

Durham E-Theses

The Effect of Antibiotics on Toxin Gene Expression in PVL-positive Staphylococcus aureus Strains

BALAKY, SALAH, TOFIK

How to cite:

BALAKY, SALAH, TOFIK (2011) The Effect of Antibiotics on Toxin Gene Expression in PVL-positive Staphylococcus aureus Strains, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/692/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

Declaration

I declare that the work within this thesis, submitted for the degree of Doctor of Philosophy, is my own original work and has not been submitted for a degree at this or any other University.

Signed

Date

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be duly acknowledged.

Abstract

Staphylococcus aureus is an extra-ordinarily versatile pathogen causing a wide spectrum of infections. The aims of this study are to analyze 10 clinical isolates of *S. aureus* from the UK by Multi Locus Sequence Typing (MLST) and determining their PVL-type variants. In addition to that, to study the effect of several antibiotics at sub inhibitory concentrations on a number of virulence factors at mRNA using quantitative PCR and protein levels using proteomic methods. Western blotting was used to study differential expression of Spa at protein levels.

Data showed that the 10 clinical isolates belong to seven clonal complexes (CCs), which are CC1, CC5, CC8, CC22, CC30, CC88, and CC121. Genetic variation within *lukSF-PV* gene showed that three of these isolates were belong to the same PVL type variant of CA-MRSA USA300 strain, R variant. From which, two isolates were found to belong to the same CC of USA300, CC8. The remaining 7 isolates were found to belong to H variant. Data presented here showed that the sub-MIC levels of both cell wall inhibitors reduced *lukSF-PV* and *spa* steady-state mRNA levels when cells were grown in the presence of these antibiotics for one hour. However, after 5 hrs post antibiotic addition of these two antibiotics, vancomycin remained depressed *lukSF-PV* and *spa* steady-state mRNA levels as well as at protein levels, but oxacillin increased *spa* and *lukSF-PV* mRNA levels, as well as Spa at protein levels. Protein synthesis inhibitors clindamycin and linezolid were both caused an increase of *lukSF-PV* mRNA levels, but they both decreased *spa* mRNA levels, when cultures grown in the presence of these antibiotics for one hour. However, when cultures grown with these antibiotics for 5 hrs, clindamycin remained to increase lukSF-PV and decrease spa mRNA levels and protein levels, but linezolid decreased both virulence factors at mRNA and protein levels.

The data showed in this study confirmed that growing *S. aureus* in the presence of oxacillin induce toxin expression and might enhance the virulence of this bacterium, therefore using these antibiotics to treat *S. aureus* infections may contribute to worse outcomes. These data also confirmed that linezolid and vancomycin, are both important selections of antimicrobial agents to treat serious infections caused by the bacterium.

Acknowledgments

I would like to say greatest thanks to my supervisor Dr Tony Fawcett for agreeing to accept me on to a Ph.D. place and for his continued help and support during my time on this project. At the Tyneside General District Hospital I wish to thank Dr Richard Ellis for his committed support and providing clinical isolates and Dr Angela Karnes from the Staphylococcal National Reference Laboratory in London for providing a number of clinical isolates for this study.

I am also thankful to Professor A. R. Slabas and Dr. Bill Simon for their help in use of the proteomic facilities, and in particular Joanne Robson for her long support and help in the proteomic part of this study and John Rowland for guidance in designing of the proteomic experiments and using the software for statistical analysis. I also would like to thank all members in lab 4 and 5 for their help throughout this study.

I wish to thank my colleagues and all members of the department of Biological and Biomedical Sciences for making my time enjoyable and for their willingness to help, and to DNA sequencing services, for their help in sequencing part of this study. I also wish to thank Dr Allan Scheult from Mathematical Sciences Department, Durham University for his kind help in Multidimensional analysis for some data.

Last, but certainly not least, I would like to thank my Mum, Dad and all loved ones for their continued support, particularly my wife Ahang because without her constant support this would not have been possible.

DEDICATION

This Thesis is Dedicated to My Wife Ahang, My Mum and Dad. It is Also Dedicated Proudly to My Uncle Abdul-Wahid and All Loved Ones.

Contents

Declaration	i
Abstract	ii
Aknowledgments	iii
Dedication	iv
Contents	V
Chapter1. General Introduction	1
1. 1. General Characteristic of the Bacterium	2
1. 2. S. aureus Infections and their consequences	2
1. 3. Genetic Structure of Staphylococcus aureus	4
1. 3. 1. Core Genome	4
1. 3. 2. Accessory Genome	5
1. 3. 2. 1. Staphylococcal Cassette Chromosome SCC	5
1. 3. 2. 2. Pathogenecity Islands of <i>S aureus</i>	8
1. 3. 2. 3. Plasmids in S. aureus	8
1. 3. 2. 4. Transposons in S. aureus	8
1. 4. Virulence Factors and their Role in Pathogenecity	9
1. 4. 1. Adherence Factors (Adhesins)	9
1. 4. 2. S. aureus Exproteins	9

1. 4. 2. 1. Staphylococcal Haemolysins	11
1. 4. 2. 2. Toxic Shock Syndrome Toxin (TSST)	11
1. 4. 2. 3. Staphylococcal Enterotoxins (SEs)	11
1. 4. 2. 4. Exfoliative Toxins (ETs)	12
1. 4. 2. 5. Bicomponent Toxins	12
1. 4. 2. 5. 1. Leukotoxin LukE/LukD	14
1. 4. 2. 5. 2. Panton Valaentine Leukocidin (PVL)	14
1. 5. Regulation of Virulence Factors in S. aureus	17
1. 6. Antimicrobial Therapy and Resistance in S. aureus	21
1. 7. Molecular Typing Methods for S. aureus	28
1. 7. 1. PFGE	29
1. 7. 2. MLST	29
1. 7. 3. <i>spa</i> Typing	29
1. 7. 4. SCCmec Typing	30
1. 8. The Aim and Objectives	30
Chapter 2. Materials and Methods	32
2.1. Bacterial Strains	33
2. 2. Bacterial Cultivation and Identification	33
2. 2. 1. Growth media	33
2. 2. 2. Storage of isolates	33
2. 2. 3. Growth curve	33
2. 2. 4. MIC Determination	34
2. 3. Molecular Biology	34

2. 3. 1. Preparation of Genomic DNA	34
2. 3. 2. Polymerase chain reaction (PCR)	35
2. 3. 3. DNA Sequencing	35
2. 3. 4. RNA Extraction	35
2. 3. 5. RNA Agarose gel electrophoresis	36
2. 3. 6. cDNA Synthesis	36
2. 3. 7. Real-Time quantitative PCR (RT-qPCR)	36
2. 3. 8. Data Analysis Using Relative Expression Software (REST-2005)	37
2. 4. Proteomics and Protein Analysis	39
2. 4. 1. Collection and Concentration of Proteins from the Culture Supernatant	39
2. 4. 2. Estimation of Protein Concentration	39
2. 4. 3. Modified Bradford Assay	40
2. 4. 4. Mini-format 1-Dimensional SDS-PAGE	40
2. 4. 4. 1. Gel Casting	40
2. 4. 4. 2. Sample Preparation & Gel Loading	41
2. 4. 4. 3. Electrophoresis	41
2. 4. 5. Mini-format 2-Dimensional SDS-PAGE	41
2. 4. 5. 1. Protein Loading by In-gel Rehydration	42
2. 4. 5. 2. First Dimension Isoelectric Focusing	42
2. 4. 5. 3. IPG Strip Equilibration	43
2. 4. 5. 4. Second Dimension SDS-PAGE	43
2. 4. 6. Large-format 2-Dimensional SDS-PAGE	44

2. 4. 6. 1. Preparation of Backed Gels	44
2. 4. 6. 2. Large-format Gel Casting 2. 4. 6. 3. Protein Sample Preparation	44
2. 4. 6. 4. Protein Loading by In-gel Rehydration	45
2. 4. 6. 5. First Dimension IEF using the Ettan IPGphor IEF system	45
2. 4. 6. 6. IPG Strip Equilibration	45
2. 4. 6. 7. Second Dimension SDS-PAGE	46
2. 4. 6. 8. 2DE Gel Staining Using MS-Compatible Silver	46
2. 4. 6. 9. SYPRO Ruby Red Imager	47
2. 4. 6. 10. Gel Imaging with the Typhoon 9400 Variable Mode	47
2. 4. 7. Identification of Proteins	47
2. 5. 2DE DIGE Technique Experiments	47
2. 5. 1. Sample Preparation and Labelling process	47
2. 5. 2. Reconstitution of stock CyDye DIGE Fluor minimal dyes in dimethylformamide (DMF)2. 5. 3. Protein Labeling with CyDyes DIGE Fluor Minimal Dyes	48 49
2. 5. 4. Labeling efficiency Quality Control	49
2. 5. 4. Labering enrelency Quarty Control2. 5. 5. Large format 2DE of CyDye Labelled Protein Samples	49
2. 5. 6. DIGE Gel Imaging	50
2. 5. 7. 2DE Data Analysis using Progenesis Software	50
2. 6. Western Blotting	51
2. 6. 1. Electrophoretic Transfer	51
2. 6. 2. Immunoblotting	51
2. 6. 3. Blotted Membrane Densitometry	52

Chapter 3. Strain Characteristics

3. 1. Introduction	54
3. 2. Results and Discussion	59
3. 2. 1. Clinical Isolates Used In This Study	59
3. 2. 2. PCR Analysis Determine Presence of Toxin Genes	59
3. 2. 3. Determination of S. aureus Sequence Types (ST)	64
3. 2. 4. PVL Gene Polymorphism	69
Chapter 4. The Effect of Antibiotics on Toxin gene Expression in	75
S. aureus at mRNA level	
4. 1. Introduction	76
4. 2. Results and Discussion	82
4. 2. 1. MIC Determination	82
4. 2. 2. Effects of sub-MIC of Antibiotics on Growth	84
4. 2. 3. RNA Isolation and Reverse Transcription to cDNA	89
4. 2. 4. Primer design and testing	90
4. 2. 5. Fluorescent dye SYTO9	90
4. 2. 6. Real Time Quantitative qPCR	93
4. 2. 7. Relative Expression of toxin and pathogenicity genes	93
4. 2. 7. 1. The Effect of Protein Synthesis Inhibitors	93
4. 2. 7. 2. The Effect of Cell Wall Inhibitors	96
 4. 2. 8. <i>lukSF-PV</i> and <i>spa</i> gene Expression in Cultures Exposed to Antibiotics for one hour 4. 2. 9. <i>lukSF-PV</i> and <i>spa</i> gene Expression in Cultures Exposed to Antibiotics 	96 102
5hrs	10-
Chapter 5. Proteomic Analysis of <i>S. aureus</i> Extracellular	105
Proteins	
5.1. Introduction	106
5. 2. Results and Discussion	111
5. 2. 1. Protein Sample Preparation and SDS-PAGE Analyses	111

5. 2. 2. 2DE Gel Analysis	112
5. 2. 3. Secretome Analysis for S. aureus Extracellular proteins	112
5. 2. 4. Identified Proteins using MALDI-TOF Mass Spectrometry	116
5. 2. 5. Secretome Maps of the Isolates are Highly Variable	119
5. 2. 5. Individual Protein Expression Variability among Isolates	127
5. 3. The Effect of Linezolid and Vancomycin on Several Virulence Factors	129
5. 3. 1. Preparation of Protein Samples for CyDye Labelling	129
5. 3. 2. Labelling Conditions	133
5. 3. 3. 2DE DIGE Analyses	133
5. 3. 4. The Effect of Linezoid and Vancomycin on Toxin Abundance in Culture Supernatants	136
5. 4. Effect of Antibiotics on Protein A levels	142
Chapter 6. General Discussions	149
6.1. Clonal Lineages of S. aureus Strains used in This Study	150
6. 2. The Effect of Antibiotics on Toxin Gene Expression in S. aureus	151
References	162
Appendix	185

List of Figures

Figure 1. 1. A schematic drawing of SCCmec types I to VII in MRSA	7
Figure 1. 2. Model for how PVL might mediate tissue necrosis	15
Figure 1. 3. Schematic representation of the <i>agr</i> system	19
Figure 1. 4. Induction of β -lactamase synthesis in the presence of the β -lactam antibiotic penicillin	24
Figure 2. 1. Whisker box plot	38
Figure 3. 1. <i>lukSF-PV</i> gene sequence variants from	58
Figure 3. 2. The structure of <i>lukSF-PV</i> genes	60
Figure 3. 3. Amplification of virulence factors from strain 3	62
Figure 3. 4. Amplification of seven house keeping genes from strain 3	66
Figure 3. 5. The structure of the PVL gene	71
Figure 3. 6. PVL gene sequencing results	73
Figure 4. 1. A standard growth curve	87
Figure 4. 2. Growth curves for strain 3 in the presence and absence of antibiotics	88
Figure 4. 3. RNA agarose gel analysis	89
Figure 4. 4. Optimization of SYTO9 in qPCR experiments	92
Figure 4. 5. Relative Expression Ratio of four target genes in strain 3 exposed to the MIC clindamycin	94
Figure 4. 6. Relative Expression Ratio of four target genes in strain 3 exposed to linezolid	95
Figure 4. 7. Relative Expression Ratio of four target genes in strain 3 exposed to oxacillin	98
Figure 4. 8. Relative Expression Ratio of four target genes in strain 3 exposed to vancomycin	99

Figure 5. 1. Evaluation of reproducibility and solubility of protein samples on SDS PAGE gel analyses	111
Figure 5. 2. 2DE analysis of protein samples from strains 10 stained with silver (A), and SYPRO Ruby (B)	113
Figure 5. 3. 2DE gel protein patterns of 10 clinical isolates of <i>S. aureus</i>	115
Figure 5. 4. 2DE protein reference map of <i>S. aureus</i> secretome.	117
Figure 5. 5. Multidimensional scaling (MDS) plot of strain similarities	126
Figure 5. 6. Comparison of the amount of those proteins detected in these different clinical isolates	128
Figure 5. 7. Diagramatic strategy for 2DE-DIGE	130
Figure 5. 8. Reproducibility of samples	131
Figure 5. 9. Reproducibility and Validity of Protein samples for CyDye labelling and DIGE analyses	132
Figure 5. 10. Labelling efficiency of Protein Samples	134
Figure 5. 11. A typical example of 2DE-DIGE overlay image	135
Figure 5. 12. Modulation of the abundance of PVL toxin F and S subunits, staphylococcal enterotoxis SEC, SEL and TSST-1 in the absence (con) and the presence of linezolid (lin) and vancomycin (van) treatment of strain 3	137
Figure 5. 13. Modulation of the abundance of PVL toxin F and S subunits and staphylococcal enterotoxis SEB in the absence (con) and the presence of linezolid (lin) and vancomycin (van) treatment of strain 9	138
Figure 5. 14. Modulation of the abundance of PVL toxin F and S subunits and staphylococcal enterotoxis Q (SEQ) in the absence (con) and the presence of linezolid (lin) and vancomycin (van) treatment of strain 10	138
Figure 5. 15. A typical example of western immunoblotting technique for strain3	143
Figure 5. 16. The effect of four antibiotics on SPA abundance in culture	145

List of Tables

Table 1. 1. Surface proteins and their role in S. aureus pathogenesis	10
Table 1.2. Major Staphylococcal enterotoxins and their encoded genes	13
Table 2. 1. Multiphor IEF program for 7cm IPG strips	43
Table 2. 2. Composition of large format 12% acrylamide SDS-PAGE gels	44
Table 2. 3. Ettan IPGphor IEF program for 18cm IPG strips	45
Table 2. 4. Imaging parameters for visualisation of fluorescently labelled proteins	50
Table 3. 2. Primers used to detect the presence of toxin genes and mecA	61
Table 3. 1. Characteristics of clinical isolates used in this study	63
Table 3. 3. Sequences of primers used in MLST analysis.	65
Table 3. 4. MLST Sequence typing and clonal complex of <i>S. aureus</i> isolates used in this study.	67
Table 3. 5. Primers used for sequencing PVL gene subunits.	71
Table 3. 6. Suggested type variants, of the PVL-positive isolates, according to nucleotide variations at several positions.	74
Table 4. 1. Effect of sub-MIC of Several Antibiotics on <i>S. aureus</i> and other Bacteria.	80
Table 4. 2. MIC of Clindamycin, Oxacillin, Linezolid and Vamcomycin for each strain.	83
Table 4.3. Antibiotic concentrations added to each strain of <i>S. aureus</i> used in this study.	86
Table 4. 4. Primers used in qPCR experiments.	91
Table 4. 5. Relative Expression Results of the effect of sub-MIC of clindamycin on strain3.	94
Table 4. 6. Relative Expression Results of the effect of linezolid on strain 3.	95

Table 4. 7. Relative Expression Results of the effect of sub-MIC of oxacillin on strain3.	98
Table 4. 8. Relative Expression Results of the effect of sub-MIC of vancomycin on strain3.	99
Table 4. 9. <i>lukSF-PV</i> mRNA levels in cultures incubated with antibiotics for one hour.	100
Table 4. 10. spa mRNA levels in cultures incubated with antibiotics for one	101
hour.	
Table 4. 11. <i>lukSF-PV</i> gene transcription in cultures incubated with antibiotics for 5 hrs.	103
Table 4. 12. <i>spa</i> gene transcription in cultures incubated with antibiotics for 5 hrs	103
Table 5. 1. Extracellular virulence factors identified by MALDI-TOF	118
Table 5. 2. Proteins with different functions identified by MALDI-TOF	120
Table 5. 3. Determination the lowest abundance of the protein in Positive and the highest abundance of the protein in Negative Isolates for TSST-1	124
Table 5. 4. Determine threshold for present and absent proteins in isolates used	124
Table 5. 5. Strain similarities based on number of shared spots between strains	125
Table 5. 6. Changes in toxin levels in culture supernatants of three <i>S. aureus</i> strains five hours after antibiotic treatment	139
Table 5. 7. General profile of <i>S. aureus</i> whole proteins changing with effect of linezolid and vancomycin using DIGE technique	140
Table 5. 8. Fold change in Protein A abundance in culture supernatants five hours after incubation in the absence (con) and presence of clindamycin (clin), oxacillin (ox), linezolid (lin) and vancomycin (van).	146
Table 5. 9. Western Blotting data of the effect of clindamycin, oxacillin, linezolid and vancomycin on the secretion level of Spa virulence factor in 10 nclinical isolates of <i>S. aureus</i> .	147