
Durham E-Theses

Application of bit-slice microprocessors to digital

correlation in spread spectrum communication

systems

Ismail, Nabil Abd-el-wahid

How to cite:

Ismail, Nabil Abd-el-wahid (1983) Application of bit-slice microprocessors to digital correlation in

spread spectrum communication systems, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/698/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/698/
 http://etheses.dur.ac.uk/698/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

APPUCA TIDr\IS OF BIT -SUCE MICROPROCESSORS

TO DIGITAL CORRELATION

IN SPREAD SPECTRUM COMMlJNICATIOI\I SYSTEMS

by

Nabil Abd-el-wahid Ismail, B.Sc., M.Sc.

A thesis submitted in accordance with the regulation for the
degree of Doctor of Philosphy in the University of Durham

Department of Applied Physics & Electronics

1982

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Applications of Bit-Slice Microprocessors to Digital

Correlation in Spread Spectrum Communication Systems

Nabil Abd-el-wahid Ismail

ABSTRACT

This thesis describes the application of commercially
available microprocessors and other VLSI devices to high-speed
real-time digital correlation in spread spectrum and related
communication applications. Spread spectrum communications are a
wide-band secure communication system that generate a very broad
spectral bandwidth signal that is therefore hard to detect in
noise. They are capable of rejecting intentional or unintentional
jamming, and are insensitive to the multipath and fading that
affects conventional high frequency systems. The bandwidth of
spread spectrum systems must be large to obtain a significant
performance improvement. This means that the sequence rate must
be fast and therefore very fast microprocessors will be required
when they are used to perform spread spectrum correlation. Since
multiplication cannot be performed efficiently by microprocessors
considerable work, since 1974, has been published in the
literature which is devoted to minimising the requirement of
multiplications in digital correlation and other signal
processing algorithms. These fast techniques are investigated
and implemented using general-purpose microprocessors. The
restricted-bandwidth problem in microprocessor-based digital
correlator has been discussed. A new implementation is suggested
which uses bit-slice devices to maintain the flexibility of
microprocessor-based digital correlation without sacrificing
speed. This microprocessor-based system has been found to be
efficient in implementing the correlation process at the baseband
in the digital domain as well as the post-correlation signal
processing- demodulation, detection and tracking, especiaJIy for
low rate signals. A charge coupled-device is used to obtain
spectral density function. An all-digital technique which is
programmable for any binary waveform and can be used for
achieving initial acquisition and maintaining synchronisation in
spread spectrum communications is described. Many of the
practical implementation problems are discussed. The receiver
performance, which is measured in terms of the acquisition time
and the bit-error rate, is also presented and results are
obtained which are close to those predicted in the system
simulations.

ACKNOWLEDGEMENTS

I would like to express my gratitude for the consistent

guidance and the constructive criticism of Dr C.T.Spracklen

during the project. I am indebted to him for his supervision,

encouragement, and helpful advice and for his help in securing

equipment.

would also like to thank Professor G.G.Roberts for

allowing me to use the facilities of the Department of Applied

Physics and Electronics, the University of Durham, and I am

grateful to members of the workshop for their willingness to

provide their skill and advice.

My thanks are also due to my colleagues in the Digital

Electronics Group for many useful discussions and times spent

together. The help of the staff of the Computer Unit of the

University of Durham as well as the staff of the Science Library

is also gratefully acknowledged.

My appreciation is also extended to the Egyptian Mission

Department and the University of Menoufia for an award of a

research studentship and for providing financial support over

more than three years.

Finally, I am particularly indebted to my wife A frah for her

understanding, patience and support and to my parents, brothers

and sisters for moral and financial support and to my daughter

Marwa for her unceasing distraction which formed a source of much

relaxation.

ii

To A freh, Marwa and Aeimn

iii

CONTENTS

ABSTRACT

ACKNOWLEDGEtv£NTS

Glossary of Terms

D-lAPlER 1 Introduction

1.1 History
1.2 Spread spectrum techniques
1.3 Problems of spread spectrum systems
1.4 Synchronisation problems
1.5 Practical implementation problems
1.6 Bit-slice microprocessors and spread spectrum systems
1.7 Conclusion

CHAPTER 2 Digital Correlation Techniques Using Microprocessors

2.1 Introduction
2.2 Digital correlation
2.3 Transform analysis

2.3.1 Correlation using rectangular transforms
2.4 Implementations

2.4.1 Implementation using an Intel-8080 microprocessor
system

2.4.2 Correlation on TMS9900 microcomputer
2.5 Binary correlation
2.6 Real-time power spectrum density

2.6.1 Chirp-Z transform algori thm
2.6.2 Hardware implementation

2.7 Conclusion

Q-lAPTER 3 Bit-Slice Microprocessor System

3.1 Introduction
3.2 System organisation
3.3 2901 ALU/Register slices

3.3.1 Architecture
3.3.2 2901-slices interconnection

3.4 Microprogram control
3.4.1 Microprogram memory
3.4.2 Microprogram counter

3.5 Condition code select logic
3.6 I/O external registers handling

3.6.1 The 'To' decoder
3.6.2 The 'From' decoder

iv

3.6.3 The control decoder
3.7 Input/Output buffer memory
3.8 System clock
3.9 Conclusion

a-tAPTER 4 System Microprogramming Features

4.1 Microprogramming
4.2 Microinstruction format
4.3 Microinstruction implementation
4.4 Microinstruction sequencing

4.4.1 Sequential execution
4.4.2 Skip control
4.4.3 Multiple sequences
4.4.4 Start address

4.5 Special microassembler
4.6 Software simulator
4.7 PROM programming
4.8 Development test equipments
4.9 Test software

4.9.1 Control decoder test
4.9.2 "To" and "From" decoder test
4.9.3 290l-slices internal registers test
4.9.4 Up shift test
4.9.5 Down shift test
4.9.6 2901 ALUs arithmetic operation test
4.9.7 Carry control test
4.9.8 FIFO control tests
4.9.9 FIFO data tests
4.9.10 Output enable test

4.10 Conclusion

a-tAPTER 5 Implementation of Direct Sequences by Microprocessors

5.1 Introduction
5.2 Pseudo-noise sequences

5.2.1 Generation and properties
5.2.2 Correlation functions and power spectra of codes

5.3 Implementing the feedback shift register on a
microprocessor

5.4 Sequence inversion keying (SIK) modulation
5.5 Synchronisation

5.5.1 Initial acquisition techniques
5.5.2 Correlation process

5.6 Tracking
5.6.1 Delay-lock loop correlator
5.6.2 Implementation

5.7 Conclusion

~TER6

6.1 Introduction
6.2 Transmitter

Transmitter and Receiver Design

v

6.2.1 Data acquisition
6.2.2 FIFO on transmit

6.3 Spreading
6.4 Transmitter software
6.5 Receiver

6.5.1 FIFO on receive
6.5.2 Search/lock strategy
6.5.3 Receiver software

6.6 Clock frequency effects
6.7 Data recovery
6.8 Conclusion

OiAPTER 7 System Performance & Experimental Results

7.1 Introduction
7.2 System performance

7.2.1 Acquisition time measurements
7.2.2 Bit error-rate measurements

7.3 Noise channel simulation
7.3.1 The microprocessor
7.3.2 Hardware description
7.3.3 Implementation

7.4 Experimental results
7.5 Conclusion

a-tAPTER 8 Conclusion

APPENJIX A References

APPENJIX B Program Listings

vi

ADC

A/D

AJ

ALU

BER

BPSK

CCD

CCP

CPE

CPU

CRT

CZT

DAC

D/A

OFT

DLL

DMA

FFT

FIFO

FIS

Gp

IC

I/O

LSB

LSI

m-sequence

MSI

Glossary of Terms

Analogue to Digital Converter

Analogue to Digital

Antijamming

Arithmetic Logic Unit

Bit Error Rate

Biphase Phase Shift Keying

Charge Coupled Device

Cyclic Convolution Property

Central Processing Element

Central Processing Unit

Chineese Remainder Theorem

Chirp-Z Transform

Digital to Analogue Converter

Digital to Analogue

Discrete Fourier Transform

Delay-Lock Loop

Direct Memory Access

Fast Fourier Transform

First Input First Output

Fixed Instruction Set

Process Gain of Spread Spectrum System

Integrated Circui t

Input/Output

Least Significant Bit

Large Scale Integration

Maximal Length Pseudonoise Sequence

Medium Scale Integration

vii

NTT

Po

PE

PIA

PN

PROM

PSK

QPSK

RAM

ROM

SIK

SAW

TDMA

veo

VLSI

WFTA

Number Theoretic Transform

Probability of Detection

Probability of Error

Peripheral Interface Adapter

Pseudo-Noise Sequence

Programmable Read Only Memory

Phase Shift Keying

Quadriphase Phase Shift Keying

1<.tt,,4'om Access Memory

I<(?",ci Only Memory

Sequence Inversion Keying

Surface Acoustic Wave

Time-Division Multiple Access

Voltage Controlled Oscillator

Very Large Scale Integration

Winograd Fourier Transform Algorithm

viii

D-fAPTER 1

Introduction

1.1 History

The spread spectrum technique has evolved from a desire by

communication system users to protect their messages against

detection by unauthorised users and provide reasonable immunity

to interference for the desired user. Spread spectrum is a means

of transmission in which the basic signal characteristics are:

(j) The carrier is a pseudonoise, wide-band signal.

(ii) The bandwidth of the carrier is much wider than the

minimum bandwidth required to transmit the information being

sent. As a minimum, a voice signal can be sent with amplitude

modulation (AM) in a bandwidth only twice that of the information

i tsel f. A spread spectrum system, on the other hand, has a

modulated signal bandwidth that is at least 10 to 100 times that

of the information bandwidth.

Cijj) Reception is achieved by crosscorrelation of the received

wide-band signal with a synchronously generated replica of the

wide-band carrier. This is used for despreading and subsequent

data recovery. Furthermore, in a spread spectrum system, the

information data rate does not dictate the bandwidth of the

modulated signal.

The concept of spread spectrum technology has been known

since Shannon's theorem (1) came to the light in 1940's. Costas

work in 1959 (2) indicates that the idea of employing coded

wide-band signals for communicating in the resence of noise

1-1

could be implemented in some systems. Golomb's work (3) in the

area of codes used in communication and pseudonoise generation

which was started in 1956 has offered a further recognition to

the field. The first high performance electronic correlator by

Lee which was decribed with other correlation techniques by Lange

(4) in the early 1960's, was the important step towards the

ability to mechanise the correlation operation precisely, which

is essential in building high-performance spread spectrum

systems. At that time, the initial application have been to

military antijamming (AJ) communications, to guidance systems and

other related applications which were employed with conventional

vacuum tube technology. The prime advances in spread spectrum

performance have come about primarily as a result of the

availability of solid state components. The advent of high

speed, high gain transistors in the 1960's gained the subject a

new area of applications such as the navigation (ranging and

direction finding) area and space exploration programs. Certain

investigations and systems were carried out, mainly in the United

States, during the 1960's and early 1970's (5)-(8), but were

largely abandoned in favour of satellite and satellite-aircraft

communicatons.

The recent advances in digital integrated circuits (lC)

technology and VLSI (very large scale integration)/LSI (large

scale integration) packages have enabled substantial reductions

to be made in both the size and the cost of communication

systems. At the same time, new analogue device developments, such

as surface acoustic wave (SAW) and charge coupled devices (CCD),

1-2

have been introduced. It seems only logical that spread spectrum

systems also benifit from such developments (9). On the other

hand, much work (l0), (11) has been performed in the area of

developing special "acquirable" codes which have the required

length for the system under question, but which also have

synchronisation properties (excellent autocorrelation and

crosscorrelation properties) that permit acquisition to be

searched out without traversing the entire code length.

Although the current application for spread spectrum

continue to be primarily for military communications, there is an

increasing interest in the use of this techniques such as for

mobile radio networks and some specialised applications in

satellites. Most recently they have been successfully applied to

multiple access situations involving many users simultaneously

(12).

At present there is a limited amount of information

(unclassified) in the published literature which outlines the

applications of the spread spectrum concept to a communication

system from an overall system viewpoint. The general details on

practical performance are few with isolated theoretical

investigations of some of the problems.

In this thesis we confine ourselves to principles related to

the applications of VLSI technology to the design and analysis of

those parts of a spread spectrum communications system concerned

with synchronisation acquisition and tracking. For this complete

transmi tter and receiver systems were developed using the latest

state-of-the-art technology, the bipolar bit-slice

1-3

microprocessors. It is shown that those parts of the receiver

which previously required large amounts of expensive analogue or

discrete equipment can be realised at lower cost and with

increased flexibility using all digital techniques.

1.2 Spread Spectrum Techniques

To illustrate the principle of a spread spectrum system the

block diagram of a transmitter and receiver is shown in Figure

(1.1). When viewed as a system composed of many sub-systems the

indi vidual uni ts of a spread spectrum system are in many ways

identical with sub-systems in conventional communication systems.

From a theoretical viewpoint there is no reason why analogue

waveforms should not be considered for bandwidth expansion in

spread spectrum systems. There are, however, constraints on the

desired correlation properties of spreading waveforms. In an

i deal spread spectrum system, waveforms with good autocorrelation

properties and orthogonality between the various waveforms are

desired. It is generally accepted that in practical systems the

best that can be achieved is waveforms which exhibit a two level

autocorrelation function and low values of crosscorrelation.

The study of binary sequences is comprehensive in the

literature (3), (10), (ll). It is mainly due to this, and the

ease of generation of maximal length pseudonoise sequences

(m-sequence) using shift registers, that digital spreading

waveforms are widely used. There are many techniques to achieve

spectrum spreading (6), these are;

(1) direct sequence modulat~~ :r

(2) frequency hopping

1-4

DATA
SOURCE cl) ..

MOD 2
AD[ER

,
a(t)

rate = fc

PSBJ [)()t.,oISE

CHANNEL
r-------,
I
I J

T' Ll
TO

01 GITL H CORRELATION L----DATA
CORRELA TOR DETECOR r--rRECOVERY

a(t)
~
" N(INTERFEREI\CE j

SEQUENCE ~--
PSEUDONaSE
SE~E "'~F----t

GENERATOR

spreaclng
sequence

GENERATOR

despreading
sequence

TRANSMITTER RECEIVER

FIGURE(tl) DIRECT SEQUENCE SPREAD SPECTRUM SYSTEM F~ TRANSMITTING
A BINARY DATA (BASEBAND).

(3) time hopping

(4) pulse-FM or chirp

In a direct sequence system (which is also called

PN-sequence), as shown in Figure (1.1), the data information is

combined with a high clock rate m-sequence before modulation on

the carrier, resulting in direct bandwidth expansion. Frequency

hopping (FH) has evolved from the idea that a good way to prevent

an unintended receiver from receiving a message, or to prevent

interference, is to move the carrier frequency of the information

signal in a pseudorandom manner. Instead of directly modulating

the carrier, the code sequence is used to swi tch the carrier

frequency in a pseudorandom manner. The synchronisation

acquisition in a frequency hopping scheme is faster due to a

larger duration of the hopping chip. However, this is a

disadvantage when the overall system requires any form of

accurate time of arrival measurements. The hardware requ ired to

implement such schemes is always far more complicated and

expensive to implement. Like frequency hopping, time hopping

systems control their transmission time and period from a

pseudonoise sequence. Time hopping is generally not used alone

but is always employed in conjunction with frequency hopping and

direct sequence methods to eliminate time dependent interference

or allow time-division multiple-access (TDMA) system. Unlike the

other spread spectrum systems, pulse-FM or chirp does not employ

m-sequences. The operation is based on pulse compression

achieved by frequency sweep at the transmitter and compression

using a dispersive matched filter at the receiver.

1-5

Hybrid spread spectrum systems are possible by combining

these basic techniques.

There are many advantages for spreading a signal's bandwidth

and then collapsing it through correlation with a stored

reference signal contained in the receiver:

(a) selecti ve addressing

(b) low power density signals

(c) inherent message privacy

(d) code division multiple user access

(e) high resolution ranging

(t) interference rejection

(g) possible operation with adverse transmission distortion

Ch) accurate universal timing

Sel ect i ve addressing is possible through the assignment of a

particular m-sequence (code) to a receiver. The low power

density of spread spectrum signals results from the wideband for

transmission and causes low interference to other users. The

coded format of spread spectrum systems offers privacy in

communication from the casual listener. The use of different

codes allows multiple users in a spread spectrum communication

system. The good correlation properties of m-sequences in

conjunction wi th the wide bandwidth used for transmission allow

accurate ranging of transmitter or receiver. The interference

re jection occurs as a result of the despreading necessary for the

operation of a spread spectrum receiver. In a particular system,

the ratio of spread or transmitted bandwidth to the rate of the

information sent is called the "process gain" (Gp) (7) of that

1-6

system. This factor is the measure of the interference rejection

in that system. The large bandwidth of spread spectrum systems

suggests that a form of frequency diversity is available in the

system which may combat distortions due to the transmission

medium. It should be noted that these advantages are not always

available and rely on reasonable synchronisation of the receiver

with respect to the transmitter.

1.3 Problems of Spread Spectrum Systems

Most of the problems discussed in this section are not

unique to spread spectrum systems. Some of them are associated

wi th communication via the propagation medium. The object is to

provide an appreciation of the general problems relevant to the

subsequent practical limi tations in spread spectrum receiver

system. The main problems are:

(1) Interference and noise

(2) Distortion due to the transmission medium

(3) Synchronisation problems

(4) Practical implementation problems

These problems are of equal concern in that; either they

corrupt the received data or they affect the system performance.

Interference and noise in spread spectrum systems are a result

of:

(1) Interference due to other spread spectrum users; this is

increases as more users utilise the same RF band. It is required

to devise orthogonal spreading functions for the numerous users

using the same frequency band.

(2) Interference due to the geometry of links; in certain

1-1

instants an interfering transmitter may be closer to a receiver

than the desired transmitter. In this situation the wanted

signal will be received in a high level of interference.

known as the "near-far" problem.

This is

(3) Interference from conventional radio systems; to a

considerable extent a spread spectrum system has the ability to

reject interference from narrowband systems. This is possible

within the jamming margin of the spread spectrum. The jamming

margin is the power level above the spread spectrum signal that a

narrowband interferer can be discriminated against, for a desired

output signal to noise ratio, including implementation losses

(7).

(4) Man-made impulsive noise; this is produced from machinary,

fluorescent lights, power switching appliances etc.

(5) Atmospheric and receiver noise; this may need consideration

as in a conventional receiver system, depending on the frequency

band of interest.

Distortions due to the transmission medium, on the other

hand, are dependent on the propagation mechanisms of radio waves

in a known environment.

1.4 Synchronisation Problems

The problem of synchronisation is of major concern in the

design and implementation of spread spectrum systems. This is

because the interference rejection capabilities rely on adequate

synchronisation of the spreading and despreading waveforms. By

synchronisation we mean that, the signal seen by the receiver

must be precisely correlated in time with a locally generated

1-8

reference signal.

The main sources of uncertainty, with respect to

synchronisation, in spread spectrum systems are those that are

ti me or frequency dependent. Time uncertainty includes any

propagation time delay due to unknown range. Frequency

uncertainty is due to the instability of the frequency sources

used in both transmitter and receiver. Code, phase, and carrier

frequency are the frequency uncertainty. Doppler-related

frequency errors often cannot be predicted and may ¥ affect both

code rate and carrier frequency. Another consequence of

frequency uncertainty may also exist, any clock rate offset is

accumulated in code phase offset. These factors lead to a

degradation of the synchronisation performance because; (j) not

all main correlation peaks are detected, i.e., the detection

probability PO' and (in false set impulses occur, as false

alarms are generated at instants at which correlation subpeaks

are above a certain threshold away from the main peaks.

The time required for achieving synchronisation between

transmitting and receiving units has become the major factor

1 imi ting usage of spread spectrum systems. Reduction of

synchronisation time is limited by the maximum search rate a

receiving unit is capable of achieving and the length of the

m-sequence to be used. Maximum search rate, is limited by the

recognition time of the receiver's correlation detection

circuits. The receiver must be able to recognise correlation and

stop the search process before the point of code synchronisation

is passed. This requires that the bandwidth of the correlation

1-9

detectors must be commensurate with the autcorrelation

requirements of the m-sequence used.

The synchronisation process is generally separated into two

phases, initial synchronisation and tracking. The initial

synchronisation phase determines the timing of an incoming signal

and brings the receiver into initial alignment, the tracking

phase holds it in alignment. Initial synchronisation is

frequently achieved by means of a single synchronisation preamble

at the beginning of each transmission. The structure of the

preamble is known to all users, and is usually fixed. An

alternative is to intersperse synchronising signals within the

structure of the transmission, so that receipt of the beginning

of the transmission is not necessary to achieve synchronisation

and recei vers which lose synchronisation during the transmission

can reacquire. For security reasons and ease of implementation

the transmitting signal itself can be used to achieve initial

acquisition. Tracking is generally accomplished by a feedback

loop which adjusts the receiver's time base to track the incoming

signal.

Most of these synchronisation methods, especially for low

data rate systems, have been performed using digital techniques

(5). The advent of analogue SAW devices and CCD technology has

led to synchronisation schemes with fast acquisition

characteristics. These are mainly used for very high data rate

systems (13)-(15).

1-10

1.5 Practical Implementation Problems

The code sequences that are used for spectrum spreading must

fulfill two criteria; (0 denying any information about future

sequence k-tuples to the unintended user, and (ii) permitting

practical implementation, including convenient code changes.

Sometimes it is desirable for the sequence autocorrelation

behaviour to have a high peak-to-sidelobe ratio, for acquisition

synchronisation purposes. It is also desirable that the code

sequence has a proper k-tuple statistics. Practical and

effecient implementation techniques for PN sequences centre

around use of shift-registers (3). High speed shift register

i mpl ementation has been improved over the years from the use, in

1959, of large lumped-constant delay networks to present use of

integrated circuits. A special LSI/MSI packages capable of

operation at bi t rates in excess of more than 300 Mbps has been

de vel oped especially for code sequence generation in spread

spectrum systems. Increasing the code rate requires a

significant improvement in the speed of integrated circuit

technology. On the other hand, high speed logic circuits tend

toward noise sensitivity and are more susceptible to error. This

reason, in addition to the problems of spectrum occupancy, system

synchronisation, and propagation constra ints tend to limit the

code rates used for spectrum spreading, and hence to improve

system process gain.

In principle, it is possible for spread spectrum receivers

to use matched fit ter or correlator structures to synchronise to

the incoming signal. Sliding correlator (7) and sequential

1-11

estimation (16) methods have been used for acquisition which

employ techniques to bring the transmitter and receiver code

sequences into a range in which digital correlator or matched

filter may be used. A time-complexity tradeoff exists. While

using a bank of correlator or matched filters provides a means

for rapid acquisition, a considerable reduction in complexity,

size, and receiver cost can be achieved by using a single

correlator or a single matched filter. However, these reductions

are paid for by the increased acquisition time needed when

performing a serial rather than a parallel operation. One

obvious practical implementation problem is therefore the

determination of the tradeoff between the number of parallel

correlators (or matched filters) used and the cost and time to

acquire. It is important to note that this tradeoff may become a

major point, recently, as a result of the rapidly advancing VLSI

technology.

Practical system considerations such as those encountered

when operating at, HF, VHF, or UHF, and technology

considerations, such as the role of surface acoustic wave devices

and charge-coupled devices in the design of spread spectrum

systems are not included in this work.

1.6 Bit-Slice Microprocessors and Spread Spectrum Systems

Microprocessors are one of the most significant products of

VLSI technology previously mentioned. It is a monolithic device

which can be obtained at low cost and which may be made to

perform a wide range of instructions. The microprocessor system

is configured such that it may perform most of the digital signal

1-12

processing tasks by appropriate choice of a sequence of

instructions, 'software', stored in a read-only memory (ROM)

space. Under the user control, the microprocessor may access the

stored instructions and executes them sequentially. A

microprocessor system may be made adaptive by determinig that the

order of execution of the instruction sequence is dependent on

previous and/or present events. Because these devices are

fabricated using MOS technologies, the instruction execution time

is relatively long. In addition, their word length is limited

and instructions are fixed. The inflexibility might prevent

their use in applications where high speed or special

instructions are essential.

A bit-slice microprocessor is a bipolar device which is

designed to achieve high performance, flexible instruction

format, and much longer word lengths. It is configured such that

its control should be microprogrammed. A set of programmable

read-only memory (PROM) or ROM are used to store the program

instructions or 'microinstructions' which supervises the central

processing uni t (CPU) and the other auxiliary logic circui ts.

The CPU is where data is processed and it consists of one or more

bit-slice microprocessors connected in cascade. A program

counter may be used to access the stored microinstructions which

are executed sequentially or in adaptive order. Usually the

microinstruction is a dedicated user design.

This thesis describes the applications of bit-slice

microprocessors to synchronisation and other aspects of digital

spread spectrum communication systems.

1-13

The next chapter describes the different digital correlation

techniques to be implemented with the aid of a microprocessor,

and the implementation of other discrete-time signal processsing

techniques which are used in subsequent chapters in this thesis.

Chapter 3 describes the hardware configuration of the

bit-slice microprocessor system, based on the 2901 bit-slice

devices, that has been used in the subsequent chapters.

Chapter 4 continues the description of the microinstruction

design of the system and introduces timing considerations. It

describes the microprogram support tools; special assembler,

software simulator, and other development and test equipments.

Chapter 5 discusses the analysis and implementation, in both

software and hardware, of the functions which are concerned with

direct sequence spread spectrum systems.

Chapter 6 describes how the 2901 microprocessor can be

appl i ed to perform the signal processing for the spreading,

synchronising, and despreading of the transmitter and the

receiver.

The ideas and results obtained from previous chapters in

this thesis were combined in chapter 7 to discuss the performance

of the receiving system in the presence of a channel noise

simulator process. Formulas for estimating the synchronisation

time have been given and results obtained using the equipment

which was previously described are discussed.

1-14

1.1 Conclusion

Although the current applications for spread spectrum

techniques continue to be primarily for military communications,

there is a growing interest, during the last decade, in the use

of these techniques for other commercial applications such as

mobile radio networks, code division mUltiple access, and timing

and posi tioning systems.

The problems associated with implementing this technique in

data communications systems are considerable because of the cost,

complexity, and the constraints on the information. Most of

these problems are related to the technology to be used and the

applications under question. One of the main tasks, which can be

all digital, to be accomplished at the receiving end of a spread

spectrum system is the synchronisation of the pseudo noise signal

generated locally at the receiver with the pseudonoise signal

contained in the recei ved signal. This synchronisation process

must be achieved in minimum time which requires high speed

digital circuitry.

With the advent of microprocessors a relatively cheap and

powerful digital signal processor has now become available.

These microprocessors are well suited to communication systems

which require adaptability since they are cheaper than analogue

processing methods and take up less space.

This thesis describes the applications of these devices to

synchronisation process and other digital signal processing

requirements which are related to the present communication

1-15

systems. It shows that considerable savings in cost and hardware

requirements may be made by using a primarily software-based

approach to system design.

1-16

D-lAPTER 2

Digital Correlation Techniques Using Microprocessors

2.1 Introduction

Correlation techniques have been widely used in signal

processing systems such as spread spectrum communications, radar,

and others. In all these systems correlation must be performed

in real-time, requiring the use of electronic circuits that are

compatible with the system in question. Electronic systems that

perform correlation have been around for years, but they have

been bulky and inefficient. The development of VLSI and

m icroprocessors ha ve changed this; now correlation can be

performed efficiently with a minimum number of components (17).

A digital correlation circuit should be able to achieve the three

functions of correlation: time delay, multiplications, and

summation, respectively. In binary correlation, on the other

hand, the shift register, the exclusive NOR gates, and the summer

fulfill the three functions.

A microprocessor has been found to be efficient in

implementing digital correlation signal processing, especially

for low rate signals. Recent work of Cooley, Tukey (18), (19),

Winograd (20), (21), Agarwal, and Burrus (22), (23) has been

devoted to minimising the requirement of multiplications in

convolution and correlation algorithms to be implementd using

microprocessors, because multiplication cannot be performed

efficiently by microprocessors.

2-1

Many of the correlation signal processing requirements of

spread spectrum communications systems may be realised using high

speed digi tal techniques. Spread spectrum bandwidth must be

large to obtain significant performance improvement. This means

that the sequence rate must be fast and very fast microprocessors

will be required when they are used to perform spread spectrum

correlations. This is one of the reasons that the bit-slice

technology is very attractive in this application.

This chapter introduces the different digital correlation

techniques to be implemented with the aid of microprocessors.

Digital correlation plays an important role in the analysis, the

design, and the implementation of digital signal processing

systems concerned with spread spectrum systems and is used in

several of the parts described in following chapters. Software

implementation of efficient algorithms for the computation of

digi tal correlation is investigated. The possibility of applying

the other alternative, binary correlation, using the bit-slice

technology is also presented. The theory and hardware

construction of a real-time spectral analyser based on the most

rece n t charge coupled devices (CCD) technology is also included.

2.2 Digital Correlation

It is well known that when a received spread spectrum signal

r(t) is the transmitted signal set) corrupted by additive white

Gaussian noise, net), the optimal receiver is a correlator

receiver which computes correlation according to the equation

2-2

T
C(l) = l/T 1 rCt)s(t + l) dt

o
(2.1)

where cC l) represents the crosscorrelation between the received

signal and a replica of the transmitted signal. In many spread

spectrum communications systems, the signal set) is a pseudonoise

(PN) sequence.

In general, correlation between two functions is a measure

of their similarity, i.e., it is a comparison process. Equation

(2.1) is determined by multiplying the received signal r(t), by

the transmitted signal shifted in time, S(t+T), and then taking

the integral of the product. Thus correlation involves time

shifting, multiplication, and integration. The correlation of a

function set) with a time-delayed replica of itself is called

autocorrelation.

Digital signal processing requires functions to be

represented in discrete form, where the time scale and amplitude

are quantised into discrete steps. The PN spread spectrum

receiver, when implemented digitally, performs the correlation

function as follows:

N-l
c(nT) = I/N I rCiT)s((i+n)T) n=O,I, ••••. N-l (2.2)

i=O

where the original time functions are approximated by sequences

of length N. The N selected will depend on the durations of the

two functions and of their sampled portions, and on their

periodicities (if any). One guide often used in determining the

sampling rate 'TO' is the sampling theorem which states that an

input signal with a highest frequency component of 'f can be

2-3

recovered wi thout distortion using a sampling frequency 2f (24).

A sampling rate (which is also known as Nyquist sampling rate) of

2f or greater will therefore minimise the likelihood that

analogue information is being lost in the quantising process.

A microprocessor may /p.e perform correlation, operating

according to the discrete summation equation (2.2). Successive

samples of an input voltage waveforms can be collected using an

analogue-to-digi tal (A/D) converter. These data samples can

either be put through some interface (input/output (I/O) ports or

perhaps a peripheral interface adapter (PIA» and sent to the

microprocessor, or they can be stored in read access memory RAM

directly by using each successive "conversion done" output of the

analogue to digital converter (ADC) to initiate a direct memory

access (DMA) cycle. After all the desired samples have

collected, the data can be processed. For a fixed data record,

the memory information is held for N complete recirculations

before being replaced by a new record. With a varying input

signal, after each recirculation the oldest memory sample is

replaced by a new input sample. Since all the data samples are

available for subsequent processing, multiplying each sample of

the recirculating data with a fast reference signal and summing

over N samples provides one point of the correlation function.

Further points are obtained on successive recirculation. This

method requires 2N memory space locations, N multiplications and

N addi tions for each term of the correlation. If all terms of

correlation function were desired, N2 multiplications plus N
2

additions would be required. In a microprocessor system which

2-4

does not contain a hardware mul tiplier or employing a single

hardware multiplier (rather than a bank of external multipliers)

the mul tiplication operation can take up to 300 microseconds

(u.sec). As a result of adopting this method, the signal

bandwidth will be very limited.

2.3 Transform Analysis

Certain transforms possess the cyclic-convolution property

(CCP) which may be stated as; the transform of cyclic convolution

of two sequences is equal to the product of their transform.

Transforms with the discrete Fourier transform (OFT) structure

possess the CCP. Such transforms can be applied to the discrete

correlation transform pair theorem (25) which stated as,

N-l
c(n) = i~ r(i).s(n+ i) n=O,l, ••• N-l

and
* C(k) = R (k) x S(k) k=O,l, ••• N-l (2.3)

are transform pair, where 'x' denotes pointwise multiplication.

This implies that a correlation can be calculated by

c(n) = T-1 (R * (k) x S(k» (2.4)

using two transforms, N multiplications, and one inverse

transform. While the direct calculation of correlation according

to the defining equation (2.2) would require a number of complex

2
multiplications and additions proportional to N , use of such

transforms have been able to reduce this number tremendously.

F BSt F ourier Transform (FFn Correlation

Fast Fourier transform (FFT) is an algorithm for efficiently

computing the discrete Fourier transform (OFT) of a finite length

sequence. The development and the computation aspects of the FFT

algorithm have taken a great stride since the Cooley-Tukey

algorithm appeared in 1965 (18). The FFT derivation will not be

discussed here (24), only technique for using the FFT for high

speed correlation computation.

To apply the FFT to the computation of equation (2.2), N may
v

be chosen to fulfill the required transform length, N=2. If the

data sequence length is less than N, zeros are appended to r(n)

and s(n) to eliminate the overlap or end effects. According to

equation (2.4), we compute the following;

Compute the OFT of r(n) and s(n) using the FFT algorithm:

N-l
R(k) = k rCn) W

nk
k=O,I, ••• (N-l) (2.5)

N-l
S(k) = n~ sCn) W

nk (2.6)

* Change the sign of the imaginary part of R(k) to obtain R (k).

Compute the product;

* C(k) = R (k) x 5(k) (2.7)

Compute the inverse transform using the forward transform;

N-l
c(n) = N-1 [C*(k)W-nk (2.8)

k=O

where W = e-j2 " IN.

From the computation time point of view, the use of FFT

correlation technique would require a time proportional to

(3.(N/2)logN + N), complex multiplications, when N is a power of

2. It is generally faster to use this technique to compute

digi tal correlation rather than computing equation (2.2)

directly. Exactly how much faster the FFT approach is than the

direct method depends on the microprocessor being employed and

the extra supported hardware (i.e., single or parallel-processing

scheme with either software or hardware multiplier). It should

be noted that the efficient computation of correlation using FFT

algorithm involves intermediate quantities, i.e., stored or

generated sines and cosines, which are irrational numbers, so

making exact results without roundoff errors is impossible on a

microprocessor.

In 1975, Winograd (20) developed a new algorithm for

computing short length OFT's known as the Winograd Fourier

transform algori thm (WFT A). This algori thm uses fewer

multiplications than the FFT, and about the same number of

addi tions (26).

Correlation using Number Theoretic Transforms

Since 1972, Rader (27), Agarwal and Burrus (22), (28) have

developed many transforms with the OFT structure (i.e. FFT and

WFT A algorithms can be applied) which can be used for fast and

exact calculation of finite digital convolution or correlation,

and do not require storage of basis functions (sines and

cosines). These transforms are collectively known as number

theoretic transforms (NTT's), that are ideally compatable with

microprocessors. In these transforms an integer 'a' of order N

replaces W = exp(-j2 TT IN) used in the DFT, and both 'a' and N are

defined on finite fields and rings of integers with all the

arithmetic operations to be carried out modulo an integer M, e.g.

if we have a sequence of length N, x(n) with modulo M we define

the NTT of this sequence as:

N-1
X(k) = ~ x(n) a,nk mod (M) k=O,1, ••• N-1

n=O

and by analogy to DFT, the inverse NTT is;

N-1
() -1 ~ -nk x n = N L X(k) et mod (M) n=O,1, ... N-1

k=O

where the modulus, M, and the sequence length, N, have no common

factors and where N is a divisor of G(M) (the number of prime

integers in M). ex is chosen to be mutually prime to M and to

have order N (22), (27), (28), These NTT's are truly digital

transforms, taking into account the quantisation in amplitude and

the finite precesion of digital signals.

Microprocessors are becoming available with fast-multiply

instructions, and for these that do not have this facility, fast

hardware multiplier chips are available which allowing non-simple

moduli and a's and so many NTT's become practicable for

microprocessor implementation (29). The main disadvantage of

these transforms is that there is a relation between the sequence

length N and the required word length that can require long word

lengths for long sequence lengths.

2-8

2.3.1 Correlation Using Rectangular Transforms

Agrawal and Cooley (23) have derived a very efficient short

term convolution algori thms (N=2,3, ,9) based on the recent

work of Winograd (26), which can be used to generate a very

useful tool to compute digital correlation. The new technique

which was derived is called the rectangular transform technique.

Like the FFT method, it significantly reduces the number of

multiplications relative to the N2 multiplies of the direct

method. The authors have described a method, by which long length

convolutions can be derived using two or more shorter

convolutions, known as multidimensional convolutions. As an

example, the derivation of a two-factor algorithm for cyclic N=15

correlation will be given here, according to this rectangular

transformation technique.

Consider, in this example (to avoid any misleading due to

symbol variations), that the correlation equation is

i=O,1, ••••• ,14

and let each of the vectors H, X contains the sequence elements

h. and xi' and the vector y contains the correlation sequence
J

y i· It should be noted that if the discussion in this section

will be carried out on the discrete convolution equation only the

h. indices are needed to be taken in the backward direction to
J

represent the discrete correlation equation.

Let N >' be a composite number with mutually prime factor,

N=r 1 .r 2 , where r 1 =5 and r 2=3. By using the Chineese

2-9

7

Remainder Theorem (CRT) (23) to define the one-ta-one mapping;

i.e.,

(2.9)

where Ql and Q2 are given by

and

one would obtain

Ql = 2 and Q2 = 2

substituting Ql and Q2 in equation (2.9), we get

i = 6i1 + lOi2 mod (15) (2.10)

Table (2.1) illustrates how the index

i2

0 1 2

0 0 10 5
1 6 1 11

i1 2 12 7 2
3 3 13 8
4 9 4 14

Table(2.1) Correspondence between one-and two-dimensional
indexing in the prime factor algorithm for the case

i1 =5, i2=3 and N=15.

2-10

Let Yi' hi' and xi' respectively be indexed by the index

pair Ci l ,i 2) as shown in table (2.1).

algorithm can be represented, in this case, as

The two-dimensional

2 4

Yil'i2 = L Lhil +kl,i2+k2 Xkl k2

k2=O kl=O

(2.11)

In vector-matrix notation equation (2.11) may be written as

(2.12)

The notation A3ASH means that, one computes the transform

AS of the columns of H ; that is, each column contains

5-elements which can be computed using an optimal algorithm (23)

of length N=5, the result is a rectangular array of lOx3.

Similarly A3 denotes a rectangular transformation of length 3.

The final resul t is then a rectangular transform of lOx4. The

notation B3BSX means that, one computes the transform B5 of

the columns of X and then the transformation B3 of the rows of

the resul t. Thi swill gi ve a rectangular array of lOx4. The

element by element multiplication is also a rectangular array of

lOx4. In the same way the operator C 3 reduces the

dimensionality, in reverse order, on the array on which it

operates; that is, it transforms the lOx4 array to lOx3, and the

operator Cs transforms the lOx3 array to 5x3 array whose

elements are the sequences y. . •
11'12

By applying the inverse

CRT, this will yields the one-dimensional correlation of length

15. The above algorithm can be summarised in the flowchart shown

in Figure (2.1).

2-11

(START)

, r

H:hO), i : 0, ', N -,
X=x(i), i:O,l, N-l

1

initiaUs ation
Y:Y.=O, i=O,l, N-l

I

apply eRT

i = ~'\~. ~ ~i2 mod N

hO"i2) = h(i)

x (~ , i
2

) = x (i)

compute
A,H.B,X

of the columns

compute
~(A,H), ~(~X)

of the rows

,
compute

~ C2(~Bl X) . (~A1H)

apply the inverse eRT

y(i) = y(i,.i2>

FIGURE(2.1) TWO DIMENSIONAL RECTANGULAR TRANSFORM
FLOWCHART.

The rectangular transform approach is applicable for both

real and modular arithmetic, depending upon the sort of the

transform which is used in each dimension. In most cases the h.
1

sequences represent a reference signal and remain fixed for many

blocks of the x i sequence, the received signal.

can be precomputed and used many times.

Therefore, A.H

2.4 Implementations

Two methods for implementing the digital correlation using

the direct technique and the rectangular transformation algorithm

were investigated in software using the FORTH programming

technique (30), (31):

en implementation using Intel-8080 microprocessor system,

(ii) implementation using TMS9900 microcomputer.

2.4.1 Implementation Using an Intel-80BO microprocessor system

The Intel-8080 microprocessor system (32) which was used is

an 8-bit microprocessor with some instructions which operate on

16-bit data. The 8080 system has an instruction cycle about 2

u.sec, it does not contain multiply or divide instructions, and

these functions must be performed using software which takes

about 250 u.sec. Since it is capable of performing 16-bit

arithmetic, the FORTH programming technique was used. This

perm i t8 the routines to be made very flexible and efficient. In

performing arithmetic with reasonably complex expressions it is

convenient to use reverse Polish Notation (33) (as in FORTH)

which requires a stack to store temporary variables and to pass

arguments. Such a stack need not be large, but there should be a

reasonable set of instructions for transfering and manipulating

2-12

data in conjunction with it, which was available in the

Intel-8080 system. FORTH programming is a very efficient

technique, since it is an interactive, high level language

compact with high speed performance that was suitable to use on

the system. However, it was very attractive because the other

al ternati ves, 8080 cross-assembler or any other high level

language interpreter, were not readily available at that time.

An 8-bit ADC (Ferranti ZN425E type) was used to convert the

analogue signals into sequence as shown in the system block

diagram of Figure (2.2). In operation a 'start conversion'

signal, a negative going pulse of at least 500 nanoseconds

(n.sec) duration, was sent to the ADC from the microprocessor.

The conversion takes a finite time and only when it is complete

can the digital output be read. The converter produces a

'status' signal, whi ch when high informs the microprocessor that
i~

a conversion is in progress, and when the data I valid informs the
,'\

microprocessor that the converter's output latches ~in valid C:-- ~"" !(?_\h

data. One output port and two input ports were required in this

case.

A simple digital-ta-analogue converter (DAC) is incorporated

in the Ferranti ZN425E chip. This was used to display the output

using an oscilloscope. Two output ports were necessary, in this

case, one for the converter data (8-bit) and the other for the

'load' pulse.

Real-time correlation programs were written for an

Intel-8080 using FORTH programming language, in which two special

2-13

source(1)

source(2)

ANALOGUE

- }:----I
I
I
I
I
I
I
I

- }.-~
I

I
I

ADC

STATUS

CONVERT

ADC

DIGITAL

8080
WITH

FORTH

I . I
L __ ST~I!T ____ • _____ -1

ANALOGUE

OAC

~_AD_~ __ ...J

FIGURE(2.2) BLOCK DIAGRAM OF THE CORRELATION MEASUREMENTS
SYS rEM USING INTEL 8080 MICROPROCESSOR.

operations were developed in order to keep the correlation

computation accurate. These are; a 16-bit by 16-bit multiply and

di vide the result (32-bit) by a 16-bit number, and the second is

a routine to store the summation of the multiplication of two

sequences. A complete list of the FORTH programs on the 8080

system is shown in the listing of programs in Appendix B. The

correlation function scaling was necessary in order to get a

resolution of a-bits. The execution time for an example

requiring 100 correlation points using the direct technique was

estimated to be about 4.5 seconds. Hence the speed is important

in this application, even using the low level feature (assembly)

of FORTH language, the system was impractically slow.

2.4.2 Correlation on TMS9900 microcomputer

The TMS9900 microcomputer is an efficient 16-bit machine

(34), since it includes the capabilities offered by a full

minicomputer. Its powerful instruction set including multiply and

di vide providing the possibility of computing correlation using

fast transformation algorithms, such as the rectangular

transforms, in short execution time. In addition, it is highly

compatible with the FORTH programming technique, especially since

during that time there was no cross-assembler for the 9900 system

available. The main block diagram which was used is similar to

that of Figure (2.2), except that the 8080 system was replaced by

9900 system. A program was written using the FORTH programming

technique to compute 100 equally spaced correlation points using

the direct method. Each point required two memory words to have

sufficiently accurate results. The approximate speed of the

2-14

execution was estimated (excluding the input/output overhead

time) by determining the total instruction-execution time. This

time was found to be approximatly 1 second.

When computing a 15 point correlation by using the

rectangular transforms, (note that 16-bit modular operations was

used) according to the flow-chart of Figure (2.1), it was found

that the execution time is about 15 milliseconds (m.sec).

Although there was a great improvements of the execution time

when using the TMS9900, the overall requirements cannot be

fulfilled by using a single microprocessor system implemented

using software only. However, it was envisaged that using binary

correlation implemented with the aid of fast bipolar bit-slice

technology would fulfill the speed required.

2.5 Binary Correlation

In contrast to general-purpose microprocessors, bit-slice

microprocessors (35) can be dedicated to the execution of a

special task, for which they may j)'l then prove very efficient.

This procedure is especially powerful in combination with

microprogramming. The bit-sliced processors are microprogrammed

devices that can be realised with two basic types of devices:

cascadable bit-slices with the arithmetic/logic unit and the

register file on one hand, and a microprogram control memory,

which may be arranged to constitute a microprocessor with almost

any instruction set, on the other. This gives us the possibility

of writing the required algorithms as close as possible to their

hardware realisation and to get very high performance but with a

'hard-ta-write' microprogram.

2-15

7

An alternative digital correlator using such a bit-slice

processor was implemented, which demonstrates the feasibility of

using bit-slice microprocessors for digital spread spectrum

signal processing. In contrast to the previous methods, the

realised processor was tailored for this application, which it

therefore fulfills very efficiently. The received signal is

normally a binary modulated sequence on which the information was

embedded. Therefore, equation (2.2) simply implies a comparison

process between the respective bits in the received sequence,

rei), and the shifted stored sequence, s(i+n). The number of

agreement bits can be obtained by an exclusive-NOR operation and

a Hamming weight function generator, whose outputs are summed.

So, the main three operations in the correlation process are

replaced by shifter, exclusive-NOR, and summer operations which

were implemented at very high speed using the bit-slice approach.

Thus for a digi tal correlator to be effective in this application

it must be expandable to accomodate variations in the sequence

length. The next chapter will introduce the bit-slice

microprocessor chosen for the subsequent work in this thesis.

2.6 Real-time Power Spectral Density

In spread spectrum communication it is desirable to

determine the spectral content of signals in real-time. It is

very expensive to do this on general-purpose microprocessors, and

only special array processors can provide the required digital

computing power. However, analogue circuit technology, such as

charge-coulped devices, have been widely used in such cases. An

evaluation module containing the Reticon R5601 quad chirped

2-16

transversal filter (36) was available, which included additional

ci rcui try necessary to compute the power spectrum of an analogue

input signal by 'the Chirp-z transform algorithm (37). Simply,

the device and interface system form a discrete-time spectrum

analyser, selecting and outputing the magnitude and frequencies

of the spectral components of an analogue input signal. The

analysis band in the normal situation extends from zero to the

Nyqui st frequency (one-hal f the sample frequency). A mirror

image also appears extending from the sample frequency

(equivalent to dc) down to the Nyquist frequency. The resolution

bandwidth in general is approximately (1/512) of the sample

frequency. The overall performance is limited to obtaining the

power spectral densi ty and to a maximum sample rate of 200 KHz.

2.6.1 Chirp-Z Transform Algorithm

In 1969, Rabiner and Schafer (37) derived an algorithm for

evaluating the OFT, which was called the "chirp-z" transform

(CZT), in which the bulk of the computation is performed in a

chirp transversal filter, and for this reason it is particularly

attractive for CCO implementation (38). When implemented

digi tally, the CZT has no advantages over the conventional FFT

algori thm (39).

The CZT algorithm can be derived by starting with the

definition of the OFT

X(k)
~1 () _ j2rrnk/N

= L x ne k=O,l, ••• N-l

n=O

where ei ther or both x(n) and X(k) may be complex.

2-17

Using the substitution

2nk = n2 + k2 _ (n_k)2

the following equation results:

N-1

X(k) = e -j2TTk
2

IN L (x(n)e _jrrn
2

IN) ejTr(k-n)2 IN

n=O

N-1

_jrrk2/N ~ () _jTr(k_n)2 IN
= e L..tg ne (2.13)

n=O

Equation (2.13) represents the CZT. Three operations are

required

(i) Multiply each term, x(n), by the complex factor,

exp(-jrrn2/N) to produce a new sequence g(n).

(ij) Perform a discrete convolution between the sequence g(n)

and the sequence expOTTn2 IN).

(iii) Multiply the resulting output sequence by the factor

exp(-jrrk2 IN) for each point of X(k).

The CZT gets its name from the fact that; the sequences

exp(-jTTn2 /N) and exp(-jTTk2/N) can be thought of as complex

exponential sequences wi th linearly increasing frequency. Such

signals are called "chirp" (linear FM) signals.

2.6.2 Hardware Implementation

The above discussion shows that the CZT algorithm involves

three stages of computation: pre-multiplication, convolution, and

2-1B

post-mul tiplica tion. The block diagram of a complete transform

based on the eZT algorithm of equation (2.13) is shown in Figure

(2.3). Pre-multiplication is accomplished by the multipliers to

the left in Figure (Z.3) and post-multiplication by those on the

right. The major computing task is the convolution portion; this

task is performed by the Reticon R560l quad chirped transversal

fil ter (36). This device contains two separate 512-stage MOS

charge-coupled devices which are used to implement four

transversal filters using a split-electrode technique (40). The

f il ter weighting coefficients and internal circui t connections

are configured so that the device, in conjunction with additional

off-chip components, can implement the eZT algorithm to calculate

a 512-point OFT (38), (41).

The evaluation module which contained the R56Dl device can

be used to compute the power spectrum of an analogue signal. No

phase information is obtainable with this module, as the

post-multiplier unit is replaced with a hypotenuse function which

recovers the spectral amplitude from the component cosine and

sine terms. From equation (2.13), the squared spectral amplitude

of a sequence x(n) can be expressed as

N-l

X(k) = L x(n)e -j TT n
Z
IN ~ TT (k_n)2 IN (2.14)

n=O

The final phase multiplier term, has been deleted

because it has unit magnitude and so does not affect the

amplitude. The input data is stepped each time a new spectral

component is calculated. Equation (2.14) then becomes:

2-19

Cos 7Tn
2

N

7Tn 2
COS-

N

PREMULTIPLlER

I--~--I

I ,j Cos 7T~2 L I ,---.00

I
Sin 7T.r:'2

()2

Sin~2 .
N

I
()2

I Cos 7T~2 I b

L--____ J

CONVOLUTION FILTER
(R5601)

SQUARING FUNCTION
(FOR SPECTRAL DENSITY)

o 0 " ,

IF 12 . 7Tk2
k -Sin-

N

bo • (

. ~2
7Tk Cos-­

N

POST MULTIPLIER
(FOR FOURIER COEFFICIENTS)

FIGURE(2.3) BLOCK DIAGRAM OF THE CHIRP-Z TRANSFORM ALGORlTHM.

N-1

Xs(k) = L x(n+k)e -jrrn
2

/N e -jrr(k-n)2/N

n=O

The notation Xs(k) indicates a "sliding" CZT.

A further simplification in implementation is possible if

the input is purely real, as it is in this case. The imaginary

input is always zero so that two of the input multipliers may be

deleted and the input circuit simplified.

A block diagram of the evaluation module is shown in Figure

(2.4). The analogue (real) input signal is buffered and

converted to discrete-time samples by the input sample-and-hold,

then split into the direct and quadrature (real and imaginary)

channels. The sample values are multiplied by the appropriate

chirped waveform using mUltiplying digital-to-analogue

converters. The digital inputs to these converters are derived

from two 512-by-B bit RaMs which contain the sampled chirped sine

and cosine waveforms. The sampled analogue products are then

used for the input to the R560l four-channel convolution filter.

Outputs from the filter are sampled and held to give time

coincidence of all outputs, and then combined on an rms basis to

give the spectral density of the input waveform.

F our clock phases are required by the filter device to

propagate the discrete signal packets through the CCD channels.

These are designated <PI - 4>4 and are generated by a

multi-phase clock generator circuit incorporated in the

evaluation module which may be driven either from a 1.6 MHz

2-20

r "". M""W,-,CATION -I' ,",,"'WT''''T .

, ... ~u.,. 'SAMPLt;

ANt:> ~OLO

E")\T
_ :!"1U6~!~_c.n ICLOCK

IWt-"",. ~

,,.. SYNC tn
I

OUT S'YWc. 'H'--E~

): EDGE CONNECTOR
PIN NUMBER

r------,
J &, ... , 1
I""" -"'VI.. """'-le" I

1

I
1

1

1

r- ---------
1 <h SIG"-JAL
I O;:X.'R.AC"TION
I AMP

J ctJ!>

lA
1

1

~" I I I
.;1...1 ...L-~4-1 ___ I-+H RSe.C\

D~VIC.&

r------, I lQUAt:>

'T'"~T "'\""T!;.n,\
I 1 1 -.: 1-1 -i-T-,--i

") i J!, I I -I 1 I
1 L _____ -.l 1

1 -'So" 1 U
1 ~\O'!o 1 , et>
~--.;: (""''T ~~\, '

, -q" SIG"-IAL

I, 'i'::X"T~AC"'r\Ot-J
AMP L ________ _ '-_____ .J

-=-

DIGITAL BOARD

--- COM&IN""\\ot-l ~ • \
'W EIC2t1TlNGt

l
1 1
1 -I
1 I

"T .. ~I I
1 1
1 1
1 1

~(4'
~

,,"\.P'''- ,,'
OVT"VT

1 I I
,., A~'SOLU"l"~ 1 , HYPOTE:~US'C
1 VALU'C- , I FUNCT ION
1 AMPL\;:I~R. 'I L ______ ~ ~ __________ _

-'!W ANALOG
BOARD

FrGURE.(2.4) BLOCK DIAGRAM OF POWER SPECTRUtv1 EVALUATION MODULE.

internal oscillator or from an external trigger source. The

sample rate with the on-board oscillator is a nominal 100 KHz ,
but lower rates are attainable with external triggering. The

"address advance" pulse increments a 9-bit counter which

addresses the weighting factor ROMs.

2.7 Conclusion

To appl y di gi tal techniques directly to the correlation

process would seem to require high speed circuitry, in contrast

to the rather slow FIS microprocessor systems. Much ongoing

research is devoted to minimising the requirement of

multiplications in signal processing algorithms, because

multiplications cannot be performed efficiently by

microprocessors. The applications of efficient algorithms such as

FFT, WFTA, and NTTs for digital correlation have been described.

The idea of using a general-purpose microprocessor system rather

than dedicated processors for digital correlation computation

using a fast transform techniques, such as a rectangular

transforms, has been implemented and investigated, this will not

lead to a very practical bandwidth capability. The use of a

dedicated bit-slice microprocessor has been found very efficient

in implementing binary correlation and other signal processing

applications related to PN spread spectrum system described

elsewhere in this thesis.

An investigation into power spectrum using charge-coupled

devices has been demonstrated.

2-21

a-tAPTER 3

Bit-Slice Microprocessor System

3.1 Introduction

In the late 1970's, bipolar LSI devices including the

four-bit microprocessor slice became readily available (42),

(43), (44). These devices have been used in the design of 4-bit,

a-bit, 16-bit, 32-bit, and even larger CPU's (45). The

structures function under the control of a microprogrammed

memory. The microprogram memory is an N word by M bit memory used

to hold the microinstructions, e.g. 1K x 32 bits in the present

system. The data output from the microprogram memory are

distributed to most parts of the system and these constitute the

control signals.

The bi t-sl ice approach requires each central processing

element (CPE) chip to contain a 2-bit or 4-bit slice of every

register in the CPU of the system. For a CPU constructed of

bipolar microprocessor slices, the difference between a CPE and a

CPU is that the CPE is the bit-sliced element that is used to

form the complete CPU by paralleling two or more CPE's in order

to obtain the desired microprocessor word length. A bit-sliced

CPE contains a bit group of the working register set or RAM, a

very high-speed ALU and status indicators. Multiple buses are

used to interconnect the parallel bit-sliced chips and form the

microprocessor system. Bipolar microprocessors of this type can

be used to form systems with 125 n.sec cycle times. MOS

3-1

microprocessor equivalents are slower, with cycle times of the

order of 1-2 u.sec. When instruction times are given for a MOS

microprocessor, the instruction is a machine level instruction.

To compare this with a bit-slice system macroinstruction

execution times must be used, where a macroinstruction is a

machine instruction which the microprogram supports. The

bit-slice microprocessor developed for this project has an

effective macroinstruction time of 330 n.sec or less.

This chapter describes the hardware of the bit-slice

microprocessor system that has been used in the following

chapters.

3.2 System Organisation

Since the required speed cannot be obtained using MOS

microprocessors, a bit-slice approach was chosen for this

project.

The architecture of the bit-slice microprocessor system is

shown in Figure (3.1). It is an a-bit microprogrammed processor

made up of two 4-bit 2901 bit-slice devices with a microprogram

control uni t constructed from a PROM and a counter. Other

subsystems consist of auxiliary logic control circuits which

support the execution of the microinstructionsj these are the

carry control, the skip select, and the skip control. The system

also contains various decoders and external registers which were

used for interfacing the system to the external world through an

a-bit data bus and eight control flags. The system operates

synchronously under the control of a clock which runs at 3 MHz

3-2

r-..

~
CONTROl ~~~ ,

~
• -BIT DATA BUS

V" j~

8 8 ~ .. qfCk .. ~ ;
ENAEl.E S- I "' 1 Sl'REE

TO
,

~ LOAD ,
MICROPROGRAM

CP COUNTER SKIP DATA IN DATA OUT CONTROL REGISTERS REGISTERS

8"i ~ ~

'- ~

,~
2~

'. 8 ~

~
~

SkiP
SELECT

~
MICROPROGRAM MEMORY J-O CP

~ DB y-
X2 2.J. 4.1-

f sl~s 8 .. 4 ~I-- ~ ... 1 INSTRJCT~ BUS I
ADDRESS BUS B

-..
B -

ADDRESS BUS A - A
3 I Y- lIS-

•
CONTROL' ~ OUTJMT

' .. 1- J \ 1if DEC R DECOOER 'fROM' 'TO'
& .& a CMRY

8 16 16", L......, CONTR>L .
'"

FIGURE (3. 1) ARCHITECTlWE ~ BfT -SLICE MICROPROCESSOR S'1STEM.

and produces a low level for 83.3 n.sec and a high level for 250

n.sec. Before operation the microprogram is loaded into PROM.

The size of the PROM is 512 words, with each word being 32 bits

long (one microinstruction in length). In operation the

microprogram counter outputs an address to the PROM memory, and

this address is used to fetch the next microinstruction that is

to be executed (a microinstruction will be assumed to execute in

one clock cycle). In this case the next microinstruction address

is always equal to the current microinstruction address plus l.

A fter a time delay equal to the read access time of the memory,

the memory outputs the control signals to the rest of the system.

Each microinsruction contains information blocked out in fields,

where each microinstruction field directs or controls one or more

specific hardware elements in the system, as shown in Figure

(3.1).

The 'V' field (B-bits) is used to provide constant parameters

for the microprogram as well as the address of the destination in

the branch instruction.

Two four bit fields, A and B, are used for addressing the

internal registers, source and destination. A and B are also

used to address the 'From' (data-in) and 'To' (data-out)

registers, respectively.

An 'I' field (9-bits) is used to control the source, function,

and the destination of any external or internal data in the 2901

slices.

X2 (I-bit) when low, enables one of 16 'To' registers.

The carry control field (2-bits) is used to control the carry

into the 2901 slices.

3-3

The skip control field (4-bit) is used to control the LSB of

the microprogram counter. It is worth mentioning here that the

two flags 'TO' and 'FD' have special uses in the system which

will be discussed later.

The following sections of this chapter will describe the

connection of each le used in this design.

3.3 2901 ALU/Register slices

The Am2901 bipolar 4-bit microprocessor slice is designed to

be used in microprogrammed systems (46), (47). It was first

produced by Advanced Micro Devices and is now second-sourced by

many other firms.

because of the

It is the most widely used bi t-slice device,

flexible structure of the slice's

microinstruction. The 9-bit microinstruction code consists of

three 3-bi t groups that either control or determine the internal

arithmetic-logic unit's source operand, ALU function and

destination register. This breakdown reduces delays; it permits

parallel decoding of different groups of the same

m icroinstruction. The three groups lead to 512 possible

microinstructions.

3.3.1 Architecture

The archi tecture of the 2901 is shown in Figure (3.2) (46).

All data paths are 4-bits wide. One key element is the 16-word

RA M forming a bank of 16 4-bit registers. It is a 2-port RAM,

meaning that two words (registers) can be selected

simultaneously. Data in any of the 16 registers of the RAM can be

read from the A-port which is controlled by the 4-bit A address

3-4

, o
DESTINATION ALU ALU

SOURCE CONTROt. FUNCTION

MICAOINS1RUC110N DECODE

... :.-

LOIRI

CLOCK --------------~~-----------,

'A'IREAOI
ADDRESS

RAM
15 AODRESSABLE REGISTERS

'B'
!REAO.WRITE)

ADDRESS

DIRECT
DATA IN ~~ ____ ~.

CARRY IN

OUTPUT
ENABLE

o

'/4' 'B'
DATA DATA
OUT OUT

A B

ALU DATA SOURCE
SELECTOR

' -FUNCTION ALU

A F
OUTPUT DATA SELECTOR

Y

DATA OUT

Q

Cl ,
CN ...

", !SIGN'

OVERFLOW

F·oooo

FIGURE (3,2) THE AM 2901 MICROPROCESSOR SLICE,

field input. Likewise, data in any of the 16 registers of the

RAM as defined by the B address field input can be simultaneously

read from the B-port of the RAM. The A and B busses feed two

latches. When the clock input to the slice is HIGH, the selected

registers are enabled into the A and B busses and pass through

the latches. When the clock input is LOW, the latches hold the

RAM data. This eliminates any possible race conditions that

could occur while new data is being written into the RAM. The

4-bit high-speed ALU can perform three binary arithmetic and five

logic operations. The R port of the ALU is fed from a

multiplexer, allowing us to gate the A register, the 0 bus (an

external bus coming into the 2901), or zeros into the R port.

Likewise, the 5 port of the ALU is fed by a multiplexer, allowing

us to gate the A register, B register, Q register, or zeros into

the Sport. These mul tiplexers and the characteristics of the

register array allow us to perform operations such as:

but not

R3 = R2 + R3 + 0/1

R3 = R3 + R3 + 0/1

R3 = 0 + R2 + 0/1

R4 = R2 + R3 + 0/1

R3 = 0 + Q + 0/1

R3 0 + 0 + 0/1

R3 = 0 + R2 + 0/1

R3 = Q + Q + 0/1

where the meaning of OIl is that the carry condition can be added

to the operation.

The ALU has three other status outputs. These are F3, F =0,

and the overflow (OVR). The F3 output is the sign bit. F=O

out put is used for zero detect, F =0 is HIGH when all outputs are

3-5

LOW. The overflow (OVR) output is used to flag arithmetic

operations that exceed the available two's complement number

range. The chip also contains another register, the Q register.

It can be used for a-bit shift up or down operations.

The output of the ALU can be gated to several destinations.

A 3-state output bus (V) can be fed with the ALU output (the F

bus) or with the value of the register selected as the A

register. The ALU output can also be gated into the register

array (the register currently selected as the B register),

passing through a shifter as well as being gated into the Q

register, passing first through another shifter.

The nine inputs control the source operands, the ALU

function, the shifters, and the routing of data. The

microinstruction inputs used to select the ALU source operands

1 1 '

microinstruction inputs are used to specify the function of

the ALU. The remaining three microinstruction inputs, 16, 17

and la control the two shifters, the Q-register multiplexer,

and the V-bus multiplexer.

The clock input to the 2901 controls the registers array,

the Q register, and the A and B latches to the ALU, Data is

clocked into the Q register on the LOW-ta-HIGH transition of the

clock. When the clock input is HIGH, the latches are open and

pass the val ues of the registers selected as the A and B

registers. When the clock input is LOW, the latches close and

retain the last data entered. New data can be fed into the B

3-6

regi ster when the clock input is LOW. Figure (3.3) is a

simplified view of the timing of the 2901, the clock timing of

the system will be described in the following sections. Notice

that the control inputs must be stabilised at their required

states at the beginning of the cycle. These times are called

set-up times; these are expressed relative to the transitions of

the clock input. As an example, the I signals from the current

microinstruction must be present at the 2901's pins at least 80

n.sec before the LOW-to-HIGH transition of the clock pulse.

Another timing consideration is propagation delays, the time from

when an input signal is established to when a particular output

is stable (46).

clock

1 I I 1\ J

l
control and Y status A,B B register Q register
D-control inputs output outputs latches filled filled
stable close

FIGlRE (3.3) SItvPLIFIED VIEW OF 2901 TIMING.

3.3.2 2901-Slices Intercomection

Two 2901 's were connected to form a CPU with a data-path

width of eight bits. The 16 registers and the Q register are

8-bits wide and reside in the 2901's, a half in each 2901 as

shown in Figure (3.4). An 8-bit data-in bus feeds both 2901's in

parallel, and the 2901's feed an 8-bit data-out bus. Figure

(3.4) also shows the connection of the control signals and the

3-7

xo DMA-IH II~ ~
Xl

nil! -va l IJ
ADa.!SS- - • , . I I H>- r-;--. • ADDRESS IUS A 4.

•

4 4
CARRY CONTROl.

.$

11 m,K?-
00- D3 D4-D7

~ .5

.J~
ABID ABID QlH GO QJ GO IW41

MNO SO, IUN3 RAMO 2101 PIt Ben L. s. SUCE Cn., s. SUCE <1.., 0 Q
F3 F3

OE C,. Y O¥R FaO OE Cl" Y OVR F.O CK

~~H::=1

10' [)-rCJ I I J
, ~ 11<

.5
AlU O~RFlOW

DATA- QUT BUS . ,.-'
FIG~(3.4) TWO 290rS USE TO CONSTRUCT 8-81T CPU WITH CARRY CONTROL.

status outputs. Most of the control signals feed the 2901's in

parallel.

It was mentioned in the previous section that the

microinstruction inputs, ID, 11, and 12 are used to select

the ALU source. One of these source operands is the direct data

input (D). To select 0 the data output (Y) must be in the

high-impedance state. This can be done by using the group

inputs, ID, 11 , and 12 to control the output enable (OE) as

shown in Figure (3.5), when OE is HIGH, the Y outputs are in the

high-impedance state.

ALU source
micro code operand

mnemonic 12 11 ID octal R S OE
code

DA H L H 5 0 A H

DQ H H L 6 D Q H

DZ H H H 7 0 0 H

FIGURE (3.5) ALU DIRECT II'PUTS (D) SOURCE SELECT CONTRCl....

On the least-significant slice, the carry-in is an input

from an external carry control source. Two bits XO and Xl

determine the carry-in state as shown in Figure (3.6). On the

other slice, the carry-in is connected to the carry-out of the

first slice, enabling the ALUs to work as a single, ripple carry,

a-bit ALU. Notice also the interconnection of the shifters,

enabling the Q shifter and RAM shifter to act as two a-bit

3-8

shifters. Most of the status output are taken only from the

m os t-signi ficant slice. The F=O output is an open-collector

output, meaning that it can be wire-AND'ed, with a pull-up

resistor, between slices to indicate whether the output from both

ALUs is zero. The look-ahead carry pins on both slices were not

used, since the look-ahead carry logic was not used in this

design.

Xl XO carry-in

0 0 I carry set

0 I 0 carry hold

I 0 C
n+4

carry propagate

I I 0 carry clear

FIa..RE (3.6) CARRY CONTROL LOGIC.

From Figure (3.4) we can analyse the minimum microcycle time

for this system as follows:

The guaranteed, or worst-case, propagation times for the Am290lB

slice are (43), (42);

From inputs A, B to output Y 60 n.sec

From inputs A, B to last status output 70 n.sec

From inputs A, B to C
n+4

59 n.sec

From input C to last status output 37 n.sec
n

From input C to outpud Y 30 n.sec
n

The propagation delay due to the ripple carry between the slices

(i.e. the carry-in to the mos t-signi ficant slice is not stable

until t + 59 n.sec) means that the output of this slice will not

3-9

stabilise until t + 59 + 37 n.sec. By adding the propagation and

set-up times of the external carry control (60 n.sec) this system

could not operate faster than one microcycle per 160 n.sec.

3.4 Microprogram Control

The microprogram control unit is the part of the system that

controls the other subsystems, synchronises the internal and

external events and fetches and decodes the microprogram residing

in the microprogram memory. A microprogram control unit consists

of the microprogram memory and the structure required to

determine the address of the next microinstruction; in our case

this structure is the microprogram counter. The logic diagram of

the microprogram control together with the skip control and the

skip select is shown in Figure (3.7).

Unlike the main memory in MOS microprocessor systems, the

microprogram memory is referred to once each microcycle during

the execution of a microinstruction. Therefore, to gain the

necessary speed, the microprogram memory is always implemented

usi ng bipolar memory devices. This memory contains sequences of

microinstructions, 32 bits wide, which apply the proper control

signals to the 2901's and the other subsystems, to execute the

desired operation. The address lines of the microprogram memory

are dri ven from the microprogram counter. This counter has

facilities for storing an address, incrementing an address, and

jumping to any address. The microprogram counter is controlled

by bits from the microprogram memory.

3-10

l e CT&K Y4IT~TqfI

I.-

lK

.5
SKIP CONTROL lK

.5

~ I ~D er. BeD D GP. • C D
t~R 2SLSIU e~ E': 2ILS"3

ET 014. OB OC QD QA OB QC QD

MICROPROGRAM
z

COUNTER ~g
I I L- .. o~

~w
I ~ ~a:

I I ~~o
I N' ~a

MO oc{
a:
~
~

IAO I2S131 A NJ 125'" AI 14.0 125131 Ai AO I2S131 AI AO '2Stll AI I!IJ US", AI AO 12513' A!I lID US", All
(M6 .41 CE ~ ~E 161.31 (FII.II CE T ~ (011 .21 (EI.81 CE TCE U(UI (LUI cE

I
I..... (NI.51

II '" It ~ 11 Ql ell CI.4 ., " QI Q4 Q1 M QI U . .

y, Ys YI y, Yo y, Y2 y, Ao A, A2A Bo Bt B2 B, Is III 11 I1 10 12 Is 14

MICROPROGR AM BITS

MICROPROGRAM MEMORY

FO--

--'-

FIGURE (3.7) MICROPROGRAM CONTROL UNIT.

Xo X, X2"

r-+­
r-

I 1l1PA'

)

A .. C 5
SI
.1
SA

~----~I~ :~
ID
SE
'1"

SKIP SELECT

3.4.1 ~icroprograrn ~ernory

The microprogram memory was implemented in PROMs. A 512 by

32 memory was constructed using the 825131 device (tristate)

(48). The 825131 is a bipolar PROM, organized as 512 words by 4

bits per word, with nine address lines and an enable line (65

n.sec access time). Eight chips were placed in parallel with all

address lines common (Figure (3.7». The address lines are

loaded with 8 loads, under the maximum load limit (50 loads) that

could be driven by the counter, therefore no buffer drivers were

required. These are driven by the microprogram counter (9-bit).

It was mentioned before that the PROM outputs (the

microinstructions) are the microprogram bits required to control

the rest of the system, these are stable before the next clock

pulse. Figure (3.7) shows a typical construction of the output

control bi ts.

The P ROM chips are always enabled (active LOW) except for

the two chips that are used to store the fixed constants field,

the 'V' field, these are enabled by the strobe 'FO'. In this

case t he 'V' field outputs are used 8S an 8-bi t external register

to store fixed parameters and the destination address of a branch

microinstruction within the microprogram.

Programs were developed to take the microprogram to be

placed in the microprogram memory and slice it up among the

a-PROMs. The microprogram support tools will be described in the

next chapter.

3-11

3.4.2 Microprogram Cotmter

The address information to the microprogram control is

der i ved from the data bus. The microprogram counter stores the

9 -bi t address of the current microinstruction to be fetched from

the PROM. It consists of two parts, counter, and skip control

logic. The counter stores the most significant 8-bits of the

address, this consists of two 25LS163 types connected in cascade

(49), and it increments on the positive transition of the clock

pulse unless the load or clear lines are activated. Two D-type

fl ip-flops were used for constructing the skip control logic,

this generates the least significant bit (LSB) of the address

that indicates if a skip is required or not. On the negative

transi tion of the clock a selected skip state is strobed into the

flip-flop and if the output is LOW the LSB of the microprogram

counter is held and count enable to the counter is activated

(HIGH), so that on the positive transition of the clock the

microprogram counter contents are increased by two instead of

being incremented. If a branch microinstruction is taking place

then the skip control is used to determine if the LSB of the new

microinstruction address is odd or even (1 or 0), while an active

LOW strobe 'TO' can be used for loading the counter by 8-bit data

on the data bus. In fact, that is the main use for the strobe

'TO' in the system, and it should not be used elsewhere. A LOW

level (INITL) at the clear inputs sets the microprogram counter

outputs LOW after the next positive clock transition. This

facility, reset the microinstruction address to zero on startup,

is very efficient in writing a microprogram for the system.

Usually the microprogram, to be loaded on PROM, starts with a

3-12

microinstruction, which by loading the microprogram counter 'TO'

and skipping to give a 0 L5B, and not skipping to give a 1 L5B

allows a branch to any location in the PROM.

3.5 Condition code select logic

The skip select logic was added to the system to allow a

microinstruction to test conditions generated within its own

microcycle. This consists of two 74L5151 types (50) which, under

control of 4 microprogram bits, route one of sixteen lines from

the various flags to the 0 input of a flip-flop, for use in

determining the next microinstruction address ("skip on result

of condition"). The microprogram counter skips one

microinstruction if the state of the flag specified is 'TRUE'

(HIGH). For microprogram simplicity, the flags were designated 50

to 5F, and these assignments will correspond to predefined flags

wi thin the system. Typical flag assignments that will be used in

the following chapters are shown in figure (3.8).

skip field flag function
(Hex) assignments

0 SO never skip (connected to +5 volt
through lk resistance)

1 51 always skip (connected to a-volt)

6 S6 test flag

7 57 test flag

8 58 output register empty
(buffer (FIFa) output)

B 58 the most significant ALU (F3)

output bit

3-13

D SD input register full
(buffer (FIFO) output)

F SF the result of an ALU
operation is zero (F =0)

FIGlRE (3.8) SKIP FLAG ASSIGNtvENT5.

The other flag assignments could be used for interfacing the

system with different computer systems and connecting it to test

equipment.

3.6 I/O External Registers Handling

The I/O subsystem provides the communication between the

processor and the outside world. There are three types of I/O

used according to the method of controlling the data transfer

(50), (51), (52):

(j) microprogram controlled I/O

(ii) interrupt controlled I/O

(Hi) direct-memory-access I/O

Interrupt controlled and direct-memory-access l/Os require a

complete hardware interface circuit; fortunately the system can

provide the suitable data paths and the control signals which are

needed for this interfacing. I/O paths can ei ther be

bidirectional, in which case the external data will be sent and

received via the same lines, or the input and output lines can be

separate. Microprogram controlled I/O with separate input and

output lines was used in this project.

3-14

Two sets of I/O registers were used to interface the

external I/O data to the data bus of the system under the control

of the microprogram memory through input and output decoders as

shown in Figure (3.9). By using 4-to-16 line decoders, anyone

of the sixteen I/O read or the sixteen I/O write external

registers can be selected. Because only one output from the

decoders can be activated at a time, in a given microcycle no

more than one I/O register in the group can be used. Two four

bi t fields, A and B, are decoded as input (From) and output (To)

decoders respectively. If the microinstruction indicates that

ext ernal register contents are required, then the 'A' (From)

field is decoded, to gate data from a register external to the

2901 slices onto the data bus, in which case the '8' field is

used to select the destination register in the 2901 internal RAM.

If the microinstruction indicates an internal source of data,

then the '8' (To) field is decoded and routes either the contents

of the 'V' field or the output from the 2901 slices to the data

bus, to be strobed into the external register selected by the B

field. In the later case, if the 2901 slices output was chosen to

be the source of the data, the 'A' field is used to select the

register in the 2901 internal register array. Also it is

possible to store data in the 2901 internal RAM and an external

register simultaneously, in which case the '8' field is used to

address these registers.

3.6.1 The "To· Decoder

The 'To' decoder was used to provide the system with sixteen

data-out registers, one of these registers was assigned as the

3-15

ClOCK
r I)(X

BO
B

RI
A

t}
fJ
V

!

-

INSTRUCTION ElJS

11~ .Aft ... VO ~FO -G2A VO-CO r "'...,
A _C1 lL s - A ~F1

B lI! ~C2 :tP- B GO ~F2

~ ~F3 C.... ~C3 10 C ~ ~!- ~F'
G1 ~ -CS t! ~FS

I""-C6 G2B ~F6 - G2B Y7 ~C7 [G1 Y7 ~F7

.S

:- G2A VO ~F8
CONTROL DECODER - A ~F9

aD ~FA B ('11)

t;; ~FB
C ~

~FC "'4 r:---
~FD G1 r--FE

G2B Y7 ~FF

• FROM' DECODER

FIGURE (3.9) I/O AND CONTROL DECODERS.

G2A VO
A
B CD

('11)
c ~

... G1 t!

G28 YI

'"'- G2A YO
A

GO
B ('11) -it' en

~

r!
G1

- G2B Y7

'TO'DECODER

~

I-

~

I""-
l""-
I""-

TO
T1
T2
T3
T4
TS
T6
T7

T8
T9
TA
TB
TC
TO
TE
TF

microprogram counter (TO). This decoder consists of two 74LS138

(three-line to eight-line) decoders, enabled by the 'X2' control

bi t and the clock of the system, and use the output '8' field, of

the PROM to generate the 'To' flags. These flags determine which

of the data-out registers in the system is to receive the data on

the bus and to generate a strobe for that register to store the

data in the second half of the microcycle.

3.6.2 The "FromR Decoder

A sixteen-line decoder was implemented using two 74LS138

decoders to provide the system with a sixteen port external

source of data. The 'From' decoder decodes one of the sixteen

lines, dependent on the conditions of the four binary select

inputs and the 'A' field, and is enabled by the ID, 11 and

12 microinstruction code (the source operand of the 2901)

output from the PROM. The 'From' decoder outputs are used to

select data-in registers within the system and cause them to

output their data onto the common 8-bit data bus while the Y

outputs of the 2901 slices are OFF. One of these registers is

the a-bit constant field output of the PROM which is enabled by

the 'FO' line.

3.6.3 The Control Decoder

To generate the control signals (that are seldom all needed

within the same microcycle) would require a greater

microinstruction length than is really needed. By using a three

to eight line decoder, anyone of an eight control signals can be

generated with only three microprogram bits. The advantages and

3-16

disadvantages of this technique will be described in the next

chapter. The control decoder is a 74LS138 type, enabled by the

clock of the system and an output from the 'To' decoder (which in

this case is 'TF') and uses th VD VI e , ,and V2 data outputs of

the 'V' field to select one of the 'C' lines (CO to C7) to be

acti ve LOW in the second half of the microcycle. These lines are

used to determine which flag within the other subsystem is to be

set or cleared.

3.7 Input/Output Buffer Memory

The input/output buffer memory provides the means for the

m icroprocessor system to interact with the external data medium

as characterised by a communication link. First-in, first-out

(FIFO) register stacks were used, these allow data transfers that

are continuous and do not require the processor to wait during

the communication operation. Transferring data from the

processor to the link is normally executed as a single

microinstruction that loads data, either from an external memory

or the 2901 internal RAM registers, into the FIFOs and then

issues the necessary flags to initiate the transmitting

operation. The subsystem logic circuitry provides the autonomous

timing and sequencing signals necessary to perform the shifting

operation associated with sending or receiving the serial data.

Data may be accepted in serial or parallel at one data rate and

extracted at another rate.

The interconnections necessary to form a 16-word by 8-bit

FIFO, using the Fairchild's 9403 (16 words by four bits) type,

are shown in Figure (3.10). In operation, on the input side,

3-17

JP' "LS08 'AltALLI!L DATA I"IIU'
I -

TRNSMIT E NASLE =:J ~ -
74LS04

~TA TRAN ;FER(T6

A INPUT SERIAL OAT,

:PSI
MASTER R ~SET

MR 0 0 'l os D3 02 III DO

~ ~
MR ~ ~ Pl 0$ 03 D2 01 00

- TTS ,...... TTS
I£S L.3 . DEVICE IRF IES M. S. DEVICE IRF i"-
CES 1403 ORE bES '403 ORE ~ - 105 FlrO -- 105 FIFO

-EO .. EO

TOP QS Q3 02 Q1 QO lOP
.

OS QS CI2 01 aD
74 L SOl.

-. -
74LS10

:;;;;;;;n:

PI 61 -
-'---

FlGURE(3.10) 16 WORD BY 8-BIT BUFFER MEMORY SYSTEM.

SERIAL DA.TA OUTPUT

OAT A RECEIPT In)
DATA REQUEST (SO)

fl'O EMP.n (S~)
YO
,Yl
Y2
.Y3
Y4
YS
Y6
Y7

~
~
0:::>
...JQ.. w
...J:::>
...JO
~
0::

~

successive words (8-bits) can be loaded into the FIFO by a LOW on

T 6 f or each one. This can be continued for up to 16 words, if

none are removed from the output during the process of loading

these 16 words. More generally, the FIFO can continue to be

loaded until it no longer raises its SD (data request) line. At

this point, the FIFO has accepted the last word but is indicating

that it is full and cannot accept further data. Serial data can

be entered on each HIGH-ta-LOW transition of the CPSI clock

input, once loaded into the FIFO, the successive data bits "fall

through" the FIFO structure and line up in order at the output.

The clock required for the output from the FIFO is completely

independent of that on the input. Data words can be extracted by

a LOW on F6 line, this can be continued with successive words in

the FIFO until 58 (FIFO empty) no longer rises, indicating that

the FIFO is empty. Data is serially shifted out on the

HIGH-ta-LOW transition of CPSO. An important characteristic time

of a FIFO, for our purposes, is the "fall through time". This is

the time it takes for an input-data word to appear at the output

of the initially empty FIFO. This time, in our case, is 450

n.sec (53); this means that it is not possible to extract the

same input-data word in two successive microinstructions without

using an intermediate microinstruction to test the line 58.

The timing sources for the shifting operation associated

with the serial entering or extracting of the data will be

described in the following chapters.

3-18

3.8 System Clock

The main source of the timing signals is the system clock.

The clock's output frequency is controlled by a stable crystal

oscillator, MC300 (12 MHz) type. A single phase clock was used

in the microprocessor system. The oscillator output drives a

binary counter, 25LS169 type, with outputs logically combined to

form a set of repetitive signals. Figure (3.11) shows the block

diagram of the clock circuit and the clock pulses.

pulse width, called the microcycle, is determined from:

(3.1)

where

tl counter clock to output time (n.sec)

t2 PROM read access time (n.sec)

t3 2901 ALU execution time (n.sec)

t4 other propagation delay in the system (n.sec)

The clock

For the 2901 system a microcycle is measured from one rising

edge of the clock to the next (42). All input signals to the

2901 slices from the system data bus are captured on the rising

edge of the clock (the set-up time prior to the clock LOW-ta-HIGH

transition is about 70 n.sec for the 2901B). A timing diagram is

given in Figure (3.12) showing a series of sequential

microprogram steps. During each microcycle, one microinstruction

is fetched and executed. At each rising edge of the clock, the

microprogram counter increments and settles, and the counter

outputs an address to the PROM, whose access time is greater than

the counter settling time. As soon as the outputs are stable at

3-19

OSCILLATOR

2F

IF

CLOCK

CLOQ(

.5
1K

~~ ~~~------~

---- 4F

~ 1J!

po-____ 2f

)0 2f
po-____ 1F

>0 ;r
po-____ CLOCK

~ CLOCK

~I I
I L

I
r --_It

fiGURE (3.11) CLOCK CIRCUI T AND CLOCK PULSES.

CLOCK

MICROPROORAM
ADDRESS

PR:>M MEM~Y

2901 SUCES

REGISTERS

1------ MICROCYCtE------t

--1. no MS 1_83.3 NS~r----------'. _ I r
MCR:>INS TRlJCK)N I I MCROINSTRUC noo 1.1
AOOAESS ~ESS

~
FETCH FETCH
MICROINSTRUCTION I MICROINSTRUCTION 1.1

~
EXECUTE I EXECUTE
MICROINSTRUCTION 1 MCRClNSTRUCTION 1.1

RESULT CF RESUL T OF
MCROINSTRUCT10N 1-1 MICROINSTRUCTION 1

FIGURE(3.12) MICROCYCLE TIMING FOR THE SYSTEM OF FIG~E(3.1).

the PROM output, execution begins in the 2901 ALU slices. On the

next rising edge of the clock, the 2901 ALU result is gated into

the registers and the status signals which are being input to the

subsystem circuits are assumed to be stable. If an

unconditional branch microinstruction is to be executed then when

the outputs are available from the PROM memory, the control

signals are sent to the counter to cause it to load the branch

address. No 2901 ALU activity occurs. On the next rising edge of

the clock, the branch address enters the counter and the address

is input to the PROM. The execution proceeds as before. There

is no difference in the microcycle of a branch and nonbranch

microinstruction in this system. However, while the PROM memory

is being accessed, the 2901 ALU must remain idle, and while the

2901 ALU executes, the PROM memory must remain idle.

In the 2901 ALU, some internal operations require longer

time to execute than others. One or more of these operations

requires the maximum length of the time to complete. This is

called the worst case delay path. The minimum total width of the

m icrocycle, c ,
p

is the sum of the worst case fetch and execute

times.

3.9 Conclusion

The hardware construction of an 8-bit microprogrammed

processor which is constructed with 4-bit bipolar microprocessor

slices has been described. A bit-slice approach was chosen for

this project, since the flexibility and speed required cannot be

obtained using a single fixed instruction set microprocessor.

The system is configured such that it can support a

3-20

microinstruction cycle of up to 250 n.sec.

3-21

D-IAPTER 4

System Microprogramming Features

4.1 Microprogramming

Microprogramming was first suggested by Wilks in the early

1950s (54), (55). With the development of fast, inexpensive LSI

devices, commercial use of microprogramming spread into the

microprocessor-based systems domain. Present microprocessors

employ microprogramming

traditional method of using

in two ways. The first is the

microprograms to perform machine

instructions (56). The second is to combine bipolar bit-slice

devices to synthesize a microprocessor or controller system with

a particular architecture (57), (42). One can describe

microprogramming as (58) the use of a program language

(microprogram) that explicitly and directly controls the sequence

of internal machine-hardware functions (e.g., registers, ALU's,

counters, busses, memory). In this way, microinstructions

specify control terms that cause the machine hardware to perform

an elemental function such as transfering data from one register

to another. The device, in this case, is completely software

ch-iven, having no predetermined sequence of operation implemented

in hardware, i.e., linkages of microinstructions cause the

machine to perform the desired function.

Microprogramming is considered to be the best approach to

control a bit-slice system for the following reasons (59), (42),

(60), (61):

1- A memory (ROM or PROM or related devices) is a substitute

4-1

for random sequential control logic circuits. This leads to a

more .structured organisation of the design.

2- Software test routines can be developed and included in the

PROMs or, the normal PROM memory could be swapped with a special

test memory by substituting PROMs.

3- Variation of the initial design can be implemented by

substituting one or more PROMs (i.e., changing the microprogram),

and also adding PROMs expands the system.

4- The microprogram, documented in the definition file and in

the assembly source file, serves as the principle documentation

of the 'firmware' (62) (because such microprograms have been

placed in PROM or ROM, they have been called firm ware, i.e.,

software modules that are "firmly protected" from being changed),

this provides a clearer documentation than multi paged schematics

can provide.

5- Subsystems can be upgraded by replacing the appropriate

PROM more easily than hardwiring or patching new components onto

a crowded printed circuit board (peB), with all of associated

difficulty that this entails.

Three measures are useful for defining the microinstruction

characteristics (63):

A- Monophase-polyphase characteristic

A monophase microinstruction would generate the control

signals used during one clock pulse. A polyphase

microinstruction would generate control levels and signals used

during two or more clock pulses.

4-2

B- Encoding characteristic

This measure refers to the degree of encoding in the

microinstruction word. There are two different types. The first

is direct encoding, in which case the mutually exclusive signals

can be grouping together into fields. These fields are then

decoded to produce the corresponding control signals. This type

of encoding reduces the size of the microinstruction word. The

other type of encoding is known as indirect encoding where the

meaning of a field is made to depend on the value of a control

field in the microinstruction.

c- Serial-parallel characteristic

This refers to the method used to determine the next

microinstruction to be executed. In the serial approach, the

generation of the address for the next microinstruction to be

executed does not begin until the execution of the current

m icroinstruct ion term i na tes. In the parallel microprogram

approach, the addressing of the PROM for the next

microinstruction is overlapped with the execution of the current

microinstruction.

The micro program size can be expanded in two ways (55),

horizontally and vertically. A horizontal expansion of the

microinstruction, is implemented by adding more control bits to

each and every microinstruction in the microprogram for

controlling additional hardware elements. A vertical expansion

means that you increase the actual number of microinstructions in

the microprogram to perform new functions. Although horizontal

expansion allows the microprocessor system to perform more

4-3

parallel operations in each microcycle, it has the disadvantage

that each bit is dedicated to a single function and,

consequently, a maximum number of bits is required, i.e., a much

larger amount of microprogram memory is needed. On the other

hand, a vertical expansion can increase the capability of the

CPU, but the amount of sequential control logic in the system

increases. A vertical microinstruction usually involves little

parallel operation within the microcycle; instead it initiates a

single sequence of events, and hence, the microcycle time

increases and the speed is decreased. A combination of

horizontal and vertical microprogramming schemes is normally used

to meet the specific speed and control memory limitations.

F or long microprograms (> 48 micro instructions in length or

with microinstructions > 16 bits wide), software development

systems are required. These systems allow each field to be

defined with symbolic definitions, which is a documentation

method. Once the fields are defined, the microcode (microprogram,

microinstruction) can be written in symbolic language, similar to

a pseudoassembly language, that will provide human-readable

documentation. The development system may be used to assemble the

microprogram thus written and to create the input to a PROM

programmer. Since microprograms, like programs, seldom run

properly when first executed, the development system provides

simulators and debuggers which allow users to interact with, and

monitor the execution of, a microprogram as it is being run on

the system. Simulators usually run on a different machine and

simulate the actions of the system for which the microprograms

4-4

were written.

Given that the microprogramming concept is closely related

with the bit-slice microprocessor system, this chapter will

describe the microinstruction characteristics and discuss tools

and facilities for the development of microprograms.

4.2 Microinstruction Format

The microinstruction has two primary parts. These are:

1- the definition and control of all micro-operations to be

carried out

2- the definition and control of the address of the next

microiristruction to be executed

The definition of the micro-operations to be carried out includes

such things as ALU source operand selection, ALU function, ALU

destination, carry control, shift control, and data-in and

data-out control. The definition of the next microinstruction

function includes identifying the source selection of the next

microinstruction address or supplying the actual value of that

microinstruction address.

The thirty-two bit microinstructions of the 2901

microprocessor system used in this investigation consist of ten

fields which provide some parallel operation as illustrated in

Figure (4.1).

SK (4 bits) is the test and skip control field for selecting

one-of-sixteen skip flags denoted by 0 through F, these values

will correspond to predefined bits within the system, as

described before.

CC (2 bits), the carry-select control field, determines the

4-5

31 -. , , , , , , ,

Y

24 Z3 20 1 9 Hi 15 7 6 5 4 3 1 0 , , w " " I. "17 '15 '15 'IL TIS~12~IO~11 X2 XI XO

A __ S_ I 10. _CC __ SK----J

_D_l_F_'I-S -

FIGURE (4.1) FORMAT OF 32 -BIT INSTRUCTION WORD
FOR THE 2901 SYSTEM OF FIGURE (3.1).

carry-in state as illustrated in Figure (3.6).

TO Cl bit), the external write-only registers strobe, enables

the current data value on the data bus to be strobed into an

external register when it is '0'. This field also activates the

LOAD control line of the microprogram counter during branch

operations.

I (9 bits), is the 2901 instruction control lines. Also shown

in Figure (4.1) is

5 (3 bits), source operand field, used to determine what data

sources will be applied to the ALU-slices.

F (3 bits), function field, used to determine what function

the ALU will perform.

D (3 bits), destination format field, used to determine what

data is to be deposited in the Q-register or the internal

register array.

B (4 bits), is the B address field, the four address inputs to

the internal register array used to select one register whose

contents are displayed through the B-port and into which new data

can be written when the clock goes LOW. This field also selects

one-of-sixteen external write-only registers (TO-registers) to be

loaded from the data bus.

A (4 bits), is the A address field, The four address inputs to

the internal register array used to select one register whose

contents are displayed through the A-port. It also selects

one-of-sixteen external read-only registers (From registers)

whose contents are output onto the data bu~

Y (8 bits), the control store literal field, an 8-bit data

word which represents a number or an address. It is used for

11-6

assignment to a register or to indicate the address of the next

microinstruction to be executed. This is rather like the

immediate field used in some machine language instructions.

4.3 Microinstruction Implementation

The system microinstructions have the capability to perform

two distinct operations simultaneously- An ALU!shifter operation

and a conditional branch or skip operation. The add itional

capability to perform other operations simultaneously (such as

external register handling, and carry control) suffices to

classi fy these microinstructions as horizontal. Direct (or one

level) encoding was implemented in the representation of

microinstructions, this is due to the fact that most of the

micro-operations that a particular subsystem can perform were

represented in the microinstructions as a field rather than as

individual bits. Since the micro-operations that were combined

into a field are mutually exclusive, no information is lost in

this single level encoding scheme. There is only one hardware

subsystem, the control decoder, in which indirect (two level)

encoding was used. The flag TF, generated by the TO decoder (it

is not a direct control bit output), and the V-field (YD - Y2)

are combined to select the control flags (CO - C7).

When no control signals are to be enabled by a given set of

bits, the bits are all placed in the 0 state. In this case, a

unique binary code must be assigned to this condition since it

represents a legitimate control pattern for a control field.

When the all-Os bit pattern is decoded, no action is generated by

that field during that microcycle. Typically, this all-Os bit

4-7

pattern is used to represent a microcycle no-operation (NOP).

Microinstruction implementation is serial (fetching the next

microinstruction to be executed is started after the execution

phase of the present microinstruction). The basic system clock

cycle is 330 n.sec, and in normal operation, a microinstruction

is read from the PROM to the subsystem and executed in one clock

cycle (there are no suboperations performed, and all operations

specified by a microinstruction are executed simultaneously).

4.4 Microinstruction Sequencing

Three techniques were combined for accomplishing this

microinstruction sequencing. These are:

1- sequential execution

2- skip control

3- mUltiple sequences

4.4.1 Sequential execution

In this case the PROM address of the next microinstruction

to be executed is one greater than the address of the

microinstruction being executed. The microprogram counter

increments by one on each clock cycle.

4.4.2 Skip control

The sequential execution of microinstructions may be altered

by the skip micro-operation. The microinstruction has a skip

micro-operation in which the microprogram counter is incremented

by t wo instead of one. A conditional skip micro-operation

facilitates an efficient one microinstruction subroutine.

4-8

4.4.3 Multiple Sequences

T he sequential execution of microinstructions may be al tered

by unconditional branch micro-operations. The load control of

the counter is a single bit (TO) defined by the microinstruction.

Whenever this bit is at logic '0' a load will be enabled. If the

load is enabled, the new (branch) address contained within the

PROM will be parallel loaded into the counter. The branch

address originates from two sources; the literal (addressing)

field of the microinstruction, in which case it is the field

supplying the actual value of the address. The other source is

the external read-only registers (From registers), in which case,

the data inputs to the counter receive the start address.

Another useful facility combines sequential and skip

execution, by assigning an address to a label or register. This

facility, with the unconditional branch micro-operation can be

used to implement loops in microprograms.

4.4.4 Start Address

The microprogram counter is reset to zero on start up, at

which the microinstruction must be in the form:

TO F7 + 0 , 57

This loads the mic roprogr am counter (TO) with the data on the

data bus which is the output of the 'From' register (F7).

Skipping to give a 0 LSB, when 57 is true '1', and not skipping

to give a 1 LSB, when 57 is '0'. Start addresses may now be

assigned to any location in the PROM. The 'From' register 'F7'

contains address lines driven by switches to allow all the

4-9

different states to be valid.

4.5 Special Microassembler

One of the difficulties of using the 2901 bit-slice system

is the difficulty with software support for the completed system.

It is evident that the system described in the previous chapter

is unique and a special assembler and simulator will be required.

The following two sections will describe the assembler and

simulator that have been used in this work for developing the

microprograms.

The architecture of the 290l-system is designed for maximum

speed of operation in its application, which differ from those of

MOS microprocessors. As a result, the 2901-system assembler

contains features which are unique to this system application,

e.g. the assembly language differs from standard assembly

languages, as described below.

A microassembler (we will call it an assembler from now on)

was developed for the microinstruction format described in the

previous two sections and illustrated in Figure (4.1). It

assembles a microprogram written in a symbolic language into the

bi t patterns for subsequent use in micro program PROMs, and

provides various convenient features for use in writing

microprograms. The assembler was written in the CORAL programming

language (64) and was implemented using a CORAL compiler which

runs under the UNIX operating system for PDP-ll computers (65),

(66). The language comprises several fields correspond to

microinstruction fields (operators, operands, shift, skip, and

carry contra!), label field, and comments. Operations specify

4-10

transfers of information among registers. Unary and binary

operations can be written in algebraic notation, and

unconditional execution can be represented by simple 'branch'

statements.

The address space is 512 words. This is achieved using the

8 bit literal field plus the skip option. In consequence a

branch instruction requires a knowledge of whether the executing

instruction is at an odd or even address and whether the target

is at an odd or even address. There are two assembler directives

which force these conditions, *EVEN and *000. The addressing

given in the generated list is a 3-digit number, the numbers

being hex, hex, binary (the least significant being binary). The

source program contains function assignments and the symbolic

microprogram itself. The assembler makes two passes through the

source. On the first pass it makes entries into the label table

for each label, assigning it to a value equal to its address,

starting at location 000. On the second pass it converts the

symbolic values to the binary encoding of the microinstructions

and stores these in internal memory (binary file) for subsequent

processing. In addition to the binary output, an assembled

listing file 'ass.lst' can be produced. This file is the output

medium by which the assembler communicates its results to the

290l-system microprogrammer. This file is prepared by re-reading

the input source microprogram and matching each line to the

assembled code. It shows, for the microinstruction, each

symbolic representation, its translated binary representation,

and its assigned PROM address.

4-11

Associated with the assembler is a 'converter' program. It

takes the binary output of the assembler and, given the

description of each PROM location, produces the proper output

(for input to the PROM programmer) for each PROM.

4.6 Software Simulator

Another development aid for the microprogram is a software

si mulator. It was decided to use a software simulator in order to

test, debug, and optimise the microprogram before 'burning' a set

of PROMs. The simulator being used is specifically for the

present system (67), and runs under the UNIX operating system.

The simulator provides an interactive microprogram development

and debugging facility which operates exclusively in UNIX with no

need for the 29Dl-system or any associated hardware. It includes

input/output handling and has the ability to access registers,

set breakpoints (break on condition mode), and single step

execution mode. Execution can be halted at any time for

observation of the register contents, change in the breakpoint

conditions, after which execution can be continued without any

I ass. Preparation of microprograms is achieved by using the

assembler (and converter) which generates a file that the

simulator can load directly into its microprogram memory.

Diagnostic messages are printed in response to erroneous

operations and special system condi tions.

A block diagram of simulator is shown in Figure (4.2). The

system box represents the simulation of the 2901-system

archi tecture as described in the previous chapter. The operation

of the simulator is controlled by the simulator executive system

4-12

-

, I , ~ , t ~
RAM ALE

ASSIGNMENTS M ICROPROORA M PROM
FILE FILE TABLE

LOOK - UP

J ! !
ARRAY

~ ,

2901 - SYSTEM --
SIMULATION

....-

,

ARRAY

I
5YSTEM UTlLlT Y

SIMULATOR l...

E XECUrr VE ROUTINE -
UNIX FILE UNIX '--.. OPERATING - TERMINAL ~ SYSTEM ... SYSTEM

FIGURE(4. 2) BLOCK DIAGRAM OF SYSTEM SIMULATOR.

which interprets commands and invokes required utility routines

(macros). A number of files are associated with the simulator.

The RAM file corresponds to the random access memory which is

interfaced to the system. The microprogram file contains data

that are to be loaded into the PROMs of the simulator. The table

look-up files and signal sources contain data to be read into the

internal registers. The simulator has thirty seven control/skip

status and register assignments which correspond to dedicated

hardware in the system. The simulator handles these assignments

through its communications links with the terminal or the UNIX

file system in the following ways:

(i) Default. A request is printed on the terminal for the value

of the assignments. Execution resumes when the assignment value

is entered.

(ii) Optional. The assignments can be read from a UNIX file

specified as an assignments file.

The simulator can access files in the UNIX file system, so that

system files can be loaded from and written to UNIX files. Data

to be entered into registers directly from the terminal may be

hexadecimal or binary. Files for the system are arrays in

memory. They are four different types in accordance with the

I engt h of the data they store. The file types, characterised by

their data format and their use by the simulator, are as follows:

1- 6 types of 10K x 8 bits data RAM file

2- 4 types of 15 x 8 bits data assignments file (option)

3- 8 types of 512 x 4 bits data microprogram file

4- 8 types of 512 x 4 bits data table look-up files

The UNIX files are in ASCII format. They contain a filetype

4-13

declaration which must match the binary type required in this

system.

One can be constantly interacting with the simulator and

this interaction will be controlled by the use of the 'command

library'. The command library includes commands for

re-initialisation the simulator, setting and reading 290l-system

registers, resetting monitor points, and transfer of files

between the simulator and UNIX environments. Another group of

commands are used to perform checks on breakpoint variables

during execution of the microprogram and print messages when

breakpoint conditions are met. A breakpoint can be set on a

microinstruction address, on a register value, and on the number

of clock cycles executed. The run (rn) command initiates

execution of the microprogram until a break condition is met or

for a specified number of clock cycles. While the run command

provides for continuous execution of a microprogram, the single

step command (ss) executes only one microinstruction.

The simulator makes full use of the connected terminal being

used. When one invokes the simulator, the terminal displays a

"start-up" frame. The simulator command level is indicated by a

":" prompt character. First, the simulator's microprogram memory

is loaded, using pc or pt commands, with the binary object file,

which was generated previously by the 290l-assembler from a

source program. Next, assignments, RAM, breakpoints, and any

number of monitor points up to 18 points are set. Various

actions may be taken when the breakpoint is reached; these are:

1- Print the moni tor points on the terminal for investegation

4-14

2- Write into the RAM file and stop execution, or

3- Initialise the execution.

This gives a general idea of the simulator operation.

4.7 PROM PJogxa.w.ling

A mul ti-interface system has been used for programming the

PROMs. The block diagram for this interface is shown in Figure

(4.3). The PROM programmer used was the PRO-LOG M920 (68), which

permits entry from either the 6809 system (69), or copied from

another PROM. This PROM programmer puts successive pulses onto

each bit at the recommended rates (current specification is usual

for "fusable-link" bipolar PROMs) of the PROM manufacturer.

TERMINAL

UNIX 6809 M920 PROM
OPERATING --- SYSTEM PRO GRA tvfv1ER -

SYSTEM

I

- DISC
PPERATING

SYSTEM

FIGURE (4. 3) PROM PROGRAMMING INTERFACE.

4-15

The assembler output files are transfered from UNIX to the 6809

microprocessor system using a special program. These files, in

turn, can be maintained in 6809 system disctes for subsequent

use. The 6809 system is connected to the parallel interface of

the M920 via a 25-pin, D-type connector. The parallel interface

provides eight parallel input data lines, eight parallel output

data lines, seven handshake control lines, and an internal

handshake program (this PROM programmer uses an Intel 4004

microprocessor to provide this and other features).

4.8 Development Test Equipments

A sophisticated microprogram requires special equipment for

testing the system functions and circuits. These supporting

tools should be efficient and easy to implement. The test tools

that have been used in this system are classified into two

groups. Software test microprograms which enable us to examine

the system functions (these will be described in the next

section) and external test equipment which allow us to control

and investigate the software routines. The external test

equipment that was used was a test box , a logic analyser, and an

oscilloscope.

The software test routines requires a test box which allow

us to select a particular test, to set parameters, and to display

the results. The circuit diagram of the test box is shown in

Figure (4.4). It consists of two TIL 311 types (an hexadecimal

display with integral TTL circuit to accept, store, and display

4-bit binary data) (70) and three 74LS367 types, hex bus drivers.

Three rows of address switches, are included that can be used to

4-16

Y1

~
y

.~ ·5.5 1
A B C 0 r-"A~~B~~C-~O--'

•

.. t- ~ TIL 311 B/IN ~ ~ ~c TIL 311 B/IN ~

.... LEO GNDI-'" LED GND I-
L -.=

":

__ t--h r--t-----'j I I I SELECT
~~~~ __ ~--. I I ~-1L:--::~-1I:-:1~~~ . 

6A t;'( SA 5Y 41. 4Y 6A 6Y SA 5Y 4A 4Y 61. t;'( 54 Sy U 4Y ~ -

G2 G2 ~ G2 ri' 
Gl 74LS67 r- Gl 74 LS67 f Gl 74LS67 ... r~·==::::::_ 
lA fY 21. LY 31. 3Y lA fY LA 2Y lA 3Y lA lY 21. 2Y 3A 'J'f ~ _____ _ 

I l,---+-~I __ _ 

~~~~~~-~~~~ __ r4~_+-I-HHH~ L'---______ -J 
L-

'~ SWITCH

-is
-ffi
_TE

----.5
~lK ~1 11< !"IK lK .IK) lK

_INITL
r--

r---

r;:==~ -~

5 '~I't 'fr~I'frfll~+I1< lK . ~ ~~ rt ~~ .5 I--

0(' (2C (4C (6(7(1j ((((((

_54
_55

S6
-57

F4- SWITCHES

0(' (2(3(Y5(6(7(
F1- SWITCHES SKIP SWI TCHES t -'- *

FIGURE(4.4) TEST BOX CIRCUIT.

set up addresses or parameters on the F4 and F7 registers. It

can also be used to set or clear any of seven different types of

skip flags. The test box contains also a selector switch which

is used for displaying the contents of any of the general use

'TO' registers. The test box is directly interfaced to the

system via an 8-bi t data bus, and the 'TO' and 'From' strobes.

It should be noted that the ini tialisation control line 'INITL'

is generated from the test box and supplied to the rest of the

system circui ts.

4.9 Test Software

It was mentioned before that one considerable advantage

which is derived from the use of microprogram control of the

2901-system is that software test routine can be developed and

included in a special test memory by substituting the normal

P RaMs. A set of software microprograms were used to test the

system hardware, any of which could be selected by setting up the

appropriate address on the test box registers. Each microprogram

contains one or more tests for a particular part of the hardware.

These microprograms are described below.

4.9.1 Control Decoder Test

This microprogram generates control pulses corresponding to

the value to which F4 is set on the test box. The pulses are

observed on an oscilloscope to test for correct decoding. A

continuously changing value on display TE indicates that the

microprogram is running.

4-17

4.9.2 "To" and "From" Decoder Test

This microprogram generates pulses on lines TI through TF in

sequence and on lines FI through FF in sequence (notice that TO

and FO are special purpose control lines). The pulses are

observed on an oscilloscope to establish the correct operation of

the decoders.

4.9.3 2901-Slices Internal Registers Test

This microprogram tests the 'R' registers on the 290l-slices

by incrementing the 'Q' register, loading its value into

regi sters RO through RF in turn, and then comparing each register

to 'Q'. A fault causes the microprogram to loop indefinitely in

an error loop. This is indicated by the display TA. A

successful run through the microprogram causes the 'Q' register

to be incremented and the microprogram repeated.

4.9.4 Up Shift Test

This microprogram tests the upward shift function on the

2901-slices. A 'ONE' is shifted around registers Q and RO using

the up-shift function. A second 'ONE' is shifted around

registers RI and R2 using the carry. Errors are checked by

comparing RI and Q, and R2 and RO. R3 is an error counter

displayed on TB.

4.9.5 Down Shift Test

This microprogram tests the downward shift function on the

2901-slices. The value 'hex BO' is loaded into registers Q and

RI, and then shifted down one bit at a time, comparing its value

to the pre-defined value in register R3 between shifts. An error

4-18

will increment RA while a successful shift will increment R9. RA

is displayed on TA, while R9 is displayed on T9. Resetting 56

introduces a delay loop which allows displays to be read.

4.9.6 2901 ALUs Arithmetic Operation Test

This microprogram tests the 2901 ALU's by carrying out its

eight different operations on two registers which are loaded from

the test box. The results of the operations are displayed on TB

through TE. Switch 56 selects either R-5 or 5-R operation.

4.9.7 Carry Control Test

This microprogram tests the carry generator circuit for

correct operation. If F7 is set to 'hex FF' and F4 to any value,

then TA will display (the contents of F4 + 1) if 56 is clear and

contents of F4 if it is set. T9 will always display the contents

of F 4 whil e TB will display 'FF' if 56 is set, and '01' if it is

clear.

4.9.8 FIFO control tests

This microprogram tests the FIFO control system and consists

of three consecutive tests. For the first test, the FIFO is

loaded with 'hex 55' and a reset pulse is generated. If the FIFO

fails to clear, a branch is made to an error routine, otherwise

the second test is entered. In this second test, the FIFO is

loaded wi th sixteen characters, a check for 'FIFO full' being

made before each entry, and a check for 'FIFO empty' made after

each entry. When sixteen characters have been loaded, a check

for 'FIFO full' is made. If the flag is set, the third test is

entered, otherwise the error routine is entered. The error

4-19

routine is also entered if any of the previous checks fails. In

the third test, the FIFa is unloaded one character at a time, a

check for a 'FIFa empty' being made before unloading each

character, and a check for 'FIFa full' made after unloading a

character. When sixteen characters have been unloaded, a check

for 'FIFa empty' is made. If the flag is set, the program loops

back to the first test, otherwise the error routine is entered.

The error routine is also entered if any of the previous checks

fails. A failure in the first test is indicated by TB displaying

the value 'FF'. R9 is an error counter, and T9 displays the

total error count.

4.9.9 FIFa Data Tests

This microprogram tests the FIFa for correct retention of

data. The FIFa is initially cleared as are registers RD through

R3. The FIFa is then loaded with the contents of registers RD,

RI, R2 and R3 in sequence. The data is then read back and

compared with the register contents. An error increments R9 and

restarts the program. A successful pass causes RD to be

incremented and the cycle repeated. Every t ime RD reaches 'hex

FF' RI is incremented, and when this reaches 'hex FF' R2 is

incremented. R3 is likewise incremented when R2 reaches 'hex FF'.

The FIFa is therefore tested for all possible combinations of

data. T9 displays the value of the error counter R9, while TB

displays either the value of R3 if S6 is clear, or the value of

R2 if S6 is set.

4-20

4.9.10 Output Enable Test

This microprogram tests the output enable on the 2901-slices

for correct operation. F4 and F7 are set to any value. TC and

TD should display the value of F4. TB and T9 should display the

value of F7 while TA and TB should display (the value of F7) AND

(the value of F4).

The FIFa transmit/receive tests will be described in the

subsequent chapters. The test microprograms were written such

that they will loop continuously permitting diagnosis with a

logic analyser and an oscilloscope, that will isolate faults to

particular areas.

4.10 Conclusion

The characteristics and implementation of a 32-bit

microinstruction for the system of Figure (3.1) has been

described. Microprogram development aids have been discussed.

One of these aids is a software simulator, which can be used

without access to the 2901-system hardware environment. This

simulator allows us to monitor run-time characteristics of

microprograms which cannot be observed using the system itself.

The assembler and simulator discussed in this chapter have been

used extensively in applications described elsewhere in this

thesis. The method was used for programming the PROMs has also

described.

4-21

a-tAPTER 5

Implementation of Direct Sequences By Microprocessors

5.1 Introduction

It has been mentioned in the introductory chapter that the

object of this - work is the realisation of the signal processing

requirements of a spread spectrum communication system using

digital techniques implemented with the aid of fast

microprocessors. In all spread spectrum systems synchronisation

acquisition and tracking is of prime importance. The behaviour

of synchronisation systems in the presence of multipath

propagation, unacceptable levels of interference, and secondary

cross-correlation peaks of the sub-sequences used for rapid

acquisition have to be studied to set thresholds on performance

in practical systems. The cause of thresholding lies in such

things as tracking loss, and thresholding of the correlation

detector. In general, direct sequence spread spectrum

communication systems are the most widely used spread spectrum

systems (3), (6), (7), (71), (72). In direct sequence modulation

the baseband information is added (modulo-2) to a digital code

sequence whose bit rate is much higher than the information

signal bandwidth. This process has the effect of "spreading" the

signal energy over a bandwidth equal to twice Rc' the system's

code clock rate (7). For good correlation properties and ease of

generation, "maximal" length pseudo-noise sequences (m-sequences)

were used. Despreading, at the other end, is obtained by

correlating the received spread spectrum signal with a similar

5-1

local reference signal (code). When the signals are matched

(i.e. synchronisation occurs), the baseband signal collapses to

its original bandwidth before spreading. Synchronisation is

generally achieved in two stages

a) Acquisi tion or coarse synchronisation

b) Tracking or fine synchronisation

The spread spectrum system is required to accomplish

synchronisation in the presence of interference and transmission

distortion.

This chapter discusses the analysis and implementation, in

both software and hardware, of the functions which are concerned

with direct sequence spread spectrum systems. In particular,

maximal length sequences, and sequence-inversion keying (SIK)

modulation are considered. The difficult problem of initial

synchronisation of the system and the methods by which

synchronisation can be maintained are then examined.

5.2 Pseudo-noise Sequences

Binary pseudo-noise (PN) sequences (which are also called

shift-register sequences or m-sequences) are the basis for the

direct sequence spread spectrum implementation. These imply a

deterministic string of binary digits that repeat only after a

relatively long period and have statistical properties similar to

those of true random numbers. These sequences can be reproduced

by any authorised terminal. Pseudo-noise sequences have been

known for more than twenty-five years. During that time, results

have been obtained on the structural properties and are used in

many applications such as range-finding, modulation, and

5-2

synchronisation (72),(3). Recently, MacWilliams, Sloane,

Sarwate, and Pursley (10), (11) have been examining certain

properties of these sequences and their applications in spread

spectrum communications. The sequences that have received the

most attention in the literature are the binary maximal-length

linear feedback shift register sequences which are known as

m-sequences. In m-sequences, wh ich are the type used in this

work, the maximum length sequence L is 2n_1 bits, where n is

the number of stages in the shift register.

5.2.1 Generation and Properties

At present, MSI pseudo-noise sequence generators are

available which allow limited code generation at rates up to

several Mbps (73). In this project, software methods were

developed for the 2901 system which use a few bytes of PROM and

do not requ ire any R/W RAM.

A particularly convenient method for generating the

m-sequences is by using an n-stage shift register with a feedback

term formed by the modulo-2 addition of several stages which can

be specified by its feedback polynomial,

(5.l)

where the degree n of the feedback polynomial is the length of

the shift-register generator and the binary coefficient

The hi(O or 1) represents the feedback tap on the generator.

equivalent of this operation can also be performed efficiently

using microprocessors (see Appendix B).

5-J

Mathematically, the generation of a binary m-sequence I akl

is defined by the operation

n
ak = r c.a

k
. (mod 2) k=O,I, ••. ,L-l (5.2)

i=1
1 -I

where the sum is modulo 2 addition and both c. and a
k take

1

the values 0 or 1. The co e ffic ients ci' i=I,2, .• n do not

depend on n and must be known in order to specify an m-sequence.

The kth state of the m-sequence generator is, therefore, defined

by the past n terms of the sequence a
k

., i=I,2, •• n as shown in
-I

Figure (5.1).

Figure (5.2) illustrates a shift register consisting of 7

stages, representing memory elements or flip-flops, each

containing a 0 or 1 (all-zeros state is not allowed to exist).

Outputs from the last stage (0
7

) and an intermediate stage

(01) are combined in a modul0-2 adder or EXCLUSIVE-OR gate,

defined by 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1, and fed-back to

the input of the first stage. At each clock cycle the contents

of the stages are shifted one place to the right. In this

particular example the code sequence generated is shown in Figure

(5.3), which is cyclic with a total period 127 times the period

of a single flip-flop output pulse. This is the longest code

sequence that can be generated by 7 stages in a shift register;

tha t is for n stages the longest sequence that can be generated

For an n-stage register, there are CP(L) In maximal

sequences that can be generated by using different linear

combinations of feedback taps (where !P(L), is the Euler

efl-function, i.e., the number of positive integers including 1

5-4

-- CLOCK

. - ~ r ••
Ak ... ~-I Ak-2 ... ------- Ak..-!

C, no C2
1

en ,r

~, ~7 ~,

EXCLUSIVE OR

I

FIGURE(5.1) BINARY SHIFT REGISTER.

EXCLUSIVE OR

+~
.~

- 0, 0, COlE OUTPUT

F1GLRE(5.2) SHIFT REGISTER GENERATOR FOR 127-BIT m-SEQUENCE.

-If
8
91.00

~ ~
'0.00

PSEUDO-NOISE BINARY SEOUENCE
LENGTH-127
FEEDBACK TAPS--(7,ll

r-r- r- 0- r- ...- ..--

I
I

20.00 40.00 60.00 80.00 100.00 120.00 140.00
K-SHIFT

FIGURE(S.3a) TYPICAL m-SEQUENCE aW,1) (PERIOD =127),

PSEUDO-NOISE BINARY SEQUENCE
LENGTH-127
FEEDBRCK TAPS--(7,ll

.- r-- - I

I

I -
20.00 40.00 60.00 80.00

K-SHIFT
100.00 120.00 140.00

FIGURE(S.3b) TYPICAL m-SEQUENCE b(+ 1, -1) (PERIOD = 1271.

that are relatively prime to and less than L). Feedback

connections have been tabulated for maximal code generators from

3 to 100 stages, so that any length from 7 through 236_1 are

readily available (7), (3).

F or most cases it is convenient to consider the m-sequence

as formed from the digits {+1,-1} instead of {0,1} , the {+1,-1}

sequence { bi} is related to the {O,l} sequence { a
i
} by

(5.3)

this enables modulo-2 addition to be replaced by conventional

multiplication or vice versa.

For convenience some relevant properties, for our

application, of m-sequences are summarised below.

1- The one-zero balance property : in every period of the

sequence (n-l the total number of ones 2) always exceeds the

n-l total number of zeros (2 -1) by one. For a 127 bit code

there are 64 ones and 63 zeros. This property has the effect

that the DC component in a code or in a code-modulated signal can

be neglected.

2- Runs property
n-(p+2)

in any code sequence there are 2 runs

of length p for both ones and zeros, where runs is defined to be

a maximal string of consecutive identical symbols, except that

there is only one run containing n ones, and only one run

containing n-l zeros. There are no runs of zeros of length n or

ones of length n-l. This property is useful for testing code

sequences of any length.

3- Autocorrelation property if a maximal code {a i } is

5-5

correlated with a replica of itself during a complete sequence

period L, then the normalised autocorrelation function varies

linearly from 1 to 0 in the range 0+ T c (the sequence chip)

phase shift and equals to 0 for all other values of phase shift,

i.e. for a complete period L the normalised autocorrelation

function is given by

(5.4)
elsewhere

For convenience, the periodic unnormaJised autocorrelation

function is often used and is defined as

if I = 0 (mod L)
(5.5)

if I ~ 0 (mod L)

Thus binary m-sequences have two-valued autocorrelation

functions. This is the most important property and it will be

discussed in detail in the following section.

4- Shift and add property : the modulo-Z addition of a maximal

code and a cyclic shift of itself is another replica with a phase

shift different from either of the originals. This property,

which allows generation of any desired code phase, can be used in

a multiple correlators scheme in order to reduce effective

synchronisation time.

5- Window property if a window of width n is slid along a

complete code period, each of the Zn_1 nonzero binary state

n-tuples exists only once.

5-6

5.2.2 Correlation Functions and Power Spectra of Codes

The autocorrelation properties of m-sequences are

interesting from the point of view of synchronisation as the

autocorrelation function is periodic and two valued, with a peak

only at the zero shift point. This property is important in

choosing code sequences that give the least probability of a

false synchronisation. Code sequence (unnormalised) correlation

can be expressed as the number of agreements CA) minus the number

of disagreements (D) when the code and a phase-shifted replica of

itself are compared bit by bi t. The normalised correlation is

then given by

R (A - D) I L a (5.6)

The unnormalised autocorrelation (crosscorrelation) function of a

sequence (two sequences) is the set of correlation values of the

sequence (one sequence) with all cyclic permutations of itself

(the other sequence). This is a generalised correlation

definition which coincides with the two types of code sequence

representation {a,1} and {+1,-1} as mentioned above. Figure

(5.4a) shows the autocorrelation function of a 7-stage shift

register generator, generating a 127-bit m-sequence of Figure

(5.3a). Autocorrelation properties for nonmaximal sequences may

be different from those of the m-sequences, an example in Figure

(5.4b) shows the autocorrelation for a nonmaximal sequence

generated from the same shift register but with different

feedback taps. The Figure shows minor correlation peaks which

are dependent on the code and are caused by partial correlations

during the correlation process. When such minor correlations

5-7

8
d
~

RUTOCORRELRTION FUNCTION
LENGTH-127
17.1l

8~-===~==~
91.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

K-SHIFT

FIGURE(S.4a) A 127-8IT m-SEQUENCE AUTOCORRELATION FUNCTION.

RUTOCORRELRTION FUNCTION
17.S)

8
cl
.4-__ __

10•00 20.00 40.00 60.00 80.00 100.00 120.00 140.00
K-SHIFT

FIGURE(S.4b) NON-MAXIMAL SEQUENCE AUTOCORRELATION FUNCTION.

occur, the receiving system's ability to synchronise may be

impaired because it must discriminate between the major (0+1 bit

shift) and minor correlation peaks, and the margin of

discrimination (index of discrimination (ID) (7» is reduced.

The power spectrum of an m-sequence may be determined from

the autocorrelation (74) function by application of the equation:

+00

SCw) = f RCT) e -jWT dT
-00

C5.7)

Defining the sequence autocorrelation function as equation (5.4),

then its Fourier transform is

Since R (T) is periodic it can be expressed as
a

R (T) = -l/L + (L+l/L)R (T) * 2:0(T+nL T)
a a n=-(X)

(5.8)

(5.9)

where the asterisk indicates the convolution operation. The

power spectrum can now be obtained by applying equation (5.7) and

using

OJ
= 1 /L T L o(f + nIL T)

n=-CO

(5.10)

Thus

co 2
Sew) (L+l/L 2) sinc2(w/2nf) ~~w-(2nkf)/L)+1/L o(w)

ktO
(5.11)

where L is the length of the sequence, and f is the clock

frequency, and

5-8

2 The spectrum has a (sin xl x) envelope. Figure (5.5) shows

the power spectrum of the m-sequence waveform whose

autocorrelation function was shown in Figure (5.4a). Observation

of such a spectrum will show that it is a line spectrum with a

line spacing equal to the code repetition rate, R IL.
c Because

the pulse of shortest duration in the m-sequence is equal in

length to the code sequence clock period, the spectrum will have

a main lobe bandwidth such that its first nulls fall at the code

bit rate. This is an interesting point in a direct sequence

system, in which the transmission bandwidth is assumed to be

equal to the bandwidth of the main lobe (i.e., is twice the code

bit rate). From the one-zero distribution property, which is

mentioned earlier, it is seen that the DC component is ±l/L and

the DC power is IlL
2

•

5.3 Implementing the Feedback Shift Register on a Microprocessor

Although the linear congruential algorithms (75), (76) are

the most successful approach for pseudonoise sequence generation

in large computers, they are not well suited for use on

microprocessors because they rely on multiplication of large

integers. Instead, straightforward simulation of a linear

feedback shift register is usually used to produce binary

m-sequence using microprocessors. The term 'linear' here, means

that only EXCLUSIVE-OR connections appear in the feedback logic

(Figure (5.1)). M-sequences can be produced on the basis of

equation (5.2) by simulating the hardware methods just discussed.

A typical microcode program, when using a 2901 system, might

5-9

If)
N
d

c
c

et.OO 40.00 80.00
w

120.00 160.00

POUER DENSITY SPECTRUM
I-SEOUENCE
LENGTH-127
CODE RATE- O.OIKBps

200.00

FIGURE(S.Sa) m-SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

If)
/"'
cl

If)
N
d

g~...-...........
°-200.00 -100.00 0.00

w
100.00 200.00

POUER DENSITY SPECTRUM
I-SEOUENCE
LENGTH-127
CODE RATE- O.OIKBps

300.00

FIGURE(S.Sb) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUr

o
(;)

et.OO 400.00 800.00 1200.00
w

1600.00

PO~ER DENSITY SPECTRUM
.-SEOUENCE
LENGTH-127
CODE RATE- O.tKBps

2000.00

FIGURE(S.Sa) m-SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

8J.--......... __
°-2000.00 -1000.00 0.00 1000.00

w
2000.00

PO~ER DENSITY SPECTRUM
I-SEQUENCE
LENGTH-127
CODE RATE- O.IKBps

3000.00

FIGURE(S.Sb) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

11)
N
d

c c

et.OO 400.00 800.00 1200.00
w (XlO-l)

1600.00

POUER DENSITY SPECTRUM
I-SEOUENCE
LENGTH-127
CODE RATE- lKBps

2000.00

FIGURE(S.Sa} m-SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

11)
N o

g~..-...... --
0-2000.00 -1000.00 -0.00 1000.00

w (XlO- l)
2000.00

POUER DENSITY SPECTRUM
I-SEOUENCE
LENFTH-127
CODE RATE- lKBps

3000.00

FIGURE(S.Sb) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

Lt)
N
o

::3
c:t.00 400.00 800.00 1200.00

w (X 10-2)
1600.00

POUER DENSITY SPECTRUM
.-SEOUENCE
LENGTH-127
CODE RATE- 10KBps

2000.00

FIGURE(S.SaJ m-SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

Lt)
r"'­
o

Q
Q~"-",,,-

0-2000.00 -1000.00 0.00 1000.00
w (Xl0-2)

2000.00

POUER DENSITY SPECTRUM
I-SEQUENCE
LENGTH-127
CODE RATE- lDK8ps

3000.00

FIGURE(S.Sb) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

Lt)
N
cl

Cl
Cl

c:tJ.Oo 400.00 800.00 1200.00
w (X 10-3)

1600.00

POUER DENSITY SPECTRUM
.-SEOUENCE
LENGTH-127
CODE RRTE- looKBp&

2000.00

FIGURE(5.5a) m-SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

Lt)
f'
cl

Lt)
N
cl

g~...-.....-
Q-2oo0.00 -1000.00 -0.00 1000.00

w (X10-3)
2000.00

POUER DENSITY SPECTRUM
.-SEQUENCE
LENGTH-127
CODE RRTE- 100KBp&

3000.00

FIGURE(S.Sb) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

U') ,....
d

I/)
N
d

o
o

91.00 800.00 1600.00 2400.00 3200.00
W (X10-3)

POUER DENSITY SPECTRUM
I-SEQUENCE
LENGTH 127
CODE RATE- 200KBps

4000.00

FIGURE(S.Sa) m-SEQUENCE OF PERIOD 127 ONE-SIDED POWER
DENSITY SPECTRUM.

If) ,....
cl

If)
N
d

o
c-

Q-4000.00 -2000.00 0.00 2000.00
w (X 10-3)

4000.00

POUER DENSITY SPECTRUM
I-SEOUENCE
LENGTH-127
CODE RATE- 200KBps

6000.00

FIGURE(S.Sb) m-SEQUENCE OF PERIOD 127 POWER DENSITY SPECTRUM.

store the contents of the shift register in one or two work-space

registers depending on the length of the sequence, or in

successive memory words. When this is done, it is advantagous to

assign a second register or memory word, containing the

associated feedback coefficients, to each register storage

location. When a certain register cell is connected to the

EXCLUSIVE OR adder, the corresponding feedback bit in the

feedback register is set to 1; otherwise, the feedback word bit

contains O. To calculate the feedback input to the shift

register, feedback coefficients must be ANDed with the shift

register content, and the number of binary ONEs in this result

must be counted. For counting the number of ONEs, table look-up

can be used. The feedback input will be 0, for an even number of

Is, otherwise 1. A successive bit isolation (masking) and

E XCL USIVE-OR operation may also be used to calculate the feedback

input but it can be very time-consuming for multi-feedback tap

organisations. The above approach can be compared as shown in

table (5.6) by counting the number of microcycles per bit of the

output sequence.

successi ve bi t
isolation

Hamming weight
function

number of microcycles
per bit

15

6

Table (5.6)

5-10

code bit rate

200KBps

500KBps

A parallel implementation allows especially fast generation

of m-sequences. Working in parallel, several bytes of fast PROM

are iooaded with a predefined and debugged code sequence and with

a number of I shifted replicas of itself, where I is the word

length of the processor, here, 8-bits. n In general, 2 -1 word

locations of PROM are required to store all the possible phase

patterns of a code sequence of length 2n -1. Several factors

make the parallel structure a good basis for effective software

implementation. The PROM store can be arranged to match the word

length of the processor and, therefore, every location produces

8-bits of the desired sequence in one clock cycle and shifting

can be performed by incrementing a cyclic counter in a direct

addressing mode. In this particular application, the parallel

output structure is easy to manipulate in signal processing

functions in which the code sequence takes part of it, such as,

spreading, acquisition synchronisation, and despreading

operations. It is important to note that with the parallel

structure, increasing the processor word length leads to faster

generators. Appendix B shows typical values (in Hex) for

m-sequences of period 127, that were produced using the 2901

simulator, to be loaded in a PROM table look-up.

5.4 Sequence Inversion Keying (SIK) Modulation

Spread spectrum communications refers to a class of

modulation methods by which the narrow-band information (data) is

transmitted via a modulated signal having much greater bandwidth.

Much of the literature refers to the direct sequence modulated

signal that is produced by a mUltiphase phase shift keying (PSK)

5-11

modulation by a code sequence carrying the data (6), (7). The

way in which the data is imbedded in a code sequence is called

code modification or sequence inversion keying (SIK) modulation

(77). This form of modulation means that we must change the code

in such a way that the data is imbedded in it and can only be

detected by an authorised terminal knowing the original code. In

addition, the required code properties - good autocorrelation,

low crosscorrelation, and the distinct spectrum - should be

maintained. This process is achieved by digitising the data

(principally voice) to be sent and modulo-2 adding it to the code

sequence. This process has the effect of inverting the code each

ti me a transition accurs in the data stream. The data transition

rate could either be asynchronous with respect to the code

sequence clock, or synchronous, in which case the number of data

bits to be transmitted for each sequence period are restricted by

the process gain and the system thresholding sources. One of

these thresholds is the correlation detector threshold, that will

be discussed later. For purposes of simplicity, in this project,

we consider the transmission process as completely binary. SIK

may be performed in the 2901 system based transmitter as follows;

data bi ts are synchronised by recognising the all l's state of

the m-sequence generator and starting a data bit at that time. A

cyclic counter is counted to determine the start of subsequent

data bits. A typical example was implemented in which a 7-stage

m-sequence generator produces a sequence whose length is 127

(Figure (5.3a» bits. In this example, the data bit rate was

chosen to be the repetition rate of the m-sequence. Because the

length of the sequence is a prime number, the data bit is divided

5-12

into 16 data bytes where 15 bytes are of complete length (8-bits)

and the 16th byte was masked in order to isolate the required

number of bits. In thl·S th I· case e cyc lC counter is reset to zero

after each sequence period. Thus the transmission of alternate

D's and l's of data is provided. Each bit of data, in this

example, can take 48-64 microcycIes in order to be transmitted.

The practical advantage of using asynchronous data is

simplicity of the implemented interface between the data source ,
which may be a front end-processor, and the transmitter.

Asynchronous data bits are random in length, this makes the

synchronisation problem much more difficult.

5.5 Synchronisation

Despreading or demodulation of the spectrum-spreading

m odul ation requires good synchronisation between the coded signal

arriving at the receiver and the receiver's reference code.

Synchronisation, here, means that the received signal and the

reference code are accurately timed in both their code phase and

their rate of bit generation, and should remain so. Changes in

code phase and/or code rate are due to propagation path length

changes, Doppler frequency shift, and nonaccurate frequency

sources in both the transmitter and receiver. Good

synchronisation requires that code phase alignment of the two

codes wi thin approximately one code bit (chip) must be achieved

and maintained. The synchronisation process is usually regarded

as consisting of two parts; coarse synchronisation (which is also

called initial synchronisation or acquisition) and fine

synchronisation (tracking). Initial acquisition may be defined

5-13

as the process of: firstly, adjusting the relative phase and rate

of the reference code and the received signal to within the

pull-in range of the tracking. Secondly, activating ~he tracking

phase. Tracking is the process of maintaining a synchronised

condition and initiating the acquisition process if tracking

subsequently fails. Those parts of the receiver concerned with

acquisition and with tracking can be mostly digital, excluding

those systems which use direct transmission of very high rate

code sequences (multiple Mbps) for which analogue correlation

techniques (by using surface acoustic wave (SAW) (9) and charge

coupled devices (CCD) filters (78» are necessary.

5.5.1 Ini tial Acquisition Techniques

When the communication link is first established or after a

loss of contact, an acquisition process must take place. In this

process, the recei ver sequence generator is brought into

synchronism with the incoming sequence and the tracking loop is

locked in. A number of methods have been implemented for

acquiring pseudonoise signals which can be used in the receivers

of spread spectrum systems. The type of acquisition method to be

chosen should make full use of the attractive correlation

properties of the m-sequence in order to reduce the delay errors

between local and received code sequences. Ward (16), and others

have described a technique, known as sequential estimation, which

depends on estimating n (the number of shift-register stages)

sequential bits of the incoming signal and loading them into the

receiver shift register in order to obtain an estimate of the

present state of the input. Through correlating the received

sequence with that generated locally for an examination period

5-14

T e' a decision is made as whether the correct estimate has been

loaded or not. In case of correct decl·sl·on, . · t· acqUlsl Ion occurs

and a tracking mode is entered. In case of an erroneous

estimate, a new estimate is made and the procedure is repeated.

If a data ONE is being transmitted or if a data transit ion occurs

during the n-bit estimate, an incorrect estimate will be

obtained. These effects will be more detrimental when higher

data-bit rates are being used. In the second method, which is

usually referred to as the sequential detection method (79), a

precalculated bias is added to the correlated code and integrated

for a variable length of time until the threshold is exceeded,

indicating only noise is present (local code out of phase). This

method is especially appealing when a strict acquisition time

requirement is imposed. These methods require a significant

amount of hardware logic circuits and the data processing

requirements for these methods exceed the capability of a 2901

microprocessor unit. Alternatively, 'sliding' correlation

process (which is also called the serial search process (80)), in

which the phase of the reference code is slipping while

cross-correlating it against the received signal until the

cross-correlation output rises to a value which exceeds a certain

threshold and the sweep is halted, is almost always employed.

One of the most useful techniques, which makes use of the

serial search process, employs a synchronisation preamble to be

sent at the beginning of each transmission. This preamble is a

spec i al code sequence (72), which can be short (the only

di fference between them and the code sequences used after

5-15

acqui si ti on is the length) t II o a ow a search through all possible

code positions in a reasonable time. The disadvantages of the

preamble synchronisation method is that, its relatively short

sequence length tends to be more vulnerable to false

correlations.

The serial search method is very accurate but it is slow

because it involves correlation over a complete period of the

sequence, and the repetition of this for successive time-shifts

until the peak is found. Fortunately, correlation over a

partial-period (segment) of the sequence is adequate (81).

The receiving system, in searching for synchronisation,

operates its code sequence generator at a rate slightly faster

(or slower) than the transmitter's code generator such that the

receiver code slips past the received signal. One way of

achieving this using a microprocessor is by interfacing a

microprocessor system to a voltage-controlled oscillator (VCO)

and sequence generator in hardware. In that case a DAC is needed

in order to send the chosen value of the voltage to the VCO which

causes a frequency offset (search rate) between the local clock

rate and the clock rate of the transmi tter. This method is

awkward and a compromise is needed between a small frequency

offset which causes a long average-search time, and a large

frequency offset, for which the cross-correlation peak is small

and liable to be missed (false dismissal) unless a low threshold

is set, and F3S will be seen shortly leads to a false acquisition

(false alarm) in the presence of noise (80). The drawbacks are

also that it depends on the machine to be used which, in some

5-16

cases, is too slow.

In this case, the whole system was implemented within the

microprocessor system which was also used to drive the clock at

both the transmitter and receiver, as will be seen in the next

chapter.

5.5.2 Correlation Process

The perf orm ance of the 2901 system in achieving the

acquisition process depends strongly on the partial

crosscorrelation function

M-I
La. s.

n=O I+n I+n+T
(5.12)

which represents the correlation of M symbols al" a i +1

••••••• , a i+M_1 of the receiver's replica with the M symbols

si+l+T , •••• s. M 1 of the received sequence, such
1+ - +T

that M ~ L. In the case M=L the quantity c (i, T) is
as

independent of the initial i, and correlation analysis becomes a

relatively simple deterministic problem. A theoretical anal ysis

of the relation between L and M as a function of i, and

MC') . C J, T IS as
not available to our knowledge. Instead, many

search trials were made using the 2901 simulator in order to

choose a reasonable value for M. Notice that c MO, T) is
as

simply a comparison of the i-th binary weight bits of the

received signals set, T) and the replica aCt). This comparison

can be performed by computing the number of agreement bits

between a and s n n+T
From that point of view the 2901 based

correlator system is effective because it can be expanded to

accommodate variations in the sequence length L. The 2901 system

5-17

computes the number of agreement bits between two 8-bit binary

sequences in 3 microcycles, e.g., a 127-symbol crosscorrelation

takes a total of 48 microcycles (16 u.sec) to be computed. The

phase slipping process is achieved either by phase shifting the

receiver's code periodically by 1 chip increments each time and

carrying out the comparison with a stored sample of the received

sequence, or by matching the incoming sequence with a fixed

segment (~L) of the receiver's code until the proper point of

synchronisation is reached. In this case, the time spent at peak

correlation is minimum but the threshold, as will be seen

shortly, is higher.

Recognising the peak in the correlation function is an

inherent part of the acquisition process after which the receiver

starts its local code tracking before the received and local

codes drifts apart. Because the low rate binary data, which is

modulating the subcarrier, is unknown, the peak in the

correlation function may be maximum positive or maximum negative

depending upon the phase of the received signal as shown in

Figure (5.7). Therefore it is necessary to test whether the peak

is above a positive threshold or below a negative threshold. An

accurate but a very long computing time search method was

implemented using the 2901 simulator in order to choose the

optimal values required to be set as a threshold. Figure (5.8a)

provides a description of the method used to detect the

correlation peak in the microprogram design. The correlation

values are arranged without truncation such that the peak

magni tude lies in the range of the 8-bit two's complement integer

5-18

CROSSCORRELATION FUNCTION
DATA-O

o
o~============================~========================~
11.00 20.00 40.00 60.00 BO.OO 100.00 120.00 140.00

o o
Q
•

K-SHIFT
FIGURE(S.7a) EFFECT OF DATA POLARITY ON CORRELATION PEAK (DATA-m.

CROSS CORRELATION FUNCTION
ORTA-1

g~ ____________________________ ~r ______________________ __

IIi
ZI
o
H
t­
er:
-10
lL.J~ cr;o
cr;1f'
o
u
(f)
(f)

0 0 cr;o
Ulli

(1)
I

g
o
~~---
10•00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

K-SHIFT
FIGURE(S.7b) EFFECT OF DATA POLARITY ON CORRELATION PEAK (DATA-H.

(Q)

-----1-------------
----- --------------------

(b)

FIGLRE (5.8) CORRELATION PEAK DETECTION

(a) ALTERNATIVE VALUES Fffi CORRELATION PEAK

(b) PEAKS AFTER ADDING THRESHOLD.

.127

r
-to
-~

1.

-127

-127

and the threshold is added to the correlation values. The values

will change as a resul t of the overflow properties of two's

complement arithmetic as shown in Figure (5.8b). If the peak

exceeds the threshold, in either direction, the result is

negative. This requires only one microinstruction when it coded

directly into 2901 system. Note that the lower the setting of

the threshold , Y, the more assurance that a peak will be

recognised. Note also, however, that lowering the threshold

increases the noise lying above threshold, which increases the

false alarm rate as shown in Figure (5.9).

5.6 Tracking

As a result of the acquisition process the receiver's code

and the sequence embedded in the incoming signal are exactly

matched in time. In order to maintain that synchronism, the

receiver must cause its own code bit rate to match the incoming

code bit rate (usually within one chip). In principle, a

di thering loop (82), and delay-lock loop (83), (84) are often

used for doing this, in which case, the output of the acquisition

correlator will indicate the loss of synchronisation when the

peak falls below the threshold. However, in an implementation

such as this and because of the serial nature of the signal

processing of the microprocessor implementation, it would be

impractically slow to operate both the acquisition and tracking

processes simultaneously.

The delay-lock loop uses an actuating error signal derived

from received and local sequences to control the receiver's code

bi t rate. Operation of the delay-lock loop was first discussed

5-19

by Spilker (83). A survey of the basic properties and main parts

of the delay-lock loop that are useful for the purpose of this

thesis will be given in this section.

5.6.1 Delay-Lock Loop Correlator

Figure (5.10) shows the basic block diagram of the

delay-lock loop correlator, which wiU be assumed to be in the

locked-on situation. The backbone of the circuit is a local

n-stage feedback shift register which generates time-displaced

versions of a binary m-sequence a(t). It is convenient to denote

sequences with a delay and advance of kT by a and a
-k +k

respecti vel y, e.g.

a -k = a(t-kT), a +k = a(t+kT) and aD = a(t)

Each of the versions a_I and a +1 which have amplitudes +1 is

correlated with the input signal

r(t) = s(t+u) + n(t)

where u is the delay-error. This terminology stems from the use

of the delay-lock loop in tracking and ranging systems where the

delay between a transmitted and a received sequence is a measure

of the distance between target and transmitter/receiver. The

difference between the correlator output signals is obtained by a

subtraction device which, together with the multiplier and

summation forms the crosscorrelation network. Using the

shift-and-multiply properties of m-sequences, it can easily be

shown that the contribution of these sequences to the long time

summation output of the crosscorrelation network is proportional

to

(5.13)

5-20

L
INPUT SEQUENCE .

a.1
~ e

I
Q_1

FIGURE (5.10) BASIC DIAGRAM OF DELAY-LOCK LOOP CORRELATOR.

where Ra(u) is the autocorrelation function of the pseudonoise

sequence in question which has a base width of 2T, and D
2T

(u)

is an N-shaped error signal made up of two copies of this

autocorrelation function, with a relative shift of 2T, one being

inverted with respect to the other as shown in Figure (5.11).

Thus for lul < 2T, the function D2T(u) provides a discriminator

characteristic or error-signal to control a VCO to maintain the

alignment between the two sequences by minimising u. In this way

a closed loop is obtained. If properly designed the loop tends

to the locked-on state, for which I ul ~ T. If, at any time, the

delay-error u exceeds one bit time (Iu\ > T) the loop losses lock,

and the acquisition processs has to be reinitiated. In practice,

the period of sequences used is normally long (for example,

Ward's ranging system (77) uses 15-stage shift register which

produces a sequence whose length is 32767 tracking bits). The

time elapsed before reacquisition may also be long, during which

time a substantial block of transmitted data may be lost. A

variety of methods by which the error curve can be widened to

accomodate a displacement greater than ± T without losing lock

have been discussed (85), (86). Although these methods have a

higher threshold, permitting a larger offset to be used, the

probability of false dismissal may be increased.

5.6.2 Implementation

Direct implementation of the delay-lock loop correlator

circuit of Figure (5.10) with SIK having equally probable data

zeros and ones means that the N-shaped error curve (Figure

(5.11)) mayor may not be inverted, depending upon whether the

5-21

1
- L ==t-::r-t:::============drL.~~===== U

(a)
-R (U-T) sa

~========~L-f===============~~~====U

(b)

~T(u) __ data 1

• L.l _data 0

L ,t... A
I \ ' \ , \ , \ I \

I \ I \
I \ I \ , I \

-2T \ -T .2T

\
,

\ I
\ I
\ I
\ I

V -L.1
T (c)

FIGURE (s.,,) (a) AND (b) AUTOCORRELATION FUNCTION OF
BINARY SECUENCE (PN)
(c) DELAY-LOCK DISCRIMINATOR CHARACTERlSTC.

data is 1 or O. One way to overcome this which has been

described (77), (84) involves duplicating the delay-lock loop

carrel at or, and rectifying and combining their outputs together

with an appropriate bias such that either correlation or

anticorrelation at a multiplier produces a negative feedback

loop. In this case, by adding (modu!o-2) the data obtained after

despreading to the sequences s 1 and s prior to the loop
- +1

correlator, this dependence of the error curve on the data

polarity is avoided, this may be recognised as follows:

Equation (5.13) can be rewritten as

set) = m(t+u) a(t+u) + net) (5.14)

and this is correlated with

where met) represents the estimated low-rate data. As a result

of the term

m(t+u) met) 1

the correlator outputs are unaffected by the modulation. This

method is a straightforward implementation using microprocessors;

occasional errors in data despreading due to data-transmission

errors and interference can be tolerated because of the smoothing

effect of the correlation process.

The tracking correlator was implemented using the 2901

microprocessor system by generating the local sequences, a+1

and a_I' using PROM and replacing the multipliers by

EXCLUSIVE-OR operations.

5-22

5.7 Conclusion

In this chapter, direct sequence system configurations for

data transmission have been described. One method to data

modulate a pseudonoise code sequence is SIK. The only

restriction on the data patterns transmi tted, in case of short

code lengths, is that the word length must be equal to the period

of the m-sequence. The accurate performance of the acquisition

and tracking system which has been discussed is due to the

excellent properties of the m-sequence, based on the use of a

delay-lock loop correlator. The use of a bipolar bit-slice

microprocessor system to generate the pseudonoise sequence

required as a subcarrier and to control the acquisition and

tracking modes is effective because it can be expanded to

accommodate variations in the sequence length. In addition, it

offers the advantage of being able to define the parts of the

spread spectrum receiver by software.

5-23

D-IAPTER 6

Transmitter and Receiver Design

6.1 Introduction

The advances in digital electronics have come to the point

of making circuitry and systems reasonably small, reliable, and

inexpensive so as to enable practical implementations of spread

spectrum techniques for the transmission of digital information.

The sui tabil i t y of microprocessor systems for the implementation

of digital correlation and the synchronisation of spread spectrum

recei vers has been demonstrated in chapters 2 and 5. The extent

to which microprocessors may be used in the implementation has

been investigated in chapter 3 and 4, because of the flexibility

that should follow from defining the procedures by software.

Relatively high throughput requirements (processing of greater

than 1 kbits/sec digital information) and several special

function requirements dictated the selection of a bit-slice

microprocessor for use in this case (other than general-purpose

microprocessors).

This chapter describes how the 2901 microprocessor can be

appl i ed to perform the signal processing for the spreading,

synchronising, and despreading of the transmitter and the

rece i ver in real time. In order to achieve this it is necessary

to adapt the way of executing the various operations to the

computational capabilities of the microprocessor. This has been

done by the derivation of suitable algorithms which specify the

different functions that have to be performed. Both the

6-1

transmitter and receiver designs are based on the 2901 system.

6.2 Transmitter

The complete microprocessor configuration of the transmitter

is represented in Figure (6.1). This hardware is generally

divided into five parts, namely, a 2901 microprocessor system

controlled by microprograms, external memories, programmable

divide by n counter, buffer memory and a test box. The 2901

system which was described in chapter 2 and 3, is the core of

this transmitter. The microprocessor includes eight 1/2 kbyte

bipolar PROMs containing the transmitter software. The external

memories is composed of PROMs. Two IC's PROM store the code

sequence samples. These are addressed by the microprocessor

through the data bus and the stored values are fed out to the

same bus. The program mm able divider uses the main clock of the

microprocessor to generate the clock required to shift the data

to be transmitted serially out from the buffer memory, FIFa (see

Figure (3.10». It provides square pulses at rates of f /256 -c

f (f = 3MHz) as selected by the test box switches.
c c

Finally

a few latches, two bus transceivers and a test box complete the

system design.

The tasks performed by the transmitter fall into three broad

categories:

(1) data acquisition

(2) spreading by SIK modulation

(3) transmitting data.

It was found that a single 2901 system unit was not able to

perform the RF carrier modulation and all of the required tasks

6-2

.. e I DATA OUT ..
) f2 / > y --, r-

e .II.- 8~
,

~
4 / • •

~O ~ CONTROL BI TS ..
Y / I">

) 1(~ 1! ~ bl
y

8 ... v 7 ... ' 1, I.- 1/ 1 I.- 1)'1 "'-< ~

" 2901 LATCH LATCH

TEST -BOX
~CROPROCESSOR

FIFO SYSTEM
..... ::;, .. ~

4 PROM • PROGRAMMAElE

D [)IVHER

~ .. I H
8.1 ... 8 .I

SERIAL
~ OUT ..

DATA

~ ""-~ DATA IN ... ,
to.. V

0 } a: y
LL

FI~E (6.') 2901 MICROPROCESSOR CONFIGURATION FOR THE TRANSMITTER.

mentioned above simultaneously in the available time. One of the

main reasons for this was that the RF . carrier modulation waveform

must be generated continuously, while simultaneously spreading

incoming data. In view of this, it was assumed that the RF

modulation would be achieved by some other means and the

remaining tasks were performed by this system without a separate

hardware multiplier. Figure (6.2) shows a side view of the

transmitter.

6.2.1 Data acquisition

The facility to interface the 2901 system with a host

computer or an external data source was available, and consisted

of a set of latches (plus circuits to actually carry out the

transfers, control flip-flops, and interrupt handling circuitry)

to enable the assembly of 16-bit data and address words under

microprogram control. The address word latches may be counters

so that the address can be incremented for each new data word.

This facility was capable of accommodating both asynchronous and

synchronous data (see section 5.4) by which the transmitted

signal spectrum is made to be dependent only on the clock rate of

the code generator.

In principle the baseband data to be communicated is

digital, coming either from a data terminal or digitised voice or

video. In order to measure the maximum rate of the error-free

data to be transmitted, the binary data was, firstly, simulated

by software before it was modulo-2 added with a code sequence

just as any other binary data stream would be. The data bit

I ength was chosen to be equal to a multiple integer of the length

6-J

-- - ----.~---------------

FlGURE(6.2) TRANSMITTER HARDWARE (SlOE).

of the sequence in ord t er 0 overcome the correlation loss

problem. Therfore, it was felt, at this stage, that error control

coding was not mandatory.

6.2.2 FIFa on transmit

The input/output buffer memory, FIFO, interconnection and

operation has been described in chapter 3 which provides the

means for the microprocessor system to interact with the

communication link. The microprocessor loads the FIFO with a few

bytes of modulated data which is clocked into the FIFO from the

8-bit bus by activating "data transfer" (T6) and checking the

state of "data request" (SD) to ensure that the FIFO is not full.

The transmit signal (C6) is then activated and latched in order

to permit the clock to strobe data out of the FIFO serially into

the link and it is only necessary the processor refills the FIFO

from time to time.

6.3 Spreading

Consideration was given to the possibility of generating the

code sequence using a purely software approach. However, the

overhead required . in adopting this approach represented a

considerable proportion of the overall processing time. A

compromise was needed between a pure software generation which

resul ts in a long processing time, and a hardware one using the

available MSI packages (73). A look-up table stored in an

external PROM (two of 825131 types) was used to generate samples

of the code sequences, the code has been fully described in

chapter 5 of this thesis. The table consists of L bytes of

6-4

samples each of which is stored as an unsigned a-bit number. The

table may be regarded as circular; the index _ of the current byte

is always calculated modulo-L. The speed limitation on

implementing this approach is due to the rate at which the data

can be extracted from the FIFO in which case up to 1 MBps can be

generated. Because the transmitter functions are entirely

software controlled, it is possible to implement any sequence

length by simple software modification.

Sequence inversion keying (SIK) or binary biphase phase

shift keying (BPSK) in which the data to be transmitted is

modulo-2 added to the code sequence, was adopted as the

modulation scheme for the system. In theory, data and code

sequences need not be synchronised, one problem of this is that

it m ay be possible for anyone to read the data directly from a

clean copy of the received signal. Systems which have coincident

data and code sequence clocks are often said to have a data

pri vacy feature (71). In this case, the data bits are completely

hidden by the randomness of the code and this implies that the

data bits cannot be extracted without first obtaining a detailed

knowledge of the specific code sequence being used. In order to

achieve a privacy feature in information transmission, and to

simplify the transmitter and receiver structure, it is necessary

for the spreading factor R defined as the ratio of the data and

code symbol durations

R = TIT m c
(6.1)

to be integer, and for the data and code waveforms to change

phase synchronousl y (87).

6-5

Therefore, we can write the transmitted signal equation as

0::>

set) = d(t)a(t) ~~ dk/RakrectT (t-kT
c

)
c

(6.2)

where d(t) and aCt) are the data and code waveforms given,

respectively, by

(6.3)

(6.4)

where {k/R} denotes the integer part of k/R, d
k

and a
k

are

the data and code sequences whose elements belong to the set {O,I}
and the notation rect(T)(t) is used here to denote a square

T -second pulse of unit amplitude centred at the time origin.

Hence the data clock rate is I/R th of the spreading code clock

rate. This difference in clock rates (R is large) is necessary

to produce spread spectrum effects. In this case R was chosen

equal to L, i.e. one entire period of code sequence was

contained in each data symbol.

6.4 Transmitter software

To implement the transmitter, 218 microinstructions were

needed. The initialisation and display handling take another 85

instructions, so the total microprogram was 7Kbi ts. Utmost care

was taken, to ensure that the part of the microprogram that deals

with the actual transmitter (data synchronising, modulation, and

data transmission), is carried out at the highest possible speed.

As many functions as possible were performed in parallel. A

listing of the transmitter microprogram is shown in the listing

6-6

in Appendix B.

To test the transmitter operation, the software was

initially set up to generate a code sequence of length 127. The

photographs of Figure (6.3) (a), and (b) show the transmitter

output sequence in different cases of code clock rate. A charge

coupled device (CCD) was available which, with its interface

circuitry, allows the power spectrum of an analogue input

waveform to be evaluated from a 512 point transform by the Chirp

Z-transform algorithm (see chapter 2) in real time. This was

used to display the power spectrum of this sequence, the result

of which is shown in Figures (6.4) (a), and (b). Figure (6.5)

shows the power spectra of the data information before spreading.

The software was then configured to permit transmission of

spreading signal with bandwidth approximatly equals to twice the

code rate. The power spectra obtained from this signal is shown

in Figure (6.6). It has been emphasised in the illustrations

that the spectral power envelope of a direct sequence signal

follows a «sinx)/x)2 distribution. This is the expected

result, for any good set of Fourier transform pairs (88) will

show that the frequency function corresponding to a square pulse

is (sinx)/x (which is a voltage distribution function) and code

modulation produces a series of pulses. Because the power

envelope is function of the voltage squared, the «sinx)/x)2

power spectrum results. Also due to the balanced pro pert y of

the m-sequence, the spectral line at zero frequency of P(w) is of

reduced amplitude. It shoul d be noted that spectrum analyser

does not display phase information, only amplitude. Observation

of any pseudonoise code sequence will show that it is made up of

6-7

(a) f = 14KBps.
c

(b) f = 1 MBps.
c

nGURE(6.3) TRANSMITTER m-SEQl£NCE OUTPUT.

(8) One sided

(b) Two sided

FIGURE(6.5) POWER SPECTRA FOR LOW DATA RATE (INFORMA TON).

FIGURE(6.6) POWER SPECTRA FOR TRANSMITTED PN SIGl'JAL.

FlCLRE(6.6) POWER SPECTRA FOR TRANSMITTED PN SIGNAL.

a series of variable-period pulses, which could be viewed as

half-period sequence waves. These square wave half-periods vary

in duration from one code clock bit to n bits for an m-sequence.

Each of these half-periods has a (sinx)/x spectrum associated

with it. As a code sequence modulates a direct sequence

transmitter, the output spectrum is actually a composite made up

of a series or group of spectra produced by the various half-wave

components of the code. Because the pulse of shortest duration

in the code sequence is equal in length to the code sequence

clock period, T, it follows that the frequency spectrum for c

the composite modulation containing this code sequence must have

a main lobe bandwidth such that its first nuBs fall at the code

clock rate. Reinforcing this expectation is the fact that the

distribution of single ones and zeros in the code sequence is

such that they outnumber all other pulse lengths. Chapter 5 has

i ncl uded a discussion of the distribution of the runs in an

m-sequence. The number of frequency sets available is a function

of the length of the code. For an n-bit sequence generator there

are n+l frequency sets, and the spacing of individual frequency

components is as narrow as L/Rc.

6.5 Receiver

The computational requirements in the receiving

microprocessor for direct sequence modulation were considerably

greater than for the transmitter. The major problem in the

despreading was the synchronisation process for which it was

necessary to compute the crosscorrelation function of a locally

generated sequence which would enable the relative

6-8

time-displacement of the received and local sequences to be

found, and hence, would permit initial acquisition. Practically,

computing the whole crosscorrelation function would require a

long processing time, however, it was envisaged that the use of a

bit-slice microprocessor would permit the computation of the

correlation function in the required time.

After acquisition, a tracking signal is introduced to

maintain the codes in synchronism. Additional circuit may be

activated at this time to check that the received signal has

remained above threshold, which would not be the case if a noise

signal had temporarily exceeded the threshold.

confirmation fails, the acquisition phase would be resumed.

If the

Figure (6.7) shows a block diagram of the receiving

microprocessor for both acquisition and tracking processes. The

2901 microprocessor includes 1/2 kbyte of PROMs containing the

receiving system software. The programmable divide by n counter,

buffer memory, and the test box are similar to that were used at

the transmitter. The external memory section consists of RAM and

PROMs. One RAM le (type TMM20l6P), having a capacity of 2kx8

bits an d an access time of 100 n.sec was used to provide 2k of

continuous memory capable of operating with clock frequencies in

excess of 3 MHz. This RAM was used for data information in which

the address word latch is a counter to enable the address to be

incremented for each new access word. A look-up table stored in

the external PROMs (8 of 825131 type) were used to generate

samples of a binary m-sequence a O (reference), a delay

time-displaced version a_I (late), an advance time-displaced

6-9

..

Y

2901
MICftOI'ROC E~

SYSTEM

D
~

8
7 ,

~O-'
7

7'

8,t ~
~ ADDRESSl

COUNTER

T

DATA OUT

CON TROL BI TS

sa,
~

l TE~~, 8O~-11 Fu~- ~FERI
~

a'V
/ 2%

'6'

fHAMMIHG r
WEIGHT

I !~Esl

..
J>
y

..
J>

~ 1} LJr I
I ~."RAMMA8LE I L DIVIDER

{ RAM 1 I' 11 11 'I 1 [:"1[:""

11 ~
Jr 8,rt 8~ I I SERIAL

.' I~ IS? SZ

~ ~ DATA IN

~
Ii.

FIGURE(6.7) 2901 MICROPROCESSOR CONFIGURATION FOR THE RECEIVER.

version a+ 1 (early) (see chapter 5), and an 8 bit Hamming

weight function. The Hamming weight function was implemented to

provide a fast digital correlation capability in conjunction with

the ALU exclusive-nor operation. The data bus interface is

provided by two bi-directional tri-state buffers. The two

control lines, transmit enable (TE) and receive enable (RE),

allow three possible functions: data is passed from the processor

to the external circuitry or from the RAM/PROMs to the processor,

or both sides of the buffer enter the high impedance state.

Figures (6.8) (a), (b), (c), and (d) show an interior views of

the receiver.

The tasks performed by the receiving microprocessor fall

into three main categories:

(1) initial acquisition

(2) tracking

(3) data recovery (readout).

In this discussion, it is assumed that the input / consists of a

pseudonoise sub-carrier which is BPSK modulated by the binary

data. The RF carrier demodulation process may be achieved by

other means.

6.5.1 FIFO on receive

The input data sequence is serially clocked into the FIFO

input register using the clock output which is generated by the

programmable divider having a frequency ratio equals, f/256 -

f which is exactly equal to that ratio to be used at the
c

transmitter. When the input register is full then inbuilt logic

automatically requests that the word be dropped down the stack

6-10

.I

••••••• ",.

FlGURE(6.8a) RECEIVER HARDWARE (SIDE) •

. ,.
,. j

•

FIGURE(6.8b) RECEIVER HARDWARE (FRONT).

FIGURE(6.8c) 2901 MICROPROCESSOR BOARD.

FIGURE(6.8d) PROM/RAM BOARD.

towards the output register. "data request" (tied to input

register full on the most significant FIFO (see Figure (3.10))

will go low briefly as this request is made and then honoured.

If the line stays low then the FIFO is full and an error

condition has been reached. Provided that the processor removes

words from the FIFO faster than they are received then no

problems should occur. The FIFO places a signal on "data accept"

which loads the contents of the output register onto the 8-bit

data bus. By clocking TOP (transfer out parallel) then the FIFO

will be emptied onto the bus. "data available" (tied to output

register empty '58') will indicate the state of the FIFO.

The advantages of using a FIFO buffer in this case was to

ensure a good synchronisation between the incoming sequence clock

rate and microprocessor system clock. In addition to this, one

of the most powerful tools in enhancing the data processing

capability, the pipline processing technique, was inherent when

utilising the FIFO. While the arithmetic operation on one set of

data was performed, the read-in of the next set of data were

executed concurrently.

6.5.2 Search/lock strategy

A functional diagram of the receiving system during

synchronisation is shown in Figure (6.9). The diagram is divided

into the three functions that were necessary for acquisition and

tracking, i. e • , a search/lock strategy to control all

opertations, a correlator detector to recognise when

synchronisation has occurred, and an error-signal generation for

a delay lock loop (DLL) correlator. The performance of

6-11

)

RECEIVE'D
SIGNAL
-~~

CROSS­
CORRELATION

I-----I;M'"'-JF-~AK DETEL.TOO ~_-... COMPARE
.. THRESHOLD

~ DIGITAL CORRELATION DETECTOR NO

~Y~H
REFERE~ES M-SEQUENCE ' SEARCH

CODE GEN. DECISION

"--r---r---'
""LOCK

a.., DELAY-LOCK
LOOP

EARLY .. I. ~~LATE

DELAY LOCK
LOOP

-...

YES

DESPREADER -... "----_

ffiURE (6.9) FUNCTIONAL DIAGRAM OF THE SYSTEM DURING
SYNCHRONISATION.

DATA .
m

correlator detector and th b h . e e aVlour of the OLL have been

discussed in chapter 5. In this section the intent is to realise

the microprocessor implementation of synchronisation process

including the interaction between the search and track modes.

Since rapid acquisition was desirable, the computation time

of the crosscorrelation function should be as small as is

practical. As ment i oned previously, crosscorrelation over a

subsequence will result in a fast search through the phase

uncerta inty region, but a low probability of detecting (P
D

) the

correct synchronisation when it occurs. Conversely, an accurate

computation over the whole sequence length will result in a slow

search but a high probability of detecting the correct phase.

The scan rate in this case was chosen slow enough (equal to T) c

that the probability of detection Po is equal to 1.

The received sequence is denoted by

r(t) = s(t+T) + net) (6.5)

where net) represents additive channel noise, set) is simply a

pseudonoise subcarrier which is SIK modulated by binary data as

it was described by equation (6.2) (it will be assumed that set)

was used to modulate a radio frequency (RF) carrier usually by

using multiphase phase shift keying (BPSK or QPSK), and then

removed from the RF carrier prior to the crosscorrelation, this

can be achieved by using a harmonic sampling technique (89)

implemented with the aid of a pre-processor). The quantity 'T'

represents the error (delay) in synchronising the received

sequence with the replica. The received sequence initially may

arrive having any phase with respect to the receiver replica.

6-12

The receiving system computes correlation according to equation

(5.12), assuming the effect of set), i.e.

L-l
C(T) = L a(nT) senT +T) (6.6)

n=O c c

Singl e bit correl ati on, such as this, involves the multiplication

of two functions followed by summation of the resulting products.

The exclus i ve-nor multiplication logic which is the type of logic

required for comparison, since it produces a '1' whenever two

corresponding bits agree and a '0' when they don't, was used.

That is, c(T) is a binary correlation that was computed with very

high speed (3(L+l)/8 microcycle) by an exclusive-nor operation

with the aid of the Hamming weight function which was generated

by using PROM. This operation is typically very difficult in FIS

programmable processors. The receiving microprocessor performs a

127 -bi ts cor rei at i on in 48 microcycle (16 u.sec). By this

method, the recei vel' can identify a correlation during a period

of ti me less than T , the reciprocal of the data rate.
m

For a

time uncertainty of T =T ,
u

there are T IT possible
u c

synchronisation points, each one of which must be tested for a

time T • s
The maximum synchronisation time, T is sync'

therefore proportional to

T = (T IT) T
sync s c u

(6.7)

The resultant of the correlation was then compared with a preset

threshold Y (Y ~ (L+l)/2) before updating the phase position of

the local sequence, synchronisation presence is then indicated

when the correlation peak outputs exceed the threshold (in some

6-13

cases two consecutive peaks occurring would be required to

indicate synchronisation in order to minimise the probability of

false alarm P
FA

(90)).

An error signal generation mode was then introduced in order

to maintain synchronisation (tracking) to within the range .± T c.

It was felt that fine tracking to within a fraction of + T - c

range would require the veo function to be implemented in

hardware outside the microprocessor and it was not possible to

control the veo without incurring a serious penalty in increased

execution time. Instead, the three level error signal was

obtained using a software technique by subtraction of two binary

correlators which is given by

L-1
e = I (s a 1 - sa)

n=O n n+ n n-1
(6.8)

where a was a priori modulated by the estimated data as was

discussed in chapter 5, i.e.,

~ (mod 2) (6.9)

For example, in the case of a 127-bit code sequence, every

summation of the tracking correlator output 'e' takes 144

microcycles (as shown in the listing in Appendix B). The

resultant 'e' was first compared with a predefined deviation

range, +d 0 -d, representing the error curve. For that specific

example, these values are +4 0 -4 if the levels of the binary

sequence are 0 or 1, that may be estimated by running the

transmitter-receiver microprograms on the 2901 simulator. If 'e'

lies within this range, the current reference code sequence was

6-14

then used to despread the incoming signal. If 'e' exceeds this

deviation and remains within the range, +2d 0 -2d, the sign of

'e' was used to indicate the direction of which the reference

code will slide, accelerating if 'e' is plus and retarding if 'e'

is minus. Accordingly, the reference code address counter was

modified in the form;

new address = old address + (L+1)/8 (mod L)

Finally, if 'e' was heavily out of range or the track

modification failed in two consecutive trials which means that a

synchronisation loss has arise, then the search mode may be

reinitiated.

As described, this software technique cannot establish

correct phasing between the incoming bit stream and the receiver.

This is not a serious limitation for signals with short

interpulse intervals such as this for which the receiver can

clock in each data bit any time during its valid state, i.e., at

any phase within a fairly broad range.

The above strategy, which was the basis for the receiver

microprogram, may be summarised as shown in state/transition form

in Figure (6.10). Beginning with the first test of a phase

posi ti on (cell), a m iss will result in immediate rejection of the

cell and a phase step to the next cell. A hit will cause the

microprogram to enter the lock mode. A miss in state 2 of the

track mode will cause a return to the search mode.

6-15 /

,Ir

RE JECr CE Ll MI SS
ADJUST CODE 1IIIII~t---------=-:':'::'::::"'----1 SEARCH

PHASE

ENTER SEARCH
MODE

MISS

HIT

HIT

~ HIT

ENTER LOCK
MODE

.. --
\. STATE 1

'-.... e£{-td,O,-d}

MISS

STATE 2
e ~ { .2d, O,-2d }

FIGURE(6.10) A SEARCH/LOCK STRATEGY.

/

6.5.3 Receiver Software

Table . (6.1) presents a processor loading summary for the

receiver implementation. This implementation was coded using the

2901 microcode (see Appendix B). The budget presented in Table

(6.1) represents the worst-case loading of a 200 Kbps PN signal.

These figures demonstrate the throughput capability and relative

efficiency of the 2901 microprocessor system. The worst case

processing load is approximately 70°/. of capacity, and 50% of

program and data memory.

222 instruction per data bit at 200 Kbps (BPSK)

Acquisition mode

initialisation
correlation
peak detection
data readout

38
64
8
36

146

Tracking mode

DLL correlator
despreading

Acquisition mode = 146/222 = 70%
. Tracking mode = 76/222 = 35%

60
16

76

TABLE (6.1) RECEIVER LOADING SUMMARY.

6.6 Clock Frequency Effects

One of the prime sources of uncertainty for synchronisation

in the system was the clock rate error due to drift of the clock

frequency generator outputs which were used to control the rate

of code signal to be transmitted and the receiving sequence. The

preceding discussion assumed that the transmitter's and the

receiver's clocks were synchronised during the search mode, i.e.,

that each pulse of the receiver's clock would load in the

6-16

sequence bit immediatly following the one loaded on the previous

clock cycle. If the transmitter clock runs faster than the

receiver clock, the receiver will periodically miss a sequence

bit of the incoming signal. In contrast, a fast receiver clock

occasionally loads a single bit twice in succession. These

"missed-bi t" and "doubled-bi t" errors have a serious effect on

the initial acquisition process. Any clock rate error is

cumulative in code phase error; that is, a one-bit cumulative

shift during the search time. These can be avoided only if the

two clocks are synchronised. A typical clock and

clock-adjustment hardware system comprises (91), (92) a VCO, a

counter, a digi tal-to-analogue converter, and a simple voltage

matching circuit. In that case, the number of bits between frame

synchronisation pulses is counted and converted to a voltage,

which is used to adjust the clock rate. If the number of

receiver frame bits is smaller than the standard transmitted

frame length, the clock is accelerated proportionately. Bit

synchronisation systems such as this could not be used in this

case, because they are applicable only to signals whose frame

size is ei ther fixed or varies according to a pattern known to

the receiver, and must include periodic frame synchronisation

patterns. One method that could overcome this clock drift

accumulation problem during the search mode was implemented using

a sampling technique. The system performance can be improved by

setting the receiver clock rate equal to nR , where n=2m+l is
c

an odd integer. If the number of sampled O's exceeds the number

of sampled l's in a block of n sampled digits, then the receiver

announces a 0, and otherwise it announces a 1. Thus an error

6-17

occurs when m+1 or more samples out of n=2m+1 are incorrect.

This method coincides with the Nyquist criterion (24) for which

the received data must be sampled at twice (at least) the signal

bandwidth (2R).
c Although in principle, the choice of n to be

odd integer (rather than n=8) could be implemented with the

microprocessor, the execution time would then have to be so long

as to make this method useless. During tracking, the receiver

clock requ ires onl y minor periodic adjustments to maintain

synchronism with the transmitter clock which can be achieved

using the track correlator.

6.7 Data recovery

The receiver signal was the data-modulated sequence to which

noise had been added, as will be discussd in the next chapter.

Since the delay-lock loop closely tracks the incoming sequence,

the receiver's reference code and the received sequence were very

nearly synchronous and either correlate or anticorrelate

depending on whether a data 0 or 1 was being received. Two

different ways exist for the form of the data on the sequence,

these are unipolar and bipolar. A unipolar form has the values

0, 1 whereas a bipolar form has the values -1, +1. Practically,

a bipolar sequence has no dc component so that all its power is

m odulated by data (77). In this case the input signal was

I i mi ted to provide 0 and +4 volt levels (TTL levels). Since the

reference sequence was also at these levels, a simple

exclusive-or operation was used to recover the data information

from the received sequence. If the received sequence and the

reference were anticorrelated, the data output is a '1' level.

6-18

If the inputs are correlated the output is '0' level. This

output data was displayed and analysed using the logic analyser

as well as the test box (experimental results will be discussed

in the next chapter) and shows complete agreement between the

recoverd data with that of the transmitter.

6.8 Conclusion

The real-time realisation of the baseband signal processing

requirements at the transmitter and the receiver of a PN spread

spectrum communication system using the 2901 bit-slice

microprocessor sytem, together with an external digital circuitry

has been investigated. The use of a memory buffer 'FIFO' in data

manipulation has shown to be effective. The flexibility and high

throughput in computing the correlation functions, and defining

the error signal which is required to control the tracking mode

by software have been described and experimental figures have

been shown using a 127-bit sequence length. The effects on

synchronisation uncertainty due to clock drifts has been

described and are shown to be minimised by using sampling

techniques. In addition, a data readout method was provided.

6-19

D-iAPTER 7

System Performance & Experimental Results

7.1 Introduction

Direct sequence (PN) spread spectrum system performance in

the presence of noise and interference has been analysed (93),

(94), (95) and formulas have been developed for different forms

of interfering signals (such as Additive White Gaussian Noise

(AWGN), impUlsive noise, and intersymbol interference). These

formulas show the fact that the effect of the interfering signal

is reduced by increasing the spreading ratio and hence by process

gain (the ratio of clock rate of the PN code to the information

data rate). That is, by increasing the clock rate of the PN

code, the receiver will be able to demodulate the incoming signal

in higher levels of interference. Various limitations exist with

respect to increasing the code rate, and hence expanding the

bandwidth ratio, arbitrarily so that process gain may be

increased i ndef ini tel y. At present, integrated circuits are

available which allow limited code generation at rates up to 300

Mbps. As code rates become higher, operating errors will become

inversely lower, but on the other hand, high-speed logic circuits

are sensitive to noise and are more liable to error. Also,

high-speed digital circuits consume large amounts of current and

their power dissipation is high. These reasons, in addition to

the problems of spectrum occupancy, equipment implementation, and

propagation constraints, tend to limit the code rates used for

signal spreading. Data rate reduction to improve process gain is

7-1

limi ted by the tendency to speed up the information transfer and

by the stability of the transmission link. However, there is a

di ff erence in high-speed codes used for spectrum spreading and in

high-speed data. The difference in the two, results from the

errors in the system; that is, an error (or errors) up to some

correctable limit may be tolerated in a data-modulated system,

whereas an error in a code sequence would completely disable the

code-modulated system until resynchronisation occurs.

Any significant degree of crosscorrelation between the

recei ver's local reference and an interfering signal can detract

from performance. An important problem in the design of PN

systems lies in using codes that are too short for the rejected

interference levels. The short.er codes when multiplied with

interference tend to produce correlations that are not at all

noiselike. Therefore a synchronisation detector in such a system

is likely to give poor performance when it has been assumed that

correlator output products due to interference are

characteristically Gaussian. A good rule of thumb for selecting

a minimum code length in a PN system is to choose the sequence

used (7): code bit rate/code length> f. where f . is the - mln mm

lowest frequency of interest in the information being modulated.

That is, the code repetition rate should not fall in the

information passband. Otherwise, code/interference crossproducts

may fall into the demodulated signal band, so reducing receiver

output SNR. Such crossproducts can also greatly increase the

incidence of false synchronisation recognition.

7-2

This chapter discusses the performance of the receiving

system in the presence of noise. It may be desirable to

incorporate some filtering at the input of the receiver to

minimise the effects of high level interference, however this may

cause bandlimiting influences. It is shown that local code

synchronisation errors become the dominant factor in the error

rate when the system bandwidth increases.

7.2 System Performance

It has been mentioned that a major system performance

measurement associated with the design of a PN spread spectrum

system is the processing gain (G) which is the difference
p

between output and input signal-to-noise ratio (SNR) in the

receiver processor. This can be written, in the presence of

AWGN, as (7)

G = B / Bd P ss
(7.1)

where B is the bandwidth in hertz of the transmitted spread ss

spectrum signal and Bd is the minimum bandwidth that would be

required to send the information if we did not need to imbed it

in the larger bandwidth for protection. This can be represented

as the ratio of chip rate to the data rate, assuming that the

code chip rate is much greater than that of the data. The

process gain expression of equation (7.1) shows the ratio of SNR

improvement, which is directly related to the bit error

probability in this case, at the output of the despreading

correlator for a specified input SNR to the correlator. This

does not imply that in presence of A WGN the SNR at the output of

the spread spectrum system, prior to data demodulation, is

7-3

greater by a factor G compared with a narrowband scheme. It p

can be observed that for a spread spectrum system since the

front-end bandwidth is much higher than the data bandwidth, the

noise power at the input of the correlator (despreading)

processor, is much larger than the output. In other words, for a

fixed signal power, the SNR before despreading is less than the

output SNR by the process gain G. Thus there is no ambiguity
p

in the meaning and existence of process gain in a spread spectrum

system. However, in the presence of narrowband interference an

improvement in signal to noise ratio at the output of a spread

spectrum system will result. This is because the output signal

to noise ratio is G times larger than for the narrowband
p

schem e. Since the input noise power in this case is power

limited, the spread spectrum scheme, in despreading the signal,

spreads the noise power over a bandwidth comparable to the

front-end. In general, it may not be possible to construct such

an implementation.

The ability of the receiving microprocessor to efficiently

despread the spread spectrum signal, as measured by acquisition

time and bit error rate, is directly related to the performance

of the algorithms under actual operational conditions. The

quantisation of signals (which will not be discussed here)

required by the finite register length and processor

computations, tend to degrade the performance of the algorithms.

As a first step in evaluating the performance, a microprogram was

developed on the 2901 simulator. The simulator helped to

determine the implementation of processor functions, as well as

7-4

to expose certain weak areas in the algorithms which could

signi fi can tl y degrade performance. For example, when the

acquisition algorithm was simulated, it become apparent that a

threshold could not be found which would give acceptable

performance. If the threshold was low, the algorithm tended to

detect too early. As the threshold was raised, the peak point in

the correlation where synchronisation is declared had an

increasing effect on performance. The results of the simulation

I ed to refinements of the algori thms and aided the development of

the receiver microprogram.

The performance of the receiving system is measured in terms

of :

(1) the speed of synchronisation; and

(2) the bit error rate (BER) or the probability of error in the

data at the output of the demodulator.

Missing synchronisation can be attributed to two major

causes; the first is the probability of not detecting the

correlation peak due to the channel noise. The second, is the

large error in symbol timing due to clock drifts.

7.2.1 Acquisition Time Measurements

The local clock at the receiver samples the incoming

sequence at a regular intervals and loads a one or a zero, into

the FIFO depending on whether the level of the signal is greater

than or equal to zero at that instant. Note that the sampling

clock and microprocessor instruction cycle were coherently

related, i.e. In this discussion we will assume

that T, the sampling period is regular and equals T c (code
s

7-5

chip duration), i.e.

(7.2)

where T Ois the microinstruction cycle (330 n.sec.), and r is a

di viding ratio (1 S r S 255). F or the present, the local clock f
c

will be assumed to have the same frequency as the incoming

sequence clock (the effects of clock instability, and the

addi tive noise will be considered later). In this system, a

single correlator based on the 2901 microprocessor system was

used to achieve acquisition using the sliding correlation

technique (see chapter 5). Initially the output phase k of the

local PN generator is set to k=O and a partial correlation was

performed by examining a period of h chips. The procedure steps

through all possible states of the local PN sequence until the

state is found which correlates with the input. The maximum

synchronisation time is given by equation (6.7) and is repeated

here for convenience;

T = (T IT). T
sync u c s

where T is the search time at each code chip.
s

(7.3)

Equation (7.3)

m eans that the product of the number of cells and the expected

search time per cell determines the maximum expected search time

required to achieve synchronisation. It should be noted that the

above equation ignores the effects of frequency uncertainty due

to Doppler shift (5).

T
s

The search time T can be expressed as: s

(7.4)

where T is denoted by the examination time which is a function
e

7-6

of the partial correlation period A (the number of chips examined

during each search). Depending upon the statistics of the time

uncertainty, the average uncertainty time T may be less than
u

(7.5)

therefore the average acquisition time (h. = L/2), which is

defined as the expected value of the time which elapsed between

the initiation of the acquisition and its completion, can be

estimated as

I n-l
T acq = (L 2).T e.TO = 2 T e.TO (7.6)

which is identical to that obtained by Holmes and Chen (96). On

the other hand, the time required to load one data bit was

T = L. T (7.7)
m c

where T is the data bit duration. The ratio of the average
m

acquisition time to the time required to receive one data bit,

therefore, can be written as;

T IT = T /2r (7.8)
acq m e

Equation (7.8) is the key to the receiver performance and its

limitation. Note that equation (7.5) has ignored the fact that

the noise will occasionally cause a false in-lock indication

(f alse alarm), and also occasionally will cause a true lock to go

unnoticed (false dismissaI). These parameters, the probability

of false alarm P FA and the probability of false dismissal P
FO

that depend on the SNR at the receiver input and on the

7-7

acquisition threshold level, were very difficult to measure in

this case. These effects can be minimised by choosing the

acquisition threshold level to be high enough (= L/2).

It would appear from equation (7.5) that decreasing T ,
e

which means a short partial correlation process, would continue

to decrease the acquisition time. However, a factor which

becomes important when the correlation period 'X I is made short,

is a form of self-noise at the correlator output. When the

summation period is long, the result of cross-correlating the

signal and the reference sequence is approximately zero when they

are out of phase. However, as the summation period is made

shorter, occasionally the period which was chosen, although the

phase was incorrect, will correlate rather well with the incoming

signal over a short time, this will cause the self-noise false

alarm probability to increase. Note that there is no self-noise

false di sm i ssal because an ideal choice of 'X' produces no

self-noise at the correlator output.

It was mentioned in section (6.6), that the effect of the

clock frequency difference, due to instability of the transmitter

and/or the receiver clock, is that occasionally the input

sampling process misses an input bit or samples the same bit

twice. The allowable difference frequency f d before acquisition

is

For larger difference frequencies, it is not possible to achieve

acquisition no matter what the relative phases of the sequences

7-8

are during the sampling process. Since the initial phases of the

sequences are uniform ally distributed, the probability of

achieving acquisition varies linearly with fiCf/L) so that

the average acquisition time when this effect is included

becomes:

(7.10)

A group of measurements was performed using different clock

frequencies with 127-bit biphase modulated sequence. Acquisition

times were measured using a test box and a Hewlett-Packard Model

161SA logic analyser. The examination period can be adjusted by

suitable choice of A • A reset circuit contained a manually

operated switch which starts the receiver microprogram from any

address location. The logic analyser was used to measure the

relative time from the moment of reseting the switch (INITL)

until the end of the acquisition phase. This time included that

required for loading the FIFO. In order to measure acquisition

times without degradation due to clock instability, the receiver

clock bus also was taken from the transmitter clock. This

effectively bypassed the tracking loop. For particular settings

of the sequence length (127-bit) and the correlation period A =

L, the threshold setting which gave optimum probability of

detection was found (63 (decimaI)), and that threshold setting

was generally used for all runs. Predicted acquisition time

using equation (7.5) agrees closely with the results where the

transmitter clock was used also for the receiver. When a

delay-lock tracking loop was used so that the clocks were

independent, acquisition times were expected to be about 70

7-9

percent longer.

7.2.2 Bit Error Rate Measurements

In a small area experiment such as this which is a single

cell binary communication system, co-channel and adjacent channel

interference can be ignored. Interference due to both other

spread spectrum users and conventional users is not possible in

this case. Also, channel distortion due to path attenuation,

fading, multi path distortion, and Doppler shifts were neglected.

In built-up areas man-made impulsive interference from machinary,

fluorescent lights, power switching appliances, is common. It is

not readily apparent how immune or not PN spread spectrum binary

communication system may be to such noise. The shorter duration

of those pulses suggests that, although they are wideband, the

energy is limited and a correlation type despreading process may

render it insignificant.

The bit error-rate (BER) or the probability of error (PE)

performance of the system depends primarly on the strength and

nature of the noise (errors) which corrupts the received signal

and on the effect of the clock frequency difference between the

incoming sequence and the recei ver (see chapter 6).

Experimently the BER is measured and defined by equation

(7.11)

BER (7.11)

where Ne is the number of bit error in time interval tm' Rm

is the data bit rate, and tm is a measuring time interval,

7-10

i.e., error counting time. For a random, stationary error

generation process and sufficiently long measurements interval

tm' the measured BER gives an estimate of the true probability

of error PE.

Evaluation of BER of non-operational (out of service)

channels is a well-known measurement technique. A preliminary

experiment was performed where the bit error rate was measured

with a 127-bit code sequence which is transmitted through a wire

communication link. The receiving microprocessor computes BER by

comparing the recovered bits with a stored replica of the

transmitted data bits. Error rates were counted for the case

where the receiver clock line was open and using the transmitter

clock for both the transmitter and receiver. The main problem

associated with simple out of service BER measurements is that it

is not feasible to evaluate the performance of operating in a

service system carrying the unknown digital data stream. The

measurement duration and the error rate count for a short time

t might also cause serious difficulties.
m

For example, to

evaluate
-9 a P

E
=10 for - a meaningful statistical estimate, at

least 10 bit errors have to be counted, the measurement had to

10 5 sec (nearly 30 hrs), which was an last for t = m

impractical time in the case of dynamic operation. Many

techniques have been reported in the literatures to evaluate the

BER of in service or on-line monitering channels such as;

(1) test sequence interleaving

(2) pari ty check coding

(3) code violation detection

7-11

(4) pseudo-error detection

Those techniques require a feasible data readout equipment which

exceeds the capability of the receiving microprocessor.

As it was mentioned earlier in chapter 6, data readout can

be achieved by using a post-processor which is also may be used

for counting the error rate. In this case, the test box and the

logic analyser were used for data readout and error rate

counting. The total numbers of errors accumulated at the end of

the measurement period t was displayed on front panel LED's
m

attached with the test box.

7.3 Noise Channel Simulation

The channel is the medium used to transmit the signal from

the transmitting to the receiving point. It may be a wire link

Or a band of radio frequencies. During transmission, or at the

receiving point, the signal may be perturbed by noise or

distortion. In principle, distortion can be corrected by applying

the inverse operation, while a perturbation due to noise cannot

al ways be removed, since the change of the signal is not the same

during transmission 0). In binary communication sytems, the

channel accepts O's and 1 's at its input and usually reproduces

them at its output. Occasionally, however, because of noise and

other channel impairments, the output digits do not agree with

the input digits and errors have occured.

In order to permit accurate tests on the system, a digital

pseudonoi se si mul at or that generates pseudonoise with good

accuracy and impulsive noise with random pulses was required.

The use of digital techniques to generate the noise makes it easy

7-12

to repeat the measurements. Since the generator can be

controlled using software or hardware, it can be used in

operational measurement and since a digital output of the noise

may also be available the generator can act as a main or a

peripheral unit that simulates the channel. For these reasons,

the microprocessor was found to be the lower cost choice for

achieving these requirements.

An experiment is described in this section, in which this

technique was used to investigate the performance.

7.3.1 The microprocessor

The choice of a suitable microprocessor device was

considered very carfully. A device was required having a

comprehensive instruction set, fast execution speed, and for

which support facilities were available. The Motorola MC6803

(97) satisfied these requirements and was chosen in view of the

following merits:

(1) The MC6803 is object code compatible with the M6800 (98)

instruction set and includes improved execution times of key

instructions (80 basic instructions and 7 addressing modes). In

addition, new instructions have been added; these include 16-bit

operations and a hardware multiply.

(2) M6800 cross-assembler and several flexible development

systems (a triple disc drive and interface board to facilitate

high speed file access, and an EPROM programming card allowing

machine code programs to be transfered from RAM to 2 Kbyte EPROMs

under software control) were available on the department's M6800

computer which were used for developing the MC6803 software.

7-13

(3) Software packages, components, and good documentation were

readily available for the M6800.

(4) Execution time is fast (normal clock frequency = IMHz;

average instruction time is approximatly 4 cycle).

The MC6803 is an 8-bit microcomputer having an 8-bit data bus and

a 16-bit address bus. It has a 128 byte of RAM and seven

internal registers: the A accumulator (8-bit), the B accumulator

(8-bits), the 0 accumulator (16-bits), a program counter

(l6-bits), a stack pointer (16-bits) and a condition code

(status) register (8-bits). The device provides an 8-bit port

an d a 5 -bi t port for interfacing to peripheral devices. It

contains an on-chip 16-bits programmable timer which may be used

to perform measurements on an input waveform while independently

generating an output waveform. The MC6803 contains an

asynchronous serial communications interface (SCI). The device

requires only the addition of a ROM and an external crystal for

microcomputer unit (MCU) normal operation.

7.3.2 Hardware Description

The constituent components of the 6803 microprocessor card

are shown in the circuit diagram of f igure (7.1). The 74LS373

transparent octal D-type latch was used in conjunction with

Address Strobe (AS), to latch the least significant address byte.

Address strobe signals the time to latch the address so the lines

can output data during the 'E' pulse. This signal was also used

to di sable the address from the multiplexed bus allowing a

deselect time before the data is enabled to the bus. The MC6803

software was contained in a 2716-type EPROM, occupying memory

7-14

•
INPUT
OUTPUT
CLOCK

.5

5

~ - ----r-
i-

I
16 2G IYI

IAI ~ 2A4
2Y' r-
IA2 '" W2
GM>~

~ l
T 25uf

J. -la

1
~lK

-

·5

r* I I I
5

r----, Slav ~ AS ""...; E/O QI AO le Yp,QO
PII 0I1A1 Q2 I QI

I PI2 ~ 3 ;! Q3 A2 Q2

~
Pl3 mlAl 04 [i; (lA A3 03

DCA4 OS W Q5 N.
N

Q.4

:= ~ ~ g9 Ai
os

o..l Q6
07IA7 De Qt A7 - at

Ir~
0)

6803 Aa
AI

iRQi
At

3K3~ I- ~O AlO

.- ~ NMi fb ~
PG ...

REm All GND_
AI4 15
A15 -XTAll -XlALI '-'In E

R/W -
-

CLOCK - "\...
4MHz -

-.. --

FIGURE(7.1) THE 6803 MICROPROCESSOR CARD.

between F800-FFFF. Memory decoding and control was performed by

3-gates. The R/W line is ANDed with the E signal to provide an

output enable (OE) which was used by the EPROM. The input/output

port (PIO-PI7) was buffered by an octal tri-state buffer, type

74 LS244. The reset line was not buffered. The 6803 would come

out of reset when RESET is at a level above about 4 volts. The

system clock was derived from a 4 MHz crystal, giving a I u.sec

instruction cycle time. The 'E' signal was therefore I MHz.

7.3.3 Implementation

The MC6803 microprocessor software was required to (a) read

the serial output data from the transmitting microprocessor, (b)

generate the noise or interference signal and mix it with the

incoming signal, and (c) send the perturbed signal to the

receiver. After system initialisation, the transmitted signal

which was represented by equation (6.2) (assuming a normalised

unit power) was read using one bit of the 8-bit I/O port. Two

other bits were used for clock input and perturbed data output.

Two main types of noise were implemented; pseudonoise binary

sequence and impulsive noise. The use of a pseudonoise binary

sequence, which was discussed in chapter 5, as a noise source

results in a simple hardware realisation of the additive noise

with parameters that can be modified using software. Since we

were using a one-bit word length as an I/O, this saves the use of

A/D and D/A converters.

Impulsive noise, on the other hand, has been used frequently

for testing the performance of the communication systems (99).

This can be reasonably modelled as a time series of impulses at

7-15

)

the receiver input;

N
net) = r b·5(t-t.)

i=l 1 1
(7.12)

where the strengths (amplitude spectral densities) b., N, and
1

time of occurence ti of these impulses are random variables.

In this case, the occupation time of the impulse noise, when it

occurs, was assumed to be 1 percent. This implied that with the

noise bit of the same duration as the signal bit (in practice

this sort of noise, when it occurs, may last to up to few msec.

so that errors in data transmission appear in bursts separated by

ralati vely long intervals), the average number of noise pulses to

the number of signal bits is 0.01. However, this ratio was

considered over a range 0.001 to 0.1, i.e. a f actor of ten

either way. For the sake of simplicity, and the speed

requirements, two assumptions were considered in the software

design. First, the noise pulse duration was considered to be an

integer number of the code chip (> 1). Second, the transmitter

clock was used by the 6803 in order to read the data samples

under software control. By this method, the maximum data rate

was dependent mainly upon the speed of the 6803.

7.4 Experimental Results

The equipment designed for experimental verificat ion of the

preceding sections is shown in block diagram form in Figure

(7.2). The designs were made on the basis of simplicity or

convenience and of the maximum effeciency of using the 2901

system in developing the digi tal . signal processing requirements,

as was discussed in the preceding section and in the previous

7-16

TEST BOX TEST BOX

-
J. r-" J.~

~ ~~ "'I >

290\
i

MC6803 2901
TRNSM1TTER . CHANNEL EfW)R I RECEIVER

SIMULATOR

J.I'I ~

... v~

1615A
LOGI C ANALYSER

FIGURE (7. 2) ERROR MEASUREMENTS EQUIPMENT.

chapters. The transmitter and receiver microprograms were tested

under real-time conditions using a test box and the

Hewlett-Packard model 1615A logic analyser. The trace

specification of the 1615A logic analyser was set up to present a

two-dimensional view of the microinstruction address vs. the

2901 data output. This display allowed verification of the

algori thms to be made at a glance.

Throughout all the measurements which were performed, the

127-bit (n=7) sequences was used, this length being chosen to

provi de a useful processing gai n whilst retaining a respectable

data rate. It should be noted that the system is capable of

implementing longer sequences by slight modification of the

software. It was assumed that, for timing computation, the

recei ver presupposes random arrival time of the binary PN signal.

Acquisition of reference code and received signal is confirmed in

a time equivalent to one data bit.

(a) Signal without errors

Under ideal operation conditions (without data perturbation)

the worst case (=127) average synchronisation time was estimated

to be 1.032 msec., this employs a sequence clock during

acquisition of more than 100 Kchips/sec result in corresponding

data rate of approximately lK baud, i.e. a processing gain of 20

dB. It can be expected that system performance will be identical

to that predicted in the 2901 system simulation. The minimum

value that A can have was around L/3, below which the probability

of correct detection was very Iow. For A equal to L/2 it can be

expected that a performance improvement ratio of about 2 to 1

7-17

will result. After acquisition, and for the case where the

transmitter and receiver clocks were derived from the same

generator, the receiver was capable of despreading a PN signal of

data rate 3.9K baud corresponding to a code rate of 500

Kchips/sec which is the maximum transmitting clock rate. For the

case where the delay-lock tracking loop was operating, this rate

reduces to 200 Kchips/sec result in corresponding data rate of

1.SK baud.

Cb) Signal with errors

Data synchronisation was described above with the assumption

tha t there would be no errors in the transmitted signal as

recei ved. Now the transmitter was supplying the receiver with a

binary PN signal to which errors (noise) had been added by using

the MC68D3 noise simulator. The performance of the receiver when

the signal was SUbjected to impulsive errors can be represented

in the graph shown in Figure (7.3). The graph shows that if the

error rate were as poor as lxl0-3 (one error every 1000 chips),

the probability of achieving synchronisation was above 0.9. This

probability did not drop to 0.5 until the error rate rises to 0.1

(one error every 10 chips). Synchronisation had failed

completely when the error rate reached 0.3. Note that the peak

detection threshold setting was at 63 (decimal), which

corresponds to a very low false alarm probability, and the

spreading ratio was 127. This type of noise can ei ther be

designed as a single pulse every few code chips or a group of

error pulses in succession forming a burst of errors every data

interval. Note also, that the pulses were considered to have

7-18

CHIP ERROR PROBABILITY

. .001 .~1 .~ '"

8 o
m
(J)
-<
~
~

~ ~ (p ~

FIGURE(7.3) CODE SYNCHRONISATION VS. BlT(CHtP} ERROO PROBABILITY.

o
Z

."
~ o
~
Cl
F
=4
~

• '.01

constant amplitude (TTL level) and in all cases have the same

level as that of the transmitted signal. Therefore, the data

error probability was mainly due to the duration of occurance of

the noise pulses. However, it was noticed that errors in the

data bit and synchronisation loss were related (depend upon the

tracking threshold level), if we assume that an error in one code

chip or more does not mean an error in the data bit. Several

cases of the interfering PN code were performed experimently

using the 2901 simulator, e.g. with different code lengths, and

with maximal and nonmaximal codes. It was not iced that the worst

case (synchronisation fail) can occur provided that the actual

code and the interference are correlated, i.e., they are of

exactly synchronised clocks. As a result of the relativly long

time overhead which was spent for the generation of the

interfering code us ing the MC6803, the data rate had to be

reduced. This was a serious limitation (the nonequal speed of the

2901 and the MC6803) to examining the receiver performance at

normal data rates subject to PN code interference.

7.5 Conclusion

This chapter has discussed the receiver performance, which

is measured in terms of the synchronisation time and the BER,

under real-time tests using a wire communication link. The

important link parameters include the code rate and length, the

code clock uncertainty, and the data rate. The theoretical

acquisition time has been shown to agree closely with experiments

for the case where false alarm and false dismissal probabilities

are ignored. Indeed, quite rapid acquisition has been

demonstrated in this case. Experimental results have been

7-19

presented using a 127-bit PN signal. The system is capable of

acquiring synchronisation during an average time equal to 516

u.sec. This enables the system to use a spreading code with a

processing gain of approximatly 20 dB during synchronisation, and

considerably larger than that during data transfer. A noise

channel simulator, based on the MC6803 microprocessor, has been

described and implemented to examine the receiver behaviour in

the presence of an erroneous data environment.

7-20

D-lAPTER 8

Conclusion

The emphasis of this work has been on the applications of

bi t-slice microprocessors to the design and implementation of the

correlation process and other signal processing requirements in

spread spectrum and other related communication applications. It

is shown that those parts of the receiver which previously

required large amounts of expensive analogue or discrete

equipment can be realised at lower cost and with increased

flexibility using all digital techniques.

Spectrum spreading is one of the most important tools that

we have to prevent communications jamming. It can also be used

for several other purposes: rejecting unintentional interference,

lowering the probability of a transmission being intercepted by

an unintended receiver, combating multipath problems, and

providing multiple access to a communications system shared by a

number of users.

Previously, spread spectrum systems were expensive and were

therefore employed to a very limited extent only in areas where

communications must be maintained in difficult environments,

particulary in the presence of intentional interference. Because

of the high cost of communication satellites links and

susceptability of military communications to jamming, spread

spectrum techniques have been employed extensively in military

satellite communications. Examples of these systems are notably

NAVST AR GPS (100), SKYNET (71), and others. Most of the above

8-1

uses have been handicapped by the difficulty and expense of

implementation and the problems of synchronisation. During that

time most spread spectrum systems were implemented using digital

integrated circui ts. In the analogue domain SAW and CCD devices

have been introduced with the major advantage of these two

technologies being the considerable speed that can be obtained

compared to IC implementation.

The recent developments in VLSI devices and, in particular,

the microprocessors have enabled substantial reductions to be

made in both the size and the cost of new digital signal

processing techniques. This may allow spread spectrum systems to

be designed and implemented in small, powerful, functional

blocks, which may alleviate many of the problems associated with

present system applications. Recently microprocessors has been

found to be efficient to implement the post-correlation signal

processing- demodulation, detection and tracking, especially for

low rate signals (101). Relatively little work has been

published on the direct applications of microprocessors to the

correlation process, this is because of their restricted

bandwidths. However, little use is made of bit-slice

microprocessors when compared to fixed-wordlength,

fixed-instruction-set microprocessors, because their application

is more complex and requires longer development periods. Spread

spectrum bandwidth must be large to obtain a significant

performance improvement. This means that the sequence rate must

be fast and so very fast microprocessors will be required when

they are used to perform spread spectrum correlations (code

B-2

acquisition). This problem has been exemplified in this thesis

which also has described some of the methods used to overcome

this problem.

The implementation described in this thesis demonstrates

some of the advantages obtained by the use of bit-slice devices

instead of fixed-wordlength, fixed-instruction-set

microprocessors. These advantages include flexibility -wordlength

is easily increased without loss of speed- and high-speed

operation owing to the use of the bipolar technology and

pipelining techniques.

A real-time binary communication system has been described

in which bi t-slice microprocessor may be assessed as to its

sui tability for implementing direct sequence spread spectrum

techniques. Some considerable attention has been paid to the

signal processing requirements of PN spread spectrum systems, for

spectral analysis, code modulation, and demodulation. This has

included investigations into fast transformation using

microprocessor techniques, in addition to a study of the chirp-Z

transformation using a charge coupled device. The flexibility

and high throughput in computing the correlation functions, and

defining the error signal, which was required to control the

tracking mode, by software have been demonstrated. The

experimental results which have presented using a 127-bit

sequence length show that the 2901 based correlator system is

efficient because it can be expanded to accomodate variations in

the sequence length. The effects on synchronisation uncertainty

due to clock drifts has been described and shown to be minimised

8-3

by using sampling techniques. The acquisition time has been

analysed and a formula has been obtained which coincides with

that obtained by Holmes and Chen (96). This has been shown to

agree closely with experiments in the case where the false alarm

and false dismissal probabilities are ignored. The receiver

system is capable of achieving synchronisation during an average

time equal to 512 u.sec which enables the system to use a

spreading code with a processing gain of approximately 20 dB.

A I though analogue devices using SAW and CCD technologies are

finding new uses in spread spectrum communications, still digital

signal processing has many advantages over alternative

techniques. These advantages include higher reliability,

insensitivity to temprature changes and component tolerances,

greater accuracy and repeatability, and a higher level of

flexibility because they are programmable.

We hope that this thesis has illustrated the potential of

applications of VLSI technology to the implementation of

effective, low-cost systems in the field of spread spectrum

communications. Future work in the field of spread spectrum

communications will take advantage of advances in VLSI technology

and the large number of signal processing algorithms which have

been developed in the last two years. The architectures of the

latest microprocessors, ALU/register chips, and signal processing

components are implementing more digital signal processing

operations on the chip. Furthermore, these are allocating more

chip area to interface buses for greater programming flexibility.

An examples of these components are the recent Advanced Micro

8-4

Devices and TRW families products (46), (17). The availability

of such digital devices at relatively low cost will undoubtedly

increase the interest in developing a new microprogrammable

processors which can be derived by wider horizontal microcodes

word and employ more parallel ALUs. This will offer higher

throughput in processors, but at the price of software

complexity. The other alternatives which can be used are the

parallel and pipelined procesor techniques which may offer speed

advantages, but they are limited in flexibility.

8-5

APPENDIX A

REFERENCES

(1) Shannon, C.E., "Communication in the Presence of Noise",

Proceedings IRE, Vol.37, Jan.1949, pp.lD-21.

(2) Costas, J.P.,"Poisson, Shannon, and Radio Amateur",

Proceedings IRE, Vol.47, December 1959, pp.2D58-2D68.

(3) Golomb, S.W., Shift Register Sequences, Holden-Day, Inc.,

1967.

(4) Lange, F.H., Correlation Techniques, Princeton, NJ:Van

Nostrand, 1966.

(5) Chan, C.R., Spread Spectrum Communications, "Applications and

State-of-the-Art Equipments", AGARD-NATO Lecture Series NO.58,

1973, pp.(5-1)-(5-11D).

(6) Dixon, R.C., Spread Spectrum Techniques, IEEE Press, New

York, 1976.

(7) Dixon, R.C., Spread Spectrum Systems, John WHey & Sons,

Inc., 1976.

(8) Scholtz, R.A.,"The Origins of Spread Spectrum

Communications", IEEE Transactions on Communications, Vol.COM-3D,

No.5, May 1982, pp.822-854.

(9) Grant, P .M., "The Potential Application of Analogue Matched

and Adaptive Filters in Spread Spectrum Communications", The

Radio and Electronic Engineer, Vol.52, No.5, May 1982,

pp.246-258.

(lD) MacWilliams, F.J., and N.J.Sloane,"Pseudo-Random Sequences

and Arrays", Proceedings of the IEEE, Vol.64, No.12, December

1976, pp.I715-1730.

(11) S t D V and M.B.Pursley,"Crosscorrelation Properties arwa e, •• ,

of Pseudorandom and Related Sequences", Proceedings of the IEEE,

Vol.68, No.5, May 1980, pp.593-619.

A-I

(12) IEEE Transactions on Communications , Special Issue on Spread

Spectrum Systems, August 1977.

(13) Rappaport, S.S.,"On Practical Setting of Detection

Thresholds", Proceedings of the IEEE, Val.57, August 1969,

pp.1420-1421.

(14) Bair, W.P., K.Dostert, and M.Pandit,"A novel, Spread

Spectrum Receiver Synchronisation Scheme Using a SA W-Tapped Delay

Line", IEEE Transactions on Communications, Val.COM-30, No.5, May

1982, pp.1037-1047.

(15) Bair, W.P., M.Pandit, and H.Grammuller,"Combined Acquisition

and Fine Synchronisation System For Spread Spectrum Receivers

Using A Tapped Delay Line Correlator", AGARD Conference

Proceedings No.230, June 1978, pp.5.9.1-5.9.12.

(16) Ward, R.B., and K.P. Yiu,"Acquisition of Pseudonoise Signals

by Recursion-Aided Sequential Estimation", IEEE Transactions on

Communications, Vol.COM-25, August 1977, pp.784-794.

(17) "TDC1023J Monolithic Digital Correlator" Preliminary

Information, TRW LSI Products, TRW Inc., 1980.

(18) Cooley, J. W., and J. W. Tukey,"An Algorithm for Machine

Calculation of Complex Fourier Series", Mathematics of

Computation, Vol.19, No.9, 1965, pp.297-301.

(19) Cooley, J. W., P.A.W.Lews, and P.D.Welsh,"Application of the

Fast Fourier Transform to Computation of Fourier Integrals,

Fourier series, and Convolution Integrals", IEEE Transactions on

Audio and Electroacoustics, Vol.AU-15, June 1967, pp.79-84.

(20) Winograd, S.,"Some Bilinear Forms Whose Multiplicative

Complexity Depends on the Field of Constants", IBM T.J., Waston

Res. Ctr., IBM Res. Rep., NY, RC 5669, Oct.1975.

A-2

(21) Winograd, S.,"On computing the Discrete Fourier Transform" ,
Proc.Nat.Acad.Sci., U.S.A, Vol.73, April 1976, pp.1005-1006.

(22) Agarwal, R.C., and C.S.Burrus,"Number Theoretic Transforms

to Implement Fast Digital Convolution" Proceedings of the IEEE,

Vol.63, No.4, April 1975, pp.550-560.

(23) Agarwal, R.C., and J. W.Cooley,"New Algorithms for Digital

Convolution", IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol.ASSP-25, No.5, October 1977, pp392-4l0.

(24) Brigham, E.O., The Fast Fourier Transform, Prentice-Hall,

Inc., New Jersy, 1974.

(25) Gold, B., and C.M.Rader, Digital Processing of Signals,

McGraw-Hill, New York, 1969.

(26) Silverman, H.F.,"An Introduction to Programming the Winograd

F ourier Transform Algorithm (WFT A)", IEEE Transactions on

Acoustics, Speech, and Signal Processing, Vol.ASSP-25, No.2,

April 1977, pp.152-165.

(27) Rabiner, L.R., and B.Gold, Theory and Applications of

Digital Signal Processing, Printice-Hall, 1975, pp.419-433.

(28) Agarwal, R.C., and C.S.Burrus,"Fast Convolution Using Fermat

Number Transforms with Application to Digital Filtering", IEEE

Transactions on Acoustics, Speech, and Signal Processing,

Vol.ASSP-22, No.2, April 1974, pp.87-97.

(29) Martin, S.C., and B.J.Stanier,"Microprocessor Implementation

of Number Theoretic Transforms", Electronic Circuits and Systems,

Vol.3, No.l, January 1979, pp.21-26.

(30) Moore, C.H.,''FORTH: A New Way to Program A Mini-computer",

Astron. Astrophys. Suppl.15, 1974, pp.497-511.

(31) "microFORTH PRIMER", FORTH, Inc., Manhattan Beach, CA,

A-J

August 1978.

(32) Leventhal, L.A., 8080/8085 Assembly Language Programming,

Adam Osborne &: Associates, Inc., California 1978.

(33) Burns, R., and D.Sauitt,"Microprogramming and Stack

Architecture Ease the Minicomputer Programmer's Burden",

Electronics, Vol.46, 15 February 1973.

(34) Texas Instruments, TMS-9900 System Development Manual, Texas

Instruments Incorporated, 1976.

(35) Mick, J., and J.Brick, Bit-Slice Microprocessor Design,

McGraw-Hill Book Company, 1980.

(36) Broderson, R.W., C.R.Hewes, and D.D.Bass,"A SOO-stage CCD

Transversal Filter for Spectral Analysis", IEEE Journal of

Solid-State Circuits, Vol.SC-Il, No.l, February 1976, pp.75-84.

(37) Rabiner, L.R., R.W.Schafer, and C.M.Rader,"The Chirp

Z- Transform Algorithm", IEEE Transactions On Audio &:

Electroacoustic, Vol.AU-17, June 1969, pp.86-92.

(38) Benjamin, R.,"Real-time Spectrum Analysis Using Hardware

F ourier and Chirp-Z Tranasformation", The Radio &: Electronic

Engineer, Vol.49, No.2, February 1979, pp.lOl-l07.

(39) Buss, 0.0., R.L.Veenkant, R.W.Broderson, and

C.R.Hewes,"Comparison Between the CCD CZT and the Digital FFT",

in Proc.Int.Conf.Applications of Charge-Coupled Devices, San

Diago, CA, Oct.1975, pp.267 -281.

(40) Kosonocky, W.F., and J.Saver,"The ABes of CCDs", Electronic

Devices, Vol.23, April 1975, pp.58-63.

(41) Hewes, C.R., R. W.Broderson, and D.D.Buss,"Applications of

CCD and Switched Capacitor Filter Technology", Proceedings of

the IEEE, Vol.67, No.10, October 1979, pp.1403-1415.

A-4

(42) White, D.E., Bit-Slice Design: Controllers and ALUs. New

York: Garland STPM Press, 1981.

(43) The Am2900 Family Data Book. Advanced Micro Devices Inc.,

Sunnyvale, California, 1979.

(44) Myers, G.J., Digital System Design with LSI Bit-Slice Logic.

New York: John WHey &: Sons, Inc., 1980.

(45) Kraft, George D., and Wing N. Toy, Mini/Microcomputer

Hardware Design: Bell Telephone Laboratories Inc., 1979.

(46) Bipolar Microprocessor Logic and Interface Data Book.

Advanced Micro Devices Inc., Sunnyvale, California, 1981.

(47) Gibson, Glenn A., and Yu-Cheng Liu, Microcomputers for

Engineers and Scientists, Prentice-Hall International, Inc.,

Englewood Cliffs, N.J., 1980.

(48) MOS and Bipolar ROM/PROM. Signetics Corporation, Croydon,

Surrey, 1975.

(49) Schottky and Low-Power Schottky Data Book, Advanced Micro

Devices, Inc., Sunnyvale, California, 1977.

(50) The TTL Data Book for Design Engineers, Texas Instruments,

U.S, 1980.

(51) Peatman, John B., Microcomputer-Based Design, McGraw-Hill,

Inc., Tokyo, 1977.

(52) Artwick, Bruce A., Microcomputer Interfacing. New Jersey:

Prentice-Hall, Inc., 1980.

(53) Bipolar Memory Data Book, Fairchild Camera &: Instrument

Corporation, Mountain View, California, 1979.

(54) Kraft, George D., and Wing N. Toy, Microprogrammed Control

and Reliable Design of Small Computers, Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1981.

A-5

(55) Agrawala, A.K., and T.G.Rauscher, Foundations of

Microprogramming: Architecture, Software and Applications.

Acadimec Press, New York, 1976.

(56) Rauscher, T.G., and P.M.Adams, "Microprogramming: A Tutorial

and Survey of Recent Developments", IEEE Transactions on

Computers, Vol.C-29, No.l, January 1980, pp.2-20.

(57) Andrews, M.,"A Bit-Slice Architecture for Microprogrammable

Machines", SIGMICRO Newsletters, Vol.7, September 1976, pp.5-8.

(58) Lau, S. Y.,"Bit-Slice Microprogramming Saves Software

Compatibility", EDN, Vol-23, Mar 5, 1978, pp.42-46.

(59)idem,"Bit-Slice Microprogramming Saves Software

Compatibility," EDN, Vol-25, Mar 20, 1978, pp.68-74.

(60) Opler, A.,"Fourth-Generation Software", Datamation, Vol.13,

January 1967, pp.22-24.

(61) DesRochers, G.,"Microprogramming Helps Squeeze More from

your Equipment Dollar", EDN, Sept 20, 1976, pp.102-105.

(62) Agrawala, A.K., and T.G.Rauscher,"Microprogramming:

Perspective and Status If, IEEE Transactions on Computers,

Vol.C-23, No.8, August 1974, pp817-837.

(63) Redfield, S.R.,"A Study in Microprogrammed Processors: A

Medium Sized Microprogrammed Processor", IEEE Transactions on

Computers, Vol.C-20, No.7, July 1971, pp.743-750.

(64) Webb J T Cora l 66 Programming, Manchester, NCC , .. ,
Publications, 1978.

(65) Richie, D.M., and K. Thompson,"The UNIX Time-Sharing System",

The Bell System Technical Journal, Vol.57, No.6, July-August

1978, pp.1905-1929.

(66) P V M and J .H.Hernandez,"Microprogram Assemblers for owers, ..,

A-6

Bit-Slice Microprocessors", Computer, Vol.ll, N 7 1978 o. , ,

pp.lOB-120.

(67) Spracklen, C. T., ASWE Serial Highway Simulator, Report,

Durham University, 1978.

(68) PRO LOG M900/920 PROM Programmer, Computer Interface

Handbook, PRO-LOG Corporation, Monterey, California, 1978.

(69) Leventhal, L.A., 6809 Assembly Language Programming,

Osborne/McGraw-Hill, California, 1981.

(70) Texas Instruments, The Optoelectronics Data for Design

Engineers, Texas, 1976.

(71) "Spread Spectrum Communications," AGARD Lecture Series

no.58, National Technical Information Services AD-766-914, July

1973.

(72) Golomb, S.A., Digital Communications: with Space

Applications, Prentice-Hall, Inc., Englewood Cliffs, N.J, 1964.

(73) National Semiconductor, Television /Radio, Santa Clara,

California, 1978.

(74) Cumming, I.G.," Autocorrelation Function and Spectrum of a

Fit tered Pseudorandom Binary Sequences", IEEE Transactions on

Computers, Vol.C-20, No.3, March 1971, pp.270-281.

(75) Knuth, D.E., The Art of Computer Programming, vol.2,

Addison-Wesley, Reading, Mass, 1980.

(76) Camp, Warren V., and T.G.Lewis, "Implementing a Pseudorandom

Number Generator on a Minicomputer", IEEE Transactions on

Software Engineering, Vol.SE-3, No.3, May 1977, pp.2S9-262.

(77) Ward, R.B.,"Digital Communications on a Pseudonoise Tracking

Link Using Sequence Inversion Modulation", IEEE Transactions on

Communication Technology, Vol.Com-lS, No.l, February 1967,

A-7

pp.69-78.

(78) Grieco, D. M.,"The Application of CCD's to Spread Spectrum

Systems", IEEE Transactions on Communications, Vol.COM-28, No.9,

September, 1980.

(79) Alem, W.K., and C.L.Weber,"Acquisition Techniques of PN

Sequences", NTC77 Conference Record, pp.35:2-1 - 35:2-4.

(80) Sage, G.F.,"Serial Synchronisation of Pseudonoise Systems",

IEEE Transactions on Communication Technology, 1964, pp.123-127.

(81) Lindholm, J.H.,"An Analysis of Pseudo-Randomness Properties

of Subsequences of Long m-sequences", IEEE Transactions on

Information Theory, Vol.IT -14, No.4, July 1968. pp.569-576.

(82) Hartmann, H.P.,"Analys is of Dithering Loop for PN Code

Tracking", IEEE Transactions on Aerospace and Electronic Systems,

Vol. AES-IO, January 1974, pp.2-9.

(83) Spilker, J.J.,"Delay-lock Tracking of Binary Signals", IEEE

Transactions on Space Electronics and Telemetry, March 1963,

pp.1-8.

(84) Gill, W.J.,"A Comparison of Binary Delay-lock Tracking Loop

Implementations", IEEE Transactions on Aerospace and Electronic

Systems, Vol.AES-2, No.4, July 1966, pp.415-424.

(85) Davies, A.C., and AI-Rawas,"Error-Signal Generation for

P seudonoise Tracking Loop", Electronic Circuit and Systems,

Vol.2, No.6, November 1978, pp.189-192.

(86)idem,"Synchronisation of a Spread Spectrum Receiver by a

Microprocessor control system", The Radio and Electronic

Engineer, Vol.49, No.6, June 1979, pp.306-310.

(87) Holmes, J.K., Coherent Spread Spectrum Systems, John WHey &

Sons, Inc., New York, 1982.

A-8

(BB) "Spectrum Analysis" Hewlett-Packard Journal, July 1964.

(89) Cheung, R.P., J.Hovey, L.N.Ma, and T.J.Stephens,"LSI Digital

Correlation Detector", NAECON'74 Record, 1974, pp.617~22.

(90) Hopkins, P.M.,"A Unified Analysis of Pseudonoise

Synchronisation by Envelope Correlation", IEEE Transactions on

Communications, Vol.COM-25, No.8, August 1977, pp.770-77B.

(91) Stremler, F.G., Introduction to Communication Systems,

Addison-Wesley, Reading MA, 1977.

(92) Lindsey, W.C., and M.K.Simon, Telecommunication Systems

Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1973.

(93) Davies, N.G.,"Performance and Synchronisation

Considerations", 'Spread Spectrum Communications', AGARD Lecture

series No.58, National Information Services AD-766-914, July

1973, PP.(4-l)-(4-24).

(94) Hopkins, P.M., and R.S.Simpson,"Probability of Error in

Pseudonoise (PN)- Modulated Spread Spectrum Binary Communication

Systems", IEEE Transactions on Communications, Vol.COM-23, No.4,

April 1975, pp.467-472.

(95) German, E.H.,"A comment on: Probability of Error in

PN-Modulated Spread Spectrum Binary Communications Systems", IEEE

Transactions on Communications, Vol.COM-26, No.6, June 1978,

pp.932-934.

(96) Holmes, J.K., and C.C.Chen,"Acquisition Time Performance of

PN Spread Spectrum Systems", IEEE Transactions on Communications,

Vol.COM-2S, No.8, August 1977, pp.778-784.

(97) 'Motorola MC6803 Advance Information', Motorola

Publications, 1979.

A-9

(98) 'Motorola M6800 Microprocessor Programming Manual', Motorola

Publications, 1978.

(99) Jain, V.K., and S.N.Gupta,"Digital Communication Systems in

Impulsive Atmospheric Radio Noise", IEEE Transactions on

Aerospace and Electronic Systems, Vol.AES-15, No-2, March 1979,

pp.228-236.

(100) Blair, P.K.,"Receivers for the NAVSTAR Global Positioning

System", lEE Proc., Vol.127, Part-F, No.2, April 1980,

pp.163-167.·

(101) Cahn,C.R., D.K.Leimer, C.L.Marsh, F.J.Huntowski, and

G.D.Larve,"Software Implementation of Spread Spectrum Receiver to

Accommodate Dynamics", IEEE Transactions on Communications,

Vol.COM-25, No.B, August 1977, pp.832-B40.

A-l0

APPENDIX B

PROGRAM LISTINGS

Listings for chapter 2

(1) FORTRAN optimal short Rectangular Transforms

(2) FORTH digital correlation using Intel 8080 system

(3) FORTH digital correlation using TMS9900

PTIMAL SHORT COQRELATIO~ •• N=Z
SING RECTANGULAR TRANSF~RM ALGQ~IT~M

I~TEGER A(2), 8(Z), M(Z), Y(2), X(2), ~(Z)

DATA X, ~ 10, 2, 6, ZI
~16(IVAL) = ~OO(IVAL,65536)

I .H TRANSFQR~ATION TRANSF3R~S ~-SEQU~NCES TO R~CT.~~Q~Y

A(l) = ~16«H(1) • ~(2»12)
A(2) = ~16«H(1) - H(2»/Z)

.X TRANSFORMATION TRANS~aRMS X-SE CUENSES TO R~CT.A~q~y

S(l) = M16(X(1) + X(2»
9(2) = M16(X(1) - X(Z»

OQQELATION OPERATIO~ IN THE ORIGINAL CO~~IN e~co~~s

LE~ENT-AY-ELE~E~T MULTIPLICATION I~ THE TRANSF]QM D8~AIN

00 10 K = 1, Z
M(K) = Mlt(A(K)~B(K»

o CONTINUE
PER. C DENOTES THE INVERSE RECT. TRANSF~RM T~IS ~S
EPRESENTEO ~V C (A.~ ·X'B.X)

YCl) = W16(~(1) + M(Z»
feZ) = M16(~(1) - ~(Z»
IoPITE (6,20) Y

o FOR~IAT ('Y(1)=', I3, 20X, 'yen=', !3)
STO P

EtlJO

OPTIMAL SHO~T COR~ELATION •• N=3
USING RECTANGULAR TRA NSFORM ALGORITHM

INTEG~R X(3), H(3), A(4), 6(4), V(3), ~(4), ~=, ;~l

M16CIVAL) = MOO(IVAL,65536)
DATA X, H 11, Z, 3, 5, 0, 31
HF = M16CH(I) + H(Z) + ~(3»

INV3 = 43691
* * A-ELEME~TS * ~
A(1) = M16(rF*INV3)
A(2) = M16(r(1) - H(Z»
A(3) = M16(H(3) - H(Z»
HFl = M16CCH(I) - H(Z» + (H(3) - H(Z»)
A(4) = ~16(~Fl*INV3)
* * B-ELEME~TS * *
B(l) = M16CX(1) + X(Z) + X(3»
B(2) = M16(X(1) - X(3»
9(3) = M16CX(Z) - X(3»
8(4) = ~15CCX(1) - X(3») + (X(2) - X(3»)

DO 10 K = 1, 4
M(K) = M1ECACK)~B(K»

CONTHJUE

Y(l) = M16(~(I) + (~(Z) - ~(4»)

Y(Z) = M16C~(I) - (M(Z) - M(4» - (~(3) - ~(4»)
Y(3) = M16C~(1) + (M(3) - ~(4»)

WRITE (6,20) (K,Y(K),K~1,3)

o FORMAT (T5, 3('YC',Il,')=',I7,ZX»
STOP
cND

PTIMAl SHORT (OPREL~TIQ~ •• N=4
SI~G RECTANGULAR TRANSFORM ALGJRIT~M

I)IME~SIO~ X(4), H(4), A(S), 3(5), Y(4)
~'=AL 'H 5)
DATA X, H 12., ~., 1., 3., 4., 5., 0., 1./

A-ElEM::'HS
A(l) = «~(1) + ~(3» + (H(4) • H(Z») / 4.
A(Z) = «H(l) + H(3» - CH(4) • H(Z») / 4.
4(3) = (H(l) - H(3» I 2.
A(4) = «H(l) - H(]» - (H(4) - H(Z») / 2.
A(S) = «He 1) - H(3» + (YC4) - H(Z») I 2.

B-ELE~ENTS

5(1) = (X(!) + XC]» + (X(Z) + X(4»
8(Z) = (X(l) + X(3» - CX(Z) + X(4»
8(3) = (X(I) - X(3» + (X(2) - X(4»
5(4) = XCI) - X(3)
5(5) = X(Z) - X(4)

DO 10 K = 1, 5
M(K) = A(K) * B(K)

o CONTINUE

Y(l) = (MCl) + M(2» + (MC3) - ~CS»
Y(2) = (M(l) - M(Z» + (MC3) - ~(4»
Y(3) = (MCl) + M(Z» - (MC3) - MCS»
Y(4) = (M(l) - M(Z» - (MC3) - ~(4»
WRITE C6,20) (K,Y(K),K=1,4)

o FORMAT CTS, 4C'YC',Il,')=',F4.0,2X»
STOP

***********~*~************************************~****
OPTIMAL CORRELATION ALGORITHM •• N=S
USING RECTA~GUlAR TRANSF~RM

INTEGER ACI0), B(10), M(lO), X(S), ~(S), Y(5), HF, ~F1
M16CIVAl) = MGD(IVAL,65536)
DATA X, H 11, Z, 3, 4, 5, 5, 0, 3, 1, 41
HF = M16CH(1) + H(Z) + H(3) + H(4) + H(S»
INVS = 5Z425

COMPUTE THE A-ELE~ENTS

A(l) = M16C~F*INV5)
4(Z) = ~16(~Cl) - HCl»

A(3) = ~16(~(5) - H(2»
AC4) = M16(H(4) - "1(2»
A(S) = M16(t-(3) - H(2»
A (6) = r.l16«H(1) - (2» + (~(5) 1-'(2»)

A (7) = ~16« rl (4) - H (2» + (rlO) 1"(2»)

A(8) :: ,.,16«rl(1) - H(Z» + (~(4) 1-' (2»)

A(9) :: M16«H(S) - H(Z» + (HO) H(Z»)
HF l :: 1-'1 6 ((UH 1) - I"(Z» + (";(5) - 1"(2») + «';(4) - H(2» +

1 - H(Z»»
A (1 0) = M16(HF1):'I NVS)

COMPUTE THE B-ELE~ENTS

BO) = ~ 16(X(1) + X(2) + X(3) + X(4) + X(S»
B(Z) = "' 16(0) - X(S»
3 C3) :: M16(x(Z) - X(S»
8 (4) :: "'16(X(~) - X(S»
B (5) = M16(X(4) - X(S»
8 (6) = M16(0(1) - X(S» + (X(Z) - X(S»)
B(7) = M16(O(3) - X (5)) + (X(4) - X(5»)
S (t3) = M16«X(l) - X(S» + (X(3) - X(5»)
fl(9) = i"116(0(2) - X(S» + ex (4) - X(5 »)
B (la) :: ,'116«(X(l) - X(S» + ex (2) - X(S») + «X(;) -

14) - X(5»»

01) 10 K = 1 , 10
M(K) = ~n6(A(IO :::S (K»

0 CQNT UJU E

YO) = M16(ClHl) ~ OO» + ('HZ) - ,.., (~)) - ~H ..) + /'I (7»

Y(2) = Ml6«MO) MOO» - CHZ) - M(5» - '1(3) + '-'(6»

vc 3) = M16((tH1) 11 (0» + ("1 (3) - M(4» - tHZ) + ~(q»

vc S) = M16«"1(1) 1"(0» - (rH 3) - ~lC 4)) - .~ (5) + /'1(9»

Y(4) = "116(OHl) + 11 0)) + Z::"~ Cl) + MO) - Y Cl) - YCZ)

15 »
VlR ITE (6,20) (K,YCK),K=1,5)

0 FORMAT (T5, S('Y(',Il,')=',I7,2 X»
snp
END

*~***** ****~ *********************************~****.****
PTIMAl SHORT CORRElATIQ ~ AlGO~IT HM USING R~CT. T~A ~S •
• FOR REAL DATA SEQUENCE •• N=6

x (5))

- Y(3)

oIMEr~SlON H(6), X(6), Y(6), H8), a(a)
R~ AL M(R)
DATA X, H I~., 0., e., 3., I)., 0., 6., 9., 3.,9.,0.,3.1

A(1) = «H(!) - H(5» + (l-1(4) - H(Z») I 6.
A (2) = «~HO - H(S» + (H (3) - H(Z») 1 6.
A(3) = A(Z) - A (1)
A(4) = «HO) - H(S» (H(4) - H(2») I 6.
A(S) = «(l-1(0 + H(5 » (H (3) + H(Z») I 6.
A(6) = A(4) + A(5)
A(7) = «H(!) .. H (5» (H(6) + H(4» .. (H (3) - '"1(£») I 6.

(H (3)

+ (X(

- YC

A(S) = «H(l) + H(S»

BCl) = (X(l) - X 0»
B(2) = (X(2) - x (3»
Ei (3) = 8 Cl) - B(Z)
B(4) = O(l) - X 0»
6CS) = (X(Z) + X 0»
8(6) = 8(4) + B (S)
f:I (7) = O(l) + xC 3))
9(S) = (XCI) + X 0»

DD 1 0 K = 1, g
M(K) = ACK) * BCK)

o CONTINIJ~

+ (11(6) + H(4» + CI1(3) + -1(2)) 1 6.

+ (X(4) X(6»
+ (X(5) X(6»

- (XC4) - X(f,»

- ex CS) + X(6»

- (XC2) + X(4» + ex (5) X(6»
+ ex (2) + X(4» + (XCS) + X(6)

yell = «M(l) - HCZ» - (~(2) + ~(3») + CC~(4) - ~(5» - (~(5) -
1~(6») + (1'1(7) + ~(S»

Y(2) = «~(l) + 4(3» + (~C2) + M(3») - C(~(4) - ~(6» + (~C5) -
IM(6») - (M(7) - M(8»

Y(3) = -«M(l) - 1(2» + (M(l) + M(3») - (CMC4) - ~(5» + (M(4) -
1 M(6») + (~C7) + M(S»

Y (4) = (C ~1 (l) - fl (2 » - C'~ (2) + M (3) » - (C I-' C 4) - ,. (5 » - (~ e 5) -
IM(6») - (MC7) - M(8»
Yes) = «~(l) + H(3» + (M(Z) + M(3») + e(~(4) - ~(6» + (~(5) -

IM(6») + (MC7) + MCa»
Y(6) = -«M(l) - ~(2» + (M(l) + ~(3») + «~(4) - ~(5» + (M(4) -

1 M(6») - (~(7) - ~(8»

WRIT~ (6,20) (K,Y(K),K=l,6)
o FORMAT (T5, 6C'Y(',Il,')=',F4.0,2X»

S T:J P
END

TIMAL SHORT CCRRELAATION •• N=7
ING RECTANGULAR TRANSFJR~ ALGORITH~

INTEG~R H(7), X(7), A(19), B(19), U(S), Y(7), M(19), I1A
M16(IVAL) = MOO(IVAL,65536)
DATA X, H 14, 5, 2, 0, 6, 9, Q, 6, Q, 5, 4, 3, 0, 11

-EL:MENTS
A(Z) = "'16(1-'0) - H(2»
A(3) = 1'116(1-'(1) - H(Z»
A(4) = ~l6(H(6) H(Z»
A(S) = rU6 (H (5) H(Z»
A(6) = M16(t-'(4) H(Z»
AC7) = 1'116(1-'(3) - H(Z»
A(a) = M16(A(Z) + A(S»
A(9) = M16(AO) + A(6»
A(10) = ~16(A(4) + A(7))
A (11) = Ml6(A(Z) + A 0»
A(1Z) = '116(A(3) + A(4»
A(13) = MI6(AC2) + A(4»
4(14) = "116(A(5) + A(6»
4(15) = M16(A(6) + A (7»

A(16) = ~16CA(S) • A(7»
A(17) = M16(A(11) + A(14»
A(18) = M16CA(lZ) + A(1S»
HA = ~16(A(8) + A(19»
P.JV7 = ZBOS7
A(19) = MOOCHA*INV7,65536)
A(l) = ~16CA(19) + H(Z»

ELEME NTS
3(2) = M 16(~(1) - X(7»
8 (3) = M16C~(Z) - X(7»
8(4) = M16CX(3) - X(7»
B(5) = ~16(X(4) - X(7»
8(6) = ~16C~(5) X(7»
B(7) = ~16C~(6) - X(7»
9(8) M16(e(2) + B(S»
B(9) = ~16ce(3) + 6(6»
B(lO) = M16(BC4) + B(7»
B(ll) = M16CB(Z) + 8(3»
B(lZ) = M16(B(3) + 8(4»
9(13) = M16(B(2) + 8 (4»
B(14) = M16(B(5) + 8(6»
a (15) = M16(8(6) + B(7»
9 (16) : M16(B(S) + 9(7»
B(17) = ~ 16(B(11) + 8(14»
S(1 8) : ~ 16(B(12) + 3(15»
g(19) = M16(B(S) + 3(13»
9(1) = M16(eC19) + X(7) + «X(7) + XC?»~ • Z*X(7» • Z*X(7»

LE MEN T-~V-ELE~E~l MULl.

DO 10 K = 1, 19
MCK) = MlE(A(K) * B(K»

o C ON lINU E

U(l) = M16Ct'0) M(19»
U(Z) = M16(t'CZ) M(6»
U(3) = M16C~(5) + MO))
U (4) = M16C"'CZ) + M(4»
U(S) = M16C"'(3) M (7»
U(6) = M16CI"0) + MC-4)
U(7) = M16<l; Cl) U(4»
U(8) = M16(UO) + U(6»
V(l) = M16(UCl) + U(Z)
YCl) = M16CU(l) U(Z)
Y(3) = M16CL(7) + U(S)
V(4) = M16(UC7) UCS)
YCS) = M16(U(S) + M(Z)
'to) = + M(7)

+ MC 5) + M(6) - MO»

U(3) - M(4) + M Cl 0) +

U(3) - ;-\0) • MOl) +

M(6) + M (3) + MO 5»
M(S) + M(8) + "'OZ»
MO) - r~Ol) - M(l4)
MOO) - MOZ) - M(lS) M16CL(8)

Y(6) = M16CCM(1) + M Cl» + (Z :::M (1) + 2*'Hl)) +
I- V (3) - Y(4) - Y(5) - V (7)

WRITE C6,ZO) (K,YCK),K=1,7)
FORMAT 05, 7('Y(',Il,')=',I7,ZX»
STOP

r~(4»

~ OO)

+ rH 17»
+ .~ (1 8))
"1 0) - VCl) - y(Z)

END

~ ~-TD-ONE ~AP~I~G USI~G CHI~ESE R~MAI ~ DER THEC~E~ CC~T)

INTEGER XC1S), Y(lS)
INTEGER XXC5,3)
DATA X/I, 2, 3, 4, 5, 6, 7, g, 9, 10, 11, lZ, 13, 14, 15/
DD 20 Il = 1, 3

DO 10 12 = 1, 5
II = 10 * 11 • 6 * IZ - 1
XX(I2,I1) = XC~CD(II,lS) • 1)

lIj VERSE CRT

YC~OO(II,15) • 1) = XXC:Z,Il)
. 0 CONTINU::
o CONTINUE

WRITE (6,30) «XX(I,J),J=1,3),I=1,S)
WRITE (6,30) Y

o FORMAT (T4, 3C10X,I4»
STOP
END

AST COR~ELATICN USI~G RECTA NGULAR TRANSFC~ M
WO - FACCTOR ALGORITHM •• N=3*S

INTEGER X(15), HC1S), YC1S), XXCS,3), ~H(5,3), YYC1C,3)
I NTEG::R A1(10,3), B1(lO,3), A2CIQ,4), e2CIO,4), A~CIO,4)
INTEGER AIF, AIFl, A2 F , A2 F1, ll(S), VlCS), l2(3), V2(3)
INTEG ER W(4), WWCIO), VI(S,3)
M16CIVAL) = ~CDCIVAL,65536)
DATA X /4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, ~I
DATA ~ /1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 11

NE-TO-ONE MAPPI~G USI~G C.R.T

DO 20 11 = 1, 3
DO 10 12 = 1, 5

11 = 10 * 11 • (: * 12 - 1
XX(I2,Il) = X(~CD(II,15) + 1)
HH(I2,Il) = HCMCO(II,lS) + 1)

' 0 CONTINUE
o CONTINUE
ORR::LATION OF COLUMNS •• APPLICATION DF RECT. TRA NSF.
LGORITHM TO T~E 5-POINT COLUMN CCRRELATIC N
HIS GIVES Al * ~

INV5 = 5242S
DO 40 J J = 1, 3

DO 30 11 = 1, S
ZlCII) = HHCII,JJ)
Vl(II) = XXCII,JJ)

CONTINUE

:I RST A-AR~AY •• (Al ::: H)

AIF = MI6(ZI(l) + Zl(Z) + Zl(3) ~ Zl(4) ~ Zl(5»
Al(l,JJ) = MI6(AIF*I NVS)
JTl = MI6(Zl(1) - ZICl»
JT2 = Ml6(ZI(S) - ZI(2»
JT3 = MI6(ZlC4) - ZI(l»
JT4 = MI6(ZI(3) - ZI(2»
A1<Z,JJ) = JT1
Al(3,JJ) = JT2
A1C4,JJ) = JT3
A1C5,JJ) = JT4
Al(6,JJ) = MI6(JTl + JT Z)
Al(1,JJ) = M16(JT 3 + JT4)
AICS,JJ) = M16CJTl + JT3)
A1C9,JJ) = ~ 16eJTl + JT4)
A1Fl = MlteeJTl + JT Z) + (JT3 + JT4»
A1elO,JJ) = M16 (AIF1 * I NV5)

: I R S T B- A R RAY • • CH ::: X)

!31Cl,JJ) = MI6eVICl) + V1(2) + VI (3)

NS 1 = MI6(VlCl) - V1(S»
NS2 = "1 16el/l(2) - 1/1(5»
NS3 = 1-1 16el/l(3) - V1(S»
N54 = ' \1 6 (1/ 1 C 4) - 1/1(5»
B1(Z,JJ) = NS1
S1(3,JJ) = r-.S l
61C4,JJ) = NS3
Bl(S,JJ) = NS4
31(6,JJ) = MI6e'JS1 + NSZ)
B1(1,JJ) = ~ 16e N S3 + NS4)
B1(9,JJ) = "1 16 C r~ S 1 + N S~)

B1(9, JJ) = M16e NSZ + NS 4)
Bi ClO,JJ) = MI6« 1'\ Sl + NS2) + (~J S 3 +

I CON T l'J U =

+ V 1C 4) +

NS4»

:ORR RElATION CF ROWS •• APPlICATIC N OF RECT . T~A ~ SF.
\ LG O R IT H ~ TO THE 3 -~O I NT RJ W C O~R: LAT ION
'HI S GIVES •• A2(Al :~ H) ••

00 10 J = 1, 10
DO 50 I = 1, 3

Z2CI) = AlCJ,I)
V20) = 81(J,I)

CO NTIN UE

I NV3 = 43t91
A2F = M16(Z2Cl) + Z2(Z) + ZZ (3»
A2(J,I) = MI6(A2F * I NI/3)
NTl = ~16CZ2Cl) - ZZ(Z»
NTZ = M16eZZ(3) - ZZCZ»
Al(J,Z) = NTl
AZ(J,) = NT2
Al FI = M1tC NTl • NTZ)

1/ 1(5»

A2CJ,4) = MI6CA2Fl*INV3)

hZ-ELEMENT •• B2CB1 ::: X)

B2CJ,1) = M16CV2CI) • V2(2) • V2(3»
NSSI = ~ltCV2Cl) - V2(3»
NSS2 = M1tCV2CZ) - VZ(3»
B2CJ,2) = NSSl
B2CJ,3) = NSS2
B2CJ,4) = ~ 16(NSSl + ~SS2)

~LEMENT-9Y-ELE~ENT ~ULT. CQ2.Al.H X 92.Bl.X)

00 60 K = 1, 4
W(K) = D2(J,K) ~ ~2CJ,K)

60 CONTINU:

4PF E 'HlI X 3

1 PE~. C2 REDUCES THE DI ME NSlnNALITY OF (~2.Al.~ X ~2.~1.X)

MQl = M16(WCZ) - W(4»
MQ2 = M16(W(3) - W(4»
YYCJ,I) = M16(W(I) + ~~l)

YYCJ,2) = MI6(W(1) - MCI - ~~2)
YYCJ,3) = ~16(WC1) + M)Z)

7 0 CON TI ~JU E

JPER. CICC2.CA2 Al H X S2 91 X) ~EDUCES T~E 9rMENSI9~tLITY
J '" T"iE C!JLUMNS

DO 90 KK = 1, 3
00 80 LL = 1, 10

WwCLL) = YYCLL,KK)
gO CONTINUE

Ml = M16C~W(1) - Ww(10»
M2 = M16C~w(2) - WWCS»
M3 = M16C~W(3) - WW(4»
YIC1,KK) = M16(~1 + M2 - WW(4) + WW(7»
YIC2,KK) = M16C~1 - M2 - wW(3) + WWCE»)
YIC3,KK) = MI~CMl + M3 - WW(2) + WW(8»
YICS,KK) = M16(Ml - M3 - WW(S) + WWCS»
NN = M16C2*WW(1»
YIC4,KK) = M16CWW(1) + WW(l) + NN • ~wCI) - Yl(I,KK) - Yl(2,KK)

1 - Yl(3,~K) - Y1(S,KK»
o CO NTI NU E

J~ E-TO-ONE ~APPING USING INVERSE C.~.T.

00 110 J1 = 1, 3
DO 100 J2 = 1, 5

LLL = 10 * J1 + 6 * J2 - 1
YCMOOCLLL,15) + 1) = YlCJ2,Jl)

~ O C ONT I NUE
10 CONTINU E

.:\D~fN[1IX ~

100 POINTS DIGIT~L CO~REL~TION US!NS ~IQ~CT ~ET~J~
FOR INTEL 8080 ~Q!TTE~ IN FJRTrl o~CG~A~~I~G LANGUAG~)
*1 IS USED TO MLLTIPLV 16-9!T 9Y 16-'31T A/le JIV!DE
THE RESULT 32-81T BY 16-gIT ~UM~E~)

OCTAL caCE HLCE*2 KCHG ~ CA~ XCHG Fe r c H 9AC ~ !~X
RET THEN H DAe ~ET
CODE DV 20 A ~VI EEGIN DS~ DUS~ A XRA S HLDE*Z CALL ~~L
H PUS H BOA D 0 A C I 2 C PI $!) U:: S T I 'J tJ J N C R A R F CIF S::> ! rJ X
SP INX f) INX ELSE H POP HEN P5101 PJo A OCR ~z ::'JC ~:T

CODE *1 $ ppe CALL 0 PUSh A D ~OV A CQA F~ !~ Tee TY~~

XCHG S PPD CALL 0 PUSH A D MDV A JRA cM IF TCO T~E~ 3 9
MDV C E MOV 0 D LXI 20 A ~VI ~EGIN $ ~LDE*2 CALL FC :=
XCHG B DAD XCHG Fe IF H I~X T~EN THE~ A cc~ FZ E~C J PJS~

$ PPD CALL 0 PUSH A 0 MOV A JRA FP IF Tce T~E~ 3 9 ~~ V
C E MOV D PJP XCHG XTHL XCHG ~ DV CALL ~ PUS~ 5 CA~ ~ oop
$ QUESTION JC A J MCV A eRA $ QUESTICN JM a FOP cS~ peo
H POP H XRA Ft-! IF J INX HE~J '3 XRA F/I IF TCO T:-1E N
S PSD JMP
(DEFINE THE VARI~BLES ANC/QR ARRAY USED .)
OCTAL 4 ARRAY ANS~E~ 7 ca~STA~T STATLS 0 !NTEG~~ C~LAY
6 CONSTANT CONVERT 0 INTEGE~ ~AXNg 0 !NTEGE~ ~I ~ ~3
200 CO~STANT N 400 CONSTA~T NN NN A~RAY 1~ATA N ~qqQY 2~CTA
NN ARRAY CO~REL N ARRAY SINK 176 CJ~STA~T 8oTIQ~
(CLEAR TEMP STORE *ANSWER* ••)
: ZERO ANS~ER EMPTY :
(~? MULTIPLY AND STORE T~E RESULT IN ANSWED 32 eIT)
eCTAL COCE *? ~ PF~ CALL S P?~ CALL A l MSV ! *ML CALL
XCHG ANSWER H LXI A M MDV E AD~ M 4 Mnv ~ INX A ~ 40V ~ trc
M A MDV H INX 0 A MVI M Ace M 4 M ~V A X~A H INX /I A M~V ~~T
(ROUTI~E INPUT GET DATA INTO AqRAY lCATA - 2CATA ••)
CODE INPUT A XRA CO~VERT CUT 14 A ~VI CONVERT OUT XTHL Xl~L
A XRA CONVERT OUT 9EGI~ STATUS I ~ 14 A~I 14 (PI FZ END 6 !N
CMA E A MOV 0 0 MVI $ PSD CALL 2 IN (MA E A ~CV 0 J MV!
$ PSC JMP
(STORE DATA IN leATA ARRAY & 2DATA ARRAY •••)
: GETINPUT NN 0 DC INPUT I 1DATA + ? I DUP 1PTIQ~) IF Z(ROP
ELSE ZDATA + ? THEN CELAY ~ MSEC 2 +LCOP
(CORRELATION PART •• DIRECT ~ETHOO)

: SHIFT + lDATA + @
: COEFFICINT N 0 (8 OUP I SH!FT I ZOATA + ~ ~? 2 +L~8P
CROP ;
: TRANSFER 4 0 DO DUP I ANSWE~ + @9 SWAP 73 1+ L20 0 J~OP

XCORREl N 0 DO ZERC ! CCEFFICUNT I 2 * CJRR~L + T~A~scE~
2 +LDOP ; : COMA X 0 NN 0 CD I 1+ CO~REL • 3 20VER < IF S~AP I
4 I LOCATION ? THEN DROP 4 +LDOP ~AXN3 ? ;
(ROUTINE COFACTO~ IS SCALING ROUTINE ••)

COFACTOR NN 0 DC MAX~S @ ! 1+ CO~REL + ~ 377 *1 I Z I
S!~K + ? 4 +LCOP ;
(DISPLQY CORRELATION ~UNCT!~~ .)
(ODE OUTPUT $ PPD CALL A E M8V CMA 7 OUT ~ET
: 2TEST 377 C DO I OUTPUT 12 ~SEC L1CP ;
: SCOPE BEGIN DUP LIMITS CJ I ~~ OUTPUT 2 +LC8P C aUTo~T ?VDU
END 2DROP ;

FOR~AT TD WRITE TH~ R~SULT ••)
TEST LOCATION iB 4 * CCR~EL +
ITEST 4 0 00 DlP I TEST + ~9 SW4~ ?B 1+ LeDP C~~P ;
V STRING # COR~EL I~ BYTES ~ SAY C~LF CQP.R:L PRI~T9 C~lF

STRING • MAXIMU~ ~UM3ER = • SAY ANSWEQ IT~ST I~S~:R PRI~T~

CRLF STRING A LOCATION IS A SAY L~CATIO~ ? C~LF
STRING" SINK IN eYTES " SAY CRlF S!NK PRINT CRLF ;
(THIS VRSION USI~G SCALED INPUT OATA MIX. NC. =32 ••)
(ROUTINE *? IS NC LCNG~R US~G IN THIS VE~S!CN • • *1)
C~CIMAL 0 I~TEGER ANSwE~ 3~ C~~STA~T ~~TICN 7 C1hSTA~T STAT US
6 CON S TA N T CON v ER T 0 HJ lE G ER 1 [).., A X ~ 0 I ~l TE G:: ~ 21,.. I X 'J 0 rh T :: i, :: Q

COMAXN 40 CONSTANT N ~o CCN$TA~T NN 0 INTEGE~ C Q "'!~

N ARRAY SINK ~ AR~AY C~RREL NN ARRAY l1AT4 ~ AR~AY 2~ATA

CODE lIN A XRA CohVERT JUT 1 A MVI CCNVERT 1LT XT~l XTHL A XRA
CONVERT OUT BEGIN STATUS I~ 1 ANI F ~ Z :~c 6 IN C,..A : A M(V 0 ~

~VI $ PSO JMP CODE 2IN A XRA CO NVEqT OLT 1 A "'VI CO~VERT aUT
XTHl XTHL A XRA C(~ VERT CLT 3EGIN STATUS IN 1 ~ ~ I F~Z ENC 6 I~

CMA E A MOV 0 D ~VI $ DSC J~P : l~GET NN 0 ~c lIh I lDATC + ? 4
MSEC 2 +LDoP : 2DGET ~ 0 90 2IN I 2DATA + ? 4 "'SEC 2 +L[O~ :
: GETDATA N~ 0 00 lIN I lC4TA + ? ZIN I D~? CPT!ON > IF 2Cq~P
ELSE ZDATA + ? THE N 4 M S~C 2 +LOCP ;

MAXN 0 SWAP LIMITS U~ I @ MAX 2 +lOQP
lDLOC lDATA MAX~ lDMAXN ? : : 20LOC 2DATA "'AX ~ 20MAXN
MAX. ELEMENT OF DATA SE'UENCE 32)
lDFACTOR LIMITS DC l~MAXN ~ I i 32 *1 I ? 2 +LCOP ;
2DFACTOR LIMITS DC lD~AXN @ I @ 32 ~I I ? 2 +LCCP :
T OPTION @) ; : 10 + DUP T IF J~~P 0 ELSE 2JATA + ~ T~EN ;
POINT N 0 CC DUF I 10 I lGATA + ~ * A~S~EP. +? 2 +L30P (R3P ;
XCGRREL N 0 DO C ANSWER ? I DOI~T ANSWER 3 ~ 1 - 1 I CC~REL +

? 2 +LOoP ; : ~OLOC CORREl MAXN COMAX N ? :
TEMPO~ N 0 00 I CORREl + @ I SI~K + ? 2 +LC~P ;
COFACTOR LIMITS DO CO~AXN Z I i Z55 *1 ! ? 2 +L03 P

~INNB 255 SWA~ LI~ITS CC I @ MIN 2 +LDOP ;
FINE caRREL MIN~a COMIN ? :
SUBTRACT lIMITS ~O I ~ COMIN ; - ! ? l +l~CP

CODE OUTPUT $ PPC CALL A E ~ov C~A 7 CUT RET
: TEST 256 0 00 I OUTPUT 10 MSEC LOOP ;
: SCOPE BEGIN JUP LIMITS CJ I 3~ ~UTPUT Z +LC~P C OUTPUT ?V9U
END lORoP ;

(100 POINTS CO~RELQTI~~ LSING 9IR~CT M ~T~~D ~O~ T~S9900
SYSTE~ WRITTE~ IN FORTH PR~GRA~~ING LANGJ'GE)

(DEFINITIONS O~ VARIA3LES AND ARRAYES)
H~X 64 CONSTANT ~ ca CONSTANT ~N 62 C2NSTANT OPTIO~
o INTEGER MAXN3 0 I~TEG~R LJCATIO~ 0 I~TEG~~ Q~LQY

4 ARRAY ANSwER 4 ARRAY TE ~ P~~ NN AR~AY l!~PUT
N ARRAY 2INPUT N AR~AY 5I~K NN ARPAV CJ~REL

(ROUTHIES lIN, 2HI, IG~T ANO 2GET CO"IVERT f. ST ORE I")ATA)
CODE lIN 2BO QC LI 2 SBZ 2 SSO 220 QC LI BEGI~ 2 T3 cNE
END 320 DC LI 0 4 CLR 9 C 4 STCR 0 4 S~P3 4 PUSH '~TUR~

CODE 2I~ 250 QC LI 3 S8Z 3 sea 220 OC L! 9EGIN 3 T9 c~E
END 330 OC LI 0 4 CLR 8 0 4 STCR 0 4 SWP~ 4 FU~~ RETUR~

: 1GET NN 0 CO lI~ I 1+ 1INPUT + ? DELAY 2 ~SEC 2 +LOQP
: 2GET N Q DO ZIN I 1+ 2INPUT + ? ~~Lny @ MSEC 2 +LDJP
(lID & GETI/O STCRE DATA I~ A~qAY PGINT BY P~I~T)

C~9E lID 230 QC LI 2 S3Z 3 SSZ 2 530 3 san
220 QC LI BEGIN 2 TB FNE IF 3 TS T~~~ ~NE ENC 33C DC L:
o 4 CLR 8 0 4 STCR 0 4 SWP9 4 PUSH 320 OC LT
o 4 CLR 8 0 4 STCR 0 4 SwPB 4 PUSH RETUR~
: GETI/O NN 0 DO l/C I 1+ lINPUT + ? ! QUP 'PTIJ~ > I~ 2[PQ?
ELSE 1+ 2INPUT + ? THEN DELAY 3 MSEC 2 +LOOP ;
(*M MULTIPLY 2X16-BIT NC.)
C */M MULTIPLY ZX16-B!T ~O. F. DIVIDE ~v 16-~!T ~2.)
C *1 COMPLETE *IW)
C OM* MOD 16 ~ULTIPLY)
HEX CODE *~ 0 5 CLR 0 1 1 OE M8V 0 5 0 1 ~~V 6000 1 ~~CI
F N ElF 0 5 N E G THE N 2 0 1 2 0 c: M C V r) 6 0 1 " [V 3 C 0 0 1 A N [!
FNE IF 0 6 NEG 0 S OEC THEN 5 0 6 MOY 0 90S M~V ~~E r c

o 5 NEG THEN 1 DE 0 6 MOV 2 2 OE 0 5 ~OV ~~TURN
CODE */~ 0 9 CLR C 1 1 OE M~V 0 2 0 1 MOV 80eo 1 ANDI FNE IF
o 2 NEG 0 3 INC TrE~ 2 0 1 2 OE ~OV 0 3 C 1 ~OV 8000 1 A~CI
FNE IF 0 3 NEG 0 9 ~EC THE~ 2 0 3 MPY 0 9 0 9 M~V FNE !~
o 2 NEG THEN 4 0 1 2 OE ~CV 0 4 0 1 ~1V BODO 1
ANDI FNE IF 0 4 NEG
o 9 OEC THEN 2 0 4 DIV 0 9 0 q ~OV FNE IF 0 2 ~~G T~:N
1 OE 0 4 MOV 2 2 0: 0 3 ~DV 4 2 OE 0 2 MOV RETUR~
: 01 */M 20ROP; : *~* *M SWAP DRCP ;
C *? MULTIPLY ANC SU~M!~G THE RESULTS IN ANSftER)
C10E *? 0 1 3 OE ~JV 0 2 3 OE ~DV 2 0 1 MPY
ANSWER 5 LI 3 5 0 3 A FJC IF 1 5 INC THEN 1 5 0 2 ~ ~~TU~N
C THIS ~ERSION CO~PUTE CCRRELATION ~CNCTION LSI NG DIRECT

METHOD)
PRINTS LIMITS CO I @~ , LOOP CRLF ;
TEST DUP ANSWER + iB SwAP 1+ ANSWER + i8 ;
ITEST CUP TEMoOR + ROT SWAP ?6 1+ TEMPOR + ?3 :
TRY 4 0 DO I TEST I 1TEST 2 +LOOP ;
SHIFT + lINPUT • i ; : ZERG ANSWER EMPTY ;
COEFFICINT N 0 C~ DUP I S~I~T I 2I~PUT + a *? 2 +LOOP

DROP ;
: TRANSFER 4 0 DO DUP I TEMPOR + aa SWAP ?3 1+ Leap OR]P
: XCORREL N 0 00 Z~RO I COEFFICINT TRY I DUF + CCRR~L +
TRANSFER 2 +LOOP ;
C THIS VERSION TR~NS~OR~S T~E WORD LE NTH TO 8-gIT)

lPFENDIX ~

IN ORDER TO FIT Q/A CO ~ VERT:R)
1T 20UP + DUP 1+ C~RPEL + @g ROT SI ~K + ?9 2+ C 8 ~~~L + ~3
2T 1+ SINK + ?B ;
STORE N 0 00 I 1T I 2T 2 +LQJP :
FIT N 0 00 I SI~K + oUP ~~ I 1+ SIN~ + CUD JB 2~]T ?3

SWAP ?6 2 +LOOP ;
: CO MAX 0 N 0 DJ r SINK + ~ 20 VER < I~ S~AP I 1 I L~CATIC ~ ?
THEN DR QP 2 +L08P MAX NB ?
: COFACTOR ~ 0 00 MAX N9 i I SI NK + ~ F~ * 1 ! S!~K + ?
2 +LOOP ;
CODE OUTPUT 2AO DC LI 4 PCP 0 4 SWpg 9 0 4 L:CR R ~TU~~

: SCOPE 8EGIN DUP l! MITS O~ I 1+ ~ B OUTPUT 2 +L ~ :P 0 OUTFLT
?VDU END 20RDP ;
(FORMAT TO ~RIT E T~~ O ~ TPUT O~ VDU)

FMT lOCATIJ~ 1+ iB 4 * C G ~REL + ;
IF MT 4 0 CO JUF I FMT + ~8 S W ~P ?E 1+ L01P J~CP :
V STRING. CJ~REl I ~ 8YTES ~ SAY CRLF C~RREL PR IN T3

C R L F S T R I N G 11 M A X I ;1 t.; /'I "J U ~ e E R = 11 SAY A ~l S W ~ R 1 F 11 T A ~~ S w E q
PRINTS CRlF STRI NG A lO CATIO N IS A SAY LOCATI J~ ? C~L~
STRING 8 SI~K IN 2YT1:5 R SAY CRlF SI NI(PRI nT CRLF ;
(CYCLIC CORRElATIJ ~ R 0~ TI N ~)
HE X 8 CO NSTAt\ T N 0 HJTE G2R A ~JSW: R
N ARRAY Z N A~ R AY X ~ ARRAY Y
: ZERO 0 ANSWER ?; SHIFT X + i
: COEF N 0 CO Dt.;F I + N ~Oo S~IFT I Y + ~ ~
ANSWER +7 2 +LOOP DRep
: CORREl N 0 DO Z~RC I CO~F ANSWER J I Z + ? 2 +L ~ JP
(DEFI NE ~O~ I + ~)
CODE +INDEX 0 2 1 O~ M ~V 2 0 2 2 OE A ~ 2 C! ~ G T !~
-8 2 AI THEN 1 OE 0 2 11V RETUR N
: I NDEX +INDEX S~AP Dq)P :
(N=2 OPTIMAL SHO~T CORRElATI~ ~ USI NG RECT. TRA ~ s~a~ M)
HEX 4 ARRAY HH 4 ARRAY XX
6 ARRAY AA 6 ARRAY M~ 6 AC!RAY WW

lSTEP 2 HH + ~ 20UP 2 AA +? YH i + 2 I
4 AA +? HH ~ - 2 / AA ?

2STEP XX @ 20UP 2 AA + ~ ~ 2 M~ + ? 2 XX + @ + 4 ~ Q +
Q; :,: 4 M'~ + ? 2 X X + @ - A A ,j) ~, rl r~ ?

3STEP 2 MM + i 4 WW + ? 4 ~~ + @ ~ M J - 2 WW + ? M~ ~
4 M ~ + @ + 2 MM + @ - ~W ?

CORL 1STEP 2STEP ~STEP :
(N=3 OPTI MAL SHO~T CO R ~ELATI~ N
~ :X 6 ARRAY HH 6 ARRAY XX
8 AqRAY MM 8 A~RAY AA

USI ~ G RECT. T~A ~ S~Jq M)
6 ARRAY YY
8 A~ R AY :!!

DUP 2 ~A + ? 4 HH + Z R~T
+ ? r. ~ @ 4 H~ + i 2 HH +

lSTEP 2 HH + @ CUP HH ~ ROT -
- DUP 4 AA + ? + 43691 ~~* 6 AA
@ + + 43691 *~~ AA?;
: 2STEP 4 xx + @ CUP xx i ROT - CUP 2 3~ + ? 2 XX + 3 ROl -
DUP 4 S9 + ? + 6 eB + 7 xx @ 2 XX + ~ 4 xx + ~ + + ~3 ? :
: 3STEP 8 0 CO I AA + @ I g~ + a oM* I ~~ + ? 2 +LJ8P
: 4STEP 6 ~M + @ CUP 2 MM + @ Ra T - CUP M ~ q + YY ? 4 ~M + ~
RaT - oUP M~ @ + 4 YY + ? + MM @ SWAP - 2 yy + ? ;
: eaRL 1STEP 2STE~ 3STE P 4STEP ;
C N=5 OPTI",AL 5HOl<T CORRELATION USPIG Rf: Cl. l~ oU S~~~ ~)

DEeI~AL 10 ARRAY ~H
20 ARRAY ~B

10 I\R~AY XX
20 A~~AY '~M

le ~~HY yy
2e I\RKAY AA

1SS 2 HH + ~ 2DLP 2UU~ ~~ ~ OUP ~OT - 2 AA • ? • ~JT ~ ~~ •
i OUP ROT - 4 AA • ? + qCT 6 ~~ • @ CUP RCT - 6 AA • ? • 5~AP
4 HH + @ DUP qaT - ~ AA • ? + 5242~ ~~* AA ? :

lSTEP lSS 2 AA • ~ UUP 4 AA + @ OUP ROT. CUP 10 AA + : SWAP
8 AA + @ DUP ROT. 16 AA + ? 6 AA + ~ DUP R~T + CUP 12 At + ?
ROT + 52429 *~* lE AA • ? • 14 AA • ?

2SS 8 XX + ~ 20LP 2DU D XX ~ OUP R~T - 2 ~~ • ? • ~CT 2 XX +
i DUP ROT - 4 8B • ? • ~~T 4 XX • @ CUP R~T - 6 QO + ?
+ SWAP 6 XX • i OLD ROT - d B8 + ? + ~d ? :

2STEP 2SS 2 8~ • i UUP 4 9~ + i ~U? ROT + :U? 10 ~5. SWAP 9
BB + @ DUP ROT + 16 9b + ? ~ ~s + a CUP ROT + J~P 12 ~3 • ? RGT
+ 18 BB + ? + 14 E3 • ? ;

3ST~P 20 0 CO I AA + 1 I ~g + i *~* I ~~ • ? 2 +L1QP ;
4STEP MM @ 18 M~ • ~ - 20UP 8UP 2 ~~ + i ~ M~ • i - ~UF R~T

• 6 MM • i - 12 M~ • i + YY? 4 MM + ~ - le ~~ + 1 + 2 yy • ?
4 M ~ • @ 6 M~ + i-CUP RCT + 2 ~~ + ~ - 14 ~ M + i • 4 Y' • ?
- 8 M M + a: - 1 ~ M'" • ~ + .9 Y Y + ? '~ 1 1 :: 20 l,; P + S 'A DD,):..J D Z ,:,,~ t" + +
yy ~ - 2 YY + ~ - 4 YY + ~ - ~ YY + ~ - 6 yv + ?
: eORL lSTEP 2STE~ ~ST~P 4ST~P :

Listings for chapter 5

(1) PN sequence generator microprogram

regi s t er s a re t9-- - - lsa

ta-- - -msa
tb----lsdi
tc----msdi
rO----fsr
r3----lenth
r7----res
rb-- ~ -line
sl--- - skip
s3----sdna c
sf----szero

labels are :-strt at location 000
outl at location 030
shift at location 050
out2 at location 0 70

/ ***
/
/ title noise: pseudo rvndom SeGuence ~enerator
/

/ *** / ass i snnlents
i::lsa :: t9
i::nlsa ::: ta
i::lsdi ::: th
i::nlsdi ::: tr
i::sdnac "'" !,;3
%lin~ ::: rb
i::f!:; r :::: rO
i::lenth ::: ,-3
i::!:;zero ::: sf
i::skip ::: sl
i:: res :::-. r7

/ ***
/ this alsorithm, maskin~ bit-7 and bit-I, by
/ ex-or and loadin~ bit-one.
/ output ::: the output seGuence
/ lsa = 1. s. addr~ss
/ msa = m. s. addr~ss of store r~m simulator
/ lsdi = 1. s. data input
/ msdi = m. s. deta input
/ sdnac = 53 skip if data not accepted
/ skip = skip always

0 000 000A137010 st.rt:
1 001 0009137010
2 010 550C137010
3 011 FE02337110
4 020 A003337110
5 021 7F00337111

6 030 005B104030 olJtl:
7 031 0005337110
8 040 0807337110

9 041 0000037110

10 050 000B304130 shift:
11 051 002B352110
12 060 00B0030110
13 061 0005433110

14 070 0700137013 CllJt2:
15 071 3FOO15611F
16 080 8000366110
1.7 081 002015211F
18 090 8000366110
19 091 0000533110
20 OAO 000331313F
21 OA1 0000001131
22 OBO 0000137011
23 OB1 000731313F
24 OCO 0500137011
25 OCl 0300137010

/ lensth = th~ sealJence len~th
/ szero = skip if zero
/ res = cOlJnter initiallY(07)
/ r5 = th~ present. 8-bits of the seauence
/ ski? = skip ~lways

/ *** *bes i r,
IIIsa=tOO
Isa = too
",sdi =t55
r2=tfe
lenth"'tClO
fsr=t7f , sldF' Ii ni ti~l ization

*even
lsdi=0+r5 /olJtrJI.Jt tCl ram
r5=tOO
res=t08

/ •• initi~te the cOlJnter
a=tOO

*even
lir,e=O+fsr
1ine=r2 msk line
a""'line iClr a
r5,a=0 ior r5 , down
*even

branch 0IJt2 , sdnac
0=t3f ITIsk fsr , s:zero
fsr=t80 Nor fsr
0=r2 msk fsr , S7ero
fs r=t80 >:0,' fs r
fsr=O ior f~.r , down
lenth=0_lenth-1 , S2f:'f'O
a=O+a , ski?
branch strt.
res=O_reS-l , szero
branch ~, hi ft.
branch OlJtl.
tend

Listings for chapter 6

(1) Transmitter microprogram

(2) Receiver microprogram

resisters are:- t6- - - - fifo
tf----contrl
rO----telf'p
r1----cofJnt
r5----b!:lte
rl----cpso
rb----data
rc----·add
re----pn~n

s1----skip
s8----skfe
sd----siffl
sf----sz.ero

labels are :-start at location 000
~ estxO at location 001
~ estxl at location 071
~sto at location 090
testx2 at location OEl
tstl at location 110
dattx at location 141
datxO at location lAI
dataO at location lCO
datOO at location 200
c tx at location 220
data l at location 240
ddO at location 270
~ntx at location 291
a lll at location 311
ctxoo at location 360
rstrt at location 3FO
invl1 a t location 460
ctxOl at location 4BO
ctxl0 at location 510
invOl at location 580
ch02 at location 5EO
ctx02 at location 640
inv12 at location 6BO
ch12 at location 700
ctx12 at location 760
inv03 at location 7DO
ch03 at location 830
ctx03 at location 890
inv13 at location 900

ch13 at location 950
ctx13 at location 9BO
inv04 at location A?O
ch04 at location A70
ctx04 at location ADO
inv14 at location 840
ch14 at location 890
ctx14 at location 8FO
invOO at location CbO
errorO at location CDO
loopO at location CEO
errorl at location CFO
loopl at location DOO

I ***'****'*'*'****'*'*************************'****'*'***'*'*'**'***
I
I direct seauence spread spectrum mierDpro~ram
/

/ **'*********'*'*********************'*'********************
/ assi~nlhent5
Xskip = 51
X5zero ::"! sf'
Xeontrl ~ tf'
Xf'ifo = t6
Xskfe = 58
Xsif'fl = sd
Xadd = re
Xdatc: = rb
XteITIf' = rO
Xepso = r7
XeolJnt ::"! rl
Xbyte = r5
XF'n~n = rE'

/ ******'*******-*'*'***********************************
/ data: either 0 or lone bit per seauence period
/ rn~n: the f'.r.s.~ and the modulated data translhitted
/ telhP : 8-bit of seauence
/ te display th~ modulated data
/ td : the p.r.s.9 byte
/ tb : the low rate data information
/ input data are loaded to the fif'o (0,1), I-bit evers one
/ seauence period
/ count: counter to load the dc:ta
/ cpso : clock pulse serial input

o 000 0040107037 start:

1 001 0007337110 testxO: ,., 010 010F13701F ...
3 011 0000103131
4 0 2 0 CD00137011
5 021 0077307130
6 030 0007103030
:? 031 0000337110
8 040 7F01337110
9 041 0605337110

10 050 000C337110
11 051 000E337110
12 060 070F137010
13 061 0000103138
14 070 CD00137011
15 071 000C103030 test :-:1 :
16 080 002E307130
17 081 00EDI04030

18 090 090013701[1 tstO:
19 091 00£6104030

20 OAO 000C303100
21 OAl 001C12210F
22 OBO 0000103131
23 081 000C337110

/ skip : 51 skip always
/ szero : s~ skip i~ z ero
/ si~~l : sd skip i~ ~ifo ~ull

/ skfe : s8 skip if fifo e~pty
I fifo : fifo input re~ister
I contrl : control fla~s (tf)
I *t*****t*****t* start *t**t*t***t*t****t**t
I
Ithe pro~ra~ starts with an instruction which by loadin~
It he pro~ra~ counter (to) and skippins to ~ive a 0 I.s.b
Inot skippin~ to ~ive 1 I.s.b allows a branch to any loc8tion
lin the pro~.
*be~in

to=f4tO , s7
I •• the external re~ister (f7) is used to load the
Ipro~ra~~able djvide by n counter
/ to test the trans~itter operation the microprogram is initially
I set UP to generate 8 code seouence o~ lpngth 127
I

cpso=tOO
contrl=t01 , szero /should be no skip
O=O+te~p , skip
branch errorO
cpso=f7tO
t7=Otcpso / load progra~mable counter
te~p=tOO

count=J7f Ino. of bytes in the p.r.s.g pro~
byte=t06
add=tOO
pngn=tOO
contrl=t07 / fifo master reset
O=O+te~p , sk~e /should skip
branch errorO
tc=Otadd
pngn=f2tO / read ~ -seouence o~ length 127
td=Otpn~n I display m-seouence

*even
branch tstO , si~~l / check ~i~o full
~ifo=O+pn~n / load ~ifo

/ address ~odulo 127
add=Otaddt1
O=count-add , szero
O=Ottemp , skip
add=tOO

24
,.,c·
.~ ~

26
27
28

29
30
31
32
33

34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52

53
54
55

OCO
OCl

ODO
OD1
OEO

OEl
OFO
OFl
100
101

110
111
120
121
130
131
140

141
150
151
160
161
170
171
180
181
190
191
lAO

lAl
IBO
lEel

000531313F
0700137011

060F13701F
0000103131
CD00137011

0077307130
0007103030
000CI03030
002E307130
00EIt104030

110013701I1
00E6104030
000C303100
001C12210F
0000103131
000C337110
OE00137010

0007337110
010F13701F
0000103131
C[J00137011
0077307130
0007103030
0000337110
070F137010
0000103138
C[t00137011
0500337110
1005337110

000B337010
0077307130
0007103030

test:·: 2 :

tstl:

datt:.: :

dat}:O:

byte=O_ byte - l , 5zero

branch test;-:1
/ start trans~ittin~

contrl=t06 , $zero /should be no skip
O=Oftemp , skip
branch errorO

/ variable m-$eGuence clock rate
cr'so=f7fO
t7=0+cpso
tc=Ofadd
pn<:in=f2+0
td=Ofpn!!'fn

*even
branch tstl , siffl
fifo=Ofpn~n

add ::-: Ofadd+l
O=count-add , $zero
O=OftenlP , skip
add=tOO
branch tesb:2

/

1***.
I •• data transmit micropro~ram

1**
/
I the micropro~ram transmitts an alternative zero and onc dsta bits
I

cpso=tOO
contrl=t01 , szero Ishould be no skip
O=OftenlP , sk.ip
branch errorO
cpso=f7+0
t7=0+cpso
temp=tOO
contrl=t07 I fifo master reset
O=Oftemp , skfe Ishould skip
branch errorO
temp=t05
b'::lte=t10

I di$pla'::l data zero
data,tb :::: tOO
cpso=f7+0
t7=0+cpso

*E'verl

56
57
58
59
60
61
62
63

lCO
lC1
1[10
IDl
lEO
lEl
IFO
IFl

64 200
65 201
66 210
67 211
68 220
69 221
70 230

lCOOl3701D
00[16104030
0005313130
000031313F
lC00137011
060F13701F
0000103131
CD00137010

dataO:

200013701F datOO:
0086104030
000531313F
2000137010
0077307130 ctx:
0007103030
1005337110

71 231 FFO[l337010

T.t.! 240
73 241
74 250
75 251
76 260
77 261

78 270
79 271
80 ?80
81 281
82 290

83 291
84 2AO

240013701[1
00[16104030
000531313F
2400137010
1005337110
000[1337010

270013701[1
00[16104030
000531313F
2700137010
2200137011

0007337110
010F13701F

datal:

ddO:

slnt)·: :

branch dataO , si~~l

fifo=Otdata
b~te=O_b~te-l
temp=O_temp-l , 5zero
branch dataO
contrl=t06 , szero
O=Ottemp , 51d p
branch errorO

*even
branch datOO , szero
fifo::-:Otdat.a
b~te=O_b~t~-l , 5zero
branch datOO
cpso=f7tO
t7=Ofcpso
b~te=t10

I displa~ data one
data,tb=tff
*even

branch datal , siffl
fifo=Otdat~
b~te=O_b~te-l , S2ero
branch datal
b~te=t10
data,tb=tOO

*even
branch ddO , siffl
fifo=Otdata
b~te=O_b~te-l , 5zero
branch ddO
branch ct.:·:

I

1**
I •• ~enerel transmit micropro~ram
I •• the modulation type u5ed i5 seouence inversion k~in~(~ik)
I.' .the data bit period is eaual 127 times the pn-chip dur~tion
I(i.e. the spreadin~ ratio is 127)

I*********~: **
I the micropro~ram i5 then confi~ured to pprmit transmis5ion
I of spreadin~ si~nal
I
I adjust the transmitter clock rete output

cpso=tOo
contrl=t01 , 5zero Ishould be no skip

85 2A.t
86 2BO
87 281
88 2CO

89
90
91
92
93
94
95

96
97
98
99

100

101
102
103
104
105
1.06

2C1
2DO
2I11
2EO
2E1
2FO
2F1

300
301
310
311
320

321
330
331
340
341
350

0000103131
Cn00137011
0077307130
0007103030

0000337110
7F01337110
000C337110
000E337110
070F137010
0000103138
CD00137010

OF05337111
0000103130
7F00337110
000CI03030
002E307130

000E15211F
000C303101
0500337111
3100137010
000B337010
OOEII1 04030

alll :

107 351 00BE362010

108 360
109 361

110
111
112
113
114
115
116
117

370
371
380
381
390
391
3AO
3Al

360013701D ctxOO:
00E6104030

0005313130
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030

O=Oftemp , skip
branch errorO
cpso=f7+0
t7=0+cpso

I initialisation
te~p=tOO

count=t7f
add=tOO
pnSn=tOO
contrl=t07 Ififo master reset
O=O+temp , skfe I should skip
branch errorO

I
I data bits are '~ynchronised' by r~cosnisins the aJI one's
I state of the m-seauence senerator and startin~ a data bit
I at that time
It. check th~ ~Jl 1'5 ~tate •• (7f)

byte='Of , ~kip

O=O+temp
temp=.7f
tc=O+add
pnsn=f2+0

I
O=temp msk pn~n , szero
add=0+add+1 , skip
temp=t05 , skip
bran~h ~111
data,tb=tOO
td=O+pn~n

/ display the transmitted sisnal
pnsn,te=data xor pn~n

*even
branch ctxOO , siffl
fi fo=O+F'n!;ln

I a cyclic counter is counted to determine the start of subseQuent
I data bits

byte=0_t'l!:Ite-1
add=0+add+1
O=count-add , szero
O==O+temp , skip
add=tOO
tc::::O+add
pnSn=f2+0
td=O+pnsn

118 3BO
:L19 3Bl
120 3CO

:L 21 3C1
122 3I10
123 3I11
124 3EO
125 3E1

126 3FO
:127 3F1
128 400
129 401
130 410
131 411
l~2 420
133 421
134 430
135 431
1 ~~6 440
137 441
138 450
139 451
140 460
141 461
142 470
143 471
144 480
145 481
146 490

147 491
148 4AO
149 4A1

00BE362010
000031313F
3600137011

060F13701F
0000103131
CF00137010
0077307130
0007103030

3F0013701D
00E6104030
000531313F
0000103131
4600137011
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030
00BE362010
3F00137010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00ED104030

800B337010
00BE362011
0000103130

rstrt:

in 11:

/ sik or b~sk in which the data to be tr a n s mitted is mDdulo -2
/ (exclusi ~-or) added tD the code seouence is the modulation
/ scheme for this system

pn~n,te~data xor pn.n
temp=0_temp-1 , szero
branch ctxoo

I start transmission
contrl~t06 , 5zero Ishould be no skip
O=Ottemp , skip
branch error1
cpso=f7tO
t7=Otcpso

I
I because th~ lpn~th of the seauence is a prime numher (127)
I the d~ta bit is divided into 16 d~ta bytes where 15 bytes ~re
I of comFlete len~th (B-bits) and the 16th b~te mmsk€d in order
I to isol~te th~ reauired number of bits
*even

branch rstrt , ~iffl

fifo=Otpn~n

byte=0_byte-1 , szero
O=Ottemp , skip
branch in 11
add=OtEddt1
O=count-add , szero
O=Ottemp , skip
add=tOO
tc=Otadd
pn~n=f2tO

td=Otpn~n

pn~n,te= data HDr pn~n
branch rstrt
add=Otaddt1
O=count-add , £zero
O=Ottemp , skip
add=tOO
tc=Otadd
pn.n=f2tO
td=Otpn~n

I last b~te = 10000000
data,tb~tBO

pn~n,te=data xor pn~n , skip
O=Ottemp

*even

150 4BO 4BOO13701fl ct ;~Ol : branch ctxOl , zi'f'fl 151 4B1 00£6104030 'fi'fo=O+1"n~n 152 4CO OF05337110 b!:lte=t01' 153 4C1 FFOB337010 date,tb=tf1' 154 4r,0 000C303100 add=0+addf1 155 4D1 001C12210F O:::colJnt-add , szero 156 4EO 0000103131 O=Oftemp , skir:-157 4El 000C337110 add=tOO 158 4FO 000C103030 tc=Ofadd 159 4Fl 002E307130 1"nSn=1'2+0 160 500 00E[l104030 td=Of1"n~n 161 501 00BE362010 r:-nsn,te=data xor 1"n~n
*ever. 162 510 510013701[. ct~-:10 : branch ct~-:10 , ~j. ff1 1.63 511 00E6104030 1'ifo=Otpn~n 1.64 520 000531313F b!:lte=O_b!:lte-l , szero 165 521 0000103131 O=OttelT.p , skir:-166 530 5800137011 branch inv01 167 531 00OC303100 add ::-: Otaddf1 :1.68 540 001C12210F O=co'Jrlt-c:dd , !:·7E'rO 1 69 541 0000103131 O=OtteITIP , ski r:· 170 550 000C337110 add=tOO 171 551 000CI03030 tc=Otadd 172 560 002E307130 prlsln=f2tO :1.73 561 00E[l104030 td=Ofpnsn .L 7 4 ~j70 00BE362010

pnsn,te~d~ta xor pn~n 175 571 5100137010 branch C't:·: 1 0
/ last b!:lte = 00111111 1.76 580 3FOB337010 inv01: data,tb:-::t3f 1'17 581 000C303100 add=Otaddtl :1.78 590 001C12210F 0 == co1Jnt -add , s:::::ero :1.79 591 0000103131 O=OftelT.p , skip :1.80 ~:;AO 000C337110 add=tOO :181 5Al 000C103030 tc=Otadd

182 5BO 002E307130 pnSn=f2+0 183 581 00E[l104030 td=O+pnslrl 184 5CO 00BE362011 r:-nSn,te=data x or pn~n , s k.ip 185 5C1 0000103130 O=Ottemp
186 5[10 0077307130 cpso=f7+0 187 5[11 0007103030 t7=0+cpso

*even 188 5EO 5EOO13701[. ch02: branch ch02 , siff! 189 5El 00E6104030 1'i1'o=Ofpn5'in 190 5FO OF05337110 b!:lte=tOf

191

192
193
194
195
196
197
198
199

200
201
202
203
204
205
206
207
208
209
210
211
:H2
2 13

214
2 15
216
2 1,7
2 18
219
220
221
222
223

224
225
226
227
2 28
229
230
231

SF1

600
601
610
611
620
621
630
631

640
641
650
651
660
661
670
671
680
681
690
691
6AO
6Al

6BO
6B1
6CO
6Cl
6ItO
6[11
6£0
6£1
6FO
6F1

700
701
710
711
720
721
730
731

OOOB33 7010
000C303100
001C12210F
0000103131
000C337110
000C103030
002£307130
00EDI04030
00BE362010

640013701£1
00E6104030
000531313F
0000103131
6B00137011
000C303100
001C12210F
0000103131
000C337110
000C103030
002£307130
00E[l104030
00BE362010
6400137010

EOOB337010
000C303100
001C12210F
0000103131
000C337110
000C103030
002E307130
00E[ll04030
00BE362011
0000103130

700013701D
00E6104030
OF05337110
FFOB337010
000C303100
001C12210F
0000103131
000C337110

ctH02:

inv1 2 :

ch12:

data,tb",. .OO
add=O+addt1
O=count-add , szero
O=O+telnP , skip
add=tOO
tc=Ofadd
pn!:fn=f2fO
td=Ofpn~n

pn!:fn,te=data xor pn~n
*even

branch ctx02 , siffl
fifo=Ofpn!'tn
b~te=O_b~t~-l , szero
O=OftelflF' , skiF'
branch inv12
add=O+addfl
O=count - add , s zero
O=Oftemp , skip
add=tOO
tc=Ofadd
pnSn=f2tO
td=O+pn!'tr,
pnsn,te~d~ta xor pn !'t n
branch C'tx02

/ last b~te = 11100000
data,tb=teO
add=O+addtl
O~count-add , szero
O:=: Ottemp , s kip
add=tOO
tc=Otadd
pn!'tn=f2tO
td=:Otpn~n

pn!:fn,te=data x or pnSn , s kip
O=Ottemp

*even
branch ch12 , siffl
fifo=Otpnsn
b~te='Of
data,tb "=' tff
add=Ofaddtl.
O~count-add , szero
O== Ottemp , skip
add=tOO

232 740 000C103030 tC=Otadd 233 7-11 002£307130
F-n~r,=t'2tO 23-1 750 00£Ct10-l030 td=OtF-n~r. 235 751 00B£362010
F-n~n,te=data xor pnSr.
*even 236 760 760013701D ct:<12 : branch ct:.:12 , ~it't'l 237 761 00£6104030 t'ifo=Otpnsn 238 770 000531313F b!:lte=0_b!:ltE!-1 , ~zero 239 771 0000103131 O=Ottelf'F" , skip 240 780 7[100137011 branch inv03 241 781 000C303100 add:Otadd+1 242 790 001C12210F O=co'Jnt-add , £zero 243 791 0000103131 O=Otterr,p , skip 244 7AO 000C337110 add=tOO 245 7A1 000C103030 tc=Otadd 246 780 002E307130 pn~r,=f2tO 247 7Ifl 00E[l104030 td=Otpn~n 248 7CO 008E362010

F-n~n,te=data xor pn~n 249 7C1 7600137010 branch ctld2
/ last b!:lte= 00001111 250 7[10 OF08337010 inv03: data,tb=tOf 251 7[11 000C303100 add=Otaddtl ~~52 7EO 001C12210F O=count-add , szero 253 7E1 0000103131 O:OttelllP , ~kiF" 254 7FO 000C337110 add=tOO ")c:" E;"' 7F1 000C103030 tc=Otadd

10'_ \ .I....J

256 800 002£307130 pnSn=t'2tO 257 801 00E[l104030 td=OtF"nsn 258 810 008E362011
pn~n,te=data xor pnRn , skip ~~59 811 0000103130 O=OtteIJ,p 260 820 0077307130 cpso=f7+0 261 821 0007103030 t7=OtcF"SO

*p.ven 262 830 830013701[1 ch03: branch ch03 , siffl 263 831 00£6104030 f i fo=OtF'nsr, 264 840 OF05337110 b!:lte=tOf 265 841 0008337010 data,tb=:tOO 266 850 000C303100 add=Otaddtl 267 851 001C12210F O"" count-add , szero 268 860 0000103131 O=Ottemp , skip 269 861 000C337110 add=tOO 270 870 000CI03030 tc=Otadd 271 871 002E307130 pn~n=f2tO 272 880 00E[l104030 td=Otpnsn

273 881 00FE362010 pn~n,te~d~t~ Hor pn~n

*even
274 890 890013701It ct:<03 : branch ctH03 , si.ffl
275 891 00E6104030 fifo=Otpn~n
276 8AO 000531313F b':lte=O_tt':lte-l , szero
277 8Al 0000103131 O=OttemF· , ~kip
278 8BO 9000137011 branch invl3
279 8Bl 000C303100 add""Otaddtl
280 BCO 001C12210F O=colJnt-add , ~zero
2Bl BCl 0000103131 O=Ottemp , skip
282 B[IO 000C337110 add=:lOO
283 BItI 000CI03030 tc=Otadd
284 8EO 002E307130 pnSn=f2tO
285 BEl 00E[l104030 td=OtprlSn
286 eFO 00BE362010 pnsn,te=d~t~ xor pnSn
2 87 BF1 8900137010 branch ct;·:03

*everl
/ last b\::te "" 11111000

288 900 F80B337010 inv13: data,tb=tf8
2 89 901 000C303100 add=Otaddt1
290 910 001C12210F O=coIJnt-add , 5zero
291 911 0000103131 O=Ottemp , stdp
2 9 2 920 000C337110 add=tOO
293 921 000CI03030 tc=Otadd
:?9 4 930 002E307130 pmin=f:?tO
:':.~ 95 931 00E[l104030 td=Otpn~n

296 940 00BE362011 pnsn,te~data xor pn~n , !;,kip
297 941 0000103130 O"" OttenlF·

*even
~·.~ 98 950 950013701D ch13 ~ branc h ch13 , siffl
:':!f19 951 00E6104030 fifo=Otpngn
300 960 OF05337110 bl:lte=tOf
301 96l. FFOB337010 data rt.b ::-: tff
~·502 970 000C303100 add:Otaddtl
303 971 001C12210F 0=co1Jnt-add , 5zero
304 9BO 0000103131 O=OttenlP , skip
~305 981 000C337110 add=tOO
306 990 000C103030 tc=Otadd
307 991 002E307130 pnSn=f2tO
308 9AO 00ED104030 td=Otpn~n

309 9Al 00BE362010 pnsn,te~data Hor pn~n
*even

310 9BO 9B0013701It ctx13: brarlch ctx13 , ~iff1
311 9B1 00E6104030 fifo=Otpn~n

312 9CO 0OO531313F
b~t.e=O_" b~t.e-1 , sze "[) 313 9C1 0000103131 O=Ottemp , l::kip 314 9DO A200137011 branch inv01 315 9[11 000C303100 add=Ofadd+l 316 9EO 001C12210F O"'co'.Jnt-add , szero 317 9E1 0000103131 O=Oftemp , 5~" ip 318 9FO 000C337110 add=too 319 9F1 OOOC103030 tc=Ofadd 320 AOO 002E307130 F-n9n=f2fO 321 A01 00EII104030 td=OfF-n!'fn 322 A10 00BE362010
F-n9n,te~data xor pn~n 323 All 9BOO137010 branch ct:":13
*even
/ last b~te = 00000011 324 A20 030B337010 ir,v04 : data,tb~t03 ;'~25 A21 000C303100 add=Ofaddfl :326 A30 001C12210F O""co'.Jnt-add , szero 327 A31 0000103131 O=Oftelf'F- , sk.iF-~28 A40 000C337110 add=tOO ~~ 2 9 A41 000C103030 tc=Ofadd 330 A50 002E307130 F'nSn=f2tO 331 A51 00EDI04030 td=OtF'n9n 332 A60 00BE362011 F-n!'fn,te=data xor F'n~n , skip :n3 A61 0000103130 O=Ottemp
*even 334 A70 A70013701It ch04: branC'h ch04 , siffl 335 A71 00E6104030 fi f(l:-:Otr'n~n ~336 ABO OF05337110 b~te=tOf ;"B7 A81 000B337010 data,tb=fOO ~31:$ A90 000C303100 add=Otaddt1 339 A91 001C12210F O"':count-add , l::zero 340 AAO 0000103131 O=Ottemp , sk.ip 341 AAl 000C337110 add=tOO 342 ABO 000CI03030 tc=Otadd 343 ABl 002E307130 F-rr!.'fn=f2tO 344 ACO 00Erll04030 td=Otpn!'fr. 345 ACl 00BE362010 prr~n,te=data xor F-nSrr
*even 346 ADO ADOO13701I1 ctx04: branch ctx04 , siffl 347 AII1 00E6104030 fi fo=OfF'r,!'fr, 348 AEO 000531313F b~te=0_b~te-1 , szero 349 AE1 0000103131 O=OftemF' , skiF' 350 AFO B400137011 branch inv14 351 AFt 000C303100 add=Ofaddf1

:352 !lOO 001C12210F
O=colJnt-add , szero 353 B01 0000103131 O:-:: ottelr'p , skip 354 B10 000C337110 add=tOO 355 B11 000C103030 tc=Otadd 356 B20 002E307130 pnsn=f2tO 357 B21 00ED104030 td::-:OfF'n~n 358 B30 00BE362010
pnsn.te=d~ta Nor pn~n 359 B31 AD00137010 branch ctx04
*pven
I last b!::te = :11111110 360 B40 FEOB337010 inv14! data.tb::-:tfe :361 B41 000C303100 add=Ofaddf1 362 B50 001C12210F O=co'Jrlt-Cldd , szero 363 B51 0000103131 O=OttenlP , skip 364 B60 000C337110 add=tOO 365 B61 000C103030 tc=Ofadd 366 B70 002E307130

pn~rl=f2tO 367 B71 00ED104030 td=Otpnsn 368 [180 00BE362011 pnsn,te=data Mor pn~n , skip ~~69 mu 0000103130 O=Ottemp
*E'ver. 370 B90 B90013701[1 ch14: branch chl.., , siffl 371 B91 00E6104030 f i fo=Ofpr.sr. :'~72 (IAO OF05337110 b':lte=tOf 373 BAl FFOB337010 data,tb::-:tff 3"74 BBO 000C303100 add=Otaddtl 375 BBl 001C12210F O=count-add , szero 376 BCO 0000103131 O=OttenlP , skip :'P7 BCl 000C337110 add=tOO 3.l 1:J (1[10 000C103030 tc=Otadd 379 BDl 002E307130 pnsr.=f2tO 3 80 BEO 00E[l104030 td=Otpr.sn 38:1. fl[l 00[lE362010 pnSn,te=data Nor pn~n
*even :382 BFO BFOO13701D ctx14: branch ctx14 , s iffl 383 BFl 00E6104030 f i fo=OtF'r.~n 384 COO 000531313F bl:lte=O_bl:lte-l , szero 385 COl 0000103131 O::-:Otterr.p , skip 386 CI0 C600137011 branch invOO 387 Cll 000C303100 add=Otaddtl 388 C20 001C12210F O=colJnt-add , Szero 389 C21 0000103131 O=Oftemp , skir:' 390 C30 000C337110 add=tOo 391 C31 000C103030 tc=Otadd

:J92 C"'O 002E307130 pn~rl=f'2+0

393 C41 00ED104030 td=O+prl~n

39 ... C50 00BE362010 pn~n,te=data xor pn~n
395 C5! 8F00137010 brarlch ctx14

/ last b~te = 00000000
396 C60 0008337010 invOO! data,tb=tOO
397 C61 OF05337111 b~te=tOf , !::.kiF·
398 C70 0000103130 O=OttelftP
399 C71 000C303100 add=Otaddtl
400 C80 001C12210F 0=co1Jnt-add , szero
401 C81 0000103131 O=OttenlP , skip
402 C90 . 000C337110 add=tOO
403 C91 000C103030 tc=Otadd
404 CAO 002E307130 prlSn=f2tO
405 CAl 00EDI04030 td=Otpn~n

406 CBO 00BE362010 pn~n,te=d~ta xor pndn
407 CBl 0077307130 cpso=f7tO
408 CCO 0007103030 t7=Otcpso
409 CCl 3FOOl37010 branch r!::.trt

/ error routines
*I?vpn

410 CDO CE00137011 errorO: b rarlch 100pO
411 CD1 0000103130 O=Ottemp

*even
412 CEO CD00137011 100pO! branch errorO
413 CEl 0000103130 O::-.: Ottel'flP

*even
414 CFO [1000137011 error1! branch lClop1
41~ CF1 0000103130 O=Ottemp

*even
41b nOD CF00137011 1001"1: brarlch error1

*I?nd

reSisters are f' 1---- ralf, rd
f'2----ref'rd
f'3----errd
f5----p1'om1'd
f6----fif1'd
f8----1t1'd
t5----p1'omad
t9----1sa
tb----1'amwt
tc----1'E'fad
td----e1'ad
te----ltad
tf----contrl
1'O----tem,..
1'l----colJnt.
r2----refce
r3--- - erl':l
r4----a!;iIItr,t.
r5----const
r6----thred
1'7----c,..si
r8----late
r9----ladd
rb----data
rd----dsITlnt
re--- - byte
rf----ones
sl- - --skiF­
s8----sl-:.1'e
sb----siF-I'.Js
sd--" ··· -s i 1'1' I
s1'-- --szero

labels are :-start at location 000
ssrx at location 070
tdat at location 080
rx1'1' at location OBO
erorO at location ODO
strt at location 190
pnxO at location lEl
t1'1'O at location 210
phiO at location 2BO
a!;in at location 310
phil at location 3AO

caJ at location 3El
true at location 441
xcal at location 491
ntve at location 4E1
corrl at location 510
dsprd at location 571
lpn at location 5BO
chfe at location 600
track at location 6BO
erorl at location 7eO
dsrxO at location 871
prsrx at location 8Cl
tfifrx at location 8FO
seGO at location 991
rfram at location 9F1
seGl at location A90
procsO at location AD1
chthr at location B31
modthrd at location B81
minus at location BDI
colpt at location COO
demod at location C61
proms at location CAO
clrff at location CFO
cornet at location DAO
eror2 at location [BO

/ **
/
/ spread spectrum corr~]~tor rpceiver micropro~ram
/

/ **
/
/assisnments
/
Xszero "" sf
XSI<.iF' = 51
Xskfe = 58
Xsi ffl =- !r.d
Xsiplus = sb
XIsa = t9
Xr-rolflad "" t5
Xramwt :::: tb
Xcontrl = tf

Xramrd ""' 1'1
XF'romrd = 1'5
Xfifrd =-= 1'6
Xr@fc:d = t,£,
Xrefrd = 1'2
Xte ... ", = rO
%c-ount =-= rl
%dClt~ ::": rb
%cpsi = r7
%b':lt@ = re
%r@fc@ = r2
%f."rl!:l ",. r3
%late = r8
%£'rrd = 1'3
%@rad = td
%ltad = te
Xltrd = 1'8
Xasmnt = r4
Xladd = r9
Xdsmnt = rd
Xthred = r6
Xconst = r5
%ones = rf
I

I *************************************t*****************
Ith@ proSrc:m starts with an instruction which by loadins
Ithe proSr~m counter (to) and skippin~ to ~ive a 0 l.s.b
Inot skippin~ to sive 1 l.s.b allows a branch to any
Ilocation in the prom.
I szero- skip if zero
I skip - skip a]wB~s

I skfe - skip if fifo empty
I siffl - skip if fifo full
I siplu5 - ~kip if output positive
I ramwt - write into ram
I ramrd - read from rc:m
I fifrd - read from fifo
I cpsi - fifo clock pulse serial input
I contrl - control flass (tf)
I promad - hammin~ weisht function addrF~s
I prollrd - hammin~ weisht function output
I r@fa~ - reference p.n.S address
I r@frd - references p.n.~ data
I @rad - erly address

o 000

1 001
2 010
3 011
4 020
5 021
() 030
7 031
8 040
9 041

10 050
11 051
12 060
13 061

14 070
15 071

0040107037

0008337110
0009337110
0000037110
FF03337110
070F137010
0000103138
0[100137010
0007337110
010F13701F
0000103131
0[100137010
0008103030
0009103030

0077307130
0007103030

start:

ssr:< :

/ errd - erl~ d~ta

/ Itad - late addrpss
/ ltrd - late data
/
/
*beSin

to=14tO , 57
/the external r~~i~ter (f7) js used to load the
/prosr~mmable divide by n counter
/

/ **
/
/ •• data test microproSra~.
/

/ **
/
/ the ~ro~r~~ tests the correct reci~tion of the data.
I t8 displa~s the correct reciption of (ff), t9 djspl~~s
I th~ correct reciption of (00).
I the input data seauence is seriall~ clocked into the
I fifo input resister usin~ the clock output into the
I senerated b~ the pro~rammable counter.
I initialisation

r8=100
r9=100
a~IOO

r3=lff
contrl~107 Ififo ~~ster reset
O=O+temp , skfe I should skip
branch prorO
cpsi=tOO linitialisp programmable divider
contrl~t01 , szero Ishould be no skip
O=O+temp , skip
branch erorO
t8=0+r8
t9=0+r9

I load the divider factor
I the fifo ~laces a si~nal on the (data accept) whjch loads
I the contents of th~ output resister onto 8-bit data bus,
*even

cpsi=f7+0
t7=Otcpsi

I test fifo empt~
*pven

16.,

17
18
19
20
21
22
23
24
25

26
27

?B
::>9
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

080
081
090
091
OAO
OA1
090
091
OCO
OC1

0110
OD1

OEO
OEl
OFO
OFl
100
101
110
111
120
121
130
131
140
141
150
151
160

0800137018
0066307130
006312210F
0900137010
0008303000
0700137010
006012010F
0700137010
0009303000
0700137010

0000103130
OD00137010

000E337010
000[1337010
000F337110
0000337110
0008337010
0805337110
0003337110
7F01337110
070F137010
0000103138
7C00137011
0007337110
010F13701F
0000103131
7C00137011
000C337110
0077307130

tdat:

r~·(ff :

erorO:

branch tdat "skfe
1'6 ""fcHO
0=1'6-1'3 , 52ero
branch rxff
r8,t8=Ofr8f1
brarlch ~. srx

0=1'6-0 , 5zero
branch ssrx
r9,t9=Ofr9f1
branch ssrH

*pven
O=OfteftlP
branch erorO

I

I *****t.****t.t.*t.****t.**t.t**t.tt.t.********t.*******t.*******
I
I spner~l pn sprpad spec~rum receiver micropro~ram
I

I ******t.**t.t.*t.*t.*****t.t.**********t.********************
I the pro~ra~ contains an in5truction which b~ loadin~
I a pro~rammable counter (f7), an skip control fla~ (56)
I and skippin~ to tp5t the modulated d~ta, not skippin~
I to test the seQuence without modulation
I (f4) i$ used to load the value (thred).
/ t8: displa~5 th~ modul~tin~ data
/ td: $hould djspl~~ <eO)
I te: tumplin~ displ~w (00,7f)

re,te=tOO
rd,td=tOO
ones=tOO
telfIP=tOO
r8,t8=tOO
const=t08
erl~=tOO
count=t7f Ino.of b~tes in the p.r.s.~ prom
contrl=t07
O~Oftemp , skfe Ishould skip
brarlch erer1
cpsi=tOO
contrl=t01 , S2ero /~hould be no skip
O=OftelllP , $kip
branch eror1
rc=tOO
cpsi=f7fO

4S 161

46 170
47 171
48 180
49 181
50 190
51 191
52 lAO
53 lAl
54 180
55 181
56 1CO
57 lCl
58 trIO
59 101
60 lEO

61 lE1
62 1FO
63 1F1
64 200
65 201

66 210
67 211
68 220
69 221
70 230
71 231
72 240
73 241
74 250
75 251

000710~030

0004337110
7F0833711 0
4106337110
lE00137011
0077307130
0007103030
4106337110
7F08337110
0004337110
000D337110
000E137010
000C303100
001C12210F
0000103131
000C337110

0009337010
000C103030
0022307130
1000037110
000((337110

2100137018
0068307130
0008103030
0028372110
000001113F
0000103131
2800137011
0085104030
005F307130
00FE304130

strt:

pnxO:

tffO:

t7=O+cpsi
ag".nt=.OO
late=.7f
thred::-:.'U
branch pr,xO
cF·si=f7fO
t7=Ofcpsi
thred::-:t41
late=t7f
aSlllnt=tOO
dSlllnt=tOO
te=tOO
rc=Ofrcf1
O=count-r~ , £zero
O=OftelllF" , sld p
rc=tOO

I **-*t*-**t*-t****
I
I aCQuisition phase
I

I *****t**********t******-t*t***t*********t**tt*t*ttt*-*-*-t***.**
I.intialize the address counter (t9).

ladd,lsa=tOO
refad=Ofrc
refce=refrdtO
0=.10
data=.OO

I
I •••• correlation process ••••
I
I this proS ram computes the number of a~reement bit ~ whil~

I shiftirlS the receiver's code periodicc:lhf b!:: j rhiF·
I increalllent each time
*even

branch tffO , skfe
data=fifrdtO
ralllwt=Otdata
data=refce xnr d~ta
0=0_0-1 , szero
O:::Ottemp , sk.ip
branch phiO
prolhad=Otdata
ones=prolllrdtO
b~te;::;Otoru;>s

, 76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
1.03
:1.04
:L05
106
107
:L08
109
110
111
112
113
114
115
116
117
1.18
119

260
261
270
271
280
281
290
291
2AO
2A1
2BO
281
2CO
2C1
2[10
2D1
2EO
2E1
2FO
2F1
300
301
310
311
320
321
330
331
340
341
350
351.
360
361
370
371
380
381
390
391
3AO
3A1
3BO
3Il1

00F4302130
005£322100
00£r,302130
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
2100137010
8000337110
0009332110
0085104030
005F307130
00FE304130
000F313130
00F4302130
005E322100
00EIt302130
1000037110
0009337010
3E00137011
0018307130
002B372110
000001113F
0000103131
3A00137011
0085104030
005F307130
00FE304130
00F4302130
005E322100
00ED302130
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
3100137010
8000337110
0008332110
0085104030
005F307130

phiO:

a!;in:

phi!:

asmnt=onestasmnt
b..,te=const-b~te

ds~nt=b..,te+dsmnt

rc="0+rc+1
O=count-rc , ~~ero

O=O+teIlP , skip
rc=tOO
refad""Otrc
refce=refrd+O
branch tffO
telflP=t80
data=telflP ior data
p1'olflad=O+dClta
ones=p roftl rr.HO
b':lte=Otoneos
or,es=0_on£!s-1
asmnt=onesta!;imnt
b..,te=const-b':lte
dsmnt~bytetd~mnt

Cl=tl0
ladd,lsa=tOO
branch ca!
data= ralf, I'd to
data=refce xnr data
a=0_Cl-1 , szero
O=Ottemp , sk.ip
branch ph:i1
p1'oftlad=Otdc:tc:
ones=promrdtO
b':lte=Otones
aSmnt=onps+~smnt

b':lte=const-b\:lt.e
dsmnt=b':lte+dsmnt
rc=0+1'c+1
O=count-rc , szero
O""O+temp , skip
rc=tOO
refad=O+rc
refce=ref1'd+O
branch aSn
ten,p=t80
data=temp ior data
p1'omad=O+dClta
ones=promrdtO

'120

121
122
123
124
125
126

127
1.28
129
130
131
132
133
134

3CO
3C1
3DO
3rll
3£0
3£1
3FO

3F1
400
401
41.0
411
420
421
430

135 431
1.36 440
:1.37 441
138 450

139
140
141
142
143
144
145
1.46

451
460
461
470
471
480
481
490

00F"E304130
000F313130
00F4302130
005£322100
00£D302130
004D322100
00DE304036

0106337111
4400137010
006D30203B
7F00337111
5100137010
000E12210F
0000103131
5700137010

000A303000
1900137011
0000103132
4900137010

006D30203B
5700137010
00D010413F
0000103131
5700137011
000831313F
5100137010
1900137011

caI:

true:

bwte=O+~nes

ones=O_ones-l
a~ant=onesta~mnt
b~te=const-b~te

dsmnt=b~tetdsmnt
dsmnt=a~mnt-dsmnt

b~te,t~~Otdsmnt , s6
I
I •• search for correlation peak
I
I reco~nisin~ th~ corr~lation peak is an inh~rpnt pnrt of
I the ac~uisition proc~s~. the peak ~a~ b~ m~ximum positive
I or maximum ne~atiY~, the micropro~ram tpsts wh~thcr the peak
I is above a positive threshold or below a ne~atiye thre~ho]d.
I

thred='Ol , skip
branch true
dsmnt,td~thred+dsmnt , siplus
temp=.7f , Gkip
branch corrl
O=temp-byt~ , szero
O=Ottemp , ~kip

branch dsprd
I
I •• ta displays the numb~r of errors in detectin~ th~ corl'.
I peak.
I
ra,ta=O+r~+l

branch strt
O~O+temp , s2
branch xc~]

/ th~ correlation yalu~s ~re ~l'rsn~ed such that the peak
I amplitude lies in the rDn~e of 8-bits two's compl~m~nt
/ the values will chsn~p a~ a result of the overflow
I properties of two's complement.
I

dsmnt,td~thr~d+dsmnt , siplus
branch dsprd
O=O+dsmnt , ~zero

o~Ottemp , skip
branch d5prd
late=O_late-1 , 57-erO

branch corrl
branch strt

.147

148
[49
t50
l51
.52
.53
54
55
56
57
58
59
60
61
62
.63
64
.65
.66
l67
L68
L69
1.70
171
172
173
174

175
176
177
:L78
179
180
181
182

491
4AO
4Al
4BO
41H
4CO
4Cl
4DO
4Dl
4EO
4El
4FO
4Fl
500
501
510
511
520
521
530
531
540
5.41
550
551
560
561
570

571
580
581
590
591
SAO
5Al
SBO

00D0304138
4£00137010
510030613B
5700137010
000010313F
0000337111
5700137011
000E31313F
5100137010
1900137011
300030613E<
5700137010
000E31313F
5100137011
1900137010
0004337110
000D337110
1000037110
0009337010
000C303100
001C12210F
0000103131
000C337110
000CI03030
0022307130
0077307130
0007103030
3100137011

1000037110
0077307130
0007103030
0009337110
000A337110
0004337110
000[1337110
000C303100

:<ca 1 :

ntve:

corrl:

dsprd:

1pn:

te.p=O+ds.nt , sip~u~

branch ntve
te.p-.51+temp , sip}us
branch dsprd
O=O+te.p , szero
t ... P-'OO , sldF'
branch dsprd
bvte=O_bvte-l , szero
branch . C'orrl
branch strt
te.p='30+te~p , siplus
branch d~prd
bvte=O_bvte-l , ~zp.ro

branch corrl
branch !'.trt
a!il.nt='OO
dSI.nt.=tOO
0='10
ladd,lsa='OO
rC'=O+rc+l
O=count-rC' , 5z~ro

O=OftelhP , skip
rc='OO
refad=Ofrc
refce=rpfrd+O
cpsi=f7+0
t7=OfcPsi
branch a!in
/ ***
/ •• despread and trackin~ phase

/ ***
/ an error si~na1 senerated mode is introduc~d in the samE"
/ phase with despreadin~ the traC'kin~ C'orrE"1~tor is
/ implement~d b~ ~eneratin~ the local s~au~nces (earl~ and
/ late), usin~ prom's and replacinS th~ mu1tiplier b~ exclusivE"
/ or operation.

a=110
cpsi=f7+0
t7=0+cpsi
1'9=100
ra=IOO
1'4=100
rd"'IOO
rc=O+rc+l

.t 83
HJ4
185
186
187

IB8
189

190
191

192
193

194
195
196
197
198
1.99
200
::.~01

2 02
203
2 04
205
206
207
208
209
210
211
212
213

SB1
SCO
SC1
5DO
5Dl

5EO
SE1

SFO
SF1

600
601

610
611
620
621
630
631
640
641
650
651
660
661
670
671
680
681
690
b91
6AO
6A1

001C12210F
0000103131
OOOC337110
OOOCI03030
0022307130

00CDI04030
0033307130

00CE104030
0088307130

6000137018 chfe:
006B307130

00B2362110
0028104030
000001113F
0000103131
6B00137011
00B8372110
0085104030
005F307130
00FE304130
00F4302130
005E322100
00E[1302130
00B3372110
0035104030
005F307130
00FE304130
00F9302130
005E322100
00EA302130
5B00137010

214 6BO 8000337110 track:
215 681 00B8372110

O=count-rc , szero
0=0+ tell"':' , !:.kip
rc=tOO
ref>ad=O+rc
ref>ce=ref>rd+O

/ early Spnerator
erad=O+rc
erly=prrd+O

/ late sencretor
Itad=O+rc
late=ltrd+O

/
/.retreave d~ta from fifo
/
*even

branch chfe , skfe
data=1"i1"rd+O

/
/ •• start d~sprp~d
/

re1"ce=data xor ref>cp
t8=0+ref>ce
o:o:O_a-l , !;zero
O=O+teftlP , s;kip
branch track
late=data Hnr lete
pro",ad=O+l~tp

ones=promrd+O
byte=O+onE's
r4::ones+r4
byte=const-b!:lt.eo
rd=bytefrd
erly=data xnr eorly
promad=Oferly
ones=pronlrdfO
byte=Ofones
r9=onesfr9
byte=const-byte
ra=byte+ra
branch] F·r.

/
/ early-l a te correlation process

temp=t80
late=data xnr l~te

2 1 6 6CO 0008332 110 1 a t . e ''' t . (-; · /TI P :lO T' :I i:t tto'

2 1 7 6(;1 0085104030 1" ron.ad =O t .1. .:1"1. (:'
2 18 6 DO 005F307130 on£'s=F- ron. rdtO
2:19 6[11 00FE304130 b~te=O+onC's
220 6EO 000F313130 on('s=0_ones-1
221 6El 00F4302130 r4=oncs+ ,,4
. ")'") ~)

" ,,~ ... :. 6FO 005£322100 b!:lte=const-b~te

;:"~23 6F1 00E[l302130 rd=b~tf?+ rrJ
224 700 00B3372110 e ,'I ~::: d a t a ;-: r, " er]. ~;
,-, r)C'"
~. ~.J 701 0003332110 ~;' T'] \:;= telT,1" ior erl'.::l
226 710 0035104030 p rO"'i:l d:-::O+p r 1 ~~
227 711 005F307130 ones:::prolT,rd+O
228 720 00FE304130 b~te=O+ones

229 721 000F313130 ones=O _ or,es-l
230 730 OOF9302130 r9 ""' oncstr9
231 731 005E322100 byte=cons t-' h~t.e

232 740 00EA302130 ra=b~tetra

233 741 004[1322100 rd:::r4-rrl
23 4 750 009A322100 ra=r9- ra

/
/ error f:".isn~l

/
::~35 751 00A[l32210F rd=ra-rd , ~:; :?: (;' "('/

236 760 0400337111 telTu,,= t04 , ~. kiF-

2 37 761 5700137011 branch dS1"rd
23B 770 0000103136 O=OttelTl1" , <:;, t,
:?39 771 1900137010 tlT'vnch st rt
240 78 0 00D030213F ten,p= rd+tplT, F- r ~-> ;", _ (~ "Cl
241 7B1. 00001031 3 1 O=OtteIT,F- , ~,kir"

2 42 790 5700137 0 10 branc h dsprd
:'~ 43 79 1 080032610F teITIP =t08-teITIP , ~";?f.'rC'l

244 7 AO 0000337111 telTlP=tOO , skip
:? 45 "l A1 5700 13701 1 bT'i~ nch dsr- rd

/ •• fa 1 Sf.' ;:. :t <:. 1' 111

2 46 7£10 1900137011 branch str"t
2 47 7£11 0000103130 O=OtteIT,p

*f~Vf.'n

248 7CO 0000103130 erorl: O=OttelTlP
249 7C1. 7C00137010 branch f.'rnrl

/
/
/
/
/

250 7DO
251 7Dl
252 7EO
253 · 7E1
254 7FO
255 7F1
256 800
257 801
258 810
259 811
260 820
261 821
262 830
263 831
264 840
265 841
266 850
2 67 851
268 860
269 861
270 870
2 71 8 7 1
2 72 880
273 881
2 74 890
2 7 5 891
2 76 8AO
2 77 8Al
2 78 8DO
2 79 8Bl
2 80 8CO

2 81 8C l
2 82 8[10
2 83 8Dl
284 8EO
2 85 8El

000E337010
000D337010
000F337110
0000337110
0008337010
0805337110
0003337110
7F01337110
070F137010
0000103138
EBOOI37011
0007337110
010F13701F
0004337111
EB00137011
000C337110
0077307130
0007103030
7F08337110
4106337110
8COO137010
0077307130 ds r NO:
0007103030
4106337110
7F08337110
0004337110
000[1337110
000C303100
001C12210F
0000103131
000C337110

0009337010 prsrx :
000C103030
0022307130
1000037110
000B337110

/

/ ** / pn-reciever ~jcrDpro~ram •• vprsion- ii

/ *t.**
/ in this versio the case of outo-incrp~ent r a m address
/ is pli.pnated. to test the h~rdwarp. m~thod
/

re,te='OO
rd,td=.OO
ones='OO
teIlP:Z'OO
r8,t8-.00
const-'08
erl~='OO
count,..7'
contrl='07
O=OttellllP , !'.kfe /sholJld be sldF'
branch pror::?
cpsi-.OO
contrl =t01 , szero Ishould be no skjp
a~mnt='OO , skip
branch pror::?
rc=tOO
cpsi='7tO
t7=Otcpsi
late='7f
thred=t41
branch prsrx
cpsi=f7tO
t7 =0+cp~.i

thred=t41
late=17f
a~mnt=tOO
dsmnt=too
rc=Otrctl
O=col.Jnt- rc , £ zero
O"" OttelllP , skip
rc-=IOO
I.initialize th~ addres~ counter (t9>.

ladd,15a=tOO
refad=O+rc
ref'ce=refrd+O
0=t10
data=tOO

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
:HO
:311
312
~H3

314
315
316
317
318
319
320
321
322
323
324
325
3 26
327
328

8FO
8Fl
900
901
910
911
920
921
930
931
940
941
950
951
960
961
970
971
980
981
990
991
9AO
9A1
9BO
981
9CO
9Cl
9DO
9[11
9EO
9El
9FO
9Fl
AOO
A01
Al0
All
A20
A21
A30
A31
A40

8F00137018
006B307130
000B103030
0028372110
0009303000
000001113F
0000103131
9900137011
00B5104030
005F307130
00FE304130
00F4302130
005E322100
00ED302130
000C303100
001C12210F
0000103131
000C337110
000C103030
0022307130
8F00137011
8000337110
0008332110
0085104030
005F307130
00FE304130
000F313130
00F4302130
005E322100
00E[l302130
1000037110
0009337010
AD00137010
0018307130
0028372110
0009303000
000001113F
0000103131
A900137011
00B5104030
005F307130
00FE304130
00F4302130

tfifr ;-:!

$E'OO:

rf'rall.:

*even
branch tfif'rx , s kfe
data=t'it'rdtO
ralflwt=Otdata
data=ret'ce xnr o~ta
ladd,lsa=Otladdfl
0""0_0-1 , szero
O=Ofte.p , ~I<.ip

branch seoO
prolllad""Ofoc-tc:
ones:::prolllrdfO
b~te=Otones

a~mnt=onest~~lIInt

b~te=const-b~te
dSlllnt=b~tetdsmnt

rc=Ofrct1
O~count-rc , szero
O=OttellP , s~.ip

rc=tOO
refad""Otrc
refce=refrdtO
branch tfifr~<
telllP=taO
data=telllP ior d~tc:
prolhad==Otdc:ta
ones""prolllrdtO
b!:lte""Otones
ones=0_orles-1
a~lhnt=oncst~smnt

b""te=corlst-b!:lte
dsmnt=b""tetdsmnt
0 "' t10
ladd,lsa=tOO
branch F· r(lC'~.O

data=ramrdtO
data=refce xnr data
ladd,lsa=Otladdt1
0=0_0- 1 , szero
O"'OttelhP , sl'-.ip
branC'h 5E"al
prolllad=Otdata
ones=prollrdtO
b""te=Otones
a~mnt=-onestB~nlnt

329 A41 005E322100 b!:lte=const-b!:ltf:'
330 A50 00ED302130 dsmnt=b!:ltefdsmnt 331 A51 000C303100 rc=Ofrcfl 332 A60 001C12210F' O=colJnt-rc , ~ZE'ro 333 A61 0000103131 O=Oftemp , slc.ip 334 A70 000C337110 rc=.OO 335 A71 000C103030 refad=Ofrc 336 A80 0022307130 refce=refrdfO 337 A81 9F'00137011 branch rfralb 338 A90 8000337110 seal: tellP=tao 339 A91 000B332110 data=temp ior d~t~ 340 AAO 0085104030 proll'lad=Ofdata 341 AA1 005F'307130 ones=prolllrdfO 342 ABO 00F'E304130 bllltezOtones 343 ABl 000F'313130 ones=O_onl"s-l 344 ACO 00F4302130 aSlllmt=onesfaSlllnt 345 ACl 005E322100 b!:lte=const-b';lte 346 A[IO 00ED302130 dSllnt=bllltefdslllnt 347 Ani 004D322100 procsO: dSll'lnt=aSlll'lnt-dsllnt 348 AEO 00DE304036 blllte,te=Ofdsmnt , s6

/. detect correlation peak 349 AEl 0106337111 thred".tOl , ski", 350 AFO B300137010 branch chthr 351 AFl 006[130203B dSllnt,td=thredfdsmnt , siF·lus 352 BOO 7F00337111 teIllP=.7f , ski", 353 BOl COOO137010 branch colpt 354 BI0 000E12210F
O=teIIP-b!:lt~ , ~·7.ero 355 B11 0000103131 O=OttelflP , sl'-.ip 356 B20 C600137010 brarlch delflod

I •• ta di~pl~!:IE th~ no. of errors in df:'tectin~ the corr. I ",eak. 357 B21 000A303000 ra,ta=Otratl 3:58 B30 8700137010 branch dsr:.:O :359 B31 0000103132 chthr: O=Ottemp , 52 360 B40 B800137010 branch modthrd 361 B41 006D30203B dSll'lnt,td=thredtdsmnt , siF'll-ls 362 B50 C600137010 branch demod 363 B51 00[IOI0413F O"'Otdslbnt , szero 364 B60 0000103131 O=Ottemp , sld", 365 B61 C600137011 branch delflod 366 B70 000831313F late=O_late-l , szero 367 B71 COOO137010 branch colpt 368 B80 8700137010 branch dsrxO 369 B81 00D030413B modthrd: temp=Otdsmnt , siplus

,
;3 7 0 £190 BDOO137010 branch lIIinu s
371 £191 510030613F telr,p =#Sl +telr,p • !r. i 1'· 1 us
372 FAO C600137010 branch deIRod
373 BAt oOoolo313F O=O+temp , szero
374 BBO 0000337111 teIllP=.OO , s~. ip

375 BB1 C600137011 branch dClllod
376 BCO 000831313F late=O_latr-l , ~7.E>ro

377 BCl COOO137010 branch col".t
378 BDO 8700137010 branch dsrxO
379 BDl 3000306138 .tinl.Js: tellF-=.30tte.p , ~. iplu~

380 BEO C600137010 branch delllod
381 BEt 000E31313F bvte=O_bvte-l , szero
382 BFO 0000103131 O=Otte." , &kip
383 BFt 8700137011 branch dsrxO
384 COO 0004337110 colpt: a!illlnt='OO
385 COl OOOD337110 dsltnt='OO
386 C10 1000037110 0-.10
387 C11 0009337010 l.dd,ls.-'OO
388 C20 OOOC303100 rc=-Ofrcfl
389 C21 001C12210F O:!":count-rc , szero
390 C30 0000103131 O"'Otte.,. , ski,.
391 C31 000C337110 rc='OO
392 C40 OOOCI03030 refad=Otrc
393 C41 0022307130 refce=retrdtO
394 C50 0077307130 CF-!;i-f7fO
395 CSI 0007103030 t7=OtcP'si
:396 CbO 9FOO137010 branch rfra"l

I •• track. F·hase
I

397 CbI 1000037110 denlod: 0=.10
398 C70 00773071 3 0 CF-si=f7tO
399 C71 0007103030 t7=OtcF-si
400 C80 0009337110 1'9=.00
401 C81 000A337110 ra=.OO
402 C90 0004337110 1'4 =.00
403 C91 000[1337110 rd=.OO
404 CAO 000C303100 F-rolfls: rc=Otrct1
405 CAl 001C12210F O=coIJnt-1'c , 5 7.e1'O
406 CBO 0000103131 O=OttelflF- , skip
407 C81 000C337110 1'c=tOO
408 CCO 000CI03030 1'efad=Ot1'c
409 CCl 0022307130 refce=1'efrdtO
410 CIIO OOCIII04030 erad=Otrc
411 C[ll 0033307130 erl..,=er1'dtO

·412 CEO 00CEI04030 Itad=:Otrc
413 CEl 0088307130 1 ate=l t. rd~· O

I •• retreave dzta from fifo
*even 414 cro Cr00137018 drff: branch drff , skfe 415 CF1 006B307130 data=fifrdtO
I •• start despreadin~ 416 DOO 00B2362110 refce=data ;·~or refce 417 DOl 0028104030 t8=Otrefce 418 DI0 000001113F a=O_Il-l , szero 419 Dll 0000103131 O"-OtterrlP , skip 420 [120 DA00137011 brarlch cornct. 421 D21 00B8372110 late=data ;·:r.r late 422 [130 0085104030 P ronlad::-:Ot 1 ~te 423 [131 005F307130 ones=promrdtO 424 [140 00FE304130 b':lt.e=Otones 425 D41 00F4302130 r4=orlesfr4 426 D50 005E322100 b':lte=const-b':lte 427 D51 00E[l302130 rd=b':ltetrd 428 [160 00B3372110 erl':l=data xnr erly 429 D61 0035104030 promad:-:Oterly 430 [170 005F307130 ones=promrdtO 431 [171 00FE304130 byte=Otones 432 D80 00F9302130 r9=onesfr9 433 [181 005E322100 /:l!:~te=cons t-b':lte 434 [190 00EA302130 ra=bytetrCl 435 [191 CA00137010 branch pronls 436 DAO 8000337110 cornet: temp=t80 437 DAl 00B8372110 1 ate=data ;·:n I' late 438 [lBO 0008332110

late = te>lT,r~ ior late 439 DBl 0085104030 p rOfllad ::-: Ot 1 ate 440 DCO 005F307130 ones=prolTlrdfO 441 DCl 00FE304130 byte=Otones 442 D[lO 000F313130 ones=O_ones-l 443 DD1 00F4302130 r4=onesfr4 444 [lEO 005E322100 byte=const-b!:lte> 445 DEI 00E[l302130 rd=bytefrd 446 DFO 00B3372110 erly=data xnr erly 447 [lF1 0003332110 erl':l=temp ior erly 448 EOO 0035104030 promad=Oterl':l 449 EOl 005F307130 oneS=F' rom roof 0 450 EI0 00FE304130 b':lte=Otones 451 Ell 000F313130 ones=O_ones-l 452 E20 00F9302130 r9=orlest 1'9

453 £21 005£322100 b~te= c(Jn 5 t - b'.:lte

454 £30 00EA302130 ra=b~te+ra

455 E31 004£1322100 rd=r4-rd
456 E40 009A322100 ra =r9-ra
457 E41 00A£l32210F rd=rc:-rd , s zero
458 E50 0400337111 telflP=t04 , s ki,,-
459 E51 C600137011 branch delflod
460 E60 0000103136 O=OttenlP , s6
461 E61 8700137011 branch ds r :-:O
462 E70 00Il030 2 13F lelfIF'= rdt te"I"- , s zero
463 E71 0000103131 O=Ottenl"- , s ki,,-
464 E80 C600137010 branch delflod
465 E81 080032610F tenIP=t08 - tenIP , szero
466 E90 0000337111 tenlP =tOO , skip
467 E91 C600137011 branch delflod

I • • false ~larnl

468 EAO 8700137010 branch d !:- r:-:O
469 EAl 0000103130 O"'OttenlP

*even
470 EBO 0000103130 eror2: O"" OttelflP
471 EBl EBOO137010 branch eror2

*end

