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Abstract

A variety of meshless methods have been developed in the last fifteen years with an inten-

tion to solve practical engineering problems, but are limited to small academic problems due

to associated high computational cost as compared to the standard finite element methods

(FEM). The main objective of this thesis is the development of an efficient and accurate al-

gorithm based on meshless methods for the solution of problems involving both material and

geometrical nonlinearities, which are of practical importance in many engineering applica-

tions, including geomechanics, metal forming and biomechanics. One of the most commonly

used meshless methods, the element-free Galerkin method (EFGM) is used in this research,

in which maximum entropy shape functions (max-ent) are used instead of the standard mov-

ing least squares shape functions, which provides direct imposition of the essential boundary

conditions.

Initially, theoretical background and corresponding computer implementations of the EFGM

are described for linear and nonlinear problems. The Prandtl-Reuss constitutive model is

used to model elasto-plasticity, both updated and total Lagrangian formulations are used to

model finite deformation and consistent or algorithmic tangent is used to allow the quadratic

rate of asymptotic convergence of the global Newton-Raphson algorithm. An adaptive strat-

egy is developed for the EFGM for two- and three-dimensional nonlinear problems based on

the Chung & Belytschko error estimation procedure, which was originally proposed for linear

elastic problems. A new FE-EFGM coupling procedure based on max-ent shape functions

is proposed for linear and geometrically nonlinear problems, in which there is no need of

interface elements between the FE and EFG regions or any other special treatment, as re-

quired in the most previous research. The proposed coupling procedure is extended to become

adaptive FE-EFGM coupling for two- and three-dimensional linear and nonlinear problems,

in which the Zienkiewicz & Zhu error estimation procedure with the superconvergent patch

recovery method for strains and stresses recovery are used in the FE region of the problem

domain, while the Chung & Belytschko error estimation procedure is used in the EFG region

of the problem domain. Parallel computer algorithms based on distributed memory paral-

lel computer architecture are also developed for different numerical techniques proposed in

this thesis. In the parallel program, the message passing interface library is used for inter-

processor communication and open-source software packages, METIS and MUMPS are used

for the automatic domain decomposition and solution of the final system of linear equations

respectively. Separate numerical examples are presented for each algorithm to demonstrate

its correct implementation and performance, and results are compared with the corresponding

analytical or reference results.
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Chapter 1

Introduction

1.1 Overview

In computational solid mechanics, the responses of a structure subjected to externally applied loads and

boundary conditions, are modelled using partial differential equations (PDEs). Therefore, the solution of

these equations is of prime importance to determine the physical behaviour of a structure. Ideally, these

equations should be solved analytically/exactly but due to mathematical complications, analytical/exact

solutions are only possible for simple cases with simple geometries and boundary conditions [80]. There-

fore, for practical engineering problems, which are modelled with more general PDEs with complicated

geometries and boundary conditions, approximate/numerical methods are commonly used. According to

[285], the history of the development of numerical methods in general, is categorized into three different

periods. In the first period (1960-1975), new strategies were developed for the finite element method

(FEM), which covers static linear elastic, stability, vibration, hydrostatic and hydrodynamics analysis.

In the second period (1976-1990), a variety of new error estimation procedures, including a priori and a

posteriori, were presented for the FEM. During this time, significant contributions were also made in the

boundary element method (BEM) with applications to different classes of problems. In the third period

(1991-until now), major contributions include, new FEM techniques for fracture modelling, microme-

chanical adaptive analysis, multiphysics problems modelling, solution of complex biomechanics problems,

automatic and efficient mesh generation and adaptivity techniques, new iterative and direct solvers, new

visualization tools for post-processing, including three-dimensional animations and virtual reality, gener-

alized FEM and BEM with different interpolation schemes. Most meshless/meshfree methods have also

been developed and used during this period.

The main goal of computational mechanics is to develop new numerical methods, which can accu-

rately and efficiently solve practical engineering problems. The process of the development of numerical

methods can be divided into four steps [329], i.e. development of mathematical models to describe the

underlying physics of the problems, generation of the discretized set of equations from the mathematical

model, solution of these equations and verifications of the methods with experimental or reference results.

Researchers in theoretical mechanics mainly work on the development of new mathematical models, while

researchers in computational mechanics are dealing with the other three steps. Different numerical meth-

ods have been proposed in the past few decades, which are widely used to solve complicated real-world

problems. In the following, the historical development and applications of the mostly used numerical

methods, i.e. the finite difference method (FDM), FEM, BEM, discrete element methods (DEM) and

meshless methods are briefly summarized.
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2 Chapter 1. Introduction

Finite difference method

The FDM is one of the oldest numerical methods used to solve structural mechanics problems, in which

differential equations are replaced by finite difference equations using Taylor’s theorem. As compared to

the standard FEM, the FDM can provide a quick numerical solution to certain types of PDEs [21]. The

main limitation of the FDM is that it cannot easily handle problems with complicated geometries, which

restricts its use to simple academic problems [80].

Finite element method

The FEM is the most widely used and well established numerical methods for the solution of structural

mechanics problems. Most of the commercial structural mechanics codes, e.g. ANSYS, Abaqus, etc. are

based on the FEM. In FEM, the problem domain is divided into a finite number of subdomains known

as “finite elements” and the vertices of each element are known as “nodes”. In the FEM modelling, the

PDEs describing the underlying physics of the problems are initially converted into integral equations,

which are then converted to the discretized set of algebraic equations using polynomial interpolations

associated with finite elements (FEs), the solution of which gives the required unknown at nodes (e.g.

displacements in solid mechanics) [204].

The full historical development of the FEM is described in number of references, e.g. [4, 204, 329] and

is briefly summarized here. The first use of the FEM in structural mechanics dates back to the 1940s [132],

where it was used for stress analysis. The use of the energy principle in the FEM for the first time can be

found in [11]. The direct method to calculate the stiffness matrix was introduced in [298] and was used

for truss and two-dimensional triangular and rectangular elements for plane stress problems. The name

“finite element” was first used in [65], in which triangular and rectangular elements were used for two-

dimensional stress analysis. The first uses of the FEM for plate and shell analyses can be found in [215]

and [111] respectively. The two-dimensional FEM was next extended to three-dimensional problems in

a number of references [213, 216], and a new family of three-dimensional elements, including tetrahedral

elements were introduced. Furthermore, special case of three-dimensional analysis, i.e. axisymmetric

analysis was presented in [66]. The static linear elastic FEM was also extended to nonlinear cases, e.g.

finite deformation [299], elasto-plasticity [101] and buckling analysis [102]. The FEM was also considered

for the nonlinear structural dynamics analysis in [34] and for biomechanics in [136].

Boundary element methods

In the BEM, the PDEs are initially converted to integral equations, consisting of both surface and volume

integrals, which are then converted into boundary integral equations consisting of only surface integrals

[51]. As compared to the FEM’s domain discretization, in the BEM only boundaries are required to be

discretized, which results in very few elements and leads to computational efficiency. Furthermore, the

BEM changes the dimensionality of problems, i.e. two- and three-dimensional problems are converted

to one- and two-dimensional problems respectively [51]. The BEM is an ideal choice for high stress

gradient and linear elastic problems, e.g. problems in linear elastic fracture mechanics. On the other

hand, the resulting fully populated matrices and difficulty in modelling nonlinear material response are

the two main drawbacks of the BEM [275]. The historical development of the BEM can be approximately

dated back to 1963 [140] but then no significant contributions were observed for a long time, due to the

popularity of the FEM. Later in [170], an effective and simple way was proposed for the calculation

of singular integrals, which appears in the BEM formulations, when the distance between the point

of interest inside the body (at which displacements and stresses are required) and surface approaches

zero [227]. For the BEM development, the 1980s are considered as the peak time, during which it was
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extensively used in fracture mechanics, varieties of new solvers were developed, and the commercial

software package BEASY was also introduced. The BEM has been used in a number of applications,

e.g. fracture mechanics [251, 275, 276, 309], acoustics [297], structural optimization [51, 295, 296], stress

analysis [98], fluid mechanics [240] and heat transfer [239].

Discrete element methods

The DEM is an ideal set of numerical methods for the solution of multi body dynamics, which can handle

both rigid and deformable bodies with arbitrary shapes and with continuously varying contacts [43]. For

rigid bodies, only the contact laws between the bodies are important but for deformable bodies a proper

continuum based, constitutive law must also be considered, which may include elasticity, plasticity, etc.

Any numerical method can come under the umbrella of the DEM, if it can allow large displacements

and rotations or even complete separations of discrete bodies and can calculate continuously varying

contact conditions during the solution. Methods belonging to the DEM can be classified based on

contact detection algorithms, types of bodies (rigid or deformable), deformation (small or finite), number

(small or large), packing (loose or dense), potential for fragmentation, etc. The DEM is more suitable

to simulate the behaviour of granular materials, e.g. sand, soil, powder, jointed rocks, stones, bricks,

analyzing slopes, modelling excavation, flow simulation in silos, etc. According to [28], the DEM was

first introduced in [74] and was later used in [76] to study granular material using simple shaped bodies,

i.e. cylinders, spheres and ellipsoids. Varieties of new contact detection strategies were developed in

[229, 310] and the underlying physics of hard and soft contacts associated with rigid and deformable

bodies respectively, were presented in [75]. The idealized simple shaped bodies which are commonly used

cannot accurately model materials with complicated shaped bodies; therefore, the effects of irregular

shaped bodies are also studied both in two-dimensional [13, 267] and in three-dimensional [79].

Meshless methods

In spite of all the previously mentioned positive points of the FEM, it still suffers from high pre-processing

time, low accuracy of stresses, difficulty in incorporating adaptivity and it is also not an ideal tool for

certain classes of problems, e.g. large deformation, material damage, projectile penetration, fragmenta-

tion, crack growth and moving boundaries [196, 329]. To accurately model these problems, remeshing

is required at different stages during the solution. Although robust mesh generation and mesh adap-

tivity algorithms are available, it is a complicated and computationally expensive task, especially for

three-dimensional problems. Furthermore, due to remeshing, path dependent variables are required to be

transferred between the consecutive meshes, which produces interpolation or mapping errors leading to

final degraded accuracy. Meshless or meshfree methods are therefore an ideal choice for these problems,

because only a set of nodes is required for the problem discretization. According to [193], the ideal

requirements for meshless methods are

“No mesh is necessary at all throughout the process of solving the problem of given arbitrary

geometry governed by partial differential system equations subject to all kinds of boundary

conditions.”

The methods developed to the point under the umbrella of meshless methods, do not entirely fit into this

definition due to numerical complications and are further classified according to the mesh requirement

as [193]:

• Methods which use a global background mesh for integration.

• Methods which use a local background mesh for integration.
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• Methods which use no background mesh at all, but these methods are not always stable.

In [196], meshless methods are also classified according to the formulation procedures:

• Methods which use the weak form.

• Methods which use the direct strong form.

• Methods which use combine weak and strong form.

Construction of meshless shape functions is an active research area, and a number of meshless shape

functions have been developed so far. According to [193] meshless shape functions should ideally possess

the following properties:

• handling of arbitrary distribution of nodes,

• stability,

• required minimum consistency,

• compact support,

• Kronecker delta property,

• global problem domain compatibility.

In the past few decades, a variety of new meshless methods have been developed. The history, details,

recent developments, shape functions construction and computer implementations of meshless methods

can be found in a number of review papers [36, 99, 188, 233, 289] and some of the development is also

described later in this thesis. A number of dedicated monographs and books are also available, including

[17, 58, 189, 193, 196] for in-depth explanations of different meshless methods.

Smoothed particle hydrodynamics (SPH) is the oldest meshless method, and was first proposed to

solve three-dimensional astrophysics problems [109, 209] in open space. Later, it was also extended to

solve problems in hydrodynamics [222], compressible gas flow [223] and structural mechanics [191]. In

the SPH method, the problem domain is represented using a set of particles and then using the SPH

approximation the strong form of the governing equations is discretized. The SPH is based on the

Lagrangian formulation, in which each individual particle carries all the required properties. The SPH

method however suffers from tensile instability and inconsistency, which respectively creates problems in

modelling solid mechanics problems and leads to inferior accuracy. With different proposed improvements,

the SPH has already been used for the solution of real-world problems [100], including flow modelling,

heat and mass transfer, shock modelling, fracture mechanics, metal forming, impact and explosion. A

number of detailed review papers and dedicated books are also available on the SPH, e.g. [42, 100, 224].

Based on the SPH method, a more accurate reproducing kernel particle method (RKPM) was proposed

in [201], which uses a correction function in the original SPH approximation.

As compared to SPH strong form formulations, the element-free Galerkin method (EFGM) was pro-

posed in [38], which is based on the global weak form. It is one of the most commonly used meshless

methods and is based on the earlier version diffuse element method [231]. In the EFGM, moving least

squares (MLS) shape functions were used for the approximation of the field variables; a background mesh

was used for numerical integration and Lagrange multipliers were used for the imposition of essential

boundary conditions. The EFGM has already been applied to a wide variety of problems, e.g. 2D linear

elasticity [38, 85, 208], 3D linear and non-linear problems [31, 37], static and dynamic fracture mechanics
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[39, 41], plate and shell analysis [167, 168], vibration [57, 200, 308], electromagnetics [63], heat transfer

[38, 277–281], metal forming [319, 321], biomechanics [131, 311], geomechanics [323], etc.

The meshless local Petrov-Galerkin method (MLPG), which is based on a local weak form of governing

equations was proposed in [18, 19]. As compared to the EFGM, in the MLPG method, there is no need of

a global background mesh for numerical integration and is therefore termed a “truly meshless method”.

In the MLPG method, numerical integration was carried out using local integration cells belonging to

overlapping subdomains associated with each node. A detailed summary of the progress and applications

of the MLPG method can be found in two monographs [16, 17]. The most commonly used meshless

methods are:

Based on the strong form

General finite difference method (GFDM) [192], SPH, meshfree collocation methods [148, 202, 325, 339],

finite point method (FPM) [234], etc.

Based on the global weak form

Diffuse element method, EFGM, point interpolation method (PIM) [194, 196], radial point interpolation

method (RPIM) [196, 307], RKPM, hp-cloud method [88], partition of unity method (PUM) [23], etc.

Based on the local weak form

MLPG, Local point interpolation method (LPIM) [121], local radial point interpolation method (LRPIM)

[198], meshless local Kriging method [122], etc.

Based on the combined strong and weak form

Meshfree weak-strong (MWS) form method [83, 195], etc.

Based on the boundary representation

Boundary node method (BNM) [228], local boundary integral equation (LBIE) method [328], boundary

point interpolation method (BPIM) [118], regular hybrid boundary node method (RHBNM) [324], etc.

1.2 Scope and outline

Problems involving both material and geometrical nonlinearities are of practical importance in many

engineering applications, e.g. geomechanics, metal forming and biomechanics. The main purpose of this

thesis is to develop and implement numerical techniques based on meshless methods, which can efficiently

and accurately model these problems. This thesis is divided into three different sections:

1. Chapter 1 presents a general introduction and description of the historical development of different

numerical methods used in structural mechanics.

2. Chapters 2 and 3 deal with the theoretical background and numerical implementations of the EFGM

for linear elastic and nonlinear problems respectively.

• In Chapter 2, fundamentals required for the numerical implementation of the EFGM are

reviewed, which includes influence domain and weight functions. Complete formulations are

derived for the MLS shape functions and the conventional EFGM [38], which uses MLS shape

functions for the approximation of the field variables. The global and local maximum entropy

shape (max-ent) functions are also described and are used in the EFGM. A variety of one-,

two- and three-dimensional linear elastic numerical examples are given at the end, to verify

and validate the implementation.
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• Chapter 3 provides detailed formulations and numerical implementations of small and finite

strain elasto-plasticity. The main components of the small strain elasto-plasticity are de-

scribed in detail, which includes elasto-plastic tangent matrix, principle of stress integration,

consistent tangent and numerical implementation algorithm. The small strain elasto-plastic

formulations are then extended to the large strain case, where both updated and total La-

grangian formulations are discussed. The full numerical implementations are validated with

four two-dimensional benchmarked numerical examples.

3. Chapter 4 to 7 present the main contributions of this thesis, in which a variety of new numerical

techniques have been developed for accurate and efficient modelling of problems with both material

and geometrical nonlinearities. These new techniques include, adaptive EFGM, coupled FE-EFGM,

adaptive FE-EFGM coupling and parallel implementations.

• Chapter 4 develops two- and three-dimensional nonlinear adaptive procedures for the EFGM

based on the Chung & Belytschko error estimator. Initially, the standard Chung & Belytschko

error estimation procedure, corresponding refinement strategy and adaptive algorithm are

described for two-dimensional linear elastic problems. The calculation of domains of influence

based on the Voronoi diagram is also explained. The implementation and performance of

the two-dimensional linear elastic adaptive procedure is demonstrated with three numerical

examples. The two-dimensional linear elastic adaptive procedure is then extended to two- and

three-dimensional nonlinear cases, and the associated incremental error estimation procedure,

refinement strategy and data transfer procedure between the consecutive discretizations are

described. For the feasibility and accuracy of these methods, a number of two- and three-

dimensional test problems are also included.

• Chapter 5 presents a new FE-EFGM coupling procedure based on the max-ent shape functions.

The conventional FE-EFGM coupling procedure for linear elastic problems, based on the

interface or transition elements [40] is described in detail for one-, two- and three-dimensional

cases. The proposed coupling procedure based on the max-ent shape functions for linear elastic

problems is given next, which is then extended to geometrically nonlinear problems. A number

of one- and two-dimensional linear elastic and geometrically nonlinear numerical are given for

demonstration.

• Chapter 6 extends the FE-EFGM coupling procedure presented in Chapter 5 to adaptive FE-

EFGM coupling for both two- and three-dimensional linear and nonlinear problems. Initially,

the standard FE error estimation procedure, the Zienkiewicz & Zhu with the superconvergent

patch recovery (SPR) method for stress recovery is reviewed. The adaptive FE-EFGM coupling

procedure is first described for two-dimensional linear elastic problems and is then extended

to three-dimensional nonlinear problems. The feasibility and accuracy of these algorithms are

tested on linear and nonlinear, two- and three-dimensional problems. In this chapter, the

performance of the updated and total Lagrangian formulations are also compared in the case

of the EFGM.

• Chapter 8 develops distributed memory parallel computer implementations of the different

numerical techniques developed in this thesis. Common parallel computer architectures are

summarized and important concepts related to a parallel programming, i.e. the Message

passing interface (MPI) library, performance parameters, METIS and MUltifrontal Massively

Parallel Solver (MUMPS) are described in detail. A parallel EFGM algorithm is initially

presented for linear elastic problems and is then extended to adaptive nonlinear problems. A
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variety of two- and three-dimensional numerical examples are also given to demonstrate the

implementation and performance of these algorithms on the Durham University’s Hamilton

cluster. The developed parallel algorithms are then extended to three-dimensional nonlinear

adaptive FE-EFGM coupling case and is tested on the final deformation problem.

Conclusions and recommendations for future work are given in Chapter 8.

1.3 Notation

Throughout this thesis, all mathematical formulations are presented in either matrix/vector or index

notation, where essential for clear and better presentation. Due to symmetry in the shear components, for

strains and stresses, instead of the four and nine component tensors for two- and three-dimensional cases,

three and six components vectors are used respectively. All two-dimensional linear and nonlinear (except

the two-dimensional parallel EFGM), and linear-elastic three-dimensional algorithms are implemented in

MATLAB, while FORTRAN is used as a programming language for the two-dimensional parallel EFGM

and the rest of the nonlinear three-dimensional algorithms.



Chapter 2

Numerical implementation of

meshless methods for linear

elasto-statics problems

2.1 Introduction

In this chapter, numerical implementation of meshless methods, especially the EFGM, is described in

detail. Firstly, the conventional implementation with the MLS shape functions [38] is described. The MLS

shape functions do not posses the Kronecker delta property, which complicates the imposition of essential

boundary condition and Lagrange multipliers are used for this purpose. Imposition of the essential

boundary conditions is an important issue in meshless methods because of the lack of the Kronecker

delta property of the MLS shape functions. Different methods can be found in the literature for the

imposition of the essential boundary conditions, e.g. Lagrange multipliers in [38], penalty method in

[19] and singular weight functions in [147] and [232]. In [95] a general overview of different methods for

the imposition of essential boundary conditions in meshless methods is given, e.g. Lagrange multipliers,

penalty method, Nitsche’s method, and coupling with finite elements. As compared to MLS shape

functions, max-ent shape functions are strictly positive and possess a weak Kronecker delta property at

the boundaries, which facilitates the direct imposition of the essential boundary conditions as in the case

of the FEM.

The outline of this chapter is as follows. Basic equations of elasticity are summarized in §2.2, and
the concept of weak and strong forms are reviewed in §2.3. The complete formulation of the MLS shape

functions and weight functions with one- and two-dimensional demonstrations are given in §2.4. The

conventional EFGM formulations with MLS shape functions and Lagrange multipliers to impose the

essential boundary conditions are given in §2.5. Maximum entropy formulations are given in §2.6 with

one- and two- dimensional implementation followed by its use in the EFGM in §2.7. One-, two- and

three-dimensional linear elastic numerical examples are presented 2.8. Finally a comparative study of

the run time of the max-ent and MLS shape functions are performed in §2.9 and concluding remarks are

given in §2.10.

2.2 Governing equations for linear elasticity

These are commonly used equations in the computational solid mechanics, which are extensively used

throughout this thesis and are summarized here for easy reference. Three-dimensional governing equations

– 8 –
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for linear elasticity are presented first, which are then transformed into two-dimensional plane stress and

plane strain cases. Consider a three-dimensional solid with volume Ω and bounded by boundary Γ as

shown in Figure 2.1. This body is subjected to traction t̄ =
[
t̄x t̄y t̄z

]T
acting over the traction

boundary Γt and body force bf =
[
bx by bz

]T
acting over the volume of the body, where the

subscripts x, y and z associated with components of t̄ and bf shows their directions in the Cartesian

coordinates. A displacement ū is also specified over the part of the boundary, Γu. The nine stress

Figure 2.1: Three-dimensional solid subjected to forces and boundary conditions

components over an infinitesimal cube inside the body are also shown in Figure 2.1, where the first

subscript indicates the face and the second shows the direction. Out of these nine stress components,

only six are independent due to symmetry in shear stresses, i.e.

σxy = σyx, σyz = σzy, σzx = σxz. (2.1)

The relationship between stress and strain vectors, which is also known as constitutive equation is written

as 

σxx

σyy

σzz

σxy

σyz

σxz


= Dε =

E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





εxx

εyy

εzz

2εxy

2εyz

2εxz


(2.2)

here D is the matrix of material constants, ν is the Poisson’s ratio and E is the modulus of elasticity. In

Equation (2.2), σxx, σyy and σzz are normal stresses and εxx, εyy and εzz are the corresponding normals

strains, while σxy, σyz and σxz are shear stresses and εxy, εyz and εxz are the corresponding shear strains.
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The relationship between strain vector ε and displacement vector u =
[
ux uy uz

]T
, where ux, uy

and uz are the displacements in x, y and z directions, is written as

εxx

εyy

εzz

εxy

εyz

εxz


= ∇u =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x




ux

uy

uz

 , (2.3)

where ∇ is the differential operator. The equilibrium equation, which is the relationship between the

external forces and stresses is written as

∇Tσ + bf = 0. (2.4)

The boundary conditions associated with Equation (2.4) are the traction and essential boundary condi-

tions, which are given as

σ.n = t̄ on Γt, (2.5a)

u = ū on Γu, (2.5b)

where n =
[
nx ny nz

]T
are the outward unit normal to the boundary Γ. The governing equations

of the three-dimensional linear elasticity can be converted to two-dimensional case using the plane stress

and plane strain concepts. In the plane stress case, dimension of the body in the z direction is very small

as compared to the dimensions in x and y directions, and all the stress components in the z direction

can be ignored, i.e. σzz = σyz = σxz = 0. On the other hand, in the plane strain case, the dimension of

the body in the z direction is very large as compared to the dimensions in x and y directions and all the

strain components in the z direction can be ignored, i.e. εzz = εyz = εxz = 0. For the plane strain and

plane stress cases D matrix can be written as

D =
E

1− ν2

 1 ν 0

ν 1 0

0 0 1−ν
2

 , (2.6)

E =

{
E for plane stress,
E

1−ν2 for plane strain,
(2.7a)

ν =

{
ν for plane stress,
ν

1−ν for plane strain.
(2.7b)

2.3 Strong and weak forms

In meshless methods, the concepts of strong and weak formulations of the governing equations are the

same as in the FEM, i.e. the terms “strong” and “weak” refer to requirements on the consistency of

the approximation functions. Equation (2.4) is said to be in the strong form, because the displacements

approximation functions required for its solution, must have a second-order consistency in the entire

problem domain, which is equal to the order of the equation. To obtain a solution for the strong
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form of the governing equations is not possible for practical engineering problems due to mathematical

complications. On the other hand, for the solution of the weak form of Equation (2.4), only first order

consistency is required for the displacement approximation functions, which is one order less than the

order of Equation (2.4). For a general case with 2kth order differential equation, for direct solution of

the strong form, the function of the field variables must be differentiable 2k times, while for the solution

of the weak form, it needs only to be differentiable k times. Most numerical methods developed to

date with a few exceptions, are based on weak form formulations for stability and accuracy. Different

methods however are used throughout the literature to derive the weak form of the governing equations,

i.e. weighted residual, variational principle, Hamilton principle and principle of total minimum potential

energy [193]. Here the principle of total minimum potential energy is used for this purpose, which states

that for a given admissible displacement, the total potential energy Π is conserved, i.e. δΠ = 0. The

total potential energy is written as Π = Es −Wf , where Es is strain energy and Wf is work done by

external forces and are given as

Es =
1

2

∫
Ω

εTσdΩ, (2.8a)

Wf =

∫
Ω

uTbfdΩ+

∫
Γt

uT t̄dΓ. (2.8b)

Now according to the principle of minimum total potential energy

δΠ = δ

1

2

∫
Ω

εTσdΩ−
∫
Ω

uTbfdΩ−
∫
Γt

uT t̄dΓ

 = 0. (2.9)

After simplification [196] ∫
Ω

δεTσdΩ−
∫
Ω

δuTbfdΩ−
∫
Γt

δuT t̄dΓ = 0. (2.10)

Equation (2.10) can also be termed as a “principle of virtual work”, i.e. the virtual work done by

internal stresses is the same as the virtual work done by all external forces. If the body is subjected

to a virtual displacement δu, then in Equation (2.10) the first, second and third terms are the virtual

work done by the internal stresses, body forces and tractions respectively. Using the stresses-strains and

strains-displacements relationship, Equation (2.10) is written as∫
Ω

δ (∇u)
T
D (∇u) dΩ−

∫
Ω

δuTbfdΩ−
∫
Γt

δuT t̄dΓ = 0, (2.11)

which is known as the Galerkin weak form of the governing equations. Generally, in meshless methods,

the assumed displacement functions do not satisfy the Kronecker delta property and so-called constrained

Galerkin weak forms are used instead of Equation (2.11). Lagrange multipliers and the penalty method

are the two commonly used procedures in the literature to write the constrained Galerkin weak form.

The constrained Galerkin weak form, using the Lagrange multipliers method, is written [196]∫
Ω

δ (∇u)
T
(D) (∇u) dΩ−

∫
Ω

δuTbfdΩ−
∫
Γt

δuT t̄dΓ−
∫
Γu

δλT (u− ū) dΓ−
∫
Γu

δuTλdΓ = 0, (2.12)
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where λ is a vector of Lagrange multipliers, physically viewed as a force, which will enforce the essential

boundary conditions, i.e. u − ū = 0. Lagrange multipliers are unknown variables, the use of which

increases the number of equations and correspondingly the number of unknowns in the final system of

linear equations. The constrained Galerkin weak form, using the penalty method, is written [196]∫
Ω

δ (∇u)
T
D (∇u) dΩ−

∫
Ω

δuTbfdΩ−
∫
Γt

δuT t̄dΓ− δ

∫
Γu

1

2
(u− ū)

T
α (u− ū) dΓ = 0, (2.13)

where α is a positive or negative constant [15] known as the penalty factor. In Equation (2.13) the

term (u− ū)
T
α (u− ū) is always positive and 1

2 is used to cancel the 2, which appears later in the

simplification. As compared to the Lagrange multipliers, the penalty factor is known constant and will

not increase the size of the final discretized system of equations. Ideally, the penalty factor should be

infinity, which would exactly satisfy the essential boundary conditions but is impossible to use in the

numerical computations. The value of the penalty factor should be carefully selected for a particular

problem, in the literature [193], the following values are suggested

α = 1.0× 104∼13 × (maximum diagonal element in the stiffness matrix),

or

α = 1.0× 105∼8 ×Young’s modulus.

2.4 Moving least squares approximations

MLS was first presented in [178] as an improvement over the non-interpolating conventional least squares

(LS) method for interpolation of scattered data in multi-dimensions. Later on, MLS became a very

important component of the family of the meshless methods [19, 38, 193, 196] for the approximations of

the field variable (i.e. displacements in the case of solid mechanics). The MLS approximation uh of a

scalar function u at point x is given as

uh (x) =
m∑
j=1

pj (x) ãj (x) = pT (x) ã (x), (2.14)

where p (x) is a polynomial basis function of the spatial coordinates and m is the number of monomial

terms in the basis function. ã (x) are unknown parameters and in the case of the MLS approximation are

also a function of spatial coordinates x as shown in Equation (2.14), while in the case of conventional LS

ã (x) is constant over the whole problem domain. This localized feature of the MLS over the conventional

LS makes it suitable for the approximation of field variables (even with strong gradients). The polynomial

basis function p (x) is build from Pascal’s triangle and Pascal’s pyramid for two- and three-dimensional

problems respectively. In the one-dimensional case, the linear and quadratic basis functions are given as

pT (x) = pT (x) = [1, x] , m = 2, (2.15a)

pT (x) = pT (x) =
[
1, x, x2

]
, m = 3, (2.15b)

two-dimensional linear and quadratic basis functions are given as

pT (x) = pT (x, y) = [1, x, y] , m = 3, (2.16a)

pT (x) = pT (x, y) =
[
1, x, y, xy, x2, y2

]
, m = 6, (2.16b)
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and three-dimensional linear and quadratic basis functions are given as

pT (x) = pT (x, y, z) = [1, x, y, z] , m = 4, (2.17a)

pT (x) = pT (x, y, z) =
[
1, x, y, z, xy, yz, zx, x2, y2, z2

]
, m = 10. (2.17b)

The unknown coefficients ã (x) =
[
ã1(x) ã2(x) · · · ãm(x)

]T
in Equation (2.14) can be found by

minimizing the following weighted discrete L2 norm.

J (x) =

n∑
i=1

wi(x)
(
pT (xi) ã (x)− ui

)2
, (2.18)

where wi(x) is a weight function of compact support for node i evaluated at a point x, n is the total

number of nodes in the support of a point x, such that wi(x) ̸= 0 and ui is the nodal value of u at x = xi.

The minimum of J with respect to ã (x) is found by

∂J

∂ã
= 0, (2.19)

which leads to the following system of linear equations

A (x) ã (x) = B (x)u. (2.20)

Here A (x) and B (x) are (m×m) and (m× n) matrices respectively and are given as

A (x) =
n∑
i=1

wi(x)p (xi)p
T (xi) , (2.21a)

B (x) =
[
w1(x)p (x1) w2(x)p (x2) · · · wn(x)p (xn)

]
, (2.21b)

and u is (n× 1) vector and is given as

u = [u1, u2, ..., un]
T
. (2.22)

ã (x) can be found using Equation (2.20), i.e.

ã (x) =A−1 (x)B (x)u. (2.23)

Putting a (x) from Equation (2.23) into Equation (2.14)

uh(x) = pT (x)A−1 (x)B (x)︸ ︷︷ ︸
ϕT (x)

u = ϕT (x)u. (2.24)

Here pT (x)A
−1

(x)B (x) = ϕT (x), where ϕ (x) is a vector of shape functions. The first derivative of the

shape function with respect to the spatial coordinates is also required for the numerical implementation

of the solid mechanics problem and is given as

ϕ,i = PT
,iA

−1B+PT
(
A−1
,i B+A−1B,i

)
, (2.25)

where

A−1
,i = −A−1A,iA

−1, (2.26)



14 Chapter 2. Numerical implementation of meshless methods for linear elasto-statics problems

and the index after the comma is a spatial derivative. The MLS shape functions do not satisfy the

Kronecker delta property, i.e. ϕi (xj) ̸= δij and are termed as approximants instead of interpolants.

The values obtained from the MLS approximation are therefore, not the same as the nodal values, i.e.

uh (xi) ̸= ui and are known as nodal parameters or fictitious nodal values as shown in Figure 2.2.

Figure 2.2: Moving least squares approximations

2.4.1 Weight functions

It is clear from §2.4, that the nodal weight functions are an important component of the MLS approxi-

mations. There are no predefined rules to select the weight functions for a particular application but the

weight functions used for meshless methods have the following properties.

1. Its value should be maximum at the node and decrease with the distance ∥x− xi∥ from the node.

2. Smooth and non-negative.

3. It should have a compact support, i.e. non-zero over a small neighbourhood of a node, this compact

support is known as the domain of influence of a node.

Domain of influence of a node is a very important concept in meshless methods, as it determines the

region in which it has influence. The size of domain of influence for a node i is dmi = dmaxci, where dmax

is a scaling parameter, for static analysis its value ranges from 2.0 to 4.0 [85] and ci is determined by

searching for enough neighbour nodes such that matrix A in Equation (2.20) is invertible. For uniformly

distributed nodes ci can be chosen as the distance between two neighboring nodes. The following are the

most common weight functions used in the literature [85, 193].

• The cubic spline weight function in one-dimension

w (x− xi) = w (r) =


2
3 − 4r2 + 4r3 for r ≤ 1

2 ,
4
3 − 4r + 4r2 − 4

3r
3 for 1

2 < r ≤ 1,

0 for r > 1.

(2.27)

• The quartic spline weight function in one-dimension

w (x− xi) = w (r) =

{
1− 6r2 + 8r3 − 3r4 for r ≤ 1,

0 for r > 1.
(2.28)
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Here r = di
dmi

is the normalized radius, where di = ∥x− xi∥ is the distance between the node i and point

of interest x. The weight function derivatives with respect to the spatial coordinates are also required

for the shape function derivatives as given in Equation (2.25) and are given as follows.

1. The cubic spline weight function derivative in one dimension

dw

dx
=
dw

dr

dr

dx
=


(
−8r + 12r2

)
sign (x− xi) for r ≤ 1

2 ,(
−4 + 8r − 4r2

)
sign (x− xi) for 1

2 < r ≤ 1,

0 for r > 1.

(2.29)

2. The quartic spline weight function derivative in one dimension

dw

dx
=
dw

dr

dr

dx
==

{ (
−12r + 24r2 − 12r3

)
sign (x− xi) for r ≤ 1,

0 for r > 1.
(2.30)

The domain of influence used in the literature is usually circular or rectangular in two dimensions, and

hexahedral or spherical in three dimensions. For illustrative purposes, a sample 2D grid of nodes is shown

in Figure 2.3(a) and the corresponding rectangular and circular domains of influence (reduced in size for

clarity) are shown in Figures 2.3(b) and 2.3(c) respectively. For the rectangular and hexahedral influence

Figure 2.3: Geometry with nodes and the corresponding rectangular and circular domain of influence

domain, a tensor product of one-dimensional form [85, 193] is used. The tensor product weight function

of a node i at a point x can be found as

w (x− xi) =

{
w (rx)w (ry) = wxwy for 2D,

w (rx)w (ry)w (rz) = wxwywz for 3D,
(2.31)
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where, e.g. rx = ∥x−xi∥
(dmi)x

and (dmi)x is the domain of influence in x direction. The two-dimensional tensor

product weight function derivative can be found as

dw

dx
=
dwx
dx

wy, (2.32a)

dw

dy
= wx

dwy
dy

, (2.32b)

and in three dimensions

dw

dx
=
dwx
dx

wywz, (2.33a)

dw

dy
= wx

dwy
dy

wz, (2.33b)

dw

dz
= wxwy

dwz
dz

, (2.33c)

where wx, wy, wz and dw
dx ,

dw
dy ,

dw
dz can be found using rx, ry and rz instead of r in Equations (2.27) to

(2.30).

2.4.2 Numerical demonstration

In the following cubic spline weight functions and the corresponding MLS shape functions are given in

one and two dimensions for demonstration. A linear basis function is used in the calculation of the MLS

shape functions.

One dimension

Consider eleven equally distributed nodes in a problem domain of length one unit. Plots of the weight

functions and the corresponding derivatives for dmax = 2.0 are given in Figures 2.4(a) and 2.4(b) re-

spectively while weight functions and derivatives for dmax = 3.0 are given in Figures 2.5(a) and 2.5(b)

respectively. The plots of MLS shape functions and derivatives for dmax = 2.0 are given in Figures 2.6(a)

and 2.6(b) respectively and for dmax = 3.0 in Figure 2.7(a) and 2.7(b) respectively. It is clear from

these plots that the weight function and the corresponding shape function for a node with larger dmax

is non zero over a larger region. The first spatial derivative of the cubic spline weight functions and the

corresponding MLS shape functions are smooth. It is also clear from Figures 2.6(a) and 2.7(a) that MLS

shape functions do not posses the Kronecker delta property.
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Figure 2.4: 1D cubic spline weight functions and derivatives for dmax = 2.0
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Figure 2.5: 1D cubic spline weight functions and derivatives for dmax = 3.0
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Figure 2.6: 1D MLS shape functions and derivatives for dmax = 2.0
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Figure 2.7: 1D MLS shape functions and derivatives for dmax = 3.0

Two dimensions

Consider a square domain containing 49 equally distributed nodes. The problem domain with nodes is

shown in Figure 2.8(a). The MLS shape functions are calculated using dmax = 3.0. The weight function
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for a node at x = [0, 0] is shown in Figure 2.8(b) and its derivatives w.r.t. x and y are shown in Figure

2.8(c) and 2.8(d) respectively. The corresponding MLS shape function is shown in Figure 2.9(a) and its

derivative w.r.t. x and y are shown in Figure 2.9(b) and 2.9(c) respectively. The smoothness of the first

spatial derivative of the weight functions and the corresponding MLS shape functions, and the lack of

Kronecker delta property is also clear in 2D case.
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(a) Problem domain (b) Weight function
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Figure 2.8: 2D problem domain, cubic spline weight function and derivatives for a node at x = [0, 0]

2.5 Element-free Galerkin method

The EFGM is one of the most widely used meshless methods for the solution of boundary value prob-

lems. A two-dimensional linear elasto-static formulation of the conventional EFGM with the MLS shape

functions is given here, which is straightforward to modify for one and three-dimensional problems. The

EFGM was first proposed in [38] as an improvement over its predecessor the diffuse element method

[231] and was successfully used in the simulation of linear elasticity and heat conduction problems. As

compared to FEM, only nodes were used for the problem discretization, and the MLS shape functions

were used as test and trial functions in the weak form of the equilibrium equations. As compared to

the diffuse element method a larger number of quadrature points were used, new terms were added in

the derivatives of the MLS shape functions and Lagrange multipliers were used for the imposition of the

essential boundary conditions. It was also pointed out that as compared to the FEM, the EFGM is more

accurate, having a high rate of convergence and no issue of volumetric locking. Nodal stresses were cal-

culated by using the smoothness of the MLS shape function derivatives throughout the problem domain
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(a) Shape function

(b) ∂ϕ/∂x (c) ∂ϕ/∂y

Figure 2.9: 2D MLS shape function and derivatives for a node at x = [0, 0]

without the standard recovery procedure used in the FEM. The potential advantage of the EFGM in

crack growth problems, and in the adaptive analysis were also highlighted. It was also highlighted that

the EFGM is computationally expensive as compared to the FEM for the same number of degrees of

freedoms and due to the use of the Lagrange multipliers, the dimensions of the final system of equations

is increased, and the stiffness matrix is no longer positive definite.

Consider a two-dimensional problem defined in the domain Ω bounded by Γ, as shown in Figure 2.10.

The equilibrium equation is written as

∇Tσ + bf = 0 in Ω, (2.34)

where the Cauchy stress vector σ =
[
σxx σyy τxy

]T
, the body force vector is bf =

[
bx by

]T
,

where bx and by are the body forces in x and y directions respectively and the differential operator

∇ =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

 .

The boundary conditions associated with Equation (2.34) are

u = ū on Γu, (2.35a)

σn = t on Γt, (2.35b)
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where Equation (2.35a) is known as displacement, essential or Dirichlet boundary condition and Equation

(2.35b) is known as traction, natural, derivative or Neumann boundary condition. Here t is the prescribed

traction on the traction boundary Γt and ū is the prescribed displacement on the essential boundaries Γu

and n is a unit normal. The constrained Galerkin weak form of the equilibrium Equation (2.34) subject

Figure 2.10: The EFGM problem discretization

to boundary conditions 2.35a and 2.35b defined over the global domain is written as∫
Ω

δ (∇u)
T
D (∇u) dΩ−

∫
Ω

δuTbfdΩ−
∫
Γt

δuT t̄dΓ−
∫
Γu

δλT (u− ū) dΓ−
∫
Γu

δuTλdΓ = 0, (2.36)

all the terms in Equation (2.36) are defined in §2.3. The MLS shape functions are used for the approxima-

tion of the field variable and Lagrange multipliers are used to impose the essential boundary conditions.

After discretizing the problem with a set of nodes, displacement at a point of interest x is written as

uh (x) =

{
ux

uy

}
=

n∑
i=1

[
ϕi 0

0 ϕi

]{
uxi

uyi

}
=

n∑
i=1

ϕiui, (2.37)

where uh (x) is an approximation of the displacements at a point x, n is the number of nodes in the

support of point x, ϕi is a matrix of the MLS shape functions for node i at a point x and ui are known

as fictitious nodal values or nodal parameters. The approximation for the vector of Lagrange multipliers

λ at a point of interest x on the essential boundary is written as

λ (x) =

{
λx

λy

}
=

nλ∑
i=1

[
Ni 0

0 Ni

]{
λxi

λyi

}
=

nλ∑
i=1

Niλi, (2.38)

Where nλ are the number of nodes on the essential boundary used in this interpolation and Ni is a matrix

of shape functions for nodes i on the essential boundaries at a point of interest x and λi are the nodal

values of the Lagrange multipliers. The conventional FEM, Lagrangian interpolation is an option to be

used for N in Equation (2.38). Using Equations (2.37) and (2.38) in (2.36) and after simplification, the
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final discrete system of linear equation is written as[
K G

GT 0

]{
u

λ

}
=

{
f

q

}
, (2.39)

where

Kij =

∫
Ω

BT
i DBjdΩ, (2.40)

Gik = −
∫
Γu

ϕiNkdΓ, (2.41)

fi =

∫
Γt

ϕitdΓ +

∫
Ω

ϕibfdΩ, (2.42)

qk = −
∫
Γu

NkudΓ, (2.43)

Bi =


∂ϕi

∂x 0

0 ∂ϕi

∂y
∂ϕi

∂y
∂ϕi

∂x

 , (2.44)

Nk =

[
Nk 0

0 Nk

]
. (2.45)

To perform the integrations in Equations (2.40) to (2.43) numerically, the problem domain Ω, traction

boundary Γt and essential boundary Γu are divided into a number of non-overlapping background cells as

shown in Figure 2.10. Conventional Gauss quadrature is used in the background cells for the numerical

integration, e.g. the integration of any integrand G over the global domain Ω is written as

∫
Ω

GdΩ =

nc∑
j=1

∫
Ωj

GdΩj =

nc∑
j=1

ng∑
k=1

wkG (xk) |Jkj | , (2.46)

where nc is the total number of background cells, Ωj is the domain associated with each background cell,

i.e. Ω =
nc∑
j=1

Ωj , ng is the number of Gauss points in each background cell, wk and Jkj are the weight

and Jacobian associated with each Gauss point respectively while G (xk) is the value of the integrand

at gauss point xk. The number of Gauss points in each background cell should be more than that used

in the conventional FEM due to the non-polynomial nature of the MLS shape functions. In [38] it is

suggested that nQ × nQ Gauss points should be used in each background cell, where

nQ =
√
m+ 2 (2.47)

and m is the number of nodes in a background cell. For a two-dimensional problem, it is also suggested

in [196] to use ñQ > 2
3 ñ and ñQ = (3 ∼ 9) ñ where ñQ and ñ are the total number of Gauss points and

unfixed nodes in the global problem domain respectively.

2.6 Maximum entropy shape functions

Like the MLS shape functions, max-ent shape functions are an alternative way to calculate the shape

functions for meshless methods using the concept of informational entropy [157, 269] and the principle of
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max-ent [142, 143]. These shape functions were first introduced in [287] for the construction of polygonal

interpolants. In [269] informational entropy was referred to as a lack of knowledge or uncertainty, while

in [142, 143], the principle of max-ent was introduced, according to which maximizing the informational

entropy, will result in a least biased or feasible solution for the probability distribution in the case

of insufficient data. This idea was used in [287] to solve the under-determined system of equations that

appear in the case of the polygonal interpolants for the case (n > 3) with constant and linear reproducing

constraints, where n is the number of sides of the polygon. Shape functions derived for the polygonal

interpolation in [287] are not ideal for meshless methods as they extend to the global problem domain.

The non-local and non-interpolating characteristics of these shape functions are highlighted in [12] where

the (more useful) local max-ent formulations are introduced and incorporated into meshless modelling

of linear and nonlinear elasticity. The weak Kronecker delta property of these shape functions was also

observed, and its correspondence with the MLS was also highlighted. Compact support shape functions

are derived using Gaussian weight functions (or priors) in [12], work which is extended in [289] for any

weight function (or generalized prior). First-order consistent max-ent shape functions [289] are then

extended to second order in [77] and higher order in [110] and max-ent is used in [263] for the automatic

calculation of the nodal domain of influence within a meshless method. Other recent examples of the use

of max-ent in meshless methods can be found in [219, 244, 245]. Below, the background to the theory of

max-ent is outlined followed by an explanation of how useful shape functions are derived.

2.6.1 Information and informational entropy

Information theory was first developed in the context of communication engineering [10]. Information

has a special meaning in probability theory, which is different from the word’s ordinary usage and is

related to the element of surprise. In [157] the concept of Information is termed as “uncertainty”. The

information is inversely proportional to the probability. Consider an experiment, the outcome of which

is events A1 and A2 with known probabilities. Take two alternatives:(
A1 A2

0.5 0.5

)(
A1 A2

0.99 0.01

)
.

1. The first is more uncertain and has more information, e.g. when event A1 is realized.

2. The second is almost sure and has therefore, less information.

Consider mutually independent events x1, x2, ..., xn within a sample space Ω with probabilities p1, p2, ..., pn

respectively. The quantity for measuring the amount of information or uncertainty or informational en-

tropy for a finite scheme is given as [157]

H(p1, p2 · · · , pn) = −
n∑
i=1

pilogpi, (2.48)

with the assumption of pilogpi = 0 if pi = 0. The characteristics of informational entropy H are clear

from Equation (2.48), which are given in [157] and also summarized in [12] and [289] as follows:

1. H(p) ≥ 0.

2. H(p1, p2, ..., pn) = 0 for a complete certainty, i.e. if only one of the pi is one and all other zeros.

3. H is maximum for the most uncertain or equally likely outcomes, i.e. if pi = 1/n for (i = 1, 2, ..., n).

4. H(p1, p2, ..., pn) = H(p1, p2, ..., pn, 0), i.e. adding an event of zero probability has no effect on

entropy.
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5. 0 ≤ H ≤ log(n).

6. For two independent schemes A and B, H(AB) = H(A) +H(B).

7. For two dependent schemes A and B, H(AB) = H(A) +HA(B) where HA(B) is the entropy of B

after realization of A and HA(B) ≤ H(B).

2.6.2 Polygonal interpolants or global max-ent shape functions

Consider mutually independent events x1, x2, ..., xn within a sample space Ω with unknown probabilities

p1, p2, ..., pn respectively. As P (Ω) = 1 and pi > 0, i.e. the nonnegative probabilities should satisfy the

condition of
n∑
i=1

pi = 1 and assume m observations, with m < (n − 1) where the expectation ⟨gr(x)⟩ of

a function gr(x) is known, this will make the system under-determined. In this scenario, the most likely

probability distribution is obtained by using the Jaynes’ principle of max-ent [142, 143]

maximize

(
[H (p1, p2, ..., pn)] = −

n∑
i=1

pi logpi

)
, (2.49)

subject to constraints
n∑
i=1

pi = 1,
n∑
i=1

pigr (xi) = ⟨gr(x)⟩ , (2.50)

where ⟨gr(x)⟩ is the expectation of gr(x). The idea for using the principle of max-ent is that the infor-

mational entropy of the probability distribution which will satisfy the given constraints will exist in the

vicinity of the max-ent and due to this reason the max-ent distribution is the one which is least biased

and has the maximum chance to occur [287].

Making an analogy between the probabilities and two-dimensional polygonal interpolants, consider a

polygon with nodes located at the corners with coordinates (xi, yi), while the coordinates of any point in

the interior is (x, y). Consider a shape function associated with each node ϕi ≥ 0 with the assumption

that the ϕi will reproduce a constant and linear function exactly as

n∑
i=1

ϕi=1,
n∑
i=1

ϕixi = x,
n∑
i=1

ϕiyi = y. (2.51)

Equation (2.51) can also be written as

 1 1 · · · 1

x1 x2 · · · xn

y1 y2 · · · yn




ϕ1

ϕ2
...

ϕn

 =


1

x

y

 . (2.52)

For a triangular case with (n = 3) Equation (2.52) has a unique solution but for a case when (n > 3),

Equation (2.52) is under-determined, i.e. there are more unknown ϕi than the available constraints (2.51).

In this case the principle of max-ent is used to find the unknown shape functions ϕi, so Equation (2.49)

are written in terms of the unknown shape functions as

maximize

(
[H (ϕ1, ϕ2, ..., ϕn)] = −

n∑
i=1

ϕi log ϕi

)
, (2.53)

subject to constant and linearly reproducing constraints (2.51).
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Equations (2.53) and (2.51) constitute an optimization problem which can be solved using the method

of Lagrange multipliers. Consider the Lagrange multipliers λr(r = 0, 1, 2) 1 associated with the three

constraints in Equation (2.51) and using the variation equal to zero

δ

[
n∑
i=1

−ϕi log ϕi + λ0

(
1−

n∑
i=1

ϕi

)
+ λ1

(
x−

n∑
i=1

ϕixi

)
+ λ2

(
y −

n∑
i=1

ϕiyi

)]
= 0. (2.54)

After simplification and by using λ0 = log(Z)−1 , where Z is known as the partition function in statistical

mechanics, the equation for the shape functions is written as

ϕi =
e−λ1xi−λ2yi

Z
, Z(λ1, λ2) =

n∑
i=1

e−λ1xi−λ2yi . (2.55)

The constraints in Equation (2.51) are written using ϕi from Equation (2.55)

f1(λ1, λ2) =

n∑
i=1

e−λ1xi−λ2yixi

Z
− x, f2(λ1, λ2) =

n∑
i=1

e−λ1xi−λ2yiyi

Z
− y. (2.56)

Equation (2.56) can also be written as

−∂λ0
∂λr

= −∂(logZ)
∂λr

= ⟨gr(x)⟩ , (r = 1, 2), (2.57)

where ⟨g1(x, y)⟩ = x and ⟨g2(x, y)⟩ = y. By solving the nonlinear set of Equations (2.56) for λ1 and

λ2 , the shape functions can be obtained from Equation (2.55). Now using Equations (2.53) and (2.55)

the maximum informational entropy is Hmax = log(Z) + λ1x + λ2y. Practically, due to numerical

complications [287] the primal problem of maximization is recast into a dual problem of minimization.

By letting x̃i = xi − x and ỹi = yi − y, Equations (2.51), (2.55) and 2.56 are written as

n∑
i=1

ϕix̃i = 0,
n∑
i=1

ϕiỹi = 0, (2.58)

ϕi =
e−λ1x̃i−λ2ỹi

Z̃
, Z̃(λ1, λ2) =

n∑
i=1

e−λ1x̃i−λ2ỹi , (2.59)

and

fr(λ1, λ2) =
∂(log Z̃)

∂λr
= 0, (r = 1, 2), (2.60a)

f1(λ1, λ2) = −

n∑
i=1

e−λ1x̃i−λ2ỹi x̃i

Z̃
, (2.60b)

f2(λ1, λ2) = −

n∑
i=1

e−λ1x̃i−λ2ỹi ỹi

Z̃
. (2.60c)

In this case Hmax = log(Z̃). In this dual problem the Lagrange multipliers are determined as a set

that minimizes a convex potential function F (λ1, λ2) = Hmax. This problem is solved using an iterative

solution method such as Newton’s method, the solution of which includes an initial guess for λ1 and λ2.

1Not the same as used for the imposition of the essential boundary conditions
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The solution at the (k + 1)th iteration is given as

λk+1
r = λkr +∆λkr , ∆λk = −A−1∇F, (2.61)

where ∇F is the gradient of F and is given as

∇F =

[
∂F
∂λ1

∂F
∂λ2

]
=

 −
n∑

i=1

e−λ1x̃i−λ2ỹi x̃i

Z̃

−
n∑

i=1

e−λ1x̃i−λ2ỹi ỹi

Z̃

 . (2.62)

and A is a Hessian matrix and is given as

A = ∇2F =

[ ⟨
x̃2
⟩
− ⟨x̃⟩2 ⟨x̃ỹ⟩ − ⟨x̃⟩ ⟨ỹ⟩

⟨x̃ỹ⟩ − ⟨x̃⟩ ⟨ỹ⟩
⟨
ỹ2
⟩
− ⟨ỹ⟩2

]
, (2.63)

where ⟨x̃⟩ =
n∑
i=1

ϕix̃i. The convergence criterion is ∥∇F∥(k) < ε, where ε is a very small number

10−6 ∼ 10−10.

2.6.3 Local maximum entropy shape functions

Local max-ent approximation formulations are summarized in [289] using the Shannon-Jaynes general

form of information entropy or relative entropy functional. The general form of entropy or the relative

entropy, is written as

H(p,m) = −
n∑
i=1

pi log

(
pi
mi

)
, (2.64)

where mi is a prior distribution that will be used in the calculation of unknown probabilities pi. In the

case of shape functions the following applies

maximize

(
H(ϕ,w) = −

n∑
i=1

ϕi log

(
ϕi
wi

))
, (2.65)

subject to constraints
n∑
i=1

ϕi = 1,
n∑
i=1

ϕix̃i = 0,
n∑
i=1

ϕiỹi = 0. (2.66)

The shape functions are written as

ϕi =
Z̃i

Z̃
, Z̃i = wie

−λ1x̃i−λ2ỹi , Z̃ =
n∑
j=1

Z̃j , (2.67)

where wi is the prior distribution, i.e. any weight function. The uniform prior is used in [287], Gaussian

prior is used in [12] and generalized prior is used in [288, 289]. The expressions for the shape function

derivatives are [288]

∇ϕi = ϕi

(
∇fi −

n∑
i=1

ϕi∇fi

)
, (2.68)

where

∇fi =
∇wi
wi

+ λ+ x̃i
[
A−1 −A−1.B

]
, B =

n∑
k=1

ϕkx̃
k ⊗ ∇wk

wk
, (2.69)
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where ⊗ is the dyadic product of two vectors, i.e. for any two vectors A and B, A⊗B = ABT

2.6.4 Numerical demonstration

One- and two-dimensional numerical implementation of the determination of max-ent shape functions is

now presented. Cubic spline weight functions with dmax = 3.0 is used in the calculation of max-ent shape

function.

One dimension

Consider the same 1D domain and discretization as given in §2.4.2. The convergence path of the Newton

method to determine the Lagrange multipliers for three points x = 0.4, 0.93, 0.02 are shown in Figures

2.11(a), 2.11(b) and 2.11(c) respectively, while the step by step convergence of the Lagrange multipliers

with ε = 10−6 are given in Table 2.1. It is obvious from Figures 2.11(a), 2.11(b) and 2.11(c) and Table

2.1 that if the point of interest lies in the centre of the nodes in support, e.g. x = 0.4 then the Newton

method will converge in one iteration but when the point approaches the boundary, then the number of

iterations increases.
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Figure 2.11: Convergence path of the Newton’s method for different points in one-dimensional domain
for max-ent shape functions

Figure 2.12(a) shows the local max-ent shape functions, while Figure 2.12(b) shows the corresponding

shape function derivatives. In Figure 2.12(a) the shape functions of all the internal nodes vanish at the

boundary, which is different from the MLS shape functions, where the shape functions for the internal

nodes are non zero at the boundary. Due to this weak Kronecker delta property of the max-ent shape
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x = 0.4 x = 0.93 x = 0.02
Iteration λ ε λ ε λ ε

1 0 7.1869e-17 0 0.0138 0 0.0328
2 - - -2.4830 6.1102e-4 8.3118 0.0068
3 - - -2.6039 1.6048e-6 11.2180 7.0147e-4
4 - - -2.6042 1.1229e-11 11.5938 1.0503e-5
5 - - - - 11.5996 2.4644e-9

Table 2.1: Convergence of Newton’s method for different points in 1D problem domain

functions the imposition of the essential boundary condition is as straightforward in a meshless method

as in the case of the FEM. The smoothness of the first derivative of max-ent shape functions can be seen

in 2.12(b).
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Figure 2.12: 1D max-ent shape functions and derivatives for dmax = 3.0

Two dimensions

Consider the same two-dimensional square domain and discretization as shown in Figure 2.8(a) given

in §2.4.2. The convergence of the Newton method for four different points of interest x = (0.0, 0.0),

x = (0.7,−0.7), x = (−0.85, 0.9) and x = (−0.99,−0.8) are given in the Figures 2.13(a), 2.13(b), 2.13(c)

and 2.13(d) respectively, while the step by step convergence for all these points are also shown in Table

2.2. It is also clear in this case that if the point of interest is in the centre of the nodes in support as in

the case x = (0.0, 0.0) then only one Newton iteration is required but the number of Newton iteration

increases when the point approaching the boundary. The max-ent shape function for a node at x = [0, 0]

x=(0.0, 0.0) x=(0.7, -0.7) x=(-0.85, 0.9) x=(-0.99, -0.8)
Itr λ1 λ2 ε λ1 λ2 ε λ1 λ2 ε λ1 λ2 ε
1 0 0 4.44e-18 0 0 0.04 0 0 0.11 0 0 0.14
2 - - - -0.43 0.43 8.28e-4 1.38 -1.98 0.01 3.61 0.96 0.04
3 - - - -0.44 0.44 3.94e-7 1.56 -2.44 7.76e-4 6.26 1.02 0.01
4 - - - - - - 1.57 -2.47 2.42e-6 8.01 1.03 0.003
5 - - - - - - 1.57 -2.47 2.47e-11 8.72 1.03 3.15e-4
6 - - - - - - - - - 8.81 1.03 4.70e-6
7 - - - - - - - - - 8.81 1.03 1.08e-9

Table 2.2: Convergence of Newton’s method for different points in 2D problem domain

is shown in Figure 2.14(a) and its derivatives w.r.t. x and y are shown in Figure 2.14(b) and 2.14(c)
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(a) x = (0.0, 0.0) (b) x = (0.7,−0.7)

(c) x = (−0.85, 0.9) (d) x = (−0.99,−0.8)

Figure 2.13: Convergence path of the Newton’s method for different points in two-dimensional domain
for max-ent shape functions

respectively. The weak Kronecker delta property and smoothness of the first spatial derivatives of the

max-ent shape functions can also be observed in these figures.

2.7 Element-free Galerkin method with max-ent shape func-

tions

By using max-ent shape functions in §2.5, Equation (2.36) is written as∫
Ω

δ (∇u)
T
D (∇u) dΩ−

∫
Ω

δuTbfdΩ−
∫
Γt

δuT t̄dΓ = 0. (2.70)

The max-ent shape functions possess the weak Kronecker delta property and in Equation (2.70) there is

no need to use Lagrange multipliers, i.e. the last two terms in Equation (2.36) to enforce the essential

boundary conditions. The essential boundary conditions are implemented directly as in the case of the

FEM. The final discretized system of equations is

Ku = f (2.71)

where K and f are defined in Equations (2.40) and (2.42) respectively.
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(a) Shape function

(b) ∂ϕ/∂x (c) ∂ϕ/∂y

Figure 2.14: 2D max-ent shape function and derivatives for a node at x = [0, 0]

2.8 Numerical examples

One- two- and three-dimensional linear elastic problems, most with analytical solutions are now presented

to demonstrate the implementation and performance of the EFGM with both the MLS and max-ent shape

functions. In all problems, cubic spline weight functions are used in the calculation of the both MLS and

max-ent shape functions while a linear basis function is used in the calculation of MLS shape functions.

For convergence studies the L2 norm of error in displacement ∥eu∥ and energy ∥e∥, suggested in [332] are

used, i.e.

∥eu∥ =

∫
Ω

eTueudΩ

 1
2

, (2.72a)

∥e∥ =

∫
Ω

eTεDeεdΩ

 1
2

=

∫
Ω

eTσD
−1eσdΩ

 1
2

. (2.72b)
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where eu, eε and eσ are errors in displacements, strains and stresses at a point x and are written as

eu = uexact − unum, (2.73a)

eε = εexact − εnum, (2.73b)

eσ = σexact − σnum, (2.73c)

where uexact, εexact and σexact are the exact displacements, strains and stresses at a point x, while unum,

εnum and σnum are numerical displacements, strains and stresses at the same point respectively.

One-dimensional bar

Consider a one-dimensional bar of unit length subjected to body force and fixed at a point x = 0.

The geometry, coordinate system, loading and boundary conditions are shown in Figure 2.15. For a

Figure 2.15: Geometry and loading for 1D bar problem

one-dimensional problem, Equations (2.40) to (2.43) are written as

Kij =

L∫
0

ϕi,xEϕj,xdx, (2.74)

Gik = −ϕk| Γui , (2.75)

fi =����:0
−ϕitx|Γt +

L∫
0

ϕibdx, (2.76)

qk = −uk, (2.77)

where E is the modulus of elasticity. In 1D case, the essential and traction boundaries are consisting of

one node, each and the boundary integrations are replaced by the corresponding nodal values in Equations

(2.75) to (2.77).

The analytical solutions for the displacement and stress field for this problem are given as

u (x) =
1

E

(
1

2
x− x3

6

)
, (2.78a)

σ (x) =

(
1− x2

2

)
. (2.78b)

The problem is discretized with eleven equally distributed nodes, ten background cells, four Gauss points

in each background cell and one Gauss point on the essential boundary with E = 1.0 and dmax = 2.5.

The problem is solved using both MLS and max-ent shape functions, in which Lagrange multipliers are

used to impose the essential boundary conditions with MLS shape functions, while the direct method

is used in the case of max-ent shape functions. Due to the direct imposition of the essential boundary
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conditions in the EFGM with max-ent shape functions, there is no need to use Gauss points on the

essential boundary. Figures 2.16(a) and 2.16(b) shows the comparison between the EFGM with the MLS

and max-ent shape functions and analytical solutions for displacement and stress along the length of the

bar, which are in excellent agreement. For convergence studies the same problem is solved with the same
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Figure 2.16: Displacement and stress for 1D bar problem

parameters, but the number of equally distributed nodes used are 11, 13, 15, 17, 19, 21 and the number of

background cells used are 10, 12, 14, 16, 18, 20. For comparison with finite elements the same problem is

also solved with the same number of nodes and two noded linear elements each having two Gauss points

in each element. Figures 2.17(a) and 2.17(b) show the convergence of ∥eu∥ and ∥e∥ for both the EFGM

and the FEM. In these figures 2.17(a) and 2.17(b) h, Ru and Re are distance between nodes and the

rates of convergence as measured from these plots in the case of ∥eu∥ and ∥e∥ respectively. From Figures

2.17(a) and 2.17(b) it is clear that the EFGM is more accurate with high rate of convergence as compared

to the equivalent FEM and the accuracy and rate of convergence for the EFGM with the MLS shape

functions are the same as that with max-ent shape functions.
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Figure 2.17: Rate of convergence for ∥eu∥ and ∥e∥ for 1D bar problem

Two-dimensional cantilever beam

The behaviour of the 2D cantilever beam subjected to parabolic traction at the free end [293] is examined.

The geometry, coordinate system, loading and boundary conditions for the problem, which are more
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complicated than is often appreciated [20], are given in Figure 2.18. The analytical solution for the

displacement field is given as [330]

Figure 2.18: Geometry, boundary condition and loading for 2D beam problem

u (x, y) =
Py

6EI

[
(6L− 3x)x+ (2 + ν) y2 − 3D2

2
(1 + ν)

]
, (2.79a)

v (x, y) = − P

6EI

[
3νy2 (L− x) + (3L− x)x2

]
, (2.79b)

while the analytical solution for the stress fields is

σxx =
P (L− x) y

I
, (2.80a)

σyy = 0, (2.80b)

σxy = − P

2I

[
D2

4
− y2

]
, (2.80c)

where E is modulus of elasticity, ν is Poisson’s ratio and I is the second moment of area. The problem

is solved with plane stress condition with P = 1000 , ν = 0.3 , E = 30 × 106 , D = 12 , L = 48 and

unit thickness, all in compatible units. The problem is discretized with 175 (25× 7) nodes, 144 (24× 6)

background cells with dmax = 3.5 and 4×4 Gauss quadrature per cell are used, while 4 Gauss quadrature

points per line cell are used for integrations on the essential and traction boundaries. As mentioned

in the previous example, there is no need to use Gauss points on the essential boundary in the EFGM

with max-ent shape functions. The problem discretization with background cells and nodes is shown

in Figure 2.19(a), while a comparison between the analytical and the EFGM with both the MLS and

max-ent shape functions deflections at nodes and deflections at y = 0 are shown in Figures 2.19(b) and

2.19(c) respectively, which are in excellent agreement. Figures 2.20(a) and 2.20(c) show the contours of

the normal stress σxx and shear stress σxy over the deflected beam, while Figures 2.20(b) and 2.20(d)

compare the analytical and the EFGM normal and shear stresses at x = L/2 with both the MLS and

max-ent, which are again in excellent agreement. For the convergence studies the same problem is solved

with the same parameters, using dmax = 2.5 with 10 (5× 2), 27 (9× 3), and 52 (13× 4) nodes and with

4 (4× 1), 16 (8× 2) and 36 (12× 3) background cells. For comparison, the same problem is also solved

with the FEM with four node iso-parametric quadrilateral elements, and with 2× 2 gauss points in each

element. Figures 2.21(a) and 2.21(b) show the convergence of ∥eu∥ and ∥e∥ for the FEM and the EFGM

with both the MLS and max-ent shape functions. From the Figures 2.21(a) and 2.21(b) it is clear that the

EFGM while using either MLS or max-ent shape functions is more accurate, and the rate of convergence

is higher than the equivalent FEM.
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Figure 2.19: Discretization and deflections for 2D beam problem

Hole in an infinite plate

The third example is an infinite plate with a circular hole of radius a in the centre, subjected to unidi-

rectional in-plane pressure as shown in Figure 2.22. Due to symmetry only a portion of the upper-right

quadrant is modelled with the pressures from the analytical expression, the geometry, coordinate system

and boundary conditions are also shown in Figure 2.22. The analytical solution for the displacement field

is given as [293]

ux =
1 + ν

E
p

(
1

1 + ν
r cos θ +

2a2

(1 + ν) r
cos θ +

a2

2r
cos 3θ − a4

2r3
cos 3θ

)
, (2.81a)

uy =
1 + ν

E
p

(
−ν
1 + ν

r sin θ − (1− ν) a2

(1 + ν) r
sin θ +

a2

2r
sin 3θ − a4

2r3
sin 3θ

)
, (2.81b)

while the analytical solutions for the stress fields are given as

σxx = p

[
1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3a4

2r4
cos 4θ

]
, (2.82a)

σxy = p

[
−a

2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3a4

2r4
sin 4θ

]
, (2.82b)

σyy = p

[
−a

2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3a4

2r4
cos 4θ

]
, (2.82c)
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Figure 2.20: Normal and shear stresses for 2D beam problem
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Figure 2.21: Rate of convergence for ∥eu∥ and ∥e∥ for 2D beam problem

where E is the modulus of elasticity, ν is Poisson’s ratio and r and θ are the polar coordinates. The

problem is solved with a plane stress condition and with a = 1, b = 4, E = 1000, ν = 0.25, p = 1 .

The discretization parameters used are 121 (11 × 11) nodes, i.e. 11 in the r and 11 in the θ direction,

100 (10× 10) background cells, (4× 4) Gauss quadrature per cell and 4 Gauss quadrature points per line

cell on the essential and traction boundaries. Nodes and background cells are shown in Figure 2.23(a);
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Figure 2.22: Geometry, boundary condition and loading for a 2D hole in an infinite plate problem

domain, essential and traction boundaries and Gauss points are shown in Figure 2.23(b). The comparison

of the deflection at nodes predicted by the EFGM with both MLS and max-ent shape functions with

analytical solution is shown in Figure 2.23(c). The contours of σxx and σyy over the deformed plate are

shown in Figures 2.24(a), 2.24(c) respectively, while the comparison of σxx vs y at x = 0 and σyy vs x at

y = 0 with the analytical solution are given in Figures 2.24(b) and 2.24(d) respectively. Figures 2.23(c),

2.24(b) and 2.24(d) shows an excellent agreement for the displacements and stresses between the EFGM

with both MLS and max-ent shape functions and analytical solutions.

For the convergence studies the same problem is solved with dmax = 3.5 with 81 (9× 9), 121 (11× 11)

and 169 (13× 13) nodes, and with 64 (8× 8), 100 (10× 10) and 144 (12× 12) background cells. For

comparison, the same problem is also solved with the FEM with four node iso-parametric quadrilateral

element with 2 × 2 gauss points in each element. Figures 2.25(a) and 2.25(b) shows the convergence of

∥eu∥ and ∥e∥ for both the FFGM and the FEM, and it is clear from these figures that the accuracy and

rate of convergence of the EFGM while using either the MLS or max-ent shape functions is higher than

the equivalent FEM.

Three-dimensional cantilever beam with end load

The final example to demonstrate the EFGM implemented in this research is a 3D problem. The

two-dimensional EFGM formulation derived in the §2.5 and §2.7 is straightforward to extend to three-

dimensional problems. For three-dimensional problems Equations (2.44) and (2.45) are written as

Bi =



∂ϕi

∂x 0 0

0 ∂ϕi

∂y 0

0 0 ∂ϕi

∂z
∂ϕi

∂y
∂ϕi

∂x 0
∂ϕi

∂z 0 ∂ϕi

∂x

0 ∂ϕi

∂z
∂ϕi

∂y


, (2.83)

Nk =

 Nk 0 0

0 Nk 0

0 0 Nk

 . (2.84)
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Figure 2.23: Problem discretization with background cells, nodes, Gauss points and deflected nodes for
the hole in an infinite plate problem

In the case of max-ent shape functions, Equations (2.67), (2.62) and (2.63) are written as

ϕi =
Z̃i

Z̃
, Z̃i = wie

−λ1x̃i−λ2ỹi−λ3z̃i , Z̃ =

n∑
j=1

Z̃j , (2.85)

∇F =


∂F
∂λ1

∂F
∂λ2

∂F
∂λ3

 =


−

n∑
i=1

wie
−λ1x̃i−λ2ỹi−λ3z̃i x̃i

Z̃

−
n∑

i=1

wie
−λ1x̃i−λ2ỹi−λ3z̃i ỹi

Z̃

−
n∑

i=1
wie

−λ1x̃i−λ2ỹi−λ3z̃i z̃i

Z̃

 , (2.86)

A = ∇2F =


⟨
x̃2
⟩
− ⟨x̃⟩2 ⟨x̃ỹ⟩ − ⟨x̃⟩ ⟨ỹ⟩ ⟨x̃z̃⟩ − ⟨x̃⟩ ⟨z̃⟩

⟨x̃ỹ⟩ − ⟨x̃⟩ ⟨ỹ⟩
⟨
ỹ2
⟩
− ⟨ỹ⟩2 ⟨ỹz̃⟩ − ⟨ỹ⟩ ⟨z̃⟩

⟨x̃z̃⟩ − ⟨x̃⟩ ⟨z̃⟩ ⟨ỹz̃⟩ − ⟨ỹ⟩ ⟨z̃⟩
⟨
z̃2
⟩
− ⟨z̃⟩2

 , (2.87)

where z̃i = zi − z.

Consider a three-dimensional cantilever beam loaded by uniformly distributed shearing traction at

its free end with a total equivalent load of P in the positive y direction, and which is fixed at one end

as shown in Figure 2.26(a). The same problem is also given in [31] to validate the three-dimensional
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Figure 2.24: Stresses for the hole in an infinite plate problem
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Figure 2.25: Rate of convergence for ∥eu∥ and ∥e∥ for the hole in an infinite plate problem

application of the EFGM. The problem is solved with E = 21 × 107, ν = 0.25, P = 10, L = 12, H = 1

and D = 1, where L, H and D are the lengths in x, y, z directions. The problem is discretized using

625 (25× 5× 5) nodes, 384 (24× 4× 4) background cells, (4× 4× 4) Gauss quadrature per background

cell and (2× 2) Gauss quadrature on the essential and traction boundaries with dmax = 2.5. Analytical

solutions for displacement and stresses are not available for this problem, so comparisons are made with
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the analytical solution for the two-dimensional cantilever beam in the previous section. Background cells

and nodes of the problem are shown in Figure 2.26(b), while the comparison between analytical and

the EFGM solution for the displacement with both the MLS and max-ent are shown in Figure 2.26(c),

which are in excellent agreement. Figures 2.27(a) and 2.27(b) shows the comparison of normal σxx and

shear σxy stresses at x = L/2 and z = 0 recovered using EFGM with both the MLS and max-ent shape

functions with the analytical solution. As expected the linear distribution of the normal σxx is recovered

very accurately as compared to the parabolic distribution of the shear stress, which can be accurately

recovered using a fine discretization.

(a) Geometry, coordinate system and loading
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Figure 2.26: 3D beam problem geometry, discretization and neutral axis deflection

2.9 Run time comparison between max-ent and MLS shape

functions

To compare the run time of max-ent and MLS shape functions and corresponding shape function deriva-

tives, a cube is considered with 10 unit dimensions in the x, y and z directions. Seven different dis-

cretizations are used in this case with 125, 343, 729, 1331, 2197, 3375 and 4913 uniformly distributed

nodes in the consecutive discretizations, while the number of background cells used in the consecutive

discretizations are 64, 216, 512, 1000, 1728, 2744 and 4096. Three sample discretizations with 125, 729

and 2197 nodes are shown in Figures 2.28(a-c) respectively. 64 (4× 4× 4) Gauss points are used in each

background cell and the scaling parameter used for the domain of influence is dmax = 1.5. The run time

comparison between the max-ent and MLS shape functions for all the discretizations are shown in Table

2.3, while run time versus no of Gauss points are also shown in Figure 2.29. The timings reported for
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Figure 2.27: Normal and shear stresses for 3D cantilever beam problem

each discretization is the total time required to calculate the shape functions and corresponding shape

function derivatives at all Gauss points in the problem domain. It is clear from Table 2.3 and Figure 2.29

that the calculation of max-ent shape functions and corresponding shape function derivatives are slightly

more efficient as compared to the MLS shape functions and corresponding shape function derivatives.

Figure 2.28: Sample discretizations used for the run time comparison of max-ent and MLS shape functions

Nodes Background Cells Number of Gauss points max-ent (sec) MLS (sec)
125 64 4096 0.83 0.83
343 216 13824 3.15 3.34
729 512 32768 8.21 8.71
1331 1000 64000 14.5 16.84
2197 1728 110592 26.15 28.02
3375 2744 175616 47.06 53.49
4913 4096 262144 72.25 78.18

Table 2.3: Run time comparison of max-ent and MLS shape functions

2.10 Concluding remarks

In this chapter numerical implementation of the EFGM is described in detail with the MLS and max-ent

shape functions. As the MLS shape functions do not possess the Kronecker delta property, Lagrange

multipliers are used to enforce the essential boundary conditions in an approximate sense. The recently
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developed local max-ent shape functions are also implemented in the EFGM. These shape functions

possess a weak Kronecker delta property at the boundaries, which allows the imposition of essential

boundary conditions directly as in the FEM. It is also shown that while calculating the max-ent shape

functions the number of iterations required for the convergence of the Newton method increases as the

point approaches the problem boundary.

All methods implemented and demonstrated in this Chapter have been developed from scratch in

MATLAB and used to run benchmark numerical examples from one-, two- and three-dimensional linear

elasticity to show the performance and implementation of the EFGM. The numerical results of displace-

ments and stresses, in all of the problems show very good agreement with the analytical solutions. It

is also shown that the accuracy and rate of convergence of the EFGM for all the benchmark numerical

examples, while using either the MLS or max-ent is faster (or the rate is higher) than the correspond-

ing FEM. It is also mentioned that the calculation of max-ent shape functions and corresponding shape

function derivatives are slightly efficient as compared with MLS counterpart.



Chapter 3

Modelling nonlinearities with

element-free Galerkin method

3.1 Introduction

Problems with finite deformation and elasto-plasticity are very important in a variety of engineering

applications, including geomechanics, biomechanics and metal forming. Generally, these problems can

be further divided into subcategories, combining small strain, large strain, small displacement and large

displacement hypothesis. A linear relationship exists between strains and displacements in small strain

and small displacement problems, while a nonlinear relationship exists between strains and displacements

in all other situations. In case of elasto-plastic deformations, bodies deform permanently under the

application of external loads, as opposed to the fully reversible elastic deformations. The relationship

between stresses and strains are linear for elasticity problems and nonlinear in case of problems involving

plasticity. Theory of plasticity is concerned with finding the relationship between the stresses and strains

in the case of plastic deformation. According to [246] an elasto-plastic model should have the following

three components:

1. Relationship between stresses and strains during elastic deformations.

2. A yield function or criterion, which identify the difference between elastic and plastic deformations.

3. Relationship between stresses and strains in the case of plastic deformations.

Different material models exist in the literature, which can accurately simulate the response of different

materials, e.g. metals, concrete, rocks and soils.

The FEM is a conventional way to solve these problems but there are always issues of mesh distortion

and remeshing is required at different solution steps, which is computationally very expensive. Meshless

methods are an ideal choice for these problems, as the problem can be discretized only based on a

set of nodes, so there is no issues of mesh distortion and the expensive remeshing can be avoided. A

number of relevant references can be found throughout the literature on the use of EFGM for modelling

problems with finite deformations and elasto-plasticity. In [31] three-dimensional small strain, elastic

and elasto-plastic formulations were developed for the EFGM with singular weight functions to assist the

direct imposition of essential boundary conditions. Linear hardening and consistent tangent were used

for the elasto-plastic formulations. EFGM was used for the modelling of constant volume (isochoric)

plasticity in [14] and it was shown that the EFGM can overcome the very stiff response (volumetric

– 41 –
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locking) of linear finite elements. It was also shown that the selection of the proper influence domain is

an important parameter for the EFGM to get the limit load, e.g. for cantilever beam and Prandtl’s punch

test problems. Furthermore, it was also mentioned that the linear FEM shape functions can be retrieved

from the MLS shape functions by using a very small domain of influence. A perfect-plasticity von Mises

yield surface with the associated flow was used for the plane-strain analysis. In [187] the EFGM was used

for large deformations with contact problems encounter in impact and metal forming, e.g. upsetting and

extrusion processes. A cubic spline weight function with linear basis were used in the calculation of the

MLS shape functions, while a linear isotropic hardening von Mises yield surface represented the material

behavior. A computer aided design/computer aided engineering (CAD/CAE) system was developed for

the EFGM for two dimensional small strains elasto-plastic problems in [124], which can use an input

geometry from CAD or digital system (scanners, CT, etc.). Von Mises yield functions was used with

associative flow and an explicit stress integration. The same conclusion was given to the relationship

between the influence domain and volumetric locking, as in [14]. The issue of volumetric locking was

further discussed in [56, 86, 328]. The EFGM with elasto-plastic formulation based on the von Mises

yield criterion and power law hardening were used for the stress analysis of plate with a crack problem in

[149]. The standard visibility criterion [39, 41, 243, 290] was used in modelling crack while the J-integral

was used as a criterion for the benchmark comparison. Modified EFGM [7] was extended in [264] to

finite strain problems, including axisymmetric and plane strain. Special shape functions were used in the

modified EFGM on the essential boundaries derived from the extended partition of unity finite element

method (PUFEM), which allows the direct imposition of essential boundary conditions. Total Lagrangian

formulation was used with associative flow, isotropic hardening and von Mises yield surface. The EFGM

was used in a number of references for metal forming simulation, including plane strain rolling in [319],

bulk metal forming such as an equal channel angular pressing and cubic billet upsetting in [206], 3D-

upsetting process in [203], forming of nail-shaped parts in [321] and 3D two-stage forging process in [207].

The EFGM was used to simulate a cantilever beam subjected to uniformly distributed load with small

strains and large displacements response in [313] and large deformations response in the pile in [323].

The alternative meshless methods were also used for modeling problems with material and geometrical

nonlinearities, i.e. RKPM with hyper-elastic and elasto-plastic formulations was used to simulate large

deformations of rubber parts, cylinder under internal pressure, impact of aluminum bar and necking of

circular cylinder [53]. In [52, 54] RKPM with large strains elasto-plastic deformations was used to model

metal forming problems, including sheet metal, ring compression, upsetting, Taylor bar impact, forging

and backward extrusion. 2D RKPM with a slightly compressible rigid-plastic formulation was used for

the simulation of plane strain rolling problems in [268], while the same model was used in [318] to simulate

compression of cylinders performs and rectangular bars and plane strain backward extrusion, for steady

and non-steady bulk metal forming simulation, including flat rolling, compression of rods and heading of

cylindrical billets in [317]. The rigid-plastic simulation of the metal forming was simulated using RKPM

in [248] and was used for ring compression and forging simulations. In [125] the hybrid MLPG method

originally proposed in [82] was extended to problems with small-strain elasto-plasticity and was used to

simulate footing problems. Hybrid MLPG [82] is an ideal method for geomechanics problems, where the

MLPG is used to model the near field, while the meshless scale boundary method is used to model the

far field. In [322] a meshless method based on either MLS or RKPM with stabilized confirming nodal

integration was used to simulate the elasto-plastic contact with the metal forming simulation and was

used for sheet metal, necking, spring-back and 3D extrusion problems.

A meshless method based on the local weak form and MLS shape functions was developed for elasto-

plastic formulation in [120] and was used for uniaxial bar problem. In [314] the MLPG was used for
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the numerical simulation of the elasto-plastic plates with moderate thickness, while the radial basis

functions (RBF) [198] were used, which facilitates the direct imposition of essential boundary conditions.

Corrected smooth particle hydrodynamics (CSPH) methods with corrected kernel and integration were

used for metal forming simulation and was used for upsetting and forging simulation in [44]. In [123] rigid-

plastic point collocation method was used in 2D metal forming simulation of the plane stain upsetting

and the results were validated by comparing with FE results. The NEM was used to model the large

deformations in the biomechanics problems in [84, 87]. In metal forming simulation, NEM was used in

a number of references, e.g. in large deformation extrusion process and simulation of moving interfaces

in casting process in [6], in the extrusion process in [96] and in the backward extrusion process in [141].

The linear elastic EFGM formulation developed in Chapter 2 is extended here to include both material

and geometrical nonlinearities, which is although not a novel contribution but is an essential constituent

of Chapter 4 to 7. Varieties of benchmark numerical examples are solved to demonstrate its correct

implementation.

The outline of this chapter is as follows. The classical theory of plasticity is explained in §3.2, which
consists of elasto-plastic tangent matrix derivation in §3.2.1 followed by a full procedure of stress inte-

gration in §3.2.2, derivation of the consistent or algorithmic tangent in §3.2.3 and the numerical imple-

mentation algorithms in §3.2.4. The formulations of the theory of plasticity in case of finite deformations

is explained in §3.3, which is further divided into an update Lagrangian in §3.3.1 and total Lagrangian

in §3.3.2. A number of numerical examples are given in §3.4 to demonstrate the implementation and

performance of the use of the EFGM in case of problems with elasto-plasticity and finite deformation.

Concluding remarks are given in §3.5.

3.2 Classical theory of plasticity

The following are the main components of the elasto-plasticity and can be found in any classical book

on computational plasticity, e.g. [81, 271] or thesis on computational plasticity, e.g. [64, 67, 190]. In this

research, we are only using perfect plasticity, i.e. without hardening/softening and with the associative

flow

Hypoelastic law The rate form of the Cauchy stresses and elastic strains is related as

σ̇ = Dε̇e, (3.1)

where the Cauchy stress vector σ and elastic strain vector εe are written as

σ =
[
σxx σyy σzz σxy σyz σxz

]T
, εe =

[
εexx εeyy εezz 2εexy 2εeyz 2εexz

]T
(3.2)

D is a matrix of elastic moduli and is already defined in Chapter 2.

Additive decomposition of strains The rate of straining, ε̇, can be decomposed into elastic parts ε̇e

and plastic parts ε̇p and is written as

ε̇ = ε̇e + ε̇p. (3.3)

Yield function It defines a surface in stress space S, which separates the admissible and inadmissible

regions. The admissible region Eσ is written as

Eσ = {σ ∈ S | f (σ) ≤ 0} , (3.4)

where f (σ) is yield function. The interior or elastic region of Eσ is represented by int (Eσ) for
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which f (σ) < 0 and the boundary of Eσ or elasto-plastic region is represented by ∂Eσ for which

f (σ) = 0.

Flow rule In this case it is assumed that the plastic strain is proportional to the stress gradient of the

plastic potential function g and is written as

ε̇p = γ̇
∂g (σ)

∂σ
= γ̇g,σ, (3.5)

where γ̇ ≥ 0 is a non-negative constant of proportionality and is known as plastic multiplier, while
∂g(σ)
∂σ define the direction of plastic flow. If f and g coincide the flow rule is associated, otherwise,

the flow rule is said to be non-associated.

Kuhn-Tucker loading/unloading and consistency conditions Kuhn-Tucker loading/unloading and

consistency conditions are

γ̇ ≥ 0, f (σ) ≤ 0, γ̇f (σ) = 0 (3.6)

and

γ̇ḟ (σ) = 0, (for f (σ) = 0) . (3.7)

1. If σ ∈ int (Eσ), i.e. f (σ) < 0 then from Equation (3.6) γ̇ = 0 and from Equation (3.5) ε̇p = 0

and from Equation (3.3) ε̇ = ε̇e and Equation (3.1) gives σ̇ = Dε̇e and the response is known

as instantaneously elastic.

2. If σ ∈ ∂Eσ, i.e. f (σ) = 0, then Equation (3.6) is satisfied for both of γ̇ = 0 and γ̇ > 0. For

this case the exact value of γ̇ can be determined using Equation (3.7)

(a) If ḟ (σ) < 0, from Equation (3.7) γ̇ = 0 and from Equation (3.5) ε̇p = 0 and the response

is known as elastic unloading.

(b) If ḟ (σ) = 0 then Equation (3.7) is satisfied for both of γ̇ = 0 and γ̇ > 0.

i. If γ̇ > 0 so from Equation (3.5) ε̇p ̸= 0 and the response is known as plastic loading.

ii. If γ̇ = 0 the response is known as neutral loading.

3.2.1 Elasto-plastic tangent matrix

To derive the expression for infinitesimal elasto-plastic tangent matrix, which provide a relationship

between stress and strain rate. After combining Equations (3.5) and (3.3) and using associative flow, i.e.

f = g

ε̇ = ε̇e + γ̇f,σ. (3.8)

Equation (3.1) can be written, after using ε̇e from 3.8

σ̇ = D (ε̇− γ̇f,σ) . (3.9)

The equation for the consistency condition is written as

ḟ = fT,σσ̇ = fT,σD (ε̇− γ̇f,σ) = 0 (3.10)

Equation (3.10) can be rearranged to get γ̇ as

γ̇ =
fT,σDε̇

fT,σDf,σ
. (3.11)
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Putting γ̇ from Equation (3.11) back in Equation (3.9)

σ̇ = D

(
ε̇−

(
fT,σDε̇

fT,σDf,σ

)
f,σ

)
= D

(
I6 −

f,σf
T
,σD

fT,σDf,σ

)
ε̇ = Depε̇, (3.12)

where I6 is (6× 6) identity matrix and Dep is only a function of the yield function f , the elastic stiffness

matrix D and the current stress state σ and is known as an infinitesimal, instantaneous elasto-plastic

tangent matrix and is written as

Dep = D

(
I6 −

f,σf
T
,σD

fT,σDf,σ

)
. (3.13)

3.2.2 Principle of stress integration

In this section detail is given for the determination of the stress state for a given strain increment. Due

to the nonlinearities of the constitutive equation in elasto-plasticity, it is generally not possible to solve

these equations analytically and fully Implicit backward Euler stress integration is used here for this

purpose. To explain the procedure, consider a point A at the end of solution step n in the stress space

inside a yield surface with stress state σn corresponds to an elastic strain state εn as shown in Figure

3.1. If △εn+1 is strain increment within solution step n + 1, then the goal of the stress integration is

to determine the stress state σn+1. This process is divided into two parts, i.e. an elastic predictor AB

followed by a plastic corrector BC. During an elastic prediction assuming linear-elasticity the stress state

is found using

σt = D (εen +△εn+1) = Dεet , (3.14)

where σt and εet are known as trial stress state and trial elastic strain state respectively. If σt lies inside

the yield surface, then there is no need of correction but in case when σt lies outside the yield surface a

plastic correction is required, which is given as

σn+1 = D (εet −△εp) . (3.15)

The plastic correction in Equation (3.15) is performed iteratively to return the stress back onto the yield

surface. The goal of the fully Implicit backward Euler stress integration is the convergence of the residual

br within specified tolerance

br =

[
εe − εet +△γf,σ

f

]
=

[
br1

br2

]
, (3.16)

where △γ is incremental plastic multipliers. The backward Euler increment is written as

δx = −A−1br (3.17)

here x =
[
εe △γ

]T
is a vector of unknown andA is Hessian matrix and is obtained from the derivative

of the residual br with respect to the unknowns and written as

A =

[
br1,εe br1,△γ

br2,εe br2,△γ

]
=

[
I6 +△γf,σσD f,σ

fT,σD 0

]
. (3.18)
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Figure 3.1: Stress return procedure

The first backward Euler iteration is started with

0εe = εet ,
0△γ = 0, 0br =

[
0 0 0 0 0 0 f

]T
, (3.19)

where the pre-superscript is the backward Euler iteration number. The step by step backward Euler

procedure is explained graphically in [67], which is summarized as:

1. Calculate iA from Equation (3.18).

2. Calculate the increment using iδx = −iA−1ibr.

3. Update the unknown using i+1x =i x+i δx.

4. Calculate new i+1f,σ and i+1f,σσ.

5. Calculate i+1br from Equation (3.16).

6. If i+1br is not within tolerance repeat the steps, otherwise calculate Dep from Equation (3.13).

3.2.3 Consistent or algorithmic tangent

If the tangent Dep is used in the Newton-Raphson iteration for the incremental-iterative solution of

the equilibrium equations, the inherent quadratic rate of asymptotic convergence of the global Newton-

Raphson procedure will be lost. A consistent or algorithmic tangent Dalg , which is consistent with the

integration of constitutive equations or stress updating algorithm allows the quadratic rate of asymptotic

convergence of of the global Newton-Raphson algorithm [274]. Mathematically, the consistent tangent is

the change in stress w.r.t to the trial elastic strain and is written as

Dalg = σ,εe
t

(3.20)
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The formulations derived for fully Implicit backward Euler stress integration can be used to derive the

expression for the consistent tangent. Linearization of the first equation of the residual (3.16) [67]

Cedσ +△γf,σσdσ + d△γf,σ = dεet , (3.21)

where Ce = D−1 and is known as the elastic compliance matrix. while linearization of the second

equation of the residual (3.16) is written as

fT,σdσ = 0. (3.22)

Combining Equations (3.21) and (3.22)[
Ce +△γf,σσ f,σ

fT,σ 0

]
︸ ︷︷ ︸

(Aalg)−1

{
dσ

d△γ

}
=

{
dεet

0

}
. (3.23)

Equation (3.23) can also be written as{
dσ

d△γ

}
=

[
Dalg Aalg

12

Aalg
21 Aalg

22

]{
dεet

0

}
(3.24)

where Dalg is the required consistent or algorithmic tangent.

Figure 3.2: Convergence of the Newton-Raphson method for an iteration n+ 1

3.2.4 Numerical implementation algorithm

To solve a non-linear structural mechanics problem, the internal stresses should be balanced with the

external applied forces. In this research, an incremental-iterative procedure is used, i.e. the load or

displacement (in load or displacement control problems respectively) is applied incrementally in steps and

an iterative method, e.g. Newton-Raphson is used to sought convergence for each increment. Newton-
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Raphson method is a natural choice in these types of situations, due to its robustness, efficiency and

asymptotic quadratic rate of convergence. The equilibrium equation is discretized incrementally in each

Newton-Raphson iteration, and the discretized version of the incremental equilibrium equation is written

as

f intn+1 (un+1)− fextn+1 = oobfn+1 = 0, (3.25)

where n + 1 is the global Newton-Raphson iteration counter, f intn+1 and fextn+1 are the global internal and

external force vectors respectively, oobfn+1 is the residual or out-of-balance force and un+1 is a vector of

nodal parameters or fictitious nodal values. The expression for the internal loads for an increment n+ 1

are given as

f intn+1 =

∫
Ω

BTσdΩ =

ng∑
i=1

BT
i σi |Ji|wi, (3.26)

where ng are the total number of Gauss points within the problem domain, Bi is the strain displacement

matrix at Gauss point i, consisting of the shape function derivatives calculated with reference to the

original nodal coordinates and the original position of the Gauss points for small strain plasticity and

|Ji| and wi are the Jacobian and weights associated with each Gauss points respectively. The external

load fextn+1 for increment n + 1 is a fraction of the total external load fext, which is found only once at

the start of the simulation using Equation (2.42). The step by step convergence of the Newton-Raphson

method for a load increment fextn+1 − fextn is shown in Figure 3.2, where un+1 is the final converged nodal

parameters. Each individual local Newton-Raphson iteration is the solution of the following linear system

of equations

KiNR
n+1∆uiNRn+1 = oobf iNRn+1 , (3.27)

where iNR is the local Newton-Raphson counter and ∆uiNRn+1 is the incremental nodal displacements or

fictitious nodal values and KiNR
n+1 is the global stiffness matrix and is written as

Kn+1 =

∫
Ω

BTDalgBdΩ (3.28)

where Dalg is a small strain consistent or algorithmic tangent. The nodal parameters at the end of

iteration n+ 1 is written as

un+1 = un +

nNR∑
i=1

∆uiNRn+1 , (3.29)

where nNR is the total number of local Newton-Raphson iteration required for convergence. The initial

global stiffness matrix K
(0)
n+1 at point A is also changing in the each local Newton-Raphson iteration until

convergence is achieved. The convergence criterion of the Newton-Raphson method is [67, 81]∣∣oobfnNR
n+1

∣∣∣∣fextn+1

∣∣ < εtol, (3.30)

where εtol is a small number and in this thesis, a value 1×10−6 is used. un+1 = u
(m)
n+1 is considered to be

the solution for the global increment n+ 1. In this study the Prandtl-Reuss constitutive model is used,

which comprises the von Mises yield function with perfect plasticity and associated flow. The von Mises

yield function is defined as f =
√
3J2 − σy , where J2 is the second invariant of the deviatoric stress and

σy is the yield strength of the material. Effective plastic strain is used as one of the measures to evaluate
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the performance of the proposed model and is given as

εp =

√
2

3
(εp)

T
(εp), (3.31)

3.3 Theory of plasticity with finite deformation

As opposed to the infinitesimal formulation derived in §3.2 where a linear relation is assumed to exist

between the strains and displacements, a finite deformation (large deformation) elasto-plastic formulation

is derived in this section, in which the relationship between strains and displacements is nonlinear. Two

different types of formulations i.e. updated Lagrangian and total Lagrangian are given here. In the

updated Lagrangian, all the kinematical variables are referred to the current configuration, while in the

total Lagrangian, all these variables are referred back to the original configuration. Consider a point P

in the original or the reference configuration of a solid body Ω0 at time t = 0 as shown in Figure 3.3 with

coordinates X. After deformation u at time t the same point is represented by p with coordinates x in

the current or deformed configuration Ω. Here the deformation gradient is used, which is the fundamental

Figure 3.3: Relationship between the current and reference configuration

measure of deformation providing the relationship between the current and reference configurations, i.e.

F =
∂x

∂X
= I3 +

∂u

∂X
, (3.32)

where I3 is a (3× 3) unit matrix. The polar decomposition of the deformation gradient is written as [130]

F = RU+ vR, (3.33)
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where U and v are the right and left stretch matrices respectively, while R is known as the rotation

matrix. U and v can also be written as

U =
√
C =

√
FTF, (3.34a)

v =
√
b =

√
FFT , (3.34b)

where C and b are the right and left Cauchy-Green strain matrices respectively. The work-conjugate

stress and strain measures used here are logarithmic strain ε and Kirchhoff stress τ [144], which are given

as [71]

ε =
1

2
lnb, τ = Jσ, (3.35)

where J is the determinant of the deformation gradient F and σ is the Cauchy stress. The Numerical im-

plementations are now given separately for the finite deformation in the case of both updated Lagrangian

and total Lagrangian.

3.3.1 Updated Lagrangian formulation

In updated Lagrangian, the geometry is updated at each solution step, which include the update of nodal

coordinates, Gauss points and domain of influences. The shape function and the corresponding derivative

are also calculated at each solution step. In updated Lagrangian formulations, the updated deformation

gradient Fn+1 at the end of increment n+ 1 is written as

Fn+1 = ∆F Fn, ∆F = [I3 − δF]
−1
, δF =

L∑
i=1

∆ui


∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z


T

i

, (3.36)

where ∆F is an increment in the deformation gradient, Fn is the value of the deformation gradient at

the end of previous increment, I3 is a 3× 3 unit matrix in this case, L is the number of nodes in support,

∆ui is the vector of incremental nodal parameters (or fictitious nodal values) and the shape function

derivatives are calculated with reference to the updated geometry. The trial elastic left Cauchy-Green

strain matrix betr is written as

betr = ∆Fben∆FT , (3.37)

where ben is the value of the elastic left Cauchy-Green strain matrix at the end of previous increment and

is obtained by rearranging Equation (3.35) in terms of b and using ε = εen. Equation (3.37) can be used

in Equation (3.35) to calculate the trial elastic strain εet , which is input to the constitutive model. The

internal global nodal forces in this case can be found using Equation (3.26) but now the Bj is the strain

displacement matrix calculated with reference to the updated nodal coordinates and Gauss points. In

this case, the equation for the global stiffness matrix is written as

Kij =

∫
Ω

GT
i aGjdΩ, (3.38)
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where G is a full strain-displacement matrix, calculated with reference to the updated nodal coordinates

and Gauss points and is written as

Gi =



∂ϕi

∂x 0 0

0 ∂ϕi

∂y 0

0 0 ∂ϕi

∂z
∂ϕi

∂y 0 0

0 ∂ϕi

∂x 0

0 ∂ϕi

∂z 0

0 0 ∂ϕi

∂y

0 0 ∂ϕi

∂x
∂ϕi

∂z 0 0


(3.39)

and a is the isotropic spatial consistent or algorithmic tangent and is written as

a =
1

2J
DalgLBa − S (3.40)

where

L =
∂ln (betr)

∂betr
, (Ba)ijkl = δik (b

e
tr)jl + δjk (b

e
tr)il , (S)ijkl = (σ)il δjk. (3.41)

Here Dalg is the small strain consistent or algorithmic tangent, L is the derivative of the logarithm of betr

with respect to its component, the detail of which is given in [218], while S is known as the non-symmetric

stress corrector and δij is the Kronecker delta.

3.3.2 Total Lagrangian formulation

The basic Newton-Raphson algorithm in the same for both updated and total Lagrangian formulations

but there are some differences when calculating some of parameters, which are given in this section. In

total Lagrangian formulation, there is no need to update the geometry as the variables are referred back

to the original configuration. The shape functions and the corresponding derivatives are calculated and

stored at the start of the simulation and are used in every solution step. In this case, the deformation

gradient Fn+1 for increment n+1 is calculated from the total nodal parameters or fictitious nodal values

ui as compared to the updated Lagrangian formulations, where Fn+1 is calculated from incremental

nodal parameters or fictitious nodal values ∆ui. The increment in the deformation gradient ∆F is then

calculated using the deformation gradient Fn of the previous converged iteration.

∆F = Fn+1 F−1
n , Fn+1 = I3 −

L∑
i=1

ui


∂ϕ
∂X
∂ϕ
∂Y
∂ϕ
∂Z


T

i

, (3.42)

where the shape function derivatives are calculated with reference to the original configuration. In this

case equation for the global internal force vector Equation (3.26) is written as

f intn+1 =

∫
Ω

GTPdΩ =

ng∑
i=1

GT
i Pi |Ji|wi, (3.43)

where G is the full strain-displacement matrix, consisting of the shape function derivatives with respect

to the original configuration and P is the nine component non-symmetric first Piola-Kirchhoff stress and
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is given as

P = JσF−T = τF−T , (3.44)

σ and τ is the Cauchy and Kirchhoff stress respectively. The equation for the global stiffness matrix is

written as

K =

∫
Ω

GT ÃGdΩ, (3.45)

where Ã is the isotropic material stiffness tangent and is written as

Ã =
∂P

∂F
=
∂τF−T

∂F
, (3.46)

The partial derivative is expressed as

Ãijkl =
∂τipF

−1
jp

∂Fkl
=
∂τip
∂Fkl

F−1
jp − PikF

−1
jk . (3.47)

After using the chain rule The partial derivative
∂τip
∂Fkl

is written as

∂τip
∂Fkl

=
∂τip

∂ (εet )ab

∂ (εet )ab
∂ (bet )cd

∂ (bet )cd
∂Fkl

, (3.48)

where
∂τip

∂(εet )ab
= Dalg

ipab is infinitesimal consistent or algorithmic tangent and
∂(εet )ab

∂(bet )cd
= Labcd is the the

partial derivative of logarithm of bet with respect to its components and is written as

∂ (bet )cd
∂Fkl

= δck
((
F−1
n

)
lw

(ben)wv∆Fdv
)
+ δck

(
∆Fcw (ben)wv

(
F−1
n

)
lv

)
. (3.49)

3.4 Numerical examples

Numerical examples are now presented to demonstrate the use of EFGM with max-ent shape function

in modelling of problems with material and geometrical nonlinearities using the updated Lagrangian

formulation. The first two examples, i.e. the infinite plate strip and the elastic cantilever beam are

elastic (no plasticity) problems with finite deformation, while the third example of the double notched

tensile specimen is a small strain plasticity problem. The final examples of thick walled cylinder expansion

include both finite deformation and elasto-plasticity.

3.4.1 Infinite plate strip

Two different infinite plate strips subjected to uniformly distributed load q and both with different types

of boundary conditions, i.e. simply supported and fully fixed on both sides are analysed in this section,

as shown in Figure 3.4. High membrane stresses are the main source of nonlinearities in this problem,

as the deflection is small as compared to the plate thickness. The dimensions of the plate are, length L

in x direction, thickness h in z direction and with an infinite width in y or out of plane direction. The

analytical solution for this problem is given in [294], where it is given that the solution of the finite length

plate approaches the one with infinite length when L
h > 3. The same problem is also solved in [221] to

validate the FEA finite deformation solution. The solution for the deflection w at a distance x is given

as [221, 294]

w =
qL4

16u4D

[
cosh u

(
1− 2x

L

)
cosh u

− 1

]
+
qL2x

8u2D
(L− x) (3.50)
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Figure 3.4: Infinite plate strip subjected to uniformly distributed load

where D = Eh3

12(1−υ2) is the flexural rigidity of the plate, E is the Young’s modulus, ν is the poisson’s ratio

and u2 = SL2

4D , is found using

135

16u9

[
tanh u+

u tanh2u

5
− u+

2u3

15

]
=

E2h8

(1− v2)
2
q2L8

. (3.51)

where S is the in-plane force. The maximum neutral axis deflection at x = L
2 is also given as

wmax =
5qL4

384D

[
sech u− 1 + u2

2
5u4

24

]
, (3.52)

For the plate with fully fixed boundary conditions, Equation (3.50) is given as

w =
qL4

16u3Dtanh u

[
cosh

(
u
(
1− 2x

L

))
cosh u

− 1

]
+
qL2x

8u2D
(L− x) . (3.53)

where u in this case can be found from

135

16u9

[
2u3

15
− u3

5 sinh2u
+

4u

5
− 3u2

5 tanhu

]
=

E2h8

(1− v2)
2
q2L8

, (3.54)

and maximum neutral axis deflection at x = L
2 , i.e. Equation (3.52) is written as

wmax =
5qL4

384D

[
24

u3

(u
2
+ csch u− coth u

)]
(3.55)

The problem is solved using an updated Lagrangian formulation with max-ent shape functions with

L = 5, h = 0.2, E = 1 × 107, ν = 0.25 and q = 40, all in compatible units. The total pressure is

applied in 20 equal step. Due to symmetry only half of the plate is analysed with 93 (31× 3) nodes and

60 (30 × 2) background integration cells as shown in Figures 3.5(a) and 3.5(b). The way to impose the
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essential boundary conditions and the final deformed and undeformed configuration with contours of uy

for both the cases are given are also given in Figures 3.5(a) and 3.5(b). Comparison for the pressure

versus displacement with the analytical solution for both cases are given in Figure 3.6(a) and 3.6(b),

which are in excellent agreement. The deflected profile of the plate is also compared with the analytical

solution for both cases and are shown in Figures 3.7(a) and 3.7(b) and are in excellent agreement. It is

also clear from Figures 3.6(a) and 3.6(b) that the response of the plate with simply supported boundary

conditions is highly nonlinear compared to the one with fully fixed boundary conditions.

(a) Simply supported (b) Fully fixed

Figure 3.5: Discretization, imposition of essential boundary conditions and undeformed and deformed
configuration for the infinite plate strip problem
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Figure 3.6: Pressure versus displacement for the infinite plate strip problem

3.4.2 Elastic cantilever Beam

The second problem to demonstrate the implementation of the finite deformation is an elastic cantilever

beam. Two different cantilever beams are analysed in this section, one with a uniformly distributed load

(UDL) and the other with tip load. The geometry, boundary condition and loading with deformed and

undeformed configuration for the the cantilever beam with UDL is shown in Figure 3.8(a), where L, H,

B are the length, height and breadth in the x, y and z direction, ux and uy are the deformations in x

and y direction respectively. The beam is subjected to UDL of q. The problem is solved with L = 10,

H = 1, B = 1, E = 1.2 × 107, ν = 0.2 and q = 10. The discretization parameters used are 63 (21 × 3)
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Figure 3.7: Deflected profile or w/h versus x for the infinite plate strip problem

nodes and 40 (20×2) background integration cells. The pressure is applied to the neutral axis in 20 equal

increments and 1 × 106 is used as convergence criterion for the Newton’s algorithm. The undeformed

and final deformed configuration is also shown in Figure 3.8(b), which is clearly a very large deformation.

Figures 3.9(a) and 3.9(b) shows the comparison of pressure versus ux and uy with the reference solution

from [129], which are in good agreement with the reference solution. The same problem is used in [221]

to validate the application of FEA in finite deformation problems. The geometry, boundary condition

(a) Geometry (b) Deformed and undeformed configuration

Figure 3.8: Geometry with undeformed and deformed configuration of the elastic cantilever beam problem
with UDL

and loading for the cantilever beam subjected to tip load are shown in Figure 3.10(a), where all the

parameters are the same as for the beam with UDL but P is the tip load and θ is the angle of rotation

or the angle which the neutral axis makes with the horizontal after deformation. For this problem, all

the material, geometry and discretization parameter are also the same as the beam with UDL. In this

case load P = 100 is applied at the tip of neutral axis with 20 equal load steps. Figure 3.10(b) shows

the undeformed and final deformed configuration for this problem, which is clearly a finite deformation

problem. Figures 3.11(a), 3.11(b) and 3.11(c) shows the comparison of P versus ux, uy and θ with the

reference solution [221], which shows excellent agreement. The same problem is also solved in [67] using

FEA.
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(b) Pressure versus uy

Figure 3.9: Pressure versus ux and uy for the elastic cantilever beam problem with UDL

(a) Geometry (b) Deformed and undeformed configuration

Figure 3.10: Geometry with undeformed and deformed configuration of the elastic cantilever beam prob-
lem with tip load

3.4.3 Double notched tensile specimen

The third problem is the deep double notched tensile specimen, which is the standard benchmark for the

incompressible small strain plasticity and can be found in a number of reference, e.g. [67, 81, 230]. The

geometry with boundary conditions and loading for this problem is shown in Figure 3.12. The dimension

of the tensile specimen used in this case are, height h = 30 and width w = 10. The specimen consists

of two very deep notches in the center, while the lower and upper portions are connected by a ligament

with dimension b = 2. A displacement u is applied at the upper and lower edges of the specimen. Due

to symmetry only a quarter of the upper right shown in gray in Figure 3.12 is analysed. The material

properties used in this case are E = 206.9, ν = 0.29, σy = 0.45. The problem is discretized with 96 (6×16)

nodes and 75 (5 × 15) background cells as shown in the right of Figure 3.12, while (4 × 4) gauss points

are used in each background cell. A total deflection of u = 0.17 is applied in 20 equal increments. The

plastic gauss points at the end of increments 2, 5, 10, 15, 20 are shown in red in Figure 3.13. The plastic

region increases incrementally starting from 2nd iteration and the full formation of the shear band can

be seen at the 20th iteration. The final contours of ux and uy is also shown in Figure 3.14(a). In this

problem, if R represents the total reaction on the upper edge, then the net axial stress σ̄ on the ligament
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Figure 3.11: P versus ux, uy and θ for the elastic cantilever beam problem with tip load

is written as [81]

σ̄ =
R

b
. (3.56)

The limiting net axial stress on the ligament σ̄lim in the case of perfect plasticity is determined by Prandtl

and is given as [81, 230]

σ̄lim =
(2 + π)√

3
σy ≈ 2.97σy. (3.57)

The final ligament net stress normalized over the yield strength, σ̄/σy versus edge deflection is shown in

Figure 3.14(b). For comparison the Prandtl limiting load and plot is also given from [81] and a very good

agreement can be seen, and the plot converges to the Prandtl limiting net axial stress.

3.4.4 Thick wall cylinder expansion

The final example is the expansion of the thick walled cylinder and is the standard benchmark for finite

deformation with plasticity and can be found in a number of references, e.g. [67, 271–273]. A thick walled

cylinder with internal radius of ri = 10 and outer radius ro = 20m is expended to the internal radius

ro = 85m. The material properties chosen in this case are E = 11.05GPa, ν = 0.454 corresponding to

shear modulus µ = 3.8GPa and bulk modulus k = 40GPa and σy = 0.5MPa, so that comparison can
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Figure 3.12: Geometry, boundary conditions, loading and discretization for double notched tensile spec-
imen

be made with the rigid plasticity analytical solution given in [127] as

p =
2σy√
3

(√
r2o − r2i + r2

r

)
(3.58)

where p in the internal pressure and r is the current internal radius. The problem is solved using the

standard axisymmetric approach with polar coordinates [283, 336] with x and y in this case are the radial

and axial coordinates for the cylinder. In this case, the following modification needs to be made to the

standard formulations.

1. The strain displacement matrices B and G in Equations, 2.44 and 3.39 are written as

Bi =


∂ϕi

∂x 0

0 ∂ϕi

∂y
ϕi

x 0
∂ϕi

∂y
∂ϕi

∂x

 , Gi =



∂ϕi

∂x 0

0 ∂ϕi

∂y
ϕi

x 0
∂ϕi

∂y 0

0 ∂ϕi

∂x

 , (3.59)
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Figure 3.13: Plastic gauss points at different increments for double notched tensile specimen

(a) ux and uy contours
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(b) Normalised net stress, σ̄/σy versus edge deflection

Figure 3.14: ux, uy contours and normalized net stress, σ̄/σy versus edge deflection for double notched
tensile specimen

where x is the updated radial position of the Gauss point.

2. The Equations for internal force (3.26) and stiffness matrix (3.38) are written as

f intn+1 =

ng∑
i=1

BT
i σi |Ji|wixi, (3.60)

Kn+1 =

ng∑
i=1

GT
i aGi |Ji|wixi. (3.61)

The problem geometry with the axisymmetric discretization and the corresponding boundary condition

are shown in Figure 3.15, i.e. the problem is discretized with 22 nodes and 10 background cells. The

total internal displacement of 75 m is applied in 30 equal steps and the comparison of internal pressure

versus current internal radius with the analytical solution is shown in Figure 3.16, which are in excellent



60 Chapter 3. Modelling nonlinearities with element-free Galerkin method

Figure 3.15: Geometry, discretization and boundary conditions for the thick walled cylinder problem

agreement.
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Figure 3.16: Internal pressure versus current internal radius for the thick walled cylinder problem

3.5 Concluding remarks

In this chapter EFGM with max-ent shape functions has been used for modelling problems subjected to

elasto-plasticity and finite deformation. Detailed formulations of the elato-plasticity was given followed

by its implementation in the finite deformation framework, including updated and total Lagrangian.
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Different benchmark numerical examples subjected to elasto-plasticity and finite deformations are solved

to demonstrate the implementation and performance of the current approach. Excellent agreement has

been shown between the analytical or reference results and the corresponding EFGM results in case of all

the attempted benchmark problems. The formulation developed throughout this chapter will be extended

to nonlinear adaptive analysis in the next chapter, which include error estimation, refinement and the

projection of path dependent variables from one discretization to the next one.



Chapter 4

Error estimation and adaptivity in

element-free Galerkin method

4.1 Introduction

Efficient computational modelling of problems, including both material and geometric nonlinearities re-

mains challenging. Often these problems are modelled with an adaptive FEM due to their complicated

nature and high computational cost. For nonlinear problems, adaptive analysis consists of estimation

of the discretization error, which is the prime source of error in computational mechanics, with a suit-

able refinement strategy and projection of the path dependent variable from the old discretization to

the new one. Meshless methods offer the attractive possibility of simpler adaptive procedures involving

no remeshing, simply insertion or deletion of nodes. In this chapter, an adaptive meshless approach

for nonlinear solid mechanics is developed based on the element-free Galerkin method with updated

Lagrangian formulations for two- and three-dimensional problems. An existing error estimation proce-

dure for two-dimensional linear elasto-static problems, is extended here for two- and three-dimensional

nonlinear problems, including finite deformation and elasto-plasticity, and a new adaptive procedure is

described and demonstrated.

It is clearly recognized in FE modelling that adaptive procedures based on robust error estimates

are necessary to remove user-bias and to automate analyses, and mature procedures are now available,

many based on recovery type measures such as the famous Zienkiewicz-Zhu approach [334, 335]. Error

estimation and adaptivity have yet to become widely used in meshless methods partly because of the

current lack of a firm mathematical basis for error estimation as has been developed for FEs. However,

there is evidence of a strong interest as indicated in the following. Chung and Belytschko [62] described

possibly the first error estimator for the EFGM using the difference between raw EFGM results and

projected stresses from the same nodal distribution but with reduced domains of influence. In [137]

error estimation and adaptivity are performed using stress gradients, thus requiring second derivatives of

the meshless shape functions. In [105] a computationally efficient method for error estimation based on

tessellation is proposed for the EFGM, i.e. error at a Gauss point is calculated as the difference between

the EFGM stress or strain and that calculated at the nearest node. A slight change is made in [104]

where comparison is instead made with a field calculated using a first-order Taylor series expansion with

a four quadrant criterion, and the two approaches are compared by the same authors in [103]. [256]

describes an error estimate for the EFGM based on a Taylor series with a higher-order derivative, and a

structured grid is used instead of a cloud of points, which makes the implementation very straightforward.

– 62 –
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Error estimation based on the gradient of the strain energy density is proposed in [211], and an adaptive

analysis for EFGM is proposed in [197] based on background cells, the error being estimated based on

two different integration orders, and a refinement algorithm based on local Delaunay triangulation is also

proposed. In [184], the approach from Chung & Belytschko [62] is used for error estimation and adaptive

analysis in crack propagation problems. A Zienkiewicz-Zhu recovery type error estimator is proposed

in [182]; two methods are used for stress recovery, including that due to Chung & Belytschko [62] with

the discrete MLS over a stationary least square fitting, and it is found that the approach of [62] is more

effective, and is used further for adaptive analysis in [183].

The survey of the current literature reveals that to date the adaptive meshless methods have been

limited in their use to elasto-static problems with infinitesimal strains. In this chapter, we incorporate a

new adaptive procedure into the max-ent EFGM for two- and three-dimensional material and geometri-

cally nonlinear problems with updated Lagrangian formulations, including a robust means of transferring

data between discretizations.

This chapter is structured as follows. Adaptive procedures for the linear elastic EFGM are discussed in

§4.2, including error estimation formulation with one- and two-dimensional numerical examples given in

§4.2.1. The refinement strategy for two-dimensional problems is discussed in §4.2.2 and the automatic way

to calculate the two-dimensional nodal domains of influence based on Voronoi diagram is given in §4.2.3.
A number of two-dimensional adaptive linear elastic numerical examples are given in §4.2.4 to show the

performance of the current approach. The adaptive procedure developed is extended to two-dimensional

nonlinear problems in §4.3, including error estimation in §4.3.1, transfer of the path dependent variables

between the consecutive discretization is also explained in §4.3.2 and a number of numerical examples

are given in §4.3.3. The two-dimensional formulation is extended to three-dimensional nonlinear prob-

lems in §4.4 and the required changes to the two-dimensional formulation and implementation are also

explained. A number of nonlinear three-dimensional numerical examples are also given in §4.4.1 to show

the implementation and performance of the proposed approach in case of three-dimensional problems.

Concluding remarks are given in §4.5.

4.2 Adaptivity in linear-elastic problems

The error estimation algorithms, when applied to FEs, work element-by-element. For the EFGM, no

elements are present so instead we assess error quadrature cell by quadrature cell. The main components

required in an adaptive algorithm for linear analysis are as follows:

1. estimation of discretization error;

2. refinement strategy;

Each are discussed with reference to the meshless modelling used here in turn below.

4.2.1 Error estimation

Local and global recovery type error estimation procedures are given in this section, based on the pro-

cedure proposed in [62], which is confined to linear elasto-static problems. The basic idea of this error

estimation procedure is to use the difference between the projected and the direct EFGM solutions and

is the same as the conventional recovery type error estimation in the FEM [335]. In the FEM, strain

and the corresponding stress fields are discontinuous at the inter-element boundaries, and different stress

smoothing techniques have been used to estimate continuous strain and stress fields. This continuous

strain and stress field is then used as a projected solution for the recovery type error estimation in the

FEM. As there are no elements in the EFGM, so there is no issue of strain and stress discontinuity, and
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the procedure used for the error estimation in case of the FEM is not directly applicable to the EFGM,

because the derived stress and strain fields are already smooth. The error estimation procedure proposed

for the EFGM in [62] is used here for the error estimation, in which projected stresses are calculated

from the nodal stresses based on reduced domains of influence. It was also shown in [62] that the error

estimator performs well, when the domain of influence for stress projection is as small as possible. A

conventional [332] recovery type error estimation procedure is used in this case, i.e. the error is initially

calculated locally at the Gauss (or integration) points, and then the global error is calculated integrating

over the problem domain using an appropriate norm.

The exact error in stress or strain fields at a point x is the difference between the exact and numerical

(EFGM) values, i.e.

σe (x) = σ (x)− σh (x) , εe (x) = ε (x)− εh (x) (4.1)

where σe (x) and εe (x) are the exact error in the stress and strain at a point x respectively, σ (x) and

ε (x) are the exact stress and strain at a point x while σh (x) and εh (x) are the EFGM stress and

strain at a point x. Error for the individual cell and for the whole domain can then be found using an

appropriate norm, error in energy norm is used in this research and is written as

∥e∥ =

∫
Ω

σe (x)
T
D−1σe (x) dΩ

 1
2

=

∫
Ω

εe (x)
T
Dεe (x) dΩ

 1
2

. (4.2)

As the exact stresses are not available for real-life problems, so the projected stress σp (x) and projected

strain εp (x) are used in Equation (4.1) instead of the exact stress and exact strain respectively, i.e.

σe (x) ≈ σep (x) = σp (x)− σh (x) , εe (x) ≈ εep (x) = εp (x)− εh (x) (4.3)

In the case of the EFGM, the stress and strain vector returned at any point x is written as

σh (x) =

na∑
i=1

DBiui, εh (x) =

na∑
i=1

Biui (4.4)

where na is the number of nodes in the support of point x based on the domain of influence for analysis

dam and ui are fictitious nodal values for node i. The projected stress and strain vector at x are recovered

using

σp (x) =

np∑
j=1

ψj (x)σ
h (xj) , εp (x) =

np∑
j=1

ψj (x) ε
h (xj) . (4.5)

Here ψj (x) is the shape function of a node j at a point x based on a reduced domain of influence dpm and

np is the number of nodes in the support of point x based on that reduced domain of influence. Equation

(4.2) in this case is written as

∥e∥ ≈ ∥ē∥ =

∫
Ω

σep (x)
T
D−1σep (x) dΩ

 1
2

=

∫
Ω

εep (x)
T
Dεep (x) dΩ

 1
2

, (4.6)

where ∥ē∥ is the estimated error in energy norm. To measure the quality of an error estimator, effectivity

index is used, which is the ratio of estimated error to the exact error and is given as [62, 335]

θ =
∥ē∥
∥e∥

. (4.7)
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The quality of an error estimator is mainly dependent upon the procedure used to get the projected

strains and stresses. For an asymptotically exact error estimator, the discretization error approaches the

exact error or θ approaches 1, when h→ 0, where h is the distance between the neighbouring nodes. The

relative error in energy norm is often used for adaptive analysis and is written as

η =
∥ē∥
∥U∥

× 100, (4.8)

where ∥U∥ is the energy norm and is written as

∥U∥ =

∫
Ω

∣∣∣σp (x)T D−1σp (x)
∣∣∣ dΩ

 1
2

. (4.9)

Another way to estimate error is point-wise error in energy, i.e. to calculate the error in energy at

each Gauss point. The equations for the exact and estimated point-wise error in energy are written as

∥ep∥ =
[
σe (x)

T
D−1σe (x)

] 1
2

(4.10)

∥ep∥ ≈ ∥ēp∥ =
[
σep (x)

T
D−1σep (x)

] 1
2

(4.11)

Numerical Examples

Two linear elastic numerical examples in one- and two-dimensions are now given to get an insight into

the error estimation. Cubic spline weight functions are used in all the examples.

One-dimensional bar

The first example is the one-dimensional bar problem where the structure is subjected to body load with

the same boundary conditions as shown in Figure 2.15. The problem is solved for two different loading

conditions, i.e. b(x) = 100 and b(x) = 100x with E = 1 and L = 1. The problem is discretized with 11

equidistant nodes and 10 background integration cells. The analytical solutions for the stress field for

both loading conditions are

σ =

{
100 (1− x) , for b(x) = 100,

100
(
1− x2

)
, for b(x) = 100x.

(4.12)

In this case, the domain of influence for analysis and projection is determined using dam = damaxh and

dpm = dpmaxh respectively, where h is the distance between the two neighbouring nodes and damax and

dpmax are the scaling parameters for the nodal domain of influence for analysis and projection respectively.

Comparison between the numerical (EFGM), projected and analytical stress distribution along the length

of the bar, calculated at Gauss points are shown in Figures 4.1(a) and 4.1(b) for each of the loading

conditions, i.e. b(x) = 100 and b(x) = 100x. The scaling parameters used in this case are damax = 1.4 and

dpmax = 1.2. From Figures 4.1(a) and 4.1(b) it is clear that the projected stress distribution is closer to

the analytical stress distribution than the corresponding EFGM stress distribution. In Figure 4.1(a) the

profile of the stress distribution is linear, and the oscillation in the EFGM stress is constant throughout

the profile, while in Figure 4.1(b) the profile of stress distribution is parabolic and the oscillation in the

EFGM stress increases with an increase in stress gradient.

To determine the optimal combination of damax and dpmax for the best performance of the error esti-

mation, the effectivity index (θ) for each of the loading conditions is given in Figure 4.2(a) and 4.2(b).
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From these plots, clearly the optimal value of the effectivity index is obtained using a smaller value of

dpmax. It is also clear from these plots, that for smaller values of damax the value of effectivity index is close

to one for all values of dpmax but this may not be an optimal option and is further analysed in Figures

4.3(a) and 4.3(b). In Figure 4.3(a) and 4.3(b), relative error is given for the same combination of damax

and dpmax, where it is shown that for smaller value of damax, the effectivity index is close to one although

the relative error is higher.
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Figure 4.1: Comparison of EFGM, projected and analytical stress at Gauss points using damax = 1.4 and
dpmax = 1.2 for one-dimensional bar problem
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Figure 4.2: Effectivity index (θ) for different damax and dpmax values for one-dimensional bar problem

Hole in an infinite plate

The second numerical example is the same hole in an infinite plate problem, with the same geometry,

loading and boundary condition as shown in Figure 2.22. The material and geometrical parameters used

in this case are the same as given in §2.8. The analytical solution for the displacement and stress fields

are given in Equations (2.81) and (2.82) respectively. Two different discretizations are considered for

this problem to demonstrate the performance of the error estimator. The first discretization uses 121

nodes and is shown in Figure 4.4(a), while the second uses 441 nodes and is shown in Figure 4.4(b). The

problem with 121 nodes is analysed with damax = 1.5 and dpmax = 1.1 and the contours of cell-wise error in

energy norm are shown in Figure 4.5(a) with relative error in energy norm of 2.16%. The error is higher
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Figure 4.3: Relative error (η) for different damax and dpmax values for the one-dimensional bar problem

near the centre of the hole as expected. For comparison, the contours of exact cell-wise error in energy

norm are also shown in Figure 4.5(b) with relative error in energy norm of 1.72 %. The contours of the

cell-wise error in energy norm and relative error are in close agreement with each other. A comparison

is also made between the estimated and exact error for the second discretization with 441 nodes and the

contours of the cell-wise error in energy norm are shown in Figures 4.6(a) and 4.6(b), which are in a very

good agreement. For this case, corresponding values of the estimated and exact relative error in energy

norm are 0.70 % and 0.56 % respectively, which are very close to each other. The relative error in energy

norm also decreases from the coarse discretization to the fine discretization.

To find out the optimal combination of parameters for damax and dpmax, plots of the effectivity index

for a discretization of 121 nodes for different combinations of damax and dpmax is shown in Figure 4.7(a).

Once again the error estimator gives very good results for smaller value of dpmax, i.e. the effectivity index

approaches 1 and increasing the value of dpmax spoils the performance of the error estimator. Similar to

the one-dimensional bar problem, for this problem for smaller value of damax, the effectivity index is also

very close to 1 for all values of dpmax but again is not an optimal combination to use in the analysis and

is further analysed in Figure 4.7(b). In Figure 4.7(b) plots for the relative error in energy norm for the

same combination of damax and dpmax are shown, where clearly for a smaller value of damax the relative

error is relatively high.

4.2.2 Refinement strategy

Having devised a means of estimating error, we now move to the refinement strategy. The approach is

the same as that used in the original Zienkiewicz-Zhu paper [332], where the target is the reduction of

the relative error for the whole problem domain below a set value η, i.e.

η < η. (4.13)

The goal of the adaptive analysis is to distribute the error equally into each background cell, so the

permissible error in each background cell ∥e∥k is written as

∥e∥k =
η

100

(
∥U∥2

nc

) 1
2

, (4.14)
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Figure 4.4: Problem discretizations with background cells and nodes for the hole in an infinite plate
problem
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Figure 4.5: Comparison of estimated and exact cells-wise error in energy norm for 121 nodes for damax =
1.5 and dpmax = 1.1 for the hole in an infinite plate problem
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Figure 4.6: Comparison of estimated and exact cells-wise error in energy norm for 441 nodes for damax =
1.5 and dpmax = 1.1 for the hole in an infinite plate problem
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Figure 4.7: Effectivity index (θ) and relative error (η) for different damax and dpmax values for 121 nodes
for the hole in an infinite plate problem

where nc is the total number of background cells. Integration cells need to be refined for which
∥ep∥k

∥e∥k

> 1.

The step-by-step refinement of the cell is illustrated in Figure 4.8, as suggested in [256]. It is clear

from the figure that in the cells which need refinement, five new nodes are inserted, one on each side and

one in the middle of the cell, and then the cell is further divided into four new cells. The refinement

strategy used here is selected due to the use of background mesh in our case, where nodes are attached to

the background cells. Further division of the cells retains the background mesh, which can assist in the

implementation of the kd-tree (k-dimensional tree) with the background mesh algorithm [29]. Although

the kd-tree with background mesh is not used in this chapter, it is a way to search for nodes in the

support of Gauss points, i.e. to take advantage of the computational efficiency of background mesh

and kd-tree algorithm simultaneously and will be implemented in the coming chapters. Furthermore,

refinement strategy used here is simple to implement and straightforward to extend to three-dimensional

case.

Figure 4.8: Step by step refinement of the integration cells

4.2.3 Domain of influence based on Voronoi diagram

Calculation of proper nodal influence domains for nonuniform nodal distributions, results in our case from

adaptive refinement, is not a straightforward task. The nodal influence domains should be smaller in a

region with fine discretization as compared to a region with coarse discretization. This size distribution

of the influence domains maintains the computational efficiency as well as the local characteristics of

the meshless solution without unnecessary over-smoothing in a region with fine discretization, while at

the same time making sure that there are sufficient nodes in the support of Gauss points necessary for

the shape function calculations in a region with coarse discretization. In this research, the method of

Voronoi diagrams [180, 181] are used to calculate the nodal domain of influence. As the size of domain
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of influence for node i is dmi = dmaxci, where dmax is a scaling parameter and ci is maximum distance

to a node in a set of surrounding nodes, which are determined in this case using the information from

Voronoi diagrams, i.e.

ci = max
j∈Sj

∥xj − xi∥ . (4.15)

Sj is a set of surrounding nodes and is given as

Sj = [j : V (j) ∩ V (i) ̸= ∅] (4.16)

where V (i) is the Voronoi cell of a node i. For illustrative purposes, a sample 2D grid of nodes is shown

in Figure 4.9(a), its Voronoi diagram is shown in Figure 4.9(b) and the corresponding rectangular nodal

domains of influence (reduced in size for clarity) are shown in Figure 4.9(c). For two-dimensional prob-

(a) (b) (c)

Figure 4.9: Problem discretization, Voronoi diagram and corresponding nodal domains of influence

lems, built-in MATLAB functions “voronoin” and “voronoi” are used to calculate the nodal domains

of influence and plotting the Voronoi diagram respectively. The Voronoi diagram generated by MAT-

LAB is unbounded, so proper care is needed to truncate the Voronoi diagram according to the problem

boundaries.

4.2.4 Numerical examples

To demonstrate the implementation and performance of the error estimation in the adaptive analysis for

linear elastic problems, numerical examples are now presented. The results from the adaptive refinement

are also compared with the corresponding uniform refinement with the same number of degrees of freedom.

Cantilever beam

The first example is a two-dimensional cantilever beam subjected to parabolic traction at the free end

and fully fixed at the other. The coordinate system, boundary conditions, geometry and loading for the

beam are shown in Figure 4.10. The expression for the traction applied on the right-hand side of the

beam is

p = − P

2I

[
D2

4
− y2

]
, (4.17)
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where P is the total load. The problem is solved with L = 48, D = 12, P = 1000, ν = 0.3, E = 30× 106,

damax = 1.5, dpmax = 1.1 and η = 2%, all in compatible units. The step by step adaptive refinements are

shown in Figure 4.11 with 175, 319 and 598 nodes in the first, second and third discretizations respectively.

Nodes are automatically inserted in a high-stress region, i.e. near the fixed boundary. The corresponding

step by step Voronoi diagrams for the adaptively refined discretizations are also shown in Figure 4.12,

used for the calculation of the influence domains are shown in Figure 4.13. The influence domains are

smaller in a region with fine discretization as compared to the region with coarse discretization. This size

distribution of the influence domain maintains the local characteristics of the meshless solution without

unnecessary over-smoothing in a region with fine discretization, while at the same time making sure that

there are sufficient nodes in the support of Gauss points necessary for the shape function calculations in a

region with coarse discretization. The same problem is also solved with uniformly refined discretizations

Figure 4.10: Geometry, boundary condition and loading for the cantilever beam problem

(a) First (175 nodes) (b) Second (319 nodes)

(c) Third (598 nodes)

Figure 4.11: Step by step adaptive refinement for the cantilever beam problem

shown in Figure 4.14 with approximately the same number of degrees of freedom as in corresponding,

adaptive discretizations. The corresponding step by step Voronoi diagrams and the domains of influence

are also shown in Figures 4.15 and 4.16 respectively. The sizes of the influence domains are the same

throughout the problem domain because of the uniformly distributed nodes. The comparison of the

relative error (η) versus degrees of freedom for the two cases, i.e. adaptively refined and uniformly refined,

is shown in Figure 4.17 where it is clear that for the same number of degrees of freedom, the adaptively

refined case performs better and the decrease in relative error is greater as compared to the uniformly

refined case. The reason is that, in the adaptively refined case, more nodes are concentrated in high-stress

regions with high discretization error.
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(a) First (b) Second

(c) Third

Figure 4.12: Step by step Voronoi diagram for the adaptively refined cantilever beam problem

(a) First (b) Second

(c) Third

Figure 4.13: Step by step influence domains for the adaptively refined cantilever beam problem

(a) First (175 nodes) (b) Second (297 nodes)

(c) Third (588 nodes)

Figure 4.14: Step by step uniform refinement for the cantilever beam problem

Square block problem

The second example is a square block subjected to uniform unit traction on the left edge and fully fixed

on the bottom edge. The geometry, boundary conditions and loading for this problem are shown in

Figure 4.18. The problem is solved with E = 1 × 103, ν = 0.3, damax = 1.5, dpmax = 1.1 and η = 3.0%,

all in compatible units. The step by step adaptive refinement for this problem is shown in Figure

4.19 with 121, 221 and 333 nodes in consecutive discretizations. During the adaptive analysis, nodes

are automatically added to the high-stress regions. The step by step Voronoi diagrams for the three

consecutive discretizations are shown in Figure 4.20, which are used here for calculation of the nodal

domain of influence. The domains of influence for all the nodes in the problem domain in all the three
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(a) First (b) Second

(c) Third

Figure 4.15: Step by step Voronoi diagram for the uniformly refined cantilever beam problem

(a) First (b) Second

(c) Third

Figure 4.16: Step by step influence domains for the uniformly refined cantilever beam problem
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Figure 4.17: Relative error (η)% versus degrees of freedom for the cantilever beam problem

discretizations are shown in Figure 4.21. It is clear from Figure 4.21, that the influence domains are

adjusted automatically with reference to the nodal distribution.

The same problem is also solved for uniform discretization with approximately the same number of

degrees of freedom as in Figure 4.19 and are shown in Figure 4.22 with 121, 225 and 361 in the first,

second and third discretizations respectively. The relative errors (η) versus the degrees of freedom in the

adaptive case and uniform case are compared in Figure 4.23. The adaptive case clearly performs better
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than the uniform refinement case.

Figure 4.18: Geometry, boundary condition and loading for the square block problem

(a) First (121 nodes) (b) Second (221 nodes) (c) Third (333 nodes)

Figure 4.19: Step by step adaptive refinement for the square block problem

(a) First (b) Second (c) Third

Figure 4.20: Step by step Voronoi diagram for the adaptively refined square block problem
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(a) First (b) Second (c) Third

Figure 4.21: Step by step influence domains for the adaptively refined square block problem

(a) First (121 nodes) (b) Second (225 nodes) (c) Third (361 nodes)

Figure 4.22: Step by step uniform refinement for the square block problem
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Figure 4.23: Relative error (η)% versus degrees of freedom for the square block problem

L-shaped plate

The final example to show the performance of the linear elastic adaptive analysis is the L-shaped plate

problem, the geometry, boundary conditions and loading for which are shown in Figure 4.24. Here point

A in Figure 4.24 is a point of high stress concentration due to the geometry of a re-entrant corner. This
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problem is solved with E = 1× 103, ν = 0.25 , damax = 1.5, dpmax = 1.1 and η = 5.0%, all in compatible

units. The step by step adaptive refinements for this problem are shown in Figure 4.25 with 225, 281,

343 and 421 nodes in first, second, third and fourth discretizations. As expected the adaptive algorithm

automatically adds nodes in the vicinity of point A, which is a point of high stress concentration and needs

more nodes to accurately capture the solution. The step by step Voronoi diagrams and the corresponding

influence domains for the adaptive discretization are shown in Figures 4.26 and 4.27 respectively. The

automatic adjustment of the size of the influence domain with reference to the nodal distribution is also

clear.

The same problem is also solved with uniform discretizations with the approximately the same number

of degrees of freedom as shown in Figure 4.28 with 225, 280, 341 and 408 nodes in the first, second and

third discretizations. A comparison between the relative error (η) versus the degrees of freedom for the

adaptive and uniform refinements is shown in Figure 4.29, in which the adaptive case once again performs

better than the corresponding uniform discretization case for the same number of degrees of freedom.

Figure 4.24: Geometry, boundary condition and loading for the L-shaped plate problem

(a) First (225 nodes) (b) Second (281 nodes) (c) Third (343 nodes) (d) Fourth (421 nodes)

Figure 4.25: Step by step adaptive refinement for the L-shaped plate problem

4.3 Adaptivity in nonlinear problems

Conceptually adaptive procedures for nonlinear problems are the same as for linear problems but with

additional challenges. In nonlinear problems, an incremental error is estimated and compared with a



4.3. Adaptivity in nonlinear problems 77

(a) First (b) Second (c) Third (d) Fourth

Figure 4.26: Step by step Voronoi diagram for the adaptively refined L-shaped plate problem

(a) First (b) Second (c) Third (d) Fourth

Figure 4.27: Step by step influence domains for the adaptively refined L-shaped plate problem

(a) First (225 nodes) (b) Second (280 nodes) (c) Third (341 nodes) (d) Fourth (408 nodes)

Figure 4.28: Step by step uniform refinement for the L-shaped plate problem

predefined value at the end of each solution step. Refinement is performed if required and path dependent

variables are projected from the old discretization to the new. Figure 4.30 shows a flowchart of the overall

adaptive algorithm used in this study. Components required for the nonlinear adaptive algorithm are the

same as for linear problems with the addition of data transfer between consecutive discretizations. Each

component is now discussed for nonlinear problems with reference to the meshless modelling used here

in turn below.

4.3.1 Error estimation

For finite element modelling the Zienkiewicz-Zhu error estimator (based on the SPR method), has been

widely used for materially and geometrically nonlinear FE problems. An example can be found in [250] for

industrial metal forming problems with elasto-plasticity and finite strains, with estimators based on energy

norms, plastic dissipation and rate of plastic work. In [163] the SPR method is used in large deformation

problems with hyperelasticity as a material model. An adaptive strategy with error estimation based
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Figure 4.29: Relative error (η)% versus degrees of freedom for the L-shaped plate problem

on an L2 norm of strain is used in 3D analysis in [316] with large deformation to model liquefaction

phenomena. The Zienkiewicz-Zhu error estimator is used in the case of viscoplasticity problems, with

application to metal forming processes in [169]. In this case the deviatoric stress is used to calculate

the error in energy norm due to the incompressible nature of the materials. The work in [169] is further

extended in [46] for 3D complex forging simulations and in [134] the SPR method with error based on an

L2 norm in strain is used in analyses involving non-homogeneous soil with large deformation. Here we

extend the use of the recovery type error estimation for the EFGM proposed in [62] and as described in

§4.2.1, to nonlinear problems modelled with the EFGM, including finite deformation and elasto-plasticity.

The error in energy norm is used, as first proposed in [332] as a practical error estimator for engineering

analysis for linear elasto-static problems. This also follows the approach in [250] also mentioned above.

For the nonlinear case, the exact incremental error in energy norm for solution step n for the problem

domain Ω is equal to [45]

∥e∥ =

∫
Ω

∣∣∣(τn (x)− τhn (x)
)T (

∆εn (x)−∆εhn (x)
)∣∣∣ dΩ

 1
2

, (4.18)

where τn (x) and τhn (x) are the exact and numerical Kirchhoff stresses respectively at point x for solution

step n, while ∆εn (x) and ∆εhn (x) are the exact and the numerical incremental logarithmic strains at a

point x for the solution step n, i.e.

∆εn (x) = εn (x)− εn−1 (x) , ∆εhn (x) = εhn (x)− εhn−1 (x) . (4.19)

For practical engineering problems, exact stresses and strain increments are not available, therefore, as

in other recovery methods, projected Kirchhoff stresses τ pn (x) and projected incremental logarithmic

strains ∆εpn (x) are used to obtain an error estimator ∥ep∥, i.e. replacing the exact quantities in Equation

(4.18). In the case of the EFGM the projected Kirchhoff stresses and the projected logarithmic strain

increments for the solution step n at point x are determined from the following equation

τ pn (x) =

np∑
i=1

ψi (x) τ
h
n (xi) , ∆εpn (x) =

np∑
i=1

ψi (x)∆εhn (xi) , (4.20)
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Figure 4.30: Nonlinear adaptive algorithm

where ψi (x) is the shape function of a node i evaluated at a point x with reduced nodal support as

compared to the support used to obtain the original approximate solution. The approach is therefore,

similar to that originally proposed for meshless linear elasto-statics in [62] in obtaining projected values

but uses the incremental error in energy norm as the error measure, in addition to the use of finite

deformation stress and strain measures. The incremental global percentage error for the whole domain

is written as

η =
∥ep∥
∥U∥

× 100, (4.21)
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where ∥U∥ is the incremental energy norm for solution step n

∥U∥ =

∫
Ω

∣∣∣(τ pn (x))T (∆εpn (x))
∣∣∣ dΩ

 1
2

. (4.22)

Equations (4.18) and (4.22) can also be integrated over the each individual integration cell Ωk instead of

the whole problem domain Ω to calculate the incremental error in energy norm and incremental energy

norm for each cell. For the whole domain Ω we can write squares of the error and energy norms as

∥ep∥2 =
nc∑
k=1

∥ep∥2k , ∥U∥2 =
nc∑
k=1

∥U∥2k , (4.23)

where ∥ep∥k is the incremental error estimate in energy norm for background cell k and ∥U∥k is the

incremental energy norm for background cell k.

4.3.2 Refinement strategy & data transfer

The refinement strategy is the same as that used for linear elastic problems in Equations (4.13) and

(4.14) but with corresponding, incremental values. The step by step refinement of the background cells

in this case is also the same as shown in Figure 4.8. A major task in the nonlinear adaptive analysis is an

accurate transfer of path dependent variables between the old and new discretizations. In this chapter,

the moving least squares (MLS) approximation is used to transfer data from the old nodes and Gauss

points to their new counterparts, a strategy suggested in [256]. The reasons for the choice of MLS rather

than max-ent are that the Newton process for determining the Lagrange multipliers for the max-ent

formulation becomes poorly convergent when mapping points are close to a boundary and secondly max-

ent cannot deal with a new node position which falls outside the original domain, as might commonly

occur with finite deformation. The path dependent parameters for the nodes are displacement u, elastic

strain and plastic strain. For the Gauss points the variables are the same except for the omission of

displacement. Writing any of these path dependent variables as ξ, transfer occurs using

ξ (xnew) =

nold∑
i=1

ψi (xnew) ξ (xold)i , (4.24)

where xnew is the position of the new node or Gauss point, xold is the position of old nodes or Gauss

points, nold is the number of old nodes or Gauss points in the support of xnew and ψj (xnew) are MLS

shape functions.

4.3.3 Numerical examples

A number of numerical examples are now presented to demonstrate the correct implementation and

performance of the full nonlinear meshless modelling approach whose components have been described

above. All are taken from or are closely related to problems presented in other publications using finite

element analysis. We begin with a simple small deformation problem in 2D to demonstrate the robustness

of the basic code, before moving on to examples, which demonstrate the full features of the modelling.

In all examples, cubic spline weight functions are used for the calculation of the MLS and max-ent shape

function and the Prandtl-Reuss constitutive model is used to capture the elasto-plastic response.
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Strip footing collapse

The same problem is also analyzed in [81] to determine a limiting load with finite element analysis. The

geometry and boundary conditions of the problem are given in Figure 4.31. The analytical solution for

the limiting load for the same problems is also given in [81] as

Plim = (2 + π) c ≈ 5.14c ≈ 2.97σy. (4.25)

where c is the cohesion or shear strength (and for von Mises plasticity c = σy/
√
3). Only one-half of

the model shown in grey in Figure 4.31 is analyzed due to symmetry with plane strain conditions and

displacement control with E = 1 × 107 kPa, ν = 0.48 and σy = 848.7 kPa. In this case 0.002 m of

vertical displacement is applied to the footing in 10 equal steps, which is clearly a small strain problem.

The scaling parameters for the domain of influence for analysis and projection used in this case are

damax = 1.5, dpmax = 1.1 respectively. This problem is solved with adaptive analysis with a target error

of 20% and the evaluation of adaptive discretizations shown in Figure 4.32 with the number of nodes

in the consecutive discretizations being 121, 191, 305 and 543 respectively. The Voronoi diagrams for

the different discretizations in Figure 4.32 are shown in Figure 4.33, which are used for the calculation

of the nodal influence domains given in Figure 4.34. Contour plots of the effective plastic strain are

shown in Figure 4.35(a). For comparison the same problem is also solved with an initial discretization

without adaptivity and the contours of effective plastic strain are shown in Figure 4.35(b), which is

clearly a very rigid response as compared to the case of the adaptive analysis. The normalized pressure

vs displacement curves are given in Figure 4.36. For comparison the same problem is also solved with

different initial adaptive discretizations shown in Figure 4.32 without adaptivity and the normalized

pressure vs displacement curves are also given in Figure 4.36. The convergence of the solution for the

adaptive analysis as well as for different adaptive initial discretization without adaptivity to the analytical

solution is clear from the plot. The solution of this problem with small deformations and matching to

a known analytical solution gives confidence to extend the proposed method to problems involving large

strains. It is obvious from the plot that the adaptive solution as shown has a number of jumps in the curve.

The jumps represent points where rediscretization is taking place and mapping has been carried out. The

jumps are due to changes in the equilibrium state of the domain due to the altered discretization. They

should not be confused with jumps in displacements. These plots show results from successive analysis

not a single calculation.

Perforated tensile specimen

The second problems which begins to challenge the modelling, is a perforated thin rectangular plate

subject to uniaxial tensile stress applied by prescribed displacements of one set of edges as used in [45].

The same geometry is used here and is shown in Figure 4.37. One-quarter of the plate, shown in grey in

Figure 4.37, is analyzed due to symmetry, using plane strain conditions with displacement control. The

material properties used in this case are E = 1× 105, ν = 0.3 and σy = 1× 103. The scaling parameters

for the domain of influence for analysis and projection used in this case are damax = 1.5, dpmax = 1.2

respectively. A total vertical displacement of 0.3 units is applied to the upper horizontal edge of the plate

over 50 equal steps, clearly making this a finite deformation problem given the original dimensions of the

plate. This example is solved using the adaptive procedure with a target error of 20%. During analysis,

two adaptive refinements are performed. The initial nodal discretization is shown in Figure 4.38(b), while

the first and second refinements (at increasing displacements) are given in Figures 4.38(c) and 4.38(d)

respectively. The final deformed configuration (at the final displacement of 0.3 units) is also shown,

in Figure 4.38(e). The numbers of nodes in the consecutive discretizations are 65, 121 and 229. The
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Figure 4.31: Geometry, boundary condition and loading for the strip footing problem

(a) First (121 nodes) (b) Second (191 nodes) (c) Third (305 nodes) (d) Fourth (543 nodes)

Figure 4.32: Step by step discretizations for the strip footing problem

(a) First (b) Second (c) Third (d) Fourth

Figure 4.33: Step by step Voronoi diagrams for the strip footing problem

refinement procedure subdivides integration cells placing new nodes to define new smaller cells, leading

to a roughly structured pattern of refinement. This is clearly unlikely to be the optimal refinement for

the load increment as a more unstructured arrangement would be expected to be optimal. However, the

simplicity of the refinement algorithm provides a competing advantage.

Contours of effective plastic strain over the deformed configuration at the end of the adaptive process

are shown in Figure 4.39(a), in which a developing shear band of finite thickness is clearly evident in the

thinning section of the plate adjacent to the hole. The same problem is also solved with an initial coarse

discretization without refinement and the contour plot of effective plastic strain at the end of the analysis
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(a) First (b) Second (c) Third (d) Fourth

Figure 4.34: Step by step influence domains for the strip footing problem

(a) Adaptive (b) Discretization 1

Figure 4.35: Effective plastic strain contours for the strip footing problem

is shown in Figure 4.39(b). Comparing these two figures the sensitivity of the level of refinement of the

discretization when conducting finite deformation analysis is clear. Reaction/displacement plots are given

in Figure 4.40, the reaction being the integrated nodal loads along the displaced edge and the displacement

the prescribed displacement. The same problem is also solved with different initial adaptive discretizations

shown in Figures 4.38(b), 4.38(c) and 4.38(d) as well as with very fine or reference discretization shown

in Figure 4.38(a) without adaptivity for the whole problem domain. The convergence of the curve for the

adaptive analysis as well as for different adaptive initial discretization without adaptivity to the reference

solution is clear from the plot. It is also clear from Figure 4.40 that the adaptive analysis captures

the geometric softening behavior much better than the coarse discretization. The steps in the adaptive

analysis curve occur at points of refinement and are not physically meaningful, although they provide a

useful reminder of the adaptive process and follow the presentation in [205]. The effect of re-discretization

at refinement is to change the net equilibrium reaction for the given displacement (as one would expect

between different refinements in FEA, for instance).

Footing loaded on a slope

The third example is footing on a block of elasto-plastic material resembling a natural slope. This problem

also appears in a number of references, e.g. [45, 158, 162, 205, 249] and the modelling of problems, which

are dominated by shear bands are covered using meshless methods in [254, 255, 258]. The geometry,

boundary condition and loading for this problem are taken from [45] and are shown in Figure 4.41. The
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Figure 4.36: Normalized pressure vs displacement for different discretizations for the strip footing problem

material properties used in this case are E = 2.0×104, ν = 0.3 and σy = 30, while the scaling parameters

for the domain of influence for analysis and projection used in this case are damax = 1.5, dpmax = 1.25

respectively. The problem is solved using displacement control applied to a single point offset from the

centre of the footing, under plane strain conditions. A rough and rigid footing is used in this case with

a Young’s modulus of 100 times that of the slope material. A total displacement of 3.0 units is applied

over 50 equal steps. Two adaptive refinements are used in this case with a target error of 15%.

The initial discretization is shown in Figure 4.42(a), while the first and second refinements are given

in Figure 4.42(b), and 4.42(c) with 127, 282 and 570 nodes respectively. The final deformed configuration

for this problem is shown in Figure 4.42(d). The step by step adaptive procedure concentrates nodes

along the shear band, which in this case is curved, as would be predicted by simple limit equilibrium

theory. The contour plots of the effective plastic strain over the deformed configuration at the end of

adaptive analysis is shown in Figure 4.43(a), which clearly show a gradually extending shear band of

finite thickness. Once again, the same problem has been solved with an initial coarse discretization

without refinement and the contours of effective plastic strain over the deformed configuration at the end

of analysis are shown in Figure 4.43(b). The convergence of the load displacement curve to the clear

limit load for the adaptive analysis as well as for different adaptive initial discretization shown in Figures

4.42(a), 4.42(b) and 4.42(c) without adaptivity is clear from the Figure 4.44. For the coarse analysis

however a small hardening response is evident (for the whole structure, recalling that the elasto-plastic

model at the material point is itself only perfectly plastic). For the adaptive case though the response is

closer to perfectly plastic.
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Figure 4.37: Geometry, boundary condition and loading for the perforated tensile specimen problem

(a) Reference (833
nodes)

(b) First (65 nodes) (c) Second (121 nodes) (d) Third (229 nodes) (e) final deformation

Figure 4.38: Step by step discretizations for the perforated tensile specimen problem

Footing loaded on a vertical cut

The fourth example is again a footing, but this time placed adjacent to vertical unsupported face on

a block of elasto-plastic material. The problem matches that found in a number of references, such as
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(a) Adaptive (b) Discretization 1

Figure 4.39: Effective plastic strain contours for the perforated tensile specimen problem
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Figure 4.40: Normalized pressure vs displacement for different discretizations for the perforated tensile
specimen problem

[158, 159, 162]. The geometry and boundary conditions for this problem are given in Figure 4.45 and the

problem is analysed with displacement control under plane strain conditions where a total displacement

of 500 mm is applied over 100 equal steps. The material properties used in this case are E = 2.0 × 104

Pa, ν = 0.3 and σy = 30 Pa, while the scaling parameters for the domain of influence for analysis and

projection used in this case are damax = 1.5, dpmax = 1.2 respectively. A rough and rigid footing is used in
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Figure 4.41: Geometry, boundary condition and loading for the footing loaded on a slope problem

(a) First (127 nodes) (b) Second (282 nodes)

(c) Third (570 nodes) (d) final deformation

Figure 4.42: Step by step discretizations for the footing loaded on a slope problem

this case with a Young’s modulus 100 times that of the block material.

Two refinements are used in this case with a target error of 20%. The initial discretization is shown in

Figure 4.46(a), while the first and second refinements appear in Figures 4.46(b) and 4.46(c) respectively.

The final deformed configuration for this problem is shown in Figure 4.46(d). The step by step adaptive

procedure concentrates nodes along an emerging shear band as expected and once again, the structured

nature of the added nodes is clear. The numbers of nodes for the 1st, 2nd and 3rd discretization are 127,

260 and 544 respectively. Contour plots of effective plastic strain over the deformed configuration are
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(a) Adaptive (b) Discretization 1

Figure 4.43: Effective plastic strain contours for the footing loaded on a slope problem
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Figure 4.44: Normalized pressure vs displacement for different discretizations for the footing loaded on a
slope problem

shown in Figure 4.47(a), which clearly shows a shear band of finite thickness. The same problem is also

solved with an initial discretization without refinement, and the contour plot of effective plastic strain

is shown in Figure 4.47(b). The comparison between the load displacement curves for the adaptive and

coarse discretization is shown in Figure 4.48. Here we can see a perfectly plastic form of failure occurring

as the wedge of soil slides as a rigid body along the shear plane. The roughness of the footing and the

displacement control serve to control the displacement despite, there being near-zero stiffness. It is clear

here that the problem requires finite deformation modelling and it is also clear that finite elements along

the shear band would be severely distorted.
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Figure 4.45: Geometry, boundary condition and loading for the footing loaded on a vertical cut problem

4.4 Extension to three-dimensional nonlinear problems

Extension of the proposed adaptive algorithm to the three-dimensional nonlinear problems is straightfor-

ward but with additional challenges. Intel R⃝Visual FORTRAN is used as a programming language for

three-dimensional problems because of the high computational cost associated with programming using

MATLAB. IMSL FORTRAN numerical libraries have been used for the solution of the linear system of

equations, calculation of the matrix inverse, eigenvalues and eigenvectors. For three-dimensional prob-

lems with unstructured nodes, results from an adaptive analysis, calculation of the proper nodal domains

of influence is very challenging. For these problems, three-dimensional Voronoi diagrams are required

to calculate the influence domains as explained in §4.2.3 for a two-dimensional case. Luckily, Voro++

[265, 266] is available and has been used here. This is an open-source software library for the calculation

of three-dimensional Voronoi diagrams for a set of particles in space, written in C++. The Voro++

library also provides a list of neighbouring nodes for all the nodes in the problem domain based on the

nodes which share the same face of the Voronoi cells. This neighbouring list can be used for the calcula-

tion of the influence domain based on the maximum distance between the nodes of interest and the other

neighbouring nodes. Since it is required for the updated Lagrangian formulation to calculate the nodal

influence domains at the end of each solution step and for each new discretization after refinement, it is

necessary to link the Voro++ library with to the FORTRAN code to make the process automatic. The

Voro++ library is written in C++, so the ISO C BINDING module is used to call and linked the library

from FORTRAN code. A sample 3D discretization is shown in Figure 4.49(a), the corresponding Voronoi

diagram generated with the Voro++ library is shown in Figure 4.49(b) and the resultant hexahedral

nodal influence domains (reduced in size for clarity) are shown in Figure 4.49(c).

For three-dimensional problems, the formulations for the error estimation and projection of the path

dependent variables between the old and new discretizations are the same as in the two-dimensional case

and as explained in the previous section. The refinement strategy for a three-dimensional hexahedral
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(a) First (127 nodes) (b) Second (260 nodes) (c) Third (544 nodes)

(d) final deformation

Figure 4.46: Step by step discretizations for the footing loaded on a vertical cut problem

(a) Adaptive (b) Discretization 1

Figure 4.47: Effective plastic strain contours for the footing loaded on a vertical cut problem

background cell is shown in Figure 4.50. Nineteen new nodes are added in this case with one on each

side, one on each face and one in the middle of the original cell. Furthermore, the cell is divided into

eight new cells.
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Figure 4.48: Normalized pressure vs displacement for different discretizations for the footing loaded on a
vertical cut problem

(a) (b) (c)

Figure 4.49: Three-dimensional problem discretization, Voronoi diagram and corresponding nodal do-
mains of influence
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Figure 4.50: Three dimensional refinement strategy

4.4.1 Numerical examples

Numerical examples are now presented to demonstrate the implementation and performance of the current

approach in solving three-dimensional nonlinear problems. Cubic spline weight functions are used for

the calculation of the three-dimensional MLS and max-ent shape functions while the Prandtl-Reuss

constitutive model is used in elasto-plasticity modelling in all the numerical examples in this section.

Three-dimensional plate with a hole

The first three-dimensional numerical example is a plate with a central hole subjected to unidirectional

tension; the same numerical example is also given in [93]. Geometry and loading for this problem are

shown in Figure 4.51. Due to symmetry only the one-eighth of the problem shown in gray in Figure 4.51 is

modelled with the material properties E = 1.0× 105, ν = 0.3 and σy = 1.0× 103, all in compatible units.

The scaling parameters used for the domains of influence for analysis, and projection are damax = 1.5,

dpmax = 1.1 respectively. The total displacement of 0.1 units is applied to the top face with 10 equal steps

and a relative error used for adaptive analysis is 20%

The step by step adaptive refinements are shown in Figure 4.52 with 63, 243 and 847 nodes in the

consecutive discretizations. The refinement algorithm automatically adds nodes in the thinning section

of the plate, which needs more nodes to accurately model the solution. The step by step plots for the

Voronoi diagrams, which are used here for the calculation of the influence domains are shown in Figure

4.53 and the corresponding domains of influence are shown in Figure 4.54. From Figure 4.54 it is clear

that the nodal domains of influence are smaller in a region, where nodes are relatively close to each other.

The contours of the effective plastic strain at the end of adaptive analysis are shown in Figure 4.55(a),

where the formation of the shear band starting from the hole of finite thickness is clear. The same problem

is also solved with initial discretization without adaptivity and the contours of the effective plastic strain

with the same scale as in Figure 4.55(a) are shown in Figure 4.55(b) with no clear shear band. This shows

the effectiveness of the proposed adaptive strategy for three-dimensional problems. The reaction versus

displacement curve at the end of analysis for the adaptive and different initial discretizations shown in

Figure 4.52 without adaptivity are shown in Figure 4.56. Discretization-1 shows a rigid response without

softening as expected due to necking as compared to all other three cases. The region inside the rectangle

is magnified and is shown in same Figure 4.56, where jumps in the adaptive curves are clear, which is

the point where refinement takes place in the adaptive analysis.

Three-dimensional footing loaded on a vertical cut

The second three-dimensional problem solved by the proposed approach is a three-dimensional footing

loaded near the unsupported faces of a vertical cut. The geometry and loading for this problem are shown

in Figure 4.57. This problem is solved with material properties E = 2.0 × 104, ν = 0.3 and σy = 30

all in compatible units. The scaling parameters used for the nodal domain of influence for analysis, and
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Figure 4.51: Geometry, boundary condition and loading for the 3D plate with a hole problem

(a) First (63 nodes) (b) Second (243 nodes) (c) Third (847 nodes)

Figure 4.52: Step by step discretizations for the 3D plate with a hole problem

projection are damax = 1.35, dpmax = 1.01 respectively. Only the vertical cut section of the problem is

analysed without the footing for the ease of computation, while the rigid footing is modelled by giving
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(a) First (b) Second (c) Third

Figure 4.53: Step by step Voronoi diagrams for the 3D plate with a hole problem

(a) First (b) Second (c) Third

Figure 4.54: Step by step influence domains for the 3D plate with a hole problem

the surface nodes attached to the footing a vertical downward displacement. A total displacement of 0.1

units is applied in 15 equal steps.

A 25% relative error is used for the adaptive analysis, and the resultant step by step adaptive dis-

cretizations are shown in Figure 4.58 with 125, 417 and 1579 nodes in the first, second and third dis-

cretizations respectively. The adaptive algorithm adds nodes in a region, where failure is expected and
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(a) Adaptive (b) Discretization 1

Figure 4.55: Effective plastic strain contours for the 3D plate with a hole problem

Figure 4.56: Reaction vs displacement for different discretizations for the 3D plate with a hole problem

more nodes are needed for accurate modelling. The corresponding Voronoi diagrams for the step by

step discretizations are shown in Figure 4.59. The corresponding step by step influence domains are also

shown in Figure 4.60. The contours of the effective plastic strain at the end of adaptive analysis is shown
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in Figure 4.61(a). The formation of the shear band with finite thickness is very clear in this case. The

same problem is also solved by the initial discretization and the contours of the effective plastic strain at

the end of analysis on the same scale as Figure 4.61(a) are shown in Figure 4.61(b) with no clear shear

band. This shows the effectiveness of our proposed algorithm in case of three-dimensional problems. The

load versus displacement curve for the adaptive and different initial discretization shown in Figure 4.58

without adaptivity are also given in Figure 4.62. Steps in the curve for the adaptive case are points where

refinement takes place.

Figure 4.57: Geometry, boundary condition and loading for the 3D vertical cut problem

(a) First (125 nodes) (b) Second (417 nodes) (c) Third (1579 nodes)

Figure 4.58: Step by step discretizations for the 3D vertical cut problem

4.5 Concluding remarks

In this chapter, a new numerical model for use in two- and three-dimensional nonlinear solid mechanics

has described using meshless methods based on an updated Lagrangian formulation. MATLAB is used as

a programming language for two-dimensional problems, while due to the high computational cost of the

later FORTRAN is used as a programming language for three-dimensional problems. The proposed model

can accommodate both geometrical and material nonlinearity and includes automatic adaptive refinement
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(a) First (b) Second (c) Third

Figure 4.59: Step by step Voronoi diagrams for the 3D vertical cut problem

(a) First (b) Second (c) Third

Figure 4.60: Step by step influence domains for the 3D vertical cut problem

(a) Adaptive (b) Discretization 1

Figure 4.61: Effective plastic strain contours for the 3D plate with a hole problem

as well as a number of other innovative features (such as max-ent shape functions). The error estimation

procedure proposed by Chung and Belytschko [62] for two-dimensional linear elasto-static problems for

the EFGM is extended here to two- and three-dimensional nonlinear problems. The strategy for the

calculation of nodal domains of influence based on Voronoi diagrams is used, which provides enough
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Figure 4.62: Reaction vs displacement for different discretizations for the 3D vertical cut problem

nodes for the stable calculation of the shape function and can also capture the local material behaviour

accurately without over-smoothing the results. For the generation of the Voronoi diagrams for a set of

nodes, the MATLAB built-in function is used for two-dimensional problems, while for three-dimensional

problems, the Voro++ software library is used in the FORTRAN code. An incremental error is calculated

for each solution step and is used as the criterion to identify regions for refinement, which can take place

very simply both due to the meshless approach and the chosen structured grids of nodes. MLS shape

functions are used to transfer the path dependent variables from the old discretization to the new. A

number of two-dimensional linear elastic and two- and three-dimensional nonlinear numerical examples

have been presented to demonstrate the capabilities of the new modelling procedure as a whole.



Chapter 5

Finite element-element-free Galerkin

method coupling

5.1 Introduction

The EFGM is superior to the FEM in terms of accuracy per degree of freedom and convergence but is

computationally more expensive. Therefore, it is more practical to use the EFGM only in a region, which

is difficult to model using the FEM, while the FEM can be used in the remaining part of the problem

domain. The proper coupling between the FEM and the EFGM is then of prime importance for accurate

results.

Interface elements have been used between the EFG and the FE regions of a problem in the past

[40, 243, 312] due to the incompatibility between the use of the MLS shape functions within the EFG

region for the approximation of the field variables and standard shape functions in the FE region. Hybrid

shape functions of these elements consisting of both the FEM, and the EFGM shape functions were formed

using ramp functions [40]. In [166], to facilitate the direct imposition of essential boundary conditions; a

strip of the FE was used on the essential boundary while the EFGM was used in the remaining part of the

problem domain. Furthermore, the FE and the EFG regions were coupled using the procedure proposed

in [40], i.e. using interface elements between the FE and the EFG regions of the problem domain. The

FE-EFGM coupling procedure of [40] was also extended for the case of nodal integration used in the EFG

region in [35]. A continuous blending method for the FE-EFGM coupling was introduced in [94, 135], as

compared to the FE-EFGM coupling procedure of [40], there is no need for ramp functions and the use

of the FE nodes as the EFG nodes are not required therefore, the EFG nodes can also be added within

the transition region. Lagrange multipliers were used for the same coupling in [126] and this approach

was used for linear-elastic numerical examples. The FE-EFGM coupling with Lagrange multipliers was

also extended to nonlinear, reinforced concrete problems in [257], in which reinforcement was modelled

with the FEM and concrete with the EFGM. In [119] a transition or bridge region was used for coupling

between the the FEM and meshless methods. The transition region was discretized by particles, which

were independent of the FE and meshless nodes. A detail review of the coupling between the EFGM

and the FEM can be found in [259]. A coupled FE-EFGM was proposed in [306] for the simulation

of automotive crash tests, in which areas with very high deformation were modelled with the EFGM.

A constraint was used to ensure the continuity of the shape functions across the FE-EFGM interface

without using proper interface elements. A slight variation of the FE-EFGM coupling with interface

elements [40], in which there was no need for a pre-existing transition region between the FE and EFG

– 99 –
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regions was proposed in [260] for the simulation of linear elastic fracture mechanics problems, including

mode-I, mode-II and mixed mode problems. The area near the crack was modelled with the EFGM,

while the FEM was used in the remaining part of the problem domain. A coupled FE-EFGM procedure

based on a collocation approach was proposed in [315], in which at the interface between the FE and

the EFG regions, fictitious nodal values were converted to real nodal displacements using the MLS shape

functions and were assigned back to the FE nodes. In [91], the FE-EFGM coupling procedure of [40] was

used to couple the EFGM with the FEM to conveniently impose the essential boundary conditions in the

dynamic soil structure interaction problems.

In this chapter, a new way of coupling the EFGM and the FEM is proposed using local max-ent

shape functions in the EFG zone, the detail of max-ent shape function can be found in §2.6. These

shape functions possess a weak Kronecker delta property at the boundaries, which provides a natural

way to couple the EFG with the FE regions as compared to the MLS basis functions, which need extra

care to properly couple the same regions. In this new approach, there is no need for interface elements

between the EFG and the FE regions or any other special treatment for the shape function continuity

across the FE-EFGM interface as required in most previous research as outlined above. One-, two- and

three-dimensional linear and two-dimensional nonlinear benchmark numerical examples are solved by the

new approach to show the implementation and performance of the current approach. A convergence

study is also performed based on error in energy norm. It should be noted that this approach is entirely

new and has not, to the author’s knowledge, been suggested before.

The outline of this chapter is as follows. A detailed description of the conventional FE-EFGM coupling

procedure in two-dimensions is given in §5.2, followed by the explanation of the shape functions used in

the FE, EFG and interface regions in §5.2.1. The conventional way of coupling is also extended to one-

and three-dimensional cases in §5.2.2. A detailed description of the new way of coupling is given in §5.3.
One-, two- and three-dimensional, linear elastic numerical examples are then given in §5.4 to show the

implementation and performance of the coupling procedure for linear elastic problems. The proposed

coupled FE-EFGM approach is then extended to nonlinear problems in §5.5, followed by two nonlinear

numerical examples in §5.5.1. Concluding remarks are given in §5.6.

5.2 FE-EFGM coupling using interface elements

A two-dimensional FE-EFGM coupling formulation, using the MLS shape function in the EFG zone for

the approximation of the field variables is given here, which is straightforward to modify for one- or

three-dimensional problems. The MLS shape functions do not possess the Kronecker delta property like

the FE shape functions and due to this reason interface elements are introduced between the FE and the

EFG zones [40, 243, 312], to properly couple the two regions. The coupling procedure, using interface

elements is shown in Figure 5.1 in which ΩE , ΩI and ΩF are the EFG, interface elements and the FE

regions respectively and ΓE and ΓF are the boundaries of the interface elements on the EFG and the FE

sides respectively. In Figure 5.1, interface element A has three EFG nodes and one FE node, interface

element B has one EFG node and three FE nodes and interface element C has two FE nodes and two

EFG nodes. The shape functions for the interface elements are hybrid shape functions of the FE and the

EFG shape functions to make the displacement continuous along ΓE and ΓF . Shape functions for the

three regions, i.e. the FE, the EFG and interface elements are explained in the next section.
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Figure 5.1: FE-EFGM coupling with interface elements

5.2.1 Shape functions

Displacement can be approximated at point x in a similar way in the three regions, i.e.

uh (x) =
n∑
i=1

Ñi (x)ui, (5.1)

where uh (x) is the approximate displacement component at point x, Ñi (x) is either the FE, the EFG

or interface element shape function for node i evaluated at point x, n is the number of nodes in support

of point x and ui are either nodal displacements in the case of the FEM, or nodal parameters in case of

the EFGM.

FE shape functions

In the FE region four node iso-parametric quadrilateral elements are used. A single four node iso-

parametric quadrilateral element is shown in Figure 5.2 in natural or parent coordinates ξ and η. For

Figure 5.2: Four node iso-parametric quadrilateral element in natural coordinates
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this element, shape functions are the standard bilinear shape functions [283], i.e.

Ni =
1

4
(1 + ξiξ) (1 + ηiη) , (5.2)

where i is the node numbering, while ξi and ηi are the nodal coordinates of the parent element.

EFGM shape functions

In the EFG region MLS shape functions are used for the approximation of displacements, which are

already explained in §2.4.

Interface element shape functions

In the interface region displacement is approximated using both the FE and the EFG displacements and

is written as

uh (x) = [1−R (x)]uFE (x) +R (x)uEFG (x) , x ∈ ΩI , (5.3)

where uFE (x) and uEFG (x) are the approximations of displacement at x of the FEM and the EFGM

respectively and R (x) is the ramp function and is written as

R (x) =
∑
j

Nj (x) , xj ∈ ΓE , (5.4)

i.e. R is the sum of shape functions of nodes of the interface element on the EFG region side, ΓE . R

varies linearly from one on the EFG region boundaries ΓE to zero on the FE region boundaries ΓF , i.e.

R (x) =

1 x ∈ ΓE

0 x ∈ ΓF .
(5.5)

In Equation (5.3), displacement uh will reduce to uFE and uEFG on ΓF and ΓE respectively. Combining

Equations (5.3) and (5.1)

uh (x) = [1−R (x)]
ne∑
i=1

Ni (x)ui +R (x)
ns∑
i=1

ϕi (x)ui x ∈ ΩI , (5.6)

where ne is the number of nodes in an element used in the FE regions and ns is the number of nodes in

the support of point x in the EFG region. Equation (5.6) can also be written as

uh (x) =
ns∑
i=1

ϕi (x)ui x ∈ ΩI , (5.7)

where ϕi are the shape functions of the interface elements and can be written as

ϕi (x) =

[1−R (x)]Ni (x) +R (x)ϕi (x) xi ∈ ΩeI ,

R (x)ϕi (x) xi /∈ ΩeI ,
(5.8)

where ΩeI is an interface element. The equation for the shape function derivative for the interface elements

is written as

ϕi,k =

R,kNi + [1−R]Ni,k +R,kϕi +Rϕi,k xi ∈ ΩeI ,

R,kϕi +Rϕi,k xi /∈ ΩeI ,
(5.9)
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where

R,k =
∑
j

Nj,k, xj ∈ ΓE . (5.10)

In Equation (5.9), reference to x is eliminated for clarity. A blending function, β (x) is used instead of

R (x) in Equation (5.3) in References [243, 312] for displacement approximation, which is given as

β (x) = 3R2 (x)− 2R3 (x) . (5.11)

Here β (x) will create a smooth blending in the interface elements between the FE and the EFG region

and will reduce the discontinuity in the shape function derivatives along ΓE and ΓF . After using β (x)

instead of R (x), Equations (5.3), (5.8) and (5.9) are written as

uh (x) = [1− β (x)]uFE (x) + β (x)uEFG (x) x ∈ ΩI , (5.12)

ϕi (x) =

[1− β (x)]Ni (x) + β (x)ϕi (x) xi ∈ ΩeI ,

β (x)ϕi (x) xi /∈ ΩeI ,
(5.13)

ϕi,k =

β,kNi + [1− β]Ni,k + β,kϕi + βϕi,k xi ∈ ΩeI ,

β,kϕi + βϕi,k xi /∈ ΩeI ,
(5.14)

where β,k is written as

β,k =
(
6R− 6R2

)
R,k. (5.15)

A comparison between R (x) and β (x) for a one-dimensional interface element is shown in Figure 5.3.

R (x) varies from 0 on ΓF to 1 on ΓE linearly, while smooth blending can be seen in case of β (x),

especially at the boundaries ΓF and ΓE , which will produce continuous shape function derivatives along

ΓF and ΓE . The same comparison for R (x) and β (x) in the case of two-dimensional interface elements

A, B and C, shown in Figure 5.1 are given in Figure 5.4. Figures 5.4(a) and 5.4(b) shows the plots for

R (x) and β (x) respectively for the element A, with three EFG and one FE nodes. Both R (x) and β (x)

varies from 0 on on ΓF to 1 on ΓE and the smoothness of β (x) can also be seen as compared to the

corresponding R (x). The same comparison is also shown for element B with one EFG and three FE

nodes and C with two EFG and two FE nodes in Figure 5.4(c), 5.4(d), 5.4(e) and 5.4(f).
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Figure 5.3: Sample one-dimensional ramp R (x) and blending β (x) functions
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Figure 5.4: Sample two-dimensional ramp and blending functions

5.2.2 FE-EFGM for one- and three-dimensional problems

Reduction of the two-dimensional coupled FE-EFGM formulation to one-dimension or extension to three-

dimensions is very straightforward. Appropriate one- and three-dimensional shape functions should be

used within the FE and the EFG regions for one- and three-dimensional problems respectively. In this

research, in the case of one-dimensional problems, two-node linear elements are used in the FE and

interface regions, while a two node background cells are used in the EFG region. The two node FE in

the local coordinate ξ is shown in Figure 5.5, for which the shape functions in the local coordinates are
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given as [204]

Ni =
1

2
(1 + ξiξ) (5.16)

where i is the node number, ξi are nodal coordinates of the parent element. In three-dimensional prob-

lems eight-node hexahedral elements are used in the FE and interface regions and the same hexahedral

background cells are used in the EFG region. An eight node hexahedral element is shown in Figure 5.6

in the natural coordinates (ξ, η, ψ), the shape functions for which are given as [283]

Ni =
1

8
(1 + ξiξ) (1 + ηiη) (1 + ψiψ) (5.17)

where again i is the node number and ξi, ηi and ψi are the nodal coordinates of the parent element.

Figure 5.5: Two node linear element in natural coordinates

Figure 5.6: Eight node iso-parametric hexahedral element in natural coordinates

5.3 FE-EFGM coupling using max-ent shape functions

Max-ent shape functions provide a natural way to couple the FEM and the EFGM without using interface

elements or transition regions between the FE and EFG zones because of the weak Kronecker delta

property at the boundaries when using these shape functions. A sample mixed FE and EFG discretization

is shown in Figure 5.7, where ΩE and ΩF are the EFG and the FE regions and Γ is the boundary between

these two regions. The nodes on the boundary Γ between the EFG and FE regions, shown in green in

Figure 5.7, are used in the displacement approximation for both the EFG and the FE regions.
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Figure 5.7: FE-EFGM coupling using max-ent shape functions

5.4 Numerical examples

One-, two- and three-dimensional linear elastic numerical examples are now given to demonstrate the

implementation and performance of the proposed coupled FE-EFGM formulations. The results from

the proposed approach are also compared with the conventional FE-EFGM coupling with the interface

elements [40] and with other alternatives.

5.4.1 One-dimensional bar

The same one-dimensional bar is analysed in this section for which the geometry, material properties and

analytical solution for the displacement and stress field are given in §2.8. Initially, the problem is solved

using the conventional FE-EFGM coupling, i.e. using MLS shape functions within the EFG region and

using a transition or interface region between the EFG and the FE regions (MLS with interface). The

problem discretizations with four FE, an interface element and five EFG background cells are shown in

Figure 5.8(a). The same problem is also solved with the proposed FE-EFGM coupling, i.e. using max-ent

shape functions within the EFG region and without the interface element between the FE and the EFG

regions (max-ent without interface). The problem discretization for the proposed coupling with four FE

and six EFG background cells is shown in Figure 5.8(b). For comparison the same problem is also solved

with the same discretization as shown in Figure 5.8(b) but using MLS shape functions within the EFG

regions (MLS without interface). In all three cases, the essential boundary conditions are implemented

directly because of the use of the FE region on the essential boundary side.

Initially, the problem is solved with dmax = 2.5 in the EFG region. The comparison between the nodal

displacements along the length of the bar in all the three cases and the analytical solution is shown in

Figure 5.9(a). The nodal displacements coincide and there is no apparent difference. The same problem

is further analysed with the same three types of discretization but this time using dmax = 3.5. In this

case the comparison between the nodal displacements along the length of the bar in all three cases, and

the analytical solution are shown in Figure 5.9(b). This time the results for the nodal displacements of

the two cases, i.e. MLS with interface and max-ent without interface are in a very good agreement with

the analytical solution. The deviation of the nodal displacements from the analytical solution for the
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MLS without interface can be clearly seen in Figure 5.9(b). This shows the importance of the interface

element, when using MLS in the EFG region of the problem.

The dependence of the results on dmax is further analysed using plots of the shape functions and shape

function derivatives for all three cases. Plots for the shape functions and shape function derivatives for

the MLS with interface elements with dmax = 2.5 are shown in Figures 5.10(a) and 5.10(c) respectively,

and for dmax = 3.5 are shown in Figures 5.10(b) and 5.10(d) respectively. It is clear from these plots that

increasing dmax increases the number of nodes influencing the zone between the EFG and FE regions. In

this case, the interface element creates a smooth blending between the EFG and the FE regions, i.e. there

is no discontinuity in the shape functions and shape functions derivative on ΓE and ΓF . A slight jump

can be observed in the shape functions and shape function derivatives on ΓE , which is the point where

the shape functions change from the MLS shape functions to the interface element shape functions. For

the max-ent without interface, plots for the shape functions and shape function derivatives for dmax = 2.5

are shown in Figures 5.11(a) and 5.11(c) respectively, and for dmax = 3.5 in Figures 5.11(b) and 5.11(d)

respectively. In this case due to the weak Kronecker delta property of the max-ent shape functions,

all the shape functions and shape function derivatives naturally blend together very smoothly on the

boundary node between the EFG and the FE region. The boundary node is used for the shape functions’

calculations on both the EFG and the FE region and the shape functions of all the internal nodes on

the EFG side goes to zero at this node. For the MLS without interface, plots for the shape function and

derivatives for dmax = 2.5 are shown in Figures 5.12(a) and 5.12(c) respectively, and for dmax = 3.5 in

Figures 5.12(b) and 5.12(d) respectively. A slight discontinuity in the shape functions and shape function

derivatives on the boundary nodes can be seen for dmax = 2.5, which may not be sufficient to produce a

significant deviation in the nodal displacements from the analytical solution as shown in Figure 5.9(a). A

very clear discontinuity in the shape functions and shape function derivatives can be seen on the boundary

node between the EFG and the FE region for dmax = 3.5, which produces a clear deviation in the nodal

displacements from the analytical solutions as shown in Figure 5.9(b). This clearly shows the need for

interface elements between the FE and the EFG region, when using the MLS shape functions within the

EFG regions.

To study the convergence properties of the methods for the same one-dimensional bar problem, the

error in energy norm ∥e∥ [332] is used (as described in §2.8). For this purpose, for the max-ent without

interface and the MLS without interface cases, half of the problem is discretized with the FE region, and

the other half is discretized with the EFG region. For the MLS with interface case, half of the problem

is discretized with the FE region, and the other half is discretized with the combine interface and the

EFG regions. The number of nodes used for analysis in the consecutive discretizations are 11, 13, 15, 17,

19 and 21. dmax = 2.5 is used in this case. The convergence plots for the three types of discretizations

are shown in Figure 5.13, in which curves for the MLS with interface and max-ent without interface

coincide with each other with almost the same rate of convergence. The MLS without interface performs

very poorly with high error and very low rate of convergence as compared to the other two cases. For

comparison, curves are also given in the same figure for the cases when the same problem is solved only

with the FEM and only with the EFGM with the MLS and the max-ent shape functions. It is clear

from Figure 5.13 that the coupled FE-EFGM performs somewhere between the pure FEM and the pure

EFGM. The error in energy norm and rate of convergence for the coupled FE-EFGM also lies between

the pure FEM and the pure EFGM cases. For the MLS without interface case, although at the start, the

error in energy norm lies between the pure FEM and the pure EFGM cases, the rate of convergence is

lower than the pure FEM case.
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(a) with interface element (b) without interface element

Figure 5.8: Discretizations for the one-dimensional bar problem
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Figure 5.9: Displacements for the one-dimensional bar problem

5.4.2 Two-dimensional cantilever beam

The second problem modelled with the proposed coupled FE-EFGM formulation is the same two-

dimensional beam problem as given in §2.8. The geometry, material properties and analytical solutions

for displacements and stresses are also given in the same section. The problem is solved with the three

different discretizations, i.e. the MLS with interface, the max-ent without interface and the MLS without

interface. The problem is discretized with 189 (21× 9) nodes and 160 (20× 8) background cells. The

problem discretizations are shown in Figures 5.14(a) and 5.14(b) with interface elements and without

interface elements respectively. In Figure 5.14(a), the first five columns are the FE, and the sixth one

consists of interface elements, while the rest are the EFG background cells. In Figure 5.14(b) the first five

columns are the FE while the rest are the EFG background cells. In all three cases, essential boundary

conditions are implemented directly due to the use of the FE on the essential boundary side.

Initially, the problem is solved with dmax = 2.5 and comparison of nodal displacement at y = 0,

and stresses σxx and σxy at x = L/2 to the analytical solutions are shown in Figures 5.15(a), 5.15(b)

and 5.15(c) respectively. In this case all the results are in a very close agreement with the analytical

solutions. Next, the same problem is solved with dmax = 3.5 and the same comparison of the nodal

displacement and stresses to the analytical solutions are shown in Figures 5.16(a), 5.16(b) and 5.16(c)

respectively. A very clear difference between the numerical and analytical results in the case of the MLS
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Figure 5.10: Shape functions and shape function derivatives for the one-dimensional bar problem coupling
using MLS with interface elements

without interface case can be seen in these plots. The results in the case of the MLS with interface and

the max-ent without interface are again in a very close agreement with the analytical solutions. This

once again verifies that there is no need for the interface elements in the coupled FE-EFGM formulation

while using the max-ent shape functions within the EFG region.

To study convergence for the same problem once again the error in energy norm ∥e∥ is used. In

this case 27 (9× 3), 52 (13× 4), and 85 (17× 5) nodes are used in the consecutive discretizations. For

the max-ent without interface and the MLS without interface cases, half of the beam is modelled with

the FEM, and the other half is modelled with the EFGM. For the MLS with interface case, half of the

problem is modelled with the FEM, and the other half is discretized with the combine interface elements

and the EFG background cells. The convergence plots for dmax = 2.5 are shown in Figure 5.17(a) in

which all three curves are in very close agreement with almost the same rate of convergence. The same

plots for dmax = 3.5 are shown in Figure 5.17(b), in which the curves for the MLS with interface, and the

max-ent without interface are in very close agreement with almost the same rate of convergence, but the

error is very high in the case of the MLS without interface case. This once again proves the importance

of the interface elements (or transition regions) in the case when using MLS shape functions within the

EFG regions.
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Figure 5.11: Shape functions and shape function derivatives for the one-dimensional bar problem coupling
using max-ent without interface elements

5.4.3 Flexible strip footing

The third numerical example is an elastic plane strain flexible strip footing to demonstrate the perfor-

mance of the proposed coupled FE-EFGM formulation. The same problem is also solved by hybrid MLPG

and scaled boundary method in [82], the exact solution for which is given in [252]. The exact solution

for the relative displacement between the centre of the footing and any point on the surface a horizontal

distance x from the centre is

∆uy =
2q
(
1− ν2

)
πE

{(x−R) ln |x−R| − (x+R) ln |x+R|+ 2R lnR} , (5.18)

where 2R is the length of footing, q is the uniformly distributed load on footing, E is the modulus of

elasticity and ν is Poisson’s ratio. In this case, a flexible footing of half length R = 0.6 is loaded over

soil with an applied pressure q = 1000 as shown in Figure 5.18. Due to symmetry only one-half of the

problem, shown in grey in Figure 5.18, is modelled with appropriate boundary conditions. The coupled

FE-EFGM discretization of the problem with and without an interface region are shown in Figures 5.19(a)

and 5.19(b) respectively. In Figure 5.19(a), the region shown in gray from y = 7.2 to y = 8 and from

x = 0 to x = 0.8 is the EFG region, followed by a strip of interface elements shown in orange and the

rest are the FE region. In Figure 5.19(b), the region shown in gray from y = 7.2 to y = 8 is the EFG

region and the rest are the FE region.
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Figure 5.12: Shape functions and shape function derivatives for the one-dimensional bar problem coupling
using MLS without interface elements

Initially, the problem is solved with the MLS with interface using the discretization shown in Figure

5.19(a). The imposition of the essential boundary conditions on the right and bottom edge is straight-

forward because of the use FE on these boundaries, while on the left edge it is complicated due to the

presence of both the FE and the EFG regions. On the left edge, Lagrange multipliers are used to impose

the essential boundary conditions for the first six nodes from the top, while the direct method is used for

the rest of the nodes. The discretization shown in Figure 5.19(b), is used for the MLS without interface

and max-ent without interface formulations in which again for the MLS without interface case, Lagrange

multipliers are used to impose the essential boundary conditions for the first five nodes from the top

on the left edge, while the direct method is used for the rest of the boundary nodes. In the case of

max-ent without interface, all the essential boundary conditions are implemented directly. The problem

is first solved with dmax = 2.5 for all three cases and a comparison of the surface deflection with the

analytical solution is given in Figure 5.20(a). Here all the numerical results are in a close agreement with

the analytical solution. The same problem is again solved with the same parameters but changing dmax

to 3.8 and a comparison between the numerical surface deflection in all three cases and the analytical

solution is given in Figure 5.20(b). Once again, the results from the MLS with interface and max-ent

without interface are in a very close agreement with each other and the exact solution, but a very clear

difference can be seen in the results for the MLS without interface case, especially near the centre of

the footing. Contour plots for the vertical displacements (uy) at dmax = 3.8 for a region of the problem
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Figure 5.13: Convergence plots for different discretizations for the one-dimensional bar problem

(a) with interface element (b) without interface element

Figure 5.14: Discretizations for the two-dimensional beam problem

domain near the footing with dimensions (2 × 2) are also given in Figures 5.21(a), 5.21(b) and 5.21(c)

for the MLS with interface, the MLS without interface and the max-ent with interface cases respectively.

The uy contours are very smooth throughout the regions in the MLS with interface and the max-ent

without interface cases, while the results in the case of the MLS without interface are disappointing. The

curves in this case are clearly in error, especially near the centre of the footing. The results once again

verify that there is no need for a transition region between the FE and the EFG regions, when using

max-ent shape functions within the EFG region, and on the other hand, also verifies the fact that the

transition region is unavoidable in cases when using MLS within in the EFG region.
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Figure 5.15: Displacements and stresses for the two-dimensional beam problem at dmax = 2.5

5.4.4 Three-dimensional cantilever beam problem with end load

The fourth numerical example is a three-dimensional cantilever beam subjected to end load, for which

the geometry, boundary conditions and material properties are given in §2.8. The analytical solution

for the displacement field is not available for this problem, so the comparison is made with the two-

dimensional cantilever beam problem, given in the same section. The problem is initially solved with

different discretizations as shown in Figure 5.22, in which MLS shape functions are used within the EFG

regions. The pure FE and EFG discretizations are shown in Figures 5.22(a) and 5.22(b) respectively,

while the coupled EFGM-FE and FE-EFGM discretizations are shown in Figures 5.22(c) and 5.22(d)

respectively. In the coupled EFGM-FE and FE-EFGM half of the beam is discretized with the FE,

while the interface elements and the EFG background cells are used in the remaining half. In EFGM-

FE and FE-EFGM, the EFG and the FE regions are used respectively on the essential boundary side

of the beam. Lagrange multipliers are used to impose the essential boundary conditions in the EFGM

and the EFGM-FE cases, while in the FEM and the FE-EFGM cases essential boundary conditions are

implemented directly due to the use of the FE on the essential boundary side. Comparison of neutral

axis displacements between the four cases in Figure 5.22 and the analytical solution is shown in Figure

5.24(a). Excellent agreement with the analytical solution can be seen in the EFGM and the EFGM-FE

cases, while in the FEM and the FE-EFGM cases, response are relatively stiff. The excellent agreement

in the EFGM and the EFGM-FE cases are due to the use of the EFGM near the essential boundary, while
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Figure 5.16: Displacements and stresses for the two-dimensional beam problem at dmax = 3.5
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Figure 5.17: Convergence plots for different discretizations and at different dmax for the two-dimensional
beam problem

in the FEM and FE-EFGM, the relatively stiff response is due to the use of linear eight node elements

on the essential boundary side, which are unable to capture accurately the cubic profile of the neutral

axis displacement.

The same problem is next solved by different FEM, EFGM and coupled FE-EFGM discretizations
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Figure 5.18: Geometry, boundary condition and loading for the flexible strip footing problem

(a) with interface element (b) without interface element

Figure 5.19: Discretizations for the flexible strip footing problem

with max-ent shape functions in the EFG regions. The pure FEM and the EFGM discretizations are the

same as shown in Figures 5.22(a) and 5.22(b) respectively, while the coupled EFGM-FE and FE-EFGM

discretizations are shown in Figures 5.23(a) and 5.23(b) respectively. In this case, half of the problem is

discretized with the FE, and the other half with the EFG background cells. In Figure 5.23(a), the EFG

region is used on the essential boundary side, while in Figure 5.23(b) the FE region is used on the essential

boundary. This time all the essential boundary conditions are implemented directly due to the use of

the max-ent shape functions in the EFG region. Comparisons of the neutral axis displacements with the

analytical solution are shown in Figure 5.24(b), in which once again, excellent agreement between the

EFGM, EFGM-FE and the analytical solution can be seen. A relatively stiff response is also shown in

the case of the pure FE and the FE-EFGM due to the use of the FE on the essential boundary side of

the problem.
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Figure 5.20: Surface deflection for different discretization for the flexible strip footing problem
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Figure 5.21: Displacement (uy) contours at dmax = 3.8 for the flexible strip footing problem

5.5 Extension to nonlinear problems

Having demonstrated above the accuracy of the proposed approach using coupled FE with max-ent based

EFG regions, the next step is to move to nonlinear problems. In this section, the proposed coupled FE-

EFGM approach is extended to geometrically nonlinear problems, which is very straightforward. For

linear elastic or small strain problems, the FE or the EFG regions can be identified based on the problem
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Figure 5.22: Three-dimensional beam problem discretizations with interface region (a) FE; (b) EFGM;
(c) EFGM-FE; (d) FE-EFGM

dimensions, which is not applicable in case of large strain or finite deformation problems, as the geometry

is changing during the solution. In these problems, it is necessary to attach a tag to each integration

(Gauss) point to identify the FE or the EFG regions in the problem domain to which it belongs. In this

case, the Updated Lagrangian formulation is used to model finite deformation, and due to the use of

the max-ent shape function in the EFG region, all the essential boundary conditions are implemented

directly.

5.5.1 Numerical examples

Two numerical examples are now given in this section to demonstrate the implementation and perfor-

mance of the current coupled FE-EFGM approach with geometrical nonlinearity.

Infinite plate strip

The first geometrically nonlinear problem solved by the coupled FE-EFGM formulation is an infinite plate

strip subjected to uniformly distributed load and with simple supported edges. The geometry, boundary

conditions and material properties for this problem are given in §3.4. The analytical solution for the

neutral axis deflected profile and pressure versus displacement are also given in the same section. Due

to symmetry only half of the problem is modelled and the detail of the imposition of essential boundary
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Figure 5.23: Three-dimensional beam problem discretizations without interface region (a) EFGM-FE;
(b) FE-EFGM
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Figure 5.24: Three-dimensional beam problem neutral axis deflection uy

conditions are shown in §3.4. In this case half of the remaining problem domain is discretized with the

40 (20× 2) EFG background cells and the remaining half with the 40 (20× 2) FE, while the total number

of nodes used is 123 (41 × 3). The coupled FE-EFGM undeformed configuration is shown in Figure

5.25(a), while the deformed configuration for the same problem at the end of analysis is also shown in

the same figure. A comparison between numerical and analytical applied pressure versus the central

displacement of the neutral axis normalized over the thickness of the plate is shown in Figure 5.25(b),

showing excellent agreement. Furthermore, at the end of analysis a comparison between the numerical

and analytical solution for the deflected profile normalized over the thickness of the plate is shown in

Figure 5.25(c), again with excellent agreement. These results demonstrates that the proposed FE-EFGM

approach can accurately capture the nonlinear behaviour of the plate.
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(a) Problem regions
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Figure 5.25: Problem regions and results for the nonlinear infinite plate strip

Elastic cantilever beam

The second geometrically nonlinear problem is an elastic cantilever beam, subjected to uniformly dis-

tributed load. The geometry, boundary conditions and material properties are the same as given in §3.4.
Half of the beam is modelled with the 20 (10×2) EFG background cells, and the other half with 20 (10×2)

FE. An undeformed hybrid FE-EFGM discretization is shown in Figure 5.26(a) with 42 (21× 2) nodes.

The final deformed configuration for this problem is also shown in Figure 5.26(a), which shows very

large deformation. A comparison is also shown between the numerical and the reference solution [221]

for the pressure versus ux and uy normalized over the length of the beam in Figure 5.26(b) and 5.26(c)

respectively. Very good agreement can be seen in these plots between the analytical and reference solu-

tion, which once again shows that the proposed coupled FE-EFGM approach can be used for nonlinear

problems, even with very large deformation.
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(a) Problem regions
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Figure 5.26: Problem regions and results for the nonlinear elastic cantilever beam

5.6 Concluding remarks

A new method of coupling the FEM with the EFGM based on the local max-ent shape functions is pro-

posed in this chapter. These shape functions possess a weak Kronecker delta property at the boundaries,

which provide a natural way to couple both the regions without the use of the transition or interface

region. Results from the proposed coupled FE-EFGM are also compared with the corresponding results

from the conventional FE-EFGM coupling, in which the MLS shape functions are used within the EFG

region and interface elements are used between the FE and the EFG regions. A comparison is also made

with the case, in which the MLS shape functions are used within the EFG region but with no interface

region between the FE and the EFG regions is provided. Very good agreement between the analytical

and numerical solution is observed in all three cases at lower domains of influence, as the MLS shape

functions approaches the FE shape functions at lower influence domains. However, the performance of

the MLS without interface case deteriorates at larger influence domains, as the MLS shape functions will

even lose the approximate Kronecker delta property but even though the proposed coupling approach

performs satisfactorily. Convergence plots of error in energy norm show that, the proposed coupling

approach performs very close to conventional coupling, with almost the same rate of convergence, even

at very large influence domains. The proposed coupling procedure is also extended to three-dimensional

linear and two-dimensional geometrically nonlinear problems. Once again, in these cases, it is shown from
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the solution of benchmark numerical examples that the proposed coupling approach performs satisfacto-

rily, with excellent agreement between the numerical and corresponding analytical or reference results.

Although lower-order elements are used in the FE region, it is straightforward to extend to high-order

elements. Furthermore, only geometric nonlinearities are used in this chapter but it is straightforward

to include material nonlinearities. The FE-EFGM coupling procedure proposed in this chapter, will be

extended to adaptive FE-EFGM coupling in the next chapter.



Chapter 6

Adaptive coupling of finite element

and element-free Galerkin methods

6.1 Introduction

The main limitation of the FE-EFGM coupling procedure, proposed in Chapter 5, is that it is necessary

to specify FE and EFG regions in the problem domain at the start of simulation in the preprocessing

stage. These regions are fixed in the problem domain and performance is then highly user dependent. For

practical engineering problems, it will be very difficult, especially for an inexperienced user to decide on

appropriate FE and EFG regions in a given problem domain. For nonlinear problems with geometric and

material nonlinearities, it is even more difficult to specify FE and EFG regions, as geometry is changing

during the simulation. In these problems, the exact specifications of FE and EFG regions are obviously

variable and change during the evolution of the problem geometry and changes in mesh quality. To

overcome these shortcomings, in this chapter the FE-EFGM coupling proposed in Chapter 5 is extended to

become adaptive FE-EFGM coupling for two-dimensional linear elastic and three-dimensional nonlinear

problems with both geometric and material nonlinearities. In the method proposed here, initially the

whole of the problem domain is modelled using the FEM. During an analysis those finite elements which

violate a predefined error measure are automatically converted to an EFG zone. This zone can be further

refined by adding nodes, thus avoiding computationally expensive FE remeshing.

A total Lagrangian formulation is preferred over the updated Lagrangian formulation for modelling

finite deformation due to its computational efficiency. The well-established error estimation procedure of

Zienkiewicz & Zhu [332] with the SPR method for recovery of the nodal stresses [334, 335] is used in the

FE region to determine the elements requiring conversion to the EFG background integration cells. The

Chung & Belytschko [62] error estimator is used in the EFG region for further adaptive refinement. For

nonlinear problems, an incremental form of the Zienkiewicz & Zhu error estimation based on the SPR

method [45, 334] is used to estimate error in the FE region. An incremental form of Chung & Belytschko’s

error estimation method for nonlinear problems covered in Chapter 4 and also given in reference [301], is

used here to estimate error in the EFG zone in the case of nonlinear problems. The FE-EFGM coupling

procedure based on the use of max-ent shape functions in the EFG zone, already covered in Chapter 5

and also given in reference [300], is used here to couple the evolving FE and EFG regions in the problem

domain. A very limited literature is available for adaptive FE-meshless coupling, for instance references

[150, 199] deal only with two-dimensional problems without proper error estimation and with no further

adaptivity in the meshless zone.

– 122 –
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This chapter is organized as follows. A detailed explanation of error estimation in the case of the FEM

is given for two-dimensional linear elastic problems in §6.2. §6.2 is further divided into two parts, the SPR

method is explained in §6.2.1, and the detail of error estimation is given in §6.2.2. The two-dimensional

linear elastic error estimation procedure, explained in §6.2, is then extended to the three-dimensional

nonlinear case in §6.3. The adaptive FE-EFGM coupling procedure for two-dimensional linear elastic

problems is given in §6.4, and numerical examples are given in §6.4.1 to show its correct implementation

and performance. A comparative study between the updated and total Lagrangian formulation is given

is §6.5. The adaptive FE-EFGM coupling procedure, given in §6.4 for two-dimensional linear elastic

problems, is further extended to three-dimensional nonlinear problems in §6.6. Two numerical examples

are also given in §6.6.1, to show the implementation and performance of the three-dimensional adaptively

coupled FE-EFGM algorithm. Concluding remarks follow in §6.7.

6.2 FE error estimation for two-dimensional linear elastic prob-

lems

For linear elastic problems, the main components of the adaptive FEM are the same as the corresponding

EFGM, given in §4.2, i.e. estimation of the discretization error followed by refinement strategy. The full

adaptive FE procedure is not covered here but only the FE error estimation is explained, which will then

be used in the adaptively coupled FE-EFGM procedure to determine those FEs which need conversion

to the EFG background cells. The details of the discretization error estimation procedure in the case of

the EFGM are given in §4.2.1, which can be used directly in the case of the FEM. The only difference

here in the case of the FEM is the calculation of stresses and strains. Nodal stresses are recovered here

using the SPR method, which are then used to calculate the projected stresses for the Zienkiewicz & Zhu

error estimation. The details of the SPR method are given in the following section.

6.2.1 Superconvergent patch recovery method

A general postprocessing procedure was developed by Zienkiewicz & Zhu in [334] to calculate the nodal

stresses and strains from the nodal displacements in finite element analysis. In this procedure stresses

and strains are initially calculated at the superconvergent points, which are then used to calculate stresses

and strain at the nodes. The procedure was applied to one- and two-dimensional linear, quadrilateral

and cubic elements. It was shown that, in the cases of linear and cubic elements the recovered nodal

stresses and strains are superconvergent (one order higher accurate or O(hP+1)), i.e. for the linear and

cubic elements the accuracy is O(h1+1) = O(h2) and O(h3+1) = O(h4) respectively, where h is the

element size. It was also shown that an ultraconvergence, i.e. O(hP+2)) or two orders higher accuracy

was obtained in the case of quadratic elements, i.e. O(h4). The recovered solution can then be used in

the FE error estimation. A class of a posteriori error estimations, in which recovered solutions are used

instead of the analytical solutions are known as Zienkiewicz & Zhu error estimations. The importance

of the superconvergence of the recovered stresses of an FE solution for the asymptotic exactness of the

Zienkiewicz & Zhu error estimator had already been shown, by the same authors, in their previous work

in [326, 333]. It was also reported that, in comparison to other counterparts, the Zienkiewicz & Zhu error

estimators were simple to implement and computationally very efficient.

The directly calculated nodal stresses and strains from the nodal displacements using the shape

functions derivatives are however less accurate and discontinuous. Different strategies have been suggested

in the literature to calculate accurate nodal stresses. One of the commonly used methods is averaging

or local projection techniques, in which stresses are calculated at the nodes by extrapolation from the

superconvergent sampling points, which are then averaged to get a single value. The accuracy of the



124 Chapter 6. Adaptive coupling of finite element and element-free Galerkin methods

stresses from this method is highly dependent on the existence of the superconvergent points in the FEs.

Further detail and theoretical background of the superconvergent points within FEs and the averaging or

local projection method can be found in a number of references [9, 30, 128, 165, 186, 212, 220, 337, 338].

Other procedures for nodal stress recovery can also be found in the literature, including global projection

[235, 236, 331] and extraction and other alternatives [22, 48, 292]. In all the above-mentioned nodal stress

recovery methods, the nodal stresses obtained, are generally not superconvergent. In the SPR method,

nodal stresses are calculated by using a discrete or local least square fitting over a set of superconvergent

points in a patch of elements. The SPR method is superior to other stress recovery procedures because

the recovered stresses are generally superconvergent or even ultraconvergent for the case of quadratic

elements as stated above. The FE approximate displacement uh is written as

uh =

n∑
i=1

Niui, (6.1)

where ui is a vector of nodal displacements associated with a node i, Ni is the FE shape function and n

is the number of nodes in an element. The stress field σh, consistent with the FE solution uh is written

as

σh = Dεh= D∇uh (6.2)

where D is the elasticity matrix, εh is the vector of consistent strain field and ∇ is a differential operator.

The directly calculated consistent stress and strain fields are not continuous at element boundaries and

nodes. The objective of the recovery technique is to find the nodal stresses σ∗
i such that a continuous

and accurate stress field σ∗ is obtained, i.e.

σ∗ =
n∑
i=1

Niσ
∗
i , (6.3)

where Ni is the same elemental shape function used in the displacement interpolation. Here the stress field

σ∗ is smooth throughout the problem domain and is more accurate than the corresponding consistent

stress field σh. In the SPR method, stresses are initially calculated at superconvergent points, from

which nodal stresses σ∗
i are obtained by the least squares fitting of the complete basis as used in the

displacement approximation over a patch of elements surrounding an assembly node. The polynomial

expansion of the stress component σ∗
p is written as

σ∗
p = P (x)a (6.4)

where P (x) is the monomial basis function, x =
[
x, y, z

]
are spatial coordinates and a is a vector

of unknown coefficients. For one-dimensional linear and quadratic elements P (x) and corresponding a

are given as

P (x) =
[
1, x

]
, a =

[
a1, a2

]T
, (6.5a)

P (x) =
[
1, x, x2

]
, a =

[
a1, a2, a2

]T
, (6.5b)



6.2. FE error estimation for two-dimensional linear elastic problems 125

for two-dimensional linear and quadratic elements P (x) and corresponding a are given as

P (x) =
[
1, x, y

]
, a =

[
a1, · · · , a3

]T
, (6.6a)

P =
[
1, x, y, x2, xy, y2

]
, a =

[
a1, · · · , a6

]T
, (6.6b)

and for three-dimensional linear and quadratic elements P (x) and corresponding a are given as

P (x) =
[
1, x, y, z

]
, a =

[
a1, · · · , a4

]T
, (6.7a)

P (x) =
[
1, x, y, z, xy, yz, zx, x2, y2, z2

]
, a =

[
a1, · · · , a10

]T
. (6.7b)

In Equation (6.4), unknown coefficients a are determined separately for each patch by least squares

fitting to the stresses at the superconvergent points. For the least squares fitting, the following equation

is minimized w.r.t. a

F(a) =
n∑
i=1

(
σh (xi)− σ∗

p (xi)
)2

=
n∑
i=1

(
σh (xi)−P (xi)a

)2
, (6.8)

where n is the total number of superconvergent points in a single patch of elements, xi =
[
xi, yi, zi

]
are the spatial coordinates of superconvergent points, σh (xi) are the stresses calculated directly by the

FEM at the superconvergent points and σ∗
p (xi) are the recovered stresses at the same points using least

square fitting. Minimization of Equation (6.8) w.r.t. a gives

∂F(a)

∂a
= 0. (6.9)

This leads to the following set of equations

Aa = b, or a = A−1b, (6.10)

where

A =
n∑
i=1

PT (xi)P (xi) , b =
n∑
i=1

PT (xi)σ
h (xi) . (6.11)

After calculating a, nodal stresses are calculated from Equation (6.4), i.e. using the nodal coordinates.

The size of matrices A and b are relatively small and depend on P. b should be determined separately

for each stress component, while A−1 is the same for all stress components and is determined only once.

The recovered nodal stresses in this case are superconvergent as these are very closely fitted to the stresses

at the superconvergent points.

A typical patch for one-dimensional linear elements is shown in Figure 6.1(a), in which only two

elements are assembled at a common node known here as a patch assembly node, while there is only

one superconvergent point per element. The patch will be used to calculate the stress only at the patch

assembly node. In Figure 6.1(b), a patch is shown for one-dimensional 3-node quadratic elements, which

also consists of only two elements assembled at a common node, i.e. the patch assembly node, but in

this case there are two superconvergent points per element. Also in this case, the patch will be used

to recover the stresses at the patch assembly node as well as at all other nodes inside the patch, shown

as solid circle in Figure 6.1(b). For one-dimensional 3-node quadratic elements; every internal element

belongs to two patches, and for internal nodes, a value of stress is recovered from each patch, and the final
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stress value is determined by averaging. For two-dimensional problems, typical patches for quadrilateral

elements with four, eight, nine and sixteen nodes are shown in Figures 6.2(a), 6.2(b), 6.2(c) and 6.2(d)

respectively. In all these patches, four elements are joined at a common patch assembly node. In Figures

6.2(a) there is only one superconvergent point per element, and the patch is used to recover the stresses

only at patch assembly nodes. In Figure 6.2(b) and 6.2(c) there are four superconvergent points per

element, while in Figure 6.2(d) there are nine superconvergent points per element. In Figures 6.2(b),

6.2(c) and 6.2(d), patches are used to recover stresses at the patch assembly nodes as well as internal

nodes, which are inside these patches, shown as solid circles. In Figure 6.2(b), 6.2(c) and 6.2(d), all

internal nodes normally belong to more than one patch, and stresses are recovered at these nodes from

each patch, and the final stresses are then calculated by averaging. Finally, in the three-dimensional case,

patches are shown in Figures 6.3(a) and 6.3(b) for 8-node and 20-node hexahedral elements respectively

and the process works in a similar way to that described for one- and two-dimensional.

To recover stresses at boundary nodes, internal or boundary patches can be used. Accuracy of these

stresses are the same, if recovered either from the boundary or internal patches [334]. In some situations,

however sufficient elements and superconvergent points are not available to construct patches at the

boundary. Even if sufficient elements and superconvergent points are available, the construction of these

boundary patches involves extra unnecessary work, as the stresses at boundary nodes can be recovered

from the already constructed internal patches. To avoid these complications, in this research, here

internal patches are used to recover stresses at the boundary nodes. Typical internal patches for 16-node

quadrilateral elements near the boundary, which can be used to recover the stresses at the boundary

nodes are shown in Figure 6.4. A sample corner patch is shown in Figure 6.4(a), while a sample edge

patch is shown in Figure 6.4(b).

Figure 6.1: Sample one-dimensional linear and quadratic elements patches [334]

6.2.2 Error estimation

The accuracy of the Zienkiewicz & Zhu error estimation procedure is highly dependent on the accuracy

of the stress recovery procedure. The SPR method is an ideal choice for the stress recovery in the

Zienkiewicz & Zhu error estimation procedure due to its high accuracy and lower computational cost

[335] as compared to other alternative. The FE error estimation procedure is the same as that used in

the case of the EFGM, described in detail in §4.2.1.

6.3 Extension of FE error estimation to three-dimensional and

nonlinear problems

The Zienkiewicz & Zhu error estimation procedure with the SPR method for stress recovery has already

been used by other researchers in the literature for three-dimensional and nonlinear problems for adaptive

analysis. The procedure for error estimation for nonlinear problems in the case of the FEM is the same,
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Figure 6.2: Sample two-dimensional elements patches [334]

as given in detail in §4.3 for the EFGM. Although, the full implementation and performance of the

Zienkiewicz & Zhu error estimation for three-dimensional and nonlinear problems are not given in this

section as we done previously for the linear elastic problem in §6.2 but the relevant literature is now

surveyed.

The Zienkiewicz & Zhu error estimation procedure was extended to nonlinear problems for the first

time in [45] and was used for two-dimensional problems subjected to small strain elasto-plasticity. For each

solution step, incremental error in energy norm was calculated from nodal stresses and nodal incremental

strains, recovered using the SPR method. Further applications of the Zienkiewicz & Zhu error estimation

procedure in two-dimensional nonlinear problems can be found in a number of references, e.g. in [134],

the SPR method was used to estimate error for two-dimensional footings on soil problems, subjected to

large deformation with elasto-plasticity. 6-node triangular elements with three Gauss points per element

were used to discretize the problems and the L2 norm of error in strain was used for the adaptive

analysis. In [163], recovery of the Cauchy stress was performed by the SPR method for two-dimensional

problems with large deformation using hyperelasticity as a material model. The improved SPR method

was introduced for two-dimensional large deformation problems in [117], in which integration points were

used as sampling points and bilinear 4-node quadrilateral elements with (2× 2) Gauss points were used

in the analysis.
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Figure 6.3: Sample three-dimensional elements patches

Figure 6.4: Stress calculation for boundary nodes

It was shown in [5, 26] that the SPR method can perform well, even if the sampling points used for

stress recovery are not the superconvergent points. This information is very helpful to extend the SPR

method originally proposed for linear problems to nonlinear problems, where most of the path dependent

variables are available at the integration points, which are generally not superconvergent. The use of

integration points as sampling points also allows the inclusion of more terms in the polynomial of the

least squares fitting over the patch of elements, which is normally impossible with the superconvergent
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points, because they are few in number. The nonexistence of superconvergent points in the case of

nonlinear problems was also mentioned in [163], where it was concluded that using (2 × 2) integration

points in linear 4-node quadrilateral elements as sampling points led to better performance than using

one superconvergent Gauss point. Gauss points were also used as sampling points in [117] for problems

subjected to large deformation.

The Zienkiewicz & Zhu error estimation procedure with the SPR method for stress recovery has been

used in a number of linear and nonlinear three-dimensional problems. In [61], the SPR method was used to

calculate error in three-dimensional h-adaptive analysis for linear-elastic problems. Adaptive FEA based

on the modified SPR method was used to model curved cracks in three-dimensional problems in [226].

In [327], a new algorithm was proposed for mesh generation for the arbitrary geometries for hexahedral

elements, which can be used in fully automatic adaptive FEA for practical engineering problems. In

[316], the SPR method was used for error estimation in three-dimensional nonlinear problems, involving

liquefaction of soil due to seismic effects. The incremental L2 norm of error in strain for each solution

step was used here in h-adaptive analysis, while linear 8-node hexahedral elements were used to discretize

the problems’ domains. The SPR method was extended to three-dimensional nonlinear problems, and

its applications were explored in the transferring of the path dependent variables in [108, 160, 161].

Tetrahedral elements were used in the analysis, while first, second and third degree polynomials were

used in the least squares fitting for the SPR method. In [47], an improvement of the SPR method,

i.e. minimal patch recovery (MPR), was introduced in which there was no need to calculate the nodal

stresses. The recovered solutions at Gauss points were calculated directly from the least squares projection

of the Gauss points belong to the neighbouring elements. The method was applied to three-dimensional

elasticity and metal forming problems with tetrahedral elements.

6.4 Adaptive FE-EFGM coupling for two-dimensional linear-

elastic problems

The adaptive FE-EFGM coupling procedure described in this section is for two-dimensional linear elastic

problems, which will be extended next to three-dimensional problems with both material and geometrical

nonlinearities. In the adaptive FE-EFGM coupling procedure, as already mentioned in §6.1, initially, the
whole of the problem domain is modeled using the FEM. During the analysis those elements which violate

a predefined error measure are automatically converted to an EFG zone. This EFG zone can then be

further refined by adding nodes, overcoming computationally expensive FE remeshing. In this case,

local error in energy norm and the corresponding local energy norm for either an individual FE or EFG

background cell Ωe are written as

∥epe∥ =

∫
Ωe

(
σep (x)

)T
D−1

(
σep (x)

)
dΩe

 1
2

, ∥Ue∥ =

∫
Ωe

(σp (x))
T
D−1 (σp (x)) dΩe

 1
2

, (6.12)

where subscript e shows an individual FE or EFG background cell with domain Ωe, and σep (x) is error

in stress at a Gauss point x, which is already given in §4.2.1 and σp (x) is a vector of projected stresses

at a Gauss point located at x. Projected stress in the FE and the EFG zones of the problem domain are

calculated using the procedures of Zienkiewicz & Zhu and Chung & Belytschko respectively. Equations

for the global error in energy norm and the corresponding global energy norm for the problem domain Ω

are then written as

∥ep∥2 =

ne∑
i=1

∥epe∥
2
i , ∥U∥2 =

ne∑
i=1

∥Ue∥2i , (6.13)
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where for linear elastic problems ne is the number of FEs in the first iteration and the number of EFG

background cells in the consecutive iterations. Global relative percentage error η and permissible local

error in an individual FE or EFG background cells ∥ee∥ are then written as

η =
∥ep∥
∥U∥

× 100, ∥ee∥ =
η

100

(
∥U∥2

ne

) 1
2

, (6.14)

where η is the global permissible relative error for the whole problem domain. The adaptive procedure

is triggered by the global relative error, i.e. when η > η and the conversion of FEs to EFG background

cells or further refinement of EFG background cells is performed when
∥epe∥
∥ee∥

> 1.

The full adaptively coupled FE-EFGM algorithm for linear elastic problems is shown in Figure 6.5,

which has been implemented from scratch using MATLAB as a programming language. At the start of

analysis, the whole of the problem domain is modelled with the FEM, which includes specification of

geometry, material properties and meshing. Here four-node iso-parametric quadrilateral elements with

(2×2) integration (or Gauss) points per element are used in the analysis. In the algorithm, shown in Figure

6.5, itr is the current iteration and max itr is the maximum number of iterations specified by the user at

the start of analysis. During each iteration, stiffness matrix is assembled, essential and traction boundary

conditions are implemented and after solution of the final system of equations nodal displacements or

fictitious nodal values are calculated for the FE and the EFG regions respectively. During the first

iteration, nodal stresses are calculated using the standard SPR method, already explained in §6.2.1,
and local and global relative errors are then calculated using the Zienkiewicz & Zhu error estimation

procedure, already explained in §6.2.2. This global relative error is then used to trigger the algorithm,

which converts FEs to EFG background cells.

From the second iteration onward, the problem domain consists of combined FE and EFG discretiza-

tions with (2×2) Gauss points per element in the FE region and (4×4) Gauss points in each background

cell in the EFG region. After this point, error is only calculated for the EFG region, as FEs with high

errors are already converted into EFG background cells in the first iteration. After solution of the final

system of equations, nodal stresses, local and global relative errors are calculated for the EFG region of

the problem domain using the approach of Chung & Belytschko [62]. The global relative error is then

used to decide further adaptive refinement in the EFG region, and those background cells, where error is

more than the permissible error are automatically refined.

The refinement strategy used here is almost the same as used for the adaptive EFGM given in §4.2.2
and is shown in Figure 4.8. The direct use of the adaptive EFGM refinement strategy here in the EFG

region of the problem domain creates complications in the FE region of the problem domain, which

requires further consideration. The step by step improved refinement strategy, suitable for the adaptively

coupled FE-EFGM is shown in Figure 6.6. In this new strategy, refinement of the EFG background cells is

the same as used in the original adaptive EFGM case, i.e. five new nodes are added in each background

cell, which is then divided into four new cells. A sample coupled FE-EFG discretization is shown in

Figure 6.6(a), in which columns A, B and C are the EFG background integration cells and columns D,

E and F are FEs. The refinement of background cells in column A, B and C creates hanging nodes in

FEs, i.e. columns D in the FE region of the problem domain as shown in Figure 6.6(b). To avoid the

complication of dealing with FEs with hanging nodes, the strategy used here is to convert all those FEs

to the corresponding EFG background integration cells as shown in Figure 6.6(c).
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Figure 6.5: Adaptively coupled FE-EFGM algorithm for linear elastic problems
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Figure 6.6: Step by step refinement strategy for the adaptive coupled FE-EFGM

6.4.1 Numerical examples

In the following two-dimensional linear elastic numerical examples are given to demonstrate the correct

implementation and performance of the full adaptively coupled FE-EFGM modelling procedure.

Square block problem

The first numerical example is a two-dimensional square block subjected to uniform pressure on the left

edge. The same problem is also solved using the adaptive EFGM in §4.2.4. The same geometry, boundary

conditions, loading and material properties are used here as given in §4.2.4. The global permissible error η

used here is 6%, and the scaling parameters used for the domains of influence for analysis and projection

in the EFG zone are damax = 1.5 and dpmax = 1.2 respectively. The evolving step by step adaptively

coupled FE-EFGM discretizations in this case are shown in Figure 6.7. The FE mesh at the start of

analysis with 225 (15 × 15) elements and 256 (16 × 16) nodes is shown in Figure 6.7(a). The converted

FEs to corresponding EFG background cells based on the Zienkiewicz & Zhu error estimation at the end

of first iteration are shown in Figure 6.7(b). During this first FEs to EFG background cells conversion the

number of nodes is constant. Subsequent refinements in the EFG regions of the problem domain based

on the Chung & Belytschko error estimation procedure are shown in Figure 6.7(c). It can also be seen

in Figure 6.7(c) that in the EFG zone on the right-hand side, all new nodes are added within the EFG

region and there is no issue of hanging nodes in the FE region of the problem domain, but in the EFG

zone on the left-hand side, four more FEs at the top of EFG zone are converted to EFG background cells,

to avoid hanging nodes in the FE region of the problem domain. As expected, the adaptively coupled

FE-EFG algorithm, initially converts the high-stress zones in the problem domain to the corresponding

EFG zones and then adds nodes to the high-stress EFG zones.

The corresponding integration (or Gauss) points in the evolving adaptively coupled FE-EFGM dis-

cretizations are shown in Figure 6.8, where (2 × 2) Gauss points per element are used in the FE region

of the problem domain and (4× 4) Gauss points are used in each background cell in the EFG region of

the problem domain. The contours of displacements in the x-direction, i.e. ux over the 100X magnified

deformed geometry for the three consecutive discretizations are shown in Figures 6.9(a), 6.9(b) and 6.9(c)

respectively, which are in a very good agreement with each other demonstrating a correct implementation

of the adaptively coupled FE-EFGM algorithm. The contours of the von Misses stress over the problem

domain after the first FE iteration are also shown in Figure 6.10, which are obtained from the SPR
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method’s recovered nodal stresses using the following equation

σVM =
[
σ2
xx + σ2

yy − σxxσyy + 3σxy
] 1

2 , (6.15)

where σxx and σyy are the normal stresses in x and y directions and σxy is the shear stress. For comparison,

the same problem is also solved with uniformly refined FE meshes with almost the same number of nodes

as shown in Figures 6.7(a) and 6.7(c). The uniformly refined meshes in this case with 256 (16× 16) and

400 (20 × 20) nodes are shown in Figures 6.11(a) and 6.11(b) respectively. Comparison of the relative

error (η) for the adaptively coupled FE-EFGM case and uniformly refined FEM case are shown in Figure

6.12, in which three data points are available for the adaptively coupled FE-EFGM case and only two

data points are available in the uniformly refined FEM case. In Figure 6.12, it is clear that the decrease in

the relative error is greater in the case of the adaptively coupled FE-EFGM as compared to the uniformly

refined FEM case.

Figure 6.7: Step by step discretizations for the square block problem

(a) FEM (b) FE-EFGM-1 (c) FE-EFGM-2

Figure 6.8: Step by step Gauss points for the square block problem
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(a) FEM (b) FE-EFGM-1

(c) FE-EFGM-2

Figure 6.9: ux contours for the square block problem

Figure 6.10: Von Misses stress contours for the square block problem

L-shaped plate

The second two-dimensional linear elastic numerical example is an L-shaped plate subjected to uniform

pressure on the left edge. The same problem is also solved using the adaptive EFGM in §4.2.4 and is
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(a) FE mesh-1 (256 nodes) (b) FE mesh-2 (400 nodes)

Figure 6.11: Step by step FE uniform refinement for the square block problem

0 0.1 0.2 0.3 0.4 0.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

log10(Adap FE-EFGM itration)

lo
g
1
0
(R

el
a
ti
v
e

er
ro

r
(η

)
%

)

Adap FE-EFGM
FEM

Figure 6.12: Relative error (η)% for the square block problem

a standard numerical example to test the performances of adaptive algorithms. The same geometry,

boundary conditions, loading and material properties are used in this case as shown in Figure 4.24

and given in §4.2.4. The permissible relative error η used here is 7%, while the scaling parameters

used for the domains of influence for analysis and projection in the EFG region are damax = 1.4 and

dpmax = 1.1 respectively. The step by step evolving discretizations in this case are shown in Figure 6.13.

The FE mesh at the start of analysis with 341 nodes is shown in Figure 6.13(a) and the first and second

adaptively coupled FE-EFG discretization with 341 and 406 nodes are shown in Figure 6.13(b) and 6.13(c)

respectively. The number of nodes is the same in the first two discretizations. In 6.13(c) two more FEs

are converted to the corresponding EFG background cells, to avoid hanging nodes in these elements. As

expected, near the corner A in Figure 6.13, the adaptively coupled FE-EFG algorithm converts the FE

elements to EFG background cells and adds more nodes in the EFG region.

The Gauss points for these evolving discretizations are shown in Figures 6.14(a), 6.14(b) and 6.14(c)

respectively, i.e. (2× 2) Gauss points in each FE and (4× 4) Gauss points in each background cell. The

contours of the displacements in the x-direction, i.e. ux for the three consecutive adaptively coupled FE-

EFG discretizations are shown in Figures 6.15(a), 6.15(b) and 6.15(c) respectively. These displacements

contours are in excellent agreement with each other, which again shows the correct implementations of

the adaptively coupled FE-EFG algorithm. The contours of von Mises stress after the first FE iteration

over the problem geometry are also shown in Figure 6.16, which shows maximum stress near corner A.
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For comparison the same problem is also solved with the FEM with uniformly refined meshes with almost

the same number of nodes as shown in Figure 6.13. The first and second uniformly refined meshes with

341 and 408 nodes are shown in Figure 6.17(a) and 6.17(b) respectively. Comparison between the relative

error (η) for the adaptively coupled FE-EFGM case and uniformly refined FEM case is shown is Figure

6.18, in which the adaptively coupled FE-EFGM case clearly performs better than the uniformly refined

FEM.

Figure 6.13: Step by step discretizations for the L-shaped plate problem

(a) FEM (b) FE-EFGM-1 (c) FE-EFGM-2

Figure 6.14: Step by step Gauss points for the L-shaped plate problem

6.5 Implementation of the total Lagrangian formulation

So far, in this thesis updated Lagrangian formulation has been used to model problems subjected to finite

deformation, as describe in detail in §3.3.1. In the updated Lagrangian formulation, geometry is updated

after each solution step, which includes the update of nodal coordinates, Gauss points and domains of

influence. Shape functions and corresponding derivatives are also calculated during each solution step.

On the other hand, in total Lagrangian formulation, there is no need to update the geometry as the

variables are referred back to the original configuration. Shape functions and corresponding derivatives

are calculated and stored at the start of the analysis and are used in every solution step. The detailed total
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(a) FEM (b) FE-EFGM-1

(c) FE-EFGM-2

Figure 6.15: ux contours for the L-shaped plate problem

Figure 6.16: Von Misses stress contours for the L-shaped plate problem

Lagrangian formulation is given in §3.3.2. Due to all these involved computations, updated Lagrangian

formulations is not suitable to use for meshless methods, as the calculation of influence domains and shape

functions and corresponding shape function derivatives are computationally expensive tasks in meshless

methods.

In this section, the performance of a total Lagrangian formulations, while modelling problems with

large deformation and elasto-plasticity in the case of meshless methods is compared with the updated
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(a) FE mesh-1 (341 nodes) (b) FE mesh-2 (408 nodes)

Figure 6.17: Step by step FE uniform refinement for the L-shaped plate problem
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Figure 6.18: Relative error (η)% for the L-shaped plate problem

Lagrangian. For this purpose, the three-dimensional plate with a hole problem is considered, for which the

geometry, boundary conditions and material properties are given in §4.4.1. In the analysis a displacement

of 0.2 units is applied to the top face in 20 equal steps. The scaling parameter used for the domain of

influence in this case is dmax = 1.5. For comparison of the simulation time, the problem is solved using

five different discretizations with 189, 480, 975, 1728 and 2793 degrees of freedom. Comparisons between

the simulation time versus degrees of freedom for both the updated and total Lagrangian formulations are

shown in Table 6.1 and in Figure 6.19. The times reported here, are the times required for full simulation.

It is clear from Table 6.1 and Figure 6.19 that the total Lagrangian formulation is computationally efficient

as compared to the updated Lagrangian formulation.

A comparison of the reaction versus displacement between the total and updated Lagrangian formu-

lations is also shown in Figure 6.20. Three different curves, obtained using 189, 975, and 2793 degrees

of freedom in the analysis are considered in this case. In Figure 6.20, UL and TL refers to updated

Lagrangian formulation and total Lagrangian formulation respectively. The corresponding curves for the

total and updated Lagrangian results are in a very good agreement with each other. The geometric

softening with the increase in degrees of freedom is also clear in both the updated and total Lagrangian

cases. Unlike the FEM modelling, where the corresponding reaction versus displacement curves for the

updated and total Lagrangian cases for the same number of degrees of freedoms matches exactly, here

a small difference can be observed in these curves. The difference in these corresponding curves may be
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due to the update of influence domains at the end of each solution step in the updated Lagrangian case,

due to which nodes in the support of each Gauss points changes from one load step to the next, while in

the total Lagrangian case these nodes remain constant throughout the simulation.

DOFs Updated Lagrangian (sec) Total Lagrangian (sec)
189 39.99 17.01
480 281.55 115.57
975 1133.48 448.11
1728 2992.42 1041.46
2793 7288.38 2905.86

Table 6.1: Simulation times versus degrees of freedom for the updated and total Lagrangian formulations
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Figure 6.19: Simulation times versus degrees of freedom for the updated and total Lagrangian formulations

6.6 Adaptive FE-EFGM coupling for three-dimensional nonlin-

ear problems

In this section, the adaptive FE-EFGM coupling procedure for two-dimensional linear elastic problems is

extended to three-dimensional nonlinear problems with both material and geometrical nonlinearities. The

total Lagrangian formulation is used here to model finite deformation and for modelling elasto-plasticity,

the Prandtl-Reuss constitutive model is used, which comprises the von Mises yield function with perfect

plasticity and associated flow. As compared to the two-dimensional linear elastic counterpart, in which

error in the FE region of the problem domain is calculated only in the first discretization, here the error
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Figure 6.20: Reaction versus displacement for the updated and total Lagrangian formulations

in the FE region of the problem domain is calculated during each evolving discretization. Due to the

incremental loading, it is expected in the subsequent discretizations that more elements will be converted

to corresponding EFG background integration cells. The three-dimensional nonlinear adaptively coupled

FE-EFG algorithm has been implemented from scratch by the author using FORTRAN. The same incre-

mental procedure, used for the adaptive FEM in [45] and for the adaptive EFGM in [301] is used here. In

this case, incremental global relative error in energy norm is calculated for each solution step, and checked

against a permissible value. Here due to the total Lagrangian formulation, undeformed discretizations

are refined as compared to the current or deformed discretizations refinements in the updated Lagrangian

formulation.

For solution step n, equations for the incremental error in energy norm and the corresponding energy

norm for either an individual FE or EFG background cell Ωe are written as

∥epe∥ =

∫
Ωe

∣∣∣(τ pn (x)− τhn (x)
)T (

∆εpn (x)−∆εhn (x)
)∣∣∣ dΩe

 1
2

, ∥Ue∥ =

∫
Ωe

∣∣∣(τ pn (x))T (∆εpn (x))
∣∣∣ dΩe

 1
2

,

(6.16)

where the subscript e shows an individual FE or EFG background cell, τ pn (x) and τhn (x) are the projected

and numerical Kirchhoff stresses respectively at a Gauss point x for solution step n, while ∆εpn (x) and

∆εhn (x) are the projected and numerical incremental logarithmic strains at a Gauss point x for the

solution step n. Projected Kirchhoff stresses and the projected logarithmic strains in this case are
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calculated using the Zienkiewicz & Zhu and Chung & Belytschko procedures in the FE and the EFG

region of the problem domain respectively.

Equations for the error in energy norm and the corresponding energy norm for the problem domain

Ω are written as

∥ep∥2 =

nFE∑
i=1

∥epFE∥
2

i +

nEFG∑
j=1

∥epEFG∥
2

j , ∥U∥2 =

nFE∑
i=1

∥UFE∥2i +
nEFG∑
j=1

∥UEFG∥2j , (6.17)

where nFE and nEFG are the total numbers of FEs and EFG background cells respectively in the problem

domain. Incremental global relative percentage error and incremental permissible error in an individual

FE or EFG background cell are written as

η =
∥ep∥
∥U∥

× 100, ∥ee∥ =
η

100

(
∥U∥2

n

) 1
2

, (6.18)

where n = nFE + nEFG and η is a permissible relative error for the whole problem domain. The

remaining procedure of conversion of the FEs to the EFG background cells and further refinement of

the EFG background cells are the same as given for the two-dimensional linear elastic case. The same

refinement strategy suggested originally for the two-dimensional linear elastic case, is extended here to

three-dimensions. The details of dealing with other complications associated with the nonlinear case,

including data transfer between the evolving discretization are the same as already covered in Chapter 4.

6.6.1 Numerical examples

Numerical examples are now given to demonstrate the correct implementation and performance of the full

three-dimensional nonlinear adaptively coupled FE-EFG algorithm. The scaling parameters used here

for the domains of influence for analysis and projection in the EFG zone are damax = 1.5 and dpmax = 1.1

respectively. In the following numerical examples 25% permissible relative error is used. Kd-tree with

background mesh is used for the neighbour search in the following numerical examples the details of

which is given in Appendix-B.

Three-dimensional plate with a hole

The first numerical example is a three-dimensional plate with a central hole subjected to unidirectional

tension, the detail of which can be found in §4.4.1. Only one-eighth of the plate is modelled here due to

symmetry. A total displacement of 0.15 units is applied to the top face in 15 equal steps. At the start of

analysis, the whole of the problem domain is modelled using the FEM with 325 nodes as shown in Figure

6.21(a). For this first discretization, the standard SPR method is used to recover the nodal stresses and

strains, which are then used in the Zienkiewicz & Zhu error estimation procedure. After first conversion,

the second discretization consists of both FEs and EFG background cells as shown in Figure 6.21(b), in

which the number of nodes remains the same. From the second discretization onward, both Zienkiewicz

& Zhu and Chung & Belytschko error estimation procedures are used in the FE and the EFG regions

of the problem domain respectively. Subsequent discretizations after further conversion of the FEs to

the EFG background cells and refinement in the EFG background cells are shown in Figures 6.21(c)

and 6.21(d). The number of nodes in the third and fourth discretizations are 929 and 4119 respectively.

The adaptively coupled FE-EFG algorithm based on the combined Zienkiewicz & Zhu and Chung &

Belytschko error estimation procedures add nodes automatically in the thinning section of the plate as

expected.

The contours of the displacements ux and uy are shown in Figures 6.22(a) and 6.22(b) respectively,
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which shows the correct implementation of the adaptively coupled FE-EFG algorithm. The contours of

the effective plastic strain are also shown in Figure 6.22(c), in which a shear band of finite thickness

next to the hole is clearly evident. Reaction versus displacement plot for this problem is given in Figure

6.23. For comparison, the same problem is also solved without adaptivity, using different initial FE and

coupled FE-EFG discretizations shown in Figure 6.21 for which the reaction versus displacement plots

are shown in Figure 6.23 for comparison. In this case, the solution obtained with final adaptively coupled

FE-EFG discretization shown in Figure 6.21(d) is considered as a reference. As compared to the coupled

FE-EFGM cases, the FEM response is relatively rigid without obvious geometric softening behaviour.

The convergence of the reaction versus displacement curves to the reference solution, with an increasing

the number of nodes can also be observed in Figure 6.23, which shows the correct implementation and

effectiveness of the proposed adaptively coupled FE-EFG algorithm.

Figure 6.21: Step by step discretizations for the three-dimensional plate with a hole problem

Three-dimensional footing loaded on a vertical cut

The second numerical example is a three-dimensional footing loaded next to unsupported faces of soil, the

detail of which is given in §4.4.1. The geometry used in this case is shown in Figure 6.24(a). Here only

the soil section of the problem is modelled with the adaptively coupled FE-EFGM with total vertical

displacement of 0.1 units applied to nodes beneath the footing in 15 equal steps. The FE mesh at

the start of the analysis is shown in Figure 6.24(b) and the step by step conversion of the FEs to the

EFG background cells and subsequent refinements of the EFG background cells are shown in Figures

6.24(c), 6.24(d) and 6.24(e). The number of nodes used in first two discretizations is 729, while in the

subsequent discretizations, the number of nodes increases to 1215 and 2950. For this problem, failure is

expected in the soil below the footing, where FEs are automatically converted to the EFG background

cells, which are refined in the subsequent discretizations. The contours of uy and effective plastic strain

are also shown in Figures 6.25(a) and 6.25(b) respectively. It can be seen in Figure 6.25(a), that the total

displacement is concentrated below the footing and a very clear shear band of finite thickness can also be

seen in Figure 6.25(b). A reaction versus displacement plot for this problem is shown in Figure 6.26. For

comparison, the same problem is also solved with different starting discretizations shown in Figure 6.24
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(a) ux contours (b) uy contours (c) effective plastic strain

Figure 6.22: Displacements and effective plastic strain contours for the three-dimensional plate with a
hole problem
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Figure 6.23: Reaction versus displacement for the three-dimensional plate with a hole problem

without adaptivity and plots for the reaction versus displacement are also shown in Figure 6.26. The

solution with discretization 6.24(e) is considered as a reference solution in this case. Convergence of the

adaptively coupled FE-EFGM case and all other cases to the reference solution is clear in Figure 6.26.
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Figure 6.24: Step by step discretizations for the three-dimensional vertical cut problem problem

(a) uy contours (b) Effective plastic strain

Figure 6.25: Displacement uy and effective plastic strain contours for the three-dimensional vertical cut
problem

6.7 Concluding remarks

In this chapter, a new numerical method is developed for two-dimensional linear elastic problems, in

which initially, the whole of the problem domain is modelled using the FEM and during the analysis

those elements, which violate a predefined error measure are automatically converted to an EFG zone.
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Figure 6.26: Reaction versus displacement for the three-dimensional vertical cut problem

The Zienkiewicz & Zhu error estimation procedure with the SPR method for stress recovery is used in

the FE region to determine FEs requiring conversion to EFG background cells and Chung & Belytschko’s

[62] error estimation procedure is used in the EFG region for further adaptive refinement. A new refine-

ment strategy is also suggested for the proposed adaptively coupled FE-EFGM. The full implementation

and performance of the two-dimensional linear elastic adaptively coupled FE-EFGM algorithm is demon-

strated with the help of two numerical examples. Results are also compared with the FEM uniform

refinement case, and it is shown that the proposed method performs better. The adaptively coupled

FE-EFG algorithm is also extended to the challenging three-dimensional nonlinear case with both ma-

terial and geometrical nonlinearities. The total Lagrangian formulation is used instead of the updated

Lagrangian to model finite deformation due to its computational efficiency. Incremental forms of the

Zienkiewicz & Zhu error estimation procedure and the Chung & Belytschko’s error estimation procedures

are used in this case in the FE and EFG region of the problem domain. The implementation and per-

formance of the three-dimensional nonlinear adaptively coupled FE-EFG algorithm is also demonstrated

with two numerical examples. The performance of total and updated Lagrangian approaches is compared,

and it is shown that total Lagrangian is computationally efficient.



Chapter 7

Parallel computations

7.1 Introduction

In almost every scientific field including academia and industry, complexity and size of the problems

increases with time. For solution of these problems, computers with very large memory and very high

computational power are required. Conventional sequential computers cannot handle these large and com-

plicated problems due to their limited memory and limited computational power. Parallel computations

have been used to solved these problems very conveniently, working on the “divide and conquer” strategy

[302]. Using this strategy a very large and computationally demanding problem is divided into small

manageable subproblems and each is then assigned to a different computer. Parallel computations are

now commonly used in almost every scientific field, e.g. engineering, physics, geology, metrology, chem-

istry, biology, etc. Different types of parallel computers are now commonly available in both academia

and industry, mostly based on either shared memory or distributed memory computer architectures.

The FEM is the most commonly used numerical technique for the solution of practical problems

in different scientific fields. In the FEM, the memory requirement and corresponding computational

demand increase with the increase in degrees of freedom, therefore, parallel computations have been

used extensively in the FEM, the details of which can be found in many references, including [32, 49,

59, 116, 210, 320]. The domain decomposition method is the traditional way to divide a large FEM

problem into small subproblems, in which load balancing and inter-processor communication are two

important parameters. For the excellent performance of parallel programs, equal computational load

must be assigned to each processor to minimize the waiting or idle time and at the same time, inter-

processor communication should be minimized. Different strategies have been used in the literature for

domain decomposition, including graph based techniques [152, 185, 304] and geometry based techniques

[78, 146]. Graph based techniques are commonly used in the FEM for accuracy and efficiency.

As compared to the FEM, meshless methods are computationally expensive and are currently limited

to two-dimensional and simple three-dimensional problems. Although, as compared to the FEM, meshless

methods are ideal in modelling certain types of problems but their computational inefficiency restricts

their use in practice to date to simple academic problems. In this chapter, a parallel algorithm is presented

based on the distributed memory computer architecture model for linear and adaptive nonlinear EFGM,

which is then extended to nonlinear adaptively coupled FE-EFGM. Total Lagrangian formulation is used

to model finite deformation and the Prandtl-Reuss constitutive model is used to model elasto-plasticity.

Codes have been developed from scratch by the author based on these algorithms in FORTRAN with other

supporting libraries, including NAG, Voro++ and kd-tree. The MPI library1 is used for inter-processor

1Explained later in this chapter.
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communication. Furthermore, open-source software packages, METIS1 and MUMPS1 have been used to

automatically divide the problem domain and for the solution of the final system of linear equations in

parallel, respectively. The codes have been run successfully on the Durham University high performance

cluster Hamilton. Performance parameters used for the parallel programs are simulation time, speedup

and efficiency. A final demonstration problem is also presented in this chapter to demonstrate the

capabilities of the methods developed in this thesis so far to handle problems with very fine discretizations

subjected to very large deformation and elasto-plasticity.

Parallel computing has been attempted in a number of references for the EFGM. In [302], parallel

three-dimensional EFGM code was developed for linear-elastic problems. In this study Parallel computer

was constructed by joining several low cost computers with a high-speed network and the MPI library

was used for the inter-processor communication. Accuracy, run time, speedup and efficiency were used

to measure the performance of the parallel program for benchmark numerical problems. A parallel code

was developed for the sparse linear solver based on data decomposition strategy and was used for the

EFGM in [281]. FORTRAN was used as a programming language and the MPI library was used for the

inter-processor communication. The code was validated on three-dimensional heat transfer problems. In

this case, the total simulation time, communication time, speedup and efficiency were used as measures

of performance. One of the most commonly used domain decomposition methods in the FEM, the dual

finite element tearing and interconnecting (FETI) [92], was used for the EFGM in [217].

In the RKPM, parallel computation has also been used in a number of references. In [305], a parallel

code was developed for the RKPM to simulate three-dimensional bulk metal forming using the MPI

library. Integration cells were divided among the processors using the domain decomposition method and

nodes/particles were then duplicated accordingly. As compared to the FEM, the high communication

cost in the case of meshless methods was also mentioned in this study. von-Mises constitutive model with

linear isotropic hardening was used to model elasto-plasticity. Taylor bar impact and backward extrusion

were used as test problems to show the performance of parallel algorithm and results were compared with

the reference FEM approach using 8-node hex elements. For explicit dynamics analysis, a parallel code

based on the MPI library was developed in [78]. Integration points were used for partitioning instead

of the background cells because of the different number of nodes in the support of each Gauss point,

which results in different computational load associated with each Gauss point. Nodes/particles were

then duplicated accordingly. It was shown that the METIS partitions were almost perfectly balanced. It

was also mentioned that the communication cost in the case of the parallel RKPM algorithm is larger

than the corresponding parallel FEM algorithm. Three-point bending of a notched beam and three-

dimensional shear band simulation in a tensile specimen were used as numerical examples to show the

performance of this parallel code. In [106], a parallel RKPM code based on the distributed memory

computer architecture was developed to solve viscous compressible flow problems. The code was run on

the IBM SP supercomputer and results were presented for 1 to 16 processors. A new algorithm based

on D’Alembert’s principle was also presented to efficiently enforce the essential boundary conditions in

parallel with minimum communication cost. In this new algorithm shape functions were modified in the

preprocessing stage to satisfy the Kronecker delta property on the essential boundary nodes. ParMETIS, a

parallel implementation of METIS, was used for the domain decomposition. The partitioning performed

was based on Gauss points. Measures of relative speedup and efficiency were used due to memory

problems, i.e. the simulation time of the two processors was taken as a reference. The results reported

were based on the average of five runs. In this case, flow over a NACA 7012 airfoil was used as a test

problem.

1Explained later in this chapter.
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Parallel computing has also been used for other meshless methods, e.g in [270] for a free mesh method

to simulate the flow problems and in [214] for the SPH method for impact simulation. A parallel code

was also developed based on the shared memory architecture using OpenMP for the point interpolation

method (PIM) for three-dimensional metal forming simulation in [133].

This chapter is organized as follows. Introduction to basic parallel computer architecture is given in

§7.2. Inter-processor communication for the distributed memory computer architecture using the MPI

library is briefly described in §7.3. Performance parameters of the parallel computer program, including

speedup and efficiency are introduced in §7.4. Open-source software packages for the automatic domain

decomposition (METIS) and solution of the final system of linear equations in parallel (MUMPS) are

briefly explained in §7.5 and §7.6 respectively. Parallel linear elastic EFGM algorithm and its implemen-

tation are described in §7.7, and then validated with two numerical examples in §7.7.1. The parallel linear
elastic EFGM algorithm is extended to parallel adaptive nonlinear EFGM case in §7.8, and is validated

with two three-dimensional numerical examples, one with adaptivity and another without adaptivity in

§7.8.1. A parallel nonlinear adaptively coupled FE-EFGM code is also developed and is validated using a

problem with very fine discretizations subjected to finite deformation and elasto-plasticity in §7.9. Final
concluding remarks are given in §7.10.

7.2 Parallel computer architecture

For efficient parallel programming, some knowledge of computer architecture is essential. In this section,

computer architecture is explained very briefly, the detail of which can be found in a number of specialized

references, e.g. [32, 247, 261]. Parallel computer architecture is based on the conventional sequential von

Neumann architecture, which mainly consists of three main parts, i.e. central processing unit (CPU),

main memory and an interconnection network to connect the CPU and memory. A block diagram of the

von Neumann architecture is shown in Figure 7.1. The CPU is further divided into two main parts, i.e.

a control unit and an arithmetic and logical unit (ALU). The control unit determines the sequence of

instructions to be executed, and the ALU is used to actually execute these instructions. The function

of the main memory is to store instructions and data, while the interconnect is used to transfer data

and instructions between memory and CPU. The von Neumann architecture can execute only a single

instruction on a single set of data. The commonly used classification of parallel computer architecture

Figure 7.1: The von Neumann conventional sequential computer architecture [247]
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is based on Flynn’s taxonomy [97], which depends on the data and instruction stream, a computer can

simultaneously handle. In this classification, four letter mnemonics are used, in which the first two refer

to the instruction stream, and the last two refer to the data stream. The following are four types of

systems based on Flynn’s taxonomy.

Single instruction single data (SISD) systems

In these systems, a computer can execute a single instruction at a time and can read or write one data

item from or to the memory at a time. The conventional sequential von Neumann architecture belongs

to this type of system.

Single instruction multiple data (SIMD) systems

In these systems, the same instruction is executed on multiple data sets. Theoretically a SIMD system

consists of a CPU with one control unit and multiple ALUs. The control unit will broadcast the instruction

to each ALU, which will be executed on different sets of data. In the conventional SIMD systems, all

the ALUs should perform the same function at the same time, as these have no memory to store the

instructions. SIMD systems are very good for data-parallelism, in which a large array is divided between

the processors and approximately the same instructions are applied to each data subset.

Multiple instruction single data (MISD) systems

In these systems, a single data stream is subjected to different instructions on different processors. This

is useful in situations, where different operations need to perform on a single set of data. These systems

require a special processor for each operation, and are not available commercially at the moment [32].

Multiple instruction multiple data (MIMD) systems

In these systems, different instructions can be executed at the same time on different streams of data.

The MIMD architecture thus consists of separate independent processors, each with its own control unit

and ALU. Each of the MIMD processors can operate independently at its own pace and can execute

different instructions at the same time. Almost all commercial parallel computers belong to this class of

systems. MIMD systems are further classified into two types depending on the memory usage, i.e. shared

memory systems, which are also called multiprocessors, and distributed memory systems, which are also

called as multi-computers. The details of these two types of systems are given as follows.

Shared memory systems

In the shared or global memory system architecture, independent processors are attached to a common

memory by an interconnection network. In these systems, each processor has direct access to each memory

location in the shared memory. As compared to the distributed memory systems, in these systems, there

is no need for data duplication. Communication cost in this case highly depends on the number of

processors, i.e. in the case of a small number of processors the communication is very fast but increasing

the number of processors will slow down the communication. The block diagram of the shared memory

system is shown in Figure 7.2.

Distributed memory systems

In the distributed memory system architecture, each processor, which is also called a node, has its own

memory. For each node, the data required for its local processing is stored in its local memory. In

these systems, message passings are used to transfer data from the local memory of one node to the

local memory of another node, in which one computer sends the message, and the other receives it. The

communication in this case is performed through the interconnecting network.
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Figure 7.2: Block diagram of the shared memory system architecture [247]

Figure 7.3: Block diagram of the distributed memory system architecture [247]

7.3 Message passing interface (MPI)

In distributed memory parallel computer systems, each processor has its own local memory. Each pro-

cessor can only access its own local memory directly and if data are required from the local memory of

another processor, message passing is used. In message passing one processor sends a message and the

other receives it. This message passing is normally provided by the communication libraries, where the

processor calls the library’s functions or subroutines to start the communication. These communication

libraries can be either hardware specific or portable, which can be used on different platforms. The mes-

sage passing interface or MPI is the most commonly used communication library for distributed memory

parallel programming, although there are other alternatives, e.g. parallel virtual machine (PVM) [107].

A very brief introduction to the MPI library and corresponding MPI program structure is given here,

detailed descriptions of which can be found in a number of specialized references, e.g. [113–115, 247,

261, 284]. MPI is the standardization of the message passing aspects of the parallel computing, which

was first introduced by manufacturers and users in the supercomputing conference in 1992 [302]. As

compared to other communication libraries, MPI is used commonly due to its three main characteristics,

i.e. portability, efficiency and functionality [114, 282]. The commonly used programming languages for

scientific computations, e.g. FORTRAN, C and C++ can support MPI, in which the MPI program

is first compiled with a standard compiler and is then linked with the MPI library. The MPI library

is only responsible for the communication part of the code and has nothing to do with the rest of the
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computation. In transferring data between the processors, a complete specification of the data is required,

i.e. its location within the memory, its data type and number of data items.

Communication between the processors can be broadly classified as “point to point” and “collective”.

Only two processors take part in the point to point communication, in which one processor sends a mes-

sage, and the other receives it. The "mpi send" and "mpi recv" are the two main subroutines in the

MPI library used for point to point communication. In collective communication, more than two proces-

sors take part, which is normally used to distribute the input data from the host to all other processors

involved in the computations. It can also be used to collect the final results from these processors. The

"mpi bcast" and "mpi reduce" are the two MPI subroutines used for collective communications. While

using the MPI library, each processor is identified by its rank, which is a positive integer value, ranging

from 0 to n − 1, where n is the total number of processors involved in the computation. Furthermore,

the tag used to identify a message and a group of processors involved in message passing is identified

with the communicator. In the MPI library, all the processors involved in the computation belong to the

default communicator "mpi comm world". Header file "mpif.h" must be included at the start of the MPI

program, which provides links to all the relevant MPI subroutines and data types. The MPI program

must be started and terminated with "mpi init" and "mpi finalize" respectively. Finally, the MPI

program is executed using the command

mpirun -n 20 exe name

which will execute the program "exe name" on 20 processors, for instance.

7.4 Performance of parallel programs

Computational efficiency is one of the main purposes of writing a parallel program. Therefore, run time

of a parallel program must be compared with the corresponding run time of a sequential equivalent.

Speedup and efficiency are the two measures, which are commonly used to evaluate the performance of a

parallel program, the detail of which can also be found in [114, 247, 261, 282]. Run time or simulation time

and cost of parallel programming are also important parameters required for the proper understanding

of speedup and efficiency. In the following, before giving proper definitions of speedup and efficiency, run

time and cost of parallel programming are introduced.

Run time or simulation time

For a sequential program, run time is the time between the start and end of simulation, while for a parallel

program, it is the time between the start of simulation and end of computation on the last processor.

Cost of the parallel computation

The cost of parallel computation Cn is the total amount of work done by all processors, involved in the

computation, i.e.

Cn = nTn, (7.1)

where n is the number of processors and Tn is the time the program spends on n processors (parallel run

time). Cost of parallel computing is also known as work or processor-runtime product [261].

Speedup

Speedup Sn is the ratio of time a parallel program spends on one processor T1 to the time the same

program spends on n processors Tn, i.e.

Sn =
T1
Tn
. (7.2)
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Speedup shows a reduction in the simulation time of a parallel program, when it runs on n processors.

In an ideal situation Sn = n but generally Sn ≤ n due to additional work done by a parallel program,

known as overhead. This overhead consists of communication between the processors, synchronization,

idle time for some processors due to unbalanced load and redundant calculation to avoid data transfer.

Furthermore, it is impossible to 100% parallelize a code due to its sequential parts, especially the input

and output part.

Efficiency

Efficiency En is the ratio of the total amount of work done by all the processors to the time or work done

by a single processor or alternatively it is defined as the ratio of the number of processors to speedup, i.e.

En =
nTn
T1

=
n

Sn
. (7.3)

In an ideal situation En = 1 but generally En ≤ 1.

7.5 Automatic partitioning of the problem domain with METIS

Intelligent mesh partitioning between processors is one of the most important components of parallel

programming in numerical simulation and the goals are load balancing and minimization of inter-processor

communication. In the case of the EFM, for perfect load balancing, an equal number of elements should

be assigned to each processor, and the purpose is to reduce the idle or waiting time for some processors,

results from the unbalanced load. Minimizing adjacent elements of the mesh partitions leads to minimum

inter-processor communication.

METIS [151], which is an open-source software package for partitioning of unstructured graphs, parti-

tioning meshes and computing fill-reducing ordering of sparse matrices is used here to uniquely divide the

background cells among the processors involved in the computations. As compared to other alternatives,

METIS provides high-quality partitions with high efficiency. METIS partitioning are based on graph

partitioning algorithms, in which an FE mesh (background cells in our case) is initially converted to a

graph, in which each vertex of the graph represents a FE. After partitioning, the graph is then converted

back to the FE mesh. METIS partitioning is based on multilevel graph partitioning [153, 154], which

is an efficient way to intelligently divide very large graphs as compared to conventional partitioning, in

which the partitioning is performed on the original graph. A multilevel partitioning algorithm with a

sample graph is shown in Figure 7.4, which consists of three-phases, i.e. coarsening, partitioning and

refinement or uncoarsening. During the coarsening phase, the size of graph reduces in steps by collapsing

its vertices, and METIS uses algorithms that make it easier to find high-quality partitions. After the

coarsening phase, partitioning is then performed on the reduced graph and due to its small size, this step

is normally very fast. In the refinement or uncoarsening phase, vertices are uncollapsed step by step until

we get the original graph. In the uncoarsening phase, METIS concentrates on the portions of the graph,

which are close to the partitions’ boundaries and the goal is to reduce inter-processor communication.

METIS provides a command line stand alone program as well as an interface to other programming

languages, e.g. FORTRAN, C.

7.6 MUltifrontal Massively Parallel Solver

The MUltifrontal Massively Parallel Solver (MUMPS) [2] is an open-source direct solver for the solution

of the general sparse system of linear equations, i.e. Ku = f . The input matrix K can be symmetric

positive definite, general symmetric or unsymmetric. MUMPS supports a variety of ways to enter the

input matrix K, i.e. it can be in assembled format or in unassembled or elemental format. Furthermore,
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Figure 7.4: Traditional and multilevel partitioning algorithms [151]

using the assembled format, MUMPS can accept the K matrix in a centralized or distributed format.

In the centralized matrix format, only one global K is assembled on the host, while in the distributed

format, individual K matrices are assembled on each processor. In the centralized matrix input format,

MUMPS itself divides and distributes the matrix to other processors. Distributed K matrix input format

is used in this research due to a very large memory requirement on the host in the case of the centralized

matrix input format to store one global K matrix. Finally, MUMPS can support different arithmetic,

e.g. complex, single and double precision. MUMPS is written in FORTRAN but can also be used with

other common scientific languages, e.g. C, MATLAB and Octave. MUMPS is available in both parallel

and sequential format. For the sequential version only the BLAS library is required but for the parallel

version, BLAS, BLACS, MPI and ScaLAPACK libraries are required.

7.7 Parallel algorithm for linear elastic problems

The parallel algorithm for the EFGM for linear elastic problems is described here, which will be extended

to the adaptive nonlinear case in the next section. Before explaining the parallel EFGM algorithm itself,

first a comparison is given of the computation involved in the parallel EFGM as compared to the parallel

FEM algorithm. Sample partitions for two processors for the FEM and the EFGM are shown in Figures

7.5(a) and 7.5(b) respectively. In the FEM case, the boundary nodes between the two processors are

required on both processors for the calculation of the shape functions and corresponding shape function

derivatives. These nodes are shown as solid circles in Figure 7.5(a) and should be duplicated on both

processors. These shared nodes represent the communication cost, i.e. the information required to be

transferred between the two processors. As compared to the FEM, in the EFGM case, more nodes are

required for the calculation of shape functions and corresponding shape function derivatives as shown in

Figure 7.5(b), therefore more nodes need to be shared between the processors in the EFGM case. As

Figure 7.5(b) shows, the influence domains of nodes shown in red covers Gauss points belong to the other

processors, therefore, these nodes must be duplicated. This increase in the shared nodes as compared to

the FEM case, increases the communication cost in the EFGM case.

The flow chart for the parallel algorithm for the EFGM for linear elastic problems is shown in Figure

7.6, all of which has been implemented from scratch by the author in FORTRAN with NAG, MPI, METIS,
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MUMPS, KDTREE and Voro++ supporting libraries. The two computationally expensive parts, i.e.

assembly of the stiffness matrix and the solution of the final system of linear equations, are performed

in parallel. At the start of the analysis, the MPI library is initialized and the problem is redundantly

set up on each processor involved in the computation, to reduce the inter-processor communication. The

problem setup includes the definition of nodal coordinates, background cells, Gauss points and influence

domains. Input data is then prepared for METIS for domain decomposition, the detail of which can be

found in [151]. METIS library subroutine "METIS PartMeshDual" is used here for this purpose, which

directly divides the background integration cells into the user defined number of subdomains. The output

of "METIS PartMeshDual" is "epart", which is a vector of length equal to the number of background

cells where each entry shows the processor number to which the background cell belongs. Kd-tree with

background mesh algorithm (the details of which can be found in Appendix-B) is used next to search

nodes in the support of each Gauss point. The next step is the assembly of stiffness matrices on each

processor using the MUMPS distributed assembled matrix format. The size of the stiffness matrix on

each processor depends on the nodes, which are in support of its Gauss points, e.g. in Figure 7.5(b),

shared nodes must be included in these nodes for both processors. The stiffness matrix on each processor

is then calculated and assembled. Force vector f is assembled only on the host or master processor. Input

data are then prepared for MUMPS for the solution of the final system of linear equations, the detail of

which can be found in [2]. Finally, output data, e.g. displacements and stresses, are calculated before

finalizing the MPI library and end of analysis.

7.7.1 Numerical examples

Two two-dimensional linear-elastic numerical examples are now given to demonstrate the implementation

and performance of the linear elastic parallel algorithm.

Two-dimensional beam problem

The first numerical example is a two-dimensional cantilever beam problem, the geometry, loading, bound-

ary conditions and material properties for which are given in §2.8. This problem is solved with two differ-

ent discretizations, i.e. one coarse one and one fine. In the fine discretization, 6601 nodes (DOFs=13202)

and 6400 background cells are used, while in the coarse discretization, nodes and background cells are

decreased to 1701 (DOFs=3402) and 1600 respectively. (4×4) Gauss points are used in each background

cell and dmax = 3.0 is used as scaling parameter for the domain of influence. The problem was run on

the Hamilton cluster [1] with 1-25 processors. Sample METIS partitions for the discretization with 13202

DOFs for 2, 5, 10, 16, 20 and 25 processors are shown in Figures 7.7(a-f) respectively. In these figures,

each color represents a separate METIS partition, for which the calculations are performed on a different

processor. A comparison between the selective deformed nodes and their analytical solution are shown

in Figure 7.8(a), while a comparison between the numerical and analytical neutral axis deflections are

shown in Figure 7.8(b). The results obtained in this case are in excellent agreement with the analytical

solutions, which shows the correct implementation of the parallel linear elastic algorithm.

The performances of this problem on the Hamilton cluster are shown in Figure 7.9. The timing results

for the 13202 DOFs case are shown in Figure 7.9(a). The timing reported here for the stiffness matrix

includes calculation of the shape functions and corresponding shape function derivatives and calculation

and assembly of the stiffness matrix. The time spent on the solution of the final system of linear equations

using MUMPS is tagged as “MUMPS” in Figure 7.9(a). The total time reported is the sum of stiffness

matrix and MUMPS times. Here the time spent in the solution of the system of linear equations is

very small as compared with the time spent in the assembly of the stiffness matrices. It is clear from

Figure 7.9(a), that increasing the number of processors reduces all the three reported times. The timing
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Figure 7.5: Sample partitions for two processors

results for the 3402 DOFs case are also shown in Figure 7.9(b) showing the same decreasing trend with

increasing the number of processors as shown in Figure 7.9(a). A comparison between the actual speedup

and ideal speedup for both the discretizations versus the number of processors are shown in 7.9(c).

For this problem the fine discretization performs relatively better than the coarse discretization. For 25

processors, a speedup of 12 is obtained for the fine discretization, while a speedup of 9.4 is obtained for the

coarse discretization. A comparison between the actual and ideal efficiencies for both the discretizations

versus the number of processors is shown in Figure 7.9(d). For 25 processors, 48.0% and 37.6% efficiencies

are recorded for fine and coarse discretizations respectively.

Hole in an infinite plate problem

The second linear-elastic numerical example is a two-dimensional infinite plate with a central hole, the

geometry, loading, boundary conditions and material properties for which are already given in §2.8. In

this case again the problem is solved with two different discretizations. The first is fine one with 7381

nodes (14762 DOFs) while the second discretization is coarse one with 3691 nodes (3782 DOFs). (4× 4)

Gauss points are again used in this problem and the scaling parameter for the domain of influence used

is dmax = 3.5. The problem was run on the Hamilton cluster using 1-30 processors. Sample METIS

partitions of the fine discretization for 2, 6, 12, 20 and 30 processors are shown in Figures 7.10(a-e).
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Figure 7.6: Linear elastic parallel algorithm

Comparison of the deformed nodes with the numerical displacements, and their corresponding analytical

solutions are shown in Figure 7.11, which are in excellent agreement with each other and show again the

correct implementation of the parallel linear elastic algorithm.

The performances of this problem on the Hamilton cluster are shown in Figure 7.12. The timing results

for the fine discretization with 14762 DOFs are shown in Figure 7.12(b) and for the coarse discretization

with 3402 DOFs are shown in Figure 7.12(b). Here again, in both cases all the three reported times,

i.e. time spent in the calculation and assembly of stiffness matrices, time spent in the solution of the



7.7. Parallel algorithm for linear elastic problems 157

Figure 7.7: Selective Metis partitions for the discretization with 13202 DOFs for the two-dimensional
beam problem

final system of equations with MUMPS, and total time decreases with an increase in the number of

processors. Comparison between the actual speedup for both fine and coarse discretizations and ideal

speedup are shown in Figure 7.12(c). Similarly, comparison between the actual efficiencies for fine and

coarse discretizations and ideal efficiency are shown in Figure 7.12(d). For the fine discretization, a

speedup and efficiency of 8.16 and 27.2% respectively are recorded for 30 processors, while for the same
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Figure 7.8: Deflections for the selective nodes for the two-dimensional beam problem
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Figure 7.9: Performance on the Hamilton cluster [1] using 1-25 processors for the two-dimensional beam
problem

number of processors, for the coarse discretization, speedup and efficiency recorded are 10.0 and 30.47%

respectively.
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Figure 7.10: Selective Metis partitions for the discretization with 14762 DOFs for the hole in an infinite
plate problem

7.8 Parallel algorithm for adaptive nonlinear problems

In this section, the parallel algorithm described previously for the EFGM for linear elastic problems is

extended to adaptive nonlinear problems with both material and geometrical nonlinearities. The flow

chart of the parallel algorithm in this case is shown in Figure 7.13. A total Lagrangian formulation is

used here to model finite deformation and the Prandtl-Reuss constitutive model is used to model elasto-

plasticity, the details of which are already given in §3.3.2 and §3.2.4 respectively. Here the start of the

algorithm is almost the same as given for the linear elastic case, i.e. the definition of the problem and

METIS partitioning. Nodal influence domains for analysis and projection are calculated on the host

and are broadcast to all other processors involved in the computation. Kd-tree with background mesh

algorithm is then used to calculate nodes in support of each Gauss point for analysis and projection

and is also used to find nodes in support of each node for the calculation of nodal strains and stresses
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Figure 7.11: Displacements for selective nodes for the hole in an infinite plate problem

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

Number of Processors

T
o
ta

l
ti

m
e

(s
ec

)

Stiffness matrix

MUMPS

Total

(a) Run time (DOFs=13202)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Number of Processors

T
o
ta

l
ti
m

e
(s

ec
)

Stiffness matrix

MUMPS

Total

(b) Run time (DOFs=3402)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Number of Processors

S
p
ee

d
u
p

(S
n
)

Actual (DOFs=14762)

Actual (DOFs=3782)

Ideal

(c) Speedup

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Number of Processors

E
ffi

ci
en

cy
(E

n
) Actual (DOFs=14762)

Actual (DOFs=3782)

Ideal

(d) Efficiency

Figure 7.12: Performance on the Hamilton cluster [1] using 1-30 processors for the hole in an infinite
plate problem
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for the calculation of the Chung & Belytschko error estimates. For each processor, shape functions and

corresponding shape function derivatives are calculated for analysis at each Gauss point belonging to it

and are stored in separate files, i.e. each file belongs to one processor. Similarly, the same procedure is

repeated for the calculation of shape functions at each Gauss point for projection, and the calculation of

shape functions and corresponding shape function derivatives at each node for the calculation of nodal

strains and stresses. Determination of the size of the stiffness matrix on each processor and calculation

and assembly of the stiffness matrix is then performed in parallel in the same way as explained previously

for the linear elastic case.

For load step n, systems of linear equations are solved in parallel with MUMPS, using the distributed

assembled matrix input format. Internal and reaction forces are calculated next in parallel separately

on each processor and are combined on the host to calculate the out-of-balance force, which is then

used to control the Newton-Raphson iteration. After convergence of the Newton-Raphson iterations, the

next step is the calculation of nodal strains and stresses and error estimation. METIS also gives nodal

partitions, which are used here to calculate the nodal strains and stresses in parallel. The error is also

estimated in parallel here because the Chung & Belytschko error estimation procedure works cell-wise.

Therefore, error is calculated separately on each processor and they are then combined to calculate the

global error. The global error is then used to control the adaptive process, as already explained in

§4.3. Transfer of the path dependent variables both for the nodes and for the Gauss points are also

performed here in parallel. After each refinement, METIS is used for automatic domain decomposition

of the problem domain.

7.8.1 Numerical examples

A three-dimensional nonlinear problem with both material and geometrical nonlinearities is now given,

to demonstrate the implementation and performance of the parallel nonlinear adaptive algorithm. The

problem solved here is a three-dimensional plate with a hole problem subjected to unidirectional loading.

The same problem is also solved in §4.4.1, where its geometry, boundary conditions and material properties

are also given. Due to symmetry, only one-eighth of the problem is solved. The problem is solved here

with the same code using two different strategies, i.e. initially it is solved without adaptivity and then

with adaptivity. In the “without adaptive” case, all the subroutines related with adaptivity are switched

off, which includes calculation of nodal stresses, error estimation, refinement and data transfer between

the consecutive discretizations. In the following these two cases are described separately.

Without adaptivity

A total displacement of 0.15 units is applied to the top face of the plate in 15 equal steps. The scaling

parameter used here for the domain of influence is dmax = 1.5 and the problem is solved with two different

discretizations. The first discretization is fine with 6075 DOFs and the second is relatively coarse with

2793 DOFs. The problem was run on the Hamilton cluster with 1-8 processors. Sample METIS partitions

for 2, 4, 6 and 8 processors for the 6075 DOFs case are shown in Figures 7.14(a-d) respectively, while for

the 2793 DOFs case are shown in Figures 7.15(a-d) respectively. The same problem is also solved with the

FEM, using a relatively fine eight-node hexahedral mesh with 18759 DOFs to serve as a reference solution,

for which the mesh is shown in Figure 7.16(a). A comparison between the reaction versus displacement

for both the fine and coarse discretizations and the reference FEM is shown in Figure 7.16(b), which are

in a very good agreement and demonstrates the correct implementation of the parallel adaptive nonlinear

algorithm.

The performance on the Hamilton cluster is shown in Figure 7.17. Simulation time versus the number

of processors for both the discretizations are shown in Figure 7.17(a). The timings reported here are the
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Figure 7.13: Nonlinear adaptive parallel algorithm

total simulation times. It is clear from Figure 7.17(a) that for this problem with a fine discretization, the

code spends 1008 seconds on one processor but on eight processors, it spends only 298 seconds and in the

case of the coarse discretization, it spends 277 and 91 seconds on one and eight processors respectively,

which are a significant reduction in simulation time. A comparison between the actual speedup versus
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the number of processors for both discretizations and the ideal speedup is shown in Figure 7.17(b). For

eight processors a speedup of 3.38 and 3.04 are obtained for fine and coarse discretization respectively.

A comparison between the efficiencies for both discretizations and the ideal is shown in Figure 7.17(c).

For eight processors 42.26% and 37.95% efficiencies are obtained for fine and coarse discretizations re-

spectively. For this problem, the fine discretization performs better than the corresponding coarse one.

Figure 7.14: Selective Metis partitions for 6075 degrees of freedom for the 3D plate with a hole problem

Figure 7.15: Selective Metis partitions for 2793 degrees of freedom for the 3D plate with a hole problem

With adaptivity

In the adaptive case, a total displacement of 0.5 units is applied to the top face of the plate in 20 equal

load steps. The scaling parameters used here for the domains of influence of analysis and projections

are damax = 1.5 and dpmax = 1.1 respectively. The value used here for the permissible relative error

is 15%. A very coarse discretization is used at the start of analysis with only 189 DOFs, which is

subsequently refined adaptively and the number of DOFs in the second and third discretizations are 852

and 3486 respectively. This problem was run on the Hamilton cluster using 1-6 processors. The maximum

number of processors is restricted here by the coarse initial discretization, as METIS cannot divide it
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Figure 7.16: FEM reference mesh and reaction versus displacement for the 3D plate with a hole problem

into more than six subdomains. Sample METIS partitions of the adaptively refined discretizations for

two processors are shown in Figures 7.18(a-c), while the final deformed configuration is shown in Figure

7.18(d). The same METIS partition and the final deformed configuration in the case of five processors

are shown in Figures 7.19(a-d) respectively. The number of processors is constant during the analysis

and are specified at the start of simulation and METIS repartitions the problem domain into the same

number of subdomains as processors after each refinement. The final displacement contours in the x

and y directions over the full plate are shown in Figures 7.20(a) and 7.20(b) respectively. As only one-

eighth of this problem is analyzed, the full plate solution is given here for better presentation obtained

by mirroring the one-eighth solution across the symmetry planes. Formation of the necking in the centre

of the plate is obvious in both figures. The same problem is also solved with a relatively fine FEM mesh

using eight-node hexahedral elements with 18759 DOFs to serve as a reference, for which the mesh is

already shown in Figure 7.16(a). A comparison of the reaction versus displacement for this problem with

the reference FEM is shown in Figure 7.20(c), which are in a very good agreement and shows the correct

implementation of the parallel adaptive nonlinear algorithm.

Performances on the Hamilton cluster are shown in Figure 7.21. Simulation time versus the number

of processors are shown in Figure 7.21(a). The timing reported here are again full simulation times. On

one processor, it takes 614 seconds, while for six processors, it takes only 190 seconds. Furthermore,

comparisons of speedup and efficiency with the corresponding ideal values are given in Figures 7.21(b)

and 7.21(c) respectively. In the case of six processors speedup and efficiency achieved are 3.23 and 53.76%

respectively.

7.9 Final demonstration problem

So far, in this thesis, all the demonstration problems have been solved with relatively small deformations

using relatively coarse discretizations. The rationale is that the methods need proper testing and demon-

stration and small problems are best suited for this. The use of the EFGM, which is computationally

very expensive as compared to the corresponding FEM has meant that thus problems involving very
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Figure 7.17: Performance on the Hamilton cluster [1] using 1-8 processors for the the 3D plate with a
hole problem

large deformation problems with very fine discretizations have not been attempted. However, many new

techniques have been developed so far in this thesis, including adaptive EFGM, FE-EFGM coupling,

adaptive FE-EFGM coupling and parallel adaptive nonlinear EFGM. The purpose of this final demon-

stration problem is to show the capabilities of the methods developed so far, to handle problems with very

fine discretizations subjected to very large deformation and elasto-plasticity. The same three-dimensional

plate with a hole problem subjected to unidirectional tension as used in the previous section is selected

again as a test problem.

The parallel code developed in the previous section is restricted to adaptive nonlinear EFGM, which

is extended here to also include adaptive FE-EFGM coupling. The parallel nonlinear adaptively coupled

FE-EFGM code developed here is based on the parallel nonlinear adaptive EFGM algorithm described

in §7.8 and the sequential nonlinear adaptively coupled FE-EFGM algorithm described in §6.6. In this

new algorithm, a coupled FE-EFGM discretization consisting of both FEs and EFG background cells is

partitioned with METIS, where each METIS partition can consist of both FEs and EFG background cells.

Kd-tree with background mesh algorithm is then used to find nodes in the support of those Gauss points,

which belong to the EFG region of the problem domain. To calculate error for the coupled FE-EFGM

discretization, consisting of both the Zienkiewicz & Zhu and the Chung & Belytschko error estimations

for the FE and EFG region of the problem domain respectively, nodal incremental strains and stresses

are calculated in both regions. Nodal incremental strains and stresses are calculated here sequentially in
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Figure 7.18: Step by step metis partitions for two processors for the adaptive 3D plate with a hole problem

Figure 7.19: Step by step metis partitions for five processors for the adaptive 3D plate with a hole problem

contrast to the previous parallel nonlinear adaptive EFGM algorithm, where nodal incremental strains

and stresses are calculated in parallel. The SPR method is used in the FE region of the problem domain

to calculate the nodal incremental strains and stresses, which is difficult to parallelize. After sequential

calculation of the nodal incremental strains and stresses, the error is then calculated in parallel. The rest

of the algorithm is the same as described in §7.8 for the parallel nonlinear adaptive EFGM with all the

relevant changes associated with the adaptively coupled FE-EFGM algorithm described in §6.6.
The problem is solved with the parallel nonlinear adaptively coupled FE-EFGM code. Again only
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Figure 7.20: Final displacements and reaction versus displacement for the adaptive 3D plate with a hole
problem
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Figure 7.21: Performances on the Hamilton cluster [1] using 1-6 processors for the adaptive 3D plate with
a hole problem

one-eighth of the problem is solved and a total displacement of 1.5 units is applied to the top face of

the plate in equal 100 load steps. Scaling parameters used for the domains of influence of analysis and

projections are damax = 1.5 and dpmax = 1.1 respectively and the permissible relative error used is 15%.
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The problem is first solved using a starting FE mesh with 975 DOFs as shown in Figure 7.22(a). During

the analysis, those FEs which violate a specified error measure based on the Zienkiewicz & Zhu error

estimation procedure are converted adaptively into an EFG zone. The second discretization, or the first

adaptively coupled FE-EFG discretization, is shown in Figure 7.22(b). During this first conversion, the

number of degrees of freedom remains the same. The third and fourth discretizations are shown in Figures

7.22(c) and 7.22(d) respectively, which are obtained from the adaptive refinement based on the combined

Zienkiewicz & Zhu and Chung & Belytschko error estimations. The degrees of freedom in the third and

fourth discretizations are 3,198 and 11,277 respectively. Contours of the ux and uy over the final deformed

configurations are given in Figures 7.23(b) and 7.23(c) respectively. Again full plate solutions are given

in these figures, which are obtained by mirroring the one-eighth solution across the symmetry planes.

For comparison, the original undeformed configuration is also given in Figure 7.23(a). Reaction versus

displacement plot is shown in Figure 7.29. The curve for this case is tagged as “adaptive”. This problem

is solved on Hamilton cluster using 10 processors with a total simulation time of 2,654 seconds. It is

clear from Figures 7.23 and 7.29, that the developed code, can efficiently handle very large deformation

problems.

The same problem with the same input parameters is next solved with the same code but this time

the starting FE mesh is relatively fine as compared to the starting mesh used in the previous case,

shown in Figure 7.22(a). The starting FE mesh used here is shown in Figure 7.25(a), which is then

adaptively refined in the same way as explained in the previous case. The second, third and fourth

adaptive discretizations are shown in Figures 7.25(b-d) respectively. The number of degrees of freedom

in first, second, third and fourth discretizations are 6075, 6075, 21609 and 52386 respectively. The

contours of the ux and uy over the deformed configurations are shown in Figures 7.26(b) and 7.26(c)

respectively, while the undeformed configuration is also shown in Figure 7.26(a) for comparison. In this

case, necking near the centre of the hole is more prominent as compared to the previous case. The

reaction versus displacement plot for this case is also shown in Figure 7.29, this time the curve is tagged

as “Adaptive-1”. As expected, the geometric softening in this case is more obvious as compared to the

previous case. The analysis in this case was run on the Hamilton cluster on 50 processors with 60 load

steps with a total simulation of 9391 seconds. This second nonlinear adaptively coupled FE-EFGM case

further demonstrates the capabilities of the code to handle problems with fine discretizations subjected

to very large deformation and elasto-plasticity. For this problem, percentage of the total simulation time

consumed in each portion of the code is shown in Figure 7.24. The time spend to set up the problem

and in domain decomposition using METIS is negligible. Due to the total Lagrangian formulation, the

time spend in the calculation of the influence domains using Voro++, neighbour search using kd-tree with

background mesh and the calculation of the shape functions and corresponding shape function derivatives

are relatively small, as these are calculated and saved at the start of simulation and after each refinement

and then used in each Newton-Raphson iteration. Calculation of the error estimation and refinement &

transfer of path dependent variable from one discretization to the next takes 1.85% and 0.98% of the

total simulation time respectively. The calculation and assembly of the stiffness matrix at the start and

during each Newton-Raphson iteration consumed 24.12% of the total simulation time, while the solution

of the final system of linear equations with MUMPS is the most computationally expensive part of the

simulation and takes 71.73% of the total simulation time.

For comparison, the same problem is also solved with the FEM, with eight-node hexahedral elements

using three different meshes as shown in Figures 7.27(a-c). The first mesh is very coarse with only 975

DOFs, the second one is relatively fine with 42,483 DOFs and the third one is very fine with 154,128

DOFs. For the 975 DOFs case, the analysis is run on the Hamilton cluster using 10 processors, and the
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total simulation time is only 242 seconds. The final deformed configuration for the full plate with the

uy contours are shown in Figure 7.28(a). In this case, due to volumetric locking, material on both sides

of the hole move rigidly toward the centre of the hole. Although, some necking can be seen near the

centre of the hole, it is less obvious as compared to the previous two adaptively coupled FE-EFGM cases.

Furthermore, the reaction versus displacement plot for this case is shown in Figure 7.29 and is tagged as

“FEA (DOFs=975)”. Although, some geometric softening can be seen in this case, the response is very

rigid as compared to the adaptively coupled FE-EFGM cases, and is unrealistic.

Subsequently, for the second and third FE mesh, the final deformed configurations with uy contours

are shown in Figures 7.28(b) and 7.28(c) respectively. In the second FEM case, i.e. the one with 42,483

DOFs the analysis was run on the Hamilton cluster using 40 processors with 100 load steps, with a total

simulation time of 14,579 seconds. In the third FEM case, i.e. the one with 154,128 DOFs the analysis was

run on the Hamilton cluster on 100 processors with 50 load steps, with a total simulation time of 48,680

seconds. In Figure 7.28(b), necking is more prominent and rigid material movement toward the centre of

the hole is less obvious as compared to the response of coarse FEM shown in Figure 7.28(a). For the fine

FEM case shown in Figure 7.28(c), the response is even better than the response shown in Figure 7.28(b)

with very prominent necking as one would expect physically and almost no rigid material movement near

the centre of the hole. The reaction versus displacement curve for the second and third FEM cases are

also shown in Figure 7.29, which are tagged as “FEA (DOFs=42,483)” and “FEA (DOFs=154,128)”

respectively. These reaction versus displacement curves shows more geometric softening as compared to

the coarse FEM discretization. Furthermore, it is also clear from Figure 7.29 that increasing the number

of degrees of freedom, leads to an increase in geometric softening.

Overall summary of the results for this final demonstration problem, with five different discretizations

is given in Table 7.1. Due to the use of different load steps and number of processors for each analysis,

work done per load step is calculated for each analysis using

Work done per load step =
Run time×No of processors

Load steps
, (7.4)

and is also given in the same table for comparison. As compared to the fine FEA case, work done per load

step associated with the two adaptive cases are very small. Although, work done per load step associated

with the first two FEA cases are very small, but it is shown above that in these cases the results are

not realistic. To summarize, as compared to the corresponding FEA, the parallel adaptively coupled

FE-EFGM algorithm can efficiently and accurately model problems subjected to both finite deformation

and elasto-plasticity.

Cases DoFs Load Number of Run time Work per
steps processors used (sec) load step

Adaptive 975 975 3,198 11,277 100 10 2,654 265.4
Adaptive-1 6,075 6,075 21,609 52,386 60 50 9,391 7825.8
FEA (DOFs=975) 975 100 10 242 24.2
FEA (DOFs=42,483) 42,483 100 40 14,579 5831.6
FEA (DOFs=154,128) 154,128 50 100 48,680 97360.0

Table 7.1: Final demonstration problem results summary

7.10 Concluding remarks

Parallel algorithms are developed in this chapter for linear and adaptive nonlinear EFGM for distributed

memory computer architecture. The parallel adaptive nonlinear EFGM algorithm is then extended to the
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Figure 7.22: Step by step discretizations for the “adaptive” case for the final demonstration problem

Figure 7.23: Contours of ux and uy over the final deformed geometry for the “adaptive” case for the final
demonstration problem

parallel nonlinear adaptively coupled FE-EFGM case. In nonlinear cases, total Lagrangian formulation

is used to model finite deformation and the Prandtl-Reuss constitutive model is used to model elasto-

plasticity. Parallel codes are developed based on these algorithms in FORTRAN with other supporting

libraries, i.e. NAG, Voro++ and kd-tree. The MPI library is used for the inter-processor communication

and an open-source software package, METIS is used for the automatic domain decomposition of the

problem domain. An open-source parallel solver, MUMPS is used for the solution of the final system of
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Figure 7.24: Time distribution in different part of the code

Figure 7.25: Step by step discretizations for the “adaptive-1” case for the final demonstration problem

linear equations. MUMPS supports a variety of ways to enter the input matrix, distributed assembly

matrix input format is used in this research, in which there is no need to assemble the full stiffness matrix.

Parallel codes are run successfully on the Durham University’s high-performance cluster Hamilton with

very good speedup and efficiencies in all the cases. Two two-dimensional numerical examples, i.e. a

cantilever beam problem and an infinite plate with a hole problem are solved to show the implementation

and performance of the parallel linear-elastic algorithm. In this case, the displacement results are also

compared with the corresponding analytical results, which are in a very good agreement. Furthermore,

three-dimensional plate with a hole problem is solved with two different strategies, i.e. without and
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Figure 7.26: Contours of ux and uy over the final deformed geometry for the “adaptive-1” case for the
final demonstration problem

Figure 7.27: Reference FEM meshes for the final demonstration problem

with adaptivity to show the implementation and performance of the parallel adaptive nonlinear EFGM

code. In this case, reaction versus displacement plots are compared with the corresponding reference

FEM reaction versus displacement plots, which are obtained using a relatively fine FE mesh, and both

are in a very good agreement. The final demonstration problem is also given to show the capabilities

of the code to handle problems with very fine discretizations subjected to very large deformation and

elasto-plasticity. Results in this case are compared with the corresponding FEM results, and it is shown
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Figure 7.28: Contours of uy over the final deformed geometry for the reference FEM meshes for the final
demonstration problem
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Figure 7.29: Reaction versus displacement for the final demonstration problem

that the parallel nonlinear adaptively coupled FE-EFGM algorithm can simulate these problems very

efficiently with excellent results.



Chapter 8

Conclusions and recommendations

for future work

8.1 Overall assessment

Modelling of problems with both material and geometrical nonlinearities remains challenging due to their

complicated nature and high computational cost. Different strategies have been used throughout the

literature for the solution of these problems but the challenge remains the same, i.e. to find numerical

methods to solve these problems accurately and efficiently. Meshless methods are ideal in some ways to

solve these problems, but their high computational cost restricts their use to small academic problems.

In this thesis, a variety of new numerical strategies have been proposed for meshless methods, where the

goal is to increase their computational efficiency.

Chapter 1 provides a general introduction and motivation to this thesis. All the background associated

with numerical implementations of the EFGM for linear-elastic problems are covered in Chapter 2 using

both MLS and max-ent shape functions. In this thesis, linear basis functions and cubic spline weight func-

tions are used in the MLS shape functions. In the conventional EFGM, MLS shape functions are used for

the approximation of the field variables, background cells are used for numerical integration and Lagrange

multipliers are used for the imposition of the essential boundary conditions as MLS shape functions do

not satisfy the Kronecker delta property. The recently developed, max-ent shape functions are also used

in the EFGM. As compared to MLS, these shape functions satisfy a weak Kronecker delta property at

the domain boundaries, which allows the imposition of essential boundary conditions directly. One-, two-

and three-dimensional linear-elastic benchmark numerical examples are presented, and it is shown that

EFGM with both MLS and max-ent shape functions perform satisfactorily. Furthermore, it is also shown

that EFGM is more accurate with higher rate of convergence as compared to the corresponding FEM.

In Chapter 3, the linear-elastic EFGM is extended to nonlinear case with both material and geometrical

nonlinearities. Complete formulations are first described for small strain elasto-plasticity, which is then

extended to finite deformation case. The Prandtl-Reuss constitutive model is used throughout this thesis

to model elasto-plasticity, while in this chapter, updated Lagrangian formulation is used to model finite

deformation. A variety of numerical examples subjected to small strain, large strain and elasto-plasticity

are presented to demonstrate the correct implementation.

The main contributions of this research work are contained in Chapters 4 to 7. In the following,

important points and main conclusions of each contributing chapter are summarized one by one.

– 174 –
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Error estimation and adaptivity in the EFGM

In Chapter 4, a new adaptive meshless approach is developed for the EFGM for nonlinear solid me-

chanics problems subjected to both elasto-plasticity and finite deformation. This chapter starts with

two-dimensional linear elastic adaptive analysis, in which the Chung & Belytschko error estimation pro-

cedure is used, in which projected stresses are calculated from the nodal stresses based on the reduced

domain of influence. Effectivity index, Cell-wise error in energy norm and relative error are used as per-

formance parameters. A refinement strategy based on the background integration cells and calculation of

the nodal domains of influence based on the Voronoi diagram are also given. In the numerical examples,

relative error versus DOFs is used as a performance parameter, and it is shown that adaptive refinement

performs better than the uniform refinement.

The two-dimensional linear elastic adaptive procedure is then extended to two-dimensional nonlinear

problems. The Chung & Belytschko error estimation procedure, which was originally proposed for linear

elastic problems is extended here to nonlinear problems. The same refinement strategy, used for the

linear elastic case is used here, and MLS shape functions are used for transferring of the path dependent

variables between the consecutive discretizations. In the numerical examples, pressure/reaction versus

displacement and effective plastic strain are used as performance parameters. The first numerical ex-

ample presented is a small strain elasto-plasticity strip footing collapse with known analytical solution

of limit load, to demonstrate the robustness of the basic code, before moving on to examples with both

finite deformation and elasto-plasticity. Reaction versus displacement plots are compared with analytical

and reference solutions. The two-dimensional nonlinear adaptive EFGM algorithm is also extended to

three-dimensional case. The two-dimensional linear and nonlinear adaptive EFGM algorithms are imple-

mented in MATLAB, while the three-dimensional nonlinear adaptive EFGM algorithm is implemented

in FORTRAN. For the two-dimensional problems, MATLAB built-in functions are used for generation

of Voronoi diagrams but for the three-dimensional problems an open-source software library, Voro++ is

used. The two-dimensional refinement strategy is also extended to three-dimensional case. Two numer-

ical examples are also presented, to show the implementation and performance of the three-dimensional

nonlinear adaptive algorithm.

FE-EFGM coupling

In Chapter 5, a new FE-EFGM coupling procedure based on max-ent shape functions is proposed for

two-dimensional linear elastic problems. In this coupling procedure, max-and shape functions are used

in the EFG region of the problem domain, which posses a weak Kronecker delta property at the domain

boundaries and provides a natural way to couple the FEM and the EFGM. As compared to the conven-

tional FE-EFGM coupling, in which MLS shape functions are used in the EFG region of the problem

domain, there is no need to use an interface or transition region between FE and EFG regions. This

chapter starts with the conventional FE-EFGM coupling and full formulations of the interface elements’

shape functions are given, which are based on blending functions. The FE-EFGM coupling procedure

based on the mex-ent shape functions is then described. It is demonstrated through one-, two-, and three-

dimensional linear elastic benchmark numerical examples that this new FE-EFGM coupling procedure

performs satisfactorily as compared with other alternatives, even at very large nodal influence domains.

The linear elastic FE-EFGM coupling procedure is also extended to the geometrically nonlinear prob-

lems. As compared to the linear elastic case, in which FE and EFG regions in the problem domain are

specified based on the problem dimensions, in the nonlinear case, these regions are identified by a tag

associated with each integration point. In this case, an updated Lagrangian formulation is used to model

the finite deformation. Finally, two-dimensional geometrically nonlinear benchmark numerical examples
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are presented to demonstrate the implementation and performance of geometrically nonlinear FE-EFGM

coupling procedure.

Adaptive FE-EFGM coupling

In Chapter 6, the FE-EFGM coupling procedure based on the max-ent shape functions proposed in

Chapter 5, is extended to become adaptive FE-EFGM coupling. In this new coupling procedure, initially

the whole of the problem domain is modelled using the FEM. During an analysis those finite elements

which violate a predefined error measure are automatically converted to an EFG zone. This EFG zone

can be further refined by adding nodes, thus avoiding computationally expensive FE remeshing. The

Zienkiewicz & Zhu error estimation procedure with the SPR method for strains and stresses recovery are

used in the FE region of the problem domain, while the Chung & Belytschko error estimation procedure

is used in the EFG region of the problem domain. In the SPR method, internal patches are used

to recover the nodal strains and stresses at the boundary nodes. The adaptively coupled FE-EFGM

procedure for linear elastic problems are implemented in MATLAB. In the linear elastic case, error in

FE region is calculated only once during the first iteration and in the subsequent iterations, the error is

then calculated in EFG region. A new refinement strategy is also proposed for the adaptive FE-EFGM

coupling. It is demonstrated with numerical examples, that the proposed two-dimensional linear elastic

adaptively coupled FE-EFGM perform better than the corresponding uniform refinement.

In this chapter, the performance of the updated and total Lagrangian formulations in the case of

the EFGM are also compared, and it is shown that total Lagrangian is computationally more efficient.

The two-dimensional linear elastic adaptively coupled FE-EFGM is also extended to three-dimensional

nonlinear case, in which total Lagrangian formulation is used for modelling finite deformation and Kd-

tree with background mesh is used for the neighbouring search. As compared to the linear elastic case,

here error in the FE region of the problem domain is calculated during each evolving discretization.

Incremental error for both FE and EFG region of the problem domain are calculated for each solution

step and is then used in the adaptive procedure. The three-dimensional nonlinear adaptively coupled

FE-EFGM algorithm is implemented in FORTRAN, which is validated with two numerical examples.

Parallel computations

In Chapter 7, a parallel linear elastic computer code is developed for the EFGM in FORTRAN based

on the distributed memory computer architecture, in which assembly of the stiffness matrix and the

solution of the final system of linear equations are performed in parallel. The MPI library is used

for inter-processor communication and open-source software packages, METIS and MUMPS are used

for the automatic domain decomposition and solution of the final system of linear equations respectively.

Simulation time, speedup and efficiency are used as performance parameters for the parallel program. The

parallel linear elastic EFGM code is run successfully on the Durham University high performance cluster

Hamilton. The code is validated with two two-dimensional numerical examples, in which it is shown

that significant reduction in simulation time can be achieved by increasing the number of processors.

Furthermore, it is also shown that increasing degrees of freedoms leads to better performance on the

Hamilton cluster.

The parallel linear elastic EFGM algorithm is then extended to adaptive nonlinear EFGM case, which

is validated with two three-dimensional nonlinear problems, one without adaptivity and the other with

adaptivity. In this case, reaction versus displacement results are also compared with the corresponding

reference results obtained from very fine FEM meshes, and it is shown that both are in a very good

agreement. Performance on the Hamilton cluster are also given, and it is shown once again in this case

that a significant reduction in the simulation time can be achieved by increasing the number of processors.
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Finally, the parallel adaptive nonlinear EFGM algorithm is extended to parallel nonlinear adaptively

coupled FE-EFGM case, and is used to solve the final demonstration problem. This final demonstration

problem is one with very fine discretization subjected to very large deformation and elasto-plasticity.

Results obtained from the final demonstration problem is also compared with results obtained from a

very fine FEM mesh and it is shown that both are in a very good agreement. Furthermore, it is also

shown that coarse FEM meshes cannot accurately simulate the problem due to the volumetric locking

behaviour.

8.2 Recommendations for future work

The work presented in this thesis can be extended in the future in a number of ways:

• In this thesis, EFGM is used to model problems subjected to finite deformation and elasto-plasticity,

in which background cells are used for numerical integration, which is not an ideal integration

scheme for such problems. However the use of background integration cells in the EFGM simplifies

its numerical implementation. Alternative integration schemes are also available in the literature

for meshless methods, which may be more suitable for finite deformation problems and could be

used in our case, e.g. floating stress-point integration [241, 242], nodal integration [33], stabilized

conforming nodal integration [55], integration based on partition of unity [89], etc. On the other

hand, fully meshless methods can be used to avoid the use of background integration cells, e.g. the

MLPG method [18, 19], meshless local Kriging method [122], etc.

• In this thesis, a simple constitutive model, i.e. Prandtl-Reuss, is used to model elasto-plasticity,

which comprises the von Mises yield function with perfect plasticity and associated flow. This

could clearly be extended in the future, to include the effect of hardening/softening in the plasticity

model. This work could also be extended to use pressure dependent constitutive models, e.g. Mohr-

Coulomb and Drucker-Prager. Furthermore, the ongoing work elsewhere in the Mechanics Group,

Durham University (e.g. Will Coombs’ anisotropic plasticity models [67–70, 72]) can be studied

and be incorporated in this work.

• Adaptive analysis in the case of nonlinear problems is a very challenging topic. Although, in

the literature, varieties of error estimators with a solid mathematical background are available

for the FEM in the case of problems with both material and geometrical nonlinearities but for

mehsless methods, this topic is relatively unexplored. In this thesis, recovery type error estimation

procedures, i.e. Zienkiewicz & Zhu and Chung & Belytschko, are used in the FEM and the EFGM

respectively. This work could be extended in the future, to study and incorporate other types

of error estimation procedures, which are commonly used in the FEM, e.g. residual based error

estimation procedures [5, 24–27, 155], model based error estimation procedures [60, 179, 237, 238]

and error estimation based on the constitutive relation [171–177]. Recently developed, goal-oriented

error estimation procedures [112, 253, 262, 286] could also be studied and used in this research work.

• Calculation of the proper nodal domains of influence is very important for the accuracy of meshless

methods and is very challenging for three-dimensional problems with unstructured nodes. Although,

in this research work, an open-source software library Voro++ is used, it should be noted that

Voro++ is limited to simple geometries and cannot handle problems with arbitrary boundaries.

Further investigations are required to devise a robust strategy for automatic calculation of the

nodal domains of influence for three-dimensional problems with unstructured nodes.

• In this thesis, background integration cells are uniquely divided among the processors in the parallel
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computations, and nodes/particle are then duplicated accordingly. This strategy will lead to equal

numbers of Gauss points on each processor, which is an ideal partitioning strategy in the case of the

FEM but in meshless methods, it produces load imbalance. As compared to the FEM, in meshless

methods, the number of nodes belonging to the support of each Gauss point varies, which leads to

a different computational load associated with each Gauss point. The research work of this thesis

could be extended in the future to uniquely divide Gauss points among the processor with weight

assigned to each Gauss point represent its computational load [78, 106].

• Graphic processing units (GPUs), which were designed initially for the computer graphics, are now

commonly used for a modern version of parallel computing due to their tremendous computational

power and cost as compared to standard high-performance computer clusters. GPUs have already

been used in a variety of scientific fields, e.g. in chemistry [303], general purpose molecular dynamics

[8] and flow simulation [90]. The branch of parallel computing, which uses the GPUs for general-

purpose computation is known as GPGPU. Compute Unified Device Architecture (CUDA) is a

language used to program the GPUs for the general-purpose computing. GPUs are now commonly

used to accelerate the FE simulation and the number of references can be found in the literature,

e.g. [50, 145, 164, 291] but in meshless methods, the uses of GPUs are relatively unexplored. The

research work of this thesis can be further extended by using GPUs for parallel computation.
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[27] I. Babuška, T. Strouboulis, and C.S. Upadhyay. A model study of the quality of a posteriori error

estimators for linear elliptic problems. error estimation in the interior of patchwise uniform grids

of triangles. Computer Methods in Applied Mechanics and Engineering, 114(34):307 – 378, 1994.

[28] G. S. Bala. Discrete finite element method for continuum-discontinuum analysis. PhD thesis,

University of Alberta (Canada), 2008.

[29] E. Barbieri and M. Meo. A fast object-oriented Matlab implementation of the Reproducing Kernel

Particle Method. Computational Mechanics, 49:581–602, 2012.



References 181

[30] J. Barlow. Optimal stress locations in finite element models. International Journal for Numerical

Methods in Engineering, 10(2):243–251, 1976.

[31] W. Barry and S. Saigal. A three-dimensional element-free Galerkin elastic and elastoplastic formu-

lation. International Journal for Numerical Methods in Engineering, 46(5):671–693, 1999.

[32] A. T. Becene. Parallel processing of finite strain, materially nonlinear and incompressible finite

element analysis problems. PhD thesis, University of Rochester, 2003.

[33] S. Beissel and T. Belytschko. Nodal integration of the element-free Galerkin method. Computer

Methods in Applied Mechanics and Engineering, 139(14):49 – 74, 1996.

[34] T. Belytschko. A survey of numerical methods and computer programs for dynamic structural

analysis. Nuclear Engineering and Design, 37(1):23–34, 1976.

[35] T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach. On the completeness of meshfree particle

methods. International Journal for Numerical Methods in Engineering, 43(5):785–819, 1998.

[36] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview

and recent developments. Computer Methods in Applied Mechanics and Engineering, 139(1-4):3 –

47, 1996.

[37] T. Belytschko, P. Krysl, and Y. Krongauz. A three-dimensional explicit element-free Galerkin

method. International Journal for Numerical Methods in Fluids, 24(12):1253–1270, 1997.

[38] T. Belytschko, Y. Y. Lu, and L. Gu. Element-free Galerkin methods. International Journal for

Numerical Methods in Engineering, 37:229–256, 1994.

[39] T. Belytschko, Y.Y. Lu, L. Gu, and M. Tabbara. Element-free Galerkin methods for static and

dynamic fracture. International Journal of Solids and Structures, 32:2547 – 2570, 1995.

[40] T. Belytschko, D. Organ, and Y. Krongauz. A coupled finite element-element-free Galerkin method.

Computational Mechanics, 17:186–195, 1995.

[41] T. Belytschko and M. Tabbara. Dynamic fracture using element-free Galerkin methods. Interna-

tional Journal for Numerical Methods in Engineering, 39(6):923–938, 1996.

[42] W. Benz. Smooth particle hydrodynamics - a review. In Proceedings of the NATO Advanced

Research Workshop on The Numerical Modelling of Nonlinear Stellar Pulsations Problems and

Prospects, Kluwer Academic, Boston, 1990.
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Appendix A

Isoparametric formulations and

Jacobian

The regular FEs, e.g. rectangular in two-dimensions are not suitable to discretize irregular geometries

[138]. The two-dimensional quadrilateral elements, which are originated from the four nodes rectangular

elements, are an ideal choice for both regular and irregular geometries. Figure A.1 shows the original

or parent four nodes rectangular element in the natural (ξ, η) coordinate system and corresponding

quadrilateral element in the global Cartesian (x, y) coordinate system. The geometry of the mapped

Figure A.1: Mapping of a rectangular element into an isoparametric quadrilateral element

quadrilateral element can be described in terms of shape functions Ni (ξ, η) of the original rectangular

element, i.e.

x =
4∑
i=1

Ni (ξ, η)xi,

y =
4∑
i=1

Ni (ξ, η) yi.

(A.1)

In computational mechanics, we often need to calculate the shape function derivatives w.r.t. the global

coordinates, i.e. ∂Ni

∂x ,
∂Ni

∂y , which are given as

∂Ni

∂ξ = ∂Ni

∂x
∂x
∂ξ + ∂Ni

∂y
∂y
∂ξ ,

∂Ni

∂η = ∂Ni

∂x
∂x
∂η + ∂Ni

∂y
∂y
∂η .

(A.2)
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Equation A.2 can also be written in the matrix form as{
∂Ni

∂ξ
∂Ni

∂η

}
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]{
∂Ni

∂x
∂Ni

∂y

}
. (A.3)

In Equation A.3, the left-hand side, i.e. the derivative of the shape functions w.r.t. to the natural

coordinates are known, the 2 × 2 matrix on the right-hand side is known as Jacobian matrix and is

written as

[J ] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=


4∑
i=1

∂Ni

∂ξ xi
4∑
i=1

∂Ni

∂ξ yi

4∑
i=1

∂Ni

∂η xi
4∑
i=1

∂Ni

∂η yi

 . (A.4)

Equation A.3 is written as {
∂Ni

∂x
∂Ni

∂y

}
= [J ]

−1

{
∂Ni

∂ξ
∂Ni

∂η

}
. (A.5)

The Jacobian matrix in three-dimensions, while using (ξ, η, ψ) as natural coordinates and (x, y, z) as

Cartesian coordinates, is written as

[J ] =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ψ

∂y
∂ψ

∂z
∂ψ

 =



4∑
i=1

∂Ni

∂ξ xi
4∑
i=1

∂Ni

∂ξ yi
4∑
i=1

∂Ni

∂ξ zi

4∑
i=1

∂Ni

∂η xi
4∑
i=1

∂Ni

∂η yi
4∑
i=1

∂Ni

∂η zi

4∑
i=1

∂Ni

∂ψ xi
4∑
i=1

∂Ni

∂ψ yi
4∑
i=1

∂Ni

∂ψ zi

 . (A.6)



Appendix B

Neighbouring search with kd-tree

The neighbour search, which is one of the most important issues in meshless methods, is considered in

this appendix. In meshless methods, a set of neighbouring nodes is required for each Gauss point for the

calculation of the shape functions and corresponding shape function derivatives. This neighbour search is

one of the most computationally expensive tasks in meshless methods. In this thesis from Chapters 2 to

5, the full neighbour search, which is also known as brute force or exhaustive search algorithm, has been

used. In the full search algorithm, all nodes in the problem domain are searched for each Gauss point

and if the Gauss point lies inside the influence domain of a node, it is attached to its neighbouring list.

The main advantage of the full search algorithm is its simple implementation. The full search algorithm

gives satisfactory performance, when the number of nodes is small but is not suitable for use with large

number nodes due to its high computational cost. The full search algorithm has been used in many

references, e.g. [36, 38, 85, 196, 233] and is also mentioned in [139]. Kd-tree and kd-tree with background

mesh [29] are two other alternatives, which can be used in the neighbouring search and which may yield

computational advantage. In this appendix, a comparative study is performed between the neighbouring

search algorithms which include full search, kd-tree and kd-tree with background mesh.

Kd-tree is a generalization of the binary search algorithm to k dimensions and is commonly used in

computer science to organize data in k-dimensional space. Kd-tree is briefly described here in computer

science terms, the detail of which can be found in [73, 225]. Kd-tree is further classified into binary-tree,

quad-tree and oct-tree, depending on the number of data points, each data point is connected to. In

binary-tree, quad-tree and oct-tree each data point is connected to a maximum of two, four and eight

data points respectively. A step by step partitioning of the space and construction of the kd-tree are

shown in Figure B.1. A sample XY space with six data points is considered as shown in Figure B.1(a),

an example also given in [3]. At the start of partitioning, a data point (7, 2) is picked, which is known as

a root and a line is drawn through it perpendicular to the X-axis. This initial partition divides the space

into two parts, where each half consists of approximately the same number of data points. Next, two more

data points, i.e. (9, 6) and (5, 4) are considered, one in each half and lines are drawn through these, but

this time in different directions, i.e. perpendicular to the Y-axis. These data points are called children.

The procedure is now repeated for children producing more children, until lines are drawn through all

the data points in the space. The children produced at the end, i.e. data points (2, 3), (4, 6) and (8,

1) in Figure B.1(a) are called leaves. The resulting kd-tree for the partitioned space in Figure B.1(a) is

shown in Figure B.1(b), in which X and Y show the direction of the splitting lines through these data

points. The use of the kd-tree algorithm in meshless methods consists of two parts, i.e. construction of

the kd-tree and its use in the neighbouring search.
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KDTREE2 [156] is used here, which is an open-source implementation of the kd-tree algorithm.

KDTREE2 is available as a FORTRAN-95 module, which is very straightforward to integrate with the

FORTRAN code developed in this thesis. In the kd-tree implementation, Gauss points are used to con-

struct the kd-tree, using the KDTREE2 function “kdtree2 create”. This kd-tree is then searched for each

node in the problem domain using the KDTREE2 functions “kdtree2 r count” and “kdtree2 n nearest”

and is attached to the neighbouring list of those Gauss points, which are inside its influence domain.

Another alternative for the neighbouring search is to use the kd-tree with a background mesh [29], i.e. to

take advantage of the computational efficiency of having a background mesh and the kd-tree algorithm

simultaneously. In this research the background mesh is used for numerical integration, in which nodes

are attached to the background integration cells, as shown in Figure B.2. In the kd-tree with background

mesh algorithm, nodes are used to construct the kd-tree instead of the Gauss point, which are used in

the kd-tree algorithm, mentioned before. This kd-tree is then used to search neighbouring nodes for

each node in the problem domain, e.g. for the node shown in red in Figure B.2, nodes shown in green

are neighbouring nodes. These neighbouring nodes are then used to find neighbouring background cells,

which are all those background cells to which these nodes belong. In Figure B.2, cells in which Gauss

points are shown are these neighbouring background cells. The node shown in red in Figure B.2 is then

included in the neighboring list of all the Gauss points belonging to these background cells. A second

check can then be performed to exclude nodes from the neighbouring list of the Gauss point, when it is

outside their influence domains.

To compare the implementation and performance of these three alternative neighbouring search algo-

rithms, i.e. full search, kd-tree and kd-tree with background mesh, a three-dimensional plate with a hole

problem is considered. The geometry, boundary conditions, and material properties for this problem are

given in §4.4.1. A comparison between the simulation time versus degrees of freedom in the three cases

is given in Table B.1 and also shown in Figure B.3. The timings reported here are the time required

to assemble a stiffness matrix, which includes the neighbour search, calculation of shape functions and

corresponding shape function derivatives and assembly procedure. In all the three cases, the only differ-

ence in the codes are the neighbour search. The other two parts, i.e. calculation of the shape functions

and shape function derivatives, and assembly procedure are the same. It is clear from Table B.1 and

Figure B.3, that the kd-tree with background mesh algorithm is computationally efficient as compared

to the two other alternatives. Furthermore, there is no clear difference in the simulation times between

the three alternatives when using a small number of degrees of freedom in the analysis but the difference

increases with increasing numbers of degrees of freedom.

DOFs Full search (sec) Kd-tree (sec) Kd-tree with backgorud search (sec)
189 0.46 0.36 0.34
975 7.93 4.38 3.75
1728 16.35 9.68 8.68
2793 32.72 19.54 16.42
6075 98.46 57.52 47.91
11253 329.97 173.43 124.44
35328 3027.47 1512.98 977.66

Table B.1: Simulation times versus degrees of freedom for the full search, kd-tree and kd-tree with
background mesh algorithms
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Figure B.1: Sample space partitioning and corresponding kd-tree [3]

Figure B.2: Implementation of kd-tree with background mesh algorithm
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Figure B.3: Simulation times versus degrees of freedom for the full search, kd-tree and kd-tree with
background mesh algorithms


