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Summary

A novel numerical method is presented for applications to general fracture
mechanics problems in engineering. The coupled dual boundary element-scaled
boundary finite element method (DBE-SBFEM) incorporates the numerical
accuracy of the SBFEM and the geometric versatility of the DBEM.
Background theory, detailed derivations and literature reviews accompany the
extensions made to the methods constituents necessary for their coupling as
part of the present work. The coupled DBE-SBFEM, its constituent
components and their application to linear elastic fracture mechanics are
critically assessed and presented with numerical examples to demonstrate both
method convergence and improvements over previous work. Further, a proof
of concept demonstrates an alternative formation of the DBEM that both
negates the need for hyper-singular integration and lends itself to a wider
variety of imposed boundary conditions. Conclusions to this work are drawn

and further recommendations for research in this area are made.
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1 Introduction
1.1 Introduction

The knowledge of cracks and their behaviour under stress can be invaluable in
increasing the longevity of fractured mechanical systems. Accurate stress
analysis that reliably estimates the severity of cracks and their need for
attention can assist in maintenance programs and reduce financial overheads
by the prediction and prevention of otherwise potentially catastrophic failures.
This is of particular importance in industries that operate under low factors of
safety or with tight profit margins. A recent and extreme example of such
failure through fracture fatigue is the 2009 crash of the Aerospatiale
(Eurocopter) AS332 L2 Super Puma near Peterhead, Scotland (Air Accidents

Investigation Branch, 2011).

Academic problems can typically be solved to determine accurately and
quickly some estimation of this need for intervention. Fundamental
engineering principles may yield a solution analytical in nature without the
need for any approximation. However, the range of problems that can be
solved in this way is limited and if assumptions are made, such as simplifying

the domain geometry, boundary conditions and material properties etc, such
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that the problem can be solved analytically, this may lead to unacceptable
inaccuracies. A typical engineering problem will require some degree of
approximation in its definition, solution or both. So while computational
modelling may provide a more accurate representation of the problem, the

trade-off is in the numerical approximation of its solution.

Through improved computer aided design, a numerical representation of the
problem can be defined with ease. Cross-application support has led inevitably
to its increased standardisation. Thus, focus is geared more towards improving
the solution to the existing geometric definition than using existing solutions
that require simplification of the geometric definition. Typically both the
geometry and its boundary conditions are approximated by some form of
domain or boundary discretisation process, where the relative behaviour of
discrete portions is approximated and solved globally by some numerical
method. The most prominent is the versatile finite element method (FEM).
There are many alternatives, however, including meshless and boundary

integral methods, as well as more advanced methods based on the FEM.

The aim of the work presented here is the development and assessment of a
new algorithm for the accurate solution of general fracture mechanics
problems that retains the geometric flexibility expected by engineers. This is
achieved by the coupling of the boundary element method (BEM) and the
scaled boundary finite element method (SBFEM). The SBFEM is known to be
suitable for applications to academic fracture mechanics problems, but is
limited by geometric constraints that make it less suited to real engineering
problems. The BEM is more geometrically-versatile, but, like the FEM, is
known to be hindered by inaccuracies in the modelling of displacements

around a loaded crack tip when a polynomial-based solution is assumed. The
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approach taken in the present work is to couple the BEM and SBFEM in

order to exploit their respective benefits.

1.2 Linear elastic fracture mechanics model

There are many models describing how materials deform and, under each
model, many techniques, each with their own assumptions, advantages,
disadvantages, accuracies, efficiencies and general suitability for particular
applications. Under macro-scale stress analysis, forces acting over the
infinitesimal area of a crack tip result in stress singularities which have
traditionally been both academically interesting and computationally
challenging. Attempts to describe a physical interpretation of the infinite
stress found at the crack tip under a linear elastic fracture mechanics (LEFM)

model may not be entirely practical.

It is fair to state that the LEFM model breaks down long before local stresses
could be considered ‘infinite’. Moreover, modelling improvements can be made
by the consideration of basic plasticity right through to statistical (quantum)
analysis of the material’s atomic structure, combined with multi-scale analysis
combining each model’s respective advantages. However, it is also fair to state
that real engineering problems exhibit rapidly-varying stresses and the LEFM
model offers practical approximations in the vicinity of the crack with lower
computational effort than more complete frameworks. Once the factors of
safety found in engineering design and analysis are considered, a simplistic

LEFM model may suffice.

1.3 Stress intensity factors

The stress singularities associated with a LEFM model found around the tip of
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a loaded crack can be defined in terms of their independent modes of

deformation described in Figure 1.

(o) Ti; 0 (© @
=

Figure 1. Three modes of deformation of (a) domain with a crack: (b) Mode I, (¢) Mode II
and (d) Mode III

The principles of LEFM (Griffith, 1920) were extended to define independent
stress intensity factors (Irwin, 1957), relating to each of these modes and
describing the nature of a crack. Thus, for a given material, it is possible to
quantify the severity of the crack and its need for attention. With reference to
Figure 1, a local Cartesian system is defined with the z- and y-directions
parallel and perpendicular to the crack face respectively; the zdirection is out-
of-plane and parallel to the crack front. Throughout the present work,
analyses are limited for simplicity to 2D, such that the third mode can be

neglected.

The first two stress intensity factors are defined

K; =limo,N2zr|, | (1.1)
Ky = lig(l)()‘xyx/er‘ oo (1.2)

where 0y, and 0,, are the local stress components at some polar coordinate

(r,8) from the crack tip. The effect of other stress fields at (r,8) may distort
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the estimation of K, and K . Thus, it is common that stresses are evaluated
in the immediate vicinity of the crack tip such that other stress fields, such as

those due to the Poisson effect, offer little significant interference.

The stress intensity factors are considered local indicators: if, for a given
material type, independent cracks are analysed, loaded such that the stresses
local to the tip are identical, there will be no distinction' between the stress
intensity factors for each of the different analyses, irrespective of the
geometries and boundary conditions of an analysis (e.g. the support structure
of a loaded aircraft wing or a simplified plate under laboratory conditions).
This dependence only on material properties (and not geometry and boundary
conditions) makes stress intensity factors attractive indicators of fracture and
are used widely in industry where material properties are known and

modelling is limited to regions around a crack tip.

1.4 Propagation

The maximum principal stress criterion predicts that crack propagation occurs
in the direction perpendicular to the maximum principal stress (Portela et al.,

1993). This occurs at

K;sin@, + Kp(3cos@, —1) =0 (1.3)

where 6, is the angle subtended from the s2-axis in local Cartesian coordinate

"in 2D where a plane stress or plane strain assumption is made; in 3D, the differences in the
local geometry describing the direction and shape of the crack front may influence the stress
intensity factors.
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system defined in Figure 1.

Though indicating the severity of the crack for a given static load, they can be
used in conjunction with other parameters related to the geometry and
boundary conditions as part of a dynamically-loaded system. For example, the
Paris Law predicts the crack growth rate in a system, loaded cyclically

between 0,,;, and 0, , is given by

da
dN,

= CAK® (1.4)

where a is the crack length, N, is the number of load cycles and
AKI = Y(O-rnax — Opji )V a (15)

where selected approximate and typical values of material constants €} and

Cy are illustrated in Table 2, and constant Y is geometry-dependent.

Material ﬁ C,
Steel 10" 3
Aluminium 107" 3

Nickel 4x107" 3.3
Titanium 0™ )

Table 2. Paris Law constants, adapted from Roylance (Roylance, 1996)

For general geometries found in general engineering problems, Y is unknown
and boundary conditions typically cannot be described so readily by a single
applied load varying cyclically. Thus, equation (1.5) cannot be relied upon for
estimating the crack growth rate in equation (1.4). Instead, AKj is given by

estimation of the range of stress intensity factors over a load cycle
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AKI = KI _KI

max

(1.6)

min

where {KIW,KIW} are the stress intensity factors corresponding to load
cases {Onin,Omax - For the types of material in Table 2, the accurate
estimation of stress intensity factors is of particular importance as errors

raised to such a power magnify the errors in crack growth prediction.

For stress intensity factors to be of any engineering practicality, the
underlying need for accurate computation of displacements and local stresses
from which they derive is paramount. For additional concise reference, the

author recommends Fleck et al. (Fleck et al., 1994).

1.5 T-Stress

The T-stress is a non-singular stress term acting parallel to the crack plane
(Tvergaard and Hutchinson, 1994) that acts in addition to the singular
stresses described above. The value of T-stress for a given load is geometry
dependent. So unlike the stress concentration factor, the T-stress can be used
to give an indication of the effects of the geometry and its constraints in the
near vicinity of a crack tip. Analysis of two domains with the same stress
intensity factors (and thus the same local stresses) may have decidedly
differing T-stress. The magnitude of the T-stresses relative to those of the
stress intensity factors may indicate the significance of the higher order terms
on the overall stress analysis of the domain and the validity using a LEFM

model for the analysis.

While the propagation of cracks whose associated T-stress is negative have
been shown to be dominated by the stress intensity factors, it has been

observed that for those with a positive T-stress, propagation may deviate from
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the expected crack path with some level of instability. (Cotterell and Rice,
1980). This had led some works to question the assumption that stress
intensity factors alone govern crack propagation, and that T-stresses may
have a significant impact. Contrary to traditional theory that suggests T-
stresses should vanish under pure mode II problems, some such problems have
been demonstrated by analytical solution to exhibit non-zero T-stresses (Fett,
2001). Further, there have been efforts to redefine the mode I and mode II
(Ayatollahi et al., 2005), such that a zero-value T-stress is no longer expected
for such pure mode II problems. Inclusion of such specific examples involving
fractured discs are beyond the scope of the present work, but are referenced
for completeness with acknowledgement of this ongoing research of academic

interest.

1.6 Williams expansion

The Williams expansion in displacement describes the displacements 1y, local
to a crack tip in an infinite plate subject to a uniaxial stress perpendicular to
the crack in terms of stress intensity factors (Williams, 1957). With reference

to Figure 3



G. E. Bird

The DBE-SBFEM: Introduction

(0 0) e © e
P o i ~ - - ~
t ot ¢ e i Vi
* th et ;
| P ; \ / i \,
d 7 | N\ e ( 9) N\
i Py . u, (r \
3 | - // : \\\ . /)/, Wy ' \\\
2a -~ / 2a py —
:l(u\;/ :; : (?"f*\) ‘::’ u (rye).:
! 1
3 : | e ! r !
>~ \ " 1
; Sa \‘ | a 7\¥ //
i Sl \ ! BN /
i S A d ;N\ /
| N~ X ! / \ N /
~o | N
: L i y N /
' ; - i \ crack-face (V) y
v v v 1 I N i = - //
v v v ~C N : - S— \\tip -
o . ®
N e

Figure 3. Stress analysis of (a) a through crack in an infinite plate (b) the region around the

crack tip and (c¢) the Cartesian displacements at polar coordinates from the tip

1y = {UW} (1.7)
uWy

the 2~ and y-direction displacements are given by

= b

i (1, 6) = 3 5 (CaWon (i) = CioWis(0)) (18)
=1 “H

iy (,6) = - 2 CoWyol0) = CiaWo() (1.9)
i1 “H

where

~216 (1.10)

1050 Jos = oo
I/I/;Q(z’):(K+%—(—1)i)sin%9—%sin(§—2 6 (1.11)
(=50 Jangn

W (i) = x—%—(—l)i sin— 6 + —sin %—2 6 (1.12)
w, (i)—(K—£+(—1)ijcos£9+icos(£—2)9 1.13
YT 2 2772 (2 (1.13)

and « is the Kosolov constant related the material’s Poisson ratio v by
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3-v
kK=91+v
3+ 4v  for plane strain

for plane stress (1.14)

and C;; and ()}, are coefficients that corresponding to specific, identifiable
terms in the series. The first coefficients in the series are related to the stress

intensity factors by

K
Cyy = 1.15
11 m ( )
Ky
Ciy = — 1.16
12 m ( )
The T-stress T}, is related to the second coefficient in the series
T
Cyy = f (1.17)
By neglecting the higher order terms, equations (1.8) and (1.9) reduce to
Uy, (1,0) :% é((’(—;l)cosg+sin22j (1.18)
Uy (1, 6) :% %(@sing—coﬁgj (1.19)

1.7 Numerical modelling of fracture mechanics problems

The BEM, its extension, the Dual BEM (DBEM), and the SBFEM are
numerical methods that may be used to estimate the deformation of a loaded
domain. New derivations of both the BEM and SBFEM are presented with
particular efforts made to increase the understanding of SBFEM. New
observations relating to the implementations of these methods are presented
alongside extensions that facilitate their coupling. Further extensions and
reformulations of these methods that improve their individual applicability are

presented. These methods are assessed independently and then in coupled

10
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forms using fracture mechanics problems to illustrate their relative strengths
and weaknesses. The idealised examples (based on §1.6) with known solutions
provide benchmarks that are indicative of their performance when applied to
non-trivial examples whose solutions are not known. It should be noted that
all analyses are undertaken on isotropic bodies. The methods in their

presented forms are inappropriate for analysis of anisotropic bodies.

The work presented in this thesis represents an extension to initial work on
this project (Chidgzey, 2007). Consequentially, the code used to obtain results
in the author’s early references owes some recognition to Chidgzey et al. for
assistence in the SBFEM side of the project and Trevelyan et al. for assistance
on the BEM side. However, all the code has since been rewritten under a more
modern, computer science framework. A bottom-up approach to testing was
taken to offer confidence that the presented results are the more characteristic
of the methods than their respective implementation. The new code was
written in MATLAB and makes use of some freely-available library functions,

but otherwise has been developed by the author.

The presented coupled method and its efficient use of reanalysis (a method of
identifying and reusing computed data) is specifically tailored towards linear
elastic fracture mechanics problems in 2D isotropic bodies. Thus it is for this
class of problem that the method best suited, and offers advantages over codes
that are based on generic numerical methods (typically the more established
FEM, and to a lesser extent, the BEM). For example, the code BEASY is
based on the BEM, which, for a given number of degrees of freedom will be
less accurate than the presented method owing to the BEM’s poor piecewise
isoparametric element-based polynomial approximations to non-polynomial

functions. However, owing to the techniques to implement these generic

11
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methods professionally, commercial software is expected to run faster despite

its underlying methods rather than because of them.

1.8 Content outline

In §2 and §3, reviews of these numerical methods are presented. The BEM is
well known, and as such, is not subject to as much rigorous detail as the less-
well known SBFEM. However, with the focus of the present work directed
towards their coupling, both methods are developed accordingly. To allow the
reader to become familiar with the technical terms associated with each
method beforehand, the literature surrounding both methods is reviewed at

the close of each chapter.

The original concept of a coupled boundary element-scaled boundary finite
element method (BE-SBFEM) is reviewed in §4. Its limitations are reviewed
and addressed as part of the present work, serving to illustrate the
development of the algorithm to include the dual boundary element method

(DBEM).

As an extension to the BEM, the introduction of the DBEM in its existing
form increases the geometric flexibility further. This coupled DBE-SBFEM is
presented in §5 and includes the use of reanalysis to deliver an efficient
algorithm applicable to general crack propagation schemes, but with a
particular suitability to those of a predictor/corrector basis. The DBEM is
reformulated in §6 in order to simplify its implementation and increase the

range of applications to which it is suited.

The results and observations of the methods and their implementation are

summarised and analysed critically in §7. Recommendations for further

12
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research are made and concluding remarks drawn in §8. Supplementary
information can be found in the appendices. The illustrations that accompany

this thesis are original to the author unless otherwise stated.

1.9 Conclusion

The motivation behind the present work is the need for the estimation of
stress intensity factors of loaded fractured systems. A new numerical
algorithm coupling the BEM and SBFEM is proposed in order to calculate
accurately the domain displacements on which the stress intensity factors are
based. By combining the geometric flexibility of the BEM and the accuracy of
the SBFEM, the method, built under a linear elastic framework, is expected to

model real engineering domains with efficiency.

The implementation of this method has been undertaken using a modern
computer science development and testing framework to improve code
integrity and provide confidence in the results. A discussion of this
implementation and the numerical results it yields will be presented, and

overall conclusions and recommendations for further research are drawn.
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2 Boundary element method
2.1 Introduction

In this chapter, the boundary element method (BEM) is introduced. After a
brief overview, a detailed numerical formulation, with examples, is included to
demonstrate the method’s suitability for applications to fracture mechanics.
Its other strengths and limitations are assessed. The dual BEM (DBEM), an
extension to the BEM, is also discussed. The methods are presented alongside
a critical assessment of their application to fracture mechanics, specifically in
its suitability to extract accurately displacements near a crack tip. The data
in numerical examples in this chapter are obtained by the development of the

author’s own code.

Some aspects of implementing the BEM and DBEM are introduced. An
adaptive algorithm is assessed for use in non-singular integration of both the
BEM and DBEM kernels. Analytical expressions for singular integration have
been simplified and more generalised easing the BEM’s implementation. This
generalisation also facilitated a preliminary investigation into the optimisation
of the local distribution of nodes defining their boundary elements. Other

historical developments of the BEM and DBEM are discussed in a brief
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literature review.

2.2 Numerical formulation
2.2.1 Method introduction

As the interest in the BEM in this thesis lies in the computation, application
and extension of its underlying boundary integral equations, its complete
derivation from its fundamental governing Laplace equation is not provided
here. It is sufficient to state that the particular efforts have been made to
address the practical implementation of the method in computer code, rather
than the more general overviews offered elsewhere, beginning from the
computation of the boundary integral equation (BIE) to form boundary
integral equations as a basis for the method. This chapter summarises much of
what is described in other more exhaustive derivations such as Ali and
Rajakumar (2004), Beer (2001) and Becker (1992), to which the reader is

directed for further details.

The BEM is a versatile method that can be applied to a number of areas. By
modelling the boundary only, the BEM can be used to model both finite and
infinite domains. When applied to linear elastic fracture mechanics, the BEM
aims to model a domain’s boundary displacement caused by its boundary
tractions and other boundary constraints®. The basis of the BEM is the
displacement boundary integral equation, often abbreviated to BIE, but to

distinguish between this and the traction boundary integral equation that

T the effect of body loads is neglected in the present work without loss of generality
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forms the basis of the DBEM, they will be abbreviated to DBIE and TBIE

respectively.

Throughout this chapter, a 2D linear elastic domain is assumed, and the
subscript ‘B’ is used to denote the boundary element method to allow
distinction from, and comparison with, terms relating to other numerical
methods in later chapters. The nomenclature of substructuring of the system
matrices is inspired by the local substructuring of the author’s BEM code and
may not appear in this manner in the literature or other BEM codes. It should
be noted that the BEM kernels described in the following sections use explicit

indexing and are not tensors.

2.2.2 Displacement boundary integral equation

For a stress field represented by

Yo P __ ¥
o2’ ! 9y ™ dady

(2.1)

by substitution into the compatibility equations, with reference to Rajakumar
(2004), Beer (2001) and Becker (1992), it can be seen that force equilibrium is
satisfied by the governing biharmonic equation

d'gp ¢

o'
+ +2 =0 .
ozt oy 02°0y” (2:2)

where ¢ is the Airy stress function. The BEM is based on the solution to
equation (2.2), and is be written in terms of fundamental solutions that can be

solved for a given set of boundary conditions.

Thus for a domain Qp with n degrees of freedom, the 2 and y-direction

16



G. E. Bird

The DBE-SBFEM: Boundary element method

boundary displacements can be described as functions of s, a circumferential
coordinate system coincident with the boundary I'g. The DBIE defines these
displacements u,(s) and w,(s), at some point s = P, (called the source point),
in terms of the integrals of all boundary displacements and tractions
multiplied by their respective kernels (called the BEM fundamental solutions),

and a constant C(P,)

(2.3)

where u,(P), u,(Pr), t,(P;) and t,(Ps) are the boundary displacements and
tractions at s = P (called the field point). The constant C(F,) is a parameter

defined by the nature of the geometry at P,, given by
op) = < (2.4)

where the angle of smoothness a is defined by the interior angle subtended
by the material between boundary facets to either side of P,, as illustrated in
Figure 4. This term is known as the ‘jump term’. The fundamental solutions
vary in s and are functions of the separation of the field and source points r
and the outward unit normal n(s) evaluated at s= F;, and material

constants, where

r=|P - P (2.5)
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r, a>rw a<rxw
(a) P (b) P
P
Q, Qg
o=
() r, P (d)
w =
QB
QB

Figure 4. The angle of smoothness at P, on the boundary where (a) & < 7 forming an

interior angle, (b)) > 7 forming an exterior angle, (¢)a =z forming a smooth boundary and

(d) an interior point where a = 27

The DBIE fundamental solutions are given by

T anirpf)[a ~2)+2( 3 j (2.6
* - ordr or or or
TP B = G 2o e - 2 ) - St )
@.7)
* - orodr or or or
TP B = e 2ty ~ =20 St =) )
(2.8)
T,, (P, Dy) = Ma_}v)rana(rpf)[(l—zv)+2(§—;) ] (2.9)
UL (P P)) =ﬁ((3—4v)m(%j+(%) J (2.10)
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* 1 or or
Upy (P, Fr) = Sl —v) 9z 9y (2.11)
U (PP = I (212)

- 87u(l —v) oy oz

Uy, (P, Py) =m((3—4v)ln(%j+(g—;f] (2.13)

where g is the shear modulus of the material given by

(2.14)

where F and v are the Young’s modulus and Poisson’s ratio of the material,

and n,(s) and n,(s) are the z- and y-direction components of n(s)

n(s) = {”m(s)} (2.15)

For a unit-circular boundary, illustrated in Figure 5, these kernels are smooth
and continuous, as illustrated in Figure 6 and Figure 7 where arbitrary
engineering materials are used. For the portions of boundary in which F, is
sufficiently far from F, these kernels are well-behaved and the integrals of
such present few computational difficulties. Further, as shown in the figures,
as P, approaches P there may exist a singularity that requires more careful

consideration.

Figure 5. Sample source point on a circular boundary in which s can be described as a

function of @
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zy

T,(P,P)

°
- P s +r -z P s +7
A A
& =)
e *&g
® °
- P s +r - P s  +r

*
Figure 6. ustration of Tj; (F;, Py) kernels for a circular domain, i,j = z,y

(R, F)
(B F)

Ty

U,
U

(R, )
(B:F)

Yy

U,
U

ry
- P s +r - P s+

Figure 7. Illustration of U;; (PS, Pf) kernels for a circular domain, 7,j = z,y

For practical, non-circular domains, these kernels exhibit discontinuities,
particularly at 90° corners owing to step changes in unit normals. To compute

the integrals in equation (2.3), I'y is discretised into L discrete boundary
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portions™
w(P))  &IheP)| ., &fe®)],, [0
C(R){uy(ﬂ)}wL;{ﬁg(Rg)}u ;{gi(ﬂ)}t _{0} (2.16)
L L
C(P)u(R)+ Y H(RJu' =3 G(R)t =0 (2.17)
where

u(s) = {u””(s)} (2.18)

and H¢(P,) and G¢(P,) are the coefficients of the displacements u® and
tractions t°, the degrees of freedom of boundary portion e . The computation

of equation (2.17) yields
C(P)u(P) + FI(P)u - G(P)t = 0 (2.19)

where u and t are the column vectors of length n describing the
displacements and tractions of the whole boundary, and H(P,) and G(P,) are

their respective coefficients.

As both P, and P; are on the boundary, if the discretisation process is such

that the source point coincides with a field point, where F, = P, the constant

i The term ‘boundary portion’ is used without loss of generality. The usual (non-general)
discretisation process, and that which is adopted here, results in a piecewise polynomial
approximation to the boundary displacements and tractions over e through the calculation of
nodal values and elemental interpolation. This process is described later.
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C(P,) can be assimilated into the coefficient of u(Fy)

WP = {h%-’“(I%HC(J%) P, =P, (2.20)

hek(P) otherwise

where, with reference to Appendix A, 4,5 = z,y and k=1...n", the number of

degrees of freedom of boundary portion e .

Equation (2.19) is thus reduced to
H(P)u-G(P)t=0 (2.21)
2.2.3 Traction boundary integral equation

The TBIE forms an alternative for cases when uniqueness of the equations in
(2.31) cannot be guaranteed, such as when sections of the boundary overlap

and source points are coincident. The TBIE is given by

C(P){tz(ﬂ)}{m(ﬂ) 0 n(P) O M Sese Sryy {Ux(Pf)}dF
S * * B —
t, () 0 n(B) 0 n(B)p | Spw Sny | Lu(Fr)

S;?JI S;yy_

0 Ty (R) 0 Ty (R I's Dy:m Tyy
L Dyyx Dyyy .

(2.22)

where it can be seen the ‘jump term’ is associated with the tractions ¢,(s) and
t,(s) at the source point. The TBIE fundamental solutions are given by the

tensors
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. 4
Skij (Bys Pr) :W{
87’ or
n(P){(l—QVﬁ ax axk]l_
87” or
nJ(P)[(l—QV) 8:1: o, }
87’ or
n(P)[(l 2v)0;; — ax ax}
or or or  or or dr or
(2.23)
% 1 or or or or or dr
Drs (B Fy) ——47;(1_@{(1‘2”(@@—@+‘5ika—%+‘5ifaj+ 3z, 9z, axk}
(2.24)

where k,i,7 = z,y and J; is the Kronecker delta.

Following a manner similar to that of the DBIE, the TBIE is discretised in

into L boundary portions

CPR) + 3 H (B = 3 G (P =0 (2.26)
e=1 e=1
where
t(s) = {zg} (2.27)

By the assimilation of the constant C(FP,) into the coefficient of t(F) at

P=p
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~rek
(P = {Aik L ! (2.28)
g~ (P) otherwise
equation (2.26) is reduced to
H((P)u-G(P)t=0 (2.29)

where, with reference to Appendix A, 7,5 = z,y and k=1...n", the number of

degrees of freedom of boundary portion e .
The TBIE is used in the formation of the DBEM, which is described in §2.6.

2.2.4 Method solution

By the repeated movement of the source point to new locations on s and
computing H(P,) and G(P,) using the DBIE, or H(P,) and G'(P,) using the
TBIE, n equations (i.e. % sets of the two equations defined in either (2.16),
(2.25) or combinations of the two equations) can be assembled describing the

displacements at each source point
Hu-Gt=0 (2.30)

where H and G are known as the displacement and traction influence

matrices.

For each degree of freedom, and in each direction, it is assumed that either a
Dirichlet (displacement) or Neumann (traction) boundary condition is known.

By their application to equation (2.30)
Ax = Ax (2.31)
or, since the entire right hand side is now known

Ax=b (2.32)
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where x and %X are vectors of the unknown and known displacements and
tractions, and A and A are their respective coefficients. This linear system
can be solved for all unknown boundary displacements and tractions. Unlike
the comparable finite element method (FEM), this BEM system matrix will be
non-symmetric and fully populated and methods geared towards solving FEM
systems may be unsuitable for solving BEM systems. However, for a given
problem, the size of the BEM system will typically be much smaller than that
of a comparable FEM system. There are many solvers tailored specifically to
the characteristics of the BEM system, with the generalised minimal residual

(GMRES) solver (Saad and Schultz, 1986) a popular such example.

2.3 Discretisation

The geometric boundary I'y is discretised in the usual manner by means of a
piecewise polynomial isoparametric boundary element approximation, such
that each source point corresponds with an element node defining the
geometry. Unlike the FEM, the system matrices in the BEM do not define a
local (elemental) stiffness, merely a set of coefficients relating the
displacements and tractions on a global (boundary) level. The distribution of
nodes on an element is, in principle, arbitrary for the BEM. However, certain
nodal distributions may require specific computational considerations and are
often selected specifically for reasons of convenience, i.e. even though the
governing BEM equation may still hold, certain configurations of nodal
distribution may result in incomputable integrals of hyper-singular equations.
Continuous, discontinuous and semi-discontinuous elements can be selected as
necessary for use in the BEM without the need for additional constraint
equations. The motivation for, and definition and application of, such

elements is now presented.
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The two-dimensional geometric characteristics of a discrete boundary element
e may be mapped, via a suitable transformation, into a one-dimensional axis
bounded by —1 <7 <1. A quadratic boundary element e is defined by the

local distribution of its three nodes 7

n={m m m} (2.33)

Such quadratic elements are assumed throughout this thesis. Generally

1< <n,<n; <1 (2.34)

and typically
7 =0 (2.35)
T =-13 (2.36)

Exceptions to equations (2.34) to (2.36) are highlighted below.

2.3.1 Continuous elements

Continuous boundary elements exhibit nodal connectivity between

neighbouring elements, thus
—l=m <m<n =1 (2.37)

and have the appearance of one dimensional elements used in the FEM, as

illustrated in Figure 8.
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-1 07 41

Figure 8. Boundary discretisation from (a) geometric continuous boundary element to (b) a

mapped continuous boundary element
2.3.2 Discontinuous elements

Discontinuous boundary elements exhibit no nodal connectivity between

neighbouring elements, thus
“l<mp<n<n <l (2.38)

Unlike conventional finite elements, discontinuous boundary elements extend

beyond the extremities of the outermost nodes, as illustrated in Figure 9.

Figure 9. Boundary discretisation from (a) geometric discontinuous boundary element to (b)

a mapped discontinuous boundary element
2.3.3 Semi-discontinuous elements

Semi-discontinuous boundary elements exhibit nodal connectivity with one of

its neighbouring elements and no connectivity with the other, thus
<y <m<n =1 (2.39)

or
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—“l=np<m<mn<l (2.40)
as illustrated in Figure 10.

(a) (b)

-1 07 41

-1 07 41

L'y

Figure 10. Boundary discretisation from (a) geometric semi-discontinuous boundary element
to (b) a mapped semi-discontinuous boundary element of the first kind, and (¢) geometric
semi-discontinuous boundary element to (d) a mapped semi-discontinuous boundary element

of the second kind

These elements can be used to provide a smooth transition between boundary

sections modelled by continuous and discontinuous elements.

2.4  Shape functions

The quadratic shape functions required for discontinuous and semi-
discontinuous element interpolation and extrapolation are modified from those
for standard continuous elements used in methods such as the FEM. The

vector of shape functions N for quadratic elements is given by

N ={Ni(m) Ny(n) Nsn)} (2.41)

where
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A (n* = By + Cy,)

where

1

3
H (. —n;)
J=Lj#k
3
B

Cp

m;

J=1.j#k

(2.42)

(2.43)

(2.44)

(2.45)

for k =1..3. The form of equation (2.42) may not appear in the literature, but

was devised as part of the present work in order to generalise the shape

functions for the quadratic boundary element types illustrated in Figure 11.

(a) Continuous element

776 - {‘17 0, 1} 776 -

(b) Discontinuous element
{_2/37 07 2/3}

n
(c) Semi-discontinuous element (1)
778 - {_2/37 0, 1}
1
Nk
0

(d) Semi-discontinuous element (2)

n°={1,0,2/3}

Figure 11. Set of three quadratic shape functions Nj, for (a) continuous elements, (b)

discontinuous elements, (¢) semi-discontinuous elements of the

first kind, and (d) semi-

discontinuous elements of the second kind
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Adjacent continuous elements share a common node and so C; will be
observed. Such continuity is not guaranteed between adjacent elements
offering no mnodal connectivity. Although this may, at first, appear
disadvantageous, this natural discontinuity can be expected to reduce with an

improved mesh and thus may serve as an error indicator.

2.5 Integration

For quadratic elements in two dimensions, it is computationally convenient to
compute submatrices of 2X2 terms corresponding to a single source node and
field node pair, in each direction. With reference to Appendix A, it can be

shown that these submatrices are given by

fre(p) < | (B) 5 (R) (2.46)
| hii(R) - hiy(P) |
GHP) = gim(P)  goy(R,) (2.47)
LR gp(R) ]
H (P) = et (R) by (B) (2.48)
byt (R Ry (By)
. iF(P) gk P)]
rek _ T S Ty S
G (R) - ~rek ~rek (249>
Gyz (Ps) vy (Ps)_
where k =1,2,3 for quadratic elements, 4,7 = x,y and
hk (P, j n)Jedn (2.50)
g (R) = j Ug ) dn (2.51)
hif*(P) = j Dg (PN (") dny* (2.52)
g, j n°)Jedn’ (2.53)
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These terms are typically assembled into larger submatrices of size 2X6,
corresponding to each source node and field element pair, before assembly into

the BEM influence matrices.

2.5.1 Nature of singularity

As P, approaches P;, the BEM kernels may exhibit some form of singular
behaviour and, depending on the nature of the singularity (if any), a suitable
integration scheme must be employed over each respective portion of the

boundary, as illustrated in Figure 12.

non-singular near-singular singular near-singular non-singular

integration

> »
<€ »

integration integration integration integration

A
\ 4
A
Y
A
\ 4
A

singular function

v

- Y ____

Figure 12. Illustration of the integration schemes required over the boundary for a kernel that
exhibits singular behaviour close to the collocation point ® , non-singular behaviour away from

the collocation point, with a transition of near-singular behaviour elsewhere.

By using the piecewise polynomial elements and shape functions described
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above, the element-wise integral of the DBIE and TBIE kernels over each
boundary portion can be evaluated. The type of integration scheme required is
determined on an element-by-element basis, depending on whether the
function is non-singular, near-singular, weakly-singular, strongly-singular or

hyper-singular, as categorised below.

2.5.2 Non-singular integration

These integrals can be approximated by standard methods, such as Gauss-

Legendre quadrature, in which for a function f(77)

Ymax

If )d7 = Zfﬂ;/ (2.54)

where 77, and w, and the coordinates and weights of the %, quadrature

points. Thus

%nax

j n)Jedn® = Y Ti (PN, (75)] w, (2.55)
y=1
ymi}(

j ne)Jedn’ = Z PN ()] (2.56)

%Ild\

j no)Jednt = Z PN, (175)J “w (2.57)

Vmax
jD ne)Jedn’ = Z PN (m5)] (2.58)

2.5.3 Near- and weakly-singular integration

A popular method in this work for the approximation of weakly-singular
functions is to map the element coordinate system 7° into another local

coordinate 77 (Telles, 1987), defined by
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h =m (2.59)
on <
8_77 =0 at T (260)
s =13 (2.61)

as illustrated in Figure 13. Equation (2.54) is redefined

+1 +1 877
[ fondn = [ f@)=%d7 (2.62)
2 LAY/
such that
as f(f7) — 00,8—72 -0 (2.63)
o7
and the singularity is cancelled.
(a) g A (b) g A
E E
& =
g g
E :
g E
= =
E E
B =
) () ) ()
O—0 -O—0 ~
77(3 77(3
] 1, 1 7 1, 1y

Figure 13. (a) The original element, and (b) the Telles transformation.

An additional effect of this scheme is the natural clustering of quadrature
points towards the singularity, as illustrated by Figure 14, even if the
singularity is not on that element. This makes the scheme appropriate for the
near-singular integration as it offers an improved distribution of points over

the Gauss-Legendre quadrature.

The transformation requires a modified Jacobian J° and weights Wy, but
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otherwise appears similar to the Gauss-Legendre quadrature.

Vmax
j no)Jedn’ = Z PN, (75)T @, (2.64)
%nax
j no)Jednt = Z PN, (775)J @ (2.65)
+1 Ynax
[ S5 (PN ) edn* = z PN (75) T (2.66)
—1
%nax
j no)Jednt = Z P)N,(7%5)T @, (2.67)

—_—
IS
~
—

=
=

(-) weakly-singular function

(x) quadrature weight distribution

(x) improved quadrature weight distribution
(-) weakly-singular function

n

Figure 14. Quadrature points ‘x’ are naturally redistributed over element e from (a) a
Gaussian distribution, (b) towards the singularity when using the Telles scheme. The

comparative weights associated with each quadrature point is illustrated by ‘---’
2.5.4 Strongly-singular integration

For the functions that exhibit strongly-singular behaviour, the approach to
the computation of the integral depends on the element type at the source

point. A scheme of separating the singular function into its singular and non-
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singular components is preferred (Guiggiani and Casalini, 1987), but can only
be applied where the source node exhibits no nodal connectivity and lies upon
a flat element. An alternative approach for continuous elements and non-flat

elements follows later.

The singular integral exists as part of a Cauchy principal value (CPV),
denoted by

+1 n-8 +1
[fendn =lim| | fendn+ [ fapdn (2.68)
N e TN '+

where f is an arbitrary function that exhibits strongly-singular behaviour at

n’, the local coordinate of the strong singularity where —1 < 7" < +1 and & is

the radius of the CPV zone, illustrated in Figure 15.

__O$

%IB/ AL

0 +1
2

Figure 15. The Cauchy Principal Value zone and the subdivision of an element at the

singularity

By subdividing the element at the singularity, two functions describing f in

terms of the two local coordinates

Jo(11) = f() (1 =1) (2.69)
Jo(my) = fm) (1 +17) (2.70)

are substituted into equation (2.68)
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CPV 5—0

[ f7)dn =1lim {If”n 1 Jan + fﬁ’ )dn (2.71)

where J,(n7) and Jy(7) are the Jacobians associated with element portions 77,
and 77,. By simultaneously subtracting and expressions for the singularity

existing at both 7, =1 and 7, = -1

jf gpf;-lggl{ff“ an);flmja()dm_jlm;)g_fal(l)dm_”
J,
Ifb(n) (1 ),7 +fb1< jfb }

(2.72)

Since f,(1,)J,(7,) = o at 1, =1, and f,(m,)Jy(m) = = at 7, = -1, the
strongly singular part of the function is cancelled leaving two regular

expressions to be evaluated.

_J;f(’]) g}JZ/ — L[Ifa(”)']aoz;:{a(l)']aa)dn + J'ﬁ)(n)‘]b(n)ﬂ_-i_ﬁ)l(_l)']b(_l)dn

LM, In|J,(=D)] + f(=1)J,(=1) In|J, (1)
(2.73)

When the arbitrary function f is replaced by the strongly-singular kernels
used in the DBIE, by this separation and cancellation of the strongly singular
part, the integral was shown to be computable for flat discontinuous elements

(Portela et al., 1992), given by

+1

o _ (1=2v) N,

or
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E .

H*(P)=——"_SI, 2.75
(F) 2z(1—-vHl, (2.75)

where £ is the index of the node on element e at which the singularity

occurs, [, is the geometric length of element e and

S = { 0 _1} (2.76)

+1 0

The singular integrals I, for discontinuous quadratic elements with local

nodal coordinates m° = {% 0 %} are given by (Portela et al., 1992)

+1

- N, j 3(77’(377’—2) ‘1—77’ , j
I = dap == 1 | +377 -2 2.77
' _jl(n—n | R TR (2.77)
+1
. N, ) 1((377’+2)(377’—2) 1+7/ j
I, = dp == 1 -9 2.78
? _J-l(ﬂ—ﬂ w2 2 e (2.78)
+1
~ N 3(n' 3y +2) ‘1—77’ , j
Iy = 3,jd :—( 1 S|+ 37" +2 2.79
’ _jl(n—n oy A P F (2.79)

The applicability of these expressions has been extended as part of the present
work by rewriting equations (2.77) to (2.79) for flat quadratic boundary
elements with general local nodal coordinates n° ={m 1, n3} (Bird et al.,
2008b)

+1 ’

~ Nk ) ( , 9 ’, 1—77
I, = > |dn = A | 2(n° = By,) + - B+ Cp)l
k :[1(77_77 CP’\]/ k| 2(7 1)+ (77 K17 i) In 1+7

’

)

(2.80)

where A;, B, and C) are defined in §2.4.

For non-flat elements, or elements with nodal continuity, the application of
rigid body motion can be used to estimate the terms that otherwise require

singular integration. Consider the analysis of a traction-free domain subject to
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two independent boundary conditions, each a rigid body displacement in first
the a-direction, then the y-direction. In each case, this displacement has a

defined magnitude Up, where typically
Up =1 (2.81)

The nodal displacements and tractions of corresponding to each element

e =1..L are thus given by

ueT :{UR 0 UR 0 UR O}T (282)
t'={0 0000 0}T (2.83)
in the first case and
u'={0 Uy 0 Uz 0 Ug}' (2.84)
t,"={0 0 0 0 0 0} (2.85)

in the second. Using each rigid body displacement case in turn, equation

(2.17) can thus be reduced to

L 3
C(P)UR + Y. > hatUp =0 (2.86)
e=1k=1
L 3
C(P)Ug + Y. hiaUp =0 (2.87)
e=1k=1
and
L 3
C(R)UR + 2.2 hyzUn = (2.88)
e=1k=1
L 3
C(P)Ug + Y. hiyUp =0 (2.89)
e=1k=1
respectively.
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When using the DBIE, for each of the above equations there exists just one
term that exhibits singular behaviour in its computation. Thus, by the
integration of the regular (non-singular) terms, the singular term can be

estimated by the difference of their sum and the jump term C(F,).

When using the TBIE, there may exist multiple terms that exhibit singular
behaviour and so this scheme cannot be employed in this manner. It should
also be noted that although the explicit computation of the singular
integration is avoided, it is at the expense of the errors accumulated in the

integration of each of the non-singular terms.

In the case of the TBIE, the strongly-singular integration required for the
computation of equation (2.24) can be avoided by a priori knowledge of the
application of the method. Within the scope of the present work, traction-free

boundary conditions are assumed on elements that for which the TBIE is used
0
wr) -1, | (290)

Under this assumption, the computation of their coefficients, é'ek(P) in

equation (2.49), is unnecessary..

2.5.5 Hyper-singular integration

Functions that exhibit hyper-singular behaviour are evaluated analytically. In
a similar manner outlined above, the hyper-singular integral exists as part of a

Hadamard principal value (HPV), denoted by

+1 -6 +1
[ dn =lim| [ fandn+ [ fendn (2.91)
3 HPV 60| 5 n+d
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where f is an arbitrary function that is exhibits hyper-singular behaviour at
n’, the local coordinate of the strong singularity where —1 < 7" < +1 and & is

the radius of the HPV zone

When the arbitrary function f is replaced by the hyper-singular kernels used
in the TBIE, the integral was shown to be computable for flat discontinuous

elements (Portela et al., 1992), given by

, E SN,
H(P) = S d 2.92
) = _jl((n—n’)JHPz (292

or

F ~

H{(P) = —— &7 2.93
k ( ) 27[(1 — Vg)le k ( )

where k is the index of the node on element e at which the singularity

occurs.

As part of the present work (Simpson and Bird, 2009), the matrix S,
described fully in the reference (Portela et al., 1992), was shown as to reduce
to a more simplified expression relating the dot product of the normals at P,

and Pf

g - [28) 0D E)) -

ny(F,) ® n,(Fy) n,(F,)®n,(F)

The singular integrals I, for discontinuous quadratic elements with local

nodal coordinates m° = {% 0 2} are given by (Portela et al., 1992)

+1 ,
=, N, 3 , ‘1—7]
II=|| —L—|dnp =2| 37 = DIn ,
: ﬂ(n—n’)QjHP@ 4(< 71 L+7

/2 _ 2 ’ _ 3
U = _'71 j (2.95)

6
+
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+1
T N2 j 1( ’

=[] —22_ldp == o9p'In

’ i(m—nf Py 2

+1
=, N 3 , 1-
I = J’(ﬁj dn = Z((?ﬂ] +1)ln‘1+z,

187 - 13

o j (2.96)

1+7
1-7

72 ’
012 3) (2.97)
n°-1

The applicability of these expressions has been extended as part of the present
work by rewriting equations (2.95) to (2.97) for flat quadratic boundary
elements with general local nodal coordinates n° ={m 1, n3} (Bird et al.,

2008b)

1-7
1+7

1
= Ny ) , By

I, = > |dn = 2A - —)1
k _J-l(ﬂ—ﬂ HPQ] k((ﬂ 2)11

+ 277’2 — Bk77,+ Ck -1
n?-1
(2.98)

where A, B, and C) are defined in §2.4.

2.6 Submatrix assembly

Typically it is convenient to compute submatrices H‘(P,) on a per-
element /source point basis. Their assembly into H(P,) for discontinuous
elements is trivial, as illustrated in Figure 16(a), as each degree of freedom is
associated with just one element, and thus with just one submatrix. However,
if there is nodal connectivity between neighbouring elements e and e+1,
through the use of continuous or semi-discontinuous elements, then their
assembly into global system matrices H and G results in a non-square
system. By the assimilation of the common displacement and traction

coefficients in these matrices, these matrices can be made square.
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3
hii | b

e+1,1 e+1,1 e+1,2 e+1,2 e+1,3 e+1,3
hl‘l ' hzy h.II ' hzy h.II ' hzy

el el e2 e2
hW h?/y hW h?/y

e3 e3
hW h?/y

e+l,lize+l,lize+1,2ipe+1,2ipe+1,3i7e+1,3
hyl hyy hyl hyy hy-'n hyy

X

element e

element e + 1

(b) e el e €2

23 e+1,1}7, €3 e+1,1i7 e+1,2ipe+1,28 e+1,3ipe+1,3
h’.:.L + h:.L : hly + h-’L‘y h.:l : hxy h.:l : hxy
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Y vy Y vy

e3 e+1,1}7 €3 e+l,lipe+1,2ipe+1,2i7 e+1,3i7 e+1,3
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vy vy
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U,
3 "‘L
\l./

element e + 1

vector u®

vector u‘t!

vector u®

vector u®*!

Figure 16. Submatrices H, and H,, assembled into rows ¢ and 7 + 1, elements e and

e+ 1lof Hy for (a) discontinuous elements, and (b) semi-discontinuous elements

42




G. E. Bird

The DBE-SBFEM: Boundary element method

In the literature the means by which the system matrices are made square is
not discussed. It may be simpler to assimilate these coefficients at a more local
level, as illustrated in Figure 16, than attempt to fill global system matrices
that retain their square structures during their construction. Such a local
assimilation strategy was employed in the present work. This practice lends
itself towards parallel computation where the elemental submatrices are built

independently of their assembly into the global system matrices.

The local assembly of G,(P,) into G(P,) for discontinuous elements follows
that of H,(P,). However, if there is nodal connectivity between neighbouring
elements e and e+ 1, it may be necessary to keep the traction components
associated with both elements independent. If it is known a priori that there
is continuity of the tractions over the shared node between elements, columns
can be combined, like with the displacements, to form a single traction
coefficient. However, if there is a discontinuity in traction at the shared node,
then additional consideration is required. This discontinuity could be due to a
discontinuity in boundary conditions, for example, or due to a non-smooth
geometric feature, such as a corner, in which traction components on either
side of the node will be formed using respective unit normals acting, by

definition, in different directions.

Thus, in order to form the linear system in equation (2.32) using continuous

elements, at a shared node, for each direction

e if both the contributions to the traction are unknown, then they are
assumed continuous, and the corresponding displacement is known;
e if just one of the contributions to the traction is known, the

corresponding displacement is also known; or
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e if the displacement is unknown, the two contributions to the traction

coefficient are both known,

otherwise the requirement of a known Dirichlet or Neumann boundary

condition for each degree of freedom cannot be met.

As explained below, a discontinuous element assumption is made when using
the TBIE and thus the assembly of H,(P,) and G,(P,) into H'(P,) and

G/(P,) follows that of the discontinuous use of the DBIE described above.

2.7 Domain subdivision

The requirement of a known Dirichlet or Neumann boundary condition for
each degree of freedom can be violated at interfaces of BEM subdomains.
Consider the domain in Figure 17(a). The domain can be subdivided into that
of Figure 17(b) by the introduction of the interior interface I'y common to
both Qp; and Qp,

QB = QBI () QBQ (299)
FB = FBl |\ FB2 (2100)

Figure 17. Subdivision of (a) Qp and I'yg into (b)) Ly, Qpo, I'py, I'ps and I
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The formulation of the BEM equations can be performed on a subdomain by
subdomain basis and assembled into the BEM system matrix. Boundary
conditions are applied as with a single BEM domain, but with additional
coupling conditions

up; = Up (2101)
tIl = —t12 (2102)

where the ‘I’ subscript denotes the interface degrees of freedom.

2.8 Dual BEM

The DBEM was developed primarily for applications to fracture mechanics
and is summarised here. For further details, the reader is directed to Aliabadi
(2002). Consider a domain Qp, bounded by external boundary I'g, and
containing a crack whose upper and lower surfaces are I, and TI_

respectively, as illustrated in Figure 18.

()

Figure 18. (a) A domain containing a crack, and (b) its BEM model

By introducing the subscripts ‘4’ and ‘~’, equation (2.30) can be partitioned

Hpg Hg, Hg |[ug Gg Gg. Gg- |[te
Hypy H. H._ju =G5y G, G._|it, (2.103)
Hy H, H_||lu Gg G, G_ ||t
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Consider the collocation, first at P, , some source point on s on I',, and
second at P,_, some coincident source point s on I'_, as illustrated in Figure
19. A drawback of the nature of the DBIE kernels is that when considered, for
illustrative purposes, in terms of a polar separation (r,6), there is no
distinction between (r,,6,) and (r,0.). Equation (2.103) becomes ill-
conditioned owing to the repetition of terms caused by this apparent non-

unique collocation.

Figure 19. The BEM kernels make no distinction of the between collocation on (a) the upper
crack surface and (b) the lower crack surface, as the separation r and angle @ from some

source point ® to Gauss Point X are the same

Using the TBIE, the DBEM offers a different set of equations when
collocating on I'_, replacing the duplicated equations found using the BEM in

(2.103), such that the partitioned equation is rewritten

Hpg Hg, Hg |[ug Gg Gg. Gg- |[te
Hypy H. H._jju =G5y G, G._|it, (2.104)
Hy H.. H_ || u Gy G, G__ ||t

No further distinction between I', and I'_ is required, so assimilating I'r and

I', into I'g

FB = FE | F+ (2105)
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so rewriting I'_ as I'p for clarity
I'p =T_ (2.106)

equation (2.104) can be condensed into

|:HBB Hpp }{UB} _ |:GBB Ggp }{tB } (2.107)
Hps Hpp |lup Gps Gpp Jltp

where and the ‘prime’ superscript is dropped for brevity. Due to the nature of
the TBIE, the DBEM is known to be a non-trivial extension to the BEM.
Furthermore, although the choice of BEM element type is typically fairly
arbitrary, in the case of the DBEM, the use of continuous elements presents
computational complexities. The TBIE assumes C; continuity of tractions at
the nodes, which cannot be guaranteed where there is a discontinuity in
traction, such as at the crack tip illustrated in Figure 18(a). While efforts
have been made to overcome this and to allow continuous elements in the
DBEM, it may be more convenient to use discontinuous elements, as

illustrated in Figure 18(b). However, as shown later in §5.2.1, the use of

discontinuous elements can produce further complications of their own.

2.9 Adaptive integration

It should be noted that, unless otherwise stated, the remaining sections of this

chapter follow as a direct result of work undertaken by the author.

2.9.1 Algorithm

In order to achieve acceptable levels of accuracy in the non-singular and
weakly-singular integration of the BEM kernels, an iterative scheme was

developed by the author. The integration of the kernels is computed using 7%,
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quadrature points where 7 is the iteration number, and % = ¥, the

minimum number of quadrature points permitted by the algorithm.

The computation is repeated for 7 +1 where

Yie1 = ¥ +AY (2.108)

and Ay is the quadrature point increment rate. The absolute differences

between each of the twelve terms in H(P,) for iterations z and z+1 are

given by
[amie, )= Lo, ) ~[azara ) (205 @a09)
This process is repeated iteratively until
max ([ AH;(R); ]) < 7 (2.110)

where 7 is the threshold of minimum numerical accuracy in H*(P,) required
by the algorithm, or until %,,; = %u.«, the maximum number of quadrature
points permitted by the algorithm. Complementarily, the absolute differences

between each of the twelve terms in the traction coefficients

i=1,2

[aciR)y ] =[G ] -[e@ ]l (2.111)
are calculated iteratively until
max ([ AG{(R); |) < ¢ (2.112)

where 7; is the threshold of minimum numerical accuracy in G¢(P,) required
by the algorithm or until %,,; = #u.c - Similar adaptive schemes are used in

the integration of the DBEM kernels in producing H(P,) and G’*(P,) with
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thresholds of 77 and 7, respectively.

Absolute errors are appropriate as the order of magnitude of the terms in the
submatrices is such that normalised errors rapidly approach thresholds of

computation accuracy.

2.9.2 Verification

In order both to verify the adaptive integration and to establish suitable
values for the parameters used in the algorithm, convergence rates were
tested. Convergence was found to be problem-dependent, so in order to
estimate suitable parameters for general domains, convergence rates were

based on the results of a range of semi-random domains.

A circular domain as discretised with a random distribution of boundary
elements, which are then subject to further random perturbations, as
illustrated in Figure 20. The convergence of the terms in the submatrices with
y for each of the collocation/numerical integration pairs for 10 such semi-

random domains was analysed.

(a) (b)
1 —1f
0 0
1 1
-1 0 1 -1 0 1

Figure 20. Example of the semi-random domain defined by (a) a discretised circular domain,

(b) subject to perturbations and discretised further with discontinuous boundary elements
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The thresholds of accuracy beyond which increases in ¥ made no significant

difference were found to be

T, =107" (2.113)
7o =107 (2.114)
Ty =107 (2.115)
7, =107 (2.116)

Repeated analyses in this manner confirmed the suitability of these tolerances.
Depending on the rate of convergence towards these tolerances, the adaptive
integration scheme may significantly increase computation times. However,
this increase in computation times for the domains is less than those of post-
analysis adaptive mesh refinement-based solution to reducing errors. An
efficient, hierarchical approach to mesh refinement (Charafi et al., 1995) in
conjunction with the presented algorithm may provide a more suitable balance

between solution accuracy and computation time.

2.10 Example applications to fracture mechanics

The DBEM is considered well-suited to fracture mechanics in which crack
faces are assumed to be infinitesimally separated. Limitations of the
displacement accuracy are well-known, but are presented in the following
examples both to demonstrate code flexibility, robustness and reliability and
to provide a means for comparison with later examples, and should not be

considered a new application of this method.

The following benchmark problem is presented for the comparison of each of
the numerical methods in this thesis. With reference to Figure 21, a finite
domain Q models the immediate vicinity of the tip of a crack of length 2a

central to an infinite domain Q_ subject to a uniaxial load of ¢ such that the
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section of crack face modelled is of length @ and a <<a. Some a priori
knowledge may be used about the symmetrical nature of the crack face and its
effect on a suitable model. The boundary is subdivided into portions of
boundary I'; with known displacement boundary conditions, and portions of

boundary I', with displacements to be found as part of the solution:
r=r;,url, (2.117)

The displacement boundary conditions are defined by Williams expansion
describing displacements around a crack tip in an infinite plate (Williams,

1957), converted to the boundary coordinate system

(8} = () (2.118)
(@ 6 (b) - ::::’_’T“\\\\ © /’///;::f“\\\\‘
(R NS e Yo .
i 7 ! h ‘o / \\
Q.
20~ 2a
Sy | ‘ /,(\ VI .
s : : i i :
3 | : MD] ! Q :
\\\ . —_— I\ /
R | a =
.: \\\\\\\\ 3 2 \\Cé;ék\face ) 4
R N Y \\\\ | \ “tip
o e e @

Figure 21. (a) Through crack in an infinite plate, (b) the section of the domain modelled, and

(¢) the portion of the crack face and its vicinity to be modelled

Traction free boundary conditions are applied to I, .

An indication of the average global errors in the solution can be estimated by

means of I-based error norms of the displacement solution on I', given by

z (g (s) — upp(s) )2

Epy = - : sel,,c#0 (2.119)
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where k = z,y. The mesh is uniformly subdivided and the analysis repeated
order to assess the convergence characteristics of these displacements. While
only one problem is presented for comparison, multiple variants of the same
problem (with different boundary conditions, material properties, crack
lengths etc.) have demonstrated that the following results are indicative of

this method.

For the examples in this chapter

Q=Qp (2.120)

2.10.1 Through crack in an infinite plate example 1

The BEM is used to model the crack tip described in §2.10. With reference to
Figure 22(c), the dimensions of Qg are bxh, and I'y is subdivided into
portions of boundary I'; with known displacement boundary conditions (red
nodes), and portions of boundary I', with displacements to be found as part of

the solution (white nodes). In this case

=Ty (2.121)
(a) O (b) B R © o
L I S - 1 Ly
| y :
Q : //// | \ /// \
/ ! \ /- \
oo _ / 47 \
za /’/// /// Za \( /// \\
ol | j AR Q x
= ; : .y B h
: h y\\ : a 7’ .\F //’
1 \\\ : / \\ N \\ //
; - i , \ cfack-face %
‘ $ ¢ ¢ ¢ ¢ . \\\\ : o \«\—o—oh\\o\t—iQ—a—b—a—o—/—/
VoL S : o h Ip >

Figure 22. BEM analysis of (a) through crack in an infinite plate, (b) the section of the

domain modelled, and (c) the mesh where red and white nodes indicate I'; and T,
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The displacements of the domain and boundary portion I', are illustrated in
Figure 23(a) and Figure 24 respectively. Convergence characteristics of the
BEM are illustrated in Figure 25 using the uniform mesh refinement indicated

in Figure 23(b) where n is the number of degrees of freedom.

original
deformed

Figure 23. To-scale deformation of (CL) initial mesh and (b) uniformly-refined mesh

-7 -6
10 10
(@) 2 * ()8 * solution
T expected
7 L
1.5¢ 6f
5 L
- ~
\”1& 1 &;3 4
3 3
3 L
0.5 2
\\‘
1+ ‘
0—=o o) 1 0 : \“
0 0.5 1 0 0.5 1
S S

Figure 24. (a) 2~ and (b) y-direction displacement results on I,
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-6 -6
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Figure 25. Convergence characteristics of global error estimators (a) €2, and (b)e 2y
2.10.2 Through crack in an infinite plate example 2

The BEM is again used to model the crack tip described in §2.10, but the
assumption of symmetry is removed by domain subdivision. With reference to
Figure 26(c), Q; (of dimensions bx2h) is divided into subdomains Qg and

Qg , separated by interface portion I'7 such that

I = FBl |\ FB2 U FI (2122)
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Figure 26. Multizone BEM analysis of (a) through crack in an infinite plate, (b) the section

of the domain modelled, and (¢) the mesh where red and white nodes indicate I'; and T,

The displacements of the domain and boundary portion I', are illustrated in
Figure 27(a) and Figure 28 respectively. Convergence characteristics of the
multizone BEM are illustrated in Figure 29 wusing the uniform mesh

refinement indicated in Figure 27(b).

original
deformed

o =0l oo o1t

Figure 27. To-scale deformation of (a) initial mesh and (b) uniformly-refined mesh
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Figure 28. (a) 2~ and (b) y-direction displacement results on I,
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Figure 29. Convergence characteristics of global error estimators (a) Ep, and (b) £,
2.10.3 Through crack in an infinite plate example 3

The BEM is again used to model the crack tip described in §2.10, but the

assumption of symmetry is removed by the use of the DBEM. With reference

o6



G. E. Bird

The DBE-SBFEM: Boundary element method

to Figure 30(c), the elements on the upper and lower crack surfaces are co-

incident and their finite separation is for illustrative purposes only, and

I' = FB ) FD (2123)
(a) (b) T (©) P A
4 /,/' 1
t L N | i Ly
Q gy T 2 /o
e / | = | |
= \ ; ’j\l ; Q o
= \. ! R T B 2h!
; \\\\ | : a 7\\\ > j
: RN N \\ : //, \\\\\ a //,
Vb 1 ) S
' Yo Y R

Figure 30. DBEM analysis of (a) through crack in an infinite plate, (b) the section of the

domain modelled, and (¢) the mesh where red and white nodes indicate T'; and T,

The displacements of the domain and boundary portion I', are illustrated in
Figure 27(a) and Figure 28 respectively. Convergence characteristics of the
DBEM are illustrated in Figure 29 using the uniform mesh refinement

indicated in Figure 27(b).

original
deformed

g

Figure 31. To-scale deformation of (a) initial mesh and (b) uniformly-refined mesh
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Figure 32. (a) 2~ and (b) y-direction displacement results on I,
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Figure 33. Convergence characteristics of global error estimators (a) €2, and (b) £,
2.11 Boundary element local nodal distribution

A working assumption drawn from the literature, such as , (Aliabadi, 1997)

and (Portela et al, 1992), about the discontinuous boundary elements
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described in §2.3 is that the local nodal distribution

(2.124)

is preferred. When applied to a mesh of uniform element size, it produces an
evenly-spaced global nodal distribution, as illustrated in Figure 34(a). This
maximises the separation all nodes, and in turn, increases the dissimilarities
between each row in the BEM system matrices. This may contribute to the

assumption that equation (2.124) offers an optimum solution.

r r
W16 o6 olo o o (b)%o o—olo—o o}~
q 0
q 0 0 0
q 0
— R % Q'B _'jz_
q 0
q 0 0 0
q 0
o—o—o—+fo0—o0——o0 #o o oto o o%

Figure 34. Example local nodal distributions where (a)n" ={-% 0 +%} and
O)n ={-7% 0 +x}

However, the motivation for this assumption appears anecdotal and the

suggestion that an unevenly-distributed nodal configuration, such as
illustrated in Figure 34(b), produces a less reliable mesh is not necessarily
true. It is well-known that the major drawback of the configuration in
equation (2.124) is the increased discontinuity between neighbouring elements.
But the effect this has on the global solution has not been demonstrated in

the literature and as part of the present work is now illustrated by example.
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Consider a domain in which the model in §2.10.3 is an example of the general

case

N ={-n 0 +n} (2.125)

where 7 =§ for all e. By varying 7 such that 0 <n <1, the effect of the
local nodal element distribution and element size can be observed. The effect
of is examined by two stages of uniform refinement. This analysis was only
made possible by the present work in which general expressions for the
analytical integration of strongly-singular (§2.5.4) and hyper-singular functions

(§2.5.5) were developed. These results are summarised in Figure 35 and

discussed in §2.12.3.

10'8 \ \ \ \ \ |

Figure 35. - and y-displacement errors for example §2.10.3 with varying 7}
2.12 Discussion
2.12.1 Applications to fracture mechanics

Recalling that a << a, in each of the three applications to fracture mechanics
the BEM is seen to model the vicinity of the crack face well. However, the tip
itself suffers relatively high displacement errors owing to the boundary

element’s poor quadratic approximation to a non-quadratic solution. Mesh
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refinement merely shifts the problem closer to the crack tip without ever
eradicating it. This is a known trait of the BEM and other polynomial-based
approaches such as the FEM. Derived quantities, such as stress intensity
factors, will therefore also be subject to errors in the same way. So, in terms of
engineering applications, using the BEM displacement solution to estimate

stress intensity factors, should be undertaken with this note of caution.

The displacement discontinuities present in all three examples are due to the
discontinuous boundary elements used here. The analytical computation of the
singular functions in §2.5 requires discontinuous boundary elements be used
with the DBEM, so were used in the BEM in order to provide a basis for
comparison. Moreover, continuous boundary elements only provide continuity
in displacement, and the traction that is based on its derivative. Thus, the
replacing of discontinuous elements with continuous elements is not only
restricted to the BEM, but does not yield the continuous tractions at the node
common to neighbouring continuous elements, as assumed in the application

of boundary conditions.

Compared to the BEM, the multizone BEM and DBEM models yield a
greater number of displacement degrees of freedom in the solution. This
improves the error estimation in equation (2.119) by increasing the number of
terms in the error norm. Furthermore, by removing the assumption of
symmetry, they increase the applicability of the method. However, the BEM
was selected for its versatility and ease of meshing which is made more
involved by the multizone BEM approach. The DBEM does not suffer such
meshing complications, but is hampered by boundary condition limitations

and the integration of hyper-singular functions.
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2.12.2 Consistent error definition

Due to the nature of the problem analysed and its effect on the z- and y-
direction displacement solution, the components of the global averaging of
errors was separated into its a2 and y-direction components. The -

displacement solution suffers from the form of the expected solution in that

Uy, (1,68) = 0 as r—0 (2.126)

So in the direct vicinity of the crack tip, the small, but finite y-direction
displacement may be masked by the computational errors associated with
dealing with values in the region of 10", in addition to the inadequacies of its
polynomial approximation. The z-displacement solution suffers in a similar

way, but over the entire length of the crack face, not just near the tip, as
Uy, (7,0 = £7) =0 (2.127)

Perhaps a more attractive way to present results is to demonstrate the rate of
convergence of the displacement error on the crack face as far from the crack
tip as model can accommodate. This way, the effects of the polynomial
approximation to the non-polynomial displacement field on the crack face
would be minimised. Further, the relative error would be more favourable on
a computational level as the expected y-direction displacements have a greater
finite value. This yields both lower initial errors and a faster rate of
convergence, as illustrated for the DBEM in Figure 36. However, the decision
has been taken not to present only the applications at which the algorithm
excels, or even offers marginal improvement over other available methods.
Such a manner risks disguising the method’s relative merits and drawbacks.
Thus a more consistent basis for comparable results later is preferred, and so

‘cherry-picked’ results, such as those in Figure 36 are included for
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demonstration purposes only and will not be replicated for other examples.

-7 -7
(@) 10 ¢ (b) 10
-8
10
-8
10
:\z& m&
> 10 >3
-9
10
-10
10 ¢
-11 -10
1 2 3 1 2 3
10 10 10 10 10 10
n n

Figure 36. Convergence of ‘cherry-picked’ DBEM error estimators (a) £, and (b) £p,
2.12.3 Boundary element local nodal distribution

As to be expected, as 7 approaches 17 = 1, the errors rise sharply as the rows
in the BEM system matrices lose uniqueness and conditioning worsens.
However, it can also be seen that 7 =§ is among the worst performing local
nodal distributions and 77 = 0.92 offers the lowest errors when both z- and y-
direction displacements are considered. Indeed, a crude initial mesh where
n = 0.91 outperforms its counterpart where 7 =§ even after two levels of

mesh refinement.

Error characteristics vary in direction owing to the problem-dependency of
this effect, verified by further examples not presented here in which the
optimum value of 77 also varies considerably. As such, it is beyond the scope

of the present work to offer a strategy for a priori local nodal distribution
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optimisation, but simply to deliver a note of caution about the form of the

discontinuous elements used in the DBEM in the literature.

In order to facilitate comparisons with the results in the literature, the
boundary element local nodal distribution in equation (2.124) is used for the

results presented in this thesis.

2.13 Literature review

The roots of the BEM can be traced back to Green’s identities and beyond
(Cheng and Cheng, 2005), and as such the method is well-published in the
literature. The method has been adopted for many applications and the
author recommends Beer (Beer, 2001) for more tips for the practical
implementation of the BEM in stress analysis code, and Aliabadi (Aliabadi,
2002) and Becker (Becker, 1992) more details on the fundamental solutions.
There are many sources available for the implementation of the BEM, and
owing to the trigonometric properties of the fundamental solutions, they are
presented in many different ways. The decision to present them more
explicitly in this thesis was made in order to narrow the scope for transcrption

errors.

The DBEM is less well-known although in essence is formed simply through
the derivative of the DBIE with respect to the outward normal. Following the
first presentation of the boundary integral equations used in the DBEM and
this subsequent derivation (Hong and Chen, 1988), the method became more
widely used over the multi-zone approach (Blandford et al., 1981) in
applications with domain discontinuities. Several publications appeared in
which the DBEM was applied to fracture mechanics, general implementation

strategies of the method (Portela et al., 1992) and the use of reanalysis in

64



G. E. Bird

The DBE-SBFEM: Boundary element method

crack propagation (Portela et al., 1993).

Typically, when using the DBEM to model a fractured domain, the stress
intensity factors are estimated by means of the J-integral method (Portela et
al., 1993), which is assumed path-independent. The accuracy of the method in
calculating the stress intensity factors is dependent on the boundary
displacement solution and the ability to define a path around crack tip.
Inaccuracies may occur with internal point calculations for which the ratio of
the distance between the internal point the closest point on the boundary, and
the length of the element at that point on the boundary, is too small. This is
in addition to the contribution to the integral by the displacements found on
the crack faces where the discontinuous quadratic elements fail to capture the
asymptotic behaviour of the boundary displacement in the immediate vicinity
of the crack tip, as in Figure 31. This, albeit small, path dependency was
observed in the extension of the DBEM with enrichment functions (Simpson,
2010), an extension to using the partition of unity in much the same way it
extends the FEM to XFEM. A strategy for guaranteed avoidance of this path
dependency suitable in the analysis of general engineering domains without

some form of a posteriori analysis remains elusive.

The DBEM is not limited to the examples illustrated in this chapter where
some a priori knowledge of symmetric geometry is used or where
discontinuities extend to a boundary. Discontinuities found within a domain
can be modelled using the DBEM, such as interior cracks (Portela et al.,
1992), and like the BEM, in applications outside of fracture mechanics, such
as modelling infinitely-thin, degenerate boundaries within an electrostatic
problem (Liao et al., 2004). This vastly reduces the number of elements

required to model such internal discontinuities than a finite element method
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equivalent where the lack of symmetry would necessitate many additional

domain elements.

An underlying implication that the nodes of the coincident boundary elements
used in describing the geometry of the upper and lower crack surfaces are also
coincident has been a working assumption through the DBEM literature.
Consequentially Portela et al. concluded that because of the resulting non-
unique equations in the BEM system matrix, the solution of general crack
problems cannot be achieved with the direct application of the BEM, in a
single-region analysis (Portela et al., 1993). This working limitation of nodal

coincidence is overcome in §6 of the present work.

2.14 Conclusion

The well-known BEM and its extension the DBEM have been assessed.
Standard techniques for their implementation have been presented alongside
complementary additions developed by the author, and by the author et al. as
a direct part of this work. A general adaptive integration scheme has been
presented that offers greater confidence in the numerical integration of BEM
and DBEM kernels than a more arbitrary approach to determining the

number of Gaussian integration points.

Expressions for the analytical integration of strongly-singular and hyper-
singular functions for general boundary element local nodal distributions have
been developed. Although motivated by their need in the coupled method
discussed in later chapters, these new formulations have been applied in the
reconfiguration of elements with redistributed local nodal coordinates. The
resulting analysis revealed the distribution used in models, well-publicised in

the literature, are far from optimum.

66



G. E. Bird

The DBE-SBFEM: Boundary element method

Results in this thesis have been presented with emphasis focused on
consistency and comparability; methods demonstrated to improve only the
accuracy of specific problems by fine-tuning their configurations, such as local
nodal distributions, are not applied to the general use of the BEM throughout

the present work.
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3 Scaled boundary finite element method
3.1 Introduction

In this chapter, the scaled boundary finite element method (SBFEM) is
introduced. First, the concept of modal superposition, on which the SBFEM is
based, is described. A detailed numerical formulation of the SBFEM follows,
with examples, demonstrating its suitability for applications to fracture

mechanics. Its other strengths and limitations are assessed.

Concepts new to the SBFEM are discussed and the motivation for their
development by the author is then presented. A new semi-discontinuous scaled

boundary finite element is defined and verified by example results.

The method’s historical development is discussed in a literature review,
detailing its introduction as a method for use in applications to unbounded
domain modelling, to its more recent application to fracture mechanics. The

use of the SBFEM in coupled numerical methods is also discussed.

The data in numerical examples in this chapter are obtained by the

development of the author’s own code.
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3.2 Modal superposition

Consider a domain subject to a displacement field. The deformation of the
domain can be described by the combination of displacement modes 1, such
as those illustrated in Figure 37. The minimum number of displacement
modes required to define the deformation of the domain by the superposition
of displacement modes is defined as M,; and is problem-specific. A
displacement mode 1; describes the form of the deformation, but neither the
magnitude nor direction. In example 1 the deformation of the domain can be
described by a single displacement mode; examples 2 requires multiple

displacement modes.

A sample of displacement modes associated with the deformation of the
domain illustrated in Figure 37 can be found in Appendix B, where it can be
seen that some displacement modes have an obvious physical interpretation,
such as translation, rotation, skew etc. Some displacement modes are less-well
described and differ only subtly from other modes. The effect of these
displacement modes differs from domain to domain, as illustrated by the

sample in Appendix C.
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Example 1 (a)Original configuration (b) Displaced configuration (c)Displacement mode
T 1, : y-translation
My, =1
) )
x x
Example 2 (a)Original configuration (b) Deformed configuration  (c¢)Displacement modes

T 1, : y-translation

—» 1, : z-translation

A 1y : rotation

Y Y
>< 0, : expansion
A\

x x M, =4

Figure 37. Two examples of: (1) the displacement of a bounded domain due to one
displacement mode and (2) the deformation of a bounded domain due to multiple

displacement modes

The superposition of m displacement modes can be used to estimate the
deformation of the domain. It is necessary to determine which of the infinite
range of displacement modes contribute to the deformation of the domain and
by how much. If the appropriate m displacement modes are selected and
m = M, , then the estimation will be exact, else the estimation will remain

an approximation.

For a domain with n degrees of freedom, the " displacement degree of

freedom, u;, where ¢ = 1..n, can each be described by
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where each of the m terms in this series is considered the product of a
displacement mode component i, , contributing to each degree of freedom u,
by some corresponding factor ¢;. It should be noted that the term @, refers to

the " term in the column vector @ ; describing mode j, and is not a tensor.

For each displacement mode 1, there exists a complementary force mode p,,
describing the force required to induce its corresponding displacement mode.
The force p,, where 7 = 1...n, can be described by

m

pi = 2, Ciby (3-2)

j=1
where each of the m terms in this series is considered the product of a force
mode component p,, contributing to each degree of freedom p, by some
corresponding factor ¢,. It should be noted that the term p, refers to the i

term in the column vector P, describing mode 7, and is not a tensor.

The aim of the SBFEM is to estimate u, and p, by numerically determining

C (the vector of m contribution factors ¢,, and the nxm displacement mode

J?
components 4, and nxm force mode components p, that define vectors u,

and P, respectively.

3.3 Numerical formulation
3.3.1 Method introduction

Like the BEM, by modelling the boundary only, the SBFEM can be used to
model both finite and infinite domains. Indeed, the modelling of the finite
domain results in the modelling infinite domain as a by-product, and wice-

versa. In doing so, the efficiency of the SBFEM may be called into question.
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However, the SBFEM does not require the elemental discretisation of the
volume, thus comparing favourably with the FEM, nor does it require the
computation of weakly or strongly singular integrals, thus comparing

favourably with the BEM.

For the purpose of disambiguity, it should be stated that the numerical
method described here is available in the literature. However, along with the
overview of modal superposition, the following derivation offers a fresh
perspective with the intention of providing a clearer and easier understanding
of a method that is far less daunting than its reputation suggests. Efforts have
been made to address the practical implementation of the method in code,
rather than the more general overviews offered in the literature. Some aspects
of the derivation are borrowed from that of Deeks and Wolf (Deeks and Wolf,

2002a), and Yang (Yang, 2006).

Further details of the contributions made to the method and its development
by the author and others can be found in §3.12. Following the convention
found throughout this work, the subscript ‘S’ is used to denote the SBFEM to
allow distinction from, and comparison with, terms relating to other numerical

methods.

3.3.2 Scaled boundary coordinate system

A domain Qg modelled using the SBFEM requires conversion from a
Cartesian coordinate system to a scaled boundary coordinate system. A
geometrically-specific coordinate s is defined as acting in the circumferential
direction, running parallel to the boundary I'q. The s-axis is scaled about a
geometric scaling centre (zy,1,), by a radial coordinate &, defined such that

& =0 at (z9,y9) and & =1 at Iy, as shown in Figure 38.
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Qg
(a) (b)
I
Qg A i A Is
(%o Y0) $ (%0, Yo) R
e20 05 2L £ 20 EE1 156=w

Figure 38. The boundary T’y follows s, scaled about the scaling centre (z,,y,), modelling a

domain Qg that is (a) bounded and (b) unbounded

A function is sought that describes the " displacement of degree of freedom
u;(£,s) for values of & within a bounded range. This bounded range depends
on the location of (xy,yy). In the finite domain case, (zy,yy) is located
internally such that the domain is bounded by 0 < & < 1. For the infinite
domain case, (zy,yy) may be located externally such that the domain is

bounded by 1< & < .

Defining the Cartesian origin as coincident with (xg,y,), the coordinate

transformation is given by

z = x5 + &x(s) (3.3)
Y= Yo + Sy(s) (3-4)

where z(s) and y(s) describe the Cartesian coordinates as functions of the

boundary coordinate, and equations (3.1) and (3.2) are transformed into
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wl(&) = 3 Gy (E.s) (3.5)

pi(&,9) = D &py(E,s) (3.6)

These terms are used to define a statement of the principle of virtual work

(Deeks and Wolf, 2002a), transformed from

[ Su(z,y)" t(w,y)dls - [ Se(,y)" o(,y)dQs = 0 (3.7)
I's Qg
into
[ Su(s) t(s)dTs — [ 6e(&,5)" 0(£,5)dQs = 0 (3.8)
s Qg

where body loads have been neglected for simplicity, and

ui(z,y) = u;(§,9) (3.9)
ti(z,y) = (S, s) (3.10)
oi(z,y) = 0i(¢,9) (3.11)
&i(z,y) = &(S,5) (3.12)
pi(z,y) = pi(S,9) (3.13)
or in vector form
u(z,y) = u(g,s) (3.14)
t(z,y) = (S, s) (3.15)
o(z,y) = o(&,5) (3.16)
e(z,y) = &(&,s) (3.17)
p(z,y) = P(S,s) (3.18)

3.3.3 Boundary integration

The boundary I'g is discretised in the usual manner by means of a piecewise
polynomial isoparametric continuous finite element approximation as

described in §2.3.1. Nodal interpolation can be used to estimate displacements,
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tractions, strains, stresses, and forces in the in the s-direction using the
continuous shape functions N(s) described in §2.4. Equations (3.14) to (3.18)

are modified to reflect the discretisation in s.

u(¢,s) = N(s)u() (3.19)
t(g,s) = N(s)t(5) (3.20)
a(¢;s) = N(s)o(S) (3.21)
e(5,s) = N(s)e(¢) (3.22)
p(¢,s) = N(s)p(s) (3.23)
and so it follows the discretised form of equations (3.5) and (3.6) are
u;(&,8) = N(s)u (&) (3.24)
pi(5:s) = N(s)pi($) (3.25)
where
Ul(f) = ;5]'712‘]‘ (f) (3-26)
n() = 5@ (3.27
=1

u(&,s) = N(syu(¢) (3.28)

p(£.s) = N(s)p(¢) (3.29)
where

u($) = Zlyﬁm (3.30)

b8 = 30,9 331)

With reference to Appendix D, the discretised form of the principle of virtual
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work is found by substituting expressions for the nodal strains, forces,

displacements and tractions resulting in

Su(ér)” [ t(s)ds -
S
1 1 . B 1 2,0 1
I [B (ou(é) s + B <s>8u<f>} [DB (9ulé) ¢ + DB(s) 3 u<5>}|J<s>| £déds

=0
(3.32)

which, can be rewritten

du(&)" (Eou(ér) e + B Mulér) - p(&r))

1

[ou(E  Bofu(@)g + (Bo + BT ~Er)u@), - Eau(é) |a¢

0
=0
(3.33)
where u(é) and p(&r) are the vectors of nodal displacements and forces at
the boundary (denoted by & where £=1), and E;,, E, and E, are

boundary integrals given by

E, = [B,(s)" DB, (5)|J(s)|ds (3.34)
S

E, = [By(s)" DB,(s)|J(s)|ds (3.35)
S

E, = [By(s)"DBy(s)| J(s)|ds (3.36)
S

and J(s) is the Jacobian matrix. In a manner similar to that of discretising
the boundary element method, these boundary functions, equations (3.34) to

(3.36) are approximated by

L
E, = ) Ej (3.37)
e=1
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E, = iEf (3.38)

e=1
E, = ) ES (3.39)

e=1

where

Ej = _jl B, (7°)'DB,(n°)J¢d7° (3.40)
Ef = IBQ(ﬂe)TDBl(UC)JCdﬂe (3.41)
ES = j B, (7°) DB,(5°)J¢d ¢ (3.42)

and L is the number of elements on boundary I'g. Unlike the BEM, these
construction matrices are not generally full and asymmetric. Only the
neighbouring elements that share common nodes with element e contribute to
each row in these matrices resulting in banding with overlapping elemental

submatrices, much like the appearance of a FEM stiffness matrix.

In solving equation (3.33) for u, to dismiss the trivial solutions (8u(&) =0
and du(&) = 0), both their coefficients must simultaneously be zero. Thus the

following conditions must be satisfied.

Eoéru(ér) ¢ + E,"u(&)-p(&r) =0 (3.43)

Eofu(é) s +(Ey + BT - E, Ju(é),; - %Ezu(f) =0 (3.44)

In order to provide simpler manipulation later equation (3.44) is rewritten
Eofzu(ég),.f.f + (Eo + ElT -E )fu(f)f - Eu($) =0 (3.45)
As equation (3.45) is a set of second order partial differential equations of the
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Euler-Cauchy type in the form

AE(E) g + (€S ¢ + H(E () =0 (3.46)

its solution is known to take the form

m

u(é) = chaj‘lfcpj (3.47)

By the evaluation of coefficients of equation (3.30), repeated below,

u®) = 3 5,8) (3.48)

the displacement mode j can be defined

0,(¢) = f_/l"CPj (3.49)

and

(el
Il
¢}

(3.50)

The vectors ¢; are the unscaled displacement modes, vectors comprising n
unscaled displacement mode components @, contributing to each (scaled)
displacement mode 1; by some corresponding factor f"%, where the

exponent A, is to be found later.

Similarly, the force mode j can be defined
15]‘(5) = f_ﬂjq]' (3.51)

The vectors q; are the unscaled force modes, vectors comprising n unscaled
force mode components q;;, contributing to each (scaled) force mode p; by

some corresponding factor &% . It should be noted that the terms @; and g
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refer to the " term in column vectors ¢; and q; describing unscaled mode j,

and are not tensors.

These scaled displacement and force modes #; are §; are products of the
geometric and material properties of the domain under analysis. Their scaling
at this point is only by their respective factor &% . While these factors are
problem-specific, they remain independent of the boundary conditions. The
extent of the contribution of each mode to the solution of this problem under
a particular set of specific boundary conditions will be determined by the
further scaling of these modes by their corresponding contribution factor in ¢,

discussed later.

As the modal definition (¢;, q; and A) is independent of boundary
conditions, an arbitrary set of contribution factors can be assumed in order to

proceed. Thus, for convenience, a set of contribution factors are prescribed by
c; =1, j=1l.m (3.52)
3.3.4 Eigenvalue problem

Consider the contribution of mode j to the " displacement degree of freedom
u; (&) . Selecting the terms corresponding to mode j and recalling that ¢; =1,

this contribution and its first and second order derivatives are given by

w(é)|; = &gy (3.53)
Uz(f)§|J = —ﬂjf_/lj_l% (3.54)
(&) e |]» = A4;(4; + 1)65_/1j_2(0zj (3.55)

Similarly, the contribution of mode j to the " force degree of freedom p;(¢).

is given by
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pi(§)|j =¢&h q;(&) (3.56)

Extracting mode j from sets of equations (3.43) and (3.45)

Eosru(ér) ¢ |_7» + B u(ép)], ~p(&)l; =0 (3.57)

Eofu() s, + (Bo+ B B Juld)g, - zBau(@), =0 (358)

and substituting them with equations (3.53) to (3.56) gives

E(é4;(4; + 1)5_%_2%(5) - (Eo +E" -E )/?'jég_lj_lﬂ’j(é:) - %Eﬁ_%(ﬂzj(f) =
3.59)
—Eofrfljf_ﬂj T 8) + ETéH @ (&)= ¢ i 3;($) =0 (3.60)
(Ey'E " 0,(8) — Eg (&) = 4,0,(&) (3.61)
((Eo/i)/l%‘ (&) - EIT;L(Dij(éZ) + El/l%' (&) - E2¢zj(§)) =0 (3.62)

Substituting equation (3.61) into the first and third terms of equation (3.62)

yields

((B\Ey'E," — Ey)p,(8) - EiE'q;(£)) = Ag;(&) (3.63)

{("1](5)}
’ {%](5)}
an (é:)

or in matrix form

(3.64)

{ 4 J(f ) }
|: Eo_lElT —]E‘)o_1 j| Op; (é:)

EE,'E," -E, -EE," {%](6)}
(Jnj(é:)

or
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E,'E," “Ey" |[9;(8)) .{@ﬂ§q>
{ElEO_lElT -E, —E1Eo_1}{%‘(§)} =4 q;(¢) (3.65)

Assembling equations (3.61) and (3.63) for all n degrees of freedom and m

modes yields a system

7V =WA (3.66)
where
E,'E,* -E,*!
7 - 0 0 (3.67)
EE,"E' -E, -EE;"
(4 0 0 0 0 0 ]
0O .. 0 0 0 O
A = 0 0 '0 0 O (3.69)
0O O .0 0
0O O 0o . 0
L0 0 0 0 0 A,

In order to solve the eigenvalue problem, Z must be a square matrix, and so
m = 2n (3.70)

3.3.5 Eigenvalue solution

A vector of length 2n comprising the diagonal terms of A is defined as

A = diag(A) (3.71)

and recalling that the SBFEM models both bounded and unbounded domains

simultaneously, A is subdivided into two vectors of length n

e
x_{h} (3.72)
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where X, contains the n eigenvalues A; whose real parts are negative and are
used in the solution to the bounded (or finite) domain case, and X, contains
the n eigenvalues whose real parts are positive and are used in the solution to

the unbounded (or infinite) domain case.

The matrix of corresponding eigenvectors is divided into 4 submatrices of size

nxn

D, D,

U= _ (3.73)
Qr Q.

For the bounded (or finite domain case), the eigenvalues and matrices of

modal displacement column vectors and modal force column vectors are given

by
NP (3.74)
Q = Qg (3.76)

For the unbounded (or infinite domain case), the eigenvalues and matrices of

modal displacement column vectors and modal force column vectors are given

by
A= AL (3.77)
d=3_ (3.78)
Q=Q. (3.79)

3.3.6 Stiffness matrix

By assembling m sets of equations (3.26) and (3.27), the matrices of
displacement and force mode column vectors ® and Q can be seen to be

related to the nodal displacements and forces by
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u($) = ®Fc (3.80)
p($) = QFc (3.81)

where F is a diagonal matrix that scales the modal displacement and force

matrices and is given by

EA0 0
F=| 0 . 0 (3.82)
O O f_ﬂ'm

Equations (3.80) and (3.81) are rewritten

d'u(é) = ¢ '®Fc (3.83)
Q'p($) = Q'QFc (3.84)

and combined to form
Q@ 'u($) = p($) (3.85)

which, when evaluated at the boundary, forms the stiffness equation

Q® 'u(ér) = p(ér) (3.86)

in which the absence of ¢ shows the arbitrary nature of the contribution
factors in the formation of the displacement and force nodes and confirms the
independence of the boundary conditions to the modal definition. The SBFEM
stiffness matrix K is the product of the matrix of force mode contributions

Q and the inverse of the matrix of displacement mode contributions P.

Kgu(¢r) = p(ér) (3.87)

Like the FEM for linear elasticity and infinitesimal strains, K is symmetric.
However, unlike the FEM, Ky contains only boundary degrees of freedom and

is fully populated. This linear system of equations can be solved in the usual
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manner by the application of nodal displacement and force boundary

conditions.

3.3.7 Contribution factors

With the boundary problem solved, it is possible to solve the domain problem.
First, the contribution factors ¢ must be found (replacing the vector of
arbitrary boundary conditions used to compute the mode shapes) such that

equations (3.24) and (3.25) can be solved for u(¢ # 1).

The equation for the domain displacement (for lines of constant s)

e =2k 0 (389
can be rewritten using equation(3.70)

RN (3.9

replacing the number of terms in the summation from m to n reflecting the
discarding of the n modes depending on whether the domain is bounded or

unbounded. At the boundary where & =1, this is rewritten

w(&) = T em(é) (3.90)

and thus c¢ can be found by the product of the nodal displacements at the
boundary u(&r) and the inverse of the matrix of modal displacement column

vectors ®7!

c=u(f)e™ (3.91)
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3.3.8 Stress recovery

The stress field over Qg, given in the principle of virtual work, is extracted
from equation (3.32) as

o(é,5) = DB (s)u(é) ; + DB2<s>§u<§> (3.92)

and can be recovered using the modal displacements and contribution factors
n L
o(&,s) = DY ¢, (=ABy(s) + Bs(s)) @, (3.93)
j=1

The inter-element discontinuity of stresses at shared nodes, due to the
discontinuity of the derivatives of the shape functions in By(s), is a known
problem that manifests itself in a way similar to that of the FEM. As with the
FEM, raw nodal stresses can be smoothed by means such as simple averaging

of stresses, or by superconvergent patch stress recovery techniques (Deeks and

Wolf, 2002b).

A critical evaluation of stress recovery using the SBFEM is made as part of

the present work, illustrated by example in §3.10.

3.3.9 Boundary mesh

In this section the discretisation of the model is explained by means of an
example. Consider the domains in Figure 38. The boundary I'g is discretised
in the usual manner by means of a piecewise polynomial isoparametric
continuous finite element approximation. One mesh can be used to model both
the bounded and unbounded domains, as illustrated in Figure 39. As in the

conventional FEM, the mesh requires nodal connectivity between the
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elements, although it will be shown in §3.8 that this requirement can be

overcome in limited circumstances.

In the present work, the boundary is discretised using quadratic elements with
equal nodal spacing, unless otherwise stated. This discretisation allows the
element-by-element integration of equations (3.34) to (3.36) in much the same
manner as the FEM, but unlike the FEM, is performed over the boundary
only. As with the BEM, described in §2.5, the integration is performed using
Gaussian quadrature. Unlike the BEM, however, the functions in the SBFEM
are not singular in nature and integration can be performed using Gauss

points distributed in the standard manner.

Qg
O @ Q O o 0 0O Q O o
(a) M (0) M
o ols O o '}
Qg
(0, 90) (0,%0)
- ® - O °® -
e e o) 0
O O—o—O0—¢ O—O0—O0—0—=0

Figure 39. The same boundary mesh can be used in either the (a) bounded or (b) unbounded

domain cases

3.3.10 Boundary ‘line of sight’ requirement

The SBFEM is not without its limitations. Aside from a linear elastic

assumption, other geometric factors limit the method’s applicability. The
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location of the scaling centre (zy,y,) is both important and subject to
geometric limitations. The functions describing the displacement and force
degrees of freedom u(§) and p(&) are continuous in &. Thus, no
discontinuities may be permitted in the &-direction”. This is commonly
referred to as the boundary line of sight requirement and is illustrated in
Figure 40 where it is illustrated that sections of Qg cannot be ‘seen’ from
(%y,19) without crossing I's. By moving (zy,y,), a valid scaling centre can be

found from which all sections Qg can be ‘seen’ without crossing I'y.

ve' O O ¥e' O &
(a) (0)
o) o)
I's o I's O
S O S O
Res O
- (z0,%0) Q| Nos
o) 0
0 0
(x07y0).
< O— < o—=¢ O

Figure 40. Boundary line of sight requirement: (a) not satisfied (white) and (b) fully satisfied

In some instances, this may not be achievable due to geometric restrictions,
such as in Figure 41, in which case the domain can be substructured into
subdomains 1 and 2, with scaling centres that satisfy the boundary line of
sight requirements for their respective subdomains. Figure 41 is supplied for
completeness, however, as in the work presented in this thesis, no such

substructuring is required.

iv

with the exception of unbounded domains with side faces, described in §3.4, examples of
which do not appear in this work.
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O © O o O
(a) (b) i
(20,%0)1@
Iy Q I'g; @
Qg
- - O
Qg
o g @
(20,%0)2@
< 2 o—=0 o

Figure 41. Boundary line of sight requirement (a) cannot be satisfied without (b) multiple

subdomains
3.4 Side faces

The method as described above is sufficient for the modelling any suitable
domain using the SBFEM. However, this in itself offers limited advantages
over other numerical methods. The advantage of the method of most use and

interest in this work is side faces.

3.4.1 Definition

Provided the boundary line of sight requirement is adhered to, the scaling
centre (zy,yy) may be located anywhere within a finite domain, or anywhere
in the void within an infinite domain. It is also possible for (zy,y,) to lie on

the boundary at & =1.

If (x9,y) lies on the boundary, two & axes each overlap a section of
boundary, and the solutions relating to the displacements of these axes (and
the sections of boundary they lie upon) can be found without the numerical
interpolation required by other sections of boundary described by equation
(3.24). These two sections of boundary are known as side faces, and the side

faces to the left and right of the scaling centre are labelled A; and Ap
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respectively.

With reference to Figure 42, the formation of side faces is sometimes referred
to in the literature as the case of the missing triangles, or pyramids in three
dimensions (Wolf and Song, 2000). It should also be noted that in the cited
reference, the term interface is used in a context not relevant to the present
work and it should be noted, unless otherwise stated, the term interface will

relate to the frontier between coupled numerical methods.

A

Figure 42. Schematic illustration of the formation of side faces A, and 4. As the scaling

centre is drawn to the boundary, the shaded triangular regions disappear. Sections of the

boundary are overlaid by axes in &

The side face property of the SBFEM has desirable applications. Sections of
boundary that are known a priori to have solutions deemed inappropriate for
a polynomial-based approximation, such as singularities and discontinuities,
can be modelled more accurately by the modal superposition described by the

method’s solution in the radial direction.

The use of side faces in the numerical modelling of cracks forms the
fundamental basis of the work in this thesis. By placing of the scaling centre
coincidentally with a crack tip, the singular behaviour exhibited along the
crack faces is captured using modal superposition rather than by an

alternative polynomial-based method.
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The implications of side faces on the modelling of a domain using the SBFEM
are in boundary integration leading to the construction of Ey, E; and E,,
and the application of boundary conditions. Otherwise, the formulation of the

SBFEM remains the same.

3.5 Boundary integration

The implications of the presence of side faces on the computation of boundary
integrals E;, E; and E,, are illustrated by an example. Consider the finite
domain Qg, bounded by a discretised boundary I'g, with scaled boundary
elements labelled locally and according to respective sections of I'q. Domains

with an internal and boundary scaling centre are illustrated in Figure 43.

Lsy.e0 sye1 AL
O O O O o < 9
(a) (b) (0, 50)
05 Y0
g1 O QO I'sser  Tgre1 @
e -QS .e Sl.el 'QS
(x07y0) A
O O O R
I'g1e0 Q Ols3er Tgren@
aY ) fl\ ) 'a aY ) fl\ ) '
@ O Q O % @ O Q O s
I'so.e1 o0 5961 Lsp.0

Figure 43. Locally element labelling of the discretised boundary T'g of a domain Qg with (a)

an internal scaling centre and (b) a boundary scaling centre

Matrices E;, E; and E, are banded and symmetric, exhibiting the local
connectivity of elements in much the same way as a one-dimensional FEM
stiffness matrix. Element connectivity can be observed where sections of the
matrices overlap at adjoining nodes. The existence of side faces A; and Ap

reduces the extent of the discretisation, and thus the size of matrices E;, E;
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and E,, and results in an open boundary. These effects are illustrated in the
form of matrix block representations in Figure 44, where it should be noted
that as the discretisation is no longer a closed loop the overlapping of

elemental blocks does not wrap about each end of the diagonal.

(a) L] (b)

I'gy 1 ['gpe1

S2.el S2.el

I'g2 e I'g2 e

S3.el

S3.e2

Sd.e

1
FSzx.r.z_

Figure 44. Block representation of banded, symmetric matrices E,, E; and E,, with

elemental connectivity at the adjoining nodes for domain with (a) an internal scaling centre

and (b) a boundary scaling centre
3.6 Mode identification

It can be shown, that the terms in A comprise integer multiples of ¥ and %
respectively. For each integer multiple of *}4 there are two eigenvalues, one
with a negative imaginary part and one with a positive imaginary part. In
practice, the eigenvalues are unlikely to be exact integer multiple of *}, but
with increased n, the real part will converge towards integer multiples of J .
The identification of the modes, where A, = -}/, is important in this work.
These are the crack opening and crack shearing modes and so are labelled

modes j = jg, and j = jg, respectively for future reference.
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3.6.1 Translation modes

Some other modes have clear and more obvious physical interpretations, as
illustrated in Appendix B. Two such modes are the 2- and y-translation
modes, denoted j=j, and j=j respectively for future reference. As

translation modes are displacement modes independent of &, as illustrated in

Figure 45,
ij_ﬂj%(f) = ;@ (3.94)
or where 4; = 0.
(a) /1JL =0 (b) /1Jy =0

Figure 45. The 2- and y-translation modes (a)j, and (b) j, are independent of &

As there are four such eigenvalues (two for each of the unbounded and
bounded domain cases), and as zero-value terms, their distinction cannot be
made by the sign of their corresponding eigenvalues. Even though the
calculation of the eigenvalues is unlikely to result in exact zero values for

these modes, it cannot be assumed that the two bounded 2~ and y-translation
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modes will have a negative finite value, or that the two unbounded 2 and y-

translation modes will have a positive finite value.

Thus, the two missing translation modes are omitted from fx, a subset of A

for which the appropriate bounded or unbounded modes have been identified
A
A=14 (3.95)
ﬂjy

Similarly, ® and Q are truncated and denoted & and Q

<I’=[<i’ P, CPjy] (3.96)
Q=[Q a;, q, | (3.97)

3.6.2 Reconstruction of translation modes

Consider a domain constrained in both the 2- and y-directions, as illustrated
in Figure 46(a). With a priori knowledge of the nature of the lost
displacement modes (4; =0 and 4; =0), these lost translation modes can

J:

be re-inserted in order to complete A

A
A=40 (3.98)
0
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Figure 46. Constraining 2~ and y-direction of Qg by constraint of (a) boundary nodes, and

(b) side faces

The corresponding column vectors ¢; and P, ; the unscaled displacement

modes, are defined to ensure rigid-body translation independent of &

0
0 1
®=||d : : (3.99)
0
LL . 0 1 .

These rigid-body translation modes, require no reaction forces, so equilibrium

is ensured by defining the corresponding force column vectors q; and qj,

0] (0
0| |0
Q=||Q : : (3.100)
o |0
LL . 0 O .

3.6.3 Reconstruction of translation modes with side faces

Zero-displacement boundary condition constraints can be applied to side faces,

as illustrated in Figure 46(b), but with additional considerations (Deeks and

94



G. E. Bird

The DBE-SBFEM: Scaled boundary finite element method

Wolf, 2002a). The constraint of side faces results in the omission of rows and
columns from E;, E; and E,, and in addition to defining modes j, and j,
as above, each column vector ¢; and q; will omit terms relating to 7, and i,

the constrained displacement degrees of freedom.

[ @ ] {1 {@,)

® = {%1 %(n—Q)} ;.. ®i.j, (3.101)
{%1 ¢iy(n—2)} @5, ®i,j,
[ Q 1 {a,} {a;}

Q={a1  Gua} @G Gy (3.102)

{Qiyl Qiy(n—2)} 4,3, 4i,j,

The missing terms from @ corresponding to rows i, and 4, can be inserted

[ & 1 {é.) {%,]
&=|{0 - 0} 1 0 (3.103)
{0 -~ 0} 0 1

The missing terms from Q are the forces reacting the total x- and y-direction
forces for each mode, which can be found by ensuring force equilibrium for

each mode, i.e.

¢ = _qu’j where? # j, (3.104)
i=1

G =-2,4  wherei# j, (3.105)
' i=1

Neither the application of zero-displacement boundary conditions in
orientations other than parallel to the Cartesian axes, nor the application of
non-zero-displacement boundary conditions to side faces (Deeks, 2004), are

required in the present work and are not described here.
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3.7 Applications to fracture mechanics

As the form of the solution in the radial direction is the modal superposition
of an exponent series, including those on side faces, the SBFEM is considered
analytical in &. However, as the solution is interpolated numerically in s, the

method is often referred in the literature as semi-analytical.

The semi-analytical form of the solution is desirable in modelling problems
whose solution is known a priori to be modelled better by an analytical series
using a finite number of modes than a polynomial-based alternative. If there is
one principal or dominating stress field to be modelled, the SBFEM may be a
good choice if the scaling centre can be placed such that the variation in this
stress field is aligned with the radial axes, without violating the line of sight
requirement. By coinciding the scaling centre with a crack tip, jg, and jg,
may be identified and used in the estimation of the associated stress intensity

factors (Yang, 2006). Rewriting equation (3.93)
i .
o(g:5) = 2 e ) (3.106)
j=1

where
d(s); = D[B,(s) — /LjBl(s)]cpj (3.107)

and ¢(s); is the mode j vector of contributory stresses at s

Vi (8)j
Bb(s); = ¥y, (s); (3.108)
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3.7.1 Stress intensity factors

It is possible to define generally r(¢,s), the distance from the crack tip r, as a
function of radial and boundary coordinates & and s. With reference to
Figure 47, in which side faces are omitted for clarity (but without loss of

generality), it can be seen that r(&,s) simplifies to &r(s).

(a) © > (b)
gr(s)

Figure 47. An example SBFEM domain with (a) geometrically-scaled boundaries and (b) the

resulting functions r(&,s) = &r(s)

More specifically &, is then defined as the distance (scaled by &) from a
crack tip to s, the point on s coinciding with 6, =0, where 6, is the local
crack angle defined in §1.4. The substitution of &7, and equation (3.106) into

equations (1.1) and (1.2) yields

K; =1im Y e.&™ 7y, (s0),/228 0 (3.109)
j=1

. - Q.-
Ky = lim " iy () /2, (3.110)
j=1
and or

K = %ii%Zcig‘ﬂf‘%wyy(so)j\/zmo (3.111)
j=1
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KH = }il_?(l)zcig_ﬂj_%l/fwy<80)j\/27[TQ (3112)

The relationships between these terms in a generally-oriented crack are

illustrated in Figure 48.

o

Figure 48. Relationship between (a) stress intensity factor parameters and (b)) SBFEM

parameters
Because as & — 0
1 1 2/ = —
EATN / % (3.113)
0 otherwise

the stress intensity factors arising as r — 0 (as & — 0), are estimated by

Ky, = ¢, Wy (50)ji, N 27070 (3.114)
Ky, = ¢, Way(50) ., v 277 (3.115)
where jg, and jg, are the crack modes for which A, = -} and the ‘h’

subscript indicates a numerical approximation expected to improve with an h-

adaptive mesh refinement strategy.
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This represents an important result in the application of SBFEM to fracture
mechanics as the stress intensity factors can be found by the direct extraction
of the stresses associated with crack modes jg, and jg,. Further, if the
domain is meshed such that s, coincides with a node, these modal stresses are
extracted without the need for numerical interpolation in the s-direction. It is
this analytical form of the stress intensity factors that makes the SBFEM such
a suitable method for use in modelling the singular functions in associated

with fracture mechanics.

3.8 Semi-discontinuous SBFEM

For the purposes of disambiguity, it should be noted that, unless otherwise
stated, the remaining sections follow as a direct result of work undertaken by

the author.

In order to facilitate the coupling of the SBFEM and DBEM, a new semi-
discontinuous SBFEM was developed (Bird et al., 2009b). The motivation for
the development is discussed in §5.2.1, but as it is directly related to the
SBFEM, it is more appropriate for its formulation and analysis to be included

in this chapter.

As described in §3.5, the matrices E;, E; and E, formed in the construction
of the Kg exhibit a banded overlapping of submatrices similar to that of a
typical FEM stiffness matrix. Unlike in the BEM, where adjacent elements do
not require common nodes, nodal discontinuity in the SBFEM results in a
discontinuity of the overlapping regions in the matrices Ey;, E; and E,. With
reference to Figure 43 and Figure 44, the effect of element discontinuities is
illustrated in Figure 49. In such a case, additional constraint equations may be

required to render Kg non-singular.
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Figure 49. Elemental connectivity is lost if discontinuous elements are used to discretise I'g

However, with the scaling centre on the boundary, a natural discontinuity in
the s-direction can be found as the discretised boundary meets the side faces.
This facilitates the possibility of replacing the continuous elements that
connect the discretised sections of the boundary with the side faces with semi-
discontinuous elements, while maintaining the overlapping structure of

matrices Eqy, E; and E,. This is illustrated in Figure 50.
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Figure 50. (a) Side faces cause a natural discontinuity in the discretisation of I'g, facilitating
(b) the introduction of semi-discontinuous scaled boundary finite elements adjacent to side

faces, without altering the structure of the overlapping submatrix connectivity

The boundary integration of the SBFEM undertaken in forming E,, E; and
E, requires the use of (quadratic) shape functions, modified in the same
manner as conventional semi-discontinuous boundary elements used in the
BEM. The construction of Kg then follows that of the conventional

(continuous) SBFEM.

It should also be noted that because there is no nodal degree of freedom on
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the side face, the conventional application of boundary conditions on the side
faces is not trivial and may require the use of additional constraint equations.
This is beyond the scope of the current work where all side faces are assumed

traction-free.

An advantage of (and the motivation for) the discontinuous scaled boundary
finite element is its readiness for coupling with the DBEM in which it is
advantageous for there to be no nodal connectivity between the boundary

elements.

3.9 Example applications to fracture mechanics

The SBFEM is applied to the same benchmark problem used in §2.10. A
notable difference between the methods is that without nodes on the
undiscretised sideface portions of I'y, there may be fewer contributory terms
to equation (2.119). So in addition to the displacement solution at the nodes,
contributions to the error estimate are made by the displacement solution at

sample locations along the side faces (where £ ={0.1 0.2 --- 1.0}).

In addition to a displacement-based error indicator, the stress intensity factor
may be extracted directly by the identification of modes jg, and jg, , and an

additional error indicator is defined for each crack mode

g, = — Ll (3.116)

€k, = |KH _KHh| (3117)

The error &g, is defined in absolute terms as in this example, where K;; =0,

it is inappropriate to normalise by the expected value.
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It should be noted that permutations of the following example have been
published before (Chidgzey and Deeks, 2005), but are reproduced here using
the author’s code to provide means for comparison of numerical methods later
and should not be considered a new application of this method. The use of the

author’s code also provides alternative visualisation of the results.

For the examples in this chapter

Q= Qq (3.118)
F:FS UAR UAL (3119)

and the scaling centre is co-incident with the crack tip.

3.9.1 Through crack in an infinite plate example 1

The SBFEM is used to model the crack tip described in §2.10. With reference
to Figure 51(c), the dimensions of Qg are bxh, and Ty is subdivided into
portions of boundary I'; with known displacement boundary conditions (red
nodes), and portions of boundary I', with displacements to be found as part of
the solution (white nodes). As there are no nodes at which the boundary

conditions are to be found in the solution

I, =Ag (3.120)
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Figure 51. SBFEM analysis of (a) through crack in an infinite plate, (b) the section of the

domain modelled, and (¢) the mesh where red and white nodes indicate I'; and T,

The displacements of the domain and boundary portion I', are illustrated in

Figure 52(a) and Figure 53 respectively. Figure 54 illustrates the sample

locations on the side faces used as an addition to the nodal displacements in

equation (2.119). Convergence characteristics of the SBFEM displacement and

stress intensity factor errors are illustrated in Figure 55 and Figure 56

respectively, using the uniform mesh refinement indicated in Figure 52(b).
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Figure 52. To-scale deformation of (CL) initial mesh and (b) uniformly-refined mesh
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Figure 53. (a) 2~ and (b) y-direction displacement results on I,
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Figure 54. - and y-direction displacement errors on I',, and the sample points used in the

estimation of €., and &€ 2y
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Figure 55. Convergence characteristics of global error estimators (a) € 12, and (b)€ 2y
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Figure 56. Convergence characteristics of global error estimators (a) €k, and (b) €k,
3.9.2 Through crack in an infinite plate example 2

The SBFEM is again used to model the crack tip described in §2.10, but the

assumption of symmetry is removed by modelling both crack faces with side
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faces. With reference to Figure 57(c), the dimensions of Qg is doubled (bx 2h)

and
Fu = AL U AR (3121)
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Figure 57. SBFEM analysis of (a) through crack in an infinite plate, (b) the section of the

domain modelled, and (¢) the mesh where red and white nodes indicate T'; and T,

The displacements of the domain and boundary portion I', are illustrated in
Figure 58(a) and Figure 59 respectively. Convergence characteristics of the
SBFEM displacement and stress intensity factor errors are illustrated in
Figure 60 and Figure 61 respectively, using the uniform mesh refinement

indicated in Figure 58(b).
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Figure 58. To-scale deformation of (CL) initial mesh and (b) uniformly-refined mesh
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Figure 61. Convergence characteristics of global error estimators (a) €k, and (b) €k,
3.9.3 Through crack in an infinite plate example 3

The SBFEM is again used to model the crack tip described in §2.10, but in
addition to removing the assumption of symmetry, the effect of the semi-

discontinuous elements of §3.8 is evaluated, as illustrated in Figure 62(c).
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Figure 62. SBFEM analysis of (a)through crack in an infinite plate, (b) the section of the

domain modelled, and (¢) the mesh where red and white nodes indicate T'; and T,
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The displacements of the domain and boundary portion I', are illustrated in
Figure 63(a) and Figure 64 respectively. Convergence characteristics of the
SBFEM displacement and stress intensity factor errors are illustrated in
Figure 65 and Figure 66 respectively, using the uniform mesh refinement

indicated in Figure 63(b).
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Figure 63. To-scale deformation of (a) initial mesh and (b) uniformly-refined mesh
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Figure 64. (a) 2~ and (b) y-direction displacement results on I,
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Figure 65. Convergence characteristics of global error estimators (a) € 12, and (b) € 2y
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Figure 66. Convergence characteristics of global error estimators (a) €k, and (b) €y
3.10 Significance of imaginary components

Although the eigenvalue problem in equation (3.66) contains only real

numbers, the matrices of modal displacements ® and modal forces Q, and
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vector of eigenvalues A found in its solution may contain imaginary parts,
which in turn induce imaginary parts to the vector of contribution factors c.
In the calculation of wu(&,s), the imaginary component of each term

contributing to its respective series is assumed negligible (Chidgzey, 2007).

The following indicator is defined in order to quantify the significance of the

imaginary component of ¢;
Ff = Re(c;) x Im(c;) (3.122)

and is considered more satisfactory than a normalised indicator".
Consequences of neglecting imaginary terms been observed as part of the
present work on both displacement and recovered stress results. Examples are

now presented.

3.10.1 Displacement results and domain regularity

In addition to restrictions in domain shape imposed on the SBFEM by the
line of sight requirement, anecdotal observations suggest that the method’s
performance is improved with the regularity of the domain geometry (Deeks,

2009). It is known that the uniqueness of the eigenvalues degrades as their

. o ~ Re(c;) — Im(c,)
* A normalised indicator such as F/ = — )7
Re(c;)

when Re(c;) is low. Modes for which Re(c;) is relatively low contribute little to u(&,s) and

may inflate the significance of Im(c;)

so are less important than modes for which Re(c;) is relatively high. Thus, it is more
important to estimate the significance of Im(c;) where Re(c;) is relatively high. This is

achieved through the indicator described in equation (3.122)
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corresponding eigenvectors become near parallel. However, here it is
postulated that similar effects shall be observed with the reduction of

regularity of the domain.

A wide range of models was used in the acceptance testing of the computer
code used to develop the SBFEM used in the present work. Models included
uniaxial tension tests, both with and without the inclusion of circular holes,
simply supported beams and cantilevered beams etc. However, by varying the
geometry of Qg in addition to the mesh density, the effect of domain
regularity was investigated. The following example demonstrates results

representative of these tests.

A uniformly-distributed load is applied to a cantilevered beam, as illustrated
in Figure 67, and is modelled using the SBFEM. The effect of domain
regularity is investigated by varying aspect ratio b:h and is compared to the
effect of variations in mesh density with 1, 5, 10, 15 and 20 elements per line.
The acceptance tests were based on boundary results (maximum tip
deflection) and in all cases were satisfactory. However the effect of domain
geometry on the interior results are largely ignored. Sample results are

illustrated in Figure 68 and Figure 69.

RSN NN

& »|
'} Ll

Figure 67. Cantilevered beam
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Figure 68. With reference to Figure 67, effect of increasing mesh density from (a) initial

density to (b) 20x initial density upon interior displacement results with aspect ratio of 20:1
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Figure 69. With reference to Figure 67, effect of increasing mesh density from (a) initial

density to (b) 20x initial density upon interior displacement results with aspect ratio of 1:1

The variation of the indicator described in equation (3.122) is illustrated in
Figure 70 for the 25 combinations of mesh density and aspect ratio. The
square point represents the sum of all the indicators for respective mesh
density/aspect ratio combinations. The solid line that connects them is

included to highlight that these totals tend to increase with aspect ratio.

115



G. E. Bird

The DBE-SBFEM: Scaled boundary finite element method

10 o

<~ ~ <

7] n

g g ¢

g g 8
10° [
10—1() -
10720 -
10730 =

1:1 5:1 10:1 15:1 20:1
model aspec ratio

Figure 70. Indication of the significance of Tm(c,) for 25 model combinations of 5x mesh
densities and 5x aspect ratios. Each circular point represents an individual mode j. Note that

Zero-values of F' do not appear on the logarithm axis.
3.10.2 Stress recovery

Further to errors in domain displacement, the secondary calculation of ¢ may
result in poor recovered stresses. Moreover, observations of poor stress results
have been made even when the corresponding domain displacements are

adequate.

Consider a linear elastic domain of dimensions bXxh subject to a uniaxial
stress and boundary constraints illustrated in Figure 71, modelled using the
SBFEM by two side faces and two sections of discretised boundary labelled
Iy, and I'y,. The results in terms of nodal displacements and stresses can be

calculated for arbitrary domain and model parameters, and are given by

uy(z) =2—=,0<x<h (3.123)



G. E. Bird

The DBE-SBFEM: Scaled boundary finite element method

where Young’s modulus F =207GPa, o, =1MPa and b=h=1m. The 2
direction displacement thus varies linearly with z to a maximum of
u,(b) = 4.8309mm with a uniform stress distribution over the domain of

0,(z) = IMPa . Defining error estimates &, and &,

|y (%) = upy ()]

&, = » (x) (3.124)
16,(2) - 01, ()
E5 = 5 (x)h (3.125)

where the ‘h’ subscript indicates the solution, an approximation to the exact

value which is expected to improve with h-adaptive mesh refinement.
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Figure 71. (a) Domain subject to uniaxial stress and (b) the SBFEM model

The discretised portions of the mesh are defined by configuration of elements
on I'y, and Iy, ranging from 1 to 5 elements each. Representative samples of
u,,(a) and wuy,,(b) are selected to illustrate the effect of the neglecting of the
imaginary component in the solution. The errors for selected mesh
configurations are illustrated in Figure 72 along with results of the indicator

described in equation (3.122).
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Figure 72. Representative errors (a) €, and (b) €, for sample mesh configurations
3.11 Discussion
3.11.1 Nodal and modal co-dependency

Although not recognised specifically in the literature, equation (3.70) is an

important observation as either:

1. the number of modes available in describing the deformation of the
domain by modal superposition is restricted by the number of degrees
of freedom, rather than, say, because the difference between m and

M, is approaching some threshold of numerical accuracy; or

2. the number of degrees of freedom is restricted by the number of modes
made available in defining the deformation of the domain by modal
superposition, rather than, say, being defined by a mesh generation

algorithm dictating a specific number of degrees of freedom.

This may be problematic if the geometry can be described by sufficiently few
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degrees of freedom. Typically n > 6 as the geometry must be defined by a
minimum of three geometric lines, which themselves must be modelled by a
minimum of one linear element with four degrees of freedom each, as

illustrated by Figure 73.

(%0, Yo)
0o AL AL

Figure 73. (a) Bounded and (b) unbounded domains with n = 6; (¢) Bounded and (d)

unbounded domains with side faces with n = 4

However, with the use of side faces, it is possible to define domains in which
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n =4. As an a priori knowledge of M, is unlikely, for small n, it cannot be
assumed that n modes are sufficient to model the solution by modal
superposition. One solution to this problem is to adaptively refine the mesh
(Deeks and Wolf, 2005), introducing additional degrees of freedom and thus
increasing the number of modes contributing to the solution. This approach
should be undertaken with caution as it should be noted that while the local
refinement of the mesh may improve the geometric representation of the
domain, if n increases greatly, then the distinction between the modes reduces
(Appendix B) as the eigenvectors defining the mode shapes approach

becoming parallel.

3.11.2 Applications of the SBFEM

This assessment of the SBFEM confirms its suitability to applications to
fracture mechanics. The ability of the method to capture the dominating
crack-opening mode facilitates its improved accuracy over the BEM. The
accuracy of the new semi-discontinuous scaled boundary finite element has
been verified as its impact on the quality of results is of the order of
magnitude associated with computer error. Thus, this element is available for

use in later work in which the semi-discontinuous property is required.

The results in Figure 68 confirm the known issues relating to the
parallelisation of the eigenvectors due to increased mesh refinements may
result in poor interior displacements. However, as demonstrated in Figure 69,
increased mesh denisity alone does not dictate poor results. Figure 69(b)
shows that even for a fine mesh where n =240, good boundary and interior
displacements can be achieved. Thus, the poor results in this case may be

attributed more towards the slender aspect ratio of the problem than its high
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mesh density, as shown in Figure 68(b). So, as expected, the trends in Figure

70 illustrate the effects of both mesh density and aspect ratio on c.

This is likely to be caused by the ill-conditioning of ® as used in the
calculation of ¢ in equation (3.91) owing to the numerical difficulties in
representing the necessary displacement in exactly n modes. Preliminary
analysis suggests that significant imaginary components of ¢, occur where the
condition number x(®) = 10° or greater, although a high condition number is

not necessarily indicative of significant imaginary components in c.

In Figure 72 it can be seen that displacement and stress errors are acceptably
low (~10™"" and ~ 107" respectively). However, results not shown here for
low element configurations (with fewer than 3 elements on each discretised
edge) resulted in poor recovered stresses (~ 107"). Further examination of this

point is recommended.

3.12 Literature review

The SBFEM was predated by the infinitesimal finite-element cell method
(Wolf and Song, 1995), and later the consistent infinitesimal finite-element cell
method (Wolf and Song, 1995), although all are evolutions of the same
method. However, the involved mathematics behind the original mechanical-
based derivation of the SBFEM in these publications may have contributed to
its slow uptake by other engineering researchers. In efforts to raise its
awareness and to demonstrate its versatility as a tool for computing the
dynamic stiffness of an unbounded domain, the method was re-derived. By
means of a weighted residual approach, a displacement formulation in the
frequency domain was derived for general problems in elastodynamics in three

dimensions (Song and Wolf, 1998). The inclusion of body loads was then
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addressed and the two derivations summarised for the SBFEM in two and

three dimensions for bounded and unbounded domains (Song and Wolf, 1998).

Two ‘primer papers’ consolidated the progress of the SBFEM, describing in
detail the method by the comparison of both derivations with an example
application and solution. First, the method was formulated using a weighted
residual approach, and then re-derived using a mechanical-based approach to
reproduce the same governing equation (Wolf and Song, 2000). (This is the
equivalent of equation (3.45) here, although in the present (static) work, there
are no terms relating to a dynamic mass matrix.) This preceded a summary of
solution procedures (Song and Wolf, 2000), illustrated by a four-degree of
freedom worked example using side faces, similar to that illustrated in Figure

73(d), geometrically the simplest problem possible for the SBFEM to model.

A third derivation of the method was presented (Decks and Wolf, 2002a).
This formulation took a virtual work-based approach, comparing the
formulation of the SBFEM in with that of an accompanying formulation of
the FEM. Highlighting their similarities, this increased the accessibility of the
method to researchers with a background in solid mechanics. Axisymmetric
modelling and the application of Neumann boundary conditions on side faces
were also addressed, along with the use of domain substructuring and multiple
scaling centres. A method of prescribing Dirichlet boundary conditions on side
faces followed (Deeks, 2004) . For examples such as those found in the present
work in which displacement constraints are restricted to u, =0 or u, =0, it
was demonstrated that a displacement constraint could be applied to a side
face in much the same way as other nodal displacement constraints by

removing the appropriate degree of freedom from the stiffness matrix. In

addition, the appropriate mode, corresponding to the x- or y-direction rigid
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body translation, must be removed too. Non-zero displacement boundary

conditions were also addressed.

Some aspects of the virtual work approach by Deeks and Wolf are borrowed
in the present work. However, here, there is a greater emphasis on both the
form of the solution in terms of modal superposition, and the limitations of

such a form.

The SBFEM offers €, displacement continuity between neighbouring
elements as the solution uses the continuous shape functions for element
interpolation. However, as the stress recovery requires the derivative of the
shape functions, continuity of stresses is not maintained between neighbouring
elements. The application of the superconvergent patch recovery technique
(Zienkiewicz and Zhu, 1992a) (Zienkiewicz and Zhu, 1992b) was introduced
(Deeks and Wolf, 2002b), offering an improvement over simple averaging of
nodal stresses for inter-element stress smoothing. This helped facilitate the
accompanying error estimator based on the ‘Z%’ error estimator found
commonly in finite element analysis (Zienkiewicz and Zhu, 1987), allowing, for
the first time, a direct comparison of the accuracy of stresses recovered by the
FEM and SBFEM. The results demonstrated the high accuracy of the SBFEM
in the applications combining linear elasticity and semi-infinite domains. This
stress recovery technique and error estimator was used to develop a simple h-
adaptive mesh refinement strategy (Deeks and Wolf, 2005). A h-adaptive
mesh refinement strategy wusing a strain energy-based error estimator was
demonstrated for use in elastodynamics (Yang et al., 2011). A p-adaptive
refinement procedure was developed to increase the polynomial order of the

elements identified for mesh refinement (Vu and Deeks, 2006).
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The convenient modal superposition form of the SBFEM demonstrated its
suitability to fracture mechanics (Chidgzey and Deeks, 2005). It was shown
that if the scaling centre was coincident with a crack tip the coefficients of
modal superposition of the displacement solution and recovered stresses
converge to give the coefficients of the Williams expansion (Williams, 1957)
estimating the displacements and stresses in its vicinity. The first modes, j,
and jg, , in the superposition series of the SBFEM solution were identified as
crack opening modes which can be used directly to estimate the mode I and
mode II stress intensity factors. The next modes j, and j,, were identified as
rigid body translation modes which can be used directly to estimate the 7T-
stresses. The remaining modes could be used directly to estimate the higher
order terms in the expansion. An application to electromagnetism
demonstrated similar use of the superposition nature of the solution (Rajan

and Raju, 2002).

By introducing an automated method of substructuring around the crack tip
modelled by the SBFEM, the remeshing complications often associated with
crack propagation in some other numerical methods, such as the FEM, were
reduced (Yang, 2006), and was extended to include cohesive cracks (Yang and
Deeks, 2007). Dynamic stress intensity factors were calculated using the
SBFEM as part of a series in which the static stress intensity factor forms the

first term (Yang, 2006).

The SBFEM has been used in coupled methods with different motivations.
For example, a coupled FE-SBFEM used the FEM to model a subdomain in
the vicinity of a load, with the SBFEM modelling the unbounded far-field
(Doherty and Deeks, 2005). As the load increments, the algorithm detects

plasticity as it approaches the interface and the FEM subdomain increases in
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size at the expense of the SBFEM subdomain, such that the elastic
assumption of the far-field can be maintained. With similar motivation, the
SBFEM was coupled to a meshless method (Deeks and Augarde, 2007), for
applications to geotechnical analysis. A meshless domain models the plastic
behaviour of a geotechnical problem, coupled to an SBFEM modelling the far-

field as an infinite domain with a linear-elasticity assumption.

With similar motivation to Yang et al, but limited to linear elastic fracture
mechanics, the SBFEM was coupled to the BEM (Chidgzey et al., 2008). The
geometric flexibility of the BEM was used to model a relatively large domain,
using the SBFEM to estimate the stress intensity factor and T-stresses.
However, results were limited to empirical comparisons and assumptions were
made that limit the application of their scheme to certain sets of boundary
conditions. As part of the present work, it was found that modelling problems
with displacement constraints to the nodes at the junction of the interface and

exterior boundary would result in a singular system.

This was addressed by making the system square for such problems and
increasing the applicability of the coupled method. Additional equations were
computed by extra, non-nodal collocation on the BEM boundary (Bird et al.,
2007), and external to the boundary (Bird et al., 2008a). However, the
accuracy of the results was shown to be sensitive to the location of the
additional BEM collocation points (Bird et al., 2008b), and had a
considerable, adverse effect on the condition number of the system. The
coupled method was reworked with special consideration of the junction nodes
(Bird et al., 2009a). This new formulation ensured the coupled system was
square, providing the means for analytical evaluation of the BE-SBFEM

rather than empirical evaluation, without the need for additional equations,
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negating the ill-effects of additional BEM collocation (Bird et al., 2010). The
conditioning of the system was improved by the introduction of a scaling

parameter. This work is presented in §4.5.

The coupled BE-SBFEM in its presented form restricts fracture mechanics
analysis to problems that offer symmetry about infinitely thin crack faces, or
problems in which the entire crack is modelled by the SBFEM. While this
may offer solutions to academic problems, the BE-SBFEM was extended to
use a BEM domain that uses the DBEM in order to model more general
engineering problems. To date, the effects of coupled DBE-SBFEM are
described as part of the present work in §5, including the need for a semi-

discontinuous scaled boundary finite element (Bird et al., 2009b).

3.13 Conclusion

This chapter has presented a summary of the SBFEM whose novel and
desirable semi-analytical properties have been used to model the rapidly-
varying stress singularities in the region of a crack tip with great accuracy. Its
historical development and that made subsequently by the author has been
presented. A new overview of the method’s formulation has been presented
here with a focus on modal superposition, offering a different and more

complete perspective to those found in the literature.

Results in this thesis have been presented with emphasis focused on
consistency and comparability; methods demonstrated to improve only the
accuracy of specific problems by fine-tuning their configurations are not

applied to the general use of the SBFEM throughout the present work.

As part of the present work, the method has been assessed. The necessary
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relationship between the number of modes contributing to the solution and
the number of degrees of freedom defining the geometry has been highlighted.
The impact of neglecting imaginary components from the solution to the
eigenvalue problem has been quantified, and has been shown to affect both
interior displacements and recovered stresses for cases with fewer than 3
elements per discretised face. The analysis offers scope for further work in
which it is expected to relate to the conditioning of the matrix of modal

displacement vectors.

Extensions to the SBFEM have been demonstrated and verified. A semi-
discontinuous element has been introduced, motivated by the work to be

presented in §5.
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4 Boundary element-scaled boundary finite

element method
4.1 Introduction

In this chapter, the coupled boundary element-scaled boundary finite element
method (BE-SBFEM) is introduced. As described in earlier chapters, the
motivation behind the this coupling is in combining the SBFEM’s ability to
model crack tip displacements within a loaded system with the BEM’s
geometric flexibility, providing a tool for analysis of real engineering problems.
After a general overview of the strategies behind combining boundary and
finite element-based methods, the original derivation of the coupled method is
presented. As part of the present work, this method is reformulated to
increase its applicability. Further improvements to the numerical stability of
the method are presented. The strengths and weaknesses of the BE-SBFEM

are assessed.

4.2  Coupling the BEM and FEM

Although based on a boundary integral method, the form of the SBFEM

system matrices is more akin to the FEM than the BEM, and the approaches
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to their coupling follows that of the coupling the BEM and FEM (BE-FEM),
a coupled method well-established in the literature. The displacements and
forces at the interface between the BEM and FEM subdomains require
consideration. For a homogenous, linear elastic material, such as those
considered in the present work, the interface does not describe a physical
boundary between two regions within a domain of differing material properties
but an artificial boundary introduced merely to separate the subdomains. A
physical separation of the two domains cannot, therefore, be permitted and
the BEM interface displacement degrees of freedom are coupled to those of the
FEM interface, such that there is one unknown displacement per interface
degree of freedom. Similarly, the tractions and forces across the interface are
assumed continuous and the respective BEM and FEM degrees of freedom are
coupled, subject to a direction sign convention. Coupling the BEM and FEM
requires the conversion of BEM interface tractions into equivalent FEM nodal

forces, or vice versa, details of which can be found in Appendix E.

A weakly-coupled, iterative approach is to solve each of the subdomains
independently (Elleithy et al., 2001). The BEM subdomain is analysed using
its respective method with estimated interface displacements estimated and
imposed as boundary conditions. The interface tractions found from its
solution are converted into equivalent nodal forces and used in the solution of
the FEM subdomain. The interface displacements found in the solution to the
FEM used as boundary conditions in the following iteration for the BEM and
the process is repeated until convergence. This approach is flexible in its
applicability to many a wide range of problems, such as modelling non-
homogenous material interfaces. However, for meshes in which the number of
BEM degrees of freedom significantly outnumbers those of the FEM

subdomain, as found in the present work, this flexibility is achieved at a high
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computational cost in which several hundred iterations may be necessary for

convergence, and this form of coupling is rejected.

An alternative is the direct coupling of the BEM and FEM displacement
degrees of freedom and their respective tractions and forces. The influence
matrices described in equation (2.30) can be used to define an equivalent
BEM stiffness matrix relating boundary displacements and forces, such as
described by the SBFEM stiffness matrix in (3.87). This stiffness matrix can
then be coupled directly to that of the FEM subdomain (Leung et al., 1995).
However, this approach has two significant drawbacks when applied to the
coupled BE-SBFEM. Again, in the present work and in the examples to which
it can be applied, the size of the BEM subdomain may, generally, be larger
than that of the SBFEM. Thus, the conversion of the BEM tractions into
forces will take a significant proportion of computational effort. Secondly, the
motivation of the present work includes the use of reanalysis, described in
§5.4, in which it is beneficial to maintain the BEM influence matrices rather

than convert them into stiffness matrices.

The approach favoured here is to transform the relatively few interface force
degrees of freedom into equivalent interface element tractions, which can be
done independently of the force degrees of freedom that appear in the rest of
the SBFEM subdomain. As it will be shown, the result is a simple coupling

with minimal additional computation that lends itself to reanalysis.

With all the approaches outlined in this section, it is important that the forces
and tractions across the interface are converted with appropriate consideration
of both the internal and external forces acting on a boundary element (Cruse

and Osias, 1991). With this in mind, the reformulation of the BE-SBFEM as
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part of the present work has been demonstrated to increase the applicability

of the method.

4.3 Numerical formulation
4.3.1 Method introduction

The SBFEM is gaining more acknowledgement as a useful numerical method,
albeit with some undesirable limitations. The method’s ability to model the
solution by modal superposition, rather than by some polynomial
approximation, makes it suitable for problems with discontinuities and
singularities. The BEM is known for its geometric flexibility and suitability to

applications to linear elasticity.

The motivation for the coupling of the methods lies in applications to fracture
mechanics. By modelling a crack using the SBFEM, the rapidly varying stress
fields around the tip (leading to the prediction of crack growth) can be
modelled efficiently. However, real engineering domains are unlikely to be as
trivial as the examples illustrated in the previous chapter. Rather than use a
potentially awkward meshing procedure for the subdivision of domain, the
more flexible BEM is used to model the remainder of the problem (Chidgzey

et al., 2008). This formulation is repeated here.

As part of the present work, it was identified that the method, as formulated
originally in the reference, was limited to certain boundary condition sets. A
new formulation is then presented, demonstrating the increase in the
applicability of the coupled method, and allowing for the first time, the
coupled method to be assessed by its analysis of problems for which there is a

known, analytical solution.
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4.3.2 Method coupling

The following overview briefly describes the original derivation of coupled BE-
SBFEM (Chidgzey et al., 2008). Consistent with previous chapters, subscripts
‘B’ and ‘S’ are used to denote the BEM and SBFEM subdomains respectively.
Furthermore, the subscript ‘I’ denotes the interface between subdomains. For
simplicity, the derivation focuses on the coupling of two subdomains in two
dimensions where a domain Q is divided into Qp and Qg, bounded by I'p

and I'g and I7, as illustrated in Figure 74.

0 O o O o
o ol's
Qp
Vo Sy oI O
,O’
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_Q ({170 7. y()) )\ . Q_
Ap A

Figure 74. An example domain subdivided into BEM and SBFEM subdomains

Equations (2.30) and (3.87), describing the solutions to I'y and I'g, can be

partitioned into their I, B and S components

|:HII Hyp -Gy _GIBj| up {0}
Hp Hpp -Gp; —Ggp

I:KH KIS:l{uI}:{pI} (4.2)
Kg  Kss | (ug Ps
As explained in Appendix E, the transformation matrix M relating nodal

forces and tractions is introduced

132



G. E. Bird

The DBE-SBFEM: Boundary element-scaled boundary finite element method

M;t; = -p; (4.3)

where the negative sign is introduced to ensure compatibility across the
interface (Becker, 1992). Combining equations (4.1) to (4.3) gives the system

of linear equations

ur 0
Ky Kig M; 0 0

Ug Ps
K K 0 0 0

St t; l=1{0 (4.4)
H;y 0 -Gyp Hp -Gp u 0
B

Hg; 0 -Gp Hpg -G

ty 0

Boundary conditions are applied, and then by separating known and unknown
terms in the usual manner, equation (4.4) can be rearranged to yield a square

system of linear equations in the form
Ax =b (4.5)
4.4 Formulation assessment

For the purposes of disambiguity, it should be noted that, unless otherwise
stated, the following assessments of and extensions to the BE-SBFEM detailed
in the remainder of this chapter are as direct result of work undertaken by the

author.

4.4.1 Limited boundary conditions

One limiting factor in this approach is the lack of distinction between forces
acting on the junction nodes, the nodes that exist on both the interface and
the boundary (Cruse and Osias, 1991), as illustrated in Figure 75. The forces
acting on these nodes are given by the external nodal forces acting on the
adjoining SBFEM elements (or side faces), and the contributions to the nodal

tractions from each of the adjoining BEM and interface elements. In forming
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the coupled BE-SBFEM in this manner, an assumption is made that there are
no external forces or tractions acting on the junction nodes (Bird et al., 2007),
i.e. the forces acting on those nodes can be defined fully by the transformed

tractions acting internally through the interface only.

0 O O O o

O O 1_‘B
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2,
r
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) (xo,.yo) 1 ~ y

Ap o AL p

Figure 75. Boundary conditions imposed on the junction nodes are restricted

4.4.2 Matrix conditioning

In almost all mechanical problems using typical engineering materials, it is
likely that the traction coefficients t will be several orders of magnitude larger
than the displacement coefficients u when using conventional SI units.
Without taking this into consideration, the general approach outlined above

may lead to conditioning problems of A .

4.5 New numerical formulation

The following overview briefly describes a new derivation of coupled BE-
SBFEM (Bird et al., 2010), formulated as part of the current work, providing

means to analyse problems with boundary condition sets restricted by the
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original formulation (Chidgzey et al., 2008), without the need for additional
collocation points (Bird et al., 2008b). The additional subscript ‘J’ denotes
junction degrees of freedom, i.e. those associated with the nodes found at the
junction nodes, denoted by I'y, as in Figure 76. In the illustrated example, I'y
includes use of discontinuous boundary elements in order to highlight later the
additional considerations required when using these elements over those

necessary when using just continuous boundary elements.

26 O O O o
(a) M
o) ols
Qp
O, O
L'y o.\_.l_:I
o,
I'so Qs O o)
(z0,%0) "'
*— o
Ap A, ¢ J

Figure 76. An example domain subdivided into BEM and SBFEM subdomains using (a)

continuous boundary elements and (b) discontinuous boundary elements

As before, equations (2.30) and (3.87) are be partitioned into their I, B and

S components, but this time includes partitioning of their J components too

H;; Hy Hp|(w Gy G G|t
H; Hyp Hp fu =] Gy Gp Ggp ||t (4.6)
Hp; Hpr Hpp J{ug)] [Gpy Gpr Ggplts
Ki Kip Ky |[u Py
Ky Kp K |yurp=1P (4.7)
Kg; Kg Kgs [lug Py

The nodal forces on I'g , I'T and I'; are decomposed into their internal and

external components
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PJ = PJint + PJext
P = Pry + Prex (4.8)
PS = PSint + PSext

As the interface I'} is defined exclusive of the junction nodes and therefore is

entirely internal, there are no external forces so
PIext =0 (49)

As T'g is also defined exclusive of the junction nodes and therefore is entirely

external (on the boundary), there are no internal forces so
PSint =0 (410)
The transformation matrix M, is also partitioned and is given by
M;; M t -Py;
l: JJ JI:I{ J} _ { Jlnt} (411)
My My J(t —Prin

The coupled BE-SBFEM is therefore given by

Kj; Kjp Kjs Mj; My 0

H;; Hy 0 -Gy -Gj; Hjy -Gy |3t 0 (4.12)

H; Hy 0 -Gy -Gp Hp -Gp ||t 0
|Hp; Hpy 0 -Gg; -Gy Hpg -Gpp ||up 0
tp

Once again, boundary conditions are applied, and then by separating known
and unknown terms in the usual manner, equation (4.12) can be rearranged to

yield a square system of linear equations in the form
Ax =b (4.13)

where x is the vector of unknown displacements and tractions.
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4.6 Matrix scaling

By selecting an appropriate value for a scale factor W, and introducing it
into the BEM system matrix

t

Hu = ¥,Gy

(4.14)

it has been shown that the displacement and scaled traction influence
matrices, H and ¥,G, are of the same order (Bird et al., 2009a), improving

matrix conditioning. Thus, equation (4.12) is rewritten

'Ky Ky Ky My Y M 0 0o %W Py
Ky Kp Ky My ¥Mp 0 0 t 0
Ky Kg K 0 0 0 0 Us P
H;;, Hy 0 WG, -¥\.G; Hp -¥Gp :;TJ _|0
H; Hy 0 -¥Gy -¥Gyp Hpg -¥Gp . ! 0
| Hp; Hpr 0 -¥Gp; -¥Gp Hpg -¥1Gpp ?Il 0

ugp

I

¥

(4.15)

where the ‘ext’ subscripts have been dropped for brevity, and by the
application of boundary conditions, reduces once more to equation (4.13), but

now x is the vector of unknown displacements and scaled tractions.

A range of test problems were analysed, including fracture mechanics
examples described later in this chapter, and other suitable applications of the
coupled method (Appendix G). The impact of ¥; is problem and parametric-
specific, but the trend illustrated in Figure 77 is indicative for these examples.

Thus, throughout the work presented here ¥, = 10°.
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10° 107 10 10 10° 10'°

Figure 77. Illustration of the trend found by varying the scaling factor ¥, on system matrix

condition number x(A) for fracture mechanics examples in §4.7
4.7 Example applications to fracture mechanics

The approach outlined in §4.5 differs from the original formulation (Chidgzey
et al., 2008), in that it can now be seen Py, is not restricted to O.
Consequentially, the BE-SBFEM can now be applied to the same benchmark
problem used in §2.10 and contributions to the error include the sample points

on the sidefaces used in §3.9.

For the examples in this chapter

Q=0 uUQq (4.16)
FIFBUF5UFIUAR UAL (417)

and the scaling centre of Qg is coincident with the crack tip.
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4.7.1 Through crack in an infinite plate example 1

The BE-SBFEM is used to model the crack tip described in §2.10. With
reference to Figure 51(c), the dimensions of Q are bxh, and the boundary is
subdivided into portions of boundary I'; with known displacement boundary
conditions (red nodes), and portions of boundary I', with displacements to be

found as part of the solution (white nodes). This example is adapted from

results published by Bird et al. (Bird et al., 2010).
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Figure 78. BE-SBFEM analysis of (a) through crack in an infinite plate, (b) the section of the

domain modelled, and (c¢) the mesh where red and white nodes indicate I'; and T,

Convergence characteristics of the SBFEM stress intensity factor errors are
illustrated in Figure 79 using the same uniform mesh refinement strategy as in

previous chapters.
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Figure 79 Convergence characteristics of global error estimators (a) Ep, and (b) Epys these

results are adapted from those first published by Bird et al (Bird et al., 2010)
4.7.2 Through crack in an infinite plate example 2

The trivial examples used to illustrate the accuracy and efficiency of the
methods described in this and previous chapters are selected for consistency
and ease of comparison with other published results. However, the meshing
requirements of a complex domain (such as those with voids and notches)
proves more arduous for the SBFEM than an equivalent BEM mesh
requirement. The line-of-sight requirement in real engineering domains may
necessitate subdivision and introduction of many interior interface elements,
and the slender aspect ratios of the subdomains may reduce the uniqueness of

the eigenvalue solution and thus introduce computational errors.

But because the domains of these benchmark problems exist within a
continuous medium, their boundaries do not represent traction-free or exposed
surfaces. Thus, while the domains have been defined regularly, allowing
comparison with literature results, their respective domain geometries have

been largely arbitrary. With reference to Figure 80, the considerably irregular
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shape of the example prevents its comparison with literature results, but
demonstrates the robustness of the coupled method and its versatile
applicability. As before, the boundary is subdivided into portions of boundary
I'; with known displacement boundary conditions (red nodes), and portions of
boundary T',with displacements to be found as part of the solution (white

nodes). This example is adapted from results published by Bird et al. (Bird et

al., 2010).
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Figure 80. BE-SBFEM of (a)through crack in an infinite plate, (b) the section of the domain

modelled, and (¢) the mesh where red and white nodes indicate I'; and I',

Convergence characteristics of the SBFEM stress intensity factor errors are
illustrated in Figure 81 using the same uniform mesh refinement strategy as in

previous chapters.
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Figure 81 Convergence characteristics of BE-SBFEM; these results are adapted from those
first published by Bird et al (Bird et al., 2010)

4.8 Discussion
4.8.1 Discontinuous junction elements

It should be noted that if a discontinuous BEM mesh is used, such as
illustrated in Figure 76(b), then additional considerations must be made.
There exists a collocation point (the junction node) upon an element to which
it does not contribute to any geometric definition. Just as can be observed
when non-nodal collocation points are used, such as in providing additional
equations to form a square system (Bird et al., 2008b), when integrating from
the junction node over this element, the singular integrals discussed in §2.5.3
and §2.5.4 are present. In the example illustrated in Figure 82, singularities
would be observed when collocating at the junction node at the local
coordinate 77; =1, in addition to those observed when collocating at n;, 7,

and 775 .
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Figure 82. Junction node on a discontinuous boundary element

4.8.2 Original method formulation limitations

The original formulation of the BE-SBFEM (Chidgzey et al., 2008)
demonstrated a proof of concept. As part of present work, method limitations
were identified (in addition to limitations in its implementation and a poor
approach to testing”). For applications of the BE-SBFEM to problems
requiring displacement constraints on the junction nodes, the resulting system

matrix was shown to be under-defined.

As an intermediate solution, additional equations were added to the system
until the matrix was square (Bird et al., 2008b). These additional equations
were computed by further collocation of the boundary integral equation at
non-nodal points around I'y ensuring uniqueness, and with each collocation
point, up to two new equations could be computed. However, the method was
shown to exhibit strong instability issues depending on the location of the

additional collocation point or points resulting in poor-conditioning of the

I Not discussed here. Further discussions of the original formulation can be found in the more
general discussion of the approach to method implementation in §7
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system and a consequent effect on the numerical accuracy.

4.8.3 New method formulation

The new approach presented here has overcome this issue by the distinction of
boundary conditions at the junction nodes. In conjunction with the
consideration of a discontinuous BEM mesh, this new approach provides the

means to model the same benchmark problems used throughout this thesis.

As expected, the SBFEM subdomain provides accurate displacement results in
the vicinity of the crack tip. The coupled method does not converge at the
same rate as the SBFEM alone owing to consistent employment of the
uniform mesh refinement used elsewhere. This is more evident in §4.7.2, but to
be expected as many of the subdivided BEM elements serve more to increase
n than they do to reduce & and &g, . An improved mesh refinement
technique can improve convergence considerably, but is not included here for

reasons discussed in 2.12.2.

While the coupled BE-SBFEM has demonstrated its suitability to fracture
mechanics, a major limiting factor is its reliance on symmetry, a property that
cannot be assumed for general engineering domains. This can be overcome by
domain subdivision in a way similar to that demonstrated in §2.10.2. But, as
with the BEM, while more interface nodes provides more degrees of freedom
for the errors analysis characterising the method, they provide little benefit as
an analysis tool, rather a hindrance in terms of meshing requirements and so
an alternative strategy is sought for problems where symmetry cannot be

assumed.
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4.8.4 Scaling factor

The effect of W, is problem-specific, varying with parametric permutations,
particularly with varying magnitude of applied loads and domain properties.
This is to be expected as it is precisely this variation within real engineering
problems that motivates the need for the scaling factor. An optimum value for
¥, may not be known a priori, but an appropriate value can be based on the
Young’s modulus and the size and type of the domain under analysis. The
impact of an improved condition number depends on the implementation of

the method.

4.9 Conclusion

This chapter has presented a summary of the coupled BE-SBFEM. What
began as a partially-explored proof of concept has, through the present work,
been assessed and reworked. The evolved method offers greater flexibility and
with this increasing in applicability provides greater confidence in the results

obtained.

By introducing a scaling parameter, the conditioning of the system matrix has
been shown to reduce by several orders of magnitude, allowing its solution

without the need for routines to solve ill-conditioned matrixes.

As an intermediate step towards the coupling of the Dual BEM with the
SBFEM, these extensions to the BE-SBFEM have been demonstrated and
verified by examples, both here and in other publications by the author. For
the first time, the evaluation of the BE-SBFEM has been made by comparison
with analytical solutions, rather than by empirical examples and have shown

little deviation from the single-domain SBFEM equivalents. Thus it has been
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demonstrated any inaccuracies of a BEM subdomain have little bearing of the
high accuracy of its coupled SBFEM counterpart and that the benefits of each
method’s respective properties can be explored for use in an efficient and
accurate coupled algorithm. The BE-SBFEM has also been shown to model
domains, representative of real engineering problems, to which the SBFEM

alone may not be suited.
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5 Dwual boundary element-scaled boundary finite

element method
5.1 Introduction

In this chapter, the coupled dual boundary element-scaled boundary finite
element method (DBE-SBFEM) is introduced and assessed. The DBE-SBFEM
has been developed with the same motivation as for the BE-SBFEM. By
modelling a crack using the SBFEM, the rapidly varying stress fields around
the tip can be estimated efficiently, leaving the more flexible BEM to model
the remainder of the problem. By introducing the DBEM into the coupled
method, its applicability increases. Unlike the BE-SBFEM, the DBE-SBFEM
can model multi-faceted cracks using the SBFEM to model just the crack tip;
using the DBE-SBFEM, modelling is no longer restricted to symmetry about

the crack face.

For purposes of disambiguity, the DBE-SBFEM has been developed in its
entirely as part of the present work, the data in the examples in this chapter

are obtained by the development of the author’s own code.
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5.2 Numerical formulation

The formulation of the DBE-SBFEM shares similarities with that of the BE-
SBFEM. For simplicity, the derivation focuses on the coupling of two
subdomains in two dimensions such as in Figure 83, where a domain € is
divided into Qy and Qg , bounded by I'y , I'p and I'; as illustrated in
Figure 83. Like the BE-SBFEM, the scaling centre of Q¢ is placed on the
crack tip. The upper crack surface is modelled by I'y and Ay ; the lower
crack surface is modelled by I'; and A;. Unlike the BE-SBFEM, TI'g =T}

and there are no junction degrees of freedom.

Figure 83. An example domain subdivided into BEM and SBFEM subdomains. The BEM

portion of the lower crack is modelled using the DBEM

The coupled DBE-SBFEM is formed in the same manner as the BE-SBFEM,

with the introduction of further partitioning relating to the DBEM (denoted
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by the subscript ‘D’). As there are no pure SBFEM terms K, these are

omitted resulting in

u;

uy

_ |t
Kj; Kip My Mj; 0 0 0 0 ¥,

K, Ky My My 0 0 0 0 6

H;;, Hy; -Y¥.G; -¥YG; Hp Hyp Y6y -YGp||lv
H; Hp -¥YGy -¥Gp Hp Hp -¥YGp -YGp ||ug
Hp; Hp -¥Gp; -¥.Gpr Hpg Hpp -¥iGpg -¥iGpp ||up
Hp; Hpr -¥Gp; -¥Gpr Hpg Hpp -WiGps —-YiGop || tp

¥
tp
¥,
(5.1)
If it is assumed t; = 0, then
uj
_ _ W
K Kp My My 0 0 0 t Pjext
Ky Ky My, My 0 0 0 \P_l 0
H;; Hy -Y.G;; Y6y Hp Hp -YGp|jt | | O
H; Hy -¥Gy -¥Gp Hp Hp -¥Gg||¥ | | 0
Hp; Hp -¥Gpy -WiGpr Hpg Hpp —¥Ggp ||us 0
| Hp; Hpr -¥.Gp; -¥Gpr Hpg Hpp —¥Gpp || up 0
tp
¥
(5.2)

which, by the application of boundary conditions and separating known and
unknown terms in the usual manner, can be rearranged to yield a square

system of linear equations in the form

Ax=b (5.3)
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5.2.1 Semi-discontinuous SBFEM motivation

The motivation for the semi-discontinuous SBFEM introduced in §3.8 as part
of the current work is highlighted by the example in Figure 83. As described
in §4.8.1, the existence of degrees of freedom at the junction of 'y , T'; and
['; causes complications in the computation of the integral of singular BEM
kernels in the formation of G . By moving the node from this junction
along the interface (illustrated in Figure 84), and thus introducing semi-
discontinuous interface elements, the integration is no longer singular, merely

near-singular, which can be computed with greater ease.

As there are no junction terms, these are omitted from the system resulting in

up
Ky My 0 0 0 b 0
v
H; -¥.Gy Hp Hp -YGgp ul _ 0 (5.4)
Hp; -¥.Gpr Hpg Hpp -¥Ggp uB 0
Hp, -¥.Gpr Hpg Hpp -¥,Gpp tD 0
B
¥

The remainder of the formulation follows as with the DBE-SBFEM above.
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Figure 84. An example domain modelled using the DBE-SBFEM with semi-discontinuous
SBFEM

5.3 Matrix scaling

Further to the scaling introduced in §4.6, by selecting an appropriate value for
scale factors ¥, and ¥, and by introducing them into the DBE-SBFEM

system matrix, equation (5.4) is rewritten

YoW;Ky  WWaMyp 0 0 0 ¥,
¥YsHy -¥,.Gy Y;Hp Y;Hp -YGgp ||ug
WsHp  -¥Gp  WsHpg WsHpp -V Ggp || Y3
W3Hpr -WGpr W3Hpg W3Hpp —-WiGpg || UD

(5.5)

S © © ©

151



G. E. Bird

The DBE-SBFEM: Dual boundary element-scaled boundary finite element method

5.4 DBE-SBFEM with reanalysis for crack growth

Consider a crack of length a propagated by a length Aa, as illustrated in
Figure 85, in which the transition from the original state to the new state is a
single iteration in a series defining the full propagation. If the DBE-SBFEM is
used to model the original state, then the advantages of the method over

other crack-modelling methods becomes apparent.

(a) (0)
r, L

Figure 85. Crack propagation from (a) an original state to (b) a new state

It can be seen from comparison of Figure 84 (the original state model) and
Figure 86 (the new state model), the crack propagation analysis is undertaken
with minimal remeshing. In identifying which computations are common to
sequential iterations, reanalysis can be employed to great effect for an efficient
propagation algorithm. Subdomain Q¢ is translated in the direction of
propagation, interface boundary Fj replaces I';, and boundary portions FB
and Ff) are added. The subscripts I, B and D are also used in the

partitioning of the BEM and SBFEM matrices.
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Figure 86. The DBE-SBFEM model for new state, using reanalysis with translation of Qg

In the BEM subdomain, the computations in which the collocation point and
field elements are unchanged are common to both analyses. Thus, any
submatrices H; and G, where i,j = B,D,I, in which neither subscript ‘i’ nor
‘;’ contains a tilde ‘77, correspond to repeated computations in which the
collocation point and the field elements are common to both the original and
new models. The remaining submatrices correspond to new computations in

which the collocation point and/or the field elements are different from the

original.

Although the interface has undergone translation, and any collocation at the
interface and corresponding integration over the boundary differs between
analyses, the integration over the interface can be reused as there is no
relative difference between the interface collocation points and the interface

field elements. Similarly, Qg is static relative to the scaling centre (z,,y,) and
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equations (3.3) and (3.4) defining the scaled boundary coordinate system are

preserved. Thus, computations made in forming the stiffness matrices K, and

K, and their respective constituents Q,, ®;, Q; and ®; are common to

i i

both the models in Figure 84 and Figure 86 and can be reused, along with the

old matrix of eigenvalues A .

Equation (5.5) can be partitioned into reflect this reused data

(YW Ky WW,M; 0 0 0 0 0 0 ¥,
WsHy  -¥\Gy  WsHyy WsHyp W3Hp, WsHyp WGy -YGg ||y
Y.H, -¥Gy WY;Hpy YH,; YiHpy WiHpy, —WGpy PGy || P,
WHy  -¥\Gpy WiHp ¥ Hpy WiHp, WiHp, —¥.Gpy —YGpg || up
Y.H,; -VG, Y;Hp ¥YHy; Y:Hpp ¥H,; -¥.Gpy -YG.; || VY3
Y.H; -Gy WiHp, YiHp, YiHp, YsHpy -WiGp, —¥.Gpg || Up

|
© © O O o o o ©

(5.6)

Figure 87 illustrates the relative sizes of each of the terms in the matrix in
equation (5.6) in this example. Much of the data is reusable due to a priori

knowledge of duplicate calculations or blocks of zeros.
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Figure 87. A block representation (drawn to scale) of terms in the matrix in equation (5.6) for

the new state in the propagation algorithm. The dark regions represent terms requiring new

computations, the light regions represent reused data and white regions are blocks of zeros

In this trivial example, the effects are less obvious than those associated with
a more complicated model with a more involved mesh. In practice, the effects
of reanalysis on the system size will be problem-dependent, but in the
applications intended for this coupled method, Hyzp and Ggyp will dominate
the matrix and the effects of reanalysis are more noticeable, as illustrated in

Figure 88.
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Figure 88. Crack propagation from (a) original state to (b) new state in a non-trivial domain,

demonstrating (¢) the major reuse of data through reanalysis (drawn to scale)
5.5 Reanalysis for non-planar crack growth

Consider the reanalysis situation where Q ¢ undergoes a rotation of € about
(zg,y0) and 2~ and y-direction translation, as illustrated in Figure 89. Unlike
the translation-only propagation, K; # K. However a transformation matrix
T, comprising repeated diagonal submatrices t, where

(5.7)

B cos@ —siné
| sin@ cos@
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is introduced such that

and so

Figure 89. Reanalysis with translation and rotation of Qg

5.5.1 Verification

In order to assess the errors associated with a general rotated stiffness matrix

K., a comparison with K is made by analysing an example domain, rotated

g

by 8, where 0 < 8 <7/, illustrated in Figure 90.
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Figure 90. Rotational perturbation of Qg

An error indicator is defined

o = median[AKij]
K= medlaﬂ[KSL]]

ij=1.n (5.12)

where AK is determined on a term-by-term basis

Kll Kln
AK =| @ (5.13)
Knl Krm
where
Ky, — Ks .
Kij— SJI( - d y ,] = 1n (514)
Sij

The median is used in order to reduce the impact of the near-zero
denominators that would otherwise be present in equation (5.12)** which
cause extreme and spurious outliers that exhibit unrepresentative and
distorted error profiles. The analysis is repeated with uniform mesh
refinement. The results the impact of this rotation on the condition number of

the system matrix x(Kg) are shown in Figure 91.

158



G. E. Bird

The DBE-SBFEM: Dual boundary element-scaled boundary finite element method

mesh1

mesh 2 L
A

10" , —— mesh4
i — mesh 8

Ex

10_2 i
10_3 i

10_4 3

10" - L \H\_ . \\\\22 \\\\\\4 |
10 10 10 10 oraq 10

10

10 |

100 Ll | | |

10" 10° 10° 10" 10"
@rad

Figure 91. (a) Error in reanalysed SBFEM stiffness matrix AK with angular perturbation
6 and (b) corresponding condition number K’(KS) Each ‘mesh’ corresponds to the initial
mesh density on the model, varying from 1 to 16 elements per line. The log scale @ is chosen

to show that numerical stability is observer until around € = 0.1rad
5.6 Example applications to fracture mechanics

The same benchmark problem used in §2.10 is used to validate the coupled
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DBE-SBFEM and contributions to the error include the sample points on the

sidefaces used in §3.9.

For the examples in this chapter
Q= Qp U Qg (5.15)

and the scaling centre of Qg is coincident with the crack tip.

In order to assess the impact of reanalysis, results obtained through reanalysis
are compared with a model analysed using the DBE-SBFEM without
reanalysis, i.e. a model of the same geometry (including domain propagation),

analysed in full.

First, the analysis times are compared using &, defined

b =ty
Ey = fT (516)

where t, (i=1.4) and ¢, (i=1.4) are the times taken for each of the 4
reanalysis and equivalent full analysis iterations, and ¢, is the time taken for
the first (base) analysis that is common to both, such that &; indicates how
much time is saved through reanalysis. Each of the duration times presented

are based on the mean averaging of three analyses.

Second, because the purpose of the reanalysis is its efficiency, it is not
expected to demonstrate any improvement in accuracy over a full analysis. A
more interesting measure of its accuracy is in its difference relative to a full
analysis, rather than against the analytical solution. Thus, the errors are

redefined
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3 () = uz(s))”
Epp =

s  seTl,,0#0 (5.17)
(o)

where w(s) and ug(s) are the approximations to the displacements found in

corresponding full analysis and reanalysis solutions respectively.

5.6.1 Through crack in an infinite plate example 1

The DBE-SBFEM is used to model the crack tip described in §2.10. With
reference to Figure 92(c), the dimensions of Q are bx2h, and the boundary is
subdivided into portions of boundary I'; with known displacement boundary
conditions (red nodes), and portions of boundary I', with displacements to be

found as part of the solution (white nodes). In this case
Fr=r,ululuUlLUA, UA (5.18)

where TI'g is omitted as there are no pure SBFEM degrees of freedom, only
those that appear on I';. The displacement results of the coupled domains are
illustrated in Figure 93, and for u(s), where s lies on I', are summarised in
Figure 94. This crude initial mesh is uniformly subdivided and the analysis
repeated in order to assess the convergence characteristics. The convergence

characteristics of the coupled DBE-SBFEM are illustrated in Figure 95.
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Figure 92. DBE-SBFEM analysis of (a) through crack in an infinite plate, (b) the section of

the domain modelled, and (¢) the mesh where red and white nodes indicate I'; and T,

The displacements of the domain and boundary portion I', are illustrated in
Figure 93(a) and Figure 94 respectively. Convergence characteristics of the
DBE-SBFEM displacement and stress intensity factor errors are illustrated in

Figure 95, using the uniform mesh refinement indicated in Figure 93(b).

original
deformed

Figure 93. To-scale deformation of (@) initial mesh and (b) uniformly-refined mesh
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Figure 94. (a) 2~ and (b) y-direction displacement results on T,
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Figure 95. Convergence characteristics of DBE-SBFEM
5.6.2 Through crack in an infinite plate example 2

The benefits of reanalysis in the coupled DBE-SBFEM are illustrated in an
example similar to that above. The basis of the reanalysed data is the system
matrices formed in the previous example with the angle of propagation 6
determined using equation (1.3). By propagating Qg and introducing I'y and

L'
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F=ryulullul’; UI'UA, UA (5.19)

The displacements of the domain and boundary portion I', are illustrated in
Figure 96(a) and Figure 97 respectively. The analysis times and displacement
errors of the each reanalysis iteration compared with that an equivalent full
analysis are illustrated in Figure 98. Convergence characteristics of the DBE-
SBFEM with reanalysis using the uniform mesh refinement indicated in

Figure 96(b) are omitted as the differences with Figure 95 are indiscernible.

(@ | ® [ 1
0}
- —— ~+

Figure 96. To-scale deformation of (a) initial mesh and (b) reanalysed mesh
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(b) Ly — solution
expected

u,(5)

Figure 97. (a) - and (b) y-direction displacement results on I,
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Figure 98. Comparison of reanalysis and full analysis (a¢) computation times and (b)

displacement errors
5.6.3 Through crack in an infinite plate example 3

The same approach used to demonstrate the accuracy and flexibility of the

coupled BE-SBFEM is now presented using the DBE-SBFEM with reanalysis.
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The mesh used in Figure 88 may be used in the usual infinite plate problem,
although it should be noted that the holes illustrated in the mesh must be

replaced with continuous media, as illustrated in Figure 99.

(a) o () P () e

totot T )

t thoen : \
{:‘, i : \
| | |

| TN i
oyl \\\‘\ : t
' oty b Tl ) RN

Figure 99. DBE-SBFEM reanalysis of (@) through crack in an infinite plate, (b) the section of

the domain modelled, and (¢) the mesh where red and white nodes indicate I'; and T,

The displacements of the domain are illustrated in Figure 100(a). Reanalysis
is used during subsequent iterations of crack growth through the domain and

compared with iterations based on an equivalent full analysis.

()

original
deformed

Figure 100. To-scale deformation of (a) initial mesh and (b) 1* and (¢) 5" reanalysed meshes
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The reanalysis and full analysis iterations are repeated using the uniform mesh
refinement indicated in Figure 93(b). The analysis times and displacement

errors of the each reanalysis iteration are illustrated in Figure 101.

a
(@) o,
mesh 8
mesh 4
g 06
mesh 2
0.5
mesh 1
0.4r
0.3+
0.2+
0.1+
0% ! ! ! |
1 2 3 4 Er
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1()-5 3
6
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7 €L21:
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L mesh 1
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1 2 3 4 5

propagation iteration ¢

Figure 101. Comparison of reanalysis and full analysis (a¢) computation times and (b)

displacement errors
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5.6.4 Crack propagation with mixed-mode propagation

The same approach is used demonstrating the DBE-SBFEM with reanalysis
where a rotation of Qg is expected. Consider a finite domain €2 of dimensions
bxh with a central, through-crack subject to asymmetric boundary
conditions, as illustrated in Figure 102(a). A DBE-SBFEM model of
dimensions bXh is defined to model this domain, making use of the
symmetric geometry. The prescribed asymmetric boundary conditions are
applied, as illustrated in Figure 102(b). After an initial full DBE-SBFEM
analysis, the crack is propagated in the direction determined by equation (1.3)

, the model remeshed and progressive iterations of reanalysis are employed.

“1 T T TO-yT T T T I x v I O-)I il I A
S &
S 4 2
,,o? ------- i jof
Q P Ty 8 4, o
: - B TRt Wt T |k
2a 8(4—(1—;1—:; ----- X
S g
S &

s . S Y. S
2b b

A
Yy

Figure 102. (a) An asymmetrically-loaded crack and (a¢) the DBE-SBFEM model

The deformation of the domains for each increment using reanalysis are
illustrated in Figure 103 and are comparable to the equivalent full analyses
found in Figure 104. The resulting propagation paths are illustrated in Figure
105 and Figure 106 respectively. The mesh is refined uniformly and the
analyses repeated. The effect of reanalysis on analysis times is illustrated in

Figure 107(a). It is assumed that the full analysis presents a more accurate
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solution than that obtained using reanalysis. Thus, the error is estimated by
the difference in stress intensity factors defined in equations (3.116) and
(3.117) where K; and K, are the stress intensity factors recovered using full

analyses and reanalyses respectively, and are illustrated in Figure 107(b).

Figure 103. To-scale deformations of DBE-SBFEM reanalysis crack propagation iterations
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Figure 104. To-scale deformations of DBE-SBFEM full analysis crack propagation iterations
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Figure 105. DBE-SBFEM reanalysis crack propagation paths
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Figure 106. Full DBE-SBFEM analysis crack propagation paths
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Figure 107. Comparison of reanalysis and full analysis of (a) normalised computation times

and (b) accuracy.
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5.7 Discussion
5.7.1 Optimisation of method parameters

It is not the intention to present the DBE-SBFEM as a coupled method that
is optimised for specific fracture mechanics problems. However, it is of interest
to investigate permutations of method parameters that may offer an improved
strategy for its application to more general fracture mechanics problems. To
this end, the observed and expected effects of some varying some method

parameters is discussed.

The couple methods’ constituents have their own parametric optimisation
strategies for increasing their respective performance. For example, the BEM
is known to be hampered by the poor quadratic approximation to the circular
arcs that define the element geometry on the interface I';. It can be shown
that for an equivalent DBEM-DBEM model (in which the crack tip is
modelled within a DBEM subdomain), the performance may be improved by
use of a square subdomain. Similiarly, it has already been shown that the
SBFEM benefits from the regularity of its domain (§3.10.1). It is reasonable to
assume that these and other such individual method optimisation strategies

apply when coupled.

By changing the shape of the subdomain to a square, Figure 108(a) to Figure
108(b), SBFEM domain regularity is maintained and some minor
improvements were observed. However, these improvements ought not to be
attributed so much to the square itself; the redefinition of the eight elements
used in the discretisation of I'} from arcs to straight elements offers little
improvement. The benefits are in that a satisfactory initial (BEM) mesh of a

square subdomain can be achieved with fewer initial elements than a circular
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domain. The consequence of which is that for a comparable minimal base level

of accuracy, improvement in convergence rates can be gained.

However, by changing the shape in this way, the distance r separating BEM
source point and field point pairs is likely to be reduced, as illustrated in
Figure 108(d), which has the consequence of reducing the accuracy of the non-
singular BEM integration and rate of convergence of adaptive integration
scheme in §2.9. The effect of this, in turn, may be reduced by the resizing of
Q. However, that it ought to be accompanied by a change in element size

gradation on I'y; may be of more consequence the change in domain size itself.

This effect will be problem-dependent according to the proximity of I'y;. The
number of elements was reduced further by changing the shape of the
interface I', to a triangle. However, neither this nor the change in orientation
of the domain as in Figure 108(c) offered (consistent) improvements in

accuracy.

The rotation of the initial subdomain ought to be arbitrary, but with a
subdomain corresponding orthogonally to the Cartesian axes, the unit normals
to the interface remain well-defined (e.g. n(s)=1{1 O}T). Low angular
perturbations of the domain, however, effects these unit normals (e.g.

n(s) = {0.99999 0.0045}T) and may lead to poor system matrix conditioning.

The effect parametric optimisation strategies is also subject to interpretation.
For example, both methods benefit from some degree of mesh optimisation,
such as through adaptive refinement schemes, and the same is expected with
the DBE-SBFEM. However, mesh optimisation is then subject to its own

parametric optimisation, such as the quality of the initial mesh and the
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definition of its error indicators and estimators, which leads to multiple
interpretations over the performance of mesh refinement. Such interpretations
of the effect of individual parameter variations hampers quantifying the effect
of combined parameter variations. So while each of the parameters discussed
here are expected to benefit the coupled DBE-SBFEM on a problem-specific
basis, determining their effect on general problems remains both outside the

scope of this project and a recommendation for further research.
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Figure 108. Parameters to be investigated further for general improvements of the DBE-

SBFEM include (a) size, (b) shape and (c) orientation of Qg and (d) its proximity to T
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5.7.2 Applications of the DBE-SBFEM

Due to the symmetric nature of the problems in §5.6.2 and §5.6.2 which the
propagation angle @ is known a priori to be 8 =0, the effect of T, on K is
expected to be low and is confirmed as &, =107"". The accuracy of each
reanalysis iteration is described using ¢, is illustrated in Figure 98(b). In
both examples, such is the accuracy of the reanalysed solution, there is no
visible distinction between the accuracy of the reanalysis and full analysis.
Further results, not published here, confirm similar trends for the finer initial
mesh densities in which the initial mesh is subject to uniform mesh
subdivision before reanalysis is employed. With this example, where the
propagation angle @ is known a priori to be 8 =0, it is confirmed that the
reanalysis accuracy associated low angular perturbation of g described in

§5.5.1, extends to the global error estimator &, .

The mixed mode example illustrates that reanalysis can be successfully
employed with the rotational perturbation of the SBFEM subdomain by
transforming the stiffness matrix. Errors are based on the differences between
the reanalysis result and the equivalent full analysis. These errors were greater
than those for the example that required no rotation of the stiffness matrix.
This could be because the condition number of the matrix of modal
displacement vectors K(‘I))zlog and its effect on introducing significant
imaginary components to c, as discussed in §3.10. However, as shown, for
even a crude initial mesh, in which 90° arcs are meshed with just one

quadratic element, the computed errors are low.

In each case, Figure 98(a) and Figure 101(a) indicate substantial savings in

computation times can be made if reanalysis is employed. For the less trivial
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example in §5.6.3, the normalised computation time stabilises quicker than in
the previous examples owing to the greater proportion of reusable data
between analyses, demonstrating the suitability of the reanalysis of crack
propagation in non-trivial domains. The rate of convergence of this difference
is not illustrated as the objective of this example is to demonstrate the
flexibility, mnot describe convergence characteristics of arbitrary models

unavailable for comparison elsewhere in the literature.

It can be seen that for domains of small rotational perturbation the reanalysed
matrices offer good approximations to the fully analysed equivalent. However,
Figure 91 illustrates that further to the usual problem of high mesh densities
contributing to errors owing to the near-paralisation of the eigenvectors, it is
not recommended that reanalysis be used for domains subject to high
rotational perturbation. The stability of results can be linked to the condition
number of K, shown in Figure 91(b), which itself may be linked to x(®).
This may serve as an indicator that the rotational perturbation is too great
for its accurate approximation to K. In this example rotational perturbation

should be limited to 0.1rad.

5.8 Conclusion

With the new analytical integration of hyper singular BEM kernels (Simpson
and Bird, 2009) and the semi-discontinuous scaled boundary finite element
(Bird et al., 2009a), a coupled dual boundary element-scaled boundary finite
element method has been presented. Its application to fracture mechanics has
yielded satisfactory results. Investigations into refining its constituent
methods’ parameters have provided some improvements, but caution should

be taken in order to avoid a loss in general applicability. Further
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investigations are recommended.

The introduction of the rotational transformation matrix facilitates the use of
reanalysis for a crack propagation scheme. An example of this has been
presented to demonstrate this, although a more robust propagation scheme
could be considered in future work for more accurate reanalysis-based
propagation. The use of reanalysis has shown to reduce the computational
times for the coupled method by reusing data common to multiple analyses.
These savings are exemplified when reanalysis is applied to non-trivial

domains.
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6 A displacement boundary integral equation-

based dual boundary element method

6.1 Introduction

In this chapter, a new dual boundary element method (DBEM) formulation is
introduced. As part of the present work, its motivation is presented alongside
a detailed numerical formulation to demonstrate the method’s suitability for
applications to fracture mechanics. Formed using the displacement boundary
integral equation (DBIE), rather than the traction boundary integral equation
(TBIE), the new and existing formulations are compared and assessed through

examples.

Unless otherwise stated, the data in numerical examples in this chapter are
obtained by the development of the author’s own code. For purposes of
disambiguity, unless otherwise stated, the development of the new dual
(displacement BIE) BEM (DdBEM) formulation is as a direct result of the

present work.

The chapter is closed with concluding remarks.
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6.2 New formulation

As described in §2.8, the use of the BEM to model both the upper and lower
faces of a crack causes duplicate rows in the system described by equation
(2.103). By replacing the rows in the system matrix found through DBEM
collocation, with those found using DABEM, row-uniqueness is assured and
the system is solvable. The DBEM is not without its complications, however,
and requires the computation of hyper-singular integrals, offers limited
applicability and may increase the condition number of the system with
typical engineering materials from around between 10° and 10° to around

between 10" and 10".

By reformulating the DBEM using the DBIE, many of these disadvantages are
overcome. Moreover, the alterations to standard BEM code necessary to

accommodate the DdABEM may be less demanding than the DBEM.

6.3 Numerical formulation

The need for the DBEM arises as the nodes defining the elements on the
upper and lower crack surfaces are coincident. The underlying characteristic of

the DBEM due to this assumption is the ill-conditioning described in §2.8.

The new formulation staggers the nodes on coincident elements such that
their respective nodes are no longer coincident, as illustrated in Figure 109
also showing their respective shape functions. In the examples in the figure,
the elements are shown with a finite vertical separation for illustrative
purposes only and are defined coincidentally. As such, a distinction is made

when collocating at each of the nodes defining the upper and lower elements.
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Consider the upper element, for example. As with the DBEM, the presence of
degrees of freedom on the lower element within the bounded range -1 <7 <1
causes singular behaviour at these nodes. Unlike in the DBEM, these
singularities no longer coincide with existing nodes on the upper element, as

indicated by the ‘x’ marks in Figure 109(b).

(a)
-1 L. 7" +1
| I/ ) > I/ |
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Figure 109. Coincident elements, and their respective shape functions, modelling the crack
faces defined by (a) coincident nodes and (b) non-coincident nodes. The crosses indicate the
local coordinates of singularities in the kernels owing to the degrees of freedom on the

opposing elements

However, as the DBIE is used to integrate over the upper element, unlike with
the TBIE, these singularities are merely weakly- and strongly-singular, rather
than strongly- and hyper-singular. The analytical form of the integrals used in

the BEM can be used in the DABEM, hence the development as part of the
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present work of equation (2.80) for general discontinuous quadratic elements.
Similarly, when considering the lower element, weak and strong singularities

exist due to nodes on the upper element.

6.4 Applications to fracture mechanics
6.4.1 Through crack in an infinite plate

In this example, the same approach is taken as in §2.10.3 except that, with
reference to Figure 110, the DdBEM is used in on both the upper and lower
crack surfaces in place of both the BEM and DBEM respectively. The
displacement of the domain is illustrated in Figure 111. Again, and
particularly at the crack tip (where s=1), the inaccuracies of this
discontinuous element-based method are highlighted, as illustrated in Figure
112. The convergence characteristics due to the uniform subdivision of the

mesh are illustrated in Figure 113.
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Figure 110. DABEM analysis of (a) through crack in an infinite plate, (b) the section of the

domain modelled, and (¢) the mesh where red and white nodes indicate I'; and T,
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Figure 113. Convergence characteristics of global error estimators (a) g, and (b) £,
6.5 Discussion

Many of the disadvantages of the traditional DBEM occur in the new
DABEM. The need for discontinuous elements at coincident sections of
boundary is maintained, and this lack of continuity results in noticeable jumps
in the displacement solution between elements and any derived values, just as

with the DBEM.

However, because the DABEM poses no further integration problems than the
BEM, boundary conditions applicable to the BEM are applicable to the
DABEM too. As such, no a priori knowledge or assumption of traction-free
boundary conditions on coincident sections of boundary is required in order to
side-step the awkward strongly-singular integration of the DBEM kernels,

significantly increasing the applicability of the BEM.
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The application of assumed boundary conditions has traditionally facilitated

the avoidance of some singular integration in the DBEM, as discussed in §2.5.

Throughout this work, it has not been the intention to select purposely
examples that offer particular advantages owing to their respective choice of
configurable parameters. Thus, that the absolute accuracy of the DdBEM is
lower than the DBEM in the example chosen is of less importance than its
general convergence characteristics which have been demonstrated to mimic
that of the DBEM. Indeed, in a manner similar to that illustrated in §2.11, it
can be demonstrated the DABEM may outperform the DBEM under certain
configurations. However, it is beyond the scope of this work to optimise the
DABEM such that it may consistently outperform the DBEM in terms of
accuracy, merely to demonstrate a new and simpler method of using the

DBEM.

6.6 Conclusion

The existing traction boundary integral equation-based (TBIE) formulation of
dual boundary element method (DBEM) has been replaced by a new
formulation based on the displacement boundary integral equation (DBIE)
forming the DABEM. The new formulation represents a new means to model
domains involving discontinuities, which until now, required the use of domain
subdivision or the use of the existing formulation. The benefits of the new
formulation include its inclusion into existing boundary element method
(BEM) code with more readiness than the older formulation. Moreover, the
new formulation has been demonstrated to reduce the condition number of the

BEM system matrix by an order of approximately 10’.
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By no means does the author conclude this proof of principle demonstrates
that the DdBEM has been exhaustively evaluated. It is recommended that
further work explores the stability and usefulness of this method. But by
replacing the traction boundary integral equation-based dual boundary
element method with the new formulation, the coupled dual boundary
element-scaled boundary finite element method can incorporate these

advantages over its predecessor.
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7 Discussion
7.1 Introduction

The aim of the present work is to develop and assess a new algorithm for the
accurate solution of general fracture mechanics problems that retains the
geometric flexibility expected by engineers. With respect to this goal, this
chapter summarises the discussions on the numerical methods and their
implementation. First, the usual approach to numerical method verification is
discussed, prompting motivation for the alternative, and preferred, testing
protocol used in this work. A comparison of the numerical methods presented
in this thesis is summarised and recommendations for further research are

made.

7.2 Assessment of method implementation

As part of the present work, the code of Chidgzey (Chidgzey, 2007) was made
available to the author for evaluating T-stresses computed by the coupled BE-
SBFEM (Chidgzey et al., 2008). Several limitations were identified. The top-
down approach to coding and testing prevented the clear identification of

whether these limitations were characteristic of the method or its
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implementation. By rewriting the code using a bottom-up approach, a better

such distinction is drawn.

By considering functions as simple black-box operations for which a range of
inputs provide a range of expected outputs (Appendix F), its limitations can
be estimated through unit testing. Each level of functionality is then bound by
the identified limitations its respective lower level functions. This offers means
by which the quality of implementation can be judged. If the cause for specific
test failures cannot be identified, the code is asserted for its characteristics,
preventing speculation over hereditary functional failure common under the
top-down approach. This is useful when high level functions, such as the
implementation of the numerical methods presented here, are under scrutiny.
This preference for unit tests over acceptance tests has the further benefit that
the impact of addressing errors and functional limitations is more easily
assessed. Together, this reduces the scope for error in the acceptance tests,
providing additional confidence they are representative of the method more

than its implementation.

7.3 Comparison of results

The examples of applications to fracture mechanics of each of the methods
here were chosen in order to facilitate their. Each method has demonstrated
some level of convergence, indicating their suitabilitly towards such problems.
Convergence characteristics are defined as the rate of reduction R in error per
degree of freedom n and are summarised in Table 114. Typical values of R
are given as convergence has been shown to be heavily problem-specific and
varies according to the type of error indicator. Caution should be taken when

comparing methods as the definition and computation of each degree of
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freedom varies widely between methods impacting on its efficiency. However,
it can be seen that each method offers convergence for the fracture mechanics

problems analysed.

Method O(R)
BEM 107"
DBEM 107"
DABEM 107"
SBFEM 10~
BE-SBFEM 107"
DBE-SBFEM 107

Table 114. Comparison of method performance by approximate order of convergence
7.4  Assessment of methods

The BEM benefits from its versatility and ease of implementation and
performs well in terms of modelling general engineering domains, but is
hampered significantly by the non-polynomial nature of the crack face
displacement functions in the vicinity of the crack tip that yield poor
boundary and interior results. Although exacerbating such errors, the use of
discontinuous elements further eases implementation; by providing additional
interior points to the boundary solution, a multizone approach may offer
improved accuracy but at the expense of implementation ease and efficiency.
Accuracy can be improved further by the in-process adaptive integration
scheme presented here, which, albeit computationally expensive, is less

expensive than a post-process-based mesh refinement scheme.

The DBEM increases the flexibility of the BEM at the expense of the
introduction of hyper-singular integration and, depending on material
properties, a raise in condition number by a factor of around 10°. Scaling

factors may offer a reduction, but require a priori knowledge of the expected
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ratio of traction to displacement orders of magnitude. Without the assumption
of traction-free crack faces, the DBEM significantly increases in complexity as
the coefficients of traction in the influence matrix can no longer be ignored.
The DABEM facilitates loaded crack faces and, as it is based on the DBIE, is
no more complex to implement than the BEM. Moreover, condition numbers

remain comparable to the BEM.

Although a relatively new method, the SBFEM has recently received positive
reaction in the literature due to its ability to capture the stress singularities
with greater accuracy than the polynomial-based BEM. However, its strengths
and weaknesses have not yet been so rigorously assessed. In addition to its
known line-of-sight restrictions and numerical instability under high mesh
densities, the present work has identified further geometric limitations.
Complex domain and boundary condition combinations lead to ill-conditioned
system matrices that may precipitate numerical instability, rendering the
SBFEM susceptible to inaccuracies when applied to general engineering

problems and meshed with fewer than 3 elements per discretised face.

The coupled BE-SBFEM has demonstrated a balanced compromise between
the efficiency and accuracy of the SBFEM and flexibility of the BEM, and the
presented reformulation increases the range of boundary conditions that can
be applied. However, its working assumption of symmetry hampers its

attractiveness as a solution to general engineering problems.

The coupled DBE-SBFEM addresses the issue of symmetry, but at the
expense of further implementation difficulties. Additional consideration is
required where the subdomain interface meets the crack face. However, for

this purpose, new semi-discontinuous scaled boundary finite elements have
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been developed as part of the present work and have shown comparable
accuracy. Through a crack propagation scheme, the method has demonstrated
its suitability to the use of reanalysis in fracture mechanics problems.
Significant computational savings have been observed in the rudimentary
propagation algorithm presented here. Considerably higher savings are
expected for a predictor/corrector-based scheme in which larger portions of

the existing matrices can be reused between iterations.

7.5 Recommendations for further work

The coupled DABE-SBFEM has not yet been implemented and remains a
recommendation for further research. Its advantages over the DBE-SBFEM
are expected to mimic those that the DABEM has over the DBEM. Like the
DBE-SBFEM, there is scope for improvement of the parameters relating to
the interface between the BEM and SBFEM subdomains. Further research is
recommended, but should regard the intention of developing a general
algorithm for real fracture mechanics problems rather than a solution geared

towards the optimisation of a specific, academic problem.

In addition to the interface parameters, more research is recommended on the
constituent methods. The DdABEM has been shown to perform comparably to
the DBEM for the selected example, it is recommended that the application of
boundary conditions other than traction-free crack faces be explored.
However, this new method requires substantial further research to assess its
stability and suitability to general fracture mechanics problems. As with the
BEM, a strategy for optimising the local nodal distribution offers scope for

investigation.

Like the original form of the SBFEM, side face traction boundary conditions
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must be applied in terms of modal coefficients at the side face node. Although
this is not demonstrated in the present work, a similar approach is expected
for the semi-discontinuous SBFEM. Without a node on the side face, however,
boundary conditions cannot be applied directly. Instead, boundary conditions
must be computed that once applied to the neighbouring semi-discontinuous
element can be extrapolated to 7 = +1 such that the required conditions are

prescribed on the side face.

As a relatively new and unexplored method, the SBFEM remains largely in its
original form (Wolf and Song, 1995). The use of side faces to model the
singular functions on a geometrically linear crack face has been demonstrated
both historically and in this thesis, such as in Figure 115(a). However, the use
of a non-linearly varying scaling function may facilitate the modelling of a
geometrically non-linear crack face. Not be confused with Figure 115(b), in
which the geometric boundary is subject only to translation scaled by &, if
the geometric boundary is subject to additional rotation, as illustrated in
Figure 115(c), curved side faces can be formed. This requires an alternative
mapping between the Cartesian coordinates and the scaled boundary
coordinate system, but once mapped, the existing method of element-wise

boundary integration leading to a modal superposition-based solution form is

retained.
4 5 & S &
(a) o (0)
< > =0
o 5 o0 5 o

Figure 115. Geometrically linear boundary scaling about a SBFEM scaling centre
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The coupled method has been demonstrated to employ reanalysis to good
effect in the area of linear elastic fracture mechanics. A number of
improvements to the crack propagation algorithm is possible. While the scope
of the present work was to couple the methods for use in such algorithms, it
does not extend to its optimised use within them. As such, it is recommended
that the DBE-SFBEM and DdBEM-SBFEM with reanalysis are used in
conjunction with other propagation schemes in the literature. The benefit of
reanalysis is expected to be highlighted by multi-analysis iterations of crack
growth such as by (Aliabadi, 1997) in which the predictor/corrector approach

offers such scope for efficiency.
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8 Conclusion

The aim of the work presented here was the development and assessment of a
new algorithm for the accurate solution to general fracture mechanics
problems that retains the geometric flexibility expected by engineers. The
coupled DBE-SBFEM has demonstrated a balanced compromise between the
efficiency and accuracy of the SBFEM and flexibility of the BEM. The
inclusion of the DBEM negates the need for an assumption of symmetry,
lending itself towards its application to general engineering problems. Further,
reanalysis is used to great effect, demonstrated as part of a rudimentary crack
propagation algorithm. The new DAdBEM has shown promise as an alternative
to the DBEM and its inclusion is expected both to reduce the method’s
complexity and increase its range of application to fracture mechanics in

general engineering problems.

The coupled method has been implemented under a modern computer science
framework using a bottom-up approach to testing that both narrows the scope
for coding errors and increases their detection. Extensions have been made to
each of the coupled method’s constituents and by code and method

generalisation, has facilitated investigations into their respective numerical
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stability. Further extensions have been recommended for further research. In
addition to presenting the methods through clear approaches not found
elsewhere, the present work offers insight into the consequences of selected

numerical parameters that were otherwise considered arbitrary.

The coupled method has been tested extensively and performed strongly
against academic problems with known analytical solutions. With its general
approach to parametric optimisation, it can be concluded that the coupled
DBE-SBFEM with reanalysis provides a new flexible, accurate and efficient

tool for general fracture mechanics problems found in engineering.
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Appendix A. Notation for BEM submatrices

This appendix describes the BEM matrix subdivision in greater detail than
the main text, with focus on the practical implementation of the method in
code. The BEM global system matrix H comprises %4 sets of equations, one
set per collocation point as collocated at % mnodes on the boundary from

s=0 to s=25, and thus can be subdivided into

Each instance of collocation at source point P, provides sets of two equations

that can be subdivided into I submatrices, one for each of the I elements on
S

A

H(R) =[H!(R) ... HY(B)] (A2)

Each term comprises sets of two equations that can be subdivided into k

submatrices, one for each of the number of nodes defining element .
H'(R) =[H'(R) .. H¥R)] (A.3)

208



G. E. Bird

The DBE-SBFEM: Notation for BEM submatrices

Each term can be subdivided into four terms, corresponding to the two
coefficients (columns) of each of the two degrees of freedom v and 4,

associated with node k of element .

ek ek
hek(P) hzy(Ps)} "

I:I€k (P9) - |: ek ek
hys (7) Py (F)

Each such term can be expanded explicitly in terms of the portion of their

respective fundamental solutions

jTg‘( j o (P,)dr,
e =| o
.[ Tycir ( S _[ vy (P )dr
r(i
where, for i,j = z,y,
j (P, P)dIy = jz;;f*uz)dre (A.6)
e=1T,

Defined in terms of the local coordinate 5¢, these submatrices are written

+1 +1
j Ty, (PN () dn j Ty, (PN ()T dn

H*(P,) = (A.7)
j (PN (n°)J dn j VJedn’

or

*

*T;e:(a) %(ﬂ)}{mm 0

H*(P) = . g Jedn’ A.8
) _leyZ(RJ Ty (B)JL O Nk(ne)} —

where N, is the A" polynomial shape function and J¢ is the Jacobian of

element . . Similarly
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G@’“(BF]1 V) UnB) [ ) 0 }Jedﬂe
ALUR(R) Uy(R)JL 0 Nifor) (A.9)
H,ek(a):*f‘s%(a) SyE)INrY 0 e o)
aLSwR) SyR)IL 0 Ny ]
é'ek(g):ﬂl)%(a) DE{(B)}[M(%) O lrar
ALDR(B) D)L 0 Nur) ]

where

S(R) Sa(P) 0 n(F) 0 n(B) | Spu Sy
_Sy?ﬂ SZ/?/Z/_
(A.12)
' Dye Doy
D:: D:Z :{RT(PJ O ny(PS> O :| Din Diyy (A13)
Dg DS 0  n(K) 0 nJR)]| D, D,,
_DZIW Dyyy_

ck

Further, the displacements u® and tractions t* corresponding to node k of

element € are denoted

uek

ek _ z

u —{ ek} (A.14)
Uy

.|

t" = b (A.15)
Y
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Appendix B. Displacement modes of a square

domain

This appendix illustrates 64 sample displacement modes (red) associated with
the deformation of a domain (black). This appendix is included for reference
only and it should be noted that the order of the modes is arbitrary. Some of

the more identifiable modes are summarised in the table below.

Number (m) Mode Description
1 f y-translation
2 — z-translation
3 X expansion
4 \ pinch
) *1* y-stretch
6 \' rotation
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Appendix C. Displacement modes of a triangular

domain

Included purely for reasons of comparison with Appendix B, this appendix
illustrates some of the modes associated with a triangular domain. It can be
noted some of the modes are similar to those in Appendix B, but that the
order may differ. In both cases, the mode orders are in principle, arbitrary,
but their formulation using the scaled boundary finite element method ensures

that some modes are formed in the same order.
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Appendix D. Stress and strain transformation for
the SBFEM

This appendix details the transformation of the terms necessary in equation
(3.8) for the derivation of the scaled boundary finite element method
(SBFEM). This appendix extends the transformation as described by Deeks

and Wolf (Deeks and Wolf, 2002a).

For any point p(z,y) relative to some fixed Cartesian origin (z,,y,) within a

domain €, with body forces neglected, internal equilibrium requires
L'o(z,y) =0 (D.1)

where the stresses at p(z,y) are given by

T
G(xa y) = {O-frfr O-yy O-Iy} (DZ)

and L is the linear operator that relates the displacements u(z,y) and the

strains e(z,y) such that
e(z,y) = Lu(z,y) (D-3)
where
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9

5 0

0
L=| 0 5 (D.4)

9 9

| dy Jx |
cwy) ={on o, 0,} (D.5)
u(z,y) = {u, uy}T (D.6)

These stresses and strains are related by the elasticity matrix D such that

o(z,y) = De(z,y) (D.7)
where
1-v v
D= b v 1-v 0 (D.8)
S 1+v)(1-2v) e '
0 0 5
for plane strain models and
s 1 v 0
D, = slv 1 0 (D.9)
1-v -y
0 0 =+
for plane stress models. Decomposing L gives
0 0
L=L —+L,— D.1
1 az 2 ay ( 0)
where
10
Li=|{0 0 (D.11)
0 1

224



G. E. Bird

The DBE-SBFEM: Stress and strain transformation for the SBFEM

00
L,=|0 1 (D.12)
10

These partial derivatives in the Cartesian system are related to the partial

derivatives in the scaled boundary co-ordinate system by

ox ay

d 0 0
2 oL 499 D.1
85 ox 85 o0& dy (D-13)
9o _ 99z 0 dy (D.14)
ds Odr ds Jdy ds '
or in the Jacobian matrix form
9] [9z dyl[9
o& _ o df || ox (D.15)
AREEAK
ds ds 9sldy
Taking partial derivatives of equations with respect to &
3_2 = () (D.16)
g_ii = y(s) (D.17)
and with respect to s
or
8_5 - é‘:x(‘s),s <D18)
dy
g - 5y(5)75 (D19>
which, when substituted into equation (D.15) gives
9 9
o | _ { z(s)  y(s) } oz (D.20)
3 [T Len, &), ]2 |
ds dy
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or

9 9
98 | _[#6) u) ) _—
19| |a(s)s ws)s |9
& ds dy
which by introducing Jacobian matrix J(s)
3 2
of | _ o
li = J(s) B (D.22)
& ds 9y
gives
9 9
3 [ TR, a9 |12
dy & ds
where the shorthand comma notation “,” denotes a derivative and
|J<S)| = x(s)y(s)75 - y(s)x(s)yﬁ (D24>
Thus, L is rewritten
1 0 1 8) 1 ( 0 10 )
L=L—|y8)s=z—ys)z5 |+ Lo=r=| —2(s) s 5% + () 5=
(D.25)
or for convenience
0 10
L= bl(S)% + bQ(S)Eg (D26)

where
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1

bl(s) = w(Lly(S>,s - L2x(8>,s ) <D27)
1
by (s) = w(—LﬂJ(S) — Lya(s)) (D.28)

By transforming the strains from Cartesian to the scaled boundary coordinate

system
g(&,s) = Lu(&,s) (D.29)

and discretising in the s-direction, it follows

de;,(&,s) = LN(s)du(é) (D.30)
0 1 0
ey, (S,s) = bl(S)N(S)%du(é’) + Ebz(S)N(S)g&l(f) (D.31)
which, for convenience, is rewritten
5e,(£.5) = By(5)5ulé) ¢ + 3+ Ba(s)du(é) (D.32)

3

and the hAsubscript indicates an approximation to its respective parameter

and is indicative of the level of discretisation™, and

By (s) = by(s)N(s) (D.33)
By(s) = by(s)N(s), (D.34)

“i Conventionally, the use of this subscript indicates that which the approximation is expected
to offer improvement with h-adaptivity; with the SBFEM, h-adaptivity alone may not be
sufficient to improve this approximation.
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Similarly, by transforming the stresses from Cartesian to the scaled boundary

coordinate system
o(¢,s) = De(¢,s) (D.35)

and discretising in the s-direction, it follows

on(E.5) = D(Bl<s>5u<§>,¢ v §B2<s>5u<§>} (D.36)

The change in volume dQ of the domain is given by
dQ = |J(¢&,s)|Edéds (D.37)

where |J(&,s)| is the determinant of the Jacobian at the boundary. Because

at the boundary & =1, this can be rewritten with in terms of s only
dQ =|J(s)|Ed&ds (D.38)

Thus, the transformed principle of virtual work statement, transformed from

the Cartesian coordinate system

J Su(z,y) t(x,y)dlg — J oe(z,y) o(z,y)dQg = 0 (D.39)
I's Qs

into the scaled boundary coordinate system

j Su(s)Tt(s)dTg — j Se(£,5)T o (£,5)dQg = 0 (D.40)

is given by
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I 5€h (f? S)T Gh(f? S)dQ‘

1

T
J I Bio)Su()s + £ Ba9ue) | | DBi(6)5u(E) s + DBus) 3 u) ||3(5) o
50 4 3

=0

(D.41)
Su(fr)T (Eeu(gr),é + ElTU(fr) - P(fr))
[ou(@" [ Budul)ge + (B + BT ~ By Jul)s - 7Eau(é) Jag
=0
(D.42)

where & indicates & at the boundary, i.e. where £ =1.
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Appendix E. Traction-force transformation

This appendix details the transformation of nodal forces into equivalent
tractions, as necessary in the coupling of the boundary element method

(BEM) and the scaled boundary finite element method (SBFEM) as described

in this thesis.

Consider a domain € bounded by 1", subdivided into a BEM subdomain Q,
bounded by I';;, and a SBFEM subdomain @, bounded by T, separated by a
common interface I';, as illustrated in Figure 116(a) and (b). For
compatibility across I',, the nodal displacements of an interface element from
the perspective of the BEM region must match those of the SBFEM.
Similarly, for equilibrium across the interface, the tractions on the BEM side
of the element must match those of the SBFEM. However, because the
SBFEM formulates a displacement-force relationship, these forces must be
transformed into tractions (or wvice versa) in order to satisfy these conditions.
For the element shown in Figure 116, the relationship between the nodal
forces s+ and equivalent nodal tractions ¢*, for 1=x,y and £k =1,2,3, is

given by
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e

[ o1 +1 +1
ey | Lommderdn [N Idn [ NN )an |

+1 +1 +1
12 p= | L NN [ NoNoJf ) [7 NoNyJ () |57

e +1 +1 +1 te3
B v an [ v an [ NNy
) (B
or
£ = Mot (E.2)

where N, (p¢) is denoted as N, for brevity (Becker, 1992). Thus, a system can

be made by enforcing equilibrium across all the interface elements
f = (-)Mt (E.3)

where the minus sign is introduced for convention as the unit normal at the
nodes of the interface element differs from the perspective of the BEM and

SBFEM by a factor of —1, as illustrated in Figure 116(c) and (d).

The assumption here is that the Cartesian coordinate systems local to both
subdomains are in the same direction. In the case that the Cartesian
coordinate systems of Qg (Ls,Ys) differs from that of Qp (z,,y,) by an angle
of 6, then the following transformation should be included in relating the

BEM tractions to the SBFEM forces
f = _tht (E4)

where t, is the transformation matrix

cos@ —siné
tg = (E5)

sin@ cosé@
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(a) (b)

uaS t{fg

T Y x

Figure 116. Subdivision of domain (a) €2 and I into (b) Qp, Qg, I'g, I's and 'y and the

interface elements from the perspective of (¢) the BEM and (d) the SBFEM
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Appendix F. Functional testing
Consider the following function

flz,y) = zy

(F.1)

and the results of its implementation by these MATLAB codes.

Implementation 1

function result = f(x, y)
result = x + y;

end
X y expected f(x,y) actual f(x,y) Result
0 0 0 0 pass
1 1 1 2 fail
2 2 4 4 pass
-3 -3 9 -6 fail
-4 4 -16 0 fail

1..0000000000000001 1 1..0000000000000001 2 fail

Implementation 2
function result = f(x, V)
result = abs(x * y);

end
X y expected f(x,y) actual f(x,y) Result
0 0 0 0 pass
1 1 1 1 pass
2 2 4 4 pass
-3 -3 9 9 pass
-4 4 -16 16 fail

1..0000000000000001 1 1..0000000000000001 1 fail
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Implementation 3

function result = f(x, V)
result = x * y;

end
X y expected f(x,y) actual f(x,y) Result
0 0 0 0 pass
1 1 1 1 pass
2 2 4 4 pass
-3 -3 -9 -9 pass
-4 4 -16 -16 pass

1. 0000000000000001 1 1. .0000000000000001 1 fail

It can be seen that each implementation offers a working solution. By
increasing the range of cases chosen to tests the implementations, their
respective limitations become clearer. It may be possible to prove the range of
limitations of a particular function. But in general terms, this is not practical
and instead an estimation of its limitations is made. This estimation may be

improved by increasing the range of tests applied to the function.

This approach can be taken for all such ‘black-box’ functional testing,
regardless of its complexity. However, the simpler the function, the easier it is
to determine an exact expected result and so the more reliable the test. Well-
written code can be tested in this way without concern for the reliability of
any lower-level functionality; the assertion that the use of a lower-level
function conforms to the limitations of that function should suffice. Such

lower-level functionality should be tested separately.
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Appendix G. Code integrity

This appendix summaries the efforts made by the author to restrict the coding

errors and to take confidence in the validity of the results.

At the start of the project, individual SBFEM and BEM codes were available
to the author to assist in the development of the coupled BE-SBFEM
algorithm. However, the SBFEM code written by Chidgzey et al. was deemed
insufficiently flexible to demonstrate its robustness and to offer reliable results
with confidence and the BEM code written by Trevelyan et al. was geared
towards commercial and teaching goals, rather than the evolutionary support
of additional academic functionality. Thus, the was decision made to rewrite
in full all code associated with this project under a modern computer science
framework using established design patterns (Freeman and Freeman, 2004)

complemented by a protocol of automated testing.

Vigorous unit-testing (Astels, 2003) helped prevent additional errors creeping
into the code as the result of rectifying other errors. The wide range of
acceptance tests outlined below illustrates the robustness of the code and

allows the user to analyse the results with confidence that the end product
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conforms to a required quality. Further, a normalised evolution of the code
achieved by refactoring (Fowler et al., 1999) offered more structure and
maintainability to the software than that of a more ad hoc approach often

found in academic engineering code.

Some of the acceptance testing included the parametric testing of benchmark
problems with known, analytical solutions. With each problem type, a range
of models were analysed and the results compared to the analytical solution,
with mesh-refinement convergence assessed and monitored. Parametric
variations included model geometry, mesh density, material properties,

boundary conditions etc and mixtures of domain and subdomain types.

Despite the ‘black box’ nature of the algorithms described in this thesis and
the testing methods geared towards such operations time and resource
constraints have prevented this approach being used to the extent to which its
developer would have preferred. Pragmatic decisions have been made to
reduce some testing in order to further develop the code, leading to certain
assumptions about its quality. In some areas, computational efficiency has
been sacrificed for improved maintainability and as such, some of the
computational times offered in the results in this thesis should be observed

with a degree of caution.
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