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Abstract

As the Large Hadron Collider has switched on at CERN in Geneva, accurate predic-

tions for complex hadronic processes are essential for the validation of theory and

therefore the success of the machine. After motivating the requirement for a Monte

Carlo event generator, the principles and Physics behind such a generator are laid

out.

Following this, the Monte Carlo tuning system Professor is used to give an assess-

ment of the uncertainty from tuning Herwig++ and the results from this analysis

used, along with a more accurate implementation of Higgs boson decays using the

POWHEG method, to determine the error associated with searching for the Higgs

boson with a jet substructure technique.

Then, modifications to the shower to take into account the top quark width are

presented along with radiation patterns from top quark production processes for up

to two external gluons. A general algorithm is outlined for systematically including

these corrections.

Finally, as the LHC is ultimately a discovery machine, it is pertinent to provide

Monte Carlo studies of new Physics. The colour sextet diquark model is looked at

in the final chapter of this thesis, and the associated phenomenology studied.
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Chapter 1

Introduction

The Standard Model (SM) was first written down over thirty years [9–11] ago and is

arguably the crown jewel in man’s achievments. It is a theory of almost everything,

except for gravity, and its ability to explain and predict experimental observables is

both monumental and problematic. It is monumental in that it has been tested and

verified repeatedly at collider experiments, and problematic as it does not include

gravity. In this chapter the basics of the SM are outlined along with how calculations

are performed.

Providing links to theory at modern collider experiments, with their complex

hadronic final states, requires a Monte Carlo event generator. These tools provide

a theoretical description in a form that can be used to describe real world collider

events, such as at the Large Hadron Collider (LHC) at CERN in Geneva. They

provide the simulation of physical processes and therefore an ability to compare

experiment and theory. Without Monte Carlo event generators, the experimental

programme would not be able to interpret the results and relate the observed results

to fundamental theory. Later in this chapter the principles behind a Monte Carlo

event generator are detailed.

1



1.1. The Standard Model 2

1.1 The Standard Model

1.1.1 Symmetries

The SM is based entirely on symmetries that can be explained with the Mathematics

of group and gauge theories. In fact, the SM is actually an

SU(3) × SU(2) × U(1) gauge theory. To understand the ideas behind gauge the-

ory we first turn to the example of Electromagnetism, which was the first gauge

theory to be discovered.

Electromagnetism

In Electromagnetism, one can talk about the electric field E or equivalently the

vector potential φ, and the magnetic field B, or the scalar potential A. These are

related by

E = −∇φ− ∂A

∂t
, (1.1.1a)

B = ∇×A . (1.1.1b)

A simple transformation of the fields

φ→ φ− ∂χ

∂t
, (1.1.2a)

A→ A +∇χ , (1.1.2b)

where χ = χ(x, t) leave the original field equations in Eqn. 1.1.1 unchanged, as

∇ × ∇χ = 0. Here we have performed a gauge transformation, by shifting the

potentials that the E and B fields depend on by an arbitrary amount whilst leaving

the E and B fields themselves unchanged i.e. A and φ are not unique for a given E

and B [12]. By writing

Aµ = (φ,A) , (1.1.3)

we may write the gauge transformation more compactly as

Aµ → Aµ − ∂µχ , (1.1.4)

and we may more compactly write the current as

jµ = (ρ, j) . (1.1.5)
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This allows us to write Maxwell’s equations in the form

∂µF
µν = jν , (1.1.6)

where we have introduced the electromagnetic field strength tensor

F µν = ∂µAν − ∂νAµ , (1.1.7)

which is also a gauge-invariant quantity. It is these principles that guide us in

building our theory of Particle Physics.

This still leaves us with the question of how to actually construct a theory.

Again, we are driven by what symmetries we wish our theory to obey and from

that, what we are allowed to write down. So other than choosing which particles we

wish to describe, we must also choose what symmetries we wish these particles to

obey. Only then may we write down the most general invariant Langrangian with

these particles, obeying these symmetries, as our theory.

Guided by past principles, it is clear that for the theory of the SM, one symmetry

we will always require is that our theory be Lorentz invariant. We also further con-

strain the theory by requiring it to be renormalizable - where the renormalizability

is related to the short distance divergences in the theory.

When performing calculations at one-loop level and beyond, divergences arise at

large momentum scales, i.e. short distances. The renormalizability of the theory

means that we can reabsorb these divergences into the bare parameters of the theory,

leaving it finite at short distances.1 With regards to writing down our theory, in

practice this means not writing down any operators with a mass/energy dimension

greater than four in the Lagrangian. We will discuss renormalization more later in

this chapter.

Following on, from the example of Electromagnetism, we turn now to Quantum

Electrodynamics (QED) as a further simple example of gauge invariance and gauge

symmetry where we will see that the gauge symmetry gives rise to the interactions

between the particles of the theory, and where the gauge bosons act as the force

1’t Hooft proved that the SM is a renormalizable gauge theory with a spontaneous broken

symmetry [13,14].



1.1. The Standard Model 4

carriers. From this, we will then go on to discuss the more complicated non-Abelian

case of Quantum Chromodynamics (QCD).

Quantum Electrodynamics

We start with the Dirac Langragian which is written as a sum over the fermions

LDirac =
∑
i

ψ̄i (iγ
µ∂µ −mi)ψi . (1.1.8)

LDirac has the property of being invariant under the global U(1) transformation

ψi → eiαψi , (1.1.9)

but if we promote this symmetry to be local so that now

ψi → eiα(x)ψi , (1.1.10)

we destroy the invariance, as the derivative acts on the α(x) term in the exponent.

To restore the invariance of the Lagrangian under the local gauge transformation,

we introduce a new vector field, Aµ, which has the following kinetic term

LMaxwell = −1

4
F µνFµν , (1.1.11)

where as before, F µν = ∂µAν−∂νAµ. The fields therefore transform under the local

gauge transformation as

ψi → eiα(x)ψi , (1.1.12a)

Aµ → Aµ −
1

e
∂µα(x) . (1.1.12b)

We replace the usual derivative ∂µ with the covariant derivative Dµ ≡ ∂µ + ieAµ

and we have the QED Lagrangian

LQED =
∑
i

ψ̄i (iγ
µDµ −mi)ψi −

1

4
F µνFµν , (1.1.13)

which is invariant under the gauge transformation Eqn. 1.1.12. Note that a mass

term for Aµ such as m2AµA
µ, is not permitted as it would not be invariant under

the gauge transformations. We can therefore say that the new field we introduced,

Aµ, is identified as the photon and the interaction of the photon with the fermions in

the theory depends on the expansion of the covariant derivative, where the photon

field lies, acting on the spinors. The strength of this coupling is dictated by the size

of e, which is the charge of the positron [15,16].



1.1. The Standard Model 5

1.1.2 Quantum Chromodynamics

Before formulating the theory, we recall that for a general group G which is a set

with an operator, then there are four basic axioms for the group which are2

1. Closure - a · b = c where {a, b, c} ∈ G;

2. Associativity - if {a, b, c} ∈ G then a · (b · c) = (a · b) · c;

3. Identity - there is an element of the group such that a · I = I · a = a;

4. Inverse - for any element in the group a then there is an element a−1 such that

a · a−1 = I.

We have already seen a U(1) group in the formulation of QED i.e. the circle group

which act as rotations on the complex plane. The procedure followed in QED can

be applied in general and the natural extension is to a non-Abelian theory, where

the charge is a non-Abelian quantity. The QCD Langrangian is derived in this way

(we follow here the formalism in Ref. [18, 19]) and is built on the SU(3) Lie group.

It is in the non-Abelian nature of this theory that will give rise to self interactions

of the gauge bosons. It is therefore important to understand some of the general

properties of an SU(NC) group, which we review briefly now.

A general SU(NC) group consists of NC × NC unitary matrices with a unit

determinant. The dimension of the group is N2
C − 1 and so there are N2

C − 1

traceless and hermitian group generators. In the case of SU(3) these are often

given by the Gell-Mann3 matrices. We do not state the Gell-Mann matrices here,

however, for SU(2) which the Electroweak theory is built upon, we often use the Pauli

matrices. There is generally more than one representation of the group. The simplest

representation is called the fundamental representation, where the generators of the

group give the group transformations.

Following the group axioms, we expect operations between group elements to

return an element in the group. The richness of the theory comes from the generators

2An excellent introduction to groups for Particle Physics can be found in Ref. [17].
3It was Murray Gell-Mann that chose the naming of the fundamental particles “quarks”.



1.1. The Standard Model 6

obeying the commutator (or Lie bracket) [18][
tA, tB

]
= ifABCtC , (1.1.14)

where fABC are called the structure constants of the group. The generators and

Lie bracket form what is called the Lie algebra. The structure constants are num-

bers that can be determined for SU(3) and we state them as the completely anti-

symmetric tensor, εijk, for SU(2), which the Electroweak theory is built on. Using

Eqn. 1.1.14 and the trivial relation[[
tA, tB

]
, tC
]

+
[[

tB, tC
]
, tA
]

+
[[

tC , tA
]
, tB
]

= 0 (1.1.15)

we get the Jacobi identity

fABDfDCE + fBCDfDAE + fCADfDBE = 0 . (1.1.16)

From this we see that the structure constants themselves also obey the group

transformation forming an important representation of the group called the ad-

joint representation, where the generators of the adjoint representation are TA
(BC) =

−ifABC [18].

As we will be using many relations of SU(3), which is of interest in building

QCD, we cite here the conventions for the normalization of the matrices, which is

such that [18]

Tr(tAtB) = TRδ
AB, TR = 1

2
. (1.1.17)

This means the colour matrices of SU(3) obey

Tr(tAtA) = tAmbt
A
bn = CF δmn, CF =

N2
C − 1

2NC

, (1.1.18)

which we will make use of throughout this thesis, and for the adjoint representation

Tr(TCTD) =
∑
A,B

fABCfABD = CAδ
CD, CA = NC , (1.1.19)

i.e. CF = 4
3

and CA = 3 for NC = 3. We may now use this knowledge to derive the

QCD Lagrangian, where we start like in QED with the Dirac Lagrangian, here for

quarks

LDirac =
∑
a

q̄a (iγµ∂µ −m) qa . (1.1.20)
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where now our index a runs over the NC = 3 quark colours, we have an explicit sum

over the quark types and we introduce a non-Abelian symmetry that transforms the

fields by

qa → Ω(θ)abq
b , (1.1.21)

where θ = θ(x) are the parameters of the transformation and we note that the

transformation carries indices itself [19] i.e.

Ω(θ)ab = exp
(
iθA(x)tAab

)
(1.1.22)

where the tAab are the generators of the SU (NC) group and the index A runs over

the N2
C − 1 generators of the group.

To make the QCD Langrangian invariant under local transformations as in

Eqn. 1.1.21, we proceed as before by introducing N2
C − 1 gauge fields Gµ

ab = Gµ
AtAab

and replace ∂µ with the covariant derivative Dµ
ab ≡ δab∂

µ + igsG
µ
ab, where gs is the

strong coupling. The new fields and covariant derivative transform as [19]

Dµ → Ω(θ)DµΩ(θ)−1 (1.1.23a)

Gµ → Ω(θ)GµΩ(θ)−1 +
i

gs
[∂µΩ(θ)] Ω(θ)−1 . (1.1.23b)

We still need to introduce the usual kinetic term for the new gauge fields Gµ. We

do this by considering [Dµ, Dν ] ≡ igsG
µν , and we now find that [19]

GA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν , (1.1.24)

and the transformation from Eqns. 1.1.23

Gµν → Ω(θ)GµνΩ(θ)−1 . (1.1.25)

Therefore, by considering a gauge invariant kinetic term for the gluons of the form

Tr ([Dµ, Dν ][D
µ, Dν ]), we construct the gauge invariant QCD Lagrangian

LQCD =
∑
i

q̄i
a (iγµDµ −mi)ab q

b
i −

1

4
Gµν
A G

A
µν . (1.1.26)

The quarks are in the fundamental representation of SU (3) and the gluons, the

gauge bosons, are in the adjoint representation of SU (3). The fact the theory needs

to be renormalizable constrains any additional terms we may try to add to the

Lagrangian. Again we note that a mass term for the gluons is not permitted as it

would not be invariant under gauge transformations.
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SU (2) U (1)

QL → exp
(
ig

2
α(x)iσ

i
)
QL QL → exp (ig′YqLα0(x))QL

uR → uR uR → exp (ig′YuRα0(x))uR

dR → dR dR → exp (ig′YdRα0(x)) dR

LL → exp
(
ig

2
α(x)iσ

i
)
LL LL → exp (ig′YlLα0(x))LL

eR → eR eR → exp (ig′YeRα0(x)) eR

Table 1.1: The transformation of the fermions under the different groups for the

left-handed and right-handed fermions in the Electroweak theory.

1.1.3 Electroweak Theory

Electricity and Magnetism were first unified by Maxwell in 1865 in his paper “A

Dynamical Theory of the Electromagnetic Field” [20], then in a series of works

during the 1960’s, Glashow, Salam and Weinberg unified Electromagnatism and the

weak nuclear force, culminating in their award of a Nobel prize in 1979 [9–11].

The Electroweak theory is an SU (2) × U (1) gauge theory. In this theory, the

left-handed spinors transform differently to the right-handed spinors, which is forced

upon us by Nature allowing the W boson to only couple to left-handed particles4.

To construct the theory, we form a left-handed doublet of fields with weak isospin

T = 1
2

and right-handed singlets with weak isospin T = 0

QL =

uL
dL

 LL =

νL
eL

 . (1.1.27)

We identify uL to have third-component of weak isospin T3 = 1
2
, and dL to have

T3 = −1
2
, and similarly for the leptons. The gauge transformations under the

different groups for the left and right-handed particles are shown in Table 1.1, where

α(x) are the parameters of the transformation, σ are the Pauli matrices and Y are

the weak hypercharges.

Following the same procedure as before, this necessitates the introduction of

4We project out the different components of the spinor using the projection operators, i.e.

ψL = PLψ, where PL = 1
2 (1− γ5) and similarly PR = 1

2 (1 + γ5).
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three new gauge fields for the SU (2) transformation, W µ
i , and one new gauge field

for the U (1) transformation, Bµ, with the usual change of derivative to covariant

derivative, so the Lagrangian is

LEW =Lgauge + Lfermions + LHiggs (1.1.28)

=− 1

4
F µν
i F i

µν −
1

4
BµνBµν + Lfermions + LHiggs

where

Lfermions = iQLγ
µDµQL + iLLγ

µDµLL + iuRγ
µDµuR + idRγ

µDµdR + ieRγ
µDµeR ,

(1.1.29)

describing the interactions of the fermions with the gauge bosons and also the kinetic

terms for the fermions.

We still need a mass term for our fermions and bosons, and having the benefit

of foresight, we include this under LHiggs. The reason for generating the masses this

way, is two fold. Firstly, is that due to the different transformations of the left and

right-handed fermions there is a problem with the usual Dirac mass term. A mass

term such as in LDirac is strictly forbidden by gauge symmetry. This can be seen by

considering [15]

L = −ψ̄mψ = −m
(
ψ̄RψL + ψ̄LψR

)
, (1.1.30)

where clearly due to the different transformation properties of left- and right-handed

fermions, is not gauge invariant. Secondly, a standard mass term for our bosons, as

is required for the Z and W bosons, in our non-Abelian theory is not gauge invariant

as can be seen from the transformation properties from Eqn. 1.1.23.

It is now clear why we have included LHiggs in our Electroweak Langrangian -

to generate these masses. The theory allows mass terms via the Higgs mechanism,

a spontaneously broken symmetry giving rise to masses of the gauge bosons and

fermions and introduces a new boson, the Higgs boson.

1.1.4 The Higgs Mechanism

The Higgs mechanism is best explained first with a simple example before the full

mechanism is added to the Electroweak Langrangian [15,16]. The canonical example
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Figure 1.1: The shape of the potential V (x) = µ2x2 + x4 for different values of µ.

is to consider a single complex scalar field φ with the Lagrangian

L = Dµφ†Dµφ−
1

4
F µνFµν − µ2φ†φ− λ

(
φ†φ
)2

(1.1.31)

where Dµ = ∂µ + ieAµ and which we note has a global U (1) symmetry and we

identify the potential as

V (φ) = µ2φ†φ+ λ
(
φ†φ
)2
. (1.1.32)

For a classical field the ground state is found where the potential is minimum. If

the vacuum energy is to be bounded from below, then we must take λ > 0 but we

may choose µ2 to be either sign. For µ2 > 0 then we obtain a parabolic shaped

potential and the minimum is at the origin, however, if we take µ2 < 0, then we

obtain the famous Mexican hat potential as seen in one-dimension in Fig. 1.1. We

now see that the minimum of the potential lies on a circle where

Vmin = −µ
2

2λ
(1.1.33)

and we can write

φ0 =

√
−µ

2

2λ
eiφ , (1.1.34)

i.e. we have degeneracy in the energy states due to an azimuthal symmetry - the

phase, φ, is arbitrary. A particular vacuum state must be realised though and
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SU (2) U (1)

Φ→ exp
(
ig

2
α(x)iσ

i
)

Φ Φ→ exp
(
ig
′

2
α0(x)

)
Φ

Table 1.2: The transformation of the Higgs doublet in the Electroweak theory.

choosing a vacuum state then breaks the U (1) symmetry, i.e. spontaneous symmetry

breaking.

We choose the vacuum expectation value, v, to be real and we find the physical

fields by expanding around the minimum by setting

φ (x) =
1√
2

(v + σ (x) + iη (x)) , (1.1.35)

where clearly the fields σ and η have zero vacuum expectation value. We then insert

this into our Lagrangian and find that

L =
1

2
∂µσ∂

µσ +
1

2
∂µη∂

µη − v2λσ2 +
1

2
e2v2AµA

µ − evAµ∂µη −
1

4
F µνFµν + Lint. .

(1.1.36)

Now we see that we have one real massive field σ and one massless field, the Gold-

stone boson, η. We see the beginings of what we want in order to generate a mass

term for our physical field, as we have the term 1
2
e2v2AµA

µ but we have the un-

wanted Goldston boson, η. In practice, this unphysical field can be removed by an

appropriate choice of gauge - the Unitary gauge.

We now apply the Higgs mechanism to the Electroweak Standard Model by

introducing a weak isospin doublet of complex scalar fields, Φ, that have the trans-

formation properties as outlined in Table 1.2.

We then add to the Lagrangian a component

LHiggs = (DµΦ)† (DµΦ)− µ2Φ†Φ− λ
(
Φ†Φ

)2
, (1.1.37)

where the covariant derivative is defined by

Dµ = ∂µ + i
g

2
σiW

i
µ + i

g′

2
Bµ . (1.1.38)

We choose the ground state to be

Φ0 =
1√
2

0

v

 (1.1.39)
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and, in the unitary gauge, we expand Φ(x) as

Φ (x) =
1√
2

 0

v + σ(x)

 . (1.1.40)

Upon writing out the Lagrangian, we find that we can identify the photon and

Z boson with

Zµ = cos θWW
µ
3 − sin θWB

µ , (1.1.41a)

Aµ = sin θWW
µ
3 + cos θWB

µ , (1.1.41b)

where θW is the Weinberg angle, mz = mW

cos θW
, there is no photon mass term and the

W boson gains a mass mW = 1
2
vg.

The down-type quarks and leptons gain their masses by noting that a Yukawa

interaction of the form

L = −gd
(
QLdRΦ + Φ†dRQL

)
(1.1.42)

is invariant under both the SU (2) and U (1) transformation, and the up-type quarks

by

L = −gu
(
QLuRΦ̃ + Φ̃†uRQL

)
(1.1.43)

where Φ̃ ≡ −i(Φ†σ2)T transforms as

Φ̃→ exp
(
−igα(x)iσ

i
)

Φ̃ (1.1.44)

i.e. with opposite hypercharge compared to Φ and which can be written in Unitary

gauge as

Φ̃ (x) =
1√
2

v + σ(x)

0

 . (1.1.45)

We therefore write a general gauge invariant expression for our quark masses as

L = −Q′LmGmnd
′
RnΦ−Q′LmG̃mnu

′
RnΦ̃ + h.c. (1.1.46)

where now the primes indicate that the weak isospin eigenstates may not be the

same as the physical mass eigenstates. We diagonalise the matrix G with a bi-

unitary transformation V †GU = D, so we may write the Lagrangian in terms of the
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Fermion Isospin, T T3 Hyperchage, Y Charge, Q = T3 + Y
2u

d


L

1
2

+1
2

−1
2

 +1
3

+2
3

−1
3


uR 0 0 +4

3
+2

3

dR 0 0 −2
3

−1
3νe

e−


L

1
2

+1
2

−1
2

 −1

 0

−1


e−R 0 0 −2 −1

Table 1.3: The quantum numbers of the fermions of the SM.

physical mass eigenstates, i.e. we rotate the weak eigenstates into mass eigenstates.

We make this transformation everywhere where we see the weak isospin eigenstates.

This changes the non-flavour diagonal interaction terms in the Lagrangian, so now,

in the interactions of the quarks and the W boson, determined by the covariant

derivative, we find that in rotating to the physical mass states, we gain a factor of

Ṽ †V ≡ VCKM . (1.1.47)

This matrix, the Cabbibo-Kobayashi-Maskawa (CKM) [21, 22] matrix, allows us to

work in the physical mass eigenstates, not the weak isospin eigenstates by inclusion of

the appropriate factor. Unfortunately the SM has nothing to say about what values

this matrix should take, and along with the masses of the fundamental particles, we

must measure these quantities physically. To get a flavour for the CKM matrix, we

can use the Wolfenstein parameterisation where (to O(λ4)) [23]

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (1.1.48)

where λ ≈ 0.23, A ≈ 0.81, ρ ≈ 0.14 and η ≈ 0.35.

The lepton mass terms can be generated in a similar manner, but for mass-

less neutrinos there is no lepton mixing matrix equivalent to the CKM matrix,

as we may rotate the lepton fields to define the electron neutrino as the neutrino
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Figure 1.2: The particle content of the Standard Model.

field coupling to the electron. However, if we introduce massive neutrinos, then

there is a lepton mixing matrix similar to the CKM matrix called the Pontecorvo-

Make-Nakagawa-Sakate (PMNS) matrix [24], which is currently studied by neutrino

oscillation experiments.

To summarise the host of quantum numbers we have encountered, the quantum

numbers of the fermions of the SM can be found in Table 1.3. We also show in the

Fig. 1.2 the known constituents of matter, separated into their three generations

and the gauge bosons, the force carriers, and the Higgs boson.

1.1.5 Renormalization, Divergences and Running Couplings

Although we would like to solve our theory exactly, this is not possible and so in

calculating quantities in the SM we make use of perturbative series, i.e. we view the

interaction terms as a perturbation. Practically, we make a perturbative expansion

in the coupling constant of the process we are interested in5, write down all the

Feynman diagrams in the coupling expansion for the process we are interested in at

a certain order, and then calculate them.

If the perturbative expansion series is asymptotic, then as we move higher in the

series the magnitude of the contribution of the higher orders should be less than

5For this we rely upon the property of QCD known as asymptotic freedom, which is discussed

next.



1.1. The Standard Model 15

Figure 1.3: An example of a perturbative series in pQCD for e+e− → qq̄.

the preceding orders. So, if we wanted to calculate the total rate for e+e− → qq̄ in

perturbative QCD (pQCD) we would form the series as shown in Fig. 1.3, where

upon squaring, we have to be careful to only include the correct final states and

only up to the order we desire in the coupling constant.

The leading-order process is generally easy to calculate, however, things become

more complicated as we start to introduce quantum corrections into the calculation.

Upon inclusion of a loop, we must integrate over all modes inside the loop and we

see from the example [19] in Fig. 1.4 that we have a contribution∫
d4k[

(k + p)2 −m2
]
k2
∼
∫

dΩ3

∫
dk k3 1

k2 · k2
∼
∫ Λ dk

k
∼ ln Λ (1.1.49)

where we have introduced an artificial cut-off on the integral, Λ to illustrate how the

integral diverges as we take Λ → ∞. Such problems are treated by the process of

renormalization, whereby a regulator is introduced into the theory and then counter

terms introduced to exactly balance the dependence on the regulator, thus leaving

the integral finite [25]. In practice, we say that we don’t measure the “bare” pa-

rameters of the Lagrangian and we only measure the physical, non-divergent, finite

parameters. This amounts to us absorbing the divergences into our newly defined

bare parameters, or, saying that the problem is not from the perturbative expansion

itself but from the choice of parameter with which we expand [26].

The usual regulator used is the process of “dimensional regularization”, whereby

the calculation of the integral is done in d = 4 − 2ε dimensions, rendering the

divergences as poles in ε. A subtraction scheme e.g. minimal subtraction bar -
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MS , is then prescribed to conveniently absorb the divergences and other regularly

featuring constants which vary between the schemes, thus rendering the integral

finite.

The process of renormalization also introduces a new scale into the theory, the

renormalization scale. Clearly a physical process cannot depend on this unphysical

renormalization scale. We can express this fact by using the renormalization group

equations.

If we consider the coupling of QED and define as usual

α =
e2

4π
, (1.1.50)

the coupling has a dependence on the scale which we choose to measure it at. We

define the beta function [26]

β (α) = µ2 ∂α

∂µ2
, (1.1.51)

where the beta function is dependent on the theory in question and is calculated

order by order in perturbation theory. It tells us how, in this case, the coupling

evolves with the scale. In general the beta function can be written as

β (x) = bx2 +O
(
x3
)
, (1.1.52)

then in QED, where x = α we find that [27]

b =
2

3π
+O

(
α3
)

(1.1.53)

and for QCD [28,29], where x = αs = g2s
4π

b = −
(

11CA − 2nf
12π

)
. (1.1.54)
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The general solution for our scale dependent coupling is

α
(
Q2
)

=
α (µ2)

1− α (µ2) b ln
(
Q2

µ2

) . (1.1.55)

The most remarkable thing to notice is that the negative sign of the QCD b gives

rise to two, related, important properties:

• Asymptotic freedom - At high energies the coupling becomes small enough so

that we may use a perturbative expansion in the coupling constant to calculate

physical processes;

• Confinement - Quarks exist in bound states - hadrons. Free quarks are not

seen experimentally. The reason being is that the coupling strength increases

at low energies. Unfortunately, this means that we can no longer use a pertur-

bative treatment for calculations in our theory, and so we must rely on either

phenomenological models or numerical techniques with the discretization of

space-time to describe hadronic properties.

Clearly, a full treatment of renormalization is beyond the scope of this thesis

and for a more detailed treatment we refer to various books on the subject, e.g.

Refs [16, 18,19,27,30,31].

Whilst renormalization deals with issues from the short range of the theory, i.e

high energies (U.V. divergences), we may similarly ask what happens to divergences

when we move to low energies and long range interactions (I.R. divergences).

Infrared divergences are cancelled between the real and virtual contributions

thanks to the Bloch-Nordsieck theorem [32] in QED and, for the SM as a whole,

Kinoshita-Lee-Nauenberg (KLN) theorem [33, 34]. Schematically we write a next-

to-leading order (NLO) cross section as

σNLO =

∫
n+1

dσR +

∫
n

dσV (1.1.56)

where we have the real-emission terms integrated over the n+ 1 parton phase space

and the virtual contribution integrated over the n parton phase space. When we

calculate these in dimensional regularization, we find that the infrared pole struc-

ture appears equally in both integrals, but crucially with the opposite sign in one
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Figure 1.5: The cancellation of infrared divergences in the matrix element squared

at the Next-to-Leading order level.

giving complete cancellation, thus rendering our calculation infrared finite. This

can be seen diagrammatically when we consider the interference between both real

contributions and the virtual tree-level contributions as shown in Fig. 1.5.

We need to be sufficiently inclusive, i.e. integrate over the appropriate phase

space for these cancellations to occur. We therefore need to pick an experimental

observable that is both soft and collinear safe, and this can have important conse-

quences, e.g. for a particular choice of jet algorithm as discussed in Appendix B.

Therefore any exclusive experimental observables, e.g. a central jet veto may pick

up large logarithms due to incomplete cancellations.

1.2 Monte Carlo Simulations

As mentioned in the introduction to this Chapter, Monte Carlo simulations are

an important tool of the modern collider experiments, and without them modern

collider experiments would not be able to perform as they do. When one considers

that the multiplicity of a final state at the LHC will be a few thousand particles,

with multiple parton interactions, underlying event and pile-up, then one must use

these state-of-the-art tools.

Below we will consider the construction of a Monte Carlo event generator in terms
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Figure 1.6: The splitting of q → q g.

of a hard-process and a parton shower - whereby the partons undergo branchings to

form a cascade of particles producing highly complex final states.

1.2.1 Parton Splitting

One of the main features of any Monte Carlo event generator is the parton shower,

whereby the incoming or outgoing partons from the hard process radiate particles

in a cascade and those particles in turn go on to produce their own cascade of

particles. In this way, complex final states are produced of many partons whilst

summing up large contributions to the calculation in an approximation to the full

pQCD calculation for such a complex process. The key in all this is therefore the

splitting of a parent parton into other children partons, which then in turn split

themselves. If we consider the propagator in the splitting of a quark to a quark and

gluon as shown in Fig. 1.6 then there is a propagator associated with the internal

quark, which in limit of vanishing mass, goes like

1

(q + k)2
=

1

2q · k =
1

2EqEk(1− cos θqk)
, (1.2.1)

where θqk is the angle between the partons q and k. This propagator clearly has a

divergence when either cos θqk → 1 i.e. θqk → 0 (a collinear divergence), or when

Eq → 0 or Ek → 0 (a soft divergence)6. We will examine these in turn below.

6For the cases where t = (q + k)2 > 0 we refer to this as timelike branching, and for t < 0, we

refer to this as spacelike branching.
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Collinear Divergences

To understand more about the collinear divergences, we consider the above massless

case and we write the Mn+1 matrix element as7

Mn+1 = gst
aε∗α(k)ū(q)γα

/q + /k

2q · kM
′
n (1.2.2)

where k is the momentum of the emitted gluon, q is the momentum of the external

quark, ε∗(k) is the external polarization vector of the gluon and the matrix element

M′
n contains the remaining part of the matrix element and therefore contains spinors

and gamma matrices describing the process which produced the quarks.

We now square this matrix element and sum over spins and polarizations of the

gluon to obtain [19,35]

|Mn+1|2 =
∑

ε∗α(k)εβ(k)
g2
sCF

4 (q · k)2 Tr
[
M′ †

n γ
0
(
/q + /k

)
γα/qγ

β
(
/q + /k

)
M′

n

]
, (1.2.3)

and we will make use of the polarization relation in a physical gauge∑
ε∗α(k)εβ(k) = −gαβ +

nαkβ + nβkα

n · k , (1.2.4)

where n is a light like vector and upon which we apply the usual Dirac rules for

gamma matrices, and keep in mind that we are treating massless particles8. When

the smoke clears, we are left with the following expression [19,35]

|Mn+1|2 =
g2
sCF

(n · k) (q · k)
Tr
[(
M′ †

n γ
0
) (
n · (k + q)

(
/k + /q

)
+ (n · q) /q − /n (q · k)

)
M′

n

]
.

(1.2.5)

At this point we introduce the Sudakov basis [37] where, in this basis, a general

vector may be written as

qµi = αip
µ + βin

µ + qµ⊥ i . (1.2.6)

In a Monte Carlo event generator the vector p will be the momentum of the shower

progenitor such that p2 = m2, the reference vector n is a light-like vector chosen

7We follow here the formalism of Ref. [19], except for final state branching as in Ref. [35]. An

alternative derivation is given in Ref. [18].
8Gamma matrix algebra is often tedious and error prone for large expressions. FORM is an ap-

plication which has inbuilt routines for efficiently handling gamma matrices and is used extensively

throughout the work in this thesis [36].



1.2. Monte Carlo Simulations 21

such that n · p > m2, usually chosen anti-collinear to p and the q⊥ vector gives the

remaining components of the momentum transverse to p and n. This means that

we satisfy the following relations

q⊥ i · p = 0 p2 = m2 q2
⊥ i = −p2

⊥ i (1.2.7)

q⊥ i · n = 0 n2 = 0 n · p > m2 .

We also define z to be the fraction of the parent’s 4-momentum carried by the quark

after the branching, i.e.

z =
αi
αi−1

, (1.2.8)

meaning we can write our gluon momenta and our quark momentum in the above

as

qµ = zpµ + βqn
µ + q⊥ (1.2.9a)

kµ = (1− z)pµ + βkn
µ − q⊥ , (1.2.9b)

and the β variables are found by the mass-shell condition q2 = k2 = 0 and Eqns. 1.2.7,

such that

βq =
p2
⊥

2zp · n and βk =
p2
⊥

2(1− z)p · n . (1.2.10)

Therefore, using Eqns. 1.2.9 and Eqs. 1.2.7 into Eqn. 1.2.5, we find the only non-

trivial relation to be

q · k =
p2
⊥

2z(1− z)
(1.2.11)

and so retaining only the leading pieces, i.e. parts that go like O (1/p2
⊥), we find

that

|Mn+1|2 =
g2
sCF

(q · k)

1 + z2

1− z Tr
[(
M′ †

n γ
0
)
/pM′

n

]
. (1.2.12)

Making use of the completeness relation for massless particles∑
u(p)ū(p) = /p (1.2.13)

to re-insert the spinors back into M′
n in Eqn. 1.2.12 leaves us with a factorized

expression as [19,35]

|Mn+1|2 =
g2
sCF

(q · k)

1 + z2

1− z |Mn|2 . (1.2.14)
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This is starting to look like what we may want in terms of implementation

in a Monte Carlo event generator, however, we need to consider the phase space

associated with the extra emission. The n + 1 body phase space maybe written

as [38]

dΦn = . . .
d3p

2 (2π)3Ep
(1.2.15)

and so for our splitting p→ q + k we have

dΦn+1 = . . .
d3q

2 (2π)3Eq

d3k

2 (2π)3Ek
, (1.2.16)

which at fixed k we may write

dΦn+1 = . . .
d3p

2 (2π)3Ep

d3k

2 (2π)3Ek

Ep
Eq

. (1.2.17)

As our phase space is Lorentz invariant, we make the choice of basis [19]

p = Ep (1; 0, 0, 1) , n = (1; 0, 0,−1) , q⊥ = (0; p⊥ cosφ, p⊥ sinφ, 0) (1.2.18)

which means that

k =

(
(1− z)Ep +

p2
⊥

4(1− z)Ep
;−p⊥ cosφ,−p⊥ sinφ, (1− z)Ep −

p2
⊥

4(1− z)Ep

)
,

(1.2.19)

and similarly we see that Eq = zEp +O (p2
⊥) and we may write our phase space as

dΦn+1 = dΦn
1

8π2

dp2
⊥

2

dφ

2π

dkz
Ek

1

z
. (1.2.20)

We also have that
∂kz
∂z

= − Ek
(1− z)

(1.2.21)

and from Eqn. 1.2.11
p2
⊥
p2

=
p2
⊥

2q · k = z(1− z) . (1.2.22)

We therefore find that, after integrating over azimuthal angle,

dΦn+1 = dΦn
1

4

1

(2π)2
dp2dz , (1.2.23)

so now, for our extra emission we may write the cross-section as

dσn+1 = dσn
αs
2π
CF

1 + z2

1− z dz
dp2

p2
. (1.2.24)
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This process can be generalised, and we may write

dσn+1 = dσn
αs
2π
CP (z)dz

dp2

p2
, (1.2.25)

where P (z) are the so called Altarelli-Parisi splitting functions [39–41], and C is

an appropriate colour factor for the splitting, usually part of the Altarelli-Parisi

splitting functions. The other splitting functions can be derived in a similar way as

above and it is found that the spin averaged functions are [42]

Pqq(z) = CF
1 + z2

1− z Pgq(z) = CF
1 + (1− z)2

z
(1.2.26)

Pgg(z) = CA
z4 + 1 + (1− z)4

z(1− z)
Pqg(z) = TR(z2 + (1− z)2) .

This approach also holds for an initial-state spacelike shower.

Now let us consider how the parton density changes when we have multiple

branchings, as will be the case in our parton shower. To do so, we form the picture

whereby a parton carrying a fraction x of the parent hadrons momentum under-

goes branchings, moving to a lower momentum and a more negative virtual mass

squared [18]. At some lower virtual mass squared, t = −p2, the parton undergoes a

hard scattering.

The change in parton density during this process is therefore the difference be-

tween the number of partons arriving in an element (δt, δx) and the number leaving.

Looking at Eqn. 1.2.24 we can therefore write

δfin =
δt

t

∫ 1

x

dx′dz
αs
2π
P (z)f(x′, t)δ (x− zx′) ,

=
δt

t

∫ 1

0

dz

z

αs
2π
P (z)f

(
x
z
, t
)
, (1.2.27)

where we have integrated over all higher momentum fractions x′ = x/z, which as

x′ < 1, we may write the lower range of the integral as 0. Now, turning our attention

to the states leaving the element (δt, δx), we have that

δfout =
δt

t

∫ x

0

dx′dz
αs
2π
P (z)f(x, t)δ (x− zx′)

=
δt

t

∫ 1

0

dz
αs
2π
P (z)f(x, t) , (1.2.28)
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so the total change may be written as [18]

δfin − δfout

δt
=

1

t

∫ 1

0

dz
αs
2π
P (z)

[
1

z
f
(
x
z
, t
)
− f(x, t)

]
(1.2.29)

or

t
∂f

∂t
=

∫ 1

0

dz
αs
2π
P (z)

[
1

z
f
(
x
z
, t
)
− f(x, t)

]
. (1.2.30)

Eqn. 1.2.30 is the famous DGLAP evolution equation that informs us how to

evolve the parton distributions at one scale to another. We therefore want to be

able to solve this in our Monte Carlo event generator in an iterative way to generate

our parton splittings and for this, we turn to the Sudakov form factor, which is

defined as

∆ (t) ≡ exp

[
−
∫ t

t0

dt′

t′

∫
dz
αs
2π
P (z)

]
. (1.2.31)

We now write the DGLAP equation Eqn. 1.2.30 in terms of this new function

such that

t
∂f

∂t
=

∫
dz

z

αs
2π
P (z)f

(
x
z
, t
)

+
f(x, t)

∆ (t)
t
∂∆ (t)

∂t

⇒t ∂
∂t

(
f

∆ (t)

)
=

1

∆ (t)

∫
dz

z

αs
2π
P (z)f

(
x
z
, t
)
, (1.2.32)

which we now integrate to give the solution

f (x, t) = ∆ (t) f (x0, t) +

∫ t

t0

dt′

t′
∆ (t)

∆ (t′)

∫
dz

z

αs
2π
P (z)f

(
x
z
, t
)
. (1.2.33)

The interpretation of Eqn. 1.2.33 will be how we implement our splittings in the

Monte Carlo even generator. To aid in the interpretation, we turn to the example

of radioactive decay [42]. In radioactive decay, we know simply that the number

of atoms that have not decayed by a time t is given by exp
(
−
∫ t

0
λdt′

)
, and so

by analogy, our Sudakov form factor in Eqn. 1.2.31 is the number of partons that

haven’t branched i.e. it is our no branching probability.

Therefore the interpretation of Eqn. 1.2.33, is that the first term is a contribution

from paths in (t, x) space that do not branch between t0 and t, and that the second

term is the contribution from all paths that had their last branching at a scale t′ [18].

Clearly in a parton shower, we have more than one parton type splitting, and so we

include these effects by summing over parton splittings in the Sudakov form factor.
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We have actually glossed over an important fact and that is that the splitting

functions are unregularized and have singularities as z → 1. To solve this problem,

we introduce a cut-off on z which defines a resolvable emission, and so our Sudakov

form factor now defines the probability of no resolvable emission.

In this way, we also include virtual corrections in the Sudakov form factor. We

know from unitarity that the sum of branching and no branching probabilities must

be unity and so our no resolvable branching probability tells us via unitarity the

sum of unresolved and virtual corrections, which although individually divergent,

have a finite sum as discussed earlier.

Using the Sudakov form factor to evolve our partons therefore allows us to sum

the leading logarithms associated with the collinear divergences to all orders. Recall-

ing from the introduction that αs runs with scale, there is therefore still the question

as what to take for the argument of αs in our Sudakov form factor. Technically the

choice of scale for αs should be a higher order consideration, however, it can have

important phenomenological implications. Naively, the natural scale choice for the

process would seem to be the evolution variable scale t of the branching, however,

typically we use the transverse momentum of the splitting. This is because by using

the transverse momentum, it can be shown that it is possible to capture some higher

terms in the series and sum some of the higher logarithms [43].

Having only considered collinear divergences so far, we must now turn our at-

tention to the soft divergences.

Soft Divergences

We saw from earlier in Eqn. 1.2.1 that is also a soft divergence associated with the

gluon energy, Ek → 0. To understand the nature of these divergences, we turn again

to the propagator associated with the emission of an extra gluon

Mn+1 = gst
Aε∗α(k)ū(q)γα

/q + /k

2q · kM
′
n
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and now we apply the Dirac algebra to the top line and along with the eikonal

approximation, i.e. assume the gluon momentum is small, and get

Mn+1 = gst
Aε∗α(k)ū(q)

(
2qα − /qγα + γα/k

)
2q · k M′

n

= gst
Aε∗α(k)ū(q)

(2qα + γα/k)

2q · k M′
n

= gst
A q · ε∗
q · k ū(q)M′

n

= gst
A q · ε∗
q · kMn . (1.2.34)

The matrix element Mn+1 has factorized into a spin-independent soft eikonal

factor multiplied by the matrix element Mn. This factorization applies in general

to any soft emission off an external leg. Internal off-shell lines do not receive this

contribution as in that case (p + k)2 −m2 → p2 −m2 6= 0 as k → 0. For emission

off more than one leg, we end up with a series of dipoles, which we may express in

terms of a radiation pattern.

We will compute here the basic pattern for e+e− → qq̄ with one extra gluon

emission. Using the same approach as above, assuming massless quarks, we find

that

Mn+1 =gst
A
ijū(pi)γ

µ
(/pi + /k)

2pi · k
M′

nε
∗µ(k)

+ gsM′
nt
A
ij

(−/pj − /k)

2pj · k
γµv(pj)ε

∗µ(k) (1.2.35)

which upon applying the Dirac algebra, squaring we get

|Mn+1|2 = |Mn|2CF
2 pi · pj

(pi · k)(pj · k)
. (1.2.36)

We may now write this in terms of the radiation function Wij where in general,

i.e. for massive quarks, we define the Lorentz invariant [44]

2

ω2
Wij(k) = −

(
pµi
pi · k

−
pµj
pj · k

)2

=
2

ω2

(
ξij
ξiξj
− 1

2γ2
i ξ

2
i

− 1

2γ2
j ξ

2
j

)
, (1.2.37)

where we follow convention with ω being the energy of the soft gluon and pi,j are

the momenta of the particles forming the dipole, ξij =
pi·pj
EiEj

= 1 − vivj cos θij,

ξi = 1− vi cos θi, γi = Ei/mi = 1/
√

(1− v2
i ), vi is the velocity of parton i, θi is the
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angle between the direction of motion of the soft gluon and the parton i, and θij is

the angle between the partons i and j.

We now see that we can write Eqn. 1.2.36 as

|Mn+1|2 = |Mn|2CF
2

ω2
Wij

= |Mn|2F . (1.2.38)

In general for processes with more than one dipole

ω2

2
F =

∑
ij

CijWij , (1.2.39)

with the sum over the different Wij, contributions, where Cij is the associated colour

factor. In general we define the leading-order matrix element,

M0({p0}) =
∑
n

Mn
0 ({p0})Tn, (1.2.40)

in terms the colour-ordered amplitudes, Mn
0 , each with associated colour factor

Tn (which depends on the colours j of the external partons), where the sum is

over the distinct colour-ordered amplitudes and p0 are the momenta of the external

particles.

In the eikonal limit, the emission of an extra external gluon may be written as

M ({p0}, k) =
∑
n

Mn
0J n · ε (1.2.41)

where M ({p0}, k) is the matrix element for the process with an extra gluon, de-

pending on the set of leading-order momenta p0, the momenta of the gluon k and,

εµ, the polarization vector of the radiated gluon.

The eikonal current is therefore

J µ ({p0}, k) =
∑
i∈{p0}

(
pµi
pi · k

)
Tn
j t
A
jk, (1.2.42)

where j/k are the colours of the ith external particle before/after the gluon emission

and tAjk is the colour matrix associated with the extra emission. The soft gluon

distribution is then obtained by squaring the current i.e.

ω2

2
F = J (k)2 =

∑
spins

(J µ(k)εµ(k))2 . (1.2.43)
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Turning our attention back to the Wij function, we begin by splitting it into two

terms [44]

Wij = W i
ij +W j

ij (1.2.44)

such that each piece contains the leading collinear singularity

W i
ij =

1

2ξi

(
1− 1

γ2
i ξi

+
ξij − ξi
ξj

)
=

vi
2ξi

(
Ai

1− vi cos θi
+

B

1− vj cos θi

)
, (1.2.45)

where Ai = vi − cos θi and Bi = cos θi − vj cos θij. Taking the massless case of W i
ij

we see that

W i
ij =

1

2(1− cos θi)

(
1 +

cos θi − cos θij
1− cos θj

)
(1.2.46)

contains the collinear singularity as θi → 0. W i
ij also has the remarkable property

of angular ordering when we take the azimuthal average [18,38]〈
W i
ij

〉
=

∫ 2π

0

dφi
2π

W i
ij . (1.2.47)

To understand the angular dependence we choose the basis

p̂i = (1, 0, 0) , (1.2.48a)

p̂j = (cos θij, sin θij, 0) , (1.2.48b)

k̂ = (cos θi, cosφi sin θi, sinφi sin θi) , (1.2.48c)

and we then find that all the azimuthal dependence comes from the cos θj term

cos θj = k̂ · p̂j = cos θij cos θi + sin θij sin θi cosφi . (1.2.49)

We may use a contour integral to integrate over the φi dependence of the integral,

as has been done in Ref. [18,38]. The massive case gives the following result [44]

〈
W i
ij

〉
=

vi
2ξi

 Ai

viAi + γ−2
i

+
Bi√

B2
i + (sin θi/γj)

2

 (1.2.50)

which in the massless limit gives〈
W i
ij

〉
=

1

2(1− cos θi)

[
1 +

(cos θi − cos θij)

|cos θi − cos θij|

]

=


1

1− cos θig
if θi < θij ,

0 otherwise .

(1.2.51)
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Figure 1.7: Feynman diagram and colour flow for qq̄ → g → qq̄.

This tells us that soft radiation is suppressed at angles larger than θij
9. We have

only considered a very simple case here and it will be of benefit to see what happens

in a more complicated case.

For this we now make the incoming state coloured and consider qq̄ → g → qq̄

for which we find

J µ =
pµ2
p2 · k

tAmit
B
jmtAkl−

pµ1
p1 · k

tBmit
A
jmtAkl +

pµ3
p3 · k

tAjit
B
kmtAml−

pµ4
p4 · k

tAjit
A
kmtBml , (1.2.52)

which if we write out the colour matrices using the relation

tAijt
A
mn =

1

2

(
δinδjm −

1

NC

δimδjn

)
(1.2.53)

then the dipoles become explicit and

J µ =
1

2

(
tBjlδik

(
pµ2
p2 · k

− pµ4
p4 · k

)
+ tBkiδjl

(
pµ3
p3 · k

− pµ1
p1 · k

))
(1.2.54)

− 1

2NC

(
tBjiδkl

(
pµ2
p2 · k

− pµ1
p1 · k

)
+ tBklδij

(
pµ3
p3 · k

− pµ4
p4 · k

))
,

which upon squaring and dividing by the leading-order colour factor we get

ω2

2
F =

NC

2
(W13 +W24) +

1

2NC

(2 (W14 +W23)− 2 (W13 +W24)−W12 −W34) .

(1.2.55)

9In Electrodynamics this is the well known Chudakov effect, where the photon cannot resolve

the transverse separation of a pair of electrons unless the angle between the two electrons is greater

than the angle of emission.
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Figure 1.8: A diagrammatic representation of angular ordering in the shower, where

radiation occurs in cones to the radiating particle’s colour partner.

This seems like a disaster in terms of a Monte Carlo event generator, where we want

to express things in terms of positive definite probabilities. To interpret Eqn. 1.2.55

we rewrite it as [44]

ω2

2
F = CF (W13 +W24) +

1

2NC

(2 (W14 +W23)−W13 −W24 −W12 −W34) ,

(1.2.56)

where the last term in Eqn. 1.2.56 not only has no collinear singularities, it is also

suppressed in the large NC limit compared to the first term. We can therefore safely

neglect the last term in interpreting the radiation pattern in terms of a probability,

and we are left with a positive definite contribution.

We now introduce the concept of a colour partner in the large NC limit, so in the

case of the above process the colour partner of the incoming quark, is the outgoing

quark and vice versa, as seen in Fig. 1.7. We therefore see that the quark can only

radiate up to the angle of its colour partner, the outgoing quark. Now, for example,

after the incoming quark has radiated, radiation off the daughter quark may only be

up the angle of the new colour partner - the anti-colour line of the gluon. A diagram

illustrating this idea is seen in Fig. 1.8. This angular ordering of the emissions gives

rise to a colour coherent process, similar to the Chudakov effect. We will be seeing

many examples of these radiation patterns in this thesis, and example plots are left

to the appropriate sections. We should also consider the factorization of phase space

in this soft limit. In the soft limit clearly

d3p

2 (2π)3Ep
→ d3q

2 (2π)3Eq
(1.2.57)

and for the gluon
d3k

2 (2π)3Ek
=

k2dEkdΩ

2 (2π)3Ek
=
EkdEkdΩ

16π3
(1.2.58)
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and so our cross section is written in general as

dσn+1 = dσn
αs
2π

dΩ

2π

dEk
Ek

∑
ij

CijWij . (1.2.59)

Now we replace the CijdEk/Ek with P (z)dz discussed earlier and we correctly treat

both soft and collinear singularities.

To implement this effect in a Monte Carlo event generator, we should therefore

order in angles, and so, instead of using t = −p2 as our evolution variable, we should

instead use some variable that has angular dependence.

1.2.2 A Monte Carlo Event Generator

Using the results of the last section, we can create a parton shower for a Monte Carlo

event generator based on soft and collinear splittings, forming the cascade process we

are interested in. In general Monte Carlo simulations describe high energy collisions

using [42,45]

1. a hard perturbative, either Leading- or Next-to-Leading-order, matrix element

to simulate the fundamental hard collision process;

2. the parton shower algorithm which evolves from the scale of the hard process

to a cut-off scale, O(1 GeV), via the successive radiation of soft and collinear

quarks and gluons;

3. the generation of multiple perturbative scattering processes to simulate the

underlying event;

4. the perturbative decay of any fundamental particles, with lifetimes shorter

than the timescale for hadron formation, followed again by the simulation of

QCD radiation from the coloured decay products using the parton shower

formalism;

5. a hadronization model which describes the formation of hadrons at the cut-off

scale from the quarks and gluons produced during the parton shower;

6. the decays of the unstable hadrons produced by hadronization.
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So we need to understand how the hard process is implemented and how to

actually proceed with generating the scales of the branchings for the parton shower

from the methodology above. We also have the problem of how to efficiently evolve

from the incoming hadron down towards the hard process giving us the momentum

configuration we want in the hard process without rejecting too many events. In

practice, we will see that this is solved by using backwards evolution from the hard

process to the incoming hadron.

Hard process

Modern day calculations make use of the factorization theorem [46] which allows

us to describe our cross section as a convolution between non-perturbative parton

distribution function (PDFs) with a perturbative hard-scattering process. We write

our cross section as

σ =

∫ 1

0

dxadxb

∫
fa(xa, µF )fb(xb, µF )dσ̂ab→n(µF , µR)

=

∫ 1

0

dxadxb

∫
dΦnfa(xa, µF )fb(xb, µF )

1

F
∣∣M2

ab→n(Φn, µF , µR)
∣∣ (1.2.60)

where the fi(xi, µF ) are the parton distribution functions (PDFs) of the respective

incoming hadron(s), dependent on the light-cone fraction xi of the parton i with

respect to the incoming hadron. In addition dσ̂ab→n is the hard differential cross-

section for the process we are interested in and we have introduced a new scale,

the factorization scale µF along with the renormalization scale µR and we have

introduced a flux factor F associated with the phase-space integral.

In general the matrix element |M2
ab→n(Φn, µF , µR)| may be either evaluated by

hand and inputted into the Monte Carlo event generator or inbuilt routines may

exist to calculate these from first principles, e.g. in Herwig++ there is the helicity

formalism - HELAS [47]. Most modern day event generators also come with an

ability to read in matrix elements from an external program and then perform the

subsequent parton shower and hadronization of the events.

The phase space is often complicated for processes involving ab→ n where n > 2.
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In general it is defined as

dΦn =
n∏
i=1

d3pi
(2π)32Ei

· (2π)4δ(4)(pa + pb −
n∑
i=1

pi) , (1.2.61)

so we are left with a potentially complicated matrix element integrated over a com-

plicated phase space. Often the phase space is transformed into something more

suitable for computation and therefore we must include the appropriate Jacobian

factor.

The Monte Carlo event generator samples the matrix element and integrates it

using Monte Carlo methods, of which more information can be found in Appendix A.

In general a crude estimate is performed at the start before event generation and

this is used to decide the important parts of phase space and maximum weight to

ensure that when events are generated, configurations are produced with the correct

distribution. In general events are presented unweighted as Nature does not produce

weighted events and it avoids complications with detector simulators. To produce

the unweighted events, each momentum configuration can be accepted or rejected

according to its probability, which is proportional to the maximum weight discovered

during initialization.

We are still left with choices for the factorization scale and renormalization scale

in the calculation. There are no correct methods for determining the correct scale

for µF , but we are guided by intuition of our knowledge of logarithms of the hard

process. If we have an s-channel scattering process with a scale Q2 then generally

we can set µF = µR = Q2 and we can have a crude estimate of our errors by varying

the factorization scale between 1
2
µF → 2µF .

The PDFs are free for the user to decide and most event generators provide not

only some inbuilt PDFs, but also an interface to the external LHAPDF package [48],

who provide a plethora of PDFs from the various fitting groups through their web-

site. In principle one may wish to use different PDFs for each beam, especially if

one is scattering different particles but generally the same PDF set is used for both

beam particles for processes at the LHC.
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Final-state radiation

We first turn our attention to the final-state radiation, as this is simpler than the

initial-state radiation, simply as we evolve away from the hard process without being

constrained by what the final-state products should be.

For forward evolving time-like showers in Herwig++ we make use of the vari-

able [37]

q̃2 =
q2
ĩj
−m2

ĩj

z(1− z)

∣∣∣∣∣
q2i =m2

i ,q
2
j =m2

j ,

(1.2.62)

and by the sub script ĩj we mean the parent of the splitting. We then find that

q̃2 =
−m2

ĩj

z(1− z)
+

m2
i

z2(1− z)
+

m2
j

z(1− z)2
− p2

⊥
z2(1− z)2

(1.2.63)

which can be found from Eqn. 1.2.62, setting qĩj = qi + qj and where

p⊥ = qi⊥ − zq̃ĩj⊥ . (1.2.64)

We find that

q̃2 ≈
2E2

ĩj
(1 + cos θĩj)

2 (1− cos θij)

(1 + cos θi) (1 + cos θj)
, (1.2.65)

which for small angles gives

q̃ = Eĩjθĩj
(
1−O(θ2

x)
)
. (1.2.66)

We choose the starting scale for the shower based on the partons provided by the

hard process in order to ensure colour coherence. The evolution will terminate at

some point and we therefore need to choose what we mean by a resolvable emission.

In Herwig++ this is chosen with a parameterization based on a tuned parameter -

a cut-off mass for the gluon. This now defines our new Sudakov form factor

∆ (q̃, q̃h) =
∏
i,j

∆ĩj→ij (q̃, q̃h) (1.2.67)

where, in full

∆ĩj→ij (q̃, q̃h) = exp

{
−
∫ q̃h

q̃

dq̃′2

q̃′2

∫
dz

αS (z, q̃′)

2π
Pĩj→ij (z, q̃′) Θ

(
p2
⊥ > 0

)}
.

(1.2.68)
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The evolution from a scale q̃h to q̃ without a resolvable branching is given by

our Sudakov form factor, ∆ (q̃, q̃h) and so we can generate the first branching of this

scale by solving

∆ (q̃, q̃h) = R , (1.2.69)

where R ∼ Unif[0, 1]. This is solved by what is known as the veto algorithm,

whereby we form a simple analytically integrable over-estimate of the integral and

then we can solve for q̃. The veto algorithm is discussed in Appendix D.

To proceed with our evolution, we therefore solve [37]

∆over
ĩj→ij (q̃, q̃h) = exp

{
−
∫ q̃h

q̃

dq̃′2

q̃′2

∫ zover+

zover−

dz
αover
S (z, q̃′)

2π
P over
ĩj→ij (z)

}
= R (1.2.70)

such that

q̃2 = q̃2
hR

1
r (1.2.71)

where

r =

dq̃′2

q̃′2
∫ zover+

zover−
dz

αover
S (z,q̃′)

2π
P over
ĩj→ij (z)

d ln q̃2
. (1.2.72)

z is then solved from the over-estimate of its integral, P over
ĩj→ij (z), by

z = I−1
[
I
(
zover
−
)

+R′
(
I
(
zover
−
)
− I

(
zover
−
))]

(1.2.73)

where I(z) is the integral of P over
ĩj→ij (z) over z, I−1 is its inverse and R′ ∼ Unif[0, 1].

We then reject the values of q̃h and z if

• p⊥ < 0;

• αs(z,q̃)
αover
s

< R1;

• Pĩj→ij(z,q̃)

P over
ĩj→ij

(z)
< R2;

where again R1,2 ∼ Unif[0, 1]. If we reject q̃ we set q̃h = q̃ and repeat the process.

In this way, we correctly distribute the variables q̃, z and φ describing the emission

according to the Sudakov form factor [49]. The initial starting scales for the branch-

ing of the parent are determined to be q̃hi = zq̃ and q̃hj = (1 − z)q̃, so that the

ordering criteria moves us lower in q̃ and therefore angular orders. The p⊥ of the

splitting can then be found from Eqns. 1.2.63 (or Eqns. 1.2.75, depending on the
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shower type). The azimuthal angle is chosen uniformly, so that we are neglecting

spin correlations.

At the end of the shower each parton is left with a set of kinematic variables

(q̃, z, φ, p⊥). The progenitors of the shower are set to be on shell and α in the

Sudakov decomposition set to one. We then proceed down the shower tree from the

hard process calculating values of α for all partons by using the definition of z in

Eqn 1.2.8 and momentum conservation i.e. αĩj = αi + αj.

The q⊥ components can also be calculated in a similar way with the q⊥ of the

progenitor being zero and using Eqn. 1.2.64. Then all we are left to calculate is β,

which is calculated by setting the final state particles at the end of the shower on

mass shell and iterating down the shower using the fact that βĩj = βi + βj. In this

way we have reconstructed the momenta of our shower from the Sudakov basis.

Initial-state radiation

Initial-state radiation is similar to final state radiation, except we instead define

q̃2 =
m2
i − q2

i

(1− z)

∣∣∣∣∣
q2
ĩj

=m2
ĩj
,q2j =m2

j ,

(1.2.74)

which again using qĩj = qi + qj gives

q̃2 =
−zm2

ĩj

(1− z)
+

m2
i

(1− z)
+

zm2
j

z(1− z)2
− p2

⊥
(1− z)2

, (1.2.75)

which can be shown to have the same form as Eqn. 1.2.66.

In addition, for the initial-state radiation, ideally we want to evolve back from

our hard process to the incoming hadron. We do this by being guided by the

PDFs [18,50,51].

To see this consider F(t′; t, x)dt′ to be the fraction of partons at t that came

from the branching between (t′, t′ + dt′). Then, the number that did not branch is

given by

Π(t1, t2, x) = 1−
∫ t2

t1

F(t′; t, x)dt′ . (1.2.76)
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Now, we know from Eqn. 1.2.33 that

f (x, t2)F(t′; t, x) =

∫ t

t0

dt′

t′
∆ (t2)

∆ (t′)

∫
dz

z

αs
2π
P (z)f

(
x
z
, t
)

=dt
∂

∂t

[
∆ (t2)

∆ (t′)
f (x, t)

]
, (1.2.77)

which is solved to give

Π(t1, t2, x) =
∆ (t2) f (x, t1)

∆ (t1) f (x, t2)
. (1.2.78)

This allows us to evolve backwards from the hard process towards the incoming

hadron, being guided by the PDFs.

We introduce a modified Sudakov form factor

∆ĩj→ij (x, q̃, q̃h) = exp

{
−
∫ q̃h

q̃

dq̃′2

q̃′2

∫ z+

x

dz
αS (z, q̃′)

2π
Pĩj→ij (z, q̃′)

×
x
z
fĩj
(
x
z
, q̃′
)

xfi (x, q̃′)
Θ
(
p2
⊥ > 0

)}
, (1.2.79)

where the PDFs are now included in our definition of the Sudakov. In a similar way

as to before solve

∆ (x, q̃, q̃h) = R (1.2.80)

using an over-estimate

∆over
ĩj→ij (x, q̃, q̃h) = exp

{
−
∫ q̃h

q̃

dq̃′2

q̃′2

∫ zover+

x

dz
αover
S

2π
P over
ĩj→ij (z) PDFover (z)

}
,

(1.2.81)

where we have now included an overestimate of our PDF via

PDFover (z) ≥
x
z
fĩj
(
x
z
, q̃
)

xfi (x, q̃)
. (1.2.82)

We solve in a similar way to above with one extra step in rejecting the values of q̃h

and z which is

•
x
z fa(x

z ,q̃′)
xfb(x,q̃′)

PDFover(z)
< R3;

with R3 ∼ Unif[0, 1].

We follow a similar reconstruction routine as in the final-state shower, except

now it is the last backward branched parton, i.e. the one coming directly from the

incoming hadron that is assumed to be on shell. We also have to start final-state

showers from all necessary daughters that are produced in the backward evolution.
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Hadronization

After the shower has finished the final-state partons must be hadronized. Hadroniza-

tion is a model dependent process which is guided by physical principles. The

hadronization model in Herwig++ is based on the cluster model, which in turn is

built on the concept of preconfinement [52].

Preconfinement shows that partons can be clustered at the cut-off scale in the

shower into colour singlets that form an asymptotically universal invariant mass

distribution. The idea behind this can be thought about in the large NC limit

where a gluon carries a colour and anti-colour line. During the shower process the

flow of colour, via colour lines, is tracked. Although the colour is initially determined

by the colour structure of the hard perturbative matrix elements, the emission of

gluons during the shower introduces new colour structure.

At the end of the shower every colour line is connected to a colour partner.

Colour singlets can then easily be formed by these lines. In practice this requires

that at the end of the parton shower evolution all gluons are non-perturbatively split

into quark-antiquark pairs. All the partons can then be formed into colour-singlet

clusters which are assumed to be hadron precursors and decay according to phase

space into the observed hadrons. There is a small fraction of heavy clusters for

which this is not a reasonable approximation which are therefore first fissioned into

lighter clusters.

The main advantage of this model, when coupled with the angular-ordered par-

ton shower is that it has fewer parameters than the string model as implemented

in the Pythia [49] event generator yet still gives a reasonable description of col-

lider observables [42, 53]. Clearly such model dependancy has to be fitted to data

and there is therefore the concept of tuning the Monte Carlo event generator to

observable data, often in a χ2 minimization process. The tuning of a Herwig++ will

be presented later on in this thesis. Further details of the Herwig++ hadronization

process can be found in the Herwig++ manual [37]. For the interested reader, Pythia

uses the Lund string model of hadronization, whereby the colourlines between par-

tons are viewed as strings [54, 55] under tension. Sherpa uses a cluster model also.

A nice review of this, and other hadronization models can be found in Ref. [42].
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1.3 Next-to-Leading Order Processes

As we have already seen, a next-to-leading order processes can be written as in

Eqn. 1.1.56. We have also seen that there are two types of divergences, IR and UV.

Clearly we would like to implement NLO processes in an event generator as it is

another term in the perturbative series and we would expect to see an improvement

in overall normalization of the cross section and the shape of distributions that are

related to the first hard emission.

1.3.1 Numerical Integration

We have seen that the UV poles are removed by renormalization and that the IR

poles cancel exactly between the real emission and the virtual contribution. In

implementation, however, this cancellation of IR divergences is hard to implement

numerically as we get large numerical components from both the virtual and the real

contribution when integrating, that may become unstable. A solution is at hand

though in the form of the dipole formalism.

The dipole formalism provides a way to deal with the poles appearing by cleverly

subtracting and then adding an auxiliary component, dσA to the NLO cross section

[56–58]

σNLO =

∫
n+1

[
dσR − dσA

]
+

∫
n+1

dσA +

∫
n

dσV

=

∫
n+1

[
dσR − dσA

]
+

∫
n

[
dσV +

∫
1

dσA
]
. (1.3.83)

The auxiliary component is chosen to match the point-wise singular behavior of

the real contribution dσR in d dimensions, therefore acting as a local counter-term

for dσR. Importantly, dσA is chosen to be analytically integrable in d dimensions

over the phase-space regions that cause the soft and collinear divergences.

The choice of dσA therefore means that [dσR − dσA] is integrable over the n+ 1

phase space, and the limit ε → 0 can safely be taken (as the divergent pieces have

been subtracted). It also means that
∫

1
dσA contains all the poles that are required

to cancel those of the virtual term dσV therefore allowing that σNLO can be safely
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integrated numerically in a Monte-Carlo procedure [58]. We can therefore write

σNLO =

∫
n+1

[(
dσR

)
ε=0
−
(

dσA
)
ε=0

]
+

∫
n

[
dσV +

∫
1

dσA

]
ε=0

(1.3.84)

where the first term under the n+ 1 integral and second term under the n integral

appearing in Eqn. 1.3.84 are integrable numerically in 4 dimensions.

It is worth noting at this point that no approximation has taken place. A “fake”

cross section has been added and subtracted to regularise the integrals but the final

answer for σNLO contains no approximation and therefore the total cross section

contains no approximation.

The construction of the appropriate auxiliary cross section is clearly the key to

implementing this method. Originally this was outlined using the dipole method for

massless partons in Ref. [56] and then extended to massive partons in Ref. [57]. In

both cases the auxiliary cross section is formulated by a sum of different contribu-

tions causing the IR singularities - the dipoles. As the IR singularities are caused

by soft and collinear emissions from partons, the dipoles therefore encapsulate the

description of these processes. The pair of partons are described by an emitter and a

spectator, where it is the emitter’s kinematics that lead to the collinear singularities

and both for the soft singularities.

The process of splitting may be thought of as the leading-order event occurring

and producing the emitter and spectator. The emitter, naturally, then emits a

parton (giving rise to an IR singularity). The spectator is used to balance momentum

conservation [57] and contains information on the colour and spin correlations of the

real cross section. The auxiliary cross section may then be written as

dσA =
∑

dipoles

dσB ⊗ dVdipole , (1.3.85)

where dVdipole are obtained from QCD factorisation formulae in the IR limits and ⊗
symbol is used to describe the fact that spin and colour correlations are preserved.

In writing Eqn. 1.3.85 there is an implicit assumption that the phase space can

be factorised into one involving the n parton kinematics of the LO process and a

process independent single particle phase space associated with the decay of the

dipole. The single particle phase space therefore encapsulates the dependencies
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that lead to the IR singularities. This factorisation allows the dipole term to be

analytically integrable and the auxiliary cross section may then be written as∫
n+1

dσA =
∑

dipoles

∫
n

dσb ⊗
∫

1

dVdipole =

∫
n

[
dσb ⊗ I

]
, (1.3.86)

where the I is clearly defined as

I =
∑

dipoles

∫
1

dVdipole . (1.3.87)

We may therefore write the master equation for the NLO process as

σNLO =

∫
n+1

[(
dσR

)
ε=0
−
( ∑

dipoles

dσB ⊗ dVdipole

)
ε=0

]
+

∫
n

[
dσV + dσB ⊗ I

]
ε=0

,

(1.3.88)

which can be integrated safely in a numerical procedure.

1.3.2 POWHEG

We would like to interface this ability to calculate NLO cross sections in a stable

numerical way with the parton shower to give us the total rate and hardest emission

accurate to NLO. There are two major ways of doing this - the first is the MC@NLO

method as described in Ref. [59] and the second is the POWHEG method first

described in Ref. [60]. We will briefly outline the POWHEG method here and invite

the reader to consult Ref. [59] for more information on MC@NLO.

In more detail, the NLO differential decay rate in the POWHEG [60,61] approach

is

dσ = B(Φn)dΦB

[
∆NLO

R (pmin
T ) + ∆NLO

R (pT )
R(Φn,Φ1)

B(Φn)
dΦ1

]
, (1.3.89)

where

B(Φn) = B(Φn) + V (Φn) +

∫ (
R(Φn,Φ1)−

∑
i

Di(Φn,Φ1)

)
dΦ1. (1.3.90)

Here B(Φn) is the leading-order Born differential decay rate, V (Φn) the regularized

virtual contribution, Di(Φn,Φ1) the counter terms regularizing the real emission and

R(Φn,Φ1) the real emission contribution. The leading-order process has n outgoing

partons, with associated phase space Φn. The virtual and Born contributions depend
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only on this n-body phase space. The real emission phase space, Φn+1, is factorised

into the n-body phase space and the phase space, Φ1, describing the radiation of an

extra parton.

The Sudakov form factor in the POWHEG method is

∆NLO
R = exp

[
−
∫

dΦ1
R(Φn,Φ1)

B(Φn)
θ(k⊥(Φn,Φ1)− p⊥)

]
, (1.3.91)

where kT (Φn,Φ1) is the transverse momentum of the emitted parton.

In the POWHEG method, the hardest emission is calculated first and then the

shower generates subsequent radiation. The reason for this is that the shower in

Herwig++ is not p⊥ ordered, but is instead ordered in angles. It is therefore possible

to have soft emissions before the hardest in the shower, however, in the POWHEG

approach, the first emission is meant to be the hardest.

The solution of this is the inclusion of what is called a vetoed truncated shower.

Firstly, as mentioned, the hardest emission is generated and then mapped back into

the shower variables (q̃h, zh, φh), where we use h to denote the hardest. Then, we

start the shower as usual from the corresponding Born configuration and evolve

down to a state q̃h, vetoing any emission that has k⊥ greater than the hard p⊥ of

the hardest emission. Then, the hardest emission is inserted into the shower, and

the showering process continued from the q̃h scale as usual, however, any emissions

with k⊥ greater than the p⊥ of the hardest emission are again vetoed.

We therefore generate an event according to Eqn. 1.3.90 and the associated mo-

menta. Then, we map the hardest emission into the variables used in the Herwig++

shower. Then the truncated shower occurs, evolving down to the hardest emission,

where care is made to ensure that the flavour of the branching does not change and

then the hardest emission is inserted into the shower. The shower then restarts with

q̃ = q̃h and all other external legs are showered with the condition that k⊥ < p⊥

[37,62–64]. This method has been shown to preserve the leading-log accuracy of the

shower in Ref. [61], in which also the NLO accuracy of Eqn. 1.3.90 is shown. We

will use the POWHEG method later in this thesis.



Chapter 2

Jet Substructure and Boosted

Higgs Studies

As mentioned in the introduction, Monte Carlo event generators contain a large

number of both perturbative and non-perturbative parameters which are tuned to

a wide range of experimental data. While significant effort has been devoted to

the tuning of the parameters to produce a best fit there has been much less effort

understanding the uncertainties in these results. Historically a best fit result, or at

best a small number of tunes, are produced and used to predict observables making

it difficult to assess the uncertainty on any prediction. The “Perugia” tunes [65,66]

have addressed this by producing a range of tunes by varying specific parameters in

the Pythia [49] event generator to produce an uncertainty.

Here we will make use of the Professor Monte Carlo tuning system [67] to give

an assessment of the uncertainty from tuning by varying all the parameters simul-

taneously about the best-fit values by diagonalizing the error matrix. This then

allows us to systematically estimate the uncertainty on any Monte Carlo prediction

from the tuning of the event generator. We will illustrate this by considering the

uncertainty on jet substructure searches for the Higgs boson at the LHC.

Jet substructure is set to play an important role in future studies of the Higgs

boson at the LHC. As the LHC takes increasing amounts of data it will be vital to

explore all channels for the Higgs boson decay and determine if the properties of the

observed Higgs boson are consistent with the Standard Model. As we clearly see in

43
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Figure 2.1: The branching ratio of the Higgs boson with respect to mass using results

from Ref. [1].

Fig.2.1 the h0 → b b̄ mode is the largest for a light Higgs boson mass, however, for

many years it was believed that it would be difficult, if not impossible, to observe

the dominant h0 → b b̄ decay mode of a light Higgs boson. However, in recent years

the use of jet substructure [68–83] offers the possibility of observing this mode.

Jet substructure for h0 → b b̄ as a Higgs boson search channel, was first stud-

ied in Ref. [68] building on previous work of a heavy Higgs boson decaying to W±

bosons [79], high-energy WW scattering [84] and SUSY decay chains [85], and sub-

sequently reexamined in Refs. [71,78]. Recent studies at the LHC [86–88] have also

shown this approach to be promising.

The study in Ref. [68] was carried out using the (FORTRAN) HERWIG 6.510

event generator [89, 90] together with the simulation of the underlying event using

JIMMY 4.31 [91]. In order to allow the inclusion of new theoretical developments
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and improvements in non-perturbative modelling a new simulation based on the

same physics philosophy Herwig++, currently version 2.6 [37, 92], is now preferred

for the simulation of hadron–hadron collisions.

Herwig++ includes both an improved theoretical description of perturbative

QCD radiation, in particular for radiation from heavy quarks, such as bottom,

together with improved non-perturbative modelling, especially of multiple parton–

parton scattering and the underlying event. In FORTRAN HERWIG a crude imple-

mentation of the dead-cone effect [44] meant that there was no radiation from heavy

quarks for evolution scales below the quark mass, rather than a smooth suppression

of soft collinear radiation. In Herwig++ an improved choice of evolution variable [93]

allows evolution down to zero transverse momentum for radiation from heavy par-

ticles and reproduces the correct soft limit. There have also been significant de-

velopments of the multiple-parton scattering model of the underlying event [94,95],

including colour reconnections [96] and tuning to LHC data [97].

The background to jet substructure searches for the Higgs boson comes from

QCD jets which mimic the decay of a boosted heavy particle. Although Herwig++

has performed well in some early studies of jet substructure [88,98,99], it is important

that we understand the uncertainties in our modelling of the background jets which

lie at the tail of the jet mass distribution.

In addition we improve the simulation of Higgs boson decay by implementing

the NLO corrections to Higgs boson decay to heavy quarks in the POWHEG [60,61]

formalism.

In the next section we outline the method of simulation for the h0 → bb̄ decays

and the POWHEG method. We then present our approach for the tuning of the

parameters, which effect QCD radiation and hadronization, in Herwig++ together

with the results of our new tune. We then recap the key features of the Butterworth,

Davison, Rubin and Salam (BDRS) jet substructure technique of Ref. [68]. This

is followed by our results using both the leading and next-to-leading-order matrix

elements in Herwig++ with implementation of the next-to-leading-order Higgs boson

decays and our estimate on the uncertainties.

We present an investigation of the dependence of searches for boosted Higgs
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bosons using jet substructure on the perturbative and non-perturbative parameters

of the Herwig++ Monte Carlo event generator. Values are presented for a new

tune of the parameters of the event generator, together with the an estimate of the

uncertainties based on varying the parameters around the best-fit values.

2.1 Simulation of h0 → bb̄ using the POWHEG

Method

The POWHEG approach has already been covered briefly in the introduction to

this thesis. Here, we will look at it in slightly more detail and with respect to the

Higgs boson decay into a bottom quark anti-quark pair.

To recapitulate, the NLO differential decay rate in the POWHEG [60] approach

is

dσ = B̄(Φn)dΦB

[
∆NLO

R (pmin
T ) + ∆NLO

R (pmin
T )

R(Φn,Φ1)

B(Φn)
dΦ1

]
, (2.1.1)

where

B̄(Φn) = B(Φn) + V (Φn) +

∫ (
R(Φn,Φ1)−

∑
i

Di(Φn,Φ1)

)
dΦ1. (2.1.2)

Here B(Φn) is the leading-order Born differential decay rate, V (Φn) the regularized

virtual contribution, Di(Φn,Φ1) the counter terms regularizing the real emission and

R(Φn,Φ1) the real emission contribution. The leading-order process has n outgoing

partons, with associated phase space Φn. The virtual and Born contributions depend

only on this n-body phase space. The real emission phase space, Φn+1, is factorised

into the n-body phase space and the phase space, Φ1, describing the radiation of an

extra parton.

In order to implement the decay of the Higgs boson in the POWHEG scheme

in Herwig++ we need to generate the Born configuration according to Eqn. 2.1.2

and the subsequent hardest emission according to Eqn. 1.3.91. The generation of

the truncated and vetoed parton showers from these configurations then proceeds

as described in Refs. [37, 62–64].
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Figure 2.2: The two real-emission processes contributing to the NLO decay rate.

The virtual contribution for h0 → bb̄ was calculated in Ref. [100]. The corre-

sponding real emission contribution, see Fig. 2.2, is

|MR|2 = |M2|2
CF8παs

M2
H(1− 4µ2)

[
2 +

1− xq
1− xq̄

+
(8µ4 − 6µ2 + 1)

(1− xq)(1− xq̄)

− 2(1− 4µ2)
1

1− xq
− 2µ2(1− 4µ2)

1

(1− xq)2
+ (xq ↔ xq̄)

]
, (2.1.3)

whereM2 is the leading-order matrix element, mq is the mass of the bottom quark,

MH is the mass of the Higgs boson, µ = mq

MH
and xi = 2Ei

MH
. We use the Catani-

Seymour subtraction scheme [57] where the counter terms are

Di = CF
8παS
s
|M2|2

× 1

1− xj

{
2(1− 2µ2)

2− xi − xj
−
√

1− 4µ2

x2
j − 4µ2

xj − 2µ2

1− 2µ2

[
2 +

xi − 1

xj − 2µ2
+

2µ2

1− xj

]}
,

(2.1.4)

where for Di, i is the emitting parton and j is the spectator parton. In practice, as

the counter terms can become negative in some regions, we use

R(Φn,Φ1)−
∑
i

Di(Φn,Φ1) =
∑
i

[
R(Φn,Φ1) |Di(Φn,Φ1)|∑

j

|Dj(Φn,Φ1)| −Di(Φn,Φ1)

]
. (2.1.5)

We have also regulated singularities in the virtual term V (Φn) with the integrated

counter terms from the Catani-Seymour subtraction scheme allowing us to generate

the Born configuration according to B̄(Φn).
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The hardest emission for each leg is generated according to

∆NLO
iR = exp

[
− M2

H

16π2(1− 4µ2)
1
2

×

∫
dx1 dx2 dφ

R(Φn+1)

B(Φn)

|Di|∑
j |Dj|

θ(kT (Φn,Φ1)− pT )

]
. (2.1.6)

However, this form is not suitable for the generation of the hardest emission. In-

stead we perform a Jacobian transformation and use the transverse momentum, pT ,

rapidity, y, and azimuthal angle, φ, of the radiated gluon to define the phase space

Φ1.

The momenta of the Higgs boson decay products are

p1 =
MH

2

(
x1;−x⊥ cos(φ),−x⊥ sin(φ),±

√
x2

1 − x2
⊥ − 4µ2

)
, (2.1.7a)

p2 =
MH

2

(
x2; 0, 0,−

√
x2

2 − 4µ2

)
, (2.1.7b)

p3 =
MH

2

(
x3;x⊥ cos(φ), x⊥ sin(φ),±

√
x2

3 − x2
⊥

)
, (2.1.7c)

where partons 1, 2, 3 are the radiating bottom quark, spectator antibottom quark

and radiated gluon, respectively. The energy fractions xi = 2Ei

MH
and

x⊥ = 2pT
MH

. Using the conservation of momentum in the z-direction and

x1 + x2 + x3 = 2 gives

x2
⊥ = (2− x1 − x2)2 − (−2 + 2x1 + 2x2 − x2x1 − x2

2)
2

x2
2 − 4µ2

. (2.1.8)

Together with the definition, x3 = x⊥ cosh y, we obtain the Jacobian∣∣∣∣∂x1∂x2

∂pT∂y

∣∣∣∣ =
x⊥
MH

x⊥(x2
2 − 4µ2)

3
2

(x1x2 − 2µ2(x1 + x2) + x2
2 − x2)

, (2.1.9)

for the transformation of the radiation variables.

We can then generate the additional radiation according to Eqn. 2.1.6 using the

veto algorithm [49]. To achieve this we use an overestimate of the integrand in the

Sudakov form factor, f(pT ) = c
pT

, where c is a suitable constant. We first generate

an emission according to

∆over
R (pT ) = exp

[
−
∫ pmax

T

pT

∫ ymax

ymin

d pT d y
c

pT

]
, (2.1.10)
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using this overestimate, where ymax = cosh−1
(

MH

2pmin
T

)
, ymin = −ymax, pmax

T is the

maximum possible transverse momentum of the gluon and pmin
T is a parameter set

in the model, taken to be 1 GeV.

The trial value of the transverse momentum is obtained by solving R = ∆over
R ,

where R is a random number in [0, 1], i.e.

pT = pmax
T R

1
c(ymax−ymin) . (2.1.11)

Once the trial pT has been generated, y and φ are also generated uniformly between

[ymin, ymax] and [0, 2π], respectively. The energy fractions of the partons are obtained

using the definition x3 = x⊥ cosh y,

x1 =
1

2(x3 − 1)− x2⊥
2

{
3x3 − 2 +

x2
⊥
2
x3 − x2

⊥ − x2
3

±
√

(x2
3 − x2

⊥)((x3 − 1)(4µ2 + x3 − 1)− µ2x2
⊥)

}
, (2.1.12)

and x2 using energy conservation. As there are two solutions for x1 both solutions

must be kept and used to calculate the weight for a particular trial pT . The signs of

the z-components of the momenta are fixed by the sign of the rapidity and momen-

tum conservation. Any momentum configurations outside of the physically allowed

phase space are rejected and a new set of variables generated. The momentum con-

figuration is accepted with a probability given by the ratio of the true integrand to

the overestimated value. If the configuration is rejected, the procedure continues

with pmax
T set to the rejected pT until the trial value of pT is accepted or falls below

the minimum allowed value, pmin
T . This procedure generates the radiation variables

correctly as shown in Ref. [49].

This procedure is used to generate a trial emission from both the bottom and an-

tibottom. The hardest potential emission is then selected which correctly generates

events according to Eqn. 2.1.6 using this competition algorithm.

As a first check on our results, we can check the jet merging scale, where the

jet goes from a n → n + 1 jet event, comparing the Herwig++ default mode for

the decays and the new POWHEG implementation. The e+e− jet measure, for the
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Figure 2.3: The scale at which we go from a two to a three jet event for Higgs boson

decays using the LO and new POWHEG implementation in Herwig++.

simulated e+e− → h0 → bb̄ process is defined as [5]1.

yij =
2min

(
E2
i , E

2
j

)
(1− cos θij)

Q2
. (2.1.13)

We would clearly expect to see more three jet events with the POWHEG method,

and this is seen in Fig. 2.1 where the POWHEG method causes the scale at which

we go from a two to a three jet event to be higher than in the LO case.

2.2 Tuning Herwig++

Any jet substructure analysis is sensitive to changes in the simulation of initial- and

final-state radiation, and hadronization. In particular the non-perturbative nature

of the phenomenological hadronization model means there are a number of parame-

ters which are tuned to experimental results. We have already seen that Herwig++

1 More information on jet algorithms and jets in general can be found in Appendix B.
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uses an improved angular-ordered parton shower algorithm [37, 93] to describe per-

turbative QCD radiation together with a cluster hadronization model [37,53].

To tune Herwig++, and investigate the dependency of observables on the shower

and hadronization parameters, the Professor Monte Carlo tuning system [67] was

used. Professor uses the Rivet analysis framework [101] and a number of simulated

event samples, with different Monte Carlo parameters, to parameterise the depen-

dence of each observable2 used in the tuning on the parameters of the Monte Carlo

event generator. A heuristic chi-squared function

χ′ 2(p) =
∑
O
wO
∑
b∈O

(
f b(p)−Rb

)2

∆2
b

, (2.2.14)

is constructed where p is the set of parameters being tuned, O are the observables

used each with weight wO, b are the different bins in each observable distribution

with associated experimental measurementRb, error ∆b and Monte Carlo prediction

f b(p). Weighting of those observables for which a good description of the experi-

mental result is particularly important is used in most cases. The parameterisation

of the event generator response, f(p), is then used to minimize the χ′ 2 and find the

optimum parameter values.

There are ten main free parameters which affect the shower and hadronization

in Herwig++. These are shown in Table 2.1 along with their default values and

allowed ranges.

The gluon mass, GluonMass, is required to allow the non-perturbative decay of

gluons into qq̄ pairs and controls the energy release in this process. PSplitLight,

ClPowLight and ClMaxLight control the mass distributions of the clusters produced

during the fission of heavy clusters. ClSmrLight controls the smearing of the direc-

tion of hadrons containing a (anti)quark from the perturbative evolution about the

direction of the (anti)quark. AlphaMZ is strong coupling at the Z0 boson mass and

controls the amount of QCD radiation in the parton shower, while Qmin controls the

infrared behaviour of the strong coupling. pTmin is the minimum allowed transverse

momentum in the parton shower and controls the amount of radiation and the scale

2Normally this is either an observation such as a multiplicity or a bin in a measured distribution.
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Parameter Default Value Allowed Range Scanned Range Optimum Value

Qmin 0.935 ≥ 0 0.500− 2.500 Fixed at default

GluonMass 0.95 0− 1 0.75− 1.00 Fixed at default

ClSmrLight 0.78 0− 2 0.30− 3.00 Fixed at default

ClPowLight 1.28 0− 10 0.50− 4.00 Fixed at default

pTmin 1.00 ≥ 0 0.50− 1.50 0.88

AlphaMZ 0.12 ≥ 0 0.10− 0.12 0.11

ClMaxLight 3.25 0− 10 3.00− 4.20 3.60

PSplitLight 1.20 0− 10 1.00− 2.00 0.90

PwtDIquark 0.49 0− 10 0.10− 0.50 0.33

PwtSquark 0.68 0− 10 0.50− 0.80 0.64

Table 2.1: The ten parameters to which the jet substructure is most sensitive with

their default values, the allowed range of these values in Herwig++, the range

scanned over and the new optimum value found from minimizing χ′ 2.

at which the perturbative evolution terminates. PwtDIquark and PwtSquark are the

probabilities of selecting a diquark-antidiquark or ss̄ quark pair from the vacuum

during cluster splitting, and affect the production of baryons and strange hadrons

respectively.

Previous experience of tuning Herwig++ has found that Qmin, GluonMass,

ClSmrLight, and ClPowLight to be flat, and so it was chosen to fix these at their

default values [37].

To determine the allowed variation of these parameters Professor was used to tune

the variables in Table 2.1 to the observables and weights found in Tables 2.2, 2.3,

2.4 and 2.5. The dependence of χ′2 on the various parameters, about the minimum

χ′2 value, is then diagonalized.

The variation of the parameters along the eigenvectors in parameter space ob-

tained corresponding to a certain change, ∆χ′ 2, in χ′ 2 can then be used to predict

the uncertainty in the Monte Carlo predictions for specific observables.

In theory, if the χ′ 2 measure for the parameterised generator response is actually

distributed as a true χ2, then a change in the goodness of fit of one will correspond

to a one sigma deviation from the minima, i.e. the best tune. In practice, even the
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Observable Weight Observable Weight

K∗±(892) spectrum 1.0 Λ0 spectrum 1.0

ρ spectrum 1.0 π0 spectrum 1.0

ω(782) spectrum 1.0 p spectrum 1.0

Ξ− spectrum 1.0 η′ spectrum 1.0

K∗0(892) spectrum 1.0 Ξ0(1530) spectrum 1.0

φ spectrum 1.0 π± spectrum 1.0

Σ±(1385) spectrum 1.0 η spectrum 1.0

γ spectrum 1.0 K0 spectrum 1.0

K± spectrum 1.0

Table 2.2: Observables used in the tuning and associated weights for observables

taken from [6].

Observable Weight

Sphericity, S 1.0

Energy-energy correlation, EEC 1.0

Aplanarity, A 2.0

Mean out-of-plane p⊥ in GeV w.r.t. thrust axes vs. xp 1.0

Mean charged multiplicity 150.0

Mean p⊥ in GeV vs. xp 1.0

Planarity, P 1.0

Thrust major, M 1.0

Oblateness = M −m 1.0

Out-of-plane p⊥ in GeV w.r.t. sphericity axes 1.0

D parameter 1.0

1− Thrust 1.0

Out-of-plane p⊥ in GeV w.r.t. thrust axes 1.0

Log of scaled momentum, log(1/xp) 1.0

In-plane p⊥ in GeV w.r.t. sphericity axes 1.0

In-plane p⊥ in GeV w.r.t. thrust axes 1.0

Thrust minor, m 2.0

C parameter 1.0

Scaled momentum, xp = |p|/|pbeam| 1.0

Table 2.3: Observables used in the tuning and associated weights for observables

taken from [2].
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Observable Weight Observable Weight

Mean ρ0(770) multiplicity 10.0 Mean χc1(3510) multiplicity 10.0

Mean ∆++(1232) multiplicity 10.0 Mean D+ multiplicity 10.0

Mean K∗+(892) multiplicity 10.0 Mean Σ+ multiplicity 10.0

Mean Σ0 multiplicity 10.0 Mean f1(1285) multiplicity 10.0

Mean Λ0
b multiplicity 10.0 Mean f2(1270) multiplicity 10.0

Mean K+ multiplicity 10.0 Mean J/ψ(1S) multiplicity 10.0

Mean Ξ0(1530) multiplicity 10.0 Mean B+
u multiplicity 10.0

Mean Λ(1520) multiplicity 10.0 Mean B∗ multiplicity 10.0

Mean D∗+s (2112) multiplicity 10.0 Mean Λ+
c multiplicity 10.0

Mean Σ−(1385) multiplicity 10.0 Mean D0 multiplicity 10.0

Mean f1(1420) multiplicity 10.0 Mean f ′2(1525) multiplicity 10.0

Mean φ(1020) multiplicity 10.0 Mean Σ± multiplicity 10.0

Mean K∗02 (1430) multiplicity 10.0 Mean D+
s2 multiplicity 10.0

Mean Ω− multiplicity 10.0 Mean K∗0(892) multiplicity 10.0

Mean Σ±(1385) multiplicity 10.0 Mean Σ− multiplicity 10.0

Mean ψ(2S) multiplicity 10.0 Mean π+ multiplicity 10.0

Mean D∗+(2010) multiplicity 10.0 Mean f0(980) multiplicity 10.0

Mean B∗ multiplicity 10.0 Mean Σ+(1385) multiplicity 10.0

Mean π0 multiplicity 10.0 Mean D+
s multiplicity 10.0

Mean η multiplicity 10.0 Mean p multiplicity 10.0

Mean a+0 (980) multiplicity 10.0 Mean B0
s multiplicity 10.0

Mean D+
s1 multiplicity 10.0 Mean K0 multiplicity 10.0

Mean ρ+(770) multiplicity 10.0 Mean B+, B0
d multiplicity 10.0

Mean Ξ− multiplicity 10.0 Mean Λ multiplicity 10.0

Mean ω(782) multiplicity 10.0 Mean η′(958) multiplicity 10.0

Mean Υ(1S) multiplicity 10.0

Table 2.4: Multiplicities used in the tuning and associated weights for observables

taken from [7].

Observable Weight

b quark fragmentation function f(xweak
B ) 7.0

Mean of b quark fragmentation function f(xweak
B ) 3.0

Table 2.5: Observables used in the tuning and associated weights for observables

taken from [8].
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Figure 2.4: The χ′ 2/Ndf distributions for the parameters that were varied from their

default values whilst determining the error tune. The scatter of the results gives a

representation of the systematics of tuning procedure.

best tune does not fit the data ideally and nor is the χ′ 2 measure actually distributed

according to a true χ2 distribution. This means that one cannot just use Professor

to vary the parameters about the minima to a given deviation in the χ′ 2 measure

without using some subjective opinion on the quality of the results.

We simulated one thousand event samples with different randomly selected values

of the parameters we were tuning. Six hundred of these were used to interpolate the

generator response. All the event samples were used to select two hundred samples
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randomly two hundred times in a bootstrapping type process in order to assess the

systematics of the interpolation and tuning procedure. A cubic interpolation of the

generator response was used as this has been shown to give a good description of the

Monte Carlo behaviour in the region of best generator response [67]. The parameters

were varied between values shown in Table 2.1. The quality of the interpolation was

checked by comparing the χ′ 2/Ndf , where Ndf is the number of observable bins used

in the tune, in the allowed parameter range on a parameter by parameter basis

for the observables by comparing the interpolation response with actual generator

response at the simulated parameter values. Bad regions were removed and the

interpolation repeated leaving a volume in the 5-dimensional parameter space where

the interpolation worked well.

Fig. 2.4 shows the χ′ 2/Ndf distributions for two hundred tunes based on two

hundred randomly selected event samples points for the cubic interpolation. The

spread of these values gives an idea of the systematics of the tuning process showing

that we have obtained a good fit for our parameterisation of the generator response.

The line indicates the tune which is based on a cubic interpolation from six

hundred event samples. It is this interpolation which was used to vary χ′ 2 about

the minimum to assess the uncertainty on the measured distributions. During the

tune it was discovered that PSplitLight was relatively insensitive to the observables

used in the tune. As such, PSplitLight was fixed at the default value of 1.20 during

the tune and subsequent χ′ 2 variation.

Professor was used to vary χ′ 2 about the minimum value, as described above, de-

termining the allowed range for the parameters. As five parameters were eventually

varied, there are 10 new sample points - one “+” and one “-” along each eigenvector

direction in parameter space.

We follow the example set by the parton distribution function (PDF) fitting

groups in determining how much to allow χ′ 2 to vary. Our situation is different to the

PDF fitters in that we are using leading-order calculations with leading-log accuracy

in the parton shower, where they fit to next-to-leading order calculations which gives

better overall agreement with the observables used. Generally, PDF groups fit to

fully inclusive variables, where as we have fitted to more exclusive processes and by
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Figure 2.5: Results from the DELPHI [2] analysis of out-of-plane pT with-respect-to

the thrust axis and 1-thrust showing the new tune and the envelopes corresponding

to a change in ∆χ′ 2/Ndf = 5.
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Figure 2.6: Results from the DELPHI [2] analysis of out-of-plane pT with-respect-to

the thrust axis and 1-thrust showing the new tune and the envelopes corresponding

to a change in ∆χ′ 2/Ndf = 10.

nature, these are more model dependent in particular hadronization effects.

In Refs. [102, 103] these issues are explored in terms of PDFs and the allowed
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variation is related to a tolerance parameter T , where

∆χ′ 2global 6 T 2. (2.2.15)

A tolerance parameter of T ≈ 10 to 15 is generally chosen for the PDF groups, where

they are fitting to around 1300 data points. As our fit is likley to have a higher χ2

than their fit due to the aforementioned reasons, and that we fit to a greater number

of observables, we will have a higher tolerance parameter.

In our fit, we have 1665 degrees-of-freedom and we examined various changes

in χ′ 2, whilst considering the effects of the precision data from LEP. A variation

of ∆χ′ 2/Ndf = 5, equivalent to T ≈ 90 seems, subjectively to keep the LEP data

within reasonable limits while a variation of ∆χ′ 2/Ndf = 10, i.e. T ≈ 130 is too

large. Anything less than T ≈ 40 had very little variation and was therefore deemed

inappropriate. The values for both ∆χ′ 2/Ndf = 5 and ∆χ′ 2/Ndf = 10 are shown in

Tables 2.6 and Tables 2.7 respectively.
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Figure 2.7: A scan of PSplitLight using the internal Herwig++ tuning system with

the other parameters fixed at their new tuned value. From the total χ′ 2/Ndf we see

that a value of 0.90 for PSplitLight is favoured at the new tuned parameters driven

by the multiplicities.

The Professor tune was then compared with the internal Herwig++ tuning pro-

cedure [37] as not all analyses that are in the internal Herwig++ tuning system are
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Parameter

Direction

1 2 3 4 5

+ - + - + - + - + -

pTmin 0.88 0.88 0.88 0.88 0.84 0.93 0.87 0.90 0.89 0.87

AlphaMZ 0.11 0.11 0.10 0.12 0.12 0.11 0.12 0.11 0.12 0.11

ClMaxLight 3.61 3.61 3.61 3.61 3.60 3.62 3.66 3.55 3.54 3.67

PwtDIquark 0.46 0.23 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

PwtSquark 0.64 0.64 0.64 0.64 0.64 0.64 0.62 0.67 0.51 0.78

Table 2.6: The five directions corresponding to the error tune for a ∆χ′ 2/Ndf = 5

and the values the parameters take in each direction.

Parameter

Direction

1 2 3 4 5

+ - + - + - + - + -

pTmin 0.88 0.88 0.88 0.88 0.82 0.95 0.86 0.90 0.89 0.87

AlphaMZ 0.11 0.11 0.10 0.12 0.12 0.10 0.12 0.10 0.12 0.11

ClMaxLight 3.61 3.61 3.61 3.61 3.59 3.63 3.68 3.52 3.52 3.70

PwtDIquark 0.51 0.19 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

PwtSquark 0.64 0.64 0.64 0.64 0.65 0.64 0.61 0.68 0.46 0.84

Table 2.7: The five directions corresponding to the error tune for a ∆χ′ 2/Ndf = 10

and the values the parameters take in each direction.

available in Rivet and subsequently accessible to Professor. Looking at Fig. 2.7 it

is found that PSplitLight at a value of 0.90 is favoured and gives a significant

reduction in the χ′ 2/Ndf . It was therefore decided to use the values obtained from

minimisation procedure, but using the value of 0.90 for PSplitLight to maintain a

good overall description of the data. The new minima for the QCD parameters are

summarized in the Table 2.1. Examples of the new tune and the uncertainty band

are shown in Figs. 2.5 and 2.6 for the out-of-plane transverse momentum and thrust

measured by DELPHI [2].

These error tune values can now be used to predict the uncertainty from the tun-

ing of the shower parameters on any observable. In the next section we will present

an example of using these tunes to estimate the uncertainty on the predictions for
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Figure 2.8: Results for the reconstructed Higgs boson mass distribution using HER-

WIG leading-order matrix elements for top quark pair production, and the produc-

tion of W± and Z0 bosons in association with a hard jet. A SM Higgs boson was

assumed with a mass of 115 GeV.

searches for the Higgs boson using the BDRS jet substructure method.

2.3 Jet Substructure of Boosted Higgs

The analysis of Ref. [68] uses a number of different channels for the production of

the Higgs boson decaying to bb̄ in association with an electroweak gauge boson, i.e.

the production of h0Z0 and h0W±. Ref. [68] uses the fact that the Higgs boson

predominantly decays to b b̄ in a jet substructure analysis to extract the signal of

a boosted Higgs boson above the various backgrounds. Their study found that the
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Figure 2.9: Results for the reconstructed Higgs boson mass distribution using

leading-order matrix elements. A SM Higgs boson was assumed with a mass of

115 GeV. In addition to the full result the contribution from top quark pair pro-

duction (tt̄), the production of W± (W+Jet) and Z0 (Z+Jet) bosons in association

with a hard jet, vector boson pair production (VV) and the production of a vector

boson in association with the Higgs boson (V+Higgs), are shown.

Cambridge-Aachen algorithm [104, 105] with radius parameter R = 1.2 gave the

best results when combined with their jet substructure technique. For our study, we

used the Cambridge-Aachen algorithm as implemented in the FastJet package [106].

Three different event selection criteria are used:

(a) a lepton pair with 80 GeV < ml+l− < 100 GeV and pT > pmin
T to select events

for Z0 → `+`−;

(b) missing transverse momentum /pT > pmin
T to select events with Z0 → νν̄;
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Figure 2.10: Results for the reconstructed Higgs boson mass distribution using

leading-order matrix elements for top quark pair production (tt̄), and the production

of W± (W+Jet) and Z0 (Z+Jet) bosons in association with a hard jet. The next-

to-leading-order corrections are included for vector boson pair production (VV) and

the production of a vector boson in association with the Higgs boson (V+Higgs) as

well as in the decay of the Higgs boson, h0 → b b̄. A SM Higgs boson was assumed

with a mass of 115 GeV.

(c) missing transverse momentum /pT > 30 GeV and a lepton with pT > 30 GeV

consistent with the presence of a W boson with pT > pmin
T to select events with

W → `ν;

where pmin
T = 200 GeV.

In addition the presence of a hard jet with pTj > pmin
T with substructure is

required. The substructure analysis of Ref. [68] proceeds with the hard jet j with
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Significance

Process Order S√
B

S√
B

Herwig++ default Herwig++ tune

Z0 → l+l−
LO 1.17 1.24+0.36

−0.11

NLO 1.57 1.96+0.29
−0.30

Z0 → ν ν̄
LO 1.77 2.30+0.17

−0.38

NLO 2.41 3.24+0.24
−0.61

W → l ν
LO 1.88 2.32+0.15

−0.27

NLO 2.63 3.20+0.29
−0.36

Total
LO 2.75 3.43+0.27

−0.46

NLO 3.79 4.81+0.41
−0.70

Table 2.8: The significance of the different processes for the leading- and next-to-

leading-order matrix elements. The significance is calculated using all masses in the

range 112-120 GeV.

some radius Rj, a mass mj and in a mass-drop algorithm:

1. the two subjets which were merged to form the jet, ordered such that the mass

of the first jet mj1 is greater than that of the second jet mj2 , are obtained;

2. if mj1 < µmj and

y =
min(p2

Tj1
, p2

Tj2
)

m2
j

∆R2
j1,j2

> ycut, (2.3.16)

where ∆R2
j1,j2

= (yj1−yj2)2+(φj1−φj2)2, and pTj1,2 , ηj1,2 , φj1,2 are the transverse

momenta, rapidities and azimuthal angles of jets 1 and 2, respectively, then j

is in the heavy particle region. If the jet is not in the heavy particle region

the procedure is repeated using the first jet.

This algorithm requires that j1,2 are b-tagged and takes µ = 0.67 and ycut = 0.09. A

uniform b-tagging efficiency of 60% was used with a uniform mistagging probability
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of 2%. The heavy jet selected by this procedure is considered to be the Higgs

boson candidate jet. Finally, there is a filtering procedure on the Higgs boson

candidate jet, j. The jet, j, is resolved on a finer scale by setting a new radius

Rfilt = min(0.3, Rbb̄/2), where from the previous mass-drop condition, Rbb̄ = ∆R2
j1,j2

.

The three hardest subjets of this filtering process are taken to be the Higgs boson

decay products, where the two hardest are required to be b-tagged.

All three analyses require that:

• after the reconstruction of the vector boson, there are no additional leptons

with pseudorapidity |η| < 2.5 and pT > 30 GeV;

• other than the Higgs boson candidate, there are no additional b-tagged jets

with pseudorapidity |η| < 2.5 and pT > 50 GeV.

In addition, due to top contamination, criterion (c) requires that other than the

Higgs boson candidate, there are no additional jets with |η| < 3 and pT > 30 GeV.

For all events, the candidate Higgs boson jet should have pT > pmin
T . The analyses

were implemented using the Rivet system [101].

The simulations in this Chapter were produced before the announcement of the

discovery of a new boson of mass around 125 GeV [107,108], which is a candidate SM

Higgs boson, and so the mass of the Higgs boson was assumed to be 115 GeV from

the LEP bounds. We expect a difference in mass of 10 GeV to have no siginifcant

effect on the results presented.

First we show in Fig. 2.8 the results of the analyses when used with HERWIG as

a proof of methodology, when compared to the plots in Ref. [68]. The plots shown in

Fig. 2.9 use the leading-order matrix elements for the production and decay of Higgs

boson but the W , Z and top [109] have matrix element corrections for their decays.

The plots shown in Fig. 2.10 have leading-order tt̄ production, leading-order vector

boson plus jet production (with the same matrix element corrections as the LO

matrix elements) but the NLO vector boson pair production [110] and NLO vector

and Higgs boson associated production [63]. In addition we have implemented the

corrections to the decay h0 → b b̄ in the POWHEG scheme, as described earlier.

The signal significances are outlined in Table 2.8.
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Figure 2.11: Results for the reconstructed Higgs boson mass distribution using

leading-order matrix elements. A SM Higgs boson was assumed with a mass of

115 GeV. The envelope shows the uncertainty from the Monte Carlo simulation.

We have not shown the statistical error.

The uncertainties due to the Monte Carlo simulation are shown as bands in

Figs. 2.11 and 2.12. As there are correlations between the different processes the

uncertainty is determined for the sum of all processes. Whilst it would be possible to

show the envelope for the individual processes, this would not offer any information

on the envelope for the sum of the processes which is the result of interest. In

addition the uncertainty on the significance is shown in Table 2.8.
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Figure 2.12: Results for the reconstructed Higgs boson mass distribution using

leading-order matrix elements for top quark pair production, and the production

of W± and Z0 bosons in association with a hard jet. The next-to-leading-order

corrections are included for vector boson pair production and the production of a

vector boson in association with the Higgs boson as well as in the decay of the

Higgs boson, h0 → b b̄. A SM Higgs boson was assumed with a mass of 115 GeV.

The envelope shows the uncertainty from the Monte Carlo simulation. We have not

shown the statistical error.

2.4 Conclusions

While significant effort has been devoted to the tuning of the parameters to produce

a best fit there has been much less effort understanding the uncertainties in these

results. In this chapter we have produced a set of tunes which can be used to

assess this uncertainty using the Herwig++ Monte Carlo event generator. We note
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that usually statistical errors are the only errors shown on results produced with a

Monte Carlo event generator, however, we have not shown these here as the aim is

to emphasise the new tuning errors we have produced.

We then used these tunes to assess the uncertainties on the mass-drop analysis

of Ref. [68] using Herwig++ with both leading- and next-to-leading-order matrix

elements including a POWHEG simulation of the decay h0 → b b̄.

We have verified the results of Ref. [68] and extended this by using improved

simulation of certain aspects of the radiation. Although not currently being used at

the LHC as a discovery channel, we have seen that there is potential, with further

improvements, to use the predominant decay of a light Higgs boson to bottom

quarks, via jet substructure, as a discovery channel. This technique may also be

used to gain insight into the coupling of a light Higgs boson to bottom quarks.

However, before we can embark on large studies using jet substructure we need

to be confident of our tunes to investigate this with Monte Carlo simulations and it

is the process undertaken here that gives us that confidence. In addition, the error

tunes and procedure outlined in this chapter can now be used in other analyses

where the uncertainty due to the Monte Carlo simulation is important.

There is still room for improvement in the simulation of process that will affect

a jet substructure analysis. This includes, for example, a better study of the g → b b̄

splitting as implemented in a Monte Carlo event generator. Clearly the g → b b̄

splitting is important in an analysis as undertaken here, so further study including

topics such as choice of scale for the coupling and whether to angular order this

splitting would be beneficial.

Also, as further data comes out from the LHC with its complex hadronic final

states, including effects of underlying event in the tune would also be helpful as

any study of jet substructure will be sensitive to underlying event. This could

include the effects of new and different underlying event models and their effect on

jet substructure and any effects from the tuning of the underlying event models to

data.



Chapter 3

Improved Simulation of Soft

Radiation in the Production and

Decay of Unstable Particles

Following the discovery of the top quark [111, 112] the measurement of the top

quark mass has been refined using a succession of ever more sophisticated analy-

sis techniques. The latest result, mt = 173.18± 0.56 (stat)± 0.75 (syst) GeV, [113]

from the Tevatron experiments, has an error of less than 1 GeV. While

the early measurements by the LHC experiments had larger errors the

latest CMS preliminary measurement using a combination of channels,

mt = 173.36± 0.38 (stat)± 0.91 (syst) GeV [114], and ATLAS measurement in the

lepton plus jets channel, mt = 174.5± 0.6 (stat)± 2.3 (syst) GeV [115], have errors

which are approaching that of the Tevatron measurement. These results rely on

Monte Carlo simulations of top quark production and decay either directly in

Template methods [116–118] or in extracting corrections in Matrix Element Meth-

ods [119–121].

As the top quark is heavier than the W± boson its lifetime is shorter than

hadronization timescale making it unique in decaying before the formation of top

hadrons. In Monte Carlo simulations this is simulated by first simulating the hard

process in which the top quark is produced, followed by the subsequent evolution,

via perturbative gluon radiation, to the cut-off scale. The decay of the top quark is

68
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then simulated as a hard perturbative process, due to the large perturbative scale

provided by the top quark mass, and evolved to the cut-off scale using the parton-

shower algorithm.

As the error on the top quark mass decreases it is essential that we understand the

relationship between the experimentally measured quantity and the perturbative top

quark mass defined in a rigorous renormalisation scheme [122–125]1. An alternative

to measuring the top quark mass using kinematic variables is to extract it from the

top quark pair production cross section [126], however while defined in a specific

renormalisation scheme the current results from this approach have a much larger

error, e.g. mt = 170± 7 GeV [127]

In particular from the point of view of Monte Carlo simulations, in addition

to the top mass and infrared cut-off scale, the top quark width (Γt) provides an

additional scale in the production and subsequent decay of the top quark. While

gluons with energies above the top quark width (E � Γt) can resolve the production

and decay of the top quark, gluons with very low energies (E � Γt) cannot resolve

the presence of the top quark and in terms of a Monte Carlo simulation should be

regarded as if they are emitted from the top decay products without any knowledge

of the top quark. First studies of this effect for e+e− initiated top quark production

process can be found in Ref. [128].

While in top quark production this may not be a significant effect because the top

quark width (Γt ∼ 1.4 GeV) is already close to the infrared cut-off scale given the ever

decreasing error on the top quark mass, it must be investigated. Equally, while this

may not be an important effect in the Standard Model in models of physics Beyond

the Standard Model (BSM) there are often heavy strongly interacting particles with

much larger widths where these effects will be greater.

In this chapter we present a systematic approach to include the width in these

simulations. We start by recalculating the existing radiation patterns, using tech-

niques from chapter 1, for single gluon emission in the soft limit in top quark produc-

tion from quark–quark, gluon-gluon and e+e− initial states, followed by extending

1The interested reasder can find a review of these issues in Appendix C of Ref. [42].
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Figure 3.1: The tree level initial state quark-quark initiated top quark production

process and associated colour flow.
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Figure 3.2: The tree level initial state gluon-gluon top quark production processes.

these calculations to double gluon emission in the same limit for both processes.

We also calculate the patterns for stop production. This allows us to interpret the

patterns in terms of an algorithm for implementation in a Monte Carlo event genera-

tor. Finally, we show the effect of implementing the new algorithm in the Herwig++

Monte Carlo event generator on the determination of the top mass.

3.1 Radiation Patterns

3.1.1 Top Quark Pair Production in Hadron–Hadron Colli-

sions

The main production mechanisms for top quarks in hadron–hadron collisions are

shown in Figs. 3.1 and 3.2. At the Tevatron the quark-antiquark production mech-
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anism is dominant due to the presence of valance antiquarks in the incoming an-

tiproton, while at the LHC due to the large gluon parton density at higher energies

and proton–proton initial state the gluon-gluon production mechanism dominates.

The radiation patterns for single gluon emission have already been covered in

detail in the literature [44,129–131], however, we repeat it here as validation of our

methodology2 and in order to interpret the radiation patterns in terms of implemen-

tation in a Monte Carlo simulation.

We first consider the soft radiation from the process qq̄ → tt̄ including the

decays of the top quark, t→ bW+, and anti-top quark t̄→ b̄W−. The leading-order

Feynman diagram and unique colour flow for this process are shown in Fig. 3.1.

We make use of the results from Ref. [131] and, as we will be using the same basic

approach for a number of processes, we give the details of the calculation for this

process.

The current is

J µ(p1, p2, pb, pb̄, k) =
1

2

[
tBkiδjlPt̄(q

2
t̄ )Pt((qt + k)2)

(
pµb
pb · k

− qµt
qt · k

)
+tBjlδikPt(q

2
t )Pt̄((qt̄ + k)2)

(
qµt̄
qt̄ · k

− pµ
b̄

pb̄ · k

)
+tBjlδikPt(q

2
t )Pt̄(q

2
t̄ )

(
pµ2
p2 · k

− qµt̄
k · qt̄

)
+tBkiδjlPt(q

2
t )Pt̄(q

2
t̄ )

(
qµt
k · qt

− pµ1
p1 · k

)]

− 1

2NC

[
tBjiδklPt(q

2
t )Pt̄(q

2
t̄ )

(
pµ2
p2 · k

− pµ1
p1 · k

)
+tBklδijPt(q

2
t )Pt̄(q

2
t̄ )

(
qµt
k · qt

− qµt̄
k · qt̄

)
+tBklδijPt̄(q

2
t̄ )Pt((qt + k)2)

(
pµb
pb · k

− qµt
qt · k

)

2We automated the calculation of the Feynman diagrams and associated currents. We first used

FeynArts [132] to produce the Feynman diagrams for the processes with the appropriate number

of external gluons. The FORM [36] output of FeynArts was then taken and a set of eikonal rules

applied within FORM to generate the set of dipoles for each diagram. The resulting expression was

then manipulated in Mathematica using FeynCalc [133] to produce an expression for the radiation

pattern.
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+tBklδijPt(q
2
t )Pt̄((qt̄ + k)2)

(
qµt̄
qt̄ · k

− pµ
b̄

pb̄ · k

)]
, (3.1.1)

where p1,2 are the 4-momenta of the incoming quark and anti-quark, respectively.

The bottom and anti-bottom quarks have 4-momenta pb and pb̄, respectively. The

4-momenta of the top and anti-top quarks are qt and qt̄, respectively. In general

we will neglect sub-leading terms in the number of colours NC = 3, but they are

included here for completeness. The propagator factor for a heavy particle is

Pa(q
2
a) =

1

(q2
a −Ma)2 + Γ2

aM
2
a

, (3.1.2)

where qa, Ma and Γa, are the 4-momenta, mass and width of the particle, respec-

tively. This current, from Ref. [131], is derived by only retaining the gluon momen-

tum in the propagator factors and using

Pa(q
2)Pa((q + k)2) =

1

2q · k
(
Pa(q

2)− Pa((q + k)2)
)
. (3.1.3)

Using the same approach as Ref. [131] we can integrate over the off-shell masses of

the top quark and antiquark∫
dq2

t dq
2
t̄

∑
spins

|M ({p0}, pk) |2 ≈ g2
s

(
π

MtΓt

)2 ∑
spins

|Mn
0 ({p0}) |2Fn. (3.1.4)

with

Fn ≡
(
MtΓt
π

)2 ∫
dq2

t dq
2
t̄ [−Jn · Jn∗] , (3.1.5)

where the neglected cross terms are sub-leading in NC with respect to the leading

term.

Here there is only one colour flow and the leading contribution in NC to the

radiation pattern is

ω2

2
F =

CA
2

[
(1− Ct) (Wp1,t +Wb,t) + CtWp1,b+ (3.1.6)

(1− Ct̄) (Wp2,t̄ +Wb̄,t̄) + Ct̄Wp2,b̄

]
,

where Wij = Wij(pg) and the coefficients Ct,t̄ are

Ct(k) =
M2

t Γ2
t

M2
t Γ2

t + (qt · k)2 , (3.1.7a)
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Ct̄(k) =
M2

t Γ2
t

M2
t Γ2

t + (qt̄ · k)2 . (3.1.7b)

There are two important limits of this result. The first is qt,t̄ · k �MtΓt. In this

limit Ct,t̄(k)→ 0 and the radiation pattern is

ω2

2
F =

CA
2

[
Wp1,t +Wb,t +Wp2,t̄ +Wb̄,t̄

]
. (3.1.8)

In this case we have radiation from the dipole formed by the light and top quarks,

and light antiquark and anti-top quark in the hard process and between the top-

bottom dipole in both the top quark and antiquark decays.

The second limit is qt,t̄ · k � MtΓt. In this limit Ct,t̄(k) → 1 and the radiation

pattern is
ω2

2
F =

CA
2

[
Wp1,b +Wp2,b̄

]
, (3.1.9)

which corresponds to the case where the radiation cannot resolve the production

of the top quarks and is from the dipoles formed by the incoming (anti)quark and

outgoing (anti)bottom quark.

In order to interpret that radiation pattern in terms of a parton-shower algorithm

the standard approach is to split the dipole radiation function into two parts as in

Eqn. 1.2.37.

In the FORTRAN version of HERWIG the decomposition [44]

W i
ij =

1

2ξi

(
1− 1

γ2
i ξi

+
ξij − ξi
ξj

)
(3.1.10)

was used. However, in Herwig++ different shower variables [37] are used and there

is no corresponding exact decomposition in the soft limit. The Herwig++ shower

algorithm is constructed by requiring that the upper limits of the parton-shower

evolution variable for the two colour-connected particles are chosen in order to cover

the phase space in the soft limit, with the best possible approximation to the correct

angular distribution. This leads to a different approximation to the eikonal result

in the two disjoint regions of phase space filled by radiation from the two particles.

However, the approximations to the radiation functions W i,shower
ij and W j,shower

ij in

the Herwig++ shower algorithm still ensure that W i,shower
ij contains the collinear

singularity for emission from i and W j,shower
ij contains the collinear singularity for

emission from j in the ij dipole.
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In both the FORTRAN HERWIG and Herwig++ this decomposition is done in

different frames for the different dipoles, e.g. in the centre-of-mass frame for the

production of the top quarks and in their rest frame for the decay. We can calculate

the shower decomposition of the radiation functions in the Herwig++ shower vari-

ables using the kinematics outlined in Ref. [93], upon which the Herwig++ shower

is based. We now look at each of these cases in turn.

Shower Approximation

Final-Final Connection

In a final-final colour connection, for a colour singlet in the process a → b + c the

momentum of a is preserved and, working in its rest frame [93],

pa = Q(1, 0, 0, 0) , pb =
1

2
Q(1 + b− c, 0, 0, λ) , pc =

1

2
Q(1− b+ c, 0, 0,−λ) ,

(3.1.11)

where p2
a = Q2, b = m2

b/Q
2, c = m2

c/Q
2 and

λ = λ(1, b, c) ≡
√

(1 + b− c)2 − 4b =
√

(1− b+ c)2 − 4c . (3.1.12)

Making use of the e+e− → tt̄ process, in the new variables the emission proba-

bility from the top in the dipole, formed by the tt̄ pair is

dP =
1

2(2π)3

dω

ω
d cos θdφg2

sCFW
i,shower
ij (3.1.13)

where θ is the angle between the emitting particle, b, and the gluon, the angle φ is

the azimuthal angle and ω the gluon’s energy. From these we find that the shower

approximation to the radiation function is

W t,shower
tt̄ =

2(1 + b− c+ λ)

(1 + cos θ)(1 + b− c− λ cos θ)
− 4b

(1 + b− c− λ cos θ)2
. (3.1.14)

Decay Colour Connection

For processes where the decay is colour connected, e.g. the process b→ c+ a where

a is a colour singlet and the decaying parton b and outgoing parton c are colour-

connected, the momentum of the decaying parton b is preserved, therefore we work
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in its rest frame,

pb = mb(1, 0, 0, 0) , pc =
1

2
mb(1− a+ c, 0, 0, λ) , pa =

1

2
mb(1 + a− c, 0, 0,−λ) ,

(3.1.15)

where a = m2
a/m

2
b , c = m2

c/m
2
b and now

λ = λ(1, a, c) =
√

(1 + a− c)2 − 4a =
√

(1− a+ c)2 − 4c . (3.1.16)

Making use of the t→ W+b process, in the new variables the emission probability

from the top quark in the dipole, formed by the tb pair is,

dP =
1

2(2π)3

dω

ω
d cos θdφg2

sCFW
t,shower
tb , (3.1.17)

where θ is the angle of the gluon with respect to the bottom quark in the rest frame

of the decaying top and [109]

W t,shower
tb =

1 + cos θ

1− cos θ
. (3.1.18)

The radiation from the bottom, in the top rest frame has the same form as for the

top in the final-final colour connection.

Initial-Initial Colour Connection

For processes where the initial state particles are colour connected, the inverse pro-

cess b+ c→ a where a is a colour singlet of invariant mass Q and b, c are beam jets,

is considered. The beam jets are taken to be massless in the centre of mass frame

and we therefore have

pa = Q(1, 0, 0, 0) , pb =
1

2
Q(1, 0, 0, 1) , pc =

1

2
Q(1, 0, 0,−1) . (3.1.19)

Making use of the qq̄ → Z0 process, in the new variables the emission probability

from the top in the dipole, formed by the qq̄ pair is,

dP =
1

2(2π)3

dω

ω
d cos θdφg2

sCFW
q,shower
qq̄ (3.1.20)

where

W q,shower
qq̄ =

4

sin2 θ
(3.1.21)

where θ is the angle of the gluon with respect to the emitting particle. The radiation

off the anti-quark has the same form as radiation off the quark.
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Initial-Final Colour Connection

For a process with an initial-final colour connection, we consider the process a+b→ c

where a is a colour singlet. We need to preserve the momentum of a and therefore

work in the Breit frame:

pa = Q(0, 0, 0,−1) , pb =
1

2
Q(1 + c, 0, 0, 1 + c) , pc =

1

2
Q(1 + c, 0, 0,−1 + c) ,

(3.1.22)

where p2
a = −Q2, p2

b = 0, and m2
c = cQ2. The beam parton b is always taken as

massless, but the outgoing parton c can be massive.

Making use of the DIS qiγ
∗ → qf process, in the new variables the emission

probability from initial state quark in the dipole, formed by the qiqf pair is,

dP =
1

2(2π)3

dω

ω
d cos θdφg2

sCFW
qi,shower
qiqf

(3.1.23)

where

W qi,shower
qiqf

=
4

sin2 θ
(3.1.24)

where θ is the angle of the gluon with respect to the emitting particle.

The radiation off the final state quark qf takes the form

W
qf ,shower
qiqf =

4(1− cos θ)

(1 + cos θ)(1 + c− cos θ(1− c))2
, (3.1.25)

where the emission probability takes a similar form.

Armed with this knowledge, we are now in a position to calculate radiation

patterns. In producing the radiation patterns below, we use the configuration as

shown in Fig. 3.3 [131]. We take the mass of the top mt = 174.2 GeV and the width

of the top Γt = 1.4 GeV. The energy of each beam particle was 2mt, giving a total

centre-of-mass energy
√
s = 4mt. This ensures the top quarks are produced above

threshold.

In Fig. 3.4 we show the radiation pattern associated with this process. Through-

out, the full result is the full calculation including all subleading terms, the full

shower approximation is the full expression with the W functions replaced by the

shower approximation, the leading term is the leading NC approximation and the
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Figure 3.3: A schematic of the kinematics used to plot the t t̄ single gluon emission

radiation patterns shown below. The incoming beam particles depend on the process

being studied.

leading shower approximation is the shower approximation to the leading NC con-

tribution. We note on the plot the suppression of radiation associated with emission

around the bottom quarks at 45o and 225o, owing to the bottom quark having finite

mass. We also see the singularity associated with the incoming quarks at 180o and

0o along with the top quarks at 90o and 270o.

We can interpret this radiation pattern as the radiation from the incoming quark

and outgoing top quark dipole being suppressed by (1− Ct) and radiation from the

dipole formed by the incoming quark and bottom being suppressed by Ct. The

same applies for the other colour dipoles in the radiation pattern, but with Ct being

replaced with Ct̄. It is also worth nothing that the leading colour contribution is very

similar to the full result and therefore taking the leading contribution is actually

providing a good approximation.

The gluon-gluon initial state is more complicated because the leading-order ma-

trix element decomposes into two terms corresponding to t-channel and u-channel

colour flows as shown in Fig. 3.5. The interference of these two terms makes iden-

tifying the colour flows in the planar limit difficult [131]. However, in the large

NC limit this interference is suppressed and we are left with a separation into two

positive definite colour flows as discussed in Ref. [129].
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Figure 3.4: The radiation pattern for single emission from qq̄ → tt̄. Noting the

logarithmic scale, we show the full radiation pattern, the shower approximation to

the full radiation pattern and the leading NC contribution. Ek is the energy of

the emitted gluon. The dips in the pattern are associated with the finite bottom

quark mass and we see singularities with the incoming quarks at 0o and 180o. These

features are repeated in the other radiation patterns we will display here. We also

note that the leading approximation as employed in the shower interpretation is

performing well, meaning in the collinear region of interest the approximation is

good.
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Figure 3.5: Colour flow diagrams for the gluon-gluon initiated processes.

The leading-order spin-summed colour averaged amplitude is [131]∑
spins

|M0({p0})|2 =
1

2NC

(
t2 + u2

s2
− µ2s2

tu
+ 2µ

)(
s2

tu
− NC

CF

)
, (3.1.26)

where the Mandelstam variables s = (p1 +p2), t = (p1−qt)2, u = (p1−qt̄)2, µ =
2m2

t

s

and p1,2 are the 4-momenta of the incoming gluons

The leading NC contribution to the radiation pattern can then be expressed in

terms of two kinematic functions, corresponding to the t- and u-channel colour flows

and is given by

ω2

2

∑
spins |Mn

0 ({p0}) |2Fn∑
spins |M0 ({p0}) |2

= h(t, s)
C4
A

8

[
Wp1,p2 + (Wp1,t +Wb,t) (1− Ct) (3.1.27)

+
(
Wp2,t̄ +Wb̄,t̄

)
(1− Ct̄) + CtWp1,b + Ct̄Wp2,b̄

]
+h(u, s)

C4
A

8

[
Wp1,p2 + (Wp2,t +Wb,t) (1− Ct) +

+
(
Wp1,t̄ +Wb̄,t̄

)
(1− Ct̄) + Ct̄Wp1,b̄ + CtWp2,b

]
,

where [44]

h(t, s) = −2 (µ2s4 + 2µs2t(s+ t) + t (s3 + 3s2t+ 4st2 + 2t3))∑
spins |M0({p0})|2 (NC − 1)2s2t2

. (3.1.28)

We have chosen to normalise the h(t, s) and h(u, s) functions by the leading-order

cross section. The radiation pattern produced by this process is shown in Fig. 3.6.

We can interpret the radiation pattern as the radiation from the top quark gluon

and top-bottom dipoles being suppressed by (1− Ct). The same applies for the anti-

particles, but with (1− Ct)→ (1− Ct̄). There is additional soft radiation from the
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(b) Ek = 0.1 GeV

Figure 3.6: The radiation pattern for single emission from gg → tt̄. We show the full

radiation pattern, the shower approximation to the full radiation pattern and the

leading NC contribution to the radiation pattern. Ek is the energy of the emitted

gluon.

bottom (anti)quark dipole with radiation suppressed by amount Ct, or Ct̄ depending

on whether it is the bottom or anti-bottom radiating. The radiation from the dipole

formed between the two incoming gluons is not suppressed.

In calculating the radiation patterns for two gluons, we work in the strongly or-

dered limit, where the first emission is harder than the second. We introduce the no-

tation below as Wij = Wij(k1), W ′
ij = Wij(k2), Ct(t̄) = Ct(t̄)(k1) and

Dt(t̄) = Ct(t̄)(k2) and, as we are in the strongly ordered limit, k1 � k2 where k1,2 are

the 4-momenta for the first and second gluon emission, respectively. In the radiation

patterns produced below, we fix the first gluon at 340o to the incoming beam, away

from the other particles, and we vary the angle of the second gluon as before.

Here,∫
dq2

t dq
2
t̄

∑
spins

|M ({p0}, k1, k2) |2 ≈ g4
s

(
π

MtΓt

)2 ∑
spins

|Mn
0 ({p0}) |2Fn, (3.1.29)

where we have introduced two extra factors of gs and

Fn ≡
(
MtΓt
π

)2 ∫
dq2

t dq
2
t̄ [Jn · Jn∗] . (3.1.30)

The radiation pattern for qq̄ → tt̄gg is

ω2

2
Fg =

C2
A

4

[
Wp1,t (1− Ct)

(
W ′
p1,k1

+DtW
′
b,k1

+Dt̄W
′
p2,b̄

+ (3.1.31)
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(1−Dt) (W ′
b,t +W ′

t,k1
)+

(1−Dt̄) (W ′
b̄,t̄ +W ′

p2,t̄
)
)
+

Wp2,t̄ (1− Ct̄)
(
W ′
p2,k1

+Dt̄W
′
b̄,k1

+DtW
′
p1,b

+

(1−Dt̄) (W ′
b̄,t̄ +W ′

t̄,k1
)+

(1−Dt) (W ′
b,t +W ′

p1,t
)
)
+

Wb,t (1− Ct)
(
W ′
b,k1

+DtW
′
p1,k1

+Dt̄W
′
p2,b̄

+

(1−Dt) (W ′
p1,t

+W ′
t,k1

)+

(1−Dt̄) (W ′
p2,t̄

+W ′
b̄,t̄)
)
+

Wb̄,t̄ (1− Ct̄)
(
W ′
b̄,k1

+Dt̄W
′
p2,k1

+DtW
′
p1,b

+

(1−Dt̄) (W ′
p2,t̄

+W ′
t̄,k1

)+

(1−Dt) (W ′
p1,t

+W ′
b,t)
)
+

Wp2,b̄Ct̄
(
W ′
p2,k1

+DtW
′
p1,b

+W ′
b̄,k1

+ (1−Dt) (W ′
p1,t

+W ′
b,t)
)

Wp1,bCt
(
W ′
p1,k1

+Dt̄W
′
p2,b̄

+W ′
b,k1

+ (1−Dt̄) (W ′
p2,t̄

+W ′
b̄,t̄)
)]

+ F qq̄→tt̄.

Despite calculating the full pattern including subleading terms, owing to the size

and number of terms of the full radiation pattern, we only show the leading NC

contribution in Eq. 3.1.31 and show numerically the comparison to the full result in

Fig. 3.8.

We have included a remainder function, F qq̄→tt̄, in Eqn. 3.1.31 where

F qq̄→tt̄ =
C2
A

4

[
Wp1,tCt (1−Dt) (W ′

b,t +W ′
t,k1
−W ′

b,k1
)+ (3.1.32)

Wp2,t̄Ct̄ (1−Dt̄) (W ′
b̄,t̄ +W ′

t̄,k1
−W ′

b̄,k1
)+

Wb,tCt (1−Dt) (W ′
p1,t

+W ′
t,k1
−W ′

p1,k1
)+

Wb̄,t̄Ct̄ (1−Dt̄) (W ′
p2,t̄

+W ′
t̄,k1
−W ′

p2,k1
)
]
.

We omit the remainder function as they have no light-parton collinear singularities,

which unless the top is significantly boosted, means we have only a single soft

logarithm here. However, these terms are also small from the competing nature of

the Ct and 1−Dt functions. Recalling that k1 � k2 as we are in the strongly ordered

limit, and that Ct = Ct(k1) and Dt = Ct(k2), the competing nature of the Ct and
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Figure 3.7: Ct(1−Dt) for different gluon energies.

1−Dt terms mean that is Ct if large, then 1−Dt is small. Fig. 3.7 shows a plot of

Ct (1−Dt) for gluons of varying energies displaying these properties.

The interpretation of this radiation pattern is more complicated than in the single

gluon emission case, but guides us in developing our algorithm. The dipoles from

the single emission case are suppressed by the same amount, and now multiplying

them, is radiation from the second emission which is suppressed in a similar way as
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in the single emission case. We see new dipoles formed by, for example, the incoming

quark and outgoing gluon that are unsuppressed and dipoles formed by the outgoing

gluon and top quark being suppressed by (1−Dt), and between the outgoing gluon

and bottom quark by Dt.

Similarly the radiation pattern for gg → tt̄gg is

ω2

2

∑
spins |Mn

0 ({p0}) |2Fn∑
spins |M0 ({p0}) |2

= (3.1.33)

C5
A

16
h(t, s)

[
Wp1,t (1− Ct) (W ′

p1,p2
+W ′

p1,k1
+DtW

′
b,k1

+Dt̄W
′
p2,b̄

+

(1−Dt) (W ′
b,t +W ′

t,k1
)+

(1−Dt̄) (W ′
b̄,t̄ +W ′

p2,t̄
))+

Wb,t (1− Ct) (W ′
p1,p2

+W ′
b,k1

+DtW
′
p1,k1

+Dt̄W
′
p2,b̄

+

(1−Dt) (W ′
p1,t

+W ′
t,k1

)+

(1−Dt̄) (W ′
p2,t̄

+W ′
b̄,t̄))+

Wp2,t̄ (1− Ct̄) (W ′
p1,p2

+W ′
p2,k1

+Dt̄W
′
b̄,k1

+DtW
′
p1,b

+

(1−Dt̄) (W ′
b̄,t̄ +W ′

t̄,k1
)+

(1−Dt) (W ′
b,t +W ′

p1,t
))+

Wb̄,t̄ (1− Ct̄) (W ′
p1,p2

+W ′
b̄,k1

+Dt̄W
′
p2,k1

+DtW
′
p1,b

+

(1−Dt̄) (W ′
p2,t̄

+W ′
t̄,k1

)+

(1−Dt) (W ′
p1,t

+W ′
b,t))+

Wp2,b̄Ct̄ (W ′
p2,k1

+W ′
p1,p2

+W ′
b̄,k1

+DtW
′
p1,b

+

(1−Dt) (W ′
p1,t

+W ′
b,t))+

Wp1,bCt (W ′
p1,k1

+W ′
p1,p2

+W ′
b,k1

+Dt̄W
′
p2,b̄

+

(1−Dt̄) (W ′
p2,t̄

+W ′
b̄,t̄))+

Wp1,p2 (W ′
p1,k1

+W ′
p2,k1

+ (1−Dt̄) (W ′
p2,t̄

+W ′
b̄,t̄)+

(1−Dt) (W ′
p1,t

+W ′
b,t) +DtW

′
p1,b

+Dt̄W
′
p2,b̄

)
]

+
C5
A

16
h(u, s)

[
Wp1,t̄ (1− Ct̄) (W ′

p1,p2
+W ′

p1,k1
+Dt̄W

′
b̄,k1

+DtW
′
p2,b

+

(1−Dt̄) (W ′
b̄,t̄ +W ′

t̄,k1
)+

(1−Dt) (W ′
b,t +W ′

p2,t
))+
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Wb̄,t̄ (1− Ct̄) (W ′
p1,p2

+W ′
b̄,k1

+Dt̄W
′
p1,k1

+DtW
′
p2,b

+

(1−Dt̄) (W ′
p1,t̄

+W ′
t̄,k1

)+

(1−Dt) (W ′
p2,t

+W ′
b,t))+

Wp2,t (1− Ct) (W ′
p1,p2

+W ′
p2,k1

+DtW
′
b,k1

+Dt̄W
′
p1,b̄

+

(1−Dt) (W ′
b,t +W ′

t,k1
)+

(1−Dt̄) (W ′
b̄,t̄ +W ′

p1,t̄
))+

Wb,t (1− Ct) (W ′
p1,p2

+W ′
b,k1

+DtW
′
p2,k1

+Dt̄W
′
p1,b̄

+

(1−Dt) (W ′
p2,t

+W ′
t,k1

)+

(1−Dt̄) (W ′
p1,t̄

+W ′
b̄,t̄))+

Wp2,bCt (W ′
p2,k1

+W ′
p1,p2

+W ′
b,k1

+Dt̄W
′
p1,b̄

+

(1−Dt̄) (W ′
p1,t̄

+W ′
b̄,t̄))+

Wp1,b̄Ct̄ (W ′
p1,k1

+W ′
p1,p2

+W ′
b̄,k1

+DtW
′
p2,b

+

(1−Dt) (W ′
p2,t

+W ′
b,t))+

Wp1,p2 (W ′
p1,k1

+W ′
p2,k1

+ (1−Dt) (W ′
p2,t

+W ′
b,t)+

(1−Dt̄) (W ′
p1,t̄

+W ′
b̄,t̄) +Dt̄W

′
p1,b̄

+DtW
′
p2,b

)
]

+Fgg→tt̄

As with the quark-quark case owing to the complexity of the full radiation pat-

tern, we only show the leading NC contribution in Eq. 3.1.33 and show numerically

the comparison to the full result in Fig. 3.9. Here the remainder terms, Fgg→tt̄ are

given by

Fgg→tt̄ =
C5
A

16
h(t, s)

[
Wp1,tCt (1−Dt) (W ′

b,t +W ′
t,k1
−W ′

b,k1
)+

Wb,tCt (1−Dt) (W ′
p1,t

+W ′
t,k1
−W ′

p1,k1
)+

Wp2,t̄Ct̄ (1−Dt̄) (W ′
b̄,t̄ +W ′

t̄,k1
−W ′

b̄,k1
)+

Wb̄,t̄Ct̄ (1−Dt̄) (W ′
p2,t̄

+W ′
t̄,k1
−W ′

p2,k1
)
]

+
C5
A

16
h(u, s)

[
Wp1,t̄Ct̄ (1−Dt̄) (W ′

b̄,t̄ +W ′
t̄,k1
−W ′

b̄,k1
)+

Wb̄,t̄Ct̄ (1−Dt̄) (W ′
p1,t̄

+W ′
t̄,k1
−W ′

p1,k1
)+

Wp2,tCt (1−Dt) (W ′
b,t +W ′

t,k1
−W ′

b,k1
)+
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Wb,tCt (1−Dt) (W ′
p2,t

+W ′
t,k1
−W ′

p2,k1
)
]
.

which are omitted for exactly the same reasons as those in Eqn. 3.1.32.

The interpretation of this radiation pattern is similar to the qq̄ case. The dipoles

from the single emission case are suppressed by the same amount, and now multi-

plying them, is radiation from the second emission which is suppressed in a similar

way as to the single case. We see new dipoles formed by, for example, the incoming

quark and outgoing gluon that are unsuppressed and dipoles formed by the outgoing

gluon and top quark being suppressed by (1−Dt), and between the outgoing gluon

and bottom quark by Dt.

3.1.2 e+e− → tt̄

For the e+e− initiated process, the radiation pattern is [134]

ω2

2
F = CF [Wtt̄ (1 + Ctt̄ − Ct − Ct̄) +Wtb (1− Ct) +Wt̄b̄ (1− Ct̄) +Wbb̄Ctt̄+

Wt̄b (Ct − Ctt̄) +Wtb̄ (Ct̄ − Ctt̄)] , (3.1.34)

and the new coefficient

Cij(k) = MiΓiMjΓj [MiΓiMjΓj ± qi · kqj · k]
1

M2
i Γ2

i + (qi · k)2

1

M2
j Γ2

j + (qj · k)2 ,

(3.1.35)

where the + case is when both particles are in the hard process, and − otherwise.

For the previous radiation patterns it was not necessary to decompose the dipole

radiation functions into the two shower contributions. However doing so here allows

us to extract a part of the tt̄, tb and t̄b̄ dipoles such that the collinear singularities

in the interference term cancel. This gives

ω2

2
Fe+e−→tt̄ = CF

[ (
W t
tt̄ +W t

tb

)
(1− Ct) +

(
W t̄
tt̄ +W t̄

t̄b̄

)
(1− Ct̄) + (3.1.36)

(1− Ct)W b
tb + (1− Ct̄)W b̄

t̄b̄ + CtW
b
bb̄ + Ct̄W

b̄
bb̄

]
+ F e+e−→tt̄ ,

where

F e+e−→tt̄ = CF

[
(Ct − Ctt̄)

(
W b
t̄b −W b

bb̄ +W t̄
t̄b −W t̄

tt̄

)
+ (3.1.37)
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(a) Ek1 = 100 GeV and Ek2 = 10 GeV
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(b) Ek1 = 10 GeV and Ek2 = 0.1 GeV

Figure 3.8: The radiation pattern for double emission from qq̄ → tt̄. We show the

full radiation pattern, the shower approximation to the full radiation pattern and

the leading NC contribution. Ek1 is the energy of the gluon from the first emission

and Ek2 is the energy of the gluon from the second emission.
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(b) Ek1 = 10 GeV and Ek2 = 0.1 GeV

Figure 3.9: The radiation pattern for double emission from gg → tt̄. We show the

full radiation pattern, the shower approximation to the full radiation pattern and

the leading NC contribution. Ek1 is the energy of the gluon from the first emission

and Ek2 is the energy of the gluon from the second emission.
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Figure 3.10: The production of top quarks by e+e−
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Figure 3.11: The radiation pattern for single gluon emission from e+e− collisions.

We show the full radiation pattern, the shower approximation to the full radiation

pattern and shower approximation with the interference terms neglected. These

interference terms are so small, that this line lies on top of the shower approximation

line.

(Ct̄ − Ctt̄)
(
W b̄
tb̄ −W b̄

bb̄ +W t
tb̄ −W t

tt̄

)]
.

The radiation pattern produced from this process is shown in Fig. 3.11. We can

interpret this radiation pattern as the radiation from the top anti-top and top bottom

dipoles being suppressed by (1− Ct) with the radiation from the bottom quarks

being suppressed by a similar amount. The same applies for the anti-particles, but

with (1− Ct̄). There is additional soft radiation from the bottom anti-bottom quark

dipole with radiation suppressed by Ct, or Ct̄ depending on whether it is the bottom

or anti-bottom radiating the gluon. We discard the remainder function, F e+e−→tt̄ as

it contains no collinear singularities and is therefore supressed in the collinear limit.
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Figure 3.12: The production of stop quarks by the qq̄ initiated processes.

3.2 SUSY Processes

We now turn our attention to SUSY processes, notably production of stop squarks.

The fact that there are now two heavy particles occurring in a decay chain means

that an extra width and mass scale has been introduced over the previous section,

notably the stop squark width and mass. Understanding radiation patterns involving

a decay chain of heavy particles will guide us in developing the algorithm for more

complicated processes such as these.

3.2.1 qq̄ → t̃t̃∗

Using a similar approach as in Section 3.1.2, and defining in this case

F ≡
(
MtΓt
π

)2(
Mt̃Γt̃
π

)2 ∫
dq2

t dq
2
t̄ dq

2
t̃ dq

2
t̃∗ [−J · J∗] , (3.2.38)

we find the radiation patterns for processes involving two heavy particles decaying.

Below, we set the kinematics as in Fig. 3.3, except we now have the top squarks

moving perpendicular to the beam direction, with the top quarks at −20o from the

stops and the bottom quarks at −45o from the stops i.e. −25o from the tops. We

assume mt̃ = 400 GeV, Γt̃ = 0.57 GeV and mχ0 = 50 GeV.

The leading NC contribution to the radiation pattern is

ω2

2
Fqq̄→t̃t̃∗ =

CA
2

[
(W t

t,b +W t
t,t̃) (1− Ct) + (W t̃

p1,t̃
+W t̃

t̃,t) (1− Ct̃)+ (3.2.39)

W b
t,b(1− Ct) +W p1

p1,t̃
(1− Ct̃) + CtW

b
p1,b

+ Ct̃W
p1
p1,b

+
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(W t̄
t̄,b̄ +W t̄

t̄,t̃∗) (1− Ct̄) + (W t̃∗
p2,t̃∗

+W t̃∗
t̃∗,t̄) (1− Ct̃∗)+

W b̄
t̄,b̄(1− Ct̄) +W p2

p2,t̃∗
(1− Ct̃∗) + Ct̄W

b̄
p2,b̄

+ Ct̃∗W
p2
p2,b̄

]
+

+ F qq̄→t̃t̃∗ ,

and is shown in Fig. 3.13. We see similar features as to the patterns shown earlier,

with the dips in the pattern associated with the finite mass of the bottom quarks.

This radiation pattern can be interpreted in a similar way as before with the radia-

tion from the top stop dipole and top bottom dipoles being suppressed by (1− Ct).
There is similar suppression between the incoming quark and stop dipole and stop

top dipole with a supression factor of (1− Ct̃) and similarly for the anti particles

but with (1− Ct̄) or (1− Ct̃∗) depending on whether it is the top quark or top

squark. There is then additional soft radiation between the bottom and incoming

quark dipole supressed by Ct or Ct̃ depending on whether the radiation is from the

incoming quark or bottom. There is a similar suppression for the anti-particles but

with the obvious replacements of the Ci functions.

The remainder function, Fqq̄→t̃t̃∗ is given by

F qq̄→t̃t̃∗ =
CA
2

[
(Ct − Ctt̃) (W t̃

t̃,b −W t̃
t̃,t −W b

p1,b
+W b

t̃,b)+ (3.2.40)

(Ct̃ − Ctt̃) (W t
p1,t
−W t

t,t̃ −W
p1
p1,b

+W p1
p1,t)+

(Ct̄ − Ctt̃∗) (W t̃∗
t̃∗,b̄ −W t̃∗

t̃∗,t̄ −W b̄
p2,b̄

+W b̄
t̃∗,b̄)+

(Ct̃∗ − Ct̄t̃∗) (W t̄
p2,t̄
−W t̄

t̄,t̃∗ −W
p2
p2,b̄

+W p2
p2,t̄

)
]
,

which like the e+e− → tt̄ process contains no collinear singularities and is therefore

discarded in terms of interpretation in a Monte Carlo event generator.

3.2.2 e+e− → t̃t̃∗

The Feynman diagram for this process is shown in Fig. 3.14. We have divided by

the leading order colour factor and so the radiation pattern for this process is

ω2

2
Fe+e−→t̃t̃∗ =(1− Ct) (W t

b,t +W t
t,t̃) + (1− Ct̄) (W t̄

b̄,t̄ +W t̄
t̄,t̃∗)+ (3.2.41)

(1− Ct̃) (W t̃
t,t̃ +W t̃

t̃,t̃∗) + (1− Ct̃∗) (W t̃∗
t̄,t̃∗ +W t̃∗

t̃,t̃∗)+

(1− Ct)W b
b,t + (1− Ct̄)W b̄

b̄,t̄ +W b
b,b̄Ct +W b̄

b,b̄Ct̄ + F e+e−→t̃t̃∗ ,
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Figure 3.13: The radiation pattern for single emission from qq̄ → t̃t̃∗. We show the

full radiation pattern, the shower approximation to the full radiation pattern and

the leading NC contribution. Ek is the energy of the emitted gluon.
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Figure 3.14: The production of stop quarks in e+e− collisions.

which is written as a leading contribution and a remainder function that contains

no collinear singularities, F e+e−→t̃t̃∗ , which we can see from

F e+e−→t̃t̃∗ =Ct

[
Ct̄t̃Ct̃∗

(
W b̄
b̄,t +W t̄

b,t̄ +W t
b̄,t +W b

b,t̄− (3.2.42)

W b̄
b,b̄ −W b

b,b̄ −W t̄
t,t̄ −W t

t,t̄

)
+

Ct̄t̃∗Ct̃

(
W b̄
b,b̄ +W b

b,b̄ +W t̄
t,t̄ +W t

t,t̄−

W b̄
b̄,t −W t̄

b,t̄ −W t
b̄,t −W b

b,t̄

)
+

Ct̃t̃∗
(
W t̄
b,t̄ +W b

b,t̄ +W t̃∗
t,t̃∗ +W t

t,t̃∗−
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W t̄
t,t̄ −W t

t,t̄ −W t̃∗
b,t̃∗ −W b

b,t̃∗

)
−

W b
b,b̄ +W t̃

b,t̃ +W b
b,t̃ −W t̃

t,t̃

]
+

Ct̄

[
Ctt̃Ct̃∗

(
W b̄
b,b̄ +W b

b,b̄ +W t̄
t,t̄ +W t

t,t̄−

W b̄
b̄,t −W t̄

b,t̄ −W t
b̄,t −W b

b,t̄

)
+

Ctt̃∗Ct̃

(
W b̄
b̄,t +W t̄

b,t̄ +W t
b̄,t +W b

b,t̄−

W b̄
b,b̄ −W b

b,b̄ −W t̄
t,t̄ −W t

t,t̄

)
+

Ct̃t̃∗
(
W b̄
b̄,t +W t

b̄,t +W t̄
t̄,t̃ +W t̃

t̄,t̃−

W b̄
b̄,t̃ −W t̃

b̄,t̃ −W t̄
t,t̄ −W t

t,t̄

)
+

W b̄
b̄,t̃∗ −W b̄

b,b̄ +W t̃∗
b̄,t̃∗ −W t̃∗

t̄,t̃∗

]
+

Ct̃

[
Ct̄t̃∗

(
W b̄
b̄,t +W t

b̄,t +W t̄
t̄,t̃ +W t̃

t̄,t̃−

W b̄
b̄,t̃ −W t̃

b̄,t̃ −W t̄
t,t̄ −W t

t,t̄

)
+

Ctt̃∗
(
W t̄
t,t̄ +W t

t,t̄ +W t̃∗
b,t̃∗ +W b

b,t̃∗−

W t̃∗
t,t̃∗ −W t

t,t̃∗ −W t̄
b,t̄ −W b

b,t̄

)
+

W t̃∗
t,t̃∗ −W t

t,t̃ +W t
t,t̃∗ −W t̃∗

t̃,t̃∗

]
+

Ct̃∗

[
Ct̄t̃

(
W b̄
b̄,t̃ +W t̃

b̄,t̃ +W t̄
t,t̄ +W t

t,t̄−

W b̄
b̄,t −W t

b̄,t −W t̄
t̄,t̃ −W t̃

t̄,t̃

)
+

Ctt̃

(
W t̃∗
t,t̃∗ +W t

t,t̃∗ +W t̄
b,t̄ +W b

b,t̄−

W t̄
t,t̄ −W t

t,t̄ −W t̃∗
b,t̃∗ −W b

b,t̃∗

)
+

W t̄
t̄,t̃ −W t̄

t̄,t̃∗ +W t̃
t̄,t̃ −W t̃

t̃,t̃∗

]
+

Ct̃t̃∗

[
Ctt̄

(
W b̄
b,b̄ +W b

b,b̄ +W t̄
t,t̄ +W t

t,t̄−

W b̄
b̄,t −W t̄

b,t̄ −W t
b̄,t −W b

b,t̄

)
+
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W t̄
t,t̄ +W t

t,t̄ +W t̃∗
t̃,t̃∗ +W t̃

t̃,t̃∗−

W t̄
t̄,t̃ −W t̃

t̄,t̃ −W t̃∗
t,t̃∗ −W t

t,t̃∗

]
+

Ct̄t̃∗
(
W b̄
b̄,t̃ +W t̃

b̄,t̃ +W t̄
t̄,t̃∗ +W t̃∗

t̄,t̃∗−

W t̃
t̄,t̃ −W b̄

b̄,t̃∗ −W t̃∗
b̄,t̃∗ −W t̄

t̄,t̃

)
+

Ctt̃

(
W t̃∗
b,t̃∗ +W b

b,t̃∗ +W t̃
t,t̃ +W t

t,t̃−

W t
t,t̃∗ −W t̃

b,t̃ −W b
b,t̃ −W t̃∗

t,t̃∗

)
.

We therefore discard this remainder function in interpreting and implementing

the radiation patterns in terms of a Monte Carlo event generator. A plot for this

process is shown in Fig. 3.15, where the radiation pattern is dominated by the

outgoing partons with the remaining feature at around 90o being from radiation

from the top stop dipole.

Here radiation from the top and stop quarks in their production and decay is

suppressed by (1−Ct) and (1−Ct̃) respectively. Finally there is soft radiation from

the dipole formed by the bottom and anti-bottom quarks which is suppressed by Ct

or Ct̄ depending on which quark is emitting.

3.3 Algorithm

Improving the simulation of radiation in heavy particle production and decay in a

Monte Carlo event generator requires an algorithm based on the interpretation of

the radiation patterns above. From the radiation patterns, with special note to the

double emission radiation patterns in Eqs. 3.1.31 and 3.1.33, we see that particles

still colour connected to the unstable particle have their radiation suppressed by a

factor (1−Ci), where i is the heavy particle, in the simulation of QCD radiation in

the production and decay of heavy particles. Finally there is a new soft contribution

with radiation from the dipole formed by parent and decay products of the unstable

particle where the probability of radiation is proportional to Ci. Here the parent

is either the colour connected incoming particle for an unstable particle produced

in the hard process or in the case of an unstable particle produced in the decay of
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Figure 3.15: The radiation pattern for single gluon emission from e+e− collisions

producing top squarks. We show the full radiation pattern, the shower approxima-

tion to the full radiation pattern and shower approximation with the interference

terms neglected.

a heavier particle the heavy particle. In the case of the unstable colour connected

particles as in e+e− → tt̄ the decay products are colour connected. Below we refer

to the first stage of the shower as the “hard” shower and the soft remaining piece

as the “soft” shower.

Referring to the example of top production, we therefore modify the Sudakov

form factor to include the appropriate suppression factor S (Ct), i.e the new Sudakov

form factor is

∆ĩj→ij (q̃, q̃h) = exp

{
−
∫ q̃h

q̃

dq̃′2

q̃′2

∫
dz

αS (z, q̃′)

2π
S (Ct) Pĩj→ij (z, q̃′)

}
. (3.3.43)

This can be implemented as an additional step in the veto algorithm [49]

which is used to calculate the Sudakov form factor and generate radiation in most

Monte Carlo event generators. Therefore, during the shower process, we accept

the radiation off a particle colour connected to the top quark during the “hard”

shower using the veto algorithm, such that we accept the radiation according to

S (Ct) = 1−Ct > R, where the uniform random number R is between [0, 1]. If the

particle is not colour connected to the top quark, then S (Ct) = 1 and the standard

shower algorithm applies.
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g

Figure 3.16: The probabilities of radiation from the colour lines of a gluon under-

going secondary radiation of a gluon whilst colour connected to a top and bottom

in this example.

Secondary radiation from gluons requires a slightly different treatment. We apply

the new Sudakov form factor with suppression factor S (Ct) = 1
2
(2 − Ct) but then,

we choose which colour line radiates according to the new probabilities and 1− Ct
and 1 depending on which line is colour connected to the top quark as shown in

Fig. 3.16.

At the end of the shower, a new “soft” shower is constructed using the particles

that terminate the top quark’s colour lines and applying the correction of S (Ct) = Ct

to radiation during this process.

3.4 Results

The effects of the new multi-scale shower were tested by observing the effect on

the reconstructed top quark mass. The Rivet [101] system was used. The in-built

MC TTBAR analysis proceeds by looking for a semi-leptonically decaying W boson

and:

• require a charged lepton, pT > 30 GeV;

• require /ET > 30 GeV;

• rejecting any event with less than 4 jets, where each jet has pT > 30 GeV, and

the hardest has pT > 60 GeV and the second hardest has pT > 50 GeV;

• require two b-tagged jets, where 100% efficiency is assumed;

• require the two light jets to reconstruct the W boson mass.
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As the top mass is not known a priori, the b-tagged jets are combined into pairs

and the mass of the pairs binned. The results of this analysis are shown in Fig. 3.17.

We see a suppression in the top mass spectrum with hadronization switched off and

the new multi-scale shower switched on, but the effect of the new multi-scale shower

are degraded upon the inclusion of hadronization effects. This is not unsurprising

as hadronization is a model dependent process and introduces a coarse graining

compared to the parton-level simulation.
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Figure 3.17: A plot showing the effects of the new multi-scale shower with and

without hadronization on the top mass using the Rivet MC TTBAR analysis.
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Figure 3.18: A plot showing the effects of the new multi-scale shower with and

without hadronization on the top mass using the HEPTopTagger analysis.
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Figure 3.19: A plot showing the effects of the new multi-scale shower without

hadronization and with increasing width on the top mass using the Rivet MC TTBAR

analysis.

We also examined the use of the HEPTopTagger algorithm as described in Refs. [78,

135]. There, the analysis proceeds by using the Cambridge/Aachen algorithm using

R = 1.5 and:

• require two or more hard jets and a lepton where the jet satisfies

pT jet > 200 GeV, |yjet| < 4, and the lepton satisfies pT lepton > 15 GeV and

|yjet| < 2.5;

• require one or two of the jets to pass the top tagger and if two pass, the one

whose top candidate mass is closest to the top mass is chosen.

A window of 150 → 200 GeV was chosen for the top mass in the HEPTopTagger

algorithm.

We show the results of this analysis in Fig. 3.18 where we see a slight change

around the top mass peak both with and without hadronization on, but hadroniza-

tion significantly reduces the effect of the inclusion of the new multi-scale shower.

We also show the effects of increasing the width on the MC TTBAR analysis in

Fig. 3.19.

To investigate the effects on larger decay chains as found in some BSM models,

we simulated a Little Higgs model with heavy top quark production, where the two
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Figure 3.20: A plot showing the effects of the new multi-scale shower with and

without hadronization on the heavy top quark mass in a Little Higgs model using a

similar analysis to the Rivet MC TTBAR analysis.

heavy top quarks decay into two SM top quarks. We assumed the mass of the heavy

top quarks to be 1400 GeV. The analysis proceeds in a similar way to the Rivet

MC TTBAR analysis and results are shown in Fig. 3.20.

We see that there is an effect at the parton level, i.e. without hadronization

but again, hadronization significantly reduces the effect of the inclusion of the new

multi-scale shower.

3.5 Conclusions

In this chapter we have outlined radiation patterns for single gluon emission for top

and stop production processes relevant to both the LHC and a future lepton collider.

We have also shown new results for radiation patterns for double gluon emission for

top production processes relevant to the LHC. We have also seen that the leading

colour approximation that we employ in our Monte Carlo event generators is actually

a good approximation, as the leading colour contribution is often very similar to the

full fixed order calculation. This in practice means that we can have faith that our

existing Monte Carlo event generator is delivering an accurate simulation of aspects

of the radiation and can be used for studies at modern collider experiments. This
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does not mean that efforts should not be undertaken to improve the simulation

though, as any increase in accuracy will be beneficial given the highly complex

hadronic final states at the LHC.

The existing single and new double gluon emission radiation patterns have been

interpreted in terms of a Monte Carlo event generator by the means of a new multi-

scale shower where, radiation is suppressed off particles colour connected to heavy

decaying particles by means of a modification to the Sudakov form factor. This

takes the form of a “hard” shower which runs in the place of the usual shower and a

new “soft” shower that is run at the end of the “hard” showering process and effects

only the particles that terminate the top quark’s colour lines.

The new shower was implemented in the Monte Carlo event generator Herwig++

and the effects on some observables were shown. With the new multi-scale shower,

the top mass is shown to be clearly altered with hadronization effects switched off,

but upon turning hadronization on in the shower, the effect of the new multi-scale

shower is reduced. The same applies for heavy top quark production in the Little

Higgs model where the effect of the new multi-scale shower on the determination

of the mass of the heavy top quark is negligible when hadronization is turned on.

The small effect that this new aspect of simulation introduces can be thought of

as reassuring that our existing tools are already providing a high quality level of

simulation.

The multi-scale shower may nevertheless still prove important in certain observ-

ables and in the accurate simulation of new Physics beyond the Standard Model,

where heavy, unstable particle production dominates. In further work it would be

enlightening to see how these effects behave in other processes such as single top

quark production, which is used to probe the Electroweak interaction, especially as

this is currently being studied at the LHC.



Chapter 4

Colour Sextet Diquark

Phenomenology

Many models of Beyond the Standard Model (BSM) physics require the inclusion

of diquarks. For example, diquarks appear in a number of Grand Unified Theories

(GUTs) and have even been postulated as a form of dynamical symmetry breaking,

giving rise to the masses of particles, [136, 137]. The colour sextet diquark is, in

group theory language, a rank 2 symmetric tensor formed from the direct product

of two fundamental representations 3 ⊗ 3 = 6 ⊕ 3̄. As such it is the lowest colour

representation which has not been observed and therefore investigation of sextet

diquark production at the CERN Large Hadron Collider (LHC) is interesting in its

own right.

The LHC experiments are data taking at the high energy frontier (
√
s = 8 TeV),

allowing probes of energy scales not previously seen. At the LHC because the funda-

mental collisions are between the quarks and gluons inside the colliding protons the

strong force is the dominant interaction allowing Quantum Chromodynamics (QCD)

to be studied at these new high energies. As a diquark is produced via strong in-

teractions, and with the potential of a relatively low mass, diquarks may be seen

in the early stages of LHC data taking. The LHC also favours the formation of

diquarks from the valence quarks as it is a proton-proton collider as opposed to a

proton-antiproton collider, such as the Tevatron.

Due to their exotic colour structure and SU(3)C quantum numbers, diquarks will

99
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give rise to jets in the detector. The expected signals will be either a resonance in the

invariant dijet mass distribution or the production of two equal mass dijet systems

in four jet events in the case of pair production. In order to study the experimental

signatures of diquark production, a Monte Carlo simulation is required that includes

the production of sextet particles, their perturbative decays and the full Monte Carlo

machinery of showering (including the exotic colour structure) and hadronization.

Although significant efforts have been made to study the resonant production

of diquarks [138–145] and also pair production [140,146,147], a full study of exper-

imental signatures including Monte Carlo simulations has not been performed. In

this chapter, we discuss: the implementation of the diquark model in general pur-

pose Monte Carlo event generators; place constraints on the coupling as a function

of mass based on the latest ATLAS results [3, 4]; present some results of invariant

mass distributions both for resonant and pair production.

In the remainder of this chapter a method for simulating the production and

decay of particles in the sextet representation of SU(3)C including the simulation of

QCD radiation is presented. The colour decomposition is shown in detail for both

the hard process and the shower.

Results from the Monte Carlo simulation of sextet diquark production at the

LHC including both resonant and pair production are detailed. Limits on resonant

diquark production from ATLAS results are shown and the first simulation studies

of the less model dependent pair production mechanism is also performed.

4.1 Simulation

4.1.1 Lagrangian

As with all models, the simulation starts with the calculation of the hard production

and decay processes using the most general Lagrangian for the coupling of the sextet

particles to the quarks [139,141,144,148,149]

L =
(
g1LqcLiτ2qL + g1RucRdR

)
Φ1,1/3 + g′1Rd

c
RdRΦ1,−2/3 + g′′1Ru

c
RuRΦ1,4/3 +

g3LqcLiτ2τqL · Φ3,1/3 + g2qcLγµdRV
µ

2,−1/6 + g′2q
c
LγµuRV

µ
2,5/6 + h.c. ,

(4.1.1)
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where qL is the left-handed quark doublet, uR and dR are the right-handed quark

singlet fields, and qc ≡ Cq̄T is the charge conjugate quark field. The colour and

generation indices are omitted to give a more compact notation and the subscripts

on the scalar, Φ, and vector, V µ, fields denote the SM electroweak gauge quantum

numbers: (SU(2)L, U(1)Y ). The Lagrangian is assumed to be flavour diagonal to

avoid any flavour changing currents arising from the new interactions.

The kinetic and QCD terms in the Lagrangian are

Lscalar
QCD = DµΦDµΦ−m2ΦΦ†, (4.1.2a)

for scalar diquarks, where Φ is the scalar diquark field and

Lvector
QCD = −1

4
(DµV ν −DνV µ) (DµVν −DνVµ)−m2V µVµ, (4.1.2b)

for vector diquarks, where V µ is the vector diquark field. The covariant derivative

Dµ has the standard form for Quantum Chromodynamics.

As discussed in the introduction, the simulation of perturbative QCD radiation,

relies on the large number of colours, NC , limit for both the treatment of perturbative

QCD radiation and the subsequent hadronization. In this approach particles in the

fundamental representation of SU(NC) carry a colour, those in the antifundamental

representation an anticolour and those in the adjoint representation both a colour

and an anticolour.

This is complicated in models involving sextet particles where in the large-

NC limit the sextet particles possess two fundamental colours, appropriately sym-

metrized. This cannot be handled by conventional Monte Carlo simulations which

require all the colours of the particles to have fundamental colours and/or anti-

colours. In order to simulate these particles we choose to represent (anti)sextet

particles as having two (anti)colours.

Consider the production and subsequent decay of a scalar sextet particle. In

order to simulate QCD radiation from the intermediate sextet resonance we have to

simulate the production and decay separately. The matrix element for the process

is

M =Miprod

iδij
p2 −m2

Mj
decay (4.1.3)
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Figure 4.1: The radiation pattern associated with gluon emission from the incoming

and outgoing quarks during resonant production, where θ is the polar angle of the

gluon with respect to the z-axis.

where i, j are colour indices of the sextet particle, Miprod is the matrix element for

the production of a scalar sextet particle with colour i, four-momentum p and mass

m, and Mj
decay is the matrix element for the decay of a scalar sextet particle with

colour j.

This can be rewritten using δij = Ki
abK̄

ba
j where K and K̄ are the Clebsch-Gordan

coefficients in the sextet and antisextet representations, respectively. Hence

M =Miprod

iKi
abK̄

ba
j

p2 −m2
Mj

decay =M′
abprod

i

p2 −m2
M′ba

decay. (4.1.4)

In order to consider the intermediate sextet particle as having two fundamen-

tal colours we have absorbed the Clebsch-Gordan into the redefined production,

M′
abprod, and decay matrix elements,M′ba

decay. The Clebsch-Gordan coefficients and

the associated generators are given in Ref. [138], and we will make use of them to

decompose the colour of the production processes and shower, below.

From this, the colour partners of the decay products can be determined and the

usual angular ordering procedure applied [42, 51]. The radiation pattern of gluons

from the quarks for the resonant production of diquarks,
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q(p1)q(p2)→ {Φ, V } → q(p3)q(p4), is

J2 = CF

[
(W13 +W14 +W23 +W24) (4.1.5)

+
2

NC + 1

[
1

2
(W13 +W14 +W23 +W24)−W12 −W34

]]
.

The last term in Eqn. 4.1.5 can be neglected, as usual, due to both the 1
NC

suppres-

sion, compared to the leading term, and the dynamical suppression in the massless

limit because there is no collinear singularity in this term. The radiation pattern is

shown in Fig. 4.1. The massless limit was used and so the momenta of the partons

may be written as

p1 = E (1; 0, 0, 1) p3 = E (1;− sin θ, 0,− cos θ)

p2 = E (1; 0, 0,−1) p4 = E (1; sin θ, 0, cos θ)

k = ω (1; cosφk sin θk, sinφk sin θk, cos θk) . (4.1.6)

The outgoing quarks were held at 45◦ and 225◦ with respect to the incoming beam

direction. The full radiation pattern, the result after neglecting the subleading terms

and azimuthally averaging, and the improved angular ordered result, where the full

result is used instead of the azimuthal average inside the angular-ordered region, are

shown. Improved angular ordering, as implemented in Herwig++ performs well in

the collinear limit.

4.1.2 Colour Decomposition

As we mentioned in the introduction, owing to the fact that Herwig++, as with all

general purpose Monte Carlo generators, has all the machinery set up to work with

the (anti)fundamental representation of SU(3). Therefore exotic color representa-

tions must be decomposed into a fundamental representation basis. We do this now

below for both the resonant production and pair production of the sextet diquarks.

Resonant Production

The process of diquark production in a resonant way, followed by decay into two

coloured particles is shown in Fig. 4.2.We may decompose the colour of this process
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Figure 4.2: Resonant production and decay of a diquark
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Figure 4.3: Unique colour flows associated with the resonant production of a diquark.

using the Clebsch-Gordan coefficients by writing our resonant production matrix

element as

M0 = Ki
abK̄

cd
i A , (4.1.7)

where A is the colour-stripped amplitude. We now make use of the completeness

relation

Ki
abK̄

cd
i =

1

2

(
δdaδ

c
b + δcaδ

d
b

)
, (4.1.8)

to read off the colour flow in the fundamental representation for the resonant pro-

duction mechanism.

Following this decomposition, there are two unique colour flows associated with

this process as shown in Fig. 4.3. The colour factor associated with these colour

flows is NC(NC+1)
2

.

Pair Production

The main diagrams contributing to the pair production of diquarks are shown in

Fig. 4.4. We do not include the quark initiated process here, as the gluon initiated

process dominates at the LHC. Each of these diagrams is decomposed into a colour
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Figure 4.4: The four diagrams contributing to the pair production of a diquark.

factor and colourless component like for resonant production. By taking the colour

factors for the diagrams, adding and squaring, a table of colour factors can be

produced for each term in the total matrix element squared.

The s,t and u-channel go through in the way as above, making use of the fact

that the generators TA in the diqurk representation may be written as

TAij = 2Tr
(
KitAK̄j

)
, (4.1.9)

where tA is in the fundamental representation, and that the s-channel is decomposed

into a t-channel like colour flow and u-channel like colour flow. The only difficulty

remains in finding the colour flow for the four-point interaction. Using the Feynman

rules for two gauge bosons and two scalar-quarks in Ref. [150], we find that

M0 =

(
1

3
δAB + dABCTC

)
Kj
abK̄

dc
i , (4.1.10)

and now we make use of the relation [18]{
TA, TB

}
=

1

N
δAB + dABCTC . (4.1.11)

These results can now be used to decompose the four-point interaction’s colour flows

into the (anti)fundamental representation. We find that the pair production process
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Diagram (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

(a)† c1 c2 c2 0 c2 c3 0 c6 c6 0 0 c2

(b)† c2 c1 0 c2 c3 c2 c6 0 0 c6 c2 0

(c)† c2 0 c1 c2 0 c6 c2 c3 c5 c5 c5 c3

(d)† 0 c2 c2 c1 c6 0 c3 c4 c6 c5 c3 c6

(e)† c2 c5 0 c6 c1 c1 c2 0 0 c2 c6 0

(f)† c3 c2 c6 0 c1 c1 0 c2 c2 0 0 c6

(g)† 0 c6 c4 c3 c2 0 c1 c2 c6 c3 c5 c6

(h)† c6 0 c3 c4 0 c2 c2 c1 c3 c6 c6 c5

(i)† c6 0 c5 c6 0 c2 c6 c3 c1 c2 c2 c3

(j)† 0 c6 c5 c5 c2 0 c3 c6 c2 c1 c3 c2

(k)† 0 c2 c5 c3 c6 0 c5 c6 c2 c3 c1 c2

(l)† c2 0 c3 c6 0 c6 c6 c5 c3 c2 c2 c1

has twelve unique colour flows, as shown in Fig. 4.5. We include the colours in

Fig. 4.5 as a visual aid, they have no physical meaning. From these colour flows,

Table 4.1.2 is produced, where c1 =
(N2

C−1)2

16
, c2 =

(N2
C−1)2

16NC
, c3 =

(N2
C−1)

16
, c4 =

(N2
C−1)

16NC
,

c5 =
−(N2

C−1)

16
and c6 =

−(N2
C−1)

16NC
.

Shower

The splitting functions were decomposed in the same way as for the pair production,

and by making use of the fact that

TAkm = δikT
Ai
j δjm = Tr

(
KkK̄i

)
TAij Tr

(
KjK̄m

)
, (4.1.12)

and from earlier that δij = Tr
(
KiK̄j

)
. Then we split the traces, such that we are

left with

K̄ab
i T

Ai
j Kj

cd , (4.1.13)

and using the above, we decompose the splitting functions into four unique colour

flows associated with a diquark emitting a gluon, as shown in Fig. 4.6, again where

the colours are included as a visual aid.
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Figure 4.5: Unique colour flows associated with the pair production of diquarks.
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(a) (b)

(c) (d)

Figure 4.6: Colour flows for a diquark emitting a gluon during the shower.

Only the colour prefactor of the existing splitting functions is changed. The

colour prefactor is given by 10
3

, i.e. the diquarks radiate 21
2

times more than a

particle in the octet representation. In simulating diquarks during the shower, we

assumed that gluons did not branch to form diquarks owing to the large diquark

mass.

4.2 Phenomenology

In order to study the phenomenology simulations were performed for the scalar

Φ1,4/3 and the vector V µ+
2,5/6 diquarks which were chosen as they can be produced

as s-channel resonances from the partonic collision of the valence up quarks. In all

our analyses, jets were clustered using the anti-kT algorithm [151], as implemented

in the FastJet package [106], using a radius parameter of R = 0.6. This choice is

typical for the ATLAS experiment at the LHC [3]. The LO∗∗ PDFs of Ref. [152],

which are the default choice in Herwig++, were used.

There are phenomenological constraints on the diquark couplings from D0 − D̄0

mixing and non-strange pion decays [142]. For the up-type quarks there are con-

straints that require

guuR . 0.1 and gccR ∼ 0. (4.2.14)

The gL couplings have to be constrained due to minimal flavour violation as the

left-handed CKM matrix is well known [138].

It was therefore decided to take the couplings

g11
R/L = 0.1 and g22

R/L = g33
R/L = 0, (4.2.15)
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Figure 4.7: The diquark width as a function of the diquark mass for a coupling as

quoted in the text for scalar and vector diquarks. The diquark coupling to quarks

has been taken to be 0.1.

where the numbered indices refer to the generation.

The value of the coupling will affect any studies involving jets as the width of

the particle varies as a function of the couplings. 1 If the coupling is less than the

value chosen above, any peak maybe enhanced compared to what is presented in the

following sections. The width as a function of the diquark mass is shown in Fig. 4.7.

We note that as the width is very small the diquark potentially hadronizes before it

decays.

4.2.1 Resonance Production

Firstly we look at the resonant production of sextet diquarks. If the diquark has

an appropriate mass and coupling it may be resonantly produced at the LHC. The

resonance production and subsequent decay of a general diquark (scalar or vector)

is shown in Fig. 4.2, where the decay of the diquark will depend on its mass and

unknown couplings to the quarks, g.

Fig. 4.8 shows the cross section for the production of scalar and vector diquarks

1In fact, if the width is small then the diquark may hadronize before it decays.
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Figure 4.8: Cross section for the production of vector and scalar diquarks as a

function of the diquark mass for both resonant production, from incoming uu states,

and diquark pair production at
√
s = 14 TeV. The diquark coupling to quarks has

been taken to be 0.1.

from incoming uu quarks (resonant production) and for incoming gluons (pair pro-

duction). The resonant production cross section depends quadratically on the un-

known diquark coupling to quarks, which as been assumed to be 0.1 in this plot,

whereas the pair production cross section is independent of this coupling.

The diquark will decay into two quarks giving rise to at least two jets. The

search for the production of a diquark via resonant production should therefore be

in the dijet invariant mass spectrum, where a smeared peak is expected around

the diquark mass. The primary background to this search channel is QCD 2 → 2

scattering processes.

The signal and background were simulated using Herwig++. The analysis and

modelling of the backgrounds followed that suggested in Ref. [3]. The transverse

momenta and pseudorapidities of the jets were required to be p1
T > 150 GeV, p2

T >

60 GeV and |η1,2| < 2.5 where 1 is the hardest jet and 2 is the subleading jet. In addi-

tion we required that the dijet invariant mass, mjj satisfied

mjj > 300 GeV and the rapidity difference between the leading and subleading jet

was |∆η12| < 1.3. The dijet invariant mass spectrum after these cuts is shown in
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Fig.s 4.9 and 4.10 for
√
s = 7 and 14 TeV, respectively. The diquarks were simulated

at masses of 500 GeV, 800 GeV, 1200 GeV, 1600 GeV and 2000 GeV.

As simulating the QCD mjj spectrum at high masses is difficult, a functional

form

f(x) = a0(1− x)x(a1+a2 lnx), (4.2.16)

was fitted to the low masses, where the ai are fitted parameters and x = mjj/
√
s,

and extrapolated out into the high mass region.

The results of Ref. [3] can be used to impose constraints on the diquark coupling

as a function of the diquark mass. The event selection from Ref. [3] was used to

reproduce the correct acceptance. This requires that the event contains at least two

jets with pT > 150 GeV and a subleading jet with pT > 30 GeV. Both the leading

and subleading pT jets must satisfy |ηj| < 2.5 with ∆η12 < 1.3 and mjj > 150 GeV.

The signal, after the cuts, was fitted to a Gaussian distribution, with the mean

fixed, m, at the simulated diquark mass to obtain the standard deviation of the

distribution, σ, so that the results presented in Ref. [3] could be used to obtain the

limits on the diquark coupling.

A standard Gaussian was chosen as it is practically easy to implement and af-

ter experimenting with a skewed Gaussian was found to give comparible results.

The Gaussian was fitted using the usual process of minimising χ2 with the Python

implementation of the popular Minuit package [153].

As suggested in [3], long tails were removed by taking a window around the

diquark mass of ±20% for the fit. If the σ/m value obtained was below the range of

that given in the paper, then the number of events associated with the lowest σ/m for

that mass was used. This allows a conservative estimate for the excluded coupling,

as opposed to one which may be obtained by extrapolation into the unknown region.

The limit on the diquark coupling is shown in Fig. 4.11 where because the statistical

errors were negligible, the bands shown come from varying the scale from 50% to

200% of the default scale choice, i.e. the diquark mass.

Following the work of Ref. [3] the ATLAS collaboration has released an updated

analysis [4], including additional data corresponding to an integrated luminosity of

163 pb−1. This analysis included slightly harder cuts requiring pT > 180 GeV and
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Figure 4.9: The dijet mass spectrum at
√
s = 7 TeV for 500 GeV, 800 GeV,

1200 GeV, 1600 GeV and 2000 GeV diquark masses with the couplings given in the

text.
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Figure 4.10: The dijet mass spectrum at
√
s = 14 TeV for 500 GeV, 800 GeV,

1200 GeV, 1600 GeV and 2000 GeV diquark masses with the couplings given in the

text.
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Figure 4.11: Limit on the coupling as a function of the diquark mass based on the

model independent data given in the recent ATLAS publications [3, 4]. The band

reflects the uncertainty from varying the scale between 50% and 200% of the diquark

mass.

mjj > 170 GeV in addition to the cuts used in Ref. [3]. The limit obtained from

this higher integrated luminosity analysis is also shown in Fig. 4.11. We note that

ATLAS performed better than the expected median limit in the Ref. [3] and worse

than the expected median limit in [4] in the 1400 − 1600 GeV mass range, giving

rise to the overlap in Fig. 4.11.

4.2.2 Pair Production

The pair production of diquarks (scalar and vector) occurs via the Feynman di-

agrams shown in Fig. 4.4 and also via a quark-quark initiated process with an

s-channel gluon. At the LHC we expect the gluon-gluon initial state to be domi-

nant over the quark-quark initial state and so we choose to only study the incoming

gluon case here. The pair production process has one main advantage over the res-

onant production, it does not depend on the unknown diquark coupling. Instead,

the pair production cross section depends only on the SU(3)C representation, mass

and spin of the particle. The pair production process therefore has the potential to

distinguish between whether a particle in the antitriplet or sextet representation was
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produced due to the dependency of the cross section on the colour representation.

To date there have been no studies of the experimental signals of diquark pair

production. The cross section has been calculated [140, 146, 147] and some work

towards a jet study, no Monte Carlo study has been performed.

The pair production and subsequent decay of diquarks is expected to give four

jets, with two pairs of jets forming systems with the mass of the diquark. The

backgrounds to the pair production of diquarks are:

• vector boson WW , ZZ and ZW pair production;

• vector boson, W and Z, production in association with additional jets;

• top quark pair, tt̄, production;

• QCD jet production.

The analysis proceeded by placing cuts on the four hardest jets: p1
T > 150 GeV,

p2
T > 100 GeV, p3

T > 60 GeV and p4
T > 30 GeV, where the four jets i = 1, 4 are

ordered in pT such that the first jet is the hardest. All four jets were required to

have pseudorapidity |ηi| < 3. Two pairs of jets were then formed with the pairing

selected that minimized the mass difference between the two pairs of jets. If, after

pairing, the two hardest jets are in the same pair of jets, the event was vetoed. The

mass difference between the pairs was required to be less than 20 GeV.

The signal and backgrounds were simulated for the production of the Φ1,1/3 and

V µ+
2,5/6 diquarks giving the results shown in Fig.s 4.12 and 4.13 for
√
s = 7 and 14 TeV, respectively. As the backgrounds are dominated by QCD scat-

tering, i.e. the contribution of the QCD scattering processes is approximately one

hundred times that of all the other backgrounds combined, only the sum of the back-

grounds is shown. As for the resonant production, the plots show the production of

diquarks with masses of 500 GeV, 800 GeV and 1200 GeV, 1600 GeV and 2000 GeV.

The low mass QCD background was fitted with Eqn. 4.2.16 and extended out into

the high mass region.

A window of ±50 GeV was taken around the diquark mass and the S√
B

was cal-

culated for a number of luminosities the results of which are shown in Fig. 4.14. We
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Figure 4.12: The mass spectrum of dijet pairs in four jet events at
√
s = 7 TeV for

500 GeV, 800 GeV, 1200 GeV, 1600 GeV and 2000 GeV diquark masses.
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Figure 4.13: The mass spectrum of dijet pairs in four jet events at
√
s = 14 TeV for

500 GeV, 800 GeV, 1200 GeV, 1600 GeV and 2000 GeV diquark masses.
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Figure 4.14: S√
B

for the scalar and vector diquark at luminosities of L = 1 fb−1 and

L = 5 fb−1 at
√
s = 7 TeV and L = 10 fb−1 and L = 100 fb−1 at

√
s = 14 TeV. The

black horizontal line shows S√
B

= 5.

see that the vector diquark manifests itself more prominently than the scalar, which

is consistent with the increased cross section of the vector in the pair production

process as seen in Fig. 4.8. It will be hard to observe a scalar diquark using the pair

production process at
√
s = 7 TeV while with L = 5 fb−1 it should be possible to

observe a vector diquark with mass less than 700 GeV.

There is a marked increase in discovery potential at the increased energy and

luminosities running at
√
s = 14 TeV brings. A vector diquark in the mass range

presented here (< 2000 GeV) should be seen with L = 10 fb−1, whereas even with

L = 100 fb−1 only a low mass (. 1050 GeV) scalar diquark has potential for discov-

ery.

4.3 Conclusions

In this chapter we have presented a method for simulating the production and

decay of particles in the sextet colour representation which has been implemented

in Herwig++.

We simulated the production and decay of vector and scalar sextet diquarks at

energies relevant to the LHC. Based on the findings and the latest ATLAS search for
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new particles in two-jet final states, new constraints have been put on the couplings

of the diquarks to SM particles. Unfortunately we see from the large backgrounds

that discovery in the dijet channel will be very difficult at the LHC.

We have also presented studies of the gluon-gluon initiated pair production mech-

anism, which is independent of the unknown coupling of the sextet diquark to quarks.

The quark-quark initiated pair production mechanism has not been studied, as at

low masses we expect the gluon-gluon initiated pair production process to dominate.

This process has a promising search reach with the possibility of observing vector

diquarks with masses less than 710 GeV at
√
s = 7 TeV and both vector, for masses

less than 2 TeV, and scalar, for masses less than 1 TeV, with the LHC running at

design energy.

We have seen that the potential to discover the diquark is also very limited

at the LHC in the pair production mechanism owing to its small rate and again

large backgrounds. However, It could still be possible to observe the diquark via its

coupling to top quarks and in the future it may be prudent to conduct an analysis

focusing on the process where the pair produced diquarks decays to two top quarks.

Using the decay of a diquark to two top quarks allows us to distinguish the

diquark from other SUSY particles as we can fully reconstruct the final state by

the four jets produced, compared to most SUSY processes where an experimentally

‘invisible’ particle e.g. neutralino is involved in the process. A fully reconstructed

state also allows us to measure the spin properties of the particle produced and

distinguish whether a scalar or vector diquark was produced.

Furthermore, other improved analyses may be able to uncover a signature of a

diquark in these large backgrounds. The tool provided here can now be used by

other interested parties in this area to perform such analyses and also be used with

a full detector simulator by experimentalists searching for diquarks.

Further Monte Carlo studies of diquark production in this area in the future

could prove to be beneficial in the search for new Physics.



Chapter 5

Conclusions

In this thesis we have examined the principles behind a Monte Carlo event generator

and outlined the Physics and it’s implementation in the Herwig++ Monte Carlo

event generator.

The improvement of the accuracy of simulation has been stressed throughout

and examples of two improvements with a subsequent study of the phenomenology

has been shown for the highly relevant boosted Higgs boson studies, to examine

the Higgs boson decaying to two bottom quarks at the LHC. Although currently

not used as a discovery channel, the verification of existing results and extension of

the accuracy of simulation will prove fruitful if we are to use this method to study

the decay of a light Higgs boson at the LHC. This is especially relevant with the

discovery of new boson of mass 125 GeV. Studying this new boson to see if it has the

expected couplings to bottom quarks will be important so we can ascertain whether

this is the Standard Model Higgs boson we are expecting.

With regards to the technique itself, we have found that the use of jet substruc-

ture has promise to study the Higgs boson in this challenging decay mode, and

warrants further study at the LHC. The series of error tunes provided will also en-

able experimentalists and theorists alike to produce a more robust error associated

with the tuning of a Monte Carlo event generator, whilst obviously still taking into

consideration statistical errors.

As mentioned, one area of further study in this region should focus around un-

derstanding to g → b b̄ splitting as implemented in a Monte Carlo even generator.
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Accurately simulating this splitting is important for the backgrounds to jet sub-

structure techniques that rely on the decay of heavy objects to bottom quarks.

Also, such studies are sensitive to the underlying event and more detailed studies

on how underlying event effects jet substructure would be of use.

Following on from the jet substructure investigation, we also outlined the sys-

tematic improvement of simulation of top quark radiation, owing to its width. We

have shown that the leading colour approximation employed by a Monte Carlo event

generator is actually a good approximation and that current event generators can

be thought to be giving an accurate simulation of the radiation. A new algorithm

as implemented in the Monte Carlo event generator Herwig++ is shown based on

calculated radiation patterns up to the emission of two gluons and a study of the

phenomenology outlined.

Although the effect seen on the top quark mass analyses presented was small,

other observables may be more sensitive to these effects and so including them in

our simulation could become important, especially for SUSY style processes where

there is more than one heavy particle in a decay cascade. Single top production

as being investigated at the LHC as a probe of the Electroweak sector may also be

sensitive to these effects and so further study in this area in the future would be

relevant.

We have also discussed the simulation of new Physics and that without an accu-

rate simulation the goal of finding such new Physics at a modern collider experiment

such as the LHC would be very challenging. The Sextet diquark model was outlined

along with its implementation in the Monte Carlo event generator Herwig++ and

again, an associated phenomenological study. Limits were placed on the diquark

coupling and the potential of discovery of such an object discussed.

The dijet channel, and also pair production channel, all have large backgrounds

and so potential for discovery of a diquark is limited at the LHC. An investigation

of the diquark coupling to top quarks could lead to a potential discovery though.

If the diquark decays to two top quarks then there is a chance to create a fully

reconstructed final state. This is beneficial compared to the decays of many SUSY

particles which have an experimentally ‘invisible’ object in their final state e.g.
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neutralino. The fully reconstructed final state could allow us also to measure the

spin properties of any produced diquark and determine whether a scalar or vector

diquark has been produced.

Clearly as the modern collider experiments increase in energy and their final

states become more complex, improving all aspects of simulation will remain an

important task in the future. We have shown that we can have a good degree

of confidence in our existing tools, however, improving the accuracy of simulation

should still continue. This thesis has been written at exciting time in Particle Physics

and hopefully many more discoveries are still to come. The work undertaken here has

contributed towards the current round of experiments and their work in unlocking

the secrets of Nature.



Appendix A

Monte Carlo Integration

Often we wish to evaluate complex integrals numerically, as they cannot be done

analytically. There are a number of ways to achieve this. The simplest example is

the Newton-Cotes method. Assuming we want to evaluate the integral

Iab =

∫ b

a

f (x) (A.0.1)

we approximate the integral by splitting our region up into rectangular segments

and summing over them

Iab ≈
n−1∑
i=0

f (xi) ∆x (A.0.2)

where ∆x = (b−a)
n

and xi = a+ i∆x. We define the error by∫ b

a

f (x)−
n−1∑
i=0

f (xi) ∆x , (A.0.3)

where the error in this method goes like 1
n
. We can go better, by instead of approx-

imating the area under our function f (x) as a series of trapezoids

Iab ≈
n−1∑
i=0

(f (xi+1) + f (xi))
∆x

2
(A.0.4)

where now the error goes like 1
n2 [154]. Or we can even go one better and use

an interpolated parabola, called Simpson’s rule, where the error goes like 1
n4 [154].

Another alternative way relieves on the mean value theorem of calculus

Iab = (b− a) f (c) (A.0.5)
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where f (c) is the mean value of the function over the region. Using this method we

can define a Monte Carlo integration by sampling the function f (x) in the region

[a, b] i.e.

Iab =

∫ b

a

f (x) = (b− a) f (c) ≈ (b− a)
1

n

n−1∑
i=0

f (xi) . (A.0.6)

The law of large numbers states that the approximation becomes exact in the asymp-

totic limit, and so

E [f (x)] = lim
n→∞

1

n

n−1∑
i=0

f (xi)

≈ 1

n

n−1∑
i=0

f (xi) . (A.0.7)

An appreciation of the error is developed by computing

ε2 =

(
1

n

n−1∑
i=0

f (xi)− E [f (x)]

)2

=
Var [f (x)]

n

([∑n−1
i=0 f (xi)− nE [f (x)]
√
n
√

Var [f (x)]

])2

⇒ ε =
σ [f (x)]√

n
N (0, 1) (A.0.8)

where N (0, 1) is a normally distributed random number of mean 0 and standard

deviation 1, σ2 [X] = Var (X) is the variance of X and the second to third line

holds from the Central Limit Theorem. So we see this way of evaluating the integral

converges like 1/
√
n. Whilst this is slower in low numbers of dimensions when

compared to the other rules above, the real key is that the rate of convergence

is always 1/
√
n, no matter what the dimension, where as for the trapezoid rule,

the error goes like O
(
n−2/d

)
or for Simpson’s rule O

(
n−4/d

)
[154] with the error

bound becoming less useful as the dimension increases. To reduce our error with a

Monte Carlo integral then, all we need do is generate more points and our error is

guaranteed to decrease like 1/
√
n.

In fact, more tricks can be applied to the integration to reduce the variance. If

we decide to sample the integration region in areas where f (x) is larger, compared

to when it is smaller, we can lower the variance. Mathematically speaking we write

I =

∫
f (x) dx =

∫
f (x)

g (x)
g (x) dx = Eg

[
f (x)

g (x)

]
, (A.0.9)
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which we achieve by sampling the points in our distribution according to g (x) and

then evaluating f(x)
g(x)

. If we are clever, and choose g (x) such that it smoothly follows

f (x), then we can reduce the variance and associated error of our integral. These

techniques become more important than just generating more points to decrease

1/
√
n.

The question then remains as to how to generate our points according to g (x).

If we are lucky and we can invert our integrated function G (x), and assuming g (x)

is defined and wanted for x ∈ [−∞,+∞], then from cumulative probability function

G (x) =

∫ x

−∞
g (y) dy = R , (A.0.10)

with the random number R ∼ Unif[0, 1] then clearly

x = G−1 (R) . (A.0.11)

This is practically never the case, however, and we must use a different method

for generating according to a distribution. One such method is John von Neumann’s1

hit or miss method. We build a simple, invertable over-estimator h(x) of our function

g (x) across the region of interest such that

h (x) ≥ max[g (x)] . (A.0.12)

We then generate points according to h (x) and accept the point according to the

probability g(x)
h(x)

, by comparing to another random number, which then distributes

points correctly and according to g (x). This can be seen as the first point is picked

according to h(x)dx and then retained according to g(x)
h(x)

and when these two are

multiplied together, we recover the original distribution we wanted, g(x).

If the function in questions varies a lot between intervals, we can sub-divide the

function into the required intervals by defining g(x) =
∑

i gi(x) and applying these

methods to each of the regions i. This is called stratified sampling.

An example of importance sampling method can be seen with the integral of

f (x) = sin
(
πx
2

)
, using g (x) = 2x− x2, where x was sampled according to g (x) by

1John von Neumann is considered by many to be the father of Monte Carlo techniques, which

were pioneered during the efforts at the Los Alamos laboratory and development of the nuclear

bomb during the World War II Manhatten Project.
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Sampling Result Error

Uniform 0.637 0.308/
√
N

Importance 0.636 0.033/
√
N

Table A.1: A comparison of the uniform sampling method and the importance

sampling method for the integration of the function f (x) = sin
(
πx
2

)
, N = 103.
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Figure A.1: The evaluation of π using the hit or miss method.

using the hit or miss method, with our over-estimator h (x) = 1. Table A.1 shows a

comparison between the standard uniform and the importance sampling method.

The hit or miss method can actually be used to directly integrate functions too.

If, as above, we define an over-estimator of our function of interest and throw points

down in the area bounded by this function and, in two dimensions, the x-axis then

the integral of our function is given by

I =

∫
f (x) ≈ Nhit

Nhit +Nmiss

(A.0.13)

where by Nhit is the number of points inside f (x) and Nmiss is between the function

we’re integrating, f (x) and the over-estimator h (x). The canonical example is

estimating π by this method, using a cirle bounded by a square, as seen in Fig. A.1.
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Jets and Jet Algorithms

Figure B.1: The simulated production of microscopic black hole in the ATLAS

detector at the LHC. Image courtesy of the CERN press office, with whom copyright

remains.

Free quarks or gluons don’t exist in Nature - after being produced they themselves

produce a collimated spray of hadrons, known as a jet. Jets are clearly seen in events

for example in Fig. B.1, but to define mathematically what a jet is in such a way that

both experiment and theory can use the same definition turns out to be non-trivial.

An excellent review of jet physics can be found in Ref. [5], of which we summarise

some of the more important findings here.

The Snowmass accord laid out the requirements for a jet algorithm and these
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are given as [5, 155,156]:

1. Simple to implement in an experimental analysis;

2. Simple to implement in theoretical calculations;

3. Defined at any order of perturbation theory;

4. Yields finite cross sections at any order of perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronization.

In general jet algorithms fall broadly into two categories - cone algorithms and

sequential recombination algorithms. We will not look at cone algorithms here, as

none have been used in this thesis and some older cone algorithms are plagued by a

lack of IR safety.

A jet algorithm has to be both IR and collinear safe, and by this we mean that

the addition of an extra soft or collinear parton should not change the set of hard

jets that are found in the event [5]. This has to be the case if we are to satisfy the

KLN theorem. For example, if the addition of an extra soft gluon gets combined into

a different jet than the parton that produced it, then the IR cancellation between

virtual and real corrections would not be complete in either jet, with implications

for perturbative calculations. A diagram exposing this is shown in Fig. B.2.

One cone algorithm, SISCone [157], has surpassed this problem and is now both

IR and collinear safe, however, the current round of experiments at the LHC are

focused on sequential recombination type algorithms and it is these that we turn

our attention to now.

Sequential Recombination Algorithms

Sequential recombination algorithms came out of e+e− experiments, with the Jade

algorithm being the first [158,159]. The Jade algorithm satisfies the requirements of

being both I.R. and collinear safe, as soft particles get recombined at the beginning

of the clustering. The Jade algorithm proceeds by:
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Figure B.2: An example of the cancellation of divergencies in jets, taken from

Ref. [5].

1. For each pair of particles i, j calculate a distance

yij =
2EiEj (1− cos θij)

Q2
(B.0.1)

where Q is the total energy in an event. Ei is the energy of the ith particle

and θij is the angle between particles i, j;

2. Find ymin of all the yijs;

3. If yij < ycut recomine i, j into a single particle and repeat;

4. Otherwise declare all remaining particles to be jets and exit.

Experimentally, we measure energy deposits in a calorimeter within the detector

and so a particle here can be thought of as an energy deposit in an experimental

detector. The Jade algorithm does have a subtlety in that two very soft parti-

cles moving backwards can be recombined into a single particle at the start of the

algorithm. This is counterintuitive to jets having a constrained angular size [5].

The originally defined kt algorithm is exactly the same as the Jade algorithm,

except one now defines

yij =
2 min (Ei, Ej) (1− cos θij)

Q2
(B.0.2)
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as the jet measure. This has the added advantage of using the minimum energy

between the two particles i, j, so that the measure between two soft back-to-back

particles is greater than that between a soft particle and a hard particle close in

angle.

For hadron colliders, where the total energy in a collision may not be well defined,

we may use the inclusive kt algorithm. The inclusive kt algorithm does away with

the parameter dcut, and introduces a new parameter R. Now, compared to the

orignal kt algorithm, one instead defines

dij = min
(
p2
T,i, p

2
T,j

) ∆R2
ij

R2
, (B.0.3)

where ∆R2
ij = (yi − yj)2 + (φi − φj)2, there is the introduction of a beam distance

diB = p2
T,i , (B.0.4)

which defines how far a particle is from an incoming beam and we introduce a new

parameter R. The algorithm proceeds by [160]

1. For each pair of particles i, j calculate a dij and diB;

2. Find the minimum of all the calculated dij and diB;

3. If it is a dij recombine i, j into a single particle and repeat;

4. If it is a diB then declare i to be a jet, remove it from the set of particles and

return to 1;

5. Stop when there are no particles left, and one just has jets.

For hadron-hadron collisions, we define there to be two beam particles [161]. The

advantage of these variables is that they are invariant under longitudinal boosts.

Experimentalists, however, do not like this definition as it gives jagged edges

to the jets and was arguably computationally slow to calculate [5]. The anti-kt

algorithm gets around the jagged edge problem, by now defining [151]

dij = min

(
1

p2
T,i

,
1

p2
T,j

)
∆R2

ij

R2
, (B.0.5)
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and

diB =
1

p2
T,i

, (B.0.6)

so that now the the hardest particles are favoured, compared to the softest in the kt

algorithm. The jets grow outwards from the hardest particles and produce shapes

that are approximately circular.

There is yet another type of sequential recombination algorithm called the

Cambridge-Aachen algorithm, or C/A for short, which is used in the jet substruc-

ture analysis of this thesis [104, 105]. This is like the kt algorithm, but without the

kt and proceeds by recombing all jets until dij = ∆Rij > R. This can be thought of

angular ordering in reverse.

Typically at ATLAS at the LHC, an anti-kt algorithm is used with an R pa-

rameter of R = 0.6. Thankfully a package, FastJet [106], has been written that

allows interface to a library of jet algorithms for use in Monte Carlo simulations.

FastJet also has the advantage of being quick - achieving O(N lnN) timing for the

sequential recombination algorithms compared to the original implementations that

took either O(N3) or O(N2). The FastJet package is readily available for download

and easy to link to.
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Triple Gluon Vertex

γµ
C, γ k1 + k2

A,α −k1

B, β −k2

Figure C.1: The triple gluon vertex.

We show the labelling of indices and momenta for the triple gluon vertex in

this case in Fig. C.1 and following the usual principles whereby the fermion line we

assume is connected to a larger diagram, we write

Mn+1 =g2
s ū(p)fABCtCγµ

1

(k1 + k2)2

[
−gµγ +

nµ(k1 + k2)γ + nγ(k1 + k2)µ

n · (k1 + k2)

]
×
[
(−k1 + k2)γgαβ − (k1 + 2k2)αgβγ + (2k1 + k2)βgγα

]
ε∗α(k1)ε∗β(k2)M′

n .

(C.0.1)
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We then expand this, and use the subscripts ε1 = ε∗α(k1) and ε2 = ε∗β(k2) and

dropping the unnecessary prefactors, so that

Mµ
n+1 ∼ [(k1 − k2)µ (ε1 · ε2) + ((k1 + 2k2) · ε1) εµ2 − ((k2 + 2k1) · ε2) εµ1 ]

+
1

n · (k1 + k2)

[
((k2 − k1) · (k1 + k2)) (ε1 · ε2)nµ − ((k1 + 2k2) · ε1) ((k1 + k2) · ε2)nµ

+ ((k2 + 2k1) · ε2) ((k1 + k2) · ε1)nµ + (n · (k2 − k1)) (ε1 · ε2) (k1 + k2)µ

− ((k1 + 2k2) · ε1) (ε2 · n) (k1 + k2)µ + ((2k1 + k2) · ε2) (ε1 · n) (k1 + k2)µ
]

(C.0.2)

and choosing to work in a physical gauge, such that εi · ki = 0 and εi · n = 0, this

becomes

Mµ
n+1 ∼ (k1−k2)µε1 ·ε2 +2k2 ·ε1εµ2−2k1 ·ε2εµ1 +

ε1 · ε2
n · (k1 + k2)

[(k2 − k1) · n(k1 + k2)µ] .

(C.0.3)

Again, expanding the bracket, and using the strong ordering limit of k1 � k2 we get

Mµ
n+1 ∼(k1 − k2)µε1 · ε2 + 2k2 · ε1εµ2 − 2k1 · ε2εµ1 + 2

ε1 · ε2
n · (k1 + k2)

[(−n · k1) kµ2 + (k2 · n) kµ1 ]

∼2 (k2 · ε1) εµ2 − 2 (k1 · ε2) εµ1
2k1 · k2

≈− k1 · ε2
k1 · k2

εµ1 . (C.0.4)

Now, putting the prefactors back in, we find that

Mn+1 = −g2
s(pb)f

ABCtC
k1 · ε2
k1 · k2

ū(p)/ε1M′
n , (C.0.5)

which can be used to derive radiation patterns for soft gluon emission when there is

more than one gluon being emitted.
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Veto Algorithm

We detail here the formalism laid out in Ref. [49] and outline the veto algorithm. If

we start with a process involving particles beginning at time t = 0 and continuing

to time t, e.g. radioactive decay, then the probability of particle decay at a certain

time will be proportional to the probability that something will happen at a time

t, f(t), and the probability that nothing has happened by a time t, N (t), as clearly

a particle cannot decay if it already has. We can therefore write the differential

probability that something has happen at a time t as

P(t) = −dN
dt

= f(t)N (t) , (D.0.1)

which is easily solved to give

P(t) = f(t) exp

{
−
∫ t

0

f(t′)dt′
}
. (D.0.2)

As discussed in terms of the Sudakov form factor in the introduction, the exponential

can be thought of as the probability that nothing happens between the times (0, t).

In Appendix A, we see that this can be inverted if f(t) has a primitive inverse to

give the correct distribution of t∫ t

0

P(t′)dt′ = N (0)−N (t) = 1− exp

{
−
∫ t

0

f(t′)dt′
}

= 1−R , (D.0.3)

where R ∼ Unif[0, 1], so that

t = F−1 (F (0)− lnR) , (D.0.4)

with F (t) being the integral of f(t′)dt′. If f(t) does not have an analytic integral

132



Appendix D. Veto Algorithm 133

Figure D.1: The region of integration in the veto algorithm.

we need to use a hit or miss like method that takes care of the exponent properly

and this is the so called veto algorithm.

Again, we start with an overestimate integral h(t) and now select ti according to

h(t), but as we have a process ordered in time t, we impose an additional constraint

on our values that for a generated point i, we must have ti > ti−1. We then accept

the new time ti according to the probability f(ti)
h(ti)

.

We can see how this works firstly if we reject no intermediate points, and the

first try t = t1 works, as then the probability of accepting the first point is given by

P0(t) = exp

{
−
∫ t

0

h(t′)dt′
}
h(t)

f(t)

h(t)
= f(t) exp

{
−
∫ t

0

h(t′)dt′
}
. (D.0.5)

Now, if we reject the first point t1 and go on to accept a second t2, the probability

associated with this is given by

P1(t) =

∫ t

0

dt1 exp

{
−
∫ t1

0

h(t′)dt′
}
h(t1)

[
1− f(t1)

h(t1)

]
exp

{
−
∫ t

t1

h(t′)dt′
}
h(t)

f(t)

h(t)
,

(D.0.6)

where we note we must integrate over all possible intermediate time periods. We

can write this in terms of P0(t) as

P1(t) = P0(t)

∫ t

0

dt1 [h(t1)− f(t1)] . (D.0.7)

Continuing in the same way for more than one intermediate time being rejected,
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we find that

P1(t) =P0(t)

∫ t

0

dt1 [h(t1)− f(t1)]

∫ t

t1

dt2 [h(t2)− f(t2)]

=P0(t)
1

2

(∫ t

0

dt′ [h(t′)− f(t′)]

)2

, (D.0.8)

where to see the last equality, one can re-order the integration variables of t1 and t2

and then from Fig. D.1 the equality is seen.

In general if there are i intermediate times, these can be ordered in i! ways, and

so we have that

P(t) =
∞∑
i=0

Pi(t) =P0(t)
∞∑
i=0

1

i!

(∫ t

0

dt′ [h(t′)− f(t′)]

)i
=f(t) exp

{
−
∫ t

0

h(t′)dt′
}

exp

{
−
∫ t

0

[h(t′)− f(t′)] dt′
}

= exp

{
−
∫ t

0

f(t′)dt′
}
. (D.0.9)
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