2 and cos®, to c0592+dc0592
which will reach the interface, is obtained. It must be remembered

that it has been assumed in this calculation that if the incident electron is
scattered by anything other than an impact ionisation event, then it

is removed from the system. |In reality this would not always be the

case because the eleciron could well still possess sufficient energy to
produce a hole, but the calculation serves to give a lower limit to the
probability. To obtain the probability over a range of energy and

angle we integrate over these quantities. Substituting for

dz)\“/dEzdcose2 in equation (4.56) using equation (4.43) gives an
expression that can only be integrated numerically. We shall return

to this numerical calculation in Section 4.5.4.

4.5.3 Approximate Expression for the Probability of a Hole

Reaching the Interface

It is possible to produce an approximate probability for an incident
electron producing a hole that reaches the interface by assuming the
scattered hole distribution to be isotropic over 92 and for all value of
E2. In such a case, the mean free path X“ will be independent of E2
and )2 and instead of using equation (4.43) it will be possible to write

2,-1 -1
A
d™y, o 'n

) -
dEchos ) 2(E1 Ef) (4.57)

If we make the further approximation that )‘h is the same as )‘e' and

substitute equation (4.57) into equation (4.56) we obtain
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.cos®
dP(Ez'ez) _ ' dEzdcose2
Z(E,] - Ef) cos9, - 1

(4.58)

With this expression it is straighforward to integrate over E2 and
cos 92 to produce a result for the probability of a hole in a particular

range of E2 and 6, reaching the interface

(4.59)
where Emin and Emax’ and emin and emax are the minimum and
maximum values of E2 and 62 for the particular ranges chosen. The
probability of any hole reaching the interface is given by taking the
limits  m/2 < 62 {7 and 2Ef - E1 < E2 < Ef. The value obtained
with these limits is P = 0.153, which means that as many as 15%
of incicent electrons will produce holes capable of reaching the metal-

insulator interface. This result will be useful to compare with the

numerical values of the next section.

4.5.4 Hole Flux at the MI| interface

Using the full expression for d2>\l—|1 /dEZ dcos 6, in equation (4.56)

means that numerical techniques are required when we integrate over
E2 and cosb,. Also in distinguishing between A, and A these
guantities will no longer cancel out and their values must be specified.

1/)‘e consists of the terms shown in equation (4.51). The impact
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ionisation term can be found by integrating either equation {4.27)
(direct) or equation (4.43) (direct and exchange). The results are
compared with previous theoretical and experimental results in Figure
4.15, which shows the variation of the calculated, mehn free path,
obtained by just considering direct transitions, with the energy of the
incident electron. The figure also shows similar results obtained by
Quinn’ using a self-consistent dielectric approach and several
experimental values. The theoretical curves show very good agreement

while comparison to experiment shows a reasonable match.

In considering the other terms in equation (4.51) we follow the
suggestion of Crowell and Sze10 and combine the expressions of

12,13

Wilson11 for electron-phonon scattering, and Mott for impurity

scattering to produce a general mean free patnh for lattice related

interactions.

Moo= g (B /EQ)? (4.60)

)\0 is the mean free path for electrons at the Fermi level and can be
obtained experimentally from conductivity measurements. }‘h is
determined by Auger scattering and lattice scattering.

To put the results obtained for the hole flux due to impact ionisation
into perspective, it is worthwhile considering the flux of holes

created thermally at the interface. Using Boltzmann statistics, the

hole density at energy E is

_75_



U [ - T
Au (E;=5.51 eV) N
—— FREE-ELECTRON |
MODEL (THIS WORK)
\ X}}% FREE-ELECTRON
3l | — —— MODEL (QUINN)
107\ % (Phys. Rev. 126 1453 =
C (1962)) -
C :
2 L ]
=02 ,:
C % -
C s
i P B Bopo ==
o
10 i n i ]
0 2 4 6 8 10
(E"Eg) (eV)
Fig. 4.15 The variation of the mean free path of the incident

electron over energy for direct transitions only,

compared to previous theoretical and experimental
results (from Reference 10).



E—Ef

KT (4.61)

p(E) = N(E) exp

and if 1(E) is the lifetime of a hole then the creation rate Rth(E) is

given by

T(E) (4.62)

Given that the thermal creation of holes will be isotropic, we can write
that the probability of a hole travelling at an angle 6 to 6 +d® to the
normal of the interface is given by 1sin8d6 , and that the probability
of it being created at a distance x to X+dx from the interface is dx/L
where L is the metal thickness. Combining these results with
equation (4.54), which gives the probability of a hole reaching the
interface, and integrating over x and 6 the rate of holes reaching

the interface over the range E to E+dE per unit area is found to

correspond 1o a standard result of kinetic theory

thh(E) = p(E)v(E)dE
4L (4.63)

where p(E) is given in equation (4.61), and v(E), the hole velocity,
1

is given by (2E/m)?. This expression can now be compared to the

rate for impact ionisation created holes to see if the impact ionisation

process is significant.

if we just consider holes approaching the interface in a 5° cone about
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the normal, the disiribution in energy of incident holes due to an
electron current o‘HOuAm—2 (which is a typical driving current for the
MIS cevices incorporating l.angmuir-Blodgett films), is shown in
Figure 4.16. A limited cone angle is chosen because it is assumed

that if the holes were energetically capable of getting under some

hole barrier, then holes outside some narrow cone would be reflected
back. This mechanism is more fully explained in Chapter Two. There
are four curves for hole distribution versus energy in Figure 4.16,
three for different values of Ag and one using the isotropic distribution
approximation of Section 4.5.3. Curve (b) is for a typical value of Ao
while curves (a) and (c) are for the two extreme cases of no lattice
scattering (a), and for a value of >‘p substantially less than the typical

value (c).

To find the thermal hole flux restricted to the 5° cone, equation (4.63)
is multiplied by a constant equal to (1-cos{5°)). The distribution of
thermal holes is compared to that of holes created by impact ionisation
in Figure 4.17 and the total differential rate is shown in Figure 4.18.
It can be seen that the thermal rate dominates over the higher energies
with ihe alternative source of holes only being significant below
approximately 4.9eV. If we consider holes reaching the interface at all
angles, then we get the curves shown in Figures 4.19. There is an
overall rise of about two orders of magnitude but again it is only at the
lower energies that the impact ionisation becomes important. If there
were some kind of barrier to the holes at a sufficienﬂy low level to

filter out the thermal holes but provide little impedance to the hoies

under the barrier travelling through the insulator, then the impact
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jonisation process would indeed be significant,

Figures 4.20 and 4.21 give the probability that an incident electron
1.4eV above the Fermi level of 5.5eV, will produce a hole that will reach
the interface below a certain energy. The probability over all energies
is 18.5%, which compares well with the value of 16.3% obtained using

the isotropic scaftering approximation in equation (4.59). The difference
in these values at the Fermi energy will be due to the difference in the
general mean free paths for the holes and electrons, and the distribution
over 6, as well as the isotropic distribution over energy by itself. At
the lower energies, although hole production is less favoured, there

is a significant hole rate with about 5% of the incident holes more than

1.0eV below the Fermi level.

4.6 SUMMARY

The creation of holes in gold by an impact ionisation process, in which
an incident electron excites another from below the Fermi surface to
leave a hole in its old state, has been investigated and results obtained

giving the distribution of such holes cver the energy and direction.

Using this information, it has proved possible to model the process in
which an energetic electron, injected into the metal. produces a hole
which can return to the surface without recombining, and the probability

of such events occuring can be obtained.

Comparing the hole flux at the interface due to this process, for

currents typical of the devices which we are considering, to that for

- 78_



Fig.

4.

Prob. (00)

20

20

15

i0

T

1 | | | i

L1 43 45 47 &9 51 53 55

Ea (ev)

The probability of an incident electron of
energy E.+1.U4eV creating a hole capable of
reaching the interface below energy Ez(a)
compared to the results for isotropic
scattering (b).



Prob. (Q)

107+ -

i0'|-

41 43 45 47 49 51 53 55
B2 (ev)

Fig. 4.21 : Curve (a) in Fig. 4.20 using a logarithmic scale.



holes created thermally, it was shown that the impact ionisation process
was oniy significant at energies less than about 0.5eV below the
Fermi level. The subsequent transport of the holes through the

insulator into the semiconductor will be discussed in Cha;ﬁter Six.
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CHAPTER FIVE

SEMICONDUCTOR BAND ALIGNMENT

IN THE MIS DIODE

5.1 INTRODUCTION

Gaining an understanding of the behaviour of the electric field in the
semicohductor depletion region and in the bulk at higher voltages, when
the device is under forward bias, is an important step in modelling

the overall behaviour of the MIS device. The main aim of the work on
MIS structures reported in this thesis is to investigate the mechanism

by which holes are introduced into the valence band of the semiconductor.
However the holes are minority carriers and are expected to constitute
only a small fraction of the total current and have little effect on the
total current-voitages characteristics. Bearing this in mind, we attempt
to describe here the majority electron current in terms of the realignment
of the semiconductor bands under forward bias. In the process
particular attention will be paid to the behaviour of the Au/Langmuir-

Blodgett Film/n-GaP diodes fabricated by Batey et al1'2'3.

This allows
a direct comparison of theory and experiment. The calculations of the
alignment of the bands also gives the change with bias of the potential
across the insulating region and this is important for assessing the

various possibilities for the hole conduction mechanism between the

metal and the semiconductor through the insulator.
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5.2 DEVICE CHARACTERISTICS AT LOW BIASES

5.2.1 Semiconductor Barrier Height

An understanding of the behaviour of the semiconductor barrier height
is important for two reasons. First, any change in barrier height is
also the change in the level of the semiconductor valence band edge
relative to the metal Fermi level. If hole transport into the semi-
conductqr is through the barrier presented by the insulator rather
than by excitation under it*, then the realignment of bands will be
significant in that it alters the electric field across the insulator and
increases the number of holés incident on the metal-insulator interface

at energies below the valence band.

The second reason is that a rise in the barrier height” will affect the

majority carrier current from the semiconductor into the metal.

From Figure 5.1, showing the band diagram of the device, it is
straightforward to write an expression for the metal-insulator barrier

height ¢ .

= ¢, (V) + X, o+ alV) (5.1)

¢m S

where ¢b(V) is the semiconductor barrier height, A(V) is the voltage
drop across the insulator and XS is the difference in the electron

affinities of the semiconductor and the insulator.

* By hole conduction under the barrier it is meant that the holes
are able to travel across the insulator via some valence band
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It is assumed that the insulator does have some band stru.cture, and

has a conventional conduction band, as indeed is the case for devices
incorporating I1-VI| compounds as semi-insulators. Batey3 also reports
the devices including insulating Langmuir-Blodgett films show current-
voltage characteristics typical of the thermionic emission over an
aggregate barrier presented by both the semiconductor and the insulator,
with ideality factors very close to unity. Batey argues that the majority
carriers must be travelling throughthe insulator by either a conduction

band or some conduction level,

We can relate the electric fields in the insulator and semiconductor using

“Gauss' Law

& & FS(V) = eoeiFi(V) + QSS(V] {5.2)
with QSS(V) being the surface charge at the semiconductor-insulator
interface. The potential drop across the insulator A(V) is also given
by —Fi(V) 5§, where & is the insulator thickness. So using Fi(V) from
equation (5.2) in equation (5.1) we can now write
-X_+ & eosSFS(V') - Q__(Vv)

¢b(v) = SS

o i (5.3)

¢b(0)=¢> - X+ e.e F_(0) - Q__(0)

i (5.4)



From equation (5.3)

(V) = 4,000 = 8 | e e (FV)-F_(0)) - (Q (0)-Q (V)

£ E,
(O

(5.5)

Some of the MIS devices studied experimentally were driven at

relatively high current densities [105Am_2

}. This, coupled with the
~existence of an insulator layer, means that the semiconductor is likely
to approach a flat band condition and possibly have a negative diffusion
potential u')S(V) leading to an accumulation of electrons (negative charge)

at the interface. Under these conditions it is clearly inappropriate

to use the depletion approximation.

5.2.2 Electric Field in the Semiconductor

To find the electric field FS(V) in the semiconductor at the semiconductor-
insulator barrier Poissons Equation is solved in the semiconductor. At
a point in the semiconductor corresponding to a diffusion potential ¥

the charge density is given by:

o(y) = el (Ng" - Ny~ +p(¥) - n(¥)) (5.6)

where ND+ and NA' are the concentrations of ionised donor sites
and occupied acceptor sites respectively. p(y) and n(y) are the hole
and electron concentrations which can be expressed using Fermi-Dirac

statistics as
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N

p(t[)) = .V
1 +,exp[ Eg - bE, - |e|t!1]
kT (5.7)
and
n(y) = Ne
1 +exp Ef + |elv J
kT (5.8)

NC and Nv are the band edge density of states for the conduction and valence
bands respectively and AEf, as illustrated in Figure 5.1, is the difference
in potential between the Fermi level and the conduction band edge. E0

b

is the bandgap of the semicondutor.

In the bulk of the semiconductor, where V¥ is zero, the charge due to
the free carriers is equal in magnitude but opposite in sign to that

due to the donor and acceptor centres. Making use of this to re-express
ND+ and NA_ in terms of p(0) and n(0)} using equations (5.7)

and (5.8) for p(y) and n (y), Poissons' equations for the semiconductor

can be written as

dlg _ let [N, 1 _ 1
dx O 1+ exp[ AE, 1+ exp‘- Ee + |e|‘b]
kT l_ kT
- N 1 1
V —
1+exp[E —AEf] 1+exp[E -AEf‘|e|¢]
kT kT
(5.9)
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Restricting our attention to n type materials, AE_f will be small and
coupled with the fact that the bandgap Eg is in the region of 1eV or
more for typical semiconductors, (GaP has a bandgap of 2.2eV), the
last two terms can be ignored as they are negligible compared to the
other terms over all values of y. Of the two remaining terms, the first
dominates near to the interface for low biases, but in the bulk and

at higher voltages it can be significant. If it were omitted then
charge neutrality in the bulk would not be predicted. To solve
equations (5.9) it is integrated over y from the bulk. To do this the

left hand side of the equation can be written as

o) = ) (%)

then carrying out the integration, the square of the electric field

at the point corresponding to y = ¢' is found to be

FS2 (v") =(ﬂ)2 = 2lelNg kT In 1+exp[ AEf+|eN’|]

dx €€, lel kt
- v _ kT In{1+exp A
1 + exp -AEf] |e| kT
kT (5.10)

and the field at the semiconductor surface FS(V) is found by setting
y' equal to the diffusion potential Vg and taking the square root.
it is clear from the band diagram (Figure '5.1) that the sign of the

field will be determined by the sign of ws’ if P s is positive then
FS("’S) is negative and vice versa. Figure 5.2 shows the variation of
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the field over different values of tps. The chosen values for ¢

and the concentration of carriers are 9.0 and 1022m~3 respectively,
which are typical of the GaP used in the Langmuir-Blodgett film
devices. The two curves, curve (a) for the depletion approximation
and curve (b) obtained from'equation (5.10), show a good degree of
similarity with, as expected, a larger error at the lower values of
diffusion potential. On this evidence the depletion: approximation is
a very good one with agreement to three significant figures at the
higher values of ws. Figures 5.3 and 5.4 show similar curves for
different carrier concentrations and again the agreement with the

depletion approximation is good.

5.2.3 Surface States

Surface states will be present at the semiconductor-insulator interface
and also on successive molecular layers of a Langmuir-Blodgett film
when this is used to form the insulator. Just as surface states on
the semiconductor might lead to pinning of the Fermi level these
"insulator-insulator" interface states might affect the hehaviour of the

barrier height under bias. Batey et alz'3

has shown that, for

various thicknesses of insulator in Au/Langmuir - Blodgett film/n-GaP
devices, the semiconductor barrier height is essentially constant.

This can be explained if it is assumed that the surface state is sufficiently
high that the change in field, which must take place across the

insulator with increasing thickness, is the result of a change in

surface charge due to a slight variation in the semiconductor barrier
height. If the insulator field were to remain constant with thickness

then the semiconductor barrier height would be forced down, however
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in doing this there would also be an increase in negative charge at
the interface with more occupied surface states which would in turn
act to reduce the field. If the surface state density is sufficiently
large it is possible that the semiconductor barrier height need only
drop a slight amount before an "equilibrium" position is found. The
most dramatic change happens in going from one monolayer to three
(in the fabrication process it is not possible to produce just two mono-
layers) as the ratio of the final to initial insulator thicknesses is the
greatest. The actual change in field is dependent onthe value of a
(shown in figure 5.1). To produce a change in barrier height of less
than 0.01eV, which is less than the accuracy of experimental measure-
ments, the density of surface states has to be approximately

(uxwm) X Am"z -1,

eV If we take Batey's value of 1.6eV for the
aggregate barrier height and 1.4eV for the semiconductor barrier
height, then A is presumably of the order of 0.1eV, hence the required

“2ov71 which

surface state density needs to be of the order of 1017 m
is by no means an exceptionally high value, and -compares well with
values for the surface state density obtained for various layer

thicknesses from C2-V by Batey3.

One surprising result from Batey's data is that even at quite large
insulator thicknesses the proportion of surface states which
communicate with the metal is still quite large and with as many as
25 monolayers (*6103) the ratio of states in communication with the
metal to those in communication with the semiconductor is measured
to be 1.7. This sepération of surface states into two distinct species

follows the work of Card and Rhc)derick5 described in Chapter Two.
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Without any information about the distribution of those surface states

at present, it is reasonable to assume a constant density across the
band gap. It is also necessary to account for the relative communication
of these states with the metal and semiconductor. To obtain an
estimate of the relative numbers of these states, it is possible to fit

a decaying exponential curve over thickness to known results3

with some accuracy to give the ratio:

— = 8.93 exp(-0.067N) (5.11)

where Dsm and DSS are the densities of surface states in communication
with the metal and the semiconductor respectively and N is the

number of monolayers. The total density of surface states is of

course given by DS = Dsm + Dss‘

Returning to equation (5.5), it is now possible to make an estimate

of the change in the surface charge with the change in barrier height.
With the "metal states" an increase in semiconductor barrier height means
that more states are above the Férmi level, as shown in Figure 5.5(a),

and as these are now empty the change is positive and given by

Qe (V) = Qg (0) = le[Dg (6, (V) - 6, (0)) (5.12)

The change due to the "semiconductor states" is rather more difficult

to explain.
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The rise in the semiconductor Fermi level with voltage means that more
states are filled but this is offset by the rise in the semiconductor
barrier height. The rise in Fermi level with voltage is always

greater than that for the barrier height as the voltage is also dropped
across the depletion region so the overall change in surface charge
will be negative with more states being occupied. This is shown

diagrammatically in Figure 5.5.(b).

Q (V) - Q. (0) = -le[D (V- (b(V) - ¢,(0)))

(5.13)

Adding the changes described in equations (5.12) and (5.13) gives

the overall change in the surface charge.

Q. (V) - Q (0) = |e|Dg by (V) - ¢,(0)) - |e|D .V

(5.14)

5.2.4 Change in Barrier Height

" Combining equations (5.14) and (5.5) gives an equation relating the

change in semiconductor barrier height to applied voltage.

B0 = 1 el ) - felogy]

(E.E - |e|D)
I O S

(5.15)

Unfortunately, with FS from equation (5.10) it is not possible to

pfoduce an analytical expression for ¢b(V)—¢b(0) due to the equation's
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transcendential nature, however it is relatively straightforward to find
¢>b(V)-d>b(0) numerically using the Newton-Raphson iterative technique.
Figure 5.6 shows the variation of ¢b(V] with V for a number of different

17 -2 _4,-1

insulator thicknesses with a total surface state density of 10 ‘'m “eV

and Figure 5.7 is a similar set of curves for a smaller surface density

16 2eV—].

of 10" "m~
These results must be viewed with a certain amount of caution as the
insulator has been treated as perfect when considering the distribution

of electric field across the barrier and yet in allowing the communication
of surface states with the metal Fermi level electrical conduction is implied.
Provided that charge transport is small enough not to affect the electric

fields in the device, it is a good approximation to treat the insulator

as perfect.

The transport to and from the interface states does not have to be large
and is unlikely to be so, however the majority carrier transport over
the insulator barrier will become significant at higher voltages as the
diffusion potential is reduced. The results in Figures 5.6 and 5.7 are
therefore less trustworthy as the voltage increases and completely
unreliable at the top end of the scale where diffusion potentialé are

of the order of -2.0eV. Also the field across the insulator becomes
very high at the larger voltages (~108Vm-1) and there is the

additional problem of dielectric breakdown.

Despite the reservations expressed above, Figures 5.6 and 5.7 do

serve to give some idea of the behaviour of the bands, at least at the
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lower voltages. Even at the lower surface state density the semi-
conductor barrier height is effeétvely pinned at a particular value by
the interface charge for the thinner samples. It is not until the
diffusion potential approaches zero at a bias around 1.5V, that there

is any real change. However it is at this point, with the conduction
band edge of the semiconductor approaching the height of the aggregate
barrier, that the current due to electrons emitted over the barrier
starts to become too large to be ignored. For one thing, the bulk
resistance due to the semiconductor and its substratestarts to have

an effect on the general characteristics.

At large insulator thicknesses the pinning is naturally less pronounced as
2 large proportion of the surface states communicate with the semi-
conductor as opposed to the metal,and the barrier rises with the

voltage and the semiconductor Fermi level. The behaviour of the
semiconductor barrier height against insulator thickness is shown in
Figure 5.8. Results for two voltages are shown. The first set is for

a bias of 1 Volt which means that the conduction band edge is still about
0.5eV below the top of the estimated insulator barrier of 1.6eV. The

current due to the thermionic emission over the barrier is still fairly

small and the effects of the semiconductor bulk are negligible.

Figure 5.8 is not exactly comparable with Figures 5.6 and 5.7 because
in the latter the exact experimental values of Dsm/Dss for the different
insulator thicknesses have been used whereas equation (5.11) has been

used in Figure 5.8. However any difference is slight.

One apparently strange feature is that, at 1V, the change in ¢b is
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less for the lower surface state density at the lower thicknesses. At
first the opposite might be expected to be the case as in standard
Schottky barrier theory. However, it is necessary to take the smaller
number of surface states communicating with the semiconductor into
account. These states are important because the semiconductor Fermi
level rises faster than the barrier height with increasing bias and a
much larger proportion of the "semiconductor surface states" are affected

compared to the "metal surface states".

The effect of the surface states in communication with the semiconductor
rather than the metal is a steady rise in semiconductor barrier height
with voltage. This is because the surface state pinning level follows
the semiconductor level, so the '"semiconductor surface states" act to
push up the barrier height opposing the effect of the "metal surface
states". At a bias of 1 VoIt the "semiconductor surface.states" seem
to dominate slightly so the increase in surface state density will lead

to a small rise in barrier height.

The curve in Figure 5.8 for a bias of 2 Volts illustrates another aspect
of the effect of surface state communication with semiconductor. In

this case the field Fs(l,')) at the interface is now inverted and the effect
on the surface state is also reversed. The larger surface state’ density

leads to a lower semiconcuctor barrier height.

5.3 DEVICE CHARACTERISTICS AT HIGH BIASES

5.3.1 Electron Current

So far, a negligible electron current from the semiconductor into the
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metal has been assumed. At higher voltages this is not the case and
some devices have been driven at current densities in the region of
10°Am™2 with external voltages of around 2 and 3 volts. Figures 5.9
and 5.10 show current-voltage characterisitics obtained by Batey3 for
Au/Langmuir-Blodgett film/n-GaP devices incorporating Cadmium Stearate
and w-Tricosenoic acid respectively as insulators. In the characteristics

three separate regions can be discerned.

The first, region (a), is quite typical of thermionic emission, being

linear in 2 Log J vs V plot, while region (c) is expected due to bulk
resistance effects in the semiconductor and is typical of the behaviour

of curves for Schottky barriers at higher voltages. Region (b), however,
is a departure from Schottky barrier behaviour. It has been suggested3
that this behaviour is due to the conduction mechanism in the Langmuir-
Blodgett films. It is, however, very noticeable that Figures 5.9 and

5.10 corresponding to different Langmuir-Blodgett films are very

similar and this suggests that is it the semiconductor which controls

the current in region (b).

5.3.2  Modelling the Majority Carrier Current

The nature of the curve in region (a) of Figure 5.9 and 5.10 indicates
thermionic emission and it is reasonable to attempt to describe the
electron current into the metal using thermionic emission theory in
the presence of a finite insulator barrier. It must be recognised that
the current flows thrdugh the semiconductor and therefore part of the
external voltage will be dropped across the semiconductor bulk. The

current is small at low biases but as the bias approaches the barrier
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height the current becomes substantial and bulk resistance effects

are expected theoretically, and observed experimentally.

With some of the applied voltages across the semiconductor it is necessary
to use the thermionic emission theory with some care, taking account

of the rise in the conduction band edge. It is also necessary to
consider the effect on the electric field at the insulator-semiconductor
interface due to the non-zero field in the bulk. The voltage drop in
the bulk implies an electric field which is assumed to be constant over
the whole length of the semiconductor. The situation illustrated in
Figure 5.1 with flat bands in the bulk is changed to either that shown
in Figure 5.11 when there is still some depletion, or to that shown in
Figure 5.12 for electron accumulation at the intérface. Splitting the
potential of the conduction band edge into two components, one due

to the bulk field and the other due to the band bending at the barrier,
the total change in potential with distance x from the interface is given

by :

dE (x) ,
¢ = F(x) = dv , F

dx dx (5.16)

where FB is the constant bulk field and y is again the diffusion potential
but is now defined in respect to the semiconductor Fermi level which is
assumed to be sloping at some constant gradient. Also by bearing in
mind the sloping Fermi Ievel,_ equations (5.7) and (5.8) can be used

to express the carrier concentrations. So by solving Poissons equations
(equation (5.9)) the field due to the band bending, dy/dx, as a function

of y is given by equation (5.10). Substituting into equation (5.16),the
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total field is

Fly) = Fg-sgn(y) ([emC)?’ KT In { 1+exp| AEf+|e|w]
e, le| | kT
_ v _kT In 1+exp[ AE¢ )2
1+exp [ -AE le| KT
KT (5.17)

This is the first correction due to the builk field that is necessary.
The other thing that needs to be considered is the treatment of the

thermionic emission over the barrier at the higher biases.

At low biases, with little of the applied voltage needed to drive the
small current through the semiconductor bulk and therefore virtually
all of the bias across the barrier region, the current is accurately

described by equation (2.19) which is reproduced here for reference:

Je = A*T?exp (;IEL¢_> exp<_|i|l) -1

kT kT (5.18)
where ¢ is now the agagregate barrier hg‘(ght. In deriving this res_ult
Henisch5 sets an imaginary boundary, at a distance AB from the
insulator-semiconductor interface, and assumes that any electron which
crosses this boundary and is sufficiently energetic to surmount the
barrier will reach the metal. This is an approximation equivalent to
setting s equal to the electron mean free path in the sem/conc]uc*'or‘. The

derivation of equétion (5.18) assumes that the Fermi level is constant
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in the semiconductor. However, with high applied biases this is not
the case and the Fermi level at x = }‘B is increased by )‘BFB Volts and

as it is the distribution of electrons at x = AB that will.:govern the
current over the barrier, the voltage V in equation (5.18)} representing
the potential across the insulator - needs to be replaced by the potential

across the insulator and up to x = )\B in the semiconcductor, given by

B (5.19)

VTE is an effective voltage for use in calculating the thermionic emission
current and VI is the voltage dropped across the insulator alone. |If
the total applied bias is V then it is straightforward to rewrite the

field in the semiconductor bulk FB as (V-Vi)/WB, where WB is the
semiconductor thickness, and combine it with equations (5.18) and (5.19)

to produce a revised expression for the thermionic emission current.

Je = A*T2 exp(—|e|¢) exp Jﬂ(vl(]‘j\g)Jr VE) =1

kT kT

5.3.3 Effective Barrier Height

The barrier height ¢ is given by the highest part of the insulator
barrier. |If the effects of image charge are included the barrier is
modified somewhat with the potential barrier being rounded off by the
Coulombic image charge. field and resulting in a reduction in the

barrier height. The basic theory of image charge barrier lowering is
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reviewed in Chapter Two where the effect on ¢ is derived for a constant

negative field in the barrier.

The profile of the insulator barrier depends on the thickhess of the
insulator as well as the bias applied to the device. The three possible
profiles are illustrated in Figure 5.13. At low bias when the applied
field across the insulator is negative, the profile can be either of
those illustrated by Figures 5.13(a) and 5.13(b) depending on the
insulafcor thickness. In Figure 5.13(a), corresponding to the case .
treated in Chapter Two, the insulator is wide enough to allow the image
charge field to fall to a value equal and opposite to the applied field
within its width and there is a distinct peak, whereas in Figure 5.13(b)
this is not reached due to the thinner insulating barrier and the
maximum barrier height is at the semiconductor-insulator interface.

if the applied field is positive, however, only the situation in Figu‘re
5.13(c) is possible, because the applied field is of the same sign as
the image charge field, and the maximum is always at the semiconductor-
insulator interface. In the last two cases it is straightforward to write

the revised barrier height as

o= by + X le]
uﬁei%(zﬁ)

(5.21)

where the last term is the correction due to the Coulombic image

charge potential.
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5.3.4 Effect of the Potential Step

Just as electrons entering the metal are funnelled into a narrow cone
due to the conservation of momentum (see Chapter Two), so we can
expect that majority carriers approaching the potential step at the
insulator-semiconductor interface will need to be inside a similar cone
if they are to be transmitted into the insulator. With a Maxwellian
distribution, the mean energy of electrons crossing the insulator

is -3- kT above the barrier height. For an electr on of tlhis energy to
be transmitted throught the interface, it must be incident within a

cone about the interface normal with half angle given by

B:tan—1<' m; (3kT+ ¢—¢b—XS+' le] ))E

e e 6
mSXSZ 8 €,

(5.22)

The smallest values of 6 will occur with the smalleét clearance of the
electrons over the potential step. This will occur when the maximum
of the. insulator barrier occurs at the insulator-semiconductor interface.
In such a case, with the barrier heigh‘t given by equation (5_.21); the
value of 6 obtained is approximately 25° depending on the value of XS.
Assuming the distribution of electrons reaching the interface to be
isotropic, the fraction of them in this cone will be (1-cos?8) and using
the value obtained above for 8 it means that only about 20% of the
electrons will be transmitted. This result can be seen to be supportive
of the thermionic emission model, as the large number of carriers unable
to cross the interface will be reflected back into the semiconductor

h'elping to keep thermal equilibrium right up to the boundary. It
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also supports the use of the effective voltage VTE' defined in equatio'n‘
(5.19), as the only majority carriers transmitted will have to travel

in a direction close 10 the normal of the interface and therefore the
measurement of the mean free path back along the normal give a fair
estimate of the point in the semiconductor at which the electrons
actually being transmitted can be reasonably expected not to

experience any further interactions. As in standard kinetic theory,

it can be expected that the rate of carriers impinging on the interface
from directions close to the normal will be greater than those at the
larger angles, so bearing this in mind, no correction has been attempted

in the following sections to account for the potential step.
At the metal-insulator interface, the electrons are focussed into a
narrow cone, but in this case all electrons reaching the interface are

able to be transmitted.

5.3.5 Current-Voltage Characteristics

We are now in a position to produce more realistic predictions of the
be_Hévibur »ofvthe éémiconductor barrier height at high bias. The"
current across tt%e ba-rrier, given by equation (5.20), must be eq-ual
to the current in the bulk of the semiconductor. The bulk condu_ction

is assumed to be ohmic, and hence:
2

(V-v)) _ AT exp (-|e|¢ ) exp( le| (VI( 1—AB) + VAB))—1
Rg kT kT Wyl W

(5.23)
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Unfortunately this equation is trancendendal, and V| is found
numerically using the Newton Raphson technique. Equation (5.15),
giving an expression for the change in semiconductor barrier height
with voltage for low biases, can be readily adapted for use at higher
voltages by using VI' the voltages across the insulator, instead of
the total voltage V. This is because the semiconductor Fermi level at
the interface with the insulator only rises by V|. Combining the
revised form of equation (5.15) with equation (5.17), which defines
the semiconductor field FS(V], we can now model the band behaviour
‘at higher voltages as the effect of higher current on the barrier and

bulk have been taken into account.

Figure 5.14 shows current density-voltage characteristics calculated
using material constants consistent with the Au/Langmuir-Blodgett
film/n-GaP devices for insdlator film thickness of 1,7,9,11 monolayers,

-2 -1

and assuming a constant surface state density of 1017m eV

Figure 5.15 shows similar curves for a surface state density of

16 2eV—1. In both cases there is barrier limited conduction at

5%10 °m~
the lower voltages moving directly to the bulk limited case at an

~ external bias of around 1.5Volts. These rgsults obviously do not
predict the region (b) in Figures 5.9 and 5.10. However, the work
of Calandra and Santoro7 shows that rather than having a continuous
distribution of surface states GaP has a band of states beginning
approximately 0.7eV above the valence band edge and with a width of
about 0.7e¢V. Unfortunately rthe authors do not give the density of
states. Their work is somewhat borne out by the experimental results

of Straub et al8 showing a sharp rise in the surface state density,

starting at about the same point as predicted by Calandra and Santoro.
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However, although a maximum is reached, the theoretically predicted
fall off in the surface state band 1.4eV above the valence band edge,
is not so pfonounced. It is interesting that the band's lower edge,

being 1.5eV below the conduction band edge, seems to correspond to

a pinned Fermi level and a barrier height of 1.4eV.

Representing the intrinsic band by a region of constant surface state
density of width 1.2eV, as suggested by the results of Straub et al,
the current density-voltage characteristics now obtained are shown

1 16

in Figures 5.16 and 5.17 for densities of 1017m_2ev— and 5x10 2

ev!

"
respecti'vely. There are now three distinct regions to the cdrve, the
first, at low voltages, is due to normal thermionic emission with the
barrier height effectively constant. However, as the voltage rises,
the barrier height gradually becomes larger until the second region is
reached, where the metal Fermi level moves below the surface state
band. Any change in surface charge is now entirely due to the
behaviour of the semiconductor Fermi level, hence the barrier height
rises more rapidly following EFS in Figures 5.11. Also the diffusion
potential is reduced more slowly and the rise in current is reduced.
These conditions hold until the semiconductor Fermi level moves above
the surface state band, and is no longer able-to push up the barrier

height. There is then a sudden rise in the current and finally the

flattening off due to the bulk resistance effects.

Of the two sets of characteristics those more closely resembling the
experimental curves are in Figure 5.17 and indeed the match seems to

be quite good. The higher surface state density in Figure 5.15
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acts to push the barrier height up more in region (b) and the rise in
the current is more markedly affected. It also means that the semi-

conductor Fermi level does not get above the interface state band until

higher voltages.

5.3.6 Barrier Height Variations

Figure 5.18 shows the variations of the semiconductor barrier height
in the calculation of the current voltages characteristics. The surface

16 Zev—l

state density is 5x10 "m_ , the same as in Figure 5.17, which gives
a good fit to the experimental results of Batey3 reproduced in Figures
5.9 and 5.10. The curves, in Figure 5.18, are indicative of the fact
that at the higher biases most of any additional external voltage is
used in overcoming the bulk resistance, with the barrier resistance
offering little impediment to carrier flow. Hence the barrier height is

essentially constant.

The variation of the barrier height with insulator thickness is shown

in Figure 5.19 for constant external biases of 1,2,3 and 4 Volts. The
thicker the insulator the more of the external voltage it takes up, leading
to the rise in ¢b, and eventually all of the bias is dropped across the
barrier region. The point at which the applied bias is virtually all
dropped across the insulator corresponds to a fairly sudden decrease

in fhe gradient of fhe curve. The further increase in the semiconductor
barrier height is due to the increase in the proportion of interface
statés‘communicating with the s.emiconductor with increasing insulator

thickness and as a result oy being more effectively pushed up by EFS'
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If the current is kept constant rather than the voltage, the

behaviour shown in Figure 5.20 results. There is an almost exponential

rise in semiconductor barrier height with insulator thickness. This

can be understood by considering the fact that as the insulator width

increases more of the external voltage is across the barrier region,
and there is less across the bulk, resulting in a lower current. To

increase the current a higher voltage is requiréd and this gives a

larger barrier height. At these high currents any additional voltage

is almost entirely dropped across the semiconductor bulk and this

explains why the curves for the different currents are quite close

together.

5.4 SUMMARY AND CONCLUSIONS

This chapter has discussed a model to describe the behaviour of the
semiconductor conduction and valence bands when an MIS device is under
forward bias. |In particular it has attempted to explain the behaviour

of the Au/Langmuir-Blodgett film/n-GaP devices fabricated by Batey

1,2,3

et al by assuming its behaviour to be dependent only on the

majority electron current.

As suggested by Batey, the Langmuir-Blodgett insulating layer was
given some form of conduction band producing a finite barrier to the
electrons enabling the majority carriers to pass over the insulator by
thermionic emission. A simple theory was produced to model the
behaviour at the lower voltages when the thermionic current was

negl‘i'gible. However, the effects of the voltage dropped across the
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bulk of the semiconductor on the system had to be taken into
account to understand the behaviour at higher voltages. The final
stage in producing this model was to introduce a more realistic
distribution of surface states for the semiconductor which included

a band of states in the energy gap.

The accuracy of this model was tested by direct comparison of the
current-voltage characteris tic with the experimental results produced

by Batey2 '3.

The two sets of curves matched very well with current
densities being comparable and with features of curves occcuring at
approximately the same points. As can only be expected there are some
discrepancies between theory and experiment, either due to inadequacies

in the model, or possibly inconsistency in device fabrication, but these

are not large enough to reduce confidence in the model.

Using the same parameters as those used to produce the current-
voltages curves, we were then able to look at the variation of the
semiconductor barrier height and valence band edge as a function of
both applied voltage and insulator thickness. Of particular interest
in this case is the variation with thickness, while the majority current
is held constant. Figure 5.20 gives these characteristics for three
different current densities. As described in Chapter Three,
electroluminescent measurements on the two Langmuir-Blodgett devices
incorporating Cadmium Stearate and w-Tricosenoic Acid, at a constant
driving current of 105Am_2, showed a maximum in the energy

conversion efficiency at an insulator thickness of aroung 2708, It is

very interesting to note that in our model this corresponds to a
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semiconductor barrier height of approximately the band gap or, in
other words, to the valence band edge being at a similar energy to the
metal Fermi level. The significance of this observation will be discussed

in the next chapter when the minority carrier transport though the

insulator is considered.
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CHAPTER SIX

CARRIER TRANSPORT THROUGH THE INSULATOR

OF THE MIS DIODE

6.1 INTRODUCTION

In the last two chapters we have dealt with important electronic
processes in the metal and the semiconductor. To complete the
description of the forward biased MIS diodes, it is necessary to look
at the current transport mechanisms in theinsulatingregion. In the
preceding chapter it was explained how the majority carrier current

in the Au/Langmuir-Blodgett film/n-GaP system could be adequately
described in terms of thermionic emission theory. Similar conclusions
have been drawn for diodes incorporating lI-VI semi-insulators. This
implies that electron transport through the insulator is relatively easy

with emission from the semiconductor being the limiting factor.

Despite this last observation some attention will be paid to the majority
carrier current in the Langmuir-Blodgett film device. The existence
of sheets of interface states between the successive insulating layers
can lead to some novel trapping mechanisms. These mechanisms will

be investigated in the following sections.

The transport of holes through the insulator is less well understood

so the main aim of this chapter will be to identify and investigate hole
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tranport mechanisms in the respective devices.

6.2 TRAPPING OF ELECTRONS IN LANGMUIR-BLODGETT FILM
INSULATORS
6.2.1 Interface States

Associated with successive layers in the insulator there will be two-
dimensional sheets of states, which, if unoccupied, are available to

play host to electrons passing through the insulator. These states

could be particularly important in connection with the majority carrier
current which appears to be the result of electrons in some conduction,

or quasi-conduction, band in the Langmuir-Blodgett film (see Section 5.2.1)
Later in this Chapter the possibility of the excitation of electrons from

these traps as a hole creation mechanism. will be discussed.

In investigating the trapping at these states we will make the usual
simplifying approximation that the density of interface states is uniform
over both area and energy. This approximation will enable the problem

to be treated analytically.

6.2.2 The Trapping of Electrons

With the transport of electrons from the semiconductor into the metal
there is always the possibility that some will be trapped at unoccupied
interface states. One mechanisms for this, which is also a hole creation

mechanism, is the trapping of an electron with the excitation of another
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from a trap to the conduction band. In the following sections we will
proceed to calculate the probability of such an event. This analysis
will be similar in approach to the procedure used in Chapter Four

with the use of perturbation theory.

Once an electron has entered the metal it is unlikely that it will interact
with insulator interface states as the electron-electron interaction is
heavily screened. An electron could only be expected to interact

with interface states if it were within a few angstroms of the Ml interface.

6.2.3 The Perturbing Potential

With the metal-insulator interface nearby it is expected that the metallic
screening will have an important influence on the interaction potential.
Describing this effect by an image charge leads to an interaction
potential which is of the form of an electric dipole with its origin at

the interface and given by

; :
uﬂeeo r (6.1)

with r being the position vector of the injected electron relative to the

centre of the dipole and d the dipole moment whose magnitude is

expressed as

|d] = x]e] (6.2)

where x is the length of the dipole.
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This potential, as opposed to a Coulombic perturbation will be used to

described the perturbing effect of the injected electron on the system.

6.2.4 Transition Rate

Referring to Figure 6.2, if we consider an electron travelling through
the insulator in a particular State 1, the transition rate for the inter-
action in which it is trapped at State 1' with the subsequent emission
of another electron from .State 2 (a trap) to State 2', is given by

Fermi's Golden Rule No.2 as:

TR = 2n[<y'|W|p>)s (E'-E) (6.3)
o .
¥ and y are the final and initial wavefunctions of the system, W is the
perturbing potential and the Dirac delta function ensures energy

conservation.

6.2.5 Matrix Element

To proceed:, it is necessary to evaluate the matrix element <{y'|W{v>.
Assuming the insulator conduction band to be parabolic the incident
electrons will have wavefunctions of the free particle form. To
describe the wavefunction of trapped electrons is more difficult.
The wavefunctions are expected to be short range, but there is no
available information on them so it is reasonable to fepresent them

as decaying exponentials.
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¢ = A (6.4)
where A is the normalisation constant. Calculating A in the normal
way and assuming the wavefunction to be rapidly decaying, that is
o relatively large, the wavefunction can be represented by a delta
function with a prefactor chosen so that the delta function gives
the same contribution as the exponential to overlap intergrals involving

other slowly varying wavefunctions,

¢ = 81 8(r)

3
a /2
(6.5)

The matrix element can be written as:

ikgi.r ik
M= 64 el'—2 22 - =1 A -
LI §(Rr ) |W(ry.rylle S(Ry T, )
o, 0,

(6.6)

with the position vectors of the traps being given by Ba and _R_b

The origin of spatial co-ordinates is taken at the metal-insulator
interface. The subscripts 1 and 2 refer to the incident and: secondary

electron respectively. Substituting for the perturbing potential from

equation (6.1) it is straightforward to integrate over r. and r,y to

1
yield:

2 (6.7)
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To produce a more useful form of d. BZ/R% cylindrical p'olar co-ordinates
are used with the origin chosen so that 5_1 is normal to the interface
and defining the z axis. Referring to Figure 6.1 and using the fact

that equation (6.2) becomes:

|d| = 221 le| (6.8)
and the scalar product in equation (6.7) can be written as:

d.r = 2z, |e|? R,cos® (6.9)
By writing cos & and R2 in terms of z and y, where y is the radial
distance from the z axis and is illustrated in Figure 6.1, equation

{6.7) now becomes:

IM| = 16 e] 2242, |
3
€€ 90.1 zaz/i- (222+y22)3/2 (6.10)

6.2.6 Mean Free Path of the Incident Electron

The transition rate for the process described, with the incident electron
in State 1 interacting with a trapped electron in State 2, is found by
substituting the matrix element from equation (6.10) into equation (6.3)

to give the expression:

TR = 2__( 16 |e]? )2 u212222

3 —_——
72 2
qa ee on1 (AEI) a2 (AEZ) Q (222 + y2)3

x  §(E; +E, - Eyy - Ey) (6,11)

- 111 -



where E1 and E1, are the energies of the incident electrons before and
after the transition and E2 and'Ez, are the initial and final energies

of the excited electron. With the energies of the trapped electrons
measured relative to the top of the insulator valence band at the metal-
insulator interface, as illustrated in Figure 6.2, the Dirac delta function

can be re-written as:

5(E1+E

2 EpEg)

1]
O
S
|2
—
=
=1
N
|
~
N
L)
S
+
>
m
N
|
>4
m
—
S

(6.12)

Equation (6.11) only gives the transition rate between individual discrete
states with the correct 6ccupancy, so to find the overall transition rate

of the electron from State 1 it is necessary to sum over all other possible
transitions. First integrating over all states kz, (expressed in cylindrical

polar c0“-ordinates) and assumed unoccupied }:

TR ) m* (2m*>% ( 16 le|? )2
. ¥, %
1',2 ™3¥Q 152 E€y Oy Z(AE1)oz2 (AE2

1
2 2 2 2 - 2
x  4z,%z, (ﬁ k; . OE, AE1>

(222 + y22]3 2m*

(6.13)

As a constant distribution of traps over area and energy is assumed,

the summation can be rewritten as:

1‘22 = Z [Dsy1d61dy1dAE1)(DsyzdezdyszEz)
Yy Z.,2

172 (6.14)
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where now the summation is just over the set of insulator interfaces.

First perfroming the integration over Yy it is a reasonable approximation

to use the limits 0 to = to produce:

Noj=

2
TR 16]e]?Dg 2m |

M
|5
|

) 7 %
2,52, | | -hQ e€0a12(AE1)_a2 (BB, )/ \h?

X

&

1
z,? 'h?k17 + AE, - AE1>2

X yldeldy1dAE1dAE2 (6.15)

In general we might expect the value of a for a particular trap to
depend on its energy, but the inclusion of that here would lead to
intractable integrals. In the rest of the analysis we shall assume o
to be constant over the energy range. This is by no means a drastic
approximation in comparison to the assumptions already made about

the wavefunction of the trapped electrons.

Before integrating over AE2 it is necessary to establish the energy limits
of suitable occupied states. It is proposed that there is some position
dependent quasi-Fermi level above which the traps are empty and below
which they are full. Writing this position dependent quantity as L(Zz)
it is clear that it forms the upper energy limit for states from which
electrons can be excited. The lower limit is the energy at which
electrons are only just able to reach the conduction band edge and is
i

given by AE1— The limits of AE1 can also be calculated in

2m*
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a similar manner. The lower limit of AE1 is given by L(Zl)' because
the state should be unoccupied and the upper limit is determined by
the requirement that just enough energy is lost to allow the emission

. Ak ?
of another electron that is L(Zz) + 1.

m*

The integration over AE1 and AE2 are straightforward and vyield the

result:

2 2 1
TR = Z 8m* 16]e| Ds 2m ‘
2.,2 3 3 2
1°%1 1503 Q €€, 0 A
% 212 %2k12 + L(z,}) - L(zy) 5/2
—_— 2 1 y1de1dy1
222 2m*

(6.16)

y1d61dy1 is simply the elemental unit of area and this just introduces
a factor of A, the area of the interface. Replacing the system volume

by A8, where § is thetotal width of the insulator, gives:

2

2 1
2.2, 15443 esoa3 2
5
7.2 A2k, 2 /
x 171+ L(zy)-k (7)) 2 (6.17)
8 222 2m*

The final summations over z and z, can only be done numerically when
applying equation (6.17) to a definite system with a given number of
Langmuir-Blodgett layers (on the assumption that the behaviour of

L(z) can be modelled).
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Equation (6.17) gives the transition rate electrons passing through the
film. Dividing by the velocity of the incident electron gives the inverse

mean free path for an electron. Hence:

Y 5 !
. :Z 156 k1 ;EO o )2 M
7 8m* 16|e|?D 2m*
1 SS

2,

2

212

X §z.2 ( /ﬁ2k12 N L(Zz) _ L(Z1)\) 2/5

2m* (6.18)

6.2.7 The Effect on the Majority Carrier Current

To investigate the effect of the electron trapping mechanism described,
it is easier to work with the expression for the transition rate (equation

(6.17)).

By substituting into equation (6.17) the numerical values of the physical

constants, including the free electron mass for m* and an estimate for

a = 5x109, it is found that

) - 2 2 2 2 .
TR= ¥ (3.5x10 2% Ds * 7% (1 Atk ? o b(zy) L(Z1)>5/2
1

2107 s z,2 \|e|l 2m* lel le]
(6.19)

where now D_ is the density of interface states in units of m ZevT,

Unfortunately there is little published data on the density of states

at the interface. Sugi et all estimate that films produced using
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cadmium stearate will have values of DSSin the order of 10 'm “eV
This is equivalent to assuming that there is a state for each molecule

in the Langmuir-Blodgett film. Lundstrom et al2 predicted that with

such a large density of interface states there would be a strong
anisotropic conductivity parallel to the insulating layer. However,

this has not been experimentally verified3. In their work on an

InP MISFET, Roberts et alu’5 produced MIS structures incorporating
cadmium stearateand cadmium arachidate. The excellent results obtained
for this device indicated that the interface state densities were quite

low with the -densi-ty at the Langmuir-Blodgett film-semiconductor interface

being measured at 3x10' T 2ev !,

Se -1 -2

Expecting the interface density of states to be w]O1 V. m*~, an
approximate value for the transition rate is given by:
2 —
TR ZZZ 3521 ~ 35n sec !
1°%2 222 S (6.20)

where n is the number of monolayers.

As describedin Chapter Two, the majority of the electrons emitted

into the metal from the semiconductor will have an energy roughly

3/2kT above the peak of the barrier presented by the insulator. There-

> 1 and the time taken

fore electrons have a typical velocity of 10°ms
for them to travel through the insulator will be approximately 5/1055ecs.
The probability that an electron will be trapped in the manner described

is found by multiplying the transition rate by the transit time to give:
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prob ~ 3.5n x 107" (6.21)

This suggests that the rate of trapping by the mechanism will be

negligible compared to the total current and will not adversely affect
the validity of the thermionic emission model adopted in Chapter Five.
However typical devices are driven at current densities of 105Am_2
and the process might well affect the distribution of filled interface

traps because as many as 2x1020 per second per square metre can be

expected to take place.

6.2.8 Trapping as a Possible Hole Creation Process

The trapping mechanism described in the previous sections could also

be an important hole creation mechanism. It is possible that an electron
injected into the insulator will be trapped with a secondary electron
being excited from below the semiconductor valence band edge at the
insulator-semiconductor interface. There is also the possibility of an
enhanced hole population in insulator interface states at energies below
the semiconductor valence band edge. These processes have been

“illustrated in Figure 6.3.

One of the processes illustrated concerns the excitation of an electron
from the semiconductor valence band to the conduction band. This
requires the incident electron that this trapped in the insulator to

lose an energy which is equal to or greater than the semiconductor band
gap. As previously pointed Qut, the majority of electrons being injected
into the metal are within ~3/7kT of the top of the insulator barrier.

It is also expected that insulator trap states will be occupied by
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electrons at least up to the Fermi level. This means that the top of
the insulator barrier must exceed the metal Fermi energy by the semi-
conductor band gap energy or more, so that transitions of sufficient
energy to unoccupied trap states are possible. Using the results of
the model developed in Chapter Five, it can be seen in Figure 5.18 that
we could only expect this threshold barrier height to be reached at an
external bias of greater than 2V. This value is well in excess of
the biases at which electroluminescence was observed experimentally

in Au/cadmium stearate/n-GaP devices fabricated by Batey et al6'7.

There will be a similar threshold voltage for hole creation at interface
states below the level of the semiéonductor valence band edge, although
the exact value will be dependent on the position of the interface at
which the hole is created. This is simply because of the change in
potential across the width of the insulator. Therefore it appears that
hole creation , at either the insulator-semiconductor interface or in the
insulator itself, with an electron excited from a state below the level

of the semiconductor valence band into the conduction band, is not a

significant process in the MIS diodes investigated.

A third précess, which is possible, is the excitation of an electron in
the semiconductoer valence band to an unoccupied' interface state on the
insulator-semiconductor boundary. As these interface states exist in
the band gap there is no threshold bias for this process. For such a
transition to produce holes systematically it would be necessary for the
trapped electrons (incident and excited) to be removed to the semi-

conductor conduction band or the metal by further processes.

- 118 -



6.3 . LANGMUIR-BLODGETT FILM HOLE TRANSPORT PROCESSES

6.3.1 Direct Tunnelling

The simplest mechanism for the transport of carriers through a thin
insulator is quantum mechanical tunnelling. The theory developed by
Card and Rhoderick8 for an Au/SiOZ/Si device, which was reviewed in
Chapter Two, deals specifically with tunnelling and treats the insulator
as perfect in all respects. These authors were successful in explaining
the behaviour of the devices they had fabricated with thermally produced
Si028. In the review, given in Chapter Three, it was pointed out

that the tunnelling theory of Card and Rhoderick8 has been used to
explain the behaviour of diodes fabricated.by several groups. However
it is very unlikely that direct tunnelling will be the dominant hole
transport in devices incorporating Langmuir-Blodgett films because of
the relatively large insulator thicknesses used in the devices with the

highest efficiencies.

This can easily be demonstrated by using the WKB approximation9 to
give the tunnelling transmission coefficient as:

$
T = exp -2 j k(z)dz (6.22)

where z is the direction normal to the metal-insulator interface and
is measured from this interface. k(z) is the magnitude of the (imaginary)
wavevector in the barrier region. For a typical majority carrier current

2

of 105Am— the electron concentration in the insulator will be approximately
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10'8m73 which is not sufficiently high enough to affect the electric field
significantly. Equation (6.22) can, therefore, be rewritten as the
single parabolic band approximation as:

§

2m(E_(2)-E) g,

H? {6.23)

T = exp} -2

where EC(Z) is the conduction band edge of the insulator given by:

EC(Z) = e ¢’m - (¢m_ (¢, + Xs) z + EFm

8

with the symbols being defined in Figure 5.1. We are primarily
concerned with the rate at which electrons are able to tunnel from the
semiconductor valence band into the metal. This is equivalent to holes
tunnelling from the metal into the semiconductor. Assuming that the
hole current is insulator controlled and that holes reaching the
insulator-semiconductor ‘interface are immediately removed to the bulk
of the semiconductor, the only other factor affecting the minority carrier
currént will be the supply of holes at the metal-insulator boundary.

- As the semiconductor valence band moves upwards with respect to the
metal Fermi level the number of available states in the metal occupied
by the holes and at a suitable energy to recesive valence band electrons
increases and must be taken into-account, If the hole occupancy of
the states is described by Fermi-Dirac statistics the tunnelling rate

will be approximately proportional to:
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1 + exp (SEF'm _i>
- co kT
The integral over z can be readily carried out to give
' ¥, ) %
T = 26 (2m[ei> [(¢m+EFm—E) ~(Egtopt X5 E) ]
— 2
3(¢m (¢b+xs)') A
(6.25)

but, the integration over E needs to be done numerically. Figure 6.4
presents results for an Au/Langmuir-Blodgett film/n-GaP device under

a constant current of 10°Am 2.

Following the argument of Chapter
Five the barrier height is taken to vary as shown in Figure 5.20. The
three curves in Figure 6.4 are for different values of effective mass.
Taking the effective mass to be the same as the free electron mass,
curve (a) is obtained and it can be seen that a very sharp fall in

the tunnelling current with insulator thickness is to be expected. An
effective mass of 0.1me, where L is the free electron mass, gives
curve (b). Again there is a fall in tunnelling current, although in
this case it is not as great as curve (a) and thére is a shoulder around

225 R, This is a result of the semiconductor barrier height rising

faster at larger insulator thicknesses under the constant current conditions.

A peak can be reached when the valence band reaches the same energy as
the metal Fermi level. |If the rise in the semiconductor valence band

edge with insulator thickness is sharp enough the increase in available
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holes at the metal-insulator interface will more than compensate for the
reduced transmission coefficient of a range of insulator thickness.
However, when the valence band edge and the EFm are aligned the
rise in the available hole concentration will not be sustained. Above
the metal Fermi level all the electron states are essentially empty so
the rise in the available hole concentration is only proportional to the
density of states (which is approximately linear). This is to be com-
pared with an exponential rise below the Fermi level. Therise in the
available hole concentration at the metal-insulator interface does not
compensate for the decrease in transmission coefficient with insulator
thickness unless the effective mass of the carriers is less t‘han 10—2me
Curve (c) in Figure 6.4 shows the case when the effective mass is
10 %m .

e
What has not been taken into account in equation (6.24) and Figure
6.4 is the existence of holes at the metal-insulator interface w‘hich have
been created by the impact ionisation process in the metal described in
Chapter Four. As shown in Figure 4.18 (calculated for gold with a
typical Schottky barrier height of‘l.LleV) the hole flux at the metal-
insulator interface is dominated by the impact ionisation process at
energies approximately 0.6eV or more below the metal Fermi level. As
the semiconductor valence band is an energy ¢>b—Eg below the metal
Fermi level, Figure 4.20 demonstrates that we can expect the impact
ionisation created hole flux to be significant for the lower insul‘ator
thickness (that is for values of 8< 130R). Despite this it will not be
included in the calculation at present because the increase in the

available hole concentration produced by impact ionisation as the valence

band rises is linear rather than exponential. This being the case,
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the increase in the available hole concentration cannot be expected to
compensate for the exponential decay with thickness in the transmission
coefficient. However, what can be concluded from Figure 6.4 is that

if a tunnelling mechanism is responsible for hole transport through the
Langmuir-Blodgett film, the some enhancement of the transmission
coefficient is necessary to produce the rise inthe:minority carrier

injection ratio observed experimentally6’7.

6.3.2 . Poole-Frenkel Conduction

Poole-Frenkel conductionmis field activated and has been renorted to be
an important electron transport process in Langmuir-Blodgett films”

especially at high fields.

The basic ideas behind the process can be explained with the aid of
Figure 6.5. For clarity electron transport will be considered.
Traps in the sample are assumed to attract the electrons with Coulombic
potentials. When a field is applied (Figure 6.5(b})) there is a lowering
of the barrier presented to a trapped electron and there is an enhanced
probability of the electron escaping to the conduction band. With a
higher concen:tration of conduction electrons the conductivity of the
system is increased. For such a process the current can be expected

to be of the form10

kT

je x F exp(ﬁ[_ (BFI)%)

(6.26)

where B is the constant (|e|/nez—:o).
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Fig. 6.5 : Schematic diagram of a Coulombic trap a) in zero
field and b) under high field.



Under high field conditions and assuming a Langmuir-Blodgett

film band structure it is to be expected that hole traps will affect the
minority carrier transport in the way described above by enhancing
the hole concentration in the valence band. Therefore the variation

of hole current with field will also be given by equation (6.26).

The change in field with thickness for a cadmium stearate Langmuir-

2 is shown

Blodgett film passing a constant majority current of 105Am_
in Figure 6.6. This curve was calculated using the theory of Chapter
Five and assuming the variation of the semiconductor barrier height
illustrated in Figure 5.20.. Thermionic emission from some conduction
band, or quasi-conduction band, in the insulator was used to describe
majority carrier conduction. The portion of the curve-in Figure 6.6
corresponding to negative fields means that there is a threshold thickness
for hole transport from the metal into the semiconductor by the Poole-

Frenkel mechanism. Insulator widths less than this will have a field

producing hole transport from the semiconductor into the metal.

For the change in field, shown in Figure 6.6, the expected variation

of the Poole-Frenkel hole current with insulator thickness is shown .in
Figure 6.7. Assuming that the light emission from the device is directly
proportional to the hole current J,., and also noting that there is the
condition of constant total current, the variatién of the dc power
conversion factor can be found to within a numerical factor by

dividing the hole current by the total voltage across the device, V,

to give:
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EFF of _[l_ exp(J_e_]_ [BFI)§>

\ kT (6.27)
This expression is plotted in Figure 6.8 using the Au/Langmuir-Blodgett
film/n-GaP device parameters. However, it can be seen that Figure 6.8
shows little resemblance to the experimentally obtained curves of

Batey, reproduced in Figure 3.3 and it is clear that the theoretical

model described above is not satisfactory.

Before leaving this section it should be emphasised that in the theory
described above the hole current has been assumed to be insulator
controlled. That is, there is an adequate supply of holes at the
metal - insulator interface and that it is the transport through the
insulator that is the limiting factor. With the resulté of Chapter

Four ,indicating that impact ionisation by electrons injected into the metal
creates a relatively large hole concentration at energies well below the

Fermi level, this is not an unreasonable assumption,

6.3.3 Linear Conduction

13-15

Several groups have observed that at low fields, the electron

current through Langmuir-Blodgett multilayersis proportional to the

3

applied field. Taking Mann and Kuhn's1 results.in particular, it is

interesting to note that the linear behaviour even occurred at insulator
fields as high as 108Vm_1. Their results also showed the conductivity
varied little over a significant range of thicknesses (5-21 monolayers).

This form of conduction has been attributed to hopping of carriers by

thermally assisted tunnelling between the interface states of the
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Langmuir-Blodgett films' 3715 .

The mechanism is equally plausible for
the transport of holes from the metal into the semiconductor valence

band.

The variation of insulator field with insulator thickness for a fixed
current of 10°Am™ % has already been illustrated in Figure 6.6. If the
hole current is proportional to this then the dc power conversion ratio

will be proportional to the quantitiy

Eff
Vv (6.28)

The variation in the dc power conversion ratio to be expected from this
form of conduction is shown in Figure 6.9. It can be seen that a
plateau is reacﬁed at thicknesses of approximately 2508 or more.
Unfortunately this does not correspond to the experimental results for

6,7

the Au/cadmium stearate/n-GaP device However the hole current

in the insulator is also expected to be influenced by lifetime effects.

The holes are injected into a set of localised states which are distributed
in space and energy and are normally occupied by electroﬁs. As a
result there will be an attenuation with distance of the hole (minority.
carrier) current due to recombination with itinerant electrons (majority
carriers) in the insulator conduction band as well as a thermalisation

of the holes through localised states towards some quasi Fermi level in
the insulator. The first process effectively removes the holes whilst
the second process has the effect of reducing the number of holes

energetically capable of entering the semiconductor valence band.
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Assuming these processes to be governed by an effective lifetime the
attenuation in the hole current will be given by the factor exp(-T/To)

where T is the transit time across the insulator and T is some mean

lifetime. If the conduction is truly Ohmic and the drift velocity is
proportional to field then, noting from Figure 6.6 that the field is
proportional to thickness above approximately 2008, the transit time

will be constant at the larger thickness. Attenuation will not, there-

fore increase with thickness and the form of Figure 6.9 will not be

greatly altered. If there is a saturation velocity however the transit

time will vary and the attenutation will increase with thickness. Figure 6.10
shows a curve for such a situation with drift velocity proportional to

field up to a threshold value of llx107Vm-1. Above this value the
velocity is constant. The threshold value was chosen in an attempt

to reproduce the experimental curves illustrated in Figures 3.3 and 3.4,

1 . Lo . .
A value of WY, = 10 > was chosen using similar considerations.

If the current attenuation was due to some fixed, highly effective
recombination centres then the probability of recombination would depend
on the probability of a hole meeting such a centre. In this situation

it would be more appropriate to describe the hole current attenuation

by the factor exp (-8/ 60), where cSO is the mean free path for hole-

recombination centre collisions.

Multiplying equation (6.28) by the factor exp (—6/60), the results obtained

fcr the efficiency of the device for different values of 60 are presented
in Figure 6.11. For all three curves shown, there is a well defined

peak in the dc power conversion efficiency in the range 1508 to 2008

and there is a degree of similarity between the theoretical curves and
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Batey et al'sﬁ'7 experimental results.

Once again, it has been assumed in the treatment that there is an -
adequate supply of holes at the metal-insulator interface. At the smaller
insulator thicknesseswith the semiconductor valence band edge well below
the metal Fermi level, the population of thermally created holes that are
energetically capable of entering the valence band, is extremely low.
However, the p0pul.ation of holes created by the impact:ionisation process
(described in Chapter Four) will dominate at the energies close to the
band edge (s(EFm—O.S')eV) with approximatley 15% of majority carriers
injected into the metal creating holes capable of reaching the metal-
insulator interface. Hence, in view of the typical values of the dc power

6,7

conversion ratio (~10"5%) , it would appear that there is a sufficient

sunpiy of holes at the interface.

By assuming that the hole current is always ihsulator limited, that it

is attenuated by lifetime effects, and that ‘it is proportional to field,

as observed by other group‘>s1.3_15 for electron current, it has proved
possible to identify a form of transport which gives similar characteristics
to experimentally obtained ones. Before-continuing,_one final point
should be made about the hole current at values of8 where the calculated
insulator field is negative. The negative fields occur at very low
thicknesses (1 and 3 monolayers only). These thicknesses are very
small, with one monolayer only being 25R. It therefore is quite plausible

that there will be a significant contribution from quantum mechanical

tummelling leading to a measureable current in this regime.

The treatment of hole transport through the insulator in this section,
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has been phenomenological in approach. This was necessitated by the

lack of basic experimental work on the subject. Conductivity measurements
have been made on MIM devices incorporating Langmuir-Blodgett films13

and these were wused as an indication of possible dependencies of the
injected hole current. In the MIS device, however, the hole current

is not in thermal equilibrium with the metal at the Ml interface and

apart from the uncertainty of the insulator transport mechanism for these
carriers, there isAthe additional problem, as mentioned in the text, of
lifetime effects. A detailed examination of these points would help to

clarify the minority injection current mechanism.

6.4 HOLE TRANSPORT IN DIODES INCORPORATING 1I-VI SEMI-

INSULATORS

6.4.1 Direct Tunnelling

Direct tunnelling in MIS devices incorporating Langmuir-Blodgett films
was discussed in some detail in Section 6.3.1. It was shown then, that
the quantum mechanical tunnelling process alone could not be responsible
for the experimentally observed dc power conversion characteristicsﬁ'7
Devices incorporating undoped wide band gap |1-VI compounds as the
insulator, show enhanced dc power conversion ratios for insulator
thicknesses which are even larger than those for the Langmuir-Blodgett
film diodes. With insulator thickness in excess of 4008 it must be

concluded, again, that the hole current due to direct quantum mechanical

tunnelling is negligible.
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6.4.2 Conduction via the Insulator Valence Band

A feature of the diodes incorporating I1-VI1 semi-insulators is that in
many cases the band gaps of the insulator and semiconductor are
similar in value. Indeed, it is possible to use the same compound as
the insulator and semiconductor by suitable doping. With the insulator
having well defined conduction and valence bands it is a strong
possibility that hole transport from the metal into the semiconductor will

be by means of the insulator valence band.

In Chapter Five it was shown how the change in semiconductor barrier
height in the Au/Langmuir-Blodgett film/GaP device could be modelled.
The same techniques can be applied to devices incorporating different
materials by a suitable choice of device.parameters. To model the
Au/i-ZnS/n-ZnS device produced by various groups, it was assumed

that any interface states at the insulator-semiconductor boundary were
uniform over both energy and area. It was also assumed that these
states were only in communication with the semiconductor Fermi level.
This last approximation is the most drastic. It is a reasonable assumption
at large insulator thicknesses, however at lower values there might well
be communication with the metal Fermi level through quantum mechanical
tunelling or some trap transport mechanism. Such an effect, even if
guite s‘mall, could be significant as the wide bandgap of the semiconductor
means that large activation energies are needed for electrons in the
semiconductor to occupy the interface states. Despite these short-
comings, the model will be used in this form to give an indication of

the device behaviour under forward bias.
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Figure 6.12 shows the expected variation in field across the insulator.
Any holes injected at the metal- insulator interface will be swept through
the insulator into the semiconductor if the field is positive. This

case is illustrated in Figure 6.13 . Incidentally, this band diagram,
apart from being proposed by previous authors”, is predicted by the
model wused here. Figure 6.12 shows that we can only expect a

positive field when the insulator thickness is greater than about 2008.
Any communication of interface states with the metal will serve to
increase this threshold thickness as the semiconductor barrier height
will be pinned to the metal Fermi level in the manner described in

Section 2.3.2.

Assuming that once the inversion in the insulator field has taken place
all holes injected into the insulator valence band are swept through

into the semiconductor, the minority carrier current will be controlled
by the supply of holes at the metal-insulator interface. In Chapter
Four we saw how an impact ionisation process (in which electrons beiow
the Fermi level in the metal were excited by the electrions injected

from the semiconductor) was an efficient hole production mechanism

at energies well below the Fermi level. Applied to th_e Au/i-ZInS/n-InS
system discussed above, with an Ml barrier‘height of 2.2eV, this
process is estimated to give a 1.6% probability that an injecfed electron
will create é hole which is ener\getically capable of entering the insulator
valence band. With the electron mean free path in ZnS being only 10R
the energy at which electrons are injectedbinto the metal will not vary
much with insulator field and the supply of holes at the metal-insulator
interface will not vary significantly either. Assuming little impediment

to hole transport through the insulator valence band, the minority carrier
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current will be constant once a positive insulator field has ‘been
activated. This assumes that there is no recombination. This

is not an unreasonable approximation as holes moving at thermal velocities
(~105ms_1) will pass through the insulator in times of the order of
10_‘1éecs. With the model presented here, it can be seen that there

is approximately a 2% probability of an injected electron producing a

hole capable of entering the n-ZnS valence band. [I-VI materials are
known to be efficient phosphors and it can be expected. that as many

as 1% of holes in the semiconductor valence band will recombine
radiativelym. Therefore, using this model an efficiency of approximately
2x10_2% can be expected. It is interesting to note that this result

corresponds well with experimentally obtained valuesw'zo.

Even with the absence of the insulating layer there will be hole creation
by the impact ionisation mechanism described. However the simple
Schottky barrier will not be as efficient as the MIS diode for the following
reasons. The first rests on the experimental evidence17 that the

barrier height of the MIS structure is larger than the Schottky barrier
(2.2eV as opposed to 1.9eV). This means that more holes are created
which are energetically capable of entering the semiconductor valence
band. With reference to Figure 6.13 it can be seen that the insulator -
also fulfils another important role. Once a hole enters the insulator

it is swept through into the semiconductor. In the Schottky barrier,
driven at the same current ‘density, the band bending in the semiconductor
will be the same. In this case, then, the field will oppose the

transport of holes from the metal into the semiconductor.

In the more widespread case of an insulator with a larger band gap,
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there will be the additional advantage that the insulator will allow a
"flat band" condition to be achieved in the semiconductor and under
further forward bias the situation shown in Figure 6.14 will be
reached. Any holes entering the semiconductor will now be swept, by
the field, into the bulk where radiative recombination can take place.
In a Schottky barrier it is not possible to reach this stage as bulk
resistance effects will begin to dominate before "flat band" conditions

are achieved. (Figure 6.15).

6.5 SUMMARY

In considering carrier transport through the insulator of an MIS diode
much of this chapter has been devoted to the processes in the Au/Langmuir-

Blodgett film/n-GaP device but Il1-VI. diodes have also been considered.

First, considering the Langmuir-Blodgett films. it was demonstrated

how sheets of interface states, expected at layer boundaries, could inter-
act with the majority carrier or electron current. Calculations indicated
that trapping was possible although it was not expected to affect the
electron current significantly. . The possibility of hole creation by
electron-electron scattering at the trap sites was also discussed. It was

concluded that this was not an important effect.

The two electron transport mechanisms found to dominate in Langmuir-
Blodgett MIM devices, namely hopping and Poole-Frenkel conduction for
low and high electric field regimes respectively, were u_sed as the basis
for investigating possible hole transport mechanisms. By using the

model described in Chapter Five, the variation in the insulator field was
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predicted. It was found that hopping conduction, in which the hole
current is proportional to field, was the more accurate in reproducing

experimentally obtained results.

Hole conduction in devices incorporating -Vl semi~insulators was
described in terms of transport via the insulator valence band. By
assuming that this transport was unimpeded and that the conduction.
was limited by the supply of holes at the metal-insulator interface (this
was investigated in .Chaptef Four), device efficiencies were calculated

and found to be close to experimentally obtained results.
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CHAPTER SEVEN

ELECTRICAL CHARACTERISTICS OF AN MIM

ELECTROLUMINESCENT PANEL IN THE STEADY STATE

7.1 INTRODUCTION

This chapter- considers an electroluminescent device rather different
from the forward biased MIS diodes of the previous chapters as we

look at the behaviour of an MIM structure which has been fabricated
by a group at RSRE, Malvern1. Similar structures have been produced
and investigated by other groups working in this area2.'3, and

although the results presented in the chapter are primarily concerned

with the RSRE device their usefulness is more general.

The RSRE structure is based on a thin layer of zinc sulphide doped
with manganese with a transparent conductor (eg -cadmium sténnate)
as one electrode and aluminium as the other. Cadmium stannate is,
in fact, a degenerate semiconductor with an electron effective mass
about equal to that of a free electron. The semi-insulating ZnS is
normally prepared by sputtering in an atmosphere of hydrogen and
argon and is then polycrystalline. It appears that hydrogen gives
increased stability to the device by somehow limited the formation
of high current filaments in the bulk. Only a thin layer near the

cathode needs this hydrogen incorporation to give the desired stability.
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4 o
‘" and those centres are responsible for

The ZnS is doped with Mn'
the light emission by a process in which conduction electrons excite
bound electrons in the orbitals of the manganese to higher states with

subsequent light emission on de—excit’ationS'G.

It is doped at a
concentration of approximately 3 atomic percent. As the manganese
mainly goes on the Zn sites in the material, about 1% of the zinc ions

are replaced by the dopant.

As a precaution against the spread of high current filaments an
additional control layer, shown in Figure 7.1(a), is also included. Two
sorts of layer have been used, the first is a "cermet" consisting of

a metal powder dispersed in a non conducting medium. This seems to
act as an array of point contacts and any filament formed at one point
is unable to spread to another as the current across the semi-insulator
has in effect been broken up into distinct current paths, corresponding
to the point contacts. Filaments burn out rather than expand and on
each occasion there is a slight reduction in light output rather than
catastrophic failure. A second type of control layer used is made of
amorphous silicon. It is thought to act in a different way to the
cermet by behaving more as a spreading resistance and not allowing
the current in a filament to get so high that it burns out. Devices
produced in this way are not as bright as those employing the cermet

but they do have longer lifetimes.

Cattell, Inkson and Kirton’ have suggested a model to explain the
characteristics of the device and in particular the tendency to jump
to higher currents with eventual failure. In section 7.2 the basis of

this model is described. A set of equations are developed to describe

- 136 -



@@an@AﬁV@%@ﬁJ#

(a) ZnS: Mﬂ \Cmir@ | Layer
@JL ]
Metal ZnS:Mn Metal
(b)
e —
Cathode e —
Anode
(c)
0 — e —bg —> 0 —>
Cathode
Il@ Anode
® &
(d) @ ©

<i—=-,®<i—=-®<i—=® —®

Fig. 7.1

electroluminescent MIM device.

at zero bias.

a) A ‘schematic diagram of a typical directly coupled

b) The idealised energy band diagram for an MIM device

c) The energy band diagram for an MIM device with a
moderate electric field at the cathode

d) The energy band diagram for an MIM device with a

high electric field at the cathode.



the device once it has reached steady state conditions. It is shown
that the model predicts an 'S' shaped curve for the current-voltage
characteristic, a current controlled instability that is expected to

lead to current filament formations.

7.2 MODELLING THE DEVICE

7.2.1 Band Alignment

In the absence of any bias the energy band diagram is expected to

be as shown in Figure 7.1(b). The ZnS is taken to be insulating, with
no free electrons in the conduction band. The fixed space charge due
to impurities is assumed to be negligible, so the electric field is zero.

$ is the barrier presented by the ZnS at its boundary with the metal.
When a small voltage is applied across the device, all of it is dropped
across the semiconductor and the current is barrier limited by the
process of thermionic emission into the semiconductor. The triangular
barrier, shown in Figure 7.1(c) is too thick for tunnelling to take place.
The barrier height does not change with the field in the ZnS (except
for small image charge effects) so the thermionic emission current
remains constant as a function of voltage. ¢ is expected to be of the
order of 0.5eV and the curent is small and has negligible effect on the
electric field in the ZnS. As the field is increased to large values the
barrier at the interface becomes thinner until it reaches a threshold
value at which tunnelling through the barrier becomes significant. |If
the field is increased further the tunnelling current becomes quite large
with the barrier becoming almost transparent to incident electrons. The
large number of carriers in the ZnS conduction band now have a significant

effect on the field. It is unlikely that the same argument can be applied
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to hole injection into the valence band at the anode. The barrier
height to holes is expected to be larger leading to a thicker barrier

and the higher effective mass adversely affects tunnelling.

With high fields in the ZnS, holes can be created, in the valence

band, by impact ionisation, which then travel with the field back

to the cathode. The mobility of the holes is approximate.ly two orders
of magnitude less than that for electrons and the holes mov.e relatively
slowly to the cathode. This results in a build up of holes and hence
positive charge near the cathode which causes band bendiﬁg with the
magnitude of the electric field becoming less away from the cathode.
This flattening of the bands is illustrated in Figure 7.1(d) and is a
further reason for neglecting hole injection at the anode. With

their lower mobility the holes are unlikely to gain sufficient energy to
cause impact ionisation and therefore their multiplication coefficient

will be much less than that for the electrons so the effect of the process
is neglected in our model. There is no reason to expect that the hole
flow should be impeded at the cathode and it is reasonable to assume
that the holes either pass into the metal or recombine as soon as they
reach the boundary. However it should be noted that any blockage

of the hole current will have a marked effect on the device characteristics

because of the associated rise in the hole concentration at the cathode.

The basic mechanism of electroluminescence is one of impact excitation,

of the Mn 2t ions by the electrons. Bound electrons in d orbitals are
excited to higher bound states and subsequently emit light on de-excitation.
The excited state is known to be about 2.2eV abcve khe ground state6.

We assume that the concentration of electrons losing energy in exciting

these centres in negligible compared to the total concentration and that
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the great majority of the electrons have sufficient energy to impact

jonise.

7.2.2 Defining Equations

In the steady state the behaviour of the bands is governed by a set of
equations relating the carrier concentrations to the electric field. There
is Poisson's equations giving the first spatial derivative of the field in

terms of the charge density, that is:

dr(x) lel (p(x) - n(x))

d
X ee (7.1)

where F(x) is the field at a distance x from the cathode interface and
p(x) and n(x) are the hole concentrations and electron concentration

respectively.

We can also write down the condition of current continuity for the system.

The total current consists of an electron current and a hole current:

S O R MY

= n(x)|efu F(x] + p(x)|e|p F(x) (7.2)

where Mg and Wy, are the mobilities of the electrons and holes. The
values of He and My, may well be affected by the high fields in the

device. This particular problem will be addressed in section 7.3.4.

Due to impact ionisation the electron current increases with x. If the
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probability of an electron undergoing such an interaction is a per unit

length then the change in the electron current is given by:

dJn('x)
— = %{F(x)) J_(x) (7.3)
n
dx
We do not need a similar equation for the holes as the current
continuity in equation (7.2) will ensure the correct response. As
mentioned in the last section it is not expected that the holes themselves

will cause impact ionisation because of their lower mobility and smaller

quantum mechanical ionisation rate.

Finally it is necessary to define the injection current through the
triangular barrier at the cathode. This is given by Lampert and N‘.ark8

for a thermally assisted tunnelling current as:

1/2¢3/2

Jn(_O) = ([e[F(0))2 | 1+4n2m* (kT)?2 | exp |- 4(2mle])
(4m?2 he 3h2|'e|F(0]2 3hF(0)

(7.4)

7.2.3 Method of Solution

We can incorporate current continuity into Poisson's Equation (equation

(7.1)) by substituting for p(x) from equation (7.2) to give

dF(x) = 1 J - -Jn(x) 1+ 1
dx eeOF(x) ¥h Ve LTS (7.5)

Equations (7.3) -and (7.5) form a set of two differential equations
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with F(x) and Jn(x) as the unknown variables. |If a cathode field
F(0) is chosen the electron current at the cathode Jn(O) can be
calculated using equation (7.4). The value of Jp(O) which is needed
to find J(0) (equations (7.2)) is, however, unknown but it must be
compatible with zero hole current at the anode. This is because it

is assumed that there is no hole injection at that electrode.

It is necessary to guess the hole current density at the cathode and

to combine it with the value obtained for the electrons to give the total
current J, T'hen the differential equations can be solved numerically
over the width of the ZnS and the value of Jn(W) found. Since

zZero ‘hole injection at the anode has been specified Jn(W) must also

be equal to the total current J. This will only turn out to be the

case if the correct choice of Jp(O) is made, so Jp(O) must be
continuously revised until Jn(W) =J. If Jp(O] is too large then the
excess positive charge at the cathode will reduce the magnitude of the
electric field to such an extent that there will not be sufficient impact
ionisation over the length of the ZnS to supply the holes and a finite
hole current will be required at the anode. (ie an injection current). If,
however, Jp(O) is too small then the electron current density at the
anode is too large. These considerations give guidance on how the hole
current density at the cathode should be modified to give convergence

to the correct conditions at the anode.

To effect a numerical soultion a Runge Kutta routine was used to give
an electric field profile across the thickness of the ZnS and using the
values of the electric field, an integration routine was employed to find

the potential difference across the device.
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Different cathode fields give different potentials across the device
and by varying the field it is possible to produce a current density-
voltage characteristic for the device. This is best done by starting
at the relatively low field where there is negligible band bending.
(essentially a constant electric field) and an approximate value of
Jp(O) can be found with little difficulty. With the constant field
the multiplicatidn of the electron current density is of a simple
exponential form and the value at the anode is given by

a(F(0))W

Jn(W) = Jn(O)e (7.6)

Using this result it is straightforward to find the hole current

density. Given Jp is zero at the anode
Jp(x) = Jn(W) - Jn(x) (7.7)

The value of a(F) used is from an empirical expression for Schottky

barriers by Allen9:

a(F(x)) = ajexp| -[ Fo)?
F(x) (7.8)
with a, = 1.2x 107 m™!
and Fo = 2 x 108 vm™?

One reservation about this result is that it was deduced for relatively
low fields (~106Vm~1) and may not be valid for some of the higher

field considered here.
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On finding the approximate value of J_p(O] the numerical method is used
to obtain the associated value of the hole current density at the anode.
Normally the numerical solution will show that the boundary conditions
are not met precisely and Jp(O) must be slightly modified and the
procedure repeated until they are satisfied. Moving to higher fields
the approximation of constant field used above will not be valid, but
to give an indication of the hole current density at the cathode, it is
possible to extrapolate from the previous values of Jp(-O) for lower

contact fields.

7.2.4 Dead Space

It is worth mentioning here the concept of 'dead space'; the region
adjacent to the cathode in which the injected electrons have not

achieved sufficient energy to impact ionise. In Section 7.3.1 it will
be shown that its existence doesnot affect the characteristics of the
device to any great extent, but it is important that its presence is

noted.

The applied potential must exceed the barrier height before a tunnelling
current can enter the ZnS conduction band. In addition to this ik must
be larger again by Eg/|e| volts (where Eg = 3.2eV).before the carriers
have sufficient energy to impact ionise electrons from the valence band
across the bandgap into the conduction band. So in total the potential
needs to exceed ¢+ EG7|e|. As there is no carrier multiplication in
dead space the electron and hole current densities individually remain

unchanged and

n(x)F(x) = n(0)F(0)
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p(x)F{x) = p(0)F(0) (7.9)

0 < x(< WDS

where WDS is the extent of the dead space. Using these equations
to define the carrier concentrations at x in Poisson's Equation the

spatial derivative of field at that point is given by

dE(x) _ le]l (p(0)- n(0)) F(0)

dx 550 F(x) (7.10)

and the field itself is found by a simple integration

Fix) = - J: F(0)? + 2(p(0)-n(0)) |e|F(0)x:| 711
€e
0
If this is again integrated over x between the limits: 0 and WDS it

gives the change in potential in the dead space. Equating the integral

to -( ¢+ Eg/|e|) gives the length of the dead space which can be

written as:

Woo = ee [|F(0)|2
2(p(0)-n(0))|e|F(0)

+ 3F(0)(p(0)-n(0))]e] (o+Eg/le|*/®  -F2(0)

544
0

(7.12)

Equation (7.4) can be used to find the injected electron current
density for a particular field and this also allows the cathode electron

concentration to be calculated. |If it is assumed that p(0) is within
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two or three orders of magnitude of n{0) then

[F(0)|2 >> | 3F(0) (p(0)-n(0)) |e| (¢+Eg/]e])

EE
o (7.13)

Using this condition, equation (7.12) can be greatly simplified to

WDS = ¢+ Eglle]
|F(0)| , (7.14)
7.2.5 Mn Electroluminescent Centre

Given an excitation cross section o (which is known to be of the order

of 10_20m2 ) the excitation rate of electroluminescent centres is given

by:

R, (x) = Mn?oue [F(x)|n(x) (7.15)
where M_ng is the density of centres in the ground state and the other
symbols are as defined previously. In the steady state this excitation
rate must be the same as the rate of decay of the excited centres

back to the state described by a time constant To(~10‘3s). By equating

the two rates, the rate of de-excitation (or excitation) is given by:

Rde—ex(x) - Mo
ot N (7.16)
where T = 1

alg |F(x)|n(x)

- 145 -



and Mn is the total concentration of manganese electroluminescent
centres. Calculating the electron current density at various points
in the ZnS allows the calulation of the de-excitation rate at these

positions and for the device as a whole.

It is interesting to note that the manganese excitation rate is relatively

small compared to the impact ionisation rate with

(F(x)) > 1 _Mn
Ho F(x) L (7.17)

where the right hand side is the rate of excitation per unit time (given

by equation (7.16) divided by the electron velocity to give the rate per

~unit length).

The total light output can be obtained, if desired, directly from the

total de-excitation rate.

7.3 CURRENT-VOLTAGE CHARACTERISTICS

With the band bending at high fields it is expected that there will be

a region of differential negative resistance in the J-V characteristics,

at which the voltage will actually fall with increasing field and current.
With more that one value of J for a particular voltage there is the
possibility of a device jumping from a low current state to a high
current state with the destruction of the device. A central aim of the
theory is to produce a J-V plot indicating the voltages at which this

unfavourable process is possible and to investigate the influence of

the material parameters.
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In these calulations the material parameters used are the bulk values
of ZnS, the barrier height ¢ (Cattell,1) was taken as 0.5eV and the

lenagth of the ZnS was set at the typical value of W = 1.5um.

7.3.1 Inclusion of Dead Space

If it is assumed that carrier multiplication does not occur in the

dead space then equation (7.3} must be modified to

Gyl = o
dx
0 ¢ x < WDS
() = @ (FOx)I 00
dx
WDS < x <KW (7.18)

Figure 7.2 illustrates the effect of this dead space comparing the

log J-V characteristic obtained using the modification to the equivalent
characteristic obtained by assuming that the electrons are capable of
impact ionisation as soon as they enter the semiconductor. The most
noticeable difference is at the lower current (corresponding to lower
contact fields) and even then there is little difference. At low fields,
although there will be a relatively large dead space (for example around
500 & for a field of 10’ Vm™') the low multiplication coefficient will mean
thatthere islittle multiplication anyway and so there is only a small effect.
At the higher fields, with the large values of o, the dead space will be

narrow and have only a small influence on device behaviour.

It must also be noted from these curves that the higher current branches,
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corresponding to the higher fields , have unrealistically large currents

and under such conditions we would expect the device to burn out.
Figure 7.2 demonstrates that the inclusion of a dead space in the theory
makes only asmall difference to the characteristics and for this reason

it is neglected in all subsequent calculations.

7.3.2 Carrier Concentration Profiles

It would be informative to know how the concentration of carriers varies
across the sample for different contact field. Such figufes are shown
inFigures 7.3 to 7.7. Figures 7.3 shows the carrier concentrations
profiles at the relatively low field of 108 Vm'1. At these fields carrierr
multiplication and hole current are insignificant and the electron
current dominates. The carrier concentrations are small and hence

their effect on the field is only minor.

Figures 7.4 and 7.5 are the field and carrier profiles at a contact field
of 2.9 x 108 vm™'. It can be seen that for a:contact field of this

size the holes are dominant and their large concentrations at the cathode
leads to a sharp.drop in the field with x. Towards the anode the

carrier concentrations flatten out due to the lower multiplication rate

in this region.

Figures 7.6 and 7.7 are for the very high field of 7 x 108 vm !,
Assuming that the device has not suffered breakdown (which is very
likely at this magnitude of field), the field drops off very rapidly‘from

the cathode and there is also a very sharp rise in the electron
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concentration . Towards the middle of the sample the field is reduced
to such an extent that it is not sufficiently hijgh to produce a significant
multiplication rate. The rise in the electron concentration can be
understood in terms of the requirement of constant current in the
presence of a lower field. This also accounts for the rise in hole
concentration. Both concentrations rise until a peak is reached at
about the centre of the sample. From the centre of the sample the

field begins to increase with x and this results in a larger value at

the anode interface. This large increase in field at the anode is
impor’tant as.it leads to a rise in the potential across the sample with
contéct field and the higher branch of positive resistance in the current-

voltage characteristics.

7.3.3 Effect of Temperature

At finite temperatures, electrons states above the Fermi level of the
cathode can be occupied with a probability given by Fermi-Dirac
statistics. For higher temperatures, the eleqtron population above

the Fermi level increases and as a result the average barrier thickness
presented to them is reduced. With a reduction in the average barrier
thickness there is an increase in the gquantum mechanical tunnelling
transmission rate and hence the injection current. Figure 7.8 shows
that this is the case at the lower fields but that at higher values there
is not significant effect. This is expected since the barrier will have
become very thin and the impedance to electrons presented by the

barrier will be negligible.
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7.3.4 Carrier Mobilities

The bulk mobilities that have been used in the calculations are those
appropriate for lower fields rather than those that exist in typical
device conditions. It must also be taken into account that the

InS is polycrystalline1 rather than a single crystal and that additional
effect due to, for exémple, grain boundaries might well affect the .
transport characteristics.. To gauge the importance of these points

it is useful to look at the effect of the varying mobility values for both
the electrons and holes. There is very little information in the literature
on the mobilities at the relevant fields and the best indication

of the variation of the electron mobility is given by the numerical
calculations of Mukhopadhyay and Bhattacharyam. Their results are
shown in Figure 7.9 (the normalised mobility versus electric field shows
a reduction of approximately one order of magnitude on appkoaching
typical fields ). In our calculations reducing the electron mobility by

an order of magnitude was found to produce very little change in the

current-voltage characteristic principally because the concentration

of holes in the valence band also changed to compensate for the increase

in electrons.

To judge the effect that velocity saturation will have on the J-V
characteristic a maximum value for the electron velocity ('vmax) was
set and an effective mobility used to limit the velocity to this value.

For a low field mobility of Mg the effective mobility was given by

y (x) = mp
eff €

max
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<

u (x)
e eff max

v v

F(x) > Vax (7.19)
Figure 7.10 shows the variationsin the device J -V characteristics using
equations (7.19) for several values of V‘max‘ This graph must be
viewed with a certain amount of caution as the hole mobility is
maintained at its low field value. In particular, curve (a) with

3

Vimax " 10 ms—1 is suspect as this velocity is, in fact, lower than

the hole velocity under these fields and one-might well expect the hole
velocity to saturate too. Curves (b) and (c} are for v max greater

that the hole velocity and is a more plausible situation.

We now consider the hole mobility. Whereas the hole concentrations
are dependent on these of the electrons, the opposite is not the case.
We cannot expect some compensating effect by the negative charge.
Figure 7.11 shows the kind of change expected withl.variation in Hp,-

A lower hole mobility leads to a greater build up of positive charge,
hence the greater band bending and negative differential resistance
region at the lower fields. A higher hdle mobility has the opposite
effect. However, it is not expected that the hole mobility will vary as
much as that for electrons because at low fields the holes have a velocity
two orders of magnitude less that the electrons. So therefore, even at
high fields, their velocity is not that great and less deviation from low
field conditions can be expected. What must be noted, however, is
that if there js some field activated trapping mechanism, such as Poole-
vFrenkeI transport, there will. be a fairly marked effect on the J-V

characteristic.

One effect of the polycrystalline nature of the ZnS might be an overall
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reduction in both the electron and hole mobilities. Figure 7.12 illusrates

the effect on the J-V curve when the mobilities are

(a) two orders of magnitude less

and

(b) one order of magnitude less than normal bulk values.
1t should be noted that curve (b) is similar to to cuArve (a) in Figure
7.11 which itself corresponds to a fall, in the hole mobility only, of

one order of magnitude.

7.3.5 Electron Barrier and Effective Mass

The value of the electron barrier height ¢ has a significant influence

on the electron vinjection current and is expected to affect the device
behaviour. Figure 7.13 shows the effect of this parameter and although,
in this case, the difference is significant at all fields, the most observable
difference is again at the lower fields. In normal operation the state

of the device would correspond to a point on the lower positive resistance
branch. It is clear that the voltage required for a certain current is

strongly dependent on ¢.

The effective mass determines the ease with which carriers can
tunnel and hence the injection current, so similar behaviour to Figure
7.13 is expected as indeed is the case in Figure 7.14, showing the

effect of different values of m*.

7.3.6 InS Thickness .

An increase in the device thickness would be expected to lead to an
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increase in total hole production and hence a more pronounced differential
negative resistance region. This effect is illustrated in Figure 7.15.

The thinner samples also require lower biases to achieve a particular
current because less potential difference is required to produce a
particular field across the ZnS. This tendency towards more band
bending is further emphasised if voltage is plotted against thickness

for constant current. In Figure 7.16 it can be seen that as W increases
the rise in voltage at the higher currents is not as great as for the

lower ones due to the increasing differential negative resistance region.

7.3.7 Inclusion of an ND+ Region at the Cathode

In a real device it would be beneficial if the_high field could be
restrictedl to the cathode region where it would enhance the injection
current. At the same time it would be desirable to have a low field
over the rest of the sample to reduce the probability of breakdown. In
this context it would seem that a layer of positive doping charge at the
cathode would act to rapidly reduce the field to lower values and hence
satisfy the above criteria. In considering the behaviour we have found
that the typeof solution depends strongly on the doping concentration
Np+. If Ng+ is too small then it has no effect but if it becomes too
large the field will actually change sign. Figure 7.17 refers to a value
of ND+ = 5 x 1022 m_3 where a solution is possible. As in many
previous instances the most marked effect is at the lower fields. In
this regime the injécted electron current and created hole current are
nét large enough to dominate the influence of the dopec layer. The
layer does bring on the differential negative resistance at lower fields,

but this is also accompanied by a larger current.
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Figure 7.18 shows the behaviour of the device for a doped region

of constant thickness (0.1um) with varying donor concentrations. The
larger concentrations have a similar effect to the wider doping layers
in Figure 7.17 leading to more band bending and hence the earlier

onset of the differential negative resistance region with electric field.

7.4 SUMMARY

Themain conclusion from the steady state results for the MIM dey»ice

is that there is a range of driving voltages over which there are three
possible current density states. We have investigated the effect of
various parameters on the current-voltages characteristics and identified
the factors affecting the multi-current state voltage range. So far we
have not considered what state the system is most likely to adopt and.
whether or not all the states are accessible. To achieve some under-
standing of these problems the next chapter is concerned with modelling
the time depencent behaviour of the device as the applied voltage is

increased to see how it approaches the steady state condition.
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CHAPTER EIGHT

TIME DEPENDENT CHARACTERISTICS OF AN

MIM ELECTROLUMINESCENT PANEL

8.1 INTRODUCTION

Chapter Seven showed that we can-expect S-shaped current-

voltage characteristics. for the devices produced by Cattell and Kirton1,
described in detail in the previous chapter. It was explained that With
the current controlléd, necgative differential resistance it was possible
to have more than one current state for a particular voltage. The::
aim of this chapter is to model the time dependent behaviour of the MIM
electroluminescent panel after a bias is applied. This enables & study
of the behaviour of the device as it approached a steady state and,

when more than one current state is possible, to see which current

state it tends to.

8.2 TIME DEPENDENT MODEL

8§.2.1 The External Circuit

To consider the variation of voltage across the device it is important
to know the external circuit and the constraints and conditions it
imposes on the system. Cattell and Kirton1 suggest that in their
experiment there is aload resistence and a capacitive element to the

voltage source. The bias at a time t after switching on is given by
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Vo o= V(1 -e ) (8.1)

with the time constant, being typically of the order of 0.1us. The
circuit is illustrated in Figure 8.1. Kirchoffs:Law can be used to
find an expression relating the total and device voltages to the

current:

] = RJ(t)A + VD (8.2)
where R is the load resistance, J(t) is the total current at time t,
A is device cross section area and V_D is the portion of the total

voltage. across the device.

8.2.2 Defining Equations

We can further modify equation (8,2) if the device's displacement

current is explicitly included by writing

J(t)y = Jn(x,t) + Jp(x,t) +es ) 3F(x,t)
ot (8.3)

and substituting for J(t) in equation (8.2) to give

-t/t
F(x, ) = [ 1 (V (1 -e

ot E€, RA

%) - vp) - 300t - 3k

(8.4)

This is the first of the defining equations for the system. The second
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is the spatial field variationgiven by Poissons equation

aF(x,t) = le| (p(x,t) - n (x,t))

9x €, (8.5)

Due to the inclusion of the displacement current, the carrier con-

centrations. need to be considered separately. The two equations are

A0 t) le] an(x,t) + a(F(x,1)) J_ (x,1)

ax at | (8.6)
and

1) - -lel 30k, - alF(x, 1)) J (1))

; at (8.7)

Equations (8.6) corresponds to equation (7.3) in the steady state
case discussed in the previous chapter. The additional time

deriviative term is simply due to the equation of continuity

div. J = -9p
at (8.8)

where p is the total charge. Four differential equations (ie equations
(8.4) .to.(8.7)) have been produced which describe the system. In
the next few sections, the method used to solve these equations is .

discussed.
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8.3 METHOD OF COMPUTATION

As they stand it is not possibie to solve the four defining equations
((8.4) to (8.7)) either analytically or numerically using standard
integration routines. The inability to solve the equations numerically
stems from the fact that they cannot be split into their separate spatial
and temporal parts to define the problem in terms of ordinary differential
equations. With this being the case, the method of solution adopted

followed the lines of finite difference analysis.

8.3.1 Method -1 - Current Continuity Implied in System of Equations

The aim of this method is to increment time and at each step to solve
over the length of the ZnS in a manner similar to that used in the

last chapter for the time dependent case.

We assume that at some time t the field and carrier concentrations are
known at all positions. The device is then considered at a time t+At

with the approximation

F(x,t') . F(x,t+at) - F(x,t)
at At (8.9)

t <t < tent

t' can be any time over the range of the temporal step. Using this

approximation in equation (8.4)
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-t/t
Flx,teat) o AU | 1 (VoUme  2)=Vp)-d (x,1)-0 (x| 4F (x, 1)

ee. | RA
(o}
(8.10)
This equation can be used to define the new field at the cathode and

then the expression given by Lampert and Mark2 employed to find the

injection current at the cathode due to thermionic field emission.

J (0.t+at) = (|e|F(O,t+at))? | 1+4n2m*¢(kT)?
~(4m)?h ¢ 3h?|e|F(0,t+at)?

1
x exp| 4(2mlejs)s-

3hF (O, t+at) (8.11)

This expression corresponds to equation (7.4) in the last chapter.

By employing a small spatial step-ax to find an approximation to
aJp(x,t)/ax, {(in-a manner similar to the use ofAt in equation (8.9))
equation (8.7) can be utilised to find an approximation to the hole

concentration at the cathode at time t+at.- This is done by setting

aJp (x',t) Jp(x+Ax,t] - Jp(x,t)

—_— s,

ax Ax (8.12)

x < x' < x+Ax
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and

ap(x,t') N p(x,t+at) - p(x,t) ,
at At . {8.13)

t <ot < teat

Substituting these two expressions into equation (8.7) and rearranging

to give an approximate expression for the cathode hole concentration as

P(O,t+at) gy P(O.1) + At | J (0,1) - J (ax,t) - a(F(0,1))J,(0,1)
le]

AX

(8.14)

We now have boundary conditions for the field and carrier concentrations

at the cathode. Rewriting equations (8.6) and (8.7) as

aJn (x,t+at) o, le| <n(x,t+At]—n(x,t)>+ a(F(x,t+At)}Jn(x,t+At)

Ix At

(8.15)

and

EP (x‘,t+At)w —|e|<p(x,t+[§t)—p(x,t)>— a(F(x,tmt))Jh(x,tht)
as¢ at 7

(8.16)

they can be used alongiwith eguation(8.5) to find the solution over
the length of the ZnS for the new time using a Runge-Kutta routine
in what is now a quasi time independent problem. Using a shooting
method Jp(O,t+At) is adjusted, in computation, from its original estimate
in equation (8.11) to ensure the condition of no hole injection at the

anode. ldeally equation (8.11) should give the correct cathode hole
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concentration, but in the finite difference technique there are inevitably
small numerical discrepancies. To correct for this, itis assumed

that equation (8.13), the corresponding one for the electron con-
centration, and equation (8.9) are accurate and that it is equation
(8.12) that is responsible for the inconsistencies. By chosing equation
(8.12) as the least reliable expression it is not necessary to obtain

fine accuracy over the spatial step because equation (8.12) is only

used to obtain an estimate for the cathode hole concentration in equation
(8.11) and it is this estimate that is modified in the cpmputatidn,
However a sufficicently small temporal step At is required to ensure
that equations (8.10),°(8.15) and (8.16), which are not modified in

the computation, are accurate.
The carrier concentration profiles can be adequately represented by
arrays of ten points across the sample and an interpolation routine

used to provide the values needed in the spatial calculations,

8.3.2 Method 2 - Current Continuity Explicit in System of Equations

The current for a system developing in time is given by:

J(t)y = Jn(x,t) + Jp(x,t) +€€08_F (x,t) ,
at (8.17)

where the last term is the displacement current and the omission of

any x dependence in the total current J indicates the current

continuity across the sample.
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Equation (8.17) provides another way of obtaining the hole concentrations

as an alternative to using equation (8.16) in Methecd 1. By substituting
equation (8.9) into equations (8.17) and rearranging the hole current

density it can be written as:

Jp(x,t+At] = J(t+At)—Jn(x,t+At)—€€O (F(x,tmt)—F(x,t))
At
(8.18)
where the total current J is computed at the cathode using the known
values for field and electron injection current and the values for the
hole concentration either estimated from eguation (8.14) or modified

in the computation to ensure zero hole injection at the anode.

The spatial problem has now been reduced to a system of two differential
equations, namely equations (8.5) and (8.15), with equations (8.18)
supplying the hole concentrations needed for Poisson's equation

(equation . (8.5)). The change in the contact field is calculated in an

identical manner to Method 1.

8.3.3 The Choice Between Methods:

The relative accuracy of the two techniques depends very much

on the stage of the time development. If t is small and most of the
current is displacement current then Method 1 is the more accurate with
the particle currents and concentrations in equations (8.15) and (8.16)
being small and therefore any error due to the approximations for

an(x,t)/3t andasp(x,t)/3t also being small.
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However at larger values of t the particle currents dominate and it
is the displacement current that becomes negligible and then Method 2

is the more accurate.

8.3.4 Starting Conditions

At the time t = 0 the change in field with respect to time is also
zero, so equation (8.10) cannot be used as defined to find the field
after the time step At. In this case it is assumed that the actual
particle current is negligible and an analytical result , with the
particle currents set to zero, is used to calculate the new field. This

calculation is carried out in Section 8.4 but the result is quoted here

for t = At.
Vv —At/’(0 —WDAt/ eaORA
o] 1 + e - e
WD eeORA toWD
F(at) =
1 -"o
t eeORA
(8.19)
8.3.5 ‘Electroluminescent Centres

As described in Section 7.2.5 , we can expect the excitation rate of
Mr_w2+ centres to be Mng[x,t] ue|F(x,t)|n(x,t) and the decay rate to
be given by Mnex(x,t)/ro. Now that we are not in the steady state,
these two values will not necessarily be equal and in general there

will be a change in the number of excited centres given by
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M (x,t) = (MN-Mn®*(x, op [F(x, ) [n(x,1)) - Mn®

ot T

If, for the purpose of the finite difference analysis, we make the
approximation

BMnex(x,t') aMnex(x,t) + aMnex(x,t+At)

~t

1
2
3t ot 3t (8.21)

t <t < t+M

which gives the average value of aMnex(x,t)/at at either end of the
time step, and use this expression in equation (8.20) the density of

excited states at time t+At can be written as

MN®*(x, t+at) = 1

T+ At + _Alope|F(x,t+At)|n(x,t+At)
2t 2
)

x[M ex (x,t)+at ((Mn-Mnex(x,t))oue|F(x,t)|n(x,t)
X :

ex
+ Mnou | F(x,t+at) [n(x,t+at) - M= (%, 1) )]

T
0

(8.22)

Hence, knowing the density of excited states at time t and solving for
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field and electron contraction at time t+At, Mnex(x,t+At) can be calculated
using equation (8.22). By finding values as functions of position

across the length of the ZnS the total number of excited centres can

be found numerically using an integration routine and the total rate

of decay will simply be that number divided by the decay time constant

T .
0O

8.4 ANALYTICAL TREATMENT FOR NO CURRENT INJECTION

As mentioned in Section 8.3.3, it should be possible to assume, at
small t, that the electron and hole currents are negligibly small due

to the small initial voltage and the large displacement current. It seems
reasonable that it should be possible to derive an expression which is
valid over part of the time range and can be compared to results -

obtained using the finite difference technique.

If there is zero particle current, there will be a constant field across
the device and so the voltage drop will be given by F(t]WD. Setting

Jp(x,t) = 0 and Jn(x,t) = 0, equation (8.4) gives:

-t/t

Fy = 1 (1 (v(1-e %) -FWp)
dt ee RA (8.23)
and by differentiating with respect to time we obtain
-t/t
dF(t) = _ 1 Yo e 0 - Yogry
dt? ce RA t : dt (8.24)
o o
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This has a solution of the type

f) - B+Ce—WDt/eeoRA+De—t/to (8.25)
with
8 = Yo
b
c =Y [f1- "
t Wy ty ee RA
and
p = Yo 1 - %
EGORA t eeORA

This expression for the field is expected to be accurate at low fields,
when the ZnS is still acting as a conventional insulator. It will fall
short of the true value at higherfields when carrier injection occurs.
This approximation is éompared with the numerical calculations in

Section 8.5.

8.5 DEVELOPMENT OF SYSTEM WITH TIME

We now present some of the important characteristics produced using
this model. In calculating these results, Method 1 was used for lower
values of the time t, when the displacement current dominated, while

Method 2 was used for the higher values.

Figure 8.2 shows the type of results obtained using a total external
voltage of 200V with an external load resistance of 1k and a device
of cross-sectional area Tmm?2. There is the expected sharp rise in
voltage across the device in the early stages with a flattening out as
the steady state is approached. The current shows a pronounced

peak at a small time due to the displacement current caused by the
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changing voltage and field. This displacement current falls off as

the voltage steadies, but there is another rise due to the particle

current which also saturates at its steady state value. It should be
pointed out that these saturation values of voltage and current correspond
to a point on the lower branch of the steady state current-voltage
characteristic calculated in the previous chapter and shown in

Figure 7.2.

The analytical results given by equation (8.25) can be substituted into
equation (8.23) and multiplied by ee, to give the displacement current
at time t assuming zero carrier injection. This curve is also shown

in Figure 8.2 for the same parameters. It shows close agreement at
the lower values of t, where we would expect it to be accurate, and

gives added confidence in the numerical methods adopted.

Figure 8.3 is for the same parameters as used in Figure 8.2 and
shows the development of the hole concentration across the sample with
time. With the hole concentration profiles shown at various time
intervals it can be seen how the concentration rises across the whole
sample with time, as more charge is injected from the cathode, finally

tending to the steady state profile.

For a higher voltage of 300V and a reduced load resistance of 600%

it was expected that a larger bias would be dropped across the device
itself and a higher current would result. This is demonstrated in
Figure 8.4. The curve shows the same general characteristics as
Figure 8.2, but in this case the particle current is saturating at a

value greater than the maximum displacement current.
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By choosing the suitable voltage and load resistance it is possible

to produce similar curves corresponding to a steady state on any

pbint of the lower forward resistance branch characterisiic. By showing
the time dependent problem in this way the steady state to which the
device tends is always found to be on the lower branch of the
characteristic and there is no tendency to go to the higher, potentially

destructive, region of the characteristic.

Attempts were made to model a situation in which the applied bias
and load resistance were such that the only steady state solution
would be the higher forward resistance region of the steady state
J-V characteristic (Figure 7.2). This required a very low load

resistance to enable the load line to reach the higher values of J.

Unfortunately, under these circumstances, the modelling program
was unable to proceed satisfactorily, with solutions being

unstable, convergence slow and finally overflow problems.

8.6 SUMMARY AND DISCUSSION

In these calculations we have shown that given a steadily rising
external voltage and a current uniform across the device cross-
section, there seems no reason why the current should reach a point
on the higher forward bias region of the current-voltage character-
istic. In the actual model we have not constrained the current in
any way except that it is required to be uniform across the cross-

section of the device.
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We must conclude from these results that any jumping to a higher
current state must be dueto some local variation in field or in
inhomogeneity in the current. A suggestion for further work is

to investigate the behaviour of the device, when either powering
up or in the steady state, if some sharp and indiscriminate variation
is modelled into the voltage supply, and to test the stability of any
solution under such conditions.

In his treatment of current controlled negative resistance, Ridley3
argUes, using the principle of least entropy production, that a high
current filament, once formed, will be limited in size, and will not
spread across the whole cross-section of the device. The filament
itself, he suggests, is produced by some local fluctuation in field
at, for example, some inhomogeneity in the device. This limit to the
cross-section of the filament was borne out by the early work of
Barnett and Milnesu using semi-insulating silicon and, more
importantly for this work, has been observed by Cattell1 in the
breakdown of the RSRE ZnS device. It is suggested then that in
the time dependent moceldeveloped in this chapter, the creation of
the high current state is inhibited by the assumption of constant
current density over the cross-section. Therefore to study
realistic device behaviour it would appear necessary to treat the

device in a 2-dimensional model.

- 169 -



CHAPTER NINE

SUMMARY AND CONCLUSIONS

The work reported in this thesis is an attempt to identify important
electronic processes in two kinds of electroluminescent device. The
two structureé investigated are the MIS diode, incorporating a thick
insulator and the high field MIM electroluminescent panel. In each
case the experimental characteristics of the devices had no;c been

satisfactorily explained and there was a clear need for further theoretical

work .

5.1 THE "THICK" MIS DIODE

Two forms of this device wére consicdered. These were the "II-VI"
diodes, which incorporate semi-insulating 11-VI materials as the
insulator and "Langmuir-Blodgett film" devices using Langmuir-Blodgett
film technology to create insulating layers of well regulated thickness.
The operation of such devices depends on the injection of minority
carriers (holes) into the semiconductor valence band where they can
recombine radiatively. Calulations were performed to investigate the
possibility of majority carriers, injected into the metal, creating a
significant hole population well below the metal Fermi level in an

impact ionisation type of process. Results showed that this was a
viable process with approximately 15% of the injected electrons producing
holes capable of reaching the metal-insulator interface. Due to energy

conservation holes cannot be created in electron states at eneragies less
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than Efm~|e|¢>b, where B, is the metal Fermi energy and ¢, is the

fm
electron barrier height. However above this energy the distribution of
created holes with energy is approximately linear. Therefore the impact
ionisation process was seen to be capable of producing a significant hole
flux at the interface, compared to minority carriers created thermally,

at energies well below the metal Fermi level (ie >E, -2eV).

fm
Considering the Au/cadmium stearate/n-GaP Langmuir-Blodgett film
device first, it proved possible to model the J-V characteristics using a
modified thermionic emission theory which took account of the potential
dropped in the semiconductor bulk at high current densities. Using
typical insulator-semiconductor interface state densities a good degree
of agreement with experimental characteristics was achieved. This
calculation is particularly valuable because it describes how the band

structure of the device alters under forward bias.

The mechanism by which holes pass through the Langmuir-Blodgett film
from the metal into the semiconductor remains unclear largely as a result
of a lack of fundamental experimental research in this area. With this
in mind transport mechanisms known to be important in electron
conduction in Langmuir-Blodgett film MIM structures were considered as
possible models for hole transport. Calculating the variation of the dc
power conversion efficiency using these different possible transport
mechanisms and comparing to experimentally obtained results it was
concluded that holes most probably travelled across the insulator by

hopping between interface states on the successive insulating layers.

In the Au/cadmium stearate/n-GaP device it was assumed that the limiting
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process for hole injection was the transport through the insulator.
However, in the 1i-VI devices and in particular the Au/i-ZnS/n-ZnS
structure, the limiting process was assumed to be the hole creation
mechanism in the metal. This was because the bandgap of the semi-
insulator is similar in value to the n type semiconductor and it was
expected that minority carrier transport would be in the semi-insulator
valence band. ‘Fer & constant current it was shown that there
would be a threshold insulator thickness above which any hole entering
thé insulator valence band would be swept into the semiconductor by
the insulator field. Below this threshold thickness the insulator field
would oppose the injection. The quantum efficiency of the Au/i-ZnS/
n-ZnS device was estimated by calculaticn the probability of holes being
created (in the impact ionisation process) which were capable of entering
the insulator valence band and then assuming that the holes were swept
into the semiconductor. The results were seen to be close to the

experimentally obtained values.

9.2 MIM ELECTROLUMINESCENT PANEL

In considering the high field dc electroluminescent panel, with i-ZnS

as the insulator, it was demonstrated how hole creation in the ZnS

valence band by impact ionisation coupled with a hole mobility two

orders of magnitude less than the value for electrons, can lead to a

build up of positive charge at the cathode. As a result there can be a
region of current controlled negative differential resistance in the calculated
J-V characteristics. This in turn means that, in a certain voltage range,
there can be three possible current states, the highest of which might

be as high as 10”Am—2, which would ‘lead to the device burning out.
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In the absence of accurate data on the material and device parameters,
the effect of these values on the J-V characteristic was investigated.
The characteristics calculated over the various ranges of parameters all

showed the same general trends.

As these devices are usually driven by a pulsed signal, their behaviour
when a voltage was first applied, was also modelled. In all cases the
current was found to approach smoothly the lowest steady state current
state. However it was pointed out that the method of solution adopted
for the system enforced the condition of constant current density over
the device cross-section and precluded the possibility of local high
current filament formation in the ZnS. Therefore it would be a
sensible extension of this work to model the device in t‘wo, or three,
dimensions and include local inhomogeneities to see if filament formation

can be predicted.
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APPENDIX ONE

STANDARD INTEGRALS

where
R = a + bx + cx?
- 2

(a + bcosx) (a? + sz"”
__5 - 2(26x + b)

3

VR
xdx = - 2(2a +bx)
3
VR

dx = 1 In(2vcR 2cx + b)

T

R2 fC—
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