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Abstract

In this work we put constraints on the primordial non-Gaussianities by using recent

Large Scale Structure (LSS) surveys. The importance of measuring the amplitude of the

primordial non-Gaussianity lies in the fact that it is the most prominent observational

probe of the very early Universe. The plethora of the inflationary scenarios describing the

early Universe makes it urgent to decide between them and create a solid physical theory

for this era. The different inflation models predict different amount of non-Gaussianity

in the primordial density perturbations, which will seed the LSS we observe. Therefore

here we use the clustering results of prominent LSS surveys in order to test if they have

the statistical power to constrain the primordial non-Gaussianity.

We review the clustering of the radio sources from the NRAO VLA Sky Survey at

z ∼ 1. The non-Gaussianity measured is one of the best determinations coming from LSS

in the literature, fNL = 62 ± 27 (68% CL). We also use the full scale range clustering

of the LRG’s from the CMASS of SDSS BOSS DR8 at z = 0.55. By using the scale

dependence of the bias, originating from the existence of primordial non-Gaussianity,

we fit non-Gaussian models to the large scales of our sample in order to measure the

f loc
NL. The resulting fits show that there is room in this sample for non-Gaussianity.

Although due to the large scale uncertainty errors the standard ΛCDM model cannot be

excluded. Recently the measured non-Gaussianity from the SDSS BOSS CMASS sample,

−92 < fNL < 398 at 95% CL, shows that the constraints are not tight. This was expected

because of the large scale statistical uncertainties in the clustering of this sample. Our

best-fit measured f loc
NL = 71 ± 11 (1σ) is consistent with their measurements. The H-a

emitters from HiZELS at a narrow redshift selection z = 2.23 are a promising survey for

non-Gaussianity, but in order to gain any interesting constraints we have to wait for a

larger sample.



Finally we analyze the clustering of the ∼ 30, 000 quasar sample of SDSS BOSS DR9 at

an effective redshift of zeff = 2.4. The results show an amplitude excess in the clustering of

the sample at the large scales. By fitting non-Gaussian models to the correlation function

we measure, f loc
NL = 135±9 at 1σ CL. ΛCDM fits the clustering results until 40 h−1Mpc.

However we cannot exclude the standard cosmological model since at the large scales that

constrain fNL, our results remain sensitive to the effects of systematic errors. We check

the quasar sample for any potential systematics and particularly for the systematic effects

of galactic extinction, seeing, sky brightness and foreground stars. Similar to previous

studies the largest systematic comes from the presence of foreground stars. When we

correct for such systematics we find, f loc
NL = 63± 16 (1σ). The measured amount of non-

Gaussianity after correcting for the systematic effects is consistent with the results coming

from the NVSS radio sources sample. Since the large scale amplitude of the clustering

results is directly affected by systematics, we need to apply a more sophisticated method

for correcting such effects. In any case, our original results show that the quasar sample

shows excellent potential for determining the amplitude of primordial non-Gaussianity.

ii



Statement of Copyright

“The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged.”



Acknowledgements

First of all I would like to thank my supervisor Prof. Tom Shanks for his tremendous

help, guidance and support. I would also like to thank the postgrads and colleges with

whom I shared the same office, Nikolaos Nikoloudakis, Dr. Utane Sawangwit and Joe

Whitbourn for their help, guidance and time.

I would like to thank all the other postgrads and people of the Physics Department

for the interesting conversations and useful information. I also thank Dr. Nicolas Ross

for trusting me with his codes for the quasar selection of the SDSS BOSS DR9. Finally I

would like to thank my family for their patience, financial support and help. My special

thanks for her proofreading, support and love to Ms. Pallavi Vengsarkar.



Contents

1 Introduction 1

2 Theoretical Review 5

2.1 The Spectrum of Cosmological Perturbations . . . . . . . . . . . . . . . . . 5

2.2 Primordial fluctuations from inflation . . . . . . . . . . . . . . . . . . . . . 11

2.3 Primordial non-Gaussianities . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Primordial non-Gaussianity in Large Scale Structure 29

3.1 Structure formation and bias . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Press-Schechter Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Non-Gaussianities in the mass function . . . . . . . . . . . . . . . . . . . . 34

3.4 Non-Gaussianities in the galaxy bias . . . . . . . . . . . . . . . . . . . . . 36

4 Search for non-Gaussianity 40

4.1 NRAO VLA Sky Survey from Xia et. al. 2010 . . . . . . . . . . . . . . . . 41

4.2 The SDSS DR9 BOSS-CMASS sample from Sanchez et al. 2012 . . . . . . 43

4.3 The HiZELS sample from Geach et al. 2012 . . . . . . . . . . . . . . . . . 51

5 Search for non-Gaussianity in the quasars of SDSS BOSS DR9 55

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Quasar selection in BOSS . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.2 Subsample and angular completeness . . . . . . . . . . . . . . . . . 58

v



5.2 Clustering analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Random catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Error estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.3 Clustering results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Test for non-Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Check for systematic errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Conclusions and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Looking into the future: The 2QDES survey 83

7 Conclusions 85

Bibliography 89

vi



Chapter 1
Introduction

One of the biggest challenges of cosmology is to explain the origin of the observable

Large Scale Structures (LSS), namely galaxies, galaxy clusters and superclusters. Modern

theories are trying to give an adequate solution to this fundamental physical problem via

the evolution of perturbations of the primordial density field. These density fluctuations,

due to their self-gravity, will not only grow over time, but the over-dense regions will

attract more matter increasing their density and gravitational potential as well. The ef-

fect of gravitational instability will evolve these primordial fluctuations to the structures

we observe today in the Universe. Primordial inhomogeneities are not just a theoretical

idea physicists used to provide a logical explanation for the structures in the universe.

Solid observational evidence can be derived from the surface of the last scattering. At

redshift z ∼ 1000, electrons recombine into atoms lowering the rate of photon scattering.

At some point scattering rate is so low that photons can propagate freely through the uni-

verse. The spectrum of this scattered light, known as the Cosmic Microwave Background

(CMB), carries information about the initial conditions for the formation of cosmic struc-

tures. These primordial density perturbations are related to the temperature anisotropies

of the CMB, which are of order ∆T/T ∼ 10−5.

The theoretical framework of standard cosmology is the Hot Big Bang model (HBB).

It uses the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric, which is an exact

solution of Einstein’s field equations of general relativity, to describe the accelerating

expansion of a homogeneous and isotropic Universe. This model successfully explains the

evolution of the Universe from a hot, dense, radiation dominated initial state, to a cool,

low-density, non-relativistic dominated present state. The two more distinct features of

our universe, its homogeneity and isotropy, are both just intelligent assumptions known as

1



1. Introduction 2

the ’Cosmological Principle’. But how can such an assumption be right when astronomers

observe inhomogeneities (galaxy clusters, superclusters, voids, etc.) on small scales? Is

there any particular scale beyond which universe appears homogeneous and isotropic?

Current redshift surveys of galaxies have shown that the universe has these features for

scales larger than 100 Mpc. Moreover the size of the observable patch of the universe is

equal to the Hubble radius, RH = c/H0 ≈ 3000Mpc, where H0 is the present Hubble

constant. Thus it is obvious that the Cosmological Principle is valid only for a short range

of scales. Besides its success, the standard Hot Big Bang model is inadequate to describe

the very early universe, or even to explain the origins of the primordial inhomogeneities.

The inflation paradigm came as a supplement to the HBB model and elegantly solved

its major problems. The first model of cosmological inflation was introduced by Guth in

1981 [1] as a solution to the horizon and flatness problems, which arose from the standard

cosmological model. Moreover an improved inflationary model, called ’new’ inflation,

was introduced soon after [2, 3]. Inflation is an era in the early history of the universe

that provides a mechanism for driving an exponentially accelerated expansion. During

the inflation epoch, the universe is dominated by a scalar field ϕ, called the inflaton, and

its self-interaction potential V(ϕ) which is related to the vacuum energy density. For an

explicit review on this subject, the reader should address [4]. The universe undergoes a

phase transition while ϕ slowly rolls down V(ϕ) from an unstable pseudo-vacuum state,

with high energy density, towards a stable vacuum state, represented by a local minimum

at V(ϕ0). The slope of the potential must be quite flat so inflation can last enough e-

folds to solve the HBB model problems without spoiling the successful predictions of the

Friedmann model. So the inflation era must smoothly reach to an end (graceful exit) and

into a Friedmann expansion stage, otherwise the homogeneity of our observable patch of

the universe will be destroyed.

Inflation after 30 years is still the most popular paradigm that describes the early

universe; not only does it solve major cosmological problems, but it also explains the
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production of the primordial density fluctuations that seed the LSS and the temperature

anisotropies we observe in the CMB spectrum. One of the reasons that inflation was intro-

duced in the first place, was to delude the topological defects (monopoles, cosmic strings,

domain walls, etc.) that are created in the early universe after a phase transition, due

to spontaneous symmetry breaking, in Grand Unification Theories (GUT). During the

exponential expansion, inhomogeneities, including the topological defects, are stretched

away and the universe ends up having the desired feature of homogeneity. Thus inflation

can produce an observable homogeneous universe from a small domain, regardless of the

fact that the universe may be quite inhomogeneous outside that domain. The existence

of an event horizon prevents us from knowing the characteristics of the whole universe.

Inflation predicts that, despite the homogeneity of our observable patch, universe is com-

pletely inhomogeneous on scales larger than the horizon. Therefore these inhomogeneous

regions are not causally connected to our observable universe, and in turn cannot affect

the homogeneity of the observable patch. Even though inflation is capable of creating such

homogeneous patches, it can also give birth to the primordial density inhomogeneities. In

the inflationary scenario, primordial perturbations can be created by quantum fluctua-

tions of the scalar fields that drive the expansion. These fluctuations are stretched during

inflation from Planckian size to galactic scales, maintaining their initial amplitudes nearly

unchanged. They are created out of the horizon during the early stages, and they re-enter

at a later time seeding the LSS and shaping the CMB spectrum anisotropies we observe

now [5, 6, 7, 8, 9]. The tiny primordial fluctuations, which can be studied within linear

perturbation theory, can be approximately treated as Gaussian. The density fluctuations,

which characterize the primordial inhomogeneities, can be described as random fields,

with the common notation δ(x). In other words, the phase of each of the Fourier modes

of δ(x) are random and uncorrelated; thus we can use Gaussian statistics for the density

field. In most simple slow-roll inflation models quantum fluctuations of the inflaton have

random phases and hence they can produce a Gaussian random density field.
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More information considering the primordial inhomogeneities and the mechanism be-

hind their generation can come from the deviation of the density field from Gaussian

statistics. Non-Gaussianities reveal interactions beyond the linear theory. Even though

current experiments, like WMAP, verify that the primordial density field follows a Gaus-

sian distribution to a good approximation, there are inflationary models that predict

primordial non-Gaussianities. Each model leaves a precise imprint of non-Gaussianities

in the primordial curvature perturbations; some of them are constrained to produce non-

Gaussianities much smaller than the predominant Gaussian component. Hence in order

to gain information for the physics of the very early universe and the field interactions

during inflation, we have to determine the statistical properties of the primordial inho-

mogeneities created from inflation. To do that we have to go beyond the power spectrum

and measure the amount of deviation from the Gaussian initial conditions by calculating

higher order correlation functions from the different observational probes, e.g. CMB, LSS

clustering, Integrated Sachs-Wolfe effect [10, 11, 12] and gravitational lensing.



Chapter 2
Theoretical Review

In the following chapter, we will present a quick review of the theory describing the

cosmological perturbations and the their spectrum, and how we can generate such primor-

dial perturbations in the density field from the simplest inflationary models. An extended

description of the linear perturbation theory and a complete introduction to inflation can

be found in many textbooks [12, 13, 14, 15]. A comprehensive review will follow on non-

Gaussianity and on the different inflationary models that can produce deviation from the

Gaussian conditions in the primordial perturbations.

2.1 The Spectrum of Cosmological Perturbations

To characterize the statistical properties of the cosmic density field we divide the

Universe into large volumes considering a configuration δ(x) = [ρ(x) − ⟨ρ⟩]/⟨ρ⟩ within

each of these regions as a realization of a random process. Density at each point x is

ρ(x), and the mean density in each volume V is ⟨ρ⟩. Averaging over all these volumes

is equivalent to the average over the whole volume of the universe. We describe the

perturbation field by using Fourier methods, where the Fourier expansion of the function

δ(x) in a given volume V is

δ(x) =
1√
V

∑
k

δke
ik·x (1)

The Fourier coefficients δk are complex, but due to the reality of δ(x), we have δ∗k = δ−k.

One can observe that the phases of the Fourier modes vary from one volume to an other,

as well as between each other in the same cell. In the case of random phases the different

Fourier modes evolve independently and the consequent superposition (δ(x)) can approach

5
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a Gaussian distribution as it is dictated by the central limit theorem. Therefore the

primordial density perturbation field can be well appropriated by a Gaussian random

field. In the limit V → ∞ the sum in Eq. 1 is replaced by the integral

δ(x) =

∫
V

δke
ik·x d3k

(2π)3
(2)

By applying the Gaussian statistics to the density field, where the average of δ(x) over

volumes is zero, we can define the standard deviation σ2 as

σ2 = ⟨δ2⟩ = 1

V

∑
k

⟨|δk|2⟩ (3)

For a homogeneous and isotropic density field we have for the large number of volumes

σ2 =
1

2π2

∫ ∞

0

P (k)k2dk (4)

where P (k) = ⟨|δ2k|⟩ for the limit V → ∞. The quantity P (k) is called power spectrum.

Roughly speaking, P (k) describes the amplitude of the primordial perturbations and thus

the level of structures. Power spectrum is one of the most important quantities in de-

termining the primordial fluctuation field. Its importance lies in the fact that structure

formation depends on it to a large extent. Furthermore, through it we can determine

whether or not non-Gaussianities exist in the primordial perturbations through the cal-

culation of higher order correlation functions, which are directly connected to the power

spectrum. The most common form to assume for the primordial power spectrum is the

power-law form P (k) = Akn, where n is the spectral index. For n = 1 we have the so

called Harrison-Zeldovich spectrum.

Another way to describe the primordial density field is through the spacial two-point

correlation function. The prerequisite is that the phases of the Fourier modes of δ(x) are

random and therefore we can apply Gaussian statistics if the volume number is large. We

can define the two-point correlation function as
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⟨δ(x)δ(y)⟩ = ξ(|x− y|) = ξ(r) (5)

where y = x + r. Here we have used the simplifying assumptions of a homogeneous and

isotropic overdensity random field. Correlation function provides a complete statistical

characterization of the density field, as far as Gaussian statistics can be applied. It

gives us information about the size of the fluctuations on different scales, and clearly

depends only on the spacial difference between two points; this is valid if we accept

the assumption that the Universe is statistically homogeneous and isotropic. Two-point

correlation function can be used to relate primordial fluctuations with galaxy-clustering

data. From substituting equation (2) into (5) we can define, for the limit V → ∞, a

relation for ξ(r)

ξ(r) =
1

(2π)3

∫
P (k)eik·rdk (6)

where P (k) is the power spectrum of the fluctuation and is defined as

⟨δkδk′⟩ = (2π)3δ(3)(k+ k′)P (k) (7)

where δ(3)(k+k′) is the Dirac function. Power spectrum is P (k) = |δk|2 = δkδ
∗
k, therefore

we can write

P (k) =
1

V

∫
δ(x)δ(y)e−ik·(x−y)dVxdVy =

∫
ξ(r)e−ik·rdr (8)

To derive this result we used, ξ(r) = ⟨δ(x+ r)δ(x)⟩ = 1
V

∫
δ(x+ r)δ(x)dVx.

So the power spectrum is the Fourier transformation of the correlation function. If

we integrate over all angles, by taking into consideration the isotropy of the universe, the

above equation becomes

P (k) = 4π

∫ ∞

0

ξ(r)
sin kr

kr
r2dk (9)
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and its inverse is going to be

ξ(r) =
1

2π2

∫ ∞

0

P (k)
sin kr

kr
k2dk (10)

As a rule of thumb ξ(r) can be described by a power law of the form ξ(r) = (r/r0)
−γ,

where γ = 1.8 and r0 is approximately 5 h−1Mpc.

The two point correlation function can be also defined through the discrete distribution

of masses. Galaxies are not randomly distributed all over universe, but rather form clusters

and superclusters through the attractive force of gravity. Therefore it is probable to find

a galaxy near another one. The probability of finding one galaxy in a volume dV is

P1 = nV dV , where nV = m−1ρ(x)dV is the mean number of galaxies in that volume. The

probability of finding one galaxy at a point inside the volume dV1 and an other one in

volume dV2, with r being their separation distance, is

δP =
⟨ρ(x)ρ(y)⟩

m2
dV1dV2

= n2
V

⟨ρ(x)ρ(y)⟩
⟨ρ⟩2

dV1dV2

= n2
V (1 + ⟨δ(x)δ(x+ r)⟩)dV1dV2

= n2
V (1 + ξ(r))dV1dV2 (11)

So two-point correlation function is connected with the probability of finding two galaxies

separated by a distance r in a three dimensional space.

The most popular way of measuring ξ(r) in a galaxy redshift survey is by counting

pairs of galaxies with separation r and divide them by the number of pairs counted in a

randomly distributed unclustered sample. The random catalogue of galaxies must have

the same sky coverage as the data, including smooth redshift distribution, and also be

large enough to reduce the Poisson errors. A very famous formula calculating ξ(r) is [16]

ξ =
DD ·RR

(DR)2
− 1 (12)
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where DD is the number of galaxy pairs, in a particular bin of separation r, in the data

catalogue. DR is the count of galaxy pairs between the random catalogue and the real

data, and finally RR is the number of pairs in the random catalogue. The most common

expression calculating the two-point correlation function is the Landy & Szalay estimator

[17]

ξ =
1

RR

(
DD

(
nR

nD

)2

− 2DR

(
nR

nD

)
+RR

)
(13)

where nR and nD are the mean number density of galaxies in the random and data

catalogues respectively.

In order to calculate the two-point correlation function we need to know the position

of galaxies in the 3-D space, i.e. we need to know the right ascension, declination and

redshift of each galaxy in the sample. It’s not always easy to derive information about

the redshift of galaxies. The difficulty lies on the fact that to calculate the redshift of

galaxies with minimum uncertainty we need their spectra, which is not possible some

times, therefore a spectroscopic survey must provide the data. However such surveys are

time consuming and they need a high amount of resources. Another way to derive redshift

information for galaxies is through photometric surveys using the photometry of galaxies

in various bands. Despite the large sky area covering and depth, they lose in accuracy,

providing redshift data with significant uncertainty. The angular two-point correlation

function w(θ) is the 2-D projection of ξ(r) on the sky plane, therefore we don’t need

redshift data to derive results for the galaxy clustering. However measuring w(θ) we lose

information existing in the 3-D clustering, that’s obvious as w(θ) contains information for

the 2-D clustering. Generalizing Eq. 11 we gain the probability of two galaxies to have

angular separation θ

δP = N2(1 + w(θ))dΩ1dΩ2 (14)

where N is the mean number density of galaxies per steradian dΩ. All the above formulas
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calculating ξ(r) can be generalized to the angular correlation function. Observationally

it can also be described by a power law similar to ξ(r) but with different slope w(θ) =

(θ/θ0)
1−γ [18], where θ0 is the angular correlation scale. The angular correlation function

can be related to the two-point correlation function from Limber’s equation [19, 20]

w(θ) =

∫∞
0

dz1r
2
1

(
dr1
dz1

)
ϕ(z1)n(z1)

∫∞
0

dz2r
2
2

(
dr2
dz2

)
ϕ(z2)n(z2)ξ(r12)[∫∞

0
r2
(
dr
dz

)
ϕ(z)n(z)dz

]2 (15)

where ϕ(z) is the redshift selection function of the sample, n(z) is the comoving number

density and r12 is the comoving separation between the objects.

The above ideas for the two point correlation function can be generalized for more

than two points. For N=3 we have the three-point correlation function defined as

ζ(r, s, t) = ⟨δ(x)δ(x+ r)δ(x+ s)⟩ (16)

The mean is taken over all points that define a triangle with sides r, s, t = |r − s|. The

analogous of equation (7) will be now for the Fourier modes

⟨δk1δk2δk3⟩ = (2π)3δ(3)(k1 + k2 + k3)Bδ(k1, k2, k3) (17)

The function Bδ(k1, k2, k3) is the bispectrum of the density field. As we will see

further on, this plays a crucial role in constraining non-Gaussianities, which might be

present in the primordial fluctuations. In fact, bispectrum represents the lower order

statistics that will allow us to parametrize the level of non-Gaussianities. In a similar way

we can generalize the probability, given by (11), of finding three galaxies in three different

volumes dV separated by distances r, s, t respectively.

We can generalize the whole process to define a correlation function for N points

through the mean ⟨δ1δ2 · · · δN⟩ (where δ1 = δ(x1),etc.). The N -point correlation function

will now have contributions from all lower than N order correlation functions.
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2.2 Primordial fluctuations from inflation

Inflation was introduced by Guth to solve the problems of the standard Hot Big Bang

model. It is a period of exponential acceleration of the universe before the radiation

dominated era. The dominant perception for inflation indicates that it is driven by the

energy of a scalar field ϕ with negative pressure, called inflaton, whose potential energy

represents the energy density of the vacuum. During inflation, ϕ undergoes a phase

transition from an unstable false-vacuum state to a stable state of true vacuum. The

inflaton simply slow-rolls down its self-potential towards the steady state. The potential

is sufficiently flat so that inflation will last for an adequate amount of time, solving the

problems of the standard model. When it reaches the minimum of the potential, it

oscillates around it; this releases the energy difference, heating the universe (reheating)

and creating particles. The number of inflationary models is large enough to give inflation

the character of a paradigm. A proven modern theory, that can physically derive an

inflaton scalar field with a self-potential of the desired form, does not exist until now.

Every perturbation in a system can be written as a combination of two types of

perturbations, of the adiabatic and the entropy types. The first ones, also known as

curvature perturbations, are inhomogeneities of the actual spacial curvature. The later

ones are also called isocurvature perturbations, induce fluctuations in the number density

of the different components of the system, i.e. different particle types, while the total

energy density remains homogeneous.

The most important aspect of inflation, that made it the dominant way to describe

the very early universe, is that it can explain the production of the adiabatic type pertur-

bations that seed the observable structures. Initially one of the problems that inflation

tried to solve is that of the unwanted relics of GUT models. According to the modern the-

ories of Grand Unification, the Universe underwent many phase transitions, during which

spontaneous symmetry breaking occurred. As a result, unwanted relics can be created.

Nevertheless the existence of an accelerated expansion period can dilute every topological
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inhomogeneity. The only way that inflation can produce perturbations in the primordial

density field, is through the quantum fluctuations of the scalar field itself. Quantum

fluctuations cannot be wiped away because new ones will be generated via Heisenberg’s

uncertainty relation. The cosmological horizon at the time of inflation was very small,so

the wavelength of the quantum fluctuations of the scalar field will exceed soon, due to

the inflationary expansion, the Hubble radius. The horizon is the scale beyond which

causal connected processes cannot operate. Thus the events inside it will not affect the

evolution of the fluctuations with wavelength greater than that scale. On super-horizon

scales the amplitude of the fluctuations remains unchanged, ”frozen”, while its wavelength

grows in an exponential rate. Quantum fluctuations will grow due to gravitational effects

outside the horizon. After the end of inflation, the scale-factor will not grow faster than

the Hubble radius. Thus, as time passes, perturbations on even larger scales will reenter

the horizon. Due to gravitational instabilities, these fluctuations will give rise to galaxies

and finally to the large structures we observe today in the Universe. It is easy to under-

stand that the formation of structures depends on the form of the primordial fluctuation

spectrum.

The action for a scalar field coupled to gravity through the metric gµν is

S =

∫
d4x

√
−g

(
M2

P

2
R− 1

2
∂µϕ∂

µϕ− V (ϕ)

)
. (18)

The background metric of an expanding Universe is the FLRW metric ds2 = gµνdx
µdxν =

−dt2+a2(t)dx2, where x is the spacial comoving components of the metric, dx2 = dr2/(1−

kr2) + r2dΩ2, with k being the curvature of space. The scalar field in homogeneous and

isotropic universe is, ϕ(t,x) = ϕ(t). Therefore to be able to describe the fluctuations of

the field we split it into a homogeneous part ϕ0 and a part that describes the quantum

fluctuations of the field around ϕ0

ϕ(t,x) = ϕ0(t) + δϕ(t,x)
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where ϕ0 is the homogeneous part of the scalar field and δϕ denotes the quantum fluctu-

ations around ϕ0. For ϕ(x, t) we can derive the equations of motion, for a FLRW metric,

after varying the action of the scalar field

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+

dV

dϕ
= 0. (19)

From the zero and ith components of the scalar’s energy-momentum tensor, T µν =

−2(∂L/∂gµν) − gµνL, we can derive the equations for the pressure and density of the

homogeneous part of the field

ρ =
ϕ̇0

2

2
+ V (ϕ) (20)

p =
ϕ̇0

2

2
− V (ϕ) (21)

To derive the above equations we used the energy-momentum tensor for a perfect

fluid, Tµν = (ρ + p)uµu
ν + pgµν , where uµ is the four-velocity and uµu

ν = 1 for µ = ν.

The standard steps for deriving the above equations can be found in most cosmological

textbooks and reviews such as [12, 14, 21]. Substituting the above equations to the fluid

equation, ρ̇ = −3H(ρ + p), and Friedmann equations we get the equations of motion

(EOM) for the homogeneous part of the field ϕ0

ϕ̈0 + 3Hϕ̇0 = −dV

dϕ
(22)

H2 =
1

3M2
P

(
ϕ̇0

2

2
+ V (ϕ)

)
(23)

where the Hubble constant is H = ȧ/a. The EOM for the homogeneous part has the

expected form as ϕ0 depending only on time t, hence ∇2ϕ = 0 in the equation (15). The

slow-roll approximation is introduced through ’new’ inflation, so that it lasts for a suffi-

cient amount of e-folds to solve the cosmological problems. This implies two conditions
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ϵ =
M2

P

2

(
V ′

V

)2

≪ 1 (24)

η = M2
p

V ′′

V
≪ 1 (25)

which respectively they mean ϕ̇2 ≪ V (ϕ) and ϕ̈0 ≪ 3Hϕ̇0.

During inflation, the energy density of the inflaton is the dominant one, driving the

accelerating expansion of the universe. Therefore, a fluctuation δϕ in the scalar field

implies a perturbation in the energy density field. Moreover, through Einstein’s field

equations Gµν = 8πGTµν , inflaton fluctuations are coupled to metric perturbations. Thus

we can have curvature perturbations R(x, t) and hence a gravitational potential, which

imply fluctuations in the density field. During inflation the inflaton and the metric per-

turbations will be stretched to cosmological scales. Density fluctuations will grow outside

the horizon and re-enter at a later time, after the end of inflation to seed the structure

formation. To study the primordial perturbations produced during inflation, we have to

derive the equations of motion for the scalar field fluctuations δϕ. By analogy with (15)

the EOM for the spacial fluctuation modes will be

δ̈ϕ(t,k) + 3H ˙δϕ(t,k) +
k2

a2
δϕ(t,k) = 0 (26)

where the Fourier modes of the field fluctuation are

δϕk = δϕ(t,k) =

∫
δϕ(t,x)eikxd3x. (27)

To derive an explicit form for the power spectrum through inflation, we need to quan-

tize the perturbations δϕ. Here we will refer to some steps of the procedure; for an explicit

overview, the reader should refer to [22, 23]. We follow the standard way of quantization

of a scalar field, and we promote δϕ to an operator by decomposing it to annihilation

operators
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δϕ(t,x) =

∫
d3k

(2π)3/2

(
uk(t)ake

ikx + u∗
k(t)a

†
ke

−ikx
)

(28)

where uk(τ) is the mode function of the scalar fluctuations and is defined as uk(τ) = aδϕk,

with τ =
∫
a−1dt being the conformal time. The annihilation and creation operators follow

the commutator relations

[ak, ak′ ] = [a†k, a
†
k′ ] = 0, [ak, a

†
k′ ] = δ(3)(k− k′) (29)

The equations of motion for the modes uk(τ) can be found by using the equation (15)

u′′
k +

(
k2 − a′′

a
+m2

ϕa

)
uk = 0, (30)

where m2
ϕ = ∂2V/∂ϕ2 is the effective mass of the field and the prime is the partial

derivative in respect to τ . The size of the horizon is proportional to the time t; thus, for

t → 0 the size will decrease very fast. Eventually the modes, which depend on the scale

factor, will have superhorizon size. Therefore we can divide the solutions of (26) into two

cases. The horizon crossing is k = αH, which is simply the modes that have horizon

scales at a particular time. For subhorizon scales k2 ≫ a′′/a the mass of the field are

negligible; thus the fluctuations are described by ordinary plane waves. For superhorizon

scales k2 ≪ a′′/a we have for the quantum fluctuations of a massless scalar field

|δϕk| =
|uk|
a

=
H√
2k3

(31)

which is a constant. The above result is derived from the requirement that the solutions

for the two cases must be equal at the horizon crossing (k = aH) for a fluctuation with

mode number k. For subhorizon scales, the amplitude of the fluctuations is oscillatory,

while for superhorizon scales, the amplitude is constant (’frozen’). On the other hand,

for a non-vanishing mass term in (26), the fluctuations of the scalar will not be constant

outside the horizon
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|δϕk| =
H√
2k3

(
k

aH

)3/2−ν

, (32)

where we used the approximation for a light scalar field (m2
ϕ/3H

2) ≪ 1. The index ν is

defined as

ν2 =
9

4
−

m2
ϕ

H2
.

Knowing the amplitude of the fluctuations of the scalar field on superhorizon scales,

we can define a power spectrum for these perturbations

⟨δϕkδϕ
∗
k′⟩ =

|uk|2

a2
δ(3)(k− k′). (33)

The real and the imaginary part of the quantum scalar field follow Gaussian statistics

and hence they can be treated as random fields. Hence we can acquire a power spectrum

similar to the one in Eq. 4. The general form of the power spectrum for a scalar field is

Pϕ(k) =
k3

2π2
|δϕk|2 (34)

where Pϕ(k) = Pϕ(k)(k
3/2π2) and Pϕ(k) is defined by the corresponding equation (7) for

the scalar field ϕ.

For a massless scalar field (m2
ϕ = 0) the power spectrum of the fluctuations outside

the horizon are frozen, which means that the growth of fluctuations is scale invariant. By

substituting (27) into (30) we get

Pϕ(k) =

(
H

2π

)2

(35)

which is indeed a ’frozen’ power spectrum. If the scalar field has a non-vanishing effective

mass then we get a power law shape spectrum for the fluctuations on superhorizon scales

Pϕ(k) =

(
H

2π

)2(
k

aH

)3−2ν

(36)
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The power spectrum of the scalar field fluctuations has the usual form of a power law

on these large scales. Therefore, inflation provides a mechanism through which inhomo-

geneities re-enter the horizon; having the desired spectrum will seed eventually the large

scale structure of the observable Universe.

As we mentioned before the primordial scalar field fluctuations can lead to pertur-

bations in the metric and therefore in the spacial curvature itself. We can also describe

the metric fluctuations by using General Relativity and the so called Newtonian gauge.

We can write the perturbed metric as a sum of an unperturbed FLRW background part

and a perturbed one. By using the Newtonian gauge as infinitesimal transformations

we keep the background part as it is while the perturbed part is subject to changes. In

the Newtonian gauge the observer will detect a velocity field while particles fall into the

gravitational field of matter and will measure a gravitational potential, more details on

this can be found in [24].

The curvature perturbation R(x, t) is a more useful quantity than the scalar fluctu-

ations, because it remains well defined even after the scalar field decays at the end of

inflation. Also Rk(t), which are the Fourier coefficients of the curvature perturbations,

is constant outside the horizon while δϕk is not. The relation between the scalar and

curvature fluctuation at an initial time t0, which is few Hubble times after the horizon

crossing, is

Rk = −
[
H

ϕ̇
δϕk

]
t=t0

. (37)

From equation (35) and (37) we can derive the power spectrum of the curvature pertur-

bations at an initial time

PR(k) =

(
H

ϕ̇

)2

Pϕ(k)

∣∣∣∣
t=t0

. (38)

The primordial curvature power spectrum depends on the scalar field power spectrum and

therefore we can easily derive the relations for PR in the subhorizon and superhorizon
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cases. The curvature perturbations will give birth to a primordial gravitational potential

which will create inhomogeneities in the density field and due to gravitational instabilities

these fluctuations will seed the first galaxies in the way we explained before. By multi-

plying Rk defined at the initial time with the transfer function we can relate it to the

density field power spectrum at later times

Pδ(t) = T 2(t)PR. (39)

The power spectrum is the only statistical tool we need to define the primordial fluc-

tuations and inflation. Depending on which inflationary model we use, it can provide us

with a variety of different power spectra forms. In this simple slow-roll inflation model,

we obtain a power law spectrum from a light scalar field when the superhorizon stretched

fluctuations re-enter the horizon. In more complicated inflationary scenarios, where more

than one scalar fields exists during the acceleration period of the universe, fluctuations

are produced from other scalar fields instead of the one that drives inflation. A review on

the fluctuations and power spectra generated by other inflationary models, as far as an

analytical description of the models themselves, can be found in [25, 21, 22]. Despite the

difference in the way that primordial inhomogeneities are produced through inflationary

scenarios and the form of the fluctuation power spectrum, most of them agree on the

Gaussian nature of the perturbations. This is because usually in an inflationary model

one assumes that the origin of these inhomogeneities is the quantum fluctuations of a

scalar field during the inflationary expansion. Quantum perturbations of a field are vac-

uum state fluctuations, like the ground state harmonic oscillator in quantum mechanics

and is therefore Gaussian. Gaussian distribution characterizes the primordial inhomo-

geneities in the simplest models, making inflation the dominant candidate for describing

the evolution of the early Universe and the production of the primordial perturbations.
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2.3 Primordial non-Gaussianities

The different inflationary models predict different amount of deviation from the Gaus-

sian conditions in the primordial density field. Non-Gaussianities produced by the most

standard single field slow-roll inflation with canonical kinetic terms are not enough to be

detectable [26, 27], producing nearly a Gaussian primordial perturbation density field.

More complicated models can generate large amplitude of non-Gaussianities, which can

be detected by future experiments, if they violate at least one of the conditions of the stan-

dard inflationary models [28]. For the single field inflation, namely if one scalar field drives

inflation and creates the primordial perturbations, the non-Gaussian signal is too weak

to be observed. Hence multi-field models can produce large detectable non-Gaussianities.

Nevertheless there are single field inflation models that have non-canonical kinetic terms

or violate temporarily the slow-roll condition, producing significant non-Gaussianities [29].

The slow-roll condition refers to the steepness of the potential on which the inflaton

rolls. To have a slow-roll we need the potential to be flat enough to make the scalar field

roll slowly down to the minimum, making inflation last for the appropriate amount of

e-folds. The violation of this condition is not a necessity to generate non-Gaussianity.

Slow-roll multi-field inflation models can generate observably large non-Gaussianity if

certain conditions are satisfied [30, 31]. On the other hand, certain classes of multi-

field models can produce primordial non-Gaussianities without focusing on the slow-roll

regime, due to a strong break down in the slow-roll condition shortly before the end of

inflation [32, 33].

The simplest inflationary models have canonical kinetic term in their action, T =

−1
2
gµν∂µϕ∂νϕ. There is the possibility of having higher derivative kinetic terms dom-

inating the dynamics. Non-canonical kinetic term is used to go beyond the standard

inflationary models and generate large non-Gaussianities [34]. In the standard inflation

models, as long as field theory applies, we have to specify the initial quantum state of

the scalar fields, which will also be the initial state of their perturbations. We assume
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that this state is the Bunch-Davies vacuum. Annihilated by αi(k), as defined in (29),

yields αi(k)|0⟩ = 0, where i is the index for the different fields and |0⟩ is the vacuum state

of the free (non-interacting) quantum field theory in curved spaces, called Bunch-Davies

vacuum. If the inflaton modes are quantized in terms of time dependent creation and

annihilation operators, the Bunch-Davies vacuum can be defined as the vacuum which is

annihilated by αk(t) as t → −∞. Besides the use of the adiabatic Bunch-Davies ground

state as initial conditions, other excitations can exist due to boundary conditions or low

scales of new physics. A non-Bunch-Davies vacuum is not difficult to occur. In some

Dirac-Born-Infeld inflation models the speed limit of inflation and the scale of the new

physics are directly related to the warp factor of the extra dimensions, which appears in

the metric of warped spaces concealing the extra dimensions. Such spaces are naturally

present in most cosmological scenarios including extra dimensions due to the fluxes used

for stabilizing the compactification of strings. Such models have the possibility of more

vacuum choices [35, 36].

A plethora of inflationary models can produce large non-Gaussianities, some of them

are the multi-field inflation [37, 38, 33, 39], the curvaton scenario [40, 41, 42],the ekpyrotic

inflationary scenario [43, 44] and vector field populated inflation [45, 46, 47]. A nice review

on the production of non-Gaussianities from inflationary models can be found in [48, 49].

All the above different types of inflation models violate one of the previous conditions

and generate large non-Gaussianities. Therefore in order to distinguish between all these

different mechanisms we have to gain additional information, besides the ones provided by

the power spectrum, from the non-Gaussian part of the primordial perturbations. Power

spectrum describes Gaussian random fields, hence any information on non-Gaussianity

must be extracted from the higher order correlation functions, where by higher order we

mean higher than the two-point correlation function. The first non-Gaussian correlator is

the three-point correlation function which correlates density or temperature fluctuations

at three different points in space. Its presence guarantees the departure from Gaussianity.
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The Fourier transformation of the three-point correlation function, the bispectrum, is

defined similarly to power spectrum in equation (7)

⟨ζk1ζk2ζk3⟩ = (2π)3δ(3)(k1 + k2 + k3)Bζ(k1,k2,k3) (40)

where ζk are the Fourier modes of the primordial curvature perturbations in real space

ζ(x) and the relation between them is

ζk =

∫
ζ(x)e−ikxd3x (41)

Here we use another symbol for the curvature perturbations used commonly in the liter-

ature, therefore we can write ζk ≡ Rk, where the last is related to the scalar fluctuations

in (37).

Bispectrum correlates fluctuations at three points in Fourier space forming a triangle

with the three wavevector due to momentum conservation, coming from the translation

invariance. It is clear that the amount of information the bispectrum holds is far greater

than that of the power spectrum, which correlates only two points. The number of shapes

for the forming triangle is large and the different inflation models predict different shapes.

The shape of the bispectrum refers to the dependence of the three-point correlation func-

tion on the ratios k2/k1 and k3/k1, while we keep the overall momentum K = k1+k2+k3

fixed and restricted to zero [50, 51, 52]. The shape function contains the information

about the momentum dependence and is defined [51]

S(k1, k2, k3) = N−1 (k1k2k3)
2 Bζ(k1, k2, k3) (42)

where in general 1/N ∼ fNL.

There are generally three classes of bispectrum shapes in the momentum space (Fig.

1) which characterize the local, equilateral and folded type of primordial non-Gaussianity.

The magnitude of each class is related to a dimensionless non-linear parameter fNL [50].

This parameter defines the deviation from the Gaussian initial conditions and hence the
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Figure 1: The shapes of Bispectrum, created by the three wave vectors. (a) The squeezed

configuration with k3 ≪ k2 ≈ k1. (b) The equilateral configuration, where k1 = k2 = k3.

(c) The folded configuration, where k1 ≈ 2k2 ≈ 2k3.

amplitude of non-Gaussianity in each inflationary model, producing the relevant bispec-

trum shape. For the non-Gaussianity of the local type, S peaks at the squeezed triangle

having the form S ∼ k1/k3, hence the bispectrum is dominated by the squeezed configu-

ration. For the equilateral type non-Gaussianity, S peaks at the equilateral triangle limit

and bispectrum is governed by the equilateral configuration. The most studied type of

non-Gaussianity in the literature is that of the local type. This type is generated by models

that develop non-linearities outside of the horizon. Models where there is a contribution

to the primordial fluctuations other than that of the inflaton have this characteristic.

Non-linearities come from the evolution of these extra fields outside the horizon, which

eventually pass into the density perturbations. Such model types are the multi-field and

curvaton scenarios. Ekpyrotic inflation can also generate local non-Gaussianities [43].

Non-Gaussianities of the equilateral type can be produced by DBI inflation [53] and in

models with higher derivative terms [34, 34]. Finally folded shape non-Gaussianities can

occur if we consider a non-Bunch-Davies vacuum for the initial conditions. Hence different

inflation models will produce different signature in the shape of bispectrum.

For the local configuration we can write the primordial curvature perturbations ζ(x)

as

ζ(x) = ζG(x) +
3

5
f loc
NL

[
ζ2G(x)− ⟨ζ2G(x)⟩

]
(43)
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where ζG(x) is a Gaussian random field. By adding a non-linear term to the Gaussian

one, we made ζ(x) non-Gaussian. The amplitude of non-Gaussianity in this template is

parametrized by f loc
NL as we explain before. The 3/5 is there for historical reasons and

mainly because of the different conventions used in the literature to define fNL. Here we

use the convention used in [54], where to describe non-Gaussianity they expand in Taylor

series the primordial gravitational potential perturbation, instead of the curvature ones,

around the Gaussian part [54, 55, 56]

Φ(x) = ΦG(x) + fNL

[
Φ2

G(x)− ⟨Φ2
G(x)⟩

]
(44)

where Φ(x) is the Bardeen gauge-invariant potential and ΦG(x) is the Gaussian part of the

potential and hence a random field. By using primordial here we mean the gravitational

potential before the action of the transfer function. The Bardeen potential can be reduced

to the usual Newtonian gravitational potential in the conformal Newtonian gauge for sub-

Hubble scales, up to a minus sign. This type, given by equation (44), is predicted by the

inflation models which generate non-Gaussianities outside of the horizon. In equation (43)

we have achieved in introducing non-Gaussianity in the perturbations of the primordial

gravitational potential and hence, since all the fields couple to gravity, to the density

field. Adopting the large scale structure convention, we linearly extrapolate Φ to z=0 by

Φ(k, z) = D(z)(1+z)Φ(k), whereD(z) is the linear growth factor. In the CMB convention

instead of extrapolating Φ to z=0, we use the primordial one. The relation between the two

fNL parameters from the two conventions is: fLSS
NL = g(z = ∞)/g(0)fCMB

NL ∼ 1.3fCMB
NL ,

where g(z) = D(z)(1 + z) is the linear growth suppression factor [57, 58].

The primordial curvature perturbation ζ is related with the Bardeen potential for an

equation of state p = wρ, describing an perfect fluid, by

ζ =
5 + 3w

3 + 3w
Φ +

2

3(1 + w)H
Φ̇ (45)

where for large scales and a period of constant w, Φ̇ = 0. In the case of matter domination
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era, where w = 0, we get

ζ =
5 + 3w

3 + 3w
Φ =

3

5
Φ (46)

The primordial bispectrum for the local non-Gaussianity, described by (44), can be

defined in momentum space as [54]

Bloc
Φ (k1,k2,k3) = 2f loc

NL (Pϕ(k1)Pϕ(k2) + Pϕ(k2)Pϕ(k3) + Pϕ(k1)Pϕ(k3)) (47)

where Pϕ(k) is the primordial gravitational potential power spectrum as in equation (7).

Here and for the rest of the section ϕ = ΦG. The above result is calculated by combining

equation (44) and the version of equation (40) for the gravitational potential. It is obvious

that we can calculate a similar bispectrum Bζ for the curvature perturbations since the

two quantities are directly related. For the equilateral type non-Gaussianity, we can write

a similar form to Eq. 47 for the equilateral bispectrum as the factorized form proposed

in [59]

Bequil
Φ (k1,k2,k3) =6f equil

NL

(
− (Pϕ(k1)Pϕ(k2) + cyc.)

− 2 (Pϕ(k1)Pϕ(k2)Pϕ(k3))
2/3

+ (P
1/3
ϕ (k1)P

2/3
ϕ (k2)Pϕ(k3) + perms.)

)
(48)

where cyc. is all the cyclic permutations between k1, k2, k3. It is easy to see that the signal

of Bequil
Φ is maximum for the equilateral template, where k1 ≈ k2 ≈ k3. For the third non-

Gaussian type, in which the bispectrum is dominated by the folded configuration, we have

from [60]

Bfol
Φ (k1,k2,k3) =6f fol

NL

(
(Pϕ(k1)Pϕ(k2) + cyc.)

+ 3 (Pϕ(k1)Pϕ(k2)Pϕ(k3))
2/3

− (P
1/3
ϕ (k1)P

2/3
ϕ (k2)Pϕ(k3) + perms.)

)
(49)
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where again the signal of this type is maximized by the folded configuration, k1 ≈ 2k2 ≈

2k3.

In order to use non-Gaussianities as a probe to the early universe and specifically

to the aspects of inflation, we need to measure the shape of the primordial bispectrum

and the magnitude of its signal by constraining the fNL parameter. Mainly there are

two ways to get information about the perturbations in the early universe, from the

CMB anisotropies and from the abundance and clustering of the large-scale structures.

The tighter constrains on fNL and non-Gaussianity comes from the WMAP, they are

summarized by: WMAP3 data [61], −36 < f loc
NL < 100 and −256 < f equil

NL < 332 at 95%

CL, from WMAP5 [62, 63], −4 < f loc
NL < 80 and −151 < f equil

NL < 253 at 95% CL and

finally from WMAP7 [64, 65], f loc
NL = 32± 21 at 68% CL and −382 ≤ f equil

NL ≤ 202 at 95%

CL.

A non-Gaussian primordial gravitational field can produce non-Gaussianity in the

primordial density field. During the matter dominated era in the usual Newtonian gauge,

the Bardeen potential satisfies the Poisson equation. Therefore we can relate the density

fluctuations with the primordial curvature perturbations, which are directly related to the

fluctuations of the primordial gravitational potential (Eq. 46). The cosmological Poisson

equation is

k2Φ(x) = 4πGα2δ(x) (50)

where δ(x) is the density fluctuation (see equation (2)). By linearly extrapolate Φ(k) →

Φ(k, z), as noted before, and by using equation (46) and equation (50) in Fourier space

we get the relation between δ, ζ and Φ

δ(k, z) =
2

5

k2c2T (k)

H2
0Ωm,0

D(z)ζ(k) =
2

3

k2c2T (k)D(z)

H2
0Ωm,0

Φ(k) (51)

where D(z) is normalized to 1+z and z is the redshift, T (k) is the matter transfer function

normalized to unity at k → ∞ and Ωm,0 = ρm(z = 0)/ρcrit is the density parameter for the
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matter in the present time, where ρcrit = 3H2
0/8πG is the critical density of the universe

in order to have a flat geometry. The relation parameters in (51) are usually denoted in

literature as

M(k, z) =
2

3

k2c2T (k)D(z)

H2
0Ωm

. (52)

When we compare observations with theoretical predictions, we have to apply some kind

of smoothing. The usual linear matter power spectrum can be written now as, Pm(k, z) =

M(k, z)2Pϕ(k). In the case of LSS we need to smooth out non-linear dynamics in the

collapsed regions, which later on will form galaxies, by assuming a spherical collapse. We

choose the Fourier coefficient of the spherical top-hat filter,W (kR) = 3
(

sin(kR)
(kR)3

+ cos(kR)
(kR)2

)
,

with a characteristic radius R, in order to smooth out non-linearities in the small scales.

Applying this window function to equation (51) we get the smoothed density field

δR(k, z) = M(k, z)W (kR)Φ(k) = MR(k, z)Φ(k) (53)

Using the above relations we can define the bispectrum for the density field

Bδ(k1,k2,k3, z) = MR(k1, z)MR(k2, z)MR(k3, z)BΦ(k1,k2,k3) (54)

Finally we can define from the density field bispectrum the three-point correlation function

for density perturbations similar to equation (6)

⟨δ3R⟩ =
∫

dk1
2π3

∫
dk2
2π3

∫
dk3
2π3

Bδ(k1,k2,k3, z) (55)

To complete this short review on non-Gaussianities we’ll refer to an other way, used

in the literature, to describe the primordial curvature perturbations, the δN formalism

[66, 67]

ζ = δN ≈
∑
I

N,Iδϕ
I
∗ +

1

2

∑
IJ

N,IJδϕ
I
∗δϕ

J
∗ (56)
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where N(x, t) = lnα is the number of e-folds calculated from the time that the modes exit

the horizon, to a final uniform energy density hypersphere, which usually is the radiation

dominated era. By substituting equation (56) to (40) and (47) we get

⟨ζk1ζk2ζk3⟩ =
∑
IJK

N,IN,JN,K⟨δϕI
k1
δϕJ

k2
δϕK

k3
⟩+

1

2

∑
IJKL

N,IN,JN,KL⟨δϕI
k1
δϕJ

k2
(δϕKδϕL)k2⟩+ perms. (57)

where δϕk denotes the fluctuations of the scalar field driving the inflation. The fNL

parameter is defined now by

fNL =
6

5

N,IN,JN
,IJ

(N,KN ,K)2
(58)

The above analysis for the three-point correlation function can be generalized and

derive an even higher order correlation function, the four-point correlation function. We

define the trispectrum in the same way as bispectrum

⟨ζk1ζk2ζk3ζk4⟩ = (2π)3δ(3)(k1 + k2 + k3 + k4)Tζ(k1, k2, k3, k4) (59)

Now the trispectrum is the shape function of a quadrilateral. Since it correlates fluctua-

tions in four points, it can be expressed using the four wave vectors and two diagonals.

By Taylor expanding the curvature perturbation ζ we will get equation (43) with an

additional term coming from a higher order of the expansion

ζ(x) = ζG(x) +
3

5
fNL

[
ζ2G(x)− ⟨ζ2G(x)⟩

]
+

9

25
gNLζ

3
G(x) (60)

where again the number in front of the additional term is there for historical reasons. The

parameter gNL measures again the amplitude of non-Gaussianity in the specific regime

originating from higher order than ⟨δ3⟩ correlations. We can define the trispectrum for

the local regime through a similar relation to equation (47) for the bispectrum
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Tζ(k1, k2, k3, k4) = τNL (Pζ(k1)Pζ(k3)Pζ(k4) + 11 perms)+

56

25
gNL (Pζ(k2)Pζ(k3)Pζ(k4) + 3 perms) (61)

The parameter τNL is directly related to fNL for a multi field inflation through the relation

τNL = (36/25)f 2
NL [68]. In this higher order analysis of the primordial fluctuations to

determine the amplitude of non-Gaussianities, we need to constrain both fNL and gNL.

The importance of determining and measuring non-Gaussianities is tremendous. They

are apparently the only way to retrieve information about the very early Universe. Infla-

tion is the dominant theory that describes this period of time but the variety of models

is quite large. The detection of non-Gaussianities can provide us with a way to dis-

tinguish between different classes of inflation models and eliminate the ones that don’t

predict such deviations from exact Gaussian distribution. Each inflationary model leaves

a unique imprint determining the shape of the bispectrum and trispectrum in Fourier

space. The detection of non-Gaussian signals through the CMB anisotropy, LSS cluster-

ing, gravitational lensing, the abundance of galaxies and the Lyman-a forest, can give

us the information we need in order to understand the physics of the early universe and

the growth of the density inhomogeneities that take place during this early stage of the

evolution and eventually seed the observable structures.



Chapter 3
Primordial

non-Gaussianity in

Large Scale Structure

As discussed in the previous section, in order to get information about the physics of

the very early Universe and constrain the plethora of inflation models describing this era,

we need to measure the amplitude of primordial non-Gaussianity. The most important

observables to constrain the fNL parameter and determine the shape of the bispectrum,

is the CMB anisotropies [69] and the clustering signal of the LSS [70, 71]. The CMB

data can give information about the cosmological fluctuations when they are very close

to their original primordial form. By measuring the bispectrum of the CMB anisotropy,

which is directly related to the bispectrum of the primordial gravitational potential Φ, we

should be able to detect primordial non-Gaussianity [54] at this level. Some constraints on

fNL have been presented in the previous section. The other prominent way of measuring

non-Gaussianity in the initial conditions, is by measuring the bispectrum of the galaxy

distribution. The statistics of the galaxy clustering can probe the fluctuations at a time

close to the present, by measuring the probability distribution function (PDF) of the

matter perturbations. Therefore, it is possible to measure primordial non-Gaussianity

from LSS [72]. By using the abundance of clusters and the statistics of LSS, we have

better chances to detect a deviation from the Gaussianity since the signal is stronger than

the CMB, as well as LSS can probe matter fluctuations on smaller scales.

However, non-linearities in LSS can also come from the gravitational instability and

the biasing of galaxies relative to the underlying matter. Hence a non-zero bispectrum

29
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can be generated, even for a Gaussian primordial field, similar to the one produced by

the non-Gaussian perturbations. Adding to this, the instrumental systematic errors that

one comes across in LSS surveys, make the measurement of a non-Gaussian signal in the

primordial perturbations a tough deal. Before we analyze the effects of non-Gaussian

primordial fluctuations in the LSS structures, we’ll make a small introduction on the for-

mation of structures. A review on the extended Press-Schechter theory and the excursion

sets can be found in [73].

3.1 Structure formation and bias

In the standard CDM cosmologies, structure formation begins from the gravitational

collapse of dark matter overdense regions in the primordial density field, into bound,

roughly spherical, virialized objects called halos. In the fiducial cosmology, dark matter

density overweights by far the density of baryons. Hence baryons trapped in the gravi-

tational well of the dark matter halos will cool and concentrate to create galaxies. As a

result of this formation process is the existence of bias between the galaxy and the un-

derlying dark matter distribution [74]. Different galaxy types at different redshifts trace

halos with different characteristics.

Halos collapse on the peaks of the initial matter density distribution which are above

a particular threshold δc, therefore larger halos will be created on higher-σ peaks. As a

consequence, for a Gaussian random field, the halo bias will increase with the rarity of

the peak. High-sigma peaks in a Gaussian density distribution are more rare and hence

massive halos will have higher bias. The threshold, above which the dark matter density

peaks collapse, depends on the background density. At higher redshift when the universe

is more dense high mass halos will be less rare and strongly biased 1, while low mass halos

1By changing the background density ,as the redshift increases, by δ is like changing the threshold by,

δc− δ. Hence more peaks will be over the threshold hosting collapsed halos. The high-mass peaks, where

massive halos will emerge, will be more biased and clustered.
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following the hierarchical structure formation, will be removed from the halo population

through merging (anti-biasing).

The bias between the galaxy and dark matter distributions can defined [75]

δg =
∑ 1

k!
bkδ

k
m (62)

where b denotes the bias. In the LSS studies, a linear and scale independent bias is

assumed, δg = bδm, where b = b1 in equation (62). Such a bias will only rescale the power

spectrum of the field. The galaxy density field on later time will be, δg(α) = δL + δm(α),

where the Lagrangian overdensity field δL corresponds to the clustering of the peaks in the

initial density field. Therefore it is time independent, and δm(α) is the matter overdensity

field at a later time α. Therefore by making the standard assumption that halos move

coherently with the underlying dark matter and that halo merging does not take place

b = bE =
δg
δm

=
δL + δm

δm
= 1 + bL (63)

where bL is the Lagrangian bias and bE is the Eulerian bias.

3.2 Press-Schechter Theory

In order to understand the clustering of galaxies we have to understand the formation

and clustering of the dark matter halos. The formalism proposed by Press and Schechter

[76] and its extensions based on the excursion set [77, 78], accounting to solve the “cloud-

in-cloud” problem of PS theory, is the usual way to understand the clustering of halos.

In this framework the mass function, which is the number density of halos, n(M, z), with

mass M at a redshift z is given by

n(M, z) =
dn

dM
(M, z) =

ρ

M2
νf(ν)

dlnν

dlnM
(64)
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where ρ = Ωmρcrit is the average comoving background matter density and ν(M, z) =

δc(z)/σM(R, z) is the height of the peak, where the dark matter halo collapse takes place.

Here σM(R, z) is the variance of the initial density fluctuation smoothed on a particular

scale R (or mass scale M = 4π/3R3ρ) by the top-hat window function, defined in the

previous section, and linearly extrapolated to present epoch through the growth function

σ2
M(R, z) = D(z)2σ2

M(R) = D(z)2
∫

k2

2π2
Pm(k)W

2(kR)dk (65)

δc(z) is the overdensity threshold above which a peak in the initial overdensity field can

collapse to form a halo at redshift z and Pm(k, z) = M(k, z)2Pϕ(k) originates from the

primordial potential perturbation power spectrum as explained in the previous section.

For the spherical approximation δc = δsc(z) = 1.687 ·D(0)/D(z), where the value of the

constant appearing in this expression is for Ωm = 1 cosmologies. We can also calculate

the critical overdensity for the spherical collapse from [79], δc = δ0c (Ωm(z))/D(z), where

for the ΛCDM cosmology δ0c = 0.15(12π)2/3Ω0.0055
m (z) and Ωm(z) is the matter density for

redshift z. Finally νf(ν) is the probability that an overdensity with mass M will have value

bigger than the threshold δc(z). In other words, f(ν)dν gives the probability distribution

of the first crossing of the barrier B(ν), where in the spherical collapse approximation with

a constant barrier, B(ν) = δsc(z). In the standard excursion set theory, νf(ν) depends

on the barrier shape which led [78] to derive a simple formula for it in using the spherical

collapse approximation and assuming Gaussian initial conditions

νf(ν) =

√
2

π
ν exp

(
−ν2

2

)
(66)

where we require the integral of f(ν) over all dν to be unity. For the mass function in

the standard Press-Schechter theory and the spherical collapse approximation, a simple

relation for the Eulerian bias of the dark matter halos has been calculated in [80, 81]

δg = bEδm =

(
1 +

ν2 − 1

δc

)
δm (67)
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A better fit to simulations of the halo clustering bias and the νf(ν) comes from [82, 83].

Besides its phenomenological characteristic such fit can be motivated within excursion

theory [83, 84] by modifying the barrier shape. In [83] they assume an ellipsoidal collapse

of the dark matter halos with a moving barrier. The overdensity threshold will be in this

case

δec(σM , z) = δc(z)

(
1 + β

(
σ2
M

δ2sc(z)

)γ)
(68)

where β = 0.47, γ = 0.615 and δc is the critical density of the spherical collapse. The

mass function for case of the ellipsoidal collapse is

νf(ν) = A

√
2

π

√
qν

[
1 +

1

(qν2)p

]
exp

(
−qν2

2

)
(69)

where q = 0.707, p = 0.3 and A =
√
π/(1 + (2−p)Γ(0.5 − p)) ≈ 0.322184, which is

the normalization constant requesting
∫
f(ν)dν = 1, here Γ is the gamma function. To

calculate the Eulerian halo bias for this framework, we use the expression for the ellipsoidal

overdensity threshold δec and the bias calculated in equation (67)

bE(ν) = 1 +
1

√
qδc

[
√
q(qν2) +

√
qb(qν2)1−c − (qν2)c

(qν2)c + b(1− c)(1− c/2)

]
(70)

Information on the amplitude of non-Gaussianity in the primordial fluctuation field,

by using LSS observations, can come from the abundance of rare collapsed objects (e.g.

galaxy clusters), i.e. events corresponding to the high peaks of the underlying dark

matter density field and by measuring higher-order statistics in the clustering of galaxies

and galaxy clusters. The measurement of the the existence of primordial non-Gaussianity

in the LSS bispectrum is sensitive at high redshifts [56, 72]. On the other hand, even

a small amplitude of non-Gaussianity in the primordial density fluctuations can produce

significant changes in the tail of the halo distribution. The large-scale structures tracing

the dark matter halos will also be affected by the existence of primordial non-Gaussianity

due to the bias effect between the galaxy and the traced underlying matter distribution.
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At higher redshifts a dense background can generate more high peaks, corresponding to

rare events in the matter distribution, which can host high biased systems. The statistics

of such high-redshift (z ≥ 1) systems can contain detectable deviations from the Gaussian

conditions, making them prominent LSS probes of primordial non-Gaussianity. Further

on we’ll refer to the most prominent LSS probes to constrain primordial non-Gaussianity,

the mass function and the galaxy bias.

3.3 Non-Gaussianities in the mass function

The mass function of the matter distribution, in the extended Press-Schechter theory,

can be used to measure non-Gaussianity in the primordial density field from LSS observ-

ables. The existence of non-Gaussianities in the primordial perturbations will directly

affect the peak distribution, where the halos collapse and hence the mass function. In

order to introduce non-Gaussianity, we need to derive an expression for the PDF of the

matter distribution having this characteristic. There are mainly two approaches in the

literature to address this issue, the MVJ [85] and the LMSV [52]. In both cases they

calculate the PDF, P(δR) of the smoothed initial matter overdensity field δR (defined in

equation (53)) accounting for the non-Gaussian initial conditions. In MVJ case, they use

the saddle point approximation to calculate the PDF, while in LMSV they do that by fol-

lowing the Edgeworth expansion, where analytical details about it and its validity can be

found in the actual paper. The non-Gaussian effects will pass to the mass function from

the Press-Schechter theory, where the probability distribution of the initial overdensity

being above the threshold δc is defined

P(> δc,M, z) =

∫ ∞

δc(z)

P(δR)dδR (71)

From that they finally calculate the mass function, since n(M, z)dM ∝ |dP(> δc,M, z)/dM |.

The non-Gaussian version of the above equation can be derived in the Press-Schechter
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theory, while this is not true in the excursion set approach of [78]. The latest assumes

that the Fourier modes of the density fluctuation field are evolving independently, which

is not the case for an overdensity field with a distribution that deviates from Gaus-

sian statistics. The non-Gaussian mass function (in the Press-Schechter approach) can

be written also as the product of the Gaussian mass function with a correction factor

RNG(σM , fNL) = f(σM , fNL)/f(σM , 0)

nNG(σM , z) = nG(M, z)RNG(M, z, fNL) (72)

where the z and M dependence comes from the linear extrapolation of σM with the

growth factor and the fact that the variance is a function of M. In [86] they follow the

above philosophy to write the results of [85] and [52] for the non-Gaussian multiplication

factor in the mass function. In the case of MVJ [85], we have for the multiplication factor

of non-Gaussian mass function

RNG(M, z) = exp

(
δ3cS3(σM)

6σ2
M

)

×

∣∣∣∣∣∣16 δc√
1− δcS3(σM )

3

dS3(σM)

d lnσM

+

√
1− δcS3(σM)

3

∣∣∣∣∣∣ (73)

In the case of LMSV [52] we have

RNG(M, z) = 1 +
1

6

σ2
M

δc

×
[
S3(σM)

(
δ4c
σ4
M

− 2
δ2c
σ2
M

− 1

)
+

dS3(σM)

d lnσM

(
δ2c
σ2
M

− 1

)]
(74)

where S3(σM) = ⟨δ3R⟩/⟨δ2⟩2 is the normalized smoothed skewness of the density field, with

⟨δ2⟩ = σ2(R) being the usual smoothed variance of the density fluctuations from equation

(65) and ⟨δ3R⟩ is the smoothed three-point correlation function as defined in (55). Both

approximations in the limit of small non-Gaussianity limit (σ/δc ≪ 1) become
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RNG(M, z) = 1 +
δ3cS3(σM)

6σ2
M

(75)

In order to fit N-body simulation data, we substitute in both approximations for the non-

Gaussian correction factor δc → δec [87], where δec ∼
√
qδc for high peaks and q = 0.75

coming from the data fitting. A physical motivation for this substitution comes from

[86, 88], by altering the nature of the barrier in the ellipsoidal collapse to a diffusing one

they introduce naturally a similar constant q = 1/(1 + DB), where DB is the diffusion

coefficient of the barrier with value DB ∼ 0.25 coming from N-body simulations in [88].

3.4 Non-Gaussianities in the galaxy bias

The effect of bias in the large scale structures introduces a relation between the galaxy

distribution and that of the matter density field. Thus for Gaussian initial conditions the

two-point correlation function of galaxies will be also related to the correlation function

of the underlying dark matter

ξ(r) = b2Eξm(r) (76)

A derivation from Gaussianity in the initial matter density field will affect directly

the halo distribution and therefore the distribution of the LSS tracers. Different galaxy

types trace the dark matter halos distribution differently, i.e. quasars trace unusually

massive dark matter halos, acquiring different biases. Therefore we can gain observational

information from LSS for the amplitude of non-Gaussianity in the primordial density

perturbations by measuring the correlation function of high biased systems, like high

redshift galaxies and clusters. To go beyond the linear bias, applied in the Gaussian case,

we have to add more terms besides the linear b1 in the bias relation (62). The non-linear

bias between the dark matter overdensity field and the galaxies will be
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δg(x) = b1δm(x) + b2δ
2
m(x) (77)

b1 and b2 can be assumed scale independent. Recently in [89, 90] they showed that this

assumption can break down since non-Gaussianity for the primordial density field can

introduce a large-scale dependent dark matter halo bias. The results for the non-Gaussian

bias in the local type of primordial non-Gaussianity has been derived with many different

ways [91, 92, 93] acquiring generally the same results. Here we’ll refer shortly to the

result of [90], where they derive a bias formula from the bispectrum and hence it can

be generalized to non-local types of primordial non-Gaussianity. In this approximation

the correction in the halo correlation function, originating from the non-zero three-point

correlator, is given by

∆ξh =
ν3
R

2σ3
R

[
ξ
(3)
R (x1,x2,x2) + ξ

(3)
R (x1,x1,x2

]
=

ν3
R

2σ3
R

ξ
(3)
R (x1,x1,x2) (78)

where νR and σR are the smoothed to a scale R quantities mentioned previously, while

ξ
(3)
R (x1,x1,x2) = ⟨δ3R⟩ is calculated as in equation (55). The fraction ν3

R/σ
3
R in the above

relation, comes from the Lagrangian bias of the Press-Schechter theory in the spherical

collapse case (equation (67)), where the extra 1/δc has been dropped out due to the high

peak approximation. The Fourier transformation of equation (78) together with equation

(55) are used to derive the non-Gaussian contribution to the halo power spectrum. From

that the non-Gaussian correction of the Lagrangian bias will be, bhNG = bh(1 + ∆bh/bh).

From the relation between the bias and the power spectrum, ∆bLh/b
L
h = ∆Ph/(2Ph), we

have
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∆bh(k, fNL) =
bLGδc(z)

8π2σ2
RMR(k)

∫ ∞

0

dk1k
2
1MR(k1)

×
∫ 1

−1

dµMR(
√
α)

Bϕ(k1,
√
α, k)

Pϕ(k)
(79)

where α = k2
1 + k2 + 2k1kµ, M(k) = M(k, 0) comes from the equation (53) for z = 0

and bL is the linear Lagrangian bias for the Gaussian case given by equation (70). For

a detailed derivation of the above results, the reader can refer to [90]. All the above

methods for calculating the non-Gaussian contribution to the halo bias give consistent,

between them, results for the Lagrangian halo bias between the smoothed galaxy and

matter distribution is generalized in the form

∆b(k, f loc
NL)

bLG
= 2f loc

NLδc(z)M−1
R (k) (80)

This result is for primordial non-Gaussianity of the local type and it can be generalized

for the non-local cases as shown in [94]. The full non-Gaussian Eulerian halo bias is given

by

bENG(k, z, fNL) = bEG(z) + 3fNL(b
E
G(z)− 1)

H2
0Ωmδc(0)

c2D(z)T (k)k2
(81)

The linear growth factor D(z) comes from the linearly extrapolated MR(k, z) of the

previous relation. We can get the Gaussian bias from [82] for the spherical collapse, or

in the case we substitute δc → δec ∼
√
qδc for the ellipsoidal collapse from equation (70),

extrapolating also to z = 0.

Non-Gaussianities have induced a ∼ 1/k2 scale dependence in the halo bias. This

means that we’ll observe a deviation in the correlation function of galaxies at large scales,

since ξg(r) = b2NGξm(r). Such deviations are negligible for k > 0.1 hMpc−1 in the case of

local and folded types of non-Gaussianity [95], although they increase rapidly for smaller

k.
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We can take advantage of this characteristic of the non-Gaussian bias in order to

measure deviations from the Gaussian conditions in the initial matter density field. Bias

is redshift dependent (besides the obvious dependence introduced by the growth factor

D(z)), since at higher redshifts where the background is denser, high-sigma peaks are less

rare and more clustered producing highly biased systems.

We can gain information on the amplitude of non-Gaussianity from such high-redshift

systems (i.e. galaxy clusters) and objects (i.e. quasars), due to the fact that high biased

tracers will be affected more from the existence of primordial non-Gaussianities through

their bias relation, and hence it will be easier to detect in their clustering statistics. In fact

tight constraints on the amplitude of primordial non-Gaussianity come from existing data

using non-Gaussian bias as a probe. Recently for the local type fNL we have constraints

from [96], 25 < f loc
NL < 117 at 95% Cl, where they measured the correlation function of

extragalactic radio sources at redshift z ≈ 1, and from [91] with, −29 < f loc
NL < 70 at 95%

CL. In the next section we’ll present prominent LSS data in the literature where non-

Gaussianity is not ruled out. The reader can find a general review about the effects of the

primordial non- Gaussianities in LSS, briefly reviewed in this section, and the different

probes that can be used to constrain such effects from the LSS in [70, 95].



Chapter 4
Search for

non-Gaussianity

Large-scale structures can be used successfully, as we analyzed in the previous sec-

tion, to probe the primordial matter distribution for any deviation from the Gaussian

conditions. The existence of such deviations would affect the initial density field of the

underlying dark matter and as a result, the biased LSS tracers.

Tight constraints on the amount of primordial non-Gaussianity could be achieved

by measuring the abundance and clustering of structures formed on the high peaks of

the initial matter distribution. High redshift systems are formed in higher background

densities, where the bias effect between the distribution of such systems and the underlying

dark matter is high. Non-Gaussian effects induce correction factors in such basic quantities

of the Press-Schechter theory as the mass-function and the bias.

The usual way to put constraints on the amount of such effects, using LSS as a probe,

is the bias. Non-Gaussian bias has a 1/k2 scale dependence and therefore large scales

will mostly be affected by the existence of a non-zero fNL parameter. Tight constraints

can come from the correlation function of high redshift objects, where deviation of the

two-point correlation function from the ΛCDM model at large-scales can be fitted by

models accounting for the non-Gaussian corrections in bias. In this section we’ll present

some of the existing LSS data in the literature with promising features in their correlation

functions that leave room for non-Gaussian models without excluding them completely.

40
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4.1 NRAO VLA Sky Survey from Xia et. al. 2010

In [96] they use data from the NRAO VLA Sky Survey [97]. NVSS has scanned

the whole celestial sphere with a coverage of 82% at 1.4 GHz north from δ = −40◦. The

extragalactic radio sources of NVSS are promising candidates for clustering measurements,

since they can be found at substantially high redshifts. Hence, because of the higher

bias, they can be used to check the correlation function for any large scales deviations

originating from the scale dependent bias contribution of a non-Gaussian density field.

As an addition, radio surveys are not affected from the extinction of the galactic dust. In

Xia et al. 2010, they measure the angular correlation function for radio sources having

a median redshift of z ∼ 1. Their main results of the angular correlation function are

shown in Fig.2, together with the Gaussian and the non-Gaussian model.

The errors were estimated using a jackknife re-sampling, where they divide the data

into, almost equally sized, subfields Nsub = 30 measuring the ACF of the sample Nsub

times, omitting each time a different subfield. In the plot we can see clearly that the

angular correlation function for the Gaussian case fails to fit to the observations for

the large scales. On the contrary, the case with the non-Gaussian bias has successfully

modelled the large scale excess in the correlation function. The scale dependence of bias

1/k2, induced from the presence of non-Gaussian initial conditions, boosts the large scales

of the galaxy power spectrum, for k < 0.03 h−1Mpc. In order to incorporate the non-

Gaussianities into the correlation function, they use a non-Gaussian bias as in equation

(81), bNG(M, z, k) = bG(M, z) + 2(bG(M, z) − 1)δc(z)αM(k). The parameter αM ∼ 1/k2

is the factor that includes the scale dependent into the bias and it is affected directly

from fNL. The Gaussian bias is calculated from [83] in equation (70). Then an effective

weighted bias is used to calculate the galaxy non-Gaussian angular correlation function

beffNG(Mmin, z, k, fNL) =

∫∞
Mmin

bNG
dnNG

dM
dM∫∞

Mmin

dnNG

dM
dM

(82)

whereMmin is the halo’s minimummass in order to collapse and create objects like the ones
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Figure 2: The angular correlation function (ACF) of the NVSS dataset from [96]. The

black solid line is the model accounting for the non-Gaussian corrections in the bias. The

red-dashed line is the model assuming Gaussian initial conditions. The errors are from a

jackknife re-sampling.

studied in this paper and dnNG/dM is the mass function with the correction multiplying

factor for the primordial non-Gaussianity, as in equation (72). The minimum mass and

fNL are both free parameters of the model, although the Gaussian bias affects more the

small scales since the non-Gaussian corrections are negligible. Therefore, constraints for

Mmin come from the small-scales, while for the fNL come from the large ones where the

scale dependent correction factor of the bias rules. In [96] they in indicate that the non-

Gaussian corrections appear r > 12 Mpc. Strong constraints come from the NVSS radio

sources for the amount of the local type of primordial non-Gaussianity after fixing Mmin

and the cosmological parameters, fNL = 62 ± 27 (68% CL), which agree with the other

fNL limits.

As we can see, the standard cosmological models fail to fit the data for large-scales.
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However, this does not mean that the ΛCDM is ruled out. However, we can use the

correlation function of large scale structure high redshift datasets in order to fit models

with a non-Gaussian scale dependent correction in their bias relation and put constraints

on fNL parameter, competing even the constraints from WMAP. A complete analysis on

the amount of primordial non-Gaussianity from the NVSS radio sources and the SDSS

quasars can be found in [71], where the main result coming from the NVSS sample gives

fNL = 58± 24.

4.2 The SDSS DR9 BOSS-CMASS sample from Sanchez

et al. 2012

Here we’ll discuss the data from the CMASS (DR9) sample of the Baryon Oscillation

Spectroscopic Survey (BOSS) from [98]. In this study, they use the data in order to

put constraints on the cosmological parameters by using the correlation function of the

BOSS-CMASS galaxy sample combined with recent measurement from CMB and type

Ia supernovae. The constraints on the cosmological parameters comes from the usage

of the baryon acoustic oscillation peak position of the galaxies correlation function as a

standard ruler. Standard rulers are objects with a well known comoving size as a function

of redshift and hence they can be used to measure with a better accuracy angular diameter

distances, together with the H(z). Therefore, we can put constraints on the equation of

state and the Ωk of the universe, providing us with better knowledge of the cosmological

parameters.

The BOSS survey is part of the SDSS-DR9 release and it consists of two spectroscopic

surveys [99]. The first survey will measure the redshift of 1.5 × 106 colour-magnitude

selected massive galaxies up to z = 0.7 with a magnitude limit at i < 19.9. It consists of

two subsamples with different redshift ranges. The first is the LOWZ sample with range

0.2 < z < 0.4 and the second is the CMASS sample with redshifts above z = 0.4. In
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this thesis the CMASS galaxy sample is used, consisting of 206,104 galaxies in the range

discussed above. In this section we’ll deal with the BOSS CMASS sample only.

The CMASS galaxies have a mean redshift at z = 0.55, for the ranges stated above.

We will check in this section if the sample has any non-Gaussian signal in its correlation

function. Such a non-Gaussian effect is induced from the halo bias, which imparts a

scale-dependent correction. Besides the obvious large-scale dependence, bias depends on

redshift. In small redshifts the bias is smaller and therefore we expect that the non-

Gaussian signal and the fNL constraints will be weaker. Hence we’ll try to fit for a

non-Gaussian model to see if there is room at these redshifts for non-Gaussianity.

We start by presenting their clustering results. To calculate the two-point correlation

function ξ(s, µ) they use the estimator of Landy & Szalay, as in equation (13). Here

µ = s||/|−→s | and s|| is the projected separation −→s to the line of sight. The redshift space

correlation function is calculated by integrating over all angles µ, 2ξ(s) =
∫ 1

−1
ξ(s, µ)dµ.

To acquire the randoms they used the method described in [100], where the randoms are

generated using the selection function and redshift distribution of the actual sample. The

errors are estimated from the diagonal elements of the covariance matrix constructed from

600 mock catalogues of the CMASS sample [101]. In order to take into account systematic

errors, they apply weights to each object in the data set and in the randoms, following

[100, 102]. Firstly they apply a radial weight wr = 1/(1 + Pwn(z)), where n(z) is the

mean number density of the particular set and Pw = 2 × 1064 Mpc3h−3. This weight is

used to to combine data from regions with different mean number densities, which occur

usually due to a redshift dependent selection, minimizing the variance of the estimator.

Hence they have nothing to do with any systematic error correction [102].

To correct the data from the missing redshifts in some galaxies, originating from the

fibre collisions of the spectrograph, they add a weight wmr = wrf + wfc − 1, where the

starting value of wrf and wfc is unity. For every missing redshift, they raise the value of

wrf of the closest galaxy by one and for every fibre collision they raise the value of wfc for
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Figure 3: The redshift-space two point correlation function from [98] together with the

ΛCDM model.

galaxies closer than 62′′, by one. This way they manage to correct for the fact that the

spectrograph cannot allocate on the plate fibres closer to each other than 62′′ and hence

under-sample the number of galaxies in clusters with smaller separations. Finally for the

other systematics that affect the clustering signal, besides the ones mentioned above, they

use a weight wsys. Therefore the final weight that they use to the data and the randoms

to measure the correlation function is, wtot = wrwmrwsys. Analytical details of these

systematics and their effects on CMASS sample can be found in [102]. The clustering

measurements of [98] together with the ΛCDM model with Gaussian initial conditions
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are shown in Fig.3

The best fitting model in Fig. 3 is for Ωm = 0.282 and assumes Gaussian initial

conditions. As we can see, the model is in excellent agreement with the shape of the

correlation function and the position of the BAO peak at 105 h−1Mpc. They follow

[103] by using the renormalized perturbation theory [104] to calculate the matter power

spectrum and correlation function. We combine the results of ξ(s) in [105], where they

have calculated the correlation function in redshift space for smaller scales, with the results

shown in Fig.3. In this way we build the two-point correlation function of the CMASS

sample for a bigger range of scales. In both papers they use the same fiducial cosmology

(Ωm = 0.274, h = 0.7) and techniques to calculate the correlation function ξ(s). The

errors shown in Fig. 3 are estimated from the covariance matrix of the sample by using

600 individual mock catalogues. In order to calculate the non-Gaussian corrections of

the correlation function, we need to measure the Gaussian bias and the mass function

of the sample. In this way the only free parameter to constrain will be the fNL. The

Gaussian bias can be calculated from equation (70) for the ellipsoidal collapse. Together

with the corrected mass function for the non-Gaussian effects, we can define the effective

non-Gaussian halo bias from

beffNG(M,k, z) =

∫
dMnNGbNG(M,k, z)⟨N(M)⟩∫

dMnNG⟨N(M)⟩
(83)

where nNG = dnNG/dM is the non-Gaussian mass function from equation (72) and

⟨N(M)⟩ is the mean number of galaxies in a halo of mass M.

As we described in the previous section, galaxies form inside halos of dark matter.

The mass of halos needs to exceed a threshold M ≥ Mmin, in order for enough regular

matter to fall into halo’s potential well, collapse under the gravitational attraction and

form galaxies. Therefore halos with mass greater than the threshold Mmin will host one

galaxy in their centre. According with the hierarchical formation of structures subhalos

merge with other subhalos or halos to create higher mass bound objects. These subhalos
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can host lower mass galaxies (satellites), where they orbit around the host halo. At a

particular point these satellites will succumb under the gravitational force of the central

galaxy, which eventually will consume them. The result are mergers of central galaxy

with the satellites, which is a frequent event in highly populated galaxy clusters and

superclusters.

Halo Occupation Distribution (HOD) models describe the way galaxies occupy halos

as a function of the halo mass, giving theoretical prediction for the mass function as well

as the bias of dark matter halos. In the HOD formalism in order to calculate the number

of galaxies for a halo of mass M, we have to account also for the mean satellite number.

According to the NFW profile [79] the satellites are distributed around the central galaxy,

which resides in the halo. Hence we can assume that only halos with a central galaxy can

host satellites. The usual assumption is that satellites follow a Poisson distribution [106],

where here we take their mean number to be[107] for M ≥ Mmin

⟨Ns(M)⟩ =
(
M

M1

)α

e−Mmin/M (84)

where M1, Mmin and α are the free parameters of the HOD model, with Mmin being

the minimum mass of a halo to have one central galaxy and M1 is the mass of the

halo hosting one satellite. If we also take into account that not all halos contain a

central galaxy due to the cut off in mass, we can define the number of the central galaxy,

⟨Nc(M)⟩ = exp(−Mmin/M), being zero or one for M ≥ Mmin. Hence we can calculate the

mean number of galaxies for a halo of mass M

⟨N(M)⟩ = ⟨Nc(M)⟩+ ⟨Ns(M)⟩ = e−Mmin/M

(
1 +

(
M

M1

)α)
(85)

The free parameters of the HODmodel are calculated after the best fitting to clustering

data. There are HOD models with more free parameters that can have a better fit to the

clustering data [108]. For a review on HOD models the reader is referred to [109].

In order for us to fit a non-Gaussian model on the CMASS data, we’ll take the values
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of the best fit free parameters of the HOD model calculated in [105], where log(Mmin) =

13.07±0.40, log(M1) = 14.25±0.17 and α = 0.94±0.42. In [110] they find a 10% satellite

fraction in the galaxy sample of CMASS from the fitting with the correlation function.

In the case of a non-Gaussian model our interest lies in the large scales of the correlation

function, which is mostly affected from the scale dependent correcting factor of the non-

Gaussian bias. Hence, we will calculate only the 2-halo term of the two-point correlation

function, which is the part of the correlation function originating from pairs of galaxies

located in different halos. The 2-halo term of the correlation function is the dominant

one at large scales. On the other hand the 1-halo term, which comes from the pairs of

galaxy-satellite and satellite-satellite of the same halo, dominates the small-scale regime.

To calculate the linear matter power spectrum we use the same fiducial cosmology in [98].

We define the initial matter perturbation powerspectrum as

Pm(k) = AknsT 2(k) (86)

where ns = 0.96 is the spectral index and A is the normalization constant normalizing

the power spectrum at z = 0 to give σ8 = σ(R = 8 h−1Mpc) = 0.8, with σ(R) being the

smoothed variance of the initial density field at scale R

A =
1

2π2

σ8∫∞
0

P (k)k2W (k · 8 h−1Mpc)
(87)

W(kR) is the Fourier coefficient of the window function defined in the previous section.

For the transfer function we use the one proposed in [111], which accounts for the bary-

onic wiggles. Finally, we use the fitted formula from [112] to calculate the skewness in

the multiplication correcting term of the non-Gaussian mass function. The correlation

function is calculated from equation (10) after multiplying P (k) with the square of the

non-Gaussian bias, P g
NG(k) = (beffNG)

2Pm(k).

In order to calculate the effective non-Gaussian bias we have to calculate the non-

Gaussian mass function together with the correction term in the bias. We use the three
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Figure 4: The redshift-space two point correlation function of the BOSS-CMASS sample.

We plot the ΛCDM model (fNL = 0) together with the non-Gaussian models of the local

type for different values of the fNL parameter.

free values of [105] in the HOD model together with equation (81) and (84). To test our

measurements and see if we are on the right track we compare our finding for the bias

of the Gaussian case, coming from the HOD, with the one measured in [105]. We find

that the Gaussian bias is b = 1.959 which is consistent with the measurement of [105],

b = 1.98± 0.05, and of [98], b = 1.96± 0.09. Finally we calculate the correlation function

in redshift space by using the Kaiser formula [113]. The results for the ΛCDM and three

different fNL values are plotted in Fig.4.
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The ΛCDM model in the plot is for fNL = 0 and in order to be consistent with the

best fit model of Fig. 3 we used Ωm = 0.282 to calculate the correlation function for both

Gaussian and non-Gaussian cases. The ΛCDM model fits well to the CMASS correlation

function and it is consistent with the one calculated in [98]. However, it fails to fit the

correlation function at large scales. After the 120 h−1Mpc, the Gaussian ΛCDM model

declines while the measured clustering signal does not.

We have also calculated and plotted non-Gaussian models for 3 different values of

the fNL parameter. These non-Gaussian models due to the scale-dependent bias can

have higher clustering amplitude at large scales, being able to fit well the correlation

function of the CMASS sample, which has an increased clustering at large scale. The

non-Gaussian models fit well to the shape of the correlation function till the 120 h−1Mpc

like the ΛCDM model did. Further on at larger scales, due to their scale dependent bias,

the non-Gaussian models instead of dropping down have a flattening which fits well to

the CMASS sample at these scales. However the errors of the correlation function coming

from the mock catalogues are big enough to rule out the Gaussian case. Uncertainty at

these scales make the constraints on non-Gaussianities weak. All three different values of

non-Gaussianity fit well at scales beyond 120 h−1Mpc.

Due to the large uncertainties of the large scales, we cannot exclude ΛCDM since it fits

well for most of the scale range. Non-Gaussian models can neither be excluded since with

a scale dependent bias it can fit well to the shape and BAO position of the correlation

function for the whole range of scales. However in order to constrain the fNL parameter

we have to correct the sample for any systematic errors that may exist and will directly

affect the data and hence the measured ξ(s). Possible systematics in the BOSS survey

are discussed in [102].

Recently in [114] they tried to put a constraint on the fNL for the local type non-

Gaussianity from the BOSS-CMASS sample, by measuring the power spectrum of the

galaxies in the sample. Taking into consideration potential systematic errors contributing
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to the power spectrum, they measured the amount of primordial non-Gaussianity with

the method analyzed above, resulting in −92 < f loc
NL < 398 at 95% CL. The best-fit

fNL parameter measured from the minimization of the χ2 goodness-of-fit test gave for

the BOSS-CMASS sample, f loc
NL = 71 ± 11 with χ2

red = 0.2, which is consistent with the

value measured in [114, 91, 96]. However, the constraints coming from [114] are weak

compared to other measurement from LSS surveys like in [91, 96]. This was expected as

we explained in the above analysis and easily saw in Fig. 4. Non-Gaussian models cannot

be excluded from this LSS sample, since they can explain easily large scale excess in the

clustering signal such as that observed in the CMASS sample.

4.3 The HiZELS sample from Geach et al. 2012

In [115] they present the clustering of 370 Hα emitters (HAE) at z = 2.223. The HAE

are selected in the Hi-Z Emission Line Survey (HiZELS), which is a survey targeting

Hα emitting galaxies in very narrow redshift range at z = 0.84, z = 1.47 and z = 2.23

[116]. HiZELS has so far searched a 1.2 deg2 in the United Kingdom Infrared Deep Sky

Survey (UKIDSS) and 0.75 deg2 in the Ultra Deep Survey (UDS) detecting 230 and 140

HAE respectively. The galaxies are selected in a narrow band from their emitting lines

in a particular filter. Therefore they will have a very narrow redshift distribution where

the selected population does not evolve. Galaxies at different redshifts than the selected

band can introduce contamination in the sample since redshifted emitting lines can enter

the narrow selection window of the survey. At high redshift such contaminations can

be removed easily, since they are usually low redshift objects and a broad band colour

selection can discard them from the survey. Multiple detection of the same emission line

source from different narrow band filters, limits the contamination to the minimum. The

contamination in the sample is expected to be less than 10%. Details for the survey and

the selection can be found in [117].

They calculate the two-point correlation function of the HAE from equation (13),
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where the final pair counts from each UDS and UKIDSS are unified to get the combined

results for the angular correlation function. The errors are calculated from the jackknife

re-sampling method calculating the full covariance matrix.

The angular correlation function can be fitted from a simple power law, w(θ) = Aθ1−γ.

The slope γ ≃ 1.8 is the usual power law for the two point correlation function discussed

in a previous section. The power law fit of the angular correlation function is derived

from the Limber’s equation as the projection of the two point correlation, which as a

rule of thumb can be fitted by a single power law of the form, ξ(r) = (r/r0)
−γ. Despite

the good fit to the angular correlation, the simple power law deviates at large θ due to

the divergence of the Limber’s approximation for samples with a very narrow redshift

distribution [118]. The approximated version of Limbers formula, which is used in [115]

to calculate the amplitude of the power law, is given by [19, 119, 120]

A = rγ0
Γ((γ − 1)/2)Γ(γ/2)

Γ(1/2)

∫ ∞

0

dzn(z)2
(
dr

dz

)−1

r(z)1−γ (88)

where A is the amplitude of the angular correlation power law fit, n(z) is the redshift

distribution, Γ is the gamma function and r(z) is the co-moving distance at redshift z.

The main reason for this deviation is that the full formula (equation 15) takes into

account that the two object that form a pair are located in two different redshift bins,

while the approximation assumes that pairs with a small separation (θ < 1′) have the

same redshift. In the case where the distribution is very narrow the approximation fails

and calculations with the full Limber formula is needed [20]. In Fig.5 we calculate the

simple power law model from the approximate and the full Limber’s formula.

In order to derive these results, we used the redshift distribution proposed in the paper

[115], a Gaussian with z = 2.233 being the centre and σ = 0.0126 being the width of the

band. We adopt, in our measurements, the best fitted value r0 = 3.7 ± 0.3 h−1Mpc, for

the power law of the spatial correlation function calculated in [115] after using the narrow

band redshift distribution.
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Figure 5: The angular correlation function of HAE from the COSMOS and USD fields.

We fit a single power law calculated from the approximated and the full Limber’s formula.

The break-down of the approximating formula for θ > 1′ is evident.

A single power law is not a sufficient model for the full angular correlation function.

We have to account for the 1-halo and 2-halo terms of the correlation function, where

complicated HOD models for HAE are required. However, we can use this model to fit

the data and take it as a simple case for the Gaussian initial density perturbation field.

The calculations of the angular correlation power law from the full Limber’s formula

shows the break-down point of the approximation at around θ > 1′, for this narrow band

selection. By using the full Limber’s formula outcome as a model for w(θ), we can see
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that there is a clear deviation at large angles (θ > 1′) which cannot be fitted by this single

power law.

The deviation of the power law, calculated from the full Limber’s formula, at all angles

is within the error limits of the angular correlation function and therefore the single power

law representing the Gaussian model is not excluded.

A non-Gaussian model could fit the correlation function at these large angles, due

to the scale dependence of the non-Gaussian bias. The HAE of HiZELS could be good

candidates for the search of non-Gaussianity, by using their correlation function, since

they are high redshift and high biased tracers. Although measurement of the angular

correlation function at larger angles is needed in order to decide if it’s deviation from the

single power law extends or it is just a local trend. The non-Gaussian signal, if any, will

appear at these large scales. The constraints on the HAE HOD model are poor since the

size of the sample consists of only 370 objects. Tighter constraints are needed in order to

measure with higher accuracy the effective non-Gaussian bias.

Finally, the errors in the plot coming from the jackknife re-sampling are too big for

us to exclude any of the models. If we consider the single power law as the Gaussian

model, we can see that the deviation observed at large scales can leave some room for

non-Gaussian models. It is obvious that more objects in the HiZELS sample are needed

in order to be able to put tight constrain in the fNL parameter.



Chapter 5
Search for

non-Gaussianity in the

quasars of SDSS BOSS

DR9

The importance of measuring primordial non-Gaussianity lies in the fact that it is the

most promising way to distinguish between the plethora of inflationary models, shedding

light on the very early Universe. The most important probes to measure the amount of

the primordial non-Gaussianity are the CMB and the LSS.

In order to measure non-Gaussianities from a LSS surveys, we have to take advantage

of some characteristics of structure formation. Non-Gaussian initial conditions can affect

the primordial gravitational potential field, which directly affects the matter density field.

The mass function of the dark matter halos is affected directly, as we showed in a previous

chapter. Ordinary matter trace the underlying dark matter and forms finally galaxies

inside halos, hence the bias factor between their distributions will be also affected. It is

easy to understand that non-Gaussianities in the primordial density field can affect the

clustering of galaxies and hence we can use LSS surveys to measure any deviation from

the Gaussian initial conditions.

The most important quantity measured in LSS survey is the two-point correlation

function and shows the amount of clustering of the sample at different scales. Non-

Gaussianities lead to higher order correlation function, which are zero in the case of

purely Gaussian primordial density field. Non-Gaussian signals in the primordial density

55
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field can be traced by measuring these higher order correlation function of galaxies and

super/clusters of galaxies. The usual way to measure any deviation from Gaussianity is

to use models that incorporate the corrected for non-Gaussian effects mass function and

bias. Therefore we can fit a non-Gaussian model to the two-point correlation function of

a LSS sample and constrain the fNL parameter by measuring its best-fit value.

In this work, as we did before for the other samples, we will use the non-Gaussian

bias as a probe for measuring non-Gaussianities in the sample. The non-Gaussian bias

is scale dependent, therefore in order to put tighter constraints on the amplitude of non-

Gaussianity from a LSS sample, we need to choose high biased tracers at high redshifts.

In this way we will have better chances on finding any signal of non-Gaussianity at the

large scales of the correlation function of the sample.

In this section we will use the second of the two spectroscopic samples of the SDSS

BOSS. It consists of 150,000 quasars in the redshift range of 2.2 < z < 3.5, with a mid

redshift of z ∼ 2.5. Quasars are high biased objects and are located at high redshifts.

Quasar clustering can shed light on critical matters of the galaxies formation and evolu-

tion, as well as black hole growth, wind and feedback models. On the other hand, they

can make excellent candidates to constrain primordial non-Gaussianity due to their high

redshift and bias.

5.1 Data

The Sloan Digital Sky Survey [121] scanned almost a quarter of the sky using the

Sloan foundation 2.5-metre telescope [122]. SDSS is now in its third phase (SDSS-III),

with Baryon Oscillation Spectroscopic Survey (BOSS) being one of the most important

surveys. The main purpose of BOSS survey is to measure with great precision the cosmic

distance scale and the expansion rate, by using the BAO peak as a standard ruler. In

order to achieve that the BOSS survey will measure the spectroscopic redshift of 1.5×106

red luminous galaxies and the Lyα forest of high redshift quasars. The whole BOSS
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survey will cover an area of 10, 000 deg2. We referred to the details of the first sample

and the constraints on the amplitude of non-Gaussianity in a previous section.

Quasars are the most luminous objects in the Universe hosting super-massive black

holes in their centres.They are point sources and hence it is very difficult to trace them,

due to star contamination, especially the faint high redshift quasars. The rarity of these

objects means that we need a large survey in order to trace a decent number of them and

therefore retrieve important information from their clustering. The BOSS survey, that we

will use in this section, is such a survey. Clustering studies from other smaller samples of

quasars can be found in [123, 124]

The second BOSS sample consists of 1.5 × 105 quasars in the redshift range of 2.2 <

z < 3.5 selected from 4×105 objects. The specified redshifts come from the measurements

of their Lyα forest, which is one of the main goals of BOSS; to measure the BAO feature

in the Lyα forest [125, 126]. The magnitude limits of the BOSS quasar survey are g < 22.5

or r < 21.85.

5.1.1 Quasar selection in BOSS

The difficulty of such a survey is the quasar selection, which due to the rarity of these

objects and the presence of stars is a tough job. To measure the spectra of quasars in

a survey one needs first to target the most promising objects for being quasars. After

the selection, one can take their spectra and determine their redshift and which of the

targeted objects are indeed quasars. In SDSS, and therefore in BOSS, the selection is

done by using the colour-colour diagrams (i.e. u-g,g-r) of point sources in the sample.

Objects that lie away from the star locus in the colour-colour diagrams are targeted for

spectroscopy as promising quasar candidates [127].

The redshift range of the quasar selection in the BOSS survey was selected to be

2.2 < z < 3.5, since at these redshifts the BOSS spectrograph is sensitive for measuring

the quasar’s Lyα forest [128]. At redshift 2-3, where the BOSS targets also lie, the number
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density of luminous quasars peak [123, 129]. However, the target selection is complicated

at these redshift range. At redshift z = 2.7 the quasar colours are similar to the colours

of metal-poor A and F star populations [130] and hence the separation between these two

makes the targeting of BOSS even more difficult. In addition to that, quasars at redshift

z ∼ 2.5 are contaminated from lower redshift (z ∼ 0.8) less luminous quasars that have

similar colour and flux with them [131, 132].

In order to use the SDSS BOSS quasars for statistical analysis (i.e. clustering studies),

we need to produce a uniformly selected sample called the CORE. In addition to this, a

BONUS sample is constructed by using as many additional data and techniques needed to

reach the desired quasar density. The algorithm for the BOSS quasar selection is based on

the extreme deconvolution algorithm (XD) of [133, 134]. After applying the XD method,

every point source of SDSS BOSS is assigned with a XDQSO probability of being a quasar,

by modeling the flux distribution of quasars and stars at different redshifts. In this way,

a separation between targeted quasars and stars is achieved. More precisely, all the point

sources of BOSS with XDQSO probability above 0.424 are targeted for spectroscopy in

order to apply the CORE method[128]. More details on the CORE+BONUS method and

the XDQSO technique used for the BOSS quasar selection, together with the details of

the pipeline used are listed in [128].

5.1.2 Subsample and angular completeness

The CORE quasar sample produced with the methods described above will be used

here, in order to put constraints on the amplitude of primordial non-Gaussianity. The

same sample has been used before to analyze the clustering of quasars with z > 2.2 in

[135]. We will follow similar steps with [135] to construct and mask the CORE quasar

subsample from BOSS.

The data from SDSS Data Release 9 BOSS are used in order to apply the XDQSO

technique. The spAll − v5 4 45 from DR9 is used, which contains the spectroscopic
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Figure 6: Our quasar sample, after applying the method of section 5.1.2, in J2000

equatorial coordinates. We discarded from the sample regions containing targeted quasars

with less than 75% of them having received a fibre for spectroscopy.

classification and redshift of the objects from the the Spectro-1D pipeline together with

their matched photometric details. The xdcore file from the SDSS DR9 is also used,

which contains the quasar probabilities, used in the XDQSO selection method, for all the

point sources of the SDSS DR9. These BOSS data are merged with the targets in the

XDQSO CORE creating a sample that contains spectra and photometric details of the

point sources matched, as well as their XDQSO probabilities.

The MANGLE software [136] is used to apply the angular mask of the BOSS DR9

survey. In order to achieve that, we use a set of polygons called ’bosspoly’ covering

a sector of the BOSS survey sky area. These MANGLE polygons contain the matched
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Figure 7: The normalized redshift distribution, n(z), of the BOSS quasar sample.

objects from BOSS and XDQSO CORE samples. The angular completeness is determined

by the percentage of the targeting quasars, in a sector, that get a BOSS fibre. First we

remove regions with bright stars, since no quasars can be observed there, as well as regions

with bad u-band data. Further on we set a threshold of 75 per cent in the completeness.

This simply means that we will keep the regions, and hence the objects inside them, in

which 75% and more of the targeted XDQSO CORE quasars in them have been assigned

a fibre obtaining their spectrum. More details on the above method, as well as on the

redshift assignation of quasars from their spectrum and redshift errors can be found in

[135]. Finally we keep in the sample only objects with zWARNING = 0 indicating

quasars with no known problem in their spectra. If the zWARNING flag [137], that is

determined from the spectroscopic pipeline, is equal to zero then the redshift is accurate
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at 99.7% level. We end up with a sample of 29, 687 quasars (Fig. 6). The redshift

distribution of the quasars utilized in this work is shown in Fig. 7.

In the redshift distribution of Fig. 7, the redshift range of the quasars in our sample

is 2 < z < 3.8. However, most of the objects are concentrated in the redshift range

2.2 < z < 2.9, with the peak being at z ∼ 2.3. Therefore, we will make a redshift cut

and use only the quasars in redshift range 2.2 < z < 2.9 for our analysis, leaving 22, 483

objects in the sample.

5.2 Clustering analysis

To measure the clustering of the quasar sample we follow the Landy and Szalay esti-

mator, as in equation 13, and calculate the two-point correlation function ξ(s) in redshift

space. To do that we count the pairs of objects that have separation s. We count the

data-data DD(s), the data-randoms DR(s) and randoms-randoms RR(s) pairs of the

sample. The first are quasar-quasar pairs while the other two are pairs of quasars with

randoms from the random catalogues and pairs of randoms between them. The DR and

RR in the Landy & Szalay estimator are normalized by the ratio of the total number

of random point Nrad and the total number of the quasars Ndat. We create the random

catalogue to be ∼ 20 times bigger than the data and hence the ratio Nrad/Ndat ∼ 20.

We create also a catalogue ∼ 50 times bigger than the data in order to check the two

results. The two correlation functions are almost the same and hence to save time in

the calculation process we will use the ∼ 20 times bigger random catalogue. We also

calculate the Hamilton estimator (equation 12) which has no normalization factor, but

the difference between the two different estimators is negligible. The fiducial cosmology

assumed in this work is Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.045, σ8 = 0.8, ns = 0.96 and

h = 0.7 (with H0 = 100h km/s). Besides the density parameters, which define the cos-

mological framework of the analysis that follows,the spectral index ns and the variance

σ8 = σ(R = 8 h−1Mpc) also play a significant role. They are used in the construction of
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Figure 8: (a) The MANGLE mask after removing the veto mask for bright stars and

bad u-band fields. The polygons observed contain the XDQSO CORE objects (mask is

one). The grey polygons are the ones that meet the 75% completeness theshold applied

here, where the rest (black) do not and the objects inside are removed from the sample.

(b) A zoom in a small region of the MANGLE mask in order to see the details of the

polygons and the complexity of the applied mask. Here we do not separate with different

color the polygons that meet the completeness threshold.

the linear powerspectrum that will give us the theoretical model needed to fit in the data

set.

5.2.1 Random catalogue

In order to measure the correlation function of our sample from the Landy & Szalay

estimator we need to construct a random catalogue in the angular mask of the quasars.

Therefore, we have to create random points in the regions where the completeness in above
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75%, in we which the quasars of our sample are located. By using the ransack program of

MANGLE we obtain the angular completeness of the survey, randomly generating angular

coordinates of points inside the regions of the mask. An overview of the MANGLE mask

used after removing the ’bad’ survey regions is plotted in Fig. 8. Inside the mask lie the

matched objects from the CORE targerts and the BOSS data, where outside lie the rest

objects of the BOSS survey. Each polygon is assigned with a completeness weight, which

is according to the percentage of BOSS fibre assignation to the objects inside. In Fig. 8

the ones that meet the 75% completeness threshold are plotted in grey and the rest are

plotted in black. The objects inside the first are used to constract the sample analysed

here. We generate roughly 20 times more random points in the same regions where our

quasars lie. To assign a redshift to each one of the random points we randomly take

redshift from the range of the quasars following their redshift distribution. As it is also

referred in [135], this method can produce artificial structures in redshift distribution of

the random points, since it follows the distribution of the data. However, with the large

angular size of the BOSS survey this method gives correct results.

5.2.2 Error estimators

In order to determine the statistical uncertainty of the measured quasar correlation

function, we will use the jackknife re-sampling method. The sample is splitted inNsub = 23

angular regions (subfields) of equal size, where each subfield is roughly ∼ 15 deg2. The

jackknife is an internal method of error estimators. We reconstruct copies of the data

by omitting in turn one subfield at a time, hence we construct Nsub different realizations

of the original sample. The main idea of the jackknife re-sampling is to measure the

correlation function of each realization and compare it with the mean correlation function

of all the realizations, which in fact is the correlation function of the original data set.

The jackknife error estimator is given by



5. Search for non-Gaussianity in the quasars of SDSS BOSS DR9 64

1 10 100

1

10

100

1 10 100
s (Mpc/h)

1

10

100
s 

(M
p

c/
h

)

  
 

 

-1.0

-0.5

0.0

0.5

1.0

Figure 9: The correlation coefficient, rij, which shows the level of correlation between

each bin of separation s.

σ2
jk =

Nsub − 1

Nsub

Nsub∑
i=1

[ξi(s)− ξ(s)]2 (89)

where the factor, (Nsub − 1)/Nsub = 22/23, corrects for the fact that the different sample

realizations are not independent [138, 139]. The sum is over the square of the differ-

ence between the sample’s correlation function measured without the ith subsample (ith

realization) and the correlation function measured from the whole quasar sample. The

jackknife error technique has been used before in many clustering analysis studies, such as

in [140, 141, 142, 143]. A detailed analysis on the error estimators for two-point correlation

functions can be found in [144].

The main purpose of this work is to fit non-Gaussian models to the correlation function
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of the quasar sample, therefore we will have to calculate the full covariance matrix from

Cjk
ij =

Nsub − 1

Nsub

Nsub∑
k=1

[
ξki − ξi

] [
ξkj − ξj

]
(90)

where ξ(s) is the mean correlation function of all the realization, ξki (s) is the correlation

function of the sample without the kth subsample and the subscript is the bin number.

It is easy to understand that the jackknife error estimator of equation (89) is just the

diagonal elements of the covariance matrix, σjk
i =

√
Cjk

i . We can now compute the

correlation coefficient, rij, defined as

rij =
Cij√

Cii ·Cjj

(91)

which is plotted in Fig 8. As we can see, the correlation of the different separation bins

is negligible at small scales, while at large scales the correlation is higher but still small.

Our main interest is the fitting of non-Gaussian models to the large scales of the sample,

hence the covariance matrix from the jackknife re-sampling is used since rij in Fig. 9 has

a small correlation at large scales.

5.2.3 Clustering results

The two-point correlation function of the quasar BOSS sample is measured in redshift

space, by using the estimators described above. For the pair counting of the Landy &

Szalay formula we use the kd-tree code of [145]. The 3-D correlation results of the BOSS

quasar sample is plotted in Fig. 10, together with the clustering results of the same quasar

sample from [135] with redshift range 2.2 < z < 2.8 and the results of clustering from the

quasars of Shen et al. 2007 [146], in redshift range 2.9 < z < 5.4.

The sample of White et al. is the same CORE BOSS sample we use, with the same

selection techniques and redshift distribution. Although they apply different redshift and

magnitude cuts (for a detailed analysis see [135]). The quasars of Shen et al. 2007 [146]
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Figure 10: (a) The measured redshift space two-point correlation function, ξ(s), for

the BOSS quasar sample. The errors are the square root of the diagonal elements of the

jackknife covariance matrix. The dotted line is the best-fit ΛCDM model, as defined in the

text below. (b) The clustering results of the quasar sample together with the clustering

results of White et al. 2012, which uses the same quasar sample with different redshift

cuts (2.2 < z < 2.8), and with the redshift-space correlation function of the SDSS DR5

quasars from Shen et al. 2007, with redshift range 2.9 < z < 5.4.

consists of 4,426 luminous optical quasars from SDSS DR5 at redshift range 2.9 < z < 5.4.

The error bars in these two samples are from the jackknife re-sampling, which is the same

error estimator we applied in our sample.

The redshift space correlation function measured from the sample of White et al. is

measured only for the small scales, 3 h−1Mpc < s < 30 h−1Mpc. As we can see in Fig.

10(b) the ξ(s) measured in [135] is in very good agreement within the uncertainty limits,

implied by the covariance matrix of each sample, with the correlation function measured in

this work coming from the same sample as in White et al. Although we would expect the
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two clustering results to differ by less than the uncertainty limits, since the two samples

are almost the same and hence the error dominated by the sample cosmic variance are

irrelevant. The Shen et al. quasars are one of the highest redshift clustering studies, with

all the quasars having z > 2.9. We compare in Fig. 10(b) their finding with ours. Both

redshift space correlation functions are consistent with each other within the uncertainty

boundaries of the jackknife errors. Although most of the Shen et al. points reside near the

points measured from the BOSS quasar sample, the huge error bars of the first doesn’t

allow us to make a fair comparison between the two. The redshift distribution of the two

samples do not overlap, our sample is 2.2 < z < 2.9 and the Shen et al. is 2.9 < z < 5.4,

however they are close enough and the difference between the two correlation functions

should not be large, which can be verified from Fig. 10(b). Therefore, the measured

correlation function from the BOSS quasar sample is consistent with the results of White

et al. and Shen et al., where they analyze the clustering of quasars in the redshift range

similar or close to the one we are working on.

In Fig. 10(a), we have plotted only the correlation function of our sample together

with a best fitting ΛCDM model. Our main goal is to try to constrain non-Gaussianities

from the correlation function of the quasars by using the large scale excess of the non-

Gaussian bias (equation (81)) described in the previous section. In order to achieve that,

we need to measure the Gaussian bias between the measured correlation function and the

correlation function generated by our model.

To generate the ΛCDM model we use the fiducial cosmology stated in the beginning

of this section. The initial matter power spectrum is defined from, Pm(k) = AknsT 2(k),

which is the usual power-law with ns being the spectral index and T being the transfer

function from [111]. The normalization parameter is defined from equation (87), where we

normalize the powerspectrum to give σ(R = 8 h−1Mpc) = 0.8, with σ(R, z) being given by

equation (65). After multiplying the power spectrum with the square of the growth factor

in order to linearly extrapolate it to redshift z, we use the Fourier transformation from
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equation (10) to calculate the two point correlation function of the matter distribution.

As we analyzed in previous sections there is a bias effect, originating from the way

galaxies form and trace dark matter halos, between the galaxy power spectrum and the

underlying matter. Since the correlation function is just the Fourier transformation of the

power spectrum, the same bias effect exists between the correlation function measured

from our quasar sample and the model, ξQSO(s) = b2ξDM(s). Therefore, by taking into

consideration the relation between the real space and the redshift space clustering [113], we

defined the relationship between the linear generated correlation function and its redshift

space analogue, ξ(s) = (b2+2/3bf +f 2/5)ξlin, with f = Ωm(z)
0.56 being the gravitational

growth factor. The best-fit bias value will be measured by using the chi-squared goodness-

of-fits

χ2 =
N∑

i,j=0

(ξi − ξmi )C−1
ij (ξj − ξmj ) (92)

where the sum is over the different bins i and j, C−1 is the inverse of the covariance

matrix defined by the jackknife re-sampling method, ξmi and ξi is the value of the model

and measured correlation function respectively, at the ith bin. To calculate the model

correlation function and finally measure the best fit bias, we need to define a redshift

average ξ(s). According to [135] if we cut our sample in redshift bins, big enough for bias

to change from the one bin to the other, and calculate the correlation function in each

bin we define a redshift average ξ(s). This correlation function is equivalent with ξ(s)

calculated at an effective redshift, zeff , defined as

zeff =

∫
dz n2(z)(H(z)/d2A)z∫
dz n2(z)(H(z)/d2A)

(93)

where n(z) is the redshift distribution, as shown in Fig. 7 , dA is the comoving angular

diameter distance and H(z) is the Hubble parameter at redshift z. The effective redshift

of our sample is zeff = 2.4 and is the redshift we will use to calculate all the models

in this work. The zeff measured here is consistent with the redshift measured in [135],
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zeff = 2.39.

After fitting the model to the measured correlation function for scales 3 < s <

130 h−1Mpc and taking into account for the Kaiser effect, we measure the best-fit bias

to be, b = 3.7 ± 0.1 with χ2
red = 2.57. For the whole scale range, 3 < s < 210 h−1Mpc,

the measured bias is b = 3.65 ± 0.1 with χ2
red = 3.84. The difference between the two

measured best fit biases is negligible. The full scale measured bias has a larger χ2
red value.

As we can see from Fig. 10(a), the ΛCDM model fits well to the data till 50 h−1Mpc and

not to the whole scale range. In addition to this the statistical uncertainties of the data

at scales larger than 100 h−1Mpc lead to a bigger χ2
red value on the best-fit measured bias.

On the other hand the value of χ2
red in the case where the bias comes from the best-fit of

ΛCDM model on the data, at range s < 100 h−1Mpc, is smaller since the standard model

fits well on these small scales.

The measured best-fit bias for the Gaussian ΛCDM model is in good agreement with

the one measured by [135], b = 3.8 ± 0.3. Since we calculated the Gaussian bias for the

quasar sample, we can now calculate non-Gaussian models that can fit the large scale

excess of our sample, putting in this way constraints on the fNL parameter.

An analytical description of the way quasars occupy the dark matter halos is mentioned

in [135, 123]. In order to calculate an effective bias, we need to define a HOD model as

well as to measure its best fit parameters. However, the difference between the bias and

the effective bias of equation (82) is very small and hence we will not use a HOD model

to measure the bias of the quasar sample. Instead, we will use the best fit bias measured

above.

5.3 Test for non-Gaussianity

The main purpose of this work is to use scale dependent non-Gaussian models to

fit to the BOSS quasar sample putting constraints on the amplitude of primordial non-

Gaussianity. As we analyzed in a previous section, the existence of primordial non-
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Figure 11: The clustering results of the BOSS quasar sample. In red colour is the ΛCDM

best-fit model. We have also plotted 4 non-Gaussian model with different values of the

fNL parameter. It is obvious that these models can fit well for the large scale excess of

the quasar correlation function.

Gaussianity leads to a non-Gaussian mass function of dark matter halos (equation (72)).

If the amplitude of non-Gaussianity is non-zero the changed mass function will lead to

higher mass halos and therefore to higher biased objects tracing them. As a result the

non-Gaussian bias has an extra term, ∆bng = (b − 1)f loc
NLA(k), where b is the Gaussian

bias and A(k) is a scale dependent parameter given by equation (81).

The extra term in the bias is scale dependent therefore it will produce a large scales

excess in clustering of our model. Hence, we will fit a non-Gaussian model to our data

and especially to the large scales, where fNL constraints can come from. We will use the

correlation function originating from the simple kn spectrum as defined in the previous

section and we will use now the non-Gaussian bias, bng = b + ∆bng. Hence if we also
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take into consideration the Kaiser effect, since we have assumed linear theory to create

our model correlation function, the non-Gaussian model will be ξng(s) = (b2ng +2/3bngf +

f 2/5)ξlin. We plot the original clustering results from the quasar sample together with

the ΛCDM model and some non-Gaussian models with different values of fNL.

The fitted ΛCDM model fits well to our data till the 30 h−1Mpc, as we can see in

Fig. 11. At larger scales the standard model fails since it goes to zero too fast while

a flattening is observed in the clustering of the data after the 110 h−1Mpc. The BAO

peak can be seen at 97 h−1Mpc, where it is expected at ∼ 105 h−1Mpc. Although the

peak is just a 1σ detection, we can not omit the fact that the models’ BAO peak is

at the expected position while the peak of the data, if we accept that it is real, is not.

Nevertheless the non-Gaussian models for the different fNL parameters, due to the scale

dependent bias can fit well to the large scale flattening observed in the sample, making

them more consistent with the data. Therefore, a best-fit fNL can be measured by fitting

the non-Gaussian models to the observed large scale flattening of the the BOSS quasar

sample correlation function. All the non-Gaussian models have been calculated at the

effective redshift calculated in the previous section, zeff = 2.4, and by using the value of

the best-fit linear bias, blin = 3.7.

We use the full covariance matrix defined above together with the minimization of

the χ2 test defined from equation (92), in order to calculate the best-fit f loc
NL parameter.

The resulting value is, f loc
NL = 135 ± 9 at 1σ CL, with χ2

red = 1.21. The value of the

reduced χ2 indicates that the model is a good fit to the data for the whole scale range

and hence the constraints can be taken into consideration. It is evident from Fig 11 that

the non-Gaussian models fit better than the ΛCDM standard model and especially at

large scales, since the first has a scale dependent correction term in the bias. Although

the uncertainty limits of the quasar clustering does not exclude the ΛCDM model since it

can fit well for smaller scales. The constraints put on the amplitude of non-Gaussianity

are tight in the sense that the values of fNL lie in the range, 117 < f loc
NL < 153 at 95%
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confidence level.

The number of free parameters play a crucial role in the χ2 goodness-of-fit test and

hence in the best-fit parameter and its variation. If we allow the Gaussian bias as a

free parameter, the χ2 test will give different fNL with larger errors, since the smaller the

Gaussian bias the larger the fNL must be to fit our data and vice versa. This leads to bigger

uncertainty of the fNL value measured from this sample and hence weaker constraints.

The same would happen if we calculated the bias from a HOD model, where the plethora

of different values of the fitting free HOD parameters would give a bigger number of

best-fitting combinations of the bias and the fNL, leading to higher uncertainty in the

amplitude of non-Gaussianity, as measured from our sample. However, we calculated

the Gaussian bias from the best fit of the ΛCDM model with the data and hence the

constraints in the measured fNL are tight, since all the free parameters are well defined.

Comparing our findings with the ones measured in [91], −29 < f loc
NL < 70, and in [96],

5 < f loc
NL < 84, we find that the measured value of f loc

NL from the BOSS quasar sample is not

consistent with the values measured in the above studies. On the other hand our result is

consistent with the less constrained values measured in [114, 147], −92 < f loc
NL < 398 and

−268 < f loc
NL < 164 respectively and in [143], 30 < f loc

NL < 150. All the above fNL values

are at 95% significance level.

The above clustering studies are at lower redshift than our sample and use data from

LRGs , less biased objects than quasars. These could explain to a point the difference in

the fNL values measured in all these studies. In addition to that, we would like to test our

sample for systematic errors that affect the clustering signal and hence the amplitude of

non-Gaussianity measured and constrained from it. As we referred in the beginning of the

analysis, LSS surveys include systematic errors which are difficult to measure and correct.

These errors affect the clustering signal and therefore the sensitive region of large scales,

where the non-Gaussian constraints mainly comes from. Correcting for the systematic

errors will directly change the value of, and constraints on, fNL.



5. Search for non-Gaussianity in the quasars of SDSS BOSS DR9 73

10 100
s (Mpc⋅h-1)

0.001

0.010

0.100

1.000

10.000
 ξ(

s)

All
North Cap
South Cap

Figure 12: The two point correlation function from the hemisphere-split quasar sample,

given that the southern sample is much smaller than the northern sample, is compared

with the correlation function of the fiducial sample. The excess at large scales in the

South Cap sample clustering can be easily distinguished.

5.4 Check for systematic errors

Systematic errors can affect the large scale clustering measurements and therefore

the measured fNL parameter. Hence it is important to search and reduce any potential

sources of systematics that can affect our measurements, acquiring robust constraints on

fNL.

We begin checking the change in clustering by changing the amount of completeness

as described in the previous section. Then jackknife tests are performed by applying

different cuts in our sample. We apply cuts in the north and south galactic hemisphere,

g-band extinction, seeing and sky brightness. In this way, we divide our sample into
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two parts and after measuring the correlation function in each of them, we perform a

jackknife re-sampling technique to define the covariance matrix in each part. The two

resulting correlation functions for each different cut are compared to determine if any of

the cuts applied can affect the large scale clustering. No statistically significant difference

was detected in any of the above mentioned cuts, apart from the north and south galactic

hemisphere cut. In Fig. 12, we can see that the south galactic hemisphere quasars

have a stronger clustering signal than the ones in the north galactic cap. These findings

agree with the findings of [135] and as they also explain why we need a larger number of

quasars in our sample to determine whether this excess is real or the product of statistical

fluctuations.

The different cuts do not affect significantly the clustering of our sample, even the

South galactic excess due to small size of the South Cap sample cannot affect the clustering

of the total sample. In Fig. 12, the correlation function of the whole sample do not differ

significantly from the correlation function of the North hemisphere sample.

Now we will follow the systematic uncertainty check of [102, 148, 149] for the robustness

of our 3D correlation results, which is a widely used method in the literature. In particular

we will test if the clustering of the sample is affected by the galactic extinction, seeing,

sky brightness and star density.

In order to do that, we will use HEALPix [150] maps to calculate the auto and cross-

correlation of the quasar and the potential systematics. We use Nside = 64, which creates

roughly pixels of ∼ 0.84 deg2 all over the sky. We split also our sample in redshift bins of

∆z = 0.03 and after we apply the angular mask of the quasar sample, we define in each

created pixel i and redshift shell the overdensity

δi,z =
xi,z

xz

− 1 (94)

where xi,z is the value of the systematic in pixel i and redshift slice z, e.g. the mean

value of extinction of quasars in pixel i. The xz is the mean value of the quantity in
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question over all pixels at redshift bin z. We can define, by using the pixel overdensity,

the correlation function of the each systematic from

ξ(s) =

∑
i,j,z1,z2 δi,z1δj,z2Θi,j,z1,z2(s)N1(z1)N2(z2)∑

i,j,z1,z2 Θi,j,z1,z2(s)N1(z1)N2(z2)
(95)

where the sum is over the different pixels i,j at redshift slices z1 and z2, which are the

redshift bins of the pixel i and j respectively, Θi,j,z1,z2(s) is 1 if the separation between

two pixels is within the bin s ± δs and 0 otherwise, N2(z2) is the number of quasars in

the redshift slice z2. In order to calculate the 3D cross-correlation of quasars with the

systematics, which follow an angular distribution, we just keep the overdensity field of

the systematics and the number density N(z) of the angular map constant with redshift.

This method for calculating the correlation function requires smaller size of pixels

(e.g. Nside = 256). The reason is that this method measures the correlation function

from the overdensity of pixels ( or cubes in the 3D case) which comes from the objects

inside. If the pixel size is big then the overdensity will average out information from the

clustering of objects inside the pixel, since this method calculates the correlation function

from the pixels and not from each object individually. The pixelization method leads to

a ‘smoothed’ correlation function. In order to avoid this loss of information one has to

choose very small pixels.

In our case, we chose almost a square degree pixel and a redshift slice of ∆z = 0.03.

The reason for the choice of these values is that the BOSS quasar sample is a low number

density sample, in 10, 000 deg2 we have ∼ 22, 000 objects which means that we roughly

have ∼ 2 qso/deg2. Therefore, in order to have enough pixels with overdensity coming

from more than one object, we had to use big enough pixels which can contain more

objects.

In order to define the systematic effect caused to the clustering of the quasars from an

observational parameter (e.g. galactic extinction, foreground stars, etc.), we will follow

[148, 149], where they describe analytically the fluctuation that systematics may cause to
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the large scales clustering. To the first order the overdensity field is given by

δobs = δt +
∑
i

ϵiδi (96)

where δobs is the observed overdensity of the quasar sample, δt is the true overdensity,

δi is the overdensity of the ith systematic and finally ϵi is the effect of each potential

systematic on the observed overdensity. From equation (95) and (96), we can define the

true correlation function of our sample after correcting for the potential systematics

ξt(s) = ξobs(s)−
∑
i

ϵ2i ξi(s)−
∑
i,j>i

2ϵiϵjξi,j(s) (97)

where the ξi(s) is the auto-correlation of systematic i and ξi,j(s) is the auto/cross-

correlation of the different potential systematics. In the Appendix of [148], they describe

the case where they assume 3 different systematic errors. In our case we will calculate

separately the effect of each systematic, which means that the cross-correlation terms

between the different systematics will be zero. Hence, we just need to calculate ϵi of

equation (97) and subtract it from the observed correlation function separately for each

systematic i. The correlation function corrected for each systematic at a time will be

ξt(s) = ξobs(s)−
ξ2q,i(s)

ξi(s)
(98)

where ξq,i is the cross-correlation of the systematic i with the quasar sample. We will

test our sample for 4 different potential systematics. The first three are the observable

parameters of g-band extinction, seeing and sky brightness. The final systematic is the

effect of the foreground stars.

It was found in [148] that the number density of galaxies drops 10% from regions of

high to regions of low stellar density. 3% is caused, as stated in [102, 148], from the fact

that galaxies close to stars are not easily detectable. The other 7% may come from the

change in the photometric pipeline from DR7 to DR8. This change leads to the difficulty
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of the deblending code to separate more than 25 overlapping objects in regions of high

stellar density. Since our data come from the SDSS BOSS DR9 they will also be affected

by this effect and hence we will have to correct our sample for this systematic. In [102, 148]

they both find that, the systematic effect from the foreground stars is the most important

one, and to correct it they use a method where they apply weights to the sample. These

weights correct the sample at a point where no other weights from other systematics need

to be applied. Here we will only use the simple correlation function method to define the

amount of correction from each of the systematic errors.

Besides these systematic effects, stellar contamination can also affect our sample. The

XDQSO technique that we have applied here, uses models of quasar and star distributions

in flux space to minimize the stellar contamination. However, this is a very difficult

task since the stellar loci crosses the redshift z = 2.7 quasars in the flux space. The

quasar selection technique, as described in [134], performs well for mid-redshift quasars

(2.2 < z < 3.5) like the ones in our sample. Hence we will not try to correct for any

stellar contamination in this work, although a study for measuring and correcting for

these contaminants would be interesting. Detailed description on the correction of the

star contamination in a quasar sample can be found in [124].

To check for the effect of the foreground stars we choose stars in the magnitude limit,

17.5 < imod < 22.5, which are the selection limits of the XDQSO selection technique.

We also apply the angular mask of BOSS quasar sample. The resulting correcting ratios,

ξ2q,i(s)/ξi(s), for the four systematics considered in this work are plotted in Fig. 13.

In Fig. 13 we can see that the ratio that corrects the correlation function for the

different potential systematics is small for all the systematics except the foreground stars.

Besides some peaks the effect of extinction, sky and seeing is smaller than that of the

stars. This makes the effect from the presence of stars to be the larger systematic, with the

highest correlation function correction, in agreement with [102, 148]. The ratio from the

foreground stars is by far the highest on large scales, where mainly the non-Gaussianity
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Figure 13: The ratio of the squared cross-correlation ξq,i(s) of the quasars and system-

atics with the auto-correlation ξi(s) of the systematic, for the galactic extinction, sky

brightness, seeing and the effect of foreground stars.

constraints originate. Second comes the systematic from sky, while last is the effect

of extinction and seeing. According to Fig. 13, we expect a maximum reduction of

0.005− 0.01 of the measured correlation function by correcting for the systematics.

The main reason of the systematic error tests is to check the sample for potential effects

that can affect the clustering of the large scales and hence the fNL value measured by the

best-fit non-Gaussian models. Since each systematic will affect differently the correlation

function and therefore the fNL value, we will apply the correction for each systematic

separately. The resulting correlation function for each systematic is presented, together

with the ΛCDM and the best-fit non-Gaussian model, in Fig. 14. We concentrate the

best fitting value of fNL and χ2 results for all the four systematics in Table 1.

After the correction for the systematics, the clustering of the data at large scales
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Figure 14: The correlation function of the BOSS quasars after we correct it for each

potential systematic. We plot the ΛCDM standard model together with the best-fit f loc
NL

non-Gaussian model on each corrected correlation function. In all cases the non-Gaussian

model is the best fit, especially at the large scales. Although the statistical uncertainty

is such that it does not permit to us to exclude the standard cosmological model.

has been reduced. The effect from the foreground stars affects our sample the most.

Correcting for this systematic will reduce the clustering more than any other systematic,

as we expected from the results of Fig. 13. Since the large scale clustering has been

reduced the best-fit value of fNL will be also reduced. The maximum reduction of course
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Systematics f loc
NL (1σ) χ2

red

Extinction 107± 10 1.66

Sky 89± 12 3.23

Seeing 103± 11 3.1

Stars 63± 16 1.89

Table 1: The best-fit fNL parameter after correcting the correlation function of the

sample for each systematic error separately. The value of the reduced χ2-test is also

presented.

happens when we correct for the stars, after that is the reduction caused by correcting for

the sky brightness. The measured fNL parameter after the correction of extinction and

seeing are not significantly reduced compared to our fiducial results (f loc
NL = 134±9 (1σ)).

The reduction in the clustering from the stars is such that the best-fit fNL measured

in this case, 31 < f loc
NL < 95 at 95% CL , is now consistent with the results from other LSS

surveys of, [91, 96], −29 < f loc
NL < 70 and 5 < f loc

NL < 84 respectively (both at 2σ), as well

as from [143] f loc
NL = 90 ± 30. Our result after the stellar correction is consistent within

the uncertainty limits with the results from WMAP7 [65], f loc
NL = 32 ± 21 (1σ). Even

after we corrected for the systematic errors, the large scale clustering did not reduce to a

level where the non-Gaussian models are excluded. On the contrary the fNL parameter

was constrained and measured as being consistent with previous results of former studies.

Nevertheless we cannot exclude the standard fNL = 0 model since as we can see the

systematic errors significantly affect the large scales of the quasar clustering, which is the

main source of constraining fNL.

The precision of the measured value of non-Gaussianity depends on the validity of

the tests for systematics. Hence the data must be examined more thoroughly and the

systematics must be corrected without under estimating them, in order to obtain tight

constraints and consistent values for fNL. It would be interesting to apply the weight
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method to correct the data from the major systematics and compare the results with the

ones obtained in this work. But even if we do not fully accept the systematic reduced

results, because of the simplicity of the method used here, the basic measurements show

enough excess to leave room for non-Gaussian models.

5.5 Conclusions and Summary

We have measured the two-point correlation function ξ(s) in redshift space for ∼

22, 000 quasars from the SDSS BOSS DR9 in the range of 2.2 < z < 2.9. The selection

of the quasars is based on the XDQSO method, where the distribution of quasars and

stars in flux space assigns a probability for all the point sources of SDSS BOSS for

being a quasar or star. We measure the clustering of the quasar sample in order to put

constraints on the amplitude of primordial non-Gaussianity. To calculate the correlation

function of the sample we use the Landy & Szalay estimator and therefore create a random

catalogue ∼ 20 times larger than our sample.

On the correlation function of the quasars we fit a ΛCDM model in order to measure

the best-fit linear bias, which is blin = 3.7±0.1. The standard cosmological model fit well

to our data till the 40 h−1Mpc and fails to explain the excess of the correlation function

at the large scales. To put constraints on non-Gaussianity, we create a model with a

non-Gaussian bias, which originates from the fact that primordial non-Gaussianity affects

the mass function of the dark matter halos and therefore a scale dependent correction term

is added to the linear bias. The effect of this non-Gaussian term in the bias is measured

by the f loc
NL parameter which at the same time measures the amplitude of primordial non-

Gaussianity in the local regime. The non-Gaussian models can fit in the large scale excess

of our data sample and therefore measure the best-fit f loc
NL parameter.

The best-fitting value measured from the quasar sample is f loc
NL = 134± 9 (1σ), which

is consistent with previous measurement from other LSS clustering studies where the

constraints on the parameter are loose. On the other hand, studies [91, 96] with more
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constrained values of the fNL, do not include our measured result. The big disadvantage

of measuring cosmological parameters from LSS surveys is the fact that systematic errors

can affect the large scale clustering of the data sample. Hence, we test our sample for a

series of potential systematics in order to determine whether or not the excess at large

scales, on which the measured best-fit value of fNL mostly depends on, is real or the result

of systematic uncertainties. We test and correct the sample for galactic extinction, sky

brightness, seeing and the effect of foreground objects separately. The largest reduction

to the large scales clustering signal comes from the presence of foreground stars, in total

agreement with [102, 148]. The resulting best-fit value of the f loc
NL after the correction for

each systematic error are shown on Table 1. The biggest reduction on the fiducial value

comes after the correction of the effect of the foreground stars, f loc
NL = 63± 16 (1σ). This

value is consistent with the results of the studies with tight constraints on the fNL value.

The correction of systematic errors must be investigated further for this sample, by

applying the weights method for correcting the effects of systematics. The method we

followed here is simple and can overestimate the effect of each systematic in the large scales

of the clustering results. While the raw data show some preference for non-Gaussianity,

the ΛCDM model cannot currently be excluded, because of statistical and systematic

uncertainties. Further analysis of the systematic errors in particular is needed to determine

finally the value of fNL implied by these data. Future quasar surveys will measure non-

Gaussianity to even higher accuracy, by checking for excess power in the correlation

function at large scales.



Chapter 6
Looking into the future:

The 2QDES survey

The BOSS DR9 quasar sample gave some tight constraints on the fNL value, leaving

room for non-Gaussian effects in the clustering of high biased objects. Such objects at high

redshifts can provide stringent constraints on fNL, since the results of non-Gaussianity

can be easier detected in their large scale clustering due to the scale dependent bias of

the fitted non-Gaussian models. Therefore, tighter constraints can come from future high

redshift surveys of strongly biased objects such as quasars. One very promising future

quasar survey, which is going to obtain robust constraints on f loc
NL, is the 2dF Quasar Dark

Energy Survey (2QDES) of the VLT Survey Telescope (VST) ATLAS.

The VST is a 2.6 m wide field optical survey telescope in the southern hemisphere and

in particular at ESO’s platform in Cerro Paranal, Chile. The telescope is equipped with

a 16k×16k pixel CCD camera, the OmegaCAM. One of the three planned public surveys

is the VST ATLAS survey, where its main objective is to reach a depth compatible with

those of SDSS in the southern hemisphere. The VST ATLAS will scan 4, 500 deg2 of

the southern sky in the u, g, r, i, z bands of SDSS. The original aim was to measure the

baryonic wiggles in the clustering of LRGs in order to constrain the dark energy equation

of state.

One of the very interesting surveys is the Two-Degree Field Quasar Dark Energy

Survey (2QDES), which will be a two degrees field quasar survey. The survey will use

the 2df AAOmega spectrograph [151] of the 3.9m Anglo-Australian Telescope (AAT),

together with the results of VST ATLAS to detect up to ∼ 500, 000 quasars at z < 2.2

in the southern sky. The fiber density of the AAOmega spectrograph, used to measure
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the redshift of the quasars, is ∼ 110 deg−2. Hence to achieve the detection of the desired

number of quasars up to the magnitude limit of g = 22.5 over 4, 500 deg2, a ≈ 200 nights

survey is needed. The selection of quasars is achieved by the simple ugr and gri colour-

colour diagram selection technique as well as with the XDQSO method of [134] analyzed

in the previous section, which is the same selection process applied in this work and [135]

to construct the BOSS quasar sample.

The main scientific goals of the 2QDES quasar survey is to measure the position of the

BAO peak and the gravitational growth rate from the clustering of z ∼ 1.6 quasars. The

BAO peak position and the gravitational growth rate can be used to define the equation of

state of the dark energy and constrain crucial cosmological parameters. In addition to this

a large quasars survey, like the 2QDES, can provide robust constraints on the amplitude

of primordial non-Gaussianity from the large scale clustering of the quasars. Such a

survey can provide high redshift, z < 2.2, quasars whose correlation function can give

tight constraints on the fNL as the BOSS quasar survey. In fact the 2QDES survey was

designed to compete with the depth and numbers of the BOSS quasar survey and create

a large quasar sample in the south hemisphere. A comparison of the 2QDES clustering

results with the results of the BOSS quasars of this work would be interesting for the value

and constraints of non-Gaussianity, since both sample are consisting of quasars and their

redshift range is complementary. In addition to this, a large quasar sample in the southern

hemisphere could provide us with vital information on the nature of the clustering excess

observed in the correlation function of the southern hemisphere BOSS quasar over the

quasars located at the northern hemisphere (Fig. 11). The combination of the 2QDES

and the full BOSS DR9 quasar sample can provide us with stringent constraints on non-

Gaussianity and other important cosmological parameters, like the gravitational growth

factor and the parameters of the dark energy equation of state.



Chapter 7
Conclusions

The origin of observable structures is one of the most interesting subjects in cosmology.

Fluctuations of the energy density field in the very early Universe can produce, from

Einstein’s field equations, perturbations in the primordial gravitational potential. These

gravitational fluctuations will create over-densities of matter and more specifically dark

matter since it constitutes roughly ∼ 85% of matter in the Universe. The self gravity of

these concentrations will lead the ones located on high fluctuation peaks to collapse into

bound virialized objects called dark matter halos. Due to the gravitational interaction

of dark matter and ordinary (baryonic) matter, the halos will become the hosts for the

creation of galaxies. The hierarchical formation of structure dictates that more massive

halos will attract and eventually merge with less massive ones creating mergers, clusters

and superclusters of galaxies.

The most dominant and acceptable theory for the early universe, which naturally

predicts the origin of structures, is the inflationary paradigm. Inflation is an era of expo-

nential acceleration expansion of the very early Universe. The expansion is driven by a

scalar field, called the inflaton, slowly rolling down its own energy potential. The inflaton

field is a quantum field and therefore quantum fluctuations, due to the uncertainty prin-

ciple, can occur during the scalar field’s slow roll phase. The fluctuation generated from

the scalar field due to their quantum nature follow Gaussian statistics. The random fields

created from the quantum perturbations of the inflaton are tiny and their life time short,

but when they manifest during inflation they can grow to scales larger than the horizon

as the expansion of the Universe accelerates, where they grow due to gravitational insta-

bilities. When the energy fluctuation of the scalar field reenter the observable Universe,

they will seed the structures we observe today.
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The natural way inflationary scenarios explain the origin of structures is the most im-

portant aspect that has made inflation the dominant theory describing the early Universe.

However, the plethora of inflationary theories makes it difficult to construct a robust the-

ory for the beginning of the Universe. One of the most powerful observational probes that

will help us decide upon the different inflation models is the observational measurement

of the amplitude of non-Gaussianity in the primordial perturbation field. Although the

fluctuations predicted by the simplest inflation scenarios follow Gaussian statistics, there

are models that allow a deviation from Gaussian initial conditions. Different inflation

models predict different amounts of primordial non-Gaussianity and therefore it is crucial

to measure its value.

The two most important observational probes for non-Gaussianity is the anisotropy

of CMB and the clustering of LSS. In this work we focused on constraining fNL, the

parameter measuring the amplitude of primordial non-Gaussianity, from LSS surveys.

The deviation from Gaussian statistics in the primordial fluctuation field affects directly

the mass function of the dark matter halos, since halos are created in the high sigma peaks

of the energy perturbation field. The non-Gaussian mass function of halos will lead to a

non-Gaussian bias between the dark matter distribution and the distribution of galaxies.

This corrected for non-Gaussianity bias is scale dependent and therefore we can check

the large scale clustering results of high biased objects, where such effects will be more

prevalent, in order to measure and constrain fNL.

We test the clustering results of promising high redshift surveys in order to find if

non-Gaussianity can be measured from LSS surveys. We present the results of [96], where

they measure f loc
NL = 62 ± 27 (1σ) from the clustering of extragalactic radio sources

of the NVSS sample at z ∼ 1. This results in one of the tightest constraints on fNL

coming from LSS surveys. Then we present the correlation function of the SDSS BOSS

CMASS sample, where the sample consists of LRGs at z ∼ 0.55. We calculate non-

Gaussian models for different fNL parameter values in order to fit for the large scales of the
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correlation function. Due to the uncertainties in the large scale clustering of the sample,

we can neither exclude the standard cosmological model nor the models incorporating

non-Gaussianity. In [114] they measure and weakly constrain the amplitude of primordial

non-Gaussianity, −92 < fNL < 389 (2σ). We present also the angular correlation function

of H- alpha emitters from the HiZELS sample. We use a power law as the standard model

to fit the clustering results, where because of the Limber’s formula approximation breaks

down due to the narrow redshift selection of the sample, we can observe a deviation at

large scales. A non-Gaussian model may be able to fit for such deviations, measuring the

best-fit fNL parameter.

Finally we measure the correlation function of the SDSS BOSS DR9 quasar sample,

which consists of ∼ 22, 000 quasars in 2.2 < z < 2.9. High redshift and high biased

objects, like quasars, are very promising candidates for measuring non-Gaussianity since

any primordial non-Gaussian effects will be more evident in their clustering results. The

measured best-fit f loc
NL = 134 ± 9 (1σ) is consistent with the weakly constrained results

coming from other LSS clustering studies, but it is higher than the accepted amount

coming from surveys that provided robust and stringent constraints on f loc
NL. The ΛCDM

model fits the data up to 30 h−1Mpc, but we cannot exclude it due to the large scale

uncertainties, although it is obvious that the non-Gaussian models can fit the large scale

flattening observed in the clustering of the quasar sample.

The big disadvantage of constraining non-Gaussianity from LSS surveys is the sys-

tematic errors that affect the large scale clustering, where the best-fit fNL measurements

mainly come from. Hence, we need to check for any potential systematic errors that can

affect our clustering results and therefore the measured value of fNL. After correcting

for four potential systematics, we observe that the biggest reduction comes from the ef-

fect of foreground stars, in agreement with previous studies on the SDSS BOSS CMASS

sample. The new best-fit measured fNL = 63 ± 16 is in agreement with the results of

previous studies providing the tightest non-Gaussianity constraints. However, the sim-
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plicity of the method used to correct the systematic uncertainties in our sample does not

make the corrected fNL results robust. The more sophisticated weight method, presented

in [148], must be used in order to check if the correlation function is over-corrected or

not. New LSS surveys of high biased objects, like the proposed 2QDES quasar survey

in the southern hemisphere, will provide us with vital information upon the amplitude

of primordial non-Gaussianities. The precise and constrained measurement of the fNL

parameter will give us the observational resources we need in order to decide upon the

plethora of inflationary models and build a robust model that will describe the very early

Universe.
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Kirkpatrick, G. T. Richards, É. Aubourg, M. R. Blanton, W. N. Brandt, W. C.

Carithers, R. A. C. Croft, R. da Silva, K. Dawson, D. J. Eisenstein, J. F. Hennawi,

S. Ho, D. W. Hogg, K.-G. Lee, B. Lundgren, R. G. McMahon, J. Miralda-Escudé,
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S. M. Kent, R. Kessler, S. J. Kleinman, G. R. Knapp, R. G. Kron, J. Krzesinski,

N. Kuropatkin, D. Q. Lamb, H. Lampeitl, S. Lebedeva, Y. S. Lee, R. F. Leger,
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