
Durham E-Theses

The coupled dual boundary element-scaled boundary

�nite element method for e�cient fracture mechanics

BIRD, GARETH,EDWARD

How to cite:

BIRD, GARETH,EDWARD (2012) The coupled dual boundary element-scaled boundary �nite element

method for e�cient fracture mechanics, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/6996/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6996/
 http://etheses.dur.ac.uk/6996/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


 

The coupled dual boundary element-
scaled boundary finite element method 

for efficient fracture mechanics 

 
PhD Thesis 

 

Gareth Bird 

School of Engineering and Computing Sciences 

Durham University 

 

May 2012 

 

 



G. E. Bird 

The DBE-SBFEM 

ii 

Summary 

A novel numerical method is presented for applications to general fracture 

mechanics problems in engineering. The coupled dual boundary element-scaled 

boundary finite element method (DBE-SBFEM) incorporates the numerical 

accuracy of the SBFEM and the geometric versatility of the DBEM. 

Background theory, detailed derivations and literature reviews accompany the 

extensions made to the methods constituents necessary for their coupling as 

part of the present work. The coupled DBE-SBFEM, its constituent 

components and their application to linear elastic fracture mechanics are 

critically assessed and presented with numerical examples to demonstrate both 

method convergence and improvements over previous work. Further, a proof 

of concept demonstrates an alternative formation of the DBEM that both 

negates the need for hyper-singular integration and lends itself to a wider 

variety of imposed boundary conditions. Conclusions to this work are drawn 

and further recommendations for research in this area are made. 
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1 Introduction 

1.1 Introduction 

The knowledge of cracks and their behaviour under stress can be invaluable in 

increasing the longevity of fractured mechanical systems. Accurate stress 

analysis that reliably estimates the severity of cracks and their need for 

attention can assist in maintenance programs and reduce financial overheads 

by the prediction and prevention of otherwise potentially catastrophic failures. 

This is of particular importance in industries that operate under low factors of 

safety or with tight profit margins. A recent and extreme example of such 

failure through fracture fatigue is the 2009 crash of the Aerospatiale 

(Eurocopter) AS332 L2 Super Puma near Peterhead, Scotland (Air Accidents 

Investigation Branch, 2011). 

Academic problems can typically be solved to determine accurately and 

quickly some estimation of this need for intervention. Fundamental 

engineering principles may yield a solution analytical in nature without the 

need for any approximation. However, the range of problems that can be 

solved in this way is limited and if assumptions are made, such as simplifying 

the domain geometry, boundary conditions and material properties etc, such 
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that the problem can be solved analytically, this may lead to unacceptable 

inaccuracies. A typical engineering problem will require some degree of 

approximation in its definition, solution or both. So while computational 

modelling may provide a more accurate representation of the problem, the 

trade-off is in the numerical approximation of its solution. 

Through improved computer aided design, a numerical representation of the 

problem can be defined with ease. Cross-application support has led inevitably 

to its increased standardisation. Thus, focus is geared more towards improving 

the solution to the existing geometric definition than using existing solutions 

that require simplification of the geometric definition. Typically both the 

geometry and its boundary conditions are approximated by some form of 

domain or boundary discretisation process, where the relative behaviour of 

discrete portions is approximated and solved globally by some numerical 

method. The most prominent is the versatile finite element method (FEM). 

There are many alternatives, however, including meshless and boundary 

integral methods, as well as more advanced methods based on the FEM. 

The aim of the work presented here is the development and assessment of a 

new algorithm for the accurate solution of general fracture mechanics 

problems that retains the geometric flexibility expected by engineers. This is 

achieved by the coupling of the boundary element method (BEM) and the 

scaled boundary finite element method (SBFEM). The SBFEM is known to be 

suitable for applications to academic fracture mechanics problems, but is 

limited by geometric constraints that make it less suited to real engineering 

problems. The BEM is more geometrically-versatile, but, like the FEM, is 

known to be hindered by inaccuracies in the modelling of displacements 

around a loaded crack tip when a polynomial-based solution is assumed. The 
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approach taken in the present work is to couple the BEM and SBFEM in 

order to exploit their respective benefits. 

1.2 Linear elastic fracture mechanics model 

There are many models describing how materials deform and, under each 

model, many techniques, each with their own assumptions, advantages, 

disadvantages, accuracies, efficiencies and general suitability for particular 

applications. Under macro-scale stress analysis, forces acting over the 

infinitesimal area of a crack tip result in stress singularities which have 

traditionally been both academically interesting and computationally 

challenging. Attempts to describe a physical interpretation of the infinite 

stress found at the crack tip under a linear elastic fracture mechanics (LEFM) 

model may not be entirely practical. 

It is fair to state that the LEFM model breaks down long before local stresses 

could be considered ‘infinite’. Moreover, modelling improvements can be made 

by the consideration of basic plasticity right through to statistical (quantum) 

analysis of the material’s atomic structure, combined with multi-scale analysis 

combining each model’s respective advantages. However, it is also fair to state 

that real engineering problems exhibit rapidly-varying stresses and the LEFM 

model offers practical approximations in the vicinity of the crack with lower 

computational effort than more complete frameworks. Once the factors of 

safety found in engineering design and analysis are considered, a simplistic 

LEFM model may suffice. 

1.3 Stress intensity factors 

The stress singularities associated with a LEFM model found around the tip of 
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a loaded crack can be defined in terms of their independent modes of 

deformation described in Figure 1. 

( )a ( )b ( )c ( )dx

z

y

 

Figure 1. Three modes of deformation of ( )a  domain with a crack: ( )b  Mode I, ( )c  Mode II 

and ( )d  Mode III 

The principles of LEFM (Griffith, 1920) were extended to define independent 

stress intensity factors (Irwin, 1957), relating to each of these modes and 

describing the nature of a crack. Thus, for a given material, it is possible to 

quantify the severity of the crack and its need for attention. With reference to 

Figure 1, a local Cartesian system is defined with the x- and y-directions 

parallel and perpendicular to the crack face respectively; the z-direction is out-

of-plane and parallel to the crack front. Throughout the present work, 

analyses are limited for simplicity to 2D, such that the third mode can be 

neglected. 

The first two stress intensity factors are defined 

 
θ

σ π
=→

=I 00
lim 2yy
r

K r   (1.1) 

 
θ

σ π
=→

=II 00
lim 2xy
r

K r   (1.2) 

where σyy  and σxy  are the local stress components at some polar coordinate 

θ( , )r  from the crack tip. The effect of other stress fields at θ( , )r  may distort 
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the estimation of IK  and IIK . Thus, it is common that stresses are evaluated 

in the immediate vicinity of the crack tip such that other stress fields, such as 

those due to the Poisson effect, offer little significant interference. 

The stress intensity factors are considered local indicators: if, for a given 

material type, independent cracks are analysed, loaded such that the stresses 

local to the tip are identical, there will be no distinctioni between the stress 

intensity factors for each of the different analyses, irrespective of the 

geometries and boundary conditions of an analysis (e.g. the support structure 

of a loaded aircraft wing or a simplified plate under laboratory conditions). 

This dependence only on material properties (and not geometry and boundary 

conditions) makes stress intensity factors attractive indicators of fracture and 

are used widely in industry where material properties are known and 

modelling is limited to regions around a crack tip. 

1.4 Propagation 

The maximum principal stress criterion predicts that crack propagation occurs 

in the direction perpendicular to the maximum principal stress (Portela et al., 

1993). This occurs at 

 θ θ+ − =I IIsin (3cos 1) 0p pK K   (1.3) 

where θp  is the angle subtended from the x-axis in local Cartesian coordinate 

                                      

i in 2D where a plane stress or plane strain assumption is made; in 3D, the differences in the 
local geometry describing the direction and shape of the crack front may influence the stress 
intensity factors. 
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system defined in Figure 1. 

Though indicating the severity of the crack for a given static load, they can be 

used in conjunction with other parameters related to the geometry and 

boundary conditions as part of a dynamically-loaded system. For example, the 

Paris Law predicts the crack growth rate in a system, loaded cyclically 

between σmin  and σmax , is given by 

 = ∆ 2
1 I

d

d
C

c

a
C K

N
  (1.4) 

where a  is the crack length, cN  is the number of load cycles and 

 σ σ π∆ = −I max min( )K Y a   (1.5) 

where selected approximate and typical values of material constants 1C  and 

2C  are illustrated in Table 2, and constant Y  is geometry-dependent. 

2CMaterial

3Steel

3Aluminium

3.3Nickel

5Titanium

−1
2

1

Nmm

C

−1110

−1210

−× 124 10

−1110  

Table 2.  Paris Law constants, adapted from Roylance (Roylance, 1996) 

For general geometries found in general engineering problems, Y  is unknown 

and boundary conditions typically cannot be described so readily by a single 

applied load varying cyclically. Thus, equation (1.5) cannot be relied upon for 

estimating the crack growth rate in equation (1.4). Instead, ∆ IK  is given by 

estimation of the range of stress intensity factors over a load cycle 
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 ∆ = −
max minI I IK K K   (1.6) 

where 
max maxI I{ , }K K  are the stress intensity factors corresponding to load 

cases σ σmin max{ , } . For the types of material in Table 2, the accurate 

estimation of stress intensity factors is of particular importance as errors 

raised to such a power magnify the errors in crack growth prediction. 

For stress intensity factors to be of any engineering practicality, the 

underlying need for accurate computation of displacements and local stresses 

from which they derive is paramount. For additional concise reference, the 

author recommends Fleck et al. (Fleck et al., 1994). 

1.5 T-Stress 

The T-stress is a non-singular stress term acting parallel to the crack plane 

(Tvergaard and Hutchinson, 1994) that acts in addition to the singular 

stresses described above. The value of T-stress for a given load is geometry 

dependent. So unlike the stress concentration factor, the T-stress can be used 

to give an indication of the effects of the geometry and its constraints in the 

near vicinity of a crack tip. Analysis of two domains with the same stress 

intensity factors (and thus the same local stresses) may have decidedly 

differing T-stress. The magnitude of the T-stresses relative to those of the 

stress intensity factors may indicate the significance of the higher order terms 

on the overall stress analysis of the domain and the validity using a LEFM 

model for the analysis. 

While the propagation of cracks whose associated T-stress is negative have 

been shown to be dominated by the stress intensity factors, it has been 

observed that for those with a positive T-stress, propagation may deviate from 
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the expected crack path with some level of instability. (Cotterell and Rice, 

1980). This had led some works to question the assumption that stress 

intensity factors alone govern crack propagation, and that T-stresses may 

have a significant impact. Contrary to traditional theory that suggests T-

stresses should vanish under pure mode II problems, some such problems have 

been demonstrated by analytical solution to exhibit non-zero T-stresses (Fett, 

2001). Further, there have been efforts to redefine the mode I and mode II 

(Ayatollahi et al., 2005), such that a zero-value T-stress is no longer expected 

for such pure mode II problems. Inclusion of such specific examples involving 

fractured discs are beyond the scope of the present work, but are referenced 

for completeness with acknowledgement of this ongoing research of academic 

interest. 

1.6 Williams expansion 

The Williams expansion in displacement describes the displacements Wu  local 

to a crack tip in an infinite plate subject to a uniaxial stress perpendicular to 

the crack in terms of stress intensity factors (Williams, 1957). With reference 

to Figure 3 
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( )a

∞Ω
2a 2a

( )b ( )c

a

σ

σ
θ

r
Wx

u r θ( , )

Wy
u r θ( , )

a

 

Figure 3. Stress analysis of ( )a
 
a through crack in an infinite plate ( )b  the region around the 

crack tip and ( )c  the Cartesian displacements at polar coordinates from the tip 

 
 

=  
 

Wx
W

Wy

u

u
u   (1.7) 

the x- and y-direction displacements are given by 

 ( )θ
µ

∞

=

= −∑
2

1 1 2 2
1

( , ) ( ) ( )
2

i

Wx i x i x
i

r
u r C W i C W i   (1.8) 

 ( )θ
µ

∞

=

= −∑
2

2 2 2 2
1

( , ) ( ) ( )
2

i

Wy i y i y
i

r
u r C W i C W i   (1.9) 

where 

 κ θ θ   + + − − −   


=
  

1 ( 1) cos cos 2
2 2 2 2

( )x
ii i i

i
i

W   (1.10) 

 κ θ θ   + − − − −   


=
  

2 ( 1) sin sin 2
2 2 2 2

( )x
ii i i

i
i

W   (1.11) 

 κ θ θ   − − − + −   


=
  

1 ( 1) sin sin 2
2 2 2 2

( )y
ii i i

i
i

W   (1.12) 

 κ θ θ   − + − + −   


=
  

2 ( 1) cos cos 2
2 2 2 2

( )y
ii i i

i
i

W   (1.13) 

and κ  is the Kosolov constant related the material’s Poisson ratio ν  by 
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 ν
ν

κ
ν−


= +
 +

3
for plane stress

1
3 4 for plane strain

  (1.14) 

and 1iC  and 2iC  are coefficients that corresponding to specific, identifiable 

terms in the series. The first coefficients in the series are related to the stress 

intensity factors by 

 
π

= I
11

2

K
C   (1.15) 

 
π

= − II
12

2

K
C   (1.16) 

The T-stress IIT  is related to the second coefficient in the series 

 = II
22 4

T
C   (1.17) 

By neglecting the higher order terms, equations (1.8) and (1.9) reduce to 

 
κ θ θ

θ
µ π

− = 
 

+
2I ( 1)

cos sin
2 2 2

( , )
2Wx

K r
u r   (1.18) 

 
κ θ θ

θ
µ π

+ = 
 

−
2I ( 1)

sin cos
2 2 2

( , )
2Wy

K r
u r   (1.19) 

1.7 Numerical modelling of fracture mechanics problems 

The BEM, its extension, the Dual BEM (DBEM), and the SBFEM are 

numerical methods that may be used to estimate the deformation of a loaded 

domain. New derivations of both the BEM and SBFEM are presented with 

particular efforts made to increase the understanding of SBFEM. New 

observations relating to the implementations of these methods are presented 

alongside extensions that facilitate their coupling. Further extensions and 

reformulations of these methods that improve their individual applicability are 

presented. These methods are assessed independently and then in coupled 
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forms using fracture mechanics problems to illustrate their relative strengths 

and weaknesses. The idealised examples (based on §1.6) with known solutions 

provide benchmarks that are indicative of their performance when applied to 

non-trivial examples whose solutions are not known. It should be noted that 

all analyses are undertaken on isotropic bodies. The methods in their 

presented forms are inappropriate for analysis of anisotropic bodies. 

The work presented in this thesis represents an extension to initial work on 

this project (Chidgzey, 2007). Consequentially, the code used to obtain results 

in the author’s early references owes some recognition to Chidgzey et al. for 

assistence in the SBFEM side of the project and Trevelyan et al. for assistance 

on the BEM side. However, all the code has since been rewritten under a more 

modern, computer science framework. A bottom-up approach to testing was 

taken to offer confidence that the presented results are the more characteristic 

of the methods than their respective implementation. The new code was 

written in MATLAB and makes use of some freely-available library functions, 

but otherwise has been developed by the author. 

The presented coupled method and its efficient use of reanalysis (a method of 

identifying and reusing computed data) is specifically tailored towards linear 

elastic fracture mechanics problems in 2D isotropic bodies. Thus it is for this 

class of problem that the method best suited, and offers advantages over codes 

that are based on generic numerical methods (typically the more established 

FEM, and to a lesser extent, the BEM). For example, the code BEASY is 

based on the BEM, which, for a given number of degrees of freedom will be 

less accurate than the presented method owing to the BEM’s poor piecewise 

isoparametric element-based polynomial approximations to non-polynomial 

functions. However, owing to the techniques to implement these generic 
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methods professionally, commercial software is expected to run faster despite 

its underlying methods rather than because of them.  

1.8 Content outline 

In §2 and §3, reviews of these numerical methods are presented. The BEM is 

well known, and as such, is not subject to as much rigorous detail as the less-

well known SBFEM. However, with the focus of the present work directed 

towards their coupling, both methods are developed accordingly. To allow the 

reader to become familiar with the technical terms associated with each 

method beforehand, the literature surrounding both methods is reviewed at 

the close of each chapter. 

The original concept of a coupled boundary element-scaled boundary finite 

element method (BE-SBFEM) is reviewed in §4. Its limitations are reviewed 

and addressed as part of the present work, serving to illustrate the 

development of the algorithm to include the dual boundary element method 

(DBEM). 

As an extension to the BEM, the introduction of the DBEM in its existing 

form increases the geometric flexibility further. This coupled DBE-SBFEM is 

presented in §5 and includes the use of reanalysis to deliver an efficient 

algorithm applicable to general crack propagation schemes, but with a 

particular suitability to those of a predictor/corrector basis. The DBEM is 

reformulated in §6 in order to simplify its implementation and increase the 

range of applications to which it is suited. 

The results and observations of the methods and their implementation are 

summarised and analysed critically in §7. Recommendations for further 
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research are made and concluding remarks drawn in §8. Supplementary 

information can be found in the appendices. The illustrations that accompany 

this thesis are original to the author unless otherwise stated. 

1.9 Conclusion 

The motivation behind the present work is the need for the estimation of 

stress intensity factors of loaded fractured systems. A new numerical 

algorithm coupling the BEM and SBFEM is proposed in order to calculate 

accurately the domain displacements on which the stress intensity factors are 

based. By combining the geometric flexibility of the BEM and the accuracy of 

the SBFEM, the method, built under a linear elastic framework, is expected to 

model real engineering domains with efficiency. 

The implementation of this method has been undertaken using a modern 

computer science development and testing framework to improve code 

integrity and provide confidence in the results. A discussion of this 

implementation and the numerical results it yields will be presented, and 

overall conclusions and recommendations for further research are drawn. 
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2 Boundary element method 

2.1 Introduction 

In this chapter, the boundary element method (BEM) is introduced. After a 

brief overview, a detailed numerical formulation, with examples, is included to 

demonstrate the method’s suitability for applications to fracture mechanics. 

Its other strengths and limitations are assessed. The dual BEM (DBEM), an 

extension to the BEM, is also discussed. The methods are presented alongside 

a critical assessment of their application to fracture mechanics, specifically in 

its suitability to extract accurately displacements near a crack tip. The data 

in numerical examples in this chapter are obtained by the development of the 

author’s own code. 

Some aspects of implementing the BEM and DBEM are introduced. An 

adaptive algorithm is assessed for use in non-singular integration of both the 

BEM and DBEM kernels. Analytical expressions for singular integration have 

been simplified and more generalised easing the BEM’s implementation. This 

generalisation also facilitated a preliminary investigation into the optimisation 

of the local distribution of nodes defining their boundary elements. Other 

historical developments of the BEM and DBEM are discussed in a brief 
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literature review.  

2.2 Numerical formulation 

2.2.1 Method introduction 

As the interest in the BEM in this thesis lies in the computation, application 

and extension of its underlying boundary integral equations, its complete 

derivation from its fundamental governing Laplace equation is not provided 

here. It is sufficient to state that the particular efforts have been made to 

address the practical implementation of the method in computer code, rather 

than the more general overviews offered elsewhere, beginning from the 

computation of the boundary integral equation (BIE) to form boundary 

integral equations as a basis for the method. This chapter summarises much of 

what is described in other more exhaustive derivations such as Ali and 

Rajakumar (2004), Beer (2001) and Becker (1992), to which the reader is 

directed for further details. 

The BEM is a versatile method that can be applied to a number of areas. By 

modelling the boundary only, the BEM can be used to model both finite and 

infinite domains. When applied to linear elastic fracture mechanics, the BEM 

aims to model a domain’s boundary displacement caused by its boundary 

tractions and other boundary constraintsii. The basis of the BEM is the 

displacement boundary integral equation, often abbreviated to BIE, but to 

distinguish between this and the traction boundary integral equation that 

                                      

ii the effect of body loads is neglected in the present work without loss of generality 
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forms the basis of the DBEM, they will be abbreviated to DBIE and TBIE 

respectively. 

Throughout this chapter, a 2D linear elastic domain is assumed, and the 

subscript ‘B’ is used to denote the boundary element method to allow 

distinction from, and comparison with, terms relating to other numerical 

methods in later chapters. The nomenclature of substructuring of the system 

matrices is inspired by the local substructuring of the author’s BEM code and 

may not appear in this manner in the literature or other BEM codes. It should 

be noted that the BEM kernels described in the following sections use explicit 

indexing and are not tensors. 

2.2.2 Displacement boundary integral equation 

For a stress field represented by 

 
φ φ φ

σ σ τ
∂ ∂ ∂

= = = −
∂ ∂∂ ∂

2 2 2

2 2
, ,x y xy x yx y

  (2.1) 

by substitution into the compatibility equations, with reference to Rajakumar 

(2004), Beer (2001) and Becker (1992), it can be seen that force equilibrium is 

satisfied by the governing biharmonic equation 

 
φ φ φ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

4 4 4

4 4 2 2
2 0

x y x y
  (2.2) 

where φ  is the Airy stress function. The BEM is based on the solution to 

equation (2.2), and is be written in terms of fundamental solutions that can be 

solved for a given set of boundary conditions. 

Thus for a domain ΩB  with n  degrees of freedom, the x- and y-direction 
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boundary displacements can be described as functions of s , a circumferential 

coordinate system coincident with the boundary ΓB . The DBIE defines these 

displacements ( )xu s  and ( )yu s , at some point = ss P  (called the source point), 

in terms of the integrals of all boundary displacements and tractions 

multiplied by their respective kernels (called the BEM fundamental solutions), 

and a constant ( )sC P  

 
Γ

Γ

    
+ Γ −    

     

     
Γ =     

    

∫

∫

B

B

* *

B* *

* *

B* *

( ) ( , ) ( , ) ( )
( ) d ...

( ) ( )( , ) ( , )

( , ) ( , ) ( ) 0
d

( ) 0( , ) ( , )

x s xx s f xy s f x f
s

y s y fyx s f yy s f

xx s f xy s f x f

y fyx s f yy s f

u P T P P T P P u P
C P

u P u PT P P T P P

U P P U P P t P

t PU P P U P P

 

   (2.3) 

where ( )x fu P , ( )y fu P , ( )x ft P  and ( )y ft P  are the boundary displacements and 

tractions at = fs P  (called the field point). The constant ( )sC P  is a parameter 

defined by the nature of the geometry at sP , given by 

 
α

π
=( )

2sC P   (2.4) 

where the angle of smoothness α  is defined by the interior angle subtended 

by the material between boundary facets to either side of sP , as illustrated in 

Figure 4. This term is known as the ‘jump term’. The fundamental solutions 

vary in s  and are functions of the separation of the field and source points r  

and the outward unit normal ( )sn  evaluated at = fs P , and material 

constants, where 

 = −f sr P P   (2.5) 
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BΩ

BΓ α π>

BΩ

BΓ

α π<
( )a ( )b

BΩ

BΓ

α π=

BΩ

2α π=

( )c ( )d

sP sP

sP

sP

 

Figure 4. The angle of smoothness at sP  on the boundary where α π<( )a  forming an 

interior angle, α π>( )b  forming an exterior angle, α π=( )c  forming a smooth boundary and 

( )d  an interior point where α π= 2  

The DBIE fundamental solutions are given by 

 ν
π ν

 − ∂ ∂ = − +   − ∂ ∂  

2
* 1
( , ) (1 2 ) 2

4 (1 ) ( )xx s f
f

r r
T P P

r n P x
  (2.6) 

 ν
π ν

− ∂ ∂ ∂ ∂ ∂  = − − −  − ∂ ∂ ∂ ∂ ∂  

* 1
( , ) 2 (1 2 ) ( ) ( )

4 (1 ) ( )xy s f y f x f
f

r r r r r
T P P n P n P

r x y n P x y
 

  (2.7) 

 ν
π ν

− ∂ ∂ ∂ ∂ ∂  = − − −  − ∂ ∂ ∂ ∂ ∂  

* 1
( , ) 2 (1 2 ) ( ) ( )

4 (1 ) ( )yx s f x f y f
f

r r r r r
T P P n P n P

r x y n P y x
 

  (2.8) 

 ν
π ν

 − ∂ ∂ = − +   − ∂ ∂  

2
* 1
( , ) (1 2 ) 2

4 (1 ) ( )yy s f
f

r r
T P P

r n P y
  (2.9) 

 ν
πµ ν

 ∂   = − +    − ∂    

2
* 1 1

( , ) (3 4 )ln
8 (1 )xx s f

r
U P P

r x
  (2.10) 
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πµ ν

∂ ∂
=

− ∂ ∂
* 1
( , )

8 (1 )xy s f
r r

U P P
x y

  (2.11) 

 
πµ ν

∂ ∂
=

− ∂ ∂
* 1
( , )

8 (1 )yx s f
r r

U P P
y x

  (2.12) 

 ν
πµ ν

 ∂  = − +    − ∂    

2
* 1 1

( , ) (3 4 )ln
8 (1 )yy s f

r
U P P

r y
  (2.13) 

where µ  is the shear modulus of the material given by 

 µ
ν

=
+2(1 )

E
  (2.14) 

where E  and ν  are the Young’s modulus and Poisson’s ratio of the material, 

and ( )xn s  and ( )yn s  are the x- and y-direction components of ( )sn  

 
 

=  
 

( )
( )

( )

x

y

n s
s

n s
n   (2.15) 

For a unit-circular boundary, illustrated in Figure 5, these kernels are smooth 

and continuous, as illustrated in Figure 6 and Figure 7 where arbitrary 

engineering materials are used. For the portions of boundary in which fP  is 

sufficiently far from sP , these kernels are well-behaved and the integrals of 

such present few computational difficulties. Further, as shown in the figures, 

as fP  approaches sP , there may exist a singularity that requires more careful 

consideration. 

s

sP

θ π= −
θ π=

BΩ

BΓ
 

Figure 5. Sample source point on a circular boundary in which s  can be described as a 

function of θ  



G. E. Bird 

The DBE-SBFEM: Boundary element method 

20 

P P

P P

*
(

,
)

xx
s

f
T

P
P

*
(

,
)

xy
s

f
T

P
P

*
(

,
)

yx
s

f
T

P
P

*
(

,
)

yy
s

f
T

P
P

sP π+π− s

sP π+π− s sP π+π− s

sP π+π− s

 

Figure 6. Illustration of *( , )ij s fT P P  kernels for a circular domain, =, ,i j x y  
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Figure 7. Illustration of * ( , )ij s fU P P  kernels for a circular domain, =, ,i j x y  

For practical, non-circular domains, these kernels exhibit discontinuities, 

particularly at 90° corners owing to step changes in unit normals. To compute 

the integrals in equation (2.3), ΓB  is discretised into L  discrete boundary 
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portionsiii 

 
= =

          
+ − =       

        
∑ ∑

1 1

ˆ( ) ( ) ( ) 0
( )

ˆ( ) 0( )( )

e eL L
x s x s x se e

s ee
y s e e y sy s

u P P P
C P

u P PP

h g
u t

gh
  (2.16) 

or 

 
= =

+ − =∑ ∑
1 1

ˆ( ) ( ) ( ) ( )
L L

e e e e
s s s s

e e

C P P P Pu H u G t 0   (2.17) 

where 

 
 

=  
 

( )
( )

( )

x

y

u s
s

u s
u   (2.18) 

and ˆ ( )e
sPH  and ( )e

sPG  are the coefficients of the displacements eu  and 

tractions et , the degrees of freedom of boundary portion e . The computation 

of equation (2.17) yields 

 + − =ˆ( ) ( ) ( ) ( )s s s sC P P P Pu H u G t 0   (2.19) 

where u  and t  are the column vectors of length n  describing the 

displacements and tractions of the whole boundary, and ˆ ( )sPH  and ( )sPG  are 

their respective coefficients. 

As both sP  and fP  are on the boundary, if the discretisation process is such 

that the source point coincides with a field point, where =s fP P , the constant 

                                      

iii The term ‘boundary portion’ is used without loss of generality. The usual (non-general) 
discretisation process, and that which is adopted here, results in a piecewise polynomial 
approximation to the boundary displacements and tractions over e through the calculation of 
nodal values and elemental interpolation. This process is described later.  
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( )sC P  can be assimilated into the coefficient of ( )fPu  

 
 + =

= 
 +

ˆ ( ) ( )
( )

ˆ other wise( )  ( )

ek
ij s s s fek

ij s ek
ij ss C P

h P C P P P
h P

h P
  (2.20) 

where, with reference to Appendix A, =, ,i j x y  and = 1... ek n , the number of 

degrees of freedom of boundary portion e . 

Equation (2.19) is thus reduced to 

 − =( ) ( )s sP PH u G t 0   (2.21) 

2.2.3 Traction boundary integral equation 

The TBIE forms an alternative for cases when uniqueness of the equations in 

(2.31) cannot be guaranteed, such as when sections of the boundary overlap 

and source points are coincident. The TBIE is given by 

 

Γ
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s
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 (2.22) 

where it can be seen the ‘jump term’ is associated with the tractions ( )xt s  and 

( )yt s  at the source point. The TBIE fundamental solutions are given by the 

tensors 
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   (2.23) 

ν δ δ δ
π ν

∂ ∂ ∂ ∂ ∂ ∂   
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r r r r r r
D P P

r x x x x x x
 

   (2.24) 

where =, , ,k i j x y  and δij  is the Kronecker delta. 

Following a manner similar to that of the DBIE, the TBIE is discretised in 

into L  boundary portions 

 
= =
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+ − =       

′ ′          
∑ ∑

1 1

ˆ( ) ( ) ( ) 0
( )

( ) 0ˆ( ) ( )

e eL L
x s x s x se e

s e e
y s e ey s y s

t P P P
C P

t P P P

h g
u t

h g
  (2.25) 

or 
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where 
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t s
s

t s
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By the assimilation of the constant ( )sC P  into the coefficient of ( )fPt  at 

=s fP P  
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′ + =

′ = 
′ +

ˆ ( ) ( )
( )

o  therwiseˆ ( ) ( )

ek
ij s s s fek

ij s ek
ij ss

g P C P P P
g P

g C PP
  (2.28) 

equation (2.26) is reduced to  

 ′ ′− =( ) ( )s sP PH u G t 0   (2.29) 

where, with reference to Appendix A, =, ,i j x y  and = 1... ek n , the number of 

degrees of freedom of boundary portion e . 

The TBIE is used in the formation of the DBEM, which is described in §2.6. 

2.2.4 Method solution 

By the repeated movement of the source point to new locations on s  and 

computing ( )sPH  and ( )sPG  using the DBIE, or ′( )sPH  and ′( )sPG  using the 

TBIE, n  equations (i.e. 2
n  sets of the two equations defined in either (2.16), 

(2.25) or combinations of the two equations) can be assembled describing the 

displacements at each source point 

 − = 0Hu Gt   (2.30) 

where H  and G  are known as the displacement and traction influence 

matrices. 

For each degree of freedom, and in each direction, it is assumed that either a 

Dirichlet (displacement) or Neumann (traction) boundary condition is known. 

By their application to equation (2.30) 

 = � �Ax Ax   (2.31) 

or, since the entire right hand side is now known 

 =Ax b   (2.32) 
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where x  and �x  are vectors of the unknown and known displacements and 

tractions, and A  and �A  are their respective coefficients. This linear system 

can be solved for all unknown boundary displacements and tractions. Unlike 

the comparable finite element method (FEM), this BEM system matrix will be 

non-symmetric and fully populated and methods geared towards solving FEM 

systems may be unsuitable for solving BEM systems. However, for a given 

problem, the size of the BEM system will typically be much smaller than that 

of a comparable FEM system. There are many solvers tailored specifically to 

the characteristics of the BEM system, with the generalised minimal residual 

(GMRES) solver (Saad and Schultz, 1986) a popular such example. 

2.3 Discretisation 

The geometric boundary ΓB  is discretised in the usual manner by means of a 

piecewise polynomial isoparametric boundary element approximation, such 

that each source point corresponds with an element node defining the 

geometry. Unlike the FEM, the system matrices in the BEM do not define a 

local (elemental) stiffness, merely a set of coefficients relating the 

displacements and tractions on a global (boundary) level. The distribution of 

nodes on an element is, in principle, arbitrary for the BEM. However, certain 

nodal distributions may require specific computational considerations and are 

often selected specifically for reasons of convenience, i.e. even though the 

governing BEM equation may still hold, certain configurations of nodal 

distribution may result in incomputable integrals of hyper-singular equations. 

Continuous, discontinuous and semi-discontinuous elements can be selected as 

necessary for use in the BEM without the need for additional constraint 

equations. The motivation for, and definition and application of, such 

elements is now presented. 
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The two-dimensional geometric characteristics of a discrete boundary element 

e  may be mapped, via a suitable transformation, into a one-dimensional axis 

bounded by η− ≤ ≤1 1. A quadratic boundary element e  is defined by the 

local distribution of its three nodes eη  

 { }η η η= 1 2 3
eη   (2.33) 

 Such quadratic elements are assumed throughout this thesis. Generally 

 η η η− ≤ < < ≤1 2 31 1   (2.34) 

and typically 

 η =2 0   (2.35) 

 η η= −1 3   (2.36) 

Exceptions to equations (2.34) to (2.36) are highlighted below. 

2.3.1 Continuous elements 

Continuous boundary elements exhibit nodal connectivity between 

neighbouring elements, thus 

 η η η− = < < =1 2 31 1  (2.37) 

and have the appearance of one dimensional elements used in the FEM, as 

illustrated in Figure 8. 
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Figure 8. Boundary discretisation from ( )a  geometric continuous boundary element to ( )b  a 

mapped continuous boundary element 

2.3.2 Discontinuous elements 

Discontinuous boundary elements exhibit no nodal connectivity between 

neighbouring elements, thus 

 η η η− < < < <1 2 31 1   (2.38) 

Unlike conventional finite elements, discontinuous boundary elements extend 

beyond the extremities of the outermost nodes, as illustrated in Figure 9. 

η 1+01−

( )b
1 2 3

x

y
( )a

1 2
3

BΩ

BΓ

 

Figure 9. Boundary discretisation from ( )a  geometric discontinuous boundary element to ( )b  

a mapped discontinuous boundary element 

2.3.3 Semi-discontinuous elements 

Semi-discontinuous boundary elements exhibit nodal connectivity with one of 

its neighbouring elements and no connectivity with the other, thus 

 η η η− < < < =1 2 31 1   (2.39) 

or 
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 η η η− = < < <1 2 31 1   (2.40) 

as illustrated in Figure 10. 
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Figure 10. Boundary discretisation from ( )a  geometric semi-discontinuous boundary element 

to ( )b  a mapped semi-discontinuous boundary element of the first kind, and ( )c  geometric 

semi-discontinuous boundary element to ( )d  a mapped semi-discontinuous boundary element 

of the second kind 

These elements can be used to provide a smooth transition between boundary 

sections modelled by continuous and discontinuous elements. 

2.4 Shape functions 

The quadratic shape functions required for discontinuous and semi-

discontinuous element interpolation and extrapolation are modified from those 

for standard continuous elements used in methods such as the FEM. The 

vector of shape functions N  for quadratic elements is given by 

 { }η η η= 1 2 3( ) ( ) ( )N N NN   (2.41) 

where 
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 η η η= − +2( ) ( )k k k kN A B C   (2.42) 

where 

 

η η
= ≠

=

−∏
3

1,

1

( )

k

k j
j j k

A   (2.43) 

 η
= ≠

= ∑
3

1,
k j

j j k

B   (2.44) 

 η
= ≠

= ∏
3

1,
k j

j j k

C   (2.45) 

for = 1..3k . The form of equation (2.42) may not appear in the literature, but 

was devised as part of the present work in order to generalise the shape 

functions for the quadratic boundary element types illustrated in Figure 11.  
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ηe = {-2/3, 0, 1}

ηe

N
k

-1 -0.5 0 0.5 1

-1

0

1

2
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Figure 11. Set of three quadratic shape functions kN  for ( )a  continuous elements, ( )b  

discontinuous elements, ( )c  semi-discontinuous elements of the first kind, and ( )d  semi-

discontinuous elements of the second kind 
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Adjacent continuous elements share a common node and so 0C  will be 

observed. Such continuity is not guaranteed between adjacent elements 

offering no nodal connectivity. Although this may, at first, appear 

disadvantageous, this natural discontinuity can be expected to reduce with an 

improved mesh and thus may serve as an error indicator. 

2.5 Integration 

For quadratic elements in two dimensions, it is computationally convenient to 

compute submatrices of ×2 2  terms corresponding to a single source node and 

field node pair, in each direction. With reference to Appendix A, it can be 

shown that these submatrices are given by 

 
 

=  
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ˆ ˆ( ) ( )ˆ ( )
ˆ ˆ( ) ( )

ek ek
xx s xy sek

s ek ek
yx s yy s

h P h P
P

h P h P
H   (2.46) 
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( )

( ) ( )

ek ek
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s ek ek
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xx s xy sek

s ek ek
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h P h P
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′ ′ 

′ =  
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ˆ ˆ( ) ( )ˆ ( )
ˆ ˆ( ) ( )

ek ek
xx s xy sek
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g P g P
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g P g P
G   (2.49) 

where = 1,2,3k  for quadratic elements, =, ,i j x y  and 

 η η
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*

1

ˆ ( ) ( ) ( ) dek e e e e
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 η η
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−

′ = ∫
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*

1

( ) ( ) ( ) dek e e e e
ij s ij s kh P D P N J   (2.52) 

 η η
+

−

′ = ∫
1

*

1

ˆ ( ) ( ) ( ) dek e e e e
ij s ij s kg P S P N J   (2.53) 



G. E. Bird 

The DBE-SBFEM: Boundary element method 

31 

These terms are typically assembled into larger submatrices of size ×2 6 , 

corresponding to each source node and field element pair, before assembly into 

the BEM influence matrices. 

2.5.1 Nature of singularity 

As sP  approaches fP , the BEM kernels may exhibit some form of singular 

behaviour and, depending on the nature of the singularity (if any), a suitable 

integration scheme must be employed over each respective portion of the 

boundary, as illustrated in Figure 12. 
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near-singular

integration

non-singular

integration

s

 

Figure 12. Illustration of the integration schemes required over the boundary for a kernel that 

exhibits singular behaviour close to the collocation point • , non-singular behaviour away from 

the collocation point, with a transition of near-singular behaviour elsewhere. 

By using the piecewise polynomial elements and shape functions described 
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above, the element-wise integral of the DBIE and TBIE kernels over each 

boundary portion can be evaluated. The type of integration scheme required is 

determined on an element-by-element basis, depending on whether the 

function is non-singular, near-singular, weakly-singular, strongly-singular or 

hyper-singular, as categorised below. 

2.5.2 Non-singular integration 

These integrals can be approximated by standard methods, such as Gauss-

Legendre quadrature, in which for a function η( )f  

 
γ

γ γ
γ

η η η
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≈ ∑∫
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11

( )d ( )f f w   (2.54) 

where γη  and γw  and the coordinates and weights of the γmax  quadrature 

points. Thus 
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2.5.3 Near- and weakly-singular integration 

A popular method in this work for the approximation of weakly-singular 

functions is to map the element coordinate system ηe  into another local 

coordinate η�e  (Telles, 1987), defined by 
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 η η=�1 1   (2.59) 

 
η

η
η

∂
=

∂
�

�
20 at   (2.60) 

 η η=�3 3   (2.61) 

as illustrated in Figure 13. Equation (2.54) is redefined 
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such that 
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and the singularity is cancelled. 
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Figure 13. ( )a  The original element, and ( )b  the Telles transformation. 

An additional effect of this scheme is the natural clustering of quadrature 

points towards the singularity, as illustrated by Figure 14, even if the 

singularity is not on that element. This makes the scheme appropriate for the 

near-singular integration as it offers an improved distribution of points over 

the Gauss-Legendre quadrature. 

The transformation requires a modified Jacobian �eJ  and weights γ�w , but 
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otherwise appears similar to the Gauss-Legendre quadrature. 
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Figure 14. Quadrature points ‘x’ are naturally redistributed over element e  from ( )a  a 

Gaussian distribution, ( )b  towards the singularity when using the Telles scheme. The 

comparative weights associated with each quadrature point is illustrated by ‘---’ 

2.5.4 Strongly-singular integration 

For the functions that exhibit strongly-singular behaviour, the approach to 

the computation of the integral depends on the element type at the source 

point. A scheme of separating the singular function into its singular and non-
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singular components is preferred (Guiggiani and Casalini, 1987), but can only 

be applied where the source node exhibits no nodal connectivity and lies upon 

a flat element. An alternative approach for continuous elements and non-flat 

elements follows later. 

The singular integral exists as part of a Cauchy principal value (CPV), 

denoted by 

 

η δ

δ η δ

η η η η η η

′+ − +

→ ′− − +

 
= + 

  
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1 1

01 1

( ) d ( )d ( )dlim
CPV

f f f   (2.68) 

where f  is an arbitrary function that exhibits strongly-singular behaviour at 

η′ , the local coordinate of the strong singularity where η′− ≤ ≤ +1 1 and δ  is 

the radius of the CPV zone, illustrated in Figure 15. 

eη
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1+1−
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η′

aη bη
1−

0

1+
0 1+
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Figure 15. The Cauchy Principal Value zone and the subdivision of an element at the 

singularity 

By subdividing the element at the singularity, two functions describing f  in 

terms of the two local coordinates  

 η η η= −( ) ( )(1 )a af f   (2.69) 

 η η η= +( ) ( )(1 )b bf f   (2.70) 

are substituted into equation (2.68) 
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where η( )aJ  and η( )bJ  are the Jacobians associated with element portions ηa  

and ηb . By simultaneously subtracting and expressions for the singularity 

existing at both η = 1a  and η = −1b  
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  (2.72) 

Since η η → ∞( ) ( )a a a af J  at η = 1a , and η η → ∞( ) ( )b b b bf J  at η = −1b , the 

strongly singular part of the function is cancelled leaving two regular 

expressions to be evaluated. 
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  (2.73) 

When the arbitrary function f  is replaced by the strongly-singular kernels 

used in the DBIE, by this separation and cancellation of the strongly singular 

part, the integral was shown to be computable for flat discontinuous elements 

(Portela et al., 1992), given by 

 
ν
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or 
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�
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ˆ ( )
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ek
s i
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P I

l
H S   (2.75) 

where k  is the index of the node on element e  at which the singularity 

occurs, el  is the geometric length of element e  and 

 
− 

=  + 

0 1

1 0
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The singular integrals �kI  for discontinuous quadratic elements with local 

nodal coordinates −= 2 2
3 3{ 0 }eη  are given by (Portela et al., 1992) 
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The applicability of these expressions has been extended as part of the present 

work by rewriting equations (2.77) to (2.79) for flat quadratic boundary 

elements with general local nodal coordinates η η η= 1 2 3{ }eη  (Bird et al., 

2008b) 
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 (2.80) 

where kA , kB  and kC  are defined in §2.4. 

For non-flat elements, or elements with nodal continuity, the application of 

rigid body motion can be used to estimate the terms that otherwise require 

singular integration. Consider the analysis of a traction-free domain subject to 
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two independent boundary conditions, each a rigid body displacement in first 

the x-direction, then the y-direction. In each case, this displacement has a 

defined magnitude RU , where typically 

 = 1RU   (2.81) 

The nodal displacements and tractions of corresponding to each element 

= 1..e L  are thus given by  

 { }=
T T0 0 0e

R R RU U Uu   (2.82) 

 { }=
T T0 0 0 0 0 0et   (2.83) 

in the first case and 

 { }= TT 0 0 0e R R RU U Uu   (2.84) 

 { }= TT 0 0 0 0 0 0et   (2.85) 

in the second. Using each rigid body displacement case in turn, equation 

(2.17) can thus be reduced to 
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respectively. 
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When using the DBIE, for each of the above equations there exists just one 

term that exhibits singular behaviour in its computation. Thus, by the 

integration of the regular (non-singular) terms, the singular term can be 

estimated by the difference of their sum and the jump term ( )sC P . 

When using the TBIE, there may exist multiple terms that exhibit singular 

behaviour and so this scheme cannot be employed in this manner. It should 

also be noted that although the explicit computation of the singular 

integration is avoided, it is at the expense of the errors accumulated in the 

integration of each of the non-singular terms. 

In the case of the TBIE, the strongly-singular integration required for the 

computation of equation (2.24) can be avoided by a priori knowledge of the 

application of the method. Within the scope of the present work, traction-free 

boundary conditions are assumed on elements that for which the TBIE is used 

 
 

=  
 

0
( )

0
sPt   (2.90) 

Under this assumption, the computation of their coefficients, ′ˆ ( )ek
sPG  in 

equation (2.49), is unnecessary.. 

2.5.5 Hyper-singular integration 

Functions that exhibit hyper-singular behaviour are evaluated analytically. In 

a similar manner outlined above, the hyper-singular integral exists as part of a 

Hadamard principal value (HPV), denoted by 
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where f  is an arbitrary function that is exhibits hyper-singular behaviour at 

η′ , the local coordinate of the strong singularity where η′− ≤ ≤ +1 1 and δ  is 

the radius of the HPV zone 

When the arbitrary function f  is replaced by the hyper-singular kernels used 

in the TBIE, the integral was shown to be computable for flat discontinuous 

elements (Portela et al., 1992), given by 

 η
π ν η η

+

−

 
′ ′=  ′− − 

∫
�1

2 2
HPV1

( ) d
2 (1 ) ( )

ke
k s

e

E N
P

l
H S   (2.92) 

or 

 
π ν

′ ′=
−

�
2

( )
2 (1 )

e
k s k

e

E
P I

l
H S   (2.93) 

where k  is the index of the node on element e  at which the singularity 

occurs. 

As part of the present work (Simpson and Bird, 2009), the matrix ′S , 

described fully in the reference (Portela et al., 1992), was shown as to reduce 

to a more simplified expression relating the dot product of the normals at sP  

and fP  
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The singular integrals ′�kI  for discontinuous quadratic elements with local 

nodal coordinates −= 2 2
3 3{ 0 }eη  are given by (Portela et al., 1992) 
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The applicability of these expressions has been extended as part of the present 

work by rewriting equations (2.95) to (2.97) for flat quadratic boundary 

elements with general local nodal coordinates η η η= 1 2 3{ }eη  (Bird et al., 

2008b) 
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where kA , kB  and kC  are defined in §2.4. 

2.6 Submatrix assembly 

Typically it is convenient to compute submatrices ( )e
sPH  on a per-

element/source point basis. Their assembly into ( )sPH  for discontinuous 

elements is trivial, as illustrated in Figure 16(a), as each degree of freedom is 

associated with just one element, and thus with just one submatrix. However, 

if there is nodal connectivity between neighbouring elements e  and + 1e , 

through the use of continuous or semi-discontinuous elements, then their 

assembly into global system matrices H  and G  results in a non-square 

system. By the assimilation of the common displacement and traction 

coefficients in these matrices, these matrices can be made square. 
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Figure 16. Submatrices eH  and +1eH  assembled into rows i  and + 1i , elements e  and 

+ 1e of BH  for ( )a  discontinuous elements, and ( )b  semi-discontinuous elements 
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In the literature the means by which the system matrices are made square is 

not discussed. It may be simpler to assimilate these coefficients at a more local 

level, as illustrated in Figure 16, than attempt to fill global system matrices 

that retain their square structures during their construction. Such a local 

assimilation strategy was employed in the present work. This practice lends 

itself towards parallel computation where the elemental submatrices are built 

independently of their assembly into the global system matrices. 

The local assembly of ( )e sPG  into ( )sPG  for discontinuous elements follows 

that of ( )e sPH . However, if there is nodal connectivity between neighbouring 

elements e  and + 1e , it may be necessary to keep the traction components 

associated with both elements independent. If it is known a priori that there 

is continuity of the tractions over the shared node between elements, columns 

can be combined, like with the displacements, to form a single traction 

coefficient. However, if there is a discontinuity in traction at the shared node, 

then additional consideration is required. This discontinuity could be due to a 

discontinuity in boundary conditions, for example, or due to a non-smooth 

geometric feature, such as a corner, in which traction components on either 

side of the node will be formed using respective unit normals acting, by 

definition, in different directions. 

Thus, in order to form the linear system in equation (2.32) using continuous 

elements, at a shared node, for each direction 

• if both the contributions to the traction are unknown, then they are 

assumed continuous, and the corresponding displacement is known; 

• if just one of the contributions to the traction is known, the 

corresponding displacement is also known; or 
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• if the displacement is unknown, the two contributions to the traction 

coefficient are both known, 

otherwise the requirement of a known Dirichlet or Neumann boundary 

condition for each degree of freedom cannot be met. 

As explained below, a discontinuous element assumption is made when using 

the TBIE and thus the assembly of ′ ( )e sPH  and ′( )e sPG  into ′( )sPH  and 

′( )sPG  follows that of the discontinuous use of the DBIE described above. 

2.7 Domain subdivision 

The requirement of a known Dirichlet or Neumann boundary condition for 

each degree of freedom can be violated at interfaces of BEM subdomains. 

Consider the domain in Figure 17(a). The domain can be subdivided into that 

of Figure 17(b) by the introduction of the interior interface ΓI  common to 

both ΩB1  and ΩB2  

 Ω = Ω ∪ ΩB B1 B2   (2.99) 

 Γ = Γ ∪ ΓB B1 B2   (2.100) 

 

 

B
Ω

B1
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Figure 17. Subdivision of ( )a  ΩB  
and

 
ΓB  

into
 
( )b ΩB1 ,

 
ΩB2 , ΓB1 ,

 
ΓB2  

and ΓI  
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The formulation of the BEM equations can be performed on a subdomain by 

subdomain basis and assembled into the BEM system matrix. Boundary 

conditions are applied as with a single BEM domain, but with additional 

coupling conditions 

 =I1 I2u u   (2.101) 

 = −I1 I2t t   (2.102) 

where the ‘I’ subscript denotes the interface degrees of freedom. 

2.8 Dual BEM 

The DBEM was developed primarily for applications to fracture mechanics 

and is summarised here. For further details, the reader is directed to Aliabadi 

(2002). Consider a domain ΩB , bounded by external boundary ΓE , and 

containing a crack whose upper and lower surfaces are +Γ  and −Γ  

respectively, as illustrated in Figure 18. 

+Γ

−Γ

BΩ

ΓE

( )a

ΓE

BΩ

+Γ

−Γ

( )b

 

Figure 18. ( )a  A domain containing a crack, and ( )b  its BEM model 

By introducing the subscripts ‘+’ and ‘–’, equation (2.30) can be partitioned 

 

− −

− −

− −+ −− − − − −− −

       
      =      
             

EE E+ E E E E+ E E

+E ++ + + +E ++ + +

E E +

H H H u G G G t

H H H u G G G t

H H H u G G G t

  (2.103) 
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Consider the collocation, first at +sP , some source point on s  on +Γ , and 

second at −sP , some coincident source point s  on −Γ , as illustrated in Figure 

19. A drawback of the nature of the DBIE kernels is that when considered, for 

illustrative purposes, in terms of a polar separation θ( , )r , there is no 

distinction between θ+ +( , )r  and θ− −( , )r . Equation (2.103) becomes ill-

conditioned owing to the repetition of terms caused by this apparent non-

unique collocation. 

( )b

EΓ

BΩ

+Γ

( )a

r+

θ+

BΩ
r−

θ−

−Γ

EΓ

r r+ −=

θ θ+ −=

 

Figure 19. The BEM kernels make no distinction of the between collocation on ( )a  the upper 

crack surface and ( )b  the lower crack surface, as the separation r  and angle θ  from some 

source point •  to Gauss Point ×  are the same  

Using the TBIE, the DBEM offers a different set of equations when 

collocating on −Γ , replacing the duplicated equations found using the BEM in 

(2.103), such that the partitioned equation is rewritten 

 

− −

− −

− − −− − − − −− −

       
      =      
   ′ ′ ′ ′ ′ ′          

EE E+ E E E E+ E E

+E ++ + + +E ++ + +

E + E +

H H H u G G G t

H H H u G G G t

H H H u G G G t

  (2.104) 

No further distinction between +Γ  and −Γ  is required, so assimilating ΓE  and 

Γ+  into ΓB   

 Γ = Γ ∪ ΓB E +   (2.105) 
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so rewriting −Γ  as ΓD  for clarity 

 −Γ = ΓD   (2.106) 

equation (2.104) can be condensed into 

 
       

=      
       

BB BD B BB BD B

DB DD D DB DD D

H H u G G t

H H u G G t
  (2.107) 

where and the ‘prime’ superscript is dropped for brevity. Due to the nature of 

the TBIE, the DBEM is known to be a non-trivial extension to the BEM. 

Furthermore, although the choice of BEM element type is typically fairly 

arbitrary, in the case of the DBEM, the use of continuous elements presents 

computational complexities. The TBIE assumes 1C  continuity of tractions at 

the nodes, which cannot be guaranteed where there is a discontinuity in 

traction, such as at the crack tip illustrated in Figure 18(a). While efforts 

have been made to overcome this and to allow continuous elements in the 

DBEM, it may be more convenient to use discontinuous elements, as 

illustrated in Figure 18(b). However, as shown later in §5.2.1, the use of 

discontinuous elements can produce further complications of their own. 

2.9 Adaptive integration 

It should be noted that, unless otherwise stated, the remaining sections of this 

chapter follow as a direct result of work undertaken by the author. 

2.9.1 Algorithm 

In order to achieve acceptable levels of accuracy in the non-singular and 

weakly-singular integration of the BEM kernels, an iterative scheme was 

developed by the author. The integration of the kernels is computed using ιγ
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quadrature points where ι  is the iteration number, and γ γ=1 min , the 

minimum number of quadrature points permitted by the algorithm. 

The computation is repeated for ι + 1 where 

 ι ιγ γ γ+ = + ∆1   (2.108) 

and γ∆  is the quadrature point increment rate. The absolute differences 

between each of the twelve terms in ˆ ( )e
sPH  for iterations ι  and ι + 1 are 

given by  

 ι ι ιι +

=
     ∆ = −      =

1

1,2ˆ ˆ ˆ( ) ( ) ( ) ,
1..3

e e e
s ij s ij s ij

i
H P H P H P

j
  (2.109) 

This process is repeated iteratively until 

 ( )ι τ ∆ <  ˆ
ˆmax ( )e

s ij HH P   (2.110) 

where τ
Ĥ

 is the threshold of minimum numerical accuracy in ˆ ( )e
sPH  required 

by the algorithm, or until ιγ γ+ ≥1 max , the maximum number of quadrature 

points permitted by the algorithm. Complementarily, the absolute differences 

between each of the twelve terms in the traction coefficients 

 ι ι ιι +

=
∆  =   −        =

1

1,2
( ) ( ) ( ) ,

1..3
e e e

s ij s ij s ij

i
G P G P G P

j
  (2.111) 

are calculated iteratively until 

 ( )ι τ∆  < max ( )e
s ij GG P   (2.112) 

where τG  is the threshold of minimum numerical accuracy in ( )e
sPG  required 

by the algorithm or until ιγ γ+ ≥1 max . Similar adaptive schemes are used in 

the integration of the DBEM kernels in producing ′ ( )e
sPH  and ′ˆ ( )e

sPG  with 
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thresholds of τ ′H  and τ ′Ĝ
 respectively. 

Absolute errors are appropriate as the order of magnitude of the terms in the 

submatrices is such that normalised errors rapidly approach thresholds of 

computation accuracy. 

2.9.2 Verification 

In order both to verify the adaptive integration and to establish suitable 

values for the parameters used in the algorithm, convergence rates were 

tested. Convergence was found to be problem-dependent, so in order to 

estimate suitable parameters for general domains, convergence rates were 

based on the results of a range of semi-random domains. 

A circular domain as discretised with a random distribution of boundary 

elements, which are then subject to further random perturbations, as 

illustrated in Figure 20. The convergence of the terms in the submatrices with 

γ  for each of the collocation/numerical integration pairs for 10 such semi-

random domains was analysed. 

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

( )a ( )b

−1 0 1 −1 0 1

−1

0

1

−1

0

1

 

Figure 20. Example of the semi-random domain defined by ( )a  a discretised circular domain, 

( )b  subject to perturbations and discretised further with discontinuous boundary elements 
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The thresholds of accuracy beyond which increases in γ  made no significant 

difference were found to be 

 τ −= 12
ˆ 10H

  (2.113) 

 τ −= 1710G   (2.114) 

 τ −
′ = 610H   (2.115) 

 τ −
′ = 11

ˆ 10
G

  (2.116) 

Repeated analyses in this manner confirmed the suitability of these tolerances. 

Depending on the rate of convergence towards these tolerances, the adaptive 

integration scheme may significantly increase computation times. However, 

this increase in computation times for the domains is less than those of post-

analysis adaptive mesh refinement-based solution to reducing errors. An 

efficient, hierarchical approach to mesh refinement (Charafi et al., 1995) in 

conjunction with the presented algorithm may provide a more suitable balance 

between solution accuracy and computation time. 

2.10 Example applications to fracture mechanics 

The DBEM is considered well-suited to fracture mechanics in which crack 

faces are assumed to be infinitesimally separated. Limitations of the 

displacement accuracy are well-known, but are presented in the following 

examples both to demonstrate code flexibility, robustness and reliability and 

to provide a means for comparison with later examples, and should not be 

considered a new application of this method. 

The following benchmark problem is presented for the comparison of each of 

the numerical methods in this thesis. With reference to Figure 21, a finite 

domain Ω  models the immediate vicinity of the tip of a crack of length 2a  

central to an infinite domain ∞Ω  subject to a uniaxial load of σ  such that the 
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section of crack face modelled is of length a  and a a<< . Some a priori 

knowledge may be used about the symmetrical nature of the crack face and its 

effect on a suitable model. The boundary is subdivided into portions of 

boundary Γ �u  with known displacement boundary conditions, and portions of 

boundary Γu with displacements to be found as part of the solution: 

 Γ = Γ ∪ Γ�u u   (2.117) 

The displacement boundary conditions are defined by Williams expansion 

describing displacements around a crack tip in an infinite plate (Williams, 

1957), converted to the boundary coordinate system 

 θ=( ) ( , )W Ws ru u   (2.118) 

( )a

∞Ω
2a 2a

( )b ( )c

a

a

σ

σ

Ω

Γ

 

Figure 21. ( )a Through crack in an infinite plate, ( )b  the section of the domain modelled, and 

( )c  the portion of the crack face and its vicinity to be modelled  

Traction free boundary conditions are applied to Γu . 

An indication of the average global errors in the solution can be estimated by 

means of 2L -based error norms of the displacement solution on Γu  given by 

 

( )

ε σ
σ

−

= ∈ Γ ≠
∑

2

2( ) ( )

, , 0
k Wk

s
uL k

u s u s

s   (2.119) 
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where = ,k x y . The mesh is uniformly subdivided and the analysis repeated 

order to assess the convergence characteristics of these displacements. While 

only one problem is presented for comparison, multiple variants of the same 

problem (with different boundary conditions, material properties, crack 

lengths etc.) have demonstrated that the following results are indicative of 

this method. 

For the examples in this chapter 

 Ω = ΩB   (2.120) 

2.10.1 Through crack in an infinite plate example 1 

The BEM is used to model the crack tip described in §2.10. With reference to 

Figure 22(c), the dimensions of ΩB  are ×b h , and ΓB  is subdivided into 

portions of boundary Γ �u  with known displacement boundary conditions (red 

nodes), and portions of boundary Γu with displacements to be found as part of 

the solution (white nodes). In this case 

 Γ = ΓB   (2.121) 

( )a ( )b ( )c

h

b

∞Ω
2a 2a

a

a

σ

σ

B
Ω

B
Γ

 

Figure 22. BEM analysis of ( )a  through crack in an infinite plate, ( )b  the section of the 

domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  
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The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 23(a) and Figure 24 respectively. Convergence characteristics of the 

BEM are illustrated in Figure 25 using the uniform mesh refinement indicated 

in Figure 23(b) where n  is the number of degrees of freedom. 
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Figure 23. To-scale deformation of ( )a  initial mesh and ( )b  uniformly-refined mesh 
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Figure 24. ( )a  x- and ( )b  y-direction displacement results on Γu  
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Figure 25. Convergence characteristics of global error estimators ε 2( ) L xa   and ε 2( ) L yb
 

2.10.2 Through crack in an infinite plate example 2 

The BEM is again used to model the crack tip described in §2.10, but the 

assumption of symmetry is removed by domain subdivision. With reference to 

Figure 26(c), ΩB  (of dimensions × 2b h ) is divided into subdomains ΩB1  and 

ΩB1 , separated by interface portion ΓI  such that 

 Γ = Γ ∪ Γ ∪ ΓB1 B2 I   (2.122) 
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Figure 26. Multizone BEM analysis of ( )a  through crack in an infinite plate, ( )b  the section 

of the domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  

The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 27(a) and Figure 28 respectively. Convergence characteristics of the 

multizone BEM are illustrated in Figure 29 using the uniform mesh 

refinement indicated in Figure 27(b). 
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Figure 27. To-scale deformation of ( )a  initial mesh and ( )b  uniformly-refined mesh 
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Figure 28. ( )a  x- and ( )b  y-direction displacement results on Γu  
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Figure 29. Convergence characteristics of global error estimators ε 2( ) L xa   and ε 2( ) L yb  

2.10.3 Through crack in an infinite plate example 3 

The BEM is again used to model the crack tip described in §2.10, but the 

assumption of symmetry is removed by the use of the DBEM. With reference 
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to Figure 30(c), the elements on the upper and lower crack surfaces are co-

incident and their finite separation is for illustrative purposes only, and 

 Γ = Γ ∪ ΓB D   (2.123) 

( )a

∞Ω
2a 2a

( )b ( )c

a

a

σ

σ b

2hB
Ω

B
Γ

 

Figure 30. DBEM analysis of ( )a  through crack in an infinite plate, ( )b  the section of the 

domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  

The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 27(a) and Figure 28 respectively. Convergence characteristics of the 

DBEM are illustrated in Figure 29 using the uniform mesh refinement 

indicated in Figure 27(b). 
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Figure 31. To-scale deformation of ( )a  initial mesh and ( )b  uniformly-refined mesh 
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Figure 32. ( )a  x- and ( )b y-direction displacement results on Γu  
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Figure 33. Convergence characteristics of global error estimators ε 2( ) L xa   and ε 2( ) L yb
 

2.11 Boundary element local nodal distribution 

A working assumption drawn from the literature, such as , (Aliabadi, 1997) 

and (Portela et al., 1992), about the discontinuous boundary elements 
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described in §2.3 is that the local nodal distribution 

 { }= − +2 2
3 3

0eη   (2.124) 

is preferred. When applied to a mesh of uniform element size, it produces an 

evenly-spaced global nodal distribution, as illustrated in Figure 34(a). This 

maximises the separation all nodes, and in turn, increases the dissimilarities 

between each row in the BEM system matrices. This may contribute to the 

assumption that equation (2.124) offers an optimum solution. 

B
Ω

B
Ω

B
Γ

B
Γ

( )a ( )b

 

Figure 34. Example local nodal distributions where = − +2 2
3 3( ) { 0 }

e
a η   and 

= − +5 5
6 6( ) { 0 }

e
b η   

However, the motivation for this assumption appears anecdotal and the 

suggestion that an unevenly-distributed nodal configuration, such as 

illustrated in Figure 34(b), produces a less reliable mesh is not necessarily 

true. It is well-known that the major drawback of the configuration in 

equation (2.124) is the increased discontinuity between neighbouring elements. 

But the effect this has on the global solution has not been demonstrated in 

the literature and as part of the present work is now illustrated by example. 
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Consider a domain in which the model in §2.10.3 is an example of the general 

case 

 { }η η= − +0eη   (2.125) 

where η = 2
3  for all e . By varying η  such that η< <0 1 , the effect of the 

local nodal element distribution and element size can be observed. The effect 

of is examined by two stages of uniform refinement. This analysis was only 

made possible by the present work in which general expressions for the 

analytical integration of strongly-singular (§2.5.4) and hyper-singular functions 

(§2.5.5) were developed. These results are summarised in Figure 35 and 

discussed in §2.12.3. 
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Figure 35. x- and y-displacement errors for example §2.10.3 with varying η  

2.12 Discussion 

2.12.1 Applications to fracture mechanics 

Recalling that a a<< , in each of the three applications to fracture mechanics 

the BEM is seen to model the vicinity of the crack face well. However, the tip 

itself suffers relatively high displacement errors owing to the boundary 

element’s poor quadratic approximation to a non-quadratic solution. Mesh 
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refinement merely shifts the problem closer to the crack tip without ever 

eradicating it. This is a known trait of the BEM and other polynomial-based 

approaches such as the FEM. Derived quantities, such as stress intensity 

factors, will therefore also be subject to errors in the same way. So, in terms of 

engineering applications, using the BEM displacement solution to estimate 

stress intensity factors, should be undertaken with this note of caution. 

The displacement discontinuities present in all three examples are due to the 

discontinuous boundary elements used here. The analytical computation of the 

singular functions in §2.5 requires discontinuous boundary elements be used 

with the DBEM, so were used in the BEM in order to provide a basis for 

comparison. Moreover, continuous boundary elements only provide continuity 

in displacement, and the traction that is based on its derivative. Thus, the 

replacing of discontinuous elements with continuous elements is not only 

restricted to the BEM, but does not yield the continuous tractions at the node 

common to neighbouring continuous elements, as assumed in the application 

of boundary conditions. 

Compared to the BEM, the multizone BEM and DBEM models yield a 

greater number of displacement degrees of freedom in the solution. This 

improves the error estimation in equation (2.119) by increasing the number of 

terms in the error norm. Furthermore, by removing the assumption of 

symmetry, they increase the applicability of the method. However, the BEM 

was selected for its versatility and ease of meshing which is made more 

involved by the multizone BEM approach. The DBEM does not suffer such 

meshing complications, but is hampered by boundary condition limitations 

and the integration of hyper-singular functions. 
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2.12.2 Consistent error definition 

Due to the nature of the problem analysed and its effect on the x- and y-

direction displacement solution, the components of the global averaging of 

errors was separated into its x- and y-direction components. The y-

displacement solution suffers from the form of the expected solution in that 

 θ → →( , ) 0 as 0Wyu r r   (2.126) 

So in the direct vicinity of the crack tip, the small, but finite y-direction 

displacement may be masked by the computational errors associated with 

dealing with values in the region of −1510 , in addition to the inadequacies of its 

polynomial approximation. The x-displacement solution suffers in a similar 

way, but over the entire length of the crack face, not just near the tip, as 

 θ π= ± =( , ) 0Wxu r   (2.127) 

Perhaps a more attractive way to present results is to demonstrate the rate of 

convergence of the displacement error on the crack face as far from the crack 

tip as model can accommodate. This way, the effects of the polynomial 

approximation to the non-polynomial displacement field on the crack face 

would be minimised. Further, the relative error would be more favourable on 

a computational level as the expected y-direction displacements have a greater 

finite value. This yields both lower initial errors and a faster rate of 

convergence, as illustrated for the DBEM in Figure 36. However, the decision 

has been taken not to present only the applications at which the algorithm 

excels, or even offers marginal improvement over other available methods. 

Such a manner risks disguising the method’s relative merits and drawbacks. 

Thus a more consistent basis for comparable results later is preferred, and so 

‘cherry-picked’ results, such as those in Figure 36 are included for 
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demonstration purposes only and will not be replicated for other examples. 
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Figure 36. Convergence of ‘cherry-picked’ DBEM error estimators ( )a  ε 2L x  
and ( )b ε 2L y

  

2.12.3 Boundary element local nodal distribution 

As to be expected, as η  approaches η = 1 , the errors rise sharply as the rows 

in the BEM system matrices lose uniqueness and conditioning worsens. 

However, it can also be seen that η = 2
3  is among the worst performing local 

nodal distributions and η ≈ 0.92  offers the lowest errors when both x- and y-

direction displacements are considered. Indeed, a crude initial mesh where 

η = 0.91  outperforms its counterpart where η = 2
3  even after two levels of 

mesh refinement.  

Error characteristics vary in direction owing to the problem-dependency of 

this effect, verified by further examples not presented here in which the 

optimum value of η  also varies considerably. As such, it is beyond the scope 

of the present work to offer a strategy for a priori local nodal distribution 
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optimisation, but simply to deliver a note of caution about the form of the 

discontinuous elements used in the DBEM in the literature. 

In order to facilitate comparisons with the results in the literature, the 

boundary element local nodal distribution in equation (2.124) is used for the 

results presented in this thesis. 

2.13 Literature review 

The roots of the BEM can be traced back to Green’s identities and beyond  

(Cheng and Cheng, 2005), and as such the method is well-published in the 

literature. The method has been adopted for many applications and the 

author recommends Beer (Beer, 2001) for more tips for the practical 

implementation of the BEM in stress analysis code, and Aliabadi (Aliabadi, 

2002) and Becker (Becker, 1992) more details on the fundamental solutions. 

There are many sources available for the implementation of the BEM, and 

owing to the trigonometric properties of the fundamental solutions, they are 

presented in many different ways. The decision to present them more 

explicitly in this thesis was made in order to narrow the scope for transcrption 

errors. 

The DBEM is less well-known although in essence is formed simply through 

the derivative of the DBIE with respect to the outward normal. Following the 

first presentation of the boundary integral equations used in the DBEM and 

this subsequent derivation (Hong and Chen, 1988), the method became more 

widely used over the multi-zone approach (Blandford et al., 1981) in 

applications with domain discontinuities. Several publications appeared in 

which the DBEM was applied to fracture mechanics, general implementation 

strategies of the method (Portela et al., 1992) and the use of reanalysis in 
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crack propagation (Portela et al., 1993). 

Typically, when using the DBEM to model a fractured domain, the stress 

intensity factors are estimated by means of the J-integral method (Portela et 

al., 1993), which is assumed path-independent. The accuracy of the method in 

calculating the stress intensity factors is dependent on the boundary 

displacement solution and the ability to define a path around crack tip. 

Inaccuracies may occur with internal point calculations for which the ratio of 

the distance between the internal point the closest point on the boundary, and 

the length of the element at that point on the boundary, is too small. This is 

in addition to the contribution to the integral by the displacements found on 

the crack faces where the discontinuous quadratic elements fail to capture the 

asymptotic behaviour of the boundary displacement in the immediate vicinity 

of the crack tip, as in Figure 31. This, albeit small, path dependency was 

observed in the extension of the DBEM with enrichment functions (Simpson, 

2010), an extension to using the partition of unity in much the same way it 

extends the FEM to XFEM. A strategy for guaranteed avoidance of this path 

dependency suitable in the analysis of general engineering domains without 

some form of a posteriori analysis remains elusive. 

The DBEM is not limited to the examples illustrated in this chapter where 

some a priori knowledge of symmetric geometry is used or where 

discontinuities extend to a boundary. Discontinuities found within a domain 

can be modelled using the DBEM, such as interior cracks (Portela et al., 

1992), and like the BEM, in applications outside of fracture mechanics, such 

as modelling infinitely-thin, degenerate boundaries within an electrostatic 

problem (Liao et al., 2004). This vastly reduces the number of elements 

required to model such internal discontinuities than a finite element method 
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equivalent where the lack of symmetry would necessitate many additional 

domain elements. 

An underlying implication that the nodes of the coincident boundary elements 

used in describing the geometry of the upper and lower crack surfaces are also 

coincident has been a working assumption through the DBEM literature. 

Consequentially Portela et al. concluded that because of the resulting non-

unique equations in the BEM system matrix, the solution of general crack 

problems cannot be achieved with the direct application of the BEM, in a 

single-region analysis (Portela et al., 1993). This working limitation of nodal 

coincidence is overcome in §6 of the present work. 

2.14 Conclusion 

The well-known BEM and its extension the DBEM have been assessed. 

Standard techniques for their implementation have been presented alongside 

complementary additions developed by the author, and by the author et al. as 

a direct part of this work. A general adaptive integration scheme has been 

presented that offers greater confidence in the numerical integration of BEM 

and DBEM kernels than a more arbitrary approach to determining the 

number of Gaussian integration points. 

Expressions for the analytical integration of strongly-singular and hyper-

singular functions for general boundary element local nodal distributions have 

been developed. Although motivated by their need in the coupled method 

discussed in later chapters, these new formulations have been applied in the 

reconfiguration of elements with redistributed local nodal coordinates. The 

resulting analysis revealed the distribution used in models, well-publicised in 

the literature, are far from optimum. 
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Results in this thesis have been presented with emphasis focused on 

consistency and comparability; methods demonstrated to improve only the 

accuracy of specific problems by fine-tuning their configurations, such as local 

nodal distributions, are not applied to the general use of the BEM throughout 

the present work. 
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3 Scaled boundary finite element method 

3.1 Introduction 

In this chapter, the scaled boundary finite element method (SBFEM) is 

introduced. First, the concept of modal superposition, on which the SBFEM is 

based, is described. A detailed numerical formulation of the SBFEM follows, 

with examples, demonstrating its suitability for applications to fracture 

mechanics. Its other strengths and limitations are assessed. 

Concepts new to the SBFEM are discussed and the motivation for their 

development by the author is then presented. A new semi-discontinuous scaled 

boundary finite element is defined and verified by example results. 

The method’s historical development is discussed in a literature review, 

detailing its introduction as a method for use in applications to unbounded 

domain modelling, to its more recent application to fracture mechanics. The 

use of the SBFEM in coupled numerical methods is also discussed. 

The data in numerical examples in this chapter are obtained by the 

development of the author’s own code. 
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3.2 Modal superposition 

Consider a domain subject to a displacement field. The deformation of the 

domain can be described by the combination of displacement modes � ju , such 

as those illustrated in Figure 37. The minimum number of displacement 

modes required to define the deformation of the domain by the superposition 

of displacement modes is defined as minM  and is problem-specific. A 

displacement mode � ju  describes the form of the deformation, but neither the 

magnitude nor direction. In example 1 the deformation of the domain can be 

described by a single displacement mode; examples 2 requires multiple 

displacement modes. 

A sample of displacement modes associated with the deformation of the 

domain illustrated in Figure 37 can be found in Appendix B, where it can be 

seen that some displacement modes have an obvious physical interpretation, 

such as translation, rotation, skew etc. Some displacement modes are less-well 

described and differ only subtly from other modes. The effect of these 

displacement modes differs from domain to domain, as illustrated by the 

sample in Appendix C. 
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Figure 37. Two examples of: (1) the displacement of a bounded domain due to one 

displacement mode and (2) the deformation of a bounded domain due to multiple 

displacement modes 

The superposition of m  displacement modes can be used to estimate the 

deformation of the domain. It is necessary to determine which of the infinite 

range of displacement modes contribute to the deformation of the domain and 

by how much. If the appropriate m  displacement modes are selected and 

≥ minm M , then the estimation will be exact, else the estimation will remain 

an approximation. 

For a domain with n  degrees of freedom, the ith displacement degree of 

freedom, iu , where = 1..i n , can each be described by 

 
=

= ∑ � �
1

m

i j ij
j

u c u  (3.1) 
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where each of the m  terms in this series is considered the product of a 

displacement mode component �iju , contributing to each degree of freedom iu

by some corresponding factor �jc . It should be noted that the term �iju  refers to 

the ith term in the column vector � ju  describing mode j , and is not a tensor. 

For each displacement mode � ju  there exists a complementary force mode � jp , 

describing the force required to induce its corresponding displacement mode. 

The force ip , where = 1...i n , can be described by 

 
=

= ∑ � �
1

m

i j ij
j

p c p  (3.2) 

where each of the m  terms in this series is considered the product of a force 

mode component �ijp , contributing to each degree of freedom ip  by some 

corresponding factor �jc . It should be noted that the term �ijp  refers to the ith 

term in the column vector � ip  describing mode j , and is not a tensor. 

The aim of the SBFEM is to estimate iu  and ip  by numerically determining 

�c (the vector of m  contribution factors �jc , and the ×n m  displacement mode 

components �iju  and ×n m  force mode components �ijp  that define vectors � ju
 

and � jp  respectively. 

3.3 Numerical formulation 

3.3.1 Method introduction 

Like the BEM, by modelling the boundary only, the SBFEM can be used to 

model both finite and infinite domains. Indeed, the modelling of the finite 

domain results in the modelling infinite domain as a by-product, and vice-

versa. In doing so, the efficiency of the SBFEM may be called into question. 
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However, the SBFEM does not require the elemental discretisation of the 

volume, thus comparing favourably with the FEM, nor does it require the 

computation of weakly or strongly singular integrals, thus comparing 

favourably with the BEM. 

For the purpose of disambiguity, it should be stated that the numerical 

method described here is available in the literature. However, along with the 

overview of modal superposition, the following derivation offers a fresh 

perspective with the intention of providing a clearer and easier understanding 

of a method that is far less daunting than its reputation suggests. Efforts have 

been made to address the practical implementation of the method in code, 

rather than the more general overviews offered in the literature. Some aspects 

of the derivation are borrowed from that of Deeks and Wolf (Deeks and Wolf, 

2002a), and Yang (Yang, 2006). 

Further details of the contributions made to the method and its development 

by the author and others can be found in §3.12. Following the convention 

found throughout this work, the subscript ‘S’ is used to denote the SBFEM to 

allow distinction from, and comparison with, terms relating to other numerical 

methods. 

3.3.2 Scaled boundary coordinate system 

A domain ΩS  modelled using the SBFEM requires conversion from a 

Cartesian coordinate system to a scaled boundary coordinate system. A 

geometrically-specific coordinate s  is defined as acting in the circumferential 

direction, running parallel to the boundary ΓS . The s-axis is scaled about a 

geometric scaling centre 0 0( , )x y , by a radial coordinate ξ , defined such that 

ξ = 0  at 0 0( , )x y  and ξ = 1  at ΓS , as shown in Figure 38. 



G. E. Bird 

The DBE-SBFEM: Scaled boundary finite element method 

73 

0 0( , )x y s

0ξ = 0.5 1ξ =

0 0( , )x y s

0ξ = 1ξ = ξ = ∞1.5

( )a ( )b

SΩ

SΩ

SΓ
SΓ

 

Figure 38. The boundary ΓS  follows s , scaled about the scaling centre 0 0( , )x y , modelling a 

domain ΩS  that is ( )a  bounded and ( )b  unbounded 

A function is sought that describes the ith displacement of degree of freedom 

ξ( , )iu s  for values of ξ  within a bounded range. This bounded range depends 

on the location of 0 0( , )x y . In the finite domain case, 0 0( , )x y  is located 

internally such that the domain is bounded by ξ≤ ≤0 1 . For the infinite 

domain case, 0 0( , )x y  may be located externally such that the domain is 

bounded by ξ≤ ≤ ∞1 .  

Defining the Cartesian origin as coincident with 0 0( , )x y , the coordinate 

transformation is given by 

 ξ= +0 ( )x x x s  (3.3) 

 ξ= +0 ( )y y y s  (3.4) 

where ( )x s  and ( )y s  describe the Cartesian coordinates as functions of the 

boundary coordinate, and equations (3.1) and (3.2) are transformed into 
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 ξ ξ
=

= ∑ � �
1

( , ) ( , )
n

i j ij
j

u s c u s  (3.5) 

 ξ ξ
=

= ∑ � �
1

( , ) ( , )
n

i j ij
j

p s c p s  (3.6) 

These terms are used to define a statement of the principle of virtual work 

(Deeks and Wolf, 2002a), transformed from 

 δ δε σ
Γ Ω

Γ − Ω =∫ ∫
S S

T T
S S( , ) ( , )d ( , ) ( , )d 0u x y t x y x y x y  (3.7) 

into 

 δ δε ξ σ ξ
Γ Ω

Γ − Ω =∫ ∫
S S

T T
S S( ) ( )d ( , ) ( , )d 0u s t s s s  (3.8) 

where body loads have been neglected for simplicity, and 

 ξ=( , ) ( , )i iu x y u s  (3.9) 

 ξ=( , ) ( , )i it x y t s  (3.10) 

 σ σ ξ=( , ) ( , )i ix y s  (3.11) 

 ε ε ξ=( , ) ( , )i ix y s  (3.12) 

 ξ=( , ) ( , )i ip x y p s  (3.13) 

or in vector form 

 ξ=( , ) ( , )x y su u  (3.14) 

 ξ=( , ) ( , )x y st t  (3.15) 

 ξ=( , ) ( , )x y sσ σ  (3.16) 

 ξ=( , ) ( , )x y sε ε  (3.17) 

 ξ=( , ) ( , )x y sp p  (3.18) 

3.3.3 Boundary integration 

The boundary ΓS  is discretised in the usual manner by means of a piecewise 

polynomial isoparametric continuous finite element approximation as 

described in §2.3.1. Nodal interpolation can be used to estimate displacements, 
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tractions, strains, stresses, and forces in the in the s-direction using the 

continuous shape functions ( )sN  described in §2.4. Equations (3.14) to (3.18) 

are modified to reflect the discretisation in s . 

 ξ ξ=( , ) ( ) ( )s su N u  (3.19) 

 ξ ξ=( , ) ( ) ( )s st N t  (3.20) 

 ξ ξ=( , ) ( ) ( )s sσ N σ  (3.21) 

 ξ ξ=( , ) ( ) ( )s sε N ε  (3.22) 

 ξ ξ=( , ) ( ) ( )s sp N p  (3.23) 

and so it follows the discretised form of equations (3.5) and (3.6) are 

 ξ ξ=( , ) ( ) ( )i iu s s uN  (3.24) 

 ξ ξ=( , ) ( ) ( )i ip s s pN  (3.25) 

where 

 ξ ξ
=

= ∑ � �
1

( ) ( )
m

i j ij
j

u c u  (3.26) 

 ξ ξ
=

= ∑ � �
1

( ) ( )
m

i j ij
j

p c p  (3.27) 

and the vectors of displacement and force degrees of freedom are given by 

 ξ ξ=( , ) ( ) ( )s su N u  (3.28) 

 ξ ξ=( , ) ( ) ( )s sp N p  (3.29) 

where 

 ξ ξ
=

= ∑ � �
1

( ) ( )
m

j j
j

cu u  (3.30) 

 ξ ξ
=

= ∑ � �
1

( ) ( )
m

j j
j

cp p  (3.31) 

With reference to Appendix D, the discretised form of the principle of virtual 
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work is found by substituting expressions for the nodal strains, forces, 

displacements and tractions resulting in 

ξ ξ

ξ

ξ ξ ξ ξ ξ ξ
ξ ξ

Γ −

   + +      

=

∫

∫ ∫

T

1 T
1 2 1 2

, ,

0

( ) ( )d

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d d

0

S

S

s s

s s s s s s

δu t

B δu B δu DB u DB u J  

  (3.32) 

which, can be rewritten 

 

( )

( )

ξ

ξξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ
ξ

Γ Γ Γ Γ+ −

 − + − 
 

=

+ −∫

T
0 , 1

1
T

0 , , 2

0

T

T
0 1 1

( ) ( ) ( ) (

1
( ) ( ) ( ) ( ) d

0

)δu E u E u p

δu E u u E uE E E  

  (3.33) 

where ξΓ( )u  and ξΓ( )p  are the vectors of nodal displacements and forces at 

the boundary (denoted by ξΓ  where ξ = 1), and 0E , 1E  and 2E  are 

boundary integrals given by 

 = ∫ T
0 1 1( ) ( ) ( ) d

S

s s s sE B DB J  (3.34) 

 = ∫ T
1 2 1( ) ( ) ( ) d

S

s s s sE B DB J  (3.35) 

 = ∫ T
2 2 2( ) ( ) ( ) d

S

s s s sE B DB J  (3.36) 

and ( )sJ  is the Jacobian matrix. In a manner similar to that of discretising 

the boundary element method, these boundary functions, equations (3.34) to 

(3.36) are approximated by 

 
=
∑�0 0

1

L
e

e

E E   (3.37) 
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=
∑�1 1

1

L
e

e

E E  (3.38) 

 
=
∑�2 2

1

L
e

e

E E  (3.39) 

where 

 η η η
+

−

= ∫
1

T
0 1 1

1

( ) ( ) de e e e eJE B DB   (3.40) 

 η η η
+

−

= ∫
1

T
1 2 1

1

( ) ( ) de e e e eJE B DB  (3.41) 

 η η η
+

−

= ∫
1

T
2 2 2

1

( ) ( ) de e e e eJE B DB  (3.42) 

and L is the number of elements on boundary ΓS . Unlike the BEM, these 

construction matrices are not generally full and asymmetric. Only the 

neighbouring elements that share common nodes with element e  contribute to 

each row in these matrices resulting in banding with overlapping elemental 

submatrices, much like the appearance of a FEM stiffness matrix. 

In solving equation (3.33) for u , to dismiss the trivial solutions ( ξΓ =( ) 0δu  

and ξ =( ) 0δu ), both their coefficients must simultaneously be zero. Thus the 

following conditions must be satisfied. 

 ξξ ξ ξ ξΓ Γ Γ Γ+ − =0 1
T

,( ) ( ) ( ) 0E Eu u p  (3.43) 

 ( )ξξ ξξ ξ ξ ξ
ξ

+ + − − =T
0 , 0 1 1 , 2

1
( ) ( ) ( ) 0E u E E E u E u  (3.44) 

In order to provide simpler manipulation later equation (3.44) is rewritten 

 ( )ξξ ξξ ξ ξ ξ ξ+ + − − =2 T
0 , 0 1 1 , 2( ) ( ) ( ) 0E u E E E u E u  (3.45) 

As equation (3.45) is a set of second order partial differential equations of the 
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Euler-Cauchy type in the form 

 ξξ ξξ ξ ξ ξ ξ ξ+ + =2 1 0
2 , 1 , 0( ( () ( ) ) ( ) ) ( ) 0f f fu u u  (3.46) 

its solution is known to take the form 

 
λξ ξ −

=

= ∑
1

( ) j

m

j j
j

cu φ  (3.47) 

By the evaluation of coefficients of equation (3.30), repeated below, 

 ξ ξ
=

= ∑ � �
1

( ) ( )
m

j j
j

cu u  (3.48) 

the displacement mode j  can be defined 

 λξ ξ −=� ( ) j
j ju φ  (3.49) 

and 

 =�c c  (3.50) 

The vectors jφ  are the unscaled displacement modes, vectors comprising n  

unscaled displacement mode components ϕij , contributing to each (scaled) 

displacement mode � ju  by some corresponding factor λξ − j , where the 

exponent λ j  is to be found later. 

Similarly, the force mode j  can be defined 

 λξ ξ −=� ( ) j
j jp q  (3.51) 

The vectors jq  are the unscaled force modes, vectors comprising n  unscaled 

force mode components ijq , contributing to each (scaled) force mode � jp  by 

some corresponding factor λξ − j . It should be noted that the terms ϕij  and ijq  
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refer to the ith term in column vectors jφ  and jq  describing unscaled mode j , 

and are not tensors. 

These scaled displacement and force modes � ju  are � jq  are products of the 

geometric and material properties of the domain under analysis. Their scaling 

at this point is only by their respective factor λξ − j . While these factors are 

problem-specific, they remain independent of the boundary conditions. The 

extent of the contribution of each mode to the solution of this problem under 

a particular set of specific boundary conditions will be determined by the 

further scaling of these modes by their corresponding contribution factor in �c , 

discussed later. 

As the modal definition ( jφ , jq  and λ) is independent of boundary 

conditions, an arbitrary set of contribution factors can be assumed in order to 

proceed. Thus, for convenience, a set of contribution factors are prescribed by 

 = =1, 1..jc j m  (3.52) 

3.3.4 Eigenvalue problem 

Consider the contribution of mode j  to the ith displacement degree of freedom 

ξ( )iu . Selecting the terms corresponding to mode j  and recalling that = 1jc , 

this contribution and its first and second order derivatives are given by 

 λξ ξ ϕ−=( ) j
i ijju  (3.53) 

 
λ

ξξ λ ξ ϕ− −= − 1
,( ) j

i j ijj
u  (3.54) 

 
λ

ξξξ λ λ ξ ϕ− −= + 2
,( ) ( 1) j

i j j ijj
u  (3.55) 

Similarly, the contribution of mode j  to the ith force degree of freedom ξ( )ip . 

is given by  
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 λξ ξ ξ−=( ) ( )j
i ijjp q  (3.56) 

Extracting mode j  from sets of equations (3.43) and (3.45) 

 ξξ ξ ξ ξΓ Γ Γ Γ+ − =0 1
T

,( ) ( ) ( ) 0j jj
E Eu u p  (3.57) 

 ( )ξξ ξξ ξ ξ ξ
ξ

+ + − − =T
0 , 0 1 1 , 2

1
( ) ( ) ( ) 0jj j

E u E E E u E u  (3.58) 

and substituting them with equations (3.53) to (3.56) gives 

 ( )λ λ λξλ λ ξ ϕ ξ λ ξ ϕ ξ ξ ϕ ξ
ξ

− − − − −+ − + − − =2 1T
0 0 1 1 2

1
( 1) ( ) ( ) ( ) 0j j j

j j ij j ij ijE E E E E  

  (3.59) 

 λ λ λξ λ ξ ϕ ξ ξ ϕ ξ ξ ξ− − − −
Γ− + − =0 1

1 T( ) ( ) ( ) 0j j j
j ij ij ijqE E  (3.60) 

or 

 ( )ϕ ξ ξ λ ϕ ξ− −− =1 T 1
0 1 0( ) ( ) ( )ij ij j ijqE E E  (3.61) 

 ( )λ λϕ ξ λϕ ξ λϕ ξ ϕ ξ− + − =T
0 1 1 2( ) ( ) ( ) ( ) ( ) 0ij ij ij ijE E E E  (3.62) 

Substituting equation (3.61) into the first and third terms of equation (3.62) 

yields 

 ( )ϕ ξ ξ λ ξ− −− − =1 T 1
1 0 1 2 1 0( ) ( ) ( ) ( )ij ij ijq qE E E E E E  (3.63) 

or in matrix form 

 

ϕ ξ ϕ ξ

ϕ ξ ϕ ξ
λ

ξ ξ

ξ ξ

− −

− −

   
      
      
       −     

=    
− −         

         
                

� �

� �

1 1

1 T 1
0 1 0

1 T 1
1 11 0 1 2 1 0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

j j

nj nj
j

j j

nj nj

q q

q q

E E E

E E E E E E
 (3.64) 

or 
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ξ ξ

λ
ξ ξ

− −

− −

 −     
=    

− −     

1 T 1
0 1 0

1 T 1
1 0 1 2 1 0

( ) ( )

( ) ( )

j j
j

j j

φ φE E E

q qE E E E E E
 (3.65) 

Assembling equations (3.61) and (3.63) for all n  degrees of freedom and m  

modes yields a system 

 =ZΨ ΨΛ (3.66) 

where 

 
− −

− −

 − 
=  

− − 

1 T 1
0 1 0

1 T 1
1 0 1 2 1 0

E E E
Z

E E E E E E
 (3.67) 

 
ξ ξ

ξ ξ

 
=  
 

�

�

1

1

( ) ( )

( ) ( )

m

m

φ φ
Ψ

q q
 (3.68) 

 

λ

λ

 
 
 
 

=  
 
 
 
 

�

�

�

�

1

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 n

Λ  (3.69) 

In order to solve the eigenvalue problem, Z must be a square matrix, and so 

 = 2m n  (3.70) 

3.3.5 Eigenvalue solution 

A vector of length 2n  comprising the diagonal terms of Λ  is defined as 

 =� ( )diagλ Λ  (3.71) 

and recalling that the SBFEM models both bounded and unbounded domains 

simultaneously, �λ  is subdivided into two vectors of length n  

 
∞

  
=  
  

�
�

�

Kλ
λ

λ
 (3.72) 
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where �Kλ  contains the n  eigenvalues λj  whose real parts are negative and are 

used in the solution to the bounded (or finite) domain case, and ∞
�λ  contains 

the n  eigenvalues whose real parts are positive and are used in the solution to 

the unbounded (or infinite) domain case. 

The matrix of corresponding eigenvectors is divided into 4 submatrices of size 

×n n  

 
∞

∞

 
=  
 

� �

� �

K

K

Φ Φ
Ψ

Q Q
 (3.73) 

For the bounded (or finite domain case), the eigenvalues and matrices of 

modal displacement column vectors and modal force column vectors are given 

by 

 = �Kλ λ  (3.74) 

 = � KΦ Φ  (3.75) 

 = � KQ Q  (3.76) 

For the unbounded (or infinite domain case), the eigenvalues and matrices of 

modal displacement column vectors and modal force column vectors are given 

by 

 ∞= �λ λ  (3.77) 

 ∞= �Φ Φ  (3.78) 

 ∞= �Q Q  (3.79) 

3.3.6 Stiffness matrix 

By assembling m  sets of equations (3.26) and (3.27), the matrices of 

displacement and force mode column vectors Φ  and Q  can be seen to be 

related to the nodal displacements and forces by 
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 ξ =( )u ΦFc  (3.80) 

 ξ =( )p QFc  (3.81) 

where F is a diagonal matrix that scales the modal displacement and force 

matrices and is given by 

 

λ

λ

ξ

ξ

−

−

 
 

=  
  

�

1 0 0

0 0

0 0 m

F  (3.82) 

Equations (3.80) and (3.81) are rewritten 

 ξ− −=1 1( )Φ u Φ ΦFc  (3.83) 

 ξ− −=1 1( )Q p Q QFc  (3.84) 

and combined to form 

 ξ ξ− =1 ( ) ( )QΦ u p  (3.85) 

which, when evaluated at the boundary, forms the stiffness equation 

 ξ ξ−
Γ Γ=1 ( ) ( )QΦ u p  (3.86) 

in which the absence of c  shows the arbitrary nature of the contribution 

factors in the formation of the displacement and force nodes and confirms the 

independence of the boundary conditions to the modal definition. The SBFEM 

stiffness matrix SK  is the product of the matrix of force mode contributions 

Q  and the inverse of the matrix of displacement mode contributions .Φ  

 ξ ξΓ Γ=S ( ) ( )K u p  (3.87) 

Like the FEM for linear elasticity and infinitesimal strains, SK  is symmetric. 

However, unlike the FEM, SK  contains only boundary degrees of freedom and 

is fully populated. This linear system of equations can be solved in the usual 
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manner by the application of nodal displacement and force boundary 

conditions. 

3.3.7 Contribution factors 

With the boundary problem solved, it is possible to solve the domain problem. 

First, the contribution factors c  must be found (replacing the vector of 

arbitrary boundary conditions used to compute the mode shapes) such that 

equations (3.24) and (3.25) can be solved for ξ ≠( 1)u . 

The equation for the domain displacement (for lines of constant s ) 

 
λξ ξ ϕ ξ−

=

= ∑
1

( ) ( )j

m

i j ij
j

u c  (3.88) 

can be rewritten using equation(3.70) 

 
λξ ξ ϕ ξ−

=

= ∑
1

( ) ( )j

n

i j ij
j

u c  (3.89) 

replacing the number of terms in the summation from m  to n  reflecting the 

discarding of the n  modes depending on whether the domain is bounded or 

unbounded. At the boundary where ξ = 1, this is rewritten 

 ξ ϕ ξΓ Γ
=

= ∑
1

( ) ( )
n

i j ij
j

u c  (3.90) 

and thus c  can be found by the product of the nodal displacements at the 

boundary ξΓ( )u  and the inverse of the matrix of modal displacement column 

vectors −1Φ  

 ξ −
Γ= 1( )c u Φ  (3.91) 
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3.3.8 Stress recovery 

The stress field over ΩS , given in the principle of virtual work, is extracted 

from equation (3.32) as 

 ξξ ξ ξ
ξ

= +1 , 2
1

( , ) ( ) ( ) ( ) ( )s s sσ DB u DB u  (3.92) 

and can be recovered using the modal displacements and contribution factors 

 ( )λξ ξ λ− −

=

= − +∑ 1
1 2

1

( , ) ( ) ( )j

n

j j j
j

s c s sσ D B B φ  (3.93) 

The inter-element discontinuity of stresses at shared nodes, due to the 

discontinuity of the derivatives of the shape functions in 2( )sB , is a known 

problem that manifests itself in a way similar to that of the FEM. As with the 

FEM, raw nodal stresses can be smoothed by means such as simple averaging 

of stresses, or by superconvergent patch stress recovery techniques (Deeks and 

Wolf, 2002b). 

A critical evaluation of stress recovery using the SBFEM is made as part of 

the present work, illustrated by example in §3.10. 

3.3.9 Boundary mesh 

In this section the discretisation of the model is explained by means of an 

example. Consider the domains in Figure 38. The boundary ΓS  is discretised 

in the usual manner by means of a piecewise polynomial isoparametric 

continuous finite element approximation. One mesh can be used to model both 

the bounded and unbounded domains, as illustrated in Figure 39. As in the 

conventional FEM, the mesh requires nodal connectivity between the 
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elements, although it will be shown in §3.8 that this requirement can be 

overcome in limited circumstances. 

In the present work, the boundary is discretised using quadratic elements with 

equal nodal spacing, unless otherwise stated. This discretisation allows the 

element-by-element integration of equations (3.34) to (3.36) in much the same 

manner as the FEM, but unlike the FEM, is performed over the boundary 

only. As with the BEM, described in §2.5, the integration is performed using 

Gaussian quadrature. Unlike the BEM, however, the functions in the SBFEM 

are not singular in nature and integration can be performed using Gauss 

points distributed in the standard manner. 

0 0( , )x y 0 0( , )x y

( )a ( )b

SΩ

SΩ

SΓ
SΓ

 

Figure 39. The same boundary mesh can be used in either the ( )a  bounded or ( )b  unbounded 

domain cases 

3.3.10 Boundary ‘line of sight’ requirement 

The SBFEM is not without its limitations. Aside from a linear elastic 

assumption, other geometric factors limit the method’s applicability. The 
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location of the scaling centre 0 0( , )x y  is both important and subject to 

geometric limitations. The functions describing the displacement and force 

degrees of freedom ξ( )u  and ξ( )p  are continuous in ξ . Thus, no 

discontinuities may be permitted in the ξ -directioniv. This is commonly 

referred to as the boundary line of sight requirement and is illustrated in 

Figure 40 where it is illustrated that sections of ΩS  cannot be ‘seen’ from 

0 0( , )x y  without crossing ΓS . By moving 0 0( , )x y , a valid scaling centre can be 

found from which all sections ΩS  can be ‘seen’ without crossing ΓS .  

( )a ( )b

0 0( , )x y

0 0( , )x y

SΩ SΩ
SΓ SΓ

 

Figure 40. Boundary line of sight requirement: ( )a  not satisfied (white) and ( )b  fully satisfied  

In some instances, this may not be achievable due to geometric restrictions, 

such as in Figure 41, in which case the domain can be substructured into 

subdomains 1 and 2, with scaling centres that satisfy the boundary line of 

sight requirements for their respective subdomains. Figure 41 is supplied for 

completeness, however, as in the work presented in this thesis, no such 

substructuring is required. 

                                      

iv with the exception of unbounded domains with side faces, described in §3.4, examples of 
which do not appear in this work. 



G. E. Bird 

The DBE-SBFEM: Scaled boundary finite element method 

88 

( )b( )a

0 0( , )x y

0 0 1( , )x y

0 0 2( , )x y

SΩ S1Ω

S2Ω

S1Γ

S2Γ

SΓ

 

Figure 41. Boundary line of sight requirement ( )a  cannot be satisfied without ( )b  multiple 

subdomains 

3.4 Side faces 

The method as described above is sufficient for the modelling any suitable 

domain using the SBFEM. However, this in itself offers limited advantages 

over other numerical methods. The advantage of the method of most use and 

interest in this work is side faces. 

3.4.1 Definition 

Provided the boundary line of sight requirement is adhered to, the scaling 

centre 0 0( , )x y  may be located anywhere within a finite domain, or anywhere 

in the void within an infinite domain. It is also possible for 0 0( , )x y  to lie on 

the boundary at ξ = 1 . 

If 0 0( , )x y  lies on the boundary, two ξ  axes each overlap a section of 

boundary, and the solutions relating to the displacements of these axes (and 

the sections of boundary they lie upon) can be found without the numerical 

interpolation required by other sections of boundary described by equation 

(3.24). These two sections of boundary are known as side faces, and the side 

faces to the left and right of the scaling centre are labelled LA  and RA  
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respectively. 

With reference to Figure 42, the formation of side faces is sometimes referred 

to in the literature as the case of the missing triangles, or pyramids in three 

dimensions (Wolf and Song, 2000). It should also be noted that in the cited 

reference, the term interface is used in a context not relevant to the present 

work and it should be noted, unless otherwise stated, the term interface will 

relate to the frontier between coupled numerical methods. 

LA

RA

 

Figure 42. Schematic illustration of the formation of side faces LA and RA . As the scaling 

centre is drawn to the boundary, the shaded triangular regions disappear. Sections of the 

boundary are overlaid by axes in ξ  

The side face property of the SBFEM has desirable applications. Sections of 

boundary that are known a priori to have solutions deemed inappropriate for 

a polynomial-based approximation, such as singularities and discontinuities, 

can be modelled more accurately by the modal superposition described by the 

method’s solution in the radial direction. 

The use of side faces in the numerical modelling of cracks forms the 

fundamental basis of the work in this thesis. By placing of the scaling centre 

coincidentally with a crack tip, the singular behaviour exhibited along the 

crack faces is captured using modal superposition rather than by an 

alternative polynomial-based method. 
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The implications of side faces on the modelling of a domain using the SBFEM 

are in boundary integration leading to the construction of 0E , 1E  and 2E , 

and the application of boundary conditions. Otherwise, the formulation of the 

SBFEM remains the same. 

3.5 Boundary integration 

The implications of the presence of side faces on the computation of boundary 

integrals 0E , 1E  and 2E , are illustrated by an example. Consider the finite 

domain ΩS , bounded by a discretised boundary ΓS , with scaled boundary 

elements labelled locally and according to respective sections of ΓS . Domains 

with an internal and boundary scaling centre are illustrated in Figure 43. 

0 0( , )x y

SΩ

RA0 0( , )x y

( )a ( )b

SΩ
S3.e2Γ

LA

S3.e1Γ

S1.e1Γ

S1.e2Γ

S4.e2Γ

S2.e1Γ

S4.e1Γ

S2.e2Γ

S1.e1Γ

S1.e2Γ

S2.e1Γ S2.e2Γ

 

Figure 43. Locally element labelling of the discretised boundary ΓS  of a domain ΩS  with ( )a  

an internal scaling centre and ( )b  a boundary scaling centre 

Matrices 0E , 1E  and 2E  are banded and symmetric, exhibiting the local 

connectivity of elements in much the same way as a one-dimensional FEM 

stiffness matrix. Element connectivity can be observed where sections of the 

matrices overlap at adjoining nodes. The existence of side faces LA  and RA  

reduces the extent of the discretisation, and thus the size of matrices 0E , 1E  
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and 2E , and results in an open boundary. These effects are illustrated in the 

form of matrix block representations in Figure 44, where it should be noted 

that as the discretisation is no longer a closed loop the overlapping of 

elemental blocks does not wrap about each end of the diagonal. 

( )a ( )b

S1.e2Γ

S2.e1Γ

S2.e2Γ

S3.e1Γ

S3.e2Γ

S4.e2Γ

S4.e1Γ

S1.e1Γ

S1.e2Γ

S2.e1Γ

S2.e2Γ

S1.e1Γ

 

Figure 44. Block representation of banded, symmetric matrices 0E , 1E  and 2E , with 

elemental connectivity at the adjoining nodes for domain with ( )a  an internal scaling centre 

and ( )b  a boundary scaling centre 

3.6 Mode identification 

It can be shown, that the terms in �λ  comprise integer multiples of −1
2  and 1

2  

respectively. For each integer multiple of ±1
2  there are two eigenvalues, one 

with a negative imaginary part and one with a positive imaginary part. In 

practice, the eigenvalues are unlikely to be exact integer multiple of ±1
2 , but 

with increased n , the real part will converge towards integer multiples of ±1
2 . 

The identification of the modes, where λ −= 1
2j , is important in this work. 

These are the crack opening and crack shearing modes and so are labelled 

modes =
IKj j  and =

IIKj j  respectively for future reference. 
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3.6.1 Translation modes 

Some other modes have clear and more obvious physical interpretations, as 

illustrated in Appendix B. Two such modes are the x- and y-translation 

modes, denoted = xj j  and = yj j  respectively for future reference. As 

translation modes are displacement modes independent of ξ , as illustrated in 

Figure 45, 

 λξ ϕ ξ ϕ− =( )j
j ij j ijc c  (3.94) 

or where λ = 0j . 

( )a ( )b0
xjλ = 0

yjλ =

  

Figure 45. The x- and y-translation modes ( )
x

a j  and ( )
y

b j  are independent of ξ  

As there are four such eigenvalues (two for each of the unbounded and 

bounded domain cases), and as zero-value terms, their distinction cannot be 

made by the sign of their corresponding eigenvalues. Even though the 

calculation of the eigenvalues is unlikely to result in exact zero values for 

these modes, it cannot be assumed that the two bounded x- and y-translation 
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modes will have a negative finite value, or that the two unbounded x- and y-

translation modes will have a positive finite value. 

Thus, the two missing translation modes are omitted from λ̂ , a subset of λ 

for which the appropriate bounded or unbounded modes have been identified 

 λ

λ

 
 

=  
 
 

ˆ

x

y

j

j

λ

λ  (3.95) 

Similarly, Φ  and Q  are truncated and denoted Φ̂  and Q̂  

  =  
ˆ

x yj jΦ Φ φ φ  (3.96) 

  =  
ˆ

x yj jQ Q q q  (3.97) 

3.6.2 Reconstruction of translation modes 

Consider a domain constrained in both the x- and y-directions, as illustrated 

in Figure 46(a). With a priori knowledge of the nature of the lost 

displacement modes ( λ = 0
xj  and λ = 0

yj
), these lost translation modes can 

be re-inserted in order to complete λ 

 

 
 

=  
 
 

ˆ

0

0

λ

λ  (3.98) 
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0 0( , )x y
SΩ SΩ

0 0( , )x y

RA

LA

( )a ( )b

 

Figure 46. Constraining x- and y-direction of ΩS  by constraint of ( )a  boundary nodes, and 

( )b  side faces 

The corresponding column vectors 
xjφ  and 

yjφ , the unscaled displacement 

modes, are defined to ensure rigid-body translation independent of ξ  

 

      
      
            =    
      
      
            

� �

1 0

0 1

ˆ

1 0

0 1

Φ Φ  (3.99) 

These rigid-body translation modes, require no reaction forces, so equilibrium 

is ensured by defining the corresponding force column vectors 
xjq  and 

yjq  

 

      
      
            =    
      
      
            

� �

0 0

0 0

ˆ

0 0

0 0

Q Q  (3.100) 

3.6.3 Reconstruction of translation modes with side faces 

Zero-displacement boundary condition constraints can be applied to side faces, 

as illustrated in Figure 46(b), but with additional considerations (Deeks and 
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Wolf, 2002a). The constraint of side faces results in the omission of rows and 

columns from 0E , 1E  and 2E , and in addition to defining modes xj  and yj  

as above, each column vector jφ
 
and

 jq  will omit terms relating to xi  and yi , 

the constrained displacement degrees of freedom. 

 

[ ] { } { }
{ }

{ }

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ
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 
  
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�
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ˆ ˆ ˆ

x y
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x
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i
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i n

i
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Φ  (3.101) 
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{ }
−

−

−
 
 

=  
 
  

�

�
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1 ( 2)

1 ( 2)

ˆ ˆ ˆ
x y

x x x x x y

y y y

x

y y y

x j j

i i n i j i j

i i n i

i

j i j

i n

q q q q

q q q q

q qQ q q

Q  (3.102) 

The missing terms from Φ  corresponding to rows xi  and yi  can be inserted 

 

[ ] { } { }
{ }

{ }

 
 

=  
 
  

�

�

ˆ ˆ ˆ

0 0 1 0

0

0 0 1

0

0

x yj jΦ φ φ

Φ  (3.103) 

The missing terms from Q  are the forces reacting the total x- and y-direction 

forces for each mode, which can be found by ensuring force equilibrium for 

each mode, i.e. 

 
=

= − ≠∑
1

where
x

n

i j ij x
i

q q i j  (3.104) 

 
=

= − ≠∑
1

where
y

n

i j ij y
i

q q i j  (3.105) 

Neither the application of zero-displacement boundary conditions in 

orientations other than parallel to the Cartesian axes, nor the application of 

non-zero-displacement boundary conditions to side faces (Deeks, 2004), are 

required in the present work and are not described here. 
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3.7 Applications to fracture mechanics 

As the form of the solution in the radial direction is the modal superposition 

of an exponent series, including those on side faces, the SBFEM is considered 

analytical in ξ . However, as the solution is interpolated numerically in s , the 

method is often referred in the literature as semi-analytical. 

The semi-analytical form of the solution is desirable in modelling problems 

whose solution is known a priori to be modelled better by an analytical series 

using a finite number of modes than a polynomial-based alternative. If there is 

one principal or dominating stress field to be modelled, the SBFEM may be a 

good choice if the scaling centre can be placed such that the variation in this 

stress field is aligned with the radial axes, without violating the line of sight 

requirement. By coinciding the scaling centre with a crack tip, 
IKj  and 

IIKj  

may be identified and used in the estimation of the associated stress intensity 

factors (Yang, 2006). Rewriting equation (3.93) 

 
λσ ξ ξ − −

=

= ∑ 1

1

( , ) ( )j

n

j j
j

s c sψ  (3.106) 

where 

 [ ]λ= −2 1( ) ( ) ( )j j js s sψ D B B φ  (3.107) 

and ( )jsψ  is the mode j  vector of contributory stresses at s  

 

ψ

ψ

ψ

 
 

=  
 
 

( )

( ) ( )

( )

xx j

j yy j

xy j

s

s s

s

ψ   (3.108) 
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3.7.1 Stress intensity factors 

It is possible to define generally ξ( , )r s , the distance from the crack tip r , as a 

function of radial and boundary coordinates ξ  and s . With reference to 

Figure 47, in which side faces are omitted for clarity (but without loss of 

generality), it can be seen that ξ( , )r s  simplifies to ξ ( )r s . 

( )a

0 0( , )x y

SΩ
SΓ

ξ ( )r s

s

ξ ( )r s
ξ=1
ξ=0.5

( )b

ss

 

Figure 47. An example SBFEM domain with ( )a  geometrically-scaled boundaries and ( )b  the 

resulting functions ξ ξ=( , ) ( )r s r s  

More specifically ξ 0r  is then defined as the distance (scaled by ξ ) from a 

crack tip to 0s , the point on s  coinciding with θ = 0p , where θp  is the local 

crack angle defined in §1.4. The substitution of ξ 0r  and equation (3.106) into 

equations (1.1) and (1.2) yields 

 
λξ ψ πξ− −

→
=

= ∑ 1
I 0 0

0
1

lim ( ) 2j

n

i yy j
r

j

K c s r   (3.109) 

 
λξ ψ πξ− −

→
=

= ∑ 1
II 0 0

0
1

lim ( ) 2j

n

i xy j
r

j

K c s r   (3.110) 

and or 

 
λ

ξ
ξ ψ π− −

→
=

= ∑
1
2

I 0 0
0

1

lim ( ) 2j

n

i yy j
j

K c s r   (3.111) 
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λ

ξ
ξ ψ π− −

→
=

= ∑
1
2

II 0 0
0

1

lim ( ) 2j

n

i xy j
j

K c s r   (3.112) 

The relationships between these terms in a generally-oriented crack are 

illustrated in Figure 48. 

0 0( , )x y

RA

LA

sξr

θp

( )a ( )b

0s

θ =

0

( 0)p

r

 

Figure 48. Relationship between ( )a
 
stress intensity factor parameters and ( )b  SBFEM

 

parameters 

Because as ξ → 0  

 λ λ
ξ − − = −

→ 


1
2

1
21

0 other s  wi e
j j

  (3.113) 

the stress intensity factors arising as → 0r  (as ξ → 0 ), are estimated by 

 ψ π=I 0 0( ) 2
h K KI Ij yy jK c s r   (3.114) 

 ψ π=II 0 0( ) 2
h K KII IIj xy jK c s r   (3.115) 

where 
IKj  and 

IIKj  are the crack modes for which λ = − 1
2j   and the ‘h’ 

subscript indicates a numerical approximation expected to improve with an h-

adaptive mesh refinement strategy. 
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This represents an important result in the application of SBFEM to fracture 

mechanics as the stress intensity factors can be found by the direct extraction 

of the stresses associated with crack modes 
IKj  and 

IIKj . Further, if the 

domain is meshed such that 0s  coincides with a node, these modal stresses are 

extracted without the need for numerical interpolation in the s-direction. It is 

this analytical form of the stress intensity factors that makes the SBFEM such 

a suitable method for use in modelling the singular functions in associated 

with fracture mechanics.  

3.8 Semi-discontinuous SBFEM 

For the purposes of disambiguity, it should be noted that, unless otherwise 

stated, the remaining sections follow as a direct result of work undertaken by 

the author. 

In order to facilitate the coupling of the SBFEM and DBEM, a new semi-

discontinuous SBFEM was developed (Bird et al., 2009b). The motivation for 

the development is discussed in §5.2.1, but as it is directly related to the 

SBFEM, it is more appropriate for its formulation and analysis to be included 

in this chapter. 

As described in §3.5, the matrices 0E , 1E  and 2E  formed in the construction 

of the SK  exhibit a banded overlapping of submatrices similar to that of a 

typical FEM stiffness matrix. Unlike in the BEM, where adjacent elements do 

not require common nodes, nodal discontinuity in the SBFEM results in a 

discontinuity of the overlapping regions in the matrices 0E , 1E  and 2E . With 

reference to Figure 43 and Figure 44, the effect of element discontinuities is 

illustrated in Figure 49. In such a case, additional constraint equations may be 

required to render SK  non-singular. 
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S4.e1Γ

S1.e1Γ

 

Figure 49. Elemental connectivity is lost if discontinuous elements are used to discretise ΓS  

However, with the scaling centre on the boundary, a natural discontinuity in 

the s-direction can be found as the discretised boundary meets the side faces. 

This facilitates the possibility of replacing the continuous elements that 

connect the discretised sections of the boundary with the side faces with semi-

discontinuous elements, while maintaining the overlapping structure of 

matrices 0E , 1E  and 2E . This is illustrated in Figure 50. 
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Figure 50. ( )a  Side faces cause a natural discontinuity in the discretisation of ΓS , facilitating 

( )b  the introduction of semi-discontinuous scaled boundary finite elements adjacent to side 

faces, without altering the structure of the overlapping submatrix connectivity 

The boundary integration of the SBFEM undertaken in forming 0E , 1E  and 

2E  requires the use of (quadratic) shape functions, modified in the same 

manner as conventional semi-discontinuous boundary elements used in the 

BEM. The construction of SK  then follows that of the conventional 

(continuous) SBFEM. 

It should also be noted that because there is no nodal degree of freedom on 
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the side face, the conventional application of boundary conditions on the side 

faces is not trivial and may require the use of additional constraint equations. 

This is beyond the scope of the current work where all side faces are assumed 

traction-free. 

An advantage of (and the motivation for) the discontinuous scaled boundary 

finite element is its readiness for coupling with the DBEM in which it is 

advantageous for there to be no nodal connectivity between the boundary 

elements. 

3.9 Example applications to fracture mechanics 

The SBFEM is applied to the same benchmark problem used in §2.10. A 

notable difference between the methods is that without nodes on the 

undiscretised sideface portions of ΓS , there may be fewer contributory terms 

to equation (2.119). So in addition to the displacement solution at the nodes, 

contributions to the error estimate are made by the displacement solution at 

sample locations along the side faces (where { }ξ = �0.1 0.2 1.0 ). 

In addition to a displacement-based error indicator, the stress intensity factor 

may be extracted directly by the identification of modes 
IKj  and 

IIKj , and an 

additional error indicator is defined for each crack mode 

 ε
−

= h

I

I I
K

I

K K

K
  (3.116) 

 ε = −
II hK II IIK K   (3.117) 

The error ε
IIK  is defined in absolute terms as in this example, where = 0IIK , 

it is inappropriate to normalise by the expected value. 
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It should be noted that permutations of the following example have been 

published before (Chidgzey and Deeks, 2005), but are reproduced here using 

the author’s code to provide means for comparison of numerical methods later 

and should not be considered a new application of this method. The use of the 

author’s code also provides alternative visualisation of the results. 

For the examples in this chapter 

 Ω = ΩS   (3.118) 

 Γ = Γ ∪ ∪S R LA A   (3.119) 

and the scaling centre is co-incident with the crack tip. 

3.9.1 Through crack in an infinite plate example 1 

The SBFEM is used to model the crack tip described in §2.10. With reference 

to Figure 51(c), the dimensions of ΩS  are ×b h , and ΓS  is subdivided into 

portions of boundary Γ �u  with known displacement boundary conditions (red 

nodes), and portions of boundary Γu with displacements to be found as part of 

the solution (white nodes). As there are no nodes at which the boundary 

conditions are to be found in the solution 

 Γ =u RA   (3.120) 
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( )a

∞Ω
2a 2a

( )b ( )c

R
A

a

σ

σ

h
S

Ω

B
Γ

b

L
A

0 0( , )x y

 

Figure 51. SBFEM analysis of ( )a  through crack in an infinite plate, ( )b  the section of the 

domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu   

The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 52(a) and Figure 53 respectively. Figure 54 illustrates the sample 

locations on the side faces used as an addition to the nodal displacements in 

equation (2.119). Convergence characteristics of the SBFEM displacement and 

stress intensity factor errors are illustrated in Figure 55 and Figure 56 

respectively, using the uniform mesh refinement indicated in Figure 52(b). 

original
deformed

( )b( )a

 

Figure 52. To-scale deformation of ( )a  initial mesh and ( )b  uniformly-refined mesh 
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Figure 53. ( )a  x- and ( )b y-direction displacement results on Γu  
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Figure 54. x- and y-direction displacement errors on Γu  and the sample points used in the 

estimation of ε 2L x
 and ε 2L y
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Figure 55. Convergence characteristics of global error estimators ε 2( ) L xa   and ε 2( ) L yb  
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Figure 56. Convergence characteristics of global error estimators ( )a  ε
IK  

and ( )b ε
IIK  

3.9.2 Through crack in an infinite plate example 2 

The SBFEM is again used to model the crack tip described in §2.10, but the 

assumption of symmetry is removed by modelling both crack faces with side 
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faces. With reference to Figure 57(c), the dimensions of ΩS  is doubled ( × 2b h ) 

and 

 Γ = ∪u L RA A   (3.121) 

( )a

∞Ω
2a 2a

( )b ( )c

a
a

σ

σ
b

2h
S

Ω

B
Γ

R
A

L
A

0 0( , )x y

 

Figure 57. SBFEM analysis of( )a through crack in an infinite plate, ( )b  the section of the 

domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  

The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 58(a) and Figure 59 respectively. Convergence characteristics of the 

SBFEM displacement and stress intensity factor errors are illustrated in 

Figure 60 and Figure 61 respectively, using the uniform mesh refinement 

indicated in Figure 58(b). 

original
deformed

( )b( )a

 

Figure 58. To-scale deformation of ( )a  initial mesh and ( )b  uniformly-refined mesh 
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Figure 59. ( )a  x- and ( )b  y-direction displacement results on Γu  
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Figure 60. Convergence characteristics of global error estimators ( )a  ε
IK  

and ( )b  ε
IIK  
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Figure 61. Convergence characteristics of global error estimators ( )a  ε
IK  

and ( )b  ε
IIK

 

3.9.3 Through crack in an infinite plate example 3 

The SBFEM is again used to model the crack tip described in §2.10, but in 

addition to removing the assumption of symmetry, the effect of the semi-

discontinuous elements of §3.8 is evaluated, as illustrated in Figure 62(c). 
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Figure 62. SBFEM analysis of ( )a through crack in an infinite plate, ( )b  the section of the 

domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  
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The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 63(a) and Figure 64 respectively. Convergence characteristics of the 

SBFEM displacement and stress intensity factor errors are illustrated in 

Figure 65 and Figure 66 respectively, using the uniform mesh refinement 

indicated in Figure 63(b). 
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Figure 63. To-scale deformation of ( )a  initial mesh and ( )b  uniformly-refined mesh 

-1 -0.5 0 0.5 1
-10

-8

-6

-4

-2

0

2

4

6
x 10

-9

s

u
x(

s)

-1 -0.5 0 0.5 1
-8

-6

-4

-2

0

2

4

6

8
x 10

-6

s

u
y(

s)

solution
expected

( )b( )a

 

Figure 64. ( )a  x- and ( )b  y-direction displacement results on Γu  
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Figure 65. Convergence characteristics of global error estimators ε 2( ) L xa   and ε 2( ) L yb
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Figure 66. Convergence characteristics of global error estimators ε
I

( ) Ka   and ε
II

( ) Kb
 

3.10 Significance of imaginary components 

Although the eigenvalue problem in equation (3.66) contains only real 

numbers, the matrices of modal displacements Φ  and modal forces Q , and 
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vector of eigenvalues λ found in its solution may contain imaginary parts, 

which in turn induce imaginary parts to the vector of contribution factors c . 

In the calculation of ξ( , )su , the imaginary component of each term 

contributing to its respective series is assumed negligible (Chidgzey, 2007). 

The following indicator is defined in order to quantify the significance of the 

imaginary component of jc  

 = ×Re( ) Im( )c
j j jF c c   (3.122) 

and is considered more satisfactory than a normalised indicatorv. 

Consequences of neglecting imaginary terms been observed as part of the 

present work on both displacement and recovered stress results. Examples are 

now presented. 

3.10.1 Displacement results and domain regularity 

In addition to restrictions in domain shape imposed on the SBFEM by the 

line of sight requirement, anecdotal observations suggest that the method’s 

performance is improved with the regularity of the domain geometry (Deeks, 

2009). It is known that the uniqueness of the eigenvalues degrades as their 

                                      

v A normalised indicator such as 
−

=
Re( ) Im( )

Re( )

j jc
j

j

c c
F

c
 may inflate the significance of Im( )jc  

when Re( )jc  is low. Modes for which Re( )jc  is relatively low contribute little to ξ( , )su  and 

so are less important than modes for which Re( )jc  is relatively high. Thus, it is more 

important to estimate the significance of Im( )jc  where Re( )jc  is relatively high. This is 

achieved through the indicator described in equation (3.122) 
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corresponding eigenvectors become near parallel. However, here it is 

postulated that similar effects shall be observed with the reduction of 

regularity of the domain. 

A wide range of models was used in the acceptance testing of the computer 

code used to develop the SBFEM used in the present work. Models included 

uniaxial tension tests, both with and without the inclusion of circular holes, 

simply supported beams and cantilevered beams etc. However, by varying the 

geometry of ΩS  in addition to the mesh density, the effect of domain 

regularity was investigated. The following example demonstrates results 

representative of these tests. 

A uniformly-distributed load is applied to a cantilevered beam, as illustrated 

in Figure 67, and is modelled using the SBFEM. The effect of domain 

regularity is investigated by varying aspect ratio :b h  and is compared to the 

effect of variations in mesh density with 1, 5, 10, 15 and 20 elements per line. 

The acceptance tests were based on boundary results (maximum tip 

deflection) and in all cases were satisfactory. However the effect of domain 

geometry on the interior results are largely ignored. Sample results are 

illustrated in Figure 68 and Figure 69. 

b

h
x

y

 

Figure 67. Cantilevered beam 
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Figure 68. With reference to Figure 67, effect of increasing mesh density from ( )a  initial 

density to ( )b  20x initial density upon interior displacement results with aspect ratio of 20:1 
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Figure 69. With reference to Figure 67, effect of increasing mesh density from ( )a  initial 

density to ( )b  20x initial density upon interior displacement results with aspect ratio of 1:1 

The variation of the indicator described in equation (3.122) is illustrated in 

Figure 70 for the 25 combinations of mesh density and aspect ratio. The 

square point represents the sum of all the indicators for respective mesh 

density/aspect ratio combinations. The solid line that connects them is 

included to highlight that these totals tend to increase with aspect ratio. 
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Figure 70. Indication of the significance of Im( )
j

c  for 25 model combinations of 5x mesh 

densities and 5x aspect ratios. Each circular point represents an individual mode j . Note that 

Zero-values of c

j
F  do not appear on the logarithm axis. 

3.10.2 Stress recovery 

Further to errors in domain displacement, the secondary calculation of c  may 

result in poor recovered stresses. Moreover, observations of poor stress results 

have been made even when the corresponding domain displacements are 

adequate. 

Consider a linear elastic domain of dimensions b h×  subject to a uniaxial 

stress and boundary constraints illustrated in Figure 71, modelled using the 

SBFEM by two side faces and two sections of discretised boundary labelled 

ΓS1  and ΓS2 . The results in terms of nodal displacements and stresses can be 

calculated for arbitrary domain and model parameters, and are given by 

 
σ

= ≤ ≤( ) , 0x
xu x x x b

E
  (3.123) 
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where Young’s modulus = 207GPaE , σ = 1MPax  and 1mb h= = . The x-

direction displacement thus varies linearly with x  to a maximum of 

=( ) 4.8309mmxu b  with a uniform stress distribution over the domain of 

σ =( ) 1MPax x . Defining error estimates εu  and σε  

 ε
−

=
( ) ( )

( )
x hx

u
x

u x u x

u x
  (3.124) 

 σ
σ σ

ε
σ

−
=

( ) ( )

( )
x hx

x

x x

x
  (3.125) 

where the ‘h’ subscript indicates the solution, an approximation to the exact 

value which is expected to improve with h-adaptive mesh refinement. 
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Figure 71. ( )a Domain subject to uniaxial stress and ( )b the SBFEM model 

The discretised portions of the mesh are defined by configuration of elements 

on ΓS1  and ΓS2  ranging from 1 to 5 elements each. Representative samples of 

( )hxu a  and ( )hxu b  are selected to illustrate the effect of the neglecting of the 

imaginary component in the solution. The errors for selected mesh 

configurations are illustrated in Figure 72 along with results of the indicator 

described in equation (3.122). 
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Figure 72. Representative errors ε( ) ua
 
and σε( )b  for sample mesh configurations 

3.11 Discussion 

3.11.1 Nodal and modal co-dependency 

Although not recognised specifically in the literature, equation (3.70) is an 

important observation as either: 

1. the number of modes available in describing the deformation of the 

domain by modal superposition is restricted by the number of degrees 

of freedom, rather than, say, because the difference between m  and 

minM  is approaching some threshold of numerical accuracy; or 

2. the number of degrees of freedom is restricted by the number of modes 

made available in defining the deformation of the domain by modal 

superposition, rather than, say, being defined by a mesh generation 

algorithm dictating a specific number of degrees of freedom. 

This may be problematic if the geometry can be described by sufficiently few 
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degrees of freedom. Typically ≥ 6n  as the geometry must be defined by a 

minimum of three geometric lines, which themselves must be modelled by a 

minimum of one linear element with four degrees of freedom each, as 

illustrated by Figure 73. 
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Figure 73. ( )a  Bounded and ( )b  unbounded domains with = 6n ; ( )c  Bounded and ( )d  

unbounded domains with side faces with = 4n  

However, with the use of side faces, it is possible to define domains in which 



G. E. Bird 

The DBE-SBFEM: Scaled boundary finite element method 

120 

= 4n . As an a priori knowledge of minM  is unlikely, for small n , it cannot be 

assumed that n  modes are sufficient to model the solution by modal 

superposition. One solution to this problem is to adaptively refine the mesh 

(Deeks and Wolf, 2005), introducing additional degrees of freedom and thus 

increasing the number of modes contributing to the solution. This approach 

should be undertaken with caution as it should be noted that while the local 

refinement of the mesh may improve the geometric representation of the 

domain, if n  increases greatly, then the distinction between the modes reduces 

(Appendix B) as the eigenvectors defining the mode shapes approach 

becoming parallel. 

3.11.2 Applications of the SBFEM 

This assessment of the SBFEM confirms its suitability to applications to 

fracture mechanics. The ability of the method to capture the dominating 

crack-opening mode facilitates its improved accuracy over the BEM. The 

accuracy of the new semi-discontinuous scaled boundary finite element has 

been verified as its impact on the quality of results is of the order of 

magnitude associated with computer error. Thus, this element is available for 

use in later work in which the semi-discontinuous property is required. 

The results in Figure 68 confirm the known issues relating to the 

parallelisation of the eigenvectors due to increased mesh refinements may 

result in poor interior displacements. However, as demonstrated in Figure 69, 

increased mesh denisity alone does not dictate poor results. Figure 69(b) 

shows that even for a fine mesh where = 240n , good boundary and interior 

displacements can be achieved. Thus, the poor results in this case may be 

attributed more towards the slender aspect ratio of the problem than its high 
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mesh density, as shown in Figure 68(b). So, as expected, the trends in Figure 

70 illustrate the effects of both mesh density and aspect ratio on c . 

This is likely to be caused by the ill-conditioning of Φ  as used in the 

calculation of c  in equation (3.91) owing to the numerical difficulties in 

representing the necessary displacement in exactly n  modes. Preliminary 

analysis suggests that significant imaginary components of jc  occur where the 

condition number κ ≈ 6( ) 10Φ  or greater, although a high condition number is 

not necessarily indicative of significant imaginary components in c . 

In Figure 72 it can be seen that displacement and stress errors are acceptably 

low ( −
∼

1110  and −
∼

1010  respectively). However, results not shown here for 

low element configurations (with fewer than 3 elements on each discretised 

edge) resulted in poor recovered stresses ( −
∼

110 ). Further examination of this 

point is recommended. 

3.12 Literature review 

The SBFEM was predated by the infinitesimal finite-element cell method 

(Wolf and Song, 1995), and later the consistent infinitesimal finite-element cell 

method (Wolf and Song, 1995), although all are evolutions of the same 

method. However, the involved mathematics behind the original mechanical-

based derivation of the SBFEM in these publications may have contributed to 

its slow uptake by other engineering researchers. In efforts to raise its 

awareness and to demonstrate its versatility as a tool for computing the 

dynamic stiffness of an unbounded domain, the method was re-derived. By 

means of a weighted residual approach, a displacement formulation in the 

frequency domain was derived for general problems in elastodynamics in three 

dimensions (Song and Wolf, 1998). The inclusion of body loads was then 
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addressed and the two derivations summarised for the SBFEM in two and 

three dimensions for bounded and unbounded domains (Song and Wolf, 1998). 

Two ‘primer papers’ consolidated the progress of the SBFEM, describing in 

detail the method by the comparison of both derivations with an example 

application and solution. First, the method was formulated using a weighted 

residual approach, and then re-derived using a mechanical-based approach to 

reproduce the same governing equation (Wolf and Song, 2000). (This is the 

equivalent of equation (3.45) here, although in the present (static) work, there 

are no terms relating to a dynamic mass matrix.) This preceded a summary of 

solution procedures (Song and Wolf, 2000), illustrated by a four-degree of 

freedom worked example using side faces, similar to that illustrated in Figure 

73(d), geometrically the simplest problem possible for the SBFEM to model. 

A third derivation of the method was presented (Deeks and Wolf, 2002a). 

This formulation took a virtual work-based approach, comparing the 

formulation of the SBFEM in with that of an accompanying formulation of 

the FEM. Highlighting their similarities, this increased the accessibility of the 

method to researchers with a background in solid mechanics. Axisymmetric 

modelling and the application of Neumann boundary conditions on side faces 

were also addressed, along with the use of domain substructuring and multiple 

scaling centres. A method of prescribing Dirichlet boundary conditions on side 

faces followed (Deeks, 2004) . For examples such as those found in the present 

work in which displacement constraints are restricted to = 0xu  or = 0yu , it 

was demonstrated that a displacement constraint could be applied to a side 

face in much the same way as other nodal displacement constraints by 

removing the appropriate degree of freedom from the stiffness matrix. In 

addition, the appropriate mode, corresponding to the x- or y-direction rigid 
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body translation, must be removed too. Non-zero displacement boundary 

conditions were also addressed. 

Some aspects of the virtual work approach by Deeks and Wolf are borrowed 

in the present work. However, here, there is a greater emphasis on both the 

form of the solution in terms of modal superposition, and the limitations of 

such a form.  

The SBFEM offers 0C  displacement continuity between neighbouring 

elements as the solution uses the continuous shape functions for element 

interpolation. However, as the stress recovery requires the derivative of the 

shape functions, continuity of stresses is not maintained between neighbouring 

elements. The application of the superconvergent patch recovery technique 

(Zienkiewicz and Zhu, 1992a) (Zienkiewicz and Zhu, 1992b) was introduced 

(Deeks and Wolf, 2002b), offering an improvement over simple averaging of 

nodal stresses for inter-element stress smoothing. This helped facilitate the 

accompanying error estimator based on the ‘ 2Z ’ error estimator found 

commonly in finite element analysis (Zienkiewicz and Zhu, 1987), allowing, for 

the first time, a direct comparison of the accuracy of stresses recovered by the 

FEM and SBFEM. The results demonstrated the high accuracy of the SBFEM 

in the applications combining linear elasticity and semi-infinite domains. This 

stress recovery technique and error estimator was used to develop a simple h-

adaptive mesh refinement strategy (Deeks and Wolf, 2005). A h-adaptive 

mesh refinement strategy  using a strain energy-based error estimator was 

demonstrated for use in elastodynamics (Yang et al., 2011). A p-adaptive 

refinement procedure was developed to increase the polynomial order of the 

elements identified for mesh refinement (Vu and Deeks, 2006).  
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The convenient modal superposition form of the SBFEM demonstrated its 

suitability to fracture mechanics (Chidgzey and Deeks, 2005). It was shown 

that if the scaling centre was coincident with a crack tip the coefficients of 

modal superposition of the displacement solution and recovered stresses 

converge to give the coefficients of the Williams expansion (Williams, 1957) 

estimating the displacements and stresses in its vicinity. The first modes, 
IKj  

and 
IIKj , in the superposition series of the SBFEM solution were identified as 

crack opening modes which can be used directly to estimate the mode I and 

mode II stress intensity factors. The next modes xj  and yj , were identified as 

rigid body translation modes which can be used directly to estimate the T-

stresses. The remaining modes could be used directly to estimate the higher 

order terms in the expansion. An application to electromagnetism 

demonstrated similar use of the superposition nature of the solution (Rajan 

and Raju, 2002). 

By introducing an automated method of substructuring around the crack tip 

modelled by the SBFEM, the remeshing complications often associated with 

crack propagation in some other numerical methods, such as the FEM, were 

reduced (Yang, 2006), and was extended to include cohesive cracks (Yang and 

Deeks, 2007). Dynamic stress intensity factors were calculated using the 

SBFEM as part of a series in which the static stress intensity factor forms the 

first term (Yang, 2006). 

The SBFEM has been used in coupled methods with different motivations. 

For example, a coupled FE-SBFEM used the FEM to model a subdomain in 

the vicinity of a load, with the SBFEM modelling the unbounded far-field 

(Doherty and Deeks, 2005). As the load increments, the algorithm detects 

plasticity as it approaches the interface and the FEM subdomain increases in 
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size at the expense of the SBFEM subdomain, such that the elastic 

assumption of the far-field can be maintained. With similar motivation, the 

SBFEM was coupled to a meshless method (Deeks and Augarde, 2007), for 

applications to geotechnical analysis. A meshless domain models the plastic 

behaviour of a geotechnical problem, coupled to an SBFEM modelling the far-

field as an infinite domain with a linear-elasticity assumption. 

With similar motivation to Yang et al, but limited to linear elastic fracture 

mechanics, the SBFEM was coupled to the BEM (Chidgzey et al., 2008). The 

geometric flexibility of the BEM was used to model a relatively large domain, 

using the SBFEM to estimate the stress intensity factor and T-stresses. 

However, results were limited to empirical comparisons and assumptions were 

made that limit the application of their scheme to certain sets of boundary 

conditions. As part of the present work, it was found that modelling problems 

with displacement constraints to the nodes at the junction of the interface and 

exterior boundary would result in a singular system. 

This was addressed by making the system square for such problems and 

increasing the applicability of the coupled method. Additional equations were 

computed by extra, non-nodal collocation on the BEM boundary (Bird et al., 

2007), and external to the boundary (Bird et al., 2008a). However, the 

accuracy of the results was shown to be sensitive to the location of the 

additional BEM collocation points (Bird et al., 2008b), and had a 

considerable, adverse effect on the condition number of the system. The 

coupled method was reworked with special consideration of the junction nodes 

(Bird et al., 2009a). This new formulation ensured the coupled system was 

square, providing the means for analytical evaluation of the BE-SBFEM 

rather than empirical evaluation, without the need for additional equations, 
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negating the ill-effects of additional BEM collocation (Bird et al., 2010). The 

conditioning of the system was improved by the introduction of a scaling 

parameter. This work is presented in §4.5. 

The coupled BE-SBFEM in its presented form restricts fracture mechanics 

analysis to problems that offer symmetry about infinitely thin crack faces, or 

problems in which the entire crack is modelled by the SBFEM. While this 

may offer solutions to academic problems, the BE-SBFEM was extended to 

use a BEM domain that uses the DBEM in order to model more general 

engineering problems. To date, the effects of coupled DBE-SBFEM are 

described as part of the present work in §5, including the need for a semi-

discontinuous scaled boundary finite element (Bird et al., 2009b). 

3.13 Conclusion 

This chapter has presented a summary of the SBFEM whose novel and 

desirable semi-analytical properties have been used to model the rapidly-

varying stress singularities in the region of a crack tip with great accuracy. Its 

historical development and that made subsequently by the author has been 

presented. A new overview of the method’s formulation has been presented 

here with a focus on modal superposition, offering a different and more 

complete perspective to those found in the literature. 

Results in this thesis have been presented with emphasis focused on 

consistency and comparability; methods demonstrated to improve only the 

accuracy of specific problems by fine-tuning their configurations are not 

applied to the general use of the SBFEM throughout the present work. 

As part of the present work, the method has been assessed. The necessary 
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relationship between the number of modes contributing to the solution and 

the number of degrees of freedom defining the geometry has been highlighted. 

The impact of neglecting imaginary components from the solution to the 

eigenvalue problem has been quantified, and has been shown to affect both 

interior displacements and recovered stresses for cases with fewer than 3 

elements per discretised face. The analysis offers scope for further work in 

which it is expected to relate to the conditioning of the matrix of modal 

displacement vectors. 

Extensions to the SBFEM have been demonstrated and verified. A semi-

discontinuous element has been introduced, motivated by the work to be 

presented in §5. 
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4 Boundary element-scaled boundary finite 

element method 

4.1 Introduction 

In this chapter, the coupled boundary element-scaled boundary finite element 

method (BE-SBFEM) is introduced. As described in earlier chapters, the 

motivation behind the this coupling is in combining the SBFEM’s ability to 

model crack tip displacements within a loaded system with the BEM’s 

geometric flexibility, providing a tool for analysis of real engineering problems. 

After a general overview of the strategies behind combining boundary and 

finite element-based methods, the original derivation of the coupled method is 

presented. As part of the present work, this method is reformulated to 

increase its applicability. Further improvements to the numerical stability of 

the method are presented. The strengths and weaknesses of the BE-SBFEM 

are assessed. 

4.2 Coupling the BEM and FEM 

Although based on a boundary integral method, the form of the SBFEM 

system matrices is more akin to the FEM than the BEM, and the approaches 
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to their coupling follows that of the coupling the BEM and FEM (BE-FEM), 

a coupled method well-established in the literature. The displacements and 

forces at the interface between the BEM and FEM subdomains require 

consideration. For a homogenous, linear elastic material, such as those 

considered in the present work, the interface does not describe a physical 

boundary between two regions within a domain of differing material properties 

but an artificial boundary introduced merely to separate the subdomains. A 

physical separation of the two domains cannot, therefore, be permitted and 

the BEM interface displacement degrees of freedom are coupled to those of the 

FEM interface, such that there is one unknown displacement per interface 

degree of freedom. Similarly, the tractions and forces across the interface are 

assumed continuous and the respective BEM and FEM degrees of freedom are 

coupled, subject to a direction sign convention. Coupling the BEM and FEM 

requires the conversion of BEM interface tractions into equivalent FEM nodal 

forces, or vice versa, details of which can be found in Appendix E. 

A weakly-coupled, iterative approach is to solve each of the subdomains 

independently (Elleithy et al., 2001). The BEM subdomain is analysed using 

its respective method with estimated interface displacements estimated and 

imposed as boundary conditions. The interface tractions found from its 

solution are converted into equivalent nodal forces and used in the solution of 

the FEM subdomain. The interface displacements found in the solution to the 

FEM used as boundary conditions in the following iteration for the BEM and 

the process is repeated until convergence. This approach is flexible in its 

applicability to many a wide range of problems, such as modelling non-

homogenous material interfaces. However, for meshes in which the number of 

BEM degrees of freedom significantly outnumbers those of the FEM 

subdomain, as found in the present work, this flexibility is achieved at a high 
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computational cost in which several hundred iterations may be necessary for 

convergence, and this form of coupling is rejected. 

An alternative is the direct coupling of the BEM and FEM displacement 

degrees of freedom and their respective tractions and forces. The influence 

matrices described in equation (2.30) can be used to define an equivalent 

BEM stiffness matrix relating boundary displacements and forces, such as 

described by the SBFEM stiffness matrix in (3.87). This stiffness matrix can 

then be coupled directly to that of the FEM subdomain (Leung et al., 1995). 

However, this approach has two significant drawbacks when applied to the 

coupled BE-SBFEM. Again, in the present work and in the examples to which 

it can be applied, the size of the BEM subdomain may, generally, be larger 

than that of the SBFEM. Thus, the conversion of the BEM tractions into 

forces will take a significant proportion of computational effort. Secondly, the 

motivation of the present work includes the use of reanalysis, described in 

§5.4, in which it is beneficial to maintain the BEM influence matrices rather 

than convert them into stiffness matrices. 

The approach favoured here is to transform the relatively few interface force 

degrees of freedom into equivalent interface element tractions, which can be 

done independently of the force degrees of freedom that appear in the rest of 

the SBFEM subdomain. As it will be shown, the result is a simple coupling 

with minimal additional computation that lends itself to reanalysis. 

With all the approaches outlined in this section, it is important that the forces 

and tractions across the interface are converted with appropriate consideration 

of both the internal and external forces acting on a boundary element (Cruse 

and Osias, 1991). With this in mind, the reformulation of the BE-SBFEM as 
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part of the present work has been demonstrated to increase the applicability 

of the method. 

4.3 Numerical formulation 

4.3.1 Method introduction 

The SBFEM is gaining more acknowledgement as a useful numerical method, 

albeit with some undesirable limitations. The method’s ability to model the 

solution by modal superposition, rather than by some polynomial 

approximation, makes it suitable for problems with discontinuities and 

singularities. The BEM is known for its geometric flexibility and suitability to 

applications to linear elasticity. 

The motivation for the coupling of the methods lies in applications to fracture 

mechanics. By modelling a crack using the SBFEM, the rapidly varying stress 

fields around the tip (leading to the prediction of crack growth) can be 

modelled efficiently. However, real engineering domains are unlikely to be as 

trivial as the examples illustrated in the previous chapter. Rather than use a 

potentially awkward meshing procedure for the subdivision of domain, the 

more flexible BEM is used to model the remainder of the problem (Chidgzey 

et al., 2008). This formulation is repeated here. 

As part of the present work, it was identified that the method, as formulated 

originally in the reference, was limited to certain boundary condition sets. A 

new formulation is then presented, demonstrating the increase in the 

applicability of the coupled method, and allowing for the first time, the 

coupled method to be assessed by its analysis of problems for which there is a 

known, analytical solution. 
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4.3.2 Method coupling 

The following overview briefly describes the original derivation of coupled BE-

SBFEM (Chidgzey et al., 2008). Consistent with previous chapters, subscripts 

‘B’ and ‘S’ are used to denote the BEM and SBFEM subdomains respectively. 

Furthermore, the subscript ‘I’ denotes the interface between subdomains. For 

simplicity, the derivation focuses on the coupling of two subdomains in two 

dimensions where a domain Ω  is divided into ΩB  and ΩS , bounded by ΓB  

and ΓS  and ΓI , as illustrated in Figure 74. 

0 0( , )x y

BΩ
BΓ

SΩ

RA LA

SΓ

IΓ

 

Figure 74. An example domain subdivided into BEM and SBFEM subdomains 

Equations (2.30) and (3.87), describing the solutions to ΓB  and ΓS , can be 

partitioned into their I , B  and S  components 
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As explained in Appendix E, the transformation matrix M  relating nodal 

forces and tractions is introduced 
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 = −I I IM t p  (4.3) 

where the negative sign is introduced to ensure compatibility across the 

interface (Becker, 1992). Combining equations (4.1) to (4.3) gives the system 

of linear equations 
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 (4.4) 

Boundary conditions are applied, and then by separating known and unknown 

terms in the usual manner, equation (4.4) can be rearranged to yield a square 

system of linear equations in the form 

 =Ax b  (4.5) 

4.4 Formulation assessment 

For the purposes of disambiguity, it should be noted that, unless otherwise 

stated, the following assessments of and extensions to the BE-SBFEM detailed 

in the remainder of this chapter are as direct result of work undertaken by the 

author. 

4.4.1 Limited boundary conditions 

One limiting factor in this approach is the lack of distinction between forces 

acting on the junction nodes, the nodes that exist on both the interface and 

the boundary (Cruse and Osias, 1991), as illustrated in Figure 75. The forces 

acting on these nodes are given by the external nodal forces acting on the 

adjoining SBFEM elements (or side faces), and the contributions to the nodal 

tractions from each of the adjoining BEM and interface elements. In forming 
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the coupled BE-SBFEM in this manner, an assumption is made that there are 

no external forces or tractions acting on the junction nodes (Bird et al., 2007), 

i.e. the forces acting on those nodes can be defined fully by the transformed 

tractions acting internally through the interface only. 
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Figure 75. Boundary conditions imposed on the junction nodes are restricted 

4.4.2 Matrix conditioning 

In almost all mechanical problems using typical engineering materials, it is 

likely that the traction coefficients t  will be several orders of magnitude larger 

than the displacement coefficients u  when using conventional SI units. 

Without taking this into consideration, the general approach outlined above 

may lead to conditioning problems of A . 

4.5 New numerical formulation 

The following overview briefly describes a new derivation of coupled BE-

SBFEM (Bird et al., 2010), formulated as part of the current work, providing 

means to analyse problems with boundary condition sets restricted by the 
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original formulation (Chidgzey et al., 2008), without the need for additional 

collocation points (Bird et al., 2008b). The additional subscript ‘J’ denotes 

junction degrees of freedom, i.e. those associated with the nodes found at the 

junction nodes, denoted by ΓJ , as in Figure 76. In the illustrated example, ΓB  

includes use of discontinuous boundary elements in order to highlight later the 

additional considerations required when using these elements over those 

necessary when using just continuous boundary elements. 
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Figure 76. An example domain subdivided into BEM and SBFEM subdomains using ( )a  

continuous boundary elements and ( )b  discontinuous boundary elements 

As before, equations (2.30) and (3.87) are be partitioned into their I , B  and 

S  components, but this time includes partitioning of their J  components too 
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JJ JI JS J J

IJ II IS I I

SJ SI SS S S

K K K u P

K K K u P

K K K u P

 (4.7) 

The nodal forces on ΓS  , ΓI  and ΓJ  are decomposed into their internal and 

external components 
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= +

= +

= +

J Jint Jext

I Iint Iext

S Sint Sext

P P P

P P P

P P P

 (4.8) 

As the interface ΓI  is defined exclusive of the junction nodes and therefore is 

entirely internal, there are no external forces so 

 =IextP 0  (4.9) 

As ΓS  is also defined exclusive of the junction nodes and therefore is entirely 

external (on the boundary), there are no internal forces so 

 =SintP 0  (4.10) 

The transformation matrix IM  is also partitioned and is given by 

 
−     

=     −     

JJ JI J Jint

IJ II I Iint

M M t P

M M t P
 (4.11) 

The coupled BE-SBFEM is therefore given by 

 

     
     
     
     

=    
    
    
    
    
 
 

JJ JI JS JJ JI J Jext

IJ II IS IJ II I

SJ SI SS S Sext

JJ JI JJ JI JB JB J

IJ II IJ II IB IB I

BJ BI BJ BI BB BB B

B

K K K M M 0 0 u P

K K K M M 0 0 u 0

K K K 0 0 0 0 u P

H H 0 -G -G H -G t 0

H H 0 -G -G H -G t 0

H H 0 -G -G H -G u 0

t

 (4.12) 

Once again, boundary conditions are applied, and then by separating known 

and unknown terms in the usual manner, equation (4.12) can be rearranged to 

yield a square system of linear equations in the form 

 =Ax b  (4.13) 

where x  is the vector of unknown displacements and tractions. 
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4.6 Matrix scaling 

By selecting an appropriate value for a scale factor Ψ1 , and introducing it 

into the BEM system matrix 

 = Ψ
Ψ1

1

t
Hu G  (4.14) 

it has been shown that the displacement and scaled traction influence 

matrices, H  and Ψ1G , are of the same order (Bird et al., 2009a), improving 

matrix conditioning. Thus, equation (4.12) is rewritten 

 

 Ψ Ψ 
  Ψ Ψ   
  
  

Ψ Ψ Ψ     Ψ Ψ Ψ Ψ  
  Ψ Ψ Ψ  Ψ






Ψ

J
JJ JI JS 1 JJ 1 JI

I
IJ II IS 1 IJ 1 II

S
SJ SI SS

J
JJ JI 1 JJ 1 JI JB 1 JB

1
IJ II 1 IJ 1 II IB 1 IB

I
BJ BI 1 BJ 1 BI BB 1 BB

1

B

B

1

uK K K M M 0 0
uK K K M M 0 0
uK K K 0 0 0 0
tH H 0 - G - G H - G

H H 0 - G - G H - G
t

H H 0 - G - G H - G

u

t

 
 
 
 
 
 =
 
 
 







J

S

P

0

P

0

0

0

 

  (4.15) 

where the ‘ext’ subscripts have been dropped for brevity, and by the 

application of boundary conditions, reduces once more to equation (4.13), but 

now x  is the vector of unknown displacements and scaled tractions. 

A range of test problems were analysed, including fracture mechanics 

examples described later in this chapter, and other suitable applications of the 

coupled method (Appendix G). The impact of Ψ1  is problem and parametric-

specific, but the trend illustrated in Figure 77 is indicative for these examples. 

Thus, throughout the work presented here Ψ = 6
1 10 . 
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Figure 77. Illustration of the trend found by varying the scaling factor Ψ1  
on system matrix 

condition number κ( )A  for fracture mechanics examples in §4.7
 

4.7 Example applications to fracture mechanics 

The approach outlined in §4.5 differs from the original formulation (Chidgzey 

et al., 2008), in that it can now be seen JextP  is not restricted to 0 . 

Consequentially, the BE-SBFEM can now be applied to the same benchmark 

problem used in §2.10 and contributions to the error include the sample points 

on the sidefaces used in §3.9. 

For the examples in this chapter 

 Ω = Ω ∪ ΩB S   (4.16) 

 Γ = Γ ∪ Γ ∪ Γ ∪ ∪B S I R LA A   (4.17) 

and the scaling centre of ΩS  is coincident with the crack tip. 
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4.7.1 Through crack in an infinite plate example 1 

The BE-SBFEM is used to model the crack tip described in §2.10. With 

reference to Figure 51(c), the dimensions of Ω  are ×b h , and the boundary is 

subdivided into portions of boundary Γ �u  with known displacement boundary 

conditions (red nodes), and portions of boundary Γu with displacements to be 

found as part of the solution (white nodes). This example is adapted from 

results published by Bird et al. (Bird et al., 2010). 

( )a

∞Ω
2a 2a

( )b ( )c

a

a

σ

σ

hB
Ω

B
Γ

bLA RA
0 0( , )x y

SΓ
I

Γ

 

Figure 78. BE-SBFEM analysis of ( )a  through crack in an infinite plate, ( )b  the section of the 

domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  

Convergence characteristics of the SBFEM stress intensity factor errors are 

illustrated in Figure 79 using the same uniform mesh refinement strategy as in 

previous chapters. 
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Figure 79 Convergence characteristics of global error estimators ε 2( ) L xa   and ε 2( ) L yb ; these 

results are adapted from those first published by Bird et al  (Bird et al., 2010) 

4.7.2 Through crack in an infinite plate example 2 

The trivial examples used to illustrate the accuracy and efficiency of the 

methods described in this and previous chapters are selected for consistency 

and ease of comparison with other published results. However, the meshing 

requirements of a complex domain (such as those with voids and notches) 

proves more arduous for the SBFEM than an equivalent BEM mesh 

requirement. The line-of-sight requirement in real engineering domains may 

necessitate subdivision and introduction of many interior interface elements, 

and the slender aspect ratios of the subdomains may reduce the uniqueness of 

the eigenvalue solution and thus introduce computational errors. 

But because the domains of these benchmark problems exist within a 

continuous medium, their boundaries do not represent traction-free or exposed 

surfaces. Thus, while the domains have been defined regularly, allowing 

comparison with literature results, their respective domain geometries have 

been largely arbitrary. With reference to Figure 80, the considerably irregular 
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shape of the example prevents its comparison with literature results, but 

demonstrates the robustness of the coupled method and its versatile 

applicability. As before, the boundary is subdivided into portions of boundary 

Γ �u  with known displacement boundary conditions (red nodes), and portions of 

boundary Γu with displacements to be found as part of the solution (white 

nodes). This example is adapted from results published by Bird et al. (Bird et 

al., 2010). 

( )a

∞Ω
2a 2a

( )b ( )c

a

σ

σ

B
Ω

S
ΩSΓ

I
Γ

B
Γ

LA RA

0 0( , )x y

 

Figure 80. BE-SBFEM of ( )a through crack in an infinite plate, ( )b  the section of the domain 

modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  

Convergence characteristics of the SBFEM stress intensity factor errors are 

illustrated in Figure 81 using the same uniform mesh refinement strategy as in 

previous chapters. 
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Figure 81 Convergence characteristics of BE-SBFEM; these results are adapted from those 

first published by Bird et al  (Bird et al., 2010) 

4.8 Discussion 

4.8.1 Discontinuous junction elements 

It should be noted that if a discontinuous BEM mesh is used, such as 

illustrated in Figure 76(b), then additional considerations must be made. 

There exists a collocation point (the junction node) upon an element to which 

it does not contribute to any geometric definition. Just as can be observed 

when non-nodal collocation points are used, such as in providing additional 

equations to form a square system (Bird et al., 2008b), when integrating from 

the junction node over this element, the singular integrals discussed in §2.5.3 

and §2.5.4 are present. In the example illustrated in Figure 82, singularities 

would be observed when collocating at the junction node at the local 

coordinate η =J 1, in addition to those observed when collocating at η1 , η2  

and η3 . 
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JΓ

ΓB

ΓS

2
1 3η −=

2 0η =

2
3 3η =

J 1η =

 

Figure 82. Junction node on a discontinuous boundary element 

4.8.2 Original method formulation limitations 

The original formulation of the BE-SBFEM (Chidgzey et al., 2008) 

demonstrated a proof of concept. As part of present work, method limitations 

were identified (in addition to limitations in its implementation and a poor 

approach to testingvi). For applications of the BE-SBFEM to problems 

requiring displacement constraints on the junction nodes, the resulting system 

matrix was shown to be under-defined. 

As an intermediate solution, additional equations were added to the system 

until the matrix was square (Bird et al., 2008b). These additional equations 

were computed by further collocation of the boundary integral equation at 

non-nodal points around ΓB  ensuring uniqueness, and with each collocation 

point, up to two new equations could be computed. However, the method was 

shown to exhibit strong instability issues depending on the location of the 

additional collocation point or points resulting in poor-conditioning of the 

                                      

vi Not discussed here. Further discussions of the original formulation can be found in the more 
general discussion of the approach to method implementation in §7 
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system and a consequent effect on the numerical accuracy. 

4.8.3 New method formulation 

The new approach presented here has overcome this issue by the distinction of 

boundary conditions at the junction nodes. In conjunction with the 

consideration of a discontinuous BEM mesh, this new approach provides the 

means to model the same benchmark problems used throughout this thesis. 

As expected, the SBFEM subdomain provides accurate displacement results in 

the vicinity of the crack tip. The coupled method does not converge at the 

same rate as the SBFEM alone owing to consistent employment of the 

uniform mesh refinement used elsewhere. This is more evident in §4.7.2, but to 

be expected as many of the subdivided BEM elements serve more to increase 

n  than they do to reduce ε
IK  and ε

IIK . An improved mesh refinement 

technique can improve convergence considerably, but is not included here for 

reasons discussed in 2.12.2. 

While the coupled BE-SBFEM has demonstrated its suitability to fracture 

mechanics, a major limiting factor is its reliance on symmetry, a property that 

cannot be assumed for general engineering domains. This can be overcome by 

domain subdivision in a way similar to that demonstrated in §2.10.2. But, as 

with the BEM, while more interface nodes provides more degrees of freedom 

for the errors analysis characterising the method, they provide little benefit as 

an analysis tool, rather a hindrance in terms of meshing requirements and so 

an alternative strategy is sought for problems where symmetry cannot be 

assumed. 
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4.8.4 Scaling factor 

The effect of Ψ1  is problem-specific, varying with parametric permutations, 

particularly with varying magnitude of applied loads and domain properties. 

This is to be expected as it is precisely this variation within real engineering 

problems that motivates the need for the scaling factor. An optimum value for 

Ψ1  may not be known a priori, but an appropriate value can be based on the 

Young’s modulus and the size and type of the domain under analysis. The 

impact of an improved condition number depends on the implementation of 

the method. 

4.9 Conclusion 

This chapter has presented a summary of the coupled BE-SBFEM. What 

began as a partially-explored proof of concept has, through the present work, 

been assessed and reworked. The evolved method offers greater flexibility and 

with this increasing in applicability provides greater confidence in the results 

obtained. 

By introducing a scaling parameter, the conditioning of the system matrix has 

been shown to reduce by several orders of magnitude, allowing its solution 

without the need for routines to solve ill-conditioned matrixes. 

As an intermediate step towards the coupling of the Dual BEM with the 

SBFEM, these extensions to the BE-SBFEM have been demonstrated and 

verified by examples, both here and in other publications by the author. For 

the first time, the evaluation of the BE-SBFEM has been made by comparison 

with analytical solutions, rather than by empirical examples and have shown 

little deviation from the single-domain SBFEM equivalents. Thus it has been 
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demonstrated any inaccuracies of a BEM subdomain have little bearing of the 

high accuracy of its coupled SBFEM counterpart and that the benefits of each 

method’s respective properties can be explored for use in an efficient and 

accurate coupled algorithm. The BE-SBFEM has also been shown to model 

domains, representative of real engineering problems, to which the SBFEM 

alone may not be suited. 
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5 Dual boundary element-scaled boundary finite 

element method 

5.1 Introduction 

 In this chapter, the coupled dual boundary element-scaled boundary finite 

element method (DBE-SBFEM) is introduced and assessed. The DBE-SBFEM 

has been developed with the same motivation as for the BE-SBFEM. By 

modelling a crack using the SBFEM, the rapidly varying stress fields around 

the tip can be estimated efficiently, leaving the more flexible BEM to model 

the remainder of the problem. By introducing the DBEM into the coupled 

method, its applicability increases. Unlike the BE-SBFEM, the DBE-SBFEM 

can model multi-faceted cracks using the SBFEM to model just the crack tip; 

using the DBE-SBFEM, modelling is no longer restricted to symmetry about 

the crack face. 

For purposes of disambiguity, the DBE-SBFEM has been developed in its 

entirely as part of the present work, the data in the examples in this chapter 

are obtained by the development of the author’s own code. 
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5.2 Numerical formulation 

The formulation of the DBE-SBFEM shares similarities with that of the BE-

SBFEM. For simplicity, the derivation focuses on the coupling of two 

subdomains in two dimensions such as in Figure 83, where a domain Ω  is 

divided into BΩ  and SΩ , bounded by BΓ  , DΓ  and IΓ  as illustrated in 

Figure 83. Like the BE-SBFEM, the scaling centre of SΩ  is placed on the 

crack tip. The upper crack surface is modelled by BΓ  and RA ; the lower 

crack surface is modelled by DΓ  and LA . Unlike the BE-SBFEM, S IΓ = Γ  

and there are no junction degrees of freedom. 

BΓ
BΩ

ΓB

ΓD LA
RA

S IΓ = Γ

SΩ

0 0( , )x y

 

Figure 83. An example domain subdivided into BEM and SBFEM subdomains. The BEM 

portion of the lower crack is modelled using the DBEM 

The coupled DBE-SBFEM is formed in the same manner as the BE-SBFEM, 

with the introduction of further partitioning relating to the DBEM (denoted 
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by the subscript ‘D’). As there are no pure SBFEM terms SSK , these are 

omitted resulting in 

J

I

J

JJ JI JJ JI

IJ II IJ II

JJ JI 1 JJ 1 JI JB JD 1 JB 1 JD

IJ II 1 IJ 1 II IB ID 1 IB 1 ID

BJ BI 1 BJ 1 BI BB BD 1 BB 1 BD

DJ DI 1 DJ 1 DI DB DD 1 DB 1 DD

 
 
 

−Ψ −Ψ −Ψ −Ψ 
 

−Ψ −Ψ −Ψ −Ψ 
 −Ψ −Ψ −Ψ −Ψ
 

−Ψ −Ψ −Ψ −Ψ 

u

u

t
K K M M 0 0 0 0

K K M M 0 0 0 0

H H G G H H G G

H H G G H H G G
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1
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B

D

1

 
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 
 
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   
   
   Ψ

=   
   
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  (5.1) 

If it is assumed D =t 0 , then 
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JJ JI JJ JI
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  (5.2) 

which, by the application of boundary conditions and separating known and 

unknown terms in the usual manner, can be rearranged to yield a square 

system of linear equations in the form 

 =Ax b (5.3) 
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5.2.1 Semi-discontinuous SBFEM motivation 

The motivation for the semi-discontinuous SBFEM introduced in §3.8 as part 

of the current work is highlighted by the example in Figure 83. As described 

in §4.8.1, the existence of degrees of freedom at the junction of BΓ  , DΓ  and 

IΓ  causes complications in the computation of the integral of singular BEM 

kernels in the formation of DDG . By moving the node from this junction 

along the interface (illustrated in Figure 84), and thus introducing semi-

discontinuous interface elements, the integration is no longer singular, merely 

near-singular, which can be computed with greater ease. 

As there are no junction terms, these are omitted from the system resulting in 

 

I

I
II II

1
II 1 II IB ID 1 IB

B
BI 1 BI BB BD 1 BB

D
DI 1 DI DB DD 1 DB

B

 
 

    
Ψ    −Ψ −Ψ      =   

−Ψ −Ψ     
     −Ψ −Ψ   

 
  Ψ

u

tK M 0 0 0 0

H G H H G 0
u

H G H H G 0
u

H G H H G 0
t

 (5.4) 

The remainder of the formulation follows as with the DBE-SBFEM above. 
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BΓ
BΩ

BΓ

DΓ LA
RA

IΓ

SΩ
0 0( , )x y

 

Figure 84. An example domain modelled using the DBE-SBFEM with semi-discontinuous 

SBFEM 

5.3 Matrix scaling 

Further to the scaling introduced in §4.6, by selecting an appropriate value for 

scale factors 2Ψ  and 3Ψ , and by introducing them into the DBE-SBFEM 

system matrix, equation (5.4) is rewritten 
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 (5.5) 
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5.4 DBE-SBFEM with reanalysis for crack growth 

Consider a crack of length a  propagated by a length ∆a , as illustrated in 

Figure 85, in which the transition from the original state to the new state is a 

single iteration in a series defining the full propagation. If the DBE-SBFEM is 

used to model the original state, then the advantages of the method over 

other crack-modelling methods becomes apparent. 

( )a ( )b

aΩ

aΓ

bΩ

bΓ

a a∆

 

Figure 85. Crack propagation from ( )a  an original state to ( )b  a new state 

It can be seen from comparison of Figure 84 (the original state model) and 

Figure 86 (the new state model), the crack propagation analysis is undertaken 

with minimal remeshing. In identifying which computations are common to 

sequential iterations, reanalysis can be employed to great effect for an efficient 

propagation algorithm. Subdomain SΩ  is translated in the direction of 

propagation, interface boundary IΓ�  replaces IΓ , and boundary portions BΓ �  

and DΓ �  are added. The subscripts I� , B�  and D�  are also used in the 

partitioning of the BEM and SBFEM matrices. 
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BΓ
BΩ

BΓ

DΓ LA
RA

IΓ�

SΩ

0 0( , )x y
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DΓ �

 

Figure 86. The DBE-SBFEM model for new state, using reanalysis with translation of SΩ  

In the BEM subdomain, the computations in which the collocation point and 

field elements are unchanged are common to both analyses. Thus, any 

submatrices ijH  and ijG  where , B,D, Ii j = , in which neither subscript ‘i’ nor 

‘j’ contains a tilde ‘~’, correspond to repeated computations in which the 

collocation point and the field elements are common to both the original and 

new models. The remaining submatrices correspond to new computations in 

which the collocation point and/or the field elements are different from the 

original. 

Although the interface has undergone translation, and any collocation at the 

interface and corresponding integration over the boundary differs between 

analyses, the integration over the interface can be reused as there is no 

relative difference between the interface collocation points and the interface 

field elements. Similarly, ΩS  is static relative to the scaling centre  and 0 0( , )x y
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equations (3.3) and (3.4) defining the scaled boundary coordinate system are 

preserved. Thus, computations made in forming the stiffness matrices IIK  and 

��II
K , and their respective constituents IIQ , IIΦ , ��II

Q  and ��II
Φ  are common to 

both the models in Figure 84 and Figure 86 and can be reused, along with the 

old matrix of eigenvalues Λ . 

Equation (5.5) can be partitioned into reflect this reused data 

2 3 1 2II II

3 1 3 3 3 3 1II II IB IB ID ID IB IB

3 1 3 BB 3 3 BD 3 BD 1 BBBI BI BB BB

3 1 3 3 3 BD 3 BD 1BI BI BB BB BB BB

3 1 3 DB 3DI DI DB

Ψ Ψ Ψ Ψ

Ψ −Ψ Ψ Ψ Ψ Ψ −Ψ −Ψ

Ψ −Ψ Ψ Ψ Ψ Ψ −Ψ −Ψ

Ψ −Ψ Ψ Ψ Ψ Ψ −Ψ −Ψ

Ψ −Ψ Ψ Ψ

K M 0 0 0 0 0 0

H G H H H H G G

H G H H H H G G

H G H H H H G G

H G H H

�� ��

�� �� � � � � � � � �

� � � �

� � � � � � � � � �

� � �

I

3

I

1

B

3

B

3

D

33 DD 3 1 DBDD DB

D3 1 3 3 3 3 1 1DI DI DB DB DD DD DB DB

3
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1

B

1

 
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0
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  (5.6) 

Figure 87 illustrates the relative sizes of each of the terms in the matrix in 

equation (5.6) in this example. Much of the data is reusable due to a priori 

knowledge of duplicate calculations or blocks of zeros.  
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Figure 87. A block representation (drawn to scale) of terms in the matrix in equation (5.6) for 

the new state in the propagation algorithm. The dark regions represent terms requiring new 

computations, the light regions represent reused data and white regions are blocks of zeros 

In this trivial example, the effects are less obvious than those associated with 

a more complicated model with a more involved mesh. In practice, the effects 

of reanalysis on the system size will be problem-dependent, but in the 

applications intended for this coupled method, BBH  and BBG  will dominate 

the matrix and the effects of reanalysis are more noticeable, as illustrated in 

Figure 88. 
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Figure 88. Crack propagation from ( )a  original state to ( )b  new state in a non-trivial domain, 

demonstrating ( )c  the major reuse of data through reanalysis (drawn to scale) 

5.5 Reanalysis for non-planar crack growth 

Consider the reanalysis situation where SΩ  undergoes a rotation of θ  about 

0 0( , )x y  and x- and y-direction translation, as illustrated in Figure 89. Unlike 

the translation-only propagation, ≠�� IIII
K K . However a transformation matrix 

θT  comprising repeated diagonal submatrices θt  where 

 θ

θ θ

θ θ

− 
=  
 

cos sin

sin cos
t   (5.7) 
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is introduced such that 

 θ θ=��

T
IIII

K T K T   (5.8) 

and so 

 θ θ θ
−= T 1

S SK T Q Φ T   (5.9) 

 θ θ= T
SQ T Q   (5.10) 

 θ θ
−= 1

SΦ T Φ   (5.11) 

BΓ
BΩ

BΓ

DΓ

BΓ �

DΓ �
LA

RA

IΓ�

SΩ

0 0( , )x y
θ

 

Figure 89. Reanalysis with translation and rotation of SΩ  

5.5.1 Verification 

In order to assess the errors associated with a general rotated stiffness matrix 

�S
K , a comparison with SK  is made by analysing an example domain, rotated 

by θ , where πθ≤ ≤ 40 , illustrated in Figure 90. 
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Figure 90. Rotational perturbation of SΩ  

An error indicator is defined 

 
[ ]
[ ]

ε
∆

= =
S

median
, 1..

median
ij

K
ij

K
i j n

K
  (5.12) 

where ∆K  is determined on a term-by-term basis 

 

 
 ∆ =
 
  

�

� � �

�

11 1

1

n

n nn

K K

K K

K   (5.13) 

where 

 
SS

S
, , 1..

ijij
ij

ij

K K
K i j n

K=

−
=

�
  (5.14) 

The median is used in order to reduce the impact of the near-zero 

denominators that would otherwise be present in equation (5.12)** which 

cause extreme and spurious outliers that exhibit unrepresentative and 

distorted error profiles. The analysis is repeated with uniform mesh 

refinement. The results the impact of this rotation on the condition number of 

the system matrix κ S( )K  are shown in Figure 91. 
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Figure 91. 
 
Error in reanalysed SBFEM stiffness matrix  with angular perturbation 

 
and 

 
corresponding condition number . Each ‘mesh’ corresponds to the initial 

mesh density on the model, varying from 1 to 16 elements per line. The log scale θ  is chosen 

to show that numerical stability is observer until around θ = 0.1 rad
 

5.6 Example applications to fracture mechanics 

The same benchmark problem used in §2.10 is used to validate the coupled 

( )a ∆K

θ ( )b κ S( )K
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DBE-SBFEM and contributions to the error include the sample points on the 

sidefaces used in §3.9. 

For the examples in this chapter 

 Ω = Ω ∪ ΩB S   (5.15) 

and the scaling centre of ΩS  is coincident with the crack tip. 

In order to assess the impact of reanalysis, results obtained through reanalysis 

are compared with a model analysed using the DBE-SBFEM without 

reanalysis, i.e. a model of the same geometry (including domain propagation), 

analysed in full. 

First, the analysis times are compared using εti  defined 

 ε
−

=
0

fi ri
ti

t t

t
  (5.16) 

where rit  ( = 1..4i ) and fit  ( = 1..4i ) are the times taken for each of the 4 

reanalysis and equivalent full analysis iterations, and 0t  is the time taken for 

the first (base) analysis that is common to both, such that εti  indicates how 

much time is saved through reanalysis. Each of the duration times presented 

are based on the mean averaging of three analyses. 

Second, because the purpose of the reanalysis is its efficiency, it is not 

expected to demonstrate any improvement in accuracy over a full analysis. A 

more interesting measure of its accuracy is in its difference relative to a full 

analysis, rather than against the analytical solution. Thus, the errors are 

redefined 
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( )
ε σ

σ

−

= ∈ Γ ≠
∑ �

2

2
( ) ( )

, , 0
k k

s
uL k

u s u s

s   (5.17) 

where ( )ku s  and �( )ku s  are the approximations to the displacements found in 

corresponding full analysis and reanalysis solutions respectively. 

5.6.1 Through crack in an infinite plate example 1 

The DBE-SBFEM is used to model the crack tip described in §2.10. With 

reference to Figure 92(c), the dimensions of Ω  are × 2b h , and the boundary is 

subdivided into portions of boundary Γ �u  with known displacement boundary 

conditions (red nodes), and portions of boundary Γu with displacements to be 

found as part of the solution (white nodes). In this case 

 Γ = Γ ∪ Γ ∪ Γ ∪ Γ ∪ ∪B D I S R LA A   (5.18) 

where SΓ  is omitted as there are no pure SBFEM degrees of freedom, only 

those that appear on IΓ . The displacement results of the coupled domains are 

illustrated in Figure 93, and for ( )su , where s  lies on Γu  are summarised in 

Figure 94. This crude initial mesh is uniformly subdivided and the analysis 

repeated in order to assess the convergence characteristics. The convergence 

characteristics of the coupled DBE-SBFEM are illustrated in Figure 95. 
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Figure 92. DBE-SBFEM analysis of ( )a  through crack in an infinite plate, ( )b  the section of 

the domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  

The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 93(a) and Figure 94 respectively. Convergence characteristics of the 

DBE-SBFEM displacement and stress intensity factor errors are illustrated in 

Figure 95, using the uniform mesh refinement indicated in Figure 93(b). 

original

deformed
( )b( )a

 

Figure 93. To-scale deformation of ( )a  initial mesh and ( )b  uniformly-refined mesh 



G. E. Bird 

The DBE-SBFEM: Dual boundary element-scaled boundary finite element method 

163 

 

Figure 94. ( )a  x- and ( )b  y-direction displacement results on uΓ  
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Figure 95. Convergence characteristics of DBE-SBFEM 

5.6.2 Through crack in an infinite plate example 2 

The benefits of reanalysis in the coupled DBE-SBFEM are illustrated in an 

example similar to that above. The basis of the reanalysed data is the system 

matrices formed in the previous example with the angle of propagation θ 

determined using equation (1.3). By propagating ΩS  and introducing Γ �B  and 

Γ �D  
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 Γ = Γ ∪ Γ ∪ Γ ∪ Γ ∪ Γ ∪ ∪� �B D IB D R LA A   (5.19) 

The displacements of the domain and boundary portion Γu  are illustrated in 

Figure 96(a) and Figure 97 respectively. The analysis times and displacement 

errors of the each reanalysis iteration compared with that an equivalent full 

analysis are illustrated in Figure 98. Convergence characteristics of the DBE-

SBFEM with reanalysis using the uniform mesh refinement indicated in 

Figure 96(b) are omitted as the differences with Figure 95 are indiscernible. 

( )a ( )b

 

Figure 96. To-scale deformation of ( )a initial mesh and ( )b reanalysed mesh 
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Figure 97. ( )a x- and ( )b y-direction displacement results on uΓ  
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Figure 98. Comparison of reanalysis and full analysis ( )a  computation times and ( )b  

displacement errors 

5.6.3 Through crack in an infinite plate example 3 

The same approach used to demonstrate the accuracy and flexibility of the 

coupled BE-SBFEM is now presented using the DBE-SBFEM with reanalysis. 
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The mesh used in Figure 88 may be used in the usual infinite plate problem, 

although it should be noted that the holes illustrated in the mesh must be 

replaced with continuous media, as illustrated in Figure 99. 

( )a

∞Ω
2a 2a

( )b ( )c

a

σ

σ

B1Ω
SΩ

B5Ω

B2Ω B3Ω B4Ω

0 0( , )x y

a

 

Figure 99. DBE-SBFEM reanalysis of ( )a  through crack in an infinite plate, ( )b  the section of 

the domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  

The displacements of the domain are illustrated in Figure 100(a). Reanalysis 

is used during subsequent iterations of crack growth through the domain and 

compared with iterations based on an equivalent full analysis. 

a( ) b( ) c( )

original
deformed

 

Figure 100. To-scale deformation of ( )a  initial mesh and ( )b  1st and ( )c  5th reanalysed meshes 
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The reanalysis and full analysis iterations are repeated using the uniform mesh 

refinement indicated in Figure 93(b). The analysis times and displacement 

errors of the each reanalysis iteration are illustrated in Figure 101.  
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Figure 101. Comparison of reanalysis and full analysis ( )a  computation times and ( )b  

displacement errors 
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5.6.4 Crack propagation with mixed-mode propagation 

The same approach is used demonstrating the DBE-SBFEM with reanalysis 

where a rotation of ΩS  is expected. Consider a finite domain Ω  of dimensions 

×b h  with a central, through-crack subject to asymmetric boundary 

conditions, as illustrated in Figure 102(a). A DBE-SBFEM model of 

dimensions ×b h  is defined to model this domain, making use of the 

symmetric geometry. The prescribed asymmetric boundary conditions are 

applied, as illustrated in Figure 102(b). After an initial full DBE-SBFEM 

analysis, the crack is propagated in the direction determined by equation (1.3)

, the model remeshed and progressive iterations of reanalysis are employed.  

a

b

B
Ω

B
Γ

LA
RA

IΓ

SΩ

0 0( , )x y
BΓ

DΓ

2a

2b

h

σ
y

σ
y

Ω

( )a ( )b

h

 

Figure 102. ( )a An asymmetrically-loaded crack and ( )a the DBE-SBFEM model 

The deformation of the domains for each increment using reanalysis are 

illustrated in Figure 103 and are comparable to the equivalent full analyses 

found in Figure 104. The resulting propagation paths are illustrated in Figure 

105 and Figure 106 respectively. The mesh is refined uniformly and the 

analyses repeated. The effect of reanalysis on analysis times is illustrated in 

Figure 107(a). It is assumed that the full analysis presents a more accurate 
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solution than that obtained using reanalysis. Thus, the error is estimated by 

the difference in stress intensity factors defined in equations (3.116) and 

(3.117) where IK  and 
hIK  are the stress intensity factors recovered using full 

analyses and reanalyses respectively, and are illustrated in Figure 107(b). 

( )a ( )b

( )c ( )d

 

Figure 103. To-scale deformations of DBE-SBFEM reanalysis crack propagation iterations 
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( )a ( )b

( )c ( )d

 

Figure 104. To-scale deformations of DBE-SBFEM full analysis crack propagation iterations 
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( )a ( )b

( )c ( )d

 

Figure 105. DBE-SBFEM reanalysis crack propagation paths 
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Figure 106. Full DBE-SBFEM analysis crack propagation paths 
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Figure 107. Comparison of reanalysis and full analysis of 
 
normalised computation times 

and  accuracy. 
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5.7 Discussion 

5.7.1 Optimisation of method parameters 

It is not the intention to present the DBE-SBFEM as a coupled method that 

is optimised for specific fracture mechanics problems. However, it is of interest 

to investigate permutations of method parameters that may offer an improved 

strategy for its application to more general fracture mechanics problems. To 

this end, the observed and expected effects of some varying some method 

parameters is discussed. 

The couple methods’ constituents have their own parametric optimisation 

strategies for increasing their respective performance. For example, the BEM 

is known to be hampered by the poor quadratic approximation to the circular 

arcs that define the element geometry on the interface ΓI . It can be shown 

that for an equivalent DBEM-DBEM model (in which the crack tip is 

modelled within a DBEM subdomain), the performance may be improved by 

use of a square subdomain. Similiarly, it has already been shown that the 

SBFEM benefits from the regularity of its domain (§3.10.1). It is reasonable to 

assume that these and other such individual method optimisation strategies 

apply when coupled. 

By changing the shape of the subdomain to a square, Figure 108(a) to Figure 

108(b), SBFEM domain regularity is maintained and some minor 

improvements were observed. However, these improvements ought not to be 

attributed so much to the square itself; the redefinition of the eight elements 

used in the discretisation of ΓI  from arcs to straight elements offers little 

improvement. The benefits are in that a satisfactory initial (BEM) mesh of a 

square subdomain can be achieved with fewer initial elements than a circular 
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domain. The consequence of which is that for a comparable minimal base level 

of accuracy, improvement in convergence rates can be gained. 

However, by changing the shape in this way, the distance r  separating BEM 

source point and field point pairs is likely to be reduced, as illustrated in 

Figure 108(d), which has the consequence of reducing the accuracy of the non-

singular BEM integration and rate of convergence of adaptive integration 

scheme in §2.9. The effect of this, in turn, may be reduced by the resizing of 

ΩS . However, that it ought to be accompanied by a change in element size 

gradation on ΓB  may be of more consequence the change in domain size itself. 

This effect will be problem-dependent according to the proximity of ΓB . The 

number of elements was reduced further by changing the shape of the 

interface ΓI  to a triangle. However, neither this nor the change in orientation 

of the domain as in Figure 108(c) offered (consistent) improvements in 

accuracy. 

The rotation of the initial subdomain ought to be arbitrary, but with a 

subdomain corresponding orthogonally to the Cartesian axes, the unit normals 

to the interface remain well-defined (e.g. { }=
T

( ) 1 0sn ). Low angular 

perturbations of the domain, however, effects these unit normals (e.g. 

{ }=
T

( ) 0.99999 0.0045sn ) and may lead to poor system matrix conditioning. 

The effect parametric optimisation strategies is also subject to interpretation. 

For example, both methods benefit from some degree of mesh optimisation, 

such as through adaptive refinement schemes, and the same is expected with 

the DBE-SBFEM. However, mesh optimisation is then subject to its own 

parametric optimisation, such as the quality of the initial mesh and the 
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definition of its error indicators and estimators, which leads to multiple 

interpretations over the performance of mesh refinement. Such interpretations 

of the effect of individual parameter variations hampers quantifying the effect 

of combined parameter variations. So while each of the parameters discussed 

here are expected to benefit the coupled DBE-SBFEM on a problem-specific 

basis, determining their effect on general problems remains both outside the 

scope of this project and a recommendation for further research. 
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Figure 108. Parameters to be investigated further for general improvements of the DBE-

SBFEM include ( )a  size, ( )b  shape and ( )c  orientation of ΩS
 and ( )d  its proximity to Γ

S
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5.7.2 Applications of the DBE-SBFEM 

Due to the symmetric nature of the problems in §5.6.2 and §5.6.2 which the 

propagation angle θ  is known a priori to be θ = 0 , the effect of θT  on SK  is 

expected to be low and is confirmed as ε −≈ 1310K . The accuracy of each 

reanalysis iteration is described using ε 2L k  
is illustrated in Figure 98(b). In 

both examples, such is the accuracy of the reanalysed solution, there is no 

visible distinction between the accuracy of the reanalysis and full analysis. 

Further results, not published here, confirm similar trends for the finer initial 

mesh densities in which the initial mesh is subject to uniform mesh 

subdivision before reanalysis is employed. With this example, where the 

propagation angle  is known a priori to be , it is confirmed that the 

reanalysis accuracy associated low angular perturbation of  described in 

§5.5.1, extends to the global error estimator . 

The mixed mode example illustrates that reanalysis can be successfully 

employed with the rotational perturbation of the SBFEM subdomain by 

transforming the stiffness matrix. Errors are based on the differences between 

the reanalysis result and the equivalent full analysis. These errors were greater 

than those for the example that required no rotation of the stiffness matrix. 

This could be because the condition number of the matrix of modal 

displacement vectors κ ≈ 8( ) 10Φ  and its effect on introducing significant 

imaginary components to c , as discussed in §3.10. However, as shown, for 

even a crude initial mesh, in which  arcs are meshed with just one 

quadratic element, the computed errors are low. 

In each case, Figure 98(a) and Figure 101(a) indicate substantial savings in 

computation times can be made if reanalysis is employed. For the less trivial 

θ θ = 0

ΩS

2L kε

o90
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example in §5.6.3, the normalised computation time stabilises quicker than in 

the previous examples owing to the greater proportion of reusable data 

between analyses, demonstrating the suitability of the reanalysis of crack 

propagation in non-trivial domains. The rate of convergence of this difference 

is not illustrated as the objective of this example is to demonstrate the 

flexibility, not describe convergence characteristics of arbitrary models 

unavailable for comparison elsewhere in the literature. 

It can be seen that for domains of small rotational perturbation the reanalysed 

matrices offer good approximations to the fully analysed equivalent. However, 

Figure 91 illustrates that further to the usual problem of high mesh densities 

contributing to errors owing to the near-paralisation of the eigenvectors, it is 

not recommended that reanalysis be used for domains subject to high 

rotational perturbation. The stability of results can be linked to the condition 

number of �S
K , shown in Figure 91(b), which itself may be linked to κ ( )Φ . 

This may serve as an indicator that the rotational perturbation is too great 

for its accurate approximation to SK . In this example rotational perturbation 

should be limited to 0.1rad . 

5.8 Conclusion 

With the new analytical integration of hyper singular BEM kernels (Simpson 

and Bird, 2009) and the semi-discontinuous scaled boundary finite element 

(Bird et al., 2009a), a coupled dual boundary element-scaled boundary finite 

element method has been presented. Its application to fracture mechanics has 

yielded satisfactory results. Investigations into refining its constituent 

methods’ parameters have provided some improvements, but caution should 

be taken in order to avoid a loss in general applicability. Further 
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investigations are recommended. 

The introduction of the rotational transformation matrix facilitates the use of 

reanalysis for a crack propagation scheme. An example of this has been 

presented to demonstrate this, although a more robust propagation scheme 

could be considered in future work for more accurate reanalysis-based 

propagation. The use of reanalysis has shown to reduce the computational 

times for the coupled method by reusing data common to multiple analyses. 

These savings are exemplified when reanalysis is applied to non-trivial 

domains. 
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6 A displacement boundary integral equation-

based dual boundary element method 

6.1 Introduction 

In this chapter, a new dual boundary element method (DBEM) formulation is 

introduced. As part of the present work, its motivation is presented alongside 

a detailed numerical formulation to demonstrate the method’s suitability for 

applications to fracture mechanics. Formed using the displacement boundary 

integral equation (DBIE), rather than the traction boundary integral equation 

(TBIE), the new and existing formulations are compared and assessed through 

examples. 

Unless otherwise stated, the data in numerical examples in this chapter are 

obtained by the development of the author’s own code. For purposes of 

disambiguity, unless otherwise stated, the development of the new dual 

(displacement BIE) BEM (DdBEM) formulation is as a direct result of the 

present work. 

The chapter is closed with concluding remarks. 
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6.2 New formulation 

As described in §2.8, the use of the BEM to model both the upper and lower 

faces of a crack causes duplicate rows in the system described by equation 

(2.103). By replacing the rows in the system matrix found through DBEM 

collocation, with those found using DdBEM, row-uniqueness is assured and 

the system is solvable. The DBEM is not without its complications, however, 

and requires the computation of hyper-singular integrals, offers limited 

applicability and may increase the condition number of the system with 

typical engineering materials from around between 010  and 210  to around 

between 1110  and 1310 . 

By reformulating the DBEM using the DBIE, many of these disadvantages are 

overcome. Moreover, the alterations to standard BEM code necessary to 

accommodate the DdBEM may be less demanding than the DBEM. 

6.3 Numerical formulation 

The need for the DBEM arises as the nodes defining the elements on the 

upper and lower crack surfaces are coincident. The underlying characteristic of 

the DBEM  due to this assumption is the ill-conditioning described in §2.8. 

The new formulation staggers the nodes on coincident elements such that 

their respective nodes are no longer coincident, as illustrated in Figure 109 

also showing their respective shape functions. In the examples in the figure, 

the elements are shown with a finite vertical separation for illustrative 

purposes only and are defined coincidentally. As such, a distinction is made 

when collocating at each of the nodes defining the upper and lower elements. 
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Consider the upper element, for example. As with the DBEM, the presence of 

degrees of freedom on the lower element within the bounded range 1 1η− < <

causes singular behaviour at these nodes. Unlike in the DBEM, these 

singularities no longer coincide with existing nodes on the upper element, as 

indicated by the ‘x’ marks in Figure 109(b). 

( )a

( )b

-1 -0.5 0 0.5 1

-1

0

1

2

η
e

N
i

-1 -0.5 0 0.5 1

-1

0

1

2

η
e

N
i

+Γ

−Γ

+Γ

−Γ

η +

η −

η +

η −

1+

1+

1+

1+ 1−

1−

1−

1−

ηe

ηe

 

Figure 109. Coincident elements, and their respective shape functions, modelling the crack 

faces defined by ( )a  coincident nodes and ( )b  non-coincident nodes. The crosses indicate the 

local coordinates of singularities in the kernels owing to the degrees of freedom on the 

opposing elements 

However, as the DBIE is used to integrate over the upper element, unlike with 

the TBIE, these singularities are merely weakly- and strongly-singular, rather 

than strongly- and hyper-singular. The analytical form of the integrals used in 

the BEM can be used in the DdBEM, hence the development as part of the 
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present work of equation (2.80) for general discontinuous quadratic elements. 

Similarly, when considering the lower element, weak and strong singularities 

exist due to nodes on the upper element. 

6.4 Applications to fracture mechanics 

6.4.1 Through crack in an infinite plate 

In this example, the same approach is taken as in §2.10.3 except that, with 

reference to Figure 110, the DdBEM is used in on both the upper and lower 

crack surfaces in place of both the BEM and DBEM respectively. The 

displacement of the domain is illustrated in Figure 111. Again, and 

particularly at the crack tip (where 1s = ), the inaccuracies of this 

discontinuous element-based method are highlighted, as illustrated in Figure 

112. The convergence characteristics due to the uniform subdivision of the 

mesh are illustrated in Figure 113. 

( )a

∞Ω
2a 2a

( )b ( )c

a
a

σ

σ b

2hB
Ω

B
Γ

 

Figure 110. DdBEM analysis of ( )a  through crack in an infinite plate, ( )b  the section of the 

domain modelled, and ( )c  the mesh where red and white nodes indicate Γ �u  
and Γu  
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( )b( )a

 

Figure 111. To-scale deformation of ( )a initial mesh and ( )b  uniformly-refined mesh 
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Figure 112. ( )a  x- and ( )b y-direction displacement results on uΓ  
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Figure 113. Convergence characteristics of global error estimators ( )a  2Lxε  
and ( )b 2L yε  

6.5 Discussion 

Many of the disadvantages of the traditional DBEM occur in the new 

DdBEM. The need for discontinuous elements at coincident sections of 

boundary is maintained, and this lack of continuity results in noticeable jumps 

in the displacement solution between elements and any derived values, just as 

with the DBEM. 

However, because the DdBEM poses no further integration problems than the 

BEM, boundary conditions applicable to the BEM are applicable to the 

DdBEM too. As such, no a priori knowledge or assumption of traction-free 

boundary conditions on coincident sections of boundary is required in order to 

side-step the awkward strongly-singular integration of the DBEM kernels, 

significantly increasing the applicability of the BEM. 
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The application of assumed boundary conditions has traditionally facilitated 

the avoidance of some singular integration in the DBEM, as discussed in §2.5. 

Throughout this work, it has not been the intention to select purposely 

examples that offer particular advantages owing to their respective choice of 

configurable parameters. Thus, that the absolute accuracy of the DdBEM is 

lower than the DBEM in the example chosen is of less importance than its 

general convergence characteristics which have been demonstrated to mimic 

that of the DBEM. Indeed, in a manner similar to that illustrated in §2.11, it 

can be demonstrated the DdBEM may outperform the DBEM under certain 

configurations. However, it is beyond the scope of this work to optimise the 

DdBEM such that it may consistently outperform the DBEM in terms of 

accuracy, merely to demonstrate a new and simpler method of using the 

DBEM. 

6.6 Conclusion 

The existing traction boundary integral equation-based (TBIE) formulation of 

dual boundary element method (DBEM) has been replaced by a new 

formulation based on the displacement boundary integral equation (DBIE) 

forming the DdBEM. The new formulation represents a new means to model 

domains involving discontinuities, which until now, required the use of domain 

subdivision or the use of the existing formulation. The benefits of the new 

formulation include its inclusion into existing boundary element method 

(BEM) code with more readiness than the older formulation. Moreover, the 

new formulation has been demonstrated to reduce the condition number of the 

BEM system matrix by an order of approximately 910 . 
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By no means does the author conclude this proof of principle demonstrates 

that the DdBEM has been exhaustively evaluated. It is recommended that 

further work explores the stability and usefulness of this method. But by 

replacing the traction boundary integral equation-based dual boundary 

element method with the new formulation, the coupled dual boundary 

element-scaled boundary finite element method can incorporate these 

advantages over its predecessor. 
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7 Discussion 

7.1 Introduction 

The aim of the present work is to develop and assess a new algorithm for the 

accurate solution of general fracture mechanics problems that retains the 

geometric flexibility expected by engineers. With respect to this goal, this 

chapter summarises the discussions on the numerical methods and their 

implementation. First, the usual approach to numerical method verification is 

discussed, prompting motivation for the alternative, and preferred, testing 

protocol used in this work. A comparison of the numerical methods presented 

in this thesis is summarised and recommendations for further research are 

made. 

7.2 Assessment of method implementation 

As part of the present work, the code of Chidgzey (Chidgzey, 2007) was made 

available to the author for evaluating T-stresses computed by the coupled BE-

SBFEM (Chidgzey et al., 2008). Several limitations were identified. The top-

down approach to coding and testing prevented the clear identification of 

whether these limitations were characteristic of the method or its 
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implementation. By rewriting the code using a bottom-up approach, a better 

such distinction is drawn. 

By considering functions as simple black-box operations for which a range of 

inputs provide a range of expected outputs (Appendix F), its limitations can 

be estimated through unit testing. Each level of functionality is then bound by 

the identified limitations its respective lower level functions. This offers means 

by which the quality of implementation can be judged. If the cause for specific 

test failures cannot be identified, the code is asserted for its characteristics, 

preventing speculation over hereditary functional failure common under the 

top-down approach. This is useful when high level functions, such as the 

implementation of the numerical methods presented here, are under scrutiny. 

This preference for unit tests over acceptance tests has the further benefit that 

the impact of addressing errors and functional limitations is more easily 

assessed. Together, this reduces the scope for error in the acceptance tests, 

providing additional confidence they are representative of the method more 

than its implementation. 

7.3 Comparison of results 

The examples of applications to fracture mechanics of each of the methods 

here were chosen in order to facilitate their. Each method has demonstrated 

some level of convergence, indicating their suitabilitly towards such problems. 

Convergence characteristics are defined as the rate of reduction R  in error per 

degree of freedom n  and are summarised in Table 114. Typical values of R  

are given as convergence has been shown to be heavily problem-specific and 

varies according to the type of error indicator. Caution should be taken when 

comparing methods as the definition and computation of each degree of 
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freedom varies widely between methods impacting on its efficiency. However, 

it can be seen that each method offers convergence for the fracture mechanics 

problems analysed. 

 
Method ( )O R  

BEM 
−1010  

DBEM 
−1010  

DdBEM 
−1010  

SBFEM 
−410  

BE-SBFEM 
−1010  

DBE-SBFEM 
−510  

Table 114. Comparison of method performance by approximate order of convergence 

7.4 Assessment of methods 

The BEM benefits from its versatility and ease of implementation and 

performs well in terms of modelling general engineering domains, but is 

hampered significantly by the non-polynomial nature of the crack face 

displacement functions in the vicinity of the crack tip that yield poor 

boundary and interior results. Although exacerbating such errors, the use of 

discontinuous elements further eases implementation; by providing additional 

interior points to the boundary solution, a multizone approach may offer 

improved accuracy but at the expense of implementation ease and efficiency. 

Accuracy can be improved further by the in-process adaptive integration 

scheme presented here, which, albeit computationally expensive, is less 

expensive than a post-process-based mesh refinement scheme. 

The DBEM increases the flexibility of the BEM at the expense of the 

introduction of hyper-singular integration and, depending on material 

properties, a raise in condition number by a factor of around 810 . Scaling 

factors may offer a reduction, but require a priori knowledge of the expected 
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ratio of traction to displacement orders of magnitude. Without the assumption  

of traction-free crack faces, the DBEM significantly increases in complexity as 

the coefficients of traction in the influence matrix can no longer be ignored. 

The DdBEM facilitates loaded crack faces and, as it is based on the DBIE, is 

no more complex to implement than the BEM. Moreover, condition numbers 

remain comparable to the BEM. 

Although a relatively new method, the SBFEM has recently received positive 

reaction in the literature due to its ability to capture the stress singularities 

with greater accuracy than the polynomial-based BEM. However, its strengths 

and weaknesses have not yet been so rigorously assessed. In addition to its 

known line-of-sight restrictions and numerical instability under high mesh 

densities, the present work has identified further geometric limitations. 

Complex domain and boundary condition combinations lead to ill-conditioned 

system matrices that may precipitate numerical instability, rendering the 

SBFEM susceptible to inaccuracies when applied to general engineering 

problems and meshed with fewer than 3 elements per discretised face. 

The coupled BE-SBFEM has demonstrated a balanced compromise between 

the efficiency and accuracy of the SBFEM and flexibility of the BEM, and the 

presented reformulation increases the range of boundary conditions that can 

be applied. However, its working assumption of symmetry hampers its 

attractiveness as a solution to general engineering problems. 

The coupled DBE-SBFEM addresses the issue of symmetry, but at the 

expense of further implementation difficulties. Additional consideration is 

required where the subdomain interface meets the crack face. However, for 

this purpose, new semi-discontinuous scaled boundary finite elements have 
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been developed as part of the present work and have shown comparable 

accuracy. Through a crack propagation scheme, the method has demonstrated 

its suitability to the use of reanalysis in fracture mechanics problems. 

Significant computational savings have been observed in the rudimentary 

propagation algorithm presented here. Considerably higher savings are 

expected for a predictor/corrector-based scheme in which larger portions of 

the existing matrices can be reused between iterations. 

7.5 Recommendations for further work 

The coupled DdBE-SBFEM has not yet been implemented and remains a 

recommendation for further research. Its advantages over the DBE-SBFEM 

are expected to mimic those that the DdBEM has over the DBEM. Like the 

DBE-SBFEM, there is scope for improvement of the parameters relating to 

the interface between the BEM and SBFEM subdomains. Further research is 

recommended, but should regard the intention of developing a general 

algorithm for real fracture mechanics problems rather than a solution geared 

towards the optimisation of a specific, academic problem. 

In addition to the interface parameters, more research is recommended on the 

constituent methods. The DdBEM has been shown to perform comparably to 

the DBEM for the selected example, it is recommended that the application of 

boundary conditions other than traction-free crack faces be explored. 

However, this new method requires substantial further research to assess its 

stability and suitability to general fracture mechanics problems. As with the 

BEM, a strategy for optimising the local nodal distribution offers scope for 

investigation. 

Like the original form of the SBFEM, side face traction boundary conditions 
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must be applied in terms of modal coefficients at the side face node. Although 

this is not demonstrated in the present work, a similar approach is expected 

for the semi-discontinuous SBFEM. Without a node on the side face, however, 

boundary conditions cannot be applied directly. Instead, boundary conditions 

must be computed that once applied to the neighbouring semi-discontinuous 

element can be extrapolated to η = ±1  such that the required conditions are 

prescribed on the side face. 

As a relatively new and unexplored method, the SBFEM remains largely in its 

original form (Wolf and Song, 1995). The use of side faces to model the 

singular functions on a geometrically linear crack face has been demonstrated 

both historically and in this thesis, such as in Figure 115(a). However, the use 

of a non-linearly varying scaling function may facilitate the modelling of a 

geometrically non-linear crack face. Not be confused with Figure 115(b), in 

which the geometric boundary is subject only to translation scaled by , if 

the geometric boundary is subject to additional rotation, as illustrated in 

Figure 115(c), curved side faces can be formed. This requires an alternative 

mapping between the Cartesian coordinates and the scaled boundary 

coordinate system, but once mapped, the existing method of element-wise 

boundary integration leading to a modal superposition-based solution form is 

retained. 

 

Figure 115. Geometrically linear boundary scaling about a SBFEM scaling centre 

ξ

( )a ( )b ( )c
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The coupled method has been demonstrated to employ reanalysis to good 

effect in the area of linear elastic fracture mechanics. A number of 

improvements to the crack propagation algorithm is possible. While the scope 

of the present work was to couple the methods for use in such algorithms, it 

does not extend to its optimised use within them. As such, it is recommended 

that the DBE-SFBEM and DdBEM-SBFEM with reanalysis are used in 

conjunction with other propagation schemes in the literature. The benefit of 

reanalysis is expected to be highlighted by multi-analysis iterations of crack 

growth such as by (Aliabadi, 1997) in which the predictor/corrector approach 

offers such scope for efficiency. 
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8 Conclusion 

The aim of the work presented here was the development and assessment of a 

new algorithm for the accurate solution to general fracture mechanics 

problems that retains the geometric flexibility expected by engineers. The 

coupled DBE-SBFEM has demonstrated a balanced compromise between the 

efficiency and accuracy of the SBFEM and flexibility of the BEM. The 

inclusion of the DBEM negates the need for an assumption of symmetry, 

lending itself towards its application to general engineering problems. Further, 

reanalysis is used to great effect, demonstrated as part of a rudimentary crack 

propagation algorithm. The new DdBEM has shown promise as an alternative 

to the DBEM and its inclusion is expected both to reduce the method’s 

complexity and increase its range of application to fracture mechanics in 

general engineering problems. 

The coupled method has been implemented under a modern computer science 

framework using a bottom-up approach to testing that both narrows the scope 

for coding errors and increases their detection. Extensions have been made to 

each of the coupled method’s constituents and by code and method 

generalisation, has facilitated investigations into their respective numerical 
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stability. Further extensions have been recommended for further research. In 

addition to presenting the methods through clear approaches not found 

elsewhere, the present work offers insight into the consequences of selected 

numerical parameters that were otherwise considered arbitrary. 

The coupled method has been tested extensively and performed strongly 

against academic problems with known analytical solutions. With its general 

approach to parametric optimisation, it can be concluded that the coupled 

DBE-SBFEM with reanalysis provides a new flexible, accurate and efficient 

tool for general fracture mechanics problems found in engineering. 
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Appendix A. Notation for BEM submatrices 

This appendix describes the BEM matrix subdivision in greater detail than 

the main text, with focus on the practical implementation of the method in 

code. The BEM global system matrix H comprises 2
n  sets of equations, one 

set per collocation point as collocated at 2
n  nodes on the boundary from 

0s =  to s S= , and thus can be subdivided into 

 

1

2

ˆ ( )
ˆ

ˆ ( )n

s s

s s

 
= 

 =
 
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 

H

H

H

�   (A.1) 

Each instance of collocation at source point 
sP  provides sets of two equations 

that can be subdivided into L submatrices, one for each of the L elements on 

s   

 1ˆ ˆ ˆ( ) ( ) ( )L
s s sP P P =  H H H…   (A.2) 

Each term comprises sets of two equations that can be subdivided into k 

submatrices, one for each of the number of nodes defining element e  

 1ˆ ˆ ˆ( ) ( ) ( )e e ek
s s sP P P =  H H H…   (A.3) 
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Each term can be subdivided into four terms, corresponding to the two 

coefficients (columns) of each of the two degrees of freedom e
kxu  and e

kyu  

associated with node k of element e  
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Each such term can be expanded explicitly in terms of the portion of their 

respective fundamental solutions 

 

* *

* *

( )d ( )d

ˆ ( )
( )d ( )d

e e

e e

e e
xx s e xy s e

ek
s

e e
yx s e yy s e

T P T P

P
T P T P

Γ Γ

Γ Γ

 Γ Γ
 

=  
Γ Γ 

  

∫ ∫

∫ ∫
H   (A.5) 

where, for , ,i j x y= , 
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Defined in terms of the local coordinate eη , these submatrices are written 
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or 
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where kN  is the kth polynomial shape function and eJ  is the Jacobian of 

element e . Similarly 
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where 
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Further, the displacements eku  and tractions ekt  corresponding to node k  of 

element e  are denoted 
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Appendix B. Displacement modes of a square 

domain 

This appendix illustrates 64 sample displacement modes (red) associated with 

the deformation of a domain (black). This appendix is included for reference 

only and it should be noted that the order of the modes is arbitrary. Some of 

the more identifiable modes are summarised in the table below. 

Number (m) Mode Description 

1 
 

y-translation 

2  x-translation 

3 
 

expansion 

4 
 

pinch 

5 
 

y-stretch 

6 
 

rotation 
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Appendix C. Displacement modes of a triangular 

domain 

Included purely for reasons of comparison with Appendix B, this appendix 

illustrates some of the modes associated with a triangular domain. It can be 

noted some of the modes are similar to those in Appendix B, but that the 

order may differ. In both cases, the mode orders are in principle, arbitrary, 

but their formulation using the scaled boundary finite element method ensures 

that some modes are formed in the same order. 
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Appendix D. Stress and strain transformation for 

the SBFEM 

This appendix details the transformation of the terms necessary in equation 

(3.8) for the derivation of the scaled boundary finite element method 

(SBFEM). This appendix extends the transformation as described by Deeks 

and Wolf (Deeks and Wolf, 2002a). 

For any point ( , )p x y  relative to some fixed Cartesian origin 0 0( , )x y  within a 

domain Ω , with body forces neglected, internal equilibrium requires 

 =T ( , ) 0x yL σ  (D.1) 

where the stresses at ( , )p x y  are given by 

 

{ }σ σ σ=
T

( , ) xx yy xyx yσ   (D.2) 

and L  is the linear operator that relates the displacements ( , )x yu  and the 

strains ( , )x yε  such that 

 

=( , ) ( , )x y x yε Lu   (D.3) 

where 
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0

0

x

y

y x

 ∂
 ∂
 

∂ =
 ∂
 

∂ ∂ 
 ∂ ∂ 

L   (D.4) 

 

{ }σ σ σ=
T

( , ) xx yy xyx yε   (D.5) 

 

T( , ) { }x yx y u u=u   (D.6) 

These stresses and strains are related by the elasticity matrix D  such that 

 

=( , ) ( , )x y x yσ Dε   (D.7) 

where 

 

1 2
2

1 0

1 0
(1 )(1 2 )

0 0

E

ν

ν ν

υ ν
ν ν

−

− 
 = − + −
  

D   (D.8) 

for plane strain models and  

 

2
1
2

1 0

1 0
1

0 0

E
σ

ν

ν

ν
ν

−

 
 =  −
  

D   (D.9) 

for plane stress models. Decomposing L  gives 

 

∂ ∂
= +

∂ ∂1 2x y
L L L   (D.10) 

where 

 

 
 =
 
  

1

1 0

0 0

0 1

L   (D.11) 
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 
 =
 
  

2

0 0

0 1

1 0

L   (D.12) 

These partial derivatives in the Cartesian system are related to the partial 

derivatives in the scaled boundary co-ordinate system by 

 

x y

x yξ ξ ξ

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
  (D.13) 

 

x y

s x s y s

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
  (D.14) 

or in the Jacobian matrix form 

 

x y

x

x y
ys s s

ξ ξ ξ

∂ ∂ ∂ ∂     
     ∂ ∂ ∂ ∂   

=     ∂∂ ∂ ∂    
    ∂     ∂ ∂ ∂

  (D.15) 

Taking partial derivatives of equations with respect to ξ  

 

( )
x

x s
ξ

∂
=

∂
  (D.16) 

 

( )
y

y s
ξ

∂
=

∂
  (D.17) 

and with respect to s  

 

,( ) s
x

x s
s

ξ
∂

=
∂

  (D.18) 

 

,( ) s
y

y s
s

ξ
∂

=
∂

  (D.19) 

which, when substituted into equation (D.15) gives 

 

, ,

( ) ( )

( ) ( )s s

x s y s x

x s y s
ys

ξ

ξ ξ

∂ ∂   
    ∂ ∂   

=     ∂∂     
   ∂   ∂

  (D.20) 
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or 

 

, ,

( ) ( )

( ) ( )1 s s

x s y s x

x s y s
ys

ξ

ξ

∂ ∂   
   ∂   ∂   

=     ∂∂     
 ∂ ∂   

  (D.21) 

which by introducing Jacobian matrix ( )sJ  

 

( )
1

x
s

ys

ξ

ξ

∂ ∂   
   ∂ ∂   

=   ∂∂   
 ∂ ∂   

J   (D.22) 

gives 

 

,

,

( ) ( )1

( ) ( ) ( ) 1

s

s

y s y sx

s x s x s
y s

ξ

ξ

∂∂   
   − ∂ ∂   

=    ∂ − ∂    
 ∂  ∂   

J
  (D.23) 

where the shorthand comma notation “,” denotes a derivative and 

 

, ,( ) ( ) ( ) ( ) ( )s ss x s y s y s x s= −J   (D.24) 

Thus, L  is rewritten 

 

ξ ξ ξ ξ

∂ ∂ ∂ ∂   = − + − +   
∂ ∂ ∂ ∂   

1 , 2 ,
1 1 1 1

( ) ( ) ( ) ( )
( ) ( )s sy s y s x s x s
s s s s

L L L
J J

 

   (D.25) 

or for convenience 

 

ξ ξ

∂ ∂
= +

∂ ∂1 2
1

( ) ( )s s
s

L b b   (D.26) 

where 
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( )= −1 1 , 2 ,
1

( ) ( ) ( )
( ) s ss y s x s
s

b L L
J

  (D.27) 

 

( )= − −2 1 2
1

( ) ( ) ( )
( )

s y s x s
s

b L L
J

  (D.28) 

By transforming the strains from Cartesian to the scaled boundary coordinate 

system 

 

( , ) ( , )s sξ ξ=ε Lu   (D.29) 

and discretising in the s-direction, it follows 

 

( , ) ( ) ( )h s sξ ξ=δε LN δu   (D.30) 

or 

δ ξ δ ξ δ ξ
ξ ξ

∂ ∂
= +

∂ ∂1 2
1

( , ) ( ) ( ) ( ) ( ) ( ) ( )h s s s s s
s

ε b N u b N u   (D.31) 

which, for convenience, is rewritten 

 

ξδ ξ δ ξ δ ξ
ξ

= +1 , 2
1

( , ) ( ) ( ) ( ) ( )h s s sε B u B u   (D.32) 

and the h subscript indicates an approximation to its respective parameter 

and is indicative of the level of discretisationvii, and 

 

=1 1( ) ( ) ( )s s sB b N   (D.33) 

 

=2 2 ,( ) ( ) ( ) ss s sB b N   (D.34) 

                                      

vii Conventionally, the use of this subscript indicates that which the approximation is expected 
to offer improvement with h-adaptivity; with the SBFEM, h-adaptivity alone may not be 
sufficient to improve this approximation. 
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Similarly, by transforming the stresses from Cartesian to the scaled boundary 

coordinate system 

 

( , ) ( , )s sξ ξ=σ Dε   (D.35) 

and discretising in the s-direction, it follows 

 

ξξ δ ξ δ ξ
ξ

 = + 
 

1 , 2
1

( , ) ( ) ( ) ( ) ( )h s s sσ D B u B u   (D.36) 

The change in volume Ωd  of the domain is given by 

 

d ( , ) d dssξ ξ ξΩ = J   (D.37) 

where ( , )sξJ  is the determinant of the Jacobian at the boundary. Because 

at the boundary ξ = 1, this can be rewritten with in terms of s  only 

 

d ( ) d dss ξ ξΩ = J   (D.38) 

Thus, the transformed principle of virtual work statement, transformed from 

the Cartesian coordinate system 

 

S S

T T
S S( , ) ( , )d ( , ) ( , )d 0u x y t x y x y x yδ δε σ

Γ Ω

Γ − Ω =∫ ∫  (D.39) 

into the scaled boundary coordinate system 

 

S S

T T
S S( ) ( )d ( , ) ( , )d 0u s t s s sδ δε ξ σ ξ

Γ Ω

Γ − Ω =∫ ∫  (D.40) 

is given by 
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ξ ξ

δ ξ ξ

δ ξ δ ξ δ ξ δ ξ ξ ξ
ξ ξ

Ω

Ω

   − + +      

=

∫

∫ ∫

T

1 T

1 , 2 1 , 2

0

( , ) ( , )d

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d d

h h

S

s s

s s s s s s

ε σ

B u B u DB u DB u J

0
  (D.41) 

or 

 

( )

( )

T
0 , 1

1
T

0 , , 2

0

T

T
0 1 1

( ) ( ) ( ) (

1
( ) ( ) ( ) ( ) d

0

)ξ

ξξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ
ξ

Γ Γ Γ Γ+ −

 − + − 
 

=

+ −∫

δu E u E u p

δu E u u E uE E E  

  (D.42) 

where ξΓ  indicates ξ  at the boundary, i.e. where 1ξ = . 
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Appendix E. Traction-force transformation 

This appendix details the transformation of nodal forces into equivalent 

tractions, as necessary in the coupling of the boundary element method 

(BEM) and the scaled boundary finite element method (SBFEM) as described 

in this thesis. 

Consider a domain Ω  bounded by Γ , subdivided into a BEM subdomain BΩ  

bounded by BΓ , and a SBFEM subdomain 
SΩ  bounded by 

SΓ , separated by a 

common interface IΓ , as illustrated in Figure 116(a) and (b). For 

compatibility across IΓ , the nodal displacements of an interface element from 

the perspective of the BEM region must match those of the SBFEM. 

Similarly, for equilibrium across the interface, the tractions on the BEM side 

of the element must match those of the SBFEM. However, because the 

SBFEM formulates a displacement-force relationship, these forces must be 

transformed into tractions (or vice versa) in order to satisfy these conditions. 

For the element shown in Figure 116, the relationship between the nodal 

forces ek
if  and equivalent nodal tractions ek

it , for ,i x y=  and 1, 2, 3k = , is 

given by 
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1 1 1

1 1 1 2 1 31 11 1 1
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2 1 2 2 2 3

1 1 1
3 1 1 1
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  
  

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫
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 
 
 
 
 

 

  (E.1) 

or 

 e e e=f M t  (E.2) 

where ( )e
kN η  is denoted as kN  for brevity (Becker, 1992). Thus, a system can 

be made by enforcing equilibrium across all the interface elements 

 ( )= −f Mt  (E.3) 

where the minus sign is introduced for convention as the unit normal at the 

nodes of the interface element differs from the perspective of the BEM and 

SBFEM by a factor of 1− , as illustrated in Figure 116(c) and (d). 

The assumption here is that the Cartesian coordinate systems local to both 

subdomains are in the same direction. In the case that the Cartesian 

coordinate systems of  ( ,S Sx y ) differs from that of  ( ,B Bx y ) by an angle 

of θ, then the following transformation should be included in relating the 

BEM tractions to the SBFEM forces 

 θ= −f t Mt  (E.4) 

where θt  is the transformation matrix 

  (E.5) 

SΩ BΩ

cos sin

sin cos
θ

θ θ

θ θ

− 
=  
 

t
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Figure 116. Subdivision of domain ( )a  Ω  and Γ into ( )b  BΩ , SΩ , BΓ , SΓ  and IΓ  and the 

interface elements from the perspective of ( )c  the BEM and ( )d  the SBFEM 
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Appendix F. Functional testing 

Consider the following function 

 =( , )f x y xy   (F.1) 

and the results of its implementation by these MATLAB codes. 

Implementation 1 
function result = f(x, y) 

 result = x + y; 

end 
x y expected f(x,y) actual f(x,y) Result 
0 0 0 0 pass 
1 1 1 2 fail 
2 2 4 4 pass 
-3 -3 9 -6 fail 
-4 4 -16 0 fail 

1. 0000000000000001 1 1. 0000000000000001 2 fail 

 

Implementation 2 
function result = f(x, y) 

 result = abs(x * y); 

end 

x y expected f(x,y) actual f(x,y) Result 
0 0 0 0 pass 
1 1 1 1 pass 
2 2 4 4 pass 
-3 -3 9 9 pass 
-4 4 -16 16 fail 

1. 0000000000000001 1 1. 0000000000000001 1 fail 
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Implementation 3 
 

function result = f(x, y) 

 result = x * y; 

end 

x y expected f(x,y) actual f(x,y) Result 
0 0 0 0 pass 
1 1 1 1 pass 
2 2 4 4 pass 
-3 -3 -9 -9 pass 
-4 4 -16 -16 pass 

1. 0000000000000001 1 1. 0000000000000001 1 fail 

It can be seen that each implementation offers a working solution. By 

increasing the range of cases chosen to tests the implementations, their 

respective limitations become clearer. It may be possible to prove the range of 

limitations of a particular function. But in general terms, this is not practical 

and instead an estimation of its limitations is made. This estimation may be 

improved by increasing the range of tests applied to the function. 

This approach can be taken for all such ‘black-box’ functional testing, 

regardless of its complexity. However, the simpler the function, the easier it is 

to determine an exact expected result and so the more reliable the test. Well-

written code can be tested in this way without concern for the reliability of 

any lower-level functionality; the assertion that the use of a lower-level 

function conforms to the limitations of that function should suffice. Such 

lower-level functionality should be tested separately. 
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Appendix G. Code integrity 

This appendix summaries the efforts made by the author to restrict the coding 

errors and to take confidence in the validity of the results. 

At the start of the project, individual SBFEM and BEM codes were available 

to the author to assist in the development of the coupled BE-SBFEM 

algorithm. However, the SBFEM code written by Chidgzey et al. was deemed 

insufficiently flexible to demonstrate its robustness and to offer reliable results 

with confidence and the BEM code written by Trevelyan et al. was geared 

towards commercial and teaching goals, rather than the evolutionary support 

of additional academic functionality. Thus, the was decision made to rewrite 

in full all code associated with this project under a modern computer science 

framework using established design patterns (Freeman and Freeman, 2004) 

complemented by a protocol of automated testing. 

Vigorous unit-testing (Astels, 2003) helped prevent additional errors creeping 

into the code as the result of rectifying other errors. The wide range of 

acceptance tests outlined below illustrates the robustness of the code and 

allows the user to analyse the results with confidence that the end product 



G. E. Bird 

The DBE-SBFEM: Code integrity 

236 

conforms to a required quality. Further, a normalised evolution of the code 

achieved by refactoring (Fowler et al., 1999) offered more structure and 

maintainability to the software than that of a more ad hoc approach often 

found in academic engineering code.  

Some of the acceptance testing included the parametric testing of benchmark 

problems with known, analytical solutions. With each problem type, a range 

of models were analysed and the results compared to the analytical solution, 

with mesh-refinement convergence assessed and monitored. Parametric 

variations included model geometry, mesh density, material properties, 

boundary conditions etc and mixtures of domain and subdomain types. 

Despite the ‘black box’ nature of the algorithms described in this thesis and 

the testing methods geared towards such operations time and resource 

constraints have prevented this approach being used to the extent to which its 

developer would have preferred. Pragmatic decisions have been made to 

reduce some testing in order to further develop the code, leading to certain 

assumptions about its quality. In some areas, computational efficiency has 

been sacrificed for improved maintainability and as such, some of the 

computational times offered in the results in this thesis should be observed 

with a degree of caution. 


