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Abstract 

Vertebrate species are managed for many reasons, including their role as economically 

important predators or as carriers of disease. Successful management depends on the 

ability to predict the outcome of management actions on a species’ population dynamics. 

However, uncertainty in the models used to make such predictions can arise from multiple 

sources, including sampling error in vital rates, intraspecific demographic variation and 

unknown interspecific interactions. The red fox Vulpes vulpes provides a useful model 

organism for exploring such uncertainty, because management of this important predator 

and disease host is often ineffective, despite substantial sampling effort.  

By explicitly accounting for sampling error in survival and fecundity, confidence intervals 

for population growth rates were derived from published point estimates of red fox 

demographic data. Uncertainty in population growth rates was found to be high, requiring 

a quadrupling of sampling effort to halve the confidence intervals. Given the often poor 

justification for the choice of distribution used to model litter size, the influence of 

probability distributions on population model outcomes was tested. In this first 

comprehensive evaluation, estimates of quasi-extinction and disease control probabilities 

for three Canid species were found to be robust to litter size distribution choice.  

Demographic analyses of the red fox revealed a medium to fast life history speed and 

significant survival and fecundity contributions from juveniles to population growth. 

Intraspecific variation was detected within these spectra of demographic metrics: the first 

such demonstration for carnivores. Simulated data substitution between fox populations 

revealed that geographic proximity and similar levels of anthropogenic disturbance did not 

infer demographic similarity. Considering the sampling effort expended on the red fox, the 

species appears well-studied; yet, substantial limitations in data collection were identified.   

Compartment modelling of a sarcoptic mange outbreak in an urban fox population in 

Bristol, UK, revealed that disease transmission was frequency-dependent, consistent with 

contact rates being determined by social interactions rather than by population density. 

Individual-based modelling suggested that indirect transmission, genetic resistance and 

long-distance recolonisation were required to replicate the observed rapid spread of 

mange and subsequent population recovery. Thus, this first attempt to model mange 

dynamics in this canid provided novel insight into previously uncertain epidemiological and 

behavioural processes in the transmission of sarcoptic mange in the red fox. 
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Chapter 1 General introduction 

The broad themes addressed in this thesis concern demography and disease ecology of 

the red fox Vulpes vulpes. Here, I will begin by introducing the wider importance of 

these areas of study. I will go on to explain why the fox represents a useful case study, 

detailing key characteristics of its life history, demography and sociality that relate to 

the focus of the thesis. I will also introduce the Bristol fox population, which is the 

focus of the disease ecology chapters of this thesis. I will then summarise relevant 

aspects of population dynamics, including inter- and intra-specific life history variation 

and data uncertainty. Next, I introduce the disease that is the subject of this thesis, 

sarcoptic mange Sarcoptes scabiei, with a summary of the current knowledge of the 

impacts and dynamics of this disease in wild canids. Following this introduction to 

mange, I review important aspects of disease dynamics, including assumptions of 

disease transmission and the implications of sociality for disease spread. I will conclude 

by outlining my thesis aims and structure. 

1.1 Background 

Vertebrate species are managed for many reasons, including their roles as resources, 

invasive species, economically-injurious predators and carriers of disease (Hoffman et 

al. 2011). Vertebrates are also managed as integral components of biodiversity, being 

valued for both their rarity (Mace et al. 2007) and commonness (Gaston & Fuller 

2008). For any management objective, success depends on the ability to predict the 

outcome of management actions on a species’ population dynamics. However, the 

models used to make such predictions are often prone to uncertainty arising from 

multiple sources, including sampling error, intraspecific variation and poorly-

understood interspecific interactions. Management decisions are frequently based on 

incomplete demographic information (Slade et al. 1998) and, of necessity, often utilise 

data substituted between populations, or gained from studies of similar, more 

common species (Pech et al. 1997, Githiru et al. 2007). Carnivores in particular, are 

important as predators and disease hosts (Baker et al. 2008) and their management is 

often the focus of contention due to their charismatic nature and source of human-
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wildlife conflict (Gittleman et al. 2001). Further, data limitations due to the challenges 

of studying these typically elusive mammals, makes estimating demographic rates 

difficult (Gese 2001). Thus, using a widespread carnivore to explore sources of 

uncertainty for population modelling is of wide relevance to vertebrate management.  

It is particularly useful for the management of vertebrate populations to determine 

how vital rates vary and which vital rates make the greatest contribution to population 

growth. Demographic rates, including survival and fecundity, are shaped in part by 

environmental and demographic stochasticity (Benton & Grant 1999). Consequently, 

understanding how vital rates respond to different selection pressures, such as 

harvest, disease or climate (Bieber & Ruf 2005, Milner et al. 2007, Jones et al. 2008b), 

is of direct relevance for management. Demographic rates are also determined by a 

species’ life history strategy; thus, it is useful to understand how different strategies 

influence a species’ response to perturbation (Heppell et al. 2000). Well-studied 

species provide meaningful insights into the importance of interspecific variation in the 

contribution of vital rates to population growth and the influence of life history 

strategy (Gaillard et al. 1998, Sæther & Bakke 2000, Coulson et al. 2005). Increasingly, 

there is evidence of significant demographic differences between populations (Nilsen 

et al. 2009, Johnson et al. 2010, Servanty et al. 2011). In this context, investigating 

intraspecific variation in population dynamics is potentially informative of the different 

selection pressures acting on a species’ life history.  

The red fox Vulpes vulpes (Linnaeus 1758) has many attributes that make it a useful 

model species to explore a range of theoretical and applied ecological questions. This 

carnivore is highly adaptable to diverse habitats and is the most widespread extant 

terrestrial carnivore species (Schipper et al. 2008). Foxes are often locally abundant 

and heavily managed, being of ecological and economic importance as predators 

(Baker et al. 2002, Baker et al. 2008, Saunders et al. 2010) and disease hosts (Chautan 

et al. 2000, Deplazes et al. 2004, Soulsbury et al. 2007). Agricultural and environmental 

damage due to foxes in Australia is valued at over AUS$200 million per annum, with 

the cost of bait control in New South Wales estimated at AUS$7.3 million per year 

(Saunders & McLeod 2007); in Europe, between 1978 and 1994, the cost of rabies 
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vaccine baits was approximately $US83 million (Stohr & Meslin 1996). However, much 

of this management effort is often inadequate (Gentle et al. 2007, Saunders et al. 

2010). Variation in management outcomes may be in part due to gaps in our 

knowledge of fox population dynamics (Saunders & McLeod 2007), despite this 

carnivore being subject to much sampling effort (e.g. Storm et al. 1976, Baker et al. 

2001b). In particular, the response of different fox populations to intrinsic and extrinsic 

pressures such as density-dependent processes (Berry & Kirkwood 2010), 

anthropogenic mortality (Baker et al. 2002, Aebischer et al. 2003) and disease 

(Chautan et al. 2000) is still poorly understood. It is therefore useful to determine not 

only the status of our current understanding of fox demography, but also to consider 

whether fox populations exhibit intraspecific demographic variation.  

Disease plays an important role in vertebrate management, often being difficult to 

control, generating controversy and incurring considerable economic costs (Carter et 

al. 2009). The transmission of disease to endangered populations and emerging 

zoonoses in particular poses a significant problem for wildlife managers (Daszak et al. 

2000, Breed et al. 2009). Host-pathogen relationships are one type of interspecific 

interaction that can have a significant role in shaping a hosts’ life history (Jones et al. 

2008b) and population dynamics (Tompkins et al. 2002). Thus, a comprehensive 

understanding of demographic processes in the absence of infection will improve the 

prediction of disease spread. Describing disease transmission in social species, such as 

the fox (Cavallini 1996), is especially challenging, because variation in inter- and intra-

group encounters affects the rate that disease spreads, potentially resulting in non-

linear disease dynamics (Altizer et al. 2003b). Further, elucidation of disease dynamics 

in wild populations are hampered by data limitations; difficulties in observing disease 

outbreaks often result in a high uncertainty associated with prevalence data (Jenelle et 

al. 2007, McClintock et al. 2010). 

Sarcoptic mange Sarcoptes scabiei is a potentially devastating disease that affects a 

wide range of rare and abundant mammalian species (Pence & Ueckermann 2002), as 

well as being of considerable economic importance for domestic species (Walton et al. 

2004). Mange has the highest incidence of arthropod diseases in carnivores that are 
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threatened by disease, as listed by the IUCN’s Red List (Pedersen et al. 2007). Although 

mange is an important disease, fundamental epidemiological and ecological aspects, 

such as disease transmission, host-parasite interactions and immunobiology, remain 

poorly understood (Arlian 1989, Bornstein et al. 2001, Walton et al. 2004), limiting the 

management of this disease. Foxes are particularly susceptible to mange: populations 

throughout the world have been severely depleted due to mange outbreaks and the 

disease often remains at low levels for years (Storm et al. 1976, Lindström et al. 1991, 

Soulsbury et al. 2007). Yet, there is no clear understanding of the mechanisms driving 

the long-term dynamics of mange in foxes and other canids. In this context, a well-

studied fox population that experienced a mange outbreak provides an opportunity to 

explore theoretical hypotheses relating to the transmission and persistence of mange. 

Insight into the dynamics of mange in foxes is of direct application to management and 

increases our understanding of important ecological and evolutionary processes of 

disease transmission in a social carnivore.  

1.2 The red fox, Vulpes vulpes 

The red fox is a small canid occurring naturally throughout Eurasia, North America and 

North Africa and introduced to Australia (Long 2003). Foxes are found in a wide range 

of habitats, including cities, farmland, forests, coastal dunes, tundra, prairie and 

deserts (Storm et al. 1976, Harris 1977, Englund 1980, Mulder 1985, Heydon & 

Reynolds 2000, Dell'Arte & Leonardi 2005), revealing the ability of this species to adapt 

to its surroundings. Across the fox’s global distribution, population density varies 

widely (0.08 to 37 individuals km-2, Appendix 1); several reasons have been proposed 

to explain population differences in density, including prey availability, habitat type 

(Webbon et al. 2004), level of culling (Heydon et al. 2000) and extent of seasonality 

(Bartoń & Zalewski 2007). The following sections summarise relevant aspects of red fox 

demography and social organisation, and introduce the Bristol red fox population.   

For the purpose of this thesis, fox is used to refer to the red fox. Fox age classes are 

defined as cubs (< 6 months), subadults (6-12 months) and adults (> 12 months) and 

juvenile is used to refer to all individuals under one year (Harris & Trewhella 1988). 
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1.2.1 Demography 

Life history rates are fundamental biological parameters that are the foundation for all 

demographic models and determine a populations’ dynamics. Survival rates of foxes 

vary between age classes and populations. The mean life expectancy in both hunted 

and non-hunted populations is between one and three years (Yoneda & Maekawa 

1982, Harris & Smith 1987). Hunting is often the highest cause of mortality in many 

controlled fox populations (Phillips et al. 1972, Tullar & Berchielli 1981, Reynolds & 

Tapper 1995), while in uncontrolled populations, road accidents typically result in the 

majority of deaths (Harris & Smith 1987, Gosselink et al. 2007). Juveniles are especially 

vulnerable to mortality. In the first four weeks up to 20% of cubs die (Harris 1977). 

Dispersal occurs predominantly among juveniles in their first autumn, with a higher 

proportion of males than females dispersing (Harris & Trewhella 1988). Inexperience 

and dispersal exposes juveniles to the risks of road accidents, antagonistic contacts, 

and increases their susceptibility to hunting and disease (Storm et al. 1976, Harris 

1977, Yoneda & Maekawa 1982, Lindström 1989). Relative mortality of dispersers 

varies among populations. In a rural US population, mortality of dispersers was higher 

than non-dispersing individuals (Gosselink et al. 2007), while Soulsbury et al. (2008a) 

found that mortality did not differ significantly between dispersers and non-dispersers 

in an urban UK population. Adult mortality is typically lower than that of juveniles 

(Storm et al. 1976, Harris & Smith 1987). When social stage is accounted for, mortality 

of subordinate adults is higher than that of dominants; few subordinates survive to 

attain territories because dominants live, on average, twice as long (Baker et al. 1998).  

Productivity differs according to age class and among fox populations. Females are 

physically able to reproduce in their first winter (Harris & Smith 1987). Typically only 

one litter is produced per year (Englund 1970), with mean litter size ranging from 3.1 

to 8.0 (Appendix 2). Mean litter size was found not to be correlated with latitude (Lord 

1960) and often varies little between populations (Lloyd et al. 1976). Younger vixens 

are more likely than older individuals to produce smaller litters or fail to breed 

(Englund 1970, Harris 1979). The incidence of non-breeding females varies widely 

among age classes and populations (Zabel & Taggart 1989, Marlow et al. 2000), 
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ranging from 0% to 90% (Appendix 2). The causes of non-breeding females are 

multiple; as well as physiological reasons (Harris 1979), breeding females are 

determined partly by resource availability and social factors related to density-

dependence (Macdonald 1979, Zabel & Taggart 1989, Iossa et al. 2009). In this context, 

using the proportion of non-breeding females as a measure of the influence of density-

dependence on productivity is a better predictor than other measures such as litter 

size and neonatal loss (Harris 1977). That both survival and productivity rates exhibit 

inter-population differences alludes to the potential existence of population-specific 

demographic tactics in this species.  

1.2.2 Sociality 

The influence of sociality on population dynamics is important for predicting the 

success of management actions. Social processes such as territoriality can limit 

population size and non-territorial animals can buffer populations against the loss of 

reproductive individuals (Cooper et al. 2009, Eccard et al. 2011, Penteriani et al. 2011). 

A large proportion of carnivores exhibit some degree of sociality, with canids being the 

most social (Gittleman 1989). The causal mechanisms for the evolution of groups in 

carnivores have been extensively reviewed (see Macdonald 1983, Bekoff et al. 1984, 

Gittleman 1989) and include predator defence, food exploitation, alloparental care and 

cooperative foraging. The costs and benefits of dispersal and philopatry, relating to the 

attainment of dominance and breeding opportunities, are particularly important in 

explaining group living in foxes (Baker et al. 1998, Soulsbury et al. 2008a), since foxes 

do not cooperatively forage or display group defence against predators. Foxes are one 

of a number of carnivore species including Eurasian badgers Meles meles (Woodroffe 

& Macdonald 1995), Ethiopian wolves Canis simensis (Sillero-Zubiri et al. 1996), and 

striped hyaenas Hyaena hyaena (Wagner et al. 2008), that forage alone but share all or 

part of a common territory. Macdonald (1983) termed this “spatial grouping”. 

Individuals forming spatial groups have home ranges that fall within the same territory 

boundary (Macdonald et al. 1981, Poulle et al. 1994, White et al. 1996), thus 

potentially benefiting from alloparental care and shared boundary defence 

(Macdonald 1983). The size of fox groups varies widely between populations, from 
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monogamous pairs to medium-sized groups (Newsome 1995, Cavallini 1996). Contact 

between individuals, such as inter-group interactions, establishes the degree of 

sociality in a species (Bekoff et al. 1984). Unlike many canids where direct interactions 

are frequent, both inter- and intra-group direct contacts are atypical for foxes (White 

& Harris 1994, Baker & Harris 2000), although this low level of social interaction is 

thought to be sufficient to maintain social cohesion (Poulle et al. 1994, White & Harris 

1994).  

1.2.3 The Bristol red fox population 

The increase in the UK urban fox population during the 20th century has been 

attributed to a combination of factors, including an increase in scavenged food and 

post-war changes in urban environments (Harris & Rayner 1986a, 1986b, 1986c). Fox 

densities in Bristol, UK, are among the highest in the world (Harris 1981). Prior to a 

sarcoptic mange outbreak in 1994, adult density was exceptionally high at 37 km-2 

(Baker et al. 2000). The outbreak reached a peak in the autumn/winter of 1995 and as 

a result the population in the city declined by over 95% (Soulsbury et al. 2007). In 

Bristol, fox social groups typically consist of a dominant pair, several philopatric 

subordinates and related offspring (Baker et al. 1998); pre-mange, group size had 

reached a peak of 6.57 individuals per group, which declined to 1.67 in the winter of 

1995, before the eventual collapse of group formation and loss of all groups from the 

study area in 1996 (Baker et al. 2000). Since the outbreak, population recovery has 

been slow and mange has remained at low levels in the Bristol foxes (Soulsbury et al. 

2007, S. Harris pers. comm.). Monitoring of the population has been continuous since 

1977 (Baker et al. 2001b, Whiteside et al. 2011), therefore providing a valuable long-

term dataset of demographic and social parameters (Harris & Smith 1987, Trewhella et 

al. 1988, White & Harris 1994, Baker et al. 1998, Baker & Harris 2000, Soulsbury et al. 

2008a, Iossa et al. 2009, Soulsbury et al. 2011, Whiteside et al. 2011). That this data set 

also contains prevalence data during and after a mange outbreak is of enormous 

importance for the development and validation of disease models. 
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1.3 Population dynamics 

Population growth is an important focus of wildlife biologists because of its 

fundamental importance for both conservation and management (Mills 2007). 

Meaningful information on the population growth rate and vital rate contributions can 

be determined from projection models of populations (Caswell 2001), such as the 

Leslie matrix (e.g. Ezard et al. 2010, Salguero-Gómez & de Kroon 2010), which are 

constructed relatively simply using life-history data. Further, matrix models can be 

structured to incorporate stage (or age) classes, one of the leading sources of variation 

in a populations’ demographics (Benton et al. 2006). With the application of 

perturbation analyses to projection models, the relative and absolute stage 

contributions to population growth can be identified (Benton & Grant 1999). Thus, 

matrix models form the basis of many population viability analyses (Morris & Doak 

2002) and also provide useful information for addressing questions of ecological and 

evolutionary interest, including linking fitness to life-history (Pelletier et al. 2007), 

identifying life history trade-offs (Gaillard & Yoccoz 2003), and determining the effects 

of climate (Coulson et al. 2001) and harvesting regimes (Ginsberg & Milner-Gulland 

1994). In this context, is useful to gain a comprehensive understanding of variation in a 

species’ dynamics across its range. The following sections consider variation in life 

history strategy and the contribution of vital rates to population growth and discuss 

how demographic modelling is affected by data uncertainty, in light of the current 

knowledge of fox population dynamics.  

1.3.1 Life history variation  

The information generated by projection models is useful for categorising species or 

populations according to life history strategy. One example is the fast-slow continuum 

(Heppell et al. 2000, Oli & Dobson 2003, Gaillard et al. 2005), a measure of how 

species resolve the evolutionary trade-off between reproduction and survival (Bielby 

et al. 2007). Life history theory predicts that contributions from the fecundity of 

younger age classes to population growth should be larger for mammals that mature 

early and are short-lived, so-called ‘fast’ mammals, whereas adult survival is more 

important for those long-lived ‘slow’ mammals that mature late (Heppell et al. 2000). 
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In relation to other carnivores, foxes are expected to fall towards the former category 

because of their early age of first reproduction, short life expectancy, and fairly large 

litter sizes. Elasticity analyses, which determine the proportional contribution of 

demographic parameters to population growth, have shown that juvenile foxes make 

the largest contribution to population growth (McLeod & Saunders 2001), although 

this study focused on a limited number of populations and failed to incorporate 

stochasticity in vital rates. Thus, it remains unknown whether these patterns are 

robust to the inclusion of variation. Indeed, predictions of life history contributions 

from deterministic analyses can vary unexpectedly when accounting for uncertainty in 

demographic rates, being of direct consequence to management (Wisdom et al. 2000, 

Johnson et al. 2010). Further, it is unclear if the apparent consistency of age-specific 

contributions to population growth translates into similar consistency in life history 

speed, because there are few estimates of life history speed for foxes (but see Oli & 

Dobson 2003). Given that defining a species’ position on the fast-slow continuum 

provides a measure of a species’ response to perturbations and adaptability to the 

local environment, classifying fox populations according to life history speed is of 

relevance for refining future fox management.  

1.3.2 Intraspecific variation  

Insight into intraspecific demographic variation increases our understanding of the 

evolution of life-history strategies. Recently, modelling has revealed inter-population 

demographic variation in large herbivores, as a response to differing selection 

pressures such as hunting and climate (Nilsen et al. 2009, Johnson et al. 2010, Servanty 

et al. 2011). This is in contrast to theory that predicts limited variation in demographic 

tactics, since the majority of demographic variation is accounted for by phylogeny and 

body mass (Gaillard et al. 2005). For example, substantial differences in vital rate 

contributions were found between populations of Sierra Nevada bighorn sheep Ovis 

canadensis sierra (Johnson et al. 2010) and roe deer Capreolus capreolus life-history 

speed slowed down in populations experiencing increasing environmental severity 

(Nilsen et al. 2009). Studying intraspecific variation removes the effects of phylogeny 

on life history variation (Frederiksen et al. 2005), but inter-population differences 
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have, to date, been overlooked for carnivores. Foxes exhibit plasticity in adapting to a 

wide variety of habitats (Storm et al. 1976, Harris 1977, Englund 1980, Mulder 1985, 

Dell'Arte & Leonardi 2005) and are subject to a wide range of climatic and 

management conditions. Life history rates are sensitive to environmental (Soulsbury et 

al. 2008b) and anthropogenic pressure (Lloyd et al. 1976, Chautan et al. 2000). Given 

the notable sampling effort expended on the fox and its wide distribution, this species 

presents an ideal opportunity to explore inter-population variation in the demography 

of a carnivore. 

Inter-population variation in life history is of consequence for management (Johnson 

et al. 2010). One such example is that of management decisions based on surrogate 

data, a practice in demographic modelling that is necessitated by the often limited 

availability of demographic data (Schtickzelle et al. 2005, Githiru et al. 2007). The 

extent to which surrogate data might affect model outcomes, such as estimates of the 

population growth rate, has received little attention (but see Caro et al. 2005). 

Demographic data have been substituted previously from one fox population to 

simulate another, in order to address management concerns (e.g. Pech et al. 1997); 

thus, in light of possible intraspecific differences, it is useful to determine whether 

there is sufficient similarity to justify substitution of data between fox populations.  

1.3.3 Uncertainty in population modelling  

An issue of widespread concern in population modelling is how to account for 

uncertainty in demographic data, which can lead to uncertainty in model predictions 

(Beissinger & Westphal 1998, Doak et al. 2005, Bakker et al. 2009). Life history data are 

widely collected by field biologists, yet there is significant disparity in how the data are 

recorded, calculated and presented, as well as being limited by logistical constraints. 

Uncertainty in vital rates arises not only from sampling error, but also from variation 

due to environmental and demographic stochasticity, known as process error (Bolker 

2008). Often, analyses of demographic processes focus on mean values rather than the 

intraspecific variation in a trait (Bolnick et al. 2011). Ignoring uncertainty in vital rate 

estimates could lead to misguided inference of the relative importance of life history 
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rates (Caswell 2001), which could be especially problematic for small populations, for 

which the effects of variability in vital rates are more pronounced (Melbourne & 

Hastings 2008). To incorporate uncertainty when the variance of a parameter is 

known, vital rates are drawn from probability distributions (Hilborn & Mangel 1997, 

Morris & Doak 2002, Mills 2007). For many demographic rates, however, the effects of 

distribution shape on model outcomes are either contradictory (e.g. survival, Fieberg & 

Ellner 2001, Kaye & Pyke 2003) or remain to be determined (e.g. litter size, Kendall & 

Wittmann 2010). Methods exist to separate process error from sampling error, such as 

discounting the total variance by the estimated sampling error (Kendall 1998, White 

2000). Incorporating uncertainty is particularly challenging when previously published 

parameters do not explicitly report measures of variance or studies have not been of 

sufficient duration to account for environmental variation. To date, the focus of 

incorporating variation into demographic models has mostly been on process error 

(e.g. Akçakaya 2002, Kendall & Fox 2002), with fewer studies explicitly accounting for 

sampling error (Holmes 2001, Bakker et al. 2009). 

Data uncertainty is a concern in species where demographic data have been collected 

from mortality data, for example as in foxes, due to the assumptions and biases 

associated with using such data (Caughley 1977). As a result of using mortality data 

such as standing age distributions, vital rates are often presented as point estimates. 

Hence, the uncertainty in these rates is not reflected in subsequent estimates of 

demographic descriptors. For instance, the intrinsic rate of increase has been 

determined for only a few fox populations globally, with typically stable growth (Hone 

1999, McLeod & Saunders 2001, Korytin 2002), but measures of confidence are lacking 

for these estimates. Quantifying the influence of parameter uncertainty for model 

predictions and determining measure of confidence in demographic descriptors is of 

direct application to management. 
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1.4 Sarcoptic mange, Sarcoptes scabiei 

Sarcoptic mange is a disease of widespread importance, affecting over 100 domestic 

and wild mammal species (Pence & Ueckermann 2002), including both threatened and 

abundant wild mammalian populations (see Table 1.1 for examples). Importantly, the 

transmission of this disease has the potential to ‘spill-over’ between domestic and wild 

mammals (Leon-Vizcaino et al. 1999, Daszak et al. 2000, Gortazar et al. 2007). The 

origin of sarcoptic mange in wild animals almost certainly stems from domesticated 

species, which are presumed to have caught the disease from humans (Fain 1978). In 

domesticated pigs, the annual economic loss due to sarcoptic mange was estimated at 

over AUS$500,000 in South Australia (Dobson & Cargill 1979) and US$84-115 per 

individual sow in North Carolina (Arends et al. 1990). While sarcoptic mange has not 

been implicated in the extinction of any wild species, it probably caused the 

extirpation of the fox population on Bornholm island, Denmark (Bornstein et al. 2001). 

Recent occurrences of sarcoptic mange in global fox populations are summarised in 

Table 1.2. Recent European outbreaks can be traced to the spread of mange through 

fox populations in continental Europe during the 1960s (Simpson 2002). The disease is 

now widespread in Britain, although the prevalence varies regionally (Soulsbury et al. 

2007). The following sections provide an overview of sarcoptic mange in wild canid 

populations, highlighting areas of uncertainty and of importance for modelling this 

diseases’ dynamics.  

In this thesis, mange refers to sarcoptic mange. An epizootic is defined as a phase of 

rapid disease spread when many individuals are infected simultaneously, while 

enzootic refers to a disease phase where infection is constantly present in a 

population, but only a small number of individuals are affected at any one time 

(Collinge & Ray 2006). 
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Table 1.1. Examples of sarcoptic mange in wild mammalian populations. 

Species Country Epizootic/ 

enzootic 

Mortality (%) 

or number of 

records 

Possible 

vector 

Threatened
 

Reference 

Marsupialia       

Common wombat  
Vombatus ursinus 

Australia Enzootic 35%  No 1 

Koala  
Phascolarctos cinereus 

Australia Enzootic 2% Wombat No 2 

Primate       
Mountain gorilla  
Gorilla beringei 

Uganda - 5 individuals  Humans Yes 3 

Carnivora       
Coyote            

Canis latrans 

USA Epizootic 20 - 100%   No 4 

Iberian wolf  
Canis lupus signatus 

Spain - 20%  Red fox Yes 5 

Pampas fox  

Pseudalopex gymnocercus 

Bolivia Enzootic 13 - 25%  - 6 

Raccoon dog 
Nyctereutes procyonoides 

Japan - 3 Individuals  No 7 

Fisher  
Martes pennanti 

USA - 1 individual Porcupine No 8 

Cheetah 
Acinonyx jubatus 

Kenya Enzootic 12·8% Thompsons 
gazelle 

Yes 9 

Eurasian lynx 
Lynx lynx 

Switzerland - 3 Individuals  Red fox Yes 10 

Raccoon      
Procyon lotor 

USA Enzootic  3 individuals  No 11 

Black bear        
Ursus americanus 

USA - 3 individuals   No 12 

Artiodactyla       

Alpine chamois 
Rupicapra rupicapra 

Italy Epizootic 41 - 70%  No 13 

Cantabrian chamois 
Rupicapra pyrenaica parva 

Spain Epizootic 1 – 21%   No 14 

Spanish ibex  
Capra pyrenaica hispanica 

Spain 
 

Epizootic 81% Domestic 
goats 

Yes 15 

Barbary sheep  
Ammotragus lervia 

Spain Epizootic 86% Domestic 
goat 

Yes 16 

Bighorn sheep 
Ovis canadensis 

USA Epizootic >80% Domestic 
sheep 

No 17 

Red deer  
Cervus elaphus 

Spain Enzootic  80 individuals  Chamois No 18 

Thompsons gazelle 
Eudorcas thomsonii 

Kenya Enzootic 0·81%  No 9 

Erinaceomorpha       
African pygmy hedgehog 
Atelerix albiventris 

Nigeria - 3.6 %  No 19 

Rodentia       
Fox squirrel  
Sciurus niger rufiventer 

USA Epizootic 30 – 50%  No 20 

Marsh rabbit   
Sylvilagus palustris 

USA - 7 individuals  No 21 

Common porcupine  
Erethizon dorsatum 

USA - 2 individuals  No 22 

1(Hartley & English 2005);2(Obendorf 1983); 3(Graczyk et al. 2001); 4(Pence et al. 1983);5 (Oleaga et al. 2011); 6(Deem et al. 2002); 
7(Ninomiya & Ogata 2005); 8(O'Meara et al. 1960); 9(Gakuya et al. 2012); 10(Ryser-Degiorgis et al. 2002);11Fitzgerald et al., 2004); 

12(Schmitt et al. 1987); 13(Rossi et al. 2007); 14(Fernandez-Moran et al. 1997); 15(Leon-Vizcaino et al. 1999);16(Gonzalez-Candela et 

al. 2004); 17(Jessup et al. 1991 cited in Woodroffe, 1999); 18(Oleaga et al. 2008);19(Okaeme & Osakwe 1985); 20(Allen 1942); 
21(Stringer et al. 1969); 22(Payne & O'Meara 1958). 
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Table 1.2. Mortality and prevalence of sarcoptic mange in red fox Vulpes vulpes populations. 

Country Epizootic/ 

Enzootic 

Mortality  Prevalence Reference 

Bristol, UK Epizootic  >95 %  1 

Surrey, UK Enzootic  14 Individuals 2 

Sweden Epizootic 21-100 %  3 

Norway Epizootic  6.6 % to 30 %  4 

Denmark Epizootic >70%  5 

Italy Enzootic  25.3 % 6 

Spain Enzootic  3.16 % 7 

Slovakia Enzootic 24.4 %  8 

Hungary Enzootic 21 %  9 

USA Epizootic  >50 % 10 

USA Epizootic  11 – 59 % 11 

USA Epizootic 45 % (urban)  12 

Australia Enzootic  14 % 13 

Japan Enzootic  7 Individuals 14 

 

1
(Soulsbury et al. 2007); 

2
(Bates 2003); 

3
(Danell & Hornfeldt 1987); 

4
(Davidson et al. 2008); 

5
(Forchhammer & Asferg 

2000); 
6
(Balestrieri et al. 2006); 

7
(Gortazar et al. 1998); 

8
(Kočišová et al. 2006); 

9
(Sreter et al. 2003); 

10
(Trainer & Hale 

1969); 
11

(Tullar & Berchielli 1981); 
12

(Gosselink et al. 2007); 
13

(Marlow et al. 2000); 
14

(Tsukada et al. 1999) 

1.4.1 Life history  

Sarcoptic mange is caused by Sarcoptes scabiei (Linnaeus 1758), a burrowing mite 

(Acari: Astigmata, Sarcoptidae) that consumes tissue fluid and living cells (Arlian 1989). 

The mites’ morphology and life history are described in detail in several studies (see 

Fain 1978, Arlian 1989, Bornstein et al. 2001, Pence & Ueckermann 2002, Walton et al. 

2004). The life cycle of a fertilised female lasts between four and six weeks, with 3-4 

eggs being laid daily that hatch three days later; development of all five nymphal 

stages is complete in roughly two weeks (Bornstein et al. 2001). Transmission occurs 

through larval stages and possibly by mature females (Walton et al. 2004). Under 

optimal ambient conditions of high humidity and low temperature, all life stages can 

survive up to several weeks off the host (Arlian 1989). 
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1.4.2 Clinical symptoms and immunology 

Clinical signs of mange have been extensively reviewed and are similar for most 

mammal species (see Arlian 1989). Once in the skin, mites release a secretion into the 

tissue that causes hypersensitivity and an itching reaction in the host (Pence & 

Ueckermann 2002). The latent period (the time for clinical signs to become apparent) 

in canids is 10 to 30 days, dependent on the mite load and individual hypersensitivity 

(Bornstein et al. 2001). High host densities of mites are common and up to 5000 

individuals per square centimetre are reported on foxes (Little et al. 1998). In foxes, 

hyperkeratosis (the characteristic crusty skin of mange) is noticeable one to two 

months after initial infection; the average time from first capture and diagnosis to 

death is 3.7 months (Newman et al. 2002). Although mange is not always fatal, death is 

frequently caused by starvation, dehydration, hypothermia and secondary bacterial 

infections (Bornstein et al. 2001). The progression of the disease is typically classified 

by visible development: in foxes, class I refers to infected individuals displaying no sign 

of hyperkeratotic mange and class II denotes the presence of hyperkeratotic mange 

(Newman et al. 2002). Behavioural changes in infected canids are less well 

documented than pathological symptoms, although infected foxes have been observed 

utilising smaller than normal ranges (Overskaug 1994).  

The immune response to mange is complex, with evidence of both cell-mediated 

(activation of specialised cells such as T-lymphcytes) and humoral (secretion of 

antibodies) responses (Arlian 1989). Empirical evidence of either acquired or genetic 

resistance to mange remains uncertain. In captive canids, there is experimental 

evidence both for and against acquired immunity (Arlian et al. 1994, Little et al. 1998). 

The inconsistency in these results could be related to the quantity of mites given 

during re-infection, or may indicate that immunity is acquired for low-grade levels of 

infection (Little et al. 1998). In some populations, foxes and coyotes Canis latrans have 

been observed to recover from mange, although it is unclear whether these individuals 

can subsequently became re-infected (Storm et al. 1976, Pence & Windberg 1994, 

Chronert et al. 2007). Long-term adaptation to mange in wild canid populations is 

supported in a serological study of a Danish fox population (Davidson et al. 2008). 
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1.4.3 Transmission 

Transmission of mange mites is thought to occur through both direct and indirect 

contact (Pence & Ueckermann 2002). The disease is transmitted directly by contact 

between individuals such as allogrooming, suckling and aggressive interactions. 

Dispersing individuals are implicated in transporting mange mites over long-distances, 

although there is little empirical evidence for this process (Lindström 1992, Pence & 

Windberg 1994). Indirectly, the mite can be transmitted through fomites (Arlian 1989), 

inanimate objects such as bedding material capable of transferring an infectious agent. 

In Russian fox populations, mange was thought to be transmitted via the sharing of 

dens (Gerasimov 1958). However, empirical data regarding the substances involved 

and subsequent contact rates with these fomites are lacking for other canid 

populations. 

1.5 Disease dynamics  

Host-parasite interactions are one of a number of interspecific interactions that can 

affect a populations’ dynamics (Tompkins et al. 2002). In contrast to many interspecific 

interactions, such as predator-prey interactions, parasites obtain their nutrients from 

one or few hosts, as opposed to predators that consume many prey throughout their 

life. Parasites frequently cause morbidity, rather than mortality, the effects of which 

are often noted at an individual level more than a population-level. Compared to other 

interspecific interactions, including predation and competition, the extent that 

parasites shape host population dynamics has until relatively recently been neglected 

by ecologists (Dobson & Hudson 1986). Disease is a potentially important influence on 

life history, exerting selection pressure on survival and reproduction and altering life 

history speed (Jones et al. 2008b). Thus, understanding the dynamics of a disease is 

important for species management. Disease dynamics are traditionally described by 

deterministic, continuous time models that classify individuals according to their 

infection status and follow the rate of change for each disease compartment 

(Anderson & May 1992). These models, such as S(E)IR (Susceptible-(Exposed)-

Infectious-Recovered/Removed) models, can provide meaningful estimates of 

epidemiological parameters, such as transmission coefficients, that characterise 



Chapter 1: General Introduction 

 
 

 17 

particular disease systems (Keeling & Rohani 2008). The transmission coefficient, β, is a 

key determinant of R0, the basic reproductive number, defined as the average number 

of secondary infections produced by an infected individual in a totally susceptible 

population (Hethcote 2000). R0 is a key parameter for determining the probability of 

establishment, prevalence and threshold of an epidemic and is species- and often 

population-specific (Keeling & Rohani 2008). A disease is likely to invade a population 

when R0 > 1 (Anderson & May 1992). Understanding the effects of disease on a hosts’ 

population dynamics is of applied importance, for example for determining the 

probability of disease-induced extinction (McCallum et al. 2009) or the effects of 

predator control on disease spread (Packer et al. 2003) and for identifying population 

stages with disproportionate disease risk (Klepac et al. 2009). The following sections 

provide an overview of the processes involved in describing disease transmission, 

including the effects of sociality, and discuss current knowledge of the dynamics of 

mange in wild canid populations.  

1.5.1 Disease transmission  

The estimation of epidemiological parameters in wild populations is notoriously 

challenging (McCallum et al. 2001). Difficulties in disease detection, such as reduced 

capture rates due to disease-induced behavioural changes, misclassification or the 

often opportunistic sampling associated with data collection during disease outbreaks, 

can result in large uncertainty in parameter estimates (Conner et al. 2000, Jenelle et al. 

2007, McClintock et al. 2010). For example, the transmission coefficient, β, requires 

knowledge of the frequency of contacts between susceptible and infected individuals, 

and the number of contacts that result in infection (Begon et al. 2002). These data are 

rarely available for wild populations and thus β is often estimated by fitting 

parameters to data on disease prevalence or incidence (Barlow 1995). Few mange 

outbreaks in wild populations have been studied sufficiently to enable elucidation of 

long-term temporal dynamics; to date, the only comprehensive simulation of mange 

dynamics has been conducted for coyotes (Leung & Grenfell 2003). The basic 

reproductive ratio, R0 and the transmission coefficient, β, do not appear to be 

determined in the published literature for canid species. 
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Correctly determining transmission mechanisms is important for predicting disease 

persistence and defining host-density disease thresholds (McCallum et al. 2001). 

Typically, directly transmitted diseases are modelled by one of two mechanisms. The 

first, density-dependent transmission, assumes that contact rates with infected 

individuals are linearly proportional to the density of the population (Begon et al. 

2002). However, contact rates do not always increase simultaneously with density; in 

this instance, the second mechanism, frequency-dependent transmission, may be 

more appropriate. Frequency-dependent transmission is characterised by constant 

contact rates, with transmission increasing with the proportion of infected individuals 

in the population (Begon et al. 2002). Frequency-dependent transmission is generally 

assumed to apply to sexually transmitted or vector-borne diseases, due to contact 

rates being independent of population size (McCallum et al. 2001). Despite these 

definitions, there is much uncertainty when describing transmission modes (McCallum 

et al. 2001, Begon et al. 2002, Lloyd-Smith et al. 2005a) and recent studies question 

the assumptions associated with density-and frequency-dependent transmission 

(Caley & Ramsey 2001, Begon et al. 2003, Smith et al. 2009c, Beeton & McCallum 

2011). The relationship between mange prevalence and density in fox populations is 

varied. Mange spread rapidly in the high-density fox population in Bristol (Baker et al. 

2000). Gortazar et al. (1998) found higher mange prevalence in low than in high 

density fox populations, and Lindström and Morner (1985) reported a lower rate of 

disease spread in high fox density habitats than in low density habitats. Given the lack 

of a consistent relationship of mange with population density, it is useful to explore 

the mechanism of transmission in this disease.  

1.5.2 Sociality and disease transmission 

Sociality shapes an individual’s risk of infection by altering either its underlying 

immunity, or contact with infected individuals, due to the influence of social processes, 

such as group size and structure (see Mooring & Hart 1992, Cote & Poulin 1995, Altizer 

et al. 2003b, Nunn et al. 2008, Rifkin et al. 2012). In group-living species, contact rates 

vary according to the inter- and intra-group interactions that reflect a population’s 

level of social organisation (Bekoff et al. 1984), resulting in the potential for certain 
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group members to make a disproportionate contribution to disease transmission. Due 

to the non-linear relationship of social contact rates with density, classic assumptions 

of the transmission mechanisms used in disease modelling might not hold true 

(McCallum et al. 2001). Sterner and Smith (2006) proposed that due to variability in 

encounters arising from the territorial nature of foxes and changes in density, a 

combination of density- and frequency-dependent transmission functions might best 

explain disease transmission. That social parameters are well-recorded for the Bristol 

fox population (Baker et al. 2001b), provides an opportunity to explore the influence of 

contact rates on mange transmission.  

Low inter-group contact rates, such as those observed in foxes (White & Harris 1994) 

and badgers (Böhm et al. 2008), lend support to the premise that group-structuring 

reduces disease spread (Loehle 1995, Carter et al. 2007). The role of stable territorial 

structures in inhibiting the spread of bovine Tb in badgers has been emphasised by 

studies describing increased disease spread due to culling-induced behavioural 

changes (sometimes referred to as ‘social perturbation'; Rogers et al. 1998, Carter et 

al. 2007, McDonald et al. 2008). Adjustments in territory size may be expected with 

behavioural changes during disease epizootics and disease may be sustained by the 

movement of dispersing animals into empty territories. However, in two fox 

populations in Bristol and Sweden, existing groups expanded their territories into 

empty territories during mange outbreaks, as opposed to new groups forming 

(Lindström 1992, Baker et al. 2000). Territory expansion could thus reduce the spread 

of disease by limiting the opportunity for infected newcomers to colonise (Baker et al. 

2000), but this hypothesis requires validation.  

Recent studies highlight the importance of incorporating social processes into disease 

models (Haydon et al. 2002, Shirley et al. 2003, Hosseini et al. 2004, Harris et al. 2008, 

Wasserberg et al. 2009, Craft et al. 2011). While simple deterministic models are 

useful for exploratory purposes (Smith et al. 2009a), social interactions and spatial 

processes such as dispersal are hard to capture in compartment models. By contrast, 

social behaviour and spatial processes can easily be incorporated in individual-based 

models (Haydon et al. 2002, Rushton et al. 2006, Nunn et al. 2008, Kramer-Schadt et 
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al. 2009), due to the non-analytical framework of these modelling approaches (Grimm 

& Railsback 2005). A stochastic individual-based model incorporating social 

interactions was better able to predict the observed patterns of mange in coyotes than 

traditional deterministic epidemiological models (Leung & Grenfell 2003). It is 

therefore of interest to determine whether a similar approach is suitable for modelling 

mange in foxes.  

1.5.3 Disease cycles and resistance 

Mange outbreaks often exhibit cycles. Epizootics can occur at intervals of 40 to 50 

years, followed by mange persistence for up to 20 years at enzootic levels (Lindström 

et al. 1994, Pence & Windberg 1994). Rapid evolution of immunity to disease 

(Bonneaud et al. 2011, Robinson et al. 2012) promotes host-parasite coexistence, 

allowing populations to recover and disease to persist under enzootic conditions. Thus, 

the possible immunity to low-grade mange infections described previously could 

reflect an evolutionary adaptation to the parasite. Yet, the effects of mange epizootics 

vary widely between species and populations, causing significant declines in some 

populations (Soulsbury et al. 2007), while having little effect on others (Pence & 

Windberg 1994). The contrasting effects of mange outbreaks and the contradictory 

empirical evidence for immunity (see above), suggest inter-and intra-specific genetic 

variability in resistance. Rapid evolutionary dynamics also act as a selection pressure 

on the virulence of a parasite (Altizer et al. 2003a), which is consistent with the theory 

that mutant strains of mange cause epizootics in novel populations (Pence & 

Ueckermann 2002). Leung and Grenfell (2003) found support for inherited resistance 

when simulating epidemiological patterns and population recovery of mange in 

coyotes; this suggests that understanding the evolution of immunity is likely to be 

necessary for understanding patterns of mange transmission. Long-term enzootic 

disease persistence in the Bristol fox population (Soulsbury et al. 2007) is indicative of 

a degree of immunity; however, empirical evidence is lacking and simulations are 

needed to explore the potential role of resistance.  
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1.6 Thesis aims and structure 

In this thesis, the demography and disease dynamics of the red fox will be explored 

using a suite of modelling techniques. The initial aim of the study, to model sarcoptic 

mange dynamics in an urban red fox population, prompted the need for a further 

understanding of the demography of this species. First, fundamental demographic 

properties of fox dynamics will be examined, and in doing so, two issues pertinent to 

ecological modelling will be addressed: data uncertainty and intraspecific demographic 

variation. Finally, an outbreak of mange in the Bristol fox population is modelled, using 

both epidemiological and individual-based approaches to explore disease transmission 

in this social carnivore. Collectively, the chapters in this thesis will provide new insight 

into demography and disease ecology that can be applied to the management of this 

species.  

Following this introduction, chapter 2 presents a method for incorporating the 

uncertainty of vital rate point estimates into matrix models. The approach is illustrated 

using published data for three fox populations. The consequences of failing to provide 

measures of uncertainty in the population growth rate are highlighted and guidance is 

provided on the sample sizes needed to reduce uncertainty in this rate.  

In chapter 3, the suitability of probability distributions used to model intraspecific litter 

size variation in population models is considered. Here, probability distributions are 

fitted to empirical litter size frequencies for terrestrial carnivore species. The 

robustness of population model predictions of quasi-extinction and disease control to 

distribution choice is determined for three canid species, including the fox.  

In chapter 4, a review of the current knowledge of global fox demography is 

undertaken. Matrix models constructed from previously published data are used to 

investigate population-level variation in demographic tactics, including life history 

speed and vital rate contributions to population growth. The consequence of 

substituting data between populations is then illustrated for population growth rate 

estimates.  
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In chapter 5, the ability of deterministic SEI (Susceptible-Exposed-Infected) 

compartment models to describe age-specific heterogeneities of mange prevalence in 

the Bristol fox population is established. Assumptions of disease transmission 

pathways in this social species are tested and the basic reproductive number, R0, is 

estimated for the most parsimonious model.  

In chapter 6, an individual-based model is developed to describe the Bristol fox 

population during the high density conditions prior to the outbreak of mange. A 

pattern-orientated approach is used to evaluate whether the model captures 

emergent social and demographic properties at the individual and population level. 

The influence of sociality is examined in relation to management issues, including 

disease and population control. 

In chapter 7, the dynamics of mange in the Bristol fox population is explored further 

with the stochastic individual-based modelling approach developed in chapter 6. The 

recovery of the population after an epizootic and the persistence of mange at enzootic 

levels are explored through the addition of indirect transmission and genetic 

resistance. The implications of sociality for disease transmission are examined.
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Chapter 2 Uncertainty in population growth rates: the red fox Vulpes 

vulpes as an example  

2.1 Introduction  

Demographic modelling is widely used in conservation and management (Mills 2007, 

Milner-Gulland & Rowcliffe 2007). As modelling techniques have become increasingly 

sophisticated, a growing literature has dealt with the importance of acknowledging 

process error (or environmentally-driven variation in demographic parameters) in 

model analyses (Tenhumberg et al. 2008, de Valpine 2009, Salguero-Gómez & de 

Kroon 2010). By contrast, assessments of the implications of observation error (arising 

from sampling limitations) for model precision are often lacking (but see Doak et al. 

2005, Fiske et al. 2008), perhaps due to a widespread acknowledgement of the 

ubiquity of sampling constraints (Beissinger & Westphal 1998). Here, methods are 

discussed to infer accuracy of vital rate estimates, even where parameter uncertainty 

has not been reported explicitly. It is shown that acknowledging limits to precision can 

be an important element of demographic inference, with implications for data 

collection protocols. 

Age- or stage-structured (Leslie or Lefkovitch) matrix population models are 

conceptually clear and relatively easily parameterised, with well-characterised 

properties; as such, the use of matrix models is particularly widespread in ecology 

(Ezard et al. 2010, Salguero-Gómez & de Kroon 2010). Studies utilising matrix 

population modelling rely on data from a variety of sources. Frequently, the studies’ 

authors have also collected the demographic data used to parameterise the transition 

matrix. In these cases, sample variance is used to establish vital rate distributions and 

resampling techniques are available to determine the consequences of that 

uncertainty for estimates of population growth (e.g. Kalisz & McPeek 1992, Wisdom et 

al. 2000). In spite of this, many authors routinely publish point estimates of asymptotic 

population growth (λ), without accompanying metrics of precision such as standard 

errors or confidence intervals (furthermore, this practice is not limited to relatively 

low-ranking journals; Table 2.1).  
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When modellers use data that were not collected specifically for the purposes of 

demographic insight, further problems arise. Hunting records are a common source of 

such data, even though they are associated with a number of important assumptions 

that limit their use and compel caution in their interpretation (Caughley 1977). Even 

accepting these limitations, hunting data are often reported inconsistently and, in 

particular, are frequently presented without estimates of accompanying uncertainty. 

In these situations, likelihood approaches provide a convenient method to infer the 

distribution and extent of uncertainty around the best estimate for the parameter of 

interest. Hitherto, likelihood methods have largely been neglected for exposing the 

uncertainty associated with the output of projection matrices. 

In this chapter, techniques are presented for inferring, retrospectively, the uncertainty 

of demographic parameters due to observation error in demographic data. Following 

others (e.g. McCarthy 2007) Bernoulli processes, such as survival or probability of 

breeding, are distinguished from Poisson processes, such as litter size. This approach is 

illustrated with reference to the red fox Vulpes vulpes, the most widely distributed 

extant wild terrestrial mammalian species (Schipper et al. 2008), extensively studied 

throughout its geographic range due to its ecological, economic, and cultural 

importance (e.g. see Heydon & Reynolds 2000, Saunders et al. 2010). The fox is widely 

hunted, making the species a rich source of demographic data. Comparisons of fox 

population growth rates in different parts of the world have been used to classify the 

species along the “fast-slow” life history continuum (Oli & Dobson 2003) and have also 

been used to make inferences about the species’ response to different environmental 

and management pressures (McLeod & Saunders 2001). Determining the confidence 

that can be placed in these assessments is, therefore, crucial for a number of 

applications. 

Here, it is illustrated how likelihood profiles can be determined for fox demographic 

parameters and use resampling techniques to assess confidence in resultant estimates 

of population growth. These results highlight the need for caution in generalising 

about differences in the dynamics of populations. The utility of this resampling 

approach is illustrated to provide information about required sampling effort.
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2.2 Methods 

2.2.1 Literature review of published demographic rates 

A literature review of published demographic studies was conducted to determine the 

number of studies that failed to include an accompanying measure of uncertainty of 

the estimated population growth rate. A Web of Science 

(http://apps.isiknowledge.com) search was conducted from January 2008 to May 2010 

using the search terms “population growth” AND “matrix model” AND “demography”. 

The results were separated by taxa, and further distinguished by those that used 

previously published data to estimate matrix transition elements. The impact factor of 

the journal was also recorded for each result. The number of studies using published 

demographic data was recorded, as were those studies published in a journal with a 5-

year impact factor of four or higher (based on Web of Science, Journal Citation 

Reports). 

2.2.2 Likelihood profiles for demographic parameters 

Age-specific survival and proportion of breeding females are Bernoulli processes, in the 

sense that each female can be considered a “trial” with a binomial outcome (live or 

die, breed or fail to breed). Taking the example of survival, hunting data often yield 

numbers of individuals in different age classes. If the data are assumed to have been 

collected at a time when the population approximated its stable age distribution, 

survival of individuals of age x can be inferred from the relative number of individuals 

in age classes x and x+1 (fx and fx+1, respectively). The point estimate of survival, Px, is 

given by Px = fx+1 / fx. Occasionally, fx+1 > fx, or the population is known to have been 

growing at some rate (r) during the period of data collection; Caughley (1977, pp. 90-

96) presents methods to deal with both of these situations. Very often, sample sizes 

for older age classes are sufficiently restricted that it is useful to truncate the age 

distribution and create composite classes for all age classes beyond a given age. In 

these cases, the point estimate of survival is given by Px* = fx>x* / (fx + fx>x*), where x* is 

the final age class. 



Chapter 2: Uncertainty in population growth rates 

 
 

 26 

In the previous formulae, the number of trials is represented by the denominator of 

the point estimate equation, whilst the number of “events” (or successes) is given by 

the numerator. However, the point estimate for survival is only an estimate. It is often 

more interesting to consider the relative probability with which any other true 

parameter value could have yielded the same outcome, i.e. the same number of 

events from the same number of trials. Assuming a uniform prior probability for any 

putative survival rate, the likelihood of any given survival rate, Px, is given by:  
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This likelihood distribution is easily evaluated using the “dbinom(events,trials,Px)” 

function in R 2.12.0 (R Development Core Team 2010). Given data, for example, on the 

proportion of shot females that show signs of breeding, the same approach can be 

used to determine the likelihood profile for the probability of breeding, Bx. If there is 

prior information about the focal parameter, then it can easily be incorporated using a 

Bayesian approach (see McCarthy 2007). 

When estimating age-dependent, per-capita, fecundity rates it is assumed that only 

information on the number of females of age x that bred is available, denoted Nx, and 

the total number of offspring that they produced, denoted Yx. Here, it is assumed that 

the number of offspring a female produces, given that she has produced at least one 

offspring, is distributed according to a shifted Poisson distribution. The point estimate 

for average litter size for breeding females in age class x is simply mx = Yx / Nx. The 

likelihood that the true mean litter size is mx, is: 

( )
( | , ) ,

!

xNy

x
x x x

N e
L m N Y

y

−

=
µµ

                                                                      (2) 

where µ = mx – 1 and y = Yx - Nx. These adjustments are necessary to shift the Poisson 

distribution of litter sizes one interval to the right, removing the possibility of zero 
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litter sizes for females that breed. This likelihood distribution is also easily determined 

in R using the “dpois(y, µNx)” function. 

2.2.3 Confidence intervals for population growth estimates: the red fox as an example 

Published demographic data were extracted for three red fox populations of 

management interest: a culled Australian population (Coman 1988, McIlroy et al. 2001, 

Saunders et al. 2002), a non-culled Australian population (Marlow et al. 2000), and 

combined data from culled USA populations (Storm et al. 1976, Tullar & Berchielli 

1981, Nelson & Chapman 1982, Tullar & Berchielli 1982, Allen 1984). Female-only, 

post-breeding “birth-pulse” models were constructed of the form Nt+1 = A.Nt, where Nt 

is a vector of numbers of females in each age class at time t and A is the transition 

matrix. The transition matrix was based on four age classes (juveniles, 0+; yearlings, 

1+; young adults, 2+; and older adults, ≥ 3 years) and took the form: 

 
 
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*

*

.

1 2 3 4
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tA       (3) 

To avoid small sample size issues among older age classes, only four age classes were 

used; it is unusual for individuals to survive past 4 years (Tullar & Berchielli 1981, 

Soulsbury et al. 2008a). 

Deterministic growth, λi, of population i, was determined from the dominant 

eigenvalue of Ai using point estimates of each matrix element for survival, calculated 

as detailed above. Fecundity matrix elements (Fx) were determined from the 

proportion of breeding females (Bx), the average age-specific litter size (mx) and a 

generalised birth sex ratio of 1:1 (Vos & Wenzel 2001), so that Fx = 0.5PxBxmx. 

Confidence intervals were determined using a resampling (or parametric bootstrap) 

approach (Wisdom et al. 2000). Specifically, λi was determined from 10,000 replicate 

projection matrices, with each element drawn from its corresponding likelihood 
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distribution; confidence intervals for λi were taken as the range encompassing the 

central 95% of λi estimates.  

2.2.4 Implications for sample size 

To illustrate an additional benefit of the resampling approach for quantifying 

uncertainty, a “generic” fox population (sensu Marboutin et al. 2003) was created from 

the focal studies. Generic demographic parameters were calculated by summing 

“events” and “trials” across the three studies; thus, parameters were weighted by the 

size of studies. The stable stage distribution (SSD) was calculated from the right 

eigenvector of the generic projection matrix, Ag. The effect of different sample sizes on 

the level of confidence that could be placed in estimates of population growth, λg was 

then investigated. Specifically, for a given sample size, S, it was assumed that the 

number of females available for demographic analysis was proportioned among age 

classes according to the SSD. Those S individuals were selected randomly, resampling 

with replacement, and calculated all matrix elements according to the fates of the 

selected individuals (whether they lived or died, bred or failed to breed and, if they 

bred, the number of offspring they produced, drawn from the relevant likelihood 

distribution). From this resampled matrix, λg,S,j was determined, where S was the 

sample size and j = 1, 2 … 104 resampled matrices. The process was repeated for a 

range of sample sizes from 50 to 4,500 females, reflecting the range of sample sizes 

available for published studies of foxes (minimum 42, Allen 1984, maximum 1701, 

Harris & Smith 1987). Resultant 95% confidence intervals for estimates of λg,S were 

plotted against sample size.
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2.3 Results 

2.3.1 Literature review 

A total of 109 studies across a range of taxa provided estimates of the population 

growth rate. The literature review suggests that failing to provide an accompanying 

measure of uncertainty in the asymptotic growth rate is a widespread practice (Table 

2.1). Further, this practice was not restricted to studies using published demographic 

rates, or to low-ranking journals.  

 

Table 2.1. Results of a literature review showing the percentage of studies that failed to 
include an accompanying measure of uncertainty of the estimated population growth rate. 
Sample sizes in parentheses. 

Taxon Studies 

without 

confidence 

estimates  

Studies using 

published 

vital rates  

Studies using 

published 

rates with no 

confidence 

estimates  

Studies with 5-

year impact 

factor ≥ 4  

Studies without 

confidence 

estimates with 5-

year impact 

factor ≥ 4  

Birds 58 (19) 37 (19) 57 (7) 21 (19) 27 (11) 

Fish 70 (10) 60 (10) 67 (7) 50 (10) 43 (7) 

Herptiles 17 (6) 0 (6) 0 (0) 17 (6) 0 (1) 

Insects 43 (7) 43 (7) 67 (3) 57 (7) 33 (3) 

Mammals 38 (26) 23 (26) 50 (6) 54 (26) 50 (10) 

Plants 31 (35) 9 (35) 100 (3) 17 (35) 73 (11) 

Other 50 (6) 17 (6) 100 (1) 45 (6) 0 (3) 

Total 42 (109) 24 (109) 65 (26) 45 (109) 43 (46) 
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Table 2.2. Demographic data used to define projection matrices for three independent fox 
populations and a “generic” population based on data from the three other populations. 
Sample sizes in parentheses. 
 

 

 §
Coman, 1988; McIlroy et al., 2001; Saunders et al., 2002; †Marlow et al., 2000; ‡ Storm et al., 1976; 

Tullar & Berchielli 1981; Nelson & Chapman 1982; Tullar & Berchielli 1982; Allen 1984. 

Parameter  Notation Australia
§ 

(hunted) 

Australia
†
  

(non hunted) 

USA
‡ 

Generic 
§† ‡ 

Age distribution f0 518 51 1992 2561 

 f1 143 20 817 980 

 f2 88 13 216 317 

 f3 67 14 168 249 

 f4* 32 3 62 97 

Survival fx+1/fx P1 0.28 0.39 0.41 0.38 

 P2 0.62 0.65 0.26 0.32 

 P3 0.53 0.92 0.60 0.79 

 P4* 0.32 0.18 0.27 0.28 

Probability of breeding  B1 0.77 (200) 1.00 (19) 0.68 (82) 0.76 (301) 

 B2 0.88 (64) 1.00(13) 0.92 (36) 0.90 (113) 

 B3 0.88 (34) 1.00 (9) 0.91 (22) 0.91 (65) 

 B4* 0.94 (54) 1.00 (3) 0.97 (34) 0.96 (91) 

Mean litter size  m1 3.22 (154) 3.50 (19) 4.52 (73) 3.75 (246) 

 m2 4.00 (56) 3.91 (13) 5.07 (35) 4.33 (104) 

 m3 4.80 (30) 3.09 (9) 5.83 (21) 4.57 (60) 

 m4* 4.80 (51) 3.76 (3) 5.91 (33) 4.82 (87) 

Fecundity 0.5Px Bxmx  F1 0.34 0.69 0.63 0.55 

 F2 1.08 1.27 0.61 0.63 

 F3 1.13 1.43 1.59 1.63 

 F4* 0.73 0.33 0.77 0.65 
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2.3.2 Red fox demographic parameters 

Demographic parameters for the three focal populations are summarised in Table 2.2. 

Also shown are the parameters for the generic population, derived by combining data 

from the three studies. 

2.3.3 Likelihood profiles for demographic parameters 

The width (or, equivalently, uncertainty) of likelihood distributions is clearly influenced 

by both sample size and mean survival rate. Uncertainty is greatest for intermediate 

vital rates (e.g. probabilities closer to 0.5 than to either zero or unity) and when 

sample size is low (Figure 2.1). Likelihood profiles were determined for each of the 

demographic parameters: an example for the Australian population is shown in Figure 

2.1. The SSD for these populations is heavily skewed towards younger age classes and 

this is reflected in the sample sizes available for each age class (see Table 2.1); hence, 

there is a tendency for likelihoods to show wider distributions for all parameters 

associated with older age classes (Figure 2.2). The exception to this is the final age 

class, at which the age distribution is truncated, which has the potential for larger 

sample sizes than the penultimate age class. 

2.3.4 Confidence intervals for population growth estimates  

Confidence intervals associated with population growth estimates were generally large 

and all overlapped with λ = 1 (denoting a stable population) (Figure 2.3). That all the 

confidence intervals overlapped with unity does not suggest that these are likely to be 

stable populations, but it does highlight the uncertainty arising from observation error 

alone. For example, the point estimate of population growth for the relatively 

intensively studied USA population (with survival data inferred from over 3,000 culled 

foxes from the combined studies, but see Chapter 4) suggested an annual increase of 

approximately 8%. By contrast, 95% confidence intervals for that population varied 

from suggesting a decline of over 1% per annum, to an annual increase of nearly 16%. 

Ignoring density dependence, this range of outcomes is equivalent to a population that 

could decline by 10% over seven years, to one that could grow by 100% in just five 

years. 
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In each case, the point estimate of λ was slightly higher than the stochastic mean 

estimate. This is particularly noticeable for the non-hunted Australian population, 

which has very small sample sizes. This overestimation can be explained by Jensen’s 

inequality, a mathematical property of non-linear functions. Specifically, the 

overestimation will occur if lambda is a non-linear decelerating function of a given 

parameter (Fiske et al. 2008).  

 

 

 

 

Figure 2.1.  Likelihood distributions for vital rates simulated with varying sample sizes. Average 
survival rates of 0.1 (A & D), 0.5 (B & E), and 1.0 (C & F) are simulated with varying age class 
sample sizes: (A-C) N = 10, (D-F) N = 100. Likelihoods were rescaled to peak at 1.0.  
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Figure 2.2. Likelihood distributions for demographic parameters of the hunted Australian 
population. From left to right for age classes 1 to 4: (A-D) survival rates (Px), (E-H) probability of 
breeding (Bx) and (I-L) litter size (mx). Likelihoods were rescaled to peak at 1.0. 
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Figure 2.3. Asymptotic population growth rates (λ) for three fox populations and a “generic” 
population. The figure shows point estimates (determined from the dominant eigenvalue of 
the population’s projection matrix) (open circles), as well as mean (filled circles) and 95% 
confidence intervals (error bars) determined from 104

 Monte Carlo resamples from the 
likelihood distributions of all underlying parameters. The line at λ = 1 indicates stability.  

 
 
 

2.3.5 Implications for sampling effort 

Confidence intervals around estimates of the generic population’s asymptotic growth 

rate were initially broad but reduced in width at a decreasing rate as sample size 

increased (Figure 2.4A). In fact, in line with probability theory, the width of the 95% 

confidence intervals declines with sample size to the half power (Figure 2.4B), 

indicating that to reduce confidence intervals by half, the sample size needs to be 

increased fourfold. 
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Figure 2.4. Effect of sample size on uncertainty associated with estimated asymptotic 
population growth (λ). (A) 95% confidence intervals were calculated by resampling with 
replacement from the individuals available from the generic population (see text for further 
details). Letters indicate total sample sizes for the age distributions of the focal populations [N, 
non-hunted Australia = 101; A, Australia = 848; U, USA = 3255; G, Generic = 4204]. (B) Log 
sample size plotted against log width of the 95% confidence intervals (slope = -0.50). 
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2.4 Discussion 

2.4.1 Accounting for uncertainty: moving beyond point estimates 

Matrix modelling (Salguero-Gómez & de Kroon 2010), resampling techniques (Wisdom 

et al. 2000) and likelihood approaches (Hobbs & Hilborn 2006) are increasingly 

commonly used in ecology. In spite of this, they do not appear to have been combined 

to provide insight into the limitations imposed on matrix projections by observation 

error. Here, it has been shown that deriving likelihood distributions from point 

estimates of demographic parameters is straightforward with freely-available 

software. Resampling from parameter distributions derived from published studies of 

fox demography and focusing on estimates of asymptotic growth rate, it has been 

illustrated that observation error can introduce substantial uncertainty into 

demographic inference. These results have implications when applying matrix 

projection models to real world problems and, more generally, for the interpretation 

of demographic data. 

Resampling from measured distributions has been applied to matrix projection models 

to determine the impacts of a range of sources of variation on the population 

dynamics of the focal system (e.g. Kalisz & McPeek 1992, Schleuning & Matthies 2008). 

However, when matrix parameters are derived from data from other sources, 

accompanying measures of uncertainty are often lacking. This is particularly the case 

when data are derived from hunting records. Indeed, even in situations in which raw 

data are available, the review of published studies suggests that generating point 

estimates of asymptotic growth rate without accompanying estimates of uncertainty is 

common practice. In either case, the example presented here shows that it should be 

perfectly possible to infer uncertainty in underlying parameters and, using resampling, 

to assess how that uncertainty propagates through to insights into population 

dynamics. This is particularly pertinent, given that demographic models are frequently 

relied upon to make predictions based on these “uncertain” estimates, such as with 

regard to sustainable harvesting rates (Marboutin et al. 2003) and minimum viable 

population sizes (Beissinger & Westphal 1998).   
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Recently, concerns have emerged regarding an over-reliance on stable, asymptotic 

properties of projection matrices. Ezard et al. (2010) noted that anthropogenic impacts 

frequently perturb populations away from their expected stable stage distributions 

(SSD), with the result that transient dynamics following a disturbance can depart 

significantly from the dynamics associated with asymptotic conditions. The 

consequence is that longer term trajectories can be quite different from those 

predicted by standard deterministic projection matrix analyses. Ezard et al. (2010) 

recommended a greater focus on transient dynamics and, in particular, a focus on 

matrix properties decoupled from the assumption of SSDs e.g. by using analyses based 

on observed stage distributions. Caution is also urged in the interpretation of 

dynamical parameters derived from standard matrix projection analyses. Indeed, the 

resampling of likelihoods approach could easily be combined with Ezard et al.’s (2010) 

focus on observed stage distributions. 

Although likelihood methods are presented as a useful way to infer uncertainty in 

point estimates of demographic parameters, this is considered a starting point for 

more critical analyses of demographic data. For example, McCarthy (2007) presents 

methods for improving the construction of parameter likelihoods through the 

establishment of informative priors. In addition, although the shifted Poisson 

distribution was used to describe litter sizes, further analyses are required to identify 

the most generally applicable distributions (see chapter 3). In the specific case of litter 

size, Morris and Doak (2002) have suggested that the stretched beta might be more 

appropriate. In general, a greater use of online supplementary materials is advocated 

to provide raw data emerging from studies, in order to aid future analyses of vital rate 

distributions. In this context it is also important for age distributions to be presented as 

yearly data (rather than aggregated across years) to improve estimations of vital rate 

variance, construct periodic models, and incorporate stochasticity. 

2.4.2 Applied implications of population growth uncertainty 

Foxes are widespread and often abundant and, as a result, they have been extensively 

studied in a wide range of locations. In spite of this, it remains the case that most fox 

demographic data are collected through hunting returns. Utilising these minimal data 
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to their maximum potential is important, not only for foxes, but for other species for 

which demographic data are collected by similar methods (e.g. Solberg et al. 1999, 

Bischof et al. 2008). Increasing our understanding of fox population dynamics is 

important for designing more efficient management strategies, predicting effects of 

environmental changes, and understanding evolutionary processes. Although several 

studies have estimated fox population growth rates (e.g. Pech et al. 1997, Hone 1999, 

Heppell et al. 2000, McLeod & Saunders 2001, Oli & Dobson 2003), those results have 

been presented as point estimates, with no indication of the confidence that could be 

placed in them. The temptation is, thus, to make comparisons between the growth 

rates of different populations, potentially attributing those differences to aspects of 

management or ecological circumstance. In this context, determining confidence 

intervals about estimates of λ is obviously essential, and these results highlight the 

need for caution in making comparisons between populations without accounting for 

uncertainty. 

2.4.3 Inference for future data collection 

Knowledge of optimal sample sizes has implications for allocating resources (e.g. 

sampling effort for capture-mark-recapture studies). These results indicate that small 

initial increases in sample size will yield substantial reductions in uncertainty; however, 

as sample sizes increase, further effort to collect additional samples yields diminishing 

returns explained by a simple power law. Doak et al. (2005) suggest that it might often 

be beneficial to increase study duration, rather than sampling intensity. However, 

smaller sample sizes often lead to bias in demographic inference (Fiske et al. 2008). 

These results suggest that small studies should be avoided but that, as sample size 

increases, it will be beneficial to devote resources towards determining the 

mechanistic basis for intrinsic variation, rather than simply to collect more samples; in 

many systems, this argues in favour of extending study duration to capture the drivers 

of inter-annual variation, commonly a significant source of variance. 

To derive the relationship between sample size and uncertainty in λ, it was assumed 

that individuals would be sampled approximately in proportion to the SSD. For studies 

based on mortalities such as shooting or road deaths, this seems to be an appropriate 
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approach (assuming that the population approximates the SSD; but see Ezard et al. 

2010). In addition, studies that have considered the best allocation of sampling effort 

by age or stage (e.g. Gross 2002, Fiske et al. 2008) have shown that sampling in 

proportion to the SSD is the approach likely to yield the least uncertainty in 

demographic parameters. Certainly, sampling in proportion to the SSD will yield a 

higher number of juveniles, which typically make the most significant contribution to 

fox population growth i.e. have the highest elasticities (Harris & Smith 1987, McLeod & 

Saunders 2001). Owing to the fact that the most important observation errors will 

arise from inadequate sampling of life stages with the highest elasticities (Caswell 

2001), the value (in this case) of sampling in proportion to the SSD is clear. Although it 

is not possible to define a one-size-fits-all sampling intensity, the simple approach that 

is presented here should be applicable to a wide range of species. Moreover, the 

finding that quadrupling the sample size is likely to halve the confidence interval is 

likely to be very general. 

2.5 Conclusion 

A brief example has been presented of how more information can be extracted from 

the type of published data that form a common source for demographic modelling. 

The results highlight the fact that, even for well-studied species such as the red fox, 

sampling limitations and inherent variability can limit the precision with which 

characteristics of population dynamics can be identified. A more widespread use of 

these straightforward approaches (and related techniques) is recommended, in order 

to promote a greater awareness of the limitations of many population analyses.
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Chapter 3 The effects of litter size variation for models of carnivore 

extinction risk and management 

3.1 Introduction  

Demographic variation, resulting from extrinsic and intrinsic sources, fundamentally 

affects population dynamics and is particularly important when assessing extinction 

risk for threatened species (Boyce et al. 2006, Lee et al. 2011). Predictions of 

population dynamics depend on the ability to attribute sources of stochasticity 

accurately in population models (Melbourne & Hastings 2008, Ovaskainen & Meerson 

2010). Of particular importance is the distinction between demographic stochasticity, 

the random fate of an individual, and demographic heterogeneity, the individual 

variation in traits, both of which make important contributions to a populations’ total 

demographic variance (Kendall & Fox 2003, Melbourne & Hastings 2008). Such 

stochasticity in demographic fates can easily be accounted for by drawing rates from 

appropriate probability distributions (Akçakaya et al. 1999, Morris & Doak 2002). Yet, 

models often assume that vital rates are homogenous among conspecific individuals, 

thereby masking the underlying mechanisms by which population dynamics are 

affected by intraspecific variation (Bolnick et al. 2011).  

Mean litter (or clutch) size has long been the focus of evolutionary and population 

biologists concerned with causes of interspecific variation (Blueweiss et al. 1978, 

Böhning-Gaese et al. 2000, Jetz et al. 2008, Kulesza 2008), correlations with 

environmental gradients (Lord 1960, Cardillo 2002, Jetz et al. 2008, Bywater et al. 

2010) and optimality in this trait (Lack 1947, Charnov & Krebs 1974, Smith & Fretwell 

1974, Sikes & Ylonen 1998). However, intra-population variation in litter size has been 

largely overlooked (but see Kendall & Wittmann 2010). Limited knowledge of the 

underlying measures of empirical litter size distributions, such as the degree of 

dispersion, hinders the accurate representation of the stochasticity of this parameter 

in population models. When modelling litter size as a separate component, most 

studies fail to validate their choice of probability distribution (e.g. Rushton et al. 2006, 

Conner et al. 2008, Pitt et al. 2008, Chapron et al. 2009) or use empirical frequencies 
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(e.g. Ginsberg & Woodroffe 1997, Shirley et al. 2003). Demographic stochasticity in 

offspring number is most commonly modelled with Poisson or normal distributions 

(Akçakaya 1991, Lacy 1993, Morris & Doak 2002), although there is little theoretical 

justification for these choices (Kendall & Wittmann 2010). Furthermore, many 

demographic modelling programmes (e.g. VORTEX, Lacy 1993, and RAMAS, Akçakaya 

et al. 1999) have limited provision for specifying distributions. Unlike survival, which is 

a Bernoulli process (Akçakaya 1991), choosing a distribution to describe variation in 

litter sizes in multiparous species can be complex because the biology of reproduction 

differs substantially among species and is ultimately limited by physiological capacity. 

Standard probability distributions might lack the flexibility required to account for 

litter size variation in many species.  

In population modelling, the influence of distribution choice has only been considered 

previously for demographic parameters other than litter size, with a focus on 

environmental stochasticity. Studies that modelled environmental stochasticity found 

that population growth rate (λ) estimates were underestimated as a result of 

inaccurately defined, symmetrical survival distributions (Slade & Levenson 1984) and 

large differences in λ estimates were found when drawing recruitment rates from 

different distributions (Nakaoka 1997). Yet, the shape of the distribution may also be 

important for populations that are susceptible to fluctuations in vital rates as a result 

of demographic stochasticity, such as small populations. Failing to account for 

demographic stochasticity in litter size may lead to inaccurate predictions of extinction 

risk (Kendall & Wittmann 2010). In this context, it is useful to establish whether failing 

to incorporate an appropriate theoretical distribution for litter size, describing an 

individual’s demographic fate, could lead to erroneous estimates of model outputs.  

Here, the fit of specified candidate probability distributions to empirical data on 

terrestrial carnivore litter size frequencies was examined. The Carnivora exhibit some 

of the most diverse life history traits of all mammalian orders, as reflected in their 

broad range of litter sizes (Ewer 1973). While many carnivores are at increasing risk of 

extinction (Purvis et al. 2000), others are predators of economic importance or are 

important hosts of zoonotic and wildlife diseases such as rabies (Baker et al. 2008); 
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although data collection is often challenging (Gese 2001), both categories of carnivore 

are frequently the subject of population models (e.g. Smith & Harris 1991, Ginsberg & 

Woodroffe 1997, Kohlmann et al. 2005). Given the importance of carnivore 

management and the sparseness of much of the data used to model carnivore 

demography, it is useful to establish whether the choice of distribution used to model 

demographic stochasticity in litter sizes affects the inferences drawn from models of 

carnivore population dynamics. To illustrate the applied importance of using 

appropriate distributions, three previously published population models are replicated 

to determine the consequences of mis-specifying litter size distributions for inferences 

regarding extinction probabilities or disease dynamics. 
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3.2 Methods 

3.2.1 Probability distribution fitting 

Litter size frequency data were collated for 32 terrestrial multiparous carnivore 

species, from 64 published studies of 73 wild populations, to reflect the diversity of life 

history within the order. Each species has a single annual breeding attempt. None of 

the studies included litters of zero; modelling litter size inherently assumes that an 

individual has bred. Studies were included regardless of sample size, in order to 

determine the influence of sampling effort. If studies presented data for multiple 

conspecific populations or for multiple methods of litter size determination, these 

were analysed as discrete datasets. For 15 species, data were obtained for between 

two and ten populations. For three species, data from multiple methods of litter size 

determination (e.g. placental scars and direct counts) were available. Thus, 

consideration was also given to whether there was strong support for genuine 

underlying difference in litter size distributions between conspecific populations or 

between data determined by different methodologies (for a given population). 

Twelve probability distributions were selected based on a review of previous studies. 

Specifically, four discrete distributions were chosen: the Poisson distribution (Morris & 

Doak 2002); the generalised Poisson, which has a wide-ranging suitability for 

describing litter size frequencies (Kendall & Wittmann 2010); the binomial distribution, 

previously fitted successfully to carnivore litter data (Kendall & Wittmann 2010); and 

the negative binomial, widely used to describe ecological processes (e.g. Shaw et al. 

1998). For each discrete distribution, both a “right shifted” and “zero-truncated” form 

were fitted (Appendix 3), to exclude litter sizes of zero. For zero-truncation, the 

probability mass function was scaled by the exclusion of predicted zeros. Shifting 

involved moving the entire distribution one interval to the right. Three continuous 

probability distributions were chosen: the normal and lognormal distributions are both 

widely used (Morris & Doak 2002), although log-transformation is not recommended 

for count data (O'Hara & Kotze 2010); and the stretched beta (two and three 

parameter forms), as proposed by Morris and Doak (2002). Appendix 3 provides details 

of how these continuous distributions were converted into discrete forms.  
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Maximum-likelihood parameters, denoted θ̂ , were estimated using the “optim” 

function in R 2.14.0 (R Development Core Team 2011). Here, the multinomial log-

likelihood defined by θ and given all the data is: 

[ ]
max

1

( |data) ( 1) ln ( ) ( 1 ,
x

i i i

i

LL N N P N
=

= Γ + + − Γ +∑θ θ    (1) 

where N is the total number of litters observed, Ni is the number of litters observed of 

size i, Pi is the predicted litter size probability determined by a given distribution 

(Appendix 3), xmax is the maximum litter size, and Γ(x) is the complete gamma function. 

The fits for each probability distribution were compared using Akaike’s Information 

Criterion (AIC), a metric of model parsimony that reflects the trade-off between model 

fit and parameter uncertainty (Burnham & Anderson 2002, Richards 2005). All 

distributions having a ΔAIC ≤ 6 of the best fitting distribution (i.e. lowest AIC) were 

considered to have some support (Richards 2008). To check that the best-fitting 

models were consistent with the data and because of the small sample sizes of the 

predicted frequencies, goodness-of-fit tests were performed using Fisher’s Exact Test. 

Whether sample size had an effect on the number of parsimonious distributions was 

assessed using linear regression. Variance-mean ratios (Sokal & Rohlf 1987, p.69) were 

determined to measure the dispersion of the empirical and fitted distributions.  

3.2.2 Intraspecific variation in litter size distributions 

In addition to establishing whether interspecific differences exist in the suitability of 

probability distributions to model litter size, it is also interesting to consider 

intraspecific variation in describing litter size. Intraspecific variation can be examined 

through a two-part analysis. First, evidence was sought that distinct probability 

distributions are required to describe the litter size distributions of conspecific 

populations. Specifically, is a distinct probability distributions needed to describe the 

litter size data (hereafter referred to as “a dataset”) taken from populations that are 

separated geographically, or where the data have been determined using different 

methodologies? Second, if it is established that the same distribution can be applied to 
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specified datasets, do the same parameter values of the probability distribution 

function describe the given datasets adequately?  

The first component of the analyses determined whether the same probability 

distribution could be applied to the specified datasets. For a given pair of datasets, the 

joint AIC value was calculated for each possible probability distribution combination. 

Specifically, let M(i,j) be a model where probability distribution i is fitted to the first 

dataset and probability distribution j is fitted to the second dataset. The log-likelihood 

of this model is then simply the sum of the log-likelihoods of each probability 

distribution fitted to their specified dataset. Whether the same probability 

distributions adequately described the datasets was evaluated by determining if any 

model where i = j was within 6 units of the smallest AIC (over all possible probability 

distribution combinations). This approach is readily generalised for more than two 

datasets. Only parsimonious distributions as determined by the initial fitting (see 

above), for the geographic and methodological datasets, respectively, were included in 

these analyses. 

If at least one probability distribution could adequately describe the specified datasets, 

the second component of the analyses sought to determine whether the same 

parameter values could be used to describe each of the datasets. Specifically, let 

ˆ( | )LL Sθ be the maximum log-likelihood when the probability distribution described by 

the parameters θ is fitted to dataset S. The maximum log-likelihood when two datasets 

are described by distinct parameter sets is ˆ ˆ( | ) ( | )
1 1 1 2 2

LL LL S LL S= +θ θ ; and when the 

two datasets are described by a probability distribution with the same parameters, the 

maximum log-likelihood is ˆ ˆ( | ) ( | )
0 3 3 3 3

LL LL S LL S= +θ θ . A log-likelihood ratio test was 

then used to determine whether the simpler model (using a single parameter set) 

provided a more parsimonious description of the combined datasets than its expanded 

alternative (using two distinct parameter sets). The test statistic is determined by the 

deviance, defined as G=2(LL1-LL0). The distribution of G is approximately chi-squared, 

with the degrees of freedom (df) equal to the additional number of free parameters 
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required for the more complex model (Sokal & Rohlf 1987). This approach is also 

readily generalised for more than two datasets. 

The above approaches were used to test for intraspecific differences in the underlying 

litter size distributions of the red fox Vulpes vulpes. Litter size data collected from six 

geographically distinct populations were used, where data were determined by 

placental scars. Data for these populations were combined over 4, 3, 4, 5, 6, and 17 

year periods, respectively (Appendix 4). Three methodologies used to determine litter 

size for one red fox population (S. Harris, unpublished data) were then compared, 

using data determined by placental scars, embryo counts and direct counts, combined 

over a 17 year period.  

3.2.3 Carnivore population models 

Published stochastic population models of three management scenarios were used to 

illustrate the broader applied significance of this study. The Canidae were chosen 

because they provide the widest range of litter sizes within the Carnivora (Ewer 1973). 

Models were chosen to depict a range of conservation and management scenarios that 

could be replicated from published data; the intention was to identify whether the 

choice of distribution used to represent litter sizes influences predicted model 

outcomes. Here, “outcomes” refers to a major emergent parameter from the models, 

on which further inference would be based (see below). The emergent parameter of 

interest varied because the three models were created for different applications. Using 

the parameters that were estimated by maximum likelihood as described above, 

10,000 stochastic replicates of the models were simulated drawing litter sizes from 

each of the 12 probability distributions. This enabled calculation of 95% confidence 

intervals around a binomial outcome (Hilborn & Mangel 1997). For each case study, 

disparities were determined between the outcome values of the 12 model versions. 

This allowed the evaluation of the effect on each model of employing different litter 

size distributions, in relation to the degree of empirical support for those distributions. 
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Table 3.1. Parameter values for the three population models (Kohlmann et al. 2005; Smith and 
Harris 1991; Ginsberg and Woodroffe 1997). 

Initial parameter value 
Model 1. Island fox 

(Urocyon littoralis) 

Model 2. Red fox 

 (Vulpes vulpes) 

Model 3. African wild dog 

(Lycaon pictus) 

Quasi-extinction or 

disease density threshold 
50  87% of initial population  One sex remains 

Years 100 3 50 
Time step Annual Monthly  Annual 
Age at first reproduction 2 1 3 
Sex ratio at birth 0.5 0.5 0.55 
Dispersal age 1 1 - 

Dispersal probability 0.01 

Female (month 7-12): 0.03, 0.030, 
0.136, 0.045, 0.045, 0.030 
Male (month 7-12): 0.68, 0.102, 
0.182, 0.159, 0.102, 0.057 

- 

Dispersal survival 0.8 - - 
Annual mortality rate  

pup 
0.31 ± 0.59 - 0.68 ± 0.20 

Annual mortality rate  

juvenile male 
0.25 ± 0.60 

Monthly: 0.137, 0.045, 0.040, 
0.048, 0.036, 0.035, 0.044, 0.044, 
0.039, 0.062, 0.032, 0.035 

0.20 ± 0.03 

Annual mortality rate  

juvenile female 
0.17 ± 0.47 

Monthly: 0.129, 0.052, 0.067, 
0.037, 0.042, 0.037, 0.044, 0.032, 
0.039, 0.025, 0.034, 0.030 

0.20 ± 0.03 

Annual mortality rate   

adult male 
0.25 ± 0.60 

Monthly: 0.035, 0.039, 0.020, 
0.028, 0.014, 0.039, 0.036, 0.046, 
0.041, 0.121, 0.069, 0.029 

0.15 ± 0.03 

Annual mortality rate  

adult female 
0.17 ± 0.47 

Monthly: 0.041, 0.055, 0.035, 
0.025, 0.023, 0.034, 0.044, 0.049, 
0.035, 0.062, 0.041, 0.036 

0.15 ± 0.03 

Probability of breeding 1  0.8 0.58 (dominant pairs only) 

Density dependence in 

breeding (% breeding at 

carrying capacity) 

West subpopulation: 58.38 
East subpopulation: 55.03 

- - 

Carry capacity 

 

West subpopulation: 300 
East subpopulation: 1300 

- 20 

Initial population size 

 

West subpopulation: 90 
East subpopulation: 63 

1 male and 1 female per group, 
additional male or female added 
with probability of 0.80 and 0.58 
additional individual 0.47 
probability of being juvenile 

20 

Disease Introduction  - September - 
Incubation period - 1 month - 
Probability of becoming 

rabid once exposed  
- 0.42 - 

Disease mortality - 1 - 

Control  - 
40% control every 2 months, 3 
months after disease introduction 

- 

Catastrophes 

Frequency: 0.2 
Reduction in survival: 0.8 
 

-  

Mild: Frequency: 0.05 
Survival reduction: 0.85 
Reproduction reduction: 0.5 
Severe: Frequency: 0.03 
Survival reduction: 0.5 

 



Chapter 3: Litter size variation and model predictions  

 
 

 

 

48 

First, the island fox Urocyon littoralis was investigated, which reached near extinction 

on Santa Catalina Island due to an outbreak of canine distemper virus (Clifford et al. 

2006). A density-dependent population viability analysis (PVA) was conducted for two 

subpopulations; the outcome of interest was the probability of quasi-extinction, 

defined in this model as the probability of the population declining to 50 individuals, 

due to a disease epidemic. Specifically, an annual, density-dependent, stochastic PVA 

of the Santa Catalina island fox population was written, based on Kohlmann et al. 

(2005) with initial parameter values taken from their model (Table 3.1). Mean litter 

size in their model was taken from Coonan et al. (1998); here, the empirical litter size 

frequency data were obtained from Coonan (unpublished data). Two subpopulations 

(east and west) were simulated over a 100-year period, with a catastrophe event 

occurring at a frequency of 20%, and a severity of an 80% reduction in survival. In this 

way, the model encapsulates a disease event (e.g. canine distemper virus). Breeding 

was density-dependent, and varied between both subpopulations. The proportion of 

females breeding at the carrying capacity for each subpopulation was determined 

according to equation (1) in Kohlmann et al. (2005). Following Miller and Lacy (2005), 

environmental variation was simulated by drawing age-specific mortality rates at the 

start of each year from a binomial distribution with a specified mean and standard 

deviation (Table 3.1) and demographic stochasticity in mortality was modelled with a 

binomial trial. The PVA (Kohlmann et al. 2005) was run in VORTEX, and the same 

sequence of events was used (Miller & Lacy 2005) to create the model in R 2.14.0 (R 

Development Core Team 2011) to allow greater flexibility in specifying probability 

distributions.  

Second, the red fox was investigated, a locally abundant carnivore that is the focus of 

much attention due to its economic importance as a predator and role in the spread of 

rabies (Chautan et al. 2000). A model simulating fox control after a rabies outbreak 

was replicated to illustrate, as the outcome of interest, the probability of successful 

disease control. Here, a monthly, stochastic, simulation model of the red fox was 

constructed, based on Smith and Harris (1991), with initial parameter values taken 

from their model (Table 3.1). Litter size frequency data from Bristol (S. Harris, 

unpublished data) were used. Breeding was simulated in April (month 1 in this model), 
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and one female per group was given an opportunity to breed. Age-specific mortality 

probabilities were drawn from a binomial distribution. During months 7 to 12 juvenile 

males and females dispersed with set probabilities. The model was run for three years. 

Rabies was introduced by infecting all foxes within one group at the beginning of 

September (month 6) in the first year, with a latency period of one month before 

becoming infectious. Neighbouring individuals were then infected with the following 

contact probabilities: within group infection 0.9, neighbouring cubs during summer 

0.3, if male, to infect neighbouring females during winter 0.9, any other neighbour 

infection 0.6. The original analysis (Smith & Harris 1991) determined that for successful 

disease eradication the initial population size needed to be reduced by 87%. This was 

achieved in their model by implementing a control regime, starting three months after 

the first detection of rabies, which consisted of a total of four control events, each with 

40% fox removal every two months. 

Finally, the African wild dog Lycaon pictus was investigated, which is restricted 

throughout much of its range and susceptible to several diseases, including rabies (Vial 

et al. 2006). A density-dependent PVA for small wild dog populations was reproduced 

to determine quasi-extinction probabilities (the outcome variable), defined here as the 

probability of only one sex remaining. Specifically, an annual, stochastic PVA of the 

African wild dog was simulated, based on Ginsberg and Woodroffe (1997), with initial 

parameter values taken from their model (Table 3.1). Their model was run in VORTEX, 

and as in Model 1, the same sequence of events was used (Miller & Lacy 2005) to 

create the model in R 2.14.0 (R Development Core Team 2011). Litter size in their 

model was input as an empirical distribution and these data were used to fit the 12 

probability distributions used in this study. Following Miller and Lacy (2005), 

environmental variation was simulated by drawing age-specific mortality rates at the 

start of each year from a binomial distribution with a specified mean and standard 

deviation (Table 3.1) and demographic stochasticity in mortality was modelled with a 

binomial trial. A small population of 20 individuals was simulated for 50 years, found 

from their PVA to be the most susceptible to extinction. Breeding was not density 

dependent, but at the start of each simulation it was assumed that the population was 

at carrying capacity (Ginsberg & Woodroffe 1997), and following VORTEX (Miller & 
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Lacy 2005), truncation was applied above this value by including a separate survival 

component. Two catastrophes were included, a mild and a severe, to simulate 

environmental events, or a disease outbreak respectively. Following Vial et al. (2006), 

the effects of including a component Allee effect, which is exhibited through a positive 

relationship between population size and a measurable component of fitness 

(Stephens et al. 1999), were also considered through a reduction in recruitment. Here, 

for computational and data requirement reasons African wild dog litter size was 

modified rather than reducing pup mortality, by decreasing individual litter size by a 

quantity determined as a function of group size, sensu (Vial et al. 2006). Specifically, 

each litter size draw was reduced by a quantity defined as k(Pt – N), where Pt is the 

carrying capacity, k, estimated to be 0.8 (Vial et al. 2006), is the slope of the 

relationship between pack size (here, population, N) and number of pups recruited to 

yearling age. 

These three investigations illustrate canids with small, medium, and large mean litter 

sizes, respectively (Appendix 4). The results of all three replicated models were 

compared with the original model predictions to ensure accurate replication, except 

for Model 3 with the inclusion of an Allee effect, which the original model did not 

incorporate. All modelling and analyses were conducted in R 2.14.0 (R Development 

Core Team 2011).
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3.3 Results  

3.3.1 Variation in litter size distributions  

Variance-mean ratios (mean = 0.40, SD ± 0.40) indicated that empirical distributions 

tend to be underdispersed and display, on average, weak positive skew (mean 

coefficient of skewness = 0.07, SD ± 0.31, Appendix 4). While the majority of datasets 

represented one population (96%), most data were presented from studies over 

multiple years (97%) (Appendix 4). Best fitting distributions differed substantially 

between datasets (Table 3.2 and Appendix 5), although all distributions with ΔAIC ≤ 6 

provided a good fit to the empirical data (Appendix 6). For 97% of all datasets, several 

of the 12 candidate distributions (mean = 6.54, SD ± 3.38) could not be discounted 

based on their AIC values (Appendix 5 and Figure 3.1A-L for examples). The most 

widely applicable distribution was the discretised normal, with ΔAIC ≤ 6 for 95% of 

datasets; all other distributions were selected for between 22% and 87% of datasets. 

The “right shifted” method consistently performed better than zero-truncation 

(Appendix 5), being on average 1.32 (SD ± 0.16) times more likely to have a ΔAIC ≤ 6. 

The selection of distributions by AIC also depended on sample size and the sampling 

method used to determine litter size for each dataset. As expected, there was a 

negative relationship between sample size and the number of distributions with ΔAIC ≤ 

6 (r2 = 0.35, p < 0.0001, n = 80). The relationship between mean litter size and the 

number of distributions with ΔAIC ≤ 6 was not significant (r2 = 0.008, p = 0.43, n = 80). 

When repeating these analyses with datasets with n ≥ 20 (where n is the number of 

litters sampled) to increase statistical power, the relationships between the number of 

distributions with ΔAIC ≤ 6 with sample size and mean litter size remained the same (r2 

= 0.32, p < 0.0001, n = 61 and r
2
 = 0.02, p = 0.31, n = 61, respectively; Figure 3.2).  
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Table 3.2. Model selection results for fitting probability distributions to carnivore litter size 
frequencies. The number of datasets tested for each species (denominator, see Appendix 4 for 
details) indicating the number of datasets that were satisfied by a given distribution 

(numerator, see Appendix 5 for details). Bold indicates distributions that were most 
parsimonious for at least one dataset. SP: Shifted Poisson; ZTP: Zero-truncated Poisson; SB: 
Shifted binomial; ZTB: Zero-truncated binomial; SNB: Shifted negative binomial; ZTNB: Zero-
truncated negative binomial; SGP: Shifted generalised Poisson; ZTGP: Zero-truncated 
generalised Poisson; DN: Discretised normal; DLN: Discretised lognormal; DSB3; Discretised 
stretched-beta (3 parameter form); DSB2; Discretised stretched-beta (2 parameter form).  

Species SP ZTP SB ZTB SNB ZTNB SGP ZTGP DN DLN DSB3 DSB2 

Canidae             
Vulpes velox 1/1 - 1/1 - - - 1/1 - 1/1 1/1 1/1 1/1 
Vulpes macrotis - - 1/2 - - - - - 2/2 1/2 1/2 2/2 

Vulpes vulpes 5/12 2/12 4/12 4/12 2/12 - 4/12 2/12 11/12 3/12 6/12 7/12 
Urocyon littoralis 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/2 2/2 2/2 
Urocyon 

cinereoargenteus 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/2 2/2 2/2 2/2 

Alopex lagopus - - 1/3 - 1/3 - 1/3 1/3 2/3 2/3 3.3 3/3 
Canis lupus 2/2 2/2 1/2 1/2 1/2 2/2 2/2 2/2 2/2 1/2 2/2 2/2 
Lycaon pictus 1/4 1/4 - - 1/4 1/4 3/4 3/4 4/4 2/4 4/4 3/4 
Nyctereutes 

procyonoides 

1/1 1/1 1/1 1/1 - - 1/1 - 1/1 1/1 1/1 1/1 

Hyaenidae             

Crocuta crocuta - - 1/3 1/3 - - - - 3/3 3/3 3/3 2/3 

Procyonidae             
Procyon lotor 1/1 1/1 1/1 1/1 - - 1/1 1/1 1/1 1/1 1/1 1/1 

Felidae             

Acinonyx jubatus - - 1/1 - - - - - 1/1 1/1 1/1 1/1 

Felis concolor 1/3 - 2/3 2/3 - - - - 3/3 3/3 3/3 3/3 

Felis iriomotensis 1/1 1/1 - - 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 

Lynx pardinus - - 1/1 - - - - - 1/1 1/1 1/1 1/1 
Panthera tigris 

altaica 

1/1 1/1 - 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 

Panthera onca 1/1 1/1 - 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 - 
Panthera leo 2/6 - 3/6 1/6 - - 2/6 - 6/6 5/6 6/6 6/6 

Panthera pardus - - 1/1 - - - - - 1/1 1/1 1/1 1/1 

Leopardus pardalis 1/1 1/1 1/1 1/1 1/1 1/1 1/1 - 1/1 1/1 1/1 1/1 
Ursidae             

Ursus maritimus - - - - - - - - 4/4 4/4 4/4 4/4 

Ursus arctos - - 2/4 - - - - - 2/4 3/4 31/4 4/4 

Ursus americanus 2/7 2/7 6/7 3/7 1/7 - 2/7 1/7 7/7 5/7 4/7 5/7 

Mustelidae             

Lutra lutra 4/7 2/7 3/7 4/7 3/7 1/7 4/7 1/7 7/7 7/7 7/7 4/7 

Lontra canadensis 2/2 2/2 2/2 2/2 2/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2 
Mustela erminea 1/1 1/1 1/1 1/1 - - 1/1 1/1 - 1/1 1/1 1/1 

Mustela nigripes - - 1/1 - - - - - 1/1 1/1 1/1 1/1 
Martes pennanti - - - - - - - - 1/1 1/1 1/1 - 
Martes americana 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 
Spilogale putorius 1/1 1/1 1/1 1/1 1/1 - 1/1 1/1 1/1 1/1 1/1 1/1 
Gulo gulo - - 1/1 1/1 - - - - 1/1 1/1 1/1 - 
Meles meles - - 1/2 1/2 - - - - 1/2 2/2 2/2 2/2 
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Figure 3.1. Observed litter size frequencies with fitted distributions with ΔAIC ≤ 6. The top two 
panels show for a range of sample sizes (of litters sampled), mean litter size, and carnivore 
families. The third panel from the top shows three populations of Vulpes vulpes with litter size 
determined by placental scars and the bottom panel illustrates three different methods for 
determining litter size of a Bristol population of Vulpes vulpes (S. Harris, unpublished data). (A) 
Lycaon pictus, n = 36 (Creel et al. 2004); (B) Crocuta crocuta, n = 53 (Watts & Holekamp 2008); 
(C) Panthera tigris altaica, n = 16 (Kerley et al. 2003); (D) Ursus arctos, n = 46 (Miller et al. 
2003); (E) Meles meles, n = 110 (Neal & Cheeseman 1996); (F) Lontra canadensis, n = 9 
(Hamilton & Eadie 1964); (G) V. vulpes, n = 112 (Vos 1995); (H) V. vulpes, n = 113 (Englund 
1970); (I) V. vulpes, London, n = 158 (S. Harris, unpublished data); (J) V. vulpes, placental scars, 
n = 340; (K) V. vulpes, embryos, n = 60; (L) V. vulpes, direct counts, n =191. See Appendix 4 for 
details of datasets. Distribution abbreviations: observed frequencies (Obs); shifted Poisson 
(SP); ZT Poisson (ZTP); discretised normal (DN); discretised lognormal (DLN); discretised 
stretched beta – 2 parameter form (DSB2); discretised stretched beta 3 parameter form 
(DSB3); shifted generalised Poisson (SGP); ZT generalised Poisson (ZTGP); shifted binomial (SB); 
ZT binomial (ZTB); shifted negative binomial (SNB); ZT negative binomial (ZTNB). 
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Figure 3.2. Linear regression of the number of probability distributions fitted to litter size 
frequency data with ΔAIC scores ≤ 6 against (A) sample size (r2 = 0.28, p < 0.0001) and (B) mean 
litter size (r2 = 0.02, p = 0.32). Only datasets with n ≥ 20 (litters sampled) are included.
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Table 3.3. Results of model selection to test for intraspecific geographic variation in the best-
fitting litter size distributions for six red fox populations. Only models where datasets fitted to 
probability distribution* combinations had a ∆AIC score ≤ 6 are presented. For details of the 
datasets, refer to the references in Appendix 4. 

Dataset 
[Reference]

 Log- 

likelihood 

  

1
[4]

 2
[8]

 3
[8]

 4
[8]

 5
[9]

 6
[11]

 AIC ∆AIC 

DN DN SP DN DN DN -118.20 260.41 5.69 
DN DN DN DN DN DN -115.36 254.72 0.00 
DN DN DN SB DN DN -117.32 258.64 3.92 
DN DN DN ZTSB DN DN -117.73 259.47 4.75 
DN DN DLN DN DN DN -118.08 260.17 5.45 
DN DN ZTSB DN DN DN -115.53 255.06 0.34 
DN DN ZTSB SB DN DN -117.49 258.98 4.26 
DN DN ZTSB ZTSB DN DN -117.91 259.81 5.09 
DN DN DSB3 DN DN DN -116.10 258.20 3.48 
DN DN DSB2 DN DN DN -116.92 257.84 3.12 
DN DSB3 DN DN DN DN -117.17 260.34 5.62 
DN DSB3 ZTSB DN DN DN -117.34 260.68 5.96 
SB DN SP DN DN DN -118.32 260.64 5.92 
SB DN DN DN DN DN -115.48 254.95 0.23 
SB DN DN SB DN DN -117.43 258.87 4.15 
SB DN DN ZTSB DN DN -117.85 259.70 4.98 
SB DN DLN DN DN DN -118.20 260.40 5.68 
SB DN ZTSB DN DN DN -115.65 255.30 0.58 
SB DN ZTSB SB DN DN -117.61 259.21 4.49 
SB DN ZTSB ZTSB DN DN -118.02 260.04 5.32 
SB DN DSB3 DN DN DN -116.22 258.43 3.71 
SB DN DSB2 DN DN DN -117.04 258.07 3.35 
SB DSB3 DN DN DN DN -117.28 260.57 5.85 
DSB3 DN DN DN DN DN -115.75 257.50 2.78 
DSB3 DN ZTSB DN DN DN -115.92 257.85 3.13 
DSB3 DN DSB2 DN DN DN -117.31 260.62 5.90 

 
*Distribution abbreviations: SP: Shifted Poisson; ZTP: Zero-truncated Poisson; SB: Shifted 
binomial; ZTSB: Zero-truncated binomial; SNB: Shifted negative binomial; SGP: Shifted 
generalised Poisson; ZTGP: Zero-truncated generalised Poisson; DN: Discretised normal; DLN: 
Discretised lognormal; DSB3: Discretised stretched-beta (3 parameter form); DSB2: Discretised 
stretched-beta (2 parameter form). 
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Table 3.4. Results of model selection to test for intraspecific methodological variation in the 
best-fitting litter size distributions for the Bristol red fox population. Only models where 
datasets fitted to probability distribution* combinations had a ∆AIC score ≤ 6 are presented. 
For details of the datasets, refer to the references in Appendix 4. 

Dataset
[Reference]

 Log- 

likelihood 

  

1
[11]

 2
[12]

 3
[13]

 AIC ∆AIC 

DN SP DLN -83.63 177.27 2.24 
DN ZTP DLN -83.20 176.40 1.38 
DN DN DLN -81.51 175.02 0.00 
DN SNB DLN -84.21 180.42 5.39 
DN SGP DLN -83.63 179.27 4.24 
DN ZTGP DLN -83.20 178.40 3.38 
DN DSB2 DLN -83.66 179.31 4.29 

 

3.3.2 Intraspecific variation in litter size distributions 

While there was little support for intraspecific differences between conspecific red fox 

populations, distinct probability distributions best described litter size data determined 

by pre- and post-birth methodologies. Model selection results for the specified 

geographically distinct red fox populations supported models using the same 

distribution (Table 3.3), suggesting that the focal datasets could be described 

adequately using the discretised normal. Further, a single parameter set adequately 

described the discretised normal litter size distribution (G = 119.23, df = 10, p <0.001) 

for these geographically separated red fox populations. For litter size data of a red fox 

population determined by different methodologies, a difference in the underlying 

distributions was inferred by the lack of support for models using the same 

distributions (Table 3.4). Thus, these methodological datasets were best described by 

distinct distributions and parameter sets. 

3.3.3 Carnivore model outcomes 

The demographic modelling showed that the distribution chosen to represent litter 

size uncertainty in the three canid models has limited impacts, regardless of the fit of 

the distributions. PVA models for island foxes showed that estimating extinction 

probability was largely unaffected by the choice of distribution, with less than 1% 

difference in quasi-extinction probabilities between models that used the best and 
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worst fitting litter size distributions (Figure 3.3A&B). Similarly, regardless of whether 

the litter size distributions used in the model provided a good fit to empirical litter size 

data, there was only a 2% difference in the probability of successful disease control in 

the rabies model for red foxes (Figure 3.3C&D). Likewise, quasi-extinction probabilities 

for African wild dogs showed only a 1% difference among models that employed 

different litter size distributions (Figure 3.3E&F). When litter size was reduced as a 

function of group size, to simulate an Allee effect, the influence of the distributions 

was slightly greater (Figure 3.3G&H), with an increase of approximately 4% between 

quasi-extinction probabilities for the best and worst-fitting distributions. Even in this 

case, only models employing the worst-fitting distributions differed substantially in 

their predictions from those of models employing other distributions. Coefficients of 

variation (CV) were small for all model outcomes (Table 3.5), with the greatest 

variation in the African wild dog model with an Allee effect; best-fitting distribution 

(CV = 0.712) was 1.07 times more variable than for the worst fitting model (CV = 

0.668). For all the models, the best-fitting distributions were able to describe 

accurately the variance and skew of the empirical distribution (Figure 3.3A-H). 

Table 3.5. Coefficient of variation for model outcomes of quasi-extinction probabilities* and 
probability of successful disease control†, for 12 probability distributions. 

Distribution Island 

fox* 

(West) 

Island 

fox* 

(East) 

Red 

fox
†
  

African 

wild dog 

without 

Allee* 

African 

wild dog 

with 

Allee* 

SP 1.161 1.354 0.307 1.388 0.713 
ZTP 1.116 1.298 0.333 1.407 0.703 
SGP 1.102 1.302 0.332 1.409 0.709 
ZTGP 1.130 1.339 0.332 1.416 0.712 
SB 1.154 1.350 0.293 1.409 0.668  
ZTB 1.126 1.335 0.306 1.418 0.689 
SNB 1.134 1.330 0.332 1.431 0.712 
ZTNB 1.122 1.307 0.332 1.428 0.736 
DN 1.161 1.353 0.307 1.399 0.712  
DLN 1.143 1.339 0.319 1.424 0.737 
DSB2 1.133 1.336 0.307 1.403 0.711 
DSB3 1.133 1.319 0.320 1.406 0.710 
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Figure 3.3. Model outcomes for 12 probability distributions against the variance and skew of 
distributions, showing quasi-extinction probabilities and probability of successful disease 
control, with 95% confidence intervals. (A & B) Island fox Urocyon littoralis PVA: west and east 
subpopulations; (C & D) red fox Vulpes vulpes; (E & F) African wild dog Lycaon pictus PVA 
without an Allee effect; (G & H) African wild dog PVA with an Allee effect included as a 
decrease in litter size as a function of group size. Solid error bars indicate distributions with 
ΔAIC ≤ 6. ▼ indicates the estimate from the previously published model, with the empirical 
litter size variance in the left panels and empirical litter size skew in the right panels (except G 
& H, for which there is no previous model estimate). 
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3.4 Discussion 

Multiple distributions were shown to be consistent with the data for describing litter 

size frequencies for a range of carnivore species. However, the outcomes of 

demographic models appear robust to the choice of litter size distribution. These 

findings are discussed in light of the biological implications of litter size distribution 

choice and the applied importance of incorporating suitable probability distributions in 

demographic models.  

3.4.1 Describing litter size variation 

Unlike many biological parameters, offspring number is often underdispersed (Gallizzi 

et al. 2008, Mokkonen et al. 2011) and positively skewed (Shine & Greer 1991, Beja & 

Palma 2008). Litter size frequencies are best fitted by probability distributions able to 

describe the biological constraints on the upper limit of offspring production. While 

the Poisson distribution is most commonly used for fitting count data in general, it 

does not allow for underdispersion. In contrast, the generalised Poisson separates the 

variance from the mean (Kendall & Wittmann 2010), allowing greater flexibility, but at 

the cost of additional parameters. Of the continuous functions, the discretised normal 

distribution is the most flexible and is suitable for data characterised by low variance. 

Small sample sizes increase the uncertainty of the observed parameter estimates, and 

this uncertainty translates into the selection of multiple distributions (i.e. populations 

with large sample sizes had fewer distributions with ΔAIC ≤ 6).  

In a recent model of vertebrate reproductive success, the zero-truncated generalised 

Poisson was consistently the best-fitting of several parametric distributions fitted to 

litter size (Kendall & Wittmann 2010). However, that study only included one carnivore 

population, the lion Panthera leo, which was fitted solely by the zero-truncated-

binomial. In this study, that distribution performed less well, perhaps because more 

competitive functions were considered (including shifted discrete distributions and 

discretised continuous distributions) that were not assessed in the earlier study 

(Kendall & Wittmann 2010). The better fit of shifted forms over zero-truncation, 

possibly arising because removing zeros is not a random process and changes the 
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shape of the distribution, suggests that further work is needed to determine whether 

there is an underlying probabilistic mechanism in the distribution of litter size.  

The lack of evidence for intraspecific variation in underlying litter size distributions for 

the example presented in this study could indicate that biological limitations on 

reproduction allow for little variation in this trait within a species. The known biases 

associated with litter size determination methodologies for red foxes (Allen 1983, 

Elmeros et al. 2003), probably explain the observed differences in litter size 

distributions, although the results of the management scenarios analysed in this study 

(see next section) suggest that this finding is unlikely to be of consequence for future 

modelling efforts. There were insufficient data to allow for comparisons of inter-

annual variation in litter size distributions; therefore, given that the majority of 

datasets in this study were collated over multiple years, the results must be 

interpreted with caution in light of potential temporal variation. 

These analyses assumed that individuals had the same underlying expected 

reproductive capacity. However, demographic heterogeneity in offspring production is 

influenced by many factors, including female age, body condition or social status 

(Woodroffe & Macdonald 1995, Iossa et al. 2008), as well as trade-offs between 

production and pre-weaning mortality (Sibly & Brown 2009), and maternal versus 

offspring selection pressure on lifetime reproductive success (Wilson et al. 2005). The 

methods in these analyses could be incorporated into population models that address 

such intrinsic individual variation, as well as those modelling environmental 

stochasticity.  

3.4.2 Applied importance of litter size distributions  

Despite inter-specific variability in the consistency of distributions to describe litter size 

data, it is shown here that model outcomes of applied management scenarios, e.g. 

extinction risk, may be robust to such variation in litter size. The lack of any apparent 

effect of litter size distribution choice in carnivore models might be because 

mammalian litter sizes are generally small due to physiological limitations. 

Underdispersion will promote sampling of offspring closer around the mean; 
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therefore, sampling variation will only weakly impact model outcomes. There are 

indications that the distribution choice could be of potential consequence in limited 

circumstances. In the case of African wild dog populations that exhibit a component 

Allee effect, the example presented here illustrates how modelling reproduction using 

an ill-fitting, underdispersed distribution can result in an overestimation of extinction 

risk (see Figure 3.3E-H).  

Further work is required to determine the potential influence of temporal variation in 

the underlying litter size distribution on predictions of extinction risk. This is 

particularly important given that temporal or environmental variability means that 

combining data over time will inflate estimates of litter size variation, leading to 

erroneous predictions of extinction risk. In spite of these concerns, the lack of available 

data meant that pooling data was necessary for here; consequently, these results are 

indicative only of how mis-specified distributions could affect model predictions. As in 

Kendall & Wittmann (2010), it is stressed that determining appropriate distributions is 

a step towards a more mechanistic understanding of litter size variability that could 

provide insight into a species’ response to selective pressures or management actions.  

That litter size distributions have limited effects on the outcomes of management 

models may also reflect the relative contributions of life history traits to population 

growth. For long-lived species such as carnivores (Heppell et al. 2000), the elasticity of 

adult survival typically contributes more to population growth than fecundity. Indeed, 

variance in demographic parameters with low elasticities will have little effect on the 

variance of the population growth rate, due to the near linear relationship between 

population growth and vital rates (Caswell 2000). Notably, for all three canid 

populations in the models presented here, the elasticity of survivorship is as high or 

higher than fecundity (Chapter 4, Ginsberg & Woodroffe 1997, Kohlmann et al. 2005), 

which is consistent with the limited impact of litter size variation observed in the case 

studies. 
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3.5 Conclusion 

Although this study focused on the Carnivora, these findings should apply to taxa with 

multiparous females, including other mammals, birds and lizards. While it is hard to 

determine the exact ecological and physiological mechanisms generating a litter size 

distribution, insight into the drivers of these empirical distributions could aid our 

understanding of the adaptation of reproductive strategies to extrinsic and intrinsic 

population pressures. Recent work demonstrating that female red foxes exhibit sex-

biased investment in offspring as a function of body mass and population density 

suggests that altering litter size composition rather than litter size could be an 

alternative mechanism for increasing fitness (S. Harris & H. M. Whiteside, unpublished 

data). Ultimately however, applied models for carnivores appear to be robust to 

choice of litter size distribution, which has positive implications for modelling species 

with limited data.
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Chapter 4 A review of the demography of global red fox, Vulpes vulpes 

populations 

4.1 Introduction 

Demographic modelling is widely used in conservation and management (Mills et al. 

1999, Fieberg & Ellner 2001) but data availability frequently imposes significant 

limitations on modellers (Caro et al. 2005). Data are often patchily reported because 

they have been collected for purposes other than to derive demographic parameters 

(Baker et al. 2004, Imperio et al. 2010). Moreover, demographic parameters are often 

missing for a focal population, requiring modellers to rely on surrogate data from other 

populations of the same species (Pech et al. 1997, Peck et al. 2008), or even from 

similar species (Schtickzelle et al. 2005, Githiru et al. 2007). Whilst the consequences 

of these problems can be hard to determine, well-studied species are increasingly 

being used to gain insights into the consequences of demographic differences between 

species (Coulson et al. 2005) or populations (Nilsen et al. 2009, Johnson et al. 2010). 

The insights gained from recent analyses of multiple populations within a species 

suggest a high degree of inter-population variability in demography. For example, 

Nilsen et al. (2009) showed population-specific demography of roe deer Capreolus 

capreolus resulting from distinct climatic conditions, predation and harvest levels, and 

Servanty et al. (2011) found variation along the fast-slow continuum among wild boar 

Sus scrofa populations facing different hunting pressure. Similarly, Johnson et al. 

(2010) demonstrated substantial differences in vital rate contributions between 

populations of Sierra Nevada bighorn sheep Ovis canadensis sierra in various phases of 

population growth. To date, these cross-population comparisons have focused on large 

herbivores and some bird species (Frederiksen et al. 2005, Tavecchia et al. 2008). 

Indeed, Nilsen et al. (2009) speculated that the high degree of intraspecific variation in 

life history speed that they observed in roe deer might be a characteristic of large 

herbivore dynamics. Here, the presence of similar patterns of intraspecific variability in 

a widely-studied carnivore is considered.  
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Red foxes Vulpes vulpes are the most widespread, extant, terrestrial mammal 

(Schipper et al. 2008) and are also a species of great economic, cultural, and disease 

importance (Baker et al. 2008). Hence, many years of sampling effort have been 

devoted to the red fox to gain insight into its life history for both management 

purposes (Smith & Harris 1991) and studies of sociality (Soulsbury et al. 2008a). 

Despite this intensive effort, successful management of foxes often remains difficult 

(Saunders et al. 2010) and demographic analyses of many fox populations are lacking. 

Recent deterministic models of red foxes have suggested that demographic traits, 

particularly age-specific contributions to population growth, are highly consistent 

across a sample of populations (McLeod & Saunders 2001). However, whether this 

pattern is robust to the method used to assess contributions to population growth, 

such as classical perturbation (Caswell 2001) or incorporating variation through life-

stage simulation analyses (LSA) (Wisdom et al. 2000), is unknown. It is also unclear 

whether the apparent consistency of age-specific contributions to population growth 

translates into high consistency of life history speed, because there are only a few 

estimates of life history speed metrics for foxes (see Oli & Dobson 2003). Foxes are 

found across many habitats, from tundra to arid environments, and with rural and 

urban populations (Pils & Martin 1978, Harris & Smith 1987, Lindström 1989, Saunders 

et al. 2002). Given this diversity, with evidence of within population inter-annual 

variation of body mass and reproductive strategies (Soulsbury et al. 2008b, S. Harris & 

H. M. Whiteside unpublished data) and the potential sensitivity of life history rates to 

anthropogenic pressure (Lloyd et al. 1976), differing demographic tactics may be 

expected between populations. 

Here, a comprehensive review of published studies of red fox demography is 

presented. With 70 years of published studies, collating these extensive data for the 

first time provides a unique resource for assessing the worldwide variability in the 

demography of this common and often intensively-managed species. The collated data 

are used to construct matrix projection models to determine basic demographic 

descriptors. Given that the fox is a generalist occurring over a wide range of habitat 

conditions, harvest levels, and population densities, it is predicted that life history 

speeds of distinct populations of this carnivore will be highly variable, with a gradient 
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of fast to slow with increasing latitude (Ferguson & Larivière 2002). It is expected that 

the importance of vital rates with low variation will appear greater when using 

traditional perturbation analyses than when using LSA, because the latter incorporates 

observed parameter variability. It is also predicted that as foxes are highly adaptable, 

modelled population growth rates will be sensitive to substituting the most variable 

life history rates between fox populations. It is shown that data for relatively few fox 

populations are adequate for detailed demographic analyses. However, those 

examined suggest important population-level differences in fox life history, with 

implications for erroneous management prescriptions when using surrogate data.
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4.2 Methods 

4.2.1 Data collection, fox life cycle, and matrix element calculation 

Life history data from 57 fox populations were collated, totalling 96 papers published 

since the 1940s. Searches were conducted in Web of Science 

(http://webofknowledge.com, July 2010) using combinations of the search terms “red 

fox” OR “Vulpes vulpes” AND “demography”, “population ecology” OR “life history”. 

Demographic rates from these papers are summarised and, as a measure of data 

quality, study attributes including sample size, duration, size of study area, and data 

type were recorded (see Appendix 1). Methods of determining age, litter size and 

proportion of barren females were classified as well -, adequately-, or poorly-defined 

(see Appendix 2). This classification included, for example, how post-implantation loss 

was classified in the description of barren females, or if full descriptions of ageing 

methods were provided.  

From this data review, sufficient age-specific vital rates were obtained for eight 

populations (studies 1, 3, 26, 27, 38, 41, 51 and 54 in Appendices 1 and 2). To select 

populations for demographic modelling, only data from study populations were used 

for which all the required demographic data were available. This meant eliminating 

some populations where the age-specific data (e.g. litter size or probability of 

breeding) were incomplete. Only data were used from populations for which age or 

stage- (i.e. juvenile, adult) specific values were provided for all vital rates. Stage-

specific vital rates were deemed acceptable because, typically, the most significant 

differences exist between juveniles and adults (Figure 4.1). Survival rates were based 

on standing age distributions; most studies only reported an overall mean number of 

individuals in each age class, which were used to infer survival estimates. This 

approach was necessary because most studies were of less than 5 years duration and 

estimating inter-annual variation from short time periods is unreliable.   

The data described above were used to construct density-independent, time-invariant, 

age-classified matrix models (Caswell 2001). Age-specific models are appropriate for 

modelling fox population dynamics because attributes such as litter size have been 
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shown to vary significantly with female age (Harris 1979, McIlroy et al. 2001). 

Populations were assumed to be stable in size (Englund 1970, Nelson & Chapman 

1982, Harris & Smith 1987, Marlow et al. 2000, Saunders et al. 2002). The data had 

been collected predominantly from hunting returns, reported as standing age 

distributions, with survival determined from the age frequencies, fx, for age class x 

(Caughley 1977, p. 91). As it is unusual for individuals to survive past four years (Pils & 

Martin 1978, Harris & Smith 1987) four age classes were used in the matrix, At, (eqn. 

1), where juveniles are age class 0+, and adults are age classes, 1+, 2+ and ≥3 

respectively.  

 
 
 =
 
 
 

*

*

.

1 2 3 4

1

2

3 4

F F F F

P 0 0 0

0 P 0 0

0 0 P P

tA       (1) 

Age-specific matrix elements for survival were calculated as (Caswell 2001):  

+= 1 ,x
x

x

f
P

f
       (2) 

where Px is the probability of survival from t to t+l of females in class x. To avoid issues 

of small sample size in the older classes, and to account for any individuals older than 

four, a composite final age class was created for all age classes beyond three (≥3). 

Survival (P4*) was calculated for this age class by Px* = fx>x* / (fx + fx>x*), where x* is the 

final age class.  

Productivity mx, the expected number of female births per female of age class x, was 

calculated as: 

mx = MxBxSR,       (3) 

where Mx is the proportion of pregnant females, Bx is mean litter size and SR is the sex 

ratio (Caughley 1977, p. 82). Based on empirical evidence (Vos & Wenzel 2001), a 1:1 
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birth sex ratio was assumed. Females are able to mate when they are about 10 months 

old and produce one litter per year thereafter (Englund 1970). Consequently, a post-

breeding “birth-pulse” model (Caswell 2001) was formulated. Age-specific matrix 

elements for fecundity were calculated as:  

            Fx = Pxmx,        (4) 

where Fx is the expected number of female offspring at time t+1 per female in class x 

at t.   

4.2.2 Fast-slow continuum 

Life-history ‘speed’ is determined by how a species resolves the evolutionary trade-off 

between reproduction and survival, in response to extrinsic mortality and 

environmental stochasticity (Bielby et al. 2007). Oli and Dobson (2003) proposed the 

ratio of fertility rate to age at first reproduction (F/α) (i.e. the level of reproduction in 

relation to the onset of reproduction) as a measure of a mammalian species’ position 

on the fast-slow continuum: “fast” species were deemed to have an F/α ratio of > 0.6, 

whilst “slow” species have an F/α ratio of < 0.15; those in between are considered 

“medium”. Gaillard et al. (2005) used generation time as a proxy to determine life-

history speed in mammals; fast species typically have a generation time of under two 

years. Both metrics were used to examine inter-population variation in life history 

speed of red foxes.  

The mean weighted fertility rate was calculated as in Oli and Dobson (2003): 

  

ω

α
ω

α

=
∑

∑

=

=

,
x x

x

x

x

w F

F

w

       (5) 

where age at first reproduction, α = 1, age at last reproduction, ω = 4 (consistent with  

the matrix, eqn. 1), and w is the stable age distribution determined from the projection 

model. Generation time, Tb,   was determined according to Gaillard et al. (2005): 
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λ −=∑ ,x

b x x

x

T xl m       (6) 

where lx is the proportion of individuals that survive from birth to age x. To calculate 

confidence intervals for the F/α ratio and Tb, the approach described below was used 

to conduct resampling for 10,000 matrix replicates.  

4.2.3 Perturbation analyses 

Perturbation analyses provide a ranking of the relative importance of demographic 

rates, in the context of their effects on the population growth rate (λ) (Caswell 2001). 

To decompose contributions to λ by life stage elasticity values (eij) of λ to the matrix 

entry aij (Caswell 2001) were calculated: 

δλ

λ δ
= .ij

ij

ij

a
e

a
       (7) 

Traditional perturbation methods do not account for variability and uncertainty in vital 

rates, potentially masking the true importance of life stages (Mills et al. 1999). High 

uncertainty in vital rate estimation stems from inherent spatiotemporal variation, as 

well as inevitable sampling and measurement error (Wisdom et al. 2000). LSA includes 

uncertainty in the effects of variance on population growth. Classical elasticity analyses 

examine the effects of varying vital rates independently about point estimates of their 

values; in LSA, by contrast, vital rates are varied simultaneously, taking into account 

interactions in uncertainty in the values of each.  

Following previous studies (Wisdom et al. 2000) LSA was performed by constructing 

10,000 stochastic matrix replicates, using vital rates drawn from appropriate 

probability distributions. Specifically, best estimates of age-specific survival were 

derived from standing age distributions using a likelihood approach, assuming that 

uncertainty around these estimates was beta-distributed (see Figure 2.2, chapter 2). 

Similarly, the proportion of breeding females of each age-class and age-specific litter 

sizes were drawn, respectively, from beta and shifted Poisson distributions (chapter 3). 

Matrix replicates were constructed by resampling from these distributions (Fieberg & 
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Ellner 2001). To determine the degree of variation in λ explained by each parameter 

(coefficient of determination, r2) , λ was regressed against each individual transition 

element (Wisdom et al. 2000). From the matrix replicates, 95% confidence intervals 

were generated for the mean stochastic estimates of λ for each population. To 

compare the inferences from the two perturbation methods, the variance of λ 

explained by each vital rate was determined (Horvitz et al. 1997). Following Coulson et 

al. (2005) the square of the elasticity (eij)
2 was multiplied with the variance of a given 

age-specific matrix element V(ai):  

χ = ( )( ) .ind 2

ij ij ijV a e       (8) 

Using equation (8) the age-specific contributions of survival ( P

ijχ ) and fecundity ( F

ijχ ) to 

the variance in λ were determined. Hence, it was possible to compare the elasticity 

variance ratios ( /P F

ij ijχ χ ) with age-specific ratios based on the contributions of survival 

r
2 to fecundity r2 (rP,x/rF,x) to λ as determined by the LSA.  

4.2.4 Estimating process error 

To assess the relative contributions of process and sampling error to observed 

uncertainty in demographic rates Kendall’s (1998) method was used. Only one 

population had sufficient data with which to apply this technique (Sweden (South), 

Table 4.1). Age distribution data for this population were available for six consecutive 

years, and the probability of breeding was available for four of those six years (Englund 

1970, 1980). Kendall’s method was applied to the survival and breeding probabilities. 

The contributions of sampling and process error to these vital rates can be estimated 

by assuming that a beta distribution describes between-year variation in the survival or 

breeding probability, with the number of survivors and breeders for a given year 

drawn randomly from the binomial distribution (Kendall 1998). For example, if the 

probability parameter of interest is π, then the likelihood that the long-term 

probability is π  and variation in π among years is )(
2 πσ , given the data in year t, is; 

2 ( , )
( , ( )) ,

( , )

t t t t
t

t

N B m a N m b
L π σ π

m B a b

  + − +
=  
 

    (9) 
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where Nt is the total number of “trials” (individuals) in year t, mt is the number of 

successes (survivors or breeders), B is the beta function, and a and b are the 

parameters of the beta distribution derived from the mean and variance:  

2

(1 )
1

( )

π π
a π

σ π

− 
= − 

 
        (10)  

and    

2

(1 )
(1 ) 1 .

( )

π π
b π

σ π

− 
= − − 

 
      (11) 

The total log-likelihood is the natural logarithm of equation (9) summed across all 

years of data. Maximum likelihood was then used to find the best parameter estimates 

for π  and )(
2 πσ , with the latter quantifying the variance due to process error.  

The relative contributions to uncertainty in λ caused by process and sampling error 

were estimated as follows. First, to determine the contribution of process error alone, 

the survival and breeding probabilities for the matrix element replicates were sampled 

from beta distributions. For both survival or breeding probability, the parameters of 

the relevant beta distribution were denoted as the mean π  and variance σ
2, both 

estimated as described above (i.e. with the sampling error removed). The LSA method 

was then used to determine λ from the matrix replicates. Next, to determine the 

combined contributions of process and sampling error, the LSA method was used as in 

the original model. Importantly, however, for each replicate matrix elements were 

drawn from the beta distributions of the sampling error associated with data from a 

randomly chosen year.  

4.2.5 Data substitution  

The consequence of substituting data between populations from the same country 

was illustrated with two urban UK populations (Bristol and London), one subjected to 

control measures and the other not, and two USA populations (Midwest and East), 
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both subject to hunting. Previously, data have been substituted between populations 

in Australian and the USA (e.g. Pech et al. 1997). Consequently, the implications of this 

intercontinental substitution were also examined. For each case study, matrix 

components of survival, fecundity, probability of breeding, and litter size were 

sequentially replaced from one population to another: Bristol data was substituted for 

the London population, USA (Midwest population) data for the USA (East) population 

and USA (Midwest population) data for the hunted Australia (Hunted) population. The 

last example illustrates an alternative approach for data substitution, by using vital 

rates averaged from all eight populations to substitute into the Australia (Hunted) 

population. Using the above methods, 95% confidence intervals were generated for 

the resultant mean stochastic λ estimates for each simulation. All analyses were 

conducted using R 2.12.0 (R Development Core Team 2010).
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4.3 Results 

4.3.1 Data review 

The review of 57 published demographic studies is summarised in Appendices 1 and 2. 

This review exposes some significant weaknesses, both in the extent of data coverage 

and in inconsistent data presentation. For example, 23 of the studies reviewed gave 

average litter size, but only nine gave age-specific litter sizes (Appendix 2). Whilst age-

specific survival was available for 22 populations (Appendix 2), 14 were from 

populations without corresponding survival rates, restricting demographic modelling 

to just eight studies (Tables 4.1 and 4.2). In terms of data quality, 31%, 29% and 61% of 

studies did not adequately define ageing, litter size and probability of breeding, 

respectively (Appendix 2); in general, these studies gave insufficient details of 

methodology and definitions. Also, 29% of studies included no details of study 

attributes such as study area (Appendix 1). Of the eight populations used for the 

matrix models, none had been studied for more than ten years’ duration and age-

specific demographic data from all but the Australian populations were collected 

between the 1960s and mid-1980s (Table 4.1). 

Age-specific productivity (mx) is more variable than survival (Px) (Figure 4.1). The two 

parameters show similar patterns with age, with both parameters peaking in young 

adults (Figure 4.1). Study attributes and vital rates for the eight populations used for 

analyses are presented in Tables 1 and 2. Coefficients of variation show that fecundity 

was more variable than survival (mean CVF = 0.15; CVS = 0.10, Table 4.3). These eight 

populations show a similar relationship to that seen in Figure 4.1 (Table 4.3), with a 

positive correlation between fecundity and survival in the older age classes (strongest 

in age ≥ 3 (r2 = 0.64, p = 0.01), (Figure 4.2), suggesting that local conditions, rather than 

trade-offs between recruitment and survival, determine life history properties in foxes.  
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Figure 4.1. Survival (Px, light blue boxes) and productivity (mx, dark blue boxes) for global fox 
populations showing variation and age-specific patterns. Boxes show the sample median, 
minimum and maximum. Error bars indicate the lower and upper quartiles. Sample sizes of the 
number of studies used to determine rates are: juveniles 0+ (Px n =22; mx n=9); adults 1+ (Px 

n=22; mx n=9); adults 2+ (Px n=21; mx n=8); adults ≥3 (Px n=20; mx n=8).  
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Table 4.1. Summary of mean survival rates, Px, ± standard errors and population attributes for 
eight fox populations. 

 Australia 

(hunted) 

Australia 

(non-

hunted) 

UK 

 (Bristol) 

UK 

(London) 

Sweden 

 (North) 

Sweden 

 (South) 

USA 

(Midwest) 

USA 

 (East) 

P1 0.30 ± 
0.02 

0.39 ± 
0.07 

0.48 ± 
0.02 

0.42 ± 
0.02 

0.33 ± 
0.02 

0.43 ± 
0.03 

0.33 ± 
0.04 

0.34 ± 
0.05 

P2 0.35 ± 
0.05 

0.65 ± 
0.12 

0.54 ± 
0.03 

0.43 ± 
0.03 

0.71 ± 
0.04 

0.53 ± 
0.04 

0.40 ± 
0.07 

0.88 ± 
0.06 

P3 0.57 ± 
0.08 

0.92 ± 
0.07 

0.53 ± 
0.03 

0.47 ± 
0.05 

0.50 ± 
0.05 

0.75 ± 
0.05 

0.95 ± 
0.05 

0.57 ± 
0.09 

P4* 0.70 ± 
0.06 

0.18 ± 
0.10 

0.51 ± 
0.03 

0.49 ± 
0.05 

0.59 ± 
0.04 

0.55 ± 
0.04 

0.43 ± 
0.08 

0.53 ± 
0.12 

Sample size 538 99 1628 1110 1070 827 269 94 
Study area 
(km

2
) 

200 200 8.9 1618 - - 83.73 - 

Habitat type Rural Rural Urban Urban Rural Rural Rural Rural 

Study Years 1992; 
1994-97 

1992 1977-85 1971-77 1966-70 1966-
70 

1971-75 1976-79 

Major source 
of mortality 
data 

Mixed Baited Roadkill Mixed, 
shot 

Shot Shot Mixed Trapped 

Aging 
method 

CA CA CA CA TE, CA TE, CA CA CA, 
EW,TE,SM 

Level of 
control** 

Intense No No Light/ 
Average 

Light Intense Average Average 

Individual 
density/km

2 
- 0.46–0.52 29.5 - - - - - 

Invasive Yes Yes No No No No No No 
Latitude -32 -24 51 51 63 59 44 38 
References 1 2 3 3 4 4 5 6 

Study # in  
Appendices 1 
& 2  

51 54 3 1 26 27 38 41 

 

1
Saunders et al 2002;

 2 
Marlow et al 2000;

 3
Harris and Smith 1987: 

4
Englund 1980; 

5
Pils and Martin 1978; 

6
Nelson and Chapman 1982. CA: cementum annuli (of molars or canines); TE: tibia epiphysis closure; 

EW: eye lens weight; SM: skull measurements; Mixed: Combination of shooting, trapping, gassing, 
baiting and battues. * see text for explanation. ** determined according to juvenile age ratios (Appendix 
2), where an increasing juvenile to adult age ratio is an indication of increasing control (Harris 1977) and 
if possible, by information provided by each study on the presence or level of hunting.  
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Table 4.2. Summary of mean fecundity rates, Fx, for eight fox populations. 

 Australia 

(hunted) 

Australia 

(non-

hunted) 

UK 

(Bristol) 

UK 

(London) 

Sweden 

(North) 

Sweden 

(South) 

USA 

(Midwest) 

USA 

(East) 

F1 0.37 0.686 0.55 0.72 0.29 0.30 0.58 0.40 

F2 0.61 1.271 0.77 1.00 0.79 0.72 0.96 1.46 

F3 1.21 1.426 0.71 1.09 0.79 1.35 2.88 0.89 

F4* 1.58 0.332 0.74 0.89 0.83 0.92 0.97 0.81 
Sample size  291 47 252 384 161 217 367 94 

Method to 
determine 
litter size 

EM; 
EM, PS 

PS 
(excluded  
faded scars)  

PS 
(grade 5 
-6)† 

PS  
(grade 5-
6) 

EM; PS 
(grade5-
6) 

EM; PS 
(grade5-
6) 

PS (dark),  
EM  

PS 

Method to 
determine 
barren 
females 

- PS 
(excluded 
faded scars) 

FL, FO, 
FI, LE 

NVP NVP, 
PPIL 

NVP, 
PPIL 

- NVP 

References 1,2 3 4 5 6 6 7 8 

Study # in 
Appendices 
1 & 2 

51 54 3 1 26 27 38 41 

 

1
Saunders et al 2002; 

2
McIlroy et al 2001; 

3
Marlow et al 2000; 

4
Harris and Smith 1987:

 5
Harris 1979; 

6
Englund 1980, 

7
Pils and Martin 1978;

 8
Nelson and Chapman 1982; PS: placental scars; EM: number of 

embryos; DC: den counts; FL: failure to produce litter; FO: failure to ovulate; FI: failure to implant; LE: 
lost entire embryos; NVP: no visible signs of pregnancy; PPIL: pre and post implantation loss; - method 
not given. * see text for explanaton. † Placental scar grades refer to the level of fading, with dark scars 
(5-6) being the most reliable (see Lindström 1981). 
 
 

 
 

Table 4.3. Coefficients of variation for age-specific survival (Px) and fecundity (Fx) across matrix 
replicates for eight fox populations (study number refers to study population in Appendices 1 
and 2). 

  Survival Fecundity 

Study # Population P1 P2 P3 P4* F1 F2 F3 F4* 

51 Australia (Hunted)
 

0.08 0.13 0.14 0.08 0.10 0.15 0.18 0.10 

54 Australia (Non-hunted)
 

0.17 0.16 0.10 0.42 0.21 0.21 0.21 0.56 

3 UK (Bristol)
 

0.04 0.05 0.06 0.07 0.07 0.09 0.13 0.12 

1 UK (London)
 

0.05 0.07 0.10 0.10 0.06 0.09 0.12 0.12 

26 Sweden (North)
 

0.02 0.03 0.04 0.03 0.03 0.04 0.05 0.05 

27 Sweden (South)
 

0.06 0.05 0.08 0.06 0.11 0.11 0.11 0.11 

38 USA (Midwest): Wisconsin
 

0.06 0.07 0.06 0.07 0.11 0.11 0.10 0.11 

41 USA (East): Maryland
 

0.11 0.17 0.06 0.18 0.20 0.21 0.16 0.26 
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Figure 4.2.Correlation between mean matrix replicates for survival and fecundity for eight fox 
populations. (A) Juveniles 0+ (r2 = 0.20, p = 0.23); (B) Adults 1+ (r2 = 0.51, p = 0.03); (C) Adults 
2+ (r2 = 0.56, p= 0.02); (D) Adults ≥3 (r2 = 0.64, p = 0.01). 



Chapter 4: Red fox demography 

 
 

 

 

78 

4.3.2 Life history speed 

Relative to many other carnivores, red foxes mature early, are fairly short-lived and, as 

is typical of canids, have larger than average litter sizes; consequently, theory predicts 

that they should fall towards the fast end of the spectrum (Heppell et al. 2000). In fact 

these analyses show wide variation in the speed of fox populations, from medium to 

fast species according to the F/α ratio, and slow to fast species according to generation 

time (Figure 4.3). There is large variation in speed within these classifications; the 

metrics increased by factors of 3.5 (generation time) and 1.5 (F/α ratio) between the 

slowest fox population of north Sweden (F/α = 0.53, Tb = 3.13), and the fastest 

population, London (F/α = 0.81, Tb = 0.90). The Australian hunted population (Australia 

(Hunted)) has a faster life history than would be expected from its population growth 

(Figure 4.3). The F/α ratio is positively correlated with λ (r = 0.83, p = 0.01) (Figure 

4.3A), and generation time (Tb) is negatively correlated with λ (r= -0.86, p = 0.01) 

(Figure 4.3B). Unsurprisingly, given that they are determined by the same life-history 

rates, there is a negative correlation between the F/α ratio and Tb (r = -0.79, p = 0.03) 

(Figure 4.3C). No correlation was found between life history speed (F/α ratio) and 

latitude (r = -0.34, p = 0.38). These results suggest that local conditions play a 

significant role in determining life history rates; for example, good conditions give rise 

to both high survival and high fecundity, resulting in higher population growth and 

faster speed.  
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Figure 4.3. The variation in life history metrics and population growth rate between fox 
populations, and the relationships between these measures, showing 95% confidence 
intervals. (A) Positive correlation between F/α ratio and population growth rate (λ); and 
negative correlations between (B) generation time (Tb) and λ; (C) F/α ratio and Tb. 
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4.3.3 Contribution of vital rates  

Life-history theory suggests that relatively early-maturing mammals, such as the fox, 

should have higher elasticity of fecundity than survival (Heppell et al. 2000). Elasticity 

analysis and LSA reveal two main points: that the youngest age class makes the largest 

contribution to λ, and that, generally, fecundity is as important as survival (Table 4.4). 

Despite these patterns, both elasticity and LSA results reveal there is a great deal of 

inter-population variation in the contribution that vital rates make to λ. For example, 

there is a threefold difference in fecundity elasticity of the youngest age class (London 

eF,1 = 0.35; Sweden (South) eF,1 = 0.10). Life history theory predicts higher sensitivity of 

λ to fecundity in fast species, to survival in slow species (Heppell et al. 2000), and more 

evenly balanced sensitivity to both parameters in medium species (Oli 2004). 

Therefore it is expected that, as recruitment drives fast populations, the sensitivity of λ 

to fecundity should increase as populations get faster (Oli & Dobson 2003). Age-

specific variance ratios (VS,x/VF,x) show a tendency to decrease across all age classes 

(strongest in juveniles 0+, r =- 0.75, p = 0.003) with increasing speed (Figure 4.4A), 

suggesting that fecundity contributions become more important in faster populations. 

LSA ratios (rP,x/rF,x) did not show a significant relationship (strongest in adults 2+, r =- 

0.64, p = 0.09) with speed (Figure 4.4B). Evaluating these two ratios ( /P F

ij ijχ χ  and 

rP,x/rF,x) highlights the importance of including variation when estimating the relative 

contributions of vital rates. When the reduced variability of survival is taken into 

account, the contribution of survival in slower populations is reduced (Figure 4.4). 

While it is possible that this reduced variability stems from errors in sampling rather 

than intrinsic variation, these results are consistent with the prediction of higher 

variability in the fecundity of this species.  
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Table 4.4. Age-specific elasticities and coefficients of determination of the LSA for eight fox 
populations. Elasticities and r2

 are the mean values calculated across all replicates (study 
number refers to study population in Appendices 1 and 2). 

Population Elasticity of survival (eP,x) and fecundity (eF,x) LSA survival r
2
 (rP,x) and fecundity r

2
 (rF,x) 

 eP,1 eP,2 eP,3 eP,4* eF,1 eF,2 eF,3 eF,4* rP,1 rP,2 rP,3 rP,4* rF,1 rF,2 rF,3 rF,4* 

Australia 
(Hunted) 

0.20 0.14 0.10 0.24 0.12 0.06 0.04 0.10 0.14 0.15 0.08 0.15 0.13 0.14 0.07 0.13 

Australia 
(Non-
hunted) 

0.28 0.11 0.02 0.01 0.30 0.17 0.09 0.02 0.38 0.08 0.01 0.01 0.41 0.10 0.01 0.01 

UK 
(Bristol) 

0.27 0.12 0.06 0.05 0.25 0.15 0.06 0.06 0.23 0.10 0.04 0.03 0.32 0.17 0.07 0.05 

UK 
(London) 

0.25 0.09 0.03 0.02 0.35 0.16 0.06 0.03 0.30 0.12 0.03 0.01 0.35 0.14 0.04 0.01 

Sweden 
(North) 

0.27 0.12 0.05 0.04 0.25 0.15 0.07 0.05 0.28 0.12 0.04 0.03 0.30 0.14 0.05 0.03 

Sweden 
(South) 

0.26 0.16 0.09 0.13 0.11 0.10 0.07 0.09 0.23 0.07 0.09 0.10 0.20 0.11 0.09 0.11 

USA 
(Midwest) 

0.27 0.17 0.09 0.09 0.10 0.10 0.09 0.09 0.21 0.17 0.06 0.07 0.18 0.17 0.07 0.08 

USA (East) 0.26 0.15 0.05 0.03 0.25 0.11 0.11 0.05 0.26 0.15 0.01 0.02 0.35 0.15 0.03 0.02 
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Figure 4.4. Relationship of (A) age-specific variance decomposition ratios ( /P F

ij ijχ χ ) and (B) 

life-stage simulation analysis ratios (rP,x/rF,x) against the life history speed metric, F/α ratio , for 
eight for populations, showing the change in contributions with the inclusion of uncertainty. 
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4.3.4 Process error: an example using a Swedish fox population 

The relative contributions of sampling and process error to observed uncertainty in 

vital rates were determined using Kendall’s (1998) method. Sufficient data were 

available for one study population, the Sweden (South) population. There is good 

agreement between the mean λ estimates for the Sweden (South) population for all of 

the three methods used to account for uncertainty in vital rates (Figure 4.5). As 

expected, the uncertainty in λ is largest when both sources of variance are included 

(Figure 4.5). Process error and sampling error contributed similar uncertainty to the 

estimates of λ. 

 

 

Figure 4.5. Population growth rates for the Sweden (South) population with both process and 
sampling variance included, sampling error removed, and the estimate from the original 
model. Error bars are 95% confidence intervals determined from the matrix replicates.  
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4.3.5 Case studies of data substitution  

The importance of accounting for inter-population variation in life history is 

highlighted by the substitution of vital rate parameters between fox populations; using 

surrogate data substantially changes the resultant population growth rate estimates 

(Figure 4.6). The results are particularly striking when substituting Bristol data in the 

London population, even though both samples come from the same habitat in the 

same country; surrogate fecundity produces a 23% decrease in λ, whereas substituting 

survival data increases the λ estimate by 21% (Figure 4.6A). A 23% decrease in λ occurs 

when only probability of breeding is used, but only a 1% increase in λ when replacing 

litter size, highlighting that the percentage of breeding females is lower in Bristol, 

whereas there is no significant difference in litter size between these populations 

(Harris & Smith 1987). In the USA (Midwest) population breeding probability is higher 

and more variable than litter size, compared to the USA (East) population. Although 

the levels of uncertainty in λ are high, differences in mean λ estimates range from a 

15% increase with the probability of breeding, to only a 3% decline when litter size is 

replaced (Figure 4.6B). Many of the age-specific survival and fecundity rates are similar 

in the Australia (Hunted) and USA (Midwest) populations, leading to smaller 

differences resulting from data substitution. However, replacing fecundity data 

produces a 13% increase in λ, and substituting litter size increases λ by 20% (Figure 

4.6C), highlighting the dependency of the model outcome on the chosen surrogate 

parameter. Figure 4.6D illustrates that the population growth rate estimates using the 

parameter range from the eight populations are closer to the Australia (Hunted) λ 

estimate than when using surrogate data from just one population, with the exception 

of when replacing survival data. Noticeably, the Australia (Hunted) population is the 

only population where survival elasticity was consistently greater than fecundity (Table 

4.4), indicating that this population is sensitive to changes in survival rates.  
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Figure 4.6. Effects of substituting matrix elements and fecundity components on the 
population growth rate between two urban, and two hunted fox populations, with 95% 
confidence intervals. (A) London population substituted with the Bristol population vital rates; 
(B) USA (East) population substituted with the USA (Midwest) population vital rates; (C) 
Australia (Hunted) population substituted with the USA (Midwest) population vital rates; (D) 
Australia (Hunted) population substituted with vital rates averaged from all eight populations. 
The solid line indicates the population growth rate with no data substitution, and the dashed 
lines indicate the 95 % confidence intervals of this estimate. Px = survival; Fx = fecundity; Mx = 
probability of breeding; Bx= litter size. 

 

 

 



Chapter 4: Red fox demography 

 
 

 

 

86 

4.4 Discussion 

These analyses highlight the large sampling effort expended on the red fox but, with 

only eight of 57 studies providing sufficient data for age-specific demographic 

modelling, also identify shortcomings in current knowledge about interpopulation 

variability in demography. Recruitment in red fox populations appears to be 

consistently more variable than, but correlated with, survival across age-classes and 

populations. Population growth rates were sensitive to changes in both survival and 

fecundity. These analyses showed large intraspecific variation in demography, in both 

life history speed and the contribution of vital rates to λ. These results are indicative of 

the potential role of environmental conditions for determining life history rather than 

trade-offs between recruitment and survival. Variation in demographic rates between 

populations illustrated the consequences of data substitution between populations. 

Inferences gained from population models are likely to be highly sensitive to the 

practice of data substitution, and this will vary with the vital rate replaced. The 

outcomes of this study are discussed in the context of four broad issues: emerging 

recognition of the variation in life history among populations within a species; 

perturbation analyses and their implications for management; data substitution in 

demographic modelling; and recommendations for ongoing studies of demography in 

red foxes and similar species. 

4.4.1 Inter-population variation in life history speed 

The determination of life-history speed along the fast-slow continuum has been much 

debated (Oli 2004, Gaillard et al. 2005, Bielby et al. 2007). Intraspecific studies have 

used both generation time (Nilsen et al. 2009) and the F/α ratio (Bieber & Ruf 2005). It 

was found that both metrics correlated with λ, suggesting that as Oli and Dobson 

(2005) found, both are at least partially indicative of a fox population’s current 

trajectory. The calculation of confidence intervals for the most commonly used metrics 

of the fast-slow continuum was illustrated, and it is suggested that the use of 

confidence intervals should be routine before making inferences about the extent to 

which populations differ in life history speed. 
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Phylogeny and body mass typically account for much of the variation in life history 

variables (Gaillard et al. 2005) and, consequently, within-species variation in 

demographic tactics is generally expected to be limited. A practical application of 

defining a population’s position on the fast-slow continuum is to provide a measure of 

the population’s response to perturbations and adaptability to the local environment. 

This ‘interpopulation’ approach (Nilsen et al. 2009) merits further attention for 

comparing population responses to specific pressures and exploring evidence of trade-

offs between recruitment and survival. Recent comparisons show that roe deer do not 

exhibit this trade-off, slowing down their life history in harsher environments because 

they cannot increase reproduction when faced with increased mortality in adverse 

conditions (Nilsen et al. 2009). In wild boar, by contrast, the contribution of life history 

tactics shifted from juvenile to adult survival as conditions changed from poor to good 

(Bieber & Ruf 2005). Similarly, Servanty et al. (2011) found that wild boar increased life 

history speed by increasing fecundity when facing higher hunting pressure. Tasmanian 

devils Sarcophilus harrisii show increased reproduction in young age classes as a 

response to disease mortality (Jones et al. 2008b). Here, however, these results point 

towards substantial variation in fox life history speed; although the majority of fox 

populations that were modelled would be classified as ‘fast’ by either metric, two of 

the eight populations (both from Sweden) lay outside that category (one of them 

substantially). Compared to other hunted fox populations, the Australia (Hunted) 

population shows surprisingly low λ considering its short generation time. This 

suggests that is it unable to respond to the hunting pressure by increasing 

reproduction. However, at the time of data collection the population was experiencing 

a drought, which had a negative effect on reproduction (McIlroy et al. 2001), 

highlighting the conflicting response to anthropogenic versus climate pressures. 

Conversely, the faster speed of the London population compared to the non-hunted 

Bristol population suggests a possible compensatory response to hunting, although the 

lack of additional data on immigration and density hinders assigning causation to this 

variation. The population with the slowest life history (by both metrics) is the Sweden 

(North) population, probably reflecting the harsh winter conditions and food 

limitations that it experiences (Lindström 1989), although fluctuations in this 



Chapter 4: Red fox demography 

 
 

 

 

88 

population’s density may violate assumptions of a stable population size. Slower 

species are expected in habitats with low productivity but high environmental 

variation (Ferguson & Larivière 2002). In foxes, the relationship between the 

environment and life history rates is complex: environmental variability is an important 

determinant of lifetime productivity (Soulsbury et al. 2008b), and body condition, 

driven partly by climatic conditions, is an important factor affecting both survival 

(Gosselink et al. 2007) and fecundity (Cavallini 1996). Bartoń and Zalewski (2007) 

found fox density was negatively correlated with an index of seasonality within 

Eurasia, suggesting that such an index could also be used to explain variation in life 

history speed between populations. However, using latitude as a proxy for seasonality, 

no correlation was found in this study. Similarly, previous studies have failed to 

demonstrate a relationship between litter size and latitude (Lord 1960). 

4.4.2 Vital rate contributions and life-history characteristics  

That younger age classes are important to growth is unsurprising for a species with a 

relatively fast life history and is consistent with the observation that juveniles comprise 

an average of 60% of fox populations (Lloyd et al. 1976, Nelson & Chapman 1982, 

Marlow et al. 2000). Although juvenile foxes are particularly susceptible to 

anthropogenic control (Englund 1970, Pils & Martin 1978), heterogeneity in hunting 

effort generates source populations (Baker & Harris 2006) and, together with constant 

immigration from dispersers (Rushton et al. 2006, Gentle et al. 2007), helps to explain 

why some populations remain stable or grow despite hunting pressure. While 

compensatory responses in productivity are thought to occur in areas of high hunting 

pressure (Harris 1977, Cavallini 1996), these results provide little evidence for this for 

the populations analysed here (see previous section). Thus, as McLeod and Saunders 

(2001) conclude, targeting the youngest age class is likely to be the most effective form 

of management when the aim is to decrease the population.  

Traits that have a large impact on λ are predicted to be buffered against variation 

(Pfister 1998), but demographic analyses of mammals are not always consistent with 

this theory (e.g. Creel et al. 2004, Henden et al. 2009). In these analyses, λ was equally 

sensitive to the contributions of fecundity and survival. Foxes are expected to have 
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higher contributions to λ from fecundity than survival, but it was found that fecundity 

is more variable than survival, possibly because fecundity is influenced more than 

survival by complex factors, which include food limitation, body mass, and social 

factors (Lindström 1988, Cavallini 1996, Iossa et al. 2008). However, when considering 

demographic contributions in the context of the fast-slow continuum, the equal 

sensitivity of λ to both rates corresponds to that expected with a medium speed. It was 

also found that the relative contribution of vital rates varied among populations, 

especially in the youngest age class, which drive growth. Changes in relative elasticities 

between demographic rates have been demonstrated as a response to environmental 

conditions (Bieber & Ruf 2005), with potential management implications if 

demographic traits are to be targeted based on data from fluctuating conditions. Given 

that variation is an important factor driving population dynamics, it is advantageous to 

incorporate as high a degree of realism as possible into models (Mills et al. 1999, 

Wisdom et al. 2000). Studies using multiple demographic analyses, such as those in 

this study, have illustrated how predicted life history contributions can differ with the 

inclusion of variation (Wisdom et al. 2000, Johnson et al. 2010); these results reinforce 

that conclusion.  

4.4.3 Representativeness of process error example    

Given that process error could only be separated for one population, this analysis 

raises the question of how representative the Sweden (South) population is of other 

fox populations. The Sweden (South) population most likely falls towards the higher 

end of the process error spectrum, coming from an area that is prone to 

environmental fluctuations, although not as extreme as experienced farther north in 

Sweden but there were less data available for this population. However, it is known to 

be subject to high inter-annual variation owing to regulation by prey cycles (Lindström 

1989). As many fox populations are likely to experience less environmental variation, 

the process variation in these populations is expected to be less pronounced. 

However, these results should be interpreted with caution, given that Doak et al. 

(2005) suggest that studies of less than five years duration are inadequate to quantify 
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sources of variation, and that sample sizes for the Sweden (South) population were 

small in some years.   

4.4.4 Validity of using substitute demographic parameters 

The use of substitute data in demographic modelling is often necessary but requires 

great caution, even at the intraspecific level. Bristol and London foxes might be 

expected to share similar properties, being urban populations in relatively close 

proximity. However, at the time of data collection the London fox population was 

subject to hunting (Harris 1977), illustrating that geographical proximity of populations 

is no guarantee of the validity of this approach. Pech et al. (1997) used USA data for 

their model of an Australian population to test the impact on λ of reducing the 

fecundity of an invasive population. These results illustrate how replacing fecundity, 

and its component elements, could have led to flawed outcomes. In the case of foxes, 

recruitment is the most variable life history rate, so should be substituted with great 

caution. If in doubt, the most comprehensive approach might involve substituting data 

from across the range of available values, and acknowledging the resultant 

uncertainty. 

Data substitution is often inevitable in situations concerning highly endangered, 

elusive, or data-deficient species, highlighting the need for long-term research. It 

occurs in many forms, such as using data from species of the same family (Finkelstein 

et al. 2010), species sharing similar attributes (Schtickzelle et al. 2005), or making 

assumptions about a parameter based on a different (Peck et al. 2008) or captive 

(Martinez-Abrain et al. 2011) population. Githiru et al. (2007) evaluated the 

applicability of substituting data from a common species, the white-starred robin 

Pogonocichla stellate, for a critically endangered thrush Turdus helleri; both species 

responded to habitat disturbance with higher fluctuating asymmetry and lower 

effective population density. The sensitivity of λ estimates to surrogate demographic 

parameters illustrated by the case studies suggests a finer scale approach is required 

compared to the broad measures of similarity applied in Githiru et al.'s (2007) 

approach. These results are in agreement with Caro et al. (2005) that surrogate data 

should be used only when similar traits can be identified; following Johnson et al. 
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(2010), caution is urged against substituting data between demographically distinct 

populations.  

4.4.5 Data quality implications and recommendations  

As the most widespread terrestrial mammal, the red fox has been subject to extensive 

study throughout its range. Despite the constraints on studying carnivores, data exist 

for an impressive number of red fox populations; however, for the amount of sampling 

effort, surprisingly few populations can be described by a matrix model with all 

necessary vital rates. Further, demographic data were biased towards collection during 

the 1970s. The quality of data is also restricted, in some published papers, by unclear 

methodologies, inconsistent definitions of key parameters, and issues related to basic 

study attributes. Sampling design is a direct source of bias for parameter estimation, 

but is often beyond the control of researchers due to funding and logistical limitations. 

However, it is important to take into account that sample size (Gross 2002), duration 

(Fieberg & Ellner 2001), and area (Steen & Haydon 2000) can have repercussions for 

the precision of demographic estimates.  

The rarity with which quantifiable study attributes such as habitat, environmental, and 

anthropogenic variables were reported also limits analysis of the impact of these 

factors on inter-annual variability in population processes. Covariates, such as hunting 

effort and those that enable scaling from an urban to rural gradient (e.g. human or 

road density), are easy to measure and can be important predictors in more powerful 

models (Mladenoff et al. 1995). As with other studies (Wisdom et al. 2000, Nilsen et al. 

2011), quantification of inter-annual variation in vital rates is possible for few of the 

fox populations studied. This is disappointing, given the importance of stochasticity for 

populations (Melbourne & Hastings 2008) and the advances in demographic modelling 

for incorporating variation (Kendall 1998, White 2000, Akçakaya 2002, Udevitz & 

Gogan 2012). In this regard, the studies in these analyses are limited both by their 

relatively short durations and by their sample sizes. Further, the seasonal variation 

that exists in trap capture rates between age and sex classes, which also mirrors the 

susceptibility to culling (Baker et al. 2001a), implies that important classes could be 

underrepresented at key times of years. These differences are due to behavioural 
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changes throughout the year, such as vixens being harder to catch when breeding. It is 

suggested (S. Harris, pers. comm.) that best practice for measuring inter-annual 

variation in key demographic rates is to sample during the dispersal period (October to 

December in the northern hemisphere). Whilst such samples may be skewed towards 

dispersing subadults, particularly males, they are the least biased samples in light of 

the behavioural processes occurring throughout the year. Specifically, samples during 

this period would show (i) how many cubs survive to independence (the ratio of cubs 

to adults); (ii) annual proportions of adult vixens that bred from placental scar counts; 

(iii) mean annual litter sizes (from placental scar counts); (iv) annual variations in both 

cub and adult sex ratios; and (v) annual variations in adult survival. Presenting data for 

this specific period separately would facilitate comparisons between populations. 

Currently, few studies make it clear how sampling effort varied through the year; 

biases in sampling effort skews samples towards the age and sex classes that were 

most vulnerable during the main collection period.  

Most available data on red foxes are from mortality studies, which have associated 

assumptions (for a review see Caughley 1977). Ultimately, however, mortality data 

such as hunting bag returns will remain an important source of information for fox 

populations. Four particular issues arise when presenting the data from these studies, 

all of which should be straightforward to remedy. First, studies differ in their definition 

of age classes. Factors affecting uncertainty in ageing methods and their minimisation 

have been discussed extensively elsewhere (Allen 1974, Harris 1978). Whether the first 

year after birth is described as age class zero, or one, leads to confusion in interpreting 

published age-specific data, as does dividing the first year into shorter periods, such as 

pre-and post-weaning, or into 3-month segments, although there are biological and 

ecological arguments justifying this division (Marlow et al. 2000). Similarly, the term 

“juvenile” is not consistently linked to a specific age class; an appropriate definition 

includes all individuals under the age of one i.e. cubs and subadults (Soulsbury et al. 

2008b). Second, inconsistent determination of fecundity is a major source of confusion 

surrounding the conversion of vital rates to matrix elements (Noon & Sauer 1992). The 

interpretation and definition of techniques to determine litter size have been 

extensively reviewed (Englund 1970, Harris 1979, Lindström 1981, Allen 1983). It is 
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unclear whether guidelines for using placental scars to determine litter size (Englund 

1970) are widely followed but explicit reference to these guidelines would promote 

greater confidence in the data obtained from specific studies. Third, of the 

components driving reproductive output, the proportion of breeding females varies 

more widely between populations than litter size (e.g. Harris 1979, Zabel & Taggart 

1989), often due to complex social factors (Macdonald 1979, Iossa et al. 2009). The 

definition of “barren” females is an area of particular uncertainty and great variability. 

"Barren" can indicate animals that are unable to reproduce, as well as those that are 

capable of reproducing but fail to do so in a particular year. In addition, reproductive 

failure could occur at various points: failure to mate; failure to implant fertilised ova; 

death of the entire litter during pregnancy; and loss of an entire litter immediately 

following parturition, due to infanticide or other social factors. It is recommended that, 

rather than using the ill-defined term “barren”, future studies define the proportion of 

females experiencing reproductive failure at any given stage, as has been done for 

Eurasian badgers Meles meles (Cresswell et al. 1992). Fourth, "hunting" samples vary 

between countries depending on legal restrictions and local practices. At the moment, 

for instance, it is unclear how samples taken by driven shoots, night shoots, snaring, 

leghold traps or digging out of dens differ: data from different collection methods 

should be presented separately and by time of year to facilitate analyses on the impact 

of sampling method on demographic parameters. Furthermore, demographic data are 

often restricted to technical reports (e.g. Whitlock et al. 2003), where these are made 

widely accessible, they might represent a substantial source of more directly useable 

raw data.  

4.5 Conclusion 

Demographic analyses of red foxes highlight inter-population differences in life-history. 

Currently, however, data required to identify the drivers of these demographic 

patterns are lacking. The difficulties of interpreting models based on uncertain data 

were reiterated. While it is recognised that, for many species, data are often limited 

both in quality and quantity, these results caution against data substitution unless 

exploratory demographic analyses suggest high levels of consistency between 
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populations. Superficially, the red fox appears well studied. As a result, a good 

understanding of red fox demography might be assumed. In reality, in spite of the fox’s 

widespread distribution, abundance and economic importance, there are remarkably 

few usable demographic data from much of its range. Studies of other abundant and 

widespread species suggest that great insight can be gained by comparing intraspecific 

demography. Demographic research on the red fox lags behind that on ungulates, for 

example, studies of which have been used to examine the effects on population 

dynamics of harvesting regimes (Servanty et al. 2011), quantitative trait variation 

(Pelletier et al. 2007), and climate (Coulson et al. 2001). Few broad scale models of 

age-specific survival and fecundity of multiple carnivore populations have been 

conducted. Here, the range of analyses that can be performed using published data 

was illustrated. Further long-term research would be necessary to minimise sampling 

bias and to determine whether apparent inter-population differences are robust to 

temporal variation. With improvements in reporting standards, much more remains to 

be learnt about this important and widespread carnivore. 
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Chapter 5 Transmission mechanisms of sarcoptic mange Sarcoptes 

scabiei in a social carnivore, the red fox Vulpes vulpes  

5.1 Introduction 

Sarcoptic mange, caused by the highly contagious mite Sarcoptes scabiei, affects over 

100 domestic and wild mammalian species (Pence & Ueckermann 2002). Mange has 

been identified as a potential emerging disease (Daszak et al. 2000) threatening 

endangered species such as cheetahs Acinonyx jubatus, gorillas Gorilla gorilla and 

Iberian ibex Capra pyrenaica and posing a risk of cross-species infection for domestic 

species (Smith et al. 2009b). Red foxes Vulpes vulpes have been known hosts of mange 

(S. scabiei var. canis) since the 1600s (Friedman 1947, cited in Newman et al. 2002), 

and epizootics of mange have caused significant population declines of fox populations 

worldwide (Gerasimov 1958, Storm et al. 1976, Lindström & Morner 1985, 

Forchhammer & Asferg 2000, Soulsbury et al. 2007). Despite extensive work on the 

clinical aspects of S. scabiei (see Arlian 1989), fundamental aspects of mange 

epidemiology are undefined for many wild mammalian host populations (Bornstein et 

al. 2001), including the basic reproductive number, R0, the transmission coefficient, β 

and the infectious period, γ. The basic reproductive number represents the number of 

secondary cases produced by one infectious individual in an entirely susceptible 

population and is central for predicting disease establishment in a population. Yet 

estimates of R0 have not been determined for canid hosts of mange. The transmission 

coefficient determines the number of new cases per unit time. However, the 

transmission pathways that promote the persistence and cycles of mange in wild host 

populations remain to be fully identified. 

Mange often persists in wild canid populations for many years at an enzootic level 

(Gortazar et al. 1998, Gosselink et al. 2007) and 30 to 40 year cycles of mange 

epizootics have been identified in coyotes Canis latrans (Pence & Windberg 1994). 

Whilst both direct and indirect routes have been implicated in mange transmission 

(Pence & Ueckermann 2002), the few models that exist have focused primarily on 
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direct mechanisms (see Leung & Grenfell 2003, Lunelli 2010). Consequently, there is a 

need to refine our understanding of the dynamics of mange in wild canids.  

Modelling provides a valuable tool for identifying the population and life history 

attributes of hosts and pathogens that drive disease prevalence and transmission 

(Anderson & May 1979). Specifically, model-based parameter estimation provides a 

mechanistic means for understanding the impact of a pathogen on a host's population 

dynamics (Dobson & Hudson 1992, Tompkins et al. 2002) and can also lead to 

management recommendations (Hess 1996, Packer et al. 2003). Deterministic 

compartment models, such as those describing the transition between susceptible, 

infected, and recovered states (Anderson & May 1992), are a widely used 

epidemiological approach for describing disease patterns (Smith et al. 2009a). 

However, a key limitation of the parameterisation of theoretical wildlife disease 

models is the often limited availability of empirical data (Barlow 1995).  

Because of the difficulties of observing the frequency of individual contacts and those 

contacts with susceptible individuals that subsequently cause infection, determining 

disease transmission rates for wild populations is notoriously problematic (McCallum 

et al. 2001). Thus, epidemiological parameters, including β, are frequently estimated 

by fitting models to empirical data (Smith et al. 2009a), such as prevalence data. 

Prevalence, defined as the proportion of individuals in a sample that are infected, is a 

commonly collected source of disease data (e.g. Caley & Ramsey 2001, Roche et al. 

2009). The use of prevalence data in modelling is typically based on the assumption 

that the observed variation in this measure reflects the true variation in the disease 

prevalence of the target population. Unfortunately, many sources of uncertainty arise 

in prevalence data owing, in part, to imperfect detection of disease in wild 

populations; this can result from limitations in diagnosis, altered behaviour of infected 

animals, or the often opportunistic or uneven sampling effort (Conner et al. 2000, 

Jenelle et al. 2007, McClintock et al. 2010). Given concerns about data reliability, 

ensuring that model predictions are supported by empirical data is a well 

acknowledged, but poorly addressed issue in disease modelling (Barlow 1995).  
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For reasons of computational simplicity, disease models often assume that there is no 

within-population variation in prevalence. Yet heterogeneities in disease prevalence 

frequently exist between groups of individuals within a population, and can have a 

significant impact on disease dynamics (Woolhouse et al. 1997, Altizer et al. 2003b, 

Lloyd-Smith et al. 2005b). In cases where disease prevalence varies due, for example, 

to the different susceptibilities of age, sex or social classes, this variation can be 

explicitly modelled by adding stage-specific transmission terms (Bolzoni et al. 2007). 

For example, incorporating stage structure significantly improved the fit of models of 

phocine distemper in harbour seals Phoca vitulina, possibly attributable to the contact 

behaviour of juveniles and breeding adults during the pupping season (Klepac et al. 

2009). Clearly, variation in prevalence is of consequence for determining contact rates, 

and hence patterns of disease transmission.  

In epidemiological compartment models, transmission is typically assumed to be 

density-dependent for all diseases other than sexually transmitted diseases, with the 

latter being described by frequency-dependent transmission to account for contact 

rates being independent of population size (McCallum et al. 2001, Begon et al. 2002). 

Recent studies, however, have brought these assumptions into question, suggesting 

that the importance of changes in host contact rates for disease transmission has been 

underestimated (Begon et al. 1999, Caley & Ramsey 2001, Smith et al. 2009c). For 

instance, Begon et al. (2003) found that frequency-dependent transmission of cow pox 

in two species of rodent was supported over density-dependent models. A switch from 

density-dependent to frequency-dependent transmission has been predicted in social 

species if contact rates remain constant and territory size but not group size changes, 

whereas if both properties change simultaneously, transmission may occur along a 

continuum between the two mechanisms (Smith 2006). In a review of modelling 

approaches, Sterner and Smith (2006) suggested that a combination of density- and 

frequency-dependent functions may be necessary to describe rabies dynamics in foxes 

due to changes in territorial contact rates and group size with density.  

Transmission of many diseases, including mange, can also occur indirectly through 

contact with inanimate substances, such as when scraping under fences or sharing 
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dens. These substances, known as fomites, are capable of being infected by free-living 

parasite stages (Anderson & May 1981). This additional transmission pathway often 

occurs in combination with direct transmission, adding an extra layer of complexity 

that has only recently been widely incorporated into wildlife disease models, but that 

has been found to improve model fit (Barlow et al. 2002, Roche et al. 2009, Rohani et 

al. 2009). For example, combined density-dependent and indirect transmission models 

were the most parsimonious for chronic wasting disease in mule deer Odocoileus 

hemionus, and the estimated effort required for eradication of this disease was higher 

than previously predicted given the longer disease persistence in these models (Miller 

et al. 2006). Indeed, diseases with a free-living stage can persist at very low host 

densities (Anderson & May 1981). Sauvage et al. (2003) found that the persistence of 

hantavirus in bank voles Clethrionomys glareolus at low densities could only be 

captured by models that included indirect transmission. In foxes, den-sharing was an 

important mode of indirect transmission of mange in Russia (Gerasimov 1958). It is 

worthwhile, therefore, not only to determine whether the mechanism of direct 

transmission can be identified, but also to assess the importance of including an 

alternative transmission pathway for mange dynamics in a social species.  

A mange epizootic occurred among Bristol’s urban fox population in the mid 1990s, 

causing a drastic population decline (Baker et al. 2000), and the disease has remained 

enzootic in the study area. This urban population has been monitored continually for 

over 30 years, providing long-term data on fox demography and mange prevalence 

(Baker et al. 2001b). The population reached exceptionally high densities prior to the 

epizootic, which may have contributed to the spread of mange. However, since 

sociality is well established in foxes (Cavallini 1996), it is useful to determine whether 

mange transmission in this species is density- or frequency-dependent. It is also useful 

to consider age-specific prevalence as an indication of the influence of life history 

stage on mange transmission. Further, the low rates of direct inter-group contact 

(White & Harris 1994, Baker & Harris 2000, Giuggioli et al. 2011, Soulsbury et al. 2011) 

imply that an indirect component may be required to describe the observed rapid 

transmission of mange. The Bristol fox population provides a unique opportunity to 

explore the disease dynamics and transmission pathways of mange in this social 



Chapter 5: Mange transmission  

 
 

 99 

species. Combining traditional compartment modelling with an information theoretic 

approach, this study considers whether (i) SEI models can describe the dynamics of 

mange in the Bristol fox population; (ii) prevalence data support either frequency- or 

density-dependent transmission; and (iii) indirect transmission improves the fit of 

models to the data. Epidemiological parameter estimates are reported for 

parsimonious models. Finally, the results are discussed in the context of modelling 

disease in a social species.  



Chapter 5: Mange transmission  

 
 

 100

5.2 Methods 

5.2.1 Data 

The Bristol fox population experienced a sarcoptic mange epizootic during 1994 to 

1996; prevalence peaked in the autumn of 1995 when it was estimated that close to 

100% of the population was infected (Baker et al. 2000). At the start of the epizooty 

the total (adult and cubs) fox population density was 58.3 individuals km-2, but this 

declined by 95% by the end of 1996 (Baker et al. 2000). Population recovery has been 

slow and mange has remained at enzootic levels in this urban population since 1996 

(Soulsbury et al. 2007). Annual post-breeding population densities (Baker et al. 2001b, 

Whiteside et al. 2011), were estimated from capture-mark-recapture data (e.g. Baker 

et al. 2000). Four years with missing estimates (1996-97; 2000-01) were determined by 

linear interpolation. Population density estimates for 1994 to 2010, presented in 

Figure 5.1, show the population decline due to the mange epizootic. 

 

Figure 5.1. Population density estimates to define the post-breeding density Nk(t), here, the 
total number of adults and cubs, used for the annually varying model. Error bars indicate 
standard deviations. 
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The symptoms of mange are not immediately apparent after exposure to the mites. In 

canids, the observed average latent period is between 10 and 30 days (Bornstein et al. 

2001). The itching response triggered by the mites eventually leads to hyperkeratosis, 

the crusty appearance associated with mange; subsequent bacterial infection is the 

predominant cause of death, although mange is not always fatal. For detailed 

descriptions of clinical symptoms of mange see Bornstein et al. (2001) and Newman et 

al. (2002). On average, the time to death of infected juveniles and adults was 3.5 

months during the epizootic (Newman et al. 2002).  

Prevalence and mortality data used in this analysis were based on data collected 

through the recapture of radio-collared or marked individuals, and recovery of fox 

carcasses, from 1994 to 2010 (n=1662 records) (S. Harris pers. comm.) from a 14km2 

area of suburban Bristol (see Newman et al. 2002, Soulsbury et al. 2007 and references 

therein for descriptions of sampling protocols). Mange diagnosis was classified 

according to the disease manifestation; class I and class II were defined as no evidence 

of, and presence of hyperkeratotic mange, respectively (see Newman et al. 2002). Due 

to the small monthly sample sizes, class I and class II data were combined to obtain the 

number of infected individuals per month. Monthly prevalence was then calculated as 

the proportion of infected juveniles and adults respectively. To determine uncertainty 

in the prevalence data 95% confidence intervals were calculated from likelihood 

profiles (Bolker 2008).  

Mean monthly sample sizes for adults (2.61, SD ± 0.79, n = 502) and juveniles (5.53, SD 

± 1.30, n =1061) were consistent during the year (Figure 5.2), with the exception of a 

peak in juvenile capture and mortality records in the summer months, which reflects 

the newly mobile cubs (Figure 5.2A). Juveniles were sampled (Figure 5.2A), on average, 

twice as frequently as adults (Figure 5.2B), reflecting the age distribution of the 

population. Mean sample sizes of infected individuals for monthly prevalence data 

were low for both age classes (adults 0.63, SD ± 0.28, n = 120; juveniles 0.99, SD ± 0.33, 

n = 191; Figure 5.2). Age-related patterns in the monthly prevalence of mange (Figure 

5.3) suggest some seasonality, particularly in juveniles. Confidence intervals are wide, 

however, indicating substantial uncertainty in the data. 
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Figure 5.2. Monthly number of individuals of total sampled foxes (no fill) and infected foxes 
(blue) from 1994 – 2010. (A) Juveniles; (B) adults. Boxes show the sample median, minimum 
and maximum. Error bars indicate the lower and upper quartiles and outliers are indicated by 
open circles. 
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Figure 5.3. Mean monthly prevalence of mange infection for juveniles (dashed line, open 
circles) and adults (solid line, closed circles) from 1994 – 2010, with 95% confidence intervals.  

 

5.2.2 Modelling mange dynamics 

5.2.2.1  Mange as a microparasite 

Most definitions of parasites assume that microparasites are small and numerous, 

reproduce rapidly within the host and once infected, a host will die or recover largely 

independent of the parasite load (Anderson & May 1992). In comparison, 

macroparasites are typically assumed to be larger, have an intermediate host and off-

host reproduction, and with morbidity and mortality dependent on the parasite 

burden (Anderson & May 1992). In reality, micro-and macro-parasites lie along a 

continuum of these epidemiological properties (Anderson & May 1979). S. scabiei is 

conventionally classified as a macroparasite, although it displays several microparasite 
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attributes: the small mites reproduce directly and rapidly on the host and are able to 

transfer directly between host individuals. Thus, a microparasite modelling approach 

was used in this study.  

5.2.2.2  SEI models 

Compartment modelling was used to estimate the epidemiological parameters, β and 

γ, and to compare different pathways of mange transmission in foxes. Specifically, an 

SEI model was used in which densities (N) of individuals in a given population are 

categorised into classes according to their disease status as susceptible (S), exposed 

(E), and infected (I) (i.e. N = S+E+I). The exposed class was included to incorporate the 

time taken between foxes becoming exposed to the mites and becoming infectious. 

Recovered individuals were assumed to return directly to the susceptible class, 

because although a low number of foxes in Bristol were observed to recover fully, re-

infection of individuals was also observed (S. Harris pers. comm.). Two forms of direct 

transmission were modelled. Density-dependent transmission was the first direct 

mechanism modelled (M1). Here, the transmission rate is proportional to the density of 

susceptible and infected groups within the population (βSI), which results in 

prevalence increasing linearly with density. The second mode of direct transmission, 

frequency-dependent (M2), assumes that the infection rate is dependent on the 

proportion of infective individuals in the population (βSI/N). In this case, opportunities 

for contact between an infectious and susceptible individual are independent of 

population size (Begon et al. 2002). Frequency-dependent transmission accounts for 

the possibility that the rate of infectious contacts per infected individual might not 

increase linearly with density, which could arise as a consequence of contact rates 

being determined by social interactions. Host demography was incorporated into the 

models with a fixed per capita mortality rate (see Table 5.1) and a birth pulse. Foxes 

breed annually and for modelling purposes it is typically assumed that all cubs are born 

on April 1st (Harris & Smith 1987). Thus, for convenience, the total population size was 

reset annually to a post-breeding density (Nk), occurring in March because this process 

was modelled at the end of the month. In this way, a pulse of new susceptible 

individuals (Sbj) was introduced into the population each year (Sbj = Nk - N). Because of 
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the large fluctuations in population density over the data collection period (Iossa et al. 

2009), two versions of each model were run: the first used a fixed Nk, whilst the 

second used a post-breeding density, Nk(t), that varied annually based on an 

independent set of density data. The fixed Nk was set as the combined juvenile and 

adult population density estimate of the initial conditions (Table 5.1), and Nk(t) was 

defined as the total population density estimate for year t.  

 

Table 5.1. Definition of fitted and fixed parameters used in SEI models. Initial values of fitted 
parameters were estimated from the literature where possible. 

Parameter Definition Fixed or fitted* 

parameter 

βjj , βaa Age-specific density-dependent transmission (day- 1) * 
β’jj , β’aa Age-specific frequency-dependent transmission (individual- 1 day- 

1) 
* 

βf Indirect transmission (day- 1) * 
γ Infectious period = 1/ γ (day-1) 200 days* 

σ Latent period = 1/ σ (day-1) 30 days 
α Disease-induced mortality rate = 1/α (day-1) 100 days 
μj Juvenile‡ per capita mortality probability (year-1)  0.3† 
μa Adult‡ per capita mortality probability (year-1) 0.5† 
ω per capita reproductive rate of mite on infected individuals (day-1) * 
ε Rate of loss of the pathogen in environment = 1/m (day-1) 10 days 
S0j Initial density of susceptible juveniles (km-2) 21 
S0a Initial density of susceptible adults (km-2) 36 
I0j Initial density of infected juveniles(km-2) 0.01 
I0a Initial density of infected adults (km-2) 0.01 
F0 Initial density of fomites  1 
K Fixed post-breeding density  56.65 

 

†Annual probabilities were converted to daily rates by –ln(μ)/360 
‡Juveniles were defined as all individuals under one year, and adults as all individuals older 
than one year (Harris & Trewhella 1988).  

 
 

 

 



Chapter 5: Mange transmission  

 
 

 106

To account for potential age-specific variation in prevalence, the SEI model was 

extended to include age structure.  A “Who Acquires Infection From Whom” (WAIFM) 

transmission matrix was used (Keeling & Rohani 2008) to denote transmission, β, from 

one class to another: 

jj ja

aj aa

β β
β

β β

 
=  
 

,        (1) 

where j and a represent juveniles and adults respectively. To reduce uncertainty in 

resultant parameter estimates and to maintain analytical tractability, it was assumed 

that βja was equal to βjj, and βaj equalled βaa. Each year, at the time of the birth pulse, 

juveniles in a given disease state matured into adults of the corresponding disease 

class. The following ordinary differential equations (ODEs) describe disease dynamics 

between birth pulses according to the density-dependent SEI model (Figure 5.4):  
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= − − + +

= − − + +

= − + + −

     (2) 

where μ is the age-specific natural death rate of the host, α is the disease-induced 

mortality rate, σ is the rate of progression from the latent stage once exposed, γ is the 

infectious period (parameter definitions are specified in Table 5.1) and β denotes the 

transmission coefficient for age-specific density-dependent transmission according to 

the WAIFM matrix (eqn.1).  
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Figure 5.4. SEI compartment model diagram illustrating age-specific density-dependent direct 
transmission with host demography. Indirect transmission and fomite dynamics are indicated 
in grey. Parameter descriptions are presented in Table 5.1. 
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The transmission coefficient, βf, describes indirect transmission via infection through 

the contact of susceptible individuals with free-living mites on infected substrates. For 

analytical tractability, it was assumed that βf was not age-specific. Indirect 

transmission was combined with direct transmission e.g. Sj(βjIj + βaaIa+ βfF), to give a 

total infection rate, given that indirect pathways are unlikely to be the sole 

transmission mechanism. For density-and frequency-dependent models that 

incorporated indirect transmission (M3 & M4), an additional compartment (F) followed 

the densities of mites in the environment: 

( ) ,
j a

dF
I I F

dt
ω ε= + −        (3) 

where ω is the rate mites are released into the environment by the total infected 

individuals, and ε is the death rate of mites on fomites (see Table 5.1). Under average 

ambient conditions, all life stages can survive an average of 10 days off the host, but 

this can increase to several weeks if conditions are optimal (Arlian 1989). The rate that 

mites are released into the environment, ω, is an unknown parameter; ω is dependent 

on the reproductive rate of the mites and individual parasite loads. Female mites 

produce 3-4 eggs per day, with an average life expectancy of 5 weeks (Arlian et al. 

1989), but parasite loads and the rate at which mites are released from the host 

remain undetermined and so ω was a fitted parameter.  

5.2.2.3  Parameter fitting and model selection 

The SEI model parameters were fitted to the prevalence data using maximum 

likelihood. This analysis is based on the assumption that the transmission rate, β, of 

mange in a population, N, of S susceptible individuals produces I infected individuals 

per day, given that E individuals were exposed to the mite and became infectious. The 

probability an individual in the population is infected, p, is given by I/N. Predictions of 

the model can be compared to empirical observations on the prevalence of infected 

individuals by considering the process of field data collection as a series of binomial 

trials. Let the months in the total time series be denoted by [m = 1, 2, 3, …, D]. Within a 

given month, each individual sampled can be considered as a “trial”, with the total 
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number of individuals sampled in each age class denoted nx. Assuming that the 

probability of becoming infected, px, is uniform among individuals sampled of age x, 

the number of infected individuals within an age class, yx, will follow a binomial 

distribution. Thus, the likelihood at time m that proportion px of either juveniles or 

adults in the population are infected, given that a random sample of nx individuals 

includes yx infectives, is 

x x x
x y n y

x x x x x

x

n
L p n y p p

y
( | , ) (1 ) .− 

= − 
 

     (4) 

Observed variation in the rate of infection can arise as a result of sampling error, 

including misdiagnosis, or due to the effects of unmeasured factors such as differences 

in individual susceptibility. If these sources of variation are unaccounted for and result 

in overdispersed data, then unnecessarily complex models can be selected when using 

information theoretic approaches because model precision will be overestimated 

(Anderson et al. 1994, Richards 2008). To measure the degree of dispersion in the 

data, the variance inflation factor, vɶ , was estimated by dividing the variation in the 

observed data (saturated model, where the number of parameters equals the number 

of observations) by the variation in the most complex binomial model (Richards 2008). 

If overdispersion is present (vɶ ≥ 2), a compound distribution can be fitted to the data 

instead (Richards 2008). For binomial data, an appropriate compound distribution is 

the beta-binomial distribution. This model assumes that variation in px across samples 

within a given time period is described by the beta distribution: 

a b

x x x x

a b
f p p p p

a b

1 1( )
( ; , ) (1 ) ,

( ) ( )
φ − −Γ +

= −
Γ Γ

     (5) 

where the parameter φ quantifies the variation in px, x
p  is the mean probability of 

success, Γ(x) is the complete gamma function, a=
x

p / φ, and b=(1-
x

p )/ φ. Substituting 

equation (5) into equation (4) gives the compound beta-binomial distribution. If θ is 

the set of model parameters required to calculate 
x

p and the dispersion coefficient φ, 

then the likelihood of θ at time m can be calculated as 
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( 1) ( ) ( ) ( )
( | , ) .

( 1) ( 1) ( ) ( ) ( )
x x x x

x x
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n a b y a n y b
L n y

y n y a b n a b

Γ + Γ + Γ + Γ − +
=

Γ + Γ − + Γ Γ Γ + +
θ   (6) 

Equation (6) approximates the binomial distribution as the dispersion parameter, φ, 

approaches zero. The total log-likelihood of the model, defined by θ and given all the 

data, is then the log of equation (6) summed over age classes j and a over the total 

time period, D:  

1 1 1

( |data) (lnL[ | , ]) (ln [ | , ]) .
j a

n nD

jm jm am am

m j a

LL n y L n y
= = =

  
= + 

  
∑ ∑ ∑θ θ θ   (7) 

To determine if the disease transmission model presented above is consistent with the 

data, it is useful to compare predicted dynamics with a null model in which disease 

prevalence is constant in time. A beta-binomial null model (MH) was fitted which 

simply assumed that the probability a sampled individual in each age class was 

diseased was, on average, time-invariant (px = x
p ). The ability of SEI models to capture 

patterns in the prevalence data was determined by comparing the likelihoods of the 

null model, MH, and those models that included disease parameters (M1 to M4).    

In general, because epidemiological ODE models cannot be solved analytically due to 

their non-linear properties it is necessary to use a discrete approximation. Thus, to 

obtain prevalence patterns, px(m), predicted by each SEI model, the associated system 

of ODEs (eqn. 2) was solved using the fourth-order Runge-Kutta method, a widely used 

method of numerical integration that calculates the state variables by evaluating their 

derivatives at four points along each time-step (Press et al. 2007). The set of model 

parameter values fitted to the monthly age-specific prevalence data for direct 

transmission were θ = {βjj, βaa, γ, φ} and θ = {β’jj, β’aa, γ, φ} for density- and frequency-

dependent transmission respectively; for models that include indirect transmission, 

the models were defined by θ = {βjj, βaa, βf, ω, γ, φ} and θ = {β’jj, β’aa, βf, ω, γ, φ}. 

Parameter estimates were determined by maximising the total model log-likelihood 

(eqn. 7) using the “optim” function in R 2.14.0 (R Development Core Team 2011). 

Where possible, parameter values estimated from the literature were used as initial 
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starting points (see Table 5.1). To distinguish between the competing models, Akaike’s 

Information Criterion (AIC) was used; to avoid instances where the best AIC model 

does not have the lowest AIC value due to uncertainty from sampling error, all models 

with ΔAIC ≤ 6 units were considered to have some level of support (Richards 2008). A 

bootstrap approach was used to calculate 95% confidence intervals for each parameter 

of the best fitting model selected by AIC. Specifically, 1000 model replicates were 

fitted by re-sampling the prevalence data between years, but from the same month. 

5.2.2.4  Basic reproductive number 

The basic reproductive number, R0, is used to determine the probability of a disease 

spreading in a population (Hethcote 2000); a pathogen can invade if R0 > 1 (Anderson 

& May 1992). R0 is dependent upon the rate of contact between individuals, the 

probability of infection given contact, and the duration of infectiousness per individual. 

R0 tends to be maximised at intermediate levels of disease-induced mortality because 

both extremely high and low virulence would cause pathogens to die out rapidly 

(Walther & Ewald 2004). R0 was calculated for the most parsimonious model selected 

by AIC, using the parameter value estimates obtained from maximum likelihood. 

Because of the heterogeneities in infection rates between age classes of structured SEI 

models, the total R0 needs to account for these age-specific contributions; that is, the 

contribution coming from the number of secondary cases arising in one age group 

from a case in a second age group, assuming that every individual in the first age group 

is susceptible. A “next generation matrix” can be derived from the WAIFM matrix and 

the population age distribution (Diekmann et al. 1990), such as for density-dependent 

transmission: 

/ /
,

/ /
jj j jk j

aj a aa a

n n

n n

β γ β γ

β γ β γ

 
=  
 

A       (8) 

where nj = (S0j/N) and na = (S0a/N). This matrix, A, provides a weighting of the 

contribution of each age class to the spread of infection and the overall R0 is calculated 
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as the dominant eigenvalue of A (Keeling & Rohani 2008). For models including indirect 

transmission, the overall R0 is equal to R0 + indirect
R0 , where 

indirect
R0 is calculated as:  

( )
ωβ

µ α γ

+
=

+ +

f j aindirect
S S

R  ,
m

0 0

0

( )
      (9) 

(Rohani et al. 2009). All analyses were conducted in R 2.14.0 (R Development Core 

Team 2011). 
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5.3 Results 

5.3.1 Transmission mechanisms 

Prevalence data were overdispersed (variance inflation factor, vɶ = 2.79) and, therefore, 

all model likelihoods were calculated assuming that monthly observations of disease 

prevalence were distributed according to the beta-binomial distribution (eqn. 6). SEI 

models were consistently better than the null model at explaining the prevalence of 

mange in foxes (see ΔAIC values in Table 5.2). The most parsimonious models (M2c and 

M2v) indicate strong support for frequency-dependent transmission of mange (Table 

5.2) in the Bristol fox population. Including annual variation in density (M2v; Figure 5.5) 

did not improve the fit of M2c (Table 5.2). The extra parameters required to describe 

indirect transmission were seldom justified by the extent of improvement in model fit. 

One frequency-dependent model incorporating indirect transmission (M4c) performed 

well (Table 5.2), but M4c is an expanded version of M2c and, as such, its higher AIC value 

suggests that it lacks credibility (Richards 2008).  

The most parsimonious model (M2c) captured observed intra-annual patterns well 

(Figure 5.6), illustrating the rapid transmission and peak mange prevalence seen in the 

empirical data on both juveniles (Figure 5.6) and adults (Figure 5.6). The low 

prevalence amongst juveniles in April to May corresponds to the post-birth period. The 

birth pulse promotes the observed cycles and persistence of mange by periodically 

introducing new susceptible individuals into the population, while disease-induced 

mortality is offset by the high transmission rate. That the model prediction does not 

fall within the confidence interval for juvenile prevalence in May (Figure 5.6) probably 

reflects that the timing of births was invariant in the model, whilst the actual timing of 

births varies among individuals and years. The large uncertainty in the empirical data 

confounds attempts to identify inter-annual patterns in prevalence. 
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Table 5.2. Model selection results for null and SEI models. The number of parameters (K), log-
likelihoods (LL), and AIC values for each model are presented. Parameters are defined in the 
methods, and Table 5.1.  

 Model Parameters K Log- 

likelihood 

AIC ΔAIC 

MH Null model 
j

p ,
a

p  φ 3 -325.92 657.83 26.32 

M1c Density-dependent + fixed 
density Nk 

βjj, βaa, γ, φ 4 -322.87 653.74 22.23 

M1v Density-dependent + varying 
density Nk(t) 

βjj, βaa, γ, φ 4 -320.48 648.97 17.46 

M2c Frequency-dependent + fixed 
density Nk 

β'jj, β’aa, γ, φ 4 -311.78 631.51 0.00 

M2v Frequency-dependent + varying 
density Nk(t) 

β'jj, β’aa, γ, φ 4 -312.00 632.00 0.48 

M3c Density-dependent + Indirect + 
fixed density Nk 

βjj, βaa, γ, φ, βf, ω 6 -326.21 664.42 32.91 

M3v Density-dependent + Indirect  + 
varying density Nk(t) 

βjj, βaa, γ, φ, βf, ω 6 -323.80 659.59 28.08 

M4c Frequency-dependent + 
Indirect + fixed density Nk 

β'jj, β’aa, γ, φ, βf, ω 6 -311.83 635.66 4.14 

M4v Frequency-dependent + 
Indirect  + varying density Nk(t) 

β'jj, β’aa, γ, φ, βf, ω 6 -323.85 659.71 28.54 
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Figure 5.5. The predicted population density (A) and prevalence (B) for the frequency-
dependent SEI model with annual variation in density (M2c). Solid lines indicate predicted 
density for juveniles and adults of susceptible and exposed individuals (Sj, Sa, Ej, Ea) and 
predicted density and prevalence of infected juveniles and adults (Ij and Ia), against the 
observed population density and age-specific prevalence data (dashed lines).  
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Figure 5.6. The predicted probability of infection (dashed line, open circles) for the frequency-
dependent SEI model (M2c), for juveniles (A) and adults (B), against the observed prevalence 
data (solid line, closed circles see Figure 5.3).  
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5.3.2  Estimation of epidemiological parameters 

Fitted values for epidemiological parameters of sarcoptic mange in foxes are presented 

in Table 5.3 for the model with the greatest support. The monthly prevalence of 

mange in foxes is overdispersed (φ) with respect to the binomial distribution (Table 

5.3). Although the 95% confidence intervals for the transmission coefficients overlap 

(Table 5.3), juvenile transmission was consistently higher than adult transmission in 

the bootstrap replicates. The best model estimate of the juvenile transmission rate 

was four times higher than that of adults (Table 5.3). The best estimate of R0 and the 

associated 95% confidence intervals are all greater than one (Table 5.3), consistent 

with the long-term persistence of mange in the population. The best estimate of the 

infectious period, γ, corresponds to 30 days (Table 5.3), reflecting the rate at which the 

infected leave the infectious class. The short infectious period that emerged from 

model selection would be associated with relatively high survival, which does not 

match high levels of observed mortality. The discrepancy between the best model 

estimate and the initial value estimated from the literature may be a reflection of 

either uncertainty in the prevalence data or the limitations of using traditional 

compartment modelling for a social species. However, substantial uncertainty in this 

parameter estimate is evident from the wide confidence intervals.  

 

 

Table 5.3. Estimated parameter values for the best-fitting model, with bootstrapped 95% 
confidence intervals. See Table 5.1 for parameter descriptions. 

Model β'ii β'aa γ φ R0 

M2c Frequency-dependent  + Nk 0.228 
(0.087–
0.378) 

0.057 
(0.032–
0.160) 

0.034 
(0.012–
0.111) 

0.249 
(0.107–
0.404) 

3.49 
(1.77 – 
4.11) 
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5.4 Discussion  

This study generates fundamental epidemiological parameter estimates for mange in 

red foxes, providing insight into the dynamics of mange in the Bristol fox population. 

Age-specific heterogeneities in prevalence were detected in the data and analyses 

suggest that frequency-dependent transmission is the predominant transmission 

mechanism. These findings are discussed in light of transmission dynamics, variation in 

disease prevalence, and the implications of sociality for disease transmission. 

5.4.1 Mange transmission mechanisms 

The SEI models captured the persistence of mange in the Bristol fox population, with 

the transmission coefficients, β’jj and β’aa, describing the initial speed of transmission. 

The estimate of R0 is consistent with mange successfully invading this urban fox 

population, and is of a similar magnitude to the estimate for mange in chamois 

Rupicapra rupicapra (R0 = 4.8 - 5.1) (Lunelli 2010). Although R0 is species and 

population specific, estimates of R0 are useful indications of the likelihood of mange 

persisting in wild populations, especially of those experiencing similar habitat 

conditions. Thus, estimating R0 for mange in other fox populations is important, given 

that habitat, climate and behavioural differences can affect this number (Harvell et al. 

2002, Lloyd-Smith et al. 2005b, Hartemink et al. 2009), and that the Bristol population 

may not be illustrative of this disease in certain fox populations.   

Given the high density prior to the epizootic, it may be expected that the fox 

population in Bristol exceeded a critical host-density threshold, a feature of density-

dependent transmission, below which a disease cannot be sustained (McCallum et al. 

2001). However, modelling suggested that mange dynamics are unlikely to be driven 

by density and that frequency-dependent transmission is the most probable pathway 

for mange transmission in the Bristol fox population. This finding implies that contact 

rates remain constant despite increases in the density of infected individuals and is 

consistent with the fox social system, in which both inter- and intra-group contact 

rates are determined by social interactions (Baker & Harris 2000). If social interactions 
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do not increase with density in fox populations, perhaps owing to territorial behaviour 

such as olfactory communication (Giuggioli et al. 2011), the opportunities for infection 

are limited. The negligible effect of density on disease prevalence is further supported 

by the fact that models with varying density did not perform significantly better than 

those models with constant density. Mange outbreaks in other fox populations have 

also been found to be unrelated to high density. No clear correlation was found 

between fox abundance and prevalence in Spain (Gortazar et al. 1998) and a slower 

rate of spread was observed in high rather than low density habitats in Sweden 

(Lindström & Morner 1985). The persistence of mange at low fox densities in Bristol is 

also consistent with frequency-dependent transmitted diseases, which can be 

sustained at lower host densities than density-dependent pathogens (Ryder et al. 

2007).  

The lack of support for indirect transmission could mean either that the role of this 

pathway is not significant in the Bristol fox population, or that this result is due to 

model simplifications. Further, a recent study suggests that models of indirect and 

direct transmission pathways can be indistinguishable when using population-level 

data, especially when the pathogens’ dynamics are fast, i.e. the pathogen has  a short 

off-host survival time (Cortez & Weitz 2013). Understanding of indirect transmission of 

mange remains inadequate; den sharing was important for the transmission of mange 

in a Russian population (Gerasimov 1958), yet, this behaviour may be low in the Bristol 

fox population (S. Harris pers. comm.), as reflected in the results here. However, the 

models did not account for inter-and intra-group encounters, in part due to data 

limitations. Assuming these encounters were equal may have caused direct contact 

rates to be overestimated, and thus, increased the importance of direct transmission. 

While the empirical estimates of contact with fomites, and shedding of mites from 

infected individuals are hard to quantify, simulations that can incorporate social 

contacts, such as individual-based models, may help to provide insight into the 

potential role of other factors for mange transmission. 

As with other studies that have compared transmission mechanisms (Caley & Ramsey 

2001, Begon et al. 2003, Smith et al. 2009c), this analysis raises questions about the 
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traditional assumptions of disease transmission in epidemiological modelling. More 

complex functions for modelling transmission exist which may be appropriate for 

social species (Smith 2006), such as either modelling transmission as separate 

mechanisms between and within groups (de Jong et al. 2002) or as a continuum 

between density-and frequency-dependent (Smith et al. 2009c). However, these 

methods require high-resolution data like that obtained from sero-prevalence studies, 

which are seldom available for wild populations. Data limitations, combined with 

complex transmission pathways, are often found to limit substantially the potential to 

tease apart putative modes of transmission (Caley & Ramsey 2001, Begon et al. 2003, 

Miller et al. 2006, Roche et al. 2009). Despite the uncertainty in prevalence arising 

from sampling limitations, the results presented in this chapter highlight that long-

term disease data, obtained from a well-studied population such as the Bristol foxes, 

can make important contributions towards elucidating disease transmission pathways 

using traditional epidemiological modelling.  

5.4.2 Variation in the probability of infection 

Age-specific differences in disease susceptibility and transmission are well documented 

in many species (Bolzoni et al. 2007, Klepac et al. 2009, McCallum et al. 2009), often 

related to temporal changes in life history stage (Altizer et al. 2006). In this simulation, 

age-specific temporal differences in the prevalence of mange in the Bristol fox 

population were well described. Some discrepancies between modelled and observed 

juvenile prevalence could be accounted for by modelling births as a pulse, which is a 

simplification. Nevertheless, the modelled prevalence reflects the restricted 

movement of cubs in the months after birth (Robertson et al. 2000) and the 

subsequent increase in opportunities for contacting infectious individuals once cubs 

start leaving the den. Juveniles thus act as a naïve source of susceptible individuals 

each year, creating a pulse of infections that also drives the seasonal pattern in adult 

prevalence. 

The predicted difference in the transmission coefficients, β’jj and β’aa, implies that the 

probability of infection is high for juveniles. The transmission coefficient is a function 

of contact rates and successful infection given contact with an infected individual 
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(McCallum et al. 2001). The results suggest either that juveniles are more likely 

compared to adults to become infected once a contact is made, and/or are 

encountering infected individuals at a higher rate than adults. For example, the 

probability of a contact resulting in successful infection is expected to be high if 

juvenile individuals have underdeveloped immune systems; however, understanding 

heterogeneities in the immune response of mammalian hosts to mange is complex and 

remains poorly understood (Sarasa et al. 2010). Movement patterns at different life 

stages that alter encounter rates could also give rise to differences in transmission (e.g. 

Klepac et al. 2009), although the high transmission in juveniles does not translate into 

higher prevalence compared to adults, due to higher observed disease-induced 

mortality in the younger age class (Newman et al. 2002). The shorter disease duration 

in juveniles means that mange is likely maintained in the population by older 

individuals; this is plausible, because adults have a lower disease-induced mortality 

rate and have a longer time to become infected compared to younger individuals. 

Combining data on all individuals younger than one year is a simplification that hinders 

insight into the underlying mechanisms behind high mange transmission in juveniles; 

this age classification encompasses a range of stages, with encounter rates changing 

during this time (Robertson et al. 2000) and immunological development also likely. 

Prevalence data were not sufficiently detailed, however, to add a pre-emergent age 

class. Although the age-specific transmission rates in the models in this analysis are 

simplifications of the true contact patterns in this social species, the addition of more 

complex contact rates, such as separate rates for between age class transmission, βjj, 

and βaa, and age-specific disease-induced mortality rates, are not supported by the 

data.  

Parameter estimates derived from the analyses were subject to a high degree of 

uncertainty. This could in part stem from sampling error. Identifying sources of error, 

such as from undiagnosed or misdiagnosed cases (Lloyd-Smith 2007) remains an issue 

for detecting mange infections (Pence & Ueckermann 2002). For example, capture 

rates of individuals with advanced mange infections may be low due to the disease 

reducing their ability to meet energetic demands. The inference methods used in this 

study are intended to avoid selecting overly complicated models due to sampling 



Chapter 5: Mange transmission  

 
 

 122

error. Uncertainty in the transmission coefficients, β, and infectious period, γ, could 

also be due to unexplained variation in infection such as that which arises from 

individual variation in parasite load or susceptibility. In the context of mange, although 

densities of up to 5000 mites cm-2 have been reported for foxes (Little et al. 1998), 

inter-individual variation in parasite load is undocumented. So it is unknown if the rate 

of transmission is dependent on a density threshold of mites or if there is a 

relationship between the duration and the intensity of infection. In diseases with high 

individual variation in susceptibility, a higher than average number of secondary 

infections are caused by individuals known as “superspreaders” (Lloyd-Smith et al. 

2005b). In such cases, diseases are either subject to infrequent but explosive 

epidemics or die out rapidly, as observed in SARS (Lloyd-Smith et al. 2005b). There is 

evidently a need for further analysis into individual infectiousness, and insight into 

parameter estimates could be gained from stochastic simulation models in which such 

heterogeneities in prevalence can be included.   

A further source of variation causing potential uncertainty in parameter estimates of γ, 

is the potential for individual variation in resistance to mange. For example, longer 

survival of infected individuals and a degree of recovery among the adult population 

during the enzootic phase (S Harris pers. comm.), suggests some adaptation to the 

disease in the Bristol population. Since not all class I infections progressed to class II 

during the enzootic phase (S Harris pers. comm.), combining data on these mange 

classes increases the uncertainty in estimates of the infectious period. Long-term 

adaptation to mange has been demonstrated by serological studies in a Danish fox 

population (Davidson et al. 2008) and genetic resistance was supported in a simulation 

of mange in a coyote population, indicating the potential importance of the evolution 

of resistance for this disease (Leung & Grenfell 2003). Therefore, modelling immunity 

as a mechanism of long-term persistence of mange in this urban fox population would 

be worthwhile.   

5.4.3 Sociality and disease transmission 

The importance of social contacts for mange transmission in the Bristol fox population 

is supported by the SEI modelling approach in this study, as the findings are most 



Chapter 5: Mange transmission  

 
 

 123

consistent with frequency-dependence as a transmission mechanism. This is in 

comparison to the good fit of density-dependent transmission for analogous models of 

mange in chamois (Lunelli 2010), a less social species than foxes. The fact that density- 

and frequency-dependent transmission mechanisms are indicated for the same 

disease in different species probably results from the differing sociality of chamois and 

this population of red foxes. Differing levels of sociality are implicitly incorporated into 

compartment models, as contact rates are included in the transmission coefficient β. 

Indeed, the substantial influence of sociality in disease transmission has been 

extensively reviewed, highlighting that while group size can be a predictor of infection 

risk, this relationship is often confounded by social contacts and territoriality (Altizer et 

al. 2003b). Inter-group contact rates were found to determine the spread of canine 

distemper virus in a multi-host carnivore community; lions Panthera leo, a species with 

low intraspecific inter-group transmission, experienced a greater vulnerability to 

canine distemper that, in the absence of species with higher inter-group contact rates 

such as spotted hyaenas Crocuta crocuta, may have died out (Craft et al. 2008). The 

role of a stable social structure has been emphasised in inhibiting the spread of bovine 

Tb in badgers Meles meles, where the number of new cases was related to groups 

undergoing a reduction in size (Vicente et al. 2007). The degree of sociality in foxes, 

compared to other canids, is considered evolutionarily primitive (Baker et al. 2004), 

with low levels of contact even between group members (White & Harris 1994). The 

non-linear contact rates that lead to heterogeneous transmission risk in social species 

are a source of variation in prevalence data, and are contrary to the assumption of 

homogenous mixing in compartment models, thus limiting the ability of these models 

to incorporate complex social dynamics. Further, spatial behaviour is implicit in the 

transmission term, β, another limitation of compartment models. The potential 

importance for mange transmission of changes in territorial (Baker et al. 2000) and 

dispersal (Lindström 1992) behaviours, points towards the application of models with 

an explicit spatial component. Consequently, individual-based models may offer a 

more appropriate method to incorporate the social complexities required to describe 

between and within group mange dynamics in foxes.  
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5.5 Conclusion 

This study provides the first estimates of β and R0 for mange in a fox population. 

Despite uncertainty in the empirical data, age-specific heterogeneities in mange 

transmission were identified, with juveniles having a fourfold higher rate of 

transmission. Modelling suggests that frequency-dependent transmission is the 

dominant mechanism in this study population but the contribution of indirect 

transmission cannot be entirely discounted. The underlying contact rates that led to 

these results point towards sociality having a significant role in the transmission of 

mange in foxes. The epidemiological parameter estimates provide an important 

baseline for the construction of more complex models. Unravelling the mechanisms 

involved in the transmission of mange in this well-studied fox population highlights the 

importance of testing long-standing assumptions relating to disease transmission and 

will be of use for predicting the spread and control of this disease in both this and 

other susceptible species. 
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Chapter 6 An individual-based model of the Bristol fox population 

under high density conditions 

6.1 Introduction 

One of the challenges of describing disease dynamics in social species is the limited 

ability of epidemiological compartment models to incorporate processes including 

group interactions and dispersal (Lloyd-Smith et al. 2005a). Traditional epidemiological 

compartment models are also often unable to capture simultaneously the observed 

patterns in disease transmission and population density (Leung & Grenfell 2003, 

Kramer-Schadt et al. 2009). Compartment modelling of a sarcoptic mange Sarcoptes 

scabiei outbreak in an urban red fox Vulpes vulpes population (chapter 5), illustrated 

the difficulties in making predictions relating to population density in specific years. 

Further, the same modelling approach was insufficient to determine the influence of 

disease-induced behavioural changes in the spatial organisation of the population. 

Thus, there is a need to develop a model that more realistically captures changes in 

behaviour and spatial patterns in this fox population such as by simulating the effects 

of disease at an individual level.  

The non-analytical framework of individual-based models (IBMs) (DeAngelis & Mooij 

2005, Grimm & Railsback 2005) provides a mechanism to incorporate variables into 

ecological models that are important for describing sociality, such as dominance, group 

interactions, territoriality, and dispersal patterns. Specifically, as opposed to structured 

population-projection or compartment models where average parameter values are 

ascribed to groups of individuals, the assignment of values and behaviours at an 

individual level allows the properties of a system to emerge from IBMs (Railsback & 

Grimm 2011). In doing so, this method promotes model analysis and interpretation 

through a pattern-orientated approach (Wiegand et al. 2003). Here, emergent 

properties occurring at the individual and population level are compared to multiple 

observed patterns to ensure structural integrity and measure model performance 

(Swanack et al. 2009, Topping et al. 2010, Railsback & Johnson 2011). There is 

increasing recognition of the value of using IBMs to address issues of applied 
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importance (McLane et al. 2011), such as disease ecology, especially in social species 

(Haydon et al. 2002, Eisinger & Thulke 2008). However, because IBMs are typically 

more detailed than analytical population models they often require a larger number of 

parameters, increasing the sources of uncertainty. Thus, validating models with 

empirical data is vital for ensuring that model parameters remain biologically 

meaningful (Hilborn & Mangel 1997). In this context, it is useful to determine whether 

an IBM can better describe population and disease dynamics during the mange 

outbreak in the Bristol fox population than the compartment models used previously 

(chapter 5).  

The red fox Vulpes vulpes is an important predator and disease host (Baker et al. 2008) 

and thus, is often subject to considerable management and research (Baker et al. 

2001b, Saunders et al. 2010). Foxes have an evolutionarily rudimentary social system 

(Cavallini 1996, Baker et al. 1998): “spatial” groups share a territory, benefiting from 

alloparental care and territorial defence, rather than from cooperative foraging 

(Macdonald 1983). In Bristol, the fox population has been studied continuously for 

over 30 years (Whiteside et al. 2011), with much insight gained into the costs and 

benefits of sociality in this carnivore (White & Harris 1994, Baker et al. 1998, Baker & 

Harris 2000, Baker et al. 2004, Iossa et al. 2008, Soulsbury et al. 2008a, Giuggioli et al. 

2011, Soulsbury et al. 2011, Whiteside et al. 2011). Prior to a mange outbreak in 1994, 

the Bristol fox population reached remarkably high densities, resulting in part from an 

increase in scavenged food and a decrease in territory size (Baker et al. 2000). The 

changes in density affected social processes in this population; for instance, during this 

high density period, males were most likely to become dominant from dispersal 

whereas philopatric individuals had a greater chance of attaining dominance during 

low density conditions (Iossa et al. 2009). Previous models of the Bristol fox population 

were developed prior to the high density period, and were not evaluated using a 

pattern-orientated approach (Trewhella & Harris 1988, Smith & Harris 1991), which 

improves structural integrity and measures model performance by comparing 

emergent properties occurring at the individual and population level to multiple 

observed patterns (Swanack et al. 2009, Topping et al. 2010, Railsback & Johnson 

2011). Given the influence of density on behavioural strategies and that the high 
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density conditions prior to the mange epizootic, it is useful to build a model that 

accurately describes the population dynamics during this high density period.  

Here, an IBM was developed using empirical estimates of social and demographic 

processes in this well-studied urban fox population. A pattern-orientated approach 

(Wiegand et al. 2003) was used to evaluate the ability of the model to replicate 

empirical demographic patterns in the high density Bristol fox population before the 

outbreak of mange. Following model validation, the biological processes that caused 

the greatest variation in the emergent properties of this model were identified. In the 

following chapter (7), this model will be applied to investigate the outbreak of mange 

that occurred in the Bristol fox population. 
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6.2 Methods 

6.2.1 Study population and data 

Monitoring of the Bristol fox population began in 1977 (Harris 1981) and has been 

continuous since that time. Demographic parameters were initially estimated for the 

population over an area of 14 km2 of Bristol city (Harris & Smith 1987, Harris & 

Trewhella 1988, Trewhella et al. 1988), with particular attention subsequently 

concentrated on a smaller number of social groups covering 1.5 km2 within this 

population (Baker et al. 1998, Baker et al. 2004). Demographic and social parameters 

used for the model were compiled from this long-term study, with data collected 

through methods including mortality, capture-mark-recapture and radio-telemetry (for 

data collection protocols see Soulsbury et al. 2011, Whiteside et al. 2011 and 

references therein). Parameter values used in the model relate to a period of high 

density prior to a devastating sarcoptic mange epizootic in 1994 (Baker et al. 2000).  

6.2.2 Model description  

6.2.2.1 Overview 

The model 

The model description follows the ODD protocol (Overview, Design concepts and 

Details) for IBMs (Grimm et al. 2006). The aim of this protocol is to provide a 

standardised structure for describing IBMs that aids model understanding and 

replication. The model was implemented in R 2.14.0 (R Development Core Team 2011).  

Purpose 

The model was designed to determine whether the current knowledge of fox 

demography and social behaviour is sufficient to replicate empirical demographic 

patterns of a high density urban fox population.  

State variables and scales 

The three entities included in the model were individuals, groups and the population. 

Individuals were characterised by the state variables: sex; age; social status; and group 
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membership. A group was defined as a reproductive unit that contained a dominant 

pair, as well as cubs, subadults, and subordinate adults of both sexes. Cubs were 

defined as individuals less than 6 months old; subadults referred to individuals older 

than 6 months, but less than 12 months; and adults were individuals older than 12 

months (Trewhella & Harris 1988). A further designation used in this chapter is that of 

juveniles. Juvenile referred to all individuals of less than one year and, thus, includes 

both cubs and subadults (Trewhella & Harris 1988). Social status was defined as either 

subordinate or dominant. A subadult individual younger than the age of 12 months 

could become a dominant individual through the dispersal process (see section 

6.2.2.3). Time proceeded in discrete steps of one month. Space was included in the 

model as a grid of territories based on a coordinate system. Territories were defined as 

the range of a group, following observations that individuals belonging to a group live 

within a group boundary, whilst having separate home ranges within this area (White 

et al. 1996). The composition of the simulated groups was recorded for each territory. 

The population in the model was characterised by the size of the total area, and the 

number of territories. The total area was specified according to the study area of the 

Bristol population.  

Process overview and scheduling  

Each individual in the population was followed through its entire lifetime. Within each 

year and month, the processes below were simulated in a biologically meaningful and 

computationally practical order for each of the given entities (see Figure 6.1). 

Individuals and groups were processed in a randomised sequence each month.  

6.2.2.2 Design concepts 

Emergence 

Fox population and group dynamics emerged from the behaviour of individuals, 

although individual behaviour was entirely imposed by probabilistic empirical rules. 

Emergent properties included the postbreeding adult population density, adult group 

size, proportion of juveniles in the population, sex-specific probability of becoming 

dominant via dispersal or philopatry and the number of years that dominant 

individuals retained their status (tenure).  
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Figure 6.1. Flow chart for scheduling of the processes applied to individuals and groups in the 
model. The rules defining the processes (in italics) are described in Section 6.2.2.2 and 6.2.2.3. 
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Interaction 

Three types of interaction were modelled implicitly: (i) individuals dispersing and 

joining a group missing a dominant of the same sex, (ii) resident subordinates or 

subadults replacing a missing dominant of the same sex, (iii) subordinates replacing a 

missing dominant of a neighbouring group. 

Stochasticity 

All demographic and behavioural parameters describing binary processes in the model 

were interpreted as probabilities using Bernoulli trials to include demographic 

stochasticity.  

Collectives 

Individuals were organised into groups that represented independent entities, with 

some processes explicitly related to these collectives (e.g. reproduction). 

Observation 

For model testing, modelled individual life histories were observed process by process 

(Grimm & Railsback 2005). To validate the model, characteristic patterns in population 

and group dynamics were recorded to determine whether the model produced 

observed patterns at different hierarchical levels of the system, including patterns not 

explicitly considered in model construction.  

Initialisation  

Simulations started in April (month 4) with specified numbers of dominant and 

subordinate individuals per group, and specified numbers of groups in the total 

population. One male and female per group were randomly selected as dominants. Sex 

and age in individual groups was randomly assigned: the probability of being male was 

0.5 and age was uniformly distributed from 1 to 4 years for dominants, and 1 to 2 

years for subordinates.  
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6.2.2.3 Submodels  

Tables 6.1 and 6.2 provide values used in the model for the parameters described in 

the following processes.  

Table 6.1. Monthly mortality and movement probabilities used in the model. Mortality and 
dispersal values reproduced from Smith and Harris (1991). 

 Mortality Dispersal 

 Males Females Female Male 

 Adults Juveniles Adults Juveniles Juveniles Juveniles 

April 0.035 0.137 0.041 0.129 0.000 0.000 
May 0.039 0.045 0.055 0.052 0.000 0.000 
June 0.020 0.040 0.035 0.067 0.000 0.000 
July  0.028 0.048 0.025 0.037 0.000 0.000 
August 0.014 0.036 0.023 0.042 0.000 0.000 
September 0.039 0.035 0.034 0.037 0.000 0.000 
October 0.036 0.044 0.044 0.044 0.030 0.068 
November 0.046 0.044 0.049 0.032 0.030 0.102 
December 0.041 0.039 0.035 0.039 0.136 0.182 
January 0.121 0.062 0.062 0.025 0.045  0.159  
February 0.069 0.032 0.041 0.034 0.045  0.102  
March 0.029 0.035 0.036 0.030 0.030 0.057  

 

Table 6.2. Parameter definitions and values used in the model. Parameters were estimated 
from the literature (Baker et al. 2004, Soulsbury et al. 2007, S. Harris unpublished data).  

Parameter definition  Parameter 

value 

Total area (km2) 14.00  
Territory size (km2) 0.18  
Initial group size 7.00 
Mean litter size  4.00 
Annual probability of dominant female breeding  1.00 
Annual probability of subordinate female breeding  0.56 
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Mortality  

During each month of the simulation, each individual had an observed monthly sex-

and age-specific probability of natural mortality. Since subordinate adult females are 

known to help rear offspring (Baker et al. 2004), only if all the adult females in a group 

died, did any remaining cubs aged less than two months also die. In cases where a 

dominant individual died, it was replaced subject to the process of replacement 

(described in the dispersal and recolonisation submodels).  

Reproduction 

Both males and females could reproduce from one year of age. The probability of 

reproduction within a group in a given year was determined according to the 

probability of a female breeding. Breeding was not restricted to dominant females; 

given an opportunity, subordinate females reproduce while remaining in their group 

(Baker et al. 2004). Both dominant and subordinate females mate with extra-territorial 

males (Baker et al. 2004) but, for the purposes of this model, breeding was restricted 

to pairs on the same territory. Thus, a litter was added annually to each group 

according to specified probabilities for a dominant female if a dominant male was 

present and for subordinate females, given the presence of a male of any social 

ranking. Litter size was randomly selected from a shifted Poisson distribution (Chapter 

3). Each cub’s gender was allocated randomly, based on an observed probability of 0.5 

that the cub was male.  

Dispersal 

Subadults were assigned a sex-specific monthly probability of dispersing, matching the 

observed proportion of animals leaving their natal group (Smith & Harris 1991). All 

potential dispersers had a chance of moving to a new group to attain dominance. All 

territories missing a dominant individual were identified and a replacement individual 

of the same sex was matched at random from the disperser pool. Individuals that were 

in the disperser pool were not allowed to recolonise their natal territory; 

recolonisation by philopatric individuals occurred during the recolonisation submodel. 

Dispersal distance was not explicitly modelled, as the size of the total area modelled 

was smaller than the maximum observed dispersal distance (Trewhella et al. 1988). 
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Because dispersal often takes place over a prolonged period (Woollard & Harris 1990), 

the dispersal process was assumed to take place over an entire time-step. Dispersers 

that did not attain dominance by replacement were removed from the population. 

This rule conforms to observed patterns, because dispersers do not remain in an area 

to form temporary territories or single-sex groups (S. Harris pers. comm.). 

Recolonisation  

If, in a given month, a dominant position remained unoccupied after the dispersal 

process, an individual of the same sex was randomly selected from the following 

categories (in order of preference): (i) subadults of the focal group, because individuals 

typically attain dominance at a young age, with a large proportion consisting of 

philopatric individuals (Baker et al. 1998); (ii) subordinate adults of the focal group; (iii) 

neighbouring subordinate adults.  

Ageing 

At each time-step, the age of all individuals increased by one month. Survival was 

capped at a maximum age. Specifically, to allow for social differences in survival rates 

(Baker et al. 1998), the maximum age of subordinates and dominants was 3 and 5 

years, respectively.   

6.2.2.4 Model validation and calibration 

Model validation involved evaluating the model properties under the initial high 

population density conditions using a pattern-orientated approach. Population-level 

emergent properties were recorded from 200 model replicates, each lasting for 100 

years, and compared to empirical estimates of these patterns (section 6.2.2.2). In this 

way, the ability of the initial parameter values to replicate the observed characteristics 

of the system and the need for calibration of these parameters could be assessed. 

Calibration is a widely used approach of model parameterisation (van Winkle et al. 

1998, Beaudouin et al. 2008, Stillman & Goss-Custard 2010) to search a range of 

plausible parameter values to match multiple observed patterns (Railsback & Grimm 

2011). 
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6.2.2.5 Sensitivity analysis 

A sensitivity analysis is used to identify parameters that have the most impact on 

model outcomes and have the most associated uncertainty (van Winkle et al. 1998, 

Wiegand et al. 2004). Here, a sensitivity analysis tested the effect on emergent 

properties of varying nine parameters (age- and sex-specific survival, probability of 

breeding according to social status, litter size, and sex-specific probability of dispersal). 

The sensitivity analysis was conducted by independently varying parameter values ± 

10% of their mean value, with the exception of the probability with which dominant 

females breed, the empirical estimate of which was 1.0, such that only a reduction in 

this parameter could be tested (Table 6.2). Thus, the total number of parameter 

changes run for each of the eight emergent properties was 17, yielding 136 iterations 

in total. The mean ratio of change between the emergent properties and empirical 

estimates was determined for 200 replicates for each of the iterations. 
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6.3 Results  

6.3.1 Model testing  

The emergent patterns reproduced by the model (labelled “predicted”) during high 

density conditions are in agreement with empirical estimates from the long-term study 

of the Bristol fox population (labelled “observed”) (Table 6.3). The one exception to 

this was the mean tenure of dominants which, nevertheless, showed a similar range 

and order of magnitude to that observed in the field study. Tenure was a mean value 

across all dominant individuals, because no significant sex differences were observed 

in the field study (Baker et al. 1998). The observed discrepancy could well be 

attributed to sampling uncertainty, owing to small sample sizes from the field study. 

Overall, the validation suggests that the model was proficient at describing the 

dynamics of the Bristol fox population and, therefore, that the initial input parameters 

did not require calibration.  

 

Table 6.3. Comparison of predicted and observed estimates for variables characterising the fox 
population under high density conditions. Model values are emergent properties and are not 
imposed onto the model. The range of observed parameter estimates and mean range of 
predicted parameter values from 200 model replicates are indicated in parentheses. Empirical 
estimates are from Harris and Smith, 1987; Baker et al. 1998; Baker et al. 2000 and Soulsbury 
et al. 2008.  

  Parameter value 

 Predicted  Observed  

Mean adult population density (km-2) 36.67 (28.04–41.21) 37.00 

Mean adult group size* 6.60 (1.86–14.02) 6.57 (2–10) 
Mean proportion of juveniles 0.51 (0.47–0.56) 0.52 
Annual probability of attaining dominance through 
dispersal  

0.42 (0.23–0.62) 
0.36 (0.23–0.54) 

0.00–0.67 (female) 
0.17–0.67 (male) 

Annual probability of attaining dominance through 
philopatry  

0.14 (0.06–0.25) 
0.04 (0.00–0.12) 

0.14–0.45 (female) 
0.00–0.37 (male) 

Mean tenure of dominant individuals (years) 1.80 (0.16–4.56) 2.37 (1– 5) 
*Although group size is a “redundant pattern”, in that it is not independent of population density, it is 
included here to illustrate the structural realism of the model at the group level. 
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6.3.2 Sensitivity analysis 

Sensitivity analysis revealed that the model was robust to variation in model 

parameters and identified the emergent properties most sensitive to parameter 

variation (Figure 6.2). There was less than a 3% change between the mean model and 

empirical estimates of emergent properties for 113 of the 136 sensitivity iterations, 

with survival rates and litter size consistently the least sensitive parameters (Figure 

6.2A-H). The model was most sensitive to variation in the dispersal and probability of 

breeding parameters. The emergent properties that responded most to changes in 

parameter values were those relating to attaining dominance through philopatry 

(Figure 6.2F-G). The probability of males attaining dominance through philopatry 

decreased by 20% and increased by 15% when the male dispersal probability was 

increased and decreased by 10%, respectively (Figure 6.2G). The equivalent changes in 

the dispersal probability of females had a much smaller effect, leading to a 1% 

decrease or a 5% increase in females attaining dominance through philopatry, 

respectively (Figure 6.2F). Increasing the probability of subordinate breeding lead to a 

13% reduction in males attaining dominance through philopatry and a 6% decrease in 

the same property for females, while a decrease in the breeding probability of 

subordinate females resulted in a 16% increase in males becoming dominant through 

philopatry, and an 8% increase for females (Figure 6.2F-G). 
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Figure 6.2. Results of the sensitivity analysis, showing the ratio of change between the mean 
emergent property and observed values (Table 6.3), when varying model parameters by ± 10% 
of their initial value. Emergent properties are: (A) adult density; (B) proportion of juveniles; (C) 
adult group size; (D) females attaining dominance through dispersal; (E) males attaining 
dominance through dispersal; (F) females attaining dominance through philopatry; (G) males 
attaining dominance through philopatry; (H) tenure of dominants (male and female). Open 
circles indicate a decrease in the parameter value and closed circles an increase in the 
parameter value. Parameter codes are: JfM = Juvenile female mortality; JmM  =  juvenile male 
mortality; AfM = adult female mortality; AmM = adult male mortality; pdB = probability of 
dominant breeding (only -10%); psB = probability of subordinate breeding; Ls = litter size; pfD = 
probability of female dispersal; pmD = probability of male dispersal.  



Chapter 6: IBM high density fox population 

 
 

 139

6.4 Discussion 

In this chapter, emergent social and demographic properties of a high density urban 

fox population were successfully described by an IBM parameterised with empirical 

data. Indeed, the results established that calibration of the initial parameter values 

was not required. Parameters identified by sensitivity analysis are first discussed in 

light of their associated uncertainty and importance for shaping population dynamics. 

The relevance of incorporating social structure using individual-based modelling is then 

considered in the context of the management concerns facing fox populations.  

6.4.1 Model ability to replicate emergent properties of a high density fox population 

IBMs can be meaningfully evaluated by comparing multiple observed patterns in a 

populations’ dynamics with properties that emerge from models (Railsback & Grimm 

2011). The validation procedure in this study demonstrated the ability of the model to 

replicate key emergent characteristics of a high density urban fox population, 

suggesting the detection of dynamics processes that were not imposed on the model. 

This pattern-orientated approach ensures that IBMs capture characteristics at different 

hierarchical levels of a system to avoid overfitting of models (Latombe et al. 2011). 

That these fundamental properties were captured at different hierarchical levels, 

without calibration, provides confidence in the structural realism of the model and in 

the certainty of key parameter estimates.  

The validation of the model was corroborated by a sensitivity analysis, which 

illustrated that model properties were largely robust to changes in parameter values, 

especially properties at the population level. Parameters with high sensitivity are of 

particular interest, both for their importance for shaping model processes and as 

indicators of highly uncertain empirical estimates (Railsback & Grimm 2011). The 

sensitivity analysis identified that model outcomes, especially those measured at the 

level of individual behaviour, were more sensitive to behavioural parameters (e.g. 

dispersal) than to demographic parameters (e.g. mortality). This suggests that the 

effects of mortality on population dynamics might be buffered by social processes such 



Chapter 6: IBM high density fox population 

 
 

 140

as recolonisation by dispersing individuals. Litter size has previously been shown to 

have a limited effect on population model outcomes, due in part to the limited 

variance of this parameter (chapter 3). The sensitivity results pointed towards the 

importance of breeding females for determining social processes at the individual-

level. These breeding individuals are determined largely by reproductive suppression 

and the costs and benefits of philopatry (Baker et al. 2004, Iossa et al. 2009). In 

particular, evidence of reproduction in subordinate female foxes has only recently 

been verified in the Bristol fox population (Baker et al. 2004) and sensitivity analysis 

highlighted the known uncertainty in empirical estimates of reproduction in these 

individuals. The sensitivity to dispersal parameters is consistent with other simulations 

of fox populations (Rushton et al. 2006) and underscores the importance of dispersal 

behaviour for shaping social processes (Soulsbury et al. 2008a). The emergent 

properties most likely to respond to changes in parameter values were those relating 

to attaining dominance. Uncertainty in these empirical estimates is high, resulting from 

difficulties in establishing the fate of dispersing and philopatric individuals (Baker et al. 

1998), and from the variable effects of density (Iossa et al. 2009).  Further insight could 

be gained from conducting a sensitivity analysis that simulates the full range of 

possible conditions by sampling parameters from probability distributions based on 

known ranges (e.g. Shirley et al. 2003) or estimated as in chapter 2.  

That the model required relatively few demographic and social parameters to describe 

accurately the population dynamics of the focal population, supports its use for 

exploring specific ecological and evolutionary questions, such as those processes 

relating to sociality or disease dynamics. For example, the model could be modified 

easily to include inter- and intra-group disease transmission, an important but often 

uncertain aspect of disease ecology in many species (Altizer et al. 2003b). Indeed, this 

model will be used to explore the dynamics of a mange outbreak that significantly 

reduced the Bristol fox population in the 1990s (Soulsbury et al. 2007). A useful 

attribute of IBMs is the potential to include decision rules that allow for the adaptive 

behaviour of individuals and thus the optimisation of fitness (Stephens et al. 2002a, 

McLane et al. 2011). Thus, further analyses could incorporate adaptive behaviour to 

model the fitness components of dispersal and philopatry in fox populations, such as 
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the relative opportunities for reproduction that are important for determining group 

formation (Soulsbury et al. 2008a). The model in this study therefore provides a useful 

foundation for future investigations of ecological and evolutionary importance. Future 

work should aim to validate this model using an independent data set from another 

population to ensure structural integrity (Railsback & Grimm 2011). 

6.4.2 Management implications of modelling social structure in fox populations 

Understanding how social structure affects a species’ population dynamics is 

important for determining the success of management actions. Harvests of an alpine 

marmot Marmota marmota population were predicted to be unsustainable when 

sociality was not accounted for, possibly due to the disruption of dispersal processes 

(Stephens et al. 2002b). Vucetich et al. (1997) proposed that management of a 

population of grey wolves Canis lupus should be directed towards packs rather than 

individuals, since the influence of demographic stochasticity on extinction risk 

decreases with the number of groups, not population size. An important management 

issue for many fox populations concerns their status as predators of economic 

importance (Baker et al. 2008). Given the often variable success of controlling fox 

populations, such as invasive populations in Australia (Saunders et al. 2010), insight 

into fox social structure should be applied to refine management (Newsome 1995). 

Further analyses are required to determine whether failing to account for the potential 

importance of dispersal and probability of subordinate breeding for population 

dynamics, which is especially difficult in analytical population models, could lead to 

misinformed management predictions. 

Diseases such as rabies, sarcoptic mange, and Echinococcus multilocularis (Chautan et 

al. 2000, Deplazes et al. 2004, Soulsbury et al. 2007) are management issues of 

concern for fox populations worldwide. An understanding of social structure is 

important for understanding disease transmission, because variation caused by 

socially-determined contact rates is likely to cause spatiotemporal disease dynamics 

different to those species exhibiting less sociality. Eisinger and Thulke (2008) 

demonstrated that the density-invasion threshold required for rabies eradication in 

foxes was overestimated if models did not account for the spatial structure of groups. 
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For many species exhibiting social structuring, disease transmission may not be 

density-dependent (McCallum et al. 2009, Johnson et al. 2011, Langwig et al. 2012), 

with implications for defining disease invasion thresholds (Lloyd-Smith et al. 2005a). 

Thus, IBMs offer a useful approach to predicting disease spread when group-

structuring influences disease transmission. Indeed, by incorporating social structure, 

IBMs were able to describe the disease dynamics of mange in coyotes Canis latrans 

(Leung & Grenfell 2003) and rabies in foxes (Eisinger & Thulke 2008) better than 

traditional analytical epidemiological models. The model in this study provides a 

mechanism to incorporate processes such as recolonisation, extra-territorial 

reproductive movement and inter-group contact that could provide meaningful 

information for refining the management of disease in fox populations.  

6.5 Conclusion 

IBMs are often appropriate for describing social structure, such as territoriality and 

group formation, which analytical population models are less able to capture. In this 

study, an individual-based simulation using empirically-derived data was able to 

reproduce emergent properties of an urban fox population. Using multiple patterns for 

model validation, the ability of this model to describe demographic and social patterns 

during a period of high population density was demonstrated. Sensitivity analysis 

revealed that parameters relating to attaining dominance and probability of 

subordinate females breeding were associated with the most uncertainty, while 

pointing towards the potential importance of these parameters for shaping social 

processes. These results are consistent with empirical observations. Understanding the 

influence of social structure on population dynamics is important for many 

management issues.
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Chapter 7 Sarcoptic mange Sarcoptes scabiei in a red fox Vulpes vulpes 

population: persistence, recovery and sociality  

7.1 Introduction 

Infectious diseases are recognised as a major driving force in host population dynamics 

(Tompkins et al. 2002) and evolutionary processes (Altizer et al. 2003a). Epizootic 

outbreaks can cause significant population declines and, if neither host nor pathogen is 

driven to extinction, disease can persist in the population indefinitely at enzootic levels 

(Keeling & Rohani 2008). Describing these temporal dynamics requires knowledge of 

the factors driving disease transmission and population recovery. However, 

understanding these processes is demanding because of host and parasite dynamics at 

the individual and population levels (Sheldon & Verhulst 1996, Altizer et al. 2003b). For 

example, failing to account for social interactions can result in misguided estimates of 

the probability of disease invasion and the rate of transmission (Cross et al. 2005, 

Smith et al. 2009c). At the population level, rapid evolution of traits that promote host-

parasite coexistence such as immunity (Bonneaud et al. 2011, Robinson et al. 2012), 

allows populations to recover and disease to persist under enzootic conditions. Thus, a 

full understanding of disease dynamics requires insight into the ecological interactions 

and evolutionary changes acting at multiple scales.  

Sarcoptic mange, caused by the mite Sarcoptes scabiei (Arlian 1989, Bornstein et al. 

2001), is a highly infectious disease recorded in over 100 domestic and wild 

mammalian host species, many of which are of management concern (Pence & 

Ueckermann 2002). Mange outbreaks exhibit cycles; epizootics can occur every 30 to 

40 years (Pence & Windberg 1994), drastically reducing some populations (Rossi et al. 

2007, Soulsbury et al. 2007) while having little effect on others (Pence et al. 1983, 

Rossi et al. 2007). Often, an enzootic phase follows, with the disease remaining in the 

population for up to 50 years (Pence et al. 1983). The red fox Vulpes vulpes is a 

widespread canid that is an important host of many diseases, including mange 

(Soulsbury et al. 2007), Echinococcus multilocularis (Deplazes et al. 2004) and rabies 

(Chautan et al. 2000). Foxes have also been implicated as reservoirs of mange for a 
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number of threatened hosts (Ryser-Degiorgis et al. 2002, Oleaga et al. 2011). Mange 

has caused dramatic population declines in several fox populations (Lindström & 

Morner 1985, Forchhammer & Asferg 2000, Soulsbury et al. 2007), with population 

recovery taking up to 20 years (Lindström et al. 1994, Soulsbury et al. 2007). Despite 

being a disease of considerable importance, our understanding of mange dynamics in 

wild populations remains limited (but see Leung & Grenfell 2003, Lunelli 2010, chapter 

5).  

An urban fox population in Bristol experienced a mange epizootic from 1994 to 1996 

(Baker et al. 2000). Prior to the epizootic, this fox population had remarkably high 

densities, resulting in part from an increase in scavenged food and a decrease in 

territory size (Baker et al. 2000). The initial spread of mange was rapid, causing the 

population to decline by over 90% in two years (Soulsbury et al. 2007). Population 

recovery was slow and, despite the low population density, mange has persisted at 

enzootic levels (Soulsbury et al. 2007, S. Harris pers. comm.). Transmission mechanisms 

of mange in this population are unclear and a number of behavioural and evolutionary 

processes may be required to explain the epizootic and enzootic phases. While 

dispersers may be important for mange transmission (Lindström 1992, Pence & 

Windberg 1994), the mechanism for infectious contact through dispersal remains 

undetermined. Unlike in rabies, which has a seasonal peak in infection related to 

dispersal (Wandeler 1980), mange did not exhibit such temporal patterns in Bristol (S. 

Harris, pers.comm.). Recent work suggests that dispersing foxes avoid the core range 

of territorial individuals (Soulsbury et al. 2011), limiting the opportunity for direct 

disease transmission.  

During the mange epizootic in Bristol, new social groups did not form in territories that 

became vacant due to disease mortality; rather, neighbouring groups expanded to 

encompass these spaces (Baker et al. 2000). Stable territorial structure is predicted to 

reduce the spread of disease when levels of inter-group contact are low (Loehle 1995). 

When host behavioural patterns result in low contact rates, such as the social 

interactions observed in foxes (White & Harris 1994), direct transmission may not be 

sufficient to describe patterns of mange spread. The ability of mites to survive off the 
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host (Arlian et al. 1989) increases the potential for indirect mange transmission 

through contact with fomites, inanimate objects capable of conveying parasites. 

Indirect transmission occurs in other fox populations (Gerasimov 1958) and, in Bristol, 

is a potential transmission mechanism (inferred from the incidence of mange in 

domestic dogs during the epizootic; Soulsbury et al. 2007).  

The long-term persistence of mange and a possible increase in tolerance to the disease 

during the enzootic phase indicates a possible role for genetic resistance in promoting 

population recovery (Soulsbury et al. 2007). Although empirical evidence of genetic 

resistance to mange remains uncertain (Arlian 1989), seroprevalence data suggest 

long-term adaptation to the disease in a Norwegian fox population (Davidson et al. 

2008) and selection for resistance was supported by a simulation of a mange epizootic 

in coyotes Canis latrans (2003). In the same model, long-distance recolonisation of 

territories was required in addition to genetic resistance to allow the coyote 

population to recover fully (Leung & Grenfell 2003). It is unclear whether a similar 

recolonisation process occurred in the Bristol foxes during the mange outbreak. That 

the Bristol fox population has been studied for over 30 years (Whiteside et al. 2011) 

makes it a valuable source of data with which to analyse the dynamics of mange in a 

group-living species.  

In chapter 5, traditional epidemiological compartment models provided meaningful 

insight into the transmission mechanisms of mange in the Bristol fox population but 

the limitations of using this approach were also identified. For example, it was difficult 

to make inferences about both prevalence and population density in specific years, 

and to account for social interactions. However, compartment models can be useful 

for initial investigations into disease systems (Smith et al. 2009a), as well as providing 

parameter estimates for, and forming components of, more complex models (Haydon 

et al. 2002, Craft et al. 2008). To address some of the limitations of compartment 

models, in chapter 6, an individual-based model (IBM) that incorporated sociality was 

developed to describe the Bristol fox population prior to the mange epizootic. Unlike 

compartment models, IBMs can be fitted not only using disease prevalence data, but 

also by comparing multiple observed patterns in a population’s dynamics with 
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properties that emerge from the model (Railsback & Grimm 2011). This approach is 

useful given the considerable uncertainty associated with detecting infection in wild 

populations (Conner et al. 2000, McClintock et al. 2010). Here, a pattern-orientated 

approach was used to evaluate the ability of the IBM, developed in chapter 6, to 

reproduce the dynamics of mange in the Bristol fox population. Parameters used in 

this model were estimated both empirically and from compartment modelling (chapter 

5). Specifically, this simulation was intended to determine the processes that are 

important for the spread of mange and the recovery of the population. In particular, 

the following questions were considered to explain the spread of mange: (1) Is direct 

transmission alone sufficient to describe mange spread and persistence during the 

epizootic and enzootic phases? (2) Are dispersing individuals important for the 

transmission of mange? (3) Does territory collapse increase the spread of mange 

during the epizootic? The processes important for population recovery were explored 

by asking: (4) Is there evidence that genetic resistance is required for population 

recovery? (5) Is the population able to recover without long-distance recolonisation? 
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7.2 Methods 

7.2.1 Study population and data 

Mange was introduced into the Bristol fox population in 1994 by a dispersing juvenile 

male returning to its natal group (Baker et al. 2000) and, to date, the disease has 

persisted in the population. Infected individuals were recorded from capture data or 

were recovered dead (n = 1662 records), from 1994 to 2010 (Soulsbury et al. 2007, S. 

Harris pers. comm.). Mange was classified according to the whether the progression of 

the disease was pre (Class I) or post (Class II) the development of hyperkeratosis, the 

crusty skin condition associated with mange (for details see Newman et al. 2002). Due 

to small sample sizes, the observed monthly prevalence was defined as the proportion 

of the combined class I and II infected individuals in the total sample. For model 

interpretation, prevalence was also defined as the total mean prevalence (1994 to 

2010) and mean epizootic prevalence (1994 to 1996). Demographic rates of infected 

individuals, including survival and the probability of breeding, were recorded during 

the epizootic (Baker et al. 2000, Newman et al. 2002, Soulsbury et al. 2007). Annual 

adult population densities were estimated from capture-mark-recapture data (e.g. 

Baker et al. 2000, Whiteside et al. 2011) and four years with missing estimates (1996-

97; 2000-01) were determined by linear interpolation. The significant population 

decline caused by the mange epizootic and the subsequent recovery resulted in 

conditions of relative low and high density, which were associated with behavioural 

changes (Iossa et al. 2009). Therefore, for model interpretation, it was biologically 

meaningful to provide density estimates for these periods of high and low density. 

Mean adult population density was thus estimated for the total period (1994 – 2010), 

the low density period, defined as 1994 to 2003, and the high density period, from 

2004 to 2010, following previous studies (Iossa et al. 2009, Whiteside et al. 2011). 
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7.2.2 Model description  

7.2.2.1 Overview 

Model 

The model is based on an IBM developed to describe the Bristol fox population prior to 

the mange epizootic. For a detailed description of this model, see chapter 6. The 

following sections describe the modifications to the model that were related to the 

addition of disease. The model was implemented in R 2.14.0 (R Development Core 

Team 2011).  

Purpose 

The model was designed to determine whether the current knowledge of fox 

demography and behaviour, and of mange epidemiology, is sufficient to replicate 

empirical patterns of mange spread during epizootic and enzootic phases. The model 

was also intended to identify mechanisms for population recovery in an urban fox 

population following this mange outbreak. The theoretical hypotheses proposed to 

explain these processes were evaluated by defining six model scenarios with specified 

structural modifications (see section 7.2.2.4).  

State variables and scales 

In addition to the state variables described in chapter 6, individuals were characterised 

by their infectious and immune status.  

Process overview and scheduling  

Within each year and month, processes applied to individuals and groups were 

simulated in the order depicted in Figure 7.1 for each of the given entities.  

7.2.2.2 Design concepts 

Emergence 

Emergent properties considered here were the mean total prevalence, mean epizootic 

prevalence, mean adult population density, mean low and high population density (see 

section 7.2.1), disease persistence, and time of first territory collapse and expansion.  
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Monthly 
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If month = 4 

If month ≥ 10 or ≤ 3 
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 If year > 37 
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If year = 1 

 

Output 
 

Annual loop 

Direct 
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If month ≥ 12 or ≤ 2 
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If year > 20 

Indirect 
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Figure 7.1. Flow chart for scheduling of the processes applied to individuals and groups in the 
model. The rules defining the processes (in italics) are described in sections 7.2.2.2 and 7.2.2.3 
and sections 6.2.2.2 and 6.2.2.3 (chapter 6).  
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Interaction 

Six types of interaction were modelled implicitly: (i) individuals dispersing and joining a 

group missing a dominant of the same sex; (ii) resident subordinates or subadults 

replacing a missing dominant of the same sex; (iii) subordinates replacing a missing 

dominant of a neighbouring group; (iv) inter-group contact; (v) intra-group contact, 

and (vi) extra-territorial male contact with groups. 

Initialisation  

Infection was introduced after the model had stabilised over a 20 year period. 

Following empirical observations (Baker et al. 2000), one infected subadult male joined 

a group at random in the spring (month 5) and was allowed to infect individuals on 

those territories it crossed entering the system, as described by processes in section 

7.2.2.3.  

7.2.2.3 Submodels  

Table 7.1 provides values for the parameters described in the following processes that 

relate to disease dynamics and extra-territorial movement.  

Mortality  

Mortality of infected individuals was higher than that of healthy individuals by a 

specified, age-specific increment.  

Reproduction 

Mange infection influenced the probability of breeding, but not litter size (Soulsbury et 

al. 2007); thus, the probability of breeding was reduced to a specified probability for all 

infected females, regardless of status or age. If either parent was infected, the whole 

litter was assumed to be exposed to the disease.  
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Table 7.1. Parameter definitions and values used in the model. Parameters were estimated 
from the literature, chapter 5 or calibration (see Section 7.2.2.5).  

Parameter definition  Parameter value Source 

Annual probability of infected 
female breeding  

0.34 Soulsbury et al. 2007 

Proportion of time spent in territory 
core, Tc 

0.59 Soulsbury et al. 2011 

Proportion of time spent in territory 
boundary, Tb 

0.34 Soulsbury et al. 2011 

Proportion of time spent in 
neighbouring territory core, Tnc 

0.01 Soulsbury et al. 2011 

Proportion of time spent in 
neighbouring territory boundary, Tnb 

0.05 Soulsbury et al. 2011 

Proportion of time disperser spent 
in territory core, Tdc 

0.16 Soulsbury et al. 2011 

Proportion of time disperser spent 
in territory boundary, Tdb 

0.84 Soulsbury et al. 2011 

Proportion of time extra-territorial 
spent in territory core, Txc 

0.56 Soulsbury et al. 2011 

Proportion of time extra-territorial 
spent in territory boundary, Txb 

0.44 Soulsbury et al. 2011 

Mean distance for extra-territorial 
movement, d (km) 

4.28 Soulsbury et al. 2011 

Monthly extra-territorial adult male 
movement probabilities 

0.05 (December)  
0.80 (January)  
0.15 (February) 

Soulsbury et al. 2011 

Annual disease-induced mortality, 
cubs 

0.95  Soulsbury et al. 2007 

Annual disease-induced mortality, 
subadults 

0.90 Soulsbury et al. 2007 

Annual disease-induced mortality, 
adults 

0.75 Soulsbury et al. 2007 

Infection constant, α - Calibration 
Monthly rate of intra-group juvenile 
disease transmission, βj

 

6.80 (2.61-11.34) Chapter 5/ Calibration 

Monthly rate of intra-group adult 
disease transmission, βa 

1.70 (0.96 - 4.80) Chapter 5/ Calibration 

Monthly rate of indirect 
transmission via fomite load, ε 

- Calibration 

Initial proportion of population with 
resistance allele, ν 

- Calibration 

Infectious period (months) of 
individual with resistance allele, τ 

- Calibration 
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Dispersal 

The number of territories crossed by a dispersing individual to reach its destination 

was estimated by assuming linear dispersal through the landscape. This estimate was 

then used to determine contact probabilities for disease transmission. Dispersal of 

infected individuals was observed to be negligible once symptoms became apparent 

(S. Harris pers. comm.); therefore, only uninfected or exposed individuals were allowed 

to disperse. However, dispersing individuals could become exposed through contact 

with infected groups. 

Recolonisation  

Only uninfected or exposed individuals were allowed to become dominant. Following 

observations that new groups were not formed during the epizootic (Baker et al. 

2000), groups that died out completely during this period were not recolonised. After 

the epizootic, new groups could form once all vacant dominant positions in existing 

groups were filled, through recolonisation of empty territories via dispersal and the 

previously described recolonisation processes (i to iii, described in section 6.2.2.3): (i) 

subadults of the focal group; (ii) subordinate adults of the focal group; (iii) 

neighbouring subordinate adults. In addition to the recolonisation processes (i) to (iii), 

an additional process (iv) included in Scenario 6 (section 7.2.2.4) allowed any 

subordinate adult to become dominant from any territory in the landscape. 

Extra-territorial movement 

During the breeding season, adult males search other territories for extrapair mating 

opportunities, before returning to their own group (Soulsbury et al. 2011). All adult 

males were allowed to make extra-territorial movements with a set monthly 

probability and a randomly assigned distance and direction. Distances moved, D, were 

randomly generated from a negative exponential probability density function, re-rD, 

where the dispersal constant, r, was the reciprocal of d, the mean distance travelled 

(i.e. r = 1/d). The number of territories crossed was determined for estimating rates of 

disease transmission (see below), and the individual was assumed to return along the 

same route. Only uninfected males made extra-territorial movements, but these 

individuals could become exposed through contact with infected groups. 
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Direct transmission 

Direct disease transmission was based on interactions as described in section 7.2.2.2. 

Contacts between group members and neighbouring groups, dispersers and extra-

territorial males were determined according to the proportion of time that infected 

individuals spent in the core and boundary of a territory. The probability of encounters 

was assumed to increase linearly with the proportion of time foxes spent in the same 

area. The proportion of time that any two individuals came into contact was calculated 

according to the following equations (sensu Leung & Grenfell 2003). Contact between 

individuals of neighbouring groups, Pt, was defined as: 

2( )
,

+
= c nc b nb

t

n

T T T T
P

N
       (1)  

where Tc is the time an individual spends in the core of their territory, Tb is the time an 

individual spends in the boundary of their territory, Tnc is the time an individual spends 

in the core of a neighbouring territory, Tnb is the time an individual spends in the 

boundary of a neighbouring territory. Nn is the number of adjacent neighbouring 

territories, here defined as a maximum of eight. Interactions between individuals 

crossing territories during dispersal, Pd were calculated as:  
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where, Tdc is the time a disperser spends in the core of a territory it crosses and Tdb is 

the time a disperse spends in the boundary of a territory. Nc was defined as the 

number of territories traversed in a monthly dispersal movement. An interaction 

between individuals crossing territories during extra-territorial movement, Px, was 

defined as:  
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where, Txc is the time a male spends in the core of a territory it crosses and Txb is the 

time a male spends in the boundary of a territory. Nc was defined as the number of 

territories crossed in a monthly extra-territorial movement, assuming that individuals 

returned along the same route. The proportion of time spent in contact between 

groups was then multiplied by a constant, α, to determine the probability of successful 

inter-group disease transmission:  

( )
1

1 1 ,
=

  
= − −   

  
∏

IN

inter i

n

P α P       (4) 

where NI is the number of adjacent groups or groups crossed with infected individuals 

present, and Pi is the proportion of inter-group contact for an individual, 

corresponding to equations (1-3).  

Intra-group disease transmission was modelled according to frequency-dependent SEI 

(Susceptible-Exposed-Infected) dynamics (Chapter 5). Susceptible individuals, Sx,i, of 

age class x, became exposed, Ex,i, according to the proportion of infected individuals, 

Ix,i, in a given group, i, of size Ni (Ni = Sx,i+Ex,i+Ix,i). Susceptible juveniles, Sj,i, became 

exposed at a rate: 
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and susceptible adults, Sa,i  at a rate: 
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where βx is the age specific transmission coefficient for juveniles, j, or adults, a. The 

probability of infection for a given age class was then: 

( )( ) 1 exp .= − −intra xP C        (7) 
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Once a successful disease contact was made, an individual was assigned an exposed 

status for one month before becoming infectious, to simulate the delay in the 

manifestation of mange symptoms (Bornstein et al. 2001). Disease could also move 

through the landscape through the dispersal of, or recolonisation by those exposed 

individuals that subsequently became infectious after attaining dominance on another 

territory. Due to their restricted movement from the natal den after birth (Robertson 

et al. 2000), cubs of less than two months became infected only through intra-group 

transmission.  

Indirect transmission  

This process was included in model scenarios, as defined in section 7.2.2.4. Indirect 

disease transmission was incorporated into the system through assigning each 

territory a “fomite load”. This parameter was determined each month according to the 

number of infected individuals on a territory, and the proportion of time that 

neighbouring infected individuals spent in the territory boundary. This provided a 

mechanism to incorporate the time that infected individuals excreted mites into the 

environment. For simplicity, only time spent in the boundary of neighbouring 

territories was considered; the mechanism by which mites are transferred into the 

environment is unknown, but possible processes such as the inter-group sharing of 

dens are less likely to occur in territory cores. Thus, for each territory the fomite load 

was defined as:  

=

= + +∑
nN

t r c b i b nb

i

F I T T I T T
1

( ) ( ),       (8) 

where Ir is the number of infected members in the focal group and Ii is the number of 

infected individuals on a neighbouring territory. Each route travelled by an individual 

moving across the landscape was assigned a fomite load, determined according to the 

proportion of time an individual spent crossing the boundary of those territories with 

infected individuals. For the route travelled by dispersing individuals, the fomite load 

was determined by: 
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were Ii was the number of infected individuals on the territories crossed by a 

dispersing individual. The fomite load for the route travelled by an extra-territorial 

male was then:  
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were Ii was the number of infected individuals on the territories crossed by a extra-

territorial male. Individuals then became infected given the probability of contact with 

the fomites: 

 = − −
fom i

P εF( ) 1 exp( ),        (11) 

where ε is the rate of successful infection through indirect transmission for a given 

fomite load, Fi.  

Territory Collapse 

Empirical data suggest that groups that died out during the epizootic were not 

recolonised, but neighbouring groups were observed to expand their territory to 

encompass the space created by the missing group (Baker et al. 2000). If a territory 

became vacant during the epizootic, a neighbouring group with uninfected or exposed 

individuals was randomly selected to expand into the empty territory space. During the 

time step following a territory collapse, a fomite load remained on the empty territory. 

If the group that expanded into the empty territory subsequently disappeared through 

mortality, the “expanded” territory space was restored to the original territories and 

neighbouring groups were given the opportunity at random to expand as described 

above. No limit was placed on the number of empty adjacent territories into which a 

group could expand.  
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Genetic resistance  

This process was included in model scenarios, as defined in section 7.2.2.4 and applied 

to individuals during mortality and reproduction. Resistance was modelled as a 

dominant allele (Leung & Grenfell 2003), which a specified proportion, ν, of the 

population were initially assumed to carry. The allele was passed onto offspring by 

either parent. Here, resistance influenced recovery rather than susceptibility (Gandon 

& Michalakis 2000). Infected individuals with the resistance allele recovered after a 

specified period, τ, while those without the allele died of the disease as specified 

above. 

7.2.2.4 Model Scenarios 

To investigate the mechanisms driving mange spread, persistence and population 

recovery, the following model scenarios were compared. For each scenario, specified 

submodels relating to disease transmission (section 7.2.2.3) were incorporated and the 

relevant set of parameters was calibrated (see section 7.2.2.5).  

Scenario 1: direct transmission. The first disease model included only direct 

transmission. The parameter set that required calibration for this scenario was {α, βj, 

βa}. 

Scenario 2: indirect and direct transmission. In this model, indirect transmission was 

added to Scenario 1. The parameter set calibrated in this scenario was {α, βj, βa, ε}. 

Scenario 3: direct transmission and genetic resistance. In this model, Scenario 1 was 

run with the inclusion of genetic resistance. The parameter set calibrated in this 

scenario was {α, βj, βa, ν, τ}. 

Scenario 4: direct and indirect transmission with genetic resistance. In this model, both 

the indirect transmission and genetic resistance submodels were incorporated into 

Scenario 1. Here, the parameter set {α, βj, βa,ε, ν,τ} was calibrated.  

The following structural changes were then made to the best-fitting model scenario:  



Chapter 7: Temporal dynamics of mange 

 
 

 158

Scenario 5: Removal of territory collapse. To determine the effects of territorial 

changes on mange transmission, the model was run without the territory collapse 

process. In this model, empty groups could be filled during the epizootic by the 

recolonisation processes (i) to (iii).  

Scenario 6: Inclusion of long-distance recolonisation. To consider whether 

recolonisation by non-neighbouring subordinates was required for population 

recovery, the model was run with the addition of long-distance recolonisation (see 

section 7.2.2.3).  

7.2.2.5 Model validation and calibration 

Model validation was conducted to evaluate the ability of the model to reproduce 

observed patterns of mange spread. In order to find plausible values for those 

parameters relating to disease transmission that could not be estimated directly, it was 

necessary to conduct calibration. Here, parameters associated with high uncertainty 

are systematically varied to determine the values generating patterns that best fit the 

predetermined criteria (Railsback & Grimm 2011). Empirical observations of the mean 

disease prevalence and adult population density were used as criteria for calibration. 

Parameter sets requiring calibration varied among model scenarios (see section 

7.2.2.4). Models were evaluated for a range of values within the parameter set using 

Latin Hypercube Sampling (Vose 2008, pp. 59-62), which is an efficient way to sample 

equally within the parameter space. For each scenario, ten model replicates were run 

for each of the 200 parameter combinations that were tested for a given parameter 

set. Parameter values were selected according to the parameter combinations that 

reduced the distance between model output and empirical estimates of the chosen 

criteria. The data to which the model was fitted were characterised by the mean and 

variance of observed values, X (± σ2
X) and Y (±σ2

Y), where X denotes disease 

prevalence and Y refers to adult density. Model estimates of each value, ,j i
x  and ,j i

y , 

were determined for each replicate, j, of each parameter combination, i. Thus, the 

model was evaluated with respect to the parameters in relation to ,j i
x  and ,j i

y , 

assuming that the combination of parameter values, i, that yielded the lowest 
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standardised error, Δi, was the best fit. For each parameter value combination, the 

standardised error of the model was calculated as:  

2 2

Δ
m

j,i j,i

i

j=1 X Y

(x - X) (y -Y)
= ,

σ σ

   
+   

   
∑      (12) 

where m is the total number of replicates for each parameter combination. Following 

parameterisation, the performance of each calibrated scenario was evaluated by 

estimating specified emergent properties from 200 replicates, each run for 17 years 

following the introduction of mange to the system. 
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7.3 Results  

7.3.1 Calibration of disease parameters 

Calibrated parameter values for Scenarios 1 to 6 are presented in Table 7.2. The region 

of parameter combinations that provide the best fit to the data corresponds to the 

minimum standardised error, Δi, as illustrated for calibration of parameters for 

Scenario 1 in Figure 7.2(A-C). Estimates of the monthly age-specific transmission 

coefficients, βj and βa (Table 7.2), were consistent with the same parameters 

estimated from SEI modelling (Table 7.1). Variation in the parameter values between 

models is likely to stem partly from interactions between the components describing 

the disease dynamics. For example, to compensate for the recovery of infected 

individuals, ε is higher in the models with genetic resistance (Scenarios 4-6), compared 

to the model without (Scenario 2) (Table 7.2).  

 

 

Table 7.2. Best parameter estimates for model Scenarios 1 to 6, fitted by calibration. Showing 
the standardised error between the empirical and model estimates of prevalence, ΔX, and 
density, ΔY, and the total associated standardised error, Δi, for the given parameter estimates.  

 Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Juvenile disease transmission 
coefficient, βj 

5.08 5.84 6.85 5.08 5.77 5.13 

Adult disease transmission 
coefficient, βa 

1.64 1.67 1.84 1.99 1.75 2.02 

Infection constant, α 0.75 0.70 0.69 0.68 0.64 0.64 
Rate of indirect 
transmission, ε 

- 0.67 - 1.50 0.94 1.54 

Initial proportion with 
resistance allele, ν 

- - 0.01 0.02 0.04 0.02 

Recovery time (months) with 
resistance allele, τ 

- - 2 2  2 2 

ΔX 0.75 28.67 1.08 5.68 3.69 4.73 
ΔY 1.17 0.22 8.96 2.86 7.73 1.28 
Δi 1.92 28.89 10.03 8.54 11.42 6.01 

               



Chapter 7: Temporal dynamics of mange 

 
 

 161

  (A)       

 

(B) 

 

(C) 

 

Figure 7.2. Calibration results for Scenario 1, showing the standardised error Δi determined for 
the parameter spaces of: (A) βa and α; (B) βj and α; and (C) βa and βj. The gradient of light to 
dark blue indicates the increasingly better fit of parameter combinations.
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7.3.2 Model application: mange spread 

The probability that mange failed to establish in the population (mean = 0.09, SD ± 

0.02), because no infectious contacts arose from the initial infected individual, was not 

significantly different between all the model scenarios (χ2
 = 5.04, df = 3, p = 0.41). 

Fitting the models to the mean prevalence (Figure 7.3A) and mean adult density 

(Figure 7.3D), enabled evaluation of the models using the finer scale properties that 

emerged, such as the mean epizootic prevalence, as described in the following 

sections.  

7.3.2.1 Transmission during the epizootic and enzootic mange phases 

Direct transmission alone was insufficient to reproduce the spread of mange, and was 

particularly poor at explaining mean epizootic prevalence and the periods of high and 

low density (Figure 7.3B&E-F, Figure 7.4A, Figure 7.5A). Indirect transmission 

(Scenarios 2, 4-6) acted to increase mange transmission (Figure 7.4B-F), resulting in an 

improved ability of these scenarios to reproduce the mean epizootic prevalence 

(Figure 7.3B) and observed population decline (Figure 7.5B-F). However, the 

asymptote of the predicted cumulative proportion of infected individuals in Scenario 2 

indicated that no new infections occurred after the epizootic (Figure 7.6) and thus, is 

reflected in the short disease persistence and likelihood of population extinction. 

During the enzootic phase, the persistence of mange increased with the addition of 

genetic resistance in Scenarios 3 to 6, to capture the observed duration of the disease 

in the Bristol fox population (Figure 7.3C). Saturation of new infectious contacts was 

not reached in Scenarios 3 to 6, as indicated by the asymptotes in Figure 7.6, implying 

the continued persistence of the disease in the simulation. Thus, based on these 

measures of disease spread, Scenarios 4 to 6 were able to adequately reproduce 

empirical patterns. Although the mean predicted density suggests that Scenario 6 was 

best able to reproduce empirical observations, the wide confidence intervals around 

the predicted density estimates of Scenarios 4 and 5 indicate that these scenarios 

merit further consideration.  

 



Chapter 7: Temporal dynamics of mange 

 
 

 163

 

Figure 7.3. Summary of the mean estimates of emergent properties relating to disease 
transmission in the Bristol fox population. Estimates are presented for model replicates where 
the disease became established, for Scenarios 1 to 6. (A) Mean prevalence; (B) mean epizootic 
prevalence (1994-1996); (C) mean persistence (years); (D) mean adult density; (E) mean adult 
low density (1994-2003); (F) mean adult high density (2004-2010); (G) time of first group 
collapse (year); (H) time of first group expansion (year). Dashed lines are the mean empirical 
estimates for the specified emergent property. 
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Figure 7.4. Temporal dynamics of a simulated mange outbreak. Observed monthly mange 
prevalence (dashed line, see section 7.2.1) and predicted estimates (black line) of the monthly 
mange prevalence for runs where infections were still present. Model estimates are the mean 
values from 200 replicates, with 95% confidence intervals indicated by the shaded areas. (A) 
Scenario 1, direct transmission only; (B) Scenario 2, with indirect transmission; (C) Scenario 3, 
with genetic resistance; (D) Scenario 4, with indirect transmission and genetic resistance; (E) 
Scenario 5, with indirect transmission and genetic resistance and without territory expansion 
and (F) Scenario 6, with indirect transmission, genetic resistance and long-distance 
recolonisation. 
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Figure 7.5. Temporal dynamics of population density in response to a simulated mange 
outbreak. Observed (dashed line) and model estimates (black line) of adult population density 
(km-2). Model estimates are the mean values from 200 replicates for runs where infections 
were still present, with 95% confidence intervals indicated by the shaded areas. (A) Scenario 1, 
direct transmission only; (B) Scenario 2, with indirect transmission; (C) Scenario 3, with genetic 
resistance; (D) Scenario 4, with indirect transmission and genetic resistance; (E) Scenario 5, 
with indirect transmission and genetic resistance and without territory expansion and (F) 
Scenario 6, with indirect transmission, genetic resistance and long-distance recolonisation.  
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Figure 7.6. Mean cumulative proportion of new infections per year, indicating the time taken 
to reach saturation of new infections in a given system. Estimates are the mean from 200 
model replicates for Scenarios 1 to 6. 
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7.3.2.2 The relative importance of social contacts for mange transmission  

Exposure to mange arising from both intra-group contact and parental contact at birth 

was greater than inter-group contact for all model scenarios (Figure 7.7), reflecting 

empirical encounter rates. The proportion of infectious contacts resulting from fomites 

was higher than intra-group contact for models with indirect transmission (Scenarios 2 

and 4-6). The importance of inter-group contact for mange transmission was reduced 

with the inclusion of indirect transmission. For all scenarios, infection during dispersal 

or extra-territorial movement contributed to a small proportion of all infections. 

However, compared to dispersers, extra-territorial males consistently had more 

contacts with infectious fomites.  

 

 

Figure 7.7. Model output for the mean proportion of contacts resulting in infections from 
different routes. Estimates are from 200 model replicates for Scenarios 1 to 6. Infectious 
contacts are from individuals becoming exposed due to intra-group contact, transmission via 
fomites for territorial individuals, infection at birth, inter-group contact, transmission via 
fomites for extra-territorial males and dispersers, and direct contact during extra-territorial 
movement and dispersal.  
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7.3.2.3 The effects of territory collapse for mange spread 

Scenarios 4 and 6 were best able to reproduce the timing of territory collapse and 

expansion (Figure 7.3I&J). The size of territory expansion was underestimated by all 

models. In autumn 1995, the observed mean territory size had increased by a factor of 

3.1 and, by winter 1995, territories had increased by a total of 7.8 times the original 

size (Baker et al. 2000). In the best-fitting model (Scenario 6), the predicted mean 

increase of the original simulated territory size was 2.10 (SD ± 0.21) in autumn 1995 

and by a total of 2.32 (SD ± 0.25) in winter 1995. The mismatch between the model 

and empirical estimates of the territory expansions might be due to model 

simplifications or empirical uncertainties, given the small sample sizes. Observations 

were also derived from a smaller area (Baker et al. 2000) than was modelled, with 

territorial processes restricted by the physical boundaries of the study area including 

the river and uncolonised open areas (S. Harris pers. comm.).  

The sources of infectious contacts between Scenarios 4 and 5 (with and without 

territory collapse, respectively) were compared to determine the effects of territory 

formation on disease spread. Infections from fomites are predicted to increase due to 

contact by expanding groups with infected substances remaining on empty territories. 

There was a significant difference in the mean proportion of fomite infections of 

territorial individuals during the epizootic between Scenario 4 (mean = 0.42, SD ± 0.03) 

and Scenario 5 (mean = 0.37, SD ± 0.03) (Mann-Whitney U-test: U = 1334, p = 0.002). 

This difference was reflected in the faster cumulative rate of infections in Scenario 4 

compared to Scenario 5 (Figure 7.6). Perturbation of social organisation might be 

expected to alter inter-group encounters, but the difference in inter-group infections 

between Scenario 4 (mean = 0.02, SD ± 0.004) and Scenario 5 (mean = 0.02, SD ± 

0.004) was marginally non-significant (Mann-Whitney U-test: U = 2204, p = 0.08).  

Territory collapse may be expected to reduce breeding opportunities, due to fewer 

vacancies for dominant individuals if new groups are not formed. Thus, the probability 

of breeding during the epizootic was compared between Scenarios 4 and 5. During the 

epizootic, the mean proportion of breeding dominant females was significantly lower 

(0.37, SD ± 0.18) in Scenario 4 than in Scenario 5 (0.48, SD ± 0.17) (Mann-Whitney U-
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test: U = 3921, p < 0.001). There was no significant difference in the mean proportion 

of breeding subordinate females in Scenario 4 (0.14, SD ± 0.06) and in Scenario 5 (0.16, 

SD ± 0.04) (Mann-Whitney U-test: U = 10328, p = 0.109).  

 

 

 

Figure 7.8. Mean proportion of the population with the resistance allele for Scenario 3 (solid 
line, light blue shading indicates 95% confidence intervals) and Scenario 4 (dashed line, dark 
blue shading indicates 95% confidence intervals). Model estimates are from 200 model 
replicates for runs where infections were still present.  
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7.3.3 Model application: population recovery 

7.3.3.1 The importance of genetic resistance for population recovery 

The proportion of model replicates when the population did not go extinct by the end 

of the simulated period, was significantly higher when genetic resistance was added to 

the model [mean (Scenarios 1-2) = 0.32, SD ± 0.34, mean (Scenarios 3- 6) = 0.87, SD ± 

0.11, χ2 = 525.84, df = 3, p < 0.001], reflecting the higher likelihood of population 

recovery in these models. The low density period, encompassing the population 

decline caused by the epizootic, was overestimated without the inclusion of genetic 

resistance (Figure 7.3E). Thus, the longer disease persistence in the model scenarios 

with genetic resistance reflected the continuation of mange infections, sustained by 

individuals surviving to produce new susceptible offspring. In Scenario 4, the allele 

spread rapidly and, once the population started to recover (year 1999), the allele was 

present in all individuals. This is in comparison to Scenario 3, where the increase in the 

mean proportion of resistant individuals was gradual and only 20% of the population 

were resistant by 1999 (Figure 7.8).  

7.3.3.2 Long-distance recolonisation and population recovery 

Estimates of the high density period, indicative of the population recovery, were better 

reproduced by models with long-distance recolonisation (Scenario 6) (Figure 7.3F), 

suggesting that genetic resistance alone was inadequate as a mechanism for 

population recovery. Allowing subordinate individuals to attain dominance in non-

neighbouring groups improved estimates of population recovery (Figure 7.5F). Figure 

7.9 illustrates the importance of long-distance recolonisation as a source of dominant 

individuals, particularly for the years immediately following the epizootic. During the 

high density period, dominant females were most likely to originate through philopatry 

(Figure 7.9A) and dominant males were predominantly replaced by dispersing 

individuals (Figure 7.9B), which is consistent with empirical observations (Iossa et al. 

2009).  
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Figure 7.9. Mean source of dominants in Scenario 6, showing the proportion of dominants that 
were replaced by dispersing, philopatric, neighbouring and long-distance females (A) and 
males (B). Mean model estimates from 200 model replicates for runs where infections were 
still present.  
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7.4 Discussion 

In this study I demonstrated the ability of an IBM to reproduce the dynamics of mange 

in an urban fox population, using a combination of empirical and calibrated 

parameters. The results suggest that direct transmission alone is not sufficient to 

describe the spread of this disease. The simulation outcomes emphasised that 

additional processes, namely indirect transmission, genetic resistance and long-

distance recolonisation, are needed to capture the temporal dynamics of mange in the 

Bristol fox population. Contrary to predictions, dispersers did not contribute 

significantly to mange spread. The model suggested that the collapse of territories 

affected the spread of mange by promoting contact with fomites. Here, the relative 

importance of indirect and direct transmission mechanism is discussed, particularly in 

light of data uncertainty. The influence of social processes, namely, extra-territorial 

movement, recolonisation, and stable territorial structure, on mange spread and 

population recovery is examined. Consideration is given to the evolutionary adaptation 

of genetic resistance to mange. The results of this simulation are also discussed in the 

context of the contrasting intra-and inter-specific impacts of mange on host 

populations. 

7.4.1 The role of direct and indirect transmission in mange dynamics   

The model scenarios in this study were used to explore the role of direct and indirect 

transmission mechanisms for the spread of mange in the Bristol fox population. Direct 

transmission alone, using empirically estimated contact rates, was unable to reproduce 

the observed mange dynamics. Fox social organisation appears to yield encounter 

rates that are insufficient to promote mange prevalence, lending support to the 

hypothesis that an additional transmission pathway, such as through fomites 

(Soulsbury et al. 2007), is required to explain the rapid spread of this disease. This 

contrasts with the dynamics of mange in a coyote population, which were adequately 

described by direct transmission alone (Leung & Grenfell 2003). Direct encounter rates 

among coyotes might be sufficient to describe the outbreak; unlike foxes, groups of 

transient juveniles overlap with resident groups (Leung & Grenfell 2003), possibly 
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increasing the opportunity for infection and potentially masking infections from 

indirect transmission. Interspecific variation in the relative importance of transmission 

pathways is therefore likely to be influenced in part by host behaviour. This simulation 

suggests that indirect transmission is important for describing mange dynamics in 

foxes.  

Indirect transmission acts by increasing opportunities for infection through contact 

with fomites, augmenting the number of infected individuals in the population and 

thereby, increasing the speed of disease spread. Indirect transmission has been 

implicated in the long-term persistence of several diseases, including the transmission 

of avian influenza through contaminated drinking water (Rohani et al. 2009), chronic 

wasting disease through infected faeces or carcasses (Miller et al. 2006), and 

hantavirus excreted in scent marks (Sauvage et al. 2003). The source of environmental 

contamination for mange remains unclear. The incidence of inter-group den sharing, a 

known route of indirect mange transmission in Russian fox populations (Gerasimov 

1958), is undetermined, but likely to be low in the Bristol fox population. Snoop zones, 

territory boundaries where scent-marking reduces direct contact during territorial 

defence (Giuggioli et al. 2011), could also act as a conduit for mange transfer through 

mutual contact with infected substances in these zones. In particular, foxes typically 

favour certain routes (S. Harris pers. comm.) into gardens (a preferred habitat of urban 

foxes; Harris & Rayner 1986b); thus, the likelihood of indirect transmission between 

groups in these overlapping zones is increased by multiple individuals using the same 

preferred entry points, such as when scraping under fences. A further potential route 

of indirect infection identified in this study is the expansion of territories, leading to 

contact with fomites that remain on empty territories, which could increase 

opportunities for indirect transmission. The increased rate of indirect transmission 

when allowing territories to collapse provided some support for this mechanism in the 

Bristol population. Another proposed route, environmental contamination by domestic 

dogs (Soulsbury et al. 2007), was not considered here, but deserves further attention. 

It is also possible that support for indirect transmission is indicative of other processes 

involved in increasing transmission, including individual heterogeneity in infectivity. 

Such heterogeneity can occur with the existence of superspreaders (see below and 
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chapter 5). It is also possible that there were a greater number of infected individuals 

involved in the initial introduction of mange to the Bristol population. A simplification 

of modelling transmission in this simulation was the restriction of breeding pairs to 

individuals on the same territory, which may overlook an additional route of direct 

mange transmission. Inter-group mating occurs in Bristol (Baker et al. 2004); however, 

allowing extrapair mating is unlikely to increase direct transmission to the levels 

required to describe the spread of this disease. Hence, while the model indicated the 

importance of an additional transmission pathway, identifying the mechanism of this 

increased transmission requires further research.  

The simulation in this study used proxies for explicitly modelling direct and indirect 

inter-group disease transmission. Here, the probability of becoming infected through 

direct inter-group encounters was independent of the number of infected individuals. 

Modifying this transmission mechanism to identify the individuals responsible for 

infectious contacts would enable the detection of finer scale processes, such as the 

group-based measure of the basic reproductive number, R0, which takes into account 

inter-group differences in infection rates (Cross et al. 2005). Similarly, the approach 

used to model indirect transmission requires further refinement, given the unknown 

rates of shedding from infected individuals into the environment, mortality of mites in 

the environment, and rates of fox contact with fomites, which were implicit within the 

fomite load and the parameter ε. Like direct transmission, the source of the infection 

could not be determined for a given infectious contact. This is the first time indirect 

transmission has been simulated for mange transmission in foxes and there appear to 

be few instances of IBMs incorporating indirect disease transmission in a wild 

mammalian population; therefore, this study provides a foundation for future work.  

The effects of variation in infectious status were not accounted for in this study, due to 

data limitations and model simplifications. Combining class I and class II mange 

infections might have led to overestimating processes such as reproduction; infected 

males were allowed to reproduce, whereas evidence suggests that individuals with 

Class II mange were not capable of reproducing (Soulsbury et al. 2007). Similarly, the 

influence of social ranking on infection was not included. Although there is evidence in 
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other species that dominance behaviour can either increase or decrease disease risk 

(Møller et al. 1993), the effects of social status for mange infection are undocumented 

in foxes. Individual variation in susceptibility is an important influence in disease 

dynamics (Woolhouse et al. 1997, Kramer-Schadt et al. 2009). For instance, disease 

invasion can be highly dependent on individuals that have a greater than average risk 

of causing infections, so-called superspreaders (Lloyd-Smith et al. 2005b). Given that 

little is known about variation in parasite loads in mangy foxes, further data are 

necessary to determine whether mange infestations are disproportionate in some 

individuals and whether this could influence the relative importance of direct and 

indirect transmission mechanisms.  

7.4.2 The relative importance of dispersal for mange transmission  

Disease transmission in social species is influenced by interactions between and within 

groups (Altizer et al. 2003b) and, the potential importance of contact with dispersing 

individuals has been emphasized for the spread of mange in foxes (Lindström 1992). 

Whilst these results indicated that dispersing individuals contributed little to the local 

spread of mange in Bristol, this should be viewed in the light of model simplifications; 

data limitations prevented the incorporation of explicit encounter rates between 

territory holders and dispersers. While dispersing individuals spend little time in 

territory cores (Soulsbury et al. 2011), the high proportion of bite wounds in dispersers 

indicates that there may be substantial contact with territory holders (Soulsbury et al. 

2008a). The role of dispersing foxes for moving mange over longer distances than that 

modelled here requires further work, especially given the support for infrequent long-

distance dispersal in simulating the wave-like spread of a rabies outbreak (Trewhella & 

Harris 1988, Jeltsch et al. 1997).  

Individuals moving through the landscape were more important for indirect than for 

direct mange transmission. That extra-territorial males were more important for 

indirect transmission than dispersers could be attributed to the fact that that all adult 

males were given the opportunity for reproductive movement and, by returning to 

their territory along the same route, passed through infected territories twice. 

However, the role of movement by individuals other than dispersers for disease 
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transmission has been demonstrated in lions Panthera leo through network modelling. 

Specifically, infrequent long-distance contact between non-neighbouring prides, driven 

by food availability, reduced the effective distance between prides and increased 

disease transmission more than through the movement of dispersers (Craft et al. 

2011). Thus, the effect on disease transmission of the movement of individuals other 

than dispersing juveniles requires further consideration. 

7.4.3 Territory collapse as a mechanism for promoting disease spread 

The increase in the number of mange infections in those scenarios that incorporated 

the collapse of territories is consistent with theory suggesting that group-structuring 

reduces the spread of disease (Loehle 1995, Cross et al. 2005, Vicente et al. 2007). The 

mechanisms underlying this process are complex and system-specific. Disruption to 

territorial behaviour in a completely susceptible badger Meles meles population 

increased the likelihood of colonisation by diseased individuals (Carter et al. 2007). The 

outbreak of mange in the Bristol fox population provided the opportunity to gain 

insight into territory collapse during an epizootic. That the simulated inter-group 

contact rate remained unchanged following the collapse of territories, is consistent 

with observations that scent-marking behaviour and underlying social organisation 

were unaffected during the epizootic (Baker et al. 2000). However, the simulated 

spread of mange increased with the collapse of territories. The increased contact with 

fomites, arising from groups expanding into infected territory spaces, appears to have 

been sufficient to cause this outcome.  

The low population recovery in Scenario 4 (with territory collapse) implies the 

existence of a threshold below which the population could not recover. Leung and 

Grenfell (2003) found that, without long-distance recolonisation, the coyote 

population exhibited Allee effects and declined to extinction because territories 

remained empty. That the simulation predicted a faster recovery of the Bristol fox 

population without territory collapse is plausible, since recolonisation of empty groups 

during the epizootic promoted reproduction, thus preventing the population from 

declining below a critical threshold. These findings are indicative of the long-term 

impacts of territorial perturbations on population dynamics. Similar long-term effects 
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were observed in a badger population, where recovery to pre-perturbation densities 

after territory expansion induced by culling was slow, despite initial rapid immigration 

(Carter et al. 2007). This simulation of mange in an urban fox population therefore 

points towards the importance of a stable territory structure for epidemiological and 

population dynamics. 

7.4.4 The influence of resistance for mange persistence  

In these analyses, the recovery of the Bristol fox population was driven partly by the 

evolution of heritable resistance, as was found for a simulation of mange in a coyote 

population (Leung & Grenfell 2003). Increasingly, evolution in host-parasite systems is 

demonstrated to occur over much shorter timescales than previously thought, such as 

over decades (Altizer et al. 2003a). For instance, simulations predicted the evolution, 

over 50 years, of resistance alleles to phocine distemper virus in harbor seals Phoca 

vitulina (Harding et al. 2005). However, empirical evidence for resistance alleles in wild 

mammalian populations is still limited. In Australia, resistance to the myxoma virus 

developed rapidly after the introduction of a highly virulent strain in European rabbits, 

Oryctolagus cuniculus; virulence of the virus subsequently decreased to intermediate 

levels, promoting the persistence of the disease (Dwyer et al. 1990). Recently, a gene 

increasing the resistance to prion disease was identified in a white-tailed deer 

Odocoileus virginianus population subject to high infection rates (Robinson et al. 

2012). Thus, the high mortality rate, possibly in combination with a high rate of mange 

infection arising from indirect transmission in the scenarios examined in this study was 

likely to act as a selection pressure for the inheritance of resistance over the duration 

of the mange epizootic.  

The rapid evolution of resistance to mange simulated here is consistent with the cycles 

of mange epizootics that are followed by a long endemic phase. This evolutionary 

process is compatible with theory suggesting that new outbreaks are caused by 

mutations of mites (Pence & Ueckermann 2002), because resistance acts directly on 

the evolution of parasite virulence (Gandon & Michalakis 2000). However, the model 

in this study did not incorporate selection pressures on the parasite. The simplest 

system of genetic inheritance was modelled following Leung and Grenfell (2003), 
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allowing for the selection but not the mutation of alleles. Here, the mutation giving 

rise to the allele was assumed to have occurred prior to the outbreak of mange; rapid 

evolution in allelic frequency following disease introduction suggests prior variability in 

genetic resistance (Bonneaud et al. 2011). In light of the cyclical outbreaks of mange 

and the importance of resistance identified here, further research is needed on the 

evolution of mange virulence.  

Differences in the degree of prior genetic resistance or exposure to mange could 

explain the varying impact of this disease on host populations. The dramatic 

population decline observed in foxes following a mange epizootic in Bristol did not 

occur in a population of coyotes (Pence & Windberg 1994). Indeed, the initial 

proportion of resistant individuals was estimated to be over five times higher in this 

coyote population (Leung & Grenfell 2003) than the Bristol fox population. Further, the 

slower allele spread through the coyote population (Leung & Grenfell 2003) than in 

this study could reflect the potential difference in infection rates between these two 

canid species. Empirical data are required to determine whether these differences are 

a reflection of genuine patterns in the processes driving resistance to mange or are an 

artefact of interspecific variation.  

7.4.5 Long-distance recolonisation as a mechanism for population recovery  

The protracted recovery of the Bristol fox population is consistent with observations of 

mange epizootics in Scandinavian fox populations (Lindström et al. 1994, 

Forchhammer & Asferg 2000). The best-fitting simulation in this study was able to 

reproduce population recovery with the addition of long-distance recolonisation. 

Leung and Grenfell (2003) hypothesised that long-distance recolonisation by dispersers 

and subordinate adults was necessary for the coyote population to recover from a 

mange epizootic. In fox populations, dispersal by adults is uncommon (Harris & 

Trewhella 1988). However, given the extremely low population density by the end of 

the epizootic in Bristol, the opportunity to attain dominance could have promoted the 

dispersal of juvenile and adult subordinate individuals into empty territories across the 

landscape. Indeed, rapid recolonisation has been observed in some fox populations 

after control efforts or disease due to their dispersal abilities (Bögel et al. 1974, Gentle 
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et al. 2007). The results of this simulation suggested that long-distance recolonisation 

was particularly important early in the recovery phase; the need for this process 

implies that a mechanism existed to promote group formation immediately after the 

epizootic. In badgers, culling-induced perturbation of territories triggered an increase 

in immigrant badgers (Carter et al. 2007). Immigration rates in the Bristol fox 

population were low prior to the epizootic (Harris & Smith 1987), and so, it was 

considered suitable to model a closed population. However, the collapse of territories 

could have led to an increase in immigration, stimulating the observed recovery. This 

model therefore exposes the need for a better mechanistic understanding of the 

recovery of the Bristol population. 

7.5 Conclusion 

An individual-based simulation using empirically-derived data was able to reproduce 

emergent properties of an urban fox population during a mange outbreak. The ability 

of this model to describe epidemiological and demographic patterns during both the 

epizootic and enzootic phases was demonstrated using multiple patterns for model 

validation. This study provided compelling support for several theoretical hypotheses 

proposed to explain epidemiological and population dynamics during outbreaks of 

mange. Empirically estimated direct encounter rates alone were insufficient to 

describe the dynamics of this disease in a high density fox population. The importance 

of an additional process leading to increased mange transmission, such as indirect 

transmission, was inferred from the simulation. Contrary to predictions, dispersing 

individuals contributed to a relatively small proportion of infectious contacts in the 

model. Results were suggestive of the influence of territory collapse on disease spread. 

The influence of rapid evolutionary dynamics on the selection of resistance alleles was 

illustrated. However, genetic resistance alone was not sufficient to reproduce 

population recovery and the need for a mechanism to promote recolonisation after 

the epizootic was supported. The support for genetic resistance and long-distance 

recolonisation, as also found for coyotes, implies some consistency among the 

processes shaping this disease in canids. However, the processes identified in this 

study require empirical validation; the evolution of immunity and the underlying 
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mechanisms of fomite transmission demand particular attention. While the model in 

this study was able to describe the mange dynamics, finer scale processes at the 

individual level remain to be determined. Further analyses, such as robustness analysis 

(Railsback & Grimm 2011) or information-theoretic approaches (Burnham & Anderson 

2002) will then be required to confirm the structural integrity of the model. 

Understanding the processes driving mange outbreaks is of wider relevance for the 

management of this disease, given that mange affects a wide range of mammalian 

species.  
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Chapter 8 General discussion 

In this thesis I investigated the demography of red foxes Vulpes vulpes and the 

dynamics of sarcoptic mange Sarcoptes scabiei, a major disease of the fox. I found that 

despite substantial sampling effort worldwide, fox demography is surprisingly poorly 

known due to weaknesses in the data. However, analyses of the better studied 

populations provided evidence of intraspecific demographic variation, which I showed 

has implications for data substitution in population models. Prompted by the high 

uncertainty in fox demographic data, I developed a method to account for uncertainty 

in vital rates estimated from mortality data, and also determined that litter size can be 

included in demographic models with a number of suitable probability distributions. By 

modelling mange for the first time in a fox population, I established that transmission 

is frequency-dependent, but that direct transmission alone was insufficient to 

reproduce the observed spread of this disease. I also identified the importance of 

indirect transmission, genetic resistance and long-distance recolonisation for 

describing mange dynamics in this fox population. Here, I will begin by discussing the 

major findings of chapters 2 to 7 in the context of the broad themes of this thesis. I will 

then go on to consider how the results of this thesis fit into the wider implications of 

the areas of this study, and suggest directions for future work.  

8.1 Synthesis 

Vertebrate species are increasingly at risk from a suite of threats including disease, 

hunting, climate change and human-wildlife conflict (Hulme 2005, Milner-Gulland & 

Rowcliffe 2007, Smith et al. 2009b). Accurate management predictions are dependent 

on resolving the challenges facing population ecologists such as demographic 

uncertainty, intraspecific variation, environmental variation and undefined 

interspecific interactions. Given that red foxes are abundant, widespread and the 

subject of much management and sampling effort (Baker et al. 2008, Saunders et al. 

2010), this species was used as an archetype to explore questions relating to data 

uncertainty, demographic variation and disease dynamics.  
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8.1.1 Modelling demography with uncertainty 

Disregarding uncertainty in demographic parameters and resultant model predictions 

of population dynamics is likely to lead to less effective management (Beissinger & 

Westphal 1998), but it is nethertheless a widespread practice in the published 

literature (chapter 2). This has implications for demographic models, which often 

demand the use of published data (chapters 2, 3 and 4). As chapters 2 and 4 

illustrated, published demographic data from fox populations are typically derived 

from hunting returns and presented as point estimates. Using published data on this 

widespread carnivore, the potentially substantial oversights from basing management 

on a point estimate of the population growth rate (λ) were illustrated (chapter 2). This 

type of oversight could be of particular consequence for the management of 

populations close to extinction, or species that pose a risk to other wildlife or human 

populations. Indeed, a previously published point estimate of λ for a wolf Canis lycaon 

population was shown to be overly pessimistic, because uncertainty in the vital rates 

determined from detailed capture-mark-recapture data was not incorporated 

(Patterson & Murray 2008). However, as demonstrated in this thesis, confidence 

intervals are also easily determined from parameters based on point estimates of vital 

rates, using a novel combination of widely applied techniques, for both λ (chapter 2) 

and life history speed metrics (chapter 4). This study therefore illustrated that, if 

uncertainty is accounted for, meaningful information for management can be gained 

from using published or minimal data.  

A particular source of uncertainty in demographic models is the parametric 

distribution chosen to simulate demographic stochasticity in life history parameters, 

such as offspring number (Fieberg & Ellner 2001, Kendall & Wittmann 2010). In chapter 

3, it was established that several distributions were suitable for describing litter size in 

carnivores and that distribution choice had a negligible effect on model predictions of 

quasi-extinction risk and disease control in canids. Given the often deficient life history 

data for many carnivores (Gese 2001), this finding is reassuring for those population 

ecologists and conservation biologists faced with minimal data and increases the 

confidence with which demographic stochasticity in this life history trait is modelled. 
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This study represents the first published evaluation for a multiparous species of the 

robustness of population models to the choice of litter size probability distributions. 

Yet, the importance of phylogeny as an intrinsic constraint on offspring number (Shine 

& Greer 1991, Jetz et al. 2008) suggests that caution should be applied when extending 

the results to other mammalian orders or multiparous taxa such as birds or reptiles. 

One of the shortcomings with addressing uncertainty in population modelling is data 

availability, limited largely by sampling constraints (Morris & Doak 2002, Mills 2007). 

Sampling efficiency can be improved by testing the effects of sampling constraints on 

model output, such as quantifying the magnitude of variance (Doak et al. 2005) or bias 

(Fiske et al. 2008) in λ due to study duration or sample size, respectively. The findings 

in this thesis build upon and complement existing recommendations, such as 

increasing sample sizes when survival is low (Fiske et al. 2008) and extending study 

duration (Doak et al. 2005) as sample sizes increase. In chapter 2, small sample sizes 

conveyed more uncertainty in vital rate estimates, especially when mean values were 

at the extremes of the probability distribution. In chapter 3, the number of 

parsimonious probability distributions supported for empirical litter size frequencies 

decreased with increasing sample size, indicating the increasing certainty in the 

distribution of this parameter. The effects of sample size on λ estimates were clearly 

illustrated in chapter 2, with direct applicability to data collection: increasing sample 

size fourfold decreases confidence intervals of λ by half. Further, the approach taken in 

this thesis (chapter 2) could be incorporated into existing methods that aim to improve 

sampling design, such as combined power and population viability analyses to 

determine the optimal duration of data collection required to minimise uncertainty in 

model outcomes (Thompson et al. 2000).   

8.1.2 Understanding red fox demography 

In chapter 4, a broad-scale review of fox demography brought together over 70 years 

of sampling effort for the first time, underlining that, despite this extensive sampling 

effort and the wide geographic range for which data are available, many fox 

populations lacked the data required for comprehensive demographic analyses. That 

there are substantial gaps in the demographic data of a widespread species is a 
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cautionary note for our understanding of the ecology of many common species. 

Indeed, this finding mirrors other common species noted for their role as predators, 

disease hosts or economic importance, where demographic data are lacking despite a 

large body of published literature, such as the big brown bat Eptesicus fuscus (Agosta 

2002) and yellow-legged gull Larus cachinnans (Vidal et al. 1998). In contrast to the 

overarching finding of data deficiency, the individual-based model (IBM) developed in 

chapter 6 illustrated that given the appropriate data on a well-studied population, 

patterns in population dynamics could be reproduced accurately. Ultimately, such 

insight into the population dynamics of widespread species is fundamental for our 

understanding of ecological interactions, especially since common species are of 

importance for ecosystem functioning (Gaston & Fuller 2008) and can also face 

extinction themselves (Lindenmayer et al. 2011).  

The significance of intraspecific population dynamics continues to gain recognition for 

management and ecology (Nilsen et al. 2009, Johnson et al. 2010, Servanty et al. 

2011). Previous comparisons of life history tactics have been conducted predominantly 

at interspecific levels (e.g. Promislow & Harvey 1990, Ferguson & Larivière 2002) and, 

significantly, this thesis represents the first analysis of inter-population differences in a 

carnivore species (chapter 4). Comparing eight fox populations with sufficient data for 

demographic modelling (chapter 4) revealed overarching demographic themes: 

juvenile survivorship and fecundity consistently made the greatest contributions to λ 

and life history speed fell at the medium-fast end of the fast-slow continuum. 

However, within these broad themes, there was intraspecific variation in the 

contributions of vital rates to λ and in life history speed that may reflect environmental 

productivity rather than a trade-off between survival and fecundity. Given the 

importance of local conditions it is useful to consider how climatic changes shape 

future population growth, knowledge of which is currently lacking. Studies of the 

effects of climate on demography have focused on single, often threatened, 

populations; thus, there is a need to examine whether intraspecific populations of 

common and widespread species respond differently to climate change (Gaillard et al. 

2013). For example, although recruitment drives a decline in λ for conspecific roe deer 

Capreolus capreolus populations during earlier springs, populations in less productive 
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habitats may be forced to undergo seasonal migration because they cannot increase 

reproduction in response to a climate-induced decline in resource availability (Gaillard 

et al. 2013). Recent advances have coupled climate models with demographic models 

(Jenouvrier et al. 2012), where scope exists to improve the resultant model predictions 

by incorporating intraspecific dynamics, such as those demonstrated in this thesis.  

Chapter 4 culminated with an example of data substitution between fox populations, 

thereby assimilating aspects of parameter uncertainty, life history variation and the 

use of published data. Surrogate data are needed when data for a focal species or 

populations are unavailable (Caro et al. 2005); however, the effects of such data on 

demographic model estimates remain poorly understood. Given the contrasting fox life 

histories described above, inter-population data substitution illustrated that 

comparable levels of anthropogenic pressure or close geographic proximity did not 

predict demographic similarity (chapter 4). Replacing values for the most variable 

parameter, fecundity, typically had the greatest impact on the accuracy of λ estimates. 

Further, these results indicated that demographic models might be particularly 

sensitive to the substitution of certain components of fecundity; replacing breeding 

probabilities generally caused a greater change in λ than did substituting litter size. 

Variation in the response of fox population models to components of fecundity was 

also apparent in other chapters. In chapter 3, low variation in litter size meant that the 

choice of parametric distributions had a limited impact on predictions of quasi-

extinction risk and disease control in three canids, including foxes, and further, no 

evidence of inter-population variation in the underlying distributions describing litter 

size was found for foxes. Interestingly, whereas the IBM of the Bristol fox population 

was sensitive to changes in breeding probabilities, the model was robust to varying 

litter size (chapter 6). These findings point to commonalities for modelling variation in 

these parameters for foxes. While data substitution will continue out of necessity, 

continued work is needed to define guiding principles for this practice and determine 

whether similar inferences can be made for data substitution in other species. This 

study contributes to our understanding of how intraspecific differences and parameter 

variation affects model estimates based on data substitution and, thus, how the poor 

use of surrogate data can yield flawed management decisions.  
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8.1.3 Sarcoptic mange dynamics 

It is useful to consider the potential role of host-parasite interactions as one of several 

important interspecific processes that shape a population’s dynamics (Dobson & 

Hudson 1986). These systems are complex due to the dynamics of the host and 

parasite populations and their interaction, as well as within-host dynamics and 

potential intermediate or free-living stages. Deterministic epidemiological models are 

useful for gaining initial understanding of disease systems, especially within the host 

population, while individual-based stochastic models are important for describing 

emergent properties, particularly if heterogeneities in susceptibility or social status are 

important for disease transmission (Smith et al. 2009a). Noisy prevalence data for 

mange in the Bristol fox population resulted in uncertainty in epidemiological 

parameter estimates as well as difficulties in making predictions about specific years 

from the SEI models (chapter 5); however, this modelling approach was important for 

elucidating mange transmission mechanisms thereby providing support for frequency-

dependent transmission. In chapter 7, through a pattern-orientated approach 

(Wiegand et al. 2003), an IBM using the same data was able to reproduce temporal 

population density and prevalence patterns, which compartment models are often 

unsuccessful at predicting simultaneously (Leung & Grenfell 2003, Kramer-Schadt et al. 

2009). The results from chapters 5 and 7 demonstrate the insight into disease 

dynamics that can be gained from two contrasting modelling approaches, illustrating 

the value of testing theoretical models with empirical data.  

Identifying the mechanism of disease transmission is important for predicting disease 

spread in host populations (Begon et al. 2003, Wasserberg et al. 2009). The recognition 

that frequency-dependent transmission is not restricted to sexually-transmitted or 

vector-borne diseases is growing, as determined recently for facial tumour disease in 

the Tasmanian devil Sarcophilus harrisii  (McCallum et al. 2009) and Gyrodactylus 

turnbulli in the guppy Poecilia reticulata (Johnson et al. 2011). That frequency-

dependent transmission was supported for mange in the Bristol fox population 

(chapter 5), reflects transmission driven by socially determined contact rates. This 

finding is important for the future control of mange, and potentially other diseases, in 
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fox populations and other social species. However, control of diseases with frequency-

dependent transmission is challenging given the absence of a critical host density 

threshold for disease invasion, since transmission is independent of population density 

(Lloyd-Smith et al. 2005a). Unsuccessful culling to control rabies in canids (Morters et 

al. 2013) and vampire bats Desmodus rotundus (Streicker et al. 2012) has been 

attributed to a complex relationship between disease transmission and density that is 

influenced by demographic heterogeneity, compensatory mechanisms and sociality. 

Thus, further data and modelling are required to establish the most effective method 

of control for diseases with transmission that is predominantly frequency-dependent. 

Understanding the impact of age or social structure on transmission is of applied 

importance, including for designing targeted disease control (Bolzoni et al. 2007, 

Carter et al. 2009). Age-structured modelling has advanced particularly for notifiable 

childhood diseases such as measles (Keeling & Grenfell 1997) and whooping cough 

(Rohani et al. 2010). Such models point to the importance of accounting for complex 

social factors; for example, seasonal forcing of contact rates captured the dynamics of 

measles during school terms (Keeling & Grenfell 1997). In the SEI model (chapter 5), 

likelihood-based estimates of age-specific transmission coefficients, β, were fourfold 

higher for juveniles than adults, reflecting possible differences in immune response or 

movement patterns determined by life history stage. Calibration of age-specific β, used 

in the IBM (chapter 7) to model intra-group mange transmission, produced estimates 

that were consistent with the results of the SEI model (chapter 5). Even though the 

parameter estimates of β were consistent in both models, the dynamics differed 

between the two models (see below), partly because of the addition of stochasticity 

and social structure but also because age-specific transmission rates were limited to 

intra-group transmission in the IBM (chapter 7). Apart from some notable examples, 

e.g. cowpox in voles (Smith et al. 2009c), our understanding of wildlife disease 

dynamics lags behind that of human infectious diseases due to a paucity of data. This 

thesis (chapters 5 and 7) illustrates the importance of age for mange transmission, but 

also highlights how data limitations preclude the elucidation of seasonality and other 

complex factors influencing age-specific transmission. 
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Increasingly, models are revealing the importance of indirect transmission for 

describing disease dynamics (Barlow et al. 2002, Miller et al. 2006, Roche et al. 2009). 

While SEI models (chapter 5) did not support the inclusion of an indirect transmission 

pathway, possibly in part because of a lack of data, direct transmission alone did not 

adequately describe the outbreak of mange in the IBM (chapter 7). Since social groups 

were not incorporated into the SEI model due to the difficulties of incorporating group 

interactions in compartment models (Lloyd-Smith et al. 2005a), the varying 

transmission rates stemming from these social interactions, particularly the low inter-

group contact rates, could have led to an overestimation of direct transmission in the 

compartment model. While indirect transmission was supported in the IBM (chapter 

7), in many disease systems, the relative contribution of environmental and direct 

transmission is thought to vary temporally. Processes leading to such variation in 

transmission mechanisms include interactions between resident and migratory 

shorebirds in avian influenza (Brown et al. 2012), varying host density in human 

influenza (Spicknell et al. 2010) and environmental contamination increasing with the 

duration of chronic wasting disease outbreaks (Almberg et al. 2011). In light of the 

uncertainty associated with the mechanism of fomite contact during the mange 

outbreak in the Bristol fox population, the temporal contribution of direct and indirect 

transmission modes remains undetermined. However, it is also possible that the 

inferred support for indirect transmission reflects unknown processes that increase the 

rate of disease transmission, such as individuals acting as reservoirs or superspreaders. 

Social interactions can play a major role in determining patterns of disease 

transmission (Altizer et al. 2003b, chapter 5). Contrary to some suggestions (Lindström 

1992), dispersing foxes did not play a large role in local disease transmission in 

simulations of the mange outbreak (chapter 7), although there were limitations to 

modelling the dispersal process. These individual-based simulations also suggested 

that the collapse of territory formation observed during the epizootic (Baker et al. 

2000) increased the spread of mange and decreased the chance of population 

recovery, due to an increase in transmission via fomites and a reduction in 

reproduction, respectively (chapter 7). Understanding how social perturbation affects 

disease spread and subsequent recovery is important for management. For instance, in 
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European badgers Meles meles, social perturbation through culling promoted the 

movement of individuals infected with Tb (Carter et al. 2007, Pope et al. 2007). Pack 

formation collapsed during a rabies outbreak in Ethiopian wolves Canis simensis, 

prompting a recommendation to vaccinate entire packs in order to maintain 

behavioural functionality within the population (Randall et al. 2004). In foxes, 

simulations indicated that immigration increased following culling (Rushton et al. 

2006), and indeed in the IBM (chapter 7), long-distance recolonisation, possibly by 

immigrating individuals, was necessary for population recovery after the mange 

epizootic in Bristol. This study contributes to our understanding of the social processes 

involved in the transmission of mange and underlines the complex ecological 

processes involved in the control of disease in wildlife populations.  

The role of genetic resistance for mange dynamics has been indicated in both empirical 

and theoretical work in canids (Leung & Grenfell 2003, Davidson et al. 2008). 

Consistent with simulations of mange in a coyote Canis latrans population (Leung & 

Grenfell 2003), resistance was required in the IBM to reproduce both population 

density and prevalence patterns (chapter 7). These results are supportive of evidence 

for rapid evolution occurring over shorter evolutionary timeframes than previously 

thought (Altizer et al. 2003a). That the proportion of resistant individuals was higher in 

the IBM incorporating indirect transmission than with direct transmission alone 

(chapter 7), is consistent with the suggestion that infection rates influence the 

selection of alleles (Robinson et al. 2012). Indeed, the faster evolution of immunity to 

myxomatosis in Australian rabbits Oryctolagus cuniculus compared to UK populations 

was attributed partly to the relatively higher virulence in the former population (Kerr 

et al. 2012). Although the actual physiological mechanism for immunity to mange 

remains unclear in all susceptible species, including humans (Walton 2010), the recent 

development of an experimental animal model for porcine scabies aims to determine 

the evolution and adaptation of the immune response to this disease (Mounsey et al. 

2010). Importantly, the modelling approach in this study (chapter 7) provides further 

support that immunity is important for mange dynamics in canids.   
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8.2 Further implications  

8.2.1 Demographic models: only as good as uncertainty allows 

Data limitations frequently prevent the quantification of sources of demographic 

uncertainty (Wisdom et al. 2000). This was illustrated in chapter 4, where the study 

duration of focal populations was too short to enable separation of process and 

sampling error for all but one fox population. Future data collection should strive to 

maximise the efficiency of the sampling effort invested in fox populations. Often, fox 

population samples are biased due to seasonal variations in the catchability of 

different age classes (Kolb & Hewson 1980, Tryjanowski et al. 2009). Demographic 

modelling could be used to determine the representativeness of population structure 

from different sampling techniques and schedules, using existing data such as the long-

term study of the Bristol population. Such approaches include information theoretic 

approaches and multi-state models, as applied to capture-mark-recapture studies of 

snakes and seabirds to incorporate behavioural responses to trapping (Willson et al. 

2011) and improve accounting for biases in survey design (Kendall et al. 2009), 

respectively. By establishing synchrony of data collection and following guidelines 

(chapter 4), including those for rigorous parameter definitions, future studies of fox 

demography will be better able to determine inter-annual variation, sources of 

uncertainty, potential correlations among vital rates, and biases in existing samples, as 

well as serving to address many of the questions posed in the following sections.   

Integrated population models (IPMs) are an emerging method that provide a useful 

means for combining multiple data sources and for estimating sampling and process 

error (Abadi et al. 2010). The methods in this thesis for addressing uncertainty 

(chapters 2, 3 and 4) could be incorporated into either Bayesian or frequentist IPMs. Of 

particular interest is the promise of using IPMs to estimate unknown demographic 

rates with existing data, thus eliminating the need for surrogate parameters when 

faced with sparse data. Using a Bayesian framework, Abadi et al. (2010) accurately 

estimated fecundity parameters by fitting likelihoods determined from simulated 

capture-mark-recapture (CMR) and population size data. Observed cycles in cub 

production were predicted by a frequentist IPM of black bear Ursus americanus that 



Chapter 8: General discussion 

 
 

 191

used only age-at-harvest and CMR data (Fieberg et al. 2010). This use of age-at-death 

data is of direct application to foxes, given that mortality data are readily available for 

many populations. IPMs also reduce uncertainty in λ: the width of the λ confidence 

intervals was reduced by a third with a Bayesian IPM using radio-tracking data and 

population density estimates of koala Phascolarctos cinereus, compared to a model 

using only the radio-tracking data (Rhodes et al. 2011). IPMs therefore have the 

potential to be applied to those fox populations in chapter 4 that lack fecundity data, 

but which have an independent estimate of population size.  

8.2.2 Same species, different demographics  

Recognition of population-level variation is increasing in many areas of ecology and 

evolution, including reproductive effort (Mason et al. 2011), evolutionary-stable 

strategies (Hesse et al. 2008) and bet-hedging (Nevoux et al. 2010). The contrasting 

demography of fox populations (chapter 4) is of direct relevance to management. The 

intimation that UK rural fox populations respond differently to hunting pressure 

(Heydon & Reynolds 2000) and the varying success of baiting in Australian fox 

populations (Saunders et al. 2010), present opportunities for examining relationships 

between intraspecific population dynamics and local conditions. Additional data are 

required to obtain a more comprehensive picture of the mechanisms driving these 

demographic differences. Particularly valuable are long-term data on population-

specific climate and hunting effort, given the importance of local conditions inferred 

from this study (chapter 4). The insight that such data provide is illustrated for 

leatherback turtles Dermochelys coriacea; lower reproductive effort in Pacific 

populations, driven by high temporal variability in resources, has resulted in decreased 

resilience to anthropogenic mortality compared to Atlantic populations and led to 

population-specific management recommendations (Wallace & Saba 2009). While it 

was not possible to substantiate widely the presence of inter-annual demographic 

variation in this study (chapters 3 and 4), future research should examine whether 

contrasting demographic tactics are supported in light of pervasive environmental 

stochasticity. 
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It is important to distinguish whether the inter-population differences seen in this 

study are conditional not only on possible inter-annual variation but also on transient 

dynamics. These short-term dynamics occur before or if a population converges on a 

stable stage distribution and asymptotic growth, for example as a result of a 

perturbation such as harvesting (Ezard et al. 2010). A study of metapopulation 

dynamics in yellow-bellied marmots Marmota flaviventris found that the relative 

contribution of patches to the total λ differed between transient and asymptotic 

dynamics, and that transient, but not asymptotic dynamics were driven in part by 

patch-specific population size and structure (Ozgul et al. 2009). Transient dynamics in 

fast-living bird and mammal species were found to be less variable and deviated less 

from asymptotic dynamics than in slow species, possibly because the longer 

generation times of the latter result in a higher chance for demographic variability 

(Koons et al. 2005). Future analyses should determine the relationship of transient and 

asymptotic dynamics with local conditions, life history speed and perturbations. Given 

the relevant data, the methods in this thesis (chapters 2 and 4) could easily be applied 

to exploring intraspecific transient and inter-annual dynamics. For example, do fast fox 

populations converge more rapidly on “stable” dynamics following a perturbation, and 

does life history change in response to environmental conditions? 

Current understanding of intraspecific responses to disease is limited in wild 

populations, but worthy of further consideration. Cahn et al. (2011) simulated disease 

in Sierra Nevada bighorn sheep Ovis canadensis sierrae populations, finding that a 

stable population (λ = 1) was unable to recover from mild or severe disease outbreak 

without management intervention, a slowly growing population (λ = 1.07) could only 

withstand mild disease outbreaks, whereas a faster growing population (λ = 1.1) was 

sufficiently robust to the impacts of severe disease to recover without management. 

Further work is required to determine whether these types of analyses are useful in 

light of the underlying causes of variation in λ and density-dependent processes, 

although in this example, both density-dependent and independent simulations 

produced equivalent results. Contrasting prevalence and recovery among local fox 

populations exposed to rabies was thought to arise from intraspecific responses to 

hunting pressure (Zimen 1982). Given the possible intraspecific demographic variation 
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(chapter 4), population-specific responses to mange could be explored through 

simulations, as demonstrated in this study (chapter 7).  

8.2.3 The adaptive modelling loop   

An important role of models is to guide future multidisciplinary research, which is 

especially pertinent in wildlife disease ecology given the multi-species interactions of 

population dynamics, behaviour and epidemiology. For example, modelling of the 

poorly understood Lagos bat virus in straw-coloured fruit bats Eidolon helvum directed 

work to determine age-specific demographic rates and the existence of protective 

acquired immunity (Restif et al. 2012). Field and laboratory studies on plague Yersinia 

pestis in black-tailed prairie dogs Cynomys ludovicianus, guided by modelling, revealed 

that previous hypotheses underestimated the importance of early-phase and 

environmental transmission for disease spread (Restif et al. 2012). Indeed, frequent 

updating of models with revised data can then be used to refine management actions. 

In this context, modelling was recommended to guide and evaluate management 

efforts to control facial tumour disease in Tasmanian devils, given the continued failure 

of culling and the uncertainty over transmission mechanisms (Lachish et al. 2010). The 

following sections discuss some of the demographic, social and epidemiological 

uncertainties highlighted by modelling mange (chapters 5 and 7), that require further 

theoretical, field, experimental and captive studies to increase our understanding of 

mange dynamics and to refine management actions.  

8.2.4 Faster life history, higher infection 

The relevance of life history speed for explaining variation in aspects of ecology is 

gaining recognition (e.g. for senescence see Jones et al. 2008c, and for personality see 

Careau et al. 2009) and recent work suggests that the fast-slow continuum can be used 

to predict species-specific susceptibility to infection (Lee 2006, Martin et al. 2006, 

Johnson et al. 2012). Such insight improves our understanding of the relationship 

between life history strategy and disease dynamics, both within and between species. 

Relative to fast species, slower amphibian species were found to invest more in 

immunity, resulting in lower parasite loads (Johnson et al. 2012). Lee et al. (2008) 
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proposed that fast-living bird species invest less in immunity compared to slow species 

in order to minimise the resources devoted by juveniles to the immune response. 

Notably, the innate traits of fast species, e.g. high productivity and low investment in 

immunity, increase not only their susceptibility to infection but also their resilience to 

biodiversity loss, which is likely to be of consequence for future disease spread in light 

of the increasing perturbation of natural ecosystems (Keesing et al. 2010). Given the 

inferred importance of resistance to mange (chapter 7), and that foxes exhibit a range 

of speeds within the medium-fast classification (chapter 4), the investment that this 

widespread canid makes in immunity could be considered in relation to its life history. 

Specifically, such insight could be gained through a comparison among conspecific fox 

populations and to other carnivores along the fast-slow continuum.    

8.2.5 Socialising with infection 

Sociality can influence disease transmission by changing the rate of contact with 

infectious individuals or substances. Social-ranking can cause dominant individuals to 

experience an above average number of encounters; however, there is evidence that 

the directionality of these contacts is important in determining successful disease 

transmission. For example, meerkats Suricata suricatta receiving aggression are more 

at risk of Tb infection than those individuals directing the aggression (Drewe 2010). 

Disease-induced changes in social behaviour, such as the restricted movement 

observed in mangy foxes (Overskaug 1994) and increased diurnal movement in mangy 

bare-nosed wombats Vombatus ursinus (Borchard et al. 2012 ), are hard to document 

and often unpredictable, but may result in reduced encounter rates; simulations show 

that disease transmission can decrease in a population if infected individuals become 

isolated from other group members (Gudelj et al. 2004). Social perturbation potentially 

influences disease transmission by increasing contact rates (Carter et al. 2007), 

although the processes relating to social disruption are still poorly understood. In the 

IBM (chapter 7), although inter-group contact rates did not change, territory collapse 

resulted in increased contact with fomites, speeding up the transmission of mange. 

Insight into social contacts in fox populations could be gained through proximity data 

loggers (Böhm et al. 2009).  
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The models in this thesis provide a foundation for future work. Specifically, the IBM 

developed in chapter 6 could be modified to include decision rules that allow for the 

adaptive behaviour of individuals (e.g. Stephens et al. 2002a). In addition, network 

modelling is increasingly being applied to determine the role of social processes for 

disease transmission in wild populations (Cross et al. 2004, Drewe 2010, Craft et al. 

2011), where the relationship between individuals can be simulated to determine the 

direction and intensity of interactions. Network modelling is often used to simulate 

“small-worlds”, where most individuals are not neighbours but any two individuals are 

connected by a short number of “steps”. For instance, occasional pride-to-pride 

contact was sufficient to promote the persistence of canine distemper in a small-world 

network of lions Panthera leo (Craft et al. 2011) and in schools with small-world 

networks, vaccination based on contact structure was recommended for influenza 

(Salathe et al. 2010). Disease control strategies in social species should therefore 

include measures to account for the nature of such contacts. 

Not only does sociality influence disease transmission through the behavioural changes 

described above, but social status can alter an individual’s physiological likelihood of 

infection. Higher-ranking individuals had better immunity than lower-ranking 

conspecifics due to greater access to resources in spotted hyena Crocuta crocuta 

(Höner et al. 2012) or high levels of testosterone in baboons Papio cynocephalus  

(Archie et al. 2012). However, endoparasite loads in fur seals Arctocephalus forsteri 

were found to be higher in dominant individuals that had high levels of testosterone 

(Negro et al. 2010). The role of social status in the immune response to mange remains 

to be determined. Important progress towards understanding the impact of sociality 

for immunity to mange could be made by combining field-based immunological tests 

with a long-term history of individual infections (Pedersen & Babayan 2011), such as 

that of the Bristol fox population. The influence of sociality on immunological function 

has long been recognised in humans (Berkman & Syme 1979, Uchino 2006). In this 

context, learning about immune processes in closely-related human diseases and using 

techniques developed for their study can provide insight into immune responses in 

wildlife diseases (O'Brien et al. 2006). Understanding such physiological processes is 
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especially important given that selection pressures can act on immunity over 

evolutionary short time frames (Altizer et al. 2003a, chapter 7).  

The interface of disease ecology and ecological immunology is an emerging field that 

bridges within- and between-host processes, thus linking transmission dynamics and 

variation in immune responses (Hawley & Altizer 2011). Underlying immunological 

processes can be better understood through insight into the influence of sociality and 

life history on disease transmission (see above and previous section). Recent work 

suggests that negative and positive covariation between behavioural and physiological 

processes is important for determining R0, and hence, the likelihood of a disease 

invading (Hawley et al. 2012). Changes in contact rates or immunity can give rise to 

superspreaders, individuals that cause significantly higher than average infections 

(Lloyd-Smith et al. 2005b). In such diseases infrequent but explosive epidemics can 

occur after the introduction of a single case, as illustrated in the recent SARS outbreak 

(Lloyd-Smith et al. 2005b). Evidence from porcine mange (S. scabiei var. suis) in captive 

pigs suggests that a small number of individuals have significantly higher than average 

mite loads and intensity of infection (Davies 1995), but the relationship with 

transmission is unknown. The fact that mange remains endemic in the Bristol fox 

population provides a useful opportunity to explore disproportionate infection risk, 

especially since asymmetrical infection rates are inferred from the age-specific 

variation in mange transmission (chapter 5). Further data are required to determine 

the relative influence of social status or life history stage for individual infection risk in 

foxes and whether resistance allowed certain individuals to live with the disease, or 

recover and become re-infected. Ultimately, greater insight into the consequences of 

individual immunity for fitness and the adaptive significance of life history for host-

pathogen dynamics can be gained by taking a multidisciplinary approach, combining 

immunological and ecological data, to studying disease in wild populations. 

With the exception of a few relatively well-studied wildlife diseases such as avian 

influenza (Lebarbenchon et al. 2009), epidemiological parameters of indirect 

transmission are typically estimated through modelling. In compartment models, the 

density of fomites in the environment is often simulated by fitting the parameters 
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related to fomite transmission to data (chapter 5, Barlow et al. 2002, Miller et al. 2006, 

Roche et al. 2009). However, there are few published studies of indirect transmission 

in IBMs and within these examples there is no consistent method of modelling the 

pathogen load in the environment. The approaches taken thus far include 

incorporating the viral load of avian influenza in lakes as a deterministic 

“compartment” (Roche et al. 2011), ascribing a proportion of individuals as 

“superexcretors” of Tb in badgers (Shirley et al. 2003) and a climate-dependent 

probability of infection given a fixed number of water sources contaminated with 

brown rot fungus (Breukers et al. 2006). In chapter 7, a novel approach was taken, 

determining a “fomite load” based on the number of infected individuals and the 

proportion of contact between territories, with a fitted rate of successful infection 

from contact with the infested substance. Given the difficulties of observing contact 

rates with fomites in wild populations, a benefit of the fomite load approach taken in 

chapter 7 was that it constrains the number of parameters requiring model fitting by 

implicitly incorporating the many unknown processes. Thus, more realistic 

incorporation of indirect transmission into IBMs, not only in mange systems, could be 

improved by simulating finer-scale behavioural and epidemiological data to provide 

further insight into the relative importance of direct and indirect pathways. Research is 

now required to identify possible mechanisms of indirect mange transmission, such as 

the limited entry points into gardens that could be a bottleneck for transmission, as 

well as rates of mite uptake and shedding by foxes. Such information is also useful 

since diseases with indirect transmission can be harder to control due to the additional 

transmission component. For example, low culling success was predicted for white-

nose syndrome in bats due to the persistence of the fungus in the environment 

promoting indirect transmission (Hallam & McCracken 2010). In this context, the 

identification of the most influential parameters for indirect transmission, such as the 

viral inactivation rate in water for avian Influenza (Lebarbenchon et al. 2009), will be of 

consequence for designing optimal control programmes. 

Uncertainty exists over whether conventional epidemiological parameters realistically 

describe disease transmission in social species. The basic reproductive number, R0, is a 

population measure and thus, group structure and individual differences are not 
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explicitly accounted for (Cross et al. 2007). In reality, low contact rates and high spatial 

clustering, as seen in social species, can result in underestimating R0 (Keeling 2005). R0 

can be adapted to account for variation in infection rates by determining the number 

of groups, R*, infected by an initial diseased group in an otherwise susceptible 

population (Ball et al. 1997). Estimating R* requires following those individuals that 

infect new groups (Cross et al. 2005). In this thesis, for reasons of computational 

simplicity, inter- and intra-group disease transmission was modelled without assigning 

a specific individual as the source of infection. Therefore, the transmission mechanism 

in chapter 7 requires modification in order to determine R* for the simulated fox-

mange system.  

8.2.6 Foxes and mange: a community affair?  

Disease systems do not exist in isolation. Interactions between and within multi host-

pathogen systems can be a selective pressure on immunity (Bordes & Morand 2009) 

and trade-offs in the effects of parasites on host populations are thought to contribute 

to the evolution of optimal group size (Møller et al. 1993). In wild field vole Microtus 

agrestic populations, relative infection with microparasites explained more variation in 

infection risk than factors such as age and season (Telfer et al. 2010). Foxes are 

susceptible to multiple, often concurrent pathogens, including rabies, E. multilocularis, 

Toxocara canis, and many ecto-and endo-parasites (Deplazes et al. 2004, Vitasek 2004, 

Barbosa et al. 2005, Kočišová et al. 2006). Inter-population variation in parasite 

distributions was found in Spain, with rural fox populations having a higher diversity of 

parasites than urban populations (Barbosa et al. 2005). Within-host parasite 

interactions were inferred by the high prevalence of intestinal worms found in mangy 

foxes in Italy, where the relationship between mange mites and helminths was 

suggested to result in part from a trade-off in immunological response (Balestrieri et 

al. 2006). Within-host parasite interactions are not only important to consider for 

understanding disease dynamics but will also ultimately influence the success of 

control programmes. 

Multi-host systems for mange are widespread: for example, foxes are potential vectors 

for domestic dogs in the UK (Soulsbury et al. 2007) and for the Iberian wolf Canis lupus 
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in Spain (Oleaga et al. 2011). Models are increasingly providing insight into multi-

species infections. For instance, modelling suggested that rabies was more likely to die 

out when a multi-host outbreak started in foxes than in badgers, but that a single 

cross-species transmission to badgers was sufficient to promote disease persistence 

(Singer & Smith 2012). A lag in the observed and predicted incidence of poxvirus in red 

squirrels Sciurus vulgaris following the invasion of infected grey squirrels Sciurus 

carolinensis indicated low rates of direct contact between the two species (Rushton et 

al. 2000). Modelling disease control can also reveal unintended consequences in multi-

species population dynamics, such as decreased cub survival in cheetahs Acinonyx 

jubatus due to increased predation by lions Panthera leo following their vaccination 

against canine distemper (Chauvenet et al. 2011). Community disease ecology remains 

an under-studied issue in fox-parasite systems. In particular, the potential effects for 

fox-mange dynamics warrant further research, especially given the inferred 

importance of indirect transmission and the evolution of immunity (chapter 7).  

8.2.7 Conservation implications of mange: the bigger picture 

The relevance of disease ecology to conservation is now widely recognised (Dobson & 

Hudson 1986, Daszak et al. 2000, Altizer et al. 2003a, Pedersen et al. 2007, Jones et al. 

2008a), although integration of disease control into conservation management is 

constrained either by a lack of information or understanding (Woodroffe 1999, Lafferty 

& Gerber 2002). One reason epidemiology is overlooked by conservationists is the 

conjecture that disease is unlikely to cause extinction in small populations because 

transmission is density-dependent and, as a result, there is a host density threshold 

below which a pathogen cannot invade (Lafferty & Gerber 2002). However, as 

demonstrated in this thesis (chapter 5), traditional transmission assumptions are 

increasingly being challenged through modelling. Hence, frequency-transmitted 

pathogens, especially in social species, could pose a significant risk to already 

compromised populations. For example, modelling of white-nose syndrome and facial 

tumour disease demonstrates that extinction is a real possibility in US bat (Langwig et 

al. 2012) and Tasmanian devil populations (McCallum et al. 2009), respectively. In the 

context of mange, this disease has caused significant declines in isolated southern 
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hairy-nosed wombat Lasiorhinus latifrons populations (Ruykys et al. 2009) and is a 

major cause of mortality in the threatened Masai Mara cheetah population (Gakuya et 

al. 2012). Given the complex nature of disease transmission (chapters 5 and 7), 

understanding population dynamics and epidemiology is essential for successful 

wildlife disease management (Woodroffe 1999, Breed et al. 2009).   

A pressing issue for conservation is the transmission of disease between domesticated 

and wild species. Over 80% of domesticated animal pathogens have the potential to 

infect wildlife species (Cleaveland et al. 2001). Mammalian orders with the highest 

number of domesticated or human-associated species (e.g. carnivores, ungulates and 

rodents) face a disproportionate risk of infectious disease outbreak (Pedersen et al. 

2007). Indeed, domestic-wildlife mange transmission is a current and potential threat 

to many species (Daszak et al. 2000, Gortazar et al. 2007); domestic dogs were the 

source of rabies epizootics in Ethiopian wolves (Randall et al. 2004) and the extinction 

of a Spanish ibex Capra pyrenaica hispanica population was caused by a mange 

outbreak stemming from domestic goats (Leon-Vizcaino et al. 1999). Insight into 

mange dynamics, such as that provided by chapters 5 and 7, as well as understanding 

how age classes that are important for disease transmission contribute to population 

growth (chapter 4), can contribute to refining the management of this disease. The 

potential for inter-species transmission could be reduced trough the targeted control 

or treatment of specific sexes or age classes of mangy individuals (Gressmann & Deutz 

2001) in wild and/or domestic species, identifying direct or indirect routes of 

transmission between domestic and wild populations, or by acting to increase the 

proportion of the disease-resistant population, such as by translocation of individuals 

with resistance alleles (Hamede et al. 2012).  

Global change, including climate change and biodiversity loss will inevitably alter the 

persistence and range of parasites. The loss of species that are more resilient to 

infection can alter disease dynamics due to differences in life history (see section 8.2.4) 

or encounter dilution effects. For example, hantavirus prevalence increased when the 

experimental reduction of small mammal species richness resulted in higher densities 

of the generalist reservoir host Zygodontomys brevicauda (Suzán et al. 2009). In this 
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context, changes in multi-host community composition could be of importance for 

mange dynamics in susceptible threatened species. In light of climatic changes, 

increasingly favourable temperatures have resulted in the expansion of Bluetongue 

into Northern Europe in recent years due to the increased survival of the disease’s 

main vector (Purse et al. 2005) and several vector-bourne diseases, including malaria, 

have expanded into previously disease-free latitudes and altitudes (Kovats et al. 2001). 

A slower spread of mange was observed in Spanish ibex Capra pyrenaica during dry 

years due to the inhospitable climate for the mites (Perez et al. 1997). Given the 

potential for indirect transmission (chapter 7) and that the persistence of mange mites 

in the environment is driven by temperature and moisture (Arlian et al. 1989), changes 

in climate may alter the prevalence or intensity of this disease. 

8.3 Conclusion  

In this study, I established that demographic analyses of a common species could 

provide insight into methodologies to account for data uncertainty, identify 

intraspecific demographic variation, and provide meaningful information on the 

dynamics of an important disease. Importantly, I found support for inter-population 

differences in the contributions of vital rates to population growth in the red fox. 

However, I highlighted the significant gaps in our understanding of global fox 

demography through reviewing the quality and quantity of demographic data and 

illustrated the management implications of ignoring uncertainty in demographic 

modelling. Using a long-term data set on an urban fox population, I made considerable 

progress towards elucidating the processes driving epizootic and enzootic phases of 

sarcoptic mange outbreaks and determining the impacts of sociality for disease 

transmission. Ultimately, I demonstrated that increasing our knowledge of a species’ 

demography, and the pressures upon it, will enable the refinement of management 

decisions.
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Appendix 1. Summary of a review of global fox population dynamics 

Underlined populations were selected for demographic analysis in chapter 4. ± standard deviations, where provided.
 1

Data type: MD: 

Mortality data; CMR: Capture-mark-recapture; RT:  Radiotelemetry; SS: Sign surveys; BE: Behavioural observations; G: Genetic. – Data not 

provided; 
2
Habitat: 1 – Rural agricultural; 2 – Rural non-agricultural 3: Low population density; 4 – High population density. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Study 

# 

Study 

population 

References Data type
1 

Total study 

duration 

(years) 

Max study 

area (km
2
) 

Max sample 

size (from 

one study) 

Habitat
2 

Sex ratio: all 

ages*; 

adults**; 

juveniles^; 

embryos^^ 

Density km
-2

 

(individual, 

litter* or 

group**) 

Home 

range 

(km
-2

) 

1 UK: London 1, 2, 3 MD 6 1618 1141 4 1 : 0.96* - - 

2 UK: London 4 CMR, SS 6 7.6 209 4  2.33 ± 0.39 

1.03* 

1.65 

3 UK: Bristol 5, 3, 6, 7, 8, 

9, 10, 11, 

12 

MD, RT, 

BE, SS, 

CMR, G 

30+ 116 1701 4 1 : 0.81* 

1.2:1.0** 

14.00± 8.34 

1.82* 

0.51 ± 

0.48 

4 UK: Oxford 13, 14, 15, 

16 

RT 10 9.17 >120 3,4 - 2.15 

2.5** 

0.92 ± 

0.66 

5 UK: Wales 17, 18 CMR 6 580 476 1,2 1:82** 1.85 ± 1.27 

0.90 ± 0.57* 

2.35 ± 

2.33 

6 UK: 

Hampshire 

19 BE 1 53 124 2 - 0.57* - 

7 UK: Dorset 20 RT, SS 2 11 14 2 - - 2.43 ± 

0.97 

8 UK 21, 22 MD 3 2322 656 1,2 1 : 1** 0.94 ± 0.85 - 

9 UK: 

Scotland 

23, 24 MD 23 48760 4765 1,2 - 1.09 ± 0.67 - 

10 Ireland 25, 26 CMR 2 - 292 - - - - 

11 Belarus 27 SS 3 300 - 2 - 0.92 ± 0.93 - 

12 Belgium 28 MD 2 589 314 3,4 0.95:1* - - 

13 France: 

north-east 

29, 30, 31, 

32 

RT, SS, 

MD, G 

7 250 1259 1,3 - - 1.18 ± 

0.75 
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Study 

# 

Study 

population 

References Data type
1 

Total study 

duration 

(years) 

Max study 

area (km
2
) 

Max sample 

size (from 

one study) 

Habitat
2 

Sex ratio: all 

ages*; 

adults**; 

juveniles^; 

embryos^^ 

Density km
-2

 

(individual, 

litter* or 

group**) 

Home 

range 

(km
-2

) 

14 France 33 - - - - - - - - 

15 Germany 34 MD, BE 15 130 955 2 1.5: 1** 0.73 ± 0.25 

0.55  ± 0.17* 

7.00 

16 Germany 35, 36 MD, CMR 5 1012 1371 1,2 - 0.74 

0.31* 

- 

17 Italy 37, 38 RT, MD 2 2448 317 1,2,4 1 : 0.96^^ - 1.98 ± 

1.28 

18 Netherlands 39 RT 5 - 150 2 - 0.55* 3.48 ± 

3.77 

19 Netherlands 40, 41 RT 6 300 311 2 - - - 

20 Norway 42 SS 3 18 2 2 - - 5.47 ± 

0.46 

21 Poland 43, 44 SS, MD, BE 9 89 113 1,2 1.17 : 1** 0.71 ± 0.18 

0.0.94-0.171* 

- 

22 Poland 45 SS 3 66 - 1,2 - 1.30 ± 0.31 

0.31 ± 0.02* 

- 

23 Russia 46 MD 5 - 759 - - - - 

24 Spain: 

Doñana 

47, 48 MD, SS 4 500 116 - 0.9:1^^ 1.70 - 

25 Spain: Ebro 49 MD 7 - 413 1,2 1:0.76* - - 

26 Sweden: 

South 

50, 51 MD, CMR 6 - 799 1,2 - - - 

27 Sweden: 

North 

50, 51 MD, CMR 4 - 870 1,2 - - - 

28 Sweden 52 BE 6 3 13 1,2 - - 4.00 ± 

1.84 

29 Sweden 53, 54, 55, 

56, 57 

MD, RT, SS 17 130 874 2 - - - 
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Study 

# 

Study 

population 

References Data type
1 

Total study 

duration 

(years) 

Max study 

area (km
2
) 

Max sample 

size (from 

one study) 

Habitat
2 

Sex ratio: all 

ages*; 

adults**; 

juveniles^; 

embryos^^ 

Density km
-2

 

(individual, 

litter* or 

group**) 

Home 

range 

(km
-2

) 

30 Switzerland 58, 59, 60 MD, SS 8 30 88 1,2 - 0.4 - 3.2 

0.37 ± 0.04* 

5.66 ± 

11.68 

31 Japan 61 MD 4 6800 690 1,2 - - - 

32 Japan 62 RT 1 24 4 - 1 : 0.65** 

1 : 0.74^ 

- 3.95 ± 

1.98 

33 Japan 63 - 1 - 6 -  - 4.94 

(3.57-

6.31) 

34 USA: New 

York State 

64 - 2 - 175 - 0.95 : 1^^ - - 

35 USA: 

Indiana 

 MD 1 - 104 - - - - 

36 USA: 

Midwest 

65, 66 MD, SS, 

CMR, RT 

9 84 2049 1,2 1 : 0.79** 

1 : 0.82^ 

1 : 0.96^^ 

- 9.71 

37 USA: 

Minnesota 

67 SS, RT 2 41.44 32 - - - 6.993 ± 

1.372 

38 USA 

(Midwest): 

Wisconsin 

68, 69 - 4 83.73 - - 1 : 1.04^ 0.09 ± 0.03** - 

39 USA: Illinois 70 RT, MD 5 3000 611 1,4  - - 

40 USA: New 

York State 

71, 72, 73 CMR, MD 5 26 2848 1,2 1.06:1** 

1.35:1^ 

0.74 

0.97 ± 0.09** 

- 

41 USA (East): 

Maryland 

74 MD 3 - 210 1,2 1:1* - - 

42 USA: North 

Dakota 

75, 76 MD, RT 5 - 363 1,2 1.33:1** 

1: 0.93^^ 

0.10 ± 0.04** - 

43 USA: Alaska 77 CMR, BE 4 3 30 2 - 9.53 ± 0.45 - 
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 Study 

# 

Study 

population 

References Data type
1 

Total study 

duration 

(years) 

Max study 

area (km
2
) 

Max sample 

size (from 

one study) 

Habitat
2 

Sex ratio: all 

ages*; 

adults**; 

juveniles^; 

embryos^^ 

Density km
-2

 

(individual, 

litter* or 

group**) 

Home 

range 

(km
-2

) 

44 Canada: 

Alberta 

78 SS, BE 9 21 - 1,2 - - - 

45 Canada: 

Ontario 

15, 79 RT 8 - 120 1 - 0.54 ± 0.65 9 (5.00-

20.00) 

46 Canada: 

Ontario 

80 RT 1 4 7 3 - 0.57** 0.77 ± 

0.39 

47 Australia: 

Canberra 

81 - 2 - 437 - 1:0.87* - - 

48 Australia: 

NSW 

82 - 5 - 838 - - - - 

49 Australia: 

Victoria 

83, 84 MD 4 24 317 - 1: 0.79** 2.7 ± 1.38 2.56 ± 

2.30 

50 Australia: 

Melbourne 

85, 86, 87 RT, MD, SS 5 21 50 4 - 5.99 ± 4.93 

1.18 ±0.96* 

0.28 ± 

0.12 

51 Australia 

(Hunted): 

NSW 

88, 89 RT, MD, SS 3 - 534 1,2 1 : 0.72* 

1:0.72^ 

- - 

52 Australia: 

NSW 

90 - 2 77 21 2,4 - - 1.35 ± 

0.042 

53 Australia: 

NSW 

91 SS,MD 2 108 276 1 - - - 

54 Australia 

(Non-

hunted): 

Western 

92 MD, SS, 1 200 204 1 1:1* 0.46–0.52 - 

55 Australia: 

south 

93 SS 10 20 km 

transect 

- 2,4 - 0.60 - 

56 Australia: 

Melbourne 

94 RT 2 26 9 2,3 - - 0.45  ± 

0.13 
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Appendix 2. Demographic parameters from a review of global fox populations 

 

Study numbers refer to Appendix 1, ± standard deviations, where provided. Studies from Appendix 1 that do not report relevant information 

are omitted. Underlined populations were selected for demographic analysis. 

 

Study 

# 

Study 

population 

Age 

definition
1 

Juvenile: 

adult 

ratio 

Survival 

(age-

specific) 

Litter size 

definition
2 

Breeding 

probability 

definition
3 

Litter 

size
4
 

(mean - 

all ages) 

Litter 

size 

(age-

specific) 

Percent 

non-

breeding 

(mean) 

Percent 

non-

breeding 

(age-

specific 

Percent 

dispersing  

- juvenile 

males 

(mean) 

Percent  

dispersing 

–juvenile 

females 

(mean) 

1 UK: London 1 0.53:0.47 

0+0.38         

1+0.43        

2+0.49       

3+0.44 

1 1 - 

0+4.6          

1+5.0                 

2+4.9             

3+4.9 

- 

0+ 24.6         

1+8.1          

2+4.9      

3+3.5 

- - 

2 UK: London 3 - - 2 NA - - - - - - 

3 UK: Bristol 1 0.50:0.50 

0+ 0.44                   

1+0.53                  

2+ 0.52                  

3+0.51 

1 1 - 

0+4.5            

1+4.9            

2+4.8              

3+4.7 

- 

0+24.4              

1+17.1              

2+19.1          

3+2.9 

44.0  ± 

25.9 

22.7  ± 

12.6 

4 UK: Oxford NA - - 1 2 - - 40.6± 25.5 - - - 

5 UK: Wales 1 - 

0.75-1: 0.45    

1.75-2: 0.43    

2.75-3: 0.44     

3.75-4: 0.43    

4.75-5: 0.50 

1 1 4.6** - 20.5 - 25.0 ± 16.2 32.5 ± 1.7 

7 UK: Dorset NA - - 1 NA 
5.8 ± 

1.9^ 
- - - - - 

8 UK 1 - 

0+ 0.45                          

1+ 0.45                      

2+ 0.30                       

3+ 0.45 

1 1 
5.55 ± 

0.9 
- 9.7 ± 13.72 - - - 

9 
UK: 

Scotland 
1 0.67:0.33 

0+ 0.34                 

1+ 0.45               

2+ 0.43                   

3+ 0.13 

1 NA 5.0** - - - - - 
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Study 

# 

Study 

population 

Age 

definition
1 

Juvenile: 

adult 

ratio 

Survival 

(age-

specific) 

Litter size 

definition
2 

Breeding 

probability 

definition
3 

Litter 

size
4
 

(mean - 

all ages) 

Litter 

size 

(age-

specific) 

Percent 

non-

breeding 

(mean) 

Percent 

non-

breeding 

(age-

specific 

Percent 

dispersing  

- juvenile 

males 

(mean) 

Percent  

dispersing 

–juvenile 

females 

(mean) 

10 Ireland 3 0.64:0.36 - 1 3 - - 9.8 ± 2.8 - 30.0 20.0 

12 Belgium 1 0.51:0.49 

0+ 0.42                     

1+ 0.51                      

2+ 0.63                   

3+ 0.92               

4+0.36 

NA NA - - - - - - 

14 France 1 0.54:0.46 - NA NA - - - - - - 

15 Germany 1 0.66:0.34 

0+ 0.35                

1+ 0.34                

2+ 0.35                     

3+ 0.32                     

4+ 0.23 

2 NA 

4.8 ± 

1.1*        

6.8 ± 

0.9**' 

- - - - - 

16 Germany 1 0.56:0.44 - 1 1 4.6* 

0+ 4.5^                  

1+ 5.3                        

2+ 4.7                    

3+ 4.9 

- 

0+ 24              

1+ 17.9             

2+ 0.0              

3+ 6.8 

- - 

17 Italy 1 0.52:0.48 - 1 2 

4.0 ± 

1.3^       

3.9  ±  

1.6** 

- 20 - - - 

21 Poland 1 0.54:0.46 

0-0.167: 

0.69      

0.167-0.5: 

0.76             

0.5-1: 0.45 

1+ 0.56                  

2+ 0.428               

3+ 0.38                

4+ 0.32 

1 NA 

3.8 (2.7 - 

4.5)*             

5.5^ 

- - - - - 
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Study 

# 

Study 

population 

Age 

definition
1 

Juvenile: 

adult 

ratio 

Survival 

(age-

specific) 

Litter size 

definition
2 

Breeding 

probability 

definition
3 

Litter 

size
4
 

(mean - 

all ages) 

Litter 

size 

(age-

specific) 

Percent 

non-

breeding 

(mean) 

Percent 

non-

breeding 

(age-

specific 

Percent 

dispersing  

- juvenile 

males 

(mean) 

Percent  

dispersing 

–juvenile 

females 

(mean) 

23 Russia 1 0.62:0.38 

0+ 0.34                    

1+ 0.49                    

2+ 0.52                   

3+ 0.50 

4+ 0.60 

2 NA - - - - - - 

24 
Spain: 

Donana 
1 - - 1 1 

3.1 (2.5-

3.6)*       

3.3 ±0.7 

** 

- -13.2 - - - 

25 Spain:Ebro 2 0.58:0.42 

1+ 0.56                

2+ 0.52               

3+ 0.55                

4+ 0.64 

1 1 
3.6 ± 

0.4^ 
- 10.5 ±12.5 - - - 

26 
Sweden 

(South) 
1 0.60:0.40 

0+ 0.43 

1+ 0.53 

2+ 0.75 

3+ 0.55 

1 1 - 

0+  3.93^               

1+ 4.77 

2+ 4.53 

3+ 4.20 

- 

0+ 46          

1+ 62 

2+ 81 

- - 

27 
Sweden 

(North) 
1 0.54:0.46 

0+ 0.33 

1+ 0.71 

2+ 0.50 

3+ 0.59 

1 1 - 

0+ 4.17^ 

1+ 4.30 

2+ 4.77 

3+ 4.20 

- 

0+ 59 

1+ 48 

2+ 33 

- - 

28 Sweden NA - - 1 2 
4.8 ± 

0.7* 
- 50 - - - 

29 Sweden 1 - 

0+ 0.53              

1+ 0.67                  

2+ 0.66               

3+ 0.61                    

4+ 0.66 

1 NA 
4.1 ± 

0.5^ 
- - - - - 

30 
Switzer-

land 
NA - - 2 NA 

3.9 ±  

0.4* 
- - - - - 
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3 
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(mean - 

all ages) 
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Percent 
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breeding 

(mean) 
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non-

breeding 

(age-

specific 

Percent 

dispersing  

- juvenile 

males 

(mean) 

Percent  

dispersing 

–juvenile 

females 

(mean) 

31 Japan 2 0.70:0.30 

0+  0.19              

1+ 0.51              

2+ 0.53                  

3+ 0.40                   

4+ 0.75 

NA NA - - - - - - 

32 Japan 1 0.62:0.38 

0+ 0.20                 

1+ 0.88                  

2+0.43                  

3+ 0.70 

NA NA - - - - - - 

34 
USA: New 

York State 
NA - - 1 2 

5.4 (1-9) 

** 
- 4.7 - - - 

35 
USA: 

Indiana 
NA - - 2 2 6.8 ± 0.3 - 40 - - - 

36 
USA: 

Midwest 
1 0.64:0.36 

0+ 0.35                      

1+ 0.53                

2+ 0.80                

3+ 0.80               

4+ 0.86 

1 3 

4.2  ± 

0.1*                        

7.1  ±  

1.9^             

6.8 ± 

0.1** 

- - - 87.4  ± 9.2 
44.6  ± 

11.5 

38 

USA 

(Midwest): 

Wisconsin 

1 0.59:0.41 

1+ 0.33                    

2+0.40                

3+0.95                    

4+0.43 

1 2 - 

0+ 5.9**             

1+ 5.4                     

2+ 6.8                       

3+ 5.3                    

4+ 8.0 

- 

0+  41             

1+ 10        

2+11              

3+ 25            

4+ 0 

- - 

39 
USA: 

Illinois 
3 - 

0+ 0.27 

1+ 0.35 
NA NA - - - - - - 

40 
USA: New 

York State 
1 0.69:0.31 

0+ 0.63                  

1+ 0.33                  

2+ 0.57                   

3+ 0.25                 

4+ 0.58 

NA NA - - - - 58.3 ± 14.0 
47.5 ± 

26.7 
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41 
USA (East): 

Maryland 
2 0.55:0.45 

0+ 0.34               

1+ 0.87               

2+ 0.56                   

3+ 0.63                 

4+ 0.58 

2 2 - 

0+ 5.32^ 

1+ 6.68 

2+ 6.26 

3+ 6.10 

- 

0+ 83 

1+ 17 

 

- - 

42 
USA: North 

Dakota 
2 0.44:0.56 - 1 1 - 

0+ 

3.1±2.3          

1+ 

4.7±2.2         

2+ 

4.9±2.2             

3+ 

5.6±1.9        

4+ 

4.8±1.3 

- 

0+ 28.3 

1+ 7.7 

2+ 7.7        

3+ 5.3 

4+ 0.0 

62.0± 10.1 
31.0 ± 

34.7 

43 
USA: 

Alaska 
3 - - 2 2 

4.2 ± 

0.2* 
- 78.8 ± 14.1 - - - 

44 
Canada: 

Alberta 
3 - - NA NA 5.0* - - - - - 

45 
Canada: 

Ontario 
3 0.79:0.21 

Juv+ 0.20          

1.5+ 0.40         

2.5+ 0.83 

2 3 8.0^ - - - 90.5 77.0 

47 
Australia: 

Canberra 
3 - - 2 3 

3.8 (1-

8)*            

4.3 

(1.8)^             

3.8 (1-6) 

** 

- 2.6 3 - - 

48 
Australia: 

NSW 
2 - - 2 3 

3.7 ± 

1.5^             

4.0 ± 

1.6** 

- 30 - - - 
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49 
Australia: 

Victoria 
1 0.55:0.45 - 1 NA 3.3* - - - 31.0 23.5 

50 
Australia: 

Melbourne 
1 - - 1 NA 

4.4 ±  

0.2*        

4.6^ 

- - - - - 

51 

Australia 

(Hunted): 

NSW 

1 0.61:0.39 

0+ 0.29                    

1+ 0.38                   

2+ 0.55                 

3+ 0.64                 

4+ 0.70 

1 3 - 

0+ 3.0 ± 

1.8         

1+ 3.9± 

1.5        

2+ 4.8± 

1.3        

3+ 4.1± 

2.0     

4+5.2± 

1.8 

- 

0+30.6           

1+14.8              

2+13.3          

3+8.3        

4+8.3 

- - 

53 
Australia: 

NSW 
1 - - NA NA - - - - - - 

54 

Australia 

(Non-

hunted): 

Western 

1 0.54:0.46 

0+ 0.39                        

1+ 0.65                   

2+ 0.92                 

3+ 0.17                  

4+ 0.5 

1 2 - 

0+ 3.5^ 

1+ 3.9 

2+ 3.1                   

3+ 4.5                 

4+3.0 

- 

0+ 0 

1+ 0 

2+ 0 

3+ 0 

4+ 0 

- - 

 
1
Age definition: 1 – Well defined: Clear description of technique, with juveniles clearly defined; 2 – Adequately defined: Technique stated, but juveniles poorly 

defined; 3 – Poorly defined: No definition provided. 
2
Litter size definition: 1 – Well defined: Clear description of technique, e.g. defining grades of placental scars, or live embryos; 2 – Adequately defined: Technique 

stated but lack of detail; 3 – Poorly defined: No definition provided. NA – not applicable for study purpose.  
3
Breeding probability: 1 – Well defined: Clear description of technique, e.g. stating inclusion of post-implantation loss/reabsorptions; 2 – Adequately defined: 

Technique stated but lack of detail; 3 – Poorly defined: No definition provided.   Litter size: ^Placental scars; *direct counts; ** embry
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Appendix 3. Functional forms for litter size probability distributions 

The 12 probability distributions, f(x), fitted to the empirical litter size frequencies are described 

below. Here, x is the litter size, y is (x-1) and xmax is the maximum litter size for a given population. 

Γ is the complete gamma function and λ, s and fmax are the parameters of the distributions fitted 

by maximum likelihood. Continuous distributions* were converted into discrete forms by 

calculating values for x = 1,2,…xmax and rescaling the probabilities sum to unity.  
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Distribution Functional form Estimated 

parameters and 

possible range 

Possible 

range of x 
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Appendix 4. Summary of terrestrial carnivore litter size data from published studies 

 

The study duration in years and the number of populations that the data refer to are indicated 

(‘M’ indicates multiple years or populations). The method of litter size determination refers to 

placental scars (ps), embryo counts (ec) or direct counts (dc). Sample size refers to the number 

of litters. 

Species[Reference] Duration 

[Population] 

Method  Sample 

size 

Mean 

litter 

size 

Variance Variance/

mean 

Skewness 

Vulpes velox 
[1]

 2 [1] dc 9 4.78 0.840 0.176 -0.126 

Vulpes macrotis 
[2]

 15 [1] dc 101 3.75 1.632 0.435 -0.078 

Vulpes macrotis 
[3]

 4 [1] dc 50 4.55 0.248 0.055 -0.024 

Vulpes vulpes 
[4]

 4 [1] ps 112 4.77 1.660 0.348 -0.072 

Vulpes vulpes 
[5]

 6 [1] ec 114 4.46 2.774 0.623 0.285 

Vulpes vulpes 
[6]

 14 [1] dc 106 4.85 3.713 0.766 0.220 

Vulpes vulpes 
[7]

 6 [1] ec 114 5.05 2.576 0.510 -0.125 

Vulpes vulpes 
[8]

 3 [1] ps 113 4.40 4.877 1.109 0.144 

Vulpes vulpes 
[8]

 4 [1] ps 58 4.29 2.104 0.490 0.106 

Vulpes vulpes 
[8]

 4 [1] ps 109 4.79 2.754 0.575 0.059 

Vulpes vulpes 
[9]

 6 [1] ps 158 4.62 2.375 0.514 0.243 

Vulpes vulpes 
[10]

 6 [1] ec 42 5.05 1.807 0.358 0.015 

Vulpes vulpes 
[11]

 13 [1] ps 340 4.69 2.351 0.502 0.066 

Vulpes vulpes 
[12]

 13 [1] ec 60 4.17 3.206 0.769 0.046 

Vulpes vulpes 
[13]

 17 [1] dc 191 5.35 2.332 2.332 0.667 

Urocyon littoralis 
[14]

 2 [1] dc 20 2.50 0.550 0.220 -0.089 

Urocyon littoralis 
[15]

 5 [1] ec 34 2.06 0.938 0.455 0.223 

Urocyon cinereoargenteus 
[16]

 2 [1] ec 7 3.14 0.980 0.312 0.185 

Urocyon cinereoargenteus 
[17]

 5 [1] ps 98 4.56 1.185 0.260 0.082 

Alopex lagopus 
[18]

 19 [1] dc 167 6.31 11.003 1.745 1.233 

Alopex lagopus 
[19]

 3 [1] dc 17 6.41 1.772 0.276 0.219 

Canis lupus 
[20]

 4 [1] ps 12 5.42 3.076 0.568 0.552 

Canis lupus 
[21]

 12 [1] dc 26 5.27 4.658 0.884 0.080 

Lycaon pictus 
[22]

 M [M] dc 246 10.76 11.156 1.044 -0.539 

Lycaon pictus 
[23]

 15 [1] dc 39 10.31 26.162 2.538 -0.565 

Lycaon pictus 
[23]

 15 [1] dc 36 10.39 9.293 0.895 1.654 

Lycaon pictus 
[23]

 6 [1] dc 25 8.88 16.746 1.886 -0.377 

Nyctereutes procyonoides 
[24]

 4 [1] ps 15 8.13 2.916 0.358 0.077 

Procyon lotor 
[25]

 3 [1] dc 15 8.13 2.916 0.358 -0.864 

Crocuta crocuta 
[26]

 3 [1] dc 53 1.68 0.369 0.220 0.043 

Crocuta crocuta 
[26]

 3 [1] dc 55 1.56 0.246 0.157 -0.027 

Crocuta crocuta 
[27]

 8 [1] dc 106 1.44 0.266 0.184 0.047 

Acinonyx jubatus 
[28]

 3 [1] dc 21 3.76 0.753 0.200 0.594 

Felis concolor 
[29]

 9 [1] dc 26 2.38 0.621 0.261 0.013 

Felis concolor 
[30]

 9[ 1] dc 27 2.22 0.469 0.211 -0.079 

Felis concolor 
[31]

 18 [M] dc 258 2.87 0.825 0.287 -0.058 

Felis iriomotensis  
[32]

 13 [1] dc 41 1.10 0.088 0.080 0.058 
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Species[Reference] Duration 

[Population] 

Method  Sample 

size 

Mean 

litter 

size 

Variance Variance/

mean 

Skewness 

Lynx pardinus 
[33]

 9 [1] dc 15 3.13 0.516 0.165 0.179 

Panthera tigris altaica 
[34]

 8 [1] dc 16 2.38 1.234 0.520 0.018 

Panthera onca 
[35]

 2 [1] dc 23 1.61 0.499 0.310 0.136 

Panthera leo 
[36]

 2 [1] dc 34 2.32 0.807 0.347 0.203 

Panthera leo 
[37]

 4 [1] dc 28 2.68 0.504 0.188 -0.010 

Panthera leo 
[37]

 4 [1] dc 38 2.82 0.677 0.240 0.017 

Panthera leo 
[38]

 24 [1] dc 110 2.54 1.049 0.413 0.044 

Panthera leo 
[38]

 24 [1] dc 200 2.46 1.028 0.418 0.151 

Panthera leo 
[38]

 24 [1] dc 159 2.48 1.130 0.455 0.144 

Panthera pardus 
[39]

 5 [1] dc 11 1.73 0.198 0.115 0.130 

Leopardus pardalis 
[40]

 13 [1] dc 13 1.23 0.178 0.144 0.141 

Ursus maritimus 
[41]

 26 [1] dc 261 1.89 0.336 0.178 -0.101 

Ursus maritimus 
[42]

 3 [1] dc 61 1.74 0.193 0.111 0.001 

Ursus maritimus 
[42]

 2 [1] dc 44 1.86 0.163 0.088 -0.081 

Ursus maritimus 
[42]

 1 [1] dc 15 2.27 0.329 0.145 0.299 

Ursus arctos 
[43]

 17 [1] dc 46 2.56 0.507 0.197 -0.095 

Ursus arctos 
[43]

 17 [1] dc 51 2.06 0.487 0.236 -0.108 

Ursus arctos 
[43]

 16 [1] dc 91 2.09 0.476 0.228 -0.014 

Ursus arctos 
[44]

 43 [1] dc 56 2.39 0.524 0.219 0.014 

Ursus americanus 
[45]

 4 [1] dc 15 2.53 0.516 0.204 0.073 

Ursus americanus 
[46]

 16 [1] dc 86 2.35 0.599 0.255 0.184 

Ursus americanus 
[47]

 4 [1] dc 12 2.75 0.688 0.250 -0.047 

Ursus americanus 
[48]

 4 [1] dc 23 1.65 0.401 0.243 -0.111 

Ursus americanus 
[49]

 4 [1] dc 50 2.41 0.538 0.223 0.084 

Ursus americanus 
[50]

 12 [1] dc 105 2.49 0.593 0.238 0.065 

Ursus americanus 
[51]

 3 [1] dc 35 2.74 0.477 0.174 0.009 

Lutra lutra 
[52]

 M [M] dc 160 2.45 0.346 0.847 0.124 

Lutra lutra 
[53]

 11 [M] ec 17 2.06 0.526 0.255 -0.021 

Lutra lutra 
[54]

 5 [1] dc 28 1.64 0.515 0.314 0.260 

Lutra lutra 
[55]

 50 [7] ps 30 2.27 0.662 0.292 0.057 

Lutra lutra 
[55]

 50 [7] dc 121 2.39 0.833 0.349 0.082 

Lutra lutra 
[55]

 50 [7] ec 46 2.02 0.673 0.333 0.166 

Lontra canadensis 
[56]

 M[M] ec 22 2.41 0.543 0.257 0.148 

Mustela erminea 
[57]

 4 [M] ec 12 8.58 2.910 0.339 -0.030 

Mustela nigripes 
[58]

 4 [1] dc 68 3.29 0.796 0.242 0.074 

Martes pennanti 
[59]

 6 [1] ec 9 3.33 0.222 0.067 0.053 

Martes americana 
[60]

 5 [1] dc 10 1.40 0.240 0.171 -0.210 

Spilogale putorius 
[61]

 1 [1] dc 12 3.58 1.576 0.440 -0.024 

Gulo gulo 
[62]

 19 [M] dc 28 2.46 0.606 0.246 -0.025 

Meles meles 
[63]

 M[M] ps 37 2.95 0.869 0.295 0.142 

Meles meles 
[63]

 M[M] obs 23 2.36 0.686 0.290 -0.126 

Mean ± SD   67.89 ±  

67.953 

3.52 ± 

2.134 

1.99 ± 

3.872 

0.40 ± 

0.394 

0.074 ± 

0.310 
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Appendix 5. Model selection for 12 probability distributions fitted to carnivore litter 

size frequencies, showing ΔAIC values 

Bold indicates the distributions for which ΔAIC ≤ 6. References refer to those in Appendix 4. 

Distribution abbreviations: SP: Shifted Poisson; ZTP: Zero-truncated Poisson; SB: Shifted 

binomial; ZTB: Zero-truncated binomial; SNB: Shifted negative binomial; ZTNB: Zero-truncated 

negative binomial; SGP: Shifted generalised Poisson; ZTGP: Zero-truncated generalised 

Poisson; DN: Discretised normal; DLN: Discretised lognormal; DSB3; Discretised stretched-beta 

(3 parameter form); DSB2; Discretised stretched-beta (2 parameter form). 

 Distribution 

Species
(reference)  

SP ZTP SB ZTB SNB ZTNB SGP ZTGP DN DLN DSB3 DSB2 

Vulpes velox
1 

4.79 6.29 1.89 2.03 6.40 7.81 7.00 8.57 0.00 0.71 1.83 0.12 

Vulpes macrotis
2 

13.56 23.17 1.87 0.00 12.20 21.33 16.51 26.63 0.10 17.01 0.09 7.64 

Vulpes macrotis
3 

18.17 20.42 12.41 12.79 19.62 21.83 20.53 22.86 0.00 0.00 2.00 0.00 

Vulpes vulpes
4 

29.70 43.24 0.46 0.22 28.35 41.20 33.17 47.25 0.00 15.00 2.79 6.71 

Vulpes vulpes
5 

0.51 6.78 0.00 0.10 1.39 6.17 2.91 9.61 0.68 8.45 5.73 4.07 

Vulpes vulpes
6 

0.00 2.63 1.93 1.95 1.95 3.50 2.09 5.14 4.46 7.71 2.16 2.00 

Vulpes vulpes
7 

12.86 20.61 3.39 1.12 12.73 18.70 15.91 24.25 0.00 23.27 1.17 10.53 

Vulpes vulpes
8 

22.19 9.02 14.21 9.14 25.19 11.99 23.39 10.63 0.00 25.08 5.57 12.61 

Vulpes vulpes
8
 3.69 8.80 0.43 0.25 4.52 8.97 6.12 11.50 0.00 5.45 3.48 2.63 

Vulpes vulpes
8
 5.74 11.97 2.41 1.05 6.13 11.51 8.31 14.97 0.00 16.85 7.98 8.85 

Vulpes vulpes
9 

9.77 23.18 0.00 0.96 8.65 17.44 12.77 26.78 0.21 9.57 6.85 5.15 

Vulpes vulpes
10 

9.11 14.21 0.00 0.17 9.81 14.96 11.70 17.01 0.26 2.43 1.46 0.39 

Vulpes vulpes
11 

31.15 59.49 2.21 1.13 25.75 43.60 35.43 65.10 0.00 35.10 12.17 17.23 

Vulpes vulpes
12 

2.24 1.38 4.24 2.19 4.38 2.91 4.24 3.64 0.00 11.84 3.37 5.59 

Vulpes vulpes
13 

51.26 69.99 46.43 71.87 57.63 72.36 52.29 72.19 157.74 0.00 8.81 16.22 

Urocyon littoralis
14 

6.43 9.66 2.02 3.55 7.85 11.01 8.67 11.97 0.00 2.21 4.01 1.22 

Urocyon littoralis
!5 

0.00 1.18 1.73 1.63 1.83 2.85 2.05 3.32 1.97 2.24 3.91 1.44 

Urocyon 

cinereoargenteus
16 

0.18 1.35 0.61 0.95 1.98 3.15 2.26 3.46 0.67 0.00 1.99 0.07 

Urocyon 

cinereoargenteus
17 

42.28 57.57 6.47 8.49 36.73 54.91 45.94 61.75 1.06 1.30 2.19 0.00 

Alopex lagopus
18 

56.96 35.90 3.31 5.81 59.62 38.24 56.07 35.50 34.28 3.60 1.85 0.00 

Alopex lagopus
19 

6.59 8.62 1.76 1.95 7.98 9.65 8.90 11.01 1.13 0.00 2.29 0.53 

Canis lupus
20 

0.00 0.91 1.25 1.32 1.79 2.64 2.10 3.08 1.54 1.50 2.59 0.88 

Canis lupus
21 

2.94 1.37 4.80 3.22 5.08 3.27 4.89 3.44 0.99 9.90 0.00 4.49 

Lycaon pictus
22 

26.15 17.42 26.83 19.42 29.46 19.66 27.52 19.55 0.00 86.84 11.70 36.18 

Lycaon pictus
23

 31.52 23.62 0.35 0.00 16.94 25.82 32.00 24.20 3.54 0.63 404.40 52.42 

Lycaon pictus
23

 0.00 0.00 2.00 1.77 2.03 1.82 2.02 2.14 1.20 5.11 0.27 1.52 

Lycaon pictus
23

 13.35 8.03 4.31 2.76 15.43 10.12 14.72 9.48 0.00 7.12 36.79 38.13 

Nyctereutes 

procyonoides
24

 

6.83 7.91 3.30 3.09 8.29 9.08 9.15 10.30 3.65 7.65 0.00 4.67 

Procyon lotor
25

 8.02 12.44 0.90 3.28 8.84 13.44 10.29 14.80 0.00 0.33 2.28 0.06 

Crocuta crocuta
26

 20.19 25.14 6.93 12.12 20.38 25.99 22.63 27.67 0.00 0.00 2.00 0.00 

Crocuta crocuta
26

 15.11 20.62 1.80 5.03 14.55 20.71 17.42 23.02 0.00 0.01 2.01 0.00 
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 Distribution 

Species
(reference)  

SP ZTP SB ZTB SNB ZTNB SGP ZTGP DN DLN DSB3 DSB2 

Crocuta 

crocuta
27

 

2.34 3.96 2.51 3.01 4.07 5.66 4.46 6.12 2.62 0.00 2.51 1.12 

Acinonyx 

jubatus
28

 

10.76 14.70 3.63 4.71 11.97 15.80 13.18 17.25 0.26 0.59 2.29 0.00 

Felis concolor
29

 5.80 9.26 1.10 2.44 7.01 10.51 8.05 11.60 0.00 3.16 4.87 1.77 

Felis concolor
30

 8.71 12.77 2.50 4.82 9.81 13.72 11.04 15.21 0.00 2.29 4.11 0.67 

Felis concolor
31

 68.08 108.76 7.17 19.71 61.30 100.73 72.28 113.89 0.50 3.78 3.87 0.00 

Felis 

iriomotensis
32 

9.54 12.73 5.21 6.63 10.92 14.13 11.78 15.05 1.33 0.00 2.22 0.59 

Lynx 

pardinus
33 

0.00 0.10 1.87 1.17 1.94 1.94 2.03 2.19 0.36 3.24 4.35 1.63 

Panthera tigris 

altaica
34 

0.00 0.66 1.43 1.22 1.78 2.44 2.04 2.73 1.24 1.94 3.85 1.41 

Panthera 

onca
35 

3.00 6.92 17.26 6.52 7.71 13.47 5.00 8.92 2.34 0.00 2.54 0.44 

Panthera leo
36 

13.25 18.61 3.49 18.69 19.19 28.67 15.25 20.61 0.00 1.27 2.46 0.46 

Panthera leo
37 

12.79 19.25 4.45 15.70 18.24 30.54 14.79 21.25 0.00 2.09 2.71 0.71 

Panthera leo
37 

7.44 16.28 21.04 13.55 15.09 33.57 9.44 18.28 0.00 8.59 5.55 4.40 

Panthera leo
38

 9.91 27.17 333.42 12.03 18.61 51.26 11.91 29.17 3.29 2.72 2.00 0.00 

Panthera leo
38 

3.14 14.03 168.02 38.55 10.20 32.22 5.14 16.04 0.00 4.15 2.07 0.07 

Panthera leo
38 

0.00 0.21 1.27 4.61 1.97 2.12 2.02 2.24 1.25 1.25 3.25 1.25 

Panthera 

pardus
39 

0.00 0.13 1.60 2.21 1.89 2.03 2.01 2.14 1.61 1.61 3.60 1.60 

Leopardus 

pardalis
40 

6.20 7.79 3.93 5.58 7.81 9.46 8.35 9.96 0.00 0.00 2.00 0.00 

Ursus 

maritimus
41 

104.86 140.98 30.90 57.46 98.59 134.43 109.25 145.54 0.00 2.22 3.93 0.43 

Ursus 

maritimus
42 

38.78 46.84 21.48 29.32 38.85 47.12 41.29 49.45 0.00 0.00 2.00 0.00 

Ursus 

maritimus
42 

10.08 13.35 6.87 9.07 11.53 14.81 12.26 15.57 2.88 0.00 2.13 0.94 

Ursus 

maritimus
42 

45.17 54.17 23.05 32.42 44.49 54.24 48.00 57.16 0.00 0.00 2.00 0.00 

Ursus arctos
43 

21.56 29.47 7.02 10.95 21.81 29.64 24.16 32.26 0.00 6.37 7.93 3.69 

Ursus arctos
43

 12.29 18.64 1.91 5.28 12.84 19.36 14.77 21.29 0.00 2.92 4.66 0.80 

Ursus arctos
43

 25.46 37.80 4.78 11.51 24.78 37.01 28.15 40.73 0.00 2.59 4.28 1.16 

Ursus arctos
44

 20.42 30.07 6.18 11.24 20.67 30.38 23.02 32.87 1.37 0.26 2.09 0.00 

Ursus 

americanus
45

 

6.36 9.36 3.65 5.29 7.76 10.86 8.55 11.61 1.92 0.00 2.01 0.46 

Ursus 

americanus
46

 

23.92 35.60 3.74 8.60 24.16 34.60 26.73 38.70 0.00 8.70 9.92 4.76 

Ursus 

americanus
47

 

2.50 4.36 0.83 1.48 4.07 5.91 4.66 6.57 0.00 1.63 3.43 0.77 

Ursus 

americanus
48 

0.86 2.41 0.01 0.55 2.36 4.03 2.95 4.54 0.00 0.23 2.20 0.05 

Ursus 

americanus
49 

18.86 28.04 5.34 10.04 17.18 27.85 21.44 30.82 1.03 0.45 2.25 0.00 

Ursus 

americanus
50 

35.18 51.60 8.25 15.24 34.02 49.15 38.11 54.87 0.00 6.64 8.35 4.89 

Ursus 

americanus
51 

20.03 26.62 7.87 11.09 20.42 26.98 22.58 29.33 0.00 5.01 6.64 2.85 
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 Distribution 

Species
(reference)  

SP ZTP SB ZTB SNB ZTNB SGP ZTGP DN DLN DSB3 DSB2 

Lutra lutra
52 

20.88 40.02 3.58 7.70 15.13 38.62 23.85 43.47 5.38 0.88 2.23 0.00 

Lutra lutra
53

 2.04 3.97 0.32 1.21 3.56 5.53 4.19 6.17 0.00 1.19 3.08 0.33 

Lutra lutra
54 

0.00 1.25 1.44 1.87 1.71 2.92 2.05 3.33 2.05 0.58 2.66 1.04 

Lutra lutra
55

 3.66 7.32 0.19 1.38 4.84 8.67 5.89 9.64 0.00 0.80 2.61 0.14 

Lutra lutra
55

 12.39 25.20 0.02 1.75 11.83 24.68 15.07 28.22 0.00 3.35 4.42 1.12 

Lutra lutra
55

 2.43 6.44 0.87 1.65 3.61 7.62 4.63 8.75 1.47 0.00 1.90 0.05 

Lontra 

canadensis
56 

0.25 1.29 0.20 0.67 2.01 3.08 2.33 3.40 0.00 0.77 2.71 0.23 

Mustela 

erminea
57 

2.28 3.24 0.16 0.20 3.90 4.81 4.51 5.52 18.60 0.18 2.01 0.00 

Mustela 

nigripes
58 

27.40 39.28 5.59 9.16 26.56 37.76 30.42 42.64 0.00 4.72 5.31 1.48 

Martes 

pennanti
59 

12.02 14.17 8.77 9.76 13.59 15.75 14.26 16.47 0.01 0.00 2.00 0.00 

Martes 

americana
60 

0.00 0.47 0.34 0.74 1.78 2.33 2.04 2.52 0.13 0.13 2.13 0.13 

Spilogale 

putorius
61 

0.08 1.04 0.45 0.02 1.84 2.69 2.20 3.23 0.00 2.90 2.98 1.19 

Gulo gulo
62 

7.35 11.60 1.60 3.44 8.41 12.27 9.65 14.01 0.00 2.06 3.82 0.96 

Meles meles
63 

9.26 14.84 1.36 2.62 10.05 15.64 11.68 17.43 0.00 4.38 3.31 2.61 

Meles meles
63 

24.48 40.10 7.65 13.23 23.92 39.50 27.23 43.15 6.56 0.00 2.12 0.89 

Frequency of  

ΔAIC = 0  

0.13 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.47 0.15 0.03 0.15 

Frequency of 

ΔAIC ≤  6 

0.37 0.26 0.73 0.63 0.31 0.26 0.32 0.22 0.95 0.77 0.86 0.87 
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Appendix 6. Results of the Fisher Exact test goodness-of-fit of probability 

distributions to empirical carnivore litter size frequencies 

Distributions with p < 0.05 were classified as not fitting. Bold indicates the distributions for 

which model selection determined ΔAIC ≤ 6 (Appendix 5). References refer to those in 

Appendix 4. Distribution abbreviations: SP: Shifted Poisson; ZTP: Zero-truncated Poisson; SB: 

Shifted binomial; ZTB: Zero-truncated binomial; SNB: Shifted negative binomial; ZTNB: Zero-

truncated negative binomial; SGP: Shifted generalised Poisson; ZTGP: Zero-truncated 

generalised Poisson; DN: Discretised normal; DLN: Discretised lognormal; DSB3; Discretised 

stretched-beta (3 parameter form); DSB2; Discretised stretched-beta (2 parameter form). 

 Distribution 

Species
(reference)  

SP ZTP SB ZTB SNB ZTNB SGP ZTGP DN DLN DSB3 DSB2 

Vulpes velox
1 

0.846 0.837 0.991 0.990 0.875 0.859 0.853 0.824 0.811 0.764 0.713 0.795 

Vulpes macrotis
2 

0.205 0.025 0.693 0.885 0.268 0.059 0.162 0.019 0.914 0.148 0.841 0.409 

Vulpes macrotis
3 

0.132 0.093 0.361 0.354 0.145 0.086 0.149 0.100 1.000 1.000 1.000 1.000 

Vulpes vulpes
4 

0.018 0.001 0.982 0.994 0.038 0.003 0.009 0.002 0.996 0.430 0.955 0.729 

Vulpes vulpes
5 

0.238 0.084 0.274 0.359 0.271 0.123 0.199 0.073 0.253 0.119 0.147 0.094 

Vulpes vulpes
6 

0.652 0.662 0.644 0.611 0.623 0.699 0.748 0.699 0.353 0.538 0.637 0.634 

Vulpes vulpes
7 

0.246 0.058 0.704 0.819 0.299 0.146 0.242 0.054 0.844 0.104 0.633 0.321 

Vulpes vulpes
8 

0.004 0.154 0.182 0.344 0.004 0.098 0.007 0.160 0.777 0.086 0.419 0.260 

Vulpes vulpes
8
 

0.538 0.320 0.580 0.662 0.630 0.431 0.565 0.300 0.705 0.555 0.394 0.522 

Vulpes vulpes
8
 

0.504 0.282 0.712 0.810 0.598 0.391 0.542 0.253 0.923 0.164 0.478 0.386 

Vulpes vulpes
9 

0.031 0.003 0.184 0.176 0.066 0.013 0.030 0.005 0.283 0.194 0.157 0.096 

Vulpes vulpes
10 

0.818 0.515 0.992 0.993 0.838 0.595 0.787 0.527 0.986 0.904 0.994 0.968 

Vulpes vulpes
11 

0.006 0.000 0.604 0.673 0.033 0.000 0.005 0.000 0.704 0.072 0.371 0.162 

Vulpes vulpes
12 

0.209 0.392 0.190 0.282 0.147 0.384 0.207 0.403 0.379 0.124 0.211 0.215 

Vulpes vulpes
13 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.000 

Urocyon littoralis
14 

0.301 0.179 0.717 0.599 0.352 0.167 0.299 0.157 0.849 0.517 0.528 0.577 

Urocyon littoralis
!5 

0.742 0.739 0.733 0.672 0.766 0.752 0.727 0.736 0.600 0.729 0.758 0.749 

Urocyon 

cinereoargenteus
16 

0.939 0.854 0.848 0.925 0.942 0.872 0.940 0.852 0.728 0.773 0.825 0.776 

Urocyon 

cinereoargenteus
17 

0.001 0.000 0.543 0.448 0.000 0.000 0.000 0.000 0.713 0.802 0.792 0.719 

Alopex lagopus
18 

0.000 0.001 0.698 0.505 0.000 0.003 0.000 0.001 0.001 0.778 0.799 0.601 

Alopex lagopus
19 

0.721 0.669 0.630 0.558 0.739 0.694 0.715 0.662 0.585 0.588 0.633 0.575 

Canis lupus
20 

0.920 0.949 0.742 0.772 0.915 0.952 0.936 0.946 0.748 0.742 0.843 0.789 

Canis lupus
21 

0.059 0.146 0.081 0.092 0.044 0.104 0.060 0.153 0.183 0.086 0.188 0.117 

Lycaon pictus
22 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 

Lycaon pictus
23

 0.001 0.002 0.926 0.945 0.449 0.001 0.001 0.002 0.521 0.958 0.000 0.000 

Lycaon pictus
23

 
0.893 0.937 0.868 0.895 0.847 0.904 0.882 0.960 0.936 0.836 0.977 0.899 

Lycaon pictus
23

 0.003 0.007 0.224 0.255 0.002 0.006 0.002 0.004 0.201 0.248 0.000 0.000 

Nyctereutes 

procyonoides
24

 0.725 0.733 0.363 0.398 0.707 0.735 0.689 0.737 0.452 0.314 0.921 0.391 

Procyon lotor
25

 0.137 0.036 0.836 0.429 0.177 0.048 0.127 0.053 1.000 0.955 0.957 1.000 

Crocuta crocuta
26

 0.004 0.000 0.465 0.025 0.001 0.002 0.002 0.001 1.000 1.000 1.000 1.000 

Crocuta crocuta
26

 0.007 0.003 0.906 0.301 0.015 0.002 0.007 0.000 1.000 1.000 1.000 1.000 

Crocuta crocuta
27

 
0.577 0.513 0.413 0.375 0.594 0.478 0.568 0.518 0.296 0.473 0.437 0.401 
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 Distribution 

Species
(reference)  

SP ZTP SB ZTB SNB ZTNB SGP ZTGP DN DLN DSB3 DSB2 

Acinonyx 

jubatus
28

 0.387 0.175 0.809 0.759 0.352 0.199 0.369 0.171 0.762 0.767 0.788 0.805 

Felis concolor
29

 
0.300 0.140 0.672 0.600 0.367 0.155 0.279 0.128 0.739 0.433 0.395 0.492 

Felis concolor
30

 
0.124 0.061 0.567 0.403 0.167 0.068 0.151 0.053 0.828 0.528 0.517 0.668 

Felis concolor
31

 
0.000 0.000 0.358 0.035 0.000 0.000 0.000 0.000 0.843 0.722 0.868 0.935 

Felis 

iriomotensis
32 

0.210 0.104 0.384 0.335 0.205 0.124 0.192 0.097 0.366 0.542 0.473 0.408 

Lynx pardinus
33 

0.610 0.739 0.532 0.608 0.619 0.711 0.669 0.725 0.799 0.584 0.671 0.628 

Panthera tigris 

altaica
34 

0.920 0.885 0.763 0.820 0.903 0.880 0.887 0.907 0.919 0.795 0.839 0.874 

Panthera onca
35 

0.519 0.255 0.605 0.446 0.508 0.269 0.535 0.230 0.432 0.927 0.923 0.822 

Panthera leo
36 

0.080 0.019 0.614 0.392 0.109 0.035 0.110 0.023 1.000 0.792 0.785 0.866 

Panthera leo
37 

0.091 0.013 0.615 0.440 0.092 0.026 0.089 0.013 0.788 0.542 0.530 0.616 

Panthera leo
37 

0.407 0.074 0.852 0.950 0.508 0.089 0.373 0.056 0.957 0.432 0.505 0.690 

Panthera leo
38

 0.177 0.003 0.794 0.641 0.282 0.017 0.156 0.001 0.520 0.750 0.713 0.841 

Panthera leo
38 

0.371 0.044 0.761 0.634 0.532 0.076 0.363 0.041 0.769 0.518 0.610 0.490 

Panthera leo
38 

0.794 0.799 1.000 0.726 1.000 0.803 0.796 0.808 1.000 1.000 1.000 1.000 

Panthera 

pardus
39 

0.814 0.808 1.000 0.821 1.000 1.000 0.800 0.816 1.000 1.000 1.000 1.000 

Leopardus 

pardalis
40 

0.169 0.153 0.351 0.152 0.162 0.123 0.169 0.141 1.000 1.000 1.000 1.000 

Ursus 

maritimus
41 

0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 1.000 0.948 0.948 0.988 

Ursus 

maritimus
42 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 

Ursus 

maritimus
42 

0.035 0.008 0.034 0.037 0.026 0.011 0.031 0.010 0.069 0.225 0.215 0.139 

Ursus 

maritimus
42 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 

Ursus arctos
43 

0.002 0.001 0.137 0.071 0.002 0.001 0.002 0.000 0.418 0.061 0.068 0.134 

Ursus arctos
43

 
0.049 0.013 0.643 0.247 0.058 0.010 0.042 0.006 0.853 0.511 0.543 0.710 

Ursus arctos
43

 
0.001 0.000 0.411 0.046 0.002 0.000 0.001 0.000 0.997 0.748 0.765 0.876 

Ursus arctos
44

 
0.009 0.000 0.284 0.103 0.014 0.000 0.006 0.001 0.619 0.975 0.983 0.952 

Ursus 

americanus
45

 0.220 0.117 0.366 0.277 0.230 0.118 0.218 0.105 0.250 0.541 0.551 0.405 

Ursus 

americanus
46

 0.007 0.003 0.906 0.301 0.015 0.002 0.007 0.000 1.000 1.000 1.000 1.000 

Ursus 

americanus
47

 0.002 0.000 0.270 0.130 0.003 0.000 0.002 0.000 0.570 0.066 0.081 0.157 

Ursus 

americanus
48 

0.727 0.568 0.946 0.908 0.737 0.578 0.702 0.550 0.840 0.611 0.676 0.677 

Ursus 

americanus
49 

0.645 0.501 1.000 0.910 0.685 0.493 0.639 0.506 1.000 0.912 0.907 1.000 

Ursus 

americanus
50 

0.013 0.001 0.382 0.146 0.024 0.002 0.011 0.001 0.717 0.961 0.981 0.965 

Ursus 

americanus
51 

0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.001 0.001 

Lutra lutra
52 

0.627 0.456 0.905 0.843 0.654 0.446 0.612 0.444 0.857 0.752 0.770 0.822 

Lutra lutra
53

 0.425 0.346 0.312 0.311 0.438 0.357 0.429 0.382 0.272 0.485 0.481 0.424 

Lutra lutra
54 

0.609 0.317 0.993 0.887 0.653 0.363 0.620 0.285 0.982 0.919 0.919 0.987 

Lutra lutra
55

 0.120 0.007 0.962 0.771 0.210 0.008 0.090 0.004 0.936 0.775 0.834 0.848 

Lutra lutra
55

 0.445 0.213 0.569 0.499 0.544 0.233 0.445 0.223 0.389 0.791 0.827 0.711 
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 Distribution 

Species
(reference)  

SP ZTP SB ZTB SNB ZTNB SGP ZTGP DN DLN DSB3 DSB2 

Lutra lutra
55

 0.748 0.686 0.933 0.896 0.753 0.677 0.730 0.679 0.862 0.764 0.756 0.795 

Lontra 

canadensis
56 

0.005 0.000 0.699 0.411 0.009 0.000 0.005 0.000 0.969 0.542 0.692 0.800 

Mustela 

nigripes
58 

0.727 0.647 1.000 0.759 0.699 0.659 0.712 0.672 1.000 1.000 1.000 1.000 

Martes 

pennanti
59 

0.674 0.678 0.473 0.521 0.660 0.713 0.652 0.690 0.601 0.460 0.567 0.468 

Martes 

americana
60 

0.344 0.145 0.871 0.713 0.345 0.153 0.311 0.143 0.966 0.752 0.734 0.820 

Spilogale 

putorius
61 

0.175 0.071 0.564 0.579 0.225 0.060 0.163 0.052 0.665 0.322 0.403 0.391 

Gulo gulo
62 

0.002 0.000 0.142 0.028 0.004 0.000 0.005 0.000 0.207 0.983 0.934 0.892 

Meles meles
63 

0.846 0.837 0.991 0.990 0.875 0.859 0.853 0.824 0.811 0.764 0.713 0.795 

Meles meles
63 

0.205 0.025 0.693 0.885 0.268 0.059 0.162 0.019 0.914 0.148 0.841 0.409 
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Appendix 7. Publications resulting from this study 

 

 

Chapter 2. Published in a modified format, as: Devenish-Nelson, E. S., Harris, S., 

Soulsbury, C. D., Richards, S. A., & Stephens, P. A. (2010) Uncertainty in population 

growth rates: determining confidence intervals from point estimates of parameters. 

PLoS ONE, 5(10), e13628. 

Chapter 3. Published in a modified format, as: Devenish-Nelson, E. S., Stephens, P. A., 

Harris, S., Soulsbury, C., Richards, S. A. (2013) Does litter size variation affect models of 

terrestrial carnivore extinction risk and management? PLoS ONE 8(2): e58060.  

Chapter 4. In press in a modified format, as: Devenish-Nelson, E. S., Harris, S., 

Soulsbury, C. D., Richards, S. A., & Stephens, P. A. (2012) Demography of a carnivore, 

the red fox, Vulpes vulpes: what have we learnt from 70 years of published studies? 

Oikos. DOI: 10.1111/j.1600-0706.2012.20706.x  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


