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Abstract 

This thesis is concerned with the development of linear generators for use as the 

power take off mechanism in marine renewable energy converters. Delivering 

significant power at the low velocities demanded by wave and tidal stream energy 

converters requires a large force, which must be reacted by an electrical machine in a 

direct drive system. Attention is focused on the development of two novel topology 

linear permanent magnet machines suitable for use in this application. 

For each topology, models are presented that are capable of predicting the force 

characteristics and dynamic generator performance. The models, which are verified 

experimentally, reveal significant behavioural differences between the two topologies. 

The designer is thus provided with an interesting choice when considering a direct 

drive power take off strategy. In short, a variable reluctance machine is shown to 

develop a high shear force in its airgap, offering the potential of a compact generator, 

yet its performance is hindered by a poor power factor and the presence of significant 

airgap closure forces. The second machine, an air cored stator encompassing a 

permanent magnet translator, is shown to lend itself favourably as a generator, but 

only at the expense of requiring a large quantity of magnetic material and developing 

a significantly lower shear stress. 

Mechanical issues involved in the direct integration of linear electrical machines 

into the marine environment are examined. Details of two existing marine renewable 

energy devices are used to hypothesise about the characteristics of realistic sized 

generators of both the topologies investigated. 

Direct drive power take off is shown to represent a feasible alternative to the 

complex systems frequently proposed in these applications. 
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Chapter 

1 

Introduction 

As technology relentlessly progresses, our thirst for energy shows no sign of 

abating. Either because of a limitation of resource, or because of the impact of 

their exploitation, there is a desire to replace the sources of energy to which we have 

become accustomed since the industrial revolution with a more sustainable alternative. 

A renewable energy source is one which does not use up the earth's finite mineral 

reserve and instead uses a source which replenishes itself. Around two thirds of the 

earth's surface is covered in water, it is therefore logical to look here for usable energy. 

The work presented here is intended to add to the increasing body of research on the 

subject of capturing energy from the marine resource. It focuses on the aspects 

associated with converting the captured energy, in the form of physical displacement, 

into an electrical form and therefore stops short of the development of the capture 

device itself and the downstream connection to the electricity grid. 

In summary this thesis is concerned with the development of reciprocating generators 

capable of delivering the required power at the slow velocities demanded by wave 

energy and tidal stream power converters. Research into such generators facilitates the 

use of direct drive power take off, whereby the electrical machine is joined directly to 

the moving part of the device. 

1.1 Wave Energy 

1.1.1 History 

The UK development programme was first started during the oil crisis in the 1970's. 

At this stage it was played off directly against nuclear energy, both financially and in 

terms of attempting to assemble single units capable of replacing a power station. In 

this situation nuclear power stations were deemed to be more economical, at least in the 

1 



N. J. Baker Chapter I: Introduction 

very short tenn. It is noteworthy that the cost of decommissioning, long tenn waste 

storage and overall environmental impact were not costed in at this stage. The UK's 

'deep-sea' research programme was hence closed in 1982 for economic reasons. 

Around 10 years later interest, funding and hence research in this area was rekindled. 

There is presently a modest number of institutions and groups conducting research 

internationally, and an emerging research community, e.g. [1]. 

After more than twenty years since the research programme was started in the UK 

resulting in little commercial success, wave energy could appear to be fraught with 

technical problems. Although this thesis does not intend to review its history in any 

detail, it is important to realise that the main barriers to wave energy development have 

not, by any means, been solely technical. A comprehensive guide to the political and 

financial barriers of its development is available [2]. In 2000 a technical report 

commissioned by the UK Department of Trade and Industry concluded that there were 

no insurmountable problems for the implementation of wave energy [3]. 

1.1.2 Cost and Environmental Impact 

Small-Scale Hydro 

Wind 

Photo Voltaic 

Neriore wave 

Combined Cycle 
Gal Turbine 

Average UK Mix 
(1993) 

Modem Coal 

Plant 

J 

.. 

I 

I 

I 

10 100 

Life Cycle EmissionsC!V kWh) 

J 

J 

Figure 1.1: Comparison of life cycle emissions ofCOz(6) 

1000 

Although waves represent a 'free' and clean source of energy, capturing this energy 

inevitably costs money and impacts the environment. An interesting comparison of 

energy sources, made more relevant by the Kyoto Protocol and so-called carbon credit 

scheme, is to examine the expected amount of carbon dioxide emitted to the atmosphere 

over the entire lifecycle of a device, divided by the expected energy yield of that device, 
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Figure 1.1. Noting the logarithmic scale of the diagram, the utilisation of wave energy 

can offer a significant reduction in life cycle emission when compared to fossil fuel 

generation. The device used for this comparison was the OSPREY device [4] and the 

emissions were primarily during material manufacture with construction, 

decommissioning and disposal anticipated to be an order of magnitude less. 

Nuclear power stations emit zero CO2 in use, although there will be emissions during 

construction and decommissioning, of which the extent of the latter is unclear. 

Estimating the economic lifecycle cost of technology still at the concept stage is 

difficult and hence a variety of estimates have been proposed over the years. There are 

two main methods of cost prediction, 'engineering assessment' and 'learning curves'. 

The former is based on expert opinion about the potential for cost reduction over time 

explicitly for the application being considered and is based, for example, on closely 

related technology. Learning curves take a more general look at the relationship 

between the volume of production and the cost per unit, the trend being that the greater 

the cumulative production worldwide the lower the cost. A further variable is the 

assumptions made about financing conditions, in particular discount rates and 

amortisation periods, typically 8-15% and 15-20 years respectively. The general trend 

of these predictions over the last 20 years has been falling. A recent comparison for 

cost estimates, which attempts to encompass the range of predictions, is provided in 

Table 1-1. 

Table 1-1: Comparison of predicted costs (or energy sources (SI 

Off shore wind 2-3 p/kWh 

On shore wind 1.5-2.5 p/kWh 

Wave 3-6 p/kWh 

Nuclear 3-4p/kWh 

Combined cycle gas turbine 2-2.3 p/kWh 

Photo Voltaic 16-10 p/kWh 
Using this informatIon, opturustlc wave energy estImates put It on a similar level to 

nuclear energy, but more expensive than offshore wind. 

1.1.3 Resource 

The power contained in the world's oceans is enormous, in the region of 2 TW [6]. 

It is not practical, however, to consider that any great proportion of it could be 

harnessed. If one looks ~loser to home (UK) then the achievable amount of capture is 

still significant. Power levels of between 60 and 70 kW/metre wave front have been 

estimated for most suitable sites off the west coast of Scotland and Ireland. It has been 
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suggested that the annual average offshore wave power that is 'technically achievable' 

in the UK is 7-10 GW [6], of which the deep water resource is broken down as given in 

Table 1-2 [7]. For comparison, the present installed generating capacity in Britain is 

almost 80 GW. 

Table 1-2: UK deep water wave energy resource which can be turned into useful energy (7] 

Location Annual energy 
production (TWb) 

Shoreline 0.4 
Nearshore 2.1 
Offshore 50 

1.1.4 Formation and Description of Waves 

Water waves are caused by the interaction of three forces, namely wind, surface 

tension and gravity. Wind causes air to pass over the surface of the sea, which in turn 

disturbs the position of the water surface. The wave is formed as a response to this 

disturbance, by surface tension on the small scale and gravity when dealing with larger 

disturbances. As the length of time or the length of water (called fetch) over which the 

wind has been acting increases, so too does the height and length of the resultant wave. 

Although the visible evidence of waves is on the surface there is also energy being 

transferred within the sea body. The particles of fluid through which the wave is 

travelling follow an orbital path whose amplitude decreases exponentially as depth 

increases. It follows that 95% of the energy contained within a wave is to be found in 

the region between the mean water level and a depth of one quarter the wave length. 

In deep water, defined as depth greater than half a wave length, the velocity (v) of a 

wave is dictated by its wave length (A), as given by equation (1.1). 

Where g 

v= {Ig v 2,; 
(1.1) 

acceleration due to gravity (ms·2) 

In the ocean, therefore, longer waves travel faster than shorter waves. As the crest of 

a longer, faster, wave passes the crest of a slower wave, the amplitude of the resulting 

wave will be equal to the sum of the two amplitudes. The converse happens if the 

trough of one interferes with the peak of another. Considering the real sea state, where 

there are many waves of different lengths, the displacement of the surface is hence a 

varying frequency varying amplitude signal. These variations highlight one of the 

difficulties with Wave Energy Converters (WECs), namely the requirement of 
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adaptability to different sea states. A device which is optimised for a given amplitude 

and frequency must be capable of surviving in much rougher conditions if it is to have a 

credible lifetime. The net result is the need to over engineer structures relative to their 

rated capacity, a factor which increases the cost. 

To calculate the mean energy contained within a given sea state it is necessary to use 

not the instant height of a wave but Hs, the significant wave height. This is defined as 

the average height of the highest third of the waves passing a site and is used in 

Equation (1.2) to derive power. 

Where P 

T 

P 

W 

mean power (W) 

time period (S) 

(1.2) 

density == 1025 kg/m3 for sea water 

width of wave front (m) 

The power contained within a wave is therefore proportional to its period and the 

square of its significant wave height. 

One further description of real wave conditions is the zero upcross time, defined as 

the time interval between subsequent occasions when the water surface crosses the 

mean water height in an upward direction. It hence gives an insight to the predominant 

wave frequency. 

These definitions may be used to further highlight the sizing difficulties for WECs. 

A typical site may have a most likely sea state of 0.75 m height and 6.5 seconds period, 

giving power levels of just 3.6 kW per metre wave front, yet a device sited there to 

extract this will also be expected to survive in states of 5 m height and 12 seconds 

period corresponding to almost 300 kW 'per m wave front: two orders of magnitude 

greater. 

1.1.5 Principles of Energy Capture From Waves 

1.1.5.1 Oscillating bodies 

The fundamental principle behind absorbing energy from a water wave is that energy 

must be removed from that wave. It therefore follows that the resultant wave, after 

passing the wave energy device, is either reduced or cancelled altogether. 

A WEC, or indeed any object, oscillating in water will produce waves. It is the 

interaction of the waves produced by the device and the original wave that gives the 
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resultant wave. For the device to remove energy from the wave, it is necessary for the 

resultant wave to be smaller than the incoming wave, and hence the two waves interfere 

destructively. If a device is to be a good wave absorber it must therefore inherently be a 

good wave maker. 

A symmetrical body constrained such that it may only oscillate in one plane, either 

perpendicular or parallel to the water surface, is only able to absorb a maximum of 50% 

of the energy contained in an incident wave [8] . This is demonstrated in Figure 1.2. 

~~------

Figure 1.2: Demonstration of absorbing wave energy 

The upper curve (a) represents a pure undisturbed sinusoidal wave, the 

ideal/theoretical sea state. In curve (b), an axisymetric body is heaving (oscillating 

vertically) in otherwise undisturbed water. Similarly, curve (c) shows the same body 

producing axisymmetric waves by rocking. 

Curve (d) shows the effects of summing the previous three curves. It hence shows 

the effect of a WEC being allowed to move in two degrees of freedom. The wave 

approaching the device is unaltered from the original wave, as the effects of the body 

corresponding to its degrees of freedom cancel each other out. After passing the WEC, 

however, these effects are summated and equal in magnitude to the original wave. Thus 

the theoretical ideal of 100 % energy absorption from the approaching wave by a device 

with two degrees of freedom is shown. 
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------. 

Figure 1.3: Plan view oca point absorber interacting with uniform wave train 

Figure 1.3, a plan view of a symmetrical body oscillating in unifonn waves, 

demonstrates that an oscillating point absorber affects a section of the approaching wave 

front greater than its width. The maximum energy which may be absorbed from an 

axisymmetric body equals the wave energy transported in an incident wave front of 

width equal to the wavelength divided by 21t [8]. This width is tenned the absorption 

width. 

1.1.5.2 Controlling a Wave Energy Converter (WEC) 

Any buoyant body on the surface of a still liquid will start to oscillate and create 

waves if it is given an initial displacement. The equation of motion for the body given 

in (1.3) shows three forces acting on the body, corresponding to inertia (I), buoyancy 

(B) and drag (D), being equal to the radiation force required to create the waves, (FR)' 

IX + Di + Bx = FR (1.3) 

Considering the homogeneous case, where the radiation force is set to zero, the body 

will behave in the familiar damped oscillatory motion common to any mass-spring­

damper system as described by (1.4). A crucial characteristic of this type of system is 

that its natural frequency, i.e. that at which it oscillates when unconstrained, is the 

frequency in which it must be excited to have maximum amplitude oscillation, its 

resonant frequency, defined in (1.5). 

mi+Ci+kx=O (1.4) 

Where m mass (kg) 

C coefficient of damping (Ns-I) 

k spring constant (Nm-
I
) 
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Where fa 
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fo =_1 (k 
2n ~-; 

resonant frequency (Hz) 

(1.5) 

If the body is to be used to extract power from its supporting liquid its efficiency will 

be a maximwn when the frequency of the waves within the liquid equals the natural 

frequency of the floating body. In a liquid with regular sinusoidal waves the equation 

of motion becomes (1.6). 

Ii+Dx+Bx=FR +FE (1.6) 

Where the exciting force on the body (N) 

FE is equal to the force felt by the body held fixed in the incident waves. 

Furthermore it is possible to decompose FR into its constituent parts corresponding to 

the added mass (Ma) and the damping (C) tenns, as in (1.7). 

(1.7) 

Where (0 

Physically, the added mass is the mass of water which must also be accelerated to 

allow the device to accelerate, it is hence dependant on both frequency and device 

topology. Substitution of(1.7) into the equation of motion, (1.6), gives (1.8) 

(/ +Ma(m»)x+(D+C(m»).i+Bx= FE (1.8) 

Comparison of (1.8) with (l.4) and (1.5) shows that the resonant frequency of a 

floating body in regular waves is given by (1.9). 

(1.9) 

In order to maximise the power absorption from a variety of different frequency 

waves it will be necessary to alter the resonant frequency. Inspection of equation (1.9) 

shows that a controllable external force, provided by the power take off mechanism, 

either in phase with the acceleration or the displacement of the device, could be used to 

influence the behaviour of a WEC by altering the denominator and nwnerator of the 

right hand side respectively. The device could hence be manipulated such that it was 

continually in a state of resonance. Alternatively, varying the actual buoyancy of the 

device alters 'B' in (1.9) and would hence have an identical effect. 

Many control strategies have been suggested to control WECs e.g. [9, 10, 11, 12, 13, 

14], encompassing the introduction of extra forces, equipment and buoyancy alteration. 
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The choice of strategy depends on the pennitted complexity, natural characteristics of 

the device and the capabilities of the power take ofT mechanism. The simplest to 

execute is known as latching and involves deliberately restraining the device at the 

extremities of oscillation. The release of the device is delayed until a sufficient 

buoyancy force has built up to ensure that the velocity and force peak at the same time. 

The converse of this concept, i.e. unlatching, also exists. The device is allowed to 

move freely for part of the cycle and the power take ofT mechanism is only engaged 

when the device has reached the desired velocity. Unlatching is utilised when the 

natural period of a device is longer than the most frequent wave spectrum. Both 

latching and unlatching are described as discrete control functions, because they are 

only operable at specific points in the oscillation cycle. 

In a continuous control strategy the position and velocity of a device are measured 

continuously and adjustments to its motion are made in real time at any instant in the 

device' s cycle. The ultimate control system for a wave energy device which allows the 

theoretical maximum amount of power to be removed from a wave is known as 

complex conjugate control. Appropriate mathematical models exist which require 

future knowledge of the sea state [10] but their complexity leaves them outside the 

scope of this thesis. Its rationale is analogous to maximising power output of a 

generator by connecting a resistive load equal to that of its own internal resistance [15]. 

All the spring and inertia forces are manipulated to cancel each other out by 

continuously adjusting the damping force. 

On the right hand side of (1.6) the equation of motion was split into two distinct 

forces, FR and FE, acting on the body. The radiation term FR is primarily dependent on 

the geometry of the device and the velocity at which it is oscillating. In a system of 

more than one degree of freedom this consists of a matrix containing both real and 

imaginary terms, represented in the form of a complex radiation impedance matrix. The 

second term FE is the force that would be required by a device to remain stationary in 

water with unit amplitude incident waves. 

Equation (1.9) above demonstrated how these equations could be applied to a single 

degree of freedom device and used to calculate the frequency at which it would 

resonate. For more complex systems this could be done by taking the eigenvalue of the 

resultant force equation. A simplified version of this method approximates the 

eigenvalue by a causal control function, whereby prediction of the sea state is avoided 

[15,11]. 
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Continuous control may require the return of energy to the sea for part of the 

oscillation cycle in order to keep the exciting force and body velocity in phase. The 

theoretical advantages of such a move are demonstrated in Figure 1.4 [9] which shows 

the cumulative amount of energy absorbed by a small scale wave energy converter in a 

5 second period under three differing control strategies. The lower curve has no control 

and absorbs energy at a reasonably constant rate throughout the cycle. The middle 

curve, which shows a converter employing latching control, also shows a constant rate 

of energy accumulation, yet after 5 seconds its total yield is 4 times that of the 

uncontrolled oscillation. 

5r---------~--------------------~--, • 'ideal" control 
-.-----I-/-~~,------L~,--.. .. ...... __ .... __ .... _ ---4--_.-
/;", ,', I \ il 

S; 3 ------ ·---·--~r---·-··f .-.-.. ~-.----.;.....--·)" .. ~ ...... ..1-.-.---~-.;... , " ,'.. ' \ l ., 

:2 ··-'/ ...... ,-----1 .-\. ... · ···--~I '. --1._ .......... __ \ / IatdUng control 
1\ - \ I ~\/ I ,,, I ,. • 
i-·······-\~··-1 ---'"--:-.~-~ .. -....... ---------.............. - no pIlese control 

.:~;t----"-·,.-.;:-;:::;-··_·=_··T·;t-_~--··-· '-:!-"-;;1::'-:';'-;.:-.::-"-"-.'-"-"~-2e::":"--"-'.-'--'-•• '-'--~~",,"-"-··-·--·-·~-·-··-·~~:l 
(s) 

Figure 1.4: The advantages of control (9) 

The upper curve, showing the energy absorbed by the device under full complex 

conjugate control shows some interesting features. The cumulative energy absorbed is 

continually oscillating, demonstrating that for part of the cycle energy is being returned 

to the ocean. By the end of the 5 seconds, however, the average energy removed from 

the sea is more than double that of the latching control and almost 10 times that of no 

control. The long term impact of an effective control strategy on the energy yield of a 

device over its lifetime is clear. 

1.1.6 Wave Energy Converters (WECs) 

Broadly, there are three ways of classifying a wave energy converter in terms of its 

position. Shoreline devices are mounted rigidly to the shore, thus ensuring simple 

maintenance and grid connection. The cost of land intrusion and the possibility of 

naturally advantageous sites being environmentally sensitive has to be considered in 

these schemes. Secondly there are nearshore devices, typically situated in 10-25 m 

depth of water. The device may be tight moored to the sea bed, either by way of pillars 

or tensioned cable, thus providing both stability and a datum to react force against. 
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Deep water or slack moored devices have no such direct contact with the seabed, and 

any moorings are to maintain geographical position only. It is this third category which 

is to be strived for. Although it presents the most technical problems it represents the 

largest energy resource (Table 1-2). 

It is possible to group WECs according to their geometry as terminator, attenuator or 

point absorber, the latter of which has already been introduced. A terminator has its 

principal axis parallel to the incident wave crests and as such the waves are stopped as 

they reach the device. These devices hence tend to be quite wide, so that a large amount 

of the wave front will affect the device at one time. The classic example of this type of 

WEC and arguably the most famous of all WECs is the Edinburgh or Salter Duck [18]. 

This is a cam shaped floating device which is allowed to rotate about a spine. Long 

lines of these devices are capable of removing 100 % of the energy contained in 

incident waves. As a wave approaches the device the cam rocks about its axis, which is 

assumed to be relatively stationary. The design is such that the circular rear section 

does not transmit waves downstream of the device, leaving a theoretically flat water 

surface. 

Attenuator devices have their principal axis perpendicular to the wave crests and so 

face the waves 'head on'. The energy is converted by relative movement of parts of the 

device as a wave passes underneath it. A device of this type, known as the Pelamis 

[16,17,19], is currently being developed for deployment off the Isle oflslay, Scotland. 

It is a snake like structure consisting of a number of floating segments hinged together. 

Power take off is in the form of hydraulic rams driven by the relative movement of the 

segments as a wave passes underneath. 

Many other WECs have been proposed, e.g. [18, 19, 20, 21], some of which lend 

themselves more favourably to direct drive e.g. [22]. Good summaries covering many 

concepts to date are available e.g. [2, 23, 24]. Only three are presented here, the first 

because it is conceptually the simplest, and has been the subject of much enlightening 

mathematical analysis [25], the second because it has direct drive power take off and 

has an active research programme, and the third because its structure naturally lends 

itself to direct drive operation. 

1.1.6.1 Heaving Buoy 

A heaving buoy consists of a floating body, typically cylindrical or spherical, 

following the water surface in the vertical plane and reacting either against the seabed or 

a submerged drag plate. It may hence be a nearshore or deepwater device. As it only 
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has one degree of freedom, it is limited to capturing a maximum of 50% of the energy 

available in its absorption width. 

rotor 

statO:-I 
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..... ". povver take off 

/ mechanism 

drag 
plate 

Figure 1.5: Direct drive heaving buoy 

There have been many methods proposed for the power take off of this device, for 

example an elastomeric hose whose change in cross-sectional area with flexing is used 

to pump water [26]. Figure 1.5 shows the direct drive proposal, whereby the rotor of a 

linear generator is coupled directly to the buoy, and the stator is mounted in a 

submerged drag plate. Mathematical descriptions of similar two body proposals have 

been presented [27, 28], along with strategies for its efficient control [14]. Some 

characteristics of this device are explored more fully in Chapter 2. 
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1.1.6.2 Archimedes Wave Swing (AWS) 

Figure 1.6: A WS 

The A WS, as shown in Figure 1.6, is a nearshore device mounted on the seabed. It 

consists of an air filled chamber, which has the freedom to move in a vertical plane 

relative to its base. As a wave passes over one of these devices, the added depth of the 

water causes an increase in water pressure surrounding the device. The volume of air 

within the device is hence compressed allowing the entire hood of the device to fall. 

The device will rise again when a trough passes over the device, and the net result is 

hence slow speed reciprocating motion. A 2 MW device was due to be commissioned 

in September 2001 which has a 3-phase permanent magnet linear synchronous machine 

as the power take off mechanism [29]. Various technical problems have prevented the 

successful deployment of the device [30]. Details of a prototype of this device are given 

in Chapter 8. 

1.1.6.3 Interproject Sweden (IPS) Buoy 

This deep water device, also known as the mace, was first developed in Sweden in 

the 1980's (31], and a sloped variation has been the subject of more recent research [32, 

33]. Current proposals for its development have the power take off device either as a 

sea water pump (34], or high pressure oil rams [35]. 
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Figure 1.7 shows a schematic diagram of the possible direct drive device. It shows a 

semi submerged float coupled to a totally submerged hollow tube, open to the sea at 

both ends. Part of the tube forms a cylinder enclosing a piston connected to a rod, it is 

relative motion between the rod and the float which forms the basis for power take off. 

The enclosing cylinder prevents the water from simply slipping around the piston, 

effectively coupling it to the weight of the encapsulated water. The entire tube, float 

and cylinder will hence follow the water surface whilst the piston itself is held relatively 

still. If the amplitude of oscillation becomes too large, the piston will move out of the 

cylinder and become de-coupled from the mass of the surrounding water, thus allowing 

it to follow the oscillation of the tube. This feature provides built in protection against 

the power take off device being damaged, a function normally requiring end stops. A 

further advantage of this device is the possibility of running it inclined, which alters the 

buoyancy force and hence frequency response. It has been shown that the net effect of 

this is to widen the bandwidth of resonance and so shift the burden of control from the 

power take off mechanism to a buoyancy controller [33]. 
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1.2 Tidal Stream Energy 

1.2.1 Introduction 

Previous work into the extraction and utilisation of power from tides has centred on 

large barrier type system, such as that frequently proposed for the Severn Estuary. In 

this type of scheme, water is trapped at high tide and then released through low head 

turbines when the tide has fallen, converting potential energy given to the water by the 

tides. A summary of the various methods and strategies for optimum energy extraction 

using this type of scheme, along with major existing and proposed sites worldwide is 

available [36]. In tidal stream energy projects, however, kinetic energy is extracted 

from the mass of water as it moves naturally between high and low tides, eliminating 

the need to construct barrages. Relative to both wave energy and tidal energy, tidal 

stream energy is quite a young technology with comparatively little research completed 

to date. This is due, in part, to the conclusions of a 1993 report which acknowledged 

the large resource available to the UK yet concluded that the cost of capture was 

prohibitively high, in the region of 17 - 39 plkWh for the two most promising sites in 

the UK [37]. That report, funded by the Energy Technology Support Unit on behalf of 

the Department of Energy, led to the withdrawal of support from the UK Renewable 

Energy Programme for any tidal stream energy proposal. Several other independent 

organisations continued to be interested and research programmes continued. Their 

judgement was ratified by the conclusion of a more recent Department of Trade and 

Industry report which gave a cost estimate for the same site as 4.56 plkWh [38]. This 

estimate, with an 8% discount rate over 29 years, has again renewed interest and 

government support from the renewable energy program for this energy source. 

Based on sites with a mean spring tide greater than 2ms·
l
, it has been estimated that 

10 % of the UJ('s electricity capacity may be provided by expected recovery rates of 

energy from tidal streams [39]. 

This condensed form of energy is proportional to the cube of the water velocity, for 

example 1.89kWm·2 in a 1.5 ms· l flow. The theoretical maximum energy which can be 

extracted from a tidal stream is known as the Betz limit and equal to 59% of that 

available. 

A crucial advantage of tidal stream energy over many other renewable resources is 

the predictable nature of its output, allowing accurate predictions -of its annual yield and 

giving utilities ample warning of periods oflow energy (i.e. neap tides). 
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1.1.1 Tidal Stream Energy Converters 

Most fonns of tidal stream energy converter to date have been analogous to wind 

turbines, in that they have centred around horizontal axis, multi bladed turbines, e.g. 

[40, 41]. As such they produce slow speed rotational motion, typically of the order of 

10 rpm, which has previously demanded the utilisation of a gearbox drive train. This 

type of device falls outside the scope of this research, which focuses on reciprocating, 

primarily linear, generators. It should be noted, however, that rotary versions of the 

electrical machine topologies presented here would be suitable for use in these devices 

and hence many of the issues addressed are also relevant to this type of converter. 

One device exists, however, which does require slow speed reciprocating linear 

power take off. The StingrayTM is a seabed-mounted device, consisting of one or more 

hydroplanes with variable angle of attack [42]. Figure 1.8 shows this device and the 

direction of tidal flow. As the angle of attack of the hydroplane is altered, so too is the 

resultant force on the pivot arm. The entire hydroplane and pivot arm can hence be 

made to oscillate about the post in a vertical plane. 

direction 0V 
tidal flow 

+.---hydroplane 

pivot arm 

post 

Figure 1.8: Stingray tidal stream generator 

At present power take off is by way of four high pressure hydraulic cylinders 

mounted at the top of the post, coupled to the pivot arm. Chapter 7 explores this device 

and its power take offmore fully. 
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1.3 Electrical Power Take off 

Electrical machines have traditionally been designed to be driven at high speed 

rotary motion, typically from an internal combustion engine. This corresponds to an 

airgap speed within the machine of upwards of 60 mls, allowing for easy conversion 

into a rapid change in flux. A typical wave energy converter, however, can expect to 

produce linear oscillatory motion with velocities in the region of 0.5-2m1s. Previously 

the trend for both wave energy and tidal energy converters has been to match the motion 

of the device to that required by the traditional high speed rotary electrical machines by 

complex systems of hydraulics, pneumatics or gearboxes. These mechanical linkages 

were required to rectify and step up the velocity. 

A direct drive system is one where there are no intermediate mechanical systems 

between the primary moving element of an energy converter and the electrical machine. 

Directly coupling the moving element of the electrical machine to that of the energy 

converter in this way places special requirements on the electrical machine, in the form 

of slower speeds, higher forces and a variable power input not present in schemes with 

extra mechanical systems. It is these special requirements which have previously led 

the engineer to use 'off the shelf high speed rotary electrical machines and create 

innovative solutions to match the required and provided motion within the energy 

converter. Figure 1.9 shows that these extra mechanical steps significantly increase the 

complexity of the overall power train. 

hydrodynamic special 
sea interaction with h-------"""'T'!~~~~~ electrical 

wave primary elemen 

Figure 1.9: Alternative power take off schemes 

Wind turbines also produce a slow speed motion, and current practice is to use a 

conventional high speed induction or synchronous generator, operating at 1500 rpm 

dri b t box Rese<>rch in this area has allowed direct drive generators to ven y a s ep up gear. a.t 

b d · 1 tn'cal machines capable of running with airgap speeds of 5-6 mls e propose , usmg e ec 

[43]. 
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The concept of direct drive marine energy converters is hence an extension of slow 

speed electrical machine research. The principle was highlighted in the heaving buoy 

wave energy converter illustrated in Figure 1.5, where the float of the device is 

intended to follow the movement of the water surface. The linear generator translator is . 

coupled directly to the float and so too follows the motion of the waves. The device is 

slack moored, making it appropriate to use in deep water. Energy is removed by 

developing a force between the moving element and the submerged drag plate, which 

will remain stationary or nearly stationary. As is clearly demonstrated, the direct drive 

system offers a very elegant method for power take off in this example, with an absolute 

minimum of moving parts. 

1.4 Aim of Thesis 

The research described in this thesis intends to enlighten the reader into the potential 

issues associated with the integration of linear generators into marine energy converter 

devices. The development of suitable electrical machines specifically for this 

application forms the bulk of the work, whilst some mechanical and electronic issues 

are highlighted and reference made to their relative importance, impact and solution. 

1.5 Layout of thesis 

This thesis unites a fairly diverse range of subjects separated into chapters and a brief 

word as to their content may prove useful to the reader. Where possible, separate 

chapters have been used to introduce distinct areas of research, yet some interaction and 

cross referencing is necessary. 

The fundamentals of capture of marine renewable energy and hence the context of 

this research has been highlighted in this Chapter. Chapter 2 examines the variety of 

systems available for power conversion within marine energy converters, with particular 

emphasis on hydraulic systems, and hence explains the novelty of a direct drive 

approach. 

Various topologies of linear electrical machine are introduced in Chapter 3, and some 

simplified comparisons made. From this, two preferred topologies are identified and 

investigated in significant detail in the proceeding two chapters. 

Mechanical issues addressing the integration of these machines into energy 

converters and the main criteria upon which each electrical machine can be compared 

are discussed Chapter 6. 
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In Chapters 7 and 8 generators are proposed for use in existing wave and tidal energy 

converters. 

The primary conclusions and author's recommendations for further work are 

identified in Chapter 9. 
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Chapter 

2 

Power Take off Systems 

This chapter aims to demonstrate how the choice of power take off system 

influences the overall characteristics of a marine renewable energy device. The 

relative merits of alternative schemes are investigated. In particular a hydraulic system 

is examined in some depth, highlighting both the features of such a system and factors 

to be considered in the choice of power take off systems in general. 

Comparison is made to current practice in offshore wind turbines, whose 

environment, rating and regulation is likely to be similar to that found in Marine Energy 

Converters (MECs). 

2.1 Requirements of power take off system 

The main requirements for the power take off in this kind of application are high 

thrusts, of the order of 106 N, combined with low maintenance, preferably requiring 

inspection of the device annually or less [3]. Ideally this would be achieved utilising a 

weight comparable to that of the proposed device, in order to avoid the need for extra 

buoyancy. 

Survivability and reliability are key to the successful operation of a renewable energy 

generator, both in terms of time (20 years for offshore wind turbines) and response to 

extreme environmental events. 

Electrically, the power take off mechanism must supply the grid at a constant 

frequency and voltage. Take for example a large wind turbine developed for offshore 

use whose power take off is a 6 pole doubly fed asynchronous generator, with a nominal 

speed of 1100 q>m and an output ofO-27S0kW. The voltage has a variation of±10 %, 

the frequency -5 to 3 % and a power factor of 0.9 to 1 [44]. It can be envisaged that an 

MEC should strive to achieve a similar performance. 
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2.2 Direct Mechanical Linkage 

The motion of an MEC can be converted to a suitable form by the use of a step up 

gearbox, possibly in combination with a rectifying device such as a ratchet. The 

introduction of a gearbox introduces extra mechanical complexity, system losses, 

monitoring requirements and more importantly enforces regular maintenance in terms of 

oil changes. 

Although gearbox technology is well established, for example in the automotive 

industry, these are generally step down gearboxes of a smaller capacity and used 

intermittently. In the wind power industry, where ratios, ratings and lifetimes are likely 

to be similar to those required here, gearboxes have proved to be problematic, 

representing a considerable cost factor of a conventional wind turbine [45]. Further, the 

industry has been dogged by high profile cases of gearbox failure. A major wind 

turbine manufacturer, NEG Micon, had to replace 1250 gear boxes in 600, 700 and 750 

kW machines after 150 of their gearboxes had problems [46]. 

The demands on a gearbox may be demonstrated by considering a 150 kW Stingray 

device, oscillating with a peak velocity of 2 mls at its tip. A typical electrical generator 

for this rating would have a shaft diameter of the order of 70 mm and a rated speed of 

about 2000 rpm. If the linear speed of the hydroplane was converted directly into rotary 

motion using a rack and pinion arrangement, a 0.3 m diameter pinion would have a peak 

speed of 63 rpm. Even at the peak point in the cycle, then, a gear ratio of the order of 

30 is required to match the required and available motion. Further inspection of the 

device implies that the long length and implicit speed reduction of the pivot arm (= 

12m) in combination with the sinusoidal nature of its oscillation would require a 

gearbox with a significantly higher step up ratio and be subjected to a constantly 

varying load. 

2.3 Pneumatic system 

A typical pneumatic system for a WEC, known as an Oscillating Water Column 

(OWC), consists of a' partially submerged air compartment with one end open to the 

ocean and the other open to the atmosphere. As the water level inside the chamber 

oscillates with incoming waves, so too must the air above it, which is hence periodically 

expelled to and drawn from the atmosphere. The energy in the waves is thus converted 

into an oscillating colwnn of air with a velocity greater than that of the waves, Figure 

2.1, which may then be converted to high speed rotary motion by an air turbine. 
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Figure 2.1: Pneumatic gearing in an owe 

In the 1970's Professor A Wells of Queens University Belfast proposed a form of 

self rectifying axial flow air turbine which rotates in the same direction irrespective of 

the direction of airflow. The Wells' Turbine became part of the standard power take 

off system for any OWC proposed as it provides a simple method of rectifying the 

movement of the air into high speed rotary motion. Further research, however, has 

highlighted its inherent disadvantages such as low efficiency (<40%), poor starting, 

high noise and high axial thrust when compared with a traditional turbine [47]. 

Variable pitch turbines, either externally controlled with hydraulics [48] or with self 

pitch control [49], have since been proposed. Both of these offset slightly the Wells' 

turbine disadvantages. It should be noted that the requirement for this type of 

unidirectional turbine technology is specific to WECs, which implies that research into 

efficiency improvements will only be carried out within the wave energy community. 

The entire pneumatic system and turbine acts as a mechanical linkage both 

increasing and rectifying the motion contained within a wave. Furthermore, the 

resonant frequency of such a device and the power extracted from the ocean may be 

controlled by restricting the airflow through the turbine or by venting directly to the 

atmosphere. 

2.4 Hydraulic system 

2.4.1.1 Over view 

Hydraulic systems are frequently proposed for power take off in wave energy 

devices and the current version of the Stingray device. Typically a hydraulic ram is 

used to convert the motion of the device into high pressure oil, which is then fed into a 

hydraulic motor driving an electrical machine. Slow speed high forces are hence 

converted into rotary high speed motion with a minimum onboard weight. Furthermore, 
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the reactive force of the rams can be controlled by th kin f e wor g pressure 0 the system. 

The addition of one, or possibly two, accumulators into the system allows some 

provision for energy storage The system of FI'gure 2 2 sh d bl . . . . ows a ou e actIon pIston 

feeding into a high and low pressure accumulator. A throttling valve controls oil flow 

which then drives a hydraulic motor and electrical generator. 
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Figure 2.2: Hydraulic power take off system 

Any configuration of a hydraulic power system would likely have the electrical plant 

close to the device, the advantage of remote shore based conversion being offset by the 

disadvantage of long, costly and inefficient pipe work. 

Realistically, a hydraulic system is the most likely competitor to a direct drive 

system, because gearboxes are accepted as cumbersome and rarely proposed in WECs 

and the pneumatic system of an OWC is inherent in its design. As such, a typical 

hydraulic system is examined in further detail, and its specific parts are outlined below. 

Rams 

Typically used as actuators in hydraulic the industry, in this application they are used 

to displace the hydraulic fluid at high pressure. The dynamic seals enforce a restriction 

on the extraction and contraction velocity of the piston. Pressure inside the ram can be 

of the order of 400 Bar, allowing it to exert a very large thrust. 
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Accumulator 

Gas-pressurised accumulators are the preferred method in the hydraulics industry for 

energy storage. They consist of a pressurised vessel containing hydraulic fluid and an 

inert pressurised gas, possibly separated by a variable membrane to avoid 

contamination. As more fluid is forced into the accumulator, the gas is compressed and 

hence the pressure of the vessel increases. If the variation in pressure due to the WEC is 

assumed to be sufficiently fast, and the accumulator is assumed to be a thermal 

insulator, the process is adiabatic and dictated by (2.1). 

pvr =c (2.1) 

Where p pressure (pa) 

V volume (m3
) 

y 1.4 

c constant 

Non return Valves 

These are necessary to enforce the correct flow of oil around the hydraulic circuit. 

They will have some pressure drop, L\p, and hence power loss associated with them, the 

value of which may be calculated using (2.2), which assumes they may be modelled as a 

simple orifice of area A. 

Where 

Motor 

Q 

J.l. 

po 

(2.2) 

flow rate (m3s·1
) 

discharge coefficient = 0.61 [13] 

density of oil (kgm -3) 

The ideal motor would have variable displacement volume and be able to work at the 

desired pressures and flow rates. Axial piston or wing motor appear to be suitable for 

this application, although the efficiency of these drops off at part load. A specific 

hydraulic motor suitable for this type of application has also been proposed, [50], which 

claims to be able to deliver varying input powers and pressures to a constant output load 

at high efficiencies. 

2.4.1.2 Limitations of hydraulics 

Hydraulic systems are expensive and designed to operate at speeds even lower than 

those of a typical WEC. Although the technology of hydraulics is well established, this 
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application is using the components in a role reversal, driven by linear motion (acting as 

rams not actuators) and driving rotary motion (motor not pump). As such a degree of 

research into their mass utilisation is still required. If oil is to be the working medium 

then the marine environment strictly enforces its containment to prevent contamination. 

This places a stringent limit on the maintenance interval in terms of moving seal life. 

There is a theoretical advantage in using fresh water as the medium, but leakage could 

then be expected to increase one thousand fold when compared to hydraulic oils, in line 

with the three order of magnitude decrease in viscosity. 

The need for moving seals in the hydraulic rams limits the speed with which they can 

be operated. The maximum speed would be typically around 0.5 m1s. With the life of 

the seal being inversely related to the speed, distance and length of its application, it 

may prove desirable for the speed to be kept even lower, in the region of 0.1 m1s. An 

example of how hydraulic systems are the bench mark for WECs is demonstrated by a 

device known as the Pelamis [19] in which the designer deliberately reduces the speed 

of movement to those utilisable by hydraulic systems. A further example is highlighted 

in Chapter 7 for the design of the Stingray tidal stream device. 

The requirement for non return valves, crucial to the use of accumulators, will detract 

slightly the efficiency of the system due to the inherent pressure drop across them. 

The use of flexible hose potentially offers an attractive solution to the problem of 

locating the hydraulic motor and accumulators remote from the rest of the device. 

However, flexible hydraulic hoses do not perform well in the marine environment, 

especially not in comparison to electrical cable [51]. Using rigid steel pipe work clearly 

avoids this problem but enforces all parts of the hydraulic system to be mounted on the 

same platform. 

Hydraulic technology is a mature technology, with a known and proven reliability. 

Similarly, however, the disadvantages of slow speed and low efficiency at part loads are 

equally proven. 

2.5 Direct Drive 

2.5.1 Introduction 

A direct drive power take off system has the electrical generator and moving part of 

the device joined together with no intermediate mechanical systems. As such the 

resulting system is mechanically simple, with less moving parts then either a gearbox or 

hydraulic system. 
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The electrical machine is required to convert slow reciprocating motion directly into 

electrical power without the luxury of having the motion rectified and increased. Slow 

speed high power conversion inherently requires high forces to be reacted. For an 

electrical machine this implies the provision of a large airgap surface area. A 100 kW 

conventional machine with an average airgap shear stress of 20 kN/m2 whose motion 

was just 1 mls, as might be the case in a wave energy converter, would have to react a 

force of 100 kN, requiring an airgap area of around 5 m2• These large areas have 

dissuaded most designers from the direct drive route and imply that it may not be 

suitable for all MECs. Modem electrical machines, with higher shear stresses, provide 

the opportunity for more reasonable size machines. 

. 
moving 

magne coil 

:..-;,' / /.:' / i!! / / // 1./ // / 

guide 
rod 

Figure 2.3: Previous direct drive proposal 

The direct drive concept was first proposed in 1978 by Baz and Morcos [52], the 

linear version of which is shown in Figure 2.3 and its rotary counterpart in Figure 2.4. 

They appropriately based their design on the simple principle that electric current will 

be induced in a coil if it is moved relative to a magnetic field. As a wave passes 

through the device, the float rises, which in turn alters the position of the coils with 

respect to a permanent magnet. The coils experience a change in flux linkage and by 

Faraday's law an emf is induced. Limitations in available permanent magnet material 

and the utilisation of such simple electrical machine topology led the authors to 

conclude that the low conversion efficiency of the linear and the low speed oscillation 

of the rotary versions prohibited their use. The research programme hence diverted 

towards devices with inherent speed amplification and rectification, ~volving the use of 

a fly wheel coupled to the float via a sprocket and chain configuration. 
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Figure 2.4: Direct drive proposal with rolling magnetic field 

The use of linear permanent magnet machines directly linked to the device has been 

suggested more recently [53]. This system, shown in Figure 2.5, was proposed as a 

method of controlling the oscillation of the sea surface. It was not suggested that this 

device be used as the power take off mechanism however, and the linear machine was 

used as a control mechanism. It allowed the controller to eliminate the difference 

between the actual and desired chamber pressure by acting as additional damping for 

parts of the cycle. 

linear motor 
damper 

/ 

Figure 2.5: Linear motor as part of control strategy 

Two groups are presently engaged in the research of direct drive as the primary 

source of power take off for wave energy converters, the A WS concept mentioned 

previously and further in Chapter 8, and a UK based company: Direct Thrust Designs 

plc. The latter of these have patented a tubular machine, whereby the armature winding 

moves relative to a permanent magnet translator, Figure 2.6 [54]. 
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Figure 2.6: Direct Thrust Designs plc 500 W prototype WEe 

2.5.2 Electronic conversion for direct drive 

A major concern, common to all power take off strategies, is the lull in output power 

inherent with reciprocating motion and also the variation of net power due to 

atmospheric conditions. The predictable nature of tidal currents gives protection for the 

latter of these. Although it may be possible to operate several devices out of phase in an 

array and minimise the short tenn lull in power, some smoothing will still be necessary. 

Furthermore, it is advantageous to have a stand alone device with its own power 

smoothing, both to allow single deployment and also give protection against unit 

failure, i.e. preventing a fault in one device disabling an entire array. This is an area 

where both hydraulic power take off and, to a lesser extent, pneumatic systems, offer a 

reasonably simple solution, in tenns of gas pressure and kinetic energy storage 

respectively. 

In a direct drive system it is preferable if the energy can be stored in an electrical 

form, by means of a battery or capacitor. For a generator subject to sinusoidal motion, 

the RMS voltage and current are both ...J2 smaller than would be obtained if the velocity 

were constant. An energy buffer is required if there is a desire to feed the grid 

continuously at the average rate. 

A sister project at the University of Durham intends to investigate the electronic 

support equipment required to facilitate direct drive power take off. For completeness a 

summary is contained here but the reader is directed towards [55] for more details. The 
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system consists of an active rectifier which converts the AC to DC 't' d , a capacl or asslste 
DC link and then a DC-AC converter, 

tineer electrical 
generator 

c 

Figure 2.7: Three phase ACIDC/AC CODverter 

3-phase mains 
grid voltage 

Figure 2.7 shows a two stage inverter which may provide this role. On the left hand 

side of the diagram there are three energy sources, representing the three phases of a 

typical electrical machine. Each of these phases are fed into an active rectifier which 

will optimise the power conversion within the electrical machine. The D.e. link and 

capacitor have two roles. Firstly they may be used to provide reactive power to the 

generator, and secondly they act as an energy store to smooth power flow. The DC to 

AC inverter, shown on the right hand side of Figure 2.7, must provide a constant 

frequency constant voltage signal to the grid. 

The power storage function could, in theory, be fulfilled by a battery but because of 

the short duration of discharge in combination with the requirement for a lack of 

maintenance, a capacitor is proposed here. 

2.6 Specifying a power take off system 

2.6.1 Example WEe 

To examine the factors involved in specifying a power train, a simplified WEC is 

investigated. Figure 2.8 shows the simple slack moored heaving buoy introduced in 

Chapter I with hydraulic power take off. It is assumed that the elements of the 

hydraulic circuit will be mounted remote from the device, probably on the seabed, and 

that the characteristics of the device match closely those required for resonance at the 

predominant wave height and frequency. In so doing, the device can be modelled 

without the use of a control system, giving figures for a power take off system that is 

less device specific. 
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Figure 2.8: Heaving buoy with hydraulic power take off 

2.6.2 Sizing the WEe for a given sea state 

Wave data given in [56], cited in [57] and displayed in Figure 2.9 gives the 

probability of each sea state of a given point ofT the NOIwegian coast in tenns of the 

zero upcross time and significant wave height. If the float is assumed to follow exactly 

the surface of the water, these datum can be used as the basis of a simple design model. 

In reality, oscillation of two coupled bodies in water is mathematically more complex, 

e.g. [58]. 

Designing for the most 'likely' sea state, with a probability of 6.73 %, the significant 

wave height is 2m and the zero upcross time is 6 seconds. If it is assumed that the sea 

in this state contains waves of one frequency all in phase, a highly idealised sea state, 

the zero upcross time becomes the time period and hence the frequency 0.16 Hz. Using 

this simplification, it is possible to speculate about the component sizes for the WEC 

and time average energy contained in the sea. Using equation (1.2) in Chapter 1, the 

energy present per m wave front in this sea state is equal to 23 kW fm, the wavelength of 

which is 56 m. If the buoy were to act as a point absorber and remembering that this 

means it is capable of absorbing power equivalent to that contained in a front width 

equal to the wavelength divided by 21t, the total energy incident on the buoy would be 

equal to 204 kW. As explained in section 1.1.5.1, any WEC having only one degree of 

freedom will have a maximum capture efficiency of 50%, giving the maximum power 
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available to the buoy as 102 kW. On this assumption, one might expect a 100 kW 

power take off system to be making best use of the available sea and the rated output of 

the device in one hour to be 100 kWh. However, due to the nature of energy contained 

within waves, namely its increase with the square of the amplitude, the actual power 

which a device may capture over a 'typical' hour is 488 kWh. To obtain this value the 

relative probability of each sea state and the energy contained within it has been 

accounted for using ( 2.3). 

7 

6 

o -"" 
7 

", ,~ .. .... ' , ." . 

Hs(m) 
1 4 Ts (s) 

Figure 2.9: Scatter table of wave data 156] 

p = ~L~P,_" p_ro_b_i ( 2.3) 
aYe Lprobi 

Where Pi = power available at sea state i (W) 

14 

probi probability of sea state i occurring 

Still assuming the idealised sine wave which fulfils the zero upcross time and now 

looking at the behaviour of the device over one year allows the relative importance of 

h b ared l
"n terms of kWh Figure 2.10. Despite their rare 

eac sea state to e comp , 

f I l"tude and time period can be seen to make a significant 
occurrence, waves 0 arge amp I 

contribution to annual yield. 
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Figure 2.10: Energy contribution from various parts ortbe sea 

2.6.2.1 Power take off 

Maximum extension 

14 

Hydraulic rams have a maximum permissible extension to avoid damage. Varying 

the magnitude of this extension will impact on both the power yield of the device and its 

cost. Figure 2.10 does not show a clear cut off point, where waves above a particular 

amplitude no longer contribute significantly to the annual yield. It is necessary to make 

further assumptions about the behaviour of the buoy and sea. StipUlating that during 

large waves the drag plate follows the oscillation of the float when the maximum 

cylinder extension is reached effectively limits the amplitude of oscillation. Take for 

example the graphs of Figure 2.11. The upper graph shows a constant frequency sea 

state, with a successive amplitude of two, three and four metres. The second graph 

shows the displacement of a submerged plate which must always be within a 4 met:re 

envelope of the sea surface, due to its coupling with a floating buoy. The final graph 

shows the extension of the hydraulic ram. 
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Figure 2.11: Effect of limiting amplitude of oscillation to 2 m 

From these graphs it is clear that when limiting the maximum excursion of the 

hydraulic rams, the plate will oscillate such that the profile of the ram extension is at the 

same frequency as the surface but with limited amplitude. If the shape of the resultant 

extension graph in large waves is approximated to a sine wave, the power captured by 

the device can be calculated using formula (1.2). The addition of the conditional 

statement given in (2.4) limits the amplitude of extension to Amax, the size of the 

hydraulic ram and can be used in combination with (1.2) to calculate the power take off 

at any sea state. 

if Hs ;5; Amax, Hs = Hs 

ifHs > Amax,Hs = Amax 
(2.4) 

The effect of using alternative amplitude rams on annual power yield may now be 

investigated, as given in Figure 2.12. Limiting the extension of the cylinder to 4 m 

ensures the capture of around 80 % of the available energy and gives the device 

characteristics shown in Table 2-1. 
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Figure 2.12: Effect of limiting hydraulic extension on maximum theoretical annual energy yield 

Table 2-1: Device characteristics for hydraulic ram with A_s= 4m 

Force-peak Velocity-peak Power Time period 
(kN) (ms-I) (kW) (s) 

Maximum 4430 3.1 4290 13 
Minimum 9.9 0.24 7.8 4 
Average 375 0.94 403 7.29 

Size of plate 

The size of the plate is dictated by the drag force required for the power take off 

system to react against. The drag force, FD, associated with a cylindrical plate with 

cross-sectional area A may be expressed as (2.5). 

Where CD = 

p 

v = 

FD = - CD pA/v/v 
2 

(2.5) 

drag coefficient = 10 [57] 

density = 1025 kg/m3 for sea water 

velocity (mls) 

From Table 2-1 the average velocity of the buoy is 0.94 mls and the average required 

force is 375 kN. Specifying the area of the drag plate to give this drag force at 0.47 ms-I 

ensures the buoy travels at least twice the speed of the cylinder and corresponds to a 

plate area of360 m2, giving a diameter of21m. 
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If the outer height of the plate is nominally taken as 0.2 m and it is made of 

aluminium with a density of 2700 kg/m3
, a hollow design with only 50% material will 

weigh 94 tonnes. When submerged in sea water, the net buoyancy force downwards of 
the plate will be 220 kN. 

Size of buoy 

The minimum size of the floating part of the device is calculated by the required up 

thrust to counteract the weight of the submerged plate. In order to simplify the 

oscillation model and use available mathematical models, e.g. [27], the same diameter 

as the plate may be used. Alternatively a diameter which puts the buoy's resonant 

frequency close to that of the predominant wave frequency may be selected. 

2.6.2.2 Specific Hydraulic System 

Rams 

Currently the largest commonly available cylinder [59] has a stroke of around 0.8 m. 

It is likely that this limit is due more to demand than any technical difficulties, so the 

characteristics of this cylinder are extrapolated here. 

The maximum force provided by the cylinder is equal to the maximum drag provided 

by the plate, which itself is proportional to velocity. Assuming that the maximum 

velocity the plate can be expected to attain during operation is equal to half the 

maximum velocity of the buoy, 1.6 mls from Table 2-1, results in a drag force of 4.7 

MN. The cylinder design is hence based on a currently available cylinder with a 

maximum reactive force of 5118 kN [59], shown in Table 2-2. 

Table 2-2: Parameters of cylinder 

Maximum stroke - m 4 (extrapolated) 
Average stroke - m 2.23 
Outside diameter - m 0.4 
Effective area push - m": 7.312x lOo{) 
Effective area pull - m": 2.485 x 100{) 
Max pressure - bar 700 
Weight - tonnes 3.7 (extrapolated) 
Max oil capacity mJ 0.3 

Pressure 

The force from the hydraulic piston and cylinder must be sufficient to keep the two 

bodies in the desired equilibrium positions. Due to the area displaced by the rod, the 

effective area of the piston is different depending on whether the cylinder is extending 

or contracting, as shown in Table 2-2. The orientation of the cylinder is such that if the 

smaller area is coupled to the high pressure accumulator, it is available to react against 
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the residual buoyancy force plus the downward force from the low pressure acting in the 

push side. If the low pressure accumulator is 5 Bar, then the force required to overcome 

the residual buoyancy of the drag plate is reacted if the high pressure accumulator is set 

to 100 Bar. 

Accumulator 

For the accumulator to provide some smoothing it must have enough capacity to 

smooth the power output for 30 seconds, equal to 4 average time periods. The 

equivalent flow into the high pressure accumulator would be equal to two pull and two 

push strokes during this time, 0.4 m3
• Using (2.1), if it is specified that the high 

pressure accumulator must remain above 85 Bar during the loss of 0.4 m3, an initial gas 

volume of3.2 m
3 

is suitable. If the total volume of the accumulator was set at 4 m3 this 

would make provision for ensuring the accumulators do not empty. A similar size can 

be expected for the low pressure accumulator. 

2.6.3 Concluding remarks 

This section has discussed the process of sizing a power take off mechanism for a 

WEC, highlighting its influence on the overall performance of such a device. Using the 

criteria for sizing the plate in section 2.6.2.1, which uses the average force on the plate 

at half the average velocity of the buoy gives an average power from the device of 176 

kW. This value has been shown to be highly dependent on the size of drag plate and 

hydraulic ram chosen. In the case of extreme waves, blocking the hydraulic system will 

allow a maximum force of 5 MN to be reacted, with no power output. 

2.7 Discussion 

The low velocities of MECs require that the power take off systems deliver high 

thrusts at the point of contact. At delivery of energy to the grid, high frequency 

electrical power is required with a stable voltage rating. 

Gearboxes are a conventional way of stepping up mechanical velocity, allowing high 

thrusts at low velocities to be converted to low thrusts at high velocities, yet they have 

been known to cause problems in the similar area of wind turbines. 

A pneumatic system provides a simple way of stepping up the power take off 

velocity once it has been transferred to a column of oscillating air. The subsequent 

rectification and conversion into mechanical rotation either requires a Wells' turbine, 

with an efficiency of around 40 %, or the development of a complex system of pitch 

controlled turbines. 
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Hydraulics are the standard choice for MBC power take ofT system by virtue of their 

ability to work at high pressures and thus deliver high thrusts. Viscosity and sealing 

issues enforce the use of oil as the working medium. Subsequent fear of contaminating 

the marine environment enforces the need for complete confidence in the sealing 

mechanism, likely reducing usable velocities and enforcing regular checks / 

maintenance. An entire hydraulic power take ofT system comprises many moving parts 

to rectify and smooth the power take ofT, all of which are required to work with a 

relative reverse power flow compared to conventional hydraulic drives. 

A direct drive system is simple, with an absolute minimum of moving parts and 

mechanical linkages. Schemes have previously been proposed and .abandoned for 

reasons such as the large active areas required if traditional electrical machines are used. 

Investigation of modern machine topologies and the known limitations of other power 

take off mechanisms justify investigation of the direct drive concept and two other 

groups are known to be working in this area. Rectification and power smoothing 

would be purely electronic systems, removing the issues of mechanical wear. The 

practicalities of such a system are currently being investigated elsewhere [55]. 

The nature of wave distributions show the importance on the selection of power train 

on annual yield for a given wave energy device. The need to develop a device in 

tandem with its power take ofT system has been demonstrated. 

2.8 Conclusion 

Within this chapter the significance of the choice of power take ofT scheme on the 

overall characteristics of a MBC has been discussed and the steps of selecting the rating 

for a power take ofT system have been outlined. 

The four forms of power train were said to be mechanical linkage, hydraulic, 

pneumatic, and direct drive, each of which takes the slow reciprocating motion from the 

device and convert it into usable energy. With the possible exception of pneumatic 

systems, which tend to be an inherent part of an OWC device, the power take ofT trains 

could in theory, be used in place of each other. As such, a direct drive power take ofT 

system has the ability to be applied to most MBC devices. This gives insight as to the 

expectations of an electrical machine proposed as direct drive power take ofT. The 

following Chapters investigate the types of electrical machine suitable for use in these 

applications. 
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Chapter 

3 

Linear Electrical Machines 

Thi~ chapter. introduces vario~s . topologies of linear electrical machine and 

bnefly outlines both the pnnclples and mathematics which describe their 

behaviour. As such it provides a platform on which they are compared. On this basis 

two machine topologies are selected for further investigation in the proceeding two 

chapters. 

3.1 Linear Machines 

Electrical machines are almost exclusively of a rotary configuration, primarily due to 

their application. Notable exceptions to this, where some research has been performed, 

are for transportation purposes (levitating high speed trains, 'Maglev'), projectile 

launchers or small biomedical actuators [60]. These are all high speed operations, with 

the electrical machine acting as an actuator / motor. For marine renewable applications, 

as demonstrated in previous chapters, the concept of a linear machine offers the 

opportunity to simplify the mechanics of the system if it can be used as a slow speed 

generator. The guiding principles for rotary and linear machines are identical, simply in 

a different plane of motion. As such, all equations describing a rotary machine are 

equally applicable to a linear machine, with the slight modification of some terms, such 

as torque to force. Conceptually, a linear machine can be thought of as the 

circumference of its rotary counterpart flattened out. Figure 3.1 shows the basic form of 

a linear machine being derived from its rotary counterpart. 

stator 

translator 
I - I 

Figure 3.1: Imaginary process of unrolling rotational machine to obtain linear counterpart 
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The power absorbed by a linear machine is equal to the product of the reactive force 

it can deliver and the velocity at which it is displaced. In order to develop greater power 

for a given velocity, therefore, it is necessary to be able to exert a greater force. It 

follows that the specific shear stress, the force per unit area of the active airgap, 

provides a valid basis on which to asses machine topologies. 

All the machines in this chapter consist of a stationary part, referred to as the stator, 

and a moving part, referred to either as the translator, or as with its rotary counterpart, 

the rotor. 

3.2 Conventional Topologies 

3.2.1 Linear Induction Machine 

The induction machine is the work horse of the electric motor industry. Its 

robustness arises from the simple topology of its rotor, particularly in a squirrel cage 

motor where there is no requirement for brushes or slip rings. There is a slight 

preference for induction machines to be used as motors, in particular linear induction 

machines have previously been of primary interest for transportation actuators. 

In a linear induction machine a three phase alternating current is used to excite the 

stator windings, which, in combination with the winding configuration, sets up a 

synchronous speed travelling magnetic field in the airgap region. Consequently, if the 

translator is not moving at synchronous speed, i.e. for all non zero-slip speeds, an emf 

is induced within the translator. The transition of machine operation from motor to 

generator occurs as the rotor speed overtakes the field speed and goes super 

synchronous. By feeding the stator coils through a controllable inverter any slip speed 

can be achieved at any rotor velocity. Controlling the output power is hence relatively 

simple for a variable speed input and as such the rotary version is commonly used in 

wind turbines. 

Figure 3.2 shows a short stator type machine, where the active length is dictated by 

the length of the stator, the translator being as large as the anticipated amplitude. This is 

likely to be the preferable configuration in applications considered here, as the over 

sized translator is cheaper to construct than the energised stator. Furthermore, the 

moving part can have a very simple and light construction, consisting of either 

conductors embedded in slots of a back iron structure, or possibly just a single 

conducting sheet. 
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Figure 3.2: Linear induction machine 

"" stator 

An induction generator must draw magnetising current and so requires a two way 

grid connection. For a linear machine, where there is likely to be a larger airgap than its 

rotary counterpart, the inductance and hence reactance of the excitation coil is low. 

Consequently a large excitation current is required and the overall efficiency of the 

machine is reduced. 

If the peaks of electrical and magnetic loading of the machine coincide, then the peak: 

airgap shear stress may be expressed as (3.1). 

Where 

B 

K 

= 

u=BK (3.1) 

shear stress (Nm-2
) 

magnetic flux density (T) 

electric loading (Aim) 

3.2.2 Field wound synchronous machine 

Synchronous machines are the primary devices used for high speed rotary power 

generation in the world's electric power systems today [61]. The rotor is fed with a d.c. 

current via brushes and slip rings and so sets up a magnetic field which follows its 

movement. The stator surrounds the rotor with a set of stationary coils, such that they 

are cut by the rotor flux pattern. Controlling the excitation currents in these machines, 

which are generally more efficient than induction machines, provides a way of 

regulating the output voltage which would otherwise be dependent on speed. 

Operating as a motor for high speed transportation devices, linear synchronous 

machines have been shown to be more favourable than their induction equivalents, with 

an efficiency of 90 % when compared to 82 % and a power factor of 0.8 as opposed to 
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0.52 [62]. At low velocities, however, the small pole pitches necessary for rapid flux 

change limits the current / size of the excitation coils. 

There are wear issues associated with field-wound synchronous machines when 

compared to induction machines. The necessity of physical contact with the translator 

in order to transfer magnetising current will enforce routine maintenance for inspection 

or replacement of brushes. The variable speed bi-directional oscillatory motion 

considered here will only serve to increase wear on the brushes when compared to their 

rotary counterpart. 

The maximum shear stress is again governed by the relationship of equation (3.1). 

3.2.3 Permanent Magnet (PM) synchronous 

In a machine excited by PMs there is no need for the provision of field excitation, as 

magnetised material is used to supply pole flux as opposed to current carrying coils. A 

simple example of such a machine consists of surface mounted ferrous magnets 

mounted on an iron translator which oscillates within a cylindrical distributed three 

phase winding, held in place by slotted iron structure. One such machine is shown in 

Figure 3.3. 

coil 

Figure 3.3: Conventional linear PM machine 

As the translator moves, so too does the flux pattern resulting from the presence of 

magnets. An emf is hence induced in the stationary coils as the flux cutting them is 

changed. The flow of magnetic flux can be simplified by assuming infinitely permeable 

iron, in which case the total magnetomotive force (mmf) produced by a magnet is 

dropped across the magnetic gap length (i.e. in the airgap and within the magnet itself). 

The flux density in the airgap is given by equation (3.2), allowing the machine thrust on 

the electrical windings to be obtained by use of Lorenz's law, as expressed in equation 

(3.3) and per unit active area in (3.4). 
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thickness of magnet (m) 

flux density in airgap (T) 

(3.2) 

remnant flux density in magnet (T) 

length of airgap (m) 

relative permeability (~I.05 for magnetic material) 

F = BgIL (3.3) 

force (N) 

= current (A) 

length (m) 

a=B K g (3.4) 

3.3 Variable Reluctance Permanent Magnet Machines 

(VRPM) 

3.3.1 Introduction 

In conventional electrical machines the shear stress in the airgap has been shown to 

be equal to half the product of magnetic and electric loading. These quantities are 

limited by saturation levels in the iron and temperature levels in the copper respectively. 

In order to increase the shear stress available, then, it is necessary to depart from these 

topologies. Iron saturation is a material property and so cannot be altered, but the 

equivalent electric loading can be increased by the introduction of rare earth Permanent 

Magnets (PMs). 

Figure 3.4: Equivalent current sheet of a PM 

Figure 3.4 shows how a single permanent magnet may be modelled by two current 

carrying wires, producing an identical magnetic field. If these wires are thought of as 
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'current sheets', than the equivalent density can be greater than 900 kAm- l , calculated 

using (3.5). 

Where = 

= 

equivalent current (A) 

coercivity (Am-I) 

(3.5) 

penneability of free space = 41t x 10-7 

A machine which relies on a field winding for excitation is likely to be limited to 

around 50 kAm-
l
, giving a shear stress an order of magnitude lower. 

A slow physical velocity may be converted to a high speed flux change by a process 

known as magnetic gearing. Figure 3.5a shows a single stator pole, split into 3 teeth, 

interacting with five individual rotor poles, each a surface mounted pennanent magnet. 

If the rotor moves by one rotor pole to the right, as in Figure 3.5b, the direction of flux 

flow through the pole can be seen to reverse. In non-toothed designs, the rotor would 

have to move a distance five times this value, Figure 3.5c and Figure 3.5d. This toothed 

design has therefore increased the rate of change of flux five fold. However, the rotor is 

only interacting with three stator poles at anyone time, reducing the maximum value of 

flux by a factor of 3/5 (compare 'c' and 'e' ). The net magnetic gearing of the split rotor 

and stator poles is hence threefold. 

direction of flux Gtk 
flow 

residual flux 
d i rect i~* I f I * I f I * I .f I 
magnets ~ 

1ft I * ,-t I 

a 

c 

~ e 
I f f I 

stator pole 

b 

d~ 
I f f I +. 

Figure 3.5: Magnetic Gearing 

Recent developments have resulted in a new class of machine, known as Variable 

Reluctance Permanent Magnet machines (VRPM). There are many topologies of these 

machines [63, 64, 65, 66, 67, 68], all bound by the same principles of operation. 

Alternative return paths are offered to the magnetic flux through the interaction of rare 
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earth PMs and small pitch iron teeth. Force is developed as the path of minimum 

reluctance is sought. These machines are capable of shear stresses unmatched by other 

electrical machines, which has led to a general reduction in the size of machine. The 

proceeding sections detail common features associated with this family of machine plus 

two proposed topologies. 

These advantages are further amplified if rare earth magnets are used. Neodynium 

Iron Boron (Nd-Fe-B) has a remnant flux density of around 1.2 T, compared with 0.4 T 

for ferrite magnets. Until recent years, the price of these materials has compromised the 

advantages they offer, yet a gradual drop in their price gives the potential for them to be 

economical. 

3.3.2 Power Factor 

3.3.2.1 The Problem 

A problem common to all VRPMs is that they tend to operate at low power factors 

under load, values in the range of 0.35-0.55 are typical [69]. The highly effective 

magnetic circuit of the machine, which is key to its high shear stresses, presents this 

inherent disadvantage. The problem is compounded by the desire for many turns on the 

coil to further enhance the change in flux linkage from the slow physical velocity. The 

result of these factors is that current flowing within the coils produces a strong flux 

pattern. Any change in this current flow is · hence resisted by a large change in flux 

flow, producing a back emf. In practice this phenomena manifests itself as a large 

inductance in series with the electrical machine resisting any change in current. The 

subsequent phase lag between emf and current results in the terminal voltage collapsing 

when current flows. 

IX IX • 

E 
IR 

Figure 3.6: Phasor Diagram of VRPM 

Consider the simple circuit and phasor diagram shown in Figure 3.6. The magnet 

flux, \jIm, is pointing top left, with the subsequent emf induced in the coil lagging by 

900 , pointing top right. Regarding the coil as a pure inductor and connecting it to a pure 
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resistor, the emf induced, E, will be dropped across the external resistance, IR, and the 

internal inductance, IX. The voltage across an inductor leads the current by 90°, which 

causes a phase difference, ~, between the internal emf and current. The tenninal voltage 

is IR. 

The power factor is defined as cos~, where ~ is found from inspection of Figure 3.6 

to be equal to arcsin(IXIE). Thus the value oflXlE sets the power factor, where a value 

of unity is obtained when IXIE equals zero and a value tending towards zero when IXIE 

tends to one, i.e. when all the emf is dropped across the internal inductance. This ratio, 

described as the flux ratio, maybe qualitatively described as the stator flux linkage due 

to electric excitation only divided by that due to magnet excitation only, or "'I/"'M' A 

high internal power factor therefore requires either a very high flux linkage from the 

magnets or a very low flux linkage from the coil. 

The flux due to the two sources follows the same low reluctance path, and hence 

gives low power factors. Furthermore, in order to exploit the effect of magnetic 

gearing, each of the stator magnets has oppositely polarised neighbours making a large 

amount of leakage and fringe flux inevitable. 

Reducing the number of turns on the coils would reduce the mmf, NI, applied to the 

machine for a given current excitation. Less flux would cut the coil and hence the 

power factor would improve. This, however, would be at the expense of a lower 

induced emf and a lower shear stress. 

The low power factor of VRPMs will hamper their useful power output. The 

requirements of this topology and the utilisation of magnetic gearing make it an inherent 

feature which must be overcome by electronic means. 

3.3.2.2 The solution 

In order to reduce the power factor and bring the current and voltage of the generator 

in phase, reactive power must be provided. Two alternative methods are detailed below. 

Tuning capacitor 

The effect of a low power factor may be compensated for by the addition of a 

parallel capacitor across the load. Chen et al. [70] demonstrated this de-tuning effect for 

PM machines used in wind turbines. The choice of capacitance, e, to achieve 

maximum power transfer is dependant on frequency, and is given by Chen et al. as 

(3.6). 
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(3.6) 

A fixed capacitance will only have benefits at a single resonant frequency. The 

electrical frequency in machines used in this application is proportional to translator 

velocity, which will constantly vary. Therefore, in order to benefit from assisted 

excitation at all frequencies, thyristor switched capacitors would have to be used. In 

reality there is a limit to the usefulness of this method at a large scale feeding a non 

constant load whilst excited at a non constant velocity. 

Active rectifier 

More efficient power take off can be expected with the use of an active rectifier 

ensuring the power flow from the generator is unidirectional. This implies that the 

output current wave form has the same frequency and polarity as the internal emf, 

forcing them to be in phase with each other and bringing the power factor up to unity, 

which can be achieved by an active rectifier acting as a Unity Power Factor (UPF) 

controller. Although power electronics is outside the scope of this thesis, in order to 

obtain useful power out of VRPM machines their presence must be assumed. A very 

brief outline of the operation of a UPF controller is hence given. 

Using a search coil or a look up table, the internal emf of the generator is always 

known at a given current, speed and position. The maximum theoretical current may be 

calculated by scaling this value. The voltage difference at the terminals of each coil can 

then be manipulated to achieve this current. Pulse Width Modulation (PWM) with a 

frequency of the order of 10kHz is used to control the terminal voltage, the 

characteristics of which are calculated from the difference in actual and expected coil 

current [55]. Work being carried out elsewhere in the School of Engineering, 

University of Durham, is striving to achieve this. 

3.3.3 Transverse Flux Machine (TFMJ 

In a TFM the main flux flow is in a direction perpendicular to the direction of travel. 

Figure 3.7 shows three views of a linear PM excited TFM. The translator consists of 

surface mounted PMs in a configuration that forces the flux to vary both axially and 

circumferentially. There are stator coils mounted either side of the translator with a 

series of iron yokes channelling the flux in such a way that alternate rotor poles excite 

the same coil[63, 64]. The result is an inherently three dimensional flux path, and flux 

from all the magnets contributes to linking one or other of the coils at all times. As such 
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the TFM is the ultimate VRPM hin d '. . 
mac e, pro ucmg very high shear stresses values 

• 2 ' 
approaching 200kNm- have been reported [63]. 

A 
Coil 

magn 

yoke 

B 
c 

Figure 3.7: Transverse Flux Machine 

The mounting of the stator yokes in combination with the three dimensional flux path 

present various problems with the support structure of this machine. The typical three 

dimensional structure does not allow the ferromagnetic elements to be laminated and the 

necessary small pitch often demands a large number of individual parts. Furthermore, 

inherent in this machine is the presence of cogging torque: the tendency of the magnets 

to align themselves with the path of least reluctance. It has been reported as 30 kNm-2 

in one machine [64]. 
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Figure 3.8: Equivalent circuit of TFM 

Consider the magnetic circuit shown in Figure 3.8, where Sg and Srn are the 

reluctance of the gap and magnet respectively and NI is the mmf source from current in 

one of the coils. If the magnets in the TFM were replaced with air, and viewing the 

machine from the angle shown in Figure 3.7C , it can be seen that this circuit represents 

a simplified equivalent circuit of the machine with I amps flowing through the N coil 

turns. The flux density in the airgap, due to current excitation only, in a machine made 

of infinitely permeable iron is deduced from the equivalent circuit and given by 

equation (3.7). 

B - NI ( J.ioJ.ir J 
g - 2 t m + 2gJ.ir 

(3.7) 

If the rotor magnets are replaced with an equivalent current sheet, when the machine 

is viewed from the direction shown in Figure 3.7B, and the magnets and teeth are 

misaligned, the force resulting in the interaction of the current sheet and the flux due to 

the coil current is shown in Figure 3.9. 

Each of the forces will be given by equation (3.8). The resulting shear stress, 

incorporating one of these forces acting per rotor pitch, is given in equation (3.9). 
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Figure 3.9: Force generation in the TFM 

F = Bg(tmBrJLX 2 
J.ioJ.ir 

= Nltm.Br·L 
(tm + 2gJ.ir ) 

width of magnet (m) 

(3.8) 

axial length (m into plain of paper) 

(3.9) 
w mJ.ioJ.ir 

3.3.4 Vernier Hybrid Machine (VHM) 

The VHM has a significantly more conventional machine structure, and a two 

dimensional flux pattern [65, 68]. Figure 3.10 shows four stator pole faces supported on 

two opposed C-cores each carrying two coils. The stator mounted PMs interact with the 

purely iron toothed rotor, in order to produce the flux path shown. This two 

dimensional path links all four coils, four magnets and four airgaps. A similar topology 

has been proposed, [66], which had the magnets on the moving part and the stator face 

toothed. If the rotor moved one magnet pitch, equal to half a rotor pitch, in either 

direction, it can be seen that the teeth would fully align with the opposite poles to those 

shown, and hence the flow of magnetic flux would be completely reversed. 
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Figure 3.10: The VHM 
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Because of the slots in the rotor the flux density is not constant throughout the width 

of the airgap. The flux pattern will resemble that shown in Figure 3.11, with a higher 

density being observed under the tooth region than under the slot region. Due to the 

magnets being alternatively magnetised, the greatest force is reacted when the magnets 

and teeth are exactly misaligned and hence the equivalent current carrying coils are in 

the area of highest flux density. As shown, the flux under the slot region causes a force 

which opposes that under the teeth. 

flux lines 

airgap ! 

slot 
field 

Figure 3.11: Flux pattern ofVHM 

The peak resultant force per tooth pitch, Fneb will be the difference of these opposing 

forces, given by (3.10). 
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flux density under the tooth (T) 

flux density under slot region (T) 

Using the ratio of flux densities Bt and Bs. calculated using a confonnal mapping 

technique given in [65] and (3.11), and substituting IpM from (3.5), it is possible to 

obtain a relationship for the force of one magnet from (3.10), or the general shear stress 

in tenns of the maximum flux density under the tooth, (3.12). 

Bs g+tm 

B t ~(g+tm)2+0.25wm2 

F=tmB{ J(g+lm~::~.25Wm2 JI'~~J 
:. u= t::, (1 J(g+lm~::~.25Wm2 JI'~~J 

(3.11) 

(3.12) 

Considering slots of infinite depth, and ignoring the field driven by the magnets, all 

of the airgap flux would have to pass through the roots of the translator teeth. It is 

hence saturation of this region of steel which limits the strength of the field under the 

tooth. A good approximation relating the field strength under the tooth to that at the 

root, Broot. is given in (3.13) from [65]. 

Bt B t ~ BToot 
B t +Bs 

(3.13) 

Substitution of (3.11) into (3.13) hence gives the relationship between flux density 

under the tooth, in tenns of tooth geometry and the flux density at its root, (3.14). 

(3.14) 

3.4 Tubular Machine 

3.4.1 Introduction 

All the machines considered previously have a flat cross-section. There is no 

physical necessity for this and conceptually linear machines can be rolled about an axis 

parallel to the direction of travel. The tenn tubular refers to the cross-sectional shape of 

the machine and hence covers a wide variety of possible topologies. As such a tubular 
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VHM is possible, yet the now three dimensional flux path and cylindrical translator 

would prevent the use of laminations. The TFM does not have a unifonn cross-section, 

which prevents it being extended to a tubular machine. 

The PM synchronous machine has a simple topology well suited to building a tubular 

equivalent. The basic layout for brushless permanent magnet tubular machines consists 

of a stationary copper coil surrounding a moving cylindrical rotor incorporating 

pennanent magnets, resulting in a moving magnetic field passing through the coils. The 

active part of the translator consists of a series of alternate steel pole pieces and Nd-Fe­

B magnets. The magnetisation of the magnets is axial and they are mounted such that 

the steel pieces fonn alternate North and South surface poles. 

It is more usual for this type of machine to be used as an actuator, not a generator, 

and work on driving them in this mode is available [71, 72]. Research on tubular linear 

generators appears to be sparse. 

3.4.2 Ironless Tubular PM machine 

Significant structural savings can be made if the magnetic ·forces can be reduced or 

eliminated, which can be achieved by constructing a stator which contains no iron. 

These features are demonstrated in Figure 3.12. 

\ 

Stator Coil 

Steel 

Ri 

Figure 3.12: Ironless tubular machine 
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translator 
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The translator consists of opposed axially magnetised PMs separated by steel 

spacers, both mounted on a non magnetic shaft. This configuration, assuming that the 

iron does not saturate, results in the residual rotor forces being attractive. Without the 

spacers, strong repellent forces would be present. Radially magnetised or surface 

mounted magnets may prove more attractive for large diameters, but at small scale 

represent a more difficult structure to manufacture. 

3.4.2.1 Surface Flux Density 

A similar design with an iron core has been analysed [71] and optimised [72], which 

provides some relevant results. Using the notations given in Figure 3.12 and assuming 

that the airgap, g, is a specified design parameter restricted to its minimum obtainable 

size, there are three dimensional ratios which may be considered: wrr/W p, RnIRo and 

wnlRo. The first of these, which for a given magnet width specifies the width of steel 

spacer, is said to behave independently and not influence the choice for the other two 

[72]. The choice of W p is, by implication, not affected by the lack of iron in the stator, 

which effectively sets Ra to infinity. Within this research it was concluded that the 

value wrr/Wp should be set for the condition of minimum torque ripple and a value of 

0.6 and 0.7 was recommended [72]. 

For the same electrical and magnetic loadings, the ratio of thrust of a three phase 

machine compared to that of a two phase machine is 1.061 [72]. A 6% increase in 

performance can hence be expected from making a three phase machine when compared 

to its two phase equivalent, with an advantageous reduction in ripple force. 
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Figure 3.13: Simplified flux flow through tubular machine 
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Figure 3.13 shows the simplified assumed flux flow through one magnet and two 

separate halves of steel spacers. The section consists of two half surface poles, 

separated by the centre line of the magnet. The pattern is repeated to make up a series 

of adjacent North and South poles along the surface, the polarity of which changes at 

the centre line of the magnet. Included here is the presence of an imaginary steel outer 

sleeve, which allows the flux density at the translator surface to be calculated. The flux 

flow is assumed to be parallel in the airgap and flow from the translator into the 

surrounding air through both the magnet and steel boundaries. The length of the airgap, 

19, which gives the same reluctance as the ironless core is given by (3.15), see Appendix 

A. 

I = wm +ws 
g 1( 

(3.15) 

In the actual airgap the flux density will rapidly reduce with distance from the 

surface. As a first estimate, it can be assumed that the decay of field is exponential with 

distance x, as shown in (3.16). 

3.4.2.2 Reactive Force 

x 
~ I 

B =B e 6 g g (3.16) 

Force is developed as a result of current flowing through the coils, which are situated 

in the magnetic field of the stator. The direction of this force is mutually orthogonal to 

the current and field strength and has a magnitude of their product multiplied by the 

length of conductor in the field. 

polel~gth/ 2 

Figure 3.14: Segment of copper in magnetic field 
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Figure 3.14 shows a segment of the copper coil over a surface pole with the mutually 

orthogonal elements shown. If the segment carries a peak current density of J Amps/m2 

in the I direction then the force per m3 of this segment is given by (3.17). 

F=BIL 
-r+R 

F ---
:.-=JB e I,l 

vol g 

(3.17) 

The force acting on a single coil carrying a uniform current over an entire surface 

pole is simply the integral of this equation over the entire volume within the field. 

Equation (3.18) gives the force per pole assuming that the flux density above the 

magnet region of the translator is equal to zero. 

-r+R 

Fpole = tlr (0 [ . JBge-I'-rdz.dr.dO 

(3.18) 

Where 

=2nw,m.l.e -J([ Rm + g + I. -e -~ (Rm + g +cb + I.) ] 

g 

ch 

Ri 

Ro 
Rn, 

= 

airgap (m) 

coil height (m) 

inside radius of coil (m) = Rm + g 

outside radius of coil (m) = Rn, + g +ch, see Figure 3.12 

radius of magnets (m) 

The average shear stress developed across the pole is equal to the force developed, 

divided by the area of that pole, (3.19). 

(3.19) 

In order to compare this value with the other topologies, it is necessary to make two 

further assumptions. Firstly, as there is no iron in the stator, and hence no fixed 

boundary to the end of the airgap, an outer value for the coil has to specified. This 

value is specified as twice 19, which implies utilising almost 90% of the available flux, 

according to (3.16). 

Secondly, the value of 19 is dependant on the pole width of the translator, nominally 

the width of sp~er is taken to be equal to the magnet width. These two conditions 

combined give a general equation for the shear stress as (3.20). 
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~ 

JB w e 2w. ( g m W 
1lR

m 
0.865(Rm + g) + 1.188 1[m) 

3.5 Shear stress comparison 

(3.20) 

As a reference guide to the typical loading of a direct drive generator, this section 

compares machines capable of removing 100 kW from an element moving at 1 ms-I, i.e. 

a machine capable of reacting 100 kN. 

The three distinct topologies of machine, conventional, VRPM and tubular have been 

described in terms of shear stress equations within this Chapter. The constants used in 

their comparison are given in Table 3-1 and are dictated either by experience and 

general practice or justified below. 
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Figure 3.15: The effect of radius on tubular machine shear stress 

The shear stress value for the tubular machine, (3.20), includes a term for the magnet 

radius Rat. There is no equivalent dimension for the other topologies, nor is there an 

obvious method with which to choose one. The effect of the chosen radius is 

demonstrated in the shear stress graph of Figure 3.15, which also includes ~ee 

alternative pole widths. The theoretical shear stress of the machine is seen to be very 

large for machines of unrealistic dimensions. Unlike the VRPM and synchronous PM 

machines, the magnet width here both determines the pole width of the stator winding 
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and affects the shear stress. To ensure adequate space for a three phase winding, the 

dimensions chosen are 0.1 m radius translator with magnets of 50 mm thickness, 

corresponding to a pole width of a 100 mm and an average shear stress of 21 kN/m2• 

Assuming a sinusoidal variation with position, the peak shear stress will be twice this 

value, 42 kN/m2
• 

In the VHM, whose shear stress was related to the difference in flux density under 

the root and the tooth, the density under the tooth was calculated using (3.13) to be 1.2 

T, which corresponds to the steel at the root of the tooth being saturated, 1.9 T. 

In the TFM, Equation (3.7) shows that only half the mmf is dropped across each 

airgap, there being two such gaps in the magnetic circuit. To obtain realistic values of 

shear stress, the value of flux density used in the TFM is half that used in the other 

machines. 

Table 3-1: Values used in shear stress comparison 

Airgap (mm) 1 
Electric LoadinMkAm- l

) -flat machines 50 
Electric LoadingJAmm -~)-tubular machine 1.6 
Maximum achievable airgap flux density (T) 0.8 

J.tr 1.1 
tm(mm) 5 
wm(mm) -VRPM machines 12 
Wm (mm) -tubular machine 50 
Br (T) 1.2 

Table 3-2: Results of peak shear stress comparison 

Field- PM VHM TFM Ironless 
wound machine tubular 
machines 

Shear stress (kNm-~) 40 50 133 303 42 
Required active area (mz) 2.5 2 0.75 0.34 2.4 

Table 3-2 shows the results of this analysis. The two VRPM machines show superior 

characteristics, with the TFM having over twice the shear stress of the VHM. It is 

important to note that the comparisons give no consideration to power factor or 

efficiency. Furthermore, no consideration has been given to the relative quantities of 

material used, in particular the rare earth used in the PMs which will significantly 

impact the cost of designs. 
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3.6 Discussion 

3.6.1 General Structural Comparison 

The synchronous and induction machine are both well established structures made 

exclusively of iron and copper, which greatly simplifies their construction and reduces 

cost. 

The VHM uses less magnetic material than the tubular and TFM topologies because 

it is only required to cover the stator area Consequently, the physical construction of 

translator for the VHM is considerably easier, being a purely iron structure. The TFM 

has an unfortunate combination of complicated rotor and stator configurations. 

In the VRPM machines, a high rate of change of flux will induce eddy currents in the 

iron structures of the stator and translator. To reduce the associated iron losses, the path 

of this unwanted current is limited by using a laminated structure. Comparing the VHM 

and TFM, the former has just two sets of laminations to secure, one for each C-core. 

The TFM structure is likely to be more troublesome. Some eddy current losses may 

also be expected in the PMs, although the likely low frequency of operation will limit 

this effect. 

3.6.2 Suitability for Marine Renewable Energy Converters 

Other than overall size and weight, other factors influence the choice of electrical 

machine for this application. Focusing on wave energy converters and in particular the 

heaving and IPS buoys introduced in Chapter 1, the VHM and induction machine lend 

themselves favourable by virtue of their simple translator topology. In order to 

manufacture a linear machine there is a need to limit the permitted amplitude of 

oscillation which will, as investigated in Chapter 2, drastically influence the power 

rating of a WEC. The benefit of a simple translator construction is that the amplitude of 

oscillation may be increased with a relatively small cost and weight penalty. These two 

factors also provide scope for reducing or eliminating the demand on end stop devices. 

In both the tubular machine and the TFM, an increase in the translator has a 

corresponding increase in the mass of magnets required. This added cost per rotor 

length is likely to drive down the upper amplitude limit for which it is economical to 

extract power. 

The requirement of transferring a current to the translator necessitates the use of slip 

rings for the synchronous machine. These are not favourable for the linear 
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configuration or oscillating motion, particularly in combination with the corroding 

marine environment. 

A unique advantage for the tubular machine, highlighted in Chapter 6, is the 

availability of moving seals for members with cylindrical cross-sections. The air cored 

version of this, and particularly the corresponding' reduction in magnetic forces, 

drastically simplifies the lubrication of the translator. 

A notable advantage for both the electrically excited machines is the ability to de­

energise the magnetic field. In the case of a malfunction, or during periods of routine 

maintenance, it is possible to instantly cut the output power of the machine to zero by 

disconnecting the field current. The equivalent for a magnet excited machine is to short 

its outputs, which in the case of the ironless tubular and PM synchronous machine may 

result in large currents. The large inductance present in the VRPM machines would act 

to limit the short circuit currents. 

The slow velocity demands short pole pitches in order to stimulate a high rate of 

change of flux to induce large emfs.· Any of the PM excited machines are capable of 

this. This advantage is likely to be slightly offset for the VRPM machines, however, 

which will require power electronic equipment to compensate for low power factor. 

3.6.3 Selection ofm achines for further development 

Permanent magnet excitation of electrical machines has been shown to represent 

significant shear stress increases when compared with electrical excitation. There are 

significant efficiency and maintenance savings inherent in the . lack of demand for 

magnetising force or current carrying brushes. The TFM has the highest shear stress 

and so would require the smallest machine to react a given force. However, this 

advantage must be offset against the complex translator and stator configurations, high 

reported cogging torque, inherently three dimensional flux pattern and translator 

mounted magnets. The VHM is instead chosen. 

For comparative purposes the air cored tubular machine is also selected for further 

analysis. Its smooth cylindrical translator makes it physically very similar to the well 

established technology of hydraulics and thus desirable for MECs. Furthermore, the 

translator flux pattern and stator air core avoid the requirement of a laminated structure 

to reduce eddy currents. Zero current cogging force and airgap closing force will be 

eliminated with the lack of stator iron and likely to remain small if a three phase 

concentric winding is used to carry current. 
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These two machines represent extremes in terms of PM usage and rotor 

configuration, where the VHM uses an absolute minimal amount ofNd-Fe-B yet has a 

non uniform cross-sectional area in the direction of motion. The relative merits of these 

factors provide the designer with an interesting choice when selecting a machine 

topology for marine renewable applications. The proceeding Chapters intend to outline 

the two options more fully. The details of the methodology and equations for sizing 

two prototypes are further derived. Both the machines are nominally rated at 3 kW at 

0.5 ms-I, which allows the required force, 6 kN, to be used in conjunction with 

maximum shear stress as the basis for size calculation. As these machines are to be 

used as generators, consideration is also be given to the likely magnitude of emf 

induced. 

3.7 Conclusion 

Various linear machines have been identified. The large active airgap required by 

field wound machines, induction and synchronous, for use in marine renewable 

applications has been demonstrated and used to highlight the potential advantages of 

using PM excited topologies. Two radically different topologies of this sort have been 

selected for further investigation in the proceeding Chapters. 
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Chapter 

4 

The Linear Vernier Hybrid 

Machine 

I n this Chapter the linear Vernier Hybrid Machine (VHM), introduced in the 

previous Chapter, is further developed and analysed. Initially a prototype is 

designed based on the shear stress calculations derived in that Chapter (3.12). This 

simple equivalent magnetic circuit method is further expanded to include predictions for 

the emf and dimensions of the coil, thus allowing the specification and manufacture of a 

3 kW device for further investigation. A Finite Element Analysis (PEA) model is 

formulated and used to describe the flux flow more accurately, allowing the force and 

generating characteristics to be predicted using a more sophisticated model. The 

accuracy of these models and the FEA are then investigated by comparison to 

experimental results. 

Thus, after experimental verification of models, they may legitimately be used to 

design larger machines. 

4.1 3 kW Prototype 

4.1.1 Three phase construction 

For a VHM to produce a balanced three phase output each phase must be such that 

the relative position of its magnets and stator teeth are 120 electrical degrees out of 

phase. Physically this is achieved by adjacent phases being separated by a mUltiple of 

two thirds of a rotor pitch. 

There are two formats of structure which will achieve this. The more traditional 

approach, commonly used in rotary machines, is to have the three phases interspersed 

with each other, allowing the flux from differing phases to share the same return path. 

Preliminary studies conducted using FEA revealed that this layout was inappropriate as 

the three phases would no longer act independently. The flux pattern of each phase 

would stray significantly into the path of the other phases. Modelling of such a system 
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would require the development of a complex set of inter-phase current and position 

dependent inductance equations. To avoid this a second topology of machine is used 

where each phase is magnetically isolated from the others, allowing them to be treated 

and analysed separately. Each phase core back consists of a single C-core supported 

independently from its neighbours, eliminating the inter-phase back iron. Adopting this 

modular approach provides a high degree of flexibility in the design and choice of 

power ratings and results in a reduction in the total amount of steel used. A diagram of 

one such phase is shown in Figure 4.1. 

C-core 

magnet 
thickness 

(t~ 

4.1.2 Force calculation 

Figure 4.1: Dimensions of the VHM 

The VHM may be modelled by idealising the magnetic flux pattern such that the flux 

density under the tooth and under the slot are constant over their length and equal to Bt 

and Bs respectively. The equivalent magnetic circuit of Figure 4.2 represents one 

quarter of the machine which would give the same value of flux as modelling all the 

gaps and mmf sources. This model holds true for the entire phase, where there are 4 

mmf sources in series with four airgap reluctances. 

62 



N. I. Baker Chapter 4: The Linear Vemier Hybrid Machine 

St Ss 

N + A B 

Srn Srn 

Figure 4.2: Equivalent Circuit of VHM 

Branch A corresponds to the flux path through the tooth and consists of the 

reluctance of one magnet and the airgap under the tooth, SI. Branch B represents the 

flux flow through the slot region and consists of a magnet reluctance in series with the 

reluctance of a slot, Ss. Considering just branch A, the reluctance is defined in (4.1), 

which gives the flux flow of (4.2) for each tooth. 

SA = SI +Sm 

g tm = + ----"-''---
PowmL PrPOwmL 

gPr +tm = 

NI 
=--.-

= 

wmL SA 

NIPOPr 
(gpr + t m) 

(4.1) 

(4.2) 

Noting that BA is equivalent to Bt in (3.12), substitution may now be used to relate 

the shear stress to the excitation current. 

4.1.3 Em! calculation 

The emf induced in the VHM is dependent on the rate of change of flux due to 

magnet excitation, which means the equivalent magnetic circuit is similar to that of 

Figure 4.2 used to derive the shear stress, but with NI replaced with mm! from the 

magnets, or Hetm (defined previously in (3.5» as shown in Figure 4.3. 
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St 
Het rn 

Srn 
Figure 4.3: Equivalent circuit for VHM with magnetic excitation only 

The flux flow due to one magnet only, ~m, may now be found in a similar manner as 

(4.2), giving (4.3). This expression considers only the flux flowing in the tooth region 

and thus represents the case when the magnet and teeth are fully aligned and leakage 

between two adjacent magnets is ignored, a highly simplified scenario. 

tP = tmBrAm 
m (tm+g,ur) 

(4.3) 

Where = area of one magnet(m2
) 

If this is assumed to be the peak, ~m' of a sinusoidal flux flow dependent on 

position, x, having a period of double the magnet width, then the flux flow through an 

entire face and its resultant emf can be expressed as (4.4). 

~ n.(nxJ tPface = tPm - srn -
2 wm 

(4.4) 

dtPm = ~m cos( nx J 1!X n 
dt wm wm 2 

Where n = number of magnets mounted on stator face 

Combining (4.3) and (4.4) whilst remembering that Am = wmL, allows the 

relationship for peak emf given in (4.5) to be deduced. 
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E=_Nd~ 
dt 

A t B n . E-N m r ·_r 
•• - XIU.-

(tm + gpr ) 2 

= number of turns per coil 

(4.5) 

4.1.4 Machine Sizing 

Crucial to the behaviour of the VHM is the size of the airgap, which is a result of the 

manufacturing and assembly process. A nominal airgap of Imm was thought to be the 

minimum achievable. A convenient magnet thickness was 4 mm. 

There are two factors which limit the shear stress of this machine, the heat 

dissipation of the coils and the saturation of the iron. The former is governed by the 

dimensions of the coil and is dependent on the surrounding environment whereas the 

latter depends on the shape and properties of the iron. Consideration of the flux flow 

within the machine implies that the most likely place for iron saturation will be in the 

root of the tooth and will hence directly affect the flux density in the airgap under the 

tooth, Bt. The maximum flux density achievable in mild steel is around 1.9 T (see 

Figure 4.8 later). Equation (4.6), a combination of (3.12) and (3.14) from Chapter 3, 

shows the shear stress for the VHM in terms of the translator tooth-root flux density. 

The behaviour of the relationship is given in Figure 4.4 which, for a density of 1.9 T, 

shows a clear peak for a magnet width of around 17 mm and subsequent decline with 

further magnet width increase. 

(4.6) 
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Figure 4.4: Effect of magnet width in predicted shear stress 

For manufacturing and availability pwposes, the value used will be 12 mm, 

corresponding to a predicted shear stress of approximately 126 kNm-2
• 

Consider each phase being subjected to a sinusoidal current whilst moving at a 

constant velocity, the resulting three phase force reacted would be of the form given in 

Figure 4.5. As shown, the total contribution is equal to 1.5 times the peak of a single 

phase. 

1.6,---,-----,---,----,--,-r=======il 
- red phase 

1.4 

1.2 

~.8 
~ 
"0.6 

- yellow phase 
- blue phase 
-- - Combined 

Figure 4.5: Example of three phase force 
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To remove 3 kW from the translator moving at 0.5 ms-I requires the entire three 

phase machine to react an average force of 6 kN, corresponding to each phase having a 

peak force of this value divided by 1.5, 4 kN. Each phase has four active areas which, 

in combination with the predicted shear stress, implies that each area should be 0.0079 

m
2

• For an axial length ofO.l m, this corresponds to a pole face width of 0.079 m. The 

definition of shear stress consists of pairs of opposed forces, due to the interaction of a 

tooth and slot region, implying it only holds for an even number of magnets per stator 

pole. The closest number of magnets which gives the correct active area is therefore 6. 

These dimensions are given in Table 4-1 

4.1.4.1 Coil 

The coil affects two functions of the VHM, the product of current and number of 

turns gives mmf, NI, whereas the number of turns only affects the magnitude of emf 

induced. Substitution of the values obtained thus far into (4.5) gives the predicted open 

circuit emf per coil turn as 0.55 Volts. In line with the likely overestimation of this 

value, and the desire for a large output emf for use in the power factor correction 

equipment, 240 turns per coil are used, giving a 130 Volt peak output. 

The dimensions of the coil depend on the current flowing within it and the allowed 

temperature rise due to power loss. The 'knee' of the B-H curve for iron, shown in 

Figure 4.8 later, is at around 1.5 T. Limiting the flux density through the tooth to this 

value hence ensures the iron remains unsaturated and behaves linearly. In order to have 

a flux density of 1.5 T within the tooth requires an mmf of 5.7 x 103 Ampere turns, 

according to (4.2), corresponding to 23 Amps flowing in the 240 turns. This will be the 

peak value of a sinusoidal current having an RMS of 16 Amps. If the instantaneous 

peak current density of the coil is limited to 4 Amm-2
, the copper wire will need a 

diameter of 2.7 mm. Assuming a fill factor of 40%, the coil will have a cross sectional 

area of 0.0034 m2, with dimensions of approximately 4 cm by 8 cm. The length of wire 

used will be around lOO m, which corresponds to a coil resistance of 0.3 0 if it is 

manufactured from copper with a resistivity of 1.73 x 10-8 Om-I , The resulting RMS 

power loss of 76 Watts manifests itself as a rise in temperature according to (4.7), a 

simplified expression of convection cooling [73]. 

Where h 

~T 

A 

= 

= 

= 

110ss = hA~T (4.7) 

heat transfer coefficient =60 Wm-2/oC 

temperature rise with respect to surroundings (OC) 

surface area available for heat dissipation (m2
) 
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Assuming that a temperature rise of the order of 60°C is acceptable, Equation (4.7) 

implies that a coil surface area of more than 0.02 m2 with the surrounding air is 

desirable. Thus the outer dimensions of the 4 by 8 cm coil provide ample surface for 

cooling. Allowing 2 cm clearance, a 10 cm slot depth in the stator C-cores is required. 

The remaining prototype dimensions are as given in Table 4-1. 

Table 4-1: Dimensions ofVHM prototype 

12 
4 
1 
100 
6 
24 
10 
100 
144 
50 

4.2 Finite Element Analysis 

The dimensions and previous descriptions of the VHM machine have been based on 

simplified flux flows and equivalent circuit analysis. In reality there will be significant 

fringing and interference effects between adjacent magnets and teeth. A detailed, more 

accurate, model will therefore require the use of an FEA program. 

Analysis of the model will provide a visual representation of the machine behaviour, 

by way of flux lines. Furthennore, it will allow the development of expressions to 

describe the dynamic perfonnance and static characteristics in tenns of voltage induced 

and force reacted respectively. 

4.2.1 Details of the model 

The flux flow of a VHM may be assumed to be two dimensional and modelling can 

hence be undertaken using a two dimensional FEA program. The software used here is 

Vector Field's PC Opera 2 D [74]. Within this program a single phase, two pole double 

sided linear VHM was simulated. Each pole has six magnets attached in such a way 

that the flux return path passes across, not along, the axis of the translator back iron. 

The pattern it traces is hence symmetrical about the centreline of the translator, thus 

allowing the model to consist of one half of the machine, the second half being implied 

by a boundary condition of symmetry applied to this centreline. Flux flow is not 

symmetric about a plane at 90 degrees to this however, and so it is still necessary to 

model two poles. The basic mesh of the model is shown in Figure 4.6. 
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Figure 4.6: FEA mesh of VHM 
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The model consists of 15 000 elements of varying size, the smallest of which are 

within the airgap and magnetic regions. Predicting the behaviour of a variable 

reluctance machine using FEA generally requires the model be run at various different 

operating positions, typically different translator positions. In the case of the linear 

VHM, however, this means the model be solved at various different relative magnet and 

stator tooth positions. In order to maintain boundary integrity between the model 

regions, the smallest increment of movement is limited to the fineness of the airgap 

mesh. In the model presented here this is Imm. Noting the repetitive nature of both the 

translator and the stator it can be seen that it is only necessary to model the movement 

of the rotor through the distance of the rotor pitch, or twice the magnet pitch, in order 

to obtain the behaviour of the machine at any subsequent position. The magnet pitch of 

the model was 12 mm, resulting in 24 different positions being available. In all the 

results quoted in this section, the relative position, p, is defmed such that zero 

corresponds to the magnet and tooth being fully aligned, Figure 4.7. 

The model is surrounded by a background region of air in order to reduce the 

influence of artificial boundary conditions necessary for the running of the software. To 

facilitate more accurate modelling, the non linearities of both the steel and magnetic 

materials are provided, shown in Figure 4.8. 
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Figure 4.7: Definition of relative position 
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Figure 4.8: B-H data for FEA 

4.2.2 Details of the Analysis 

The software solves the FEA model as a non-linear magnostatic problem, it therefore 

does not take account of time dependent effects, such as the losses due to eddy currents. 

The equations solved relate the magnetic field strength, H, to the current density in the 

conductors, J, according to (4.8). The flux density, B, has zero divergence as in (4.9) 

and a magnetic vector potential, n, is defined as (4.10). 

VxH =1 (4.8) 

V.B =0 (4.9) 

B=Vxn (4.10) 

The simulation is carried out in the x-y plane such that the magnetic vector potential, 

A, only exists in the z-axis, and so equation (4.10) becomes (4.11). 

(4.11) 

Where ~ and y. are unity vectors in the respective directions. 
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For a line in the x direction, representing a surface in the x-z plane, the flux per unit 

length is hence given by (4.12), the difference in potential between the two ends of the 

line. 

z=!x=b 

<; = J JBydxdz 
z=Ox=a 
x=a 

= J -~z dx 
x=b 

(4.12) 

= nz(a)-nz(b) 

Generally the interaction of magnetic flux with current carrying coils is the focus of 

interest in an electrical machine. It is therefore important to be able to compute the total 

flux linkage cutting the coils and the influence of current within those coils on the 

magnetic flux. The former of these may be calculated by computing the difference in 

magnetic potential between two halves of the same coil. This gives a measure of the 

flux cutting the coils per metre of axial length. The coils consist of 240 turns of 2.7 mm 

diameter wire, but are simply modelled as solid copper regions. In order to ensure the 

correct value of Ampere-turns in the simulation, it is necessary to specify a current 

density in the nominal single coils which results in a total current one 240th that being 

carried in the wire. 

4.2.3 Details of Results 

4.2.3.1 Electrical Excitation 

If the permanent magnet regions of the FEA are replaced with air regions, then it is 

possible to investigate the behaviour of the VHM due to armature excitation only. 

Figure 4.9 shows the variation of flux linking a phase of the machine with excitation 

plotted on the same axis as a straight line of gradient 0.425. The good agreement of the 

two show that, until over 15 Amps, the iron is not becoming saturated. 

Investigation revealed that varying the relative position of stator and translator had 

negligible «1%) effect on the total flux flow in the absence of magnetic material. 
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Figure 4.9: Variation of phase flux linkage with excitation current, no magnets. 

4.2.3.2 Magnetic Excitation 

Figure 4.10 shows the model flux plot when the rotor teeth are fully aligned with the 

magnets. Two return paths are visible, the leakage flux flowing between neighbouring 

magnets and the useful flux within the backiron linking the coils. Moving from left to 

right along each stator face, it is clear by inspection of Figure 4.10A that each aligned 

magnet contributes less to the flux linking the coils. The rightmost pair make a 

negligable contribution, with all the flux leaking between neighbouring magnets. With 

the translator displaced one magnet pitch to the right, as in Figure 4.1 OB, the pattern of 

leakage and driving magnets has reversed, with the leftmost pair making no useful 

contribution. By deduction it is clear that the leakage flux is most severe when the edge 

magnet has no tooth to channel the flux and so is forced to find a return path through its 

neighbouring magnet. Any even number of stator pole magnets will hence exhibit this 

effect. Calculation of the no load flux is therefore highly affected by the edge effects of 

the stator face, a factor not accounted for with the simple analysis used previously. 
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Figure 4.10: Flux plot for magnetic excitation. (A) zero position, (B) 12 mm position 

The direction of flux flow is reversed in Figure 4.10A when compared with Figure 

4.10B yet it is reasonable to asswne the magnitude will be the same. From this it is 

clear that there will be a position of zero flux flow through the C-core between positions 

of full alignment with adjacent magnets. Figure 4.11 demonstrates that this occurs 

when the magnet and tooth are exactly misaligned and the flux return path is across the 

stator face. 

The actual variation of flux linkage is cyclic over the rotor pitch and Figure 4.12 

shows that it is a smooth function of relative tooth and magnet position. 
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Figure 4.11: Flux plot for tbe misaligned positions (A position=18 and B position=6 ), magnet 

excitation only. 
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Figure 4.12: Predicted no load variation of flux linkage for entire phase with position 

It is now possible to investigate the accuracy of the model used to predict the emf in 

Equation (4.5) above. Inserting the dimensions given in Table 4-1 into equation (4.3) 

predicts the value of flux due to one pair of magnets interacting with one translator 

tooth. Multiplying this value by the number of magnet pairs per face (3), the number of 

faces per phase (4) and the number of turns per coil (240) gives a peak flux linkage of 

3.2 Wb turns, 3.5 times greater than that shown in Figure 4.12. Even as a rough 

approximation, ignoring the leakage between adjacent magnets is clearly unsuitable, 

further highlighted by inspection of Figure 4.10. 

4.2.3.3 On load 

In normal operation of the machine there will be current flowing in the coils, which 

will drive its own flux around the magnetic circuit in addition to that driven by the PMs. 

The total flux linkage may be expressed as the sum of that due to the armature 

excitation,\j1/, and the original PM driven flux, \j1PM, (4.13). 

(4.13) 

The direction of armature excitation with respect to remnant magnet excitation will 

strongly affect the reluctance and hence path of flux flow in the airgap region. Figure 

4.13A and B show the flux plot in this region for a 10 Amp current flowing in either 

direction at the same translator-stator position. At this value of current the armature 

excitation dominates and an even contribution from each pair of magnets implies that 

end effects are less pronounced with armature excitation. When the direction of current 
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driven flux is opposite to that of the magnets, as in Figure 4.13A, a path of high 

reluctance is enforced, with flux either travelling through the magnet in a direction 

opposite to its magnetisation, or being forced into the slot region of the translator. 

There is a danger of demagnetising the magnets in this position. The opposite is visible 

in Figure 4.13B, when almost parallel flux lines in the magnet and tooth regions 

demonstrate that the direction of magnetic remnance strengthens the flux flow, 

channelling it into the tooth region of the translator. 

Figure 4.13: Flux plot with (A) +lOA, (B) -10 A. Position = 0 

Reluctance of the magnetic circuit hence varies with both position and direction of 

current, for example the flux linking the entire phase being 5.24 Wb turns in Figure 

4.13A compared with 3.51 Wb turns in Figure 4. BB. 

Flux paths have been demonstrated to be complex in this machine for both combined 

and magnetic only excitation. The most accurate way to model the machine is by 

utilising the flux-linkage map of Figure 4.14. Flux data is taken from the FEA at 

different coil excitations over one electrical cycle and plotted on a three dimensional 

flux linkage vs. position vs. current set of axes. 

The symmetrical variation of flux linkage with current, present in the no load I 0 

Amp condition of Figure 4.12, occurs also when the coils are carrying current. The 

effect of this current manifests itself in more flux being driven around the magnetic 

circuit and hence the entire flux vs. position curves being shifted up and down the flux 

axis. It is noteworthy that the plot is not symmetrical over the current range for a fixed 

position, for example if p=O the resulting flux from a 15 Amp excitation is 7.5 Wb turns 

compared to -6 Wb turns for - 15 A. Re-inspection of Figure 4.13 confirms that this 

asymmetrical affect is dependent on whether the excitation current is in the same sense 

as the magnetisation of the aligned magnets. 
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Figure 4.14: Flux linkage map of entire phase 

4.2.4 Concluding Remarks 

Within this section, the details of the FEA used to model the VHM prototype have 

been outlined and provisional comments made on the results. The flux linking the coils 

was found to vary over the 24 mm translator pole pitch, but leakage between adjacent 

magnets was such that the equivalent magnetic circuit approximation was not suitable to 

predict its peak value. The resultant flux pattern has been shown to consist of the 

interaction of two components, \jII and \jIPM. More detailed analysis follows on how 

these observations and results can be used to predict the behaviour of a real machine. 

4.3 Utilisation of Finite Element Analysis 

4.3.1 Force Calculations 

4.3.1.1 MaxweU Stress 

A useful feature of using FEA is the ability to calculate the integral of the Maxwell 

stress tensor, which provides a simple method of calculating the magnetic forces acting 

on the machine [75]. 

Static force curves at a variety of different currents are shown in Figure 4.15. They 

are all cyclic over the 24 mm rotor tooth pitch. Currents of the same magnitude but 
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opposite direction result in curves which are reflected about the x axis, or 1800 out of 

phase. 
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Figure 4.15: Values of static force from FEA calculated Maxwell stress 

The zero current result is the cogging force, which results from the natural tendency 

of the teeth to align themselves with the magnets: the position of least reluctance. As 

the current is progressively increased in magnitude and the armature flux starts to 

dominate, the effect of cogging force decreases as electromagnetic force increases. 

It is now possible to investigate the accuracy of the simple shear stress calculations 

used in the design stage. Substitution of the values given in Table 4-1 into the equation 

for flux density under the tooth, (4.2), with 10 Amps flowing in the coils gives 0.63 T. 

The force on each magnet can the be found from Equation (3.12), giving 82 N, 

corresponding to a phase force of2.0 kN. Inspection of Figure 4.15 shows that the FEA 

predicted amount for 10 Amps has two maxima, corresponding to 2.26 and 2.43 kN. 

The average of these two is 2.3kN, implying an error of 15 % for the simplified method. 

The peak force at 15 Amps is around 3.2 kN, which over the total active area of 

0.0288 m2 gives a shear stress of 111 kN/m
2

• 

78 



N. J. Baker Chapter 4: The Linear Vernier Hybrid Machine 

4.3.1.2 Normal Force 

The magnetic force per unit area between two ferromagnetic surfaces is given by the 

relationship of (4.14), derived from the change in energy stored in the magnetic field 

associated with a small change in airgap size. 

F B2 
-=--
A 2po 

(4.14) 

By calculating the values of flux density at points along the airgap of the machine it 

is therefore possible to predict the attractive forces between the rotor and the stator. In a 

two sided machine with an equal airgap between each half of the stator, the net force on 

the rotor will be zero, it being equally attracted in two opposite directions. The forces 

present between the rotor and anyone side of the linear machine are given in Figure 

4.16. As with the tangential force above, the force is cyclic over the 24 mm pole pitch 

at high currents, yet cyclic over the 12 mm magnet pitch at zero current. 
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- OAmps 
- 2.5Amps 
- 5Amps 
... - 7.5Amps 

6000 ·· ····················· ······· '· 1 - 10Anl>s 
- 12.5Amps 

............ ... .... .... ... ....... , .......... .... .... / .... ..... .....• ;~ .. . 
/' 

// 

.,/ .. .......... ;:;; .... ... .... . 

3000 

5 10 15 20 25 
position(mm) 

Figure 4.16: Attractive forces between rotor and stator 

Figure 4.17 shows the normal force for a positive and negative 15 Amp current, 

demonstrating that current direction dictates the phase with respect to the position and 

not the amplitude. This figure demonstrates the high frequency cyclic load which the 

support structure has to withstand. 
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Figure 4.17: Comparison of normal forces for ± 15 Amps 
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Figure 4.18: Point force along stator. The stator faces correspond to 24-96 and 240-312 mm 

positions. 

A breakdown of the force distribution across the stator airgap for these two currents 

in the two alternative aligned positions is given in Figure 4.18. As expected, there is no 

force felt by the majority of the translator, only regions under pole face. Comparison of 

the upper and lower graphs reveals that the position of the force is dictated not by the 

location of the rotor tooth, but by that of the magnet in phase with the armature field. 

When the tooth region is under the in phase magnet, a large 'smooth' force is observed, 
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correSponding to the dashed upper and solid lower graph lines of Figure 4.18, the flux 

pattern of Figure 4. BB and the peak of Figure 4.17. When it is the slot region which is 

aligned with the in phase magnet, a smaller force is observed. 

Figure 4.19 shows the variation of force with a current of 10 Amps flowing in the 

coils, when the rotor and stator are at the 6 mm position. It demonstrates that the 

attractive forces are highly dependant on the chosen size of airgap. The gradient of the 

force vs. gap size graph, effectively the stiffuess of the magnetic attraction, increases 

slightly with current, from 1.49 MNm-1 at 5 Amps to 2.2 MNm-1 at 20 Amps. 
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Figure 4.19: Normal force on stator, p=6 

4.3.1.3 Co-Energy Model for Electromagnetic Force 

Electromagnetic force in a linear machine can be calculated by determining the rate 

of change of co-energy with position. Using the flux linkage vs. mmf diagram as a 

visual tool to analyse co-energy in switched reluctance motors is well established [76] 

and it has recently been used to characterise a doubly salient permanent magnet motor 

[77]. Total mmf is obtained by the product of current flowing and number of turns for 

an entire phase, whereas the instantaneous flux linkage is calculated from FEA results. 

Both of these quantities are a function of translator position and coil current, giving a 

closed trajectory for each electrical cycle as shown in the typical '¥-mmf graph of 

Figure 4.20. 
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Figure 4.20: Example flux linkage-mmf trajectory 

Figure 4.21A shows a typical magnetisation curve, with the field energy and co­

energy, corresponding to (4.15) and (4.16) respectively, labelled. 

W = V JH.dB (4.15) 

W'= V fB.dh (4.16) 

A B 

field 

co-energy 

mmf(A-T) mmf(A-T) 

Figure 4.21: Explanation of calculation of co-energy 

During the constant current operation of the VHM, the behaviour may be explained 

by considering the effect of moving from one magnetisation curve to another, PI to P2 

in Figure 4.21B, corresponding to moving the translator. The energy exchanged with 

the supply during this operation is equal to the change in field energy and represented 

by the crosshatched area. Stored field energy of the system has changed from the single 

hatched area to the light grey area. The discrepancy between the change in field energy 

and supply energy can be deduced to be the change in co-energy and is hence 

represented by the dark grey area. Expressed more concisely, the change in co-energy 
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is equal to the area bound by successive magnetisation curves and the x-axis of a 'I'-mmf 

graph. The area shaded in grey in Figure 4.20 is hence related to the electromagnetic 

force by equation ( 4.17). 

(4.17) . 

4.3.1.4 Demagnetisation model for Cogging Force 

The above method accounts for the electromagnetic force of the VHM. At zero 

current there is no area swept by moving between rotor position lines on a flux linkage 

vs. mmf graph and hence no change in co-energy and corresponding force. Section 

4.3.1.1, the calculation of force by Maxwell stress, demonstrated that significant 

magnetic forces are present in the absence of current. These forces result from the 

tendency of the translator teeth to align with the magnets and are called cogging forces. . 

An alternative approach, which considers the co-energy stored within each magnet is 

required to calculate the cogging force of a VHM. To achieve this the data must be 

converted into the flux-mmf for a permanent magnet [78]. The flux emanating from a 

magnet corresponds to the mmfwithin that magnet according to (4.18), which describes 

its loading curve. 

mmf=~(L-Br) 
JJoJJr Am 

(4.18) 

The intersection of the load line and the de-magnetisation curve is the operating point 

of a magnet, which will change according to Figure 4.22. Over one cogging force 

cycle the operating point moves up and down the PM demagnetisation curve. The area 

swept out by this line represents the change in co-energy contained within the magnet 

[78,79]. 

f1ux-mmf curve 
for a PM during one 
cogging torque eyc 

demagnetisation 
MW! of PM 

change in co-energy 
over small 

displacement 

MMF (Amp-turns) 

Figure 4.22: Flux-nunC diagram for a PM 

effect of 
rciciion 
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This method has been applied successfully to PM machines with large magnet pole 

pitch. In the VHM however, the pole pitch is of the order 10 to 20 mm and magnets sit 

side by side. The cogging force is produced by the interaction of a tooth on the 

translator and a pair of magnets of opposite polarity on the stator. It is therefore 

necessary to consider the effect of a pair of magnets and their respective operating 

points. 

Demagnetisation 
A 

load lines 

Figure 4.23: Divergence of operating points of PMs 

Flux 
Linkage 

When a rotor tooth overlaps 2 PMs equally, the unaligned position, the reluctance 

seen by each magnet is identical and hence the operating points coincide. As the rotor 

tooth moves closer to either magnet, the reluctance path of that magnet is reduced and 

hence more flux will flow. Figure 4.23 shows the tooth moving towards the North pole 

magnet and the corresponding move up the load curve. Simultaneously the reluctance 

path for the South pole increases, reducing the flux flow and moving it down the load 

line. The divergence of the operating points for the VHM is demonstrated by the FEA 

results shown in Figure 4.24. The area enclosed by the airgap lines for each magnet and 

the demagnetisation curve is equal to the co-energy, and hence the cogging force is 

equal to the rate of change of this co-energy with distance. 

The operating points are at a maximum divergence when the translator is in the fully 

aligned position. The area between the two load lines and the demagnetisation curve is 

then equal to the total energy that has to be overcome in order to move the translator. 
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Figure 4.24: Load lines of adjacent pair of magnets 
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Figure 4.25: Cogging force on one face of the VHM 

The cogging force calculated in this manner is shown in Figure 4.25. There are 

several points of interest to note from this graph, firstly that the period of the resulting 
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wave form is over the entire 24 mm rotor pitch, whereas the period of the contribution 

from magnet pair 2 has a wave length of half this value. Secondly, the two maxima in 

the leftmost 12 mm of the total wave fonn are only around % the value of the right hand 

maxima. Inspection of the two outside magnet pairs, one and three, show that it is these 

magnets which do not behave uniformly over the two halves of the period. 

It is clear referring back to Figure 4.11 on page 74 that there are different flux 

patterns corresponding to the two misaligned positions, depending on whether the edge 

magnets are above teeth or slot regions of the translator. In the former case, Figure 

4.11A and position 18, there is a small amount of flux that flows through the translator 

back iron. This implies a lower reluctance path allowing a greater flux flow through the 

iron, which represents more energy stored in the airgap and hence a greater force 

required to change the position. 

4.3.2 Performance 

4.3.2.1 Open circuit emf 

Emf is induced in the stator coils by virtue of a change in flux linking them, the 

magnitude and direction of which is given by Faraday's law as expressed in (4.19). 

Where E = open 

N 

d~ 
Eopen =-NTt 
open circuit emf (V) 

number of turns on coil 

(4.19) 

In the flux plots of Figure 4.13 and equation (4.13) it was demonstrated that when the 

machine is run on load there is flux in the machine due to the PM excitation and the 

armature excitation. Substitution of (4.13) into (4.19) implies that there are two emfs to 

consider: the driving or open circuit emf, resulting from interaction of PMs and teeth, 

and an opposing emf, called inductance or back emf, representing the coil's resistance 

to a change in current. The latter term may be expressed in several ways, the 'purest 

form' of which is (4.20) 

Where "'I = 

E = d'l'l 
dt 

(4.20) 

flux linkage due to current (Wb-tums) 

The two emfs can be treated combined or as separate entities in an equivalent circuit 

and described by a variety of equations depending on assumptions used. A total of five 

alternative models are considered in the following sections, becoming progressively 

more complex and computer intensive. In each model the circuit equation is formulated 
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and then solved in the time domain with translator displacement fed in from an 

experimental position transducer to allow direct comparison with prototype results. 

4.3.2.2 Simple Equivalent Circuit Model- Model A 

L R 

v 

Figure 4.26: Simple Equivalent Circuit 

The traditional per phase equivalent circuit for a permanent magnet synchronous 

machine consists of an emf source equal to the no load emf, feeding into a series 

reactance and resistance, as shown in Figure 4.26. Using the definition of inductance 

given in (4.21) substituted into (4.20) and applying Kirchoffs voltage law to the 

equivalent circuit gives the relationship of (4.22). 

Where 'Pi = 

lfI o 
1-=-' , I (4.21) 

flux linkage due to current with no PMs present in FEA 

(Wb-turns) 

constant value of inductance (H) 

Eopen = V + VL + Vr 

dI 
:. V = Eopen -Lj dt -IR 

(4.22) 

Where the inductance is the flux flow with no PM excitation and can be deduced 

from the gradient of Figure 4.9, 0.425 H. 

4.3.2.3 Step Variable Inductance Equivalent Circuit Model- Model B 

Due to the effect of the magnets on the flux pattern, assuming that the inductance 

may be calculated using purely electrical excitation may have limitations. In order to 

account for the variation of inductance with current and relative magnet and tooth 

position, it has been suggested [77] that the inductance may be calculated according to 

(4.23). 
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= 

L - \jI -\jI PM 
I,p - I (4.23) 

total flux linkage due to both coil and PM excitation 

flux linkage due to PM excitation only 

L1,p = inductance considering effect of current and position 

Figure 4.27 shows the distribution of inductance with current and rotor position 

calculated using this method. The value of inductance defined in this manner is greater 

than the electrical excitation only, Lj, and varies greatly. The 'inverse' nature of the 

position inductance graph across the zero current mark represents the model accounting 

for the direction of armature driven flux with respect to the aligned tooth magnet flux. 

Also highlighted in this graph are the inaccuracies of the FEA, which manifests itself as 

the rough nature of some of the curves, particularly at low values of current. Slight 

errors in these low values of flux are highlighted by division of low currents . 
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Figure 4.27: Predicted self inductance per phase for different rotor positions and coil currents 

If the inductance is calculated at this value for each time step, the equivalent circuit 

of Figure 4.28 and its governing equation (4.24) results. 

88 



N. J. Baker Chapter 4: The Linear Vernier Hybrid Machine 

R 

Figure 4.28: Step variable inductance equivalent circuit model 

dJ 
V = EO'Pen -L/ p --JR , dt 

(4.24) 

4.3.2.4 Continuous Variable Inductance Method - Model C 

v 

The value of inductance L(,p does not change significantly with low values of current 

(around 10%) so it can be predicted that the performance of the variable inductance 

model will not differ greatly from the simple fixed inductance model. A more accurate 

model than either of these is to restate (4.20) as (4.25), which accounts for the rate of 

change of inductance during each time step. 

dI dL1,p 
VL = L1,p dt + Id! (4.25) 

The equivalent circuit is given in Figure 4.29 and described by ( 4.26). 

R 

v 

Figure 4.29: Continuous Variable Inductance Method 

dJ dL/ p 
V=E -L/ --J-'--IR 

open ,p dt dt 
( 4.26) 

Within this model, the inductance is numerically calculated by cubic spline 

interpolation from a look up table and its rate of change is taken as the difference in 

inductance value between consecutive steps, divided by the time step. 
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4.3.2.5 Lumped Reactance Model- Model D 

The two inductance tenns on the right hand side of ( 4.26) are the resulting tenns of 

differentiating (4.27) in two parts. 

Where 'VI 

V
L 

= dlf/ I = d(LI) 
dt dt 

(4.27) 

flux linkage due to electric excitation only, calculated 

from FEA and equation (4.13), (Wb-turns) 

Within this model, the method of calculating inductance and finding its product with 

current is avoided by constructing a look up table for the flux flow due to current 

excitation only. The rate of change of this flux is the back emf accross the coil and the 

equivalent circuit is hence given by Figure 4.30 and described by (4.28). The latter 

must be integrated with respect to '1', not I as in the previous models. 

R 

Figure 4.30: Lumped Reactance 

v = Eopen 
d(lf/ -If/ PM) 

dt 

4.3.2.6 Look Up Table of 'V-I - Model E 

v 

(4.28) 

The unaltered 'V data is interpolated from a look up table in this model and used to 

calculate E, the total emf. Hence the equivalent circuit of Figure 4.31 and governing 

equation, (4.29), do not have separate open circuit and reactance components. 

dlf/ V=--IR 
dt 

(4.29) 
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R 

v 

Figure 4.31: The look up table model 

4.3.3 Model Development 

4.3.3.1 Approximation of Flux Results for Open Circuit 

To model the flux accurately at positions between consecutive I mm positions 

provided by the FEA, approximating the results to a continuous function could provide 

a convenient way to obtain data. 

The fourth order polynomial given in (4.30), calculated using the least squares 

method, is shown plotted on the same axis as the FEA calculated flux in Figure 4.32. 

The results show good correlation and hence imply that the polynomial could be used to 

generate a continuous value of flux. 

'1/ = ax4 -bx3 +cx2 -dx-e 

Where the coefficients are given in Table 4-2. 

(4.30) 

Table 4-2: Coefficients of 4tb order flux approximation 

a bed e 
9633365136x 1 OS -4.623714952x 103 0.05757048809279 -0.05014353241196 -0.86614961061008 

o.a 
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~ 

Figure 4.32: Comparison of Polynomial approximation and FEA results 
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The non periodic nature of this polynomial makes it necessary to convert translator 

displacement into relative tooth and magnet position. During a displacement of greater 

amplitude than the rotor tooth pitch requires the use of p=23 and p=O in consecutive 

time steps. In theory these values should be smoothly separated, yet the FEA, and 

hence polynomial, gives a very small discrepancy between them. In Figure 4.33 this 

manifests itself as a small discontinuity at the trough of the flux curve. 

0.8 

0.6 

0.4 

.c.4 

.c.6 

.c.8 ~ 
20 25 30 35 55 60 65 

Figure 4.33: Flux position obtained with polynomial approximation 

The coil emf is obtained by numerical differentiation of this signal during which this 

discontinuity becomes a significant spike in the results, Figure 4.34. Furthermore, if the 

simulation is extended to encompass inductive and capacitive elements this effect has a 

significant impact on the results. 

Higher order polynomial approximations also exhibit this property. Polynomial 

substitution of the flux-position results is hence unsuitable. 

An alternative approach, which has the distinct advantage of being periodic and 

continuously smooth, is to approximate the flux linkage to a sinusoidal function. Using 

an amplitude of 0.898 and a period of 1t 124 gives a good correlation. 
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Figure 4.34: Emf verses time for O.5m/s rotor velocity 

4.3.3.2 Approximation of Flux Results for 'V-I Map 

Although the flux mmf plots of Figure 4.14 implies that the flux data could be 

modelled by a function of the fonn ( 4.31), this is avoided here. Inspection of the 

differential of this equation and comparison with (4.22) demonstrate that using this 

approximation is simply an alternative approximation to the constant inductance model. 

Where a 

b 

'If = aI +bCO{~) (4.31) 

constant dictating midpoint of the position-linkage curve 

constant dictating the amplitude of the 

position-linkage curve 

4.3.3.3 Look up table Bicubic spline 

The most accurate way of modelling the flux data provided by the FEA is to store it 

in a look up table and use the values directly. For each known value of position and 

current, a two dimensional bicubic spline interpolation (MA TLAB command interp2 

[80]) method was used to obtain the corresponding value of flux. In models D and E a 

form of reverse interpolation was required, whereby the flux and position were known 

from the electric circuit current and the displacement respectively and the corresponding 

. value of current was required. In this situation the known value of position was used to 

create a one dimensional flux-current look up table. 

This method varies distinctly from the best-fit function approach of the two previous 

methods and does not attempt to describe the entire data set. Instead, a new equation is 

formed for each segment where interpolation is required. 
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4.3.3.4 First Order Modelling 

During a short circuit or purely resistive load test, then the solution of all the models 

is a first order differential. Due to the nature of differentiation, namely that it 

progressively distorts a signal and amplifies errors, it is beneficial to re-state the 

equation as an integral. Numerical integration acts as a smoothing function, being little 

affected by small inaccuracies, whereas differentiation will amplify a small discrepancy 

by dividing it by a small increment (dt). For models A-C, the governing equations are 

manipulated to become expressions for the time differential of current. A fourth order 

Runge-Kutta routine is used to solve this. In models D and E, the expressions are 

functions of \jI which hence becomes the variable which must be integrated, again using 

the Runge-Kutta routine. Each time step of the program follows the structure shown in 

Figure 4.35. 

position 
transducer 

look up 
table J E 

Figure 4.35: Schematic diagram of program integration technique for t=O 

4.3.3.5 Second Order Modelling 

electric 
circuit 

1t1 

With the introduction of capacitive elements to the external loading circuit, whereby 

the voltage is a function of the current integral, the guiding equations become second 

order. Although it is straightforward to re-arrange these into a single second order 

differential equation, for models A-D the presence of additional external time dependent 

variables (i), or the requirement for second order time differentials (E = Vi), may 

make it beneficial to express the governing equations as two independent first order 

equations. These two alternative methods are described below. 

Runge-Kutta-Nystrom - method i 

The Runge-Kutta-Nystrom algorithm [81] is a technique which generalises the 

standard Runge-Kutta method to solve second order differential equations. The input to 

the routine is a present value of the second time derivative, and the output is the value at 

the subsequent time step together with the value of the first time derivative. In model E 
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this is an elegant solution. For all other models, however, attention should be paid to 

the second order time differentials - see concluding remarks, Section 4.4.4. 

Runge-Kutta Separate Integrals -method ii 

The voltage across a capacitor is dependent on the integral of current passing into it. 

If the value of current is assumed to be constant for a given time step, then the 

governing equation remains a first order differential equation and current can be 

calculated using the basic Runge-Kutta technique. The current may then be integrated 

in a separate routine. In this method the current changes between each time step, not 

during. For a small time step, this should have a negligible effect. 

4.3.4 Governing Equations 

Equations (4.21) to (4.29) above are rearranged in Table 4-3 to the form used in the 

models. 

Table 4-3: Integrals used in VHM models 

Short circuit / resistive Capacitive loading Capacitive loading 
loading Method; Method ii 

A 
i= 

E-/R .. E V I·R 
i=E +/R +~--I-fv /=_+_c __ / __ /_ 

L L CREL CL L L L CL CREL C 

B 
i= 

E-/R "E V 1 ,R , E R JI 1 
J~ 1=-+ c 1--1-

Lt,p CRELt,p CLt,p Lt,p 1=-+1-+ 
Ll,p Lt,p L1,p ar,p CReLt,p 

c 
I(il'p +R) .. j; V, -(2i+R) {ci+l) , E i+R 1 J 1 J 

j E 
/=-~-/-- - -- 1= L -1£-a /+ CReL ~ 

L1,p L1,p L eR;- L a 
D ';1 = E - I("'/)R w' = E + ~ - 1(",) - RI' ('V )ji l ' 1 J 

\jJ =E+ CR f~ - C I -Rf('V) 
CRE C E 

E \ji = RI('V) Vi =~-RI'("')';-1('1') \jJ= ~ f~-~fI-If('V) 
CRE C 

Where it'll) value of current obtamed from Look up table 

~t(/('V ))= d~~)~ = f'('VH 

. d'V pm 
E= 

dt 

4.3.5 Concluding Remarks 

Two distinct methods have been presented for predicting the useful force reacted by 

a VHM, utilising either the Maxwell stress or the Co-energy method. A further two 

methods have been outlined to calculate the airgap closing, or normal, force and the 

cogging force, neither of which serves useful work. Five models of increasing accuracy 
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and complexity for the prediction of the tenninal voltage / current have been presented 

and, where appropriate, their development documented. Experimental verification of 

these predictions is now necessary. 

4.4 Verification of Models 

4.4.1 Description ofTestrig 

The VHM mounted on the testrig is shown in Figure 4.36 and labelled in Figure 

4.37. 

Support 
Frame 

Figure 4.36: The VHM testrig 

Figure 4.37: Aspects of VHM testrig 

The role of the testrig is to excite the prototype in a manner analogous to that 

d 
. nergy converters· linear reciprocating and slow peak velocities: 

encountere In wave e ., 
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To achieve this a conventional induction machine was coupled to a 0.1 m radius crank 

though a 14:1 step down gearbox. Peak speeds of less than 0.5 mls are easily 

achievable. 

To allow for the future expansion of the testrig and accommodate spring elements, 

hence simulating more closely the conditions of a wave energy converter, there is a 

system of steel cables and pulleys transferring the crank force to the rotor. This results 

in slight play between the relative position of the exciting crank and the prototype 

translator. In order to account for this, a displacement transducer has been mounted to 

the translator, allowing the exact time displacement data of the testrig to be fed into the 

electrical models and their performance evaluated. 

Experience at the University of Durham dictates that the task of maintaining a small 

airgap in the presence of high magnetic forces should not be underestimated. Section 

4.3.1.2, the normal force based on FEA calculation of Maxwell stress, was used to 

design the framework structure within which the stator cores were mounted. This 

framework means that the cores are essentially supported in air and are hence 

magnetically independent from each other and any other influence. Provision has been 

given, by way of in-house made screw thread adapters, for the alteration and accurate 

setting of the airgap. 

Figure 4.38: Position of load cell 

The translator is supported on each side by solid steel square bars, which also act as 

the runners for the stud bearings mounted to the stator frame. It is thus a rigid structure 

which is free to move axially within the airgap. 
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Both the translator and the stator are made from 1 mm thick laser cut mild steel 

laminations, held together in compression by a series of steel bolts. 

In order to measure the static force reacted by the prototype, the cables used to drive 

the translator were removed and replaced by a screw thread mounted load cell, Figure 

4.38. The position of the rotor was selected and subsequently held in place by the cell. 

The cell deforms less than 0.4 mm at full load, 1000kg [82], the rotor can therefore be 

assumed stationary as current is altered within the coils. 

4.4.2 Force Results 

4.4.2.1 Smoothing of Results 

2~r-----r-----'-----'-----:-r===~~~~ 
'< experlmertal data 1 

1500 x'" 
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-1~ 
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.... ..... , ......... .................... i····.··· .. ... ..... ......... .. y x.: ... ... ". i ... . 

x /'~ :i: 
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position (mm) 
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x / ++++ \ 
+ l.x 

Y h 
. *" 

25 

Figure 4.39: Example of experimental data, 6 Amps flowing in coils 

30 

During experimentation, the rotor was set to the necessary position by applying a 

force to it through the force transducer. For the position of zero magnetic force, it is 

clearly possible to apply a small force to the translator which, due to frictional effects of 

the testrig, will not result in movement. The value of force recorded by the load cell for 

this translator position could therefore vary, the range being from the minimum tensile 

force which causes displacement to its compressive counterpart. It follows that an 

important factor in determining the residual forces recorded in a situation such as this 

would be the direction in which the experiment was being performed, for example a 
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more likely residual force being compressive when the rotor is being pushed by the load 

cell. Expressed another way, the frictional effect always acts to oppose the direction of 

motion and is actually present throughout the experiment and not just the positions of 

zero magnetic force. Figure 4.39 shows a typical set of force results for a 6 Anip 

current flowing in the phase coils. It shows a data set corresponding to the experiment 

being carried out in each direction. A separate bicubic spline interpolation is used to 

approximate each of the 2 data sets at regular intervals along the position axis. The 

average value of these two interpolations is shown as the solid line in the graph and 

demonstrates the method employed to eliminate directional dependent friction from the 

results. This method of averaging is used for all the force results. At any given point, 

the discrepancy between the two sets of data shown is in the region of 270 N and so 

becomes less significant as higher currents are used to excite the phase and 

electromagnetic forces dominate. 

4.4.2.2 Current Direction 
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Figure 4.40: Force results with 8 Amps flowing 

25 30 

For any given magnitude of current, its direction has been shown to play a significant 

role in the magnetic flux pattern and resultant force. Figure 4.40 shows the 

. tal &". &". r 8 Amps flowing plotted on the same axis as the force predicted expenmen lorce 10 ' 
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by the co-energy method of Section 4.3.1.3 using a positive and negative 8 Amp 

current. 

The two predicted force curves are 1800 out of phase with each other, i.e. always in 

the opposite direction. The experimental force has a significant phase difference with 

either of those predicted, due to the arbitrary nature of the 'zero' position during the 

experiment. The aim here is to show that in analysing the force results, it is possible to 

ignore both the phase of the results and the direction of current in the FEA. The 

important feature of the curves is the shape, period and peak amplitude, the latter of 

which is within 5% for all the peaks shown. 

There are two regions where the experimental data, despite being averaged, is not 

smooth, corresponding to the positions of7 and 18 mm. It is likely that there was some 

debris on the bearing track at these positions, which would slightly affect the result in 

both directions. 

4.4.2.3 High Current Co-energy Method Comparison 

The comparison of experimental and co-energy method predicted force results for 16 

Amps shown in Figure 4.41 shows a good correlation, with the peaks and troughs of the 

two curves lying within 10% of each other. 
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Figure 4.41: Predicted and experimental force with 16 Amps flowing 
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Again there are two regions where the experimental data appears slightly erratic, 

approximately corresponding to the positions visible in the previous experiment. 

4.4.2.4 Low Current Co-energy Method Comparison 

Figure 4.42 shows the 2 Amp experimental results plotted on the same axis as the co­

energy predicted force results for the positive and negative current directions. The 

experimental results have a different shape, period and peak value to either of the 

predicted curves. It must be deduced, then, that this force model is not valid at low 

currents, where cogging force is comparable to electromagnetic force. 

~5L-----~O------~5-------1LO------~15------~~------~~ 
position (mm) 

Figure 4.42: Predicted and experimental force with 2 Amps flowing 

4.4.2.5 Cogging force 

Figure 4.4~ shows a comparison of the experimentally measured values for cogging 

force to that predicted using the magnet de-magnetisation curve method of Section 

4.3.1.4. Comparing the turning points, starting from the left, gives percentage errors of 

120, 18, 15 and 29%. It is likely, by inspection of the curve, that the largest discrepancy 

was caused by experimental error. Although the amplitude of the predicted results is 

only reasonable, the model clearly correctly predicts the shape of the force 

characteristic. In particular, the amplitude of the force-displacement curve can be seen 

to have two large peaks and two smaller ones, as discussed in 4.3.1.4, Figure 4.25. 
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Figure 4.43: Cogging force comparison 

4.4.2.6 Maximum force 
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Figure 4.44: Experimental force results for 20 Amps 

30 

Figure 4.44 shows the force displacement experimental results for a phase current of 

20 Amps. The average modulus of the peaks is 3.03 kN, equivalent to a shear stress 
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over the magnet area of 105 kNm-2
• The current was limited by the test equipment 

available and not by the VHM itself. 

4.4.3 Electrical Performance Models 

4.4.3.1 Open Circuit 

Figure 4.45 shows the open circuit emf results predicted by the FEA plotted on the 

same axis as the experimentally measured results. The correlation between the two is 

good, although the model can over predict by up to 15 % (e.g. at time ~ 0.8) the RMS 

value is within 10%. As, by definition, no current flows in an open circuit test, the 

predicted results were obtained simply by differentiating the predicted flux linkage time 

profile from the experimental time displacement results. Confidence can hence be 

placed in the FEA flux predictions, and their subsequent use in the proposed 

performance models. 
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Figure 4.45: Open Circuit em! 

The predicted waveform is more regular and slightly larger than the experimental 

results. It is likely that three dimensional end effects, not considered in the FEA, are 

responsible for this. Simulated results also appear to move slightly out of phase during 

the time period shown. The model was run with the exact analogue displacement data 

obtained from the transducer. Superimposed on this signal was a high frequency noise 
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signal, produced unavoidably from the inverter used to drive the test rig. As the 

displacement signal has to be differentiated into velocity, this noise becomes significant 

and hence requires filtering. A 200 point moving average method was used, and it is 

likely that this will account for the gradual loss of agreement between predicted and 

actual displacement results. Alternatively, a calibration error in the displacement 

transducer would account for the affect. 

4.4.3.2 Inductance 

By connecting a 50 Hz power supply of known voltage across the terminals of one 

phase and recording current, it is possible to calculate the reactance and hence 

inductance of that phase. A maximum value of 0.495 H was measured at 1.3 Amps. 

4.4.3.3 Short Circuit 

To investigate accuracy, all the models are run for the same displacement input, i.e. 

they are all compared to the same experiment, which had the characteristics given in 

Table 4-4. 

Table 4-4: Experimental short circuit current results 

Max current 1.6 Amps 
Min current -2.04 Amps 
RMS current 1.08 Amps 

Model A 
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Figure 4.46: Short circuit results for model A 

In each of the experiments, the equivalent predicted results and the percentage 

deviation from the experimental results are given in Table 4-5. Figure 4.46 and Figure 
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4.47 show examples of experimental compared with predictions using 'model A' and 

'model E' respectively. 

Model E 
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Figure 4.47: Short circuit model results for model E 

Table 4-5: Short circuit results of the VHM 

A B C D E 
Value Error Value Error Value Error Value Error Value Error 
(Amps) (%) (Amps) (%) (Amps) (%) (Amps) (%) (Amps) (%) 

Max 2.44 52 2.42 51 2.44 52 2.44 52 2.43 52 
Min -2.46 20 -2.44 20 -2.46 20 -2.42 19 -2.46 20 
RMS 1.40 30 1.41 31 1.40 34 1.40 30 1.40 30 

Table 4-5 shows both the predIcted values and theIr error as a percentage of the 

experimental value. Surprisingly, the results do not differentiate between the models. 

4.4.3.4 Capacitor loading 

The model results are compared with the experimental values with a 6300 resistor in 

parallel with a 150~ capacitor. The experimental results are summarised in Table 4-6 

Table 4-6: Experimental results for a 6300 resistor and 150J1 F capactor 

Max: 504 Volts 
Min: -472 Volts 
RMS: 211 Volts 

Figure 4.48 to Figure 4.55 give examples of results from 'model A' to 'model E' 

simulating this situation. 
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Model A Integration method i 
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Figure 4.48: Capacitive loaded results for model A I 

Figure 4.48 shows a comparison of the experimental results and the simplest of the 

model predictions. The agreement of the two in terms of shape is good, with the 

predicted waveform having a credible profile. 

Figure 4.49: Differential of voltage used in model A i 

The results of Figure 4.49 show that the derivative of voltage, which appears to be a 

noise signal, bears no relation to the curve expected if, for example, the flux pattern was 

simplified to a sine function. It is included here to demonstrate that, although the 

predicted voltage is acceptable, this model is not functioning properly. 
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Model A Integration method ii 
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Figure 4.50: Capacitive load results for model A ii 

The graph of Figure 4.50 is almost identical to that of Figure 4.48 and thus 

demonstrates the limited effect of integration method on overall model behaviour. 

Model C Integration method i 

.. 

~.La----~;----~12~---I~.4----~1.6~---I~.8----~ 
time (t) 

Figure 4.51: Capacitive load results for model C i 

Figure 4.51 . shows the results as predicted by model C i compared with the 

experimental. The model appears to act in a similar manner to model A. Figure 4.52 is 

included to further highlight the problems experienced when specifying a model that 

contains numerical differentiation. ID this model, there is a term involving the double 

time differential of inductance, Table 4-3. fuspection of Figure 4.52 show how the 
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oscillating value of inductance is distorted through two numerical differentiation 

processes. 
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Figure 4.52: Calculated values of inductance and its differentials in model C i 

600 

.aooo 0.2 0.4 0.6 o.a 1 1.2 1.4 1.6 1.a 
tImO (s) 

Figure 4.53: Capacitive load results for model C i, settle period 
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Figure 4.53 demonstrates that models require some time to settle before accurate 

results are obtained. For the first 0.2 seconds large amplitude voltages are predicted, 

until the effect of the initial conditions is replaced with the true transient response. 
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Model E Integration method i 
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Figure 4.54: Capacitive load results for model E i 
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Figure 4.55: Capacitive load results for E ii 

Table 4-7: Summary of VHM model results 

Aj A.ii B.i B.ii C.i 
Value % Value % Value % Value % Value 

Max 552 10 552 10 549 9 551 9 491 
Min -560 19 -560 19 -559 18 -560 19 -502 
RMS 217 3 217 3 216 2 217 3 201 

Dj D.ii E.i E.ii 

Value % Value % Value % Value % 
Max 776 54 550 9 550 9 550 9 
Min -760 61 -558 18 -558 18 -558 18 
RMS 332 57 216 2 216 2 216 2 

C.ii 
% Value % 
3 551 9 
6 -557 18 
5 216 2 
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Table 4-7 compares the results of all 5 models and the two alternative methodologies 

for differentiation, giving an indication of the small differences between them. Figure 

4.49 and Figure 4.52, however, show why some of the models cannot be functioning 

properly. Even ~ough the results do little to differentiate, it is likely the model which 

best represents the results predicted by the FEA is model E. 

The non-constant velocity prevented the capacitor and machine inductance from 

reaching the resonance required to drive large currents through the VHM. The 

relatively low reSUlting currents were not enough to demonstrate appreciable differences 

in modelling methods. 

4.4.4 Concluding Remarks 

Details of the prototype linear VHM designed to verify behavioural predictions given 

in section 4.3 above have been presented. The electromagnetic model for predicting 

force gave good agreement with experimental values of force at high currents, but 

proved unsuitable for use at low current where cogging forces are likely to dominate. 

The demagnetisation model for cogging force described in section 4.3.1.4, however, 

gave good correlation with the experimental forces at zero current. All five 

performance models were tested for short circuit current and for a loaded condition of a 

6300 resistor in parallel with a 150 J.lF capacitor. All models were found to give 

similar results for the short circuit. For the capacitive loaded case, where currents were 

slightly higher, close inspection of the internal workings of some of the models, for 

example the noisy wave form of Figure 4.49, demonstrated that they were not 

functioning properly. Numerical differentiation does not appear to be a suitable tool in 

this environment and it is concluded that the more complex models using integration are 

using the FEA data more accurately. A closer inspection of possible sources of error in 

the experimental work is required to verify this. The small difference in inductance 

calculation used by the alternative models appears to be insignificant at the relatively 

small currents used here. 

4.5 Sources of Error 

4.5.1 Three dimensional error 

All of the calculations in this Chapter have been based on the assumption that the 

path taken by the flux is purely two dimensional. In a manner similar to the flux 

straying into the slot region of the translator, it is likely that some flux fringing / leakage 

will occur in the third dimension, i.e. out of the plane of the paper for the flux pattern of 
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Figure 4.10. The primary result of such a flow is an extra return path for current driven 

flux, manifesting itself as an increase in the inductance. A lesser effect will be 

providing a leakage path for the magnet driven flux, reducing the emf induced. 

In order to adequately secure the laminations in compression, a 5 mm thick steel 

plate was bolted to each side of the 100 mm wide stator, shown in Figure 4.56. There 

was no such plate on the translator, which was kept in compression by the bars mounted 

to act as bearing runners. The net effect is the likely encouragement of additional 

fringing flux and hence increase in inductance. This agrees with the experimental 

inductance value, given as 0.495 H in Section 4.4.3.2, being greater than the predicted 

values shown in Figure 4.27. 

Figure 4.56: Keeper plate of laminated stator 

4.5.2 Error in airgap 

The size of airgap is the biggest single factor to influence the flux density in the 

VHM magnetic circuit. Although reasonable care was taken to set the airgap with 

bronze feeler gauges, human error must be accounted for. More significantly, the 

gauges are only used to measure and alter the clearance between the rotor teeth and the 

magnet surface. The mounting of the magnets onto the stator, namely with glue, has 

resulted in some of the magnets not sitting true to the steel. Figure 4.57 shows how a 

thin layer of glue may have formed between the magnet and stator, constituting an 

increase in the overall size of airgap. 
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Figure 4.59: Effect ofvarying airgap on predicted voltage, C=lS0J', R =6300 (experiment a) 
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Figure 4.60: Effect of varying airgap on predicted voltage, C=100J', R=290 (experiment b) 
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Table 4-8: Comparison of experimental results for large airgap model E i 

C-150uF, R-360n C-lOOuF, R-29n 
expo 0.8 mm 1.2 mm airgap expo 0.8 mm airgap 1.2 mm airgap 
(a) airgap (b) 

Value % Value % Value % Value % 
Max 504 659 31 494 1.98 51.6 61.8 19 52.6 1.96 
Min -476 -655 38 -499 4.83 -51.2 -62.7 22 -53.3 4.14 
RMS 207 241 17 184 11 26.24 32.7 240 27.5 4.94 

The error IS sIgruficantly reduced for the 1.2 mm mrgap. Although greater 

confidence can be placed in the models when examining these results, it is inaccurate to 

assume that the prototype had an effective airgap of this value. It is the author's opinion 

that the three dimensional effect, which will also be affected by the airgap, is still most 

significant, as indicated by the reasonable open circuit prediction. 

4.6 Real Time Response of VHM 

With the ability to predict the dynamic response of the VHM in generator mode, it is 

now possible to examine the difficulties in extracting power. It has previously been 

demonstrated that the machine has a large inductance (~0.5H). With a time domain 

model the instantaneous values of phase flux linkage, current and theoretical open 

circuit emf can be recorded. 

E open Id 

v 
model 

Figure 4.61: Equivalent circuit ofVHM in short circuit 

Figure 4.61 shows an equivalent circuit model of the VHM superimposed on the 

preferred model (model E, Section 4.3.2.6) connected in short circuit. Using the phasor 

diagram on the right hand side of the diagram it is possible to establish relationships 

between the three circuit elements. All the waveforms are assumed to be sinusoidal 

with the same angular velocity 0), which allows the maximum value of wave forms to 

be used to calculate relative phase differences. As such the elements shown in the 
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equivalent circuit and on the phasor diagram can be substituted with the flux linkages 

according to (4.32) to make a triangle of identical aspect ratio. 

Eopen == Vt PM; IwL == Vtl; IR == Vt tot (4.32) 

Qualitatively, (4.32) states that Eopen, which represents the open circuit emf, is a 

function of the flux driven by the magnets only, the voltage dropped across the series 

inductance is a function of the current driven flux whereas the voltage dropped across 

the resistor is a function of the net flux in the machine. Figure 4.62 shows the time­

variation of these three elements at a constant speed of 0.8 mls. 
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Figure 4.62: Flux flow in VHM during short circuit 

The power factor can now be found using (4.33), incorporating (4.32) and geometry 

from Figure 4.61. 

Vttot 0.0146 0.0159 (4.33) 
pi = cos(~) = Vt PM = 0.8976 

It is clear from Figure 4.62 that the magnet driven flux and current driven flux are 

almost in anti-phase, giving a very small net flux flow. The collapse of the terminal 

I h t flows through the machine is thus explained. The very low power 
vo tage w en curren 

factor calculated in (4.33) confirms this. 
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A oormal generatcr B:VHM 

Eopen 
Eopen 

Figure 4.63: Phasor diagram of power factor 

The relationship between the three flux components and the generator characteristics 

of the VHM can be illustrated by use of phasor diagrams. In Figure 4.63 voltage phasor 

diagrams are drawn above the equivalent airgap flux phasor diagrams. Figure 4.63A 

shows a typical pattern for an electrical machine. The magnetic flux, \jIPM, leads and is 

pointing left. Lagging 90° behind this is the open circuit emf. Due to the inductance of 

the coil, the current, I, lags the voltage by an angle~. The flux field driven by the coil 

current, \jib is in phase with the current and the resultant flux, which defines terminal 

voltage V, is shown. Figure 4.63B shows the equivalent diagram for a VHM, with a 

larger lag in current. The magnitude of the \jIto! phasor has considerably decreased by 

virtue of the flux due to the magnets and current almost opposing each other. 

Figure 4.64 shows the phasor diagrams of the VHM with a corrected power factor 

and hence no phase difference between Eopen and I. In order to achieve this, the 

terminals of the generator have been connected to a load which has a current leading the 

voltage by an angle~. The resultant flux, and hence terminal voltage, of the machine is 

seen to be large. Operating in this manner, referred to as unity power factor, can thus be 

deduced to require \jI1 and \jIPM to have a 90° phase difference. It is common practice to 

use a capacitor to perform this function. 
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IX 

Eopen 

v 

ll' 1 

Figure 4.64: Phasor diagram of corrected power factor 

model 

E open 

le ~ . .... 

ex, 
~-~----....-:-.. ---- .- -_.- ._---

Figure 4.65: Capacitor assisted excitation of the VHM 

Figure 4.65 show-s the VHM model superimposed on a simple equivalent circuit for 

the case of capacitor assisted excitation. Also shown are two phasor diagrams, one 

corresponding to the circuit current and one to the voltage. The approximations used in 

(4.32) can again be used for E, IaroLa and IaRa in triangles where all sides have a 
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dependency on co. In model E the terms 'E' and 'locoL' do not exist, with the output of 

the model being current, 10. The term 'ILRL' is hence not related to anyone group of 

flux linkage in the machine and so it is not possible to use an approximation of this 

form. Peak resultant voltages must instead be used in this geometric triangle. 

Appendix B shows how the vector geometry of Figure 4.65 can be used to calculate cl> 

and hence power factor. It could also be used to calculate ideal values of RL and C to 

give unity power factor (cI>=O). A simple method for selecting a capacitor approximately 

equal to this value states that the reactive power of the capacitor is intended to cancel 

out the reactive power of the inductor. In order to do this the reactance of these two 

elements must be forced to be equal in magnitude but in anti-phase, ( 4.34). 

XL =-Xc 
I 

:. (tJL =-
OJC 

( 4.34) 

For a constant speed of 0.5 m/s, the 24 mm cyclic nature of the VHM gives co a value 

of 130 rad/s. Assuming the inductance of the prototype is around 0.4 H, see Figure 

4.27, and using available sizes of capacitor, ( 4.34) implies a value of 150 J.LF is suitable. 

Figure 4.66 shows the components of the flux linkage within the VHM being loaded in 

this manner. 

The net flux linkage within the machine is clearly dominated by the current. The 

magnet driven flux and current driven flux are close to being 900 out of phase and so the 

power factor of the machine has effectively been reduced. The method detailed in 

Appendix B is used to calculate the power factor of the machine in this state and found 

to be 0.81. 
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Figure 4.66: Flux linkages in the VHM with a capacitive load of ISO J,LF, resistive load of 630 Cl 

at a constant velocity of O.S mls velocity 
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Figure 4.67: Flux linkages in the VHM with a capacitive load of ISO J,LF, resistive load of 630 Cl 

at a constant velocity of 0.8 mls velocity 
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As the speed of machine moves away from 0.5 mls the value of capacitance becomes 

further from the optimum and the power factor drops, with a value of 0.11 at 0.8 mls 

and 0.38 at 0.2 mls. In the latter example, the capacitor is now over-rated and the 

current can be seen to falter during the cycle as reactive power is transferred between 

inductor and capacitor. The pattern of flux linkage in the VHM is shown in Figure 4.67 

for this situation. 

Two superimposed frequency components are clearly visible in the \Ill trace of Figure 

4.67, corresponding to the excited and resonant frequency of the capacitor-inductor 

circuit. 

The advantages of capacitor assisted excitation as a way of controlling the power 

factor have been clearly demonstrated. The sensitivity of the capacitance to the angular 

velocity of the emf, or velocity of the translator, is clearly of prime importance. 

4.7 Alternative Configurations of VHM 

With confidence in the FEA, the design tools presented here can be extended to 

consider larger machines. It is likely that manufacturing constraints may prevent the 

use of airgaps as tight as 1 mm. Expansion of the airgap, say to 5 mm, has several 

effects. The shear stress and attractive forces are both reduced and the optimum magnet 

width, as calculated by (4.6) and shown in Figure 4.4, increases. 

The configuration used throughout this Chapter has meant that the useful flux links 

all four coils in a phase, passing straight through the translator back iron. By altering 

the polarity of the magnets and the interconnection of the coils, it is possible to shift the 

flux pattern so that the flux linking the two stator cores are totally independent, having a 

return path through the centre of the rotor, Figure 4.68. 

Figure 4.68: Alternative flux pattern 
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Electrically, this will have no effect on the machine, but several physical effects will 

become apparent. In this configuration, as all the flux no longer follows the same 

reluctance path, any deviation of the translator position towards one or other stator core 

will cause an imbalance in the coil driven-flux density in the two airgaps. The 

unfortunate side effect of this is a sharp increase in the resultant force on the translator, 

referring to Figure 4.19 the attraction to one side will move up the curves whilst the 

attraction to the other moves down. In the original flux pattern, the coil driven flux will 

be equal on either side of an unevenly spaced translator, and the unbalanced forces will 

be limited to those due to magnet excitation, the lowest curve of Figure 4.19. 

If the return flux path is through the translator, a large back iron will be required and 

the structure will necessarily be large. However, a significant advantage of having a 

translator return flux path is that it allows for the possibility of a four sided electrical 

machine, all being magnetically independent. Figure 4.69 shows an end view of the 

configuration, with the translator oscillation into and out of the plain of paper. 

individual 
translator 

individual 
stator 

coil 

Figure 4.69: End view of four sided VHM 

The resulting machine can be much shorter in the axial direction than a two sided 

machine having the same active airgap. This topology, which has an aspect ratio closer 

to that of a hydraulic ram, is further discussed in Chapter 7. 

4.8 Discussion 
A 3kW VHM was designed and built based on models assuming a simplified flux 

flow. A two dimensional FEA model was then presented to examine more closely the 

actual flux pattern. The simple approximations used in this and the previous chapter to 

predict shear stress, equation (3.12), were shown in Section 4.3.1.1 to give reasonable 

results and are hence a valid tool in terms of simple design procedures and machine 

sizin . The same anal sis, however, when extended for emf rediction, as in e uation 
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(4.5), was shown to be inadequate (Section 4.2.3.2) and appears to require FEA 

analysis. The interaction of the magnet and armature current flux resulted in a complex 

self inductance relationship with position and current. A variety of models for 

predicting the characteristics on load have been presented, with a favoured model 

selected. For open circuit and low current I short circuit predictions, the simple 

equivalent circuit of model A was shown to perform as well as the favoured model. For 

the purpose of future design work, this model, in combination with a simple equation 

such as ( 4.31) could be used to give an open circuit emf and short circuit current. The 

determination of the coefficients of that equation, however, require FEA. 

The favoured model, which utilised a look up table relating the current and position 

to flux linkage, detailed in Section 4.3.2.6, used a Runge-Kutta integration routine at 

every time step and was hence computer intensive. 

The airgap size has been demonstrated as crucial to the performance of this machine. 

Large attractive forces between translator and stator of around twice the magnitude of 

the useful axial force which pulsate with position have been identified. Much attention 

must therefore be paid to the lubrication and support structure of these linear machines. 

For use as a generator, the VHM must be provided with reactive power. The benefits 

of this were demonstrated with capacitor assisted loading. The sensitivity of this 

method to emf frequency and hence translator velocity was demonstrated. For the 

reciprocating motion of a linear machine in an MEC, therefore, a more complex power 

inverter is required. 

It has been demonstrated that the VHM is capable of airgap shear stresses above 100 

kN/m2, several times greater than that found in more conventional topologies. For the 

slow speed applications of MECs a high shear stress such as this is crucial for a high 

power take off. 
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Chapter 

5 

The Air-Cored Tubular 

Machine 

Equations governing the shear stress of an air-cored tubular machine were 

derived in Chapter 3. These equations are based on simplified flux flow 

assumptions in combination with the presence of an imaginary piece of steel at a 

distance tending to infinity from the magnetic translator. Within this chapter that 

simple analysis is extended to allow consideration of the emf induced within the coils 

and the resulting relationships are used to outline the design of a 3 kW prototype 

machine. Detailed FEA of this topology is then performed and compared with the 

results from an experimental rig. The aim of this chapter is therefore to present a design 

methodology similar to that developed for the VHM in the previous chapter. 

5.1 Design of 3 kW Prototype 

5.1.1 Flux density around translator 

It is possible to formulate and analyse the equivalent magnetic circuit of the flux 

flow out of a single radial pole segment, width de, into the adjacent pole, Figure 5.1. 

All the flow is assumed to emanate from the midpoint of the magnet and flow through 

the entire width of the magnet section into the steel spacer, thus ignoring leakage 

through the magnet air border. In combination with the concept of effective airgap 

introduced in Chapter 3, the flux density across the width of the steel I air border is 

assumed to be constant whilst that above the magnet I air border is assumed to be zero, 

Figure 5.2. All the steel is assumed to have an infinite permeability. 
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;: s.teel,~, I------- airgap 
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Figure 5.1: Equivalent circuit of radial segment 

magnet 
I 

ftux 

d~~~~I __ ~ ________ ~ __ -r __ __ 

Figure 5.2: Assumed flux flow in air core machine 

The reluctance of the two effective airgaps and each half of the magnet is given in 

(5.1) and (5.2) respectively. 
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(5.1) 

Sm/2 
wm 

2,uo,urdA J 

wm 
(5.2) 

= 2 ,uO,urRm dB 

The total reluctance of the flux path from each magnet may hence be calculated by 

summing two of each of these components (giving Sm+2Sg) and integrating for e 
between 0 and 27t, which will allow the flux flow from one pole to be as given in (5.3) 

when subjected to the mmffrom the magnet with a remnant flux density of Br. 
2 2 

7r Brw m WsRm 
(5.3) 

The flux derived above divided by the area from which it emanates represents the 

value offlux density at the surface of the rotor, Eg , given in (5.4). 

13 - 1lBrRmw m 
g - 2,urR m{w m + Ws)+1ZW m Ws 

(5.4) 

5.1.2 Selection of magnet 

Due to a manufacturer enforced preferred upper limit on the diameter of each 

individual magnet piece, coupled with a desire to make a translator of comparable 

physical size to the VHM prototype, the magnets used for this machine have a diameter 

of 100 mm and a thickness of 25 mm. 

5.1.3 Selection of Steel Spacer 

For an increase in the width of steel spacer, the flux density at the translator will 

decrease in the approximately inverse relationship of equation (5.4), illustrated in Figure 

5.3. In an attempt to exploit magnetic gearing, the entire translator pole width should be 

kept to a minimum, the lower limit being the maximum flux density permitted before 

the steel saturates. 
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Figure 5.3: Variation of surface DUI density with width of steel spacer 

Figure 5.3 shows that a steel piece of width 25 mm corresponds to a surface flux 

density of 0.65 T, around half that at which steel starts to saturate. It can therefore be 

assumed that saturation will not occur until the mmf from the coils matches that of the 

magnets. Furthermore, selecting a steel width equal to that of the magnet piece has 

been previously recommended, [72] and section 3.4.2.1. 

5.1.4 Coil support 

In order to construct a machine whereby each individual coil has a surface to react 

force against, it is necessary to provide slots in the stator. Unlike an iron-core stator, 

where slots can be used to channel the flux, the presence of coil supports separating 

coils in this machine will decrease its performance. If there is a non magnetic keeper 

between each coil, then the area covered by each coil, and hence magnetic flux cutting 

it, will be reduced. In this simple analysis the performance of the machine will decline 

linearly with the width of spacer per coil. In order to minimise this effect, one support 

is provided every third coil which in a three phase winding corresponds to one spacer 

per translator pole. For a pole width of 50 mm, therefore, a 6 mm spacer can be 

expected to reduce the machine performance by 12 %. 

5.1.5 Translator Support 

In order to impart force and be supported, the cylindrical translator must either be 

enclosed in a non magnetic support tube or mounted on an axial shaft. The former of 
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these necessarily increases the airgap between the coils and the rotor. The effect of 

mounting the translator on a shaft can be simulated by a simple modification to the 

equivalent magnetic circuit. If the shaft is cylindrical, non magnetic and passing 

through the centre of the magnets, it will provide a path for leakage flux, SL with a 

reluctance given by (5.5). 

effective 
airgap 

S=_I­
JJoA 

~-4------l:' imaginary 
... :. $te~l -

112 
magnet 

leakage 

(5.5) 

112 
magnet 

Figure 5.4: Equivalent circuit including leakage 

effective 
airgap 

The modified equivalent circuit is shown in Figure 5.4 and the effect of the shaft 

radius on the surface flux density using this equivalent circuit is shown in Figure 5.5. 
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Figure 5.5: Effect of shaft size OD surface flux density 
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The introduction of a 20 mm diameter hole hence only reduces the flux density at the 

magnet surface by less than 4% to 0.628 T. 

5.1.6 Design of Stator Coils 

5.1.6.1 Design 

Unlike the VHM, the dimensions of the coils in the tubular topology are largely 

dictated by the size of other components within the machine. The available width has 

been predetermined by the translator pole width, the desire for a three phase output and 

the selection of coil support and is hence 14.7 mm. The inner diameter is a function of 

the magnet radius and minimum airgap technically achievable, whereas the outer 

diameter is limited by the exponential decay of the magnetic field. As such an outer 

diameter of 155 mm was chosen, corresponding to a flux density at the outer surface 

equal to 25 % of that at the surface, according to (3.16). The minimum airgap was 

assumed to be 2.5 mm, giving a coil height of 22.5 mm Manually winding the coils 

around a bobbin of the correct internal diameter and width required 230 turns of 1 mm 

diameter wire to achieve the outer diameter - a fill factor of 0.54. For a peak current of 

10 Amps, the equivalent current density for a single coil occupying the same space, J, is 

equal to 10 x 230/ coil area, or 6.9 x 106 Am-2
• 

5.1. 7 Flux Cutting Coil 

The total flux cutting a single coil can be calculated in order to investigate the force 

reacted and emf induced. 

individual 
ch co· s(N) 

• 

cw 

cw 

Figure 5.6: Derivation of flux linkage cutting coil 

Referring to Figure 5.6, the flux linkage of a section dr of a coil is equal to the total 

flux, ~, multiplied by the number oftums contained in that section, (dr/Ch).N. The flux 

linkage of a single coil will be an integral of this value in three dimensions, as shown in 

(5.6). 
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= 

= 

coil width (m) 

airgap (m) 

coil height (m) 

See also Figure 3.13 for dimensions. 

(5.6) 

This value is assumed to be the peak value of a sinusoidal variation of flux linkage 

with coil position across the entire rotor pole 

5.1.7.1 Force per coil 

Restating equation (3.18) as an integral over the width of a coil in the z direction will 

give the peak force per coil, (5.7). 

-r+R 

Feoil = fir (0 rW.JBge-I'-r.dz.dr.dO 

= 2tr(cw )!B. (l.)e -X[ R + g + I. - e -;;, (Rm + g + ch + I.) ] 
(5.7) 

As with flux linkage, the variation of force for a constant current density can be 

assumed to be sinusoidally varying with position. The net force reacted by all three 

phases over one translator pole can be used to calculate the number of poles required to 

constitute a 3 kW machine. To react the constant 6 ~ force required to provide 3 kW 

at 0.5 ms-1 requires a peak force of 4 kN from each phase. Substituting the values 

described above into equation (5.7) yields 250 N per coil, implying that each phase 

must consist of at least 16 coils. For convenience, the stator will consist of two halves, 

each encompassing 8 translator poles. 

5.1.7.2 Predicting emf 

An expression for the peak emf induced in a coil can be derived according to 

equation (5.8). Using the peak value of flux linkage as given in (5.6) gives a peak emf 

of 12.5 Volts per coil, corresponding to 100 Volts per stator half. 
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where 

E = _ d\jl coil 
dt 

_ d'l'coil dx ----.-; 
dx dt 

'I' coil = If/ coil Sin(27r { X )J 
2 wm +Ws 

. d 'I' coil _ A ( x J 7r .. dx - 'l'coil cos 7r ( ) . 
wm + Ws wm + Ws 

:. E = -{ 7r JIf/ coil COS(7r X ) dx 
W m + Ws W m + Ws dt 

E
A A • 7r 

~ = 'I' coil X --­
Wm+Ws 

x displacement (m) 

5.1.7.3 Predicting Inductance 

The inductance L of a magnetic circuit may be expressed as (5.9). 

L = \jI = N~ 
I I 

(5.9) 

( 5.8) 

The simplified flux flow assumption of Figure 5.2 is not valid when considering the 

current driven flux, as the derivation of the effective airgap specifically relied on the 

alternate nature of the poles of the translator. The reluctance network for flux driven 

from a coil above the translator now consists of several elements: the airgap between the 

coil and translator surface, the steel spacers, the magnetic regions and the return path. 

Although an analytical solution for the armature reaction field is possible in an axially 

magnetised iron cored machine, it is 'considerably more complex than for a radially 

magnetised machine' [71]. As such, a simplified method is presented here. 

For a very thin coil attached to the surface of the translator, the mmf distribution 

becomes analogous to that of the translator magnets and so the concept of the effective 

airgap can be re-introduced. For a purely iron translator, the reluctance path of the flux 

is twice across the effective airgap, 2Sg as defined in (5.1). The flux at the translator 

becomes Equation (5.10). 

~ _ NI7r
2 
Po WsRm 

- 2{w m + Ws ) 
(5.10) 

The exponential decay used for the magnet driven flux is not applicable to the 

current induced flux and so the flux given in (5.10) is assumed to cut the entire coil. 

Substitution into (5.9) gives a value of inductance of 8.2 mHo This method is close to 
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the physical situation for machines with small airgap and thin coil / pole widths. A 

more accurate calculation requires a more complex method (e.g. the use of a Biot-Savart 

method or a full FEA program). 

5.1.8 Prototype dimensions 

Table 5-1 and Figure 5.7 show the final dimensions of the translator and loading 

conditions plus the nominal airgap, which in reality is not a design criteria but fixed by 

the manufacturing process. 

stainless 
steel shaft 

Table 5-1: Dimensions of tubular protoype 

Magnet width 0.025 m 
Steel Width 0.025 m 
Rotor diameter 0.1 m 
Airgap 
Velocity 

110 mm ID 

steel 
spacer 

0.005 m 
0.5 mls 

155 mm ID 

outer 
tube 
support 

Nylon 
Spacer 

ree phase 
winding 

Figure 5.7: Dimensions of one half (8poles) of 3 kW tubular machine 

5.2 Finite Element Analysis of Single Three Phase Coil in 

Ideal Machine 

5.2.1 Details of the model 

Although the tubular machine has a three dimensional flux pattern in Cartesian 

coordinates, its uniformity around the centre line (x=O) allows it to be modelled using 

two dimensional analysis in an axisymetric coordinate system. The repetitive behaviour 

of the translator field could be investigated using a model consisting of one pole only, 
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but the use of a three phase winding means it is beneficial to have a wider scope model. 

The four magnet, four surface pole model of Figure 5.8 allows a three phase winding 

spanning a surface pitch to be modelled across two entire surface poles, leaving half a 

pole width clearance at each end. By terminating the model halfway through the 

stainless steel support, the boundary condition is set as a flux line, i.e. having zero 

normal flux. The same is true for terminating the model at the mid point of a translator 

steel spacer. 

support 

Figure 5.8: Position of coils 

Also shown in Figure 5.8 is the definition used for coil position i.e. at p=O, p=50 and 

p=100 coil B is exactly aligned above a steel spacer / surface pole. 

The model mesh is shown in Figure 5.9. As with the VHM model, the smallest mesh 

size is 1 mm and is located in the coil / airgap region. In order to avoid computational 

bias in the coil region, the mesh was made densely throughout the translator / air 

boundary. The general structure of the mesh remains unaltered as the coil changes 

position, but this comes at the expense of many more elements in the model than 

necessary. 
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Figure 5.9: FEA mesh of tubular machine 

5.2.2 Details of the Analysis 

A line of length 'a' in the r direction in the r-z plane, as defined in Figure 5.10, 

represents a disc in a three dimensional coordinate system. The total flux linking such a 

disk in the z direction is equal to the flux density Bz multiplied by the area of that 

surface. Expressing this as a sum of elemental disks gives ( 5.11). 

; = !Bz .21Zf.dr 

= 21r !Bzrdr 

= 21r !(v x no )rdr 

= 2nrOo(a) 

( 5.11) 

In order to fully account for the axisymmetric nature of the magnetic flux flow, the 

analysis software solves ( 5.11) in terms of a 'modified radial potential', which gives a 

value of r x A for each element. Calculation of flux is hence obtained by mUltiplying 

this value by 21t. 
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5.2.3 Details of Results 

5.2.3.1 Translator 

Figure 5.10: Flux lines of translator 

Figure 5.10 shows the magnetic flux lines due to magnetic excitation only. The flux 

path through the magnets is primarily parallel to the axis. The leakage through the 

stainless steel central support is negligible compared to that on the translator surface. 

The variation of both radial and axial flux density with position along the translator 

is shown in Figure 5.11. The flux density in the two directions follow a similar pattern 

but half a pole width out of phase with each other. At p=25, the surface above the 

centre line of a steel piece, there is no axial flux, which verifies the use of a zero normal 

flux condition at the boundary of the FEA model. The radial flux reaches a clear peak 

at the steel/magnet boundary, although the rapid decline of this value is less significant 

further away from the translator surface. 
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This data can be used to give some confidence in the simple model used to design the 

prototype. In Figure 5.11 the surface values of radial flux predicted in section 5.1 above 

were also included and show a reasonable first order approximation to those predicted 
by the FEA. 

The graph of Figure 5.13 shows the average values of radial flux density over the 

steel and magnet sections of the translator, calculated by the FEA, plotted on the sam~ 

axes as the flux densitY as calculated by the simple model using Equations (5.4), (3.16) 
and (5.5). 
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Figure 5.13: Comparison of model with 3D FEA averaged data 

The simple model assumed that the flux density across a surface pole was constant, 

the limitations of this assumption have been demonstrated, Figure 5.11. Figure 5.13 

shows that the average flux density at the surface of the steel segments calculated by the 

FEA is close to that predicted (over predicting by less than 5%). Over the magnet, 

however, the simple model assumed no leakage and hence zero flux density, whereas 

the . FEA calculated a value just under half that above the steel. The exponential 

reduction of flux density with distance above the translator is a reasonable 

approximation when examining just the area above the steel segments. The two 

'dashdot' lines of the graph correspond to the averaged values over an entire surface 

pole for the two methods. At positions close to the translator, the simplified method 
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over predicts drastically (23% at the surface) but the two meth d o s converge at greater 

distances, 4% error at 25 mm and less than 1 % at 30 mm. For machines with a small 

airgap there is therefore a need for the more detailed FEA analysis. 

5.2.3.2 Coil Flux Linkage 
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Figure 5.14: Variation of flux linkage with position for 8 coils for each of the 3 phases 

Figure 5.14 shows the variation of flux cutting the three phases as the position of the 

coils is changed. Each half phase of the prototype consists of 8 individual 3 phase 

configurations of the type shown in Figure 5.8. The actual flux linkage is hence 

obtained by mUltiplying the value obtained in the FEA by eight. Three identical 

waveforms can be seen, each separated by 120°. 

5.2.3.3 Armature Excitation 

Replacing the magnetic regions of the simulation with air allows the inductances of 

the phases to be investigated. The single three phase coil inductance results for the 

simulation are presented Figure 5.15 and confirm the 50 mm cyclic nature. 

Further confirmed in this diagram are the existence of three out of phase levels of 

inductance, namely the self inductance, mutual inductance of adjacent coils and the 

mutual inductance of non-adjacent coils. In this model, calculation of one of each of 

these values in combination with the known phase difference may be used to describe 

all three coils. 
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Figure 5.15: Single coil inductances 

The validity of the inductance estimate of Section 5.1.7.3 may now be tested. The 

distributed mmf model gave a predicted value of 8.2 mH, whereas the results here show 

that the actual inductance varies between 12 and 13.5 mH. The error of the highly 

simplified method is of the order of 30-40% inaccurate. 

5.2.3.4 On load 

The flux linkage map of Figure 5.16 demonstrates the effect of coil position and 

current on flux linkage for a single phase. The graph shows a sinusoidal variation with 

position in combination with a linear relationship for current which is symmetrical 

about the origin. The linear relationship and symmetry about the zero current axis 

shows the inductance is independent of current. 
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Figure 5.16: Flux linkage map of single coil (B) 

5.3 Finite Element Analysis of Actual Three Phase Machine 

5.3.1 Introduction 

There are two reasons for extending the FEA model to include all eight poles present 

in each half of the stator. The first is a: direct result of the topology of this family of 

machines, whereby the current driven flux emanating from one coil is not limited to 

influencing its adjacent neighbours, but several coils on each side, including those in the 

same phase. Considering a single phase, this effect manifests itself as the total phase 

inductance being less than the sum of the individual coil inductances. 

Specific to the laboratory built prototype, the second reason for modelling several 

phases is the unbalanced nature of the three phases. To ease manufacture, the coils 

were grouped into three and supported in a single slot spanning a translator pole. The 

unfortunate side affect of this being that two of the phases are direct neighbours 

(red/yellow and yellowlblue) whereas the third (redlblue) is separated by a 6 mm plastic 

spacer, a significant distance when compared to the 14.7 mm coil width. The previous 

FEA assumed a coil width of 50/3 or 16.7 mm. 

By modelling all eight coils, constituting one of the two independent machine halves, 

both of the above effects are adequately accounted for. Furthermore, as demonstrated in 

139 



N. J. Baker Chapter 5: The Air-Cored Tubular Machine 

the preceding section, the simulation need only be run through all its positions three 

times: once with magnet excitation to calculate the emf induced, and twice with the 

magnetic regions set to air and either the red or blue phase excited to calculate 

inductances. 

5.3.2 Details of model 

The entire model, showing eight triple coil groups, coil supports and the definition of 

position is given in Figure 5.17. In this simulation, the coils remain stationary and the 

translator moves upwards, position zero corresponding to the magnet/steel interface 

being level with the edge of the outer spacer. 

Figure 5.17: Position definition for large simulation 

5.3.3 Details of Results 

5.3.3.1 Phase flux linkage 

Running the model over 100 mm, across two translator poles, gave the total flux 

linking each of the three phases as given in Figure 5.18. The vertical black lines cutting 

the peaks of the three phases can be used to indicate the phase differences. In a fully 

balanced system, all the peaks would coincide with the point at which the other two 

phases have equal values. 
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Figure 5.18: Flux cutting entire pbases 
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Figure 5.19: Flux plots of large FEA 

Figure 5.19 shows the flux plots of the entire machine for a current of 5 and 25 

Amps. Demonstrated here is the cyclic nature of the flux pattern and the dominance of 

magnet mmf even at high coil currents. The pattern is seen to alter only slightly in the 

two diagrams, and still significantly deviate from the expected flux pattern of a free 

standing coil. 
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5.3.3.2 Phase Inductances 

The self inductance of each phase is shown in Figure 5.20 and the three sets of 

mutual inductances in Figure 5.21. Both of these provide further evidence of a non 

balanced three phase system. 
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Figure 5.20: Self inductance of three phases 
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Figure 5.21: Mutual inductance between three phases 
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5.4 Utilisation of Finite Element Analysis 

5.4.1 Force Calculations 

5.4.1.1 Method 
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Figure S.22: Comparison of force calculation method 

There are two methods available for calculating forces in an axisymmetirc 

simulation, the Maxwell stress tensor used in section 4.3.1 of the VHM Chapter and 

Lorenz's force, given in the fIrst part of Equation (3.17) in Chapter 3. Figure 5.22 

shows a comparison of the two methods for calculating the axial force. The Lorenz's 

force, whereby the product of current density and flux density is integrated over the coil 

area, gives the smoother result and is hence the preferred method. 

In this section the single coil FEA simulation of Section 5.2 is used and all the forces 

are therefore per coil. 
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5.4.1.2 Normal/Radial Force 
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Figure 5.23: Calculated radial force 

Figure 5.23 shows the variation of radial force over two pole pitches for a variety of 

coil currents. The maximum, which occurs as the coil passes above the centre point of 

the magnet, increases linearly with current with 10 Amps reacting 190 N. Inspection of 

the maxima demonstrate that its value is dependent on the current direction. This may 

be explained by inspection of flux plots. 

Figure 5.24 shows the detailed flux plot of a coil above the centre line of a magnet 

section. In Figure 5.24A there is no current and the natural behaviour of the flux due to 

the presence of a magnet is observed. In Figure 5.24B a 20 Amp current is present in 

the coil, flowing in the direction that enforces the mmf of the magnet. In Figure 5.24C 

the current is in the opposite direCtion such that its mmf opposes that of the magnet. As 

the distance from the magnet surface increases, the major contributor of mmf switches 

from the magnet to the coil and the flux pattern alters accordingly. The radial force is a 

product of the current density and the axial flux density, the effect of current opposing 

the mmf of the magnets is to align the flux lines in the axial direction and so produce a 

greater force. 
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A 

Figure 5.24: Flux plots for (A) 0, (B) +20 and (C)-20 Amp current aligned with centre of 

magnet 
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5.4.1.3 Axial Force 
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Figure 5.25: calculated axial force 

The axial force of Figure 5.25 is a similar pattern to that of the radial, but half a pole 

out of phase, such that the maximum occurs as the coil passes over the centre of the 

steel. Again, the magnitude of the force is dependent on the direction of the current, 

with the maxima at 10 Amps being 216 N or 173 N. 

5.4.2 Performance 

5.4.2.1 Models for 1 phase 

As demonstrated in the VHM Chapter, there are two alternative methods for 

predicting an electrical machine's behaviour. An equivalent circuit method, whereby 

the machine is split into contributing parts of magnet induced open circuit emf and a 

series inductance, or a look up table method, whereby exact flux-current-position 

reference tables are used at every time step. As the inductance is independent of current 

in the air cored tubular machine, the simple equivalent circuit model will suffice. When 

considering just one phase, this model is simple to implement as both the flux linking 

the coil and its inductance may be accurately modelled as sinusoidal functions. 

The position dependant flux linkage is differentiated to make the emf a product of 

the velocity and a cosine function of position. 
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5.4.2.2 Simple Equivalent Circuit Model for 3 phases 

R 

r • 
I 

Figure 5.26: Equivalent circuit of red phase 

Figure 5.26 shows the equivalent circuit for the red phase, including the mutual 

inductances (M), self inductance (L), the internal resistance (r) and the load (R). The 

voltage equation for this loop is given below (5.12). 

E L dir . dLr di y . dMry dib . dMrb . ( ) 
r = r-+lr-+Mry-+ly--+Mrb-+lb--+I r+R (5.12) 

dt dt dt dt dt dt r 

If the machine were perfectly balanced then two simplifications could be employed, 

both given in (5.13). 

Mry =Mrb =Mby 

ir+iy+ib=O 
(5.13) 

In an unbalanced machine, however, neither of these assumptions are valid and so 

the equations for the three currents must be re-stated as the differential equations of 

(5.14). 

dir ( diy. dMry dib . dMrb . ( )~ -= E -M --I ---Mrb--1b---1r r+R 
dt r ry dt y dt dt dt 

dib ( di. dMrb diy. dMby . ( )~ -= Eb -Mrb-r -Ir---Mby--Iy---Ib r+R 
dt dt dt dt dt 

(5.14) 

di ( di dM di y . dM by . ( )~ _r = E -M _r -i ~-Mby--Iy---ly r+R 
dt y ry dt r dt dt dt 

When considering the entire three phase machine and utilising the results from the 

larger FEA model, the inductances and magnet induced flux flow can no longer be 

simply approximated to a single sinusoidal function. The inductance waveforms are no 

longer pure sinusoids due to the imbalance caused by using coil support spacers only 
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every third coil. Furthennore, the importan f . .. 
. ce 0 mamtaining the correct phase 

differences encourages the use of F·· . 
. ouner senes approxnnations, which allows periodic 

functions to be approximated to the fonn given in equation (5.15). 

[(x) = ao + t.( an co{ 2';" ) + bn Sine,;" )) ( 5.15) 

Where f(x) = periodic function 

= average value 

constants 

= period of function 

The MA TLAB [80] fast Fourier transfonn function (FFT) takes a discretely sampled 

set of data and returns its Fourier series. 
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Figure 5.27: Fourier series approximation 

40 45 50 

Figure 5.27 shows the inductance relationship between the blue and yellow phases 

plotted on the same axis as the first two summations from (5.15). The close correlation 

between the sum of these tenns and the original results makes further summation 

redundant. A similar effect was found for all the inductance relationships, whilst the 

magnet flux linkage required only the first tenns, the second being 105 times smaller. 

Each phase current must be solved simultaneously and numerically integrated over 

time. A SIMULINK [80] model was constructed within MA TLAB to achieve this. 
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Equations (5.14) to (5.16) give the flux, emf, and self inductance for the red phase, with 

similar relationships existing for the other two phases. Coefficients of the equations 

governing all the phases are given in Appendix C . 

. (21tt) J 27tt) 'l'r = ~ srn -1- + Ql cO"-I- (5.16) 

E 2n j . (27tt) (27tt)) r = -I-Al Ql srn -1- - q cos -1- ( 5.17) 

L, = ao +a, cof~)+q su{2~ )+a2 cos( 4~ )+b2sm( 4~J ( 5.18) 

5.5 Verification of Models 

5.5.1 Description of Testrig 

The tubular machine was mounted horizontally and powered by a 225 mm length 

crank arm coupled to a 1 :40 step down gearbox driven by a two pole induction machine. 

Varying the length of crank and motor speed allows the generator to be tested for 

different peak speeds and oscillation amplitudes. 

The presence of exceptionally large strong magnets caused many problems when 

handling and manufacturing the translator. It was constructed in-situ on the 20 mm 

diameter stainless steel support rod, with the magnets and steel spacers mounted 

alternatively, Figure 5.28. Care was required when adding the steel components, 

because the large attractive magnetic force in combination with the brittle Nd-Fe-B was 

conducive to damaging the magnets. A metal jig was manufactured, capable of 

lowering the parts together, but again the brittle nature of the magnets prevented its 

successful use. A series of wooden spacers was settled on as the most reliable method of 

drawing the components close to each other whilst preventing a high speed collision. 

Figure 5.28: Tubular machine translator 
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An interesting effect was observed when the magnetic pieces were lowered onto the 

translator. At gaps of greater than 20 mm a strong repulsive force was observed, yet at 

a gap length of less than 20 mm this was rapidly replaced with a strong attractive force. 

At the larger gap lengths the new magnet was being repelled by the presence of like flux 

driven through the end mounted steel piece by the previously mounted magnet. At 

close proximity, however, the attractive force between the new magnet and the non 

saturated steel starts to dominate. This has a particularly significant consequence for 

disassembly. 

Figure 5.29: Mechanical excitation of translator 

The stator body is a 15 mm wall thickness plastic tube with the stator coils suspended 

on the inside. Each individual coil consists of 230 turns of 1 mm diameter copper wire 

bound together by glass tape. Every third coil has a 6 mm nylon spacer mounted to the 

inside of the tube. The mounting points of the spacer serve to react force from the coils 

and ensure that the three coils represent exactly one translator pole width to ensure a 

three phase output. Great care was taken not to have any supporting metal closer to the 

translator then the coils. The tube was secured to an aluminium frame by in-house 

manufactured brass bolts, Figure 5.30. 

The rigid connection between driving motor and driven translator, Figure 5.29, 

allows for the derivation of a simple model to describe the machine's motion. Figure 

5.31 shows a schematic diagram of the crank rod arrangement. 
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tator support tube 

Figure 5.30: Photograph of prototype 

translator 

Figure 5.31: Geometric picture of crank arrangement 

It is a simple geometric problem to describe the resulting motion, Equation (5.19). 

Analytical differentiation of this relationship gives a term for velocity, (5.23), thus 

avoiding the need for numerical differentiation routines in the performance model. 

(5.19) 

(5.20) 

5.5.2 Electrical Performance Models 

5.5.2.1 Flux Density 

The nature of this machine means that it is possible to measure the flux density at 

various points along the translator before the stator coils were mounted. A Hall probe 
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was used in order to validate the FEA work. Comparison between values predicted by 

the model given in Section 5.2 and experimental results for both radial and axial flux is 

given in Figure 5.32 and Figure 5.33. The correlation between the two is seen to be 

good. 
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5.5.2.2 Inductance 
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Figure 5.34: Comparison of experimental (V) and FEA(-) predicted self inductance of an entire 

phase 

Figure 5.34 shows a comparison of the phase inductance calculated in the FEA with 

that measured in the prototype using a laboratory inductance analyser. Ignoring the 

small phase difference between the two signals, due to the arbitrary definition of zero 

position in the laboratory, they have the same wave length but the values differ by 7% at 

the minima to 10% at the maxima. This difference is likely to be due to a combination 

of the non uniform nature of hand wound coils and a degree of uncertainty with the 

prototype airgap. 

5.5.2.3 Open Circuit 

The open circuit voltage for a single coil is shown in Figure 5.35, showing the model 

to give a 10 % under estimation of the experimental value. Also demonstrated is the 

inaccuracy of the constant angular velocity assumption of the model, accounting for the 

drift out of phase at peak amplitudes combined with the coincidence of the positions of 

zero linear velocity (t = 2.5,3.7,4.9 s). 
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Figure 5.35: Open circuit results for a single phase 

5.5.2.4 Resistive loading 

4.5 5 

In order to extract maximum power from an electrical machine it is necessary to 

make the external load resistance equal to the internal resistance. Because the 

inductance of this machine is comparatively low, this can be achieved by attaching a 

load equal to the coil resistance, just over 16 Ohms, to the phase terminals. 

Figure 5.36 shows a comparison of the experimental and predicted voltages of all 

three phases when the machine is connected to three 17 Ohm resistors in a star 

configuration. The general correlation between the two plots is good, with the three 

phase shape being accurately predicted. 

154 



N. 1. Baker Chapter 5: The Air-Cored Tubular Machine 

so · 
~ 
8. 0 

i 
-so 

-100~----~~----~----~~----~------~~--~ o 0.5 1.5 2 2.5 3 
time (s) 

Experimertal 
100r-----~-------r--~~,-------.-----~------~ 

-100 L-____ --1 _____ --L __ ...:..-....l-___ .l.-__ --1 __ --=---.-J 
o 0.5 1.5 2 2.5 3 

time (s) 

Figure 5.36: Comparison predicted and experimental voltages for a 17 Ohm load 
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Figure 5.37: Varying voltage peaks 
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Figure 5.37 shows an enlarged section of the voltage wavefonns and highlights the 

change in amplitude between the consecutive peaks of velocity. Consider the predicted 

wavefonn for the yellow phase (shown in . ). In the first cycle, between t = 0 and t = 

1.5 s, the peak is only 80 Volts, yet in the second cycle, for t above 1.5, it reaches nearly 

100 Volts. The blue and red phases, however, peak at around 95 Volts ht the first cycle 

and 85 Volts in the second. Two effects are apparent: firstly all the phases alternate 

between higher and lower maximum values in consecutive cycles. Secondly the blue 

and red phases are closely related and have a larger maximum whilst the yellow phase 

has a lower peak. The effect is exaggerated in the predicted results, but also present in 

the experimental. It is a result of the unbalanced mutual inductances between the coils. 

Comparison of the results gives an error on the prediction off 6%. 

5.5.3 Concluding remarks 

Details of the manufacture of one of the two planned stators to draw 3 kW at 0.5 m/s 

have been given. Some observations of handling large magnets were described and the 

testrig outlined. The flux density at and above the translator surface was shown to 

correlate well with that predicted using the FEA, whereas the phase inductance varied 

between 7-10% error. 

For a translator speed of 0.5 ms·1
, section 5.1. 7.2 predicted the emf for the prototype 

to be 100 Volts. For the same speed, the SIMULINK model, using FEA results, 

predicted an open circuit emf of 79 Volts. This 20 % error between the two predictions 

is quite reasonable considering the simplifications used. Similarly section 5.1.7.1 

detailed a simple expression for the force developed per coil, equation (5.7), which gave 

a value of 250 N at 10 Amps. The FEA demonstrated that in the actual machine the 

peak value of force was dependant on the direction of current, with the two values of 

216 and 173 giving an average of 194 N. The error in the simple model is therefore 

again around 20 %. The FEA simulation predicted the terminal voltage when connected 

to a resistive load to within 6% of the experimental value. 

5.6 Sources of Error 

One of the key observations when carrying out experimental work was the relative 

movement of the coils within their triplet groups. With a current flowing, the coils 

experience a force to follow the movement of the translator. With the rigid spacers only 

b . t third cOI·I there was some visible play in the coils, as they were emg presen every , 

compressed alternately against each spacer. In addition to this, a manufacturing defect 
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5.7 Real Time Response 

Figure 5.40: predicted internal eOO and voltage drop at 1 mls 
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Figure 5.40 shows the single phase voltage results obtained from running the 

simulation at a constant velocity whilst connected to an external load of 16 Ohms. 

Illustrated is the total voltage dropped across the internal and external resistors plotted 

on the same axes as the theoretical internal emf used in the model. Comparison of the 

two traces allows the power factor of the tubular machine to be calculated in two ways. 
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Firstly, the phase difference between the two signals can be measured, the cosine of 

which will give the power factor detailed in section 3 3 2 1 S dl I t' th ' . . .. econ y, re a mg e 

internal emf and voltage dropped across the machine's inductance to the power factor 

may be used. Both methods give a power factor of greater than 0.95. 

5.8 Discussion 

5.8.1 General 

A 3kW prototype of the air-cored tubular machine based on the force reacted at 10 

Amps has been presented. A two dimensional axisymetric FEA model of the translator 

was created and used to predict the magnetic flux pattern above the translator and the 

behaviour of one set of coils. The nature of the manufactured prototype, however, 

required a separate FEA model of the entire 8 stator pole machine to calculate the 

unbalanced three phase set of inductances. 

For the 8 pole prototype built, the maximum power taken out of a single phase was 

540 Watts at a surface speed of I mls, with a power factor of greater than 0.9. Ifboth 

halves of the machine were manufactured, then all three phases would have produced a 

combined steady output power of 1.6 kW at this speed. An equal amount of energy 

would be dissipated by the unusually large internal resistance of the coils. The machine 

was designed for 3 kW using the simple magnetic circuit analysis, assuming no leakage 

at the magnet air border and no internal resistance. 

At 10 Amps, each individual coil was capable of delivering a (calculated) maximum 

force of 216 N corresponding to a shear stress of 41 kN/m2
• The steady average three 

phase force per translator pole is 324 N, giving the average shear stress of the machine 

as 20 kN/m2• The simplified analysis predicted the machine performance to within 

20%, whereas the FEA simulation was within 6%. The simple model presented at the 

beginning of the chapter can therefore reasonably be used as a first stage tool to design 

tubular machines to an 80% accuracy. 

As the tubular machine is scaled up, the internal resistance of the coils will likely 

decrease as the diameter of wire used increases. Furthermore, when designing larger 

scale machines, the quantity of magnetic material being used is likely to become an 

issue. To reduce the total material required the hole in the magnets could be enlarged, 

and the possibility of using radialy magnetised or surface mounted PMs could be 

investigated. 
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5.8.2 Construction Issues 

In retrospect it may prove more beneficial to mount the coils around a solid tubular 

surface, as this will provide an easy way of both supporting the coils at the base and 

manufacturing them to a consistent specification. The method used here was intended 

to leave the smallest possible gap between the inside diameter of the coil and the 

translator surface. The coils were wound around a removable bobbin which 

unfortunately resulted in a small variation in internal diameter between coils, depending 

on the tension in the coil etc. An airgap of 2.5 mm was strived for, yet as the coils 

settled the effective airgap was almost universally around 5 mm. The same airgap could 

have been achieved whilst using a 4 mm internal coil support, which would have 

ensured all the coils were uniform. 

Furthennore, during the manufacture of the translator a plastic support was placed 

between every third coil to ensure that each single pole was exactly stradled by three 

coils. Unfortunately the uneven addition of the spacers had a significant impact on the 

mutual inductances between phases, resulting in an un balanced three phase system. 

The advantage of mounting the spacers in this manner was a manufacturing and 

materials one. It is easier to mount one 6 mm sheet of Nylon than three individual 2 

mm sheets. If there was an internal support for the coils, then the spacers would be 

supported on their internal and external circumferences, providing rigidity and allowing 

the utilisation of thinner material. 

5.8.3 Radial Forces 

The maximum radial force per coil was given in Section 5.4.1.2 as 190 N, which is 

the sum of forces around the entire circumference. The pressure exerted by the 155 mm 

outside diameter of the coil is therefore equivalent to 28 kNm-
2

, at least two orders of 

magnitude below what a normal cylindrical vessel (e.g. a water pipe) might be expected 

to resist. Furthermore, these forces are much less than found in a normal electrical 

machine and less still than those present in the VHM. It is noteworthy that the radial 

forces are a maximum at the position where the tubular machine produces no axial force 

and hence does no useful work. When used as a generator, any current control strategy 

would likely have zero or little current flowing at this point, reducing the forces still 

further. 

The resultant radial force on the translator will be zero as the system is symmetrical. 

In the event of a deviation from the central position a small net force will be reacted to it 

and so some form of lubrication is required. In this case the system is no longer 
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axisymetric and so the calculation of flux paths and resultant forces becomes three 

dimensional, thus putting it outside the scope of the modelling presented here. 

5.8.4 Use in Marine Energy Converters 

The tubular machine, although having a low shear stress compared to the VHM, is 

suitable for direct drive marine energy converter power take off as its high power factor 

simplifies the electronics required for power conversion. Physically it requires very 

little structural support due to low radial forces and is ideally suited to the marine 

environment as a consequence of having the smooth cylindrical cross section preferred 

by conventional lubrication, protection and sealing methods. 

5.9 Conclusion 

This Chapter has investigated the behaviour of a prototype of the air-cored tubular 

machine and compared it to that predicted by FEA and a simplified magnetic circuit 

analysis. The peak shear stress of the machine was 41 kN/m2 and the power factor was 

almost unity. 
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Chapter 

6 

Mechanical Integration 

I~ the ~revious two Chapters the elec~cal aspects of linear generators have been 

mvestigated and models developed which are capable of predicting the behaviour 

of large machines. In this Chapter, the physical issues involved in integrating these 

machines into Marine Energy Converters (MECs) are explored. The aim of this 

Chapter is to help bridge the gap between laboratory 'dry run' prototypes and large­

scale generators suitable for use in the marine environment. Some issues, such as 

corrosion, are equally applicable to both topologies of generator and dealt with together. 

The significant structural differences mean that much of this chapter is split into two 

sections: one for each generator investigated. 

A detailed mechanical design is outside the scope of this thesis. The unique nature 

of using electrical generators in the marine environment, combined with linear 

generators being quite uncommon and design work being application specific, enforces 

the work presented here to be general and simplified. Emphasis has been on 

development of the topology of the electrical machines, with the mechanical design 

almost constituting a separate research programme. As such, some topics are basic 

observations, with other aspects covered in great detail. More work has been carried out 

on the VHM structure as the higher forces involved make it more critical to the 

topology performance as a whole. 

6.1 General Considerations 

Included in the design of electrical machine must be provision for survivability in 

large amplitude waves. In a hydraulic system this necessarily involves the use of an end 

stop device which will -apply an extra force to the ram and prevent it from extending 

further than intended. With electrical power take off the same method can be utilised. 

However, in order to prevent possible damage to the MEC resulting from large forces 

applied by end stops, some forms of linear generator integration presented in this 

Chapter leave scope for alternative strategies. Unlike a hydraulic system, no permanent 
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damage will occur to a direct drive linear power take off sy t 'f 't ' b' ed s em IllS su ~ect to 
oversized amplitude oscillation. 

The generators need to be designed for long life in the marine environment. Based 

on the wave data used in Chapter 2, section 2,6.2 and reference [57], the actual surface 

of the sea can be expected to move in the region of 10 x 10 6 m or 10 000 km per year, 

Any design work should enable the device to operate over at least this distance 

uninterrupted, preferably many times greater, 

6.2 Sealing 

In order to operate a conventional dry electric machine in a marine environment 

where one part is moving relative to another necessarily requires the use of moving 

seals to protect the power conversion system from corrosion. A moving contact will 

wear over time and requires regular monitoring, maintenance or replacement. The 

dynamic performance of present day seal technology is limited. It was considered as one 

of the issues requiring further R&D highlighted in the Ove Arup report [3]. 

Consideration of this aspect is therefore vital to the integration of linear generators into 

the marine environment, particularly as it is an area which limits the speed and lifetime 

of hydraulic systems. 

The alternative approach would be to avoid the use of a tight seal and allow some 

leakage into the generator, meaning the device would be run flooded. Any sealing 

mechanism would now only be required to prevent debris from entering and fouling the 

generator. Several issues must be considered in association with this idea. Having 

water in direct contact with the coils would provide improved cooling, allowing them to 

be run at a higher current and effectively increasing the shear stress of a given machine 

size. Equation (4.7) was used in Chapter 4 to describe the convection cooling of a 

VHM coil. The heat transfer coefficient for free convection can be expected to rise 

modestly when water replaces air as the cooling medium. With forced convection, 

however, the value can be several orders of magnitude greater when substituting water 

for air, e.g. [73]. Furthermore, a flooded machine can employ liquid lubrication, 

whereby pressurised sea water is used to maintain the required translator position . 

without any direct contact between the moving surfaces. A maintenance free low 

friction method of lubrication with a theoretical infInite life is obtainable in this manner. 

Fluid bearings using oil have been used for many years in machine tools, where high 

precision and the ability to support large forces are required. The period of zero 

velocity necessary for reciprocating motion combined with the need for the bearing 
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surfaces to be parallel necessitates an external pressure source, i.e. a pump, for the use 

of fluid lubrication and hence hydrostatic, not hydrodynamic, lubrication must be 

considered. 

6.3 Solid Bearings 

6.3.1 Sliding Interface 

The most basic type of bearing is a plain sliding bearing as it contains no extra 

moving parts, instead relying on solid to solid contact. Failure of this configuration of 

lubrication is non catastrophic, with a gradual wearing over time. 

A sensible configuration would have one of the two surfaces, the part which is easier 

to replace, being made of a softer material and hence designed to wear faster. Using a 

set of soft replaceable pads mounted on the stator supporting the rotor, this system could 

be designed for annual replacement. 

Oil impregnated self lubricating chemically inert plastics are available for dry 

applications. The wiping action cleans the shaft of soft particles, whilst harder particles 

become embedded in the liner, eliminating shaft damage. 

FrelonF vs. FrelonGOLD Linear Wear Tesl -+- FrelonF 
-+- FrelonGOLD 

Figure 6.1: Manufacturen data on wear rate of solid contact bearings (83) 

Figure 6.1 shows the results of a wear test on two commercially available solid 

contact bearings, carried out over 1050 hours (43 days) and a distance of 105 840000 

inches (2 600 km) [83]. The corresponding wear for the two materials is 0.0055 and 

0.001 inches (0.14 and 0.025 mm). If the wear rate were linear then it could be assumed 

that it is possible to manufacture a bearing capable of travelling 10 000 km with a wear 

of just 0.1 mm. 
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Examining the least worn of the two, which is designed for use with hardened steel 

shafting and ceramic coated shafting, the maximum speed for intermittent load is given 

as 4.2 mls, whereas the load capacity can be equal to a maximum pressure of 200 bar 

[83]. 

These chemically inert linings could clearly be suitable for use in this application, 

although some communication would be required with the manufacturer as to the effect 

of being permanently submerged in saline solution during their life time. They 

necessarily enforce regular maintenance of the device, but it appears to be possible to 

limit this to annually. 

6.3.2 Rolling Contact 

Figure 6.2 RoUer bearing with return path 

The most common sort of bearing used in industry is the ball bearing. They are 

typically mounted in a track concentric to that of the shaft they are supporting and 

follow the same rotary path. In a linear machine this would require either a return path 

to be provided, shown in Figure 6.2, or seriously reduce the amplitude of oscillation 

allow~ which is unlikely to be acceptable in this application. 

Stud bearings, whereby a set of roller bearings is used to make a wheel and track 

type arrangement, are used widely in industry for heavy duty applications. Figure 6.3 

shows a typical configuration with a flat contact surface. 'V' shape surfaces can be 

used up to a speed of 5 ms-I if axial forces are present [84]. 

Track rollers can, theoretically, be designed for a life of 106 
km if they are well 

lubricated and the load factor is kept very low, i.e. the expected load on each bearing is 

less than 10% of its rated maximum [84]. Totally unlubricated bearings, however will 

have a life time of the order of 104 
km. 
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Figure 6.3: Stud bearing 

A well designed track bearing can take the loads speeds and annual distances 

associated with this type of application if proper provision for lubrication is made. 

Rolling contact bearings, however, can suffer from catastrophic instant failure. It is 

customary to rate rolling elements in terms of total distance and average (L-50) and 

minimum (L-I0) life. The former of these is the life that can be expected from 50% of 

the bearings whereas the latter is the minimum life expected from 90% of samples. The 

implication is that 10 % will not reach minimum life expectancy and could theoretically 

fail well anytime after installation. 

6.4 Corrosion 

Corrosion for the generator, as with the entire device, is an acute problem for marine 

energy converters. Each part of a device will either be constantly submerged, above sea 

level, or periodically submerged, the latter of which will suffer the most. 

There is great opportunity for technology transfer from the oil and gas industries, 

both of which have experience in the manufacture of long lasting offshore structures. 

Selection of materials that have well understood behaviour in the offshore environment, 

for example steel and concrete, will simplify protection strategies. However, the two 

generators considered here contain two slightly more exotic materials: copper and Nd­

Fe-B. The machine may hence be considered either as a whole, or with an alternative 

strategy for each component. 

When two different metals are in electrical contact, the less noble of the two corrodes 

more than if they were isolated. This paves the way for attaching sacrificial 

components, anodes, to the outer surface of the generator, which would have to be 

periodically replenished but provide constant protection to the entire device. 
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The rare earth magnetic material is likely to suffer the most from corrosion due to its 

strongly negative electrochemical potential The standard to c-
o •• • coa mg lor Nd-Fe-B magnets 

IS zmc based, which was thought to be suitable. Fundamental tests conducted prove this 

not to be the case, Figure 6.4. 

A B c 
Figure 6.4: Standard coating (or magnets (A) new, (B) after 6 weeks and (C) 2 years submersion 

in seawater. 

The supply industry claims to offer suitable corrosion protection in the form of 

electro-painting, whereby a l5J.UIllayer is applied to the material, giving it salt solution 

resistance up to 130°C[85], Figure 6.5B(i). Alternatively a 5J.UIl aluminium yellow 

chromate coating may be applied, Figure 6.5A(i). Again fundamental tests 

demonstrated these coatings to be unsuitable, Figure 6.5A&B(ii). 

Figure 6.5: Alternative coatings (or magnets, (i) as new, (ii) after 2 years submerged in seawater 

Ceramic coatings are used by the hydraulics industry and have a proven reputation in 

the marine environment. For example, a 300J.Lm layer of the commercial material 

Ceramax [86] would effectively seal the device from the surrounding environment. 

This material, on the market for over 10 years as a coating for offshore cylinder rods 

[87], is very hard (1000 Vickers) thus durable and abrasion proof. It is a non 

conducting inert material and at this thickness could be used to coat even the small 

airgap of the electrical machine. Unfortunately, there are concerns about its application 

to non-smooth surfaces [88] questioning its suitability for use on the VHM translator. 
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For the coils, insulation breakdown in a flooded. . 
enVIronment IS clearly a problem 

and may need separate investigation. 

Figure 6.6: Coal Tar epoxy 6 weeks after submersion 

Coal tar epoxy is used throughout the marine industry to protect large steel 

structures, such as docking gates. A small VHM stator coil was coated and submerged 

in seawater to investigate its behaviour for this application. 

Figure 6.7: Coal Tar epoxy coating of magnets after 2 years submersion 

Figure 6.6 shows sections of the stator shortly after it was submerged. The coils and 

surrounding cloth-tape were not covered as the tar does not adhere to a non-rigid 

surface. In Figure 6.6A, brown deposits can be seen covering the outside of the tar 

layer. This is likely to be deposits from the unprotected coils and magnet shown at the 

top of the picture. A close up of the magnet region in Figure 6.6B, however, shows 

significant corrosion. After two years submersion the corrosion in this area predictably 

deteriorated, Figure 6.7 A, and the coating could be removed from the magnets with soft 
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abrasion Figure 6.7B. Furthermore, after this period most parts of the stator suffered 

slight corrosion Figure 6.8. 

Figure 6.8: Coal tar epoxy coating of steel section after2 years submersion 

From these brief experiments of general observation, it is concluded that there is 

scope for more research into corrosion protection for all aspects of the generator design. 

Suggested coatings appear to be ineffective, whereas application of ceramic coatings is 

said to be troublesome. The issue is unresolved. 

6.5 VHM 

6.5.1 Introduction 

For the VHM a non standard structure is required, capable of reacting against the 

high magnetic forces which, although varying with position, are always attractive. 

Due to the rapid change of flux within the VHM, the main body of both the stator 

and the translator must be made of laminated steel, in order to minimise the formation 

of eddy currents. The support structure must compensate for the resulting weakness, 

particularly as the machine is likely to be quite large in a direction perpendicular to the 

plane of the laminations. 

Figure 6.9 shows the VHM viewed along the axis of motion, so the translator moves 

in and out of the plain of the paper, with the simplified magnetic and structural forces 

included. In Figure 6.9A the translator is in the correct position: exactly in the middle 

of the two stator halves. The forces on the translator are equal and opposite, thus 

cancelling out, whereas the support structure still has to react against the closing force 
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of the airgap. In Figure 6.9B, the translator has moved slightly upwards, giving a 

smaller airgap and hence bigger attraction to the upper stator compared to that of the 

lower half. The net force difference must be provided by the translator support, shown 

here as a set of bearings, in order to prevent the airgap closing. 

A B 
stator 

stator stator 

• magnetic 
.. forces 

n structure 
V forces 

lubrication 
... forces 

Figure 6.9: Forces on VHM. (A), with translator in centre & (B). with uneven airgap 

6.5.2 Sealing 

The sealing of the VHM translator is troublesome because of its toothed cross 

section. In order to use a conventional contact seal it is necessary to have a uniform 

cross section, which could be achieved by encasing the translator in a magnetically inert 

material as shown in Figure 6.10. The rotor slots would be filled to the same height as 

the teeth thus providing a flat surface for the seal to contact against, without influencing 

the overall magnetic properties. 

, filler 

Figure 6.10: Filling the translator slots 

As drawn, the translator has a rectangular cross section with sharp edges, still 

representing problems in terms of sealing. It may be possible to avoid this by giving the 

outer surface of the fill material a smooth profile. A ceramic material would have the 

correct magnetic properties whilst being sufficiently hard and smooth to be used as a 

sealing surface. In this configuration, there is scope for flexibility with the endstops as 
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large amplitude oscillation will break the seal of the stator case, but should not 

pennanently damage the machine itself. 

To avoid the use of a filler material, and utilise traditional cylindrical seals like those 

used in a hydraulic ram, it is necessary to transfer the motion of the translator to a 

cylindrical shaft. The electrical machine would need mounting in an oversized chamber 

which extended to the extremities of the motion, as shown in Figure 6.11. 

. Figure 6.11: Cylindrical sealing for the VHM 

An inherent feature of this design is the need for stringent endstops, as allowing the 

translator to extend too far would likely cause catastrophic damage to the outer case. 

Furthermore, the size of the entire stator must now be equal to that of the active area 

plus the maximum permissible amplitude. One possibility is that the entire air filled 

chamber incorporating the stator could be used to house the power electronic equipment 

necessary for VHM machines. Alternatively it could just be used for buoyancy and help 

offset the likely weight penalty of using direct drive. 

6.5.3 Hydrostatic Lubrication 

6.S.3.1 Introduction 

Load relationships of a two dimensional hydrostatic bearing are given in (6.1), 

showing its dependence on viscosity and land clearance. 

J£J. J£J.2 
Wa-

3
; H pa-

3 
(6.1) 

H H 

Where W = load capacity of bearing 

J.I = viscosity (kglm/s) 

Q = flow rate (m3/s) 

H = clearance (m) 
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The use of sea water as the working fluid, with a viscosity much lower than that of 

nonnal lubricating oils, results in either the need for smaller land clearances or higher 

flow rates 'to achieve these high forces. It is hence necessary to develop expressions for 

the load capacity of the bearings, furthennore, the use of 3 dimensional analysis is 

required. This section details the logical process of hydrostatic bearing selection and 

explains simplifications and assumptions used as the basis for the final results. 

Although some bearings can be optimised for a general case, it is illuminating to design 

the bearing for a particular VHM, allowing numerical examples to compare topologies. 

A VHM capable of producing 100 kW at a speed of 1 mls is used, consisting of 3 

single phase modules. Each of the 4 poles making up a module would have 12 X 12 

mm wide magnets with an axial depth of 1 m. One set of poles was modelled using 

FEA. 

With the maximum rated current of 15 Amps flowing in the 240 turn coils, the model 

was run with the translator at various levels between the two fixed stator poles in order 

to calculate the resultant forces acting on it. The maximum axial force reacted was 18 

kN for one pair of pole faces, implying 36 kN per module and a total of 108 kN for the 

3 phases. The corresponding gap closure force between the translator and one side of 

the stator was 36 kN per face at the design airgap of Imm, rising to 54 kN if the 

translator was allowed to deviate to within 0.05 mm of the translator. 

When the translator sits in the mid point of the two stators there is no net force on it 

and hence no criteria with which to design a lubrication system. A small deviation from 

the midpoint, however, results in a large net force. The magnetic stiffness may hence be 

used. If the bearing system has a higher stiffness than the magnetic system, the 

implication is that for a given deviation from the midpoint of the airgap, the bearing 

forces will dominate and the translator will be centred. The stiffness at either side of the 

design clearance was calculated to be almost 25 MN/m, resulting in a 5kN force 

imbalance with a 0.2 mm deviation from the design clearance. 

6.5.3.2 Flow assumptions 

Much of the work in this section is based on laminar flow and hence relies on the 

Reynolds' number, Re, as given by (6.2), being sufficiently low, typically taken as less 

than 2000 [89]. Re =.£. VB 
f.J 

Where p = 

= 

(6.2) 

density (kg/m3
) 

average velocity (m/s) 
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Assuming the flow and dimensions of Figure 6.12, where the fluid flow lines are 

parallel and there is no leakage through the corners, the velocity of a fluid can be 

calculated for a particular square bearing and sub t'tuted . th . 
S 1 mto e Reynolds' equation, 

giving (6.3). 
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Figure 6.12: View from below bearing, showing assumed flow of fluid and dimensions 

Where w 

L 

x 

6.5.3.3 Regulation 

R = Qp 
e 2(w+ L),u 

= 

= 

recess width (m) 

recess length (m) 

land width (m) 

(6.3) 

For a hydrostatic pad to work, there needs to be some sort of control over the fluid 

flow through it. If the bearing deviates from its design clearance, for example if the gap 

reduced, the pressure within the bearing recess needs to be increased in order to apply a 

greater force to the bearing and attempt to recover the design clearance. Figure 6.13 

shows three possible configurations to achieve this of increasing mechanical complexity 

and effectiveness. In each one, the position of the translator is deduced from the recess 

pressure, which varies with bearing clearance. 

In Figure 6.l3A the pads are fed from a constant supply source through a fixed 

restrictor, typically a capillary or an orifice. The pressure drop across the restrictor 

allows for a variation in bearing recess pressure to compensate for deviation from the 

design condition. In Figure 6.13B the restrictors are variable, for example constant flow 

valves, which gives improved stiflhess to the bearings. The ultimate system is given in 

Fi~e 6.13C, where each recess is fed from a separate constant flow pump, which, 
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assuming incompressible fluid, guarantees a fixed land "dth Cl I th" " Wl . ear y e mcreasmg 

effectiveness comes at the cost of increasing mecham" al I" c comp eXlty. 

A B c 

,-.c...=:::;;:;.."".-,--====-- PI 
~~ ___ I 

+h 
,",-,--~~~e::.......'1 t 

Figure 6.13: Flow control options 

6.5.3.4 Stiffness of opposed pads 

The load capacity, F, of a single rectangular pad hydrostatic bearing is a combination 

of that provided by the recess chamber and the bearing land. It is given by (6.4). 

Where 

P 
F = PRwL+(w+L)x-.!i2 = PR(wL+ wx+Lx) 

2 

= recess pressure (Pa) 

(6.4) 

Assuming laminar flow, the pressure drop across a flow between two parallel plates, 

of length LpP' may be expressed by (6.5). 

Where PI &P2 

PI>P2 

R - P. = ( 12,ut JQ (6.5) 
I 2 H3 L pp 

= pressures (Pa) 

If the exit pressure, P2, is the surrounding pressure, and PI is given as the relative 

pressure in the recess, from here on defined simply as PR. then the hydraulic resistance, 

Rt" of the rectangular pad may be defined by (6.6). 

PR 6,ut 
Rb =-0 = (w+L)H 3 

(6.6) 

Again, this is based on the assumption that the flow is as shown in Figure 6.12 and 

the corners are hence ignored. 

Considering Figure 6.14, the diagram of an equivalent circuit comprising of a single 

pad bearing and a restrictor, the recess pressure, PR, can be expressed as a function of 

the two hydraulic resistances and Ps, the supply pressure.(6.7) 
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(6.7) 

restrictor resistance (palm3) 

Figure 6.14: Equivalent circuit for a single pad 

For maximum stiffness of a bearing operating at the intended clearance, PR should 

equal half Ps. This is analogous to the maximum power transfer theory in electrical 

engineering, which states that internal and external resistances should be equal for 

maximum power transfer. 

The resistance of the bearing, Rt" must therefore be equal to the restrictor resistance 

RR at the design clearance. Defining this value at the reference pressure, Roo. allows the 

value of the bearing resistance to be expressed non dimensionally, (6.8): 

• Rb 
R b =-

RbO 
(6.8) 

Equation (6.7) may now be expressed as below, (6.9). 

R~ 
PR =Ps-.-

Rb +1 
(6.9) 

Consider now the set of opposed pads shown in Figure 6.15, in which the translator 

has been offset by h. 

o 
L-I ==~r_C:;===~I:::;WH_h 

h ,+w 1- I '" 
'-----1L-. ====;--;::====:;::;-!,H+h 

L-r-__ L,--I L-,-J_--:::::-,' '" 
o 

Figure 6.15: Opposed pads given a small displacement, b, from tbe design clearance, H 

The reference resistance of the system is now given by (6. to}. 
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(6.10) 

The absolute hydraulic resistance of pad 1, and its non dimensional equivalent are 

given in( 6.11) and (6.12) respectively. Similar relationships exist for pad 2. 

Rb\ = 6J.lX 
(w+ L)(H _ h)3 (6.11) 

I H3 
Rb\ = -(H---h)-3 (6.12) 

Combining equations (6.4) to (6.12) and considering the resultant force on the pair of 

opposed pads when given the small displacement h shown in Figure 6.15 gives the net 

downward force as: 

{ 
H3 H3} 

Fnel = Ps(wL + wx + Lx) 3 3 3 3 
H +(H -h) H +(H +h) 

(6.13) 

Remembering that the stiffness is defined as the derivative of force with respect to 

displacement, and setting h to zero, allows the stiffness of the opposed bearings at the 

design clearance to be expressed, (6.14). 

3 1 
ko =-Ps(wL+wx+Lx)- (6.14) 

2 H 

Where = stiffness of opposed pads at design clearance (N/m) 

6.5.3.5 Pumping Power of Opposed Pads 

The power required to pump fluid around a hydraulic circuit may be expressed as 

(6.15). 

Where = 

p2 
H =_S_ 

P Rtot 

pumping power (y/) 

(6.15) 

Rrot = total resistance of hydraulic circuit 

At the design clearance the total power for the opposed pad bearing system, 

represented by the hydraulic circuit shown in Figure 6.16, can be expressed as (6.16), 

incorporating four resistances defined by (6.10). 
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Restrictor 
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bearing 
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Figure 6.16: Equivalent circuit (or opposed pad bearings 

H = P/(w+L)H3 

p 6J.Lt (6.16) 

Using a combination of (6.14) to (6.16), it is possible to express the pumping power 

required for a given set of opposed pads solely as a function of its dimensions and the 

required stiffness. 

H _ 2 k0
2H5(w+L) 

p - 27 J.Lt(wL + wx + Lx}2 
(6.17) 

6.5.3.6 Optimisation for stiffness 

The size of the pads is made dimensionless by using the substitutions given in (6.18), 

thus allowing the power to be expressed in a dimensionless manner, (6.19). 

Lx , Hp 
L'=-;x'=-;Hp =--

w w Hpo 
(6.18) 

(6.19) 

Where HPO is the reference power, defined as that dissipated when L' and x' are equal 

to unity. 

The graph of Figure 6.17 uses (6.19) and shows the relative pumping power required 

by bearings of different aspect ratios to achieve any equal stiffuess. The width, w, of 

the bearing recess is the dimension which dictates the size of bearing. 
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Figure 6.17: Dimensionless graph of relative pumping power verses relative pad size for any 

given stiffness 

The total clearance, H, is assumed constant and is hence not a variable. From this it 

is clearly desirable to make L', the ratio oflength to width of the bearing recess, and x', 

the ratio of land width to recess width, as large as possible in order to reduce power 

consumption. Physically this means that an increase in either the recess length or the 

land width reduces the pumping power required to obtain a specific stiffuess. This 

simplified analysis hence implies that larger bearings are more desirable. 

6.S.3.7 Friction Power 

The frictional force of the bearing, i.e. the force required by the moving member to 

overcome the internal shear forces of the lubricant, acts in three distinct areas. These 

correspond to the two pairs of bearing lands, perpendicular and parallel to the plain of 

motion, and the bearing recess. 

It is customary to ignore the power dissipated by shearing in the recess part of the 

pads when operated at low speeds. The friction force is hence approximated to that 

occurring over the bearing lands only, as given by (6.20). 
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Hr 

v 

= 

= 
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Hr -Fr xv 

J.lVA 
=--xv 

H 
J.lV2 

=H(L+w)2x 

friction force (N) 

friction power (W) 

velocity (mls) 

(6.20) 

A = area of two parallel surfaces (m2) 

Equation (6.20), contrary to that found in the stiffness section, 6.5.3.6, implies that a 

bearing with a short length, short land width and large value of clearance is a more 

desirable design for low power dissipation. 

6.S.3.8 Total Power 

Minimum Power 

As a result of the two conflicting conditions outlined in the preceding sections, it is 

necessary to consider the total power dissipated by a given bearing. As the frictional 

power is dependent on the velocity of the bearing, whereas the pumping power is not, in 

order to allow a dimensionless comparison it is necessary to put some actual values into 

both equations. The values used are given in Table 6-1, where the stiffness is half that 

of the VHM because there will be one bearing on each side of the translator. 

Table 6-1: Values used for total power comparison 

Velocity v -0.5 mls 
Dynamic viscosity J.1 0.0015 kglms 
Stiffness at equilibrium ko 12.5 xl06 N/m 
position 

Using these values, it is still pOSSIble to obtam the dimenslOnless value oftotal 

power, by dividing the calculated value of actual power by HtO, the power dissipated 

when L' and H' are equal to unity. The actual and dimensionless total power are given 

in (6.21)and (6.22) respectively, with definitions given in (6.23). 

H _ 0.75 x 10-3 x(L+x)x2(wL+wx+Lx)2 +7.72xI0
15 

xH6(w+L) (6.21) 
t - Hx(wL+wx+Lxf 

H '­t -
.75 x 10-3 x (L'+w'Xw'L'+w'+L')2 + 7.72 x 1015 x H,6 (w'+L') 

1.71 x 1015 x H'(w'L'+w'+L,)2 
(6.22) 
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. H L 
H '--·L'- ·w· '- w. A w - , --, --, =-

x x x L (6.23) 

Inspection of the order of magnitude of the two parts of the numerator of equation 

(6.22) can be used to describe the behaviour of the bearing. The left hand tenn, which 

corresponds to the friction power, will be negligible unless either the clearance H' is 

very small, or L' is very large. At all other values, the right hand term, corresponding to 

he pumping power, will dominate. 

The power dissipated by friction is therefore ignored in further analysis as it has been 

demonstrated to be negligible when compared with pumping power at realistic bearing 

dimensions. 

6.5.3.9 Opposed Pads for 100 kW device 

Ignoring the friction losses in the bearing allows the conclusions of the stiffness 

section, 6.5.3.6, to again be employed. It was stated there that the bearing should be 

large. The size of the bearings will be limited by the electrical machine design, in 

which case it is necessary to consider specific examples. In keeping with the concept of 

a modular VHM, i.e. one where the machine is essentially made up of independent 

phases the number of which dictates the overall power of the machine, the bearings may 

be designed such that there will be one pair of opposed pads for each pole. It will be 

assumed that one pad will run along the entire length of a stator pole. 

Using the VHM outlined in 6.5.3.1 above, the total length of the bearing, consisting 

of recess and perpendicular lands, can therefore be up to 0.144 m. The total width of 

the bearing has no real constraint, and so is arbitrarily confined to 10% of that of the 

translator, i.e. 0.1 m, giving (6.24). 

O.1-w 
X= 

2 ( 6.24) 

L = 0.144 - 2x = 0.044 + w 

The pumping power for these bearings, calculated using (6.17), is given in Figure 

6.18. The values shown must be multiplied by 12 for the entire 100 kW machine, as the 

machine comprises of three modules, with two pole pairs per module and a bearing on 

each side of the stator. 

180 



N. J. Baker Chapter 6: Mechanical Integration 
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Figure 6.18: Pumping power for bearings designed for 100kW machine 

At any design clearance, H, there is a value of width, w, which gives a minimum 

pumping power. This value of w is constant irrespective of the value of H and equal to 

0.0427 m. The pumping power becomes very large as the land width and recess width 

become very large, tending towards 2 MW, clearly unsuitable for use as the lubrication 

system for a 100 kW generator. The limit of the validity of these equations must be 

remembered, which assumes laminar flow. Figure 6.19 shows the Reynolds' number, 

from (6.3), plotted against its accepted limit for laminar flow, 2000. 

At any point above the 2000 mark, the flow must be assumed to be turbulent and the 

equations governing its flow become invalid. In order to maintain laminar flow it is 

necessary to limit the value of design clearance, H, for a given value of recess width, w. 

The equation of the upper limit is given in (6.25), derived by equating the Reynolds' 

number, (6.3), to the flow through one bearing and restrictor (obtained from (6.14) and 

(6.16». 
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Figure 6.19: Reynolds' number for flow out of bearing compared with 2000, maximum to 

ensure laminar flow 

(6.25) 

The maximum allowable clearance for condition of minimum power dissipation is 

obtained by substituting the value of 0.0427 into Equation (6.25), which yields 0.23 

mm. The minimum value of pumping power for clearance values up to and including 

this value can be satisfactorily used to design a bearing using the assumption of laminar 

flow. 

This methodology of finding the dimensions of minimum power dissipating recess 

width for a given external bearing dimension and then using Equation (6.25) to find the 

maximum allowable clearance, can equally be applied to any external dimension. 

The external bearing length, Lex in Figure 6.2, is chosen as half, equal to and double 

the 0.144 m VHM face width. The external width of bearing is then altered between a 

square and a rectangle of aspect ratio 10. 

Figure 6.20 shows the pumping power and maximum clearance permitted for this 

range of bearings and demonstrates that by enlarging the external size of the bearings, 

the tolerance on the clearance can be relaxed and the overall pumping power required to 

achieve the desired stiffuess is reduced. For a square bearing of total length 0.288 m, 

for example, it is possible to construct a bearing that can have a design clearance of 

almost 0.45 mm and requires around 4 kW. Unfortunately this bearing adds 60% onto 
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the width of the machine and is twice the length of one pole. A more realistic size 

bearing, which requires 5 kW, is a square bearing of external width 0.0728 m and can 

have a clearance up to 0.15 mm with a required input pressure of 5 bar. The 

corresponding internal dimensions for all possible bearings are given in Figure 6.21. 
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Figure 6.20: Minimum pumping power and maximum clearance of large bearings 
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Concluding remarks 

The behaviour of opposed pad bearings has been investigated using simple laminar 

fluid flow theory. The concept of hydrostatic lubrication and the need for flow 

regulation was introduced and used to derive a simple expression for the stiffuess of a 

pair of opposed pads. Dimensionless optimisation techniques were then developed to 

explore the behaviour of aspect ratio and bearing size. The power dissipated by friction 

was deemed negligible compared with the pumping power. For particular external 

bearing dimensions, it was found that an optimum value existed for the recess 

dimensions that implied minimum power dissipation. This value was used, in 

combination with an upper limit on the design clearance that ensured laminar flow, to 

design sets of bearings capable of supporting the translator of a 100 kW VHM. A 

0.0728 m external dimension square 5 kW bearing was proposed, which required a 

clearance of 0.15 mm and supply pressure of 5 bar. 

6.5.3.10 Self-Regulating Bearings 

Introduction 

The hydrostatic bearings introduced above require flow regulation between the 

pressure source and the actual bearing. This source of hydraulic resistance is necessary 

to regulate the recess pressure in response to loads applied to the bearing. By its very 

nature, then, there must be a pressure drop across it and hence power loss within it. In 

self regulating bearings, the design of the bearings is such that there is no need for this 

added resistance and so there is a potential for increased efficiency. 

Principle of operation 

It is crucial that the overall hydraulic resistance of a self regulating bearing remains 

constant regardless of the position of the land being supported, thus ensuring a constant 

flow rate. 

Consider the rotating shaft of Figure 6.22. The fluid enters from the right and is split 

into two equal resistance paths. It is clear that these resistance paths will be equal 

regardless of the position of the shaft, due to the opposing sets of identical lands. If the 

input pressure remains constant, then so too does the pressure dropped across the 

bearing as a whole. The pressure diagram of Figure 6.23 shows the pressure 

distribution, and hence force distribution, for a small upwards displacement. 
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Figure 6.22: Self regulating bearing, flow path 

upper 

pressure 
distribution 

j.4~ 

lower 
chamber 

Figure 6.23: Self regulating bearing, pressure distribution 

The upper chamber is at a greater pressure than the lower, and hence there is a net 

force downwards, opposing the initial force required for the displacement. As the total 

hydraulic resistance has not been altered, the lubricant supply source, and hence any 

other bearings connected to it, remains unaltered by this displacement. 

The principle of self regulation is applicable to linear, as well as rotary, slideways. 

It has been proposed, by Bassani and Piccigallo [90], that the system shown in Figure 

6.24 could be used as a hydrostatic slideway, which would be independently self 

regulating in two perpendicular directions. 
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Figure 6.24: Self regulating opposed pad hydrostatic slideway 

Two dimensional flow 

For the case where axial flow can be ignored, and the flow is purely two dimensional 

as shown in Figure 6.24, Bassani and Piccigallo have presented a very extensive 

theoretical analysis linking the parameters of the bearing together. For example, (6.26) 

links the vertical stiffuess of the arrangement to the geometry and flow rate. 

(6.26) 

Where B\ & B2 are pad sizes in orthogonal directions 

In order to achieve two dimensional flow, Bassani and Piccigallo suggested the 

use of lateral seals. Referring to the logic behind the use of hydrostatic bearings in 

wave energy devices, it is clear that if lateral seals are to be used, then the advantage of 

their use, i.e. near infinite life, would be seriously diminished. The only way to 

investigate the bearing with unsealed ends would be to consider the case of an infinite, 

or near infinite length bearing. It is conceivable that this would leave the end effects as 

negligible in the overall bearing behaviour. 

Figure 6.25: End effects of hydrostatic slide way 

Experimental work by the author demonstrated that three dimensional affects were 

both apparent and significant in the case of a long bearing and it was evidently not 
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acceptable to claim that end effects would be m' sl'gru'ficant e' . h th , ven m scenanos w ere e 

bearing axial length was long compared with its land width, Figure 6.25. 

The testrig presented here was built with the intention of verifying a two dimensional 

stiffness fonnula presented by Bassani and Piccigallo [90]. The clearances were set to 

the minimum achievable tolerance in the workshop. When connected to mains water 

pressure almost all the flow was leakage flow through the end plates, with a very small 

flow rate emerging through the intended upper clearance. Increasing the flow rate was 

technically possible, but would have clearly resulted in a very power intensive bearing. 

For continued investigation of self regulating hydrostatic bearings, therefore, it is 

necessary to consider flow in three dimensions and investigate alternative end 

configurations. 

Concluding remarks 

Self regulating bearings have the theoretical advantage of removing the power loss 

associated with flow restrictors required by other hydrostatic bearings. Although their 

use in three dimensions has been documented, to achieve this requires the use of lateral 

seals. Initial simple three dimensional analysis, not presented here, revealed that the 

true flow pattern through a self regulating bearing is too complex to be adequately 

accounted for using the intuitive simplifications suitable for opposed pad bearings. To 

design a true self regulating bearing with constant hydraulic resistance would require 

three dimensional fluid analysis, possibly using an FEA program such as FLUENT [91]. 

Verification would involve measuring a variety of pressures and flows, constituting an 

almost independent research project from the body of this thesis. 

6.5.3.11 Conclusions 

The concept of hydrostatic lubrication using sea water as the medium to withstand 

the high airgap closing forces of a 100 kW VHM has been investigated. Using an 

. assumption of laminar flow, a relationship between pad size and required stiffness was 

derived for a set of opposed bearings. The most satisfactory design, which dissipated 5 

kW of pumping power, required a bearing clearance of 0.15 mm, which may cause 

manufacturing problems. If the analysis were extended to turbulent flow, i.e. one where 

all the load was taken by the bearing recesses and not by the bearing lands, smaller 

bearings or bearings with greater land clearances would probably be possible. 

Further work would be desirable into turbulent flow bearings and possibly more 

detailed analysis of self regulating bearings. 
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6.5.4 Support Structure 

The VHM has stringent demands for ~ts structure, due to the high attractive magnetic 

forces present, the need to maintain a small airgap and the necessity of the steel sections 

to be laminated. The main body of the VHM thus consists of laser cut 1 mm thick steel 

sheets bound together. Figure 6.26 shows the relationship between manufacturing 

tolerance levels and lamination thickness, demonstrating the desire for sheets of less 

than 3 mm thickness. . 

0.3 .------.---. .---~ 

0.25 t----t----I-----.! 

i .5. 0.2 +-----t----

-; 
~ 0.15+---

! -6 0.1 -
0.05 
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material thickness 

Figure 6.26: Lamination tolerances 192] 

A wide machine, one which is large in a plane perpendicular to its rotor motion, 

results in a magnetic force acting over the stator in such a way that the system becomes 

a beam with a distributed load. The bending moment of this load will tend to separate 

the laminations of the structure, which the support structure is designed to prevent. In 

the laboratory prototype, the laminations were welded to ensure they did not splay apart 

Figure 6.27. Electrically joining the individual laminations in this manner would not be 

acceptable in a larger machine, as it allows the formation of power consuming eddy 

currents and hinders the effectiveness of the laminations. 

Figure 6.27: Welding of laboratory laminations 
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Rib 
lamination 

magnetic load 

Figure 6.28: Skeletal Structure 

The stator laminations may be supported by an external framework of fins and ribs. 

In this way the laminated structure is relieved of the bending moment, and each 

lamination only has to resist pure tensile force, Figure 6.28 shows the layout if each 

pole has its own rib. This section hence assumes that the skeletal structure has to react 

against the whole bending force, and can be designed independently of the electrical 

machine. 

The problem can be simplified to the built in beam of Figure 6.29. Equation (6.27) 

describes the maximum deflection of the centre of the beam (as derived in Appendix D) 

in terms of its dimensions. For a maximum specified deflection, the second moment of 

area I, defined in ( 6.28), can be used to determine the required cross section of beam. 

Figure 6.29: Equivalent beam for a VHM 
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Ymax =- - --b +---L-+~ 1 (W (L )4 C L3 C 2 J 
El 24 2 48 8 

Where: 

Where E = Young's Modulus (pa) 

cd3 
1=-

12 

(6.27) 

( 6.28) 

If the magnetic compressive force from each pole is transferred onto a single beam in 

pure compression, the beam will shrink by 0 m, as given in ( 6.29). 

0= FL 
EA ( 6.29) 

It is now possible to design a simplified support structure for the VHM. 

6.6 Tubular 

6.6.1 Introduction 

Integration of the tubular machine into marine energy converters is likely to be less 

problematical than for the VHM. The cylindrical translator cross-section eases sealing 

whilst the reduced forces between the translator and stator place less demands on the 

lubrication and support structures. 

Complications are likely to arise mainly from the choice of materials, which must be 

non metallic within the vicinity of the coils and non magnetic elsewhere. Plastic and 

Tufnell appear suitable for the former and aluminium, stainless steel and brass for 

general support. 

The translator is a permanently magnetised structure, which will mean it is 

susceptible to trapping metallic debris from the marine environment. Provision should 

be made for removal of such debris in combination with an investigation into likely 

quantities. 

6.6.2 Sealing 

The smooth regular cross sectional area pf the translator lends itself favourably to 

ceramic coating. The resulting structure could then be either sealed using technology 
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transfer directly from hydraulic r th . ams, or e copper coIls alone could be sealed in the 

plastic stator support structure by use of end plates. 

6.6.3 Hydrostatic bearings 

The lack of large forces in the air cored tubular machine make the demands on a 

hydrostatic lubrication system much less stringent than for the VHM. No analysis is 

presented here as two dimensional FEA has not allowed the variation of magnetic force 

with concentricity of translator to be quantified. In Chapter 5 the magnetic force 

between the translator and stator was expressed as an equivalent pressure of less than 1 

Bar. Hydrostatic pads operating at medium pressures to react a force against the 

translator would be governed by similar equations to those presented for the VHM 

above and likely require only low pumping power. 

6.6.4 Support structure 

As much of the tubular machine stator support has to be non magnetic, plastic is an 

obvious choice. This was used for the coil support in the prototype device and proved 

perfectly feasible. In this respect, the support structure is likely to be very light in 

comparison to the solid metal translator. No detailed structural work has been 

undertaken. 

6.7 Comparison of Machine Topologies 

6.7.1.1 Introduction 

When selecting an electrical machine for this application, the key criteria will be 

either the performance per kg, m3 or pound sterling. Using the relationships derived in 

previous Chapters and, for the VHM only, the lubrication system, it is possible to 

compare the two available topologies of machine for a given application. Nominally, 

the case study machine is required to extract 100 kW when travelling at Ims-
l 

with a 

current density of 1 x 106 A m-
2

• 

The cost estimate is very crude and based on the price of materials as bought for the 

prototypes. There would clearly be economies of scale associated with larger material 

orders, but the relative price between the two machines would likely remain the same. 

For example, at the time of writing, as a raw material copper is worth $1.6 US per kg, 

around a third the value used here. Furthermore, no attempt has been made to gauge the 

relative manufacturing costs, nor has any account been made for external load on 

translator. 
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6.7.1.2 VHM 

Using the six module 100 kW machine described earlier in Section 6.5.3.1, combined 

with the 0.0728 m square hydrostatic bearings recommended in section 6.5.3.9 and the 

support method of section 6.5.4, the parameters of an entire VHM can be calculated. 

The proceeding paragraphs give details of the selection and calculation of the machine 

dimensions. 

The stator back iron is equated to the height of the rib ('d' in Figure 6.29) above the 

pole face and 5 cm between pole faces where no force is felt and its only purpose is to 

carry magetic flux. A 1 cm gap is assumed between the upward support and the 

laminations, dimension 'a' in Figure 6.29, which is substituted into Equation (6.27) to 

reveal that a bar of 0.05 m width and 0.14 m height will have a maximum deflection of 

0.05 mm when subjected to a distributed load summing to the 36 kN of magnetic force 

felt by the stator. The deflection of a bar of these dimensions is hence such that the 1 

mm airgap will close to 0.95 mm in the centre of the machine. The upward support will 

have a compression of an order of magnitude below this, as calculated by (6.29) and 

thus these values are appropriate to maintain the airgap. 

The hydrostatic bearings are modelled as solid steel 2 cm high blocks, and the track 

is a 0.072 m wide 0.01 m thick steel bar clamped on each side of the translator. 

For a 2 m peak to peak stroke, the translator requires a length of 5.7 m with the other 

dimensions given in Table 6-4 below. The parameters of the resulting machine are 

given in Table 6-4 and Table 6-5. 

Table 6-3: Mass of 100 kW VlIM 

Magnets Copper Stator and Total VHM Supportllubrication Total 

translator unsupported steel 

laminations 
67 kg 780 kg 5.6 tonnes 6.4 tonnes 0.9 tonnes 7.3 tonnes 

Table 6-4: Size of 100 kW VlIM 

Stator length Stator width Stator breadth Stator volume 

1.72 m 1.2m 0.4 m 0.8 m" 
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Table 6-5: Cost of 100kw VHM 

Magnets Copper Steel Laminated steel Total 
£1800 £2100 £630 £14600 £19100 I 
6.7.1.3 Tubular machine 

For the tubular machine, no relationships have been defined for the size of the 

support and lubrication systems. The mass is likely to be dominated by the translator 

and coils, however, which have been defined. A tubular translator has been designed 

consisting of 0.2 m diameter 50 mm thickness magnets mounted alternately with steel 

pieces of the same dimensions on a stainless steel shaft of 80 mm diameter. The stator 

consists of a 4 mm thick internal support for the coils mounted concentric to the 

translator with an airgap of a I mm. The magnetic gap of the machine is hence 5 mm. 

The external support of the coil is a tube of 20 mm wall thickness and the inter-coil 

spacers are nominally set to 10 % of the copper volume. All the plastic components are 

assumed to have a density of 3600 kg/m3
• Table 6-6-Table 6-8 describe the resulting 

machine. 

Table 6-6: Mass of 100 kW tubular machine 

Magnets Copper Steel Stainless Steel Plastics Total 
1.7 tonnes 1.1 tonnes 1.6 tonnes 130 kg 240 kg 4.6 tonnes 

Table 6-7: Size of 100 kW tubular machine 

Stator height Stator diameter Stator volume 
l.4m 0.58 m O.4m,j 

Table 6-8: Cost of 100 kW tubular machine 

M~ets Copper Steel Stainless Steel Plastics Total 

£45900 £2900 £1600 £565 £170 £50200 

6.7.1.4 Comparison 

Table 6-9: Comparison of VHM and tubular machines 

Force Power 

kNlkg kN/mJ N/£ kWlkA kW/m,j £/W 

VHM 13.7 125 5.2 13.7 125 190 

Tubular 21.7 250 2 21.7 250 502 

Table 6-9 allows a direct comparison of the two lOO kW machines in· terms of 

performance. The VHM is less than half the price of the tubular machine, yet requires 

. th I h th stator The VHM machine is likely to be the heavier of twice e vo ume to ouse e . 

th hin F· 6 30 and Figure 6 31 show a comparison of the dimensions of e ~o mac es. 19ure . . 

the two machines. 
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Tubular 
Tubular VHM 

Figure 6.30: Side view comparisons of both 100 kW machines 

Figure 6.31: Rendered view of both 100 kW machines 

Whilst the conclusions regarding total mass and cost should be taken only as 

guidelines, comparison of the mass of copper and magnet material used in each 

machines is more credible. The tubular machine requires about 25 times the mass of 

magnet material and 50 % more copper. 

The total mass of the VHM is based on simplified theory of both lubrication and 

structural support to counteract the strong magnetic forces, whereas the tubular machine 
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accounts for neither. Both hin '11 mac es Wl require additional support in order to react 

force against the translator in the direction of it motion. 

6.8 Discussion 

This Chapter has investigated the physical issues associated with using two 

alternative topologies in direct drive marine energy converters. For the VHM there are 

two distinct sealing methods, either encasing the translator in magnetically inert 

material to provide a smooth cross section, or enclosing the linear machine and entire 

translator in a sealed case. The tubular translator lends itself more favourably to ' 

conventional sealing technology and ceramic protection as a consequence of its 

cylindrical cross section. Rolling and solid contact bearings exist which are capable of 

supporting linear motion over the likely annual distance travelled by marine energy 

converters, the former of which requires the device to be sealed to allow good 

lubrication. The opportunity exists for the development of hydrostatic bearings to 

support the translator in either machine, with an associated increase in maintenance 

intervals as a consequence of their non contact / zero wear characteristic. A 5 kW 

lubrication system was proposed, capable of supporting the translator of a 100 kW 

VHM, utilising a bearing clearance of 0.15 mm along the 1.7 m stator length. Self 

regulating bearings were briefly discussed by merit of their possible increase in 

efficiency, due to the lack of requirement for flow regulators. The likely three 

dimensional flow pattern implied that more detailed analysis would be necessary to 

verify their use. The tubular machine is anticipated to be less troublesome for 

hydrostatic lubrication due to the reduced magnetic forces present and increased 

translator surface area. Further work in the area of three dimensional flux pattern 

analysis is desirable in order to obtain an expression for the net force on a non-

concentric translator. 

Several corrosion strategies were investigated and subsequently discredited. 

Ceramic material Ceramax appears hopeful for the tubular machine, but currently is 

only used to coat smooth structures and so may not be suitable for the VHM. 

The two topologies of machine were compared for a rated power of 100 kW at 1 mls 

and found to be of similar dimensions. The heavier VHM appears to be cheaper than 

the tubular machine, implying that it would be more suited to a sea bed mounted device. 

A floating device, where mass and volume may be of more significance than cost is 

recommended to utilise a tubular machine. The power factor of this machine was found 

to be almost unity in Chapter 5, in stark contrast to the power electronic support 
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equipment that is necessary to realise the potential of a VHM. The cost of an active 

rectifier to achieve unity power factor for the VHM has not been accounted for. 

6.9 Conclusion 

Issues surrounding the use of linear machines in MECs have been discussed. The 

two machines have been found to be of similar overall size, with the VHM using a 

much smaller amount of magnetic material to react the same force. Furthermore, the 

tubular machine is more suited to suitable corrosion and sealing techniques, but will 

place less demands on the support structure. A simplified support and lubrication 

structure for a 100 kW VHM was presented. 
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Chapter 

7 

Proposed VHM Design ·for a 

150 kW Tidal Energy Device 
I n this Chapter a linear generator is proposed as the power take off mechanism for 

a direct drive Stingray tidal stream generator, a description and picture of which 

was given in section 1.2.2 and [42]. The dimensions and behaviour of the current 

power take off are used as the input parameters for a design study of a direct drive 

version. The Chapter is intended to demonstrate the effect of electrical machine 

location within an MEC on generator characteristics. 

The topology chosen is the VHM, as this was shown to use less magnetic material 

and develop a higher shear stress when compared to the air cored tubular machine in 

Chapter 6. 

7.1 150 kW Stingray 

In 2002 a 150 kW demonstrator device was designed, built and installed at Yell 

Sound in Shetland by the Engineering Business Ltd. The power take off mechanism 

consisted of four opposing hydraulic rams used to drive oil around a hydraulic circuit, 

via a hydraulic motor coupled to a rotary generator. It is possible to apply a variety of 

different control strategies in an attempt to maximise the power taken from the channel. 

For example, two features which may be controlled are the hydroplane angle of attack 

and the phase, shape and magnitude of the power take off force. The upper limit of 

extracted power will be dictated by the 59% Betz limit when considering the entire area 

swept by the hydroplane. Currently it is primarily the concept of tidal stream generation 

that is being investigated and there is no research programme in altering the present 

hydraulic take off mechanism. The direct drive concept is likely to be considered later 

in the Engineering Business development programme, in the region of 5-10 years from 

now [93]. 
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Figure 7.1: Photograph of ISO kW prototype shortly before deployment 

Figure 7.1 shows a photograph of the prototype as it was being assembled in Summer 

2002. For this investigation the movement of the arm is assumed to extend 30° above 

and below the horizontal in a purely sinusoidal manner with a period of 21 seconds. 

The hydrofoils will oscillate between 5 and 17 m above the seabed, which is a typical 

cycle for a water velocity of 1.5 mls. The speed and motion may be controlled to 

maximise the power captured by the device. 

7.2 Power Take off Mechanism 

The current Stingray power take off uses hydraulic rams to force high pressure oil 

through a hydraulic pump connected to a conventional rotary electrical machine. The 

simple nature of the hydraulic circuit, which contains no accumulators to smooth flow, 

means the electrical machine experiences bi-directional rotary motion of variable 

velocity. 

The power take off configuration consists of four hydraulic cylinders, two mounted 

in antipose on each side of the device as shown in Figure 7.2. One end of each of the 

cylinders is fixed to the post whilst the other is allowed to follow the movement of the 

pivotal ann. The configuration is such that the net moment arm for each opposed pair, 

i.e. the perpendicular distance between the action of the rams and the pivotal point, 

remains roughly unaltered throughout the oscillation cycle of the device. Its actual 

variation is shown in Figure 7.3. In combination with the hydraulic configuration of the 

cylinders, namely the coupling of a full bore to the opposing piston's partial bore (the 

effective area in push connected to the effective area in pull), then nominally the 
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pressure in the hydraulic system alwa .. ys represents a specific torque applied to the arm, 

a1lowmg for smlplifications to be used when . fyin speCl g the hydraulic system. 

A 

pivot points 

Post 

Figure 7.2: Configuration of hydraulic cylinders 
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Figure 7.3: Moment length cylinders have on pivot arm over 2 cycles 

The variation in total length of one set of cylinders, the distance between its 

mounting points, is shown in Figure 7.4 and demonstrates that the topology proposed 

results in a slightly unsymrnetrical waveform. Also shown in this figure is the cylinder 

velocity, which has a peak of just 0.1 mls. 
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Figure 7.4: Characteristics of cylinder cycle 
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Figure 7.5: Moment exerted by power take off 

Using hydraulic pump torque vs. speed data from the Stingray device [94] operating 

in an optimised cycle, the equivalent force applied to the arm by the entire hydraulic 

system can be obtained. The use of this data. converted into a look up table, allows the 

linear generators to deliver the exact same response as the current power take off 

system. The total moment applied to the arm by all four cylinders is given in Figure 

7.5. It should be noted that the discontinuities shown here and throughout this Chapter 

result from the assumption of instantaneous switching of hydroplane angle of attack. 

This affects the results at positions of direction change, 5.25, 15.75, 26.25 and 36.75 

seconds. At the maxima of the curves there is a slight discontinuity, not present in the 

physical situation, resulting from the use of a look up table for the load speed 
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characteristics of the current hydraulic dri . . ve, eVIdent as the motion changes from 
accelerating to decelerating. 

The dimensions of one cylinder d f . an mass 0 the entrre power take off system are 

given in Table 7-1 and Table 7-2 respectively 

0.0374 
0.0279 
0.25 

m 2 
Table 7-2: Estimated mass of hydraulic system 

Cylinder (1 of 4) 120 kg 
Hydraulic motor 100 kg 
Electric Machine (300kW) 500 kg 
Hydraulic oil (0.2 m3

) 140 kg 
Piping 25 kg 
Total 1.2 tonnes 

7.3 Specifying a VHM 

Using the flux flow along the translator back iron, as proposed in Section 4.7, and 

thus proposing a four sided machine around a central support, the stator length of 

machine is kept to a minimum at the expense of making a wider machine for a given 

active airgap area The topology is inherently closer to that of a hydraulic cylinder than 

the two sided machine and hence more appropriate when investigating their direct 

replacement. 

A single machine with 6 magnets on each stator face will give a 15 kN peak force per 

unit axial length at a constant rated current of 15 Amps. This data can be used to dictate 

the required axial length of the machine. 

The constant current force is cyclic over twice the magnet pitch of the machine. In 

reality, when the generator is connected to a load the current would constantly vary such 

that the force was always opposed to the direction of travel. Three similar modules are 

positioned with respect to one another in the direction of motion such that they are 

separated by 120 electrical degrees to form a 3-phase single sided machine. In total 

there will be four such machines around a single square translator, making up a three 

phase module with a combined average force of 47 kN per metre axial length. The 

number of these three phase configurations is dictated by the space available on the 

Stingray. 
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7.4 Direct Replacement of Cylinders 

1 xliI 

0.6 

0.6 

0.4 

0.2 

g 
I 0 

-0.2 

-0.4 

-0.6 

-0.6 

·1 
0 

i 

J 
I 

t . . 1 ,. 

10 

-1 
'/ 

15 

I 
I ;. 

· I 
I 

· t 

\ 
;" · . 
i ·1 
\ . r, 

\, / 
20 25 JO 
-(I) 

"-. 

\ 
~I 

35 

\ 
40 

Figure 7.6: Force provided by individual cylinders 

45 

During a typical cycle in a 4 knot tidal stream the force reacted by one of each of the 

upper and lower cylinders will be of the fonn shown in Figure 7.6. Each curve consists 

of two maxima, occurring at the same time as the maximum velocity of the cylinders. 

The nature of a hydraulic cylinder is such that it is capable of delivering a greater force 

in its full bore direction than when it is retracting. The electrical machine need not be 

capable of delivering the largest force demanded of the hydraulic system, around 970 

kN, therefore, but a slightly smaller force, distributed evenly between the four opposing 

generators, which matches the total applied moment, 850 kN. 

Table 7-3: Linear generator for direct replacement of cylinders 

2.26 
2.63 
13 
0.48 
6.2 

Total mass tonnes 43 
As shown in Figure 7.4, the total length of the cylinder remains above 2.56 m and 

oscillates between this value and 0.64 m longer. The minimum total length may be used 

as the active length of the machine whereas the maximum extension will give the 

required length of translator. A square machine capable of delivering the required peak 

force consisting of four three phase modules is detailed in Table 7-3. When compared 

to the outer diameter of the cylinders, which is approximately one tenth of this value, 

direct drive by simple replacement of the cylinders is somewhat cumbersome, and adds 
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68 tonnes to the mass of the machine This larg . dir . e mass IS a ect result of the translator 
speed being just 0.1 mls and demanding a very high t' c. reac 1ve 10rce. 

Electrically and in terms of total th· . mass, ere IS no dIfference between having four of 

these generators or one set of opposed generators oc . th cupymg e same space, each 

capable of reacting 1.7 MN. It is likely, however, that the latter option, consisting of 

two 4.9 m wide 85 tonne machines, would fit more conveniently into the machine. 

As a substitute to hydraulic rams, direct drive power take off mounted here is not 

very attractive due to the extra mass and alternative locations must be investigated. 

7.5 Enlarged Moment Arm 

The position of the hydraulic rams and the magnitude of the moment arm dictates the 

velocity, pressure and stroke length of the power cycle. Clearly, when replacing the 

power take off for a direct drive system, there are different priorities involved in 

locating the system parts. Electrical machines benefit from positions of higher velocity 

as the required reactive force is lower, whilst still extracting the same power from the 

body. Hydraulic systems can operate at pressures of several hundred bar (10
7 Pa) and 

are hence able to react huge forces. They also have a seal-enforced upper limit on 

pennitted velocity. Furthermore, if an electrical machine can be made longer in the 

direction of travel, the required width will decrease for the same active area and hence 

rated force. The active chamber of a hydraulic ram, however, should be kept as small as 

possible to reduce weight and volume of fluid. 

These conflicting factors imply that the best place for a hydraulic power take off 

system is the worst place to consider a direct drive system. The latter would benefit 

from locating the generators in a position on the Stingray with a larger moment arm and 

active length. 

Referring again to Figure 7.2, the two dimensions which can be most conveniently 

altered are marked as A and B. The former mainly alters the minimum (active) length 

whereas the latter greatly affects the moment arm length. For demonstration purposes, 

both of these dimensions are doubled. The required moment can now be applied by two 

opposed generators with have an active length of 4.66 metres each reacting a maximum 

force of 680 kN over a 1.44 m amplitude of oscillation. Two generators of the type 

detailed in Table 7-4 could provide this function. The total mass added by the direct 

drive system is now 69 tonnes. To gauge a feeling of how this would sit in the device, 

Figure 7.7 shows a scale diagram allowing comparison of the linear generator to both an 

original cylinder and the device itself. 
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Figure 7.7: Comparison of proposed generator and existing cylinder 

Although the generator is clearly larger than its hydraulic equivalent, when compared 

with the scale of the machine it is not a cumbersome alternative. If the pivot arm, 

dimension B, could again be doubled, then the total width of the generator would be 

comparable to the combined width of the two cylinders it would be replacing. 

Demonstrated is the importance of the location of the generators, with 8 tonnes being 

saved on the direct drive concept by altering its position. 

7.6 Alternative Location 
Following the preference for high speed and low forces to its limit would result in the 

electric machine being driven at the same amplitude as the hydrofoils. This would 

effectively bypass the influence of the pivot arm altogether and result in the \inear 
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generator being coupled between the hydrofoil and the foundations directly. An 

example design study can be used to find the ultimate position of a single linear 

generator coupling the pivot arm to the base. The maximum permitable active length is 

now dictated by the clearance between the pivot arm at its lowest position and the base, 

which varies according to the distance from the post. To provide the pivot arm with the 

same total moment from a single linear generator, the force which that generator is 

expected to react will clearly decline as distance from the post increases. Using the 

generator data as above, and dictating that the active length of the machine must be a 

whole number of three phase modules, it is possible to examine the relative features of 

generators placed at all points along the arm. The extremities of position are 0.5 m and 

10 m from the post. The force required for this range is shown in Figure 7.8 

3.5 
11ff 

3 \ 

z 

\ 
i 2.5 

f 
i 
II 2 

I 
f5 

I 1 

0.5 

0 
0 

'\. 
"-

6 
otlllnCelrom poll (m) 

10 12 

Figure 7.8: Force required to exert moment at different generator positions 

If the minimum is taken as 2 metres from the post, the total force is kept well below 

I MN and the design study becomes more illuminating. Figure 7.9 shows some 

. . h . ate generator could be chosen. 
possible design critena on whic an appropn 

The smallest and lightest machine has an overall width of 0.6 m and a mass o~ 10 

. tu ted here it would follow the 12 m vertIcal 
tonnes. If the linear generator were SI a 

. h . t around the top of the post some 11 m away. 
oscillations of the hydroplanes, whic plVO 

r b t traces a circular arc. To account for 
The resulting motion is hence no longer mear u 

this, the translator and stator of the generator could also be made to have the same 

curvature. 
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Figure 7.9: Design study of generator distance from post 

7.7 Integrated Design 

The design work so far has combined the Stingray device, which has been designed 

and optimised for hydraulic power take off, with the semi optimised four sided linear 

VHM machine. The dependency on position of the electrical machine size has hence 

been demonstrated. The next logical stage is to integrate the VHM and the Stingray at a 

much earlier stage in the design process and optimise them both simultaneously. Two 

examples of this are given below. 

Figure 7.10 shows the curved stator of a possible linear generator mounted on the 

Stingray arm interacting with the stationary translator, mounted on the post. The 

machine will behave in an identical manner as the previous VHM, yet the curved nature 

of its locus has eliminated the need for a hinged stator. 
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active 
area 

Figure 7.10: hemispherical nux machine 

Alternatively, following the integration through to its natural conclusion, the linear 

generator can be attached directly to the hydroplane and the ann part of the Stingray 

could be abandoned altogether. The device, however, would no longer be the Stingray. 

7.8 Discussion 

Simple substitution of hydraulic cylinders for linear generators would imply that a 

direct drive system is not a suitable power take of mechanism for the Stingray device. 

This is not a valid comparison, however, as the positioning of the rams has been 

influenced by their performance parameters. The positioning of alternative methods of 

power take off should therefore also take into account their associated characteristics. 

To extract an equal amount of power as a set of hydraulic rams, which are renowned for 

reacting high forces but are limited to low velocities, an electrical machine is more 

suited to a position offering higher velocities and smaller forces over a longer stroke. 

There is no theoretical limit to the velocity of an electrical machine. 

Although the direct drive option will likely always be a more mass intensive option, 

it has been demonstrated that careful positioning of the electrical machine can reduce 

this effect from an additional 168 tonnes when considering direct replacement to 9 

tonnes. It should be borne in mind that the present design of Stingray requires a large 

amount of ballast to maintain stability against the moment of the vertical forces on the 

hydrofoils. Further detailed designing for direct drive may be able to use the mass of 

the generators as ballast and thus keep the overall weight of the Stingray close to its 

present value. 
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If the direct drive option were to be investigated more fully, it is likely that there 

would be some play off between the requirements of such a power take off and the 

Stingray device itself. For example, the optimum position suggested in this Chapter 

totally prevents the yaw of the hydrofoil, which may form part of the Stingray 

performance at a later date. Likewise, the generator could be more incorporated into the 

pivot arm to save space or weight. The numerical investigation has been limited to flat 

reciprocating generators with a two dimensional flux flow only. Semi-cylindrical 

machines along the axis of rotation, in combination with axial or three dimensional flux 

flows, could offer performance improvements and should form part of any serious direct 

drive tidal stream energy converter of this type. 

7.9 Conclusion 

VariOllS integration options have been presented for the integration of a linear VHM 

into a direct drive version of the Stingray tidal stream energy device. No technical 

barriers to this were encountered although an increase in mass appears to be inevitable 

as lo~g as the Stingray and electrical machine design are kept separate. 

The influence of generator position on system mass has been demonstrated. 
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Chapter 

8 

Direct Drive Wave Energy 

Converter 

I n this chapter, the models developed describing the behaviour of electrical 

machines are expanded to a size suitable for use in a Wave Energy Converter 

(WEe). The performance of a real WEC is analysed to specify the likely requirements 

of an electrical machine suitable for direct drive power take off. The energy converter 

considered is the Archimedes Wave Swing (AWS), as described in Chapter 1 and [29]. 

8.1 Principle of Power Extraction 

The vertical position, y, of the oscillating part of the A WS, known as the floater, is 

described by the force equation (8.1). 

Where 

d2y {n \dy 
{Mfl +Ma)-2 + \Ph + fig J;:d +CAwsy=Fw 

dt t 
(8.1) 

Mo = 

= 

= 

Fw = 

mass of floater (kg) 

added mass (mass of water above floater) (kg) 

hydrodynamic damping coefficient of A WS 

(ttwave period» (Nslm) 

damping coefficient of generator (Nslm) 

spring constant of A WS (N/m) 

diffraction force of the wave acting on AWS (N) 

According to this equation, the generator acts as a pure damper, giving a reactive 

force proportional to the velocity of the device. Resonance of the device occurs when 

the spring force and the inertia force cancel each other out, i.e. : 
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(8.2) 

Varying the spring constant, CAWS, provides a mechanism for tuning the device 

depending on the incoming waves and is achieved by varying the air pressure within 

the floater. The force equation at resonance is now reduced to (8.3). 

(8.3) 

The energy extracted from the waves in this state will be lost to hydrodynamic 

damping as well as transferred to the electrical generator. Analogous to the maximum 

power transfer theory for electrical systems, whereby it is desirable for the internal 

resistance of an appliance to equal its external resistance, the maximum power 

obtainable for the electrical machine is achieved when the two damping terms are 

equal, (8.4). 

(8.4) 

The required velocity of the floater can now be expressed as (8.5). 

. Fw 
y=-

2Ph 
(8.5) 

By assuming the generator to be a purely damping element and using air pressure to 

control the floater allows the electrical machine for the A WS to be designed without 

developing a complex current control strategy. In other WECs the power take off 

mechanism may be required to act as an inertia, spring or negative spring element, 

requiring strict control of the reactive force. 

8.2 Prototype 

8.2.1 Introduction 

A pilot scheme has been built [95] ~hich includes a permanent magnet linear 

generator. Performance data of both the A WS and the linear generator may hence be 

used to evaluate the characteristics of either of the electrical machine topologies 

proposed in this thesis. The pilot device has a rated stroke length of 7 m and a 

maximum of 9 m for the 9 m diameter floater. Figure 8.1 shows the prototype device 

as it is prepared for deployment. 
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Figure 8.1: A WS during a (failed) attempt at launching 

The large forces a vessel of this size can exert, in combination with the generally 

low shear stress of electric machines, have led the designers to place water dampers in 

parallel with the linear generator. These are intended to provide additional thrust 

during periods of high force, allowing both overload protection for the generator and 

also decoupling the relationship between device size and required power take off. 

8.2.2 Device Characteristics 

The force felt by the device, Fw, as waves pass over it varies linearly with amplitude 

and non linearly with wave period, the latter relationship is shown in Figure 8.2. 

These values are obtained by locking the floater position and measuring the resultant 

force in expected sea states. The force rises with the wave amplitude and appears to 

tend towards 7.5 x IOs Nm-1 at large wave periods. 

1.5 

3.5 

• 10 11 12 13 14 15 

_por1OcIll) 

F
. 8 2' F per m wave amplitude vs. wave period Igure ., w . 

211 



pmg 0 the device is also fun ' 
Figure 8.3 having a . a ctIon of the wave period, 

, maxmlUm value of7 8 x 104 Ns-1 • 

dropping off at higher periods. . at a penod of 7 seconds and then 

,110' 

Figure 8.3: Variation of hydrodynamic damping 

8.2.3 Present Power Take off 

The power take ofT for the prototype is a double sided linear pennanent magnet 

synchronous machine, a cross section of which is given in Figure 8.4 [95]. 

t 
translato stator 

translator 

Figure 8.4: Segment of present power take off 

The translator is only a few metres longer than the stator and therefore towards the 

extremities of oscillation there is not a full overlap between the two. Open circuit emf 

of this machine is hence reduced at the end points and not truly sinusoidal. 

Furthennore, in order to react a specific force as part of the power take ofT strategy it 

has to be borne in mind that a greater current is required at either end of the cycle. 
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8.2.4 Energy Yield 
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Figure 8.5: Annual wave distribution of test site 
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Controlling the A WS as described in Section 8.1 for the sea state of Figure 8.5 [96] 

results in the device characteristics shown in Figure 8.6. 
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as design criteria in this secti~n, which for the present power take off correspond to a 

current of200 Amps and voltage of2 kV. 

An equilibrium of air and water pressure around the lip of the floater allows the 

A WS to operate without any moving seals and a non flooded environment within the 

device is assured. The present electrical machine uses wheel type bearings for 

lubricatio~ which have a rated life of approximately one year and are the limiting 

factor for maintenance of the device [96]. As the A WS is mounted on the sea bed, 

maintenance will most likely involve retrieval to the surface and subsequent re­

deployment; both expensive weather dependent operations ideally kept to a minimum. 

As such the tubular machine is chosen as the electrical machine topology, on the 

. assumption that the low magnetic forces are likely to reduce bearing wear and hence 

increase maintenance intervals. 

8.4 Design of tubular machine 

In this section air cored tubular machines are designed using Equation (5.7) and the 

same methodology as used in the topology comparison of Section 6.7.1.3. The airgap 

is specified as 5 mm. 

In brief, the main features of this design methodology have the coil height set to 

twice the theoretical equivalent airgap length, 19, as given in Equation (3.13), the 

magnet width equal to the steel width and the coils are assumed to have a 40% fill 

factor and carry a current density of 2 Almm
2
• 

8.4.1 Single machine 

In order for a single machine whose length is limited to 10 m to react 1.8 MN 

. . d h tr lator radius These designs can only be requlres a very large active area an ence ans . 

discussed ifit is assumed there are no limits on the manufacture and handling ofPMs. 
. . th radi' arying from 0 4 to 

Figure 8.8 shows the parameters of suitable machines Wl I V • 

1.5 m and magnet width varying from 0.3-0.8 m. 
. . oint of minimal total mass 

For the wider magnet geometrles there IS a p 
. f dOS m The magnet mass is consistently 

corresponding to a magnet radius 0 aroun . . . ' 
.' radi d utilisation of the maxlIDum avaIlable 

lower with a reductlon m translator us an 
. t . dth however, has a smaller effect as the 

translator length. Reductlon of magne Wl , . . 
. ghl constant simply conslstmg of more pole 

volume of magnetic material remams rou Y , 

pieces to make up the same active area. 
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Figure 8.8: Many designs of tubular machine 

Two alternative examples are highlighted for discussion, corresponding to the 

minimum radii for magnet widths of 0.8 m and 0.3 m. The former consists of eleven 

0.22 m radius magnets weighing 948 kg each and the latter has 28 larger magnets of 

0.55 m radius each weighing 2.2 tonnes. These appear to be the smallest magnets 

which can be used to make a single machine of 10 m stator length capable of reacting 

the required force. 

Handling of these enormous magnets is likely to be troublesome and possibly 

dangerous. It is hence necessary to investigate using mUltiple machines of a lower 

rating. 

8.4.2 Multiple machines 

For the air cored tubular machine it is likely that a number of identical smaller 

machines will be mounted in parallel within the A WS to provide an equivalent reactive 

force to the one large machine proposed. Stipulating the length of the stator to be equal 

to 10 m, a variety of magnet radii and widths can be investigated to give dimensions of 

alternative machines. 

Table 8-1 shows 5 alternative machines and the number which would be required to 

provide comparable power take off to the present system. The magnet radius and width 

is varied from 0.1-0.2 m and the required number of machines varies from 15 to 4. The 
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assumed current, voltage and number of turns . 

1 
. per coli are also given to allow 

specu anon as to alternative wiring confi . 
. guratIons. The total mass of all but one of the 

configurations are approximately equal and less than th " . 
single machine Ex lained' e mnnmum achievable with a 

. ~ p by ment of the shear stress of these machines bein 
approxunately mversely proportional to Rm Eq . g 

• 2 ' uatIon (3.19), yet the active area is 

proportIonal t~ Rm , implying that a larger machine will react a greater force, but at the 

expense of usmg the magnetic material less efficiently. Smaller machines are hence 

likely to give better performance per magnet kg Th tw . . . e 0 most attractive 

configurations represent the extremes in terms of required number of machines and 

magnet piece size: machines A and D. 

Table 8-1: Selection oftubular machines for AWS 

Machine A B C D E 
Wire diameter 5 5 5 5 10 
(mm) 
Current(Amp) 39 39 39 39 157 
Rm(m) 0.1 0.1 0.2 0.2 0.15 
Wm(m) 0.1 0.2 0.1 0.2 0.15 
No. stator poles 50 25 50 25 33 
Turns /coil 216 865 216 865 122 
Voltage per coil 95 360 203 781 82 
at 2.2m1s (V) 
F / machine (N) 122 230 260 500 277 
Required no. of 15 8 7 4 7 
machines 
Total mass 250 300 255 260 255 
(tonnes) 

Machine E is mcluded to demonstrate that the choice of wire diameter limits the 

number of turns available per coil, yet increases the current flowing through them. The 

overall characteristics of the machine are not significantly altered. 

8.4.3 Power Conversion 

Although the small-scale tubular machine has better generating characteristics than 

the VHM in terms of power factor, some consideration must be given to the effect of 

inductance at larger scale tubular machines. For an accurate design of air cored tubular 

machine, FEA of actual topologies is recommended. For the purpose of demonstration, 

however, the inductance approximation given in Section 5.1.7.3 is used to examine the 

power characteristics of the generators proposed in the preceding section. It was 

demonstrated in Chapter 5, Section 5.4.2.1, that the tubular machine could be modelled 

as a pure ernf source with a series reactance like that of Figure 8.9, which allows the 

simple phasor diagram, also shown in Figure 8.9, to be used to analyse the voltage. 
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I Cl!. 

IR Ir 

Figure 8.9: Phasor diagram of tubular machine with resistive load 

The electrical machines were designed for a rated current and maximum speed, the 

value of a purely resistive load that ensures the rated current flows at the maximum 

speed can thus be chosen using geometric relationships derived from Figure 8.9. 

Table 8-2: Generator characteristics of tubular machines 

Model A B C D E 
Internal 0.2 1.1 0.37 1.6 0.042 
resistance (C>hm) 
Load (Ohm) 2.18 7.13 4.75 16.6 0.455 
Inductance (mH) 14.5 232 28.9 464 6.9 
Power/coil (kW) 3.36 11.0 7.32 25.6 11.2 
Power factor 0.98 0.90 0.98 0.92 0.95 

Table 8-2 shows the reslstor values necessary for individual coils and the power 

dissipated within them at the rated current. As the airgap for all the machines is equal 

to 5 mm, it is always less than 5% the value of the radius, a close approximation to the 

coils being surface mounted. It is likely that the value of inductance, based on a 

method which ignores the airgap and treats the coils as point current sources, is 

reasonably accurate. The resulting power factor is consistently above 0.9. These 

values are used in Table 8-3, which gives the peak phase power as the product of coil 

power and number of poles, the average machine power as 1.5 times this value, and the 

total configuration power as the sum of all the generators. 

Table 8-3: Power delivered to load for alternative generators 

A B C D E 

Peak phase 167 275 366 641 370 

(kW) 
Total 250 412 549 962 555 

machine(kW) 
3.8 3.8 3.9 

The power removed from the A WS, equal to the product of velocity and force, is 

3.96 MW for all the machines. Table 8-3 shows the power delivered to a simple load 

resistor and is a function of the internal resistance and coil inductance. The efficiency 

of alternative configurations may hence be investigated and varies from 83 to 98 % for 

Tota1(MW) 3.8 3.3 

alternative configurations. 
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Consideration of the machine masses impl th t hin 
y a mac e A and E are the most 

favourable. Machine B has the largest mass and d I' th elvers e smallest power to the 

load. The large magnet width in this machine requires a large coil pitch, adversely 

affecting the inductance and internal resistance of the machine. 

8.5 Discussion 

The A WS is a good machine to speculate about tubular machines for direct drive 

power take offbecause it decouples the spring constant of the device from the damping, 

allowing the electrical machine design to be solely based on the peak thrust required. 

By designing a tubular machine for such a device the order of magnitude of its size is 

demonstrated. Unfortunately, it is not possible to compare the present electrical 

generator to the one proposed in terms of mass as that information is not available. 

However, this concept is already direct drive and so the main purpose of this Chapter 

has been to investigate alternative configurations of tubular machine. 

There is a choice between one large machine and several small ones in parallel. In 

terms of manufacture and handling, it is very likely that smaller magnets will be more 

attractive. It has also been shown that smaller radii translators exhibit a higher shear 

stress and there is hence no weight penalty for using many small machines in parallel 

when compared to one large machine. The tubular machine is hence likely to be more 

suitable for machines either with sufficient space for several generators mounted in 

parallel, or for long thin machines, which allows the use of many small radii magnets. 

Five alternative configurations of air cored tubular machines were presented 

utilising what is likely to be the largest PMs that can be easily handled, As the tubular 

machine is well represented by simple equivalent circuit analysis it is possible to 

specify equivalent resistance of power conversion equipment. All machines specified 

gave power take off with a power factor of greater than 0.9. 

8.6 Conclusion 
Several configurations of tubular machine have been presented capable of reacting 

th . c. • ed by a prototype version of the Archimedes Wave Swing e maxlDlum iorce requrr 
. ' f hines used in MECs has been outlined, wave energy converter. The hkely size 0 mac 

hin d . n parallel demonstrated as a way of 
with the concept of several smaller mac es use 1 

avoiding the use of large PMs. . . .. 

f · red achines demonstrates therr swtablhty 
The consistently low inductance 0 aIr co m 

for use as a generator in this application. 
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Chapter 

9 

Discussion, Conclusion and 

Recommendations 
The key points made in this thesis are summarised in chronological order 

followed by a general discussion of the results with reference to Marine Energy 

Converters (MECs) and novel topology electrical machines. Several areas of further 

research are suggested to complete and progress the work presented in this thesis, a final 

conclusion to which is then provided. 

9.1 Chapter / Results Summary 

In Chapter 1 the concept, desire and history of harnessing energy from the marine 

resource was introduced. The two possible sources of energy identified were wave 

energy and tidal stream energy. The principles and devices suitable for capturing this 

energy were discussed. The concept of resonance and the subsequent need for control 

over the behaviour of wave energy devices in order to increase capture efficiency was 

demonstrated. 

In Chapter 2 the choice of power take off mechanism for MECs was demonstrated to 

play a major role in their design and the quantity of energy which they can subsequently 

be expected to capture. A variety of methods commonly proposed to match the physical 

motion within the devices to the high speed rotary motion traditionally required by 

electrical machines for conversion into electrical energy were then presented. All of 

these methods were shown to introduce additional mechanical components, complexity 

and maintenance requirements apart from the direct drive option. In the latter the 

moving element of the capture device is coupled directly to that of the electrical 

machine for conversion into electrical energy. Traditional topology electrical machines 

require large active areas to react the large forces inherent in direct drive systems. The 

opportunity to explore novel and modem electrical machine topologies for this 

application was thus highlighted. 
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In Chapter 3 the general layout of linear generators was explained. Details of 
conventional field wound machines . , pennanent magnet excited machines, Variable 
Reluctance Pennanent Magnet (VRPM) machi d . nes an an aIr cored tubular machine 

were given. The mathematical development of simple expressions giving the predicted 

shear force developed in the air gap was aiven for each t I Th " 
tr opo ogy. ese expreSSIOns, ID 

combination with some general comments regarding the structure of each machine and 

its suitability for use in an MEC, were used to select two suitable machines for further 

development: the Vernier Hybrid Machine (VHM) and the air cored tubular machine. 

These two machines were modelled in great detail in Chapters 4 and 5 respectively. 

The VHM was analysed in two dimensional Finite Element Analysis (FEA), the 

results of which were used to develop a variety of performance and force models 

capable of describing the behaviour of a 3 kW laboratory built prototype. A detailed 

description of the design process of the prototype and development of the models was 

given. The chosen performance model, which utilised a look up table for the current, 

position and flux data of the machine in combination with a Runge-Kutta-Nystrom 

integration routine, was found to describe the machine's loaded behaviour satisfactorily. 

Several points were noted in relation to the VHM's suitability for use as a linear 

generator. Most significantly, the experimental prototype verified the high thrust forces 

predict~ showing a shear stress of greater than 100 kN/~2, many times larger than that 

expected in field wound machines. However, two disadvantages with the VHM became 

apparent. Firstly, the magnetic closing force in the airgap was found to be large, around 

twice that of the useful force produced by the machine. The resulting structural 

demands are further compounded by the pulsation of these attractive forces over a 

translator pitch. The net force on an accurately positioned translator in a double-sided 

machine, however, should be zero. The second disadvantage is that of the power factor 

being very poor, giving it bad characteristics as a generator. The power factor was 

demonstrated to be significantly improved at constant velocity by the use of capacitor 

assisted excitation. Using simplified analysis, a value of capacitance was chosen and a 

power factor of over 0.8 was achieved, as compared with less than 0.1 for short circuit 

I 
.. I adi The sensitivity of capacitor assisted excitation to emf or pure y reslstlve 0 ng. 

frequency was highlighted, implying an alternative strategy is required for the variable 
. B th th di advantages appear to be inherent in 

velocity applications conSidered here. 0 ese s 
this topology due to the highly effective magnetic circuit necessary for high shear 

stresses. 
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The air cored tubular machine detailed in Cha t 5 . . . p er was descnbed by a basic model, 
applicable because of Its simple magnetic circuit and I . d ow m uctance. Two two-
dimensional axisymmetric FEA models were presented ... , one encompassmg Just a smgle 

rotor pole, giving high resolution predictions of the translator flux pattern. The second, 

encompassing an entire 8 pole half of the prototype, was necessary to model the phase 

and interphase inductances. An unfortunate side effect of the uneven stator coil support 

structure of the prototype was highlighted in the latter model, which correctly predicted 

an unbalanced three phase system. Intercoil supports should therefore be placed 

between every coil to give a balanced three phase machine, and not every third coil as 

used here. The methodology presented approximated the FEA generated flux linkage 

and inductance results to Fourier series', allowing analytical differentiation to be used in 

the ensuing performance models. Fundamentally, the circuit model was a simple open 

circuit emf source in series with a position dependant ideal variable inductor. This 

model demonstrated the excellent generator characteristics of the air cored tubular 

machine, with a power factor of greater than 0.9 when connected to a purely resistive 

load. The peak shear stress in the machine was 40 kN/m2
• 

In Chapter 6 some physical aspects associated with mounting these two machine 

topologies within an MEC were discussed. Several appropriate lubrication methods 

were identified as being capable of surviving the likely annual distances associated with 

MECs. The VHM translator was demonstrated to be troublesome with respect to 

sealing, although two alternative strategies were proposed. The tubular machine could 

benefit from sealing experience and technology transfer from the hydraulic industry. 

Hydrostatic lubrication of the VHM translator was examined in detail with a 5 kW 

system of opposed pads based on laminar flow proposed, capable of supporting the 

forces associated with a 100 kW generator. A simplified support system for the 

laminated VHM core was outlined. The magnetic forces were said to be almost absent 

from the air cored stator of the tubular machine and so no support structure was 

examined. A size comparison of the two machine topologies was presented for 100 kW 

generators and showed the external dimensions of the stators to be comparable. 

In Chapter 7 a variety of VHM machines were proposed as the power take off for the 

S 
. TM· t The important effects of generator position on its 

tingray tidal stream genera or. 
. d tab l' hed Importantly the ideal place for positioning a hydraulic 

SlZe an mass were es IS. ' 

d trated as being the least suitable location of a direct 
power take off system was emons . 

ed . t grate the device and power take off 
drive power take off system. The ne to In e 

systems early in the design process was hence noted. 
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In Chapter 8 the use of an air cored tub I ' 
, . u ar machine as the power take off for an 

Archimedes Wave SWIng (A WS) prototyp , 
, . e was exammed, Although single machines 

capable of provIding suitable tak 
. . power e off are theoretically possible, the large magnet 

diameter mvolved will likely make them d'ffi I 
1 cu t or even dangerous to assemble. 

Furthennore, the shear stress of the tubular m hi d . ac ne ecreases as the translator radius 
Increases, so although a greater force is reacted fr 'd' , om Wl er machines, less effiCIent use 

of the magnet material is made. Several alternative configurations were proposed, 

whereby smaller generators were placed in parallel to share the load. Finally, the 

excellent qualities of tubular machines for use as generators were further demonstrated. 

9.2 Discussion 

The work presented in this thesis may be discussed in four categories: general, 

selection of machine topology, a favoured direct drive proposal for MECs and finally 

electrical machine research. 

9.2.1 General 

The topology of successful MECs has yet to be finalised, with the two prototype 

examples used here still being developed. The Stingray was deployed in the summer of 

2002 and the A WS has yet to be submerged, after failed attempts in both 2001 and 

2002. The VHM was first proposed in 1999 [97] and journal papers have yet to be 

published, whereas no previous literature was available on the tubular air cored 

generator. With two areas of infant technology being combined in this research it is 

hard to draw finn conclusions and recommendations, Furthermore, there is a feeling 

within the wave energy community of the need to avoid making high profile failures, 

which are likely to discredit the marine renewable energy industry as a whole. As such 

progress in this area is often slow and cautious, implying a suitability for a small 

number of reliable conclusions in preference to many sweeping optimistic statements of 

the potential savings and benefits of direct drive power take off. 

Within this thesis it was demonstrated that electrical machines capable of reacting 

the large forces required at the velocities associated with most MECs exist. The 

decision to use direct drive must be taken in conjunction with the device design, with 

the knowledge that it offers the most direct method of converting the physical motion 

into electrical power. Once that decision has been made, the two topologies presented 

here represent advantages over conventional topologies. 
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9.2.2 Choice of topology 

The choice of machine topology is linked to th 'fi d . . e specl c emands of the deVIce. 
Compact devices would favour a four-sided high curre t VHM . ffi . n , asSumIng su Clent 
provision could be made for the support struc""pe A tub I hi' 'tabl ~w • u ar mac ne IS more SUl e 

for devices where there is potential for either a long stator, or several generators to be 

used in parallel. In devices where resonance control is provided by a system separate 

from the power take off, e.g. device angle, buoyancy force, water dampers or an 

additional hydraulic system, either generator could be recommended. Where the power 

take off and control mechanism are inherently linked, however, at this stage the tubular 

machine must be recommended by merit of the more basic current control mechanism. 

There is still uncertainty as to integrating a current control strategy with the unity power 

factor inverter necessary to use the VHM as a generator. 

In Chapter 8 the translator of the present A WS electrical machine was stated as being 

'only a few metres longer than the stator'. For a topology with translator mounted 

magnetic material, the length of the translator will have a significant impact on the 

device cost. The tubular translator is likely to be manufactured from 50 % magnetic 

material, which makes the cost verses allowable amplitude ratio much steeper. The 

purely steel structure of the VHM translator implies the economics of enlarging the 

translator will likely be insignificant. Furthermore, whereas the translator of the tubular 

machine is by its nature broad, the VHM translator can, in some flux pattern 

configurations, be made slender and thus light, ensuring the added mass of extending its 

length is also insignificant. 

In short, a tubular machine is preferable for devices allowing long stators and 

oscillating with small amplitudes. For all other devices, using the VHM under the pre­

requisite of suitable current control strategies being developed should be considered. 

9.2.3 Direct drive prototype 

In the author's opinion, the most attractive Wave Energy Converter (WEC) suitable 

for a direct drive demonstration project is the Interproject Sweden (IPS) buoy. This 

deep water device, which can act as a point absorber, has two features which will allow 

it to pave the way for a first generation direct drive electrical generator power take off 

system. Firstly, the unique method of decoupling from the inertia of the surrounding 

water inherently limits the amplitude of the power take off device, eliminating the need 

for endstops and simplifying decision of translator length. Secondly, the concep~ of 

tilting the device to change its point of resonance and widen its frequency bandWIdth 
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eliminates the need to develop a control t c. 
sys em lor the power take off mechanism 

Prototypes of the device itself are present!· . 
Y commerCIally sensitive, being owned by 

Aquaenergy, an American compan [34] b Y , ut the present power take off is known to 
involve elastomeric hose and a seawater pum Th I . p. e s opmg concept is still in the 
development stage at the University of Edinburgh [98] As . . . . such, mformatIon swtable 
for a design study was unavailabl d th th e an us e more developed and accessible A WS 

and Stingray devices were used in this thesis. The commercial IPS is tubular and long 

relative to its diameter, making it suitable for an air cored tubular machine. The 

Edinburgh version of the device, however, is a paddled shape device, being quite wide 

in the direction of the wave front and more naturally suited to the VHM. 

9.2.4 Electrical Machines 

The majority of the work in this thesis has been based on the development of two 

novel topology electrical machines and so this must form the main area of conclusions 

drawn. 

The performance of the VHM acting as a generator has never previously been 

analysed except by the author [99], although an initial force analysis has been published 

for this [65, 97] and similar [68] topologies. The interaction of flux driven by the 

magnets and current was explored. A complex inductance relationship with current was 

discovered which means accurate modelling, particularly at high current / second order 

capacitive loading scenarios requires the use of flux-current-position look up table 

method utilising the Runge-Kutta-Nystrom integrating technique. The cogging torque 

modelling method of permanent magnet stored co-energy, previously only applied to 

single-magnet-per-pole flux reversal machines, was developed here for VRPM 

machines with multi-magnet poles. It was concluded that the co-energy of adjacent 

magnet pairs must be considered. The influence of end effects on cogging torque was 

shown to cause uneven peaks on the cogging-force displacement curves. Furthermore, 

leakage between adjacent magnets is significant for the VHM, which makes it difficult 

to predict emf using the same simple techniques that appear adequate for shear stress 

prediction. 

The air cored tubular machine was shown to be capable of exerting large forces, 

despite the lack of flux return path in the stator. It was further demonstrated to be a 

desirable generator due to its almost negligible coil inductance, which gave a low power 

factor and allowed the use of a simple open circuit emf-series reactance equivalent 

circuit model. When considering the construction of such a topology, the problem of 
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having uneven stator slots was highlighted as were the difficulties of using externally 
supported coils. 

The success of the VHM as a generator for use at non constant velocities is 

dependent on the outcome of a sister project at the University of Durham, which is 

exploring the possibility of building an active rectifier to remove the power from the 

VHM at unity power factor. Initial results were good and the second stage of testing is 

about to commence. In this respect, the tubular machine is the only topology that can 

be recommended for this application at this stage as it already has a power factor in line 

with that of wind turbines (>0.9). 

A further aspect of research at the University of Durham is using the current to 

control the force of a generator in a WEC to bring the entire device into resonance. This 

method, being developed for the VHM, is equally applicable to the tubular device. If 

the outcome of the project is successful, the direct drive concept will not only be 

suitable for power take off for WECs with buoyancy I bandwidth control, but for all 

other non pneumatic WECs. 

9.3 Suggestions for further work 

The constraint of time and the desire to deliver meaningful conclusions has led to 

many avenues of research being curtailed to keep the main thread of work focused. In 

particular a self regulating bearing was designed and built, but gave disappointing 

results. A three dimensional method for predicting its behaviour was developed, the 

results of which were inconclusive and so not included here. Further work in this area 

and on the effect of turbulent high-pressure flow in opposed pad bearings could prove 

beneficial. The use of magnetic bearings may also prove a viable way of providing non­

contact I infinite life lubrication to linear generators. 

Optimisation of VHM topology, in terms of magnet and tooth width, number of 

magnets per stator pole and larger airgaps may represent a method for reducing the 

machine mass. Two-dimensional FEA has been demonstrated here as a suitable tool 

with which to do this. Further mass reduction can be expected with a more detailed 

structural analysis. The proposed support structure involved the construction of a 

skeletal beam structure to resist the magnetic forces and was based on the assumption 

that the laminated VHM stator itself could take no load. In reality this will not be the 

case, and the structure could be pre-tensioned in such a way as to act as a solid bar. 

Work on the behaviour of long laminated beams subjected to a distributed magnetic 

load could thus be undertaken. 
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Modelling of an air cored tubular machine in three dimensional FEA would allow 

non-concentric radial forces to be quantified and hence aid the design of both the 

lubrication system and support structure. Further, a more detailed method of predicting 

inductance would be beneficial and allow accurate perfonnance predictions of large 

machines to be developed. Work into the optimisation of the proportion of magnet to 

steel in the translator using FEA for an air cored stator is also desirable. 

A comprehensive research programme into corrosion protection for electrical 

machines in the marine environment is required. In particular, the use of the Ceramax 

ceramic coating on both the cylindrical translator of the tubular machine and the 

rectangular translator of the VHM would allow their further development for flooded 

operation. 

Ultimately, either directly proceeding or concurrent with the research suggested 

above, a small-scale prototype direct drive device is the next logical step. The author's 

recommendation for that device to be an IPS buoy was given above, Section 9.2.4. The 

rated power of the device should be in the range of 10-100 kW, large enough to net 

some useful power yet small enough to allow its manufacture, deployment and 

behaviour to reveal further research topics without excessive financial risk. 

9.4 Conclusion 

Within this thesis, principles and devices for extraction of energy from the marine 

resource have been identified. The possibility of integrating linear generators in these 

designs was outlined, allowing the manufacture of direct drive marine energy 

converters. In order to do this a variety of possible machine topologies were described. 

Two of these topologies were identified as being particularly suitable and modelled 

extensively. These topologies represented extremes in tenns of shear force, quantity of 

magnetic material used, power factor and inherent magnetic forces. 

The development of marine energy converters from hydraulic power take off systems 

to direct drive systems incorporating PM linear generators would. represent an important 

step towards overall device simplification and reliability improvement. This thesis 

provides much infonnation to aid that development and found no fundamental technical 

barriers. 
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Appendix A: DERIVATION OF EQUIVALENT 

A1RGAP 
Laplace's equation of a scalar magnetic potential in an airgap is given in (A.l). 

a20 a20 
-+-=0 (A.I) ax2 ax2 

Where o = magnetic scalar potential 

The equivalent current sheet and mmf distribution of the rotor is shown in Figure A. 

surface 
pole 

magnet 
pole 

S S N 

Figure A. 1: mm! distribution of rotor 

S 

equivalent 
current sheet 

The mmf distribution can be broken down into sinusoidal harmonics of the form 

given in (A.2) 

. (2mnx) O(x) = Om sm -il,- (A.2) 

Where wavelength (m) 

m = harmonic number 

The general solution of (A. I) will therefore be of the form (A.3) 

O(x,y) = O(x)O(y) 

. (2mnx) =O(y)sm -il,-
(A.3) 

The boundary conditions for 0 in the (y) direction are: 

O(O)=Om; mmfhas a value at the rotor surface 
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Q(g)=O; the mmfis zero at the extremity of the airgap (when x=g) 

From [100] the solution of an equation of this form with exactly these boundary 

conditions is 

Q(x, y) = 0 sinh{2mnm{g - y)/A )sin{2mnx/A) 
m sinh{2nnrnn/l) (A. 4) 

From Maxwell's equation, (A. 5), the flux density in the y-direction can be found 

using (A.6). 

H =-vn (A. 5) 

By =-#O(:J 
_ 0 (2mn) cosh{2mn(g - y)/ l) . ( /) 
- Po m T sinh{2mng/ l) srn 2mnx l 

(A.6) 

This will be at a maximum at the surface of the rotor, y=O and peak when xiI.. =114, 

as given in (A. 7). 

As g approaches infinity and the machine effectively becomes an ironless machine, 

the hyperbolic function tends to 1. Remembering that m is the harmonic number, it can 

be seen that for the first harmonic with an infinite airgap the flux density in the y 

direction is given by (A.8). 

A (21l) By = POO) l (A. 8) 

Assuming that the flux flows in straight lines and that the iron is infinitely 

permeable, all the mmf for the fundamental harmonic is dropped across the imaginary 

airgap. 

A A Ig ~ Ig A Ig 
mmf = A) = fjJS =;- = --= By - (A.9) 

g PoA A Po Po 

Where 19 is the length of an effective airgap which gives the same reluctance. 

Combining (A.8) and (A.9) shows that this effective airgap is (A. 1 0). 

I = ~ (A.lO) 
g 21l 

From Figure A. 1 it can be seen that A=2(Wm+Ws), so the effective airgap becomes 

(A. 1 1). 

(A.lI) 
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Appendix B: DERIVATION OF POWER 

FACTOR FOR VHM IN CAPACITOR ASSISTED 

EXCITATION 

Figure B. 1: Capacitor loaded model of VHM 

Figure B. 1 shows the equivalent circuit of a VHM connected to a resistive load and 

parallel capacitor. Labelled are the open circuit emf, E, the voltage at the output of the 

prediction model, Vm, the voltage dropped across the imaginary inductor, VL, and the 

load voltage V LO. The phasor representation of these voltages is given in Figure B. 2. 

b 

c 

Figure B. 2: Voltage pbasor representation of circuit 

The cosine rule for triangles is given in its usual form in Equation (B. 1 ) and 

rearranged in (B.2). 
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(B.l) 

(B.2) 

The resulting equations for angles for P and <I> are given in (B.3}and (B.4) 

respectively. 

(B.3) 

(B.4) 

a is deduced to be 1t-<I>. Figure B. 3 shows the similar triangle 'abc' from Figure B. 

2 re-drawn in tenns of the flux linkage cutting the VHM coils, using the equivalence of 

(4.32). 

b 

c 

Figure B. 3: Equivalent Ouxlinkage phasor 

From this diagram ~ is found to be (B. 5). 

(

A 2 A 2 2J ): -I V'PM + V'tot - '1'1 
~ = cos A A 

2V'PMV'tot 

(B.5) 

Finally cp is given by (B. 6). 

cp = p +~-a (B.6) 
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Appendix C: COEFFICIENTS FOR FOURlER 

SERIES APPROXIMATION OF TUBULAR 

MACHINE 

Mutual Inductances 
Equation (C.1) gives the form of expression used to describe phase to phase 

inductances of tubular machine. 

{ 21ZX) . (21ZX) {41ZX) . (41ZX) Lr = ao +a) co -1- +q srn -1- +a2 co -1- +b2srn -1-

Yellow-red phase 

al=8.757486892880896e-004; 

a2=3.485567918524493e-005; 

bl =6.546706143142572e-004; 

b2= 1. 177364560423544e-004; 

ao=O.02866243434295; 

Blue-red phase 

al=9.851290941783335e-007; 

a2=-5.194064119103531e-005; 

bl=-5.299096273297722e-004; 

b2=1.177984768182401e-006; 

ao=O.00466592030858; 

Blue-yellow phase 

al=8.742741812641955e-004; 

a2=-3.125658827707702e-005; 

bl =-6.598842241 096796e-004; 

b2= 1.2084547181 03388e-004; 

ao=-0.02865275836229; 

Self inductances 

Yellow 

al=I.389330932581548e-005; 

a2 2.06955363709767ge-004; 
232 

(C.1) 



NJ. Baker 

bl=O.OO198763147882; 

b2=-1.208038877114054e-006· , 

30=0.05450809679009; 

Blue 

al =-0.00 192899399826; 

a2= 1. 783044970892694e-004' , 

bl=-5.297686319134646e-004; 

b2=1.055508587005971e-004; 

30=0.05442662607694; 

red 

al=O.00191959351483; 

a2=1.753672996884767e-004; 

bl=-5.493123490834898e-004; 

b2=-1.070830 168626756e-004; 

30=0.05441391231691 ; 

Magnet Flux Linkage 
Equation (C.2» gives the fonn of expression used to represent the magnetic flux 

linkage. 

. (21tt) (21tt) VI r = bt srn -1- + al cos -1-

red phase 

al=-0.36194134084122 

bl=-2.50328026627131 ; 

yellow phase 

al=-I.76893885530924; 

bl = 1. 77 637986444189; 

blue phase 

al=2.50474201142485; 

bl=O.35165387931590; 

(C.2) 
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Appendix D: DEFLECTION OF 

DISTRIBUTED BEAM 

L 

Figure D. 1: Beam with distributed load 

The distributed beam of Figure D. I can be described using the loading equation of 

(C.l), where q is the load intensity. 

(D.1) 

Integrating this 4 times give Equations (D.2) - (D.5), introducing the shear stress v, 

bending moment m, the slope equation dy/dx and the deflection curve y respectively 

Where E 

I 

= 

= 

Young's modulus of material 

second moment of area of the beam 

(D.2) 

(D.3) 

(D.4) 

(D.S) 

Inserting the boundary condition that y=O at x=O and x=L into (D.5) gives (D.6) and 

(D.7) respectively. 

C4 =0 (D.6) 

3 C 2 
0=~(b)4 +~(a)4 + ClL +~+C3L=0 

24 24 6 2 
(D.7) 

Using the zero bending conidition at the built in ends gives theboundary conditions 

of dy/dx=O at x=O and x=L, substituted into (D.4) gives (D.8) and (D.9) respectively. 
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(D.S) 

(D.9) 

Re-arranging and equating (D.7) and (0.9) gives (D. 10), resulting in (D.11) 

(D.10) 

w (, 3 3) W ~ 4 4) Cl =-\b -a -- b -a 
L2 2L4 

(D.11) 

Substitution of(D.11) into (D.7) and re-arranging gives (D. 12) 

w (, 4 4{ I I) W (, 3 3) C2 =-\b -a -+- --\b -a 
6L 2L L2 3L 

(D.12) 

Maximum extension will be in the centre, x=U2, substituted into (D.5) gives (D. 13) 

W (L )4 CIL
3 

C2L
2 

EIymax = 24 2"-b +4'8+-S- (D. 13) 
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