The Effect of Antibiotics on Toxin Gene Expression in PVL-positive Staphylococcus aureus Strains

BALAKY, SALAH, TOFIK

How to cite:

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
Declaration

I declare that the work within this thesis, submitted for the degree of Doctor of Philosophy, is my own original work and has not been submitted for a degree at this or any other University.

Signed ..

Date ..
Abstract

Staphylococcus aureus is an extra-ordinarily versatile pathogen causing a wide spectrum of infections. The aims of this study are to analyze 10 clinical isolates of *S. aureus* from the UK by Multi Locus Sequence Typing (MLST) and determining their PVL-type variants. In addition to that, to study the effect of several antibiotics at sub inhibitory concentrations on a number of virulence factors at mRNA using quantitative PCR and protein levels using proteomic methods. Western blotting was used to study differential expression of Spa at protein levels.

Data showed that the 10 clinical isolates belong to seven clonal complexes (CCs), which are CC1, CC5, CC8, CC22, CC30, CC88, and CC121. Genetic variation within lukSF-PV gene showed that three of these isolates were belong to the same PVL type variant of CA-MRSA USA300 strain, R variant. From which, two isolates were found to belong to the same CC of USA300, CC8. The remaining 7 isolates were found to belong to H variant.

Data presented here showed that the sub-MIC levels of both cell wall inhibitors reduced *lukSF-PV* and *spa* steady-state mRNA levels when cells were grown in the presence of these antibiotics for one hour. However, after 5 hrs post antibiotic addition of these two antibiotics, vancomycin remained depressed *lukSF-PV* and *spa* steady-state mRNA levels as well as at protein levels, but oxacillin increased *spa* and *lukSF-PV* mRNA levels, as well as Spa at protein levels. Protein synthesis inhibitors clindamycin and linezolid were both caused an increase of *lukSF-PV* mRNA levels, but they both decreased *spa* mRNA levels, when cultures grown in the presence of these antibiotics for one hour. However, when cultures grown with these antibiotics for 5 hrs, clindamycin remained to increase *lukSF-PV* and decrease *spa* mRNA levels and protein levels, but linezolid decreased both virulence factors at mRNA and protein levels.

The data showed in this study confirmed that growing *S. aureus* in the presence of oxacillin induce toxin expression and might enhance the virulence of this bacterium, therefore using these antibiotics to treat *S. aureus* infections may contribute to worse outcomes. These data also confirmed that linezolid and vancomycin, are both important selections of antimicrobial agents to treat serious infections caused by the bacterium.
Acknowledgments

I would like to say greatest thanks to my supervisor Dr Tony Fawcett for agreeing to accept me on to a Ph.D. place and for his continued help and support during my time on this project. At the Tyneside General District Hospital I wish to thank Dr Richard Ellis for his committed support and providing clinical isolates and Dr Angela Karnes from the Staphylococcal National Reference Laboratory in London for providing a number of clinical isolates for this study.

I am also thankful to Professor A. R. Slabas and Dr. Bill Simon for their help in use of the proteomic facilities, and in particular Joanne Robson for her long support and help in the proteomic part of this study and John Rowland for guidance in designing of the proteomic experiments and using the software for statistical analysis. I also would like to thank all members in lab 4 and 5 for their help throughout this study.

I wish to thank my colleagues and all members of the department of Biological and Biomedical Sciences for making my time enjoyable and for their willingness to help, and to DNA sequencing services, for their help in sequencing part of this study. I also wish to thank Dr Allan Seheult from Mathematical Sciences Department, Durham University for his kind help in Multidimensional analysis for some data.

Last, but certainly not least, I would like to thank my Mum, Dad and all loved ones for their continued support, particularly my wife Ahang because without her constant support this would not have been possible.
DEDICATION

This Thesis is Dedicated to My Wife Ahang, My Mum and Dad. It is Also Dedicated Proudly to My Uncle Abdul-Wahid and All Loved Ones.
Contents

Declaration i

Abstract ii

Acknowledgments iii

Dedication iv

Contents v

Chapter 1. General Introduction 1

1. 1. General Characteristic of the Bacterium 2

1. 2. *S. aureus* Infections and their consequences 2

1. 3. Genetic Structure of *Staphylococcus aureus* 4

1. 3. 1. Core Genome 4

1. 3. 2. Accessory Genome 5

1. 3. 2. 1. Staphylococcal Cassette Chromosome SCC 5

1. 3. 2. 2. Pathogenicity Islands of *S. aureus* 8

1. 3. 2. 3. Plasmids in *S. aureus* 8

1. 3. 2. 4. Transposons in *S. aureus* 8

1. 4. Virulence Factors and their Role in Pathogenicity 9

1. 4. 1. Adherence Factors (Adhesins) 9

1. 4. 2. *S. aureus* Exproteins 9
Chapter 2. Materials and Methods
2.1. Bacterial Strains
2.2. Bacterial Cultivation and Identification
2.2.1. Growth media
2.2.2. Storage of isolates
2.2.3. Growth curve
2.2.4. MIC Determination
2.3. Molecular Biology
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 3. 1. Preparation of Genomic DNA</td>
<td>34</td>
</tr>
<tr>
<td>2. 3. 2. Polymerase chain reaction (PCR)</td>
<td>35</td>
</tr>
<tr>
<td>2. 3. 3. DNA Sequencing</td>
<td>35</td>
</tr>
<tr>
<td>2. 3. 4. RNA Extraction</td>
<td>35</td>
</tr>
<tr>
<td>2. 3. 5. RNA Agarose gel electrophoresis</td>
<td>36</td>
</tr>
<tr>
<td>2. 3. 6. cDNA Synthesis</td>
<td>36</td>
</tr>
<tr>
<td>2. 3. 7. Real-Time quantitative PCR (RT-qPCR)</td>
<td>36</td>
</tr>
<tr>
<td>2. 3. 8. Data Analysis Using Relative Expression Software (REST-2005)</td>
<td>37</td>
</tr>
<tr>
<td>2. 4. Proteomics and Protein Analysis</td>
<td>39</td>
</tr>
<tr>
<td>2. 4. 1. Collection and Concentration of Proteins from the Culture Supernatant</td>
<td>39</td>
</tr>
<tr>
<td>2. 4. 2. Estimation of Protein Concentration</td>
<td>39</td>
</tr>
<tr>
<td>2. 4. 3. Modified Bradford Assay</td>
<td>40</td>
</tr>
<tr>
<td>2. 4. 4. Mini-format 1-Dimensional SDS-PAGE</td>
<td>40</td>
</tr>
<tr>
<td>2. 4. 4. 1. Gel Casting</td>
<td>40</td>
</tr>
<tr>
<td>2. 4. 4. 2. Sample Preparation & Gel Loading</td>
<td>41</td>
</tr>
<tr>
<td>2. 4. 4. 3. Electrophoresis</td>
<td>41</td>
</tr>
<tr>
<td>2. 4. 5. Mini-format 2-Dimensional SDS-PAGE</td>
<td>41</td>
</tr>
<tr>
<td>2. 4. 5. 1. Protein Loading by In-gel Rehydration</td>
<td>42</td>
</tr>
<tr>
<td>2. 4. 5. 2. First Dimension Isoelectric Focusing</td>
<td>42</td>
</tr>
<tr>
<td>2. 4. 5. 3. IPG Strip Equilibration</td>
<td>43</td>
</tr>
<tr>
<td>2. 4. 5. 4. Second Dimension SDS-PAGE</td>
<td>43</td>
</tr>
<tr>
<td>2. 4. 6. Large-format 2-Dimensional SDS-PAGE</td>
<td>44</td>
</tr>
</tbody>
</table>
2. 4. 6. 1. Preparation of Backed Gels
2. 4. 6. 2. Large-format Gel Casting
2. 4. 6. 3. Protein Sample Preparation
2. 4. 6. 4. Protein Loading by In-gel Rehydration
2. 4. 6. 5. First Dimension IEF using the Ettan IPGphor IEF system
2. 4. 6. 6. IPG Strip Equilibration
2. 4. 6. 7. Second Dimension SDS-PAGE
2. 4. 6. 8. 2DE Gel Staining Using MS-Compatible Silver
2. 4. 6. 9. SYPRO Ruby Red Imager
2. 4. 6. 10. Gel Imaging with the Typhoon 9400 Variable Mode
2. 4. 7. Identification of Proteins
2. 5. 2DE DIGE Technique Experiments
2. 5. 1. Sample Preparation and Labelling process
2. 5. 2. Reconstitution of stock CyDye DIGE Fluor minimal dyes in dimethylformamide (DMF)
2. 5. 3. Protein Labeling with CyDyes DIGE Fluor Minimal Dyes
2. 5. 4. Labeling efficiency Quality Control
2. 5. 5. Large format 2DE of CyDye Labelled Protein Samples
2. 5. 6. DIGE Gel Imaging
2. 5. 7. 2DE Data Analysis using Progenesis Software
2. 6. Western Blotting
2. 6. 1. Electrophoretic Transfer
2. 6. 2. Immunoblotting
2. 6. 3. Blotted Membrane Densitometry
Chapter 3. Strain Characteristics

3. 1. Introduction 54
3. 2. Results and Discussion 59
3. 2. 1. Clinical Isolates Used In This Study 59
3. 2. 2. PCR Analysis Determine Presence of Toxin Genes 59
3. 2. 3. Determination of S. aureus Sequence Types (ST) 64
3. 2. 4. PVL Gene Polymorphism 69

Chapter 4. The Effect of Antibiotics on Toxin gene Expression in S. aureus at mRNA level

4. 1. Introduction 76
4. 2. Results and Discussion 82
4. 2. 1. MIC Determination 82
4. 2. 2. Effects of sub-MIC of Antibiotics on Growth 84
4. 2. 3. RNA Isolation and Reverse Transcription to cDNA 89
4. 2. 4. Primer design and testing 90
4. 2. 5. Fluorescent dye SYTO9 90
4. 2. 6. Real Time Quantitative qPCR 93
4. 2. 7. Relative Expression of toxin and pathogenicity genes 93
4. 2. 7. 1. The Effect of Protein Synthesis Inhibitors 93
4. 2. 7. 2. The Effect of Cell Wall Inhibitors 96
4. 2. 8. lukSF-PV and spa gene Expression in Cultures Exposed to Antibiotics for one hour 96
4. 2. 9. lukSF-PV and spa gene Expression in Cultures Exposed to Antibiotics 5hrs 102

Chapter 5. Proteomic Analysis of S. aureus Extracellular Proteins

5.1. Introduction 106
5. 2. Results and Discussion 111
5. 2. 1. Protein Sample Preparation and SDS-PAGE Analyses 111
List of Figures

Figure 1. 1. A schematic drawing of SCCmec types I to VII in MRSA 7
Figure 1. 2. Model for how PVL might mediate tissue necrosis 15
Figure 1. 3. Schematic representation of the agr system 19
Figure 1. 4. Induction of β-lactamase synthesis in the presence of the β-lactam antibiotic penicillin 24
Figure 2. 1. Whisker box plot 38
Figure 3. 1. lukSF-PV gene sequence variants from 58
Figure 3. 2. The structure of lukSF-PV genes 60
Figure 3. 3. Amplification of virulence factors from strain 3 62
Figure 3. 4. Amplification of seven house keeping genes from strain 3 66
Figure 3. 5. The structure of the PVL gene 71
Figure 3. 6. PVL gene sequencing results 73
Figure 4. 1. A standard growth curve 87
Figure 4. 2. Growth curves for strain 3 in the presence and absence of antibiotics 88
Figure 4. 3. RNA agarose gel analysis 89
Figure 4. 4. Optimization of SYTO9 in qPCR experiments 92
Figure 4. 5. Relative Expression Ratio of four target genes in strain 3 exposed to the MIC clindamycin 94
Figure 4. 6. Relative Expression Ratio of four target genes in strain 3 exposed to linezolid 95
Figure 4. 7. Relative Expression Ratio of four target genes in strain 3 exposed to oxacillin 98
Figure 4. 8. Relative Expression Ratio of four target genes in strain 3 exposed to vancomycin 99
Figure 5. 1. Evaluation of reproducibility and solubility of protein samples on SDS PAGE gel analyses

Figure 5. 2. 2DE analysis of protein samples from strains 10 stained with silver (A), and SYPRO Ruby (B)

Figure 5. 3. 2DE gel protein patterns of 10 clinical isolates of S. aureus

Figure 5. 4. 2DE protein reference map of S. aureus secretome.

Figure 5. 5. Multidimensional scaling (MDS) plot of strain similarities

Figure 5. 6. Comparison of the amount of those proteins detected in these different clinical isolates

Figure 5. 7. Diagramatic strategy for 2DE-DIGE

Figure 5. 8. Reproducibility of samples

Figure 5. 9. Reproducibility and Validity of Protein samples for CyDye labelling and DIGE analyses

Figure 5. 10. Labelling efficiency of Protein Samples

Figure 5. 11. A typical example of 2DE-DIGE overlay image

Figure 5. 12. Modulation of the abundance of PVL toxin F and S subunits, staphylococcal enterotoxins SEC, SEL and TSST-1 in the absence (con) and the presence of linezolid (lin) and vancomycin (van) treatment of strain 3

Figure 5. 13. Modulation of the abundance of PVL toxin F and S subunits and staphylococcal enterotoxin SEB in the absence (con) and the presence of linezolid (lin) and vancomycin (van) treatment of strain 9

Figure 5. 14. Modulation of the abundance of PVL toxin F and S subunits and staphylococcal enterotoxin Q (SEQ) in the absence (con) and the presence of linezolid (lin) and vancomycin (van) treatment of strain 10

Figure 5. 15. A typical example of western immunoblotting technique for strain

Figure 5. 16. The effect of four antibiotics on SPA abundance in culture
List of Tables

Table 1. 1. Surface proteins and their role in *S. aureus* pathogenesis

Table 1. 2. Major Staphylococcal enterotoxins and their encoded genes

Table 2. 1. Multiphor IEF program for 7cm IPG strips

Table 2. 2. Composition of large format 12% acrylamide SDS-PAGE gels

Table 2. 3. Ettan IPGphor IEF program for 18cm IPG strips

Table 2. 4. Imaging parameters for visualisation of fluorescently labelled proteins

Table 3. 1. Characteristics of clinical isolates used in this study

Table 3. 2. Primers used to detect the presence of toxin genes and *mecA*

Table 3. 3. Sequences of primers used in MLST analysis.

Table 3. 4. MLST Sequence typing and clonal complex of *S. aureus* isolates used in this study.

Table 3. 5. Primers used for sequencing PVL gene subunits.

Table 3. 6. Suggested type variants, of the PVL-positive isolates, according to nucleotide variations at several positions.

Table 4. 1. Effect of sub-MIC of Several Antibiotics on *S. aureus* and other Bacteria.

Table 4. 2. MIC of Clindamycin, Oxacillin, Linezolid and Vamcomycin for each strain.

Table 4.3. Antibiotic concentrations added to each strain of *S. aureus* used in this study.

Table 4. 4. Primers used in qPCR experiments.

Table 4. 5. Relative Expression Results of the effect of sub-MIC of clindamycin on strain 3.

Table 4. 6. Relative Expression Results of the effect of linezolid on strain 3.
Table 4. 7. Relative Expression Results of the effect of sub-MIC of oxacillin on strain3.

Table 4. 8. Relative Expression Results of the effect of sub-MIC of vancomycin on strain3.

Table 4. 9. lukSF-PV mRNA levels in cultures incubated with antibiotics for one hour.

Table 4. 10. spa mRNA levels in cultures incubated with antibiotics for one hour.

Table 4. 11. lukSF-PV gene transcription in cultures incubated with antibiotics for 5 hrs.

Table 4. 12. spa gene transcription in cultures incubated with antibiotics for 5 hrs.

Table 5. 1. Extracellular virulence factors identified by MALDI-TOF

Table 5. 2. Proteins with different functions identified by MALDI-TOF

Table 5. 3. Determination the lowest abundance of the protein in Positive and the highest abundance of the protein in Negative Isolates for TSST-1

Table 5. 4. Determine threshold for present and absent proteins in isolates used

Table 5. 5. Strain similarities based on number of shared spots between strains

Table 5. 6. Changes in toxin levels in culture supernatants of three S. aureus strains five hours after antibiotic treatment

Table 5. 7. General profile of S. aureus whole proteins changing with effect of linezolid and vancomycin using DIGE technique

Table 5. 8. Fold change in Protein A abundance in culture supernatants five hours after incubation in the absence (con) and presence of clindamycin (clin), oxacillin (ox), linezolid (lin) and vancomycin (van).

Table 5. 9. Western Blotting data of the effect of clindamycin, oxacillin, linezolid and vancomycin on the secretion level of Spa virulence factor in 10 nclinical isolates of S. aureus.