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Abstract 

 

Prenatal androgens are responsible for sex differences in behaviour and 

morphology in many primates and cause changes in neural structure and function 

that persist throughout the animal’s life. Some of the variation in the expression of 

behaviour between individuals of the same sex can be attributed to individual 

differences in exposure to prenatal sex hormones. The phases in development 

when prenatal androgens have masculinising and defeminising effects on the 

brain, and consequently on behaviour, are also the phases when digit growth is 

influenced by androgen and oestrogen receptor activity. Thus, the ratio of the 

second and fourth digits (2D:4D ratio) is a proposed biomarker for prenatal 

androgen effects (PAE). Through assessment of 2D:4D ratios, this study aimed to 

investigate the relationship between inferred PAE and social behaviours in wild 

female chacma baboons (Papio hamadryas ursinus). 2D:4D ratios were measured 

indirectly for 20 adult and five adolescent females using digital photographs and 

computer-assisted image analysis software (ImageJ). Low 2D:4D ratios (high 

inferred PAE) were associated with high rank, lower rates of submission and with 

higher rates of non-contact and contact aggression among females. The 2D:4D 

ratio correlated positively with submission and negatively with dominance and 

aggression suggesting that PAE are linked to the expression of these behaviours 

in female baboons and likely in other cercopithecine primates. The 2D:4D ratio did 

not correlate with rate of behaviours indicating females’ interest in infants or with 

rate of affiliation among females possibly because these behaviours are regulated 

by ovarian hormones in adult life rather than by PAE. Finally, mean 2D:4D ratios 

were positively correlated in six mother/infant pairs. These preliminary results 

suggest that the 2D:4D ratio may be heritable in baboons and other primates. 
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Introduction 

 

Behavioural differences between the sexes reflect in part the organisational effects 

of prenatal sex hormones on morphology and brain patterning. Behavioural 

predispositions that arise from these processes are then transformed into 

behaviour by the social environment in which the animal finds itself (Wallen 2005). 

Numerous studies have examined sex differences in behaviour (Adkins-Regan 

2009; Hines 2010; Moore et al. 2005; Balthazart & Ball 1995; Johnston & File 

1991; Eaton et al. 1985), but there is also marked variation in the expression of 

behaviour between individuals of the same sex. In some cases, this has been 

attributed to individual differences in exposure to prenatal sex hormones, such as 

androgens (Clipperton-Allen et al. 2011; Coleman et al. 2011; Nelson et al. 2010; 

Forstmeier et al. 2008). Manipulating sex hormones prenatally affects various 

morphological and behavioural characteristics in humans (Hines 2006; Brown et 

al. 2002b) and nonhuman primates such as the rhesus macaque (Macaca mulatta) 

(Thornton et al. 2009; Goy 1981; Goy & Resko 1972). Prenatal androgens are 

known to have masculinising and defeminising effects on morphology, brain and 

behaviour in primates and other mammals (Thornton et al. 2009; Bodo & Rissman 

2008; Bailey & Hurd 2005), while oestrogens play  important roles both pre- and 

postnatally in the regulation of sociality and affiliative behaviour (Ross & Young 

2009). Prenatal sex hormones may therefore play important roles in the 

expression of behaviour in female baboons. 

1.1 Sex hormones: effects on physiology, brain and behaviour  

1.1.1 The developmental role of sex hormones 

Male and female sex determination has two major temporal phases. The first 

occurs in utero during embryo organogenesis, while the second occurs at puberty 

(Gilbert 2003). Primary sex determination involves the development of either male 

or female sexual organs from the bipotential gonad. The ‘default’ pattern during 

sexual differentiation is female in mammals (Wallen 2005) and male sex hormones 
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are required for the development of the male phenotype (Thornton et al. 2009). In 

males, genes on the Y chromosome initiate a series of events that have sexually 

differentiating effects (Arnold & Breedlove 1985), without which, the gonad 

differentiates into an ovary.  

Sex hormones are central to the regulation of gene expression during 

development (Kondo et al. 1997) and are involved in sexual differentiation and the 

development of sexual dimorphisms (Chang 2008). Testosterone and 

dihydrotestosterone (DHT) are the two main masculinising and defeminising 

androgen hormones. Masculinisation describes enhancement of male-typical 

structures or behaviours while defeminisation describes the suppression of 

female-typical structures or behaviours (Thornton et al. 2009). Testosterone is 

involved in the formation of internal male reproductive structures and 5α-DHT is 

responsible for the formation of external genitalia. Oestrogen is responsible for the 

development of female reproductive structures (Gilbert 2003). 

1.1.2 Sex hormone patterns during prenatal development 

The potential effects of prenatal sex hormones on the expression of baboon 

behaviour are best understood through the rhesus macaque, an Old World 

monkey. Rhesus macaques are born with their internal and external reproductive 

organs fully differentiated (Wallen 2005). Gestation lasts between 168-185 days 

(Thornton et al. 2009) and the testes differentiate between gestation days 35-40 in 

males and begin secreting androgens at this time (Wallen & Hassett 2009). During 

gestation, androgen levels in males rise at around day 40, decline at around day 

75 and increase once again at day 140 until birth (Resko et al. 1987). The testes 

continue to secrete androgens throughout gestation and as a result males are 

exposed to higher levels of prenatal androgens than females (Thornton et al. 

2009; Wallen & Hassett 2009). Females are exposed to low but quantifiable 

testosterone levels, possibly of maternal origin, as fetal ovaries are inactive at this 

time (Wallen 2005). 

1.1.3 The androgen receptor gene (AR) 

Variation in the structure of the androgen receptor gene (AR) determines an 

organism’s sensitivity to prenatal testosterone (Manning et al. 2002). The AR is X-
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linked and thus is maternally determined in males. It codes for a receptor protein 

with three functional domains. The terminal domain has a polymorphic CAG 

microsatellite and encodes glutamine repeats of varying length (Chang et al. 

1988). The number of CAG repeats influences the binding of the hormone receptor 

complex to DNA and so CAG length is negatively associated with testosterone 

sensitivity (Manning et al. 2003). Alleles with low numbers of CAG repeats are 

more sensitive to testosterone than alleles with high numbers of CAG triplets and 

low CAG repeat length is indicative of high sensitivity to testosterone (Manning et 

al. 2003). Humans tend to have between 11-31 CAG repeats, chimpanzees (Pan 

troglodytes) 8-14 CAG repeats, gorillas 6-17 CAG repeats and gibbons 6 CAG 

repeats (Djian et al. 1996). Mice and rats have fewer (2) CAG repeats suggesting 

a high sensitivity to testosterone in rodents compared to humans and nonhuman 

primates (Djian et al. 1996). 

1.1.4 Sex hormone effects on physiology and behaviour 

Prenatal androgen effects (PAE) are responsible for sex differences in behaviour 

and morphology in many animal species (Wallen 2005; Saino et al. 2007; Brown et 

al. 2002a). Sex hormone effects cause changes in neural structure and function 

which persist throughout life (Tomaszycki et al. 2005). An example of this is the 

female spotted hyena (Crocuta crocuta). Females of this species are dominant to 

males and have highly masculinised external genitalia (Dloniak et al. 2006). 

Offspring of hyena mothers whose faecal androgen levels were high late in 

pregnancy were more aggressive and mounted peers at higher rates than 

offspring from mothers with low faecal androgen levels (Dloniak et al. 2006). 

Manipulating the prenatal hormone environment can have significant effects on 

anatomy and behaviour. Female spotted hyenas treated with an anti-androgen 

give birth to offspring showing reduced sibling aggression in early postnatal life 

(Drea 2007). Regular administration of testosterone to sheep influences the 

development of lambs, causing them to be behaviourally and physically 

masculinised (Lilley et al. 2010). Exposing developing females to high prenatal 

androgens increases the expression of male-typical structures and behaviours 

(Hines 2006). 
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The timing of prenatal exposure to androgens is important in affecting the 

masculinisation/defeminisation of anatomy and behaviour in rhesus macaques 

(Thornton et al. 2009). The external genitalia are most responsive to the 

masculinising influence of androgens during the second quarter of gestation, 

roughly between days 42-84 post-conception. Early and sufficient increases in 

prenatal androgens can result in the genital masculinisation of female rhesus 

macaques and both testosterone and DHT, are capable of masculinising female 

reproductive organs (Thornton et al. 2009). As little as 15 days of androgen 

treatment are necessary during the second quarter of gestation to produce 

significant masculinisation of female genitalia (Goy 1981) but treatment during the 

third and fourth quarters (after gestation day 100) has no effect on the appearance 

of female genitalia (Goy et al. 1988). Females treated with testosterone propionate 

had a regular but empty scrotum, lacked a vaginal opening and possessed a small 

but fully formed penis. These females still had ovaries suggesting the external 

genitalia are more sensitive to testosterone manipulation than the internal organs 

(Thornton et al. 2009). 

Androgen treatment of rhesus macaque females from gestation day 35 through to 

75 altered both their reproductive organs and behaviour in a masculine fashion 

(Wallen 2005). Only increasing prenatal androgen levels late in gestation (after 

gestation day 100) was found to cause behavioural masculinisation. However, late 

administration of androgens had no detectable affects on female-typical 

reproductive structures (Wallen 2005). This may be due to the fact that cortical 

neuron proliferation is not complete in the macaque brain until gestation day 100 

(Rakic 1988) and so androgens can have masculinising and defeminising affects 

on the brain once genital differentiation is already complete (Herman et al. 2000). 

This suggests that behavioural sex differences are not governed by the 

appearance of the external genitalia but by differences in the brain that have 

developed in utero under the influence of PAE (Herman et al. 2000). 

1.1.5 The role of postnatal sex hormones 

In many primate species, males experience a postnatal surge in circulating 

testosterone levels shortly after birth which is not shared by females (Brown & 

Dixson 1999; Dixson 1986). Mostly, manipulation of this postnatal surge has not 
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been found to have significant effects on behaviour in primates, but it has been 

known to modify physical characteristics. Suppression of the surge in testosterone 

in male rhesus macaque infants has been found to delay their pubertal growth 

spurt (Mann et al. 1998), and retard penile growth and development (Brown & 

Dixson 1999). In females clitoris growth is increased by testosterone treatment 

and this indicates that the tissue of both male and female external genitalia is 

sensitive to testosterone in early postnatal life. However, the sexually dimorphic 

behaviours play and mounting were unaffected by manipulation of postnatal 

testosterone in male and female infants (Brown & Dixson 1999) suggesting that 

the root of the dimorphism of these behaviours originates in the prenatal stages of 

development (Knickmeyer et al. 2005). 

1.1.6 Dominance behaviour 

In many species, behaviours used to gain, maintain and improve individual social 

status are often noted among those high in testosterone (Josephs et al. 2006; 

Josephs et al. 2003; Kraus et al. 1999). Testosterone levels rise in the face of a 

confrontation, triggering behaviours which are effective for enhancing status and 

dominating opponents (Mazur & Booth 1998) and have been correlated with social 

dominance (Booth et al. 1989) and social assertiveness (Lindman et al. 1987). A 

typical dominance contest consists of a physical challenge from an opponent 

responded to through physical fighting, intimidation or fleeing. Testosterone 

increases muscle mass and metabolism and is therefore advantageous for 

maintaining current status or regaining lost status in the face of a challenge 

(Josephs et al. 2006). Circulating testosterone has been found to predict status-

related behaviours only when higher status is available but not in hierarchies in 

which ranks are stable (Josephs et al. 2006). The likely winners in this type of 

dominance encounter are high testosterone individuals (Ostner et al. 2002; 

Morgan et al. 2000).  

Testosterone levels in adult humans have been positively correlated with 

sensitivity to social dominance (Josephs et al. 2003), drives for social status and 

the tendency to create hierarchies (Mazur et al. 1997). Men and women with 

higher baseline testosterone levels are more responsive to references to their 

status than their lower baseline testosterone counterparts (Josephs et al. 2006; 
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Josephs et al. 2003). Testosterone is also related to selective attention to 

threatening faces, which can also be interpreted as individuals who may pose a 

status threat. Individuals with low testosterone were found to look away from 

threatening faces whereas high testosterone individuals were found to spend more 

time looking at angry or threatening faces (van Honk et al. 1999). Testosterone 

levels in adult humans are therefore associated with their inclination toward or 

aversion to high status (Josephs et al. 2006). Behaviours with the function of 

asserting social status in adolescent male rhesus macaques, such as stares, 

threats, displacements and non-sexual male mounting, are positively linked to their 

cerebrospinal fluid (CSF) free testosterone levels. These are low intensity 

dominating behaviours, unlikely to result in injury to either party (Higley 1996). 

1.1.7 Aggressive behaviour 

Dominance and aggression are linked through testosterone in humans and 

nonhuman primates (Higley et al. 1996). Animal studies implicate PAE as having 

some influence over the shaping of an individual’s tendency to future aggressive 

behaviour (Mazur & Booth 1998; Christiansen & Knussmann 1987). Adult levels of 

testosterone are positively correlated with aggressiveness in humans (Mazur et al. 

1997) and serum testosterone, free testosterone (T,3) and DHT levels are 

positively correlated with men’s self-ratings of impulsive aggression (Christiansen 

& Knussmann 1987). In adult animals, testosterone not only affects an individual’s 

aggressive behaviour but also responds to it and rises in the face of a challenge 

(Mazur & Booth 1998). Significant correlations are most often found between 

circulating testosterone and aggression when these are measured during 

competitive situations, social status challenges or in response to provocation or 

intimidation (Benderlioglu & Nelson 2007; McIntyre et al. 2007; Higley 1996). 

Congenital adrenal hyperplasia (CAH) is a condition in which the glucocorticoid 

synthesis pathway in the adrenal glands is disrupted and results in androgen 

production at unusually high levels (Yan et al. 2008). As a consequence, affected 

girls are exposed to PAE comparable to those seen in normal boys (Wallen & 

Hassett 2009) and typically have virilised external genitalia, display masculinized 

behavioural phenotypes, prefer male play partners and male-typical toys (Hines 

2006; Berenbaum & Hines 1992). CAH females also have a masculine pattern of 

amygdala activation. This is an area of the brain associated with aggression and 
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CAH females show masculinised aggression patterns as a result (Nielssen et al. 

2011). Findings in nonhuman primates convergent to those found in human 

studies suggest that sex hormones mould features of aggressive behaviour in 

nonhuman primates as they do in humans (Trainor et al. 2008; Anestis 2006; 

Beehner et al. 2005; Christiansen & Knussmann 1987). 

1.1.8 Affiliative behaviour 

In humans, high prenatal androgen levels have been associated with a lack of 

empathy (Chapman et al. 2006), less emotion recognition, reduced social 

sensitivity and less eye contact (Baron-Cohen et al. 2005). Additionally, higher 

prenatal testosterone is linked with a reduced ability to guess the thoughts and 

feelings of others and several disorders in which social behaviour is affected such 

as autism and Asperger’s syndrome (Knickmeyer & Baron-Cohen 2006; Lim & 

Young 2006). Ovarian hormones and the hypothalamic neuropeptides oxytocin 

(OT) and vasopressin are involved in the regulation of social behaviour. Oestrogen 

is associated with the expression of social affiliative behaviours (Witt et al. 1992) 

and OT facilitates social motivation and approach behaviour (Lim & Young 2006). 

Both neuropeptides are necessary for the discrimination of familiar individuals and 

social bonding (Bielsky & Young 2004) and many of the behavioural effects of OT 

are brought about by oestrogen activity (Razzoli et al. 2003; Young et al. 1998). 

CSF OT levels are higher in the more affiliative bonnet macaque (Macaca radiata) 

than in the less social pigtail macaque (Macaca nemestrina) (Rosenblum et al. 

2002). Ovariectomized female Japanese macaques (Macaca fuscata) exhibit a 

reduction in positive social behaviours and dominance behaviours when compared 

to tube-ligated females whose ovaries were still intact and as such were still able 

to receive steroid hormones. Successful navigation of the social environment by 

macaque females may depend upon ovarian hormones in adulthood and the 

predisposing effects of oestrogens on brain patterning during development 

(Coleman et al. 2011; Ross & Young, 2009).  

1.1.9 Interest in infants 

Interest in infants is a female biased sexually dimorphic behaviour in humans 

(Herman et al. 2003) and nonhuman primates (Lovejoy & Wallen 1988). As such it 

may be linked with higher prenatal oestrogens and/or reduced prenatal androgens 
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(Herman et al. 2003). Ovariectomized female rhesus macaques interacted with 

infants at higher rates after they had received oestrogen treatment (Maestripieri & 

Zehr 1998). Girls with CAH show less interest in infants than their unaffected 

female relatives (Leveroni & Berenbaum 1998) and masculinised juvenile female 

rhesus macaques show reduced interest in infants compared to controls (Wallen 

2005). Sex differences in interest in infants among juveniles are of interest as its 

expression occurs at the quiescent period of the gonads. It is likely that this trait 

reflects prenatally determined behavioural predispositions which do not need 

circulating hormones for their expression before puberty (Wallen 2005). 

1.1.10 Summary 

Prenatal exposure to sex hormones influences sex differences in behaviour and 

behavioural differences within a single sex that do not require circulating 

hormones for their future expression (Knickmeyer et al. 2005). There are different 

temporal phases during development when the brain tissues that mediate various 

sexually dimorphic behaviours are sensitive to modification by prenatal sex 

hormones (Knickmeyer et al. 2005) in animal models. The critical period for sexual 

differentiation of the brain typically occurs when sex differences in serum 

testosterone are highest (Malas et al. 2006; van de Beek et al. 2004). The phases 

in development when the sex hormones have their masculinising or feminising 

effects on the brain, and consequently on behaviour, are also the phases when the 

growth of the digits are influenced by androgen and oestrogen receptor activity 

(Knoll et al. 2007; Zheng & Cohn 2011). 

1.2 The 2D:4D ratio 

As demonstrated in the previous section, early exposure to prenatal sex hormones 

has lasting organisational effects on the physiology, brain and behaviour of the 

adult animal (Groothuis et al. 2005). However, it is often difficult and risky for the 

subject to attempt to measure the prenatal hormonal environment directly, 

particularly in mammals, due to the close association between the mother and her 

developing offspring (Tabor et al. 2009). This has lead to the search for a 

biomarker, a physical characteristic produced by prenatal sex hormones which can 

be safely measured postnatally (Berenbaum et al. 2009). The ratio of the lengths 
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of the second digit (2D) and fourth digit (4D) (2D:4D ratio) of the hands (Fig. 1.1) is 

proposed as one such biomarker (Manning et al.1998) and has received 

considerable attention with literature on the subject totalling over 300 publications 

(Voracek & Loibl 2009).  

 

Figure 1.1: Diagram of 2D and 4D used to determine the 2D:4D ratio in human male and female 

hands. Adapted from Manning (2011). 

1.2.2 Homeobox genes 

The development of the urogenital system, limbs and digits is under the control of 

Homeobox genes, the functions of which are phylogenetically conserved among 

the vertebrates (Kondo et al. 1997; Zákány et al. 1997). Hox gene products are 

involved in the specification of where limbs form and the fate of mesenchymal cells 

as humerus, radius-ulna, or fingers in the forelimbs or their equivalents in the hind 

limbs of vertebrates (Gilbert 2003). The Hox family of genes is arranged into four 

clusters, Hoxa to Hoxd (Manning et al. 1998), which are heavily influenced by 

prenatal exposure to sex steroid hormones (Kondo et al. 1997). Hox genes are 

shared between the distal limb buds and the genital bud and the posterior-most 

Hoxa and Hoxd genes (groups 11-13) are needed for the growth and patterning of 

the digits and genital bud differentiation (Kondo et al. 1997; Zákány et al. 1997; 

Zákány & Duboule 1999). In humans mutations in the HOXA-13 gene can result in 

hand-foot-genital syndrome and in HOXD-13 in polysyndactyly (Gilbert 2003). 
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Sexual dimorphism of the 2D:4D ratio in humans was noted over a hundred years 

ago (Baker 1888) and to date the majority of studies have focussed on this trait 

and its correlates in humans. Only in the last decade have relationships begun to 

be investigated in other animal species (e.g. strawberry poison dart frog [Oophaga 

pumilio]: Chang 2008; green anolis lizard [Anolis carolinensis]: Lombardo & 

Thorpe 2008; Guinea baboon [Papio hamadryas papio]: Roney et al. 2004; zebra 

finch [Taeniopygia guttata castanotis]: Burley & Foster 2004; mouse [Mus 

musculus]: Brown et al. 2002a). The sex difference in 2D:4D ratio is not biased in 

the same direction in all species studied and varies among species and 

sometimes between populations of the same species (Chang 2008; Saino et al. 

2007; Manning et al. 2004; Rubolini et al. 2006). Females usually have higher 

2D:4D ratios than males among synapsid mammals (McIntyre et al. 2009; Brown 

et al. 2002a; Manning et al. 1998) and the opposite is usually the case in the 

diapsid birds and reptiles (Saino et al. 2007; Chang et al. 2006; Rubolini et al. 

2006; Burley & Foster 2004) and in at least one anapsid anuran (Chang 2008). 

2D:4D ratio in the strawberry poison dart frog was found to be higher in males than 

in females and as anurans are a basal group to the diapsids and synapids, the 

diapsid species appear to express the sexually dimorphic trait in its ancestral form 

(Chang 2008). The relevance of applying findings from studies of human digit 

ratios to other diverse taxa stems from the ontogeny of tetrapod limbs and the 

aforementioned conserved nature of the Hox genes. Pentadactyly (five digits) is 

the ancestral condition in tetrapods and analogous associations between sex 

hormone-related traits and digit ratio have been documented across a diverse 

array of taxa. The evidence indicates that the trait is mediated by a common 

molecular mechanism, shared among the tetrapods, which arose more than 300 

mya (Forstmeier et al. 2010). 

1.2.3 Development of the 2D:4D ratio 

In human men the 4D is typically longer than the 2D and in women 2D is either 

equal to or longer than the 4D (Fig. 1.1). There is substantial overlap between the 

sexes (Hönekopp et al. 2007), with female values averaging 0.25 standard 

deviations higher than male values (Manning et al. 2000). Human men have lower 

ratios of <1 and women have higher ratios of ≥ 1 (Manning et al. 2004; Manning et 
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al. 2000; Manning et al. 1998). This dimorphism can be explained by the fact that 

developing digits differ in their sensitivity to androgen and oestrogen hormones, 

the levels of which differ between the two sexes (Zheng & Cohn 2011). Both 

androgen and oestrogen receptor activities are higher in the 4D than in the 2D and 

nuclear androgen receptors remain present in higher numbers in the 4D 

throughout development (Zheng & Cohn 2011). Androgen receptors increase 

chondrocyte proliferation in the 4D and oestrogen receptors reduce chondrocyte 

proliferation in the 4D. In male mice androgen receptor activity increases in the 4D 

between embryonic day 12.5 and 14.5, but decreases in female mice during the 

same period. Males are exposed to higher prenatal androgen levels and this has 

the effect of promoting the growth of the 4D resulting in a lower (more masculine) 

2D:4D ratio. Females, on the other hand, are exposed to higher prenatal 

oestrogen levels and this reduces growth in the 4D leading to a higher (more 

feminine) 2D:4D ratio. Therefore, sexual dimorphism of the 2D:4D ratio arises as a 

result of differential growth of the 4D in response to the different levels of sex 

hormones that the sexes are exposed to prenatally (Zheng & Cohn 2011). It is also 

likely that variation in prenatal sex hormones accounts for variation in digit ratio 

among individuals of the same sex (Manning 2002). Artificial addition of androgen 

in mice embryos mimics inactivation of oestrogen receptors and gives rise to a 

longer 4D whereas addition of oestrogen mimics inactivation of androgen 

receptors and means a shorter 4D (Zheng & Cohn 2011; Manning 2011). In mice, 

the 2D:4D ratio is generated by the balance of prenatal androgen to prenatal 

oestrogen signalling during a narrow window of fetal digit development and a 

similar process is likely to be occurring in other mammal species (Zheng & Cohn 

2011). Consequently, lower (more masculine) 2D:4D ratios are indicative of higher 

PAE. The number of CAG repeats is positively associated with the 2D:4D ratio of 

the right hand in humans and low CAG repeat length is linked to low 2D:4D ratios, 

suggesting higher activation of the AR in individuals with more masculine 2D:4D 

ratios (Manning et al. 2003). Recently, secreted modular calcium-binding protein 1 

(SMOC1) has been implicated as having roles in limb development, in the sexually 

dimorphic development of the gonads and in influencing digit ratio in humans 

(Lawrance-Owen et al. 2013). This gene product is secreted by the SMOC1 gene 

during osteoblast differentiation and acts as an antagonist of bone morphogenetic 

proteins (BMPs). Expression of the SMOC1 gene is increased by androgen (Love 
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et al. 2009) and decreased by oestrogen (Coleman et al. 2006) in prostate tissue 

and variation in digit ratio has been linked to variation upstream of SMOC1. 

Therefore, the SMOC1 gene could be acting as a mediator between prenatal sex 

hormone exposure and digit ratio (Lawrance-Owen et al. 2013). 

Sex hormone effects on digit ratio happen during the early stages of fetal 

development and the trait remains relatively stable thereafter (Lombardo & Thorpe 

2008; McIntyre et al. 2005; Brown et al. 2002b). Dimorphism in 2D:4D ratio is 

present as early as nine weeks of gestation in humans (Malas et al. 2006), is not 

altered palpably by the increase in steroid hormones experienced at puberty and is 

relatively stable over growth (Manning et al. 2004; 2003). Although a slight 

increase in 2D:4D ratio with age was reported in very young children (Trivers et al. 

2006), this is not supported in studies with larger sample sizes (Manning et al. 

2004; 1998) and appears to be stable after two years of age (Knickmeyer et al. 

2011; Manning 2002). There are notable ethnic and population differences in 

2D:4D ratio. Among European Americans 2D:4D ratios were higher than those 

seen in African Americans (Manning et al. 2002). Higher age stability was 

observed in right hand 2D:4D ratio (Trivers et al. 2006) and this has been 

attributed to the right hand being more sensitive to PAE and more robust to 

postnatal environmental effects (Flegr et al. 2008; Gobrogge et al. 2008). 

1.2.4 Lateral asymmetry of 2D:4D ratio 

The 2D:4D ratio shows lateral asymmetry (Rizwan et al. 2007; Manning et al. 

1998) with right hand 2D:4D showing stronger associations with sexually 

dimorphic traits (humans – Flegr et al. 2008 but see Putz et al. 2004; zebra finches 

- Burley & Foster 2004; baboons – McFadden & Bracht 2003; mice - Brown et al. 

2002a). Sexual dimorphism is greater for the right hand than the left in humans 

(McFadden & Shubel 2002) and in general sexually dimorphic traits tend to be 

displayed in the more masculine form on the right side of the body e.g. testes size 

larger on the right (Tanner 1990). This asymmetry may be a result of increased 

sensitivity to sex hormones on the right side of the body (Dreiss et al. 2008). 

Infection with the protozoan parasite, Toxoplasma gondii, is believed to increase 

testosterone and dopamine levels in the host (Flegr 2007) and induces 

behavioural and neurophysiological changes in humans and other animals (Flegr 
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et al. 2008). Human males infected with the parasite are taller, perceived as more 

dominant and masculine (Hodková et al. 2007) and have lower left hand 2D:4D 

ratios (Flegr et al. 2005). Parasitized human females give birth to more male than 

female offspring (Kaňková et al. 2007a), as is also the case in lab infected female 

mice (Kaňková et al. 2007b). High testosterone levels have immunosuppressive 

effects so we cannot be sure that the association between low left 2D:4D ratios 

and infection with the parasite is due to the higher susceptibility of these 

individuals to parasitic infection or whether it is a result of host modification by the 

effects the parasite has on the host’s testosterone levels (Flegr et al. 2008). In 

addition to this evidence for postnatal sex hormones having greater influence on 

the left hand 2D:4D ratio, inconsistencies in 2D:4D ratios of the front left legs were 

recorded in two different laboratory populations of anole lizards (Chang et al. 

2006). This suggests that the mean of the right and left 2D:4D ratios or right hand 

2D:4D ratio should be used when investigating traits associated with the prenatal 

hormonal environment in preference to the left hand 2D:4D ratio. 

1.2.5 The source of the hormones influencing digit ratio 

Knowledge concerning the source of the prenatal steroid hormones that affect the 

expression of digit ratio is incomplete. Although the main source of prenatal sex 

steroids in mammals are the gonads, the adrenal glands have also been known to 

influence digit ratio as is seen in females with CAH (Hönekopp & Watson 2010). 

CAH girls have been observed to have lower, more male-typical 2D:4D ratios 

(Brown et al. 2002b) suggesting that steroid hormones originating in the fetal 

adrenal glands may also affect digit development in certain situations and 

supporting the 2D:4D ratio as an androgen sensitive trait. 

 

Exposure to maternal testosterone during gestation was not found to impact 

2D:4D ratio of field vole (Microtus agrestis) offspring (Lilley et al. 2010) and 

amniotic testosterone levels are not correlated with maternal testosterone levels in 

humans (van de Beek et al. 2004). This suggests that the sex hormones 

influencing the development of the digit ratio originate from the foetus itself in 

mammals (Lilley et al. 2010). A possible explanation for this is the nature of the 

mammalian placenta, in which the enzyme aromatase acts to buffer the foetus 
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from high levels of testosterone (Cohen-Bendahan et al. 2005). In the case of 

mammals, maternal sex hormones may have a limited ability to influence fetal 

hormone levels (Lilley et al. 2010). This is in agreement with the generally low and 

non-significant correlations reported between amniotic fluid and maternal plasma 

androgen levels (van de Beek et al. 2004).  

Another steroid hormone, cortisol, commonly known as the ‘stress hormone’, has 

been known to affect the physiology and behaviour of individuals (Lilley et al. 

2010). Maternal stress can influence the development of gestating embryos (Hines 

et al. 2002). High corticosterone levels during pregnancy can be detrimental to the 

masculinisation of male foetuses in rats and cause increased masculinisation of 

female behaviour in guinea pigs and prairie voles (Lilley et al. 2010; Thornton et al. 

2009). There is evidence for some influence of corticosterone on the development 

of the 2D:4D ratio. Maternal pre-pregnancy stress (corticosterone) levels were 

associated with lower 2D:4D ratio in the right paw of male and female field vole 

offspring but not in the left paw (Lilley et al. 2010). Corsticosterone may also affect 

the degree of lateral asymmetry between the 2D:4D ratios of the right and left 

hands, causing a reduction in symmetry (Lilley et al. 2010). 

The cleidoic eggs of reptiles and birds provide an enclosed environment in which it 

is possible to test the effects of prenatal sex hormones without the confounding 

factors presented by the internal gestation in mammals (e.g. maternal hormones) 

(Saino et al. 2007). Evidence exists for a maternal influence on the sex hormone 

environment encountered by bird species through variation of sex hormone 

allocation to egg yolk (Burley & Foster 2004). This adaptation may enhance 

maternal fitness by regulating patterns of competition within broods as yolk 

androgens are known to have some bearing on hatchling performance (Schwabl & 

Lipar 2002). In several bird species yolk androgen levels increase with position in 

the laying order (American Coot [Fulica americana]: Reed & Vleck 2001; Canary 

[Serinus canaria]: Schwabl 1993) and this is proposed to increase the competitive 

ability of younger and smaller offspring, improving the chances that later-hatching 

individuals will survive (Burley & Foster 2004). In other species, yolk androgen 

levels decrease over the laying period and this is a common pattern in species that 

experience unpredictable food supplies (Gil et al. 1999) or in which siblicide is a 

common occurrence (Schwabl et al. 1997). In zebra finches the 4D is longer in 
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birds hatched from earlier laid eggs which are higher in yolk androgen levels and 

2D:4D ratio increases with position in the laying order. This is in keeping with 

greater sensitivity of the 4D to androgens as is seen in humans and mice (Zheng 

& Cohn 2011). Injecting ring-necked pheasant eggs with testosterone produced 

females with more masculinised digit ratios than control birds (Romano et al. 

2005). Increasing oestrogen levels in yolk by injecting eggs with estradiol 

feminized digit ratios in the right foot of male ring-necked pheasants so that they 

were not significantly different from digit ratios of female controls (Saino et al. 

2007; Romano et al. 2005). Testosterone can be converted into estradiol by 

aromatase locally in the brain and in the bone growth plates and oestrogens are 

known to affect bone growth (Forstmeier et al. 2010). Genetic variation in 

oestrogen receptors was associated with digit ratio in zebra finches but variation in 

androgen receptors was not (Forstmeier et al. 2010). Therefore, androgen 

hormones may be more important for the expression of the 2D:4D ratio and 

sexually dimorphic traits in mammals and oestrogen hormones may be more 

important in birds (Forstmeier et al. 2010). 

1.2.6 The 2D:4D ratio and reproductive success 

The 2D:4D ratio is a sexually dimorphic trait and correlates with several other 

sexual dimorphisms which act as signals of an individual’s prenatal hormonal 

environment. These traits are often determined by sex hormones and are 

important for reproductive success in humans and other species (Dreiss et al. 

2008; Saino et al. 2006b). Men are primed to choose women with high fertility and 

the 2D:4D ratio in women is positively associated with oestrogen and luteinizing 

hormone levels (Manning et al. 1998). Women with low (masculine) 2D:4D ratios 

tend to have lower reproductive success and have a higher susceptibility to 

parasitic infection (Saino et al. 2006b; Flegr et al. 2008) which comes from 

developing in a prenatal environment high in testosterone. Masculine 2D:4D ratios 

have also been associated with conditions causing infertility in women such as 

polycystic ovary syndrome (Cattrall et al. 2005). Evolutionarily, women may have 

been selected to prefer men displaying high testosterone-dependent traits (Saino 

et al. 2006b). Male facial characteristics are structured prenatally by testosterone 

and shaped during puberty (Neave et al. 2003; Kasperk et al. 1997). Higher levels 
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of prenatal testosterone likely produce more typically masculine faces in humans 

(e.g. lengthened lower facial bone, forward growth of eyebrow ridge bones and 

lateral growth of the cheekbones), and lower levels produce male faces with more 

typically feminine characteristics (Burriss et al. 2007; Neave et al. 2003). The 

2D:4D ratio has been observed to correlate negatively with how dominant and 

masculine a man’s face is perceived. More masculine faces were rated as more 

dominant but not more attractive by women (Neave et al. 2003; Swaddle & 

Reierson 2002) and women with more masculine faces were rated as more 

dominant by other women (Watkins et al. 2012). There is also support for 2D:4D 

ratio correlating with sexual dimorphisms that have a role in reproductive success 

in bird species. Right foot 2D:4D ratio in barn swallows (Hirundo rustica) is 

negatively linked to a secondary sexual characteristic in this species, tail length, in 

both sexes (Dreiss et al. 2008). This implies that early sex hormone levels 

simultaneously affect the future expression of two sexually dimorphic traits in this 

bird; tail length and digit ratio (Dreiss et al. 2008). 

1.2.7 The 2D:4D ratio and behaviour 

The 2D:4D ratio correlates with several behavioural measures across a variety of 

species and in humans correlates with numerous behavioural and physiological 

sexual dimorphisms (Zheng & Cohn 2011; Fisher et al. 2010). Human participants 

scoring high on a test for behaviours associated with testosterone had longer 4Ds 

and lower 2D:4D ratios and participants who scored high on behaviours 

associated with oestrogen/OT had longer 2D and higher 2D:4D ratios (Fisher et al. 

2010). The 2D:4D ratio has also been found to be lower in humans with autism 

and Asperger’s syndrome, disorders associated with elevated PAE (Manning et al. 

2001). Further evidence that the 2D:4D ratio correlates with PAE on behaviour 

comes from studies on humans with the X-linked disorder complete androgen 

insensitivity syndrome (CAIS). These are XY individuals who lack functioning 

androgen receptors and so are unable to respond to the hormones in utero. As a 

result, although genetically male, they develop as sterile females (Hines 2006). 

These people have a female-typical appearance, psychosexual development, 

gender identity and behaviour and as such are treated as female (Hines et al. 

2003). Interestingly, they also display feminised 2D:4D ratios (Berenbaum et al. 
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2009). Higher 2D:4D ratios which were closer to human female population norms 

were found in human men with Klinefelter’s Syndrome (KS; 47 XXY). This is a 

condition in which the endocrine system is affected and results in low testosterone 

levels being present in foetuses, new-borns and adults affected with the syndrome 

(Manning et al. 2013) lending further support to the 2D:4D ratio acting as a 

biomarker for prenatal androgen exposure. 

In humans, low 2D:4D ratios are correlated with higher dominance-related 

behaviours in both sexes and higher drives for social status (Millet & Dewitte 2007; 

2009). Additionally, individuals with low 2D:4D ratios are perceived as more 

dominant (Neave et al. 2003) and show higher reactive aggression (Benderlioglu & 

Nelson 2004). The 2D:4D ratio is also related to sperm count (Manning et al. 

1998), fecundity (Manning et al. 2002), sporting ability (Manning & Taylor 2001), 

strength (Fink et al. 2006), intelligence (Luxen & Buunk 2005), agreeableness and 

cooperativeness (Millet & Dewitte 2006) in humans. 

1.2.8 Heritability of the 2D:4D ratio  

Heritability studies in rhesus macaques, humans and zebra finches point towards 

considerable genetic contributions to the expression of the 2D:4D ratio (Nelson & 

Voracek 2010; Forstmeier et al. 2008; Paul et al. 2006a; Forstmeier 2005) and 

testosterone production is highly heritable in humans (Hines 2006). Heritability 

was found to be higher in the right hand than the left in rhesus macaque 

mother/offspring pairs (Nelson & Voracek 2010), a result paralleled in human twin 

studies (Paul et al. 2006a). Heritability of the 2D:4D ratio in a human twin study 

was moderate to high and unsurprisingly similarity was higher between 

monozygotic than dizygotic twins (Gobrogge et al. 2008). Females with male co-

twins are masculinised in their expression of sensation seeking (Resnick et al. 

1993) and have lower 2D:4D ratios than females with same-sex twins (van Anders 

et al. 2006). As fetal skin is permeable to fluid and some dissolved solutes up to 

the 18th week of gestation and amniotic fluid passes through the entire 

foetoplacental unit this is likely to be due to transfer of their brother’s androgens 

having masculinising effects on the female foetus (Knickmeyer et al. 2005). A 

similar effect is also seen in female rats, with those gestated between two males 
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being more masculinised and aggressive and showing masculinised 2D:4D ratios 

(Hurd et al. 2008). 

1.2.9 The 2D:4D ratio in nonhuman primates  

In general, nonhuman primates have more masculinised digit ratios than humans 

(Nelson & Shultz 2010; Manning et al. 2003). Polygynous primates tend to have 

lower 2D:4D ratios (high PAE) and pair-bonded species tend to have higher 2D:4D 

ratios (low PAE) (Nelson & Shultz 2010). The 2D:4D is sexually dimorphic in 

chimpanzees and bonobos (Pan paniscus) with males exhibiting lower 2D:4D 

ratios than females in both species. Chimpanzees displayed 2D:4D ratios which 

were lower and more masculine than found in human populations (McIntyre et al. 

2009). However, bonobos were found to have considerably higher 2D:4D ratios 

than chimpanzees, closer to human population means (McIntyre et al. 2009; 

Manning et al. 2000). This was attributed to their relatively female-dominated 

social system compared with the male-dominated system of their chimpanzee 

cousins. Behavioural differences between the two closely related species include 

increased tolerance and a greater potential for cooperating with conspecifics in 

bonobos (Hare et al. 2007) and are speculated to reflect differences in exposure to 

PAE causing reduced masculinisation in bonobos compared to chimpanzees. This 

is supported by adult male chimpanzees having higher testosterone levels than 

adult male bonobos and reduced sexual dimorphism between male and female 

bonobos. Male chimpanzees have larger canine teeth and body size than females, 

a difference which arises during puberty (McIntyre et al. 2009). Chimpanzees also 

show a marked increase in the sex difference in 2D:4D ratio with age with male 

2D:4D ratio decreasing during puberty (McIntyre et al. 2009). This is akin to 

evidence in human populations and other primates that differences 2D:4D ratio are 

linked to the level of polygyny and intra-sexual competition among males (Nelson 

& Shultz 2010; McIntyre et al. 2009; Manning & Fink 2008).  

In a study of Guinea baboons, adult males had higher 2D:4D ratios than adult 

female baboons, the opposite of the human pattern (Roney et al. 2004). Western 

lowland gorillas (Gorilla gorilla gorilla) display moderate-high sex differences in 

ratios of metacarpals and metatarsals that are not attributable to differences in 

body size between males and females (McFadden & Bracht 2003). As in Guinea 
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baboons, male gorillas had higher length ratios than females between the second 

and fourth metacarpals but female gorillas had higher length ratios between the 

second and fourth metatarsals (McFadden & Bracht 2003). Several studies have 

reported correlations between the 2D:4D ratio and behaviours linked to dominance 

and aggression (Hurd et al. 2011; McIntyre et al. 2009; Bailey & Hurd 2005; Neave 

et al. 2003). The 2D:4D ratio correlated negatively with dominance rank in free-

ranging adult female rhesus macaques (Nelson et al. 2010) and right hand 2D:4D 

ratio also negatively correlated with rank in captive adult female Hamadryas 

baboons (Papio hamadryas hamadryas) and in orphaned juvenile female chacma 

baboons (Papio hamadryas ursinus) (Howlett et al. 2012). This negative 

correlation between 2D:4D ratio and female dominance rank appears to be 

universal across Old World monkeys and perhaps may apply more widely to 

primates in general (Howlett et al. 2012; Nelson et al. 2010). The evidence 

suggests that, in addition to its use in humans, the 2D:4D ratio is capable of acting 

as a biomarker for PAE on behaviour of nonhuman primates, both between and 

within sexes. 

1.2.10 The 2D:4D ratio as a biomarker 

Postnatal sex hormone levels fluctuate extensively over seasons, the time of day 

and in response to various stimuli (Bernhardt et al. 1998) making attempting to use 

them as a reflection of the prenatal hormonal environment challenging if not 

impractical. Adult serum sex hormones do not appear to correlate with 2D:4D ratio 

(Muller et al. 2011; Neave et al. 2003) and the onset of sexual maturity does not 

alter the sex difference in 2D:4D ratio in humans (Manning et al. 1998; McIntyre et 

al. 2005; Hönekopp et al. 2007). Postnatal hormonal manipulation, between the 1st 

and 3rd days of life, had no effect on the 2D:4D ratio of mice (Zheng & Cohn 2011). 

Malas et al. (2006) found no significant change in 2D:4D ratio over gestational age 

and no correlation between 2D:4D ratio and gestational age in humans reinforcing 

the suggestion that, in the absence of direct measurements, the 2D:4D ratio can 

be used as a valid indicator of an individual’s prenatal sex hormone environment. 
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1.3 Competition and female relationships 

Dominance, aggression and competition are all important behaviours governing 

social life in primates (Sterck et al. 1997). The basic assumption of socioecological 

theory is that females compete for access to nutritional resources and males 

compete for access to females (Kappeler & van Schaik 2002). Predation risk and 

feeding competition are among the ecological factors that contributed to the 

evolution of female social relationships. Predation risk led diurnal female primates 

to form groups for safety (van Schaik 1989; 1983). Female-female relationships 

are therefore influenced by the style and strength of the feeding competition that 

they face within their social group, which is sculpted by the distribution of 

resources (Kappeler & van Schaik 2002; Koenig 2002; Sterck et al. 1997; 

Chapman et al. 1995). When resources are evenly distributed or plentiful then 

indirect (scramble) competition is the norm (Kappeler & van Schaik 2002). 

However, when resources are clumped and monopolisable then direct (contest) 

competition is expected to occur. This brings about agonistic interactions between 

females and results in the formation of hierarchical relationships (Sterck et al. 

1997).  

1.3.1 Female baboons 

Social relationships among gregarious females can be categorised as dispersal-

egalitarian, resident-egalitarian, resident-nepotistic and resident-nepotistic-tolerant 

(Sterck et al. 1997). One of the most common forms of social system is resident-

nepotistic, and is the system seen in female baboons. Female baboons live in 

strongly female bonded societies within matrilines consisting of a matriarch and 

her close female kin (Silk et al. 2010). A stable linear dominance hierarchy exists 

between the various matrilines in a troop and also between female kin within each 

matriline (Silk et al. 2006; Samuels et al. 1987; Hausfater et al. 1982). A female’s 

rank is inherited from her mother and dominance relationships among females 

follow younger daughter ascendency, so that younger daughters displace their 

older sisters to gain the rank position below their mother (Silk et al. 2010; Engh et 

al. 2009; Altmann 2001). Close kin often occupy adjacent ranks and kinship is 

important in the formation and maintenance of social bonds (Dunbar 1988). Rank 

reversals are uncommon and the hierarchy in female baboons is remarkably 
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stable over time (Cheney & Seyfarth 2007; Engh et al. 2006). In most species, 

male baboons emigrate out of their natal troops once they reach maturity (Cheney 

& Seyfarth 2007) but are dominant to all females years before they emigrate (Engh 

et al. 2009). In contrast to the relative stability of the female hierarchy, the 

dominance hierarchy in males is unstable and rank changes occur often (Kitchen 

et al. 2003). A male may occupy several rank positions over his lifetime and 

tenures as dominant male tend to be short (Cheney & Seyfarth 2007). 

Female baboons are permanently gregarious, intensely social, female-bonded 

primates and form stable, linear dominance hierarchies in which dominance 

relations are despotic. They are therefore ideal subjects for investigating the 

correlation between the 2D:4D ratio (inferred PAE) and female social behaviour, in 

particular dominance, and to explore how these may apply to primates in general. 

The social processes behind rank acquisition in female baboons, such as maternal 

support and alliances with kin have been well studied and social factors 

contributing to the maintenance of hierarchies are well understood (Silk et al. 

2006; 2010). The part that physiological development plays in affecting female 

social behaviour, however, has not received the same detailed attention. Thus, 

this thesis aims to explore correlations between PAE (using the 2D:4D ratio as a 

marker) and social behaviour in adult female chacma baboons focussing on 

dominance, aggression, interest in infants and affiliation. 

 

1.4 Summary of aims 

The primary aims of this study are: 

1) To validate an indirect photographic and computer software method for 

measuring 2D:4D ratios in wild baboons. 

2) To determine whether a potential prenatal androgen marker (2D:4D ratio) 

correlates with a female’s position in the dominance hierarchy in wild adult 

female baboons. 

3) To examine the relationship between prenatal sex hormones (inferred from 

2D:4D ratios) and social interactions among females. 

4) To assess indirect evidence for heritability of the 2D:4D ratio by testing for a 

correlation between mother/infant pairs. 
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5) To assess indirect evidence for effects of maternal rank on offspring 2D:4D 

ratio. 

1.5 Hypotheses & Predictions 

Hypothesis 1: PAE are related to dominance and submission. 

Individuals with lower 2D:4D ratios have been exposed to higher PAE (Zheng & 

Cohn 2011) and their behaviour is likely to be more masculinised and dominant 

than those exposed to lower PAE.  

1a: I predict that all 2D:4D ratio measures will correlate negatively with dominance 

rank with females with lower 2D:4D ratios having higher positions in the 

dominance hierarchy than females with higher 2D:4D ratios.  

1b: I predict that all measures of 2D:4D ratio will correlate positively with rate of 

submission. Females with lower 2D:4D ratios will show lower rates of submission.   

Hypothesis 2: PAE are related to aggression.  

Animal studies implicate PAE as having some influence over the shaping of an 

individual’s tendency toward aggressive behaviour in adulthood (Mazur & Booth 

1998; Christiansen & Knussmann 1987) and PAE also shape an individual’s 

2D:4D ratio. 

2a: I predict that all measures of 2D:4D ratio will correlate negatively with rates of 

aggression. Females with lower 2D:4D ratios will display higher rates of both non-

contact and contact aggression.  

2b: I predict that only highly masculinised (low 2D:4D) individuals will show 

physical aggression at high rates and predict that the correlation between 2D:4D 

ratio measures and rate of contact aggression will be higher than between 2D:4D 

ratio measures and rate of non-contact aggression. 

2c: I predict that the rate at which a female receives aggression will correlate 

positively with all 2D:4D ratio measures. Females with lower 2D:4D ratios will 

receive aggression from other group members at lower rates than females with 

higher 2D:4D ratios. 
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Hypothesis 3: PAE are related to interest in infants. 

Interest in infants is more prevalent in females and hence hypothesised to be 

oestrogen-dependent and is reduced in androgenised female humans and rhesus 

macaques (Leveroni & Berenbuam 1998; Herman et al. 2003). 

3a: I predict that all 2D:4D ratio measures will correlate positively with interest in 

infants. Females with lower (more masculine) 2D:4D ratios will show lower rates of 

interest in infants than females with higher (more feminine) 2D:4D ratios. 

Hypothesis 4:  PAE are related to affiliation. 

Oestrogens are associated with the expression of affiliative social behaviours and, 

in humans, high PAE are associated with disorders in which sociality is impaired 

(Manning et al. 2001). OT and vasopressin are regulated by oestrogen and are 

necessary for discrimination of familiar individuals and social bonding (Bielsky & 

Young 2004). Females exposed to higher prenatal oestrogens may be more 

motivated to form social bonds and seek social contact than females exposed to 

higher PAE (Lim & Young 2006).  

4a: I predict that all 2D:4D ratio measures will correlate positively with rate of 

affiliation. Females with lower 2D:4D ratios will show lower rates of affiliation than 

females with higher 2D:4D ratios. 

4b: I predict that all 2D:4D ratio measures will correlate positively with number of 

grooming partners and number of social partners. Females with lower 2D:4D ratios 

will have fewer grooming and social partners than those with higher 2D:4D ratios.  

4c: I predict that all 2D:4D ratio measures will correlate positively with rate of 

grooming given. Females with lower 2D:4D ratios will groom others at lower rates 

than females with higher 2D:4D ratios.  

4d: I predict all 2D:4D ratio measures will correlate negatively with rate of 

grooming received. Females with lower 2D:4D ratios will receive grooming at 

higher rates than those with higher 2D:4D ratios. 
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Hypothesis 5: Dr-l is related to social behaviour. 

Like the 2D:4D ratio, right hand 2D:4D minus left hand 2D:4D (Dr-l) is unrelated to 

adult sex hormone levels (Hönekopp et al. 2007) and may be a negative correlate 

of PAE in humans (Manning et al. 2003; Manning 2002). Therefore, in addition to 

examining the relationship between behaviours and 2D:4D ratio measures, I will 

also look into the relationship between Dr-l and behaviours. 

5a: I predict Dr-l and dominance rank will correlate negatively. Females with lower 

Dr-l will be higher-ranked than those with higher Dr-l.  

5b: Dr-l will also show a negative relationship with rate of non-contact aggression 

and rate of contact aggression. Females with lower Dr-l will show higher rates of 

both types of aggressive behaviour.  

5c: There will be a positive association between Dr-l and rate of submission. 

Females with lower Dr-l will show lower rates of submission than those with higher 

Dr-l. 

Hypothesis 6: The 2D:4D ratio is heritable. 

There is evidence that genetic contributions have substantial involvement in the 

expression of the 2D:4D ratio (Nelson & Voracek 2010; Paul et al. 2006a; 

Forstmeier et al. 2008) and heritability of the 2D:4D ratio is higher in the right hand 

than the left in rhesus macaque mother/offspring pairs (Nelson & Voracek 2010). 

6a: I predict that there will be a high positive correlation between mother’s mean, 

right and left 2D:4D ratios and the corresponding 2D:4D ratio measures in her 

infant. 

6b: I predict that correlation between maternal right 2D:4D ratio and infant right 

2D:4D ratio will be stronger than between all other combinations. 

6c: I predict maternal rank will correlate negatively with offspring 2D:4D ratio. 

Higher-ranked females will produce offspring with lower 2D:4D ratios. 
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- 2 - 

Pilot experiments 

 

2.1 Overview 

Various methods have been used to measure 2D:4D ratio, some more widely than 

others. Popular methods include direct measurements with callipers (Scutt & 

Manning 1996), photocopies (Manning et al. 2005) and measurement of scanned 

images of hands (Bailey & Hurd 2005). Scaled tubes (Nicholls et al. 2008), 

radiographs (Paul et al. 2006b) and digital photographs (Pokrywka et al. 2005) 

have been used less often. To date very few studies have used high definition 

(HD) video as a method to measure length of objects. Mostly this method has 

been employed by those interested in studies that require non-destructive 

observation methods (Pelletier et al. 2011) such as in marine and plant studies, for 

example to measure fish length (Harvey et al. 2004) or to predict crop yield 

(Novaro et al. 2001). More recently, researchers have begun to explore the use of 

computer-assisted analysis in 2D:4D research. Allaway et al. (2009) found 

computer-assisted measurement to be more accurate than direct measurements 

with callipers and measurements from photocopies and scans, with greater intra- 

and inter-observer reliability, and recommend the use of computer-assisted 

measurements in the place of other known methods whenever possible.  

The majority of the 2D:4D ratio literature has focussed on human behaviour and 

the studies cited above used humans or the model organism for mammalian 

development, the mouse. A few studies have investigated digit ratios in nonhuman 

primates, most of which used the direct calliper measurement method (Nelson et 

al. 2010; Roney et al. 2004) or measurements from scanned images (McIntyre et 

al. 2009). The problem with measuring digit ratios in non-anaesthetised nonhuman 

primates is their unpredictable behaviour. Further issues arise from the study of 

wild populations, which cannot be trained to hold their limbs in certain positions or 

anaesthetised to obtain direct measurements of digits.  
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The vast majority of the 2D:4D literature on humans has focused on ratios of finger 

lengths and only one study that I am aware of investigated the 2D:4D ratio in 

human toes (McFadden & Shubel 2002). Measurement difficulties arise with using 

toes as opposed to fingers due to the natural curvature of toes (McFadden & 

Shubel 2002) but the hind feet/paws are regularly used in literature involving other 

animal species such as mice (Hurd et al. 2008), amphibians (Chang 2008) and 

birds (Burley & Foster 2004; Saino et al. 2007). My aim here was to obtain finger 

length ratios as the chacma baboon walks on its palms with its fingers held straight 

and so I was more likely to obtain photographs with digits held in good positions 

from hands than from feet. Thus, I needed to determine whether it was possible to 

get accurate 2D:4D ratios when measuring from the dorsal side of the hand, as 

such photographs of baboon hands were easiest to attain. I needed to establish 

whether the distance a photograph was taken from and camera zoom setting had 

an effect on 2D:4D ratio obtained from digital photographs. I also needed to 

determine which angles of the hand produced accurate 2D:4D ratio measurements 

and which did not in order to establish which photographs to use in analyses. 

Therefore I tested the abilities of the digital photographic method and HD video 

method to provide accurate 2D:4D ratio measurements in humans with the 

intention of employing this method on wild baboons. I then tested the accuracy of 

the digital photographic method on chacma baboons. I aimed to assess the validity 

of using digital photographic and HD video methods to measure 2D:4D ratios in a 

troop of wild baboons and to understand the limitations of each in order to obtain 

realistic digit measurements using computer-assisted analysis. To do so, I 

conducted a stepwise series of pilot experiments, first using human subjects and 

then progressing onto captive baboon subjects. Testing methods intended for 

research on nonhuman primates on human subjects has limitations due to 

morphological differences between humans and nonhuman primates. However, 

human behaviour is more predictable, and it is easier to control the environment 

for data collection and I wanted to ensure that the methods were successful under 

controlled conditions with cooperative human subjects before moving on to 

baboon subjects. Next, I tested the accuracy of the measurement methods on 

captive baboon subjects in an environment more controlled than in the wild to 

validate the methods for use on wild baboons. 
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2.2 Using digital photographs to measure 2D:4D ratios in human hands 

2.2.1 Study subjects 

The study cohort comprised 12 human volunteers, recruited from my family, and 

included six males and six females between the ages of eight years and 79 years. 

I explained the purpose of the study to participants and allowed them to ask 

questions prior to data collection. 

2.2.2 Data collection 

I measured the 2D and 4D on each hand of each subject from the crease where 

the finger joins the palm (ventral side) to the tip of the extended digit (nearest mm) 

using Draper callipers (Manning, et al. 1998). I measured the 2D of the left hand 

first, followed by the 4D and repeated the same order for the right hand. I took 

measurements three times for each digit and used the mean in analyses. I 

calculated the ‘true’ 2D:4D ratio of each participant using these direct calliper 

measurements by dividing the length of the 2D by the length of the 4D for 

comparison with 2D:4D ratios obtained from images. 

Next, I assessed whether the distance the photograph was taken from had an 

effect on the ratios obtained. A photograph was taken from close to the 

participant’s hand and then from 3 m away without adjusting the camera settings. 

Also, the effect of camera zoom was investigated by photographing hands with the 

camera set at 0 %, 50 % and 100 % zoom. In both cases I used five images of a 

randomly chosen hand (in ventral view with hand flat and fingers straight as seen 

in Fig. 2.1: position I) from five different subjects. 

I invited volunteers to place their hand on a flat surface in 10 different positions 

without applying pressure (Fig. 2.1). I took one photograph of both the left and 

right hand in each position and stored these in a computer for later analysis. I 

analysed these digital images using computer-assisted image analysis software 

(Image Processing and Analysis in Java, ImageJ) using mouse-controlled callipers 

to measure digit lengths from the images in pixels. I measured digits from both 

dorsal and ventral surfaces. When measuring from the ventral surface, I took 

measurements from the basal crease of each digit to its tip. When measuring from 
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the dorsal surface the crease is not visible so I took measurements from the 

webbing between the digits (which is in line with the basal crease on the ventral 

surface) or an equivalent landmark to the tip of the digit. I took measurements five 

times for each digit and used the mean of these for analyses. As above, I 

calculated 2D:4D ratios obtained for each image by dividing the length of the 2D 

by the length of the 4D. I chose the hand positions based on poses often seen in 

baboons (personal observation) when resting, walking and foraging that may be 

useful for measuring 2D:4D ratios in wild baboons (Fig. 2.2). 

 

 

 

 

 

Figure 2.1: Ten different hand positions investigated to determine which give accurate 2D:4D ratios 

in humans. I – ventral view hand flat fingers straight; II – dorsal view hand flat fingers straight; III – 

dorsal view hand bent fingers flat and straight; IV –dorsal view hand flat fingers sideways (facing 

out); V – ventral view hand flat fingers sideways (facing out); VI – dorsal view hand flat fingers 

sideways (facing in); VII – ventral view hand flat fingers sideways (facing in); VIII – dorsal view 

fingers free hanging downwards; IX – dorsal view fingers free hanging sideways; X – dorsal view 

relaxed hand resting on surface with fingers at different elevations. 
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2.2.3 Statistical analyses 

I used Kolmogorov-Smirnov tests throughout these pilots to assess normality of 

data. The relationship between distance, zoom and image 2D:4D ratios were first 

analysed using general linear models (ANOVA) with distance and zoom as factors. 

Correlations between image 2D:4D ratios and true 2D:4D ratios were investigated 

for each hand position using Pearson’s correlations for both the left and right 

hands of each subject. Correlations between image 2D:4D ratios obtained from 

ventral and dorsal views were also tested using Pearson’s correlations. 

2.2.4 Results 

Data were normally distributed for true 2D:4D ratios (P = 0.129), image 2D:4D 

ratios (P = 0.119), distance (P = 0.197) and zoom (P = 0.197). The distance the 

photograph was taken from had no significant effect on the 2D:4D ratio in the 

images (F1, 8 = 0.000, P = 1.000). In fact, the same 2D:4D ratio was obtained at 

each distance regardless of how close the object being photographed was. No 

significant differences were found between percentage of zoom on the camera 

and 2D:4D ratios obtained from images (F 2, 12 = 0.000, P = 1.000), and the same 

2D:4D ratio was obtained at each zoom setting for each photograph. 

C B A Figure 2.2: Examples of postures commonly observed in baboons. A – a resting pose in which the 

animal has its hands relaxed and hanging freely downwards (analogous to position VIII); B – 

walking stance, where the baboon bends its hand maintaining straight fingers (analogous to 

position III); C – another position frequently seen with animals resting their hands on a surface on 

which their fingers are at different elevations (analogous to position X). 

A B C 
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Positions V and VI produced image 2D:4D ratios higher than true 2D:4D ratios 

(overestimation), and produced the correct ratio in only four of 24 measurements 

for position V and one of 24 measurements for position VI. 2D:4D ratios obtained 

from images with the hand in these positions exhibited non-significant moderate to 

low correlation with true 2D:4D ratios (Table 2.1). Other positions (IV, VII, VIII, IX 

and X) caused substantial underestimation of true 2D:4D ratios. Image 2D:4D 

ratios obtained from position IV were correct in two of 12 cases in the left hand 

and in one of 12 cases in the right hand. Image 2D:4D ratios showed a significant 

and high correlation with true 2D:4D ratios for the left hand but not for the right 

hand (Table 2.1). 

Positions VII, VIII and IX produced image 2D:4D ratios corresponding exactly to 

true 2D:4D ratios in only one of the 24 measures. Image 2D:4D ratios were less 

than true 2D:4D ratios in the majority of cases and displayed low to negligible 

correlation with true 2D:4D ratios (Table 2.1). Image 2D:4D ratios from position X 

did not correlate with true 2D:4D ratios and image 2D:4D ratios corresponding 

exactly to true 2D:4D ratios were never obtained from this position for either hand 

(Table 2.1). 

True 2D:4D ratios and image 2D:4D ratios were tightly correlated for hand 

positions I, II and III in both left and right hands of subjects (Table 2.1). Position I 

yielded image 2D:4D ratios corresponding exactly to true 2D:4D ratios in 19 out of 

24 measurements and position II and III in 20 out of the 24 measurements. Where 

correct 2D:4D ratios were not obtained from digital images they deviated only by 

0.01 - 0.02, with positions I and II resulting in very slight overestimations and 

position 3 in very slight underestimations of true 2D:4D ratios. 

No significant difference was found between image 2D:4D ratios obtained in 

position I (ventral view) and position II (dorsal view) (F 1, 22 = 0.022, P = 0.882). 

The image 2D:4D ratios for each view were also tightly correlated (r = 0.974, df 12, 

P <0.001). 
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Table 2.1: Correlation coefficients (r) between true 2D:4D ratio and image 2D:4D ratio and P-

values for the left and right hand in each position. Significant correlations are marked with *. 

 
Left hand 

 
Right hand 

 
Position r P-value r P-value 

I 0.972 0.001* 0.944 0.001* 

II 1.000 0.001* 0.972 0.001* 

III 0.956 0.001* 0.932 0.001* 

IV 0.834 0.001* 0.169 0.598 

V 0.410 0.186 0.497 0.101 

VI 0.480 0.114 0.014* 0.965 

VII 0.232 0.467 0.603 0.038* 

VIII 0.082 0.800 0.024 0.941 

IX 0.364 0.245 0.372 0.234 

X 0.072 0.824 -0.005 0.989 

 

2.2.5 Discussion 

These results indicate that it is possible to gain accurate 2D:4D ratio 

measurements from digital photographs but the method is more accurate for some 

hand positions than others. The most accurate 2D:4D ratios are obtained from 

digital photographs in which the fingers are flat and straight and the entire digit 

visible (positions I, II and III). There was no significant difference between 2D:4D 

ratios obtained from the ventral view or from the dorsal view suggesting that 

calculating 2D:4D ratio from the dorsal side of the hand is a valid option. Only one 

photograph of each hand in each position was taken and minor inconsistencies in 

the data for I, II and III are most likely due to measurement error or an image not 

showing digits in optimum positions. This could be overcome by averaging across 

multiple photographs and choosing those in which hands are in the most 

favourable position possible. The very high correlation observed between true 

ratios and image ratios for the left hand in position IV suggest this position as a 

potential candidate for 2D:4D measurements. It produced the same ratio as the 

true 2D:4D ratio in only two of the 12 measurements, however, so it cannot be 

considered a suitable position for accurately measuring 2D:4D ratios with this 
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method in the field. The moderate significant correlation for the right hand in 

position VII is most likely due to the entire ventral surface of the digits being 

visible. However, the correlation was not significant for the same position in the left 

hand and it is also an unlikely position for a baboon to hold its hand in. 

Unsurprisingly, curved fingers, as represented by positions VIII and IX, resulted in 

underestimation and lower 2D:4D ratios than expected, even when the curvature 

was slight. Also, fingers viewed from the side at different elevations (position X) 

yielded 2D:4D ratios that differed substantially from true ratios obtained from 

calliper measurements, most likely due to the area at the base of the 2D or 4D 

being obscured by the knuckle of the middle finger making knowing where to 

measure from difficult. This suggests that being able to see the entire digit is 

important for obtaining valid 2D:4D ratios from digital photographs. 

 

2.3 Using HD video to measure 2D:4D ratio in human hands 

2.3.1 Study subjects 

The cohort comprised three human volunteers (two males and one female) 

between the ages of 22 and 57 years who had taken part in the previous 

experiment. Prior to data collection, I showed each individual a short three minute 

video of baboon behaviour so that they were aware of the type of movement they 

were attempting to emulate. They could watch this video as many times as they 

liked and I invited them to ask any questions. 

2.3.2 Data collection 

I taped a 2x2 m square box onto the floor using masking tape and asked 

participants to stay within this area and to walk quadrupedally if they wished to 

move around. I placed several objects inside the box and invited individuals to 

interact with these as they wished in order to create a more naturalistic scene. I 

set up a Panasonic FZ150 digital HD video recorder and recorded one minute of 

footage per individual. I watched each one minute movie for its full duration three 

times and identified suitable hand positions. I then converted videos into frames 

(JPG format) for every second of footage using VideotoJPG converter software. 
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This resulted in 200 JPG frames per video for each individual (Procaccini et al. 

2011). I isolated five frames per hand for each subject in which hands were in 

favourable positions (as identified in the previous experiment) for analysis using 

ImageJ. 

2.3.3 Results 

Blurring sometimes occurred in frames during rapid movement of the subject, 

although enough frames can be obtained from a sequence (up to 1000) to make 

this a minor issue as a large number of good quality frames can be achieved. 

However, when zooming in on frames to measure digits the image quality was 

severely degraded making measuring digit lengths difficult and inaccurate.  

2.3.4 Discussion 

It was not possible to gain sufficient resolution on images to measure 2D:4D ratios 

with any accuracy despite HD quality of the footage and increasing the fine quality 

of JPG frames. This would likely not be the case with taking still photographs 

thanks to the camera’s various ‘sports settings’ which reduce blurring when 

photographing fast moving objects by freezing the action. ‘Burst shooting mode’ 

allows the photographer to capture a number of images simultaneously with one 

click (suitable for fast action such as moving cars and flying birds) and allows for 

focussing the camera before capturing the image. I conclude that HD video does 

not produce images of sufficient quality to be applied to measuring 2D:4D ratios in 

wild nonhuman primates. It would be most beneficial to use digital photographic 

methods when attempting to determine 2D:4D ratios without the aid of direct 

measurements. 

 

2.4 Using digital photographs to measure digit ratios in chacma 

baboons 

2.4.1 Study site 

I collected data from a captive troop of juvenile chacma baboons from 7th – 21st 

February 2012 at the Centre for Animal Rehabilitation and Education (C.A.R.E), 
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Phalaborwa, South Africa. Animals were housed in outdoor enclosures enriched 

with tyres, nets, ropes, tree branches and other play toys. The study troop 

contained 21 individuals of both sexes all approximately 18 months old and one 

older male juvenile at approximately three years of age. 

2.4.2 Study subjects 

Study subjects comprised 12 members of this troop (three females and nine 

males). These individuals had all been orphaned and were raised by human 

surrogates from a very early age and engaged in daily contact with several carers 

for up to 12 hours a day after weaning. As a result these individuals were 

comfortable being handled and photographed. 

2.4.3 Data collection 

The animals were habituated to my presence over four days. I then spent time 

sitting with the baboons initially accompanied by a member of staff for help in 

identifying individuals and so as to become familiar enough to be tolerated 

spending time in the baboon’s enclosure unaccompanied for subsequent data 

collection. I obtained digit measurements over three days in one hour long periods. 

I encouraged animals to come close through use of their own communicative 

behaviours (lipsmacking and grunting) and groomed or embraced them while 

taking measurements. I permitted them to investigate the callipers used prior to 

measuring so they were not subjected to undue stress caused by fear of a foreign 

object. I measured the 2D and 4D of each hand of each animal directly from the 

basal crease to the tip of the extended digit (nearest mm) using Draper callipers 

and calculated 2D:4D ratios. For four of the male baboons it was only possible to 

gain direct measurements of their left hands as they became difficult to handle 

during the procedure and were released to avoid them becoming unnecessarily 

stressed. Ratios from calliper measurements were considered the ‘true’ 2D:4D 

ratios and were used to compare the accuracy of 2D:4D ratios obtained from 

digital photographs. 
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2.4.4 Digital photographs 

I left the troop for 24 hours after direct calliper measurements to avoid any effects 

this process might have on their behaviour interfering with capturing photographic 

images. Over several observation days I sat in the enclosure with the animals for a 

period of one hour in order to photograph individual’s hands. I made no contact 

with the baboons during this time in order to prevent them soliciting grooming or 

play or causing other distractions. I took five photographs each of the right and left 

hands of each baboon from the dorsal view in which the hand was in an optimal 

position and analysed these using ImageJ (Fig. 2.3). I measured the 2D and 4D 10 

times for each photograph and used the mean of these measurements as the 

lengths of the digits. I used mean digits lengths to calculate the 2D:4D ratio for that 

image. I recorded image 2D:4D ratios obtained from each photograph and used 

the mean of the five as the overall image 2D:4D ratio for a particular subject’s 

hand. 

Figure 2.3: Examples of digital photographs of captive juvenile chacma baboons used to attain 

image ratios using ImageJ image analysis software. 
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2.4.5 Statistical analyses 

Data for true 2D:4D ratios (P = 0.906) and image 2D:4D ratios (P = 0.966) were 

normally distributed and so I used Pearson’s correlations to determine how closely 

the two variables correlated with one another. 

2.4.6 Results 

True ratios and image ratios obtained from photographs correlated strongly and 

positively (r = 0.999, df 20, P = 0.01). When true and image ratios of each hand 

were analysed separately a very high, significant, positive correlation was also 

found (right hand: r = 0.999, df 8, P = 0.01; left hand: r = 0.999, df 12, P = 0.01). In 

terms of accuracy, in only three out of 20 cases did the mean image 2D:4D ratio 

differ from the true 2D:4D ratio, in each case by less than 0.008 (Table 2.2). 

Table 2.2: True 2D:4D ratio and image 2D:4D ratio for each hand for each study subject 

(abbreviated to age/sex class). RH = right hand, LH = left hand. Image ratios that did not 

correspond exactly to true ratios are marked with *. 

Subject True ratio RH Mean Image ratio RH True ratio LH Mean Image ratio LH 

Juvfem1 0.82 0.82 0.84 0.84 

Juvfem2 0.85 0.85 0.91 0.91 

Juvfem3 0.84 0.84 0.88 0.88 

Juvmale1 0.95 0.95 0.93 0.93 

Juvmale2                                                
/ 

 0.87 0.87 

Juvmale3                            
/ 

  0.89 0.89 

Juvmale4 0.91 0.91 0.85 0.85 

Juvmale5                            
/ 

  0.83 0.83 

Juvmale6 0.89 0.89 0.95 *0.94 

Juvmale7                            
/ 

 0.88 0.88 

Juvmale8 0.86 *0.87 0.84 *0.85 

Juvmale9 0.77 0.77 0.80 0.8 
 

2.4.7 Discussion 

The results indicate that accurate 2D:4D ratio measurements of baboon species 

can be obtained with use of digital photographs and computer software. A 

minimum of five photographs per hand per individual appears to be sufficient to 



  

37 
 

gain image 2D:4D ratios corresponding exactly to true 2D:4D ratios. The small 

discrepancies between image 2D:4D ratios and true 2D:4D ratios are most likely 

due to measurement error as opposed to inaccuracy in the method itself and may 

be overcome by averaging across more photographs. 

 

2.5 Conclusions 

The outcome of this series of pilot experiments suggests that using HD video is 

not a valid option for measuring 2D:4D ratios due to the low quality images 

produced making measuring digits difficult. I conclude that using digital 

photographs and the computer software ImageJ to measure 2D:4D ratios in wild 

chacma baboons without the aid of direct measurements is a valid option. 
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- 3 - 

Methods 

 

3.1 Study Species 

Baboons are widely distributed across Africa and display morphological and 

behavioural variations in response to their local environment and evolutionary 

history (Barrett 2009). Older classifications recognise five species; the chacma 

(Papio ursinus; Kerr 1792), olive (P. anubis; Lesson 1827), yellow (P. 

cynocephalus; Linnaeus 1766), Guinea (P. papio; Desmarest 1820) and 

Hamadryas (P. hamadryas; Linnaeus 1758) (Barrett 2009; Sithaldeen et al. 2009).  

More recently it has been suggested that the Kinda baboon (P. kindae; Jolly 1993) 

also warrants the same taxonomic status as the five listed above (Jolly et al. 2011; 

Zinner et al. 2009; Frost et al. 2003; but see Groves 2001). These have since 

been grouped together as a single superspecies under the name P. hamadryas 

(Barrett 2009), though the taxonomy of Papio baboons is still under debate (Zinner 

et al. 2013). The six subspecies are capable of hybridisation along contact zones 

and this occurs among northern yellow baboons and olive baboons, hamadryas 

and olive baboons (Kummer 1995), northern chacma and southern yellow 

baboons (Barrett 2009) and northern chacma and kinda baboons (Jolly et al. 

2011). Chacma, olive, yellow, kinda and Guinea baboons display typical baboon 

sociality, living in troops with multiple males, multiple females and their offspring 

with female philopatry and male dispersal (Cheney & Seyfarth 2007; Jolly et al. 

2011). Hamadryas baboons, in contrast, show a unique social structure among 

Papio baboons in that they live in one-male, multi-female groups (OMUs) 

(Kummer 1995), in which a dominant male herds and guards a group of females. 

The pattern among Hamadryas baboons is usually male philopatry and female 

dispersal, although both sexes may migrate out of their natal groups (Dunbar 

1988; Kummer 1968). 
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The focal subspecies in this study is the chacma baboon, which emerged as an 

independent lineage approximately 1.84 mya (Sithaldeen et al. 2009). The chacma 

baboon is widely distributed across southern Africa and occupies a broad range of 

habitats within this area including savannah, grassland, montane, woodland, 

shrubland, semi-desert and swamp environments (Sithaldeen et al. 2009). 

Chacma baboons live in permanent groups of between four and 177 individuals 

depending on their local environment (Barton et al. 1996). Populations occupying 

the cold, barren slopes of the Drakensburg Mountains live in small groups with a 

mean of 22 individuals (Barton et al. 1996), whereas in the fertile Okavango Delta 

of Botswana (an area considered to have higher densities of baboons than other 

parts of Africa) chacma baboons live in larger groups of up to and exceeding 75 

individuals (Cheney et al. 2004). The chacma baboon is widespread and abundant 

over the majority of its range and is classified as least concern on the IUCN red list 

(International Union for Conservation of Nature, September 2012). Among chacma 

baboons there is large phenotypic diversity but in general it is agreed that three 

main morphs are present within modern chacmas. These include Cape chacmas 

(Papio ursinus ursinus: Kerr 1792), Ruacana chacmas (Papio ursinus ruacana: 

Groves 2005 but see Grubb et al. 2003) and Grayfoot chacmas (Papio ursinus 

griseipes: Pocock, 1911). Cape chacmas are large and spread over much of 

South Africa. Those of the Ruacana form are not as large as Cape chacmas, have 

darker coloured fur and are found throughout Namibia and southern Angola 

(Burrell 2008). The Grayfoot form is lighter coloured and also smaller than the 

Cape form with grey hands and feet and is distributed over much of the north-

eastern portion of the chacma range (Sithaldeen et al. 2009). Based on the 

Sithaldeen et al. (2009) estimate, the baboons of my study group fall just within the 

Grayfoot area of distribution (Figs. 3.1 & 3.2). However, as there is considerable 

overlap in ranges and interbreeding at contact zones between different lineages is 

common it is not possible to be certain of this. The authors also caution that, as a 

result of these factors, it is difficult to specifically identify the boundaries of the 

different morphotypes. Consequently, study animals will be referred to by their 

common name, chacma baboons. 
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Figure 3.1: Estimated distribution of different chacma baboon lineages across southern Africa. 

Ruacana chacma (pink area), grayfoot chacma (brown area) and cape chacma (blue area). 

Adapted from Sithaldeen et al. (2009). 

Chacma baboon home range size and daily travel distance have been related to 

group size (Barton et al. 1992). Other factors that affect home range size and 

travel distance in chacma baboons include climate (Hill 1999), resource availability 

(Barton et al. 1992) and the availability of sleeping sites (Anderson 2000; Barton et 

al. 1992). Chacma baboons are opportunistic feeders, eating a mainly vegetarian 

diet of leaves, fruits, shoots, seeds, bulbs, grass roots, and other underground 

storage organs (Whiten et al. 1991; Byrne et al. 1993; Barton & Whiten 1993). 

They supplement their diet with animal material such as insect prey (Isoptera, 

Orthoptera and Lepidoptera), lagomorphs and bushbuck young (personal 

observation) and chacma baboons have also been observed to prey on vervet 

monkeys (Willems 2007). 
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3.2 Study area 

I conducted research in the northernmost mountain range of South Africa, the 

Soutpansberg or “mountains of salt”. The range is a narrow ridge set in the 

Limpopo Province and varies from between 15-60 km north to south and extends 

250 km east to west (lying from 23° 05' S & 29° 17' E and 22° 25' S & 31° 20' E) 

(Berger et al. 2003). The location of this study, the Lajuma Research Centre, 

spans an area of 430ha and is located in the western side of the Soutpansberg 

mountain range between Louis Trichardt (Makhado) and Vivo. The Lajuma 

Research Centre (Fig. 3.2), a Natural History Site since 1997, also became part of 

a private wilderness area in UNESCO’s Vhembe Biosphere Reserve in 2009. This 

is in acknowledgement of the area’s biodiversity and ecological significance in the 

region. 

 
Figure 3.2: Map of South Africa (dark grey) and its bordering countries (light grey). The 

Soutpansberg mountain range is shown (red) with the location of the study site (white arrow) 

(Willems 2007). 

3.2.1 Climate 

The climate in the Soutpansberg Mountains is affected by the east-west 

orientation of the range and the local climate at the Lajuma Research Centre can 

be best described as temperate/mesothermal. The region has cool dry winters 
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between April and September and hot wet summers between October and March 

(de Raad 2011). This study encompassed both late summer and early winter 

months. Data on the climate and weather conditions over the study period were 

collected from an automated weather station located on the property. 

Temperatures over the study period ranged from a mean of 17.   C in April, to 17  C 

in May and 13.5  C in June. At the time of this study the area was experiencing an 

uncharacteristic period of drought. Rainfall was variable over the study months, 

with 11.6 mm in April, dropping to 0.8 mm in May and only 0.2 mm in June. 

Usually, the driest month is August and has a minimum mean rainfall of 4 mm with 

the wettest weather occurring in January with a mean rainfall of 158 mm (Willem, 

2007). Rainfall during the study period was well below average for the time of year 

but as the Soutpansberg Mountain range falls within a mist-belt zone in which mist 

makes up 40% of annual precipitation (South African Department of Environmental 

Affairs, 1988), moisture levels are under represented by rainfall alone (Willems 

2007). 

3.2.2 Flora 

The Soutpansberg region is very diverse and boasts plant species belonging to 

1066 genera and 240 families (Hahn 1997). Vegetation across the study area 

varied extensively and vegetation types of Forest, Grassland, and Savannah 

Biomes are represented, along with azonal plant communities and some endemic 

species. Nine main vegetation types have been described for the Soutpansberg 

region, five of which are found in the study area (Mostert et al. 2008). These 

include ‘arid northern bushveld’ which consists of open woodland with a sparse 

field layer. Also, ‘moist mountain thickets’ which describe an assortment of plant 

communities in which there is no gap between tree and shrub layers. ‘Leached 

sandveld’ is also present which is composed of a homogenous mixture of woody 

and grass species and is found in dry areas of the mountains. ‘Cool mistbelt’ 

vegetation type is made up of a diverse array of peatlands, low open grasslands, 

and small island thickets and is found 1200+ m above sea level. Lastly, ‘forest’ 

vegetation type is made up of evergreen high forests and deciduous shrub forests 

and is located mostly on the southern-most slopes of the mountains (Mostert et al. 

2008). 
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3.2.3 Fauna 

Animal life is also very diverse, with 36% of reptile, 56% of bird and 60% of 

mammal species found in South Africa occurring in the region (Berger et al. 2003; 

Gaigher & Stuart 2003). The Lajuma Research Centre is home to all five species 

of South African nonhuman primate: the vervet monkey (Cercopithecus aethiops), 

samango monkey (Cercopithecus mitis erythrarchus), thick-tailed bushbaby 

(Otolemur crassicaudatus), lesser bushbaby (Galago moholi) and chacma baboon. 

The region supports a variety of antelope species including bushbuck 

(Tragelaphus scriptus), klipspringer (Oreotragus oreotragus), kudu (Tragelaphus 

strepsiceros), common duiker (Sylvicapra grimmia), and red duiker (Cephalophus 

natalensis). Many other mammal species thrive in the area including aardvark 

(Orycteropus afer), cape porcupine (Hystrix africaeaustralis), and dwarf mongoose 

(Helogale parvula). There are also several predator species present including the 

leopard (Panthera pardus), brown hyena (Hyaena brunnea), serval (Lepatailurus 

serval), and caracal (Felis caracal), some of which pose a potential threat to 

baboons. Broad scale faecal dietary analysis from the study area found primate 

species made up 15.8% of leopards’ intake and 4.3% of this was baboon (Chase-

Grey 2011). I suspect the disappearance of one adult female during the study to 

be the result of leopard predation, since she had been healthy and was pregnant 

at the time. 

 

3.3 Study group  

3.3.1 Troop composition 

House Troop comprised approximately 80 individuals. Thick vegetative cover 

causing low visibility means that this value is estimated based on known 

individuals. The troop consisted of 12 adult males, four adolescent males, 17 

juvenile males, 20 adult females, five adolescent females, seven juvenile females, 

four infant females and eight infant males. The 20 adult and five adolescent 

females in the troop were the focus of this thesis. I used six mother/infant pairs in 

the troop (two male infants and four female infants) to assess heritability of the 

2D:4D ratio. 
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I recorded the reproductive status of each female in the study group on a daily 

census. Females were classified as pregnant, lactating, or cycling. Those females 

who were cycling were further sub classified with regards to the size of their 

perineal swelling as either ‘flat’, ‘swelling small’, ‘swelling medium’, ‘swelling large’ 

or ‘swelling going down’. Lactating females were those who were nursing 

dependent offspring and had not resumed sexual cycling. I considered females 

adolescent once they had had their first sexual swelling but had not yet conceived 

and as adult once they had become pregnant for the first time. The number of 

adult females varied over the study period from 20 to 19 individuals due to the 

disappearance of one adult female likely the victim of predation as mentioned 

previously. 

3.4 Data collection 

3.4.1 Behavioural data 

At the time of this research House Troop were also the subjects of a PhD study 

and had been followed and observed almost daily for several months prior to the 

start data collection. As such the animals were fully habituated to human 

observers on foot. I identified females from 1st March – 1st April. I followed the 

troop for full days from their morning sleeping site to their evening sleeping site on 

an almost daily basis in order to learn the study subjects on an individual basis for 

subsequent collection of behavioural data. Data collection commenced on the 3rd 

April 2012 and lasted until the 20th June 2012. 

I conducted 10 minute focal samples of each adult and adolescent female troop 

member in random order and recorded behavioural interactions on a continuous 

basis on a Psion Walkabout Pro PDA device equipped with Observer XT 10 

software package. I recorded both interactions initiated by the focal individual and 

those directed toward the focal individual by another troop member along with the 

identity of the social partner for adult and adolescent females or age/sex class for 

other troop members (e.g., Subject A gives threat to Subject B - Subject A 

receives fear grimace from Subject B). Behavioural categories were affiliation, 

dominance, submission, contact aggression, non-contact aggression, and interest 

in infants. These categories had within them several behaviours aimed at 
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addressing the particular questions of interest (Table 3.1). Also, I recorded the 

number of grooming partners a female had and the number of social partners. 

Grooming partners were those who I observed the focal female grooming or 

receiving grooming from. I defined a social partner as any female who I saw the 

focal female interact with in an affiliative manner that was not grooming. 

I collected data over three sample periods to ensure an equal spread of samples 

across the day: early morning (6 - 10am), midday (10am – 2pm) and late 

afternoon (2 – 6pm) for the duration of the study. I balanced focals for each female 

across these periods which amounted to two hours per female for each 

observation period and a total of six hours focal observation time per female 

(Table 3.2). One female disappeared during the study period and so I was only 

able to achieve three hours and 40 minutes of focal data on her. Data for this 

female were almost balanced with 70 minutes in observation periods one and two 

and 80 minutes in observation period three.  
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Table 3.1: Ethogram of behaviours and behavioural categories used when collecting focal data. 

 
Behaviour Description 

  Affiliative   

Present Present rear, tail up to muzzle of other animal 

Muzzle 
inspection Presses face into muzzle of other animal 

Rear inspection Places hand/face to rear of other animal  

Lipsmack Rapid tongue over lip movement repeated 

Grunt Series of short grunts to communicate actor's friendly intentions 

Embrace ‘Hugging' or placing arm over back/shoulders of another individual 

Groomer Grooming the fur of another individual 

Groomed Being groomed by another individual 

    

Contact 
Aggression   

Bite Biting a body part of the victim 

Slap  Slapping at another individual 

Tug Takes hold of victim's fur and pulls 

Pin Holding another individual to the ground with hands and/or mouth 

    

Non-contact 
aggression   

Threaten 
Includes eye flashing, threatening vocalisations, head bobbing, ground drumming (no 
physical contact) 

Lunge Lunge toward another individual without making physical contact 

Silent chase 
Rapidly running toward target, unaccompanied by gestures of fear or submission 
without vocalisation 

Scream and 
chase 

Rapidly running toward target, unaccompanied by gestures of fear or submission whilst 
making screaming vocalisations 

Threat ignored Individual shows no response to antagonism received 

    

Dominant 
behaviours   

Mount 
Non-sexual mounting behaviours, where individual stands on hind legs and presses 
ventral surface to rear of the other animal 

Supplant 
One individual's actions cause another to move away without any direct interaction 
occurring between the two 

Displace 
One individual actively causes another individual to move location where the first 
individual may take over the action of the other 

    

Submissive 
behaviours   

Flee Run away from an individual at speed and/or while being chased 

Move away Leaves area occupied by aggressor at normal pace  

Fear grimace Lips pulled apart wide to show teeth gritted in a grimace 

Fear keck Series of short staccato grunts directed at another individual  
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Cower Crouch low to ground in submissive posture 

Scream Loud 'eeeee' scream of fear in response to antagonism from another individual 

    

Interest in 
Infants   

Infant 
kidnapping An individual attempts/succeeds in taking another females infant against her will  

Infant carrying Individual carries an infant in dorsal or ventral position (when not the infant's mother) 

Infant 
inspections 

Individual attempts to visually inspect and/or make physical contact with another 
female's infant, often accompanied with grunting 

 

Table 3.2: Breakdown of focal data, with time (in minutes) each female was observed in each 

reproductive state and total observation time (in minutes). Female names are abbreviated to two 

letters in the first column. 

Female 
Cycling 

flat 

Cycling 
swelling 

small 

Cycling 
swelling 
medium 

Cycling 
swelling 

large 

Cycling 
swelling 

going 
down Pregnant Lactating Total 

No 0 0 0 0 0 360 0 360 

Ma 0 0 0 0 0 360 0 360 

En 0 110 10 0 10 0 230 360 

El 0 0 0 0 0 0 360 360 

Ni 0 0 0 0 0 0 360 360 

Fr 220 90 10              0 40 0 0 360 

Si 150 0 10 110 40 50 0 360 

Pi 150 180 0 0 30 0 0 360 

Me 0 140 0 0 0 0 220 360 

Ju 0 0 0 0 0 220 0 220 

Lo 0 0 0 0 0 0 360 360 

Pe 0 0 0 0 0 0 360 360 

Tu 0 30 130 130 70 0 0 360 

Ri 0 0 0 0 0 0 360 360 

Sl 80 50 130 70 30 0 0 360 

Sc 260 0 0 30 20 50 0 360 

He 0 100 0 0 0 0 260 360 

Ht 0 0 0 0 0 0 360 360 

Tr 170 10 50 80 50 0 0 360 

Br 0 0 0 0 0 0 360 360 

Bo 80 140 90 50 0 0 0 360 

Yo 0 0 0 0 0 0 360 360 

St 270 0 0 40 0 50 0 360 

Te 0 0 0 0 0 0 360 360 

Sh 250 20 20 10 0 60 0 360 
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3.4.2 Dominance hierarchy 

Using focal data I ascertained female rank via the direction of supplant and 

displacement interactions occurring between females (Nelson et al. 2010; Altmann 

1974). Also, I recorded the direction of submissive behaviours (fear grimace, fear 

keck, cower, etc). I also recorded the direction of submissive behaviours 

opportunistically on an ad libitum basis both within focal periods (for interactions 

involving group members other than the focal individual) and between focal 

periods to supplement focal data for the construction of the dominance hierarchy 

(Martin & Bateson 2007). I assigned a female’s dominance rank based on these 

observations ranging from 1 (highest-ranked) to 25 (lowest-ranked).  

3.4.3 2D:4D ratio measurements 

To obtain 2D:4D ratio measurements of House Troop females and infants I used a 

Panasonic FZ150 digital camera in ‘burst shooting’ mode in which the camera was 

set to take 12 frames per shot allowing for high quality images to be obtained 

despite the fast and unpredictable movement of the baboons. I took multiple 

photographs of the dorsal view of each individual’s right and left hands and 

identified 10 photographs per hand per individual in which hands were in optimum 

positions for digit measurements (based on the pilot experiments). These were 

photographs in which the hand and digits were in a flat and straight position, digits 

were fully extended and the entire lengths of both digits were visible (Fig. 3.3). I 

used 20 digital photographs for each individual, 10 for the right hand and 10 for the 

left hand. I analysed photographs with ImageJ using mouse-controlled callipers to 

measure digit lengths from the photographs. I measured the 2D and 4D 10 times 

each per photograph and used the mean of these measurements as the digit 

lengths for that photograph. I calculated 2D:4D ratios for each photograph, giving 

10 ratios for the hand. I used the mean of these as the 2D:4D ratio of the hand. I 

repeated the process for both right and left hands to give 2D:4D ratios for each 

hand and determined an individual’s mean 2D:4D ratio by taking the mean of the 

right and left hand 2D:4D ratios. 
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Figure 3.3: Examples of digital photographs used to measure digit lengths with ImageJ. 

3.5 Statistical analyses 

I used Kolmogorov-Smirnov tests throughout when assessing normality of data. I 

used two tests to measure the repeatability of my 2D:4D ratio measurements. I 

used repeated measures ANOVA to compare the error mean squares (i.e. 

differences between the repeated measurements) and group mean squares (i.e. 

differences between the subjects). I then used the F ratio to determine whether the 

differences between subjects were significantly larger than measurement error. I 

used the intraclass correlation coefficient (ICC) set to the ‘absolute agreement’ 

definition to test intra-observer reliability. I investigated differences in left and right 

2D:4D ratios of females and infants using a paired t-test (two-tailed). 

2D:4D ratio data are classified as the independent variable and dominance rank 

and behavioural data as the dependent variables. I used Pearson’s correlations to 

assess the relationship between a female’s dominance rank and her mean, right, 

left 2D:4D ratios and Dr-l. I used a multiple regression model to compare the 

contributions of left, right and mean 2D:4D ratios on dominance rank. The two 

predictor variables were highly correlated in this model. While this does not reduce 

the predictive power or reliability of the model as a whole it may affect the validity 

of results with regards to the individual predictors themselves. I used Pearson’s 

correlations to investigate the relationship between Dr-l and mean, right and left 

2D:4D ratios. 

I converted all behavioural data into rates per hour of observation time prior to 

analysis. I used Pearson’s correlations to analyse the relationship between rate of 

submission, rate at which individuals received aggression, rate of interest in 
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infants and rate of affiliation and mean, right and left 2D:4D ratios. I also employed 

Pearson’s correlations to assess the relationships between the different 2D:4D 

ratio data and rate of grooming given and rate of grooming received, number of 

grooming partners and number of social partners. 

Data for rate of non-contact aggression and rate of contact aggression were not 

normally distributed and were robust to attempts at transformation due to the data 

containing a number of zero scores. I therefore used non-parametric Spearman 

Rank correlations when investigating relationships between these variables and 

2D:4D ratio data. Infant mean, left, and right 2D:4D ratios were all normally 

distributed but due to the small sample size of six mother/infant pairs I used 

Spearman Rank tests to examine the relationship between 2D:4D ratios in 

mother/infant pairs and to assess the relationship between infant 2D:4D ratio 

measures and the dominance rank of their mothers. I used a multiple regression 

model to compare the contributions of mother’s left and right 2D:4D ratios on R/L 

2D:4D ratios of infants. 

I conducted all data analyses using IBM SPSS statistics for Windows version 19 

(2010). 
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- 4 - 

Results 

 

4.1 Normality tests 

Mean, right, left 2D:4D ratios and Dr-l were all normally distributed for females 

(mean: P = 0.155; right: P = 0.135; left: P = 0.126; Dr-l: P = 0.200), as were data 

for dominance rank (P = 0.387). Additionally, infant left (P = 0.200), right (P = 

0.200) and mean (P = 0.200) 2D:4D ratios were all normally distributed. Rate of 

submission (P = 0.200), rate at which individuals received aggression (P = 0.200), 

rate of interest in infants (P = 0.200), rate of affiliation (P = 0.200), rate of 

grooming given (P = 0.186), rate of grooming received (P = 0.095), number of 

grooming partners (P = 0.183) and number of social partners (P = 0.103) were 

normally distributed. Data for rate of non-contact aggression and rate of contact 

aggression were not normally distributed (P <0.001 and P = 0.011 respectively). 

4.2 Reliability 

Repeated measures of 2D:4D ratio from photographs showed no significant 

difference within females (repeated measures ANOVA, right hand: F9, 216 = 0.673, 

P = 0.733; left hand: F9, 216 = 0.851, P = 0.570). Repeated measures of 2D:4D ratio 

from photographs showed no significant difference within females (repeated 

measures ANOVA, right hand: F9, 216 = .673, P = 0.733; left hand: F9, 216 = .851, P 

= 0.570). Thus, there was no significant difference between repeated 

measurements for either hand, suggesting that measurements were highly 

repeatable (Fig. 4.1). The intra-class correlation coefficient (ICC) also showed that 

2D:4D ratio measurements for females were highly repeatable for the right (ICC = 

0.968, F24, 216 = 299.062, P <0.001) and left (ICC = 0.969, F24, 216 = 309.784, P 

<0.001) hands, indicating a high level of intra-observer reliability. Left and right 

2D:4D ratios in females were not significantly different (t24 = 0.842, P = 0.408) and 

were tightly correlated (r = 0.919, df 25, P <0.001). Dr-l in females did not correlate 
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significantly with any of the 2D:4D ratio measures (mean: r = 0.092, df 25, P = 

0.661; right: r = - 0.114, df 25, P = 0.588; left: r = 0.288, df 25, P = 0.163). 

Repeated measures of 2D:4D ratio from photographs in infants showed no 

significant difference within individuals (repeated measures ANOVA, right hand: F 

1, 5 = 3.971, P = 0.103; left hand: F 1, 5 = 0.600, P = 0.474) and ICC indicated a fair 

agreement in 2D:4D measurements of the right hand (ICC = 0.362, F5, 45 = 6.662, 

P <0.001) and moderate agreement in the left hand (ICC = 0.559, F5, 45 = 12.613, 

P <0.001). Left and right 2D:4D ratios in infants were not significantly different (t6 = 

0.650, P = 0.544) and were tightly correlated (r = 0.829, df 6, P = 0.042) so I also 

used the mean 2D:4D ratio of both hands for females and infants in subsequent 

analyses. 

Figure 4.1: Mean ± standard deviation of right (grey bars) and left (black bars) 2D:4D ratios for 

each female vs. dominance rank. Rank is in descending order from highest (1) to lowest (25). 

4.3 Digit ratios and dominance rank 

House Troop females formed a linear, transitive dominance hierarchy typical of 

female baboons (Table 4.1). High-ranking females have lower 2D:4D ratios in both 

hands and lower mean 2D:4D ratios than low-ranking females (Fig. 4.1). Mean 
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2D:4D ratio and dominance rank were highly negatively correlated (r = 0.833, df 

25, P <0.001) (Fig. 4.2). Right 2D:4D ratio and dominance rank were significantly 

negatively correlated (r = 0.820, df 25, P <0.001), as were left 2D:4D ratio and 

dominance rank (r = 0.810, df 25, P <0.001) (Fig. 4.3). Dr-l, however, did not 

correlate significantly with dominance rank (r = 0.049, df 25, P = 0.818) (Fig. 4.4).  

Table 4.1: Dominance matrix for adult and adolescent females in House Troop with frequency of 

decided dominance interactions. Names are abbreviated to two letters; winners are represented in 

rows and losers in columns and show females in descending rank order from highest (No) to lowest 

(Sh). 
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Figure 4.2: The relationship between mean 2D:4D ratio and dominance rank. Dominance is shown 

in descending rank order from highest (1) to lowest (25). 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The relationship between right 2D:4D (grey diamonds, grey solid line) and left 2D:4D 

(black circles, black dashed line) and dominance rank. 
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Figure 4.4: Relationship between Dr-l and dominance rank in females. 

The rate of submission was positively correlated with mean 2D:4D ratio (r = 0.594, 

df 25, P = 0.002), right 2D:4D ratio (r = 0.568, df 25, P = 0.003) and left 2D:4D 

ratio (r = 0.595, df 25, P = 0.002) (Fig. 4.5). However, Dr-l was uncorrelated with 

rate of submission (r = 0.110, df 25, P = 0.601). 

 

 

 

 

 

 

 

 

 

Figure 4.5: The relationship between mean 2D:4D ratio (green triangles, solid green line), right 

2D:4D (grey diamonds, grey solid line) and left 2D:4D (black circles, black dotted line) and rate of 

submission. 
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A multiple regression analysis of the relationship between dominance rank and 

right 2D:4D ratio and left 2D:4D ratio found that 66.5 % of variance in dominance 

rank could be predicted by the contribution of right and left 2D:4D ratios (adjusted 

R squared = 0.665; F 2, 22 = 24.826, P <0.001 [using enter method]). Individually 

these were not significant: Right 2D:4D, Beta = 0.481, P = 0.122; Left 2D:4D, Beta 

= 0.384, P = 0.231. Mean 2D:4D ratio when regressed with dominance rank 

predicted 68 % of the variance in dominance rank (Adjusted R squared = 0.680; F 

1, 23 = 51.935, P <0.001) and was significant: mean 2D:4D, Beta = 0.833, P <0.001. 

4.4 Digit ratios and aggression 

Mean, right and left 2D:4D ratios all correlated significantly and negatively with 

rate of non-contact aggression (Mean: r = - 0.490, df 25, P = 0.013; right: r = - 

0.418, df 25, P = 0.037; left: r = - 0.483, df 25, P = 0.014). Females with lower left, 

right and mean 2D:4D ratios displayed higher rates of non-contact aggression than 

those with higher 2D:4D ratios (Fig. 4.6). Dr-l was not significantly correlated with 

either rate of non-contact aggression (r = - 0.169, df 25, P = 0.418) or contact 

aggression (r = - 0.372, df 25, P = 0.067). Contact aggression significantly 

negatively correlated with mean 2D:4D ratio (r = - 0.449, df 25, P = 0.024) and left 

2D:4D ratio (r = - 0.499, df 25, P = 0.011) but not with right 2D:4D ratio (r = - 

0.369, df 25, P = 0.070) (Fig. 4.7).  

The rate at which a female received aggression from other group members was 

moderately positively correlated with her mean, right and left 2D:4D ratios (mean: r 

= 0.630, df 25, P = 0.001; right: r = 0.660, df 25, P <0.001; left: r = 0.574, df 25, P 

= 0.003), with females with higher 2D:4D ratios receiving aggression at higher 

rates (Fig. 4.8). 
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Figure 4.7: Relationship between mean 2D:4D ratio (green triangles, solid green line), right 2D:4D 

(grey diamonds) and left 2D:4D (black circles, black dotted line) and rate of contact aggression. 

 

Figure 4.6: Relationship between mean 2D:4D ratio (green triangles, solid green line), right 

2D:4D (grey diamonds, grey solid line) and left 2D:4D (black circles, black dotted line) and rate of 

non-contact aggression. 
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Figure 4.8: Relationship between mean 2D:4D ratio (green triangles, solid green line), right 2D:4D 

(grey diamonds, grey solid line) and left 2D:4D (black circles, black dotted line) and rate at which a 

female received aggression from another group member.  

4.5 Digit ratios and interest in infants 

There was no significant correlation between a female’s interest in infants and her 

mean 2D:4D ratio (r = 0.190, df 25, P = 0.364) (Fig. 4.9). Nor were there significant 

correlations between a female’s right (r = 0.197, df 25, P = 0.344) or left (r = 0.178, 

df 25, P = 0.395) 2D:4D ratios and her rate of interest in infants. 

 

 

 

 

 

 

 

 

 

Figure 4.9: The relationship between mean 2D:4D ratio and rate of interest in infants among 

females. 
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4.6 Digit ratios and affiliation 

No significant correlations were found between a female’s rate of affiliation and her 

mean (r = 0.086, df 25, P = 0.682), right (r = 0.165, df 25, P = 0.430) and left (r = 

0.007, df 25, P = 0.974) 2D:4D ratios (Fig. 4.10). The mean number of grooming 

partners was 4.68 (±1.99) and the mean number of social partners was 7.68 

(±3.28) in this population. A female’s mean 2D:4D ratio was not significantly 

correlated with her number of grooming partners (r = 0.206, df 25, P = 0.324) or 

with her number of social partners (r = 0.112, df 25, P = 0.593). No significant 

correlations were found between the rate at which a female groomed another 

female or was groomed by another female and her mean, right or left 2D:4D ratios 

(mean: grooming given – r = 0.164, df 25, P = 0.433 and grooming received – r = 

0.261, df 25, P = 0.207; right: grooming given – r = 0.157, df 25, P = 0.454 and 

grooming received – r = 0.260, df 25, P = 0.209; left: grooming given – r = 0.164, 

df 25, P =0.435 and grooming received – r = 0.253, df 25, P = 0.223).  

Figure 4.10: The relationship between mean 2D:4D ratio (green triangles, solid green line), right 

2D:4D ratio (grey diamonds, grey solid line) and left 2D:4D ratio (black circles, black dotted line) 

and rate of affiliation. 
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4.7 Heritability of the 2D:4D ratio 

The correlation between female’s mean 2D:4D ratio and her infant’s mean 2D:4D 

ratio was both strong and significant (r = 0.829, df 6, P = 0.042) (Fig. 4.11). 

Maternal right 2D:4D ratio and infant right 2D:4D ratio were not significantly 

correlated (r = 0.257, df 6, P = 0.623), nor were maternal left 2D:4D ratio and 

infant left 2D:4D ratio (r = 0.771, df 6, P = 0.072). Maternal right 2D:4D ratio and 

infant left 2D:4D ratio were not significantly correlated (r = 0.429, df 6, P = 0.397). 

However, maternal left 2D:4D ratio and infant right 2D:4D ratio did show a strong 

significant correlation (r = 0.943, df 6, P = 0.005) (Fig. 4.12). In the mother/infant 

pairs analysed here, mothers held a range of dominance ranks (9, 15, 17, 20, 22 

and 24). Infant mean 2D:4D ratio showed significant negative correlation with 

maternal dominance rank (r = 0.829, df 6, P = 0.042) (Fig. 4.13) but neither infant 

right 2D:4D ratio (r = 0.771, df 6, P = 0.072) nor left 2D:4D ratio (r = 0.714, df 6, P 

= 0.111) correlated significantly with maternal dominance rank.  

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Relationship between mother’s mean 2D:4D ratio (grey circles) and her infant’s mean 

2D:4D ratio (black diamonds). 
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A significant model was not produced in a multiple regression between infant 

mean and maternal right and left 2D:4D ratios (adjusted R squared = 0.651, F 2, 3 = 

5.663, P = 0.096). Neither a maternal right 2D:4D ratio nor left 2D:4D ratio were 

significant predictors of infant mean 2D:4D ratio in this model (right: Beta = - 

1.585, P = 0.182; left: Beta = 2.280, P = 0.089). 
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Figure 4.13: Relationship between maternal dominance rank and the infant mean 2D:4D ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.86 

0.87 

0.88 

0.89 

0.9 

0.91 

0.92 

0.93 

0 2 4 6 8 10 12 14 16 18 20 22 24 

In
fa

n
t 

m
e
a
n

 2
D

:4
D

 r
a
ti

o
 

Maternal dominance rank 



  

63 
 

- 5 - 

Discussion 

 

This study demonstrates that PAE, as inferred from 2D:4D ratios, correlate with 

the dominance hierarchy in wild female chacma baboons. Higher-ranked females 

had lower 2D:4D ratios in both hands and lower mean 2D:4D ratios than lower-

ranked females. The negative correlation between 2D:4D ratio and dominance 

rank suggests that, as predicted, prenatal androgens influence a female’s position 

in the dominance hierarchy in natural groups. The effects of higher PAE may 

predispose behaviour in low 2D:4D ratio individuals to be more masculinised and, 

in this case, dominant (Thornton et al. 2009; Wallen 2005). This is consistent with 

other research in cercopithecine primates, in which female dominance rank was 

negatively correlated with their 2D:4D ratio (Howlett et al. 2012; Nelson et al. 

2010). Alternatively, maternal experience within the social group with respects to 

her rank could influence gestational processes, such as PAE, which in turn could 

contribute to the maintenance of rank inheritance. However, no birth order effects 

on 2D:4D ratios were observed within matrilines in rhesus macaques, suggesting 

PAE may not be involved in younger daughter ascendancy in cercopithecine 

primates (Nelson et al. 2010). All 2D:4D ratio measures showed a positive 

association with rate of submission. Females with lower 2D:4D ratios showed 

lower rates of submission than females with higher 2D:4D ratios suggesting that 

females exposed to higher PAE are less submissive than those exposed to lower 

levels of PAE. Androgenised female rhesus macaques were observed to withdraw 

less often from the approaches of other animals after they had been treated with 

testosterone propionate during prenatal development supporting hypothesis 1 

(Thornton et al. 2009). As in the macaque females, higher PAE may affect the 

behaviour of baboon females toward being less submissive. 

Variance in mean 2D:4D ratios predicted 68 % of variance in dominance rank but 

the right and left 2D:4D ratios individually were not found to be significant 

predictors suggesting that effects for the two hands cannot be separated and both 

are subject to PAE. However, co-linear variables were used in the model and this 
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must be acknowledged as a potential confounding factor in interpreting the 

contributions of the individual predictors. The relationship between 2D:4D ratio and 

dominance rank in females did not display a perfect, linear pattern with the highest 

ranked female having the lowest 2D:4D ratio, the second highest-ranked female 

having the next lowest and so on down the hierarchy. This may be because 

contingencies in social processes and rank inheritance mean that some females 

occupy higher or lower positions in the hierarchy than their PAE, inferred from their 

2D:4D ratios, would suggest. 

Regulation of a female’s tendency toward future aggressive behaviour is another 

way in which PAE may affect a female’s dominance rank (Higley et al. 1996). All 

2D:4D ratio measures correlated negatively with rate of non-contact aggression. 

Females with lower 2D:4D ratios display non-contact aggression at higher rates 

than those with higher 2D:4D ratios. The same pattern was observed between 

2D:4D ratio measures and contact aggression, although correlation was not 

significant for the right 2D:4D ratio. The right 2D:4D ratio is suggested to be a 

better marker for the prenatal hormonal environment than the left hand 2D:4D ratio 

so this comes as a surprise as it should reflect more strongly the organisational 

effects of prenatal androgens. This lack of relationship may be a result of sample 

size. Larger sample sizes could confirm a significant correlation between right 

2D:4D ratio and rate of contact aggression but this requires further study. 

However, females with lower mean and left 2D:4D ratios displayed contact 

aggressive behaviours at higher rates than those with higher mean and left 2D:4D 

ratios. Prediction 2b that correlation between 2D:4D ratio measures would be 

higher for contact aggressive behaviours than non-contact aggressive behaviours 

was not supported. Correlations were consistently higher for non-contact 

aggression than contact aggression, except for the left 2D:4D ratio which showed 

a slightly higher correlation with contact aggression. This is possibly due to 

generally low rates of contact aggression among the females in the study group 

and seven of the 25 females were never observed to engage in any contact 

aggressive behaviours. 

Mean, right and left 2D:4D ratios all showed a positive association with the rate at 

which a female received aggression from other group members, so females with 

lower 2D:4D ratios suffered less aggression than females with higher 2D:4D ratios. 
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Women with low 2D:4D ratios show higher reactive aggression under provocation 

(Zeynep & Nelson 2004) and female nonhuman primates with low 2D:4D ratios 

may have a similar disposition. Female baboons exposed to high PAE (low 2D:4D 

ratios) may have a greater tendency to retaliate to any aggression they receive 

than those exposed to low PAE (high 2D:4D ratios) who may be more likely to 

submit to any aggression they receive. For this reason other group members may 

target high 2D:4D ratio females in preference to low 2D:4D ratio females as they 

are less likely to be faced with repercussions from these females or their allies. 

Also, as individuals with higher 2D:4D ratios in this group are also those lower in 

rank, it is likely to be a reflection of individuals being targeted based on their social 

rank. PAE may create different personality types according to rank and may 

promote rank appropriate behaviours (Nelson et al. 2010). It would not be adaptive 

for a low-ranked female, after receiving aggression, to retaliate toward a higher-

ranked female as she is likely to be faced with dangerous ramifications for 

transcending the rank boundaries. Therefore, PAE may increase the potential for 

confrontational behaviour in high-ranked (low 2D:4D) animals and promote 

submissive behaviour in low-ranked (high 2D:4D) animals (Nelson et al. 2010). 

Dr-l did not correlate with any of the behaviours examined nor with any of the 

2D:4D ratio measures. This suggests that right hand 2D:4D ratio minus left hand 

2D:4D ratio has no relationship with female behaviour whether this involves 

aspects of dominance, submission, or aggression. In this study Dr-l did not act as 

a useful negative correlate for PAE in baboons, as it does in humans (Manning 

2002). 

Contrary to prediction 3a, the 2D:4D ratio was not correlated with rate of interest in 

infants. Females with lower 2D:4D ratios did not show less interest in infants than 

those with higher 2D:4D ratios. None of the females in this study had been 

artificially androgenised and it is likely that they developed in a prenatal 

environment where steroid hormone levels were within the normal range for their 

sex. Consequently, they are likely to display normal female-typical behavioural 

patterns. PAE may have low ability to affect female-typical behaviours which rely 

on female sex hormones for their expression unless present at unusually high 

levels as is seen in flutamide treated female rhesus macaques (Wallen 2005) and 

in girls with CAH (Leveroni & Berenbaum 1998), both of which show reduced 
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interest in infants. This would explain the lack of association between 2D:4D ratios 

and interest in infants among the females of my study group. 

Rate of affiliation and 2D:4D ratio measures were not significantly correlated 

suggesting that PAE are not involved in the expression of affiliative behaviour in 

female baboons. In adult females, affiliative social behaviour is regulated by 

ovarian hormones, specifically oestrogen (Witt et al. 1992). It is likely that adult 

and adolescent females’ affiliative social behaviours were influenced by oestrogen 

originating in their ovaries and not PAE. Thus, a female’s 2D:4D ratio did not, as 

predicted (4a), correlate positively with her rate of affiliation. Higher OT levels 

increase social contact time between adult rats (Witt et al. 1992) and OT facilitates 

social motivation (Lim & Young 2006). However, there was no association 

between the number of grooming partners and social partners a female had and 

her mean 2D:4D ratio. Hypothesis 4, that PAE would be related to affiliative 

behaviours, was not supported as females with lower 2D:4D ratios are not less 

social and females with higher 2D:4D ratios are not more social. The number of 

grooming partners a female had was positively correlated with the number of 

social partners she had suggesting that females with larger social networks had 

more grooming partners or vice versa.  

Contradictory to expectations outlined in predictions 4c and 4d, I found no 

relationship between a female’s mean, right and left 2D:4D ratios and the rate of 

grooming she gave or rate of grooming she received. The results indicate that 

females with higher 2D:4D ratios did not groom other females at higher rates and 

females with lower 2D:4D ratios were not groomed at higher rates. There was also 

no correlation between the rate at which a female groomed other individuals and 

the rate at which she received grooming. Grooming interactions are likely to be far 

more complicated than just a female’s motivation to engage in social contact with 

others. Grooming has both hygienic and social value (Saunders & Hausfater 1988) 

and is used as ‘currency’ by females, for example to obtain tolerance at feeding 

sights from higher-ranked females or to gain access to another female’s infant 

(Barrett et al. 1999; 2002). Therefore, the rate of grooming a female gives and 

receives is unlikely to be a simple reflection of prenatal sex hormones 

predisposing her motivation to seek or avoid social interaction with other females. 

Normal levels of PAE may not affect the expression of female-typical behavioural 
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patterns, such as affiliation and interest in infants, which are governed by ovarian 

hormones in adult life (Lim & Young 2006; Witt et al. 1992). Prenatal androgens 

may have the largest effects on behaviours that are mediated by male sex 

hormones such as dominance and aggression in female baboons. 

Mean 2D:4D ratios of mothers and their infants were positively correlated 

suggesting high similarity in mean 2D:4D ratio between mother/infant pairs. This 

may be evidence for a genetic contribution to the expression of the mean 2D:4D 

ratio in chacma baboons. However, neither variance in mother’s left or right 2D:4D 

ratios were found to predict variance in the mean 2D:4D ratio of her infant. 

Heritability in rhesus macaques was significant in mother/son pairs but not in 

mother/daughter pairs (Nelson & Voracek 2010). The androgen receptor gene is 

maternally determined in males and this could go some way to explaining this 

significant relationship but with a limited sample size I was not able to test for 

differences in similarity between mothers with male and female infants. Heritability 

of the 2D:4D ratio was higher in the right hand than the left in human twin studies 

(Paul et al. 2006a) and in rhesus macaques mother/infant dyads (Nelson & 

Voracek 2010) but the correlation was not higher between 2D:4D ratios of the right 

hand in baboon mother/infant pairs. When all mother/infant 2D:4D ratio 

combinations were analysed separately, only the right 2D:4D ratio of infants and 

left 2D:4D ratio of mothers were significantly correlated. This may be due to affects 

of stress levels in females which may affect the postnatal growth of their left 2D:4D 

ratio which is postulated to be more sensitive to early postnatal environmental 

factors. Maternal stress during pregnancy could affect the prenatal hormone 

environment of her developing offspring. Right 2D:4D ratio is more robust to early 

postnatal influences than left 2D:4D ratio and so is more likely to show any 

possible gestational effects on infant digit ratios (Nelson et al. 2010). This could 

explain the association between a mother’s left 2D:4D ratio and her offspring’s 

right 2D:4D ratio. The fact that mother mean and infant mean 2D:4D ratios were 

positively correlated suggests perhaps both genetic influences and shared 

environmental influences are important in the expression of similarity of the 2D:4D 

ratio in mother/infant pairs (Nelson & Voracek 2010). No association was found 

between maternal rank and the right or left 2D:4D ratio of offspring. However, in 

support of prediction 6c, mean 2D:4D ratio was highly negatively correlated with 



  

68 
 

maternal rank, suggesting that higher-ranked mothers produce infants with lower 

mean 2D:4D ratios.  

This was a mixed sex group of infants and infant age was not uniform across the 

group with some being close to weaning age with completely yellow pelage and 

others being much younger with completely dark pelage. The 2D:4D ratio is known 

to increase over age in very young human children (McIntyre et al. 2005) but to 

remain stable in adulthood (Manning 2002). It is possible therefore that 2D:4D 

ratios may change as infants age suggesting that older offspring should be used 

when comparing mother/offspring 2D:4D ratios, although this could potentially 

increase the affects of non-shared environmental influences on 2D:4D ratios. 

Additionally, my sample consisted of only six mother/infant pairs and the positive 

correlation between mother and infant mean 2D:4D ratios can only be considered 

a preliminary observation.  

5.1 Methodological issues 

Although the digital photographic and computer software method was useful as a 

non-invasive technique for measuring 2D:4D ratios in wild animals it was very time 

consuming. Measuring digits from photographs with ImageJ took over 90 hours. 

Further issues with this method arise from the environment. I found it very difficult 

to obtain photographs of baboon hands due to the dense vegetation in which they 

spent the majority of their time and photographing opportunities were restricted to 

times when the baboons came out into the open onto flat rocks or onto the road. 

This method may be more suited to studies of baboons living in more open 

habitats or of captive animals. For the latter, routine veterinary check-ups often 

make direct measurements of digits just as feasible as using indirect digital 

photographic methods. 

I found that it was more difficult to get close enough to infants to take photographs 

as they were not as used to being observed as were the older baboons. Their 

hands were also smaller than those of adult and adolescent females and most of 

the time they were clinging to their mothers which made getting hand photographs 

difficult. When not on their mothers, infants displayed much more rapid movement 

(e.g. when playing) than adult and adolescent females adding to the difficulty of 

obtaining photographs when hands were in optimum positions. These issues may 
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have contributed to the lower ICC value for infant hands compared to that of adult 

and adolescent female hands suggesting that intra-observer reliability was lower 

for 2D:4D ratio measurements in infants. 

Due to the time consuming nature of this method and its restricted use in densely 

vegetated environments I would recommend more direct methods of digit 

measurement be used where ever possible. However, despite the limitations 

raised in this section, I believe the issues above detract little from the 

methodological validity and the results I obtained. 

5.2 Directions for future research 

The 2D:4D ratios of the right and left hands were significantly tightly correlated in 

this study. This result differs from data on human right and left 2D:4D ratios where 

the correlation is much lower (Manning et al. 2000; Manning 2002). My sample 

size was small and represents data from a single baboon troop and one baboon 

subspecies. The 2D:4D ratio varies widely between human populations (Manning 

2002) and this may also be the pattern among baboons and is a topic worthy of 

further study. Also, it is worth noting that my sample consisted solely of female 

study subjects. Sexually dimorphic traits, including 2D:4D ratio (Hönekopp & 

Watson 2010), tend to be displayed in the masculine form more strongly on the 

right side of the body in humans (Tanner 1990; Kimura 1994) and it is possible the 

difference between right and left 2D:4D ratios may be greater among male than 

female baboons. Research into the developmental mechanisms which may 

contribute to the observed differences human and baboon 2D:4D ratios would be 

interesting, particularly from an evolutionary perspective. 

Further studies into correlations between 2D:4D ratios and behaviour in nonhuman 

primate species would be useful to assess how the trait generalises with behaviour 

across the Order. Future heritability research should aim for larger, 

multigenerational samples, and should take into account paternity. Unfortunately, 

relatedness among House Troop females was not known and research into 

similarities in 2D:4D ratios among related female baboons would be useful for 

further assessment of the heritability of this trait. In humans, 2D:4D ratio varies 

with birth order and sex of older siblings (Saino et al. 2006a). Exploring 2D:4D 

ratios within matrilines could perhaps test the hypothesis that prenatal sex 
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hormones are linked to younger daughter ascendancy pattern in baboons. Finally, 

research as to whether there is any relationship between the 2D:4D ratio and 

dominance rank among female social strepsirrhines could provide insight into the 

evolutionary history of this association within the primate Order. 

5.3 Conclusions 

I conclude that PAE, indexed by 2D:4D ratios, play a significant role in the 

dominance hierarchy in wild female baboons living in a troop with a natural social 

structure. PAE may contribute to the maintenance of female rank through their 

effects on the future expression of a female’s behaviour such as her tendencies 

toward submission and aggression or may even be linked to maternal effects. In 

hierarchical social systems, small differences in an individual’s ability to dominate 

others are likely to impact an individual’s fitness and so PAE could have positive 

effects on the fitness of primates living in despotic groups. PAE do not have 

significant involvement in the expression of interest in infants and affiliation in 

female baboons and may have limited power to affect behaviours regulated by 

female sex hormones in non-hormonally manipulated female primates. Although 

results for heritability (estimates based on correlations) are preliminary due to a 

small sample size, they hint at possible genetic and gestational contributions to the 

expression of the 2D:4D ratio in baboons. In addition to social learning, the effect 

that prenatal sex hormones have on brain patterning and personality, may be 

involved in shaping certain aspects of social behaviour in wild female baboons.  
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