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The Control of Expression of Storage Protein Ge~es in Piswn sativwn L. 

Rosemary Noelle Waterhouse 

ABSTRACT 

Pea cotyledon and leaf genomic DNA were found to be methylated in a 
series of defined methylation states. mCG and mC-X-G methylations were 
detected and the latter was more prevalent in leaf DNA. Pea rDNA was 
also found to be highly methylated but was relatively undermethylated in 
the developing cotyledon. The significance of the relative hypo-' 
methylation of cotyledon genomic DNA (and rDNA) is discussed with 
respect to the endoreduplication phase of seed development. 

Two post-expression demethylation events associated with the legumin 
gene family were detected using a eDNA probe. The methylation of 
specific CCGG sequences in and around two legumin genes was also 
investigated. The extent of the methylation of the genes was found to 
increase in a 5' to 3' direction and one gene was found to have an 
unmethylated site abo.ut 500bp upstream from the transcription start 
site. Minor changes in the extent of methylation of two sites in the 
protein coding regions of the two genes were detected and these are 
thought to represent 'fine-tuning' of gene expression, rather than major 
gene switching events. 

One or two post-expression demethylation events associated with the 
vicilin gene family, were detected using eDNA probes. In addition, there 
was evidence that some cytosines associated with the vicilin genes 
became hypermethylated during cotyledon development. A normal pattern of 
50,000-M vicilin gene demethylation and hypermethylation was detected 
in the cbtyledon DNA of a mutant pea line, which produces reduced levels 
of 50,000-M vicilin polypeptide and message. 

Analysi§ of the sequence data of two legumin genes indicated that in 
general the CG dinucleotide was suppressed although one exon was found 
to have a cluster of CG dinucleotides and an increased usage of the 
CG-containing arginine codons. The mutability of 5-methylcytosine is 
discussed in relation to possible legumin protein coding requirements. 
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1:1 General Introduction: Biotechnology in Perspective 

In 1798, in 'An Essay on. the Principle of Population, as it 

affects the Future Improvement of Society' , an English clergyman, 

Thomas Malthus, observed that 

the increase of population will take 
unchecked in a geometrical progression, 
means of subsistance will increase in 
arithmetical progression. 

place if 
while the 

only an 

(Encyclopaedia Britannica, 1974, Hill, 1975) 

He asserted that the consequence of this was that populations would 

always tend to increase until prevented by lack of food or 

catastrophies (such as plagues or wars). However, this view fails to 

take into account the influence of scientific progress on food 

supplies or the productive potential of newly discovered lands, eg the 

prairies (Hill, 1975). 

The productivity of an area can be increased in three ways. First, 

through the influence of government implemented policies. For example, 

peasants in China have doubled the national wheat production, through 

increasing their productivity by an annual average of 12% for the last 

seven years (The Economist, 1985a) whilst, in the 20 years preceeding 

1977 they only achieved a 2.1% annual increase in grain production 

( idem , 1985b). Between 1977-79, the Chinese government had increased 

the price it guaranteed to farmers for produce and allowed them to 

sell their produce in the open market. The result of these 

governmental policies is that China has overtaken the Soviet Union as 

the world's largest wheat producer ( ibid). There is an added 
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incentive for governments to initiate such policies, in that success 

in agriculture complements industry. A World Bank study of irrigation 

schemes in Malaysia, found that each dollar of extra rice production, 

generated 75 cents of extra demand elsewhere in the economy ( ibid ). 

When one considers that 98% of all the world's farmers are peasants 

but grow only 75% of the world's food and only 25% of its exports, it 

becomes apparent that they have achieved only a fraction of their 

potential (The Economist, 1985a). 

The second way · by which productivity can be increased is by 

reducing what can be as much as a 70% decrease of the potential yield 

for an arable crop, due to the combined effect of: preharvest losses 

( ie loss due to weeds, insects or disease); harvest losses· ( ie loss 

due to the selection and recovery of only a fraction of the potential 

harvest); post-harvest losses (ie loss due to vermin or fungal attack 

on stored material). Improved management can help reduce these losses. 

The third way to improve productivity is by the better management 

of the crop ( eg sowing date, plant density, mul ticropping etc. ) and by 

the utilisation of the new varieties produced by the plant breeders. 

In developed countries, better management and plant breeding have each 

resulted in a 50% improvement ·in productivity. The use of high 

yielding varieties of rice, maize and wheat, which had been bred in 

the mid~1960s, has greatly increased the productivity of areas such as 

the Punjab, where cereal production rose by 7.3% a year between 1967 

and 1982 (The Economist, 1985b). However, such successes are scattered 

and sometimes have unforeseen consequences. An increase in yield can 

often result in a decrease in protein content per unit of production 
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(Cuthbertson, 1970). Part of the success of the Punjabi farmers was as 

a result of them switching from the low value pulses to high value 

grain (The Economist, op cit ) but this has nutritional implications. 

Cereals in general are deficient in the amino acids lysine and 

threonine, but this deficiency of the amino acids in the human diet 

can be partly offset by legume and leaf proteins (Cuthbertson, 

op cit ). 

It has been optimistically suggested that within the next ten 

years, agriculture could be transformed by biotechnology (The 

Economist, 1984a and b) and it is probable that these techniques have 

the potential to hasten the advances being made through conventional 

methods to breed new higher yielding varieties, for example with 

disease and pest resistance. A recent success in this field has been 

the introduction into tobacco, via the Agrobacterium tumefaciens 'Ti 

plasmid', of a gene encoding a toxin poisonous to some insect 

caterpillars from a bacterium (BaciLLus thuringiensis 'Bt') idem , 

1984a and 1985c). Similarly, another bacterial gene endowing 

resistance to the herbicide 'Roundup' , has also been successfully 

introduced into plants ( idem , 1985c). 

Paradoxically, genetic engineering offers the best chance to solve 

the problem of overproduction in the developed countries and help 

solve underproduction in the developing countries. If for instance in 

the long term, wheat could be genetically engineered to fix nitrogen, 

to become photosynthetically more active or to be pest and disease 

resistant (which is perhaps the most realistic of these options, as 

already indicated by the 'Ti plasmid' experiments), then in theory 
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costs could be substantially reduced and so .allow farmers the same 

profit from a lower yield (for wheat, the variable costs due to 

chemicals and fertilisers account for 28% of the total costs of the 

crop (The Economist, 1984a). 

Whilst the decisive step of putting into a crop plant a desirable 

plant gene, perhaps from a totally unrelated and at present 

incompatible species, is ·still a fairly distant ambition, there is 

still much basic research (such as the investigation of factors 

controlling normal gene expression) to be done, before the 

achievements of this field can be commercialised. 

Adequate nutrition for all human beings must be one of the major 

goals for the next twenty years and the final objectives should be not 

only to ensure enough food to meet the effective demand (ie food that 

someone will pay for) but also to see that human needs for adequate 

nutrition are met (Scrimshaw and Taylor, 1980). 

Whilst economic and political solutions are the most urgent, since 

food handouts are not the answer, it can also be argued that it is the 

duty of the 'rich' countries' governments to finance more research to 

transfer existing scientific information, and the duty of the 'poor' 

countries' governments to promote the uptake of such advances (The 

Economist, 1985a) and to realize the importance of agricultural self 

sufficiency. This has already happened in Bangladesh, where the 

population has an annual growth rate of 2. 6% and yet her increasing 

productivity has enabled her to cut her cereal imports by roughly 2% a 

year, since 1974 ( ibid ). 
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1:2 The Synthesis of Storage Proteins in Pisum sativum 

1:2:1 The importance of seed proteins 

In developing countries, cereals provide about 60% and pulses, 

oilseed and nuts about 17% of the available proteins (Cuthbertson, 

1970). Thus, seed proteins are an extremely important component of 

nutrition for both humans and animals (Millerd, 1975). 

The proteins of seeds can be subdivided into two categories. The 

storage protein fraction contains large amounts of only a few 

different species of proteins and accounts for the major part of the 

total seed protein, whilst the minor 'housekeeping' protein fraction 

is composed of relatively small amounts of numerous protein species 

which are essential for the maintenance of normal cell metabolism, for 

example structural proteins and enzymes (Boulter, 1981). A seed 

storage protein may be defined as 

any protein accumulated in significant quantities 
in the developing seed, which on germination is 
rapidly hydrolyzed to provide a source of reduced 
nitrogen for the early stages of seedling growth. 

(Higgins, 1984) 

The proteins must be able to withstand the osmotic changes during seed 

desiccation and be resistant to hydrolysis during this period, yet 

they must also tolerate the renewed osmotic changes during imbibition 

and become susceptible to hydrolysis during seed germination (ibid). 

The seed storage proteins were first identified according to their 

solubility (globulins, albumins, prolamins and glutelins) by Osborne 

in 1924. The major storage proteins of the legumes are the 
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salt-soluble globulins. Danielsson ( 1949) showed that the globulin 

fraction could be characterized by an ultracentrifuge, by the presence 

of two peaks with sedimentation coefficients of about 7-8S (the 

vicilin fraction) and 11-12S .,(the legumin fraction). 

In Pisum sativum , between 20-50% of the dry weight of the seed is 

protein and together, legumin and vicilin, constitute about 80% of the 

total protein in the mature pea seed (Evans et at , 1984). Legumin is 

the major storage protein, M 360,000-400,000 (Croy et at , 1980a) and 
r 

vicilin, the secondary storage protein, M 180,000-200,000 (Derbyshire . r 

et at , 1976), is present in the mature seed at a level of between 

25-75% that of legumin (Croy et at , 1980b). 

In P. sativum , the legumin fraction is an oligomeric structure of 

six subunit dimers, 'aS' (M about 60,000), each of which is composed 
r 

of one acidic 'a' subunit (M about 40,000) plus one basic, 'S', 
r 

subunit (M about 20,000), joined together by disulphide bonds 
r 

(Derbyshire et a Z., Z-oe cit ; Boulter, 1981; Higgins, 1984). The sub-

units of pea legumin have been shown to vary with respect to both size 

and charge (Matta et aZ. , 1981b). 

In pea, the 7S globulin fraction contains a number of subunits 

ranging in M from 12, 000 to 71,000. The vicilin fraction comprises 
r 

the subunits of M of 50,000 and less (Croy et aZ. , 1980b; Gatehouse 
r 

et aZ. , 1981). In contrast to legumin, however, there is no disulphide 

bonding between the. vicilin subunits. In addition to the vicilin 

subunits, the 7S globulin fraction contains a third protein, 

convicilin (M 290,000), the 
r 

subunits of which each have a M 
r 

of 

71,000 (Croy et aZ., 1980c; Casey and Sanger, 1980). The amino acid 
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composition for convicilin and vicilin is similar· ( ibid ). 

There is much evidence indicating that both legumin and vicilin 

are initially synthesised as larger precursor molecules which are 

post-translationally modified (for vicilin see: Higgins and Spencer, 

1981, Lycett et aL ,. 1983b; Gatehouse et aL , 1981; Gatehouse et aL , 

1983; for legumin see Croy et aL , 1980a; Spencer and Higgins, 1980; 

Domoney and Casey, 1984 and 1985). 

Investigation of the storage protein precursors has indicated 

that: ( i) there are distinct variations in the coding sequences for 

both vicilin and legumin; ( ii) these variations can define how a 

precursor molecule will be modified after translation; (iii) specific 

eDNA probes exist in several laboratories, which are capable of 

detecting the different major vicilin or legumin genes. 

Recently ( 1984) Domoney and Casey have measured the number of 

genes coding for legumin, vicilin and convicilin. They were able to 

show that there were no major differences in the gene numbers in a 

number of Piswn genotypes of variant protein composition. However, 

they did detect differences in the number of genes encoding the 

different proteins. The number of gene copies detected per haploid 

genome were: for the 7S fraction proteins, 5~7 genes for the 47,000-M 
r 

and 4-6 genes for the 50, 000-M vicilin subunits and 1 
r 

gene for 

convicilin; for the 11-12S legumin fraction protein, 4-6 genes for the 

60,000-M polypeptide, 
r 

1-3 gene copies for the 63,000-M /65,000-M 
r r 

polypeptide and 1-2 gene copies for the 80,000-M polypeptide. These 
r 

figures are in reasonable agreement with the previously reported 

values. Croy et aL (1982), using a eDNA probe, detected 4 gene copies 
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per haploid genome for the 60,000-M legumin precursor. However, when 
r 

a cloned legumin gene was used as a probe (Shirsat, 1984), a figure of 

at least 7 legumin genes per haploid genome was obtained. For the 

vicilin fraction proteins Gatehouse et al ,(1983) reported 5 gene 

copies per haploid genome for the 50,000-M polypeptide and 2-3 gene 
r 

copies per haploid genome for the 47,000-M polypeptide. . r 

1:2:1 Legume seed development 

Seed development, or embryogenesis, is one of the most critical 

stages in the life of the plant; it is a preparation for a successful 

germination, which is probably the most precarious time in the life of 

a plant (Dure III, 1975). The storage tissue is of particular interest 

to molecular biologists because it exhibits a general reversal of 

metabolism during the onset of germination. The same cells which had 

previously been synthesising enormous amounts of reserve materials 

(proteins and carbohydrates), now commence a rapid hydrolysis of these 

reserves during germination and also exhibit a reversal in the 

direction of flow of nutrients through the tissue. As this reversal 

has occurred in an unchanging cell population, considerable changes of 

gene activation and inactivation must also be occurring ( ibid ) . 

Thus, the synthesis of storage proteins represents a one-time 

expression of a few genes, in a specific tissue, at a specific point 

of the plant's life-cycle. 

In 1955, McKee et al found that in Pisum sativum the final number 

of cells in the pea embryo (1.4 x 106), was reached less than half of 

the way through seed development. This feature was subsequently found 
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to be true for other legumes and dicotyledonous plants. This led Bain 

and Mercer (1966) to identify four morphological developmental phases 

in seed formation. These were: phase 1- 'Cell Formation' (the embryo 

appeared meristematic until day 10 and then differentiated); phase 2-

'Cell Enlargement' (parenchyma cells in the cotyledons expanded 

fourfold, vacuolation of the cytoplasm was observed and storage 

proteins began to appear, in small amounts, towards the end of this 

phase); phase 3 - 'Synthesis of Storage Reserves' (this phase was 

marked by the onset of rapid synthesis of starch and reserve proteins 

and by a further increase in cqtyledon size and seed volume); phase 4 

- 'Maturation' (this phase was characterised by a marked fall off in 

both the rate of increase in fresh weight and in the rate of seed and 

embryo enlargement; the cells were observed to dry out as the seeds 

passed into dormancy and there was a loss of fine structure in 

cotyledon mitochondria during this final phase of embryogenesis). In 

the outside growing conditions utilised in this study, these phases 

corresponded to phase 1, 0-10 days after flowering (d.a.f.); phase 2, 

10-18 d.a.f.; phase 3, 18-28 d.a.f. and phase 4, 28-54 d.a.f. 

In 1965 Opik suggested that the nuclei in the cotyledons 

of Phaseolus vulgaris became polyploid and in 1971 this was confirmed 

by Smith, who observed that the cotyledon cells of Pisum arvense 

contained up to the 16C level of the DNA and that during germination 

this decreased to between 2C and 4C, which suggested that the 

polyploidy was acting as a form of nucleotide storage for the 

incipient seedling. For Pisum sativum , the level of polyploidy has 
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been reported as being between 32C and 64C. Thip high degree of ploidy 

was achieved shortly after the final number of cells and was 

concomitant with the beginning of maximum storage protein synthesis in 

the cells. This, together with the observation that the maximum rate 

of RNA synthesis occurred prior to the maximum storage protein 

synthesis phase, provoked the suggestion that its purpose was gene 

duplication to increase the rate of storage protein synthesis. 

However, the maximum RNA synthesis occurred before the maximum DNA 

synthesis and Millerd and Whitfeld (1973) finally clarified the matter 

by showing that in Vicia faba , the endoreduplication involved an 

increase in total nuclear DNA and therefore was not specific gene 

amplification. 

The seed development in Pisum sativum is summarised in Figure 1 

(taken from Dure III, 1975). 
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Over 90% of the protein in Piswn seed cotyledons is synthesised 

during the cell expansion phase (Millerd and Spencer, 1974). Using 

immunoelectrophoretic techniques the authors were able to show that in 

rapidly grown peas (25°C/16h light days), vicilin was first detected 

about 9d.a.f., when 60% of the final cell complement was present; 

legumin was detected one day later, when about 80% of the cells were 

present. However, it.has since been demonstrated that a very low level 

of legumin synthesis can be detected in pea embryos during the very 

early stages of embryogenesis (Domoney et aL , 1980; Gateh9use et aL , 

1982). Thus, the results of Domoney ( Lac cit ) indicate that either 

some storage protein synthesis preceeds endoreduplication or that the 

low level of expression, which they were able to detect in immature 

embryos, reflects synthesis in a small proportion of cells which have 

already ceased to divide. 

Figure 2 summarises·the changes in dry weig~t, legumin and vicilin 

accumulation during the development of rapidly growing peas (taken 

from Gatehouse et aL , 1982). 
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The total amount of protein accumulated by the seed is 

proportional to either the rate of transcription or the equilibrium 

between RNA synthesis and degradation. Madison et al (1981), were able 

to demonstrate that the half lives of both legumin and vicilin mRNAs 

were longer than the maturation time of the seeds. This implies that 

the accumulation of the storage proteins is not influenced to any 

great extent by degradation of the message. During normal seed 

development the major limiting factor in storage protein accumulation 

is the level (ie synthesis) of mRNA. 

Morton et al (1983), using hybridization kinetic studies, observed 

an increase (from 1-6), in the number of very abundant poly(A)+ -RNA 

5 
sequences (ie those occurring at greater than 5x10 copies per cell), 

from early to mid-developmental stages. This increased level was 

maintained through to the late developmental stage. These changes were 

in agreement with the increased synthe$iS of storage protein poly-

peptides during the early- to mid-developmental stages and their 

continued synthesis through to late cotyledon development. Thus, it 

was s~ggested that these six very abundant mRNA species, present at 

14d.a.f., be equated with the vicilin 50,000-Mr and 47,000-M , the 
r 

convicilin 71,000-M and the legumin 60,000-M precursor polypeptides. 
r r 

The other two mRNA species could perhaps represent major seed albumins 

or lectins. 

Northern blotting techniques and cell-free RNA translation systems 

have aided the investigation of changes in specific mRNAs. 

Gatehouse et al (1982), were able to demonstrate that the changes in 

the relative levels of the 47,000-M vicilin and 60,000-M legumin 
r r 
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messages were in agre.ement with the known accumulation patterns for 

the storage proteins. However, the appearance of the 50,000-M vicilin 
r 

message at 10d.a.f. appeared to contradict the early onset of vicilin 

synthesis (9d.a.f.) although it is possible that the eDNA clone used 

to probe the mRNA was only selecting a mRNA for a 50,000-M poly­
r 

peptide synthesised during later stages of cotyledon development and 

that mRNAs for 50,000-M polypeptides synthesised during early stages 
r 

of cotyledon development were less homologous and they were therefore 

not detected by the probe used. 

In order to investigate possible regulatory controls on trans-

cription, it is necessary to measur~ actual RNA synthesis in terms of 

'run-off' transcripts, produced by nuclei isolated from the different 

developmental stages. Evans et al (1984) hybridized radioactively 

labelled transcripts from a series of developmental stages, to 

Southern blots of specific eDNA probes for the storage proteins. The 

authors were able to show that storage protein gene transcripts formed 

an increasing proportion of the total transcription as cotyledon 

development proceeded,but were undetectable in the leaf transcripts. A 

strong correlation was observed between the level of storage protein 

transcripts in the developing cotyledon detected by these experiments 

( ibid ), with the amounts of corresponding cytoplasmic mRNAs 

(Gatehouse et al , 1982). The results obtained by Evans ( loc cit ), 

clearly indicated that there was apparent control of these tissue-

specific genes at the transcriptional level. 
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1:3 The Control of Eukaryotic Gene Expression · 

The first level of transcriptional control in eukaryotic cells is 

provided by a series of discrete sequences, usually located in the DNA 

flanking region, 5' to the gene. A second level of transcriptional 

control may be a limited accessibility (for example of enzymes such as 

RNA polymerase II) to regions of chromatin, or to specific sequences 

of DNA. Eukaryotic chromatin has a dynamic, complex hierarchical 

structure and active gene transcription occurs on only a small 

proportion of it at. any one time (Reeves, 1984). These two levels of 

control will be discussed separately. 

1:3:1 Regulatory sequences involved in animalgene expression 

Potential regulatory regions have been deduced from the comparison 

of sequence data in normal and mutant organisms. This enables firstly, 

the identification of common sequences, found in similar locations 

(with respect to gene position, ie a determinate number of.nucleotides 

'upstream' or 'downstream' from the site of initiation of 

transcription (cap-site) ) . Such 'common' sequences are said to have 

been conserved through evolution and might therefore be expected to 

have a functional role. 

Secondly, the study of sequence differences occurring in mutants, 

known to have an altered expression of a particular gene, has 

frequently shown that the mutant DNA differs at only one nucleotide 

( ie a point mutation) and yet this mutation may be sufficient to 

drastically alter gene expression. For example, in the Greek type of 

'hereditary persistence of foetal haemoglobin' (HPFH), there is a 'G' 
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to 'A' substitution in what is known as the distal 'CCAAT-box' ( ie 

5' - CTTGACCAATAG-3' becomes 5' - CTTAACCAATAG-3') (Gelinas et al , 

1985). This transition is sufficient to cause the persistance of the 

expression of one of the foetal globin genes in adults. Similarly, in 

vitro produced deletion mutants can be shown to have abnormal 

transcription, ie certain DNA sequences have been shown to have 

functional role in normal gene expression. 

The regulatory signals (figure 3) serve two functions. First, they 

specify the position where RNA synthesis is to begin (this has been 

identified by biochemical characterization of primary RNA tran-

scripts). Second, they govern the efficiency of transcription 

initiation (this has been clearly indicated by visual analysis of 

active genes and by the measurement of the rate of HNA synthesis) 

(McKnight and Kingsbury, 1982). 

The first major regulatory element to be identified was the 

Goldberg/Hogness or 'TATA'-box, the percentage composition of which is 

A63 A50 
T

82
A

97
A

85
T A

83
T (Lewin, 1983). This sequence is situated 25-30 

37 33 
nucleotides upstream from the site of initiation of transcription 

('cap site') (Breathnach and Chambon, 1981). 

The TATA-box falls in an AT-rich region of DNA and is similar in 

sequence to the prokaryotic 'Pribnow' or TATAAT-box, which is situated 

only 10 nucleotides upstream from the cap site. It is of interest, 

that the Pribnow box is approximately one turn and the 

Goldberg/Hogness box three turns of DNA helix, from the cap site. The 

exact location of the TATA-box varies slightly from gene to gene, with 

the T in position '1' falling between positions -34 to -26 nucleotides 
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upstream from the cap site. However, 54 out of 60 genes examined had 

this T falling within 2 nucleotides of position -34 (Breathnach and 

Cham bon,. op cit ) . 

Absence of a TATA-box has been shown to result in micro­

heterogeneity of mRNA molecules, thus indicating its importance in 

defining the cap site (eg Baker et a~ , 1979). In some cases, 

anomalies. in the TAT A-box will result in a reduced efficiency of 

transcription. For example, in the chicken conalbumin gene, a point 

mutation whereby TATA becomes TAGA, is sufficient of an abnormality to 

reduce transcription by 95% (Minty and Newmark, 1980). 

The second regulatory element is the 'upstream element' or 

'CAAT-box', which is found about 80 nucleotides (between 60 to 100) 

upstream from the cap site (Benoist et a~ , 1980). Deletion of this 

element has been shown to markedly reduce the transcription of globin 

genes in vivo (but not &n vitro ) (Minty. and Newmark, ~oc cit ). 

The immunoglobulin genes show an interesting variation in this 

regulatory element. In every heavy chain gene examined, at 

approximately 70 nucleotides upstream from the cap site, is the 

sequence ATGCAAAT. At the corresponding location of every light chain 

gene examined, is the precise inverse of this sequence ATTTGCAT 

(Parslow eta~ , 1984). Excluding the TATA-box at -30 nucleotides, the 

remainder of the flanking sequences varies wildly among the different 

immunoglobulin genes, ie the flanking sequences have diverged 

extensively in evolution but TATA. and these two sets of 

octanucleotides have been conserved. This may imply they are involved 

with the tissue specific factors required for immunoglobulin gene 
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transcription. In addition a pseudogene was shown to have no 

detectable homology with the octanucleotide blocks. 

Also in this second category of regulatory elements, probably 

come the GC-rich elements. This is a broad class of sequences that 

come at variable distances from the cap site (Reudelhuber, 1984). For 

example, in SV40, there are three 21 base pair repeats containing six 

GC-rich hexanucleotide sequences (CCGCCC) (Khoury and Gruss, 1983). 

The third group of regulatory elements are the 'enhancers'. These 

are short cis-acting regulatory sequences, that strongly stimulate 

transcription from the promoters of nearly genes. They increase 

transcriptional efficiency, in a manner which is independent of their 

orientation, position or distances (which in some cases can be up to 

10kb)· from a gene (Khoury and Gruss, op cit ; Banerji et aL , 1983). 

They were first identified in viruses (eg the 72 base pair repeat in 

SV40). They may act by providing a bidirectional entry site for either 

RNA polymerase II or one of its subunits (Khoury and Gruss, op cit ; 

Velcich and Ziff, 1984). It has also been proposed that enhancers (or 

their flanking sequences) may alter either chromatin structure or the 

superhelicity, to create regions of transcriptional efficiency. 

To complicate matters further, there is increasing evidence that 

some eukaryotic genes harbour regulatory elements within the 

structural gene itself. For example, the globin gene family, the 

members of which are differentially expressed during development in 

the following sequence: £ = embryonic; a = foetal; S = adult. When the 

promoter from the foetal a-globin gene, was fused to the adult 

S -globin structural gene and the hybrid introduced into a mouse 
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erythroleukemia (MEC) cell line, the expression of this hybrid gene 

was found to be S-globin like in its relative rate of transcription 

(Wright et al , 1984; see also Charnay et al , 1984). Similarly, the 

mouse immunoglobulin genes contain an enhancer in an intron (Picard 

and Schaffner, 1984) and the chicken thymidine kinase gene has also 

been shown to have an intragenic control element (Merill et al , 

1984). 

Other regions of the gene with possible roles in gene regulation 

are the polyadenylation signal and the termination of message signal 

and the introns. In eukaryotes, termination of the message can occur 

in one of three ways (Proudfoot, 1982). Firstly, as in the histone 

genes, the message is terminated at a specific sequence by the RNA 

polymerase II. Secondly, in yeast, the enzyme both terminates the 

transcript and in a coupled reaction, polyadenylates it. Lastly, in 

all other higher eukaryotic RNA polymerase II genes examined the 

enzyme initially terminates the precursor message, possibly at a 

similar site to that recognized in the histone genes, the newly formed 

3'-end of the precursor message is then cleaved by an endonuclease to 

15 bases 3' of an AAUAAA sequence. This implies that probably both the 

RNA endonuclease and poly (A) polymerase recognizes the AAUAAA as a 

signal. The consensus DNA sequence AATAAA, is now definitely known to 

be a polyadenylation signal, and is not also a termination site. Hofer 

and Darnell (1981) demonstrated that the initial transcripts from the 

mouse S-globin gene, extended 1, 400 nucleotides beyond the poly­

adenylation addition site. However, these extended messages did have 

definite ends, therefore there must be a precise termination sequence. 
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Gil and Proudfoot (1984) showed that additional.sequences are required 

for efficient termination and polyadenylation of the message in 

rabbit B-globin. These are a preceeding pentanucleodide, CATTG, which 

is complementary to regions of the RNA from the U4 small nuclear 

ribonucleoprotein and a proceeding GT-rich octnucleotide, which it is 

thought might be required for correct 3 1 and formation. 

The introns are transcribed regions of a gene which are spliced 

out during processing of the message. Some introns have been shown to 

have multiple splice sites. The intron always has a GT-dinucleotide at 

its 5 1 end and an AG-dinucleotide at its 3 1 end (Breathnach and 

Chambon, 1981) splicing of a message nearly always occurs after 

polyadenylation. Naora et al (1982) found that the overall length of 

the introns was a function of the total size of the gene. 

Some transcription units are complex, their transcripts can give 

rise to two or more in RNAs ( ie they encode two or more different 

proteins) (Darnell, 1982). These complex messages usually have either 

two or more polyadenylation sites (eg immunoglobulin heavy chain and 

calcitonin genes) or two or more splicing sites, which enables the 

primary transcript to be spliced in different ways ( eg viral genes) 

ibid ) . 

Integration of these different regulatory elements can allow for a 

differential or tissue-specific expression of genes. Carl Wu ( 1984) 

was able to show the presence of two protein binding sites, which 

covered the TATA-box sequence and an upstream control element in the 

5 1 flanking region of the Drosophilia heat shock gene. He proposed 

that a heat shock activity protein (HAP) was thus able to positively 
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regulate the gene. In a similar manner, Groner et a l ( 1984) have 

detected common sequences in the 5' flanking regions of unrelated 

genes which respond to glucocorticoid hormones. These regions were 

found to bind the glucocorticoid hormone/receptor complex. 

Dean et al (1983), showed that the 5' flanking sequence of the 

ovalbumin gene was essential for progesterone regulation of this gene 

and Ott et al (1984) demonstrated that the 5' flanking sequence of the 

rat albumin gene confers tissue specific expression. Similarly, a 

hybrid gene formed with the 5' flanking sequence of the small subunit 

of 'Rubisco' plus the structural portion of the bacterial gene for 

chloramphenicol, resulted in the bacterial gene becoming light. 

regulated (Shields, 1984). Several authors Reudelhuber, 1984; Picard 

and Schaffner, 1984; Ott et aL, Loc cit ), have proposed that 

enhancers act as tissue-specific modulators, ie that the TAT A-box 

region may act as a 'selector' whilst the upstream region acts as a 

'modulator' (Breathnach and Chambon, op cit ). 

Gene regions, other than the 5' flanking sequences, have also been 

shown to be necessary for tissue-specific gene regulation. Banerji et 

aL (1983) claimed that a downstream enhancer was necessary for 

lymphocyte-specific expression of immunoglobulin heavy chain genes and 

Gillies et aL (1983) detected a tissue-specific transcription enhancer 

in the major intron of a rearranged immunoglobulin heavy chain gene. 

Similarly, Milner et aL (1984) have shown that an 82 nucleotide 

brain-specific 'identifier sequence' is present in introns of genes 

expressed in the brain. These are thought td have been inserted as 

mobile elements. 
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1:3:2 Putative regulatory sequences involved in plant gene expression 

The flanking DNA regions around known plant genes, have been shown 

to have several sequences in common with those ppeviously discussed as 

being involved in the control of animal gene expression. Thus it has 

been inferred· that they serve a similar function, with respect to 

plant gene expression. However, few experiments have been published 

which demonstrate a functional relationship between the sequences and 

plant gene expression. Link (1984) using isolated mustard plastids and 

either the cloned 32,000 -M photosystem II protein gene or truncated 
r 

linear templates was able to identify three DNA regions, upstream from 

the cap site that were necessary for efficient transcription. These 

regions were first at 0 to -13bp, 5 1 -TATACT-3 1, which resembles the 

prokaryotic 1 Pribnow 1 box usually found at -10bp. On its own this was 

found not to be sufficient for transcription of the plastid gene. 

Second at -13 to -17 bp, there was a sequence 5 1 -TATAAA-3 1 , which 

matches the consensus sequence for the eukaryotic TATA-box. Third at 

-28 to -35 bp upstream from the start site, was 5 1 -TTGACA-3 1 • This 

matches the consensus sequence for the prokaryotic 1 -35 1 promoter 

element and this region was found to be needed for efficient and 

selective initiation of transcription. In the absence of the 1 -35 1 

element the TATA-like box was found to give a basic level of 

transcription. It is interesting to note that the plastids have a 

combination of prokaryotic and eukaryotic-type regulators. 

The only other published work, which conclusively assigns a 

particular function to a specific DNA sequence, involves the 

AgPobactePium tumefaciens , 1 Ti-plasmid T-region 1 (Shaw et aL , 1984). 
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These workers, using a series of deletion .mutants, were able to 

demonstrate that the right copy (but not the left copy) of the 25bp 

repeat is required for T-DNA transfer and/or integration. Removal of 

the right copy of the repeat abolished the oncogenicity of the mutant 

plasmid. 

However, plant DNA 5' -flanking regions have been shown· to have 

sequences in common with known DNA regulatory sequences and although 

it has not yet been demonstrated, by functional assays, that they 

serve a regulatory purpose, the similarities in DNA sequence, size and 

location, make it possible to infer that they may have a similar role. 

Plant genes have· been shown to have a TATA-like box (consensus 

sequence T ~ TATA! A --~A), at 29-33 nucleotides upstream from the 

cap site (Messing et al , 1983). This similarity in TATA-box is 

expected because both animal and plant protein genes are transcribed 

by RNA polymerase II. Plant genes have also been shown to have a 

translation start site (consensus sequence 5'-C AANNATGG-3') 
G ' 

5'-GT/AG-3' limits to the introns and an AATAAA polyadenylation signal 

( ibid ). There are indications that multiple polyadenylation signals 

occur more often in plant genes than in animal genes (Lycett et al , 

1983a). It also appears that there is more variation in the 

polyadenylation signals of plant genes, for example, leghaemoglo bin 

GATAAA and legumin AATAAG. 

Most plant genes have only a limited homology to the CAAT-box and 

instead show a greater homology to the AGGA-box, the consensus 

sequence for which is 
C G 
TA---- TNGA 

cc 
TT 

(Messing et al, op cit ). 

This AGGA-box is situated 70-90 nucleotides upstream from the cap site 
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but it is not yet known whether this is a novel functional element, 

involved in the regulation of plant gene expression. The legumin gene, 

however, does exhibit a good match for the CAAT-box, 126 nucleotides 

upstream from the cap site, but it has only a partial homology with 

the AGGA-box (Lycett et aL , 1984). 

1:3:3 Possible diffusible substances involved in the regulation of 

plant gene transcripts 

In the animal system, proteins eg heat shock activator protein 

(Wu, 1984) and hormones eg glucocorticoid hormones (Groner et. aL , 

1984) and progesterone (Dean et aL , 1983) have been shown to bind to 

certain DNA sequences in the 5'-flanking region. It can be postulated 

that a similar method of eliciting gene expression may be present in 

plant systems. 

The expression of the pea storage protein genes has been shown to 

be apparently co-ordinated, tissue-specific and developmentally 

regulated at the transcriptional level. Many factors could affect 

transcription and the developing seed is under the influence of many 

potential stimuli. It is known to be a rich source of several plant 

growth substances ('hormones'), which are known modulators of other 

gene systems. There is also a marked change in osmotic stress during 

the latter half of seed development and the developing cotyledons act 

as a sink for many metabolic precursor molecules. It is probable that 

plant gene expression is dependent upon some or all of these factors 

and possibly some as yet unknown factors, all of which are inter­

related and may act together in a cumulative manner. 
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To take plant growth substances first, gibberellins, cytokinins 

and abscisic acid have all been detected in cotyledons and some 

reports state that growth regulators change their level during 

development. For example, Skene (1970) isolated gibberellin-like 

substances from several stages of PhaseoLus vuLgaris seed 

development. It was demonstrated that two gibberellin-like substances 

had been isolated, gibberellin A
1
-like (GA

1
) and gibberellin A

5
-like 

( GA
5

) activity. GA
5
-like activity, was highest in young seeds and 

disappeared after cell division in the cotyledons had ceased. However, 

GA
1
-like activity rose to its highest level during the period of rapid 

cell expansion (ie protein accumulation phase) in the cotyledons. GA
1 

is now known to be the active form of this class of hormones. 

The evidence for a regulatory role by growth substances is 

frequently contradictory. For example, abscisic acid (ABA) has been 

shown to be essential for the synthesis and accumulation of the 12S 

globulin (nap in), in cultured embryos of Bras sica napus (Crouch and 

Sussex, 1981); yet it has no observed effect on storage protein 

accumulation by cottonseed embryos (Dure III and Galau, 1981). The 

addition of ABA to cultured excised embryos of PhaseoLus vuLgaris was 

shown to stimulate a 3-5 fold increase in the accumulation of vicilin 

(Spencer and Higgins, 1982). 

The presence of sucrose (0.35;M) has been shown to be essential for 

the synthesis and accumulation of napin (Crouch and Sussex, op cit ). 

Domoney et aL (1980), also showed the importance of sucrose (18%) in 

culture media, for the initiation of legumin synthesis by immature 

embryos of Pisum sativum (and in doing so contradicted Millerd's 
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results of 1975). It is not known how sucrose is acting to enhance 

gene expression, whether it is as a molecule binding directly to a 

regulatory gene sequence or indirectly to a protein already bound to a 

gene sequence. Its action could also result from an indirect 

physiological effect, eg osmotic pressure. Certainly, Millerd's 

failure to detect the initiation of legumin synthesis by immature 

embryos is probably due to a relative starvation experienced by the 

cotyledon cells, thus causing them to degrade available metabolites 

(possibly including the small amounts of storage proteins), to provide 

a source of carbon skeletons. 

Other simple metabolites have also been shown to have dramatic 

effects on protein accumulation. Altering the mineral nutrients can 

cause significant and special changes in the spectrum of seed proteins 

laid down. An altered proportion of legumin results in Pisum 

sativum grown in a deficient supply of phosphorus or potassium ( 3-

fold i_ncrease in the relative amount of legumin observed) or sulphur 

(greatly reduced to a barely detectable level). The distribution of 

vicilin subunits was also shown to alter with these deficiencies. 

However, plants grown with an inadequate supply of magnesium were 

shown to have a normal legumin content (Randall et aL , 1979). 

Chandler et aL (1983) demonstrated that in sulphur deficient peas, 

the legumin mRNA was reduced by 90% and that when an adequate supply 

of sulphur was resumed, both legumin mRNA and legumin levels were 

restored to normal. Recently (1985), Beach et aL have shown that 

during the first 48h of recovery from sulphur deficiency, 

transcription of legumin genes is increased by a factor of about 2, 
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whilst the level of legumin mRNA was shown· to increase 20-fold. 

However, vicilin gene transcription was shown to decrease to normal 

levels, during the recovery period and this was consistant with the 

gradual decrease in vicilin mRNA and vicilin synthesis. This indicated 

that sulphur was influencing legumin synthesis at a post­

transcriptional level, whereas its influence on vicilin synthesis was 

at the transcriptional level. 

Obviously, much more research needs to be done, to elicit the mode 

by which diffusible substances influence plant gene expression. 

1:3:4 The influence of chromatin structure on gene expression 

Only a small proportion of chromatin is being actively transcribed 

at any one time (approximately 10-20% of the total). Domains of 

chromatin which are being transcribed, are apparently packaged in an 

altered nucleosome structure, which is less condensed and more open 

than inactive domains (Reeves, 1984). Modification in hi stones and 

non-histone proteins, associated with active chromatin, have also been 

. reported. 

DNA is normally packed into chromosomes, as a series of structures 

of increasing complexity (ie a multiple hierarchy). The nucleosome is 

the lowest level of DNA coiling. The 'core' particle consists of 146bp 

of double stranded DNA, wrapped in two left-handed superhelical turns 

around the outside of an octamer of histone proteins ( H42 H32 H2A
2 

H2B
2

) (McGhee and Felsenfeld, 1980; Kornberg, 1977). The nucleosome is 

a repeating structure (similar to beads-on-a-string) which are joined 

together by spacer or linker DNA sections, of between 0 to 89bp in 
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length. This structure is called the extended 10nm chromatin fibre. 

The bulk of the inactive (condensed) chromatin consists of 25-30nm 

thick chromatin fibres, produced as a result of the winding, or 

coiling, of the 10nm fibre, into a shallow supercoiled 'solenoid' (6 

nucleosomes per solenoid turn) ( eg McGhee et a L, op cit ) . Histone 

'H1' is important for the formation and/or stabilization of the 30nm 

fibre, but its actual location is unknown. 

The third level of structure is found in interphase nuclei and 

metaphase chromosomes and is the folding of the 30nm solenoid into 

loops or domains of chromatin. These loops are anchored by specific 

nonhistone proteins located at the base of the chromatin loops to a 

supported nuclear structure, which has been called the scaffold, cage 

or envelope (Reeves, 1984). The loops of supercoiled chromatin may be 

from 35 to in excess of 100kb of DNA. 

The extent of chromatin condensation can be moni tared by the 

susceptibility of the chromatin to digestion by pancreatic DNAse I or 

micrococcal nuclease. It has been suggested that in actively 

transcribing chromatin, the nucleo~ome itself may unfold in some way 

to give easier access of the DNA, to RNA polymerase molecules. It has 

been frequently suggested that chromatin domains of active genes have 

an increased susceptibility (relative to inactive or bulk chromatin), 

to digestion by various nucleases ( eg Weisbrod, 1982, McGhee and 

Felsenfeld, op cit ) . The DNA.se I seems to preferentially detect the 

structure of chromatin that predisposes it to transcription! activity, 

if other cellular conditions are also permissive (Reeves, op cit ). 

Various other features of chromatin structure and composition, 
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have been correlated with an increased susceptibility to DNAase I. 

These include undermethylation of the DNA (which, together with Z-DNA 

will be discussed as separate issue, see section 1:4), modification of 

his tones and the association with active nucleosomes of non-histone 

proteins, for example the high-mobility group (HMGs) 

op cit ) . 

(Reeves, 

Histone H1, is generally greatly depleted in active chromatin 

domains (Igo-Kemens- et aL , 1982) and it is thought that in such 

regions, the H1 has been replaced by HMGs. HMGs are present in 

increased amounts in transcriptionally active or potentially active 

areas of chromatin HMG proteins have been shown to have varied effects 

on chromatin. HMGs 1 and 2 can either induce superhelicity or unwind 

and destabilize DNA in closed circular plasmids (Javeherian et aL ). 

HMG 14 and 17 can ( ~n vitro ) partially inhibit histone deacetylase 

in mammalian tissue culture cells. In other studies HMGs have been 

shown to stabilize the nucleosome core particles at the points of 

entry and exit of DNA. Weisbrod (1982) showed ( in vitro ) that 

chicken erythrocytic globin genes lost their selective 'active' 

DNAase I sensitivity when HMG proteins were removed from proteins but 

regained the sensitivity when HMGs 14 and 17 were reconstituted onto 

the chromatin. 

Histones, H2B, H3 and H4 (but not H1), are known to be modified by 

acetylation. This is a post synthetic modification of the amino 

termini of core hi stones, which are enriched with basic amino acid 

residues eg lysine (Isenberg, 1971) . Acetylation, neutralises the 

positive lysine charge of the histone 'tail' and thus loosens the 
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histone-histone or histone-DNA interactions, ie the chromatin may 

become opened up or destabilized due to weakened ionic forces 

(Reeves, op cit ). 

Other histone modifications include phosphorylation, methylation, 

ubiquitination and poly (ADP) - ribosylation. Ubiquitin-H2A (UH2A) has 

been shown to be relatively enriched in the transcribed Drosophila 

copia and heat shock genes, whilst being virtually absent from 

non-transcribed satelite chromatin (Levinger and Varshavsky, 1982). It 

has been suggested that histone ubiquitination in transcribing 

nucleosomes may modify some nucleosome-nucleosome interaction, thus 

preventing the formation of higher-orders of chromosome structure 

(Levinger and Varshavsky, 1982). 

His tones are also modified by poly (ADPribosyl )ation (poly-ADPR) 

but it is not clear whether poly-ADPR modified histones are associated 

with transcriptionally active chromatin. Again it has been suggested 

that poly-ADPR of histones may relax chromatin and prevent the 

formation of higher-order configurations (Poirier et al , 1982; 

Aubin et al , 1983). 

It is evident that the structure of chromatin is dynamic and it 

has been postulated that several known modifications of associated 

hi stones or non-histone proteins could 1 open-up 1 regions of DNA, 

giving transcription enzymes controlled access to certain domains of 

the chromatin. Two fundamentally different types of mechanism must be 

involved in gene expression. First, gene activation or commitment, 

which makes available for transcription a selected subset of cellular 

genes (eg by changes in the chromatin) and second, a mechanism which 
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induces and regulates the actual expression of·the potentially active 

genes (Reeves, 1984). 

1:4 Cytosine Methylation and Gene Expression 

It has been noted in Section 1:3 that the expression of genes 

requires a loosening of the DNA helix, followed by active 

transcription of the gene. There is much evidence that cytosine 

methylation may be involved in these two mechanisms. 

There is a widespread occurrence of methylated bases (in 

particular 5-methylcytosine) amongst eukaryotes and this together with 

its intragenomic distribution, strongly suggests that it may have some 

common biological function. The usual site of methylation is the 

dinucleotide CG; which perhaps significantly is under-represented in 

the overall gene region, whilst being over-represented ( 'clustered' ) 

in specific regions. The relationship between cytosine methylation and 

the formation of a different structural form of DNA (the left-handed 

Z-DNA) is well documented, as is the inverse relationship between the 

extent of methylation and gene expression. Thus, there is a possible 

link between cytosine demethylation, a loosening of the DNA helix and 

subsequent gene expression. 

Alternatively, there is a possibility that the methyl moiety by 

its physical presence, is acting as a signal to protein factors or 

enzymes involved in the transcriptional process. 

The role of cytosine methylation in gene expression will now be 

discussed more fully. 
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1:4:1 Occurrence of modified bases in genomic DNA 

The only modified bases found in eukaryotic and bacterial DNAs are 

5-methylcytosine. and 6-methyladenine (Figs.4a/b). 

. [2 6(--

0~~~/ H 
I 
H 

Fig.4a: 5-methylcytosine Fig.4b: 6-methyladenine 

6-methyladenine ( 6mA) is a minor methylated base and has been 

found in bacteria (Vanyushin, 1968) and protozoa (Cummings et aL , 

1974). In higher eukaryotes, Vanyushin et aL (1971) claim to have 

detected it in plant DNA but that it is not present to any appreciable 

degree in vertebrate DNA (Vanyushin et aL , 1970). 

5-methylcytosine (5mC), however, is the major methylated base in 

eukaryotic DNA. Base composition analyses have shown that levels of 

5mC vary in different animal groups from 0. 5 to 2. 8 moles% of bases 

(Wyatt, 1951) and that the amount of 5mC in higher plants, is 

substantially higher than is found in animals (3.6 - 7.1 moles % of 

bases) (Ehrlich and Wang, 1981) (Table 1). 
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Table 1:- Examples of percentage 5mC of total cytosine 

(Taken from Wagner et al 1981; Wyatt 1955) 

Organism % 5mC of total cytosine 

Locust 1.0 

Gerbil 3.1 

Calf (thymus) 6.2 

White Mustard 12.2 

Wheat 22.4 

Pea 23.2 

Mistletoe 23.2 

Field Bean 30.5 

Tobacco 32.6 

In higher eukaryotes, over 90% of methyl moieties are found in the 

dinucleotide sequence CG. This dinucleotide is more frequent in plant 

DNA (3-4%) than in animal DNA (0.5-1.0%) and this is one reason for 

the higher levels of total methylation observed in plant DNA 

(Gruenbaum et al, 1981b). In higher plants, methylation occurs at 25% 

of all cytosines but the methylation of the CG dinucleotide cannot 

account for all the 5mC present in the DNA and additional methyl· 

groups have neen located in the symmetical trinucleotide C-X-G, where 

X can be C, A or T ( ibid ). It was determined that in wheat germ DNA, 

over 80% of all CG dinucleotides and C(~)G trinucleotides and 50% of 

CCG trinucleotides, were methylated. 



- 34 -

In vertebrate DNA, there are several different sequences that 

share in common the CG dinucleotide, in which 5mC is found. CCGG, GCGC 

and ACGT have all been demonstrated as being partially methylated 

(Razin et aL , 1981). These sequences are all simple palindromes, with 

180° rotational symmetry and can exist in one of three possible 

configurations, with respect to methylation level (Figure 5). 

Figure 5:- Methylation of CG dinucleotides 

5'-NCGN-3' 

3'-NGCN-5' 

Type 1: Unmethylated 

* 
5'-NCGN-3' or 5'-NCGN-3' 

3'-NGCN-5' 3'-NGCN-5' 
* 

Type 2: Half methylated 

(Hemi-methylated) 

(*represents a methyl modification) 

* 5'-NCGN-3' 

3'-NGCN-5' 
* 

Type·3: Fully 

Methylated 

The methylation status of CG dinucleotides has been investigated 

by many workers using the isoschizomers Msp I and Hpa II which have a 

complementary refractoriness for methylation. Both of these 

restriction enzymes have the recognition sequence 5'-CCGG-3' 

(McClelland, 1981.; idem , 1983) and will cleave the unmethylated 

sequence but whenever the internal cytosine is methylated ( CmCGG), 

Hpa II is unable to cleave but Msp I can cleave such sites. (Waalwijk 

and Flavell 1978; Cedar et aL , 1979). However, methylation of the 

external cytosine ( mCCGG) will not be cleaved by Msp I but can be 

cleaved by Hpa II (Singer et aL , 1979; Sneider 1980). Neither enzyme 

will cleave at this recognition sequence when both cytosines are 

methylated (mCmCGG) (McClelland, 1981; idem ,1983). It should also be 
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noted that certain flanking sequences to the restriction site, have 

been reported as influencing the specificity of Msp I cleavage 

(Busslinger et aL , 1983b; Keshet and Cedar, 1983). 

In a similar manner, to detect methylation at the C-X-G site, 

isoschizomers with the recognition sequence A 
CC TGG, can be used. 

Eco RII will be resistant to cleavage if the internal cytosine is 

methylated, whereas the specification of Bst NI is unaffected by 

methylation. (McClelland 1981; Gruenbaum, et aL 1981b) 

1:4:2 Establishment of the Methylation Pattern 

The methylation of cytosine residues requires the presence of a 

methylase (methyltransferase) enzyme (EC2.1.1.37). Two possible forms 

of methylase activity were proposed by Riggs (1975) and Holliday and 

Pugh (1975). One was a semi-conservative, maintenance type, methy-

lating symmetrically hemi-methylated sequences and the other 

responible for methylating 'de novo' specific, unmethylated sequences 

as illustrated in Figure 6. 

Figure 6: Summary of Eukaryotic Methylation 

5 1 -CG-3 1 d e no v o IJ) 
methylation 

3 1 -GC-5 1.uNA Repl1cat1on 

* 
5 1 -CG-3 1 

3 1 -GC-5 1 

maintenance ... 
methylase 

~DNA Repl1cat1on 

* 
5 1 -CG-3 1 

3 I -GC-5 I. 
* 

* represents a methyl modification) 

It is now known that these enzymes are located in the nucleus and 

employ the activated methyl donor, S-adenosyl-L-methionine (Borek and 
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Srinivasan, 1966), which is itself derived from L-methionine and ATP. 

These enzymes transfer the chemically active methyl group to the 

carbon number '5' of the cytosine residue (see figure 4). 

When cultured cells are grown under conditions of methionine 

deprivation, hemimethylated DNA is formed ie one strand is deficient 

in methyl residues (Turnball and Adams, 1976). Methylases catalyze the 

addition in vitro of very few methyl groups to homologous DNA (Taylor, 

1979). The homologous DNA is presumably nearly fully methylated at the 

sites for which the methylase is specific. However, DNA methylase was 

shown to methylate heterologous (hemimethylated) DNA to a greater 

extent than homologous DNA ( Razin and Friedman, 1981; Turn ball and 

Adams, op cit ; Adams et aL, 1979; Gruenbaum et aL , 1982). One 

bacterial enzyme has been shown to act more than one hundred times 

faster on a half methylated site than it does on an unmethylated site 

(Vovis et aL ,1974). 

It is thought that the rat methylase binds to the DNA helix and 

scans fnr potential modification sites (Drahovsky and Morris 1971a and 

b) . The production of thymine dimers or double stranded breaks was 

found to be less inhibitory to mouse spleen methylase action, than the 

induction of single stranded breaks, apurinic sites, X-ray induced 

damage or alkylation (Wilson et aL , 1983). It is not known whether 

these inhibitions are due to a limitation on the scanning function of 

the enzyme. It was originally thought that the. enzyme having bound to 

the DNA, 'walked' along it looking for potentially methylatable sites. 

Drahovsky and Morris ( 1971a) reported that their enzyme methylated 

less than 2% of potential CG din:ucleotides. Other authors have 
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indicated that the process of addition of methyl groups is slow and 

that the enzyme may leave the DNA molecule after each addition, or it 

may dissociate from the DNAs on encountering a site which is already 

methylated (Adams et ·az ,1984). Thus it may take several cycles for 

the enzyme to completely methylate all potential sites. However, such 

a mechanism would also have the advantage in vivo of preventing the 

enzyme from making fruitless searches for potential sites in fully 

methylated DNA ( ibid ). 

Qureshi et aZ, (1982) and Adams et aZ ( op cit ) whilst attempting 

to isolate DNA methylase from the nuclei of Krebs II ascites cells, 

found that after all the soluble enzyme activity had been removed, 

there remained a residual activity which sedimented with the nuclear 

matrix. It was suggested that this bound form of activity may be 

associated with DNA replication and may thus perform the actions of a 

maintenance type enzyme, whilst the soluble DNA methylase could be a 

de novo type of enzyme, acting on completely unmethylated regions of 

DNA. There is no evidence for multiple species of DNA methylase to 

exist (Adams et aZ, op cit ). 

1:4:3 Inheritance of the Methylation Pattern 

If the methylation cytosine residues is to play a role in the 

control of gene expression or in the differentation of cells, then an 

essential requirement must be that the information encoded in the 

methylation pattern is stably maintained through each replication 

cycle. 

Replicating DNA has been shown to undergo methylation at or near 
"" 
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the replication fork (Bird, 1978). It is therefore possible for the 

parental DNA strand, which carries the methylation pattern, to serve 

as a "template" for a semi-conservative type of methylation, which 

will copy the methylation pattern from the parental strand onto the 

newly synthesized progeny strand. The key element in this model, is 

the symmetry of the methylated sites. Without some form of strand 

symmetry, it would be impossible to transfer fa.i thfully the 

methylation pattern from generation to generation. Thus, it is 

expected that the hemimethylated sites (figure 5-Type 2) should not 

normally occur and this has been confirmed by the experiments of Bird 

and Southern (1978) and Bird ( op cit ). 

Bird ( op cit ), also demonstrated that following DNA replication 

in cultured Xenopus Laevis cells, new methyl groups were added only 

to the progeny· strand and that the parental strand did not become 

labelled with 
3 

(methyl- H) methionine. These experiments clearly 

indicated that any pattern of methylated and unmethylated paired CG 

dinucleotides, in the genome of a cell, would be inherited by the 

descendants of that cell. 

Thus, for CG dinucleotides and in plants the additional C ( * ) G 

trinucleotide, a modification on the parental strand can signal to the 

methylase enzyme, that the cytosine residue sited symmetrically 

opposite requires methylation. However, the inheritance of possible 

modifications in the trinucleotide sequence C-C-G must be slightly 

A 
different, to that discussed for CG of C(T)G. In the C-C-G sequence, 

either or both of the two cytosines may be modified ( Gruenbaum et 

a L , 1982). These cytosines have inherited their modification pattern 
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from the parental complementary strand G-G-C, which contains only one 

cytosine residue. Therefore, this single parental cytosine must have 

served as a template for the possible methylation of both cytosines, 

in the progeny., C-C-G DNA sequence. The fact that this single parental 

cytosine, is part of a CG dinucleotide 5'-C-C-G-3' 
3'-G-G-C-5' 

, suggests 

that if the parental cytosine (C) is methylated, then the internal 
* 5'-C-C-G-3' 

cytosine of the progeny strand will always be modified ie 3 • -G-G-g.,.5 • , 

whilst the external cytosine may or may not be methylated 

* * * 
ie 5'-C-C-G-3' or 5'-C-C-G-3' 

3'-G-G-g-5' 3'-G-G-g-5' 

The decision by the methylase enzyme, whether or not to methylate 

the external cytosine may be random or it may be determined by 

adjacent DNA sequences. Gruenbaum et aL , ( op cit ) found that only 

50% of C-C-G sites are methylated at the external cytosine residue, 

whilst 80% of all CG or C(~)G sites are methylated. 

Further evidence for the maintenance of an existing methylation 

pattern is provided by the experiments involving the injection of 

o6cytes with foreign DNA sequences. Harland (1982) demonstrated that a 

pBR322 derivative plasmid methylated in vitro at 5'-CCGG-3' 

sequences and then injected into Xenopus Laevis oocytes, had its 

methylation pattern maintained through replication ie in the progeny 

molecules, the methylated sites remained methylated ·and the un-

methylated sites remained unmethylated. Stein et aL (1982) were able 

to demonstrate the stable inheritance of a methylation pattern for one 

hundred generations, following the injection of 4>X 174 RF-DNA, into 

mouse cells (see also Pollack et aZ , 1980; Wigler etaZ , 1981; 

Wigler, 1981; Stein et aL , 1982). 

Methylations of the plant trinucleotide sequence C-X-G, were found 
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not to be inheritable in mouse cells (Stein et ~L, op cit ) and it is 

also thought that the animal cell methylase is unable to transmit 

methylations at the external cytosine of the Msp I site (CCGG). 

Harland (1982) also demonstrated that some methylation could occur 

in the absence of replication but it occurs less efficiently than in 

the presence of replication. This type of methylation might be 

associated with either repair replication or de novo methylation. 

Similarly, in lily DNA, methylation was shown to occur at each of 3 

intervals of DNA synthesis associated with the meiotic cycle ( Hotta 

and Hecht, 1971). These phases were: a) premeiotic S-phase interval, 

when bulk DNA is replicated; b) zygotene, when a high-GC satellite 

component undergoes replication delayed from S-phase; c) pachytene, 

which is characteristic of repair replication. 

De novo methylation is best illustrated by the experiments 

involving the nuclear integration of viral DNA into cultured mammalian 

cells. Non-integrated or 'free' viral particles (eg Herpes simplex, 

Polyoma and Adenovirus) remain unmethylated (Kaye et aL , 19.67; von 

Acken et aL , 1979). However, when a hamster tumour cell line is 

infected with adenovirus, the integrated viral DNA becomes methylated 

in a highly specific pattern (eg Sutter and Doerfler, 1980). This de 

novo methylation, may be as a result of the process of viral DNA 

insertion into the host genome and it may imply that chromosomal 

location is important for methylase action (Doerfler, 1983). 

In general, de novo methylation is a rare event in eukaryotic 
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somatic cells, whilst maintenance methylation is very efficient (Razin 

and Szyf, 1984). However, the higher methylation levels, reported for 

human and bovine somatic tissue as compared to germline DNA ( eg for 

sperm DNA, see Sturm and Taylor, 1981; Chapman et aL , 1984), does 

imply that de novo methylation must occur at some stage during 

embryonic development, prior to the separation of somatic from germ 

line cells. However, this cannot be the rule because in other 

organisms eg rabbit, the total 5mC content of sperm is approximately 

40% higher than that observed in the liver (Ehrlich and Wang, 1981). 

1.4.4 Methylation in relation to DNA sequence type 

Reanneling studies have indicated that highly repetitive DNA 

sequences (eg satellite DNA) contain more methylated cytosine residues 

than the corresponding bulk DNA, (Russell et aL , 1976). In several 

instances, the satellite DNA has been found to contain a high content 

of the dinucleotide CG (Gruenbaum, 1981). In cultured mouse cells, the 

DNA of the inverted repeat ( 'foldback' ) . class _ ~· is methylated about 

50% more than repetitive DNA which itself is three times more 

methylated than single copy or intermediate repetitive DNA (Drahovsky 

and Morris, 1971a). The rat satellite DNA, contains ten CGs in a 

repeating sequence of 370 base pairs and all are methylated. However, 

calf satellite DNA generally contains unmethylated or partially 

methylated CG sequences (Pech et aL ,1979). 

Experiments performed by Bird and co-workers (1979} using 
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Hpa II/Msp I restriction enzyme analysis of Echinus (sea urchin) DNA, 

have indicated that the DNA of this organism can be separated into a 

highly methylated fraction (about 40% of the genome) and an 

unmethylated fraction (about 60% of the genome). These domains or 

"compartments" were present in all developmental stages and tissues 

examined. The methylated CG sequences of the sea urchin DNA, were 

found to occur in specific long tracts of the genome (>15 kb) and the 

5mC sequences were clustered, so that the methylated domains were 

separated from one another by stretches of unmethylated DNA. 

It has since been demonstrated that the degree of methylation of 

Hpa II sites, in a number of organisms, does not vary continuously but 

can be classified into one of three distingushable groups (Bird and 

Taggart, 1980). In insects, the DNA methylation was barely detectable; 

an intermediate level of methylation was detected in non-arthropod 

inverebrates and a high level of methylation was detected in 

vertebrates. Organisms which are closely related in evolution 

exhibited similar methylation patterns. Bird and Taggart were able to 

conclude from these results that in all cases the methylated and 

unmethylated regions of the DNA were in separate domains and that in 

non-anthropod invertebrates, the unmethylated domain (m-) is 

predominant over the methylated domian (m+), whilst the reverse 

situation is found in the vertebrates. In insects, it must be assumed 

that the methylated domain is so small as to be undetectable. 

The Echinus distribution pattern has also been observed in fungi 

and some plants and it has therefore been suggested that this pattern 

may be similar to the ancestral pattern of methylation, from which the 
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other two categories have been derived (Cooper, 1983). 

Naveh-Many and Cedar ( 1982) demonstrated a clustering of 

methylated Hpa II sites in mouse DNA and of methylated Eco RII sites 

in wheat germ, tobacco and cauliflower DNA. One reason for this 

apparently non-random distribution of methyl moieties, may be that the 

under methylated regions represent the actively transcribed portion of 

the genome, whereas the inactive or silent DNA is highly methylated. 
data obtained from the analysis of 

This hypothesis is supported by the sea urchin, where histone and 
1\. 

ribosonal gene sequences were found to be present in the unmethylated 

(m-) compartment (Bird et aL , 1979). 

The presence of some unmethylated stretches of DNA has been 

demonstrated in wheat germ and cauliflower (Naveh-Many and Cedar, 

1982). Cooper et aL ( 1983), using an end-labelling technique, 

demonstrated the presence of a small unmethylated domain (1-2% of the 

genome), thus indicating that in fact the echinoderms and vertebrates 

differ only quantitatively rather than qualitatively, with respect to 

the presence of these domains (Cooper, 1983). 

1.4.5 Methylation in relation to gene expression 

In vertebrates, several genes have been found to be methylated at 

restriction sites in germ line DNA but relatively unmethylated at 

specific sites in somatic cells which express the gene, but not in 

those where the gene is silent. For example: chicken ovalbumin gene 

(Mandel and Cham bon, 1979) ; chicken 13- globin (McGhee and Ginder, 

1979); rabbit 13-globin (Waalwijk and Flavell 1978) and foetal globin 

genes (van der Ploeg and Flavell, 1980). Other evidence shows that all 

expressed genes in a particular cell are about 30% as methylated as 

the average cellular DNA (Kunnath and Locker, 1982a). It has been 
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suggested that the de novo methylation observed during human or bovine 

embryo development, turns off genes that were previously expressed (eg 

during oogenesis) but whose continued expression is either not 

required or may be deleterious to the devel9ping embryo ie de 

novo methylation may 'reset' the genetic programme (Jaenisch and 

Jahner, 1984). 

There are over 36 reported examples of a negative correlation 

between the methylation of a gene and its expression (for reviews see 

Cooper, 1983; Riggs and Jones, 1983) but the mode of action, by which 

the loss of a methyl groups(s), can elicit gene transcription is not 

known. The conversion of a cytosine residue to 5mC introduces a methyl 

group into an exposed position in the major groove of the double 

helix. The binding of hi stones and hormone receptor proteins to the 

DNA helix is known to be affected by changes in the major groove. 

Several bacterial restriction enzymes have been shown to have a strong 

affinity for unmethylated sites but a reduced affinity for methylated 

sites. 

It is now becoming apparent that adjacent CG dinucleotides within 

a given gene region, do not always display similar patterns of 

tissue-specific methylation. It has also become apparent, that whereas 

it was initially thought that perhaps a hypomethylation in the 5' 

flanking region (promoter region) of a gene was necessary for gene 

transcription to occur, that this hypomethylation alone, is not a 

sufficient condition for transcription. There are now several 

documented cases of various sites existing in the unmodified form in 

tissues where the gene is inactive. For example, the a 2 (type 1) 
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collagen gene (McKeon et aZ , 1982) had unmethylated DNA around the 

start site of transcription, whether or not the cells from which the 

gene was isolated, normally synthesised collagen or not. Similarly, 

Ott et aZ (1982) demonstrated that hypomethylation of the 5' end of 

the albumin gene was a necessary but not a sufficient condition for 

albumin gene expression. However, in general the correlation between 

hypomethylation and gene expression is strongest for the 5' flanking 

region (Riggs and Jones, 1983; Cooper 1983). It has been suggested 

(Riggs and Jones, op cit that methylation 'locks' a gene in an 

inactive state. Therefore, removal of the methyl groups is essential 

for efficient gene transcription but in some systems additional 

factors are also involved. 

Analysis of the pattern of the methylation status of individual 

sites along eukaryotic genes, has led Razin and Szyf (1984) to 

classify the genes into five paradigmatic groups. At one extreme are 

genes which are hypomethylated in expressing tissues whilst being 

fully methylated in non-expressing tissues eg, rat insulin I gene 

(Cate et aZ ,1983) and chicken S-globin gene cluster (McGee and Ginder 

(1979). The groups range to the fourth category, which contains the 

genes that remain fully methylated in all tissues, for example 

Xenopus vitellogenin (Gerber-Huber et aZ , 1983). The final group 

contains those genes which tissue specific hypomethylation occurs 

but cannot be correlated with the observed transcription of the 

gene, for example, rat a-fetoprotein (Kunnath and Locker, 1983) and 

Xenopus albumin (Gerber-Huber et aZ, Zoe cit ). Razin and Szyf ( op 

cit ) point out from their analysis, that site-specific 
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hypomethylations in some cases, may be relat~d to the expression of 

genes, eg 'housekeeping genes', which would be constituitively 

expressed in all tissues, whereas tissue-specific hypomethylations may 

be associated with the differential expression of genes. 

Any change in the methylation of a specific site from being 

modified to being hypomethylated requires either the inhibition of the 

post-replicative maintenance methylase (ie a passive mechanism) or a 

specific demethylase ( ie an active mechanism). There is only one 

published report of an extract from nuclei, which has a demethylating 

activity (Gjerset and Martin, 1982). Should a demethylase definitely 

be shown to occur, the situation would then exist where the DNA can 

code for two different proteins which in effect could either activate 

or silence other segments of DNA. At the moment it is difficult to 

understand how a demethylase could specifically identify and activate 

one particular gene but it is likely that the folding and packaging of 

the DNA would be important. 

It is easier to speculate about possible mechanism for a passive 

hypomethylation system. The first would be a physical blocking of the 

methylase enzyme (Kunnath and Locker, op cit ) . This could be by a 

site-specific determinator protein (Razin and Szyf, op cit ) but is 

so, it is difficult to comprehend why some sites, which have no 

apparent role in gene expression, are also hypomethylated. 

A more plausible mechanism would be if the failure to methylate a 

specific site occurred as a result of the activation of certain genes 

( ie their transcription) . Bird ( 1984) has suggested that it is the 

activation of a gene which leads to a demethylation, which in turn 
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relaxed control on the gene (ie the demethylati0n will facilitate the 

continued expression of a gene, once activation has occurred). Such a 

mechanism is perhaps indicated by the oestrogen induced expression of 

vitellogenin in the liver which preceeds the observed hypomethylation 

of its 5' flanking sequence (Wilks et aL , 1982; Meijilink et aL , 

1983). Similarily, in chicken, precursor cells, hypomethylation of the 

globin genes was not detected before the onset of globin synthesis 

(Groudine et aL , 1981). The drawback to this theory is that although 

oestrogen does induce the expression of vitellogenin in the liver and 

a subsequent 5' hypomethylation is observed, this same hypomethylation 

is also observed in the oviduct which does not synthesise vitellogenin 

(although it does respond to oestrogen). Therefore, it is not 

necessarily.reasonable to imply that it is the transcription of the 

vitellogenin gene, which is causing its hypomethyl.ation. 

Szyf et aL (1984) have proposed a different model for a mechanism 

by which site-specific hypomethylation can occur. This model suggests 

that a change in the methylation capacity causes overall changes in 

the extent of methylation of cellular DNA. The methylat~on capacity 

(C) of a cell, is a function of the intracellular level of methylase 

activity (ie C = M.T where M = number of methylase molecules and T = 

turnover number of methylase). A further factor to be taken into 

consideration is the methylation quotient (Q) (where Q = C/N and N is 

the rate of emergence of newly replicated methylatable sites) 

( ibid). Thus, under conditions where Q is less than 1.0 (ega high 

level of replicating sites), hypomethylation will result. 

This theory is supported by experiments utilising the cytosine 



- 48 -

analogue, 5-azacytidine. This analogue contains a nitrogen atom 

replacing the carbon atom at position 5 of the pyrimidine ring (see 

figure 4a), thus preventing the acceptance of a methyl group. 

Treatment of mouse cell lines with 5-azacytidine has resulted in the 

differentiation of the cells (Taylor and Jones, 1979). It was 

demonstrated that the continued presence of 5-azacytidine was not 

required and that the change in gene activity was clonally heritable. 

It was later found that 5-azacytidine caused undermethylation of the 

DNA (Jones et aL , 1980). Even low levels of incorporation of 

5-azacytidine into DNA, reduces DNA methylase activity in cell 

extracts for 1 or 2 days after treatment (Taylor and Jones, 1982). 

Careful interpretation is needed when dealing with experiments 

involving 5-azacytidine. The amount of demethylation produced by the 

drug is far in excess of the amount of DNA substitution by 

5-azacytidine, which may suggest that replacement of 5mC is not the 

major element in demethylation. (Razin and Cedar, 1984) or it may 

reflect the ability of the drug to 1 trap 1 the methylases and thus 

block their action (Doerfler, 1983). 

The action of 5-azacytidine has also been shown to be apparently 

specific to certain areas of the genome (Razin and Cedar, op cit ). 

Groudine et aL (198la), were able to demonstrate whilst investigating 

the 5-azacytidine induced demethylation of chicken endogenous viral 

genes (AEV), that the globin genes in the same cells remained normally 

methylated. In addition, whilst 5-azacytidine gives increased 

expression of HbF (ci) genes in adult erythrocytes, other cytotoxic 

agents (eg hydroxyurea) which interfere with cell division but do not 
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inhibit methylation give the same result. 

Another methylase inhibitor, ethionine (a methionine analogue), is 

an effective inducer of globin genes in Friend erythroleukemia cells 

(Christman et al , 1977). The results obtained from experiments using 

the various methylase inhibitors thus imply that the intracellular 

level of methylase is not in a large excess (Razin and Szyf, 1984). 

Therefore, under these conditions the methylation capacity of a cell 

will be reduced and the methylation quotient will be less than 1.0 and 

hypomethylation will result. Hypomethylation will initially occur at 

the sites with the lowest affinity for the methylase and then at the 

sites with an intermediate affinity for the enzyme and finally at the 

sites with the highest affinity for the enzyme (Szyf et al , 1984). 

Razin and Szyf ( op cit ) suggest that a change in the affinity of 

a site (perhaps as a result of a chromatin structural change), may 

explain the oestrogen induced hypomethylation event, observed in the 

flanking region of the chicken oviduct vitellogenin gene, previously 

discussed (Wilks et al , 1982). 

1:4:6 Methylation and possible DNA structural changes 

In 1980, Bird found that on average CG dinucleotides are present 

in vertebrate DNA at a frequency of only one quarter of that predicted 

by random distribution ie in effect there was a 'CG-suppression'. One 

explanation for this effect may be the 3-fold increased mutability of 

a methylated cytosine residue compared with an unmodified residue 

(Ehrlich and Wang, 1981). 5mC can be deaminated to thymine and a 

repair mechanism may replace the now mismatched opposite guanine, with 
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* 5'-C G-:-3' 
an adenine residue. Thus, a methylated 3 ,_G C-5 , 

* 
dinucleotide can 

mutate to a 
5'-T G-3' 
3'-A !.;-5' 

Such a mechanism could explain the lower 

occurrence of the CG dinucleotide. 

McClelland and Ivarie (1982) were able to show that the CG 

dinucleotides were non-randomly distributed along mammalian genes. It 

was found that the gene regions were deficient in CGs and had an 

excessive amount of TG + CA dinucleotides. Tykocinski and Max (1984) 

were able to demonstrate that certain MHC genes had regions where CG 

suppression was apparently absent (5' to intron 3), ie certain regions 

existed which had a cluster of CG dinucleotides. Max (1984) and 

Tykocinski and Max Lac cit ) have suggested that some CG-rich 

regions are associated with DNA segments that remain unmethylated in 

germ-line DNA and other tissues. However, Adams and Eason (1984p)argue 

that rather than a failure to methylate being the cause for these 

CG-rich clusters, it is a failure to deaminate 5mC which allows such 

regions to exist. They point out that regions with a G + C content of 

over 60% have a greater stability of double helix, even when the 

cytosines are methylated. Deaminations in vitro normally only 

occur on single stranded DNA. Therefore, if a G + C-rich region is 

held in a tight helix, deamination is unlikely to occur and hence 'CG 

suppression' will not be observed. The high G + C content may be 

preserved either by chance or selection. 

The in vitro methylation of cytosine residues in synthetic 

polymers has indicated that these helicies will form the left. handed, 

Z-form, at physiological salt condition. Polymers with unmethylated 

cytosine will normally only form a Z-helix in the presence of a high 
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salt concentration (Behe and Felsenfeld, 1981)~ However, it is thought 

that a DNA sequence, CCGG, may favour an A-form helix (Conner et al , 

1982). It may even sterically inhibit the B-Z conversion (Doerfler, 

1983; Reeves, 1984). Thus, it has been suggested that certain 

modifications may stabilise certain transitions. Nordheim et al 

( 1981), using anti-Z DNA antibodies which reacted specifically with 

interband regions of Drosophila polytene chromosomes, suggested that 

the Z-form of DNA may be transcriptionally inactive. Nickol et 

a 1- ( 1982) were able to show that in vitro the Z-form of DNA bound 

histones but did not form nucleosomes. They therefore suggested that 

if Z-DNA were present in eukaryotic nuclei then it would disrupt 

normal chromatin structure. Santoro et al (1984) have demonstrated 

that Z-DNA in the flanking regions of genes can have a strong 

inhibitory effect on eukaryotic tRNA transcription. 

Rich and coworkers have shown that Z-DNA-binding proteins ( ie 

proteins which both bind specifically to Z-DNA but can also flip the 

B-form into the Z-configuration and hold it there), are present in a 

very high level in wheat germ cells and at low levels in Drosophila 

(Rich, 1983). These proteins are too large to be histones. 

The degree of DNA supercoiling is considered to be an important 

mechanism for the regulation of gene expression in prokaryotes. All 

closed circular DNA appears to be negatively supercoiled (ie the two 

helical strands are relatively slightly underwound with respect to the 

fully relaxed state). Thermodynamically, negatively supercoiled DNA is 

in a higher free-energy state than the relaxed form (therefore, any 
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process which is going to decrease the degree of supercoiling will be 

energetically favoured) (Reeves, 1984). 

Rich ( loc cit ) has envisaged that a system, similar to that 

proposed for prokaryotes, functions in eukaryotes. Linear, supercoiled 

'loops' or 'domains' of DNA (perhaps containing control regions and 

structural genes and being between 50-100kb in length) could be 

isolated from one another by being anchored at either end of the loop, 

'bY the scaffold protein or nuclear matrix (fig. 7a). These domains may 

then be activated independently of each other (fig.7b), by the 

induction of a change in the negative supercoiling, which induces a 

structural change from the inactive Z-DNA to the active B-DNA, in the 

control regions. This structural change in effect, may slightly uncoil 

the structure of a portion of DNA, thus making it accessible for RNA 

polymerase II. According to this theory, a change in the structural 

form of DNA in one stretch, could be 'felt' by a distant segment of 

DNA, as long as it is present in the same domain. 

Nordheim and Rich have found in SV40 DNA, that Z-DNA induced by 

negative supercoiling, is only formed in a transcriptional enhancer 

segment, where alternating purine-pyrimidine sequences are clustered 

(Nordheim and Rich, 1983). They found that in general, potential viral 

Z-DNA forming sequences were all located in enhancer regions, which 

suggests that they might have a biological role (Kolata, 1983). In 

addition, it has been found in supercoiled plasmids the junctions 

between Z-form and B-form DNA are particularly susceptible to cleavage 

by single-strand-specific 

1983) and this may also 

nuclease 

relate 

hypersensitive site in chromatin. 

(eg Bal 31) (Kilpatrick et al , 

to the formation of a DNAse I 
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Fig.7. Rich's model for DNA-domain activation.of chromatin: 

a) Representation of DNA domains present in the eukaryotic chromosome 

(as they are visualised in the election microscope once histones have 

been removed); b) Activation of an individual domain containing five 

structural genes (taken from Reeves (1984)) 

Inactive Domain 

Eukaryotic 
Chromosome 

Active Domain 

The enhancer is a region which increases access for RNA polymerase 

to the promoter. Therefore, methylation of cytosine residues in these 

regions, may induce the DNA to change into a Z-helix and alter the 

access of the polymerase to the promoters. When one considers that 
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gene regions generally suffer from a CG suppression effect, then any 

clustering of CG's could have a significant effect on the form adopted 

by the DNA structure and the fact that such clusters of CG 

dinucleotides have been reported in a variety of systems, may indicate 

.that they serve a biological function. 

1:5 Summary and Objectives of Project 

1:5:1 Summary 

It is probable that methylation is only one of a complex and 

interacting set of potential regulatory mechanisms of eukaryotes. In 

the gene systems examined where no apparent correlation is observed 

between DNA methylation and gene regulation, it is possible that DNA 

methylation could be affecting essential biological functions directly 

or causing or stabilizing structural changes in the DNA or chromatin 

(ie where the methylation seems to be a necessary but not a sufficient 

requirement for gene expression). 

The developing pea cotyledon provides us with a well documented 

system with several interesting features: the storage protein genes 

are tissue-specific in their expression; during the latter phase of 

seed development, cell division has ceased but endoreduplication 

occurs; a mutant line of Pisum sativum exists, which has on abnormal 

vicilin subuirit synthesis. 

1:5:2 Objectives of the project 

The overall aim of this project is to investigate the role of 
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cytosine methylation in gene expression in Piswn sativwn . Much is 

documented about cytosine methylation in vertebrates, and relatively 

little in relation to higher plants. The following areas are to be 

investigated:-

1) to look for evidence of methylated and unmethylated domains in 

genomic DNA of Pisum sativwn 

2) to observe any developmentally related changes in the methylation 

status of the ribosonal genes, using the isoschizomeric pairs Msp 

I/Hpa II and Bst NI /Eco RII 

3) to observe any developmentally related changes in the methylation 

status of the legumin gene family, using the isoschizomers 

Msp I/Hpa II, eDNA probes and specific legumin gene probes 

4) by analysis of established sequence data of a legumin gene and a 

legumin pseudogene, investigate the frequency of occurrence of CG 

dinucleotides and look for evidence of 'CG-suppression' 

5) by analysis of established sequence data of a legumin gene and a 

legumin pseudogene, investigate the microenvironment of the CG 

dinucleotide 

6) to observe any developmentally related changes in the methylation 

status of the vicilin gene family, using the isoschizomers 

Msp I/Hpa II and various eDNA probes 

7) to look at a Piswn sativum vicilin deficient mutant and to 

investigate a possible altered methylation pattern. 



2: MATERIALS AND METHODS 



- 56 -

2:1 Materials 

2:1:1 Biological Materials 

Seeds of Pisum sativum L. variety 1 Fel tham First 1 were obtained 

from Sutton Seeds Ltd, Reading Berks, UK and those from pea lines 200 

arid 5478 were obtained from Dr S Blixt, Weibullsholm, Landskrona, 

Sweden. 

2:1:2 Chemicals and non-biological materials 

All chemicals (exept those specifically indicated below) were 

obtained from either British Drug Houses Ltd, Poole, Dorset, UK or 

Koch-Light Laboratories Ltd, Colnbrook, Berks UK and were of the 

purest grade available. 

The various antibiotics used for plasmid selection, acridine 

orange, bovine serum albumin (BSA), dextran sulphate (sodium salt), 

dithiothreitol (DDT), egg white lysozyme, ethylene glycol bis 

(s-amino-ethyl ether)-N,N,N 1 ,N 1 -tetraacetic acid (EGTA), ethidium 

bromide, glyoxal, heparin (sodium salt grade II from porcine 

intestinal mucosa) , herring sperm DNA, pronase 1{<, 1 and pronase 1 P 1 
, 

sodium N-lauryl sarcosine, sucrose and 1 Trizma 1 base fTris (hydroxy­

methyl) amino methane J were all obtained from Sigma Chemical Company, 

Poole Dorset, UK. 3, 5-diaminobenzoic acid was obtained from Aldrich 

Chemical Company, New Road, Gillingham, Dorset UK. 

Bactotryptone, bactoagar and yeast extract came from Difco 

Laboratories, Detroit, Michigan, USA. 

Restriction enzymes were obtained from either Bethesda Research 
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Laboratories (BRL), Cambridge, (SV40 DNA~ low melting point agarose and 

nuclease-free bovine serum albumin also came from this source) or 

Boehringer Mannheim Corporation Ltd. (BCL, Bell Lane, Lewes, East 

Sussex, UK, or DuPont (UK) Ltd, (New England Nuclear products), 

Stevenage, Herts, UK, or New England Biolabs, CP Laboratories Ltd, 

Bishops Stortford, Herts, UK. 

'Repelcot' siliconising fluid was obtained from Hopkins and 

Williams, Romford, UK. 

Ficoll 400 and Sephadex G-50 superfine were obtained from Phamacia 

Fine Chemicals, Uppsala, Sweden. 

Agarose, high gelling temperature agasose and 'Gellbond' were 

obtained from Miles Laboratories Ltd, Stoke Poges, Slough, Berks UK. 

Guanidinium thiocyanate and guanidinium hydrochloride were 

obtained from 'Fluka' 

Derbyshire, UK. 

Fluorochem Ltd, Peakdale Road, Glossop, 

Nick translation kits and 3 2 P-dCTP were obtained from Amersham 

International p.l.c. White Lion Road, Amersham, Bucks UK. 

Schleicher and Schull nitrocellulose filters ( BA 85,0. 45Jlm were 

obtained from Anderman and Company Ltd, Kingston-Upon-Thames, Surrey, 

UK. 

Diethylaminoethylcellulose (DEAE-cellulose paper (DE 81), glass 

fibre filters (GF-C) and 3MM paper were all obtained from Whatman Ltd, 

Maidstone, Kent, UK. 

Dialysis tubing (size 1 - 8/32") came from Medicall International 

Ltd, 239 Liverpool Road, London UK. 
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Fuji RX-100 X-ray film was obtained from· Fuji Ltd, Swindon, Wilts., 

UK. 

Dupont 'Lightning Plus Cronex 1 intensifying screens were obtained 

from E. I. DuPont de Nemours and Co (Inc) , Photoproducts Department, 

Wedgward Way, Stevenage, Herts UK. 

pDUB6, pDUB7, pDUB9, pDUB24, pDUB25, pDUB27 and Aleg1, and Aleg2 

were provided by Dr R.R.D. Croy and E.coLi RNA, cauliflower mosaic 

virus RNA and pea Poly( A)- RNA were kindly donated by Dr I. M. Evans, 

Department of Botany, University of Durham, UK. 

Sequence data for legumin gene A was taken from Lycett et a L , 

1984 whilst data for the legumin pseudogene D, was kindly provided by 

Mr M.D. Levasseur, Department of Botany, University of Durham UK. 

2:2 Methods 

2:2:1 Reagents and equipment 

Reagents were either autoclaved after preparation or prepared 

using sterile water and containers. Plastic microfuge tubes and 

glassware used in association with nucleic acids, were siliconised 

whth 1 Repel cote 1 and autoclaved before use. 0.1% 8-hydroxyquinoline 

was included in all phenol used, to enable it to be stored at 4°C. 

2:2:2 Ethanol precipitation and resuspension of nucleic acids 

DNA was precipitated with 0.1 vol. acetate solution (5m-ammonium 

acetate; 100mM-magnesium acetate; pH5. 6) and 2 vol. cold absolute 

ethanol (-20°C). Total RNA was precipitated with 0.1 vol 3M-sodium 
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acetate and 3 vol. cold absolue ethanol ( -20°C )·. 

The precipitated nucleic acid was pelleted by centrifugation (for 

genomic DNA and total RNA Sorvall RC-58 Superspeed centrifuge; HB4 

rotor; 10,000r.p.m.; 20min; 0°C. For gene fragments or plasmid 

inserts: MS~ Microcentaur; 15min; 4°C). The pelleted DNA was washed 

twice with 80%(v/v) ethanol (total RNA was washed twice with 70% (v/v) 

ethanol) and the nucleic acids were repelleted by centrufugation as 

before. 

The washed pellet was dried in vacuo and resuspended in sterile 

water. Small fragments of DNA and the total · RNA were resuspended on 

ice (30min. to 2h.). Genomic DNA was resuspended using an ice bucket 

on a shaker. (Resuspension under these conditions took 2-3d but the 

resultant DNA was less sheared than when resuspended overnight, on a 

rotary mixer, at 4°C). 

2:2:3 Spectrophotometric analysis of nucleic acids 

After resuspension the concentration of the nucleic acids was 

measured using a Pye-Unicam SP8-150 u.v./vis scanning spectro­

photometer. An 0. D. 
256 

of 0. 020 (in a 1cm 1 ight path, in a quartz 

cuvette) corresponds to a DNA concentration of about 1~g/ml. Under 

similar conditions, an RNA concentration of 1~g/ml corresponds to an 

O.D.
256 

of 0.025. The O.D.
256 

of 1~1 aliquots of the samples, 

dispersed in 1ml of sterile water, were routinely assessed. In 

addition, the purity of the nucleic acids was checked by scanning the 

sample from 320nm to 200nm. A ratio of 0. D. 
260

: 0. D. 
280 

of greater 

than 1. 8 was used to confirm that the nucleic acid preparation was 
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free from contamination ( eg protein or phenol) .. 

It was not found possible to obtain accurate concentrations for 

genomic DNA samples by this method and consequently their 

concentration was also determined by a fluorometric method (see 

Section 2:2:6). 

2:2 :4' Growth of biological materials 

Pea seeds were germinated for 4 days in a 25°C temperature 

controlled spray room, transferred to water culture bottles in a 

1 Warren Sherer 1 growth cabinet, model GEL 511-38 and grown under 

controlled environmental conditions of light (17h daylength) and 

temperature (25°C day; l8°C night), similar to that described by 

Evans et aL ( 1979). The pea plants were grown with a liquid nutrient 

source ( 1 Phostrogen 1
). 

The pea plants were grown either for 9 days, when leaf material 

was harvested,or to maturity when pea seeds were harvested at various 

states of development. The testas and embryonic axes were discarded 

and the cotyledons (or 9 day old leaves) were frozen under liquid 

nitrogen and stored at -80°C until required for DNA extraction. 

2:2: ·fD Extraction and purification of genomic DNA 

Two centrifuges were used during the extraction and purification 

of genomic DNA. Where the term 1 Sorvall 1 is used, unless stated 

otherwise this refers to a Sorvall RC-5B superspeed centrifuge and an 

HB4 rotor; where the term 1 Prepspin 1 is used, this refers to an MSE 

Prepspin 65 centrifuge and a 10 x lOml rotor. 
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DNA extraction was by a method similar to. that of Graham (1978). 

Frozen tissue was finely ground under liquid nitrogen, with a pestle 

and mortar. Homogenising buffer (O.lM-NaCl; 0.025M-EDTA (ethylene 

diaminotetra-acetic acid) pH 8.0; 2% (w/v) SDS (sodium dodecyl 

sulphate); 0.1% (v/v) diethyl pyrocarbonate) was added until the 

extract became a thick suspension. The volume was measured, 5M-sodium 

perchlorate added to give a final concentration of 1M, quickly 

followed by 0.5vol. of predistilled phenol and 0.5vol. of chloroform/ 

octanol (99:1(v/v)). 

This suspension was mixed on a rotary shaker (50min; 4°C), 

centrifuged in corex glass tubes (Sorvall; 8,700 r.p.m.; 5min; l0°C) 

and the sup~rnatant re-extracted with an equal volume of chloroform/ 

octanol (99:1 (v/v)) and recentrifuged (Sorvall; 8,700r.p.m.; lmin; 

l0°C). 

2vol. cold ethanol ( -20°C) were added to the supernatant, the 

precipitated DNA collected on a glass hook and surplus ethanol removed 

1-n vacuo and the DNA dissolved in resuspension buffer 1 RB 1 

( 50mM-Tris/HCl [ Tris (hydroxymethyl) aminomethane ] ; lOmM-EDTA; pH 

8.0), overnight on a rotary shaker, at 4°C. 

Self digested Pronase 1 P 1 (RB buffer; 2H; 37°C) was added to the 

resuspended DNA, to a concentration of 500JJg/ml and incubated for a 

further 3h at 37°C. 

The DNA was isolated by caesium chloride density gradient 

centrifugation (wt. of CsCl added= 0.94 x wt. of supernatant), in the 

presence of ethidium bromide (250pg/ml) (Prepspin; 60,000r.p.m.; 36h; 

l5°C; or a Sorvall ultracentrifuge OTD 65B; vertical rotor; 44,000 
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r.p.m.; 20h; 15°C). The semi-purified DNA band, removed from the 

gradient, using a syringe and wide bore hypodermic needle, was 

subjected to a second density gradient centrifugation, under similar 

conditions. 

The purified DNA band was again removed from the gradient and 

repeatedly partitioned with RB-saturated amyl alcohol, until all the 

ethidium bromide had been removed. The DNA was dialysed (36h; 4°C) in 

freshly prepared dialysis tubing (size 1-8/32", boiled for 20min, 

10mM-EDTA, then rinsed in distilled water), with many changes of 

buffer. 

1 vol. phenol was mixed with the contents of the dialysis tubing 

(Sorvall; 8,000r.p.m.; 5 min; 4°C) and the aqueous phase re-extracted 

with 1 vol. ether to remove residual phenol. This was allowed to stand 

(5 min) and most of the upper organic phase was removed by pipette and 

the residual ether was 'blown off' with nitrogen. The DNA was ethanol 

precipitated, resuspended (see Section 2:2: 2) and its concentration 

was determined (see Sections 2:2:3 and 2:2:6). 

2:2:6 Fluorometric estimation of genomic DNA concentration 

Fluorometric analysis of DNA concentration was performed by the 

method of Thomas and Faraquar (1978), ie ethanol precipitation, in the 

presence of nuclease-free bovine serum albumin (BSA), of the sample 

genomic or standard calf thymus DNA, followed by incubation in the 

presence of 3, 5-diaminobenzoic acid (DABA) at 60° for 30 mins. The 

method was exactly as published except that 20~ of DABA were added to 

each assay and the incubation was stopped with 2ml of lM-HCl. The 
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fluorescence was measured using a Baird Fluoripoint spectro­

fluorimeter, set at· 400nm excitation wavelength and 505nm emission 

wavelength. 

2:2:7 Restriction endonuclease digestion 

DNA samples were digested to completion, in the buffer recommended 

by the manufactures, using a 5- to 10-fold excess of restriction 

enzyme~. Nuclease-free BSA was included in restrictions (O.l~g 

BSA/lOml reaction volume), as recommended by BRL. Enzymatic reactions 

were terminated by heat inactivation of the enzyme ( 70°C; 10 mins) 

(Bst NI Normally restricts at 60°C and therefore these samples were 

transferred to an ice bucket at the end of their restrictions). 

Double restriction experiments were performed by heat in 

activation of the first enzyme and digestion of aliquots of thefirst 

reaction mixture by a second restriction enzyme; , under appropriate 

buffer conditions. This second enzyme was in activated as previously 

described. 

2:2:8 Use of an SV40 internal control 

For some experiments, O.l~g SV40 DNA was included in the initial 

reaction mixture, to monitor the activity of the various 

isoschizomers used and to ensure that any differential digestion 

observed, was due neither to a faulty batch of enzyme nor to the 

presence of inhibitors in the genomic DNA preparation. 
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2:2:9 Agarose gel electrophoresis 

Restricted DNA fragments were separated by electrophoresis in 

horizontal, submerged agarose gels, containing 0.5-2%(w/v) agrose; 

1~g/ml ethidium bromide and a Tris/EDTA buffer (40mM-Tris/acetic acid, 

pH 7.7;1mM-EDTA). Before loading onto the gel, restricted DNA 

fragments were mixed with 0. 5 vol of agarose loading beads 

(10mM-Tris/HCL, pH 8.0; 10mM-EDTA; 31.25% (v/v) glycerol; 0.2% (w/v) 

agarose; 0.1w/v bromophenol blue; 0.1% (w/v) xylene cyanol; 0.2% (w/v) 

fast orange 1 G 1 
, autoclaved and when set extruded through a syringe 

and fine needle). For experiments which included a densitometric 

scanning of the gel negative loading beads were prepared which 

contained fast orange 1 G 1 as the only dye. This runs in front of the 

smallest DNA fragments and thus does not interfere with quantification 

of the distribution of DNA fragments. 

Gels separating restricted genomic DNA fragments were run 

overnight (16-18h; 30V), whilst gels separating restricted plasmid DNA 

fragments were run much faster (3-4h; 100-120V). 

Separated DNA fragments were visualised using ultraviolet 

(u.v)(254nm) induced fluorescence of the DNA-ethidium bromide complex 

and the fluorescence was photographed through a red filter, using a 

"Polaroid" land camera and 3,000 ASA positive film (type 665). The 

negatives were fixed in sodium metabisulphite (10% (w/v)) and allowed 

to dry at room temperature. 

2:2:10 Transfer of DNA from agarose gels to nitrocellulose filters. 

The method used for the transfer of DNA to nitrocellulose filters 
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was essentially that of Southern (1975). The gels were treated in flat' 

bottomed glass dishes. Gels which contained small DNA fragments 

(< 500bp) were initially depurinated (2 x lOmin; 0.25M-Hel). All gels 

were denatured in 2 x 20min washes, with agitation, in denaturing 

buffer (1.5M-Nael; 0.5M-NaOH; lmM-EDTA), then neutralised in 3 x 20min 

washed (with agitation) in neutralising buffer (3M-NaCl; lmM-EDTA; 

0.5M-Tris/Hel; pH 7.0), or until the fast orange 1 G1 band had resumed 

its bright orange colour. 

Whi 1st the gel was being neutralised, a sheet of ni trocelulose 

paper was prewetted (by floating on top of distilled water, to exclude 

all the air, and then submerging in the water for 10 min), prior to 

being equilibrated in 20 X sse (3M-NaCl; 0.3M-sodium citrate; pH 7.0) 

for 15min. 

The blotting apparatus was essentially a glass plate held above a 

resevoir containing 20 x sse. A piece of Whatman 3MM paper (25cm x 

45cm) stretched from the resevoir over the glass plate and back into 

the resevoir. This I wick I was presoaked with 20 X sse and all air 

bubbles, between the wick and plate were gently excluded. The prepared 

gel was placed on the prewetted wick, again ensuring that no air 

bubbles were trapped between the wick and gel and the gel surrounded 

by 1 clingfilm 1 before being overlaid with the equilibrated nitro­

cellulose filter. This ensured that all transfer buffer reaching the 

filter, had passed through the gel and had not been transferred 

directly from the wicks. The filter was checked to see that no air 

bubbles were trapped beneath it and was then overlaid with two pieces 

of Whatman 3MM paper (cut slightly larger than the filter and 
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presoaked in 20 X sse) and four pieces of dry Whatman 3MM paper. Three 

layers of disposable nappies were then placed on top of the Whatman 

paper. A glass plate and a 51 conical flask containing about 1200ml of 

water were used as a weight, to ensure the capillary transfer of DNA 

fragments from the gel to the nitrocellulose filter. 

Blotting was allowed to proceed for 20h, when the volume of water 

in the conical flask was increased to 21 and blotting allowed to 

continue for a futher 1h. The blotting apparatus was dismantled and 

the nitrocellulose filter was removed, with the gel attached. The 

limits of the gel and the position of the wells were . marked on the 

filter in 'biro' ink. The gel was removed from the filter and placed 

on the u. v. transilluminator to check that transfer of the DNA had 

occurred. The nitrocellulose filter was blotted dry between two sheets 

of dry Whatman 3MM paper then baked between four sheets of dry Whatman 

3MM paper and two glass plates, in a vacuum oven ( 80°C; 2h). After 

baking, the filter was stored at room temperature·until used. 

2:2:11 Densitometric scanning.Ofthe gel negative 

Individual tracks, cut from the negatives of Bst N1/Eco RII 

digests of cotyl~don and leaf genomic DNA, were scanned on a Pye 

Unican SP500 spectrometer. The negatives obtained from Msp 1/Hpa II 

digested genomic DNA were scanned on an LKB ( Bromma) 2202 Ul troscan 

laser densitameter with an LKB (Bromma) 2220 recording integrator. 

Analysis of the densitometer scans, was essentially that of 

Tanford ( 1961) as modified by Kunnath and Locker ( 1982a). The scans 

were divided into molecular weight intervals, calculated from the 
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migration of standard DNA molecules. The percentage composition of the 

digestion was calculated from the areas of these intervals as a 

percentage of the total area of the scan. Cumulative molecular weight 

distributions, mass average weights (M ) and number average molecular 
w 

weight ( M ) were calculated (see below). M analysis is weighted 
n w 

towards larger molecules, whilst Mn analysis is weighted towards 

smaller molecules. However, because M is related to the number of 
n 

molecules it is also related to the number of sites for a particular 

restriction enzyme. Therefore, the values obtained can be used to 

obtain an estimation of the degree of methylation of the genomic DNA. 

When determining M and M the molecular weight midpoint (M.) was 
w n 1 

used as the average molecular weight for the interval (i). The mass 

fraction (W.) and number fraction (X.) were calculated for each inter-
1 1 

val. The mass average molecular weight (M ) and the number average 
n 

molecular weight (Mn) were calculated (M =(W.M. and M 
w 1 1 n 

=~X.M.) 
1 1 

(Tanford, op cit ). The percentage of methylation was calculated 

(methylation= 1-((M M I) /(M H II)) .100) (Kunnath and Locker, op n sp n pa 

cit ). To observe changes in the distribution of the digested DNA, the 

ratio I -r' was calculated (r=M /M ) ( ibid ). 
w n 

Mw and ~ were calculated using a 'Supercalc' programme on an 

Apricot PCl and also using an 'Abacus' programme on a Sinclair QL. 

2:2:12 Extraction of total RNA from pea leaves and cotyledons 

The method of Langridge et aL ( 1982) was the preferred method 

used. 
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2:2:12:1 Isolation of total RNA in the presence of guanidinium 

thiocyanate 

Total RNA was isolated essentially by the method of Chirgwin et 

al (1979) as adapted by the EMBO course on Ti plasmids, at Gent in 

August 1982. Reagents and basic procedures are as for Chirgwin et al 

but the lengths and conditions of centrifugation have been altered. 

RNA was extracted in the presence of guanidinium thiocyanate. The 

crude extract was cleared (Sorvall superspeed RC5B; HB4 rotor; 

9,000rpm; 30min; 4°C). The cleared supernatant was layered onto 6ml 

CsCl cushions in 25ml polycarbonate tubes and the RNA was pelleted 

through the cushion (Prepspin 65 centifuge; 3x35ml rotor; 25,000 rpm; 

24h; 40°C). The supernatant was removed by water aspiration, the 

pellet resuspended (2min; 68°C) in guanidinium hydrocholoride solution 

and insoluble material removed (Sorval RC5B; HB4 rotor; 6,000 rpm; 15 

min; 40°C) 

RNA was precipitated as describe,d by Chirgwin, washed twice in 70% 

ethanol (Sorvall RC5B; HB4·rotor; 9,000 rpm; 15 min; 0°C), resuspended 

in sterile water (see section 2:2:2) and the concentration determined 

(see section 2:2:3) 

2:2:12:~: Isolation of total RNA using hot SDS 

The method used was essentially the same as Hall et al ( 1978), 

with extraction of RNA in the presence of a hot ( 100°C) SDS-borate 

buffer with di thiothrei tol ( DTT). The reagents and initial methods 

used were the same as those published but the latter procedures were 

modified from those published. 
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Centrifugations used a Sorvall RC-5B superspeed and HB4 rotor 

(10,000 rpm; 10 min; 0°C). The LiC1 precipitated and washed pellet was 

dissoved in 2% potassium acetate, ·heat shocked (2min; 68°C) and 

insoluble material was removed by centifugation. 

The RNA was precipitated from the supernatant with 3 vol. ethanol 

(overnight; -20°C), pelleted and dissolved (on ice with agitation), in 

TE buffer ( 10mM-Tri s/HC1, pH 7. 5; 1mm-EDTA) . The RNA was extracted 

twice with phenol/chloroform/isoamylalcohol (25:24:1), ethanol 

reprecipi tated (see section 2:2:2) and the concentration determined 

(see section 2:2:3). 

2:2:12:3 Rapid method for the extraction of total RNA 

This method was the same as that used by Langridge et aL (1982) to 

isolate zein precursor ~RNAs from maize endosperms. It involves 

extraction of the RNA in a sucrose-Tris buffer containing 

iodoacetamide. After a brief centrifugation, to remove cell debris, 

the supernatant is rapidly mixed with 2%(w/v) SDS in phenol/chloroform 

( 1:1). Langridge et a L ( op cit ) emphasise that the time from the 

addition of buffer to the tissue, to the extraction of the supernatant 

with SDS/phenol/chloroform, should be between 3 and 5min. During the 

extraction of total RNA from pea lines 200 and 5478, this time varied 

from 4Yz to 6 min. Total RNA was recovered from the aqueous phase as 

described by Langridge et aL , ethanol precipitated (see section 

2:2:2) and concentration determined (see section 2:2:3). 
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2:2:13 Electrophoreis of RNA on glyoxal gels ana subsequent transfer 

to nitrocellulose filters 

2ml of 30% (w/v) glyoxal were deionised by stirring (under 

nitrogen) with 1g o~ Amberlite resin. RNA samples were glyoxalated in 

a manner similar to that of McMaster and Carmichael (1977) and Thomas 

( 1980), by adding in order: 25 111 redistilled dimethyl sulphoxide 

(DMSO); 2.5111 0.2M sodium phosphate buffer, pH7.0; 7.1 11 1 deionized 

glyoxal; sample RNA in 15.3 11l H
2
o. This mixture was incubated to 

denature the RNA (60 min; 50°C). 

An agarose gel was prepared (1.5%(w/v) high gelling temperature 

agarose in running buffer (10mM-sodium phosphate buffer; pH6.8)). The 

gel was poured onto the hydrophillic side of a sheet of 9 Gellbond'~ 

allowed to set and was transferred to a submarine electropheresis 

tank. 

The long edges of the Gellbond were weighted down with two glass 

rods and the g'el submerged under running buffer. The glyoxal a ted RNA 

samples were mixed with 0.5vol of glyoxal agarose loading beads 

(10mM-sodium phosphate buffer, pH 6.8; 31.25%(v/v) glycerol; 0.2%(w/v) 

agarose; 0.1%(w/v) bromopheno~ blue) and loaded onto the gel. E coli 

RNA, cauliflower mosaic virus RNA and pea Poly (A) RNA were used as 

standards. Electrophoresis was carried out for 4h at 120V, with 

recirculation of the running buffer. 

The gel was stained with freshly prepared acridine orange in 

10mM-sodium phosphate buffer, pH6.8 (30mg/l; 15min; 4°C; in the dark) 

and destained (overnight; in the dark; 4 °C) in phosphate buffer. The 

u.v. induced fluorescence of the. acridine orange-RNA complex was 

photographed in a manner similar to that employed for ethidium 
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bromide-DNA complexes (see section 2:2:9). 

RNA gels which were required for 'Northern Blots' were not stained 

in acridine orange. The marker RNA tracks were removed, stained and 

photographed as a record, whilst the rest of the gel was immediately 

blotted, in a similar manner to that described for 'Southern Blots' 

(see section 2:2:10)(see also Thomas, 1980). 

2:2:14 Plasmid Preparation Method 

Two methods were used. The first was a mini prep method which 

isolated RNA-contaminated plasmid DNA in a quantity sufficient to 

enable identification of appropriate clones. The second method was a 

maxiprep of purified plasmid DNA. 

2:2:14:1 Plasmid miniprep method 

The method used was essentially that of Birnboim and Doly (1979). 

The initial subcloning of legumin gene fragments into a pUC8 vector, 

the sebsequent traansormation of E. coLi and identification of 

transformed clones and the initial lysis of these cells were all done 

by Mr. D. Bown, Department of Botany, University of Durham. 

The initial growth and lysis of the cells was as follows. The 

cells were grown overnight (37°C) in 2ml YT medium (YT medium is per 

litre: 8g bactotryptone; 5g yeast extract; 1g NaCL; 50mg ampicillin) 

Cells were pelleted (MSE Micro-Centaur; 30s), the supernatant 

discarded and 200 1 of freshly prepared lysis solution added 

(25mM-Tris/HC1, pH 8.0; lOmM-EDTA; 50mM-glucose; 2mg/ml lysozyme). The 

tubes were mixed and left on ice (30min). 600 1 of 2M-NaOH/1%(w/v) SDS 

was added, the tubes mixed and left on ice for a futher 5 min. The 
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chromosonal DNA was precipitated by adding 450~~ of 3M-sodium acetate 

(pH 4.8) and leaving the tubes on ice for a further lh. The cleared 

supernatant (MSE Micro-Centaur; 5 min) was ethanol precipitated and 

the pelleted plasmid DNA (MSE Micro-Centaur; 2 min) was redissolved in 

200~1 50mM-Tris/HCL, pH 6.0; lOOmM-sodium acetate and purified by a 

further ethanol re-precipitation before being finally dried in vacuo 

and resuspended in 100 ~1 sterile water and stored at -20°C (See 

section 2:2:2). 

2:2:14:2 Maxi preparation of purified plasmid DNA 

The method used was essentially that of Clewell (1972) and Katz et 

ar (1977) and involved amplification of the plasmid in the presence of 

chloramphenicol followed by SDS-lysis of the cells. 

Overnight (37°C) 'L broth' cultures were grown from plasmid 

bearing strains, stored in 20% glycerol at ~80°C (L broth per litre 

is: lOg tryptone; 5g yeast extract; 5g NaCl; lg glucose; pH7.0; 50mg 

ampicillin; 50mg tetracyclin). The overnight cultures were diluted 

( 1: 25) with fresh L broth ( 250ml) , cultured for a further 6h when 

chloramphenicol was added to a concentration of 150~g/ml, to amplify 

the plasmid DNA overnight. 

The harvested cells (MSE High Speed 18; 10, OOOrpm; lOmin; 4 °C) 

were resuspended in 5ml of 50mM-Tris/HCl, pH8.0 containing 25% (w/v) 

sucrose. Spheroplasts were formed by adding lml of freshly prepared 

lysozyme in sucrose/Tris (lOmg/ml) and incubating with agitation 

(2min; 37°C; then lOmin; 0°C). 5ml 0.2M-EDTA, pH8.0 was added (lOmin; 

0°C) and the cells were finally lysed with 20% ( w /v) SDS and the 

suspension was mixed gently at 20°C until it clarified. 3ml 5M-NaCl 
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was added and after mixing, the suspension was allowed to stand on ice 

for 1h. The extract was cleared, to remove cell debris and the bulk of 

the chromosomal DNA (M5E High Speed 18; 8,000rpm; 90min; 0°C), and 50% 

(w/v) polyethylene glycol (PEG) in 50mM-Tris/HCl, pH8.0 was added to a 

final concentration of 10% PEG and 0.5M NaCl. This was well mixed and 

allowed to stand on ice overnight. 

The precipitated DNA was pelleted ( Sorvall RC-5B; HB4 rotor; 

3,000rpm, 10min, 4°C), redissolved in 5ml TE buffer (10mM-Tris/HCl, pH 

7.5; lmM-EDTA), purified by caesium chloride density gradient 

centrifugation, as previously described for genomic DNA (see section 

2:2:5), ethanol precipitated (see section 2:2:2) and its concentration 

was measured (see section 2:2:3). 

2:2:15 Recovery of DNA fragments from gels 

Recovery of DNA fragments from gels, for the early part of this 

work, used a modification of the method of Dretzen et aL (1981) using 

DEAE-cellulose (diethylaminoethylcellulose). This was not found to be 

a satisfactory method and recovery of DNA was low. Two other methods 

were then used. To isolate DNA fragments required for subsequent 

restriction and not needed for nick-translation, a method utilising 

low melting point ( LMP) agarose was used. DNA fragments which were 

required as probes, were recovered by a method similar to that of Chen 

and Thomas ( 1980) which used perchlorate isolation- on Whatman GF-C 

disks. 

2.2.15:1 Recovery of DNA fragments using DEAE-cellulose (Whatman DE81) 

The method used was identical to that described by Dretzen et 
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aL ( Loc cit ), except that the prepared pieces·of DEAE-cellulose were 

dried in a vacuum oven (80°C; lh) and stored at room temperature until 

required. In addition, because agarose gels were electrophoresed in 

the presence of ethidium bromide, it was not necessary to presoak the 

DEAE-cellulose in ethidium bromide. Recovery of the DNA was otherwise 

as described. 

2:2:15:2 Recovery of DNA fragments using low melting point (LMP) 

agarose 

The method used was adapted from one recommended by BRL. The 

agarose gel was prepared using LMP agarose and Tris/EDTA gel buffer 

(see section 2:2:9). The gel solution was cooled to below 37°C before 

pouring. The gel surround and comb were not removed until the gel was 

in the electrophoresis tank and submerged under Tris/EDTA buffer (this 

was found to be necessary because LMP gels were very fragile). The gel 

was pre-run, increasing the voltage gradually during a lOmin period. 

Apart from this, electrophoresis and sample preparation was as normal 

(see sections 2:2:7 and 2:2:9). 

After electrophoresis the gel was viewed on a u.v. 

transilluminator, the desired band was cut out with a sterile scalpel 

and placed in a 1. 5ml eppendorf tube and the agarose was mel ted 

(lOmin; 65°C). 2vol. of 50mM-Tris/HCl, pH 8.0; 0.5mM-EDTA were added 

and the mixture incubated (15min; 37°C). The agarose was precipitated 

with an equal vol. of buffer saturated phenol (MSE Micro-Centaur; 

5min) , the upper aqueous phase re-extracted with an equal vol. of 

phenol (MSE Micro-Centaur; 5min) and residual phenol in the aqueous 

layer was removed by partitioning with chloroform/isoamyl alcohol 
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(24:1). The DNA was ethanol precipitated (see section 2:2:2). 

2:2:15:3 Recovery of DNA fragments using Whatman GF-C discs 

This was adapted from the method of Chen and Thomas ( 1980). 

Fragments were separated on a normal agarose gel (0.5%). The gel was 

viewed on a u. v. transilluminator and the gel slice containing the 

required DNA fragment was cut out, with a sterile scalpel, transferred 

to a 1.5ml eppendorf tube and dissolved in 2-3vol 8M-sodium 

perchlorate. 

Two superimposed 6mm Whatman GF-C disks were placed on two pieces 

of Whatman 3MM paper on a disposable nappy. All solutions were applied 

to the GF-C disks in 15-20~1 aliquots and each aliquot allowed to soak 

through the GF-C disks, into the lower absorbant material, before the 

next aliquot was applied. The GF-C disks were prepared with 300~1 of 

6M-sodium perchlorate before the 8M-sodium perchlorate/DNA/agarose was 

applied. 2ml of 6M-sodium perchlorate in TE buffer and 1.5ml absolute 

ethanol (-20°C) were applied to the disks, to remove residual agarose 

and perchlorate. 

The GF-C disks, with their bound DNA, were dried at room 

temperature (20min) and the DNA eluted by incubating them twice, in a 

0.5ml eppendorf tube, with 20~1 sterile water (37°C; lh). The eluted 

DNA was collected by piercing the bottom of the tube and collecting 

the elutant in a 1.5ml eppendorf tube (MSE Micro-Centaur; 5min). The 

DNA was stored at -80°C until required for nicks translation. 

2:2:16 32 P-dCTP labelling of DNA probes (nick-translation) 

Radioactive probes were 32 P-dCTP labelled by nick translation, by 
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the method stated in the Amersham nick translation kit pamphlet 

pl/86/81/4. Typically 0.1J1g of DNA was nick translated. A modified 

'procedure D' was used (ie 0.1Jlg of DNA in a reaction volume of 20J1l) 

for eDNA and legumin gene fragment probes, to obtain on average a 

8 
specific activity· of 2-4 x 10 cpm/JlgDNA. For ribosomal (pHA1) and 

SV40 probes and legumin gene probes required for restriction mapping, 

a modified 'procedure A' was used (0.1~ of DNA in a reaction volume 

of 20Jll), to obtain on average a specific activity of 1-2 x 10
7 

cpm/JlgDNA. 

Nick translation was carried out at 15°C for 2h. (A time course 

. study of standard ADNA had indicated that maximum incorporation of 

32 P-dCTP was achieved after 2h). The reaction was terminated with 50Jll 

0.2M-EDTA, pH 8.0 and the labelled DNA was separated from the 

unincorporated nucleotide, on a Sephadex G-50 superfine column, 

prepared in a flat-bottomed 10ml syringe, with a siliconised glass 

wool plug at the bottom. The Sephadex was freshly swollen (1h; 90°C) 

in Amersham's recommended column buffer (50mM-Tris/HCl, pH 7.5; 

10mM-EDTA; 150mM-NaCl; 0.1% (w/v) SDS). The column was equilibrated 

' 
with column buffer before the reaction mixture was loaded. 0. 4ml 

fractions were collected and those containing the labelled probe were 

initially detected with a Geiger-Muller counter. The hottest fractions 

were identified by counting 1J11 aliquots in 5ml scintillation fluid 

(toluene/triton (2:1) with 5g/l 2,5-diphenyloxazole (PPO) on a Packard 

Tricarb scintillation counter, which has a 90% efficiency for counting 

32 P. This enabled the specific activity of the probe to be calculated. 

The hottest fractions were pooled (typically about 1.5ml) and used 

directly for the hybridization of nitrocellulose blots. 
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Periodically, 1 ].1l aliquots of the pooled · fractions were tri­

chloracetic acid (TeA) precipitated. The precipitates were collected 

on cellulose acetate filters (Millipore), rinsed with ethanol, dried 

in a vacuum oven (10min; 80°e) and counted using triton-free 

scintillation fluid (300mg/l 1,4-di-2(5-phenyloxazolyl)benzene 

(POPOP); 3g/l PPO; in toluene). This procedure was used to confirm the 

specific activity of the probes used. 

2:2:17 Hybridization of the 32 P-labelled probe to DNA or RNA blots 

Basically, two hybridization procedures were used for the 

hybridization of 32 P-labelled probes to 'Southern' blotted pea genomic 

DNA. The first was the Schleicher and Schull version employing SSe and 

Denhardt' s solution. A completely different and novel hybridization 

system was also successfully used. This was Singh and Jones' ( 1984) 

heparin/dextran sulphate system. It has a simple protocol and a 

greatly reduced hybridization volume and therefore the probe is 

relatively more concentrated. 

Hybridization of 32 P-labelled probes to RNA (Northern) blots was 

by a method similar to Thomas ( 1980) which, in addition to sse and 

Denhardt's solution, also uses formamide and dextran sulphate. 

Nitrocellulose filters were prehybridized and hybridized in 

heat-sealed plastic bags. The 32 P-labelled DNA probe was denatured by 

boiling for 10 minutes and cooling rapidly on ice, before being added 

to the hybridization solution. Air was excluded from the bag before it 

was resealed. After hybridization the filters were removed from the 

bags and were washed in sealable plastic boxes. The hybridized filters 

were then blotted dry between Whatman 3MM paper and allowed to dry at 
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room temperature between clean dry sheets of Whatman 3MM paper. Any 

individual modification to the hybridization system is mentioned, 

where appropriate, in the 'Results' section. Unless otherwise stated, 

DNA Southern blots were hybridized in the sse system. 

2:2: 17: 1 Schleicher and Schull's SSe/Denhardt' s hybridization system 

for DNA-blots 

The filter was prehybridized for 2-4h at 62°e in 100ml: 5 x sse; 

100~/Ml denatured herring sperm DNA (Maniatis et al , 1982); 5 x 

Denhardt's solution (1. x Denhardt's is 0.02% (w/v) BSA; 0.02% (w/v) 

Ficoll 400; 0.02% (w/v) polyvinylpyrrolidone). Denhardt's solution 

prevents non-specific hybridization of denatured or single stranded 

DNA to the nitrocellulose filter (Denhardt, 1966) but at 

concentrations of less than 5 x Denhardt' s, does not reduce the 

specific annealing of denatured DNA to complementary DNA (Barinaga et 

ar , i981). 

The prehybridization solution was replaced by 50ml of preheated 

hybridization solution (5 x SSe; 1.5 x Denhardt's, 100~g/~ denatured 

herring sperm DNA), the denatured 3 2 P-labelled probe added and the 

filter hybridized with agitation, for 30-40h at 62°e. 

After hybridization the filter was washed ( 50-60°e in 250ml of 

solution) as follows: 2 X 15min, 2 X sse, 0.1% (w/v) SDS; then 

2 x 15min, 0.1 x SSe, 0.1% (w/v) SDS. 

2:2:17:1 Singh and Jones' heparin/dextran sulphate hybridization 

system 

The method used was the same as that published by Singh and Jones 
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except that filters were prehybridized for 3h aQd hybridized for 20h, 

both at 65°C. A note is made in the figure legend, where this method 

has been used. 

2:2:17:3 Hybridization of RNA-blots in SSC and formamide 

This method was adapted f~om that of Thomas (1980) and is similar 

to that described by Barinaga et al (1981). The filters were 

prehybridized (50ml; 7h; 42°C) in 5 x SSC; 5 x Denhardt 1 s; 50% (w/v) 

for~amide; 100~g/ml denatured herring sperm DNA; 0.1% (w/v) SDS. This 

solu~ion was then exchanged for 50ml of 5 x SSC; 2 x Denhardt 1 s; 50% 

(w/v) formamide; 200~g/ml denatured herring sperm DNA; 0.1% (w/v) SDS. 

The denatured probe wa? added and the hybridization solution 

thoroughly mixed. The filters were hybridized at 42°C for 48h. After 

hybridization, the filters were washed at 42°C for 2 x 10min in 2 x 

SSC; 0.1% (w/v) SDS and 2 x 10min in 0.1SSC; 0.1% (w/v) SDS. 

2:2:18 Autoradiography of hybridized DNA and RNA filters 

All filters were air-dried before autoradiography to minimise 

fracturing of the filter during freezing and thawing. The filters were 

mounted on a piece of Whatman 3MM paper, on a glass plate. This glass 

plate was then sealed in a plastic bag, to prevent the filter sticking 

to the film during autoradiography. The plastic bag also prevented 

movement of the filter during exposure. 

Two sticky labels were stuck to the plastic bag alongside the 

well-position and the 1 origin 1 was marked with radioactive ink. A 

sheet of Fuji X-ray film (NIF-RX) was flash sensitised and together 

with a Dupont intensifying screen was placed over the filter. These 
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were held in place by a second glass plate and several elastic bands. 

this exposure assembly was then placed in several black plastic bags 

and finally into an empty Kodak photographic-paper box. 

The genomic filters, probed with storage protein gene or eDNA 

probes were exposed for 3d at -80°C. The film was developed in Ilford 

'Phenisol' developer ( 8min; room temperature) , rinsed in cold water 

and fixed in Kodak fixer (2min; room temperature). The developed film 

was washed in running cold wa_ter ( 30min) and air-dried at room 

temperature. After the filters had completely thawed out, they were 

re-exposed for appropriate lengths of time (typically 2 weeks). 

Southern blots which had been hybridized with the ribosomal probe 

were usually much hotter and were ini tiall,Y exposed overnight, with 

the second exposure being adjusted accordingly. 

2:2:19 Assessment of the autoradiographs 

The extent of CmCGG modification in the legumin gene family was 

determined by a method similar to that of van der Ploeg et aL (1980) 

and Kunnath and Locker ( 1982b). The relative intensities of 

hybridization signal, of all Hpa II bands relating to a specific 

Msp I/Hpa II site, were scored on a 1-16* scale. The percentage 

methylation at a particular site was then calculated as follows:-

%methylation= Total score of partial digest where the site was uncutx 100 
Total score for all bands containing the site 

In some cases it was possible to scan the autoradiographs with an 

LKB (Bromma) 2202 Ultroscan laser densitometer, with an LKB (Bromma) 

2220 recording integrator. From the areas under the individual peaks 

relating to the hybridization bands in question, it was possible to 
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get a more accurate measure of the relative signal intensities. 

All other autoradiographs were assessed visually. 

2:2:20 Analysis of legumin gene sequence data 

The sequence data of legumin gene A (Lycett et aL , 1984) and a 

pseudogene, legumin gene D (Mr M. Levasseur, Department of Botany, 

University of Durham) were analysed. 

2:2:20:1 Distribution of CG dinucleotides in sequence data 

This analysis is based on that of McClelland and Ivarie . (·1982), 

McClelland (1983b) and Adams and Eason (1984a). The sequence data was 

divided into 100 nucleotide segments (working upstream and downstream 

from the site of initiation of translation). The total number of each 

of the individual bases was counted and the observed number of the 

various di- and tri-nucleotides was compared to the number expected if 

the bases occurred at random. The results were examined for evidence 

of CG-suppression in the different gene regions. 

2:2:20:2 Assessment of the microenvironment of the CG dinucleotides 

A method recently published by Adams and Eason (1984a) was used. 

The method compares the number of dinudeotides observed with the 

overall percentage composition of the DNA. The environment of both 100 

nucleotide stretches and the microenvironment surrounding individual 

dinucleotides was examin~d. 

Where analysis has been performed on 100 nucleotide segments, the 

reference line for a random distribution was obtained by plotting the 

expected frequency of ·occurrence for all the dinucleotides, against 
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the percentage composition of the 100 nucleotides. This reference line 

was then used to compare the observed frequencies for 12 different 

dinucleotides. 

Where analysis of the microenvironment has been performed, the 

four bases on either side of the dinucleotide were assessed and the 

number of times that a CG dinucleotide ·occurred in a decanucleotide 

containing 2,3,4 ... 9,10 C + G nucleotides, was plotted as a cumulative 

index against the C + G content of the decanucleotide. 



3: RESULTS 
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3:1 Analysis of the Methylation Status of Pea Genomic DNA 

The extent of methylation at the 5'-CCGG-3' sequences was 

monitored by resistance to digestion by Hpa II (figures Sa and b). 

Both Hpa II and Msp I cut the sequence 5'-CCGG-3', but only Msp I cuts 

the methylated version, 5'-CmCGG-3'. Thus, comparison of the molecular 

weight distributions of genomic DNA cut with each of these enzymes, 

enabled the quanti tation of methylation. Figure 9 (a and b) shows 

comparative laser densitometer scans of Hpa II and Msp I digested 

cotyledon and leaf DNA. 

Figure 10 (a and b) shows cumulative number average molecular 

weight distributions calculated from the scans illustrated in figure 

9. The cotyledon number average distributions appeared to be 

homogeneous curves. However, the distributions obtained for Msp I and 

Hpa II digested leaf DNA were more complex and appeared to consist of 

two main regions, with a break at about· 20kb. The number average 

molecular weights (M ) calculated for each genomic DNA are shown in 
n 

table 2. For cotyledon DNA, digested with Msp I, the M is related to 
n 

the number of molecules and by implication to the number of sites for 

a particular restriction enzyme and it was therefore used to monitor 

the extent of methylation at Msp I/Hpa II sites. The percentage 

methylation of cotyledon genomic DNA was calculated to be 27.3% at 9 

d.a.f. and this value decreased rapidly during the next 48 hours 

reaching a minimum value (11.1%) at 15 d.a.f. before starting to 

slowly increase again towards the later stages of cotyledon 

development. The similarity in Msp I and Hpa II M values obtained for 
n 

leaf genomic DNA precluded an estimation of its methylation status. 
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Figure Sa and b:- Distribution of Msp I and Hpa II digested pea 

genomic DNA. 

Figure Sa:- a) 9 d.a.f. cotyledon DNA (no enzyme) 

b) II II II II + Hpa II 

c) II II II II + Msp I 

d) 10 d.a.f. cotyledon DNA (no enzyme) 

e) II II II + Hpa II 

f) II II II + Msp I 

g) 11 d.a.f. cotyledon DNA (no enzyme) 

h) II II II + Hpa II 

i) II II II + Msp I 

j) Imbibed cotyledon DNA (no enzyme) 

k) II II II + Hpa II 

1) II II II + Msp I 

m) ANM25S + Ava I 

n) pBR322 + Hinf I 

Figure Sb:- a) 12 d.a.f. cotyledon DNA (no enzyme) 

b) II II II + Hpa II 

c) II II II + Msp I 

d) 15 d.a.f. cotyledon DNA (no enzyme) 

e) II II II + Hpa II 

f) II II II + Msp I 

g) 21 d.a.f. cotyledon DNA (no enzyme) 

h) II II II + Hpa II 

i) II II II + Msp I 

j) Leaf DNA (no enzyme) 

k) II II II + Hpa II 

1) II II II + Msp I 

m) >..NM25S + Ava I 

n) pBR322 + Hinf I 

All genomic tracks contained 10~g of DNA and digestions were carried 

out with a 10-fold excess of enzyme. Control genomic DNAs were 

incubated at 37°C with Msp I buffer but no enzyme. 
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Figure 9a:- Laser densitometer scans obtained from a photographic 

negative of the gel illustrated in figure Sa. 

I 9 d.a.f. cotyledon DNA 

II 11 d.a.f. cotyledon DNA 

III 15 d.a.f. cotyledon DNA 

The solid line represents the distribution of DNA fragments obtained 

after Hpa II digestion and the dotted line represents the distribution 

of Msp I derived fragments. 
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Figure 9b:- Laser densitometer scans obtained from a photographic 

negative of the gel illustrated in figure Bb. 

I 21 d.a.f. cotyledon DNA 

II Imbibed cotyledon DNA 

III Leaf DNA 

The solid line represents the distribution of DNA fragments obtained 

after Hpa II digestion and the dotted line represents the distribution 

of Msp I derived fragments. 
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Figures lOa and b:- Cumulative number average molecular weight 

distributions of Msp I and Hpa II digested cotyledon and leaf genomic 

DNA. 

Figure lOa shows the cumulative distributions of Msp I digested 

cotyledon ( () ) an.d leaf ( 0 ) DNA. Figure lOb shows the cumulative 

distribution for Hpa II digested cotyledon ( · 0 ) and leaf ( 0 ) DNA. 

The cotyledon distributions show the mean values (±1 standard error) 

obtained from the 9, 10, 11, 15, 21, d.a.f. and imbibed densitometer 

scans (figures 9a and b). The distributions were plotted using the 

molecular weight midpoint of each interval used for the analysis. 
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Table 2: Average molecular weights and methylation of Msp I/Hpa II digested 
pea genomic DNA 

Genomic DNA Mass average Number average Percentage Ratio 
digestion molecular molecular methylation lrl 

weight 1M I weight 1M I 

(kb) w (kb) n 

9 d. a. f. coty + Hpa II 24.92 4.19 27.31 5.95 

9 d.a.f. coty + Msp_I 18.34 3.04 6.03 

10 d.a.f. coty + Hpa II 23.97 3.53 21.16 6.80 

10 d. a. f. coty + Msp I 18.28 2.78 6.65 

11 d. a. f. coty + Hpa II 22.35 3.36 14.67 6.65 

11 d.a.f. coty + Msp I 18.42 2.87 6.42 

15 d. a. f. coty + Hpa II 24.43 3.99 11.13 6.13 

15 d. a. f. coty + Msp I 19.77 3.54 5.58 

21 d.a.f. coty + Hpa II 23.02 4.12 14.67 5.59 

21 d. a. f. coty + Msp I 20.50 3.5.3 5.84 

Imbibed coty + Hpa II 22.97 4.23 17.84 5.43 

Imbibed coty + Msp I 18.13 3.48 5.21 

Leaf + Hpa II 23.42 4.88 ( -1.61) 4.81 

Leaf + Msp I 21.36 4.96 4.31 

These values were calculated (see section 2:2:9) from the laser densitometer 

scans (figure 9) of the negatives of the gels shown in figure 8. 
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Figure 11 (a and b) shows the cumulative mass average molecular 

weight distributions for cotyledon and leaf genomic DNA. Again the 

cotyledon distributions appeared to be simple, smooth curves, whilst 

those obtained for leaf DNA were complex with apparent breaks in their 

continuity at about 17kb (Msp I) and 30kb (Hpa II). The mass average 

molecular weight (M ) for Msp I digested cotyledon DNA remained fairly 
n 

constant during the early stages of cotyledon development whilst 

increasing during later stages of development. However, for Hpa II 

digested cotyledon DNA, M decreased from 24.9kb (9 d.a.f.) to 23.3kb 
n 

at 11 d.a.f. before increasing again. 

21.4kb (Msp I) and 23.4kb (Hpa II). 

Leaf genomic DNA had M of 
w 

The apparent differences in M and M , between cotyledon and leaf 
n w 

DNA, are summarised in table 3. 

Figure 12 shows an example of the distribution of DNA fragments 

obtained, following digestion of leaf and cotyledon genomic DNA with 

the isoschizomers Bst NI and Eco RII (recognition sequence 5'-CC 

GG-3'). An example of the comparative densitometer scans is shown in 

figure 13. Figures 14 and 15 show the cumulative number average and 

mass average molecular weight distributions. The mass average 

distributions appeared to be homogeneous curves, however, the 

cumulative number average distributions had breaks in their continuity 

at 12.5kb(Eco RII) and 17.5kb (Bst NI). 

Table 4 shows the average molecular weights obtained for Bst NI 

and Eco RII digested cotyledon and leaf DNA. The mass average 

molecular weights obtained for leaf DNA digestions were greater than 

those obtained for cotyledon DNA digestions (Bst NI: 18.3kb for leaf 
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Figures 11a and b:- Cumulative mass average molecular weight 

distributions of Msp I and Hpa II digested cotyledon and leaf genomic 

DNA. 

Figure 11a shows the cumulative distributions for Msp I digested 

cotyledon ( e ) and leaf ( 0 ) DNA. Figure 11b shows the cumulative 

distribution for Hpa Ii digested cotyledon ( e ) and leaf ( 0 ) DNA. 

The cotyledon distributions show the mean values (±1 standard error) 

obtained from the 9, 10, 11, 15, 21, d.a.f. and imbibed densitometer. 

scans (figures 9a and b). The distributions were plotted using the 

molecular weight midpoint, of each interval used for the analysis. 
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Table 3: Comparison of leaf and cotyledon average molecular weight 

Average 
molecular 
weights 

Hpa liM w 
Msp I M 

w 
Hpa liM n 
Msp I M 

n 

Cotyledon DNA 
Mean S.D. 

n-1 (kb) 

23.61 0.99 

18.91 0.99 

3.90 0.37 

3.20 0.35 

Leaf DNA 
(kb) 

23.42 

21.36 

4.88 

4.95 

Table 4: Average molecular weights and methylation of Bst NI/Eco RII 
digested pea genomic DNA 

Genomic DNA Mass average Number average Percentage 
digestion molecular molecular methylation 

weight weight 
1M I (kb) IM I (kb) w n 

11 d.a.f. coty + Bst NI 20.57 3.28 67.30 

11 d. a. f. coty + Eco Rli 31.60 10.03 

22 d.a.f. coty + Bst NI 21.93 2.40 83.48 

22 d.a.f. coty + Eco Rli 31.49 14.52 

Leaf + Bst NI 18.25 2.·44 78.73 

Leaf + Eco Rli 34.92 11.45 

Ratio 
lrl 

6.27 

3.15 

9.14 

2.17 

7.45 

3.05 
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Figure 12:- Gel photograph showing the distribution of Bst NI and Eco 

RII digested genomic DNA. 

a) 11 d.a.f. cotyledon 

b) II II II 

c) 15 d.a.f. cotyledon 

d) II II II 

e) 22 d.a.f. cotyledon 

f) II II II 

g) Leaf DNA 

h) II II 

i) 250pg pHA 1 

DNA + Bst NI 

II 

DNA 

II 

DNA 
II 

+ Eco RII 

+ Bst NI 

+ Eco RII 

+ Bst NI 

+ Eco RII 

+ Bst NI 

+ Eco RII 

j) ANM258 +Hind III; ANM258 + Eco RI 

All genomic tracks contained 2~g of DNA and digestion were carried out 

with a 5-fold excess of enzyme. 
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Figure 13:- Densitometer scans obtained from a photographic negative 

of the gel illustrated in figure 12. 

I 11 d.a.f. cotyledon DNA 

II 22 d.a.f. cotyledon DNA 

III Leaf DNA 

The solid line represents the distribution of DNA fragments obtained 

after Eco RII digestion and the dotted line represents the 

distribution of Bst NI derived fragments. 
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Figure 14:- Cumulative number average molecular weight distributions 

of Bst NI. and Eco RII digested genomic DNA. 

The cumulative distributions show the mean values (±1 standard error) 

of Bst NI e and Eco RII ( 0 digested genomic DNA. The 

distributions were plotted using the molecular weight midpoint of each 

interval used in the analysis. 
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Figure 15:- Cumulative rnass average molecular weight distributions of 

Bst NI and Eco RII digested genomic DNA. 

The cumulative distributions show the mean values (!1 standard error) 

of Bst NI e and Eco RII 0 digested genomic DNA. The 

distributions were plotted using the molecular weight midpoint, of 

each interval used in the analysis. 
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. compared with 20.6 and 21. 9kb for cotyledon DNA; Eco RII 34. 9kb for 

leaf compared with 31.6 and 31.5kb for cotyledon DNA). 

The number average molecular weights obtained for Bst NI 

digestions of genomic DNA ranged from 2. 4 to 3. 3kb, whilst greater 

variations was observed following Eco RII digestion, with 11 and 22 

d.a.f. cotyledon DNA having M values of 10.0 and 14.5kb respectively 
n 

and leaf DNA, 11. 5kb. The percentages methylation calculated from 

these M values were for cotyledon DNA, 67.3 and 83. 5% and for leaf 
n 

DNA, 78.7%. 

3:2 Analysis of the Methylation of rRNA Genes in Pea 

3:2:1 Methylation of rONA at Msp I/Hpa II sites 

Figure 17 (a and b) shows the results· obtained when pea genomic 

DNA.' restricted fragments were blotted and hybridized with a labelled. 

cloned pea ribosomal gene. All four restriction enzymes used had a 

four nucleotide recognition sequence (Hae III 5'-GGCC-3' ; Hha I 

5'-GCGC-3'; Msp I and Hpa II 5'-CCGG-3'). Hae .III cleaved the genomic 

DNA into fragments with an average size of less than 2kb (figure 17a). 

Following digestion by both Hha I and Hpa II, a considerable amount of 

DNA remained as fragments of greater than 25kb (figure 17a). 

The cloned pea ribosomal gene probe (pHA 1) hybridized to a wide 

range of fragment sizes (figure 17b). Following Hha I digestion of 

cotyledon DNA (tracks b, f, j and n), major bands of hybridization 

were observed at 2.69, 3.39, 3.85, 4.84, 6.73 and lO.OOkb. The 
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Figure 16:- Simplified restriction map of a cloned pea ribosomal RNA 

gene (pHA 1) (from Cuellar, 1982). 

The thickened line represents the cloned gene (8.6kb) and the single 

line the pACYC 184 vector (3.9kb). The positions of the Bam HI sites 

(B) and Hind III sites (H) are indicated. All fragment sizes are in 

kilobases. 
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Figure 17a:- Gel photograph of Hha I, Hae III I Msp I and Hpa II 

digested genomic DNA. 

a) >..NM258 + Ava I; pBR322 + Hinc II; pBR322 + Taq I 

b) 10 d.a.f. cotyledon DNA + Hha I 

c) II II II II + Hae III 

d) II II II II + Msp I 

e) II II II II + Hpa II 

f) 12 d.a.f. cotyledon DNA + Hha I 

g) II II II II + Hae III 

h) II II " II + Msp I 

i) II II II II + Hpa II 

j) 15 d. a. f. cotyledon DNA + Hha I 

k) II II II II + Hae III 

l) II II II II + Msp I 

m) II II II II + Hpa II 

n) 21 d.a.f. cotyledon DNA + Hha I 

o) II II " II + Hae III 

p) II II " " + Msp I 

q) II II " II + Hpa II 

r) Leaf DNA + Hha I 

s) II II + Hae III 

t) II II + Msp I 

u) II II + Hpa II 

v) >,.Nm258 + Eco RI; pBR322 + Hinf I. 

Genomic tracks contained 2 11 g DNA digested with a 15-fold excess of 

enzyme. 

Figure 17b:- An autoradiograph showing the hybridization of 32 P-pHA1, 

to a Southern blot prepared from the gel illustrated in figure 17a. 

The mM258 and pBR322 marker tracks were removed from the gel before 

blotting, The identities of the tracks are indicated above, The 

specific activity of the probe was 4.9 x 10
7 

cpm/11 g and the filter was 

washed at 50°C. 
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smallest Hha I fragments to hybridize to the probe were 1.00 and 

1. 27kb and these had only a weak signal. However, in the leaf DNA 

(track r) the basic pattern of hybridization remained the same but the 

relative intensities of the signal for the 2.69, 3.39, 3.85, 4.84 and 

6.73kb bands were all reduced, whilst that of the 10.00kb remained of 

a similar intensity, to that observed in the cotyledon digests. 

Following Hae III digestion of leaf and cotyledon DNA (tracks c, 

g, k, o and s), pHA 1 hybridized to a series of fragments ranging in 

size from 1.04kb to 0.21kb. 

The 1.04kb band had a much weaker signal strength than the other 

bands, which were all of a similar intensity, pHA 1 also hybridized to 

a wide range of cotyledon, Msp I digested DNA fragments (tracks d, h, 

l, and p). The probe hybridized most strongly with the larger 

fragments, which ranged in size from 10.00 to 2. 29kb. The signal 

intensity was reduced when pHA 1 hybridized to fragments of between 

2.09 and 0.93kb and was further reduced when the probe hybridized to 

fragments of less than 0. 8kb. Following Msp I digestion of leaf DNA 

(track t) , a similar pattern of hybridization was obtained, except 

that fragments of between 2.29 and 3.78kb (which had hybridized very 

strongly in the cotyledon tracks) now had a reduced signal level, 

equivalent to only the intermediate level of hybridization observed in 

Msp I digested cotyledon DNA. 

pHA 1 hybridized to fewer distinct bands in the Hpa II digested 

cotyledon DNA (tracks e, i, m and q) than in Msp I digested cotyledon 

DNA. Only a weak signal of hybridization was detected for the 

intermediate range (2.09 to 0.93kb) and a reduced signal strength was 
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also observed for hybridization of the probe, to fragments of greater 

than 2.29kb. Two fragments noted in the higher ~olecular weight range 

of Msp I digested cotyledon DNA (3.45 and 2.83kb), were absent in the 

Hpa II cotyledon tracks. Hybridization of pHA 1 to Hpa II digested 

leaf DNA (track u) , was also far less than had been noted for 

cotyledon DNA. Even when the filter was over exposed, only a weak 

signal was observed for hybridization to the 10.00kb fragment. 

Figure 18 shows the results obtained when an SV40 internal 

control, was mixed with the genomic DNA, prior to digestion by Msp I 

or Hpa II. The 5. 23kb SV40 DNA has only one 5'-CCGG-3' sequence. 

Figure 18a, track k, shows the mobility of the uncleaved, supercoiled 

SV40 molecule, whilst tracks a, to h, show the position of the 

linearised molecule, which stands out strongly frQm the background 

genomic DNA. 

Figure 18b shows the hybridization of pHA 1 to a filter prepared 

from the gel in 18a. Again the three levels of signal intensity in the 

Msp I tracks were apparent, as was the marked reduction in the number 

of leaf + Hpa II hybridization bands (track g) . Tracks i and j show 

the position of DNA fragments produced following cleavage of pHA 1 by 

Msp I ( i) and Hpa II ( j) . Although these hybridization signals were 

not strong, they appeared to correspond to the regions of the Msp I 

tracks (a, c, e and h) which showed only a weak hybridization to pHA 1 

( ie less than 1. Okb) . Even when this filter was over exposed, no 

hybridization bands of a corresponding size, were observed in any of 

the Hpa II tracks. 
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Figure 18a:- Gel photograph of Msp I and Hpa II digested genomic DNA 

containing an SV40 (5.23kb) internal control. 

a) 11 d.a.f. cotyledon DNA + Msp I 

b) " " " " '+ Hpa II 

c) 15 d. a. f. cotyledon DNA + Msp I 

d) " " " " + Hpa II 

e) 22 d. a. f. cotyledon DNA + Msp I 

f) " " " " + Hpa II 

g) Leaf DNA + Hpa II 

h) " " + Msp I 

i) pHA 1 (lOng) + Msp I 

j) " (lOng) + Hpa II 

k) SV40 (O.lJ.lg) Unrestricted 

1) pBR322 + Bgl I 

m) " + Bst NI 

n) " + Taq I 

o) ANM258 + Eco RI 

p) " + Hind III 

Genomic tracks contianed 2].lg of DNA plus 0.1~ of SV40 DNA and were 

digested with a 15-fold excess of enzyme. 

Figure 18b:- Hybridization of 3 2 P-pHA 1 to a Southern blot prepared 

from the gel illustrated in figure 18a. The specific activity of the 
7 

probe was 9. 7 x 10 cpm/J.l g and the filter was hybridized and washed 

at 65°C. The tracks are as indicated above . 

. , 
' 
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3:2:2 Methylation of rDNA at Bst NI/Eco RII sites 

Figure 19 shows the distribution of genomic DNA following 

digestion with Hind III plus either Bst NI of Eco RII. These genomic 

digestions also contained an SV40 internal control and some of the 

SV40 fragments can be visualised in the genomic DNA. Subsequent 

cleavage of Hind III digested DNA, with Bst NI produced a range of DNA 

fragments with an average size of less than 2kb, whereas, when the 

second restriction was with Eco RII, no significant further reduction 

in DNA fragment size was observed. 

When a Southern blot prepared from this gel was hybridized to 

pHA 1, a major Hind III band was observed at 9.33kb, in a position 

corresponding to that of pHA 1 +Hind III (track 1). pHA 1 was cleaved 

by Bs t NI (track m) and produced a range of fragments ( 4. 07, 1.17, 

1. 06, 0. 97, 0. 85, 0. 49kb). pHA 1 hybridized to a series of genomic 

fragments when cotyledon and leaf DNA was digested with Hind III plus 

Bst NI (tracks b, e, h and j). A fairly major hybridization band in 

this region, at 4. 07kb, corresponded to the band in the pHA 1 + 

Hind III + Bst NI (track 1). In addition some smaller genomic bands 

(1.17 and 1.06kb) also corresponded to the expected bands (track 1). 

The Hind III digested genomic DNA was subsequently digested with 

Eco RII and hybridized to pHA 1... The 9. 33kb Hind III was only 

partially cleaved (tracks c, f, i and k) but two new bands were 

observed at 4.50 and 4.07kb. 

This Southern blot was subsequently hybridized to 32 P-lablled SV40 

(figure 19c). The Hind III SV40 bands (1.77, 1.17, 1.12, 0.53. 0.45 

and 0.22kb) were clearly visible (tracks a, d and g). Published SV40 
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Figure 19a:- Ethidium bromide stained gel photograph of double 

restricted (Hind III plus Bst NI/Eco RII) genomic DNA containing an 

SV40 internal control. 

a) 11 d.a.f. cotyledon DNA + Hind III 

b) " " " " + Hind III + Bst NI 

c) " " " " + Hind III + Eco RII 

d) 15 d.a.f. cotyledon DNA + Hind III 

e) " " 11 " + Hind III + Bst NI 

f) " " " " + Hind III + Eco RII 

g) 22 d.a.f. cotyledon DNA + Hind III 

h) 11 11 11 11 + Hind III + Bst NI 

i) " 11 11 11 + Hind III + Eco RII 

j) Leaf DNA + Hind III + Bst NI 

k) 11 11 + Hind III + Eco RII 

1) pHA 1 (5ng) + Hind III 

m) pH A 1 (5ng) + Hind III + Bst NI 

n) pHA 1 ( 5ng) + Hind III + Eco RII 

o) pBR322 + Bgl I; pBR322 + Bst NI 

p) A:NM258 Eco RI; ·XNM258 + Hind III; pBR322 + Taq I 

Genomic tracks contained 3~ of DNA digested with an 8-fold excess of 

Hind III and a 10-fold excess of Bst NI and Eco RII. 

Figure 19b:- Hybridization of 32 P-pHA 1 to a Southern blot prepared 

from the gel shown in figure 19a. The specific activity of the probe 
7 I . was 1.4 x10 cpm ~g and the filter was hybridized and washed at 65°. 

The identities of the tracks are indicated above. 

Figure 19c :- Rehybridization of the nitrocellulose filter shown in 

figure 19b, with 32 P-SV40. The specific acivity of the probe was 8.8 x 
7 

10 cpm/~g. The filter was hybridized and washed at 65°C. 
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sequence data indicated that Bst NI should cleave all of these 

Hind III bands except for the 0.53kb band. New bands should be 

detected at 0.82, 0.55, 0.36, 0.25kb (plus several fragments of less 

than 200bp) . These bands were observed in tracks b, e, h and j . 

However, after a second digestion with Eco RII, although new bands 

were observed at 0.82, 0.55 and 0.36kb most of the SV40 had hybridized 

to the residual, uncleaved Hind III bands. 

Figure 20 shows the results obtained when Bam HI digested genomic 

DNA (plus an internal SV40 control) and with a second digestion by 

either Bst NI or Eco RII, was blotted and hybridized to pHA 1. (The 

Bam HI sites in pHA 1 are shown in figure 16.) 

The internal SV40 control has only one recognition sequence for 

Bam HI and the linearised molecule was clearly visible in the Bam HI 

digests (figure 20, and c, tracks a, d and g). The hybridization bands 

of SV40 in the Bam HI plus Bst NI digests (figure 20c, tracks b, e, h 

and j) corresponded in size to the largest theoretically sized 

fragments (0.99, 0.82, 0.67, 0.55, 0.44, 0.37. 0.25 and 0.20kb). The 

remaining smaller fragments were either not resolved or were not 

efficiently transferred during the blotting process. 

In the Bam HI plus Eco RII digests (figure 20c, tracks c, f, i and 

k) these bands were also visible but most of the SV40 hybridized to a 

series of SV40 partial digests ranging in size from 1 to 4kb. 

When this Southern blot was hybridized to pHA 1, a distinctive 

pattern of bands was produced (figure 20b) . When genomic DNA was 

digested by.Bam HI (tracks a, d and g), a prominent doublet (5.55 and 

4. 95kb) was observed with a third relatively major band at 2. 92kb. 
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Figure 20a:- Gel photograph of double restricted (Bam H1 plus 

Bst NI/Eco RII) genomic DNA containing an. SV40 internal control. 

a) 11 d.a.f. cotyledon DNA + Bam HI 

b) II II II II + Bam HI + Bst NI 

c) II II II II + Bam HI + Eco RII 

d) 15 d. a. f. cotyledon DNA + Bam HI 

e) II II II II + Bam HI + Bst NI 

f) II II II II + Bam HI + Eco RII 

g) 22 d.a.f. cotyledon DNA + Bam HI 

h) II II II " +Bam HI + Bst NI 

i) II " II II + Bam HI + Eco RII 

j) Leaf DNA + Bam HI + Bst NI 

k) II II + Bam HI + Eco RII 

1) pHA1 ( 5ng) +Bam HI 

m) . It (5ng) + Bam HI + Bst NI 

n) It (5ng) + Bam HI + Eco RII 

o) xNM258 + Eco RI; pBR322 + Bst NI; pBR322 + Bgl I 

p) xNM258 + Hind III; pBR322 + Taq I 

Genomic tracks contained 3 llg DNA plus 0.1 llg SV40 DNA and were 

restricted with an 8-fold excess of Bam HI and a 10-fold excess of Bst 

NI or Eco RII. 

Figure 20b:- Hybridization of 3 2 P-pHA 1 to a Southern blot prepared 

from the gel illustrated in figure 20a. The specific activity of the 
7 

probe was 1.4 x 10 cpm1 11 g and the filter was hybridized and washed at 

65°C. The identities of the tracks are as indicated above. 

Figure 20c :- The pHA 1 probe was washed off and the filter was 

rehybridized to 3 2 P-SV40. The specific activity of the probe was 

8.8 x 10
7 

cpm/llg. The filter was hybridized and washed at 65°C. 
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Minor bands were observed at 8. 32, 2. 04, 1. 27 and 0. 66kb. The bands 

seen at positions equivalent in size to 1.27 and 2.92kb, appeared to 

be slightly larger than the equivalent bands (1.20 and 2.82kb) seen in 

the marker pHA 1 plus Bam HI track ( 1). All cotyledon and leaf DNA 

samples gave the same pattern of hybridization bands. A prolonged 

exposure of the autoradiograph indicated a band equivalent in size, to 

the 4.95kb fragment in the marker pHA 1 plus Bam HI track (l). This 

marker band corresponded to the smaller of the two bands seen in the 

doublet, in tracks a,d and g. 

Bst NI cleaved all the major Bam HI fragments containing rDNA, 

both in cotyledon and leaf DNA (tracks b, e, h and j). However, Eco 

RII did not cleave any of the Bam HI generated rDNA fragments (tracks 

c, f, i and k) . Two of the· bands produced by Bst NI digestions, at 

3. 77 and 3.34kb had a greater signal strength than the rest. Other 

bands were noted at 2.44. 0.91 and 0.66kb. No band larger than 3.77kb 

was observed following Bst NI digestion. Comparison of the relative 

intensities of the Bst NI doublet ( 3. 77 and 3. 34kb) with the 2. 44kb 

band, indicates a marked difference between the 11 and 15 d.a.f. 

cotyledon DNAs and the 22 d.a.f cotyledon and leaf DNAs. 

Figure 21 shows the results obtained when Eco RII from different 

manufacturers was used to restrict different plasmid DNAs. Eco RII was 

shown to produce a large number of SV40 partial digest bands (track 

b). The addition of BSA did not improve the digestion (track d). 

Eco RII was also inefficient at cleaving ~xl74 and pBR322 (tracks f, g 

and i) both of which had been derived from methylase minus strains of 

bacteria. 
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c d e f g h 

Figure 21:- Investigation of the restriction of SV40, ¢1 Xl74 RF and 

pBR322 by Bst NI and Eco RII (obtained from different suppliers) with 

and without bovine serum albumin (BSA). 

a) SV40 + Bst NI (NEB) 

b) SV40 + Eco RII (BRL) 

c) SV40 + Bst NI (NEB) + BSA 

d) SV40 + Eco RII (Uniscience) + BSA 

e) ¢iX174 + Bst NI (NEB) + BSA 

f) ¢iX174 + Eco RII (BRL) + BSA 

g) ¢iX174 + Eco RII (Uniscience) + BSA 

h) pBR322 + Bst NI (NEB) 

i) pBR322 + Eco RII (BRL-new batch of enzyme ) 
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3:3 Methylation of the Legumin Genes 

3:3:1 Changes in CG-methylation at sites associated with the legumin 

gene family . 

Figure 22a shows the distribution of DNA fragments obtained 

following digestion by Hae III, Msp I and Hpa II. These distributions 

were similar to those previously described for figure 17a but the 

5-fold higher loading of DNA on this gel, has enabled the 

visualisation of the bands of repetitive DNA. These were most 

prominent in the tracks containing leaf genomic DNA (k and 1). 

When a legumin eDNA was hybridized to the Southern blot prepared 

from this gel (figure 22b) major Hae III ( 5' -GGCC-3' ) bands were 

observed at 2.96, 2.63 and 0.99kb (tracks a, d, g and j). In addition 

three bands of a lesser intensity (3.49, 2.25 and 0.74kb)were also 

noted. Sequence data obtained from legumin gene A (figure 23) 

indicated that for this gene, the eDNA probe should detect two 

fragments (1.96kb plus a fragment at the 3' end of the gene, which is 

611. 2kb). 

The eDNA probe (pDUB 6) hybridized to two major Msp I fragments 

( 3. 74 and 1.17kb) and also to two other bands with a lower signal 

intensity (3.10 and 0.51kb) (tracks b, e, h and k). The 0.51, 1.17 and 

3.74kb were also evident in the Hpa II digests (tracks c, f, i and 1). 

Four additional Hpa II bands were detected, of which the 5.37kb was a 

major band, whilst the 6.50, 4.19 and 1.69kb bands were of a lower 

signal strength. The 6.50kb band was quite distinct in track m (leaf + 

Hpa II) and track c (10 d.a.f. cotyledon+. Hpa II), whilst being of a 



:.... 109 -

Figure 22a:- Gel photograph of Hae III, Msp I 

genomic DNA. 

a) 10 d.a.f. cotyledon DNA + Hae III 

b ) II II II II + Msp I 

c) II II II II + Hpa II 

d) 15 d.a.f. cotyledon DNA + Hae III 

e) II II II II + Msp I 

f) II II II II + Hpa II 

g) 21 d.a.f. cotyledon DNA + Hae III 

h) II II 

i) II II 

j) Leaf DNA 

k) II II 

1) II II 

m) pDUB 1 (20pg) 

II II 

II II 

+ Msp I 

+ Hpa II 

+ Hae III 

+ Msp I 

+ Hpa II 

n) ~NM258 + Ava I; pBR322 + Bst NI 

o) ANM258 + Hind III; pBR322 + Taq I 

and Hpa II digested 

Genomic tracks. contained 10 llg DNA and were digested with a 6-fold 

excess of enzyme. 

Figure 22b:- Hybridization of 32 P-pDUB 6 to a Southern blot prepared 

from the gel shown above. The specific activity of the probe was 

1 x 10
8 

cpm/ 118 and the filter was hybridized at 60°C and washed at 

50°C. The identities of the tracks are as indicated above. 
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lower relative intensity in the 15 d.a.f. cotyledon + Hpa II (track f) 

and absent in 21 d.a.f. cotyledon DNA plus Hpa· II (track i) (table 

5b) . The 4 .19kb band, however, was absent in leaf and 10 d. a. f. 

cotyledon DNA (c and 1), became visible 15 d.a.f. (track f) and was of 

a reduced intensity at a later stage on cotyledon development (track 

i). The relative intensities of the 3. 74 and. 1.69kb Hpa II bands, 

appeared to increase in intensity during co~yledon development, (table 

5b) . The Msp I and Hpa II 0. 51kb bands appeared to be of a similar 

intensity, whilst the 4.19 and 1.17 bands were always of a greater 

relative intensity in Msp I tracks (Table 5a). 

3:3:2 Methylation of three Msp I/Hpa II sites in legumin gene A 

The coding and 5 1 flanking sequence. of the cloned legumin gene, Leg 

A, predicts the presence of three Msp I/Hpa II sites (figure 23). 

Restriction fragments specific for each of these three sites were 

therefore selected as probes for genomic DNA. These were (i) Probe A, 

an Rsa I-Rsa I fragment, 1370 nucleotides, containing the Hpa II/Msp I 

site, M3, at position 1596 in the final exon of the coding sequence; 

(ii) Probe B, a Taq I-Taq· I fragment, 1090 nucleotides containing the 

Hpa II/Msp I site, M2, at position 435 in the second exon of the 

protein coding sequence (near the 5 1 end); (iii) Probe C, a 

Bam I-Taq I fragment, 1349 nucleotides, containing the Hpa II/Msp I 

site, M1 at position -546 in the 5' flanking sequence. The probes were 

isolated and labelled as described in the Methods section. 



Table 

5a 

BAND 
SIZE 
(kb) 

6.50 

5.37 

4.19 

3.74 

1.69 

1.17 

0.51 

5b 

BAND 
SIZE 
(kb) 

6.5 

5.37 

4.19 

3.74 

1.69 

1.17 

0.51 

5: 
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Results from laser densitometer scanning of autoradiograph (22b) 

PEAK AREA (x10
7

) 

COTYLEDON LEAF 
10 d.a.f. 15 d. a. f. 21 d.a.f 

Msp I Hpa II Msp I Hpa II Msp I Hpa II Msp I Hpa II 

0.82 0.42 1.26 

3.12 2.17. 1.04 1. 78 

0.55 

1.57 0.60 1.80 0.66 1.01 0.74 1.30 0.33 

0.79 0.55 0.63 0.43 

5.23 3.68 3.92 1. 73 4.07 2.67 5.52 2.98 

0.52 0.64 0.37 0.18 0.30 0.31 0.30 0.27 

AREA OF PEAK/AREA OF ALL PEAKS IN TRACK (%) 

10 d.a.f. 
Msp I Hpa II 

8.52 

32.30 

20.67 6.22 

8.15 

68.66 38.16 

6.78 6.67 

COTYLEDON 
15 d.a.f. 

Msp I Hpa II 

6.78 

34.62 

8.73 

29.53 10.60 

8.72 

64.38 27.60 

6.09 2.95 

LEAF 
21 d.a.f. 

Msp I Hpa II Msp I Hpa II 

17.93 

19.24 25.24 

18.74 13.74 18.31 4.72 

11.63 6.11 

75.66 49.63 77.52 42.24 

5.61 5.76 4.16 3.77 
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Figure 23:- A simplified restriction map of pDUB 24 (legumin gene A), 

showing the three fragments isolated as probes to ascertain the 

methylation status of the three Msp I sites (Ml, M2 and M3). The 

following recognition sites are indicated: B = Bam HI; T = Taq I; R = 

Rsa I; M= Msp I; H = Hae III. The solid boxes represent the coding 

regions (exons) and the open boxes the intervening sequences 

(introns). The unthickened line represents the flanking sequences. 
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3:3:2:1 Methylation of Msp I site M3, in the 3' coding region of Leg A 

The hybridization of probe A to digests of genomic DNA, isolated 

from leaves and developing cotyledons, is shown in figure 24b. This 

probe detected· a major band (1. 37kb) in the Rsa I digests, (tracks 

a, d, g and i) , by hybridization to its identical sequence in genomic 

DNA. Minor bands at 1.88, 0.85 and 0.56kb gave relatively very faint 

hybridization signals. 

In the Rsa I+ Msp I digest (tracks b, e, hand k), two bands of 

hybridization (1.03 and 0.35kb) were observed at the positions 

predicted for the Rsa I + Msp I fragments of this 1.37kb probe (figure 

23). In all Rsa I + Hpa II digests (lanes c,f, i and 1), the 1.37kb 

band was only partially cleaved by Hpa II and the three fragments, 

1.37, 1.03 and 0.35kb were visible in all Hpa II digests. The 1.88kb 

minor band observed after Rsa I digestion, was cleaved by both Msp I 

and Hpa II but the other two minor bands (0.85 and 0.56kb) remained 

uncleaved after the second restriction. 

Overall the strength as well as the pattern of hybridization 

signal were similar in all genomic DNA digests. However, in the 12 and 

21-day digests (track c and i) the 1. 03kb hybridization band gave a 

stronger signal than the 1. 37kb hybridization band, whilst in the 

15-day cotyledons and leaf digests (tracks f and 1), these two signals 

were of a similar intensity (table 6). 

A similar pattern of hybridization and of signal strength of these 

bands was also observed when Rsa I and Rsa I+Msp I or Rsa I + Hpa II 

digests of cotyledon and leaf genomic DNA, were probed with a 

(
32 P)-1.09kb Taq I fragment of legumin gene A (probe Bin figure 23) 
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Figure 24a:- Gel photograph of double restricted (Rsa I plus Msp I/ 

Hpa II) genomic DNA. 

a) 12 d.a.f. cotyledon DNA + Rsa I 

b) " " " " + Rsa I + Msp I 

c) " " " " + Rsa I + Hpa II 

d) 15 d.a.f. cotyledon DNA + Rsa I 

e) " " " " + Rsa I + Msp I 

f) " " " " + Rsa I + Hpa II 

g) 21 d. a. f. cotyledon DNA + Rsa I 

h) " " " " + Rsa I + Msp I 

i) " " " " + Rsa I + Hpa II 

j) Leaf DNA + Rsa I 

k) " " + Rsa I + Msp I 

1) " " + Rsa I + Hpa II 

m) XNM258 + Hpa I; pBR322 + Bst NI 

n) >..NM258 + Ava I; pBR322 + Taq I 

Genomic tracks contained 10 llg DNA digested with a 6-fold excess of 

Rsa I and an 8-fold excess of Msp I or Hpa II. 

Figure 24b :- Hybridization of 3 2 P-Probe A ( 1. 37kb Rsai fragment of 

legumin gene A, figure 23), to a Southern blot prepared from the gel 

illustrated above. The specific activity of the probe was 
8 

2 x 10 cpm/ 11g. The filter was hybridized at 60°C and washed at 50°C. 
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Table 6: Percentage methylation of sites M2 and M3 in Legumin Genes A and B 

Developmental PERCENTAGE METHYLATION 
Stage M2 M3 

Leg A Leg B Leg A Leg B 

12 d. a. f. coty 25.8 15.3 36.9 38.9 

15 d.a.f. coty 23.9 16.0 45.6 44.2 

21 d. a. f. coty 22.2 14.0 37.4 42.9 

Imbibed coty 6.06 32.6 

Leaf 26.8 11.25 47.3 47.5 

The 12, 15 and 21 d.a.f. cotyledon Leg B results represent the mean 

values obtained from densitometric scanning of figures 28a and b and figure 

35. The Leg A results are the mean values obtained from several experiments, 

including the results illustrated in figures 24b abd 25b. 
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and when a Taq I and Taq I + Msp I or Taq I + Hpa II genomic digests, 

were probed with a ( 3 2 P) -0. 52kb Taq I fragment of legumin gene A (which 

contains site M3) (results not shown). 

3:3:2:2 Methylation of Msp I site M2, in the 5' coding region of Leg A 

Figure 25b shows an autoradiograph of cotyledon and leaf Taq I and 

Taq I plus Msp I/Hpa II DNA fragments, which hybridized to a 1. 09kb 

legumin gene A Taq I-Taq I fragment, (32 P)-DNA probe (figure 23, probe 

B). A major band of hybridization at 1.09kb was observed in the Taq I 

digested genomic DNA (tracks a, d, g and j) representing hybridization 

of the probe to its identical sequence in the genomic DNA. 2.75 , 2.54 

and 1.28kb Taq I fragments also hybridized to this probe. 

When Taq I digested genomic DNA was subsequently restricted with 

Msp I (tracks b, e, h and k) the 1. 09 and 2. 75kb fragments were 

cleaved and the signal strength of the 2.54kb band was increased. 

Following Taq I plus Hpa II digestion of genomic DNA (lanes c, f, 

i and 1) , the 1. 09kb Taq I fragment was only partially cleaved by 

Hpa II and the three fragments at 1.09, 0.80 and 0.29kb, all 

hybridized to the probe. The 2.75kb fragment was also only partially 

cleaved. 

The Hpa II, O.BOkb fragment always had a greater signal strength 

than the uncleaved 1.09kb Taq I fragment. However, both the pattern of 

hybridization signal and the relative strength of the signal in the 

Hpa II digested cotyledon and leaf DNA were similar (table 6). 
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Figure 25a:- Gel photograph of double restricted (Taq I plus 

Msp I/Hpa II) genomic DNA. 

a) 12 d.a.f. cotyledon DNA + Taq I 

b) II II II II + Taq I + Msp I 

c) II II II II + Taq I + Hpa II 

d) 15 d.a.f. cotyledon DNA + Taq I 

e) II II II II + Taq I + Msp I 

f) II II II II + Taq I + Hpa II 

g) 21 d. a. f. cotyledon DNA + Taq I 

h) II II II II + Taq I + Msp I 

i) II II II 11 + Taq I + Hpa II 

j) Leaf DNA + Taq I 

k) II II + Taq I + Msp I 

1) II II + Taq I + Hpa II 

m) ANM258 + Ava I;. pBR322 + Bst NI 

n) ANM258 + Hpa I 

All genomic tracks contained 10 llg DNA and digestions· were with a 

4-fold excess of Taq I and a 7-fold excess of Msp I and Hpa II. 

Figure 25b:- Hybridization of 3 2 P-Probe B ( 1. 09kb Taq I fragment of 

legumin gene A - figure 23) , to a Southern blot prepared from the gel 

illustrated above. The specific activity of the probe was 1.1 x 108 

cpm~g. The filter was hybridized at 62°C and washed at 50°C. 
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3:3:2:3 Methylation of Msp I site Ml, in the 5' flanking region of 

legumin gene A 

Figure 26 shows an autoradiograph of Taq I plus Msp I/Hpa II DNA 

fragments hybridizing to a 1. 33kb Bam HI-Taq I fragment of legumin 

gene A, (3 2 P) -DNA probe (figure 23: probe C) . This probe hybridized 

strongly to four Taq I fragments of 1.57, 1.49, 1.40 and 1.25kb 

(tracks a, d, g and i). The signals for the hybridization of this 

probe to the 1.40 and 1.49kb fragments were greater than those 

observed for the hybridization of the probe .to the 1. 57 and 1. 25kb 

fragments. Minor bands of hybridization were detected at 1. 06, 2. 51 

2.66 and 4.22kb. 

When Taq I digested genomic DNA was subsequently restricted with 

Msp I (tracks b,e,h and k) or with Hpa II (tracks c, f, i and 1), the 

major Taq I 1.49kb fragment was cleaved and two fragments of 0.88 and 

0. 66kb were detected by the probe. This 1. 49kb band was taken to 

represent the identical sequence in genomic DNA to the probe, since it 

contained a Hpa II/Msp I site and gave a correctly sized fragment on 

cleavage. Overall, the strength as well as the pattern of 

hybridization signal, with Msp I and Hpa II digested cotyledon and 

leaf genomic DNA were similar. 

3:3:3 Methylation of legumin gene B 

Figure 27 shows the hybridization pattern obtained when a eDNA 

probe (pDUB 6) was hybridized to Southern blotted, restricted 

fragments of legumin genes A, Band C (pDUB 24, pDUB 25, pDUB 27). The 
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abcdef gh j k 1 

kb 

---0.88 
--- o.66 

Figure 26:- Hybridization of ·32 P-Probe C (1.34kb Taq I - Bam HI 

fragment of legumin gene A, figure 23) , to a Southern blot prepared 

from a gel similar to that illustrated in figure 25a. 

The specific activity of the probe was 7 x 10
7 cpmj~g and the filter 

was hybridized at 62°C and washed at 50°C. The identities of the 

tracks are as indicated in figure 25a. 



-120-

r s 

kb 

~---- 3.50 

~--- 2.15 

--- 1.40 
<t---1.00 

.;---o.52 
~--- 0.41 
~--0.22 

Figure 27:- Hybridization of 3 2 P-pDUB 6 insert (legumin eDNA) to 

Southern blotted, restricted fragments of the cloned legumin genes 

A,B. and C ( pDUB 24, pDUB 25 and pDUB 27). 

a) Legumin gene A (pDUB 24 insert) 

b) 

c) 

d) 

e) 

f) 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

11 + Msp I 

11 + Taq I 
11 + Taq I + Msp I 

11 + Rsa I 

11 + Rsa I + Msp I 

g) Legumin gene B (pDUB 25 insert) 

h) 

i) 

j) 

k) 

l) 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

11 + Msp I 
11 + Taq I 

11 + Taq I + Msp I 

11 + Rsa I 
11 + Rsa I + Msp I 

m) Legumin gene C pDUB 37 insert) 

n) 

o) 

p) 

q) 

r) 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

s) pDUB 6 insert 

11 + Msp I 
11 + Taq I 
11 + Taq I + Msp I 

11 + Rsa I 

11 + Rsa I + Msp I 

The specific activity of the probe was 1 .8 x 108 cpmj~g and the filter 

was hybridized and washed at 65°C. 
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single digest (Msp I, Taq I and Rsa I) fragments and those of the 

double digests (Rsa I+ Msp I and Taq I+ Msp I), were shown to be of 

a similar size from each of the three legumin gene coding sequences. 

The lengths of the isolated genes (figure 27, tracks a, g and m; 

figure 29a) were different and this accounted for the differences 

observed in the sizes of the larger restriction fragments, derived 

from the 5' ends of these genes. 

When Taq I and Rsa I probes, prepared from Leg B (pDUB 25) were 

hybridized to restricted genomic DNA (figures 28a and b), similar 

patterns of hybridization were observed as have been previously 

described for legumin gene A (figures 24b and 25b). A comparison of 

the relative intensities of the bands (as determined by a laser 

densitometer) is shown in table 6. 

The extent of methylation of Msp I site M3, was similar in both 

Leg A and Leg B. However, the M2 site, appeared to be less methylated 

in Leg B than in Leg A. In both legumin genes, the M3 site was more 

highly methylated than the M2 site. 

3:3:4 Methylation of the flanking sequences of Leg A and Leg B 

The location of the flanking regions probes is shown in figure 

29b. Legumin gene B does not have an Msp I site equivalent to Leg A's 

Ml site. It was therefore necessary to select a suitable restriction 

enzyme (Hind III) which would identify the genomic sequence 

immediately 5' to that isolated in the ALeg 2 genomic clone. 
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Figure 28a:- Hybridization of 3 2 P-1.09kb Taq I fragment of legumin 

gene B (pDUB 25), to a Southern blot of a Taq I plus Msp I/Hpa II gel, 

similar to that illustrated in figure 25a. 

a) Imbibed cotyledon DNA + Taq I 

b) 

c) 

" 
" 

" 
" 

" 

" 

+ Taq I + Msp I 

+ Taq I + Hpa II 

d) 12 d.a.f. cotyledon DNA + Taq I 

e) 

f) 

" 
" 

" 
" 

" 

" 

+ Taq I + Msp I 

+ Taq I + Hpa II 

g) 15 d.f.a. cotyledon DNA + Taq I 

h) 

i) 

" 

" 
" " 

" " 

+ Taq I + Msp I 

+ Taq I + Hpa II 

j) 21 d.a.f. cotyledon DNA+ Taq I 

k) 

1) 
" 
" 

" 

" 
" 
" 

+ Taq I + Msp I 

+ Taq I + Hpa II 

Each genomic track contained 7.5 ~g DNA digested with a 12-fold excess 

of Taq I and a 10-fold excess of Msp I/Hpa II. The specific activity 
7 

of the probe was 7.2. x 10 cpm /~g and the filter was hybridized at 

65°C in the heparin system. 

Figure 28b :- Hybridization of 3 2 P-1. 37kb Rsa I fragment of legumin 

gene B (pDUB 25), to a Southern blot of an Rsa I plus Msp I/Hpa II 

gel, similar to that sho~n in figure 24a. 

a) Imbibed cotyledon DNA + Rsa I 

b) 

c) 

" 

" 

" 
" 

" 
" 

+ Rsa I + Msp I 

+ Rsa I + Hpa II 

d) 12 d.a.f. cotyledon DNA + Rsa I 

e) 

f) 

" 

" 

" " 

" " 

+ Rsa I + Msp I 

+ Rsa I + Hpa II 

g) 15 d.a.f. cotyledon DNA + Rsa I 

h) 

i) 

" 
" 

" 
" 

" + Rsa I + Mspi 

" + Rsa I + Hpa II 

j) 21 d.a.f. cotyledon DNA + Rsa I 

k) 

1) 

" 

" 
" 
" 

" 

" 

+ Rsa I + Msp I 

+ Rsa I + Hpa II 

Each genomic track contained 7. 5 ~g DNA restricted with a 10-fold 

excess of Rsa I and a 10-fold excess of Msp I or Hpa II. The specific 

activity of the probe was 6. 5 x 10 
7 

cpm I ~g and the filter was 

hybridized at 65°C ( in the heparin system). 
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Figure 29a:- Restriction map of legumin genes A,B, and C (pDUB 24, 25 

and 27). 

The relative positions of Rsa I ( I( ) ' Taq I ( f ) ' Msp I t ) ' 
Bam HI ( y ) ' Eco RI ( ? ) and Hind III 

( ' ) sites in the three genes 

are indicated. The Msp I sites Ml, M2 and M3 in legumin gene A are 

also indicated and the equivalent sites have been used to align 

legumin genes B and.C. 

Figure 29b:- Restriction maps of the genomic clones, >,.:Leg 1 and xLeg 2. 

The symbols used are explained above. An Msp I symbol in brackets, 

( t ), indicates that the site is in one of two potential positions. 

The relative positions of legumin genes A and B and the pseudogene D 

ae indicated. The origins of the flanking region probes ( D, E, F and G) , 

are also indicated. 
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3:3:4:1 Methylation of an Msp I site, 3' to legumin gene A 

The next Msp I site 3' to site M3 in >.Leg 1, is in a 4 .17kb 

Hind III fragment (probe D). When this fragment was isolated from the 

genomic clone >..Leg 1 and restricted with Msp I, two fragments ( 3. 40 

and 0.77kb) were produced (results not shown). When the 4.17 kb 

fragment was labelled and hybridized to double digested genomic DNA 

(figure 30), a series of Hind III fragments (10.00, 8.51. 6.79. 4.17. 

3.29. 2.90 and 2.54kb) were detected (tracks a, d, g, and j). 

Following digestion by Msp I the 10.00, 2.90 and 2.54kb fragments 

were completely cleaved whilst the 8. 51, and 4 .17kb bands were only 

partially cleaved (tracks b, e, h and k). New bands were observed at 

3.40, 2. 32, 2. 06. 1. 66. 1.16. 0. 60 and 0.41kb. When the relative 

intensities of the 4.17 and 3.40.kb bands were assessed it was 

calculated that between 40 - 50% of the 4.17kb band remained 

uncleaved, which is equivalent to a 40-50% methylation of the external 

cytosine (mCCGG). 

Following digestion with Hpa II, the 4.17kb band remained 

uncleaved, whilst the 2.54kb band was partially cleaved and the 2.90kb 

band was completely cleaved. New bands were seen at 2.32, 1.16. 0.60 

and . 0. 41kb. No obvious change in the relative intensities of any of 

the bands in cotyledon or leaf DNA was observed. 

3:3:4:2 Methylation of 5' flanking region to legumin gene B 

When Hind III digested genomic DNA was hybridized to a probe 

prepared from the 5' flanking region of legumin gene B (figure 29b, 
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Figure 30:- Hybridization of 32 P-Probe D (4.lkb Hind III fragment of 

Leg 1) to a Southern blot of double digested (Hind III plus 

Msp I/Hpa II) genomic DNA. 

a) 12 d.a.f. cotyledon DNA + Hind III 

b) 

c) 

" 

" 

" 
" 

II 

" 
" 
" 

+ Hind III + Msp I 

+ Hind III + Hpa II 

d) 15 d.a.f. cotyledon DNA +Hind III 

e) 

f) 

II 

" 

" 

" 

" " 

" " 

+ Hind III + Msp I 

+ Hind III + Hpa II 

g) 21 d.a.f. cotyledon DNA + Hind III 

h) 

i) 

II 

II 

" 
II 

j) Leaf DNA 

k) " " 
l) " " 

" 
'' 

" 

" 

+ Hind III + Msp I 

+ Hind III + Hpa II 

+ Hind III 

+ Hind III + Msp I 

+ Hind III + Hpa II 

Each genomic track contained lO~g DNA restricted with a 10-fold excess 

of Hind III, Msp I and Hpa II. The specific acivity of the probe was 
8 1. 3 x 10 cpm /~g and the filter was hybridized at 65°C and washed at 

50°C. 

Figure 31:- Hybridization of 32 P-Probe E, a 1.3kb Hind III fragment, 

the 5' flanking region of legumin gene B (pDUB 25), to a Southern blot 

of double restricted (Hind III plus Msp I/Hpa II) genomic DNA. 

a) Leaf DNA 

b) II " 

c) " " 

+ Hind III 

+ Hind III + Msp I 

+ Hind III + Hpa II 

d) 12 d.a.f. cotyledon DNA + Hind III 

e) II II " II + Hind III + Msp I 

f) " 11 
" 

11 + Hind III + Hpa II 

g) 15 d.a.f. cotyledon DNA + Hind III 

h) 

i) 

II 

II 

II 

II 

II 

" II 

+ Hind III + Msp I 

+ Hind III + Hpa II 

j) 21 d.a.f. cotyledon DNA+ Hind III 

k) 

l) 

II 

II 

" 
II 

" II 

" II 

+ Hind III + Msp I 

+ Hind III + Hpa II 

All tracks contained 8 ~ g DNA digested with a 10-fold excess of 

Hind III, Msp I and Hpa II. The specific activity of the probe was 

1.2 x 10
8 cpmj~g and the filter was hybridized in the heparin system 

at 62°C and washed at 50°C. 
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probe E) three major bands were identified (4.67, 3.29 and 2.82kb) 

(figure 31: tracks a, d, g and j). In addition several fainter bands 

were also detected at 8.51. 7.00, 3.65, 2.04 and 1.86kb. 

Following digestion with Msp I (tracks b, e, h and k), all three 

major .Hind III bands were partially cleaved and new bands were 

apparent at 4.00, 2.38. 1.35 and 0.75kb. Following Hind III plus 

Hpa II digestion (tracks c, f, i and 1), the 4.67kb Hind III fragment 

was not cleaved but the 3. 29 and 2. 82kb bands were again partially 

cleaved and new bands were found at 2.38, 1.35 and 0.75kb. The 3.29kb 

band was cleaved to a greater extent by Msp I than by Hpa II and also 

the 1.35kb band was of a greater intensity following Msp I digestion. 

The 0.75kb band appeared to be of a similar intensity after both Msp I 

and Hpa II digestion. 

The relative intensities of the hybridization bands in the leaf 

and 15 and 21 d.a.f. cotyledon patterns were similar. However, the 

pattern obtained in all three tracks of the 12 d.a.f. cotyledon had 

reduced intensities for the larger fragments as well as an additional 

Hpa II band (5.13kb, track f). It should perhaps be noted that this 

was a fresh preparation of 12 d.a.f. cotyledon genomic DNA. 

3:3:4:3 Methylation of Msp I sites 3' to legumin gene B 

A 3.75kb Eco RI fragment (figure 29b: probe F) was isolated from 

the genomic clone ( XLeg 2) . This Eco RI fragment can be restricted 

with Msp I to give two fragments of 2. 00 and 1. 75kb (results not 

shown). 



- 127 -

Probe F detected a wide range of Eco RI derived fragments (1.53 to 

>11kb) (figure 32). Following restrictions with either Msp I or 

Hpa II, an Eco RI band of 2. 95kb was cleaved to give two new bands 

2.30 and 0.56kb. However, the 3.75kb was not cut by either Msp I or 

Hpa II. The multiplicity of genomic fragments cross hybridizing to 

this probe, precluded further assessment. 

A simpler hybridization pattern was obtained (figure 33), when a 

smaller length of the legumin gene B 3' flanking region was used as a 

probe (ie the 0.8kb Bam HI-Bam HI fragment, Probe G, figure 29b), 

which it is known has one Msp I site and if cleaved will give two 

fragments (0.65 and 0.15kb). 

Following digestion by Bam HI a major band at 0.80kb was detected 

(figure 33: tracks a, d, g and j ) . Several minor bands were also 

noted, the most prominent being 6.60 and 5.57kb. Following digestion 

by either Msp I or Hpa II the major band at 0.80kb remained uncleaved, 

however, the 6.60kb minor band was cleaved by both of these enzymes. 

In the Bam HI + Msp I digests (tracks b, e, h and k) the loss of the 

6.60kb band correlated with the appearance of new bands at 3.89, 1.25, 

0.89 and 0.56kb, whilst following Hpa II digestion, new bands 

equivalent in size to 4. 57 and 2. OOkb were observed (tracks c, f and ,_-
· .. 

i). 
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Figure 32:- Hybridization of 32 P-Probe F, a 3.8kb Eco RI fragment of 

ALeg 2 (3' to legumin gene B), to a Southern blot of double restricted 

(Eco RI plus Msp I/Hpa II) genomic DNA. 

a) Leaf DNA 

b) 

c) 

" 

" 

" 

" 

+ Eco RI 

+ Eco RI + Msp I 

+ Eco RI + Hpa II 

d) 12 d.a.f. cotyledon DNA+ Eco RI 

e) 

f) 

" 

" 

" 
" 

" " 
" " 

+ Eco RI + Msp I 

+ Eco RI + Hpa II 

g) 15 d.a.f. cotyledon DNA + Eco RI 

h) 

i) 
" 
" 

" 
" 

" 

" 

" 

" 

+ Eco RI + Msp I 

+ Eco RI + Hpa II 

j) 21 d.a.f. cotyledon DNA+ Eco RI 

k) " " 
l) " " 

" 

" 

" 

" 

+ Eco RI + Msp I 

+ Eco RI + Hpa II 

All tracks contained 8~g DNA digested with a 10-fold excess of enzyme. 

The specific activity of the probe was 4 x 10
7 cpm/~g and the filter 

WaS hybridized at 65°e in the SSe system, modified to include 10 X 

Denhardts. The filter was washed at 65°e. 

Figure 33:- Hybridization of 32 P-Probe G, a 0.8kb Bam HI fragment of 

~eg 2 (3' to legumin gene B), to a Southern blot of double restricted 

(Bam HI plus Msp I/Hpa II) genomic DNA. 

a) Imbibed cotyledon DNA + Bam HI 

b) " " " + Bam HI + Msp I 

c ) " " " + Bam HI + Hpa I I 

d) 12 d.a.f. cotyledon DNA + Bam HI 

e) " " " + Bam HI + Msp I 

f) " " " + Bam HI + Hpa II 

g) 15 d.a.f. cotyledon DNA + Bam HI 

h) " " " + Bam HI + Msp I 

i) " " + Bam HI + Hpa II 

J) 21 d.a.f. cotyledon DNA + Bam HI 

k) " " " + Bam HI + Msp I 

All tracks contained 7. 5 ~ g DNA digested with a 12-fold excess of 

enzyme. The specific activity of the probe was 5 x 107 cpm/~g and the 

filter was hybridized at 65°e in the SSe system, modified to contain 

10 x Denhardts. The filter was washed at 65°e. 
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3:3:5 Further work to relate the Hpa II site, whose change in 

methylation is detected by the eDNA probe, to a specific legumin 

gene 

Figures 34 and 35 show the results obtained when double digested 

DNA (Taq I plus either Msp -1 or Hpa II) was probed with two different 

legumin genes (ie coding regions plus flanking regions), legumin gene 

A (pDUB 24) and legumin gene B (pDUB 25). 

In figure 34 the Taq I fragments containing the 3 sites M1, M2 and 

M3 were easily identified. 

In Leg B, the M1 site is absent and the Taq I genomic fragment 

equivalent to the 5' end of this gene (1.40kb) remained uncleaved by 

Msp I and Hpa II. The Taq I fragments containing the other two Msp I 

sites M2 and M3 were identified. The major difference between the 

hybridization patterns obtained with these two probes, was in the 

number of fragments detected in the 1. 25 to 1. 57kb range. The Leg A 

probe (figure 34) detected four fragments (1.57, 1.49, 1.40 and 

1. 25kb) (see also figure 26) , whilst the Leg B probe (figure 35) 

detected only the 1.40kb fragment. 

Both legumin gene probes have detected the larger Taq I fragment 

(2.75kb) which was cleaved by Msp I to yield a 2.54kb fragment. There 

was an indication of a differential extent of cleavage of this 

fragment by Hpa II (ie 12 d.a.f. <15 d.a.f. =leaf <21 d.a.f.). 

Figure 36 shows the results obtained when genomic DNA was double 

digested with Eco RI plus either Msp I or Hpa II and the Southern blot 

hybridized with a legumin eDNA (pDUB 6). Major Eco RI bands were 

detected at 12.45. 10.84, 7.16 and 4.20kb (tracks a, d, g and j). All 
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Figure 34:- Rehybridization of the Southern blot shown in figure 25, 

with 32 P-legumin gene A (pDUB 24 insert). 

The specific activity of the probe was 2.5 x 10
8 cpm/~g and the filter 

was hybridized and washed at 65°C. The identities of the tracks are 

indicated in figure 25. The. positions of the Leg A, Taq I fragme:nts 

( ~ ) and the Msp I/Hpa II cleavage products ( ~ ) are indicated. 

Figure 35:- Rehybridization of the Southern blot shown in figure 26, 

with 32 P-legumin gene B (pDUB 25 insert). 

The specific activity of the probe was 2 x 10
8 cpm/~g and the filter 

was hybridized and washed at 65°C. The identities of the tracks are as 

indicated in figure 25. The positions of the Leg B, Taq I fragments 

( ~ ) and the Msp I/Hpa II cleavage products ( ~ ) are indicated. 
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a b cdefgh j k m 

kb 

12.45 
=:=:::10. 84 

7.16 

1. 61 

1.16 

Hybridization of 32 P-legumin eDNA (pDUB 6 insert), to a 

Southern blot of double restricted (Eco RI plus Msp I/Hpa II) genomic 

DNA. 

a) Leaf DNA + Eco RI 

b) II II + Eco RI + Msp I 

c) II II + Eco RI + Hpa II 

d) 9 d. a. f. cotyledon DNA + Eco RI 

e) II II II II + Eco RI + Msp I 

f) II II II II + Eco RI + Hpa II 

g) 10 d.a.f. cotyledon DNA + Eco RI 

h) II II II II + Eco RI + Msp I 

i) II II II II + Eco RI + Hpa II 

j) 15 d,a,f, cotyledon DNA + Eco RI 

k) II II II II + Eco RI + Msp I 

1) II II II II + Eco RI + Hpa II 

m) pDUB 1 insert (50pg) + Msp I 

The tracks contained 5~g DNA restricted with a 20-fold excess of Msp I 

and Hpa II and a 10-fold excess of Eco RI. The specific activity of 
8 the probe was 5 x 10 cpm/~g and the filter was hybridized at 65°C and 

washed at 50°C. 
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of these bands were cleaved by Msp I (tracks b, e, h and k) and three 

new bands 0.54, 1.16 and 3.65kb were seen. 

Following digestion with Hpa II (tracks c, f, i and 1), the 12.45, 

10.84 and 7 .16kb Eco RI fragments were all cleaved but the 4. 20kb 

fragment was only partially cleaved. Major new bands were seen at 

positions equivalent to 6.24, 5.07, 3.65, 2.32, 1.70, 1.16, and 

0.54kb. However, the 6.24kb band was absent in the 15 d.a.f. cotyledon 

DNA track (1). 

The sizes expected for the Eco RI fragments derived from the 

genomic clones, ~Leg 1, 2 and 3 are 12.5kb (XLeg 1), 7.0kb (~Leg 2) 

and 9. 4kb ( >J...eg 3) (figure 29b) . 

3:4 Investigation of the Vicilin Gene Family 

3:4:1 Specificity of the vicilin cDNAs used 

Two different vicilin eDNA probes were used to investigate 

methylation of the vicilin gene family. The eDNA, pDUB 7 is an llOObp 

eDNA which detects the 47,000-M vicilin polypeptide, whilst pDUB 2 is 
. r 

a 900bp eDNA, which detects the 50,000-M vicilin polypeptide. r . 

Figure 37b shows that although these two different vicilin eDNA 

probes have different specificities of hybridization they do detect 

several common bands of hybridization (eg 7.40 and 5.37kb Eco RI 

fragments, 6.90kb Bam HI fragment, 7.83 and 5.81kb Kpn I fragments and 

the 4.96 and 1.93kb Hind III fragments). 
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Figure 37a:- Photograph of an ethidium bromide stained gel, showing 

leaf genomic DNA restrictions. 

a) Leaf DNA + Eco RI 

b) II II + Bam HI 

c) II II + Kpn I 

d) II II + Hind III 

e) pDUB2 (40pg) + pDUB 7 (40pg) 

f) Leaf DNA + Eco RI 

g) II ·II + Bam HI 

h) II II + Kpn I 

i) II II + Hind III 

j) /..NM258 + Hind III; pBR322 + Hinf I 

k) /..NM258 + Ava I 

Each genomic track contained lO~g DNA digested with a 9-fold excess of 

the enzyme. 

Figure 37b:- Hybridization of 32 P-labelled 50,000-vicilin eDNA (pDUB 2 

insert), to a Southern blot of part I of the gel illustrated in figure 

37a. 

The specific activity of the probe was 6 x 10
7 cpm/~g and the filter 

was hybridized at 60°C and washed at 50°C. 

Figure 37c:- Hybridization of 32 P-labelled 47,000-vicilin eDNA (pDUB 7 

insert), to a Southern blot of part II of the gel shown in figure 37a. 

The specific activity of the probe was 5.3 x 10
7 cpm/~g and the filter 

was hybridized at 60°C and washed at 50°C. 
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3:4:2 Methylation of the vicilin gene family 

Figure 38 shows the hybridization pattern. obtained when the 

47, 000-M polypeptide vicilin eDNA probe, pDUB 7, was hybridized to 
r 

Hae III, Msp I and Hpa II digested gemonic DNA. Three major Hae III 

bands were detected at 8.32, 4.96 and 4.17kb (tracks a, d, g and j). 
fragments 

Three minor Hae III were also detected (6.95, 1.35 and l.llkb). 
A. 

Three major Msp I bands were observed at 11. 40, 8. 51 and 4. 67kb 

(tracks b, e and h) . In addition, several minor bands were seen at 

14, 13, 9. 59, 7. 50, 6. 46 and 2. 37kb. However, in the leaf plus Msp I 

track (k) only the 11.40, 9.59 and 4.67kb bands were visualised. 

Following Hpa II digestion, a single band (11.61kb) was seen in the 15 

and 21 d.a.f. cotyledon tracks (f and i) and this band was absent from 

the leaf and 10 d.a.f. cotyledon DNA tracks (c and 1). In all of the 

Hpa II tracks, a large proportion of the probe had hybridized to 

fragments of greater than 20kb in length. 

The 50,000-M polypeptide, vicilin eDNA probe (pDUB 2) detected 
r 

basically a similar pattern of hybridization to the larger DNA 

fragments (i.e. >6.4kb) (figure 39: tracks a, b, c, d, e and f). 

However, this probe did detect slightly different smaller Msp I 

fragments (5.59, 3.60. 2.90 and 1.82kb). The ll.61kb Hpa II fragment 

was again detected in cotyledon DNA, 15 and 22 d.a.f. (tracks b and d) 

but was absent from the leaf plus Hpa II track (f). The 1.82kb Msp I 

and Hpa II fragment was not detected by the 47,000-vicilin eDNA probe 

pDUB 7 (figure 38). 
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Figure 38:- Hybridization of 32 P-labelled 47,000-vicilin eDNA (pDUB 7 

insert), to a Southern blot prepared from a gel similar to that 

illustrated in figure 22a. 

a) 10 d.a.f. cotyledon DNA + Hae III 

b) 

c) 

It 

It 

It 

It 

It 

It 

+ Msp I 

+ Hpa II 

d) 15 d.a.f. cotyledon DNA + Hae III 

e) It It It + Msp I 

f) It It It + Hpa II 

g) 21 d. a. f. cotyledon DNA + Hae III 

h) It It II + Msp I 

i) II II II + Hpa III 

j) Leaf DNA + Hae III 

k) II II + Msp I 

1) II II + Hpa II 

The filter was hybridized and washed at 42°C using the formamide 
. 8 I system. The specific activity of the probe was 3 x 10 cpm ~g. 

Figure 39:- Hybridization of 32 P-labelled 50,000-vicilin eDNA (pDUB 2 

insert) to a Southern blot of Msp I and Hpa II digested ·genomic DNA. 

a) 15 d.a.f. cotyledon DNA + Msp I 

b) II II II + Hpa II 

c) 22 d. a. f. cotyledon DNA + Msp I 

d) II It II + Hpa II 

-e) Leaf DNA + Msp I 

f) It II + Hpa II 

Each track contained lO~g DNA digested with a 10-fold excess of 
8 

enzyme. The specific activity of the probe was 3 x 10 cpm/~g and the 

filter was hybridized at 65°C and washed at 50°C. 
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3:5 Work Involving the Mutant Pea Line Witham Wonder 5478 

3:5:1 Growth of mutant pea line 

Fel tham First and Witham Wonder lines 200 (parental) and 5478 

(mutant) pea plants were easily distinguished by certain 

characteristics. Fel tham First plants had mottled leaves and the 

leaflets were not attached by petiolules (figure 40a). Witham Wonder 

line 200, did not have the mottling and neither did it have petiolules 

(figure 40b). However, line 5478 had no mottling but the leaflets were 

attached by petiolules (figure 40c). Line 5478 also showed less apical 

dominance than the parental line 200, as the side shoots had a 

tendency to grow out and produce mature stems. It also took 

considerabl;:V longer to reach maturity ( ie flowering) and the newly 

formed pods emerged contorted and twisted but straightened out after a 

few days. There was a greater tendency for flowers to drop off or to 

form infertile pods and those pods which did develop mormally, had 

fewer peas per pod. 

3:5:2 Comparison of 50,000-M vicilin coding sequences in Feltham 
r--------------~~~~~~~----------~ 

First and Witham Wonder pea lines 200 and 5478 

Leaf genomic DNA, isolated from Feltham First and Witham Wonder 

lines 200 and 5478, was digested with a series of restriction enzymes 

and after blotting was hybridized to the eDNA for the 50,000-M 
r 

vicilin polypeptide (pDUB 2). Hybridization bands ranged in size from 

17kb (Kpn I) to less than 0.5kb (Alu I). In all cases, the same bands 

were observed in all three genomic digests and the relative 
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Figure 40:- Photographs of the leaflets and petiolules of a) Feltham 

First, b) Witham Wonder line 200, c) Witham Wonder line 5478. 
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Figure 41a and b:- Hybridization of 32 P-labelled 50,000-vicilin eDNA 

(pDUB 2 insert) to Southern blotted, restricted leaf genomic DNA from 

Feltham First and Witham Wonder lines 200 and 5478. 

Figure 41a:- Tracks a, d, g, j and m were Fel tham First restricted 

DNA; tracks b, e, h, k and n were line 200 restricted DNA; trakcs c, 

b, i, 1 and o were line 5478 restricted DNA; The restrictions were as 

follows: a, b and c - Alu I; d, e and f - Hind III; g, h and i -

Mho I; j, k and 1 -Bel I; m, n and o- Taq I. 

-Figure 41b:- Tracks a, d, g and j - Feltham First restricted DNA; b, 

e, h and k - line 200 restricted DNA; c, f, i and 1 

restricted DNA. Restrictions were as follows: a, b and c 

e and f- Kpn I; g, hand i -Apa I; j, k and 1 - Hae III. 

line 5478 

Eco RI; d, 

The specific activity of the probe was 8 
1. 5 x 10 cpm/ J1 g and the 

filters were hybridized at 60°C and washed at room temperature. 
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--
intensities of the bands, within each track, were similar between the 

tracks (figure 41) 

3:5:3 Analysis of total RNA extracted from Feltham First and Witham 

Wonder lines 200 and 5478 

Feltham First total RNA was isolated using three different 

methods. The RNA was glyoxalated and after electrophoresis was stained 

with acridine orange (figure 42). The 25S and 18S ribosomalRNAs were 

clearly visible in all tracks. In addition the leaf RNA, isolated by 

Chirgwin's method, was partially degraded (tracksi and j ). Where the 

rapid method of Langridge et al was being used (tracks d, e, f and g), 

tRNA was also isolated and was clearly visible in these tracks. 

The method of Langridge was preferred and was therefore used to 

isolate total RNA from developing cotyledons of the two Witham Wonder 

pea lines. This RNA was Northern blotted and probed with three 

different vicilin cDNAs (pDUB 2, 7 and 9) (figure 43). When the eDNA 

probe for the ~7,000-vicilin polypeptide was used (figure 43a), mRNA 

for this polypeptide was detected in both parental and mutant lines, 

at all stages of cotyledon development examined. In 9 d.a.f. 

cotyledons, only a small amount of the message was detected (tracks a 

and b). There was then a rapid increase in accumulation of this mRNA 

to 11 d.a.f. (tracks c and d) (over a 10-fold increase), followed by a 

slower increase to 13 d.a.f. (tracks e and f) (2-fold increase) and a 

gradual decline between 13 d.a.f. and 17 d.a.f. (tracks g, h, i and 

j). The message for the 47,000-vicilin was barely detectable in the 

parental line 19 d.a.f. (track k). The relative amounts of the message 
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a b c d e f g h j k 

--- 25S rRNA 

23S rRNA 

16S rRNA 

Figure 42:- Acridine orange stained · glyoxal gel showing total RNA 

preparations from Fel tham First, using different methods of 

extraction. 

a) 14 d.a.f. cotyledon total RNA~ 
b) 16 d. a. f. " " " Hall and Buchbinder's 

c) 18 d.a:.r. " " " hot SDS method 

d) 12 d. a. f. " " " 
e) 14 d. a. f. " " " Langridge et a?, 's phenol/ 

f) 14 d.a.f. " " " chloroform/SDS method 

g) 16 d.a.f. 11. " " 
h) 11 d. a. f. " " "] 

Chirgwin et a?, 's 

i) Leaf total RNA guanidinium thiocyanate method 

j) " " " 
k) E. coLi RNA 

10~g RNA per track. 
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Figure 43a:- Hybridization of 32 P-labelled 47,000-vicilin eDNA (pDUB 7 

insert); to a Northern blot formamide prepared from total RNA isolated 

at different stages of cotyledon development in Witham Wonder lines 

200 and 5478. 

Tracks a, c, e, g, i and k were RNAs isolated from line 200 and tracks 

b, d, f, h and j were the RNAs isolated from line 5478. The stages of 

cotyledon development were: 9 d.a.f. (a and b), 11 d.a.f. (c and d), 

13 d.a.f. (e and f), 15 d.a.f. (g and h), 17 d.a.f. (i and j) and 19 

d. a. f. (k). 

lOws of total RNA were loaded per track and the specific activity of 

the probe was 3 x 10
8 

cpm/ 11g. The filter was hybridized in the 

formamide system at 42°C and was also washed at 42°C. 

Figure 43b:- Hybridization of 32 P-labelled 50,000-vicilin eDNA (pDUB 2 

insert) , to a Northern blot prepared from total RNA isolated at 

different stages of Witham Wonder (lines 200 and 5478) cotyledon 

development. 

The tracks are as indicated for figure 43a, with the additional track 

'1' being RNA isolated from line 5478 19 d.a.f. The specific activity 
8. 

of the probe was 1. 3 x 10 cpm/11g and the filter was hybridized as 

described for figure 43a. 

Figure 43c:- Rehybridization of the Northern blot, the autoradiograph 

of which is shown in figure 43b, with a different 32 P-labelled 50,000-

vicilin eDNA (pDUB 9 insert). 
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detected in parental and mutant lines, at the different stages of 

cotyledon development, were similar. 

When pDUB 2 was used as a probe for the 50,000-M 
r 

vicilin 

polypeptide message (figure 43b) , significant amounts of the message 

were detected in the parental line 9 d.a.f. (track a). This was 

followed by a 4 to 5-fold increase in the amount of detectable message 

at 11 d.a.f. (track c) and a smaller increase (2-fold) to 13 d.a.f. 

(track e). After this time the level of message gradually declined to 

17 d.a.f. (tracks g and i) followed by a rapid decrease thereafter 

(track k) . In the mutant line, . the amounts of mRNA detected at all 

stages of cotyledon development were far less than were detected at 

the equivalent stage of cotyledon development. The message was barely 

detectable 9 d.a.f. (track b), increased steadily to 13 d.a.f. (tracks 

d and f), remained at a fairly constant level 15 d.a.f. (track h) and 

then declined rapidly and was barely detectable 19 d.a.f. (tracks j 

and 1). 

When a eDNA probe for a different 50,000 -M vicilin polypeptide 
r 

message was used (figure 43c), a different pattern of message 

accumulation was observed. Again, in the parental line, the message 

was detected in appreciable amounts 9 d.a.f. (track a). However, the 

amount of message detected increased by only a factor of 3 to 4-fold 

between 9 d.a.f. and 13 d.a.f. (track e) and this was followed by a 

gradual decline to 15 d.a.f. (track g) and a rapid decline between 15 

and 17 d.a.f. (tracks i and k) to become barely detectable 19 d.a.f. 

(track k) . In the mutant line, relatively higher amounts of this 

message were detected at all stages of development than had been 



- 143 -

detected by pDUB 2 (figure 43b), as judged by the relative intensities 

of the parental and mutant bands at each stage of cotyledon 

development. The pattern of accumulation of this message in the mutant 

line was similar to that described for the parental line except that 

the amount of message detected after day 15 declined more rapidly 

(track j) and was below the level of detection 19 d.a.f. (track 1). 

3:5:4 Analysis of parental and mutant genomic DNA using Mspi and Hpaii 

When Msp I and Hpa II digested cotyledon and leaf genomic DNA was 

hybridized to a 50,000-M vicilin polypeptide 
r 

eDNA (pDUB 2), the 

pattern of hybridization (figure 44) was similar to that described 

previously (figure 39). In particular, the 11.61kb Hpa II band, absent 

in both 200 and 5478 leaf DNA (tracks hand j), was barely detectable 

in 15 d.a.f. 5478 cotyledon DNA (track d) but was clearly visible in 

the 21 d.a.f. 200 and 5478 cotyledon DNA (tracks d and f). The 1.84kb 

band was also present in all Msp I and Hpa II tracks. 

3:6 Analysis of legumin gene A and pseudo legumin gene D sequence data 

Figure 45 shows the distribution of CG dinucleotides along the two 

genes. In general, the protein coding regions (exons) were richer in 

CG dinucleotides. This was particularly noticeable in the first exon 

of legumin gene A (figure 45c). Figure 46 shows the relationship 

between the observed number of CG and GC dinucleotides and the 

expected number calculated from the base composition of gene regions 

(figure 46a: II and III) and 100 nucleotide segments (figure 46b: II 
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Figur.e 44:- Hybridization of 3 2 P-labelled 50,000-vicilin eDNA (pDUB 2 

insert), to a Southern blot prepared from Msp I and Hpa II digested 

genomic DNA, from lines 200 and 5478. 

a) Line 5478 15 d. a. f. cotyledon DNA + Msp I 

b) II II II II II + Hpa II 

c) Line 200 22 d.a.f. cotyledon DNA + Msp I 

d) II II II II II + Hpa II 

e) Line 5478 22 d.a.f. cotyledon DNA + Msp I 

f) II II II II II + Hpa II 

g) Line 200 leaf DNA + Msp I 

h) II II II II II + Hpa II 

i) Line 5478 leaf DNA + Msp I 

j) II II II + Msp II 

Each genomic track contained 7.5~g DNA digested with a 12-fold excess 

of Msp I and Hpa II. The specific activity of the probe was 1 x 108 

cpm/~g and the filter was hybridized at 65°C in the heparin system and 

was also worked at 65°C. 
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Figure 45:- Distribution of CG dinucleotides in legumin genes A (pDUB 

24) and D. 

Figure 45a:- Positions of CG dinucleotides in Leg D. 

Figure 45b:- Location of protein coding sequences (solid boxes 

exons) in Leg D. 

Figure 45c:- Positions of CG dinucleotids in Leg A. 

Figure 45d:- Location of protein coding sequences (solid boxes 

exons) in Leg A. 
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Figure 46:- Schematic representation of the ratio of observed to the 

expected number of CG and GC dinucleotides in legumin gene A 

{pDUB 24). 

Figure 46a:-

I Map showing coding and non-coding regions of Leg A. 

II Ratio of the observed number of GC dinucleotides to the 

number calculated for the various gene regions of Leg A. 

III Ratio of the observed number of CG dinucleotides to the 

number calculated for the various gene regions of Leg A. 

Figure 46b:-

I Percentage composition (C+G) of 100 nucleotide segments 

of Leg A. 

II Ratio of the observed number of GC dinucleotides to the 

number calculated for 100 nucleotide segments of Leg A. 

III Ratio of the observed number of CG dinucleotides to the 

number calculated for 100 nucleotide segments of Leg A. 
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and III) (see also table 7 and 8). When the GC ratio was examined 

(figure 46b:II), it was noticed that there was considerable variation 

in this ratio (ranges from 0 to 2.0), and 23 out of the 36 segments 

had a ratio of over 1.0. 

When the observed to expected ratio was examined in terms of gene 

regions (figure 46a: II), exon 2, and introns 2 and 3 both had ratios 

of less than 1.0 whilst other gene regions had a ratio of 1.0 or more. 

In particular, exon 4 had a ratio of 1.50 and it was noticed that all 

the individual 100 nucleotide segments in this region had a high ratio 

(figure. 46b: II) . In contrast, the 5 1 flanking region had an area 

. which was relatively deficient in GCs ( -500bp to -1200bp from the 

start of protein coding regions) , followed by a region which was 

relatively rich in GCs (-100 to -500bp). The combination of these two 

features, gave the 5 1 flanking region an overall ratio of 1.0. 

When the CG ratio was examined (figure 46b:III), it was 

immediately apparent that the values obtained for 100 nucleotide 

segments were generally much lower than had been observed for the GC 

ratio. They ranged from 0 to 1.27 but only 1 out of the 36 segments 

had a value of over 1.0. These low individual values were reflected in 

the overall values obtained for the gene regions (figure 46a:III). No 

single region had a ratio of 1.0 or more. Exon 1 had the highest ratio 

(0.68) but in general the ratios were between 0.4 to 0.5. 

The overall percentage composition (C + G per 100 nucleotides) is 

shown in figure 46b:I and when the gene map (figure 46a:I) was 

superimposed on this, it was seen that exon 1 and exon 3 were 

relatively C + G rich, whilst the 5 1 and 3 1 flanking regions were 
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Table 7: Legumin gene A ratio of observed to expected number of 
dinucleotides 

Total 
Sequence 5'F El 11 E2 12 E3 13 

Length (bp) 3692 1231 286 89 251 89 626 99 
Dinucleo-
tide 

CA 1.27 1.21 1.12 1.36 1.31 1.35 1.34 2.05 

AG 1.17 1.13 1.09 1.10 1.33 1.46 1.42 0.92 

GC 1.17 0.98 1.36 1.16 0.64 0.93 1.21 0.51 

TG 1.13 1.16 1.33 0.82 1.09 1.32 1.14 1.27 

GA 1.07 1.08 1.13 0.37 1.36 0.77 1.18 1.18 

TC 1.07 1.16 0.99 0.44 0.97 1.19 1.38 1.41 

CT 1.02 0.93 1.24 1.02 0.97 0.99 1.38 0.63 

AT 1.00 1.02 0.79 1.01 0.99 1.16 0.81 1.14 

AC 0.82 0.73 0.82 1.94 1.11 0.84 0.73 0.91 

GT 0.80 0.90 0.57 1.37 0.77 1.32 0.59 1.09 

TA 0.78 0.83 0.47 1.47 0.78 1.06 0.39 0.65 

CG 0.44 0.36 0.68 0.58 0.40 0 0.41 0.51 

E4 3'F 
391 630 

1. 51 1.26 

1.16 0.88 

1.50 0.99 

1.52 1.30 

0.82 0.95 

0.94 1.16 

1.19 1.04 

0.95 1.06 

0.89 0.85 

1.03 0.92 

0.73 0.84 

0.45 0.33 

The abbreviations used are: 5'F = 5' flanking region; El = exon 1; 11 = 
intronl; E2 = exon 2; 12 = intron 2; E3 = exon 3; 13 = intron 3; E4 = exon 4; 

3'F ·= 3' flanking region. 

/ 
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Table 8: Frequency ratios for selected di and trinucleotides in legumin gene D 

Total 

Sequence 5'F El Il E2 12 E3 I3 E4 3'F 

Length (bp) 2509 775 289 84 250 113 442 92 289 195 

Dinucleo-

tide 

CA 1.88 1.01 0.80 1. 53 1.23 0.84 1.39 1.38 1.35 0.72 

CT 1.13 1.07 1.28 0.83 1.06 1.18 1.28 1.01 1.40 0.96 

GC 1.02 0.95 1.02 0 0.77 1.18 0.99 1.21 1.40 0.61 

GT 0.86 1.02 0.78 0.74 0.95 0.88 0.68 0.48 1.01 1.20 

TG 1.16 1.30 0.78 0.74 1.25 1.24 1.30 1.44 1.48 1.40 

CG 0.71 0.26 0.54 1.14 0.26 0.59 0.22 0 0.51 0.61 

CA + TG 1.18 1.14 0.79 1.24 1.24 1.05 1.36 1.40 1.41 1.04 

CAG 1.07 0.46 1.38 3.06 1. 78 1.48 1.31 5.30 1.06 0 

CTG 1.10 0.63 1.55 0 1.24 3.33 1.54 0 1.37 1.95 

The abbreviations used are: 5'F = 5' flanking region; E1 = exon 1; 11 = 
intron1; E2 = exon 2; 12 = intron 2; E3 = exon 3; 13 = intron 3; E4 = exon 4; 

3'F = 3' flanking region. 
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relatively C + G deficient. 

When the same analyses were performed with the sequence data for 

legumin gene D, similar results were obtained (figures 47a and b). 15 

out of 25 100 nucleotide segments had a GC observed to expected ratio, 

of 1.0 or more, whilst only 4 had a CG ratio in excess of 1.0. The 

values obtained for the gene regions were again similar to those 

previously detailed for legumin gene A. For the GC ratio, the values 

ranged from 0.8 to 1.40 (intron 1 and 3' flanking region excluded), 

whilst for the CG ratio, the values ranged from 0.2 to 0.6 (introns 1 

and 3 excluded). When the percentage C + G per 100 nucleotides was 

examined, the flanking regions were again relatively deficient, whilst 

exons 1 and 3 were relatively rich in C + G. 

Tables 6 and 7 summarize the observed to expected ratios 

calculated for various dinucleotides in the two genes. Most of these 

dinucleotides (except for CG) had an observed to expected ratio of 

about 0. 8 to 1. 2 for most of the gene regions. Exceptions to this 

generalisation were usually associated with the introns, which were 

usually short in length {<100 nucleotides) eg in Leg A, GA and AC in 

intron 1, AG and GT in intron 2 and CA and GC in intron 3. 

Table 9 shows a summary of the observed to calculated frequency 

ratios of all Leg A, CG-containing trinucleotides. All CG-containing 

trinucleotides were found to be deficient. No trinucleotide was found 

to be suppressed to a greater or lesser extent than the rest. 

Figure 48 (a to q) shows the results obtained when the sequence 

data was analysed with respect to percentage composition of either 100 

nucleotide s~gments or gene regions. The solid line in each of these 
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Table 9: Freguencl ratios (observed/calculated) of all CG-trinucleotides in Le8 A. 

Total 5'F E1 Il E2 !2 E3 !3 E4 3'F TotalNo. 
Length (bp) 3692 1231 286 89 251 89 626 99 391 630 observed 
Trinucleotide 

ACG 0.32 0.30 0.50 1.92 0.55 0 0.23 0 0.49 0 14 

CCG 0.74 0.72 0.44 0 1.17 0 0.53 0 0.70 1.00 17 

GCG 0.40 0 0.30 0 0 0 0.69 0 0.21 0.36 10 

TCG 0.39 0.32 1.13 0 0 0 0.19 1.20 0.42 0.44 14 

CGA 0.32 0.20 0.76 0 0.55 0 0.30 1. 73 0.16 0.17 14 

CGC 0.61 0.48 0.88 0 0 0 0.80 0 0 1.00 14 

CGG 0.44 0.49 0.44 0 0.34 0 0.20 0 0.42 0.72 11 

CGT 0.41 0.32 0.45 1.44 0.31 0 0.57 0 1.04 0 15 

The abbreviations used are 5'F = 5' flanking region; E1 = exon 1; !1 = intron 1; 
E2 = exon 2; !2 = intron 2; E3 = exon 3; !3 = intron 3; E4 = exon 4; 3'F = 3' 
flanking region. 
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Figure 4a:- Relationship between the frequency of occurrence and the 

percentage composition of legumin gene A (pDUB 24) and the pseudo 

legumin gene D. 

The individual graphs are:-

a) Legumin gene A CG dinucleotides 

b) II II II GC II 

c) II II II TG II 

d) II II II CA II 

e) II II II GT II 

f) II II II AC II 

g) II II II CT II 

h) II II II TC II 

i) II II II GA II 

j) II II II AG II 

k)- II II II TA II 

1) II II II AT II 

m) Legumin gene D CG dinucleotides 

h) II II II GC II 

p) II II II TG II 

q) II II II C-A II 

The symbols used are: ( o observed number of dinucleotides in 100 

nucleotide segments and ( • ) observed number of dinucleotide in a 

gene region (corrected to allow for the varying length of the 

different regions ie calculated in terms of 100 nucleotide lengths, 

which are representative of the gene region as a whole). 

The abbreviations used are: 5' = 5' flanking region; E1 = exon 1; 11 = 
intron 1; E2 = exon 2; 12 = intron 2; E3 = exon 3; 13 - intron 3; E4 

= exon 4; 3' 3' flanking region. 

In each graph, the solid line represents the results that would be 

expected from a random distribution of dinucleotides (see 'Methods'). 
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graphs indicates the results that would be expected if the 

distribution of bases were random. This analysis indicated several 

interesting features. First, in Leg A, for the dinucleotides CT, TC, 

GA, AG and AT (g, h, i, j and 1), the distribution of the dinucleo­

tides was similar to that predicted. 

For the CG dinucleotides (graph a) the observed frequencies (with 

one exception) were lower than were expected, even at the higher C+G 

percentage compositions ie the CG suppression was not restricted to 

regions with a low C+G percentage composition. In addition, the CG 

suppression was not restricted to either the coding or non-coding 

regions of the gene. The exception to this generalisation was exon 1, 

which displayed almost the expected frequency of CGs. By contrast, the 

GC dinucleotide distribution (b) had several different features. Where 

the DNA had a percentage composition of greater than 35% G+C, the 

observed frequency exceeded that predicted and whilst. the non-protein 

coding gene regions ( 11, 12, 5' and 3') all had nearly the expected 

frequency of GC dinucleotides, three of the exons had a higher than 

was expected frequency of GCs. 

The results obtained for the CA and TG dinucleotides were also 

interesting. The percentage composition of the DNA fell into a very 

narrow range (between 40-60%). For both of these nucleotides, for the 

relatively lower percentage compositions, the observed frequency of 

the dinucleotide was lower than was expected, but when the percentage 

composition exceeded 45%, the observed frequency exceeded that 

predicted. For theCA dinuleotide (d), all of the exons and the three 

introns had a higher than was expected frequency of the dinucleotide, 
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dinucleotide in exon 1 and intron 3 was very different to the Leg A 

situation (d). The CA frequency distribution 'for Leg D ( q) was also 

similar to that described for Leg A. However, exon 1 and intron 2 had 

a very different CA frequency to that observed for Leg A. 

When the microenvironment around each CG or GC dinucleotide was 

examined (table 10 and figures 49 and 50), it was found that most 

sites occurred in decanucleotides which were between 40 and 70% C+G 

rich. These percentages were much higher than was observed for the 

larger stretches of DNA (figure 48a and b, m and n), where it was rare 

to find a percentage composition of over 50% C+G. When the 

microenvironment of these sites was assessed (figures 49 and 50) no 

marked difference was found between either of these genes or the 

dinucleotides, although there was a tendency for the GC dinucleotide 

to occur in a microenvironment with a slightly lower C+G percentage 

composition. 

Figure 51 (a and b) illustrates the effect on dinucleotide 

frequencies, of the deamination of a 5-methylcytosine residue in a CG 

dinucleotide. Figures 52 and 53 show the relationship between the CG 

ratio and the CA+TG ratio for Leg A. Figure 52 shows the correlation 

between the CA+TG excess and CG deficiency in Leg A. Exon 4 and intron 

3 were shown to be in general very CA+TG rich compared with their CG 

deficiency, although a few individual 100 nucleotide segments had both 

a CG deficiency and a CA+TG deficiency. 

When the. data was interpreted in terms of the observed to 

calculated ratios, it was found that when the overall gene regions 

were examined (figure 53a :I), the CA+TG ratio was found to be greater 
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Table 10: Microenvironment of CG and GC dinucleotides 

Percentage Number of sites occurring 
composition (C+G) Legumin gene A Leg D 
of decanucleotide CG GC CG 

20 0 1 1 

30 3 17 1 

40 10 32 8 

50 10 37 6 

60 11 34 10 

70 10 13 6 

80 7 6 3 

90 4 6 0 

100 0 0 0 

Total 55 146 35 
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Figure 51a:- Deamination of 5-methylcytosine to thymine. 

Figure 51b:- Effect of deamination in a CG dinucleotide pair 
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Figure 52:- Correlation between CG deficiency and CA+TG excess in Leg 

A (pDUB 24). 

The symbols used are: 0 = 100 nucleotide segments and • 

(calculated on a 100 nucleotide basis). 

gene regions 
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Figure 53:- Comparison of the observed to calculated ratios for CG and 

CA + TG dinucleotides in legumin gene A (pDUB 24). 

Figure 53a:- I Ratio of observed number (CG and CA+TG) to the number 

calculated for each gene region of Leg A. 

II Map showing the coding and non-coding regions of Leg A. 

Figure 53b:- I Ratio of observed number (CG and CA+TG) to the number 

calculated for 100 nucleotide segments of Leg A. 

II Map showing the coding and non-coding regions of Leg A. 
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than 1.0, throughout the gene, whilst that of CG was generally less 

than 0.5. There was no obvious correlation,. in any gene region, 

between an increased CA+TG ratio and a particularly decreased CG 

ratio. 

When the relationship between CA+TG and CG frequencies was 

examined in terms of 100 nucleotide segments (figure 53b :I) , there 

was one noticable area, where a correlation did seem to exist. In this 

region ( + 100 to + 300 bp from the start of the protein coding 

sequence), there was an apparent relief from CG-suppression (ie the CG 

dinucleotide occurred at almost the frequency expected) and there was 

a corresponding expected occurrence of the CA+TG ratio (ie observed to 

calculated ratio was about l. 0) . This region corresponded to the 

cluster of CG dinucleotides noted in figure 45, in exon 2. 

When the sequence data for Leg D was analysed in a similar manner, 

there was again no obvious correlation in the ratios obtained for the 

gene regions (figure 54a :I). When the sequence data was analysed in 

100 nucleotide segments a correlation was observed in exon 1 (+ 100 to 

+ 300bp), similar to that described for Leg A (figure 53b). 

If the cause of the CG suppression effect is the mutability of 

5-methylcytosine, then in an analysis of plant gene sequence data, a 

correlation should also be observed between the methylated 

trinucleotides 5' -CAG-3' and 5' -CTG-3' and their mutation products, 

5'-TAG-3' + 5'-CTA-3' and 5'-TTG-3' + 5'-CAA-3', respectively (table 

11). No apparent correlation was evident in this table. In fact, the 

CAG trinucleotide did not seem to be suppressed at all, whilst the CTG 

trinucleotide was only suppressed in the flanking regions and introns 
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Figure 54; Comparison of the observed to calculated ratios for CG 

and CA+TG dinucleotides in legumin gene D. 

Figure 54a:-

I Ratio of observed number ( CG and CA+TG) to the number 

calculated for each gene region. 

II Map showing the coding and non-coding regions of Leg D. 

Figure 54b:-

I Ratio of observed number ( CG and CA+TG) to the number 

calculated for 100 nucleotide segments of Leg D. 

II Map showing the coding and non-coding regions of Leg D. 



I 
.c 

t.=J ..ll:: 

1- Ln . 
+ C> 

t.=J 
<t lJ ,..., 
lJ 

L---
r-

r.J 
r----..J 
L, 

L---

.---..J 
r 
I 
L----, 

L---, 
r------' 
L-----, 

r---...J L_ __ 

r--
L----, 

r---------
L----, 

L-, 
~ L-, 

r----..J 
L-----, 

I 
~ 

Ln 

C> '-0 N co . . . . C> 
N ...... -- C> C> 

) 1 E) I sqo = 0! ~ EJ d!N 
I n 

b 



- 165 -

Table 11: Frequency ratios (observed/calculated for selected di and trinucleotides 
in Leg A 

Length (bp) 
Sequence 

(5'~3') 

CG 

CA 

TG 

CA + TG 

CAG 

TAG 

CTA 

TAG + CTA 

CTG 

TTG 

CAA 

TTG + CAA 

CCG 

CTG 

TTG 

CTG + TTG 

CCG 

TCG 

TTG 

TCG + TTG 

CGG 

CAG 

CAA 

CAG + CAA 

CGG 

CGA 

CAA 

CGA + CAA 

Total 5'F .E1 11 
3692 1231 286 89 

E2 12 
251 89 

E3 13 
626 99 

E4 3'F 
391 630 

0.44 0.36 0.68 0.58 0.40 0 0.41 0.51 0.45 0.33 

1.27 1.21 1.12 1.36 1.31 1.35 1.34 2.05 1.51 1.26 

1.13 1.16 1.33 .82 1.09 1.32 1.14 1.27 1.52 1.30 

1.22 1.18 1.22 1.1~ 1.20 1.34 1.27 1.62 1.53 1.28 

1.36 1.01 1.01 0 2.18 2.50 1.57 1.73 1.79 .52 

0.65 0.81 0.52 1.81 0.44 0.71 0.32 0.62 0.87 0.76 

0.76 0.53 0.94 1.44 0.50 1.61 0.72 1.07 1.29 0.94 

0.70 0.66 0.76 1.57 0.47 1.23 0.49 0.86 1.07 0.83 

0.82 0.53 0.90 0 1.25 1.48 1.14 0 1.67 0.44 

1.17 1.04 1.39 0.68 1.99 0.84 1.89 0.86 1.49 1.15 

1.28 1.12 2.50 1.92 1.11 0.57 1.31 1.55 2.15 0.82 

1.24 1.08 1.98 1.32 1.52 0.68 1.41 1.10 1.88 0.97 

0.74 0.72 0.44 0 

0.82 0.53 0.90 0 

1.17 0 0.53 0 

1.24 1.47 1.14 0 

0. 70 1.00 

1.66 0.44 

1.17 1.04 1.39 0.68 1.99 0.84 1.89 0.86 1.49 1.15 

1.04 0.88 1.14 0.46 1.66 1.07 1.45 0.63 1.57 0.93 

0.74 0.72 0.44 0 1.17 0 0.53 0 0.70 1.00 

0.39 0.32 1.13 0 0 0 0.19 1.20 0.42 0.44 

1.17 1.04 1.39 0.68 1.99 0.84 1.89 0.86 1.49 1.15 

.74 0.82 1.23 0.46 1.11 0.54 0.89 0.95 0.88 0.93 

0.44 0.49 0.44 0 

1.36 1.01 1.01 0 

0.34 0 0.20 0 0.42 0.72 

2.18 2.50 1.57 1.73 1.79 0.52 

1.28 . 1.12 2.50 1.92 1.11 0.57 1.31 1.55 2.15 0.82 

1.34 1.09 1.83 1.44 1.59 1.18 1.42 1.61 1.99 0.94 

0.44 0.49 0.44 0 

0.32 0.20 0.76 0 

0.34 0 

0.55 0 

0.20 0 0.42 0.72 

0.30 1.73 0.16 0.17 

1.28 1.12 2.50 1.93 1.11 0.57 1.31 1.55 2.15 0.82 

0.93 0.85 1.71 1.44 0.86 0.39 0.87 1.61 1.28 0.61 
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1 and 3. It is possible that a correlation does exist at a specific 

location but was not observed because of the size of gene regions 

examined and therefore, the data was also analysed in terms of 100 

nucleotide segments (figures 55 and 56). However, even in these 

smaller sections no apparent correlation was observed between either 

( i) a trinucleotide suppression and an elevated level of the two 

trinucleotide mutation products or ( ii) the relief from suppression 

( eg in a cluster region) and an expected frequency of the mutation 

product. 

The third methylated trinucleotide found in plant DNA is 

5 1 -CCG-3 1
• The relationship between this trinucleotide and its 

mutation products (5 1 -CCG-3 1-+ 5 1 -CTG-3 1 ---+ 5 1 -TTG-3 1 or 5 1 -CCG-3 1 
_. 

5 1 -TCG-3 .__. 5 1 -TTG-3 1
) is shown in figures 57a and b and table 11. A ' . 

rough correl.a'tion :·was ·observed in exons 3 and 4, between CCG 

suppression and the elevation of the mutation products CTG+TTG. 

In a similar manner, the mutation of the CCG trinucleotide on the 

other non-sequenced DNA strand (the RNA template strand) was monitored 

by the comparison of the complementary trinucleotides on the sequenced 

strand (ie 5 1 -CCG-3 1~5 1 -CTG-3 1~5 1 TTG-3 1 on the RNA template strand 

corresponds to 5 1 -CGG-3 1~5 1 -CAG-3 1~5 1 -CAA-3 1 on the complementary, 

sequenced strand and 5 1 -CCG-3 1 ___.5 1 TCG-3 1 ____..5 1 TTG-3 1 on the RNA 

template strand corresponds to 5 1 -CGG-3 1 ~5 1 -CGA-3 1~5 1 -CAA-3 1 on 

the complementary, sequenced strand) (table 11; figure 58a and b). 

This time, a stronger correlation was observed, particularly in figure 

58a, between the trinucleotide suppression and the mutation products. 

The information in table 12 is presented in a form which allows 
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Figure 55:- Comparison of observed to calculated values for the 

trinucleotides CAG and TAG+ CTA in legumin gene A (pDUB 24). 

I Ratio of observed frequency (CAG and TAG + CTA) to the 

predicted frequency calculated for 100 nucleotide 

segments of Leg A .. 

II Position of CAG trinucleotides in Leg A. 

III Location of protein coding sequences in Leg A. 
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Figure 56:- Comparison of observed to calculated values for the 

trinucleotides (CTG and TTG+CAA) in legumin gene A (pDUB 24). 

I Ratio of observed frequency (CTG and TTG+CAA) to the 

predicted frequency calculated for 100 nucleotide 

segments of Leg A. 

II Position of CTG trinucleotides in Leg A. 

III Position of protein coding sequences in Leg A. 
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Figure 57:- Comparison of observed to calculated values for the 

trinucleotides CCG and CTG+TTG and TCG+TTG in legumin gene A (pDUB 

24). 

Figure 57a:- I Ratio of observed frequency (CCG and CTG+TTG) to the 

predicted frequency calculated for the gene regions of 

Leg A. 

II Position of CCG trinucleotides. 

III Location of protein coding sequences in Leg A. 

Figure 57b:- I Ratio of observed frequency (CCG and TCG+TTG) to the 

predicted frequency calculated for the gene regions of 

Leg A. 

II Position of CCG trinucleotides. 

III Location of protein coding sequences in Leg A. 
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Figure 58:- Comparison of observed to calculated values for the 

trinucleotides CGG and CAG+CAA and CGA+CAA in legumin gene A (pDUB 

24). 

Figure 58a:- I Ratio observed frequency (CGG and CAG+CAA) to the 

predicted frequency calculated for the gene regions 

of Leg A. 

II Position of CGG trinucleotides. 

III Location of protein coding sequences in Leg A. 

Figure 58b:- I Ratio observed frequency (CGG and CGA+CAA) to the 

predicted frequency calculated for the gene regions 

of Leg A. 

II Position of CGG trinucleotides. 

III Location of protein coding sequences in Leg A. 
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Table 12: Summary of occurrence of selected di and trinucleotides in the protein 
and non-protein coding sequence of Leg A 

Nucleotide NON-PROTEIN CODING PROTEIN CODING 
Sequence obs calc % obs. calc % 

CA 145 114.3 126.9 145 108.5 133.7 

TG 132 109.7 120.7 101 79.2 127.6 

CG 17 48.5 35.1 40 85.0 47.1 

CCG 5 7.2 69.8 12 19.0 63.3 

CGG 4 7.6 53.0 7 21.2 33.1 

CAG 16 17.6 90.8 43 27.1 158.6 

CTG 8 16.2 49.5 23 17.7 129.7 

CTA 29 38.3 75.8 20 22.5 89.1 

TAG 32 39.8 80.4 12 24.7 48.7 

TTG 38 36.6 103.7 29 17.4 166.6 

CAA 43 40.9 105.1 57 34.8 163.9 

TCG 6 16.2 37.1 8 17.7 45.1 

CGA 4 17.6 22.7 10 27.1 36.8 

CA + TG 277 224.0 123.7 246 187.6 131.1 

CTG + CAG 24 33.8 71.1 66 44.9 147.2 
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the effects of protein coding requirements on the 5mC mutation rate, 

to be assessed. The major feature of this table is the marked 

difference between the protein coding and non-protein coding region, 

percentage occurrence of the GAG and CTG trinucleotides. Both of these 

trinucleotides were found to be relatively deficient in the 

non-protein coding regions, but were enhanced in the protein coding 

regions. The TTG and the CCA trinucleotides were also shown to occur 

far more frequently than was predicted in the protein coding regions. 

The CGG trinucleotide was shown to be suppressed to a greater extent 

in the protein coding region than in the non-protein coding regions. 

When the codons, in which the cytosine of each CG dinucleotide 

were assessed (tables 13 and 14), it was found that overall, 40% of 

the cytosines ( 16 out of 40) occurred in the first codon position, 

17. 5% ( 7 out of 40) in the second position and 42. 5% in the third 

codon position. The first exon was found to have a higher percentage 

(54.5%) of cytosines in the first codon position, whilst in exon 2 no 

cytosines, which were part of a CG dinucleotide, were found in the 

second codon position. 

The codon position of the guanine base in a CG dinucleotide (table 

15) , reflects the location of the complementary cytosine in a CG 

dinucleotide on the RNA template strand. Only 17.5% of these guanines 

were located in the third codon position. Similarily, no external 

guanines in the 5'-CGG-3' sequence (complementary to 5'-CCG-3' on the 

template strand) and 28.6% of the internal guanines, were found in the 

third codon position. In contrast, over 64% of the thymines in TG 

dinucleotides and just under 70% of the thymines in the CTG 
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Table 13: Identification of codons in which the cytosine of the CG 
dinucleotides, in legumin gene A, occur 

EXON 1 

Codon GGC CGC CTC CTC CGT TCG 

Amino Acid G R L L R s 
Codon Position 3 1 3 3 1 2 

Codon CGT CGC AAC CGC 

Amino Acid R R N R 

Codon Position 1 1 3 1 

EXON 2 

Codon c.cc CGC CGA AAC GCC 

Amino Acid p R R N A 

Codon Position 3 1 1 3 3 

EXON 3 

Codon CAC AAC GAC CCC GCG CGC 

Amino Acid H N D p A R 

Codon Position 3 3 3 3 2 1 

Codon CGC CCG CGT CGC GGC CGA 

Amino Acid R p R R G R 

Codon Position 1 2 1 1+3 3 1 

EXON 4 

Codon TAC CGT ACC GCC CGT AGC 

Amino Acid y R T A R s 
Codon Position 3 1 3 3 1 3 

Codon CGT TCG 

Amino Acid R s 
Codon Postion 1 2 

CGA 

R 

1 

CCG 

p 

2 

CCG 

p 

2 

CCG 

p 

2 
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Table 1'4: Summary of codon position of cytosine residues which are part of a 
CG dinucleotide (legumin gene A data) 

CODON POSITION 
1 2 3 

Exon 1 

Frequency 6 1 4 

Percentage 54.5 9.1 36.4 

Exon 2 

Frequency 2 0 3 

Percentage· 40.0 0 60.0 

Exon 3 

Freqency 5 4 6 

Percentage 33.3 22.2 44.4 

Exon 4 

Frequency 3 2 4 

Percentage 33;3 22.2 44.4 

Total 

Frequency 16 7 17 

Percentage 40.0 17.5 42.5 

Table 16: Arginine codon usage in legumin gene A 

EXON 

1 

2 

3 

4 

CGT 

2 

0 

1 

3 

CGC 

3 

1 

3 

0 

CGA 

1 

1 

1 

0 

CGG 

0 

0 

0 

0 

AGA 

2 

5 

10 

3 

AGG 

0 

1 

7 

4 

Number of 
CGs per ex on 

11 

5 

15 

9 

40 
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Table 15: Summary of codon position of specified nucleotides in selected di and 
trinucleotide sequences in Le~ A. 

Nucleotide FREQUENCY PERCENTAGE 
sequence Codon Position Codon Position 

1 2 3 1 2 3 

CG 16 7 17 40.0 17.5 42.5 

CG 17 16 7 42.5 40.0 17.5 

TG 11 25 65 10.9 24.8 64.4 

CA 65 48 32 44.8 33.1 22.1 

gca 4 5 3 33.3 41.7 25.0 

CCG 3 4 5 25.0 33.3 41.7 

CGG 2 5 0 28.6 71.4 0 

CGG 5 0 2 71.4 0 28.6 

CTG 3 4 16 13.0 17.4 69.6 

CTG 4 16 3 17.4 69.6 13.0 

CAG 19 . 13 11 44.2 30.2 25.6 

CAG 13 11 19 30.2 25.6 44.2 

CAG 11 19 13 25.6 44.2 30.2 

TTG 7 18 4 24.1 62.5 13.8 

TTG 4 7 18 13.8 24.1 62.5 

CAA 6 28 23 10.5 49.1 40.4 

CAA 28 23 6 49.1 40.4 10.5 

TAG 0 8 4 0 66.7 33.3 

TAG 4 0 8 33.3 0 66.7 

CTA 7 5 8 35.0 25.0 40.0 

CTA 5 8 7 25.0 40.0 35.0 

TCG 2 2 4 25.0 25.0 50.0 

TCG 4 2 2 50.0 25.0 25.0 

CGA 0 7 3 0 70.0 30.0 

CGA 7 3 0 70.0 30.0 0 

The codon position refers to the position of the underlined base. 
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trinucleotide (the potential products of 5mC mutations) were found in 

the third codon position. 

It was also noted that 6 cytosine residues, out of the 11 CG 

dinucleotides in exon 1 were located in an arginine codon and overall 

16 cytosines out of a total of 40 CG dinucleotides were located in 

arginine codons. The arginine codon usage in Leg A, was also examined 

(table 16). In general, the arginine codons AGA and AGG were preferred 

(32 codons out of a possible 47 were of this nature), whilst in exon 

1, the CG containing arginine codons were preferred. 



4: DISCUSSION 
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4.1 Distribution of 5mC in Pea Genomic DNA 

Both the activity of the isoschizomers and their specificity of 

cleavage were confirmed using unmethylated SV40 DNA. This control 

experiment, which is presented in detail in the ribosomal section 

(4:2), demonstrated that Msp I and Hpa II cleaved the unmethylated DNA 

molecule to produce the DNA fragments of the sizes predicted from 

published sequence data. 

Figure 8a (tracks a, b and c) shows the electrophoretic fragment 

distribution of unrestricted, Hpa II digested and Msp I digested 9 

d. a. f. genomic DNA. The unrestricted DNA, was incubated in Msp I 

buffer at 37°C and acted as a control to ensure that the observed 

degradation of the DNA observed in track c, was due to enzymatic 

digestion and not to buffer- or heat-induced, non-specific degradation 

of the DNA. The bulk of the DNA in "the unrestricted track a, comprises 

DNA fragments of greater than 30kb in length. 

After digestion with Msp I (track c), no DNA remained in the 

very high molecular weight range. The bulk of the DNA was located in 

fragments of between 20kb and 0. 5kb. Following Hpa II digestion 

(track b) , the bulk of the DNA remained in the very high molecular 

weight range but some DNA was cleaved to yield fragments of between 

500bp to 30kb. This implied that the genomic DNA consisted of a very 

highly methylated fraction ( ie the DNA in the very high molecular 

weight range, 25-30kb, which was essentially resistant to cleavage by 

Hpa II) and a minor, less highly methylated or 'unmethylated' 

fraction, ie that which had been cleaved by Hpa II. Similar results 

were observed at later stages of cotyledon development and for leaf 

DNA. 
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The extent of methylation observed in eukaryotes is in contrast 

to that observed in prokaryotes. In E. coLi , all of the methylatable 

sites are methylated (GmATC and CmC~GG)(Razin et aL , 1980). In 

eukaryotes, methylation is incomplete and the 5mC is non-randomly 

distributed in the DNA. It has a far greater abundance in repetitive 

DNA than in unique copy DNA and the DNA associated with nucleosomes is 

.also significantly more methylated than that associated with the 

spacer regions between the nucleosome cores (Razin, 1984). 

Bird and Taggart (1980) suggested that the DNA could be divided 

into two categories or 'domains', the methylated (m+) and the 

unmethylated (m-) fractions. At present, it is not definitely known 

whether the unmethylated regions of DNA are found in similar 

chromosomal positions (or domains) or whether they are interspersed 

with the unmethylated DNA regions, as suggested by Molitor et a L , 

( 1976) . In vertebrates, the (m+) fraction ·":"as predominant over the 

(m-) fraction (see section 1:4:4). In pea the (m-) fraction appeared 

to be very small and this view is supported by the fact that there was 

no region of overlap between either the Hpa II and Msp I or the Bst NI 

and Eco RII distribution curves (figures 10-14). Had the unmethylated 

fraction been larger then the unmethylated sites would have been 

cleaved by both enzymes in each isoschizomeric pair and the same DNA 

fragments would have been visible in comparative tracks. Thus when the 

distribution of the DNA was analysed, these unmethylated DNA fragments 

would have given similar distribution curves for both enzymes and a 

distinct area of overlap of the curves would have been seen. This was 

not observed and therefore the 'unmethylated' fraction in pea genomic 

DNA must be very small. 
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The shape of the Hpa II and Eco RII molecular size distribution 

curves (figures lOb, llb, 14 and 15) also indicated the presence in 

pea DNA, of multiple methylation states and not a gradually changing 

level of methylation. The latter situation, ie a continuous 

distribution of methylation states ranging from completely 

unmethylated to fully methylated, would have produced smooth 

distribution curves, following digestion by either Hpa II or Eco RII 

(Kunnath and Locker, 1982.a). Instead, · distinct breaks in the 

distributions were observed at about 20kb (with minor breaks at about 

4.0 and lO.Okb) for Hpa II digested cotyledon DNA (indicated in figure 

lOb) and at about 17.5kb (with a minor break at about lO.Okb) for Eco 

RII digested DNA (indicated in figure 14). In figure lOb, these breaks 

separate fractions of DNA with different levels of methylation at the 

internal cytosine of the Hpa II recognition sequence (ie CmCGG). 

There was also a marked organ-specific difference between the 

leaf and developing cotyledon distribution curves for both Msp I and 

Hpa II. This was particularly noticeable when the leaf + Msp I curve 

(figure lOa) was superimposed on the cotyledon and leaf + Hpa II 

curves (figure lOb). The complex nature of the leaf + Msp I 

distribution (figure lOa) clearly indicated that in leaf DNA, there 

were additional methylation states at the external cytosine of the Msp 

I recongition sequence (mCCGG not cleaved by Msp I). However, since 

m 
the digestion of leaf DNA by Hpa II (which can cleave CCGG) was also 

rather limited, these new methylations, which were resistant to Msp I 

cleavage, were probably due to conversion of the partially methylated 

CmCGG (Hpa II resistant, Msp I sensitive) to the fully methylated 

mCmCGG (Hpa II and Msp I resistant). 



- 180 -

It was not possible to determine from these results whether all 

of these different methylation states were present in all cells or 

whether they result from the fact that cotyledons consist of a diverse 

mixture of cells ie there is cellular heterogeneity, In cotyledon 

tissue this would be four to five types for example storage 

parenchyma, xylem parenchyma, phloem (ie phloem parenchyma, sieve 

elements and companion cells) and epidermal cells. The proportion and 

transcriptional status of each cell type is not known. 

Naveh-Many and Cedar (1982) found in several kinds of cells that 

overall the genomic DNA was 70% methylated, whilst the DNA in active 

chromatin (with increased DNAse I sensitivity) and the DNA sequences 

complementary to poly (A) RNA were only 40% and 20-30% methylated 

respectively. Kunnath and Locker (1982a) suggested that a 

developmental or tissue-specific change in total methylation arose by 

the methylation of the DNA shifting from one state to another, rather 

than by a gradual changing between states. 

A high degree of methylation of plant DNA has previously been 

reported in wheat, tobacco, cauliflower, mustard and mistletoe 

(Naveh-Many and Cedar 1982; Wyatt, 1981; Wagner, 1981; Vanyushin et 

aL , 1971). All pea cotyledon DNAs were found to be methylated. The 

values ranged from 11% to 27% methylation (table 2) and initially 

appeared to represent only a low level of methylation. However, when 

the Msp I average molecular size (M = 2.9- 4.2kb)(table 2) 
n 

was 

compared with the average expected molecular size (440bp) of Msp I or 

Hpa II digested wheat germ DNA (based on the results of nearest 

neighbour analyses by Gruenbaum and co-workers (1981)), it is 
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immediately apparent that these results obtained for pea DNA are 7 to 

10 times greater than expected. Msp I has a 4-base recognition 

sequence and the overall base composition of pea and wheat genomic DNA 

would not be expected to be significantly different (table 1). Thus, 

the average size for Msp I digested pea genomic DNA would be expected 

to be less than lkb and this is supported by the sizes of fragments 

obtained when A1eg 2 ·is restricted with.Msp I (figure 29b). The larger 

than expected, average molecular sizes (M ) , obtained for Msp I 
n 

digested pea genomic DNA (2.9 to 4.2kb), plus the indication of 

multiple Msp I methylation states in leaf DNA (figure lOa), therefore 

imply that many Msp I sites in pea DNA must be present in the double 

methylated form and are resistant to cleavage by Msp I (and Hpa II). 

An alternative explanation for the larger than expected average 

size of Msp I fragment is that the genomic DNA contains mCCGG sites 

(Msp I resistant, Hpa II sensitive) but if this were so, then the 

bands of repetitive DNA, best seen in the leaf digests (figure 22a: 

tracks k and 1), should be larger following Msp I digestion than after 

Hpa II digestion and this was not found. 

The percentage methylation figures obtained (table 2), therefore 

reflect the degree of methylation of CCGG sites, methylated only at 

their internal cytosine and they do not take into account those Msp I 

sites which are methylated at both cytosines (ie the percentages do 

not accurately represent the overall methylation of all Msp I/Hpa II 

CG dinucleotides, in pea genomic DNA). Over 80% of all CG 

dinucleotides in eukaryotes DNA contain 5mC (eg Naveh-Many and Cedar, 

1982) and to date, there is no reason to believe that the subset of CG 
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dinuc1eotides that are part of Msp I/Hpa II recognition sequences are 

treated differently with respect to their methylation, from the 

general population of CGs (Bird et aL , 1985). 

In vertebrates, changes of less than 10% in the overall 

methylation have been observed (Razin and Riggs, 1980). A change in 

total methylation can result in one of two ways: either as a general 

overall random reduction or as a sequence specific reduction, for 

example; satellite DNA accounts for only 8-10% of the mouse genome yet 

it has two to four times the number of methyl groups per ~g DNA, than 

does single copy DNA. A complete loss of all the methyl groups in the 

satellite DNA could thus account for a 10% - 40% decrease in the 

percentage of DNA methylation (Reilly et aL , 1982; Gruenbaum et aL , 

1981c). 

The figures obtained for overall percentage methylation (table 

2), indicated that there. was an apparent decrease in methylation 

during the middle stages of cotyledon development (9 to 15 d.a.f.). 

These figures relected the gradually decreasing size of Hpa II 

fragments ( 9 to 11 d. a. f. ) and the increasing size of the Msp I 

fragments (11 to 15 d.a.f.). These trends are emphasised in the 'r' 

values. A change in the value of 'r' indicates a change in the shape 

of the distribution (Kunnath and Locker, 1982). Therefore, it appears 

that during the middle stages of cotyledon development, there is a 

loss of methyl groups form some Msp I/Hpa II sites which had 

previously been methylated at their internal cytosines. This 

demethylation has the effect of decreasing the average size of the Hpa 

II fragments whilst not altering the size of the Msp I fragments 
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obtained. 

During the middle to late stages of cotyledon development, some 

unmethylated sites become either partially (CmCGG) or completely 

m m 
methylated, C CGG, (indicated by the increasing size of the ~pa II 

fragments of 3. 99 to 4. 23kb), whilst other sites (either CCGG or 

CmCGG), become fully methylated (indicated by the increasing size of 

the Msp I fragments from 2.87 to 3.53kb). 

In leaf DNA the average fragment sizes were larger than were 

detected in any cotyledon DNA (tables 2 and 3) and the ratio 'r' was 

also much lower for the leaf digests. Taken together, these results 

confirmed that the leaf DNA distributions obtained, following Msp I or 

Hpa II digestions, were different from the cotyledon distributions, 

due to an increased mumber of doubly methylated sites (mCmCGG). 

In the early stages of cotyledon development, DNA synthesis 

occurs in association with cell division. After 11-12 d.a.f. (under 

the growth conditions untilised in this study), cell division ceases 

but DNA synthesis continues ( ie endoreduplication). EM studies have 

shown that most cotyledon cells are synchronised to within 1 day. 

Marks and Davies (1979) de~onstrated that both polyploid and polytene 

nuclei were present in the cells of developing Piswn sativwn 

cotyledons. Polytene cells were about one third as frequent as 

polyploid cells. 

Methylation has been related to new DNA synthesis (Bird, 1978). 

Therefore, because the level of DNA methylase is not thought to be in 

excess (Razin and Szyf, 1984), if the rate of DNA synthesis during 

endoreduplication was faster than that observed during normal DNA 
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synthesis, hypomethylation of the DNA might be observed. In Fel tham 

First the fastest rate of DNA synthesis was found to be between 15, 

and 20 d. a. f. (Boulter, 1981). However, no DNA hypomethylation was 

observed during the endoreduplicating phase of pea seed development. 

Instead the size of the Hpa II fragment increased (M at 11 d.a.f. = 
n 

3.36kb and at 21 d.a.f. 4 .12kb) and because the size of the Msp I 

f~agment remained at about 3.5kb during the later stages of cotyledon 

development (15- 21 d.a.f.), the overall methylation of the DNA was 

only seen to slightly increase from 11.1% at 15 d.a.f. to 14.7% at 21 

d.a.f. 

These results confirm that DNA methylation must occur within a 

very short time of DNA replication and they show that the methylation 

of DNA can occur in the absence of cell division. A lag period between 

DNA synthesis and DNA methylation would have led to a sequential 

hypomethylation. Bird ( 1978) showed that replicating DNA underwent 

methylation at or near the replicating fork. Kappler (1970) and 

Szyf et al (1982) have concluded that in eukaryotes most DNA 

methylation occurs within 2 minutes of DNA replication. However, 

Woodcock et al , (1983) reported that some methylation was delayed for 

several hours and could occur after the S-phase. Razin ( 1984) has 

suggested that this may represent the methylation of sites which were 

particularly resistant and Szyf et al , (1984) has stated that 

methylatable site$ have different affinities for the methylase and 

sites with the lowest affinity will be methylate last (see section 

1:4:6). Therefore, in a situation where the methylation quotient (see 

section 1:4:5) fell below 1.0 (for example rapidly replicating DNA), 
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there would be a failure to methylated some of these sites and a 

sequential hypomethylation would result. This was not observed during 

the period of endoreduplication in pea. 

It may be that endoreduplication itself induces an increase in 

methylase activity (ie a situation analagous to that observed in the 

proliferating rat liver cells, following a partial hepatectomy (Razin, 

1984)). Or does the presence of doubly methylated sites in pea DNA, 

indicate that the activity of methylase is higher in plants than in 

vertebrates? It should also be borne in mind that the failure to 

methylate a few specific sites would not have been detected by this 

kind of analysis, which can only measure gross changes. 

Thus whilst there was an indication that there was some form of 

demethylation during the early stages of cotyledon development, when 

DNA synthesis and cell division were occurring, this was not observed 

to continue into the later stages of cotyledon development, when DNA 

synthesis occurred without cell division. 

In higher plants, additional methyl sequences are located in the 

trinucleotide sequence C-X-G, where X can be C, A or T (Gruenbaum, 

1981b). The previous experiments using Msp I and Hpa II confirmed that 

in pea DNA the sequence C-C-G could be methylated at both cytosines 

and the results obtained following Bst NI and Eco RII digestion of pea 

. A 
DNA conf1rmed that the sequence C-T-G was highly methylated. 

The percentage methylation figures obtained (table 4), indicated 

that this trinucleotide sequence was between 67 to 84% methylated and 

this is in agreement with the value of 80% obtained for wheat germ 

DNA, by Gruenbaum et a L ( 198lb). The pea number average molecular 
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weights of Bst NI derived fragments were again larger than those 

predicted for wheat germ DNA ( 530bp) ( ibid Naveh-Many and Cedar, 

1982). There are two possible reasons for this. The first is because 

of resi~ual fluorescence in the 10-30kb region of the Bst NI tracks. 

This residual flu01rescence appears to be caused by the passage of a 

large number of genomic DNA fragments through the gel, during 

electrophoresis and therefore the problem is most pronounced following 

Bst NI digestion which produces smaller fragments, which migrate 

further during electrophoresis. 

The second reason for an increased average size of DNA fragments 

may be the method by which the negatives were scanned. Whereas the Msp 

I/Hpa II negatives were scanned by a laser densitometer, which scans 

less than lmm track width of negative, the Bst NI/Eco RII negatives 

were scanned using a Pye Unicam SP500 spectrometer, which scans a 

larger area of the negative and therefore the resolution was not as 

good. 

4:2 Methylation of the Genes for Ribosomal RNA 

4:2:1 Methylation of rDNA at Msp I/Hpa II sites 

In experiments which depended on the differential digestion of 

DNA, it was first necessary to demonstrate that neither of the enzymes 

used was being inhibited by contaminants present in the genomic 

preparations. This was done by monitoring ·the digestion of an un­

methylated control DNA (SV40). included in the genomic digestion. This 

SV40 was shown to be cleaved by both Msp I and Hpa II, at its one CCGG 
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sequence (figure 18a). Thus, any apparent difference in the extent of 

digestion of ge~omic DNA, by either Msp I and Hpa II could not be due 

to the presence of contaminating substances'and had to be ascribed to 

the methylatipn of the DNA. 

The rib0somal RNA genes are generally arranged in tandem arrays 

of repeating units; in the nucleolar organizing regions of 

chromosomes. The repeating units consist of the coding sequences for 

the 258, 18S and 5. 8S rRNAs, together with internal and external 

transcribed spacer regions. These transcribed regions are separated 

from one another by the non-transcribed spacer (NTS). (For reviews see 

Mandal, 1984; Leaver, 1979; Long and Dawid, 1980.) Heterogeneity in 

the NTS has been reported but the coding regions of the ribosomal 

genes are usually conserved. In higher plants between 70-90% of the 

ribosomal transcription unit is conserved (Leaver, 1979). 

A cloned pea ribosomal gene, pHA 1, hybridized to a series of 

cotyledon Hpa II derived DNA fragments, which ranged in size from 

10kb-O. 93kb, although fragments of less than 2. 09kb hybridized only 

weakly (figure 17b, eg track d and figure 18b, eg track f) . In 

contrast the rDNA from the leaf was more highly methylated and the 

ribosomal probe hybridized to fragments of > 20kb and no discrete 

Hpa II hybridization bands were observed (figure 17b, track u; figure 

18b, track g). Thus it can be seen that there was a distinct organ 

specific difference in the extent of methylation of the ribosomal 

genes and the rDNA from the developing cotyledons was hypomethylated 

with respect to that derived from the leaf. The significance of these 
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discussed in sections 4:2:2 and 4:2:3. 

The low average size ( <lkb) of the pHA 1 + Msp I fragments 

(figure ~8b, tracks j and k), compared to the length of the ribosomal 

repeat unit (9.3kb), indicated that there were many sites for Msp I in 

the cloned ribosomal RNA gene. (It should be noted that this 

collection of bands also includes those derived from the pACYC 184 

vector). Although the number of Msp I sites in the pea rRNA gene is 

not known, Scott et aL (1984) have estimated from the G+C content of 

cucurbit rDNA, that there should be about 20-30 sites for Msp I within 

a .rRNA gene and a similar· figure was obtained for flax rDNA by Ellis 

et aL (1983). Because the ribosomal genes are highly conserved, there 

is no reason to believe that the pea ribosomal gene should differ 

widely from the cucurbit and flax values. 

The multiplicity of sequences which cross hybridized to the 

pHA 1 probe ( eg figure 17b, eg tracks c and d), complicated the 

·analysis of the methylation of the pea ribosomal genes. The total lack 

of hybridization of the probe to the genomic Hpa II fragments of less 

than 1kb (figure 18b, tracks b, d, f and g) in positions equivalent to 

those observed in the marker pHA 1 tracks (figure 18b, track j ) , 

clearly indicated that no completely unmethylated rRNA genes were 

present in either cotyledon or leaf tissue. The weak hybridization of 

the probe to bands of less than 1kb in the Msp I tracks (figure 18b, 

tracks a, c, e and h), indicated that there were relatively few rRNA 

genes which contained a mixture of only unmethylated ·and partially 

methylated (CmCGG) sites. 

The far greater hybridization of the probe to the larger Msp I 
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fragments (lkb to lOkb) (figure 17b: tracks d, h, 1, p and t), implied 

that the majority of the ribosomal repeat units contained a mixture of 

fully methylated (mCmCGG) and partially methylated (CmCGG) sites, 

whilst a minority, ie those detected by Hpa II (figure 17b, tracks e, 

i, m, q and u) , contained a mixture of. partially or fully methylated 

sites and some unmethylated sites. 

The overall similarity in size and relative intensities within a 

track, of the Msp I and Hpa II hy~ridization bands indicated a) that 

the ribosomal repeats were divided between a highly methylated region 

or 1 domain 1 ·and a less highly methylated region; b) that certain 

sites, in association . with the rDNA, have a greater probability of 

being undermethylated ( ie unmethylated in the repeats from the less 

highly methylated domain and partially methylated in the ribosomal 

repeats in the highly methylated domain). However, two sites - those 

cleaved by Msp I to produce the 2.83 and 3.45kb bands, could exist in 

a partially methylated form but were not detected in the unmethylated 

form (figure 17b, eg tracks d and e). 

The three levels of hybridization of the ribosomal probe to the 

Msp I digests (eg figure 17b, track d) is potentially a very 

interesting feature of these blots. It is possible to envisage two 

situations which would result in the hybridization patterns observed 

in pea. The first situation would be one where, overall, the rDNA 

comprises fully methylated sites with a few specific sites having a 

greater probability of being undermethylated, ie either partially 

methylated (Msp I sensitive) or unmethylated (Msp I and Hpa II 

sensitive). These sites would perhaps have a · lower affinity for the 
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methylase. 

The second situation would be one where the rDNA is divided into 

two unequal regions or 'domains'. The minor 'domain' contains rDNA 

which comprises a mixture of many partially methylated sites and a few 

unmethylated sites whilst the major 'domain' contains rDNA which 

comprises a mixture of many fully methylated sites and a few partially 

methylated sites. In the latter situation, the hybridization fragments 

of the intermediate intensity range ( 0. 93 to 2. 09kb) and the small 

fragments (<0.93kb) which hybridize only weakly to the probe, would be 

derived from those fragments which were detected as distinct bands in 

the Hpa II digests. Thus the weakly hybridizing fraction would 

represent the few repeat units in which all CCGG sites can be cleaved 

by Msp I (ie a mixture of unmethylated and partially methylated 

sites), the intermediate fraction would comprise those ribosomal 

repeat units with many partially m'ethylated and uri.methylated sites and 

a few fully methylated sites and finally, the strongly hybridizing 

Msp I fraction ( 2. 29 to 10. Okb) would comprise rDNA with many fully 

methylated sites and a few partially methylated sites. 

One way to test this second hypothesis would be to restrict 

cotyledon genomic DNA with Hpa II, to run it on an agarose gel and to 

isolate the highly methylated fraction DNA ( >15kb). This highly 

methylated fraction when subsequently restricted with Msp I, 

electrophoresed, Southern blotted and hybridized to pHA 1 should then 

produce a band pattern in the 2.29-10.0kb range but no hybridization 

should be detected to rDNA fragments of less than 2.29kb. 

Keshet and Cedar (1983) and Busslinger et al (1983a) have both 
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reported that the specificity of cleavage of Msp I was affected by 

certain nucleotide sequences immediately 5 1 or 3 1 to the CCGG 

sequence. In particular, these inhibitory sequences were 5 1 -CCGGCC-3 1 

and 5 1 -GGCCGG-3 1 
• In these two sequences, contrary to its normal 

specification, Msp I is inhibited by the methylation of the internal 

cytosine of its recognition sequence. 

In order to investigate whether such sequences could be partly 

responsible for the large overall size of Msp I derived rDNA 

fragments, the hybridization of pHA 1 to Hae III digested genomic DNA 

was examined. Hae III has the recognition sequence GGCC and will also 

cleave GGCmC but is unable to cut GGmCC (Mann and Smith, 1977; 

Roberts, 1981; McClelland, 1983; McClelland and Nelson, 1985). 

Therefore where there are overlapping Hae III and Msp I sites, neither 

enzyme will be able to cleave GGmCCGG but Hae III can cut GGCmCGG 

whilst Msp I (and Hpa II) cannot (Busslinger et al ,1983). 

The smallness of the size of Hae III rDNA hybridization 

fragments (figure 17b, tracks c, g, k, o and s) therefore indicated: 

a) that the sequence GGmCC did not occur very often in the ribosomal 

repeat units (which is as expected because over 90% of 5mC in plant 

DNA occurs in 5 1 -CG-3 1 sequences and not 5 1 -GC-3 1 sequences); b) that 

GGCmC may or may not exist; c) that GGCmCGG could not exist to any 

great extent because if it did the Hpa II tracks would have to be of 

similar intensities to those of the Msp I tracks. Therefore, if the 

greater intensity of the Msp I tracks is due to the presence of a 

large number of doubly methylated sites (mCmCGG) and a few partially 

methylated sites (CmCGG), there can be very few overlapping Msp I/Hae 



- 192 -

III sequences because the methylation of both cytosines would also 

inhibit Hae III. 

Whilst these results do not preclude the existence of one or 

more GGCmCGG sequences, it must be concluded that they do not occur to 

any great extent in the pea ribosomal repeat units. 

It was also not possible from these results to determine the 

location of the highly methylated and less highly methylated fractions 

of rDNA. It is not known whether all the repeat units, which contain a 

higher proportion of unmethylated and/or partially methylated sites, 

are occurring at a similar chromosomal position. However, most 

ribosomal repeat units must occur in areas of fairly highly methylated 

DNA because the average Hpa II rDNA fragment size is greater then 20kb 

( ie larger than the length of one ribosomal RNA repeat) . Detailed 

restriction mapping of the cloned rRNA gene is needed to identify the 

locations of the undermethylated Msp I/Hpa II sites. It may then be 

possible to relate areas of hypomethlyation with distinct sections of 

the repeat units. 

4:2:2 The methylation of the CCGG sequence in leaf rDNA 

An organ specific difference in the extent of rDNA methylation, 

as detected by Hpa II has been noted earlier. If the above second 

hypothesis, concerning the three levels of hybridization is true, then 

the appearance of the leaf + Msp I hybridization pattern (figure 17b, 

track t) implies that this organ-specific difference in the Hpa II 

tracks is due to the partial methylation of previously unmethylated 

sites plus some double methylation of formerly partially methylated 
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sites. 

The rDNA hybridization pattern obtained for pea leaf DNA plus 

Hpa II, was very similar to that described by Scott et al (1984) for 

marrow and pumpkin fruit tissue and turnip tap root and it was also 

similar to that described by Uchimiya et al (1982) for mature tobacco 

leaves. Some similarity in the hybridization patterns obtained would 

be expected because the genes for ribosomal RNA are highly conserved 

(Mandal, 1984; Leaver, 1979). However, Ellis et al (1983) when using 

flax leaves, obtained a hybridization pattern of Hpa II rDNA fragments 

( 20kb - 1. 6kb) and Msp I rDNA fragments (about 5. 0 - 1. 5kb), which 

appeared to indicate that the ribosomal genes in flax were less 

methylated (at both cytosines of the CCGG sequence) than the pea, 

m'arrow, pumpkin, turnip and tobacco. It is however, possible that 

these apparent differences . in the degree of methylation arise from 

differences in the ribosomal repeat number. The number of ribosomal 

RNA genes per haploid ~enome is as follows: flax - 990, pea- 3,900, 

marrow- 4,900 and pumpkin- 4,900 (Long and Dawid, 1980). Therefore, 

the differences in the extent of methylation may be related to 

ribosomal gene redundancy. 

The extent of rDNA methylation is known to vary in different 

organisms. In invertebrates ( eg DrosophiLa ) , rDNA is unmethylated 

(Rae and Steele, 1979), in amphibia it is found to be highly 

methylated (Bird and Taggart, 1980) , whilst in vertebrates, eg mouse 

and rat, a combination of methylated and unmethylated rDNA is found 

(Bird et al , 1981; Kunnath and Locker, 1982b). The number of 

ribosomal genes per haploid genome for these organisms is as follows: 
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mouse 100; DrosophiLa - 120; rat - 150; Xenopus - 600 (Long and 

Dawid, 1980). When the very large number of rRNA genes in higher 

plants is taken into consideration, eg 3900 rRNA genes per haploid 

complement in pea (Ingle and Sinclair, 1972; Long and Dawid, 1980), it 

is conceivable that only the few Hpa II sensitive rDNA sequences, 

which are presumed to be less highly methylated, are transcribed 

(Scott et aL , 1984). Timmis et aL (1972) observed that the 

transcription of less than 5% of pea rRNA genes was actually needed in 

actively growing pea roots. Ingle et aL (1975) have proposed that in 

higher plants, the large numbers of rRNA genes is a compensatory 

mechanism for a reduced transcriptional activity (eg, due to 

methylation). In cucurbits, the percentage composition (C+G) of total 

DNA is 32.2%, whilst that of ribosomal DNA is 46.0%. Similarly, the 

percentage 5mC of total cytosine is 20.7% for total DNA and 36.4% for 

rDNA. Therefore the increased number of ribosomal genes in higher 

plant DNA, could be a consequence of the high degree of cytosine 

methylation present in the rDNA (Scott et aL , 1984). 

4:2:3 The hypomethylation of cotyledon rDNA 

An organ-specific hypomethylation of the pea cotyledon rDNA has 

already been noted. The mature leaves are photosynthesising and are 

biochemically active, therefore a net protein synthesis (and 

consequential ribosome requirement), to account for enzyme turnover 
level 

and membrane synthesis would be expected. A similar protein turnoverA 

would perhaps be expected in the pumpkin and marrow fruit, turnip tap 

root and tobacco leaf. However in the pea cotyledon, a totally 
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different situation exists. This is an organ responsible for the 

synthesis of large amounts of storage protein (see figure 1). The 

major accumulation of vicilin and legumin occurs during the middle 

stages . of cotyledon development ( 12 d. a. f. 20 d.a.f.) although 

legumin synthesis has been detected as early as 10 d.a.f. and vicilin 

9 d.a.f. (see section 1:2:2). 

There was no obvious apparent change in the CG hypomethylation 

observed during the development of pea cotyledons (figure 17b, tracks 

e, i, m and q). The b:i,ological significance of endoreduplication is 

not known but it was initially thought that it might include the 

selective amplification of genes required for successful seed 

development. One suggestion was that it enabled the storage protein 

genes to be amplified but this was later disproved by Millerd and 

Whi tfeld ( 1973) . Another suggestion has been, that in a situation 

analogous to the amphibian oocyte, the rDNA would be selectively 

amplified. Ingle and Sinclair (1972) were not able to detect any gross 

amplification (or deletion) of the ribosomal genes during the various 

stages of plant development. However, Cullis and Davies (1975) did 

detect the selective amplification of the cotyledon rDNA in one pea 

variety but they were unable to detect any rDNA amplification in the 

cotyledon cells of three other varieties. Also, the one pea variety 

investigated, which apparently did amplify its rDNA, was shown to have 

a much lower proportion of rDNA in its meristematic cells and 

amplification of the rDNA increased the amount to a level comparable 

to that observed in other pea varieties, ie it is possible that the 
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low normal level of rDNA, whilst being adequate for most cellular 

requirements (eg those of the meristematic region of the root- tip), 

was inadequate to satisfy the requirements for rDNA in the specialised 

cotyledon cells. 

In the Fel tham First cotyledon rDNA amplification could 

potentially take several forms. There could be either the 

amplification of the total rDNA or a selected amplification of the 

less highly methylated fraction of the rDNA. Both of these 

amplification events could have occurred under a situation where 

either a) the maintenance methylase was active and the methylation 

pattern was inherited, or b) where the action of the methylase was 

blocked and unmethylated rDNA copies would result. If any of these 

amplification events had occurred in Feltham First, they would show up 

as irregularities in the hybridization signal intensity for the Msp I 

and Hpa II tracks (figure 17b, tracks d and e, hand j, 1 and m, p and 

q). No such irregularity is observed and it must be concluded that 

selective amplification of the Fel tham First rDNA does not occur 

during the endoreduplicatton phase of cotyledon development. 

4: 2:4 Changes in the CCGG methylation pattern in relation to plant 

development 

From these results it was not possible to determine at what 

stage of development or under what stimuli the methylation of rDNA 

alters. There must be at least two stages in the life cycle of a plant 

where the rDNA undergoes a drastic change. Assuming that the situation 

observed in the leaf, reflects that of the rDNA in the plant in 
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general, then at some stages of the plant development there has to be 

an inhibition of the maintenance methylase to produce the 

hypomethylation observed in the developing cotyledon rDNA. It is not 

known, to what extent the rDNA in the pollen, ovules or embryonic axes 

is methylated. Similarily, because the mature cotyledon rDNA is still 

hypomethylated, the de novo methylation of the rDNA (necessary in 

order to produce the highly methylated leaf rDNA) must occur after the 

germination of the pea seed. 

The maturation of the pea seed, at the end of the storage 

protein synthesis phase, did not appear to be the stimulus for rDNA de 

novo methylation. This may be either because there is a continued 

requirement for ribosomes and rDNA -(perhaps in preparation for the 

demands of germination) but it is more likely to reflect an inability 

to alter any methylation pattern, due to the lack of DNA replication. 

(Maximum DNA content of the Fel tham First seed is achieved 19-20 

d.a.f. (Boulter, 1981)). If this is so, then it would be interesting 

to monitor the extent of rDNA methylation in the tissues of the 

germinating pea seed. 

The de novo methylation of rDNA could be a gradual process, 

occurring over many cell divisions or it could be a major methylation 

event, occurring at a precisely determined time. Once established, the 

new pattern would maintain the gene in its new state of altered 

transcriptional competence during subsequent cell replications 

(Jaenisch and Jahner, 1984). 
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4: 2': 5 Methylation of pea rDNA at Hha I sites 

The use of Msp I and Hpa II can only examine the extent of 

methylation at a particular subset of CG dinucleotides and whilst 

there is no evidence to indicate that this subset of CG dinucleotides 

is not representatives of the surrounding DNA (Bird, et al , 1985) it 

is useful to also investigate a different subset of CG dinucleotides 

using the restriction enzyme Hha I. 

Hha I has the recognition sequence 5'-GCGC-3' but is unable to 

cut the sequence when either of the cytosines is methylated ( eg 

McClelland and Nelson, 1985). Unfortunately there is no isoschizomer 

with a complementary specificity of cleavage ( ie able to cut the 

methylated sequence) and in the absence of pea rDNA sequence data or 

detailed restiction mapping, this enzyme could only be used to monitor 

possible developmentally related or organ-specific changes, in the 

extent of methylation of the Hha I sites associated with the ribosomal 

RNA genes. 

No rDNA Hha I fragments were observed to disappear during pea 

cotyledon development (figure 17b: tracks b, f, j, and n) and overall 

hybridization to discrete leaf rDNA Hha I fragments (track r) was less 

than had been observed for the cotyledon tracks (ie the Hha I sites in 

the cotyledon rDNA were hypomethylated with respect to those in the 

leaf rDNA). The similarity between this overall increased methylation 

of the Hha I sites in leaf rDNA and that previously noted for the Msp 

I and Hpa II sites in leaf rDNA, supports the idea that·although these 

restriction enzymes monitor only a small proportion of the total 

number of genomic CG dinucleotides, those that they do monitor, are 
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representative of the CG dinuc1eotides in the surrounding DNA. 

4:2:6 Methylation and transcription of the ribosomal genes 

Even after allowing for the fact that the pea cotyledon rDNA is 

hypomethylated with respect to the leaf rDNA, it should be noted that 

the cotyledon rDNA is still considerab~y methylated. Isolated 

cotyledon nuclei are known to be more transcriptionally active than 

leaf nuclei and have been shown to produce more ribosomal transcripts. 

This implies that the ribosomal genes must be transcribed despite 

being highly methylated. 

The Xenopus Laevis rDNA is transcribed despite the fact that is 

methylated (Bird and Southern, 1978). However, the transcription may 

depend on an undermethylated region within the non-transcribed spacer 

between the ribosomal genes (Lindahl, 1981). Bird and Southern (1978) 

have demonstrated the presence of an Ava I/Hpa II 'hotspot' in the 

non-transcribed spacer between the repeat units in erythrocytic rDNA 

and a Hha I 'hotspot' in the 28S rRNA coding region. Both of these 

sites were undermethylated, despite being set amongst sequences which 

were fully methylated. 

It is interesting to note that the spacer DNA in Xenopus 

Laevis sperm DNA is highly methylated and is not normally transcribed, 

and yet it was efficiently transcribed after injection into Xenopus 

oocytes, although no concomitant loss of methylation was detected 

(Macleod and Bird, 1984). Also, whilst in X. Laevis the spacer region 

is undermethylated in somatic rDNA but is methytlated in sperm rDNA, 

in X boreaLis the spacer region is hypomethylated in both somatic and 
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sperm rDNA. However, this undermethylation was insufficient to ensure 

either an active chromatin structure or efficient transcription of 

the bore a Us rDNA, in bore a Lis- Laevis hybrid tadpoles (Macleod and 

Bird, 1982). 

This resistance to DNAse I, shown by the hypomethylated regions 

of X. boreaLis ,is in contrast to mouse rDNA, where it was 

demonstrated that only the hypomethylated rDNA was sensitive to DNAse 

I (Bird et aL , 1981). La Volpe et aL (1982) demonstrated that the 

hypomethylated Hpa II and Ava I sites, in the non-transcribed spacer 

region of Xenopus Laevis and Xenopus boreaLis , were located in 

tandemly repeated conserved sequences 60bp long (NTS-60). Whilst they 

were unable to detect any apparent coupling of demethylation between 

the conserved sequences, they were able to detect coupling within the 

NTS-60, such that demethylation of the Hpa II site was usually 

associated with demethylation of the Ava I site, although 

demethylation of the Ava I site was not always accompanie9 by 

demethylation of the Hpa II site (ie hypomethylation was coupled in a 

polarized manner within a copy of NTS-60). The authors suggested that 

the binding of a protein to NTS-60, prevented the methylation of the 

central Ava I site whilst only partially interfering with the 

methylation at the Hpa II site, which was 16bp to the left of the Ava 

I site. Thus the hypomethylated areas were described as the 

'footprints' of a protein that interacted with the NTS-60. Riggs and 

Jones ( 1983) have also proposed that 'determinator' proteins can 

influence the methylation pattern in a manner which is then 

somatically heritable, even in the absence of the determinator 
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protein. 

In the developing rat liver, it has been demonstrated that the 

level of methylation of the rDNA increased during the liver 

development, from being mostly unmethylated at 14 ,days gestation to 

being 30% methylated by 18 days gestation (and it remained at this 

level in the adult)(Kunnath and Locker, 1982b). Such a trend was not 

apparent during the development of the pea cotyledon. Whilst there was 

a pronounced organ-specific difference in the extent of methylation, 

there was no apparent developmentally, correlated, incresed rDNA 

methylation in the cotyledon. 

4:2:7 C-X-G methylation of pea rDNA 

The smaller average size obtained for Bst NI derived rDNA 

hybridization fragments (eg figure 19b, track b) compared with those 

obtained after Eco RII digestion (eg figure 19b, track c), clearly 

demonstrated the marked methylation of the CC ~ GG sequences in pea 

rDNA. 

Two of the Bam HI derived genomic fragments, which were detected 

by the pHA 1 probe ( 2. 92 and 1. 27kb) (figure 20b eg track a) , were 

larger than the equivalent pHA I + Bam HI fragments 2. 60 and 1. 22kb 

(figure 20b, track 1). .This may reflect a slight variation in the 

ribosomal gene of the variety 'Feltham First' compared with 'Alaska' 

from which pHA I was derived (Cuellar, 1981). These two fragments do 

not correspond the the non-transcribed spacer (NTS) region of the 

ribosomal repeat unit (figure 16), where one might expect 

heterogeneity (Mandal, 1984) 
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The sum of the Bam HI fragments, detected by the pHA 1 probe 

(2.92 + 1.27 + 0.66) is 4.85kb. Therefore, the 4.95kb band in the Bam 

HI doublet (eg track a) may in fact indicate that the majority of the 

pea ribosomal gene copies contain Bam HI sites which are methylated in 

the regions coding for the structural genes. Bam HI has the 

recognition sequence 5'-GGATCC-3' but is unable to cleave the sequence 

5'-GGATmCC-3' (eg McClelland and Nelson, 1985). Therefore, on average, 

in one in four cases this enzyme will be moni taring mCCG or mCmCG 

methylation and the presence of this genomic Bam HI doublet, supports 

the evidence provided by the Msp I hybridization pattern, that in the 

ribosomal genes, the CCG trincucleotide can be found methylated at 

both cytosines. Gerlach and Bedbrook (1979) have reported that 

incomplete methylation (21-40%) occurs at two Bam HI sites in each of 

two different classes of barley rDNA gene repeats and Ellis et 

a r ( 1983) have also reported the methylation of a Bam HI site in the 

flax ribosomal gene. 

From the information available at present, it is not possible to 

identify the location of the larger 5. 55kb Bam HI doublet band ( eg 

track a) but it would appear that there must be one or more additional 

Bam HI sites in the Fel tham First ribosomal repeat units. 

Microheterogenei ty has been reported for the non-transcribed spacer 

regions and this is usually charactrised as a variation in the 

absolute length of the rDNA repeat unit, both· within and between 

individuals. This length heterogeneity is due to the number of short 

repeated sequences in the NTS (Mandal, 1984). Length variation of the 

spacer region was also reported for the wheat and barley rONA genes 
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(Gerlach and Bedbrook, 1979). 

The Feltham First, 9.3kb Hind III monomer rDNA repeat unit 

length (figure 19b eg track a), appeared to be similar to that of pHA1 

(track.l), despite the apparent anomalies in the sizes of the Bam HI 

rDNA fragments. The rDNA repeat unit length if other plant rDNA genes 

are 7.8kb for soybean (Varsanyi-Breiner et aL, 1979), 8.8· and 9.0kb 
"' 

for wheat and 9.9 and 9.0kb for barley (Gerlach and Bedbrook, 1979), 

7.8kb in rice (Oono and Sugiura, 1980) and 9.8kb in broad bean (Yakura 

and Tanifuji, 1981). It is possible 'that what appeared_ to be .a broad, 

pea genomic. Hind III rDNA band, is in fact two or more fragments, 

which were not resolved by the gel due to their similar mobilities. 

Length heterogeneity has been observed for wheat, barley and rice rRNA 

genes but not for soybean. 

The restrictions with Bst NI and Eco RII indicated a) that all 

. A 
ribosomal Bam HI fragments contained CCT GG sequences, b) that these 

sites were cleaved by Bst NI but as far as could be detected, were not 

cleaved by Eco RII. When assessing these two experiments (figures 19 

and 20) it is necessary to compare the activity of Eco RII on the SV40 

internal control (figures 19c and 20c: tracks c,f,i, and k) with its 

activity on genomic DNA (figures 19b and 20b: tracks c, f, i and k). 

The Eco RII was shown to partially digest the SV40 but when the 

filters were probed with pHA 1, the Eco RII bands remained identical 

to those produced by Bam HI or Hind III. This demonstated that the 

Eco RII was functioning during the digestion and therefore its 

complete failure to cleave the rDNA must be at least partly 

·m A 
attributable to the methylation of the DNA at some sequences (c·cTGG). 
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In order to quani ti.fy the extent of the methylation at these 

sequences in genomic DNA it is essential to demonstrate Eco RII 1 s 

ability to completely cleave unmethylated DNA. Eco RII from several 

different manufactureres was assessed, with and without B.S. A. and 

spermidine, which are reported to stabilize the DNA by binding to the 

major groove. The effect of reaction volume on Eco RII 1 s ability to 

cleave the plasmid DNA was also investigated. In none of the reaction 

conditions used was it possible to demonstrate a similar digestion of 

unmethylated DNA, by both Bst NI and Eco RII (figure 21). In the 

absence of such a demonstration, this investigation into the 

methylation of C~G sequences, in pea genomic DNA, had to be stopped. 

4:3 Methylation of the Pea Storage Brotein Gene Families 

4:3:1 Choice of hybridization conditions 

The choice of hybridization system was varied according to the 

aims of a particular experiment. Generally hybridiizations were 

according to the Scheicher and Schull procedure, where 5 x Denhardts 

is used and the filters are washed in 0.1 x SSC; o.l% SDS at 50°C. At 

concentrations of less than 5 x Denhardts, the single stranded DNA 

probe is prevented from hybridizing to the nitrocellulose filter. At 

concentrations >5 x Denhardts, DNA hybridization may be "hindered 

(Barinaga et aL , 1981). This higher concentration of Denhardts (lOx) 

was used for the Leg B flanking sequence experiments, in an attempt to 

reduce non-specific hybridization. 

In the legumin experiments, the filters which were probed with 
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whole legumin gene probes, were washed at higher temperature than the 

experiments using isolated gene fragments ( 62 - 65°C compared with 

50°C) but despite this, neither the relative intensities nor the 

number of hybridization bands appeared to be significantly altered by 

the high temperature washing. 

The heparin system was also used during this work. This system 

was preferred because of its simple protocol. Heparin reduces 

non-specific adsorption of nuclei acid probes to nitroceliulose 

filters (Singh and Jones, 1984; Yuan et aL , 1975). Pure double 

. stranded DNA does not bind to nitrocellulose but the adsorption of 

DNA-protein complexes to the filter, is frequently the source of a 

high background signal. Heparin has been shown to inhibit certain 

specific enzymatic functions of some DNA binding proteins eg RNA 

polymera3e (Zillig et aL , 1970) and restriction endonucleases 

(Yuan et aL , 1975), where inhibition was only observed if heparin was 

added to the reaction before but not after the DNA. Thus, in some 

ways, heparin may be considered to be a DNA analogue. 

Vicilin cDNAs proved more difficult to hybridize than legumin 

cDNAs. Domoney and Casey ( 1985) have stated that when filters which 

had been hybridized with the two vicilin probes were washed at 50°C 

( comp·ared with 65°C), the number of fragments hybridizing to the probe 

was not increased but the prominence of the fragments corresponding to 

the other vicilin probe was increased. During this work, when filters 

which had been hybridized with the vicilin eDNA probes were washed at 

higher temperatures (eg 65°C), substantial loss of signal was found. 

Therefore, in the vicilin experiments presented here the filters have 
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only been washed at 50°C. 

4:3:2 Methylation of the legumin gene family 

When a legumin eDNA probe was hybridized to Msp I and Hpa II 

digested genomic DNA (figure 22b), two distinct organ-specific, 

developmentally correlated demethylation events were observed. Thus: 

1) a 6.5kb Hpa II fragment, detected fairly strongly in leaf (track 1) 

and 10 d.a.f. cotyledon DNA (track c) and fairly weakly in the 

15d.a.f. cotyledon DNA (track f) was not detected in 21 d.a.f. 

cotyledon DNA (track i); 2) an additional 4.19kb band was detected in 

the 15 d.a.f. cotyledon DNA (track f) and this is thought to have 

arisen by a CCGG sequence within the 6. 5kb fragment, changing its 

m 
methylation from C CGG (Hpa II resistant) to CCGG (Hpa II sensitive). 

Between days 15 and 21 a further hypomethylation event must have 

occurred because the 4.19kb fragment was no longer detected. Instead 

the intensity of the 3.74kb band had increased. This is indicated in 

table 5b. 

Before the possible ori'gins of the Msp I and Hpa II fragments 

detected by the eDNA probe can be discussed (see section 4:3:2:6), it 

is necessary to describe the methylation at the specific CCGG sites of 

two legumin genes, Leg A and Leg B and also in their flanking regions. 

4:3:2:2 Methylation of CCGG sequences in Leg A and Leg B 

When an organ-specific demethylation event was correlated with 

the expression of the legumin genes in the pea cotyledon, it was 

decided to try and identify the · site/sites concerned and thereby 



- 207 -

relate the change in methylation to a specific legumin gene. The 

easiest way to achieve this aim was to restriction map the cloned 

legumin genes ALeg 1 and ALeg 2, identify all Msp I sites and to then 

use isolated fragments of this cloned DNA as specific probes, to 

monitor the genomic methylation at the specific CCGG sites contained 

in their sequence, during cotyledon development. The legumin genes are 

not actively transcribed in the 'leaf and the leaf digest therefore 

provided a useful control of the methylation status of a particular 

site, in the unexpressed gene. 

In Leg A, sites M2 (in the second exon) and M3 (in the fourth 

exon) were both shown tq be partially methylated, ie in both cases the 

genomic fragment was only partially cleaved by Hpa II (eg track c in 

figures 24b and 25b). This indicated that the sites were being 

detected in the CCGG and CmCGG forms. The M3 site was found to be on 

average 42% methylated whilst M2 was on.average 25% methylated (table 

6). At neither of these sites was there observed a demethylation which 

could account for the methylation change detected by the legumin eDNA 

probe. However, ·there were 'indications that the cotyledon M2 site 

became slightly less methylated as development proceeded (from 25.8%) 

and that the leaf Leg A gene was very slightly more methylated at both 

M2 and M3 than the cotyledon copies of Leg A. The Ml site, in the 5' 

flanking region of Leg A, was always detected in the unmethylated form 

(figure 26, tracks c, f, i and 1). 

Thus, in Leg A, an increasing level of methylation was detected, 

from being completely unmethylated in the 5' flanking region, to being 

25% methylated in the 5' coding sequence and about 42% methylated in 
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the 3 1 coding sequence. 

4:3:2:3 Comparison of the methylation of Leg A and Leg B 

Restriction mapping had indicated that the coding sequence of 

three cloned legumin genes (Leg A, Leg B and Leg C) was very similar 

(figure 27) . Leg B was found ~o contain sites M2 and M3 but the Ml 

site in the 5 1 flanking region · was absent. When the extent of 

methylation at Leg B 1 s sites M2. and M3 was analysed, the sites were 

again detected in the CCGG and CmCGG forms (eg track f in figures 28a 

and 28b). Leg B showed the same trend that had been indicated by the 

Leg A results in that the methylation in the coding sequence increased 

in the 5 1~3 1 direction. However, the methylation at Leg B 1 s site M2 

was found to be less than that detected in Leg A (in cotyledon and 

leaf DNA, the average methylation at Leg B 1 s M2 site was 14.1% 

compared with 24.7% in Leg A (table 6); There was also an indication 

that the imbibed cotyledon had a lower methylation at the two sites 

(6.1% at M2 and 32.6% at M3 (table 6)). 

These trends were emphasised when the entire legumin genes were 

used as probes. The lower methylation of the M2 site in Leg B can be 

seen when the relative intensity of the 1.09 residual Taq 1 fragment 

in the Hpa II tracks was compared (eg track c in figures 34 and 35). 

The Southern blot to which the Leg B probe was hybridized, had 

previously been hybridized to the Leg A 5 1 flanking region (figure 

26). Therefore, this blot provided a valuable check that the lower 

methylation at Leg B 1 s M2 site (figure 28a) was real and was not an 

artifact created by a different batch of enzyme or DNA preparation 
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etc. 

Another major feature illustrated in these two autoradiographs 

(figures 34 and 35) was the marked difference in the specificity of 

hybridization of the 5 1 flanking regions of the two genes. The 5 1 

flanking region of Leg A (figure 34), hybridized to four distinct Taq 

I fragments ( eg track a) of 1. 57, 1. 49, 1. 40 and 1. 25kb (see also 

figure 26) . Of these, the 1. 49kb fragment was cleaved by both Msp I 

and Hpa II (figures 34 and -26: eg tracks band c). However, the Leg B 

probe hybridized to only one Taq I fragment, the 1.40kb band (figure 

35 track a) . Therefore, the Leg A 5 1 flanking region can cross 

hybridize to the Taq I, Leg B, 5 1 flanking region but the Leg B probe 

is unable to detect either the Leg A, Taq I, 5 1 flanking regions or 

the other two Taq I fragments, which were thought to have come from 

other legumin genes. 

Both legumin gene probes detected the additional 2. 75kb Taq I 

fragment (figure 34 and 35, eg track a). This Taq I fragment was 

detected by the 1.09kb Taq I probe of Leg A (figure 25b, track a) and 

Leg B (figure 28a, track a) and was also detected by the Leg A, 5 1 

flanking region probe (figure 26, track a). These bands were thought 

to arise from the cross-hybridization of the probe with other legumin 

genes and were not thought to represent unrestricted Leg A or Leg B 

fragments. Taq I has a recognition sequence TCGA, but the larger 

fragments were not thought to arise from Taq I partial digestion of 

genomic DNA because Taq I is known to restrict TCGA sequences 

containing methylated cytosine (Streek, 1981; Gruenbaum et aL , 

198la). Taq I, however, is inhibited by adenine methylation, (TCGmA) 
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(McClelland, 1983a; Roberts, 1983) but methylated adenine has not been 

reported as being present in plant DNA to any great extent 

( Vanyushin et a Z. , 1971). Therefore, it is thought that these high 

molecular weight Taq I fragments were due to the weak cross­

hybridization of the probe to other legumin gene ( s) and that such 

hybridization was detectable despite the fairly stringent washing 

conditions used (0.1 x sse; 0.1% SDS; 50°C). 

The final point to be made about the methylation of Leg A and Leg 

B is how relatively unmethylated they were, when compared to the 

ribosomal RNA genes. The rDNA had many fully and partially methylated 

sites and a few unmethylated sites. In contrast to this, some copies 

of Leg A and Leg B contained partially methylated sites (CmCGG) but no 

completely methylated (mCmCGG) sites were detected. 

4:3:2:4 Methylation of the 3' flanking sequence to Leg A 

Because the Msp I site M1 in Leg A was completely unmethylated 

(ie always cleaved by Hpa II), this implied that if the Msp I/Hpa II 

site which during the development of the pea cotyledon became 

hypomethylated was associated with Leg A, then it had to be 3' of this 

gene. 

The next Msp I site 3' of Leg A was found to be in a 4.17kb Hind 

III fragment. Msp I was shown to partially cleave this genomic 

fragment (the 3. 40kb cleaved fragment is indicated in figure 30, 

tracks b, e, h and k) whilst Hpa II was unable to cleave the genomic 

fragment (tracks c, f, i and 1). This indicated that this site had 
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been detected in the mCmCGG (Msp I and Hpa II resistant) and CmCGG 

(Msp I sensitive, Hpa II resistant) forms. The external cytosine was 

thought to be methylated in 40-50% of the copies of this genomic 

fragment. 

Figure 30 also indicated that another Hind III fragment (2.90kb) 

(track a) was completely unmethylated at all stages of cotyledon 

development and in the leaf digest. Following both Msp I and Hpa II 

digestion ( eg tracks b and c) two new fragments of 2. 32 and 0. 60kb 

were observed. It is not known whether this 2.90 kb Hind III fragment 

is associated with the flanking sequence of another legumin gene. 

4:3:2:5 Methylation of the Leg B flanking sequences 

The 5' flanking sequence of Leg B was used to probe the Hind III 

digested genomic DNA. It was not known how far ·upstream from the Bam 

HI site (used to clone pDUB 25) the next Hind III site was, neither 

was it known whether an Msp I site was contained in this region. 

Two genomic Hind III bands (4.67 and 3.29kb) were cleaved by 

Msp I ~figure 31, tracks g and h). The 3.29kb was almost completely 

cleaved by both Msp I and Hpa II, indicating that the majority of the 

copies of this genomic fragment were being detected in the 

unmethylated state. However, in the leaf digests (tracks band c), the 

3.29kb fragment had been only partially cleaved, indicating that this 

site was more highly methylated in leaf DNA. The 4. 29kb band was 

partially cleaved by Msp I (eg track h) and was uncleaved by Hpa II 

(eg track i), which indicated that about half of the copies of this 

fragment was detected in the CmCGG form and half in the mCmCGG form. 
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It is not known which of these two Hind III bands (if either) 

represents the 5 1 flanking region to Leg B. If the methylation of the 

Leg B flanking sequence resembles that observed for Leg A, then it 

might be expected that the 3.29kb Hind III band which was only very 

slightly methylated, represents the 5 1 flanking region to Leg B. If 

this is so then it would appear that in leaf DNA, a small proportion 

of the copies of this sequence (about 20%) are fully methylated and 

are resistant to both Mspi and Hpa II. 

The methylation of two Msp I sites 3 1 to the Leg B coding 

sequence was also investigated. These sites were contained in a 3.75kb 

Eco RI fragement and a 0.8kb Bam HI fragment. Both of these fragments 

were shown to be fully methylated ie resistant to Msp I and Hpa II (eg 

compare the intensity of the 3. 75kb band in tracks a, b and c in 

figure 32 and the intensity of the 0.8kb fragment in tracks a, b and c 

of figure 33). 

The interpretation of figure 32 was complicated by the wide range 

of Eco RI fragments which non-specifically hybridized to the probe, 

despite the stringent hybridization and washing procedures used. There 

are two possible reasons for this. First, the probe was prepared from 

a miniprep as there was insufficient time to do a maxi-prep to obtain 

the purified plasmid. Thereforethe DNA probe was not as pure as it 

might have been. Second, the size of the probe was 3.75 kb which is 

fairly large for a probe, particularly when one is investigating 

non-protein coding DNA. However, there was insufficient DNA obtained 

from the miniprep, to do a detailed restriction mapping and isolation 

of a smaller probe fragment. 
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Whilst the 3. 75kb genomic fragment was shown to be completely 

methylated a smaller 2.75kb fragment (figure 32, trakc a), the origin 

of which is not known, was found to be unmethylated at all stages of 

cotyledon development (eg tracks a and b). This is a situation similar 

to that observed for the 3' flanking sequence of Leg A (figure 30) and 

again it is not known whether this Eco RI fragment is associated with 

a legumin gene. 

In figure 33, whilst it was apparent that CCGG site in the 0.8kb 

Bam HI fragment was completely methylated, three other features are 

worth noting. First, after Msp I digestion (tracks b, e, h and k) it 

was apparent that a 6.60kb Bam HI fragment had been cleaved and new 

bands were observed at 3.87, 1.25, 0.89 and 0.56kb. However, after Hpa 

II digestion (tracks c, f and i), although the 6.60kb had been cleaved 

the only new bands observed were 4. 57 and 2. OOkb. This possibly 

indicates that the 6. 60kb Bam HI fragment contains one unmethylated 

site, which can be cleaved by Msp I. The 4. 57 and 2. OOkb Bam HI + 

Hpa II fragments must each contain one partially methylated site which 

can only be cleaved by Msp I (4.57~3.87 + 0.56 and 2.~1.25 + 0.89). 

Once again, the origin of this 6.60kb Bam HI fragment is not known. 

The second feature to note in this autoradiograph is that neither 

Bam HI site at the end of the 0.8kb fragment appearedto be methylated 

m 
(Bam HI cannot cut GGAT CC). 

Finally, although the 0.8kb Bam HI band was intense and did not 

appear to be a partial digest, it should be noted that the 0.8kb Bam 

HI + Hpa II band had a relatively increased intensity (for example 

compare this band in tracks c and d). It was also noted that in the 
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Bam HI + Hpa II tracks there was a decreased intensity of 

hybridization to fragments of 3.00kb. It is thought that this 

reflects the enzyme digestion conditions used. Whenever double 

digestion experiments were performed, the first enzyme was always the 

one with the lowest salt requirement. At the end of the first 

digestion, the first enzyme was inactivated, the buffer modified and 

the second restriction performed. Where Taq I and Rsa I have been 

used, they have the lowest salt requirement and so the genomic DNA was 

digested with Taq I or Rsa I first and Msp I or Hpa II second. 

However, when Bam HI, Hind III or Eco RI have been used these have a 

much higher salt requirement and restrictions have been performed with 

Msp I/Hpa II first and Bam HI etc. second. The appearance of the three 

tracks, Bam HI (figure 33, track a), Bam HI plus Msp I (track b), and 

Bam HI + Hpa II (track c) therefore indicates that the buffer 

conditions created by the conversion of the Hpa II buffer to a Bam HI 

buffer were better than those created by the conversion of the Msp I 

to a Bam HI buffer, or the Bam HI buffer on its own. Any difference 

between these three buffers are thought to have been very minor. An 

alternative method for double restricting the DNA would have been to 

perform the first restriction with Bam HI and to subsequently dilute 

the reaction volume to reduce the salt to the required level for Msp I 

and Hpa II. However, this can frequently result in having to load a 

large volume onto the gel and for this reason the other method was 

preferred. 
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4:3:2:6 Identification of Msp I and Hpa II fragments detected by the 

eDNA probe 

In none of these experiments was there an obvious demethylation 

which correlated with the observed change when the eDNA probe was 

used. This implies that the site which underwent a demethylation must 

have been associated with a different legumin gene, ie either Leg C or 

the as yet uncloned postulated legumin gene 1 Leg E 1 
• This view is 

supported by the difficulty found in assigning the Hpa II fragments 

detected by the eDNA to the known Hpa II fragments of ALeg 1 and ALeg 

2. 

The locations of three fragments (4.3, 5.8 and 7.0kb) are 

indicated in figure 5~. · however, when one uses the information 

obtained by the flanking region experiments, it becomes apparent that 

it is unlikely that either the 6.5 or 5.37kb Hpa II genomic fragments 

detected by the eDNA probe (figure 22b, trakcs c, e and f), originate 

from these_ fragments predicted from restriction mapping of A Leg 2, 

since the site at the 3 1 end of both of these predicted fragments can 

never be cleaved in genomic DNA (figure 32). 

Thus, at present, it is not possible to identify most of the Hpa 

II bands detected in figure 22b (tracks c, f, i and 1). Those which 

can be identified are the 1.17kb band (M1~M2 in Leg A, B and C), the 

0.5lkb band is thought to represent the fragment from the M3 site in 

Leg B to the next 3 1 site and the 1.69kb is thought to be equivalent 

to the Leg B fragments from site M2 to this same 3 1 site ie the 1.69kb 

Hpa II fragment will be detected in the gene copies where the Leg B, 

M3 site is methylated. 
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A final attempt was made to identify the legumin gene associated 

with the demethylation event. In this experiment (figure 30) genomic 

DNA digested with Eco RI and Mspi/Hpa II, was hybridized with a eDNA 

probe. This enabled the fragments equivalent to the cloned DNA >..Leg 

1, ALeg 2 and >..Leg 3) to be identified but it was still not possibl~ 

to link the demethylation event ( ie the disappearance of the 6. 24kb 

Eco RI plus Hpa II fragment from the 15 d.a.f. cotyledon digest (track 

1), to any particular legumin gene. 

4:3:3 Methylation of the vicilin gene family 

Hybridization of a eDNA for the 47,000 -M vicilin polypeptide to 
r 

genomic DNA (figure 38) again indicated that an organ-specific 

demethylation, in a region of DNA which was associated with the 

vicilin genes, ie an 11.6lkb Hpaii fragment was detected in 15 and 21 

d.a.f. cotyledon DNA (tracks f and i) which was not detected in leaf 

or 10 d. a. f. cotyledon DNA (tracks l and c). This 11. 6lkb fragment 

(track f) has been derived from the DNA fragments of >20kb in 10 

d.a.f. cotyledon DNA (track c), therefore either one or possibly two 

demethylations must have occurred (depending on whether the 11. 6lkb 

fragment came from the end or the middle of a >20kb DNA fragment). 

The Msp I and Hae III hybridization pattern showed a different 

sequence of events. Three major Msp I fragments were detected by the 

eDNA probe at 11.40, 8.50 and 4.80kb (eg track b). The intensity of 

the 11. 40kb fragment increased during cotyledon development (compare 

track h with track b), indicating that some sites which were cleaved 

by Msp I but not by Hpa II 10 d.a.f. 
m 

( C CGG) , became resistant to 



- 217 -

Msp I cleavage at 21 d. a. f. ( mCmGG). A similar observation was made 

following Hae III digestion. An 8.3kb fragment, which was not visible 

in the leaf digest (track l) was just detected 10 d. a. f. (track a), 

was quite distinct in the 15 and 21 d.a.f. digests (tracks d and g) 

and the appearance of this fragment correlated with the disappearance 

of the 4. 96kb Hae III fragment. This indicated that at least one 

· m m m 
Hae III recognition sequence became methylated (GG CC or GG C C) and 

thus became resistant to Hae III. Therefore what both the Msp I and 

Hae III hybridization patterns were indicating was that during 

cotyledon development, one or more CCG or CmCG trinucleotides (Msp I 

sensitive and Hae III sensitive) were being methylated to the mCmCG 

state, which was refractory to Msp I and Hae III. This could not be 

due to the inhibition of Msp I by a CmCGG sequence a part of an 

overlapping Hae III/Msp I sequence, GGCmCGG (see section 4:2:1), 

because such a sequence would be resistant to Msp I and Hpa II but 

sensitive to Hae III. It could,. however, be due to overlapping Hae 

III/Msp I sites, which became methylated in the following forms, 

either GGmCCGG or CCmCmCGG. Alternatively, the hybridization patterns 

could indicate methylations at two separate sites, one a Hae III 

recognition sequence and the other an Msp I recognition sequence. 

When the methylation of the genes for the 50,000-M vicilin 
r 

polypeptide was examined (figure 39) , a Hpa II hypomethylation event, 

similar to that detected with the 47,000-M probe was observed (note 
r 

the 11. 61kb Hpa II fragment in tracks b and d). The increase in 

intensity of the 11. 40kb Msp I band was also observed (tracks a and 

c). However, this autoradiograph indicated an additional feature. The 
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11.40kb cotyledon Msp I band was distinctly smaller than the 11.6lkb 

Hpa II band (compare tracks c and d) but in the leaf + Msp I digest 

(track e) the size of the Msp I band had increased to 11.61kb (compare 

tracks 'd and e). Therefore most of the sites which were cleaved by Msp 

I in the cotyledon digests (ie CmCGG) were methylated in the leaf and 

the one (or two sites) which became unmethylated (Hpa II sensitive) 

m during cotyledon development were partially methylated, C CGG, (Msp I 

sensitive; Hpa II resistant) in .the leaf DNA. 

4: 3:4 Comparison of the methylation ·of the vicilin and legumin gene 

families 

A comparison of the methylation patterns of the vicilin and 

legumin gene families, indicates several interesting features. The 

first was that in both gene families, a Hpa II band, which was not 

evident in the leaf or 10 d.a.f. cotyledon DNA, was apparant 15 d.a.f. 

in the cotyledon DNA. Thus, in both gene families a demethylation of 

one or more Hpa II sites has occurred. This demethylation was thought 

to occur within 4.2kb of a legumin gene but it could be up to 11.61kb 

away from a vicilin gene. 

Second, some Leg A and Leg B gene copies were shown to contain 

two partially methylated, CmCGG, sites in their coding sequences but 

the 1.17kb Hpa II band detected by the legumin eDNA (figure 22b track 

c) indicated that some copies of the legumin genes were unmethylated 

at both of these sites in their sequence. However, in comparison, no 

unmethylated copies of the 47,000-M vicilin 
r 

gene were detected 

(figure 38), although the 1.82kb Hpa II and Msp I fragment (figure 39, 
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· eg tracks c and d), may indicate that some copies of the 50, 000-M 
r 

genes were unmethylated at two Hpa II sites. 

Third, the vicilin genes (both 47,000-M and 50,000-M ) gave much 
r r 

larger. Msp I fragments than those observed for the legumin gene 

family. Whilst the sizes of the vicilin genes' Msp I fragments are not 

yet known, this large average fragment size may indicate that most of 

the vicilin genes detected by th~~e two probes, contain several fully 

methylated sites (mCmCGG). This view. is supported by the observation 

that the level of mCCG and/or mCmCG methylation, of the DNA associated 

with both vicilin gene families was shown to increase during cotyledon 

development. Thus a situation may exist in the vicilin gene family 

where one or two sites become specifically demethylated whilst other 

sites become additionally methylated (ie hypermethylated), but it is 

not known whether these two methylation changes occur in association 

with the same copy of a particular gene. However, because of the sizes 

of the fragments which are thought to represent . the increased 

methylation ( ie 8. 3kb for Hae III and 11. 40kb for Msp I) , it is 

possible that these sites, which become methylated during cotyledon 

development, may in fact be sited some distance from the vicilin 

gene(s). 

One vicilin gene in Pisum sativum has been mapped to a position 

very close to the R-locus on chromosome 7 and the legumin genes are 

sited about 15 map units away from the vicilin genes (J.A. Gatehouse-

personal communication). The differences observed in the vicilin and 

legumin gene families indicated that the two gene families were 

located in regions of the chromosome which had very different levels 
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pf methylation. 

4:3:5 Methylation in relation to the expression of the storage protein 

A change in the methylation of sites associated with both the 

vicilin and legumin gene families, during the development of pea 

cotyledons, was detected using cD.NA probes. This demethylation was 

detectable in 15 d.a.f. but not 10 d.a.f. Other results (not 

presented) have indicated that no demethylation has occurred by 12 

d.a.f. 

Evans et aL (1984) demonstrated that isolated nuclei from 9 

d.a.f. cotyledons, produced legumin and vicilin transcripts after a 3 

minute transcription labelling period. However, after a longer 

transcription time (45 minutes) only vicilin transcripts were 

detected, 9 d. a. f. Thus, whilst the legumin genes were undergoing a 

low level of expression 9 d.a.f. these legumin transcripts were being 

post-transcriptional processed. Vicilin transcripts (for both the 

. 47 ,000-M and the 50,000-M polypeptide) were again detected at a 
r r 

higher concentration 11 d.a.f. but by 14 d.a.f. the levels were 

comparable. Therefore, although copies of both vicilin and legumin 

genes have previously been shown to be undergoing a low level of 

transcription 9 d.a.f., the demethylation of the genes reported here 

was not detected at 10 or 12 d. a. f. This implied that the organ 

specific demethylation observed in cotyledon DNA, may have been a 

consequence of the the transcription of the storage protein genes 

rather than the cause of it. 

The hypomethylation of genes has frequently been correlated with 

the expression of eukaryotic and viral genes. However, this basic 
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question over the relative timing of the demethylation event with 

respect to the gene's transcription, is one of extreme importance and 

the answer to which will help to clarify ·the role of methylation in 

the control of gene expression. 

\· 
Other examples of genes in which demethylation prQceeds gene ~ 

activation include the chicken o -crystallin and vi tellogenin genes. 

Grainger et aL (19$3) followed the methylation pattern of the 

o -crystallin genes during the development of the chicken lens and 

found that one site underwent hypomethylation concurrent with the 

appearance of the protein whilst several other sites became 

demethylated significantly later. Similarly when 11-day chick embryos 

were treated with oestrogen (Burch and Weintraub, 1983; Meijlink et 

aL , 1983), vitellogenin message was detected 16h after treatment but 

the demethylation of the vitellogenin gene was not detected until 72h 

after treatment ( ie after two cell divisions). Also, Kunnath and 

Locker ( 1983) demonstrated that the rat albumin and a -fetoprotein 

genes were fully methylated in the 18-day foetus, where the genes were 

·first expressed, but were found to be less methylated in the adult 

liver where the albumin (but not a-fetoprotein) gene was still 

expressed. Again this represents a demethylation of a gene after it 

has been 'turned on'. 

At the moment there appear to be two possible reasons why a 

demethylation may be a post expression event. First, it requires two 

cycles of cell division, during which the maintenance methylase is 

prevented from methylating a particular site on the daughter DNA 

strand, before a site will become Hpa II sensitive. This prompted 
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Yisraeli and Szyf (1984) to suggest that hemimethylation, ie the 

methylation of a cytosine on only one strand (see figure 6), may be 

sufficient to allow the activation of a gene, whilst a further round 

of replication (again without methylation) is required before the 

demethylation can be detected. However, this cannot be the rule 

because the chicken vitellogenin mhNA ~as detected 16h after oestrogen 

treatment (ie before one round of cell division) although the 

demethylation was observed after two rounds of cell division 

(Wilks et aL , 1982). 

The second reason why a demethylation might be delayed after the 

initiation of transcription is because methylation may be inhibited in 

regions of DNA which are undergoing massive transcription. Over 

several generations a gene-specific pattern of undermethylation would 

result (Razin and Cedar, 1984). Further, it has been proposed that the 

failure to detect demethylation following the activation of the muscle 

a -actin gene may be due to the fact that the gene is only activated 

after the muscle cells have ceased to divide and in the absence of 

replication, demethylation will not occur ( Razin and Cedar, 1984). 

However, recently members of Razin' s group have chemically induced 

leukemia cells to differentiate and have observed a 'genome-wide 

hypomethylation' . The cells lost methyl groups very quickly, which 

implied that these hypomethylations were by an active mechanism 

(Kolata, 1985). 

Although post expression demethylation events were detected in 

the pea storage protein genes, it should be noted that this does not 

preclude other demethylation events occurring at other sites which 
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would not have been detected by Hpa II. Hpa II can examine about 6% 

(or one sixteenth) of the CG dinucleotides in a genome (Yisraeli and 

Szyf, 1984; Riggs and Jones, 1983; Cooper, 1983). In the case of Leg 

A, it has been shown that out of 57 CG dinucleotides, only three of 

them were in a CCGG sequence (figure 48) . In order to examine the 

methylation of all the cytosines it would be necessary to use the 

Church and Gilbert ( 1984) method of genomic sequencing (see also 

Little, 1984). 

The methylation maps obtained for the genomic sequences cloned in 

ALeg 1 and ALeg 2 (figure 57) are in reasonable agreement with Razin 

and Szyfs third paradigm ( 1984). However, it should be noted that a 

methylation map such as this, does not necessarily reflect the 

methylation state of the DNA in the cells which are active in storage 

protein synthesis, because of the cotyledon cellular heterogeneity. 

The greatest correlation between undermethylation of a gene 

region and the expression of that gene has been found in the 5' 

flanking (promoter) regions (for reviews see Doerfler et a L , 1984; 

Cedar, 1984; Razin and Szyf, 1984; Doerfler, 1983). The methylation 

pattern obtained for the Leg A is very similar to that described by 

McKeon et aL (1982) for a2(1) collagen. These workers reported that 

the structural gene was heavily methylated, whilst the 5' region was 

unmethylated in all tissue sources, despite the fact that the activity 

of collagen was limited to the fibroblast cells. It has been suggested 

(Cedar, 1984) that this seemingly non-tissue-specific undermethylation 

of the 5' region may be related to the fact that the gene is actively 

expressed during the early stages of differentiation. 
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The strongest evidence which supports the view that a changing 

methylation in the 5 1 promoter region and the control of gene 

expression has been provided by two experiments. Kriegek and Doerfler 

( 1983) used hybrid plasmids containing the chloramphenicol acetyl­

transferase (CAT) gene and adenovirus type 12 promoters. When various 

regions of the promoter were in vitro methylated it was found that 

CCGG and GCGC sites upstream from the E1a promoter had a decisive 

regulatory function. Methylation of sites 300bp upstream from the 

TATA signal had no effect on the CAT gene expression and neither did 

the methylation of the Hpa II sites in the CAT gene sequence or in the 

plasmid vector sequence. 

demonstrated that in vitro 

Similarly, Busslinger et al (1983b) 

methylation of the human Ay-globin gene 

between bases -760 to +100 prevented in vivo transcription of the gene 

in mouse cells. Finally, Vardimonet al (1982) have demonstrated that 

the in vitro methylation of non-CG sequences ( eg GGCC) does not 

affect gene transcription in vivo 

However, in some genes gene expression is correlated to changes 

in the methylation of the structural gene and this has led Riggs and 

Jones (1983) to propose that this may represent two levels of control 

operating independently, with the methylation of the promoter sequence 

acting as a primary switching mechanism, whilst the methylation of the 

coding region and introns could provide fine tuning. Clearly this 

could be the situation in Leg A and Leg B. The M2 site in Leg B was 

found to be less methylated than the Leg A M2 site (although it should 

be noted that the relative transcription rates of these two genes are 

not known). In addition the methylation of the M2 site of both genes 
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appeared to slightly decrease during cotyledon development and this 

again could represent 'fine tuning'. 

The ~n vitro methylation experiments by Doerfler and Busslinger 

indicate a causal link between methylation and gene expression. Whilst 

a 5', developmentally regulated, methylated/unmethylated Hpa II site 

was not detected in association with Leg A, this does not preclude the 

existence of such a Hpa II site either further upstream of a 

methylation change at a non-Hpa II CG dinucleotide. Whilst it may be 

inappropriate to extrapolate the ;findings from the vertebrate system 

to the plant system, particularly in view of the varying amounts of 

5mC found in eukaryotes· (insects 5mC virtually absent, higher 

vertebrates- low levels of 5mC, higher plants - high levels of 5mC), 

the fact that correlations have been detected for mammalian CG 

residues and some higher plant CG and C-X-G residues (Cedar, 1984), 

implies that the link between gene activity and DNA methylation must 

be a basic one. 

Riggs and Jones ( 1983) have suggested that methylation can be 

considered as a locking device, with methylation locking the gene in 

an inactive state. Thus, in the cases of genes where no correlation 

between undermethylation and gene expression has been found (eg Leg A) 

it must be concluded that further regulatory factors are involved or 

as a useful analogy 'an unlocked door is not necessarily open' 

( ibid ) . Therefore in the control of gene expression there is a 

multifaceted regulatory system and undermethylation of the 5' region 

may be a necessary but not sufficient condition to ensure gene 

expression. 
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Doerfler et al (1984) has pointed out that genes can be 

subdivided into three classes: a) permanently inactivated genes; b) 

inactive genes that are occasionally reactivated; c) active genes. The 

authors·pointed out that the cell- or tissue-specific patterns of DNA 

methylation may be superimposed on the DNA methylation patterns which 

reflect the inactivated states of genes. If this is true, then it is 

surprising that the pea leaf methylation patterns (where the legumin 

genes are permanently inactive) were the same as the 10 d.a.f. 

cotyledon methylation patterns (where the genes were becoming active). 

However, the methylation patterns obtained for the vicilin eDNA probes 

supported Doerfler's scheme. The Msp I patterns obtained for leaf and 

10 d.a.f. cotyledon DNAs were very different (figure 38 and 39) and 

this does indicate that the methylation of a completely inactive leaf 

vicilin gene was different to that of a gene which was either being 

activated or was about to be activated. Doerfler has suggested that 

once a gene has been inactivated, additional methylations of that gene 

may be related to the organization of chromatin (or possibly to other 

factors not directly responsible for the regulation of gene 

expression). 

Both the vicilin cDNAs detected distinct hypermethylations of 

Msp I and Hae III sites during the cotyledon development. In the 

mammalian system, the differentiation and development of a tissue (or 

an organ) is usually considered to lead to hypomethylation of the 

genes ( ie genes are heavily methylated in the sperm, less heavily 

methylated in somatic tissue and undermethylated in the expressing 

tissue). This is supported by experiments involving 5-azacytidine 
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where the drug has been used to induce cells to differentiate and DNA 

demethylation has also been detected ( eg Jones and Taylor, 1980; 

Jones et al , 1982). The drawbacks to experiments using 5-azactidine 

were discussed in section 1:4:5). 

Bovine DNA provides one exception to the differtiation = 

hypomethylation rule. The level of methylation in bovine sperm is 66% 

that observed in somatic cells . (Vanyushin et al , 1980). However, 

Sturm and Taylor (1981) have shown that this difference is chiefly due 

to the level or methylation of the major satellite DNA. In sperm 

satellite DNA less than 1% of the cytosines were methylated whilst in 

somatic tissue satellite DNA, 10% of the cytosine residues were found 

to be methylated. Therefore a significant de novo methylation had 

occurred during bovine development. Jahner and Jaenisch (1984) have 

shown that proviral genomes inserted into mouse cells become highly 

methylated in mouse embryos. It was subsequently found that viral 

genomes became methylated if the viral genome had integrated into the 

DNA of the preimplantation but not the post- implantation embryo 

(Jahner et al, 1982). Therefore both repetitive and unique sequence 

DNA can become de novo methylated during early embryonic development. 

Thus cells undergoing differentiation have the potential for either 

demethylation or de novo methylation of their DNA. 

Jaenisch and Jahner (1984) suggest that in vertebrates, the de 

novo methylation of the embryonal genome may in fact represent the 

repressing of the genes which had been active during oogenesis but 

were no longer required or which may be deleterious for the 

development of the early embryo ie the de novo methylation serves to 
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'reset' the genetic programme. A similar argument could be made for 

the pea vicilin genes in that the storage protein genes, whose 

expression is essential for the development of a viable pea seed, are 

not rquired after the end of the storage protein phase (ie about 20-21 

d. a. f. ) . In fact, it could be argued that tne expression of these 

genes during germination may be deleterious to the survival of the 

seedling, whose limited resources are required for other biochemical 

pathways. Therefore, the increasing methylation of the vicilin genes, 

during the later stages of cotyledon development might be expected 

(figure 38) . However, if this is so, then the same criteria do not 

appear to hold for the. legumin genes which fail to show an increased 

methylation (at Msp I and Hae III sites) during cotyledon development 

(figure 22b). This may reflect the difference in their chromosomal 

position ie it is not the vicilin genes whose expression would be 

deleterious to the germinating seedling but some neighbouring gene. 

Therefore the increased vicilin gene methylation may be a consequence 

of a general increase in methylation of that region of DNA. This is 

supported by the view of Bird ( 1984) ' that the unit of de 

novo replication (as distinct from the unit of methyl replication) is 

a sequence domain, within which all CGs become methylated at once. 

The possible mode of action of the post expression, demethylation 

events in the pea cotyledon, is an interesting question. This site is 

thought to be up to 4.2kb from a legumin gene and up to 11.61kt from 

a vicilin gene ie the demethylation may be exerting an influence over 

a considerable distance. This may imply that it is related to an 

enhancer sequence. Jahner and Jaenisch (1984) have suggested that in 
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vertbrates, s{ngle copy genes may be regulated by two different sets 

of control elements: an embryonic set which is active independent of 

methylation and a somatic set which is sensitive to methylation. The 

mouse a-amylase gene has been found to use two different promoters in 

the parotid gland and the liver ( Schibler et a L , 1983). It may be 

that in the developing pea cotyledon, a cotyledon-specific enhancer is 

active at a low level despite being methylated but once the storage 

protein genes are expressed, the enhancer becomes demethylated 

(perhaps through the intervention of a protein factor which binds to 

the enhancer preventing access for the maintenance methylase). Once 

demethylated, the enhancer may have a higher 1evel of activity. 

Alternatively, these methylation changes could be operating over 

considerable distances by a system similar to that described by Rich 

( 1983) ie DNA.....:domain activation of chromatin (see section 1:4:6 and 

figure 7). In this case the Hpa II demethylation detected by the eDNA 

probes would have to be regarded as one Hpa II site which was typical 

of a larger 5m{}:;-rich region of Z-DNA (which could still be an 

enhancer region). Thus the decrease in methylation of this region 

would promote a change in the DNA from the Z-form to the B-form and 

this change would be detected some distance away, within the same loop 

or 1 domain 1 
• 

4:3:6 Investigation of a vicilin mutant pea line (5478) 

The final section of experimental work which investigated the 

relationship between cytosine methylation and gene expression, 

involved mutant pea line 5478. This pea line was known to produce 
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greatly decreased amounts of the 50,000-M vicilin polypeptide (J.A. 
r 

Gatehouse, personal communication). 

The 50, 000-M vicilin polypeptide genes were detected in the 
r 

mutant pea line by Southern blotting and the use of a eDNA probe 

(figure 41). The genes were analysed with 12 different restriction 

enzymes (with either a 4 or 6 mucleotide recognition sequence) but no 

difference in the genes was detected between the mutant and parental 

pea lines. (The differences in the total intensity of some tracks is 

due to a loading artifact and does not indicate differences in copy 

number. The relative intensities of the bands within a track, can be 

compared between tracks .. ) No gross deletion or insertion into the 

mutant vicilin genes was apparent. 

Having confirmed that the 50,000-M vicilin genes were present in 
r 

the mutant pea line, total RNA was isolated from developing cotyledons 

and analysed by Northern blotting (figure 43a, b and c). Identical 

amounts of total RNA were loaded in each track, therefore the signal 

intensity is a measure of the proportion of the total RNA contributed 

by each mRNA. The pattern of 47, 000-M, vicilin message accumulation 

(figure 43a) was similar to that described by Gatehouse et al (1982). 

Similar amounts of this message were detected in parental and mutant 

pea lines at each stage of cotyledon development. 

In the parental line, the pattern of accumulation of the 

50,000-M, vicilin polypeptide message (figure 43b) was again similar 

to that described by Gatehouse et al ( Loc cit ) except that the 

message was detected in higher amounts slightly earlier in the 

cotyledon development ( ie day 11). The mutant pea line showed a 
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50, 000-;M. polypeptide message accumulation, r 

however, the level detected at each stage of cotyledon development was 

approximately 10-fold lower. This indicated either that the genes in 

the mutant were not being transcribed at the normal rate or that the 

message was being degraded in the nucleus (ie a post-transcriptional 

error). Measurement of the transcription rate by isolated nuclei would 

help to differentiate between these two possibilities. 

Interestingly, when the same filter was rehybridized (figure 43c) 

with a eDNA representing a different 50,000-Mr vicilin message (pDUB 

9), relatively higher amounts of this message were detected in the 

mutant pea line. This eDNA is thought to represent a message which is 

synthesised at a ,later stage of cotyledon development ( 1. M. Evans 

personal communication), although this experiment indicated that the 

message accumulated over a similar time period to the other 50,000-M 
r 

eDNA (pDUB 2; figure 43b). Restriction mapping has indicated that pDUB 

9 and pDUB 2 are dissimilar (Delauney, 1984). The significance of the 

differences of these two messages for the 50,000-M polypeptide is not 
r 

yet understood. 

Having established that the 'error' in this mutant pea line may 

be at the transcriptional control level, it was important to ascertain 

whether the demethylation event, observed in the Feltham First vicilin 

genes, was also occuring in the Witham Wonder mutant pea line (figure 

44). The 11.6lkb Hpa II fragment was detected in the mutant pea line 

15 d. a. f. (track b) and was clearly visible by 22 d. a. f. (track f), 

whilst being absent from the leaf DNA (track j). This indicated that 

the same demethylation event which was observed in Feltham First was 
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also happening in the mutant cotyledon DNA. The 1.82kb Msp I and Hpa 

II band was just visible in parental and mutant pea lines. As this is 

thought to represent unmethylated sites in the Feltham First 50,000-M 
r 

polypeptide gene, this indicates that hypermethylation of these mutant 

genes is not the cause of their low level of expression. It is 

interesting to note that the hypermethylation of the Msp I sites 

observed in Fel tham First leaf · DNA (figure 39, track e) is not 

detected in either the Witham Wonder parental or mutant lines (figure 

44, tracks g and i). 

These results do not indicate whether the reason for the failure 

to detect the normal amounts of cytoplasmic, 50,000-M mRNA, is due to 
r 

changes in transcription or post transcriptional processing but they 

do indicate that an incorrect change in the methylation pattern of 

developing cotyle.don DNA, is not the cause. The most probable reason 

for the low level of expression is a base change in a critical 

sequence of the promoter region (see figure 3). 

4:4 Analysis of Leg A and Leg D sequence data 

4:4:1 Analysis for 'CG-suppression' 

Bird ( 1980) demonstrated that the genomes of higher eukaryotes 

(but not insects) were deficient in the CG dinucleotide. This feature 

is normally called 'CG-suppression', although in some ways this is an 

incorrect term to use, since it implies an active mechanism to ensure 

the rarity of the CG-dinucleotide, whereas in actual fact the rarity 

of the dinucleotide is probably a consequence of the high mutability 
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of the 5mC residues. McClelland and Ivarie ( 1982) analysed the data 

for an 'average' mammalian gene (based on the sequence data for 15 

mammalian genes) and found that overall the CG dinucleotide occured at 

40% the frequency expected from the base composition. Similarily, when 

analysing data for a typical leguminous plant gene, McClelland, 

(1983b) found that overall the CG dinucleotide occured at a slightly 

higher frequency (49%). Analysis 9f Leg A and Leg D sequence data has 

confirmed that in these two genes, the dinucleotide is deficient 

(tables 7 and 8). Overall the CG dinucleotide was found to occur at 

44% the frequency expected in _Leg A and 71% the frequency expected in 
not 

Leg D. It is knoWn whether this ,discrepancy is related to the fact 
" 

that Leg A is expressed, whilst Leg Dis silent (Bown et aL , 1985). 

In contrast to the CG frequencies, the GC dinucleotides occured 

with a frequency slightly higher than was expected (tables 7 and 8). 

McClelland and Ivarie (1982) and McClelland (1983b) also demonstrated 

that in both mammalian and plant genes the CG dinucleotide was 

asymmetrically distributed. However, the two distributions were 

markedly different. The mammalian type gene had a far greater 

suppression of the dinucleotide in the 3' flanking region than in the 

5' flanking region ( 16% compared w.i th 53%) whilst the ·plant gene 

showed the reverse trend (96% compared with 31%). This distribution in 

Leg A is shown in figure 46a:III and for Leg D in figure 47a:III (see 

also tables 7 and 8). Neither of these analyses confirmed the relief 

from suppression in the 3' flanking region reported by McClelland 

(1983b) The reason for this is probably due to the fact that 

McClelland's results are based on the data of 7 soybean genes, 2 pea 
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cDNAs, 1 French bean eDNA and 1 maize gene. Therefore, McClelland's 

distribution reflects very strongly the situation observed for the 

soybean genes, whilst these legumin gene flanking sequences ratios, 

reflect · the very low C+G percentage composition of the pea legumin 

gene flanking sequences (figure 46b:I and 47b:I). 

The distribution of the CG dinucleotide in the flanking region of 

Leg A is shown in figure 45c and figure 46b: III. It should be noted 

that the stretch of DNA from the translation start (0) to -500bp 

upstream is virtually devoid of CG. residues. In other genes, this is 

the region of DNA which when methylated in vitro was found to prevent 

expression ~n vivo (eg Busslinger et aL , 1983b) (see section 4:3:5). 

Therefore, it might be expected that one of these three CG residues 

will in the future, be shown to have a dramatic effect on gene 

expression. 

It was suggested by Salser ( 1977) that this lower frequency of 

the CG dinucleotide may be due to the fixation of mutations generated 

by a high rate .of 5mC deamination (figure 51). If this is so, then the 

dinucleotide mutation products should be detected at a higher 

frequency. Figure 52 gave the clearest demonstration of the 

correlation between CG deficiency and ( CA+TG) excess. Bird ( 1980), 

using an analysis of this kind, demonstrated that insects had neither 

a CG deficiency nor a reproducable (CA+TG) excess, non-arthropod 

invertebrates had an intermediate level of CG deficiency and (CA+TG) 

excess and finally vertebrates had a marked CG deficiency and a marked 

(CA+TG) excess. The distribution of points obtained for Leg A (figure 

52) were more widely spread than those of Bird (1980) and this may be 
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due to the difference in unit length of DNA analysed (100 nucleotides 

in this study, whereas Bird used a unit length of 1000 dinucleotides). 

When the data was expressed in terms of gene position (figure 53) 

only one area of Leg A was shown to _have a very close correlation 

between CG deficiency and (CA+TG) excess (figure 53b:I). This area was 

found to correspond to the cluster of CG dinucleotides; seen in exon 

1, in figure 45c. This region of exon 1 showed a relief from CG 

suppression and a near normal occurrence of (CA+TG). When one 

considers the overall rarity of the CG dinucleotide, then a region in 

which the CGs are maintained at almost the expected frequency assumes 

an increasing significance. 

The origin of localised CG-rich regions, is currently the subject 

of much controversy (Max, 1984; Adams and Eason, 1984a; Max, 1985). 

Tykcocinski and Max ( 1984) have suggested that regions of DNA which 

contain a CG cluster are maintained in a highly demethylated state in 

germline DNA, relative to regions of DNA which exhibit CG suppression. 

If this is so then the model predicts that CG-rich regions will not 

show the elevated TG+CA levels that result from 5mCG deamination and 

this was found. However, Adams and Eason (1984a and b) have pointed 

out that there are two possible reasons for a lack of CG 

suppression: a) a failure to methylate (as proposed by Max) or b) a 

failure to deaminate the methylated CG~rich regions. Adams and Eason 

argue that a high G+C content (>60%) of a region of DNA will confer an 

increased stability on the DNA helix and this will mitigate against 

the deamination reaction, which in vitro requires the DNA to be single 

stranded. Therefore, even if the region of DNA is heavily methylated, 
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deamination is less likely to occur. 

When one examines the sequence data of Leg A and Leg D, in the 

light of these two differing theories, it is not possible to favour 

one theory or the other. The extent of methylation of the first exon 

in Leg A is not known but the M:2 site, about 200bp downstream is known 

to be about 25% methylated. However, the Ml site in the 5' flanking 

region, is known to be unmethylated and yet this site was located in a 

region in which there was a marked suppression of the CG dinucleotide. 

Max supports his theory by pointing out that is the major histo­

compatibility complex genes, CG clustering in observed in the 5' 

region and that the mouse dihydrofolate reductase gene (DHFR) and 

chicken a-2 collagen gene have both been shown to have a cluster of CG 

dinucleotides which are undermethylated relative to the 3' region (ie 

there is a germline demethylation of these regions). 

When the CG cluster in Leg A and D .is examined in terms of the 

C+G content of the DNA, it was found that the two 100 nucleotide 

segments in which the CG sites are located (+100 to +300bp) have a C+G 

content of 52% and 46% (figure 46b: I, see also figure 48a) , ie 

considerably less than Adams and Eason's requirement of 60% and not 

very much higher than the figure of 40% below which the CG 

dinucleotide in vertebrate DNA is highly suppressed. It is possible 

that the C+G composition of a much smaller region surrounding a CC 

dinucleotide (ie microenvironment) will dictate the stability of the 

DNA helix in that region. Figure 49 and table 10 examine the 

microenvironment of the CG dinucleotides in Leg A and Leg D. As a 

control, the microenvironment around the Leg A GC dinucleotides was 
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examined (figure 50 and table 10). This cytosine residue will not 

normally be methylated (unless the next 3' base is another guanine ie 

5'-GCG-3') and therefore if subject to deamination, the resultant base 

would be uracil which would be recognised as an incorrect base. The 

Leg A, CG dinucleotides were found to occur predominantly in 

microenvironment which were between 40-70% C+G rich (ie considerably 

higher than the overall DNA percentage composition) , whereas the GC 

dinucleotides occurred predominantly in microenvironments with a 

slightly lower percentage composition (40-60%). Therefore, it is 

possible that the CG dinucleotides may be protected from deamination 

by the increased stability of a localised C+G rich region or domain 

but the data is not strong enough to state categorically that this is 

so. 

When an apparent anomaly in the sequence data for the protein 

.coding regions of a gene is observed, it is necessary to consider 

whether the anomaly is a consequence of the protein coding 

requirement. It is probable that protein coding requirements or 

anomalies in the codon usage, would show up in the preliminary 

analysis shown in table 7. Some oddities were observed (eg a high CA 

ratio in exon 4, a high CT ratio in exon 3 and low GT and TA ratios in 

exon 3) but the CG dinucleotide was the only one to show an abnormal 

frequency throughout the gene. This point is emphasised in figure 48. 

Most published papers which report on the CG-suppression phenomenon, 

only show details of the CG dinucleotide distribution but it is only 

when the CG distribution and those of its potential mutation products 

(TG and CA) are compared with the other distributions (eg CT, TC, GA, 
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AG, TA and AT), that the significance of this phenomenon is 

emphasised. 

4:4:2 Analysis of Leg A sequence data for 'CCG-suppression' 

The analysis of a plant gene sequence has an added advantage in 

that the methylation of the cytosine residue is not confined to the CG 

dinucleotide. In addition, the C-X-G trinucleotide (where X can be C, 

A or T) is known to be methylated in plant DNA ( Gruenbaum et aL , 

198lb). Therefore, if the rarity of the CG dinucleotide is due to the 

mutation of the 5mC, then similar anomalies should be indicated by the 

analysis of the distributions of the C-X-G trinucleotides. 

Gruenbaum et aL (198lb) reported that 50% of the external 

cytosines and 80% of the internal cytosines were methylated in wheat 

germ DNA. Therefore it is likely that the internal cytosine has a 

.higher probability of undergoing deamination. The trinucleotide 

product of such a deamination would be 5'-CTG-3' and the complementary 

sequence would be 5'-CAG-3'. Some of these deamination products will 

still be modified at their remaining cytosine residue. These 

trinucleotides still have 180° rotational symmetry and therefore the 

methylation of the external cytosine, will be maintained after DNA 

replica.tion. Where this cytosine residue is methylated in the CAG/CTG 

trinucleotides it too will be susceptible to a deamination (ie 

CTG~TTG and CAG~TAG). However, it should also be noted that it is 

possible that the external cytosine of the methylated CCG 

trinucleotide could be deaminated first (ie CCG~TCG-.TTG) (see table 

11). 
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The equivalent mutations, on the complementary DNA strand (ie the 

strand which provides the template · for the RNA message) can also be 

monitored. A 5 1 -CCG-3 1 sequence on the template strand can be detected 

as a 5 1 -CGG-3 1 sequence on the sequenced DNA strand. Thus, the 

sequence of events 5 1 -CCG-3 1-+ 5 1 -CTG-3 1-+ 5 1 -TTG-3 1 on the template 

strand can be monitored by the complementary 5 1 -CGG-3 1~5 1 -CAG-3 1 __.. 

5 1 -CAA-3 1 on the sequenced strand ~hilst 5 1 -CCG-3 1__..5 1 TCG-3~5 1 TTG-3 1 

on the template strand can be monitored by the complementary 5 1 -CGG-3 1 

~5 1 -CGA-3~5 1 -CAA-3 1 on the sequenced strand (table 11). 

McClelland (1983b), using the data for leguminous plant protein 

coding genes, performed a similar analysis for trinucleotide 

mutations, by comparing the overall ratios of CNG and TNG+CNA and 

CAG+CTG. The results obtained for Leg A are not in complete agreement 

with those of McClelland. In Leg A, the degenerate trinucleotide CCG 

and its complementary sequence 5 1 -CGG-3 1 were both found to occur at a 

frequency lower than expected (74% and 44% respectively) (McClelland 

obtained values of 114% and 88% respectively). However, to a certain 

extent the Leg A figures reflect the rarity of all CG-trinucleotides 

(table 9) and do not necessarily indicate that the degenerate 

trinucleotide has mutated to its transition products. 
trinucleotides 

Figures 57 and 58 show the relationships between the CCGI'-on both 

DNA strands and their deamination products. In both cases, a better 

correlation was found when the internal cytosine was assumed to mutate 

at a greater rate than the external cytosine· (ie figures 57a and 58a). 

However, it is probable that the lack of correlation in 57b and 58b is 

a consequence of the rarity of all CG-containing trinucleotides (see 
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table 9). 

4:4:3 Relationship between possible 5mC deamination and protein coding 

requirements 

When considering the effects of the 5mC Leg A deamination, it 

must be borne in mind that not all mutations will be .permitted if a 

functional gene is to survive. It·is only possible to measure the rate 

at which they are fixed in the. population (acceptance rate). It is 

necessary to consider the 'total genetic load' ie the proportion by 

which population fitness or survival is decreased in comparison with 

· that of the optimal g~netype (Kimura, 1968; Salser and Isaacson, 

1976). The total genetic load is normally considered to be the sum of 

the 'substitution load' (ie the cost of evolution, of replacing all 

the original genotypes with genotypes carrying a new advantageous 

mutation) plus the 'mutation load' (ie the cost of keeping the genome 

accurate by eliminating deleterious mutations) (Kimura, 1960). King 

and Jukes (1969) have stated that most proteins contain regions where 

the substitution of many amino acids can be made without producing 

appreciable changes in protein function. Kimura (1968) has estimated 

that about 20% of nucleotide replacement caused by mutation, is 

estimated to be 'synonymous' or 'silent' (ie codes for the same amino 

acid). It should be noted that these silent mutations are not 

necessarily 'neutral' mutations because they could disrupt important 

base-pairing relationships or change the binding of control proteins 

to DNA or RNA signal sequences etc. (Salser and Isaacson, 1976). 

In the rabbit 8-globin gene base substitutions were found to be 
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concentrated in the 'silent' (ie third coding position) rather than in 

amino acid changing positions (Salser, 1977). However, it was also 

found that in certain regions of the B -globin structural gene there 

was a complete absence of base substitutions of any kind. Salser 

( 1977) concluded that in the rabbit B -globin gene, mutations which 

caused amino acid substitution, appeared to have a fixation 

probability about fivefold less 'than that for silent muations within 

the. same gene. This implied that most amino acid substitutions in the 

B-globin gene were sufficiently deleterious to be eliminated in the 

course of evolution ( ie a neo-Darwinist rather than a neutralist's 

argument) . Thus the. tr).le state of affairs regarding the mutation of 

single~copy gene, is probably that the major proportion of the changes 

in the genome are neutral and those that cause deleterious amino acid 

substitutions will be eliminated during evolution. 

The codon position of selected Leg A nucleotides which were 

thought to be involved in the deamination of 5mC was investigated. 

Table 12 shows a comparison of the frequency of occurrence of selected 

di and trinucleotides in Leg A, between the protein coding and 

non-protein coding regions of Leg A. A major difference in the 

occurrence of certain trinucleotides would indicate that the 

structural gene imposed certain constraints on the deamination of 5mC 

residues. Salser and Isaacson ( 1946) have suggested that only small 

fraction of the genome is kept accurate (<2%), whilst most single-copy 

DNA is genetically drifting. Surprisingly, the major differences 

observed in table 12 concerned the distribution of the CAG, CTG, TTG 

and CAA trinucleotides, all of which had higher than expected 
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occurrence in the protein coding regions compared to the non-co<:ing 

regions. In view of the fact that both CGG and CCG were depressed in 

the protein coding regions, these increased ratios may reflect the 

deamination of the CCG trinucleotides in the protein coding region. It 

should also be noted that the CA dinucleotide and CAG trinucleotide 

occur more frequently than the ATG dinucleotide and CTG trinucleotide. 

This may reflect either the DNA or RNA structural considerations or it 

may indicate a faster mutation rate on the RNA template strand than on 

the DNA sequenced strand. 

The codon position of specified nucleotides was examined. This is 

not quite the same as l.ooking for silent mutations, since a change in 

certain third coding positions will alter the amino acid encoded by 

the codon. In light of the previously discussed ~-globin gene, which 

had a fivefold greater occurrence in nucleotide substitutions which 

were synonymous, then it might be expected that in Leg A, nucleotide 

substitutions due to 5mC deamination might be expected to be detected 

in the third coding position (table 15). 

Whilst the frequency of CG dinucleotide cytosine residues in 

position 3 was not particularly low (42. 5%), there was the expected 

increase in the number of TG dinucleotide thymine residues in position 

3 ( 64.4%) . It was also possible to examine the situation on the 

complementary RNA template strand ie the G in CG reflects the 

complementary cytosine and 'the number observed in the third coding 

position was found to be decreased ( 17. 5%). However, the expected 

increase in the A of the CA dinucleotide was not observed (22.1%). 

Similarly, the number of Ts in CTG, in the third position was found to 
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be increased (69.6%), but there was no equivalent increase in the 

number of As in the CAG trinucleotide, in the third position (25.6). 

(The position of this A reflects the position of the T in the 

complementary CTG). This difference may reflect the increased number 

of CTG trinucleotides on the template strand (thought to be a 

consequence of an increased CCG mutation rate on the template strand), 

or it may reflect DNA or RNA structural requirements. 

The codon position of the various nucleotides in the TTG 

trinucleotide was also examined (table 15). This trinucleotide is 

known to occur more frequently than was expected in the protein coding 

regions (table 12) .. Some of these TTG trinucleotides may have arisen 

from the deamination of the methylated CTG trinucleotides, some of 

which in turn could have been the deamination products of the CCG 

mutation. It was found that 62.5% of the internal Ts (T!G) were in the 

third codon postion. The TGs, which were a part of a TTG sequence, 

represented 29% of the total number of TGs in the protein coding 

region and this taken with the prevalence of the TTG trinucleotide may 

support the view that they represent the final mutation product of the 

CCG trinucleotide. However, if so then this means that a large 

proportion of the second mutations (CTG_.TTG) must have occurred in 

the second codon position, an event which would result in a change in 

the amino acid encoded. This might indicate that the need to delete 

the 5mC is of a greater importance than the need to maintain the 

accuracy of the final protein. 

If a situation existed, where the deamination of CCG, CTG and CAG 

trinucleotides were unrelated events, then it would be expected that a 



- 244-

greater. proportion of the external T in TTG trinucleotides (GTG 

deamination products) and of the T in TAG trinucleotides (GAG 

deamination products), would be found in the third codon postion (ie a 

potential silent mutation). The fact that the middle nucleotide, in 

both TTG and TAG is predominatly located in the third codon position, 

supports the view that they are the final products of a GGG 

deamination. 

However, the RNA template strand GTG trinucleotides do not show 

the same tendency to deaminate to. form the TTG trinucleotide, as was 

observed for the GTG trinucleotides on the sequenced strand. Only 

10. 5% internal adenin~ residues (of the complementary GAA on the 

sequenced strand), were found in the third codon position whilst a 

higher percentage (40.4%) of the external adenines (GAf2), were located 

in the third codon postion. Together the GAG and GAA trinucleotides 

accounted for almost 70% of all GA dinucleotides in the protein coding 

sequence and both trinucleotides had a higher than expected occurrence 

in the protein coding regions (table 12). 

Taken as a whole the results tend to confirm that the deamination 

of 5mG residues occurs predominantly in the potentially 'silent' third 

codon position. However, from this limited data source, it is 

difficult to equate the stipulations which dictate whether or not a 

deamination will occur. It is also difficult to explain the apparent 

difference in the deamination rates of the two DNA strands. 

4:4:4 Arginine codon usage 

40 codons specifying arginine were found in the Leg A sequence. 
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Of these, 16 were found to be CG containing codons. In general the 

arginine codons AGA and AGG are prefered over the other four 

CG-containing codons (Lycett et aL , 1983a). However, in exon 1, it 

was found that 6 cytosines out of the 11 CG dinucleotides were located 

in a CG-containing arginine codon (table 16). Thus the arginine codon 

usage in exon 1 was very different to the rest of the Leg A gene. 

Subak-Sharpe et aL ( 1966) have suggested that in mammalian DNA the CG 

shortage is of a magnitude which virtually precludes the use of CG for 

the general coding of amino acids. It is also interestng to note that 

mammalian cells with a low CG level probably use the CG-containg 

arginine codons infrequently and yet the larger mammalian virus, 

(eg Herpes ) make frequent use of CG containing codons. To overcome 

this discrepancy the virus DNA also has to code for new tRNAs which 

will qualitatively- modify the translation apparatus in the host 

cells (ibid) . 

King and Jukes ( 1969) have compared the observed number of 

arginine residues in 53 vertebrate polypeptides, with the frequency 

expected from random permutations of the nucleotides. Arginine 

residues occurred at 40% of the frequency expected. The authors have 

suggested that one explanation may be that the amount of arginine that 

can be tolerated in animal protein is less than the amount which would 

result if all six arginine codons were present at the expected 

frequency. Therefore, the CG content of animal DNA has been lowered by 

natural selection. 

It is not poss~ble to determine whether the arginine codon usage 

observed in the Leg A. exon 1 is a consequence of a high CG 
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dinucleotide occurrence or vice versa. In some ways the non-typical 

use of the argine codons in exon l supports the idea that the genes 

for polypeptides may have arisen by exon-shuffling. In 1978, Gilbert 

proposed that a gene was a mosaic of expressed sequences held in a 

matrix of silent DNA. Gilbert argued that such a structure would allow 

the recombination of different coding regions and thus speed up 

evolution. Blake (1978 and 1983). suggested that exons might code for 

discrete, stable regions of protein. Therefore, exon shuffling might 

assemble new proteins through the novel reassortment of stable 

substructures. Both theories predicted that introns would be found 

between DNA regions which coded for definable structural units of 

proteins (Lewin, 1982). In fact some genes eg chicken pyruvate kinase 

(Longerg and Gilbert, 1985) support this prediction whilst others (eg 

actin and myosin) conflicted with it. 

Some authors eg Cavalier-Smith (1985) strongly discount the idea 

of exon shuffling for protein recombination. One of the main 

objections to the idea of exon shuffling is that it fails to 

adequately explain the origin (or co-evolution) of either RNA splicing 

or of introns. Cavalier-Smith ( toe cit ) proposes that instead of 

exon shuffling, the introns were inserted ( ie transposon theory of 

introns or selfish DNA). Rogers (1985) has reported that the serine 

protease genes (which encode trypsin, blood clotting and complement 

factors), show a clear pattern of domains (ie support for exon 

shuffling) but in addition demonstrate that some new introns have been 

inserted at various times in evolution. 

The CG frequency and arginine coson usage in Leg A's exon 1 is 
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sufficiently different from the other Leg A exons to warrant a further 

investigation of the legumin gene exon-intron relationship ( eg a Go 

plot). It must also be appreciated that because there is such 

overwhelming evidence supporting .the view that the CG dinucleotide is 

suppresses in eukaryotic genomic DNA, any region of DNA which 

contradicts this generalisation may be of great significance. It is 

possible that in the future such. CG-cluster regions may be shown to 

have a special role in the control of gene expression (eg structural). 

Finally, since the sequence data of Leg B and C is likely to be 

very similar to that of Leg A, an analysis for CG suppression in these 

two genes is not likely to yield very much new information. However, 

an analysis of the sequence data of two other legumin genes (J and K), 

which are known to be dissimilar to Leg A (ie they do not cross­

hybridize), would prove very interesting. 
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