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Abstract

Inflation has been suggested as a solution to cosmological problems but it ul-

timately needs to be derived from a fundamental theory such as string theory. In

this thesis we study the embedding of inflation into string theory using the D-brane

inflation scenario as case study. We first review the relevant aspects of string com-

pactifications and D-branes and construct the effective action of the inflationary

D3-brane. We then study multifield D-brane inflation including compactification

corrections to the inflaton action that arise from UV deformations of a warped

throat geometry emerging from the ISD supergravity solution. One particular issue

here is to investigate in detail the cosmological consequences of realistic angular

dependent potentials in the D-brane inflation scenario in a fully UV/IR consistent

way. Embedding a warped throat into a compact Calabi-Yau space with all mod-

uli stabilized breaks the no-scale structure and induces angular dependence in the

potential of the probe D3-brane. We solve the D3-brane equations of motion from

the DBI action in the warped deformed conifold including linearized as well as non-

linear perturbations around the ISD supergravity solution. Our numerical solutions

show that angular dependence is a next to leading order correction to the domi-

nant radial motion of the brane, however, just as angular motion typically increases

the amount of inflation (spinflation), having additional angular dependence from

linearized perturbations also increases the amount of inflation.
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Chapter 1

Introduction

The standard big bang theory is a widely accepted theory that describes the struc-

ture and evolution of the universe following an initial singularity or “a bang”. The

underlying assumption of this theory is the possibility to jump from nothingness,

i.e., no space, no radiation, no matter and energy, into somethingness followed by

the successive periods of radiation, matter, and vacuum energy dominance. This

immediately poses a problem: When the universe begins from such a violent rapid

event, we might expect it to be initially be very inhomogeneous, nonuniform, and

highly curved, and the present universe would still have some trace of a very inho-

mogeneous and highly curved universe that it began with. But as we shall discuss in

Section 1.1, following the standard text books [3–6] and also some of their original

references [7–17], the universe that we see today is remarkably flat, homogeneous,

and isotropic, in contradiction with the very inhomogeneous and highly curved uni-

verse that we expect to see after the big bang. In order to solve this problem another

assumption is added to the standard big bang theory, which is the assumption of

inflation discussed in Section 1.2, following again [3–6] and some of their original

references [18–24]. The assumption is that before the radiation era, the universe

was dominated by a period of slowly varying vacuum energy, called inflation, during

which the universe underwent a nearly exponential expansion. This exponential in-

flation would have smoothed any curvature and inhomogenity of space, so that the

universe we see today would make sense. Despite its success in solving the problems

of the standard big bang theory, inflation ultimately needs to be derived from a

1
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fundamental theory such as string theory, which we briefly discuss in Section 1.3

and analyse in more technical detail in the subsequent chapters.

1.1 Cosmological problems

1.1.1 The flatness problem

The homogenity and isotropy of the universe requires its spacetime metric to be the

Friedman-Robertson-Walker (FRW) metric given by1 [3, 4, 6–9]

ds2 = dt2 − a(t)2
[

dr2

1−Kr2
+ r2(dθ2 + sin θ2dφ2)

]
, (1.1.1)

where K denotes the curvature of the universe and a(t) is the scale factor, which

feeds into the proper distance.

The proper distance between any two co-moving objects in the universe is [3]:

D(r, t) = a(t)

∫ r

0

dr√
1−Kr2

= a(t)×


sin−1 r K = +1

r K = 0

sinh−1 r K = −1

(1.1.2)

with r being the relative time-independent radial coordinate of co-moving objects.

For a ray of light we have ds2 = 0, and hence the maximum radial distance rm(t0)

from which an observer at time t0 will be able to receive light signals at t = 0 is

constrained and therefore puts a limit on distances at which past events can be

observed. These are called particle horizons. The proper distance of the horizon

size is given as

Dm(t0) = a(t0)

∫ rm(t0)

0

dr√
1−Kr2

= a(t0)

∫ t0

0

dt

a(t)
. (1.1.3)

The Einstein equations for the FRW ansatz give the fundamental Friedmann equa-

tion [3, 4, 6]

1Throughout this thesis we take the flat spacetime metric to be exactly the FRW metric and

thereby consider the fields to be homogeneous.
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ȧ2 +K =
8π Gρ a2

3
, (1.1.4)

and the conservation law

ρ̇ = −3ȧ

a
(ρ+ p). (1.1.5)

For any value of the Hubble constant2 H0 = ȧ(t0)/a(t0), we may define a critical

present density

ρ0,crit =
3H2

0

8πG
= 1.878× 10−29h2 g/cm3, (1.1.6)

for which K = 0 in Eq. (1.1.4) and hence the universe is flat. Given p as a function of

ρ, we can solve Eq. (1.1.5) to find ρ as a function of a, and then use this in Eq. (1.1.4)

to find a as a function of t. Making the ansatz p = wρ, we obtain [3]:

ρ ∝ a−3−3w. (1.1.7)

•Matter dominated expansion: Here p = 0, giving ρ = ρ0(a/a0)
−3, and there-

fore Eq. (1.1.4) reduces to ȧ2 +K ' a−1. In the very early universe a→ 0, so that

we may neglect K in Eq. (1.1.4) and obtain:

a(t) ∝ t2/3. (1.1.8)

In this case a simple relation between the age of the universe and the Hubble constant

is given as t0 = 2/3H0 = 6.52× 109h−1 yr. According to Eq. (1.1.8), Eq. (1.1.4) and

Eq. (1.1.5) the energy density at time t is ρ = 1/6πGt2.

• Radiation dominated expansion: Here p = ρ/3, giving ρ = ρ0(a/a0)
−4, and

therefore Eq. (1.1.4) reduces to ȧ2 + K ' a−2. Again, in the very early times we

may neglect K in Eq. (1.1.4) and obtain:

a(t) ∝ t1/2. (1.1.9)

2The current best direct measurement of the Hubble constant is 73.8km/sec/Mpc, corresponding

to a 3 percent uncertainty; the Hubble constant with uncertainty is denoted h.
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The relation between the age of the universe and the Hubble constant is given by

t0 = 1/2H0. The energy density at time t is ρ = 3/32πGt2.

•Vacuum dominated expansion: According to Lorenz invariance, for the energy-

momentum tensor in a general coordinate system we must have T µνV ∝ gµν . Com-

paring this with the energy-momentum tensor of a perfect fluid

T µν = pgµν + (ρ+ p)uµuν , gµνu
µuν = −1 (1.1.10)

shows that the vacuum has pV = −ρV , so that T µνV = −ρV gµν . In the absence of any

other form of energy this would satisfy the conservation law T µνV ;µ = gµν∂ρV /∂x
µ =

0, so that ρV would be constant, independence of spacetime position, known as

cosmological constant or vacuum energy. For K = 0, Eq. (1.1.4) requires that ρV >

0, and has the solution

a(t) ∝ exp(Ht), (1.1.11)

where H is the Hubble constant given by

H =

√
8π GρV

3
. (1.1.12)

The above solutions have a puzzling property: for a matter and radiation dominated

universe at very early times we could neglect the the curvature constant K and

obtain the solutions of the Friedmann equation (1.1.4) in the form of Eq. (1.1.8) and

Eq. (1.1.9) consistent with a flat universe. But as we mentioned at the beginning of

this chapter, at sufficiently early times we expect the universe to be highly warped

and curved, in contradiction with a flat universe described by the above solutions.

This therefore poses a problem known as the flatness problem [3]. As we shall see in

Section 1.2, this problem can be solved if the radiation dominated era was preceded

by a sufficient period of inflation, which can explain why the curvature was so small

in the early universe.
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1.1.2 The horizon problem

We can obtain important information about the structure and evolution of the uni-

verse from the radiation that was left after the big bang. This radiation is called the

cosmic microwave background radiation and its origin can be understood as follows.

Thus, at some early time, the temperature will have been high enough that atoms

would have been ionized, and matter and radiation would have been in thermal

equilibrium. Then, as the universe expanded and temperature dropped, the elec-

trons would combine with nuclei, the photons decouple, and radiation began a free

expansion.

In 1965 Arno Penzias and Robert Wilson discovered this radiation in a study of

noise backgrounds in a radio telescope [10]. Subsequent studies confirmed that this

radiation has the form of black-body radiation, and contains very small nonunifor-

mities that provide us with important information about the structure and evolution

of the universe. The original observation of the nonuniformities in the cosmic mi-

crowave radiation background was made by the COBE satellite in 1992 [11], and

subsequently in 1996 [12–16], using the same instruments. The accuracy of the re-

sults were then greatly improved by the observations of the Wilkinson Microwave

Anisotropy Probe (WMAP) satellite launched in 2001, which confirmed a nonuni-

formity in the microwave background at a relative magnitude of 10−5 [17]. This high

degree of isotropy of the cosmic microwave radiation background poses a problem.

We can see this by comparing the angular diameter distance3 at the time of last

scattering with the acoustic horizon distance4 which, respectively, read as [3, 4]

3Inspection of the FRW metric (1.1.1) shows that a source of co-moving radial coordinate r1

that emits light at the time t1 and is observed at present to subtend a small angle θ will extend over

a proper distance s (normal to the line of sight) equal to a(t1)r1θ. The angular diameter distance

is DA is defined such that θ is given by the familiar relation of Euclidean geometry θ = s/DA and

one can see that DA = a(t1)r1. By computing r1 one can obtain the full relation for DA.
4The dominant perturbations to the plasma of nucleons, electrons and photons that are relevant

to the nonuniformities of the cosmic microwave background are sound waves. The full acoustic

horizon distance can be obtained from Eq. (2.2.142) taking into account the speed of sound.
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DH ≈ O(H−1
0 R−3/2

L ), DA ≈ O(H−1
0 R−1

L ), (1.1.13)

where RL = 1 + zL. Thus the horizon at the time of last scattering now subtends

an angle

DH/DA ≈ O(R−1/2
L ). (1.1.14)

According to this, for the redshift zL ' 1100, points of the same temperature subtend

an angle of about 1.6 degrees. This reveals an appreciable anisotropy, in contradic-

tion with the nearly perfect isotropy observed in the cosmic microwave radiation

background. This is called the horizon problem [3, 4].

1.1.3 The monopole problem

In the early times after the big bang when the temperature dropped, the universe

went through a phase transition in which the putative grand unified symmetry broke

down spontaneously to the gauge symmetry SU(3)× SU(2)×U(1) of the standard

model. As a consequence of this symmetry breaking, extended spacetime-dependent

field configurations such as monopoles were produced [3, 5]. This gives rise to an-

other problem: before the phase transition occurred, the scalar fields which account

for the symmetry breaking would have inevitably been unrelated at distances larger

than the horizon distance corresponding to the maximum distance that light could

have travelled since the very beginning of the big bang. During the early times when

the universe was presumably radiation dominated, the scale factor grew according to

Eq. (1.1.9), and by Eq. (1.1.3), Dm(t) = 2t = 1/H. During the radiation dominated

era the expansion rate is H ≈ (G(kBT )
4)1/2, which gives the horizon distance of

order t ≈ (G(kBT )
4)−1/2. Thus the number density of monopoles produced when

the temperature drops to M/kB would have been of order t−3 ≈ (GM4)3/2. Com-

pared to the number density of photons which is roughly M3 at T ≈ M/kB, the

number density of monopoles is suppressed by a factor (GM2)3/2. If the grand uni-

fied symmetry is broken at an energy M ≈ 1016 GeV, then for the Newton constant

G ' (1019 GeV)−2 the number density of monopoles is suppressed by a factor 10−9
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compared to the number density of photons M3 at T ≈M/kB. But natural sources

show that the number density of monopoles is 10−39 times less than the number

density of photons, a discrepancy by a factor 10−30. This is known as the monopole

problem [3, 5]. As we shall see in the next section, inflation can explain this dis-

crepancy provided that the era of radiation dominance proceeded by the period of

inflation before as well as after the production of monopoles.

1.2 The period of inflation

In the previous sections we saw that at sufficiently early times the curvature of

space is negligible or vanishing, in contradiction with a highly curved universe that

we expect to see after the big bang. In 1980 Alan Guth realized that this flatness

problem could be solved if another assumption is put in the standard big bang

theory, which is the assumption of inflation [18]. The assumption is that before

the radiation dominated era, during which the scale factor a(t) grew according to

Eq. (1.1.9), the universe was dominated by a period of slowly rolling vacuum energy

called inflation, so that a(t) evolved exponentially as in Eq. (1.1.11). As we shall

show below, this inflation not only solves the flatness problem but also the horizon

and monopole problems. Before going into technical details showing how inflation

solves these problems, we discuss the history of inflation and make clear how inflation

really works.

1.2.1 A brief history of inflation

“Old inflation”

In order to have inflation, we have to assume that there is a form of energy (other

than matter and radiation) that causes the universe to inflate. This form of energy

is unstable and has to decay, so that we can end inflation and turn this inflation-

ary energy into something that produces matter and radiation that composes the

galaxies and stars and ourselves. The form of energy that has this property is called

“false vacuum” state [5]. For this energy, the scalar field expectation values are at

a local minimum that is higher than the true minimum of the effective potential.
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Figure 1.1: The False vacuum state (left), almost all of which has decayed into the

true vacuum state (right) forming an inflationary bubble, but small regions were left

behind.

Figure 1.2: The small regions of false vacuum state that were left behind continued

to inflate while the bubble stopped to inflate (left). After a certain period of time,

other inflationary bubbles formed (right) and our universe is supposed to take place

in one of such bubbles (which are not all the same).

This “false vacuum” state corresponding to a local minimum is not a permanent

state of being and will decay into the “true vacuum” state corresponding to the true

minimum [5]. This decay occurs by quantum mechanical barrier penetration. It is

very likely, though not observed, that this process took place several times in the

history of the universe since various symmetries have become spontaneously broken.

Because the decay happens through a quantum process, and that a quantum pro-

cess is by nature random, the decay does not occur by a change in the scalar field

simultaneously everywhere in space, but by the formation of bubbles of true vacuum

in false vacuum background. When quantum mechanical barrier penetration ends,

the bubbles of true vacuum will enlarge at the speed of light and at last collide with

other bubbles until the entire space is in the state of lowest energy [5].

In his original work [18], Guth considered a model of Grand unification and



1.2. The period of inflation 9

noted that in such models scalar fields could get trapped in a local minimum of some

potential corresponding to an unbroken grand unified symmetry. When a scalar field

gets trapped in a local minimum, the energy of empty space would stay constant

for a certain period of time during which the universe continues to expand. This

would then result a constant rate of expansion requiring the scale factor to evolve

exponentially. This exponential inflation would be ended by quantum-mechanical

barrier penetration, after which the scalar field would start rolling down the potential

toward a global minimum, corresponding to the present universe. The flatness of

the universe was then explained by Guth as a result of a very large exponential

expansion which makes the curvature parameter ΩK = |K|/a2H2 very small.

Despite its success in solving the problems of the standard big bang theory, it

became clear to Guth and others that his model of inflation had a fatal problem

because of the way it ends: the graceful exit problem. To see how this problem comes

about, note that in Guth’s original work the exponential inflation occurs as a result

of a delayed first-order phase transition where a scalar field was first trapped in a

local minimum of some potential, and then penetrated through the potential barrier

and rolled toward a true minimum of the potential. Because the transition from

the initial supercooled false vacuum phase to the lowest energy true vacuum phase

(corresponding to the present universe) occurs through a quantum process, and that

a quantum process is inherently unpredictable and has some degree of randomness,

the transition could not take place everywhere at the same time. It could have

occurred here and there in some bubble of true vacuum state which formed when

almost all of the inflationary energy decayed (see Fig. 1.1 (right)). The smaller

fractions of energy that were left behind as false vacuum state continued to inflate

while the bubble being true vacuum state stopped to inflate (see Fig. 1.2 (left)). In

this way the background of false vacuum would in the end dominate the volume of

the universe, and the scalar field would have been still trapped in its local minimum.

As the time passed, more and more bubbles formed (see Fig. 1.2 (right)) and the

universe would be reheated by collisions between bubble walls. But if inflation

lasted long enough (as a result of a high tunneling amplitude), collisions between

bubble walls would be exceedingly rare, resulting in no radiation, and therefore not
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reheating the universe properly.

“New inflation”

Guth’s model of “old inflation” was then replaced by “new inflation” due to the

work of Linde [19, 20], Albrecht and Steinhardt [21]. New inflation was originally

introduced in a model of grand unification in which the grand unified symmetry is

no longer restored. In this model, the grand unified symmetry is broken down by

applying the Coleman-Weinberg symmetry breaking mechanism [22]. The potential

for the scalar field φ obtained within this formalism takes the form

V (φ) ≡ φ4 ln

(
φ

λ

)
+ T 2φ2. (1.2.15)

The first term in this potential comes from one-loop radiative corrections to VT=0

which is assumed to have vanishing second derivative at φ = 0. This term has an

unstable stationary point at φ = 0 and a minimum at φ0 = λ/e1/4, where λ is a

constant.. The second quadratic term includes finite temperature contributions and

takes the stationary point φ = 0 into a local minimum. Like in old inflation, in

this set up phase the transition takes place by the formation of bubbles, but the

difference is that for low temperature the potential barrier is very small and hence

the field inside the bubble starts with φ close to zero. The field then rolls slowly

down the potential whereas the universe experiences exponential inflation. Finally,

the scalar field undergoes damped oscillations about the minimum of its potential

and the scalar field energy gets converted into ordinary particles that fill the bubble,

reheating the universe.

The basic element of new inflation was a more-or-less exponential expansion

during the slow-roll of one or more scalar fields with the effects depending on the

slow-roll of the scalar field after bubble formation and not on the process of bubble

formation itself. In fact all that really matters does not depend on grand unification

or the Coleman-Weinberg mechanism but instead on the existence of a scalar field

φ called the inflaton which at some early times has a value at which the potential

V (φ) is large but quite flat. The flatness of the potential guarantees the slow-roll of

the scalar field during which the Hubble constant decreases only slowly making the
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universe expand nearly exponentially. In this scenario reheating occurs not because

of bubble wall collisions but due to damped oscillations of the scalar field about the

minimum of the potential where the potential steepens and inflation ends.

1.2.2 Slow-roll formalism

To see how new inflation works qualitatively, we may start with simplest scalar field

theory Lagrangian [3]

L (φ) = −
√
− det g

[
1

2
gµν∂µφ∂νφ− V (φ)

]
. (1.2.16)

Using this Lagrangian, the equation of motion for a spatial homogeneous field, φ ≡

φ(t), in the FRW coordinate system takes the form

φ̈+ 3Hφ̇+ V ′(φ) = 0, (1.2.17)

where as beforeH = ȧ/a is the expansion rate. The field energy density and pressure

take the form

ρ =
1

2
φ̇2 + V (φ), (1.2.18)

p =
1

2
φ̇2 − V (φ). (1.2.19)

During the period of scalar field energy dominance the expansion rate is

H =

√
8π Gρ

3
=

√
8π G

3

(
1

2
φ̇2 + V (φ)

)
. (1.2.20)

The time derivative of this together with Eq. (1.2.17) gives

2HḢ =
8π G

3
(φ̇φ̈+ V ′(φ)φ̇) = −8πGHφ̇2, (1.2.21)

and hence

Ḣ = −4πGφ̇2. (1.2.22)

According to Ḣ +H2 = ä/a, a evolves like exp(Ht) if we have
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|Ḣ| � H2. (1.2.23)

From Eq. (1.2.20) and Eq. (1.2.22), we have Ḣ/H2 ' φ̇2/V (φ), so the condition

(1.2.23) requires

φ̇2 � |V (φ)|. (1.2.24)

From Eq. (1.2.19) and (1.2.24) we can see that the effective pressure of the material

driving the expansion has to be negative, p ' −ρ. The scalar fields that have this

property are called inflatons. Thus, according to Eq. (1.1.4) and Eq. (1.1.5), during

inflation we have

ä > 0. (1.2.25)

This relation tells us what inflation is: It describes a period of accelerated expansion.

The condition (1.2.24) also reduces Eq. (1.2.20) to

H =

√
8πGV (φ)

3
. (1.2.26)

In addition to the condition, we may also assume that

|φ̈| � H|φ̇|. (1.2.27)

According to this, from Eq. (1.2.17) we obtain the following relation

φ̇ = −V
′(φ)

3H
=

V ′(φ)√
24πGV (φ)

. (1.2.28)

Thus the condition for having prolonged exponential inflation is

ε =
|Ḣ|
H2

=
1

2

√
3

8πG

∣∣∣∣ V ′(φ)φ̇

V 3/2(φ)

∣∣∣∣ = 1

16πG

(
V ′(φ)

V (φ)

)2

� 1. (1.2.29)

Taking the derivatives of both sides of Eq. (1.2.28) with respect to time gives

φ̈ = −V
′′(φ)φ̇

3H
+
V ′(φ)Ḣ

3H2
=
V ′′(φ)V ′(φ)

9H2
− 1

16πG

(
V ′(φ)

V (φ)

)2
V ′(φ)

3
. (1.2.30)
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By ε � 1 the last term of (1.2.30) is much less than V ′(φ), so in order to have |φ̈|

much less than V ′(φ), according to Eq. (1.2.27), we have to have V ′′(φ) � 9H2, or

equivalently

η =
1

24πG

∣∣∣∣V ′′(φ)

V (φ)

∣∣∣∣� 1. (1.2.31)

The parameters η and ε are know as slow-roll parameters and the conditions (1.2.29)

and (1.2.31) are called slow-roll conditions5. Potentials that satisfy these conditions

are classified as flat potentials and produce a large number of e-foldings. To see this,

consider the scale factor

a(t2)

a(t1)
= exp

[ ∫ t2

t1

Hdt

]
= exp

[ ∫ φ2

φ1

Hdφ

φ̇

]
, (1.2.32)

and note that the number of e-foldings is defined by

N =

∫ t2

t1

Hdt =

∫ φ2

φ1

Hdφ

φ̇
. (1.2.33)

By inserting H and φ̇ by their values given by Eq. (1.2.26) and Eq. (1.2.28), we can

rewrite (1.2.32) in the form

exp

[
−
∫ φ2

φ1

(
8πGV (φ)

V ′(φ)

)
dφ

]
= exp

[
−
∫ φ2

φ1

√
4πG

(
1√

16πG

V ′(φ)

V (φ)

)−1

dφ

]
.

(1.2.34)

According to the slow-roll condition (1.2.29), the absolute value of the term in

the square brackets of Eq. (1.2.34) is much less than unity. This means that the

argument of the exponential in Eq. (1.2.34) is much greater than
√
4πG|φ1 − φ2|.

Thus when the slow-roll condition is satisfied, a large number of e-foldings can be

produced in any time interval during which |φ1 − φ2| has the minimum amount of

1/
√
4πG = 3.4× 1018 GeV.

5As we shall see below, meeting these conditions in string theory is highly non-trivial because

corrections from moduli stabilization generically ruin the flatness of the potential. Slow-roll infla-

tion is then possible only if, there exists a fine-tuned cancellation by additional corrections that

can flatten the potential. However, as we shall see below, in string theory it is possible to drive

inflation even when the potential remains steep.
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1.2.3 Solving the flatness and horizon problems

According to the above discussion, inflation is a period of slowly rolling vacuum

energy during which the scale factor evolves exponentially, a ' exp(N). This means

that if inflation started with the curvature density parameter ΩK = |K|/a2H2 of

order unity, then inflation ended with ΩK = |K|/a2IH2
I of order exp(−2N). This

implies ΩK for the present time to be

|ΩK | =
|K|
a20H

2
0

= exp(−2N)

(
aIHI

a0H0

)2

. (1.2.35)

In order to explain why the curvature of space was so small in the early universe,

we have to have the condition

exp(N) >
aIHI

a0H0

. (1.2.36)

Thus the flatness problem can be solved if the above condition is satisfied [3]. The

above condition also solves the horizon problem. To see this, recall that the proper

horizon distance at the time of last scattering is

DH(t) = a(t)

∫ tL

t∗

dt

a(t)
, (1.2.37)

where t∗ is the time when inflation starts and tI is the time when inflation ends,

as before. As already mentioned, during inflation a(t) evolves exponentially and we

may take

a(t) = a(t∗) exp
(
HI(t− t∗)

)
= aI exp

(
−HI(tI − t)

)
. (1.2.38)

By taking N = H(tI − t∗) to be the number of e-foldings we obtain

DH(tL) =
a(tL)

aIHI

[
exp(N)− 1

]
. (1.2.39)

In the above relation we may only consider the first term since a sufficient amount

of inflation requires exp(N)� 1. The angular diameter distance at the time of last

scattering is

DA(tL) ≈
a(tL)

H0a0
. (1.2.40)
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The high degree of isotropy in the cosmic microwave background requires DH > DA,

and this can accounted followed by having the (same) condition

exp(N) >
aIHI

a0H0

. (1.2.41)

Thus the horizon problem can be solved if the above condition holds [3]. In order to

estimate the number of e-foldings required to solve the flatness and horizon problems,

we need to evaluate this bound. To do so, recall that the period of inflation is

succeeded by the radiation dominated era, so for the transition between these eras

we may assume

aIHI ' a1H1, (1.2.42)

where a1 and H1 denote the scale factor and the expansion rate of the radiation

dominated era, respectively. The expansion rate over the whole periods of radiation

and matter dominance takes the form

H =
HEQ√

2

√(aEQ
a

)3
+
(aEQ
a

)4
, (1.2.43)

where aEQ = a0ΩR/ΩM and HEQ =
√
2ΩMH0(a0/aEQ)

3/2 are the scale factor and

expansion rate at matter-radiation equality. By putting a = a1 � aEQ we obtain

H1 =
HEQ√

2

(
aEQ
a1

)2

. (1.2.44)

We can use this relation to get eliminate a1 and obtain the bound (1.2.36) as

exp(N) >

(
ΩMaEQ
a0

)1/4√
H1

H0

= Ω
1/4
R

√
H1

H0

=

(
ΩR

ρ1
ρ0,crit

)1/4

=
[ρ1]

1/4

0.037 h eV
,

(1.2.45)

where ρ0,Crit = [3 × 10−3eV]4h2 and ρ1 denote the critical density (1.1.6) and the

energy density at the beginning of the radiation-dominated era, respectively. From

this relation we can estimate the number of e-foldings by noting that ρ1 should

not be greater than Planck energy density G−2 = [1.22 × 1029 GeV]4, so that for

h = 0.7 we obtain 5×105, or about 60 e-foldings. Thus in order to solve the flatness

and horizon problems about 60 e-foldings need to be produced during the period of
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inflation6 [3].

1.2.4 Solving the monopole problem

As discussed in the previous section, the number density of monopoles is 10−39 times

less than the number density of photons, a discrepancy by a factor 10−30. Inflation

can explain this discrepancy: if the era of radiation dominance proceeded by the

period of inflation before as well as after the production of monopoles, then the

exponential expansion before the production of monopoles would have increased the

horizon distance, and the exponential expansion after the production of monopoles

would have decreased the photon to monopole ratio [3] . To solve the monopole

problem, the photon to monopole ratio has to be reduced by inflation by a factor

10−30. This requires an exponential inflation that increases the horizon distance

by a factor 1010, which means that the horizon distance after inflation exp(N)/H1

must be 1010 times greater than the estimated horizon distance (GM4)−1/2. The

expansion rate during the radiation dominated era is H1 ≈ (G(kBT )
4)1/2, which

for T ≈ M/kB gives H1 ≈ (GM4)1/2. According to this, the number of e-foldings

needed to solve the monopole problem has to be greater than ln 1010 = 23 [3]. Thus

if inflation can solve the flatness and horizon problems, for which the number of

e-foldings has to be about 60, then it can also solve the monopole problem7.

1.2.5 Shortcomings of inflation

In the inflationary picture discussed in the previous sections, we had to make a

number of assumptions. We had to assume a big bang, and we had to assume

a special form of energy that decays in certain way. In principle, the idea was

that once we have inflation we can set up the large scale structure of the universe

and explain everything else that happens in the universe from that point onwards

without making any further assumptions. But this does not work quite that way.

6As we shall see in Chapter 4, this amount of e-foldings can be produced in D-brane inflation.
7This is probably the reason why in the literature one mostly talks about inflation as the solution

to the flatness and horizon problems.
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In 1998, two research groups, the Supernova Cosmology Project [23] and the High-z

Supernova Search [24] groups, measured the luminosity distances versus redshift of

various Type Ia supernovae. They found that their curve of measured luminosity

distances versus redshift is consistent with an accelerating universe whose large part

of energy density is of the form unlike ordinary matter or radiation, called dark

energy, that was unexpected and not predicted by the inflationary picture.

Although the inflationary picture agrees with the data, it agrees at a certain price.

Firstly, it is definitely finely tuned. To get inflation to give really the right statis-

tical distribution of anisotropies that we see in the cosmic microwave background

radiation in the WMAP satellite, the energy has to have very specific properties; it

has to have a very specific amount, strength, concentration and it has to decay in

a very specific way, otherwise we get the wrong pattern. When we add dark energy

it also works but we have to add that by hand by the cost of fine tuning. Secondly,

it is a kind of patchwork of disconnected elements, including ordinary matter, dark

matter and dark energy that have been added one by one to fit the observations.

To match the universe as it is seen today, all three components must exist in a

particular precise combination. Thirdly, as we saw in Section 1.2, inflation amplifies

rare quantum events which amplify randomness, so instead of having a very ordered

universe we will have a disordered universe. In this way the formed pockets in one

of which our universe is supposed to take place are not all the same. An infinite

number of them will have the physical laws like our universe and an infinite number

of them will not. The question that arises is that which case is more probable, which

cannot be answered when the distribution is so uneven. Fourthly, inflation has to

be derived from a fundamental theory such as string theory which can verify the

origin of the inflaton field and its potential.

1.3 Inflation in string theory

1.3.1 Motivation

In the previous section we saw that the very early universe underwent a period of

rapid expansion, known as inflation, resulting in a very nearly flat, homogeneous
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and isotropic initial state. While a simple scalar field model of inflation with a

suitable potential satisfies many of the cosmological requirements, such models are

rather ad hoc from the high energy particle theory point of view. The challenge

is to find a theory which has a clear derivation from a fundamental high energy

theory incorporating gravity at the quantum level. String theory as a finite theory

of quantum gravity naturally is the prime candidate for such a fundamental theory.

In particular, string theory can tell us which field plays the role of the inflaton

(e.g. the field parameterizing the distance between two branes as described below),

where does its potential come from (e.g. from supersymmetry breaking between

two branes as described below) and how does it couple to the Standard Model

sector. Furthermore, as we saw in the previous section, the flatness of the inflaton

potential in Planck units is guaranteed by two nontrivial constraints, the slow-roll

conditions (1.2.29) and (1.2.31). In effective field theories, four-dimensional Planck-

suppressed operators with vacuum expectation values comparable to the inflationary

energy density produce mass terms in the inflaton potential, which violate the slow-

roll conditions (see Subsection 1.3.3.). In order to determine whether despite such

corrections inflation can still take place, one has to have detailed information about

Planck-suppressed corrections to the inflaton potential. This requires microphysical

knowledge about physics at Planck-scale, which can be obtained from string theory.

In string theory, such corrections can be computed from first principles and the

complete shape of the inflaton potential including all degrees of freedom can be

determined (see Subsection 1.3.5). These provide enough motivation for embedding

inflation into string theory.

1.3.2 Moduli and inflatons

It is well known that in string theory the dimension of spacetime is ten, and four-

dimensional physics related to our universe emerges upon compactification. In par-

ticular, one is interested in string vacua for which only four dimensions are non-

compact and the other six extra dimensions are compact. The four non-compact

dimensions span our universe and the other six extra dimensions form a compact

internal space. The relevant metric is the sum of the four-dimensional (Minkowski)
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and the six-dimensional metric

ds2 = gµνdx
µdxν + gmndy

ndym. (1.3.46)

If these solutions preserve at least one supersymmetry, then gmn is Ricci-flat, Kähler,

and the internal space is a compact Calabi-Yau manifold [25] (see Appendix A).

There is generically a many-parameter family of the metrics of these manifolds,

which all share the same topology. This means that upon small variations in the

metric on the internal manifold

gmn → gmn + δgmn (1.3.47)

the new background still satisfies the Calabi-Yau conditions given by

Rmn(g..) = 0, Rmn(g.. + δg..) = 0. (1.3.48)

There are metric deformations which only account for coordinate changes and are

uninteresting. In order to eliminate them, one fixes the gauge [26]

∇mδgmn −
1

2
∇nδg

m
m = 0, (1.3.49)

where δgmm = gmpδgmp. Expanding the second equation in (1.3.48) to linear order in

δg and using the Ricci-flatness of g leads to the Lichnerowicz equation given as [26]

∇k∇kδgmn + 2R p q
mnδgpq = 0. (1.3.50)

The latter equation in (1.3.48) introduces the differential equations for δg whose

number of solutions counts the number of ways the background metric can be de-

formed while preserving supersymmetry and topology. The coefficients of these in-

dependent solutions are moduli. They are the expectation values of massless scalar

fields, called the moduli fields. These moduli parameterize changes of the size and

shape of the internal Calabi-Yau manifold but not its topology. Due to the special

properties of Kähler manifolds (see Appendix A) the zero modes of Eq. (1.3.50) of

mixed type, δgµν̄ , and those of pure type, δgµν , δgµ̄ν̄ , satisfy Eq. (1.3.50), respec-

tively [26]. These two types of variations imply that the moduli space of Calabi-Yau
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manifolds decomposes, at least locally, into a product with the space of parameters

of the complex structure as one factor and a complex extension of the parameter

space of the Kähler class as the other [26] (see Appendix A). The moduli space of

a (topological class of a) Calabi-Yau three-fold is smooth at its generic points but

there exist special regions, called “boundary”, where the moduli spaces of topo-

logically distinct Calabi-Yau spaces meet. These ‘interface’ regions correspond to

certain singular limits of the respective Calabi-Yau three-folds, called conifolds [27]

(see Appendix A). By including these limit points the moduli spaces of a large num-

ber of Calabi-Yau spaces piece together into a “connected web”. It has been shown

that the distances between two topologically distinct Calabi-Yau three-folds in this

web is finite [28] (see Appendix A) and the explicit form of the unique Ricci-flat

Kähler metric on conifolds is known [27] (see Appendix A) :

gmndy
mdyn = dr2 + r2ds2X5

, (1.3.51)

which describes the geometry of a cone, the base of which is a five-dimensional

Einstein manifold parameterized by five angular directions.

For embedding inflation into string theory, one has to specify a string compact-

ification whose low-energy effective theory contains a suitable inflaton, so that the

relating potential satisfies slow-roll conditions (1.2.29) and (1.2.31). The many mod-

uli fields that arise from Calabi-Yau compactifications as the solutions of Eq. (1.3.48)

can provide a large number of candidate scalar fields in the four dimensional theory

and any of these scalar fields may play the role of the inflaton field. However, moduli

fields have non-universal couplings to matter and make different types of matter get

different acceleration, which leads to the violation of the equivalence principle of

general relativity. Moreover, these moduli fields are generically either massless, or

have a potential with runaway behavior, which makes their interpretation as infla-

tons rather difficult. In addition to this, the computation of the effective potential

in terms of all these scalar fields and degrees of freedom is a highly nontrivial task.

Nevertheless, by considering the systematics of flux compactifications [29] and non-

perturbative effects [30] in string theory (see Chapter 2), it is possible to reduce the

degrees of freedom and stabilize all the moduli fields, as required for constructing
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a successful cosmology from string theory8. In the presence of fluxes a much richer

Calabi-Yau geometry is produced and the background gets modified by warping

through the gravitational fields created by fluxes. The metric (1.3.46) is modified

to a warped metric of the form [29, 30]

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)gmndy

ndym, (1.3.52)

where e4A is the warp factor depending on the internal coordinates, y, of the warped

background. The resulting geometry corresponds to a configuration containing

warped throats that (according to gauge/gravity duality) smoothly close off at the

infrared (IR) and attached to the compact Calabi-Yau space in the ultraviolet (UV)

(e.g. see Fig 1.3). In the UV the six-dimensional metric in Eq. (1.3.52) is (asymp-

totically) the same as the metric given by Eq. (1.3.51) but in general it has a more

complicated form due to differential wrapping (see Chapter 2). In Calabi-Yau flux

compactifications many vacua and various such throat solutions are produced since

fluxes can take many different discrete values. Currently, there is no known criterion

for choosing among these vacua.

1.3.3 Moduli stabilization obstacles to inflation

The most severe problem that arises in embedding inflation into string theory (ac-

cording to the above set up) is that moduli stabilization generically induces an

inflaton mass term that spoils the flatness of the inflaton potential (see the reviews

[34–40]). To see this, note that in N = 1 supergravity a key term in the scalar

potential is the F-term potential [30] (see also Chapters 2 and 5),

VF = eK/M
2
pl

[
Kϕϕ̄DϕWDϕW −

3

Mpl

|W |2
]
. (1.3.53)

Here K(ϕ, ϕ̄) and W (ϕ) are the Kähler potential and the superpotential, respec-

tively; ϕ is a complex scalar field which is taken to be the inflaton; and we have

8As an aside, we would like to remark that the inclusion of nonperturbative effects in quantum

field theories alleviate the problems of perturbative field theories, which arise from the masslessness

of gauge modes [31–33].
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defined DϕW ≡ ∂ϕW +M−2
pl (∂ϕK)W .

The Kähler potential determines the inflaton kinetic term, K,ϕϕ̄∂ϕ∂ϕ̄, while

the superpotential determines the interactions. To derive the inflaton mass, we

expand K around some chosen origin, which is denoted here by ϕ ≡ 0 without loss

of generality, i.e., K(ϕ, ϕ̄) = K0 + K,ϕϕ̄|0ϕϕ̄ + · · · . This yields the inflationary

Lagrangian of the form

L ≈ −Kϕϕ̄∂ϕ∂ϕ̄

(
1 +K,ϕϕ̄|0

ϕϕ̄

M2
pl

+ · · ·

)

≡ −∂φ∂φ̄− V0

(
1 +

φφ̄

M2
pl

)
+ · · · (1.3.54)

where we have defined the canonical inflaton field φφ̄ ≈ Kϕϕ̄|0ϕϕ̄ and V0 ≡ VF |ϕ=0.

We have retained the leading correction to the potential originating in the expan-

sion of eK/M
2
pl in Eq. (1.3.53), which could plausibly be called a universal correction

in F-term scenarios. The omitted terms, some of which can be of the same order

as the terms we keep, arise from expanding the term inside the square brackets of

Eq. (1.3.53) and clearly depend on the model-dependent structure of the Kähler po-

tential and the superpotential. According to Eq. (1.2.31), the potential term on the

RHS of Eq. (1.3.54) contributes to the slow-roll parameter by (see also Eqs.(1.3.56) -

(1.3.57))

∆η = 1. (1.3.55)

This makes slow-roll inflation impossible. To evade this problem, one of the major

challenges has been to show that in a non-vanishing fraction of the vast number

of string vacua the inclusion of various compactification effects in the effective field

theory induce correction terms in the inflaton potential that can cancel to high

precision with the inflaton mass term, so that a suitable inflationary model can be

obtained [38, 40] (see also Subsection 1.3.5.).
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1.3.4 Classification of string inflationary models

To construct inflationary models in string theory (see the reviews [34–40]), it is

natural to identify the inflaton either with closed string moduli or with open string

moduli, as in string theory strings are either closed or open. Since open strings end

on hypersurfaces called D-branes [41] (see Chapter 3), the string inflationary sce-

nario in which the inflaton is identified with open string moduli is called (warped)

D-brane inflation. As the moduli are the most promising closed string modes, the

inflationary scenario in which the inflaton is identified with closed string moduli is

called moduli inflation. Apart from these string inflationary scenarios, there is also

a string inflationary scenario called landscape inflation which is based on the gen-

eral properties of the ‘string landscape’ (e.g. high dimensionality) instead of direct

specification of the inflaton. In the string theory landscape, flux compactifications

typically give very many possible vacua, since the fluxes can take many different

discrete values, and there is no known criterion for choosing among them. The

number of solutions from fluxes comes about 10500 and these vacua can be regarded

as extrema of some potential, which describes the string theory landscape. The

large number of solutions would indicate that a few of these universes will have the

properties of our observable inflationary universe, and we happen to live in one of

those (in the same way that there are many galaxies and planets in the universe and

we just happen to live in one).

In the last decade there has been a great progress towards the embedding of

inflation into string theory using these classifications. In this thesis we focus on a

particular model called warped D-brane inflation, which is both natural and testable.

1.3.5 Case study: D-brane inflation

In D-brane inflation our universe is identified with a spacetime filling mobile D3-

brane whose location in the compactification is given by the inflaton field. The

D3-brane is pointlike in the extra dimensions and inflation is supposed to take place

due to the existence of a flat inflaton potential corresponding to a weak force between

the D3-brane brane and a distant anti-D3-brane fixed in the Calabi-Yau compact-
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Figure 1.3: A mobile D3-brane moving towards an anti-D3-brane fixed at IR location

at the bottom of the warped throat region of a flux compactification. The throat is

smoothly glued to a Calabi-Yau three-fold in the UV region where moduli stabilizing

D7-branes enter the throat. In principle, our universe may exist in various parts of

compactification, including other warped throats not shown in the diagram. This

figure is from [54].

ification [42–45]. In this set up inflation ends as the branes collide and annihilate

each other by which the inflationary energy density ultimately gets transformed to

heat for the later hot big bang. The problem that arises is that in Calabi-Yau com-

pactifications the size of the internal manifold is a modulus making the potential

too steep for inflation. One of the major challenges has been to stabilize all the

moduli and show that in a non-vanishing fraction of the vast number of string vacua

the inclusion of various compactification effects in the effective field theory leaves a

suitable inflationary model.

In recent years there has been significant progress within the ‘KKLT’ framework,

[30], in which the older idea of brane inflation [42–45] is realised via the motion of

a brane in internal, hidden, extra dimensions [46] (see also [47–61] and the reviews

[34–40]). In these scenarios volume modulus stabilization obstacles to inflation (see

subsection 1.3.3), but the inflaton potential (of the position of a probe D3-brane) is

flattened by fine-tuned cancellation of correction terms from further moduli stabiliza-

tion from wrapped branes and bulk effects so that inflation can occur (see Fig 1.3).

In more detail, the most general inflaton potential and its relating contribution to

the slow-roll parameter take the form [55]
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V (φ) = V0(φ) + H2
0φ

2 + ∆V (φ) (1.3.56)

η(φ) = η0(φ) +
2

3
+ ∆η(φ) = ? (1.3.57)

In Eq. (1.3.56), the first term on the RHS defines terms in the potential that have

negligible contributions to η, η0 � 1, the second term is the inflaton mass term that

has a large (order unity) contribution to η given by 2/3, which spoils the flatness

of the inflaton potential, and the last term contains all other corrections to the

inflaton potential whose associated contribution to η is given by ∆η. In order to

flatten the inflaton potential, one has to compute ∆V and show that under fine

tuning its associated ∆η compensates against the problematic (order unity) term

2/3, so that the inflaton potential becomes flat (see below). However, whether or

not the potential can be made flat to meet the slow-roll conditions, DBI inflation,

[62, 63], is also possible, even when the potential is steep. In this case, while the

motion of the brane can be strongly relativistic (in the sense of a large γ-factor)

strong warping of the local throat region renders their contribution to the local

energy density subdominant to that of the inflaton potential terms. To see this,

note that in the (type IIB) supergravity background with metric ansatz (1.3.52) the

effective action takes the form [62, 63] (see Chapter 3)

S =
Mpl

2

∫
d4x
√
−gR

−g−1
s

∫
d4x
√
−g
[
T3e

−4A(γ−1
DBI − 1) + V (φm)

]
, (1.3.58)

γDBI =
√

1− e4Agmngµν∂mφm∂nφn/T3.

Here T3 is the D3-brane tension, gs is the string coupling, and Mpl is the Planck

mass. The first term in this action is the ordinary four-dimensional Einstein-Hilbert

action, which arises from dimensional reduction of the closed string sector of the ten

dimensional action. The second part contains the action that controls the dynamics

of the fields, parameterizing the position of the brane along the internal coordinates,

φm. In a strongly warped region, e4A � 1, the kinetic energy’s pre-factor of e−4A in

Eq. (1.3.58) suppresses it relative to V (φm) even when the motion is relativistic.
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In either case (whether slow-roll or DBI), the approach taken is to consider a D3-

brane moving in a warped throat region of a Calabi-Yau flux compactification of type

IIB theory with ISD conditions [29]. However, when the UV end of the warped throat

is attached to the compact Calabi-Yau space with all moduli stabilized, violations of

ISD conditions with important implications for the action of the brane are expected.

The perturbations around the ISD solution satisfy the supergravity equation of

motion [55–57] (see Chapter 2)

∆(0)Φ− =
gs
96
|Λ|2 +R4. (1.3.59)

Here R4 denotes the Ricci-scalar, Λ is the (IASD) flux, ∆(0) is the Laplace operator

with respect to the leading order Calabi-Yau metric g
(0)
mn, and Φ− = e4A − α with

e4A being the warp factor in the metric (1.3.52) and α a potential for the five-form

on this background given by [29]

F̃5 = (1 + ?10)
[
dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
. (1.3.60)

In an ISD background α = e4A and Φ− is vanishing. In the presence of perturbations

around the ISD solution Φ− is nonvanishing and the potential of the mobile D3-brane

in such a background receives corrections in the form [55–57]

∆V = T3(e
4A − α) ≡ T3Φ−. (1.3.61)

Hence the corrections to the D3-brane potential are computed from the solution of

Eq. (1.3.59), which takes the form [55–57] (see also Chapter 2)

Φ−(r,Ψ) =
∑
LM

ΦLMfLM(r)YLM(Ψ), (1.3.62)

where ΦLM are constants, fLM(r) and YLM(Ψ) denote the radial and angular eigen-

functions on the conical geometry that is approximately described by the metric

(1.3.51). The solution (1.3.62) implies in particular that the potential of a mobile

D3-brane in the compactified throat geometry receives angular dependent correc-

tions, [52–57], which until recently, have been largely neglected (although see [58–

60, 64]). In slow roll inflation, it was presumed that the angular directions would
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stabilise rapidly, with the radial (slow-roll) direction dominating the inflationary tra-

jectory. In this case the chief motivation of computing supergravity perturbations in

the form of Eq. (1.3.62) is to obtain inflaton corrections in the form of Eq. (1.3.61),

which (upon minimization of the angular eigenfunction) may lead to a fine tuned

cancellation against the inflaton mass term in Eq. (1.3.56), so that slow-roll inflation

can occur. However, for generic brane motion the effect of angular motion is less

clear, particularly in the presence of angular terms in the potential.

Angular motion of branes was initially explored in the probe limit, i.e. where the

brane does not back-react at all on either the internal or external dimensions. Unsur-

prisingly, the angular motion has a conserved momentum, which can give interesting

brane universes (see e.g. [65–69]), however the mirage style, [70], interpretation of

the cosmology of these universes leads to a rather unsatisfactory picture. Based on

the probe understanding, it was conjectured that angular motion would not affect

a more realistic inflationary scenario to any great extent, an expectation largely

borne out by the “spinflation” study, [71–74], which found a marginal increase of a

couple of e-foldings due to angular motion, coming mainly from the initial stages

of inflation before the angular momentum becomes redshifted away. This increase

is however parameter sensitive, a point not noted in this original study. In [71–

74], a general DBI-inflationary universe was considered near the tip of the warped

deformed conifold throat, the Klebanov-Strassler (KS) solution [75], with a simple

radial brane potential; with a more realistic potential including angular terms, the

spinflationary picture could potentially be rather different.

In this thesis therefore, we investigate the cosmological implications of including

angular dependence in the DBI brane inflation scenario. Building on the results of

Baumann et al. [52–57], we consider D3-brane motion in the warped throat region

of the compact Calabi-Yau subject to UV deformations of the geometry that induce

angular dependent corrections in the potential of the probe D3-brane. Taking into

account perturbations around the ISD solution, we solve the D3-brane equations

of motion from the DBI action with angular dependence induced by the leading

correction to the potential allowed by the symmetries of the compactification. Our

aim is to consider angular momentum in a fully UV/IR consistent fashion, and to
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account for angular momentum in a more general potential. As with the simpler

radial spinflation potential, our numerical solutions show that angular dependence

tends to increase the inflationary capacity of a trajectory, increasing the number

of e-foldings, albeit at a subdominant level. To a large extent, the trajectories are

still predominantly radial, however, do exhibit rotational motion due to the angular

potential.

An important question is how generic such trajectories are. In general, as the

brane arrives in the throat, one expects a range of initial conditions in terms of

angular values and velocities. We find that the D brane trajectories and number of

e-foldings are dependent more on model parameters than on the initial condition of

the brane motion, thus indicating that the results of our investigation are reasonably

robust.

The thesis is organized as follows. In Chapter 2, we discuss the supergravity back-

ground that we use to study of brane inflation in subsequent chapters. In Chapter 3,

we first review some of the relevant aspects of D-branes and construct the multifield

D-brane action. We then derive the equations of motion from the action and review

a multifield DBI brane inflation model known as Spinflation. In Chapter 4, we study

Spinflation in the presence of linearized (first order) perturbations around the ISD

supergravity solution, which induce angular dependence in brane motion. In Chap-

ter 5, we extend our study of Chapter 4 by taking into account non-linear (second

order) perturbations around the ISD solution including further angular corrections

from the effects of backreaction sourced by moduli stabilizing wrapped D7-branes.

In Chapter 6, we briefly comment on future directions for further investigations.



Chapter 2

The supergravity model

In this chapter, we discuss the supergravity background used for the study of brane

inflation in the subsequent chapters. We first outline the general type IIB su-

pergravity background, following [29, 76], and consider as a specific example the

warped deformed conifold with known metric and known background fluxes, fol-

lowing [75, 77, 78]. We then discuss perturbations around such backgrounds from

compactification effects sourced by UV deformations of the ten-dimensional super-

gravity solution including the effects of moduli stabilization, following [30, 57].

2.1 Calabi-Yau flux compactification of type IIB

superstring theory

In brane inflation, a mobile D3-brane (or anti-brane) is embedded in the internal

manifold, with its four infinite dimensions parallel to the four-dimensional noncom-

pact universe. The position of the brane on the internal manifold then provides an

effective four-dimensional scalar field - the inflaton. The ten-dimensional set-up is

assumed to be a flux compactification of type IIB string theory on an orientifold of

a Calabi-Yau threefold (or an F-theory compactification on a Calabi-Yau fourfold)

[29]. We are interested in the situation where fluxes have generated a warped throat

in the internal space, and will be examining primarily the deep throat region.

29
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2.1.1 Type IIB superstring spectrum

The most popular approach to superstring theory is to consider 1 + 1–dimensional

superconformal invariant quantum field theories over the world sheet. The starting

point to analyse the spectrum of the superstring is to put superconformal field theory

(SCFT) on a circle. The full SCFT action takes the form [76]:

S =
1

4π

∫
d2w

(
2

α′∂X
µ∂̄Xµ + ψµ∂w̄ψµ + ψ̃µ∂wψ̃µ

)
, (2.1.1)

where w = σ1 + iσ2 is the cylinder coordinate. Here the first part of the action

depending on X describes the bosonic degrees of freedom and is known as the

Polyakov action. The second part is the matter fermion action with the fields ψ and

ψ̃ are holomorphic (left-moving) and antiholomorphic (right-moving). This action

must be invariant under periodic identification of the cylinder, w ' w + 2π. This

together with Lorentz invariance will allow the following two periodicity conditions:

Ramond (R) : ψµ(w + 2π) = +ψµ(w), (2.1.2)

Neveu–Schwarz (NS) : ψµ(w + 2π) = −ψµ(w). (2.1.3)

Here the sign being the same for all µ. In the same way one has two possible

periodicities for ψ̃µ. Hence there are four ways to put the theory on a circle and

there are four different kinds of closed superstring, which will be denoted by NS–NS,

NS–R, R–NS, and R–R.

To analyze the massless particle spectrum, we first note that in D-dimensional

spacetime for the massless states there is no rest frame and one chooses the frame

pµ = (E,E, 0, ..., 0). The SO(D − 2) acting on the transverse directions leaves the

momenta pµ invariant and is a subgroup of the Lorentz group called the little group1.

Thus the massless particle states arising from the lowest string states in D = 10 are

classified by their behavior under SO(8) rotations that leave the momentum invari-

ant. In the NS sector, the physical state conditions imply that the massless physical

1The massive case is different in that one considers the rest frame pµ = (m, 0, 0, 0) and the

states form then a representation of the spatial rotation group SO(D − 1).
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states are the eight transverse polarisations forming the vector representation 8V

of SO(8). In the R sector, the physical state conditions for the lowest states lead

to the massless Dirac equation by which the massless lowest states form a repre-

sentation of the Dirac algebra; in ten dimensions this representation has dimension

32. The Dirac representation 32 decomposes into two Weyl representations 16 and

16′, differing by their chirality. Upon SO(9, 1) → SO(1, 1) × SO(8) each of these

two decompose into a sum of 8s and 8c. Each state of combinations 8v ⊕ 8s,c then

describes the massless degrees of freedom on each side of the closed superstring. The

consistent chiral closed superstring theory, known as type IIB string theory, has the

following massless sector under SO(8) [76]:

Type IIB : (8v ⊕ 8s)⊗ (8v ⊕ 8s). (2.1.4)

The products in the NS–NS and R–R sectors are given as

NS–NS : 8v ⊗ 8v = φ ⊕ Bµν ⊕ Gµν = 1⊕ 28⊕ 35 (2.1.5)

R–R : 8s ⊗ 8s = [0] ⊕ [2] ⊕ [4]+ = 1⊕ 28⊕ 35+. (2.1.6)

Here [n] denotes an antisymmetric rank n tensor of the representation SO(8), with

[4]+ being self-dual. In the NS–R and R–NS sectors the products are

NS–R : 8v ⊗ 8s = 8c ⊕ 56s. (2.1.7)

The 56s includes two massless vector–spinor gravitinos of the same chirality. The

physical state conditions for the NS–R gravitino state imply local spacetime su-

persymmetry and associated with it there are two supercharges each transforming

under the 16 of the SO(9, 1).

To this end, we note that type IIB supergravity has two supercharges of the same

chirality, both tranforming under 16. Its graviton multiplet contains two scalars,

the traceless symmetric graviton, two antisymmetric 2-forms, and a 4-form with

self-dual field strength giving 2 + 35 + 28 + 28 + 35 = 128 bosonic states in all.
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This is the same as the massless content of the type IIB superstring in NS–NS and

R–R sector discussed above. Thus the NS–NS and R–R spectra together form the

bosonic components of the type IIB (chiral) supergravity [76].

2.1.2 Type IIB action and equations of motion

In the previous section we saw that the field content of the massless spectrum of type

IIB superstring theory consists of the R–R and NS–NS forms. For the R–R fields

we may use Cp and Fp+1 for the potential and field strength, and for the NS–NS

fields B2 and H3. One can construct an action using these forms. But it should be

noted from the previous section that the massless spectrum of type IIB theory also

contains a self-dual 5-form field strength, F̃5 = ∗F̃5. There is no covariant action for

such a field but the following action comes close [76]:

SIIB = SNS + SR + SCS, (2.1.8)

SNS =
1

2κ210

∫
d10x(−g)1/2e−2Φ

(
R+ 4∂µΦ∂

µΦ− 1

2
|H3|2

)
, (2.1.9)

SR = − 1

4κ210

∫
d10x(−g)1/2

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (2.1.10)

SCS = − 1

4κ210

∫
C4 ∧H3 ∧ F3, (2.1.11)

where

F̃3 = F3 − C0 ∧H3, (2.1.12)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (2.1.13)

Also, κ210 is the ten-dimensional gravitational coupling given by

κ210 =
(2π)7α′4g2s

2
. (2.1.14)

The equations of motion and Bianchi identity for F̃5 are:

d ∗ F̃5 = dF̃5 = H3 ∧ F3. (2.1.15)
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The spectrum of the type IIB string includes degrees of freedom of a self-dual five-

form field strength and the field equations (2.1.8) - (2.1.11) are consistent with:

∗F̃5 = F̃5. (2.1.16)

The supergravity action can be put in a SL(2,R) symmetric form. Consider

gEµν = e−Φ/2gµν , τ = C0 + ie−Φ, (2.1.17)

Mij =
1

Imτ

 |τ |2 −Reτ

−Reτ 1

 , F i
3 =

H3

F3

 . (2.1.18)

In (2.1.17) we transformed the metric to the Einstein frame. The action then takes

the form [76]:

SIIB = − 1

2κ210

∫
d10x(−gE)1/2

(
RE −

∂µτ̄ ∂
µτ

2(Imτ)2

−Mij

2
F i
3 · F i

3 −
1

4
|F̃5|2

)
− εij

8κ210

∫
C4 ∧ F i

3 ∧ F i
3 (2.1.19)

Here τ in (2.1.17) is the axion-dilaton field, and in (2.1.18) F3 = dC2 and H3 = dB2

are the R–R and NS–NS three-form fluxes, as before. This action is invariant under

SL(2,R) symmetry by:

τ ′ =
aτ + b

cτ + d
, (2.1.20)

F i
3

′
= ΛijF

j
3 , Λij =

d c

b a

 , (2.1.21)

F̃ ′
5 = F̃5, g′Eµν = gEµν (2.1.22)

with a, b, c, d ∈ R and detΛ = 1. The SL(2,R) invariance of the τ kinetic term

is clear, and that of F3 kinetic term follows from M ′ = (Λ−1)TMΛ−1. It should

be noted that the global SL(2,R) symmetry of type IIB supergravity is not shared

by the full type IIB superstring theory. In fact, it is broken by a variety of stringy
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and quantum effects to the infinite discrete subgroup SL(2,Z). To see this, consider

stable strings in this background. As there are two two-form gauge fields B2 (NS–NS

two-form) and C2 (R–R two-form) there are two types of charge that a string can

carry. The F-string (or fundamental string) has charge (1, 0), which means that it

has one unit of the charge that couples to B2 and none of the charge that couples

to C2 . In similar fashion, the D-string couples to C2 and has charge (0, 1). As the

two-forms form a doublet of SL(2,R), it follows that these strings also transform

as a doublet. Generally, they transform into (p, q) strings, which carry both kinds

of charge. The restriction to the SL(2,Z) subgroup is essential to make sure that

these charges are integers, as is required by the Dirac quantization conditions. The

low-energy IIB supergravity action in the Einstein frame can be put in an SL(2,Z)

invariant form as [76]:

S IIB =
1

2κ210

∫
d10x

√
|g|

[
R− | ∂τ |2

2(Imτ)2
− |G3|2

12 Imτ
− | F̃5|2

4 · 5 !

]
+

1

8iκ210

∫
C4 ∧G3 ∧G∗

3

Im(τ)
+ S loc, (2.1.23)

where

G3 = F3 − τH3. (2.1.24)

Here the term S loc is the action of localized sources including contributions from

wrapped D7-branes and mobile D3-branes [29]. These are Bogomolnyi–Prasad–

Sommerfield (BPS) states, meaning that they are invariant under a nontrivial sub-

algebra of the full supersymmetry algebra. These states always carry conserved

charges, and the supersymmetry algebra determines the mass of the state exactly

in terms of its charges and the mass is subject to the BPS bound.

In a flux compactification to four dimensions we are assuming a block diagonal

Ansatz for the metric [29]:

ds210 =
9∑

M,N=0

gMNdx
MdxN = e2A(y)gµνdx

µdxν − e−2A(y)g(0)mndy
mdyn, (2.1.25)
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in which the warp factor, e4A(y), depends only on the internal coordinates ym, the

internal metric gmn is independent of the spacetime coordinates (and will be taken to

be a known supergravity solution) and the four-dimensional metric, gµν , is taken as

Minkowski for the computation of the supergravity flux background, but ultimately

will be assumed to have an FRW form once the general cosmological solution is

sought.

Following [29], we take the self-dual five-form to be given by

F̃5 = (1 + ?10)
[
dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
, (2.1.26)

in the Poincare invariant case, where α(y) is a function of the internal coordinates,

and ?10 is the ten-dimensional Hodge star operator (see appendix A).

The Einstein equations take the form

RMN = κ210

(
TMN −

1

8
gMNT

)
, (2.1.27)

where

TMN = − −2√
−g

δS

δgMN
(2.1.28)

is the energy-momentum tensor, and T is the trace. The noncompact components

take the form

Rµν = −gµν
(
GmnpG

mnp

48Imτ
+
e−8A

4
∂mα∂

mα

)
+ κ210

(
T loc
µν −

1

8
gµνT

loc

)
. (2.1.29)

According to the metric (2.1.25), the Ricci components can be computed as

Rµν = −gµνe4A∆(0)A = −1

4
gµν(∆(0)e

4A − e−4A∂me
4A∂me4A). (2.1.30)

This together with the trace of (2.1.29) gives [29]

∆(0)e
4A = e2A

GmnpG
mnp

12Imτ
+ e−6A[∂mα∂

mα+ ∂me
4A∂me4A] +

κ210
2
e2A(Tmm − T µµ )loc.

(2.1.31)
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The five-form Bianchi identity takes the form [29]

dF̃5 = H3 ∧ F3 + 2κ210T3ρ3, (2.1.32)

where ρ3 is the D-brane charge density from localized sources and includes contri-

butions from the D7-branes and mobile D3-branes. Integrating this Bianchi identity

over the internal manifold gives the type IIB tadpole-cancellation condition [29]

1

2κ210T3

∫
M

H3 ∧ F3 +Qloc
3 = 0. (2.1.33)

This states that the total D3-brane charge from supergravity backgrounds and lo-

calized sources vanishes. In terms of the potential α the Bianchi identity (2.1.32)

becomes [29]

∆(0)α = ie2A
Gmnp(?6G

mnp
)

12Imτ
+ 2e−6A∂mα∂

me4A + 2κ210e
2AT3ρ

loc
3 . (2.1.34)

The Einstein equations (2.1.31) and five-form Bianchi identity (2.1.34) imply [29]

∆(0)Φ− =
e8A+Φ

24
|G−|2 + e−6A|∇Φ−|2 + 2κ2e2A

[
1

4
(Tmm − T µµ )local − T3ρloc3

]
, (2.1.35)

where ∆(0) is the Laplacian with respect to the six-dimensional unperturbed Calabi-

Yau metric g
(0)
mn, and we have defined:

G± ≡ (i± ?6)G3, Φ± ≡ e4A ± α. (2.1.36)

The equation of motion for the three-form flux is [29]

dΛ +
i

2

dτ

Im(τ)
∧ (Λ + Λ̄) = 0, (2.1.37)

where by definition

Λ ≡ Φ+G− + Φ−G+. (2.1.38)

The LHS of Eq. (2.1.35) integrates to zero, so the global constrains for the super-

gravity solution are [29]:

• The three-form flux is imaginary self-dual,
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?6G3 = iG3 (2.1.39)

• The warp factor and four-form potential are related,

e4A = α. (2.1.40)

• The localized sources saturate a ‘BPS-like’ bound

1

4
(Tmm − T µµ )local = T3ρ

loc
3 . (2.1.41)

A compactification satisfying the conditions (2.1.39) - (2.1.41) is called ISD.

2.1.3 Type IIB theory on Calabi-Yau manifolds

In this subsection, we follow closely [76] (and Appendix A) and discuss the moduli

fields of Calabi-Yau compactification of type IIB superstring theory that form the

massless field content of N = 2 spacetime supersymmetry.

The massless fields in four dimensions arise from those modes of the ten-dimensional

massless fields that are annihilated by the internal part of the Laplace operator. For

the type IIB string on a Calabi-Yau manifold the massless fields come from the NS–

NS fluctuations gMN , bMN , φ (bosonic supergravity fields) and the R–R fluctuations

c, cMN and cMNPQ. Here the ten-dimensional indices separate asM → (µ, i, ī). Thus

these will include the four-dimensional metric gµν , dilaton φ, and axion bµν ↔ a,

and also the scalar c, and a second axion cµν ↔ a′. These components with all

indices noncompact each have a single zero mode (the constant function) giving the

corresponding field in four dimensions.

Every Calabi-Yau manifold has exactly one (3, 0)-form (see Appendix A) and the

relevant Laplace operator is ∆d (see Appendix A). The zero modes of cµijk satisfy

∆dcµijk = 0 and therefore define harmonic forms. The space of harmonic forms

is isomorphic to the cohomology groups (see Appendix A). Thus according to the
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Hodge numbers of Calabi-Yau three-folds (see Appendix A) this gives h3,0 = 1 zero

modes. This is a vector.

The components gij correspond to changes in the complex structure because a

coordinate change would be needed to bring the metric back to Hermitian form.

This field is symmetric and therefore not a (p, q)-form. But by using the metric

and antisymmetric three-form we can produce gil̄m̄ = gijg
jk̄Ωk̄l̄m̄, which is a (2, 1)-

form. The relevant Laplace operator is ∆d and the zero modes or moduli satisfy

the operator equation ∆dgil̄m̄ = 0 and therefore define harmonic (2, 1)-forms. Hence

according to the Hodge numbers of Calabi-Yau three-folds this gives h2,1 zero modes

or complex structure moduli. These are complex fields with gīj̄ being the conjugate.

These fields are scalars. The component cµijk̄ can also be regarded as a (2, 1)-form

the zero modes of which give h2,1 vectors. It should be noted that there are no

additional scalars from cµijk̄ because the five-form field strength of the type IIB

background is self-dual meaning that these give the same vector states.

The component gij̄ is a (1, 1)-form and the relevant Laplace operator is again

∆d. The zero modes or moduli satisfy the operator equation ∆dgij̄ = 0 and therefore

define harmonic (1, 1)-forms. Thus according to the Hodge numbers of Calabi-Yau

three-folds it gives h1,1 zero modes or real moduli. The fields bij̄ and cij̄ are also

(1, 1)-forms and give rise to h1,1 zero modes or real moduli. These combine to

form h1,1 complex fields. These fields are scalars. The component cµνij̄ can also be

regarded as a (1, 1)-form the zero mode of which gives h1,1 scalars from its Poincare

dual. It should be noted that there are no scalars from cijk̄l̄ with h2,2 harmonic

(2, 2)-forms due to the Hodge numbers of Calabi-Yau three-folds since the five-form

field strength of the type IIB background is self-dual and in fact these are identical

to the states form cµνij̄.

The components gµi, bµi and cµi are (1, 0)-forms, and the relevant Laplace opera-

tor is ∆d, giving according to the Hodge numbers of Calabi-Yau three-folds, h1,0 = 0

zero modes. The components bij and cij are (2, 0)-forms and the relevant wave op-

erator is ∆d giving again by the Hodge numbers of Calabi-Yau three-folds h2,0 = 0

zero modes.

In summary, we have the following fields: for each harmonic (1, 1)-form there is
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a scalar from gij̄ and one from bij̄, and also one from cij̄ and a fourth one from the

Poincare dual of cµνij̄. For each harmonic (2, 1)-form there are scalars from gij and

gij and a vector from cµijk̄.

Now let us see how the above fields fit into multiplets of N = 2 spacetime

supersymmetry. The metric gµν plus vector cµijk comprise the bosonic content of

the supergravity multiplet. The remaining model independent fields are four real

scalars: φ, c, a and a′. This is the bosonic content of one hypermultiplet. For each

harmonic (1, 1)-form there are three scalars plus an additional one again forming a

hypermultiplet. For each harmonic (2, 1)-form there are two scalars and a vector,

the bosonic content of the vector multiplet. In total, the massless type IIB states

form a N = 2 supergravity multiplet plus:

IIB : h2,1 vector multiplet, h1,1 + 1 hypermultiplet. (2.1.42)

In summary, the Calabi-Yau moduli and supersymmetry multiplets in type IIB

theory are related as: the Kähler (1, 1) moduli are related to hypermultiplets and

the complex structure moduli to vector multiplets.

In low energy N = 2 supergravity the potential is determined completely by

gauge interactions. In Calabi-Yau compactification of type IIB theory the gauge

fields all come from the R–R sector. Hence all strings are neutral and so the potential

vanishes. It is therefore conclusive that all the scalars found above are moduli. This

is a consequence of symmetry and thereby valid in all orders of string perturbation

theory, even in the nonperturbative regime. However, as we shall see in the next

sections, in N = 1 supergravity this is no longer the case and nonperturbative effects

can produce a potential (see section 2.2). Since here the potential is vanishing the

low energy action is fully determined by supersymmetry in terms of the kinetic

terms for the moduli – the metric on moduli space. By supersymmetry the kinetic

terms of the hypermultiplet scalars are independent of the vector multiplet scalars

and the kinetic terms for the vectors and their scalar partners are independent of

the hypermultiplet scalars. This means that the moduli space is a product (see

also Appendix A). The vector multiplet space is a special Kähler manifold and the

hypermultiplet moduli space a quaternionic manifold.
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2.1.4 Moduli and effective actions

The global constraints of warped compactification discussed in the previous section

are invariant under g
(0)
mn → λ2g

(0)
mn. Thus a warped compactification has a radial

modulus, but there is no dilaton modulus as the dilaton couples to the NS–NS and

R–R fluxes differently giving a nontrivial potential, and, as discussed below, fluxes

also stabilize the complex structure moduli [29].

Let us now consider the effective four-dimensional action. To be concrete, con-

sider a Calabi-Yau manifold with a single Kähler modulus characterizing its size.

In the absence of fluxes, there are massless fields describing the complex-structure

moduli zα, for α = 1, ..., h2,1, the axion-dilaton τ and the superfield ρ containing the

Kähler modulus.

The Kähler potential for the complex structure moduli takes the form [26] (see

Appendix A)

K2,1 = − log

(
i

∫
M

Ω ∧ Ω̄

)
. (2.1.43)

In addition to this, we need to compute the Kähler potential for the radial modulus

and for the axion-dilaton modulus. In order to do so, we consider dimensional

reduction of the ten-dimensional type IIB action by taking the Calabi-Yau manifold

large. We consider the action on a background of the form [29]

ds2 = c−6u(x)gµνdx
µdxν − e2u(x)gmndymdyn, (2.1.44)

where u(x) parameterizes the volume of the Calabi-Yau three-fold. The power of

eu(x) in the first term has been chosen to give a canonically normalized Einstein term

in four-dimensions.

The supersymmetric partner of the radial modulus is another axion b̂, which

descends from the four-form according to

Cµνpq = âµνJpq, (2.1.45)

where J is the Kähler form [29] (see Appendix A). In four dimensions the two-form

â can be dualized to a scalar b̂ according to [29]
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dâ = c−8u(x) ∗ db̂. (2.1.46)

Setting

ρ =
b̂√
2
+ ie4u, (2.1.47)

the resulting low-energy effective action is [29]

S =
1

2κ24

∫
d4x
√
−g
(
R− 1

2

∂µτ∂
µτ̄

(Imτ)2
− 3

2

∂µρ∂
µρ̄

(Imρ)2

)
. (2.1.48)

Here the four-dimensional gravitational coupling constant is given by κ24 = κ210/ν,

where ν is the volume of the Calabi-Yau three-fold computed using the metric gmn.

The kinetic terms for τ and ρ correspond to the first two terms in the Kähler

potential

K = −3 log[−i(ρ− ρ̄)]− log[−i(τ − τ̄)]. (2.1.49)

Thus the complete Kähler potential takes the form [29]

K = −3 log[−i(ρ− ρ̄)]− log[−i(τ − τ̄)]− log

(
i

∫
M

Ω ∧ Ω̄

)
. (2.1.50)

The presence of fluxes generate a superpotential of the form [79]

W0 =

∫
Ω ∧G3, (2.1.51)

where Ω is the holomorphic three-form of the Calabi-Yau three-fold. This superpo-

tential is independent of ρ. The ISD constraint ?6G3 = iG3 can be derived from this

superpotential. Note that a solution to the ISD condition is a harmonic form of type

(2, 1) + (0, 3), but in supersymmetric solutions only the primitive part of the (2, 1)

component is allowed, meaning that the index structure is ijk and the contraction

with the Kähler form J ij vanishes.

The condition for unbroken supersymmetry is [29]

DaW = ∂aW + ∂aKW = 0. (2.1.52)
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Here a = ρ, τ, α label all the supermoduli fields and hence the following three con-

ditions follow

DρW = ∂ρKW = −
(

3

ρ− ρ̄

)
W = 0, (2.1.53)

DrW =
1

τ − τ̄

∫
Ω ∧ Ḡ3 = 0, (2.1.54)

DαW =

∫
ϕα ∧G3 = 0, (2.1.55)

where ϕα is a basis of harmonic (2, 1)-forms (see Appendix A). The first condition

is derived from observing the fact that the superpotential (2.1.51) is independent

of the radial modulus. This condition implies that for a supersymmetric solution

W = 0, so that the (0, 3) component of G3 has to vanish. The second condition

implies that the (3, 0) component of G3 also has to vanish. The third condition is

satisfied by all harmonic (2, 1)-forms and so supersymmetry is unbroken if [29]

G3 ∈ H(2,1)(M). (2.1.56)

We should remark that for compact Calabi-Yau manifolds h1,0 = 0 (see Appendix

A). In such a case any harmonic (2, 1)-form is primitive, again meaning that the

index structure is ijk and the contraction with the Kähler form J ij vanishes, and

so we have [29]

G3 ∈ H(2,1)
primitive(M). (2.1.57)

We also note that in addition to being primitive, the ϕα are also ISD. Then Eq. (2.1.56)

is in agreement with the condition that G3 is ISD, in correspondence with the ten-

dimensional ISD conditions [29].

2.1.5 The warped deformed conifold

The particular concrete example we will be interested in is where the background

is the warped deformed conifold, or Klebanov-Strassler (KS), solution [75]. The
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deformed conifold is a noncompact and nonsingular Calabi-Yau three-fold in C4

defined by the following constraint equation [27] (see Appendix A):

4∑
α=1

(zα)
2 = ε2, (2.1.58)

where {zα, α = 1, 2, 3, 4} represent the local complex coordinates in C4, and ε is the

deformation parameter which can be made real by phase rotation. For vanishing ε,

Eq. (2.1.58) gives the singular conifold and describes a cone over a five-dimensional

Einstein manifold X5. For us the nonsingular limit is relevant in which X5 is the[
SU(2)× SU(2)

]
/U(1) coset space T 1,1 of topology S2 × S3 parametrised by a set

of five Euler angles Ψ = {θi, ϕi, ψ} with 0 ≤ θi ≤ π, 0 ≤ ϕi ≤ 2π, 0 ≤ ψ ≤ 4π

(i = 1, 2), and the would-be singularity at the tip, r = 0, is replaced by a blown-up

S3 of T 1,1 amounting to the deformation measured by ε. The base of the cone can

be parametrised by the coordinates yi in a standard way [27]

y1 =
1√
2

(
cos

θ1
2
cos

θ2
2
e
i
2
(ϕ1+ϕ2+ψ) − sin

θ1
2
sin

θ2
2
e−

i
2
(ϕ1+ϕ2−ψ)

)
, (2.1.59)

y2 =
i√
2

(
cos

θ1
2
cos

θ2
2
e
i
2
(ϕ1+ϕ2+ψ) + sin

θ1
2
sin

θ2
2
e−

i
2
(ϕ1+ϕ2−ψ)

)
, (2.1.60)

y3 = − 1√
2

(
cos

θ1
2
sin

θ2
2
e
i
2
(ϕ1−ϕ2+ψ) + sin

θ1
2
cos

θ2
2
e
i
2
(ϕ2−ϕ1+ψ)

)
, (2.1.61)

y4 =
i√
2

(
cos

θ1
2
sin

θ2
2
e
i
2
(ϕ1−ϕ2+ψ) − sin

θ1
2
cos

θ2
2
e
i
2
(ϕ2−ϕ1+ψ)

)
. (2.1.62)

In tems of these, the coordinates of the deformed conifold in (2.1.58) read as

z1 =
ε√
2
(e

η
2 y1 + e−

η
2 y1), z2 =

ε√
2
(e

η
2 y2 + e−

η
2 y2),

z3 =
ε√
2
(e

η
2 y3 + e−

η
2 y3), z4 =

ε√
2
(e

η
2 y4 + e−

η
2 y4), (2.1.63)

where η is the ‘radial coordinate’. The six-dimensional Calabi-Yau metric, ds26 =

g
(0)
mndymdyn, on the deformed conifold can be obtained from the Kähler potential

given as [27]

k(η) =
ε4/3

21/3

∫ η

0

dη′[sinh(2η′)− 2η′]1/3. (2.1.64)
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Here we note that this Kähler potential is derived from the relation [27]

r3 =
4∑

α=1

|zα|2 = ε2 cosh η, (2.1.65)

and the metric for the deformed conifold reads as [27] (see Appendix A and also

[80])

ds26 = g(0)mndy
mdyn =

1

2
ε4/3K(η)

[
1

3K(η)3
{dη2 + (g5)2}+ cosh2 η

2
{(g3)2 + (g4)2}

+sinh2 η

2
{(g1)2 + (g2)2}

]
. (2.1.66)

This internal metric is a strongly warped and deformed throat, which interpolates

between a regular R× S3 tip, and an R× T 1,1 cone in the UV. The deformation of

the conifold is measured by ε, as before; it is a dimensionful parameter ([ε2/3] = L),

and sets a scale for the throat as we will see presently. The ‘radial’ coordinate, η, is

chosen so that the function K is expressible explicitly in analytic form:

K(η) =
(sinh(2η)− 2η)1/3

21/3 sinh η
, (2.1.67)

and the gi’s are forms representing the angular directions, given explicitly by

g1,3 =
e1 ∓ e3√

2
, g2,4 =

e2 ∓ e4√
2

, g5 = e5 (2.1.68)

with

e1 = − sin θ1dϕ1, e2 = dθ1, e3 = cosψ sin θ2dϕ2 − sinψdθ2,

e4 = sinψ sin θ2dϕ2 + cosψdθ2, e5 = dψ + cos θ1dϕ1 + cos θ2dϕ2. (2.1.69)

It is also useful to visualise this metric in terms of a proper radial coordinate

r(η) =
ε2/3√
6

∫ η

0

dx

K(x)
(2.1.70)

which measures the actual distance up the throat in the six-dimensional metric g
(0)
mn.

The metric can now be written as:
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ds26 = dr2+r2
[
C2

3(r)

9
(g5)2+

C2
1(r)

6
{(g3)2+(g4)2}+ C2

2(r)

6
{(g1)2+(g2)2}

]
, (2.1.71)

where the functions Ci(r) are given implicitly from (2.1.66), and are shown in

Fig. 2.1.5. At small r

r ∼ ε2/3

31/625/6
η, K '

(
2

3

)1/3

, (2.1.72)

and the metric (2.1.66) smoothly closes off at r = 0 with a finite S3 of radius

ε2/3/121/6. At large r, or for η ∼ 10 − 15, the Ci’s âs become unity, and the

throat explicitly takes the form of a cone: R × T 1,1. Thus ε2/3 gives the radius

of a nonsingular S3 at the base of the throat, and the scale at which the throat

asymptotes the T 1,1 cone: it sets the IR scale of the geometry. In the UV region the

Kähler potential becomes [27]

k =
3

2

( 4∑
α=1

|zα|2
)2/3

=
3

2
r2, (2.1.73)

and the metric reduces to that of the singular conifold given by Eq. (1.3.51) with

ds2X5
given by [27] (see Appendix A, and also [80])

ds2T 1,1 =
1

9

(
dψ +

2∑
i=1

cos θidϕi

)2

+
1

6

2∑
i=1

(dθ2i + sin2 θidϕ
2
i ). (2.1.74)

The warping in this background is induced by the presence of type IIB back-

ground fluxes including M units of F3 flux through the cycle A and −K units of H3

flux through the cycle B. Due to the presence of three-form fluxes the above back-

ground emerges as a solution to Einstein’s equations and the resulting supergravity

background is described by a throat with its tip being located at a finite radial co-

ordinate rIR while at rUV the throat is glued into an unwarped bulk geometry. For

small η, the background fields are given by [75, 77]
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Figure 2.1: A plot of the metric functions Ci , which shows how the deformation of

the conifold increases as the tip is approached. The metric asymptotes the T 1,1 cone,

but near the origin, rC1 and rC3 remain finite leaving the nonsingular S3 metric at

the tip of the ‘cone’. The axis is labeled both in terms of the original η coordinate,

as well as the normalized proper distance up the throat, r̂ = ε−2/3r.

B2 =
gsMα′

2

[
f(η)g1 ∧ g2 + k(η)g3 ∧ g4

]
, (2.1.75)

H3 =
gsMα′

2

[
dη ∧ (f

′
g1 ∧ g2 + k′g3 ∧ g4)

+
1

2
(k − f)g5 ∧ (g1 ∧ g3 + g2 ∧ g4)

]
, (2.1.76)

F3 =
Mα′

2

[
g5 ∧ g3 ∧ g4(1− F ) + g5 ∧ g1 ∧ g2 F

+F ′dη ∧ (g1 ∧ g3 + g2 ∧ g4)
]
, (2.1.77)

F̃5 = F5 + ?F5 = B2 ∧ F3 + dC4, (2.1.78)

F5 = B2 ∧ F3 =
gsM

2(α′)2

4
l(η)g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5, (2.1.79)

?F5 = 4gsM
2(α′)2ε−8/3dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dη l(η)

K2e−8A sinh2 η
.(2.1.80)
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Here l(η) = f(1 − F ) + kF ; the R–R zero-form vanishes since F3µνλH
µνλ
3 = 0; the

dilaton is constant on the deformed conifold: g2sF
2
3 = H2

3 ; and a system of first-order

equations consistent with type IIB equations satisfied by three-form fluxes is

f ′ = (1− F ) tanh2(η/2),

k′ = F coth2(η/2),

F ′ =
1

2
(k − f), (2.1.81)

and

d(e−4A)

dη
= −αf(1− F ) + kF

K(η) sinh2 η
, (2.1.82)

where

α = 4(gsMα′)2ε8/3. (2.1.83)

The set of equations (2.1.81) form a closed system and imply the self-duality of the

three-form with respect to the metric of the deformed conifold: ∗6G3 = iG3, where

G3 is a harmonic (2, 1) form on the deformed conifold. Combining (2.1.81) and

using the boundary conditions for small and large η, one can obtain a second order

differential equation for F whose solution yields:

F (η) =
sinh η − η
2 sinh η

, (2.1.84)

f(η) =
η cosh η − 1

2 sinh η
(cosh η − 1), (2.1.85)

k(η) =
η cosh η − 1

2 sinh η
(cosh η + 1). (2.1.86)

For large η, the other background fields take the form [77, 78]
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B2 =
3gsMα′

4

[
ln
r

r0

]
(g1 ∧ g2 + g3 ∧ g4), (2.1.87)

H3 =
3gsMα′

4r
dr ∧ (g1 ∧ g2 + g3 ∧ g4), (2.1.88)

F3 =
Mα′

4
g5 ∧ (g1 ∧ g2 + g3 ∧ g4), (2.1.89)

F̃5 = F5 + ?F5, (2.1.90)

F5 = B2 ∧ F3 = 27π(α′)2
[
N +

3(gsM)2

2π
ln
r

r0

]
Vol(T 1,1), (2.1.91)

?F5 = dC4 = g−1
s d(e4A) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3. (2.1.92)

Here we note that the two- and three-forms on RHSs including only wedge products

of gis are closed. We also note that

gs ∗6 F3 = −H3, gsF3 = ∗6H3. (2.1.93)

Hence the complex three-form G3 satisfies the self-duality condition

∗6G3 = iG3, G3 = F3 +
i

gs
H3. (2.1.94)

We also note from (2.1.93) that

g2sF
2
3 = H2

3 , (2.1.95)

which implies that the dilaton is constant, Φ = 0. Since F3µνλH
µνλ
3 = 0, the R–R

scalar vanishes as well.

Now having solved for the three-forms on the deformed conifold, the warp factor

can be determined by integrating (2.1.82), which gives in terms of η [75, 77]

e−4A = 2(gsMα′)2ε−8/3I(η), (2.1.96)

where2

I(η) ≡
∫ ∞

η

dx
x coshx− 1

sinh2 x
(sinh(2x)− 2x)1/3. (2.1.97)

2Note that this definition of I relocates a factor of 21/3 relative to the KS expression [75].
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Thus for small η

e−4A ∼ 2(gsMα′)2ε−8/3

[
I(0)− η2

12

(
2

3

)1/3]
(2.1.98)

= (2gsα
′)2ε−8/3

[
0.5699− ε−4/3 r

2

3

]
and for large η:

e−4A ∼ 3 · 21/3(gsMα′)2ε−8/3(η − 1/4)e−4η/3 (2.1.99)

=
27

8

(gsMα′)2

r4

(
ln
r3

ε2
+ ln

4
√
2

3
√
3
− 1

4

)
,

which shows how the warp factor interpolates between the Klebanov-Tseytlin (KT)

form [77, 78], for large r, to a smooth cap for rε2/3 . 1. In addition, for sufficiently

small ε, there is an intermediate adS region for | ln r| � | ln ε2/3|, in which the

logarithmic dependence on r is subdominant to the deformation term.

2.1.6 Large hierarchy and complex structure moduli fixing

We now consider the explicit supergravity background discussed in the previous

subsection and show that the NS–NS and R–R fluxes generate a large hierarchy and

stabilize all the moduli up to the Kähler modulus [29]. We first consider a compact

manifold with moduli z, ρ, τ , where z is a complex structure modulus. We then

explain how additional complex structure moduli can be included in the same way.

In the warped deformed conifold, the tensor fields F3 = dC2 and H3 = dB2 are

nonvanishing, so that the associated fluxes thread cycles in the internal manifold

(see Appendix). There are M units of F3 flux through an A-cycle and -K units of

H3 flux through a B-cycle [29]:

1

2πα′

∫
A

F3 = 2πM and
1

2πα′

∫
B

H3 = −2πK. (2.1.100)

We can also understand this by requiring D3-brane charge conservation like in

(2.1.33)
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1

2κ210T3

∫
M
H3 ∧ F3 =M K. (2.1.101)

Hence in the sense of Poincare duality we have

F3 = (2π)2α′M [B], H3 = (2π)2α′K[A]. (2.1.102)

From this the superpotential (2.1.51) can be written in the from [29]

W =

∫
G3 ∧ Ω = (2π)2α′

(
M

∫
B

Ω−Kτ
∫
A

Ω

)
. (2.1.103)

The integrals appearing on the RHS of Eq. (2.1.103) are the periods defining the

complex structure of the conifold [29] (see also Appendix A). One particular A-cycle

which vanishes at the tip of the conifold is an S3. This A-cycle can be described by

the coordinate [29] (see also Appendix A)

z =

∫
A

Ω. (2.1.104)

The dual cycle of this is described by (see Appendix A)

G (z) =

∫
B

Ω =
z

2πi
log z + holomorphic (2.1.105)

The superpotential then takes the form [29]

W = (2π)2α′(MG (z)−Kτz). (2.1.106)

The vanishing of Kähler covariant derivative of the superpotential gives

0 = DzW ∝M∂zG −Kτ + ∂zK(MG −Kτz). (2.1.107)

To obtain a large hierarchy, one will consider K/gs to be large, which will imply an

exponentially small z. Accordingly, the dominant terms in DzW are [29]

DzW ∝
M

2πi
log z − iK

gs
+O(1), (2.1.108)

For K/Mgs � 1, it follows
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z ' e−2πK/Mgs , (2.1.109)

which is exponentially small [29]. Thus we obtain a large hierarchy of scales if, say,

M = 1 and K/gs = 5, assuming that the dilaton is frozen in this solution [29].

In the vicinity of N coincident D3-branes the spacetime metric takes the form

ds2 =

(
r

R

)2

|d~x|2 +
(
R

r

)2

(dr2 + r2dΩ2
5) with R4 = 4πgsN(α′)2, (2.1.110)

where r is the distance from the D3-brane located at r ≈ 0. On the deformed

conifold the minimum value of r is given by the deformation parameter z as [29]

rmin ' ρ
2/3
min = z1/3 ' e−2πK/3Mgs . (2.1.111)

This relation shows that the warp factor approaches a nonzero, small and positive

value close to the D3-brane.

In our discussion so far we assumed that there is a single complex structure

parameter z. We may suppose there are further complex structure deformations,

controlled by moduli vi. In this way the vi enter in the regular terms in the periods

and G (z) becomes G (z, vi). Under the assumption that z has been successfully

stabilized in the vicinity of the conifold point in moduli space like above, we may

solve the equations [29]

DviW
∣∣
z=0

= 0, (2.1.112)

and obtain fixed values for the other moduli vi. Thus in the flux compactification

of type IIB theory the presence of the NS–NS and R–R fluxes fix all of the complex

structure moduli and dilaton, but leave the Kähler modulus ρ unfixed.

2.2 Kähler moduli stabilization

2.2.1 General Perturbations around the ISD solution

As we saw at the end of the previous section, in an ISD compactification such as the

warped deformed conifold, only the complex-structure moduli are stabilized but not
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the Kähler moduli (that characterize the size of the internal Calabi-Yau). When the

no-scale structure is broken to stabilize the Kähler moduli, perturbations around

the ISD solution are expected. In supergravity, these perturbations are sourced by

attaching the UV end of the throat to a fully stabilised Calabi-Yau sector, and one

can treat these perturbations by considering a full perturbative expansion including

perturbations in all fields [57]

X = X0 +X1 +X2 + · · ·, X ≡ {Φ−, Φ+, G−, G+, φ, gmn}, (2.2.113)

where X0 is the background, X1 is the first-order perturbation, X2 is the second-

order perturbation and so on. Recall from the previous section that in an ISD

background we have

Φ
(0)
− = G

(0)
− = 0. (2.2.114)

In the absence of local sources and curvature Eq. (2.1.35) is

∆Φ− =
e8A+φ

24
|G−|2 + e−4A|∆Φ−|2. (2.2.115)

The Laplacian depends on the metric, so in terms of metric perturbations the Lapla-

cian is

∆ = ∆(0) +∆(1) + · · · (2.2.116)

At first order in all perturbations we get the Laplace equation [57]

∆(0)Φ
(1)
− = 0, (2.2.117)

and at second order we have [57]

∆(1)Φ
(1)
− +∆(0)Φ

(2)
− =

gs
96

(
Φ

(0)
+

)2|G(1)
− | 2 + 2|∆0Φ

(1)
− | 2/Φ

(0)
+ . (2.2.118)

For Φ
(1)
− 6= 0, the linearized equation (2.2.117) determines the leading solution. For

Φ
(1)
− = 0, the second order terms become important, and the first order equation

(2.2.117) is identically satisfied. Eq. (2.2.118) then simplifies to
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∆(0)Φ
(2)
− =

gs
96

(
Φ

(0)
+

)2|G(1)
− | 2. (2.2.119)

To identify the the source term in the above equation, consider Eq. (2.1.37). Because

the Φ− Eq. (2.2.119) is second order in fluxes, it is sufficient to solve Eq. (2.1.37) at

first order. We have [57]

dΛ(1) = 0, (2.2.120)

where

Λ(1) = Φ
(0)
+ G

(0)
− + Φ

(1)
− G

(0)
+ . (2.2.121)

Since the flux induced contributions to Φ− are only important when Φ
(1)
− = 0, we

may consider

Λ(1) ≈ φ
(0)
+ G

(1)
− . (2.2.122)

This is exactly the source term in Eq. (2.2.119). Thus we have [57]

∆(0)Φ
(2)
− =

gs
96
|Λ(1)|2. (2.2.123)

By perturbing the Hodge star operator, metric perturbations induce changes in the

definition of of IASD fluxes. But because of Λ(0) = 0, the relevant IASD condition

at first order is [57]

?
(0)
6 Λ(1) = −iΛ(1). (2.2.124)

Eq. (2.2.124) tells us that Λ(1) is IASD with respect to the background metric. Thus,

as in Eq. (2.2.117), one does not need the explicit form of the perturbed metric in

order to find the leading IASD flux solution.

In summary, the perturbations around the ISD supergravity solution with Φ− =

G− = 0 satisfy at leading order3 the supergravity equation of motion [57]

3In addition to fluxes, coupling to the Ricci-scalar also induces a source term in the supergravity

equation of motion (2.2.124), but at leading order fluxes provide the dominant source.
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∆(0)Φ− =
gs
96
|Λ|2, (2.2.125)

where

dΛ = 0, ?6Λ = −iΛ. (2.2.126)

• Linearized perturbations

To determine linearized (first order) perturbations, it suffices to solve the Laplace

equation (2.2.117)

∆(0)Φ− = 0. (2.2.127)

In a noncompact throat geometry, we can solve the Laplace equation and obtain the

structure of Φ−, which then feeds in to a potential for the D3-brane motion. (See

[52–57] for a detailed explanation and computation of potentials away from the tip

of the throat.)

In most of the literature (and hence in most inflationary models), the potential

is computed away from the tip of the throat, and the geometry is approximated by

AdS5 × T 1,1. In this case, the angular part of the Laplace equation, (2.2.127) is

relatively straightforward, and solutions take a particularly clean form [55, 57]:

Φ−(r, θ) =
∑
M

ΦLMYLM(Ψ)

(
r

rUV

)∆(L)

, (2.2.128)

where r is the proper radial distance in the metric g
(0)
mn , (5.1.10), and

∆(L) ≡ −2 +
√
6[l1(l1 + 1) + l2(l2 + 1) +R2/8] + 4 (2.2.129)

is the radial eigenfunction weight, coming from the eigenvalues of the angular eigen-

functions, YLM(Ψ), of the Laplacian on T 1,1 , [81, 82]. L ≡ (l1, l2, R), M ≡ (m1,m2)

label SU(2)×SU(2)×U(1)R quantum numbers under the corresponding isometries

of T 1,1, and ΦLM are constant coefficients. The leading order terms of interest have
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the lowest ∆(L), the smallest eigenvalues corresponding to non-trivial perturbations

being

∆ =
3

2
for (l1, l2, R) = (1/2, 1/2, 1), YLM(Ψ) ∼ cos

θ1
2
cos

θ2
2
ei(φ1+φ2+ψ)(2.2.130)

∆ = 2 for (l1, l2, R) = (1, 0, 0), (0, 1, 0), YLM(Ψ) ∼ cos θi. (2.2.131)

In [52–57] , the first mode, (2.2.130), was used to construct an inflection potential for

the inflationary universe, however, this mode is not allowed in the warped deformed

conifold, as the U(1)R isometry is broken to a discrete Z2 and therefore (2.2.130)

is forbidden. In Chapter 4, we present an exact analytic solution of the Laplace

equation on the deformed conifold allowed by this symmetry.

• Non-linear perturbations

To obtain non-linear perturbations, we confine ourselves to the leading order case

including only fluxes as source term. In this case, one needs to solve Eq. (2.2.125)

with RHS nonvanishing,

∆(0)Φ− =
gs
96
|Λ|2. (2.2.132)

The solution of this equation can always be put in the form [57]

Φ−(y) =
gs
96

∫
d 6y′G(y; y′)|Λ|2(y′) + ΦH(y), (2.2.133)

where

∆(0)G(y; y′) = δ(y − y′), (2.2.134)

and

∆(0)ΦH(y) = 0, (2.2.135)

which gives the homogeneous solution obtained above. Here and in what follows

y denotes a collective internal coordinate consisting of the radial and six angular

directions, where the latter will always be denoted by Ψ. On a general Calabi-Yau
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cone with Kähler form J and holomorphic (3,0)-form Ω, we may turn on (1,2) flux,

Λ1, and a non-primitive (2,1) flux, Λ2 [56, 57] (see Appendix A subsection A.5.5):

Λ1 = ∂∂f1Ω̄, Λ2 = ∂f2 ∧ J, (2.2.136)

with f1 and f2 being holomorphic functions. The solution (2.2.133) takes the form

[56, 57]:

Φ
(2)
− (y) =

gs
32

[
KΣΞ̄∂Σf1∂Ξf1 + 2|f2|2

]
, (2.2.137)

where KΣΩ̄ is the Kähler metric. For a specific choice of the fi’s, Eq. (2.2.137)

determines the explicit solution of Eq. (2.2.132) up to harmonic terms. In the AdS5×

T 1,1 limit, the harmonic terms take the form [57]

Φ− =
∑
δi,δj

r∆(δi,δj)h(δi,δj)(Ψ), (2.2.138)

where h(δi,δj)(Ψ) are harmonic functions from the overlapping of different flux modes,

and ∆(δi, δj) ≡ δi + δj − 4 with ∆i and ∆j being the supergravity modes of the

individual fluxes. The relating supergravity modes are [57]

∆Λ = 1, 2,
5

2
,
√
28− 5

2
, ... (2.2.139)

In the IR region of the throat where η is small, the Green’s function is that of

the deformed conifold and takes the form [83, 84]

G(y; y′) = G(η, y4; e0) = −
32/3

28/3π3ε8/3

∑
j=0, 1

2
,1,...

j∑
m=−j

√
2j + 1

η
Fjm(y4, y4), (2.2.140)

where e0 parametrizes the blown up S3 at η = 0 and Fjm stand for the hypergeo-

metric functions on the deformed conifold given by

F0,0 = 1, F 1
2
, 1
2
= 2y4, F 1

2
,− 1

2
= 2y4, F1,1 = 2

√
3y24,

F1,0 = −
√
3(1− 4y4y4), F1,−1 = 2

√
3y24, F 3

2
, 3
2
= 4
√
2y34,

F 3
2
, 1
2
= −4

√
2y4(1− 3y4y4), F 3

2
,− 1

2
= −4

√
2y4(1− 3y4y4),

F 3
2
, 3
2
= 4
√
2y34. (2.2.141)
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In the UV region of the throat where η is large, we may introduce another radial

coordinate r through r3 ∼ ε2eη (see Eq. (2.1.65)) and the Green’s function is that of

the singular conifold given by [52]

G(y; y′) =
∑
L

Y ∗
L (Ψ

′)YL(Ψ)

2
√
ΛL + 4

×


1
r′4

(
r
r′

)c+L
r ≤ r′

1
r4

(
r′

r

)c+L
r ≥ r′

(2.2.142)

with the harmonic eigenfunctions

YL(Ψ) = Zj1,m1,R(θ1)Zj2,m2,R(θ2)e
im1ϕ1+im2ϕ2e

i
2
Rψ, (2.2.143)

ZI
ji,mi,R

(θi) = N I
L(sin θi)

mi

(
cot

θi
2

)R/2
×

2F1

(
− ji +mi, 1 + ji +mi, 1 +mi −

R

2
; sin2 θi

2

)
,(2.2.144)

ZII
ji,mi,R

(θi) = N II
L (sin θi)

R/2

(
cot

θi
2

)mi
×

2F1

(
− ji +

R

2
, 1 + ji +

R

2
, 1−mi +

R

2
; sin2 θi

2

)
. (2.2.145)

Here the normalization factors N
I/II
L relation is given by

VT 1,1

∫ 1

0

dx[Zj1,m1,R(x)]
2

∫ 1

0

dy[Zj2,m2,R(y)]
2 = 1. (2.2.146)

In the above relations 2F1(a, b, c; d) stands for hypergeometric functions; L is a multi-

index with the data L ≡ (j1, j2), (m1,m2), R, where j1 and j2 are both integers or

half-integers with m1 ∈ {−j1, · · · , j1} and m2 ∈ {−j2, · · · , j2}; ΛL = 6(j1(j1 +

1) + l2(j2 + 1) − R2/8) denotes the spectrum of the full wave function and the

eigenfunctions transform under SU(2)1 × SU(2)2 as the spin (j1, j2) representation

and under the U(1)R with charge R; c+L ≡ −2±
√
ΛL + 4.

2.2.2 The KKLT scenario

In this final section we first discuss the four-dimensional N = 1 supergravity La-

grangian, following closely [76], and show that nonperturbative corrections to the
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superpotential break the no-scale structure of the Lagrangian and lead to supersym-

metry preserving AdS vacua in which the Kähler modulus is fixed [30]. We then

add extra effects that break supersymmetry and lift the minimum of the potential

to a positive value, yielding dS space [30]. As we shall see in chapter 5, the flux in-

duced potential from the holomorphic solution of the noncompact ten-dimensional

supergravity equation of motion (2.2.132) equals the the scalar potential of four-

dimensional N = 1 supergravity discussed below [57].

The massless irreducible multiplets from the N = 1 supersymmetry algebra

consist of the chiral, vector, and graviton multiplets. In general, there will be a

number of massless chiral and vector multiplets. The particle content of the former

corresponds to a complex scalar field φ and a Majorana spinor ψ. The particle

content of the latter corresponds to a gauge field Aµ and a Majorana spinor λ.

There is also an auxiliary complex field F in the chiral multiplet and an auxiliary

real field D in the vector multiplet. Putting these together gives the following

superfields [76]:

Φi : φi , ψi, F i, (2.2.147)

V a : Aaµ , λ
a, Da. (2.2.148)

We now would like to write down the supergravity Lagrangian. We note from

the previous section the occurrence of moduli in type IIB string theory on Calabi-

Yau manifolds. These moduli are scalar fields with flat potentials and can have

large classical values. In order to write down the effective Lagrangian one needs to

consider moduli space power counting. Such a power counting assigns scalars the

scaling l0 with l being length. Supersymmetry then assigns the fermionic partners

of these scalar fields scaling l−1/2. Keeping all terms of the same order as the kinetic

terms for these fields requires all terms in the Lagrangian density to have dimension

lm with m ≥ −2. In order to keep the kinetic terms for the gauge multiplet, assign

Aµ scaling l0 and λ scaling l−1/2. Lastly, assign the metric scaling l0 as it has a

classical expectation value.

The low energy effective action within this approximation depends on three func-



2.2. Kähler moduli stabilization 59

tions: the holomorphic superpotential W (Φ) , the holomorphic function fab(Φ) cor-

responding to the gauge coupling, and the Kähler potential K(Φ,Φ∗) which is a

general function of the superfields. The bosonic part of the Lagrangian density

takes the form [76]:

Lbos

(−G)1/2
=

R

2κ2
−K,̄ijDµφi

∗Dµφj − 1

4
Re(fab(φ))F

a
µνF

bµν

−1

8
Imfabε

µνσρF a
µνF

b
σρ − V (φ, φ∗), (2.2.149)

where

V (φ, φ∗) = exp(κ2K)(KījW ∗
,iW,j − 3κ2W ∗W ) +

1

2
fabD

aDb, (2.2.150)

W,i = ∂iW + κ2∂iKW, (2.2.151)

Re(fab(φ))D
b = −2ξa −K,itaijφj. (2.2.152)

Here the tij are the gauge group representation matrices, ξa is the additional pa-

rameter for each gauge group U(1), and Kīj is the inverse matrix to ∂j∂k̄K. The

negative term in (2.2.150) proportional to κ2 is a supergravity effect. The first part

of the potential is known as the F-term potential, form the superpotential, and the

last term of the potential is known as the D-term, from gauge interactions.

We note that the kinetic term for the scalars is field-dependent and the metric

for the space of scalar fields is given by (see Appendix A)

K,̄ij =
∂2K(φ, φ∗)

∂φi∗∂φj
. (2.2.153)

A metric of this form is known as Kähler metric and is invariant under Kähler

transformations (see Appendix A)

K(φ, φ∗)→ K(φ, φ∗) + f(φ) + f(φ)∗. (2.2.154)

Thus the moduli space is Kähler which means that the 2n real moduli can be grouped

into n complex fields φi with the metric Gīj = K,̄ij. The invariance under Kähler
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transformations is the invariance of the whole action if the superpotential also trans-

forms as:

W (φ)→ exp[−κ2f(φ)]W (φ). (2.2.155)

The supersymmetry transformations of the fermion fields take the form [76]:

δP+ψ
i/21/2 = −Kij̄W ∗

,jP+ζ + ΓµP−ζDµφi (2.2.156)

δλa =
1

2
ΓµνζF a

µν + iΓζDa, (2.2.157)

δψµ = Dµζ +
1

2
Γµζ exp(κ

2K/2)W. (2.2.158)

Here ζ is the supersymmetry parameter, Γµ are the matrices forming the Dirac

representation, Dµ is the covariant derivative, ψ is the gravitino and P± are parity

operators. The variations (2.2.156) - (2.2.158) all vanish if the metric is flat, the

gauge field is zero, the scalars and ζ are constant, and ∂iW = Da = W = 0.

A simple calculation shows that this potential does not depend on the radial

modulus. Using the result for the Kähler potential for ρ derived in (2.1.50), we

obtain [29, 30]

Kρρ̄DρWDρ̄W̄ − 3κ2|W |2 = 0 (2.2.159)

According to this, the scalar potential is of the no-scale type [29, 30]

V = eK
∑
i,j 6=ρ

Kij̄DiWDj̄W̄ . (2.2.160)

At the minimum of the potential DiW = 0 which gives V = 0 although supersym-

metry is broken in general because DρW 6= 0.

An important nonrenormalization theorem states that the tree-level superpoten-

tial (2.1.51) contained in the F-term potential does not receive perturbative correc-

tions [76], but it can receive nonperturbative corrections [76] depending on ρ [30].

This will break the no-scale structure and stabilize all moduli of type IIB compact-

ification. Generally, nonperturbative corrections can include multiple exponentials,
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but for simplicity we assume that there is only one exponential correction to the

superpotential [30]:

Wnp = Aeiaρ, (2.2.161)

where ρ is the radial modulus, A is the one-loop determinant4 and the coefficient

a = 2π/n is a constant that depends on the specific source of the nonperturbative

effects; n = 1 corresponds to nonperturbative effects such as instantons arising from

Euclidean D3-branes wrapping four-cycles, and n > 1 corresponds to strong gauge

dynamics of D7-branes, which might be present and wrapped around internal four-

cycles. We may also assume that the volume of the internal manifold is large, so

that the relating Kähler potential receives no corrections and is therefore given by

its tree-level result. By the assumption that all other modes are stable, we are left

with an effective theory for the radial modulus. In what follows, we assume that

the Kähler modulus characterizes the size of the internal Calabi-Yau, and according

to the previous section, the dilaton and the complex structure moduli are stabilized

by ISD fluxes. The full superpotential is then [30]

W =W0 +Wnp. (2.2.162)

By letting ρ be the volume of a given four-cycle that admits a nonperturbative effect,

the nonperturbative effects depend then exponentially on the warped volume of the

associated four-cycle. This means that the warped volume governs the instanton

action in the case of Euclidean D3-branes, and the gauge coupling in the case of

strong gauge dynamics on D7-branes. To see this, consider a warped background

with the line element (2.1.25). The Yang-Mills coupling g7 of the 7+1 dimensional

theory living on a stack of D7-branes is given by [52]

g27 ≡ 2(2π)5gs(α
′)2. (2.2.163)

4As we shall discuss in Chapter 5, the presence of a mobile D3-brane in this supergravity

background makes A depend on radial as well as angular directions of the internal Calabi-Yau

space.
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The action for gauge fields on D7-branes that wrap a four-cycle is [52]

SD7 =

∫
Σ4

d4ζ
√
ginde4A(y).

∫
d4x
√
ggµαgνβTrFµνFαβ, (2.2.164)

where ζ are coordinates on the four-cycle and gind is the metric induced on the four-

cycle from gij. A key point in the appearance of a single power of e4A(y). Defining

the warped volume as

V ω
Σ4
≡
∫
Σ4

d4ζ
√
ginde4A(y), (2.2.165)

and the D3-brane tension (see chapter 3)

T3 = ((2π)3gs(α
′)2)−1, (2.2.166)

we can read off the gauge coupling of the four-dimensional theory from (2.2.164):

1

g2
=
V4
g27

=
T3V4
8π2

. (2.2.167)

The modulus of the gaugino condensate superpotential in SU(ND7) is [52]

|Wnp| = 16π2M3
UV exp

(
− 1

ND7

8π2

g2

)
∝ exp

(
−T3V4
ND7

)
, (2.2.168)

where MUV is the UV cutoff.

In the cases that the nonperturbative effect comes from a Euclidean D3-brane,

the instanton action is [52]

S = T3

∫
Σ4

d4ζ
√
Gind = T3

∫
Σ4

d4ζ
√
ginde4A(y) ≡ T3V4, (2.2.169)

so that, just as in (2.2.164), the action depends on a single power of e4A(y). The

modulus of the nonperturbative superpotential is then [52]

|Wnp| ∝ exp(−T3V4). (2.2.170)

The superpotentials (2.2.170) and (2.2.168) can be written in a unified way as [52]

|Wnp| ∝ exp(−T3V4/n), (2.2.171)
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where for D7-branes n = ND7, and for Euclidean D3-branes n = 1.

We now turn to the effective F-term potential containing such nonperturbative

effects in its superpotential (2.2.162). Consider the condition (2.1.53)

DρW = ∂ρW + ∂ρKW = 0 with K = −3 log[−i(ρ− ρ̄)]. (2.2.172)

This condition implies [30]

W0 = −A
(
2

3
aσ0 + 1

)
e−aσ0 , (2.2.173)

or

W0 = −
2

3
Aaσ0e

−aσ0 . (2.2.174)

Thus the minimum of the potential

V (φ, φ∗) = exp(κ2K)(Kρρ̄DρWDρ̄W − 3κ2|W |2), (2.2.175)

is given by [30]

V0 = −
a2A2

6σ0
e−2aσ0 , (2.2.176)

where σ0 is the value of σ in the radial modulus ρ = iσ at the minimum of the

potential. Clearly this potential is negative, and the only maximally symmetric

space-time solution allowed by such a supersymmetric compactification is AdS space-

time [30].

By adding anti-D3-branes it is possible to break supersymmetry, so that the

compactification becomes a dS space [30]. This gives an additional term in the

scalar potential of the form

δV =
D

σ2
(2.2.177)

with D being proportional to the number of anti-D3-branes, which can be chosen

so that the vacuum energy density becomes positive giving a dS space [30]. The

inclusion of anti-D3-brane gives the scalar potential [30]
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V (σ) =
aAe−aσ

2σ2

(
1

3
σaAe−aσ +W0 + Ae−aσ

)
+
D

σ2
. (2.2.178)

The vacua obtained in this way are only metastable as all of the sources of energy

vanish as σ →∞, but the lifetime could be extremely long.



Chapter 3

Review of D-brane inflation

We are now ready to study D-brane inflation. We first review some relevant aspects

of D-branes, following [76], and construct the full effective action for a mobile D3-

brane emdedded in the supergravity background discussed in the previous chapter,

following [85–88]. We then discuss an interesting example of a multifield D-brane

inflation scenario known as Spinflation [71] in which the inflationary D3-brane has

radial as well as angular motion in the warped deformed conifold1.

3.1 D-branes

The emergence of D-branes in string theory follows from toroidal compactification

[76]. In the simplest toroidal compactification one dimension is periodic at some

radius R while the rest of the dimensions are noncompact. Underlying toroidal

compactification is a symmetry knows as T-duality by which the physics taking the

R → 0 limit is isomorphic to the physics taking the opposite R → ∞ limit. When

an open string theory with Neumann boundary conditions is toroidally compactified

taking R → 0, the physics is described by compactification with R → ∞ but

with open string endpoints restricted to lie on hyperplanes with Dirichlet conditions

1In this chapter, we review spinflation in the warped deformed conifold as an exact ISD su-

pergravity solution discussed in section 2.1. In the next two chapters, we study spinflation in the

warped deformed conifold subject to perturbations around the ISD solution including the effects

of Kähler moduli stabilization discussed in section 2.2.

65
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called Dirichlet membranes or D-branes for short [76]. In particular, taking the

R→ 0 limit of the open and unoriented type I superstring theory leads to D-branes

and orientifold planes. The most remarkable property of D-branes is that they

spontaneously break 16 of the 32 spacetime supersymmetries [41, 76]. The fact that

D-branes leave half of the supersymmetries unbroken classifies them as BPS states

[41, 76]. It is well known that BPS states must carry conserved charges. The most

natural set of charges with correct Lorentz properties are the antisymmetric R–R

charges [41, 76]. The world-volume of a p-brane naturally couples to a p + 1-form

potential

∫
Cp+1. (3.1.1)

Here the integral runs over the D-brane world-volume. Considering type I super-

string theory and taking T-duality on any even number of dimensions we can reach

type IIB superstring theory with a Dp-brane of any odd p. Thus in type IIB theory

has D1-,D3-,D5-D7- and D9-branes one needs 2-, 4-, 6-, 8-, and 10-form potentials.

The last 10-form arises from the type I divergences whereas the first four arise in

either electric or magnetic descriptin of the propagating R–R states, the coupling of

which to D-branes is dicussed below.

3.1.1 D-brane action

The massless fields on the world-volume of a Dp-brane consist of a U(1) vector and

9 − p world-brane scalars describing fluctuations. The world-brane fields interact

with massless closed string fields, whose type IIB action has been discussed in the

previous chapter. We first consider the coupling of a D-brane to NS–NS closed string

fields. For this we may introduce coordinates ξa with a = 0, ..., p on the brane. The

fields on the brane consist of the embedding Xµ(ξ) and the gauge field Aa(ξ). The

D-brane action takes the form [76]:

SDBI = −Tp
∫
dp+1ξ e−Φ

√
− det

(
Gab +Bab + 2πα′Fab

)
. (3.1.2)
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Here Tp is the D-brane tension discussed in the next subsection, Fab is the gauge

field living on the brane, Gab and Bab are the components of the spacetime NS–NS

fields parallel to the brane being the induced metric and antisymmetric tensor on

the brane. These are given by:

Gab(ξ) =
∂Xµ

∂ξa
∂Xν

∂ξb
Gµν(X(ξ)), Bab(ξ) =

∂Xµ

∂ξa
∂Xν

∂ξb
Bµν(X(ξ)). (3.1.3)

The above action is called the Dirac–Born–Infeld (DBI) action. The argument

leading to this form of action is as follows. Taking only into account the spacetime

metric and the embedding, the simplest and lowest-derivative coordinate-invariant

action in the world-volume given by the integral of (− detGab)
1/2. According to

(3.1.3), this term depends on the embedding Xµ(ξ) and expanded about a flat D-

brane implies the action for the fluctuations.

The dilaton dependence from e−Φ ∝ g−1
c is due to the fact that (3.1.2) is an open

string tree-level action.

The Fab dependence follows from T-duality. Take a D-brane spanned by the X1-

and X2-directions with no other dimensions spacified, and let F12 be a constant

gauge field on this brane. T-duality operation on the 2-direction replaces Neumann

boundary condition with Dirichlet boundary condition, therefore reducing a dimen-

sion of the D-brane. But under T-duality along the 2-direction X2 is replaced by

X ′2 of the from

X ′2 = −2πα′A2 = −2πα′X1F12. (3.1.4)

This produces a geometric factor

∫
dX1

[
1 + (∂1X

′2)2
]1/2

=

∫
dX1

[
1 + (2πα′F12)

2
]1/2

. (3.1.5)

Now consider a combination of boost and rotation for any D-brane. Boosting alignes

the brane with the coordinate axes and rotation takes Fab into block-diagonal form.

This reduces the action to a product of factors (3.1.5) and produces an equivalent

form of the term Fab term in the determinant (3.1.2).
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The Bab dependence follows from the string world-sheet action which is given by

the sum of the bulk action and a boundary term as:

i

4πα′

∫
M

d2σ g1/2 ∂aX
µ∂bX

νBµν + i

∫
∂M

dXµAµ, (3.1.6)

where Bµν is the closed string field and Aµ is the open string field. This action is

invariant under gauge transformations of these fields given by:

δAµ = ∂µλ, δBµν = ∂µξν − ∂νξµ. (3.1.7)

The first of these changes the boundary term in (3.1.6) by an integral of a total

derivative, and the second one changes the bulk action in (3.1.6) by a total derivative.

On a noncompact world-sheet though the latter transformation produces a surface

term which can only be canceled out if the open string field too transforms under

the tensor gauge symmetry. This means that:

δAµ = −ξµ/2πα′. (3.1.8)

But invariance under both symmetries requires the following combination to appear

in the action:

Bµν + 2πα′Fµν ≡ 2πα′Fµν with Fµν = ∂µAµ − ∂νAµ. (3.1.9)

Finally, consider the coupling of the D-brane to the R–R fields. The action takes

the form [76]:

SWZ = iT3

∫
p+1

Tr

[
exp[2πα′F2 +B2]

]
∧
∑
q

Cq. (3.1.10)

This action is called the Wess–Zumino action. To see how this comes about, take a

1-brane in the (1, 2) plane, and again use T-duality. The action for this is:

∫
C2 =

∫
dx0(dx1C01 + dx2C02) =

∫
dx0dx1(C01 + ∂1X

2C02). (3.1.11)

T-duality along the 2-direction gives:
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∫
dx0dx1(C012 + 2πα′F12C0). (3.1.12)

Generalizing this to an arbitrary configuration produces the action (3.1.10).

Thus the total D-brane action is [76]:

SDp-brane = SDBI + SWZ

= −Tp
∫
dp+1ξ e−Φ

√
− det

(
Gab +Bab + 2πα′Fab

)
iTp

∫
p+1

Tr

[
exp[2πα′F2 +B2]

]
∧
∑
q

Cq. (3.1.13)

3.1.2 D-brane tension

In our discussions above, we argued that D-branes are extended BPS objects car-

rying R–R charges. We now use this property to briefly discuss the tension of the

D-brane that was left undetermined in the action (3.1.13). We note that there is no

force between static BPS objects. The vanishing of the force is due to a cancella-

tion between attraction from the graviton and dilaton and repulsion from the R–R

tensor. These forces can be computed as follows. Take two parallel D-branes fixed

at different positions in the background. The branes interact with each other by

exchanging closed strings. The string amplitude is the cylinder vacuum amplitude

with one end on each D-brane. For the exchange of light NS–NS closed strings, the

cylinder vacuum amplitude is [76]:

ANS–NS ≈
iVp+14× 16

8π(8π2α′)5

∫ ∞

0

πdt

t2
(8π2α′t)(9−p)/2 exp

(
ty2

2πα′

)
= iVp+12π(4π

2α′)3−pG9−y(y). (3.1.14)

Here G(y) is the scalar Green’s function with y specifying the separation of the

stretched string, and Vp+1 is the volume. By supersymmetric cancellation in the

trace, the R–R exchange amplitude is:

AR–R = −ANS–NS. (3.1.15)
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This means that the total force is vanishing, as expected from BPS states.

The field theory amplitude for the dilaton-graviton potential is [76]:

2iVp+1κ
2τ 2pG9−p(y) (3.1.16)

Comparing this with ANS–NS gives:

τ 2p =
π

κ2
(4π2α′)3−p. (3.1.17)

For the R–R exchange, the low-energy action is

− 1

4κ210

∫
d10x(−G)1/2|Fp+1|2 + µp

∫
Cp+1. (3.1.18)

For the canonically normalized kinetic term the propagator is 2κ210i/k
2 and the field

theory amplitude is:

−2κ210iµ2
pG9−p(y). (3.1.19)

Thus we obtain [76]:

µ2
p =

π

κ210
(4π2α′)3−p = e2Φ0τ 2p = T 2

p . (3.1.20)

For future reference, we note that relation (3.1.20) for p = 3 and κ210 given by (2.1.14)

gives the tension of a D3-brane as:

T3 = ((2π)3α′2)−1. (3.1.21)

3.2 The effective multifield D3-brane action

To derive the effective action of a probe D3-brane in type IIB supergravity, we

denote the coordinates of the compact space by ym (m = 1, · · · , 6) whereas for

coordinates of the noncompact spacetime we consider xµ (µ = 0, 1, 2, 3). In terms

of these coordinates, the ten-dimensional metric (2.1.25) reads as [88]
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ds2 = h−1/2(yk)gµν(x
λ)dxµdxν − h1/2(yk)g(0)mn(y

k)dymdyn

≡ γABdY
AdY B, (3.2.22)

where Y A = {xµ, ym}. In order to restore four-dimensional local Lorentz invari-

ance, the three-fluxes F3 and H3 have only compact components and the axion C0

and dilaton Φ can only vary along the compact manifold. Consequently, we fix the

gauge so that C2 and B2 have nontrivial components only along the compact direc-

tions, whereas C4 has components only along the noncompact spacetime dimensions.

Hence we have [88]

Bml 6= 0 Bµl = Bµν = 0, (3.2.23)

Cµm 6= 0 Cml = Cµν = 0

Cµνρσ 6= 0, with all other components vanishing. (3.2.24)

The action of the D3-brane in this supergravity background takes the form:

SD3 = SDBI + SWZ, (3.2.25)

SDBI = −T3
∫
d4xe−Φ

√
− det

(
γ̂µν + B̂µν + 2πα′Fµν

)
(3.2.26)

SWZ = −T3
∫
brane

∑
n=0,2,4

Ĉn ∧ e(B̂2+2πα′F2)

∣∣∣∣
4-form

. (3.2.27)

In these actions and in what follows, a hat denotes a pull-back onto the brane so

that γ̂µν , for instance, is the induced metric on the brane. In the Wess-Zumino

term, we keep only the 4-forms resulting from the wedge product, and F2 is the field

strength of the U(1) worldvolume gauge field, i.e., Fµν = ∂µAν − ∂νAµ. This enters

the brane’s action only through the combination Fµν = B̂µν + 2πα′Fµν , as before.

Finally, for the brane embedding we define functions

Y A
b (xµ) = (xµ, ϕm(xµ)), (3.2.28)

where the brane spacetime coordinates xµ are taken to to coincide with the first four

bulk coordinates.
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3.2.1 DBI action

According to (3.2.22) - (3.2.23), the metric and two-form induced on the brane take

the following forms [88]

γ̂µν = γAB∂µY
A
b ∂νY

B
b = h−1/2(gµν − hg(0)mn∂µϕ

m∂νϕ
n), (3.2.29)

B̂µν = BAB∂µY
A
b ∂νY

B
b = Bmn∂µϕ

m∂νϕ
n. (3.2.30)

We consider the following rescalings:

φm =
√
T3ϕ

m, Gmn = e−Φg(0)mn, bmn =
h1/2

T3
Bmn. (3.2.31)

We may also define the functions:

f(φk) ≡ eΦ
h

T3
, λ(φk) = 2πα′h1/2. (3.2.32)

Hence we can write the DBI action in the form [88]:

SDBI =

∫
d 4x
√
−g
(
− 1

f

√
Det

)
(3.2.33)

with the determinant is given by

Det ≡ det(δµν + fGmn∂µφ
m∂νφ

n + bmn∂
µφm∂νφ

n + λF µ
ν ). (3.2.34)

Here the Greek indices are raised and lowered with the ‘spacetime’ metric gµν . We

may rewrite the determinant in the form

Det = det(I+ S+B), (3.2.35)

where I denotes the four-dimensional identity matrix, and from Eq. (3.2.34) the

matrices S and B can be defined in terms of their components as

Sµν = fGmn∂
µφm∂νφ

n (Sµν = Sνµ), (3.2.36)

Bµ
ν = fGmn∂

µφm∂νφ
n + λF µ

ν =
λ

2πα′ g
µλFλν (Bµν = −Bνµ). (3.2.37)
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We can compute the determinant in Eq. (3.2.35) and obtain [88]

Det = DetS −
1

2
Tr(B2)(1 + TrS) + Tr(SB2)(1 + TrS)− Tr(S2B2)

−1

4
Tr(B2)[(Tr(S)2 − Tr(S2)]− 1

2
Tr(SBSB)

+
1

8

[
(Tr(B2))2 − 2Tr(B4)

]
, (3.2.38)

DetS ≡ 1 + TrS+
1

2
[(TrS)− Tr(S2)] + S[α

α S
β
βS

γ]
γ + S[α

α S
β
βS

γ
γS

δ]
δ . (3.2.39)

For vanishing S, Det reduces to the determinant of standard Born-Infeld theory [87].

On the other hand, when the brane and bulk fields are ignored Det reduces DetS,

which depends only on the scalar fields. It can be written in the form [88]

DetS = 1−2fGmnX
mn+4f 2X [m

m Xn]
n −8f3X [m

m Xn
nX

l]
l +16f4X [m

m Xn
nX

l
lX

k]
k , (3.2.40)

where we have defined

Xmn ≡ −1

2
∂µφm∂νφn Xn

m = GmlX
ln. (3.2.41)

Here the brackets denote antisymmetrisation of the field indices and the field indices

are raised and lowered with the field space metric Gmn defined in (3.2.32).

3.2.2 WZ action

We now come to the Wess-Zumino part. According to Eq. (??), the explicit expres-

sion is by [88]

SWS = −T3
[ ∫

brane

Ĉ4 +

∫
brane

Ĉ2 ∧
(
B̂2 + 2πα′F2

)
+
1

2

∫
brane

B2 ∧B2 + 4πα′B̂2 ∧ F2 + (2πα′)2F2 ∧ F2

]
≡ S

[4]
WS + S

[2]
WS, (3.2.42)
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where S
[4]
WS comes from the 4-form Ĉ4 and S

[2]
WS contains two-forms Ĉ2, B̂2 and F2.

The four-form Ĉ4 is given by

Ĉ4 = Vε4 (3.2.43)

where ε4 is the fully antisymmetric tensor associated with the four-dimensional met-

ric gµν (so that
√
−g) and the coefficient V depends only on the compact coordinates.

Thus the first term on the RHS of Eq. (3.2.42) gives a potential term depending on

the scalar fields φm parameterizing the brane position in the compact space [88]:

S
[4]
WZ = −T3

∫
brane

Ĉ4 = −
∫
d 4x
√
−gT3V(φm). (3.2.44)

We now consider the different terms in S
[2]
WS. The first term includes Ĉ2 and is

proportional to [88]

∫
brane

Ĉ2 ∧ B̂2 = −1

4

∫
d 4x
√
−gεµνρσCAB

∂Y A
b

∂xµ
∂Y B

b

∂xν
BCD

∂Y C
b

∂xρ
∂Y D

b

∂xσ

= − 1

4T 2
3

∫
d 4x
√
−gεµνρσCmnBkl∂µφ

m∂νφ
n∂ρφ

l∂σφ
k.

(3.2.45)

In writing this expression we noted that the brane embedding function is given by

Eq. (3.2.28) and that Ĉ2 has only compact indices. The next term is proportional

to [88]

∫
brane

Ĉ2 ∧ F2 = −
1

4T3

∫
d 4x
√
−gCmnεµνρσ∂µφm∂νφnFρσ. (3.2.46)

The two terms involving B̂2 ∧ B̂2 and B̂2 ∧ F2 are similar to (3.2.45) and (3.2.46),

respectively, and therefore are not written down here. The last term contains C0

and takes the form [88]

∫
brane

C0F2 ∧ F2 = −
1

4

∫
d 4x
√
−gC0ε

µνρσFµνFρσ = −1

2

∫
d 4x
√
−gC0FµνF̃

µν .

(3.2.47)

Here we have considered the dual of the field strength F̃ µν = 1
2
εµνρσFρσ.
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3.2.3 The full action and equations of motion

The full four-dimensional effective action takes the form [88]

S =
MPl

2

∫
d 4x
√
−gR(4) + Sbrane

Sbrane =

∫
d 4x
√
−g
[
− 1

f(φm)
(
√
Det− 1)− V

]
+ S

[2]
WZ. (3.2.48)

Recall from Chapter 1 that we consider the four-dimensional (flat) metric to be the

FWR metric, i.e., diag(1,−a(t)2,−a(t)2,−a(t)2), so that the fields can be taken to

be homogeneous φm = φm(t). In this way the field strength on the brane must

vanish, Fµν = 0. By virtue of this the tensor Bµ
ν defined by Eq. (3.2.37) vanishes

(since bmnφ̇
mφ̇n = 0 by antisymmetry of bmn) and that the only nonzero component

of the matrix S is S0
0 . Hence there are only two nonzero terms in the determinant

Det of Eq. (3.2.34) and they are the first two terms of DetS. Since all terms involving

Fµν , Ĉ2 ∧ B̂2 and B̂2 ∧ B̂2 vanish S
[2]
WZ vanishes on the background. Also, note from

Chapter 2 that in our supergravity set up, the dilaton (together with the axion and

the complex structure moduli) is stabilized by the fluxes and therefore we identify

Gmn with g
(0)
mn since the argument in the exponential appearing in the middle term

of (3.2.31) is fixed. In summary, the four-dimensional effective action for the brane

takes the explicit form

Sbrane = −
∫
d4x
√
−g
[
f(φ)−1

(
γ−1
DBI − 1

)
+ V (φm)

]
, (3.2.49)

γ−1
DBI =

√
1 + f(φ)g

(0)
mngµν∂µφm∂νφn. (3.2.50)

Here γDBI is a generalization of the usual relativistic Lorentz factor to the warped

background. The variation of this action with respect to the metric gives the energy-

momentum tensor. This has the form of a perfect fluid, with energy density and

pressure:

E =
1

f
[γDBI − q] + V, P =

1

f
[q − γ−1

DBI]− V (3.2.51)

By varying the action we obtain the (n+1)-equations of motion for the scale factor

a(t), and the scalar fields φn, in the form [71] (see Appendix C)
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ä

a
= − 1

6M2
plgs

(E + 3P ), (3.2.52)

1

a3
d

dt
[a3g̃mnγφ̇

n] =

[
γ∂mf

2f 2
(γ−1 − q)2 + γ

2

∂g̃mn
∂φm

φ̇mφ̇n − ∂mV
]
. (3.2.53)

These equations come with the Friedmann constraint

H2 =
1

3gsM2
Pl

E, (3.2.54)

and the equation of conservation of energy

Ė + 3H(E + P ) = 0. (3.2.55)

3.3 The field range bound

Before analysing the D3-brane equations of motion, we discuss an important micro-

scopic bound on the field range of the inflationary D3-brane inside the throat2.

A crucial consistency requirement is that the inflationary region should fit well

inside the throat, where the metric is known. The length of the throat is measured

by ∆r = rIR − rUV, and the location of the inflationary D3-brane inside the throat

is given by the canonical inflaton field, φ =
√
T3r. Accordingly, there is an upper

limit on the inflaton variation [89]

∆φ2 < T3r
2
UV. (3.3.56)

This may give the indication that the inflaton variation can be made arbitrary

large by just increasing the length of the throat. But this changes the volume

of the compact space, which affects the four-dimensional Planck-mass, the unit in

which the inflaton variation should be measured. In order to take this effect into

account, one notes that the effective four-dimensional Planck mass is obtained from

a reduction of the ten-dimensional supergravity action

2The bound also applies to the field range of wrapped D7-branes involved moduli stabilization,

which we will consider in our inflationary analysis in Chapter 5.
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1

κ210

∫
d10XR10 =

1

κ210

∫
d4xd6y

√
det gµνy

√
det gmne

2A{e2AR(gµν) + · · · }.

(3.3.57)

Thus the Planck scale is given by

M2
Pl =

V6
κ210

. (3.3.58)

Here the (warped) volume of the internal space is given by:

V6 ≡
∫
d6y
√
ge2A(y) (3.3.59)

Because one is interested in the upper limit on ∆φ/MPl one bounds V6 from below

by the volume of the throat region (including an estimate of the bulk volume would

only strengthen the conclusions) [89]

V6 > (V6)throat = Vol(X5)

∫ rUV

0

dr r5e2A(y) = 2π4gsN(α′)2r2UV, (3.3.60)

where N ≡ MK denotes the flux. For the supergravity approximation to be valid,

one requires N � 1. The combination of the above results yields [89]

∆φ

MPl

<
2√
N
. (3.3.61)

The requirement N � 1 implies the inflaton variation to be sub-Planckian, ∆φ� 1,

and this puts a strong constraint on inflation.

3.4 Spinflation

We now consider the D3-brane equations of motion (3.2.52) - (3.2.53) for the case

in which the brane is allowed to have radial as well as spiral motion in the throat

[71]. The conserved angular momentum in brane motion turns out to slow down the

radial speed and to increase the amount of acceleration. In order to demonstrate

this, we derive the relating brane equations of motion and discuss their numerical

solutions.
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3.4.1 Equations of motion

To derive the explicit form of the brane equations of motion in an ISD compactifi-

cation recall from the previous chapter that for an ISD compactification we have:

∆(0)Φ− = 0 with Φ− = 0. (3.4.62)

Thus for the potential of a mobile D3-brane moving on this unperturbed ISD back-

ground the only possible correction comes from a mass term generated for the canon-

ical inflaton

φ =
√
T3r. (3.4.63)

The simplest and most generic inflaton potential associated with a mass term gen-

erated for the canonical inflation (3.4.63) takes the form [71]:

V (φ) = m2φ2 = m2T3r
2. (3.4.64)

Hence the equations of motion following form Eq. (3.2.53) read as [71]:

1

a3
d

dt

[
a3φ̇γDBI

]
= γDBI(γ

−1
DBI − 1)

∂φf

2f 2
+
γDBI

2
∂φgαβ θ̇

αθ̇β − ∂φV, (3.4.65)

1

a3
d

dt

[
a3gαβ θ̇

βγDBI

]
= 0. (3.4.66)

Here we note that γDBI is given by

γDBI =
1√

1− f(φ̇2 + gαβ θ̇αθ̇β)
. (3.4.67)

By inserting this into Eq. (3.4.65) and Eq. (3.4.66) we can disentangle φ̈ and θ̈ upon

cross elimination and obtain the second order brane equations of motion. However,

instead of doing this we note that Eq. (3.4.65) and Eq. (3.4.66) describe brane motion

with conserved angular momentum and therefore we may define the quantity in

the square brackets in Eq. (3.4.66) as the conserved angular momentum, i.e., lα ≡

a3gαβ θ̇
βγDBI. It is straightforward to show that [71]
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γ =

√
1 + f l2(φ)/a6

1− f φ̇2
with l2(φ) = T3g

αβlαlβ. (3.4.68)

First, note that the DBI action puts a bound on radial velocity, forcing 1−f v2 > 0.

This translates into the requirement f φ̇2 < 1, independent of the value of the angular

momentum l [71]. Second, by using Eq. (3.4.68) and Eq. (3.2.51) we can write down

the alternative first order form of the Eq. (3.2.52) - (3.2.53) in the warped deformed

conifold. To do this, first note that for an S3 round on the deformed conifold we

have:

ds2 = A(η)dη2 + B(η)dθ2, (3.4.69)

A(η) =
ε4/3

6K(η)2
, (3.4.70)

B(η) =
ε4/3K(η)

4

(
cosh2 η + sinh2 η

)
. (3.4.71)

We also note that for the canonical inflaton we have:

φ = ε2/3
√
T3
6

∫ η

0

dx

K(x)
, φ̇ =

√
T3A(η)η̇. (3.4.72)

According to this, the alternative first order form of the Eqs. (3.2.52) - (3.2.53) in

the warped deformed conifold read as [71]:

ȧ = Ha, (3.4.73)

η̇ =

√[
1−

(
1 +

(2π)3h(η)l(φ)2

a6

)]
· (A(η)h(η))−1 (3.4.74)

×
(
1 + h(η)

(
H2

β
− V (η)

))−1

, (3.4.75)

Ḣ = −3β

2

[
2

(
H2

β
− V (η)

)
+ h(η)

(
H2

β
− V (η)

)2
]

×
(
1 + h(η)

(
H2

β
− V (η)

))−1

. (3.4.76)

From equation (3.4.74) we can immediately see that angular momentum decreases

the speed and this increases the degree of exponential expansion. To see this, we

may rewrite Eq. (3.4.76) as [71]:
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|Ḣ| =
3β

2

[
1 + h(η)

(
3H2

β
− V

)]
×

{
η̇2 +

(2π)3l(φ)2

a6

[
1 + h(η)

(
3H2

β
− V

)]−2
}
. (3.4.77)

It is clear that the decrease in speed due to angular momentum decreases the value

of the first term inside {...} [71]. We can also see this from Eq. (1.2.32), according

to which the exponential expansion increases as the speed decreases (by angular

momentum). Equivalently, we can see from (1.2.33) that when the speed decreases

the number of e-foldings increases. In the limit of vanishing speed the amount of

inflation is effectively reduced by the angular momentum. This is called spinflation

[71].

So far we analysed brane motion with conserved angular momentum qualita-

tively. In order to have a quantitative analysis, we need to look at numerical solu-

tions of the brane equations of motion, which we turn to discuss now.

3.4.2 Numerical analysis

In order to integrate the D3-brane equations of motion, one needs to consider a

consistent choice of parameters. In the previous section we saw that the Planck-

mass (3.3.58) depends of the warped volume of the throat given by (3.3.59). For the

warp deformed conifold with ηUV ∼ O(1− 10), we have [71]:

V6 '
ε4π3

3
(gsMα′)2η3UV. (3.4.78)

For the supergravity approximation to be valid, gsM has to be large, i.e., gsM � 1.

Thus the Planck-mass attains a large value. However, the Planck-mass cannot be

too large because otherwise it reduces the gravitational coupling, β, which strongly

decreases the inflationary effect. Thus in order to have control over the volume of

the throat, on which the Planck-mass and hence the gravitational coupling depends,

ε has to be small. One reasonable choice of parameters considered in [71] is:
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ε = 0.05, gs = 0.1, gSM = 300, Mpl = 100, ηUV = 15, lθ = 5.8× 106.

(3.4.79)

The brane equations are integrated for the choice of parameters in (3.4.79), and the

numerical solutions are displayed in Fig. 3.1 - 3.2 [71]. The solution describes brane

motion from the UV end (where the throat is attached to the compact Calabi-Yau

space) to the IR region (where the throat smoothly closes off), where the brane

probes the supergravity background. As the brane falls down the the throat from

the UV it accelerates, and reaches the bottom of the throat in the IR location

with nonzero velocity and continues its motion smoothly back up the throat until it

reaches a turning point, where it is pulled down again due to the attractive potential.

The scale factor stops accelerating before the brane reaches the tip of the throat and

inflation ends naturally as a result of a geometric constraint – the (KS) warp factor

approaches a constant value at the IR location. The bouncing motion of the brane

continues, with the brane oscillating for a few more cycles, causing the universe to

expand and accelerate briefly near the turning points. The inflationary solution has

two main features, which are summarised as follows.

• When the angular momentum is switched on, it provides the brane with an extra

kick of acceleration (spinflation). This increases the number of e-foldings compared

to the case with no angular dependence, though the dominant number of e-foldings

is due to radial motion (see Fig. 3.1).

• In order to have enough inflation, gsM has to be large, in agreement with the

supergravity approximation. This causes a problem. In such strongly warped throats

the relativistic γDBI-factor is unacceptably huge (see Fig. 3.2) and this amounts a

very large nongaussianity. It could be the case that certain corrections to the inflaton

action may evade this problem, but we defer the further analysis of this to the

following up chapters.
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Figure 3.1: The behavior of the scale factor with (light purple) and without (blue)

angular momentum lθ. This figure is from [71].
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Figure 3.2: The behaviour of the gamma-factor. This figure is from [71].



Chapter 4

Spinflation with angular potentials

In this chapter based on [1] we extend the brane inflation scenario reviewed in the

previous chapter. At the end of the previous chapter we reviewed an interesting

example of a multifield DBI brane inflationary scenario in the KS background and

saw that a handful of extra e-foldings can be produced provided that the D3-brane

is allowed to move along the radial as well as angular directions. Although the

dominant number of e-folding were produced by the radial motion of the brane, we

saw that the effect of angular motion could increase the total number of e-foldings.

However, the example that we considered (Spinflation) did not include the effects

of moduli stabilization corresponding to perturbations around the ISD supergravity

solution. In this chapter we study Spinflation including linearized preturbations

around the ISD solution, which induce angular dependence in brane motion. As we

shall see, as angular motion typically increases the number of e-foldings (Spinflation),

having additional angular dependence also increases the number of e-foldings.

4.1 Brane inflation with an angular potential

The premise of brane inflation is that a D3-brane, extended in the non-compact di-

mensions, can move around on the internal manifold in such a way that the ‘scalar’

field ym, representing the location of the brane on the internal manifold, plays the

role of the inflaton. For a mobile D3-brane moving on a supergravity background,

the effective action is given by combining the DBI effective action for the world-

83
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brane coordinates, and the Wess-Zumino coupling to the RR-background. Choosing

a gauge which aligns with the coordinate system (Xa
D3 = (xµ, ym(xµ)), gives the

explicit form (See Chapter 3):

SDBI + SWZ = −T3
∫
d4ξ
√
−det(γab + Fab) + T3

∫
W
C4 ,

= −T3
∫
d4x
√
−g
[
e4A
√
det(δµν − e−4Aym,µyn,ν g̃mn)− α

]
,

(4.1.1)

where T3 = 1/(2π)3gsα
′2 is the D3-brane tension. The energy momentum from this

action,

Tµν = T3

{
e4A
√
det(δµν − e−4Aym,µyn,ν g̃mn)

(
gµν − e−4Aym,µy

n
,ν g̃mn

)
− αgµν

}
(4.1.2)

can then drive gravitational physics in the noncompact dimensions. In general, there

will also be additional terms coming from corrections to the supergravity background

which will appear as effective potential terms for the internal coordinates.

The four-dimensional effective gravitational action can be obtained by integrat-

ing out (2.1.23) for the background (2.1.25):

S = − 1

2κ210

∫
d10x
√
g10 R → −

1

2κ210

(∫
d 6y e−4A

√
g̃

)∫
d4x
√
gR(g) , (4.1.3)

which gives the 4D Planck mass as

M2
p =

1

κ210

∫
e−4A

√
g̃ d 6y ≥ 1

6g2sα
′4

( ε

2π

)4 ∫ ηUV

0

e−4A sinh2 η dη , (4.1.4)

and provides a constraint on the parameters of the solution, [89].

For an inflationary solution, we will take the position of the D3 brane to be

homogeneous, i.e. ym = ym(t), and we will assume a four-dimensional FRW metric:

gµνdx
µdxν = dt2 − a2(t)dx2 . (4.1.5)

Defining the relativistic γ−factor as

γ = 1/
√
1− e−4Aẏmẏng̃mn , (4.1.6)

the energy-momentum tensor of the brane is:

T µν = T3 diag
(
e4Aγ − α, e4Aγ−1 − α, e4Aγ−1 − α, e4Aγ−1 − α

)
. (4.1.7)
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To leading order, e4A−α = Φ− = 0, but we will allow for leading order corrections of

the form (4.1.10) coming from the perturbation of Φ−. Recall from Chapter 2 that

in an ISD compactification such as the warped deformed conifold, only the complex-

structure moduli are stabilized but not the Kähler moduli (that characterize the size

of the internal Calabi-Yau). When the no-scale structure is broken to stabilize the

Kähler moduli, a perturbations around the ISD solution are expected. In supergrav-

ity, these perturbations are sourced by attaching the UV end of the throat to a fully

stabilised Calabi-Yau sector. Recall that in an ISD solution, we have G− = 0 and

α = e4A, so that Φ− = 0. In a perturbed solution, Φ− is nonvanishing and its value

is determined by the solution of the supergravity equation of motion (2.2.125). The

dominant source for Φ− is the IASD flux, G−, however this flux sources only second

order perturbations, and the perturbations of Φ− around ISD conditions satisfy, at

linear level, the six-dimensional Laplace equation with respect to the unperturbed

metric (see Section 2.2)

∆(0)Φ− = 0. (4.1.8)

The Laplacian on a general warped deformed conifold was computed in [83, 84],

although the radial eigenfunctions were not computed explicitly. Fortunately, since

we are only interested in the low lying states dependent on only one angle, θi , the

Laplacian reduces to

1

sinh2 η

[
6
∂

∂η
K(η)2 sinh2 η

∂

∂η
+

2

K(η)

cosh η

sin θi

∂

∂θi
sin θi

∂

∂θi

]
Φ− = 0, (4.1.9)

which for l = 1 can be solved analytically to obtain the eigenfunction:

Φ−(η, θ) ∝ (cosh η sinh η − η)1/3 cos θ, (4.1.10)

where θ stands for either θ1 or θ2 . Since r ∝ eη/3 for large η, it is easy to see that

this corresponds to the second eigenfunction, (2.2.131), of the mid-throat region.

Note however that there is no clean expression of this eigenfunction in terms of the

radial coordinate.
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We will thus use this leading order correction to the background near the tip

of the throat to investigate the effect of angular perturbations on the brane motion

in inflation. In addition, we expect other corrections to the D3 brane potential, in

particular, a mass term for the canonically normalised radial scalar inflaton, given

to leading order by

φ =
√
T3 r(η) . (4.1.11)

Note that the normalisation is strictly dependent on the position of the brane, which

affects the volume modulus (see e.g. [52–57], and also on the trajectory of the brane,

even in the slow roll approximation, due to the inflaton, φ ↔ ym, being a sigma

model field, [90–92]. Putting these together, we can write the overall potential for

the D3 brane as:

T3V = T3Φ− +
1

2
m2

0φ
2 = T3

(
1

2
m2

0 [r(η)
2 + c2K(η) sinh η cosϑ] + V0

)
, (4.1.12)

where the constant V0 is chosen so that the global minimum of V is V = 0, and c2 is

an arbitrary constant. Because c2 multiplies a solution to a free Laplace equation, it

is not fixed per se, but to keep within a self-consistent expansion, one would expect

c2 to be smaller, or of a similar magnitude to other terms in the potential. Indeed,

it is natural for the profile of the throat to set the scale for any corrections to the

potential, which would mean that c2 would be set by the deformation parameter:

c2 ∼ ε4/3. Thus the energy and pressure of the brane are

E = T3
(
e4A [γ − 1] + V

)
, (4.1.13)

P = T3
(
e4A
[
1− γ−1

]
− V

)
. (4.1.14)

The full equations of motion (in terms of the coordinates) are:

H2 =
E

3M2
p

, (4.1.15)

Ḣ = −(E + P )

2M2
p

, (4.1.16)

1

a3
d

dt

[
a3γ g̃mn ẏ

n
]

= −2γ
(
γ−1 − 1

)2
e4A ∂mA+

γ

2

∂g̃ln
∂ym

ẏlẏn − ∂mV.

(4.1.17)
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The first step is to disentangle the radial and angular equations from (4.1.17), by

a process of cross elimination. For simplicity, we will consider motion in a single

angular direction only, writing the relevant part of the internal metric in the general

form

ds2 = ε4/3
[

dη2

6K(η)2
,+B(η)dϑ2

]
. (4.1.18)

This gives the η and ϑ equations as (see Appendix C):

η̈ = −3H

γ2
η̇ − 4A′(γ−1 − 1)η̇2 − 12ε−4/3K2A′e4A(γ−1 − 1)2

+
K ′

K
η̇2 + 3K2B′ϑ̇2 + e−4Aϑ̇η̇

Vϑ
γ
− (6K2ε−4/3 − e−4Aη̇2)

Vη
γ
, (4.1.19)

ϑ̈ = −3H

γ2
ϑ̇− 4A′(γ−1 − 1)η̇ϑ̇− B′

B
η̇ϑ̇+ e−4Aη̇ϑ̇

Vη
γ
−
(
ε−4/3

B
− e−4Aϑ̇2

)
Vϑ
γ
.

(4.1.20)

These can then be solved numerically, along with the cosmological evolution, for

the relevant potential. Generally, potentials can have complicated angular depen-

dence, but we confine ourselves here to the most simple case including only the

lowest nontrivial eigenmode with one angular direction. This should be sufficient

for estimating the inflationary implications of brane angular dependence.

4.2 Inflationary analysis

In order to explore the effect of angular terms in the potential, we use the leading

order potential (4.1.12). Because we are neither slow-rolling, nor restricting ourselves

to a specific conical region, we have to keep the full richness of the structure of the

internal space and the nonlinear kinetic terms of the brane motion. Although the

canonical inflaton field, φ, is conventionally used in expositions of slow roll inflation,

it proves more useful here to remain with the coordinate label, η, as many of the

metric functions have analytic forms in terms of η. We focus on motion which takes

place in the angular direction, ϑ, appearing in this potential, thus from (2.1.66),

(2.1.67) and (2.1.68) we can read off the function B = 1
2
K cosh η, that appears in

the ϑ equation of motion, (4.1.20).

Before presenting the results of the numerical analysis, a few remarks about

the various parameters are in order. First of all, the supergravity approximation
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is only valid if the curvature radius remains large compared to the string scale,

which clearly requires the flux gsM � 1. Secondly, as noted by Baumann and

McAllister (see Section 3.2), [89], the Planck mass is constrained by the volume of

the compactification, which in turn is bounded from the UV cut-off of the throat.

Rewriting (4.1.4) shows that

M2
p >

ε4/3gsM
2T3

6π
J(ηUV ) (4.2.21)

where J(η) =
∫
I(η) sinh2 η is the integral in (4.1.4), which is exponentially growing

in η - see Fig. 4.1.
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Figure 4.1: Planck mass constraint: The numerical integral of I(η) sinh2 η with the

large η behaviour factored out.

Apart from JUV = J(ηUV ), the other parameters in this relation are set by the

compactification data: gsM
2 is large, ε is generally ‘small’, and T3 is determined by

the string coupling. The hierarchy between the string scale and the Planck scale

is therefore strongly dependent on the UV cutoff as JUV grows very quickly with

ηUV . Generally, as the Planck mass rises, the effective scale of inflation is lowered,

and thus the amount of inflation will drop unless the parameter choices allow it to

persist for a correspondingly increased time (see the discussion after (4.2.27)). In

these models, as in slow-roll inflation, [89], this bound on the Planck mass proves

to be a strong constraint.
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Figure 4.2: Some sample inflationary trajectories with a flux parameter of gsM =

100, inflaton mass m0 = 20, and a saturated Planck mass from ηUV = 10. The

values of ε and C = c2ε
−4/3, are indicated.
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To solve the full cosmological and brane equations, a numerical analysis is re-

quired. In order to deal with the dependence of the system on large (or small)

parameters, we can rescale the equations of motion by setting τ = ε2/3t/(gsMα′),

and rewriting the metric functions as:

ĥ =
ε8/3

(gsMα′)2
e−4A , V̂ = ε−4/3V, (4.2.22)

so that ĥ and V̂ now have no explicit ε or M dependence. Note also that

γ−2 = 1− ĥ
[
η̇2

6K2
+Bϑ̇2

]
, (4.2.23)

where a dot now denotes d/dτ , also has no ε or M dependence.

Writing Ĥ = a−1 da
dτ
, and setting α′ = 1, the full equations of motion of the

system now read:

Ĥ2 =
T3
3M2

p

[
(gsM)2V̂ +

ε4/3

ĥ
(γ − 1)

]
−→ 2πgs

JUV

[
ε−4/3V̂ +

γ − 1

(gsM)2ĥ

]
, (4.2.24)

˙̂
H = −ε

4/3T3

2M2
p ĥ

(γ − γ−1) −→ −3πgs(γ − γ−1)

(gsM)2JUV ĥ
, (4.2.25)

η̈ = −3Ĥ

γ2
η̇ +

ĥ′

ĥ
(γ−1 − 1)η̇2 + 3K2 ĥ

′

ĥ2
(γ−1 − 1)2

+
K ′

K
η̇2 + 3K2B′ϑ̇2 +

(gsM)2

ε4/3γ

[
ĥϑ̇η̇V̂ϑ − (6K2 − ĥη̇2)V̂η

]
, (4.2.26)

ϑ̈ = −3Ĥ

γ2
ϑ̇+

(gsM)2

ε4/3γ

[
ĥη̇ϑ̇V̂η − (1− ĥBϑ̇2)

V̂ϑ
B

]

+

[
ĥ′

ĥ
(γ−1 − 1)− B′

B

]
η̇ϑ̇, (4.2.27)

where we have shown the effect of saturating the Planck mass bound in (4.2.24) and

(4.2.25). We can now see the impact of the various compactification parameters.

The effect of the flux and deformation parameter is to increase the importance of the

potential term in the brane motion, however, with the Planck mass bound saturated,

during an inflationary period with
˙̂
H � Ĥ2, the inflationary scale is relatively

independent of the flux, but strongly dependent on the deformation parameter, ε,

as well as the UV cutoff via JUV . Crudely therefore, we can see how increasing m0 or

decreasing ε will directly increase the number of e-foldings, whereas increasing the

UV cutoff will correspondingly reduce the e-foldings if all other parameters are kept
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equal. Varying the parameter M however, would appear to have a subdominant

effect, although it will alter the timescale of the motion via the parameter τ .

For our integrations, we chose ηUV = 10, so that the metric functions are showing

evidence of both the throat tip deformation, as well as the asymptotic T 1,1 structure

commonly used in the slow-roll models. We also set 2πgs = 1 for convenience. For

the compactification data, we set the Planck mass at its minimum allowed value, as

determined by (4.2.21), and varied ε, M and m0, following the motion of the mobile

brane with and without the angular term in the potential. For initial conditions,

the initial radial brane velocity was taken to vanish, and the angular brane velocity

was taken to be highly relativistic. The initial value of the angular coordinate,

ϑ0 = π/6 was chosen to maximize the impact of the angular term, when present.

For each trajectory, we followed the brane motion until it settled into oscillations

around the minimum of the potential, counting the number of e-foldings of the

associated cosmology, to see how this varied with the model parameters. Fig. 4.2

shows representative trajectories for the brane as it nears the tip of the throat.

Our findings can be summarized in the following:

• In terms of the trajectory of the mobile brane, one feature that all the brane trajec-

tories share is that, independent of any angular dependence or initial momentum,

the brane rapidly becomes highly relativistic, picking up strong angular features

near the tip of the throat as inflation per se ends.

• In agreement with the rescaled equations (4.2.24) - (4.2.27), varying the flux pa-

rameter slows down the brane, but makes very little difference to the overall number

of e-foldings (for the saturated Planck mass). Increasing m0, and decreasing ε, as

expected, increases the overall amount of inflation.

• Increasing the angular perturbation (c2) has the effect of shifting the minimum of

the potential, and thus changing the endpoint of the brane motion, but the effect

on the inflationary capacity of the trajectory is sub-dominant.

In selecting a range of sample trajectories for Fig. 4.2, we have focussed on vary-

ing the parameters ε and C = c2ε
−4/3. The equations of motion (4.2.24) - (4.2.27)

show that varying the flux parameter slows down the brane in a similar way to

decreasing ε, thus higher flux trajectories will look similar to smaller deformation
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parameter trajectories, but with a lower number of e-foldings. Increasing the in-

flaton mass however, will increase the amount of inflation, but will not change the

trajectory so dramatically. Thus, the main kinematical differences in the trajectories

are well illustrated by fixing the flux and inflaton mass, and varying the deformation

parameter and angular dependence. All of the sample trajectories in Fig. 4.2 show

the brane trajectory for a flux parameter of gsM = 100, an inflaton mass m0 = 20,

and a saturated Planck mass.

The first two plots in Fig. 4.2 show brane motion for relatively large values of

deformation parameter: ε = 0.5, 0.05. These show clearly how the brane moves

around quite freely near the tip of the throat, making large oscillations before settling

at the minimum of the potential. The brane motion is less relativistic, however the

amount of expansion can be seen to be very low (N ∼ 5 and 9.5 respectively), and

is not a viable inflationary scenario.

The middle pair of plots of Fig. 4.2 are more interesting. These show the effect

of changing the angular dependence of the potential, C = 0.5, 0.9. Here, the shift of

the minimum of the potential is quite clear. It is perhaps worth emphasizing that

although at large η, the solution of the Laplace equation has the same approximate

radial dependence as the inflaton mass term ((cosh η sinh η − η)1/3 ∼ r2), at small

η, this eigenfunction has quite a different dependence, (cosh η sinh η − η)1/3 ∝ η ∝

r, and in fact dominates over the mass term near the tip. Although from the

kinematical perspective increasing angular dependence shifts the trajectories more

significantly, the inflationary impact of the angular terms is subdominant, as can be

seen by looking at the number of e-foldings which only changes a little. Fig. 4.3 shows

this in more detail by plotting the number of e-foldings as a function of time along an

inflationary trajectory with m0 = 20, gsM = 100, ε = 0.001, comparing the amount

of inflation with and without angular dependence in the potential. This clearly

shows the subdominance of angular terms, illustrating that the bulk of inflation

occurs along the initial, radial, sweep.

Finally, the last two plots of Fig. 4.2 show how for very small deformation pa-

rameters the strong warping of the throat provides a very strong ‘brake’ on the

coordinate speeds of the brane, giving a very slow sweep of the brane down the
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Figure 4.3: The amount of inflation along a trajectory with m0 = 20, gsM = 100,

ε = 0.001 with (grey dashed, c2 = ε4/3/2) and without (solid black) angular terms

in the potential.

throat with a large number of e-foldings.

Although these equations must be solved numerically to extract the actual cos-

mological impact, an estimate for the number of e-foldings can be approximated

analytically, which highlights some of the dependences we have found numerically.

Essentially, we use the observation from the numerics that the bulk of cosmological

expansion occurs on the first sweep down the throat of the brane. This then allows

an approximate Hamilton-Jacobi analysis of the motion in a similar manner to that

of the original Silverstein-Tong calculation [62, 63]. Approximating this motion as

precisely radial, the number of e-foldings of the universe, N , can be written as

N =

∫
Hdt =

∫
H

η̇
dη (4.2.28)

and we can approximate

H2 ∼ T3V

3M2
p

,
ε4/3e−4Aη̇2

6K2
∼ 1 (4.2.29)

giving

N ∼
√

T3
3M2

p

∫ √
V

6
e−2Adη

K
≤ ε−2/3m0

√
4πgs

6JUV

∫ ηi

ηf

I(η)ε−2/3r(η)

6K
dη (4.2.30)

The ratio of the integral to JUV is explicitly independent of the various parameters,

and only depends on ηUV .
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Figure 4.4: The number of e-foldings as a function of the deformation parameter ε for

m0 = 10 (blue circles) and m0 = 20 (red squares) with c2 = ε4/3/2 and gsM = 100.

The analytic dependence is shown for comparison.

This argument is somewhat flawed in that it uses a large γ factor to estimate

the coordinate velocity, yet assumes that the γ terms are negligible compared to

the potential, nonetheless, it gives a good guide as to the general dependence of the

e-foldings from brane motion near the tip, which is reasonably accurate for small ε

as can be seen by comparing the numerical and analytical results in Fig. 4.4. Thus

for small ε the numerical and analytical results are in good agreement.

In this plot we see clearly that for ε ≤ 0.01, the estimate gives a very good ap-

proximation to the dependence of N on ε. For strongly deformed throats (ε ≥ 0.1)

the estimate does not work so well, but since these have much more varied angular

motion and very few e-foldings, this is not at all surprising. Unlike the small ε tra-

jectories, which spend a very long time on the initial radial sweep, exiting inflation

very close to the minimum of the potential, these trajectories fall reasonably quickly

to the tip, and cosmological expansion takes place equally from the initial sweep as

from the following large angular oscillations. Finally, it also explains qualitatively

the incremental increase in e-foldings from the angular term. Given a change in C,

the percentage increase of e-foldings is given at most by 100(
√

1+C2
1+C1 − 1), which can
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be seen to be in the ten percent range provided C < 1.

4.3 Summary and conclusions

In this chapter we studied generic brane motion in a warped deformed throat in-

corporating full angular dependence of both the brane potential and brane motion.

This is the first such study of D3-brane inflation which samples the many features of

a warped throat, including both UV and IR features of the geometry, as well as IR

consistent supergravity corrections. We considered a generic mass term for the D3

brane potential as well as an analytic linearized perturbation around the ISD back-

ground, which to our knowledge is the first closed form analytic radial eigenfunction

on the KS background.

Our results show that angular features of the brane motion are dependent on the

compactification parameters more than on initial conditions: For strongly deformed

throats (relatively large ε) the brane ‘sees’ the full rounded structure of the tip and

has a very rich angular motion. These oscillatory trajectories however have very

little cosmological expansion. Conversely, for very sharp throats (ε� 1) the brane

enters a strongly DBI inflating motion, which is geometry dominated and mainly

radial in nature. The coordinate velocities of the brane are very small, and the

brane falls to the minimum of the potential in its first sweep down the throat, only

oscillating right at the exit of inflation and at the minimum of the potential. The

models and initial conditions considered were deliberately multi dimensional, and

the brane samples the full IR region of the throat.

In this analysis, we have deliberately considered a set-up in which there is no

obvious slow-roll regime. In particular, using the correct, fully infrared consistent

corrections to the potential, we see that an inflection point potential is no longer

consistent. Our model explicitly follows brane inflation from the UV to the IR region

of the throat, and as such is not particularly suitable for angular inflation at the tip,

as the potential deep in the IR is not sufficiently steep. However, the corrections we

considered have also been used in a restricted context in an angular tip inflation,

[60], although in this case, the full dependence of the eigenfunction on the radial



4.3. Summary and conclusions 96

direction was not considered.

In all cases, these DBI trajectories have large γDBI-factors and hence will gener-

ically generate large non-gaussianities if used as pure inflation models in their own

right [62, 63, 93–96]. In order to construct a viable inflationary model therefore,

some alternative mechanism must be found to produce perturbations, or this mo-

tion must be part of a bigger inflationary picture in which CMB scale fluctuations

have already been produced (see e.g. [60]). This chapter has focussed on seeking a

UV/IR consistent inflationary picture, thus we have not explored the full detail of

cosmological perturbation theory, however, there are several options which could, in

principle be incorporated into this model.

One particularly interesting possibility is that some curvaton mechanism might

arise, either from one of the additional angular degrees of freedom, [97–99] or from

the vector excitations inherent in this type of model, [100]. In the curvaton pic-

ture, [101], a (possibly more natural) option is presented in which additional fields

generate perturbations, rather than having the inflaton performing all roles.

Because our angular potential is explicit, it clearly does not depend on several

of the other internal angles, which could therefore provide flat directions in the

potential. However, since these additional scalar degrees of freedom are part of the

multifield sigma model of the throat, the dynamics of perturbation theory is quite

involved and only a full analysis would reveal if this is indeed possible. Perhaps

a more promising and natural approach which has recently been explored in [100]

is that perturbations might be generated via a vector curvaton, although in that

case the authors did not explore angular motion or corrections to the supergravity

potential. This would be an extremely interesting avenue to explore.

Another interesting observation is that a nonminimal gravitational coupling (de-

pending on the non-radial degrees of freedom) tends to increase the inflationary

capacity, while decreasing the γDBI-factor, [102]. However, the analysis in [102] was

from a more empirical point of view, more reminiscent of a k-inflation model, [103],

and it would be interesting to see whether similar results are attainable in an ex-

plicit supergravity model arising from higher order corrections to the solution (e.g.

coupling to the Ricci scalar) considered in this paper.
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It is also possible that since the γDBI-factor varies throughout the motion, for

some carefully chosen parameters this problem could be circumvented. It is inter-

esting to use the intuition gleaned here to consider the late time evolution of more

conventional slow-roll brane models, and explore what might happen as the brane

approaches the tip. A slow-roll model such as the delicate universe, [52–57], uses

supergravity perturbations which are strictly only allowed in the pure T 1,1 throat,

however, setting this aside for a moment, we can speculate on the final brane down-

fall to the tip. A vast scanning of parameter space for potentials is not necessary, as

the angular motion and dependence is more a quantitative than qualitative factor,

and our investigation has given insight into the effect of the different compactifica-

tion parameters as they vary.

Typically, a slow roll model of brane inflation will be in the intermediate adS

regime of the throat geometry, and thus requires a small deformation parameter.

However, as the deformation parameter becomes very small, the final roll to the

tip can take a long time, and be highly relativistic. The compactification data are

generally expressed differently in references [52–57], [64] , in terms of D3 flux, N , the

warp hierarchy between the inflating and IR region, a0 = eA(0), however, knowledge

of Mp, T3 and the UV cut-off scale of the throat, rUV , allows a translation between

the different parametrizations. For example, to compare to the study of Agarwal et

al., [64], saturating the Mp bound and taking their stated parameter values leads to

deformation parameters of ε ∼ 10−4 − 10−7 for a0 ∼ 10−3 − 10−5. With such small

deformation parameters, the final sweep to the throat tip could easily incorporate

several to many e-foldings of DBI inflation, and raises the question of just how much

impact this final sweep could have.

Finally, our analysis has focussed on motion in only one angular direction. This

was primarily to allow clarity of the angular terms in the potential, but also for

simplicity. We expect that including fully generic angular motion (which would

significantly complicate the analysis) will have an effect subdominant to the sub-

dominant angular motion presented here, however, it would be useful to confirm

this, in particular to confirm or rule out the possibility of a curvaton arising in this

sector. In addition, our analysis could be further extended by taking higher order
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corrections into account, which will also have angular dependence. While we would

expect that this would be sub-dominant to the linearized correction, it would be

interesting to see precisely what the impact is of these detailed corrections to the

inflaton action.



Chapter 5

Spinflation with backreaction

In the previous chapter based on [1], we solved the DBI brane equations of motion

in the warped deformed conifold [75] with harmonic dependent corrections from

linearized perturbations around the ISD solution. We showed that just as angular

motion increases the number of e-foldings (spinflation) [71–74], having additional an-

gular dependence from linearized corrections also increases the number of e-foldings.

However, this line of analysis considered D-brane inflation only from linearized per-

turbations around the ISD supergravity solution. In this chapter based on [2], we

extend our analysis of the previous chapter by including further harmonic dependent

corrections from non-linear perturbations around the ISD solution, which also con-

tribute to the inflaton action. In the noncompact limit, non-linear perturbations are

dominated by imaginary anti-self-dual (IASD) fluxes sourced by moduli stabilizing

wrapped D7-branes and the flux induced potential for the probe D3-brane in ten-

dimensional supergravity equals the nonperturbatively-generated D3-D7 potential

in four-dimensional supergravity [57].

One particular motivation of extending our previous analysis [1] by including such

nonperturbative corrections is the possibility of increasing the amount of inflation

and decreasing the level of non-Gaussianity due to backreaction effects [56]. The

backreaction on the mobile D3-brane is sourced by itself [52]. The D3-brane in

a flux compactification containing holomorphically embedded D7-branes corrects

the warp factor which in turn corrects the warped volume of four-cycles wrapped

by D7-branes. This then corrects the D3-D7 potential causing the backreaction

99
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on the D3-brane. The perturbations of the warp factor are given by the Green’s

function and correct the γDBI-factor which controls the level of non-Gaussianity. The

Green’s function solves the noncompact supergravity equation of motion describing

the perturbations around the ISD solution sourced by IASD fluxes and may be

expanded in an infinite set of eigenstates of the Laplacian containing harmonic

dependent hypergeometric functions [84].

In this chapter we solve the D3-brane equations of motion from the DBI action

in the warped deformed conifold [75] with harmonic dependence from the leading

correction terms of the warp factor and the D3-D7 potential. To solve the brane

equations of motion, we note that the D3-brane potential including nonperturba-

tive corrections depends on the functional form of the Kähler modulus and that of

the D7-brane embedding. For the Kuperstein embedding of D7-branes [105] and

a simple choice of an harmonic dependent trajectory on the deformed conifold, we

integrate out the Kähler modulus and reduce the multifield D3-brane potential to

a simple two-field potential depending on one radial and one harmonic direction of

the conical geometry. In our numerical integrations we integrate out the Kähler

modulus by computing its exact functional form valid on both the IR and UV re-

gions of the supergravity background. We find that computing the Kähler modulus

within the adiabatic approximation in DBI inflation requires certain hierarchies of

scales which determine the set of compactification parameters different from those in

slow-roll models. Integrating the brane equations of motion for the consistent choice

of parameters with the numerically computed Kähler modulus shows that the DBI

inflationary solutions are quite robust against non-linear harmonic dependent cor-

rections from perturbations of the warp factor and the D3-D7 brane potential.

5.1 Review of D3/D7-brane inflation

As before, we embed a mobile D3-brane in the supergravity background described

in chapter 2 and analyse its four-dimensional effective action. Recall that in the

supergravity background with metric ansatz (2.1.25) the effective action takes the

form



5.1. Review of D3/D7-brane inflation 101

I =
MPl

2

∫
d4x
√
−gR− g−1

s

∫
d4x
√
−g
[
h−1(γ−1

DBI − 1) + V (φm)

]
,(5.1.1)

γ−1
DBI =

√
1− hg(0)mngµν∂µφm∂νφn.

Here gs is the string coupling, and Mpl is the Planck-mass, as before.

To study brane inflation, we will take the position of the D3-brane to be homo-

geneous, φm = φm(t), and we will consider the four-dimensional metric to be the

standard unperturbed FRW metric:

ds24 = gµνdx
µdxν = dt2 − a2(t)dx2 (5.1.2)

with a(t) being the scale factor, as before. Also recall that the variation of the latter

part of the action (5.1.1) with respect to the metric produces the energy-momentum

tensor, which has the form of a perfect fluid with its energy density and pressure

given by:

E = T3(h
−1[γDBI − 1] + V ], (5.1.3)

P = T3(h
−1[1− γ−1

DBI] + V ]. (5.1.4)

Here T3 = ((2π)3α′2)−1 is the D3-brane tension, as before. The full equations of

motion are:

H2 =
E

3M2
pl

, (5.1.5)

Ḣ = −(E + P )

2M2
pl

, (5.1.6)

1

a3
d

dt

[
a3γDBI g

(0)
mn φ̇

n
]

= −T3γDBI

(
γ−1
DBI − 1

)2 ∂mh
2h2

+
γDBI

2

∂g
(0)
ln

∂φm
φ̇lφ̇n − ∂mV,

(5.1.7)

where g
(0)
mn is the unperturbed Calabi-Yau metric, as before. Recall from the previous

chapter that the Planck-mass, Mpl, appearing above is bounded by the UV-scale as

[1]:
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M2
pl >

ε4/3gsM
2T3

6π
J(ηUV), (5.1.8)

where J(η) =
∫
I(η) sinh2 η with I(η) given by (2.1.97).

The D3-brane potential appearing in the above equations of motion is:

T3V =
1

2
m2φ2 + T3Φ−. (5.1.9)

Here the first term is a mass term generated for the canonical inflaton φ =
√
T3r(η),

which by (5.1.10) takes the form:

φ = ε2/3
√
T3
6

∫ η

0

dx

K(x)
. (5.1.10)

We note that the normalization is strictly dependent on the position of the brane,

which affects the volume modulus (see e.g. [52–57]), and also on the trajectory of

the brane, even in the slow roll approximation, due to the inflaton, φ, being a sigma

model field, [92–94]. The last term in (5.1.9) arises from perturbations around the

noncompact (ISD) supergravity solution described by Eq. (2.2.132). The homoge-

neous linearized solution of Eq. (2.2.132) is given by (4.1.10). The inhomogeneous

non-linear solution of Eq. (2.2.132) given in its implicit form as (2.2.137) equals the

nonperturbatively generated D3-brane F-term potential in four-dimensional super-

gravity [57]. The F-term potential takes the following form:

VF = eκ
2K
[
DΣWKΣΞDΞW − 3κ2WW

]
, (5.1.11)

where {zΣ} ≡ {ρ, zα;α = 1, 2, 3} and DΣW = ∂ΣW + κ2(∂ΣK)W with K and W

denoting the Kähler potential and superpotential, and κ2 =M−2
pl withM2

pl bounded

by (5.1.8). From (5.1.8) one can see that large ηUV implies large Mpl. In the

noncompact limit (Mpl →∞), the F-term potential (5.1.11) takes the form

VF = KΣΞ∂ΣW∂ΞW. (5.1.12)

For any holomorphic function W on the conical geometry, we may turn on the flux

(see Appendix A)
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ΛΣΞ̄Γ̄ = ∂Σ∂ΥWKΥΘ̄Ω̄Θ̄Ξ̄Γ̄ = ∂∂W · Ω̄, (5.1.13)

where Ω is the holomorphic (3, 0)-form. Solving Eq. (2.2.132) for Eq. (5.1.13) gives

[57]

T3Φ− = KΣΞ̄∂ΣW∂ΞW. (5.1.14)

The Kähler potential, K, depends on the complex Kähler modulus ρ = σ + iχ, and

on the D3-brane position, {zα, z̄α}, [104]

K(zα, z̄α, ρ, ρ̄) = −3κ−2 log[ρ+ ρ̄− γk(zα, z̄α)] ≡ −3κ−2 logU(z, ρ). (5.1.15)

Here k(zα, z̄α) is the so-called ‘little’ Kähler potential of the Calabi-Yau manifold,

κ2 =M−2
pl as before, and γ is a normalization factor given by

γ =
σ0T3
3M2

pl

, (5.1.16)

where σ0 denotes the value of σ when the D3-brane is at its stabilized configuration

[47, 53]. The Kähler metric and its inverse take the form [47]

KΞΣ =
3

κ2U2

 1 −γkβ̄
−γkα Uγkαβ̄ + γ2kαkβ̄

 , (5.1.17)

K∆Γ =
κ2U

3

 U + γkγk
γδ̄kγ̄ kγk

γβ̄

kαδ̄kδ̄
1
γ
kαβ̄

 , (5.1.18)

where kαβ̄ ≡ ∂α∂β̄k is the Calabi-Yau metric, and kα ≡ k,α. The superpotential W ,

also depends on the D3-brane positions, {zα}, and is given by

W (ρ) = W0 + A(zα)e−aρ. (5.1.19)

The first part of the superpotential is the Gukov-Vafa perturbative superpoten-

tial [79]. The second part in the superpotential comes from nonperturbative effects

sourced by moduli stabilizing D7-branes wrapping certain four-cycles (see Appendix
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A subsection A.5.4) in the compactification and a = 2π/n is a constant with n denot-

ing the number of wrapped branes. The inflaton dependence of the superpotential

is induced by the interaction between the inflationary D3-brane and wrapped D7-

branes. The displacement of the D3-brane in the compactification slightly modifies

the supergravity background, perturbing the warp factor, h = hKS + δh, which cor-

rects the warped volume of four-cycles (bearing the nonperturbative effects from

D7-branes):

δV w
Σ4

=

∫
Σ4

d4Y
√
gind(X;Y )δh(X;Y ). (5.1.20)

This change in the warped volume of four-cycles changes the nonperturbative su-

perpotential (2.2.171) to

Wnp ∝ exp

(
− T3

n
(V w

Σ4
+ δV w

Σ4
)

)
. (5.1.21)

We can write this in the form

Wnp = A(X) exp

(
− T3

n
V w
Σ4

)
, (5.1.22)

where

A(X) = A0 exp

(
− T3

n
δV w

Σ4

)
. (5.1.23)

This superpotential correction then corrects the D3-D7 potential inducing the back-

reaction on the mobile D3-brane. The prefactor in the nonperturbative part of

(5.1.19) computed from corrections to the warped background takes the form [52]:

A(zα) = A0

[
f(zα)

f(0)

]1/n
, (5.1.24)

where f(zα) denotes the holomorphic embedding function of D7-branes depending

on the D3-brane coordinates and A0 is a constant.

According to this and (5.1.17) - (5.1.18), the scalar potential (5.1.11) takes the

form [47, 53]
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VF (z
α, z̄α, ρ, ρ̄) =

κ2

3U(z, ρ)2

{[
U(z, ρ) + γkγδ̄kγkδ̄

]
|W,ρ|2 − 3(WW,ρ + c.c.)

}
+

κ2

3U(z, ρ)2

[(
kαδ̄kδ̄W ,ρ̄W,α + c.c.

)
+

1

γ
kαβ̄W,αW ,β̄

]
. (5.1.25)

The first part in Eq. (5.1.25) is the standard KKLT F-term potential, and the second

part arises exclusively from corrections to the nonperturbative superpotential. To

derive the explicit form of this potential, we need to consider appropriate formulas

for the various terms in the potential and specify an embedding for D7-branes.

We first note that the Kähler potential on the deformed conifold is given by

(A.6.173) and its inverse reads as

kīj =
r3

k′′

[
Rīj + coth η

(
k′′

k′
− coth η

)
Līj
]
, (5.1.26)

where k′ = dk/dη and k′′ = d2k/dη2, and Rīj and Līj are 3× 3 matrices given by

Rīj = δ īj − ziz̄j
r3

, (5.1.27)

Līj =

(
1− ε4

r6

)
δ īj +

ε2

r3
zizj + z̄iz̄j

r3
− ziz̄j + z̄izj

r3
. (5.1.28)

By noting that kīL
īj = Lījkj = 0, we have the norm

kījk īkj =
3

4

ε4/3

21/3
[sinh(2η)− 2η]4/3

sinh2 η
. (5.1.29)

In the same way, we may compute

kījk īWj =
3

4

cosh η

sinh3 η
[sinh(2η)− 2η]

3∑
j=1

(
zj − z̄j

ε2

r3

)
Aje

−aρ, (5.1.30)

kījW īWj =
3

2 · 22/3
ε2/3

cosh η

sinh η
[sinh(2η)− 2η]2/3 (5.1.31)

×
{
RījW īWj +

[
2

3

sinh(2η)

sinh(2η)− 2η
− coth2 η

]
× LījW īWj

}
,

where
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RījW īWj = e−2anσ

[ 3∑
i=1

|Ai|2 −
1

r3

( 3∑
i=1

ziĀi

)( 3∑
j=1

z̄jAj

)]
, (5.1.32)

LījW īWj = e−2anσ

{ 3∑
i=1

(
1− ε4

r6

)
|Ai|2 −

1

r3

( 3∑
i,j=1

Āi

[
ziz̄j + zj z̄i −

ε2

r3

×(zizj + z̄iz̄j)

]
Aj

)}
. (5.1.33)

Under substitution of (5.1.29), (5.1.30) and (5.1.31) the F-term potential (5.1.25)

takes the functional form VF = VF (z1 + z̄1, |z1|2, η, σ, τ).

We next embed a space-filling D7-brane in the deformed conifold using the Ku-

perstein embedding defined by the algebraic equation [105]

f(z4) = µ− z4 = 0. (5.1.34)

This equation describes a surface embedded in the deformed conifold. From the

definition of the deformed conifold we note that along the surface z4 = µ the radial

coordinate r satisfies

r2 =
3∑
i=1

|zi|2+µ2 ≥

∣∣∣∣∣
3∑
i=1

zi

∣∣∣∣∣
2

+µ2 = |ε2−µ2|+µ2 =

ε
2 for µ ≤ ε

2µ2 − ε2 for µ ≥ ε

, (5.1.35)

where r2 = ε2cosh η. We now consider two cases, µ > ε and µ < ε. In the former

case, the minimal value of the radial coordinate η along the surface z4 = µ is

ηmin = 2 cosh−1(µ
ε
). In this case, the D7-brane probe does not reach the bottom of

the deformed conifold throat at the IR location η = 0. In the later case, ηmin is zero.

From these results we see that the D7-brane configuration has a free parameter µ

and by making this parameter large enough, µ > ε, the probe brane ends at a finite

distance at the radial coordinate η away from the IR location.

The prefactor of the nonperturbative superpotential, Eq. (5.1.24), and its deriva-

tive with respect to the independent coordinates now take the form

A(z1) = A0

(
1− z1

µ

)1/n

, (5.1.36)
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Ai(z1) = −
A0

nµ

(
1− z1

µ

)1/n−1

δi1. (5.1.37)

5.2 Multifield D-brane inflation

To obtain a simple trajectory depending only on one harmonic mode, say θ1 = θ,

we fix the rest of the angular directions of T 1,1 by imposing the following constrains

ϕ1 − ϕ2 ± ψ
2

= ±π
2
,

ϕ1 + ϕ2 + ψ

2
= π,

ψ − ϕ1 − ϕ2

2
= 0, θ2 = 0. (5.2.38)

Accordingly to this, the coordinates on the deformed conifold read as

z1 = −ε cosh
(
η

2

)
cos

(
θ

2

)
, z2 = −iε sinh

(
η

2

)
cos

(
θ

2

)
,

z3 = −iε sinh
(
η

2

)
sin

(
θ

2

)
, z4 = +ε cosh

(
η

2

)
sin

(
θ

2

)
. (5.2.39)

The imaginary part of the Kähler modulus can be integrated out by

eiaχ

A
→ 1

|A|
. (5.2.40)

Accordingly, the four-dimensional supergravity potential is1(see Appendix B)

VF =
2κ2a2n|A0|2e−2anσ

U2
|g(η, θ)|2/n

×
{
U

6
+

1

an

(
1− |W0|
|A0|

eanσ

g(η, θ)1/n

)
+ F (η, θ)

}
, (5.2.41)

where

F (η, θ) =
γ

4
ε4/3K4 sinh2 η − εK3

anµg
cos

(
θ

2

)
cos

(
η

2

)
sinh2

(
η

2

)
+

ε2/3K2

4n2a2µ2γg2

[
sinh2

(
η

2

)
cos2

(
θ

2

)
+

2

3K2
sin2

(
θ

2

)]
. (5.2.42)

1It is straightforward to check that for θ = 0 our two-field potential (5.2.41) coincides with the

single field potential derived in [51].
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Here we have defined

U(η, θ) = 2σ(η, θ)− γk(η), (5.2.43)

g(η, θ) = 1 +
ε

µ
cosh

(
η

2

)
cos

(
θ

2

)
. (5.2.44)

Compactifying the warped deformed conifold throat via attaching it to the com-

pact Calabi-Yau space at some finite radius rUV requires Kähler modulus stabiliza-

tion. This involves integrating out σ by the assumption that it evolve adiabatically

while remaining in its instantaneous minimum σ∗(η, θ) using the following equation:

∂(VF + Vuplift)(η, θ)

∂σ

∣∣∣∣
σ?(η,θ)

= 0. (5.2.45)

Here we have added a D-term potential V (η, σ) = Duplift/U(η, σ)
2 which is needed

to uplift KKLT AdS minimum to a dS minimum. The uplifting can be sourced

by distant anti-D3-branes or wrapped D7-branes. The instantaneous minimum of

σ is denoted by σ∗ including a shift due to its coordinate dependence induced by

adding a mobile D3-brane to the compactification. The functional form of σ∗ can be

determined by the numerical solution of the transcendental equation (5.2.45), which

we will solve in the next section. Before turning to numerical computation, we need

to look at the minimum of the D3-D7 potential which specifies σF and Duplift and

constrains the rest of parameters on which these depend.

The critical value σF of the Kähler modulus before uplifting is determined by

the condition DσW |η=0, θ=0, σF = 0, or equivalently [30],

eaσF =
|A0|
|W0|

(
1 +

2

3
aσF

)
g(0, 0)1/n ⇒ ∂VF

∂σ

∣∣∣∣
σF

= 0, (5.2.46)

where g is given by (5.2.44). We may write this in the form:

σF =
1

a
log

[
|A0|
|W0|

(
1 +

2

3
aσF

)(
1 +

ε

µ

)1/n]
. (5.2.47)

From Eq. (5.2.41) and Eq. (5.2.46) we note that
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VF (0, σF ) = −
3a2κ2W 2

0

2σF (3 + 2aσF )2
. (5.2.48)

The uplifting parameter is given by

s =
Vuplift(0, σF )

|VF (0, σF )|
with Vuplift(0, σF ) =

Duplift

4σ2
F

. (5.2.49)

From this we obtain

Duplift =
6s a2κ2W 2

0 σF
(3 + 2aσF )2

. (5.2.50)

Here 1 ≤ s ≤ 3 to avoid decompactification, a is determined by the choice of n, κ

depends on the UV cut-off, and the value of σF can be derived from Eq. (5.2.47)

once the set of parameters {ε, µ, n, s, |A0|, |W0| } are specified. We also note that

uplifting the KKLT AdS minimum to a dS minimum introduces a small shift in the

stabilized volume, σ0 ≡ σF + δσ. At the tip, we have [54]:

aσ0 ≈ aσF +
s

aσF
. (5.2.51)

Here we note that both Eq. (5.2.47) and Eq. (5.2.51) which give σF and δσ, respec-

tively, are derived from the local minimum of the F-term potential (5.2.41) at the

tip. The critical value σm of the Kähler modulus away from the tip and its shift

δσm can be derived from the global minimum of the F-term potential (5.2.41). We

note that:

∂VF
∂σ

=
2a2nκ

2A2
0

U2
g2/ne−2anσ

[(
|W0|
|A0|

eanσ

g1/n
− 1− anU

3
− 2F

(
an +

2

U

))]
,

(5.2.52)

∂2VF
∂σ2

=
2a2nκ

2A2
0

U2
g2/ne−2anσ

[
2

(
a2nU

3
+

26

3U
+

12

anU2
+

8an
3

)
−|W0|
|A0|

eanσ

g1/n

(
an +

8

U
+

24

anU2

)
+ 4F

(
a2n +

4an
U

+
6

U2

)]
. (5.2.53)

Thus the global minimum of VF requires

|W0|
|A0|

eanσ

g1/n
= 1 +

anU

3
+ 2aF

anU + 2

anU + 4
, (5.2.54)
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or

σm =
1

an

[
g(η, θ)1/n

|A0|
|W0|

(
1 +

anU

3
+ 2anF

anU + 2

anU + 4

)]
. (5.2.55)

Stability of this minimum under the addition of VD requires that σ is not too small

(e.g. σ ' 10) which in turn tells us that |A0|/|W0| has to be very small. A reasonable

approximation in which F has a less impact gives

σm ' − log
|W0|
|A0|

+ log

∣∣∣∣23 log
|W0|
|A0|

∣∣∣∣, (5.2.56)

At this minimum we have:

V (σm) = −6a2nκ
2W 2

0

2Um

(aUm + 4)[(anUm + 4) + 6aF ]

(anUm + 4)(anUm + 3) + 6aF (anUm + 2)2
,

V ′′(σm) =
6a2nκ

2W 2
0

U3
m

{
(anUm + 4)[(anUm + 4)(a2nU

2
m + 5anUm − 12)

[(anUm + 4)(anUm + 3) + 6anF (anUm + 2)]2

+
+6anF (a

2
nU

2
m + 6anUm + 4)]

[(anUm + 4)(anUm + 3) + 6anF (anUm + 2)]2

}
.

(5.2.57)

Thus we have

V ′′(σm)

V (σm)
= −2[(anUm + 4)(a2nU

2
m + 5anUm − 12) + 6aF (a2nU

2
m + 6anUm + 4)]

U2
m[(anUm + 4) + 6anF ]

= −2a2n
(
1 +

5

anUm
− 12

a2nU
2
m

)
− 12anF (anUm + 16)

U2
m[(anUm + 4) + 6anF ]

. (5.2.58)

We also note that

VD(σm) =
Duplift

U2
m

, V ′
D(σm) = −

4VD(σm)

Um
, V ′′

D(σm) =
24VD(σm)

U2
m

. (5.2.59)

Under the assumption that VD only shifts the minimum by a small amount gives:

V ′(σm + δσ) = V ′
D(σm + δσ) + V ′

F (σm + δσ) ' V ′
D(σm) + δσV ′′

F (σm) = 0

(5.2.60)

⇒ δσ = −V
′
D(σm)

V ′′
F (σm)

=
4VD(σm)

UmVF (σm)

V (σm)

V ′′(σm)
. (5.2.61)
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The degree to which these run with η depends on k(η) and F . First look at k, which

is an increasing function of η:

γk(ηUV) ∼
σ0T3
3M2

pl

ε4/3e2ηUV/3 (5.2.62)

Now we note that the Planck-mass is given by [1]:

M2
pl =

β(gsM)2

6πgs
ε4/3T3JUV, (5.2.63)

where JUV is the integral computed in the previous chapter (see Fig. 4.1), JUV ∼

ηUVe
2ηUV/3, and β is the ratio of the actual volume of the Calabi-Yau space to the

warped deformed conifold throat volume, usually taken to be order unity. Hence

γk(ηUV) ∼
σ0
β

2πgs
ηUV(gsM)2

, (5.2.64)

which we can see is still pretty small as we take gsM big.

F (η, θ) on the other hand is maximal at θ = π, where

F (η) =
γ

4
ε4/3K4 sinh2 η +

(ε/µ)2

6a2n2γε4/3
, (5.2.65)

the first of which is similar to γk, and hence small. The second term is

(ε/µ)

6a2nn
2γε4/3

∼ O(ηUVe
ηUV(gsM)2), (5.2.66)

which is not at all small. This therefore provides a strong steer to the value of µ. We

would like to remark here that in most of the brane inflation models in the literature

(e.g. see [51, 54]) the perturbative expansion of the potential is analysed in either

the UV or the IR region. In these models ε and µ are considered to have similar order

magnitude. However, we note that a consistent expansion along the entire throat

including both the UV and IR regions requires a large hierarchy between ε and

µ. In particular, the final piece of our potential term F (η, θ) given by Eq. (5.2.42)

scales as ε−4/3(ε/µ)2. Unless the hierarchy between ε and µ is large this term will

dominate the potential and destabilize the vacuum expansion. Moreover, the key

point here is that in our DBI brane inflation set up the full potential contains a large

leading order mass term for the radial coordinate and in order to keep the adiabatic
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approximation (5.2.45) valid the hierarchy between ε and µ has to be large, so that

the mass generated for the Kähler modulus is much larger than the Hubble rate (see

Section 4).

As mentioned above, apart from the shift induced by uplifting, δσ, the addi-

tion of a mobile D3-brane in the compactification induces a further shift in the

Kähler modulus that depends on the coordinates of the brane, σ∗(η, θ). Thus the

nonperturbatively generated D3-D7 potential about a dS minimum takes the form:

VF + VD =
2κ2a2n|A0|2e−2anσ∗(η,θ)

U [η, σ∗(η, θ)]2
|g(η, θ)|2/n

×
{
U [η, σ∗(η, θ)]

6
+

1

an

(
1− |W0|
|A0|

eanσ∗(η,θ)

g(η, θ)1/n

)
+ F (η, θ)

}
+

Duplift

U [η, σ∗(η, θ)]2
. (5.2.67)

Hence the total potential takes the form:

T3V = T3

(
1

2
m2

0 [r(η)
2 + c2K(η) sinh η cosϑ] + V0

)
+VF + VD. (5.2.68)

HereDuplift is given by (5.2.50), the constant V0 is chosen so that the global minimum

of V is V = 0, and c2 is an arbitrary constant. Because c2 multiplies a solution to a

free Laplace equation, it is not fixed. For a self-consistent expansion, we expect c2

to be smaller, or of a magnitude comparable with other terms in the potential.

Finally, to derive the explicit form of the D3-brane equations of motion on the

deformed conifold for the simplest case including only one angular direction for the

potential (5.2.68) first note that a simple S3 round metric on the deformed conifold

can be obtained from (2.1.66) as:

ds2 = A(η)dη2 +B(η)dθ2, (5.2.69)

where

A(η) =
ε4/3

6K(η)2
, B(η) =

ε4/3K(η)

4

[
cosh(η/2) + sinh(η/2)

]
. (5.2.70)
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The brane equations of motion can then be derived upon cross elimination from

(5.1.7) in the following form (see Appendix C):

η̈ = − 3H

γ2DBI

η̇ +
h′

γDBIh
η̇2(1− γDBI) +

h′

2h2A
(γ−1

DBI − 1)2

− 1

2A
(A′η̇2 −B′θ̇2) + hθ̇η̇

Vθ
γDBIT3

− (1− hAη̇2) Vη
γDBIAT3

−η̇θ̇(1− γ−1
DBI)

hθ
h
, (5.2.71)

θ̈ = −3Hθ̇

γ2DBI

+ (1− γDBI)θ̇η̇
h′

γDBIh
− θ̇η̇B

′

B
+ hθ̇η̇

Vη
γDBIT3

−(1− hBθ̇2) Vθ
γDBIBT3

− (1− γ−1
DBI)

[
θ̇2 − (1− γ−1

DBI)

2hB

]
hθ
h
. (5.2.72)

Here we note that in the absence of non-linear corrections including the contribution

of the D3-D7 potential and perturbations of the warp factor, the potential (5.2.68)

and Eqs. (5.2.71) - (5.2.72) reduce to the D3-brane potential and equations of motion

including only linearized corrections studied in the previous chapter [1]. We also note

that in the slow-roll regime γDBI ' 1 and the perturbations of the warp factor have

no effect. However, since we are neither slow-rolling nor restricting ourselves to the

linearized case, we need to take into account the perturbations of the warp factor

which amount superpotential corrections in the D3-D7 potential. For the warped

deformed conifold, the perturbations of the warp factor in the tip region can be

expressed as [84]

δh = −(2π)4gsp(α′)2G(η, y4)

=
16π · 32/3gsp(α′)2

(2ε)8/3 · η

[
1 + 2

√
2y4 + 6y24 + 8

√
2y34 − · · ·

]
with (5.2.73)

y4 =

[
cos

(
θ1
2

)
sin

(
θ2
2

)
e
i(ϕ1−ϕ2+ψ)

2 − sin

(
θ1
2

)
cos

(
θ2
2

)
e

−i(ϕ1−φ2−ψ)
2

]
. (5.2.74)

Here G(η, y4) is the Green’s function (expanded in the eigenfunctions of the Lapla-

cian) on the deformed conifold given by (2.2.140), y4 comes from (2.1.62) and p

specifies the number of mobile D3-branes, which we take to be p = 1. By the first
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angular condition in (5.2.38) along an S3 (θ1 = 0) for relations (5.2.73) and (5.2.74)

we have

δh =
16π · 32/3gsp(α′)2

(2ε)8/3 · η

[
1 + 2

√
2y4 + 6y24 + 8

√
2y34 − · · ·

]
with (5.2.75)

y4 = − 1√
2
sin

(
θ

2

)
. (5.2.76)

In the off-tip region, where r is large, we may use the very first line in (5.2.73)

together with relations (2.2.142) - (2.2.146) for the quantum numbers j1 = j2 =

R/2 = 1/2 and m1 = m2 = 1/2, and obtain δh in the form

δh ' −10gspα
′2

π2
cos4

θ

2

(
1

r4

)
+ · · · with (5.2.77)

r3 = ε2eη. (5.2.78)

5.3 Inflationary solutions

In order to integrate the full brane equations of motion, we first need to specify a

suitable choice of parameters and then compute the real part of the Kähler mod-

ulus that appears in the brane equations of motion. To choose a reasonable set

of compactification parameters, we note the following points. Firstly, we require a

large hierarchy between A0 and W0 to guarantee large σF which ensures suppressed

α′-corrections. Secondly, we also need a large hierarchy between ε and µ in addition

to the A0/W0 hierarchy to guarantee a valid perturbative expansion, δσ � 1. When

both these hierarchies are turned on, σ∗ can be computed within the adiabatic ap-

proximation from Eq. (5.2.45). We also remark from the literature that choosing a

large value of the UV-scale, ηUV, sets a large value for the Planck-mass (e.g. see pre-

vious chapter [1]) in which case curvature corrections may be omitted and non-linear

corrections are dominated by IASD fluxes sourced by moduli stabilizing wrapped

D7-branes whose number is given by n > 1. Furthermore, we remark that the su-

pergravity solution requires large gsM and the value of s has to be chosen within

the range 1 ≤ s ≤ 3 to ensure a small positive cosmological constant and to avoid

runaway decompactification.
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Figure 5.1: The behaviour of σF obtained from the root of Eq. (5.2.47) for choice of

compactification parameters (4.1), and the behaviour of σm for choice of parameters

(4.1) with θ = 0 (solid), π/2 (tiny-dashed) and π (large-dashed).
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Figure 5.2: The behaviour of the function F and δσ for the choice of parameters

(4.1) and θ = π.
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Figure 5.3: The Hubble rate, H2 ' V/3M2
pl, and the σ mass squared, M2

σ for the

choice of parameters (4.1) and θ = π.

In line with the above requirements we choose in our numerical analysis the

following specific set of compactification parameters:
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Figure 5.4: The behaviour of the function F and δσ with µ = 0.005 and the rest of

parameters as (4.1) and θ = π.
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Figure 5.5: The Hubble rate, H2 ' V/3M2
pl, and the σ mass squared, M2

σ with

µ = 0.005 and the rest of parameters as (4.1) and θ = π.

ηUV = 15, n = 2, s = 2, ε = 0.001

gsM = 100, µ = 5, W0 = 29, A0 = 25× 1012. (5.3.79)

Inspection of Eq. (5.2.47) and Eq. (5.2.55) shows that for the choice of parameters

(5.3.79) σF and σm scale to large values (see Fig. 5.1); inspection of Eq. (5.2.42) and

Eq. (5.2.61) shows that for the choice of parameters (5.3.79) and θ = π the functions

δσ and F scale to reasonably small values on the entire warped deformed conifold

(see Fig. 5.2); for the choice of parameters (5.3.79) the mass squared of the Kähler

modulus, M2
σ ≡ V, σσ, is much larger than the approximate squared Hubble rate,

H2 ' V/3M2
pl (see Fig. 5.3), which guarantees an adiabatic expansion [54, 106].

We note here that by decreasing these hierarchies much below their values (5.3.79)

makes M2
σ and H2 scale similarly which invalidates the adiabatic approximation, in
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addition δσ and F become large which invalidates the perturbative expansion; for

instance, for µ = 0.005 and the rest of parameters as in (5.3.79) we show δσ and F

in Fig. 5.4 - Fig. 5.5.

In the literature of brane inflation, the most common way of computing the

Kähler modulus, σ, is to adopt a semi - analytic approach with the assumption that

σ evolves adiabatically (e.g. see [53]). In this approach, σ in U(η, σ) is set to its large

fixed value σ0, and (5.2.45) is treated as an equation in the variable exp[−aσ∗(η)].

The value of σ∗ is then obtained from Eq. (5.2.45) by expanding in specific coni-

cal regions including either the IR or the UV regions where the canonical inflaton

(5.1.10) is given by its small or large η limit, respectively. This may be a good ap-

proximation but it gives only a qualitative understanding. Here we compute σ∗ by

solving the transcendental equation (5.2.45) numerically to obtain the exact value

of σ∗ on the entire supergravity background. For the choice of parameters (5.3.79)

we show σ∗ in Fig. 5.6 and its derivatives in Fig. 5.7.

In order to compute σ∗, we consider the range of variables 0 ≤ η ≤ 15 and

0 ≤ θ ≤ π for the choice of parameters (5.3.79) and generate the table of values for

the solution of Eq. (5.2.45). This is done numerically via grid size of 0.1 which means

that about 18000 data points are calculated. These data points are interpolated by

Mathematica to get the approximate function σ∗ (see Fig. 5.6). To get an approx-

imate derivative of σ∗ with respect to η, and with respect to θ, which are denoted

∂ησ? and ∂θσ∗, respectively, the above generated grid points are used to calculate

the quotion of differences. These are approximate values for the differential quo-

tient. Then, the table of values of the approximate derivative is again interpolated

by Mathematica to obtain ∂ησ∗ and ∂θσ∗ (see Fig. 5.7).

For the choice of parameters (5.3.79) and the numerically computed Kähler mod-

ulus, we integrated the full D3-brane equations of motion, Eqs. (5.1.5) - (5.1.7) with

Eq. (5.1.7) given by Eqs. (5.2.71) - (5.2.72), and our inflationary solution is displayed

in Fig. 5.8. The solution describes spiral brane motion at high speed in the warped

throat region of the compact Calabi-Yau space containing holomorphically embed-

ded wrapped D7-branes involved in (Kähler) moduli stabilization. The conserved

angular momentum is lifted by harmonic dependent corrections from linearized as
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well as non-linear perturbations including contributions from the D3-D7 potential

and corrections of the warp factor. The brane accelerates along the radial and an-

gular directions as it falls down the throat from the UV end where it is attached

to the compact Calabi-Yau space. Inflation ends when the brane reaches the IR

location where the throat smoothly closes off. For the choice of parameters and the

numerically computed Kähler modulus, we integrated the brane equations of motion

and found that the inflationary solution is quite robust against harmonic dependent

corrections from the D3-D7 potential and corrections of the warp factor. In particu-

lar, we found (as displayed in Fig. 5.8) that harmonic dependent corrections induced

by the D3-D7 potential and perturbations of the warp factor do not have the effect

of increasing the number of e-foldings and decreasing the γDBI-factor. This result

differs from our previous results [1] in which harmonic dependent correction to brane

motion from linearized perturbations of the supergravity solution increased the num-

ber of e-foldings compared to the number of e-foldings produced by brane motion

with conserved angular momentum (spinflation) where no supergravity corrections

and hence no harmonic dependence in brane motion is present.

We repeated the above computation for various choices of initial conditions and

compactification parameters and our findings are summarized as follows.

• Decreasing ε below its considered value while keeping other parameters fixed tends

to flatten the functional form of σ∗ and changes its overall scale insignificantly. Also,

the decrease in ε leaves σF unchanged.

• Decreasing the value of µ while keeping other parameters fixed slightly decreases

the value of σF and changes the scale of σ∗ by a minimal amount. Note that here

we decrease µ by an amount, so that the hierarchy between ε and µ still remains

large.

• Increasing/decreasing n while keeping other parameters fixed strongly impacts the

σF and the scale of σ∗. Also, increasing n induces fluctuations in σ∗ at large η.

• Increasing/decreasing the hierarchy between A0 and W0 while keeping other pa-

rameters fixed increases/decreases the value of σF and slightly changes the scale

of σ∗ but leaves its overall shape unchanged. Here again we do not decrease the

hierarchy between A0 and W0 too much. Also, increasing the hierarchy between
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A0 and W0 by taking W0 much smaller than its considered value increases σF and

suppresses the uplifting contribution. This slightly changes the form of σ∗ near the

origin.

• Changing the set of compactification parameters and initial conditions indicates

that the number of e-foldings produced by spinflation including non-linear harmonic

dependent corrections depends more on the subset of compactification parameters

{ε, gsM, ηUV} than on the initial conditions and is insensitive to the choice of the

remaining subset of compactification parameters {n, s, µ, A0,W0}. Comparing with

the number of e-foldings generated by spinflation including only linearized harmonic

dependent corrections each time when varying the set of parameters and initial con-

ditions shows no difference in the number of e-foldings (as Fig. 5.8).

• The γDBI-factor produced by spinflation including non-linear harmonic dependent

corrections is insensitive to the choice of compactification parameters and initial con-

ditions. Comparing with the γDBI-factor produced by spinflation with only linearized

harmonic dependent corrections each time when varying the set of parameters and

initial conditions shows no difference in the γDBI-factors (as Fig. 5.8).

The above findings show that the inflationary solution is quite robust against

harmonic dependent corrections from the D3-D7 potential and perturbations of the

warp factor not just for the specific choice of compactification parameters (5.3.79)

but for a very large set of consistent parameters.

5.4 Summary and conclusions

In this chapter we studied brane inflation in a warped string compactification incor-

porating the effects of moduli stabilization and backreaction from UV-deformations

of the warped throat geometry. The focus of our paper was on DBI brane inflation

in the warped deformed conifold with a UV/IR consistent perturbative expansion

around the noncompact ISD solution. The perturbations were dominated by IASD

fluxes sourced by moduli stabilizing wrapped D7-branes.

We computed the D3-brane potential on the entire deformed conifold includ-

ing non-linear corrections from the flux induced potential in ten-dimensional su-
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Figure 5.6: The Kähler modulus, σ∗, on the entire supergravity background with

the choice of compactification parameters (4.1).

pergravity which equals the nonperturbatively generated D3-D7 brane potential in

four-dimensional supergravity. For a simple choice of a trajectory on the deformed

conifold, we integrated out the Kähler modulus and reduced the D3-brane potential

to a simple two-field potential depending on radial and harmonic directions of the

deformed conifold. We integrated out the Kähler modulus by full numerical compu-

tation determining its exact functional form on the entire supergravity background

including both the IR and UV regions. We found that a UV/IR consistent pertur-

bative expansion in the supergravity potential with the Kähler modulus integrated

out within the adiabatic approach in DBI inflation requires certain hierarchies of

scales that determine the set of compactification parameters different from those in

slow-roll models.

For the consistent choice of parameters and the numerically computed Kähler

modulus, we integrated the D3-brane equations of motion in the warped deformed

conifold with harmonic dependence from the D3-brane potential and perturbations

of the warp factor. We found that our numerical solutions are quite robust against

non-linear perturbations including harmonic dependent corrections from perturba-
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supergravity background with the choice of compactification parameters (4.1).
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tions of the warp factor and the D3-D7 brane potential. In particular, we found

that harmonic dependent corrections from the D3-D7 potential and perturbations

of the warp factor do not have the effect of increasing the number of e-foldings

and decreasing the γDBI-factor. We therefore conclude that the most leading order

harmonic dependent correction to brane (spin)inflation comes from the linearized

corrections analysed in [1] with the level of non-Gaussianity remaining large.

Our analysis can be extended in several ways. One direction would be to con-

sider different embedding functions for D7-branes with different trajectories on the

deformed conifold and see how this may affect the inflationary solutions. Despite

the fact that different embedding functions for D7-branes and different trajectories

on the deformed conifold modify the functional form of the supergravity potential,

the Kähler modulus and perturbations of the warp factor, we expect this to have a

subdominant effect on the number of e-foldings and the γDBI-factor. It would also

be interesting to consider the possibility of a dynamical Kähler modulus (instead of

stabilized) [106], and integrate the brane equations of motion for a less restricted

choice of parameters. Since taking the Kähler modulus field dynamical adds to the

number of brane equations of motion, we expect this to have a less trivial impact on

the inflationary solutions, though we do not expect this to decrease the γDBI-factor

by an appreciable amount.

The other, perhaps more interesting way of extending our analysis is to con-

sider further corrections to the inflaton action and analyse in detail the effects of

cosmological perturbation theory. One particular correction comes from the contri-

bution of the flux induced potential of harmonic type [57]. The flux induced D3-D7

potential that we considered in our inflationary analysis came from the holomor-

phic solution of the noncompact supergravity equation of motion which described

non-linear perturbations around the ISD solution. Since the general solution should

be harmonic rather than just holomorphic it would be necessary to include such

harmonic contributions which have not been computed for the deformed conifold to

date.

Another correction to the inflaton action arises from departures of the noncom-

pact limit [57] considered in this paper. Despite the fact that our Planck-mass was



5.4. Summary and conclusions 124

set large by the UV-scale we considered, it would be interesting to consider possible

departures from the noncompact limit and compute further contributions to the D3-

brane potential from coupling to curvature corrections which also induce harmonic

dependence in brane motion [57]. In particular, coupling to the Ricci-scalar intro-

duces a non-minimal coupling in the DBI action which corrects the γDBI-factor and

may have the capacity of decreasing the level of non-Gaussianity significantly [102].

It would be interesting to confirm this result in the concrete supergravity set up con-

sidered in this paper and investigate its implications for cosmological perturbations

in more detail [107] in our framework.

Finally, it would be important to confirm whether in our supergravity set up mul-

tifield effects (e.g. from phase transition) induced by an instability along harmonic

directions [108] do have the capacity to evade stringent constraints in cosmologi-

cal perturbations for single field inflationary models. Moreover, it would be very

interesting, though formidable, to consider our DBI brane inflation model along a

trajectory on the deformed conifold depending on all six directions and extract the

full multifield effects for cosmological perturbations in a UV/IR consistent expansion

and make contact with some of the results obtained in [109] by taking the singular

conifold limit. We shall leave the investigation of these for the future.



Chapter 6

Summary and conclusions

On contrary to the D-brane inflationary models constructed to realise slow-roll in-

flation in string theory, in string theory inflation can occur by the DBI effect with

high speed and steep potentials. In this thesis we have investigated the embedding

of inflation into string theory in the framework of DBI brane inflation scenario. We

started with the simplest and most famous multifield DBI brane inflation scenario

in IIB supergravity known as spinflation. We proceeded by including the effects of

moduli stabilization in this brane inflation scenario. These effects were introduced by

perturbations around the ISD solution described by the noncompact ten-dimensional

supergravity equation of motion. We considered the action of the D3-brane on the

warped deformed conifold subject to perturbations around the ISD solution. We

derived the simplest D3-brane potential and equations of motion including beside

the usual radial direction only one harmonic direction from perturbations around

the ISD solution. The main focus of our analysis was on a UV/IR consistent per-

turbative expansion around the noncompact ISD solution. For a UV/IR consistent

perturbative expansion, we determined the set of compactification parameters and

solved the D3-brane equations of motion with harmonic dependence from perturba-

tions around the noncompact ISD supergravity solution.

We first studied spinflation subject to linearized perturbations around the ISD

solution described by the homogeneous solution of the noncompact supergravity

equation of motion (i.e. the Laplace equation). We obtained the leading order har-

monic dependent correction to the D3-brane potential from the simplest solution of

125
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the Laplace equation on the warped deformed conifold. We analysed the parame-

ter space and found that multifield brane motion is more sensitive to the choice of

compactification parameters than to initial conditions.

We derived and solved the D3-brane equations of motion with harmonic de-

pendence from linearized perturbations around the ISD solution. For a UV/IR

consistent choice of parameters, our numerical solutions showed that linearized har-

monic dependent corrections to multifield brane motion increases the inflationary

capacity, compared to multifield brane motion without such corrections. However,

our numerical solutions revealed in each case a very large level of non-Gaussianity

rendering these multifield brane inflationary models unsatisfactory.

We then extended our analysis by studying spinflation subject to higher order

non-linear perturbations around the ISD solution described by the inhomogeneous

holomorphic solution of the ten-dimensional noncompact supergravity equation of

motion the flux induced potential of which equals the nonperturbatively generated

D3-D7 brane potential in four-dimensional supergravity. This extension was partly

motivated by the fact that such non-linear corrections could potentially increase the

inflationary capacity and decrease the level of non-Gaussianity. We derived the D3-

D7 brane potential on the warped deformed conifold depending on the functional

form of the Kähler modulus and that of D7-branes including harmonic dependence

from perturbations of the warp factor. For the Kuperstein embedding of D7-branes

we computed the Kähler modulus numerically and determined its exact functional

form valid in both of the UV and IR regions of the warped deformed conifold. We

found that integrating out the Kähler modulus within the adiabatic approximation

in DBI inflation requires certain hierarchies of scales that determine the compacti-

fication parameters different from those in slow-roll models.

We derived and solved the D3-brane equations of motion with harmonic depen-

dence from perturbations of the warp factor and the D3-D7 brane potential. For

the UV/IR consistent choice of parameters and the numerically computed Kähler

modulus, our numerical solutions showed that non-linear harmonic dependent cor-

rections to brane motion do not have the effect of increasing the inflationary capacity

and decreasing the level of non-Gaussianity, compared to brane motion with only
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linearized harmonic dependent corrections. Therefore, we conclude that the lead-

ing order harmonic dependent corrections to multifield brane motion comes from

linearized corrrections with the level of non-Gaussianity remaining large.

The main issue that we have not discussed in this thesis is cosmological pertur-

bation theory. In particular, throughout this thesis we considered the observable

noncompact four-dimensional universe to be perfectly homogeneous with the metric

having the exact FRW form. In addition to that, we took the metric on the internal

compact manifold to be the leading order Calabi-Yau metric. Clearly, the next step

for extending our analysis would be to consider departures from such backgrounds

including curvature corrections and fluctuations about the noncompact limit.



Appendix A

Rudiments of Calabi-Yau spaces

In this appendix we discuss some of relevant aspects of Calabi-Yau manifolds used

in the thesis, following closely [110, 111] and [26, 27]. We first outline the nonlinear

sigma-model leading to Ricci-flat Kähler manifolds known as Calabi-Yau manifolds.

We then discuss the cohomology of Calabi-Yau three-folds and complete intersection

Calabi-Yau three-folds which will be needed for our main discussion including the

moduli space of Calabi-Yau manifolds and their conifold points.

A.1 The nonlinear sigma-model

The most popular approach to superstrings is to consider 1 + 1-dimensional super-

conformally invariant quantum field theories over the world-sheet. The world-sheet

denoted Σ is embedded in ten-dimensional spacetime denoted M9+1 and our four-

dimensional spacetime denotedM3+1 emerges upon compactification by whichM9+1

is replaced by M3+1 ×M, whereM is an internal manifold. In this approach it is

natural to consider the space of mappings Xµ(σ) from the world-sheet Σ into the in-

ternal manifoldM, equipped with the action functional describing the propagation

of superstrings

SM =
1

πα′

∫
{(Bµν̄ + iGµν̄)(∂̄X

µ∂X ν̄)−
(
Bµν̄ − iGµν̄

)
(∂Xµ∂̄X ν̄)}

+SUSY completion · · ·

(A.1.1)

128
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which is the integrated total ‘energy’ of Σ immersed inM. Here, Gµν̄(X) is a general

Hermitian metric onM, Bµν̄(X) is the antisymmetric tensor, the dilaton Φ1 involves

the diagonal part of Gµν̄ and
∫
Σ

is the reparametrization invariant integration over

the world-sheet Σ. A field theory such as (A.1.1), in which the kinetic term is field-

dependent and so field space is effectively a curved manifold, is known as a non-linear

sigma-model. The sigma-model is chosen to have full (2, 2)-supersymmetry on the

world-sheet, the background (vacuum) metric is Kähler and the background value

of Bµν̄ vanishes:

SM =

∫
Σ

d2σd2ξd2ξ̄K(X, X̄) (A.1.2)

Gµν̄(X, X̄) = ∂µ∂ν̄K(X, X̄)
∣∣
ξ=ξ̄=0

,

where (σ0, σ1; ξ±, ξ̄±) denote the coordinates of the (2, 2)-super Riemann surface of

genus gΣ, X
µ are the coordinate chiral superfields and ∂µ = ∂/∂Xµ. The required

conformal invariance of the sigma-model implies that Gµν̄ is Ricci-flat, to lowest

order. Thus the internal manifold is a Ricci-flat Kähler manifold known as Calabi-

Yau manifold, which we turn to discuss now.

A.2 Kähler manifolds

A complex manifold X is a real, even-dimensional manifold equipped with a geomet-

ric structure called a complex structure. To see how the complex structure comes

about, let X be a real, even-dimensional manifold. We define an almost complex

structure J on X to be a smooth tensor J ba on X satisfying J baJ
b
c = −δca. Let v be a

smooth vector field on X, written va in index notation, and define a new vector field

Jv by (Jv)b = J bav
a. Therefore J operates linearly on vector fields. The equation

J baJ
b
c = −δca implies that J(Jv) = −1, so that J2 = −1. It is indicative that J gives

each tangent space TpX the structure of a complex vector space. By gluing these

spaces together we obtain a tangent bundle denoted TX and the almost complex

structure is associated with endomorphism J of the tangent bundle satisfying:

1As briefly discussed chapter 2, these form the bosonic content of string spectrum.
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J : TX → TX with J2 = −id. (A.2.3)

For all smooth vector fields v and w on X, we may define a vector field NJ(v, w) by:

NJ(v, w) = [v, w] + J([Jv, w] + [v, Jw])− [Jv, Jw], (A.2.4)

where [ , ] is the Lie bracket of vector fields. The vector field NJ is a tensor, meaning

that NJ(v, w) is pointwise bilinear in v and w. NJ is often called the Nijenhuis tensor

of J . If NJ ≡ 0 we then call J a complex structure and X a complex manifold.

Clearly the eigenvalues of J are ±i associated with are the eigenspaces T 1,0 and

T 0,1, called the holomorphic and antiholomorphic tangent bundle, respectively. The

tangent bundle of X can be written as the direct sum of these subspaces

TCX = T 1,0X ⊕ T 0,1X. (A.2.5)

On a complex manifoldX, we may also denote the holomorphic cotangent bundle

T ∗
CX for holomorphic complex dual of TCX on X and have

T ∗
CX = (T ∗X)1,0 ⊕ (T ∗X)0,1. (A.2.6)

The cotangent bundle T ∗X is also identified with the bundle of holomorphic one-

forms denoted Ω1
X . The bundle of holomorphic n-forms (also called holomorphic

volume forms) is the determinant bundle of T ∗X

Ω = ∧nΩ1
X = detT ∗X

def
= KX (A.2.7)

On an almost complex manifold X one has the complex vector bundles

∧k

C
X

def
=
∧k

(TCX)∗ and
∧p,q

X
def
=
∧p

(T 1,0X)∗ ⊗
∧q

(T 0,1X)∗. (A.2.8)

Their (sheaves of) sections are denoted by AkX and Ap,qX , respectively. Elements in

Ap,q(X), i.e. sections of Ap,qX , are called (p, q)-forms. There exists a natural direct

sum decomposition in terms of these (p, q)-forms
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∧k

C
X =

⊕
p+q=k

∧p,q

C
X and AkX,C =

⊕
p+q=k

Ap,qX , (A.2.9)

the complex conjugation of which is given by

∧p,q
X =

∧q,p
X Ap,qX = Aq,pX . (A.2.10)

If d : AkX,C → Ak+1
X,C is the C-linear extension of the exterior differential, then we may

write d = ∂ + ∂̄ and define the nilpotent operators

∂ : Ap,qX −→ Ap+1,q
X ∂ · ∂ = 0, (A.2.11)

∂̄ : Ap,qX −→ Ap,q+1
X ∂̄ · ∂̄ = 0. (A.2.12)

Using this, we may define the (p, q)-Dolbeault cohomology as

Hp,q(X)
def
=

Ker(∂̄ : Ap,q(X) −→ Ap,q+1(X))

Im(∂̄ : Ap,q−1(X) −→ Ap,q+1(X))
. (A.2.13)

The topological invariants are the Hodge numbers defined by:

hp,q
def
= dimHp,q

∂̄
(X) (A.2.14)

Every complex manifold X underlies a real manifold which is Riemanian if en-

dowed with a Riemanian metric g. If the for any point x ∈ X the scalar product

gx on TxX is compatible with the almost complex structure (A.2.3) Jx, then the

metric g is called Hermitian and the complex manifold is called an Hermitian man-

ifold. Associated with an Hermitian metric g on X is the fundamental (1, 1)-form

ω
def
= g(JX, Y ), which in terms of local coordinates reads as

ω
def
= igµν̄dz

µ ∧ dzν̄ . (A.2.15)

This fundamental form is called Kähler form if it is closed,

dω = 0. (A.2.16)

In this case the Hermitian metric gµν̄ is Kähler and the complex Hermitian manifold

M is a Kähler manifold. The cohomology class of ω is called the Kähler class and
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the space of choices of the Kähler class forms the Kähler cone (for more detail see

below). Locally, the Kähler metric can be expressed in terms of the the Kähler

potential K(z, z̄) as

gµν̄ =
∂

∂zµ
∂

∂z̄ν̄
K(z, z̄). (A.2.17)

The Kähler potential need not to be globally defined. The potential

K′(z, z̄) = K(z, z̄) + f(z) + f(z)∗ (A.2.18)

gives the same metric. This transformation is called Kähler transformation.

Equipped with an Hermitian metric on X we may consider the Hermitian scalar

product 〈α, β〉 for any α, β ∈ Ap,q and define the adjoint operators ∂̄† and ∂† with

respect to this Hermitian product

〈∂̄†α, β〉 def
= 〈α, ∂̄β〉, 〈∂†α, β〉 def

= 〈α, ∂β〉. (A.2.19)

In more detail, according to the Hodge ∗-operator

∗ : Ap,q −→ An−q,n−p, (A.2.20)

we may define the adjoint operators as

∂̄†
def
= − ∗ ∂̄ ∗ ∂†

def
= − ∗ ∂ ∗ . (A.2.21)

Given these adjoint operators, we may define the Laplacian on X as

∆∂̄
def
= ∂̄†∂̄ + ∂̄∂̄†, ∆∂

def
= ∂†∂ + ∂∂†. (A.2.22)

Clearly, the Laplace operators respect the bidegree,

∆∂̄, ∆∂ : A
p,q(X) −→ Ap,q(X). (A.2.23)

A form α ∈ Ak(X) annihilated by the Laplacian, i.e. ∆∂̄(α) = 0, is called “∂̄-

harmonic”. The space of harmonic forms are denoted by

Hk
∂̄(X)

def
= {α ∈ AkC(X) | ∆∂̄(α) = 0}, (A.2.24)
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Hp,q

∂̄
(X)

def
= {α ∈ Ap,qC (X) | ∆∂̄(α) = 0}. (A.2.25)

In a similar way, one defines ∂-harmonic forms and the spaces Hk
∂(X) and Hp,q

∂ (X).

The spaces Hk
∂(X) and Hk

∂̄
(X) respect the bidegree decompositions

Hk
∂̄(X) =

⊕
p+q=k

Hp,q

∂̄
(X), Hk

∂(X) =
⊕
p+q=k

Hp,q
∂ (X). (A.2.26)

The Hodge ∗-operator induces C linear isomorphisms

∗ : Hp,q

∂̄
(X) ' Hn−q,n−p

∂ (X). (A.2.27)

If the Hermitian manifold is compact, then we have a non-degenerate pairing

Hp,q

∂̄
(X)×Hn−q,n−p

∂ (X) −→ C, (α, β) −→
∫
X

α ∧ β. (A.2.28)

This give the Serre duality on the level of harmonic forms

Hp,q

∂̄
(X) ' Hn−q,n−p

∂ (X)∗. (A.2.29)

On a Kähler manifold both decompositions (A.2.26) coincide the and for Laplace

operators (A.2.22) we have

∆∂ = ∆∂̄. (A.2.30)

Furthermore, on a Kähler manifold there exists the decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X). (A.2.31)

There are also the following relations:

• Hodge star duality

∗ : Hp,q(X) ' Hn−q,n−p(X) (A.2.32)

• Complex conjugation

Hp,q(X) = Hq,p(X), (A.2.33)
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• The Serre duality (A.2.29) yields

Hp,q(X) = Hn−p,n−q(X)∗. (A.2.34)

According to these relations, we can write down the Hodge numbers of a compact

Kähler manifold X as

bk =
k∑
j=0

hj,k−j, hp,q = hq,p = hm−p,m−q = hm−q,m−p. (A.2.35)

Apart from cohomology groups which describe important properties of X, there are

holonomy groups which classify such manifolds. On a manifold X, we may consider

parallelly transporting a vector ~vp tangent to X at p ∈ X, along a closed path

back to p. The transformation required to bring the parallelly transported vector

~v ′
p back to the original ~vp is called holonomy. The set of such transformations,

parameterized by closed paths in X containing p forms a group called holonomy

group, which is independent of the choice of p ∈ X. In the case contractible paths,

the resulting group is called the restricted holonomy group, which is isomorphic to

the holonomy algebra. On a n-dimensional Kähler manifold the holonomy algebra

must be contained in u(n) . The Riemann tensor simplifies to

R σ̄
µν̄ρ̄ = ∂µΓ

σ̄
ν̄ρ̄ = R σ̄

µρ̄ν̄ , Γ σ̄
ν̄ρ̄ = gτσ̄∂n̄ugτ ρ̄, (A.2.36)

and the Ricci-tensor takes the form

Rµν̄
def
= R σ̄

µσ̄ν̄ = R σ̄
µν̄σ̄ . (A.2.37)

On a Kähler manifold the Ricci-tensor can be written in the form

Rµν̄ = ∂µ∂ν̄ ln g
1/2, g1/2 = Det[gµν̄ ]. (A.2.38)

An important example of a Kähler manifold is the complex projective space Pn,

where ln g1/2 is the Fubini-Study metric. Associated with the Riemann tensor is

the u(n)-valued Riemann (1, 1)-form



A.3. Calabi-Yau manifolds 135

Θσ̄
ρ̄

def
= dzµ ∧ dzν̄R σ̄

µν̄ρ̄ , (A.2.39)

and the corresponding Ricci (1, 1)-form is given by

Θ
def
= Θρ̄

ρ̄, (A.2.40)

which is the u(1)-valued trace of the Riemann (1, 1)-form. As we shall briefly discuss

in the next section, in superstring compactifications only manifolds of special holon-

omy for which the Ricci (1, 1)-form and hence the Ricci tensor vanishes, guarantee

the resulting 3 + 1-dimensional model to be physically consistent.

A.3 Calabi-Yau manifolds

In string theory it is well known that strings propagate in 9+1-dimensional Minkowski

spacetime (denotedM9+1). In order to obtain the usual 3+1-dimensional Minkowski

spacetime (denoted M3+1) one has to compactify M9+1 by replacing it with M3+1×

M. As we shall discuss below, the phenomenologically motivated N = 1 local su-

persymmetry and other consistency requirements imply that M is a Calabi-Yau

space. This ansatz was originally introduced in [25] by taking the ‘point-field limit’

restricting in the outset to the massless modes of the 9+1-dimensional string theory

with the assumption thatM is smooth.

A.3.1 Motivation

The first attempt in superstring compactifications was to make the heterotic string

physically realistic. This involves restricting to the massless modes and replacing the

9+1-dimensional Minkowski spacetime,M9+1, with a product of a 3+1-dimensional

maximally symmetric spacetime and some ‘internal’ compact manifoldM. For the

3+1-dimensional model to have N = 1 supersymmetry, consistency will require the

3 + 1-dimensional spacetime to be Minkowskian, M3+1, andM to be Ricci-flat and

Kähler if Riemannian.

The supersymmetry parameter in the original heterotic string model is a spinor

transforming as the 8S representation of the SO(8) helicity subgroup of the Lorentz
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group SO(1, 9). By compactifying M9+1 to M3+1 ×M, the helicity subgroup gets

broken to SO(2) × SO(6) and the 8-component spinor yields four 2-component

spinors of SO(2), which correspond to four independent supersymmetries in the 3+1-

dimensional sense. For parametrizing theN = 1 supersymmetry of the effective 3+1-

dimensional model, one and only one linear combination of these is needed. To have

no prefered spinor in the 3+1-dimensional effective model, the background values of

fermionic fields are chosen to vanish. Consistency then requires the supersymmetry

transformations to preserve this ansatz along one of the component supersymmetries.

The supersymmetry transformations take the form:

δε〈B〉 = ε · 〈F〉, δε〈F〉 = ε · 〈B′〉. (A.3.41)

Here ε parametrizes the supersymmetry transformations, 〈B〉 and 〈F〉 depend on

the background fields and transform as tensorial (spinorial) representations of the

Lorentz group. The condition 〈F〉 = 0 requires 〈B′〉 = 0, which constrains the

various background fields relating to M and by that determines its geometry, the

vacuum configuration. Furthermore, it is assumed thatM3+1 has maximal symmetry

making it Minkowskian order by order in the string tension α′, and the connection

onM is chosen to be torsion-free leaving only Riemannian candidates forM. The

(later) manifolds are in part classified by their holonomy groups (see previous sec-

tion). Now note that spinors in odd-dimensional spaces are pseudoreal, so if the

M contains an odd-dimensional factor the emerging 3 + 1-dimensional model will

have to have particles of both helicities. This would accompany the left handed

neutrino with a right handed neutrino, in gross contradiction with experiment. This

contradiction can be avoided only if, M has su(3) holonomy for which one spinor

together with its conjugate is invariant under holonomy and taken to be covariantly

constant on M and will guarantee N = 1 supersymmetry in M3+1. Recall from

the previous section that on a n-dimensional Kähler manifold the holonomy algebra

must be contained in u(n) ≈ su(n) × u(1), where u(1) is generated by the trace

of the u(n) generators. Being interested in the (complex) three-dimensional case

and wanting the holonomy to be su(3) instead of the full u(3), there must exist a

metric for which the Ricci (1, 1)-form (A.2.40) and hence the Ricci-tensor (A.2.37)
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vanishes. Kähler manifolds of this special type are known as Calabi-Yau manifolds,

the existence of which was first conjectured by Calabi and then proven by Yau.

A.3.2 Calabi-Yau three-folds

Now given a complex manifold X over which l is a holomorphic line bundle with a

nontrivial global holomorphic section f , we can define a subspaceM⊂ X to consist

of all points x ∈ X for which f(x) = 0. Considering f as a mapping that takes

all points x ∈ M ⊂ X to 0, we write M = f−1(0) and call M a hypersurface in

X. The hypersurface M fails to be a complex submanifold if f is singular, which

is the case when there is at least one point where both f and all its gradients ∂µf

vanish. On the contrary, if at every point x ∈ X at least one section if l is nonzero,

the a generic section of l defines a nonsingular hypersurfaceM def
= f−1(0). IfM has

three complex dimensions and is Ricci-flat Kähler with SU(3) holonomy it defines

a Calabi-Yau three-fold.

One way to describe a Calabi-Yau three-fold M is to look at its cohomology

groups Hp,q

∂̄
(M), where hp,q

def
= dimHp,q

∂̄
(M). We note that any compact Kähler

manifold with trivial canonical bundle is Ricci-flat. Thus by a Calabi-Yau three-

fold we mean (here) a compact Kähler manifold of dimension n = 3 with trivial

canonical bundle. The triviality of the canonical bundle means that M has to

admit a nonsingular and nowhere vanishing holomorphic volume form Ω such that

Ω′ = λΩ. Now given the nowhere vanishing holomorphic three-form Ω on our three-

foldM, we get the following isomorphism:

Ω : TM ∼−→ ∧2T ∗M, (A.3.42)

which yields

Ω : Hq(M, TM)
∼−→ H2,q(M). (A.3.43)

This means that to every holomorphic tangent vector vµ, there is a projectively

unique holomorphic two-form ωνρ
def
= vµΩµνρ. Thus the three-form Ω is the (trivial)

section of the of the trivial canonical bundle KM ≈ CM. The triviality implies that
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the Serre duality

Hq(M,V)∗ ≈ H3−q(M,V ⊗ KM) (A.3.44)

simplifies to the following relation with ⊗KM dropped

Hq(M, TM)∗ ≈ H3−q(M, T ∗M). (A.3.45)

This together with (A.3.42) implies

H2,q(M)∗ ≈ H3−q(M, T ∗M) ≡ H1,3−q(M). (A.3.46)

In addition to this, because of H3,0(M) ≈ C there is a new duality giving

Hp,0(M)? ≈ H3−p,0(M). (A.3.47)

By using the holomorphic duality relations (A.3.45) and (A.3.47) together with

with Hodge star duality (A.2.32) and complex conjugation (A.2.33) we can derive

the Hodge numbers of Calabi-Yau three-folds. To derive the Hodge numbers, hp,q,

on Calabi-Yau three-fold we first note that hp,q ≡ 0 for p + q > 6. The rest of

the (nonvanishing) Hodge numbers on Calabi-Yau three-folds can be determined as

follows. Hodge star duality (A.2.32), hp,q = hn−q,n−p, with the assumption that the

manifolds that we are considering have a single connected piece which for complex

three-folds h3,3 = 1 implies h3,3 = h0,0 = 1. The combination of Hodge star duality

with complex conjugation (A.2.33), hp,q = hq,p, implies h3,2 = h2,3 = h0,1 = h1,0. The

combination of Hodge star duality with complex conjugation, and the holomorphic

duality relations (A.3.45) and (A.3.47), h0,q = h0,3−q and hp,0 = h3−p,0, implies

h3,0 = h0,0 = 1 and h3,1 = h1,3 = h2,0 = h0,2 = h1,0. To determine h1,0 we note that

for any harmonic s-form ω we may write:

F (ω) = Rn
mω[nr2···rs]ω

[nr2···rs] +
s− 1

2
Rn q
m pω[nqr3···rs]ω

[mpr3···rs], (A.3.48)

where Rn
m and Rn q

m p are Ricci and Riemann tensors, respectively. Then, if F (ω)

is positive semi-definite, ω is covariently constant. Now choosing the Ricci-flat



A.3. Calabi-Yau manifolds 139

metric on our Calabi-Yau three-fold, Rn
m = 0, implies F (ω) ≡ 0 for one-forms.

Thus the for ω to be harmonic it also has to be covariently constant. But on the

other hand we know that ω cannot be covariently constant because it transforms as

3⊕ 3∗ under SU(3) holonomy and therefore transforms nontrivially under parallel

transport. Hence h1 = h1,0 = h0,1 = 0. In total, for Calabi-Yau three-folds thw

Hodge numbers are:

h3,1 = h1,3 = h2,0 = h0,2 = h1,0 = 0, h3,3 = h3,0 = h0,3 = h0,0 = 1 (A.3.49)

Thus the only Hodge numbers that remain undetermined are:

h1,1, h2,1 = h1,2 (A.3.50)

The Hodge numbers h1,1 and h2,1 give number of possible Kähler forms and the

dimension of the moduli space of complex structures, respectively (see Sec. 4 below).

The question that arises here is whether one can find coordinates on moduli space

and construct the explicit form of the metric. As we shall discuss below, for a special

class of complete intersection Calabi-Yau three-folds, known as conifolds, the explicit

form of the metric can be constructed (see Sec. 5 below).

A.3.3 Complete intersection Calabi-Yau 3-folds

One of the simplest and most popular ways of constructing Calabi-Yau manifolds is

to consider hypersurface solutions in Pn. The submanifold in Pn is Kähler (inheriting

this property from Pn) and vanishing of the restriction to hypersurface of the Ricci-

tensor computed from the restriction of the Fubini–Study metric on Pn yields Calabi-

Yau manifold as Polynomial solution of degree q = n+1. This can be generalized to

a complete intersection of hypersurfaces in a product of complex projective spaces

given by

M
def
= Pn1 × · · · × Pnmm . (A.3.51)

By definition a complete intersection manifold is a manifoldM embedded as a

complete intersection of hypersurfaces
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M = X1 ∩ · · · ∩XK ↪→M . (A.3.52)

Here M is the embedding space and each hypesurface Xa is defined as the zero

locus of a suitably chosen holomorphic polynomial

Xa : fa(z(1), ..., z(m)) = 0, a = 1, ..., K, (A.3.53)

which is homoneneous of degree qra with respect to the homogeneous coordinates of

z(r) of Pnrr .

Each homogeneous polynomial fa can be regarded as a holomorphic section of

the line bundle

E =
K⊕
n=1

Ea, Ea
def
=
⊗
r

Or(qra), (A.3.54)

where Or(1) stands for the hyperplane line bundle over Pnrr .

Now let E be a vector bundle over M the sections of which form the defining

system of constrains for the embedded three-foldM. We may define a configuration

by a pair [M ||E ] being a matrix of an m-dimensional positive integer valued column

vector nr and an m×K-dimensional positive valued matrix qra of the form:

Pn1

...

Pnm


q11 . . . q1K
...

. . .
...

qm1 . . . qmK

 . (A.3.55)

The configuration consists of the family of all complete intersections defined by

a system of polynomial constrains which are represented by a configuration matrix

and parametrized by the space of coefficients. This collection of varieties forms a

deformation class. The configuration is represented by a configuration matrix and

for a specific member of the configuration, i.e. a complete intersection space M,

one has:

M̌ ∈
Pn1

...

Pnm


q11 . . . q1K
...

. . .
...

qm1 . . . qmK

 . (A.3.56)
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We also note that

dimM = dimM −K, dimM =
m∑
r=1

nr. (A.3.57)

The condition that each member of the configuration [M ||E ] admits a Ricci-flat

Kähler metric is:

K∑
n=1

qar = n+ 1 (A.3.58)

We now would like to discuss a particular example of a configuration which will

lead us to the conifold. Consider the configuration

M̌ ∈
P5

P1

4 1 1

0 1 1

 . (A.3.59)

The defining equations of this configuration are encoded by the columns of this

matrix and can be written in the form

Q(x) = 0,

x1y1 + x2y2 = 0, (A.3.60)

x3y1 + x4y2 = 0.

Alternatively, we may rewrite the above configuration as

M̌ ∈
Υ

P1

1 1

1 1

 (A.3.61)

with Υ being the quartic 4-fold in P5 described by choice of transverse polynomials

Q(x) =
∑6

a=1(x
a)4 = 0.

By choosing any specific value for x ∈ Υ, (A.9) is reduced to a linear set of

equations in the variable y1 and y2. Regarding y1 and y2 as the coordinates of

P1 means that both of them cannot vanish and therefore the determinant of the

coefficients must be zero:

C(x) def
= x1x4 − x2x3 = 0. (A.3.62)
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This equation describes a Calabi-yau hypersurfaceM] ⊂ Υ obtained by the projec-

tionM] = ℘(M̌) along P1 in (A.9). To see thatM] is singular at x1, x2, x3, x4 = 0,

note thatM] is the intersection of the quartic Q(x) = 0 and the quadric C(x) = 0

in P5, and that Q(x), C(x), and d C(x) vanish at x1, x2, x3, x4 = 0. The choice

Q(x) =
∑6

a=1(x
a)4 requires the singular points to be at (0 : 0 : 0 : 0 : 1 : ω), where

ω = −1. Singularities from such projections arise at points and are nodes (see next

section). Finally, we note that the singularity ofM] can be smoothed out (see next

section) by considering a quadric perturbation in the defining equation (A.3.62) of

M] ⊂ Υ, i.e. C(x) = r2(x) = t ·
∑6

a=1(x
a)2, which is non-zero at the nodes ofM]

and defines for small t 6= 0 a non-singular quadricM[
t in Υ in P5.

A.4 Nodes and smoothings

In this section we discuss nodes and smoothings. This together with the discussion

of the previous subsection enables us to discuss the conifold and moduli space of

Calabi-Yau manifolds in the next sections.

A.4.1 Smoothings in general

Given a singular complex manifold M containing an isolated singular point p, we

smoothM into M̂ by replacing p ∈M with something bigger, called an exceptional

set E. These sets are seen as formal sums of noncontractable subspaces of the

resolved space M̂. In this way, one smoothesM into M̂ by stretching the singular

points into bigger-than-zero dimensional exceptional sets. In a real six-dimensional

space, this may be achieved by replacing the singular point p with exceptional sets

of dimRE = 1, 2, 3, 4, 5. However, The cases dimRE = 1 and dimRE = 5 are

related by Poincare duality and are uninteresting by the following reason. The case

dimRE = 1 corresponds to exceptional sets of noncotractable circles and would

imply that H1(M̂) - and hence H1(M̂) - would become nonvanishing, the holonomy

of M̂ would have to be a proper subgroup of SU(3), resulting either N = 2 or no

supersymmetry, either case of which seem to be not physically relevant. Thus the

remaining relevant cases are dimRE = 2, 3 or 4.
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• In the case dimRE = 3, the isolated singular point p ∈ M is replaced by a 3-

dimensional exceptional set E. Locally, the nocompact manifoldsM−p and M̂−E

are distinct as complex manifolds but in ‘real’ sense they are diffeomorphic. Thus

something in dimRE = 3 deforms the complex structure and one refers to this as

deformation.

• The cases dimRE = 2 and dimRE = 4 correspond to dimCE = 1 and dimCE = 2,

respectively. In these cases, the exceptional sets E are complex subsets of the

smoothed 3-dimensional manifold M̂, and because of this M− p and M̂ − E are

the same noncompact complex manifold. We say resolving in codimension 2 and 1,

respectively. The case dimRE = 2 is called blowing up whereas the case dimRE = 1

is called small resolution, which turn to discuss now.

A.4.2 Nodes and small resolution

One of simplest cases in which small resolutions occur is called hypersurface singular-

ity. In the case of hypersurface singularity, we describe the singularity by prescrbing

its local neighbourhood as the solution of a single constraint in C4. Clearly, the

resulting space is singular if all four gradients have a common zero–and precisely

one–if we discuss isolated hypersurface singular points. The singular point can be

placed at the origin through a simple coordinate transformation.

A node and the cone over P1 × P1

The simplest hypersurface singular point in a three-fold is called a node. The node

takes place at the tip of the cone in C4, and its defining equation takes the form

xy = zt. (A.4.63)

The defining polynomial of the cone containing the node take the form

ψ
def
= xy − zt. (A.4.64)

The total Differential of this is
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dψ
def
= dx · y + x · dy − dz · t− z · dt. (A.4.65)

At the origin where the node is placed all four gradients have common zero and

we have dψ = 0. In order to find the base of this cone, we may projectivize and

regard the four coordinates as (x : y : z : t) ∈ P 3. For ψ = 0, we obtain then a

non-degenerate quadric in P3 as the only degenerate point, (0, 0, 0, 0, 0) ∈ C 4 is not

in P3, by definition. We note that a smooth quadric in P3 is equal to P1 × P1 and

the cone has C1-type generators sweeping over a base P1 × P1.

As discussed in the previous section, in codimension 2 the singularity can be

resolved by replacing it with an exceptional set. Here, this amounts replacing the

node with a copy of a P1. This leads to a topological ambiguity because the base of

the cone is the product of two P1’s. In fact, with three-folds containing many nodes

at each node this ambiguity occurs. Thus for a three-fold with N nodes there are 2N

distinct small resolutions. We can regard these small resolutions as halfway blow-up

by which the vertex of the quadratic cone is replaced by a surface F0 = P1× P1: by

collapsing one of the two P1’s in F0 we can obtain one or the other small resolution.

The transition from one small resolution of the node to the blow-up and then to the

other small resolution yields a bijective map called flop.

A node and the cone over S2 × S3

The other way to describe the cone is to change the coordinates and write the

defining polynomial of cone as

ψ =
4∑

α=1

(wα)2, (A.4.66)

where wα ∈ C4 can be thought of as a four-vector w. ψ = 0 describes a surface

which is smooth except at wα = 0. To see that this surface is a cone, note that if wα

solves ψ = 0 then so does λwα = 0 for any λ, so the surface is made of complex lines

through the origin and is therefore a cone. In order to obtain the base of this cone,

we may write the four-vector w in terms of real and imaginary parts, w = x + iy,

and for ψ = 0 we get
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x2 − y2 = 0, x · y = 0. (A.4.67)

In C4, we also have a 7-sphere of radius r described by the equation

4∑
α=1

|wα|2 = r2. (A.4.68)

The base manifold is the cross section of the cone, ψ = 0, with the 7-sphere centered

at the origin of C4. The intersection of the space of solutions of ψ = 0 with Eq.

(A.4.68) gives

x2 =
1

2
r2, y2 =

1

2
r2, x · y = 0. (A.4.69)

The first equation defines an S3 of radius r/
√
2. The second equation defines an S 2

of radius r/
√
2 since for each point of the S3, say x = (r, 0, 0, 0), the third equation

restricts y to be a 3 vector y = (0, y1, y2, y3). Thus, the base of the cone is a fiber

bundle with base S3 and fiber S2. The fact that all bundles over S3 are trivial

determines the base as the product S2 × S3, the generators of which are copies of

the real semi-axis, R≥0.

The base topology S2×S3 tells us that apart from resolving the node in P1 = S2

we can also replace it with an S3. According to the previous section, this amounts

to deformation because the exceptional set is (real) three-dimensional. The fact

that there are two P1 in the base of the complex cone may give the indication that

there are also two different choices of S3’s, fibering the phase of the generator of

the complex cone over one or the other P1. Interestingly, this not the case. The

argument is that the two S3’s can be rotated into each other implying that there

is no topological ambiguity in the deformation of a node. To this end we note

that the defining polynomial including the deformation of the node is given by

(A.4.66) but with ψ = ε2 instead of ψ = 0, where ε is a nonzero constant called the

deformation parameter which amounts replacing the node by an S3. Now for ψ = ε2

and w = x+ iy we have

r2 = x2 + y2, ε2 = x2 − y2, (A.4.70)
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from which we can see that ε ≤ r <∞, so r is bounded below by ε.

A.5 Moduli spaces

In this thesis we used string compactifications to Calabi-Yau three-folds. By a

Calabi-Yau three-fold, we mean a real six-dimensional manifold endowed with a

complex structure and a complexified Kähler class. Thus the effective moduli space

of Calabi-Yau three-folds consists of two moduli spaces: the space of complex struc-

tures, which we denote byM, and the complexified space of Kähler classes, which we

denote by W. The effective moduli space (M,W) is smooth at its generic points but

the moduli spaces of topologically distinct Calabi-Yau spaces do touch along certain

special regions, which are called “boundary”. These ‘interface’ regions correspond

to certain singular limits of the respective Calabi-Yau three-folds. The inclusion

of such limit points makes the moduli spaces of a huge number simply connected

Calabi-Yau spaces join together to form a ‘connected web’.

A.5.1 The conifold

The conifoldM] takes place at a common boundary point where the moduli spaces

of non-singular 3-folds like M̌ and smooth 3-folds likeM[
t meet (see Subsec. A.3.3).

In other words, the conifold can be smoothed into M̌ by a resolution and intoM[
t by

a deformation. This means that there are two topologically distinct ways to smooth

outM]:

M̌ res.←−M] def.−→M[, M[ r
2→0−→ M] ℘←− M̌. (A.5.71)

In this process the moduli spaces of all simply connected Calabi-Yau manifolds

form a connected web. In this large number of Calabi-Yau spaces conifolds arise as

limit points in the two respective moduli spaces. According to Eq. (A.3.62), these

conifolds have isolated nodes each of which is locally described by a constraint of

the form

XY − UV = 0, (A.5.72)
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where X, Y, U, V serve as local coordinates. In section A.4, we saw that these local

coordinates describe a cone with the tip at the origin. We also saw there that the

node(s) can be smoothed out in two distinct ways. We now would like to analyse this

for the conifold M] defined by a determinantal equation like Eq. (A.3.62) globally

inside Υ.

A.5.2 The deformed and resolved conifold

Figure A.1: The deformation and small resolution of the singular conifold near the

singularity at the tip of the cone. This figure is from [111].

In section A.4 we saw that the open neighbourhood of the p] ∈M] ⊂ Υ around

each node looks like C4 with X,Y, Z, V acting as local coordinates. We also saw

there that this neighbourhood is a cone over the complex base P1 × P1 or the real

base S2 × S3. As in section A.4, we may use the base topology and smooth out the

nodes through deformation and small resolution including the processesM] →M[

andM] → M̌, respectively.

The caseM] →M[ is induced by perturbing the defining equation ofM] ⊂ Υ,

Eq. (A.3.62), to an equation of the form

C(x) = r2(x) = t
6∑

a=1

(xa)5, (A.5.73)

where r2 can be considered independent of X,Y, Z, V . To see this, we note that for

(A.5.73) at four nodes (0, e2π(2k+1)/8, 0, 0) with k = 0, 1, 2, 3 we have r2 = −t(i± 1),

which is clearly nonzero at t 6= 0 Hence, a node p] ∈M] occurs when r = 0 in
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x2 =
1

2
r2, y2 =

1

2
r2, x · y = 0. (A.5.74)

Thus each node is being inflated into an S3 defined by

x2 =
1

2
r2, y = 0. (A.5.75)

The case M] → M̌ is induced by replacing each node p] by one or the other

P1 from the base. This is done as follows. Away from the origin, any choice of the

values (x1, x2, x3, x4) 6= 0 fix the y1 and y2, and therefore specify unique a point

in P1. At the origin (x1, x2, x3, x4) = 0, y1 and y2 remain undetermined and M̌

contains a copy of P1 there. Projection along P1 replaces this copy of P1 by a node

of M̌. Hence this is the small resolution since each node p] is resolved into a copy

of P1 = S2 described by

S2 :
y1
y2

=
x2
x1

= −x4
x3
. (A.5.76)

This is not a unique choice. As discussed at the end of section A.4, there is a topo-

logical ambiguity underlying the small resolution. We can see this here explicitly by

noting that a node could be rather resolved into a different exceptional P1 described

by

S2 :
y1
y2

= −x3
x1

= −x4
x2
. (A.5.77)

The two inequivalent choices (A.5.76) and (A.5.77) are related by the following

transposition

 x1 x2

x3 x4

→
 x1 x3

x2 x4

 ,

which could be performed for each of the nodes independently. Recall from section

A.4, that the passage from one small resolution of a node to its other small resolution

is called flop. Here, we can flop all exceptional P1’s by interchanging x2 ↔ x3

globally. This leads to a new three-fold M̂, called the global flop of M̌.

Unlike the small resolution, the desingularization of a node by the deformation

M] → M[ does not lead to a topological ambiguity. In the discussion above, we



A.5. Moduli spaces 149

started with solving x2 = r2/2 in Eq. (A.5.74) and obtained an “S3
x” spanned by x.

In place of this, we could have started with solving y2 = r2/2 in Eq. (A.5.74) and

obtain an “S3
y” spanned by y. This may give the impression that as with the small

resolution there is a topological ambiguity underlying the deformation. To see that

this is not the case, we note that there is a continuous set of choices parametrized

by an angle:

x(θ)
def
= (x cos θ + y sin θ)/2, y(θ)

def
= (−x sin θ + x cos θ)/2. (A.5.78)

Both x(θ) and y(θ) satisfy Eq. (A.5.74), and therefore Eqs. (A.5.78) show the equiv-

alence between all such choices, including “S3
x” (θ = 0) and “S3

y”(θ = π).

A.5.3 L2 and intersection cohomology

In chapter 2 we have identified the massless fields in superstring compactification

with certain harmonic forms (cohomology classes) on the compactifying space M.

This was based on our discussions in section A.2 and subsection A.3.2 assuming

thatM is smooth. But from subsection A.3.2 onwards we saw that our compacti-

fying space being the conifold can be singular and therefore we inquire if there is a

cohomology which maintains the features such as (A.2.32) - (A.2.34) even when the

underlying space singularizes. These requirements are satisfied by the very axioms

of field theory. In particular, the 1+ 1-dimensional field theory which is used to de-

scribe the propagation of superstrings in spacetime–including the compactification

space–requires all physical states to be square integrable.

The cohomology theory which includes square integrability is called L2-cohomology

and denoted Hp,q
(2) . In this cohomology the Ap,q-forms (see sec. A.2) are required to

be square–integrable with respect to a chosen norm. Moreover, Hp,q
(2)(M) = Hp,q(M)

on any smooth manifold M, and on a large class of singular spaces, Hp,q
(2) remains

well behaved respecting the properties (A.2.32) - (A.2.34).

Since the computation of Hp,q
(2) could be a formidable task one has to consider

the relating homology group which can be easily computed. The homology theory

which pairs with Hp,q
(2) (via De Rahm duality) for a class of singular spaces X ↪→ PN
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where Hp,q
(2) refers to the restriction to X of the Fubini-Study metric on the PN is

called middle perversity intersection homology theory and denoted H̊(X). This class

includes manifolds with isolated conical singularities discussed in previous sections

and for a n-fold X with a single isolated singularity p one has:

H̊(X) =


Hk(X) k > n,

Im[Hn(X − p)→ Hn(X)] k = n,

Hk(X − p) k < n.

(A.5.79)

Here the map in the middle dimension means as follows. First, discard all would-be

n-cycles from Hn(X) which contract to p. Second, discard all n-cycles which break

open upon excising p. One also notes that H̊n(X) need not be computed for k < n

since Poincare duality relates is to H̊n−k(X).

A.5.4 Cycles in conifolds

We now would like to discuss the process involving the local transformation in

which the deformed conifold is deformed back into the singular conifold which is

then transformed into the resolved conifold,

M[ r
2→0−→ M] res.−→ M̌. (A.5.80)

The R+ generators of the cone M[ produce a real B3
t -like cap by sweeping the S2

in the base of the cone at every fixed point of the minimal S3
t ⊂ M[ which is the

crest of the “tent”-like neighbourhood. The B3
t comprises the shaded region in the

left hand side of Fig.A.1 and can be completed into a cycle elsewhere inM[ outside

of this neighbourhood. The same process applies to the other side of the cone.

Namely, by sweeping the S3 in the base of the cone while keeping a point of the

S2 in the base fixed the R+ generators of the cone form “four-hoop” S3 × R+ with

its boundary being the minimal S3
t . The resulting space cannot be a cycle since it

has a boundary but will be important when passing to the small resolution; it is

remarkable though clear that when B3
t becomes completed into a three-cycle, S3

t is

homotopically non-trivial and the cycle that S3
t represents is dual to the three-cycle
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completed by B3
t . In the same way the S2 in the boundary cannot be a cycle since

it can be shrank to a point on the S3
t at the tip of the cone.

Consider first the process M[ r2→0−→ M] in which both the S2 and S3 spheres

shrink to zero size at the tip of the cone implying that there are no non-trivial two-

and three-cycles represented by them, respectively. However, the cycle represented

by the three-space with its portion being B3
t in Fig.A.1 remains untouched. In

particular, if it represented a non-trivial cycle inM[ it will continue to do so in the

nonsingular homology ofM]. But according to (A.5.79) it cannot be a non-trivial

element of H̊3(M]) because it turns to an open interval when the singular point is

removed and is thereby contractable. On the other hand, the boundary of the “four-

hoop” has shrank to zero size which lifts the local obstruction for the “four-hoop”

to be a portion of a representative of a “four-cycle”. In the case that there is no

obstruction outside of this neighbourhood one gains a new four-cycle. According to

(A.5.79), this continues to be an element of H̊4(M]) since H̊4(M]) and H̊k(M]) are

treated differently for k 6= 3. In addition to this, it should be noted that there is

a dual element of H̊2(M]) although there is no corresponding contribution to the

nonsingular H2(M]).

Consider then the process M] res.−→ M̌. In this process the node is replaced by

S2
t , shown as the crest of the “tent”-like neighbourhood in the right hand side of

Fig. (A.1). This produces a hole in B3
t making it become a “three-hoop” S2 × R+,

representing a trivial three-cycle. Also, here each S3 shrinks to zero size at the tip

of the cone and is homologous to a point on the S2
t implying no non-trivial three-

homology. On the contrary, each S2 remains of finite size and is homologous to the

S2
t being locally a non-trivial element of H2(M). In the same way, the “four-hoop”

S3 × R+ whose boundary has been shrank to a point cab be a representative of a

portion of a non-trivial four-cycle dual to the non-trivial two-cycle represented by

S2
t .

A.5.5 Fluxes in conifolds

Recall from section 2 that on Calabi-Yau manifolds (including Calabi-Yau cones) we

have the Kähler form J , the holomorphic (3, 0)-form and harmonic functions f sat-
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isfying ∆f = 0. The Kähler form is a (1, 1)-form and can be written componentwise

in terms of the Kähler metric gαβ̄ as

Jαβ̄ = igαβ̄, gαβ̄ = ∂α∂β̄K. (A.5.81)

where K is the Kähler potential, as before. The holomorphic (3, 0)-form may also

be expressed in components as

Ωαβγ = q εαβγ with
1

2!
ΩαβγΩ̄ᾱβ̄γ̄g

β̄βgγ̄γ = gᾱα (A.5.82)

where q is a holomorphic function satisfying |q|2 = det g.

Using these ingredients three distinct type of closed, IASD three-form forms

dΛ = 0, ?6Λ = −iΛ (A.5.83)

can be constructed on general Calabi-Yau cones, including the conifold.

The first and simplest one is of Hodge type (1, 2) which can be written as a

contraction of the anti-holomorphic (0, 3)-form Ω̄ and a holomorphic (2, 0)-form P

as

Λ(1,2) = P (1,2) · Ω̄(0,3), Λ = Pασg
σζ̄Ω̄ζ̄β̄γ̄. (A.5.84)

Here we note that only the (0, 3)-form Ω is IASD. The two-form P can be constructed

out of covariant derivatives of the holomorphic function f ,

P(ασ) = ∇α∇σf with ∆f = gρζ̄∇ρ∇ζ̄ = 0. (A.5.85)

Thus we obtain the first three-form ΛI = Λ(1,2)

ΛI = ∇∇f · Ω̄, or Λαβ̄γ̄ = ∇α∇σf g
σζ̄Ω̄ζ̄β̄γ̄. (A.5.86)

It is straightforward to show that ΛI is closed, i.e., dΛI = ∂̄ΛI+∂ΛI = 0. The vanish-

ing of ∂̄ΛI follows from Ricci-flatness of Calabi-Yau manifolds, Rαβ̄ = 0, and the fact

that f is harmonic, ∆f = 0. The vanishing of ∂ΛI follows from the commutativity

of the holomorphic covariant derivatives, [∇α,∇β] = 0.
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The second closed, IASD three-form is of Hodge type (1, 2) + (2, 1)NP. For the

two-form P , we may consider the following ansatz:

Pασ = ∇ζ̄∇(αfω
ζ̄
σ), (A.5.87)

where

ωζ̄σ ≡ Ωρσk
ζ̄ , kρ ≡ gρξ̄∂ξ̄k. (A.5.88)

The resulting three-form takes the form

Λ
(1,2)
II = ∂∂̄f ∧ ∂̄k + 1

2
J ∧ ∂̄(∂ρf kρ)−

1

2
∆f J ∧ ∂̄k. (A.5.89)

This three-form is not closed but adding an appropriate (2, 1) piece

Λ
(2,1)
II = ∂

(
f +

1

2
∂ρf k

ρ

)
∧ J (A.5.90)

gives the following three-form

ΛII = (∂ + ∂̄)

(
f +

1

2
∂ρf k

ρ

)
∧ J + ∂(∂̄f ∧ ∂̄k). (A.5.91)

In order to show that ΛII is closed, i.e., dΛII = ∂̄ΛII + ∂ΛII = 0, one first notes that

kσ is holomorphic, ∂ζ̄k
σ = 0, and that Ω is covariantly constant. This together with

the antisymmetry of Ωζ̄σ̄
ρ in ζ̄ and σ̄ imply the vanishing of ∂̄ΛII. The vanishing of

∂ΛII follows from ∆f = 0 and adding an extra (2, 1) piece.

The third closed, IASD three-form is of Hodge type (1, 2)+ (2, 1)NP+(3, 0). For

the two-form P , we may consider the following ansatz:

Pασ = ∇ζ̄∇ρ̄ω
ζ̄
ᾱω

ρ̄
σ. (A.5.92)

The resulting three-form takes the form

Λ
(1,2)
III = ∂̄(∂̄f · ω) ∧ ∂̄k. (A.5.93)

This three-form is not closed but adding an appropriate (2, 1) and (3, 0) pieces

Λ
(2,1)
III = (∂̄h · ω) ∧ J, Λ

(3,0)
III = (2h+ kξ∂ξh)Ω (A.5.94)
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gives the following three-form

ΛIII = (2h+ kξ∂ξh)Ω + (∂̄h · ω) ∧ J + ∂̄(∂̄f · ω) ∧ ∂̄k. (A.5.95)

The fact that dΛIII = 0 follows from Ricci-flatness, ∆f = 0 and adding appropriate

(2, 1) and (3, 0) pieces, as above.

A.5.6 Complex structure moduli

Recall that on every manifoldM we can locally define a point p and approximate

the local neighbourhood of p by a tangent space TpM. When M is a Calabi-Yau

three-fold, i.e., (complex) even dimensional, there is a map J from every tangent

space to itself given by

J : TpM→ TpM, satisfying J2 = −Id. (A.5.96)

This map defines an almost complex structure (see section A.1) onM. The choice

of J depends on the number of parameters and we can deform the space so as to

become a different complex manifold though remaining in the same topological class.

The space spanned by such parameters is called deformation space.

In section A.4 we saw that conical singularities can be removed by replacing

them with an exceptional set. In codimension two, this amounted small resolutions

of nodes. The fact that there is a finite number of nodes and small resolutions, and

that the defining polynomials ofM] depend on those defining M̌ (see Eq. (A.3.62)

and Eq. (A.3.60)), leads to the identification

M̌→M] = lim
t→0

M[ ⊂M[
+. (A.5.97)

Here, M] and M̌ parameterize the complex structure of M] and M̌, respectively,

and M[
+ parameterizes the complex structure ofM[.

A.5.7 Kähler class moduli

Locally on an even dimensional manifold we can define on each tangent space a

metric g and associated with it the fundamental form ω
def
= g(JX, Y ), where J is
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the almost complex structure underlying the even dimensional manifold. Due to its

dependence on the almost complex structure, the fundamental form is a (1, 1)-form

and is expressed in terms of local coordinates as

ω
def
= igµν̄dz

µ ∧ dzν̄ . (A.5.98)

In addition to being even dimensional, our Calabi-Yau three-fold is also a Kähler

manifold, which means that gµν̄ is a Kähler metric and its associated (1, 1)-form is

closed, dω = 0. Furthermore, in order to be Kähler form, the (1, 1)-form ω must

also satisfy the following condition

∫
C
ω > 0,

∫
S
ω2 > 0,

∫
M
ω3 > 0, (A.5.99)

where C and S denote all curves and all surfaces in the manifold M, respectively.

Locally this means that ω is self-conjugate (real) and positive such that gµν̄ is in

any local coordinate chart a Hermitian and positive matrix. On our Calabi-Yau

three-fold therefore the (1, 1)-form (A.5.98) represents the Kähler cohomology class,

the space of choices of which {ω(1,1)| dω = 0} is a cone, called the Kähler cone.

To see why this is a cone, note that since ω is a (1, 1)-form it can be determined

by the linear combination of (1, 1)-forms ω = vAeA from a complete set and real

coefficients vA, so if Jx and Jy are both positive, then so is vxJx + vyJy for vx, vy

∈ R+. In string theory, we can extend and complexify this cone by noting that the

action (A.1.1) describing the propagation of superstrings over the world-sheet not

only contains a Kähler metric gµν̄ but also an antihermitian two-form Bµν̄ . We may

expand this antihermitian two-form as harmonic (1, 1)-form B = uAeA and include

it by considering the combination (B + iω) = (uA + ivA)eA = wAeA giving the

complexified Kähler form, where {eA} form a basis of H1,1(M) and wA are the h1,1

complex parameters. The space spanned by wA is referred to as the complexified

Kähler cone W.

Thus the moduli space of Calabi-Yau three-folds consists of the space of complex

structures, at every point of which there is Kähler cone: at every point the metric

endowed with the almost complex structure and associated with is the Kähler form,

the complete set of which spans the Kähler cone. By varying the complex structure
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the associated Kähler cones vary into each other in a uniform way, so that the total

space has a structure of a fibration. In other words, sinceW depends on the complex

structure in M we expect the combined moduli space of Calabi-Yau manifolds to

be a space fibered over the space of complex structures, with the Kähler cones as

fibers.

A.5.8 The metric on moduli space

As briefly discussed in chapter 1, the metric has variations of mixed type, δgµν̄ , and

of pure type δgµ̄ν̄ , δgµν . The variations of mixed type can be associated with the

real (1, 1)-form

iδgµν̄dx
µ ∧ dxν̄ . (A.5.100)

The zero modes of this (1, 1)-form correspond to elements of H1,1(M), which are

variations of the Kähler class and give rise to h1,1 real parameters. The variations

of the pure type can be associated with complex (2, 1)-form

Ων̄
κλδgµ̄ν̄dx

κ ∧ dxλ ∧ dxµ̄, (A.5.101)

where Ω is the holomorphic (3, 0)-form. The zero modes of this (2, 1)-form corre-

spond to elements of H2,1(M), which are variations of the complex structure and

give h2,1 complex parameters. Recall from section A.1 that apart from the metric,

gµν̄ , the Calabi-Yau sigma-model also underlies an anti-hermitian two-form B (see

Eq. (A.1.1)) and we saw in the previous section that including B complexifies the

Kähler cone. Thus in addition to variations of the metric, we also consider variations

of the anti-hermitian two-form B, δBµν̄ . In total we have the following variations

δgµν̄ , δgµ̄ν̄ , , δgµν , δBµν̄ . (A.5.102)

In order to choose a metric on the space spanned by these variables, we may neglect

the following: (1) derivative terms (these are systematically introduced by the sigma-

model corrections) (2) a possible term (gmnδgmn)
2, since gmnδBmn vanishes, this
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term would spoil the symmetry between gmn and Bmn (3) terms from other possible

sectors. Upon these restrictions, the most general metric is

ds2 =
1

V

∫
M
||δgµν ||2 + ||δgµν̄ + δBµν̄ ||2

=
1

2V

∫
M
gκµ̄gλν̄ [δgκλδgµ̄ν̄ + (δgκλ̄δgλµ̄ + δBκν̄δBµ̄λ)]

√
gdx6, (A.5.103)

where V is the volume of the Calabi-Yau manifoldM . This metric is block-diagonal

and includes blocks that correspond to deformations of the complex structure and

of the Kähler class, which we turn to discuss now.

A.5.9 The complex structure moduli space

To analyse the deformations of the complex structure, we may consider an open

neighbourhood of M containing local coordinates tα with α = 1, ..., h2,1 and define

the following relations

ϕακλµ̄
def
= −1

2
Ωκλ

ν̄ ∂gµ̄ν̄
∂tα

, ϕα
def
=

1

2
ϕακλµ̄dx

κ ∧ dxλ ∧ dxµ̄, (A.5.104)

where each ϕα is a harmonic (2, 1)-form. By inverting, we obtain the variation of

the metric in the form

δgµ̄ν̄ = −
1

||Ω||2
Ω̄ρσ
µ̄ ϕαρσν̄δt

α, ||Ω||2 def
=

1

6
ΩµνρΩ̄

µνρ. (A.5.105)

Using these relations we find

2Gαβ̄δt
αδtβ̄ =

1

2V

∫
gκν̄gµλ̄δgκµδgλ̄ν̄g

1/2d6x

= − 2i

V ||Ω||2
δtαδtβ̄

∫
ϕα ∧ ϕ̄β̄. (A.5.106)

From this relation we obtain the Weil-Peterson metric

Gαβ̄δt
αδtβ̄ = −

(
i
∫
ϕα ∧ ϕ̄β̄

i
∫
Ω ∧ Ω̄

)
δtαδt̄β̄. (A.5.107)

Under a change in the complex structure the holomorphic three-form Ω becomes a

linear combination of the (3,0)-forms and (2,1)-forms
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∂Ω

∂tα
= KαΩ + ϕα. (A.5.108)

It follows then

Gαβ̄ = − ∂

∂tα
∂

∂tβ
log

(
i

∫
M

Ω ∧ Ω̄

)
=

∂

∂tα

[
−1∫
Ω ∧ Ω̄

∫
Ω ∧ ∂̄Ω̄

∂tβ̄

]
= − 1

(
∫
Ω ∧ Ω̄)2

∫
∂Ω

∂tα
∧ Ω̄

∫
Ω ∧ ∂̄Ω̄

∂tα
+

1∫
Ω ∧ Ω̄

∫
∂Ω

∂tα
∧ ∂̄Ω̄

∂tβ̄
Ω̄

= −
i
∫
ϕα ∧ ϕ̄β̄

i
∫
Ω ∧ Ω̄

. (A.5.109)

Recall the relation between the metric and the Kähler potential

Gαβ̄ =
∂

∂tα
∂K
∂tβ̄

. (A.5.110)

This tells us that the space of complex structures is Kähler and by the above the

Kähler potential is

K2,1 = − log

(
i

∫
M

Ω ∧ Ω̄

)
. (A.5.111)

In order to know more about the the metric on the moduli space M, we need

to analyse the holomorphic three-form Ω in greater detail. We recall that Ω is

an element of the real degree-three cohomology and that the cohomology groups

are isomorphic to the space of harmonic forms. If we can choose which of the

existing harmonic three-forms is regarded as the purely holomorphic one, then we

have specified the complex structure. The existing choices are then parameterized

by expanding Ω over the basis o the dual three-homology.

Let (Aa, Bb) with a, b = 0, ..., b2,1 be a canonical homology basis for H3(M;Z)

and let (αa, β
b) be the dual cohomology basis such that

∫
Ab
αa =

∫
M
αa ∧ βb = δba

∫
Ba
βb =

∫
M
βb ∧ αa = −δba. (A.5.112)

In addition to that define periods of Ω as follows
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za
def
=

∫
Aa

Ω, Ga
def
=

∫
Ba

Ω. (A.5.113)

Locally in the moduli space the complex structure ofM is totally determined by the

za and therefore locally one has Ga = Ga(z). The za cannot vanish simultaneously

since Ω(z)→ λΩ(z) implies za → λza by which the za can be regarded as projective

coordinates for the complex structure and Ω as being homogeneous of degree 1 in

these coordinates

za ∈ Pb2,1 , Ω(λz) = λΩ(z). (A.5.114)

We then expand Ω in the form

Ω = zaαa − Ga(z)β
a. (A.5.115)

From Eq. (A.5.108) it follows that

∫
M

(
Ω ∧ ∂Ω

∂za

)
= 0, (A.5.116)

which gives the relation

2Ga =
∂

∂za
(zcGc). (A.5.117)

Therefore Ga is the gradient of a function that is homogeneous degree two

2Ga =
∂

∂za
, Ga(λz) = λ2Ga(z). (A.5.118)

It can also be shown that

∂2Ω

∂zα∂zβ
∈ H(3,1) ⊕H(2,1) ⊕H(1,2), (A.5.119)

and also that

∫
M

(
Ω ∧ ∂2Ω

∂zα∂zβ

)
= 0,

∫
M

(
∂Ω

∂za
∧ ∂Ω

∂zb

)
= 0. (A.5.120)

The Yukawa coupling reads as

καβγ
def
= −

∫
M

Ω ∧ χµα ∧ χνβ ∧ χµγΩµνρ (A.5.121)
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where

χµα =
1

2||Ω||2
Ω
µρσ
χαρσν̄dx

ν̄ = χµα ν̄dx
ν̄ . (A.5.122)

It is not difficult to show that

∫
M

Ω ∧ χµα ∧ χνβ ∧ χµγΩµνρ =

∫
M

Ω ∧ ∂3Ω

∂zα∂zβ∂zγ

=
∂3G

∂zα∂zβ∂zγ
. (A.5.123)

The Yukawa coupling and G do not vanish in general. It is also straightforward to

show that

i

∫
Ω ∧ Ω = i

(
z̄a
∂G

∂za
− za ∂G

∂z̄a

)
. (A.5.124)

Recall form that the Kähler potential takes the form

K2,1 = − log

(
i

∫
M

Ω ∧ Ω̄

)
. (A.5.125)

Hece we have the relation

exp(−K2,1) = −i
(
za
∂G

∂z̄a
− z̄a ∂G

∂za

)
. (A.5.126)

Thus the Kähler potential is completely determined in terms of a holomorphic func-

tion G of homogeneous degree two and the Kähler manifold is therefore of a special

type; a Kähler manifold with holomorphic prepotential. To this end, we note that

G is determined by the Yukawa coupling which receives no quantum corrections and

so the metric structure on the moduli space M is exact.

The vector space H(3,0) ⊕ H(2,1) is a linear subspace of H3(M) that has holo-

morphic variations with the za. For this vector space there is a basis of the form

∂Ω

∂za
= αa −

∂G

∂za∂zb
βb. (A.5.127)

According to this the period matrix

$
def
=

(∫
Ab

∂Ω

∂za
,

∫
Bb

∂Ω

∂za

)
(A.5.128)
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is of the form

$ = (1,G), Gab =
∂2G

∂za∂zb
. (A.5.129)

From this we note now that

i

∫
M

(
∂Ω

∂za
∧ ∂Ω

∂zb

)
= −2ImGab. (A.5.130)

This tells us that ImGab has signature (h2,1, 1), a condition similar to lying in the

Siegal upper half-plane.

A.5.10 The Kähler class moduli space

To analyse the deformations of the Kähler class, we may consider an open neigh-

bourhood of W containing local coordinates wA ∈W with a basis eA, A = 1, ..., h1,1,

so that

B + iJ = wAeA, wA = uA + ivA. (A.5.131)

By Eq. (A.5.103) the inner product on H1,1 takes the form

G(ρ, σ) =
1

2V

∫
M
ρµν̄σρσ̄g

µσ̄gρν̄g1/2d 6x =
1

2V

∫
M
ρ ∧ ∗σ, (A.5.132)

where ρ and σ are real (1, 1)-forms. We may also rewrite this in terms of the cubic

term defined as

κ(ρ, σ, τ)
def
=

∫
ρ ∧ σ ∧ τ (A.5.133)

in the virtue of the identities

V =
1

3!
κ(J, J, J), ∗σ = −J ∧ σ +

3

2

κ(σ, J, J)

κ(J, J, J)
J ∧ J. (A.5.134)

From these relations we obtain

G(ρ, σ) = −3
[
κ(ρ, σ, J)

κ(J, J, J)
− 3

2

κ(ρ, J, J)κ(σ, J, J)

κ2(J, J, J)

]
. (A.5.135)

In term of local coordinates, a straightforward computation gives
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GAB̄
def
=

1

2
G(eA, eB) = −

∂

∂wA
∂

∂wB̄
log κ(J, J, J). (A.5.136)

Thus the space of wA is also a Kähler manifold and that the Kähler potential is the

logarithm of the volume of the Calabi-Yau manifold. We may also set

f(w)
def
=

1

3!
κABCw

AwBwC with κABC = κ(eA, eB, eC), (A.5.137)

and obtain

κ(J, J, J) = κABCv
AvBvC ,

= −3

4
i
[
2(f(w)− f(w̄))− (wA − w̄A)(f,A(w)− f,A(w̄))

]
. (A.5.138)

We may also define

F (w)
def
= − 1

3!

κABCw
AwBwC

w0
. (A.5.139)

Here we have introduced an extra coordinate w0, so that F , in analogy to G , is

homogeneous of degree two; w0 will be set to unity after differentiation. In this way,

we find

exp(−K1,1) =
4

3

∫
J3 = −i

(
wj
∂F

∂wj
− wj̄ ∂F

∂wj

)
, (A.5.140)

where the Kähler potential is shifted and j runs over the value of zero. From this

relation we can see that the parameters of the Kähler class comprise a Kähler man-

ifold with holomorphic prepotential whose structure is very similar to the manifold

of the complex structure parameters.

As before, we note that there are a number of restrictions. One restriction is

that not all values of vA are allowed

V =
1

3!
κABCv

AvBvC > 0. (A.5.141)

The other restriction follows from rewriting the metric in the form



A.6. Metrics on Calabi-Yau cones 163

G(ρ, σ) = −3
{
κ(ρ, σ, J)

κ(J, J, J)
− κ(ρ, J, J)κ(σ, J, J)

κ2(J, J, J)

}
+

3

2

κ(ρ, J, J)κ(σ, J, J)

κ2(J, J, J)
. (A.5.142)

To see what this form of metric can tell us, we note that any (1, 1)-form can be

written in terms of ‘J parallel’ and ‘J orthogonal’ terms:

ρ = ρ⊥ + ρ‖ = (ρ− 1

6
ρmnJ

mnJ) +
1

6
ρmnJ

mnJ, (A.5.143)

where ρ‖ is covariantly constant if ρ is harmonic. The metric then decomposes into

G(ρ⊥, σ⊥) and G(ρ‖, σ‖) each of which has to be positive definite. The part G(ρ‖, σ‖)

obviously has this property, but

G(ρ⊥, σ⊥) = −3κ(ρ
⊥, σ⊥, J)

κ(J, J, J)
> 0 (A.5.144)

imposes a restriction: κAB(v) = κABCv
A has to be negative definite on H2

⊥ but

positive definite on H2
‖ . Therefore it must have signature (1, h1,1 − 1), which can

change only if one of the eigenvalues passes through zero. The boundary of the

allowed region is therefore given by

detκAB(v) = 0. (A.5.145)

The fundamental restriction on the parameters is of course that the Kähler form J

be positive and this implies both positive volume and positive GAB̄.

A.6 Metrics on Calabi-Yau cones

In this final section we discuss the main tool that we have used everywhere in the

thesis, the explicit from of the metric on the conifold.

A.6.1 Finiteness of distances between manifolds

In our discussions above we encountered the Weil-Peterson type metric on the moduli

space and now we wish to estimate distances in the process

M[ r
2→0−→ M] ℘←− M̌. (A.6.146)
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The right and left arrows in (A.6.146) trace different paths in the space of complex

structures ofM[ and in the space of complexified Kähler classes of M̌, respectively.

In order to show that the distance to the conifold converges, one has to show

that the exponentials of the Kähler potentials on M and W given respectively by

i
∫
MΩ ∧ Ω and

∫
M J3 may degenerate but mildly enough. Concerning

∫
M J3 this

is automatically satisfied since the dependence on the parameters is completely

polynomial. We also note that the canonical bundle of M̌ is being inherited by

M] and hence the only uncertainty is in the bahaviour of
∫
M J3. In the view of

mirror map exchanging moduli spaces, one expects
∫
M J3 to be as well behaved as

i
∫
MΩ ∧ Ω, which will be discussed below in terms of monodromy of cycles.

Monodromy of cycles

Recall from our discussions above that for any t 6= 0 the manifoldM[
t is smooth and

we may choose a symplectic basis {Aa, Ba} for H(M[
t,Z) so that A1, ... , Ak form a

subgroup of H(M[
t,Z) produced by the three-spheres. There is no obstruction to

this as none of the three-spheres intersects with any of the others. It follows that

Bk+1, ... , Bh2,1+1 do not intersect with these three-spheres either and can be repre-

sented by cycles away from the nodes. On the other hand, B1, ... , Bk do intersect

with these three-spheres and each will include some of the three-hoops discussed

above.

The basis {Aa, Ba} is an integral basis and is therefore locally a constant function

of t. However, if we consider nontrivial closed paths in the t-disk around the conifold

point, the basis will generally change. The integral cycles Ba(t) are dual to the A
a(t)

cycles and because Aa(t) ∩ Ab(t) = 0, there is no obstruction for Ba(t) to acquire

multiplets of Aa(t). For a locally single-valued quantity, the multi-valuedness around

nontrivial closed paths is called monodromy. If we define the monodromy operator

byM , thenM(Aa(t)) andM(Bb(t)) result from transporting Aa(t) and Bb(t) around

t = 0 in the t-disc and one has

M(Aa(t)) = Aa(t), M(Bb(t)) = Bb(t) + σabA
b, (A.6.147)

where σab is an integral matrix the entries of which vanish for a or b > k.
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Finiteness in the space of complex structure

We now would like to discuss the finiteness in the space of complex structure based

on the monodromy properties of Aa(t) and Bb(t) cycles. We may consider the

following periods

za(t) =

∫
Aa

Ωt, Ga(t) =

∫
Ba

Ωt. (A.6.148)

These are holomorphic if t 6= 0 and if Ωt depends holomorphically on t and has

the local representation as in (A.5.3). To estimate these periods, we consider the

following.

By a suitable change of coordinates, the equation C(x) = r2(x) which defines

M[
t near the node ofM] reduces to

x2 + y2 + uv = t2, t2 > 0. (A.6.149)

Here the S3
t is given by x, y real and v = ū whereas the three-cap B3

t is given by

x > 0, y imaginary and v = −u.

The holomorphic volume form takes the form

Ω = f
dx ∧ dy ∧ du

u
, (A.6.150)

where f is nonzero and bounded at each of the nodes. Using this volume form it

is straightforward to see see that
∫
S3
t
Ω and

∫
B3
t
Ω remain bounded as t → 0. It

follows then limt→0 z
a(t) = 0 for 1 ≤ a ≤ k which upon generalizing yields that

all periods are bounded. The monodromy of cycles implies that Ga(t) is not single

valued. However, we note that

Ĝa(t)
def.
= Ga(t)−

1

2πi
σabz

b log(t) (A.6.151)

is single valued by the fact that the action of monodromy cancels between the

two terms on the LHS. The single-valuedness and the boundedness imply that the

singularity at t = 0 is removable so that Ĝa(t) is also holomorphic at the origin.

According to these, the exponential of the Kähler potential becomes
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i

∫
Mt

Ω ∧ Ω = −2Im(za(t)Ga(t))

= −2Im
(
za(t)Ĝa(t) +

1

2πi
za(t)σabz

b(t) log(t)
)
. (A.6.152)

By za(0) = 0 = zb(0) for σab 6= 0, this takes the form

a(t) + b(t)|t|2 log |t|, (A.6.153)

where a(t) and b(t) are C∞ functions and a(0) 6= 0. This shows the asymptotic

behavior of the Kähler potential for the Weil–Peterson metric along the disk in

the moduli space parametrized by t. It reveals that the metric diverges at worst

logarithmically. Hence the distance to the origin remains finite even though the

metric becomes singular at t = 0.

A.6.2 Metrics on conifolds

In order to obtain the (unique) metric on the conifold, we need to find the Ricci-flat

metric compatible with the Kähler structure of the cone. For this, we first need to

parameterize the base of the cone. This can be done by rewriting the Eq. (A.4.67)

and Eq. (A.4.67) in terms of the following matrix

W ≡ 1√
2
wασα =

1√
2

 w3 + iw4 w1 − iw2

w1 + iw2 −w3 + iw4

 . (A.6.154)

Here σα ≡ (σi, i I) with σi being the usual Pauli matrices. In terms of (A.6.154) we

can rewrite Eq. (A.4.66) for ψ = 0 and Eq. (A.4.68) in the form

DetW = −1

2

4∑
α=1

(wα)2 = 0, (A.6.155)

and

trW †W =
4∑

α=1

|wα|2 = r2. (A.6.156)

If we define the following matrix
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Z = W/r, (A.6.157)

then Eq. (A.6.155) and Eq. (A.6.156) take the form

DetZ = 0, trZ†Z = 1. (A.6.158)

These equations have the general solution of the form

Z = L1Z0L
†
2, (A.6.159)

Z0 =

 0 1

0 0

 =
1

2
(σ1 + iσ2). (A.6.160)

Here Li for i = 1, 2 are SU(2) matrices given in terms of Euler angles as

Li =

 cos θi
2
ei(ψi+φi)/2 − sin θi

2
e−i(ψi−φi)/2

sin θi
2
ei(ψi−φi)/2 cos θi

2
e−i(ψi+φi)/2

 . (A.6.161)

This shows that SU(2)× SU(2) acts transitively on the base of the cone. A Kähler

potential K invariant under SU(2)× SU(2) depends only on r2 and the associated

Kähler metric takes the form

ds2 = |trW †dW |2K′′(r2) + tr(dW †dW )K′(r2), (A.6.162)

where K′(r2) = dK/d(r2) and K′′(r2) = d2K/d2(r2). By substituting (A.6.154) into

(A.6.162) and noting that the Ricci tensor on a Kähler manifold is given by (A.2.38),

we obtain the Ricci-flat metric on the conifold in the following form:

ds2 = dρ2 + ρ2
[
1

9

(
dψ +

2∑
i=1

cos θidϕi

)2

+
1

6

2∑
i=1

(dθ2i + sin2 θidϕ
2
i )

]
, (A.6.163)

where

ρ ≡
√

3

2
r2/3. (A.6.164)

To obtain the metric on the deformed conifold, note that in terms of (A.6.154)

we can rewrite Eq. (A.4.66) for ψ = ε2 and Eq. (A.4.68) in the form
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DetW = −ε
2

2
, (A.6.165)

and

trW †W =
4∑

A=1

|wα|2 = r2. (A.6.166)

The general solution is

Wε = rZε, Zε = L1Z
(0)
ε L†

2, (A.6.167)

where the Lis are the same as before and

Zε =

 0 a

b 0

 . (A.6.168)

We note that for ρ 6= ε there is again a transitive SU(2)×SU(2) action. By (A.6.168)

into (A.6.162), it is straightforward to obtain the Ricci-flat Kählar metric on the

deformed conifold as:

ds2 = (r2ζ ′ − ζ)
(
1− ε4

r4

)[
(dr)2

r2(1− ε4

r4
)
+

1

4
(dψ + cos θ1dϕ1 + cos θ2dϕ2)

2

]
+
ζ

4
(sin2 θ1dφ

2
1 + dθ21 + sin2 θ2dφ

2
2 + dθ22)

+ζ
ε2

2r2
[cosψ(dθ1dθ2 − dϕ1dϕ2 sin θ1 sin θ2)

+ sinψ(sin θ1dϕ1dθ2 − sin θ2dϕ2dθ1)], (A.6.169)

where ζ
def
= r2K′(r2), ζ

def
= ζ ′(r2) and by Ricci-flatness

ζ =
ε4

2

(sinh 2η − 2η)1/3

tanh η
. (A.6.170)

By adopting the basis of 1-forms

g1,3 =
e1 ∓ e3√

2
, g2,4 =

e2 ∓ e4√
2

, g5 = e5 (A.6.171)

with
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e1 = − sin θ1dϕ1, e2 = dθ1, e3 = cosψ sin θ2dϕ2 − sinψdθ2,

e4 = sinψ sin θ2dϕ2 + cosψdθ2, e5 = dψ + cos θ1dϕ1 + cos θ2dϕ2, (A.6.172)

it is straightforward to see that the Kähler potential and meteric on the deformed

conifold take the form

K(η) = ε4/3

21/3

∫ η

0

dη′[sinh(2η′)− 2η′]1/3. (A.6.173)

ds26 = g(0)mndy
mdyn =

1

2
ε4/3K(η)

[
1

3K(η)3
{dη2 + (g5)2}+ cosh2 η

2
{(g3)2 + (g4)2}

+sinh2 η

2
{(g1)2 + (g2)2}

]
, (A.6.174)

where

K(η) =
(sinh(2η)− 2η)1/3

21/3 sinh η
, r3 =

4∑
α=1

|zα|2 = ε2 cosh η. (A.6.175)



Appendix B

The supergravity F-term potential

B.1 Coordinates and trajectories

For the deformed conifold we have

4∑
α=1

(zα)
2 = ε2, (B.1.1)

z1 = ε

[
cosh

(
Ξ

2

)
cos

(
θ+
2

)
cos

(
φ+

2

)
+i sinh

(
Ξ

2

)
cos

(
θ−
2

)
sin

(
φ+

2

)]
, (B.1.2)

z2 = ε

[
− cosh

(
Ξ

2

)
cos

(
θ+
2

)
sin

(
φ+

2

)
+ i sinh

(
Ξ

2

)
cos

(
θ−
2

)
cos

(
φ+

2

)]
,

(B.1.3)

z3 = ε

[
− cosh

(
Ξ

2

)
sin

(
θ+
2

)
cos

(
φ−

2

)
+ i sinh

(
Ξ

2

)
sin

(
θ−
2

)
sin

(
φ−

2

)]
,

(B.1.4)

z4 = ε

[
− cosh

(
Ξ

2

)
sin

(
θ+
2

)
sin

(
φ−

2

)
− i sinh

(
Ξ

2

)
sin

(
θ−
2

)
cos

(
φ−

2

)]
.

(B.1.5)

Here we have used Ξ = η + iψ, φ+ = φ1 + φ2, φ− = φ1 − φ2, θ+ = θ1 + θ2 and

θ− = θ1 − θ2. The angular constraints are:

170
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φ1 − φ2 ± ψ
2

= ±π
2
,

φ1 + φ2 + ψ

2
= π,

ψ − φ1 − φ2

2
= 0, θ2 = 0. (B.1.6)

To fix z1 and z2 take the following conditions from (6)

φ1 + φ2 + ψ

2
= π,

ψ − (φ1 + φ2)

2
= 0 θ2 = 0. (B.1.7)

Setting θ1 = θ, ψ = π and φ1 + φ2 = π, for z1 and z2 we obtain

z1 = ε

[
cosh

(
η + iπ

2

)
cos

(
θ

2

)
cos

(
π

2

)
+ i sinh

(
η + iπ

2

)
cos

(
θ

2

)
sin

(
π

2

)]
= −ε cosh

(
η

2

)
cos

(
θ

2

)
, (B.1.8)

z2 = ε

[
− cosh

(
η + iπ

2

)
cos

(
θ

2

)
sin

(
π

2

)
+ i sinh

(
η + iπ

2

)
cos

(
θ

2

)
cos

(
π

2

)]
= −iε sinh

(
η

2

)
cos

(
θ

2

)
. (B.1.9)

To fix z3 and z4 take the following conditions from (6)

φ1 − φ2 + ψ

2
= +

π

2
,

φ1 − φ2 − ψ
2

= −π
2

θ2 = 0. (B.1.10)

Setting θ1 = θ, ψ = π and φ1 − φ2 = 0, for z3 and z4 we obtain

z3 = ε

[
− cosh

(
η + iπ

2

)
sin

(
θ

2

)]
= −iε sinh

(
η

2

)
sin

(
θ

2

)
, (B.1.11)

z4 = ε

[
− i sinh

(
η + iπ

2

)
sin

(
θ

2

)]
= ε cosh

(
η

2

)
sin

(
θ

2

)
. (B.1.12)

In summary we have then the following coordinates:

z1 = −ε cosh
(
η

2

)
cos

(
θ

2

)
, z2 = −iε sinh

(
η

2

)
cos

(
θ

2

)
,

z3 = −iε sinh
(
η

2

)
sin

(
θ

2

)
, z4 = +ε cosh

(
η

2

)
sin

(
θ

2

)
. (B.1.13)



B.2. The F-tem potential 172

In order to obtain an angular stable trajectory, we may impose a further condition

θ1 = 0, so that (B.1.13) becomes

z1 = −ε cosh
(
η

2

)
, z2 = −iε sinh

(
η

2

)
,

z3 = 0, z4 = 0. (B.1.14)

It is straightforward to check that both of coordinates choices (B.1.13) and (B.1.14)

satisfy the condition (B.1.1).

B.2 The F-tem potential

We now derive the D3-brane F-term potential on the entire deformed conifold along

the trajectories (B.1.13) and (B.1.14). Recall from Chapter 5 that the F-term po-

tential takes the form

VF (z
α, z̄α, ρ, ρ̄) =

κ2

3U(z, ρ)2

{[
U(z, ρ) + γkγδ̄kγkδ̄

]
|W,ρ|2 − 3(WW,ρ + c.c.)

}
+

κ2

3U(z, ρ)2

[(
kαδ̄kδ̄W ,ρ̄W,α + c.c.

)
+

1

γ
kαβ̄W,αW ,β̄

]
.

(B.2.15)

Here κ2 = M−2
Pl , U = 2σ − γk, γ = σ0T3/3M

2
Pl, k

γδ̄ is the inverse (5.1.26) of the

Calabi-Yau metric resulting from the Kähler potential k (A.6.173) whose derivative

with respect to coordinates is denoted by kγ, andW,α andW,ρ denote the derivatives

of the superpotential W (5.1.19) with respect to the coordinates zα and the Kähler

modulus ρ = σ + iχ, respectively. We also have the standard formula

r3 =
4∑

α=1

|zα|2 = ε2 cosh η. (B.2.16)

In what follows, we derive the explicit form of the potential (B.2.15) by computing

each of its terms for the angular stable trajectory

z1 = −ε cosh
(
η

2

)
. (B.2.17)
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• The computation of kγδ̄kγkδ̄|W,ρ|2. According to the value of A(zα) given by

(5.1.36), we get

|W, ρ|2 = W, ρW, ρ = (−anA(zα)e−anρ̄)(−aA(zα)e−anρ)

= a2n|A0|2|g(η)|2/ne−an(ρ+ρ̄), (B.2.18)

where

g(η) = 1− z1
µ

= 1 +
ε

µ
cosh

(
η

2

)
. (B.2.19)

Thus by (B.2.18), (5.1.29) and (A.6.175) we obtain

kγ δ̄kγkδ̄|W, ρ|2 =
3

4

ε4/3

21/3
[sinh(2η)− 2η]4/3

sinh2 η
a2n|A0|2|g(η)|2/ne−2anσ

=
3

2
ε4/3a2n|A0|2K(η)4 sinh2 η|g(η)|2/ne−2anσ. (B.2.20)

• The computation of WW,ρ + c.c. . we have

WW, ρ + c.c. = −aW0(A(z
α)e−anρ + A(zα)e−anρ̄)

−2an|A(zα)|2e−an(ρ+ρ̄) (B.2.21)

By substituting the Kähler modulus with its value ρ = σ + iχ and integrating out

the imaginary part by eiaχ/A→ 1/|A|, we obtain

WW, ρ + c.c. = −aW0(A(z
α)e−a(σ+iχ) + A(zα)e−a(σ−iχ))

−2an|A(zα)|2e−2anσ

= −2an|g(η)|2/n|A0|2e−2anσ

(
1− |W0|
|A0|

eanσ

g(η)1/n

)
. (B.2.22)
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• The computation of kαδ̄kδ̄W ,ρ̄W,α + c.c. . In order to compute this term, we first

note that according to (5.1.37), (5.1.31) and (A.6.175) we have

k αδ̄kδ̄W, α =
3

4

cosh η

sinh3 η
[sinh(2η)− 2η]

3∑
j=1

(
zα − z̄α

ε2

r3

)
Aαe

−anρ

=
−3A0

2nµ
cosh ηK(η)3z1

(
1− ε2

r3

)(
1− z1

µ

)1/n−1

e−anρ (B.2.23)

Thus by using (B.2.23) and we obtain

k αδ̄kδ̄W, αW , ρ̄ = −3A0

2nµ
cosh ηK(η)3z1

(
1− ε2

r3

)(
1− z1

µ

)1/n−1

e−anρ

×− e−anρ̄anA(zα)

= −3an|A0|2εK(η)3

nµg(η)
cosh

(
η

2

)
sinh2

(
η

2

)
|g(η)|2/n × e−2σan .

(B.2.24)

We also note that

k αδ̄kδ̄W ,ρ̄W, α + c.c. = 2k αδ̄kδ̄W ,ρ̄W, α. (B.2.25)

• The computation of kαβ̄W,αW ,β̄. To compute this term according to (5.1.31),

we first need to compute R ᾱβW ,ᾱW,β and LᾱβW ,ᾱW,β according to (5.1.32) and

(5.1.33), respectively:

R ᾱβW ,ᾱW,β = e−2anσ
|A0|2

n2µ2
|g(η)|2/n−1

(
sinh2(η/2)

cosh η

)
, (B.2.26)

LᾱβW ,ᾱW,β = e−2anσ

{ 3∑
α=1

(
1− ε4

r6

)
|Aα|2 −

1

r3

( 3∑
α,β=1

Āα[
zαz̄β + zβ z̄α −

ε4

r3
(zαzβ + z̄αz̄β)

]
Aβ

)}
= e−2anσ|A1|2

(
1− ε2

r3

){(
1 +

ε2

r3

)
− 2z21

r3

}
. (B.2.27)
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By using the (B.2.16), we also note that

1 +
ε2

r3
− 2z21

r3
= 0 (B.2.28)

⇒ LᾱβW ,ᾱW,β = 0. (B.2.29)

Thus by (B.2.29), (B.2.26) and (A.6.175) we obtain

kᾱ βW ,ᾱW,β =
3

2 · 22/3
ε2/3

cosh η

sinh2 η
[sinh(2η)− 2η]2/3{Rᾱ βW ᾱWβ + 0}

=
3ε2/3|A0|2e−2anσ

2n2µ2
K(η)2|g(η)|2/n−2 sinh2

(
η

2

)
. (B.2.30)

Putting the above computed expressions into the potential (B.2.15) and factorizing

yields

VF =
κ2

U2
2a2n|A0|2|g(η)|2/ne−2anσ

{
U

6
+

1

a

(
1− |W0|
|A0|

eanσ

g(η)1/n

)
+ F (η)

}
,

(B.2.31)

where

F (η) = ε4/3γ

[
K(η) sinh

(
η

2

)]2[
K(η) cosh

(
η

2

)
− ε/µ

4πε4/3γg(η)

]2
.

(B.2.32)

Now we derive the potential (B.2.15) for the trajectory

z1 = −ε cosh
(
η

2

)
cos

(
θ

2

)
. (B.2.33)

• The computation of kαδ̄kδ̄W, αW , ρ̄. For the trajectory (B.2.33), we can immedi-

ately see that the final three lines in (B.2.24) become
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kαδ̄kδ̄W, αW , ρ̄ =
3an|A0|2

2nµ
cosh ηK(η)3

(
− ε cosh

(
η

2

)
cos

(
θ

2

))
×
(
cosh η − 1

cosh η

)[∣∣∣∣1 + ε

µ
cosh

(
η

2

)
cos

(
θ

2

)∣∣∣∣2]1/n
×
(
1 +

ε

µ
cosh

(
η

2

)
cos

(
θ

2

))−1

e−an(ρ+ρ̄)

= − 3an|A0|2

nµg(η, θ)
εK(η)3 cosh

(
η

2

)
cos

(
θ

2

)
sinh2

(
η

2

)
×|g(η, θ)|2/ne−2anσ, (B.2.34)

where

g(η, θ) = 1 +
ε

µ
cosh

(
η

2

)
cos

(
θ

2

)
. (B.2.35)

As before, we also have

kαδ̄kδ̄W , ρ̄W,α + c.c. = 2kαδ̄kδ̄W , ρ̄W,α. (B.2.36)

• The computation of kαβ̄W,αW ,β̄. To compute this term according to (5.1.31)

for the trajectory (B.2.33), we first need to compute R ᾱβW ,ᾱW,β and LᾱβW ,ᾱW,β

according to (5.1.32) and (5.1.33) for (B.2.33), respectively:

R ᾱβW ᾱWβ = e−2anσ
|A0|2

n2µ2

∣∣∣∣1− z1
µ

∣∣∣∣2/n−2(
1− |z1|

2

r3

)

= e−2anσ
|A0|2

n2µ2
|g(η, θ)|2/n−2

× 1

cosh η

(
cosh η − cosh2(η/2) cos2(θ/2)

)
. (B.2.37)

LᾱβW ,ᾱW,β = e−2anσ|A1|2
(
1− ε2

r3

){(
1 +

ε2

r3

)
− 2z21

r3

}
= e−2anσ

|A0|2

n2µ2

∣∣∣∣1− z1
µ

∣∣∣∣2/n−2(
1− ε2

r3

){(
1 +

ε2

r3

)
− 2z21

r3

}
.

(B.2.38)
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It is straightforward to see that

(
1− ε2

r3

){(
1 +

ε2

r3

)
− 2z21

r3

}
= tanh2 η sin2

(
θ

2

)
, (B.2.39)

which coincides with (B.2.29) for θ = 0. Putting this into (B.2.38) we obtain this

time a nonvanishing result

LᾱβW ,ᾱW,β = e−2anσ
|A0|2

n2µ2
|g(η, θ)|2/n−2 tanh2 η sin2

(
θ

2

)
. (B.2.40)

We now put (B.2.40) and (B.2.37) in the formula (5.1.31)

kᾱ βW ,ᾱW,β =
3

2 · 22/3
ε2/3

cosh η

sinh2 η
[sinh(2η)− 2η]2/3

{
RᾱβW ,ᾱW,β

+

[
2

3

sinh(2η)

sinh(2η)− 2η
− coth2 η

]
× LᾱβW ,ᾱW,β

}
. (B.2.41)

Simplifying gives

kᾱβW ,ᾱW,β =
3

2
ε2/3K(η)2e−2anσ

|A0|2

n2µ2
|g(η, θ)|2/n−2

×
{
sinh2

(
η

2

)
+ sin2

(
θ

2

)(
2

3K(η)3
− sinh2

(
η

2

))}
.

(B.2.42)

Putting the above computed expressions together we obtain the angular dependent

F-term potential as

VF =
2κ2a2n|A0|2|g(η, θ)|2/ne−2anσ

U2

{
U

6
+

1

an

(
1− |W0|
|A0|

eanσ

g(η, θ)1/n

)
+ F (η, θ)

}
,

(B.2.43)

where

F (η, θ) = ε4/3
γ

4
K(η)4 sinh2 η − εK(η)3

2πµg(η)
cosh

(
η

2

)
sinh2

(
η

2

)
cos

(
θ

2

)
+
ε2/3K(η)2

4γ(2π)2µ2
|g(η)|−2

× sin2

(
η

2

)[
1− sin2

(
θ

2

)(
1− 2

3K(η)3 sinh2(η/2)

)]
. (B.2.44)
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The new potential (B.2.43) yields the old potential (B.2.31) when we set θ = 0. To

see this, it is straightforward to check that the term F (η, θ) in (B.2.43) given as

(B.2.44) becomes equal to the term F (η) in (B.2.31) when θ = 0; the other terms

are exactly the same when θ = 0.



Appendix C

DBI equations of motion

In this appendix, we derive the equations of motion (4.1.19) - (4.1.20). To find the

brane equations of motion, we consider the Euler-Lagrange equations

∂

∂xµ
∂L

∂(∂φm/∂xµ)
=
∂L

∂φm
(C.0.1)

for the Lagrangian

L =
√
−g
[
f−1

√
1 + fg

(0)
mngµν∂µφm∂νφn − f−1 + V

]
. (C.0.2)

We also recall that the fields only depend on time, φm = φm(t), so that

γ =
1√

1 + fg
(0)
mngµν∂µφm∂νφn

=
1√

1− fg(0)mnφ̇mφ̇n
. (C.0.3)

This gives

∂L

∂(∂φm/∂xµ)
=
√
−gf−1 fg

(0)
mngµν∂νφ

n√
1 + fg

(0)
mngµν∂µφm∂νφn

(C.0.4)

= −a3g(0)mnγφ̇
n.

Thus the LHS of (C.0.1) becomes

∂

∂xµ
∂L

∂(∂φm/∂xµ)
=

∂

∂xµ
[−a3g(0)mnγφ̇

n] (C.0.5)

= − d

dt
[a3g(0)mnγφ̇

n]. (C.0.6)

179
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For the RHS of (C.0.1), we have

∂L

∂φm
=
√
−g
[
∂

∂φm
f−1

√
1 + fg

(0)
mngµν∂µφm∂νφn + f−2∂mf + ∂mV

]
, (C.0.7)

where

∂

∂φm
f−1

√
1 + fg

(0)
mngµν∂µφm∂νφn =

√
1 + fg

(0)
mngµν∂µφm∂νφn

∂

∂φm
f−1

+f−1 ∂

∂φm

√
1 + fg

(0)
mngµν∂µφm∂νφn

= −
√

1 + fg
(0)
mngµν∂µφm∂νφn

∂mf

f2

+f−1 (∂/∂φ
m)(fg

(0)
mngµν∂µφ

m∂νφ
n)

2

√
1 + fg

(0)
mngµν∂µφm∂νφn

, (C.0.8)

∂

∂φm
(fg(0)mng

µν∂µφ
m∂νφ

n) = g(0)mng
µν∂µφ

m∂νφ
n ∂f

∂φm

+fgµν∂µφ
m∂νφ

n∂g
(0)
mn

∂φm

= −f ∂g
(0)
mn

∂φm
φ̇mφ̇n + f−1(γ−2 − 1)∂mf. (C.0.9)

This gives

∂L

∂φm
= a3

[
− γ−1∂mf

f 2
− γ

2

∂g
(0)
mn

∂φm
φ̇mφ̇n +

γ

2
f−2(γ−2 − 1)∂mf

+
∂mf

f 2
+ ∂mV

]
= a3

[
− γ

2

∂g
(0)
mn

∂φm
φ̇mφ̇n + ∂mV +

∂mf

f 2
(−γ−1 +

γ

2
(γ−2 − 1) + 1)

]
. (C.0.10)

By rearranging the last term we get

−γ−1 +
γ

2
(γ−2 − 1) + 1 = γ(−γ−2 +

1

2
(γ−2 − 1) + 1γ−1)

= −γ
2
(2γ−2 − γ−2 + 1− 2γ−1)

= −γ∂mf
2f 2

(γ−1 − 1)2. (C.0.11)
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Thus the RHS of (C.0.1) becomes

∂L

∂φm
= a3

[
− γ

2

∂g
(0)
mn

∂φm
φ̇mφ̇n + ∂mV −

γ∂mf

2f 2
(γ−1 − 1)2

]
. (C.0.12)

Equating the LHS and the RHS of (C.0.1) gives

− d

dt
[a3g(0)mnγφ̇

n] = a3
[
− γ

2

∂g
(0)
mn

∂φm
φ̇mφ̇n + ∂mV −

γ∂mf

2f2
(γ−1 − 1)2

]
, (C.0.13)

or

1

a3
d

dt
[a3g(0)mnγφ̇

n] =

[
γ∂mf

2f2
(γ−1 − 1)2 +

γ

2

∂g
(0)
mn

∂φm
φ̇mφ̇n − ∂mV

]
. (C.0.14)

From Eq. (C.0.14), the radial equation of motion along the proper distance (grr = 1)

takes the form

γφ̈+ γ̇φ̇+ 3Hγφ̇ = γ(γ−1 − 1)
∂φf

2f2
+
γ

2
∂φgαβ θ̇

αθ̇β − ∂φV. (C.0.15)

Recall that on the deformed conifold the metric takes the form

ds2 = A(η)dη2 + B(η)dθ2 = ε4/3

6K2
dη2 + ε4/3B(η)dθ2. (C.0.16)

Hence we obtain

φ = ε2/3
√
T3
6

∫ η

0

dx

K(x)
⇒ φ̇ =

√
T3Aη̇. (C.0.17)

By putting φ̇ =
√
T3Aη̇ in (A.21), the equations of motion become

γη̈ = −γA
′η̇2

2A
− 3Hγη̇ − 1

2
γ3η̇[(h′η̇ + hθθ̇)(Aη̇2 + Bθ̇2)

+hη̇(A′η̇2 + B′θ̇2) + 2h(Aη̇η̈ +Bθ̇θ̈)] + γ(γ−1 − 1)2
h′

2h2A

+
γ

2
θ̇2
B′

A
− Vη
AT3

, (C.0.18)

γθ̈ = −γB
′

B
η̇θ̇ − 3Hγθ̇ − 1

2
γ3θ̇[(h′η̇ + hθθ̇)(Aη̇2 + Bθ̇2) + hη̇(A′η̇2 + B′θ̇2)

+2h(Aη̇η̈ + Bθ̇θ̈)] + γ(γ−1 − 1)
hθ

2h2B
− Vθ
BT3

. (C.0.19)
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γ3η̈(1− hBθ̇2) + hγ3θ̇η̇Bθ̈ = −A
′

2A
γη̇2 − 3Hγη̇ − 1

2
γ3h′η̇2(Aη̇2 + Bθ̇2)

−1

2
γ3hθη̇θ̇(Aη̇2 + Bθ̇2)−

1

2
γ3hη̇2(A′η̇2 + B′θ̇2)

+
γ(γ−1 − 1)2h′

2h2A
+
γ

2
θ̇2
B′

A
− Vη
AT3

, (C.0.20)

γ3θ̈(1− hAη̇2) + hγ3θ̇η̇Aη̈ = −B
′

B
γη̇θ̇ − 3Hγθ̇ − 1

2
γ3θ̇η̇h′(Aη̇2 + Bθ̇2)

−1

2
γ3θ̇2hθ(Aη̇2 + Bθ̇2)−

1

2
γ3hθ̇η̇(A′η̇2 + B′θ̇2)

− Vθ
BT3

+ γ(γ−1 − 1)2
hθ

2h2B
. (C.0.21)

By cross elimination and noting that γ is given by (C.0.3), we obtain

η̈ = −3H

γ2
η̇ +

h′

γh
η̇2(1− γ) + h′

2h2A
(γ−1 − 1)2

− 1

2A
(A′η̇2 − B′θ̇2) + hθ̇η̇

Vθ
γT3
− (1− hAη̇2) Vη

γAT3

−η̇θ̇(1− γ−1)
h′′

h
, (C.0.22)

θ̈ = −3Hθ̇

γ2
+ (1− γ)θ̇η̇ h

′

γh
− θ̇η̇B

′

B
+ hθ̇η̇

Vη
γT3

−(1− hBθ̇2) Vθ
γBT3

− (1− γ−1)

[
θ̇2 − (1− γ−1)

2hB

]
hθ
h
. (C.0.23)

By substituting the values of A and B according to the RHS of Eq. (C.0.16), and

noting that h = e−4A, we obtain the equations of motion in the form

η̈ = −3H

γ2
η̇ − 4A′(γ−1 − 1)η̇2 − 12ε−4/3K2A′e4A(γ−1 − 1)2

+
K ′

K
η̇2 + 3K2B′ϑ̇2 + e−4Aϑ̇η̇

Vϑ
γ
− (6K2ε−4/3 − e−4Aη̇2)

Vη
γ

+4η̇θ̇(1− γ−1)A′′ (C.0.24)

ϑ̈ = −3H

γ2
ϑ̇− 4A′(γ−1 − 1)η̇ϑ̇− B′

B
η̇ϑ̇+ e−4Aη̇ϑ̇

Vη
γ
−
(
ε−4/3

B
− e−4Aϑ̇2

)
Vϑ
γ

+4γ(1− γ−1)

[
θ̇2 − (1− γ−1)ε4/3e4A

2B

]
A′′. (C.0.25)
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Here ϑ stands for either θi with i = 1, 2. If the warp factor depends only on the

radial coordinate, then all the terms involving A′′ vanish and Eqs. (C.0.24) - (C.0.25)

reduce to Eqs. (4.1.19) - (4.1.20).
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