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 While current methodological approaches to data-acquisition and -analysis 

used in ERP-studies have shown to be appropriate for adult populations, their 

applicability with infant populations is debatable. Many researchers agree that they 

are, in fact, unsuitable for infants. However, due to a lack of alternatives, traditional 

ways of data-collection and -analysis originally designed for adults are still used with 

developmental and clinical populations. The four studies reported in the current thesis 

propose novel approaches to methodological issues involved in infant ERP-studies. 

Limiting the number of artefact-free trials included in the average, Study 1 shows that 

fewer trials from earlier stages of a test-session can convey meaningful information 

and provide new insights into infant cognition. Additionally, it is shown that large 

amounts of usable data are often discarded in a traditional data-analysis. Study 2 aimed 

to provide a general overview on attrition in infant ERP-studies – which often seems to 

be accepted as a given among developmental psychologists – and to find underlying 

causes for attrition which may be based on study-design features that are common to 

all studies. The majority of investigated features did not impact attrition. Therefore, 

further factors outside the scope of the current consideration are responsible for an 

increase in attrition. Studies 3 and 4 built on the findings of the first two. Presenting 

infants with eight experimental conditions, Study 3 illustrates a novel approach to 

study-design which both yielded more data from individual participants and decreased 

attrition. Finally, using the data-analysis outlined in Study 1 on the data collected for 

Study 3, Study 4 both substantiates the claims made in Study 1 and provides further, 

previously unanticipated insights into infant cognition. These findings illustrate that 

more infant-suitable strategies for study-design and data-analysis are possible and that 

they can enhance our knowledge about infant cognitive processes.  
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 Until as late as the 20th century, infants were seen as rather passive beings who 

are born with no prior knowledge of the physical and social world around them 

(Striano, & Tomasello, 2002). One of the first researchers to acknowledge that this is 

not the case and that, on the contrary, infants are very receptive and active learners, 

was Jean Piaget. Based on the observations that he made of his own children’s 

development, he proposed that, through exploring items in their environment, infants 

refine their already existing thinking-structures as well as their perceptions of the 

objects and events happening around them (Piaget, 1952, 1954).  

  A major issue when studying populations of (pre-verbal) infants is to choose 

the most suitable experimental paradigm. For instance, instructing the infants in a 

formal and purely verbal manner will prove extremely challenging or entirely 

impossible (Camaioni, Perucchini, Bellagamba, & Colonnesi, 2004; Hoehl, & Wahl, 

2012). Moreover, direct questions requiring oral responses or physical responses such 

as pressing a button are not suitable for very young populations. Therefore, 

developmental psychologists working in this field of research usually have to resort to 

alternative measures of behaviour and the cognitive processes underlying them. For 

example, physical responses such as pointing gestures are well-suited for use in studies 

with slightly older infants. Liszkowski, Carpenter, Striano, and Tomasello (2006) and 

Liszkowski, Carpenter, and Tomasello (2007) investigated the pointing gestures made 

by participants as young as 12 months. However, this test-method is also only 

applicable to a certain degree and will likely not yield meaningful results very much 

earlier than before an infant’s first birthday, as typically developing infants start to use 

deictic gestures only from around 10 months onwards (Camaioni, 1997). 

Developmental researchers have designed other behavioural research-tools in 

order to be able to study the period of the first 12 months of typical development. One 
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frequently used behavioural paradigm is to measure the infants’ looking-times (e.g., 

Cleveland, & Striano, 2007; Symons, Hains, & Muir, 1998). For such studies, coders 

record the duration of a participant’s gaze towards a particular stimulus compared to 

another one. This methodology has been used successfully with infants as young as 

one month of age (Striano, Henning, & Stahl, 2005) and even in newborns (Bushnell, 

Sai, & Mullin, 1989; Pascalis, de Schonen, Morton, Deruelle, & Fabre-Grenet, 1995). 

Alternatively, when studying older infants and toddlers, instead of recording the 

duration of a participant’s gaze towards a stimulus, a reaching action could be coded 

(e.g., the 14-, 18-, and 24-month-olds presented in Behne, Carpenter, & Tomasello, 

2005). Another behavioural study-design that is often used with populations aged six 

months and older is the head-turning paradigm. This methodology was designed to be 

used with visual stimuli but has mainly been used with auditory stimuli instead (Kuhl, 

1979; see Werker, Polka, & Pegg, 1997, for a review). In this case, infants are 

familiarised with certain sounds and are then required to turn their head in the direction 

of a loudspeaker when a change in a stream of auditory stimuli is detected. Finally, 

another example for a methodology mainly used with very young infants is high-

amplitude sucking (e.g., Floccia, Christophe, & Bertoncini, 1997; Sansavini, 

Bertoncini, & Giovanelli, 1997). With such a paradigm, even newborns’ learning and 

stimulus discrimination behaviour can be investigated. The infant is repeatedly 

presented with a stimulus until habituation to the stimulus is manifest as indicated by a 

decline in sucking rates in response to the stimulus. Then, while one group of 

participants will be further presented with the habituated stimulus (i.e., the control 

group), a second group of infant will be presented with a novel stimulus. If there is a 

significant difference between the sucking rates of the experimental and the control 

group, this is seen as an indication that the change in stimuli has been detected by the 
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infants (Floccia, Christophe, & Bertoncini, 1997). Again, such studies are usually 

conducted with auditory stimuli.  

The main difference between paradigms such as these and studies based on the 

assessment of neurophysiology is that inferences about cognitive development must be 

drawn from obvious, visible behaviours and responses. Therefore, the estimates for the 

onset-times of certain behaviours that require the understanding of social processes 

might differ greatly depending on the paradigms used by the researchers. For instance, 

Tomasello (1995, 1999) claims that, before an infant is nine months old, he or she will 

broadly not be able to understand someone else’s actions as being intentional (e.g., 

eye-gaze direction). However, recent research using non-invasive, but technically 

advanced methodologies such as eye-tracking, Magnetoencephalography (MEG), 

Near-Infrared Spectroscopy (NIRS), or Event-Related Potentials (ERPs) can help to 

unveil and specify the accuracy of such theoretical assumptions that were made based 

on overt behaviour (see also Reid, & Geangu, 2008).  

One of the methodologies mentioned above which is currently becoming 

increasingly popular due to the apparent ease with which it can be applied to infant 

participants, is eye-tracking. This technique relies on recordings of infra-red light 

which is reflected by the eyes’ cornea. When an individual looks at the same location 

continuously for a certain amount of time, the eye-tracker will register this behaviour 

as a fixation to that location. Short and rapid eye-movement between fixations are 

known as saccades (Salvucci, & Goldberg, 2000). Consequently, as the reflections on 

the cornea will change depending on the eyes’ movements, the eye-tracker will 

calculate the gaze-shifts based on the changes in the recorded reflections (Gredebäck, 

Johnson, & von Hofsten, 2010). In their eye-tracking study involving groups of six- 

and 12-month-old infants, Gredebäck and Melinder (2010) showed that the younger 
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group of participants responded differently to the stimuli compared to the older group. 

Watching short clips of feeding actions that could either progress in a conventional 

manner or in an unconventional way, the 12-month-olds made anticipatory saccades 

towards an actress’ mouth before the food, fed to her by another actress, arrived there. 

However, these infants only made such anticipatory saccades in the condition 

presenting the conventional feeding action. In the experimental condition in which the 

feeder placed the banana on the back of the beneficiary’s hand instead of putting it into 

her mouth (i.e., the unconventional feeding action), the 12-month-olds followed the 

feeder’s arm-movement with their gaze instead of making an anticipatory saccade 

(Gredebäck, & Melinder, 2010). The group of six-month-olds did not show such 

saccades in either of the two conditions and only showed the tracking of the arm-

movement with their gaze. This discrepancy was interpreted as being dependent on the 

infants’ amount of experience with being fed themselves. However, when presenting 

groups of six- and 10-month-olds with an actress who was feeding herself, both age-

groups showed anticipatory saccades towards the mouth of the actress (Kochukhova, 

& Gredebäck, 2010). The difference between the performances of the six- and the 10-

month-old infants lay in the speed with which the saccades were made. In this case, the 

10-month-olds’ saccade-latency was comparable to that of an adult control group 

(Kochukhova, & Gredebäck, 2010). Again, the performance-differences were seen as 

an indication for the amount of experience the different groups of participants had with 

the action of being fed. The most important finding was however that, based on the 

anticipatory saccades found, already at six months of age, infants can draw 

conclusions on another person’s intentions. However, there are methodological 

restrictions related to eye-tracking studies that limit its use for answering certain 

theoretical questions. For instance, due to the technique’s nature, it can only be used to 
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test the visual modality. Moreover, in order to make statements about infant cognition, 

inferences have to be made based on obvious behaviour and direct cortical measures 

are not available which, furthermore, makes it impossible to make statements about the 

cortical source for a certain response. This means that the theoretical statements that 

will be presented in a research article are interpretations based on inferences and can 

be challenged by other researchers interpreting the data in a different way. 

Another non-invasive neurocognitive methodology that is becoming 

increasingly popular among developmental psychologists is Near-Infrared 

Spectroscopy (NIRS). Compared to fMRI-paradigms for which especially young 

participants often have to be sedated in order to avoid unwanted movements (see 

Altman, & Bernal, 2001), NIRS can be used when infants are awake and alert. 

Moreover, the infants are allowed to move to a certain degree and, additionally, no 

noise is emitted from the device (Lloyd, Blasi, & Elwell, 2010). For this methodology, 

light is sent out from a sensor in a head-mounted NIRS-set through the participant’s 

skin, skull, and brain-tissue. Passing through the infant’s head, the light will be 

deflected and/or absorbed, among others, by the oxygen in the blood in the brain. A 

second sensor then detects and records the remaining wavelength of the light after 

passing through the tissues (for a review see Lloyd-Fox, Blasi, & Elwell, 2010). For 

instance, in their study with groups of four- and seven-month-olds, Grossmann, 

Oberecker, Koch, and Friederici (2010) could show developmental differences 

between these two age-groups using NIRS-technology. Presenting their participants 

with either vocal sounds such as non-/words or non-vocal sounds such as birds and 

cars, Grossmann et al. (2010) found differences in the blood-oxygen levels between 

these two developmental stages. Whereas the responses recorded from the group of 

seven-month-old infants showed an increase in the level of oxygen in the blood at 
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three recording sites for vocal stimuli, such effects could not be found in the group of 

four-month-olds. The authors interpreted this as an indication that already at the age of 

seven months, compared to non-vocal stimuli, a special area of the brain is dedicated 

to the processing of vocal stimuli whereas this is not yet the case in the younger age 

group (Grossmann et al., 2010). Surprisingly, their younger participant-group showed 

increased levels of oxygenated blood on one recording site for non-vocal stimuli – an 

effect that did not appear in the group of seven-month-old infants. These results form 

the younger age-group were interpreted as illustrating (a) the infants’ discrimination of 

the different classes of stimuli and (b) the immaturity of the cortical processes leading 

to this discrimination (Grossmann et al., 2010). However, as seen for eye-tracking 

studies, NIRS-studies also have some methodological issues. Despite the spatial 

resolution being relatively good as the data that are collected originate from very 

closely defined cortical areas, the temporal resolution of the technique is less optimal 

(see Figure 2 in Lloyd-Fox, Blasi, & Elwell, 2010, p. 271). Moreover, considering the 

setup of the sensors illustrated in section (d) of Lloyd-Fox, Blasi, and Elwell’s (2010) 

Figure 1, large areas of the skull and, ultimately, the brain remain uncovered and 

meaningful data may remain undetected. Further, at this stage in time there are 

relatively few NIRS studies with infants. This makes the interpretation of data difficult 

unless other sources of information are also relied upon, such as EEG-data or fMRI. 

Finally, for several decades, researchers are using Event-related potentials 

(ERPs) to study infant cognitive development. ERPs are the epoched and averaged 

extracts from an individual’s electro-encephalograms time-locked (mainly) to the onset 

of the presentation of a specific stimulus (DeBoer, Scott, & Nelson, 2007; Hoehl, & 

Wahl, 2012; Reid, & Geangu, 2008). Parallel to eye-tracking and NIRS, ERP-

methodology is a non-invasive technique as it allows for an easy application with 
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infant populations (Männel, 2008; Nelson, & Monk, 2001). Electrodes continuously 

record the electrical activity that is produced by a human brain in response to a 

stimulus-presentation. They can be placed on a participant’s skull either individually, 

by using an elastic cap, or a net of sensors. After passing through an amplifier which 

magnifies the signal detected by the electrodes on the participant’s skull, the recorded 

data can be processed using special software that can either come with the recording-

system (e.g., NeuroScan or NetStation) or is freely accessible online for download 

(EEGLab). Similar to behavioural responses that frequently occur under a specific 

experimental conditions, if an ERP-component is repeatedly occurring in response to a 

specific kind of stimulus, then it can be assumed that this component is genuinely 

involved in the cognitive processing of such stimuli (Otten, & Rugg, 2005). 

Another reason for the popularity of the ERP-methodology among 

developmental psychologists is that it can be used to study a wide range of cognitive 

processes in response to a multitude of different stimuli (see Hoehl, & Wahl, 2012 for 

a brief review). The nature of the stimuli can be purely auditory (e.g., Andrews-Espy, 

Molfese, Molfese, & Modglin, 2004; He, Hotson, & Trainor, 2007, 2009a, 2009b) or 

purely visual (e.g., Braddick, Birtles, Wattam-Bell, & Atkinson, 2005; Hoehl, Wiese, 

& Striano, 2008) or a combination of the two (e.g., Friedrich, & Friederici, 2008, 

2010; Hirotani, Stets, Striano, & Friederici, 2009). Additionally, particularly when the 

stimuli are of a visual nature, researchers have the choice to create either non-animated 

or animated stimuli (e.g., Hirai, & Hiraki, 2005; Kaufman, Csibra, & Johnson, 2005). 

Bearing this multitude of possibilities for investigating different areas of infant 

cognitive development combined with the relative ease of application in mind, it is 

easy to understand the popularity of the methodology. Compared to this, eye-tracking 

studies are also very easy to administer and can answer a wide range of research-
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questions. However, as mentioned earlier, this methodology is restricted to processes 

involving visual stimuli. Areas of research touching matters such as word-learning or 

syntax for instance, could only be investigated with groups of individuals who have 

already learned to read (e.g., Sekerina, Stromswold, & Hestvik, 2004; Staub, 2010). 

There are a few physical aspects of ERP-components that are frequently 

included in analyses of the waveforms when researchers try to relate event-related 

potentials to the processing of visual and/or auditory stimuli. Firstly, the peak- or 

mean-amplitude/s of the ERP-wave/s can be compared for two or more experimental 

conditions within a certain time-window after a stimulus-onset (e.g., Hoehl, Reid, 

Mooney, & Striano, 2008). For instance, Hoehl, Palumbo, Heinisch, and Striano 

(2008) investigated the Negative component (Nc) in groups of seven-month-old 

infants. The Nc is a negative peak occurring around 400 ms after the onset of a 

stimulus and it has repeatedly been related to attention-allocation (see also Hoehl, 

Reid, Mooney, & Striano, 2008; Richards, 2003). In their first experiment, Hoehl, 

Palumbo, Heinisch, and Striano (2008) presented their participants with images 

depicting adult faces displaying either a fearful or a neutral facial expression looking 

towards a toy which was located at eye-level next to the face. In order to investigate 

the processing differences between the experimental conditions and following standard 

analysing-procedures frequently used in infant ERP-studies, Hoehl et al. (2008) first 

manually inspected the participants’ EEG-data for artefacts and discarded 

contaminated trials. Then, they averaged the artefact-free trials per condition for each 

of the participants and excluded data from infants, who did not provide minimally 10 

artefact-free trials for both conditions, from further analyses. Finally, the authors 

established the most negative amplitudes for the conditions in the time-window 

between 400 and 600 ms after the onset of the stimuli, and compared the averages of 



	
   10	
  

minimal amplitudes provided by their participants for the two experimental conditions 

in a paired-samples t-test (Hoehl, Palumbo, Heinisch, & Striano, 2008). This analysis 

revealed significant differences in the Nc-amplitudes between the two experimental 

conditions with the Nc-peak amplitude being more negative for faces displaying a 

fearful expressing compared to the faces showing a neutral expression. The authors 

interpreted these results as an indication that, at seven months of age, infants are 

already sensitive to the emotion conveyed by a facial expression and can use such 

information to decide what type of stimulus to attend more closely (Hoehl, Palumbo, 

Heinisch, & Striano, 2008). In a follow-up study which was presented in the same 

research article and in which the actors also displayed either a fearful or a neutral 

facial expression but did not look at the toy depicted next to the head, the authors did 

not replicate this effect. Therefore, Hoehl et al. (2008) concluded that the adults’ 

fearful facial expression in combination with the gaze being directed at a novel toy 

serves as an indicator for the infants whether the unfamiliar object could potentially be 

dangerous and pose a threat. 

Another aspect of ERP-components which are frequently investigated are the 

latencies of the amplitude-peaks which are seen as indicators for the effort needed to 

process a stimulus (Rugg, & Coles, 1995). For example, Purhonen, Kilpeläinen-Lees, 

Valkonen-Korhonen, Karhu, and Lehtonen (2005) found significant condition-

dependent differences in the latencies of four of the five ERP-components they were 

investigating. Presenting their four-month-old infants with words spoken either by 

their mothers or by an unfamiliar female, the authors interpreted the shorter 

processing-times in the condition with the voice of the mother as an indication for 

heightened attention to these stimuli. Putting this into an evolutionary perspective, 

Purhonen et al. (2005) further argued that increased attention to one’s mother’s voice 
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was of importance when considering the individual’s survival. In their group of eight-

month-old infants, Scott, and Nelson (2006) found significant differences between 

conditions on the latency of the N290 but not on its amplitude when presenting their 

participants either with unchanged faces they had been familiarised with or with faces 

they had never seen before. The data of their group of eight-month-olds showed longer 

latencies for the peak of the N290 for the familiarised faces compared to the novel 

ones. However, no differences had been found in the latencies between the familiar 

and the unfamiliar stimuli when compared to those presenting faces the infants had 

been familiarised with but which were slightly changed in a featural or in a 

configurational aspect (Scott, & Nelson, 2006).  

Finally, the location of the channel/s or channel-groups at which a 

component(s) appeared is also often analysed and reported (e.g., Mills, Plunkett, Prat, 

& Schafer, 2005). Significant effects of location can occasionally appear in 

conjunction with an effect of condition (e.g., Scott, and Nelson (2006). Differences 

were also seen in processing-speed between the hemispheres (i.e., the right hemisphere 

showing a later N290-peak compared to the left hemisphere). In the data from their 

group of eight-month-olds, the N290 also peaked later in the channel-group over the 

right hemisphere for the faces the infants had been familiarised with compared to the 

novel ones (Scott, & Nelson, 2006). In a study comparing ERP-responses collected 

from a group of eight-month-olds and from a group of adults in response to standard or 

deviant syllables, Pang, Edmonds, Desjardins, Khan, Trainor, and Taylor (1998) found 

differences in the location of the mismatch negativity depending on the participant’s 

age. Whereas their group of adults showed mismatch responses over wide areas of 

both hemispheres and on central channels, the same responses could only be found in 

two channels over the left hemisphere in the infant population (Pang et al., 1998).  
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Studies comparing cognitive responses to the same stimuli from different 

developmental groups can provide valuable insights into potential changes in the 

cognitive processes underlying human behaviour. Moreover, given that EEG-

methodology can be used with both very young participants such as newborns as well 

as with toddlers, older children, and adults, this enhances the comparability of results 

between age groups when contrasted with other methods, such as looking time 

measures. Therefore, studies such as Pang et al. (1998) or Brannon, Libertus, Meck, 

and Woldorff (2008), in which responses from infant populations and from adult 

groups are presented side by side, need to make the basic assumption that these 

different developmental groups have the same physical properties and that the 

respective ERPs will have been generated and recorded under the same conditions. 

However, this assumption cannot be met as there are differences between the 

physiological development of brains at different developmental stages; e.g., between 

infants and adults (e.g., Casey, Tottenham, Liston, & Durston, 2005; Reid, & Geangu, 

2008). Whereas adult brains are highly myelinated, neuronal connectivity is less dense 

in infants’ brains (e.g., DeBoer, Scott, & Nelson, 2007; Matsuzawa, Matsui, Konishi, 

Noguchi, Gur, Bilker, & Miyawaki, 2001). Moreover, while adults have a closed and 

thick skull, the fontanel in an infant’s skull is not entirely closed until around 18 to 24 

months of age (Duc, & Largo, 1986). Therefore, as Reid and Geangu (2008) stated, it 

is safer to assume that cognitive responses towards the same stimuli collected from 

adults and from infants will probably not be alike but may be correlated in a manner 

that is most likely unknown.  

Methodological literature providing advice on conducting EEG-/ERP-studies in 

general (e.g., Luck, 2005; Picton et al., 2000) and on studies with infant populations 

(e.g., (DeBoer, Scott, & Nelson, 2007; Hoehl, & Wahl, 2012) are plentiful. Picton et 
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al. (2000) and Hoehl and Wahl (2012) acknowledge that testing strategies need to be 

adjusted to the needs of infant populations and that paradigms used with adults cannot 

be simply applied with infants. In their guidelines, Picton et al. (2000, p. 129) 

specifically state that “[…] tasks need to be of shorter duration for clinical and 

developmental studies than for ERP studies in normal young adult […]”. Hoehl and 

Wahl (2012) advise researchers to take care not to present the infants with too many 

different experimental conditions. Moreover, the authors state that the attrition rate 

experienced in a study using three or four experimental conditions is likely to increase 

to a large extent as well. Additionally, research articles reporting on studies featuring 

relatively high attrition rates commonly contain short explanations stating that this 

might be due to high task demands or very strict criteria for data-inclusion (e.g., de 

Haan, Pascalis, & Johnson, 2002; Parise, Reid, Stets, & Striano, 2008). In general, 

attrition rates between 50 and 75% are considered as being relatively normal or typical 

and as to be expected when testing infants (e.g., DeBoer, Scott, & Nelson, 2007). As a 

comparison, Lloyd-Fox et al. (2010) state that NIRS-studies with infant populations 

typically feature attrition rates of about 40% which is slightly lower than what is 

usually reported and expected for infant ERP-studies. In contrast, the attrition rates 

reported for infant eye-tracking studies tend to be much lower (around 10%) when 

compared to the other two methodologies (e.g., Gredebäck, & Melinder, 2010; Hespos, 

Gredebäck, von Hofsten, & Spelke, 2009). 

The most frequently mentioned reason for (high) attrition rates and restrictions 

on paradigm-design is the infants’ limited attention-span (see DeBoer, Scott, & 

Nelson, 2007; Hoehl, & Wahl, 2012; Picton et al., 2000; Reid, & Geangu, 2008). This 

concept seems to be generally accepted among developmental researchers and has, 

likely, never been challenged. It is commonly assumed that, if the load on an infant’s 
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cognitive system is too high – due to too many experimental conditions for instance –, 

the infant will enter a state usually termed “fussy”. This state will become apparent to 

a researcher when the participant starts to move around agitatedly, yawns, vocalises, or 

shows any other possible signs of distress. However, a concrete definition of 

“fussiness” which is followed by all developmental researchers, does not exist. This 

issue has been mentioned repeatedly in methodological literature and suggestions have 

been made, but, so far, consensus has not been found (see also Hoehl, & Wahl, 2012). 

Consequently, the decision, if an experimental session should be interrupted or needs 

to be discontinued (maybe even in its earliest stage), is very subjective. It lies solely at 

the discretion of the researcher in the respective test-session. Making this decision 

requires extensive training and much experience on the researcher’s side as well as a 

feeling for the infants (see DeBoer, Scott, & Nelson, 2007). There is always a chance 

that an infant will reduce negative affect to the point where the test-session can be 

continued – even if only for a few more trials. However, a less-experienced researcher 

who has not been trained sufficiently and, therefore, cannot draw on a wide repertoire 

of intervention-strategies when an infant shows the first signs of distress, is more 

likely to discontinue a test-session at an early stage and not to try again after a short 

break.  

Apart from these methodological difficulties related to the preparation of an 

infant ERP-study and to conducting of the test-sessions, there are also several issues 

with respect to data-analysis. Both Luck (2005) and Picton et al. (2000) give advice on 

how many artefact-free trials are necessary per experimental condition from each 

participant in order to obtain clean and meaningful averages (see also Hoehl, & Wahl, 

2012). In contrast to Luck (2005), Picton and colleagues (2000) do not state specific 

numbers for the lowest possible threshold of usable trials per condition. Rather, it is 
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merely stated that the number of presented trials should ideally be twice or three-times 

as high as compared t that typically used in ERP-studies with adults. This claim is 

supported by the argument that the number of trials that will need to be rejected for 

various reasons will be much higher in such young populations (Picton et al., 2000). 

Luck’s (2005) article, which is mainly addressed at researchers conducting studies 

with adult participants, provides the reader with very specific instructions on this issue. 

He explains that – depending on the typical size of a specific ERP-component – the 

number of artefact-free trials needs to relate to the remaining noise in the signal in 

such a way that the following equation equals 0.4 in the worst case and 10.0 in the best 

case (Luck, 2005, p. 30): 

 

! 

(1/ N ) " R. 

 

In the above equation, N stands for the number of artefact-free trials which will be 

included in an individual’s average per condition. The variable R represents the noise 

that is left in a single trial after filtering, re-referencing, and automatically rejecting 

contaminated trials from the data. (Here, the notion of noise relates to randomly 

occurring frequencies that will be different and differently distributed over a time-

window from trial to trial within one experimental condition. They are in contrast to 

the more stable frequencies representing the ERP-component/s (e.g., Repovš, 2010).) 

These random frequencies will be Furthermore, Luck (2005) explains the equation 

using the example of an ERP-component with a typical amplitude-size of 20 µV and 

an assumed amplitude-size of the noise on one trial of 50 µV. Based on these assumed 

values, the signal-to-noise ratio for this one trial would be  
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20 / 50 = 0.4. 

 

Adding data from more artefact-free trials with the same or a very similar amplitude 

for the component as well as different levels of noise in the individual trials, the 

signal-to-noise ratio will slowly improve in favour of the ERP-average. However, as 

Luck (2005) states, already for adult populations the number of artefact-free trials 

required to achieve a perfect signal-to-noise ration of 10.0 (i.e., that the ERP is 

absolutely pure and no noise is left in the signal) is extremely high. For the above 

example of an ERP-component with a typical amplitude of 20 µV, 625 usable trials 

would be needed in each experimental condition (Luck, 2005). Furthermore, in 

accordance with Picton et al. (2000), he stated that, when conducting studies with non-

adult or clinical populations, twice or three-times as many artefact-free trials will be 

needed to obtain a clean average. As Luck (2005) admits himself, ensuring that such 

high numbers of usable trials will be collected per condition from an adult participant 

already seems very challenging. Based on the above-mentioned obstacles such as a 

shorter infant attention-span as compared to adults, the probability that an infant will 

provide that many analysable trials per condition will need to be estimated as being 

close to zero.  

One infant ERP-study reported to have been able to analyse 1186 on average 

out of maximally 1600 trials for an experimental condition (see He, Hotson, & 

Trainor, 2007). However, this particular study used very short auditory stimuli 

(stimulus-duration = 600 ms) presented in very short intervals (duration of 

interstimulus-intervals = 200 ms). In comparison, typical infant ERP-studies using 

visual stimuli such as images of faces portraying fearful or neutral emotional 

expressions (e.g., Hoehl, Wiese, & Striano, 2008) or successions of images showing 
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three different stages of a self-feeding action with either an expected or an unexpected 

outcome (see Reid, Hoehl, Grigutsch, Groendahl, Parise, & Striano, 2009) typically 

feature stimulus-durations of 1000 ms and often equally long or slightly longer inter-

stimulus intervals. Moreover, He et al. (2007) used an odd-ball paradigm with the 

stimuli belonging to the standard category being presented with a frequency of 80% 

and those belonging to the odd-ball category being presented with a frequency of 20%. 

At this stage, it remains to be seen whether basic differences between paradigms have 

any influence on methodological issues such as the applicability of a certain kind of 

paradigm with a specific group of participants or attrition.  

 As was described earlier with respect to the question when a test-session 

should be interrupted or terminated, a similar problem arises when data are prepared 

for statistical analysis. Two basic steps of data-preparation are filtering and re-

referencing. When an EEG is filtered, frequencies above and/or below a certain pre-

determined threshold will be deleted from the EEG-stream (see Reid, & Geangu, 

2008). During data-acquisition EEGs are typically referenced to the vertex electrode, 

which is located at the crossing of imagined lines running (a) front to back from the 

nasion to the inion and (b) left to right from ear to ear according to the international 

10-20-system developed by Jasper (1958). As a second step during data-preparation, 

the EEG is then re-referenced to either the average of all electrodes or to one or two 

specific electrodes which are typically far away from the scalp-area and channels 

where the cortical responses are expected to appear for a certain kind of stimulus (e.g., 

Reid, & Geangu, 2008). Finally, when adult EEG-data are prepared for statistical 

analysis, contaminated trials are typically removed from further analysis by way of 

general algorithms. These are preinstalled in the respective software-packages used by 
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the various labs and will automatically reject any trials that fit specific predetermined 

criteria (e.g., an eye-blink or other muscle artefacts in the data).  

It seems safe to apply such practices with data collected from typically 

developing adult participants as they can be clearly instructed and should, therefore, be 

expected to blink only at certain times during the stimulus-presentation (i.e., in the 

inter-stimulus interval) and to keep any physical movements to an absolute minimum. 

Infants, however, will not benefit from such instructions (see DeBoer, Scott, & Nelson, 

2007). Therefore, infant EEGs are typically inspected visually and contaminated trials 

are rejected manually. However, as it stands, the guidelines as to which trials need to 

be rejected and which could be kept despite possible small imperfection on not to be 

analysed channels are relatively lenient. They seem to be closer to rules of thumb than 

to strict regulations. Again, practices may differ from lab to lab and, in fact, are likely 

to differ between individual researchers within a lab. This means that the decision for 

including or excluding trials (and, consequently, participants) is entirely up to the 

individual who is manually rejecting the data and preparing them for analysis. As is 

the case with the proceedings in the test-sessions, these are highly subjective decisions 

to make and require much experience and skill. In behavioural studies, it is common 

practice to have a second researcher code about 20% of the data again (e.g., Geangu, 

Benga, Stahl, & Striano, 2010; Liszkowski, Carpenter, Striano, & Tomasello, 2006). 

This is performed as an attempt to ensure that the scores recorded by the first scorer 

are reliable. Considering the above-mentioned inter-individual differences in 

researchers’ strategies to data-inspection and trial-rejection, it seems necessary to 

investigate the currently used strategies, to find the largest discrepancies and to install 

guidelines which would ideally be used by all researchers working with infant EEG-

data. However, the test-sessions and data-analyses for numerous (infant) research 



	
   19	
  

studies – both behavioural and ERP – are in fact performed by trainees who likely do 

not have extensive training and much experience (see also Hoehl, & Wahl, 2012). 

Again, given the inter-individual differences between rejecting-strategies of 

experienced coders, it seems to indicate this practice might merely increase the 

likelihood for errors to be introduced into the data.  

 In the current thesis, I aim to highlight and discuss methodological issues in 

infant ERP-studies such as the ones outlined previously. Such challenges for 

developmental researchers using EEG-methodology are well-known in the research 

community. However, despite various attempts to improve the situation – especially 

with respect to data-collection – the challenges have remained mainly unresolved as of 

yet. This is clearly indicated by the lack of propositions for new strategies in the 

related methodological literature. As has been stated above, the existing sources 

mainly provide advice on the acquisition of adult EEG-data in an experimental session 

and only briefly refer to more challenging populations. Alternatively, methodological 

literature targeted at developmental psychologists working with infants, typically 

describe the current state-of-the-art strategies, especially those used in the respective 

labs but do not propose new approaches to the existing problems (e.g., DeBoer, Scott, 

& Nelson, 2007).  

In the first study (see Chapter 2), the behaviour of a prominent ERP-

component, the Negative component (Nc), is examined over the course of a test 

session using a novel approach to statistically analysing infant ERP-data. The data 

used in this study had been previously analysed and reported in Hoehl, Reid, Mooney, 

and Striano (2008) and originated from a group of 17 out of 64 four-month-olds. These 

infants had been presented with two experimental conditions of which one depicted a 

situation in which an adult was looking toward a toy while, in the second condition, 
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the person averted their gaze from the toy. The participant’s data had been analysed 

according to conventional strategies using 10 artefact-free trials as a minimal criterion 

for including an infant’s data into the analyses. Then, the negative peak-amplitudes in 

the time-window between 400 and 600 ms after stimulus-onset were compared for the 

two conditions (Hoehl et al., 2008). Additionally, the authors had compared the mean-

amplitudes between 700 and 1000 ms after stimulus-onset. However, in my re-

analysis, for reasons of simplicity, I decided to test this novel approach to data-analysis 

on the data for the Nc-amplitude only. In order to establish if the rationale for only 

including infants contributing minimally 10 artefact-free trials per condition into a 

study’s statistical analysis is justified, I prepared data-sets including the first three, 

five, seven, eight, nine, and 10 usable trials per condition and conducted the same 

statistical tests as those presented in Hoehl, Reid, Mooney, and Striano (2008). In case 

my statistical analyses including fewer trials yield the same results as those presented 

in the original publication, then the rationale for having a minimum criterion for infant 

ERP-studied would lose much of its justification. Furthermore, it could then be argued 

that current assumptions about the acquisition of infant ERP-data need to be re-

evaluated. Finally, this would allow for shifts in methodology which can potentially 

help to solve the issues related to collecting a sufficient amount of data from infant 

participants mentioned earlier. This would be especially helpful with respect to the 

duration of the test-sessions and the infants’ limited attention-span. If fewer trials are 

necessary to achieve the same results as a conventional data-analysis including 

minimally 10 artefact-free trials, then test-sessions could be shorter and, consequently, 

more suitable for infant populations. 

 The second study presented in this thesis (see Chapter 3) is aiming to provide a 

more general overview over the different strategies and study-designs which have been 
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used in infant ERP-studies over the last 34 years and, particularly, their effect on the 

attrition rates of the respective studies. Therefore, this study will be addressing more 

general issues related to study-design and its potential impact on the progress of an 

individual test-session. Parallel to the meta-analysis on behavioural paradigms 

presented in Slaughter and Suddendorf (2007), information on 34 study-features such 

as which EEG-system had been used to record the data, the duration of the inter-

stimulus interval, and the number of experimental conditions were collected for 149 

published research articles. These publications could be split up further into 314 

experimental groups which means that some articles either presented data from 

experimental groups belonging to the same age-group but experiencing slightly 

different conditions or, alternatively, that the groups represented different age-groups 

but were presented with the same stimuli. As a first step, a meta-analysis of 181 of the 

originally collected 314 experimental groups was conducted, providing a general 

overview over the 34 study-features under investigation. The remaining 133 groups 

had to be excluded from further analyses due to a lack of information on the attrition 

rates experienced in these groups. In a second step, a meta-regression was run in which 

each of the factors was removed one at a time to determine their impact on the studies’ 

attrition rates. These results could give an insight into which strategies and study-

designs might be easier for infants to cope with compared to others and which cause 

infants to attrition more easily than others. This knowledge could help developmental 

psychologists – as well as the wider research community – to design infant ERP-

studies such that more data could be obtained from less distressed groups of infants. 

Additionally, lower attrition rates could be achieved.  

As a consequence of the findings from the meta-analysis described in Chapter 

3, the empirical study presented in Chapter 4 aims to further explore the impact of a 
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study’s design on the data to be obtained. This is referring both to the data’s quality 

and quantity. As has been claimed repeatedly (e.g., DeBoer, Scott, & Nelson, 2007; 

Reid, & Geangu, 2008), infants’ attention-span is very limited. In addition to 

researchers’ eagerness to achieve an average which is as free of noise as possible (i.e., 

obtaining sufficient numbers of artefact-free trials per condition to have a cleaner 

average; see Luck, 2005), this limitation of attention typically causes researchers to 

present very few experimental conditions. Typically, infant ERP-studies involve two 

conditions which are represented by stimuli that are only slightly different from each 

other. Chapter 4 presents a study in which a group of 18 12-month-old infants were 

presented with eight experimental conditions that originated from three previously 

published research articles. The original three studies were theoretically unrelated with 

respect to the cognitive processes that were investigated. Two of the eight 

experimental conditions, a gap-/no gap-task, originated from Csibra, Tucker, Volein, 

and Johnson (2000) who had presented a group of one-year-olds with this task. 

Following Halit, de Haan, and Johnson (2003), four of the eight conditions used in the 

empirical study (see Chapter 4) presented the 12-month-olds with human or monkey 

faces shown in an upright or inverted orientation. Finally, the last two of the eight 

conditions originated from Hoehl, Reid, Mooney, and Striano (2008) and depicted the 

social situation described earlier; i.e., an adult who is either looking toward or away 

from a toy. Importantly, the different experimental conditions were not presented in a 

block-design that would have caused them to appear as still being presented as 

separate studies. As this study aimed to explore the effects of study-design on both the 

infants’ behaviour and the data, the eight conditions were presented intermixed with 

each other as if all presented stimuli belonged to one study. As minimally 10 artefact-
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free trials could be obtained for all of the conditions, the data were analysed in a 

conventional manner including 10 or more trials into the analyses.  

Finally, Study 4 (see Chapter 5), a re-analysis of the data collected in the third 

study, is mainly based on the findings of the Study 1 (see Chapter 2). Moreover, I aim 

to combine and further the insights gained in studies 1 and 3 in order to lend support to 

these previous findings. Therefore, in an attempt to replicate the findings from Study 1 

and to investigate if they will hold for ERP-components other than the Negative 

component, the data collected in the empirical study (Chapter 4) will be analysed in 

the fashion outlined in Chapter 2. Datasets including increasing numbers of trials will 

be created to form the respective individual averages for the analyses of the separate 

ERP-components. In contrast to Study 1 in which only the averages of the first three, 

five, seven, eight, nine, and 10 artefact-free trials have been analysed, Study 4 will 

analyse datasets including the very first usable trial, the average of the first two 

analysable trials up to the first 10 artefact-free trials. The results of the separate 

analyses for the different components will be compared to each other to form a profile 

of the ERP-components’ behaviours depending on the number of included trials. 

Furthermore, as the influence of including varying numbers of artefact-free trials has 

only been investigated in the components’ amplitudes as of yet, additional analyses 

along the same lines will be conducted on the latencies of the respective ERP-

components.  

As this introduction makes clear, the studies presented in the current thesis aim 

(a) to propose new ways for both acquiring and analysing infant EEG-/ERP-data (see 

Chapters 2 and 4) and (b) to further the knowledge of which pre-existing strategies 

may be more successful than others to help facilitate the progress of a study (see 

Chapter 3). Therefore, a novel strategy is designed and tested to make more efficient 
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use of the limited number of artefact-free trials that can typically be obtained from an 

infant participant. Additionally, based on a meta-analysis providing insights into the 

potential processes underlying typical infant EEG test-sessions, a novel approach to 

study-design is proposed and tested. The overall aim of this thesis is therefore to create 

studies which can help to bring about substantial changes in the traditions according to 

which developmental researchers approach data-acquisition and -analysis in general. 

Furthermore, the aim of some analyses is to help to standardise the methodologies that 

are in use at the moment. In so doing, this thesis strives to potentially improve the 

quality (and quantity) and generalisability of infant ERP-results that are currently 

published. 
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Abstract 

 

Event-related Potentials (ERP) studies are a widely used methodology to 

investigate the early cognitive development in infants of all age ranges. We examined 

changes in amplitude contribution in a set of previously published data (see [4]) in 

relation to the Negative component as a function of number of trials contributing to 

each individual average and with time as a co-variate to that contribution. With only 

seven trials contributing to each individual’s average the Nc for the object-directed 

condition was significantly more negative than the one for the averted-gaze condition, 

which is the opposite of the effect reported in Hoehl et al. [4]. The analysis including 

time as a co-variate revealed that the effect did not alter according to the amount of 

time taken during the experiment to collect each trial, suggesting that data of the 

quality needed to contribute to the ERP is itself a measure of time varying components 

of the experimental session. We conclude that infants initially allocate more attentional 

resources to object-directed gaze. This suggests that the temporal dynamics of infant 

ERP violates assumptions present in adult ERP, and that differences between 

conditions in relatively few trials inform us of cognitive capacities during infancy. 
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Introduction 

  

Event-related Potentials (ERPs) are used to investigate the cognitive and neural 

architecture of many phenomena in the field of psychology. As it is a non-invasive 

way of investigating cognitive processes related to the perception and processing of a 

certain stimulus or a kind of stimuli, it is well-suited for research with infants and 

young children (e.g., [1-2]). This is particularly the case with infant populations as 

behavioral responses that can be measured in older infants are often not clearly present 

at younger ages (see [3]). For example, an infant may have the capacity to react to 

certain stimuli and differently process multiple streams of stimuli, but no evidence for 

this would be manifested at the behavioral level despite differences in processing seen 

at the level of neural correlates (see [4-6]).  

 One important characteristic of ERP-studies conducted to date with infants is 

that the methodologies applied and the ways of interpreting the data are derived from 

cognitive neuroscience with adult populations. These two populations need to be 

treated differently with respect to how ERP data are recorded and analyzed (see also 

[7]). Should these elements be standardized, there would still remain differences 

between infants and adults concerning several physical characteristics such as the 

thickness of the skull or myelination, leading to different morphologies of the resultant 

ERPs (see [2, 7]). Also, the cognitive processes triggered by the same kind of stimulus 

might be different in these two populations (e.g., [3]). The common practice of 

conducting a study with adult participants initially in order to create predictions for 

infant participants unintentionally introduces complicating factors, such as the possible 

introduction of biases in the way that the infant data will be analyzed.  
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Scientists working with ERPs hold that the noise in the signal will decrease 

should more artifact-free trials be added to the analysis for each individual 

participant’s ERP average. Picton et al. [8] produced guidelines that are commonly 

considered when conducting, analyzing, and publishing an ERP-study. However, these 

guidelines mostly apply to adult participant populations. Even though it is mentioned 

repeatedly that clinical populations and (young) children require different treatment, 

the report lacks detail concerning these issues. Parallel to Picton et al. [8], Luck [9] 

lists ten rules for how to run a successful ERP-study. These include that the number of 

trials present in the final analysis should be as high as possible to ensure that noise will 

be averaged out of the procured signal. For instance, he states that the perfect figure 

for a signal-to-noise ratio of 10.0 would require the collection of 625 trials per 

condition from each participant in a study investigating a large component such as the 

P300 (see [9]). Further, it is stated that the minimal number for a badly rated signal-to-

noise-ratio of 0.4 requires between 30 and 60 usable trials per condition and 

participant. As these numbers are suggested for studies with adult participants, Luck 

[9] further states that they ideally would need to be doubled or tripled for infant and 

other populations to still achieve the aim of attaining clean data with as little noise in 

the signal as possible. This, however, poses an obvious problem to all ERP-studies 

investigating infant populations as, normally, far fewer trials are presented to infants 

due to limits in infant attention span. This issue is compounded as the number of trials 

acceptable for analysis is further reduced via behavioral artifacts, such as movement or 

eye blinks, that are present in recorded data. Consequently, experimental sessions with 

infants are designed to be brief in order to fit with the infants’ attention span while still 

obtaining enough artifact-free trials to be able to conduct an appropriate statistical 

analysis. It is therefore recommended that two conditions are optimal for ERP studies 
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with infants, with more conditions increasing attrition rates due to the raised 

probability of too few trials included in the average per condition for each participant 

(see [10]).  

 In isolation to the issue of signal-to-noise, some work has previously examined 

how ERP components may change over the course of an experimental session. Using 

the example of the Negative component in the ERPs of 6-month-old infants elicited by 

the frequent stimulus in an odd-ball paradigm, Nikkel and Karrer [11] suggested that 

the amount of experience a participant has with a specific stimulus has the capacity to 

influence the strength of a reported ERP component. The authors split their test session 

into three blocks and compared the amplitudes of the ERP components measured in 

the individual test blocks with each other. As had been predicted, they found a trend 

for the amplitudes of the Nc to decrease from one test block to the next. The authors 

suggested that the decrease in the amplitude of the Nc was connected to the amount of 

effort the infants made to attend to the stimuli. This suggests that the more often the 

infants saw the stimuli, the less attention they would need to pay to those stimuli in 

order to establish a memory trace for the stimulus (see [11]). 

 In another study by Snyder, Webb, and Nelson [12], the effect of familiarity 

with a stimulus on the Negative component was investigated in 6 month olds by 

comparing the amplitudes and latencies of infants who produced varying numbers of 

acceptable trials for analysis.  They found that this factor was related to the amplitude 

and latency of the Nc, with differences related to the degree of encoded information 

derived from the stimuli. They then related this to differences between studies in terms 

of the number of trials infant’s observed when contrasted with the number included in 

the final analyses, suggesting that large variability between infants will distort or 

diminish effects. 
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 There is also the added complexity of the participants’ age when considering 

infant data. In a study on the P300-component evoked by auditory stimuli, McIsaac 

and Polich [13] investigated an age range of between 6 and 10 months and reported the 

results as one averaged ERP. The authors reasoned that the age range was not 

problematic as changes in ERP-components evoked by auditory stimuli are relatively 

rare during infancy. In contrast, Kushnerenko, Ceponiene, Balan, Fellman, Huotilaine, 

and Näätänen [14] found that there is high variability in the ERP components between 

infant subjects of the same age group. As a consequence of such research, it has been 

suggested that longitudinal studies should be conducted to determine how many trials 

are optimal for a final analysis for each age group (see also [3, 15]).  

In the present study, we followed a different approach to examine signal-to-

noise issues in infant data. We are interested in determining the appropriate number of 

artifact-free trials per condition needed for infant populations, and, additionally, we are 

including time as a co-variate. This means that we are including the time it took an 

individual participant to collect a specific number of usable trials from the start of the 

stimulus presentation as an additional factor in our examination of the ERP data. 

Instead of testing the same subjects at different ages, we re-analyzed an existing set of 

previously published EEG-data (see [4]). When investigating infant social-cognitive 

processing capacities, these authors showed that infants as young as 4 months of age 

differentially process stimuli depicting either an adult looking toward an object 

positioned at eye-level to the side of her head (the “object-directed” condition) or the 

same female adult looking away from an object positioned at eye-level to the side of 

her head (the “averted” condition). The ERPs that Hoehl et al. [4] extracted from the 

data of 17 participants who fulfilled their inclusion criterion of contributing at least 10 

artifact-free trials per condition to the average, showed a more pronounced Negative 
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component (Nc) in frontal areas in the time window from 400 to 600 ms after stimulus 

onset for the condition in which the adult was not looking at the object. Along with 

other studies reporting on the amplitude of the Nc, Hoehl et al. [4] interpreted the 

enhanced Nc for the averted condition such that the infants allocated more attention to 

these stimuli compared to those depicting the object-directed gaze.  

 As described previously, the Nc usually appears in frontal regions (see [16]) 

and might also spread to central areas (see [17]). It is usually associated with attention 

allocation, with a stimulus eliciting a more negative amplitude Nc compared to another 

condition with more attentional resources dedicated to its processing than a condition 

featuring a diminished negative amplitude (e.g., [4]). Reynolds and Richards [16] 

modeled the source of the Nc as the anterior cingulate, which is in line with adult 

research on attention systems in the human brain. 

 As evidenced in many published studies, often fewer than 20 trials per 

condition are included in the average. As Nickel and Karrer [11] reported reductions in 

Nc amplitude between blocks, we hypothesized that such reductions would also show 

in the variation in Nc amplitude over the course of a typical test session. The 

implication of this hypothesis is that when trials from the end of an experimental 

session are included in an average they may yield fewer differences in amplitude 

between conditions when compared to the trials from the early stages of the same 

infant during the same test session. Therefore, we hypothesize that focusing the 

statistical analysis on fewer trials from the early stages of the test session may make it 

possible to still achieve valuable results, which might have implications for subsequent 

work with infant populations. Overall, our study had the aims of monitoring the 

behavior of the Nc according to the number of trials included per condition and the 

effect of time on the amplitude of the Nc.   
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Analysis 1 

Nc and the number of trials contributed to the average ERP per condition 

 

Methods 

 

Participants 

 For the study outlined in Hoehl, Reid, Mooney, and Striano [4], a total of 64 

infants were tested but the final analysis comprised of the data of 17 of these. The data 

of the other 47 participants had been excluded for reasons of fussiness (n = 19), failing 

to reach the minimum requirements for adequate averaging of the ERP data, including 

artifacts (n = 14), and technical problems during the saving of collected data (n = 14). 

The infants were born full-term (after 37 to 41 weeks of gestation) and had an average 

age of 4 months +/- 9 days at the time of testing. For this analysis we examined the 

same data of the 17 infants, who were included in the final analysis of the original 

article.  

 

Stimuli 

 The stimuli used in the article by Hoehl et al. [4] depicted the face of a female 

adult who was either looking toward a toy positioned at eye-level next to the head 

(“object-directed” condition), or the same face looking away from a toy positioned at 

eye-level (“averted” condition; see [4]). 

 

Procedure and data-collection 

 Infants sat on their caregivers’ laps and observed a randomized succession of 

the stimuli described above. The stimuli were presented with the constraints that the 
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same condition was not presented three times consecutively and that the number of 

presentations of each set of stimuli was balanced in every 20 trials presented. The 

program consisted of five blocks of 20 repeating stimuli. Before the stimuli were 

presented for 1000 ms, a fixation object was shown for 500 ms. After the presentation 

of the stimulus the screen was left black for a period of 800 to 1000 ms. Thus, if an 

infant would watch the entire program from beginning to end without any interruptions 

this would take from 230 s (3.833 min) to 250 s (4.167 min).  

 The EEGs were recorded according to the international 10 – 20 system using 

Ag-AgCl-electrodes with a sampling rate of 250 Hz. The data were referenced on-line 

to Cz and were re-referenced off-line to the linked mastoids (channels TP9 and TP10). 

 

Data analysis 

 When investigating the Nc, Hoehl et al. [4] examined the time window 

between 400 and 600 ms after stimulus onset from those participants who met their 

inclusion criterion of having at least 10 artifact-free trials per condition. The authors 

conducted a repeated measures ANOVA for this time window to ascertain if there 

would be a significant difference between the negative peaks for the two conditions. 

The area of interest covered the frontal channels (F3, F4, Fz, FC3, FC4, C3, C4, and 

Cz).  

 Following Hoehl et al. [4], we compared the negative peaks in the time window 

from 400 to 600 ms after stimulus onset in the same area of interest for the two 

conditions. However, we did not include all the trials an individual infant contributed 

to their individual average as was reported in the paper. Rather, we compared the 

negative peaks for varying amounts of artifact-free trials. We reasoned that as attention 

modulated throughout the course of an experimental session, we would observe 
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differences between conditions as a function of time. Therefore, we examined the first 

three artifact-free trials where the infant was attending to the screen per condition for 

the 17 subjects reported in Hoehl et al. [4] and compared the negative peaks of the two 

conditions by means of a repeated measures 2 x 3-ANOVA with condition (object-

directed versus averted gaze) and channel location (left frontal, F3 + FC3 + C3, versus 

fronto-central, Fz + Cz, versus right frontal, F4 + FC4 + C4) as the independent 

variables. Then, we followed the same procedure for the first five, seven, eight, nine, 

and 10 trials. This way we were able to examine the evolution of the morphology and 

amplitude of the Negative component as a function of the number of analyzable trials 

increased within the individual average of each participant.  

 Due to the manner in which the datasets have been created, they are highly 

dependent on each other. In order to test the possibility that differences, which may be 

found between conditions, would occur by chance in these multiple comparisons (i.e., 

the occurrence of a Type I error; [18]), a one-way ANOVA with a Bonferroni-

correction was performed. For the condition with the directed gaze, only the dataset 

including the first three artifact-free trials was significantly different from the other 

datasets for this condition and for the three channel-groups; p ≤ .029. This is likely due 

to the larger variation or noise which remains in the data when only three trials are 

forming an average as compared to averages derived from larger numbers of artifact-

free trials. The size of the error bars in Figure 2 below are indicative of this variation. 

No significant differences were found between datasets originating from the averted 

gaze condition. This indicates that datasets were  generally very similar to each other – 

apart from the first dataset for the directed gaze condition. Therefore, the likelihood 

that effects may be found due to outliers in certain dataset, should be relatively low. 
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Results 

 

 Hoehl, Reid, Mooney, and Striano [4] reported a significantly more negative 

peak of the Negative component for the averted gaze condition compared to the object-

directed condition for 17 participants (F(1, 16) = 4.8, p = .044; see Figure 1a for a 

sample electrode which displays the overall effect of Nc). The peak amplitude for the 

object-directed gaze condition was reported to be M = -14.3 µV, SE = 2.26, whereas 

the peak amplitude for the averted gaze condition was M = -19.6 µV, SE = 2.0. This 

analysis comprised of all the artifact-free trials an individual participant could 

contribute to the average. The range of artifact-free trials contributed per condition and 

participant varied across their 17 participants between 12 and 37 for the object-directed 

condition and between 11 and 37 for the averted-gaze condition.  

 Reducing the number of included trials per condition to three, five, seven, 

eight, nine, or 10 reverses this picture. The repeated measures 2 x 3-ANOVA 

conducted on the first three usable trials per condition for the originally included 17 

participants revealed an effect of condition which was approaching significance, F(1, 

16) = 3.595, p = .076, with the stimuli depicting the object-directed gaze eliciting the 

more negative peak (object-directed peak amplitude, M = -56.96 µV, SE = 10.94; 

averted peak amplitude, M = -29.99 µV, SE = 7.37). The repeated measures ANOVAs 

for the first five artifact-free trials revealed that there was no difference between the 

peaks for the two conditions, F(1, 16) = .001, p = .978 (object-directed, M = -24.25 

µV, SE = 6.56; averted, M = -24.01 µV, SE = 6.07). When comparing the negative 

peaks for the first seven analyzable trials per condition, we found a significant effect of 

condition with the object-directed condition eliciting a more negative peak, F(1, 16) = 
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6.103, p = .025 (object-directed, M = -18.15 µV, SE = 3.00; averted, M = -10.32 µV, 

SE = 2.57; see Figure 1b for an illustration of the grand average of the area of interest). 

 From eight trials onwards, the polarity of the Nc started to alter towards the 

direction reported by Hoehl et al. [4]. Thus, the repeated measures 2 x 3-ANOVA for 

the dataset including the first eight artifact-free trials revealed that there was no 

significant difference between conditions (F(1, 16) = 2.841, p = .111 with object-

directed, M = -16.79 µV, SE = 2.79, and averted, M = -11.75 µV, SE = 2.83). When 

the first nine trials per condition were examined, there was no difference between 

conditions (F(1, 16) = .077, p = .785 with object-directed, M = -18.63 µV, SE = 3.21, 

and averted, M = -17.68 µV, SE = 3.28). Finally, when we included the first 10 trials 

into the analysis, there was no significant effect of condition, however, the conditions 

had now altered positions in terms of eliciting the most negative mean response (F(1, 

16) = .062, p = .806 with object-directed, M = -17.73 µV, SE = 2.66, and averted, M = 

-18.39 µV, SE = 3.6). This indicates that the final outcome presented in Hoehl et al. [4] 

was due to amplitude contributions made in the latter half of the test session. An 

illustration of the development of the Negative component according to how many 

trials were included from the beginning of the experimental session is given in Figure 

2. 
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Figure 1.  Part (a) depicts Fz as a sample electrode for the grand average presented in 

Hoehl et al. [4]. Part (b) illustrates the grand average of the area of interest (channels 

F3, F4, Fz, FC3, FC4, C3, C4, and Cz) for 17 subjects with the first seven artifact-free 

trials per condition included in the statistical analysis (solid line for the object-directed 

condition, dotted line for the averted gaze condition). 

 

 

Discussion 

 

 Our results show that the Nc changes over the time-course of the experimental 

session. ERPs extracted from the first few artifact-free trials contribute differences in 

amplitudes between conditions, which are the opposite of those contributed in the 

latter half of the experimental session. As can be seen in Figure 2, there are many 

changes in the development of the difference between the object-directed and the 

averted gaze conditions. However, already with the first three artifact-free trials the 

difference between the conditions indicates a strong trend towards significantly diffe- 
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Figure 2. The development of the Negative component in the frontal area (channels 

F3, F4, Fz, FC3, FC4, C3, C4, and Cz) for 17 subjects according to the number of 

artifact-free trials included per condition (the solid line depicts the object-directed 

condition, the dashed line depicts the averted condition). 

 

rent conditions. However, as is indicated by the differences between our dataset with 

three artifact-free trials and the remaining datasets for directed gaze condition as well 

as by the lack of a difference between the condition when five trials formed the 

average, there is still much amplitude variation delivered for each trial. This is mainly 

apparent from the comparatively large error bars depicted in Figure 2 above – 

especially in the first two datasets where the likelihood for noise remaining in the 

signal is larger with such few trials in an average. The apparent collapse in differential 

processing of the conditions may be due to the slightly different trajectories which the 

conditions seem to follow with respect to the negativity of the responses that they 

elicit. The object directed condition shows a steep decline in response negativity from 

the dataset including the first three artifact-free trials to the one including the first 5 
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usable trials. From seven trials onwards, the responses remain roughly at the same 

level of negativity. A similarly steep decline in negativity for the away-condition can 

only be found when comparing the datasets including the first five trials to the one 

including the first seven artifact-free trials in the average. Then, the amplitudes are 

slowly gaining in negativity the more trials are added to the average. However, overall 

the direction of the main effect of condition is the opposite to that reported in Hoehl et 

al. [4], with the first seven artifact-free trials revealing a highly significant difference 

between conditions.  

The implications for our understanding of the Nc are substantial. A cognitive 

explanation for these effects is that the infants initially allocate more attention to the 

socially more normal situation in which the adult is looking toward an object. This fits 

with current thought on dyadic information processing, as the infant is primed for the 

adult to communicate some meaningful information to them with ostentative gaze at 

the toy (e.g., see [19-20]). Then, the more artifact-free trials are added to the analysis 

per condition (the first eight, the first nine, or the first 10, respectively) the direction of 

the condition effect starts to change slowly until the averted gaze condition finally 

elicits the significantly more negative responses as reported in Hoehl et al. [4]. This 

effect implies that the infants start to allocate increased attention to the more 

uncommon situation – a situation in which an adult is communicating ambiguous 

information by looking away from the object. One interpretation of the changes seen in 

the Nc amplitudes is that this as an indication that the infants anticipate that the adult 

will convey meaningful and clearly defined information via gaze. When the infants are 

familiar with this stream of stimuli, they switch their attention to the more uncommon 

situation. A further interpretation of these results could also be that the infants start to 

pay more attention to the averted gaze stimuli because they expect the adult to 
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communicate ostensive information when looking towards the empty space – meaning 

that the infants expect the adult to show them something off-screen, with the 

ambiguity of the stimuli contributing to its novelty.  

Investigating infant populations with ERPs has advantages and disadvantages. 

The big advantages of this technique are that it has a high temporal resolution and that 

it is non-invasive in nature. One of the disadvantages is, however, that the paradigms 

are limited in time due to limited attention spans during infancy. Another disadvantage 

is the relatively high risk of losing data due to potential movement artifacts and a lack 

of attention to the stimuli. For example, in their classic study from 1981, Courchesne, 

Ganz, and Norcia [21] excluded 61.5% of their participants aged between 4 and 7 

months, and de Haan, Pascalis, and Johnson [22] excluded 80.6% of the 6-month-olds 

they tested due to too few trials for inclusion in the final sample. Our results suggest 

that it would actually not be necessary to include that many trials in the analysis to 

achieve a statistically significant difference between the conditions. In order to make 

the experimental sessions shorter and, therefore, more suitable for the infant 

population, we found that concentrating the statistical analysis on a few artifact-free 

trials from the start of the experimental session could provide meaningful results 

which were significantly different between conditions. This is in direct contrast to the 

statements made by Luck [9] and Picton et al. [8]. However, ERP paradigms with 

infants where all collected useable trials are included already violate these principles as 

too few trials are included under this technique to fit with adult cognitive neuroscience 

norms. 

As has been described above, we found a strong tendency for the effect of 

condition to approach significance when the first three artifact-free trials of the original 

17 participants were included in the average. This finding led us to believe that 
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including more participants in the grand average would increase the power of this 

finding, and thereby support the notion that the trend found in Analysis One was 

indeed due to cognitive processes. Alternatively, the addition of new participants 

would reduce the difference between conditions and indicate that the trend for 

significance in the first three trials was simply due to random noise. We therefore 

decided to add the data from participants who had been excluded from the final 

analysis in Hoehl et al. [4] due to too few trials provided by these participants for their 

individual averages.  
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Analysis 2  

Analysis of the first 3 artifact-free trials with additional participants 

 

Methods 

 

Participants 

 In addition to the data of the 17 participants originally reported in Hoehl et al. 

[4], we included the data from seven other participants tested for the original study but 

excluded from the final analysis. These infants had not met the authors’ inclusion 

criterion of contributing at least 10 artifact-free trials per condition to the average, of 

which there were 14 excluded in the original paper1. However, as we were 

concentrating on the first three usable trials in this analysis, we randomly selected 

seven additional participants from this pool of infants. We conjectured that the 

inclusion of only a small additional number of infants would alter the trend towards 

significance in Analysis One such that this effect would become highly significant.  

This would effectively demonstrate the validity of investigating a small number of 

trials from the beginning of the experimental session when contrasted with 

conventional ERP averaging techniques derived from all possible trials. It has widely 

been reported that increased power for statistical tests in EEG studies can be derived 

from larger sample sizes (see [8]). In fact, during the submission process for [4], 

reviewers asked for the sample size to be increased to make the effects more clearly 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Efforts were made to include the data from the additional seven infants into the 

analyses outlined in Analyses One and Three. Unfortunately, the directory contaning 

the EEG-data files for this study were corrupted during a hard-drive crash and could 

not be recovered. Only the mean values used in this analysis were still available. 
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delineated [23], and, therefore, more infants had been tested in order to make the Nc 

effect clearer. 

 

Stimuli, procedure, and data-collection 

 These were the same as reported in Analysis One. 

 

Data analysis 

 This was the same as reported in Analysis One. However, for the analysis for 

Analysis Two, we performed the statistical analysis for the first three usable trials per 

condition for 24 participants (the original 17 reported in Hoehl et al. [4] and the 

additional seven infants extracted from the pool of previously excluded participants).  

 

Results 

 

 The difference between the Nc for the object-directed condition and the averted 

gaze condition was significantly different. The object-directed condition elicited a 

more negative response, F(1, 23) = 4.940, p = .036 (peak amplitude for the object-

directed condition, M = -55.42 µV, SE = 8.9, peak amplitude for the averted gaze 

condition, M = -27.52 µV, SE = 7.29). See Figure 3 for a grand average of the area of 

interest. 
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Figure 3. Grand average of the area of interest (channels F3, F4, Fz, FC3, FC4, C3, 

C4, and Cz) for 24 subjects (the original 17 plus the added seven) with three artifact-

free trials included per condition and subject (the solid line represents the object-

directed condition, the dotted line represents the averted gaze condition). 

 

Discussion 

 

By including the data of seven additional infants who had been excluded from 

the final analysis in the original study due to contributing too few trials per condition, 

we were able to increase the power of the effect with a trend towards significance (see 

Analysis One) such that it became a statistically significant difference between 

conditions. This suggests that an analysis of the first few trials may yield results of 

interest and significance for infancy researchers in addition to the technique of 
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including all useable trials from each participant for each experiment. Both techniques 

of analysis violate the principles outlined by Luck [9] and Picton et al. [8].   

Recently, researchers investigating infant populations using eye-tracking 

methodologies have started to analyze their data in an analogous fashion – by 

investigating the “first look” as well as the overall pattern of looking behavior. 

Gredebäck and Melinder [22], for instance, found a marked difference in the way that 

6- and 12-month-old participants observed feeding scenes over the course of the 

experimental session. The authors analyzed the data for how well the participants 

would follow the hand of the feeding person or if they would predict the beneficient of 

the feeding action by looking at that person before the spoon arrived there. They also 

calculated the latency of the first fixation on the expected beneficient (time point when 

spoon entered the head- or hand-area-of-interest surrounding the expected beneficient 

minus time of infant’s first fixation at one of these areas of interest). Gredebäck and 

Melinder [24] found a marked decrease in latency (especially for the 12-month-olds) 

for the first trial of the expected condition compared to the second and third trials (see 

[25] for a review). This way of analyzing eye-tracking data is analogous to our 

suggestion of examining fewer trials from the beginning of the test session as both 

cases suggest that a participant’s responses to the same kind of stimulus change over 

the course of the experiment and that they are not stable. The question arises for ERP 

results if it may be the time that elapses from the start of the stimulus presentation that 

contributes to this change in amplitude or if it may be the number of trials within the 

stimulus presentation that contribute to the change in amplitude.  
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Analysis 3 

Does the length of a test session alter the amplitude of the Nc? 

 

Methods 

 

Participants, stimuli, procedure, and data-collection 

 These were the same as described in Analysis One. 

 

Data analysis 

We examined the time it took the 17 4-month-olds reported in Hoehl et al. [4] 

to collect a specific amount of artifact-free trials per condition. Therefore, we took 

note of when a subject had seen each specific trial that was classified as artifact free 

during the course of the experimental session. We took note of the times needed to 

obtain all the datasets analyzed in Analysis One, which is the first three, five, seven, 

eight, nine, and 10 artifact-free trials per condition. In order to be able to analyze the 

condition effects found in Analysis One with time as a co-variate, the infants were then 

categorized according to the amount of time that had elapsed from the start of the 

stimulus presentation up until the last trial included in the analysis for that infant. 

During observation of the time taken to collect these data, we determined that thirty-

second time windows would accurately capture differences in the time taken to collect 

different amounts of data from different infants. To introduce time as a co-variate into 

the analysis, we weighted the data accordingly for each infant. For instance, one of the 

faster infants would collect seven artifact-free trials for both conditions within 60 s 

after the beginning of the stimulus presentation, whereas another participant for whom 

several trials may have had to be excluded for various reasons would have taken up to 
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120 s or even more than 150 s to collect the same number of analyzable trials for both 

experimental conditions. We therefore, classified infants as a function of the speed at 

which we could obtain data from them during the experimental session. 

The fastest participants entered the analyses as Category One-infants. These 

infants produced useable trials in the shortest possible time (see Table 1). Category 

Two-participants were those who produced usable trials at a rapid rate but not within 

the same timeframe as the Category One-infants. They were weighted with a factor of 

0.8 (80%), whereas the Category Three-infants took longer and were weighted with a 

further reduced factor of 0.6 (60%). Category Four-participants took even longer and 

were weighted with a factor of 0.4 (40%). Category Five-infants were those infants 

who took the longest time to reach a specified number of trials, and were weighted as 

0.2 (20%). The same number of artifact-free trials can occasionally be collected within 

the same time-windows. For example, for the fastest participants, the first three trials 

and the first five trials can both be collected within the first 30 seconds of the 

experiment. This is due to the high variability in the amount of time that it took the 

infants to collect a specific number of trials per condition, and this variability is due to 

a number of different reasons such as inattentiveness to the screen or fussiness. We 

conducted paired-samples t-tests on the mean amplitudes for the two experimental 

conditions with these weighted factors. For an illustration of the weighting procedure 

for all the datasets reported in Analysis One, see Table 1. Additionally, a post-hoc one-

way ANOVA including a Bonferroni-correction was performed to establish if there 

were significant differences between the weighted datasets presented in this analysis. 

Finally, in order to establish if the effect reported in Analysis Two above would hold 

after being subjected to the same weighting process, we performed a paired-samples t-

test on the weighted data of the 24 participants reported above.  
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Table 1. Rating of the subjects according to the time it took them to collect a specific 

number of artifact-free trials for the two conditions. 

 Category 1 – 

Subjects 

weighted 

with 1.0 

(100%) 

Category 2 – 

Subjects 

weighted 

with 0.8 

(80%) 

Category 3 – 

Subjects 

weighted 

with 0.6 

(60%) 

Category 4 – 

Subjects 

weighted 

with 0.4 

(40%) 

Category 5 – 

Subjects 

weighted 

with 0.2 

(20%) 

First 3 

trials 

30 s (n = 7) 60 s (n = 5) 90 s (n = 2) 120 s (n = 2) more than 

120 s (n = 1) 

First 5 

trials 

30 s (n = 2) 60 s (n = 6) 90 s (n = 4) 120 s (n = 1) more than 

120 s (n = 4) 

First 7 

trials 

60 s (n = 4) 90 s (n = 6) 120 s (n = 1) 150 s (n = 2) more than 

150 s (n = 4) 

First 8 

trials 

90 s (n = 7) 120 s (n = 4) 150 s (n = 1) 180 s (n = 2) more than 

180 s (n = 3) 

First 9 

trials 

90 s (n = 7) 120 s (n = 4) 150 s (n = 1) 180 s (n = 1) more than 

180 (n = 4) 

First 10 

trials 

90 s (n = 4) 120 s (n = 5) 150 s (n = 2) 180 s (n = 2) more than 

180 s (n = 4) 
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Results 

 

The analysis for Analysis Three investigated the amount of time that had 

elapsed for the individual 17 subjects from the start of the stimulus presentation to the 

point when they had collected a specific amount of artifact-free trials per condition. In 

order to investigate the possible influence that time might have on the effects found in 

Analysis One above and to use time as a co-variate in our analysis, we set up the above 

rating scale (see Table 1) such that the subjects could be weighted according to how 

little or how much time they took to collect the artifact-free trials (three, five, seven, 

eight, nine, or 10 per condition, respectively). The paired-samples t-tests of the mean 

amplitudes for the 17 participants revealed that the development of the Nc according to 

the amount of trials included in the average did not change from Analysis One when 

time was introduced as a co-variate. Figure 4 illustrates the way the Nc developed 

according to the number of trials in the analysis. However, due to the weighting of the 

data, all of the datasets tended to lose statistical power when contrasted with the 

analysis in Analysis One, where all participants had been weighted equally. Therefore, 

the difference for the Nc in the two conditions no longer approached significance when 

the first three trials were included, t(1, 12) = -1.450, p = .172 (object-directed, M = -

51.78 µV, SE = 11.28; averted gaze, M = -29.20 µV, SE = 8.87). For the first five 

artifact-free trials the paired-samples t-test revealed that there was no difference, t(1, 9) 

= .037, p = .972 (object-directed, M = -26.04 µV, SE = 8.61; averted, M = -26.48 µV, 

SE = 8.01). When seven trials had been included in the analysis, the paired-samples t-

test was significant, t(1, 10) = -2.293, p = .045 (object-directed, M = -18.81 µV, SE = 

4.21; averted, M = -8.98 µV, SE = 3.3). For the first eight artifact-free trials: t(1, 11) = 

-1.726, p = .112 (object-directed, M = -16.98 µV, SE = 3.65; averted, M = -10.59 µV, 
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SE = 3.39), for the first nine trials: t(1, 11) = -.378, p = .713 (object-directed, M = -

20.58 µV, SE = 4.25; averted, M = -19.04 µV, SE = 3.87), and when the first 10 

artifact-free trials had been included: t(1, 10) = .431, p = .676 (object-directed, M = -

19.24 µV, SE = 3.86; averted, M = -20.42 µV, SE = 4.84). The post-hoc one-way 

ANOVA with the Bonferroni-correction revealed that the weighted average derived 

from the first three usable trials was significantly different from the other datasets for 

the directed gaze condition. For the averted gaze condition, the dataset with the first 

three trials was significantly different from the average including the first seven usable 

trials only. No further differences were found between the datasets. It needs to be 

noted that variation in the data is likely to become more pronounced in such an 

analysis based on the loss of statistical power due to the weighting. 

 

Figure 4. The development of the Negative component in the frontal area (channels 

F3, F4, Fz, FC3. FC4, C3, C4, and Cz) for 17 subjects according to the number of 

artifact-free trials included per condition in Analysis Three with time as a co-variate 

(the solid line depicts the object-directed condition, the dashed line depicts the averted 

condition). 
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Further, we conducted paired-samples t-tests with the mean times that the 17 

subjects took to accumulate artifact-free trials for the two conditions in order to 

investigate if one condition would be significantly faster than the other over the time-

course of the experiment. There was no significant difference between the conditions 

for any pair of equal sized trials. Finally, the effect of Condition reported in Analysis 

Two above could be replicated in a paired-samples t-test for the weighted data of the 

24 infants described above; t(1, 23) = -2.110, p = .046 (object-directed, M = -37.00 

µV, SE = 6.52; averted, M = -18.98 µV, SE = 4.97). 

 

Discussion 

 

In Analysis Three we concentrated on the time factor as a co-variate 

contributing to the variability in the data. Therefore, we categorized the infants 

according to the amount of time that it had taken them to collect a specific amount of 

artifact-free trials for the two conditions. The differences between the individual 

subjects were variable largely due to circumstances such as breaks because of an 

infant’s inattentiveness to the screen or because of movement artifacts rendering trials 

invalid for analysis even when the infant was attending to the stimuli. There was no 

statistical difference between the mean times the infants needed to collect a specific 

number of artifact-free trials for the individual conditions. Also, comparing the mean 

amplitudes for the subjects with specific numbers of trials included per condition and 

weighting their data accordingly did not change the way the overall difference between 

the two conditions developed over the course of the experimental session. There was 

still a significant difference with the first seven usable trials being included in the 

analysis, as was also found in Analysis One, and the direction of the effect was still the 
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same with the object-directed condition being significantly more negative than the 

averted gaze condition in the first half of the experimental session. We interpret this 

finding such that the amount of artifact-free trials included in the averaging process is 

sufficient to incorporate the factor of time into the analysis. According to this variable 

the effect that was found changes across the duration of an experimental session.  

 

General Discussion and Conclusions 

 

Data editing and analysis methodologies for infant ERP studies derive from 

research techniques developed for work with adult populations. One fundamental 

element of this method is the assumption that the ERP signal remains constant 

throughout the time-course of a standard visual ERP study. Therefore, the more trials 

that are included in the average, the better the signal for the resultant ERP with random 

noise diminished. In contrast to this concept, we found substantial changes in infant 

responses to visual stimuli over the course of an experimental session. Specifically, the 

amplitude of the ERP-component varied from the early stages of the test session to its 

latter stages. As a function of the number of trials included in the average per 

condition, the amplitudes did not necessarily reduce in amplitude to a more stable 

value. Rather, they changed in terms of which condition elicits the more negative 

amplitude response. Moreover, our findings show that the time taken to collect a 

specific number of artifact-free trials per condition does not influence this 

development of the data. Instead, it is the number of trials included per condition and 

participant that has the major impact on the amplitude of the Nc in this study. There is 

no linear development in which the conditions elicit the same kind of ERP response at 

all times. Rather, the reported Nc undergoes a previously unforeseen evolution that 
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suggests that ERPs have the capacity to detect and track the way infants process social 

stimuli. However, in order to validate these results and to rule out the possibility that 

they are a function of the particular set of data that we used, further studies on this 

particular ERP component, using the proposed way of data analysis, are needed.  

In the paper from 2008, Hoehl et al. [4] come to the conclusion that the infants’ 

differential processing of the objects depicted depends on the direction of the adult’s 

eye gaze. The fact that the Nc has a higher amplitude in the averted gaze-condition is 

explained such that more attentional resources are necessary for this information in 

order for it to be processed by the 4-month-olds. The condition in which the adult is 

looking toward the object does not require these additional resources for attention 

however, because this situation does not violate the infants’ social expectations ([4]; 

see also [16, 26]). These statements are based on the way of analysis generally used in 

infant ERP-studies. As we now saw, this straightforward interpretation is not 

applicable under all circumstances. Initially, attentional resources are directed towards 

the condition, which does not violate the infants’ social expectation, with attention 

switching later in the time-course of the experiment to the non-object directed gaze 

condition. A possible explanation for this is that the infant focuses first on the stimuli 

where social communication is present as the gaze towards the object indicates that the 

object is relevant to the adult, which may in turn make the object relevant to the infant. 

Only when this information has been processed does the infant switch their attention to 

the unusual stimuli that depict gaze away from an object, where no social information 

is being transmitted.   

Our findings suggest that focusing the statistical analysis on fewer trials from 

the beginning of the experimental session in addition to examining all the artifact-free 

trials available per condition and subject could provide new insights into infant 
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cognitive development. Instead of surmising that ERP-components are fixed effects 

that do not change during an experimental session, comparisons with effects found 

with fewer trials can potentially illuminate cognitive processing of visual stimuli. One 

consequence of this finding is that researchers working in the field may wish to 

examine early effects with few trials and compare this analysis with overall effects 

obtained with all useable trials.  

Another implication of this alternative method of analyzing infant ERP data is 

that it has the potential to make it possible for researchers working with infant 

populations to still achieve valuable results while reducing the length of the test 

session. This would also make such studies easier for participants to complete. Further, 

the number of participants could be reduced who would otherwise need to be excluded 

from the averaging process due to too few trails obtained of the quality required for 

inclusion in the average.  

One important implication of the finding that differences in conditions are 

evident with relatively few trials included in the ERP average is that data from infants 

who are excluded for reasons of fussiness in many other ERP studies may be able to 

contribute data that can be analyzed and interpreted. Our results from Analysis Two 

clearly indicate that participants excluded for such factors do contribute meaningful 

and interpretable data, which is not currently utilized with standard measures of 

analysis. Implications include the possibility of widening parameters of included data, 

such that individual differences, such as temperament, can be examined in greater 

detail than is possible with standard ERP analysis techniques. In order to generalize 

our results, further studies with different datasets originating from different age groups 

using the same kind of analysis that we used will be necessary. Moreover, apart from 

applying the approach to the analysis of the Nc in response to different sets of stimuli 
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and originating from different age groups, its application to other (infant) ERP 

components will be necessary as well. We are aware of the preliminarity of this first 

attempt and would like to invite other researchers in the field to try the strategy in 

order to potentially strengthen and refine it. 

Our results show that infant ERPs are dynamic aspects of brain function that 

clearly change over time in amplitude within an experimental session. Through 

showing that the Nc amplitude varies during the experimental session, with 

implications for our understanding of how infants process eye gaze and object 

processing, we conclude that the analysis of the first few trials may potentially reveal 

new insights into issues of cognitive processing during infancy. It could eventually 

lead to a re-evaluation of the practices currently predominant in ERP-studies with this 

population.   
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 The re-analysis of infant ERP-data presented in Study 1 addressed the issue of 

the nature of data-acquisition within a standard paradigm. The typical data-analysis for 

infants is currently mainly conducted as would be expected for adult data, with 

variations such as the number of trials included in each individual average. However, 

as illustrated by the results of Analysis 2 in this study, the norm in infant ERP-studies 

often involves the removal of large amounts of data which may in fact contain 

meaningful information. The main reason for this loss or rejection of potentially usable 

data is that some participants’ artefact-free trials will not be included in the averaging 

process because an infant failed to provide the minimally required number of 

analysable trials for all of the experimental conditions. Such lower numbers of 

artefact-free trials can be the result of multiple factors. For instance, infants may be 

interested in a stimulus-presentation in the early stages of the test-session but may 

become bored or distressed later on. As a way of showing their unwillingness to 

cooperate, an infant may simply not attend towards the stimuli anymore or they may 

start to get agitated and move around. Alternatively, an infant’s data may have to be 

excluded from a study’s analysis because a heritable condition within the family has 

only been discovered after the data have been collected. Circumstances such as these 

contribute to a study’s attrition rate, which can be relatively high (e.g., Nelson, & 

Collins, 1991; Parise, Reid Stets, & Striano, 2008). The meta-analysis and the meta-

regressions presented in Study 2 aim to examine this particular issue which is present 

in all infant ERP-studies to varying degrees. By relating different factors that are 

common features to all ERP-studies to the studies’ attrition rates, Study 2 attempts to 

provide some answers in terms of which of these factors may or may not be 

contributing to an increase or decrease in attrition. Based on the findings of this study, 

it may be possible to design studies in such a way as to facilitate infants and their 
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caregivers behaviour in terms of the requirements for stillness and attention in an 

EEG-test session, thereby resulting in fewer infants featuring in attrition rates. 
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Abstract 

 

 In this meta-analysis, we examined interrelationships between 

characteristics of infant ERP-studies and their attrition rates. 149 published studies 

provided information on 314 experimental groups of which 181 provided data on 

attrition. A random effects meta-analysis revealed a high average attrition rate of 

49.2%. Additionally, we used meta-regression for 178 groups with attrition data to 

analyze which variables best explained attrition variance. Our main findings were that 

the nature of the stimuli – visual, auditory, or combined as well as if stimuli were 

animated – influenced exclusion rates from the final analysis and that infant age did 

not alter attrition rates. 

 

 

 

 

 

 

 

 

 

 

 



 73	
  

Introduction 

 

Researchers working in the field of developmental psychology have a 

multitude of tools available to them with which they can investigate their research 

questions. However, in terms of working with infants and toddlers, the numbers of 

possibilities at hand are slightly diminished. Some methodologies, such as behavioral 

reaction-time paradigms and fMRI, are not always fully appropriate for infant 

populations. This can be due to either ethical issues or simple reasons of practicality. 

Therefore, techniques such as EEG- and ERP-studies have gained in popularity over 

the last decades (see Saby, & Marshall, in press, this issue). However, even though 

EEG-methodology is non-invasive and well-suited for infant populations, the attrition 

rates reported in research articles can vary dramatically. The reasons for these – 

sometimes huge – differences in attrition rates have not been investigated to date. In 

the present meta-analysis, we examine possible explanations for this issue. We are 

interested in the possible relationships between the features of ERP-studies (see list in 

Appendix 1) and the attrition rates reported in the papers. We also examine the 

reasons provided for why data for infants had not been included in the final analyses 

and if this is related to the design and age of the infant population that is being 

investigated. 

In contrast with ERP-studies, there is a relatively low attrition rate that is 

usually reported in infant eye-tracking studies, which also investigate infant 

perception and cognition in the absence of extremely overt behavior. This attrition 

rate may be related to the apparent ease of data acquisition from this population. For 

example, Hespos, Gredebäck, von Hofsten, and Spelke (2009) report 52 infants in 

their sample with the inclusion of 41 of these into their final analysis. Only the data of 
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11 participants were excluded for reasons of fussiness (n = 5), because of technical 

problems (n = 4) or because of the infant not completing a behavioral (reaching) task 

(n = 2). This leaves the authors with data from 78.9% of the total sample and an 

overall attrition rate of 21.2%. Gredebäck and Melinder (2010) note that in their first 

experiment only six out of 62 infants failed to contribute data to the final analysis (an 

attrition rate of 9.7% due to fussiness or failure to calibrate). In their second 

experiment there was no attrition at all as every 6-month-old who was tested entered 

the final analysis.  

Returning to ERP-methodology, these numbers typically look different. It is 

relatively unusual for ERP-experiments with infants to feature an attrition rate of 

under 25%. DeBoer, Scott, and Nelson (2007), for example, state that they expect an 

attrition rate of between 50 and 75 percent when planning a study (see also Hoehl, & 

Wahl, in press, this issue). Possible factors leading to such high attrition can be as 

simple as the challenge of getting the infants to tolerate the electrode mounting 

system (cap or net) in addition to making the stimulus presentation suitable for the 

age-group under investigation. For visual stimuli, the paradigm must be created in 

such a way that they can capture the participants’ attention for as long as possible. As 

has been reported in Stets and Reid (2011; see also Nikkel and Karrer, 1994, and 

Snyder, Webb, and Nelson, 2002), there is a high potential for infants to habituate to 

the stimuli such that the amount of attention they allocate to the stimuli can change 

over the course of a standard experimental session. Such changes can eventually 

result in major alterations in the ERP-components reported such as a reversal in peak 

negative amplitude of the conditions under investigation (see Stets and Reid, 2011).  

Picton et al. (2000) and Luck’s (2005) guidelines on how to conduct an ERP-

study attempt to provide researchers with suggestions on how to obtain accurate and 
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replicable results – mainly from adult populations. That infants and toddlers need to 

be treated differently in terms of creating the paradigm is also mentioned (see also 

DeBoer, Scott, and Nelson, 2007), however, Luck (2005) avoids the topic of attrition, 

whereas Picton et al. (2000) state that the numbers and reasons for attrition should be 

mentioned as these numbers and reasons may be an indication for the general validity 

of the reported data.  

One study investigating the characteristics of behavioral infant data, which 

could have implications for our understanding of infant EEG-data, was reported by 

Slaughter and Suddendorf (2007). These authors collected a total of 187 scientific 

articles, which had been published between 1985 and 2005, reporting behavioral 

studies with infants aged 12 months or younger using either a habituation paradigm or 

a violation-of-expectation paradigm. This review was performed in order to 

investigate variation in reported attrition rates, taking special note of attrition due to 

fussiness, and trying to relate this factor to the results reported for the study. Other 

categories of reasons for attrition which had been included in their analysis were 

procedural errors, interference by the caregiver, the infant failing to habituate, and a 

category of “other”, which included any other circumstances which could cause a 

participant’s exclusion from the final analysis (e.g., the infant’s falling asleep). 

Despite reporting minor changes in the attrition rates of the behavioral studies over 

time, Slaughter and Suddendorf (2007) only found a negative correlation between the 

“other” category of attrition and the age of the infants in days. Their interpretation 

was that this was due to the infants’ lack of self-control in terms of sleepiness – the 

younger the participant, the higher the chance that the infant will fall asleep before the 

end of the experimental session and, therefore, to fail to provide enough usable data. 

All other correlations that were calculated were non-significant: the authors could not 
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find any relationship between attrition due to fussiness and the outcome of a study. 

This meta-analysis, while comprising 187 papers, featured 101 of these articles in the 

final analysis. The remaining 86 articles were excluded due to a number of factors, 

although the primary reason was that there was insufficient detail, with the total 

number of participants tested and/or excluded lacking in these articles.  

As has been stated above, for ERP-studies, attrition is typically at higher 

levels than in behavioral studies. When an infant or toddler enters the lab it is often 

very hard to predict how the experimental session will progress – even for those with 

many years of experience in laboratory practice. One additional factor may be the 

participant’s temperament. Marshall, Reeb, and Fox (2009) approached this topic by 

comparing the ERP-responses to an auditory oddball paradigm with 9-month-old 

infants. One group of 9-month-olds had been rated as highly positive in temperament, 

a second group had been rated as highly negative in temperament, and a third group 

had not been rated for temperament prior to participation in the study. The authors 

could show processing differences toward the same stimuli between the groups. 

However, what is also apparent from the reported numbers in their methods-section 

are the differences between the groups in terms of attrition. The group of 9-month-

olds who had been rated as being highly negative in temperament by their caregivers 

was also the group with the highest attrition rate: 52.2% of these participants did not 

enter the final analysis, primarily due to too many movement artifacts in their EEG-

data (the attrition rates for the control group and for the group rated as being highly 

positive were 32.8% and 40.4%, respectively). This study indicates that ERP-

paradigms are generally a mildly stressful experience for infants. Further, this has the 

consequence that only a subset of infants from a random population will provide 

sufficient data for analysis and that this is as a function of temperament 
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characteristics. 

Taking Slaughter and Suddendorf’s (2007) paper as a model, in the present 

article we attempted to find relationships between various factors which are necessary 

parts of an ERP-study and the attrition rates experienced in these studies. Among 

others, the factors that we investigated were the duration of a single stimulus (i.e., the 

duration of the presentation of a picture or a sound), the number of experimental 

conditions, the mean-age of the participants in days, and the duration of a single trial 

(i.e., the duration of a single stimulus plus the duration of the interval between one 

stimulus and the next; see Appendix 2 for a complete list of the factors included). To 

address the limitations in infants’ attention span, researchers often try to develop 

strategies to keep the participants interested in the stimuli for as long as possible. In 

studies using auditory stimuli only, there is often also some kind of visual stimulation 

presented to the infants in order to keep them silent, awake and attentive (e.g., a silent 

puppeteer as in Brannon, Libertus, Meck, & Woldorff, 2008, cf. [6] in Appendix 1; 

and in Friederici, Friedrich, & Christophe, 2007, cf. [29] in Appendix 1). As a means 

to keeping his participants alert in a visual recognition memory paradigm, Richards 

(2003, cf. [114] in Appendix 1) presented his stimuli for 500ms in between sections 

of the program Sesame Street (see also Reynolds, & Guy, in press, this issue). 

Another relatively common practice in infant ERP-studies is to limit the number of 

conditions but to have more than one form of stimuli for each of the experimental 

conditions in order to avoid habituation effects (e.g., Kobiella, Grossmann, Reid, & 

Striano, 2007). But are some strategies better than others in terms of reducing attrition 

rates? Do decisions like these have an impact on how cooperative the infants will be 

in the experimental sessions and on the likelihood for an infant’s data to contribute to 

the final analysis? Finding answers for these questions will be valuable as it increases 
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our understanding of relations between experimental design, ERP-techniques and 

attrition rate.   

In the current paper we present the results of a meta-analysis on 149 published 

ERP-studies with infants aged between 0 and 24 months of age. These articles, which 

had been published between 1978 and 2010, come from a wide variety of theoretical 

backgrounds. Some investigated cognitive processes in clinical populations compared 

to typically developing controls (e.g., see papers [7] and [54] in Appendix 1). Some 

were investigating populations of infants who did not have a clinical condition 

themselves but their familial background showed some special condition such as the 

mother suffering from anxiety during pregnancy (e.g., see paper [49] in Appendix 1), 

having a sibling who is on the Autism spectrum (see [25] in Appendix 1), or the 

mother being diabetic (e.g., see [22] in Appendix 1). Furthermore, researchers 

reported studies in which some other condition was present which could potentially 

affect the infant’s performance in a specific task (e.g., the mother having been 

smoking during pregnancy; see [69] in Appendix 1). Following Slaughter and 

Suddendorf’s (2007) approach, we hypothesized that there would be a link between 

the specific features of the infants, particularly their age, the features of the ERP-

study they participated in (e.g., the duration of the stimuli and trials, the number of 

conditions, the number of different stimuli per experimental condition), the attrition 

rate of the study, and the stated reason(s) for attrition. Slaughter and Suddendorf 

(2007) were investigating connections between a study’s reported outcome and 

attrition rates due to fussiness. We are examining the parameters of the study itself 

that might act as possible indicators for an expected attrition rate when contrasted 

with other possibilities such as shorter versus longer trials and the age of the infants. 
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Methods 

 

 For the present meta-analysis we collected data on a wide range of factors 

from a total of 149 research articles presenting ERP-studies with infants aged between 

0 and 24 months. These articles could be separated further into a total of 314 

experimental groups consisting of infant populations (some of the papers also 

reported data from adult control groups but we did not take any note on these). These 

314 experimental groups consisted of three different categories of infants: Category 1 

(278 experimental groups) were typically developing infants with no further 

information on any kind of circumstances, which would mark these groups as special 

in any way (see Category 1 in Table 1). Category 2-groups (25 of the 314) were 

classified as being typically developing but being marked by a special feature (see 

Category 2 in Table 1; e.g., a family background of dyslexia or the mother suffering 

from anxiety for instance; see [145] and [49] in Appendix 1, respectively). The 

experimental groups belonging to Category 3 (11 out of 314) consisted of clinical 

populations (see Category 3 in Table 1; e.g., infants born preterm, cf. [133] in 

Appendix 1; or infants suffering from brain-iron deficiency, see [7] Appendix 1). We 

took note of characteristics such as these and controlled for them in our analyses, but 

as the category of the experimental group did not have an impact on the results, we 

decided to treat the three groups in the same way in our analysis (F(2, 178) = 0.69, p 

= 0.50, see Table 3 for multivariate results). In order to include the age of the infants 

into our analysis, we ordered the experimental groups according to the mean-ages 

reported in the articles, separating them out per month in most cases. For an overview 

of the numbers of experimental groups included in our analysis per category and age-

group, see Table 1. 
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Table 1. An Overview of the Numbers of Experimental Groups Separated by Category and 

Age-Group. 
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Note. The total number of research articles reported is higher in this table compared to the total 
number of articles present in the meta-analysis. This is due to the fact that some articles reported 
data for more than one age-group. 
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 As has been mentioned previously, our aim was to find potential links between 

the ages of the infants tested, the features of the studies (e.g., the duration of a single 

trial and the number of experimental conditions), the overall attrition rates reported, 

and the attrition due to a specific reason (e.g., attrition due to fussiness as opposed to 

a lack of artifact-free trials). Therefore, we took note of the information provided in 

the articles, which were related to these variables. In some cases, when the authors of 

an article did not provide a full account on all factors, we tried to reconstruct the 

respective values from the information which had been provided (for a complete list 

of the factors under investigation, see Appendix 2). For instance, if the duration of a 

single stimulus, the duration of the inter-stimulus interval, and the total number of 

stimuli had been given, we recalculated the duration of a single trial and the 

respective duration of the entire stimulus presentation based on these data.  

The same reconstruction of data was conducted, where necessary, for the total 

number of participants tested when only the numbers were given for the number of 

participants included in the analysis of the study and the number of participants 

excluded. However, after this process, we were still left with a relatively large number 

of experimental groups for which we were unable to reconstruct required information. 

Therefore, we sent out requests to the corresponding authors of several articles 

published between 1995 and 2010 asking for clarification or data to fill the gaps for 

the experimental groups in question. In most of the cases, we were asking for the 

number of participants who had not entered their final analysis and how many of them 

had failed to do so for what reason. In some cases, when only a general number for 

the attrition rate had been given, we were asking if it would be possible to clarify the 

numbers and reasons for attrition. Occasionally, we also asked for the duration of a 

single trial in case it could not be reconstructed due to lack of detail in the description 
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of the stimuli or procedure. We sent out emails to a total of 30 researchers asking for 

information on 49 of the 149 articles that we had collected. There were more articles 

for which we would have needed further information, however, we decided not to ask 

for these data due to the respective articles having been published before 1995 and the 

common practice in terms of duration of data-storage. About two thirds of the 

researchers responded to our emails, with about one third of responses contributing 

data for the present meta-analysis. Finally, due to all of the above-mentioned reasons, 

the present meta-analysis contains results for 181 out of the total of 314 experimental 

groups collected (57.6%). The other 133 groups (42.4%) were excluded from further 

analysis. 

 

Attrition rate 

Meta-analyses were carried out using Stata 10.1 and 11.1 (StataCorp, College 

Station, TX, USA) using the user-contributed commands for meta-analyses: metan 

(Bradburn, Deeks & Altman, 1998), metainf (Tobias, 1999), metabias (Steichen, 

1998), and metareg (Harbord and Higgins, 2008). 

 The primary outcome was proportion of attrition, defined as the number of 

infants who were not included in the final analysis of a study divided by the total 

number of infants who attended the study. Following the recommendations of Lipsey 

and Wilson (2000), a logit transformation was applied to the proportion estimates to 

form an unbounded (in contrast to the 0 to 1 bounded nature of proportions) effect 

size estimator:  
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where p is the proportion and ln is the natural logarithm. The standard errors were 

computed as follows: 

 

where n is the sample size. 

The standard errors were used to calculate upper and lower 95% confidence 

limits of the effect size estimator by logit(p) ±1.96*SE. The inverse of the variance 

(1/SE2) was used as the basis of the weight for the meta-analysis and meta-

regressions. In one study there was no attrition and we added 0.5 so that the logit 

transformation results in quantities that can be defined. The final pooled logit results 

and 95% confidence intervals of the meta-analyses were back-transformed to 

proportions for ease of interpretation.   

 

Meta-analysis 

 The effect sizes and standard errors of the studies were pooled using random-

effect models. A random-effect meta-analysis model assumes that in addition to the 

presence of a random sampling error, variability of mean effect sizes is also caused by 

differences of the effect between studies due to differences in study populations and 

procedures (between-study heterogeneity). Random-effects models result in estimates 

with wider confidence intervals than fixed-effects models, but are more realistic in 

this meta-analysis due to the variety of case mix and settings between studies (Everitt, 

2003). 

   Homogeneity between the studies was analyzed using Cochran’s Q test and by 

calculating the measure of heterogeneity or inconsistency I2 (Higgins et al., 2003). I2 

describes the percentage of total variation across studies that is due to heterogeneity 
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rather than sampling error and ranges between 0% (no inconsistency) and 100% (high 

heterogeneity) with values of 25%, 50% and 75% suggested as low, moderate, and 

high heterogeneity (Higgins et al., 2003). 

The analyses were repeated excluding one study at a time to investigate the 

influence of each individual study on the overall meta-analysis summary using 

STATA’s user written function metainf (Tobias, 1999).   

 

Selection bias  

 It is well-known that statistically significant results are more likely to be 

published than studies with non-significant results. In our meta-analysis this could 

mean that a study with a high proportion of attrition and, therefore, smaller sample 

size was less likely to result in significant findings of their main outcome and, hence, 

less likely to be published. The presence of a selection bias was assessed informally 

by visual inspections of funnel plots, scatter plots in which the treatment effects 

estimated from individual studies are plotted against a measure of study precision. We 

followed the recommendations in the relevant literature (cf., Sterne & Egger, 2001; 

Sterne, Egger, & Smith, 2001) and plotted the logarithm of odds rations of the studies 

(vertical axis) against their standard error (horizontal axis in reversed order; see 

Figure 1). Odds of attrition rates were plotted on a logarithmic scale (logits), so that 

effects of the same magnitude but in opposite directions (such as 0.5 and 2) are 

equidistant from 1.0. We included lines which represent 95% confidence intervals 

around the estimated summary effect size in the funnel plot to facilitate interpretation. 

These lines show the expected distribution of studies in the absence of heterogeneity 

or of selection biases (Sterne et al., 2001). Asymmetrical funnel plots may indicate a 

selection bias. For instance, the absence of studies in the right bottom corner (low 
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precision and small effect sizes) of a funnel plot is usually seen as an indication of a 

classical publication bias. Studies of low precision are usually studies with a small 

sample size and, consequently, little statistical power. However, for other effect sizes, 

such as Cohen’s d, the effect sizes will not scatter randomly above and below the 

mean with the spread increasing with an increasing standard error. Because of the 

mathematical association between the standard error and the logits, we expect the 

effect sizes to branch away from the mean with increasing standard error. However, 

branches will be symmetrical in the absence of a selection bias. 

 

 

Figure 1. Proportion of attrition (95% C.I) of 181 experimental groups. Data are 

plotted in decreasing order of publication-age with the most recently published ones 

depicted on the right. Symbols of means refer to the different kinds of stimuli used: 

circles for “Visual”, triangles for “Auditory”, and squares for “Audio and visual”. 
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Meta-regression 

The meta-analyses were followed up with a meta-regression analysis on 178 

experimental groups, an extension of the meta-analysis in which the relationship 

between attrition rates and explanatory variables (study characteristics) are modeled 

using weighted regression methods. Random-effects models were used to allow for 

the residual heterogeneity among attrition rates not modeled by the explanatory 

variables (Thompson and Sharp, 1999). The explanatory variables are characteristics 

of studies that might influence the extent of the attrition rate. In our main-analysis we 

assessed the age of the paper, the type of the experimental group (typically 

developing, typically developing with an additional special characteristic, or clinical 

population), the mean age of the infants in months, the total number of infants 

analyzed in the experimental group, the number of conditions, the type of stimulus 

(auditory, visual, or visual and auditory), and if animation was used (yes/no). 

Preliminary analyses suggested a nonlinear asymptotic relationship between the total 

number of infants and attrition, and a quadratic term for the total number of infants 

was included in the regression model. Because the number of infants can be caused by 

a high attrition rate (the number of infants was not fixed but more infants were used if 

attrition rate was higher) we reran the model without this variable.  

In a secondary analysis we assessed the effect of variables for which 

information was available only for a smaller number of studies. These variables were: 

i) the minimum number of trials per condition required to be included in the final 

analysis, ii) the mean-duration of a stimulus in ms, iii) the mean-duration of a single 

trial in ms, and iv) the total mean-duration of the stimulus presentation in min. Each 

variable was assessed separately in the main model. Again, the regressions were rerun 

without total number of infants included.  
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 Because the analysis is based on logits of attrition rate, odds ratios and 95% 

confidence intervals (95% C.I.) are reported. For the main analysis, adjusted p-values 

for multiple testing based on a permutation procedure as described by Higgins and 

Thompson (2004) are also presented. The assumptions of the meta-regression were 

confirmed by assessing standardized shrunken residuals as recommended by Harbord 

and Higgins (2009). 
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Results 

 

Of the initially 314 identified experimental groups, 181 provided the number 

of infants analyzed in the study and the number actually tested and, therefore, 

allowing us to calculate the attrition rate. Table 2 below provides details of these 181 

experimental groups. The age of the papers ranged between recently published and 33 

years. 120 (66.3%) experimental groups experienced visual, 47 (26.0%) auditory, and 

14 (7.7%) both visual and auditory stimuli. 14 (7.7%) experimental groups 

experienced animated visual stimuli. 

The average number of infants entering the final analysis of the 181 

experimental groups was 19.44 (SD = 10.41) with a range from 7 to 72 infants. The 

stimuli were presented on average for 9.2 min (range: 1.3 to 37.3 min, n = 128). The 

mean total attrition was 47.3%, ranging from 0% to 83.8%. Figure 1 shows the 

attrition rate and 95% confidence intervals of the 181 experimental groups arranged 

by the age of the study.  

A random-effects meta-analysis revealed an overall pooled attrition rate of 

49.16% (95% 46.5% to 51.85%). A sensitivity analysis to assess the robustness of the 

estimate was examined by sequentially removing each study and reanalyzing the 

remaining data sets. The estimated effect sizes ranged from 48.95% to 49.46% and, 

therefore, none of the experimental groups changed the estimate by more than +/- 

0.3%.  
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Table 2. Overview of the 181 Experimental Groups Used in the Meta-Analysis and Key 

Variables Included. 

Continuous Variables 

Variable n Mean Std. Dev. Min Max 

Age of paper in years 181 6.58 6.06 1 33 
Age of infants in days 173 212.5 119.59 7.6 730 
Total number of infants tested 181 41.02 23.92 9 175 
Total number of infants included in analysis 181 19.44 10.41 7 72 
Relative attrition 181 0.47 0.187 0 0.84 
Number of conditions 181 2.39 0.726 1 6 
Minimal number of usable trials requires for average 132 20.07 25.15 5 100 
Number of trials included in average 124 65.4 182.19 8 1186 
Duration of stimulus in ms 156 874.6 839.06 50 4000 
Duration of trial in ms 122 2283.6 1126.16 600 6150 
Total mean duration of presented stimuli in min 128 9.20 7.07 1.3 37.3 
Number of stimuli presented 131 117.8 202.39 1 800 
Categorical variables n %    

Nature of experimental group      
     Typically developing 166 91.7    
     Typically developing with special feature 10 5.5    
     Clinical 5 2.8    
Nature of stimuli      
     Visual 120 66.3    
     Auditory 47 26.0    
     Visual and auditory 14 7.7    
Animated stimuli      
     No 167 92.3    
     Yes 14 7.7    
 

 

Heterogeneity between the studies was statistically significant (Q(180) = 822.18, p < 

0.0001) and large in magnitude (I2 = 78.1%). The following meta-regression tried to explain 

the large heterogeneity in attrition rate between the studies. 
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Figure 2. Begg's funnel plot with pseudo 95% confidence limits for meta-analysis. 

The standard error of the effect sizes (natural logarithm of the odds or attrition or 

logit) on the horizontal axis are plotted against the effect size on the vertical axis. The 

dots correspond to the effect sizes of the individual experimental groups and the 

diagonal lines show the expected 95% confidence interval around the summary 

estimate (horizontal line). The logits correspond to the percentages of attrition as 

follows: 2 = 88%, 1.5 = 82%, 1 = 73%, 0.5 = 62%, 0 = 50%, -0.5 = 38%, -1 = 27%, -

1.5 = 18%, and -2 = 12%. 

 

 

Selection bias 

Figure 2 shows Begg’s funnel plot to assess for a possible selection bias. 

There is some asymmetry of the distribution of the effect sizes: studies with a larger 

standard error tend to have disproportionately smaller attrition rates, whereas studies 

with high attrition rates seem to have smaller standard errors. This suggests that 
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studies with smaller sample sizes have disproportionately smaller attrition rates than 

would be expected in the absence of a selection bias. 

 

Meta-regression 

 178 experimental groups provided data on the main predictor variables and 

could therefore be used for the meta-regression. The meta-regression model explained 

53.5% of the (adjusted) between group variance. The analysis of the main model 

revealed that older studies showed higher proportions of attrition than more recent 

ones (see Table 3). Furthermore, studies using visual stimuli were twice as likely to 

cause attrition than auditory studies, while studies with visual and auditory stimuli did 

not differ significantly from studies with purely auditory stimuli. Studies with visual 

stimuli were more likely to attrition than studies with visual and auditory stimuli 

(Odds ratio = 1.57; 95% C.I. = 1.11 - 2.22, p = 0.011; 95% C.I. = 1.10 – 2.57, p = 

0.016; Marginal mean-proportions of attrition: 35.1% for Auditory, 53.7% for Visual, 

and 45.0% for Visual and Auditory). Finally, the mean-proportion of attrition rises 

significantly with increasing total number of infants analyzed in the study and tends to 

rise with the use of animated stimuli. All other variables showed little influence on 

attrition rate and were not significant. Except age of paper, all significant variables 

remained significant after corrections for multiple testing.  

 Rerunning the meta-regressions without the total number of infants analyzed 

in the study resulted in slightly stronger effects of age of the study and type of stimuli 

(marginal mean-proportions of attrition: 36.2% for Auditory, 55.0% for Visual, and 

45.3% for Visual and Auditory). The effect of attrition was slightly reduced and not 

significant anymore. The overall model explained less between study variance 

(adjusted r2 = 28.1%). All non-significant variables remained non-significant.  
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Table 3. Results of the Meta-Regression of the Main-Model (n = 178) Once With the Number 

of Analyzed Infants Included in the Model (see Table 3a) and Once Without the Number of 

Analyzed Infants Included in the Model (see Table 3b). 

Table 3a. The Model With the Number of Analyzed Infants Included (Quadratic Term) 

Variable Odds Ratio (95% C.I.) T p (adjusted p) 

Age of paper in years 1.02 (1 – 1.036) 2.39 .0018 (.16) 

Nature of experimental group (F(2, 167) = 0.60, p = .55)    

     Typically developing 1   

     Typically developing with special condition 0.91 (0.61 – 1.34) -0.49 .62 (.99) 

      Clinical 0.72 (0.38 – 1.38) -0.99 .33 (.97) 

Infant mean-age in months 0.98 (0.96 – 1.01) -1.32 .19 (.86) 

Total number of participants tested (F(2, 169) = 31.58, p < .0001)   

     Total number of participants 1.03 (1.02 – 1.04) 5.71 < .0001 (< .001) 

     Total number of participants^2 0.999 (0.999 – 0.999) -3.39 .001 (.008) 

Number of conditions 0.95 (0.84 – 1.08) -0.79 .43 (.99) 

Nature of stimuli (F(2, 167) = 16.69, p < .0001)    

     Visual 1.82 (1.47 – 2.27) 5.55 < .0001 (< .0001) 

     Auditory 1   

     Visual and auditory 1.16 (0.80 – 1.70) 0.79 .43 (.99) 

Animated Stimuli 1.40 (1.0 – 1.96) 1.98 .04 (.38) 

Non-animated stimuli 1   

   (Continued) 
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Table 3. (Continued) 

Table 3b. The Model Without the Number of Analyzed Infants Included 

Variable Odds Ratio (95% C.I.) T p (adjusted p) 

Age of paper in years 1.03 (1 – 1.047) 2.89 .0004 (.025) 

Nature of experimental group (F(2, 169) = 1.57, p = .21)    

     Typically developing 1   

     Typically developing with special condition 1.24 (0.78 – 1.96) -0.91 .36 (.96) 

      Clinical 0.57 (0.27 – 1.20) -1.49 .14 (.66) 

Infant mean-age in months 1.0 (0.98 – 1.03) 0.16 .87 (.99) 

Number of conditions 0.97 (0.84 – 1.12) -0.43 .66 (.99) 

Nature of stimuli (F(2, 169) = 18.1, p < .0001)    

     Visual 2.1 (1.63 – 2.70) 5.8 < .0001 (< .0001) 

     Auditory 1   

     Visual and auditory 1.26 (0.81 – 1.98) 1.02 .31 (.93) 

Animated Stimuli 1.31 (0.88 – 1.95) 1.35 .18 (.75) 

Non-animated stimuli 1   

Note. The effect sizes are Odds ratios (OR > 1 means an increased proportion of attrition rate with increasing values). 
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Secondary meta-regression analysis 

 The main model was rerun with each of the secondary variables. Each variable 

was assessed separately for models with and without the number of analyzed infants 

included as a covariate. None of the variables showed a significant effect on 

proportion of attrition: i) minimum number of trials per condition required to be 

included in the final analysis: with number of analyzed infants included: OR = 1.003, 

p = 0.31, n = 129, without the number of analyzed infants: OR = 1.001, p = 0.78; ii) 

mean-duration of stimulus in ms: with number of analyzed infants included: OR = 

1.00, p = 0.56, n = 153, without the number of analyzed infants: OR = 1.00, p = 0.66; 

iii) mean-duration of single trial in ms: with number of analyzed infants included: OR 

= 1.00, p = 0.65, n = 119, without the number of analyzed infants: OR = 1.00, p = 

0.56; and iv) total mean-duration of stimulus presented in min: with number of 

analyzed infants included: OR = 1.01, p = 0.48, n = 126, without the number of 

analyzed infants: OR = 1.01, p = 0.65. The additional unique explained variance of the 

assessed variables was less than 1%.  

 Furthermore, we explored if some of the effects of age of paper and type of 

stimuli can be partially explained by an association with one of the other variables. 

Rerunning the same analyses without type of stimulus (and without the number of 

infants analyzed) revealed that the total duration of the stimulus-presentation in 

minutes and the number of trials required for the averaging process had a significant 

effect on attrition. The longer the mean-duration of the stimulus-presentation, the 

lower is the attrition rate (Odds ratio: 0.97, 95% C.I.: 0.95 - 0.99, p = 0.002). The 

total duration of the stimulus-presentations differed significantly between all three 

conditions with Visual = 6.1 min (SD = 3.74, n = 83), Auditory = 15.8 min (SD = 
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8.83, n = 34), and Visual and Auditory = 11.8 min (SD = 5.28, n = 11). Pair-wise 

comparisons revealed that all p < 0.05.  

 The second variable, the minimal number of artifact-free trials required per 

condition for the averaging, correlated strongly with the total mean-duration of the 

stimulus-presentation (r = 0.79, p < 0.0001, n = 96). Consequently, the more artifact-

free trials were required for the averaging process in a specific study, the lower was 

the attrition rate experienced (Odds ratio: 0.99, 95% C.I.: 0.98 – 0.995, p < 0.001, n = 

129). However, this requirement for specific numbers of artifact-free trials was 

significantly higher for studies using purely auditory stimuli compared to those with 

purely visual stimulation or those using visual and auditory stimuli (mean-numbers of 

artifact-free trials required for averaging for Visual 10.2 [SD = 2.8, n = 95], for 

Auditory 52.1 [SD =39.0, n = 29], and for Visual and Auditory 20.7 [SD = 10.2, n = 

10]). Similar results were obtained when the number of infants analyzed for an 

experimental group was included in our analyses. The effect of the age of the 

published article could not be partially explained by any other variable. 
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Discussion 

 

 In this meta-analysis, we attempted to find relationships between the attrition 

rates reported in published ERP-studies using infant populations and a wide range of 

variables that are common to all of these studies. Amongst others, these variables 

were the duration of stimuli and trials, as well as the age of the publication in years or 

the class of stimuli presented (e.g., animated vs. non-animated). One of the findings of 

the meta-regression was the lower overall attrition rate for experimental groups who 

had been presented with auditory stimuli only (18.6% lower in comparison to visual 

stimuli only), and the slightly lower overall attrition rate for studies using combined 

visual and auditory stimuli (8.7% lower in comparison to purely visual stimuli). The 

age of the paper also contributed, with older articles reporting higher attrition rates.  

Furthermore, the number of infants tested and animation affected attrition rate. 

However, the effect of animation was only a trend and the effect of number of infants 

tested is not easy to interpret as we will discuss later. This lack of other effects may be 

due to the number of published articles that were not included in the analysis, due to 

omission of relevant information. Therefore, care needs to be taken when stating that 

other factors, such as the duration of the stimuli, do not have any effect on attrition 

rates. The total duration of the stimuli (or the minimum number of trials which 

correlated strongly with the former variable) could partially explain the observed 

differences between the study types. Apparently, studies with auditory stimuli on 

average featured longer stimulus-presentations than studies with visual stimuli. 

However, studies using purely visual stimulation usually had higher attrition rates 

compared to those with purely auditory stimulation. This effect is not seen within the 

type of study as the non-significant effect of total duration of stimulus-presentation 



 97	
  

revealed. This surprising relationship between longer test-sessions with auditory 

stimuli and lower attrition rates and shorter test-sessions with visual stimuli and 

higher attrition rates might be due to other factors resulting from the paradigms used. 

Further analyses might indicate other interrelationships which have not been 

investigated in the present meta-analysis.  

One explanation for the variation between stimuli classes may be that many of 

the studies using auditory stimuli had been conducted with infants who were sleeping 

during the experimental session. This reduces the likelihood of movement artifacts to 

a great extent. Also, in cases where participants were awake during the experimental 

session, paradigms often included distracting visual stimuli in order to keep the 

infants calm during the recording of the EEG (e.g., see [6] in Appendix 1). That a 

combination of auditory and visual stimuli does elicit a lower attrition rate than visual 

stimuli only, irrespective of the age of the infant population tested, may seem 

surprising. Instead of making the task of attending two streams of stimuli at the same 

time more complex for the infants, the combination of components seems to help the 

infants to attend to stimuli for a relatively longer duration of time. A possible 

explanation for this may be that the synchrony of information from multiple 

modalities acts to enhance the infant’s limited attention capacities by providing extra 

cues for infants and by acting as a more attractive paradigm than single modality 

presentations. This is also in line with the intersensory redundancy hypothesis 

proposed by Bahrick and Lickliter (2000). According to this hypothesis, information 

that is presented synchronously in more than one modality draws the attention of the 

infants away from less salient information and toward the more salient one which, in 

turn, is thought to impact on learning and memory processes. Our data suggest that it 

is more difficult to collect data with purely visual stimulation when contrasted with 
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purely auditory stimuli. This could be seen as an indicator for the visual stimuli 

requiring a relatively high level of explicit attention when contrasted with auditory 

stimuli, which require relatively less effort in terms of attention. 

 The static versus dynamic nature of the stimuli also had an impact on reported 

attrition rates: animated visual stimuli appear to be a larger challenge for infants than 

static stimuli alone. This result may be due to the increased length of these purely 

visual stimuli when contrasted with the mainly static visual stimuli alone, although 

this relationship was not noted to be significant in our analyses. Often such stimuli 

display short film clips with a longer duration per individual stimulus presentation 

than the duration for a static image. For example, Marshall and Shipley (2009; see 

[81] in Appendix 1) featured a mean-stimuli length of 2150 ms whereas studies by 

Nelson (e.g., Nelson, Henschel, & Collins, 1993; see [94] in Appendix 1) typically 

feature a stimuli length of 500ms.  

 Another interesting finding was that attrition rates tended to be higher for 

experimental groups or studies for which a large number of participants had been 

tested. Representative examples of this include de Haan, Pascalis, and Johnson (2002; 

[20] in Appendix 1) with an attrition rate of 80.6% (175 infants were tested of whom 

141 were excluded from the final analysis); Hirotani, Stets, Striano, and Friederici 

(2009; [56] in Appendix 1), attrition rate 69.3% (75 infants tested; 52 excluded); 

Nelson and Collins (1991; [91] in Appendix 1), attrition rate 83.8% (74 infants tested; 

62 excluded); and Parise, Reid, Stets, and Striano (2008; [103] in Appendix 1), 

attrition rate 78.3% (69 infants tested; 54 excluded). For papers [20] and [91], in 

which the overall attrition rates lie above 80%, these high percentages are explained 

with the “strict standard for obtaining sufficient trials to include in ERP averages” (de 

Haan, Pascalis, & Johnson, 2002, p. 207), and with the “strict requirements on what 
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constituted satisfactory completion of the study” (Nelson, & Collins, 1991, p. 52). In 

[103] it is stated that “task demands related to the paradigm” were the reason for the 

high attrition rate (Parise, Reid, Stets, & Striano, 2008, p. 3). One feature, which is 

common to all of these three sample studies, is that the participant populations 

consisted of infants ranging between 5 and 6 months of age. This may be an 

indication that the paradigm was not age appropriate. Consequently, instead of 

adjusting either the age of the population tested or the paradigm, more participants 

were tested in order to obtain a large enough sample for statistical power. This, 

however, may draw the results of these studies into question. For example, if the 

paradigm is not age appropriate, then there is the potential for some unmeasured 

variable to determine which infants have the capacity to attend to a sufficient number 

of trials for inclusion in the final sample. It may be that those infants who were more 

developmentally advanced than the norm for the tested age group were 

disproportionately incorporated into the final sample. It must be stressed that the end 

result of such experiments is not in doubt, but the age at which infants have the 

capacity to process the presented stimuli may potentially be drawn into question. 

A number of articles indicate that it is seen as acceptable within the field of 

infant ERPs that an attrition rate of between 50 and 75 percent is to be expected when 

the study is still in the planning phase (DeBoer, Scott, & Nelson, 2007). Therefore, it 

is not surprising that sentences stating that the reported attrition rate in a given study 

is “typical of infant ERP studies” (Snyder, Garza, Zolot, & Kresse, 2010, p. 493) and 

“comparable to other studies using electrophysiological measurements in young 

infants” (Halit, Csibra, Volein, & Johnson, 2004, p. 1230) are often found in 

published studies. The issue then becomes whether this general acceptance of attrition 

rates of over 50 percent should be treated as something normal and inevitable when 
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running ERP-studies with infant populations. Recent work suggests that such an 

acceptance is not required. Stahl, Parise, Hoehl, and  Striano (2010) used advanced 

statistical methods to incorporate a larger proportion of infants into final analyses. 

Stets and Reid (2011) found that it is possible to extract meaningful data from 

participants who would not be able to contribute data to the grand average of a given 

study when using the traditional ways of data analysis. The authors reanalyzed 

previously published EEG-data from 4-month-old infants and created averages from 

set numbers of trials for each participant. They found that, when examining only the 

first three artifact-free trials, results were significant. This result might have 

implications for the general practice of requiring at least 10 or 15 artifact-free trials 

per condition per participant in order to include data to a study’s final analysis. Stahl 

et al. (in press, this issue) discuss the possibilities of using machine learning methods 

to analyze single trials ERP-data to reduce bias and to increase powers. 

We also investigated whether a selection bias might be present in our sample. 

The relationship between sample size and attrition rate would also explain the 

apparent selection bias in the meta-analysis. Studies with smaller sample sizes usually 

have larger standard errors and, therefore, provide less precise estimates of the effect 

size. Our assessment suggests that less precise studies with larger attrition rates are 

not published. However, this bias could explain why researchers tend to collect more 

data if the attrition rate is high. This also explains why there are not more studies that 

are low in precision with low attrition rates than would be anticipated in the field. 

Those common features between studies that might lead to the inclusion of only a 

small number of participants’ data are currently unknown.  

Finally, collecting the data for the present meta-analysis has shown that there 

is large variation between research labs working in the field of developmental 
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cognitive neuroscience in terms of reporting attrition rates. It should be emphasized 

that 42.4% of the experimental groups or studies that should be incorporated in this 

meta-analysis had to be excluded due to a lack of detail in the method of the published 

research article. In 2000, Picton et al. stated that articles should be clear about these 

details, yet the number of papers published over the last decade containing all relevant 

information was not as high as should be the case. At the very least, reviewers of 

published articles must be vigilant for missing information related to attrition as these 

variables have large implications for the validity of reported data. 
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Recommendations for ERP Paradigm Construction 

 

In this meta-analysis, we did not find clear indications for a relationship 

between the age range of the population tested for a specific study and the attrition 

rate reported for that study. Such a finding is in parallel to Slaughter and Suddendorf 

(2007), who could not draw final conclusions about relationships between the validity 

of a study’s results and the attrition rate reported for behavioral studies with infants. 

In all likelihood this is most probably due in both cases to the amount of missing 

variables present in the dataset. However, we could find indications that some 

essential features of a paradigm are more likely to increase the attrition rate 

experienced for a specific experimental group. A paradigm with purely visual 

stimulation is clearly not as engaging as a paradigm in which auditory stimulation is 

also present. We therefore conclude that it is important to create ERP-studies for 

infant populations with multimodal stimuli, in order to reduce attrition rates.  

Our analyses also revealed that studies or experimental groups with larger 

sample sizes in general tended to have a higher attrition rate in comparison to those 

with smaller sample sizes. In most cases the reasons for excluding infants from the 

final analysis of a given study are movement artifacts and fussiness of the infant, 

resulting in an inability to collect the required minimum number of trials per 

condition from the excluded infant. Therefore, considering these high rates of 

attrition, it draws the validity of these paradigms into question with respect to their 

appropriateness for the population tested. The practical conclusion that can be drawn 

from these data is that should such attrition rate patterns start to occur during 

collecting data, then it is reasonable to cease data collection and attempt to adjust 

components of the paradigm or alter the age group tested.  
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We did not find any significant relationships between the attrition rate that was 

reported for a given study and any other factors that we included in our analysis (e.g., 

the mean-age of the infants, the duration of a single stimulus or trial, or the number of 

conditions presented). The question remains why we did not find more relationships. 

We conclude that – other than the features we investigated here – there must be other 

factors involved that impact on an infant’s likelihood to contribute data to a study’s 

final analysis. We have noted in our laboratory that data collection at 9 months is 

problematic as infants are more irritable and often come to the laboratory in a tired 

state. This may be related to the end of maternity leave occurring around this time in 

our country. Another possible candidate is the extent of experimenter experience, with 

large variation seen between individuals.  

Clearly, researchers working in the field of developmental cognitive 

neuroscience must meticulously plan and prepare an ERP-study with infants aged 

between 0 and 24 months. One of their biggest challenges is to produce valuable 

findings without losing sight of the practical components of data collection. However, 

these elements of studies are often not mentioned in published articles. This hinders 

researchers from replicating the findings and makes it difficult for independent 

evaluation of the validity of the reported experiment. Therefore, our conclusion from 

the present meta-analysis is that the field would be facilitated if a clear consensus 

were presented with respect to which variables are to be reported in a research article. 

Factors that are necessary for replication include specific information on the numbers 

of participants tested and how many entered the final analysis. Some information on 

why infants were excluded would also be beneficial as well as descriptions of all 

aspects of the paradigm. These should include the duration of the stimuli and of the 

inter-trial intervals and the number different stimuli used per condition, for instance. 
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Finally, information on the average number of trials per condition contributed by each 

infant (including the standard deviations) and information on the minimum criteria for 

inclusion would be beneficial. This will put the results reported in a given article into 

perspective and make them more transparent for others, thereby facilitating the 

growth and maturity of the field as a whole. 
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Appendix 2. List of factors included in the present meta-analysis. 

 

     [1] the age-range used 

     [2] the mean-age of the participants in days 

     [3] the Standard Deviation of the mean-age of the participants in days 

     [4] the total number of infants tested for a specific experimental group 

     [5] the total number of participants who entered the final analysis for a specific 

experimental group 

     [6] the total number of participants who did not enter the final analysis for a 

specific experimental group 

     [7] the total number of participants who did not enter the final analysis for a 

specific experimental group in percent 

     [8] the number of participants who did not enter the final analysis for a specific 

experimental group due to “fussiness or inattentiveness” 

     [9] the number of participants who did not enter the final analysis for a specific 

experimental group due to “fussiness or inattentiveness” in percent 

     [10] the number of participants who did not enter the final analysis for a specific 

experimental group due to “artifacts or an insufficient number of trials in general” 

     [11] the number of participants who did not enter the final analysis for a specific 

experimental group due to “artifacts or an insufficient number of trials in general” in 

percent 

     [12] the number of participants who did not enter the final analysis for a specific 

experimental group due to “technical problems” 

     [13] the number of participants who did not enter the final analysis for a specific 

experimental group due to “technical problems” in percent 
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     [14] the number of participants who did not enter the final analysis for a specific 

experimental group due to “experimental error” 

     [15] the number of participants who did not enter the final analysis for a specific 

experimental group due to “experimental error” in percent 

     [16] the number of participants who did not enter the final analysis for a specific 

experimental group due to “other” (e.g., medical conditions which had been revealed 

only after the test session) 

     [17] the number of participants who did not enter the final analysis for a specific 

experimental group due to “other” in percent 

     [18] the nature of the experimental group ((a) typically developing infants, (b) 

typically developing infants with some kind of special condition, and (c) clinical 

groups) 

     [19] the number of conditions presented 

     [20] the number of different stimuli used for one experimental condition 

     [21] the number of potential presentations per condition  

     [22] the total number of stimuli which could potentially be presented 

     [23] the minimal number of artifact-free trials an infant needed to contribute to the 

average per condition in order to be able to enter the final analysis 

     [24] the (mean-) number of artifact-free trials included in the averaging process per 

condition from each of the participants who entered the final analysis 

     [25] the Standard Deviation of the (mean-) number of artifact-free trials included 

in the averaging process per condition from each of the participants who entered the 

final analysis 

     [26] the (mean-) duration of a single stimulus in ms 

     [27] the (mean-) duration of the attention getter(s) where applicable in ms 
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     [28] the (mean-) duration of the interstimulus interval in ms 

     [29] the (mean-) duration of a single trial in ms 

     [30] the (mean-) duration of the stimulus presentation when all of the stimuli that 

had been prepared would be presented to the infant without any breaks in s and min 

(in case it was mentioned in the article that breaks had been built into the procedure, 

then we included the duration of these breaks into our total duration of the procedure) 

     [31] the nature of the stimuli ((a) visual, (b) auditory, (c) visual and auditory, (d) 

visual and animate, (e) visual and animate and interactive, (f) visual and auditory and 

animate, and (g) visual and auditory and animate and interactive) 

     [32] the age of the article in years 

     [33] the type of EEG-system that had been used for data-collection ((a) cap, (b) 

net, (c) individually applied electrodes, and (d) not specified) 

     [34] the number of electrodes used for data-collection 
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 As seen in Study 2, the number of factors that appear to influence the size of a 

study’s attrition rate are surprisingly low. Factors such as the duration of a stimulus or 

trial or of the entire test-session, which would likely be expected to increase or 

decrease attrition, did not show to have an impact. Moreover, a study-feature that is 

frequently recommended to be kept at a low level (e.g., DeBoer, Scott, & Nelson, 

2007; Picton et al., 2000) – the number of experimental conditions presented – did not 

impact on the studies’ attrition rates either. Therefore, the theoretical basis for the 

assumption that fewer experimental conditions will help infants to remain attentive and 

focussed during a test-session and, consequently, will help to keep attrition at an 

acceptable level, does not appear to have any empirical support. Via the exploration of 

possibilities surrounding study-design and with the aim to increase the volume of data 

to be collected from an individual infant, Study 3 has been designed to illustrate a new 

approach to data-acquisition. In this study, a group of 12-month-olds were presented 

with eight experimental conditions. In order to ensure that the quality of the study’s 

results can be evaluated and compared to previous findings, the included conditions 

originated from three earlier research articles that were not theoretically related to each 

other. However, the main focus of this study is on the methodological insights that the 

application of such a study-design on an infant population can provide. 
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Abstract 
 

 Infant ERP-studies often feature high attrition rates with many trials excluded. 

The number of experimental conditions is conventionally limited to obtain reasonable 

trial-numbers. We presented an ERP-study involving eight conditions, based on three 

previous studies, to 18 1-year-olds. We expected to replicate original results at least 

partly. We were interested in this novel stimulus-presentation-method’s effect on 

infant attention. Increased trial-numbers were obtained and infant attention was 

sustained. Attrition rate was decreased. One study was replicated fully, others were 

replicated in part. Varied stimuli extend infant attention allowing the collection of 

more data. However, sub-experiments must be cognitively and perceptually distinct. 
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Introduction 

 

 According to general agreement among developmental psychologists working 

with infant populations, infants’ attention span is very limited and hard to sustain over 

an extended period of time (e.g., DeBoer, Scott, & Nelson, 2007; Thierry, 2005). 

Furthermore, it is frequently stated that it is easy to overload an infant’s cognitive 

system with too much information or with task demands that are too complex for a 

specific age group (Parise, Reid, Stets, & Striano, 2008; Nelson & Collins, 1991). 

Additionally, there seems to be common agreement that substantial attrition rates are 

to be expected when studies are conducted with infant populations (e.g., DeBoer, 

Scott, & Nelson, 2007; Picton & Taylor, 2007). Therefore, a common practice – 

particularly among researchers using ERP-methodologies with infants – is to limit the 

number of experimental conditions and the duration of the individual stimuli that are 

presented to the participants. Moreover, these strategies are not only frequently used 

but also frequently recommended in methodological literature (Picton et al., 2000; 

DeBoer, Scott, & Nelson, 2007; Hoehl & Wahl, 2012).  

One of the most frequent contributors to an infant ERP-study’s attrition rate, as 

stated in published articles, is fussiness. However, as of yet, no comprehensive 

definition has been provided for this concept. Most likely, fussiness is involved in a 

marked decline in attention toward the stimuli presented. If an infant displays negative 

affect prior to observing a minimum number of trials, the study is terminated and the 

infant is marked as “fussy” for the purposes of the study. However, in their recent 

meta-analysis of 149 infant ERP-articles, Stets, Stahl, and Reid (2012) could not find 

any correlation between study-features such as the number of conditions or the 

stimulus duration and the attrition rate that was attributed to fussiness. This was true 
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irrespective of the age group tested. The only obvious impact on attrition rate in the 

examined infant ERP-studies was the nature of the stimuli (purely visual, purely 

auditory, or auditory and visual combined). The age of the published article itself was 

also a predictor of attrition rate, as was the number of participants that had been tested 

in total for a particular study or experimental group. Infants participating in a study 

using purely visual stimulation were twice as likely to have to be excluded from the 

study’s final analysis than those participating in a study using purely auditory 

stimulation. Also, the attrition rate tended to be lower if a study had been published 

recently and was higher if the total number of infants tested was high (see Stets, Stahl, 

& Reid, 2012).  

In an attempt to investigate the impact of study design on infant attention, we 

created an ERP-study with eight experimental conditions. Currently, the most 

frequently used strategy is to present infants with stimuli from two, typically very 

similar, experimental conditions which only differ in the experimental manipulation. 

However, as can be seen in Stets and Reid (2011), this repetitive presentation of very 

similar stimuli can eventually result in changes in attention-allocation toward the 

stimuli, which is likely due to habituation, thereby producing unforeseen changes in 

the ERP-measures for each condition. We hypothesized that a more variable and, 

consequently, more engaging stimulus-presentation would help to sustain infant 

attention over the course of a test-session. We consequently presented a group of 12- 

to 13-month-old infants with stimuli originating from three theoretically distinct 

research articles (Csibra, Tucker, Volein, & Johnson, 2000; Halit, de Haan, & Johnson, 

2003; and Hoehl, Reid, Mooney, & Striano, 2008). Csibra et al. (2000) and Halit et al. 

(2003) had conducted their studies with groups of 12-month-old infants and 

contributed six of our eight conditions. Csibra and colleagues (2000) had investigated 
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the occurrence of a spike-potential preceding a saccade-onset (i.e., a purely perceptual 

phenomenon) in three groups of participants. Halit, de Haan, and Johnson (2003) were 

interested in face-perception and -processing when infants were presented with human 

and monkey faces in different orientations and without any social components. As 

these studies had been conducted with infants of approximately the same age-range as 

our study, we aimed to replicate the results of the original articles at least in part. 

Finally, as only two studies using visual stimuli have been published with this age 

group, we included the stimuli originating from Hoehl et al. (2008) even though it had 

not been used with this age group before. These two conditions were aimed at the 

perception and processing of social information as they presented the infants with 

faces looking either towards or away from a toy. Therefore the focus in this study lay 

less on the perception of the faces as such and more on the processing of the social 

information conveyed by the person’s eye-gaze direction. Again, as such stimuli had 

not been tested with this age group before, we were cautious to expect a replication of 

the results of the original study.  
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Materials 

 

Methods – general 

 The stimuli depicting the eight conditions used in the present study originated 

from three theoretically unrelated research articles. Therefore, we decided to treat them 

as separate studies. In the following, we will first describe the general methods that 

were common to all of the conditions and then explain the specifics of the separate 

studies in more detail. 

  

Participants 

 We tested a total of 18 typically developing infants aged between 367 and 396 

days (M = 381.61 days, SD = 9.66 days). All of the participants had been born full-

term (between 37 and 42 weeks of gestation) and with a normal birth-weight (< 2500 

g). Twelve of the infants were male, six were female. Written consent for study-

participation had been provided by the parents or caregivers accompanying the infants 

prior to the test-session.  

 

Procedure 

 For the entire duration of the test-session, the infants were seated on their 

caregiver’s lap in a dimly lit, quiet testing-booth. The viewing distance to the 17-inch 

screen presenting the stimuli was 70 cm. The eight conditions were presented in two 

blocks of eight stimuli with each block containing one stimulus for each of the 

conditions. The only difference between these two blocks was the order of the 

conditions. An uninterrupted run through the entire stimulus presentation lasted for 

approximately 11 minutes with each condition being presented 34 times (total number 
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of stimuli = 272). The duration of the inter-stimulus interval was 1000 ms in all cases. 

When an infant showed obvious signs of fussiness or boredom he or she was given a 

short break, and the test-session was discontinued when the infant’s attention to the 

screen could not be recaptured. To control for the infants’ attention to the screen, their 

behaviour was video-recorded onto the hard-drive of a DVD-recorder for later off-line 

coding. 

 

EEG recording and analysis 

The EEGs were recorded continuously from 32 scalp locations at a sampling 

rate of 1000 Hz using Ag-AgCl ring-electrodes, arranged according to the 10-20 

system, and a conductive gel. During data-acquisition, the recordings were referenced 

to FCz. The data were amplified with a NeuroScan SynAmps amplifier, and vertical 

and horizontal electro-oculargrams were recorded bipolarly to control for artefacts 

resulting from eye-movements. The data were filtered with a band-pass filter with the 

upper edge set at 0.3 Hz and the lower edge set at 30 Hz. Baseline-correction was 

conducted using a baseline of 100 ms.  
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Study 1 – the Spike-Potential (Csibra, Tucker, Volein, & Johnson, 2000) 

Participants 

 14 of 18 participants entered the final analysis. Four infants had to be excluded 

from the analysis because they did not reach the minimal criterion of providing at least 

10 artefact-free trials to the averaging process due to fussiness or inattentiveness (n = 

3) or because the averaged data contained frequency-artefacts (n = 1)1. (We define 

“fussiness” as the state when the infant shows signs of unhappiness with the test-

situation such as a negative facial expression, agitated movements, vocalizations, or 

trying to remove single electrodes or the entire cap.) The overall attrition rate for this 

analysis was 22.22%. The mean-number of artefact-free trials contributed by the 

infants was 24.21 (range: 16 to 39). These numbers refer to both of the conditions that 

contributed data to this analysis in conjunction as the statistical analysis was collapsed 

for the conditions. This was also the case in the original study (G. Csibra, personal 

communication, September 25, 2012).  

 

Stimuli 

 The stimuli were created using Adobe Photoshop based on the descriptions 

provided in Csibra et al. (2000). One of three different objects (a red rubber-boat, a 

wooden rattle, or a yellow rubber-duck) appeared in an upright orientation in the centre 

of the screen set on a gray background. For a total duration of 990 ms, these objects 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The data from one participant showed frequency noise particularly at the location of 

Pz. As opposed to the other analyses in which data are presented as averages derived 

from at least two channels, this particular analysis is based on Pz only. Therefore, the 

infant had to be excluded as the noise could not be averaged out of the signal by way 

of averaging over different channels.  
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were spun clockwise or anti-clockwise in the centre of the screen while concurrently 

decreasing in size. In order to create a smooth spinning movement, we presented nine 

different static images of the same object, each turned by an angle of 90° and slightly 

reduced in size for 110 ms. 

For the gap trials, the last image depicting the spinning object in an upright 

position and at its smallest size (approx. 2 x 2 cm) was presented for 110 ms and then 

disappeared leaving the screen blank except for the grey background colour. After 200 

ms a black-and-white checkerboard of approximately 5 x 5 cm edge-length appeared 

on either the left or the right side of the screen for 800 ms with the centre of the screen 

being empty (see Figure 1a). In the trials without the gap, the last image depicting the 

spinning object in an upright position and at its smallest size was presented for 110 ms 

to account for the last 110 ms of the 990 ms-spinning-motion and then for another 200 

ms in order to bridge the gap. Again, after these 200 ms a checkerboard appeared to 

one side of the screen while the previously spinning object was still present in the 

centre of the screen. This display was presented for 800 ms (see Figure 1b). The 

spinning-direction and the side on which the checkerboard appeared were 

counterbalanced across trials and conditions. 
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Figure 1a. An example of the setup of a trial depicting the experimental condition 

with a gap (presented for 200 ms) between the spinning and shrinking objects 

(presented for 990 ms, 9 individual images presented for 110 ms each) and the target 

checkerboard (presented for 800 ms). 

 

 

Figure 1b. An example of the setup of a trial depicting the experimental condition 

without a gap (presented for 200 ms) between the spinning and shrinking objects 

(presented for 990 ms, 9 individual images presented for 110 ms each) and the target-

checkerboard (presented for 800 ms). 

 

Data analysis 

 Following the methods outlined in Csibra et al. (2000), we re-referenced the 

data to the average-value of all the channels used. In order to identify the trials that 

would be usable for the statistical analysis, the video-recordings of each individual 
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trial of the gap- or no-gap-conditions were manually inspected frame by frame for 

participants’ potential saccades towards the checkerboard. The first frame counted was 

the one when either the gap or the bridged period started. Each frame had a duration of 

40 ms. Therefore, if a shift in a participant’s eye-gaze direction was detected in frame 

8, for instance, the onset of the saccade was noted as having a latency of 320 ms. 

According to this approximate latency-value of the saccade-onset, we identified the 

positive peak closest to this latency in each individual trial. Then, we took note of the 

exact latency of the respective saccade-onset and of the amplitude at this latency and, 

as the sampling rate in the original article had been set at 500 Hz rather than at the 

1000 Hz that we used, at plus and minus 2 ms around this latency. The same procedure 

was followed for the amplitudes at 10 and 18 ms prior to the established saccade-onset. 

Therefore, we had three amplitude-values for each of the three latency-periods (see 

Figure 2 for an illustration of the sampling-method). Finally, we calculated the average 

amplitude-values for these three time-points (i.e., saccade-onset, 10 ms and 18 ms 

before saccade-onset). Following Csibra et al. (2000), this analysis was only conducted 

for one channel, namely Pz. We discarded any trials in which the participants either 

did not look at the screen at the onset of the gap- or the bridged-period or when they 

had seen it but did not shift their eye-gaze toward the checkerboard within 1000 ms or 

at all. Moreover, trials which were contaminated by movement- or other artefacts and 

trials when the participants shifted their eye-gaze direction to a point off-screen within 

the 1000 ms were excluded from the average as well.  
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Figure 2. An illustration of our sampling-method used for collecting the data for the 

amplitude-comparison between saccade-onset and the time-points of -10 and -18 ms 

before saccade-onset. The highlighted vertical lines stand for the time-points from 

which the amplitudes have been noted. Afterwards, the amplitudes measured at the 

encircled lines were used to calculate the mean-amplitudes for the respective time-

points. 

 

In the analysis presented in Csibra et al. (2000), no differences were found 

between the conditions; i.e., both Gap- and No-Gap-trials elicited spike-potentials to 

the same extents. The only difference that was found between the participants’ 

responses were the latencies at which the spike-potentials and the respective saccades 

occurred. In the No-Gap-trials, the saccades and the preceding spike-potentials 

frequently occurred slightly later than those in the Gap-trials which was attributed to 

the so-called “sticky eyes”-phenomenon. Based on the lack of differences between the 

condition reported in the original paper and as the majority of our participants 

contributed more artefact-free trials for the Gap-condition, we decided to collapse 

trials across conditions which had also been done in later analyses in the original 

article (G. Csibra, personal communication, September 25, 2012). Consequently, we 

conducted two paired-samples t-tests: one comparing the average-amplitudes obtained 

from the latencies at saccade-onsets to those from the time-point 10 ms prior to the 
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respective saccade-onset and another comparing the average-amplitudes obtained from 

the latencies at saccade-onsets to those from the time-point 18 ms prior to the 

respective saccade-onset. However, as mentioned above, the number of artefact-free 

trials contributed for the Gap-condition tended to be higher than the number of trials 

obtained for the condition without the gap. Therefore, we also performed post-hoc 

analyses again using a paired-samples t-test including only data from those infants who 

had contributed minimally 10 artefact-free trials for both conditions to averaging (n = 

5).  
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Study 2 – the N290 and the P400 (Halit, de Haan, & Johnson, 2003) 

Participants 

 15 of 18 tested participants entered the final analysis. Three infants had to be 

excluded from the analysis because they did not reach the minimal criterion of 

providing at least 10 artefact-free trials to the averaging process due to fussiness or 

inattentiveness (n = 3). Therefore, the overall attrition rate for this analysis was 

16.67%. The mean-number of artefact-free trials contributed by the infants across 

conditions was 13.89 (range: 10 to 25). For individual conditions the mean-numbers of 

trials contributed was as follows: MHumanUpright = 14.4, SD = 3.94; MHumanInverted = 13.27, 

SD = 3.13; MMonkeyUpright = 14.4, SD = 4.09; and MMonkeyInverted = 13.47, SD = 2.72. 

 

Stimuli 

 The raw stimuli used in the original study were provided by Olivier Pascalis.  

We edited these using Adobe Photoshop according to the descriptions given in Halit, 

de Haan, and Johnson (2003). We presented faces of humans (n = 3) and of macaque-

monkeys (n = 3). Each of these faces appeared in an upright or in an inverted 

orientation in the centre of the screen for 1000 ms. The background-colour was set to 

grey. The faces had a neutral expression and their gaze-direction was facing straight 

ahead toward the infants. The images showed the faces from a fully frontal view.  

 

Data analysis 

 Following the procedure described in Halit, de Haan, and Johnson (2003), we 

re-referenced the data to the average-value of all the channels used. The data were 

inspected manually for artefacts, and trials in which a participant had not been 

attending to the screen or displayed movement- or eye-artefacts were rejected. For the 
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original article, the statistical analysis had been conducted on the mean-amplitudes 

from six topographically distinct channel-groups. As our EEG-system did not feature 

the same number of electrodes as the one used in the original study, we decided to 

constrain our analyses to one channel-group per hemisphere that would approximately 

cover the same posterior areas as the original article, based on 10-20 locations. 

Therefore, we compared the data from one left and one right medial channel-group 

featuring the following electrodes: P7, P3, and O1 (left medial) and P8, P4, and O2 

(right medial), respectively.  

Congruent with Halit, de Haan, and Johnson (2003), we analyzed the data 

originating from these four conditions for the N290 and for the P400. For the N290-

analysis, we extracted the most negative peak for each of the above-mentioned 

electrodes in the time-window from 140 to 380 ms after stimulus-onset. Then, we 

calculated one mean per channel-group from the negative peaks that had been obtained 

for the three electrodes in each channel-group. This mean-amplitude entered the 

statistical analysis for the N290. Moreover, we took note of the latencies at which the 

negative peaks had occurred at the individual channels and entered the latency of the 

most negative value in the analysis for each channel group. For the analysis of the 

P400, we determined the most positive peak for each of the above-mentioned 

electrodes for the time-period from 380 to 584 ms after stimulus onset. Then, we 

calculated one mean for each of the two channel-groups from the positive peaks that 

had been obtained for each of the three electrodes in the channel-groups. These two 

means then entered the statistical analysis. For both components, the N290 and the 

P400, the analysis of the potential difference in amplitude was conducted using a 2 x 2 

x 2-repeated measures ANOVA with the factors Species (Human and Monkey), 

Orientation (Upright and Inverted), and Location (Left medial and Right medial). The 
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same statistical test was used to establish potential differences in the latencies of the 

N290 and of the P400.  
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Study 3 – the Nc and the PSW (Hoehl, Reid, Mooney, & Striano, 2008) 

Participants 

 14 of 18 tested participants entered the final analysis. Three infants had to be 

excluded from the analysis because they did not reach the minimal criterion of 

providing at least 10 artefact-free trials to the averaging process due to fussiness or 

inattentiveness (n = 3). One infant was excluded due to excessive frequency artefacts 

in the data (n = 1). Therefore, the overall attrition rate for this analysis was 22.22%. 

The mean-number of artefact-free trials contributed by the infants across conditions 

was 13.22 (range: 10 to 22). Trial-contribution for the two individual conditions was as 

follows: MToward = 12.93, SD = 3.52; and MAway = 13.5, SD = 3.7. 

 

Stimuli 

We were provided with the images that had been used in the original study by 

Stefanie Hoehl. The images depicting a female adult who is looking toward or away 

from a toy positioned at eye-level to the side of her head were presented for 1000 ms 

each. Additionally, we presented the same object that Hoehl et al. (2008) had used as a 

central attractor for 500 ms prior to the target stimulus. The background-colour was set 

to white both for the central attractor and for the target-stimuli.  

 

Data analysis 

 Hoehl, Reid, Mooney, and Striano (2008) analyzed the data of their 4-month-

olds for potential differences in the peak-amplitudes and -latencies of the Negative 

component (Nc) between 400 and 600 ms after the onset of the target images. 

Moreover, they compared the mean-amplitudes of the time-window between 700 and 
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1000 ms after target-onset for a difference between the conditions in the Positive 

Slow-Wave (PSW).  

After visual inspection of the individual averages in the obtained data for these 

two conditions, it was apparent that the peaks of the Nc frequently appeared slightly 

earlier than 400 ms after stimulus onset. This can be explained with the developmental 

changes that are expected to have taken place between the ages of 4 months and 1 year 

of age (cf., Rochat, & Striano, 1999; Tomasello, 1995; Taylor & Baldeweg, 2002). 

Therefore, we decided to shift the time-window for the analyses of the Nc-peak and its 

latency from 400 to 600 ms after stimulus-onset to the time-window from 350 to 500 

ms after stimulus-onset. Moreover, due to a slight difference in the EEG-equipment 

used, our left-frontal channel-group featured F3, FC5 (instead of FC3), and C3, and 

our right-frontal channel-group featured F4, FC6 (instead of FC4), and C4, 

respectively. The fronto-central channel-group consisted of Fz and Cz.  
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Results 

   

Study 1 – the Spike-Potential (Csibra, Tucker, Volein, & Johnson, 2000) 

 The cognitive component under investigation in Csibra, Tucker, Volein, and 

Johnson (2000) was the spike-potential – a positive peak located at 10 and 18 ms prior 

to a saccade-onset towards a target-stimulus. As the spike-potential was present in both 

experimental conditions (i.e., trials with or without a gap), the authors had conducted 

their statistical analysis collapsed across these two conditions. Including the data from 

10 out of 26 participants (attrition = 61.5%), they reported significant differences in 

amplitude between the latencies at which the saccade-onsets appeared compared to the 

latencies at 10 ms and at 18 ms before the respective saccade-onsets; F-10ms(1, 9) = 

22.5, p < .002 and F-18ms(1, 9) = 8.1, p < .02 (Csibra, Tucker, Volein, & Johnson, 2000, 

p. 1071). The data from 14 of our 18 1-year-olds replicated these results. The results of 

our amplitude-comparison between saccade-onsets and the latency at -10 ms to the 

respective saccade-onsets was t-10ms(1, 13) = 5.19, p < .001. The results of our 

amplitude-comparison between saccade-onsets and the latency at -18 ms to the 

respective saccade-onsets was t-18ms(1, 13) = 4.04, p = .001 (see Table 1 for a list of the 

respective amplitudes from the individual participants and Figure 3 for an illustration 

of the waveform at channel Pz).  

 As mentioned above, we also conducted paired-samples t-tests using data from 

a subset of five of the 14 infants who entered our final analysis for these conditions. 

This subset of participants contributed 10 usable trials for both of the conditions 

whereas the remaining nine contributed unequal trial-numbers to the average which 

was collapsed across conditions. The paired-samples t-test between saccade-onsets and 

the latency at -10 ms showed no significant difference between the amplitudes at those 
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two time-points. However, when comparing the amplitudes at saccade-onsets and at 18 

ms prior to that sample-point, we found a strong tendency for a significant difference; 

t-18ms(1, 4) = 2.74, p =. 052. Amplitudes were more positive at -18 ms (M = -0.363) 

compared to saccade-onsets (M = -3.368). 

 

 

Figure 3. An illustration of the waveform at channel Pz derived from the averages of 

14 participants collapsed across the conditions. It needs to be noted that time-point 0 

does not represent the onset of the saccades that the infants performed but rather the 

onset of the target stimuli. Moreover, as the latencies at which the infants started their 

saccades were extremely variable within and between individual participants, trials, 

and conditions, great care needs to be taken in interpreting the positive peak at the 

onset of the sharp negative peak shortly after 800 ms (see arrow) as the true location of 

the spike-potential.  
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Table 1. An overview over the mean-amplitudes established from the 14 1-year-olds 

who contributed data to our analysis of the spike-potential in comparison to the time-

points at -10ms and at -18ms before saccade-onset. 

Participant-

Number 

Mean-

Amplitude at 

Saccade-Onset 

in µV 

Mean-

Amplitude at 

-10ms in µV 

Mean-

Amplitude at    

-18ms in µV 

02 25.235 58.421 32.603 

03 4.859 11.582 6.813 

04 -7.227 2.329 -6.065 

06 -6.038 -1.623 -5.382 

07 18.631 30.84 22.056 

08 1.694 13.989 4.072 

09 -6.362 17.526 -4.409 

11 13.566 20.53 16.684 

12 -9.325 18.024 -7.336 

13 3.298 33.310 5.63 

14 -2.818 7.101 -0.57 

16 -4.802 23.715 0.673 

17 -31.574 47.115 -24.43 

18 5.634 14.931 6.454 

Mean 0.341 21.271 3.342 
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Study 2 – the N290 and the P400 (Halit, de Haan, & Johnson, 2003) 

The N290 

The authors of the original paper analyzed the differences in amplitude for two 

components: the N290 (between 140 and 380 ms after stimulus-onset) and the P400 

(between 380 and 584 ms after stimulus-onset). Using the data from 26 out of 85 

participants (attrition = 69.4%), they reported a main-effect of Species on the 

amplitude of the N290 (F(1, 24) = 15.57, p < .01; cf. Halit, de Haan, & Johnson, 2003, 

p. 1184) with the responses to human faces being significantly more negative than 

those for monkey-faces. Moreover, they found the Orientation of the human and 

monkey-faces to have an impact on the amplitude of the N290 as well. A post-hoc test 

revealed that the inverted faces yielded more negative responses than the upright 

stimuli; F(1, 24) = 7.21, p < .02 (p. 1185). The data from 15 of our 18 participants 

showed a tendency towards an interaction between Species and Orientation impacting 

on the amplitude of the N290 (F(1, 14) = 3.36, p = .088). For human faces, the 

amplitude of the N290 was more negative for upright faces (M = -0.226 µV, SE = 

1.432) compared to the inverted ones (M = 2.32 µV, SE = 2.074). For monkey-faces, 

the amplitude of the N290 was more negative for the inverted faces (M = 0.832 µV, SE 

= 1.727) compared to the upright ones (M = 3.599 µV, SE = 2.091; see Figure 4). 

 With respect to the latency of the N290, Halit, de Haan, and Johnson (2003) 

reported a main-effect of Species (F(1, 24) = 16.00, p < .005; p. 1185) with the 

latencies for human faces being significantly longer than those for monkey-faces. The 

Orientation of the faces did not have an effect on the latency of the N290 in the 

original study. The data from our group of 12- to 13-month-olds did not show any 

differences in latency for the N290. 
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Figure 4. The data from our group of 1-year-olds showed a tendency towards an 

interaction of Species and Orientation on the amplitude of the N290 (F(1, 14) = 3.36, p 

= .088). The upright human faces (± SE) yielded more negative responses than the 

inverted human faces (± SE). However, the inverted monkey-faces (± SE) yielded the 

more negative responses compared to the upright monkey-faces (± SE). 

 

The P400 

 Halit, de Haan, and Johnson (2003) did not find any effects on the amplitude of 

the P400 in their data. Our data revealed a strong significant interaction between 

Species and Orientation that impacted on the amplitude of the P400; F(1, 14) = 5.393, 

p = .036. In our data, the P400-amplitudes were significantly more positive for the 

inverted human faces (M = 32.705 µV, SE = 3.898) compared to the upright human 

faces (M = 25.111 µV, SE = 2.692), whereas the upright monkey-faces (M = 33.327 

µV, SE = 4.697) yielded the significantly more positive responses than the inverted 

monkey-faces (M = 29.426 µV, SE = 2.416; see Figure 5).  
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 With respect to the latency of the P400, the authors of the original paper 

reported a main-effect of Species (F(1, 24) = 11.28, p < .01; Halit, de Haan, & 

Johnson, 2003, p. 1185) with the P400 for human faces having a shorter latency than 

the one for monkey-faces. Our data showed a significant effect of Orientation on the 

latency of the P400. Upright faces (M = 474.75 ms, SE = 15.879) had a significantly 

later P400 than inverted faced (M = 451.63 ms, SE = 15.273) irrespective of species 

(F(1, 14) = 6.221, p = .026; see Figure 6). For a comparison of the ERPs reported in 

Halit, de Haan, and Johnson (2003) and those resulting from our data see Figures 7a 

and 7b below.  

 

 

Figure 5. The data from our group of 1-year-olds showed a significant interaction 

between Species and Orientation impacting on the amplitude of the P400 (F(1, 14) = 

5.39, p = .036). The inverted human faces (± SE) yielded the more positive responses 

than the upright human faces (± SE). However, the upright monkey-faces (± SE) 

yielded the more positive responses compared to the inverted monkey-faces (± SE). 
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Figure 6. The data from our group of 1-year-olds showed a significant effect of 

Orientation on the latency of the P400. The faces presented in an upright orientation (± 

SE) had significantly longer latencies for the P400 than the inverted faces (± SE; F(1, 

14) = 6.22, p = .026). This effect was collapsed across species. 
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Figure 7. Part (a) depicts the grand-average ERPs that Halit, de Haan, and Johnson’s 

(2003; Figure 1, p. 1183) had deducted from their data. Part (b) illustrates the grand-

average ERPs that we deducted from the data from our group of 12- to 13-month-olds. 

As can be seen, the morphologies of the original ERPs and ours are very similar. 

However, the directionalities in terms of which condition elicited the more negative or 

positive responses are reversed. 
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Study 3 – the Nc and the PSW (Hoehl, Reid, Mooney, & Striano, 2008) 

The Negative component (Nc) 

 The data of 17 of 64 4-month-olds tested in the original study (attrition = 

73.4%) revealed a main-effect of Condition on the peak of the Nc for the time-window 

from 400 to 600 ms after stimulus-onset. The stimuli depicting the condition with the 

averted gaze showed significantly more negative responses compared to the Toward-

condition (F(1, 16) = 4.8, p = .044; cf. Hoehl, Reid, Mooney, & Striano, 2008, p. 13). 

Moreover, in the condition in which the adult was looking toward the toy, the Nc-peak 

had a significantly shorter latency than the Away-condition (F(1, 16) = 5.52, p = .034; 

p. 13). The 2 x 3-repeated measures ANOVAs on the data from 14 of 18 participants in 

our study did not show any effects of Condition on either the amplitude of the Nc-peak 

or on its latency for the time-window from 350 to 500 ms. 

 

The Positive Slow-Wave (PSW) 

 Hoehl, Reid, Mooney, and Striano (2008) reported a main-effect of Condition 

on the mean-amplitude of the PSW for the time-window from 700 to 1000 ms after 

stimulus onset (F(1, 16) = 4.68, p = .046; cf. Hoehl, Reid, Mooney, & Striano, 2008, p. 

12). The Toward-condition showed a significantly more positive response than the 

Away-condition. Our data did not show an effect of Condition on the amplitude of the 

PSW. However, we found a tendency toward an effect of Location; F(1, 13) = 3.11, p 

= .061. The right-frontal channels (M = 21.467 µV, SE = 2.7) had more positive 

responses compared to the left-frontal (M = 17.868 µV, SE = 2.905) and fronto-central 

channels (M = 21.054 µV, SE = 3.841; see Figure 8). For a comparison of the ERPs 

reported in Hoehl, Reid, Mooney, and Striano (2008) and those resulting from our data 

see Figure 9, below. 
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Figure 8. The data from our group of 1-year-olds showed a tendency towards an effect 

of Location on the amplitude of the Positive Slow-Wave (PSW). The right-frontal 

channel-group (F4, FC6, and C4; ± SE) had more positive amplitudes compared to the 

fronto-central channel group (Fz and Cz; ± SE) and the left-frontal channel-group (F3, 

FC5, and C3; ± SE). 

 

 

Figure 9. A comparison between the ERPs deducted from the data published in Hoehl, 

Reid, Mooney, and Striano (2008; Figure 2, p. 13; sample electrode depicted on the 

left) and those deducted from our data (sample electrode depicted on the right). As can 

be seen, the morphologies of the original ERPs and those from the present study are 

approximately similar. 
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Discussion 

 

  The main-objective of the current study was to investigate the consequences of 

presenting a group of 1-year-old infants with eight highly variable stimuli rather than 

the normative two experimental conditions which are typically very similar to each 

other in every way, other than in the experimental manipulation. In the following, we 

will first assess the effects this eight-condition paradigm had on attrition and put this 

into perspective compared to typically experienced attrition rates. Then, we will 

compare the number of trials collected in the present study to those presented in 

previous research. Finally, we will discuss our findings in comparison to those 

reported in the respective original articles. 

 

General Discussion of the Methodology 

According to common agreement among researchers (e.g., Thierry, 2005; DeBoer, 

Scott, & Nelson, 2007), infants should not be capable of meeting the high task 

demands required due to the extended period of time needed for providing a suitable 

number of trials from viewing eight conditions. It would be expected that the infants’ 

interest in the stimulus-presentation would decrease soon after the start of the 

experimental session. Consequently, the infants would cease to cooperate prior to the 

acquisition of data in the volume required for standard ERP-analysis with this 

population. Moreover, were data to be acquired, the attrition rate experienced with 

such a paradigm would be substantial, particularly considering that studies with two 

conditions frequently feature attrition rates between 50 and 75% (see Stets, Stahl, & 

Reid, 2012). Typical examples are the studies by Kobiella, Grossmann, Reid, and 

Striano (2008; age group = 7 months, number of conditions = 2, attrition rate = 
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55.3%), de Haan and Nelson (1997; age group = 6 months, number of conditions = 2, 

mean-attrition rate across all four experimental groups = 63.58%), and Jeschonek, 

Marinovic, Hoehl, Elsner, and Pauen (2010; age group = 8 months, number of 

conditions = 2, attrition rate = 74.6%).  

In their meta-analysis of ERP-studies with infants, which had been published 

between 1978 and 2010, Stets, Stahl, and Reid (2012) reported a mean-attrition rate for 

infant studies of 49.2% (range: 0-83.8%) for the 181 experimental groups that had 

been included in their final analysis. This means that, when researchers plan to conduct 

an ERP-study with an infant population, 50% of the time and resources that will be 

allocated to data-collection will usually be spent on test-sessions from which no data 

will be obtained. This is a considerable amount of resources that could be spent on 

other studies and could, therefore, be used more effectively. However, as the attrition 

rates reported for our analyses clearly indicate, it is possible to make the process of 

collecting data from infants much more efficient. We were essentially conducting three 

studies simultaneously. Rather than the previously predicted effect of inducing 

fussiness in the participants due to the increased volume of presented stimuli, in 

actuality, presenting the infants with eight different experimental conditions appeared 

to help sustain the infants’ attention span. Therefore, as opposed to increasing the risk 

for attrition and for a premature end of the experimental session, the variability of the 

stimulus-presentation increased the infants’ compliance and their ability to attend to 

the stimuli for a relatively longer period of time. Moreover, not only was it possible to 

test the infants for approximately 10 to 11 minutes, we were also able to extract at least 

10 artefact-free trials for all of the analyses from the infants’ data.  

This is also in line with Stets, Stahl, and Reid’s (2012) finding that there were 

no correlations in infant ERP-studies between the number of experimental conditions 
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presented to the participants and either (1) the overall attrition rate reported for a study 

or (2) the nature of the stimuli or (3) the attrition rate due to fussiness. However, what 

the authors did report, amongst other effects, was the potential presence of a selection 

bias (see their Figure 2, p. 235). They found that the number of studies that have a 

larger standard error (i.e., more variable data coming from included participants from a 

smaller group of originally tested infants) and are published is much smaller than the 

number of published studies with less variation in the data (i.e., less variable data 

coming from few included participants from among a large number of originally tested 

infants). This likely reflects a potential bias in terms of inclusion criteria and what kind 

of characteristics, such as a positive temperament, an infant must have in order to be 

included into a study’s data set. As has been mentioned in Stets, Stahl, and Reid 

(2012), this draws the generalisability of the results into question. 

As has been mentioned previously, the total number of stimuli presented in the 

current study when the stimulus-presentation ran uninterruptedly was 272. A minimum 

of 70 artefact-free trials (25.7%) were obtained during the 11-minute test-session out 

of the 272 which could be presented for the infants who were included in our analyses. 

In infant EEG-research, generally, the mean-number of artefact-free trials included in 

analyses is around 65 per condition (see Table 2 in Stets, Stahl, and Reid, 2012). 

However, there was great variation (SD =182.19) between studies in the number of 

trials used per condition. Part of this variation is likely due to the 19 studies which 

used odd-ball paradigms (e.g., He, Hotson, & Trainor, 2007) in which the often 

auditory stimuli were of short duration and were very well attended (M = 290.43, SD = 

403.76, range: 8-1186). However, the mean-number of artefact-free trials included in 

the other 105 experimental groups reported in Stets, Stahl, and Reid (2012) was much 
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lower, 24.7 (SD = 10.8, range: 9-79.8) and is in line with the amount of data obtained 

in the current study.  

Another important ratio is the percentage of usable trials relative to the number 

of trials presented to the participants per condition. As for the number of included 

trials, our ratio here (41.73%) is comparable to those reported in other studies using 

similar standard paradigms. Stets, Stahl, and Reid (2012) reported that the mean-

number of stimuli presented to a participant per condition was 117.8 (SD = 202.39) for 

131 out of the 181 experimental groups. As for the number of included trials, the 

standard deviation is very high due to the groups originating from odd-ball paradigms.2 

Therefore, when calculating the percentage for how many of the mean-number of trials 

that have been presented per condition typically enter the final analysis on average, the 

result is 55.52%. However, calculating the same value based on the data from only the 

70 experimental groups which did not originate from a study using an odd-ball 

paradigm and provided data on both the number of presented and included trials per 

condition, the value goes down to 44.18% (Mpresented = 53.51, SD = 35.21, range: 1-

108; Mincluded = 23.64, SD = 9.36, range: 9 to 53) per condition. For the 18 

experimental groups with odd-ball paradigms that provided data on both presented and 

included trials, the percentage of number of trials included on average from the 

number of trials presented on average is 73.17% (Mpresented = 400.98, SD = 352.28, 

range: 1 to 800; Mincluded = 293.38, SD = 415.25, range: 8 to 1186). In the present 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2It needs to be noted that Stets, Stahl, and Reid (2012) only presented their analysis 

collapsed for all types of experimental tasks and did not differentiate between 

experimental groups originating from standard and odd-ball paradigms. Therefore, the 

above numbers for the respective variables and types of experimental tasks were 

calculated for the present study.	
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study, the mean-number of trials presented per condition and analysis was 36.35 (SD = 

4.06, range: 28.86 to 42) and the mean-number of trials included per condition and 

analysis was 15.17 (SD = 4.03, range: 10.86 to 24.29). This results in a percentage of 

usable trials per condition and analysis of 41.73% – again, a value that is comparable 

to the 44.18% from the 70 non-odd-ball experimental groups from Stets, Stahl, and 

Reid’s (2012) meta-analysis. Therefore, despite presenting a larger array of 

experimental conditions, we were able to acquire the comparable amount of data per 

condition as is seen in two-condition paradigms. Moreover, as we had eight conditions, 

the method used in the present study – if validated by future studies – can be four 

times more efficient for data acquisition than when contrasted with standard 

paradigms. 

 

Discussion of the Results of the Individual Sub-Studies 

Study 1 – the Spike-Potential (Csibra, Tucker, Volein, & Johnson, 2000) 

 Csibra, Tucker, Volein, and Johnson (2000) showed that the spike-potential 

could be reliably measured at 10 and 18 ms before a saccade-onset towards a target-

stimulus in both a group of adults and in a group of 12-month-olds. The results from 

our group of 12-month-old infants replicated Csibra et al.’s (2000) results. There were 

significant differences in amplitude between the time-points at saccade-onsets and at 

10 and 18 ms prior to the respective saccade-onsets. However, as described above this 

was only the case when all infants were analysed. When only analysing the data from 

the infants who contributed minimally 10 trials for both gap- and bridged trials, only 

the amplitude-comparison between -18 ms and at saccade-onset was showing a strong 

trend towards a significant difference. This is likely due to the loss in statistical power 
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as nine of the 14 infants were removed from the dataset for this analysis allowing for a 

larger impact from variations between individual participants and trials. 

Finally, we could replicate the so-called “sticky-eyes” phenomenon which had 

also been reported in Csibra et al. (2000). As in the original study, infants took longer 

to disengage their attention from the small object depicted in the centre of the screen 

and to shift their eye-gaze towards the checkerboard appearing on the side in the 

condition when the gap was bridged. Overall, we interpret our replication of the 

original findings such that the presence of the other six experimental conditions did not 

impact on the way the gap- or bridged trials were processed by our group of 12- to 13-

month-olds.  

 

Study 2 – the N290 and the P400 (Halit, de Haan, & Johnson, 2003) 

Halit, de Haan, and Johnson (2003) reported significant main-effects of species 

and orientation on the amplitude of the N290. They reported more negative amplitudes 

for human faces relative to the monkeys and more negative responses for inverted 

human faces compared to upright human faces. Moreover, a main-effect of species on 

the latency of the N290 was found. The data from our group of 1-year-olds did not 

show separate main-effects of species and orientation on either the amplitude or the 

latency of the N290. However, we found a tendency towards an interaction between 

these factors that was impacting on the amplitude of the N290 only. Additionally, 

while Halit, de Haan, and Johnson (2003) could not find significant differences in 

N290-amplitude for upright and inverted monkey-faces, our data showed a tendency 

towards a difference in N290-amplitude which was the opposite to our results for the 

human faces. The latency of the N290 remained unaffected by these four experimental 

conditions in our study. With respect to the P400, our results also differed from the 
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ones presented in Halit, de Haan, and Johnson (2003). While the authors of the original 

paper could not report differences in the amplitudes of the P400, our data revealed a 

significant interaction of species and orientation for the P400-amplitude. Moreover, 

contrary to the main-effect of species on the P400-latency reported in the original 

paper, we found a main-effect of orientation, not species, on the latency of the P400.  

As can be seen in Figure 7b above, despite the differences in the effects found, 

the ERPs sourced from our data are morphologically similar to those presented in 

Halit, de Haan, and Johnson (2003). Therefore, in terms of the morphology of the 

resulting waveform, our overall results are broadly in alignment with those reported in 

the original article.  However, the fact that the number of conditions in our study was 

greater than the original study might have contributed to the discrepancies between the 

results of the original study and our own. It is possible that the cognitive processes 

involved in the processing of the other experimental conditions may have interfered 

with the processing of the upright and inverted human and monkey-faces, and vice 

versa. This may be the case given that the other stimuli also involved faces (i.e., the 

Toward- and Away-conditions). This may have had an impact on the way the human 

and monkey-faces were processed by our group of participants – even though the 

social contexts that are depicted in the stimuli are very different from one another.  

Alternatively, given the potential changes in ERP components as shown in 

Stets and Reid (2011) or Nikkel and Karrer (1994), the differences in the effects and 

interactions found may be partly due to the minimum criterion applied in the original 

study and here. The infants who had been included in the analysis in Halit et al. (2003) 

had to contribute at least 25 artefact-free trials for each of the four conditions. Here, 

due to the naturally lower number of trials that could be presented per condition, the 

minimum criterion was set to 10. Consequently, it could be argued that the separate 
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main-effects reported in Halit, de Haan, and Johnson (2003) were derived from 

interactions between the factors of species and orientation in the earlier stages of the 

experimental session. This argumentation may also be supported by the similarity 

between the waveform morphologies that were derived from our data and those 

presented in the respective original study (see Figure 7 above). 

 

Study 3 – the Nc and the PSW (Hoehl, Reid, Mooney, & Striano, 2008) 

 Hoehl, Reid, Mooney, and Striano (2008) reported their group of 4-month-old 

infants to show significantly more negative responses towards the stimuli depicting the 

Away-condition. Following previous suggestions from earlier studies, this was 

interpreted as suggesting that the infants had allocated more attention to these stimuli. 

However, even though more attention had been paid to the Away-condition, the 

processing of the Toward-stimuli was faster as shown in the significantly shorter 

latencies of the Nc for this condition. The results from our group of 1-year-olds did not 

show any differences in the amplitude or in the latency of the Nc. This may well be 

due to the age of our participants compared to the ones reported in Hoehl, Reid, 

Mooney, and Striano (2008) and the developmental changes in terms of social 

information processing that will have taken place during these eight months (e.g., 

Rochat, & Striano, 1999).  

Stets and Reid (2011) argued that the evolution of the morphology during the 

testing session in the Negative component in Hoehl et al.’s (2008) data might be due to 

the infants’ familiarity with the situation in which an adult is looking toward or away 

from an object. The authors suggested that the more negative responses would have 

been found for the Toward-condition in the early stages of an experimental session 

because this would be the social situation with which the infants would be more 
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familiar. Someone looking away from a toy, however, is likely to be a situation that the 

infants would not have encountered during the first four postnatal months. Stets and 

Reid (2011) further argued that the shift in the directionality of the Nc-responses as a 

function of the time-course of the experiment might therefore be explained with the 

infants’ loss of interest in, or habituation to, the Toward-stimuli. Consequently, the 

infant would then allocate more attention to the Away-stimuli as this condition became 

more interesting relative to the Toward-condition. Following this logic, it is possible to 

conjecture that we did not find differences in the way the Toward- and Away-

conditions have been processed by our group of 12-month-olds because by this age the 

infants would have had multiple experiences of both these social situations. 

Consequently, they could be expected to allocate equal amounts of attention to both of 

these conditions. 

 Finally, Hoehl, Reid, Mooney, and Striano (2008) found an effect of condition 

on the amplitude of the PSW. They interpreted this as an indication that the memory 

trace for the toys, which had been highlighted by the adult’s gaze towards them, was 

relatively more imprinted than the trace for the objects that were not being looked at. 

We did not find an effect of condition on the amplitude of the PSW. However, we 

found a tendency toward an effect of location that was modulating the mean-amplitude 

of the PSW. The right-frontal channels showed the more positive responses compared 

to the other two channel-groups. Comparing this effect with the morphologies of the 

PSWs presented in Figure 2 in Hoehl, Reid, Mooney, and Striano (2008; p. 13), one 

might argue that already at the age of 4 months a tendency towards this effect has been 

present. The ERPs of the right-frontal channels (presented on the right side of their 

Figure 2) were appeared to be more positive compared to the ERPs for the fronto-

central channel group and reliably more positive than those for the left-frontal channel-
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group. However, apparently the difference was not a significant one in the group of 4-

month-olds, with the current data suggesting that eight additional months would 

produce location effects for this task.  

 As was the case for the experimental conditions originating from Halit, de 

Haan, and Johnson (2003), we found different results compared to the original article 

for the Toward- and Away-conditions (Hoehl, Reid, Mooney, & Striano, 2008). 

However, parallel to what we could show for the upright and inverted human and 

monkey-faces, the ERPs sourced from our set of data were morphologically similar to 

the ones presented in Hoehl et al. (2008; for a comparison see Figure 9). This indicates 

that our results are generally representative of the cognitive processes involved in 

processing such stimuli at an age of 12 to 13 months. 
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Implications 

   

Scientific work with infant populations requires large amount of resources, due, 

in part, to high attrition rates. Attrition is frequently caused by limited infant attention 

capacities, coupled with the requirements for minimum trial-contributions to individual 

ERP-averages. Here, the variation in stimuli appears to decrease attrition rates. In our 

analyses, we experienced attrition rates that were between 25 and 30% lower than the 

average attrition rate typically reported (Stets, Stahl, & Reid, 2012) Furthermore, we 

demonstrated that it is possible to increase the amount of usable ERP-data obtained 

from infant participants. Our results show that by presenting 12- to 13-month-olds with 

eight as opposed to the more typical two experimental conditions, the amount of 

artefact-free data to be obtained may be increased three to four times. We attribute this 

to the variation present in the stimulus-presentation, allowing the infants’ attention to 

be sustained for an extended period in comparison to previous studies. The approach 

outlined in the present study can therefore facilitate data acquisition in an infant 

population when contrasted to current approaches.   

Another positive aspect of such a decrease in attrition rates is that a study’s 

results can potentially be seen as being more representative of the population. For 

example, Marshall, Reeb, and Fox (2009) conducted an ERP-study with three groups 

of 9-month-olds who had been rated on their temperament by their parents prior to 

testing. Apart from their finding that there were processing-differences between the 

three groups, as a by-product, the authors noted that the attrition rates experienced for 

these groups differed substantially as well. The 9-month-old infants who had received 

negative ratings were much more likely to have to be excluded from the study’s 

analysis compared to those rated positively and to a control group which had not been 
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rated at all prior to the test-session. Based on these data and on the likely selection bias 

reported in Stets, Stahl, and Reid (2012), it seems apparent that representativeness of a 

study’s results cannot be assumed in all cases – especially, when the attrition rate is 

comparatively high. Consequently, using a paradigm that helps to decrease the 

likelihood for attrition can be instrumental in ensuring the generalisability of a study’s 

results.  

With respect to replicating the results of the three original research studies, our 

data show varying results. While some of the effects were replicated (Csibra, Tucker, 

Volein, & Johnson, 2000), others were not (e.g., our significant interaction between 

Species and Orientation which was affecting the amplitude of the P400 for the upright 

and inverted human and monkey faces where Halit, de Haan, & Johnson [2003] had 

not found any effects). Particularly in the case of the conditions originating from 

Hoehl, Reid, Mooney, and Striano (2008), the difference to the original findings might 

be due to the developmental changes between the ages of 4 and 12 months. An 

additional factor that might potentially have caused differences in results was 

interference between the face stimuli used in different conditions derived from 

different original experiments: both Halit, de Haan, and Johnson (2003) and Hoehl et 

al. (2008) included facial stimuli. Therefore, we recommend researchers to be very 

cautious in selecting experimental conditions when attempting to employ a paradigm 

similar to the one outlined in this article. The conditions presented to participants 

should cover distinct perceptual or cognitive domains in order to ensure that the 

processing of one set of conditions will not interfere with the processing of another set 

of conditions. For instance, it might be possible to mix two conditions on colour-

perception with stimuli involving social cognition, and a task on saccades. An 

alternative approach would be to present the participants with a small amount of 
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experimental conditions but a large variety of different stimuli for each of the 

conditions. However, the variability of the stimuli would still be relatively limited as 

the stimuli could only be different to each other to a certain degree. Too much 

variability between the stimuli could potentially lead to unwanted differences in the 

neural responses towards those stimuli and, ultimately, in the responses towards the 

experimental conditions. Therefore, we would recommend caution with such an 

approach. 
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Conclusions 

 

 In the present infant ERP-study we tested a group of 12- to 13-month-olds with 

eight rather than the more typical two experimental conditions. These conditions 

originated from three distinct research articles addressing theoretically unrelated 

aspects of cognitive development. As a consequence of the high variability in the 

stimulus presentation, we were able to collect a sufficient number of artefact-free trials 

to conduct statistical analyses comparable to each of the original analyses. Moreover, 

for each of these three analyses, we had improved attrition rates when contrasted with 

studies which utilized two conditions. The effects and interactions that we could draw 

from our data did not entirely match those reported in the original articles. However, 

the morphologies of our waveforms did match those in the original publications. We 

conjecture that discrepancies in the reported effects and interactions were a 

consequence of cross-experiment interference between those conditions that included 

facial and, therefore, social stimuli. Therefore, we advise researchers to take great care 

in their choice of experimental conditions should they decide to attempt applying the 

outlined method for presenting stimuli in a study. However, our results suggest that the 

process of collecting infant ERP-data can be improved and that infants can benefit 

from it. Given that we could not replicate all of the original results, we are aware 

however that our methodological results are preliminary and require refinement and 

validation through further studies – also from other laboratories. Therefore, we would 

encourage the research community to apply similar paradigms with varying 

components (e.g., intermixing auditory and visual stimuli) in order to validate the 

approach that has been taken in the current study.  
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 Counter to what would generally be expected to happen when infants are 

presented with a comparatively high number of experimental conditions, Study 3 

showed that the increased variability in the stimulus-presentation helped the infants to 

remain attentive. This led to a decrease in the attrition rate experienced in this study. 

Moreover, the numbers of usable trials per condition were comparable to typical infant 

ERP-studies that feature fewer conditions and include a minimum criterion of 10 

artefact-free trials per condition. However, due to the high number of experimental 

conditions in Study 3, the overall number of analysable trials that could be collected 

from an infant was increased in general. This means that the approach to study-design 

outlined in Study 3 may well be more time- and cost-effective that the strategies that 

are currently used by most developmental psychologists. Aiming to further explore the 

findings of both Study 1 and Study 3, the final study (Study 4) combines the strategies 

outlined in the earlier two. Therefore, the data collected for the eight experimental 

conditions in Study 3 are analysed along the lines described in Study 1, with an 

examination of how individual trials and their order of acquisition may interact with 

the development of morphological aspects of the ERP. As shown in Chapter 2, a more 

detailed analysis of infant ERP-data may provide new insights into infant cognitive 

processes. Moreover, with respect to the interferences between the conditions found in 

Study 3, a clearer image of the dynamics underlying the impact of the study-design on 

the infants’ neural responses may emerge. This study seeks to bring these issues 

together and, in so doing, merge those factors into a final experimental culmination 

within this thesis. 



 

 

 

Chapter 5 
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Abstract 

 

 Extracting sufficient numbers of artifact-free trials per condition from an infant 

EEG to compute meaningful ERP-averages is challenging in standard paradigms, 

which typically feature two experimental conditions. The common practice of 

excluding data from participants providing fewer than typically 10 or 15 per condition 

only serves to intensify this challenge. Recent research has shown both that 

meaningful information can be obtained from participants who do not meet the 

standard minimal criterion and that infants are capable of meeting a minimal criterion 

of 10 artifact-free trials when varied stimuli are presented and, therefore, cognitive 

workload is higher. We therefore investigated the contribution of individual ERP-trials 

to the amplitudes and latencies of infant ERP-components across an array of 

conditions that were obtained in a within-subjects design in the same testing session.  

In order to investigate the potential dynamics underlying the acquisition of 

different infant ERP-components, analyses were performed including only the first 

trial in each condition and the results were compared with different numbers of usable 

trials, up to a maximum of 10 trials. We hypothesized that amplitude-changes across 

an experimental session may be found in all components, whereas previously this has 

been found only in attention-related components. Additionally, we theorized that the 

latencies of individual aspects of ERP-morphology might be affected by the number of 

trials included in an individual’s average. Our results show that amplitude modulations 

including a change in component-directionality are restricted specifically to attention-

related components whereas latencies can undergo changes on a more regular basis 

dependent on how much exposure an infant has had to a certain kind of stimulus. We 

conclude that investigating the time-course of the development of an infant’s EEG-
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signal can uncover new insights into infant cognition as such dynamics have 

previously been largely unknown. 
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Introduction 

 

 In order to obtain a reasonable number of artifact-free trials per condition from 

an infant participant in an ERP-study, infants are normally tested for as long as 

possible (Hoehl, & Wahl, 2012). In a standard paradigm in which conditions are 

presented with equal frequency, the minimum criterion for entering a participant’s data 

into the final analysis can be as low as five artifact-free trials per condition (e.g., 

Grossmann, Oberecker, Koch, & Friederici, 2010) or as high as 30 (e.g., Csibra, Davis, 

Spratling, & Johnson, 2000). In infant odd-ball paradigms which typically present brief 

auditory stimuli, the minimal criterion for data-inclusion is usually much higher (e.g., 

65 deviant trials in Weber, Hahne, Friedrich, & Friederici, 2004; 100 odd-ball trials in 

He, Hotson, & Trainor, 2007). In order to obtain high numbers of analyzable trials per 

condition from an infant, researchers tend to try and use a great diversity of methods to 

keep the participants happy and interested in the stimulus-presentation. For example, 

Richards (2003) presented his test-trials embedded in an episode of Sesame Street in 

order to draw and maintain infants’ attention. Csibra, Tucker, and Johnson (1998) used 

various background-sounds presented in tandem with the visual stimuli to help their 6-

month-olds maintain interest. It is also common to give the infants short breaks from 

the stimulus-presentation at the first signs of distress or inattentiveness, i.e., when an 

infant becomes “fussy”. Despite the lack of a solid definition for this state from the 

literature, infants who cry or show negative affect, are often labeled “fussy”. The issue 

of how and when to intervene in such a case is left to the discretion of the researcher in 

any given test-session. However, making such a crucial decision, which is likely key to 

which infants will provide data to the statistical analysis, requires extensive training 

and experience.  
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 If an infant cannot provide the requisite number of trials in all conditions 

involved in a standard-paradigm ERP-study, then their data will not be included in the 

study’s final analysis and the infants’ only contribution to the study will be to increase 

its attrition rate. In a meta-analysis of published articles, Stets, Stahl, and Reid (2012) 

investigated the possible connections between study-features such as the duration of 

stimuli or the nature of the stimuli used in a study and the reported attrition rate for the 

respective infant ERP-study. According to the results of their meta-regression, the 

majority of the study-features under investigation did not impact on attrition rates – 

one study feature that surprisingly did not impact was the number of conditions 

presented (Stets, Stahl, & Reid, 2012). Within infant EEG-research the number of 

conditions is usually small in number in order to try and avoid overloading the infants’ 

cognitive systems. Recommendations along these lines can be found frequently in 

methodological literature (e.g., Hoehl, & Wahl, 2012; Picton et al., 2000). 

Consequently, the mean-number of conditions reported in the meta-analysis by Stets, 

Stahl, and Reid (2012) was 2.39 with a range from 1 to 6 (see Table 2, p. 234). 

However, in their recent ERP-study with a group of 12-month-olds, Stets, Burt, and 

Reid (under review) presented their participants with eight experimental conditions 

originating from three distinct research articles (Csibra, Tucker, Volein, & Johnson, 

2000; Halit, de Haan, & Johnson, 2003; Hoehl, Reid, Mooney, & Striano, 2008). Stets, 

Burt, and Reid (under review) obtained a minimum of 10 artifact-free trials per 

condition from at least 14 of their 18 participants. It appeared that the infants were 

attracted by the comparatively high number of experimental conditions that gave rise 

to the high variability of the stimuli presented. Rather than losing interest in the stimuli 

shortly after the start of the presentation, the infants’ attention was sustained, yielding 

an increase in obtained data by a factor of three or four while simultaneously 
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decreasing the overall attrition rate to as low as 15%. This is in stark contrast to the 

more typical attrition rates of between 61.5% and 73.4% in the original studies (Stets, 

Burt, & Reid, under review).  

 Another study-feature that was included in the aforementioned meta-analysis 

and found not to have any impact on attrition rate was the mean-number of artifact-free 

trials per condition included in the analyses (Stets, Stahl, & Reid, 2012). On average 

65.4 trials were found to be included per condition. However, as Stets, Burt, and Reid 

(under review) pointed out, this average is inflated by the very high numbers of trials 

used in odd-ball paradigms, with the mean for standard (non-oddball) experimental 

paradigms equaling 24.7. Despite – or because of – the comparatively high number of 

experimental conditions that were presented to the 12-month-olds in Stets, Burt, and 

Reid (under review), the majority of infants provided the minimum of 10 artifact-free 

trials for all of the conditions and analyses in that study (M = 15.2; Stets, Burt, & Reid, 

under review). The proportion of useable trials (which averaged at around 42%) in 

Stets, Burt, and Reid’s (under review) experiment was similar to other studies using 

standard paradigms (for which 44.2% of trials were useable as calculated for the 70 

standard-paradigm groups presented in Stets, Stahl, and Reid’s [2012] meta-analysis).  

Based on these methodological findings, it is apparent that currently held 

assumptions about how ERP-paradigms interact with infant participants should be re-

evaluated. Additionally, as has been shown in Stets and Reid (2011), the assumption 

that ERP-components are stable in terms of component-directionalities should be 

treated with caution since, according to their re-analysis of ERP-data from a group of 

4-month-olds (originally published by Hoehl, Reid, Mooney, & Striano, 2008), the 

number of trials included in the averaging process can impact on the results obtained. 

For example, with 10 or more trials included in the average, Hoehl et al. (2008) 
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reported the Negative component (Nc) to have a more negative peak in the condition 

where the adult was looking away from an object compared to when the adult was 

looking toward the object. In comparison, using the same data, Stets and Reid (2011) 

found the effect to be reversed when the first seven trials for each of the two conditions 

were analyzed. Moreover, analyzing only the first three trials from the 17 originally 

analyzed participants and from seven infants previously excluded for not contributing 

a minimum of 10 trials per condition, found a significant difference between 

conditions in the Nc-peak (Stets, & Reid, 2011) at this early point in the experimental 

paradigm.  

 Finally, another frequently reported aspect of infant-derived ERP-components 

is their latency, which provides information on how fast or slow a stimulus is 

processed by a participant. This is usually interpreted as an indication for the amount 

of effort an individual needs to make to process a particular stimulus in its entirety 

(Rugg, & Coles, 1995). Whereas alterations in ERP-amplitudes are occasionally 

reported (e.g., Nikkel, & Karrer, 1994), ERP-latencies have so far been reported to be 

stable over the course of an experimental session (e.g., Polich, 1986). When significant 

effects related to latency have been reported within infancy literature, they have been 

typically related to developmental processes as shown by different processing-speeds 

in groups of participants representing different developmental stages (e.g., Little, 

Thomas, & Letterman, 1999). This phenomenon was also apparent at a gross level in 

Stets, Burt, and Reid’s (under review) data: the time-window for the analysis of the Nc 

had to be moved for the 12-month-old participants compared to the one used in Hoehl 

et al. (2008). For their 4-month-olds, Hoehl et al. (2008) used the time-window 

between 400 and 600 ms after stimulus-onset. Stets, Burt, and Reid (under review) 

moved the time-window to between 350 and 500 ms in order to accurately capture the 
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peak of the Nc component as, when visually inspecting the individual averages, it 

appeared that it often occurred very close to and earlier than at 400 ms. Therefore, for 

a study with highly variable visual stimuli as those presented in Stets, Burt, and Reid 

(under review), the question arises whether this generally experienced stability in 

latency in response to stimuli could be replicated or should even be expected. Based on 

the latency-differences between the effects reported for the N290- and the P400-

latencies in Halit, de Haan, and Johnson (2003) as compared to those reported in Stets, 

Burt, and Reid (under review), this assumption might not be met under all 

circumstances – especially so given that the effects found for the amplitudes also did 

not always match those reported in the original studies. One could reason that the 

amplitude- and latency-differences between the original study and Stets, Burt, and 

Reid (under review) result from the apparent differences between the paradigms (i.e., 

four experimental conditions in Halit, de Haan, & Johnson [2003] versus eight 

conditions in Stets, Burt, & Reid [under review]).   

 The analysis presented in this paper aims to understand the behavior of ERP-

components when increasing numbers of trials are used to form the average waveform 

for individual participants. ERPs were recorded from participants viewing multiple 

conditions within the same experimental session. As noted by Nikkel and Karrer 

(1994) and de Haan, and Nelson (1999, p. 1114, Footnote 1), Stets and Reid (2011) 

found changes in the Nc-amplitude depending on how often an infant had been 

presented with an experimental condition. In this paper, we will follow the same 

routine for these conditions. Moreover, to our knowledge, no attempts have been made 

to investigate potential changes in the morphologies of other infant ERP-components 

as a function of the number of trials present in the average.  
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Having presented their 12-month-olds with eight experimental conditions, 

Stets, Burt, and Reid (under review) reported on five separate ERP-components: (a) 

the Spike-Potential (SP), (b) the N290, (c) the P400, (d) the Nc, and (e) the Positive 

Slow-Wave (PSW). The SP is related to an individual’s preparation to shift eye-gaze 

direction and was recorded in response to stimuli presenting a gap or a bridged period 

between an attractor and a target checkerboard (Csibra, Tucker, Volein, & Johnson, 

2000). The N290 and the P400 are reported to be involved in face processing and face 

recognition and were recorded in response to human and monkey faces presented in an 

upright or inverted orientation, looking straight at the infant (de Haan, & Nelson, 1999; 

Halit, de Haan, & Johnson, 2003). The Nc has previously been related to attention-

allocation (Courchesne, Ganz, & Norcia, 1981), and the PSW is frequently reported to 

be related to embedding information about a certain type of stimulus in memory or in 

updating environmental context (e.g., Webb, Long, & Nelson, 2005). These two 

components were recorded in response to females directing their eye-gaze either 

toward or away from a toy, never at the infant. Both the N290 and the P400 and the Nc 

and the PSW seem to be closely related and frequently co-occur. We hypothesize that 

amplitude-changes, as seen in Stets and Reid (2011), might also be present in other 

infant components (apart from the Nc) depending on the number of artifact-free trials 

included in the analyses, i.e., how far an experimental session has progressed and, 

ultimately, how much exposure an individual had to an experimental condition. 

Therefore, we used the first 10 trials which were of an analyzable quality for each of 

the conditions from the datasets presented in Stets, Burt, and Reid (under review). The 

current study attempts to replicate Stets and Reid’s (2011) finding of changes in the Nc 

due to the number of trials included in the average. Moreover, we hope to assess 

whether amplitude-modulations caused by the increasing amount of experience a 
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participant has with the conditions, are only to be found in components connected to 

attention-processes or, alternatively, if such modulations can also be found in infant 

ERP-components that are not thought to be related to attention. Furthermore, we aim 

to clarify if similar changes can be found in the components’ latencies or if such 

modulations are solely to be seen in the amplitudes of the components.  
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Methods 

 

Participants, stimuli, procedure, EEG recording and data-analysis 

 The data analyzed in the current study were presented in Stets, Burt, and Reid 

(under review). Therefore, for the specifics concerning all experimental details, please 

refer to Stets, Burt, and Reid (under review). In the following, we will outline the 

particulars of the new analyses that we conducted on these data. 

 

Data Re-Analysis 

 We conducted the same statistical tests that had been performed in Stets, Burt, 

and Reid (under review). However, instead of using all available artifact-free trials in 

the average waveforms, they were created by including increasing numbers of trials 

from trial 1 through to trial 10 (i.e., one average with only the first trial, one average 

with the first two trials, etc.). In the following, we will refer to them as “F1” for “first 

trial only”, “F2” for “first two trials only”, “F3” for “first three trials only”, and so on.  

Stets, Burt, and Reid’s (under review) experiment combined the stimuli and conditions 

from three separate papers each of which contributed data to a separate analysis. 

Analysis 1 followed the statistical analysis described in Csibra et al. (2000) with trials 

being collapsed across the two conditions (G. Csibra, personal communication, 

September 25, 2012). Paired-samples t-tests were performed in which (a) the mean-

amplitudes measured at three sample-points from around the saccade-onsets to the 

mean-amplitudes from three sample-points from around 10 ms prior to the respective 

saccade-onsets and (b) the mean-amplitudes measured at three sample-points from 

around saccade-onsets to those from three sample-points from around 18 ms prior to 

the respective saccade-onsets were compared.  
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Analysis 2 used the data from the conditions including human and monkey 

faces presented in upright and inverted orientations (see Halit, de Haan, & Johnson, 

2003). First, we created averages including only specific numbers of trials. Then, we 

performed 2 x 2 x 2-repeated measures ANOVAs with the factors Species (Human and 

Monkey), Orientation (upright and inverted), and Location (a Left medial channel 

group and a Right medial one) on both the amplitudes and latencies for both the N290 

(in the time-window from 140 to 380 ms after stimulus-onset) and the P400 (in the 

time-window from 380 to 584 ms after stimulus-onset).  

In Analysis 3, the data originating from the Toward- and Away-conditions 

were assessed (see Hoehl, Reid, Mooney, & Striano, 2008). We conducted 2 x 3-

repeated measures ANOVAs with the factors Condition (Toward and Away) and 

Location (a left-frontal channel group, a fronto-central group, and a right-frontal 

group) for the amplitudes of the Nc (in the time-window from 350 to 500 ms after 

stimulus-onset) and the PSW (in the time-window from 700 to 1000 ms after stimulus-

onset) as well as for the latency of the Nc. Again, these analyses were conducted for 

datasets including decreasing numbers of trials from 10 down to the first usable trial.  

As has been explained above, the averages used in these analyses consist of 

increasing numbers of trials by adding one artifact-free trial to the previous average. 

This means that the datasets are not independent from each other and, on the contrary, 

strongly related to each other. Consequently, the possibility arises that, in our analyses 

with multiple comparisons, significant results may be found by chance rather than 

based on a true difference between the investigated factors, i.e., a Type I error or a 

false positive may occur (Sheskin, 2011). Therefore, we performed post-hoc one-way 

ANOVAs on the datasets which are building on each other in order to establish if there 

were significant differences between them that may give rise to a false positive. We 
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performed these one-way ANOVAs including a post-hoc Bonferroni-correction. 

Moreover, we attempted to incorporate data from excluded participants where possible 

– following the approach outlined in Analysis Two in Stets and Reid (2010). In the 

cases in which this was possible, the respective results will be indicated below. 

However, it was not possible to include all 18 participants’ data in any of the analyses 

as the data of one infant in particular were too contaminated with movement-artifacts 

while in all other cases, not more than one artifact-free trial could be obtained from 

some of the conditions. Therefore, in order to adhere to the common strategy to 

include infants only to analyses to which they can contribute equal numbers of trials, 

further participants had to retain their excluded status. 
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Results 

 

The analysis below is organized to follow similar conventions to those of the 

three experiments whose stimuli were interleaved with each other to create the single 

experiment. These data were initially presented in Stets, Burt, and Reid (under review) 

to assess whether infants would attend more to experiments with a highly variable 

stimulus-presentation. 

 

Analysis 1 – the Spike-Potential 

 Csibra, Tucker, Volein, and Johnson (2000) reported significantly more 

positive amplitudes at 18 and at 10 ms prior to a saccade-onset towards a target-

checkerboard in their group of 10 12-month-olds (MSacOns = 0.8 µV, M-10ms = 3.2 µV, 

F-10ms(1, 9) = 22.5, p < .002; M-18ms = 2.1 µV, F-18ms(1, 9) = 8.1, p < .02; p. 1071). Stets, 

Burt, and Reid (under review) replicated these results with their group of 14 12-month-

olds (MSacOns = 0.34 µV, M-10ms = 21.27 µV, t-10ms(1, 13) = 5.19, p < .001; M-18ms = 3.34 

µV, t-18ms(1, 13) = 4.04, p = .001; p. 13). These effects appear to be highly robust and 

are present in the data from the first presentations onwards (i.e., from F1 through to 

F10). All of the amplitude-comparisons between the sampling points at saccade-onsets 

and at -10 ms showed significant differences in the F-datasets; p ≤ .001 (see Table 1 

and Figure 1). Additionally, when comparing the amplitudes at the sampling-points at 

saccade-onsets and at -18 ms, all datasets from F1 up to F10 showed significant 

differences between the amplitudes; p ≤ .01 (see Table 1 and Figure 1). Moreover, in 

an additional analysis of F1 including data from two of the previously four excluded 

participants, amplitude differences between -18 ms and saccade onsets and between -

10 ms and saccade onsets were found to be significant as well; t-18ms(1, 15) = 3.34, p = 
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.004 and t-10ms(1, 15) = 4.478, p = .000, respectively. In this analysis the amplitudes at -

18 ms and at -10 ms were significantly more positive compared to those at saccade 

onsets as well (M-18ms = 3.33 µV, M-10ms = 18.62 µV, and MSac = -1.61 µV). 
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Table 1. The Mean-amplitudes and p-values for the comparisons between saccade-

onsets and -10 ms and between saccade-onsets and -18 ms in the F-datasets. 

 

Dataset Mean-

Amplitude 

at Saccade-

Onset in µV 

Mean-

Amplitude 

at -10 ms in 

µV 

p-value of 

the 

Amplitude-

Comparison 

between 

Saccade-

Onsets and    

-10 ms 

Mean-

Amplitude 

at -18 ms in 

µV 

p-value of 

the 

Amplitude-

Comparison 

between 

Saccade-

Onsets and    

-18 ms 

F1 -6.31 15.04 .001 -1.52 .014 

F2 -4.98 15.55 .001 -1.47 .013 

F3 -4.32 16.65 .001 -0.60 .003 

F4 -5.53 15.68 .001 -2.27 .002 

F5 -2.89 17.59 < .001 0.71 .001 

F6 -3.57 16.39 < .001 -0.54 .001 

F7 -1.83 18.26 .001 1.33 .001 

F8 -1.48 18.00 .001 1.77 < .001 

F9 -0.54 19.66 .001 2.51 .001 

F10 -0.40 19.7 .001 2.62 .001 

Stets, Burt, & 

Reid (under 

review) 

0.34 21.27 < .001 3.34 .001 

Csibra, 

Tucker, 

Volein, & 

Johnson 

(2000) 

0.80 3.20 < .002 2.10 < .02 
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Figure 1. An illustration of the mean-amplitudes (± SE) calculated from the 

amplitudes from three sample-points around -18 ms before their respective saccade-

onset, from around -10 ms before their respective saccade-onset, and from around the 

saccade-onset (n = 14). Depicted are the Spike-Potentials for our F-datasets from F1 

through to F10 as well as the data presented in Stets, Burt, and Reid (under review; 

“All” for “all available artifact-free trials included”) and the data from Csibra, Tucker, 

Volein, and Johnson (2000; “OS” for “original study”). All datasets feature significant 

differences between saccade-onsets and -10 ms (p ≤ .002) as well as between saccade-

onsets and -18 ms (p ≤ .02). 

 

Finally, the post-hoc one-way ANOVA revealed that there were no significant 

differences between the F-datasets either for the saccade onset or for the sample-point 

at -10 ms or for the sample-point at -18 ms. 
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Analysis 2 – The N290 and the P400 

The N290 

 Halit, de Haan, and Johnson (2003) reported that the Species of the faces had a 

significant impact on the peak-amplitude of the N290 with human faces eliciting more 

negative responses than monkey faces – irrespective of orientation; MHuman = -8.5 µV, 

SD = 5.6; MMonkey = 7.3 µV, SD = 5.4; F(1, 24) = 15.57, p < .01 (Halit, de Haan, & 

Johnson, 2003, p. 1184). Moreover, these authors reported an effect of Orientation 

from a post-hoc analysis with the N290 peaking more negatively for inverted as 

compared to upright faces – irrespective of species; F(1, 24) = 7.21, p < .02 (see p. 

1185). These effects were not replicated either in Stets, Burt, and Reid (under review) 

where all available trials had been included per condition or in our analyses with the F-

datasets. In the current analyses, we found significant interactions between Species and 

Orientations in datasets F2, F6, F7, F8, F9, and F10 (p ≤ .05) as well as tendencies 

towards significant differences in datasets F1, F3, F4, and F5 (p ≤ .08; see Table 2a for 

Mean-amplitudes, SDs and respective p-values; see Figure 2a). 

 In the post-hoc one-way ANOVAs with the Bonferroni-adjustment, we found 

significant differences between the F1-datasets for Human Upright. For the averages 

derived from the channel-group over the left hemisphere, we found F1 to be 

significantly different from F5 through to F10 as well as the dataset presented in Stets, 

Burt, and Reid (under review); p ≤ .027. For the averages derived from the channel-

group over the right hemisphere, we found F1 to be significantly different from F7, F8, 

F9, F10, and the datasets including all available artifact-free trials per condition; p ≤ 

.019. No further differences were found for this condition between the datasets. For 

inverted human faces, no significant differences were found between any of the 

datasets. The same was true for the averages for upright monkey faces derived from 
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the channel-group over the left hemisphere. However, for the averages for Monkey 

Upright which were derived from the right channel-group, F1 was significantly 

different from F5 through to F10 as well as from the dataset presented in Stets, Burt, 

and Reid (under review); p ≤ .017. The difference between F1 and F4 showed a 

tendency towards significance; p = .069. For the datasets for Monkey Inverted that 

were derived from the left channel-group, F1 showed to be significantly different from 

F3 through to F10 as well as from the average with all artifact-free trials included; p ≤ 

.013. No other differences were found for these datasets. None of the F-datasets for 

inverted monkey faces derived from the right channel-group were significantly 

different from each other. 

 Finally, in an attempt to lend support to the data-analysis approach outlined in 

Analysis Two of Stets and Reid (2010), we performed additional analyses trying to 

include the data from the excluded participants when possible. For the conditions 

presenting upright and inverted human and monkey faces, this was only possible for 

the F1-dataset and only for two out of the three excluded infants. The 2x2x2 repeated 

measures ANOVA with 17 of 18 tested participants revealed that the results mirrored 

those of the ANOVA described above. No effect of species or orientation was found. 

However, the interaction between these two factors was significant; F(1, 16) = 6.344, p 

= .023. As seen in the analysis including 15 out of 18 tested participants, Human 

Upright elicited the most negative responses (M = -21.088 µV, SD = 18.967) followed 

by Monkey Inverted (M = -16.050 µV, SD = 13.368), Monkey Upright (M = -10.476 

µV, SD =11.729), and with Human Inverted eliciting the least negative responses (M = 

-6.723 µV, SD = 16.769). 

 



Table 2a. The Mean-amplitudes and Standard Deviations for Human and Monkey faces presented in Upright and Inverted orientations in the F-

datasets, in the data presented in Stets, Burt, and Reid (under review), and in Halit, de Haan, and Johnson (2003) as well as the p-values for the 

respective Species*Orientation-Interactions for the N290. 

 
Dataset M-

Amplitude 
for Human 
Upright in 
µV 

SD M-
Amplitude 
for Human 
Inverted in 
µV 

SD M-
Amplitude 
for Monkey 
Upright in 
µV 

SD M-
Amplitude 
for Monkey 
Inverted in 
µV 

SD p-values for 
the 
Species*Orien-
tation-
Interaction 

F1 -21.56 25.87 -7.08 22.08 -12.41 14.99 -16.15 19.41 .057 
F2 -13.43 22.6 -1.39 18.26 -4.63 12.70 -8.74 15.3 .038 
F3 -6.76 16.10 -0.30 14.57 -1.11 13.94 -6.51 11.66 .064 
F4 -6.5 14.12 0.5 13.26 -0.57 16.66 -2.03 12.63 .08 
F5 -4.3 11.68 1.74 12.08 0.71 13.98 -1.94 10.26 .073 
F6 -3.20 10.75 2.45 11.35 3.44 10.78 -1.65 10.23 .011 
F7 -1.71 10.17 2.36 11.10 3.80 10.40 -0.42 9.26 .05 
F8 -1.06 9.07 3.38 10.08 4.98 11.35 .032 10.10 .014 
F9 -1.49 8.2 2.66 10.23 4.69 12.26 0.52 9.41 .013 
F10 -0.89 8.41 2.64 9.83 3.90 11.98 0.24 9.19 .025 
Stets, Burt, 
& Reid 
(under 
review) 

-0.23 6.91 2.32 9.83 3.6 9.27 0.83 9.18 .088 

Halit, de 
Haan, & 
Johnson 
(2003) 

-6.5 6.4 10.7 6.6 -0.5 5.9 0.5 5.9 .005 
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Figure 2a. An illustration of the mean-N290-peaks (± SD) for conditions Human 

Upright, Human Inverted, Monkey Upright, and Monkey Inverted (n = 15). Depicted 

are our F-datasets from F1 through to F10 as well as the data presented in Stets, Burt, 

and Reid (under review; “All” for “all available artifact-free trials included”) and the 

data from Halit, de Haan, and Johnson (2003; “OS” for “original study”). Datasets F2, 

F6, F7, F8, F9, F10, and OS feature significant differences between the conditions, i.e., 

an interaction between species and orientation (p ≤ .05). Datasets F1, F3, F4, F5, and 

All feature tendencies towards significant interactions (p ≤ .088). 

 

 

 In Halit, de Haan, and Johnson’s (2003) data, Species were found to have a 

significant effect on the latency of the N290 with humans yielding a later peak than 

monkeys; MHuman = 296, SD = 19; MMonkey = 268, SD = 17; F(1, 24) = 16.00, p < .005 

(p. 1185). However, Stets, Burt, and Reid (under review) did not replicate this effect 

when including all available artifact-free trials per condition into their analyses. In the 
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data-analyses in the present study, apart from dataset F6, which shows a significant 

effect of Species on the N290-latency (F(1, 14) = 8.46, p = .011), only F5 shows a 

trend in this direction (F(1, 14) = 3.5, p = .082). In both cases, humans elicited an 

earlier N290-peak compared to monkeys, which is the opposite effect to that reported 

in Halit, de Haan, and Johnson (2003). All other F-datasets showed no effect of 

species. However, as can be seen in Table 2b and Figure 2b below, our datasets 

including decreasing numbers of trials revealed more varied results. Instead of the 

latency being shorter for humans compared to monkeys in all F-datasets, the trend of 

directionality varies over the course of the test-session.  

  Additionally, apart from datasets F3 and F6, we found significant latency 

effects for Location in datasets F1, F2, F4, F7, F8, F9, and F10 (p ≤ .046) with a strong 

tendency in dataset F5; p = .059 (see Table 2c and Figure 2c). In all cases, the latency 

of the N290-peak was shorter in the channel-group in the right hemisphere compared 

to the one in the left hemisphere. Csibra, Tucker, Volein, and Johnson (2003) also 

reported an effect of location in their data. However, these authors used a different 

EEG-system and had three channel-groups per hemisphere. Moreover, their location-

effect was not reflected in the hemispheres but in the laterality of the different channel-

groups within the hemispheres. Therefore, a meaningful comparison between the 

effects found in our data and those reported in the original study is not possible. The 

effect of location on the N290-latency could also be found in an additional analysis of 

the F1-dataset including data from two of the previously three excluded participants; F 

(1, 16) = 7.368, p = .015. Again, the N290-latency was shorter over the right channels 

(M = 241.088 ms, SD = 32.727) as compared to the left channel-group (M = 265.108 

ms, SD = 28.181). 
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 The post-hoc one-way ANOVAs with the respective corrections revealed that 

there were no significant differences between any of the F-datasets for any of the 

conditions or channel-groups for the latency of the N290. 

 

 

Table 2b. The Mean-latencies and Standard Deviations for Human and Monkey faces 

in the F-datasets, in the data presented in Stets, Burt, and Reid (under review), and in 

Halit, de Haan, and Johnson (2003) as well as the p-values for the respective effects of 

Species for the N290. 

 

Dataset M-Latency 

for Humans 

in ms 

SD  M-Latency 

for Monkeys 

in ms 

SD p-value for 

the Species-

Effects 

F1 261.17 69.34 250.93 70.86 ns 

F2 260.22 66.96 256.55 75.11 ns 

F3 251.17 63.88 250.67 80.58 ns 

F4 248.4 68.75 255.68 79.46 ns 

F5 242.87 67.21 263.13 80.57 .082 

F6 234.72 69.84 263.13 78.75 .011 

F7 233.62 70.50 251.1 77.70 ns  

F8 242.88 71.73 246.8 77.49 ns 

F9 249.85 74.46 247.35 77.23 ns 

F10 252.22 68.88 243.93 72.54 ns 

Stets, Burt, & 

Reid (under 

review) 

253.77 76.57 256.62 74.76 ns 

Halit, de 

Haan, & 

Johnson 

(2003) 

296 19 268 17 .005 
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Figure 2b. An illustration of the mean-N290-latencies (± SD) for conditions human 

and monkey-faces (n = 15). Depicted are our F-datasets from F1 through to F10 as 

well as the data presented in Stets, Burt, and Reid (under review; “All” for “all 

available artifact-free trials included”) and the data from Halit, de Haan, and Johnson 

(2003; “OS” for “original study”). Datasets F6 and OS feature significant differences 

between the species (p ≤ .011). Dataset F5 features tendencies towards a significant 

effect (p = .082). 
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Table 2c. The Mean-latencies and Standard Deviations for the Left and Right channel-

groups in the F-datasets, in the data presented in Stets, Burt, and Reid (under review), 

and in Halit, de Haan, and Johnson (2003) as well as the p-values for the respective 

effects of Location for the N290. 

 

Dataset M-Latency 

for the Left 

Hemisphere 

in ms 

SD  M-Latency 

for the Right 

Hemisphere 

in ms 

SD p-value for 

the Location-

Effects 

F1 266.37 71.02 245.83 68.01 .041 

F2 274.95 71.13 241.82 67.19 .003 

F3 255.47 73.7 246.37 71.42 ns 

F4 265.6 79.65 238.48 65.94 .007 

F5 265.82 77.00 240.18 70.39 .059 

F6 259.05 81.67 238.8 67.90 ns 

F7 257.35 82.15 227.37 62.91 .018 

F8 258.17 76.89 231.52 69.9 .002 

F9 260.95 79.92 236.25 69.39 .046 

F10 262.12 76.43 234.03 61.63 .009 

Stets, Burt, & 

Reid (under 

review) 

262.38 81.06 248 69.15 ns 

   

 

 

 

 



 197	
  

 
 
 

Figure 2c. An illustration of the mean-N290-latencies (± SD) for conditions the left 

and the right channel-group (n = 15). Depicted are our F-datasets from F1 through to 

F10 as well as the data presented in Stets, Burt, and Reid (under review; “All” for “all 

available artifact-free trials included”). Datasets F1, F2, F4, F7, F8, F9, and F10 

feature significant differences between the hemispheres (p ≤ .046). Dataset F5 features 

a tendency towards a significant difference (p ≤ .059). (Due to differences in the EEG-

systems used, the location-effect presented in Halit, de Haan, and Johnson [2003] is 

not comparable to those found in our F-datasets.) 

 

 

The P400 

 Whereas Halit, de Haan, and Johnson (2003) did not find any effects on the 

peak-amplitude of the P400, Stets, Burt, and Reid (under review) reported a significant 

interaction between Species and Orientation; F(1, 14) = 5.39, p = .036 (p. 13). This 

interaction could also be found in our F-datasets. However, as can be seen in Table 3a 
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and in Figure 3a, the strength of the effects varies between the different datasets. In F1 

and F2, a marginal tendency towards a species*orientation-interaction was found; p ≤ 

.089. Monkey Upright elicited the most positive P400-amplitudes followed by Human 

Inverted, and Monkey Inverted. Human Upright yielded the least positive P400-

amplitudes. Datasets F3, F4, and F5 did not show significant differences between the 

conditions. However, datasets F6 through to F10 feature significant differences in the 

P400-peaks; p ≤ .044. Again, Monkey Upright had the most positive responses 

followed by Human Inverted, Monkey Inverted, and Human Upright eliciting the least 

positive P400-peaks (see Table 3a and Figure 3a). The above-mentioned marginal 

tendency towards a species*orientation-interaction in F1 was also found in the 

additional analyses including the first artifact-free trial available per condition from 

two of the three excluded participants; F(1, 16) = 3.763, p = .070. Again, Monkey 

Upright was most positive (M = 55.985 µV, SD = 22.255) followed by Human 

Inverted (M = 51.048 µV, SD = 31.751), Monkey Inverted (M = 45.847 µV, SD = 

21.858), and Human Upright (M = 38.902 µV, SD = 19.659). 

 For the P400-amplitude, the post-hoc one-way ANOVAs with the Bonferroni-

correction revealed that there were no significant differences between any of the 

averages derived for upright and inverted human faces in either of the two channel-

groups. For Monkey Upright, F1 showed to be significantly different from F10 and the 

dataset presented in Stets, Burt, and Reid (under review) over the left hemisphere only; 

p ≤ .05. No differences were found between datasets for upright monkey faces over the 

right hemisphere or for either channel-group for Monkey Inverted. 

 

 

 



Table 3a. The Mean-amplitudes and Standard Deviations for Human and Monkey faces presented in Upright and Inverted orientations in the F-

datasets, in the data presented in Stets, Burt, and Reid (under review), and in Halit, de Haan, and Johnson (2003) as well as the p-values for the 

respective Species*Orientation-Interactions for the P400. 

Dataset M-
Amplitude 
for Human 
Upright in 
µV 

SD M-
Amplitude 
for Human 
Inverted in 
µV 

SD M-
Amplitude 
for Monkey 
Upright in 
µV 

SD M-
Amplitude 
for Monkey 
Inverted in 
µV 

SD p-values for 
the 
Species*Orien-
tation-
Interaction 

F1 39.74 31.81 52.28 38.37 57.79 32.07 46.57 30.65 .089 
F2 34.73 28.57 44.32 27.83 48.08 26.70 39.15 20.74 .078 
F3 33.68 23.23 40.27 24.09 44.04 26.11 37.07 20.52 ns 
F4 32.13 22.5 38.71 23.17 38.74 26.35 37.12 15.63 ns 
F5 31.83 16.93 38.55 22.61 39.56 25.68 35.83 14.63 ns 
F6 31.51 17.31 39.05 20.46 39.74 20.25 35.80 14.55 .044 
F7 30.34 16.49 39.11 19.65 39.5 19.45 34.56 13.67 .034 
F8 29.94 15.31 38.44 17.46 38.66 19.85 34.05 13.98 .02 
F9 28.93 14.09 36.45 16.59 38.62 23.99 32.28 13.12 .035 
F10 27.89 14.81 35.27 16.46 37.08 23.36 30.89 11.64 .03 
Stets, Burt, & 
Reid (under 
review) 

25.11 12.75 32.71 17.08 33.33 19.32 29.43 11.47 .036 

Halit, de 
Haan, & 
Johnson 
(2003) 

15.6 8 16 8 16.5 7.9 18.2 7.9 ns 
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Figure 3a. An illustration of the mean-P400-peaks (± SD) for conditions Human 

Upright, Human Inverted, Monkey Upright, and Monkey Inverted (n = 15). Depicted 

are our F-datasets from F1 through to F10 as well as the data presented in Stets, Burt, 

and Reid (under review; “All” for “all available artifact-free trials included”) and the 

data from Halit, de Haan, and Johnson (2003; “OS” for “original study”). Datasets F6, 

F7, F8, F9, F10, and All feature significant differences between the conditions, i.e., an 

interaction between species and orientation (p ≤ .044). Datasets F1, and F2 feature 

tendencies towards significant interactions (p ≤ .089). 

 

 

 Whereas Halit, de Haan, and Johnson (2003) found a significant effect of 

Species on the latency of the P400, neither Stets, Burt, and Reid’s (under review) 

analysis nor our F-datasets showed significant differences due to species. The effect of 

Orientation reported in Stets, Burt, and Reid (under review), which showed inverted 

faces to be processed faster than upright faces (F(1, 14) = 6.22, p = .026; p. 15), was 
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replicated in our dataset including the first usable trial per condition. F1 also showed 

upright faces to be processed more slowly than inverted ones – irrespective of species; 

MUpright = 496.02 ms, SD = 68.07; MInverted = 467.02 ms, SD = 68.23; F(1, 14) = 5.75, p 

= .031. This effect was not replicated when data from two of the previously three 

excluded infants were added to the analysis of the F1-dataset. 

 Additionally, our F-datasets showed significant interactions between Species 

and Orientation on the latency of the P400. In F2, F3, and F4, Human Upright had the 

longest P400-latency followed by Monkey Inverted, Monkey Upright, and Human 

Inverted; p ≤ .043. In F6, Monkey Inverted had the longest P400-latency followed by 

Human Upright, Monkey Upright, and Human Inverted; F(1, 14) = 7.46, p = .016. In 

F7, Human Upright had the longest latency followed by Monkey Inverted, Human 

Inverted, and Monkey Upright; F(1, 14) = 8.11, p = .013. Additionally, F5 showed a 

tendency to a significant interaction between species and orientation; F(1, 14) = 3.93, p 

=. 068. All other datasets did not show significant interactions (see Table 3b and 

Figure 3b). 

 The post-hoc one-way ANOVAs with the Bonferroni-correction revealed that 

there were no differences between the F-datasets for the P400-latency for either 

upright or inverted human faces or for upright or inverted monkey faces. This was true 

for both hemispheres. 

 

 

 

 

 



Table 3b. The Mean-latencies and Standard Deviations for Human and Monkey faces presented in Upright and Inverted orientations in the F-

datasets, in the data presented in Stets, Burt, and Reid (under review), and in Halit, de Haan, and Johnson (2003) as well as the p-values for the 

respective Species*Orientation-Interactions for the P400. 

Dataset M-
Amplitude 
for Human 
Upright in 
µV 

SD M-
Amplitude 
for Human 
Inverted in 
µV 

SD M-
Amplitude 
for Monkey 
Upright in 
µV 

SD M-
Amplitude 
for Monkey 
Inverted in 
µV 

SD p-values for 
the 
Species*Orien-
tation-
Interaction 

F1 500.43 66.91 472.53 68.02 491.6 70.07 461.5 69.15 ns 
F2 517.57 60.86 476.03 69.19 484.83 71.92 508.13 64.09 .043 
F3 505.2 61.22 465.93 74.89 475.87 67.08 500.1 59.38 .022 
F4 500.67 70.5 470.93 77.33 474.6 68.88 498.73 59.31 .018 
F5 497.37 72.42 464.63 74.31 477.63 72.34 489.93 64.57 .068 
F6 487.47 74.74 462.5 73.53 474.07 76.68 496.57 69.60 .016 
F7 490.23 71.10 463.47 75.08 461.03 69.31 483.03 67.07 .013 
F8 481.8 76.83 468.77 73.91 470.47 78.34 472.37 66.38 ns 
F9 486.67 76.11 460 75.37 473.67 82.23 464.17 63.36 ns 
F10 482.6 72.51 456.17 70.86 472.93 78.36 469.03 65.37 ns 
Stets, Burt, & 
Reid (under 
review) 

483.57 73.34 446.67 73.04 465.93 75.17 456.6 63.42 ns 

Halit, de 
Haan, & 
Johnson 
(2003) 

395 23 406 19 419 25 419 24 ns 
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Figure 3b. An illustration of the mean-P400-latencies (± SD) for conditions Human 

Upright, Human Inverted, Monkey Upright, and Monkey Inverted (n = 15). Depicted 

are our F-datasets from F1 through to F10 as well as the data presented in Stets, Burt, 

and Reid (under review; “All” for “all available artifact-free trials included”) and the 

data from Halit, de Haan, and Johnson (2003; “OS” for “original study”). Datasets F2, 

F3, F4, F6, and F7 feature significant differences between the conditions, i.e., an 

interaction between species and orientation (p ≤ .043). Dataset F5 features a tendency 

towards a significant interaction (p ≤ .068). 
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Analysis 3 – The Nc and the PSW 

The Nc 

 Hoehl, Reid, Mooney, and Striano (2008) reported a significant effect of 

Condition on the Nc-peak with the stimuli of a person looking away from a toy 

eliciting a more negative amplitude compared to the Toward-stimuli, between 400 and 

600 ms after stimulus-onset. Stets and Reid (2011) re-analyzed the data from these 4-

month-olds by including only the first three, five, seven, eight, nine, or 10 usable trials 

into their averages. They found a significant difference between the conditions when 

including the first seven trials, however, it was the Toward-condition that elicited the 

most negative responses. Moreover, their Figure 2 (Stets & Reid, 2011, p. 562) 

provides an insight into the underlying processes with regard to the formation of the 

Nc over the course of an experimental session. Stets, Burt, and Reid (under review) did 

not find significant differences in the Nc-peak for their group of 12-month-olds for 

these two conditions between 350 and 500 ms after stimulus-onset. In our re-analysis 

of the data initially presented in Stets, Burt, and Reid (under review), we found a 

significant effect of Condition in F1; F(1, 13) = 5.11, p = .042. As was found in the 

data from the first seven trials in Stets and Reid (2011), the condition in which the 

actor was looking towards the toy yielded the more negative Nc-peak compared to the 

amplitude derived from the first presentation of the Away-condition; MToward = -43.80 

µV, SE = 6.47; MAway = -10.67 µV, SE = 15.9. The remaining F-datasets did not show 

significant differences between the conditions. Moreover, when adding data from three 

of four previously excluded participants to the analysis of F1, the significant difference 

between the condition was replaced by a marginally tendency towards a significant 

difference with the directed gaze condition eliciting the more negative responses (M = 

-32.450 µV, SE = 8.448) compared to the averted gaze condition (M = -8.152 µV, SE = 
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13.221); F(1, 16) = 3.345, p = .086. However, in general we still found the same 

pattern of directionality-modulation that was reported in Stets and Reid (2011). 

Specifically, an initial trend for the Toward-condition to elicit the more negative 

responses progressively shifted towards the Away-condition eliciting the more 

negative responses as the experimental session continued. In Stets and Reid (2011), 

such a change in effect-directionality was found between the averages including nine 

and 10 trials. Our sample was eight months older than Hoehl et al.’s (2008) infants 

which might lead to the assumption that this change should happen in a dataset 

comprising fewer trials as the infants would have had eight months more exposure to 

these two social situations. However, the characteristics of the data in terms of which 

of the conditions would elicit the more negative responses did not occur substantially 

earlier in our data when compared with the data from Hoehl et al.’s (2008) 4-month-

olds. Here, the Toward-condition elicited the more negative responses from F1 through 

to F8 and only from F9 onwards did the Away-condition show the more negative 

responses (see Table 4). No other significant differences for the Nc-amplitudes or -

latencies were found in the other F-datasets. Also, no effects were found for the Nc-

latency when including data from three of the four previously excluded participants 

into the analysis of the F1-dataset. 

 With respect to the amplitude of the Nc, the post-hoc one-way ANOVAs with 

the above-mentioned corrections revealed differences between F1 and the remaining 

datasets for the Toward-condition all three channel-groups under investigation. For the 

left-frontal channels, F1 was significantly different from F3 through to F10 and the 

data presented in Stets, Burt, and Reid (under review); p ≤ .002. For fronto-central 

channels, there was a mild tendency towards a significant difference between F1 and 

F3; p = .082. Moreover, F1 was significantly different from F4 through to F10 as well 
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as from the data including all artifact-free trials for this channel-group; p ≤ .006. For 

the channel-group over the right hemisphere, F1 for the Toward-condition was 

significantly different from all other datasets; p ≤ .004. No significant differences were 

found between any of the datasets originating from the Away-condition. This was true 

for all three channel-groups. Finally, with respect to the Nc-latency, the post-hoc one-

way ANOVAs revealed that there were no significant differences between any of the 

datasets for either condition or channel-group. 
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Table 4. The Mean-amplitudes and Standard Errors of the Negative component for 

conditions Toward and Away in the F-datasets, in the data presented in Stets, Burt, and 

Reid (under review), and in Hoehl, Reid, Mooney, and Striano (2008) as well as the p-

values for the respective effects of Condition. 

 

Dataset M-

Amplitude 

for Toward 

in µV 

SE  M-

Amplitude 

for Away in 

µV 

SE p-value for 

the 

Condition-

Effects 

F1 -43.80 6.47 -10.67 15.9 .042 

F2 -20.94 5.83 -10.93 8.88 ns 

F3 -13.64 4.74 -6.25 6.56 ns 

F4 -8.56 4.86 -7.56 5.15 ns 

F5 -2.88 5.86 -0.35 4.82 ns 

F6 -2.29 5.64 -0.67 3.57 ns 

F7 -1.57 5.06 -1.32 3.86 ns 

F8 -2.16 4.39 -1.96 3.94 ns 

F9 -2.13 4.17 -2.71 3.65 ns 

F10 -2.87 4.12 -3.31 3.45 ns 

Stets, Burt, 

& Reid 

(under 

review) 

-3.04 4.2 -3.99 2.91 ns 

Hoehl, Reid, 

Mooney, & 

Striano 

(2008) 

-14.3 2.26 -19.6 2 .044 
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The PSW 

 As was the case for the Nc, Hoehl, Reid, Mooney, and Striano (2008) reported 

significant differences between the Conditions for the mean-amplitudes of the Positive 

Slow-Wave. In the time-window from 700 to 1000 ms after stimulus-onset, the stimuli 

presenting the directed gaze elicited the more positive responses compared to those 

presenting the averted gaze-condition. Neither Stets, Burt, and Reid’s (under review) 

analysis nor our current re-analysis replicated this effect. However, the directionality 

of the PSW, i.e., which of the conditions elicited the more negative responses relative 

to the other one, undergoes a similar evolution as that which has been seen in the Nc.  

Stets, Burt, and Reid (under review) found a tendency towards an effect of 

location on the PSW-latency that had not been found in the original study. The most 

positive responses were reported in the right-frontal channel-group compared to the 

left-frontal and the fronto-central channel-groups. An effect of Location was also 

found in our datasets from F5 through to F9 (p ≤ .046) with a tendency towards 

significance in F10, (F(1, 13) = 3.27, p = .054). As can be seen in Table 5 and in 

Figure 4, in these datasets, it was the fronto-central channel-group that elicited the 

most positive responses followed by the right-frontal and the left-frontal channels. No 

effects were found in a re-analysis of F1 with data included from three of four 

previously excluded participants.  

 The post-hoc one-way ANOVAs with the Bonferroni-adjustment revealed that 

there were no significant differences between the datasets for either of the two 

conditions or for either of the three channel-groups under investigation. 
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TABLE 5. 
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Figure 4. An illustration of the mean-PSW-amplitude (± SE) for conditions the left-

frontal, the fronto-central, and the right-frontal channel-groups (n = 14). Depicted are 

our F-datasets from F1 through to F10 as well as the data presented in Stets, Burt, and 

Reid (under review; “All” for “all available artifact-free trials included”). Datasets F5, 

F6, F7, F8, and F9 feature significant differences between the locations (p ≤ .046). 

Datasets F10 and All feature tendencies towards significant differences (p ≤ .061). 
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Discussion 

 

 The theory behind averaging over as many trials as possible for an 

experimental condition is that noise originating from artifacts and high variability in 

the individual responses will be averaged out of the signal (e.g., Luck, 2005; Picton et 

al., 2000). The resultant ERP-average is thought to present a clearer image of the 

neural responses within the sample to a certain kind of stimulus. However, capturing 

high numbers of artifact-free trials per condition is not without issues as it can be hard 

to achieve in infant populations (see Marshall, Reeb, & Fox, 2009). Not only do large 

numbers of infants need to be tested, with only a subsample contributing enough trials 

to the analysis, but, additionally, the basic assumption that a component will remain 

stable over all trials while the level of noise in the individual trials will differ may not 

be well-understood in developmental populations. This theory that noise will be 

averaged out of a signal when an increased number of artifact-free trials are included 

into the analysis is commonly referred to as the signal-to-noise ratio. The perfect 

signal-to-noise ratio of 10.0 (i.e., a pure ERP-component without any noise) mentioned 

in Luck (2005) could only be achieved if hundreds of useable trials would be available 

for all of the conditions. Even aiming for a much less optimal signal-to-noise ratio of 

0.4 (i.e., an average consisting of fewer trials with the same component-amplitude but 

with much noise left in the signal) would require infants to provide a minimum of 30 

artifact-free trials per condition as calculated by Stets and Reid (2011; see also Luck, 

2005). It seems apparent that current guidelines for conducting ERP-studies in general 

are clearly designed for adult populations and are not easily applicable to infant 

samples (Reid, 2012). Moreover, as has been shown in Stets and Reid (2011), 

averaging 10 or more artifact-free trials per condition together can potentially hide 
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changes in the components over time which may be of interest in terms of infant 

cognitive or perceptual processing. On the one hand, the Nc-amplitudes for the 

conditions presenting a directed or averted gaze changed slightly and response-

variability was averaged out of the signal when the number of trials in the average 

increased. On the other hand, the peak-amplitudes showing which condition elicited 

the more negative responses changed dramatically depending on the number of trials 

Stets and Reid (2011) included in their analyses. The Nc is related to attention-

allocation and it has been previously shown that infants’ attention to stimuli can 

change over the course of an experimental session (e.g., Nikkel, & Karrer, 1994).  

However, so far it had remained unclear if other components, which were not thought 

to be related to attention, would undergo similar or different changes as a function of 

the number of trials included in the average.  

 With respect to amplitude, we found varied results for the different components 

in our F-datasets. Comparing upright and inverted human and monkey-faces, the noise 

and the amplitude-differences for both the N290 and the P400 are averaged out 

between individual trials when more trials are added to the averages. The relative 

amplitudes, however, remain stable in their directionalities over the different datasets, 

i.e., which condition elicits the more negative or positive responses compared to the 

others. This is in accordance with the assumptions for the signal-to-noise ratio 

described above (Luck, 2005; Picton et al., 2000). For the Nc and as a trend for the 

PSW, we found a pattern which approximated the amplitudes and we also replicated 

the change between conditions dependent on the number of trials for the Nc as 

reported in Stets and Reid (2011). Our findings for the Nc indicate that components 

related specifically to attention-processes are more prone to be modulated by the 

duration of a test-session and the number of trials included in the statistical analyses. 
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In comparison, a perceptual component such as the SP, which is related to planning a 

saccade towards a stimulus (Csibra et al., 2000), and both the N290 and the P400, 

which are related to the processing of faces as opposed to objects and other types of 

stimuli (e.g., de Haan, Pascalis, & Johnson, 2002; de Haan, & Nelson, 1999), appear to 

be less affected by these factors. Therefore, investigations of attention-related 

components might be more likely to find high component-variability and changes in 

the ERPs over the course of the experimental session.  

 So far, the latencies of ERP-components have been seen as indicators for the 

ease of processing a certain kind of stimulus. However, breaking up the data into 

datasets with different numbers of trials and analyzing the latencies based on these 

different averages, reveals a much more complex picture. Despite only showing a 

significant difference in processing-speed in F6 and a tendency in F5, the N290-

latency cycles back and forth between the response to human faces peaking earlier and 

monkey faces eliciting an earlier N290-peak. The questions arise why the human 

condition shows later responses than the monkey condition considering that, based on 

the increased exposure to this species, human faces should be easier to process, and 

why this cycling appears. It is entirely plausible that, at the beginning of a test-session, 

human faces take longer to show a N290 because more details are processed in human 

than in monkey face stimuli. However, after seeing human faces repeatedly (both as 

stimuli in this condition and other experimental conditions) the change-over to the 

monkey-faces eliciting the longer N290-latencies might indicate that the infants study 

the monkey-faces more closely. As has been shown in previous studies, older infants 

tend to process human and monkey-faces in a more “adult-like” fashion and are not as 

good at distinguishing between faces of different monkeys as younger infants (see 

Pascalis, de Haan, & Nelson, 2002). This short interval in which the N290-latencies 
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are longer for monkeys than for humans could be an indication of the infants 

attempting to discriminate between individual monkeys before going back to doing so 

for the human faces. This might also be an explanation for the latency-cycling seen in 

Figure 3b in which Human Upright and Monkey Inverted are taking turns in showing 

the longest P400-latency. Moreover, whereas the directionality for the P400-latencies 

for human faces stays the same in all F-datasets (i.e., Human Upright peaking later 

than Human Inverted), the latencies for Monkey Upright are longer than those for 

Monkey Inverted in F1. Following this, they are then shortest in F2 through to F8, and 

then they are longer again from F9 onwards. Considering the high variability of 

information being directed to the infants (i.e., eight experimental conditions) and, as 

suggested by the low attrition rate reported in Stets, Burt, and Reid (under review), the 

infants were most likely in a more alert state compared to when experiencing a 

standard ERP-paradigm with the more typical two experimental conditions. Following 

the same kind of reasoning as presented above, infants might try to extract meaningful 

information from the stimuli depicting inverted monkeys. However, realizing that no 

valuable information is delivered by these stimuli, they lose interest and no longer 

attempt to process these stimuli in the later stages of the experimental session. This is 

parallel to the claims made in Stets and Reid (2011), who proposed that Hoehl et al.’s 

(2008) 4-month-olds would start to attend more to the Away-stimuli later in the test-

session as they might infer a communicational intent from the person repeatedly 

looking away from the toy towards an unknown location in space.  

The latency-cycling described above is not present in all of the components 

under investigation. For instance, when looking at a component-feature such as 

channel-location which is less related to the contents of the stimuli and more to the 

cognitive processes themselves, latency-cycling cannot be found in all instances. As 
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seen in Figure 2c, irrespective of the condition presented, the channel-group in the left 

hemisphere always elicited the later N290-peaks compared to those in the right 

hemisphere. However, for the P400 and for the Nc, results are mixed and slight shifts 

or opposing latency-patterns between two neighboring datasets can be found. This 

indicates that location-effects for latencies might not always be very informative for all 

possible ERP-components. Moreover, for such analyses the EEG-system used to 

record the data will need to feature enough electrodes to be able to draw meaningful 

conclusions from potential effects. Consequently, results for the same infant ERP-

component coming from different laboratories using different EEG-systems with 

varying numbers of electrodes might not always be comparable and should be treated 

with care. This is especially the case, when the component in question is related to 

attention and criteria for inclusion (i.e., the minimal criterion) are differing between 

labs.  

Finally, it needs to be noted that our datasets feature comparatively large 

amplitudes and standard deviations – especially so, when only few trials form the 

average for a condition. We acknowledge that averages derived from two trials for 

instance are likely to still contain a certain amount of noise. Moreover, such variability 

in the data is more likely to impact on a study’s results if the number of participants is 

relatively small. Therefore, it may be necessary to include more participants in an 

analysis, when averages are calculated based on fewer trials. Following the logic 

outlined in Analysis Two in Stets and Reid (2010), the variability originating from 

individual participants should help to clean out the average overall – as additional 

trials would in an average derived from larger volumes of trials per condition. As 

described above we attempted to perform additional analyses along those lines. 

However, the number of participants that could be added in the additional analyses 
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here may not be sufficient to make claims with respect to this. As mentioned above, 

further studies applying similar strategies of data-analysis are needed to refine and 

validate this approach. 
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Conclusion 

 

 Stets and Reid (2011) were the first to systematically analyze and report the 

changes that an infant ERP-component undergoes depending on the number of artifact-

free trials included in an average. Here, as well as replicating this finding for the Nc-

component, we attempted to assess whether other ERP-components, both attention-

related and -unrelated, showed changes based on the number of trials included. We 

found that the amplitudes of attention-related ERP-components seem to undergo 

similar processes displaying directionality-shifts in terms of which condition elicited 

the most negative Nc-peak or the most positive PSW-response. For the other 

components, the SP, the N290, and the P400, amplitudes do not change in 

directionality but might undergo shifts in terms of polarity with increased number of 

trials included in the average. Moreover, apart from the SP and the PSW, all 

components showed changes in latency effects. In these particular cases, the latencies 

cycled back and forth so that different conditions took shorter or longer to show a 

specific peak across the different F-datasets. Based on our findings that latencies may 

undergo regular changes as a function of the number of trials included in the average 

(i.e., cycling), new insights into cognitive processes may be gained from investigating 

infant ERP-data in this manner. Looking into latencies can likely provide us with 

additional clues as to why and how infants process certain kinds of stimuli in a specific 

way. We were able to analyze the latencies of three different (infant) ERP-

components. However, it would be useful for developmental scientists to apply this 

manner of analyzing ERP-amplitudes and -latencies to a wider range of ERP-

components. This is particularly true as infant populations are very different from adult 

populations. Whereas adults can be instructed to behave in very specific ways during 
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an EEG-session, infants cannot. Additionally, while older children as well as clinical 

populations can potentially be instructed, they might not comply at all times. 

Considering such minor challenges as well as the bigger issues discussed above, the 

need for more improved strategies and tools for data-collection and -analysis is given 

in the wider research community. We believe that, through further refinement and 

development of the strategies, the method of data-analysis outlined here and, earlier, in 

Stets and Reid (2011) combined with the method for stimulus-presentation outlined in 

Stets, Burt, and Reid (under review) can be helpful tools for researchers in general and 

especially for those investigating more challenging populations such as infants or 

clinical samples. Therefore, we would like to invite the wider research community 

from a wider range of disciplines to adopt of this new method of data-collection in 

order to more fully understand its usefulness for a broader research base. 
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 In all stages of an infant ERP-study, i.e., study-design, data-acquisition, and, 

especially data-analysis, common methodological strategies leave large room for 

interpretation by individual researchers. Both Luck (2005) and Picton and colleagues 

(2000) reported what they believed to be good guidelines for analysing infant ERP-

data. These included the steps for the preparation of the raw EEG-data for further 

analyses of the extracted ERPs, how many trials would be sufficient or insufficient to 

form a relatively clean ERP-average, as well as descriptions of which statistical tests 

are commonly conducted in this field of research with such data. Moreover, Picton et 

al. (2000) repeatedly mention how all these steps of analysis should be reported in a 

research article resulting from an ERP-study in order to allow other researchers in the 

field to understand all the parameters of a study and, potentially, be able to easily 

replicate the respective study. However, as has been mentioned in Chapter 1, many of 

these guidelines presented in methodological literature concerning ERP-studies (e.g., 

Luck, 2005; Picton et al., 2000) are well-suited for work with adult participants and 

less applicable with infant populations. Attempts have been made to describe the 

methodological challenges faced by ERP-researchers working with infants and 

possible solutions for these challenges have been suggested (e.g., DeBoer, Scott, & 

Nelson, 2007; Hoehl, & Wahl, 2012). However, with respect to the large variability 

between the strategies of data-analysis used in the different labs and even between 

individual researchers in the same laboratory, no stable solution has to date been 

found. Therefore, with the studies presented in Chapters 2 to 5, I attempted to address 

the aforementioned challenges appearing in the different stages of an experiment and 

provide potential solutions for them. In the following, I will first discuss the results 

and methodological implications of the separate studies individually. In addition, I will 



	
   225	
  

discuss the results and draw conclusions for future infant ERP-studies as a result of 

issues and implications arising from multiple studies presented in this thesis. 

 

General Overview of Available Approaches for Study-Design and Data-Collection 

 

The methodological issues related to infant ERP-studies are numerous and 

cover every single stage of a research study (see Chapter 1). Starting with the 

preparation of the stimulus-presentation, developmental psychologists have multiple 

options to design a study in such a way as to ensure that infants will not lose interest in 

the stimuli too early. For example, Csibra, Tucker, and Johnson (1998) had their visual 

target-stimuli accompanied by various background sounds. Richards (2003) embedded 

his target-stimuli in snippets of a children’s programme. During a test-session, again, 

there are various possibilities to tailor the session to an infant’s needs and intervene 

when necessary. As a first measure, and in order to avoid too much intervention by the 

experimenter, parents are often instructed to try and redirect their infant’s attention 

back to the screen (e.g., Nelson, & Salapatek, 1986). Pang, Edmonds, Desjardins, 

Khan, Trainor, and Taylor (1998) had an assistant play with hand-puppets during the 

presentation of their auditory stimuli when a participant showed signs of boredom. 

Secondly, the infants will commonly be given a break from the stimulus-presentation 

when they show signs of distress. In such a case, the presentation could be interrupted 

by simply turning the screen off and entertaining the infant with blowing bubbles (L. 

Tucker, personal communication, October 18, 2011). Another strategy, used in Parise, 

Handl, and Striano (2010), is to replace the target-stimuli on the monitor by an 

animated stimulus accompanied by background sounds to maintain or regain the 

infants’ focus (see also Clifford, Franklin, Davies, & Holmes, 2009). Alternatively, 
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researchers such as Mason, Braddick, Wattam-Bell, and Atkinson (2001) and Scott 

and Nelson (2006) opted for closely monitoring the infants’ behaviour and only 

presenting the stimuli when participants were looking at the screen. Additionally, if 

trials are judged to not be attended towards by the infant, despite attempting to display 

them when the infant is looking in the direction of the monitor, some researchers also 

delete these trials during the test-session and may repeat the trial when attention has 

been re-established (e.g., Nelson, Henschel, & Collins, 1993; Webb, Long, & Nelson, 

2005). Eventually, when the infants have been given breaks repeatedly and their 

attention cannot be re-established, the session will be discontinued (e.g., Hoehl, & 

Striano, 2008; Jeschonek, Marinovic, Hoehl, Elsner, & Pauen, 2010). Csibra, Tucker, 

and Johnson (2001, p. 162) as well as Csibra, Tucker, Volein, and Johnson (2000, p. 

1070) state that this was the case when the session “had to be interrupted a second 

time”.  

 

Approaching Data-Analysis from a Different Angle 

 

The first study (Stets, & Reid, 2011, see Chapter 2) was a re-analysis of ERP-

data collected from a group of 17 four-month-old infants and published in Hoehl, Reid, 

Mooney, and Striano (2008). Presenting their participants with images of an adult 

either looking toward or away from a toy, these researchers had analysed, among 

others, the minimal peak-amplitude and the latency of the Negative component (Nc) 

between 400 and 600 ms after the onset of the stimuli. Following traditional ways of 

data-analysis, Hoehl et al. (2008) had included only the data from those four-month-

olds from whom they could obtain minimally 10 artefact-free trials per condition for 

the averaging process. However, there are substantial differences between the 
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recommendations in the methodological literature and what is and can be practised by 

the researchers with respect to how many trials should be and are included minimally 

in the statistical analyses to obtain meaningful averages for the respective experimental 

conditions. In an attempt to address this issue, the rationale of the re-analysis presented 

in Stets and Reid (2011; see Chapter 2) was to investigate if there was an optimal 

minimum number of analysable trials that is required in an infant ERP-study. 

Moreover, the study addressed the question if there was also a time-factor impacting 

on the components when forming the averages. Therefore, in a first step, Stets and 

Reid (2011) re-analysed Hoehl et al.’s (2008) data for the peak-amplitudes of the Nc 

including only the first three, five, seven, eight, nine, and 10 artefact-free trials per 

condition when calculating the ERP-averages for the two conditions.  

Comparing the negative peak-amplitudes between the conditions in which the 

adult had been directing her gaze toward the toy and the one in which she had averted 

her gaze, Hoehl and colleagues (2008) had found more negative responses between 

400 and 600 ms after stimulus-onset toward the latter condition. This was interpreted 

as an indication that more of the infants’ attention had been directed to the Away-

stimuli compared to the Toward-ones. Including varying numbers of usable trials in 

the analyses, Stets and Reid (2011) could show that the infants’ attention towards the 

stimuli from the two experimental conditions can shift from one to the other. When 

comparing the peak-amplitudes including three and seven artefact-free trials per 

condition, the directed gaze condition showed to elicit the more negative responses 

compared to the averted gaze condition. In case of the analysis including seven trials 

the difference between the conditions reached a significant level. In the analysis 

including the first three trials, the difference showed a tendency towards significance. 

As can be seen in Figure 2 in Stets and Reid (2011; p. 562), the Toward-condition still 
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yields the more negative Nc-peaks in the dataset including the first nine usable trials in 

the average and only when the first 10 trials are forming the ERP-average, the 

directionality of the difference between the conditions is changing towards what had 

been reported in Hoehl et al. (2008). Consequently, as Hoehl and colleagues (2008) 

conducted their analyses in a conventional manner and did not compare ERPs for 

fewer than 10 artefact-free trials per condition, the shift in attention from one condition 

to the other could not be detected in the original study. However, finding such 

underlying forces working on an ERP-component could help us better understand 

infant cognition in general and, as the Nc has repeatedly been related to attention (e.g., 

Nikkel, & Karrer, 1994; Richards, 2003), attention-related processes in particular. 

Stets and Reid (2011) conclude that, counter to previous assumptions that ERPs are 

stable entities which remain unchanged in response to a certain class of stimuli, the 

relevant processes are much more dynamic. However, the question remained if this is 

only true for attention-related components or for a wider range of ERP-components. 

Moreover, it seems apparent that if attention can shift between conditions in a group of 

infants as young as four months of age, more varied results could be expected in 

populations representing other developmental stages when applying this in-depth way 

of data-analysis as compared to a traditional approach. 

Based on the finding that the amplitude comparison for the first three usable 

trials of the 17 original four-month-olds revealed a tendency to significance, Stets and 

Reid (2011) took another unconventional step. It was assumed that the majority of 

those infants who had been excluded from Hoehl et al.’s (2008) final analysis due to 

not providing minimally 10 artefact-free trials per condition, would at least have three 

analysable trials per condition. Conducting the same statistical tests on the peak-

amplitudes for the first three trials from 24 infants (i.e., the data from the original 17 



	
   229	
  

infants plus the data from seven participants who had been excluded from Hoehl et 

al.’s [2008] final analysis) revealed a statistical significance between the conditions. 

As had been found in the first analysis, the stimuli presenting the directed gaze 

condition – the condition which has been described as being socially more normal and 

familiar for the infants at such a young age (see Stets, & Reid, 2011) – produced a 

more negative Nc-amplitude compared to the stimuli presenting the person looking 

away from the toy. This finding lends further support to the claims made based on the 

findings in Stets and Reid’s (2011) first analysis. Moreover, considering the additional 

issue of typically high exclusion rates in infant ERP-studies due to infants failing to 

meet the minimal criterion, this analysis illustrates that, often, large amounts of usable 

and informative data are discarded in a traditional analysis.   

Finally, it was attempted to establish if the shift in attention between the 

conditions resulted from the number of trials that had been included in the analyses 

only or if there was an additional time-factor involved. Therefore, the analyses were 

re-run for the datasets presented in Analysis 1 (see Chapter 2) with the infants’ data 

being weighted according to the amount of time that had passed from the beginning of 

an individual’s test-session up to the point when the respective number of artefact-free 

trials had been collected for both conditions. As can be seen in Figure 4 in Stets and 

Reid (2011, p. 566; see Chapter 2), the dynamics that the Negative component is 

subject to in this third analysis were the same as those seen in Analysis 1. Again, the 

Toward-condition elicited the more negative Nc-responses with this difference 

between the conditions being significant when the first seven artefact-free trials had 

formed the average. Moreover, again, there was a change towards the Away-condition 

eliciting the more negative responses when 10 trials were included in the averaging 

process. Stets and Reid (2011) interpreted this as an indication that the amount of time 
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that passed until a specific number of usable trials are collected for all experimental 

conditions is already incorporated into the analysis through the inclusion of the 

specific numbers of trials. However, in order to gain clarity on this, it would be 

desirable to apply such analyses to other datasets from slightly older infants for 

instance or from studies that did not use stimuli including faces. Additionally, such 

analyses could be applied to data originating from an auditory paradigm.  

Apart from investigating the possible alterations of the Nc based on how many 

trials are included in the average, the study presented in Chapter 2 (Stets, & Reid, 

2011) aimed to test a strategy for data-analysis that may be more suitable for the use 

with ERP-data originating from infant populations. Apparently, the currently used 

strategies for data-analysis are typically derived from those used with adult-data. 

However, as has been mentioned in Chapter 1, this causes difficulties for researchers 

working with infants as these two populations are very different from each other in 

many respects (e.g., Hoehl, & Wahl, 2012; Reid, & Geangu, 2008). Therefore, the 

assumption that downscaling a measure that is typically used with adults will be 

sufficient to make it applicable for infants, may not be easily met under all 

circumstances. Moreover, applying this novel approach to the analysis of the data 

previously published in Hoehl, Reid, Mooney, and Striano (2008), it could be shown 

that current assumptions about the quality of trials from the earliest stages of a test-

session do not hold. Following Luck’s (2005) reasoning, it should not have been 

possible to derive clean enough averages (i.e., with sufficient signal-to-noise ratio) 

from the first three artefact-free trials from a group of four-month-olds to draw 

meaningful implications from them (see also Picton et al., 2000). However, significant 

differences between the conditions could be found and conclusions about the cortical 

responses involved in processing these stimuli could be drawn (see Analysis 2 in 
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Chapter 2). Therefore, this approach to data-analysis may be a valuable tool when 

researchers, who seem to be naturally limited in the overall number of trials to be 

obtained from an infant, want to make more efficient use of the volume of data that 

they can collect. Moreover, the results of Analysis 3 (Stets, & Reid, 2011) do not only 

lend further support to the idea that an average derived from fewer artefact-free trials 

from the beginning of a test-session can be as meaningful as an average which is based 

on a larger volume of trials. Analysis 3 also shows that there does not seem to be a 

qualitative difference between these earlier analysable trials compared to those 

collected later in a test-session. This means that the re-analysis did not only show 

effects on a methodological level. Also on a theoretical level, new insights could be 

gained into the attentional processes in this young group of participants. As has been 

mentioned earlier, applying this approach to data-analysis to other ERP-components 

could help to uncover further details about underlying processes that have so far been 

unknown and unexpected. 

 

An Alternative Approach to Improving Data-Analysis 

 

Another novel approach to preserve and include trials from larger numbers of 

participants is described in Stahl, Parise, Hoehl, and Striano (2010). These authors 

analyzed EEG-data recorded from 6-month-old infants in response to emotional facial 

expressions including different eye-gaze directions; i.e., a neutral face with infant-

directed eye-gaze, a neutral face with an averted gaze, an angry face with an infant-

directed gaze-direction, and an angry face with an averted gaze. In order to be able to 

maximize the number of usable infants, Stahl et al. (2010) weighted the participants’ 

data based on the number of artefact-free trials they contributed for the conditions. The 
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mean-number of trials that could be obtained for each of the four conditions was 6.5 

(SD = 4.3, ranging between 1 and 23; Stahl et al., 2010, p. 309). As was practised in 

the Analysis Two of the study presented Chapter 2 and later on in the study presented 

in Chapter 5 as well, the traditional strategies of setting a minimal criterion which has 

to be met by all infants to be included in a study’s final analysis and to average over as 

many trials as possible in order to obtain a cleaner ERP-average are directly violated. 

However, despite this violation meaningful results could still be obtained and reported. 

Therefore, this alternative approach to improving current strategies for data-analysis 

can be seen as a valuable addition to the toolset. However, as is the case with the 

approach outlined in this thesis, further studies investigating different ERP-

components and populations are needed to validate its usefulness. Moreover, it is less 

likely that such the strategy outlined in Stahl et al. (2010) will be able to uncover 

previously unknown changes in information-processing as have been found using the 

approach presented in this thesis.  

 

Attrition as an Indicator for Issues of Study-Design?  

 

The first study showed that the analysis of infant ERP-data can be customised 

to the needs of developmental populations and that currently, data containing 

meaningful information is often removed prior to final analysis. Therefore, the 

question arose what the rejection of such large volumes of trials and, ultimately, 

participants may be based upon. An important factor with respect to participant-

exclusion is a study’s minimal criterion for the number of trials contributed to the 

average for each condition. The decision on how high or low to set the minimal 

criterion for participant inclusion in a specific study often seems to be made in an 
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arbitrary fashion and can vary greatly between different labs and researchers. For 

instance, in the majority of infant ERP-studies using a standard paradigm (i.e., the 

stimuli for the individual conditions are presented with equal frequency), the number 

of artefact-free trials that are required per condition for the infants to be included in the 

study’s final analysis ranges between 10 and 15 (e.g., 12 in Männel, & Friederici, 

2009; 15 in Snyder, & Keil, 2008; 10 in von Koss Torkildsen Sannerud, Syversen, 

Thormodsen, Simonsen, Moen et al., 2006). However, there are a number of studies 

using standard paradigms that set their minimal criterion higher – at 20 or 30 

analysable trials per condition (e.g., 30 in Csibra, Davis, Spratling, & Johnson, 2000; 

20 in Simos, & Molfese, 1997). Additionally, there are also standard-paradigm studies 

using a lower minimal criterion (e.g., seven in de Haan, & Nelson, 1997; five in 

Marshall, & Shipley, 2009). Fundamental questions remain with respect to the basis of 

the decision for a particular criteria, and what impact it may have on the study’s 

attrition rate and the quality of obtained data. If the minimal criterion is set 

comparatively high, many participants may have to be excluded from the study’s 

analysis and, consequently, the attrition rate for this respective study may increase 

substantially. In the meta-analysis presented in Chapter 3, I attempted to provide some 

answers to this question. Among others, such as the number of experimental 

conditions presented, the duration of the inter-stimulus interval or the nature of the 

presented stimuli, studies’ minimum criteria were investigated with respect to how 

they would affect the attrition rate of an infant ERP-study.  

The meta-analysis of 181 experimental groups revealed large variations 

between study-features such as the duration of a single trial (ranging from 800 ms to 

6150 ms), the total number of infants tested for a study or experimental group (ranging 

from 9 to 175), or the number of trials included in the averaging processes per 
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condition (ranging from 8 to 1186; see Table 2 in Chapter 3; Stets, Stahl, & Reid, 

2012, p. 234). Moreover, as can be seen in Table 1 in Chapter 3 (Stets, Stahl, & Reid, 

2012, p. 230), there seems to be a slight asymmetry in the age-groups researchers tend 

to use for infant ERP-studies. Fifty-seven out of 314 experimental groups investigated 

six-month-old infants. Another 31 and 36 groups consist of three- and four-month-

olds, respectively. One issue is whether this frequent usage of these age-groups is 

mainly due to theoretical reasons (i.e., the developmental changes that may have taken 

place at these stages) or due to practical reasons. A commonly held belief among 

infant ERP-researchers is that older infants are harder to test than younger age-groups 

(e.g., Hoehl, & Wahl, 2012). This would entail that attrition rates should be much 

higher in studies using an older age-group compared to studies using younger infants. 

However, Stets, Stahl, and Reid (2012) had collapsed their analyses across age-groups 

(ranging from newborns to 24-month-olds) as no differences were found between the 

attrition rates of the different ages in this respect. In fact, the study which experienced 

the highest attrition rate of all assessed studies, with a rate of 83.8% (data used from 

12 infants out of 74 who had been tested) reported in Chapter 3 (Stets, Stahl, & Reid, 

2012) had been conducted with six-month-old infants (Nelson, & Collins, 1991) – an 

age-group which is commonly thought to be easier to test. Moreover, also the study 

with the second highest attrition rate found among the 314 experimental groups under 

investigation (80.6%; data used from 34 infants out of 175 who had been tested; de 

Haan, Pascalis, & Johnson, 2002) had been conducted with the same age-group. The 

authors of these papers had explained these high attrition rates as being a consequence 

of the strict inclusion criteria that had been applied. In the case of de Haan, Pascalis, 

and Johnson’s (2002) study, infants had to provide minimally 15 artefact-free trials out 

of 80 presented trials for each of their four conditions, equalling fewer than 20% of 
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trials. The mean-number of analysable trials which had been included per condition 

from the 34 participants was 25.5 equalling a rate of 31.9%. As a comparison, in 

Csibra, Tucker, and Johnson (1998), a study which also tested six-month-olds, the 

attrition rate was 68.4% with the minimum criterion set to 10 out of 60 trials for each 

of the four conditions. Again, fewer than 20% of the trials were required to contribute 

to the final analysis with the mean of included trials per condition equalling 17.1 (a 

ratio of 28.5%). This indicates that the researchers’ expectations about how many 

analysable trials to obtain from an infant per condition are comparatively low. This is 

also true for other age-groups as illustrated by the eight artefact-free trials for each of 

the two experimental conditions that Csibra, Tucker, Volein, and Johnson (2000) 

required from their group of 12-month-olds (attrition rate = 61.5%) or the 10 out of 60 

trials required from a group of 13- to 17-month-olds in Mills, Coffey-Corina, and 

Neville (1997; attrition rate = 28.2%). Considering such comparatively low inclusion 

criteria, it seems apparent that none of these or other infant ERP-studies will meet the 

high standards for signal-to-noise ratio that are recommended in methodological 

literature (e.g., Luck, 2005; Picton et al., 2000). 

Among the 34 study-features investigated in Stets, Stahl, and Reid (2012), 

many would traditionally be expected to cause infants to be removed from a study’s 

final analysis. For instance, as has already been stated in the introduction, it is 

frequently recommended to keep the cognitive load low for infants (e.g., DeBoer, 

Scott, & Nelson, 2007). However, the number of conditions presented or the duration 

of the stimuli, the inter-stimulus intervals, or the trials in total did not show to have an 

impact on the reported attrition rates (Stets, Stahl, & Reid, 2012; see Chapter 3). 

Counter to expectation, there were only three factors that did show to affect attrition: 

(a) the age of the research article itself (in years), (b) how many infants had originally 
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been tested for the study or experimental group, and (c) the nature of the stimuli. 

Additionally, as the number of infants who had been tested in total is inherently related 

to a study’s attrition rate, the meta-regression had to be run a second time without 

including this particular factor in the model. In the first meta-regression which 

included the total number of infants tested, attrition was affected by the additional 

factor of whether the stimuli were of an animated nature. However, in the second 

meta-regression without the total number of infants included, this was not the case. 

Stets, Stahl, and Reid (2012; see Chapter 3) suggested that the length of the animated 

stimuli may be the reason why attrition was higher in those studies compared to 

studies using static stimuli. This would indicate that the cost of the animation in terms 

of the time taken to display it actually offsets the increase in interest due to the 

animated nature of the stimuli. Even though it might be true that habituation to the 

stimuli takes longer, the length of each trial counteracts this benefit, with the result that 

attrition rates are higher for this class of stimuli.  

In general, it may seem surprising that only so few study-features were shown 

to show an effect on attrition rates – especially so, as they are not the ones that would 

typically be expected (e.g., DeBoer, Scott, & Nelson, 2007; Hoehl, & Wahl, 2012). 

The finding that older publications featured higher attrition rates than newer ones 

(Stets, Stahl, & Reid, 2012), seems to indicate that EEG-systems have become more 

“participant friendly” and/or that researchers have learned from experience or been 

trained by expert trainers, and have refined their strategies for collecting EEG-/ERP-

data from infant participants. However, conducting a test-session still remains a highly 

individual process as an infant’s behaviour is often hard to predict – sometimes even 

for the caregivers themselves – with respect to feeding- and sleeping-times, for 

instance. Therefore, as has been mentioned earlier, it is essential that an experimenter 
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is well-trained for the work with infants and can draw on an extensive set of tools and 

strategies in order to be prepared for any eventuality (see also Hoehl, & Wahl, 2012). 

Apart from the animated nature of the stimuli, the choice of modality was also 

found to influence a study’s eventual attrition rate (Stets, Stahl, & Reid, 2012). In 

Chapter 3 it is argued that the significantly lower attrition rates of studies presenting 

infants with purely auditory stimuli compared to those showing visual stimuli only, 

were due to the much lower likelihood for movement-artefacts in the data as many of 

the experimental groups (especially newborns) were allowed to sleep during the test-

session (e.g., deRegnier, Wewerka, Georgieff, Mattia, & Nelson, 2002; Weber, Hahne, 

Friedrich, & Friederici, 2004). Alternatively, in the case of slightly older infants, the 

participants were often entertained by a silent puppeteer while listening to the target-

stimuli (e.g., Brannon, Libertus, Meck, & Woldorff, 2008; Friederici, Friedrich, & 

Christophe, 2007). Therefore, in such a case, the alertness and the focus on the stimuli 

required from the infants is different from a study in which the participants must 

follow a visual stimulus-presentation. Consequently, the effort that needs to be taken 

to attend to the visual stimuli will likely be higher for an extended period of time. 

Consequently, the likelihood for boredom and/or habituation to occur will increase the 

longer the presentation lasts (see also Stets, & Reid, 2011; Chapter 2). 

Related to this is also Stets, Stahl, and Reid’s (2012) claim that infant ERP-

studies may suffer from a selection bias with respect to which are or are not published. 

Figure 2 in Chapter 3 illustrates that the likelihood for a study with a large standard 

error (i.e., much variation in the data) and a high attrition rate to be published is 

practically non-existent. This is indicated by the upper right corner of the illustration 

being empty. Instead, the majority of experimental groups and studies which are 

published, tend to have a smaller standard error and an attrition rate which lies in a 
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range roughly between 35 and 75% of the expected norm (Stets, Stahl, & Reid, 2012). 

The issue that arises here can occur on either of two levels. On the one hand, it may 

occur at the point when a researcher decides if a study should be prepared for 

publication or not based on the question if a study’s results are meaningful enough or 

not, or if they are of high enough quality. On the other hand, a large part of rejected 

manuscripts may be it may attributable to reviewers and editors. However, in that case, 

the additional question arises what factors exactly editors and/or reviewers base their 

decisions upon. Fanelli (2010) argues that researchers may be biased in their 

perception of what are meaningful and publishable results as they are subject to 

increasing pressure to publish from grant-agencies and potential employers. In this 

instance, ‘meaningful results’ are those that are positive and no null results. 

Furthermore, Ioannidis (2006) remarks that it is highly unlikely that any given research 

facility will only be producing positive results and hardly any null findings However, 

as Fanelli (2010, p. 1) states further, “[…] all results are equally relevant to science, as 

long as they have been produced by sound logic and methods […]”. This seems to 

indicate that the question raised earlier – if the cause for a publication bias may 

originate from researchers or from publishers – is not easy to answer. Statements such 

as the above indicate that researchers may attempt to adjust their manuscripts in such a 

way that they better fit the assumed preferences of editors and publishers. 

Consequently, it is likely that there is an interaction between what is offered by the 

researchers and what is demanded by the publishers and that this interaction is 

negatively impacting on researchers’ freedom to publish their results, i.e., a publication 

bias. Moreover, as null findings will most likely not be reported, there is the potential 

for studies on a certain research question to be unwittingly attempted by several labs 

(see also Ioannidis, 2006). This ultimately means that the progress of research in a 
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specific field may be prevented instead of promoted and that efforts in terms of money 

and time may be repeatedly spent on unsuccessfully addressing the same research 

question. It seems apparent that such a trend may not be beneficial for the wider 

research community in the long run and that measures should be taken to prevent the 

situation from further increasing in intensity. It is interesting to note that journals such 

as PLOS One now explicitly state that reviewers cannot reject papers based on the 

novelty or importance of results. They are given strict instructions to comment only on 

the rigour of the methods and the quality of results reportage, and to point out issues 

that may not be addressed in the introduction and the discussion section of these 

manuscripts. 

Another major finding of the meta-analysis reported in Chapter 3 refers to how 

infant ERP-studies are reported with respect to details provided in the respective 

method-sections. As seen in Stets, Stahl, and Reid (2012), with a mean-attrition rate of 

47.3%, on average, only every second infant tested for a study entered the study’s final 

analysis. Moreover, almost the same ratio was true for the inclusion of the studies or 

experimental groups in the meta-analysis. The reason for excluding almost 50% of the 

experimental groups was that the respective research articles did not provide 

information on attrition. One of the recommendations mentioned in Picton et al. (2000) 

was for such important information to be mentioned and explained in a detailed 

fashion. In order for other researchers to be able to evaluate the reported data it is 

crucial to know how many infants had to be excluded for what reason. The same holds 

true for study-features such as the number of stimuli presented per condition or the 

number of different stimuli used per condition. However, during the preparations for 

the meta-analysis, it became apparent that such basic information about the paradigm 

had often either been omitted or mentioned in insufficient depth of detail in many 
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studies. Therefore, one of the fundamental features of a research study, its 

replicability, is limited which could potentially restrict the wider research community 

from gaining new insights about earlier findings. Consequently, it may be necessary 

for editors and publishers to monitor the description of all necessary information with 

respect to the paradigm more closely and encourage authors to make provide 

information to the readership. One possibility would be the more extensive use of 

online-resources. It may be helpful to offer researchers the possibility to make such 

detailed descriptions available in the form of online-supplements if page-space is 

restricted in the printed journal. Alternatively, it may be useful to strengthen the sector 

of online journals. This way the issue of page-space would be resolved automatically. 

Additionally, the possibilities for presenting study-methodologies and results are much 

more varied as, for instance, short animations may be uploaded to illustrate the 

paradigm (see Angell, & Smith, 1998). However, this requires the research community 

to become more open to (peer-reviewed) online journals and to accept their credibility 

more than is currently the case. 

 

Study-Design as a Key to Attrition and Infant Attention 

 

Based on the findings of the meta-analysis and the meta-regressions (Stets, 

Stahl, & Reid, 2012), the third study presented in this thesis (see Chapter 4; Stets, 

Burt, & Reid, under review) attempted to address the issue of paradigm-design 

mentioned in the Introduction. As the number of presented conditions did not show to 

affect attrition in infant ERP-studies, and had also been recommended in Hoehl, and 

Wahl (2012), it was hypothesized that a stimulus-presentation with more variable 

stimuli may be an option to keep infants interested for a longer period. One option 
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would have been to design a study with the typical two experimental conditions and a 

large variety of different stimuli for each of the conditions. Jeschonek, Marinovic, 

Hoehl, Elsner, and Pauen (2010) conducted an ERP-study with such a design with a 

group of eight-month-olds. They presented them with 59 different images of animals 

and with another 59 images depicting different furniture-items with none of the 

animals or objects being presented more than once. Despite the variability of the 

stimuli, the authors reported to have used the data from 14 out of 55 infants yielding an 

attrition rate of 74.6%. Of these infants, 51.2% had to be excluded for reasons of 

fussiness or inattentiveness and the remaining 48.8% had to be excluded because of 

too many movement-artefacts in the data (Jeschonek et al., 2010). Therefore, the 

variability of the stimuli does not seem to have affected the way the study progressed.  

It is entirely plausible that despite having different images, the stimuli sets themselves, 

being only two categories (animal or furniture), served to habituate the infants, thereby 

inducing the high attrition rate. 

Another option is to follow the typical setup of having a more restricted 

number of stimuli per condition but including a larger variety of experimental 

conditions. The ERP-study presented in Chapter 4 (Stets, Burt, & Reid, under review) 

opted for this second possibility and presented a total of 18 infants aged between 12 

and 13 months with eight experimental conditions which came from three distinct 

research articles (Csibra, Tucker, Volein, & Johnson, 2000; Halit, de Haan, & Johnson, 

2003; Hoehl, Reid, Mooney, & Striano, 2008). As has been discussed in Chapter 4, 

there were both similarities and differences between the results of the original studies 

and those found reported in Stets, Burt, and Reid (under review). Some of these 

variations between the results could be explained with the setup of the stimuli as six of 

the eight conditions included faces in the stimuli (i.e., upright and inverted human and 
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monkey faces based on Halit, de Haan, & Johnson [2003] and females looking toward 

or away from a toy based on Hoehl, Reid, Mooney, & Striano [2008]). However, the 

social contexts of the faces were different from each other. The upright and inverted 

faces did not convey any information other than the species and the orientation of the 

faces. The eye-gaze direction of the faces in the directed- and averted-gaze conditions, 

however, created situations in which the depicted female directs the infants’ attention 

to a particular side of the screen. In order to prevent such interferences between the 

conditions from arising, Stets, Burt, and Reid (under review) recommend taking care 

in the stimulus-selection process. Despite addressing different cognitive questions, the 

stimuli of the conditions used in study 3 may well have been too similar to each other 

on a perceptual level (see Chapter 4). Therefore, it may be helpful to also include 

conditions involving auditory stimuli, for instance. This would further increase the 

variability of the stimulus-presentation and may add to the positive effect this 

paradigm had on the infants’ willingness to produce adequate data during an EEG test-

session. 

 However, the most important findings in terms of methodology were the 

increased amount of data obtained from the infants and the decrease in attrition. As 

mentioned earlier, many infant ERP-studies have a minimal criterion for inclusion of 

10 artefact-free trials per experimental condition. The inclusion criteria used in the 

three original studies were different from each other and ranged from eight in Csibra, 

Tucker, Volein, and Johnson (2000) to 25 in Halit, de Haan, and Johnson (2003). Due 

to the high number of experimental conditions, the number of possible stimulus-

presentations for one of the conditions was naturally limited in Stets, Burt, and Reid 

(under review). Additionally, based on the general assumption that infant attention is 

very limited (e.g., Hoehl, & Wahl, 2012; Thierry, 2005), the expectation would be that 
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the infants would not provide enough artefact-free trials per condition for a traditional 

data-analysis. However, despite the challenge that this paradigm posed for the infants, 

minimally 10 usable trials could be collected from the majority of the 18 originally 

tested one-year-olds for all of the analyses and conditions (see Stets, Burt, & Reid, 

under review, in Chapter 4). This means that, instead of saturating the infants with too 

much variation, the large variety in the stimuli resulting from the high number of 

experimental conditions prevented the participants from becoming easily habituated to, 

and bored by, the stimulus-presentation. Based on this finding, it seems indicative that 

infant attention is more malleable than generally expected. On the one hand, attention 

can shift between conditions when stimuli from two conditions are repeated again and 

again as seen in Chapter 2 (Stets, & Reid, 2011). On the other hand, the study 

presented in Chapter 4 shows that infant attention can be prolonged when multiple 

different conditions are presented in an intermixed fashion in the same test-session. 

Additionally, while all of the original studies had attrition rates of 61.5% 

(Csibra, Tucker, Volein, & Johnson, 2000), 69.4% (Halit, de Haan, & Johnson, 2003), 

and 73.4% (Hoehl, Reid, Mooney, & Striano, 2008), Stets, Burt, and Reid (under 

review) had to exclude only three and four infants from the analyses of the respective 

conditions. Such low attrition rates of 16.7% and 22.2% are challenging for currently 

held assumptions (e.g., DeBoer, Scott, & Nelson, 2007). Moreover, as all of the stimuli 

were of a purely visual nature, these low attrition rates are also in contrast with the 

findings from the meta-analysis presented in Chapter 3. According to Stets, Stahl, and 

Reid (2012), studies with purely visual stimulation had significantly higher attrition 

rates than those with purely auditory stimulation. However, most of these studies and 

experimental groups using visual stimuli did not present more than two or four 

conditions. The only two experimental groups among the 314 originally collected ones 
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(Stets, Stahl, & Reid, 2012) which had been exposed to six experimental conditions, 

listened to very short auditory stimuli (25 different stimuli presented once for each of 

the six conditions with a mean-duration of 320 ms; Ferguson, & Molfese, 2007). 

Moreover, this study had to be excluded from the more detailed meta-analysis as no 

information on attrition had been provided. Therefore, it is unfortunately not possible 

to make statements about what impact this paradigm had on the infants’ likelihood to 

be excluded from the study’s final analysis. However, in order to further explore the 

methodological possibilities that a multi-condition study such as this could help to 

create, it is logical for follow-up work to also include two or four conditions presenting 

auditory stimuli. It could be argued that this would make the stimulus-presentation 

even more variable, “interesting” and engaging for the participants. According to 

Bahrick and Lickliter’s (2000) intersensory redundancy hypothesis this should be 

especially true when multi-modal stimuli are included (i.e., stimuli which have both an 

auditory and a visual component) as this will maximise variation in the presented 

stimuli. 

The question remains if the same effects of multiplying the obtained data and, 

simultaneously, decreasing attrition rates, would also appear in a different paradigm in 

terms of stimulus-presentation. Instead of showing the eight conditions in the 

intermixed fashion used in Stets, Burt, and Reid (under review), these stimuli could 

also have been presented in a block-design within one test-session. However, it is not 

clear what the impact of such a dramatic change in the paradigm would have on the 

infants’ attention. Furthermore, changing the paradigm in such a way may also have 

consequences for the potential interference that was observed between the conditions 

seen in Study 3. They may either be as likely to occur in a blocked stimulus-

presentation or the likelihood for interference to occur may be slightly decreased. 
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Therefore, presenting infants with stimuli for more than one study in a blocked design 

may or may not be as effective in terms of maintaining and, potentially, prolonging 

infant attention (see Chapter 4). It would be helpful to examine such dynamics through 

conducting another study using the same set of stimuli and the same age-group but 

presenting the stimuli in a blocked design and comparing the results with respect to 

both methodological and theoretical issues. 

 

Further Insights into Infant Cognition through Novel Methodological Approaches 

 

The final study presented in Chapter 5 (Stets, Burt, & Reid, in preparation) 

attempted to combine the findings gained in Studies 1 and 3. Therefore, the approach 

to data-analysis presented in the first study (Stets, & Reid, 2011; Chapter 2) was 

applied to the data collected in the third study (Stets, Burt, & Reid, under review; 

Chapter 4). As mentioned earlier, Stets, and Reid (2011) did not answer whether the 

reported changes in the cortical responses would only be found in attention-related 

components such as the Nc or if they would apply to a wider range of ERP-

components. From the results presented in Chapter 5 it seems apparent that changes in 

the cortical responses towards conditions over the course of an experimental session 

indeed seem to be restricted to attentional processes (Stets, Burt, & Reid, in 

preparation). Components related to face-processing and -recognition such as the N290 

and the P400 as well as saccade-planning seem to remain largely unaffected by the 

duration of a test-session as indicated by the comparatively stable directions of the 

amplitudes for the individual conditions illustrated in the respective graphs. For 

instance, there is a drift from all amplitudes being negative for the N290 in response to 

the upright and inverted human and monkey-faces from F1 to F3 to three in four 
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conditions eliciting positive N290-responses when all available artefact-free trials were 

included in the average. However, the directionality of which condition yields the 

more negative responses only changes between human inverted faces and upright 

monkey-faces whereas it stays the same for upright human and inverted monkey faces 

(see Figure 2a in Chapter 5). This shows that the amplitudes of infant ERP-

components are generally very likely to undergo changes of a certain nature when the 

number of included trials is varied. However, what kind of change will occur – i.e., a 

shift in polarity as seen in the N290 or a reversal in directionality as seen in the Nc – 

depends on the cognitive process/es required by the respective experimental stimuli. 

Given that this approach to data-analysis was applied to further data-sets involving 

other infant components which have not been investigated here, it may be possible to 

establish categories of ERP-components based on the dynamics seen in the detailed 

analysis. For instance, a component which has previously not been related to attention 

processes may show a similar pattern in its amplitudes as seen for the Nc and may, 

therefore, show to involve attentional processes as well. Additionally, finding common 

underlying structures for components with similar functions would also be helpful 

when potential infant precursors for adult components are investigated (e.g., Halit, de 

Haan, & Johnson, 2003). 

Interestingly, while the amplitudes of the N290 and the P400 were unchanged 

with respect to directionality, the latencies of these two components were shown to be 

affected as a function of the number of trials involved in the creation of the average 

(see Figures 2b and 3b in Stets, Burt, & Reid, in preparation). In case of the N290, the 

latency oscillated between human faces showing longer latencies and monkey-faces 

having the later N290 peak-amplitude. For the P400, both the species and the 

orientation of the depicted faces impacted on how long it took for the positive peak to 
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appear in the different datasets. Whereas no differences had been found for the P400-

latencies in Halit, de Haan, and Johnson (2003), Stets, Burt, and Reid (in preparation) 

could report species*orientation-interactions in several of the F-datasets with the 

latencies cycling from human upright faces having a later P400-latency to inverted 

monkey-faces showing a later peak and back to the P400 peaking later for the upright 

human faces again. The difference between inverted human faces and upright monkey-

faces remained relatively stable. It was argued in Chapter 5 that such previously 

unexpected changes in latency-directionality may result from the increased amount of 

different information with which the infants were confronted during the test-session. 

Causing the one-year-olds to retain an alert state of mind, the variability of the stimuli 

may also have contributed to the infants’ depth of processing of different aspects of the 

images that were presented. Parallel to Stets, and Reid’s (2011) argument, the infants 

may initially pay increased attention to the stimuli depicting something that is more 

familiar to them. This would explain the amplitude- and latency-directionalities in the 

datasets including the earlier artefact-free trials (e.g., upright human faces peaking 

later than inverted monkey-faces or the Nc-amplitude being significantly more 

negative for the Toward-condition compared to Away in F1). Later on in the 

experimental session, when infants have experienced all of the conditions multiple 

times and have started to habituate to them, their focus may change to other conditions 

that were less attended towards in the earlier stages of the test-session (see also 

Chapter 2). Depending on how much meaningful information can be extracted from 

the previously less attended conditions, the infants may maintain increased interest in 

these stimuli. Alternatively, they may switch back to attending more to those stimuli 

that depict the information that is more meaningful and familiar to them (Stets, Burt, & 

Reid, in preparation).  
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General Conclusions 

 

The results reported in the meta-analysis in Chapter 3 (Stets, Stahl, & Reid, 

2012) clearly indicate that new strategies for both data-collection and data-analysis are 

needed in infant ERP-studies using standard paradigms. This became especially 

apparent when attrition rates and the numbers of usable trials were compared for 

standard and odd-ball paradigms in Chapter 4 (Stets, Burt, & Reid, under review). In 

this more detailed analysis of the experimental groups reported in the meta-analysis, it 

was shown that odd-ball paradigms often experienced lower attrition rates and 

obtained more data-points per condition from their participants when contrasted with 

other paradigms (e.g., He, Hotson, & Trainor, 2007; Rivera-Gaxiola, Silva-Pereyra, & 

Kuhl, 2005). However, the main-difference between these and the majority of the 

standard paradigm studies in which conditions were presented with equal frequency 

and which were included in Stets, Stahl, and Reid (2012) is that the odd-ball studies 

mainly used very short auditory stimuli as opposed to the generally slightly longer 

visual stimuli used in the standard paradigms. Together with the finding that studies 

with auditory stimuli tend to experience lower attrition rates compared to studies using 

purely visual stimuli – presumably for the reasons mentioned earlier –, this indicates 

that odd-ball studies may be too different from standard-paradigm studies to be 

comparable when examining these issues. Apart from this, the meta-analysis presented 

in Stets, Stahl, and Reid (2012) shows that there are additional factors lying outside the 

scope of this consideration, which account for higher or lower attrition rates in the 

different studies. Examples may be the temperament of the infant in general (e.g., 

Marshall, Reeb, & Fox, 2009), the experimenter’s experience with running a test-

session (see Hoehl, & Wahl, 2012), or, as mentioned in Study 2 (see Chapter 3), 
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infants may be more irritable during certain periods when changes in their living 

situation occur such as the end of maternity or paternity leave. Alternatively, subtle 

differences between laboratories such as where the infant will be situated relative to 

their caregiver during the test-session may have an impact as well. Further 

investigation into these and other factors will be helpful for developmental researchers 

to plan their studies accordingly. 

Based on the results reported in Chapters 2, 4, and 5, however, it does seem 

possible to improve the situation in terms of attrition and the volume of data to be 

obtained for visual standard studies. Using new approaches to data-collection and -

analysis, all of these studies could show that infant ERP-studies can be tailored to 

better fit the needs of these young participants. Moreover, what has been known 

among developmental researchers previously (e.g., Reid, & Geangu, 2008), that data-

analyses based on strategies used for adult ERP-data cannot be easily applied to infant 

data, is supported by the findings presented in this thesis as well. It may be necessary 

to collect a large number of trials per condition from adult participants because the 

amplitudes are generally smaller and harder to detect in this population. For instance, 

as illustrated in Figure 3.1 in de Haan, Johnson, and Halit (2007, p. 83), the amplitude-

difference for the N290 in response to upright and inverted human faces is much larger 

and the morphology of the component is more pronounced over a larger time-period in 

a group of 12-month-olds. However, the likely adult counterpart for this component, 

i.e., the N170, shows a smaller difference between the conditions and the time-period 

is shorter in the group of adults. Therefore, the same difficulty of having to record 

large numbers of trials to find ERP-components does not apply to infants. As 

mentioned in Chapter 1, the physiological differences between infants’ and adults’ 

brains and scalps are too large to be ignored. Based on this, it may not be that 
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surprising that Stets, and Reid (2011; see Chapter 2) found a tendency towards a 

significant difference between conditions when only the first three artefact-free trials 

were included in the average (see Analysis 1). Moreover, if fewer trials are required 

from a participant per condition, a study’s attrition rate should naturally decrease as 

more of the originally tested infants would be able to contribute meaningful data to the 

analysis (see Analysis 2 in Chapter 1). In Stets, Burt, and Reid (in preparation), a 

significant difference between the Nc-amplitudes in response to the Toward- and 

Away-stimuli could even be detected in F1 – the dataset in which only the very first 

analysable trial was included in the analysis.  

Together with the substantial decrease in attrition rates seen in Stets, Burt, and 

Reid (under review), the increase in analysable data is encouraging – both 

methodologically and in terms of theories about infant cognition. By examining infant 

ERP-data in more detail (see Studies 1 and 4), it could be shown that fewer trials from 

the early stages of a test-session are as meaningful as a larger volume of artefact-free 

trials. Additionally, unanticipated underlying changes in both the components’ 

amplitudes and latencies were discovered. On the one hand, establishing the presence 

of these changes adds to our knowledge about cognitive processes in general. On the 

other hand, the nature of the changes provides new insights into the ways in which 

infants process certain stimuli. Therefore, in order to both explore the potential of the 

methodological approaches proposed in the current thesis and to re-evaluate 

psychologists’ present assumptions about infant cognition, further studies are needed. 

However, the amplitude- and latency- changes seen in the above analyses may 

also be due to noise which remained in the data due to the smaller numbers of trials 

especially in the averages including very few trials. As seen in Stahl et al. (2010), the 

assumptions about signal-to-noise ratio for instance (e.g., Luck, 2005) are violated in 
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the analyses presented here. Especially the comparatively large standard deviations 

and standard errors seen, for instance, in the F-datasets in Chapter 5 may indicate that 

the reported effects are not based on a true difference between conditions or on 

interactions between certain factors, but are merely due to random noise and outliers in 

the datasets. However, as reported above, in the cases when significant differences 

were found between datasets in the post-hoc one-way ANOVAs reported above, they 

always appeared between the dataset including the fewest trials (see Study 1 in 

Chapter 2) or only the very first artefact-free trial (see Study 4 in Chapter 5) and the 

other datasets representing the same condition and channel-group. Datasets never 

differed from each other when larger volumes of trials formed the average which is in 

line with the assumptions made for the signal-to-noise ratio. I acknowledge that the 

argument that effects found for datasets with fewer trials and larger standard 

deviations may be based on noise rather than a true difference is harder to rule out for 

these datasets. However, given the relative homogeneity of the datasets as indicated by 

the results of the post-hoc one-way ANOVAs, it seems apparent that adding single 

trials to the averages did not result in an alteration the overall pattern. Therefore, it is 

more likely that the discrepancies between the results reported in Chapters 2, 3, and 4 

and the respective original studies are rooted in the way the data have been analysed 

(see Studies 1 and 4) and what method has been used for stimulus-presentation (see 

Studies 3 and 4).   

Clearly, further work on designing and testing more methodological tools is 

necessary. The methodological approached outlined here should be seen as a mere 

starting point as, given their limitations (i.e., mainly the fact that original results could 

not be replicated in all cases), conclusive statements about their usefulness may be 

arguable. Without further attempts at implementing such less traditional strategies, the 
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validity of the outlined approaches cannot be properly established. However, as one of 

very rare first steps in the direction of improving the efficiency of infant ERP-studies, 

they could be helpful for developmental researchers to overcome the issue of having to 

apply tools designed for research with adult populations to developmental or clinical 

populations. It is nonetheless true that far more remains to be understood about how 

specific paradigms interact with the quality and nature of obtained data. Clearly, much 

work is yet to be done before an encompassing understanding of the relationship 

between ERP-methods and infant populations will be achieved. 
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