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Abstract

In the first part of this thesis we discuss some of the issues arising in extending the

ABJM action of multiple M2-branes to include couplings to the background 3-form

field. These couplings are analogous to the Myers-Chern-Simons terms of the multiple

D2-brane action. We review and extend previous results to include terms which are

quadratic in the background 3-form. These are fixed by requiring that we recover the

correct terms after using the novel Higgs mechanism to reduce the ABJM action to

the multiple D2-brane action. We also discuss the problem of constructing a gauge

invariant pull-back in the ABJM action.

In the second part of this thesis, we begin by exploring the low energy dynamics

of charge two instantons in SU(2) five dimensional Yang-Mills via the moduli space

approximation of Manton. We also investigate dyonic instantons which have an excited

scalar field and create a potential on the moduli space. In Chapter 5 we explicitly

calculate the moduli space metric and potential for charge two (dyonic) instantons.

These calculations are performed by using the ADHM construction.

In Chapter 6 we perform a numerical study of the low-energy dynamics of instantons

and dyonic instantons. We see that instantons undergo right-angled scattering and

understand this analytically in terms of symmetries of the underlying ADHM data.

We also present a comprehensive study of the scattering behaviour of instantons and

dyonic instantons under various initial conditions. Finally we exhibit some examples

of closed geodesics on the moduli space of dyonic instantons, and geodesics which hit

the moduli space singularities in finite time.

In Chapter 7 we investigate instantons with a large amount of symmetry. We first

understand how the action of a symmetry on an instanton is lifted to the underlying

ADHM data. The transformation of the ADHM data must be undoable by a transfor-

mation which leaves the instanton invariant, and we search for symmetric instantons by

finding such transformation matrices that are representations of the symmetry group.

With this method we are able to find solutions to the ADHM constraints that describe

instantons with the symmetries of the 5-cell, 16-cell and 24-cell, with charge 4, 7, and

23 respectively. Finally, we see that these solutions correspond to solutions which can

be constructed from the JNR ansatz.
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Chapter 1

Introduction

The aim of this first chapter is to show how the research in this thesis fits into our

current understanding of M-theory, string theory and topological solitons. The material

is purposefully presented at a high level and will be revisited in later chapters where

the details will be examined more closely and the appropriate references provided. Any

background information which is not further developed can be found in the texts by

Polchinski [4, 5], Johnson [6], and Manton and Sutcliffe [7].

M-theory and string theory

The first part of this thesis concerns the relationship between M-theory and string the-

ory. We are able to understand everything in string theory in terms of the fundamental

string, but we do not have a similar fundamental description of M-theory. However,

we know that whatever the full M-theory turns out to be, it must reduce to eleven

dimensional supergravity and the five string theories in the appropriate limits. This

information gives us concrete evidence about the objects that must therefore appear in

M-theory, despite our lack of a fundamental description. By understanding the links

between these objects in M-theory and string theory we hope to be able to further

reveal the complete M-theory picture.

String theory is our most promising theory of quantum gravity and so has been

considered seriously by physicists in recent decades. The rich spectrum of space-time

states in string theory arises from the quantisation of a superconformal theory on the

world-sheet of the one dimensional fundamental string. Pleasingly for a fundamental

theory, the string length, ls, is the only external parameter in string theory. Upon quan-

tising the string, there is an infinite tower of states with masses growing proportional

to l−1
s . We expect the string length, ls, to be on the order of the Planck scale so that

only the massless states are accessible to current experiments and for the foreseeable

future.

There are five different unique supersymmetric string theories, which depend on
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the possible choices we make about the topology and field content of the fundamental

string. If the string is open, so that it has a boundary, then the left- and right-moving

fields must be identified due to the boundary conditions. There is only one possibility

for a theory with open strings, which is known as type I string theory. The bosonic

space-time states arising from the open string can be grouped into a space-time vector,

Aµ, with an SO(32) gauge group.

If the string is closed then the left and right moving fields are independent and

there are two possible closed string theories known as type IIA and type IIB, which

differ in the chirality of the left and right moving fields. The type IIA and type

IIB string theories share one sector where the massless space-time states are a scalar

dilaton, Φ, the Kalb-Ramond 2-form, Bmn and the graviton, Gmn. It is the graviton

that gives string theory its title as a quantum theory of gravity. The massless states

in the remaining bosonic sector differ between type IIA and type IIB, with type IIA

containing a 1-form and a 3-form field, and type IIB containing a 0-form, a 2-form and

self-dual 4-form field.

The interaction of open strings in type I string theory will create closed strings.

These closed strings are in fact those of type IIB theory projected so that they are

unoriented, and they give rise to a space-time dilaton, graviton and 2-form field in the

type I theory.

The remaining two string theories come from taking the left moving fields to be

purely bosonic while the right moving fields are supersymmetric. This gives an in-

consistency in the number of dimensions seen by the two sets of fields, but this can

be fixed by compactifying the bosonic fields on a 16-dimensional manifold. There are

two consistent choices for this compactification, giving rise to the E8×E8 and SO(32)

heterotic string theories.

In the low energy limit, the type IIA string theory reduces to type IIA supergrav-

ity, while the type IIB string theory reduces to type IIB supergravity. Type I string

theory and the heterotic string theories reduce to N = 1 supergravity in different

parameterisations, at strong and weak coupling respectively.

String theory also contains a variety of extended objects known as branes. D-branes

arise as the end points of open strings, and must be dynamical objects to avoid breaking

Lorentz invariance. In type IIA string theory, there exist stable D0-, D2-, D4-, D6- and

D8-branes, while in type IIB string theory there exist stable D1-, D3-, D5-, D7- and

D9-branes. These are charged under the space-time forms, and also have corresponding

solutions in type IIA and type IIB supergravity.

If string theory is to be our theory of everything then it is a little unsatisfactory

that there are five consistent string theories, rather than a single unique one. However,

the five string theories can all be related by a web of dualities, which is suggestive of

some more fundamental underlying theory. The type IIA and type IIB theories are
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related under T-duality, where the theories are equivalent when compactified on a circle

of radius R and l2s/R respectively. The heterotic string theories are also related under

T-duality. Type I string theory at small string coupling is also related to the SO(32)

heterotic string theory at large coupling. This is known as S-duality and is also evident

in the supergravity regime as mentioned above.

The conjectured theory that links these five string theories has been dubbed M-

theory and is an eleven dimensional theory. In the low energy limit, M-theory should

reduce to the unique supergravity in eleven dimensions, which further reduces to type

IIA supergravity upon compactification. We do not yet have a fundamental description

of M-theory as we do with string theory in terms of the fundamental string. However,

we can infer a lot about the objects that must arise in M-theory by the knowledge

that it must contain the five string theories and eleven dimensional supergravity. For

example, from examining the field content of eleven dimensional supergravity, we know

that the massless bosonic fields in M-theory must be a graviton and a 3-form. Eleven

dimensional supergravity also contains stable 2-brane and 5-brane solutions, suggesting

that M-theory contains appropriate M2-branes and M5-branes.

Evidence for the eleven dimensional nature of M-theory can be seen directly from

type IIA string theory. The mass of the D0-brane is

T0 =
1

gsls
, (1.0.1)

where gs is the string coupling. As the string coupling grows large the mass therefore

becomes light. The mass of the bound state of n D0-branes is nT0, so we have tower of

massive states which become light as gs → ∞. This is reminiscent of the momentum

states that appear in a Kaluza-Klein compactification. The D0-brane can therefore be

interpreted as eleven dimensional momentum, on a circle with radius R = gsls. The

appearance of this extra dimension can also be seen in the strong coupling limit of the

D2-brane action where an appropriate rewriting of the fields reveals an extra transverse

dimension and the action now describes an M2-brane.

Until a few years ago, only the action of a single M2-brane was known. The action

for multiple D2-branes is well known and whatever the multiple M2-brane action turns

out to be, it should be the strong coupling limit of the multiple D2-brane action. Recent

progress has been made towards a Lagrangian description of this theory by Bagger,

Lambert and Gustavsson (BLG) with the introduction of a novel three-algebra to

replace the usual Lie algebra as the gauge group generators. The number of branes

is determined by the structure of the three-algebra, but there is only a single suitable

three-algebra which describes two M2-branes. This theory of two M2-branes can also be

formulated as an SU(2)× SU(2) gauge theory. Shortly afterwards, Aharony, Bergman,

Jafferis and Maldacena (ABJM) proposed a U(N)×U(N) Chern-Simons theory which
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describes N M2-branes in an orbifold background with reduced supersymmetry. Both

of these theories can be reduced to the multiple D2-brane action using a novel Higgs

mechanism which we will review in more detail in Chapter 2.

Recall that in type IIA string theory the space-time background contains a dilaton,

a graviton and a Kalb-Ramond 2-form, as well as a 1-form and 3-form. The action

for multiple D2-branes can be generalised to include couplings to all of these fields

and describe the branes in a non-flat background. Both the BLG and ABJM action

describe multiple M2-branes in a flat background and it is still not clear how to extend

these actions to also include couplings to the background M-theory fields, the graviton

and the 3-form. However, possible extensions can be tested by comparison to the

known D2-brane action in the compactification limit, and this is our main focus in the

next two chapters. The research in Chapter 3 concerns extending the ABJM action to

contain couplings to the background 3-form of M-theory.

The other extended object in M-theory is the M5-brane and this still remains a

mystery. It is hard to write down even the single M5-brane action, and while there has

been some progress towards a multiple M5-brane action in recent years, it is still an

open question. There is a conjecture that the M5-brane theory on a circle is dual to the

five dimensional super-Yang-Mills theory that is the low energy action of multiple D4-

branes. Certainly this should be true in the limit of small radius, but the claim is that

five dimensional super-Yang-Mills is UV complete and the duality holds at all sizes of

the compactification radius. Instantons play an important role in this correspondence,

as they correspond to D0-branes in the string theory picture and to momentum modes

in the compactified M-theory picture. This interplay between M-theory, string theory

and instantons leads us to the second part of this thesis, where we study instantons in

more detail.

Instantons

Instantons are topological solitons in four dimensional Euclidean Yang-Mills which are

characterised by having a self-dual field strength. They were first discovered 35 years

ago and have played an important role in understanding quantum tunnelling in four

dimensional Yang-Mills, and in understanding supersymmetric gauge theories. Our

interest in instantons is as dynamical solitons in five dimensional Yang-Mills on the

world-volume of a stack of D4-branes, although the string theory setting is largely

incidental. In this context, instantons are solutions in the four spatial dimensions,

and can evolve in the time direction. Instantons sit at the head of the family of

topological solitons in Yang-Mills theories, which include vortices and monopoles in

three and four dimensional Yang-Mills respectively. These vortices and monopoles can

be recovered from instantons via dimensional reduction. The dynamics and interactions

of vortices and monopoles is well understood but relatively little is known about the
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equivalent dynamics of instantons, perhaps due to them only appearing dynamically

in five dimensions, outside the realm of everyday physics.

Topological solitons in different theories generally share qualitatively similar prop-

erties. The theories all split into different sectors based on a topological characteristic

of the solutions, which can be indexed by an integer known as the topological charge.

This topological charge arises from how many times the space-time fields ‘wrap’ the

gauge group or target space of the fields. Topological solitons are non-perturbative ob-

jects in field theories since they cannot be reached by a continuous perturbation away

from the vacuum due to a non-trivial ‘wrapping’. They appear as the lowest energy

configurations in each topological sector and are important in understanding the full

field theory.

Soliton field configurations generally resemble isolated lumps which behave like

point particles when they are well separated, but take on a richer and more compli-

cated structure when close together. Right angled scattering of two individual solitons

is a common feature, which can be argued on symmetry principles alone, and there

often exist interesting examples of scattering of multiple solitons which pass through a

configuration of increased symmetry before scattering. For example, monopoles com-

ing in along the points of a tetrahedron have their symmetry group promoted to that

of a cube before scattering with the symmetry of the dual tetrahedron.

Instantons are qualitatively similar in behaviour to sigma model lumps which arise

in a three dimensional model with a scalar that takes values on a unit sphere. Sigma

model lumps are often used as a toy model for studying instantons. A common property

of both, which is not shared by monopoles and vortices, is a slow roll instability in the

soliton size. If the static soliton is given a small perturbation then it will either shrink or

expand at constant velocity until it hits zero size or expands indefinitely. However, both

instantons and sigma model lumps can be stabilised with the addition of a potential.

In the case of sigma model lumps this is added in by hand, but for instantons on D4-

branes this arises naturally when the D4-branes are separated by giving a scalar field a

non-zero vacuum expectation value (VEV) in the Yang-Mills theory. The solitons must

also be given an appropriate rotation to stabilise against collapse from the potential,

and in doing so they gain an electric charge. These charged solitons, known as dyonic

instantons in five dimensional Yang-Mills, are stable to perturbations.

The space of all physically different instanton solutions is known as the moduli

space. As with other related soliton systems, the instanton moduli space has many nice

mathematical properties and is a hyper-Kähler manifold. There has been a significant

amount of study of the instanton moduli space and it has led to a deeper understanding

of the mathematics of the underlying manifolds. This thesis will make use of some of

these results, but our main focus is on the study of the dynamics of instantons so we

will not attempt to give a rigorous treatment.
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The low energy dynamics of topological solitons can generally be approximated by

geodesic motion through the moduli space. Intuitively, the static solitons are the lowest

energy configurations in each topological sector, and giving them a small velocity will

only increase their energy slightly. These configurations will then always stay close

to the minimum energy configurations by energy conservation. The moduli space can

be thought of as the floor of a potential valley in the space of all solutions to the

Yang-Mills equations of motion, and the evolution of slow moving solitons must stay

near the bottom of this potential valley. So long as the evolution does not ascend too

far up the valley, the motion can be approximated by motion exactly along the valley

floor, or as the evolution through snapshots of the static solitons in the moduli space.

For dyonic instantons, each solution has a different electric charge, which induces a

potential on the moduli space. So long as this potential is shallow compared to the

surrounding valley, the moduli space approximation is still valid. We will make this

precise in Chapter 4.

Instanton solutions can be found using a technique known as the ADHM construc-

tion which recasts the problem of solving the self-dual field equation into a set of

non-linear algebraic equations. This technique is used repeatedly in calculations in-

volving instantons, as it generally allows us to turn all expressions involving derivatives

and integrals into purely algebraic expressions. The ADHM construction also provides

a natural coordinate system on the moduli space of instantons, at least when an explicit

parameterisation of the ADHM data is known.

One of the goals of this thesis is to understand the moduli space and low energy

dynamics of charge two instantons. In Chapter 5, we make use of the ADHM construc-

tion to parameterise the moduli space, and understand the physical meaning of the

parameters. From here we calculate the metric on the moduli space, and in the case of

dyonic instantons we also calculate the potential. This allows us to approximate the

low energy dynamics of instantons and dyonic instantons via geodesic motion in this

metric (for lack of a better term, we also describe motion in the presence of a potential

as geodesic motion.) In Chapter 6 we present a numerical study of this motion, with

algebraic insights where possible.

As well as their relationship to monopoles, vortices and sigma model lumps, instan-

tons are also connected to Skyrmions. Every instanton solution can be transformed

into a solution of the Skyrme model, and this technique can be used to produce Skyrme

solutions which deviate from the true lowest energy Skyrmions by only a few percent.

Symmetric instantons are particularly relevant in this context. The simplest example

of a charge one instanton has spherical symmetry and gives an approximate solution

to the charge one Skyrmion, also with spherical symmetry. At charge four, there exists

an instanton with cubic symmetry which fits into a family with overall tetrahedral

symmetry. This family describes the approximate scattering of four Skyrmions, with
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the same symmetries. At charge seven there is an icosahedrally symmetric instanton

which fits into a similar one parameter family with overall tetrahedral symmetry and

approximately describes seven Skyrmion scattering. The utility of these symmetric in-

stantons is not limited to Skyrmions, since each of these symmetric instanton families

have also recently been found to give rise to hyperbolic monopole solutions.

Motivated by the utility of instantons which are symmetric under platonic sym-

metries, our aim in Chapter 7 is to find instantons which are symmetric under the

symmetries of regular polytopes. Regular polytopes are the generalisation of Platonic

solids to four dimensions, so that their symmetry group is a subgroup of SO(4). The

icosahedrally symmetric instanton was found by taking the real representations of the

icosahedral group and looking for ADHM data which could be invariant under each

representation. Due to the way the symmetry acts on the ADHM data, it is possible

to choose a basis in which the representations split into irreducible blocks, making the

search straightforward. However, when the symmetry group is a subgroup of SO(4),

there are two independent actions on the ADHM data, related to the fact that the

double cover of SO(4) is SU(2)× SU(2). This removes the freedom to put everything

in a suitable basis and overcoming this problem is our main challenge in Chapter 7.

Finally, in Chapter 8 we will present a summary of our important findings and

provide an outlook on how the research in this thesis may lead to other interesting

work.



Part I

D-branes, M-branes and

background fields
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Chapter 2

D-branes and M-branes

String theory is based on the quantisation of a superconformal action on the world

sheet of a string, but our current understanding of string theory includes a rich set of

extended objects beyond just this fundamental string. In the type II string theories,

D-branes are one such class of objects. D-branes provide a hyper-surface for the end

points of open strings and are themselves dynamical objects [8]. In the modern view

of string theory, open strings end on a space filling D9-brane and lower dimensional

D-branes can be constructed from T-duality [6].

Due to the complexity of string theory, we must be content to explore the the-

ory in different regimes and by understanding the behaviour of the individual objects

within the theory, such as the fundamental string, D-branes and the NS5-brane. One

important regime is the low energy limit of type IIA or IIB string theory, where the

effective theory is either type IIA or IIB supergravity [9, 10, 11]. Quantisation of the

string produces a spectrum of massless states that become the supergravity fields. The

derivation of the massless states in the various string theories is given in detail in the

canonical texts by Polchinski [4, 5] and Johnson [6]. Both type IIA and type IIB string

theories have the same states in the Neveu-Schwarz–Neveu-Schwarz (NS-NS) sector,

which arises when the left and right moving fields are taken to be anti-periodic. The

massless states arising from the NS-NS sector are the graviton, Gµν , the Kalb-Ramond

2-form, Bµν , and the dilaton, φ. The Ramond-Ramond (RR) sector of the type II

string theories arises when the world sheet fields are periodic. The RR sector of type

IIA string theory contains a 1-form, and a 3-form, C(1) and C(3). The RR sector of

type IIB string theory instead contains a 0-form, a 2-form and a 4-form, C(0), C(2) and

C(4).

In type IIA and type IIB supergravity, D-branes are 1/2-BPS solitonic objects which

are charged under the RR fields. In type IIB string theory and type IIB supergravity

there are stable D-branes with an even number of spatial dimensions, while in the type

IIA theories there exist D-branes with an odd number of spatial dimensions. These

dimensions are consistent with the degree of the RR forms that they are charged under.

15
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A comprehensive review of different brane configurations in supergravity is given in

reference [12].

From a more stringy point of view, D-branes support the end points of open strings.

The massless states of the open string correspond to a gauge field, Aµ, in the directions

that lie on the D-brane, and scalar fields XI , that lie transverse to the D-brane. D-

branes are dynamical objects themselves and the scalars have a natural interpretation

as the transverse fluctuations in the position of the D-brane.

Conceptually a similar picture exists for M-theory, although understanding the

behaviour of the M-branes turns out to be significantly harder. In eleven dimensions

there is a unique supergravity theory [13] and whatever complete picture of M-theory

eventually emerges should be the UV completion of this supergravity theory. From

eleven dimensional supergravity we can infer that the massless fields in M-theory are

a metric, G, a 3-form, C, and a gravitino. In addition, M-theory contains stable

M2-branes and M5-branes which are electrically and magnetically charged respectively

under the 3-form [12, 14, 15].

Type IIA supergravity is the dimensional reduction of eleven dimensional super-

gravity on a circle [16, 17, 18]. The 1-form, C(1), in type IIA supergravity arises from

the usual Kaluza-Klein procedure, while the 3-form, C(3), and the Kalb-Ramond 2-

form, B, arise from the dimensional reduction of the 3-form in eleven dimensional

supergravity. It is natural to expect that M-theory and type IIA string theory are also

related via a dimensional reduction in the same way, or alternatively that M-theory is

the strong coupling limit of type IIA string theory [19, 20, 21]. Indeed, the action of

a single M2-brane can be found from the strong coupling limit of a single D2-brane,

corresponding to the opening out of the compactification circle in a direction transverse

to the brane [22, 23]. When M2-branes are wrapped around the compactified direction,

they instead reduce to fundamental strings [24]. Similarly, the M5-brane reduces to

give the NS5-brane and D4-brane of type IIA string theory [12].

It is still unknown if there is an analogue in M-theory to the fundamental string,

from which the entire theory can be built. It is suspected that the M2-brane plays this

role as it reduces to the fundamental string upon compactification, but we do not have

the necessary understanding of the quantisation and scattering of M2-branes as we do

with fundamental strings.

In this chapter we will review the world-volume actions of the D-branes and M-

branes we have discussed above. The action of a single D-brane and M2-brane is well

understood and the generalisation to a stack of multiple D-branes is possible, at least

in the low energy limit. We will review D-branes first in Section 2.1. The action of

multiple M2-branes is less well understood, although there has been significant progress

towards an understanding in the past five years. In Section 2.2 we will review the recent

proposals for the actions of multiple M2-branes. Finally in Section 2.3 we will look at
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how the multiple D2-brane action can be recovered from the multiple M2-brane action

via a novel use of the Higgs mechanism. This is a further consistency check of the

M2-brane theory.

In this introductory chapter we will only be able to review a small amount of

the known physics of D-branes and M-branes, but along with the references already

pointed out, the reviews in references [25, 26] provide a thorough discourse of our

current understanding of multiple M2-branes.

2.1 Multiple D-branes

The dynamics of single Dp-brane in a flat background are governed by the Dirac-Born-

Infeld (DBI) action [27, 28],

SDBI = −Tp
∫

dp+1x
√
− det

(
γµν + λFµν

)
, (2.1.1)

where λ = 2πα′, α′ = l2s , and γµν is the pull-back of the flat space-time metric onto the

world-volume in static gauge,

γµν = ηµν + ∂µX
I∂νX

I . (2.1.2)

This can be derived via T-duality from the space-filling D9-brane, or directly from the

beta functions of the open string [29].

In the limit of small field strength, Fµν , and small derivatives of the fluctuations,

∂µX
I , the DBI action can be expanded to leading order. We recover U(1) Yang-Mills

with free massless scalar fields,

S = −λ2 Tp

∫
dp+1x

(
1
4
FµνF

µν + 1
2
∂µX

I∂µXI
)
. (2.1.3)

We have rescaled the scalar fields by XI → XI/(2πα′). The Yang-Mills coupling is

given by
1

g2
YM

= (2πα′)2Tp, (2.1.4)

and we have neglected terms that are of order (α′)4 and higher.

The DBI action describes the dynamics of a D-brane in a flat background without

any of the supergravity fields turned on. To understand how a D-brane behaves if it

moves in a background of these closed string fields, Gmn, Bmn, φ, and the RR forms,

C(n), we must couple these fields into the action.

The background fields in the NS-NS sector are coupled to the single D-brane by
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the following modification to the DBI action [6]:

SDBI = −Tp
∫

dp+1x e−φ
√
− det

(
γµν + λFµν +Bµν

)
. (2.1.5)

The pull back of the space-time metric is now the pull-back of G, rather than of the

flat metric,

γµν = P [G]µν = Gµν + 2GI(µ∂ν)X
I +GIJ∂µX

I∂νX
J . (2.1.6)

The dilaton contribution can be viewed as a local variation in the tension of the D-brane

due to the dependence of the string coupling on the dilaton. The B field appearing in

the action is the pull-back of the space-time B field,

Bµν = P [B]µν = Bµν + 2BI[µ∂ν]X
I +BIJ∂µX

I∂νX
J . (2.1.7)

It must be included in this way due to the presence of a boundary term on the open

string in the space-time gauge transformation of B. This is compensated by a trans-

formation in Aµ, so that the true gauge invariant quantity is B + λF .

D-branes also carry an RR charge through couplings to the RR forms [30],

SCS = Tp

∫
P
[∑

C(n)eB
]
eλF . (2.1.8)

The expression in the integral should be interpreted as only containing the terms in

the expansion of the exponentials which are of degree (p+ 1) and so can be integrated.

Note that while a Dp-brane is naturally charged under C(p+1), it also charged under the

RR forms with a lower degree through couplings involving B and F in the exponential.

Let us now consider multiple D-branes. As N D-branes become coincident, the

strings stretching between them become massless and the U(1)N gauge symmetry is

enhanced to U(N) [31]. The gauge field, Aµ, becomes non-abelian and the scalars lie in

the adjoint representation of U(N). Extending the above action to multiple D-branes

is non-trivial, but in the appropriate limit the action should reduce to super-Yang-Mills

theory. This theory has a scalar potential proportional to Tr[XI , XJ ]2 but the naive

extension of the above action by tracing over the gauge indices will not recover such

terms. There are suggestions that the appropriate action can be found by T-duality

from the D9-brane action [32], but it is not clear that such an action is well defined to

all orders in the field strength.

In this thesis we are only concerned with the low energy limit of multiple D-branes,

in which case the theory reduces to U(N) super-Yang-Mills [6],

S = −λ2 Tp

∫
dp+1x Tr

(
1
4
FµνF

µν + 1
2
DµX

IDµXI − 1
4
[XI , XJ ]2

)
. (2.1.9)
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For a single D-brane the coupling to the background fields, C(n), is consistent

with T-duality, but for multiple D-branes with a non-abelian gauge group it must

be modified to the Myers-Chern-Simons [32] action with the inclusion of higher degree

RR forms,

SMCS = Tp

∫
STr

(
P
[
eiλiX iX

∑
C(n)eB

]
eλF
)
. (2.1.10)

Here iX is the interior product and lowers the degree of a form,

iXiXC = 1
6
Cmnp[X

m, Xn] dxp. (2.1.11)

Multiple D-branes are therefore also charged under higher degree RR forms.

The field strength is naturally matrix valued, but the background forms, C(n), and

Kalb-Ramond 2-form, B, must be promoted to functionals of the transverse coordi-

nates, XI , via their Taylor expansion,

C(3)
mnp(x

µ;XI) =
∞∑
n=0

1

n!
XI1 · · ·XIn (∂I1 · · · ∂In)C(3)

mnp(x
µ;xI)

∣∣
xI=0

. (2.1.12)

This may seem unusual for the background fields, but recall that the D-brane positions

are described by N×N matrices, and so we are not considering the value of the 3-form

at individual points any more, but rather the value it takes on each of the N branes

simultaneously. For example, consider the case of N separated branes where the gauge

group is broken to U(1)N and the Xs become diagonal matrices. Then the matrix

valued 3-form also becomes diagonal with the diagonal entries describing the value it

takes at the position of each of the N D2-branes.

The trace in the Myers-Chern-Simons term is the symmetrised trace, STr, where

the terms inside the trace are taken to be symmetrised. All of the F , [X,X], DX and

X terms are symmetrised, including those inside the Taylor expansion of C and B.

2.2 Multiple M2-branes

It has proved much harder to find a world-volume description of multiple M-branes,

but some recent developments have shown that it is not impossible. In this thesis we

will be concerned mainly with the action of multiple M2-branes, although there have

also been recent developments in understanding M5-branes [33, 34, 35, 36, 37].

From our understanding of M2-branes as solitons in eleven-dimensional supergrav-

ity we know that the M2-branes preserve 16 supercharges and must therefore have a

world-volume theory with N = 8 supersymmetry. Since the M2-brane is embedded in

eleven dimensions, we expect there to be eight scalar degrees of freedom describing its

embedding. We also expect eight fermionic degrees of freedom and no other dynamical
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degrees of freedom. In particular there will be no dynamical gauge field, although this

does not exclude the possibility of a non-dynamical gauge field, such as would arise

from a Chern-Simons theory. The theory of M2-branes must also be conformal because

it arises as the strong coupling limit of supersymmetric U(N) Yang-Mills in three di-

mensions. The Yang-Mills coupling gYM increases in the infrared and so the M2-brane

theory must lie at a conformally invariant fixed point.

2.2.1 The BLG action

The first suitable proposal for a theory of multiple M2-branes was from Bagger and

Lambert [38, 39], and independently from Gustavsson [40]. The novel feature of this

theory is a three-bracket, which is a generalisation of the Lie bracket,

[T a, T b, T c] = fabcdT
d. (2.2.1)

Here the generators, T a, lie in a vector space which is a three-algebra and the three-

bracket must satisfy a generalised Jacobi identity. We will address the question of

whether such a space exists later, but for now let us take it as a given.

The Bagger-Lambert-Gustavsson (BLG) theory contains 8 scalars, XI , and 16

fermions arranged in a 32 component real spinor, Ψ, satisfying

Γ012Ψ = −Ψ, (2.2.2)

and a gauge field Ãµ. This representation of the fermions is used to make contact

with the supersymmetries of the eleven dimensional space-time. The supersymmetries

preserved by the M2-brane are taken to satisfy

Γ012ε = ε. (2.2.3)

The scalars and fermions take values in the three-algebra,

XI = XI
aT

a, (2.2.4)

Ψ = ΨaT
a. (2.2.5)

The gauge field, Ãµ, should map a member of the three-algebra to another member of

the three-algebra and so must have two gauge indices. The gauge symmetry is

δXI
a = Λb

aX
I
b , (2.2.6)

δÃµ
a
b = ∂µΛa

b + Ãµ
a
c Λc

b − Λa
c Ãµ

c
b. (2.2.7)
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The covariant derivative is

DµX
I
a = ∂µX

I
a − ÃµbaXI

b , (2.2.8)

which transforms covariantly under the above gauge symmetry.

To define a Lagrangian for these fields, there must be an inner product, h, on the

three-algebra that can be used to raise and lower the gauge indices,

〈X, Y 〉 = habXaYb. (2.2.9)

When the structure constants have all their indices raised they must be fully anti-

symmetric so that gauge transformations leave the inner product invariant,

fabcd = f [abcd] = fabceh
ed. (2.2.10)

The Lagrangian of the BLG theory is

L =
1

2
DµX

IaDµXI
a +

i

2
ΨaΓµDµΨa +

i

4
ΨbΓIJX

I
cX

J
d Ψaf

abcd − V + LCS, (2.2.11)

where the potential is

V =
1

12
X i
aX

J
b X

K
c X

I
eX

J
fX

K
g f

abcdf efgd, (2.2.12)

and there is a Chern-Simons like term,

LCS =
1

2
εµνρ

(
fabcdAµab∂νAρcd + 2

3
f cdagf

efgbAµabAνcdAρef

)
. (2.2.13)

The gauge field in this Chern-Simons term is defined in terms of Ãµ by

Ãµ
c
d = Aµabf

abc
d. (2.2.14)

This Lagrangian is invariant under the following supersymmetry transformations,

δXI
a = iεΓIΨa, (2.2.15)

δΨa = DµX
I
aΓµΓIε− 1

6
XI
bX

J
c X

K
d f

bcd
aΓ

IJKε, (2.2.16)

δÃµ
b
a = iεΓµΓIX

I
cΨdf

cdb
a. (2.2.17)

To recap, this theory is invariant under 16 supersymmetries and an SO(8) R-symmetry,

and is conformally invariant, as expected for multiple M2-branes. From our under-

standing of D-branes, we would expect the size of the three-algebra to be related to

the number of M2-branes. Unfortunately, it turns out that there is only a single finite
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three-algebra with Euclidean signature [41, 42]. This three-algebra has the structure

constants and inner product given by

fabcd =
2π

k
εabcd, hab = δab, (2.2.18)

and describes two M2-branes in the background of an R8/Z2k orbifold [43, 44]. While

the BLG theory is unable to described arbitrary stacks of M2-branes, it is still remark-

able in giving the first plausible description of non-abelian M2-branes.

2.2.2 The ABJM action

Shortly after the construction of the BLG model, a class of models with a U(N)×U(N)

gauge group but only N = 6 supersymmetry were proposed by Aharony, Bergman,

Jafferis and Maldacena (ABJM) to describe arbitrary numbers of M2-branes [45]. The

ABJM theory contains four complex scalars, ZA (A = 1, 2, 3, 4,) and fermions, ψA,

which are in the bi-fundamental representation, (N, N̄), of the gauge group. There

are also non-dynamical gauge fields, ALµ and ARµ , which transform under each U(N)

respectively.

The Lagrangian for the ABJM theory is

L = −Tr
(
DµY

†
AD

µY A
)

+ iTr
(
ψA†γµDµψA

)
− Vbos − Vferm − LCS, (2.2.19)

where the sextic bosonic potential is

Vbos =
4π2

3k2
Tr
(

4ZAZ†AZ
BZ†CZ

CZ†B − 4ZAZ†BZ
CZ†AZ

BZ†C

− ZAZ†AZ
BZ†BZ

CZ†C − Z
†
AZ

AZ†BZ
BZ†CZ

C
)
,

(2.2.20)

and the Yukawa-like terms are

Vferm =
2πi

k
Tr
(
Z†AZ

AψB†ψB − ZAZ†AψBψ
B† + 2ZAZ†BψAψ

B†

− 2Z†AZ
BψA†ψB + εABCDZ†AψBZ

†
CψD − εABCDZ

AψB†ZCψD†
)
.

(2.2.21)

The covariant derivative acts as

DµZ
A = ∂µZ

A + iALµZ
A − iZAARµ , (2.2.22)

and the final piece in the ABJM Lagrangian contains the Chern-Simons terms for the

gauge fields,

LCS =
k

4π
εµνρ Tr

(
ALµ∂νA

L
ρ +

2i

3
ALµA

L
νA

L
ρ − ARµ∂νARρ −

2i

3
ARµA

R
ν A

R
ρ

)
. (2.2.23)
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The ABJM action is invariant under the following supersymmetry transformations:

δZA = −εABψB. (2.2.24)

δψB = γµεABDµZ
A +

2π

k

(
ZCZ†BZ

D − ZDZ†BZ
C
)
εCD

− 2π

k

(
ZAZ†CZ

C − ZCZ†CZ
A
)
εAB,

(2.2.25)

δALµ =
2πi

k

(
εABγµZ

Bψ†A − εABγµψAZ†B
)
, (2.2.26)

δARµ =
2πi

k

(
εABγµψ

†AZB − εABγµZ†BψA
)
. (2.2.27)

The ABJM theory describes N M2-branes in the background of a C4/Zk orbifold. This

can be seen from the vacuum moduli space, or from the brane construction where

a configuration of NS5-, D5- and D3-branes is T-dualised and lifted to M-theory to

describe the background geometry [45, 26].

2.3 Reduction of multiple M2-branes to D2-branes

M-theory reduces to type IIA string theory upon compactification of one of the spatial

dimensions. In this limit, M2-branes which do not wrap the compactified direction

should reduce to D2-branes in the type IIA theory. This reduction was first understood

for multiple M2-branes in the BLG theory when one of the scalar fields is given a large

expectation value [46]. After integrating out one half of the gauge potential the theory

reduces to the multiple D2-brane action. This novel Higgs mechanism can also be

applied to the ABJM theory where the U(N) × U(N) theory reduces to super-Yang-

Mills with a U(N) gauge group [47, 48] describing multiple D2-branes. In this section

we will review this reduction for the ABJM theory.

2.3.1 The novel Higgs mechanism

We can understand the relation between the ABJM theory and multiple D2-branes if

we consider the background C4/Zk orbifold as a cone over S7/Zk. The angle of the cone

is proportional to k−1 and the expectation value of the scalar, 〈X8〉 = v, is proportional

to how far away the branes are sitting from the tip of the cone. If we keep the ratio of

k and v fixed then the radius of the cross section of the cone around where the branes

are located will remain constant. In the limit of k →∞ and v →∞ where the ratio is

kept constant, the local space looks like a flat cylinder, R7 × S1. The M2-branes are

therefore in a compactified flat background where they should behave like D2-branes

in type IIA string theory. This is illustrated in Figure 2.1.
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λv

2π/k λgYM

(a) The orbifold cone at small k and v.

λgYM

v →∞
k →∞

(b) The orbifold cone at large k and v where
the cone become flat.

Figure 2.1: As k and v go to infinity with their ratio fixed, the cross section at v
remains at a constant radius. However, the cone becomes flatter as v gets larger, and
in the limit k, v →∞ the cross section around v looks like a cylinder.

To understand this procedure in detail, let us begin by rewriting the gauge fields as

A±µ =
1

2

(
ALµ ± ARµ

)
. (2.3.1)

In this notation the covariant derivative becomes

DµY
A = D̃µY

A + i{A−µ , Y A}, (2.3.2)

where

D̃µY
A = ∂µY

A + i[A+
µ , Y

A]. (2.3.3)

The Chern-Simons term becomes

LCS =
k

2π
εµνλ Tr

(
A−µF

+
νλ +

2

3
iA−µA

−
ν A
−
λ

)
, (2.3.4)

where

F+
µν = ∂µA

+
ν − ∂νA+

µ + i[A+
µ , A

+
ν ]. (2.3.5)

To make contact with the 8 transverse directions to the M2-branes, and eventually the

7 transverse directions to the D2-branes, we will write the complex scalar fields, ZA,

as

ZA = XA + iXA+4. (2.3.6)

Here the XI fields (I = 1, . . . 8) are Hermitian matrices which can be expanded in a

basis of the identity matrix and the Hermitian generators of su(N).

To reduce the ABJM action to that of multiple D2-branes, we take one of the scalar

fields to have a vacuum expectation value (VEV),

〈Z4〉 =
v

2
T 0, (2.3.7)
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or equivalently,

〈X4〉 =
v

2
T 0. (2.3.8)

In giving X4 a VEV, we have broken the U(N)×U(N) gauge symmetry to its diagonal

subgroup U(N) where the left and right groups are identified.

In the D2-brane action that we will recover, the Yang-Mills coupling will be given

by

gYM =
2πv

k
. (2.3.9)

As discussed at beginning of this section, the appropriate limit is v →∞ and k →∞
while keeping gYM fixed.

In the action above, A−µ is an auxiliary field and can be integrated out. We will

find its equation of motion shortly, but for now we note that it is of order v−1. We can

now expand the action around the VEV of Z4, neglecting terms of higher order in v−1.

The covariant derivatives become

DµZ
a → D̃µX

a + iD̃µX
a+4, a = 1, 2, 3 (2.3.10)

DµZ
4 → D̃µX

4 + iD̃µX
8 + ivA−µ . (2.3.11)

We can shift the auxiliary gauge field,

A−µ → A−µ −
1

v
D̃µX

8, (2.3.12)

so that the covariant derivatives are

DµZ
a → D̃µX

a + iD̃µX
a+4, (2.3.13)

DµZ
4 → D̃µX

4 + ivA−µ . (2.3.14)

This shift will also introduce a term into the action proportional to εµνρD̃µX
8F+

νρ from

the Chern-Simons term. However this can be written as a total derivative by use of

the Bianchi identity for F+
νρ.

Neglecting higher order terms in v−1, the bosonic part of the action becomes

S =

∫
d3xTr

(
−D̃µX

iD̃µX i − v2A−µA
−µ +

k

2π
εµνλA−µF

+
νλ

)
− Vbos, (2.3.15)

where i = 1, . . . , 7. The bosonic potential reduces to

Vbos =
2π2v2

k2
Tr[X i, Xj]2. (2.3.16)
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We can eliminate A−µ from the action by solving for its equation of motion. In doing

so, we find the equation of motion is

A−µ =
k

4πv2
εµνρF+

νρ. (2.3.17)

There are higher order terms in v−1 that we have ignored. Substituting this back into

the action we have

S =

∫
d3xTr

(
−D̃µX

iD̃µX i − 1

2g2
YM

F+
µνF

+µν

)
− Vbos, (2.3.18)

where we have used the identification of gYM in equation (2.3.9). After rescaling X̃ =

XgYM, the action becomes that of Yang-Mills gauge theory,

S =
1

g2
YM

∫
d3xTr

(
−D̃µX̃

iD̃µX̃ i − 1
2
F+
µνF

+µν − 1
2
[X̃ i, X̃j]2

)
. (2.3.19)

We have only shown the bosonic terms here, but the fermionic terms also reduce in

the appropriate way to recover supersymmetric N = 8 Yang-Mills. Note that there

are no terms involving X8 at first order in this action. The degree of freedom that we

have lost has been absorbed by A+
µ to give it the one degree of freedom of a dynamical

gauge field in three dimensions. The Chern-Simons terms of the M2-branes have given

rise to a Yang-Mills kinetic term for A+
µ .

2.4 Background fields

So far we have only considered the action of multiple M2-branes in the limit of a flat

background, where the metric is flat and the 3-form is zero. In this section, and in

the next chapter we will be concerned with extending the multiple M2-brane action to

include couplings to the background 3-form.

For a single M2-brane the full non-linear world-volume action is understood, and

the bosonic part is [49]

S = −TM2

∫
d3x

(√
− det γ +

1

3!
εµνρ∂µX

m∂νX
n∂ρX

pCmnp

)
, (2.4.1)

where γµν is the pull back of the space-time metric,

γµν = ∂µX
m∂νX

nGmn. (2.4.2)

The BLG and ABJM theories provide a non-abelian generalisation of the first term in

this action, but so far we have not commented on the possible generalisation of the
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second term.

One possible approach to find a non-abelian generalisation of the coupling to the

background 3-form is to consider all possible couplings which preserve a modified su-

persymmetry. In the limit TM2 → ∞, the extension to the BLG action in a specific

supersymmetric background is argued to be [50],

L = 2G̃IJKL Tr
(
XI , [XJ , XK , XL]

)
− 1

2
m2 Tr

(
XI , XI

)
− i

8
Tr
(

ΨΓIJKL,Ψ
)
G̃IJKL,

(2.4.3)

where

G̃IJKL = − 1

3!
εµνρ

(
G7 + 1

2
C3 ∧G4

)
µνρIJKL

=
1

4!
εIJKLMNPQG

MNPQ,
(2.4.4)

and GIJKL is taken to be constant. The mass introduced for XI is proportional to

G2 = GIJKLG
IJKL.

An approach to find a more general construction is to use our knowledge of the

Myers-Chern-Simons action for the non-abelian coupling of background fields to a

stack of multiple D2-branes. The terms that may be present in the multiple M2-brane

action can be fixed upon reduction to the D2-brane theory. Using this approach a

gauge invariant extension of the BLG action can be written down [51],

SMCS =

∫
d3x

(
λ1 ε

µνρ gabcCIJK DµX
I
aDνX

J
b DρX

K
c

+ λ2 ε
µνρ dgabc fdef g CIJKLMN X

I
dX

J
eX

K
f DµX

L
aDνX

M
b DρX

N
c

)
.

(2.4.5)

The 6-form that we have introduced here is the dual of the 3-form. The constants

gabc and dabcd encode our lack of understanding of how to define a symmetric trace

over the three-algebra generators since the inner product does not extend to multiple

generators,

gabc = STr
(
T aT bT c

)
, (2.4.6)

dabcd = STr
(
T aT bT cT d

)
. (2.4.7)

Gauge invariance of this action imposes the conditions

gd(abf c)fed = 0, (2.4.8)

dgabcf ji[dhf
ef ]h

g + dgh(abf c)jidf
def

g = 0. (2.4.9)
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For the three-algebra, A4, these can be fixed uniquely by comparing the action obtained

in the reduction to D2-branes with the expected couplings in the Myers-Chern-Simons

terms.

A similar argument can be made about the extension of the ABJM action [52],

where the U(N)×U(N) gauge group allows for a more concrete understanding of the

nature of the coupling to the background 3-form and 6-form.

First one needs to understand how to pull back the space-time fields so that they

can be coupled into the ABJM action. This is well understood for D2-branes in the

background of the type IIA 3-form. The pullback in static gauge is given by

P [C̃]µνρ = C̃µνρ + 3λ̃C̃µνIDρX̃
I + 3λ̃2C̃µIJDνX̃

IDρX̃
J

+ λ̃3C̃IJKDµX̃
IDνX̃

JDρX̃
K .

(2.4.10)

Note that from now on we will label fields in the type IIA theory with tildes to dis-

tinguish them from the M-theory fields. The type IIA 3-form can be extended to a

matrix valued functional of X̃I by replacing the transverse coordinates in its Taylor

expansion with X̃I as explained in Section 2.1.

In the ABJM action, the fields are in the bifundamental representation of U(N)×
U(N) and it is not clear how to pull back the space-time 3-form to the world-volume.

A naive attempt might be to take the pullback to be

P [C]µνρ = Cµνρ + 3λCµνADρZ
A + 3λ2CµAB̄DνZ

ADρZ
†
B

+ λ3CAB̄CDµZ
ADνZ

†
BDρZ

C + (c.c.).
(2.4.11)

The different components of C are chosen so that the terms shown above transform in

the left U(N) while the complex conjugate transforms in the right. In the dimensional

reduction to type IIA string theory, the M-theory 3-form should reduce to the RR

3-form, C̃, and the Kalb-Ramond 2-form, B̃. However, there are not enough compo-

nents in the 3-form coefficients in the above pullback to recover all of the independent

components of the IIA 3-form and Kalb-Ramond field.

It is possible to take the components of C to have a more general gauge index

structure and therefore couple to terms which would not be gauge invariant under nor-

mal matrix multiplication such as Tr
(
CµABDνZ

ADρZ
B
)
. We will discuss this further

in the next chapter, but for now we will jump ahead to an easier problem where the

U(N)× U(N) gauge group has been broken to its diagonal subgroup by giving one of

the scalar fields a large expectation value. In this case the most general combination
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of terms that may arise is [52]:

SC = TM2

∫
d3x εµνρ Tr

(
Cµνρ + 3λCµνADρZ

A

+ 3λ2
(
C

(1)

µAB̄
DνZ

ADρZ
†B̄ − C(2)

µAB̄
DνZ

†B̄DρZ
A

+ C
(3)
µABDνZ

ADρZ
B
)

+ λ3
(
C

(1)
ABCDµZ

ADνZ
BDρZ

C + C
(2)

ABC̄
DµZ

ADνZ
BDρZ

†C̄

− C(3)

ACB̄
DµZ

ADνZ
†B̄DρZ

C + C
(4)

BCĀ
DµZ

†ĀDνZ
BDρZ

C
))

+ (c.c.),

(2.4.12)

where TM2 = λ−2 is the M2-brane tension and λ = 2πl
3/2
p . Note that the upper indices

on the 3-form coefficients should not be confused with the indices that label the different

type IIA RR forms with different degrees. The C field coefficients are anti-symmetric

in any groups of identical types of indices. For example,

C
(1)
ABC = C

(1)
[ABC], C

(2)

ABC̄
= C

(2)

[AB]C̄
, C

(3)
µAB = C

(3)
µ[AB]. (2.4.13)

We perform the Higgsing procedure as above: expand around the expectation value,

consider only leading order terms, and rescale X̃ = XgYM. After doing so and using

equations (2.3.13) and (2.3.14) the action can be written as

SC = TM2

∫
d3x εµνρ Tr

(
P [C̃]µνρ + λvA−µP [B̃]νρ

)
. (2.4.14)

The fields marked with tildes correspond to the type IIA background fields and are

related to the 3-form coefficients in the ABJM action. For example, the world-volume

components of the Kalb-Ramond field, B̃µν , are given by

B̃µν = 3i
(
Cµν4 − C†µν4

)
. (2.4.15)

The identifications of the rest of the components of B̃ and C̃ with the coefficients of

the 3-form in the ABJM action are given at the end of this section. The pullbacks of

the type IIA fields are given by

P [C̃]µνρ = C̃µνρ + 3λ̃C̃µνiD̃ρX̃
i + 3λ̃2C̃µijD̃νX̃

iD̃ρX̃
j

+ λ̃3C̃ijkD̃µX̃
iD̃νX̃

jD̃ρX̃
k,

(2.4.16)
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and

P [B̃]µν = B̃µν + 2λ̃〈〈B̃µiD̃νX̃
i〉〉+ λ̃2〈〈B̃ijD̃νX̃

iD̃ρX̃
j〉〉, (2.4.17)

where D̃ is the covariant derivative in the recovered Yang-Mills theory, as in equation

(2.3.2). We have defined λ̃ = λ/gYM and 〈〈. . .〉〉 denotes the symmetric product. In

order to remove some undesirable terms that arise from this reduction but are not

present in the D2-brane action, we must identify the following 3-form coefficients:

C
(2)
µAB = C

(3)
µAB, (2.4.18)

and

C
(2)

ABC̄
= C

(3)

ABC̄
= C

(4)

ABC̄
. (2.4.19)

When integrating out A−µ the equation of motion now becomes

A−µ =
k

4πv2
εµνρF+

νρ +
TM2λ

2v
εµνρP [B̃νρ]

=
k

4πv2
εµνρ

(
F+
νρ + TM2λ̃g

2
YMP [B̃νρ]

)
=

k

4πv2
εµνρ

(
F+
νρ +

1

λ̃
P [B̃νρ]

)
,

(2.4.20)

where we have used

TM2 =
1

λ2
=

1

g2
YMλ̃

2
. (2.4.21)

Substituting back into the action gives

S =
1

g2
YM

∫
d3x Tr

(
−D̃µX̃iD̃

µX̃ i − 1

2

(
F+
µν + λ̃−1P [B̃µν ]

)2
)
− Vbos. (2.4.22)

This is the extension of the low energy action for multiple D2-branes in equation (2.1.9)

to include the background Kalb-Ramond field, where F̃ replaced by the gauge invariant

quantity F̃ + (2πα′)−1B̃. The tension of the D2-brane is identified with the tension of

the M2-brane, TM2 = TD2, and we saw in Section 2.1 that in the low energy limit, the

D2-brane action is Yang-Mills theory with coupling constant,

1

g2
YM

= (2πα′)2TD2. (2.4.23)

The quantity λ̃ should therefore be identified with 2πα′. The expected coupling to C̃(3)
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is also included, via its pull-back,

SMCS = TD2

∫
d3x εµνρ Tr

(
P [C̃]µνρ

)
. (2.4.24)

Identification of SU(4) fields with SO(7) fields

We present here a list of the identifications made in [52] between the components of

the SU(4) and SO(7) fields. In this thesis we have scaled B̃µν → 3B̃µν and B̃µi → 3
2
B̃µi

compared to the original paper. This gives the pullback of B̃ a more natural form:

P [B̃µν ] = B̃µν + 2λ〈〈B̃µiD̃νX̃
i〉〉+ λ2〈〈B̃ijD̃νX̃

iD̃ρX̃
j〉〉. (2.4.25)

The identifications used in this thesis are then:

C̃µνρ = Cµνρ + C†µνρ, (2.4.26)

B̃µν = 3i
(
Cµν4 − C†µν4

)
, (2.4.27)

C̃µνa = Cµνa + C†µνa, (2.4.28)

C̃µνa+4 = i
(
Cµνa − C†µνa

)
, (2.4.29)

C̃µν4 = Cµν4 + C†µν4, (2.4.30)

B̃µ4 = 6i
(
C

(1)

µ44̄
− C(1)†

µ44̄

)
, (2.4.31)

B̃µa = 3i
(
C

(1)
µ4ā − C

(1)†
µ4ā + C

(1)

µa4̄
− C(1)†

µa4̄
+ C

(3)
µ4a − C

(3)†
µ4a

)
, (2.4.32)

B̃µa+4 = 3
(
C

(1)
µ4ā + C

(1)†
µ4ā − C

(1)

µa4̄
− C(1)†

µa4̄
− C(3)

µ4a − C
(3)†
µ4a

)
, (2.4.33)

C̃µ4a = C
(1)
µ4ā + C

(1)†
µ4ā − C

(1)

µa4̄
− C(1)†

µa4̄
+ C

(3)
µ4a + C

(3)†
µ4a , (2.4.34)

C̃µ4a+4 = −i
(
C

(1)
µ4ā − C

(1)†
µ4ā + C

(1)

µa4̄
− C(1)†

µa4̄
− C(3)

µ4a + C
(3)†
µ4a

)
, (2.4.35)

C̃µab = C
(1)

µab̄
− C(1)†

µbā − C
(1)
µbā + C

(1)†
µab̄

+ C
(3)†
µab + C

(3)
µab, (2.4.36)

C̃µab+4 = i
(
C

(1)†
µab̄
− C(1)

µbā − C
(1)

µab̄
+ C

(1)†
µbā − C

(3)†
µab + C

(3)
µab

)
, (2.4.37)

C̃µa+4b = i
(
C

(1)
µbā − C

(1)†
µab̄

+ C
(1)

µab̄
− C(1)†

µbā + C
(3)
µab

)
− C(3)†

µab , (2.4.38)

C̃µa+4b+4 = C
(1)†
µab̄
− C(1)

µbā + C
(1)

µab̄
− C(1)†

µbā − C
(3)†
µab − C

(3)
µab. (2.4.39)
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and

B̃a4 = −6i
(
C

(2)

a44̄
− C(2)†

a44̄

)
, (2.4.40)

B̃4a+4 = −6
(
C

(2)

a44̄
+ C

(2)†
a44̄

)
, (2.4.41)

B̃ab = 3i
(
C

(1)
ab4 − C

(1)†
ab4 − C

(2)

ab4̄
+ C

(2)†
ab4̄

+ C
(2)
b4ā − C

(2)†
b4ā − C

(2)

a4b̄
+ C

(2)†
a4b̄

)
, (2.4.42)

B̃ab+4 = −3
(
C

(1)
ab4 + C

(1)†
ab4 − C

(2)

ab4̄
− C(2)†

ab4̄
+ C

(2)
b4ā + C

(2)†
b4ā + C

(2)

a4b̄
+ C

(2)†
a4b̄

)
, (2.4.43)

B̃a+4b = −3
(
C

(1)
ab4 + C

(1)†
ab4 − C

(2)

ab4̄
− C(2)†

ab4̄
− C(2)

b4ā − C
(2)†
b4ā − C

(2)

a4b̄
− C(2)†

a4b̄

)
, (2.4.44)

B̃a+4b+4 = −3i
(
C

(1)
ab4 − C

(1)†
ab4 − C

(2)

ab4̄
+ C

(2)†
ab4̄
− C(2)

b4ā + C
(2)†
b4ā + C

(2)

a4b̄
− C(2)†

a4b̄

)
, (2.4.45)

C̃ab4 =
(
C

(1)
ab4 + C

(1)†
ab4 + C

(2)

ab4̄
+ C

(2)†
ab4̄

+ C
(2)
b4ā + C

(2)†
b4ā − C

(2)

a4b̄
− C(2)†

a4b̄

)
, (2.4.46)

C̃a4b+4 = −
(
C

(1)
ab4 − C

(1)†
ab4 + C

(2)

ab4̄
− C(2)†

ab4̄
+ C

(2)
b4ā − C

(2)†
b4ā + C

(2)

a4b̄
− C(2)†

a4b̄

)
, (2.4.47)

C̃4a+4b+4 = −
(
C

(1)
ab4 + C

(1)†
ab4 + C

(2)

ab4̄
+ C

(2)†
ab4̄
− C(2)

b4ā − C
(2)†
b4ā + C

(2)

a4b̄
+ C

(2)†
a4b̄

)
, (2.4.48)

C̃abc = C
(1)
abc + C

(1)†
abc + C

(2)
abc̄ + C

(2)†
abc̄ − C

(2)

acb̄
− C(2)†

acb̄
+ C

(2)
bcā + C

(2)†
bcā , (2.4.49)

C̃abc+4 = i
(
C

(1)
abc − C

(1)†
abc − C

(2)
abc̄ + C

(2)†
abc̄ − C

(2)

acb̄
+ C

(2)†
acb̄

+ C
(2)
bcā − C

(2)†
bcā

)
, (2.4.50)

C̃ab+4c+4 = −
(
C

(1)
abc + C

(1)†
abc − C

(2)
abc̄ − C

(2)†
abc̄ + C

(2)

acb̄
+ C

(2)†
acb̄

+ C
(2)
bcā + C

(2)†
bcā

)
, (2.4.51)

C̃a+4b+4c+4 = −i
(
C

(1)
abc − C

(1)†
abc − C

(2)
abc̄ + C

(2)†
abc̄ + C

(2)

acb̄
− C(2)†

acb̄
− C(2)

bcā + C
(2)†
bcā

)
. (2.4.52)

Note that there is also a factor of 2 difference in the expressions for B̃a4 and B̃a+44

and a difference of sign of the C(3)† parts of Cµij. These appear to be mistakes in the

original paper.



Chapter 3

Higher order background field

couplings

In the previous chapter we have seen a prescription for extending the ABJM action

to including a coupling to the background 3-form of M-theory. This was derived by

assumptions of gauge invariance, at least in the action with partially broken gauge

symmetry, and by requiring that the action reduce to the action of multiple D2-branes

after performing the novel Higgs mechanism. Our goal in this chapter is to extend this

construction to include quadratic couplings to the background 3-form. Recall that the

full action of multiple D2-branes contains the Myers-Chern-Simons terms [32],

SMCS = TD2

∫
STr

(
P

[
e

i
2
λ̃[X̃,X̃]

(∑
C̃ne

B̃
)]

eλ̃F̃

)
. (3.0.1)

This contains terms which include both the type IIA 3-form, C̃, and the Kalb-Ramond

2-form, B̃. Since both the type IIA 3-form and the Kalb-Ramond 2-form are recovered

from the M-theory 3-form, these can only arise from terms in the ABJM action which

are quadratic in the M-theory 3-form.

In the D-brane action, the trace must be taken to be the symmetric trace. One of

the aims of this chapter is to understand the appropriate prescription for contracting

the matrix structure of the terms in the ABJM action, which we will continue to

refer to as a trace, even though it may be more general. This trace must maintain

gauge invariance with the unbroken U(N) × U(N) gauge group and reduce to the

linear couplings shown in the previous chapter when the gauge group is broken to its

diagonal subgroup. A possible prescription has been given previously when considering

the linear couplings [52], and we will comment on this further in this chapter. However,

there are some subtleties in this prescription that have not been previously considered

and we hope to address these more fully. Having an understanding of the higher order

couplings to the 3-form will be useful in further understanding this point.

33
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In Section 3.1 we will deduce the form of the quadratic couplings of the 3-form in

the ABJM action, after the U(N)×U(N) gauge group has been broken to its diagonal

subgroup. Beginning at this intermediate step allows us to concretely determine the

terms which must be present by matching with the terms in the D2-brane action. In

Section 3.2 we will comment on the form of the coupling to the 3-form in the ABJM

action with the unbroken gauge symmetry.

3.1 Quadratic couplings to background fields

Before we can construct the possible quadratic terms in the ABJM action we note that

the fields in the D2- and M2-brane actions are matrix valued and so their ordering is

important. In the Myers-Chern-Simons term of the D2-brane action the usual trace is

replaced by the symmetrised trace, STr. All of the terms in this should be appropriately

symmetrised, with commutators treated as a single term to avoid setting everything to

zero. In particular,

STr
(
C̃B̃[X̃, X̃]

)
=

1

2
STr

(
C̃B̃[X̃, X̃] + B̃C̃[X̃, X̃]

)
. (3.1.1)

This prescription does not make sense for the wedge product of two identical 3-forms

since symmetrizing the non-abelian structure would set everything to zero. Instead this

product should be naturally anti-symmetric:

CijkClmo = −ClmoCijk, by anti-symmetry of contracted indices (3.1.2)

= CijkClmo, by anti-symmetry of non-abelian product. (3.1.3)

This argument is perhaps too simple since the world-volume and tranverse indices are

not treated equally in the ABJM action. However, we will see later that this property is

also required to match with the sign of certain terms in the reduction to the D2-brane

action.

To conserve notation as much as possible, we will not explicitly show the anti-

symmetrization of the quadratic terms in the coefficients of the 3-form, but this should

always be taken as implicit. For example, we will only write CµνρC
(1)
ABC where we also

mean to include −C(1)
ABCCµνρ.

Our procedure is straightforward. We will begin by writing all possible terms which

are quadratic in the coefficients of the M-theory 3-form, C. The coefficients of C

have been given previously in the linear action in equation (2.4.12). We will fix the

coefficients of the quadratic terms by reducing to the D2-brane action and comparing

to the known terms there. In the identification of the linear terms between the ABJM

action and the D-brane action we had the freedom to identify the correct components
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to ensure the actions matched. With these identifications already fixed we no longer

have this freedom and it is not clear a priori whether such an identification will be

possible at quadratic order.

The terms we would like to recover in the D2-brane action come from the C̃ ∧ B̃
piece of the Myers-Chern-Simons action in equation (3.0.1),

L̃ =
1

2
µ2λ̃i STr

(
P
[
[X̃, X̃]C̃3 ∧ B̃

])
=

1

2
µ2λ̃iε

µνρ STr
(
C̃[µνρB̃ij][X̃

i, X̃j] + 3λ̃C̃[µνiB̃jk][X̃
i, X̃j]D̃ρX̃

k

+ 3λ̃2C̃[µijB̃kl][X̃
i, X̃j]D̃νX̃

kD̃ρX̃
l

+ λ̃3C̃[ijkB̃lm][X̃
i, X̃j]D̃µX̃

kD̃νX̃
lD̃ρX̃

m
)
.

(3.1.4)

In the following sections we will look at which terms we must add in to the M2-brane

action to be able to recover each of the terms above. Nothing in the reduction procedure

will remove or add derivatives so we can match the theories term by term based on the

number of derivatives.

The rest of this section is a presentation of some rather lengthy algebra in matching

the terms in the two actions. Little will be missed by jumping ahead to the final result,

which we present at the end of this section.

3.1.1 No derivatives

Let us look first at the quadratic terms in the M2- and D2-brane actions that have

no derivatives, coming from the coefficients in the pullback with three world-volume

indices. We know what these terms in the D2-brane action are and we can use this

information to construct the appropriate terms in the ABJM action with broken gauge

symmetry. The term in the D2-brane action with no derivatives is given by the first

term of equation (3.1.4) and after expanding out the antisymmetry in the indices of C̃

and B̃ this is

L̃0 =
µ2λ̃

20
iεµνρ Tr

(
C̃µνρB̃ij[X̃

i, X̃j]− 6C̃µνiB̃ρj[X̃
i, X̃j] + 3C̃µijB̃νρ[X̃

i, X̃j]
)
. (3.1.5)

To find the appropriate terms in the M2-brane action which reduce to the above

expression, we should consider all possible quadratic couplings, as dictated by R-

symmetry and gauge invariance, with arbitrary coefficients. The coefficients can then

be fixed by comparison to the D2-brane action. For clarity, we will only present the final

result here and then demonstrate that it does indeed reduce to the required D2-brane

action.
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The quadratic terms in the ABJM action with no derivatives are,

S0 =

∫
L1 + L2 + L3 + L4 + (c.c.), (3.1.6)

where

L1 = −6

5

πµ2λ

k
εµνρ Tr

(
CµνρC

(1)
ABCγ

ABC − CµνρC(2)

ABC̄
βABC

)
, (3.1.7)

L2 = −6

5

πµ2λ

k
εµνρ Tr

(
CµνρC

(1)†
ABCγ

ABC† − CµνρC(2)†
ABC̄

βAB†C

)
, (3.1.8)

L3 = +
36

5

πµ2λ

k
εµνρ Tr

(
CµνAC

(1)

ρBC̄
βABC − 3

2
CµνAC

(3)
ρBCγ

ABC

)
, (3.1.9)

L4 = −36

5

πµ2λ

k
εµνρ Tr

(
CµνAC

(1)†
ρCB̄

βABC − 1

2
CµνAC

(3)†
ρBCβ

BC†
A

)
, (3.1.10)

and

βABC = Z [A|Z†CZ
|B] =

1

2

(
ZAZ†CZ

B − ZBZ†CZ
A
)
, (3.1.11)

γABC = Z [AZBZC]. (3.1.12)

Recall that the products of components of the 3-form, C, are implicitly anti-symmetric.

Note that complex conjugation also affects the indices, for example, C
(1)†
ρCB̄

= (C(1)†)ρC̄B.

The Kalb-Ramond field is recovered from the components of the M-theory 3-form

where one of the SU(4) indices is 4, so we can see that the first term in the D2-brane

action in equation (3.1.5) should be recovered from L1, L2 and their conjugates, while

the second and third term in the D2-brane action should be recovered from L3, L4 and

their conjugates. Let us now do this identification in detail.

When one of the scalar fields in the ABJM action, Z4, acquires a large vacuum

expectation value, 〈Z4〉 = v
2
T 0, the only components of (3.1.11) and (3.1.12) which

will remain in the limit v →∞ are

βa4
4 =

v

2

(
[Xa, X4] + i[Xa+4, X4]

)
, (3.1.13)

βab4 =
v

4

(
[Xa, Xb] + i[Xa+4, Xb] + i[Xa, Xb+4]− [Xa+4, Xb+4]

)
, (3.1.14)

βa4
b =

v

4

(
[Xa, Xb] + i[Xa+4, Xb]− i[Xa, Xb+4] + [Xa+4, Xb+4]

)
, (3.1.15)

γab4 =
v

12

(
[Xa, Xb] + i[Xa+4, Xb] + i[Xa, Xb+4]− [Xa+4, Xb+4]

)
. (3.1.16)
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In this limit and after rescaling X̃ = XgYM, the expression L1 becomes

L1 = − 3
20
µ2λ̃ε

µνρ Tr

(
Cµνρ

(
C

(1)
ab4 − C

(2)

ab4̄
− C(2)

a4b̄
+ C

(2)
b4ā

)
[X̃a, X̃b]

+ 2iCµνρ

(
C

(1)
ab4 − C

(2)

ab4̄
+ C

(2)

a4b̄
+ C

(2)
b4ā

)
[X̃a, X̃b+4]

− Cµνρ
(
C

(1)
ab4 − C

(2)

ab4̄
+ C

(2)

a4b̄
− C(2)

b4ā

)
[X̃a+4, X̃b+4]

− 4CµνρC
(2)

a44̄
[X̃a, X̃4]− 4iCµνρC

(2)

a44̄
[X̃a+4, X̃4]

)
.

(3.1.17)

Similarly, L2 becomes

L2 = 3
20
µ2λ̃ε

µνρ Tr

(
Cµνρ

(
C

(1)†
ab4 − C

(2)†
ab4̄
− C(2)†

a4b̄
+ C

(2)†
b4ā

)
[X̃a, X̃b]

− 2iCµνρ

(
C

(1)†
ab4 − C

(2)†
ab4̄

+ C
(2)†
a4b̄

+ C
(2)†
b4ā

)
[X̃a, X̃b+4]

− Cµνρ
(
C

(1)†
ab4 − C

(2)†
ab4̄

+ C
(2)†
a4b̄
− C(2)†

b4ā

)
[X̃a+4, X̃b+4]

− 4CµνρC
(2)†
a44̄

[Xa, X4] + 4iCµνρC
(2)†
a44̄

[X̃a+4, X̃4]

)
.

(3.1.18)

Recall that the type IIA fields, C̃ and B̃ are a combination of the components of the

M-theory 3-form, as given at the end of Section 2.4. To see that L1 and L2 have indeed

reduced to the correct terms in the D2-brane action, we can expand the terms in the

D2-brane action in terms of the indices a, 4 and a + 4 where a = 1, . . . , 3, and then

expand the type IIA fields in terms of the M-theory 3-form components. The algebra

is lengthy but straightforward, and the result is that the corresponding terms in the

D2-brane action can be written as:

µ2λ̃

20
iεµνρ Tr

(
C̃µνρB̃ij[X̃

i, X̃j]
)

(3.1.19)

=
µ2λ̃

20
iεµνρ Tr

(
C̃µνρ

(
B̃ab[X̃

a, X̃b] + 2B̃a4[X̃a, X̃4] + 2B̃ab+4[X̃a, X̃b+4]

− 2B̃4a+4[X̃a+4, X̃4] + B̃a+4b+4[X̃a+4, X̃b+4]
))

= − 3
20
µ2λ̃ε

µνρ Tr(
Cµνρ

(
C

(1)
ab4 − C

(2)

ab4̄
− C(2)

a4b̄
+ C

(2)
b4ā − C

(1)†
ab4 + C

(2)†
ab4̄

+ C
(2)†
a4b̄
− C(2)†

b4ā

)
[X̃a, X̃b]

+ 2iCµνρ

(
C

(1)
ab4 − C

(2)

ab4̄
+ C

(2)

a4b̄
+ C

(2)
b4ā + C

(1)†
ab4 − C

(2)†
ab4̄

+ C
(2)†
a4b̄

+ C
(2)†
b4ā

)
[X̃a, X̃b+4]

− Cµνρ
(
C

(1)
ab4 − C

(2)

ab4̄
+ C

(2)

a4b̄
− C(2)

b4ā − C
(1)†
ab4 + C

(2)†
ab4̄
− C(2)†

a4b̄
+ C

(2)†
b4ā

)
[X̃a+4, X̃b+4]

− 4Cµνρ

(
C

(2)

a44̄
− C(2)†

a44̄

)
[X̃a, X̃4]− 4iCµνρ

(
C

(2)

a44̄
+ C

(2)†
a44̄

)
[X̃a+4, X̃4] + (c.c.)

)
.

The expansion in the final line has used the expressions at the end of Section 2.4. These

terms are indeed equal to L1 + L2 + (c.c.).
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Next we will consider the L3 and L4 terms in the proposed M2-brane action. These

mix the worldvolume and SU(4) indices across the components of C. The first of these,

L3, reduces as follows:

9
10
µ2λ̃ε

µνρ Tr (3.1.20)(
Cµνa

(
C

(1)

ρ4b̄
+ C

(1)

ρb4̄
− C(3)

ρb4

)
[X̃a, X̃b] + Cµνa

(
C

(1)

ρ4b̄
− C(1)

ρb4̄
+ C

(3)
ρb4

)
[X̃a+4, X̃b+4]

+ i
(
CµνaC

(1)

ρb4̄
− CµνbC(1)

ρa4̄
− CµνaC(1)

ρ4b̄
− CµνbC(1)

ρ4ā − CµνaC
(3)
ρb4 + CµνbC

(3)
ρa4

)
[X̃a, X̃b+4]

+ 2CµνaC
(1)

ρ44̄
[X̃a, X̃4] + 2iCµνaC

(1)

ρ44̄
[X̃a+4, X̃4]

− Cµν4

(
C

(1)

ρab̄
+ 1

2
C

(3)
ρab

)
[X̃a, X̃b]− iCµν4

(
−C(1)

ρab̄
− C(1)

ρbā + C
(3)
ρab

)
[X̃a, X̃b+4]

− Cµν4

(
C

(1)

ρab̄
− 1

2
C

(3)
ρab

)
[X̃a+4, X̃b+4]− 2Cµν4C

(1)

ρa4̄
[X̃a, X̃4]

− 2iCµν4C
(1)

ρa4̄
[X̃a+4, X̃4]

)
.

This recovers half of the remaining terms in the D2-brane action, and we will see shortly

that L4 recovers the other half. The remaining terms in the D2-brane action with no

derivatives in equation (3.1.5) are

− 3
10
µ2λ̃iε

µνρ Tr
(
C̃µνiB̃ρj[X̃

i, X̃j]
)
, (3.1.21)

and
3
20
µ2λ̃iε

µνρ Tr
(
B̃µνC̃ρij[X̃

i, X̃j]
)
. (3.1.22)

We can again expand these in terms of the M-theory 3-form components, although we

will ignore conjugated coefficients for now. The expansion of these terms is respectively,

9
10
µ2λ̃ε

µνρ Tr (3.1.23)(
Cµνa

(
C

(1)

ρ4b̄
+ C

(1)

ρb4̄
− C(3)

ρb4

)
[X̃a, X̃b] + Cµνa

(
C

(1)

ρ4b̄
− C(1)

ρb4̄
+ C

(3)
ρb4

)
[X̃a+4, X̃b+4]

− i
(
CµνaC

(1)

ρ4b̄
− CµνaC(1)

ρb4̄
+ CµνaC

(3)
ρb4 + CµνbC

(1)
ρ4ā + CµνbC

(1)

ρa4̄
− CµνbC(3)

ρa4

)
[X̃a, X̃b+4]

+ 2CµνaC
(1)

ρ44̄
[X̃a, X̃4] + 2iCµνaC

(1)

ρ44̄
[X̃a+4, X̃4]

− Cµν4

(
C

(1)
ρ4ā + C

(1)

ρa4̄
− C(3)

ρa4

)
[X̃a, X̃4]− iCµν4

(
−C(1)

ρ4ā + C
(1)

ρa4̄
− C(3)

ρa4

)
[X̃a+4, X̃4]

)
,
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and

9
10
µ2λ̃ε

µνρ Tr (3.1.24)(
1
2
Cµν4

(
C

(1)
ρbā − C

(1)

ρab̄
− C(3)

ρab

)
[X̃a, X̃b] + iCµν4

(
C

(1)
ρbā + C

(1)

ρab̄
− C(3)

ρab

)
[X̃a, X̃b+4]

+ 1
2
Cµν4

(
C

(1)
ρbā − C

(1)

ρab̄
+ C

(3)
ρab

)
[X̃a+4, X̃b+4]− Cµν4

(
−C(1)

ρ4ā + C
(1)

ρa4̄
+ C

(3)
ρa4

)
[X̃a, X̃4]

− iCµν4

(
C

(1)
ρ4ā + C

(1)

ρa4̄
+ C

(3)
ρa4

)
[X̃a+4, X̃4]

)
.

The terms Cµν4

(
C

(1)
ρ4ā + C

(3)
ρa4

)
[X̃a+4, X̃4] and Cµν4

(
C

(1)
ρ4ā − C

(3)
ρa4

)
[X̃a, X̃4] cancel and

do not appear in the overall action. This is appropriate as they are the only terms

which cannot be recovered from the possible couplings in the M2-brane action. Every

other term can be matched exactly with L3.

The conjugated terms which we ignored are recovered from L4. The terms in L4

are similar to L3, but instead contain one component of C which is conjugated and

one which is not. These recover the appropriate terms in the D2-brane action with a

similar mixed conjugation structure. We begin by looking at the second term in L4,

from equation (3.1.10),

18

5

πµ2λ

k
Tr
(
CµνAC

(3)†
ρBCβ

BC
A

†
)
. (3.1.25)

In the reduction this gives the terms

9
10
µ2λ̃Tr

(
CµνaC

(3)†
ρb4 [X̃a, X̃b] + CµνaC

(3)†
ρb4 [X̃a+4, X̃b+4]

− i
(
CµνaC

(3)†
ρb4 + CµνbC

(3)†
ρa4

)
[X̃a, X̃b+4]− 1

2
Cµν4C

(3)†
ρab [X̃a, X̃b]

+ iCµν4C
(3)†
ρab [X̃a, X̃b+4] + 1

2
Cµν4C

(3)†
ρab [X̃a+4, X̃b+4]

− 2Cµν4C
(3)†
ρa4 [X̃a, X̃4] + 2iCµν4C

(3)†
ρa4 [X̃a+4, X̃4]

)
.

(3.1.26)

It is straightforward to see that these are exactly the terms that have would appeared

in equation (3.1.23) and equation (3.1.24) if we had included the C(3)† from C̃µij and

B̃µi.

The remaining term in L4 is

−36

5

πµ2λ

k
Tr
(
CµνAC

(1)†
ρCB̄

βABC

)
. (3.1.27)

Whenever C
(1)

µab̄
appears in C̃µij and B̃µi it always appears alongside its conjugate in

the form −C(1)†
µbā . Comparing this with the first term of equation (3.1.9) we see that

its inclusion in the M2 action will automatically give the correct C(1)† terms in the D2

action.
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We have successfully matched all of the terms in the reduction of our proposed

extension of the ABJM action to the expected terms in the D2-brane action at the

no-derivative level. Mostly this was a straightforward matching of coefficients but

we note that it is a non-trivial result that it was possible to match these actions. The

relationship between the type IIA fields and the M-theory 3-form was fixed at the linear

coupling level but they also appear to be consistent with our extension to quadratic

couplings so far. The matching includes the appropriate coefficients and signs of the

cross terms, and also leads to a cancellation of the only terms which cannot be recovered

from the M2-brane action. We will see similar consistency at the next level, with one

derivative, in the next section.

3.1.2 One derivative

Conceptually we will follow the same procedure as before to identify the appropriate

quadratic 3-form terms with one derivative in the M2-brane action. However the

algebra quickly gets more complicated since we now have an extra SU(4) or SO(7)

index in the product of C fields which will triple the number of ways we can split these

terms into components with the indices, a, 4, and a + 4. There are now also some

terms where both of the components of the type IIA fields, C̃ and B̃, are sums of more

than one of the M-theory components, and so give many more cross terms when they

are expanded out.

The terms that we must recover in the D2-brane action with one derivative are

3
2
µ2λ̃

2iTr
(
C̃[µνiB̃jk][X̃

i, X̃j]D̃ρX̃
k
)

= 3
20
µ2λ̃

2iTr

((
2C̃µνiB̃jk + C̃µνkB̃ij + 2C̃µijB̃νk

− 4C̃µikB̃νj + C̃ijkB̃µν

)
[X̃ i, X̃j]D̃ρX̃

k

)
.

(3.1.28)

To begin with we will consider the terms in the M2-action with the index structure

(µ, ν, A) and (B,C,D),

54

5

πµ2λ
2

k
Tr

((
CµνAC

(1)
BCD − 1

3
CµνDC

(1)
ABC

)
γABCDρZ

D

+ CµνAC
(2)

BCD̄
γABCDρZ

†D̄ +
(

2
3
CµνAC

(2)

BCD̄
+ 1

3
CµνCC

(2)

ABD̄

)
βABD DρZ

C

)
.

(3.1.29)

Looking at the index structure, the terms in this piece of the M2-brane action should

reduce to the first, second and fifth terms in the D2-brane action in equation (3.1.28).
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After the reduction via the novel Higgs mechanism this becomes

9
10
µ2λ̃

2 Tr

((
1
2
Cµν4C

(1)
abc − CµνaC

(1)
4bc − 1

2
CµνcC

(1)
ab4

)
(3.1.30)

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

DρX̃
c + iDρX̃

c+4
)

+
(
CµνaC

(2)
b4c̄ + 1

2
Cµν4C

(2)
abc̄

)
×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

DρX̃
c − iDρX̃

c+4
)

+
(
CµνaC

(2)

bc4̄
+ 1

2
CµνcC

(2)

ab4̄

)
×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

DρX̃
c + iDρX̃

c+4
)

+
(
CµνaC

(2)

4cb̄
− Cµν4C

(2)

acb̄
+ CµνcC

(2)

a4b̄

)
×
(

[X̃a, X̃b] + i[X̃a+4, X̃b]− i[X̃a, X̃b+4] + [X̃a+4, X̃b+4]
)(

DρX̃
c + iDρX̃

c+4
)

+
(
CµνaC

(2)

4c4̄
− Cµν4C

(2)

ac4̄
+ CµνcC

(2)

a44̄

)
×
(

[X̃a, X̃4] + i[X̃a+4, X̃4]
)(

DρX̃
c + iDρX̃

c+4
))

.

Note that we have ignored the DρZ
4 pieces for now.

The quadratic components no longer factorize nicely and comparing this to the

expected D2-brane action is harder. We can still proceed by inspection though, and

evaluate each term in the D2-brane action in turn. In the lists below, we list the index

structure of a term in the D2-brane action and then show its contribution when it is

expanded in terms of M-theory 3-form coefficients. These can all then be checked to

match with the terms above from the M2-brane action. We won’t show the matching

of every term explicitly, but we will present enough to hopefully convince the reader

that it is possible. The first term in the D2-brane action in equation (3.1.28) has

contributions from

C̃µνaB̃bc : − 9
10
µ2λ̃

2Cµνa

(
C

(1)
bc4 − C

(2)

bc4̄
+ C

(2)

c4b̄
− C(2)

b4c̄

)
[X̃a, X̃b]D̃ρX̃

c, (3.1.31)

C̃µνa+4B̃b+4c : 9
10
µ2λ̃

2Cµνa

(
C

(1)
bc4 − C

(2)

bc4̄
− C(2)

c4b̄
− C(2)

b4c̄

)
[X̃a+4, X̃b+4]D̃ρX̃

c, (3.1.32)

C̃µνaB̃b+4c : − 9
10
iµ2λ̃

2Cµνa

(
C

(1)
bc4 − C

(2)

bc4̄
− C(2)

c4b̄
− C(2)

b4c̄

)
[X̃a, X̃b+4]D̃ρX̃

c, (3.1.33)

C̃µνa+4B̃bc : − 9
10
iµ2λ̃

2Cµνa

(
C

(1)
bc4 − C

(2)

bc4̄
+ C

(2)

c4b̄
− C(2)

b4c̄

)
[X̃a+4, X̃b]D̃ρX̃

c, (3.1.34)

C̃µνaB̃bc+4 : − 9
10
iµ2λ̃

2Cµνa

(
C

(1)
bc4 − C

(2)

bc4̄
+ C

(2)

c4b̄
+ C

(2)
b4c̄

)
[X̃a, X̃b]D̃ρX̃

c+4. (3.1.35)

We have not written down C̃µνaB̃b+4c+4, C̃µνa+4B̃bc+4 or C̃µνa+4B̃b+4c+4 here. The second
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term has contributions from

C̃µνcB̃ab : − 9
20
µ2λ̃

2Cµνc

(
C

(1)
ab4 − C

(2)

ab4̄
+ C

(2)
b4ā − C

(2)

a4b̄

)
[X̃a, X̃b]D̃ρX̃

c, (3.1.36)

C̃µνcB̃ab+4 : − 9
20
iµ2λ̃

2Cµνc

(
C

(1)
ab4 − C

(2)

ab4̄
+ C

(2)
b4ā + C

(2)

a4b̄

)
[X̃a, X̃b+4]D̃ρX̃

c, (3.1.37)

C̃µνcB̃a+4b : − 9
20
iµ2λ̃

2Cµνc

(
C

(1)
ab4 − C

(2)

ab4̄
− C(2)

b4ā − C
(2)

a4b̄

)
[X̃a+4, X̃b]D̃ρX̃

c, (3.1.38)

C̃µνc+4B̃a+4b : 9
20
µ2λ̃

2Cµνc

(
C

(1)
ab4 − C

(2)

ab4̄
− C(2)

b4ā − C
(2)

a4b̄

)
[X̃a+4, X̃b]D̃ρX̃

c+4. (3.1.39)

The fifth term has contributions from

C̃abcB̃µν : − 9
20
µ2λ̃

2
(
C

(1)
abc + C

(2)
abc̄ − C

(2)

acb̄
+ C

(2)
bcā

)
Cµν4[X̃a, X̃b]D̃ρX̃

c, (3.1.40)

C̃a+4bcB̃µν : − 9
20
iµ2λ̃

2
(
C

(1)
abc + C

(2)
abc̄ − C

(2)
bc̄a − C

(2)
ac̄b

)
Cµν4[X̃a+4, X̃b]D̃ρX̃

c, (3.1.41)

C̃ab+4cB̃µν : − 9
20
iµ2λ̃

2
(
C

(1)
abc + C

(2)
abc̄ + C

(2)
bc̄a + C

(2)
ac̄b

)
Cµν4[X̃a, X̃b+4]D̃ρX̃

c, (3.1.42)

C̃a+4b+4cB̃µν : 9
20
µ2λ̃

2
(
C

(1)
abc + C

(2)
abc̄ − C

(2)
bc̄a + C

(2)
ac̄b

)
Cµν4[X̃a+4, X̃b+4]D̃ρX̃

c. (3.1.43)

These can indeed be identified with the terms in the M2-brane action in equation

(3.1.30) if we take into account the anti-symmetrised product between the components

of C.

In the reduced M2-brane action in equation (3.1.30) we have ignored contributions

from terms involving DρZ
4 but we will demonstrate with a few examples that these

also match. Consider the following terms which should also be included:

9
10
µ2λ̃

2 Tr

((
2CµνaC

(2)

b44̄
+ Cµν4C

(2)

ab4̄

)
×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)
D̃ρX̃

4

)
.

(3.1.44)

If we expand out the terms in the D2-brane action in equation (3.1.28) where one of

the indices is 4 we see that they are indeed recovered from these terms in the reduced

M2-brane action. For example, we have the following terms with only one 4 index in

the D2-brane action:

C̃µνaB̃b4 : 9
5
µ2λ̃

2CµνaC
(2)

b44̄
[X̃a, X̃b]D̃ρX̃

4, (3.1.45)

C̃µνaB̃b+44 : 9
5
µ2λ̃

2iCµνaC
(2)

b44̄
[X̃a, X̃b+4]D̃ρX̃

4, (3.1.46)

C̃µνa+4B̃b4 : 9
5
µ2λ̃

2iCµνaC
(2)

b44̄
[X̃a+4, X̃b]D̃ρX̃

4, (3.1.47)

C̃µνa+4B̃b+44 : − 9
5
µ2λ̃

2CµνaC
(2)

b44̄
[X̃a+4, X̃b+4]D̃ρX̃

4, (3.1.48)

which are all recovered in the reduced M2-brane action terms in equation (3.1.44).

From the second and fifth term in the D2-brane action in equation (3.1.28) we once
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again have some appropriate cancellations that remove fields which cannot appear in

the reduction of our M2-brane action,

C̃µν4B̃ab + C̃ab4B̃µν :

− 9
20
µ2λ̃

2

(
Cµν4

(
C

(1)
ab4 − C

(2)

ab4̄
+ C

(2)

b4̄a
− C(2)

a4̄b

)
[X̃a, X̃b]D̃ρX̃

4

+
(
C

(1)
ab4 + C

(2)

ab4̄
+ C

(2)

b4̄a
− C(2)

a4̄b

)
Cµν4[Xa, Xb]D̃ρX

4

)
= 9

10
µ2λ̃

2Cµν4C
(2)

ab4̄
[X̃a, X̃b]D̃ρX̃

4.

(3.1.49)

The remaining term is expected in the reduced M2-brane action terms in equation

(3.1.44).

There are no Cµν4C
(2)

i44̄
terms remaining in equation (3.1.44) from the DρZ

4 terms

in the M2-brane action. This is appropriate since we see that the corresponding terms

involving Cµν4B̃i4 in the D2-brane action will also cancel with each other. Explicitly,

the terms of this form which arise from(
2C̃µνiB̃jk + C̃µνkB̃ij

)
[X̃ i, X̃j]D̃ρX̃

k (3.1.50)

are (
−2C̃µν4B̃i4 + 2C̃µν4B̃i4

)
[X̃ i, X̃4]D̃ρX̃

4 = 0. (3.1.51)

So far we have shown that our proposed M2-brane couplings in equation (3.1.29)

will recover the first, second and fifth term of the D2-brane action at the one-derivative

level, as in equation (3.1.28). Next we will look at how to recover the third and fourth

terms in the D2-brane action. These are more complicated because both the C̃ and B̃

fields are a sum of multiple components of the M-theory 3-form and their expansion

introduces many cross terms. Considering only a few of the total components, these

terms give us the following expression, where the daggered terms (d.t.) are either
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identical or come with a sign change compared to their equivalent undaggered terms:

3
20
µ2λ̃

2iTr

((
2C̃µijB̃µk − 4C̃µikB̃νj

)
[X̃ i, X̃j]D̃ρX̃

k

)
= − 9

10
µ2λ̃

2 Tr

(3.1.52)

[((
C

(1)

µab̄
− C(1)

µbā + C
(3)
µab + (d.t.)

)(
C

(1)
ν4c̄ + C

(1)

νc4̄
− C(3)

νc4 − (d.t.)
)

− 2
(
C

(1)
µac̄ − C

(1)
µcā + C(3)

µac + (d.t.)
)(

C
(1)

ν4b̄
+ C

(1)

νb4̄
− C(3)

νb4 − (d.t.)
))

× [X̃a, X̃b]D̃ρX̃
c

+

(
2
(
−C(1)

µab̄
− C(1)

µbā + C
(3)
µab − (d.t.)

)(
C

(1)
ν4c̄ + C

(1)

νc4̄
− C(3)

νc4 − (d.t.)
)

+ 2
(
C

(1)
µac̄ − C

(1)
µcā + C(3)

µac + (d.t.)
)(

C
(1)

ν4b̄
− C(1)

νb4̄
+ C

(3)
νb4 + (d.t.)

)
+ 2

(
C

(1)
µbc̄ + C

(1)

µcb̄
+ C

(3)
µbc − (d.t.)

)(
C

(1)
µ4ā + C

(1)

µa4̄
− C(3)

µa4 − (d.t.)
))

× i[X̃a, X̃b+4]D̃ρX̃
c

]
+ · · ·

We have not expanded this expression fully, but we have gone far enough to fix the

coefficients of the appropriate terms in the M2-brane action. The pieces mixing C(1)

and C(3) can be recovered from the following M2-brane action couplings:

−108

5

πµ2λ
2

k
Tr
(
C

(3)
µ[AB|C

(1)

ν|C]D̄
βBCD DρZ

A
)
, (3.1.53)

and

−108

5

πµ2λ
2

k
Tr
(
C

(3)
µABC

(1)

νCD̄
γABCDρZ

†
D

)
. (3.1.54)

In the reduction, these become respectively

− 9
5
µ2λ̃

2 Tr

((
−C(1)

µab̄
C

(3)
νc4 − C(3)

µacC
(1)

ν4b̄
+ C

(1)

µcb̄
C

(3)
νa4

)
(3.1.55)

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b]− i[X̃a, X̃b+4] + [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
)

+
(
−C(3)

µacC
(1)

νb4̄
+ 1

2
C

(3)
µabC

(1)

νc4̄

)
×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
)

+ 2
(
−C(3)

µc4C
(1)

νa4̄
− C(3)

µacC
(1)

ν44̄
+ C

(3)
µa4C

(1)

νc4̄

)
×
(

[X̃a, X̃4] + i[X̃a+4, X̃4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
))

,
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and

− 9
10
µ2λ̃

2 Tr

((
−2C

(1)
µbc̄C

(3)
νa4 + C

(3)
µabC

(1)
ν4c̄

)
(3.1.56)

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c − iD̃ρX̃

c+4
))

.

These can be identified with the appropriate terms in the D2-brane action in equation

(3.1.52) assuming once again that the product of the M-theory 3-form components is

anti-symmetric.

The quadratic C(1) pieces can be recovered from the following terms in the M2

action:

− 72

5

πµ2λ
2

k
Tr
(
C

(1)

µAB̄
C

(1)

νCD̄
βACB DρZ

†
D + C

(1)

µAB̄
C

(1)

νCD̄
βBD†A DρZ

C
)
, (3.1.57)

which in the reduction becomes

− 9
5
µ2λ̃

2 Tr

((
C

(1)

µab̄
C

(1)
ν4c̄ − C

(1)
µac̄C

(1)

ν4b̄

)
(3.1.58)

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b]− i[X̃a, X̃b+4] + [X̃a+4, X̃b+4]
)(

D̃ρX̃
c − iD̃ρX̃

c+4
)

+ C
(1)
µbc̄C

(1)

νa4̄

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c − iD̃ρX̃

c+4
)

−
(
C

(1)
µbāC

(1)

νc4̄
− C(1)

µcāC
(1)

νb4̄

)
×
(

[X̃a, X̃b]− i[X̃a+4, X̃b] + i[X̃a, X̃b+4] + [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
)

− C(1)

µcb̄
C

(1)
ν4ā

×
(

[X̃a, X̃b]− i[X̃a+4, X̃b]− i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
)
.

The terms involving multiple C(3) terms can be recovered from the following extension

to the M2-brane action:

108

5

πµ2λ
2

k
Tr
(
C

(3)

µAB̄
C

(3)

νCD̄
γABCDρZ

D
)
, (3.1.59)

which reduces to

− 9
10
µ2λ̃

2 Tr

((
C

(3)
µabC

(3)

νc4̄
+ 2C

(3)
µbcC

(3)
νa4

)
(3.1.60)

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
))

.

Finally, to obtain the terms with mixed conjugation, we must include the following
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terms in the M2-brane action:

108

5

πµ2λ
2

k
Tr
(
C

(3)†
µABC

(1)

νCD̄
γABD†DρZ

C
)
, (3.1.61)

36

5

πµ2λ
2

k
Tr
(
C

(3)†
µABC

(1)

νCD̄
βAB†C DρZ

D
)
, (3.1.62)

and
36

5

πµ2λ
2

k
Tr
(
C

(3)†
µABC

(3)
νCDβ

CD
A DρZ

†
B

)
. (3.1.63)

These reduce respectively to

9
10
µ2λ̃

2 Tr

((
2C

(1)

µcb̄
C

(3)†
νa4 − C

(3)†
µab C

(1)

νc4̄

)
(3.1.64)

×
(

[X̃a, X̃b]− i[X̃a+4, X̃b]− i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
))

,

and

9
10
µ2λ̃

2 Tr

(
− C(3)†

µab C
(1)
ν4c̄ (3.1.65)

×
(

[X̃a, X̃b]− i[X̃a+4, X̃b]− i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
)

− 2C
(1)
µbc̄C

(3)†
νa4

×
(

[X̃a, X̃b]− i[X̃a+4, X̃b] + i[X̃a, X̃b+4] + [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
))

,

and

9
10
µ2λ̃

2 Tr

(
2C

(3)†
µbc C

(3)
νa4 (3.1.66)

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b]− i[X̃a, X̃b+4] + [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
)

+ C
(3)
µabC

(3)†
ν4c

×
(

[X̃a, X̃b] + i[X̃a+4, X̃b] + i[X̃a, X̃b+4]− [X̃a+4, X̃b+4]
)(

D̃ρX̃
c + iD̃ρX̃

c+4
))

.

These can all be identified with the known terms in the D2-brane action given in

equation (3.1.52).

Combining all of the terms considered so far with no derivatives and one deriva-

tive, we have identified the following additional couplings at quadratic order in the
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background fields:

S =
6

5

πµ2λ

k

∫
εµνρ Tr

(
− CµνρC(1)

ABCγ
ABC + CµνρC

(2)

ABC̄
βABC

− CµνρC(1)†
ABCγ

ABC† + CµνρC
(2)†
ABC̄

βAB†C

(3.1.67)

+ 3
(

2CµνAC
(1)

ρBC̄
βABC + 3CµνAC

(3)
ρBCγ

ABC − 2CµνAC
(1)†
ρCB̄

βABC + CµνAC
(3)†
ρBCβ

BC†
A

)
+ 3λ

(
3CµνAC

(1)
BCDγ

ABCDρZ
D − CµνDC(1)

ABCγ
ABCDρZ

D

+ 3CµνAC
(2)

BCD̄
γABCDρZ

†
D + 2CµνAC

(2)

BCD̄
βABD DρZ

C + CµνCC
(2)

ABD̄
βABD DρZ

C
)

+ 6λ
(
− 2C

(1)

µAB̄
C

(1)

νCD̄
βACB DρZ

†
D − 2C

(1)

µAB̄
C

(1)

νCD̄
βBD†A DρZ

C

− 2C
(3)
µABC

(1)

νCD̄
βBCD DρZ

A − C(3)
µBCC

(1)

νAD̄
βBCD DρZ

A − 3C
(3)
µABC

(1)

νCD̄
γABCDρZ

†
D

+ 3C
(3)

µAB̄
C

(3)

νCD̄
γABCDρZ

D + 3C
(3)†
µABC

(1)

νCD̄
γABD†DρZ

C

+ C
(3)†
µABC

(1)

νCD̄
βAB†C DρZ

D + C
(3)†
µABC

(3)
νCDβ

CD
A DρZ

†
B

))
.

Unfortunately the algebra has grown too complex to continue this identification

to the two- and three-derivative terms, however we have shown evidence that this

matching would be possible if we could fix the correct coefficients.

3.2 Pull-backs with U(N)× U(N) gauge invariance

In this section we will see how the extensions to the ABJM action with a broken gauge

symmetry may be lifted to the full action with an unbroken U(N)× U(N) symmetry.

We have seen in Chapter 2 that the trace of the usual matrix product does not

provide enough degrees of freedom in the 3-form to recover all of the independent

components of the type IIA 3-form and the Kalb-Ramond field. To recover all of the

necessary components, we must include couplings which are not gauge invariant with

the usual trace, such as Tr
(
CµABDνZ

ADρZ
B
)
. These can be included in a gauge

invariant way by using a generalised trace, {Tr}, in which the coefficients of the 3-form

are taken to have a more general index structure than N × N matrices, so that they

couple in the most general gauge invariant way possible [52],

{Tr}(CµνADρZ
A) = (CµνA)âa(DρZ

A)aâ, (3.2.1)

{Tr}(CµABDνZ
ADρZ

B) = (CµAB)âb̂ab(DνZ
A)aâ(DρZ

B)b
b̂
, (3.2.2)

{Tr}(CµAB̄DνZ
ADρZ

†
B) = (CµAB̄)âb

ab̂
(DνZ

A)aâ(DρZ
†
B)b̂b, (3.2.3)

{Tr}(CABCDνZ
ADµZ

BDρZ
C) = (CABC)âb̂ĉabc(DµZ

A)aâ(DνZ
B)b

b̂
(DρZ

C)cĉ, (3.2.4)

{Tr}(CABĈDνZ
ADµZ

BDρZ
†
C) = (CABC̄)âb̂cabĉ(DµZ

A)aâ(DνZ
B)b

b̂
(DρZ

†
C)ĉc. (3.2.5)
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The 3-form coefficients must be functionals of the transverse matrix coordinates, ZA(x)

and Z†A(x), as well as having a dependence on the world-volume coordinates, xµ. They

can be defined by a Taylor expansion in the transverse directions, although only certain

products of the matrix coordinates are permissible due to the gauge index structure,

for example,

(CµAB̄)âb
ab̂

= δba δ
â
b̂
C

(0)

µAB̄
+ (Z†CZ

D)â
b̂
δbaC

(2,1)

µAB̄,C̄D

+ (ZCZ†D)ab δ
b̂
âC

(2,2)

µAB̄,CD̄
+ . . .

(3.2.6)

and

(CµAB)âb̂ab = (Z†C)âb (Z
†
D)b̂aC

(2)

µAB,C̄D̄
+ . . . (3.2.7)

Each of the terms in these Taylor expansions will expand into a product of regular

traces upon substitution into {Tr}. The reduction to D2-branes preserves the trace

structure, but the D-brane action must only contain single trace terms [53, 54], not

products of traces. This greatly restricts the possible terms, and terms like the following

are disallowed as they would split into two traces:

(ZA)aâ(Z
†
B)b̂bC

(2,3)

µAB̄,CD̄
. (3.2.8)

The fact that these expansions have no terms which are linear in ZA or Z†A is

consistent with a background of a C4/Zk orbifold. The orbifold action is

zA → e2πi/kzA, z̄A → e−2πi/kz̄A, (3.2.9)

with the indices A and Ā of the space-time 3-form transforming appropriately. If the

3-form is to be invariant under this orbifold action then the orders of the allowed terms

in its expansion in terms of zA and z̄A are identical to the orders of the allowed terms

in the world-volume pullback of the components of the 3-form in terms of ZA and Z†A.

In this chapter and the previous chapter we found the couplings of the 3-form

to the ABJM action that must be recovered from this generalised trace when the

gauge symmetry is broken to the diagonal U(N). However, there are some previously

unmentioned subtleties which we would now like to address. In the linear 3-form

couplings with broken symmetry, in equation (2.4.12), the following terms are included,

Tr
(
C

(3)
µABDνZ

ADρZ
B
)
, (3.2.10)

and

Tr
(
C

(3)
ABCDµZ

ADνZ
BDνZ

B
)
. (3.2.11)

However, there is no way that these terms could appear with this ordering in the
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unbroken action with U(N) × U(N) gauge symmetry and still be gauge invariant.

Instead, the individual Z and Z† terms in the Taylor series of CµAB and CABC must

be interspersed with the derivative terms rather than being grouped together at the

front. This is best illustrated with an example, so let us consider the Taylor expansion

of the generalised trace of CµAB. This is

{Tr}
(
CµABDνZ

ADρZ
B
)

= Tr
(
C

(2)

µAB,C̄D̄
DνZ

AZ†CDρZ
BZ†D

+ C
(4)

µAB,C̄DĒF̄
DνZ

AZ†CZ
DZ†EDρZ

BZ†F + . . .
)
,

(3.2.12)

and we see that the definition of the C field in terms of its Taylor expansion cannot be

considered as a single term in the trace which can be grouped at the front.

This does not significantly affect our analysis of these two chapters since the coef-

ficients are still identical and the reduction procedure happens in the same way. The

difference is that the ordered trace must be replaced with the appropriate generalised

trace where the 3-form expansion is mixed with the other terms in a gauge invariant

manner.

Recall that in the Myers-Chern-Simons term in the D2-brane action, the trace is

the symmetrised trace, where all X, [X,X] and F terms are symmetrised. Due to

this symmetrised trace, there are many mixed terms, as in the extended ABJM action.

However, not all of the orderings of the symmetrised terms are recovered from the

ABJM action. For example, in the ABJM action, the terms at quadratic order in Z in

the Taylor expansion of the 3-form with transverse indices are:

Tr
(
C

(2,1)

µAB̄,CD̄
ZCZ†D(DνZ

A)(DρZ
†
B) + C

(2,2)

µAB̄,C̄D
(DνZ

A)Z†CZ
D(DρZ

†
B)

+ C
(2)

µAB,C̄D̄
(DνZ

A)Z†C(DρZ
B)Z†D

)
,

(3.2.13)

which reduces to

Tr
(
C

(2,1)

µab̄,cd̄
XcXd(DνX

a)(DρX
b) + C

(2,2)

µab̄,c̄d
(DνX

a)XcXd(DρX
b)

+ C
(2)

µab,c̄d̄
(DνX

a)Xc(DρX
b)Xd + . . .

)
.

(3.2.14)

If the trace were symmetrised then we could pull out the 3-form coefficients from the

expansion of CµAB and CµAB̄ into an overall factor which we identified with C̃µab as

before. However, it is not clear how to impose the required symmetrised trace in the

ABJM action that would reduce to the symmetrised trace on the D2-brane.
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3.3 Discussion and conclusions

In this chapter we have identified couplings in the M2-brane action which partially

recover the terms making up the full C̃ ∧ B̃ part of the D2-brane action. Due to the

growth in the number of terms with each additional derivative it is infeasible to match

the two actions fully at quadratic order using the brute force method of expanding and

comparing that we have used above. However, there is significant evidence that it is in

principle possible to recover all of the terms in the C̃ ∧ B̃ piece of the D2-brane action

via a similar extension to two- and three-derivative terms, once the coefficients have

been fixed by comparison to the D2-brane action.

The explicit identifications shown above have required a number of unexpected and

non-trivial simplifications and we have qualitatively seen all of the features which will

be involved in the full identification process. For example, terms which naively seem

to appear in the D2-brane action but have no way to be recovered from the M2-brane

action have naturally cancelled within the D2-brane action itself. It is reassuring that

the introduction of terms which mix daggered and undaggered components of the M-

theory 3-form was both natural in the M2-brane action and was required to produce

the D2-brane action. We have been free to choose the coefficients in the M2-brane

action to obtain the correct factors in the D2-brane action. However, many of the

terms in the D2-brane action are recovered from a mixture of more than one term in

the M2-brane action and it was not guaranteed that it would be possible to make this

consistent. Fortunately the coefficients we fixed came with the correct ratios to make

this possible, which is further evidence that it should be possible to extend the action

to all orders in C.

It is still an open question how to construct an extension to the ABJM action that

preserves the full U(N) × U(N) gauge symmetry. The difficulty lies in recovering all

of the expected orderings in the symmetrised trace of the pullback, P [C], rather than

only those that can be constructed out of gauge invariant orderings of alternate bifun-

damental and anti-bifundamental fields. An answer to this will hopefully also provide

some indication of the form of the full coupling, which may be constructed directly

from the wedge product P [C] ∧ P [C] rather than having to match every coefficient by

hand. Certainly our identification of the necessary coefficients will provide a suitable

test for any such proposal.

For further work, examining the gauge invariance of the ABJM action under back-

ground gauge transformations of the 3-form may provide useful insights into how to

construct the necessary pull-back. The abelian pullback of C involving partial deriva-

tives will transform as a total derivative under the background gauge transformation

C → C + dΛ and thus leave the action invariant. However, the generalised pullback

involving covariant derivatives no longer transforms as an overall total derivative and
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we should instead view the pull-back as an object with its own transformation under

background field transformations [55].

We also note that the above procedure only recovers C̃ ∧ B̃ terms but the D2-brane

action also contains C̃ ∧F terms. It is not clear how the novel way in which the Yang-

Mills term appears in reduction can be extended to produce a term which couples the

field strength to the background fields.

Ultimately the results of this chapter will be useful in furthering our understand-

ing of the couplings between the background 3-form and the ABJM action, but they

are not completely satisfactory. We have only been able to provide partial answers,

but we are hopefully one step closer to understanding how to construct a fully gauge

invariant coupling of the background 3-form to the ABJM action that meets all of the

requirements to reduce to the Myers-Chern-Simons term in the D2-brane action, with

a symmetrised trace and correct quadratic combinations of the type IIA 3-form and

Kalb-Ramond field.
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Chapter 4

Instantons and dyonic instantons

In the rest of this thesis we will be concerned with the study of instantons. These are

relevant to multiple M5-branes and their relation to D4-branes, but most of our atten-

tion is given to the instanton solutions themselves rather than the brane interpretation.

An instanton is a gauge field with four spatial components whose field strength is

self-dual [56],

Fij = 1
2
εijklFkl. (4.0.1)

Solutions to this equation appear in a number of different contexts in theoretical

physics. In QCD they are relevant in understanding quantum tunnelling between

different vacua, and instantons play an important role in describing non-perturbative

effects in supersymmetric gauge theories. For comprehensive reviews on the role of

instantons in these two areas, see [57] and [58].

In the following chapters we are interested in instanton solutions as solitons in higher

dimensional theories. Since the instantons occupy four spatial dimensions themselves,

we need at least a five dimensional theory for them to appear as solitons. Instantons

in this context have not seen as much study as lower dimensional solitons such as

monopoles, vortices and skyrmions. Instantons have mostly likely been neglected due

to the clear lack of four spatial dimensions in everyday physics. However, in the

context of string theory, higher dimensional Yang-Mills theories are natural candidates

for study since they appear as the low energy world-volume theory of Dp-branes for

p > 4.

For a review of monopoles, vortices and instantons, as well as solitons in general,

see the book by Manton and Sutcliffe [7] as well as the lecture notes by Tong [59].

The comprehensive review of monopoles and dyons by Weinberg and Yi [60] is also an

appropriate background which will help put our instanton results into context.

The low energy world-volume theory of multiple D4-branes is described by max-

imally supersymmetric Yang-Mills theory, as discussed in the previous part of this

thesis. Instantons appear in this theory as 1/2-BPS objects with a static gauge field,
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a self-dual field strength and no non-zero scalar fields or fermions. In the global string

theory picture, these instantons are D0-branes dissolved in the D4-branes, as can be

seen by matching the charge and the supersymmetries that they break [61, 62, 30, 63].

The world-volume theory also admits 1/4-BPS dyonic instanton solutions, where a

single scalar field has a non-zero expectation value in the background of an instanton

[64]. Monopoles also have a 1/4-BPS dyonic counterpart [65, 66, 67] with an additional

scalar field excited. These dyonic solutions have a constant rotation in the unbroken

global gauge and are electrically charged [68]. In the BPS configuration, the repulsive

electric charge is exactly balanced by the attractive force of the scalar field. From the

string theory point of view dyonic instantons are a bound state of fundamental strings

and D0-branes between the D4-branes [64, 69] and can be interpreted as supertubes

[70, 71].

There have been recent compelling arguments that instantons in the super-Yang-

Mills world-volume theory of D4-branes may have a deeper connection than previously

thought to multiple M5-branes [72, 73]. In the dimensional reduction of M5-branes,

instantons arise as states carrying Kaluza-Klein momentum along the compactifica-

tion circle [74, 75]. Any theory describing multiple M5-branes must therefore recover

instantons in the compactification limit and this has been important in exploring the

validity of proposed theories [76, 77]. It may be possible to understand more about the

theory of multiple M5-branes by considering the degrees of freedom and bound states

of instantons in five dimensional Yang-Mills [78]. This is an active topic of research

that originally motivated the work presented in this thesis. However we found that our

approach led us to consider the dynamics of instantons in the classical regime instead.

The results in this thesis do not directly relate to M-theory, although future work may

be able to complete the circle and return to this original goal.

There are many solutions to the self-dual field equation and so many possible con-

figurations of instantons with a given topological charge. The space of solutions is

known as the moduli space and has a rich geometry. A strong mathematical treatment

of instantons and their moduli space is beyond the scope of this thesis, but the book by

Donaldson and Kronheimer [79] is a suitable place to find such a treatment. Our main

interest in the moduli space is through the moduli space approximation of Manton

[80], where the low-energy dynamics of instantons can be approximated by geodesic

motion on the moduli space. Instantons are the minimal energy solutions with a given

topological charge and so a slight perturbation will still remain close to the minimal

energy. The evolution of the perturbation will necessarily remain close to the moduli

space in the full space of solutions due to energy conservation. This motion can then be

approximated by motion on the moduli space with any small radiative modes ignored.

The motion of dyonic instantons can be approximated in a similar way although the

motion on the moduli space now takes place in the presence of a potential which arises
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from the electric charge. Much of our understanding is based on the similar behaviour

of monopole dyons where the concept of a potential on the moduli space was first

understood [81, 82, 83].

In this introductory chapter we will review some properties of instanton and dyonic

instanton solutions. In Section 4.1 we begin with an overview of how instantons arise

as the minimal energy solutions in each topological sector of Yang-Mills. In Section

4.3 we will review the ADHM construction which provides a powerful method for

constructing instantons in a purely algebraic manner without needing to solve the

first-order self-dual field equation directly. Throughout the next few chapters of this

thesis we will make use of the ability to express the gauge field in terms of the ADHM

data to reduce complicated expressions involving derivatives and integrals to purely

algebraic expressions. This technique is immediately useful in Section 4.4 where we

review the derivation of an expression for the metric on the moduli space in terms of

the ADHM data. In Section 4.5 we will see how the presence of a scalar field with non-

zero expectation value leads to dyonic instantons and how the underlying instanton is

undistorted. We also see how the scalar field induces a potential on the moduli space.

In Chapter 5 we will use the ADHM construction for charge two instantons to

explicitly calculate the metric and potential on the moduli space. The symmetries of the

ADHM construction allow us to understand some of the topology of the moduli space,

and the symmetries of the metric allow us to understand its geodesic structure. In

Chapter 6 we will use the explicit moduli space metric and potential to explore the low

energy dynamics of charge two (dyonic) instantons via the moduli space approximation.

We will present a numerical study of the range of possible scatterings of two (dyonic)

instantons, and also understand how some of the generic behaviour, such as a right

angled scattering and the varying strength of their interaction, can be understood

analytically from the underlying ADHM construction and metric.

4.1 Instantons in five dimensional Yang-Mills

Let us start with the simplest theory in which instantons appear, four dimensional

Euclidean Yang-Mills with an SU(N) gauge group. The Yang-Mills action is

S = −1

4

∫
d4x Tr

(
FijFij

)
. (4.1.1)

We have set the coupling constant to one since it will not play a role in our discussion.

In our conventions the gauge field, Ai, is Hermitian and the field strength is

Fij = ∂iAj − ∂iAj − i[Ai, Aj]. (4.1.2)
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This theory splits into an infinite number of topological sectors labelled by an

integer, k. Each solution to the equations of motion must lie in one of these topological

sectors and instantons are the solutions with the least energy in each sector.

We are concerned with fields which have a finite energy and so the field strength

must tend to zero as we head towards the boundary at spatial infinity,

lim
|x|→∞

Fij = 0. (4.1.3)

At spatial infinity the gauge field is therefore pure gauge,

Ai
∣∣
|x|=∞ = ig−1∂ig, (4.1.4)

where g(x) ∈ SU(N). Every finite action field configuration therefore contains a map,

g : S3
∞ → SU(N). (4.1.5)

Such maps fall into distinct homotopy classes depending on how the map wraps S3

around the non-trivial structure of SU(N). The third homotopy group of SU(N) is Z
so the homotopy class of g can be labelled by an integer, k. Any two maps with the

same k lie in the same homotopy class and can be continuously deformed into each

other. When two such maps lie in different homotopy classes there is no continuous

deformation between them. Depending on the context, the integer k is known as the

Pontryagin number, the second Chern class or simply the topological degree. We will

generally refer to it as the instanton number or topological charge.

The degree of the map g can be calculated by

k =
1

24π2

∫
S3
∞

Tr
((
g dg−1

)
∧
(
g dg−1

)
∧
(
g dg−1

))
. (4.1.6)

The integrand is the normalised volume form on SU(N) so that each wrap of SU(N)

by g contributes one to the integral. This degree can also be calculated in terms of the

field strength directly as

k =
1

8π2

∫
Tr (F ∧ F ) =

1

8π2

∫
d4xTr

(
1
2
εijklFijFkl

)
. (4.1.7)

To see this we note that

Tr (F ∧ F ) = d Tr
(
F ∧ A+ 1

3
iA ∧ A ∧ A

)
, (4.1.8)
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so k can be written as

k =
1

8π2

∫
S3
∞

Tr
(
F ∧ A+ 1

3
iA ∧ A ∧ A

)
. (4.1.9)

The first term vanishes since F vanishes at infinity and the final term is the volume

form of SU(N) as above.

Every solution to the Yang-Mills equations of motion can therefore be classified by

its topological charge, k, and each topological sector will have solutions with minimum

energy. When k = 0 this is the vacuum solution, but with non-zero k, the minimum

energy solutions in that sector have non-zero energy. To see this we can use a technique

which was introduced by Bogomol’nyi in the Russian paper [84], and is well known.

It was also used in the original paper on instantons [56] without special mention. We

complete the square in the expression for the energy density and in doing so pull out

a term which is proportional to the topological charge,

E = 1
4

∫
d4x Tr

(
FijFij

)
= 1

4

∫
d4x Tr

(
1
2

(
Fij ± 1

2
εijklFkl

)2 ∓ 1
2
εijklFijFkl

)
.

(4.1.10)

The first term is a total square and so must be non-negative. The energy is therefore

bounded below by

E ≥ 2π2|k|, (4.1.11)

where k is the topological charge.

This energy bound is only attained when the squared quantity is zero and the fields

are self-dual or anti-self-dual,

Fij = ±1
2
εijklFkl. (4.1.12)

Solutions to the (anti-)self-dual field equation are called (anti-)instantons and they are

the global minima of the energy within each topological sector. These fields automat-

ically satisfy the Yang-Mills equations of motion due to the Bianchi identity.

From now on we will consider only instantons with non-negative topological degree.

The treatment of anti-instantons would be identical but with the appropriate signs

reversed. The topological charge can be interpreted as the number of instantons and

we will use it synonymously with the term ‘instanton number’. Solutions to the self-dual

field equation with instanton number k will typically have their energy density localised

around k points. When these points are far apart the solutions are approximately

the superposition of k charge one instantons. However, when these points are close

together, this approximation no longer holds and there is a rich structure within the

solutions.
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Instantons naturally appear within higher dimensional Yang-Mills theories where

they are embedded in four of the spatial dimensions. The focus of this thesis will be

on five dimensional Yang-Mills, where the added time dimension allows instantons to

be studied as dynamical solitons, like monopoles in four dimensional theories.

The action of five dimensional Yang-Mills is

S = −1

4

∫
d5x Tr

(
FµνF

µν
)
, (4.1.13)

and the energy is

E =

∫
d4x Tr

(
1
2
Fi0Fi0 + 1

4
FijFij

)
. (4.1.14)

The interesting topology from wrapping SU(N) at spatial infinity remains and the BPS

equations are now

Fij = 1
2
εijklFkl, (4.1.15)

Fi0 = 0. (4.1.16)

The solutions to these equations are static instantons in the spatial direction, Ai, and

have A0 = 0.

The general solution for a charge one instanton is given by the ’t Hooft ansatz [85],

Ai = −1

2
ηaijσ

a∂j log ρ, (4.1.17)

where ηaij is the ’t Hooft symbol, and ρ is

ρ = 1 +
λ2

|x− a|2
. (4.1.18)

There are 5 free parameters in this solution: a is a four vector and describes the position

of the instanton, and λ describes its size. Up to gauge transformations, the ’t Hooft

solution describes all charge one instantons. This solution can also be generalised to

general instanton number, k, by taking,

ρ = 1 +
k∑
i=1

λ2
i

|x− ai|2
, (4.1.19)

which describes k instantons at positions ai, with sizes λi.

The Jackiw-Nohl-Rebbi (JNR) ansatz [86] is a generalisation of the ’t Hooft ansatz,

and it describes the most general charge two instanton. For general charge k, it is given
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by

ρ =
k∑
i=0

λ2
i

|x− ai|2
. (4.1.20)

The interpretation of the parameters is less clear here, but the ’t Hooft ansatz is

recovered in the limit λ2
0 = a2

0 →∞.

The number of parameters in the ’t Hooft ansatz scales as 5k + 3, with the 3

coming from overall global gauge transformations. The number of parameters in the

JNR ansatz scales as 5k + 8 and when k = 1 or 2, the JNR ansatz contains redundant

parameters. In general, the number of parameters in the instanton solutions should

scale as 8k [87, 88, 89], and the missing 3k are related to the relative gauge orientation

of the instantons, which are not captured by either the ’t Hooft or the JNR ansatz. In

Section 4.3 we will review the ADHM construction which provides an implicit method

for constructing general solutions to the instanton BPS equations and captures all 8k

degrees of freedom.

4.2 Instantons as D0-branes

In the second part of this thesis we are mostly concerned with the treatment of in-

stantons as classical solitons, and how they compare to other soliton systems of a

similar nature. However, we have seen that instantons also play an important role in

string theory, and possibly M-theory, so in this section we will briefly review the brane

interpretation of instantons.

The five dimensional SU(N) Yang-Mills theory considered previously is the low

energy bosonic action of N D4-branes. Instantons appear as solutions to the field

equation on the world-volume, but from the space-time picture, they are D0-branes.

The first clue to this identification is the coupling of the D4-brane to the background

1-form as in equation (2.1.10):

SC(1) = T4λ
2

∫
Tr
(
C(1) ∧ F ∧ F

)
. (4.2.1)

In the presence of an instanton the F ∧F term is proportional to the instanton number,

k, and the coupling of C(1) to the D4-branes is identical to the coupling of C(1) to k

D0-branes:

SC(1) = k T0

∫
TrC(1). (4.2.2)

The supersymmetries broken by the instanton are also identical to those broken by the

D0-branes.

The world-volume description of instantons has a dual description in term of a D4-

D0-brane system [61, 62, 30, 63]. The moduli space of the D0-brane has two branches.
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The Coulomb branch describes the D0-branes when they are separated from the D4-

branes, and the moduli describe the D0-branes’ positions transverse to the D4-branes.

The Higgs branch describes the the D0-branes when they are confined within the D4-

branes, and can be identified with the moduli space of instantons in the Yang-Mills

world-volume theory. These two branches are connected via small instantons, with the

limit of instantons going to zero size corresponding to the transition between the Higgs

branch and the Coulomb branch.

4.3 The ADHM construction

To find solutions which are instantons we need to solve the BPS equation for a self-

dual field strength. This a first-order differential equation for the gauge field, Ai,

so is easier to solve than the full second-order equations of motion. However, the

BPS equation is still too complicated to solve directly in general. Solving the BPS

equation can be reduced to an algebraic problem by using the construction of Atiyah,

Drinfel’d, Hitchin and Manin (ADHM) [90], based on previous work by Ward [91]. The

ADHM construction only involves solving a set of non-linear algebraic constraints to

find solutions of the BPS equations. It is still difficult to solve these constraints in

general but the problem is at least tractable for low instanton number, k, and for a

small gauge group.

In this thesis we will only be concerned with instantons in the SU(2) gauge group.

Rather than giving a description of the ADHM construction for arbitrary N , we will

assume from now on that N = 2. The advantage of this is that for SU(2) the ADHM

construction can be written in terms of quaternions, and the notation and algebra is

simpler than in the general case. The space of quaternions is denoted by H, and we

will use a representation of the quaternions in terms of 2× 2 complex matrices,

ea = iσa, (a = 1, 2, 3),

e4 = 12,
(4.3.1)

where σa are the Pauli matrices. These satisfy the quaternion algebra

e2
1 = e2

2 = e2
3 = e1e2e3 = −1. (4.3.2)

We will prefer the notation ei rather than {1, i, j, k} since being able to index the

four components is useful. If p = piei is a quaternion in this representation then

its conjugate is given by p†. Unit quaternions therefore satisfy p†p = 12 and can be

identified with SU(2). The purely imaginary quaternions form the Lie algebra su(2)
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with e1, e2 and e3 acting as generators,

[ea, eb] = 2εabcec. (4.3.3)

The spatial coordinate x can also be written as a quaternion with the four spatial

components becoming the four quaternion components, x = xiei.

The starting point of the ADHM construction is a (k + 1) × k quaternion valued

matrix, ∆(x), which is linear in x and is known as the ADHM data. This can always

be put in the canonical form [92, 93],

∆(x) = a− bx, (4.3.4)

where

a =

(
L

M

)
, b =

(
0

1k

)
. (4.3.5)

In this block form, L is a length k row vector and M is a k× k matrix. In general the

form of ∆(x) can be less constrained, but it can always be brought into this form by

using transformations which leave the resulting gauge field invariant.

The entries of L and M are arbitrary, except for the requirement that ∆ satisfy the

ADHM constraint,

∆†∆ = f−1, (4.3.6)

where f is real and invertible. If f is not invertible then the ADHM data corresponds

to a singular instanton configuration. In terms of L and M this constraint is

L†L+M †M −M †x− x̄M + |x|2 = f−1. (4.3.7)

The quadratic term in x is automatically real. If we write the linear term in x with

the quaternionic components of M made explicit,

− ((M i)
T
ēix+M ix̄ei), (4.3.8)

then we see that this will be real if and only if M is symmetric,

MT = M. (4.3.9)

The term that is constant with respect to x remains as a non-linear constraint on a,

a†a = L†L+M †M = µ−1, (4.3.10)

for some real matrix µ.
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Given ADHM data, ∆, which satisfies this constraint, a self-dual gauge field can

be constructed by finding a quaternionic column vector, U , of length k + 1 in the null

space of ∆†,

∆†U = 0. (4.3.11)

This column vector should be normalised to have unit norm,

U †U = 1. (4.3.12)

The gauge field is then constructed from U in the following manner:

Ai = iU †∂iU. (4.3.13)

The normalisation of U ensures that Ai is Hermitian.

To see that the resulting Fij is indeed self-dual we can directly evaluate Fij using this

ansatz for Ai. At the end of this section we will present a collection of useful identities

and results for manipulating quantities arising from the ADHM construction, and we

use many of these in the following without comment:

Fij = i∂iU
†∂jU − i∂jU †∂iU + iU †∂iUU

†∂jU − iU †∂jUU †∂iU

= i∂iU
†(1− UU †)∂jU − i∂jU †(1− UU †)∂iU

= i∂iU
†∆f∆†∂jU − i∂jU †∆f∆†∂iU

= iU †∂i∆f∂j∆
†U − iU †∂j∆f∂i∆†U

= −iU †bf(eiēj − ej ēi)b†U.

(4.3.14)

The only appearance of the indices is in the term (eiēj − ej ēi) which can easily be

checked to be self-dual.

Note that the choice of U in the ADHM construction is far from unique. If U(x)

satisfies the conditions in equations (4.3.11) and (4.3.12) then so will U(x)→ U(x)Ω(x)

for any unit quaternion Ω(x). The resulting gauge field is then

Ai(x)→ Ω(x)†Ai(x)Ω(x) + iΩ(x)†∂iΩ(x), (4.3.15)

which is a gauge transformation of Ai by Ω†. For a given initial set of ADHM data,

the gauge field is therefore only specified up to a gauge transformation. In practice,

any method of finding an explicit solution for U will pick some canonical gauge.

There is some redundancy present in the ADHM data since the gauge field is in-

variant under a transformation of the ADHM data of the following form:

∆→ Q∆R−1, where Q =

(
p 0

0 R

)
. (4.3.16)
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Here R is a real and orthogonal k × k matrix, and p is a unit quaternion. This

transformation preserves the ADHM constraints and it transforms U as

U → QU. (4.3.17)

Since Q is independent of x this leaves Ai unchanged. This symmetry is of crucial

importance in much of the work we will present later in this thesis. In Chapter 5 we

will use this symmetry to project out variations of the zero-modes on the moduli space

that are proportional to gauge transformations and therefore find the metric through

purely algebraic means. The quotient structure of the moduli space of instantons also

arises from the action of these symmetries. In Chapter 7 we will construct symmetric

instantons by finding ADHM data that is invariant under matrices, p and R, that form

a representation of the symmetry group.

As a method to construct instanton solutions the ADHM construction is a useful

tool. In fact, once the redundancy in equation (4.3.16) is taken into account, solutions

to the ADHM constraint are in one-to-one correspondence with solutions to the self-

dual field equation. That is, every instanton has some underlying ADHM data which

can be used to construct it, as can be seen by counting the number of independent

parameters in the ADHM construction. Naively we count 4k real parameters in L and

2k(k + 1) real parameters in M . These must satisfy the ADHM constraints which

remove 3
2
k(k − 1) degrees of freedom. The transformation in equation (4.3.16) has

1
2
k(k− 1) parameters in R and 3 in p. These are redundancies in the parameterisation

of the ADHM data which we should discount. Altogether there are therefore 8k − 3

degrees of freedom in the ADHM data. It is conventional to include global gauge

transformations in our counting of degrees of freedom which brings the total to 8k, the

expected dimension of the moduli space. Note that for general gauge group, SU(N),

the moduli space has dimension 4kN .

If we can find an appropriate parameterisation of the ADHM data that satisfies the

ADHM constraints and breaks the symmetry in equation (4.3.16) then this will also

provide us with a coordinate system on the space of instantons of a given charge. We

will see that we can do this explicitly for k = 2 in Chapter 5.

ADHM Algebra

Part of the utility of the ADHM construction is the ability to rewrite expressions in

a way such that all derivatives can be explicitly evaluated on ∆. An example of this

is given in equation (4.3.14). This is a pattern which is repeated throughout many of

our calculations. We will present a few identities which will be used without comment

when we perform these manipulations in the rest of this thesis.
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Due to the conditions on U ,

∆†U = 0, U †U = 1, (4.3.18)

we can move a derivative between these terms whenever they appear adjacently,

U †∂iU = −(∂iU
†)U, and ∂iU

†∆ = −U †∂i∆. (4.3.19)

Since ∆ is linear in x the derivatives are then trivial,

∂i∆ = −eib, and ∂i∆
† = −b†ēi. (4.3.20)

The expression

P = UU † (4.3.21)

is a projector onto the subspace of Hk+1 spanned by U . To see this we note that

together the columns of ∆ and U span Hk+1 and

PU = U, and P∆ = 0. (4.3.22)

The following expression for P has the same action on U and ∆ and is therefore

identical,

P = 1k+1 −∆f∆†. (4.3.23)

The derivative of U with respect to any of the parameters in the ADHM data, zr,

is

∂rU = −∆f∂r∆
†U + P∂rU. (4.3.24)

We can see this by differentiating the identity U = PU .

4.4 The moduli space of instantons

We saw at the end of the last section that the ADHM construction provides a convenient

and comprehensive way of parameterising the moduli space of all instantons of a given

charge. In this section we will see that the moduli space has a natural metric that is

fundamentally related to the low-energy dynamics of instantons.

Let us be more precise with what we mean by the moduli space:

The moduli space of charge k instantons is the space of all solutions to the self-dual

field equation, of topological charge k, quotiented by local gauge transformations, but

including solutions which differ by a global gauge transformation.

The moduli space can therefore be thought of as the space of all physically distinct
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instantons. Global gauge transformations are conventionally included for reasons that

will become clear when we consider dyonic instantons. The moduli space for each

topological charge is connected and generally has a complicated topology and geometry.

The moduli space has received much study as a geometric space, and efforts to

understand the instanton moduli space have led to important developments within

mathematics [79]. Our interest in the moduli space is primarily in its relevance to the

dynamics of low energy instantons, so we will approach it from this angle.

To investigate the low energy dynamics of instantons we need to ask what happens

when we give the static instantons a small velocity. Of course these configurations will

no longer strictly be instantons, but for small velocities they will remain close to the

minimum energy solutions corresponding to instantons in the moduli space. Solving

the full field theory equations for their motion would be extremely complicated, but

for small velocities the problem can be approximated by motion on the moduli space

[80]. Since the initial field configuration starts close to a minimum energy solution, the

evolution of the fields must always stay close to a minimum energy solution by energy

conservation and therefore close to solutions which lie in the moduli space. In fact this

motion can be approximated by geodesic motion which remains on the moduli space. If

the coordinates on the moduli space are labelled as zr then we allow a time dependence

in Aµ(z(t); x) only through z(t). This is an approximation that is well understood for

monopoles and a useful review is provided in reference [60]. We follow a very similar

argument for instantons.

Once our fields have a time dependence through the z parameter, they will not au-

tomatically satisfy the Yang-Mills equations of motion as the static fields did. Gauss’s

law becomes

DiFi0 = Di(DiA0 − żr∂rAi) = 0. (4.4.1)

This can be solved by modifying A0 by an amount proportional to the velocity,

A0 = żrεr, (4.4.2)

where εr is chosen so that Di(Diεr − ∂rAi) = 0, and Gauss’s law is satisfied.

The electric components of the field strength can now be written as

Fi0 = −żrδrAi, (4.4.3)

where

δrAi = ∂rAi −Diεr. (4.4.4)

We refer to δrAi as a zero-mode since it is the gauge-invariant variation of Ai in a

direction that does not change the energy of the fields.

Substituting our time dependent ansatz into the Yang-Mills action gives an effective
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action for the evolution of zr(t) through the moduli space,

S = 1
2

∫
d5x Tr (Fi0Fi0) = 1

2

∫
dt grsż

rżs, (4.4.5)

where

grs =

∫
d4x Tr (δrAi δsAi) . (4.4.6)

The metric, grs, defines a metric on the moduli space and the evolution of our ansatz

is given by geodesic motion on the moduli space with this metric.

The low energy dynamics of instantons can therefore be approximated by a series

of snapshots of static instanton solutions, where the evolution through these snapshots

is given by geodesic motion on the moduli space.

The metric which has appeared in understanding the low energy dynamics of in-

stantons can also be derived in a way that is intrinsic to the moduli space itself. We will

begin by considering the unquotiented moduli space which includes local gauge trans-

formations. Each point on this space corresponds to some instanton solution, Ai(z̃, x),

where the z̃ coordinates now also index the infinite dimensional space of local gauge

transformations. To define the tangent vectors to this space, let us briefly return to

first principles. Let Ai(z̃(τ), x) be some curve through the moduli space parameterised

by τ . This should pass through the point in the moduli space that we are interested

in when τ = 0. Then a tangent vector is defined by

δ̃Ai = ∂τAi(z̃(τ), x)
∣∣
τ=0

. (4.4.7)

This is the directional derivative in the direction of the curve. Intuitively, δ̃Ai can be

thought of as a perturbation to Ai which remains in the moduli space to first order.

After substituting this curve into the self-dual field equation and differentiating with

respect to τ we find the linearised self-dual field equation that δ̃Ai must satisfy:

Di(δ̃Aj)−Dj(δ̃Ai) = εijklDk(δ̃Al). (4.4.8)

Note that gauge transformations automatically satisfy this linear self-dual field equa-

tion.

There is a natural inner product on the unquotiented moduli space,

g̃
(
δ̃Ai, δ̃

′Ai

)
=

∫
d4xTr

(
δ̃Ai δ̃

′Ai

)
. (4.4.9)

This metric will induce a metric on the moduli space when we quotient by gauge

transformations. However, we have to take care to ensure that the metric on the moduli

space is well-defined, regardless of our choice of gauge. That is, the metric must be
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invariant under gauge transformations and so must act identically on tangent vectors

which differ only by a gauge transformation. We can therefore define the metric on

the moduli space as the above metric on the unquotiented space but with the tangent

vectors first projected orthogonal to gauge transformations. These projected tangent

vectors are our canonical choice of representatives for tangent vectors in the quotiented

moduli space.

For a tangent vector, δ̃Ai, to be orthogonal to gauge transformations, it must satisfy

g
(
δ̃Ai, DiΛ

)
= −

∫
d4xTr

(
Di(δ̃Ai)Λ

)
= 0, (4.4.10)

for all Λ. Equivalently,

Di(δ̃Ai) = 0. (4.4.11)

The variations which satisfy the linear self-dual field equation and this gauge fixing

condition are known as zero-modes and form the tangent space at each point in the

moduli space.

With the gauge transformations quotiented out, recall that the parameters in the

ADHM data provide a coordinate system on the moduli space. If we label the 8k pa-

rameters of the ADHM construction as zr, r = 1, . . . , 8k then each choice corresponds

to an instanton solution, Ai(z; x). The obvious tangent vectors in this coordinate

system are ∂rAi, except that these may also include variations which are gauge trans-

formations. To obtain a zero-mode, we must project out this gauge transformation.

The canonical zero-modes on the moduli space are therefore

δrAi = ∂rAi −Diεr, (4.4.12)

where εr is chosen so that Di(δrAi) = 0. The metric on the moduli space is defined as

grs =

∫
d4xTr (δrAi δsAi) . (4.4.13)

These zero-modes, δrAi, are exactly the same as those we came across in our ansatz

for the low energy dynamics of instantons, and the metric is identical to that in our

effective sigma-model action for their evolution. We have seen here however that the

metric on the moduli space is intrinsic and does not require the instantons to be

embedded in a higher dimensional theory for it to be apparent.

4.4.1 The moduli space metric

To make further progress in understanding the low energy dynamics of instantons

we will need an explicit form of the metric in terms of the ADHM parameters, or

coordinates on the moduli space. In principle we could find the metric by finding an
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explicit expression for Ai(z;x), solving the gauge fixing condition for εr and taking the

trace of each pair of zero-modes. In practice this approach is intractable. Fortunately

we can use the ADHM construction to once again reduce this to an algebraic calculation

which can be readily done for charge two instantons with an SU(2) gauge group.

What follows is a method developed by Osborn [94] which was originally used for

calculating the metric determinant and has been applied by Peeters and Zamaklar [95]

to calculate the metric directly when the instantons are well separated.

An algebraic constraint on zero-modes

Recall that the gauge field, Ai, is constructed from the ADHM data, ∆ as

Ai = iU †∂iU, where ∆†U = 0, U †U = 1. (4.4.14)

The derivative of Ai in one of the coordinate directions on the moduli space can be

calculated in terms of the ADHM data, making use of the ADHM algebra,

∂rAi = −iU †∂r∆f ēib†U + iU †beif∂r∆
†U +Di(iU

†∂rU). (4.4.15)

The last term is an explicit gauge transformation but the first two terms may also con-

tain components which are gauge transformations. Our aim is to perform appropriate

transformations on ∆ so that all of the gauge transformation components are shifted

into the final term and the first two terms can then be taken together as the zero-mode.

Let us again consider the tangent vector from first principles: δrAi is the derivative

of a curve through the zr coordinate on the moduli space, Ai(z
r(τ);x), at τ = 0. At

each point on this curve the field configuration, Ai, has some underlying ADHM data,

∆. However, this ADHM data is not unique since the gauge field is invariant under a

transformation of the ADHM data of the following form:

∆ 7→ Q∆R, U 7→ QU. (4.4.16)

We can therefore choose a different underlying ∆ at each point on our curve. Let us

parameterise this transformation along the curve in the following way:

∆(zr(τ)) 7→ exp(τ δrQ)∆ exp(τ δrR). (4.4.17)

This transformation does not change ∂rAi but instead allows us to write it as

∂rAi = −iU †Crf ēib†U + iU †beifC
†
rU +Di(iU

†∂rU + iU †δrQU), (4.4.18)



4.4. The moduli space of instantons 69

where

Cr = ∂r∆ + δrQ∆ + ∆δrR. (4.4.19)

We can use this freedom to choose an appropriate δrQ and δrR such that the only

components of ∂rAi which are gauge transformations appear explicitly in the final

term. The first two terms will then together be a zero-mode. The appropriate δrQ and

δrR can be found by imposing the zero-mode conditions on

δrAi = −iU †Crf ēib†U + iU †beifC
†
rU. (4.4.20)

That is, asking that this δrAi satisfy the linearised self-dual field equation and that it

is orthogonal to gauge transformations. The conditions that this imposes on Cr are

provided in the following claim:

Claim 4.4.1. The expression

δrAi = −iU †Crf ēib†U + iU †beifC
†
rU, (4.4.21)

is a zero-mode if Cr is independent of x and

∆†Cr = (∆†Cr)
T. (4.4.22)

Equivalently, if

a†Cr = (a†Cr)
T, and b†Cr = (b†Cr)

T. (4.4.23)

Proof. Consider the expression

ai ≡ U †bfei, (4.4.24)

which makes up part of δrAi. If we treat this as a vector in the fundamental represen-

tation we can work out its covariant derivative,

Diaj ≡ ∂iaj − iAiaj
= U †eibf∆†bfej + U †bf(ēib

†∆ + ∆†bei)fej.
(4.4.25)

If we write ∆†b = ckēk with the quaternion components made explicit, where ck are

some real valued matrices, then we can write this covariant derivative as

Diaj = U †bfckf
(
eiēkej + ēiekej + ēkeiej

)
= −U †bfckf

(
eiējek − 2δjkei − 2δikej

)
.

(4.4.26)

In the final line we have used the quaternion identity,

ēiej = −ējei + 2δij. (4.4.27)



4.4. The moduli space of instantons 70

In this form it is straightforward to see that ai satisfies the linear self-dual field equation

and background gauge condition,

D[iaj] = 1
2
εijklDkal, and Diai = 0. (4.4.28)

The covariant derivative of δrAi can now be written as

Di(δrAj) = −i(DiU
†)Cra

†
j + iajC

†
r(DiU)− iU †Cr(Dia

†
j) + i(Diaj)C

†
rU

= −iU †bf
(
ei∆

†Crēj − ejC†r∆ēi
)
fb†U − iU †Cr(Dia

†
j) + i(Diaj)C

†
rU.

(4.4.29)

Here U † is also treated as a vector in the fundamental representation and its covariant

derivative is

DiU
† ≡ ∂iU

† − iAiU † = U †eibf∆†. (4.4.30)

We have already shown that the last two terms in Di(δrAj) satisfy the conditions of a

zero-mode so we only need to consider the first. Let us define

Kij ≡ ei∆
†Crēj − ejC†r∆ēi. (4.4.31)

Then δrAi will be a zero-mode if

K[ij] = 1
2
εijklKkl, and Kii = 0. (4.4.32)

This is true if and only if

∆†Cr = (∆†Cr)
T. (4.4.33)

Since ∆ = a− bx is linear in x, and Cr has no dependence on x, we can split this into

two conditions,

a†Cr = (a†Cr)
T, and b†Cr = (b†Cr)

T. (4.4.34)

It now remains to establish the conditions on δrQ and δrR so that the conditions

on Cr are satisfied and δrAi is a zero-mode. In our canonical choice for the ADHM

data, b is given by

b =

(
0

1k

)
, (4.4.35)

and the transformation parameter Q takes the form

Q =

(
q 0

0 R−1

)
. (4.4.36)

We do not need a variation in q so we can set δrq = 0. The variation of Q can now be
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expressed entirely in terms of the variation of R,

δrQ = −b δrR b†. (4.4.37)

The linear coefficient of x in Cr is automatically zero,

∂rb+ δrQb+ b δrR = 0, (4.4.38)

since ∂rb = 0. Therefore Cr is indeed independent of x,

Cr = ∂ra+ δrQa+ a δrR. (4.4.39)

It is straightforward to see that Cr satisfies the first condition to be a zero-mode,

a†Cr = (a†Cr)
T, since R is an orthogonal matrix and δrR

T = −δrR. For the second

condition, b†Cr = (b†Cr)
T, we require

a†∂ra− (a†∂ra)T − a†b δrR b†a− b†a δrRa†b+ µ−1δrR + δrRµ
−1 = 0, (4.4.40)

where

a†a = µ−1 (4.4.41)

is real and invertible. To find the zero-mode in the r direction we need to solve this

constraint for δrR in terms of parameters appearing in a. This is now a purely algebraic

constraint on zero-modes.

The inner product of zero-modes

Now that we have an expression for the zero-modes we may substitute them into the

inner product and find the metric. Once again this appears to be a difficult problem

involving evaluating an integral over the spatial directions. However, there is an identity

of Corrigan [96] that allows us to express the trace of the zero-modes as a total derivative

and avoid having to evaluate the integral.

Claim 4.4.2. If δrAi are zero-modes in the form

δrAi = −iU †Crēifb†U + iU †bfeiC
†U, (4.4.42)

then

Tr (δrAi δsAi) = −1
2
∂2 Tr

(
C†r(1 + P )Csf

)
. (4.4.43)

A brute force proof of this claim is given in the appendix of [97]. Below we present

an independently derived proof by a similar brute force method.
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Proof. We can show this identity directly by expanding both sides and checking that

the terms match. We begin with the right hand side,

− 1
2
∂2 Tr

(
C†r(1 + P )Csf

)
= −1

2
Tr
(
C†r∂

2PCsf + 2C†r∂iPCs∂if + C†r(1 + P )Cs∂
2f
)
.

(4.4.44)

Expanding out the derivatives we find

∂if = −f(ēib
†∆ + ∆†bei)f, (4.4.45)

∂2f = −2f ēib
†Pbeif, (4.4.46)

∂iP = −Peibf∆† −∆fb†ēiP, (4.4.47)

∂2P = −4bfb†P − 4Pbfb† + 2∆f ēib
†Pbeif∆†. (4.4.48)

The initial expressions are clearly symmetric in r and s, and when we expand the

derivatives many terms appear alongside their conjugate but with r and s swapped

over. We will assume that all appearances of r and s are implicitly symmetric so that

these terms can be written as one. For example,

Tr
(
C†rbfb

†PCsf + C†rPbfb
†Csf

)
= 2 Tr

(
C†rbfb

†PCsf
)
. (4.4.49)

With this implicit symmetry between r and s, the right hand side becomes,

− 1
2
∂2 Tr

(
C†r(1 + P )Csf

)
= Tr

(
4C†rbfb

†PCsf

− C†r∆f ēib†Pbeif∆†Csf + C†r(1 + P )Csf ēib
†Pbeif

− 2C†rPeibf∆†Csf ēib
†∆f − 2C†r∆fb

†ēiPCsf ēib
†∆f

)
.

(4.4.50)

We will eliminate all explicit references to ei by making use of the following quaternion

identities,

eiqēi = 4 Re(q) = 2 Tr(q)e4, (4.4.51)

eiqei = ēiqēi = −2q̄. (4.4.52)

We also also make use of the invariance of b†Cr, b
†∆ and ∆†Cr under transposition, so
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that we can write

ei∆
†Csēi = 2(∆†Cs + C†s∆), (4.4.53)

ēib
†PCsēi = −2(C†sb−∆†bfC†s∆), (4.4.54)

ēib
†Pbei = 2(b†Pb+ b†b−∆†bfb†∆). (4.4.55)

These can be used to express the right hand side of the identity as

− 1
2
∂2 Tr

(
C†r(1 + P )Csf

)
= 4 Tr

(
C†rbfb

†PCsf + C†rPCsfb
†PBf + C†rPCsfb

†bf

− C†rPCsf∆†bfb†∆f − C†rPbf∆†Csfb
†∆f

)
.

(4.4.56)

The left hand side can be expanded in a similar way, again with an implicit symmetry

between r and s, and using UU † = P , to give

Tr (δrAi δsAi)

= −2 Tr
(
Crēifb

†PCsēifb
†P − bfeiC†rPCsēifb†P

)
= 4 Tr

(
(C†rb−∆†fC†r∆)fb†PCsf + C†rPCsf(b†Pb+ b†b−∆†bfb†∆)f

)
.

(4.4.57)

These expressions can now clearly be seen to be equal.

The metric can now be expressed as

grs =

∫
d4x Tr (δrAi δsAi)

= 2π2 Tr
(
C†rP∞Cs + C†rCs

)
,

(4.4.58)

where we have used Stokes’ theorem in the final line to integrate over the boundary at

infinity, and the projector becomes

P∞ ≡ lim
|x|→∞

P = lim
|x|→∞

(
1k+1 −∆f∆†

)
. (4.4.59)

If we expand Cr in terms of ∂ra and δrR then we arrive at our final algebraic expression

for the metric:

grs = 2π2 Tr

(
∂ra
†(1 + P∞)∂sa−

(
a†∂ra− (a†∂ra)T

)
δsR

)
. (4.4.60)

The quantity ∂ra is given directly in terms of the ADHM data, and δrR is determined

by the purely algebraic constraint in equation (4.4.40), again in terms of the ADHM
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data. We will use this form of the metric in Chapter 5 to calculate the metric on the

moduli space of charge two instantons with an SU(2) gauge group.

4.5 Dyonic instantons

Dyonic instantons are instanton solutions with an additional excited scalar field [64].

These appear naturally in the low energy world-volume theory of parallel D4-branes

which is described by five dimensional maximally supersymmetric Yang-Mills. This

theory contains five scalar fields corresponding to the five transverse directions of the

D4-branes, but we will only consider a single excited scalar field, Φ. The bosonic part

of the action is then

S = −
∫

d5x Tr
(

1
4
FµνF

µν + 1
2
DµΦDµΦ

)
. (4.5.1)

The energy of this system is

E =

∫
d4x Tr

(
1
2
Fi0Fi0 + 1

4
FijFij + 1

2
D0ΦD0Φ + 1

2
DiΦDiΦ

)
. (4.5.2)

Once again the Bogomol’nyi bound on the energy can be found by completing the

square,

E =

∫
d4x Tr

(
1
8

(
Fij ± 1

2
εijklFkl

)2
+ 1

2
(Fi0 ±DiΦ)2 + 1

2
(D0Φ)2

∓ 1
8
εijklFijFkl ∓ Fi0DiΦ

)
≥ 2π2|k|+ |QE|.

(4.5.3)

The energy is bounded below by the topological charge, k, as before,

k =
1

8π2

∫
d4xTr

(
1
2
εijklFijFkl

)
, (4.5.4)

but there is now another conserved charge, QE, which is the electric charge,

QE =

∫
d4x Tr (Fi0DiΦ) =

∫
d4x ∂i Tr (Fi0Φ) . (4.5.5)

The energy bound is saturated by static solutions which satisfy the following BPS

equations:

Fij = ±1
2
εijklFkl, (4.5.6)

Fi0 = ±DiΦ. (4.5.7)
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We will again restrict our attention to the solutions with positive signs. The self-dual

field equation for the four spatial components of Ai is unmodified so the instanton is

undistorted in the spatial directions by the addition of a scalar field. The second BPS

equation can be satisfied by taking

A0 = Φ. (4.5.8)

This does not place any additional constraints on Φ, but it must still satisfy its equation

of motion,

D2Φ = 0. (4.5.9)

The D4-brane system is BPS so Φ may have an arbitrary vacuum expectation value

(VEV) corresponding to the branes being separated in one of the transverse directions,

Φ
∣∣
|x|=∞ = iq, (4.5.10)

where q is a purely imaginary quaternion in the 2 × 2 complex matrix representation

we used previously in the ADHM construction. The value of Φ must be constant at

infinity so that the energy is finite.

For each possible VEV, the equation of motion for Φ has a unique solution in the

background of each instanton. In general we will also work with a specific VEV so that

instantons and dyonic instantons are in one-to-one correspondence with each other,

with the only difference being the presence of the scalar field or not. This means that

the moduli space of instantons is identical to the moduli space of dyonic instantons, at

least topologically. In a moment we will see that the scalar field does not distort the

metric on the moduli space but it does introduce a potential term to the low energy

dynamics.

We previously chose A0 = Φ in our solution to the BPS equations, but we may

perform a gauge transformation by Ω = exp(tΦ) which will set A0 to zero. The spatial

components are then rotating through the gauge group in the remaining unbroken U(1)

symmetry picked out by the direction of the scalar VEV, q. The speed of rotation is

determined by the magnitude of q. This situation is analogous to 1/4-BPS monopole

dyons where there is an additional scalar field and the electric charge can be seen as a

rotation through the gauge group [68].

4.5.1 The ADHM construction of the scalar field

We want to find the solution for Φ in the background of a general instanton, and once

again the ADHM construction renders solving a differential equation unnecessary and

lets us use the ADHM algebra to reduce the problem to an algebraic one. The following

ansatz for Φ and the techniques shown below for solving the equations of motion were
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first introduced in reference [97]. The ansatz for Φ is:

Φ = iU †AU, A =

(
q 0

0 P

)
. (4.5.11)

Here U is the null vector from the ADHM construction, q is a pure imaginary quaternion

and P is a k × k real anti-symmetric matrix. The VEV of Φ is given by iq.

The matrix P is determined by solving the equation of motion D2Φ = 0. Using the

ADHM algebra presented previously, a straightforward but lengthy calculation gives

D2Φ = −4iU †{bfb†,A}U + 4iU †bf Tr2(∆†A∆)fb†U. (4.5.12)

The trace, Tr2, in the second term is only over the quaternionic blocks and therefore

picks out twice the real part of its argument. Using the block diagonal form of A, the

first term is −4iU †{f, P}U . The lower k×k block of the ADHM data is M ′ = M−1kx
and so we can rewrite the trace in the second term as

Tr2(∆†A∆)

= Tr2(L†qL) + Tr2(M ′†PM ′)

= Tr2(L†qL) + 1
2

Tr2([M ′†, P ]M ′ −M ′†[M ′, P ] + {P,M ′†M})

= Tr2(L†qL) + 1
2

Tr2([M ′†, P ]M ′ −M ′†[M ′, P ] + {P, f−1} − {P,L†L}),

(4.5.13)

where we have used ∆†∆ = L†L + M ′†M ′ = f−1. In the commutator terms all x

dependence is proportional to 1k and vanishes. Thus

1
2

Tr2([M ′†, P ]M ′ −M ′†[M ′, P ]) = 1
2

Tr(ēiej)([Mi, P ]Mj −Mi[Mj, P ])

= −[Mi, [Mi, P ]].
(4.5.14)

Combining all of this we have

D2Φ = −4i
(
U †{f, P − 1

2
Tr2(P )}U

+ U †bf
(

Tr2(L†qL)− [Mi, [Mi, P ]]− {P,LT
i Li}

)
fb†U

)
.

(4.5.15)

Since P is real, the quantity (P − 1
2

Tr(P )) is zero. So P must satisfy

Tr2(L†qL)− [Mi, [Mi, P ]]− {P,LT
i Li} = 0. (4.5.16)

We can see from the symmetry properties of the other quantities involved that P must

be antisymmetric as expected. Note that the i and j indices in this expression are for

the quaternion components of the matrices, not the matrix entries.

Finding the scalar field Φ is now simply a matter of solving these linear equations
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for the components of P in terms of the ADHM data matrices, L and M , in the

appropriate instanton background.

4.5.2 The moduli space potential

We have seen that for instantons the effective action for their low energy dynamics is a

sigma-model action with a metric given by the natural metric on the moduli space. For

dyonic instantons the additional scalar field does not alter this metric, but the effective

action now contains a potential on the moduli space. The potential arises from the

electric charge which now varies across the moduli space, unlike the topological charge.

For lack of a better term, we will continue to use the expression ‘zero-mode’ to describe

directions in the moduli space even though they now no longer strictly correspond to

flat energy directions. We will also continue to use the term ‘geodesic’ to describe

motion on this space in the presence of a potential.

Our approach to the low energy dynamics is identical to before. The only time

dependence in Ai and Φ is through the moduli space coordinates: Ai(z(t); x) and

Φ(z(t); x). Once again we ask that our ansatz satisfy Gauss’s law, which is now

DiFi0 + [D0Φ,Φ] = 0. (4.5.17)

This can no longer be satisfied exactly, but we can solve Gauss’s law to first order if

we again modify A0 away from the stationary solution by an amount proportional to

the velocity:

A0 = Φ + żrεr. (4.5.18)

The electric component of the field strength, Fi0, is then

Fi0 = −(żrδrAi −DiΦ), (4.5.19)

where δrAi is the same zero-mode as before. The first term in Gauss’s law, DiFi0, is still

zero since the static equation of motion for the scalar field, DiDiΦ = 0, is unchanged by

the additional time dependence. The second term in Gauss’s law, [D0Φ,Φ], is non-zero

but is of order żr|q|2 where |q| is the magnitude of the VEV of Φ. We will see more

explicitly below that the moduli space approximation is valid when ż and q are small,

so Gauss’s law is satisfied in this regime.

Before finding the effective action on the dyonic instanton moduli space, we note

that DiΦ satisfies the same conditions as δrAi for being a zero mode. It is a solution

to the linear self-dual equation and satisfies the gauge fixing condition, DiDiΦ = 0.

Since the zero-modes δrAi (r = 1, . . . , 8k) form a basis for zero-modes on the moduli

space, we can express DiΦ as

DiΦ = |q|KrδrAi, (4.5.20)
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for some vector Kr, where we have factored out the magnitude of the scalar VEV,

|q|. If we consider DiΦ at infinity then it is a global gauge transformation by iq. For

SU(2) there will be three zero-modes corresponding to a global gauge transformation

and since such a gauge rotation is a symmetry of the full Yang-Mills theory, these

transformations descend to Killing vectors of the moduli space metric. The vector Kr

is therefore a Killing vector of the metric, corresponding to the unbroken global gauge

transformation in the U(1) direction specified by q.

As with 1/4-BPS monopole dyons, we can perform a coordinate transformation of

the moduli space [83, 82] so that the effective action may be written neatly as the sum

of a metric and potential term. Let us define new coordinates by

zr → zr − |q|Krt. (4.5.21)

Recall that dyonic instantons can be put in a gauge where they are rotating in the

unbroken U(1) global gauge group. This coordinate transformation corresponds to

moving to a coordinate system in which the dyonic instantons are stationary, ż = 0.

This is a compelling reason why it is correct to include global gauge transformations

in our directions on the moduli space and therefore in our coordinate system. In this

rotating coordinate system the electric components of the field strength are

Fi0 = −(żr − |q|Kr)δrAi → −żrδrAi. (4.5.22)

The effective action becomes,

S = 1
2

∫
d5x Tr (Fi0Fi0 −DiΦDiΦ +D0ΦD0Φ)

= 1
2

∫
dt grsż

rżs − |q|2grsKrKs.

(4.5.23)

In the final line we have neglected terms of order ż2|q|2 coming from the (D0Φ)2 term.

This effective action is therefore a valid approximation to the low energy dynamics of

dyonic instantons in the limit

ż2 � 1, and |q|2 � 1, (4.5.24)

in comparison to the rest mass of the dyonic instantons. Physically, this is the re-

quirement that the potential on the moduli space is shallow compared to the potential

around the moduli space and that the kinetic energy is small. This prevents the motion

from being able to climb the sides of the potential surrounding the moduli space and

move away from the regime in which this approximation is valid.

Note that the potential on the moduli space is expressed as the square of a Killing
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vector of the moduli space metric,

V = 1
2

∫
d5x Tr (DiΦDiΦ) = 1

2

∫
dt |q|2grsKrKs. (4.5.25)

If we were to consider the full supersymmetric Yang-Mills theory then we would also

have fermionic zero modes and a supersymmetric effective action on the moduli space.

This form of the potential would then be required by supersymmetry.

For stationary dyonic instantons which satisfy DiΦ = Fi0, the potential is equal

to the electric charge, QE. However, for slow moving dyonic instantons the electric

charge will have additional contributions from the kinetic terms in Fi0. As with the

equations of motion, the electric charge is conserved to order ż|q|2 in the moduli space

approximation.



Chapter 5

The moduli space

So far we have given an overview of the moduli space of instantons with general topo-

logical charge and an SU(2) gauge group. In this chapter we will focus our attention on

instantons of charge two and lay the groundwork that will allow us to explore their low

energy dynamics in Chapter 6. The contents of this chapter are largely calculational;

we will use an explicit parameterisation of the ADHM data to calculate expressions for

the metric and potential on the moduli space of charge two instantons.

In Section 5.1 we will begin by understanding the parameterisation of the ADHM

data of charge two instantons. The moduli space is 16 dimensional so the ADHM data

must have 16 free parameters. We will see that these parameters can be split into four

quaternionic parameters, with two parameters describing each instanton’s position and

two parameters describing the size and internal gauge orientation of each instanton. In

Section 5.2 we will use the method outlined previously in Chapter 4 to calculate the

metric in terms of these ADHM parameters. In Section 5.3 we will perform a similar

calculation for the potential on the moduli space of dyonic instantons. The moduli

space has conical singularities corresponding to instantons of zero size and in Section

5.4 we will see how these arise through a quotient of the moduli space by the underlying

symmetries of the ADHM data. Finally in Section 5.5 we will exhibit some geodesic

submanifolds of the moduli space which will prove useful in limiting the number of

parameters we need to consider in the numerical evolution of the equations of motion

on the moduli space.

5.1 The ADHM data of charge two instantons

We will begin by finding an explicit parameterisation of the ADHM data for a charge

two instanton. We know that the lower block matrix, M , in the ADHM data must be

symmetric but we will make no other assumptions, so the following parameterisation

80
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(a) The scalar field. (b) The topological charge density.

Figure 5.1: Two separated instantons. The solid lines show the fields along the x4

(real) axis and the dashed lines show the fields along the x2-axis. This configuration
corresponds to the ADHM parameters v1 = e4, v2 = e1 and τ = 3e4.

is the most general [94]:

∆(x) =

 v1 v2

ρ̃+ τ σ

σ ρ̃− τ

− x
0 0

1 0

0 1

 . (5.1.1)

This form is convenient since all of the parameters have a direct physical interpretation

in the resulting instanton solution. The quaternionic components of the two diagonal

entries in the lower block, ρ̃+τ and ρ̃−τ , can be interpreted as four-vectors and describe

the positions of the two instantons in the four spatial dimensions. The parameter ρ̃ is

the centre of mass and factors out into an uninteresting flat direction in the metric.

We will set ρ̃ to zero for the rest of this thesis. When the magnitude of τ is much

larger than the magnitudes of v1 and v2, the instantons are well separated and form

two distinct lumps. Each lump can be approximated by a charge one instanton which is

rotationally symmetric. An example cross section of the topological charge and scalar

field is shown in Figure 5.1 for large τ . As τ decreases the individual lumps move closer

together and begin to deform into each other. When the magnitude of τ is equal to

the magnitude of σ, the instantons are coincident and form a single lump at the origin

with axial symmetry. A cross section of the topological charge and scalar field for this

axially symmetric charge two instanton is shown in Figure 5.2. We will discuss the role

of σ and the behaviour of coincident instantons more in Chapter 6.

The magnitudes of v1 and v2 describe the size of each instanton lump while the unit

quaternions, v̂1 and v̂2, describe their alignment in the gauge group. To understand

what we mean by the gauge alignment, note that for well separated instantons the gauge

field generated by the above ADHM data is approximately that of two superimposed ’t
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(a) The scalar field. (b) The topological charge.

Figure 5.2: Two coincident instantons. The solid lines show the fields along the x4

(real) axis and the dashed lines show the fields along the x2-axis. Note that the fields
are rotationally symmetric in the (x4, x1) plane when coincident. This configuration
corresponds to the ADHM parameters v1 = e4, v2 = e1 and τ = 1√

2
e4.

Hooft instantons but with a possible global gauge transformation applied to each one,

Ai ≈
|v1|2(x− τ)jη

a
ij

|x− τ |2(|x− τ |2 + |v1|2)
v̂1σ

av̂†1 +
|v2|2(x+ τ)jη

a
ij

|x+ τ |2(|x+ τ |2 + |v2|2)
v̂2σ

av̂†2. (5.1.2)

Recall that SU(2) is isomorphic to the unit quaternions so the action of v̂1 and v̂2 is a

gauge transformation on each separate lump. We could use the global gauge symmetry

to set one of v̂1 or v̂2 to the identity but we will keep them explicit since the global

gauge rotation is a relevant parameter in the moduli space and plays an important

role in the dynamics. The relative gauge alignment, v̂†1v2, is physically significant even

in the static case. When the instantons are close together the gauge field is more

complicated and there is no clear notion of separate lumps or of the relative gauge

alignment between them.

The parameter σ is fixed by the ADHM constraint to be [94, 95]

σ =
τ

4|τ |2
Λ + ατ, where Λ = (v̄2v1 − v̄1v2), (5.1.3)

for any real value of α. The symmetry of the ADHM data in equation (4.3.16) always

allows us to set α to zero. In doing so we break the continuous O(2) symmetry in

equation (4.3.16) to a discrete subgroup.

The scalar field

Now that we have explicit ADHM data for a charge two instanton, we can solve the

ansatz for the scalar field from Chapter 4 and write it explicitly in terms of the ADHM

parameters, τ , v1 and v2.

Recall that the ansatz for the scalar field contains a k × k anti-symmetric matrix,
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P , which must satisfy

Tr2(L†qL)− [Mi, [Mi, P ]]− {P,LT
i Li} = 0. (5.1.4)

The blocks of the charge two ADHM data are

L =
(
v1 v2

)
, and M =

(
τ σ

σ −τ

)
. (5.1.5)

The first term in our constraint on P is therefore

Tr2(L†qL) =

(
0 1

2
Tr (v̄1qv2 − v̄2qv1)

1
2

Tr (v̄2qv1 − v̄1qv2) 0

)
. (5.1.6)

Note that the trace of the quaternions in the 2 × 2 complex representation picks out

twice the real component. If we write P as

P =

(
0 p

−p 0

)
, (5.1.7)

then the second and third terms in the constraint are

[Mi, [Mi, P ]] = 4p

(
0 |τ |2 + |σ|2

−(|τ |2 + |σ|2) 0

)
, (5.1.8)

and

{P,LT
i Li} = p

(
0 |v1|2 + |v2|2

−(|v1|2 + |v2|2) 0

)
. (5.1.9)

The off diagonal entry in P is therefore given by

p =
1

2NA

Tr (v̄1qv2 − v̄2qv1) , (5.1.10)

where

NA = |v1|2 + |v2|2 + 4
(
|τ |2 + |σ|2

)
. (5.1.11)

The scalar field is then given by the expression in Section 4.5.1,

Φ = iU †AU, A =

(
q 0

0 P

)
. (5.1.12)

We will not present the expanded expression for Φ since it does not provide any addi-

tional insight. However, this implicit form allows up to easily evaluate Φ in different

instanton backgrounds. We will also use this solution for P to calculate the potential
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in Section 5.3.

The form of the scalar field for charge two and higher dyonic instantons has been

previously studied in detail in the context of D4-branes [70, 71], where the zeroes of

the scalar field correspond to where the D4-branes intersect. For coincident instantons,

the zeroes of the scalar field lie in a circle, and as the instantons separate the circle

of zeroes pinches off into two separate loops which shrink down to a point as the

instantons separate to infinity. This has an interpretation as supertubes between the

D4-branes which collapse as the instantons become well separated.

5.2 The moduli space metric

We saw in Chapter 4 that the metric on the moduli space can be calculated by per-

forming an appropriate transformation of the ADHM data around the point of interest.

The transformation is chosen so that the components of the tangent vectors which are

orthogonal to gauge transformations are explicit and can be ignored to give us the

zero-modes. The zero-modes are expressed in terms of the ADHM data and their inner

product can be calculated algebraically. Now that we have an explicit parameterisation

for the charge two ADHM data, we can work out these appropriate transformations

and the inner product of the zero-modes which gives us the metric on the moduli space.

Recall from Chapter 4 that the metric is given by

ds2 = 2π2 Tr

(
da†(1 + P∞) da−

(
a† da− (a† da)T

)
dR

)
, (5.2.1)

where the transformation of the ADHM data, dR, satisfies the constraint,

a† da− (a† da)T − a†b dR b†a− b†a dRa†b+ µ−1 dR + dRµ−1 = 0. (5.2.2)

With the ADHM data for charge two instantons in equation (5.1.1), the projector

at infinity is

P∞ = lim
|x|→∞

P = 13 − b†b =

1 0 0

0 0 0

0 0 0

 . (5.2.3)

The first part of the metric expression in equation (5.2.1) is therefore

ds2
1 = 2π2 Tr

(
da†(1 + P∞) da

)
= 4π2 Tr

(
d¯̃ρ dρ̃+ dv̄1 dv1 + dv̄2 dv2 + dτ̄ dτ + dσ̄ dσ

)
.

(5.2.4)

We have included ρ̃ to demonstrate that these directions are flat but these can be

neglected from now on. The first four terms are all fundamental parameters, but the
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last term involving σ needs to be expanded according to equation (5.1.3),

4π2 Tr (dσ̄ dσ)

= 2π2 Tr

(
1

8|τ |2
dΛ̄ dΛ +

1

4|τ |4
Λ̄ dτ̄ τ dΛ− 1

4|τ |4
dΛ̄Λ d|τ |2

+
1

8|τ |4
|Λ|2 dτ̄ dτ − 1

4|τ |6
|Λ|2 dτ̄ τ d|τ |2 +

1

8|τ |6
|Λ|2 d|τ |2 d|τ |2

)
.

(5.2.5)

We note that

Tr
(
d|τ |2

)
= Tr (dτ̄ τ + τ̄ dτ) = 2 Tr (dτ̄ τ) , (5.2.6)

so that the terms at order |τ |−6 cancel. The terms at order |τ |−2 have been calculated

previously [95] and are

1

8|τ |2
Tr
(
dΛ̄ dΛ

)
=

1

|τ |2
(
|v1|2(dv2 · dv2) + |v2|2(dv1 · dv1) + 2(v1 · dv1)(v2 · dv2)

− (dv2 · v1)(dv2 · v1)− (dv1 · v2)(dv1 · v2)− 2(v1 · v2)(dv1 · dv2)

+ 2εijklv
i
1v
j
2 dvk1 dvl2

)
,

(5.2.7)

where

p · q = paq
a (5.2.8)

is the scalar product of quaternions treated as four-vectors. The terms at order |τ |−4

are
1

8|τ |4
Tr
(
|Λ|2 dτ̄ dτ

)
=

1

|τ |4
(
|v1|2|v2|2 − (v1 · v2)2

)
(dτ · dτ) , (5.2.9)

and

1

4|τ |4
Tr
(
Λ̄ dτ̄ τ dΛ− dΛ̄Λ d(τ̄ τ)

)
= − 1

4|τ |4
Tr
(
dΛΛ̄τ̄ dτ

)
= − 1

4|τ |4
(

Tr
(
Re(dΛΛ̄) Re(τ̄ dτ)

)
− Tr

(
Im(Λ dΛ̄) Im(τ̄ dτ)

))
= − 2

|τ |4
(τ · dτ)

(
|v1|2(v2 · dv2) + |v2|2(v1 · dv1)

− (v1 · v2)(v1 · dv2)− (v1 · v2)(v2 · dv1)
)

+
1

2|τ |4
(
εijklΛ

i dΛjτ k dτ l + (Λ · dτ)(τ · dΛ)− (Λ · τ)(dΛ · dτ)
)
.

(5.2.10)



5.2. The moduli space metric 86

In this last line we have used the identity,

Tr
(
Im(pq̄) Im(rs̄)

)
= Tr(η̄aij η̄

b
kleaeb)p

iqjrksl

= 2
(
εijkl − δikδjl + δilδjk

)
piqjrksl.

(5.2.11)

For the second part of the metric, recall that R is an O(2) transformation with one

parameter, θ. Since we require a continuous transformation it must be a rotation and

its variation is therefore

dR = − dθ

(
0 1

−1 0

)
. (5.2.12)

Let us define a shorthand quantity, dk, by

a† da− (a† da)T = dk

(
0 1

−1 0

)
, (5.2.13)

where the matrix form is determined by the left hand side being an anti-symmetric

matrix with real quaternion components. The constraint placed on dR by equation

(5.2.2) becomes

dθ =
dk

NA

, (5.2.14)

where

NA = |v1|2 + |v2|2 + 4
(
|τ |2 + |σ|2

)
. (5.2.15)

The second part of the metric is therefore

ds2
2 = −2π2 Tr

((
a† da− (a† da)T

)
dR

)
= −8π2 dk2

NA

.

(5.2.16)

We can calculate dk explicitly from equation (5.2.13) and we find

dk = 1
2

Tr
(
v̄1 dv2 − v̄2 dv1 + 2(τ̄ dσ − σ̄ dτ)

)
. (5.2.17)

The argument in the trace is necessarily real but this can also be seen directly by

making use of the ADHM constraints or the explicit form of σ. We can expanded dk

as

dk = (v1 · dv2)− (v2 · dv1)

− 2

|τ |2
(
εijklv

i
2v
j
1τ

k dτ l + (v2 · τ)(v1 · dτ)− (v1 · τ)(v2 · dτ)
)
.

(5.2.18)

Putting all of this together, the metric on the moduli space of charge two instantons
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with an SU(2) gauge group is

ds2

8π2
= dv2

1 + dv2
2 + dτ 2

+
1

4|τ |2
(
|v1|2 dv2

2 + |v2|2 dv2
1 + 2(v1 · dv1)(v2 · dv2)− (v1 · dv2)2

− (v2 · dv1)2 − 2(v1 · v2)(dv1 · dv2) + 2εijklv
i
1v
j
2 dvk1 dvl2

)
+

1

4|τ |4
(
|v1|2|v2|2 − (v1 · v2)2

)
dτ 2

− 1

2|τ |4
(
|v1|2(v2 · dv2) + |v2|2(v1 · dv1)

− (v1 · v2)(v1 · dv2)− (v1 · v2)(v2 · dv1)
)
τ · dτ

+
1

8|τ |4
(
εijklΛ

i dΛjτ k dτ l + (Λ · dτ)(τ · dΛ)− (Λ · τ)(dΛ · dτ)
)
τ · dτ

− 1

NA

(
v1 · dv2 − v2 · dv1

− 2

|τ |2
(
εijklv

i
2v
j
1τ

k dτ l + (v2 · τ)(v1 · dτ)− (v1 · τ)(v2 · dτ)
))2

.

(5.2.19)

The terms on the first line of the metric correspond to the individual movement of

each instanton lump in flat space. The remaining terms describe the interaction of the

two instanton lumps. Note that these interaction terms fall off quadratically as the

separation is increased. This metric has been previously calculated up to order |τ |−2

in reference [95] although we point out that our calculation differs by a factor of two

in the final line.

5.3 The moduli space potential

The potential on the moduli space can be calculated directly from the ansatz for Φ in

equation (5.1.12) [97]. Recall that the potential on the moduli space arises from the

following term in the Yang-Mills action:

V =

∫
d4x Tr (DiΦDiΦ) . (5.3.1)

If we integrate by parts and use the equation of motion for Φ, the potential becomes

V = lim
R→∞

∫
|x|=R

dS3 x̂i Tr (ΦDiΦ) . (5.3.2)
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In terms of the ADHM data, the covariant derivative of Φ is

DiΦ = iU †eibf∆†AU + iU †A∆f ēib
†U. (5.3.3)

For two instantons with ADHM data as in equation (5.1.1), the components of U must

satisfy,

v̄1U1 + (τ̄ − x̄)U2 + σ̄U3 = 0, (5.3.4)

v̄2U1 + σ̄U2 − (τ̄ + x̄)U3 = 0, (5.3.5)

which can be solved in the limit |x| → ∞ by

U1 → 1, (5.3.6)

U2 →
x

|x|2
v̄1, (5.3.7)

U3 →
x

|x|2
v̄2. (5.3.8)

Expanding the leading order terms in the potential gives

x̂iDiΦ = 2
i

|x|3
(
v2pv̄1 − v1pv̄2 + q(|v1|2 + |v2|2)

)
+O

(
|x|−4

)
. (5.3.9)

Recall that p is

p =
1

2NA

Tr (v̄1qv2 − v̄2qv1) , (5.3.10)

so that the potential is given by

V = −2 lim
R→∞

∫
|x|=R

dS3 1

|x|3
Tr
(
q(v2pv̄1 − v1pv̄2) + q2(|v1|2 + |v2|2)

)
+O

(
|x|−4

)
= 8π2|q|2

(
|v1|2 + |v2|2 −

1

NA

|v̄2q̂v1 − v̄1q̂v2|2
)
.

(5.3.11)

The first two terms in the potential are the potentials arising from each individual

dyonic instanton, while the final term describes their interaction and again falls off

quadratically in the separation.

5.4 Singularities in the metric

We have used the ADHM construction to find the metric on the moduli space but

we can also use this method to understand the topology of the moduli space. It is

well known that the moduli space has singularities corresponding to instantons of zero

size and these can be understood as the conical singularities where the moduli space
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is quotiented by discrete symmetries of the ADHM data. Recall that by fixing the

parameter α = 0 in equation (5.1.3) we have broken the continuous O(2) symmetry of

the ADHM data in equation (4.3.16). However, there still remains a discrete subgroup

of symmetries. The moduli space is quotiented by these symmetries since they identify

equivalent parameterisations of the ADHM data which correspond to the same gauge

field. The moduli space therefore has an orbifold structure with conical singularities

at the fixed points of these symmetries.

Consider a transformation of the ADHM data where R in equation (4.3.16) is a

rotation matrix. This gives the equivalent parameterisation:

ṽ1 = v1c− v2s, ṽ2 = v1s+ v2c,

τ̃ = (c2 − s2)τ − 2cs σ,

σ̃ = (c2 − s2)σ + 2cs τ,

(5.4.1)

where c = cos(θ) and s = sin(θ). If R is a reflection matrix instead then,

ṽ1 = v1c+ v2s, ṽ2 = v1s− v2c,

τ̃ = (c2 − s2)τ + 2cs σ,

σ̃ = −(c2 − s2)σ + 2cs τ.

(5.4.2)

For these to leave α = 0 invariant we must have either

c2 − s2 = 0, or cs = 0, (5.4.3)

so that the remaining discrete symmetries are given by rotations or reflections with

angle θ = (nπ)/4 for n = 0, . . . , 7. These unbroken symmetries form the dihedral

group of order 16.

Let us consider the action of these remaining symmetries and give them a physical

interpretation:

1. c = ±1, s = 0. Under these symmetries, v1 and v2 are unchanged or negated.

These symmetries correspond to the fact that v1 and −v1 give the same gauge

transformation of Ai, as in equation (5.1.2). Consider a reflection with c = −1

where v1 goes to −v1. Under this symmetry the moduli space is quotiented by

Z2 with a fixed point at v1 = 0. The moduli space therefore has the topology

of a cone around the point v1 = 0, which is a conical singularity. The same

arguments apply to the point v2 = 0 when c = 1. These singularities correspond

to an instanton shrinking to zero size.

2. c = 0, s = ±1. Under these symmetries, v1 and v2 swap roles with a possible

change in sign. The parameter describing the instanton separation, τ , is negated.
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This corresponds to a relabelling of the instantons so that the instanton described

by v1 is now described by v2 and vice-versa. The fixed points of these symmetries

are when v1 and v2 are equal up to a sign, and τ = 0. The singularities at

these fixed points are the same singularities described above but in a different

parameterisation of the moduli space. To see this, consider the following two

equivalent parameterisations,

τ = ε, σ = i, v1 = 1 + iε and v2 = 1− iε, (5.4.4)

and

τ̃ = i, σ̃ = ε, ṽ1 =
√

2 and ṽ2 =
√

2iε. (5.4.5)

These are identified under a reflection with θ = π
4
. As ε → 0, the first of these

parameterisations approaches the singularity here. However this is equivalent to

the second parameterisation which approaches the zero size instanton singularity

mentioned above.

3. c = ± 1√
2
, s = ± 1√

2
. These combine v1 and v2 in a linear combination, and swap

the roles of τ and σ. There are no fixed points except v1 = v2 = τ = σ = 0.

The physical interpretation of this symmetry is less obvious but we will discuss

it further in Chapter 6 and see that it is responsible for right angled scattering.

From the string theory viewpoint, the zero size singularities arise from the transition

between the Higgs and Coulomb branches of the D4-D0 brane system. It is natural

that the world-volume description should break down at this point.

5.5 Geodesic submanifolds

The moduli space has 12 parameters excluding the centre of mass, and integrating the

equations of motion on this full space is numerically expensive. We can reduce the range

of parameters that we need to consider at one time by finding geodesic submanifolds

of the moduli space (we use the term geodesic loosely here to also include motion on

the moduli space in the presence of a potential.) If our initial conditions lie within

a geodesic submanifold then the evolution will remain within the submanifold for all

time. A simple way of finding geodesic submanifolds is as the fixed points of symmetries

of the metric and potential.

To be able to see the symmetries more explicitly, let us write the metric in the

unexpanded form,

ds2 = 8π2

(
dv1 · dv1 + dv2 · dv2 + dτ · dτ + dσ · dσ − dk2

NA

)
, (5.5.1)
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where

NA = |v1|2 + |v2|2 + 4(|τ |2 + |σ|2), (5.5.2)

and

dk = v̄1 dv2 − v̄2 dv1 + 2(τ̄ dσ − σ̄ dτ). (5.5.3)

The potential is

V = 8π2|q|2
(
|v1|2 + |v2|2 −

1

NA

|v̄2q̂v1 − v̄1q̂v2|2
)
. (5.5.4)

The first symmetry that we will consider is conjugation by a unit quaternion, p,

v1 → pv1p̄, v2 → pv2p̄, τ → pτ p̄, under which σ → pσp̄. (5.5.5)

This is a symmetry of the metric for any p but is only a symmetry of the potential

when p ∈ span{1, q}. This symmetry has fixed points when the imaginary parts of v1,

v2 and τ are proportional to p. Without loss of generality we can take p and q to be in

the direction e1 so that the geodesic submanifold consists of the points where v1, v2 and

τ are complex valued, with their e2 and e3 components set to zero. This describes the

instantons moving in a two dimensional plane of the full four dimensional space, and

each instanton has a gauge orientation in the remaining unbroken U(1) given by the

complex phases of v1 and v2. Note that this half-dimensional subspace is the subspace

in the Hanany-Tong correspondence between the moduli space of non-commutative

instantons and vortices [98]. Since we do not have a non-commutative deformation of

the instantons, this subspace corresponds to the strong coupling limit of the vortex

theory.

The metric simplifies on this subspace since many of the terms vanish when re-

stricted to only complex values. It is convenient to parameterise this complex subman-

ifold by polar coordinates [95],

v1 = ρ1(cos θ1 + i sin θ1), (5.5.6)

v2 = ρ2(cos θ2 + i sin θ2), (5.5.7)

τ = ω(cosχ+ i sinχ). (5.5.8)

The angles can be combined into a relative and overall gauge rotation,

φ = θ1 − θ2, (5.5.9)

θ = θ1 + θ2. (5.5.10)
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The metric and potential on this complex submanifold are then

ds2

8π2
= dρ2

1 + dρ2
2 + 1

4
(ρ2

1 + ρ2
2)(dθ2 + dφ2) + 1

2
(ρ2

1 − ρ2
2) dθ dφ

+
1

4ω2

(
d(R sinφ)

)2
+

(
1 +

1

4ω4
R2 sin2 φ

)
(dω2 + ω2 dχ2)

− 1

2ω4

(
R sin2 φ (ρ1 dρ2 + ρ2 dρ1) +R2 cosφ sinφ dφ

)
ω dω

− 1

NA

(
cosφ (ρ1 dρ2 − ρ2 dρ1) +R sinφ (dθ − 2 dχ)

)2
,

(5.5.11)

and
V

8π2
= |q|2

(
ρ2

1 + ρ2
2 −

4

NA

R2 sin2 φ

)
, (5.5.12)

where

NA = ρ2
1 + ρ2

2 + 4ω2 +
R2

ω2
sin2 φ, and R ≡ ρ1ρ2. (5.5.13)

Note that the metric has no functional dependence on θ or χ. These correspond

respectively to the overall gauge rotation and spatial rotation of the instantons. This

is to be expected as these are symmetries of the full field theory and so descend to

Killing vectors on the moduli space. In this parameterisation it is clear that V is the

square of the Killing vector corresponding to rotations by θ, as described in Chapter

4.

We can restrict to a further submanifold of this complex submanifold by relating

the two instantons’ sizes and gauge angles. Consider the symmetry,

v1 → iv2, v2 → −iv1. (5.5.14)

The fixed points of this are when v1 = iv2, or in our polar coordinate parameterisation,

ρ1 = ρ2, θ1 = θ2 − π
2
. (5.5.15)

On this submanifold we will drop the subscripts on ρ and θ since they are unnecessary.

The metric and potential are

ds2

8π2
= 2 dρ2 + 2ρ2 dθ2 +

ρ2

ω2
dρ2 +

(
1 +

ρ4

ω4

)(
dω2 + ω2 dχ2

)
− ρ3

ω3
dρ dω − 4

NA

ρ4 (dθ − dχ)2 ,

(5.5.16)

and
V

8π2
= q2

(
2ρ2 − 4

NA

ρ4

)
, (5.5.17)
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where

NA = 2ρ2 + 4ω2 +
ρ4

ω2
. (5.5.18)

This submanifold describes two instantons with their gauge orientations locked to be

orthogonal.

We can also consider a related symmetry where

v1 → v2, v2 → v1. (5.5.19)

The fixed points of this are when v1 = v2, and the metric and potential on this sub-

manifold reduce to those of two non-interacting charge one dyonic instantons.

There is another interesting symmetry which will be relevant to our discussion of

localised charge two dyonic instantons. We can swap τ and σ with a quaternionic

phase,

τ → pσ, σ → −pτ, (5.5.20)

where p is a purely imaginary unit quaternion. This has a fixed point when τ = pσ so

that |τ | = |σ|. We will see in Chapter 6 that this corresponds to the instantons being

coincident and axially symmetric. The magnitude of τ must be fixed by

|τ |2 =
1

4
|v̄2v1 − v̄1v2|, (5.5.21)

which will remove a parameter from the metric on this submanifold. This submanifold

is also invariant under the symmetries of ADHM data and is a natural boundary on

the fundamental domain of the moduli space.



Chapter 6

Low energy dynamics

In the previous chapter we constructed the metric and potential for the moduli space

of two dyonic instantons with an SU(2) gauge group. Armed with these expressions

we can now explore the low energy dynamics of two (dyonic) instantons by using the

moduli space approximation introduced in Chapter 4. The approximate low energy

dynamics of instantons is given by geodesic motion on the moduli space, while the low

energy dynamics of dyonic instantons is similar but takes place in the presence of a

potential on the moduli space.

The metric and potential are too complicated to solve the equations of motion

analytically. We can infer some of the properties of the low energy dynamics from the

algebraic properties of the metric, but most of our analysis of the dynamics is through

a numerical study. The geodesic submanifolds exhibited in the previous chapter allow

us to explore regions of the moduli space with few enough parameters that a numerical

study is feasible.

In Section 6.1 we will examine the scattering behaviour of two instantons. We will

see that in a head-on collision, instantons will scatter at right angles, like other soliton

systems. This can be understood from the symmetries of the underlying ADHM data.

We will also see this behaviour explicitly in numerical evolutions of the motion on the

moduli space. In Section 6.2 we will review the dynamics of a single dyonic instanton.

This will help to put the results for two interacting dyonic instantons in context. In

Section 6.3 we will explore the scattering of two dyonic instantons. The addition of a

potential has a significant effect on their behaviour, and the scattering angle is modified

significantly away from 90◦. In Section 6.4 we will look at the geodesic completeness of

the moduli space, and we will see that angular momentum may be transferred between

the dyonic instantons and one may hit the zero size singularity in finite time. Finally in

Section 6.5 we will comment on the stability of localised charge two dyonic instantons.

94
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6.1 Instanton scattering

6.1.1 Right angled scattering

Right angled scattering is a common feature in soliton systems and in this section

we will see that instantons are no exception. Right angled scattering of monopoles

can be understood from the conical structure of the monopole moduli space which

arises when taking the quotient by the symmetry which swaps the identity of the two

incoming monopoles. The instanton moduli space has a more complicated structure,

but we can still understand right angled scattering by considering the moduli space

quotiented by the underlying symmetries of the ADHM data.

Let us begin by understanding the role of the separation parameter τ in describing

the different configuration of charge two instantons. When τ is large it describes two

well separated charge one instantons at τ and −τ , as can be seen in Figure 6.1a.

However, this interpretation as two distinguishable lumps begins to break down when

τ is of a similar magnitude to σ. As a first observation, we note that the charge two

instanton is axially symmetric when |τ | = |σ|, as in Figure 6.1d, and there is no clear

notion of two charge one instantons any more. When the magnitude of τ is less than

the magnitude of σ, the charge one instantons separate again at right angles, as seen

in Figures 6.1e and 6.1f. So clearly σ also plays an important role in describing the

position of the instantons.

This relation between τ and σ can be understood from the symmetries of the ADHM

data which swap the roles of τ and σ. For example, consider a transformation of the

ADHM data as in equation (5.4.2) by a reflection with angle θ = π
4
,

∆̃ =


1√
2
(v1 + v2) 1√

2
(v1 − v2)

σ τ

τ −σ

 . (6.1.1)

This symmetry leaves the fields unchanged, and these parameters must have an equiva-

lent physical interpretation as those in the original ADHM parameterisation. It follows

that σ must have an equal claim to describe the instantons’ separation.

Recall that σ is given by

σ =
τ

4|τ |2
Λ, where Λ = v̄2v1 − v̄1v2, (6.1.2)

and so has a magnitude inversely proportional to the magnitude of τ . When τ is large,

σ is small and τ provides a good description of the instantons’ separation. However,

as τ grows smaller and is of a similar magnitude to σ this description breaks down and

the instantons become indistinguishable. As τ goes to zero, σ grows large and instead
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(a) |τ | = 1.5 (|σ| = 1
3) (b) |τ | = 1 (|σ| = 1

2) (c) |τ | = 0.8 (|σ| = 0.625)

(d) |τ | = 1√
2

(|σ| = 1√
2
) (e) |τ | = 0.625 (|σ| = 0.8) (f) |τ | = 1

3 (|σ| = 1.5)

Figure 6.1: The topological charge density of a charge two instanton at various values
of τ . Each figure shows the values of the charge density on the complex plane, at zero
in the e2 and e3 quaternion directions. Each contour shows a fixed value of the charge
density with the lighter areas corresponding to less charge. The instantons have size
ρ = 1 and have an orthogonal gauge orientation (φ = π

2
). The value of τ is real. The

white dots mark the positions of τ and −τ when |τ | ≥ |σ| and the positions of σ and
−σ when |τ | ≤ |σ|.
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takes on the role of the separation.

Right angled scattering occurs because σ always lies orthogonal to τ . If we treat σ

and τ as four-vectors then their inner product is zero,

σ · τ = 0. (6.1.3)

This is due to fact that Λ in equation (6.1.2) is a pure imaginary quaternion. When σ

takes over the role of the separation, the instantons will be separated at right angles

to the previous direction τ . This behaviour is what we see in Figure 6.1.

The direction in which the instantons separate will be determined by the direction

of σ. The outgoing rotation compared to their incoming direction, τ , is determined

by the purely imaginary quantity v̄2v1 − v̄1v2, which depends on the internal gauge

orientations of the two individual instantons. There are three distinct cases although

a general scattering may be some combination of these:

1. τ , v1 and v2 in the same plane. When the gauge orientations of the instantons

are in the same plane as their separation, the instantons will scatter orthogonally

to τ in this plane. This is the only situation possible in the complex geodesic

submanifold in equation (5.5.11).

2. τ and v1 in the same plane with v2 orthogonal. When v2 is orthogonal to this

plane, the instantons will scatter in the direction of v2. Similarly for v1 and v2

reversed.

3. τ , v1 and v2 all mutually orthogonal. When the gauge orientations are orthog-

onal to each other and to the instantons’ separation, they will scatter in the

remaining direction orthogonal to τ , v1 and v2.

When v1 and v2 are parallel the instantons do not interact. In this case σ is zero and τ

always describes their separation. The instantons do not scatter and will instead pass

through each other.

As an alternative interpretation, we note that the ADHM data naturally splits into

two parts: L, describing the instanton sizes and gauge alignments, and M , describing

the instantons’ positions. When an N × N matrix describes the positions of N D-

branes, it is the eigenvalues that actually correspond to the physical positions of the

D-branes. In a similar manner, the eigenvalues of M give a suitable description of the

instantons’ positions. For complex τ and σ, the eigenvalues are

±
√
τ 2 + σ2. (6.1.4)

These eigenvalues are approximately equal to ±τ when τ is large and to ±σ when τ is

small. The eigenvalues will be zero when the instantons are coincident and |τ | = |σ|.
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The eigenvalues are rotated by 90◦ in the complex plane when they pass through zero

due to a change of sign inside the square root.

Let us briefly compare this behaviour to right angled scattering in monopoles. For

two monopoles in SU(2), the moduli space is the Atiyah-Hitchin manifold [99] which

has a two dimensional geodesic submanifold corresponding to motion in a plane. This

submanifold has the topology of a cone since the system is identical under a rotation

by 180◦ around the origin which swaps the identity of the two monopoles. Head-on

scattering is described by a geodesic which passes over the vertex of the cone and

therefore emerges at 90◦ in the spatial coordinates, relative to where it came in. The

subspace is smooth at this vertex although the angle jumps by 90◦, as expected from

passing through the origin in polar coordinates.

For two instantons, the moduli space also has a geodesic submanifold corresponding

to motion in a plane. The metric of this is given in equation (5.5.11). This space is

still six dimensional and it is not possible to give as simple a description of right-angled

scattering as for monopoles. Each instanton has a unique identity and the symmetry

under a rotation by 180◦ no longer exists. Instead, we can understand the 90◦ scattering

through the symmetry of the ADHM data as described above and given in equation

(6.1.1).

6.1.2 Geodesic motion

So far we have only considered the variation of parameters within the moduli space,

but these parameters do not describe geodesics. However, we also expect to see right

angled scattering in the geodesic motion of two instantons whenever the magnitude of

τ passes through |τ | = |σ|. This is inevitable if |τ | is decreasing.

The numerical results in the following sections were calculated using Mathematica.

The equations of motion were calculated as an analytic expression from the metric

and potential in the previous chapter, with the effective action in equation (4.5.23).

In the case of the half dimensional geodesic submanifold described around (5.5.11),

the equations of motions were numerically integrated using Mathematica’s NDSolve.

For the equations of motion on the full moduli space, a Runge-Kutta method was

used to integrate the equations, and the results were checked against the integrations

performed on the lower dimensional submanifolds.

We cannot numerically integrate the equations of motion for a head-on collision

between two instantons because the symmetry between τ and σ manifests as a discon-

tinuous jump of parameters in the geodesic evolution. This jump is between equivalent

parameterisations and so is smooth on the moduli space, but prevents us from finding

a numerical solution. However, we can still explore head-on collisions by examining

the behaviour as the impact parameter goes to zero.
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Figure 6.2: The physical interpretation of the parameters in the initial conditions of
our scattering processes.

In the rest of this chapter we will only consider motion on the half-dimensional

geodesic submanifold described around equation (5.5.11). Recall that we can parame-

terise the instantons on this submanifold with complex parameters as

v1 = ρ1 (cos θ1 + i sin θ1) , (6.1.5)

v2 = ρ2 (cos θ2 + i sin θ2) , (6.1.6)

τ = ρ1 (cosχ+ i sinχ) . (6.1.7)

The physical interpretation of these parameters is shown in Figure 6.2. The only

parameters which are not shown are the gauge orientations, θ1 and θ2. The overall

gauge orientation, θ = θ1 + θ2 does not have a physical effect on the static instantons,

but its rate of change is important in the dynamics. The dynamics are therefore

invariant under the initial value of θ, and we will not specify it when we list initial

conditions. The relative angle, φ = θ1 − θ2, is significant however. It is convenient to

work with a slightly different parameterisation of our initial positions; we introduce

the impact parameter, b, and the separation along the x-axis, x, as shown in Figure

6.2. To consider the scattering of two instantons we start with well separated static

instantons and send them towards each other with an initial velocity parallel to the

x-axis, ẋ = −v. Ideally we are interested in the behaviour as the instantons come from

infinity but we will settle on x = 50 as a practical initial separation in our numerical

study. Unless otherwise stated we will take the incoming velocity to be v = 0.03 and

the initial instanton sizes to be ρ1 = ρ2 = 1.
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Figure 6.3: The collision of two instantons with an impact parameter of b = 0.5. The
relative gauge angle begins and remains fixed at φ = π

2
.

For simplicity we will begin by exploring the lower dimensional geodesic submanifold

where the instantons are of identical size and have a fixed orthogonal gauge orientation,

φ = π
2
. Figure 6.3 shows the scattering of two instantons on this submanifold with an

impact parameter of b = 0.5. The solid lines in Figure 6.3 show the evolution of ±τ
and trace the instantons’ positions. The circles show snapshots of the instantons at

discrete moments in the evolution. The circles’ centres correspond to the instantons’

positions and the radii are given by the values of ρ1 and ρ2 at each point, showing the

instantons’ sizes. These figures give a good high level impression of how the instantons

evolve, although care has to be taken with their interpretation when the instantons are

very close.

We can see that after the interaction shown in Figure 6.3, the instanton sizes are

perturbed and they begin to shrink. To the limits of our numerical accuracy the

instantons appear to pass through the zero size singularity and emerge with an in-

creasing size, spreading out indefinitely. It may seem concerning that the instantons

pass through the singularity on the moduli space, but this is not a generic behaviour.

If we move away from this submanifold and give the instantons an initial difference in

size or relative gauge angle then they will no longer hit the singularity. The value of v1

and v2 will no longer pass through the origin and the instantons’ minimum sizes will

be greater than zero. We will see evidence of this later.
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Figure 6.4: The collision of two instantons with an impact parameter of b = 0.01. The
relative gauge angle begins and remains fixed at φ = π

2
.

As the impact parameter decreases towards zero the scattering angle increases to-

wards 90◦. Figure 6.4 shows the scattering of two instantons with a small impact

parameter of b = 0.01 where the scattering is at almost exactly 90◦. As mentioned

previously, we cannot numerically integrate a direct head-on collision due to the dis-

continuous jump between equivalent parameterisations when the instantons become

coincident. This jump is shown more clearly in Figure 6.5 where the evolution of |τ |
and |σ| is shown for impact parameters of b = 0.1 and b = 0.01. The interpolation

between the two becomes increasingly quick as the impact parameter is reduced. The

angle χ also jumps by π
2
. This jump can also be seen near the origin in Figure 6.4.

Figure 6.6 shows how the scattering angle varies with impact parameter. The

scattering angle clearly tends towards 90◦ as the impact parameter goes to zero. The

scattering angle decreases to zero asymptotically as the impact parameter increases, as

expected.

So far we have only considered the subset of the possible initial conditions where the

gauge alignment of the two instantons is orthogonal. We will now lift that restriction

to explore the effect of this angle. We will still remain in the complex submanifold of

equation (5.5.11) where the instantons only move in a plane.

After scattering head on, the instantons are more suitably described in terms of the

alternative parameterisation given in (6.1.1). From this, we can expect the instantons
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(a) Impact parameter b = 0.1
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(b) Impact parameter b = 0.01

Figure 6.5: The evolution of |τ | (solid) and |σ| (dashed) during two collisions of in-
stantons with different impact parameters.
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Figure 6.6: The variation of the scattering angle of a collision of two instantons with
different impact parameters, b.

to emerge from the head-on scattering with sizes

ρ̃1 =
1√
2
|v1 + v2|, and ρ̃2 =

1√
2
|v1 − v2|, (6.1.8)

compared to the incoming sizes ρ1 = |v1| and ρ2 = |v2|. The relative angle between

v1 and v2 obviously plays a key role in this. The outgoing sizes are only equal when

the incoming v1 and v2 are orthogonal, or φ = π
2
, but in general they will emerge with

different sizes. This is an accurate description immediately before and after the right-

angled scattering, but the relation between the asymptotic sizes of the incoming and

outgoing instantons is not as clear due to the additional dynamical effects on the size.

Figure 6.7 shows the result of a collision with an initial relative gauge angle of φ = π
4
.

We see that the instantons now emerge with a different behaviour in their sizes. The

scattering angle is also shallower than when the gauge orientation was orthogonal.

Recall that there is another geodesic submanifold corresponding to instantons with

equal size and parallel gauge orientation, φ = 0. In this case the instantons do not

interact at all and the metric is flat. The scattering angle is therefore trivially zero.

The relative gauge orientation between the two instantons therefore gives some measure

of the strength of the interaction between the instantons. Figure 6.8 shows how the

scattering angle depends on the initial difference in gauge orientation between the two

incoming instantons. The strongest interaction occurs when the gauge orientation is

orthogonal and decreases as the gauge orientation becomes parallel, at which point the

instantons are completely non-interacting.

Right-angled scattering is a generic feature of two instantons which collide head
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Figure 6.7: The collision of two dyonic instantons with an impact parameter of b = 0.5
and an initial relative gauge angle of φ = π
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Figure 6.8: The variation of the scattering angle of a collision of two instantons with
different initial gauge alignments, φ, and impact parameter b = −0.5.
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Figure 6.9: The evolutions of the centres of the instantons in a nearly head on collision
(b = 0.01) for various initial values of the relative gauge angle, φ.

on, yet we have seen that when the relative gauge angle is zero the instantons do not

interact at all. To reconcile the limit of zero gauge angle with right-angled scattering,

we note that for small φ one of the instantons emerges with a much larger size than the

other. When φ is sufficiently small, the large instanton grows in size faster than the

instantons separate and so causes them to interact again. This can be seen in Figure

6.9a where the initial gauge alignment is φ = 0.5. The instantons scatter at right

angles but then continue to interact and rotate slightly to give them an asymptotic

scattering angle of less than 90◦. As the initial gauge angle, φ, goes to zero this effect

becomes more pronounced and the asymptotic scattering angle goes to zero, despite

the instantons initially scattering at 90◦ when they become coincident. Figures 6.9b

and 6.9c show this effect for φ = 0.45 and φ = 0.4. The limit of this behaviour

is that when φ = 0 the right angled scattering is not apparent and the instantons

simply pass through each other after becoming coincident, as expected by examining

the appropriate geodesic submanifold.

In the full moduli space, the instantons each have an SU(2) gauge angle and are free

to move in four dimensions. As described previously the scattering direction no longer

remains in a plane but depends on the direction of the separation of the instantons and

the relative gauge orientation of the instantons in SU(2). Moving beyond the complex

subspace into the full moduli space becomes computationally expensive but we have

been able to explore a few examples. The complex subspace appears to be stable to

small perturbations in the full moduli space so that the discussion above can be safely

interpreted in the full moduli space. It would be interesting to explore the scattering

behaviour of instantons with their gauge alignment in the full SU(2) gauge group and

not just constrained to the unbroken U(1). A systematic study of such behaviour is

unfortunately beyond our reach at this time.
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6.2 Dynamics of a single dyonic instanton

Before discussing the scattering of two dyonic instantons we will review how the po-

tential stabilises a single dyonic instanton. The effective action for a single dyonic

instanton rotating in only one direction in the gauge group is

S = 8π2

∫
dt ρ̇2 + ρ2θ̇2 − |q|2ρ2, (6.2.1)

where ρ is the size of the dyonic instanton and θ is its U(1) gauge angle. This can be

calculated directly from the inner product of zero-modes of the ’t Hooft ansatz [95] or

from the ADHM data as in Chapter 5. The equation of motion for the gauge angle is

a conservation law for gauge angular momentum,

ρ2θ̇ = l, (6.2.2)

where l is some constant. The equation of motion for ρ is

ρ̈− ρθ̇2 + |q|2ρ = 0. (6.2.3)

We can replace θ̇ by the angular momentum so that

ρ̈− l2

ρ3
+ |q|2ρ = 0. (6.2.4)

In the absence of a potential (|q| = 0), pure instantons suffer from a slow-roll

instability where a small perturbation to the static instanton will result in the instanton

spreading out at a constant velocity. Eventually the instanton will be spread over the

entire space or hit the zero size singularity. We can easily see this behaviour on the

moduli space since the metric in the effective action is flat and the equation of motion

for ρ becomes ρ̈ = 0 in the absence of any angular velocity.

The effective action for a dyonic instanton includes a potential term which stabilises

the lumps at a fixed size. We can see from the equation of motions that when θ̇ = |q|
the instanton size and rotational velocity remain constant. This describes a static

dyonic instanton which satisfies the BPS equations exactly. The apparent motion on

the moduli space is due to the coordinate transformation that we made in equation

(4.5.21).

If we think of this motion as a point moving around a spherically symmetric po-

tential, like a marble in a bowl, then it is clear that this system is now stable to

perturbations in the instanton’s size. A small initial velocity for ρ sets up an oscilla-

tion around the initial value of ρ, but it will not increase indefinitely. The upper and

lower bounds of the oscillation are proportional to the initial perturbation.
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Generally, the dyonic instanton will oscillate in size with an amplitude, A, [95]

ρ =

√√√√A sin(2|q|(t+ t0))) +

√
l2

|q|2
+ A2. (6.2.5)

The smaller the initial angular velocity, the less angular momentum the instanton has

and the closer it comes to zero size. The larger the initial change in size, the larger

the amplitude of the oscillation and again the closer it will come to zero size. The

instanton can oscillate out to arbitrary size for a sufficiently large initial ρ̇ but will

always turn around before reaching ρ = 0 for non-zero angular momentum.

6.3 Dyonic instanton scattering

The presence of a potential in the effective action for dyonic instantons has a signif-

icant effect on their scattering behaviour. In this section we will explore how dyonic

instantons behave during head-on collisions and with a non-zero impact parameter.

The right angled scattering behaviour of instantons is replaced with a more complex

dependence on the potential.

Figure 6.10 shows a head-on collision between two dyonic instantons. The dyonic

instantons begin their evolution by moving towards each other along the real axis but

they are deflected as they approach each other. The dyonic instantons scatter at an

unusual angle of just over 122◦ and the radial size of the instantons picks up a small

stable oscillation. Unless otherwise stated, we will always take |q| = 0.1. As with

instantons, we will take our canonical initial conditions to be ρ1 = ρ2 = 1, v = 0.03,

x = 50 and φ = π
2
.

Figure 6.11 shows the relation between the scattering angle and the magnitude of

the potential. As expected, the scattering angle approaches 90◦ as |q| goes to zero and

the system gets closer to describing pure instantons.

When the impact parameter, b, is non-zero the dyonic instantons also display a

range of interesting behaviour. From the view point of one of the incoming dyonic

instanton lumps they scatter to their left in a head-on collision. If the direction of

rotation of the dyonic instantons was reversed, θ̇ 7→ −θ̇, then the behaviour would be

a mirror image. If we move their impact parameter in the left direction so that b is

negative then the dyonic instantons continue to repel each other but their scattering

angle becomes shallower. Figure 6.12 shows the scattering of two dyonic instantons

with impact parameter b = −2 and we see that the scattering angle is much shallower

than in the head-on collision. Figure 6.13 shows how the scattering angle depends upon

the impact parameter in the negative direction. As the impact parameter is increased

in the negative direction the strength of the dyonic instantons’ interaction decreases
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Figure 6.10: A head-on collision of two dyonic instantons with the magnitude of the
potential at |q| = 0.1.
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Figure 6.11: The scattering angle of a head-on collision of two dyonic instantons with
varying values of the potential scale, |q|.



6.3. Dyonic instanton scattering 109

-20 -10 0 10 20
-20

-10

0

10

20

Figure 6.12: The collision of two dyonic instantons with an impact parameter of b = −1.

and the scattering angle goes to zero. Comparing this to pure instantons in Figure 6.6

we see that the interaction remains stronger at larger impact parameter in the presence

of a potential.

When the impact parameter is positive the behaviour is more interesting. The

dyonic instantons are now attracted to each other and it is possible for the instantons

to loop around each other before scattering. Figure 6.14 shows one example of this

in detail with an impact parameter of b = 2.9. Figure 6.15 shows how the outgoing

angle varies with the impact parameter for different values of |q|. The jumps in the

plots correspond to the instantons losing their identity in the scattering process. This

happens whenever the instantons come close to the origin at the same time and form

a single symmetrical lump. It becomes meaningless to talk about which outgoing

instanton corresponds to which incoming instanton and the jumps by 180◦ are from

swapping which parameters are used to label each instanton rather than a physical

discontinuity. The tall spikes correspond to scatterings in which the instantons orbit

for more than one revolution and so can have an outgoing angle of greater than 360◦.

Figure 6.16 shows how the scattering angle depends on the initial difference in

gauge angle between the two dyonic instantons. As with instantons, the scattering

angle interpolates between zero when the gauge orientations are parallel and the value

seen previously when the gauge orientations are orthogonal. The strength of the inter-

action between the dyonic instantons again depends on their relative gauge orientation
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Figure 6.13: The variation of the scattering angle with impact parameter for a collision
between two dyonic instantons. The impact parameter, b, is in the negative direction.
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Figure 6.14: A collision of two instantons with an impact parameter of b = 2.9.
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Figure 6.15: The variation of the outgoing angle, χ, with impact parameter for a
collision between two dyonic instantons, shown for different values of the potential
scale, |q|. The impact parameter, b, is in the positive direction.

with the strongest interaction occurring when they are orthogonal. At the other ex-

treme, when the gauge alignment is parallel, the dyonic instantons are completely

non-interacting.

The properties of dyonic instantons that we have considered so far are reminiscent

of the Q-lumps considered by Leese [100]: both systems have a topological charge and

a non-topological Noether charge; the presence of the non-topological charge induces a

potential in the effective action for slow moving solitons; and the potential stabilises the

solitons against spreading out indefinitely under a small perturbation. Both systems

also see similar scattering behaviour with head-on collisions causing a deflection of

more than 90◦, without the lumps becoming coincident. As far as we are aware dyonic

instantons and Q-lumps are the only solitons which have been seen to scatter in this

way. Both system also have trajectories where the lumps orbit each other briefly when

the impact parameter is in an appropriate range. Leese makes the point that it is

difficult to avoid some external perturbation which would introduce a potential and so

Q-lumps may be more physically relevant than the underlying pure σ-model soliton.

This point seems to be particularly relevant for instantons on D4-branes where the

potential is induced by a separation of the branes.
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Figure 6.16: The variation of the scattering angle with the initial gauge alignment, φ
for two dyonic instantons with an impact parameter of b = −0.5.

6.4 Geodesic completeness of the moduli space

It is straightforward to see that the instanton moduli space is not geodesically com-

plete, but the equivalent question for motion in the presence of a potential is not so

straightforward. For pure instantons, a small negative perturbation in the size param-

eter will cause the instanton to shrink steadily until it hits the zero size singularity.

For dyonic instantons however, there is a non-zero conserved angular momentum on

the moduli space from the rotation in the unbroken U(1) gauge group. This prevents

the dyonic instanton from shrinking to zero size under small perturbations.

For a single dyonic instanton, the angular momentum is given by

l = ρ2θ̇, (6.4.1)

but for two dyonic instantons the angular momentum is more complicated and the

picture is not as clear. On the two instanton moduli space the conserved gauge angular

momentum arises from the Killing direction θ in the metric and is given by

l = gθpż
p, (6.4.2)

where θ is the embedding angle in the unbroken U(1) as in equation (5.5.11). Consid-

ering just the complex geodesic submanifold, the angular momentum for two dyonic
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instantons is

l = ρ2
1θ̇1 + ρ2

2θ̇2 −
2

NA

ρ1ρ2 cosφ sinφ (ρ1ρ̇2 − ρ2ρ̇1)− 2

NA

ρ2
1ρ

2
2 sin2 φ (θ̇ − 2χ̇). (6.4.3)

The first two terms describe the angular momentum of each dyonic instanton when

they are well separated. However, there is only an overall conserved quantity and the

individual instantons are free to transfer angular momentum when close together. It

is no longer clear a priori whether one of the dyonic instantons can shrink to zero size

by exchanging angular momentum with the other.

By numerically exploring motion on the moduli space we have been readily able

to find trajectories where the instantons do indeed exchange angular momentum in

such a way that one dyonic instanton shrinks to zero size. This is most easily observed

when the dyonic instantons are far enough apart to be clearly distinct yet still within

range of interaction. An illustrative example is shown in Figure 6.17 where both dyonic

instantons start with a non-zero angular momentum but one draws angular momentum

from the other until it passes through zero size. Both dyonic instantons continue to

oscillate at a steady rate and so long as the dyonic instanton reaches the lowest point of

its oscillation at the same time as passing through zero angular momentum it will hit

the zero size singularity. This requires fine tuning of one of the parameters which we

were able to achieve to the limits of our numerical accuracy. This fine tuning suggests

there is a subset of initial conditions of codimension one which will evolve to hit a zero

size singularity.

If we consider the full moduli space rather than just motion on the complex geodesic

submanifold then we observe that the same generic behaviour is possible. The initial

parameters now need a further two parameters to be fine tuned so that the additional

two components of v1 or v2 also pass through their minimum value as the angular

momentum passes through zero.

6.5 Localised charge two instantons

In this section we will consider the charge two object formed by two coincident dy-

onic instantons. For pure instantons, this configuration cannot be considered as an

individual object as a small perturbation to the instanton positions will cause the two

constituent instantons to drift apart until they are well separated again. Dyonic in-

stantons however, are stabilised at a fixed separation by the potential. Figure 6.18

shows the result of giving two separated dyonic instantons a small initial velocity away

from each other. The dyonic instantons now orbit each other in a spiralling pattern.

The dyonic instantons will only form a stable orbit for a small enough perturbation

and will otherwise continue to move away from each other at a steady speed. When
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(a) The size of the first instanton, ρ1. This
is drawing angular momentum away from
the second.

(b) The size of the second instanton, ρ2.
This passes through zero size.

(c) The angular momentum of the first in-
stanton.

(d) The angular momentum of the second
instanton. This reaches zero as the size, ρ2,
reaches the lowest point of its oscillation.

Figure 6.17: The evolution to a zero size singularity of two initially non-singular dyonic
instantons. The initial values were ρ1 = 2.5, ρ2 = 0.5, ω = 15, φ = − π

10
. The initial

velocities were ρ̇1 = 0.1, θ̇ = 0.2, φ̇ = 0.1 and ρ̇2 = −0.03. All other initial velocities
were zero.
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Figure 6.18: Two dyonic instantons in a stable orbit after a small outwards perturbation
in their positions. The instantons started at a separation of x = 4 with size ρ = 1.
They were given an initial outwards velocity of v = 0.0005.

only moving slightly faster than this ‘escape velocity’ the dyonic instantons display

some orbiting behaviour but do not settle into a stable orbit. Figure 6.19 shows how

the separation affects the threshold velocity at which the dyonic instantons will no

longer form a stable orbit. The threshold velocity decreases as the strength of the

interaction between the lumps decreases. The maximum threshold velocity is located

close to where the instantons are coincident and axially symmetric, but with a slight

shift towards a finite separation.

As a result of this stability, the axially symmetric charge two dyonic instanton is a

stable object. It will not separate into two distinct charge one dyonic instantons under

a perturbation.

The axially symmetric charge two dyonic instanton also admits the only closed

geodesic that we have found. In this closed geodesic the dyonic instantons remain

axially symmetric with |τ | = |σ|,

ω =
ρ√
2
, ω̇ = ω̈ = 0, (6.5.1)

and have no oscillations in their size,

ρ̇ = ρ̈ = 0. (6.5.2)
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Figure 6.19: The maximum outwards velocity of two dyonic instantons that will lead
to a stable orbit with different separations. The instantons have size ρ = 1.

The equations of motion are then satisfied by

χ̇ = −4|q|, θ̇ = |q|. (6.5.3)

This corresponds to a spatially rotating charge two dyonic instanton where the rota-

tional velocity, χ̇, is fixed by the scale of the potential.

It would be interesting to investigate whether such a closed geodesic is stable in

the full field theory or whether there are higher order radiative corrections that would

cause it to decay. We leave this for future consideration.

6.6 Discussion and conclusions

In this chapter and the previous chapter we have calculated the full metric and potential

on the moduli space of two dyonic instantons in terms of the parameters in the ADHM

construction. With this construction in mind we have been able to understand some

of the structure of the moduli space arising from the quotient of the moduli space

by symmetries of the ADHM data. We have also explored the dynamics of two slow

moving instantons and dyonic instantons using the moduli space approximation. We

have seen that instantons readily undergo right angled scattering like many other soliton

systems. This too can be understood from symmetries of the underlying ADHM data.

The presence of a potential has a significant effect on the motion of dyonic instantons

and we have seen that they behave in a way which is qualitatively similar to Q-lumps

[100].

Several questions remain open for future research. We have only explored the
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dynamics when the instantons lie in a plane with their relative gauge alignment in the

unbroken U(1) symmetry. When the gauge alignment in the full SU(2) symmetry is

orthogonal to the unbroken U(1), the final term in the potential vanishes. It would

be interesting to explore the effects of this term on the dynamics of collisions between

two dyonic instantons. Unfortunately the complexity of the full moduli space makes a

systematic exploration of this regime numerically difficult.

In our discussion of the dynamics we have assumed that the moduli space approx-

imation is a suitable approximation in the regimes we have considered and we have

discounted any radiative modes as negligible. Certainly this is the case in similar

systems [100] and we expect it to hold here as well, but ideally we could check the

validity of the approximation with a comparison to the full field theory. Unfortunately

a full simulation of the four dimensional field theory is beyond the reach of available

computing power at this time. It may be possible to revisit this question in the future.

It would be interesting to explore the dynamics of the full supersymmetric theory

and the quantised theory. It would be particularly relevant to the M-theory interpre-

tation of instantons to understand how the singularities affect the quantised theory

and to explore the existence of bound states of instantons. Previous studies in this

direction (for example [101]) have considered the bound states of periodic instantons

and the behaviour in the decompactification limit. With the full metric and potential

for two instantons now available it may be possible to consider this decompactified

limit for two instantons directly.

Another approach to understanding the singularities would be to look at non-

commutative instantons which have a minimum bound on their size [75]. It would

be interesting to understand how the non-commutativity affects the moduli space and

dynamics of two slow moving (dyonic) instantons.

Finally, this work could be extended to calculate the moduli space metric and

potential of dyonic instantons in SU(3) or SU(N). The higher gauge group allows the

possibility of bound states that correspond to supertubes passing through intermediate

D4-branes and may provide a more direct description of the index counting in reference

[78]. Work on this is in progress.



Chapter 7

Regular polytope symmetry

In this final chapter we are interested in finding ADHM data for higher charge instan-

tons with an SU(2) gauge group. A general solution to the ADHM constraints is known

for instantons with charge three or less, but the non-linearity of the constraints makes

a general solution for higher charges difficult to find. In this chapter we will search

for specific solutions to the ADHM constraints by looking for instantons with a large

amount of symmetry. For an instanton to be symmetric it must be invariant under the

action of some symmetry group, and the underlying ADHM data must also be invari-

ant under the appropriate transformations. This restricts the space of possible ADHM

data, and we are left with far fewer parameters in the ADHM constraints, which we

can now solve explicitly.

Our motivation for studying symmetric instantons comes from their relation to

other systems. Instantons that are symmetric under a subgroup of SO(3), such as the

cubic and icosahedral symmetry groups, can be used to generate solutions in the Skyrme

model that are approximately Skyrmions and deviate from the Skyrmion energy by only

a few percent [102, 103]. In Section 7.1 we will review this relationship and present

the known instanton solutions with tetrahedral, cubic, and icosahedral symmetries.

There is also a connection between instantons and hyperbolic monopoles, where a

hyperbolic monopole solution can be constructed from ADHM data which has a circle

symmetry [104]. The known symmetric instantons all have this circle symmetry and

so immediately give rise to new hyperbolic monopole solutions [105]. We also review

this in Section 7.1.

Motivated by the utility of instantons with symmetries which are a subgroup of

SO(3), the rest of this chapter is concerned with finding instantons that have a sym-

metry which is a subgroup of the larger SO(4). These may provide further links to

Skyrmions and monopoles, although we will not explore that question in this thesis.

The symmetric instantons mentioned so far have the symmetries of the Platonic solids

in three dimensions. The analogues of the Platonic solids in four dimensions are the

regular polytopes, which are composed of identical three-dimensional cells which are

118
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Platonic solids. The symmetry groups of the regular polytopes are subgroups of SO(4)

and are natural candidates for symmetric instantons. There are six regular polytopes

in four dimensions and in Section 7.2 we will describe these polytopes in more detail

and understand the action of their symmetry groups. In Section 7.3 we will look at

how the action of a general symmetry group on the instanton is lifted to act on the

underlying ADHM data. In Section 7.4 we will see how the representations of the

5-cell symmetry group can be used to find ADHM data with the symmetries of the

5-cell. The double cover of the 5-cell symmetry group is a subgroup of SU(2), which is

the double cover of SO(3). This allows us to use the existing machinary for Platonic

symmetries, but in Section 7.5 we will understand how the ADHM data transforms

when the symmetry group is a subgroup of SU(2) × SU(2), which is the double cover

of SO(4). This places restrictions on the possible form of the ADHM data, and in

Section 7.7 we use these restrictions to search for solutions which have the symmetries

of the 16-cell. In Section 7.8 we perform a similar search to find solutions with the

symmetries of the 24-cell, where the representations of the symmetry are more complex

and so the search is made more difficult. In both cases we recover solutions which have

the appropriate symmetries, but these turn out to be equivalent to solutions which can

be constructed from the JNR ansatz.

7.1 Symmetric instantons and other soliton systems

In this section we will review two systems in which symmetric instantons can be used

to construct new solutions: Skyrmions and hyperbolic monopoles.

7.1.1 Skyrmions

The Skyrme model is a 3+1 dimensional non-linear field theory of low-energy hadronic

physics in which protons and neutrons appear as topological solitons [106]. These

topological solitons are known as Skyrmions and their topological charge is known as

the baryon number, B. When B = 1 the Skyrmion solution is spherically symmetric

and is an approximate model of a proton or neutron, and there are bound states of

multiple Skyrmions which can be viewed as nuclei of low atomic mass number.

The Skyrme field is an SU(2) valued scalar, U(x). The Skyrme field can be param-

eterised as

U(x, t) = σ + iπ · τ, (7.1.1)

where τ1, τ2 and τ3 are the Pauli matrices. The parameters are constrained by

σ2 + π2
1 + π2

2 + π2
3 = 1. (7.1.2)
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The Lagrangian is written in terms of the su(2)-valued current, Lµ = U−1∂µU , and is

L = −1
2

Tr
(
LµL

µ
)

+ 1
16

Tr
(
[Lµ, Lν ][L

µ, Lν ]
)
. (7.1.3)

Note that U and L in the Skyrme model have no relation to the quantities in the

ADHM construction with the same labels. Hopefully their meaning will be clear from

the context. For finite energy, the Skyrme field must go to a constant value at infinity

and can always be rotated to be 1,

U(x, t)
∣∣
|x|→∞ = 1. (7.1.4)

At any given time the Skyrme field can therefore be taken as a field over S3 by com-

pactifying R3 with a point at infinity. As with instantons, such a map has a topological

degree, and in the Skyrme model this topological degree is known as the baryon num-

ber. Unlike instantons, the BPS equations for Skyrmions do not have any solutions, and

there is no simple method of finding the fields that are the minimum energy solutions

in each topological sector.

The simplest class of Skyrme fields are the spherically symmetric hedgehog fields,

U(x) = exp
(
if(r) x · τ

)
. (7.1.5)

To satisfy the boundary conditions, we must have f(r) → 0 as r → ∞, and for this

solution to be smooth at the origin, we must have f(0) = nπ for some integer n. The

integer n is the baryon number of this field, B = n. There is a unique f for each

baryon number which minimises the energy of fields of this form. The solution for f

can only be found numerically, and the minimum energy field for B = 1 is known as

the Skyrmion. There is strong evidence that the Skyrmion is the lowest energy solution

with B = 1. The energy of a hedgehog field with B > 1 is considerably larger than the

energy of B Skyrmions, and these solutions are not stable. For B = 2, the minimum

energy Skyrmions are toroidal [107, 108, 109].

A Skyrme field can be generated from an SU(2) instanton field via the following

formula [102, 103]:

U(x) = P exp

−i ∞∫
−∞

dt A4(x, t)

 , (7.1.6)

where A4 is the fourth spatial component of the Yang-Mills gauge field in the instanton

solution and P denotes path ordering.

The minimum energy Skyrmion solutions of charge one and two have spherical and

axial symmetry respectively and can both be approximately generated from instantons

with the corresponding symmetries. The instanton generated solutions are not exactly
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the Skyrmion solutions, but they are very close, and their energy is only 1% greater

than the true Skyrmion solutions.

The charge three and four minimum energy Skyrmions have tetrahedral and cubic

symmetry respectively. There also exist instanton solutions with these symmetries

which generate Skyrme fields which are a very good approximation to the minimum

energy Skyrmions [110]. The charge three tetrahedral instanton is found by placing the

four poles in the JNR ansatz at the vertices of a tetrahedron with equal weight, but the

charge four cubic instanton is a novel solution to the ADHM constraints. The cubic

instanton is part of a one parameter family of instantons which has overall tetrahedral

symmetry. At one end of the parameter space, the instantons are well separated at the

vertices of a tetrahedron. As the parameter varies the instantons come closer together

until they have cubic symmetry. They then separate again on the vertices of the dual

tetrahedron. After mapping to the Skyrme fields this family of instantons describes

the scattering of four Skyrmions in the same way.

The novel charge four instanton with cubic symmetry is given by the ADHM data

[110],

a =
1

2
√

2



√
2

√
2i

√
2j

√
2k

0 −(j + k) −(k + i) −(i+ j)

−(j + k) 0 (j − i) (i− k)

−(k + i) (j − i) 0 (k − j)
−(i+ j) (i− k) (k − j) 0


. (7.1.7)

The topological charge density of this instanton is shown in Figure 7.1. This figure has

been plotted using the formula for the topological charge density,

1

8π2
εijkl Tr

(
FijFkl

)
, (7.1.8)

and the expression for Fij in terms of the ADHM data,

Fij = −U †b(∆†∆)−1(eiēj − ej ēi)b†U, (7.1.9)

where ei = {i, j, k, 1}.
The minimum energy charge seven Skyrmion forms a shell with the structure of a

dodecahedron, which has icosahedral symmetry [111]. The corresponding charge seven

instanton with the same structure has been found by searching for charge seven ADHM

data which is invariant under the icosahedral symmetry group [112]. This dodecahedral

instanton fits into a one parameter family with overall tetrahedral symmetry. This one

parameter family describes the scattering of six Skyrmions which are initially positioned

along the three axes at plus and minus infinity, and a Skyrmion positioned at the

origin. The Skyrmions move in towards the origin where they form a shell with the
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Figure 7.1: A surface of constant topological charge density of the charge four instanton
with cubic symmetry.
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dodecahedral structure and then a cube. They then form the dual dodecahedron and

move out along the same axes again. This process is illustrated in Figure 1 of reference

[112].

The ADHM data of the charge seven icosahedral instanton is [112].

a =



1 i j k 0 0 0

0 0 0 0 i j k

0 0 0 0 0 τk τ−1j

0 0 0 0 τ−1k 0 τi

0 0 0 0 τj τ−1i 0

i 0 τ−1k τj 0 0 0

j τk 0 τ−1i 0 0 0

k τ−1j τi 0 0 0 0


. (7.1.10)

Here τ = (
√

5+1)/2. The topological charge density takes the form of a dodecahedron

and is shown in Figure 7.2.

There is also a known charge 17 icosahedral instanton which resembles a buckyball

[113] which we will not discuss here.

7.1.2 Hyperbolic monopoles

Monopoles are the solutions to the BPS equations in four-dimensional Yang-Mills-Higgs

theory and carry a topological magnetic charge. There are many thorough reviews

on the subject of monopoles, for example [7, 60]. The moduli space of monopoles

is well understood, but explicit solutions to the BPS equations are known only for

charge one and charge two monopoles [114, 115, 116] or axially symmetric monopoles

of any charge [117]. Like with instantons, monopoles can be constructed by solving

an easier constraint. For monopoles this procedure is known as the Nahm transform,

and the Nahm data is a set of one parameter matrix-valued functions which satisfy

the Nahm equations [118]. In general the corresponding monopole solutions can only

be constructed numerically. Monopoles can also exist in a hyperbolic background

geometry, and in this case it is possible to find additional explicit solutions.

Monopoles can be recovered from instantons by compactifying one of the four spatial

directions so that one of the components of the gauge field becomes a scalar, A4 =

Φ. The BPS equations for monopoles are the dimensionally reduced self-dual field

equations,

? F = DΦ, (7.1.11)

where ? is the Hodge dual.

Monopoles in a background with hyperbolic geometry have the same BPS equation,
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Figure 7.2: A surface of constant topological charge density of the charge 7 instanton
with icosahedral symmetry, which resembles a dodecahedron.
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although the Hodge dual is now given by

(?F )k =
√
| det g| εijk F ij, (7.1.12)

where g is the metric in hyperbolic space.

An instanton reduces to give a monopole in hyperbolic space if the underlying

ADHM data has a circle symmetry [104]. Using the JNR ansatz, hyperbolic monopoles

with arbitrary Platonic symmetries can be constructed by using the freedom to place

the k + 1 poles in the JNR ansatz on a two-dimensional subspace that ensures the

instanton is invariant under the circle symmetry [105]. In reference [105], examples are

constructed with spherical, axial, tetrahedral, octahedral and icosahedral symmetry,

at charges 1, 2, 3, 5 and 11 respectively.

The dimension of the hyperbolic monopole moduli space scales as 4k, but the

dimension of the space of JNR solutions only grows like 3k and so does not contain all

hyperbolic monopole solutions. To obtain all hyperbolic monopoles, one must obtain

all ADHM data which is invariant under a circle symmetry. In general, ADHM data

is invariant under a circle if the following stronger constraints hold [105]:

• a†a = 1k,

• M is pure quaternionic,

• LM = µL for some pure quaternion µ, and L is non-zero.

Note that the first of these implies that the usual ADHM constraint in equation (4.3.10)

is satisfied. A quick check reveals that the charge four cubic instanton and the charge

seven dodecahedral instanton shown previously both satisfy these constraints and so

reduce to give novel symmetric hyperbolic monopoles which are of a lower charge than

the JNR ansatz can produce [105]. In fact, the one parameter families that both of

these symmetric instantons fit into give one parameter families describing the scattering

of hyperbolic monopoles.

7.2 Regular polytopes

Before we look for instantons with four-dimensional symmetries, we will first under-

stand the regular polytopes that these symmetries arise from. The Platonic solids

are regular polyhedra where all of the faces are identical regular polygons. In four

dimensions, the analogue of the Platonic solids are the regular polytopes which are

constructed from identical cells that are Platonic solids. There are six regular poly-

topes, which are labelled by the number of three dimensional cells they contain:
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• 5-cell, or pentatope. This is the four-dimensional generalisation of the tetrahe-

dron. It is dual to itself.

• 8-cell, or tesseract. This is the four-dimensional generalisation of the cube.

• 16-cell, or hyperoctahedron. This is the four-dimensional generalisation of the

octahedron. It is dual to the tesseract.

• 24-cell. The 24-cell is dual to itself. It is unique since it doesn’t fit into a family

of polytopes which span all dimensions.

• 120-cell. This is the four-dimensional generalisation of the dodecahedron.

• 600-cell. This is the four-dimensional generalisation of the icosahedron. It is dual

to the 120-cell.

The regular polytopes that are dual to each other share the same symmetry group,

so the only symmetry groups we need to consider are those of the 5-cell, the 16-

cell, the 24-cell and the 600-cell. In our treatment of the group action below, the

symmetry groups act via the independent left and right multiplication of quaternions.

The symmetry group of the 5-cell does not fit into this framework, and the lowest

charge instanton with the symmetries of the 5-cell can be found by simpler means [3].

Our general framework is stretched to its limit with the 24-cell symmetry group, so

we will only briefly mention the 120-cell and 600-cell in this thesis. In the rest of this

section we will review the symmetry groups of the four-dimensional polytopes.

If R4 is identified with the quaternions, H, then the action of any rotation, g ∈
SO(4), can be expressed as left and right multiplication by unit quaternions,

g ◦ x = gL x g
−1
R , (7.2.1)

for some unit quaternions gL, gR ∈ SU(2). The action of (gL, gR) is identical to the

action of (−gL,−gR), so there are two elements in SU(2)× SU(2) which correspond to

the same element in SO(4). The group SU(2) × SU(2) is therefore the double cover

of SO(4). The symmetry groups of the regular polytopes are all naturally expressed

as subgroups of SU(2) × SU(2), and the true symmetry group is the projection into

SO(4).

5-cell or pentatope

The 5-cell is the four-dimensional generalisation of the tetrahedron and the action of

its symmetry group is realised in a different way to the 16-cell and 24-cell, so we will

consider it first. The vertices of the 5-cell can be taken to be the five quaternions,

V5 =
{

1, 1
4

(−1± i± j ± k)
}
, (7.2.2)
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where an odd number of plus signs is taken for each vertex. These vertices are permuted

under the action of the icosahedral group by

x 7→ g]xg−1, (7.2.3)

where g is an element of the binary icosahedral group, which is generated by the unit

quaternions,

g1 = i, g2 = j, and g3 = −1
2
(i+ τj − τ−1k). (7.2.4)

In this expression τ = 1
2

(√
5+1

)
, and g] is the dual of g, which is obtained by replacing

τ with −τ−1.

The double cover of the symmetry group of the 5-cell is therefore a subgroup of

SU(2), and is embedded in SU(2)× SU(2) via g 7→ (g], g).

16-cell

The 16-cell is the four-dimensional generalisation of the octahedron. It has 8 vertices

which lie at ±1 on each axis and these vertices form the quaternion group,

Q8 = {±1,±i,±j,±k}. (7.2.5)

The quaternion group is a group under quaternion multiplication and the left and right

action of Q8 therefore permutes the vertices of the 16-cell,

x 7→ gL x g
−1
R , gL, gR ∈ Q8. (7.2.6)

The double cover of the rotational symmetry group of the 16-cell is therefore Q8×Q8 ⊂
SU(2)× SU(2). The quaternion group, Q8, is generated by two elements,

g1 = i, and g2 = j. (7.2.7)

More abstractly, the quaternion group is generated by any two generators that satisfy

gα1 = gβ2 = (g1g2)γ = −1, with α = β = γ = 2. (7.2.8)

The 16-cell is dual to the 8-cell, which shares the same symmetry group.

24-cell

The structure of the symmetries of the 24-cell is very similar. The vertices of the 24-cell

form the binary tetrahedral group,

T = {±1,±i,±j,±k, 1
2

(±1± i± j ± k)}. (7.2.9)
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The double cover of the rotational symmetry group of the 24-cell is T×T, with rotations

acting via left and right multiplication. The binary tetrahedral group is generated by

g1 = 1
2
(1 + i+ j + k), and g2 = 1

2
(1 + i+ j − k), (7.2.10)

which in general satisfy,

gα1 = gβ2 = (g1g2)γ = −1, with α = β = 3, γ = 2. (7.2.11)

600-cell

The 120 vertices of the 600-cell form the binary icosahedral group, I, which is generated

by

g1 = 1
2
(1 + i+ j + k), and g2 = 1

2
(τ + τ−1i+ j). (7.2.12)

The double cover of the rotational symmetry group of the 600-cell is therefore I × I,
with rotations acting via left and right multiplication. In general the generators satisfy,

gα1 = gβ2 = (g1g2)γ = −1, with α = 2, β = 3, γ = 5. (7.2.13)

The 600-cell is dual to the 120-cell which shares the same symmetry group.

Group representations

A representation of a group is a map, ρ, from the group to GL(n) such that the matrices,

ρ(g), preserve the group action. The representation matrices must satisfy the group

presentation,

ρ(g1)α = ρ(g2)β =
(
ρ(g1)ρ(g2)

)γ
. (7.2.14)

A representation, ρ, is irreducible if there is no similarity transform which simulta-

neously puts ρ(g1) and ρ(g2) into block diagonal form. For any other representation

there exists a transformation which decomposes it into block diagonal form with each

block being an irreducible representation. In the ADHM data, the only transformation

matrices which we can apply are real and orthogonal. We are therefore only interested

in real representations. We note that certain representations may be reducible over C
but are irreducible over R.

All irreducible representations satisfy

ρ(g1)α = ρ(g2)β =
(
ρ(g1)ρ(g2)

)γ
= ε, where ε = ±1. (7.2.15)

A general irreducible representation may have either sign for ε, and we will call repre-

sentations where ε = +1 a positive representation, and those where ε = −1 a negative

representation. A positive representation is also a representation of the subgroup of
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SO(3), while a negative representation is only a representation of the double cover. The

quaternion representation is a negative representation, while the trivial representation

where all group elements map to the identity matrix is a positive representation.

Typically, representations are labelled by a letter which indicates their dimension.

One-dimensional representations are labelled by A, while two-dimensional representa-

tions are labelled by E, three-dimensional representations by F , and higher dimensions

by going through the alphabet in sequence. Negative representations are indicated with

a prime, for example, G′. The fundamental quaternion representation is therefore typ-

ically labelled E ′, since we represent quaternions as 2× 2 complex matrices.

7.3 Group actions on the ADHM data

In this section we will understand what it means for an instanton to be symmetric,

and how the symmetry group acts on both the instanton and the underlying ADHM

data. For an instanton to be symmetric the transformation of the gauge field under

the action of the symmetry must be gauge equivalent to the original gauge field. As

a consequence of this the topological charge density of the instanton will be invariant

under the action of the symmetry group. The symmetry could be any subgroup of

SO(4) such as the symmetry groups of the Platonic solids or of the regular polytopes.

Every instanton has some underlying ADHM data from which it can be constructed,

and in this section we will see how the action of the symmetry group can be lifted to

an action on the ADHM data.

If G ⊂ SO(4) is the symmetry group of an instanton, such as the 16-cell or 24-cell

symmetry groups above, then the topological charge density must be invariant under

the action of G. The gauge field may still transform up to a gauge transformation, so

if g is an element of G, we must have

Ai(g ◦ x) = Ωg(x)Ai(x)Ω−1
g (x)− iΩg(x)∂i(Ω

−1
g (x)). (7.3.1)

To find solutions with this symmetry we need to lift the action of G on Ai to an

action on the underlying ADHM data. Recall that the ADHM data for a charge k

instanton with SU(2) gauge group is given by

∆(x) = a− bx, (7.3.2)

where

a =

(
L

M

)
, and b =

(
0

1k

)
. (7.3.3)

In this expression L is a length k quaternionic row vector and M is a k× k symmetric



7.3. Group actions on the ADHM data 130

quaternionic matrix. The spatial coordinate, x, is a quaternion in this construction.

Recall that the ADHM construction does not choose a particular gauge for the gauge

field.

If the gauge field is invariant under the action of G then the ADHM data, ∆(x),

must also transform in a way that leaves the gauge field invariant up to gauge transfor-

mation. The only symmetries of the ADHM data which leave the corresponding gauge

equivalence class invariant are

∆→

(
p 0

0 P

)
∆R−1, (7.3.4)

where p is a unit quaternion, P is a k × k quaternionic matrix such that P †P = 1k,

and R is an invertible k × k quaternionic matrix. For each element of the symmetry

group, g ∈ G, the transformed ADHM data is ∆(g ◦ x). For a symmetric instanton,

this must be equivalent to ∆(x), so there must exist pg, Pg and Rg such that

∆(g ◦ x) =

(
pg 0

0 Pg

)
∆(x)R−1

g . (7.3.5)

Recall that every rotation in R4 can be represented by left and right multiplication by

unit quaternions,

g ◦ x = gL x g
−1
R . (7.3.6)

Since the ADHM data is quaternionic, this is a natural way to represent the action of

g. By comparing the terms in equation (7.3.4) which are linear in x, we see that Pg

and Rg must factor into

Pg = Qg gL, and Rg = Qg gR, (7.3.7)

for some real orthogonal matrix, Qg. The left quaternion, gL, may also be factored out

of pg, so that for symmetric ADHM data there must exist a quaternion qg, and a real

orthogonal matrix, Qg, such that

∆(gL x g
−1
R ) =

(
qg 0

0 Qg

)
gL ∆(x) g−1

R Q−1
g . (7.3.8)

In terms of the blocks in the ADHM data, L and M , this condition is

qg gL L = LgRQg and Qg gLM = M gRQg. (7.3.9)

To recap, if we have a symmetric instanton, then its ADHM data must be invariant

under the action of each symmetry, g ∈ G. This can be represented by the action of an
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element in the double cover of G, which is a subgroup of SU(2) × SU(2), and acts by

left and right quaternion multiplication. The transformed ADHM data must give the

same gauge field, and so there must exist a qg and Qg, as above, that relate it back to

the original ADHM data. Later on we will flip this argument, and look for symmetric

ADHM data by first finding all possible qg and Qg.

7.4 The 5-cell

The action of the 5-cell symmetry group is different from the 16-cell and 24-cell sym-

metry group because the left and right actions do not act independently. Put another

way, the double cover of the symmetry group is isomorphic to a subgroup of SU(2)

and is embedded diagonally in SU(2)×SU(2). This allows the existing machinery that

was used to find the charge seven [112] and charge 17 instanton [113] with icosahedral

symmetry to be applied to the 5-cell as well. The symmetric instantons considered

previously are symmetric under rotations in SO(3), and the double cover of SO(3) is

SU(2), with rotations acting as

x 7→ g x g−1. (7.4.1)

For the 5-cell this action is twisted and the left quaternion is replaced by its dual, g],

but the representation theory remains largely the same since the left and right actions

are not independent.

The following ADHM data is invariant under the action of the 5-cell symmetry

group [3],

a = λ



−2 −2i −2j −2k

−3 i j k

i 1 −
√

5k −
√

5j

j −
√

5k 1 −
√

5i

k −
√

5j −
√

5i 1


, (7.4.2)

where λ is a real number that determines the scale of the instanton. This ADHM data

is invariant under the action of the 5-cell symmetry group,(
L

M

)
=

(
1 0

0 G(gi)

)
g]i

(
L

M

)
g−1
i G(gi)

−1, (7.4.3)

where gi are the generators of the binary icosahedral group in equation (7.2.4), and G
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is a four-dimensional irreducible representation of the binary icosahedral group,

G(g1) =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , G(g2) =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 ,

G(g3) =
1

4


−1

√
5 −

√
5 −

√
5√

5 3 1 1

−
√

5 1 −1 3

−
√

5 1 3 −1

 .

(7.4.4)

7.5 Independent left and right actions

Suppose that we have ADHM data which is invariant under the symmetries of the

16-cell or the 24-cell. The crucial difference in this case compared to the 5-cell is that

the left and right actions can be applied independently. We will first consider the right

action of the generators of the symmetry group, so that gR = g1, g2. Then there must

exist matrices QR(gi) and quaternions qR(gi) which satisfy

QR(gi)M = MgiQR(gi) and qR(gi)L = LgiQR(gi). (7.5.1)

In our framework, the matrices in the right action form a representation of the double

cover of the symmetry group,

QR(g1)α = QR(g2)β =
(
QR(g1)QR(g2)

)γ
. (7.5.2)

We are free to choose a basis for this representation, and so can decompose it into the

direct sum of irreducible representations. If we order the irreducible representations

so that the positive representations form the upper blocks of QR and the negative

representations form the lower blocks of QR then

QR(g1)α = QR(g2)β =
(
QR(g1)QR(g2)

)γ
=

(
1m 0

0 −1n

)
, (7.5.3)

where m+ n = k. We can write QR as

QR(g) =

(
Q+
R(g) 0

0 Q−R(g)

)
, (7.5.4)

where Q+
R is an m-dimensional positive representation and Q−R is an n-dimensional

negative representation of the double cover of the symmetry group.
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We can view M as a map from some k-dimensional representation space, W , ten-

sored with the quaternion representation, E ′, back to the representation space, W ,

M : W ⊗ E ′ → W. (7.5.5)

Since E ′ is a negative representation, M must map the subspace of a positive represen-

tation in W to the subspace of a negative representation in W , and vice-versa. There

can be no invariant maps between two positive representations or between two negative

representations in W . Equivalently, when QR is in the basis above, the only M which

can be invariant have the form

M =

(
0 B

BT 0

)
, (7.5.6)

where B is an m× n quaternionic matrix.

If we now consider the left action then there must exist matrices QL(gi) and quater-

nions qL(gi) which satisfy

QL(gi) giM = M QL(gi) and qL(gi) gi L = LQL(gi). (7.5.7)

We have fixed the basis for the right action and we no longer have the freedom to

choose an arbitrary basis for the representation QL in the left action. However, by

considering the action of (gi)
α = −1, and the form of M shown above, we can take QL

to satisfy

QL(g1)α = QL(g2)α =
(
QL(g1)QR(g2)

)β
=

(
1m 0

0 −1n

)
. (7.5.8)

The representation of the left action can therefore also be put in the same block form

as the right action,

QL(g) =

(
Q+
L(g) 0

0 Q−L(g)

)
, (7.5.9)

where Q+
L is a m-dimensional positive representation and Q−L is a n-dimensional nega-

tive representation. Unlike the right action, these blocks are not necessarily the direct

sum of irreducible representations, since we no longer have the freedom to arbitrarily

choose our basis.

So far we have considered the left and right actions independently, but the full set

of rotations in SO(4) are generated by acting with both a left and right action together.

Whether we act on the left or the right first is irrelevant to the action on x, but is

significant when considering the ordering of QL and QR. If we compare the action of

first acting on the left by gi and then on the right by gj with the action of first acting

on the right by gj and then on the left by gi then we see that the matrices in the left
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and right representations must commute,

QR(gi)QL(gj) = QL(gj)QR(gi). (7.5.10)

Anti-commuting is also a possibility, but we can rule this out by considering the left or

right action of (g1)2α = 1 under which (QL,R(g1))2α = 1k and so they must commute.

By a similar argument, the quaternion representations, qL and qR, must also commute.

The above left and right actions on the ADHM data must also leave the upper row

vector, L, invariant. We can write L in block form with the same block structure as

QR and QL,

L = (L+ L−). (7.5.11)

To leave L invariant, qR and QR must then satisfy,

qR(gi)L
+ = L+ giQ

+
R(gi) and qR(gi)L

− = L− giQ
−
R(gi). (7.5.12)

When considering the action of gα1 = gβ2 = (g1g2)γ = −1 this becomes

(
qR(g1)

)α
L+ =

(
qR(g2)

)β
L+ =

(
qR(g1)qR(g2)

)γ
L+ = −L+, (7.5.13)

and (
qR(g1)

)α
L− =

(
qR(g2)

)β
L− =

(
qR(g1)qR(g2)

)γ
L− = L−. (7.5.14)

Therefore L+ can only be non-zero if qR is a negative representation, and L− can

only be non-zero if qR is a positive representation. Clearly only one of these blocks

can be non-zero. A similar consideration of the left action shows that qL must be a

representation of the same sign as qR to be able to leave the remaining non-zero block

in L invariant. The only negative representations of qR and qL are proportional to the

quaternion representation qR,L(gi) = ±gi, but in this case the left and right actions

will not commute, so these can be ruled out.

In this section we have understood the structure of the representations which trans-

form the ADHM data back to its original form after the application of the action of

a symmetry group via left and right quaternion multiplication. The 2 × 2 complex

representations qR and qL must be positive representations which are a subgroup of

the 2× 2 complex representation of quaternions. The transformation matrices QR and

QL are k-dimensional real representations and share the same block form. The upper

blocks, Q+
R and Q+

L , are positive representations and the lower blocks, Q−R and Q−L , are

negative representations. We have the freedom to choose a canonical basis for either

QR and QL and will choose to put QR in the form of the direct sum of irreducible

representations.
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7.6 Finding invariant ADHM data

Let us reverse our approach now, and instead of assuming we have some invariant

ADHM data we will assume we have some representation for the left and right actions,

QL and QR, and look for ADHM data which can be invariant under these. Let us split

QR and QL into the most granular block form so that they both share the same block

structure,

QR =



Q+
R,1

. . .

Q+
R,s

Q−R,1
. . .

Q−R,t


, (7.6.1)

and

QL =



Q+
L,1

. . .

Q+
L,s

Q−L,1
. . .

Q−L,t


, (7.6.2)

where each pair of blocks in the left and right actions, (Q+
R,u, Q

+
L,u), or (Q−R,u, Q

−
L,u),

corresponds to a pair of left and right representations of the same dimension. Note

that we have chosen a basis in which QR is decomposed into irreducible blocks but

each Q+
R,u and Q−R,u may contain more than one irreducible block if the corresponding

block in the left action does not decompose further.

The ADHM data can also be decomposed into this block form,

a =



0 L−1 · · · L−t

0

B11 · · · B1t

...
. . .

...

Bs1 · · · Bst

BT
11 · · · BT

s1
...

. . .
...

BT
1t · · · BT

st

0


. (7.6.3)

Recall that L+ = 0 and qR and qL are positive representations. The blocks in the
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ADHM data must then be invariant under the left and right action of this symmetry,

Q+
R,u(gi)Buv = Buv giQ

−
R,v(gi), Q+

L,u(gi) giBuv = BuvQ
−
L,v(gi), (7.6.4)

and

qR(gi)L
−
v = L−v giQ

−
R,v(gi), qL(gi) gi L

−
v = L−v Q

−
L,v(gi), (7.6.5)

where u = 1, . . . s, and v = 1, . . . t. Note that the u and v indices are not summed over

in these expressions.

After we have a chosen a representation, we can find the invariant blocks, Buv

and Lv, for each choice of u and v by solving equations (7.6.4) and (7.6.5). If these

blocks exist they generally have one or two free real parameters. These remaining free

parameters are then constrained by the ADHM constraints, and whether an instanton

exists for the given representation is determined by whether these constraints may be

solved.

The remaining task is to find the possible representations for the blocks in QL and

QR, recalling that QL must commute with QR. This will depend on the explicit form

of the irreducible real representations of the double cover of the symmetry group, and

we must consider the 16-cell and the 24-cell separately.

7.7 The 16-cell

In this section we will enumerate all possibilities for the representations QL, QR, qR and

qL of the double cover of the 16-cell symmetry group. For each possible representation,

we can look for ADHM data which is invariant, and then check whether it can satisfy

the ADHM constraints. By starting at low charge and working our way up through

higher charges, we hope to systematically search for the lowest charge instanton with

the symmetries of the 16-cell.

We have seen in Section 7.3 that the symmetry group of the 16-cell is generated

by the left and right actions of the quaternion group, Q8. The quaternion group is

generated by two generators, g1 = i and g2 = j, which have the presentation

g2
1 = g2

2 = (g1g2)2 = −1. (7.7.1)

There are only five distinct irreducible real representations of the quaternion group,

and all others are related by a similarity transformation. There are four positive
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representations which are all one dimensional:

A(g1) = 1, A(g2) = 1, (7.7.2)

A1(g1) = −1, A1(g2) = −1, (7.7.3)

A2(g1) = −1, A2(g2) = 1, (7.7.4)

A3(g1) = 1, A3(g2) = −1. (7.7.5)

The remaining real representation is four dimensional and is a negative representation:

G′(g1) =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , G′(g2) =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 . (7.7.6)

In the framework we have introduced in the previous section, the right action on

the ADHM data, QR, can be written in block form where the upper block is a positive

representation and the lower block is a negative representation. We can always choose

a basis in which these blocks are the direct sum of irreducible representations, and the

upper block of QR must be the direct sum of some combination of A, A1, A2 and A3,

while the lower block is a direct sum of some number of copies of G′.

Using the JNR ansatz, we can immediately construct a charge seven instanton with

the symmetries of the 16-cell by placing the eight poles at the vertices of the 16-cell

with equal weight. Since we are interested in the lowest charge solutions there is no

need to consider charges higher than this. This immediately rules out the possibility

of more than one copy of G′ in the lower block of QR.

In the left action on the ADHM data, QL, the upper block must also be the direct

sum of some combination of A, A1, A2 and A3, and the lower block must be a copy of

G′, but both blocks may be in a different basis to QR.

We can take the right action to be in the canonical basis for the representations

that we have presented above. To find the left action, we must find representations in

a basis which commute with the right action. We note that the representations don’t

have to be the same in the left and right actions, although as noted, they must have

the same signs.

The upper block in the right action, Q+
R must be the direct sum of the one-

dimensional representations, Q+
R = a0A⊕ a1A1 ⊕ a2A2 ⊕ a3A3, where

a0A = A⊕ . . .⊕ A︸ ︷︷ ︸
a0 times

. (7.7.7)

The matrices which will commute with this upper right action are of the form C0 ⊕
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C1 ⊕ C2 ⊕ C3, where the Ci are arbitrary square matrices of dimension ai. We can

perform an arbitrary basis transformation on each of these blocks without affecting the

right action, and can also write the left action in its irreducible form as the direct sum

of A, A1, A2 and A3, although not necessarily grouped together as in the right action.

The lower block in the right action must be a single copy of G′. The matrices which

commute with G′(g1) and G′(g2) are of the form:
a b c d

−b a −d c

−c d a −b
−d −c b a

 . (7.7.8)

For a matrix in this form to square to −1, it must satisfy a = 0, b2 + c2 + d2 = 1. If

we parameterise the two generators in the left action as

G′L(g1) =


0 b c d

−b 0 −d c

−c d 0 −b
−d −c b 0

 , G′L(g2) =


0 e f g

−e 0 −g f

−f g 0 −e
−g −f e 0

 , (7.7.9)

then the condition for them to satisfy the group operations is

b2 + c2 + d2 = e2 + f 2 + g2 = 1,

be+ cf + dg = 0.
(7.7.10)

This is the condition that (b, c, d) and (e, f, g) are orthogonal unit vectors in R3. These

can be rotated to (1, 0, 0) and (0, 1, 0) by transformation matrices of the form in equa-

tion (7.7.8) which commute with the right action and so leave it invariant. The rep-

resentation in the lower block of the left action can therefore always be put in a basis

where it has the following form:

G′L(g1) =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , G′L(g2) =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , (7.7.11)

Note that this is the right representation transformed by the matrix,

P = diag(1,−1,−1,−1). (7.7.12)

To recap, for ADHM data up to charge seven, the lower block of the right action
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must be a single copy of G′ and can be put in the basis in equation (7.7.6), while the

lower block of the left action must also be G′, but in the basis in equation (7.7.11). The

upper block of the right and left actions can be any combination of the one-dimensional

representations in equation (7.7.2), in diagonal form.

Finally, qR and qL must each be one of the representations,

qR,L = 2A, 2A1, 2A2, or 2A3. (7.7.13)

These are always two copies of the same one-dimensional representation in order to be

embedded in the quaternion representation.

This presents us with a finite number of representations for the action on the ADHM

data, and we can test all possible combinations up to charge seven to see if there is

ADHM data which is both invariant under the given left and right actions and can

satisfy the ADHM constraints.

Given that the lower blocks must be the four-dimensional G′ representation, and the

upper blocks are one-dimensional representations, the ADHM data must be composed

of 1× 4 blocks as in Section 7.6. For example, for charge seven ADHM data,

a =



0 0 0 L−1

0 0 0 B11

0 0 0 B21

0 0 0 B31

BT
11 BT

21 BT
31 0


, (7.7.14)

where L−1 , B11, B21 and B31 are 1× 4 quaternionic matrices.

Depending on the choice of representations for qR and qL, some of the possibilities

for L−1 that are invariant under the left and right action of G′ in the bases presented

above are:

L−1 = l0(−1, k, j, i) when qR = 2A, qL = 2A, (7.7.15)

L−1 = l0(k,−j, i, 1) when qR = 2A, qL = 2A1, (7.7.16)

L−! = l0(k, j,−i, 1) when qR = 2A1, qL = 2A, (7.7.17)

L−1 = l0(1, i, j,−k) when qR = 2A1, qL = 2A1, (7.7.18)

where l0 is an arbitrary real constant. When qR and qL are the representations 2A2 or

2A3, there exist similar invariant L−1 rows but with different permutations of 1, i, j, k

and different choices of sign.

Each block in the ADHM data, Buv, must be a right invariant map between the

one-dimensional representation in the corresponding diagonal entry of Q+
R and the rep-
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resentation in the lower block, Q−R = G′. The block Buv must also be a left invariant

map between the corresponding one-dimensional representation in Q+
L , and the repre-

sentation in the lower block Q−L = G′L,

ARu(gi)Bu1 = Bu1 giG
′(gi), and ALu(gi) giBu1 = Bu1G

′
L(gi). (7.7.19)

In this expression, ALu , ARu = A,A1, A2 or A3, depending on the representations chosen

for Q+
R and Q+

L . It will not be very illuminating to list all of the invariant blocks for all

combinations of the one-dimensional representations, but they all have a similar form

to the invariant L− blocks shown above and have a single free real parameter.

The remaining challenge is to find an appropriate representation such that the free

parameters in the blocks in the ADHM data can satisfy the ADHM constraint. There

are a maximum of four free parameters in the ADHM data up to charge seven and it

is straightforward to see whether there exists a non-trivial solution. For example, if we

take the upper representation in the right action to be Q+
R = A⊕ A2 ⊕ A3; the upper

representation in the left action to be Q+
L = A⊕ A2 ⊕ A3; and the quaternion actions

to be qR = 2A1 and qL = 2A1, then the following ADHM data is invariant under this

action:

a =



0 0 0 L−1

0 0 0 B11

0 0 0 B21

0 0 0 B31

BT
11 BT

21 BT
31 0


, (7.7.20)

where

L−1 = l0(1, i, j,−k), (7.7.21)

B11 = b1(1,−i,−j,−k), (7.7.22)

B21 = b2(1, i,−j, k), (7.7.23)

B31 = b3(1,−i, j, k). (7.7.24)

Note that L−1 is a left and right invariant map between A1 and G′; B11 is a left and

right invariant map between A and G′; B21 is a left and right invariant map between A2

and G′; and B31 is a left and right invariant map between A3 and G′. For this ADHM

data to solve the ADHM constraint, the remaining free parameters must satisfy

l20 = b2
1 = b2

2 = b3
3. (7.7.25)

Without loss of generality, we can take l0 = b1 = b2 = b3 = λ, with alternative choices
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of sign giving equivalent ADHM data. The remaining parameter is just an overall scale:

a = λ



0 0 0 1 i j −k
0 0 0 1 −i −j −k
0 0 0 1 i −j k

0 0 0 1 −i j k

1 1 1 0 0 0 0

−i i −i 0 0 0 0

−j −j j 0 0 0 0

−k k k 0 0 0 0


. (7.7.26)

This ADHM data now describes an instanton with the symmetries of the 16-cell. If we

take the vertices of the 16-cell which lie in the hyperplane x4 = 0 then they form an

octahedron. The topological charge density of this 16-cell instanton in this hyperplane

is plotted in Figure 7.3.

By trying all possible combinations of one-dimensional representations in Q+
R and

Q+
L , as well as the possible representations for qR and qL we are able to construct many

different parameterisation of the charge seven ADHM data which are invariant under

the symmetries of the 16-cell. In general, the representations which have invariant

ADHM data have Q+
R = Ai⊕Aj⊕Ak for i, j, k = 0, 1, 2, 3, i 6= j 6= k, and qR is equal to

the remaining one-dimensional representation which is not included in Q+
R. Note that

we have used the notation A0 ≡ A. The upper block of the left representation is also

given by Q+
R = Ai⊕Aj⊕Ak for i 6= j 6= k, although there exists invariant ADHM data

for any choice of qL, unlike qR. In all cases, the ADHM data has a very similar form to

equation (7.7.20), with four free parameters which are constrained to an overall scale

after applying the ADHM constraint. These different representations all give ADHM

data which describe instantons with identical topological charge density.

The solution we have found is the lowest charge instanton which has the symmetries

of the 16-cell within our framework. As we will see in Section 7.10, these solutions are

equivalent to the charge seven JNR ansatz with the eight poles placed at the vertices

of the 16-cell.

7.8 The 24-cell

As quaternions, the vertices of the 24-cell form the binary tetrahedral group,

T = {±1,±i,±j,±k, 1
2

(±1± i± j ± k)}. (7.8.1)

Our treatment of the 24-cell is similar to the 16-cell in the previous section. The main

difference is that all but one of the real irreducible representations of the binary tetra-
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Figure 7.3: A surface of constant topological charge density in the x4 = 0 hyperplane
of the charge 7 instanton with the symmetries of the 16-cell. The vertices in this
hyperplane form an octahedron.
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hedral group have dimension greater than one, and finding appropriate representations

is more complicated. We also need to search up to at least charge 23 where the JNR

ansatz guarantees an instanton with the symmetries of the 24-cell.

We will first present the real irreducible representations of the binary tetrahedral

group in some canonical basis that can be taken as the basis for the representations in

the right action. We will then find the form that the representations in the left action

must take in order to commute with the representations in the right action. Finally,

we will enumerate all the possible combinations of these representations up to charge

23 to find ADHM data with the symmetries of the 24-cell.

7.8.1 Representations of the right action

The positive real irreducible representations of the binary tetrahedral group are

A(g1) = 1, A(g2) = 1, (7.8.2)

E(g1) =
1

2

(
−1 −

√
3√

3 −1

)
, E(g2) =

1

2

(
−1

√
3

−
√

3 −1

)
, (7.8.3)

F (g1) =

0 0 1

1 0 0

0 1 0

 , F (g2) =

 0 1 0

0 0 −1

−1 0 0

 . (7.8.4)

The negative real representations of the binary tetrahedral group are

G′(g1) =
1

2


1 −1 −1 1

1 1 −1 −1

1 1 1 1

−1 1 −1 1

 , G′(g2) =
1

2


1 −1 −1 −1

1 1 1 −1

1 −1 1 1

1 1 −1 1

 , (7.8.5)

G′1(g1) =
1

4


−1 +

√
3 −1−

√
3 1 +

√
3 −1 +

√
3

1 +
√

3 −1 +
√

3 1−
√

3 1 +
√

3

−1 +
√

3 −1−
√

3 −1−
√

3 1−
√

3

1 +
√

3 −1 +
√

3 −1 +
√

3 −1−
√

3

 ,

G′1(g2) =
1

4


−1 +

√
3 1 +

√
3 1−

√
3 −1−

√
3

−1−
√

3 −1 +
√

3 1 +
√

3 1−
√

3

−1−
√

3 −1 +
√

3 −1−
√

3 −1 +
√

3

1−
√

3 −1−
√

3 1−
√

3 −1−
√

3

 .

(7.8.6)

The representation of the right action, QR, can be put into a basis where its upper

block is the direct sum of a combination of these positive representations and the lower

block is the direct sum of a combination of these negative representations. From now
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on we will assume that our representations are in the bases above unless otherwise

noted.

7.8.2 Representations of the left action

To find appropriate representations of the left action we need to find a basis in which

the representations commute with those given for the right action. If ρ1 and ρ2 are two

different irreducible representations in the right action then there are no matrices, P ,

which satisfy

ρ1P = Pρ2. (7.8.7)

The only matrices which commute with the right action are therefore also block diag-

onal with blocks corresponding to the right irreducible representations. Note that the

right representation may include multiple copies of the same irreducible representation,

such as E ⊕ E. The corresponding left block may then be a 4 × 4 block rather than

two separate 2× 2 blocks, because the off-diagonal blocks may be non-zero here.

We will systematically go through the blocks in the representation of the right

action and find the possible commuting representations of the left action. We will only

consider the most granular blocks, so for example, if the right representation contains

the 4× 4 block E ⊕ E, we would not consider the representation where the left block

is also E ⊕ E, since these both split into two 2 × 2 blocks. However, we will consider

the representation where the left block is E ⊗ E since this is not composed of smaller

blocks, and the whole 4× 4 block must be considered together.

Note that when we talk about representations in the section below, we are referring

to the explicit matrices in Section 7.8.1, not the abstract representation. Likewise, when

we use the tensor product and direct sum, we are referring to the concrete Kronecker

product and direct sum of the matrices respectively.

Let us start with the trivial cases. If a block in the right action is simply the

identity matrix then any positive representation of the appropriate size may be used

as the block in the left action. We can take these to be in the canonical basis since

we can perform any basis transformation without affecting the form of the right block.

Likewise, for any block in the right action that is a positive non-trivial representation,

the block in the left action may be taken to be the identity matrix.

Now consider the right representation E. The only matrices which commute with

both E(g1) and E(g2) are of the form(
a −b
b a

)
. (7.8.8)

These must be rotation matrices and the only non-trivial rotation matrices which form
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a representation of the binary tetrahedral group are E(g1) and E(g2). These two

matrices are similar and the transformation between them is Q = diag(1,−1), which

does not commute with the right representation. So there are two possibilities for the

left block: the original representation, E, and a twisted representation, Et, where

Et(g1) = E(g2), Et(g2) = E(g1). (7.8.9)

When the right representation is 2E ≡ E ⊕ E = 12 ⊗ E, the commuting matrices

are of the form 
a −b c −d
b a d c

e −f g −h
f e h g

 . (7.8.10)

Here E ⊗ E, E ⊗ Et and E ⊗ 2A are possible representations for the left block. The

twisted product, E ⊗ Et, is related to E ⊗ E via the transformation matrix P =

diag(1,−1, 1,−1). However, this does not leave the right action invariant and so E⊗Et

must be considered separately. Applying a twist to the first E in the product can

be undone since the transformation will apply only to the identity part of the right

representation, 2E = 12 ⊗ E, and therefore leave it invariant. There is no need to

consider E⊕E as a left representation, because both representations are then composed

of smaller blocks that we have already considered.

It is not clear that these are all possible left representations for the right block 2E.

There may be other 4×4 matrices which are of the form in equation (7.8.10) and form

a representation but that are not related to E⊗E or E⊗2A by a transformation which

leaves the right action, 2E, invariant. The condition for matrices of this form to be a

representation is non-linear and we have not been able to systemically rule out other

possibilities. From now on we will simply list possibilities for the left representations

without claiming that these are exhaustive.

When the right representation is 3E, the left representation must be 6-dimensional

and in the form of equation (7.8.10) generalised to a 6 × 6 matrix. Three such repre-

sentations are F ⊗E, F ⊗Et and F ⊗ 2A. We are free to choose the basis for F since

a transformation on the first term in the tensor product leaves the right block, 13⊗E,

invariant. We will therefore take F to be in the canonical basis above.

When the right representation is 4E, let us start by considering the left represen-

tations in the form G̃ ⊗ E, where G̃ is some four-dimensional representation. These

will commute with the right representation for any choice of G̃. We are free to choose

a basis for G̃ without affecting the right representation, and so can always take it to

be composed of irreducible blocks. There is no irreducible four-dimensional positive

representation, so in the appropriate basis G̃⊗E must be a direct sum of smaller blocks



7.8. The 24-cell 146

considered previously. Similarly, there is no need to consider left representations of the

form G̃⊗ Et or G̃⊗ 2A.

We can also consider left representations in the form Ẽ⊗ (E⊕E), where Ẽ is some

two-dimensional representation for which we are free to choose the basis. The only

choice for Ẽ that does not decompose into smaller blocks is Ẽ = E, so that the left

representation is E⊗(E⊕E). By a similar argument, other possible left representations

are of the form E ⊗ (Ẽ1 ⊕ Ẽ2), where Ẽ1, Ẽ2 = E,Et, or 2A. Note that the ordering

of the terms in the direct sum does not matter since these can be permuted without

affecting the right representation.

There is no need to consider the left blocks in the form Ẽ1 ⊕ Ẽ2 ⊕ Ẽ3 ⊕ Ẽ4 since

these decompose into blocks considered previously.

When the right representation is 5E, there are no obvious possible 10-dimensional

representations for the left representation which do not decompose into blocks we have

already considered.

Following the same pattern when the right representation is 6E, the following left

representations are possible and inequivalent: F ⊗ (Ẽ1 ⊕ Ẽ2) and E ⊗ (Ẽ1 ⊕ Ẽ2 ⊕
Ẽ3), where Ẽ1, Ẽ2, Ẽ3 = E,Et, or 2A, and permutations of the direct sum are again

equivalent. As before, if the left action is in the form Ĩ ⊗ Ẽ1 for some six-dimensional

representation Ĩ then it can be written as the sum of blocks considered previously, after

the appropriate basis transformation.

This pattern also extends to when the right representation is 7E, 8E or 9E, and

the possibilities for the left action are shown in Table 7.1.

There are additional possibilities for the left representation when the right repre-

sentation is 8E. The matrices in G′ and G′1 are all in the form of equation (7.8.10) and

so commute with 2E. We can also consider the twisted representations, G
′t and G

′t
1 .

With G′, the following transformation matrix swaps G′(g1) and G′(g2):

P =
1√
2


1 0 0 −1

0 1 1 0

0 1 −1 0

−1 0 0 −1

 . (7.8.11)

This commutes with 2E in the canonical basis, so there is no need to consider G′t

separately. However, the transformation between G′1 and G′1
t does not commute with

2E, so these must be considered separately. The representations G′ ⊗ G′, G′ ⊗ G′1,

G′⊗G′t
1 , G′1⊗G′1, G′1⊗G

′t
1 and G′1⊗G′ are therefore also possible representations for the

left representation when the right representation is 8E. Note that these representations

are positive as they are the tensor product of two negative representations.

There is no need to consider 10E or higher, since the lower block must be at least
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four dimensional, and the highest charge that we need to consider is charge 23.

The F representation commutes only with the identity. If the right representation

is F there is therefore no non-trivial left representation.

When the right representation is 2F , the only possible left representation is E⊗13.

When the right representation is 3F , the only possible left representation is F ⊗13.

For any higher dimensional right representation, nF , with n > 3, the left repre-

sentation must be in the form ρn ⊗ 13, where ρn is a n-dimensional representation.

However, we are free to choose the basis of ρn and so can decompose it into irreducible

representations, where each block has been considered previously.

The G′1 representation commutes with matrices of the form
a −b 0 0

b a 0 0

0 0 a −b
0 0 b a

 . (7.8.12)

Neither G′ or G′1 can be put in this form since they are irreducible. For higher multiples

of G′1 in the right representation, the left representation must always occur with blocks

of this form. For example, when the right representation is 2G′1, the left representation

must be in the form

a −b 0 0 c −d 0 0

b a 0 0 d c 0 0

0 0 a −b 0 0 c −d
0 0 b a 0 0 d c

e −f 0 0 g −h 0 0

f e 0 0 h g 0 0

0 0 e −f 0 0 g −h
0 0 f e 0 0 h g


≡


a −b c −d
b a d c

e −f g −h
f e h g

 ⊗̃12, (7.8.13)

where we have defined ⊗̃ as the Kronecker product acting on each 2 × 2 block. We

therefore see that G′ ⊗̃12, G′1 ⊗̃12 and G′1
t ⊗̃12 are possible left representations. The

left representation G′t ⊗̃12 is equivalent to G′ ⊗̃12 since the transformation matrix

between them is P ⊗̃12 where P is given in equation (7.8.11) and commutes with the

right action.

There are no additional possibilities when the right representation is 3G′1, or 5G′1.

There is no need to consider 6G′1 or higher as we would exceed charge 23.

When the right representation is 4G′1, both G′ ⊗ G̃ and G′1 ⊗ G̃ are suitable left

representations, where G̃ = 14, E ⊕ E or Et ⊕ Et.

The following left representations are also possible when the right block is 4G′1:
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(E⊗G′) ⊗̃12, (E⊗G′1) ⊗̃12, (E⊗G′1
t) ⊗̃12, (G′⊗E) ⊗̃12, (G′⊗Et) ⊗̃12, (G′1⊗E) ⊗̃12,

and (G′1 ⊗ Et) ⊗̃12. The left representations in this form where the first term is

twisted are related to these untwisted representations by transformations which do not

affect the right action. Once again, the transformation between (E ⊗ G′) ⊗̃12 and

(E ⊗G′t) ⊗̃12 commutes with the right representation and so these do not need to be

considered separately.

The final right representation to consider is G′, which commutes with matrices of

the form 
a −b c d

b a d −c
−c −d a −b
−d c b a

 . (7.8.14)

The left representation can be PG′PT or PG′tPT, where P = diag(−1, 1, 1, 1). We can

see from the discussion above that G′1 can never commute with G′ in any basis.

When the right representation is 2G′, the left representation may be E ⊗ (PG′PT)

or E ⊗ (PG′tPT).

Similarly, when the right representation is 3G′, the left representation may be F ⊗
PG′PT or F ⊗ PG′tPT.

When the right representation is 4G′, both G′ ⊗ G̃ and G′1 ⊗ G̃ are suitable left

representations, where G̃ is a positive representation in the form of equation (7.8.14),

G̃ = 4A, E ⊕ E, or Et ⊕ Et.

Any left representation of the form G̃⊗ (PG′PT) or G̃⊗ (PG′tPT), can be decom-

posed into blocks which we have considered previously by transforming G̃ to a basis

where it is the direct sum of irreducible representations.

When the right representation is 5G′, all possibilities are composed of blocks that

we have previously considered.

We have now considered all possible blocks in the right representation which can

appear up to charge 23. For each block in the right representation in the canonical

basis, we have found possibilities for the equivalent block in the left representation,

many of which are actually the same representation but in a different basis. However,

we cannot transform between these bases without affecting the right block and so we

must consider these as inequivalent representations of the left action. A summary of

these possible representations is given in Table 7.1. Unfortunately we have no method

of systematically finding commuting representations and so we cannot rule out the

possibility that there are other inequivalent left representations that we have not been

able to find by inspection.
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Right representation Left representation

1k A, E, or F (for k = 1, 2, 3 respectively)

E 2A, E, or Et

2E E ⊗ Ẽ1, where Ẽ1 = 2A, E, or Et.

3E F ⊗ Ẽ1

4E E ⊗ (Ẽ1 ⊕ Ẽ2)

5E —

6E F ⊗ (Ẽ1 ⊕ Ẽ2) or E ⊗ (Ẽ1 ⊕ Ẽ2 ⊕ Ẽ3)

7E —

8E E ⊗ (Ẽ1 ⊕ Ẽ2 ⊕ Ẽ3 ⊕ Ẽ4), G′ ⊗ G̃′ or G′1 ⊗ G̃′, where
G̃′ = G′, G′1 or G

′t
1 .

9E F ⊗ (Ẽ1 ⊕ Ẽ2 ⊕ Ẽ3)

F 13

2F E ⊗ 13

3F F ⊗ 13

nF , n > 3 —

G′ PG′PT, or PG′tPT, where P = diag(−1, 1, 1, 1).

2G′ E ⊗ (PG′PT), or E ⊗ (PG′tPT)

3G′ F ⊗ (PG′PT), or F ⊗ (PG′tPT)

4G′ G′ ⊗ G̃, or G′1 ⊗ G̃, where G̃ = 4A, E ⊕ E, or Et ⊕ Et.

5G′ —

G′1 —

2G′1 G′ ⊗̃12, G′1 ⊗̃12 or G′1
t ⊗̃12

3G′1 —

4G′1 G′ ⊗ G̃, or G′1 ⊗ G̃, where G̃ = 14, E ⊕ E or Et ⊕ Et; or
(E⊗G′) ⊗̃12, (E⊗G′1) ⊗̃12, (E⊗G′1

t) ⊗̃12, (G′⊗E) ⊗̃12,
(G′ ⊗ Et) ⊗̃12, (G′1 ⊗ E) ⊗̃12, or (G′1 ⊗ Et) ⊗̃12.

5G′1 —

Table 7.1: A summary of the possible blocks that make up the representations of the
right and left actions of the binary tetrahedral group when acting on the ADHM data.
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7.9 A charge 23 solution

After testing every combination of representations from the previous section for ADHM

data up to charge 23, we have found the following charge 23 solution. The right and

left representations are

QR = diag(E, 3F, G′, 2G′1), (7.9.1)

and

QL = diag(E, F ⊗ 13, PG
′PT, G′1 ⊗̃12), (7.9.2)

where P = diag(−1, 1, 1, 1) and ⊗̃ is the Kronecker product on 2 × 2 blocks as in

equation (7.8.13). In the block form described above,

Q+
R,1 = E, Q+

R,2 = 3F, Q−R,1 = G′, Q−R,2 = 2G′1, (7.9.3)

Q+
L,1 = E, Q+

L,2 = F ⊗ 13, Q
−
L,1 = PG′PT, Q−L,2 = G′1 ⊗̃12. (7.9.4)

The blocks which are invariant under the action of this representation are

B12 = b1

(
−i j k 1 k −1 i j

−j −i −1 k 1 k −j i

)

+ b2

(
j i 1 −k −1 −k j −i
−i j k 1 k −1 i j

)
,

(7.9.5)

and

B21 = b3



1 −i j −k
−k −j −i −1

j −k −1 i

k −j −i 1

1 i −j −k
−i 1 −k j

−j −k 1 i

i −1 −k j

1 i j k



, (7.9.6)

where b1, b2 and b3 are arbitrary real coefficients. The invariant matrix, B22, is shown

in Figure 7.4 and there is no invariant block, B11 between Q+
(R,L),1 and Q−(R,L),1.

The only block which has an invariant L−v is Q−R,1 and Q−L,1, and it leaves the

following row vector invariant,

L−1 = l1

(
1 −i −j −k

)
, (7.9.7)

where l1 is any real number.
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B
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b 4
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The ADHM data built up from these invariant blocks is then

a =



0 0 L−1 0

0 0 0 B12

0 0 B21 B22

0 BT
21 0 0

BT
12 BT

22′ 0 0


. (7.9.8)

The ADHM constraint gives the following constraints on the coefficients:

3(b2
4 + b2

5) = 3b2
3 = 2(b2

1 + b2
2) = l21. (7.9.9)

These can be solved with the parameterisation

b1 =
λ

2
√

2
cos θ1, b2 =

λ

2
√

2
sin θ1, b3 =

λ

2
√

3
,

b4 =
λ

2
√

3
cos θ2, b5 =

λ

2
√

3
sin θ2, l1 =

λ

2
.

(7.9.10)

The overall scale is then given by λ,

a†a = λ2
1. (7.9.11)

Any choice of the parameters θ1 and θ2 gives equivalent ADHM data.

Recall that we took the vertices of the 24-cell to be

(±1, 0, 0, 0) , (0,±1, 0, 0) , (0, 0,±1, 0) , (0, 0, 0,±1) , 1
2

(±1,±1,±1,±1) . (7.9.12)

These vertices can be divided into three hyperplanes:

x1 + x2 = 0 (7.9.13)

x1 + x2 = ±1. (7.9.14)

In the first of these hyperplanes the vertices form a cuboctahedron (a cube with each

corner cut off to give an equilateral triangle face) in the 1√
2
(x1 − x2), x3 and x4 axes.

The vertices in the second two hyperplanes form octahedrons.

The instanton that is generated from the ADHM data above is rotated compared

to the 24-cell with the vertices in equation (7.9.12). The vertices in equation (7.9.12)

instead describe the shape of the instanton on the axes 1√
2
(x1 ± x2) and 1√

2
(x3 ±

x4). Figure 7.5 shows a surface of constant topological charge density in the x4 = 0

hyperplane where the cuboctahedral shape is clear. Figure 7.6 shows a similar surface

in the x4 = 1 hyperplane where the octahedral shape is clear.
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Figure 7.5: A surface of constant topological charge density in the x4 = 0 hyperplane
of the charge 23 instanton with the symmetries of the 24-cell. The vertices in this
hyperplane form a cuboctahedron.

We did not find any lower charge instantons with the symmetries of the 24-cell.

7.10 Equivalence to JNR ansatz

Recall that the JNR ansatz for a charge k instanton has k + 1 free poles. We can

therefore use the JNR ansatz to construct a charge seven instanton with the symmetries

of the 16-cell by placing the eight poles in the JNR ansatz at the vertices of the 16-cell

with equal weight. Similarly, we can use the JNR ansatz to construct a charge 23

instanton with the symmetries of the 24-cell by placing the 24 poles at the vertices in

equation (7.2.9).

The lowest charge solutions that we have found for the 16-cell and the 24-cell are also

of charge seven and charge 23 respectively, and are in fact equivalent parameterisations

of the JNR solution. The ADHM data for the JNR ansatz takes a different form from

the canonical form that we have used above. For a charge k JNR instanton with poles
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Figure 7.6: A surface of constant topological charge density in the x4 = 1 hyperplane
of the charge 23 instanton with the symmetries of the 24-cell. The vertices in this
hyperplane form an octahedron.
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at y0, . . . , yk with equal weights, the ADHM data is [93]

∆(x) =


y0 · · · y0

y1

. . .

yk

−


1 · · · 1

1
. . .

1

x. (7.10.1)

To convert this ADHM data to the canonical form, we need matrices S ∈ O(k+ 1) and

C ∈ GL(k,R) such that 
0 · · · 0

1
. . .

1

 = S


1 · · · 1

1
. . .

1

C. (7.10.2)

The following matrices will perform this transformation for general charge, k:

Cij =



0 if i > j
j√

j(j + 1)
if i = j

− 1√
j(j + 1)

if i < j

where i, j = 1, . . . , k, (7.10.3)

and

S =



− 1√
k+1

1√
k+1

· · · 1√
k+1

C11

−C12

...

−C1k

(
CT
)
ij


. (7.10.4)

This is a generalisation of the transformation presented in reference [94] for k = 1, 2.

To construct JNR data with the symmetries of the 5-cell, we can take the poles of

the charge five JNR instanton to be the 5-cell vertices, with equal weight,

y0 =
1

4

(
−1 +

√
5 (i+ j + k)

)
, y1 =

1

4

(
−1 +

√
5 (i− j − k)

)
,

y2 =
1

4

(
−1 +

√
5 (−i+ j − k)

)
, y3 =

1

4

(
−1 +

√
5 (−i− j + k)

)
,

y4 = 1.

(7.10.5)

The solution we presented earlier in equation (7.4.2) is then related to the JNR ansatz
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by

a =

(
1 0

0 Q

)
S


y0 · · · y0

y1

. . .

y4

C Q−1, (7.10.6)

where S and C are given as above, and [3]

Q =


0 0 0 1

0 −
√

2√
3
− 1√

3
0

− 1√
2

1√
6
− 1√

3
0

− 1√
2
− 1√

6
1√
3

0

 . (7.10.7)

The scale factor in the solution in equation (7.4.2) should be taken to be λ = −1
4

for

the solutions to be equivalent. Of course, the JNR ansatz can be arbitrarily scaled as

well.

To construct JNR data with the symmetries of the 16-cell, we can take the poles

of the charge seven JNR instanton to be the 16-cell vertices,

y0 = 1, y1 = −1, y2 = i, y3 = −i,

y4 = j, y5 = −j, y6 = k, y7 = −k.
(7.10.8)

The solution we found previously, in equation (7.7.26), is then related to the JNR

ansatz as above, but with

Q =



0 − 1√
3
− 1√

6
− 1√

10
− 1√

15
2√
21

1√
7

0 0 0 −
√

2√
5
− 2√

15
− 2√

21
− 1√

7

0 − 1√
3
− 1√

6
1√
10

1√
15

− 2√
21
− 1√

7

−1 0 0 0 0 0 0

0 1√
3
−
√

2√
3

0 0 0 0

0 0 0
√

2√
5

−
√

3√
5

0 0

0 0 0 0 0 −
√

3√
7

2√
7


. (7.10.9)

The scale factor in equation (7.7.26) should be taken to be λ = 1
2
.

Due to the large dimension of the charge 23 ADHM data, it is difficult to find an

appropriate transformation matrix between the solution in equation (7.9.8) and the

JNR ansatz. However, by examining the eigenvalues of the matrices QL and QR that

leave the JNR ansatz invariant under the left and right action of the binary tetrahedral

group generators, we are able to confirm that they are the same representations as

appear in the solution in equation (7.9.8). Furthermore, all of the blocks can be put
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in the same basis as in equation (7.9.8), except for the left 12 ⊗̃G′ block. It is possible

that the JNR ansatz is actually a slightly different solution, where the left action is in

a different basis that we have not considered in the previous section, but the solutions

are otherwise very similar.

7.11 Discussion and conclusions

In this chapter we have understood how the ADHM data of a symmetric instanton

must transform under the action of the symmetry group. Given the description of the

ADHM data in terms of quaternions, the natural way to represent the action of such a

symmetry group is via the lift to the double cover, which is a subgroup of SU(2)×SU(2)

and acts via right and left quaternion multiplication. For any symmetry which is a

subgroup of SO(3), and also the symmetry group of the 5-cell, the double cover is

isomorphic to a subgroup of SU(2), and the left and right actions are not independent.

For each action by a member of the double cover, (g], g), where g] is dependent on

g, the ADHM data must transform under a single k-dimensional real representation

and a single one-dimensional quaternionic representation. We can always take these to

be in the canonical basis where they are the direct sum of irreducible representations.

It is then straightforward to enumerate all combinations of irreducible representations

and search for ADHM data which is invariant under each possible combination. This

procedure allowed us to construct an instanton with the symmetries of the 5-cell, and

the lowest charge solution we found with these symmetries was of charge four.

The double cover of the symmetry group of the 16-cell and of the 24-cell are Q8⊗Q8

and T⊗T respectively, and the left and right actions of these groups are independent.

This means that there are two independent actions which form representations, QR

and QL. We now only have the freedom to choose a basis in which either QR or

QL is explicitly the direct sum of irreducible representations. However, QR and QL

must commute, since the left and right actions commute, so the possible form of the

representations in QL is restricted when QR is in a given basis. In the case of the

16-cell, this has allowed us to uniquely determine all possibilities for QL given a choice

of QR. For the 24-cell, we have only been able to determine the non-linear constraints

on the form of the representations in QL, and find the obvious examples by inspection.

With all possible combinations of QR and QL known for the 16-cell, and a large

number known for the 24-cell, we have tested each combination to determine if there is

ADHM data which is invariant under the representation and which satisfies the ADHM

constraints. For the 16-cell, we have found a selection of solutions at charge seven which

are equivalent to the JNR ansatz. For the 24-cell, we have found a solution at charge

23 which is also equivalent to the JNR ansatz.

In the case of the cubic and icosahedral symmetries, there exist symmetric instanton
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solutions with lower charge than the JNR ansatz. It is curious that we have not

found any such lower charge solutions for the polytope symmetries. This may be

due to a fundamental difference in the way that the symmetry acts as a subgroup

of SU(2) × SU(2) rather than as a subgroup of SU(2). It is also possible that lower

charge solutions exist, but outside of our framework. In the 24-cell, there may be

representations in the left action that we have not found but that may give a lower

charge solution. We would need to be able to solve a set of non-linear constraints on

the matrix coefficients to find the general form of representations that commute with

the right action, and it is not clear how to proceed in this case.

We have also assumed that QR and QL form representations of the appropriate

groups. It is possible that there are symmetric instantons with ADHM data which

are invariant under some matrices QR and QL which are not strictly representations.

For example, consider the right action of g2
i = −1 in the double cover of the 16-cell

symmetry group. Then there must exist matrices, QR(gi), such that

QR(gi)
2M = −MQR(gi)

2. (7.11.1)

If QR is composed of irreducible representations then we saw previously that QR(gi)
2 =

diag(1m,−1n) in the appropriate basis. However, the following is also a possible solu-

tion,

QR(gi)
2 =

(
0 1k/2

−1k/2 0

)
, (7.11.2)

when k is even, and M is in the form

M =

(
A B

B A

)
, (7.11.3)

with A and B symmetric matrices. The matrices QR(gi) do not form a representation

because g4
1 = 1, yet QR(g1)4 = −1k, which is not the identity element. However, they

still obey the group action when applied to M since the sign is projected out.

Another possibility is that QR and QL are representations of opposite sign. We

took QR to be composed of positive representations in the upper block and negative

representations in the lower block, so that QR(gi)
α = diag(1m,−1n). We also took a

similar block structure for QL, but it is possible that QL instead consists of negative

representations in the upper block and positive representations in the lower block so

that QL(gi)
α = diag(−1m,1n). Again, this difference of sign is irrelevant in the action

on the ADHM data.

Finally, it is possible that the matrices QR and QL only satisfy the group presen-
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tation up to a sign,

QR,L(g1)α = ±QR,L(g2)β = ±
(
QR,L(g1)QR,L(g2)

)γ
. (7.11.4)

With the 24-cell symmetry group, where α = β = 3, we can always choose the sign of

QR,L(gi) such that the signs in this expression match. However, for the 16-cell, where

α = β = 2, it would be possible to have symmetric ADHM data which is invariant

under some matrices QR,L where the signs do not match. These matrices would not be

a representation.

The core problem is that the transformation of the ADHM data is unaffected by

the signs of QR and QL, so QR and QL only need to satisfy the group operation up to

a sign,

QR,L(g)QR,H(h) = ±QR,L(gh). (7.11.5)

Our treatment in terms of representations is only applicable when the signs agree

with the group operation. However, we have been unable to find meaningful examples

of suitable matrices when the signs do not agree and we do not have the body of

representation theory to fall back on.



Chapter 8

Conclusions and outlook

In the first half of this thesis we looked at the BLG and ABJM actions of multiple M2-

branes, and we saw how these can be extended to include couplings to the background

3-form in M-theory. A variety of approaches to this problem have been explored in the

literature, but our method was to compare the possible terms in the M2-brane action

with those that must be recovered in the reduction to D2-branes where the form of the

coupling to the background fields is known. A proposal for the extension of the ABJM

action to include linear couplings to the background 3-form was given in reference

[52], and the main result of the first part of this thesis was the further extension of

the ABJM action to include quadratic couplings to the background fields, as given

in equation (3.1.67). The extension of the action to quadratic couplings relies on the

couplings determined from the linear extension and provides further evidence that the

linear extension is correct. We were only able to construct the extension when the

gauge symmetry was broken from U(N)× U(N) to the diagonal U(N) subgroup, and

we have commented on the subtleties in constructing a fully gauge-invariant pullback

of the background 3-form in the ABJM action.

The discovery of the BLG and ABJM actions was a significant step forward in

our understanding of M-theory, but there is much that still remains unknown. We are

certainly a long way from having a unified understanding of all aspects of M-theory, but

the research in this thesis hopefully takes us a little closer to the full picture by helping

to link together the world-volume action of multiple M2-branes with the low-energy

massless fields in M-theory. We have only considered the background 3-form in this

thesis, but for future work it would be interesting to understand multiple M2-branes

in an arbitrary curved background, with non-trivial metric, 3-form and 6-form fields.

The M5-brane still remains more of a mystery, although the recent developments

for M2-branes have inspired the search for a theory of multiple M5-branes. There are

some non-trivial difficulties to overcome in describing multiple M5-branes, but some

promising steps have been taken in this direction [33, 34, 35, 36, 37]. Perhaps the

most interesting possibility is the conjecture that the theory of multiple M5-branes on

160
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a circle is dual to five dimensional super-Yang-Mills at all sizes of the radius of the

M-theory circle, not just in the compactification limit [72, 73]. If this is true then

it is a profound duality with the result that five-dimensional super-Yang-Mills is UV

complete.

Five dimensional super-Yang-Mills is therefore in the spotlight at the moment, but

instantons in this theory have received much less attention than their lower dimen-

sional cousins, monopoles, skyrmions and vortices, perhaps due to the previous lack

of motivation to study a five dimensional theory. In the second half of this thesis we

turned our attention to these instantons, first as dynamic solitons in five dimensional

Yang-Mills, and then to look for instantons which have some high amount of symmetry

in the four spatial dimensions.

The main result of Chapter 5 was the explicit calculation of the moduli space metric

for charge two instantons, and the potential for charge two dyonic instantons. The

calculation of these through the ADHM construction has also allowed us to understand

some of the structure and topology of the moduli space, as well as to identify a number

of geodesic submanifolds with various physical interpretations. In Chapter 6 we used

these explicit expressions for the metric and potential to explore the evolution of two

slow moving (dyonic) instantons via geodesic motion on the moduli space using the

moduli space approximation of Manton. We saw that instantons undergo right angled

scattering as expected by comparison to similar soliton systems, and we also understood

the underlying reason for this due to the quotient structure of moduli space under

symmetries of the ADHM data. Our final result in Chapter 6 was that it is possible for

dyonic instantons to exchange angular momentum in such a way that one shrinks to

zero size. This corresponds to the geodesic evolution hitting a singularity in the moduli

space, which is in contrast to a single dyonic instanton where the overall conserved

angular momentum prevents it from shrinking. The implications of this behaviour

are still unclear for the full field theory. If Yang-Mills is UV complete then these

singularities must be avoided somehow, possibly by a breakdown of the moduli space

approximation near to the singularities or by quantum effects.

We have seen that instantons are related to Skyrmions, and it may be possible to

use our understanding of the two instanton moduli space to further explore charge two

Skyrmions. Instantons are also related to vortices, and a half dimensional subspace of

the non-commutative instanton moduli space can be identified with the vortex moduli

space [98]. We have not considered the non-commutative deformation of the instanton

moduli space in this thesis so our results would only apply to the strong coupling

limit of the vortex theory, but work on the non-commuative instanton moduli space

is in progress. Our understanding of the moduli space of two instantons may also

be useful in further understanding the correspondence between the multiple M5-brane

theory and five dimensional super-Yang-Mills, particularly if the supersymmetric and
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quantum theory can be further developed.

In Chapter 7 we have understood how the action of a symmetry on an instanton

lifts to an action by left and right quaternion multiplication on the ADHM data. For

an instanton to be symmetric under a symmetry, the ADHM data must also be in-

variant and we can find a representation of real matrices that transform the ADHM

data appropriately. With this representation theory approach we have been able to

find solutions with the symmetries of three of the four symmetry groups of the regular

polytopes. The 5-cell was straightforward since the right and left action are not inde-

pendent, and the single representation of the transformation matrices can be put in a

canonical basis. The symmetries of the 16-cell and 24-cell act with independent left

and right actions, and we only have the freedom to take one of these representations to

be in a canonical basis. Nevertheless, we were able to sufficiently restrict the possible

form of the other representations and find solutions within our framework that have

the symmetries of the 16-cell and 24-cell. The solutions we found turned out to be

equivalent to solutions which can be constructed from the JNR ansatz, but we have

developed a framework which can be used to understand the action of any subgroups

of SO(3) and SO(4) on the ADHM data.

We have seen previously that instantons are related to many other soliton sys-

tems: Skymions via their holonomy; vortices via their moduli space; monopoles via

dimensional reduction; and hyperbolic monopoles when the instantons have a circle

symmetry. It is encouraging that new relationships are still being discovered, and the

relationship between instantons with Platonic symmetries and hyperbolic monopoles

was only recently realised. Instantons with the symmetries of the regular polytopes

may turn out to be similarly related to other systems in the future.
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