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Abstract

Grain size data for gravel bed rivers is important in a wide variety of contexts; providing

crucial information to guide the development of flood defences, and maintaining navi-

gability, biodiversity and ecological integrity within large gravel bed rivers. Advances

in remote sensing technologies have seen an increase in the acquisition of hyperspatial

imagery (imagery with a spatial resolution of < 10 cm), and advances in computational

power have complemented this data acquisition allowing for the application of complex

image processing techniques. An improved methodology is presented for extracting reach

scale grain size information. Of particular note is the ability to generate estimates of sub-

pixel surface sand content, as well as sub-pixel grain size distributions. The methodology

was applied to Queens Bar, N Bar, Calamity Bar and Harrison Bar within the gravel reach

of the Fraser River (British Columbia, Canada).

Hyperspatial imagery was acquired at 3 cm resolution, along with independent surface

grain size information. Surface sand estimates were calculated through a first order stan-

dard deviation textural layer; calibrations revealed an inequality based relationship be-

tween texture and sand content, allowing for the production of binary maps of surface

sand content with an approximate accuracy of 70%. Calibrations were calculated for 7

grain size percentiles for the gravel fraction of the grain size distribution ( > 2 mm); D5,

D16, D35, D50, D65, D84 and D95 were achieved, following a wide ranging parameter in-

vestigation. A combination of first order standard deviation along with several second

order Grey Level Co-occurrence Matrix textural parameters (entropy, contrast and cor-

relation) calibrated to grain size using multiple linear regression. The best performing

calibrations were found for smaller and intermediate percentiles; cross validated mean

square error (%) at 0.61, 3.55, 9.58 and 16.25 for D5, D16, D35, and D50 respectively.

Calibrations began to break down for the largest percentiles; cross validated mean square

error (%) at 26.43 and 44.99 for D84 and D95. The breakdown of calibrations for larger

percentiles is attributed to the ‘pixel averaging effect’; for smaller percentiles a larger

population of grains were averaged into one pixel, thus variance across multiple pixels is

low, whereas for the larger percentiles the grain size approaches the spatial resolution of

the pixels, therefore a smaller population of grains makes up one pixel and introduces in-

creased variance across multiple pixels. Overall, this new methodology presents a means

for extracting sub-pixel grain size information from hyperspatial imagery, with higher ac-

curacies for the smaller percentiles than previously published. This allows for the rapid

acquisition of a large amount of grain size information without the need for time intensive

field techniques.
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1 Introduction

The Fraser River (British Columbia, Canada) drains a total area of 230,000 km2 and is
home to 2.5 million people (Census, 2001). In the lower reaches, the Fraser flows through
agricultural and urban areas, and its sediments are of great importance. In recent times,
pressure from land-use activities has placed fluvial economic, social and ecological func-
tions at risk (Sparks, 1995; Gore and Shields, 1995; Rempel, 2004). Accurate sediment
budgets provide crucial information to guide the development of flood defences, main-
tain navigability and the vast biodiversity and ecological integrity within the river (Gore
and Shields, 1995; Ham, 2005; Rosenau and Angelo, 2007). Whilst information on the
sediment budget is available (e.g. Ham and Church, 2003), current estimates of sedi-
ment transport could be improved significantly with data pertaining to the quantity of
sand stored in the river bed (Ham, 2005; Church, personal comm.). Hence there is a need
to address this uncertainty, specifically in reference to the finer grained fractions of the
sediment budget.

...accurate quantification of the actual magnitude of sand and gravel volumes

that enter, and are transferred through the reach over time, has proven diffi-

cult despite a considerable effort to establish these values.

Ham, 2005, p. 186.

Field based techniques to generate sediment budgets are time consuming and expensive;
recent developments in fluvial remote sensing along with the increased availability of
hyperspatial imagery (Rango et al., 2009; Carbonneau and Piégay, 2012) may provide
a solution to this problem. Existing methods (Carbonneau et al., 2004, 2005) allow for
the production of grain size maps limited to the coarse fraction of the grain size distri-
bution. However, preliminary results presented by Chandler et al. (2004) suggest that
the limited spectral information present in standard colour imagery is sufficient for the
detection sub-pixel grain size information. Furthermore, anecdotal observations by Car-
bonneau (personal comm.) suggest that current methods of grain size mapping are in fact
capable of detecting finer grains. Therefore, there is scope to push the boundaries of cur-
rent methods and investigate their applicability for detecting surface sand content, which
could provide crucial information on the sedimentary dynamics of large river systems.

Within remote sensing literature there are two main categories of techniques for extract-
ing grain size information from digital imagery, close range photosieving techniques and
reach scale techniques; the latter is of particular interest to this study. Current techniques
using hyperspatial imagery have not exploited sub-pixel grain size information (where
the grain size is smaller than the pixel resolution); methods have been limited to coarser
grains, or used higher resolution imagery such that grains of interest occupy several pixels
(e.g. Carbonneau et al., 2004, 2005; Verdú et al., 2005). Consequently, this study aims to
extract sub-pixel grain size information, in terms of both sand and gravel. In conjunction
with this study, on-going work at the University of British Columbia by Michael Church
and colleagues aims to produce a probability distribution of sand depth measures; this
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data will be combined with surface sand information to produce sand volume estimates
within the Fraser. Overall this will reduce the need for time-intensive field mapping tech-
niques which have proved difficult to apply to large river reaches, as well as providing
crucial information for increasing the accuracy of sediment budgets.
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2 Literature Review

2.1 A new sub-discipline; High Resolution Remote Sensing of Rivers

Rivers should be viewed as continuous systems; wherein features (e.g. water depth, sed-
iment size, discharge) vary along the length and scale of the entire watershed of the river
(Marcus and Fonstad, 2008). The majority of research into fluvial systems (geomorphol-
ogy, hydrology, biology etc.) is derived from field studies which are often limited in
terms of resolution (e.g. spatial or temporal), and these existing techniques do not pro-
vide centimetric resolution data at a watershed scale (Marcus and Fonstad, 2008). Recent
technological advances in both remote sensing and computational power have led to the
development of a new sub-discipline; high resolution remote sensing of rivers (Marcus
and Fonstad, 2010). These technological advances are changing the way river scientists
map, manage and analyse rivers; enabled through the use of remotely sensed data (Mar-
cus and Fonstad, 2010). Of particular interest to this study is the acquisition of centimetre
scale, hyperspatial imagery, and the subsequent development of image processing tech-
niques to exploit information contained in hyperspatial images. Using hyperspatial im-
agery it has been possible to produce continuous watershed scale maps of various riverine
features (including habitats, water depth, and grain size, amongst others), from sub-meter
to centimetre resolution (e.g. Dugdale et al., 2010; Visser and Wallis, 2010; Hill et al.,
2008 for a comprehensive review see Marcus and Fonstad, 2008).

Producing watershed scale maps is advantageous for river scientists as they can provide
improved resolution as well as continuous data for the entire watershed rather than a lim-
ited reach (Marcus and Fonstad, 2008). Another major advantage achieved through the
use of hyperspatial imagery is that techniques developed for extracting specific features
may be transferred to other rivers, thus providing a wealth of data for multiple sites (e.g.
Achar et al., 2011; Ierodiaconou et al., 2005). The development of automated and trans-
ferable techniques to exploit hyperspatial imagery will inevitably lead to a reduction in
the need for time intensive and costly field mapping techniques whilst providing data for a
range of applications and with consistently high accuracies (Marcus and Fonstad, 2010).

It must be stressed that within this new sub-discipline, techniques and algorithms that are
being developed are still in their infancy (Marcus and Fonstad, 2010). Therefore there
is scope to expand current methods and develop a technique which could provide crucial
information on the sedimentary dynamics of large river systems. Before considering the
current literature on remote sensing techniques for grain size mapping a brief review
of image processing theory and background follows, introducing the concepts of block
processing and image texture which are of particular relevance.
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2.2 Digital Image Processing: Background

Figure 1: Representation of a digital image in terms
of f (x, y).

When processing hyperspatial digital
imagery, it is important to define what
is meant by a digital image, and by
digital image processing. These are
important concepts to consider as a
prerequisite to understanding how im-
age texture is calculated. In this con-
text, we can define a digital image as
the discrete function f (x, y), where x

and y are spatial coordinates and the
amplitude of f at any pair of coordi-
nates is known as the grey level, or in-
tensity (González and Woods, 2008).

A digital image is composed of a finite number of elements, each having a particular
location and value; these elements are also known as picture elements or more commonly
pixels (González and Woods, 2008). This idea of digital images is visualised in Figure
1. Digital image processing thereby refers to the processing of these images by a digital
computer (González and Woods, 2008). Another important aspect to consider is that of
resolution. Perhaps most relevant to this study is the notion of spatial resolution, referring
to the actual size of a pixel on the ground. This is usually quoted as a linear unit, with
the assumption that pixels are square (Carbonneau and Piégay, 2012). Similarly, there are
the concepts of spectral, radiometric and temporal resolution; spectral refers to the width
of the spectral bands (such as Red, Green, Blue etc.) usually quoted in linear wavelength
units such as nm, radiometric referring to the recording of information in a digital sensor
(i.e. the amount of digital numbers stored for one pixel) usually quoted in bits, with 8-bit
(28 or 256 possible values for one pixel) being most common, and temporal referring to
the time between repeated imagery (Carbonneau and Piégay, 2012). The idea of sub-pixel
information is also important to understand; extraction of sub-pixel information refers to
the ability to discern properties which are smaller than the spatial resolution, and as such
are entirely contained within one pixel (e.g. a 10 mm grain may be contained with one
pixel at a spatial resolution of 30 mm).

Digital images and digital image processing techniques are used in a wide variety of dis-
ciplines; though perhaps most extensively in disciplines such as medicine (Pu et al., 2011;
Deserno, 2011), and remote sensing (Lillesand et al., 2008; Sabins, 2007). There is also
a wealth of literature within the field of computer science in relation to the development
of theoretical concepts as well as the generation of algorithms and image processing tech-
niques (Qidwai and Chen, 2009; González and Woods, 2008; Jensen, 2005; González
et al., 2004).
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Image texture techniques will be applied to the digital imagery used in this study; specif-
ically, the Grey Level Co-occurrence Matrix (Haralick, 1979). The Grey Level Co-
occurrence Matrix (GLCM) has been investigated by others and is known to produce
calibrations between image texture and grain size information (e.g. Verdú et al., 2005;
Carbonneau et al., 2004). However, the GLCM has a wide variety of input parameters
and is relevantly complex to compute. Therefore there is scope to investigate the param-
eter space of the GLCM and its relationship to grain size; only a limited parameter space
was investigated by Verdú et al. (2005) and Carbonneau et al. (2004).

2.2.1 Block Processing

An important concept which is often used for calculating image texture measures, is that
of block processing operations. These involve the use of a window, or kernel, and can be
generalised as shown in Equation 1

g(x, y) = T [( f (x, y)] (1)

Figure 2: An example of a 3×3 block processing op-
eration. The neighbourhood would be moved across
by 3 × 3 pixels across the whole image to gener-
ate a new output image (Adapted from González and
Woods, 2008).

where f (x, y) is the input image, g(x, y)
is the output image, and T is an opera-
tor on f defined over a neighbourhood
of point (x, y) (González and Woods,
2008). The operation, T is applied in
a neighbourhood centred on the point
(x, y) and the new image, g, is created
by sliding the window so that T is ap-
plied at all blocks of image f (González
and Woods, 2008). This idea of block
processing operations can be visualised
in Figure 2.

Generally, square windows (e.g. 3 × 3,
5×5, 7×7 and so on) are preferred due to
their unambiguous centre point, though
this method applies to windows of any
shape or size. Special consideration must be made when the operator T is applied to areas
on the edges of the image f . In such areas, the window may not be entirely enclosed
within the pixels of the original image, leading to edge effects. These effects can be
alleviated by ‘padding’ the original image This involves adding new values (e.g. zeroes)
around all sides of image f by half of the window size, such that the size of image f

becomes (m + (w + 1/2)) × (n + (v + 1/2)), where m and n are the rows and columns of
image f and w and v are the size of the kernel. Image texture is calculated through block
processing of digital images.
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2.2.2 Image Texture and The Grey Level Co-occurrence Matrix

Image texture analysis involves quantifying the texture content of an image; it is directly
calculated by assessing the differences in brightness values between neighbouring pixels.
Generally large differences in brightness values between neighbouring pixels results in
high texture, whereas smaller or no difference in brightness values equates to low texture.
Texture layers can aid in the classification process as they provide additional information
to help identify regions within an image (e.g. Clausi, 2002). Texture operations can be
split into two types; first and second order (Hall-Beyer, 2007). First order methods are
calculated directly from the original image pixels and are often simple statistical mea-
sures; pixel neighbour relations are not considered (Hall-Beyer, 2007). Some common
measures of first order texture include mean, standard deviation (and variance), range and
entropy.

The Grey Level Co-occurrence Matrix (GLCM) (Haralick et al., 1973) is an example
of a second order texture measure; unlike first order measures the GLCM considers the
spatial relationship of the pixels, whereas first order measures do not (Hall-Beyer, 2007).
Following the example outlined by González and Woods (2008), a GLCM can be defined
as follows: let O be an operator that defines the spatial relationship of two pixels relative
to each other, and an image f (x, y) with L possible intensity levels. The GLCM, G, is a
matrix whose element gi, j is the number of times that pixel pairs with intensity levels zi

and z j occur in the image, f at the position specified by O. Figure 3 shows an example
for image f where L = 8, and O is defined as “one pixel to the right”. We can see in the
example that element (6, 2) of G has a value of 3, as there are 3 occurrences in image f

of a pixel value of 6 where its neighbour to the immediate right (0, 1) has a value of 2.

Figure 3: An example of calculating a Grey Level Co-occurrence Matrix (Adapted from González
and Woods, 2008).
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Feature Formula

Autocorrelation
∑

i

∑
j

(i j)pi j (2)

Contrast
∑

i

∑
j

(i − j)2 pi j (3)

Correlation
∑

i
∑

j(i, j) p(i, j) − µxµy

σxσy
(4)

Dissimilarity
∑

i

∑
j

| i − j | ·pi j (5)

Energy or Angular Second
Moment

∑
i

∑
j

(i − j)2 (6)

Entropy −
∑

i

∑
j

pi jlog(pi j) (7)

Homogeneity or Inverse
Difference Moment

−
∑

i

∑
j

pi j

1+ | i − j |
(8)

Maximum Probability maxi j(pi j) (9)

Table 1: Equations for calculating GLCM Features (after Haralick, 1979; Haralick et al., 1973),
compiled from González and Woods (2008) and Soh and Tsatsoulis (1999).
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Following the generation of a GLCM it is necessary to normalize it. Equation 10 is
the equation used to transform the GLCM into a close approximation of a probability
table; this however is only an approximation because a true probability would require
continuous values whereas the grey levels have been discretized (Hall-Beyer, 2007).

pi j =
Vi j

N−1∑
i j=0

Vi j

(10)

where V is the GLCM value at the point i, j and P is the normalised GLCM value at the
point i, j.

Several GLCM features can also be calculated, as shown in Table 1. These features were
suggested by Haralick (1979) and Haralick et al. (1973). The equations shown are com-
piled from González and Woods (2008) and Soh and Tsatsoulis (1999). It is worth noting
that equation 4 has been proven to be identical to semivariance, and gives nearly identical
results to autocorrelation methods using Moran’s I or Geary’s C (Van Der Sanden and
Hoekman, 2005; Hall-Beyer, 2007). The GLCM and its related statistics are calculated
using a block processing method as described above; the returned statistic is added to the
point g(x, y) in the new output image.
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2.3 Data Sources for Grain Size Mapping

Watershed scale information pertaining to surface grain size variability in gravel bed rivers
such as the Fraser, is crucial for understanding and explaining sediment transfer processes
and is important in many contexts, such as geomorphology, ecology and engineering (Gra-
ham et al., 2010; Carbonneau et al., 2005). The developments of digital image processing
techniques and their application in this new sub-discipline enabled through the acquisi-
tion of hyperspatial imagery have led to improvements in the application of non-invasive
techniques to provide grain size information at a quality comparable to that of traditional
field techniques (Graham et al., 2010).

As hyperspatial imagery is the main dataset to be used, the exploitation of spatial and
spectral information from optical colour imagery is the primary focus of this research.
As well as this, optical imagery is often widely available through both private and public
sector agencies and commercial vendors; many holding archives of high resolution data
which could be exploited for change detection (Marcus and Fonstad, 2008). Increasingly,
researchers and agencies are moving toward collecting their own imagery using off-the-
shelf cameras and various imaging techniques such as platforms, balloons, Unmanned
Aerial Vehicles (UAVs), and private aircraft (Marcus and Fonstad, 2008). Hence a focus
on developing a technique applicable to this imagery would be very beneficial and through
exploitation of archival imagery, could lead to a wealth of information for both modern
and historical data collection and analysis. As well as this, the advantages of using a
non-invasive and automated technique allows for rapid data collection and analysis at a
much higher spatial and temporal resolution than is possible with standard field techniques
(Graham et al., 2010). Therefore, the following section explores digital image processing
techniques used by others for extracting grain size information from digital images.

2.4 Estimating Grain Size from Ground based Digital Imagery

The techniques for measuring surface grain size information in the field are well estab-
lished (mainly following Wolman, 1954). The most commonly applied technique for
calculating surface grain size variability is the grid-by-number technique, where grains
are blindly selected from the surface in a grid pattern (Green, 2003; for a full descrip-
tion of the technique see Leopold, 1970). An investigation into the errors associated with
grain size percentiles calculated from a grid-by-number technique by Rice and Church
(1996) found that percentile precision improved with increasing number of samples, as
would be expected by statistical theory. To achieve 95% confidence intervals of ±0.1ψ
(ψ = −φ = log2 mm), a sample size of 400 stones is required (Rice and Church, 1996).
The spatial variability of fluvial sediments over a variety of scales means that considerable
effort is required in the field to characterise these sediments (Church et al., 1987). Even
techniques such as grid-by-number may not give the required precision - for example, a
large cell size may cover a variety of different grain sizes, thereby leading to an imprecise
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estimate of grain size parameter(s) (Graham et al., 2005a).

The development of image-based techniques for collecting grain size data in the field
presents numerous advantages over time-intensive field techniques, such as those de-
scribed above. The advent of photosieving based field techniques (Ibbeken and Schleyer,
1986) reduced the need for surface sampling and increased the resolution at which data
could be collected; images could be rapidly acquired in the field and grains manually
measured from the image at later date. More recently, automated procedures to extract
grain size information from digital images have been well developed. Initial studies used
small sample sizes and a small number of images under controlled laboratory conditions
(McEwan et al., 2000; Butler et al., 2001). The methodology developed by Graham
et al. (2005a; 2005b) represented the first major development of a transferable method
for measuring grain size information from in situ images of sediment. Several permuta-
tions of image segmentation techniques were applied on a dataset of 39 images, with the
optimum technique using a combination of a morphological bottom-hat transform with a
double threshold (Graham et al., 2005a). Testing of the image segmentation procedures
on a dataset comprised of various lithologies, shape, texture and roundness from different
rivers resulted in an area-by-number percentile error of less than 0.05 ψ (Graham et al.,
2005b). Whilst percentile errors are low, the grain size distributions are truncated; the
segmentation of individual grains breaks down for smaller particles, thus grains smaller
than 16 mm (23 pixels) are truncated from the distribution (Graham et al., 2005a). Hence
derived distributions may not be completely representative of those on the ground; the
removal of the finer grains may significantly influence the overall shape of the grain size
distribution as well as calculation of the percentiles.

Rubin (2004) present a methodology using autocorrelation lags to calculate grain size.
Autocorrelation curves are calculated (see Rubin, 2004 for a working example in MAT-
LAB), and calibrated to grain size curves calculated by traditional sieving of sediment.
Autocorrelation curves from images of sediment can then be computed and the propor-
tions of each grain size fraction can be calculated, using a least squares fit with the cal-
ibrated curve. The correlation between traditional sieving and the autocorrelation tech-
nique is reported with an R2 of 0.966 (Rubin, 2004). This technique has also been sub-
sequently developed by Warrick et al. (2009). Warrick et al. (2009) worked on images
with an approximate spatial resolution of 0.3mm, and tested the applicability of the auto-
correlation technique (Rubin, 2004) to generate grain size maps for predominantly coarse
grained environments such as mixed beaches and gravel bars (Warrick et al., 2009). Re-
sults show RMS values of 14% for images taken with ambient lighting. Warrick et al.
(2009) however note that their technique may be impractical for evaluating grain size pat-
terns at reach scale. As well as this, the applicability of this method for assessing the finer
grained fractions is not considered (Warrick et al., 2009).

Buscombe et al. (2010) present an approach to measure the mean grain size from an im-
age, without the need for complex image analysis techniques or calibration from field
data. Following from the methods outlined by Rubin (2004), autocorrelation techniques
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were used, however, they were applied in the frequency rather than the spatial domain,
using a two-dimensional autocorrelation function (Buscombe et al., 2010; Buscombe,
2008). The technique suggested by Buscombe (2008) allows an estimate of major and
minor grain diameters, therefore suggesting that mean grain size can potentially be deter-
mined without calibration. Buscombe et al. (2010) subsequently extended this methodol-
ogy and developed an approach for calculating mean grain size. Following validation the
technique was found to have an RMS of 16%. Whilst the results of this study are a promis-
ing evolution from the original autocorrelation methods suggested by Rubin (2004), their
application was to images of sediment where the spatial resolution was ∼0.5 mm (or
smaller), hence this technique will not be directly applicable at reach scale as entire grains
occupy several pixels.

More recently, in a series of papers, Buscombe and Rubin (2012a; 2012b) present tech-
niques for the calculation of the geometric properties of granular material from digital
imagery. A similar application of the Fourier (frequency) spectrum techniques presented
in Buscombe et al. (2010) was applied, with the extension of measuring particles with
a significant void fraction (i.e. particles which are not touching) (Buscombe and Ru-
bin, 2012b). The new method uses an autocorrelogram of the sediment image estimated
through a Fourier transform, as well as a modelled autocorrelogram with the same particle
size, but zero variance (a uniform distribution). From this, statistical methods are used to
estimate the arithmetic sorting coefficient for sediment with and without a void fraction.
A modification of the algorithm presented in Buscombe et al. (2010) for calculating mean
particle size is also proposed for sections with known void fractions. The methods pre-
sented also have no tunable parameters or empirically derived coefficients, meaning they
should have broad applicability (Buscombe and Rubin, 2012b).

An alternative technique is presented by Pina et al. (2011), based mainly on mathematical
morphology operations (Serra, 1982), such as erosion and dilation, to directly compute
a complete grain size distribution curve from images captured in the field, with results
comparable to those obtained by sieving (Pina et al., 2011). Their approach involves
successive morphological operations of erosion followed by dilation, increasing in size,
on a grey scale image of sedimentary grains (Pina et al., 2011). They used a square
structural element to provide a comparison with traditional sieving processes. With each
iteration of the morphological operator (with the structural element increasing in size),
darker objects within the greyscale image were progressively eliminated and a curve of
the sum of the grey levels is computed (Pina et al., 2011). A max tree approach was
used in order to produce a more efficient computation. Results indicated a Mean Square
Error (MSE) of 0.105 ψ (for D50) when validated against traditional sieving techniques.
However, the imagery used in this study had a spatial resolution of 0.014mm, with even
the smallest sand grain represented by at least 4 × 4 pixels.

Chang and Chung (2012) present a methodology combining image processing techniques
similar to Graham et al. (2005a), along with a feedback pulse couple artificial neural net-
work and multilevel thresholding (e.g. Xue and Yang, 2005) to automatically extract grain
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size information from digital images of river sediment. Their technique also proposes a
decisive image-merging algorithm to improve the quality of image segmentation results.
Similar to Graham et al. (2005a), the measurement and derivation of grain size character-
istics hinges on the accurate segmentation of a digital image into its constituent grains -
the more precisely these grains can be segmented in a digital image, the more precise esti-
mates of grain size information will be (Chang and Chung, 2012). The methodology was
developed and applied to lab and field data, and compared to existing techniques as well
as manual sieving. Results indicated average Root Mean Square Error (RMSE) of 0.1ψ in
the lab and 0.2ψ in the field (Chang and Chung, 2012). Their results consistently provided
more precise estimates of grain size distributions and calculation of specific percentiles,
compared to the methods of Graham et al. (2005a,b) and Xue and Yang (2005). Whilst
their method is found to be consistently more precise, they also truncated distributions to
provide a fairer result (Chang and Chung, 2012); accuracy assessment of distributions is
based on a 16 mm truncation, however their calibrations do produce good estimates of
grain size, even for the finer grained fraction (< 16 mm) (Chang and Chung, 2012).

2.5 Estimating Grain Size from Reach-scale Digital Imagery

One of the major approaches for extracting grain size information, especially relevant
to this study, is using the textural characteristics of digital imagery to extract grain size
information. Carbonneau et al. (2004) considered measures of image texture and two-
dimensional semivariance to estimate grain size using both 3 cm and 10 cm aerial im-
agery. Photosieving techniques were used to calculate ground truth grain size data from
a midchannel bar; this bar was selected as a pilot study site as it contained the full range
of grain sizes (Carbonneau et al., 2004). Images were initially segmented to leave the
dry gravel bed area only, using the intensity band of a hue-saturation-intensity (HSI) im-
age and Otsu’s method of histogram segmentation (Otsu, 1979). The images were also
corrected specifically for both methods of texture and semivariance. For image texture,
the brightness was normalised between images to correct for illumination changes and
for semivariance a histogram shift was applied to give dry gravel patches an equal mean
brightness of 150 (Carbonneau et al., 2004). Both measures were calculated in local win-
dows on the image, with a range of window sizes from 5 × 5 to 50 × 50 pixels (px), gener-
ating 20 grain sizes images. For each of these 20 images, the b axis of the groundtruthed
images (obtained through photosieving) was plotted against the calculated image prop-
erties (semivariance and texture) to produce a relationship which could subsequently be
used to estimate grain size (Carbonneau et al., 2004). The predictive relationships cal-
culated using image properties and grain sizes were validated using independent data
collected through manual sampling.

Whilst image texture measures had potential, they failed at the validation stage; the most
promising technique proved to be image semivariance at a window size 33 × 33px (Car-
bonneau et al., 2004). Following validation with the independent field data, the predictive
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relationship was found to have an R2 of 0.96, and an overall precision of ±15.4% for
estimating D50 (Carbonneau et al., 2004). Six key parameters were identified for produc-
ing reliable grain size maps: window size, image resolution (ground footprint), scale of
ground truth data, scale of uniform gravel patches, median particle size (D50) and num-
ber of pixels required for a semivariogram sill to be present (Carbonneau et al., 2004).
Perhaps the most important of these parameters is the presence of a semivariogram sill,
as grain size is calculated from the sill value. The semivariogram sill is the lag at which
maximum semivariance is reached. As particles get coarser there is an increased probabil-
ity they will cover more homogeneous zones of light or dark, hence the brightness values
of the image will reflect this, therefore a correlation between grain size and sill value can
be made (Carbonneau et al., 2004). Hence the window size must be big enough to have
the presence of a sill in the calculated semivariogram. A key point to note is that the D50

values calculated were greater than the spatial resolution of the imagery used, with no
investigations of the finer, sub-pixel grain size calibrations.

Similarly, Verdú et al. (2005) investigated several methods of image texture analysis (in-
cluding the semivariogram approach) for mapping grain size at reach scale. Using two sets
of imagery at scales 1:1000 and 1:40, texture measures were used to calculate grain size
percentiles. On the 1:1000 scale imagery, five different texture measures were calculated
using a Grey Level Co-occurrence Matrix (GLCM); variance, homogeneity, contrast, en-
tropy and second angular moment (Verdú et al., 2005; Haralick et al., 1973). Following
initial testing on 10 random test bars the mean and standard deviation of the variance and
contrast GLCMs in a 7 × 7 window with shifts of (−3,+3) and (+3,+3) were selected
for further investigation along with the mean and standard deviation of local pixel values
in a 7 × 7 window (Verdú et al., 2005). As well as the GLCM methods, semivariance
values with distances up to 12 pixels were calculated and used as texture measures; the
semivariogram texture method was calculated on 1:40 and 1:1000 scale imagery. The
combination of these scales gave semivariance texture measures at distances of 6 to 72cm
(from the 1:1000 scale imagery) and 0.3 to 3.6cm (from the 1:40 scale imagery) (Verdú
et al., 2005). This meant that there were 33 values of texture; 9 GLCM measures and 24
semivariance measures (Verdú et al., 2005). Multiple Linear Regression was used to cal-
culate equations for estimating grain sizes; this process was cross validated by retaining
25% of the bars for validation and using repeated iterations until all bars had been used
for both regression and validation (Verdú et al., 2005). Using these equations, grain size
maps were created using orthophotos of the bars, and vegetated and flooded pixels were
masked; the test bars used had facies which represented the whole reach, and a constant
sun angle during image acquisition meant that the equations generated could be applied to
the whole reach (Verdú et al., 2005). Using regression, several different texture variables
were selected for mapping grain size percentiles, from D10 to D90 (see Table 3, Verdú
et al., 2005, p.86). Using simplified equations, due to computational constraints, R2 val-
ues of up to 0.86 could be achieved, with error estimation being lower for intermediate
percentiles (e.g. D50 with an RMS of 18%) (Verdú et al., 2005). Again, similarly to Car-
bonneau et al. (2004), sub-pixel grain size information was not addressed; multiple linear
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regression with both scales of imagery provided calibration with the finer percentiles. The
1:40 scale imagery, with a spatial resolution of 3 mm was an order of magnitude smaller
than the lowest percentile (D10 at 30 mm), meaning sub-pixel grain size information was
not considered.

Preliminary work into reach scale measures of grain size information by Chandler et al.
(2004) was carried out using a combination of simple image texture and image classifica-
tion techniques. A combination of supervised image classification along with the calcu-
lation of a 3 × 3 pixel variance convolution filter was used. Classifications were found to
have a ‘true’ accuracy of 49% using just RGB imagery (Chandler et al., 2004). Investi-
gations into autocorrelation and semivariogram approaches yielded slight improvements,
with accuracies of up to 51% achieved. Using 1:5000 scale imagery, overall classifica-
tions of standard RGB imagery and an additional texture layer were achieved at 56%
accuracy, with a three-fold classification into sand, pebble and cobble. Investigations also
revealed that changing between 1:5000 and 1:10,000 scale imagery did not greatly affect
the resulting classification accuracy (Chandler et al., 2004). The authors highlight that
further investigation into deriving sand content is required, with maximum accuracy for
sand classification around 42% (Chandler et al., 2004). This work provides proof of con-
cept to the idea that sub-pixel patterns of sand and gravel can be derived from images,
with the addition of an image texture layer and use of image processing techniques.

2.6 Summary

Given this brief review of the available literature, there has been relatively limited explo-
ration of image texture techniques for extracting sub-pixel grain size information, such as
sand, gravel and other finer grained material. The work by Verdú et al. (2005) and Car-
bonneau et al. (2004) provides a basis for the exploration of image texture techniques and
calibration with grain size information, whilst Chandler et al. (2004) provides a promising
insight into the application of methods for providing reach scale grain size maps of sub-
pixel grain size information, albeit with a somewhat low accuracy. The range of image
texture parameters investigated in these studies is also somewhat limited, therefore there
is plenty of scope for further research into these methods. The literature on digital image
processing with reference to grain size characterisation is dominated by the ever evolv-
ing techniques related to close range imagery; imagery wherein entire grains are present.
There has been relatively limited work on surface measures of grain size at reach scale.
This study aims to further investigate the methods applied by Carbonneau et al. (2004)
and Verdú et al. (2005) to investigate the applicability of image processing techniques
for mapping the sub-pixel portions of the grain size distribution. Specifically within the
Fraser, there is a known problem of quantifying sand and fine gravels within the sediment
budget (Ham, 2005), therefore an image processing technique may address this problem.
Consequently, aims and objectives for this study are outlined in Section 3.
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3 Research Aim and Objectives

Following the background outlined in Sections 1 and 2, the main aim of this study is given
below:

• To investigate the ability for image processing techniques using image texture pa-
rameters to produce a method capable of extracting sub-pixel grain size information
from hyperspatial imagery, at reach scale.

Drawing from this aim, the following research objectives have been identified:

1. Produce a method capable of mapping surface sand content from hyperspatial im-
agery.

2. Investigate the feasibility of extracting a grain size distribution for the gravel frac-
tion (i.e. greater than 2mm).
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4 Methodology

Digital imagery of four large gravel bars was acquired at 3 cm spatial resolution, along
with contemporary measures of surface grain size information through field and labora-
tory sieving, and photosieving. Ground level photographs and GPS data of homogeneous
sand areas were also collected. The presence of sand was investigated through a simple
first order texture measure, and assessed with comparison to manually delineated sand
areas. Calibrations of grain size distribution for the gravel fraction were investigated us-
ing image texture via the GLCM (Haralick et al., 1973; Haralick, 1979), and an in depth
range of parameters. Statistical techniques of regression (linear and multiple linear) were
applied to calibrate image texture to grain size information, with the resulting calibrations
assessed through leave-one-out cross validation. Following calibration with grain size
information, optimal parameters were identified and grain size maps produced.

4.1 Study area: The Fraser River

The source of the Fraser lies within Mount Robson Provincial Park, British Columbia. It
drains an approximate area of around 230,000km2, which equates to around one quarter of
the province (Rosenau and Angelo, 2007). Several tributaries contribute to the vast flows
within the Fraser, including large streams such as the Quesnel, Chilcotin, Bridge and
Thompson (Rosenau and Angelo, 2007). Following the terminology outlined in Rosenau
and Angelo (2007), this study is concerned with a 100 km reach of the lower Fraser river
from Hope to Mission, also termed the gravel reach, due to the predominant sediment

Figure 4: Map showing the gravel reach of the Fraser River, between Laidlaw and Mission,
British Columbia, Canada. River kilometres are measured from Sand Heads (mouth of the river);
the major bars are named (from Rice and Church, 2010).
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type in this region (Rosenau and Angelo, 2007; see Figure 4). Specifically, the gravel
bars photographed and of interest to the study are Queens Bar, N-Bar, Calamity Bar and
Harrison Bar (see Figures 4 and 8).

In river reaches which have unconfined alluvial channels, such as the gravel reach of the
Fraser, a complex channel system can form (Rosenau and Angelo, 2007). In the Fraser
this includes features such as secondary channels, mid-channel bars, backwaters and is-
lands (Rempel, 2004). These features support a diverse and productive ecosystem; a direct
result of the physical habitats made available in the gravel reach (Rosenau and Angelo,
2007; Rempel, 2004). The following sections will discuss the hydrology (Section 4.1.1),
geomorphology and ecosystems (Section 4.1.2) and sediments (Section 4.1.3) within the
Fraser.

4.1.1 Hydrology of the Fraser River

The flow through the gravel reach of the Fraser is considered to be relatively stable
throughout the year (Rosenau and Angelo, 2007). Mean monthly discharge collated from
1965 to 1992 at the Mission gauging station (Environment Canada, 2011) at the end of
the gravel reach is shown in Figure 5. The maximum discharge occurs as a result of snow-
melt due to warming spring temperatures; hence peak flow is achieved in June. In smaller
tributaries the timing of the freshet is generally later (Rosenau and Angelo, 2007). This
is a result of rainfall events in late autumn or early winter causing snow melt on snow
packs which have accumulated in local watersheds; these rainfall events coupled with
snow-melt can cause severe flooding; these tributaries therefore show a freshet in late au-
tumn or early winter unlike the spring dominated freshet seen in the Fraser (Rosenau and
Angelo, 2007).

Figure 5: Mean monthly discharge (1965-1992) at Mission (Environment Canada, 2011). Dis-
charge is given in m3/s.

Page 17 of 53



Winter discharge at Mission remains relatively stable at ∼2000 m3/s with peak discharge
occurring in June at ∼8000 m3/s (and up to as much as 12000 m3/s, e.g. June, 1972). The
spring freshet strongly affects the riparian ecosystems in the Fraser due to a substantial
increase in water surface elevations (Rosenau and Angelo, 2007). At Mission this equates
to an average rise in water surface elevation of ∼3.35m (from a minimum of ∼0.93m in
March to a maximum of ∼4.3m in June) (Environment Canada, 2011). As a result of sub-
stantial flooding in 1948, the gravel reach has been extensively managed; approximately
$ 300 million has been invested in flood defences, with ∼600km of dikes now in place
(Fraser Basin Council, 2008). The extensive dyking of the gravel reach prevents the lat-
eral flow of nutrients, sediments and water onto the floodplain. This therefore inhibits
the diverse ecosystems found both instream and in the riparian areas of the Fraser which
are dependant on the hydraulic pathways provided by rising flood waters (Rosenau and
Angelo, 2007).

4.1.2 Geomorphology and Ecology of the Fraser

The ecosystems maintained within the aquatic and riparian habitats of the Fraser are due
to complex stream-bed patterns; these patterns are altered through the downstream move-
ment of sediment, and the repositioning of the main ‘deep’ channel through erosion of
sediments (in the channel) and deposition of sediments (on channel bars) (Rosenau and
Angelo, 2007; Church, 1983). Ham (2005) suggests that in rivers such as the Fraser, a
homogeneous reach is primarily influenced by both flow and sediment regimes and valley
gradient. Other features such as bank strength, land use patterns, riparian vegetation and
anthropogenic influences are important secondary factors which also influence the stream
bed patterns (see Chapter 2 in Ham, 2005 and references therein).

The substantial power within the flow of the Fraser is what facilitates the morphologi-
cal changes within the islands, channels and floodplain areas of the gravel reach, as a
direct result sediment transfer (through erosion and deposition) (Rosenau and Angelo,
2007; Ham, 2005). It is this flow which works to continually renew the aquatic and ri-
parian habitats and provides physical niches for organisms (Rosenau and Angelo, 2007).
In the upper ∼1000 km of the Fraser (from its headwaters), the channel configuration is
single-threaded and confined, until it flows into the gravel reach (Rosenau and Angelo,
2007). In the area of the gravel reach, the Fraser is transformed from its single channel
configuration into a pattern consisting of multiple irregular sinuous channels which split
around large sand and gravel bars and island complexes as the gradient declines down-
stream (Rosenau and Angelo, 2007; Ham, 2005). This is known as a wandering or braided
gravel bedded stream (Tockner et al., 2006). The dynamic nature of braided rivers leads
to a Shifting Habitat Mosaic (SHM), whereby the erosion and deposition of sediments,
channel avulsion and other factors create a complex array of habitats (both aquatic and
terrestrial) (Rosenau and Angelo, 2007, 2005; Tockner et al., 2006).
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As a result of the natural wandering gravel bed system described above, many of the side
channels of the Fraser have become isolated from the main flow and naturally developed
into wetlands; these wetlands provide habitats which support a diverse array of organisms
(Rosenau and Angelo, 2007). Many of these areas have since been drained and used for
agricultural purposes, or in some cases regularly flowing secondary channels have been
isolated through the construction of barriers; some as recently as the early 1990s (Rosenau
and Angelo, 2007). Studies (e.g. Rosenau and Angelo, 2007; Ellis et al., 2004; Rosenau
and Angelo, 2000) have shown that there have been substantial decreases in bank length
compared to historic records; for example Ellis et al. (2004) report that bank length has
decreased by 44% since ∼1900. The loss of the secondary channels subsequently has a
high impact on their habitats, leading to a dramatic reduction in their capacity (Rosenau
and Angelo, 2007).

Vegetated island complexes within the channels of the gravel reach of the Fraser, particu-
larly those which are prone to flooding, are another area with a rich and diverse ecosystem
(Rosenau and Angelo, 2007). These islands can be seen as important landscape elements;
in many areas of the world they are colonised by a range of flora and fauna and can
even provide a refuge for endangered species (Rosenau and Angelo, 2007; Tockner et al.,
2006). They may also provide pathways to support the migration of small mammals, and
are somewhat protected from invasive species due to their isolation within the channel
(Rosenau and Angelo, 2007; Tockner et al., 2006). The modification of the channels, e.g.
through the construction of barriers, directly influences the ecology of these island com-
plexes; this has been especially widespread for large river systems in Europe, and acts
to reduce the number of unmodified complexes available for ecological studies (Rosenau
and Angelo, 2007; Tockner et al., 2006).

The gravel reach of the Fraser contains a greater diversity of fish species than any other
freshwater ecosystem in British Columbia (Rosenau and Angelo, 2007). Within this reach
there are large populations of Pacific Salmon, including pink (Oncorhynchus gorbuscha),
chinook (O. tshawytscha), coho (O. kisutch), sockeye (O. nerka) and chum (O. keta)
(Rosenau and Angelo, 2007). Pink salmon are known to spawn every other year within
both the main channel and secondary channels which are free-flowing and connected to
the main channel; the numbers of spawning fish regularly reaches several million due to
the abundant gravel habitat which they occupy (Rosenau and Angelo, 2007). The decom-
position of adult pink salmon bodies is known to contribute greatly to the aquatic ecosys-
tems through the input of nitrogen and phosphorus; these are subsequently sequestered
by aquatic algae and recycled to higher trophic levels once the algae is eaten (Rosenau
and Angelo, 2007). Other fish species, such as the white sturgeon are also found within
the Fraser. White sturgeon are the largest freshwater fish species found in North Amer-
ica; they can grow up to as large as 4m in length and weigh up to 450kg (Rosenau and
Angelo, 2007). These fish are known to spawn in the gravels and cobbles in autumn
and winter and in spring and summer they migrate downstream into areas of sands, an-
other key habitat within the Fraser (Nelson et al., 2004). These species, in combination
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with several others found in the Fraser (see chapter 2 in Rosenau and Angelo, 2007 for a
comprehensive review) contribute to the vast biodiversity and range of both aquatic and
riparian ecosystems, as well as having both economic and recreational values (Rosenau
and Angelo, 2007; Scott and Crossman, 1985).

4.1.3 Sediments within the Fraser

Unsurprisingly, gravel is the predominant sediment type within the gravel reach of the
Fraser. However, there is also an abundance of other sediment classes within the reach,
sorted both horizontally and vertically within the channel system (Rosenau and Angelo,
2007). The sediments become increasingly finer downstream reflecting the decreased
horizontal gradient and widening floodplain. Gravels and cobbles tend to dominate in the
channel and bars upstream at Hope, but the sediment becomes progressively finer further
downstream towards Mission where sand is the major component (Rosenau and Angelo,
2007).

The smaller sized alluvial sediments such as silts and sands comprise a relatively large
fraction of the total sediments in the gravel reach, with sand playing a key role in the
sediment budget of the Fraser (Rosenau and Angelo, 2007). Up to as much of 30% of bulk
samples taken from mid-river bars can be composed of sand (Church et al., 2001) along
with other finer grained sediments. Sand constitutes a substantial portion of the overbank
areas (Rosenau and Angelo, 2007). Natural erosion processes between the early 1950s
to mid 1980s resulted in significant losses of overbank sand from the gravel reach (Ham,
2005), however extensive protection of the banks in the 1970s may have acted to prevent
this (Rosenau and Angelo, 2007). Whilst finer grained sediments such as sand usually
play a small role in the net erosion / deposition volumes of the gravel reach, in some
areas large volumes of sand, which make up the surface topography of some of the banks
and islands, have been lost (Ham, 2005). This has acted to balance the volume of total
sediment erosion / deposition (Rosenau and Angelo, 2007). Therefore, the total erosion
and deposition of sediments can be seen to be in equilibrium (Rosenau and Angelo, 2007;
Ham, 2005; Ham and Church, 2003).

The diversity of ecosystems and habitats found within the Fraser is dependent on the rich
soils formed as a result of the deposition of finer grained sediments; these soils provide a
basis for the natural vegetation communities within Fraser (Rosenau and Angelo, 2007).
Both the instream and riparian plant communities are also dependant on the finer grained
sediments, such as clays, silts and sands, again due to the rich soils they form (Rosenau
and Angelo, 2007). As well as this, the fish communities are directly affected by changes
to the sediments. The extremely large populations of pink salmon spawning are directly
dependent on the gravel bed; the spawning habitat of white sturgeon is dependent on the
clean substrate found in secondary channels, and the suspension of fine sediments within
the turbulent flows of the spring freshet protect their incubating embryos (Rosenau and
Angelo, 2007).
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The sediments within the Fraser also play an important role for the construction industry.
Within British Columbia the aggregation and extraction of sand and gravel pit operations
is valued at ∼$170 million, and employs around 4000 people (Rosenau and Angelo, 2007).
Commercial gravel mining has taken place in the Fraser since the 1950s, with the major-
ity of sediments being removed from dry gravel bars; the aggregate extraction increased
to over 100,000 m3 in the later part of the 20th century, being used for local construction
and the building of channel defences (Rosenau and Angelo, 2007). The damage caused
through extraction of sediments from within the channel as well the riparian areas and
islands has a clear and direct impact on the vegetation and biological communities; how-
ever there may also be impacts on the fluvial processes related to the natural wandering
and erosion of the gravel reach of the Fraser (Rosenau and Angelo, 2007).
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4.2 Field Data Collection

A field campaign was carried out in March 2012 to obtain contemporary ground truth
data. The fieldwork provided geolocated grain size information, which was later used
for calibration and validation of grain size data derived from the aerial imagery (Carbon-
neau et al., 2004). Firstly, a set of surface samples were collected for sieve analysis, and
secondly a set of ground level photographs (GLPs) were acquired for later analysis.

4.2.1 Grain-size Sampling Sites

In the field, 23 sites were randomly selected for surface grain size analysis; these sites
were on Queens Bar, N-Bar, Harrison Bar and Calamity Bar. At each of these sites a
rectangular frame was applied over a 1 × 0.8 m area. This area was subsequently painted,
and the surface grains were collected and sieved using the paint-and-pick technique (Lane
and Carlson, 1953; Church et al., 1987). Field templates were used for sediment larger
than 8 mm, with the remaining fraction sieved in the laboratory (samples were sieved to
1.41 mm); weights were calibrated to particle counts and converted to a full distribution
(see Appendix 1). 14 sand sites (< 2 mm) were also identified and geolocated, yielding a
total of 37 sites.

4.2.2 Ground Level Photography

Figure 6: Illustration of the method
used to collect Ground Level Photogra-
phy data (from Graham et al., 2005b).

Due to the substantial time and effort required
for collecting and sieving full surface samples,
a secondary dataset of ground level photographs
was collected to provide further ground truth data.
This data set consisted of 223 ground level pho-
tographs, collected using the method illustrated in
Figure 6 from Queens bar, N-Bar, Harrison Bar and
Calamity bar. For both datasets described above,
each site location was established with a Trimble
5700 Real Time Kinematic differential Global Po-
sitioning System (GPS). Post-processing of the GPS data was carried out using the
Canadian Spatial Referencing System (CSRS) online GPS Processing service (http:
//www.geod.nrcan.gc.ca/products-produits/ppp_e.php). With an integrated
base station time of around 7 hours in the field, the GPS points have an estimated ac-
curacy of around ±2 cm. The shorter integration time of the Global Positioning System
base station on one of the field days meant that the locational precision of a portion of this
dataset (GLPs from Queens bar) was lower than expected (around ±1 m).

The final dataset consisted of 153 GLPs covering a range of grain sizes, with a locational
accuracy of ±2 cm. The absence of data from Queens bar did not significantly influ-
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ence the dataset, as the full range of grain sizes was still covered in the remaining GLPs.
Following the aerial image acquisition (see section 4.3), several GLPs were located out-
side of the coverage of the aerial imagery; the GLP dataset was further trimmed, with
98 GLPs remaining within the coverage area. The GLP data was analysed with both the
Sedimetrics package (Graham et al., 2005a,b) and manual photosieving. The manual pho-
toseiving consisted of distributing 100 points randomly across the image, and measuring
the grain under each point implemented through a GUI within a MATLAB environment
(MathWorks, 2012). GLPs were also collected prior to carrying out the paint-and-pick
technique at each of the field sieved sites. Therefore, to provide an accuracy assessment,
both photosieving techniques (Sedimetrics and random sampling) were carried out on the
images collected at the field sieved sites allowing comparison of laboratory and photo-
sieving derived distributions.

4.3 Aerial Image Acquisition

For this study hyperspatial imagery was acquired over several gravel bars within the gravel
reach of the Fraser River. This imagery was acquired by DTM Mapping Corporation
(http://www.dtm-global.com) in March 2012. The imagery was collected using a
Vexel Imaging UltraCamX, at a spatial resolutions of 3cm and 10cm (10cm imagery was
not used in this study). Bands were imaged between approximately 400nm and 900nm
(see Figure 7 showing the spectral sensitivity), resulting in a multispectral image, con-
taining bands in Red, Green, Blue and Near-Infared (NIR).

Figure 7: Spectral sensitivity of bands imaged by the UltraCamX
(DTM Mapping Corp., 2012).

Orthorectified image tiles
were supplied, and these
image tiles are the pri-
mary dataset in this study.
Following the collection
of raw imagery, image
enhancement was per-
formed during the or-
thorectification stage. An
image dodger was ap-
plied to the 60% overlap
region of the imagery;
this technique balances
the differences in the
histograms of the overlapping region of the images, with corrections resulting in a contin-
uous tone image and seamless edges to the resulting mosaic. Images were automatically
mosaicked and rectified, producing image tiles covering the entire area (DTM Mapping
Corporation, personal comm.). Figure 8 shows the coverage of the imagery and the loca-
tions of the main gravel bars.
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Figure 8: Image showing coverage of the imagery (red boxes) and the main gravel bars. Adapated
from Rice and Church (2010).

4.3.1 Grain Size Calibration: Sand

The relationship between image texture and sand was investigated using a 3 × 3 local
standard deviation filter (e.g Chandler et al., 2004). Multiple texture values from this
standard deviation filter were calculated for known sand points, as well as gravel points.
Calibration between texture values and sand was investigated to assess the link between
low texture values and the presence of sand. As there were a relatively limited number of
sand points, accuracy assessment took place by comparing sand areas produced through
calibrated texture equations, to manually delineated sand maps. These sand maps were
binary images, wherein a pixel value of 1 is sand and a value of 0 is not sand. Assessment
was calculated using a figure of merit (e.g. Pontius et al., 2008) to give a percentage
accuracy of classification of ‘sand’ pixels, as shown in Equation 11

FoM =
pxov

pxun
(11)

where pxov is the number of overlapping pixels in the manually delineated image and the
texture calibrated image, and pxun is the number of unique pixels in either image (i.e.
pixels representing both errors of commission and omission). Rather than simply provide
a percentage of correctly identified pixels, the figure of merit (FoM) method takes into
account errors of both commission and omission, by including pixels which have either
been erroneously classified (commission) or not classified (omission).
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4.3.2 Grain Size Calibration: Gravel

Calibration with gravel percentiles was assessed using a first order standard deviation fil-
ter at a range of window sizes, and second order texture measures through the GLCM.
There are several parameters to consider when calculating a GLCM; window size f (x, y),
directional offset O(x, y), grey levels L, as well as the channel of the image used (R, G,
B, NIR) and the statistic calculated. In order to reduce the number of GLCM calcula-
tions to a feasible level of processing time, a defined parameter space was investigated.
Following the recommendations of Clausi (2002), the ‘preferred statistic set’ will be in-
vestigated; GLCM contrast, correlation and entropy (Equations 3, 4, and 7 in Table 1). As
a compromise between computational power and image texture information, Grey Lev-
els, L, were fixed at 64. Table 2 shows the remaining parameters investigated. Offsets are
given as O(x, y) and calculated when O(x, y) < f (x,y)

2 . A symmetric GLCM was calculated
(Haralick et al., 1973); for example, the sum of two GLCM’s with offsets O(0,+1) and
O(0,−1) is equal to the symmetric GLCM of O(0,+1).

Window Size, f (x, y) Statistics Offset x Offset y Image Band

3 × 3 Contrast 0 0 Red
5 × 5 Correlation 1 1 Green

... Entropy ... ... Blue
35 × 35 8 8 Near Infared

Table 2: List of parameters used in the Grey Level Co-occurrence Matrix calculations.

Image texture was calculated on a set of sub-sampled images. These images, the lab im-

ages, were first extracted from the full aerial image mosaic, around the centre point of
the lab grain size samples - thus there were 23 gravel sites with a full laboratory distribu-
tion and 14 sand sites (section 4.2.1), each with an associated image. The images were
extracted at the same 3 cm resolution as the mosaic, however only a 150 × 150 pixel
area was extracted (6.75 m2 in real terms), to reduce GLCM computation time. The full
parameter space outlined above led to a total of over 450,000 texture calculations.

To investigate the calibrations between texture and the gravel portion of the grain size
distribution texture was calculated on all 24 lab images, and linear regression was used
to calibrate image texture with the percentiles D5, D16, D35, D50, D65, D84 and D95 from
the laboratory data. The best performing parameters were selected based on the highest
r2 and lowest Mean Square Error (MSE). Verdú et al. (2005) observed increased accuracy
of calibrations with the use of multiple texture measures. To investigate this finding,
the best parameter set for each GLCM method (contrast, correlation and entropy) and
local standard deviation were selected and Multiple Linear Regression used to assess the
calibration of a combination of texture parameters with grain size percentiles. As this
data set is limited in size, to assess the quality of the final calibrations leave-one-out cross

validation (Friedman et al., 2001) was used to give a precise estimate of MSE (cross-
validated Mean Square Error: MSEcv).
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5 Results

5.1 Field Sieving and Ground Level Photography grain-size Infor-
mation

Figure 9: All 23 gravel grain size distributions.

Figure 9 shows the results of the field sieving for all 23 gravel sites, truncated at 1.41
mm. As can be seen from the plot there is a greater range of grain sizes measured in the
lower percentiles, with increasingly narrow range towards the upper percentiles; by D95,
there is a much smaller range. Table 3 shows some basic statistics, with percentile data
being linearly interpolated between sieve data points shown in Figure 9. As well as the 23
sites shown above, 14 sand sites (grain size < 2 mm) were geolocated using a differential
GPS (see section 4.2). Grain size data was also derived from the 153 GLPs; data was
processed through both the Sedimetrics package and process of manual photoseiving (see
section 4.2.2).

D5 D16 D35 D50 D65 D84 D95

Min 1.52 1.75 2.24 2.73 3.62 6.58 15.23
Max 2.04 2.89 4.41 5.89 8.44 13.40 23.41

Range 0.52 1.14 2.17 3.16 4.82 6.82 8.18
Mean 1.64 2.12 3.08 4.15 5.83 10.35 19.26

Table 3: Summary statistics of the 23 laboratory grain size samples. Data shown in mm.
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Figure 10: A comparison of distributions derived through photosieving techniques and laboratory
measurements. (a) shows average results for each percentile, and (b) shows a site specific example.

To give an indication of the precision of photosieving techniques, the field sieved sites
were also photosieved, through both manual photosieving and the Sedimetrics package
(Graham et al., 2005a,b). However, as the aim was to address the sub-pixel portions of the
grain size distribution, the Sedimetrics package was used to derive distributions down to
2 mm, which exceed the authors recommendations of a 16 mm truncation (Graham et al.,
2005b). Nonetheless, the 23 field sieved sites were processed through both techniques.
Figure 10b shows an example of the results for one site. As can be seen, the distributions
derived through both the Sedimetrics package and the manual photosieving technique
produce vastly different results in comparison to the laboratory results.
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5.2 Grain Size Calibration: Sand Fraction

The relationship between sand and texture was assessed through a 3 × 3 local standard
deviation filter (e.g. Chandler et al., 2004). Texture values were also calculated at GLP
sites (known to be gravel), to facilitate comparison between texture values for sand /

not sand sites. Figure 11 show the results of texture values for sand and not sand sites,
calculated on the Red and Near Infared bands.

Figure 11: Red and Near Infared texture values for Sand / Non Sand sites.
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5.3 Grain Size Calibration: Gravel

5.3.1 Local Standard Deviation

A local standard deviation filter was applied at a range of window sizes from 3 × 3 in steps
of 2 px, to 95 × 95 px, on each band. A larger range of window sizes was investigated
due to the speed of calculating a standard deviation texture image compared to the GLCM
methods. As well as this, the parameter space is much smaller as the range of input pa-
rameters is reduced to two (band and window size), unlike the larger range of inputs for a
GLCM. The results of calibrations with grain size percentiles are shown in Table 4. Rea-
sonable results are seen up to D50, with r2 values decreasing and MSE values increasing
for D65 and above. As can be seen, lager window sizes produce better calibrations for the
lower and mid percentiles, with window sizes reducing for the higher percentiles. With
the exception of D84, the near infared band produces the best calibrations.

D5 D16 D35 D50 D65 D84 D95

r2 0.62 0.68 0.66 0.63 0.58 0.36 0.12
MSE mm 0.01 0.04 0.16 0.39 0.88 2.55 5.15

Window Size
f (x, y)

55 55 57 55 25 25 3

Band NIR NIR NIR NIR NIR Green NIR

Table 4: Calibration results for each percentile, and associated local standard deviation parame-
ters.
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5.3.2 Grey Level Co-occurrence Matrix Linear Regression

Table 5 shows the best results of calibrations following the investigation of the parameter
space outlined in section 4.3.2, for each GLCM and percentile. As can be seen, more pre-
cise calibrations are achieved for the lower percentiles, with MSE as low as 0.01 mm, and
r2 at 0.69 for D5. The calibrations start to deteriorate at the larger percentiles of D84 and
D95, with higher MSE and lower r2 values. Smaller windows sizes achieve better results
for the upper and lower percentiles (D5 and D95), with a window size of 29 performing
the best for the low to mid percentiles. Offsets show a general trend to the North-East
/ South-West (symmetric GLCMs were calculated in all cases). The Near Infrared band
yields the highest calibrations in the majority of cases, with green and blue bands used at
the lower and upper percentiles, respectively. The statistic of entropy is also used in the
lower and upper percentiles, with contrast best in the mid percentiles, and correlation at
D84.

W Ox Oy Band r2 MSE (mm)

C
O

R
R

E
L

AT
IO

N D5 3 2 1 1 0.63 0.01
D16 3 2 1 1 0.64 0.05
D35 3 2 1 1 0.59 0.20
D50 3 2 1 1 0.50 0.52
D65 25 6 2 2 0.41 1.23
D84 23 6 3 2 0.56 1.74 *
D95 5 1 2 1 0.40 3.52

C
O

N
T

R
A

ST

D5 29 2 6 4 0.59 0.01
D16 29 2 6 4 0.66 0.04 *
D35 29 2 7 4 0.68 0.16 *
D50 29 3 7 4 0.68 0.33 *
D65 29 3 7 4 0.66 0.72 *
D84 29 6 0 2 0.46 2.16
D95 15 1 0 2 0.27 4.27

E
N

T
R

O
PY

D5 5 1 2 2 0.69 0.01 *
D16 31 3 2 4 0.63 0.05
D35 31 3 2 4 0.60 0.19
D50 29 5 5 4 0.55 0.47
D65 29 5 5 4 0.49 1.08
D84 29 8 4 2 0.22 3.11
D95 15 6 7 3 0.43 3.35 *

Table 5: Calibration results for each percentile, and associated GLCM parameters. Table head-
ings are as follows; W, Window size f (x, y); Ox and Oy, Offsets (x) and (y) respectively, Band
where numbers 1-4 represent Red, Green, Blue and NIR respectively. Rows marked with an aster-
isk highlight the best calibrations for each percentile.
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5.3.3 Multiple Linear Regression

To investigate the use of Multiple Linear Regression for grain size calibration, the best
performing parameters were selected for each GLCM method (contrast, correlation and
entropy), and combined with the best performing standard deviation measure (see Table 5
for the full parameter list). Multiple Linear regression was then used with these parame-
ters, and the results were subsequently cross-validated. The results are shown in Table 61.
The highest r2 and lowest MSE values are found in the lower percentiles, with the best
calibration found for D5. Reasonable calibrations are seen up to D65, with MSE at 21%.
Calibrations are poorest for D95, with MSE at 45%. For each percentile, the grain size was
calculated and compared to observed grain size; Figure 12 shows the results. The spread
of data in these plots explains the r2 and MSE values found for each of the percentiles; a
wider scatter of data from the y = x line results in larger MSE and lower r2 values. This
effect can be seen in the larger percentiles, particularly D95.

D5 D16 D35 D50 D65 D84 D95

r2 0.92 0.80 0.68 0.77 0.76 0.68 0.56
MSEcv 0.01 0.04 0.21 0.51 1.03 1.80 3.68

MSEcv (%) 0.61 3.55 9.85 16.25 21.39 26.43 44.99
K 2.7452 2.6698 4.1344 2.0222 1.5056 10.0058 3.0520
E -0.2827 0.1659 0.1924 1.2114 1.6302 0.8785 3.9362

CR 0.0592 -0.1857 0.0000 -0.2274 -6.9821 -15.7642 4.2777
CN 0.0045 -0.0072 -0.0336 -0.0965 -0.1921 -0.0833 -0.2521

S -0.0355 -0.0897 -0.1077 -0.1307 0.0682 -0.0838 0.0481

Table 6: Multiple Linear Regression Calibration and Cross Validation results for each percentile.
K represent a constant added to each value, and the remaining rows represent the multiplicative
coefficients for the texture methods; Entropy, E, Correlation, CR, Contrast, CN and Standard
Deviation, S .

1
MSEcv (%) is calculated as MSEcv / (MAXmm – MINmm), for each percentile.

Page 31 of 53



Figure 12: Predicted vs Observed Grain Size for each percentile.
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5.4 Grain Size Maps

Figure 13: N Bar: Hyperspatial imagery of the bar (a) and D50 grain size map (b).

Figure 13 shows a sample D50 map produced using multiple linear regression of four
texture layers, with optimal parameters as derived from the investigation of GLCM pa-
rameters described in Section 5.3. Similar maps were also calculated for the remaining
percentiles; D5, D16, D35, D65, D84 and D95. These percentile maps combined with a
binary classification layer of sand resulting in a ‘multispectral’ grain size image, repro-
ducible for the entire reach, at a spatial resolution of 1.65 m. Thus a 7 point grain size
distribution can be extracted, along with large scale estimates of surface sand content
(through the binary sand classification).
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6 Discussion

6.1 Field Sieving and Ground Level Photography data

Following an investigation into photosieving techniques, it was found that results were
poor, with distributions not reflecting the laboratory data (Figure 10a and b). Overall, the
techniques of Graham et al. (2005a,b) performed marginally better than manual photo-
sieving, however performance was consistently poor for the finer grained material. On
average, manual photosieving techniques produced constant over estimation, whilst Sedi-
metrics produced an underestimation (Figure 10a). As noted by Graham et al. (2005a)
one grain must occupy at least 23 pixels to be measured reliably - the GLP dataset had
an approximate pixel resolution of 0.35 mm2, suggesting that reliable measures will only
occur for grains 8 mm and above. The manual photosieving technique involved sampling
100 random grains, with replacement. The effect of sampling with replacement may have
acted to increase the influence of the larger grains on the final distribution, given their
greater occupancy in an image, and therefore greater chance of repeat measurement. Im-
provements were seen for both techniques with various truncations up to 16 mm, however,
given the focus on the finer grains and particularly the sand fraction, it was decided not to
analyse the GLP dataset any further.

6.2 Grain Size Calibration: Sand

Figure 14: Detailed graph of sand - non sand data points, with anomalies highlighted (crossed
circles). See Figure 11 for full data range.
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Investigation of image texture and sand (< 2 mm) revealed a simple, inequality-based
relationship following the removal of anomalies. Figure 14 shows an expanded portion
of Figure 11, highlighting the anomalous values. The anomalous points were investigated
due to their texture values being significantly higher than the remaining points, which
were clustered between 1 and 1.4. Investigation of the imagery, shown in Figure 15,
reveals the cause of the higher texture values. Within the gravel reach of the Fraser, the
majority of gravel bars are accessible by vehicles; they are widely used for recreational
activities, which are particularly focused on homogeneous areas of sand and other finer
grained material, due to the ease of access for large 4×4 vehicles, motorbikes and All
Terrain Vehicles (ATVs). Each of the anomalous points in question have higher texture
values due the impact of tyre tracks, and wet/dry sand transitions, as can be observed in
Figure 15.

Figure 15: Raw imagery for the anomalous points.

Removing anomalies, texture values calculated for sand points did not exceed 1.48 across
all bands (Figure 11 shows this for the red and NIR bands). Thus, sand can be calculated
through application of Equation 12

map(x, y) =

 0 if tx(x, y) > 1.48
1 if tx(x, y) ≤ 1.48

(12)

where tx is the texture value at the point (x, y) on a 3 × 3 standard deviation filtered image,
and a value of 1 at point (x, y) on the produced map denotes the presence of sand. The
application of a 3 × 3 filter means surface sand maps can be produced with an approximate
spatial resolution of 27 cm2. Given the significant effect of human influence upon texture
values, equation 12 may only be applicable to areas of undisturbed sand. Nonetheless, a
section of Calamity Bar was selected as a test site to produce a surface sand map; as it
is only accessible by boat there is limited human disturbance of the sand surfaces. The
Calamity test area was selected due to a large homogeneous zone of sand which is easily
distinguishable. Figure 16 shows the raw imagery (a) and resulting surface sand map
(b) generated through a binary classification using equation 12. Assessment through the
FoM showed a 70.05% classification accuracy.
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Figure 16: Calamity Bar: Raw Image (a) and subsequent sand classification (b), where sand
areas are shown in beige.

Investigations into several of test areas from the full range of gravel bars yielded a final
FoM classification accuracy of 70% ± 10%. These findings suggest that even a simple
inequality based calibration of texture can yield relatively accurate maps of surface sand
content. Equation 12 could be improved with a larger number of input sites, and more
detailed investigation into sites which may have artificially high texture values due to hu-
man disturbance. However, these results support the findings and suggestions of Chandler
et al. (2004), such that there is enough information present in standard colour imagery
to yield accurate maps of surface sand content. Accuracies achieved here represent an
improvement on those presented by Chandler et al. (2004) in terms of sand classifica-
tion; likely due to the improved image quality (aerial imagery used here was acquired in
dry conditions with consistent lighting) and simple binary classification approach. This
approach is beneficial for several reasons. Computations are not particularly complex,
meaning large images can be easily and quickly processed, enabling rapid mapping of
entire reaches. The sand calibrations derived here are strongly applicable to grey-scale
imagery as only one input is required for the computation of texture, with strong results
found, independent of the band used; this allows for potential exploitation of the large
archive of grey-scale imagery, useful for change detection. However, it must also be
noted that the hyperspatial resolution of the imagery used is a key factor – imagery with
a coarser spatial resolution may not perform as well, thus a repeat accuracy assessment
would be required.

The ability to produce surface maps of sand is important due to the uncertainties in the
current sediment budget in the Fraser (Ham, 2005), and the importance of percentage
sand as a key parameter in defining hydraulic and transport characteristics in gravel-bed
rivers (Chandler et al., 2004). The method generated here improves on currently available
techniques for surface sand mapping, and provides an interesting insight into the ability
to extract sub-pixel grain size information from hyperspatial imagery. There are several
caveats to consider, however. Tyre tracks and other features such as wet/dry sand tran-
sitions and transitions between grain size classes exert a significant influence on image
texture, resulting in a known source of classification error; one which remains very dif-
ficult to discriminate and account for without manual classification. Similarly, natural
features such aeolian bedforms or ripples within sand may result in larger image texture
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values which could also lead to misclassification. The use of a 3 × 3 texture window
implies that sand areas must be somewhat homogeneous if they are to provide a distinct
textural signature, therefore the ability to discriminate interstitial/mixed sand and gravel
patches remains an area for investigation. Simple image texture and classification ap-
proaches are currently not capable of this, however, ever increasing image resolution may
eventually resolve this issue; as long as enough pixels make up a homogeneous area of
grains, a textural signature will be present.

It is important to note that the threshold value established here (Equation 12) can be modi-
fied depending on the users desired accuracy. As noted above, areas where abrupt changes
occur (such as wet/dry sand, tyre tracks and so on) will act to change pixel intensity val-
ues occur and therefore may be misclassified; this could be the case even within areas
entirely composed of sand; shadows cast on the stoss or lee side of dunes and ripples,
transitions from wet-to-dry sand, and man-made human features such as tyre tracks are
just a few possible examples which could be misclassified. Therefore, it is recommended
that threshold values be adjusted depending on the imagery and the users desired accuracy
of surface sand mapping. For example, in order to classify all areas of surface sand the
user may select a slightly higher threshold value with the knowledge that there be some
errors of commission (such as homogenous areas of fine gravel which may produce a low
textural signature, may hence be classified as sand; e.g. Figure 14).

6.3 Grain Size Calibration: Gravel

Grain size calibrations for the gravel fraction provide an interesting link to image texture.
A combined Multiple Linear Regression approach encompassing all texture measures pro-
vides the best calibrations, a similar finding to Verdú et al. (2005). Comparing Table 5 and
6 reveals that much stronger calibration result following MLR. Whilst absolute MSE val-
ues appear higher post-MLR, this is simply an artefact of the use of cross validated Mean
Square Error at the MLR stage. Actual calibrations are improved, and this is observed
by inspecting Figure 12. As noted (Section 5.1), all of the derived grain size percentiles
are very much below the image resolution of 30 mm. Interestingly, calibrations become
much weaker as the pixel resolution is approached (e.g. D95), with the strongest calibra-
tions found for the lower percentiles; the best results are seen for D5, and some theoretical
considerations are given below. Table 7 shows the input parameters for D5.

Smaller window sizes are required for the methods of entropy and contrast, with larger
window sizes for correlation and standard deviation, whilst offsets remain in a North-East
/ South-West orientation (using a symmetric GLCM). The method of entropy is related
to the probability of pairs of pixel values in the GLCM; a random distribution of pixel
pair probabilities would yield maximum entropy. In the context of D5, entropy in a small
window assesses how ‘scattered’ the probability pairs are; entropy values are low for D5,
meaning pixel pairs are similar, hence image texture is lower - theoretically, D5 should
have ‘lower’ texture, as it relates to the smaller grain sizes of the distribution; D5 values
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in all cases are less than 2 mm (i.e. sand), which should have a smooth texture. Con-
trast is a weighting of a the intensity difference between a pixel and its neighbour - lower
weightings represent similar pixels. A similarly small window size proves the best for
contrast, again similar pixels producing lower texture values. For the methods of corre-
lation and standard deviation, larger windows prove the best - correlation measuring the
linear dependency of grey levels between pixels and standard deviation measuring the
variance from the mean pixel values within that window, without any spatial referencing
between pixels (i.e. first order texture). Correlation values are higher for D5 and begin to
decrease with larger percentiles, hence identifying the ‘smoother’ texture that D5 should
theoretically have. Across the whole range of percentiles, offsets remain North-East /

South-West, probably due to a slight imbrication of grains in the field. Correlation retains
the highest offsets of all the methods, in all cases. Appendix 2 contains the parameters for
the remaining percentiles.

All the grain size percentiles
Method Window Size Offset x Offset y

Entropy 5 1 2
Contrast 3 2 1

Correlation 29 2 6
Standard Deviation 55 N/A N/A

Table 7: Input parameters for D5 grain size calibrations.

are subpixel, therefore sev-
eral grains will be ‘averaged’
into one pixel - in homo-
geneous areas of grains the
averaging of larger popula-
tions grains into one or more
pixels will mostly likely re-
sult in several neighbouring pixels sharing very similar characteristics. Hence, larger off-
sets and window sizes are required to discern patterns of texture. Even the largest of
grains will be entirely contained within one pixel; therefore larger scale textural patterns
are easier to identify. This could explain the stronger calibrations with the smaller per-
centiles. The averaging of larger populations of small grains into one pixel, especially in
homogeneous patches of sediment, leads to stable pixel values due to the consistency of
the sediment over the area of one pixel (3cm2). This stability will also remain when cal-
culating texture and leads to ‘smooth’ patterns, which theoretically calibrate with lower
percentiles as they should have a smoother textural signature. As grain size increases,
smaller populations of grains will be contained within one pixel, hence averaging values
may show greater variance across several pixels, and less stability in texture values as a
result; calibrations may begin to break down.
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Figure 17: Illustration of the ‘pixel averaging effect’; a) shows a large population of smaller
grains to be averaged into one pixel (black border represents one pixel), compared to the fewer
but larger grains averaged within b).

However this behaviour may exhibit a threshold effect. Verdú et al. (2005) found stronger
calibrations for intermediate and larger percentiles (D50 and D84), however an important
point to note is pixel resolution, at 3 mm (on 1:40 scale imagery). This means a single
grain makes up several pixels, therefore no averaging effect is present - texture values will
directly relate to the size of actual grains, hence calibrations are made directly to grains
not to averaged populations of grains within one pixel. Therefore, texture can be split into
two groups - ‘averaged’ pixel texture, and actual grain texture, with the latter being present
on higher resolution imagery wherein entire grains make up several pixels. The transition
between these two measures will have a direct impact upon calibrations between texture
and grain size. The ‘averaged’ pixel texture pattern will begin to break down as grain size
increases towards the pixel resolution - lower populations of grains will be present within
one pixel, hence across several pixels of similar grain size, pixel values may show higher
variance and calibrations may be unstable. For smaller grain sizes, the higher population
of grains within one pixel provides consistency to the averaging effect. As grain size
increases, grains will cross a threshold and begin to encompass several pixels - texture
values will then be directly related actual size of the grain, and not the ‘averaging’ of
several grains into one pixel. This effect is illustrated in Figure 17, comparing smaller
grains averaged into one pixel, compared to larger grains which are approaching the pixel
resolution (Figure 17 a and b respectively).
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6.4 Grain Size Mapping

Figure 18: N Bar: An enlarged portion of the grain size map showing imagery (a) and the D50
grain size map (b).

Figure 18 shows an enlarged section of the grain size map calculated for an area of N
bar (figure 13), at a spatial resolution of 1.65 m2. Coarser resolution is noted, compared
to Carbonneau et al. (2004) and Verdú et al. (2005), as a result of block processing at
larger window sizes. This D50 map effectively forms the 5th ‘band’ of a multispectral
image, wherein 8 bands are present denoting each of the grain size calibrations, with
layer one being a binary classification of sand. This ‘multispectral grain size image’ can
be envisaged similar to a multiband Landsat image. The generated multispectral image
can therefore be used to extract either specific percentiles at an (x, y) point, or even to
extract all 7 percentiles to form a grain size distribution. Large scale patterns can be
identified by looking at individual layers, as can be seen in Figure 18 above; as well as
this, large scale maps of surface sand for the reach can be generated. Some limitations
are noted, particularly the influence of transitions from homogeneous patches of sand to
gravel areas. The transitional zone causes a local increase in texture values which in turn
cause an increase in grain sizes which may not actually be present. Similarly, edges of
bars where there is a transition to the channel or to vegetation may see this effect. This
effect is slightly damped due to the use of block processing at window sizes much larger
than the spatial resolution of the imagery.

Following the calculation of texture and calibration to grain size for the remaining im-
ages, grain size maps were calculated for the remaining bars within the gravel reach (see
Figure 8 and Appendix 3), providing large scale spatial coverage of detailed grain size in-
formation at a greater resolution than can be achieved by standard field techniques. Con-
sideration must be given to the MSE values achieved for each percentile, and subsequent
errors must be accounted for when using calculated grain sizes for other applications such
as modelling. Significant uncertainty exists for the larger percentiles, particularly D84

and D95, however the finer grained fractions provide fairly precise estimates compared
to field sieved data. Specifically within the Fraser these results will provide an improved
method of mapping the finer grain fractions over a much greater spatial area, and at a
finer resolution than previously possibly. It is anticipated that these results will provide
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an improvement to calculated sediment budgets, given the known problems of assessing
finer grained material within the sediment distribution.

The applicability of these results to other field sites is difficult to assess, due to the lack of
availability of a similar dataset in another location. The same methodology however, may
be strongly applicable but calibration and validation would be required. However, some
recommendations are as follows. Other study localities and differing scales of imagery, a
reduced parameter space is recommended, and consideration must be given to the pixel
averaging effect. Multispectral imagery is not necessarily required, as similar relations
are found using only standard colour imagery. It is recommended that future studies need
only consider the parameters of window size (where the minimum window size is set
according to the image resolution), and offsets. Offsets should be investigated with prior
knowledge of sediment imbrication in the field, as it is highly likely the optimal GLCM
orientation will be coincident with any imbrication. Remaining parameters can be set as
desired, following those outlined in this study.

6.5 Limitations and Recommendations

Several limitations and sources of potentially unknown error exist within this study, and
must be considered. Limited field time prevented the collection of a larger number of field
samples – an increased number of sites would provide a better indication of calibrations
and other methods of measuring grain size (e.g. Wolman sampling) could have been col-
lected to aid in validation of results, particularly for the sand sites. Within the collection
of the field sieved data, there are potential errors. Using the paint-and-pick technique,
paint may have penetrated the interstitial space between surface and buried grains, hence
some sub-surface grains may have been incorrectly collected and sampled introducing
some uncertainty in the results. As well as this, the paint may have adhered smaller, par-
ticularly sand and silt grains to larger particles thereby introducing a bias into the finer
grained fraction of the distribution (or in some cases it may have acted to remove finer
grained material from the sample). Within the laboratory, there are potential sources of
error when sieving the finer grained fractions. For example some particles may become
permanently stuck within the square sieve holes and thus may have not been included
in the final distribution. Conversion of the finer grained material from weights to grain
counts may have also introduced slight error within the data.

A particular area of uncertainty exists in reference to the aerial imagery itself. The georef-
erenced image tiles supplied by DTM Mapping Corporation had undergone some element
of pre-processing. Whilst the techniques used were described (DTM Mapping Corpora-
tion, personal comm.; section 4.3), the actual algorithms and processing techniques re-
main slightly unclear. Raw, unprocessed image tiles were supplied, however the influence
of significant georeferencing issues and lack of perspective correction meant that the raw
imagery introduced a much greater source of positional error; given the very strong spatial
dependence of both the grain size data and calculated texture values, raw imagery was not
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used due to this uncertainty in georeferencing.

Within the computational calculation of grain size calibrations, grey levels were fixed at
64. Whilst this prevents the parameter space from increasing to unfeasible computational
time, it still remains an area for investigation. The resampling of grey levels to smaller
values such as 16 or 32 may introduce some more stability into texture calculations and
reduce grey level noise; similarly expansion of grey levels, such as 128 may act to increase
the amount of information present due to less resampling, and as such calibrations may
be improved. Ideally, a range of grey levels, up to 256 (no resampling) would be included
in the investigated parameter space. Similarly to grey levels, only the independent tex-
ture measures suggested by Clausi (2002) were investigated to save computational time.
Again, it would be wise to investigate an increased number of methods (see Table 1), with
the knowledge that there may be significant redundancy in some layers due to the high
correlation between GLCM methods. Computation constraints at the Multiple Linear Re-
gression stage could also be addressed. In this study, the best performing parameter for
each GLCM method were selected for grain size calibration, however it would also be
wise to investigate all combinations. It is advised that future studies consider these issues
as well as several scales of imagery to investigate the ‘pixel averaging effect’.
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7 Conclusion

An investigation of image texture and grain size calibrations has been presented, with the
main aim to map sub-pixel grain size information. Research was split into two objec-
tives; to identify a technique capable of mapping surface sand content, and to investigate
the feasibility of producing a grain size distribution for the gravel fraction. The main
conclusions were as follows:

1. Investigations in reference to the sand fraction reveals a simple inequality based
classification of a first order texture measure (standard deviation) to produce binary
maps of surface sand content. Validation using a per-pixel accuracy assessment
in reference to manually delineated sand areas showed a classification accuracy of
70% ± 10%.

2. The gravel fraction was addressed by expansion of existing techniques; a wide rang-
ing parameter space using a grey level co-occurrence matrix was investigated. The
combination of first order and second order (GLCM) texture measures in conjunc-
tion with multiple linear regression provided the best calibrations for smaller per-
centiles (finer grains) of the grain size distribution (i.e. D65 and under).

3. For larger percentiles (coarser grains) of the grain size distribution, calibrations be-
gan to break down. This was attributed to the ‘pixel averaging effect’, whereby
smaller percentiles had more stable calibrations due to averaging of a larger pop-
ulation of grains within one pixel. Calibrations begin to break down as the pixel
resolution is approached, as smaller populations of grains are averaged into one
pixel, and greater variance between pixels is introduced as a result.

The methodology presented was used to produce multispectral grain size images. 8-band
images consisting of a binary sand class and 7 grain size percentiles were calculated
at a spatial resolution of 1.65m2. ‘Multispectral Grain Size Maps’ were produced for
Queens Bar, N Bar, Calamity Bar and Harrison Bar located within the Gravel Reach of
the Fraser River. Limitations of the number of field sites for calibration and validation
(14 for sand, and 23 for gravel) are noted as a point for expansion in future studies.
Computational limitations also prevented investigation of some GLCM parameters (grey
levels and statistical methods) and in multiple linear regression calculations; also noted
as a point to be addressed in future studies. Overall, this allows for a rapid method of
acquiring a 7 point grain size distribution and map of surface sand content for large areas,
at a much higher spatial resolution than can be obtained through standard field techniques.
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Verdú, J. M., Batalla, R. J. and Martı́nez-Casasnovas, J. A. (2005). High-resolution grain-
size characterisation of gravel bars using imagery analysis and geo-statistics, Geomor-

phology 72(1-4): 73 – 93.

Visser, F. and Wallis, C. (2010). Object-based analysis and multispectral low-altitude
remote sensing for low-cost mapping of chalk steam macrophytes, The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

XXXVIII-4/C7.

Warrick, J. A., Rubin, D. M., Ruggiero, P., Harney, J. N., Draut, A. E. and Buscombe,
D. (2009). Cobble cam: grain-size measurements of sand to boulder from digital
photographs and autocorrelation analyses, Earth Surface Processes and Landforms

34(13): 1811–1821.

Wolman, M. (1954). A method of sampling coarse river-bed material, American Geo-

physical Union, Transactions 35(6): 951–956.

Xue, Y. and Yang, S. (2005). Image segmentation using watershed transform and
feed-back pulse coupled neural network, Artificial Neural Networks: Biological

Inspirations–ICANN 2005 pp. 531–536.

Page 49 of 53



9 Appendices

9.1 Appendix 1: Weight to Grain Size Conversions

Figure 19: Weight to Grain Size calibration - 2 mm.

Figure 20: Weight to Grain Size calibration - 2.83 mm.
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Figure 21: Weight to Grain Size calibration - 4 mm.

Figure 22: Weight to Grain Size calibration - 5.66 mm.
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Figure 23: Weight to Grain Size calibration - 8 mm.

Figure 24: Weight to Grain Size calibration - 11 mm.
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9.2 Appendix 2: Digital Appendix: Grain Size Maps

Figure 25: Shows coverage of each of the supplied image tiles.

For the entire region shown in Figure 8, image tiles were supplied (Section 4.3). Figure
25 shows the layout of the supplied tiles (DTM Mapping Corp., personal comm.). Each
of these tiles was processed using the optimal parameter set producing 8 additional tiles;
binary sand, and percentiles D5 through D95. The total size of these files is over 5 GB, with
georeferenced images in 16-bit JP2 format. Units are provided in mm×1000 to preserve
floating point data (divide by 1000 to return units to mm).

Sample tile A 6-5 is provided at:
http://www.dur.ac.uk/martin.black/msc

using the password gravelbar.

The full dataset is available on request.
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